{ "source_type": "knesset", "source_id": "plenum", "source_entry_id": "100832", "quality_score": 0.9104, "per_segment_quality_scores": [ { "start": 89.1, "end": 92.42, "probability": 0.5505 }, { "start": 93.22, "end": 98.56, "probability": 0.9185 }, { "start": 99.16, "end": 100.94, "probability": 0.88 }, { "start": 102.34, "end": 103.06, "probability": 0.8319 }, { "start": 103.48, "end": 104.56, "probability": 0.8051 }, { "start": 104.68, "end": 105.98, "probability": 0.818 }, { "start": 106.04, "end": 107.46, "probability": 0.9107 }, { "start": 107.62, "end": 108.4, "probability": 0.7322 }, { "start": 109.1, "end": 109.88, "probability": 0.7469 }, { "start": 112.96, "end": 115.64, "probability": 0.3676 }, { "start": 116.64, "end": 121.1, "probability": 0.7872 }, { "start": 124.92, "end": 126.62, "probability": 0.0348 }, { "start": 126.62, "end": 126.64, "probability": 0.3607 }, { "start": 126.9, "end": 127.22, "probability": 0.054 }, { "start": 127.22, "end": 129.34, "probability": 0.0962 }, { "start": 129.84, "end": 132.1, "probability": 0.271 }, { "start": 132.6, "end": 132.98, "probability": 0.3673 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 133.0, "end": 133.0, "probability": 0.0 }, { "start": 138.8, "end": 142.14, "probability": 0.9993 }, { "start": 142.14, "end": 148.56, "probability": 0.9992 }, { "start": 149.08, "end": 153.0, "probability": 0.9326 }, { "start": 153.34, "end": 153.54, "probability": 0.7523 }, { "start": 154.46, "end": 155.68, "probability": 0.7974 }, { "start": 155.9, "end": 159.02, "probability": 0.9951 }, { "start": 159.24, "end": 163.44, "probability": 0.9839 }, { "start": 163.86, "end": 165.68, "probability": 0.8892 }, { "start": 165.74, "end": 168.73, "probability": 0.9715 }, { "start": 169.54, "end": 172.42, "probability": 0.8086 }, { "start": 172.6, "end": 173.2, "probability": 0.6446 }, { "start": 173.42, "end": 176.7, "probability": 0.942 }, { "start": 177.48, "end": 179.92, "probability": 0.9771 }, { "start": 180.68, "end": 181.44, "probability": 0.8415 }, { "start": 182.14, "end": 187.88, "probability": 0.9854 }, { "start": 188.62, "end": 190.95, "probability": 0.7467 }, { "start": 192.08, "end": 192.08, "probability": 0.2896 }, { "start": 195.72, "end": 198.52, "probability": 0.8359 }, { "start": 199.26, "end": 201.14, "probability": 0.7198 }, { "start": 201.68, "end": 201.78, "probability": 0.5235 }, { "start": 206.42, "end": 208.52, "probability": 0.7728 }, { "start": 208.88, "end": 210.64, "probability": 0.7427 }, { "start": 212.34, "end": 214.72, "probability": 0.6475 }, { "start": 214.98, "end": 215.1, "probability": 0.2557 }, { "start": 215.7, "end": 216.44, "probability": 0.118 }, { "start": 216.74, "end": 217.8, "probability": 0.8976 }, { "start": 223.34, "end": 225.64, "probability": 0.8317 }, { "start": 226.18, "end": 227.24, "probability": 0.8667 }, { "start": 227.44, "end": 229.06, "probability": 0.9255 }, { "start": 229.3, "end": 230.0, "probability": 0.9365 }, { "start": 230.22, "end": 231.48, "probability": 0.971 }, { "start": 232.0, "end": 232.3, "probability": 0.15 }, { "start": 232.3, "end": 233.44, "probability": 0.6385 }, { "start": 234.08, "end": 239.16, "probability": 0.7902 }, { "start": 240.78, "end": 241.2, "probability": 0.9614 }, { "start": 241.62, "end": 244.04, "probability": 0.0867 }, { "start": 244.04, "end": 244.1, "probability": 0.1176 }, { "start": 244.1, "end": 244.1, "probability": 0.1117 }, { "start": 244.1, "end": 245.28, "probability": 0.0704 }, { "start": 245.42, "end": 246.02, "probability": 0.7456 }, { "start": 246.1, "end": 247.92, "probability": 0.8876 }, { "start": 248.04, "end": 248.42, "probability": 0.9 }, { "start": 248.42, "end": 249.44, "probability": 0.5316 }, { "start": 249.7, "end": 250.32, "probability": 0.6689 }, { "start": 250.46, "end": 251.12, "probability": 0.688 }, { "start": 251.22, "end": 251.76, "probability": 0.1766 }, { "start": 252.49, "end": 254.04, "probability": 0.3171 }, { "start": 254.24, "end": 257.92, "probability": 0.5093 }, { "start": 257.92, "end": 257.98, "probability": 0.2568 }, { "start": 257.98, "end": 258.72, "probability": 0.7859 }, { "start": 258.88, "end": 262.72, "probability": 0.9309 }, { "start": 263.6, "end": 266.56, "probability": 0.8958 }, { "start": 266.76, "end": 268.32, "probability": 0.4032 }, { "start": 268.42, "end": 268.7, "probability": 0.5241 }, { "start": 269.18, "end": 269.82, "probability": 0.6333 }, { "start": 270.32, "end": 271.26, "probability": 0.3025 }, { "start": 271.98, "end": 272.34, "probability": 0.4069 }, { "start": 272.68, "end": 272.86, "probability": 0.4102 }, { "start": 273.06, "end": 273.72, "probability": 0.7319 }, { "start": 273.78, "end": 274.6, "probability": 0.8365 }, { "start": 274.72, "end": 275.98, "probability": 0.7602 }, { "start": 276.08, "end": 277.37, "probability": 0.8285 }, { "start": 278.0, "end": 278.0, "probability": 0.0794 }, { "start": 278.0, "end": 278.2, "probability": 0.5905 }, { "start": 278.48, "end": 281.94, "probability": 0.9592 }, { "start": 282.8, "end": 286.18, "probability": 0.9951 }, { "start": 286.82, "end": 289.38, "probability": 0.9982 }, { "start": 289.94, "end": 291.2, "probability": 0.7277 }, { "start": 291.76, "end": 295.06, "probability": 0.9204 }, { "start": 295.66, "end": 298.78, "probability": 0.7582 }, { "start": 299.54, "end": 301.0, "probability": 0.9833 }, { "start": 301.04, "end": 302.23, "probability": 0.9912 }, { "start": 302.84, "end": 305.5, "probability": 0.8397 }, { "start": 306.22, "end": 307.04, "probability": 0.6901 }, { "start": 307.2, "end": 307.94, "probability": 0.7984 }, { "start": 308.26, "end": 309.26, "probability": 0.7546 }, { "start": 309.76, "end": 311.48, "probability": 0.9856 }, { "start": 311.6, "end": 312.28, "probability": 0.6954 }, { "start": 312.74, "end": 313.82, "probability": 0.9971 }, { "start": 314.62, "end": 316.06, "probability": 0.9921 }, { "start": 316.14, "end": 317.2, "probability": 0.9111 }, { "start": 317.38, "end": 318.54, "probability": 0.9714 }, { "start": 318.62, "end": 319.66, "probability": 0.9009 }, { "start": 320.2, "end": 321.53, "probability": 0.9011 }, { "start": 322.56, "end": 325.24, "probability": 0.9633 }, { "start": 325.82, "end": 327.62, "probability": 0.9803 }, { "start": 328.76, "end": 329.62, "probability": 0.7288 }, { "start": 330.16, "end": 331.76, "probability": 0.8721 }, { "start": 332.5, "end": 333.92, "probability": 0.9458 }, { "start": 334.52, "end": 338.1, "probability": 0.9067 }, { "start": 338.64, "end": 340.48, "probability": 0.8801 }, { "start": 341.14, "end": 344.16, "probability": 0.8304 }, { "start": 344.18, "end": 348.04, "probability": 0.9843 }, { "start": 348.4, "end": 352.48, "probability": 0.9264 }, { "start": 352.74, "end": 353.76, "probability": 0.9068 }, { "start": 354.26, "end": 355.12, "probability": 0.9091 }, { "start": 355.66, "end": 358.78, "probability": 0.9858 }, { "start": 359.22, "end": 360.58, "probability": 0.9667 }, { "start": 360.98, "end": 362.38, "probability": 0.8763 }, { "start": 362.82, "end": 363.82, "probability": 0.969 }, { "start": 364.3, "end": 365.2, "probability": 0.9804 }, { "start": 365.74, "end": 370.46, "probability": 0.9404 }, { "start": 370.98, "end": 375.26, "probability": 0.9533 }, { "start": 377.77, "end": 378.79, "probability": 0.0756 }, { "start": 379.16, "end": 379.86, "probability": 0.8419 }, { "start": 380.38, "end": 383.82, "probability": 0.9812 }, { "start": 384.62, "end": 385.64, "probability": 0.7135 }, { "start": 385.76, "end": 388.9, "probability": 0.991 }, { "start": 389.4, "end": 390.46, "probability": 0.9121 }, { "start": 391.04, "end": 392.04, "probability": 0.9295 }, { "start": 393.72, "end": 394.8, "probability": 0.6904 }, { "start": 394.9, "end": 396.1, "probability": 0.6723 }, { "start": 396.74, "end": 399.92, "probability": 0.9934 }, { "start": 400.46, "end": 403.5, "probability": 0.9654 }, { "start": 404.58, "end": 407.28, "probability": 0.9846 }, { "start": 407.82, "end": 410.24, "probability": 0.9617 }, { "start": 410.8, "end": 414.98, "probability": 0.8732 }, { "start": 414.98, "end": 418.0, "probability": 0.9631 }, { "start": 418.54, "end": 419.2, "probability": 0.8144 }, { "start": 419.62, "end": 422.3, "probability": 0.9851 }, { "start": 422.58, "end": 423.88, "probability": 0.9902 }, { "start": 425.26, "end": 427.06, "probability": 0.4978 }, { "start": 427.96, "end": 430.38, "probability": 0.999 }, { "start": 431.32, "end": 434.58, "probability": 0.9856 }, { "start": 435.04, "end": 436.94, "probability": 0.9794 }, { "start": 437.02, "end": 439.34, "probability": 0.6831 }, { "start": 439.74, "end": 443.38, "probability": 0.9271 }, { "start": 443.84, "end": 444.61, "probability": 0.9856 }, { "start": 445.4, "end": 447.02, "probability": 0.8745 }, { "start": 447.48, "end": 451.28, "probability": 0.9697 }, { "start": 451.7, "end": 453.98, "probability": 0.8003 }, { "start": 454.32, "end": 454.94, "probability": 0.645 }, { "start": 455.72, "end": 457.14, "probability": 0.8068 }, { "start": 457.74, "end": 459.58, "probability": 0.3017 }, { "start": 460.12, "end": 463.64, "probability": 0.7139 }, { "start": 464.24, "end": 466.29, "probability": 0.9909 }, { "start": 467.32, "end": 469.38, "probability": 0.9894 }, { "start": 470.1, "end": 470.82, "probability": 0.3291 }, { "start": 471.26, "end": 473.88, "probability": 0.9314 }, { "start": 474.1, "end": 474.62, "probability": 0.4983 }, { "start": 475.14, "end": 476.4, "probability": 0.9548 }, { "start": 476.96, "end": 477.54, "probability": 0.9156 }, { "start": 478.18, "end": 479.42, "probability": 0.6807 }, { "start": 479.44, "end": 481.28, "probability": 0.882 }, { "start": 481.58, "end": 481.96, "probability": 0.9896 }, { "start": 482.68, "end": 483.28, "probability": 0.5245 }, { "start": 483.8, "end": 487.12, "probability": 0.8337 }, { "start": 487.18, "end": 489.18, "probability": 0.7811 }, { "start": 489.28, "end": 490.04, "probability": 0.9629 }, { "start": 490.12, "end": 491.26, "probability": 0.9219 }, { "start": 492.12, "end": 493.42, "probability": 0.8864 }, { "start": 494.1, "end": 494.72, "probability": 0.9184 }, { "start": 495.26, "end": 498.84, "probability": 0.8823 }, { "start": 499.48, "end": 505.5, "probability": 0.9888 }, { "start": 506.18, "end": 508.46, "probability": 0.9851 }, { "start": 509.12, "end": 509.74, "probability": 0.8927 }, { "start": 510.1, "end": 512.18, "probability": 0.6572 }, { "start": 512.62, "end": 514.05, "probability": 0.9858 }, { "start": 514.64, "end": 515.84, "probability": 0.7834 }, { "start": 516.56, "end": 519.88, "probability": 0.778 }, { "start": 520.8, "end": 523.1, "probability": 0.9259 }, { "start": 523.16, "end": 524.7, "probability": 0.99 }, { "start": 525.74, "end": 525.86, "probability": 0.4604 }, { "start": 526.38, "end": 528.98, "probability": 0.9103 }, { "start": 529.34, "end": 531.4, "probability": 0.9142 }, { "start": 531.98, "end": 533.33, "probability": 0.6168 }, { "start": 534.16, "end": 538.16, "probability": 0.8784 }, { "start": 538.68, "end": 539.78, "probability": 0.9261 }, { "start": 539.9, "end": 541.65, "probability": 0.9749 }, { "start": 542.38, "end": 543.34, "probability": 0.9915 }, { "start": 543.96, "end": 545.6, "probability": 0.923 }, { "start": 546.38, "end": 546.72, "probability": 0.4046 }, { "start": 546.8, "end": 547.48, "probability": 0.8952 }, { "start": 547.56, "end": 549.34, "probability": 0.9653 }, { "start": 550.38, "end": 554.28, "probability": 0.6604 }, { "start": 554.34, "end": 555.82, "probability": 0.8701 }, { "start": 555.92, "end": 557.73, "probability": 0.7632 }, { "start": 558.38, "end": 562.9, "probability": 0.767 }, { "start": 563.66, "end": 565.13, "probability": 0.988 }, { "start": 565.22, "end": 566.14, "probability": 0.9773 }, { "start": 566.36, "end": 567.4, "probability": 0.7881 }, { "start": 567.86, "end": 572.82, "probability": 0.9854 }, { "start": 573.4, "end": 575.04, "probability": 0.9933 }, { "start": 575.7, "end": 575.96, "probability": 0.7383 }, { "start": 576.04, "end": 577.0, "probability": 0.9742 }, { "start": 577.2, "end": 578.34, "probability": 0.9945 }, { "start": 579.44, "end": 580.48, "probability": 0.9549 }, { "start": 580.94, "end": 584.44, "probability": 0.9875 }, { "start": 584.6, "end": 587.0, "probability": 0.9052 }, { "start": 587.52, "end": 590.22, "probability": 0.964 }, { "start": 590.32, "end": 592.54, "probability": 0.9196 }, { "start": 592.76, "end": 593.2, "probability": 0.671 }, { "start": 593.72, "end": 594.96, "probability": 0.9448 }, { "start": 595.5, "end": 597.62, "probability": 0.8132 }, { "start": 598.1, "end": 598.52, "probability": 0.6279 }, { "start": 598.64, "end": 602.98, "probability": 0.8075 }, { "start": 603.1, "end": 604.24, "probability": 0.9585 }, { "start": 604.96, "end": 606.46, "probability": 0.926 }, { "start": 606.92, "end": 608.3, "probability": 0.8795 }, { "start": 608.78, "end": 611.0, "probability": 0.987 }, { "start": 611.58, "end": 612.66, "probability": 0.9604 }, { "start": 613.3, "end": 615.35, "probability": 0.9406 }, { "start": 616.32, "end": 618.64, "probability": 0.9524 }, { "start": 619.1, "end": 620.84, "probability": 0.9839 }, { "start": 621.14, "end": 622.13, "probability": 0.9894 }, { "start": 622.24, "end": 623.14, "probability": 0.9612 }, { "start": 623.16, "end": 625.02, "probability": 0.9717 }, { "start": 625.44, "end": 626.16, "probability": 0.7866 }, { "start": 626.5, "end": 627.1, "probability": 0.7544 }, { "start": 627.26, "end": 628.5, "probability": 0.9771 }, { "start": 629.26, "end": 633.56, "probability": 0.9919 }, { "start": 634.04, "end": 636.39, "probability": 0.9839 }, { "start": 637.08, "end": 642.46, "probability": 0.7425 }, { "start": 642.46, "end": 645.8, "probability": 0.9822 }, { "start": 646.4, "end": 648.9, "probability": 0.9882 }, { "start": 649.4, "end": 652.38, "probability": 0.9934 }, { "start": 652.7, "end": 653.62, "probability": 0.713 }, { "start": 654.1, "end": 654.82, "probability": 0.822 }, { "start": 655.46, "end": 658.16, "probability": 0.8066 }, { "start": 658.16, "end": 661.7, "probability": 0.959 }, { "start": 662.32, "end": 664.72, "probability": 0.9876 }, { "start": 665.24, "end": 665.88, "probability": 0.6282 }, { "start": 665.98, "end": 666.76, "probability": 0.8605 }, { "start": 667.36, "end": 669.82, "probability": 0.906 }, { "start": 670.74, "end": 673.3, "probability": 0.9733 }, { "start": 673.86, "end": 676.72, "probability": 0.6269 }, { "start": 677.36, "end": 678.54, "probability": 0.9139 }, { "start": 678.96, "end": 682.3, "probability": 0.9977 }, { "start": 682.9, "end": 685.84, "probability": 0.8165 }, { "start": 686.2, "end": 688.08, "probability": 0.9954 }, { "start": 688.66, "end": 691.12, "probability": 0.9775 }, { "start": 691.76, "end": 693.06, "probability": 0.9445 }, { "start": 693.86, "end": 694.06, "probability": 0.3427 }, { "start": 694.16, "end": 696.42, "probability": 0.9204 }, { "start": 697.66, "end": 698.68, "probability": 0.9359 }, { "start": 699.34, "end": 700.48, "probability": 0.9818 }, { "start": 700.94, "end": 702.38, "probability": 0.9959 }, { "start": 703.58, "end": 704.46, "probability": 0.98 }, { "start": 704.94, "end": 707.3, "probability": 0.9224 }, { "start": 710.26, "end": 713.02, "probability": 0.6654 }, { "start": 713.02, "end": 716.11, "probability": 0.5269 }, { "start": 716.9, "end": 717.84, "probability": 0.9891 }, { "start": 718.58, "end": 719.96, "probability": 0.9915 }, { "start": 720.52, "end": 721.63, "probability": 0.9829 }, { "start": 722.28, "end": 722.92, "probability": 0.9101 }, { "start": 723.38, "end": 723.92, "probability": 0.974 }, { "start": 724.24, "end": 725.02, "probability": 0.8587 }, { "start": 725.42, "end": 726.38, "probability": 0.9795 }, { "start": 726.5, "end": 727.26, "probability": 0.789 }, { "start": 727.92, "end": 729.96, "probability": 0.9285 }, { "start": 730.96, "end": 733.34, "probability": 0.97 }, { "start": 734.0, "end": 737.58, "probability": 0.9878 }, { "start": 738.12, "end": 740.0, "probability": 0.9907 }, { "start": 740.86, "end": 743.24, "probability": 0.9777 }, { "start": 743.84, "end": 744.98, "probability": 0.9833 }, { "start": 745.18, "end": 745.72, "probability": 0.8109 }, { "start": 745.86, "end": 747.14, "probability": 0.3772 }, { "start": 747.34, "end": 747.78, "probability": 0.4831 }, { "start": 748.22, "end": 749.34, "probability": 0.9548 }, { "start": 750.24, "end": 751.34, "probability": 0.9856 }, { "start": 752.0, "end": 753.52, "probability": 0.9492 }, { "start": 754.66, "end": 759.16, "probability": 0.9652 }, { "start": 759.74, "end": 760.91, "probability": 0.9241 }, { "start": 761.68, "end": 761.98, "probability": 0.8344 }, { "start": 761.98, "end": 762.64, "probability": 0.9985 }, { "start": 763.72, "end": 764.15, "probability": 0.9885 }, { "start": 765.08, "end": 767.95, "probability": 0.9644 }, { "start": 768.76, "end": 771.28, "probability": 0.9862 }, { "start": 772.16, "end": 774.46, "probability": 0.8514 }, { "start": 775.14, "end": 776.88, "probability": 0.9917 }, { "start": 778.02, "end": 778.02, "probability": 0.1185 }, { "start": 778.02, "end": 779.88, "probability": 0.9958 }, { "start": 780.7, "end": 784.62, "probability": 0.5131 }, { "start": 785.9, "end": 787.42, "probability": 0.9933 }, { "start": 787.5, "end": 788.98, "probability": 0.9942 }, { "start": 789.7, "end": 792.36, "probability": 0.9967 }, { "start": 792.56, "end": 793.88, "probability": 0.7899 }, { "start": 794.48, "end": 797.26, "probability": 0.9819 }, { "start": 797.76, "end": 800.28, "probability": 0.861 }, { "start": 800.92, "end": 802.22, "probability": 0.7733 }, { "start": 803.1, "end": 805.72, "probability": 0.978 }, { "start": 806.82, "end": 810.04, "probability": 0.9935 }, { "start": 810.1, "end": 813.96, "probability": 0.9937 }, { "start": 814.92, "end": 815.78, "probability": 0.7242 }, { "start": 816.36, "end": 818.4, "probability": 0.7474 }, { "start": 819.24, "end": 822.32, "probability": 0.9918 }, { "start": 823.1, "end": 824.54, "probability": 0.8436 }, { "start": 825.62, "end": 826.77, "probability": 0.9391 }, { "start": 827.44, "end": 828.8, "probability": 0.9821 }, { "start": 829.46, "end": 831.18, "probability": 0.8143 }, { "start": 831.98, "end": 832.82, "probability": 0.9785 }, { "start": 833.34, "end": 835.48, "probability": 0.9912 }, { "start": 836.02, "end": 838.72, "probability": 0.9357 }, { "start": 839.3, "end": 839.85, "probability": 0.9174 }, { "start": 840.62, "end": 842.5, "probability": 0.9323 }, { "start": 843.06, "end": 846.58, "probability": 0.9935 }, { "start": 846.62, "end": 847.24, "probability": 0.6393 }, { "start": 847.82, "end": 848.98, "probability": 0.8718 }, { "start": 849.64, "end": 851.3, "probability": 0.8849 }, { "start": 851.72, "end": 852.48, "probability": 0.5035 }, { "start": 852.88, "end": 853.78, "probability": 0.7044 }, { "start": 854.72, "end": 856.78, "probability": 0.8578 }, { "start": 857.54, "end": 858.4, "probability": 0.9705 }, { "start": 858.9, "end": 860.08, "probability": 0.9502 }, { "start": 860.46, "end": 861.06, "probability": 0.6788 }, { "start": 861.52, "end": 862.32, "probability": 0.5092 }, { "start": 862.42, "end": 863.64, "probability": 0.9313 }, { "start": 864.2, "end": 865.8, "probability": 0.9017 }, { "start": 867.5, "end": 869.34, "probability": 0.8793 }, { "start": 870.2, "end": 870.88, "probability": 0.6765 }, { "start": 871.26, "end": 873.58, "probability": 0.8189 }, { "start": 874.1, "end": 874.92, "probability": 0.6344 }, { "start": 875.7, "end": 880.06, "probability": 0.7656 }, { "start": 880.78, "end": 881.42, "probability": 0.9683 }, { "start": 881.86, "end": 883.14, "probability": 0.9762 }, { "start": 883.56, "end": 885.6, "probability": 0.9922 }, { "start": 886.1, "end": 887.8, "probability": 0.9639 }, { "start": 887.9, "end": 889.54, "probability": 0.9258 }, { "start": 891.44, "end": 892.1, "probability": 0.7078 }, { "start": 893.4, "end": 900.62, "probability": 0.9734 }, { "start": 900.84, "end": 901.36, "probability": 0.7885 }, { "start": 901.48, "end": 902.55, "probability": 0.8088 }, { "start": 903.12, "end": 904.22, "probability": 0.6532 }, { "start": 904.44, "end": 904.58, "probability": 0.0572 }, { "start": 904.94, "end": 904.94, "probability": 0.0698 }, { "start": 904.94, "end": 905.56, "probability": 0.5076 }, { "start": 908.3, "end": 910.48, "probability": 0.8257 }, { "start": 911.34, "end": 911.84, "probability": 0.4173 }, { "start": 913.06, "end": 913.62, "probability": 0.0886 }, { "start": 914.3, "end": 915.78, "probability": 0.4419 }, { "start": 915.86, "end": 916.36, "probability": 0.885 }, { "start": 918.54, "end": 924.9, "probability": 0.9948 }, { "start": 925.8, "end": 927.2, "probability": 0.5467 }, { "start": 927.72, "end": 928.62, "probability": 0.1753 }, { "start": 929.08, "end": 933.48, "probability": 0.9273 }, { "start": 935.54, "end": 937.3, "probability": 0.7056 }, { "start": 937.78, "end": 939.72, "probability": 0.887 }, { "start": 940.02, "end": 943.84, "probability": 0.6627 }, { "start": 943.9, "end": 946.46, "probability": 0.043 }, { "start": 946.64, "end": 947.98, "probability": 0.6965 }, { "start": 948.88, "end": 951.52, "probability": 0.9875 }, { "start": 951.98, "end": 953.2, "probability": 0.9793 }, { "start": 953.56, "end": 954.3, "probability": 0.5956 }, { "start": 956.46, "end": 958.64, "probability": 0.8514 }, { "start": 965.7, "end": 966.26, "probability": 0.6881 }, { "start": 989.3, "end": 991.9, "probability": 0.9036 }, { "start": 992.14, "end": 993.48, "probability": 0.623 }, { "start": 994.12, "end": 995.11, "probability": 0.4109 }, { "start": 996.92, "end": 998.36, "probability": 0.6649 }, { "start": 998.78, "end": 1000.04, "probability": 0.7408 }, { "start": 1004.02, "end": 1006.36, "probability": 0.0021 }, { "start": 1007.8, "end": 1008.56, "probability": 0.6768 }, { "start": 1011.04, "end": 1012.8, "probability": 0.8849 }, { "start": 1013.76, "end": 1018.76, "probability": 0.9741 }, { "start": 1024.44, "end": 1025.32, "probability": 0.5155 }, { "start": 1026.44, "end": 1028.38, "probability": 0.998 }, { "start": 1028.9, "end": 1029.1, "probability": 0.9134 }, { "start": 1030.58, "end": 1035.02, "probability": 0.9291 }, { "start": 1036.32, "end": 1038.28, "probability": 0.998 }, { "start": 1039.08, "end": 1041.7, "probability": 0.8359 }, { "start": 1041.72, "end": 1045.28, "probability": 0.9614 }, { "start": 1046.64, "end": 1046.98, "probability": 0.6791 }, { "start": 1047.9, "end": 1049.65, "probability": 0.8275 }, { "start": 1050.42, "end": 1050.9, "probability": 0.9238 }, { "start": 1052.18, "end": 1054.64, "probability": 0.9814 }, { "start": 1054.8, "end": 1056.14, "probability": 0.7395 }, { "start": 1057.9, "end": 1058.54, "probability": 0.9613 }, { "start": 1059.72, "end": 1060.46, "probability": 0.7704 }, { "start": 1061.44, "end": 1065.12, "probability": 0.7513 }, { "start": 1066.3, "end": 1066.92, "probability": 0.9481 }, { "start": 1067.62, "end": 1073.46, "probability": 0.9943 }, { "start": 1074.46, "end": 1081.0, "probability": 0.9986 }, { "start": 1082.16, "end": 1084.82, "probability": 0.9854 }, { "start": 1085.5, "end": 1085.84, "probability": 0.4727 }, { "start": 1087.04, "end": 1092.44, "probability": 0.9932 }, { "start": 1093.32, "end": 1095.88, "probability": 0.9877 }, { "start": 1096.76, "end": 1098.58, "probability": 0.9966 }, { "start": 1099.18, "end": 1099.86, "probability": 0.9674 }, { "start": 1100.38, "end": 1102.78, "probability": 0.9634 }, { "start": 1103.64, "end": 1106.32, "probability": 0.9783 }, { "start": 1107.2, "end": 1110.46, "probability": 0.9891 }, { "start": 1111.54, "end": 1112.8, "probability": 0.9974 }, { "start": 1113.36, "end": 1114.46, "probability": 0.928 }, { "start": 1115.06, "end": 1117.6, "probability": 0.7438 }, { "start": 1118.7, "end": 1122.42, "probability": 0.9923 }, { "start": 1122.42, "end": 1126.04, "probability": 0.9985 }, { "start": 1126.84, "end": 1128.73, "probability": 0.6571 }, { "start": 1129.44, "end": 1131.04, "probability": 0.9328 }, { "start": 1131.62, "end": 1132.7, "probability": 0.8082 }, { "start": 1133.12, "end": 1134.02, "probability": 0.9723 }, { "start": 1134.46, "end": 1135.7, "probability": 0.9917 }, { "start": 1136.14, "end": 1138.4, "probability": 0.9358 }, { "start": 1139.1, "end": 1141.34, "probability": 0.9982 }, { "start": 1141.94, "end": 1144.18, "probability": 0.9473 }, { "start": 1145.8, "end": 1147.46, "probability": 0.9421 }, { "start": 1148.36, "end": 1149.56, "probability": 0.9504 }, { "start": 1150.78, "end": 1152.72, "probability": 0.9888 }, { "start": 1153.84, "end": 1155.76, "probability": 0.9709 }, { "start": 1156.46, "end": 1157.32, "probability": 0.9845 }, { "start": 1157.88, "end": 1160.14, "probability": 0.9993 }, { "start": 1161.04, "end": 1162.44, "probability": 0.8528 }, { "start": 1162.96, "end": 1168.26, "probability": 0.992 }, { "start": 1169.02, "end": 1169.84, "probability": 0.5947 }, { "start": 1169.96, "end": 1171.82, "probability": 0.952 }, { "start": 1172.3, "end": 1174.6, "probability": 0.7922 }, { "start": 1175.16, "end": 1178.64, "probability": 0.9942 }, { "start": 1179.62, "end": 1182.56, "probability": 0.9991 }, { "start": 1183.24, "end": 1186.7, "probability": 0.9899 }, { "start": 1187.34, "end": 1189.04, "probability": 0.9187 }, { "start": 1189.86, "end": 1191.56, "probability": 0.8687 }, { "start": 1192.46, "end": 1192.82, "probability": 0.8196 }, { "start": 1193.76, "end": 1194.74, "probability": 0.9844 }, { "start": 1195.7, "end": 1200.5, "probability": 0.9498 }, { "start": 1200.5, "end": 1205.04, "probability": 0.9951 }, { "start": 1206.36, "end": 1208.24, "probability": 0.6169 }, { "start": 1209.06, "end": 1212.06, "probability": 0.3284 }, { "start": 1212.72, "end": 1213.36, "probability": 0.707 }, { "start": 1214.04, "end": 1217.06, "probability": 0.9811 }, { "start": 1217.92, "end": 1222.84, "probability": 0.9913 }, { "start": 1223.36, "end": 1225.32, "probability": 0.9956 }, { "start": 1225.9, "end": 1228.88, "probability": 0.9985 }, { "start": 1229.68, "end": 1232.48, "probability": 0.9143 }, { "start": 1233.58, "end": 1235.5, "probability": 0.7347 }, { "start": 1236.44, "end": 1237.26, "probability": 0.8724 }, { "start": 1238.02, "end": 1242.92, "probability": 0.9227 }, { "start": 1243.34, "end": 1247.02, "probability": 0.9287 }, { "start": 1248.06, "end": 1250.1, "probability": 0.9958 }, { "start": 1250.76, "end": 1254.94, "probability": 0.9721 }, { "start": 1255.54, "end": 1260.02, "probability": 0.9731 }, { "start": 1260.82, "end": 1262.64, "probability": 0.9861 }, { "start": 1263.68, "end": 1267.82, "probability": 0.9568 }, { "start": 1268.68, "end": 1270.14, "probability": 0.9657 }, { "start": 1271.08, "end": 1272.02, "probability": 0.8527 }, { "start": 1272.12, "end": 1275.72, "probability": 0.9629 }, { "start": 1276.14, "end": 1276.9, "probability": 0.6531 }, { "start": 1277.86, "end": 1279.49, "probability": 0.9951 }, { "start": 1280.44, "end": 1282.7, "probability": 0.7285 }, { "start": 1283.76, "end": 1289.26, "probability": 0.9915 }, { "start": 1290.38, "end": 1291.84, "probability": 0.9974 }, { "start": 1292.42, "end": 1296.38, "probability": 0.9867 }, { "start": 1297.24, "end": 1297.92, "probability": 0.9701 }, { "start": 1298.92, "end": 1300.0, "probability": 0.9895 }, { "start": 1300.92, "end": 1301.72, "probability": 0.4764 }, { "start": 1302.52, "end": 1303.32, "probability": 0.6847 }, { "start": 1303.68, "end": 1304.0, "probability": 0.712 }, { "start": 1304.82, "end": 1306.74, "probability": 0.9766 }, { "start": 1307.32, "end": 1312.94, "probability": 0.9769 }, { "start": 1313.78, "end": 1315.6, "probability": 0.924 }, { "start": 1317.92, "end": 1319.5, "probability": 0.9276 }, { "start": 1320.64, "end": 1321.98, "probability": 0.9768 }, { "start": 1322.74, "end": 1326.92, "probability": 0.9875 }, { "start": 1327.66, "end": 1328.28, "probability": 0.9164 }, { "start": 1328.88, "end": 1333.88, "probability": 0.9919 }, { "start": 1334.76, "end": 1336.18, "probability": 0.9834 }, { "start": 1336.86, "end": 1342.16, "probability": 0.9657 }, { "start": 1342.56, "end": 1343.4, "probability": 0.9333 }, { "start": 1345.28, "end": 1349.0, "probability": 0.9863 }, { "start": 1349.74, "end": 1351.64, "probability": 0.9587 }, { "start": 1352.34, "end": 1356.44, "probability": 0.9922 }, { "start": 1357.28, "end": 1363.72, "probability": 0.9941 }, { "start": 1364.36, "end": 1365.38, "probability": 0.9055 }, { "start": 1365.9, "end": 1367.4, "probability": 0.8989 }, { "start": 1368.1, "end": 1370.74, "probability": 0.9113 }, { "start": 1371.78, "end": 1376.92, "probability": 0.9986 }, { "start": 1377.54, "end": 1380.92, "probability": 0.9794 }, { "start": 1382.02, "end": 1382.96, "probability": 0.9559 }, { "start": 1383.4, "end": 1384.24, "probability": 0.8789 }, { "start": 1384.74, "end": 1387.16, "probability": 0.9367 }, { "start": 1387.22, "end": 1389.96, "probability": 0.96 }, { "start": 1390.7, "end": 1394.8, "probability": 0.9548 }, { "start": 1394.8, "end": 1397.72, "probability": 0.9816 }, { "start": 1398.7, "end": 1401.34, "probability": 0.7544 }, { "start": 1402.12, "end": 1405.24, "probability": 0.9222 }, { "start": 1406.16, "end": 1409.02, "probability": 0.9838 }, { "start": 1409.02, "end": 1413.71, "probability": 0.9665 }, { "start": 1414.36, "end": 1415.24, "probability": 0.9764 }, { "start": 1416.14, "end": 1420.24, "probability": 0.8876 }, { "start": 1422.46, "end": 1422.46, "probability": 0.0463 }, { "start": 1422.46, "end": 1426.52, "probability": 0.8902 }, { "start": 1427.04, "end": 1428.42, "probability": 0.9254 }, { "start": 1428.94, "end": 1429.42, "probability": 0.3007 }, { "start": 1430.5, "end": 1432.32, "probability": 0.9776 }, { "start": 1433.36, "end": 1435.06, "probability": 0.913 }, { "start": 1436.12, "end": 1437.38, "probability": 0.8096 }, { "start": 1438.04, "end": 1439.9, "probability": 0.9929 }, { "start": 1440.88, "end": 1442.04, "probability": 0.8831 }, { "start": 1443.02, "end": 1444.72, "probability": 0.8913 }, { "start": 1445.52, "end": 1449.94, "probability": 0.9795 }, { "start": 1450.62, "end": 1451.76, "probability": 0.8883 }, { "start": 1452.3, "end": 1454.48, "probability": 0.9902 }, { "start": 1456.16, "end": 1456.62, "probability": 0.7013 }, { "start": 1457.14, "end": 1458.84, "probability": 0.6078 }, { "start": 1459.48, "end": 1460.5, "probability": 0.9719 }, { "start": 1461.26, "end": 1463.56, "probability": 0.9863 }, { "start": 1464.2, "end": 1466.0, "probability": 0.8911 }, { "start": 1466.92, "end": 1469.74, "probability": 0.9229 }, { "start": 1470.36, "end": 1471.22, "probability": 0.9938 }, { "start": 1471.84, "end": 1472.98, "probability": 0.9819 }, { "start": 1473.56, "end": 1474.1, "probability": 0.9966 }, { "start": 1474.74, "end": 1481.86, "probability": 0.9815 }, { "start": 1482.5, "end": 1483.65, "probability": 0.9866 }, { "start": 1484.28, "end": 1487.88, "probability": 0.9966 }, { "start": 1489.2, "end": 1492.9, "probability": 0.9487 }, { "start": 1493.66, "end": 1494.08, "probability": 0.9347 }, { "start": 1494.76, "end": 1496.48, "probability": 0.9255 }, { "start": 1497.78, "end": 1498.54, "probability": 0.9781 }, { "start": 1499.42, "end": 1500.8, "probability": 0.9905 }, { "start": 1501.42, "end": 1506.76, "probability": 0.9973 }, { "start": 1507.62, "end": 1509.3, "probability": 0.9871 }, { "start": 1510.04, "end": 1514.2, "probability": 0.8853 }, { "start": 1514.78, "end": 1516.04, "probability": 0.7708 }, { "start": 1517.02, "end": 1519.24, "probability": 0.9739 }, { "start": 1519.88, "end": 1520.94, "probability": 0.9924 }, { "start": 1521.4, "end": 1524.54, "probability": 0.997 }, { "start": 1525.14, "end": 1525.92, "probability": 0.8501 }, { "start": 1526.7, "end": 1528.32, "probability": 0.9814 }, { "start": 1528.86, "end": 1530.97, "probability": 0.8153 }, { "start": 1531.68, "end": 1532.46, "probability": 0.9928 }, { "start": 1533.1, "end": 1534.12, "probability": 0.9993 }, { "start": 1534.7, "end": 1538.74, "probability": 0.9972 }, { "start": 1539.88, "end": 1541.04, "probability": 0.9698 }, { "start": 1541.68, "end": 1542.16, "probability": 0.8741 }, { "start": 1542.82, "end": 1547.04, "probability": 0.9935 }, { "start": 1547.78, "end": 1548.76, "probability": 0.7347 }, { "start": 1549.28, "end": 1549.8, "probability": 0.861 }, { "start": 1550.42, "end": 1551.32, "probability": 0.958 }, { "start": 1552.14, "end": 1557.8, "probability": 0.9816 }, { "start": 1557.8, "end": 1563.78, "probability": 0.999 }, { "start": 1565.74, "end": 1567.4, "probability": 0.5925 }, { "start": 1568.42, "end": 1570.14, "probability": 0.8125 }, { "start": 1571.4, "end": 1572.8, "probability": 0.4562 }, { "start": 1574.71, "end": 1576.46, "probability": 0.8152 }, { "start": 1577.28, "end": 1578.82, "probability": 0.5259 }, { "start": 1579.34, "end": 1580.4, "probability": 0.7385 }, { "start": 1581.06, "end": 1582.35, "probability": 0.3987 }, { "start": 1582.68, "end": 1582.68, "probability": 0.003 }, { "start": 1585.27, "end": 1585.76, "probability": 0.5752 }, { "start": 1587.84, "end": 1589.26, "probability": 0.8994 }, { "start": 1590.24, "end": 1592.02, "probability": 0.5399 }, { "start": 1593.3, "end": 1595.3, "probability": 0.9223 }, { "start": 1595.82, "end": 1596.6, "probability": 0.3565 }, { "start": 1598.76, "end": 1601.18, "probability": 0.8223 }, { "start": 1606.28, "end": 1607.6, "probability": 0.6908 }, { "start": 1608.74, "end": 1609.98, "probability": 0.7236 }, { "start": 1610.9, "end": 1613.34, "probability": 0.9952 }, { "start": 1614.14, "end": 1617.98, "probability": 0.9736 }, { "start": 1618.64, "end": 1619.74, "probability": 0.9207 }, { "start": 1620.42, "end": 1622.62, "probability": 0.9918 }, { "start": 1623.2, "end": 1625.22, "probability": 0.524 }, { "start": 1625.58, "end": 1626.68, "probability": 0.2192 }, { "start": 1627.1, "end": 1627.89, "probability": 0.5586 }, { "start": 1628.28, "end": 1628.28, "probability": 0.0518 }, { "start": 1628.8, "end": 1631.1, "probability": 0.4577 }, { "start": 1631.12, "end": 1632.4, "probability": 0.7656 }, { "start": 1632.54, "end": 1634.74, "probability": 0.8411 }, { "start": 1634.94, "end": 1635.74, "probability": 0.8438 }, { "start": 1635.83, "end": 1640.64, "probability": 0.9803 }, { "start": 1640.86, "end": 1643.1, "probability": 0.8947 }, { "start": 1643.18, "end": 1645.27, "probability": 0.8796 }, { "start": 1646.16, "end": 1646.84, "probability": 0.9363 }, { "start": 1647.62, "end": 1650.64, "probability": 0.8802 }, { "start": 1651.58, "end": 1654.46, "probability": 0.9595 }, { "start": 1655.68, "end": 1656.58, "probability": 0.6335 }, { "start": 1657.16, "end": 1658.28, "probability": 0.9419 }, { "start": 1659.06, "end": 1662.12, "probability": 0.843 }, { "start": 1663.02, "end": 1667.2, "probability": 0.9869 }, { "start": 1668.38, "end": 1668.42, "probability": 0.4713 }, { "start": 1668.54, "end": 1669.96, "probability": 0.9163 }, { "start": 1671.28, "end": 1674.28, "probability": 0.7382 }, { "start": 1674.36, "end": 1674.88, "probability": 0.8779 }, { "start": 1675.04, "end": 1681.56, "probability": 0.8814 }, { "start": 1682.02, "end": 1686.48, "probability": 0.7944 }, { "start": 1686.48, "end": 1690.5, "probability": 0.9781 }, { "start": 1690.86, "end": 1691.0, "probability": 0.0604 }, { "start": 1691.0, "end": 1693.38, "probability": 0.978 }, { "start": 1693.44, "end": 1694.02, "probability": 0.0632 }, { "start": 1694.02, "end": 1696.1, "probability": 0.9492 }, { "start": 1696.1, "end": 1696.46, "probability": 0.1062 }, { "start": 1696.52, "end": 1698.9, "probability": 0.7856 }, { "start": 1698.9, "end": 1700.46, "probability": 0.3604 }, { "start": 1700.46, "end": 1703.42, "probability": 0.4246 }, { "start": 1703.42, "end": 1703.64, "probability": 0.2256 }, { "start": 1703.64, "end": 1704.14, "probability": 0.4262 }, { "start": 1704.26, "end": 1706.1, "probability": 0.6508 }, { "start": 1706.1, "end": 1709.86, "probability": 0.316 }, { "start": 1711.86, "end": 1712.32, "probability": 0.115 }, { "start": 1712.32, "end": 1714.18, "probability": 0.3023 }, { "start": 1714.38, "end": 1714.48, "probability": 0.6629 }, { "start": 1714.48, "end": 1714.82, "probability": 0.062 }, { "start": 1715.4, "end": 1715.52, "probability": 0.1742 }, { "start": 1715.52, "end": 1722.82, "probability": 0.4336 }, { "start": 1723.26, "end": 1729.98, "probability": 0.5844 }, { "start": 1735.44, "end": 1738.2, "probability": 0.0931 }, { "start": 1738.2, "end": 1738.8, "probability": 0.0599 }, { "start": 1740.37, "end": 1745.1, "probability": 0.0247 }, { "start": 1804.0, "end": 1804.0, "probability": 0.0 }, { "start": 1804.0, "end": 1804.0, "probability": 0.0 }, { "start": 1804.0, "end": 1804.0, "probability": 0.0 }, { "start": 1804.0, "end": 1804.0, "probability": 0.0 }, { "start": 1804.0, "end": 1804.0, "probability": 0.0 }, { "start": 1804.0, "end": 1804.0, "probability": 0.0 }, { "start": 1804.0, "end": 1804.0, "probability": 0.0 }, { "start": 1804.0, "end": 1804.0, "probability": 0.0 }, { "start": 1804.0, "end": 1804.0, "probability": 0.0 }, { "start": 1804.0, "end": 1804.0, "probability": 0.0 }, { "start": 1804.0, "end": 1804.0, "probability": 0.0 }, { "start": 1804.0, "end": 1804.0, "probability": 0.0 }, { "start": 1804.0, "end": 1804.0, "probability": 0.0 }, { "start": 1804.0, "end": 1804.0, "probability": 0.0 }, { "start": 1804.0, "end": 1804.0, "probability": 0.0 }, { "start": 1804.0, "end": 1804.0, "probability": 0.0 }, { "start": 1804.0, "end": 1804.0, "probability": 0.0 }, { "start": 1804.0, "end": 1804.0, "probability": 0.0 }, { "start": 1804.0, "end": 1804.0, "probability": 0.0 }, { "start": 1804.0, "end": 1804.0, "probability": 0.0 }, { "start": 1804.0, "end": 1804.0, "probability": 0.0 }, { "start": 1804.0, "end": 1804.0, "probability": 0.0 }, { "start": 1804.0, "end": 1804.0, "probability": 0.0 }, { "start": 1804.0, "end": 1804.0, "probability": 0.0 }, { "start": 1804.0, "end": 1804.0, "probability": 0.0 }, { "start": 1804.0, "end": 1804.0, "probability": 0.0 }, { "start": 1804.0, "end": 1804.0, "probability": 0.0 }, { "start": 1804.0, "end": 1804.0, "probability": 0.0 }, { "start": 1804.0, "end": 1804.0, "probability": 0.0 }, { "start": 1804.0, "end": 1804.0, "probability": 0.0 }, { "start": 1804.0, "end": 1804.0, "probability": 0.0 }, { "start": 1804.0, "end": 1804.0, "probability": 0.0 }, { "start": 1804.0, "end": 1804.0, "probability": 0.0 }, { "start": 1804.0, "end": 1804.0, "probability": 0.0 }, { "start": 1804.0, "end": 1804.0, "probability": 0.0 }, { "start": 1804.0, "end": 1804.0, "probability": 0.0 }, { "start": 1804.0, "end": 1804.0, "probability": 0.0 }, { "start": 1804.0, "end": 1804.0, "probability": 0.0 }, { "start": 1804.0, "end": 1804.0, "probability": 0.0 }, { "start": 1804.0, "end": 1804.0, "probability": 0.0 }, { "start": 1804.0, "end": 1804.0, "probability": 0.0 }, { "start": 1804.0, "end": 1804.0, "probability": 0.0 }, { "start": 1805.07, "end": 1809.08, "probability": 0.8596 }, { "start": 1809.28, "end": 1811.28, "probability": 0.0689 }, { "start": 1811.34, "end": 1811.82, "probability": 0.3592 }, { "start": 1813.06, "end": 1813.2, "probability": 0.3646 }, { "start": 1813.4, "end": 1818.39, "probability": 0.523 }, { "start": 1821.28, "end": 1821.38, "probability": 0.0275 }, { "start": 1821.38, "end": 1821.38, "probability": 0.2253 }, { "start": 1821.38, "end": 1822.02, "probability": 0.1467 }, { "start": 1822.26, "end": 1823.54, "probability": 0.8982 }, { "start": 1823.88, "end": 1824.68, "probability": 0.8211 }, { "start": 1824.68, "end": 1825.8, "probability": 0.2228 }, { "start": 1825.82, "end": 1830.16, "probability": 0.5966 }, { "start": 1830.52, "end": 1835.48, "probability": 0.739 }, { "start": 1836.06, "end": 1839.42, "probability": 0.3119 }, { "start": 1841.11, "end": 1844.8, "probability": 0.4976 }, { "start": 1844.98, "end": 1845.62, "probability": 0.6039 }, { "start": 1845.94, "end": 1847.18, "probability": 0.807 }, { "start": 1847.2, "end": 1849.32, "probability": 0.0925 }, { "start": 1849.68, "end": 1856.56, "probability": 0.9807 }, { "start": 1857.66, "end": 1859.4, "probability": 0.6758 }, { "start": 1859.92, "end": 1864.38, "probability": 0.8838 }, { "start": 1864.72, "end": 1865.38, "probability": 0.4402 }, { "start": 1866.14, "end": 1868.48, "probability": 0.7399 }, { "start": 1868.64, "end": 1868.64, "probability": 0.1371 }, { "start": 1868.84, "end": 1871.73, "probability": 0.6706 }, { "start": 1873.72, "end": 1875.4, "probability": 0.7946 }, { "start": 1875.52, "end": 1879.24, "probability": 0.5347 }, { "start": 1879.54, "end": 1881.94, "probability": 0.4912 }, { "start": 1882.42, "end": 1883.4, "probability": 0.6248 }, { "start": 1883.68, "end": 1885.06, "probability": 0.4976 }, { "start": 1885.36, "end": 1886.06, "probability": 0.5675 }, { "start": 1886.1, "end": 1887.45, "probability": 0.0967 }, { "start": 1887.9, "end": 1889.68, "probability": 0.7205 }, { "start": 1889.7, "end": 1891.4, "probability": 0.5385 }, { "start": 1891.4, "end": 1892.56, "probability": 0.3564 }, { "start": 1892.68, "end": 1894.86, "probability": 0.871 }, { "start": 1894.94, "end": 1895.78, "probability": 0.5483 }, { "start": 1896.68, "end": 1899.18, "probability": 0.8678 }, { "start": 1899.94, "end": 1901.32, "probability": 0.7699 }, { "start": 1901.92, "end": 1903.06, "probability": 0.7759 }, { "start": 1903.58, "end": 1909.6, "probability": 0.9854 }, { "start": 1910.04, "end": 1912.04, "probability": 0.8969 }, { "start": 1912.52, "end": 1913.38, "probability": 0.7403 }, { "start": 1914.18, "end": 1916.06, "probability": 0.0145 }, { "start": 1916.06, "end": 1916.06, "probability": 0.1163 }, { "start": 1916.12, "end": 1920.68, "probability": 0.7034 }, { "start": 1922.0, "end": 1922.0, "probability": 0.0333 }, { "start": 1922.08, "end": 1924.16, "probability": 0.8893 }, { "start": 1924.62, "end": 1927.3, "probability": 0.8619 }, { "start": 1927.46, "end": 1929.66, "probability": 0.8462 }, { "start": 1930.24, "end": 1930.96, "probability": 0.4679 }, { "start": 1931.46, "end": 1936.22, "probability": 0.8634 }, { "start": 1936.46, "end": 1938.95, "probability": 0.9976 }, { "start": 1939.32, "end": 1940.45, "probability": 0.6675 }, { "start": 1940.92, "end": 1941.74, "probability": 0.0061 }, { "start": 1942.1, "end": 1948.41, "probability": 0.8387 }, { "start": 1949.22, "end": 1950.8, "probability": 0.8454 }, { "start": 1951.5, "end": 1953.56, "probability": 0.9346 }, { "start": 1953.94, "end": 1955.66, "probability": 0.9196 }, { "start": 1955.66, "end": 1959.12, "probability": 0.9952 }, { "start": 1960.56, "end": 1963.88, "probability": 0.8188 }, { "start": 1964.48, "end": 1966.32, "probability": 0.7489 }, { "start": 1966.52, "end": 1969.16, "probability": 0.7184 }, { "start": 1970.08, "end": 1971.37, "probability": 0.9583 }, { "start": 1972.12, "end": 1973.84, "probability": 0.994 }, { "start": 1974.02, "end": 1975.52, "probability": 0.8396 }, { "start": 1980.3, "end": 1982.22, "probability": 0.9905 }, { "start": 1983.66, "end": 1988.02, "probability": 0.945 }, { "start": 1988.76, "end": 1989.7, "probability": 0.3008 }, { "start": 1991.21, "end": 1995.28, "probability": 0.9618 }, { "start": 1995.94, "end": 1998.04, "probability": 0.0216 }, { "start": 1998.26, "end": 1998.26, "probability": 0.0235 }, { "start": 1998.32, "end": 2005.57, "probability": 0.9102 }, { "start": 2006.04, "end": 2006.04, "probability": 0.3439 }, { "start": 2006.04, "end": 2007.14, "probability": 0.5022 }, { "start": 2007.2, "end": 2007.88, "probability": 0.7462 }, { "start": 2008.2, "end": 2012.38, "probability": 0.978 }, { "start": 2012.52, "end": 2012.84, "probability": 0.446 }, { "start": 2012.84, "end": 2013.42, "probability": 0.6985 }, { "start": 2013.74, "end": 2017.94, "probability": 0.981 }, { "start": 2018.0, "end": 2022.22, "probability": 0.9985 }, { "start": 2022.6, "end": 2024.86, "probability": 0.768 }, { "start": 2024.92, "end": 2029.38, "probability": 0.7134 }, { "start": 2029.4, "end": 2030.36, "probability": 0.6692 }, { "start": 2030.42, "end": 2031.32, "probability": 0.5023 }, { "start": 2031.36, "end": 2032.06, "probability": 0.5202 }, { "start": 2033.42, "end": 2038.5, "probability": 0.9922 }, { "start": 2039.54, "end": 2040.1, "probability": 0.9792 }, { "start": 2040.18, "end": 2047.0, "probability": 0.9939 }, { "start": 2047.16, "end": 2048.36, "probability": 0.721 }, { "start": 2049.04, "end": 2050.34, "probability": 0.8001 }, { "start": 2051.06, "end": 2053.3, "probability": 0.9877 }, { "start": 2053.96, "end": 2057.88, "probability": 0.978 }, { "start": 2058.92, "end": 2061.82, "probability": 0.9958 }, { "start": 2062.28, "end": 2063.62, "probability": 0.7188 }, { "start": 2064.0, "end": 2065.74, "probability": 0.9987 }, { "start": 2067.14, "end": 2070.62, "probability": 0.8361 }, { "start": 2071.5, "end": 2073.52, "probability": 0.8049 }, { "start": 2074.26, "end": 2075.0, "probability": 0.7025 }, { "start": 2075.58, "end": 2076.62, "probability": 0.7431 }, { "start": 2077.58, "end": 2080.32, "probability": 0.8078 }, { "start": 2081.13, "end": 2086.5, "probability": 0.9161 }, { "start": 2086.6, "end": 2089.56, "probability": 0.9546 }, { "start": 2089.78, "end": 2090.96, "probability": 0.0261 }, { "start": 2091.12, "end": 2091.12, "probability": 0.3108 }, { "start": 2091.12, "end": 2092.66, "probability": 0.4968 }, { "start": 2092.66, "end": 2095.38, "probability": 0.598 }, { "start": 2095.46, "end": 2096.06, "probability": 0.4333 }, { "start": 2096.56, "end": 2097.84, "probability": 0.6218 }, { "start": 2097.94, "end": 2099.8, "probability": 0.4114 }, { "start": 2100.6, "end": 2102.56, "probability": 0.9941 }, { "start": 2102.58, "end": 2103.67, "probability": 0.7697 }, { "start": 2103.9, "end": 2104.18, "probability": 0.0726 }, { "start": 2104.18, "end": 2106.14, "probability": 0.7561 }, { "start": 2106.74, "end": 2108.16, "probability": 0.8506 }, { "start": 2108.72, "end": 2110.32, "probability": 0.7729 }, { "start": 2110.68, "end": 2112.78, "probability": 0.7271 }, { "start": 2112.8, "end": 2112.82, "probability": 0.0055 }, { "start": 2112.82, "end": 2113.18, "probability": 0.2041 }, { "start": 2113.18, "end": 2113.36, "probability": 0.2071 }, { "start": 2113.36, "end": 2116.52, "probability": 0.9545 }, { "start": 2118.09, "end": 2120.86, "probability": 0.0409 }, { "start": 2120.98, "end": 2122.86, "probability": 0.5213 }, { "start": 2122.98, "end": 2123.4, "probability": 0.0367 }, { "start": 2123.4, "end": 2124.12, "probability": 0.8629 }, { "start": 2124.12, "end": 2125.88, "probability": 0.5519 }, { "start": 2126.12, "end": 2129.44, "probability": 0.9253 }, { "start": 2129.9, "end": 2133.24, "probability": 0.9732 }, { "start": 2133.66, "end": 2138.94, "probability": 0.9419 }, { "start": 2139.2, "end": 2139.3, "probability": 0.2042 }, { "start": 2139.3, "end": 2139.3, "probability": 0.0969 }, { "start": 2139.3, "end": 2139.3, "probability": 0.1653 }, { "start": 2139.3, "end": 2139.32, "probability": 0.2974 }, { "start": 2139.32, "end": 2139.32, "probability": 0.3587 }, { "start": 2139.32, "end": 2143.6, "probability": 0.8465 }, { "start": 2143.94, "end": 2143.94, "probability": 0.1769 }, { "start": 2143.94, "end": 2148.88, "probability": 0.751 }, { "start": 2148.94, "end": 2149.54, "probability": 0.8972 }, { "start": 2149.78, "end": 2151.23, "probability": 0.4663 }, { "start": 2152.04, "end": 2152.08, "probability": 0.2529 }, { "start": 2152.08, "end": 2155.42, "probability": 0.842 }, { "start": 2159.26, "end": 2162.28, "probability": 0.6502 }, { "start": 2162.28, "end": 2162.28, "probability": 0.0262 }, { "start": 2162.78, "end": 2163.26, "probability": 0.4019 }, { "start": 2163.4, "end": 2163.72, "probability": 0.7314 }, { "start": 2164.1, "end": 2164.22, "probability": 0.2933 }, { "start": 2164.5, "end": 2166.78, "probability": 0.7671 }, { "start": 2169.02, "end": 2171.04, "probability": 0.7989 }, { "start": 2172.02, "end": 2175.28, "probability": 0.993 }, { "start": 2176.08, "end": 2179.08, "probability": 0.993 }, { "start": 2180.12, "end": 2180.56, "probability": 0.5541 }, { "start": 2181.08, "end": 2183.8, "probability": 0.855 }, { "start": 2184.32, "end": 2188.06, "probability": 0.995 }, { "start": 2188.24, "end": 2188.98, "probability": 0.0598 }, { "start": 2190.28, "end": 2194.98, "probability": 0.9846 }, { "start": 2195.72, "end": 2198.34, "probability": 0.9983 }, { "start": 2199.2, "end": 2201.9, "probability": 0.96 }, { "start": 2202.94, "end": 2204.6, "probability": 0.9598 }, { "start": 2205.96, "end": 2208.54, "probability": 0.9729 }, { "start": 2209.1, "end": 2212.14, "probability": 0.9834 }, { "start": 2213.2, "end": 2214.46, "probability": 0.9987 }, { "start": 2214.98, "end": 2220.24, "probability": 0.9976 }, { "start": 2221.16, "end": 2223.08, "probability": 0.8513 }, { "start": 2223.66, "end": 2229.56, "probability": 0.9919 }, { "start": 2230.36, "end": 2234.86, "probability": 0.9937 }, { "start": 2235.48, "end": 2236.24, "probability": 0.9436 }, { "start": 2237.44, "end": 2238.44, "probability": 0.6768 }, { "start": 2239.16, "end": 2239.98, "probability": 0.7483 }, { "start": 2240.96, "end": 2244.5, "probability": 0.9956 }, { "start": 2245.06, "end": 2249.78, "probability": 0.9915 }, { "start": 2250.44, "end": 2250.7, "probability": 0.0185 }, { "start": 2321.37, "end": 2324.77, "probability": 0.0252 }, { "start": 2324.86, "end": 2326.47, "probability": 0.0257 }, { "start": 2326.47, "end": 2328.07, "probability": 0.0608 }, { "start": 2334.37, "end": 2335.75, "probability": 0.2433 }, { "start": 2336.23, "end": 2337.49, "probability": 0.0222 }, { "start": 2337.66, "end": 2337.75, "probability": 0.0142 }, { "start": 2337.75, "end": 2338.53, "probability": 0.0472 }, { "start": 2414.0, "end": 2414.0, "probability": 0.0 }, { "start": 2414.0, "end": 2414.0, "probability": 0.0 }, { "start": 2414.0, "end": 2414.0, "probability": 0.0 }, { "start": 2414.0, "end": 2414.0, "probability": 0.0 }, { "start": 2414.0, "end": 2414.0, "probability": 0.0 }, { "start": 2414.0, "end": 2414.0, "probability": 0.0 }, { "start": 2414.0, "end": 2414.0, "probability": 0.0 }, { "start": 2414.0, "end": 2414.0, "probability": 0.0 }, { "start": 2414.0, "end": 2414.0, "probability": 0.0 }, { "start": 2414.0, "end": 2414.0, "probability": 0.0 }, { "start": 2414.0, "end": 2414.0, "probability": 0.0 }, { "start": 2414.0, "end": 2414.0, "probability": 0.0 }, { "start": 2414.0, "end": 2414.0, "probability": 0.0 }, { "start": 2414.0, "end": 2414.0, "probability": 0.0 }, { "start": 2414.0, "end": 2414.0, "probability": 0.0 }, { "start": 2414.0, "end": 2414.0, "probability": 0.0 }, { "start": 2414.0, "end": 2414.0, "probability": 0.0 }, { "start": 2414.0, "end": 2414.0, "probability": 0.0 }, { "start": 2414.0, "end": 2414.0, "probability": 0.0 }, { "start": 2414.0, "end": 2414.0, "probability": 0.0 }, { "start": 2414.0, "end": 2414.0, "probability": 0.0 }, { "start": 2414.0, "end": 2414.0, "probability": 0.0 }, { "start": 2414.0, "end": 2414.0, "probability": 0.0 }, { "start": 2414.0, "end": 2414.0, "probability": 0.0 }, { "start": 2414.0, "end": 2414.0, "probability": 0.0 }, { "start": 2414.0, "end": 2414.0, "probability": 0.0 }, { "start": 2414.0, "end": 2414.0, "probability": 0.0 }, { "start": 2414.0, "end": 2414.0, "probability": 0.0 }, { "start": 2414.0, "end": 2414.0, "probability": 0.0 }, { "start": 2414.0, "end": 2414.0, "probability": 0.0 }, { "start": 2414.0, "end": 2414.0, "probability": 0.0 }, { "start": 2414.0, "end": 2414.0, "probability": 0.0 }, { "start": 2414.0, "end": 2414.0, "probability": 0.0 }, { "start": 2414.0, "end": 2414.0, "probability": 0.0 }, { "start": 2414.0, "end": 2414.0, "probability": 0.0 }, { "start": 2414.0, "end": 2414.0, "probability": 0.0 }, { "start": 2414.0, "end": 2414.0, "probability": 0.0 }, { "start": 2414.0, "end": 2414.0, "probability": 0.0 }, { "start": 2414.0, "end": 2414.0, "probability": 0.0 }, { "start": 2414.0, "end": 2414.0, "probability": 0.0 }, { "start": 2414.0, "end": 2414.0, "probability": 0.0 }, { "start": 2414.0, "end": 2414.0, "probability": 0.0 }, { "start": 2414.14, "end": 2414.14, "probability": 0.1214 }, { "start": 2414.14, "end": 2414.14, "probability": 0.0384 }, { "start": 2414.14, "end": 2414.37, "probability": 0.5311 }, { "start": 2415.92, "end": 2419.84, "probability": 0.9456 }, { "start": 2420.36, "end": 2421.36, "probability": 0.6315 }, { "start": 2422.08, "end": 2424.12, "probability": 0.989 }, { "start": 2424.92, "end": 2429.06, "probability": 0.9146 }, { "start": 2429.28, "end": 2430.22, "probability": 0.6757 }, { "start": 2430.24, "end": 2431.78, "probability": 0.8527 }, { "start": 2432.12, "end": 2433.44, "probability": 0.734 }, { "start": 2433.6, "end": 2434.5, "probability": 0.8277 }, { "start": 2435.5, "end": 2438.62, "probability": 0.9468 }, { "start": 2439.6, "end": 2441.78, "probability": 0.9262 }, { "start": 2442.26, "end": 2442.94, "probability": 0.8228 }, { "start": 2443.0, "end": 2443.68, "probability": 0.9693 }, { "start": 2444.12, "end": 2444.88, "probability": 0.8438 }, { "start": 2445.08, "end": 2445.56, "probability": 0.9696 }, { "start": 2445.6, "end": 2447.22, "probability": 0.9316 }, { "start": 2447.3, "end": 2448.16, "probability": 0.9274 }, { "start": 2448.24, "end": 2449.02, "probability": 0.9347 }, { "start": 2449.62, "end": 2450.94, "probability": 0.8223 }, { "start": 2451.02, "end": 2453.2, "probability": 0.9927 }, { "start": 2453.2, "end": 2456.96, "probability": 0.973 }, { "start": 2457.82, "end": 2458.56, "probability": 0.9482 }, { "start": 2459.02, "end": 2463.68, "probability": 0.9893 }, { "start": 2466.48, "end": 2466.92, "probability": 0.6794 }, { "start": 2467.7, "end": 2471.98, "probability": 0.991 }, { "start": 2472.46, "end": 2475.32, "probability": 0.9554 }, { "start": 2475.84, "end": 2478.3, "probability": 0.7788 }, { "start": 2478.86, "end": 2484.58, "probability": 0.9818 }, { "start": 2485.66, "end": 2487.9, "probability": 0.5992 }, { "start": 2488.7, "end": 2490.86, "probability": 0.7321 }, { "start": 2491.3, "end": 2492.72, "probability": 0.9717 }, { "start": 2493.12, "end": 2494.82, "probability": 0.8996 }, { "start": 2495.57, "end": 2501.52, "probability": 0.9642 }, { "start": 2501.82, "end": 2502.25, "probability": 0.9302 }, { "start": 2503.06, "end": 2505.6, "probability": 0.9062 }, { "start": 2506.08, "end": 2507.9, "probability": 0.6023 }, { "start": 2507.9, "end": 2508.86, "probability": 0.6108 }, { "start": 2509.36, "end": 2510.58, "probability": 0.9478 }, { "start": 2510.82, "end": 2511.72, "probability": 0.9181 }, { "start": 2512.24, "end": 2513.56, "probability": 0.4267 }, { "start": 2513.62, "end": 2514.46, "probability": 0.8391 }, { "start": 2514.92, "end": 2519.62, "probability": 0.9161 }, { "start": 2519.76, "end": 2520.16, "probability": 0.7306 }, { "start": 2520.26, "end": 2520.5, "probability": 0.5827 }, { "start": 2520.58, "end": 2521.4, "probability": 0.7282 }, { "start": 2522.14, "end": 2524.02, "probability": 0.9224 }, { "start": 2524.66, "end": 2526.18, "probability": 0.9104 }, { "start": 2526.78, "end": 2529.64, "probability": 0.8261 }, { "start": 2529.86, "end": 2531.36, "probability": 0.9504 }, { "start": 2531.62, "end": 2536.36, "probability": 0.9628 }, { "start": 2537.54, "end": 2539.9, "probability": 0.9977 }, { "start": 2541.84, "end": 2544.24, "probability": 0.8372 }, { "start": 2544.76, "end": 2545.98, "probability": 0.8829 }, { "start": 2546.14, "end": 2549.08, "probability": 0.9523 }, { "start": 2549.34, "end": 2550.8, "probability": 0.9856 }, { "start": 2551.22, "end": 2551.32, "probability": 0.7505 }, { "start": 2552.36, "end": 2554.06, "probability": 0.8455 }, { "start": 2554.06, "end": 2554.8, "probability": 0.87 }, { "start": 2554.9, "end": 2556.04, "probability": 0.7906 }, { "start": 2556.68, "end": 2557.9, "probability": 0.8894 }, { "start": 2558.06, "end": 2559.82, "probability": 0.0994 }, { "start": 2559.88, "end": 2562.44, "probability": 0.4815 }, { "start": 2562.6, "end": 2562.6, "probability": 0.1216 }, { "start": 2562.6, "end": 2563.0, "probability": 0.1929 }, { "start": 2563.1, "end": 2565.51, "probability": 0.5841 }, { "start": 2565.68, "end": 2566.42, "probability": 0.9457 }, { "start": 2566.44, "end": 2567.28, "probability": 0.8501 }, { "start": 2567.48, "end": 2569.52, "probability": 0.9248 }, { "start": 2569.66, "end": 2571.4, "probability": 0.8479 }, { "start": 2572.06, "end": 2574.32, "probability": 0.8192 }, { "start": 2574.76, "end": 2576.94, "probability": 0.5587 }, { "start": 2577.28, "end": 2577.98, "probability": 0.6494 }, { "start": 2578.02, "end": 2579.86, "probability": 0.9214 }, { "start": 2580.22, "end": 2582.3, "probability": 0.9578 }, { "start": 2582.9, "end": 2583.81, "probability": 0.9919 }, { "start": 2585.32, "end": 2587.54, "probability": 0.9883 }, { "start": 2588.3, "end": 2589.72, "probability": 0.7841 }, { "start": 2590.44, "end": 2590.93, "probability": 0.916 }, { "start": 2591.58, "end": 2593.1, "probability": 0.7076 }, { "start": 2593.14, "end": 2594.24, "probability": 0.9794 }, { "start": 2594.46, "end": 2596.03, "probability": 0.9969 }, { "start": 2596.46, "end": 2597.22, "probability": 0.919 }, { "start": 2597.28, "end": 2599.98, "probability": 0.7941 }, { "start": 2600.82, "end": 2603.32, "probability": 0.85 }, { "start": 2603.62, "end": 2606.36, "probability": 0.996 }, { "start": 2606.92, "end": 2608.6, "probability": 0.6654 }, { "start": 2609.12, "end": 2611.02, "probability": 0.955 }, { "start": 2611.22, "end": 2612.0, "probability": 0.742 }, { "start": 2612.08, "end": 2616.86, "probability": 0.9371 }, { "start": 2617.64, "end": 2620.92, "probability": 0.9762 }, { "start": 2621.18, "end": 2622.8, "probability": 0.0587 }, { "start": 2622.8, "end": 2623.1, "probability": 0.7507 }, { "start": 2623.28, "end": 2625.52, "probability": 0.2688 }, { "start": 2625.64, "end": 2626.1, "probability": 0.6314 }, { "start": 2626.16, "end": 2626.72, "probability": 0.4611 }, { "start": 2626.72, "end": 2628.48, "probability": 0.8626 }, { "start": 2628.54, "end": 2631.86, "probability": 0.6881 }, { "start": 2631.92, "end": 2632.34, "probability": 0.632 }, { "start": 2632.38, "end": 2632.64, "probability": 0.2548 }, { "start": 2633.0, "end": 2633.04, "probability": 0.4965 }, { "start": 2633.04, "end": 2633.12, "probability": 0.2358 }, { "start": 2633.12, "end": 2636.48, "probability": 0.9023 }, { "start": 2637.02, "end": 2638.5, "probability": 0.6448 }, { "start": 2638.96, "end": 2639.98, "probability": 0.9873 }, { "start": 2640.02, "end": 2641.43, "probability": 0.5851 }, { "start": 2641.88, "end": 2642.26, "probability": 0.6958 }, { "start": 2642.32, "end": 2643.38, "probability": 0.8391 }, { "start": 2643.42, "end": 2643.86, "probability": 0.7879 }, { "start": 2644.5, "end": 2646.62, "probability": 0.9658 }, { "start": 2647.04, "end": 2652.54, "probability": 0.9903 }, { "start": 2653.1, "end": 2654.42, "probability": 0.9495 }, { "start": 2655.62, "end": 2660.7, "probability": 0.9412 }, { "start": 2661.12, "end": 2665.32, "probability": 0.9878 }, { "start": 2665.76, "end": 2669.4, "probability": 0.7913 }, { "start": 2669.84, "end": 2670.96, "probability": 0.9027 }, { "start": 2671.1, "end": 2671.46, "probability": 0.6398 }, { "start": 2672.12, "end": 2672.42, "probability": 0.7474 }, { "start": 2673.88, "end": 2674.68, "probability": 0.7678 }, { "start": 2674.72, "end": 2675.28, "probability": 0.864 }, { "start": 2675.36, "end": 2675.76, "probability": 0.4719 }, { "start": 2675.78, "end": 2676.22, "probability": 0.9545 }, { "start": 2676.34, "end": 2676.74, "probability": 0.883 }, { "start": 2676.78, "end": 2677.24, "probability": 0.7735 }, { "start": 2677.34, "end": 2682.76, "probability": 0.6231 }, { "start": 2683.48, "end": 2684.64, "probability": 0.6505 }, { "start": 2686.16, "end": 2688.18, "probability": 0.8814 }, { "start": 2689.02, "end": 2691.44, "probability": 0.7698 }, { "start": 2692.56, "end": 2695.94, "probability": 0.666 }, { "start": 2696.74, "end": 2700.74, "probability": 0.9989 }, { "start": 2701.5, "end": 2702.78, "probability": 0.8598 }, { "start": 2704.48, "end": 2705.36, "probability": 0.6297 }, { "start": 2706.64, "end": 2708.18, "probability": 0.9487 }, { "start": 2709.06, "end": 2711.94, "probability": 0.9819 }, { "start": 2713.08, "end": 2714.46, "probability": 0.9928 }, { "start": 2715.96, "end": 2716.78, "probability": 0.7018 }, { "start": 2716.84, "end": 2717.0, "probability": 0.6945 }, { "start": 2717.48, "end": 2719.04, "probability": 0.9814 }, { "start": 2719.52, "end": 2722.84, "probability": 0.1689 }, { "start": 2723.78, "end": 2724.98, "probability": 0.7993 }, { "start": 2725.28, "end": 2726.1, "probability": 0.448 }, { "start": 2726.52, "end": 2727.98, "probability": 0.8225 }, { "start": 2728.14, "end": 2729.76, "probability": 0.85 }, { "start": 2730.12, "end": 2731.66, "probability": 0.8437 }, { "start": 2732.26, "end": 2732.8, "probability": 0.1215 }, { "start": 2733.64, "end": 2735.86, "probability": 0.7292 }, { "start": 2737.24, "end": 2738.08, "probability": 0.5039 }, { "start": 2738.86, "end": 2739.56, "probability": 0.7614 }, { "start": 2741.2, "end": 2742.84, "probability": 0.9902 }, { "start": 2743.83, "end": 2745.06, "probability": 0.6963 }, { "start": 2745.12, "end": 2746.72, "probability": 0.6982 }, { "start": 2746.82, "end": 2747.18, "probability": 0.65 }, { "start": 2748.0, "end": 2752.6, "probability": 0.98 }, { "start": 2756.66, "end": 2758.36, "probability": 0.8179 }, { "start": 2761.1, "end": 2761.2, "probability": 0.2532 }, { "start": 2761.2, "end": 2762.72, "probability": 0.8259 }, { "start": 2762.94, "end": 2763.16, "probability": 0.9517 }, { "start": 2764.05, "end": 2767.5, "probability": 0.9722 }, { "start": 2768.2, "end": 2768.62, "probability": 0.5677 }, { "start": 2768.94, "end": 2770.32, "probability": 0.989 }, { "start": 2770.64, "end": 2771.18, "probability": 0.9934 }, { "start": 2772.24, "end": 2773.44, "probability": 0.9912 }, { "start": 2773.56, "end": 2774.74, "probability": 0.6613 }, { "start": 2775.28, "end": 2775.38, "probability": 0.8647 }, { "start": 2777.48, "end": 2778.3, "probability": 0.5725 }, { "start": 2779.16, "end": 2783.44, "probability": 0.3104 }, { "start": 2783.58, "end": 2783.58, "probability": 0.1516 }, { "start": 2783.58, "end": 2784.44, "probability": 0.792 }, { "start": 2785.22, "end": 2788.16, "probability": 0.9604 }, { "start": 2788.94, "end": 2789.42, "probability": 0.8497 }, { "start": 2790.04, "end": 2790.68, "probability": 0.6651 }, { "start": 2791.04, "end": 2791.48, "probability": 0.4611 }, { "start": 2791.96, "end": 2792.28, "probability": 0.5421 }, { "start": 2793.66, "end": 2794.94, "probability": 0.4243 }, { "start": 2795.5, "end": 2796.34, "probability": 0.3258 }, { "start": 2796.92, "end": 2797.12, "probability": 0.1627 }, { "start": 2797.12, "end": 2797.68, "probability": 0.7031 }, { "start": 2798.5, "end": 2798.86, "probability": 0.6064 }, { "start": 2798.94, "end": 2799.91, "probability": 0.5427 }, { "start": 2801.34, "end": 2801.82, "probability": 0.4521 }, { "start": 2802.64, "end": 2805.46, "probability": 0.9924 }, { "start": 2807.0, "end": 2808.23, "probability": 0.774 }, { "start": 2808.84, "end": 2809.84, "probability": 0.7394 }, { "start": 2811.06, "end": 2813.34, "probability": 0.6573 }, { "start": 2814.06, "end": 2816.17, "probability": 0.9302 }, { "start": 2817.04, "end": 2819.1, "probability": 0.9568 }, { "start": 2822.18, "end": 2823.08, "probability": 0.9901 }, { "start": 2823.86, "end": 2824.94, "probability": 0.8013 }, { "start": 2825.78, "end": 2827.38, "probability": 0.9128 }, { "start": 2829.38, "end": 2830.36, "probability": 0.9639 }, { "start": 2831.98, "end": 2835.2, "probability": 0.6713 }, { "start": 2835.28, "end": 2835.7, "probability": 0.282 }, { "start": 2835.7, "end": 2838.16, "probability": 0.2761 }, { "start": 2838.5, "end": 2838.56, "probability": 0.8391 }, { "start": 2838.7, "end": 2838.76, "probability": 0.4686 }, { "start": 2838.9, "end": 2839.34, "probability": 0.7424 }, { "start": 2839.42, "end": 2842.5, "probability": 0.6559 }, { "start": 2844.92, "end": 2846.16, "probability": 0.7987 }, { "start": 2846.68, "end": 2848.16, "probability": 0.7113 }, { "start": 2848.26, "end": 2848.74, "probability": 0.3254 }, { "start": 2850.18, "end": 2853.26, "probability": 0.6258 }, { "start": 2853.4, "end": 2854.53, "probability": 0.5483 }, { "start": 2855.32, "end": 2856.82, "probability": 0.7545 }, { "start": 2857.6, "end": 2858.37, "probability": 0.4963 }, { "start": 2858.82, "end": 2859.74, "probability": 0.858 }, { "start": 2860.56, "end": 2861.34, "probability": 0.7325 }, { "start": 2861.58, "end": 2862.92, "probability": 0.9836 }, { "start": 2863.74, "end": 2864.74, "probability": 0.5967 }, { "start": 2865.78, "end": 2866.48, "probability": 0.7978 }, { "start": 2868.58, "end": 2871.24, "probability": 0.7703 }, { "start": 2872.54, "end": 2875.36, "probability": 0.9668 }, { "start": 2875.76, "end": 2877.24, "probability": 0.9124 }, { "start": 2878.38, "end": 2880.16, "probability": 0.9832 }, { "start": 2881.08, "end": 2881.3, "probability": 0.7479 }, { "start": 2881.72, "end": 2882.7, "probability": 0.736 }, { "start": 2883.1, "end": 2885.26, "probability": 0.5972 }, { "start": 2887.8, "end": 2893.82, "probability": 0.9387 }, { "start": 2895.68, "end": 2901.34, "probability": 0.9332 }, { "start": 2902.24, "end": 2903.52, "probability": 0.9731 }, { "start": 2905.0, "end": 2908.31, "probability": 0.9639 }, { "start": 2911.0, "end": 2912.66, "probability": 0.965 }, { "start": 2914.14, "end": 2916.56, "probability": 0.5556 }, { "start": 2921.66, "end": 2923.16, "probability": 0.9509 }, { "start": 2924.48, "end": 2925.66, "probability": 0.9293 }, { "start": 2926.62, "end": 2927.52, "probability": 0.6377 }, { "start": 2931.9, "end": 2934.26, "probability": 0.7932 }, { "start": 2934.88, "end": 2935.12, "probability": 0.8007 }, { "start": 2936.8, "end": 2937.25, "probability": 0.9697 }, { "start": 2938.06, "end": 2938.94, "probability": 0.9344 }, { "start": 2939.74, "end": 2940.77, "probability": 0.1849 }, { "start": 2941.5, "end": 2943.78, "probability": 0.7471 }, { "start": 2943.98, "end": 2944.84, "probability": 0.007 }, { "start": 2945.14, "end": 2947.12, "probability": 0.8807 }, { "start": 2948.18, "end": 2952.38, "probability": 0.7313 }, { "start": 2955.82, "end": 2956.56, "probability": 0.5426 }, { "start": 2957.54, "end": 2958.98, "probability": 0.7823 }, { "start": 2960.08, "end": 2961.28, "probability": 0.6362 }, { "start": 2963.2, "end": 2968.59, "probability": 0.9586 }, { "start": 2972.02, "end": 2972.54, "probability": 0.6717 }, { "start": 2972.64, "end": 2973.82, "probability": 0.8534 }, { "start": 2974.98, "end": 2977.12, "probability": 0.9482 }, { "start": 2977.96, "end": 2979.18, "probability": 0.7656 }, { "start": 2979.7, "end": 2980.74, "probability": 0.7637 }, { "start": 2981.38, "end": 2984.6, "probability": 0.7469 }, { "start": 2985.5, "end": 2986.36, "probability": 0.918 }, { "start": 2988.38, "end": 2992.34, "probability": 0.8188 }, { "start": 2994.84, "end": 2995.56, "probability": 0.9185 }, { "start": 2997.74, "end": 2998.22, "probability": 0.4539 }, { "start": 3000.22, "end": 3003.7, "probability": 0.9833 }, { "start": 3004.56, "end": 3009.7, "probability": 0.993 }, { "start": 3010.02, "end": 3013.29, "probability": 0.7928 }, { "start": 3014.08, "end": 3014.52, "probability": 0.6985 }, { "start": 3014.68, "end": 3017.26, "probability": 0.9229 }, { "start": 3017.86, "end": 3018.56, "probability": 0.6864 }, { "start": 3023.44, "end": 3024.47, "probability": 0.915 }, { "start": 3024.68, "end": 3025.18, "probability": 0.5357 }, { "start": 3025.46, "end": 3026.06, "probability": 0.6734 }, { "start": 3026.06, "end": 3026.62, "probability": 0.8613 }, { "start": 3027.18, "end": 3029.4, "probability": 0.9553 }, { "start": 3030.44, "end": 3033.78, "probability": 0.7051 }, { "start": 3033.82, "end": 3034.38, "probability": 0.5372 }, { "start": 3034.44, "end": 3035.7, "probability": 0.795 }, { "start": 3035.98, "end": 3037.58, "probability": 0.879 }, { "start": 3037.72, "end": 3040.15, "probability": 0.8542 }, { "start": 3041.74, "end": 3043.89, "probability": 0.19 }, { "start": 3044.14, "end": 3045.56, "probability": 0.1536 }, { "start": 3046.32, "end": 3048.82, "probability": 0.9395 }, { "start": 3049.5, "end": 3050.3, "probability": 0.0582 }, { "start": 3050.42, "end": 3050.72, "probability": 0.6051 }, { "start": 3051.18, "end": 3051.98, "probability": 0.7208 }, { "start": 3052.3, "end": 3054.56, "probability": 0.8716 }, { "start": 3054.62, "end": 3055.88, "probability": 0.5906 }, { "start": 3055.92, "end": 3056.6, "probability": 0.8111 }, { "start": 3057.4, "end": 3057.52, "probability": 0.6801 }, { "start": 3057.52, "end": 3058.05, "probability": 0.7378 }, { "start": 3058.3, "end": 3061.32, "probability": 0.9214 }, { "start": 3061.62, "end": 3061.98, "probability": 0.9355 }, { "start": 3062.38, "end": 3062.98, "probability": 0.9995 }, { "start": 3063.62, "end": 3066.3, "probability": 0.7764 }, { "start": 3067.06, "end": 3068.04, "probability": 0.1551 }, { "start": 3069.18, "end": 3069.66, "probability": 0.3333 }, { "start": 3069.76, "end": 3071.1, "probability": 0.7937 }, { "start": 3071.16, "end": 3073.92, "probability": 0.918 }, { "start": 3074.12, "end": 3074.62, "probability": 0.0432 }, { "start": 3075.6, "end": 3079.2, "probability": 0.7088 }, { "start": 3079.5, "end": 3079.78, "probability": 0.5109 }, { "start": 3080.08, "end": 3080.86, "probability": 0.6927 }, { "start": 3081.88, "end": 3083.58, "probability": 0.8864 }, { "start": 3086.82, "end": 3087.26, "probability": 0.6453 }, { "start": 3094.66, "end": 3099.06, "probability": 0.7863 }, { "start": 3102.58, "end": 3103.36, "probability": 0.7179 }, { "start": 3104.06, "end": 3105.76, "probability": 0.736 }, { "start": 3106.72, "end": 3108.36, "probability": 0.8182 }, { "start": 3109.54, "end": 3114.12, "probability": 0.8371 }, { "start": 3115.26, "end": 3116.1, "probability": 0.8901 }, { "start": 3116.24, "end": 3116.92, "probability": 0.6925 }, { "start": 3117.06, "end": 3121.48, "probability": 0.8407 }, { "start": 3121.62, "end": 3121.72, "probability": 0.5505 }, { "start": 3121.84, "end": 3123.54, "probability": 0.9157 }, { "start": 3123.72, "end": 3124.83, "probability": 0.9956 }, { "start": 3124.94, "end": 3126.82, "probability": 0.9863 }, { "start": 3127.92, "end": 3128.54, "probability": 0.9675 }, { "start": 3129.24, "end": 3130.22, "probability": 0.9895 }, { "start": 3131.08, "end": 3132.76, "probability": 0.8743 }, { "start": 3134.54, "end": 3137.7, "probability": 0.9834 }, { "start": 3138.44, "end": 3139.56, "probability": 0.922 }, { "start": 3140.92, "end": 3141.75, "probability": 0.979 }, { "start": 3143.82, "end": 3147.34, "probability": 0.7662 }, { "start": 3148.18, "end": 3150.2, "probability": 0.9933 }, { "start": 3151.14, "end": 3152.22, "probability": 0.6434 }, { "start": 3153.02, "end": 3154.26, "probability": 0.9366 }, { "start": 3154.34, "end": 3154.88, "probability": 0.782 }, { "start": 3155.04, "end": 3155.82, "probability": 0.9682 }, { "start": 3155.92, "end": 3157.84, "probability": 0.753 }, { "start": 3158.32, "end": 3160.52, "probability": 0.99 }, { "start": 3160.62, "end": 3162.26, "probability": 0.9786 }, { "start": 3162.62, "end": 3166.52, "probability": 0.9474 }, { "start": 3168.32, "end": 3170.84, "probability": 0.9985 }, { "start": 3170.88, "end": 3171.88, "probability": 0.9912 }, { "start": 3172.0, "end": 3173.94, "probability": 0.8334 }, { "start": 3174.8, "end": 3178.36, "probability": 0.9837 }, { "start": 3179.1, "end": 3180.0, "probability": 0.7753 }, { "start": 3181.62, "end": 3182.82, "probability": 0.8154 }, { "start": 3184.58, "end": 3188.32, "probability": 0.9536 }, { "start": 3188.5, "end": 3190.06, "probability": 0.8604 }, { "start": 3190.92, "end": 3194.48, "probability": 0.8594 }, { "start": 3195.3, "end": 3198.82, "probability": 0.9921 }, { "start": 3199.38, "end": 3202.76, "probability": 0.8813 }, { "start": 3203.44, "end": 3205.52, "probability": 0.9816 }, { "start": 3206.62, "end": 3209.48, "probability": 0.9955 }, { "start": 3210.54, "end": 3213.12, "probability": 0.9211 }, { "start": 3214.28, "end": 3218.9, "probability": 0.9775 }, { "start": 3219.0, "end": 3220.32, "probability": 0.7896 }, { "start": 3221.14, "end": 3223.76, "probability": 0.9265 }, { "start": 3224.14, "end": 3228.14, "probability": 0.9868 }, { "start": 3229.56, "end": 3230.94, "probability": 0.356 }, { "start": 3231.98, "end": 3235.48, "probability": 0.9971 }, { "start": 3236.2, "end": 3237.6, "probability": 0.8932 }, { "start": 3238.22, "end": 3240.42, "probability": 0.9116 }, { "start": 3241.06, "end": 3243.5, "probability": 0.8263 }, { "start": 3244.08, "end": 3246.7, "probability": 0.9924 }, { "start": 3247.14, "end": 3249.04, "probability": 0.9399 }, { "start": 3249.58, "end": 3251.52, "probability": 0.9884 }, { "start": 3251.66, "end": 3254.44, "probability": 0.9868 }, { "start": 3255.26, "end": 3255.54, "probability": 0.3084 }, { "start": 3255.68, "end": 3257.2, "probability": 0.9829 }, { "start": 3257.26, "end": 3259.92, "probability": 0.9943 }, { "start": 3260.3, "end": 3261.42, "probability": 0.6742 }, { "start": 3261.44, "end": 3262.92, "probability": 0.8772 }, { "start": 3263.02, "end": 3263.98, "probability": 0.7973 }, { "start": 3264.48, "end": 3265.98, "probability": 0.9694 }, { "start": 3266.58, "end": 3268.88, "probability": 0.8684 }, { "start": 3269.32, "end": 3271.5, "probability": 0.9306 }, { "start": 3271.6, "end": 3274.22, "probability": 0.9868 }, { "start": 3274.74, "end": 3278.1, "probability": 0.8917 }, { "start": 3279.06, "end": 3281.3, "probability": 0.9193 }, { "start": 3281.3, "end": 3284.68, "probability": 0.9991 }, { "start": 3287.38, "end": 3288.54, "probability": 0.6995 }, { "start": 3288.94, "end": 3290.62, "probability": 0.1635 }, { "start": 3290.92, "end": 3291.76, "probability": 0.2273 }, { "start": 3291.96, "end": 3292.56, "probability": 0.7806 }, { "start": 3292.6, "end": 3292.96, "probability": 0.6263 }, { "start": 3293.82, "end": 3295.12, "probability": 0.6224 }, { "start": 3295.36, "end": 3296.26, "probability": 0.6048 }, { "start": 3302.9, "end": 3304.74, "probability": 0.0632 }, { "start": 3323.44, "end": 3325.72, "probability": 0.6452 }, { "start": 3327.02, "end": 3328.68, "probability": 0.6566 }, { "start": 3330.08, "end": 3335.58, "probability": 0.9841 }, { "start": 3337.58, "end": 3341.7, "probability": 0.9959 }, { "start": 3342.0, "end": 3342.96, "probability": 0.5353 }, { "start": 3344.44, "end": 3346.88, "probability": 0.9475 }, { "start": 3347.96, "end": 3350.72, "probability": 0.9727 }, { "start": 3351.68, "end": 3355.3, "probability": 0.9736 }, { "start": 3356.28, "end": 3359.86, "probability": 0.9416 }, { "start": 3359.98, "end": 3360.44, "probability": 0.6891 }, { "start": 3361.8, "end": 3362.33, "probability": 0.98 }, { "start": 3364.12, "end": 3366.22, "probability": 0.9028 }, { "start": 3368.12, "end": 3374.92, "probability": 0.9913 }, { "start": 3376.22, "end": 3379.34, "probability": 0.9595 }, { "start": 3381.2, "end": 3383.12, "probability": 0.918 }, { "start": 3384.6, "end": 3385.0, "probability": 0.0997 }, { "start": 3386.42, "end": 3389.18, "probability": 0.7194 }, { "start": 3389.76, "end": 3394.61, "probability": 0.8486 }, { "start": 3395.7, "end": 3397.08, "probability": 0.984 }, { "start": 3398.04, "end": 3398.94, "probability": 0.9134 }, { "start": 3399.98, "end": 3400.82, "probability": 0.8221 }, { "start": 3401.56, "end": 3402.68, "probability": 0.5234 }, { "start": 3403.56, "end": 3407.5, "probability": 0.9911 }, { "start": 3409.06, "end": 3412.73, "probability": 0.7496 }, { "start": 3413.32, "end": 3417.0, "probability": 0.9705 }, { "start": 3419.36, "end": 3420.46, "probability": 0.6883 }, { "start": 3421.38, "end": 3423.4, "probability": 0.9803 }, { "start": 3424.3, "end": 3425.62, "probability": 0.8745 }, { "start": 3426.24, "end": 3427.78, "probability": 0.6145 }, { "start": 3430.2, "end": 3430.62, "probability": 0.8823 }, { "start": 3432.52, "end": 3434.66, "probability": 0.7212 }, { "start": 3435.26, "end": 3438.64, "probability": 0.9097 }, { "start": 3439.46, "end": 3442.76, "probability": 0.9922 }, { "start": 3444.66, "end": 3446.5, "probability": 0.6575 }, { "start": 3448.28, "end": 3449.77, "probability": 0.9958 }, { "start": 3451.06, "end": 3452.36, "probability": 0.8288 }, { "start": 3453.14, "end": 3455.02, "probability": 0.9948 }, { "start": 3455.78, "end": 3457.26, "probability": 0.9671 }, { "start": 3457.78, "end": 3461.08, "probability": 0.9945 }, { "start": 3461.7, "end": 3463.88, "probability": 0.9134 }, { "start": 3465.08, "end": 3465.52, "probability": 0.9604 }, { "start": 3467.24, "end": 3468.8, "probability": 0.928 }, { "start": 3469.62, "end": 3470.38, "probability": 0.9022 }, { "start": 3471.26, "end": 3472.36, "probability": 0.8534 }, { "start": 3474.4, "end": 3475.12, "probability": 0.64 }, { "start": 3477.78, "end": 3479.44, "probability": 0.9175 }, { "start": 3480.92, "end": 3481.84, "probability": 0.5796 }, { "start": 3482.46, "end": 3486.18, "probability": 0.96 }, { "start": 3486.18, "end": 3490.54, "probability": 0.9749 }, { "start": 3491.04, "end": 3493.54, "probability": 0.9636 }, { "start": 3493.54, "end": 3496.38, "probability": 0.9949 }, { "start": 3496.56, "end": 3498.8, "probability": 0.5877 }, { "start": 3498.82, "end": 3499.28, "probability": 0.5764 }, { "start": 3500.16, "end": 3503.16, "probability": 0.9162 }, { "start": 3503.78, "end": 3505.9, "probability": 0.993 }, { "start": 3506.44, "end": 3508.08, "probability": 0.6757 }, { "start": 3508.64, "end": 3512.8, "probability": 0.885 }, { "start": 3514.42, "end": 3515.48, "probability": 0.8691 }, { "start": 3516.26, "end": 3517.02, "probability": 0.9064 }, { "start": 3517.54, "end": 3519.04, "probability": 0.8111 }, { "start": 3519.82, "end": 3523.36, "probability": 0.9525 }, { "start": 3524.48, "end": 3525.16, "probability": 0.9897 }, { "start": 3526.3, "end": 3526.88, "probability": 0.9497 }, { "start": 3528.26, "end": 3530.66, "probability": 0.9819 }, { "start": 3530.9, "end": 3532.34, "probability": 0.9907 }, { "start": 3533.06, "end": 3536.88, "probability": 0.9829 }, { "start": 3537.12, "end": 3537.66, "probability": 0.8084 }, { "start": 3537.74, "end": 3538.4, "probability": 0.9904 }, { "start": 3539.66, "end": 3540.4, "probability": 0.9283 }, { "start": 3540.58, "end": 3541.18, "probability": 0.9132 }, { "start": 3542.16, "end": 3543.42, "probability": 0.844 }, { "start": 3545.14, "end": 3547.5, "probability": 0.7537 }, { "start": 3549.37, "end": 3550.42, "probability": 0.0264 }, { "start": 3550.98, "end": 3552.7, "probability": 0.9714 }, { "start": 3553.5, "end": 3554.66, "probability": 0.7294 }, { "start": 3557.78, "end": 3558.72, "probability": 0.6649 }, { "start": 3559.56, "end": 3561.78, "probability": 0.7847 }, { "start": 3562.42, "end": 3563.02, "probability": 0.8673 }, { "start": 3563.78, "end": 3564.92, "probability": 0.924 }, { "start": 3565.48, "end": 3567.22, "probability": 0.7563 }, { "start": 3567.86, "end": 3567.86, "probability": 0.716 }, { "start": 3567.86, "end": 3568.64, "probability": 0.7133 }, { "start": 3568.7, "end": 3570.1, "probability": 0.7688 }, { "start": 3570.3, "end": 3570.74, "probability": 0.8634 }, { "start": 3571.46, "end": 3572.52, "probability": 0.9955 }, { "start": 3572.54, "end": 3573.18, "probability": 0.7571 }, { "start": 3573.8, "end": 3577.26, "probability": 0.7974 }, { "start": 3577.28, "end": 3581.3, "probability": 0.7361 }, { "start": 3581.36, "end": 3584.48, "probability": 0.1519 }, { "start": 3585.65, "end": 3588.8, "probability": 0.7008 }, { "start": 3589.14, "end": 3592.6, "probability": 0.6505 }, { "start": 3593.12, "end": 3595.39, "probability": 0.9236 }, { "start": 3595.78, "end": 3596.52, "probability": 0.9832 }, { "start": 3596.76, "end": 3597.0, "probability": 0.7434 }, { "start": 3597.28, "end": 3598.64, "probability": 0.5157 }, { "start": 3599.62, "end": 3601.14, "probability": 0.9427 }, { "start": 3601.76, "end": 3604.56, "probability": 0.7084 }, { "start": 3604.66, "end": 3605.44, "probability": 0.5791 }, { "start": 3605.94, "end": 3606.68, "probability": 0.3799 }, { "start": 3606.68, "end": 3607.26, "probability": 0.4457 }, { "start": 3608.68, "end": 3610.2, "probability": 0.972 }, { "start": 3611.2, "end": 3612.8, "probability": 0.9813 }, { "start": 3614.02, "end": 3614.5, "probability": 0.7585 }, { "start": 3615.38, "end": 3616.72, "probability": 0.942 }, { "start": 3618.18, "end": 3620.2, "probability": 0.2969 }, { "start": 3620.68, "end": 3621.57, "probability": 0.9922 }, { "start": 3621.74, "end": 3622.7, "probability": 0.9067 }, { "start": 3623.42, "end": 3624.19, "probability": 0.8036 }, { "start": 3624.96, "end": 3625.92, "probability": 0.9146 }, { "start": 3628.64, "end": 3630.64, "probability": 0.1913 }, { "start": 3631.16, "end": 3636.4, "probability": 0.0291 }, { "start": 3636.4, "end": 3637.4, "probability": 0.0463 }, { "start": 3639.68, "end": 3640.32, "probability": 0.2334 }, { "start": 3641.22, "end": 3642.3, "probability": 0.9058 }, { "start": 3644.16, "end": 3645.22, "probability": 0.8173 }, { "start": 3647.04, "end": 3648.5, "probability": 0.4549 }, { "start": 3649.28, "end": 3650.74, "probability": 0.2861 }, { "start": 3651.74, "end": 3653.72, "probability": 0.8069 }, { "start": 3655.7, "end": 3656.66, "probability": 0.8785 }, { "start": 3659.24, "end": 3660.36, "probability": 0.9703 }, { "start": 3661.42, "end": 3662.28, "probability": 0.0742 }, { "start": 3662.46, "end": 3663.69, "probability": 0.4384 }, { "start": 3664.62, "end": 3666.98, "probability": 0.825 }, { "start": 3667.06, "end": 3668.98, "probability": 0.6614 }, { "start": 3687.24, "end": 3687.34, "probability": 0.2877 }, { "start": 3692.74, "end": 3692.74, "probability": 0.0146 }, { "start": 3692.74, "end": 3692.74, "probability": 0.0515 }, { "start": 3692.74, "end": 3692.74, "probability": 0.2272 }, { "start": 3711.8, "end": 3712.8, "probability": 0.6635 }, { "start": 3713.98, "end": 3715.2, "probability": 0.5501 }, { "start": 3715.84, "end": 3716.44, "probability": 0.6455 }, { "start": 3717.34, "end": 3719.1, "probability": 0.9414 }, { "start": 3719.96, "end": 3724.08, "probability": 0.9557 }, { "start": 3724.68, "end": 3725.68, "probability": 0.6336 }, { "start": 3727.0, "end": 3729.48, "probability": 0.9818 }, { "start": 3730.3, "end": 3732.16, "probability": 0.8597 }, { "start": 3732.8, "end": 3733.44, "probability": 0.8475 }, { "start": 3734.16, "end": 3734.86, "probability": 0.8 }, { "start": 3735.78, "end": 3737.42, "probability": 0.9774 }, { "start": 3739.44, "end": 3740.9, "probability": 0.9644 }, { "start": 3741.74, "end": 3743.78, "probability": 0.9703 }, { "start": 3744.32, "end": 3746.24, "probability": 0.9822 }, { "start": 3753.3, "end": 3753.82, "probability": 0.6146 }, { "start": 3754.76, "end": 3755.34, "probability": 0.6133 }, { "start": 3756.22, "end": 3757.88, "probability": 0.8068 }, { "start": 3760.7, "end": 3761.54, "probability": 0.8943 }, { "start": 3762.08, "end": 3764.92, "probability": 0.8691 }, { "start": 3766.76, "end": 3768.6, "probability": 0.9292 }, { "start": 3769.62, "end": 3771.34, "probability": 0.9666 }, { "start": 3771.9, "end": 3773.56, "probability": 0.7908 }, { "start": 3774.2, "end": 3776.08, "probability": 0.9782 }, { "start": 3777.12, "end": 3777.84, "probability": 0.9825 }, { "start": 3778.86, "end": 3779.7, "probability": 0.9799 }, { "start": 3781.22, "end": 3783.36, "probability": 0.9687 }, { "start": 3784.1, "end": 3786.84, "probability": 0.9148 }, { "start": 3787.66, "end": 3788.48, "probability": 0.991 }, { "start": 3789.12, "end": 3789.78, "probability": 0.9605 }, { "start": 3791.86, "end": 3794.66, "probability": 0.5032 }, { "start": 3795.0, "end": 3796.66, "probability": 0.745 }, { "start": 3796.88, "end": 3798.22, "probability": 0.7572 }, { "start": 3798.6, "end": 3799.42, "probability": 0.9492 }, { "start": 3800.36, "end": 3802.36, "probability": 0.91 }, { "start": 3803.04, "end": 3803.26, "probability": 0.9392 }, { "start": 3804.36, "end": 3805.02, "probability": 0.9813 }, { "start": 3805.62, "end": 3806.38, "probability": 0.9608 }, { "start": 3807.14, "end": 3808.06, "probability": 0.9571 }, { "start": 3808.58, "end": 3809.3, "probability": 0.7835 }, { "start": 3810.6, "end": 3811.3, "probability": 0.9316 }, { "start": 3811.88, "end": 3812.6, "probability": 0.9925 }, { "start": 3812.88, "end": 3814.18, "probability": 0.5126 }, { "start": 3814.28, "end": 3815.7, "probability": 0.9091 }, { "start": 3815.9, "end": 3816.58, "probability": 0.9909 }, { "start": 3817.26, "end": 3817.84, "probability": 0.954 }, { "start": 3818.46, "end": 3820.42, "probability": 0.9602 }, { "start": 3821.34, "end": 3822.14, "probability": 0.9932 }, { "start": 3822.74, "end": 3823.74, "probability": 0.9376 }, { "start": 3825.02, "end": 3825.76, "probability": 0.985 }, { "start": 3826.5, "end": 3827.16, "probability": 0.9329 }, { "start": 3828.52, "end": 3830.5, "probability": 0.9483 }, { "start": 3831.62, "end": 3834.24, "probability": 0.6629 }, { "start": 3835.52, "end": 3837.58, "probability": 0.5563 }, { "start": 3838.66, "end": 3841.6, "probability": 0.5861 }, { "start": 3842.44, "end": 3844.76, "probability": 0.6961 }, { "start": 3845.4, "end": 3846.68, "probability": 0.7044 }, { "start": 3848.18, "end": 3851.26, "probability": 0.7671 }, { "start": 3851.98, "end": 3853.1, "probability": 0.369 }, { "start": 3854.36, "end": 3857.88, "probability": 0.8294 }, { "start": 3858.94, "end": 3861.22, "probability": 0.9015 }, { "start": 3861.82, "end": 3862.66, "probability": 0.884 }, { "start": 3863.44, "end": 3864.18, "probability": 0.4964 }, { "start": 3864.88, "end": 3867.48, "probability": 0.9463 }, { "start": 3868.86, "end": 3871.48, "probability": 0.9691 }, { "start": 3872.66, "end": 3873.4, "probability": 0.9907 }, { "start": 3873.94, "end": 3874.32, "probability": 0.9243 }, { "start": 3876.1, "end": 3878.28, "probability": 0.9844 }, { "start": 3879.1, "end": 3880.95, "probability": 0.5638 }, { "start": 3881.72, "end": 3883.28, "probability": 0.9096 }, { "start": 3884.18, "end": 3884.92, "probability": 0.954 }, { "start": 3885.8, "end": 3886.28, "probability": 0.7807 }, { "start": 3886.38, "end": 3887.46, "probability": 0.9255 }, { "start": 3887.56, "end": 3888.7, "probability": 0.9765 }, { "start": 3888.76, "end": 3889.82, "probability": 0.8525 }, { "start": 3890.78, "end": 3891.64, "probability": 0.9932 }, { "start": 3894.84, "end": 3896.16, "probability": 0.4293 }, { "start": 3897.08, "end": 3897.82, "probability": 0.8447 }, { "start": 3898.46, "end": 3902.44, "probability": 0.948 }, { "start": 3902.98, "end": 3905.26, "probability": 0.9038 }, { "start": 3905.88, "end": 3907.54, "probability": 0.9747 }, { "start": 3908.58, "end": 3913.1, "probability": 0.9124 }, { "start": 3914.78, "end": 3917.34, "probability": 0.6679 }, { "start": 3917.36, "end": 3919.64, "probability": 0.9229 }, { "start": 3920.34, "end": 3921.84, "probability": 0.8816 }, { "start": 3923.08, "end": 3925.8, "probability": 0.8754 }, { "start": 3926.5, "end": 3929.08, "probability": 0.9514 }, { "start": 3930.37, "end": 3932.74, "probability": 0.7008 }, { "start": 3933.8, "end": 3935.06, "probability": 0.9782 }, { "start": 3936.26, "end": 3936.82, "probability": 0.9147 }, { "start": 3937.5, "end": 3939.24, "probability": 0.9568 }, { "start": 3940.28, "end": 3941.06, "probability": 0.9889 }, { "start": 3942.42, "end": 3945.3, "probability": 0.8803 }, { "start": 3946.56, "end": 3946.94, "probability": 0.1362 }, { "start": 3946.94, "end": 3947.68, "probability": 0.6701 }, { "start": 3947.78, "end": 3951.36, "probability": 0.8277 }, { "start": 3951.48, "end": 3952.86, "probability": 0.8606 }, { "start": 3955.04, "end": 3956.14, "probability": 0.9329 }, { "start": 3956.84, "end": 3958.3, "probability": 0.5469 }, { "start": 3960.4, "end": 3963.62, "probability": 0.3863 }, { "start": 3964.28, "end": 3965.16, "probability": 0.8464 }, { "start": 3965.74, "end": 3967.12, "probability": 0.5218 }, { "start": 3967.74, "end": 3968.56, "probability": 0.6706 }, { "start": 3969.52, "end": 3969.86, "probability": 0.7727 }, { "start": 3971.06, "end": 3973.54, "probability": 0.8629 }, { "start": 3974.62, "end": 3975.42, "probability": 0.9735 }, { "start": 3975.98, "end": 3977.66, "probability": 0.9106 }, { "start": 3978.88, "end": 3980.66, "probability": 0.9717 }, { "start": 3981.58, "end": 3983.58, "probability": 0.8107 }, { "start": 3985.34, "end": 3989.62, "probability": 0.5203 }, { "start": 3990.32, "end": 3990.94, "probability": 0.6835 }, { "start": 3991.2, "end": 3992.82, "probability": 0.8766 }, { "start": 3992.9, "end": 3993.72, "probability": 0.9336 }, { "start": 3994.0, "end": 3995.36, "probability": 0.734 }, { "start": 3995.44, "end": 3997.24, "probability": 0.951 }, { "start": 4000.66, "end": 4001.76, "probability": 0.9499 }, { "start": 4002.72, "end": 4004.62, "probability": 0.53 }, { "start": 4006.02, "end": 4010.86, "probability": 0.6081 }, { "start": 4011.66, "end": 4012.6, "probability": 0.9586 }, { "start": 4013.18, "end": 4015.22, "probability": 0.8996 }, { "start": 4015.96, "end": 4017.16, "probability": 0.7423 }, { "start": 4017.74, "end": 4018.86, "probability": 0.9308 }, { "start": 4018.88, "end": 4020.76, "probability": 0.8967 }, { "start": 4020.92, "end": 4024.5, "probability": 0.3158 }, { "start": 4024.5, "end": 4025.24, "probability": 0.486 }, { "start": 4025.36, "end": 4026.96, "probability": 0.5374 }, { "start": 4027.0, "end": 4028.34, "probability": 0.73 }, { "start": 4029.2, "end": 4030.32, "probability": 0.9929 }, { "start": 4031.2, "end": 4032.16, "probability": 0.7457 }, { "start": 4032.6, "end": 4034.14, "probability": 0.7773 }, { "start": 4034.28, "end": 4035.72, "probability": 0.2869 }, { "start": 4035.8, "end": 4036.98, "probability": 0.6132 }, { "start": 4037.1, "end": 4037.98, "probability": 0.5149 }, { "start": 4038.72, "end": 4039.62, "probability": 0.9294 }, { "start": 4040.3, "end": 4042.1, "probability": 0.9289 }, { "start": 4042.82, "end": 4043.82, "probability": 0.7163 }, { "start": 4043.84, "end": 4045.1, "probability": 0.7935 }, { "start": 4045.1, "end": 4046.1, "probability": 0.6556 }, { "start": 4046.24, "end": 4047.0, "probability": 0.7354 }, { "start": 4047.8, "end": 4050.0, "probability": 0.6814 }, { "start": 4051.94, "end": 4052.34, "probability": 0.0439 }, { "start": 4054.56, "end": 4056.78, "probability": 0.9937 }, { "start": 4059.05, "end": 4060.36, "probability": 0.4087 }, { "start": 4060.72, "end": 4061.96, "probability": 0.5915 }, { "start": 4062.04, "end": 4063.14, "probability": 0.8457 }, { "start": 4063.16, "end": 4064.08, "probability": 0.864 }, { "start": 4065.63, "end": 4066.84, "probability": 0.4681 }, { "start": 4066.84, "end": 4067.42, "probability": 0.4961 }, { "start": 4067.54, "end": 4068.7, "probability": 0.6526 }, { "start": 4068.84, "end": 4070.1, "probability": 0.6963 }, { "start": 4070.84, "end": 4072.24, "probability": 0.7576 }, { "start": 4072.34, "end": 4073.66, "probability": 0.9091 }, { "start": 4073.68, "end": 4074.8, "probability": 0.9541 }, { "start": 4075.76, "end": 4081.38, "probability": 0.6277 }, { "start": 4082.54, "end": 4084.92, "probability": 0.7311 }, { "start": 4085.84, "end": 4086.54, "probability": 0.9757 }, { "start": 4088.14, "end": 4091.44, "probability": 0.8711 }, { "start": 4091.98, "end": 4092.72, "probability": 0.6016 }, { "start": 4092.74, "end": 4093.58, "probability": 0.4672 }, { "start": 4093.72, "end": 4094.65, "probability": 0.5023 }, { "start": 4094.82, "end": 4097.64, "probability": 0.8842 }, { "start": 4097.86, "end": 4098.66, "probability": 0.9028 }, { "start": 4099.4, "end": 4100.28, "probability": 0.7524 }, { "start": 4101.3, "end": 4103.32, "probability": 0.7738 }, { "start": 4103.38, "end": 4104.82, "probability": 0.7488 }, { "start": 4104.94, "end": 4106.62, "probability": 0.7935 }, { "start": 4106.62, "end": 4107.68, "probability": 0.823 }, { "start": 4107.72, "end": 4108.72, "probability": 0.7447 }, { "start": 4108.84, "end": 4110.78, "probability": 0.8615 }, { "start": 4111.24, "end": 4112.34, "probability": 0.1879 }, { "start": 4112.34, "end": 4112.56, "probability": 0.427 }, { "start": 4112.6, "end": 4113.82, "probability": 0.505 }, { "start": 4114.54, "end": 4115.78, "probability": 0.846 }, { "start": 4115.84, "end": 4116.66, "probability": 0.7032 }, { "start": 4116.76, "end": 4119.2, "probability": 0.8608 }, { "start": 4120.2, "end": 4120.2, "probability": 0.0242 }, { "start": 4120.2, "end": 4120.2, "probability": 0.072 }, { "start": 4120.2, "end": 4120.96, "probability": 0.3099 }, { "start": 4120.96, "end": 4122.26, "probability": 0.3684 }, { "start": 4122.26, "end": 4124.1, "probability": 0.6633 }, { "start": 4124.1, "end": 4125.64, "probability": 0.4988 }, { "start": 4126.08, "end": 4126.36, "probability": 0.0289 }, { "start": 4126.36, "end": 4128.3, "probability": 0.1527 }, { "start": 4128.36, "end": 4129.56, "probability": 0.3714 }, { "start": 4129.56, "end": 4130.66, "probability": 0.3997 }, { "start": 4130.74, "end": 4131.24, "probability": 0.6642 }, { "start": 4131.86, "end": 4132.82, "probability": 0.4578 }, { "start": 4133.16, "end": 4135.26, "probability": 0.4232 }, { "start": 4135.28, "end": 4135.94, "probability": 0.0549 }, { "start": 4136.14, "end": 4136.8, "probability": 0.6986 }, { "start": 4136.9, "end": 4139.73, "probability": 0.6751 }, { "start": 4140.74, "end": 4144.68, "probability": 0.6699 }, { "start": 4145.4, "end": 4146.28, "probability": 0.8365 }, { "start": 4146.92, "end": 4147.4, "probability": 0.7098 }, { "start": 4147.48, "end": 4148.34, "probability": 0.0172 }, { "start": 4148.34, "end": 4148.94, "probability": 0.1778 }, { "start": 4149.02, "end": 4150.2, "probability": 0.575 }, { "start": 4150.82, "end": 4151.33, "probability": 0.6546 }, { "start": 4152.78, "end": 4154.83, "probability": 0.7449 }, { "start": 4155.54, "end": 4155.82, "probability": 0.9886 }, { "start": 4156.58, "end": 4160.52, "probability": 0.5568 }, { "start": 4161.48, "end": 4161.58, "probability": 0.0117 }, { "start": 4161.58, "end": 4162.16, "probability": 0.4649 }, { "start": 4162.22, "end": 4163.42, "probability": 0.3031 }, { "start": 4163.5, "end": 4164.6, "probability": 0.5151 }, { "start": 4165.08, "end": 4166.06, "probability": 0.5359 }, { "start": 4167.2, "end": 4167.68, "probability": 0.5533 }, { "start": 4168.56, "end": 4169.36, "probability": 0.791 }, { "start": 4170.5, "end": 4171.48, "probability": 0.755 }, { "start": 4172.28, "end": 4172.9, "probability": 0.8583 }, { "start": 4173.3, "end": 4175.9, "probability": 0.3883 }, { "start": 4175.9, "end": 4176.85, "probability": 0.6033 }, { "start": 4177.92, "end": 4178.36, "probability": 0.821 }, { "start": 4181.28, "end": 4181.82, "probability": 0.5192 }, { "start": 4181.82, "end": 4186.82, "probability": 0.9412 }, { "start": 4186.94, "end": 4188.98, "probability": 0.9194 }, { "start": 4190.32, "end": 4190.32, "probability": 0.0336 }, { "start": 4190.32, "end": 4192.14, "probability": 0.9604 }, { "start": 4193.06, "end": 4193.84, "probability": 0.5308 }, { "start": 4194.32, "end": 4195.06, "probability": 0.8308 }, { "start": 4195.52, "end": 4195.96, "probability": 0.7477 }, { "start": 4196.76, "end": 4198.06, "probability": 0.8071 }, { "start": 4198.2, "end": 4199.36, "probability": 0.5208 }, { "start": 4199.52, "end": 4200.39, "probability": 0.2695 }, { "start": 4200.68, "end": 4201.68, "probability": 0.7075 }, { "start": 4202.38, "end": 4203.48, "probability": 0.6975 }, { "start": 4203.56, "end": 4205.2, "probability": 0.5413 }, { "start": 4205.6, "end": 4206.04, "probability": 0.1671 }, { "start": 4206.04, "end": 4206.46, "probability": 0.4591 }, { "start": 4207.3, "end": 4207.98, "probability": 0.6901 }, { "start": 4208.58, "end": 4210.8, "probability": 0.6865 }, { "start": 4211.72, "end": 4212.72, "probability": 0.4478 }, { "start": 4213.5, "end": 4215.74, "probability": 0.3479 }, { "start": 4216.3, "end": 4217.86, "probability": 0.9503 }, { "start": 4218.6, "end": 4220.78, "probability": 0.467 }, { "start": 4220.82, "end": 4221.7, "probability": 0.5418 }, { "start": 4221.72, "end": 4223.68, "probability": 0.6054 }, { "start": 4223.82, "end": 4225.3, "probability": 0.6991 }, { "start": 4226.48, "end": 4227.4, "probability": 0.4748 }, { "start": 4230.42, "end": 4230.62, "probability": 0.4149 }, { "start": 4231.38, "end": 4234.72, "probability": 0.5276 }, { "start": 4235.58, "end": 4236.74, "probability": 0.8513 }, { "start": 4237.3, "end": 4239.28, "probability": 0.927 }, { "start": 4239.28, "end": 4241.02, "probability": 0.4 }, { "start": 4241.04, "end": 4241.8, "probability": 0.9829 }, { "start": 4243.4, "end": 4244.28, "probability": 0.7415 }, { "start": 4244.38, "end": 4245.94, "probability": 0.515 }, { "start": 4246.24, "end": 4249.6, "probability": 0.4599 }, { "start": 4249.68, "end": 4250.58, "probability": 0.3857 }, { "start": 4250.58, "end": 4251.46, "probability": 0.5021 }, { "start": 4251.56, "end": 4252.82, "probability": 0.7784 }, { "start": 4253.92, "end": 4257.0, "probability": 0.6688 }, { "start": 4258.56, "end": 4259.36, "probability": 0.3829 }, { "start": 4259.7, "end": 4260.92, "probability": 0.7235 }, { "start": 4261.02, "end": 4262.0, "probability": 0.7509 }, { "start": 4262.12, "end": 4263.56, "probability": 0.8647 }, { "start": 4264.3, "end": 4265.84, "probability": 0.966 }, { "start": 4265.98, "end": 4267.18, "probability": 0.8138 }, { "start": 4267.2, "end": 4268.32, "probability": 0.6661 }, { "start": 4269.88, "end": 4271.36, "probability": 0.1386 }, { "start": 4271.36, "end": 4271.82, "probability": 0.4388 }, { "start": 4271.84, "end": 4272.68, "probability": 0.4178 }, { "start": 4272.74, "end": 4273.74, "probability": 0.256 }, { "start": 4273.76, "end": 4274.84, "probability": 0.3414 }, { "start": 4274.88, "end": 4275.8, "probability": 0.6409 }, { "start": 4276.22, "end": 4276.78, "probability": 0.8113 }, { "start": 4278.42, "end": 4284.54, "probability": 0.4985 }, { "start": 4285.62, "end": 4286.1, "probability": 0.0079 }, { "start": 4286.36, "end": 4288.24, "probability": 0.2069 }, { "start": 4288.46, "end": 4288.94, "probability": 0.057 }, { "start": 4289.14, "end": 4289.26, "probability": 0.074 }, { "start": 4289.26, "end": 4292.42, "probability": 0.7927 }, { "start": 4293.26, "end": 4294.06, "probability": 0.0094 }, { "start": 4294.06, "end": 4297.56, "probability": 0.5088 }, { "start": 4301.16, "end": 4303.4, "probability": 0.4922 }, { "start": 4304.18, "end": 4305.14, "probability": 0.5807 }, { "start": 4310.42, "end": 4311.12, "probability": 0.8082 }, { "start": 4317.18, "end": 4319.0, "probability": 0.1921 }, { "start": 4324.24, "end": 4324.6, "probability": 0.7708 }, { "start": 4326.36, "end": 4328.16, "probability": 0.8282 }, { "start": 4335.92, "end": 4336.8, "probability": 0.6987 }, { "start": 4337.98, "end": 4340.54, "probability": 0.6115 }, { "start": 4341.14, "end": 4341.42, "probability": 0.5973 }, { "start": 4342.3, "end": 4344.24, "probability": 0.5183 }, { "start": 4344.28, "end": 4346.62, "probability": 0.7111 }, { "start": 4348.02, "end": 4349.74, "probability": 0.9653 }, { "start": 4350.38, "end": 4351.96, "probability": 0.9763 }, { "start": 4353.2, "end": 4357.68, "probability": 0.9858 }, { "start": 4358.04, "end": 4359.68, "probability": 0.0777 }, { "start": 4360.94, "end": 4362.26, "probability": 0.9688 }, { "start": 4362.46, "end": 4362.88, "probability": 0.733 }, { "start": 4363.46, "end": 4365.38, "probability": 0.7968 }, { "start": 4368.74, "end": 4371.92, "probability": 0.6932 }, { "start": 4375.32, "end": 4375.78, "probability": 0.753 }, { "start": 4376.44, "end": 4380.16, "probability": 0.0112 }, { "start": 4394.58, "end": 4394.78, "probability": 0.093 }, { "start": 4394.78, "end": 4394.94, "probability": 0.245 }, { "start": 4395.98, "end": 4396.46, "probability": 0.8095 }, { "start": 4397.06, "end": 4398.58, "probability": 0.9321 }, { "start": 4399.6, "end": 4400.98, "probability": 0.5026 }, { "start": 4402.66, "end": 4403.86, "probability": 0.9133 }, { "start": 4406.14, "end": 4407.42, "probability": 0.4715 }, { "start": 4408.7, "end": 4409.62, "probability": 0.7441 }, { "start": 4410.94, "end": 4413.1, "probability": 0.8357 }, { "start": 4413.9, "end": 4415.54, "probability": 0.879 }, { "start": 4417.3, "end": 4419.24, "probability": 0.5489 }, { "start": 4419.36, "end": 4420.72, "probability": 0.6082 }, { "start": 4421.3, "end": 4424.88, "probability": 0.8325 }, { "start": 4425.14, "end": 4428.26, "probability": 0.505 }, { "start": 4429.08, "end": 4429.76, "probability": 0.13 }, { "start": 4429.76, "end": 4435.48, "probability": 0.472 }, { "start": 4436.78, "end": 4436.78, "probability": 0.5004 }, { "start": 4436.78, "end": 4440.5, "probability": 0.4361 }, { "start": 4441.12, "end": 4441.56, "probability": 0.8726 }, { "start": 4441.87, "end": 4442.74, "probability": 0.0578 }, { "start": 4445.7, "end": 4451.72, "probability": 0.0934 }, { "start": 4452.66, "end": 4452.66, "probability": 0.5768 }, { "start": 4463.22, "end": 4464.6, "probability": 0.0708 }, { "start": 4540.0, "end": 4540.0, "probability": 0.0 }, { "start": 4540.0, "end": 4540.0, "probability": 0.0 }, { "start": 4540.0, "end": 4540.0, "probability": 0.0 }, { "start": 4540.0, "end": 4540.0, "probability": 0.0 }, { "start": 4540.0, "end": 4540.0, "probability": 0.0 }, { "start": 4540.0, "end": 4540.0, "probability": 0.0 }, { "start": 4540.16, "end": 4541.28, "probability": 0.7417 }, { "start": 4542.22, "end": 4542.88, "probability": 0.7469 }, { "start": 4545.54, "end": 4546.26, "probability": 0.3202 }, { "start": 4547.0, "end": 4547.86, "probability": 0.7008 }, { "start": 4549.08, "end": 4549.44, "probability": 0.2779 }, { "start": 4551.06, "end": 4554.44, "probability": 0.6064 }, { "start": 4556.04, "end": 4556.5, "probability": 0.7025 }, { "start": 4556.56, "end": 4560.78, "probability": 0.4881 }, { "start": 4562.1, "end": 4562.82, "probability": 0.6254 }, { "start": 4562.92, "end": 4563.44, "probability": 0.4247 }, { "start": 4563.66, "end": 4564.76, "probability": 0.9104 }, { "start": 4564.96, "end": 4565.08, "probability": 0.4471 }, { "start": 4567.34, "end": 4567.68, "probability": 0.7172 }, { "start": 4569.74, "end": 4573.84, "probability": 0.9823 }, { "start": 4575.14, "end": 4575.9, "probability": 0.8827 }, { "start": 4577.82, "end": 4580.52, "probability": 0.8123 }, { "start": 4582.18, "end": 4587.52, "probability": 0.9966 }, { "start": 4587.52, "end": 4590.8, "probability": 0.9977 }, { "start": 4592.94, "end": 4594.48, "probability": 0.8613 }, { "start": 4594.56, "end": 4599.62, "probability": 0.9979 }, { "start": 4599.62, "end": 4604.02, "probability": 0.9878 }, { "start": 4605.94, "end": 4606.72, "probability": 0.4998 }, { "start": 4607.58, "end": 4607.98, "probability": 0.8075 }, { "start": 4609.66, "end": 4609.94, "probability": 0.9102 }, { "start": 4610.48, "end": 4612.86, "probability": 0.9807 }, { "start": 4614.62, "end": 4617.06, "probability": 0.9546 }, { "start": 4617.9, "end": 4618.72, "probability": 0.8887 }, { "start": 4619.8, "end": 4621.1, "probability": 0.988 }, { "start": 4622.86, "end": 4626.58, "probability": 0.983 }, { "start": 4626.84, "end": 4630.86, "probability": 0.9448 }, { "start": 4630.86, "end": 4635.54, "probability": 0.9761 }, { "start": 4637.5, "end": 4638.04, "probability": 0.8639 }, { "start": 4639.44, "end": 4642.46, "probability": 0.9759 }, { "start": 4642.7, "end": 4646.42, "probability": 0.9973 }, { "start": 4646.48, "end": 4650.5, "probability": 0.9846 }, { "start": 4651.72, "end": 4655.72, "probability": 0.9979 }, { "start": 4658.04, "end": 4661.13, "probability": 0.9985 }, { "start": 4661.42, "end": 4662.98, "probability": 0.9978 }, { "start": 4663.16, "end": 4666.24, "probability": 0.2305 }, { "start": 4666.24, "end": 4668.6, "probability": 0.7808 }, { "start": 4669.42, "end": 4670.62, "probability": 0.7615 }, { "start": 4672.34, "end": 4675.32, "probability": 0.997 }, { "start": 4676.36, "end": 4679.42, "probability": 0.9985 }, { "start": 4694.3, "end": 4695.58, "probability": 0.7104 }, { "start": 4695.72, "end": 4696.18, "probability": 0.0313 }, { "start": 4696.18, "end": 4696.18, "probability": 0.0721 }, { "start": 4696.18, "end": 4698.9, "probability": 0.2763 }, { "start": 4699.06, "end": 4700.72, "probability": 0.813 }, { "start": 4702.5, "end": 4703.56, "probability": 0.8472 }, { "start": 4704.18, "end": 4707.68, "probability": 0.9958 }, { "start": 4707.86, "end": 4709.86, "probability": 0.9979 }, { "start": 4711.54, "end": 4711.76, "probability": 0.9138 }, { "start": 4712.74, "end": 4712.86, "probability": 0.9485 }, { "start": 4713.06, "end": 4713.34, "probability": 0.5918 }, { "start": 4713.38, "end": 4713.98, "probability": 0.9751 }, { "start": 4714.02, "end": 4720.44, "probability": 0.9979 }, { "start": 4721.46, "end": 4723.08, "probability": 0.7253 }, { "start": 4725.54, "end": 4728.72, "probability": 0.9666 }, { "start": 4731.42, "end": 4732.44, "probability": 0.9995 }, { "start": 4733.62, "end": 4734.62, "probability": 0.9988 }, { "start": 4735.44, "end": 4738.38, "probability": 0.9968 }, { "start": 4741.16, "end": 4743.46, "probability": 0.3142 }, { "start": 4743.46, "end": 4745.36, "probability": 0.9918 }, { "start": 4745.8, "end": 4746.94, "probability": 0.9971 }, { "start": 4748.04, "end": 4748.96, "probability": 0.1239 }, { "start": 4749.82, "end": 4752.16, "probability": 0.9264 }, { "start": 4752.9, "end": 4755.24, "probability": 0.9832 }, { "start": 4755.44, "end": 4756.68, "probability": 0.993 }, { "start": 4758.42, "end": 4760.08, "probability": 0.8066 }, { "start": 4761.34, "end": 4763.82, "probability": 0.9917 }, { "start": 4763.82, "end": 4767.0, "probability": 0.9895 }, { "start": 4767.1, "end": 4770.62, "probability": 0.9976 }, { "start": 4771.32, "end": 4774.02, "probability": 0.9976 }, { "start": 4775.72, "end": 4780.8, "probability": 0.9973 }, { "start": 4780.92, "end": 4782.92, "probability": 0.9976 }, { "start": 4785.06, "end": 4787.66, "probability": 0.9859 }, { "start": 4790.02, "end": 4791.26, "probability": 0.8558 }, { "start": 4791.32, "end": 4792.92, "probability": 0.9158 }, { "start": 4793.04, "end": 4795.38, "probability": 0.9026 }, { "start": 4795.44, "end": 4796.38, "probability": 0.5843 }, { "start": 4798.58, "end": 4801.26, "probability": 0.9664 }, { "start": 4801.4, "end": 4806.36, "probability": 0.9924 }, { "start": 4806.4, "end": 4807.7, "probability": 0.9583 }, { "start": 4807.8, "end": 4809.04, "probability": 0.7078 }, { "start": 4810.78, "end": 4812.34, "probability": 0.9513 }, { "start": 4813.36, "end": 4815.0, "probability": 0.9608 }, { "start": 4815.1, "end": 4816.6, "probability": 0.9764 }, { "start": 4816.74, "end": 4817.35, "probability": 0.9773 }, { "start": 4819.22, "end": 4820.24, "probability": 0.9775 }, { "start": 4820.32, "end": 4823.3, "probability": 0.9958 }, { "start": 4823.3, "end": 4825.3, "probability": 0.9974 }, { "start": 4826.64, "end": 4830.0, "probability": 0.9968 }, { "start": 4831.66, "end": 4833.24, "probability": 0.9119 }, { "start": 4833.5, "end": 4834.1, "probability": 0.4352 }, { "start": 4834.38, "end": 4837.0, "probability": 0.7739 }, { "start": 4837.88, "end": 4838.76, "probability": 0.8918 }, { "start": 4838.86, "end": 4839.12, "probability": 0.2789 }, { "start": 4839.2, "end": 4842.48, "probability": 0.6891 }, { "start": 4844.84, "end": 4845.86, "probability": 0.6633 }, { "start": 4846.48, "end": 4848.48, "probability": 0.5871 }, { "start": 4848.48, "end": 4849.18, "probability": 0.8591 }, { "start": 4849.58, "end": 4852.3, "probability": 0.7532 }, { "start": 4854.9, "end": 4860.18, "probability": 0.8864 }, { "start": 4861.34, "end": 4862.6, "probability": 0.6396 }, { "start": 4864.8, "end": 4866.94, "probability": 0.9884 }, { "start": 4869.21, "end": 4871.52, "probability": 0.5837 }, { "start": 4871.52, "end": 4874.6, "probability": 0.959 }, { "start": 4874.66, "end": 4877.72, "probability": 0.9736 }, { "start": 4880.2, "end": 4880.87, "probability": 0.7798 }, { "start": 4881.1, "end": 4883.49, "probability": 0.9941 }, { "start": 4883.84, "end": 4884.46, "probability": 0.4781 }, { "start": 4884.58, "end": 4888.14, "probability": 0.9956 }, { "start": 4889.3, "end": 4889.4, "probability": 0.6216 }, { "start": 4889.48, "end": 4892.66, "probability": 0.9932 }, { "start": 4892.66, "end": 4895.88, "probability": 0.9721 }, { "start": 4896.56, "end": 4899.62, "probability": 0.9975 }, { "start": 4900.18, "end": 4903.64, "probability": 0.834 }, { "start": 4904.18, "end": 4906.33, "probability": 0.9192 }, { "start": 4908.62, "end": 4909.52, "probability": 0.8297 }, { "start": 4909.68, "end": 4913.02, "probability": 0.9849 }, { "start": 4913.06, "end": 4913.36, "probability": 0.8546 }, { "start": 4913.44, "end": 4913.88, "probability": 0.4723 }, { "start": 4914.0, "end": 4915.28, "probability": 0.9105 }, { "start": 4915.38, "end": 4920.06, "probability": 0.9051 }, { "start": 4920.4, "end": 4921.54, "probability": 0.7718 }, { "start": 4921.64, "end": 4922.3, "probability": 0.54 }, { "start": 4922.9, "end": 4923.26, "probability": 0.6622 }, { "start": 4923.28, "end": 4925.35, "probability": 0.822 }, { "start": 4927.54, "end": 4928.46, "probability": 0.8061 }, { "start": 4929.94, "end": 4933.04, "probability": 0.8138 }, { "start": 4933.82, "end": 4937.34, "probability": 0.9963 }, { "start": 4937.72, "end": 4940.94, "probability": 0.9951 }, { "start": 4941.84, "end": 4944.64, "probability": 0.9936 }, { "start": 4946.4, "end": 4949.7, "probability": 0.9885 }, { "start": 4949.8, "end": 4950.76, "probability": 0.8754 }, { "start": 4950.82, "end": 4951.94, "probability": 0.8198 }, { "start": 4952.08, "end": 4954.26, "probability": 0.9875 }, { "start": 4954.26, "end": 4956.3, "probability": 0.9893 }, { "start": 4956.5, "end": 4957.86, "probability": 0.9822 }, { "start": 4959.48, "end": 4959.64, "probability": 0.7169 }, { "start": 4959.9, "end": 4959.98, "probability": 0.4214 }, { "start": 4960.08, "end": 4960.64, "probability": 0.8407 }, { "start": 4960.74, "end": 4962.76, "probability": 0.9951 }, { "start": 4963.9, "end": 4965.49, "probability": 0.9937 }, { "start": 4965.82, "end": 4968.0, "probability": 0.9524 }, { "start": 4968.26, "end": 4969.66, "probability": 0.8979 }, { "start": 4969.7, "end": 4970.18, "probability": 0.8294 }, { "start": 4970.62, "end": 4971.16, "probability": 0.4364 }, { "start": 4973.1, "end": 4977.58, "probability": 0.9979 }, { "start": 4977.66, "end": 4979.36, "probability": 0.9749 }, { "start": 4979.4, "end": 4984.2, "probability": 0.901 }, { "start": 4984.74, "end": 4985.66, "probability": 0.793 }, { "start": 4990.58, "end": 4991.7, "probability": 0.8017 }, { "start": 4992.9, "end": 4993.54, "probability": 0.6082 }, { "start": 4993.66, "end": 4997.4, "probability": 0.9967 }, { "start": 4997.48, "end": 4997.78, "probability": 0.9344 }, { "start": 4997.84, "end": 5000.16, "probability": 0.9971 }, { "start": 5000.36, "end": 5001.27, "probability": 0.8218 }, { "start": 5002.88, "end": 5006.3, "probability": 0.9785 }, { "start": 5008.46, "end": 5010.62, "probability": 0.929 }, { "start": 5010.74, "end": 5012.46, "probability": 0.9863 }, { "start": 5012.56, "end": 5014.36, "probability": 0.9124 }, { "start": 5014.54, "end": 5017.18, "probability": 0.7454 }, { "start": 5017.18, "end": 5017.6, "probability": 0.0644 }, { "start": 5018.32, "end": 5020.82, "probability": 0.8844 }, { "start": 5021.78, "end": 5023.96, "probability": 0.9962 }, { "start": 5024.62, "end": 5029.24, "probability": 0.9827 }, { "start": 5029.3, "end": 5032.68, "probability": 0.9933 }, { "start": 5034.0, "end": 5037.32, "probability": 0.9946 }, { "start": 5037.32, "end": 5040.3, "probability": 0.9908 }, { "start": 5041.9, "end": 5043.8, "probability": 0.9163 }, { "start": 5043.9, "end": 5045.2, "probability": 0.841 }, { "start": 5045.78, "end": 5048.74, "probability": 0.9858 }, { "start": 5048.74, "end": 5051.92, "probability": 0.7317 }, { "start": 5053.22, "end": 5057.9, "probability": 0.999 }, { "start": 5058.44, "end": 5060.34, "probability": 0.9536 }, { "start": 5060.4, "end": 5064.42, "probability": 0.9924 }, { "start": 5065.82, "end": 5069.94, "probability": 0.9985 }, { "start": 5070.0, "end": 5070.49, "probability": 0.8311 }, { "start": 5070.72, "end": 5071.54, "probability": 0.5717 }, { "start": 5071.64, "end": 5072.61, "probability": 0.9287 }, { "start": 5072.98, "end": 5073.24, "probability": 0.6744 }, { "start": 5073.5, "end": 5074.64, "probability": 0.6892 }, { "start": 5075.08, "end": 5078.3, "probability": 0.9977 }, { "start": 5078.4, "end": 5081.4, "probability": 0.7886 }, { "start": 5084.14, "end": 5085.48, "probability": 0.9712 }, { "start": 5085.58, "end": 5086.84, "probability": 0.9943 }, { "start": 5087.22, "end": 5088.34, "probability": 0.9595 }, { "start": 5089.9, "end": 5093.68, "probability": 0.9982 }, { "start": 5094.2, "end": 5100.26, "probability": 0.9521 }, { "start": 5101.76, "end": 5104.24, "probability": 0.9737 }, { "start": 5104.3, "end": 5106.5, "probability": 0.8975 }, { "start": 5106.96, "end": 5108.64, "probability": 0.9907 }, { "start": 5108.88, "end": 5112.88, "probability": 0.932 }, { "start": 5113.66, "end": 5117.14, "probability": 0.9423 }, { "start": 5118.36, "end": 5121.52, "probability": 0.8491 }, { "start": 5121.68, "end": 5123.41, "probability": 0.8535 }, { "start": 5124.6, "end": 5125.18, "probability": 0.4796 }, { "start": 5125.34, "end": 5126.06, "probability": 0.8806 }, { "start": 5126.18, "end": 5127.38, "probability": 0.9546 }, { "start": 5127.52, "end": 5128.52, "probability": 0.6664 }, { "start": 5128.54, "end": 5129.16, "probability": 0.9772 }, { "start": 5129.2, "end": 5130.02, "probability": 0.7746 }, { "start": 5130.46, "end": 5131.56, "probability": 0.9805 }, { "start": 5131.66, "end": 5133.2, "probability": 0.9321 }, { "start": 5133.28, "end": 5133.94, "probability": 0.851 }, { "start": 5137.56, "end": 5139.14, "probability": 0.9871 }, { "start": 5139.22, "end": 5140.94, "probability": 0.9877 }, { "start": 5141.06, "end": 5141.76, "probability": 0.9388 }, { "start": 5142.54, "end": 5143.5, "probability": 0.9032 }, { "start": 5143.62, "end": 5144.48, "probability": 0.9336 }, { "start": 5144.6, "end": 5147.7, "probability": 0.9871 }, { "start": 5148.88, "end": 5149.82, "probability": 0.9026 }, { "start": 5150.7, "end": 5151.22, "probability": 0.7115 }, { "start": 5151.26, "end": 5151.36, "probability": 0.567 }, { "start": 5151.44, "end": 5152.3, "probability": 0.8702 }, { "start": 5152.38, "end": 5153.94, "probability": 0.7918 }, { "start": 5153.98, "end": 5155.7, "probability": 0.959 }, { "start": 5156.92, "end": 5158.26, "probability": 0.9846 }, { "start": 5158.38, "end": 5158.88, "probability": 0.9054 }, { "start": 5158.96, "end": 5162.58, "probability": 0.9132 }, { "start": 5162.92, "end": 5163.94, "probability": 0.9932 }, { "start": 5164.08, "end": 5169.0, "probability": 0.999 }, { "start": 5169.24, "end": 5170.88, "probability": 0.6194 }, { "start": 5171.46, "end": 5174.19, "probability": 0.8291 }, { "start": 5174.34, "end": 5175.24, "probability": 0.8427 }, { "start": 5175.36, "end": 5176.06, "probability": 0.7873 }, { "start": 5176.76, "end": 5177.82, "probability": 0.8961 }, { "start": 5178.64, "end": 5184.06, "probability": 0.9151 }, { "start": 5184.56, "end": 5185.3, "probability": 0.9538 }, { "start": 5188.16, "end": 5189.12, "probability": 0.8188 }, { "start": 5190.66, "end": 5192.22, "probability": 0.718 }, { "start": 5195.6, "end": 5196.76, "probability": 0.636 }, { "start": 5210.84, "end": 5211.48, "probability": 0.4207 }, { "start": 5212.18, "end": 5212.9, "probability": 0.781 }, { "start": 5213.52, "end": 5217.78, "probability": 0.9346 }, { "start": 5218.96, "end": 5223.56, "probability": 0.9705 }, { "start": 5224.26, "end": 5226.54, "probability": 0.6262 }, { "start": 5228.1, "end": 5231.44, "probability": 0.9424 }, { "start": 5232.06, "end": 5233.9, "probability": 0.9867 }, { "start": 5234.98, "end": 5237.36, "probability": 0.8341 }, { "start": 5238.48, "end": 5244.14, "probability": 0.978 }, { "start": 5244.14, "end": 5249.64, "probability": 0.9875 }, { "start": 5251.61, "end": 5255.92, "probability": 0.8872 }, { "start": 5256.34, "end": 5262.64, "probability": 0.8557 }, { "start": 5263.46, "end": 5267.26, "probability": 0.9829 }, { "start": 5267.98, "end": 5271.48, "probability": 0.9868 }, { "start": 5272.84, "end": 5274.22, "probability": 0.8484 }, { "start": 5275.0, "end": 5276.66, "probability": 0.9918 }, { "start": 5277.24, "end": 5278.08, "probability": 0.9207 }, { "start": 5279.0, "end": 5280.86, "probability": 0.9406 }, { "start": 5281.46, "end": 5283.7, "probability": 0.9351 }, { "start": 5284.56, "end": 5286.74, "probability": 0.895 }, { "start": 5287.94, "end": 5290.32, "probability": 0.9892 }, { "start": 5291.22, "end": 5294.3, "probability": 0.9899 }, { "start": 5294.88, "end": 5297.56, "probability": 0.9783 }, { "start": 5298.36, "end": 5302.56, "probability": 0.846 }, { "start": 5304.68, "end": 5306.3, "probability": 0.9941 }, { "start": 5306.32, "end": 5307.95, "probability": 0.9934 }, { "start": 5308.88, "end": 5309.66, "probability": 0.8999 }, { "start": 5311.48, "end": 5314.78, "probability": 0.9775 }, { "start": 5315.44, "end": 5316.66, "probability": 0.9991 }, { "start": 5317.02, "end": 5323.84, "probability": 0.9751 }, { "start": 5324.24, "end": 5325.52, "probability": 0.9593 }, { "start": 5327.96, "end": 5328.44, "probability": 0.4994 }, { "start": 5329.06, "end": 5329.58, "probability": 0.7795 }, { "start": 5329.94, "end": 5331.0, "probability": 0.5158 }, { "start": 5331.1, "end": 5332.44, "probability": 0.7612 }, { "start": 5332.86, "end": 5336.18, "probability": 0.9803 }, { "start": 5337.0, "end": 5340.26, "probability": 0.8808 }, { "start": 5340.96, "end": 5341.26, "probability": 0.5545 }, { "start": 5341.3, "end": 5341.72, "probability": 0.9313 }, { "start": 5342.18, "end": 5349.2, "probability": 0.9517 }, { "start": 5350.54, "end": 5350.54, "probability": 0.0663 }, { "start": 5350.7, "end": 5351.52, "probability": 0.7866 }, { "start": 5351.64, "end": 5353.88, "probability": 0.996 }, { "start": 5354.54, "end": 5355.38, "probability": 0.9141 }, { "start": 5355.68, "end": 5356.18, "probability": 0.9282 }, { "start": 5356.58, "end": 5361.8, "probability": 0.9845 }, { "start": 5362.3, "end": 5364.66, "probability": 0.9937 }, { "start": 5366.76, "end": 5374.38, "probability": 0.9971 }, { "start": 5375.14, "end": 5379.86, "probability": 0.9988 }, { "start": 5380.98, "end": 5381.34, "probability": 0.5642 }, { "start": 5381.5, "end": 5382.28, "probability": 0.7935 }, { "start": 5382.66, "end": 5385.14, "probability": 0.876 }, { "start": 5385.28, "end": 5385.92, "probability": 0.5838 }, { "start": 5386.24, "end": 5390.14, "probability": 0.9651 }, { "start": 5390.14, "end": 5394.18, "probability": 0.9734 }, { "start": 5394.74, "end": 5397.66, "probability": 0.9669 }, { "start": 5398.54, "end": 5399.76, "probability": 0.9243 }, { "start": 5400.7, "end": 5401.08, "probability": 0.4997 }, { "start": 5402.18, "end": 5405.02, "probability": 0.9961 }, { "start": 5405.64, "end": 5407.44, "probability": 0.9922 }, { "start": 5409.08, "end": 5409.92, "probability": 0.9419 }, { "start": 5411.1, "end": 5413.8, "probability": 0.9109 }, { "start": 5414.2, "end": 5416.04, "probability": 0.9858 }, { "start": 5416.84, "end": 5417.7, "probability": 0.7734 }, { "start": 5418.36, "end": 5420.62, "probability": 0.8915 }, { "start": 5421.1, "end": 5424.4, "probability": 0.9924 }, { "start": 5425.28, "end": 5427.18, "probability": 0.9287 }, { "start": 5428.02, "end": 5429.8, "probability": 0.8885 }, { "start": 5430.26, "end": 5430.96, "probability": 0.9683 }, { "start": 5433.46, "end": 5433.56, "probability": 0.2127 }, { "start": 5433.56, "end": 5434.78, "probability": 0.4943 }, { "start": 5435.08, "end": 5437.27, "probability": 0.7576 }, { "start": 5437.86, "end": 5440.92, "probability": 0.9846 }, { "start": 5442.2, "end": 5445.04, "probability": 0.8731 }, { "start": 5446.16, "end": 5447.72, "probability": 0.9194 }, { "start": 5448.44, "end": 5450.12, "probability": 0.8291 }, { "start": 5450.6, "end": 5454.84, "probability": 0.9828 }, { "start": 5455.76, "end": 5460.74, "probability": 0.9938 }, { "start": 5461.48, "end": 5461.86, "probability": 0.9326 }, { "start": 5462.38, "end": 5466.16, "probability": 0.7817 }, { "start": 5466.52, "end": 5469.48, "probability": 0.9994 }, { "start": 5470.66, "end": 5471.38, "probability": 0.5335 }, { "start": 5472.1, "end": 5473.12, "probability": 0.9128 }, { "start": 5474.06, "end": 5475.38, "probability": 0.9502 }, { "start": 5476.1, "end": 5477.24, "probability": 0.8015 }, { "start": 5477.38, "end": 5479.04, "probability": 0.716 }, { "start": 5479.52, "end": 5484.66, "probability": 0.9722 }, { "start": 5485.6, "end": 5490.3, "probability": 0.9347 }, { "start": 5491.24, "end": 5493.1, "probability": 0.9956 }, { "start": 5493.94, "end": 5498.16, "probability": 0.9785 }, { "start": 5498.34, "end": 5500.68, "probability": 0.9688 }, { "start": 5501.26, "end": 5503.48, "probability": 0.9759 }, { "start": 5504.02, "end": 5507.1, "probability": 0.998 }, { "start": 5507.7, "end": 5509.72, "probability": 0.9665 }, { "start": 5510.52, "end": 5512.06, "probability": 0.9985 }, { "start": 5512.84, "end": 5515.88, "probability": 0.9863 }, { "start": 5516.42, "end": 5518.72, "probability": 0.9959 }, { "start": 5519.54, "end": 5520.98, "probability": 0.9985 }, { "start": 5522.08, "end": 5524.36, "probability": 0.9883 }, { "start": 5525.1, "end": 5528.26, "probability": 0.933 }, { "start": 5529.3, "end": 5531.54, "probability": 0.9816 }, { "start": 5532.22, "end": 5533.74, "probability": 0.9502 }, { "start": 5533.76, "end": 5536.8, "probability": 0.9973 }, { "start": 5537.55, "end": 5540.88, "probability": 0.9972 }, { "start": 5541.48, "end": 5541.82, "probability": 0.3637 }, { "start": 5542.64, "end": 5543.42, "probability": 0.4576 }, { "start": 5543.64, "end": 5545.82, "probability": 0.9024 }, { "start": 5546.34, "end": 5549.86, "probability": 0.9902 }, { "start": 5550.32, "end": 5551.93, "probability": 0.9845 }, { "start": 5552.62, "end": 5554.64, "probability": 0.996 }, { "start": 5555.18, "end": 5558.88, "probability": 0.9544 }, { "start": 5559.42, "end": 5560.2, "probability": 0.8001 }, { "start": 5560.84, "end": 5562.26, "probability": 0.9165 }, { "start": 5562.32, "end": 5563.8, "probability": 0.9976 }, { "start": 5564.34, "end": 5565.78, "probability": 0.9784 }, { "start": 5567.2, "end": 5568.32, "probability": 0.8889 }, { "start": 5569.28, "end": 5572.6, "probability": 0.8822 }, { "start": 5573.52, "end": 5575.68, "probability": 0.9917 }, { "start": 5576.46, "end": 5577.4, "probability": 0.9656 }, { "start": 5577.82, "end": 5578.64, "probability": 0.9908 }, { "start": 5578.68, "end": 5579.98, "probability": 0.9775 }, { "start": 5580.46, "end": 5581.04, "probability": 0.9525 }, { "start": 5581.16, "end": 5581.82, "probability": 0.4676 }, { "start": 5582.32, "end": 5582.68, "probability": 0.7533 }, { "start": 5582.96, "end": 5585.82, "probability": 0.9901 }, { "start": 5586.46, "end": 5587.52, "probability": 0.9727 }, { "start": 5587.84, "end": 5590.58, "probability": 0.9781 }, { "start": 5591.06, "end": 5591.91, "probability": 0.9781 }, { "start": 5592.7, "end": 5596.24, "probability": 0.9507 }, { "start": 5596.96, "end": 5598.7, "probability": 0.9972 }, { "start": 5600.08, "end": 5601.7, "probability": 0.9695 }, { "start": 5602.24, "end": 5603.2, "probability": 0.9904 }, { "start": 5603.56, "end": 5605.14, "probability": 0.8259 }, { "start": 5605.56, "end": 5608.52, "probability": 0.9922 }, { "start": 5609.18, "end": 5609.72, "probability": 0.8796 }, { "start": 5610.24, "end": 5611.06, "probability": 0.9528 }, { "start": 5611.42, "end": 5612.22, "probability": 0.9482 }, { "start": 5612.62, "end": 5613.32, "probability": 0.8434 }, { "start": 5613.36, "end": 5613.9, "probability": 0.7815 }, { "start": 5614.52, "end": 5614.86, "probability": 0.3627 }, { "start": 5615.18, "end": 5615.56, "probability": 0.8047 }, { "start": 5615.88, "end": 5616.12, "probability": 0.8556 }, { "start": 5616.7, "end": 5620.62, "probability": 0.7802 }, { "start": 5622.68, "end": 5623.62, "probability": 0.8925 }, { "start": 5624.54, "end": 5625.68, "probability": 0.8285 }, { "start": 5626.38, "end": 5626.66, "probability": 0.9681 }, { "start": 5627.96, "end": 5629.0, "probability": 0.9455 }, { "start": 5629.78, "end": 5630.52, "probability": 0.4928 }, { "start": 5642.12, "end": 5643.8, "probability": 0.3455 }, { "start": 5647.62, "end": 5649.06, "probability": 0.9801 }, { "start": 5649.76, "end": 5650.22, "probability": 0.9095 }, { "start": 5651.3, "end": 5652.82, "probability": 0.9863 }, { "start": 5654.08, "end": 5655.68, "probability": 0.837 }, { "start": 5657.86, "end": 5660.92, "probability": 0.8424 }, { "start": 5662.24, "end": 5664.32, "probability": 0.4095 }, { "start": 5665.84, "end": 5667.14, "probability": 0.9857 }, { "start": 5668.28, "end": 5670.32, "probability": 0.9926 }, { "start": 5673.56, "end": 5675.32, "probability": 0.719 }, { "start": 5676.04, "end": 5679.76, "probability": 0.9839 }, { "start": 5681.0, "end": 5683.6, "probability": 0.9023 }, { "start": 5684.58, "end": 5686.76, "probability": 0.9895 }, { "start": 5688.32, "end": 5690.76, "probability": 0.9918 }, { "start": 5692.34, "end": 5693.72, "probability": 0.9993 }, { "start": 5694.78, "end": 5701.38, "probability": 0.6047 }, { "start": 5701.52, "end": 5702.43, "probability": 0.967 }, { "start": 5702.58, "end": 5702.86, "probability": 0.9326 }, { "start": 5703.86, "end": 5707.0, "probability": 0.9393 }, { "start": 5708.0, "end": 5712.26, "probability": 0.9008 }, { "start": 5712.84, "end": 5715.32, "probability": 0.9756 }, { "start": 5716.0, "end": 5716.38, "probability": 0.9674 }, { "start": 5716.84, "end": 5720.22, "probability": 0.8739 }, { "start": 5721.46, "end": 5722.58, "probability": 0.9751 }, { "start": 5724.08, "end": 5726.5, "probability": 0.9843 }, { "start": 5727.9, "end": 5730.0, "probability": 0.9877 }, { "start": 5730.6, "end": 5732.2, "probability": 0.9911 }, { "start": 5734.78, "end": 5736.36, "probability": 0.0483 }, { "start": 5738.1, "end": 5739.16, "probability": 0.8765 }, { "start": 5740.8, "end": 5742.98, "probability": 0.8763 }, { "start": 5744.0, "end": 5744.56, "probability": 0.9924 }, { "start": 5745.58, "end": 5746.56, "probability": 0.9585 }, { "start": 5747.6, "end": 5751.46, "probability": 0.9935 }, { "start": 5752.38, "end": 5757.14, "probability": 0.9677 }, { "start": 5758.42, "end": 5760.9, "probability": 0.999 }, { "start": 5761.74, "end": 5763.74, "probability": 0.9893 }, { "start": 5764.38, "end": 5765.06, "probability": 0.9176 }, { "start": 5766.04, "end": 5767.52, "probability": 0.9975 }, { "start": 5768.26, "end": 5769.48, "probability": 0.9917 }, { "start": 5770.82, "end": 5772.34, "probability": 0.8737 }, { "start": 5773.36, "end": 5774.58, "probability": 0.9305 }, { "start": 5775.2, "end": 5776.16, "probability": 0.8454 }, { "start": 5776.7, "end": 5779.24, "probability": 0.6578 }, { "start": 5779.36, "end": 5785.26, "probability": 0.9956 }, { "start": 5786.74, "end": 5790.04, "probability": 0.971 }, { "start": 5791.04, "end": 5791.74, "probability": 0.7277 }, { "start": 5792.94, "end": 5796.48, "probability": 0.9818 }, { "start": 5797.34, "end": 5800.74, "probability": 0.9191 }, { "start": 5801.54, "end": 5803.42, "probability": 0.8961 }, { "start": 5804.28, "end": 5804.88, "probability": 0.8329 }, { "start": 5805.62, "end": 5808.42, "probability": 0.9946 }, { "start": 5809.06, "end": 5810.9, "probability": 0.8599 }, { "start": 5811.54, "end": 5813.7, "probability": 0.9779 }, { "start": 5813.78, "end": 5815.16, "probability": 0.9836 }, { "start": 5815.48, "end": 5821.18, "probability": 0.9907 }, { "start": 5822.52, "end": 5823.42, "probability": 0.9023 }, { "start": 5824.62, "end": 5825.92, "probability": 0.9913 }, { "start": 5826.72, "end": 5827.54, "probability": 0.971 }, { "start": 5828.36, "end": 5829.64, "probability": 0.963 }, { "start": 5830.18, "end": 5831.72, "probability": 0.9868 }, { "start": 5833.1, "end": 5835.94, "probability": 0.9601 }, { "start": 5836.12, "end": 5838.96, "probability": 0.875 }, { "start": 5839.64, "end": 5841.62, "probability": 0.9484 }, { "start": 5842.64, "end": 5844.83, "probability": 0.9101 }, { "start": 5845.98, "end": 5851.46, "probability": 0.9753 }, { "start": 5852.22, "end": 5856.68, "probability": 0.9596 }, { "start": 5857.74, "end": 5860.1, "probability": 0.9464 }, { "start": 5860.2, "end": 5861.0, "probability": 0.9248 }, { "start": 5861.1, "end": 5861.86, "probability": 0.7969 }, { "start": 5862.34, "end": 5864.72, "probability": 0.9824 }, { "start": 5865.62, "end": 5867.86, "probability": 0.9961 }, { "start": 5867.94, "end": 5869.6, "probability": 0.9489 }, { "start": 5870.86, "end": 5872.51, "probability": 0.8838 }, { "start": 5873.9, "end": 5877.72, "probability": 0.9037 }, { "start": 5878.54, "end": 5879.48, "probability": 0.9395 }, { "start": 5880.38, "end": 5881.4, "probability": 0.9782 }, { "start": 5881.56, "end": 5882.58, "probability": 0.9886 }, { "start": 5883.0, "end": 5884.26, "probability": 0.9761 }, { "start": 5885.0, "end": 5887.34, "probability": 0.9936 }, { "start": 5888.26, "end": 5892.62, "probability": 0.9187 }, { "start": 5892.72, "end": 5893.24, "probability": 0.949 }, { "start": 5894.04, "end": 5895.7, "probability": 0.7913 }, { "start": 5895.96, "end": 5896.98, "probability": 0.7432 }, { "start": 5897.58, "end": 5898.92, "probability": 0.7296 }, { "start": 5899.06, "end": 5901.98, "probability": 0.9766 }, { "start": 5902.48, "end": 5909.88, "probability": 0.9961 }, { "start": 5910.82, "end": 5914.66, "probability": 0.9888 }, { "start": 5915.66, "end": 5920.12, "probability": 0.9964 }, { "start": 5921.24, "end": 5924.06, "probability": 0.9822 }, { "start": 5924.76, "end": 5927.16, "probability": 0.916 }, { "start": 5928.18, "end": 5929.28, "probability": 0.8732 }, { "start": 5930.04, "end": 5936.2, "probability": 0.88 }, { "start": 5936.86, "end": 5938.74, "probability": 0.9976 }, { "start": 5939.32, "end": 5939.98, "probability": 0.8885 }, { "start": 5940.56, "end": 5942.08, "probability": 0.7257 }, { "start": 5942.96, "end": 5948.72, "probability": 0.9772 }, { "start": 5950.0, "end": 5953.38, "probability": 0.8675 }, { "start": 5953.94, "end": 5956.74, "probability": 0.7294 }, { "start": 5958.82, "end": 5961.66, "probability": 0.75 }, { "start": 5962.26, "end": 5964.92, "probability": 0.6042 }, { "start": 5964.96, "end": 5968.7, "probability": 0.7832 }, { "start": 5968.76, "end": 5972.4, "probability": 0.9637 }, { "start": 5973.12, "end": 5977.54, "probability": 0.9945 }, { "start": 5978.36, "end": 5979.94, "probability": 0.93 }, { "start": 5980.78, "end": 5983.41, "probability": 0.8786 }, { "start": 5984.12, "end": 5988.06, "probability": 0.7905 }, { "start": 5989.12, "end": 5994.84, "probability": 0.9574 }, { "start": 5995.56, "end": 6000.4, "probability": 0.9391 }, { "start": 6001.62, "end": 6005.46, "probability": 0.6929 }, { "start": 6006.28, "end": 6008.14, "probability": 0.993 }, { "start": 6008.8, "end": 6012.74, "probability": 0.9005 }, { "start": 6012.94, "end": 6013.82, "probability": 0.9016 }, { "start": 6014.34, "end": 6015.42, "probability": 0.6607 }, { "start": 6015.9, "end": 6017.28, "probability": 0.9939 }, { "start": 6018.12, "end": 6019.52, "probability": 0.9002 }, { "start": 6020.12, "end": 6023.98, "probability": 0.8922 }, { "start": 6024.88, "end": 6025.78, "probability": 0.3465 }, { "start": 6026.14, "end": 6027.05, "probability": 0.123 }, { "start": 6027.48, "end": 6027.48, "probability": 0.4974 }, { "start": 6027.48, "end": 6028.0, "probability": 0.6614 }, { "start": 6028.64, "end": 6029.16, "probability": 0.7112 }, { "start": 6030.76, "end": 6033.22, "probability": 0.9297 }, { "start": 6034.52, "end": 6034.88, "probability": 0.7541 }, { "start": 6036.14, "end": 6037.16, "probability": 0.6687 }, { "start": 6037.9, "end": 6038.78, "probability": 0.9045 }, { "start": 6039.42, "end": 6042.8, "probability": 0.9286 }, { "start": 6043.56, "end": 6045.76, "probability": 0.9342 }, { "start": 6045.84, "end": 6046.32, "probability": 0.8967 }, { "start": 6047.14, "end": 6053.42, "probability": 0.9911 }, { "start": 6053.42, "end": 6054.92, "probability": 0.7896 }, { "start": 6055.8, "end": 6058.3, "probability": 0.9588 }, { "start": 6060.24, "end": 6061.1, "probability": 0.736 }, { "start": 6063.08, "end": 6067.14, "probability": 0.795 }, { "start": 6068.62, "end": 6070.34, "probability": 0.8659 }, { "start": 6071.02, "end": 6071.94, "probability": 0.969 }, { "start": 6072.54, "end": 6073.32, "probability": 0.9346 }, { "start": 6073.84, "end": 6078.3, "probability": 0.781 }, { "start": 6078.84, "end": 6081.12, "probability": 0.9165 }, { "start": 6081.9, "end": 6082.2, "probability": 0.9468 }, { "start": 6083.4, "end": 6086.48, "probability": 0.999 }, { "start": 6087.26, "end": 6089.96, "probability": 0.9383 }, { "start": 6091.06, "end": 6093.84, "probability": 0.931 }, { "start": 6094.6, "end": 6101.48, "probability": 0.9782 }, { "start": 6102.28, "end": 6104.1, "probability": 0.8628 }, { "start": 6104.34, "end": 6105.22, "probability": 0.9896 }, { "start": 6105.88, "end": 6106.26, "probability": 0.7289 }, { "start": 6106.3, "end": 6109.56, "probability": 0.9511 }, { "start": 6110.22, "end": 6112.06, "probability": 0.9463 }, { "start": 6113.04, "end": 6115.58, "probability": 0.9946 }, { "start": 6116.7, "end": 6121.22, "probability": 0.9905 }, { "start": 6123.3, "end": 6123.3, "probability": 0.687 }, { "start": 6124.4, "end": 6128.74, "probability": 0.9994 }, { "start": 6129.2, "end": 6130.06, "probability": 0.8962 }, { "start": 6132.48, "end": 6133.32, "probability": 0.9706 }, { "start": 6133.96, "end": 6139.26, "probability": 0.9707 }, { "start": 6141.0, "end": 6141.62, "probability": 0.5017 }, { "start": 6141.8, "end": 6142.53, "probability": 0.9604 }, { "start": 6142.66, "end": 6144.78, "probability": 0.8481 }, { "start": 6145.76, "end": 6152.62, "probability": 0.9568 }, { "start": 6153.66, "end": 6155.86, "probability": 0.9973 }, { "start": 6158.18, "end": 6161.26, "probability": 0.9971 }, { "start": 6162.18, "end": 6167.36, "probability": 0.9641 }, { "start": 6167.98, "end": 6172.68, "probability": 0.9966 }, { "start": 6172.78, "end": 6174.06, "probability": 0.963 }, { "start": 6174.42, "end": 6177.2, "probability": 0.9254 }, { "start": 6177.96, "end": 6181.58, "probability": 0.7534 }, { "start": 6181.78, "end": 6181.9, "probability": 0.1727 }, { "start": 6182.6, "end": 6183.18, "probability": 0.7705 }, { "start": 6183.88, "end": 6189.0, "probability": 0.8376 }, { "start": 6189.5, "end": 6191.06, "probability": 0.8302 }, { "start": 6191.62, "end": 6196.42, "probability": 0.8906 }, { "start": 6196.5, "end": 6198.2, "probability": 0.9901 }, { "start": 6198.32, "end": 6199.18, "probability": 0.9971 }, { "start": 6199.94, "end": 6202.06, "probability": 0.5395 }, { "start": 6202.98, "end": 6205.74, "probability": 0.8718 }, { "start": 6206.82, "end": 6209.22, "probability": 0.9971 }, { "start": 6209.82, "end": 6210.8, "probability": 0.9214 }, { "start": 6211.6, "end": 6212.88, "probability": 0.9918 }, { "start": 6215.06, "end": 6216.0, "probability": 0.5546 }, { "start": 6216.0, "end": 6220.62, "probability": 0.6877 }, { "start": 6221.1, "end": 6225.66, "probability": 0.9937 }, { "start": 6227.52, "end": 6228.36, "probability": 0.9547 }, { "start": 6228.96, "end": 6232.32, "probability": 0.6515 }, { "start": 6232.94, "end": 6234.3, "probability": 0.9214 }, { "start": 6234.96, "end": 6236.0, "probability": 0.6394 }, { "start": 6236.56, "end": 6242.7, "probability": 0.9927 }, { "start": 6243.36, "end": 6246.34, "probability": 0.9985 }, { "start": 6247.0, "end": 6249.46, "probability": 0.9656 }, { "start": 6250.2, "end": 6250.6, "probability": 0.9874 }, { "start": 6252.1, "end": 6252.4, "probability": 0.5275 }, { "start": 6253.6, "end": 6256.78, "probability": 0.0768 }, { "start": 6257.16, "end": 6260.22, "probability": 0.0232 }, { "start": 6261.88, "end": 6263.42, "probability": 0.1583 }, { "start": 6264.78, "end": 6267.26, "probability": 0.6658 }, { "start": 6268.94, "end": 6269.76, "probability": 0.2786 }, { "start": 6270.76, "end": 6271.72, "probability": 0.6729 }, { "start": 6273.32, "end": 6274.78, "probability": 0.8386 }, { "start": 6296.02, "end": 6297.76, "probability": 0.6814 }, { "start": 6298.14, "end": 6298.72, "probability": 0.8468 }, { "start": 6298.98, "end": 6300.96, "probability": 0.8371 }, { "start": 6302.28, "end": 6307.72, "probability": 0.9614 }, { "start": 6309.38, "end": 6310.42, "probability": 0.8198 }, { "start": 6311.06, "end": 6313.56, "probability": 0.7976 }, { "start": 6314.2, "end": 6316.48, "probability": 0.9961 }, { "start": 6317.32, "end": 6322.86, "probability": 0.8669 }, { "start": 6322.86, "end": 6330.38, "probability": 0.9956 }, { "start": 6330.38, "end": 6336.58, "probability": 0.9959 }, { "start": 6337.18, "end": 6338.28, "probability": 0.8549 }, { "start": 6339.16, "end": 6340.86, "probability": 0.7928 }, { "start": 6341.42, "end": 6344.36, "probability": 0.9897 }, { "start": 6345.26, "end": 6346.5, "probability": 0.8553 }, { "start": 6347.46, "end": 6347.84, "probability": 0.003 }, { "start": 6347.84, "end": 6350.0, "probability": 0.9226 }, { "start": 6350.22, "end": 6356.86, "probability": 0.9592 }, { "start": 6357.0, "end": 6358.86, "probability": 0.7956 }, { "start": 6360.26, "end": 6368.3, "probability": 0.9801 }, { "start": 6369.02, "end": 6372.62, "probability": 0.9917 }, { "start": 6372.62, "end": 6377.46, "probability": 0.9304 }, { "start": 6378.32, "end": 6382.2, "probability": 0.9969 }, { "start": 6383.32, "end": 6384.62, "probability": 0.6846 }, { "start": 6385.58, "end": 6389.38, "probability": 0.7699 }, { "start": 6390.26, "end": 6392.5, "probability": 0.9123 }, { "start": 6393.5, "end": 6401.54, "probability": 0.9526 }, { "start": 6402.74, "end": 6403.58, "probability": 0.4784 }, { "start": 6404.1, "end": 6406.92, "probability": 0.7686 }, { "start": 6407.62, "end": 6411.54, "probability": 0.7434 }, { "start": 6412.24, "end": 6413.74, "probability": 0.936 }, { "start": 6414.88, "end": 6418.9, "probability": 0.9937 }, { "start": 6419.64, "end": 6421.28, "probability": 0.8355 }, { "start": 6422.4, "end": 6426.08, "probability": 0.9937 }, { "start": 6426.2, "end": 6428.9, "probability": 0.943 }, { "start": 6430.34, "end": 6433.0, "probability": 0.9159 }, { "start": 6433.94, "end": 6437.74, "probability": 0.9366 }, { "start": 6438.88, "end": 6442.54, "probability": 0.9727 }, { "start": 6443.0, "end": 6444.74, "probability": 0.9727 }, { "start": 6445.06, "end": 6446.88, "probability": 0.8176 }, { "start": 6446.98, "end": 6447.76, "probability": 0.4087 }, { "start": 6447.86, "end": 6449.0, "probability": 0.9103 }, { "start": 6449.9, "end": 6451.1, "probability": 0.6025 }, { "start": 6451.46, "end": 6453.56, "probability": 0.9622 }, { "start": 6454.4, "end": 6455.4, "probability": 0.3927 }, { "start": 6456.84, "end": 6456.84, "probability": 0.4388 }, { "start": 6456.9, "end": 6457.7, "probability": 0.9707 }, { "start": 6458.18, "end": 6459.22, "probability": 0.8324 }, { "start": 6459.34, "end": 6462.38, "probability": 0.9611 }, { "start": 6462.38, "end": 6466.86, "probability": 0.9679 }, { "start": 6467.38, "end": 6469.48, "probability": 0.9961 }, { "start": 6469.88, "end": 6472.12, "probability": 0.9684 }, { "start": 6472.66, "end": 6477.08, "probability": 0.9973 }, { "start": 6477.76, "end": 6480.0, "probability": 0.996 }, { "start": 6480.16, "end": 6482.27, "probability": 0.9966 }, { "start": 6482.28, "end": 6485.34, "probability": 0.918 }, { "start": 6485.46, "end": 6486.97, "probability": 0.9979 }, { "start": 6487.62, "end": 6489.72, "probability": 0.5256 }, { "start": 6490.4, "end": 6492.2, "probability": 0.9908 }, { "start": 6492.42, "end": 6493.5, "probability": 0.8187 }, { "start": 6493.56, "end": 6495.24, "probability": 0.8249 }, { "start": 6495.28, "end": 6497.42, "probability": 0.9702 }, { "start": 6498.54, "end": 6500.18, "probability": 0.9941 }, { "start": 6500.44, "end": 6503.28, "probability": 0.9197 }, { "start": 6504.3, "end": 6509.98, "probability": 0.9775 }, { "start": 6510.44, "end": 6512.16, "probability": 0.9543 }, { "start": 6512.5, "end": 6520.84, "probability": 0.8954 }, { "start": 6521.38, "end": 6522.14, "probability": 0.5439 }, { "start": 6522.76, "end": 6525.7, "probability": 0.9102 }, { "start": 6526.22, "end": 6529.68, "probability": 0.9927 }, { "start": 6529.86, "end": 6534.6, "probability": 0.9519 }, { "start": 6535.34, "end": 6537.7, "probability": 0.9617 }, { "start": 6539.0, "end": 6540.56, "probability": 0.8982 }, { "start": 6540.74, "end": 6541.44, "probability": 0.782 }, { "start": 6541.52, "end": 6542.42, "probability": 0.614 }, { "start": 6542.86, "end": 6543.64, "probability": 0.8293 }, { "start": 6543.84, "end": 6545.26, "probability": 0.9487 }, { "start": 6547.2, "end": 6549.04, "probability": 0.8466 }, { "start": 6549.88, "end": 6552.92, "probability": 0.9961 }, { "start": 6553.44, "end": 6558.18, "probability": 0.967 }, { "start": 6558.7, "end": 6559.82, "probability": 0.98 }, { "start": 6561.12, "end": 6561.98, "probability": 0.8894 }, { "start": 6562.12, "end": 6562.84, "probability": 0.8231 }, { "start": 6563.3, "end": 6567.84, "probability": 0.8672 }, { "start": 6567.96, "end": 6570.78, "probability": 0.9568 }, { "start": 6570.88, "end": 6574.78, "probability": 0.958 }, { "start": 6574.88, "end": 6576.14, "probability": 0.8816 }, { "start": 6578.04, "end": 6579.1, "probability": 0.9917 }, { "start": 6580.16, "end": 6582.76, "probability": 0.9846 }, { "start": 6582.82, "end": 6585.9, "probability": 0.9198 }, { "start": 6586.84, "end": 6591.96, "probability": 0.9871 }, { "start": 6593.04, "end": 6596.12, "probability": 0.9541 }, { "start": 6596.86, "end": 6599.65, "probability": 0.8975 }, { "start": 6600.66, "end": 6603.68, "probability": 0.9813 }, { "start": 6604.22, "end": 6606.02, "probability": 0.9521 }, { "start": 6606.94, "end": 6609.7, "probability": 0.6934 }, { "start": 6610.52, "end": 6614.14, "probability": 0.7231 }, { "start": 6614.62, "end": 6615.44, "probability": 0.8788 }, { "start": 6615.58, "end": 6619.32, "probability": 0.9901 }, { "start": 6619.82, "end": 6621.53, "probability": 0.9869 }, { "start": 6623.08, "end": 6623.79, "probability": 0.5349 }, { "start": 6624.68, "end": 6626.76, "probability": 0.8389 }, { "start": 6627.98, "end": 6629.61, "probability": 0.8843 }, { "start": 6630.26, "end": 6631.62, "probability": 0.7611 }, { "start": 6632.12, "end": 6633.14, "probability": 0.9912 }, { "start": 6633.82, "end": 6636.21, "probability": 0.934 }, { "start": 6637.86, "end": 6643.16, "probability": 0.8687 }, { "start": 6643.22, "end": 6645.66, "probability": 0.9941 }, { "start": 6645.72, "end": 6646.72, "probability": 0.7366 }, { "start": 6646.84, "end": 6647.66, "probability": 0.6641 }, { "start": 6647.72, "end": 6648.42, "probability": 0.8282 }, { "start": 6650.36, "end": 6651.92, "probability": 0.9956 }, { "start": 6652.44, "end": 6656.48, "probability": 0.9441 }, { "start": 6656.62, "end": 6658.2, "probability": 0.7121 }, { "start": 6658.72, "end": 6661.5, "probability": 0.9339 }, { "start": 6662.3, "end": 6664.24, "probability": 0.959 }, { "start": 6664.98, "end": 6665.74, "probability": 0.455 }, { "start": 6666.28, "end": 6669.46, "probability": 0.9956 }, { "start": 6669.56, "end": 6671.46, "probability": 0.7991 }, { "start": 6672.74, "end": 6673.64, "probability": 0.7304 }, { "start": 6674.08, "end": 6675.0, "probability": 0.8439 }, { "start": 6675.26, "end": 6676.1, "probability": 0.6016 }, { "start": 6676.52, "end": 6677.44, "probability": 0.8948 }, { "start": 6678.66, "end": 6683.24, "probability": 0.6643 }, { "start": 6684.52, "end": 6685.22, "probability": 0.7688 }, { "start": 6686.06, "end": 6686.74, "probability": 0.936 }, { "start": 6688.02, "end": 6689.83, "probability": 0.8926 }, { "start": 6690.4, "end": 6691.53, "probability": 0.9714 }, { "start": 6692.1, "end": 6692.96, "probability": 0.786 }, { "start": 6693.66, "end": 6694.48, "probability": 0.5137 }, { "start": 6694.54, "end": 6695.18, "probability": 0.8574 }, { "start": 6695.26, "end": 6698.1, "probability": 0.9546 }, { "start": 6698.12, "end": 6700.44, "probability": 0.608 }, { "start": 6701.5, "end": 6702.98, "probability": 0.5321 }, { "start": 6704.06, "end": 6705.84, "probability": 0.6291 }, { "start": 6706.74, "end": 6710.32, "probability": 0.9958 }, { "start": 6710.6, "end": 6713.21, "probability": 0.9915 }, { "start": 6717.42, "end": 6717.52, "probability": 0.0358 }, { "start": 6717.52, "end": 6718.36, "probability": 0.3598 }, { "start": 6718.48, "end": 6720.16, "probability": 0.7957 }, { "start": 6720.3, "end": 6721.86, "probability": 0.9692 }, { "start": 6721.94, "end": 6724.76, "probability": 0.9902 }, { "start": 6724.9, "end": 6728.52, "probability": 0.9684 }, { "start": 6729.5, "end": 6731.28, "probability": 0.994 }, { "start": 6732.02, "end": 6734.08, "probability": 0.9922 }, { "start": 6734.52, "end": 6736.42, "probability": 0.9864 }, { "start": 6736.86, "end": 6740.26, "probability": 0.9919 }, { "start": 6740.92, "end": 6746.01, "probability": 0.9813 }, { "start": 6746.24, "end": 6747.0, "probability": 0.4504 }, { "start": 6747.56, "end": 6752.64, "probability": 0.9964 }, { "start": 6752.64, "end": 6755.62, "probability": 0.9951 }, { "start": 6756.14, "end": 6757.12, "probability": 0.7159 }, { "start": 6757.48, "end": 6760.46, "probability": 0.9795 }, { "start": 6760.46, "end": 6764.58, "probability": 0.998 }, { "start": 6765.42, "end": 6769.12, "probability": 0.9938 }, { "start": 6769.12, "end": 6773.62, "probability": 0.9944 }, { "start": 6774.14, "end": 6777.66, "probability": 0.9307 }, { "start": 6778.2, "end": 6782.3, "probability": 0.988 }, { "start": 6782.72, "end": 6786.2, "probability": 0.9971 }, { "start": 6786.82, "end": 6790.7, "probability": 0.9862 }, { "start": 6791.4, "end": 6792.12, "probability": 0.5142 }, { "start": 6792.16, "end": 6793.18, "probability": 0.7964 }, { "start": 6793.3, "end": 6795.08, "probability": 0.8176 }, { "start": 6795.12, "end": 6796.02, "probability": 0.7355 }, { "start": 6796.7, "end": 6797.58, "probability": 0.9503 }, { "start": 6797.8, "end": 6798.32, "probability": 0.7214 }, { "start": 6798.4, "end": 6798.86, "probability": 0.9338 }, { "start": 6799.12, "end": 6801.88, "probability": 0.6244 }, { "start": 6802.3, "end": 6808.24, "probability": 0.9585 }, { "start": 6808.38, "end": 6812.3, "probability": 0.9529 }, { "start": 6812.46, "end": 6816.5, "probability": 0.9971 }, { "start": 6817.36, "end": 6819.12, "probability": 0.6298 }, { "start": 6819.76, "end": 6820.46, "probability": 0.5323 }, { "start": 6821.24, "end": 6822.84, "probability": 0.9653 }, { "start": 6823.28, "end": 6828.84, "probability": 0.9951 }, { "start": 6829.08, "end": 6831.18, "probability": 0.9891 }, { "start": 6831.88, "end": 6833.36, "probability": 0.9355 }, { "start": 6833.6, "end": 6833.78, "probability": 0.8049 }, { "start": 6834.12, "end": 6834.68, "probability": 0.6415 }, { "start": 6834.76, "end": 6836.06, "probability": 0.8182 }, { "start": 6836.9, "end": 6837.57, "probability": 0.9258 }, { "start": 6838.5, "end": 6839.76, "probability": 0.958 }, { "start": 6840.14, "end": 6843.02, "probability": 0.9976 }, { "start": 6843.02, "end": 6848.08, "probability": 0.9812 }, { "start": 6849.0, "end": 6853.18, "probability": 0.9891 }, { "start": 6853.36, "end": 6855.56, "probability": 0.8443 }, { "start": 6856.02, "end": 6857.38, "probability": 0.9795 }, { "start": 6857.72, "end": 6858.84, "probability": 0.9551 }, { "start": 6858.92, "end": 6860.94, "probability": 0.9897 }, { "start": 6861.02, "end": 6862.48, "probability": 0.958 }, { "start": 6863.34, "end": 6867.04, "probability": 0.8897 }, { "start": 6867.58, "end": 6870.25, "probability": 0.9148 }, { "start": 6870.44, "end": 6871.08, "probability": 0.7762 }, { "start": 6871.74, "end": 6875.58, "probability": 0.9651 }, { "start": 6875.74, "end": 6877.0, "probability": 0.926 }, { "start": 6877.58, "end": 6880.92, "probability": 0.8629 }, { "start": 6882.92, "end": 6883.94, "probability": 0.5151 }, { "start": 6883.94, "end": 6886.62, "probability": 0.2141 }, { "start": 6886.72, "end": 6887.56, "probability": 0.5904 }, { "start": 6888.38, "end": 6890.12, "probability": 0.7505 }, { "start": 6890.46, "end": 6893.9, "probability": 0.9978 }, { "start": 6894.38, "end": 6895.92, "probability": 0.8755 }, { "start": 6896.3, "end": 6897.54, "probability": 0.7639 }, { "start": 6897.74, "end": 6898.86, "probability": 0.7359 }, { "start": 6899.16, "end": 6901.24, "probability": 0.9077 }, { "start": 6901.54, "end": 6902.95, "probability": 0.8926 }, { "start": 6903.4, "end": 6907.74, "probability": 0.9661 }, { "start": 6907.98, "end": 6911.78, "probability": 0.9968 }, { "start": 6911.92, "end": 6914.86, "probability": 0.6821 }, { "start": 6915.8, "end": 6915.8, "probability": 0.0631 }, { "start": 6915.8, "end": 6916.3, "probability": 0.6229 }, { "start": 6917.3, "end": 6917.94, "probability": 0.628 }, { "start": 6919.44, "end": 6920.94, "probability": 0.4997 }, { "start": 6921.34, "end": 6923.9, "probability": 0.9477 }, { "start": 6924.54, "end": 6927.68, "probability": 0.9326 }, { "start": 6928.88, "end": 6929.92, "probability": 0.987 }, { "start": 6930.74, "end": 6931.66, "probability": 0.7275 }, { "start": 6932.74, "end": 6935.38, "probability": 0.9963 }, { "start": 6935.38, "end": 6937.78, "probability": 0.9974 }, { "start": 6939.08, "end": 6942.48, "probability": 0.9968 }, { "start": 6942.52, "end": 6947.08, "probability": 0.9985 }, { "start": 6947.8, "end": 6952.98, "probability": 0.9615 }, { "start": 6952.98, "end": 6953.86, "probability": 0.2436 }, { "start": 6954.4, "end": 6956.24, "probability": 0.7905 }, { "start": 6956.9, "end": 6959.98, "probability": 0.9768 }, { "start": 6961.32, "end": 6961.88, "probability": 0.8255 }, { "start": 6963.18, "end": 6963.24, "probability": 0.1318 }, { "start": 6964.42, "end": 6965.84, "probability": 0.1716 }, { "start": 6965.84, "end": 6966.64, "probability": 0.027 }, { "start": 6966.64, "end": 6967.4, "probability": 0.1837 }, { "start": 6967.5, "end": 6970.02, "probability": 0.418 }, { "start": 6970.2, "end": 6971.18, "probability": 0.8869 }, { "start": 6971.18, "end": 6972.38, "probability": 0.8691 }, { "start": 6972.42, "end": 6975.84, "probability": 0.9527 }, { "start": 6976.12, "end": 6976.36, "probability": 0.2244 }, { "start": 6977.14, "end": 6977.98, "probability": 0.3947 }, { "start": 6977.98, "end": 6977.98, "probability": 0.0384 }, { "start": 6977.98, "end": 6979.97, "probability": 0.4991 }, { "start": 6980.42, "end": 6980.44, "probability": 0.2922 }, { "start": 6980.44, "end": 6982.32, "probability": 0.3706 }, { "start": 6984.56, "end": 6985.48, "probability": 0.097 }, { "start": 6985.84, "end": 6986.42, "probability": 0.3403 }, { "start": 6986.48, "end": 6987.96, "probability": 0.1219 }, { "start": 6988.58, "end": 6988.58, "probability": 0.3293 }, { "start": 6988.58, "end": 6995.32, "probability": 0.2237 }, { "start": 6996.14, "end": 6996.94, "probability": 0.5505 }, { "start": 6997.3, "end": 6997.42, "probability": 0.0394 }, { "start": 6997.42, "end": 6997.42, "probability": 0.4055 }, { "start": 6997.42, "end": 6998.04, "probability": 0.6707 }, { "start": 6999.26, "end": 7000.2, "probability": 0.5795 }, { "start": 7000.6, "end": 7002.08, "probability": 0.0681 }, { "start": 7003.1, "end": 7005.08, "probability": 0.4846 }, { "start": 7005.08, "end": 7006.2, "probability": 0.511 }, { "start": 7008.68, "end": 7010.66, "probability": 0.8028 }, { "start": 7010.92, "end": 7014.62, "probability": 0.8636 }, { "start": 7015.96, "end": 7016.5, "probability": 0.9681 }, { "start": 7017.92, "end": 7019.92, "probability": 0.6198 }, { "start": 7021.96, "end": 7021.96, "probability": 0.3041 }, { "start": 7021.96, "end": 7021.96, "probability": 0.0482 }, { "start": 7022.0, "end": 7023.16, "probability": 0.4843 }, { "start": 7023.84, "end": 7023.84, "probability": 0.2302 }, { "start": 7024.3, "end": 7027.2, "probability": 0.6414 }, { "start": 7029.2, "end": 7030.28, "probability": 0.9526 }, { "start": 7032.55, "end": 7033.34, "probability": 0.3372 }, { "start": 7033.34, "end": 7035.84, "probability": 0.9861 }, { "start": 7037.3, "end": 7038.96, "probability": 0.9411 }, { "start": 7039.18, "end": 7040.64, "probability": 0.9988 }, { "start": 7041.04, "end": 7042.28, "probability": 0.7779 }, { "start": 7043.92, "end": 7046.84, "probability": 0.9749 }, { "start": 7048.72, "end": 7052.14, "probability": 0.9976 }, { "start": 7052.96, "end": 7055.58, "probability": 0.9933 }, { "start": 7055.62, "end": 7056.5, "probability": 0.9906 }, { "start": 7061.14, "end": 7061.8, "probability": 0.6803 }, { "start": 7062.02, "end": 7062.58, "probability": 0.3577 }, { "start": 7062.62, "end": 7062.84, "probability": 0.8534 }, { "start": 7062.86, "end": 7064.3, "probability": 0.6001 }, { "start": 7067.52, "end": 7068.18, "probability": 0.9579 }, { "start": 7068.26, "end": 7069.44, "probability": 0.9358 }, { "start": 7069.56, "end": 7070.56, "probability": 0.1771 }, { "start": 7070.7, "end": 7074.4, "probability": 0.9281 }, { "start": 7076.06, "end": 7076.12, "probability": 0.9412 }, { "start": 7076.22, "end": 7079.47, "probability": 0.9976 }, { "start": 7080.62, "end": 7081.78, "probability": 0.5685 }, { "start": 7082.16, "end": 7084.6, "probability": 0.9631 }, { "start": 7084.82, "end": 7086.72, "probability": 0.8105 }, { "start": 7088.98, "end": 7089.78, "probability": 0.7875 }, { "start": 7092.46, "end": 7095.58, "probability": 0.9945 }, { "start": 7095.58, "end": 7099.58, "probability": 0.9922 }, { "start": 7102.2, "end": 7106.36, "probability": 0.998 }, { "start": 7106.56, "end": 7107.84, "probability": 0.7864 }, { "start": 7107.96, "end": 7111.94, "probability": 0.9927 }, { "start": 7111.94, "end": 7114.26, "probability": 0.9978 }, { "start": 7114.82, "end": 7116.52, "probability": 0.9792 }, { "start": 7116.58, "end": 7117.42, "probability": 0.978 }, { "start": 7118.2, "end": 7118.72, "probability": 0.9274 }, { "start": 7119.86, "end": 7126.14, "probability": 0.9639 }, { "start": 7126.28, "end": 7126.42, "probability": 0.4497 }, { "start": 7126.48, "end": 7126.86, "probability": 0.813 }, { "start": 7126.92, "end": 7127.58, "probability": 0.8693 }, { "start": 7128.56, "end": 7131.32, "probability": 0.9725 }, { "start": 7131.9, "end": 7132.32, "probability": 0.5428 }, { "start": 7132.36, "end": 7133.25, "probability": 0.5017 }, { "start": 7133.58, "end": 7135.92, "probability": 0.8353 }, { "start": 7136.56, "end": 7138.76, "probability": 0.9775 }, { "start": 7138.78, "end": 7140.04, "probability": 0.6716 }, { "start": 7140.12, "end": 7141.52, "probability": 0.8999 }, { "start": 7142.32, "end": 7145.16, "probability": 0.9131 }, { "start": 7145.16, "end": 7145.16, "probability": 0.2063 }, { "start": 7145.16, "end": 7145.16, "probability": 0.3954 }, { "start": 7145.34, "end": 7148.68, "probability": 0.8175 }, { "start": 7148.98, "end": 7149.94, "probability": 0.6738 }, { "start": 7149.98, "end": 7152.24, "probability": 0.9712 }, { "start": 7152.38, "end": 7154.62, "probability": 0.9971 }, { "start": 7155.14, "end": 7155.58, "probability": 0.4146 }, { "start": 7155.66, "end": 7157.18, "probability": 0.9919 }, { "start": 7157.58, "end": 7158.76, "probability": 0.59 }, { "start": 7158.96, "end": 7159.72, "probability": 0.9622 }, { "start": 7159.92, "end": 7160.28, "probability": 0.1924 }, { "start": 7160.36, "end": 7165.24, "probability": 0.9156 }, { "start": 7166.2, "end": 7166.2, "probability": 0.322 }, { "start": 7166.2, "end": 7168.28, "probability": 0.6114 }, { "start": 7169.08, "end": 7169.74, "probability": 0.3907 }, { "start": 7169.82, "end": 7171.63, "probability": 0.9607 }, { "start": 7172.08, "end": 7174.78, "probability": 0.9841 }, { "start": 7175.62, "end": 7175.76, "probability": 0.4925 }, { "start": 7175.82, "end": 7176.62, "probability": 0.9478 }, { "start": 7176.92, "end": 7177.62, "probability": 0.7087 }, { "start": 7178.22, "end": 7178.68, "probability": 0.349 }, { "start": 7178.72, "end": 7181.16, "probability": 0.6795 }, { "start": 7181.22, "end": 7182.16, "probability": 0.981 }, { "start": 7182.7, "end": 7183.55, "probability": 0.9712 }, { "start": 7184.74, "end": 7185.56, "probability": 0.9613 }, { "start": 7186.72, "end": 7188.5, "probability": 0.9766 }, { "start": 7188.74, "end": 7190.48, "probability": 0.988 }, { "start": 7190.64, "end": 7192.9, "probability": 0.8571 }, { "start": 7192.98, "end": 7193.87, "probability": 0.9941 }, { "start": 7195.0, "end": 7197.72, "probability": 0.6929 }, { "start": 7197.78, "end": 7200.42, "probability": 0.689 }, { "start": 7200.96, "end": 7203.32, "probability": 0.9154 }, { "start": 7203.42, "end": 7203.56, "probability": 0.47 }, { "start": 7203.66, "end": 7205.28, "probability": 0.9866 }, { "start": 7205.4, "end": 7206.6, "probability": 0.9197 }, { "start": 7207.4, "end": 7207.66, "probability": 0.3167 }, { "start": 7208.3, "end": 7209.72, "probability": 0.7724 }, { "start": 7212.46, "end": 7213.06, "probability": 0.68 }, { "start": 7213.16, "end": 7215.73, "probability": 0.9927 }, { "start": 7217.66, "end": 7219.76, "probability": 0.9316 }, { "start": 7221.56, "end": 7222.72, "probability": 0.8573 }, { "start": 7223.08, "end": 7224.4, "probability": 0.8891 }, { "start": 7224.62, "end": 7225.64, "probability": 0.9407 }, { "start": 7226.98, "end": 7230.84, "probability": 0.9659 }, { "start": 7230.94, "end": 7232.22, "probability": 0.999 }, { "start": 7234.0, "end": 7235.98, "probability": 0.8871 }, { "start": 7237.58, "end": 7243.52, "probability": 0.8912 }, { "start": 7248.18, "end": 7251.04, "probability": 0.7606 }, { "start": 7251.2, "end": 7252.38, "probability": 0.797 }, { "start": 7252.84, "end": 7256.26, "probability": 0.979 }, { "start": 7256.32, "end": 7257.38, "probability": 0.9641 }, { "start": 7257.44, "end": 7258.7, "probability": 0.9604 }, { "start": 7259.0, "end": 7259.62, "probability": 0.8481 }, { "start": 7263.3, "end": 7264.38, "probability": 0.6638 }, { "start": 7264.52, "end": 7267.32, "probability": 0.9941 }, { "start": 7267.44, "end": 7268.44, "probability": 0.8998 }, { "start": 7268.5, "end": 7269.06, "probability": 0.9664 }, { "start": 7269.12, "end": 7269.48, "probability": 0.7661 }, { "start": 7269.66, "end": 7270.44, "probability": 0.94 }, { "start": 7271.18, "end": 7273.6, "probability": 0.9935 }, { "start": 7277.3, "end": 7278.82, "probability": 0.9775 }, { "start": 7278.88, "end": 7280.88, "probability": 0.8212 }, { "start": 7283.06, "end": 7286.32, "probability": 0.9641 }, { "start": 7286.44, "end": 7287.56, "probability": 0.8394 }, { "start": 7288.4, "end": 7290.84, "probability": 0.9546 }, { "start": 7291.48, "end": 7293.78, "probability": 0.7759 }, { "start": 7293.9, "end": 7295.12, "probability": 0.9528 }, { "start": 7295.22, "end": 7297.78, "probability": 0.9885 }, { "start": 7297.86, "end": 7300.54, "probability": 0.9939 }, { "start": 7303.8, "end": 7304.78, "probability": 0.7756 }, { "start": 7309.0, "end": 7311.14, "probability": 0.8741 }, { "start": 7312.16, "end": 7315.12, "probability": 0.7928 }, { "start": 7315.2, "end": 7317.46, "probability": 0.8921 }, { "start": 7319.46, "end": 7321.14, "probability": 0.7456 }, { "start": 7321.8, "end": 7322.86, "probability": 0.9837 }, { "start": 7322.92, "end": 7323.82, "probability": 0.8794 }, { "start": 7324.12, "end": 7325.48, "probability": 0.8379 }, { "start": 7325.86, "end": 7327.06, "probability": 0.9626 }, { "start": 7327.7, "end": 7332.18, "probability": 0.9891 }, { "start": 7338.16, "end": 7339.3, "probability": 0.5597 }, { "start": 7339.44, "end": 7341.4, "probability": 0.768 }, { "start": 7341.54, "end": 7344.38, "probability": 0.9917 }, { "start": 7347.92, "end": 7348.46, "probability": 0.9346 }, { "start": 7348.52, "end": 7351.0, "probability": 0.9386 }, { "start": 7351.16, "end": 7351.8, "probability": 0.8817 }, { "start": 7353.02, "end": 7354.22, "probability": 0.5816 }, { "start": 7357.28, "end": 7358.16, "probability": 0.3891 }, { "start": 7358.86, "end": 7360.64, "probability": 0.9985 }, { "start": 7360.72, "end": 7365.88, "probability": 0.987 }, { "start": 7366.42, "end": 7370.14, "probability": 0.9505 }, { "start": 7371.16, "end": 7372.58, "probability": 0.7122 }, { "start": 7373.16, "end": 7374.76, "probability": 0.7894 }, { "start": 7376.2, "end": 7379.7, "probability": 0.9965 }, { "start": 7380.16, "end": 7384.08, "probability": 0.9575 }, { "start": 7385.06, "end": 7387.98, "probability": 0.8348 }, { "start": 7390.16, "end": 7394.8, "probability": 0.7192 }, { "start": 7395.34, "end": 7398.15, "probability": 0.8898 }, { "start": 7399.6, "end": 7401.68, "probability": 0.7915 }, { "start": 7401.72, "end": 7403.08, "probability": 0.9816 }, { "start": 7403.16, "end": 7404.06, "probability": 0.907 }, { "start": 7405.4, "end": 7406.84, "probability": 0.8941 }, { "start": 7406.98, "end": 7407.24, "probability": 0.4394 }, { "start": 7407.3, "end": 7408.44, "probability": 0.9389 }, { "start": 7408.58, "end": 7409.86, "probability": 0.9042 }, { "start": 7409.86, "end": 7411.82, "probability": 0.9795 }, { "start": 7413.1, "end": 7415.66, "probability": 0.9597 }, { "start": 7420.6, "end": 7423.66, "probability": 0.9747 }, { "start": 7424.0, "end": 7425.52, "probability": 0.9391 }, { "start": 7425.76, "end": 7428.8, "probability": 0.9714 }, { "start": 7429.2, "end": 7434.72, "probability": 0.9973 }, { "start": 7434.96, "end": 7435.58, "probability": 0.9713 }, { "start": 7435.86, "end": 7437.64, "probability": 0.9775 }, { "start": 7438.4, "end": 7442.6, "probability": 0.9602 }, { "start": 7442.64, "end": 7443.2, "probability": 0.6149 }, { "start": 7445.4, "end": 7446.46, "probability": 0.9246 }, { "start": 7446.52, "end": 7447.26, "probability": 0.868 }, { "start": 7447.5, "end": 7449.2, "probability": 0.7086 }, { "start": 7462.08, "end": 7465.24, "probability": 0.9777 }, { "start": 7465.38, "end": 7468.98, "probability": 0.6962 }, { "start": 7469.98, "end": 7472.32, "probability": 0.0769 }, { "start": 7472.78, "end": 7474.3, "probability": 0.5914 }, { "start": 7481.42, "end": 7481.42, "probability": 0.0401 }, { "start": 7481.42, "end": 7481.42, "probability": 0.1684 }, { "start": 7481.42, "end": 7481.42, "probability": 0.1131 }, { "start": 7481.42, "end": 7481.42, "probability": 0.1693 }, { "start": 7481.42, "end": 7481.42, "probability": 0.0274 }, { "start": 7481.42, "end": 7481.44, "probability": 0.129 }, { "start": 7481.44, "end": 7481.46, "probability": 0.0371 }, { "start": 7503.9, "end": 7504.86, "probability": 0.4658 }, { "start": 7506.34, "end": 7508.1, "probability": 0.4723 }, { "start": 7509.18, "end": 7509.96, "probability": 0.9594 }, { "start": 7510.5, "end": 7511.44, "probability": 0.7255 }, { "start": 7512.46, "end": 7514.38, "probability": 0.8453 }, { "start": 7515.34, "end": 7516.2, "probability": 0.973 }, { "start": 7520.84, "end": 7524.48, "probability": 0.9566 }, { "start": 7527.58, "end": 7528.24, "probability": 0.5501 }, { "start": 7528.34, "end": 7531.9, "probability": 0.9185 }, { "start": 7531.98, "end": 7532.86, "probability": 0.8363 }, { "start": 7533.12, "end": 7533.96, "probability": 0.9013 }, { "start": 7534.4, "end": 7536.88, "probability": 0.8765 }, { "start": 7539.6, "end": 7542.16, "probability": 0.9832 }, { "start": 7543.62, "end": 7548.28, "probability": 0.4981 }, { "start": 7548.98, "end": 7549.82, "probability": 0.799 }, { "start": 7551.4, "end": 7552.04, "probability": 0.7535 }, { "start": 7553.36, "end": 7555.43, "probability": 0.427 }, { "start": 7558.8, "end": 7562.22, "probability": 0.9367 }, { "start": 7563.26, "end": 7564.34, "probability": 0.7324 }, { "start": 7567.0, "end": 7571.46, "probability": 0.9629 }, { "start": 7574.24, "end": 7574.66, "probability": 0.9142 }, { "start": 7575.64, "end": 7577.78, "probability": 0.8032 }, { "start": 7578.62, "end": 7581.53, "probability": 0.9167 }, { "start": 7582.24, "end": 7583.14, "probability": 0.7874 }, { "start": 7583.58, "end": 7588.16, "probability": 0.9836 }, { "start": 7589.22, "end": 7589.94, "probability": 0.8306 }, { "start": 7589.98, "end": 7591.92, "probability": 0.9885 }, { "start": 7592.66, "end": 7593.98, "probability": 0.7338 }, { "start": 7595.32, "end": 7595.78, "probability": 0.9338 }, { "start": 7596.68, "end": 7597.76, "probability": 0.7129 }, { "start": 7597.84, "end": 7601.62, "probability": 0.9361 }, { "start": 7603.06, "end": 7604.22, "probability": 0.7407 }, { "start": 7604.92, "end": 7607.4, "probability": 0.6668 }, { "start": 7608.34, "end": 7608.82, "probability": 0.4769 }, { "start": 7610.0, "end": 7611.68, "probability": 0.5215 }, { "start": 7612.58, "end": 7614.74, "probability": 0.69 }, { "start": 7615.98, "end": 7616.36, "probability": 0.8902 }, { "start": 7617.28, "end": 7617.76, "probability": 0.8093 }, { "start": 7618.26, "end": 7618.62, "probability": 0.5036 }, { "start": 7618.72, "end": 7620.8, "probability": 0.8341 }, { "start": 7620.88, "end": 7622.68, "probability": 0.136 }, { "start": 7622.7, "end": 7623.24, "probability": 0.5278 }, { "start": 7623.3, "end": 7623.8, "probability": 0.6348 }, { "start": 7624.2, "end": 7624.5, "probability": 0.6602 }, { "start": 7625.32, "end": 7626.38, "probability": 0.0092 }, { "start": 7627.7, "end": 7628.32, "probability": 0.7939 }, { "start": 7629.5, "end": 7631.08, "probability": 0.9615 }, { "start": 7631.52, "end": 7632.55, "probability": 0.9766 }, { "start": 7634.16, "end": 7635.95, "probability": 0.9854 }, { "start": 7637.84, "end": 7639.38, "probability": 0.9966 }, { "start": 7639.96, "end": 7641.1, "probability": 0.991 }, { "start": 7642.54, "end": 7643.59, "probability": 0.5861 }, { "start": 7644.58, "end": 7651.26, "probability": 0.9604 }, { "start": 7652.18, "end": 7653.04, "probability": 0.9535 }, { "start": 7655.76, "end": 7657.38, "probability": 0.9472 }, { "start": 7657.46, "end": 7658.0, "probability": 0.8499 }, { "start": 7658.16, "end": 7662.48, "probability": 0.998 }, { "start": 7663.42, "end": 7664.66, "probability": 0.9771 }, { "start": 7670.82, "end": 7671.84, "probability": 0.6746 }, { "start": 7672.76, "end": 7673.54, "probability": 0.8722 }, { "start": 7674.16, "end": 7675.68, "probability": 0.9934 }, { "start": 7676.46, "end": 7677.44, "probability": 0.9056 }, { "start": 7681.94, "end": 7682.74, "probability": 0.9116 }, { "start": 7683.78, "end": 7685.14, "probability": 0.9406 }, { "start": 7686.36, "end": 7687.74, "probability": 0.6334 }, { "start": 7689.98, "end": 7690.08, "probability": 0.8367 }, { "start": 7691.88, "end": 7693.74, "probability": 0.8553 }, { "start": 7694.32, "end": 7694.82, "probability": 0.6055 }, { "start": 7700.7, "end": 7701.96, "probability": 0.8191 }, { "start": 7702.68, "end": 7703.3, "probability": 0.9647 }, { "start": 7706.6, "end": 7710.02, "probability": 0.9629 }, { "start": 7710.86, "end": 7711.72, "probability": 0.7529 }, { "start": 7716.3, "end": 7718.28, "probability": 0.7948 }, { "start": 7718.44, "end": 7722.12, "probability": 0.8217 }, { "start": 7723.1, "end": 7725.1, "probability": 0.8442 }, { "start": 7726.34, "end": 7729.68, "probability": 0.677 }, { "start": 7729.84, "end": 7731.0, "probability": 0.6952 }, { "start": 7731.08, "end": 7732.22, "probability": 0.7083 }, { "start": 7732.86, "end": 7735.18, "probability": 0.7338 }, { "start": 7737.4, "end": 7739.16, "probability": 0.8564 }, { "start": 7739.78, "end": 7742.0, "probability": 0.8201 }, { "start": 7743.06, "end": 7743.06, "probability": 0.1398 }, { "start": 7743.06, "end": 7743.62, "probability": 0.5194 }, { "start": 7746.44, "end": 7747.68, "probability": 0.6449 }, { "start": 7749.08, "end": 7751.43, "probability": 0.9075 }, { "start": 7755.8, "end": 7758.58, "probability": 0.8487 }, { "start": 7758.6, "end": 7760.8, "probability": 0.8776 }, { "start": 7761.02, "end": 7761.3, "probability": 0.8135 }, { "start": 7761.3, "end": 7762.02, "probability": 0.819 }, { "start": 7762.14, "end": 7763.0, "probability": 0.6844 }, { "start": 7763.44, "end": 7767.36, "probability": 0.9615 }, { "start": 7768.64, "end": 7769.4, "probability": 0.8621 }, { "start": 7771.08, "end": 7771.76, "probability": 0.6796 }, { "start": 7772.82, "end": 7775.7, "probability": 0.9888 }, { "start": 7777.56, "end": 7780.42, "probability": 0.9272 }, { "start": 7780.56, "end": 7784.88, "probability": 0.9255 }, { "start": 7785.88, "end": 7788.16, "probability": 0.9202 }, { "start": 7789.22, "end": 7790.36, "probability": 0.9701 }, { "start": 7790.4, "end": 7792.82, "probability": 0.606 }, { "start": 7796.1, "end": 7797.66, "probability": 0.8872 }, { "start": 7798.46, "end": 7799.96, "probability": 0.7598 }, { "start": 7800.94, "end": 7801.72, "probability": 0.4886 }, { "start": 7802.74, "end": 7803.2, "probability": 0.7409 }, { "start": 7803.38, "end": 7803.72, "probability": 0.864 }, { "start": 7803.74, "end": 7804.4, "probability": 0.9712 }, { "start": 7807.76, "end": 7808.2, "probability": 0.0124 }, { "start": 7808.2, "end": 7810.84, "probability": 0.532 }, { "start": 7812.08, "end": 7812.96, "probability": 0.8457 }, { "start": 7815.18, "end": 7815.94, "probability": 0.5661 }, { "start": 7817.06, "end": 7818.32, "probability": 0.9376 }, { "start": 7819.72, "end": 7821.22, "probability": 0.6931 }, { "start": 7822.58, "end": 7825.2, "probability": 0.8995 }, { "start": 7828.22, "end": 7828.48, "probability": 0.8792 }, { "start": 7829.34, "end": 7832.26, "probability": 0.9854 }, { "start": 7833.98, "end": 7834.56, "probability": 0.9636 }, { "start": 7834.68, "end": 7836.32, "probability": 0.5676 }, { "start": 7837.42, "end": 7838.65, "probability": 0.529 }, { "start": 7838.82, "end": 7840.52, "probability": 0.8962 }, { "start": 7842.14, "end": 7843.1, "probability": 0.6668 }, { "start": 7843.14, "end": 7845.86, "probability": 0.5362 }, { "start": 7845.94, "end": 7846.38, "probability": 0.4964 }, { "start": 7847.21, "end": 7849.98, "probability": 0.8607 }, { "start": 7850.82, "end": 7851.96, "probability": 0.6464 }, { "start": 7852.56, "end": 7852.94, "probability": 0.5672 }, { "start": 7853.16, "end": 7853.3, "probability": 0.1086 }, { "start": 7853.36, "end": 7855.1, "probability": 0.6211 }, { "start": 7855.72, "end": 7856.42, "probability": 0.8481 }, { "start": 7856.5, "end": 7857.64, "probability": 0.8351 }, { "start": 7858.8, "end": 7861.14, "probability": 0.9404 }, { "start": 7863.32, "end": 7863.74, "probability": 0.7328 }, { "start": 7865.48, "end": 7868.64, "probability": 0.9061 }, { "start": 7870.48, "end": 7873.72, "probability": 0.9709 }, { "start": 7874.6, "end": 7876.86, "probability": 0.9872 }, { "start": 7878.48, "end": 7882.7, "probability": 0.9902 }, { "start": 7883.98, "end": 7884.94, "probability": 0.8638 }, { "start": 7886.42, "end": 7888.69, "probability": 0.9356 }, { "start": 7889.54, "end": 7891.9, "probability": 0.9704 }, { "start": 7891.96, "end": 7892.24, "probability": 0.8826 }, { "start": 7893.9, "end": 7895.5, "probability": 0.8339 }, { "start": 7896.9, "end": 7899.26, "probability": 0.9912 }, { "start": 7900.22, "end": 7901.22, "probability": 0.9982 }, { "start": 7902.86, "end": 7903.94, "probability": 0.5731 }, { "start": 7905.14, "end": 7905.92, "probability": 0.8145 }, { "start": 7906.84, "end": 7908.0, "probability": 0.9048 }, { "start": 7910.06, "end": 7911.76, "probability": 0.7535 }, { "start": 7912.02, "end": 7912.86, "probability": 0.9894 }, { "start": 7913.0, "end": 7914.08, "probability": 0.7584 }, { "start": 7914.16, "end": 7914.42, "probability": 0.9539 }, { "start": 7916.74, "end": 7920.52, "probability": 0.9552 }, { "start": 7922.16, "end": 7924.22, "probability": 0.9958 }, { "start": 7924.94, "end": 7926.94, "probability": 0.9838 }, { "start": 7928.62, "end": 7930.08, "probability": 0.8817 }, { "start": 7932.58, "end": 7935.78, "probability": 0.9689 }, { "start": 7936.86, "end": 7939.18, "probability": 0.9374 }, { "start": 7940.62, "end": 7943.38, "probability": 0.9916 }, { "start": 7944.0, "end": 7947.26, "probability": 0.9696 }, { "start": 7948.34, "end": 7952.52, "probability": 0.7993 }, { "start": 7952.58, "end": 7952.98, "probability": 0.8328 }, { "start": 7953.54, "end": 7954.08, "probability": 0.8926 }, { "start": 7954.48, "end": 7955.96, "probability": 0.9304 }, { "start": 7956.22, "end": 7957.63, "probability": 0.902 }, { "start": 7958.12, "end": 7958.84, "probability": 0.9086 }, { "start": 7959.6, "end": 7960.3, "probability": 0.9772 }, { "start": 7960.9, "end": 7961.38, "probability": 0.9534 }, { "start": 7961.9, "end": 7962.52, "probability": 0.9976 }, { "start": 7963.16, "end": 7963.92, "probability": 0.815 }, { "start": 7964.68, "end": 7966.0, "probability": 0.8836 }, { "start": 7966.52, "end": 7967.43, "probability": 0.9495 }, { "start": 7968.28, "end": 7970.32, "probability": 0.9958 }, { "start": 7970.92, "end": 7972.7, "probability": 0.7664 }, { "start": 7974.3, "end": 7975.54, "probability": 0.746 }, { "start": 7976.4, "end": 7977.58, "probability": 0.9703 }, { "start": 7978.86, "end": 7979.86, "probability": 0.9567 }, { "start": 7981.14, "end": 7981.78, "probability": 0.8817 }, { "start": 7983.8, "end": 7985.78, "probability": 0.9612 }, { "start": 7987.4, "end": 7989.05, "probability": 0.8957 }, { "start": 7989.88, "end": 7990.96, "probability": 0.9193 }, { "start": 7992.26, "end": 7992.88, "probability": 0.9424 }, { "start": 7993.56, "end": 7994.62, "probability": 0.9434 }, { "start": 7996.54, "end": 7997.24, "probability": 0.5632 }, { "start": 7997.28, "end": 7997.28, "probability": 0.7377 }, { "start": 7997.3, "end": 7999.86, "probability": 0.9733 }, { "start": 8001.38, "end": 8003.4, "probability": 0.9897 }, { "start": 8003.4, "end": 8005.94, "probability": 0.817 }, { "start": 8006.8, "end": 8007.12, "probability": 0.4752 }, { "start": 8007.24, "end": 8008.26, "probability": 0.6744 }, { "start": 8008.64, "end": 8010.22, "probability": 0.9442 }, { "start": 8011.06, "end": 8011.8, "probability": 0.7497 }, { "start": 8012.46, "end": 8012.46, "probability": 0.8496 }, { "start": 8013.44, "end": 8014.16, "probability": 0.7113 }, { "start": 8015.42, "end": 8016.2, "probability": 0.9753 }, { "start": 8017.26, "end": 8018.04, "probability": 0.8713 }, { "start": 8018.3, "end": 8019.46, "probability": 0.9985 }, { "start": 8020.22, "end": 8021.44, "probability": 0.9884 }, { "start": 8022.62, "end": 8024.02, "probability": 0.9733 }, { "start": 8025.76, "end": 8028.18, "probability": 0.9521 }, { "start": 8029.9, "end": 8030.52, "probability": 0.7618 }, { "start": 8030.94, "end": 8031.58, "probability": 0.9756 }, { "start": 8033.88, "end": 8035.04, "probability": 0.9735 }, { "start": 8037.22, "end": 8039.0, "probability": 0.978 }, { "start": 8041.64, "end": 8042.48, "probability": 0.6504 }, { "start": 8043.6, "end": 8044.68, "probability": 0.9791 }, { "start": 8045.84, "end": 8048.76, "probability": 0.8767 }, { "start": 8049.56, "end": 8050.34, "probability": 0.9443 }, { "start": 8051.2, "end": 8052.52, "probability": 0.9733 }, { "start": 8053.1, "end": 8055.08, "probability": 0.985 }, { "start": 8055.92, "end": 8057.56, "probability": 0.9314 }, { "start": 8058.4, "end": 8061.4, "probability": 0.9531 }, { "start": 8064.6, "end": 8065.18, "probability": 0.5761 }, { "start": 8065.26, "end": 8066.14, "probability": 0.9673 }, { "start": 8066.2, "end": 8067.76, "probability": 0.8196 }, { "start": 8068.14, "end": 8069.82, "probability": 0.9681 }, { "start": 8071.56, "end": 8075.52, "probability": 0.8975 }, { "start": 8076.6, "end": 8080.08, "probability": 0.9478 }, { "start": 8080.58, "end": 8082.0, "probability": 0.5291 }, { "start": 8082.46, "end": 8084.6, "probability": 0.993 }, { "start": 8085.3, "end": 8087.24, "probability": 0.9722 }, { "start": 8088.66, "end": 8089.98, "probability": 0.9505 }, { "start": 8090.16, "end": 8090.23, "probability": 0.2609 }, { "start": 8090.74, "end": 8092.96, "probability": 0.9292 }, { "start": 8093.06, "end": 8094.98, "probability": 0.9911 }, { "start": 8095.9, "end": 8100.78, "probability": 0.6962 }, { "start": 8101.74, "end": 8105.82, "probability": 0.9811 }, { "start": 8106.46, "end": 8107.72, "probability": 0.8799 }, { "start": 8108.58, "end": 8109.28, "probability": 0.8926 }, { "start": 8110.24, "end": 8111.78, "probability": 0.9454 }, { "start": 8112.32, "end": 8113.0, "probability": 0.9172 }, { "start": 8113.1, "end": 8115.62, "probability": 0.9539 }, { "start": 8118.54, "end": 8124.76, "probability": 0.9428 }, { "start": 8126.2, "end": 8129.56, "probability": 0.9734 }, { "start": 8131.32, "end": 8132.44, "probability": 0.7995 }, { "start": 8132.84, "end": 8133.5, "probability": 0.7775 }, { "start": 8135.82, "end": 8136.67, "probability": 0.9534 }, { "start": 8137.94, "end": 8140.36, "probability": 0.8311 }, { "start": 8141.14, "end": 8143.76, "probability": 0.9844 }, { "start": 8144.88, "end": 8145.4, "probability": 0.9985 }, { "start": 8146.54, "end": 8148.36, "probability": 0.9901 }, { "start": 8148.98, "end": 8150.32, "probability": 0.8979 }, { "start": 8150.98, "end": 8156.9, "probability": 0.708 }, { "start": 8157.94, "end": 8158.74, "probability": 0.9624 }, { "start": 8158.82, "end": 8162.08, "probability": 0.9946 }, { "start": 8162.72, "end": 8165.18, "probability": 0.9253 }, { "start": 8165.56, "end": 8166.86, "probability": 0.8878 }, { "start": 8167.22, "end": 8168.27, "probability": 0.9805 }, { "start": 8169.34, "end": 8170.46, "probability": 0.8327 }, { "start": 8171.14, "end": 8178.96, "probability": 0.9684 }, { "start": 8179.46, "end": 8180.02, "probability": 0.5632 }, { "start": 8180.52, "end": 8182.66, "probability": 0.8397 }, { "start": 8183.06, "end": 8184.45, "probability": 0.6016 }, { "start": 8204.74, "end": 8205.64, "probability": 0.5273 }, { "start": 8206.76, "end": 8207.68, "probability": 0.777 }, { "start": 8209.12, "end": 8210.18, "probability": 0.6367 }, { "start": 8212.54, "end": 8214.06, "probability": 0.8519 }, { "start": 8215.18, "end": 8216.16, "probability": 0.9565 }, { "start": 8216.84, "end": 8217.56, "probability": 0.9482 }, { "start": 8218.18, "end": 8219.48, "probability": 0.9468 }, { "start": 8220.56, "end": 8222.08, "probability": 0.9856 }, { "start": 8223.08, "end": 8225.14, "probability": 0.9914 }, { "start": 8225.8, "end": 8228.06, "probability": 0.9738 }, { "start": 8228.76, "end": 8231.14, "probability": 0.998 }, { "start": 8232.14, "end": 8232.97, "probability": 0.9775 }, { "start": 8234.46, "end": 8236.98, "probability": 0.9372 }, { "start": 8237.7, "end": 8241.62, "probability": 0.9294 }, { "start": 8242.52, "end": 8243.14, "probability": 0.9464 }, { "start": 8244.42, "end": 8248.46, "probability": 0.9731 }, { "start": 8248.52, "end": 8249.18, "probability": 0.8632 }, { "start": 8249.82, "end": 8252.26, "probability": 0.6296 }, { "start": 8252.96, "end": 8255.76, "probability": 0.9692 }, { "start": 8256.5, "end": 8257.28, "probability": 0.9695 }, { "start": 8258.36, "end": 8261.44, "probability": 0.8058 }, { "start": 8262.36, "end": 8268.06, "probability": 0.9924 }, { "start": 8268.88, "end": 8271.02, "probability": 0.9907 }, { "start": 8271.74, "end": 8277.02, "probability": 0.9843 }, { "start": 8278.22, "end": 8281.86, "probability": 0.9098 }, { "start": 8282.54, "end": 8283.82, "probability": 0.8176 }, { "start": 8284.48, "end": 8287.6, "probability": 0.9789 }, { "start": 8288.4, "end": 8292.52, "probability": 0.9779 }, { "start": 8293.18, "end": 8296.5, "probability": 0.9559 }, { "start": 8297.36, "end": 8298.38, "probability": 0.9972 }, { "start": 8299.52, "end": 8301.26, "probability": 0.9993 }, { "start": 8302.04, "end": 8306.0, "probability": 0.9934 }, { "start": 8306.64, "end": 8309.12, "probability": 0.9691 }, { "start": 8309.78, "end": 8313.86, "probability": 0.9849 }, { "start": 8314.74, "end": 8315.48, "probability": 0.9814 }, { "start": 8316.54, "end": 8322.98, "probability": 0.9937 }, { "start": 8324.06, "end": 8325.08, "probability": 0.9927 }, { "start": 8326.02, "end": 8326.78, "probability": 0.9384 }, { "start": 8327.4, "end": 8328.86, "probability": 0.5439 }, { "start": 8329.68, "end": 8330.36, "probability": 0.9803 }, { "start": 8330.92, "end": 8336.64, "probability": 0.9956 }, { "start": 8337.36, "end": 8339.54, "probability": 0.9619 }, { "start": 8340.18, "end": 8341.98, "probability": 0.9976 }, { "start": 8342.84, "end": 8343.48, "probability": 0.9604 }, { "start": 8344.36, "end": 8346.68, "probability": 0.9801 }, { "start": 8346.68, "end": 8350.04, "probability": 0.9937 }, { "start": 8350.8, "end": 8353.38, "probability": 0.7718 }, { "start": 8353.88, "end": 8359.5, "probability": 0.9958 }, { "start": 8360.64, "end": 8361.58, "probability": 0.5367 }, { "start": 8362.24, "end": 8363.18, "probability": 0.9159 }, { "start": 8363.8, "end": 8364.4, "probability": 0.871 }, { "start": 8365.06, "end": 8366.78, "probability": 0.9747 }, { "start": 8367.42, "end": 8369.4, "probability": 0.9736 }, { "start": 8369.98, "end": 8373.54, "probability": 0.9788 }, { "start": 8374.34, "end": 8375.81, "probability": 0.9653 }, { "start": 8376.76, "end": 8379.08, "probability": 0.9195 }, { "start": 8379.82, "end": 8383.96, "probability": 0.9977 }, { "start": 8384.66, "end": 8386.96, "probability": 0.9851 }, { "start": 8387.92, "end": 8390.82, "probability": 0.9749 }, { "start": 8391.42, "end": 8392.7, "probability": 0.9567 }, { "start": 8393.32, "end": 8398.24, "probability": 0.9859 }, { "start": 8398.8, "end": 8401.02, "probability": 0.9972 }, { "start": 8402.02, "end": 8407.58, "probability": 0.9966 }, { "start": 8408.06, "end": 8408.68, "probability": 0.6721 }, { "start": 8409.42, "end": 8417.06, "probability": 0.9847 }, { "start": 8417.76, "end": 8423.08, "probability": 0.9604 }, { "start": 8423.72, "end": 8426.92, "probability": 0.9983 }, { "start": 8427.46, "end": 8428.88, "probability": 0.9331 }, { "start": 8429.44, "end": 8430.02, "probability": 0.86 }, { "start": 8430.74, "end": 8432.66, "probability": 0.9634 }, { "start": 8433.56, "end": 8437.54, "probability": 0.9749 }, { "start": 8438.38, "end": 8443.82, "probability": 0.9895 }, { "start": 8444.36, "end": 8450.7, "probability": 0.9956 }, { "start": 8451.22, "end": 8453.94, "probability": 0.9585 }, { "start": 8454.8, "end": 8457.8, "probability": 0.905 }, { "start": 8458.74, "end": 8464.12, "probability": 0.9901 }, { "start": 8465.38, "end": 8466.58, "probability": 0.8504 }, { "start": 8466.72, "end": 8467.34, "probability": 0.8266 }, { "start": 8467.72, "end": 8468.8, "probability": 0.9167 }, { "start": 8468.88, "end": 8469.34, "probability": 0.714 }, { "start": 8469.38, "end": 8469.78, "probability": 0.8002 }, { "start": 8470.1, "end": 8472.01, "probability": 0.628 }, { "start": 8472.58, "end": 8472.58, "probability": 0.0041 }, { "start": 8472.58, "end": 8472.58, "probability": 0.0982 }, { "start": 8472.58, "end": 8474.68, "probability": 0.58 }, { "start": 8475.08, "end": 8478.16, "probability": 0.5909 }, { "start": 8478.26, "end": 8478.34, "probability": 0.5974 }, { "start": 8478.46, "end": 8478.82, "probability": 0.981 }, { "start": 8478.96, "end": 8479.42, "probability": 0.9139 }, { "start": 8479.5, "end": 8484.64, "probability": 0.9298 }, { "start": 8485.4, "end": 8488.72, "probability": 0.8474 }, { "start": 8489.06, "end": 8490.34, "probability": 0.99 }, { "start": 8490.8, "end": 8491.3, "probability": 0.6638 }, { "start": 8491.88, "end": 8492.32, "probability": 0.0904 }, { "start": 8492.82, "end": 8493.22, "probability": 0.7834 }, { "start": 8493.64, "end": 8493.9, "probability": 0.8378 }, { "start": 8494.88, "end": 8495.3, "probability": 0.5122 }, { "start": 8495.98, "end": 8496.92, "probability": 0.3449 }, { "start": 8496.92, "end": 8498.29, "probability": 0.8501 }, { "start": 8498.46, "end": 8499.38, "probability": 0.7227 }, { "start": 8500.3, "end": 8501.16, "probability": 0.8611 }, { "start": 8502.1, "end": 8504.92, "probability": 0.7742 }, { "start": 8505.0, "end": 8505.68, "probability": 0.6111 }, { "start": 8506.68, "end": 8507.38, "probability": 0.2626 }, { "start": 8507.44, "end": 8508.44, "probability": 0.7973 }, { "start": 8509.3, "end": 8510.58, "probability": 0.8721 }, { "start": 8510.8, "end": 8511.48, "probability": 0.9175 }, { "start": 8511.52, "end": 8512.81, "probability": 0.4807 }, { "start": 8513.28, "end": 8513.5, "probability": 0.4628 }, { "start": 8513.88, "end": 8515.75, "probability": 0.6104 }, { "start": 8516.02, "end": 8517.22, "probability": 0.6325 }, { "start": 8517.84, "end": 8518.33, "probability": 0.7553 }, { "start": 8518.44, "end": 8518.81, "probability": 0.7467 }, { "start": 8519.06, "end": 8520.24, "probability": 0.4991 }, { "start": 8520.24, "end": 8524.38, "probability": 0.2851 }, { "start": 8524.38, "end": 8524.86, "probability": 0.5589 }, { "start": 8525.4, "end": 8529.2, "probability": 0.8629 }, { "start": 8529.96, "end": 8531.56, "probability": 0.6198 }, { "start": 8532.08, "end": 8534.44, "probability": 0.7075 }, { "start": 8534.6, "end": 8535.3, "probability": 0.7007 }, { "start": 8538.94, "end": 8538.94, "probability": 0.001 }, { "start": 8538.94, "end": 8542.48, "probability": 0.8613 }, { "start": 8543.24, "end": 8544.82, "probability": 0.9554 }, { "start": 8545.44, "end": 8547.78, "probability": 0.5673 }, { "start": 8547.78, "end": 8551.32, "probability": 0.9358 }, { "start": 8551.88, "end": 8554.92, "probability": 0.9935 }, { "start": 8555.6, "end": 8558.94, "probability": 0.974 }, { "start": 8558.94, "end": 8562.8, "probability": 0.9502 }, { "start": 8563.16, "end": 8564.6, "probability": 0.9342 }, { "start": 8565.0, "end": 8565.6, "probability": 0.4926 }, { "start": 8566.26, "end": 8568.76, "probability": 0.9731 }, { "start": 8569.28, "end": 8572.6, "probability": 0.968 }, { "start": 8572.68, "end": 8573.58, "probability": 0.5495 }, { "start": 8573.64, "end": 8574.4, "probability": 0.8994 }, { "start": 8575.1, "end": 8575.56, "probability": 0.9161 }, { "start": 8576.46, "end": 8578.32, "probability": 0.9513 }, { "start": 8609.96, "end": 8611.91, "probability": 0.8586 }, { "start": 8613.26, "end": 8613.48, "probability": 0.6489 }, { "start": 8613.96, "end": 8613.96, "probability": 0.2606 }, { "start": 8613.96, "end": 8614.66, "probability": 0.0313 }, { "start": 8616.57, "end": 8618.46, "probability": 0.8042 }, { "start": 8619.48, "end": 8621.28, "probability": 0.289 }, { "start": 8621.52, "end": 8622.66, "probability": 0.0392 }, { "start": 8622.96, "end": 8625.16, "probability": 0.8521 }, { "start": 8625.3, "end": 8626.24, "probability": 0.8496 }, { "start": 8626.42, "end": 8628.22, "probability": 0.9681 }, { "start": 8628.52, "end": 8629.54, "probability": 0.8347 }, { "start": 8630.08, "end": 8630.42, "probability": 0.8313 }, { "start": 8630.5, "end": 8634.24, "probability": 0.896 }, { "start": 8634.26, "end": 8634.36, "probability": 0.5886 }, { "start": 8635.46, "end": 8639.56, "probability": 0.9392 }, { "start": 8640.1, "end": 8640.96, "probability": 0.9764 }, { "start": 8642.34, "end": 8644.56, "probability": 0.9613 }, { "start": 8645.42, "end": 8647.12, "probability": 0.8669 }, { "start": 8647.84, "end": 8649.82, "probability": 0.9634 }, { "start": 8650.44, "end": 8653.54, "probability": 0.9938 }, { "start": 8654.86, "end": 8658.52, "probability": 0.9873 }, { "start": 8659.1, "end": 8660.64, "probability": 0.9265 }, { "start": 8661.32, "end": 8665.64, "probability": 0.9863 }, { "start": 8666.16, "end": 8670.12, "probability": 0.9939 }, { "start": 8670.96, "end": 8674.68, "probability": 0.9901 }, { "start": 8674.68, "end": 8678.44, "probability": 0.9984 }, { "start": 8679.3, "end": 8681.12, "probability": 0.7909 }, { "start": 8681.72, "end": 8688.16, "probability": 0.9893 }, { "start": 8688.36, "end": 8691.22, "probability": 0.9824 }, { "start": 8691.34, "end": 8695.42, "probability": 0.9949 }, { "start": 8696.7, "end": 8697.2, "probability": 0.8763 }, { "start": 8698.22, "end": 8699.32, "probability": 0.8899 }, { "start": 8700.26, "end": 8702.4, "probability": 0.7591 }, { "start": 8702.56, "end": 8704.68, "probability": 0.0776 }, { "start": 8704.68, "end": 8707.36, "probability": 0.9922 }, { "start": 8708.38, "end": 8708.68, "probability": 0.7321 }, { "start": 8708.7, "end": 8711.78, "probability": 0.96 }, { "start": 8712.58, "end": 8717.66, "probability": 0.9945 }, { "start": 8718.98, "end": 8719.7, "probability": 0.7613 }, { "start": 8720.52, "end": 8722.5, "probability": 0.782 }, { "start": 8723.52, "end": 8724.46, "probability": 0.9484 }, { "start": 8725.64, "end": 8726.68, "probability": 0.8642 }, { "start": 8728.92, "end": 8729.62, "probability": 0.9395 }, { "start": 8731.6, "end": 8734.48, "probability": 0.9769 }, { "start": 8735.0, "end": 8739.26, "probability": 0.8582 }, { "start": 8740.08, "end": 8743.98, "probability": 0.8608 }, { "start": 8744.88, "end": 8748.2, "probability": 0.993 }, { "start": 8748.84, "end": 8752.54, "probability": 0.9868 }, { "start": 8753.38, "end": 8755.68, "probability": 0.9983 }, { "start": 8756.16, "end": 8757.0, "probability": 0.8079 }, { "start": 8757.76, "end": 8758.34, "probability": 0.9601 }, { "start": 8759.18, "end": 8761.08, "probability": 0.9043 }, { "start": 8761.58, "end": 8765.2, "probability": 0.979 }, { "start": 8765.2, "end": 8767.82, "probability": 0.9839 }, { "start": 8768.84, "end": 8769.64, "probability": 0.9074 }, { "start": 8770.2, "end": 8771.28, "probability": 0.6869 }, { "start": 8772.06, "end": 8773.7, "probability": 0.9969 }, { "start": 8774.48, "end": 8775.46, "probability": 0.9622 }, { "start": 8776.02, "end": 8777.76, "probability": 0.9668 }, { "start": 8778.46, "end": 8779.14, "probability": 0.9353 }, { "start": 8779.3, "end": 8783.1, "probability": 0.9322 }, { "start": 8783.56, "end": 8788.12, "probability": 0.9472 }, { "start": 8788.88, "end": 8789.62, "probability": 0.4186 }, { "start": 8790.42, "end": 8795.36, "probability": 0.9767 }, { "start": 8796.0, "end": 8799.28, "probability": 0.9937 }, { "start": 8799.9, "end": 8800.7, "probability": 0.7498 }, { "start": 8801.36, "end": 8804.04, "probability": 0.9321 }, { "start": 8804.78, "end": 8805.5, "probability": 0.8004 }, { "start": 8806.34, "end": 8809.23, "probability": 0.9819 }, { "start": 8809.76, "end": 8812.3, "probability": 0.9963 }, { "start": 8813.04, "end": 8815.74, "probability": 0.9773 }, { "start": 8816.64, "end": 8820.54, "probability": 0.9194 }, { "start": 8821.2, "end": 8822.88, "probability": 0.9403 }, { "start": 8824.02, "end": 8825.44, "probability": 0.9958 }, { "start": 8826.08, "end": 8830.72, "probability": 0.998 }, { "start": 8831.28, "end": 8832.3, "probability": 0.9921 }, { "start": 8832.88, "end": 8833.8, "probability": 0.8321 }, { "start": 8836.18, "end": 8838.5, "probability": 0.7264 }, { "start": 8839.14, "end": 8842.16, "probability": 0.9973 }, { "start": 8842.76, "end": 8847.3, "probability": 0.9217 }, { "start": 8847.86, "end": 8848.84, "probability": 0.9762 }, { "start": 8849.46, "end": 8850.24, "probability": 0.7853 }, { "start": 8851.16, "end": 8854.86, "probability": 0.9897 }, { "start": 8854.86, "end": 8857.78, "probability": 0.9591 }, { "start": 8858.32, "end": 8861.02, "probability": 0.8703 }, { "start": 8861.5, "end": 8862.12, "probability": 0.8483 }, { "start": 8862.88, "end": 8864.44, "probability": 0.967 }, { "start": 8864.82, "end": 8865.94, "probability": 0.5781 }, { "start": 8866.06, "end": 8867.24, "probability": 0.943 }, { "start": 8867.78, "end": 8871.26, "probability": 0.9968 }, { "start": 8872.1, "end": 8872.2, "probability": 0.5126 }, { "start": 8872.28, "end": 8873.08, "probability": 0.7108 }, { "start": 8873.08, "end": 8875.96, "probability": 0.9684 }, { "start": 8876.1, "end": 8876.68, "probability": 0.5109 }, { "start": 8877.52, "end": 8880.98, "probability": 0.9714 }, { "start": 8880.98, "end": 8884.22, "probability": 0.9854 }, { "start": 8884.92, "end": 8885.68, "probability": 0.4978 }, { "start": 8886.2, "end": 8887.22, "probability": 0.9531 }, { "start": 8887.7, "end": 8888.28, "probability": 0.9279 }, { "start": 8888.92, "end": 8890.78, "probability": 0.6939 }, { "start": 8891.44, "end": 8894.62, "probability": 0.9779 }, { "start": 8895.22, "end": 8896.46, "probability": 0.8237 }, { "start": 8897.14, "end": 8898.82, "probability": 0.945 }, { "start": 8899.82, "end": 8902.4, "probability": 0.8755 }, { "start": 8903.18, "end": 8905.38, "probability": 0.9651 }, { "start": 8928.04, "end": 8928.34, "probability": 0.7074 }, { "start": 8929.62, "end": 8930.86, "probability": 0.5389 }, { "start": 8930.86, "end": 8930.86, "probability": 0.4978 }, { "start": 8930.86, "end": 8934.2, "probability": 0.8866 }, { "start": 8935.94, "end": 8937.96, "probability": 0.5191 }, { "start": 8938.62, "end": 8939.9, "probability": 0.9751 }, { "start": 8940.72, "end": 8941.78, "probability": 0.603 }, { "start": 8942.36, "end": 8944.06, "probability": 0.9284 }, { "start": 8945.3, "end": 8947.3, "probability": 0.9927 }, { "start": 8947.78, "end": 8949.82, "probability": 0.9344 }, { "start": 8950.38, "end": 8951.72, "probability": 0.9948 }, { "start": 8952.34, "end": 8953.64, "probability": 0.7838 }, { "start": 8953.96, "end": 8955.02, "probability": 0.9473 }, { "start": 8955.76, "end": 8956.6, "probability": 0.965 }, { "start": 8957.48, "end": 8961.96, "probability": 0.5716 }, { "start": 8962.52, "end": 8963.28, "probability": 0.8994 }, { "start": 8964.24, "end": 8966.46, "probability": 0.9821 }, { "start": 8967.02, "end": 8969.24, "probability": 0.9672 }, { "start": 8969.5, "end": 8970.22, "probability": 0.8285 }, { "start": 8970.64, "end": 8971.3, "probability": 0.7773 }, { "start": 8971.5, "end": 8972.26, "probability": 0.9753 }, { "start": 8973.24, "end": 8973.74, "probability": 0.8678 }, { "start": 8974.64, "end": 8976.7, "probability": 0.9604 }, { "start": 8977.62, "end": 8978.84, "probability": 0.6116 }, { "start": 8979.0, "end": 8980.0, "probability": 0.9219 }, { "start": 8981.14, "end": 8982.38, "probability": 0.9042 }, { "start": 8983.14, "end": 8983.89, "probability": 0.9655 }, { "start": 8984.9, "end": 8987.94, "probability": 0.9769 }, { "start": 8988.48, "end": 8989.56, "probability": 0.7531 }, { "start": 8990.46, "end": 8991.3, "probability": 0.8927 }, { "start": 8992.24, "end": 8993.42, "probability": 0.8287 }, { "start": 8993.62, "end": 8994.96, "probability": 0.6712 }, { "start": 8995.08, "end": 8995.88, "probability": 0.8326 }, { "start": 8996.2, "end": 8997.84, "probability": 0.9388 }, { "start": 8998.36, "end": 9000.02, "probability": 0.6435 }, { "start": 9000.58, "end": 9005.08, "probability": 0.7791 }, { "start": 9005.32, "end": 9006.94, "probability": 0.9184 }, { "start": 9007.38, "end": 9009.42, "probability": 0.7861 }, { "start": 9010.12, "end": 9012.46, "probability": 0.9523 }, { "start": 9013.04, "end": 9014.54, "probability": 0.7697 }, { "start": 9014.58, "end": 9015.18, "probability": 0.7068 }, { "start": 9015.78, "end": 9018.06, "probability": 0.9561 }, { "start": 9018.82, "end": 9020.32, "probability": 0.9069 }, { "start": 9020.86, "end": 9025.16, "probability": 0.9095 }, { "start": 9025.16, "end": 9025.7, "probability": 0.6837 }, { "start": 9026.32, "end": 9028.76, "probability": 0.9702 }, { "start": 9029.24, "end": 9030.36, "probability": 0.7983 }, { "start": 9030.52, "end": 9031.1, "probability": 0.7815 }, { "start": 9031.92, "end": 9033.65, "probability": 0.9897 }, { "start": 9035.96, "end": 9037.72, "probability": 0.6924 }, { "start": 9037.96, "end": 9040.42, "probability": 0.8446 }, { "start": 9041.3, "end": 9044.08, "probability": 0.8206 }, { "start": 9044.96, "end": 9047.6, "probability": 0.6382 }, { "start": 9047.7, "end": 9050.27, "probability": 0.9868 }, { "start": 9051.1, "end": 9058.52, "probability": 0.9773 }, { "start": 9059.18, "end": 9062.48, "probability": 0.7673 }, { "start": 9063.2, "end": 9064.6, "probability": 0.9218 }, { "start": 9065.2, "end": 9065.52, "probability": 0.7011 }, { "start": 9065.82, "end": 9066.2, "probability": 0.6137 }, { "start": 9066.72, "end": 9068.1, "probability": 0.1485 }, { "start": 9068.26, "end": 9069.38, "probability": 0.7916 }, { "start": 9070.1, "end": 9070.44, "probability": 0.7783 }, { "start": 9070.72, "end": 9071.56, "probability": 0.9978 }, { "start": 9073.12, "end": 9076.36, "probability": 0.8988 }, { "start": 9076.46, "end": 9076.9, "probability": 0.585 }, { "start": 9077.38, "end": 9078.14, "probability": 0.9888 }, { "start": 9078.88, "end": 9081.18, "probability": 0.9084 }, { "start": 9081.96, "end": 9084.42, "probability": 0.9937 }, { "start": 9085.46, "end": 9087.12, "probability": 0.9337 }, { "start": 9087.24, "end": 9087.82, "probability": 0.6246 }, { "start": 9087.96, "end": 9088.12, "probability": 0.0398 }, { "start": 9088.14, "end": 9088.34, "probability": 0.6351 }, { "start": 9088.42, "end": 9088.68, "probability": 0.7295 }, { "start": 9088.68, "end": 9090.02, "probability": 0.8574 }, { "start": 9090.82, "end": 9094.98, "probability": 0.8574 }, { "start": 9095.78, "end": 9099.92, "probability": 0.9624 }, { "start": 9100.56, "end": 9102.31, "probability": 0.9893 }, { "start": 9102.96, "end": 9103.76, "probability": 0.4548 }, { "start": 9104.34, "end": 9107.06, "probability": 0.8602 }, { "start": 9107.7, "end": 9110.05, "probability": 0.9093 }, { "start": 9110.98, "end": 9113.86, "probability": 0.9501 }, { "start": 9114.2, "end": 9114.91, "probability": 0.9731 }, { "start": 9115.2, "end": 9116.57, "probability": 0.9327 }, { "start": 9117.26, "end": 9123.3, "probability": 0.8967 }, { "start": 9124.0, "end": 9125.4, "probability": 0.8171 }, { "start": 9125.88, "end": 9127.56, "probability": 0.9466 }, { "start": 9128.02, "end": 9130.58, "probability": 0.8889 }, { "start": 9131.22, "end": 9135.28, "probability": 0.9299 }, { "start": 9135.92, "end": 9136.22, "probability": 0.4989 }, { "start": 9136.3, "end": 9136.84, "probability": 0.5726 }, { "start": 9136.84, "end": 9137.9, "probability": 0.994 }, { "start": 9139.02, "end": 9139.82, "probability": 0.9879 }, { "start": 9140.3, "end": 9142.12, "probability": 0.6659 }, { "start": 9143.26, "end": 9143.36, "probability": 0.8108 }, { "start": 9144.0, "end": 9144.8, "probability": 0.7959 }, { "start": 9144.82, "end": 9145.3, "probability": 0.8906 }, { "start": 9145.98, "end": 9147.78, "probability": 0.7963 }, { "start": 9148.92, "end": 9149.3, "probability": 0.5351 }, { "start": 9149.72, "end": 9150.16, "probability": 0.503 }, { "start": 9151.08, "end": 9152.76, "probability": 0.1624 }, { "start": 9152.76, "end": 9153.54, "probability": 0.5662 }, { "start": 9153.82, "end": 9154.6, "probability": 0.2684 }, { "start": 9154.9, "end": 9156.38, "probability": 0.5413 }, { "start": 9156.98, "end": 9161.96, "probability": 0.9817 }, { "start": 9162.18, "end": 9163.36, "probability": 0.7419 }, { "start": 9163.54, "end": 9164.38, "probability": 0.8555 }, { "start": 9164.38, "end": 9165.76, "probability": 0.8486 }, { "start": 9166.1, "end": 9168.34, "probability": 0.9952 }, { "start": 9168.7, "end": 9169.76, "probability": 0.7624 }, { "start": 9170.1, "end": 9170.98, "probability": 0.4278 }, { "start": 9171.0, "end": 9171.38, "probability": 0.1822 }, { "start": 9171.52, "end": 9172.02, "probability": 0.4377 }, { "start": 9172.36, "end": 9173.78, "probability": 0.8945 }, { "start": 9173.94, "end": 9175.14, "probability": 0.9007 }, { "start": 9175.56, "end": 9177.58, "probability": 0.9777 }, { "start": 9178.22, "end": 9182.22, "probability": 0.9778 }, { "start": 9182.8, "end": 9185.7, "probability": 0.8179 }, { "start": 9186.28, "end": 9188.64, "probability": 0.743 }, { "start": 9189.76, "end": 9192.46, "probability": 0.5471 }, { "start": 9192.64, "end": 9193.08, "probability": 0.9105 }, { "start": 9193.24, "end": 9193.9, "probability": 0.8472 }, { "start": 9194.22, "end": 9194.86, "probability": 0.4694 }, { "start": 9195.06, "end": 9197.06, "probability": 0.5723 }, { "start": 9197.32, "end": 9197.52, "probability": 0.6444 }, { "start": 9197.86, "end": 9198.66, "probability": 0.9378 }, { "start": 9198.94, "end": 9200.46, "probability": 0.8318 }, { "start": 9200.7, "end": 9201.84, "probability": 0.8967 }, { "start": 9202.18, "end": 9205.74, "probability": 0.8603 }, { "start": 9205.84, "end": 9207.2, "probability": 0.8831 }, { "start": 9207.76, "end": 9210.94, "probability": 0.6657 }, { "start": 9212.14, "end": 9212.76, "probability": 0.5044 }, { "start": 9213.06, "end": 9216.48, "probability": 0.9854 }, { "start": 9216.48, "end": 9219.66, "probability": 0.9731 }, { "start": 9219.88, "end": 9220.56, "probability": 0.7718 }, { "start": 9220.64, "end": 9221.62, "probability": 0.9485 }, { "start": 9221.96, "end": 9224.54, "probability": 0.9971 }, { "start": 9225.5, "end": 9227.36, "probability": 0.9181 }, { "start": 9227.66, "end": 9228.76, "probability": 0.9058 }, { "start": 9229.38, "end": 9233.34, "probability": 0.9705 }, { "start": 9233.52, "end": 9234.15, "probability": 0.6475 }, { "start": 9234.92, "end": 9240.32, "probability": 0.9109 }, { "start": 9240.46, "end": 9241.86, "probability": 0.9697 }, { "start": 9241.9, "end": 9243.98, "probability": 0.877 }, { "start": 9244.5, "end": 9247.76, "probability": 0.9608 }, { "start": 9247.88, "end": 9249.6, "probability": 0.989 }, { "start": 9249.76, "end": 9249.82, "probability": 0.4085 }, { "start": 9249.92, "end": 9250.58, "probability": 0.8915 }, { "start": 9250.94, "end": 9257.1, "probability": 0.6084 }, { "start": 9257.58, "end": 9259.28, "probability": 0.9937 }, { "start": 9260.2, "end": 9261.62, "probability": 0.9161 }, { "start": 9262.56, "end": 9265.81, "probability": 0.5246 }, { "start": 9266.74, "end": 9267.52, "probability": 0.7816 }, { "start": 9268.04, "end": 9269.88, "probability": 0.9959 }, { "start": 9270.24, "end": 9270.72, "probability": 0.4815 }, { "start": 9270.74, "end": 9274.16, "probability": 0.8849 }, { "start": 9274.32, "end": 9275.04, "probability": 0.9443 }, { "start": 9275.2, "end": 9279.38, "probability": 0.9653 }, { "start": 9279.54, "end": 9281.56, "probability": 0.6103 }, { "start": 9282.88, "end": 9284.86, "probability": 0.9984 }, { "start": 9285.58, "end": 9290.72, "probability": 0.9933 }, { "start": 9291.2, "end": 9296.34, "probability": 0.9772 }, { "start": 9297.68, "end": 9298.38, "probability": 0.0026 }, { "start": 9298.38, "end": 9298.38, "probability": 0.0943 }, { "start": 9298.38, "end": 9302.04, "probability": 0.9427 }, { "start": 9302.6, "end": 9305.88, "probability": 0.9965 }, { "start": 9306.38, "end": 9307.75, "probability": 0.8535 }, { "start": 9308.52, "end": 9313.02, "probability": 0.9975 }, { "start": 9313.32, "end": 9314.82, "probability": 0.9231 }, { "start": 9315.26, "end": 9316.9, "probability": 0.798 }, { "start": 9317.46, "end": 9317.99, "probability": 0.8618 }, { "start": 9318.4, "end": 9319.38, "probability": 0.7876 }, { "start": 9319.4, "end": 9321.74, "probability": 0.7839 }, { "start": 9322.12, "end": 9323.64, "probability": 0.9927 }, { "start": 9323.76, "end": 9326.14, "probability": 0.6154 }, { "start": 9326.54, "end": 9330.2, "probability": 0.7721 }, { "start": 9330.74, "end": 9334.02, "probability": 0.9836 }, { "start": 9334.4, "end": 9334.96, "probability": 0.8972 }, { "start": 9334.98, "end": 9336.24, "probability": 0.5361 }, { "start": 9336.42, "end": 9338.44, "probability": 0.5052 }, { "start": 9339.0, "end": 9339.1, "probability": 0.0837 }, { "start": 9340.94, "end": 9345.0, "probability": 0.5856 }, { "start": 9345.02, "end": 9347.02, "probability": 0.9946 }, { "start": 9347.02, "end": 9347.54, "probability": 0.6966 }, { "start": 9347.58, "end": 9347.82, "probability": 0.8965 }, { "start": 9348.24, "end": 9349.42, "probability": 0.929 }, { "start": 9349.72, "end": 9350.16, "probability": 0.7941 }, { "start": 9350.26, "end": 9353.6, "probability": 0.6446 }, { "start": 9353.92, "end": 9355.65, "probability": 0.9069 }, { "start": 9356.28, "end": 9358.54, "probability": 0.837 }, { "start": 9359.12, "end": 9360.0, "probability": 0.826 }, { "start": 9360.52, "end": 9361.76, "probability": 0.9927 }, { "start": 9362.22, "end": 9363.35, "probability": 0.803 }, { "start": 9363.84, "end": 9364.18, "probability": 0.6661 }, { "start": 9364.68, "end": 9366.72, "probability": 0.992 }, { "start": 9366.72, "end": 9368.68, "probability": 0.9946 }, { "start": 9368.88, "end": 9369.2, "probability": 0.5925 }, { "start": 9369.3, "end": 9369.92, "probability": 0.7812 }, { "start": 9370.52, "end": 9371.22, "probability": 0.8514 }, { "start": 9371.28, "end": 9374.04, "probability": 0.9449 }, { "start": 9374.48, "end": 9375.98, "probability": 0.9541 }, { "start": 9376.08, "end": 9376.28, "probability": 0.8545 }, { "start": 9376.96, "end": 9379.38, "probability": 0.9054 }, { "start": 9379.76, "end": 9380.96, "probability": 0.7975 }, { "start": 9381.26, "end": 9382.58, "probability": 0.9908 }, { "start": 9382.86, "end": 9385.76, "probability": 0.9858 }, { "start": 9386.18, "end": 9388.04, "probability": 0.9847 }, { "start": 9388.34, "end": 9390.16, "probability": 0.8256 }, { "start": 9390.94, "end": 9394.58, "probability": 0.8364 }, { "start": 9394.62, "end": 9395.0, "probability": 0.8566 }, { "start": 9395.44, "end": 9398.28, "probability": 0.989 }, { "start": 9398.7, "end": 9400.12, "probability": 0.6774 }, { "start": 9400.42, "end": 9401.02, "probability": 0.5692 }, { "start": 9401.18, "end": 9402.14, "probability": 0.7316 }, { "start": 9402.48, "end": 9403.64, "probability": 0.9868 }, { "start": 9404.14, "end": 9404.8, "probability": 0.784 }, { "start": 9404.94, "end": 9407.12, "probability": 0.9855 }, { "start": 9407.62, "end": 9411.74, "probability": 0.9795 }, { "start": 9412.2, "end": 9413.61, "probability": 0.8635 }, { "start": 9413.76, "end": 9418.2, "probability": 0.9532 }, { "start": 9418.44, "end": 9420.54, "probability": 0.8609 }, { "start": 9420.84, "end": 9423.12, "probability": 0.9697 }, { "start": 9423.54, "end": 9427.72, "probability": 0.9549 }, { "start": 9427.82, "end": 9429.04, "probability": 0.8118 }, { "start": 9429.52, "end": 9431.38, "probability": 0.534 }, { "start": 9431.38, "end": 9433.7, "probability": 0.9604 }, { "start": 9434.54, "end": 9435.42, "probability": 0.9912 }, { "start": 9436.02, "end": 9437.4, "probability": 0.9917 }, { "start": 9439.98, "end": 9441.64, "probability": 0.8087 }, { "start": 9441.64, "end": 9442.22, "probability": 0.3488 }, { "start": 9442.52, "end": 9442.6, "probability": 0.5483 }, { "start": 9442.72, "end": 9443.56, "probability": 0.7239 }, { "start": 9443.56, "end": 9445.78, "probability": 0.8531 }, { "start": 9446.3, "end": 9449.06, "probability": 0.9097 }, { "start": 9449.18, "end": 9449.82, "probability": 0.9805 }, { "start": 9450.08, "end": 9452.86, "probability": 0.9819 }, { "start": 9453.22, "end": 9456.02, "probability": 0.6943 }, { "start": 9456.56, "end": 9459.12, "probability": 0.981 }, { "start": 9459.6, "end": 9462.16, "probability": 0.9546 }, { "start": 9462.7, "end": 9464.94, "probability": 0.9908 }, { "start": 9465.02, "end": 9466.14, "probability": 0.626 }, { "start": 9466.24, "end": 9467.54, "probability": 0.9244 }, { "start": 9467.62, "end": 9469.34, "probability": 0.9911 }, { "start": 9469.66, "end": 9472.38, "probability": 0.7918 }, { "start": 9472.84, "end": 9474.84, "probability": 0.6975 }, { "start": 9475.06, "end": 9475.68, "probability": 0.6898 }, { "start": 9476.06, "end": 9479.54, "probability": 0.9868 }, { "start": 9480.44, "end": 9482.12, "probability": 0.2859 }, { "start": 9482.52, "end": 9484.22, "probability": 0.8197 }, { "start": 9484.74, "end": 9486.56, "probability": 0.9353 }, { "start": 9486.58, "end": 9488.86, "probability": 0.8862 }, { "start": 9488.98, "end": 9490.96, "probability": 0.8083 }, { "start": 9491.38, "end": 9491.82, "probability": 0.5006 }, { "start": 9492.54, "end": 9494.58, "probability": 0.6428 }, { "start": 9494.94, "end": 9496.48, "probability": 0.9257 }, { "start": 9496.88, "end": 9497.64, "probability": 0.8633 }, { "start": 9497.92, "end": 9498.1, "probability": 0.9509 }, { "start": 9498.16, "end": 9498.54, "probability": 0.9412 }, { "start": 9498.66, "end": 9502.84, "probability": 0.9048 }, { "start": 9503.16, "end": 9503.98, "probability": 0.7462 }, { "start": 9504.18, "end": 9504.54, "probability": 0.6512 }, { "start": 9504.58, "end": 9505.34, "probability": 0.8085 }, { "start": 9505.72, "end": 9506.24, "probability": 0.8417 }, { "start": 9506.28, "end": 9508.92, "probability": 0.8825 }, { "start": 9509.14, "end": 9509.86, "probability": 0.8029 }, { "start": 9510.44, "end": 9512.0, "probability": 0.8468 }, { "start": 9512.1, "end": 9512.6, "probability": 0.8532 }, { "start": 9512.88, "end": 9514.54, "probability": 0.8844 }, { "start": 9514.92, "end": 9516.01, "probability": 0.8105 }, { "start": 9516.72, "end": 9518.04, "probability": 0.9728 }, { "start": 9518.16, "end": 9521.84, "probability": 0.9973 }, { "start": 9522.36, "end": 9524.82, "probability": 0.9326 }, { "start": 9525.38, "end": 9527.78, "probability": 0.9142 }, { "start": 9528.38, "end": 9528.94, "probability": 0.605 }, { "start": 9529.44, "end": 9532.34, "probability": 0.922 }, { "start": 9532.48, "end": 9535.76, "probability": 0.9945 }, { "start": 9535.9, "end": 9536.44, "probability": 0.802 }, { "start": 9536.78, "end": 9538.36, "probability": 0.8175 }, { "start": 9538.82, "end": 9541.52, "probability": 0.7944 }, { "start": 9541.96, "end": 9544.2, "probability": 0.9894 }, { "start": 9544.62, "end": 9545.8, "probability": 0.9574 }, { "start": 9546.12, "end": 9548.56, "probability": 0.981 }, { "start": 9548.78, "end": 9549.08, "probability": 0.707 }, { "start": 9549.42, "end": 9551.14, "probability": 0.7605 }, { "start": 9551.9, "end": 9554.12, "probability": 0.962 }, { "start": 9554.98, "end": 9558.56, "probability": 0.9847 }, { "start": 9558.7, "end": 9559.51, "probability": 0.6699 }, { "start": 9559.7, "end": 9561.16, "probability": 0.7555 }, { "start": 9561.62, "end": 9561.62, "probability": 0.3882 }, { "start": 9563.06, "end": 9568.96, "probability": 0.6168 }, { "start": 9569.32, "end": 9571.2, "probability": 0.978 }, { "start": 9571.76, "end": 9572.9, "probability": 0.4473 }, { "start": 9572.96, "end": 9573.04, "probability": 0.9097 }, { "start": 9573.04, "end": 9573.2, "probability": 0.9932 }, { "start": 9573.82, "end": 9575.12, "probability": 0.7632 }, { "start": 9575.18, "end": 9575.66, "probability": 0.4529 }, { "start": 9575.76, "end": 9575.98, "probability": 0.2817 }, { "start": 9576.06, "end": 9578.44, "probability": 0.8845 }, { "start": 9580.69, "end": 9584.92, "probability": 0.418 }, { "start": 9586.42, "end": 9586.58, "probability": 0.1254 }, { "start": 9586.58, "end": 9586.68, "probability": 0.3339 }, { "start": 9588.34, "end": 9589.38, "probability": 0.5026 }, { "start": 9589.38, "end": 9590.52, "probability": 0.4351 }, { "start": 9590.62, "end": 9593.22, "probability": 0.9189 }, { "start": 9593.3, "end": 9596.4, "probability": 0.9691 }, { "start": 9597.36, "end": 9597.78, "probability": 0.1141 }, { "start": 9597.78, "end": 9599.88, "probability": 0.6589 }, { "start": 9602.2, "end": 9602.3, "probability": 0.4767 }, { "start": 9602.3, "end": 9607.98, "probability": 0.884 }, { "start": 9608.16, "end": 9608.64, "probability": 0.8341 }, { "start": 9609.12, "end": 9609.7, "probability": 0.8725 }, { "start": 9611.32, "end": 9611.88, "probability": 0.3591 }, { "start": 9612.04, "end": 9612.68, "probability": 0.6074 }, { "start": 9612.72, "end": 9613.4, "probability": 0.7467 }, { "start": 9613.5, "end": 9614.96, "probability": 0.9487 }, { "start": 9615.12, "end": 9615.96, "probability": 0.8893 }, { "start": 9617.1, "end": 9618.96, "probability": 0.9291 }, { "start": 9619.06, "end": 9619.92, "probability": 0.9958 }, { "start": 9621.02, "end": 9625.12, "probability": 0.9342 }, { "start": 9625.26, "end": 9630.24, "probability": 0.989 }, { "start": 9630.82, "end": 9631.88, "probability": 0.7422 }, { "start": 9631.96, "end": 9631.96, "probability": 0.4479 }, { "start": 9631.96, "end": 9634.42, "probability": 0.5796 }, { "start": 9634.56, "end": 9636.78, "probability": 0.7703 }, { "start": 9636.86, "end": 9639.44, "probability": 0.3668 }, { "start": 9639.44, "end": 9639.5, "probability": 0.1042 }, { "start": 9639.5, "end": 9642.04, "probability": 0.601 }, { "start": 9642.08, "end": 9643.28, "probability": 0.9858 }, { "start": 9643.46, "end": 9646.26, "probability": 0.86 }, { "start": 9646.56, "end": 9647.7, "probability": 0.5184 }, { "start": 9647.76, "end": 9648.6, "probability": 0.8092 }, { "start": 9649.02, "end": 9649.12, "probability": 0.0435 }, { "start": 9651.08, "end": 9652.14, "probability": 0.7715 }, { "start": 9654.68, "end": 9659.18, "probability": 0.9896 }, { "start": 9661.18, "end": 9669.04, "probability": 0.8981 }, { "start": 9669.18, "end": 9670.78, "probability": 0.9146 }, { "start": 9672.14, "end": 9673.32, "probability": 0.7457 }, { "start": 9673.4, "end": 9673.88, "probability": 0.9613 }, { "start": 9675.58, "end": 9676.88, "probability": 0.7229 }, { "start": 9678.84, "end": 9679.52, "probability": 0.3982 }, { "start": 9680.36, "end": 9681.32, "probability": 0.8838 }, { "start": 9681.64, "end": 9682.22, "probability": 0.8979 }, { "start": 9682.36, "end": 9684.02, "probability": 0.7795 }, { "start": 9685.44, "end": 9688.48, "probability": 0.8642 }, { "start": 9689.6, "end": 9690.34, "probability": 0.7998 }, { "start": 9694.0, "end": 9694.78, "probability": 0.8987 }, { "start": 9695.76, "end": 9697.56, "probability": 0.8773 }, { "start": 9698.36, "end": 9703.2, "probability": 0.963 }, { "start": 9704.02, "end": 9706.88, "probability": 0.998 }, { "start": 9707.52, "end": 9708.66, "probability": 0.9336 }, { "start": 9709.52, "end": 9712.12, "probability": 0.9638 }, { "start": 9713.96, "end": 9714.82, "probability": 0.9714 }, { "start": 9715.58, "end": 9718.16, "probability": 0.9927 }, { "start": 9718.96, "end": 9720.44, "probability": 0.6802 }, { "start": 9720.5, "end": 9724.53, "probability": 0.8288 }, { "start": 9725.58, "end": 9728.02, "probability": 0.9946 }, { "start": 9729.86, "end": 9731.36, "probability": 0.771 }, { "start": 9732.48, "end": 9734.44, "probability": 0.9429 }, { "start": 9734.52, "end": 9734.89, "probability": 0.5823 }, { "start": 9735.3, "end": 9737.7, "probability": 0.8416 }, { "start": 9737.78, "end": 9739.8, "probability": 0.9971 }, { "start": 9741.06, "end": 9742.96, "probability": 0.5075 }, { "start": 9744.58, "end": 9750.7, "probability": 0.9797 }, { "start": 9751.3, "end": 9753.44, "probability": 0.8248 }, { "start": 9754.18, "end": 9754.84, "probability": 0.9112 }, { "start": 9755.86, "end": 9759.6, "probability": 0.9551 }, { "start": 9759.88, "end": 9760.06, "probability": 0.8482 }, { "start": 9760.14, "end": 9762.12, "probability": 0.9952 }, { "start": 9762.58, "end": 9764.44, "probability": 0.9949 }, { "start": 9765.42, "end": 9767.68, "probability": 0.938 }, { "start": 9768.6, "end": 9770.3, "probability": 0.8067 }, { "start": 9773.0, "end": 9776.28, "probability": 0.9988 }, { "start": 9776.68, "end": 9777.24, "probability": 0.8374 }, { "start": 9780.22, "end": 9786.62, "probability": 0.856 }, { "start": 9786.66, "end": 9790.34, "probability": 0.9804 }, { "start": 9790.8, "end": 9795.26, "probability": 0.9841 }, { "start": 9796.2, "end": 9799.05, "probability": 0.8706 }, { "start": 9799.72, "end": 9801.4, "probability": 0.9756 }, { "start": 9802.08, "end": 9806.1, "probability": 0.739 }, { "start": 9806.56, "end": 9811.78, "probability": 0.9083 }, { "start": 9811.94, "end": 9813.1, "probability": 0.9957 }, { "start": 9813.26, "end": 9813.78, "probability": 0.5066 }, { "start": 9813.84, "end": 9814.4, "probability": 0.8627 }, { "start": 9814.88, "end": 9817.4, "probability": 0.8783 }, { "start": 9817.7, "end": 9818.7, "probability": 0.6111 }, { "start": 9819.0, "end": 9820.22, "probability": 0.7632 }, { "start": 9821.08, "end": 9821.8, "probability": 0.9756 }, { "start": 9823.08, "end": 9823.52, "probability": 0.6564 }, { "start": 9823.74, "end": 9825.46, "probability": 0.9661 }, { "start": 9825.6, "end": 9826.7, "probability": 0.9138 }, { "start": 9827.26, "end": 9829.76, "probability": 0.9963 }, { "start": 9830.36, "end": 9831.64, "probability": 0.9503 }, { "start": 9833.04, "end": 9835.04, "probability": 0.9984 }, { "start": 9835.66, "end": 9836.38, "probability": 0.673 }, { "start": 9836.54, "end": 9839.0, "probability": 0.9878 }, { "start": 9839.08, "end": 9839.86, "probability": 0.6519 }, { "start": 9839.92, "end": 9840.7, "probability": 0.4218 }, { "start": 9840.8, "end": 9842.9, "probability": 0.7354 }, { "start": 9843.56, "end": 9845.82, "probability": 0.8699 }, { "start": 9846.46, "end": 9847.9, "probability": 0.9749 }, { "start": 9848.74, "end": 9849.84, "probability": 0.2124 }, { "start": 9849.84, "end": 9850.38, "probability": 0.9004 }, { "start": 9850.56, "end": 9851.42, "probability": 0.9021 }, { "start": 9851.92, "end": 9855.88, "probability": 0.9816 }, { "start": 9856.76, "end": 9857.1, "probability": 0.8429 }, { "start": 9857.42, "end": 9858.0, "probability": 0.9794 }, { "start": 9858.1, "end": 9858.36, "probability": 0.3577 }, { "start": 9858.38, "end": 9864.98, "probability": 0.9877 }, { "start": 9865.1, "end": 9866.24, "probability": 0.9987 }, { "start": 9867.08, "end": 9868.3, "probability": 0.9585 }, { "start": 9869.42, "end": 9871.63, "probability": 0.9948 }, { "start": 9872.7, "end": 9873.04, "probability": 0.8121 }, { "start": 9873.76, "end": 9875.92, "probability": 0.735 }, { "start": 9877.62, "end": 9879.68, "probability": 0.9135 }, { "start": 9879.68, "end": 9882.06, "probability": 0.7652 }, { "start": 9882.3, "end": 9883.34, "probability": 0.9844 }, { "start": 9885.7, "end": 9888.66, "probability": 0.8627 }, { "start": 9889.54, "end": 9894.02, "probability": 0.9174 }, { "start": 9894.36, "end": 9895.58, "probability": 0.998 }, { "start": 9896.96, "end": 9898.9, "probability": 0.9704 }, { "start": 9899.48, "end": 9900.62, "probability": 0.9338 }, { "start": 9901.82, "end": 9905.14, "probability": 0.7524 }, { "start": 9906.32, "end": 9906.96, "probability": 0.8448 }, { "start": 9907.04, "end": 9907.78, "probability": 0.771 }, { "start": 9907.82, "end": 9912.58, "probability": 0.9371 }, { "start": 9913.26, "end": 9914.54, "probability": 0.9563 }, { "start": 9915.36, "end": 9916.6, "probability": 0.731 }, { "start": 9917.22, "end": 9918.58, "probability": 0.7541 }, { "start": 9918.7, "end": 9921.22, "probability": 0.8539 }, { "start": 9921.88, "end": 9923.88, "probability": 0.9662 }, { "start": 9925.32, "end": 9925.5, "probability": 0.5092 }, { "start": 9926.44, "end": 9929.88, "probability": 0.7222 }, { "start": 9930.8, "end": 9931.44, "probability": 0.8627 }, { "start": 9931.5, "end": 9934.34, "probability": 0.9558 }, { "start": 9934.78, "end": 9936.64, "probability": 0.9257 }, { "start": 9936.98, "end": 9937.98, "probability": 0.8016 }, { "start": 9938.04, "end": 9939.02, "probability": 0.995 }, { "start": 9939.64, "end": 9940.36, "probability": 0.6816 }, { "start": 9941.12, "end": 9943.58, "probability": 0.7976 }, { "start": 9943.58, "end": 9946.0, "probability": 0.8423 }, { "start": 9946.36, "end": 9946.82, "probability": 0.6055 }, { "start": 9947.34, "end": 9951.08, "probability": 0.6927 }, { "start": 9952.54, "end": 9953.44, "probability": 0.9526 }, { "start": 9953.96, "end": 9958.04, "probability": 0.9976 }, { "start": 9959.12, "end": 9959.68, "probability": 0.7217 }, { "start": 9960.6, "end": 9966.34, "probability": 0.9982 }, { "start": 9967.0, "end": 9967.96, "probability": 0.7802 }, { "start": 9968.56, "end": 9970.6, "probability": 0.9697 }, { "start": 9970.7, "end": 9973.86, "probability": 0.8901 }, { "start": 9975.26, "end": 9978.75, "probability": 0.896 }, { "start": 9979.32, "end": 9980.68, "probability": 0.9198 }, { "start": 9981.34, "end": 9984.84, "probability": 0.9905 }, { "start": 9984.92, "end": 9986.0, "probability": 0.9706 }, { "start": 9988.22, "end": 9992.18, "probability": 0.9983 }, { "start": 9992.66, "end": 9998.2, "probability": 0.9884 }, { "start": 9998.62, "end": 9999.38, "probability": 0.8792 }, { "start": 10000.18, "end": 10001.36, "probability": 0.9583 }, { "start": 10003.34, "end": 10004.32, "probability": 0.9628 }, { "start": 10004.84, "end": 10005.88, "probability": 0.9851 }, { "start": 10006.64, "end": 10011.64, "probability": 0.9843 }, { "start": 10012.02, "end": 10012.72, "probability": 0.8818 }, { "start": 10013.36, "end": 10016.46, "probability": 0.9666 }, { "start": 10016.7, "end": 10017.0, "probability": 0.5725 }, { "start": 10017.96, "end": 10019.21, "probability": 0.8973 }, { "start": 10019.84, "end": 10020.27, "probability": 0.9844 }, { "start": 10022.32, "end": 10023.62, "probability": 0.9863 }, { "start": 10023.7, "end": 10024.06, "probability": 0.7885 }, { "start": 10024.32, "end": 10024.6, "probability": 0.8416 }, { "start": 10025.8, "end": 10027.4, "probability": 0.5996 }, { "start": 10028.24, "end": 10031.56, "probability": 0.9978 }, { "start": 10032.26, "end": 10036.56, "probability": 0.8995 }, { "start": 10036.76, "end": 10037.96, "probability": 0.9715 }, { "start": 10038.44, "end": 10039.56, "probability": 0.9773 }, { "start": 10039.9, "end": 10040.98, "probability": 0.896 }, { "start": 10041.72, "end": 10042.46, "probability": 0.958 }, { "start": 10042.6, "end": 10043.4, "probability": 0.8877 }, { "start": 10043.6, "end": 10044.34, "probability": 0.9384 }, { "start": 10045.24, "end": 10047.02, "probability": 0.9524 }, { "start": 10047.54, "end": 10048.2, "probability": 0.9966 }, { "start": 10050.62, "end": 10051.84, "probability": 0.9902 }, { "start": 10051.96, "end": 10052.5, "probability": 0.8055 }, { "start": 10052.7, "end": 10053.04, "probability": 0.2816 }, { "start": 10053.54, "end": 10055.52, "probability": 0.9495 }, { "start": 10056.18, "end": 10058.58, "probability": 0.7871 }, { "start": 10058.72, "end": 10058.86, "probability": 0.8625 }, { "start": 10058.88, "end": 10061.72, "probability": 0.9945 }, { "start": 10062.08, "end": 10065.64, "probability": 0.9995 }, { "start": 10066.22, "end": 10068.68, "probability": 0.8968 }, { "start": 10069.46, "end": 10072.16, "probability": 0.9528 }, { "start": 10072.2, "end": 10075.92, "probability": 0.9959 }, { "start": 10076.58, "end": 10077.02, "probability": 0.8816 }, { "start": 10077.68, "end": 10078.72, "probability": 0.9092 }, { "start": 10079.48, "end": 10083.14, "probability": 0.9689 }, { "start": 10083.56, "end": 10085.66, "probability": 0.9696 }, { "start": 10085.98, "end": 10086.8, "probability": 0.9328 }, { "start": 10087.24, "end": 10089.0, "probability": 0.969 }, { "start": 10089.58, "end": 10090.97, "probability": 0.9956 }, { "start": 10091.5, "end": 10092.2, "probability": 0.6856 }, { "start": 10092.58, "end": 10093.33, "probability": 0.9771 }, { "start": 10094.12, "end": 10095.36, "probability": 0.8862 }, { "start": 10095.51, "end": 10097.44, "probability": 0.7045 }, { "start": 10097.6, "end": 10098.02, "probability": 0.8867 }, { "start": 10098.68, "end": 10099.42, "probability": 0.7505 }, { "start": 10099.88, "end": 10101.98, "probability": 0.9845 }, { "start": 10102.22, "end": 10103.1, "probability": 0.9736 }, { "start": 10105.08, "end": 10108.98, "probability": 0.9895 }, { "start": 10109.16, "end": 10112.32, "probability": 0.9661 }, { "start": 10113.64, "end": 10118.14, "probability": 0.998 }, { "start": 10118.54, "end": 10120.94, "probability": 0.9969 }, { "start": 10121.36, "end": 10124.06, "probability": 0.9893 }, { "start": 10124.1, "end": 10124.84, "probability": 0.75 }, { "start": 10125.1, "end": 10128.84, "probability": 0.8086 }, { "start": 10129.82, "end": 10130.26, "probability": 0.8596 }, { "start": 10130.36, "end": 10131.9, "probability": 0.9862 }, { "start": 10131.98, "end": 10133.46, "probability": 0.795 }, { "start": 10133.58, "end": 10136.08, "probability": 0.9807 }, { "start": 10136.46, "end": 10137.26, "probability": 0.5545 }, { "start": 10137.84, "end": 10138.7, "probability": 0.9683 }, { "start": 10138.92, "end": 10139.56, "probability": 0.8972 }, { "start": 10140.18, "end": 10141.78, "probability": 0.6492 }, { "start": 10142.12, "end": 10145.58, "probability": 0.9709 }, { "start": 10146.2, "end": 10148.6, "probability": 0.8312 }, { "start": 10149.32, "end": 10151.54, "probability": 0.9425 }, { "start": 10152.86, "end": 10157.1, "probability": 0.9956 }, { "start": 10157.66, "end": 10161.82, "probability": 0.9943 }, { "start": 10162.56, "end": 10163.33, "probability": 0.9995 }, { "start": 10164.46, "end": 10167.32, "probability": 0.9572 }, { "start": 10168.88, "end": 10170.1, "probability": 0.7538 }, { "start": 10170.96, "end": 10172.74, "probability": 0.913 }, { "start": 10173.06, "end": 10178.62, "probability": 0.9801 }, { "start": 10178.62, "end": 10184.42, "probability": 0.9936 }, { "start": 10184.98, "end": 10186.45, "probability": 0.9956 }, { "start": 10187.2, "end": 10189.26, "probability": 0.9922 }, { "start": 10189.72, "end": 10191.24, "probability": 0.9929 }, { "start": 10191.68, "end": 10193.64, "probability": 0.9873 }, { "start": 10193.92, "end": 10196.14, "probability": 0.6133 }, { "start": 10196.78, "end": 10197.46, "probability": 0.9845 }, { "start": 10198.08, "end": 10198.36, "probability": 0.717 }, { "start": 10198.96, "end": 10200.86, "probability": 0.4285 }, { "start": 10200.9, "end": 10202.24, "probability": 0.9351 }, { "start": 10202.8, "end": 10205.66, "probability": 0.7764 }, { "start": 10224.62, "end": 10225.26, "probability": 0.3369 }, { "start": 10226.52, "end": 10227.96, "probability": 0.723 }, { "start": 10229.94, "end": 10230.66, "probability": 0.0085 }, { "start": 10231.74, "end": 10237.93, "probability": 0.96 }, { "start": 10239.3, "end": 10240.6, "probability": 0.6772 }, { "start": 10240.76, "end": 10243.48, "probability": 0.9819 }, { "start": 10244.88, "end": 10247.12, "probability": 0.968 }, { "start": 10248.12, "end": 10251.04, "probability": 0.9251 }, { "start": 10251.98, "end": 10255.48, "probability": 0.6461 }, { "start": 10257.3, "end": 10263.48, "probability": 0.9794 }, { "start": 10264.72, "end": 10265.54, "probability": 0.6895 }, { "start": 10266.64, "end": 10268.18, "probability": 0.8157 }, { "start": 10268.62, "end": 10270.46, "probability": 0.6795 }, { "start": 10270.46, "end": 10272.26, "probability": 0.9387 }, { "start": 10273.58, "end": 10276.24, "probability": 0.761 }, { "start": 10276.44, "end": 10277.42, "probability": 0.7231 }, { "start": 10278.26, "end": 10279.06, "probability": 0.768 }, { "start": 10280.26, "end": 10284.28, "probability": 0.9919 }, { "start": 10285.46, "end": 10286.0, "probability": 0.6661 }, { "start": 10286.08, "end": 10287.02, "probability": 0.9727 }, { "start": 10287.34, "end": 10288.12, "probability": 0.9802 }, { "start": 10288.36, "end": 10289.46, "probability": 0.9315 }, { "start": 10290.16, "end": 10292.06, "probability": 0.9928 }, { "start": 10292.94, "end": 10293.48, "probability": 0.9084 }, { "start": 10293.52, "end": 10294.72, "probability": 0.9675 }, { "start": 10294.88, "end": 10296.92, "probability": 0.9813 }, { "start": 10296.92, "end": 10300.62, "probability": 0.9582 }, { "start": 10301.78, "end": 10306.1, "probability": 0.9959 }, { "start": 10307.22, "end": 10307.58, "probability": 0.5941 }, { "start": 10307.7, "end": 10310.38, "probability": 0.9981 }, { "start": 10310.38, "end": 10313.98, "probability": 0.979 }, { "start": 10315.3, "end": 10317.54, "probability": 0.9991 }, { "start": 10317.54, "end": 10319.98, "probability": 0.8192 }, { "start": 10321.28, "end": 10324.02, "probability": 0.9256 }, { "start": 10324.14, "end": 10325.22, "probability": 0.7907 }, { "start": 10325.6, "end": 10328.12, "probability": 0.9475 }, { "start": 10328.12, "end": 10331.48, "probability": 0.9959 }, { "start": 10332.5, "end": 10335.48, "probability": 0.9893 }, { "start": 10336.68, "end": 10338.3, "probability": 0.9647 }, { "start": 10338.48, "end": 10342.16, "probability": 0.9961 }, { "start": 10343.1, "end": 10343.88, "probability": 0.8431 }, { "start": 10344.58, "end": 10347.06, "probability": 0.8357 }, { "start": 10348.62, "end": 10349.6, "probability": 0.84 }, { "start": 10349.66, "end": 10352.6, "probability": 0.9945 }, { "start": 10353.2, "end": 10355.86, "probability": 0.8921 }, { "start": 10355.96, "end": 10356.54, "probability": 0.6563 }, { "start": 10356.64, "end": 10357.96, "probability": 0.8135 }, { "start": 10358.66, "end": 10361.72, "probability": 0.9727 }, { "start": 10362.66, "end": 10365.2, "probability": 0.9032 }, { "start": 10366.08, "end": 10370.26, "probability": 0.9751 }, { "start": 10370.54, "end": 10371.36, "probability": 0.7563 }, { "start": 10372.12, "end": 10374.08, "probability": 0.9927 }, { "start": 10375.22, "end": 10377.9, "probability": 0.978 }, { "start": 10377.98, "end": 10378.88, "probability": 0.5749 }, { "start": 10379.54, "end": 10381.26, "probability": 0.9394 }, { "start": 10381.34, "end": 10385.58, "probability": 0.9401 }, { "start": 10385.98, "end": 10387.6, "probability": 0.9203 }, { "start": 10388.22, "end": 10390.16, "probability": 0.98 }, { "start": 10390.16, "end": 10392.88, "probability": 0.9927 }, { "start": 10393.52, "end": 10395.92, "probability": 0.9912 }, { "start": 10397.0, "end": 10398.74, "probability": 0.9785 }, { "start": 10399.24, "end": 10401.16, "probability": 0.998 }, { "start": 10401.86, "end": 10404.94, "probability": 0.9946 }, { "start": 10405.58, "end": 10406.98, "probability": 0.9786 }, { "start": 10408.42, "end": 10410.26, "probability": 0.8255 }, { "start": 10410.96, "end": 10414.56, "probability": 0.9715 }, { "start": 10415.22, "end": 10417.86, "probability": 0.8397 }, { "start": 10418.54, "end": 10421.8, "probability": 0.9985 }, { "start": 10421.9, "end": 10426.12, "probability": 0.9259 }, { "start": 10427.04, "end": 10427.98, "probability": 0.5601 }, { "start": 10428.74, "end": 10432.54, "probability": 0.7633 }, { "start": 10432.6, "end": 10434.36, "probability": 0.9901 }, { "start": 10435.72, "end": 10436.84, "probability": 0.9765 }, { "start": 10437.66, "end": 10441.04, "probability": 0.9896 }, { "start": 10441.72, "end": 10443.02, "probability": 0.8729 }, { "start": 10445.2, "end": 10447.72, "probability": 0.8961 }, { "start": 10448.52, "end": 10451.36, "probability": 0.9231 }, { "start": 10451.56, "end": 10454.0, "probability": 0.9982 }, { "start": 10454.74, "end": 10456.66, "probability": 0.9939 }, { "start": 10456.66, "end": 10459.24, "probability": 0.9967 }, { "start": 10459.9, "end": 10462.14, "probability": 0.9967 }, { "start": 10463.6, "end": 10463.6, "probability": 0.1253 }, { "start": 10463.6, "end": 10465.88, "probability": 0.7944 }, { "start": 10466.18, "end": 10466.86, "probability": 0.8109 }, { "start": 10467.66, "end": 10470.4, "probability": 0.9913 }, { "start": 10470.92, "end": 10473.4, "probability": 0.9966 }, { "start": 10473.82, "end": 10474.9, "probability": 0.9424 }, { "start": 10475.98, "end": 10478.92, "probability": 0.9935 }, { "start": 10478.92, "end": 10481.72, "probability": 0.9917 }, { "start": 10481.84, "end": 10484.88, "probability": 0.9128 }, { "start": 10485.48, "end": 10489.78, "probability": 0.9628 }, { "start": 10490.42, "end": 10494.02, "probability": 0.9841 }, { "start": 10494.74, "end": 10497.94, "probability": 0.9685 }, { "start": 10497.98, "end": 10502.16, "probability": 0.9266 }, { "start": 10502.96, "end": 10503.26, "probability": 0.515 }, { "start": 10504.38, "end": 10506.58, "probability": 0.9586 }, { "start": 10507.32, "end": 10508.98, "probability": 0.7722 }, { "start": 10509.52, "end": 10510.52, "probability": 0.9661 }, { "start": 10510.66, "end": 10512.5, "probability": 0.9821 }, { "start": 10512.5, "end": 10516.72, "probability": 0.9894 }, { "start": 10517.44, "end": 10517.9, "probability": 0.7061 }, { "start": 10518.04, "end": 10522.46, "probability": 0.8538 }, { "start": 10522.46, "end": 10527.96, "probability": 0.965 }, { "start": 10528.56, "end": 10530.74, "probability": 0.998 }, { "start": 10530.74, "end": 10533.08, "probability": 0.9385 }, { "start": 10533.82, "end": 10534.28, "probability": 0.6884 }, { "start": 10534.32, "end": 10535.88, "probability": 0.6843 }, { "start": 10535.96, "end": 10538.38, "probability": 0.9915 }, { "start": 10538.96, "end": 10542.2, "probability": 0.9446 }, { "start": 10543.12, "end": 10545.82, "probability": 0.9347 }, { "start": 10546.92, "end": 10549.62, "probability": 0.9687 }, { "start": 10550.46, "end": 10554.4, "probability": 0.9909 }, { "start": 10554.4, "end": 10558.72, "probability": 0.9897 }, { "start": 10559.62, "end": 10561.28, "probability": 0.3909 }, { "start": 10562.3, "end": 10566.96, "probability": 0.9964 }, { "start": 10567.78, "end": 10569.14, "probability": 0.9197 }, { "start": 10569.84, "end": 10571.6, "probability": 0.9938 }, { "start": 10572.42, "end": 10574.98, "probability": 0.6717 }, { "start": 10575.82, "end": 10577.02, "probability": 0.9219 }, { "start": 10577.32, "end": 10578.22, "probability": 0.8651 }, { "start": 10578.24, "end": 10580.36, "probability": 0.9583 }, { "start": 10580.92, "end": 10582.68, "probability": 0.7963 }, { "start": 10583.48, "end": 10585.98, "probability": 0.9561 }, { "start": 10586.6, "end": 10589.44, "probability": 0.9398 }, { "start": 10589.44, "end": 10594.12, "probability": 0.9977 }, { "start": 10594.12, "end": 10597.26, "probability": 0.9928 }, { "start": 10598.22, "end": 10600.94, "probability": 0.9771 }, { "start": 10601.46, "end": 10603.66, "probability": 0.9885 }, { "start": 10604.94, "end": 10606.94, "probability": 0.9666 }, { "start": 10606.94, "end": 10609.26, "probability": 0.9906 }, { "start": 10609.96, "end": 10614.16, "probability": 0.9854 }, { "start": 10614.16, "end": 10617.06, "probability": 0.9754 }, { "start": 10618.1, "end": 10620.2, "probability": 0.9813 }, { "start": 10620.94, "end": 10621.74, "probability": 0.5264 }, { "start": 10621.82, "end": 10623.54, "probability": 0.9596 }, { "start": 10623.92, "end": 10628.57, "probability": 0.9697 }, { "start": 10629.52, "end": 10630.32, "probability": 0.9622 }, { "start": 10631.14, "end": 10631.7, "probability": 0.5395 }, { "start": 10631.72, "end": 10631.96, "probability": 0.9171 }, { "start": 10632.06, "end": 10633.38, "probability": 0.8929 }, { "start": 10634.3, "end": 10637.66, "probability": 0.9819 }, { "start": 10638.08, "end": 10638.82, "probability": 0.9132 }, { "start": 10639.26, "end": 10642.12, "probability": 0.9706 }, { "start": 10642.6, "end": 10647.3, "probability": 0.9333 }, { "start": 10648.1, "end": 10650.2, "probability": 0.8604 }, { "start": 10651.2, "end": 10652.02, "probability": 0.863 }, { "start": 10652.44, "end": 10653.08, "probability": 0.6075 }, { "start": 10653.16, "end": 10657.22, "probability": 0.8793 }, { "start": 10657.88, "end": 10661.44, "probability": 0.8253 }, { "start": 10664.7, "end": 10670.64, "probability": 0.9319 }, { "start": 10671.26, "end": 10671.94, "probability": 0.5614 }, { "start": 10672.06, "end": 10672.36, "probability": 0.6182 }, { "start": 10672.46, "end": 10673.64, "probability": 0.9965 }, { "start": 10674.44, "end": 10675.28, "probability": 0.4017 }, { "start": 10675.36, "end": 10676.76, "probability": 0.5539 }, { "start": 10676.82, "end": 10684.04, "probability": 0.9913 }, { "start": 10684.56, "end": 10686.88, "probability": 0.9047 }, { "start": 10688.22, "end": 10690.02, "probability": 0.9738 }, { "start": 10690.88, "end": 10691.78, "probability": 0.5115 }, { "start": 10691.86, "end": 10692.3, "probability": 0.7152 }, { "start": 10692.44, "end": 10692.94, "probability": 0.9129 }, { "start": 10693.1, "end": 10694.56, "probability": 0.9961 }, { "start": 10695.62, "end": 10697.72, "probability": 0.7844 }, { "start": 10698.6, "end": 10701.42, "probability": 0.7926 }, { "start": 10702.0, "end": 10702.6, "probability": 0.9825 }, { "start": 10703.66, "end": 10705.2, "probability": 0.6219 }, { "start": 10706.54, "end": 10709.86, "probability": 0.9956 }, { "start": 10709.86, "end": 10713.63, "probability": 0.999 }, { "start": 10714.7, "end": 10716.68, "probability": 0.8747 }, { "start": 10718.18, "end": 10720.28, "probability": 0.9731 }, { "start": 10721.06, "end": 10725.14, "probability": 0.9989 }, { "start": 10726.12, "end": 10728.54, "probability": 0.7457 }, { "start": 10728.56, "end": 10731.18, "probability": 0.9812 }, { "start": 10731.18, "end": 10734.96, "probability": 0.9959 }, { "start": 10735.66, "end": 10736.1, "probability": 0.4517 }, { "start": 10736.22, "end": 10742.72, "probability": 0.9499 }, { "start": 10743.28, "end": 10743.82, "probability": 0.8279 }, { "start": 10743.98, "end": 10744.08, "probability": 0.5459 }, { "start": 10744.18, "end": 10745.1, "probability": 0.7868 }, { "start": 10745.54, "end": 10750.88, "probability": 0.9363 }, { "start": 10751.52, "end": 10754.12, "probability": 0.9904 }, { "start": 10755.46, "end": 10757.0, "probability": 0.9129 }, { "start": 10757.22, "end": 10758.76, "probability": 0.9119 }, { "start": 10759.6, "end": 10760.98, "probability": 0.98 }, { "start": 10761.62, "end": 10766.26, "probability": 0.9784 }, { "start": 10766.78, "end": 10769.66, "probability": 0.7102 }, { "start": 10770.82, "end": 10771.88, "probability": 0.4314 }, { "start": 10772.44, "end": 10773.59, "probability": 0.9873 }, { "start": 10774.24, "end": 10775.78, "probability": 0.9017 }, { "start": 10776.38, "end": 10780.0, "probability": 0.9164 }, { "start": 10780.64, "end": 10785.24, "probability": 0.826 }, { "start": 10785.24, "end": 10788.94, "probability": 0.9883 }, { "start": 10789.44, "end": 10791.78, "probability": 0.798 }, { "start": 10792.46, "end": 10793.22, "probability": 0.9937 }, { "start": 10793.98, "end": 10797.42, "probability": 0.9412 }, { "start": 10798.28, "end": 10802.02, "probability": 0.9185 }, { "start": 10802.54, "end": 10805.59, "probability": 0.9871 }, { "start": 10806.7, "end": 10809.06, "probability": 0.9549 }, { "start": 10809.78, "end": 10812.26, "probability": 0.7141 }, { "start": 10813.3, "end": 10814.4, "probability": 0.9502 }, { "start": 10814.56, "end": 10818.18, "probability": 0.8353 }, { "start": 10818.62, "end": 10819.8, "probability": 0.9614 }, { "start": 10820.24, "end": 10821.5, "probability": 0.8555 }, { "start": 10821.58, "end": 10822.06, "probability": 0.3634 }, { "start": 10822.66, "end": 10828.02, "probability": 0.9986 }, { "start": 10829.48, "end": 10832.18, "probability": 0.9936 }, { "start": 10832.62, "end": 10833.96, "probability": 0.8558 }, { "start": 10834.4, "end": 10835.52, "probability": 0.9828 }, { "start": 10836.32, "end": 10838.76, "probability": 0.9768 }, { "start": 10839.14, "end": 10841.78, "probability": 0.7522 }, { "start": 10842.84, "end": 10845.54, "probability": 0.9963 }, { "start": 10845.54, "end": 10849.56, "probability": 0.9354 }, { "start": 10849.84, "end": 10850.16, "probability": 0.8378 }, { "start": 10850.94, "end": 10851.5, "probability": 0.8423 }, { "start": 10852.46, "end": 10855.38, "probability": 0.9344 }, { "start": 10855.98, "end": 10858.82, "probability": 0.6361 }, { "start": 10862.06, "end": 10864.02, "probability": 0.7408 }, { "start": 10878.6, "end": 10879.86, "probability": 0.6516 }, { "start": 10880.2, "end": 10881.68, "probability": 0.6552 }, { "start": 10881.84, "end": 10882.92, "probability": 0.3093 }, { "start": 10882.92, "end": 10883.98, "probability": 0.1088 }, { "start": 10884.98, "end": 10886.36, "probability": 0.4921 }, { "start": 10887.2, "end": 10888.35, "probability": 0.6201 }, { "start": 10889.96, "end": 10892.36, "probability": 0.1137 }, { "start": 10894.28, "end": 10894.92, "probability": 0.1203 }, { "start": 10897.82, "end": 10898.02, "probability": 0.4671 }, { "start": 10898.62, "end": 10899.7, "probability": 0.4184 }, { "start": 10899.7, "end": 10899.96, "probability": 0.8072 }, { "start": 10902.94, "end": 10903.5, "probability": 0.83 }, { "start": 10903.64, "end": 10904.32, "probability": 0.8449 }, { "start": 10905.2, "end": 10907.36, "probability": 0.8682 }, { "start": 10921.08, "end": 10921.54, "probability": 0.4943 }, { "start": 10922.96, "end": 10924.34, "probability": 0.6009 }, { "start": 10926.12, "end": 10927.94, "probability": 0.3955 }, { "start": 10928.04, "end": 10929.78, "probability": 0.9254 }, { "start": 10929.88, "end": 10932.54, "probability": 0.5937 }, { "start": 10933.76, "end": 10934.32, "probability": 0.0602 }, { "start": 10934.44, "end": 10936.8, "probability": 0.8331 }, { "start": 10938.36, "end": 10939.48, "probability": 0.9918 }, { "start": 10939.52, "end": 10941.08, "probability": 0.8899 }, { "start": 10941.88, "end": 10942.3, "probability": 0.9041 }, { "start": 10943.58, "end": 10946.12, "probability": 0.886 }, { "start": 10947.22, "end": 10949.5, "probability": 0.9494 }, { "start": 10950.9, "end": 10954.64, "probability": 0.9946 }, { "start": 10956.94, "end": 10959.2, "probability": 0.9971 }, { "start": 10959.98, "end": 10963.02, "probability": 0.8616 }, { "start": 10965.18, "end": 10966.08, "probability": 0.9521 }, { "start": 10967.58, "end": 10969.46, "probability": 0.5113 }, { "start": 10970.64, "end": 10971.82, "probability": 0.9745 }, { "start": 10971.92, "end": 10972.35, "probability": 0.9926 }, { "start": 10972.56, "end": 10974.62, "probability": 0.9672 }, { "start": 10974.68, "end": 10975.34, "probability": 0.7505 }, { "start": 10975.34, "end": 10975.86, "probability": 0.5489 }, { "start": 10976.08, "end": 10976.08, "probability": 0.4965 }, { "start": 10976.08, "end": 10976.18, "probability": 0.2599 }, { "start": 10977.26, "end": 10977.26, "probability": 0.4161 }, { "start": 10977.62, "end": 10977.76, "probability": 0.0982 }, { "start": 10978.94, "end": 10979.16, "probability": 0.2026 }, { "start": 10980.24, "end": 10983.14, "probability": 0.9163 }, { "start": 10983.34, "end": 10985.06, "probability": 0.8184 }, { "start": 10985.12, "end": 10985.5, "probability": 0.8452 }, { "start": 10985.86, "end": 10986.74, "probability": 0.444 }, { "start": 10987.46, "end": 10987.64, "probability": 0.7445 }, { "start": 10989.56, "end": 10991.76, "probability": 0.7537 }, { "start": 10992.18, "end": 10992.94, "probability": 0.148 }, { "start": 10993.38, "end": 10995.88, "probability": 0.9727 }, { "start": 10997.38, "end": 10998.04, "probability": 0.2232 }, { "start": 11000.52, "end": 11001.24, "probability": 0.0086 }, { "start": 11001.36, "end": 11002.06, "probability": 0.1805 }, { "start": 11002.64, "end": 11004.04, "probability": 0.2679 }, { "start": 11004.26, "end": 11004.84, "probability": 0.3748 }, { "start": 11004.84, "end": 11004.94, "probability": 0.1771 }, { "start": 11005.64, "end": 11005.92, "probability": 0.1646 }, { "start": 11005.92, "end": 11006.32, "probability": 0.4071 }, { "start": 11006.8, "end": 11008.08, "probability": 0.1082 }, { "start": 11009.42, "end": 11011.16, "probability": 0.1531 }, { "start": 11011.38, "end": 11013.18, "probability": 0.1071 }, { "start": 11013.58, "end": 11015.36, "probability": 0.7732 }, { "start": 11015.78, "end": 11019.12, "probability": 0.4354 }, { "start": 11019.32, "end": 11022.02, "probability": 0.1159 }, { "start": 11022.02, "end": 11022.02, "probability": 0.0528 }, { "start": 11022.02, "end": 11022.02, "probability": 0.6845 }, { "start": 11022.1, "end": 11025.74, "probability": 0.9922 }, { "start": 11026.4, "end": 11027.47, "probability": 0.575 }, { "start": 11028.16, "end": 11030.06, "probability": 0.9244 }, { "start": 11031.05, "end": 11033.62, "probability": 0.8861 }, { "start": 11035.2, "end": 11036.3, "probability": 0.3572 }, { "start": 11036.98, "end": 11038.0, "probability": 0.8006 }, { "start": 11038.22, "end": 11038.9, "probability": 0.8676 }, { "start": 11039.06, "end": 11042.34, "probability": 0.9043 }, { "start": 11042.5, "end": 11042.98, "probability": 0.5744 }, { "start": 11044.72, "end": 11047.86, "probability": 0.8521 }, { "start": 11047.96, "end": 11048.44, "probability": 0.9573 }, { "start": 11049.52, "end": 11051.26, "probability": 0.9191 }, { "start": 11051.48, "end": 11053.3, "probability": 0.9971 }, { "start": 11053.96, "end": 11057.0, "probability": 0.9844 }, { "start": 11058.22, "end": 11058.96, "probability": 0.7639 }, { "start": 11059.04, "end": 11059.92, "probability": 0.8378 }, { "start": 11060.14, "end": 11060.98, "probability": 0.8533 }, { "start": 11061.08, "end": 11061.82, "probability": 0.9507 }, { "start": 11061.9, "end": 11062.42, "probability": 0.9699 }, { "start": 11063.66, "end": 11069.96, "probability": 0.951 }, { "start": 11070.8, "end": 11072.4, "probability": 0.9925 }, { "start": 11073.36, "end": 11075.63, "probability": 0.9186 }, { "start": 11076.2, "end": 11077.38, "probability": 0.8196 }, { "start": 11077.4, "end": 11078.38, "probability": 0.9182 }, { "start": 11078.46, "end": 11082.2, "probability": 0.9738 }, { "start": 11082.74, "end": 11083.22, "probability": 0.7314 }, { "start": 11085.06, "end": 11085.72, "probability": 0.9258 }, { "start": 11086.54, "end": 11088.4, "probability": 0.9368 }, { "start": 11088.4, "end": 11089.1, "probability": 0.5036 }, { "start": 11089.47, "end": 11091.4, "probability": 0.8373 }, { "start": 11092.02, "end": 11094.22, "probability": 0.9349 }, { "start": 11095.82, "end": 11100.46, "probability": 0.9924 }, { "start": 11101.2, "end": 11102.62, "probability": 0.9583 }, { "start": 11102.8, "end": 11104.75, "probability": 0.8813 }, { "start": 11105.8, "end": 11108.04, "probability": 0.9824 }, { "start": 11108.12, "end": 11110.52, "probability": 0.833 }, { "start": 11110.58, "end": 11110.88, "probability": 0.6706 }, { "start": 11110.98, "end": 11111.36, "probability": 0.7589 }, { "start": 11111.8, "end": 11112.01, "probability": 0.0054 }, { "start": 11112.1, "end": 11112.48, "probability": 0.4061 }, { "start": 11112.54, "end": 11113.04, "probability": 0.6208 }, { "start": 11113.08, "end": 11113.68, "probability": 0.7682 }, { "start": 11113.92, "end": 11114.16, "probability": 0.6263 }, { "start": 11114.38, "end": 11116.1, "probability": 0.8672 }, { "start": 11116.4, "end": 11116.62, "probability": 0.5274 }, { "start": 11118.94, "end": 11120.78, "probability": 0.3319 }, { "start": 11120.9, "end": 11121.82, "probability": 0.6196 }, { "start": 11121.84, "end": 11123.08, "probability": 0.7889 }, { "start": 11123.4, "end": 11125.6, "probability": 0.9893 }, { "start": 11126.06, "end": 11128.46, "probability": 0.9187 }, { "start": 11130.6, "end": 11131.37, "probability": 0.0117 }, { "start": 11132.86, "end": 11133.4, "probability": 0.7978 }, { "start": 11134.34, "end": 11138.32, "probability": 0.6012 }, { "start": 11138.32, "end": 11139.32, "probability": 0.9157 }, { "start": 11140.28, "end": 11141.7, "probability": 0.9425 }, { "start": 11141.72, "end": 11143.14, "probability": 0.8635 }, { "start": 11144.2, "end": 11145.8, "probability": 0.631 }, { "start": 11146.44, "end": 11147.64, "probability": 0.666 }, { "start": 11147.66, "end": 11149.84, "probability": 0.9895 }, { "start": 11150.3, "end": 11151.17, "probability": 0.921 }, { "start": 11151.82, "end": 11153.7, "probability": 0.9543 }, { "start": 11153.8, "end": 11155.14, "probability": 0.9393 }, { "start": 11156.08, "end": 11156.46, "probability": 0.5917 }, { "start": 11156.76, "end": 11157.8, "probability": 0.5562 }, { "start": 11158.3, "end": 11162.3, "probability": 0.9363 }, { "start": 11162.76, "end": 11163.76, "probability": 0.7447 }, { "start": 11163.88, "end": 11164.84, "probability": 0.998 }, { "start": 11166.48, "end": 11168.68, "probability": 0.7483 }, { "start": 11169.7, "end": 11171.14, "probability": 0.9349 }, { "start": 11171.62, "end": 11173.46, "probability": 0.9069 }, { "start": 11174.38, "end": 11175.44, "probability": 0.6362 }, { "start": 11176.68, "end": 11178.54, "probability": 0.7503 }, { "start": 11179.24, "end": 11181.04, "probability": 0.7311 }, { "start": 11181.9, "end": 11185.66, "probability": 0.7689 }, { "start": 11186.08, "end": 11188.36, "probability": 0.8981 }, { "start": 11188.88, "end": 11189.64, "probability": 0.9185 }, { "start": 11190.42, "end": 11191.24, "probability": 0.8486 }, { "start": 11191.84, "end": 11194.8, "probability": 0.9344 }, { "start": 11194.96, "end": 11195.52, "probability": 0.5011 }, { "start": 11196.81, "end": 11198.8, "probability": 0.9624 }, { "start": 11198.86, "end": 11201.16, "probability": 0.967 }, { "start": 11202.99, "end": 11203.62, "probability": 0.6909 }, { "start": 11204.1, "end": 11206.4, "probability": 0.8651 }, { "start": 11207.26, "end": 11208.86, "probability": 0.9883 }, { "start": 11208.92, "end": 11210.55, "probability": 0.9827 }, { "start": 11212.6, "end": 11213.94, "probability": 0.7211 }, { "start": 11214.8, "end": 11216.34, "probability": 0.7289 }, { "start": 11217.32, "end": 11217.91, "probability": 0.7933 }, { "start": 11218.8, "end": 11219.62, "probability": 0.8391 }, { "start": 11219.76, "end": 11220.48, "probability": 0.5287 }, { "start": 11220.62, "end": 11222.74, "probability": 0.8271 }, { "start": 11223.8, "end": 11224.5, "probability": 0.9461 }, { "start": 11225.52, "end": 11227.8, "probability": 0.9891 }, { "start": 11228.48, "end": 11230.26, "probability": 0.7872 }, { "start": 11231.44, "end": 11232.76, "probability": 0.9966 }, { "start": 11233.6, "end": 11235.42, "probability": 0.9946 }, { "start": 11235.79, "end": 11237.8, "probability": 0.7606 }, { "start": 11237.86, "end": 11238.48, "probability": 0.4753 }, { "start": 11239.54, "end": 11239.82, "probability": 0.741 }, { "start": 11240.32, "end": 11241.87, "probability": 0.9194 }, { "start": 11243.54, "end": 11248.38, "probability": 0.7044 }, { "start": 11248.96, "end": 11249.62, "probability": 0.3309 }, { "start": 11249.68, "end": 11250.74, "probability": 0.9771 }, { "start": 11250.82, "end": 11251.24, "probability": 0.3779 }, { "start": 11251.24, "end": 11252.22, "probability": 0.7645 }, { "start": 11253.04, "end": 11256.56, "probability": 0.8613 }, { "start": 11257.02, "end": 11257.9, "probability": 0.8082 }, { "start": 11258.86, "end": 11259.59, "probability": 0.7484 }, { "start": 11260.42, "end": 11261.0, "probability": 0.6532 }, { "start": 11261.56, "end": 11262.38, "probability": 0.9858 }, { "start": 11263.46, "end": 11265.16, "probability": 0.9902 }, { "start": 11265.88, "end": 11267.16, "probability": 0.9852 }, { "start": 11268.4, "end": 11268.96, "probability": 0.909 }, { "start": 11270.7, "end": 11273.66, "probability": 0.9803 }, { "start": 11275.62, "end": 11277.0, "probability": 0.9915 }, { "start": 11277.58, "end": 11280.28, "probability": 0.8867 }, { "start": 11280.62, "end": 11281.76, "probability": 0.7237 }, { "start": 11284.64, "end": 11286.34, "probability": 0.9336 }, { "start": 11286.76, "end": 11287.24, "probability": 0.6336 }, { "start": 11287.5, "end": 11289.92, "probability": 0.944 }, { "start": 11290.4, "end": 11290.96, "probability": 0.7135 }, { "start": 11291.78, "end": 11292.84, "probability": 0.9504 }, { "start": 11293.96, "end": 11295.92, "probability": 0.505 }, { "start": 11296.84, "end": 11300.9, "probability": 0.8121 }, { "start": 11302.46, "end": 11303.32, "probability": 0.3182 }, { "start": 11303.5, "end": 11305.42, "probability": 0.8513 }, { "start": 11305.92, "end": 11309.28, "probability": 0.8726 }, { "start": 11309.34, "end": 11310.24, "probability": 0.3541 }, { "start": 11311.04, "end": 11312.9, "probability": 0.9868 }, { "start": 11314.5, "end": 11315.68, "probability": 0.7317 }, { "start": 11316.52, "end": 11317.7, "probability": 0.8636 }, { "start": 11318.3, "end": 11320.9, "probability": 0.9176 }, { "start": 11322.4, "end": 11323.78, "probability": 0.9845 }, { "start": 11324.72, "end": 11327.92, "probability": 0.714 }, { "start": 11328.98, "end": 11330.7, "probability": 0.8854 }, { "start": 11332.12, "end": 11333.12, "probability": 0.8467 }, { "start": 11333.14, "end": 11334.58, "probability": 0.9609 }, { "start": 11335.44, "end": 11336.68, "probability": 0.4885 }, { "start": 11337.9, "end": 11339.26, "probability": 0.543 }, { "start": 11339.7, "end": 11343.94, "probability": 0.9678 }, { "start": 11345.46, "end": 11346.26, "probability": 0.7948 }, { "start": 11347.58, "end": 11349.28, "probability": 0.9579 }, { "start": 11350.12, "end": 11351.2, "probability": 0.9976 }, { "start": 11352.1, "end": 11353.68, "probability": 0.9802 }, { "start": 11355.18, "end": 11356.96, "probability": 0.7563 }, { "start": 11357.0, "end": 11357.86, "probability": 0.9225 }, { "start": 11358.1, "end": 11363.68, "probability": 0.9009 }, { "start": 11363.72, "end": 11365.88, "probability": 0.936 }, { "start": 11366.68, "end": 11369.5, "probability": 0.9894 }, { "start": 11369.5, "end": 11371.44, "probability": 0.8354 }, { "start": 11372.08, "end": 11376.5, "probability": 0.7585 }, { "start": 11377.28, "end": 11379.74, "probability": 0.8606 }, { "start": 11380.46, "end": 11382.38, "probability": 0.8094 }, { "start": 11382.84, "end": 11386.16, "probability": 0.9627 }, { "start": 11387.68, "end": 11388.88, "probability": 0.8712 }, { "start": 11390.28, "end": 11393.74, "probability": 0.8376 }, { "start": 11394.28, "end": 11395.54, "probability": 0.6846 }, { "start": 11396.8, "end": 11398.0, "probability": 0.9963 }, { "start": 11399.58, "end": 11400.06, "probability": 0.3505 }, { "start": 11400.28, "end": 11403.02, "probability": 0.9233 }, { "start": 11404.04, "end": 11406.62, "probability": 0.9426 }, { "start": 11408.2, "end": 11411.1, "probability": 0.9969 }, { "start": 11411.24, "end": 11411.68, "probability": 0.7808 }, { "start": 11411.76, "end": 11412.42, "probability": 0.8175 }, { "start": 11413.3, "end": 11414.9, "probability": 0.8135 }, { "start": 11415.78, "end": 11418.48, "probability": 0.9224 }, { "start": 11419.42, "end": 11421.18, "probability": 0.9486 }, { "start": 11422.16, "end": 11424.06, "probability": 0.981 }, { "start": 11424.32, "end": 11424.88, "probability": 0.9262 }, { "start": 11425.94, "end": 11427.32, "probability": 0.7071 }, { "start": 11428.48, "end": 11433.3, "probability": 0.9907 }, { "start": 11433.94, "end": 11437.87, "probability": 0.9719 }, { "start": 11438.72, "end": 11439.54, "probability": 0.9652 }, { "start": 11442.61, "end": 11446.58, "probability": 0.6556 }, { "start": 11446.62, "end": 11449.8, "probability": 0.9961 }, { "start": 11450.68, "end": 11451.6, "probability": 0.8464 }, { "start": 11451.8, "end": 11452.58, "probability": 0.5745 }, { "start": 11452.62, "end": 11454.76, "probability": 0.6794 }, { "start": 11454.8, "end": 11455.9, "probability": 0.5672 }, { "start": 11457.34, "end": 11459.12, "probability": 0.9361 }, { "start": 11459.84, "end": 11462.16, "probability": 0.8054 }, { "start": 11463.34, "end": 11464.7, "probability": 0.9103 }, { "start": 11465.5, "end": 11467.52, "probability": 0.753 }, { "start": 11468.16, "end": 11468.88, "probability": 0.4084 }, { "start": 11469.06, "end": 11469.86, "probability": 0.8142 }, { "start": 11470.72, "end": 11471.18, "probability": 0.8982 }, { "start": 11471.96, "end": 11472.77, "probability": 0.4949 }, { "start": 11473.34, "end": 11476.32, "probability": 0.9766 }, { "start": 11477.8, "end": 11481.27, "probability": 0.8822 }, { "start": 11481.76, "end": 11483.12, "probability": 0.8335 }, { "start": 11483.68, "end": 11486.68, "probability": 0.9585 }, { "start": 11488.02, "end": 11489.26, "probability": 0.7581 }, { "start": 11489.62, "end": 11493.2, "probability": 0.8156 }, { "start": 11494.52, "end": 11495.94, "probability": 0.917 }, { "start": 11496.14, "end": 11497.16, "probability": 0.9671 }, { "start": 11497.62, "end": 11498.88, "probability": 0.9615 }, { "start": 11499.5, "end": 11500.08, "probability": 0.9628 }, { "start": 11500.72, "end": 11501.28, "probability": 0.9125 }, { "start": 11502.32, "end": 11504.3, "probability": 0.7265 }, { "start": 11504.94, "end": 11506.5, "probability": 0.8686 }, { "start": 11507.36, "end": 11509.08, "probability": 0.9773 }, { "start": 11510.24, "end": 11512.14, "probability": 0.9722 }, { "start": 11512.44, "end": 11514.18, "probability": 0.8367 }, { "start": 11514.22, "end": 11515.38, "probability": 0.9398 }, { "start": 11516.04, "end": 11516.68, "probability": 0.7349 }, { "start": 11517.52, "end": 11518.74, "probability": 0.9746 }, { "start": 11519.66, "end": 11521.4, "probability": 0.9134 }, { "start": 11522.1, "end": 11523.26, "probability": 0.9436 }, { "start": 11523.78, "end": 11525.36, "probability": 0.9334 }, { "start": 11525.82, "end": 11526.74, "probability": 0.816 }, { "start": 11527.36, "end": 11531.26, "probability": 0.9355 }, { "start": 11532.36, "end": 11535.44, "probability": 0.9985 }, { "start": 11536.16, "end": 11539.34, "probability": 0.7495 }, { "start": 11539.9, "end": 11541.6, "probability": 0.886 }, { "start": 11542.16, "end": 11545.56, "probability": 0.9348 }, { "start": 11546.26, "end": 11550.06, "probability": 0.9453 }, { "start": 11550.06, "end": 11553.86, "probability": 0.5753 }, { "start": 11553.94, "end": 11555.84, "probability": 0.6348 }, { "start": 11555.96, "end": 11558.12, "probability": 0.9933 }, { "start": 11558.8, "end": 11559.28, "probability": 0.8787 }, { "start": 11559.36, "end": 11562.1, "probability": 0.1215 }, { "start": 11562.1, "end": 11562.9, "probability": 0.1857 }, { "start": 11562.98, "end": 11563.2, "probability": 0.6249 }, { "start": 11563.34, "end": 11564.3, "probability": 0.8653 }, { "start": 11564.74, "end": 11565.28, "probability": 0.6501 }, { "start": 11565.38, "end": 11567.04, "probability": 0.864 }, { "start": 11567.62, "end": 11569.22, "probability": 0.5815 }, { "start": 11571.54, "end": 11573.28, "probability": 0.0936 }, { "start": 11573.28, "end": 11575.22, "probability": 0.2955 }, { "start": 11575.38, "end": 11577.26, "probability": 0.6177 }, { "start": 11577.26, "end": 11578.82, "probability": 0.8028 }, { "start": 11579.24, "end": 11579.84, "probability": 0.8247 }, { "start": 11580.22, "end": 11583.5, "probability": 0.9604 }, { "start": 11584.26, "end": 11587.72, "probability": 0.7487 }, { "start": 11587.72, "end": 11588.2, "probability": 0.9535 }, { "start": 11591.94, "end": 11593.58, "probability": 0.7009 }, { "start": 11593.74, "end": 11596.68, "probability": 0.8279 }, { "start": 11597.88, "end": 11600.2, "probability": 0.6823 }, { "start": 11601.16, "end": 11601.68, "probability": 0.5743 }, { "start": 11626.62, "end": 11628.88, "probability": 0.5017 }, { "start": 11630.58, "end": 11631.6, "probability": 0.8118 }, { "start": 11632.94, "end": 11633.5, "probability": 0.7934 }, { "start": 11634.08, "end": 11634.72, "probability": 0.6673 }, { "start": 11637.28, "end": 11637.9, "probability": 0.4606 }, { "start": 11638.92, "end": 11640.95, "probability": 0.1291 }, { "start": 11641.38, "end": 11641.84, "probability": 0.8978 }, { "start": 11646.38, "end": 11649.76, "probability": 0.7414 }, { "start": 11649.88, "end": 11650.8, "probability": 0.4811 }, { "start": 11651.04, "end": 11652.44, "probability": 0.641 }, { "start": 11653.04, "end": 11655.02, "probability": 0.9604 }, { "start": 11655.1, "end": 11655.12, "probability": 0.0713 }, { "start": 11655.12, "end": 11655.86, "probability": 0.8958 }, { "start": 11655.94, "end": 11656.82, "probability": 0.6584 }, { "start": 11657.36, "end": 11658.78, "probability": 0.4666 }, { "start": 11658.9, "end": 11660.2, "probability": 0.6773 }, { "start": 11660.36, "end": 11664.54, "probability": 0.9058 }, { "start": 11665.37, "end": 11665.92, "probability": 0.0794 }, { "start": 11665.94, "end": 11666.06, "probability": 0.7941 }, { "start": 11666.58, "end": 11667.32, "probability": 0.8816 }, { "start": 11669.16, "end": 11672.22, "probability": 0.8093 }, { "start": 11672.78, "end": 11673.44, "probability": 0.628 }, { "start": 11674.42, "end": 11676.18, "probability": 0.9439 }, { "start": 11676.9, "end": 11679.9, "probability": 0.9832 }, { "start": 11681.4, "end": 11682.82, "probability": 0.6018 }, { "start": 11683.16, "end": 11687.68, "probability": 0.9766 }, { "start": 11688.18, "end": 11691.8, "probability": 0.9992 }, { "start": 11692.5, "end": 11694.52, "probability": 0.8716 }, { "start": 11695.16, "end": 11698.7, "probability": 0.9399 }, { "start": 11699.5, "end": 11700.8, "probability": 0.9984 }, { "start": 11701.7, "end": 11702.54, "probability": 0.6162 }, { "start": 11703.52, "end": 11708.06, "probability": 0.9277 }, { "start": 11708.16, "end": 11709.54, "probability": 0.9875 }, { "start": 11710.32, "end": 11714.18, "probability": 0.9641 }, { "start": 11715.48, "end": 11716.96, "probability": 0.9297 }, { "start": 11717.98, "end": 11719.14, "probability": 0.8327 }, { "start": 11719.8, "end": 11721.86, "probability": 0.8589 }, { "start": 11722.5, "end": 11728.54, "probability": 0.9729 }, { "start": 11729.08, "end": 11730.18, "probability": 0.7438 }, { "start": 11730.28, "end": 11734.6, "probability": 0.8586 }, { "start": 11735.48, "end": 11737.96, "probability": 0.9907 }, { "start": 11738.58, "end": 11740.62, "probability": 0.9824 }, { "start": 11740.78, "end": 11740.82, "probability": 0.1543 }, { "start": 11740.82, "end": 11745.24, "probability": 0.9346 }, { "start": 11745.84, "end": 11749.1, "probability": 0.759 }, { "start": 11749.36, "end": 11752.12, "probability": 0.5511 }, { "start": 11752.28, "end": 11754.58, "probability": 0.988 }, { "start": 11755.02, "end": 11756.28, "probability": 0.891 }, { "start": 11756.4, "end": 11757.61, "probability": 0.9771 }, { "start": 11757.68, "end": 11758.57, "probability": 0.9756 }, { "start": 11759.86, "end": 11761.4, "probability": 0.9814 }, { "start": 11762.16, "end": 11762.56, "probability": 0.8708 }, { "start": 11763.16, "end": 11765.74, "probability": 0.9409 }, { "start": 11766.24, "end": 11767.24, "probability": 0.8256 }, { "start": 11767.42, "end": 11768.0, "probability": 0.925 }, { "start": 11768.34, "end": 11768.61, "probability": 0.9331 }, { "start": 11769.3, "end": 11770.16, "probability": 0.9439 }, { "start": 11770.28, "end": 11771.92, "probability": 0.9701 }, { "start": 11772.76, "end": 11776.3, "probability": 0.9937 }, { "start": 11777.0, "end": 11783.28, "probability": 0.8328 }, { "start": 11783.58, "end": 11784.3, "probability": 0.618 }, { "start": 11785.28, "end": 11786.44, "probability": 0.5472 }, { "start": 11787.24, "end": 11788.36, "probability": 0.6102 }, { "start": 11791.74, "end": 11793.1, "probability": 0.7683 }, { "start": 11793.56, "end": 11796.0, "probability": 0.9677 }, { "start": 11796.28, "end": 11797.91, "probability": 0.9597 }, { "start": 11798.56, "end": 11803.16, "probability": 0.8007 }, { "start": 11803.76, "end": 11805.34, "probability": 0.8855 }, { "start": 11806.0, "end": 11808.38, "probability": 0.9944 }, { "start": 11808.92, "end": 11809.52, "probability": 0.3108 }, { "start": 11810.1, "end": 11813.74, "probability": 0.9826 }, { "start": 11813.74, "end": 11817.92, "probability": 0.9678 }, { "start": 11818.58, "end": 11820.15, "probability": 0.4359 }, { "start": 11820.98, "end": 11823.36, "probability": 0.8903 }, { "start": 11824.18, "end": 11826.97, "probability": 0.9189 }, { "start": 11827.64, "end": 11828.94, "probability": 0.7746 }, { "start": 11829.02, "end": 11832.34, "probability": 0.9659 }, { "start": 11833.3, "end": 11835.16, "probability": 0.9326 }, { "start": 11835.8, "end": 11840.72, "probability": 0.9891 }, { "start": 11841.42, "end": 11844.62, "probability": 0.8288 }, { "start": 11845.2, "end": 11846.84, "probability": 0.7156 }, { "start": 11847.34, "end": 11851.2, "probability": 0.8218 }, { "start": 11851.84, "end": 11853.18, "probability": 0.7926 }, { "start": 11853.64, "end": 11854.82, "probability": 0.8765 }, { "start": 11855.26, "end": 11857.22, "probability": 0.9269 }, { "start": 11857.52, "end": 11858.49, "probability": 0.9197 }, { "start": 11859.44, "end": 11860.16, "probability": 0.9282 }, { "start": 11861.62, "end": 11863.34, "probability": 0.9796 }, { "start": 11864.08, "end": 11865.5, "probability": 0.9732 }, { "start": 11865.84, "end": 11866.94, "probability": 0.9711 }, { "start": 11867.38, "end": 11868.78, "probability": 0.9868 }, { "start": 11869.2, "end": 11871.18, "probability": 0.9172 }, { "start": 11871.24, "end": 11874.48, "probability": 0.99 }, { "start": 11874.52, "end": 11879.46, "probability": 0.9927 }, { "start": 11879.6, "end": 11881.24, "probability": 0.8331 }, { "start": 11881.78, "end": 11886.14, "probability": 0.83 }, { "start": 11886.72, "end": 11888.34, "probability": 0.9827 }, { "start": 11888.58, "end": 11888.78, "probability": 0.2629 }, { "start": 11889.74, "end": 11893.18, "probability": 0.7918 }, { "start": 11893.46, "end": 11897.3, "probability": 0.9861 }, { "start": 11897.98, "end": 11898.56, "probability": 0.7477 }, { "start": 11899.26, "end": 11900.26, "probability": 0.7895 }, { "start": 11900.92, "end": 11901.76, "probability": 0.9189 }, { "start": 11902.82, "end": 11909.92, "probability": 0.9059 }, { "start": 11909.92, "end": 11915.9, "probability": 0.9948 }, { "start": 11916.8, "end": 11919.22, "probability": 0.9643 }, { "start": 11919.66, "end": 11920.64, "probability": 0.87 }, { "start": 11921.06, "end": 11923.48, "probability": 0.9922 }, { "start": 11923.62, "end": 11923.72, "probability": 0.5536 }, { "start": 11923.86, "end": 11925.44, "probability": 0.8947 }, { "start": 11926.18, "end": 11928.3, "probability": 0.9954 }, { "start": 11928.84, "end": 11932.16, "probability": 0.8023 }, { "start": 11932.74, "end": 11936.42, "probability": 0.9976 }, { "start": 11937.1, "end": 11939.58, "probability": 0.9536 }, { "start": 11939.72, "end": 11940.78, "probability": 0.7069 }, { "start": 11941.22, "end": 11942.34, "probability": 0.946 }, { "start": 11943.06, "end": 11946.8, "probability": 0.9932 }, { "start": 11947.48, "end": 11949.5, "probability": 0.973 }, { "start": 11950.26, "end": 11950.94, "probability": 0.4658 }, { "start": 11951.7, "end": 11957.5, "probability": 0.916 }, { "start": 11958.48, "end": 11961.82, "probability": 0.9976 }, { "start": 11962.36, "end": 11964.76, "probability": 0.9126 }, { "start": 11965.46, "end": 11969.2, "probability": 0.9968 }, { "start": 11970.06, "end": 11973.96, "probability": 0.9963 }, { "start": 11974.64, "end": 11977.04, "probability": 0.965 }, { "start": 11977.58, "end": 11981.56, "probability": 0.9434 }, { "start": 11982.68, "end": 11984.78, "probability": 0.744 }, { "start": 11985.3, "end": 11989.0, "probability": 0.9854 }, { "start": 11989.36, "end": 11990.4, "probability": 0.4381 }, { "start": 11990.46, "end": 11995.6, "probability": 0.868 }, { "start": 11995.94, "end": 12000.18, "probability": 0.9983 }, { "start": 12000.18, "end": 12004.36, "probability": 0.9995 }, { "start": 12005.3, "end": 12007.5, "probability": 0.8285 }, { "start": 12008.04, "end": 12009.48, "probability": 0.9761 }, { "start": 12010.12, "end": 12012.08, "probability": 0.9499 }, { "start": 12012.58, "end": 12013.1, "probability": 0.9126 }, { "start": 12014.0, "end": 12020.02, "probability": 0.9985 }, { "start": 12020.76, "end": 12025.08, "probability": 0.9618 }, { "start": 12025.62, "end": 12026.34, "probability": 0.814 }, { "start": 12026.44, "end": 12030.4, "probability": 0.9939 }, { "start": 12031.16, "end": 12033.82, "probability": 0.667 }, { "start": 12034.46, "end": 12034.82, "probability": 0.7929 }, { "start": 12035.44, "end": 12038.04, "probability": 0.936 }, { "start": 12038.62, "end": 12041.78, "probability": 0.9515 }, { "start": 12042.66, "end": 12043.28, "probability": 0.7834 }, { "start": 12044.1, "end": 12045.48, "probability": 0.9767 }, { "start": 12046.24, "end": 12047.86, "probability": 0.7353 }, { "start": 12048.42, "end": 12050.32, "probability": 0.8673 }, { "start": 12050.94, "end": 12054.64, "probability": 0.9144 }, { "start": 12055.26, "end": 12055.6, "probability": 0.8813 }, { "start": 12056.22, "end": 12058.28, "probability": 0.9948 }, { "start": 12058.78, "end": 12062.74, "probability": 0.9576 }, { "start": 12063.1, "end": 12065.98, "probability": 0.8628 }, { "start": 12066.72, "end": 12072.52, "probability": 0.9526 }, { "start": 12073.06, "end": 12074.8, "probability": 0.9664 }, { "start": 12075.32, "end": 12077.1, "probability": 0.9561 }, { "start": 12077.66, "end": 12081.04, "probability": 0.978 }, { "start": 12082.36, "end": 12083.48, "probability": 0.3226 }, { "start": 12083.9, "end": 12084.74, "probability": 0.9039 }, { "start": 12085.76, "end": 12087.48, "probability": 0.7938 }, { "start": 12088.12, "end": 12090.2, "probability": 0.7431 }, { "start": 12090.86, "end": 12094.0, "probability": 0.8309 }, { "start": 12094.58, "end": 12097.92, "probability": 0.9568 }, { "start": 12098.48, "end": 12099.38, "probability": 0.9053 }, { "start": 12099.9, "end": 12103.84, "probability": 0.8271 }, { "start": 12103.84, "end": 12107.66, "probability": 0.8978 }, { "start": 12108.66, "end": 12112.36, "probability": 0.9792 }, { "start": 12112.36, "end": 12115.64, "probability": 0.9813 }, { "start": 12116.52, "end": 12116.74, "probability": 0.5957 }, { "start": 12117.12, "end": 12118.08, "probability": 0.9169 }, { "start": 12118.14, "end": 12118.88, "probability": 0.7979 }, { "start": 12119.0, "end": 12120.22, "probability": 0.7254 }, { "start": 12120.76, "end": 12123.77, "probability": 0.9048 }, { "start": 12124.3, "end": 12127.74, "probability": 0.8139 }, { "start": 12127.88, "end": 12131.3, "probability": 0.9827 }, { "start": 12132.22, "end": 12134.84, "probability": 0.8592 }, { "start": 12135.56, "end": 12136.42, "probability": 0.816 }, { "start": 12137.1, "end": 12142.14, "probability": 0.6917 }, { "start": 12142.72, "end": 12144.32, "probability": 0.9331 }, { "start": 12144.78, "end": 12146.06, "probability": 0.9567 }, { "start": 12146.54, "end": 12147.68, "probability": 0.979 }, { "start": 12148.74, "end": 12150.52, "probability": 0.7256 }, { "start": 12150.82, "end": 12152.02, "probability": 0.9818 }, { "start": 12152.66, "end": 12154.04, "probability": 0.9837 }, { "start": 12154.54, "end": 12158.38, "probability": 0.9925 }, { "start": 12158.94, "end": 12163.52, "probability": 0.9948 }, { "start": 12164.0, "end": 12164.94, "probability": 0.7951 }, { "start": 12165.48, "end": 12166.72, "probability": 0.9849 }, { "start": 12167.0, "end": 12167.92, "probability": 0.9341 }, { "start": 12168.22, "end": 12172.45, "probability": 0.9453 }, { "start": 12172.46, "end": 12176.28, "probability": 0.9962 }, { "start": 12177.08, "end": 12178.04, "probability": 0.8745 }, { "start": 12179.02, "end": 12180.78, "probability": 0.9937 }, { "start": 12180.88, "end": 12182.98, "probability": 0.9899 }, { "start": 12183.06, "end": 12185.64, "probability": 0.8258 }, { "start": 12186.08, "end": 12186.94, "probability": 0.8359 }, { "start": 12187.08, "end": 12188.81, "probability": 0.9883 }, { "start": 12189.74, "end": 12195.56, "probability": 0.8701 }, { "start": 12195.98, "end": 12197.22, "probability": 0.8277 }, { "start": 12197.78, "end": 12201.98, "probability": 0.9799 }, { "start": 12202.28, "end": 12202.74, "probability": 0.8232 }, { "start": 12203.14, "end": 12205.02, "probability": 0.9071 }, { "start": 12205.74, "end": 12208.04, "probability": 0.6985 }, { "start": 12208.2, "end": 12208.74, "probability": 0.6012 }, { "start": 12209.22, "end": 12212.09, "probability": 0.0275 }, { "start": 12212.48, "end": 12213.89, "probability": 0.5839 }, { "start": 12215.52, "end": 12217.33, "probability": 0.442 }, { "start": 12219.14, "end": 12219.3, "probability": 0.252 }, { "start": 12219.46, "end": 12221.08, "probability": 0.4574 }, { "start": 12221.12, "end": 12222.24, "probability": 0.6869 }, { "start": 12222.62, "end": 12223.0, "probability": 0.8756 }, { "start": 12223.38, "end": 12223.72, "probability": 0.7347 }, { "start": 12223.74, "end": 12224.48, "probability": 0.015 }, { "start": 12225.22, "end": 12229.46, "probability": 0.4602 }, { "start": 12229.66, "end": 12231.06, "probability": 0.1481 }, { "start": 12231.26, "end": 12231.98, "probability": 0.2116 }, { "start": 12235.54, "end": 12235.54, "probability": 0.0016 }, { "start": 12235.54, "end": 12236.32, "probability": 0.1979 }, { "start": 12236.4, "end": 12237.6, "probability": 0.4109 }, { "start": 12237.76, "end": 12239.28, "probability": 0.258 }, { "start": 12240.66, "end": 12242.58, "probability": 0.7903 }, { "start": 12242.7, "end": 12242.7, "probability": 0.1193 }, { "start": 12242.7, "end": 12244.52, "probability": 0.8505 }, { "start": 12244.8, "end": 12246.1, "probability": 0.7109 }, { "start": 12246.16, "end": 12246.89, "probability": 0.0065 }, { "start": 12247.86, "end": 12250.86, "probability": 0.26 }, { "start": 12251.16, "end": 12253.74, "probability": 0.7463 }, { "start": 12255.72, "end": 12256.18, "probability": 0.7118 }, { "start": 12257.52, "end": 12260.7, "probability": 0.9007 }, { "start": 12260.78, "end": 12261.44, "probability": 0.8112 }, { "start": 12262.52, "end": 12263.5, "probability": 0.9645 }, { "start": 12264.88, "end": 12267.42, "probability": 0.9698 }, { "start": 12269.16, "end": 12269.68, "probability": 0.3662 }, { "start": 12270.26, "end": 12271.78, "probability": 0.7211 }, { "start": 12271.9, "end": 12274.08, "probability": 0.9232 }, { "start": 12274.98, "end": 12276.62, "probability": 0.8998 }, { "start": 12276.68, "end": 12277.06, "probability": 0.7505 }, { "start": 12277.2, "end": 12278.04, "probability": 0.8399 }, { "start": 12278.7, "end": 12280.12, "probability": 0.9846 }, { "start": 12280.44, "end": 12282.74, "probability": 0.9195 }, { "start": 12283.14, "end": 12284.12, "probability": 0.7575 }, { "start": 12284.24, "end": 12285.8, "probability": 0.7242 }, { "start": 12287.68, "end": 12293.42, "probability": 0.8635 }, { "start": 12294.26, "end": 12295.0, "probability": 0.844 }, { "start": 12295.96, "end": 12299.66, "probability": 0.9817 }, { "start": 12299.8, "end": 12300.86, "probability": 0.825 }, { "start": 12302.12, "end": 12305.1, "probability": 0.9844 }, { "start": 12305.76, "end": 12306.7, "probability": 0.9873 }, { "start": 12308.16, "end": 12309.38, "probability": 0.9231 }, { "start": 12310.34, "end": 12311.42, "probability": 0.6143 }, { "start": 12312.06, "end": 12312.7, "probability": 0.956 }, { "start": 12314.74, "end": 12317.56, "probability": 0.9136 }, { "start": 12317.66, "end": 12318.92, "probability": 0.8795 }, { "start": 12319.98, "end": 12321.02, "probability": 0.9683 }, { "start": 12321.62, "end": 12324.6, "probability": 0.9039 }, { "start": 12326.54, "end": 12327.96, "probability": 0.9717 }, { "start": 12329.14, "end": 12330.68, "probability": 0.7605 }, { "start": 12331.06, "end": 12334.86, "probability": 0.9971 }, { "start": 12335.76, "end": 12336.52, "probability": 0.4437 }, { "start": 12337.14, "end": 12338.44, "probability": 0.7795 }, { "start": 12338.7, "end": 12341.52, "probability": 0.97 }, { "start": 12341.86, "end": 12342.92, "probability": 0.9155 }, { "start": 12344.22, "end": 12344.68, "probability": 0.8653 }, { "start": 12346.26, "end": 12347.44, "probability": 0.9795 }, { "start": 12349.0, "end": 12349.28, "probability": 0.5066 }, { "start": 12350.28, "end": 12351.56, "probability": 0.8956 }, { "start": 12352.5, "end": 12353.48, "probability": 0.9797 }, { "start": 12354.5, "end": 12355.28, "probability": 0.7969 }, { "start": 12355.36, "end": 12358.8, "probability": 0.9626 }, { "start": 12359.62, "end": 12361.16, "probability": 0.8231 }, { "start": 12362.4, "end": 12365.16, "probability": 0.7738 }, { "start": 12365.34, "end": 12366.48, "probability": 0.8727 }, { "start": 12366.62, "end": 12367.1, "probability": 0.5992 }, { "start": 12367.22, "end": 12367.87, "probability": 0.7903 }, { "start": 12368.54, "end": 12370.84, "probability": 0.6156 }, { "start": 12371.24, "end": 12374.28, "probability": 0.8967 }, { "start": 12374.42, "end": 12375.26, "probability": 0.6356 }, { "start": 12375.88, "end": 12378.52, "probability": 0.9262 }, { "start": 12379.66, "end": 12381.38, "probability": 0.9703 }, { "start": 12382.52, "end": 12384.88, "probability": 0.8848 }, { "start": 12384.88, "end": 12386.74, "probability": 0.8519 }, { "start": 12388.26, "end": 12389.78, "probability": 0.9841 }, { "start": 12390.94, "end": 12391.8, "probability": 0.6875 }, { "start": 12393.24, "end": 12393.64, "probability": 0.3774 }, { "start": 12394.16, "end": 12394.74, "probability": 0.7324 }, { "start": 12395.36, "end": 12396.84, "probability": 0.9779 }, { "start": 12397.32, "end": 12398.24, "probability": 0.9557 }, { "start": 12398.26, "end": 12399.18, "probability": 0.8777 }, { "start": 12399.32, "end": 12404.16, "probability": 0.8937 }, { "start": 12404.16, "end": 12407.52, "probability": 0.9195 }, { "start": 12407.62, "end": 12408.12, "probability": 0.4331 }, { "start": 12408.86, "end": 12409.38, "probability": 0.544 }, { "start": 12409.46, "end": 12410.22, "probability": 0.8591 }, { "start": 12410.44, "end": 12412.24, "probability": 0.8979 }, { "start": 12412.74, "end": 12413.96, "probability": 0.9644 }, { "start": 12414.24, "end": 12415.4, "probability": 0.8112 }, { "start": 12415.48, "end": 12415.86, "probability": 0.7333 }, { "start": 12417.24, "end": 12419.08, "probability": 0.7836 }, { "start": 12419.82, "end": 12421.54, "probability": 0.9896 }, { "start": 12422.34, "end": 12426.58, "probability": 0.7314 }, { "start": 12426.78, "end": 12430.06, "probability": 0.7935 }, { "start": 12431.98, "end": 12436.1, "probability": 0.9501 }, { "start": 12437.14, "end": 12441.86, "probability": 0.825 }, { "start": 12442.12, "end": 12443.3, "probability": 0.5553 }, { "start": 12443.38, "end": 12444.02, "probability": 0.7595 }, { "start": 12444.14, "end": 12445.18, "probability": 0.9612 }, { "start": 12445.26, "end": 12450.56, "probability": 0.9486 }, { "start": 12451.22, "end": 12452.68, "probability": 0.6934 }, { "start": 12454.6, "end": 12458.8, "probability": 0.8208 }, { "start": 12459.42, "end": 12461.32, "probability": 0.9141 }, { "start": 12461.74, "end": 12464.12, "probability": 0.9404 }, { "start": 12465.76, "end": 12466.2, "probability": 0.7848 }, { "start": 12466.26, "end": 12466.66, "probability": 0.525 }, { "start": 12466.72, "end": 12467.2, "probability": 0.7379 }, { "start": 12467.24, "end": 12467.96, "probability": 0.5771 }, { "start": 12468.02, "end": 12469.1, "probability": 0.898 }, { "start": 12469.2, "end": 12469.86, "probability": 0.4843 }, { "start": 12471.14, "end": 12474.04, "probability": 0.9688 }, { "start": 12476.76, "end": 12477.46, "probability": 0.7878 }, { "start": 12477.9, "end": 12478.64, "probability": 0.3965 }, { "start": 12478.7, "end": 12482.12, "probability": 0.902 }, { "start": 12483.32, "end": 12483.86, "probability": 0.7997 }, { "start": 12484.64, "end": 12486.6, "probability": 0.98 }, { "start": 12487.04, "end": 12488.23, "probability": 0.9662 }, { "start": 12488.74, "end": 12490.96, "probability": 0.8035 }, { "start": 12491.08, "end": 12491.98, "probability": 0.5583 }, { "start": 12493.84, "end": 12494.84, "probability": 0.9541 }, { "start": 12495.32, "end": 12496.7, "probability": 0.9962 }, { "start": 12497.32, "end": 12498.54, "probability": 0.9878 }, { "start": 12499.22, "end": 12499.94, "probability": 0.9596 }, { "start": 12500.84, "end": 12505.66, "probability": 0.9803 }, { "start": 12506.28, "end": 12508.18, "probability": 0.7514 }, { "start": 12508.82, "end": 12509.74, "probability": 0.8796 }, { "start": 12510.44, "end": 12513.9, "probability": 0.9619 }, { "start": 12513.94, "end": 12517.2, "probability": 0.8761 }, { "start": 12518.38, "end": 12518.82, "probability": 0.4673 }, { "start": 12520.62, "end": 12521.62, "probability": 0.7969 }, { "start": 12522.28, "end": 12523.08, "probability": 0.2052 }, { "start": 12523.76, "end": 12524.84, "probability": 0.7938 }, { "start": 12525.0, "end": 12526.38, "probability": 0.9536 }, { "start": 12526.68, "end": 12527.58, "probability": 0.1552 }, { "start": 12531.22, "end": 12531.85, "probability": 0.5615 }, { "start": 12536.28, "end": 12543.18, "probability": 0.8274 }, { "start": 12544.44, "end": 12548.74, "probability": 0.9769 }, { "start": 12549.46, "end": 12552.62, "probability": 0.8478 }, { "start": 12553.02, "end": 12554.54, "probability": 0.8566 }, { "start": 12555.86, "end": 12559.04, "probability": 0.88 }, { "start": 12559.1, "end": 12559.36, "probability": 0.4531 }, { "start": 12559.46, "end": 12559.98, "probability": 0.6987 }, { "start": 12560.06, "end": 12560.78, "probability": 0.7804 }, { "start": 12561.72, "end": 12562.9, "probability": 0.9482 }, { "start": 12563.28, "end": 12564.66, "probability": 0.7529 }, { "start": 12565.58, "end": 12567.84, "probability": 0.9962 }, { "start": 12568.54, "end": 12569.48, "probability": 0.89 }, { "start": 12570.64, "end": 12571.64, "probability": 0.719 }, { "start": 12571.8, "end": 12573.7, "probability": 0.9969 }, { "start": 12574.52, "end": 12574.76, "probability": 0.0078 }, { "start": 12574.76, "end": 12575.56, "probability": 0.7295 }, { "start": 12576.44, "end": 12578.34, "probability": 0.8878 }, { "start": 12580.98, "end": 12581.93, "probability": 0.2651 }, { "start": 12582.14, "end": 12583.09, "probability": 0.9814 }, { "start": 12583.22, "end": 12583.8, "probability": 0.7254 }, { "start": 12583.98, "end": 12586.64, "probability": 0.9437 }, { "start": 12587.56, "end": 12589.88, "probability": 0.557 }, { "start": 12590.08, "end": 12592.58, "probability": 0.9863 }, { "start": 12593.08, "end": 12593.94, "probability": 0.7621 }, { "start": 12594.46, "end": 12595.14, "probability": 0.8183 }, { "start": 12595.2, "end": 12596.44, "probability": 0.6099 }, { "start": 12596.58, "end": 12597.92, "probability": 0.8109 }, { "start": 12598.4, "end": 12600.92, "probability": 0.922 }, { "start": 12601.16, "end": 12604.19, "probability": 0.854 }, { "start": 12604.32, "end": 12606.5, "probability": 0.7046 }, { "start": 12606.98, "end": 12608.18, "probability": 0.9561 }, { "start": 12609.4, "end": 12610.96, "probability": 0.9902 }, { "start": 12611.08, "end": 12612.02, "probability": 0.8821 }, { "start": 12613.06, "end": 12613.9, "probability": 0.5558 }, { "start": 12614.52, "end": 12616.24, "probability": 0.7998 }, { "start": 12616.9, "end": 12617.74, "probability": 0.9809 }, { "start": 12618.82, "end": 12618.9, "probability": 0.7099 }, { "start": 12619.0, "end": 12619.1, "probability": 0.893 }, { "start": 12619.52, "end": 12621.54, "probability": 0.9198 }, { "start": 12621.64, "end": 12622.5, "probability": 0.8936 }, { "start": 12623.06, "end": 12626.4, "probability": 0.9568 }, { "start": 12626.78, "end": 12628.16, "probability": 0.9849 }, { "start": 12628.26, "end": 12629.06, "probability": 0.968 }, { "start": 12630.18, "end": 12630.72, "probability": 0.3545 }, { "start": 12631.98, "end": 12632.57, "probability": 0.9319 }, { "start": 12633.28, "end": 12633.72, "probability": 0.873 }, { "start": 12634.12, "end": 12635.56, "probability": 0.908 }, { "start": 12635.78, "end": 12636.72, "probability": 0.969 }, { "start": 12637.14, "end": 12638.08, "probability": 0.7428 }, { "start": 12639.1, "end": 12639.66, "probability": 0.9143 }, { "start": 12639.74, "end": 12640.3, "probability": 0.5039 }, { "start": 12640.3, "end": 12641.66, "probability": 0.9621 }, { "start": 12642.0, "end": 12643.14, "probability": 0.9111 }, { "start": 12643.82, "end": 12646.16, "probability": 0.9565 }, { "start": 12646.66, "end": 12647.5, "probability": 0.5795 }, { "start": 12647.98, "end": 12651.0, "probability": 0.7892 }, { "start": 12651.12, "end": 12653.66, "probability": 0.8229 }, { "start": 12654.62, "end": 12654.94, "probability": 0.8258 }, { "start": 12655.52, "end": 12657.08, "probability": 0.9643 }, { "start": 12657.76, "end": 12659.26, "probability": 0.9912 }, { "start": 12659.66, "end": 12662.98, "probability": 0.9917 }, { "start": 12663.52, "end": 12665.76, "probability": 0.8702 }, { "start": 12669.14, "end": 12670.04, "probability": 0.3746 }, { "start": 12670.26, "end": 12671.37, "probability": 0.5864 }, { "start": 12673.08, "end": 12674.16, "probability": 0.9075 }, { "start": 12675.2, "end": 12675.96, "probability": 0.8001 }, { "start": 12676.94, "end": 12679.22, "probability": 0.9722 }, { "start": 12680.64, "end": 12681.2, "probability": 0.7102 }, { "start": 12681.3, "end": 12682.14, "probability": 0.8642 }, { "start": 12682.28, "end": 12683.54, "probability": 0.9592 }, { "start": 12683.64, "end": 12685.83, "probability": 0.929 }, { "start": 12686.64, "end": 12686.92, "probability": 0.5188 }, { "start": 12687.32, "end": 12689.08, "probability": 0.5637 }, { "start": 12689.32, "end": 12691.02, "probability": 0.6373 }, { "start": 12692.0, "end": 12695.08, "probability": 0.8301 }, { "start": 12695.16, "end": 12696.37, "probability": 0.9922 }, { "start": 12700.98, "end": 12702.38, "probability": 0.9832 }, { "start": 12703.7, "end": 12705.56, "probability": 0.98 }, { "start": 12707.02, "end": 12708.56, "probability": 0.9891 }, { "start": 12709.58, "end": 12710.04, "probability": 0.863 }, { "start": 12711.14, "end": 12714.28, "probability": 0.9756 }, { "start": 12714.86, "end": 12716.6, "probability": 0.7455 }, { "start": 12716.92, "end": 12719.44, "probability": 0.9391 }, { "start": 12719.44, "end": 12721.6, "probability": 0.934 }, { "start": 12721.74, "end": 12723.72, "probability": 0.4244 }, { "start": 12724.48, "end": 12725.38, "probability": 0.8273 }, { "start": 12726.98, "end": 12728.04, "probability": 0.7924 }, { "start": 12728.04, "end": 12729.14, "probability": 0.8329 }, { "start": 12729.3, "end": 12730.66, "probability": 0.8751 }, { "start": 12730.76, "end": 12731.18, "probability": 0.9351 }, { "start": 12732.9, "end": 12734.9, "probability": 0.9827 }, { "start": 12737.72, "end": 12738.66, "probability": 0.7665 }, { "start": 12739.48, "end": 12743.54, "probability": 0.998 }, { "start": 12744.58, "end": 12747.78, "probability": 0.8931 }, { "start": 12748.18, "end": 12749.11, "probability": 0.9514 }, { "start": 12749.88, "end": 12751.92, "probability": 0.8672 }, { "start": 12752.06, "end": 12752.53, "probability": 0.957 }, { "start": 12753.54, "end": 12754.4, "probability": 0.8465 }, { "start": 12755.64, "end": 12756.3, "probability": 0.9641 }, { "start": 12757.36, "end": 12758.78, "probability": 0.8505 }, { "start": 12759.3, "end": 12762.96, "probability": 0.9602 }, { "start": 12762.96, "end": 12767.7, "probability": 0.9915 }, { "start": 12768.04, "end": 12769.46, "probability": 0.7638 }, { "start": 12770.24, "end": 12774.04, "probability": 0.8848 }, { "start": 12774.22, "end": 12775.14, "probability": 0.9199 }, { "start": 12777.12, "end": 12778.65, "probability": 0.811 }, { "start": 12779.34, "end": 12779.88, "probability": 0.7737 }, { "start": 12780.2, "end": 12783.78, "probability": 0.6435 }, { "start": 12784.2, "end": 12785.16, "probability": 0.9565 }, { "start": 12785.52, "end": 12786.86, "probability": 0.9471 }, { "start": 12787.34, "end": 12788.68, "probability": 0.9781 }, { "start": 12789.16, "end": 12790.2, "probability": 0.9888 }, { "start": 12790.8, "end": 12791.97, "probability": 0.9505 }, { "start": 12793.4, "end": 12796.6, "probability": 0.9542 }, { "start": 12796.8, "end": 12797.81, "probability": 0.6749 }, { "start": 12798.22, "end": 12801.15, "probability": 0.9824 }, { "start": 12801.86, "end": 12802.99, "probability": 0.8433 }, { "start": 12804.52, "end": 12805.4, "probability": 0.9742 }, { "start": 12805.46, "end": 12806.98, "probability": 0.8749 }, { "start": 12807.5, "end": 12807.78, "probability": 0.3817 }, { "start": 12807.9, "end": 12809.64, "probability": 0.9879 }, { "start": 12810.02, "end": 12810.74, "probability": 0.864 }, { "start": 12812.22, "end": 12814.92, "probability": 0.9142 }, { "start": 12816.0, "end": 12817.34, "probability": 0.9698 }, { "start": 12818.3, "end": 12819.78, "probability": 0.9409 }, { "start": 12819.84, "end": 12821.37, "probability": 0.9407 }, { "start": 12821.94, "end": 12822.84, "probability": 0.9873 }, { "start": 12824.38, "end": 12824.9, "probability": 0.833 }, { "start": 12825.64, "end": 12829.72, "probability": 0.9841 }, { "start": 12830.54, "end": 12833.36, "probability": 0.9949 }, { "start": 12833.86, "end": 12835.38, "probability": 0.9454 }, { "start": 12835.96, "end": 12838.22, "probability": 0.9448 }, { "start": 12839.16, "end": 12840.06, "probability": 0.5682 }, { "start": 12840.12, "end": 12842.6, "probability": 0.9718 }, { "start": 12842.64, "end": 12844.84, "probability": 0.8538 }, { "start": 12845.06, "end": 12846.16, "probability": 0.9668 }, { "start": 12846.56, "end": 12848.64, "probability": 0.9648 }, { "start": 12848.94, "end": 12851.02, "probability": 0.9471 }, { "start": 12851.06, "end": 12851.49, "probability": 0.7418 }, { "start": 12852.54, "end": 12857.7, "probability": 0.9478 }, { "start": 12858.08, "end": 12860.06, "probability": 0.9611 }, { "start": 12860.18, "end": 12860.64, "probability": 0.5917 }, { "start": 12860.64, "end": 12862.24, "probability": 0.8534 }, { "start": 12863.0, "end": 12863.86, "probability": 0.67 }, { "start": 12863.9, "end": 12865.3, "probability": 0.5156 }, { "start": 12866.18, "end": 12867.7, "probability": 0.9436 }, { "start": 12868.68, "end": 12869.66, "probability": 0.7262 }, { "start": 12870.22, "end": 12873.05, "probability": 0.9076 }, { "start": 12880.46, "end": 12881.1, "probability": 0.2973 }, { "start": 12894.0, "end": 12894.8, "probability": 0.4915 }, { "start": 12895.32, "end": 12895.56, "probability": 0.7456 }, { "start": 12896.26, "end": 12897.62, "probability": 0.6204 }, { "start": 12897.76, "end": 12899.18, "probability": 0.5771 }, { "start": 12902.41, "end": 12904.18, "probability": 0.9897 }, { "start": 12906.3, "end": 12909.02, "probability": 0.6098 }, { "start": 12911.48, "end": 12912.24, "probability": 0.9467 }, { "start": 12913.88, "end": 12915.51, "probability": 0.8584 }, { "start": 12924.26, "end": 12924.4, "probability": 0.0671 }, { "start": 12924.4, "end": 12927.24, "probability": 0.9937 }, { "start": 12929.12, "end": 12933.38, "probability": 0.9141 }, { "start": 12935.48, "end": 12937.14, "probability": 0.9559 }, { "start": 12937.7, "end": 12944.2, "probability": 0.8237 }, { "start": 12945.96, "end": 12947.44, "probability": 0.9286 }, { "start": 12948.14, "end": 12956.34, "probability": 0.8425 }, { "start": 12956.46, "end": 12957.08, "probability": 0.701 }, { "start": 12958.12, "end": 12961.8, "probability": 0.1701 }, { "start": 12963.56, "end": 12964.78, "probability": 0.8231 }, { "start": 12965.86, "end": 12966.44, "probability": 0.022 }, { "start": 12967.92, "end": 12969.08, "probability": 0.8562 }, { "start": 12969.64, "end": 12970.54, "probability": 0.3161 }, { "start": 12971.34, "end": 12974.57, "probability": 0.6523 }, { "start": 12975.32, "end": 12976.52, "probability": 0.8601 }, { "start": 12977.04, "end": 12978.66, "probability": 0.9858 }, { "start": 12979.84, "end": 12982.86, "probability": 0.8132 }, { "start": 12983.92, "end": 12985.94, "probability": 0.8444 }, { "start": 12987.82, "end": 12991.55, "probability": 0.9648 }, { "start": 12993.2, "end": 12994.88, "probability": 0.9217 }, { "start": 12995.4, "end": 12996.42, "probability": 0.7439 }, { "start": 12998.78, "end": 12999.14, "probability": 0.8273 }, { "start": 13001.7, "end": 13003.98, "probability": 0.4668 }, { "start": 13006.5, "end": 13008.7, "probability": 0.8496 }, { "start": 13010.82, "end": 13011.86, "probability": 0.9919 }, { "start": 13013.0, "end": 13013.6, "probability": 0.9492 }, { "start": 13014.46, "end": 13015.62, "probability": 0.7068 }, { "start": 13016.32, "end": 13017.28, "probability": 0.8794 }, { "start": 13017.64, "end": 13018.9, "probability": 0.9106 }, { "start": 13019.48, "end": 13020.38, "probability": 0.3114 }, { "start": 13021.32, "end": 13022.44, "probability": 0.8771 }, { "start": 13023.42, "end": 13025.15, "probability": 0.9339 }, { "start": 13026.5, "end": 13027.76, "probability": 0.8402 }, { "start": 13029.2, "end": 13030.4, "probability": 0.9207 }, { "start": 13032.78, "end": 13034.14, "probability": 0.9048 }, { "start": 13034.74, "end": 13036.24, "probability": 0.6707 }, { "start": 13037.28, "end": 13038.28, "probability": 0.4572 }, { "start": 13039.8, "end": 13040.6, "probability": 0.3788 }, { "start": 13042.08, "end": 13043.08, "probability": 0.5553 }, { "start": 13044.46, "end": 13049.86, "probability": 0.9254 }, { "start": 13050.68, "end": 13051.54, "probability": 0.9504 }, { "start": 13052.98, "end": 13056.0, "probability": 0.9766 }, { "start": 13056.6, "end": 13057.66, "probability": 0.8254 }, { "start": 13058.04, "end": 13060.24, "probability": 0.7242 }, { "start": 13060.58, "end": 13061.15, "probability": 0.812 }, { "start": 13062.22, "end": 13062.94, "probability": 0.8756 }, { "start": 13067.36, "end": 13068.2, "probability": 0.3014 }, { "start": 13069.32, "end": 13069.88, "probability": 0.4402 }, { "start": 13073.45, "end": 13074.73, "probability": 0.9646 }, { "start": 13075.98, "end": 13076.9, "probability": 0.9095 }, { "start": 13077.54, "end": 13078.48, "probability": 0.9741 }, { "start": 13081.2, "end": 13082.36, "probability": 0.5492 }, { "start": 13082.38, "end": 13082.96, "probability": 0.6908 }, { "start": 13083.62, "end": 13088.0, "probability": 0.9371 }, { "start": 13088.7, "end": 13089.89, "probability": 0.929 }, { "start": 13091.12, "end": 13095.7, "probability": 0.9128 }, { "start": 13096.4, "end": 13099.36, "probability": 0.8821 }, { "start": 13099.64, "end": 13100.76, "probability": 0.9529 }, { "start": 13103.2, "end": 13103.78, "probability": 0.7659 }, { "start": 13104.88, "end": 13106.1, "probability": 0.8511 }, { "start": 13108.44, "end": 13109.18, "probability": 0.7488 }, { "start": 13111.52, "end": 13113.34, "probability": 0.5085 }, { "start": 13114.06, "end": 13114.26, "probability": 0.7646 }, { "start": 13116.3, "end": 13118.06, "probability": 0.9227 }, { "start": 13118.1, "end": 13118.26, "probability": 0.5985 }, { "start": 13120.38, "end": 13122.04, "probability": 0.8803 }, { "start": 13123.24, "end": 13124.02, "probability": 0.876 }, { "start": 13125.16, "end": 13130.42, "probability": 0.5394 }, { "start": 13131.78, "end": 13134.68, "probability": 0.6347 }, { "start": 13135.52, "end": 13136.72, "probability": 0.602 }, { "start": 13137.54, "end": 13137.62, "probability": 0.5096 }, { "start": 13137.62, "end": 13139.22, "probability": 0.7426 }, { "start": 13140.92, "end": 13142.72, "probability": 0.874 }, { "start": 13145.22, "end": 13147.12, "probability": 0.9492 }, { "start": 13148.3, "end": 13152.24, "probability": 0.9703 }, { "start": 13155.34, "end": 13156.26, "probability": 0.9549 }, { "start": 13157.74, "end": 13162.04, "probability": 0.9636 }, { "start": 13163.42, "end": 13165.62, "probability": 0.8964 }, { "start": 13166.44, "end": 13168.48, "probability": 0.9744 }, { "start": 13169.98, "end": 13170.74, "probability": 0.9924 }, { "start": 13173.04, "end": 13174.75, "probability": 0.894 }, { "start": 13175.04, "end": 13176.68, "probability": 0.7359 }, { "start": 13177.94, "end": 13179.9, "probability": 0.9703 }, { "start": 13180.46, "end": 13181.7, "probability": 0.7682 }, { "start": 13182.46, "end": 13185.14, "probability": 0.8396 }, { "start": 13185.7, "end": 13186.5, "probability": 0.9171 }, { "start": 13188.16, "end": 13190.36, "probability": 0.7148 }, { "start": 13190.74, "end": 13191.68, "probability": 0.7136 }, { "start": 13192.94, "end": 13194.42, "probability": 0.6586 }, { "start": 13196.56, "end": 13201.85, "probability": 0.7537 }, { "start": 13203.16, "end": 13203.5, "probability": 0.7044 }, { "start": 13204.56, "end": 13206.54, "probability": 0.7271 }, { "start": 13206.76, "end": 13208.92, "probability": 0.7876 }, { "start": 13209.3, "end": 13211.66, "probability": 0.8525 }, { "start": 13212.32, "end": 13212.86, "probability": 0.8312 }, { "start": 13214.56, "end": 13217.08, "probability": 0.9096 }, { "start": 13219.64, "end": 13219.98, "probability": 0.6445 }, { "start": 13220.36, "end": 13222.6, "probability": 0.8591 }, { "start": 13223.2, "end": 13223.44, "probability": 0.6677 }, { "start": 13224.58, "end": 13227.36, "probability": 0.7886 }, { "start": 13227.92, "end": 13228.56, "probability": 0.9863 }, { "start": 13230.2, "end": 13230.76, "probability": 0.961 }, { "start": 13232.7, "end": 13234.92, "probability": 0.7563 }, { "start": 13235.64, "end": 13236.66, "probability": 0.9232 }, { "start": 13237.79, "end": 13239.8, "probability": 0.8493 }, { "start": 13241.54, "end": 13243.5, "probability": 0.9907 }, { "start": 13244.48, "end": 13246.0, "probability": 0.5721 }, { "start": 13246.68, "end": 13251.76, "probability": 0.9704 }, { "start": 13253.0, "end": 13254.46, "probability": 0.7812 }, { "start": 13255.8, "end": 13259.24, "probability": 0.9041 }, { "start": 13261.2, "end": 13261.6, "probability": 0.9653 }, { "start": 13262.28, "end": 13264.72, "probability": 0.9226 }, { "start": 13267.13, "end": 13268.6, "probability": 0.9707 }, { "start": 13269.98, "end": 13273.5, "probability": 0.7731 }, { "start": 13274.02, "end": 13276.3, "probability": 0.6013 }, { "start": 13276.3, "end": 13277.52, "probability": 0.6838 }, { "start": 13278.17, "end": 13279.52, "probability": 0.092 }, { "start": 13283.14, "end": 13285.46, "probability": 0.6463 }, { "start": 13285.64, "end": 13286.9, "probability": 0.6362 }, { "start": 13288.08, "end": 13288.8, "probability": 0.6485 }, { "start": 13289.66, "end": 13290.46, "probability": 0.7895 }, { "start": 13291.04, "end": 13291.54, "probability": 0.2196 }, { "start": 13292.56, "end": 13296.16, "probability": 0.6452 }, { "start": 13296.18, "end": 13298.32, "probability": 0.8896 }, { "start": 13298.88, "end": 13300.24, "probability": 0.3027 }, { "start": 13303.42, "end": 13306.32, "probability": 0.6876 }, { "start": 13306.95, "end": 13307.76, "probability": 0.9611 }, { "start": 13308.12, "end": 13309.8, "probability": 0.9133 }, { "start": 13310.8, "end": 13313.7, "probability": 0.9795 }, { "start": 13313.86, "end": 13315.5, "probability": 0.9786 }, { "start": 13316.44, "end": 13318.14, "probability": 0.9496 }, { "start": 13319.18, "end": 13321.24, "probability": 0.8001 }, { "start": 13322.08, "end": 13325.84, "probability": 0.91 }, { "start": 13325.96, "end": 13327.38, "probability": 0.9368 }, { "start": 13329.14, "end": 13332.22, "probability": 0.989 }, { "start": 13332.26, "end": 13332.86, "probability": 0.729 }, { "start": 13334.08, "end": 13335.04, "probability": 0.5293 }, { "start": 13335.8, "end": 13336.78, "probability": 0.7224 }, { "start": 13338.22, "end": 13339.66, "probability": 0.914 }, { "start": 13341.48, "end": 13342.84, "probability": 0.5555 }, { "start": 13347.2, "end": 13347.6, "probability": 0.6754 }, { "start": 13349.08, "end": 13350.94, "probability": 0.983 }, { "start": 13351.9, "end": 13354.66, "probability": 0.9833 }, { "start": 13357.82, "end": 13365.52, "probability": 0.9364 }, { "start": 13366.16, "end": 13368.6, "probability": 0.8266 }, { "start": 13370.18, "end": 13372.14, "probability": 0.7764 }, { "start": 13372.8, "end": 13374.08, "probability": 0.5448 }, { "start": 13375.74, "end": 13377.68, "probability": 0.7067 }, { "start": 13378.48, "end": 13379.03, "probability": 0.6067 }, { "start": 13379.56, "end": 13382.18, "probability": 0.9046 }, { "start": 13383.92, "end": 13386.16, "probability": 0.9822 }, { "start": 13386.98, "end": 13387.96, "probability": 0.9836 }, { "start": 13389.74, "end": 13390.24, "probability": 0.466 }, { "start": 13390.84, "end": 13392.12, "probability": 0.7371 }, { "start": 13392.22, "end": 13392.5, "probability": 0.606 }, { "start": 13392.74, "end": 13397.34, "probability": 0.6887 }, { "start": 13399.08, "end": 13399.66, "probability": 0.8781 }, { "start": 13400.26, "end": 13402.9, "probability": 0.9531 }, { "start": 13403.94, "end": 13406.68, "probability": 0.871 }, { "start": 13407.84, "end": 13409.8, "probability": 0.8304 }, { "start": 13410.26, "end": 13411.8, "probability": 0.8835 }, { "start": 13412.36, "end": 13414.54, "probability": 0.9556 }, { "start": 13415.48, "end": 13418.88, "probability": 0.9487 }, { "start": 13419.42, "end": 13420.2, "probability": 0.8149 }, { "start": 13421.02, "end": 13424.3, "probability": 0.7964 }, { "start": 13425.22, "end": 13426.1, "probability": 0.4424 }, { "start": 13427.24, "end": 13430.28, "probability": 0.7493 }, { "start": 13431.58, "end": 13433.32, "probability": 0.5764 }, { "start": 13433.5, "end": 13435.5, "probability": 0.6967 }, { "start": 13437.8, "end": 13438.9, "probability": 0.7166 }, { "start": 13439.58, "end": 13444.7, "probability": 0.9585 }, { "start": 13446.54, "end": 13449.16, "probability": 0.7889 }, { "start": 13449.22, "end": 13452.98, "probability": 0.8161 }, { "start": 13454.04, "end": 13455.86, "probability": 0.6272 }, { "start": 13455.96, "end": 13456.22, "probability": 0.326 }, { "start": 13456.58, "end": 13458.86, "probability": 0.8783 }, { "start": 13459.0, "end": 13461.34, "probability": 0.9602 }, { "start": 13461.96, "end": 13463.5, "probability": 0.7834 }, { "start": 13469.64, "end": 13470.84, "probability": 0.9552 }, { "start": 13471.5, "end": 13471.76, "probability": 0.7228 }, { "start": 13471.76, "end": 13472.38, "probability": 0.0994 }, { "start": 13472.38, "end": 13472.38, "probability": 0.5573 }, { "start": 13472.38, "end": 13472.38, "probability": 0.2339 }, { "start": 13472.38, "end": 13472.44, "probability": 0.003 }, { "start": 13472.44, "end": 13472.96, "probability": 0.2266 }, { "start": 13472.96, "end": 13473.5, "probability": 0.0073 }, { "start": 13473.5, "end": 13473.86, "probability": 0.0592 }, { "start": 13491.38, "end": 13492.04, "probability": 0.3551 }, { "start": 13492.96, "end": 13495.56, "probability": 0.9795 }, { "start": 13496.42, "end": 13497.12, "probability": 0.4387 }, { "start": 13497.7, "end": 13498.32, "probability": 0.7598 }, { "start": 13498.78, "end": 13499.34, "probability": 0.8146 }, { "start": 13499.46, "end": 13500.02, "probability": 0.5242 }, { "start": 13500.02, "end": 13500.86, "probability": 0.5074 }, { "start": 13502.3, "end": 13504.56, "probability": 0.5382 }, { "start": 13505.84, "end": 13507.02, "probability": 0.7792 }, { "start": 13507.32, "end": 13512.81, "probability": 0.4517 }, { "start": 13513.32, "end": 13513.96, "probability": 0.9043 }, { "start": 13515.0, "end": 13516.58, "probability": 0.9849 }, { "start": 13516.74, "end": 13523.86, "probability": 0.9536 }, { "start": 13523.86, "end": 13528.68, "probability": 0.9647 }, { "start": 13528.72, "end": 13530.68, "probability": 0.8534 }, { "start": 13531.4, "end": 13532.46, "probability": 0.8308 }, { "start": 13532.5, "end": 13533.24, "probability": 0.9507 }, { "start": 13533.58, "end": 13536.75, "probability": 0.8615 }, { "start": 13537.84, "end": 13539.78, "probability": 0.9873 }, { "start": 13540.14, "end": 13541.0, "probability": 0.5094 }, { "start": 13541.16, "end": 13541.68, "probability": 0.8821 }, { "start": 13542.16, "end": 13542.7, "probability": 0.7341 }, { "start": 13542.84, "end": 13544.08, "probability": 0.469 }, { "start": 13544.68, "end": 13547.22, "probability": 0.8364 }, { "start": 13547.72, "end": 13549.34, "probability": 0.8402 }, { "start": 13550.12, "end": 13551.6, "probability": 0.6865 }, { "start": 13552.26, "end": 13554.86, "probability": 0.811 }, { "start": 13555.5, "end": 13559.76, "probability": 0.7408 }, { "start": 13560.78, "end": 13561.78, "probability": 0.6465 }, { "start": 13561.96, "end": 13564.09, "probability": 0.8869 }, { "start": 13565.16, "end": 13569.02, "probability": 0.5391 }, { "start": 13569.1, "end": 13571.68, "probability": 0.8177 }, { "start": 13572.3, "end": 13573.94, "probability": 0.8931 }, { "start": 13575.4, "end": 13581.22, "probability": 0.5445 }, { "start": 13581.38, "end": 13583.22, "probability": 0.3898 }, { "start": 13583.44, "end": 13583.97, "probability": 0.5967 }, { "start": 13585.17, "end": 13586.82, "probability": 0.6682 }, { "start": 13588.04, "end": 13592.44, "probability": 0.9828 }, { "start": 13592.58, "end": 13594.62, "probability": 0.7657 }, { "start": 13594.64, "end": 13596.22, "probability": 0.9595 }, { "start": 13597.5, "end": 13600.69, "probability": 0.6548 }, { "start": 13600.96, "end": 13602.1, "probability": 0.6608 }, { "start": 13604.62, "end": 13605.34, "probability": 0.5042 }, { "start": 13605.78, "end": 13610.48, "probability": 0.7385 }, { "start": 13611.14, "end": 13611.96, "probability": 0.1205 }, { "start": 13612.18, "end": 13615.06, "probability": 0.5651 }, { "start": 13616.18, "end": 13618.46, "probability": 0.9529 }, { "start": 13619.38, "end": 13621.32, "probability": 0.567 }, { "start": 13621.54, "end": 13623.52, "probability": 0.7465 }, { "start": 13623.52, "end": 13624.16, "probability": 0.688 }, { "start": 13624.38, "end": 13626.44, "probability": 0.6889 }, { "start": 13626.44, "end": 13627.24, "probability": 0.2879 }, { "start": 13627.28, "end": 13629.22, "probability": 0.9778 }, { "start": 13629.8, "end": 13631.22, "probability": 0.8072 }, { "start": 13632.46, "end": 13634.42, "probability": 0.8548 }, { "start": 13634.76, "end": 13635.86, "probability": 0.4528 }, { "start": 13636.44, "end": 13639.52, "probability": 0.7484 }, { "start": 13639.58, "end": 13639.92, "probability": 0.7841 }, { "start": 13639.96, "end": 13644.04, "probability": 0.9691 }, { "start": 13645.2, "end": 13645.7, "probability": 0.7206 }, { "start": 13645.82, "end": 13646.4, "probability": 0.3788 }, { "start": 13646.44, "end": 13647.32, "probability": 0.7284 }, { "start": 13647.36, "end": 13648.24, "probability": 0.7825 }, { "start": 13648.46, "end": 13649.62, "probability": 0.9541 }, { "start": 13650.38, "end": 13651.32, "probability": 0.6125 }, { "start": 13651.8, "end": 13658.68, "probability": 0.6675 }, { "start": 13658.8, "end": 13659.38, "probability": 0.7181 }, { "start": 13659.82, "end": 13661.14, "probability": 0.9071 }, { "start": 13661.68, "end": 13661.78, "probability": 0.1404 }, { "start": 13662.34, "end": 13663.64, "probability": 0.9769 }, { "start": 13663.78, "end": 13664.84, "probability": 0.8325 }, { "start": 13664.96, "end": 13666.64, "probability": 0.9515 }, { "start": 13666.7, "end": 13668.39, "probability": 0.8113 }, { "start": 13668.96, "end": 13669.28, "probability": 0.7795 }, { "start": 13669.38, "end": 13669.8, "probability": 0.7196 }, { "start": 13669.8, "end": 13670.22, "probability": 0.4932 }, { "start": 13670.64, "end": 13675.3, "probability": 0.7075 }, { "start": 13675.48, "end": 13676.16, "probability": 0.7754 }, { "start": 13676.46, "end": 13677.13, "probability": 0.9033 }, { "start": 13677.58, "end": 13680.86, "probability": 0.9474 }, { "start": 13681.04, "end": 13686.94, "probability": 0.8878 }, { "start": 13687.5, "end": 13688.8, "probability": 0.794 }, { "start": 13688.94, "end": 13691.36, "probability": 0.1946 }, { "start": 13691.94, "end": 13694.22, "probability": 0.8599 }, { "start": 13694.52, "end": 13695.32, "probability": 0.8102 }, { "start": 13695.38, "end": 13697.8, "probability": 0.5803 }, { "start": 13698.18, "end": 13700.66, "probability": 0.8997 }, { "start": 13701.36, "end": 13702.74, "probability": 0.9272 }, { "start": 13702.76, "end": 13705.1, "probability": 0.7072 }, { "start": 13705.4, "end": 13706.94, "probability": 0.9471 }, { "start": 13707.12, "end": 13713.74, "probability": 0.8394 }, { "start": 13713.92, "end": 13714.47, "probability": 0.5394 }, { "start": 13716.06, "end": 13717.68, "probability": 0.8006 }, { "start": 13717.8, "end": 13720.74, "probability": 0.9769 }, { "start": 13720.76, "end": 13721.2, "probability": 0.6766 }, { "start": 13721.54, "end": 13723.76, "probability": 0.8521 }, { "start": 13724.72, "end": 13725.22, "probability": 0.7708 }, { "start": 13725.28, "end": 13726.32, "probability": 0.7389 }, { "start": 13726.38, "end": 13731.64, "probability": 0.974 }, { "start": 13731.74, "end": 13732.46, "probability": 0.9436 }, { "start": 13733.58, "end": 13736.31, "probability": 0.9485 }, { "start": 13736.38, "end": 13738.82, "probability": 0.9873 }, { "start": 13738.94, "end": 13739.64, "probability": 0.9829 }, { "start": 13740.46, "end": 13744.64, "probability": 0.9164 }, { "start": 13744.82, "end": 13745.68, "probability": 0.6596 }, { "start": 13745.72, "end": 13748.6, "probability": 0.7216 }, { "start": 13749.64, "end": 13758.4, "probability": 0.9563 }, { "start": 13758.68, "end": 13761.7, "probability": 0.965 }, { "start": 13761.88, "end": 13764.94, "probability": 0.4901 }, { "start": 13765.94, "end": 13766.32, "probability": 0.4651 }, { "start": 13766.98, "end": 13768.6, "probability": 0.854 }, { "start": 13769.58, "end": 13772.78, "probability": 0.9658 }, { "start": 13772.86, "end": 13774.5, "probability": 0.7131 }, { "start": 13774.68, "end": 13775.38, "probability": 0.7974 }, { "start": 13775.48, "end": 13777.1, "probability": 0.8315 }, { "start": 13777.24, "end": 13777.82, "probability": 0.972 }, { "start": 13778.64, "end": 13779.38, "probability": 0.8015 }, { "start": 13779.92, "end": 13781.06, "probability": 0.4831 }, { "start": 13781.22, "end": 13784.76, "probability": 0.9824 }, { "start": 13784.88, "end": 13786.12, "probability": 0.731 }, { "start": 13786.22, "end": 13786.64, "probability": 0.5052 }, { "start": 13786.72, "end": 13787.56, "probability": 0.9745 }, { "start": 13787.66, "end": 13788.24, "probability": 0.319 }, { "start": 13788.86, "end": 13792.42, "probability": 0.9783 }, { "start": 13792.64, "end": 13794.94, "probability": 0.9961 }, { "start": 13795.08, "end": 13796.16, "probability": 0.7735 }, { "start": 13796.5, "end": 13797.24, "probability": 0.9133 }, { "start": 13797.6, "end": 13799.92, "probability": 0.9594 }, { "start": 13800.78, "end": 13801.72, "probability": 0.6976 }, { "start": 13801.78, "end": 13805.68, "probability": 0.9564 }, { "start": 13805.76, "end": 13806.22, "probability": 0.7623 }, { "start": 13806.42, "end": 13808.52, "probability": 0.6905 }, { "start": 13808.9, "end": 13809.9, "probability": 0.7156 }, { "start": 13810.1, "end": 13810.81, "probability": 0.9368 }, { "start": 13811.32, "end": 13815.52, "probability": 0.9722 }, { "start": 13815.98, "end": 13819.3, "probability": 0.9944 }, { "start": 13819.52, "end": 13820.18, "probability": 0.0132 }, { "start": 13820.56, "end": 13822.48, "probability": 0.577 }, { "start": 13822.8, "end": 13827.22, "probability": 0.9736 }, { "start": 13827.46, "end": 13829.0, "probability": 0.6032 }, { "start": 13829.14, "end": 13829.88, "probability": 0.7076 }, { "start": 13830.02, "end": 13830.6, "probability": 0.5526 }, { "start": 13830.66, "end": 13834.26, "probability": 0.6254 }, { "start": 13834.36, "end": 13840.12, "probability": 0.7523 }, { "start": 13840.36, "end": 13840.54, "probability": 0.1077 }, { "start": 13840.58, "end": 13845.26, "probability": 0.918 }, { "start": 13845.76, "end": 13849.16, "probability": 0.9617 }, { "start": 13849.8, "end": 13850.3, "probability": 0.3753 }, { "start": 13851.55, "end": 13854.98, "probability": 0.9829 }, { "start": 13855.38, "end": 13861.08, "probability": 0.6657 }, { "start": 13861.26, "end": 13861.49, "probability": 0.967 }, { "start": 13861.84, "end": 13862.28, "probability": 0.9672 }, { "start": 13862.44, "end": 13866.4, "probability": 0.7094 }, { "start": 13866.46, "end": 13866.66, "probability": 0.8354 }, { "start": 13867.4, "end": 13869.0, "probability": 0.895 }, { "start": 13869.66, "end": 13870.5, "probability": 0.9041 }, { "start": 13870.8, "end": 13875.38, "probability": 0.9873 }, { "start": 13875.54, "end": 13878.34, "probability": 0.7801 }, { "start": 13879.1, "end": 13882.42, "probability": 0.9255 }, { "start": 13882.52, "end": 13885.02, "probability": 0.7272 }, { "start": 13885.78, "end": 13887.56, "probability": 0.342 }, { "start": 13887.62, "end": 13889.94, "probability": 0.9 }, { "start": 13889.98, "end": 13890.12, "probability": 0.6027 }, { "start": 13890.24, "end": 13891.64, "probability": 0.9402 }, { "start": 13891.7, "end": 13892.88, "probability": 0.7521 }, { "start": 13893.16, "end": 13895.14, "probability": 0.9761 }, { "start": 13895.68, "end": 13897.52, "probability": 0.5692 }, { "start": 13897.6, "end": 13899.86, "probability": 0.8012 }, { "start": 13900.26, "end": 13903.34, "probability": 0.9836 }, { "start": 13903.42, "end": 13904.14, "probability": 0.1006 }, { "start": 13904.24, "end": 13904.9, "probability": 0.6948 }, { "start": 13905.38, "end": 13906.02, "probability": 0.9817 }, { "start": 13906.66, "end": 13908.87, "probability": 0.8756 }, { "start": 13910.18, "end": 13912.52, "probability": 0.8408 }, { "start": 13913.96, "end": 13915.66, "probability": 0.945 }, { "start": 13916.82, "end": 13919.62, "probability": 0.9403 }, { "start": 13920.42, "end": 13923.46, "probability": 0.6731 }, { "start": 13923.74, "end": 13924.44, "probability": 0.8203 }, { "start": 13924.6, "end": 13925.56, "probability": 0.7935 }, { "start": 13925.58, "end": 13928.58, "probability": 0.7062 }, { "start": 13928.76, "end": 13929.68, "probability": 0.9728 }, { "start": 13930.06, "end": 13931.68, "probability": 0.5098 }, { "start": 13931.98, "end": 13933.76, "probability": 0.8944 }, { "start": 13934.44, "end": 13934.44, "probability": 0.1137 }, { "start": 13934.44, "end": 13935.0, "probability": 0.2696 }, { "start": 13935.0, "end": 13935.53, "probability": 0.2116 }, { "start": 13936.32, "end": 13937.92, "probability": 0.3435 }, { "start": 13938.02, "end": 13938.74, "probability": 0.6328 }, { "start": 13938.78, "end": 13939.12, "probability": 0.5342 }, { "start": 13939.2, "end": 13939.7, "probability": 0.9555 }, { "start": 13941.24, "end": 13942.26, "probability": 0.9822 }, { "start": 13942.4, "end": 13943.52, "probability": 0.7928 }, { "start": 13944.1, "end": 13947.01, "probability": 0.9985 }, { "start": 13948.26, "end": 13949.78, "probability": 0.9961 }, { "start": 13951.38, "end": 13954.98, "probability": 0.9136 }, { "start": 13954.98, "end": 13958.06, "probability": 0.9966 }, { "start": 13958.12, "end": 13958.68, "probability": 0.9548 }, { "start": 13959.22, "end": 13959.92, "probability": 0.9738 }, { "start": 13960.4, "end": 13964.0, "probability": 0.9458 }, { "start": 13964.12, "end": 13965.32, "probability": 0.8079 }, { "start": 13965.44, "end": 13966.64, "probability": 0.9583 }, { "start": 13966.68, "end": 13967.42, "probability": 0.9299 }, { "start": 13967.48, "end": 13969.42, "probability": 0.9888 }, { "start": 13969.64, "end": 13969.64, "probability": 0.8584 }, { "start": 13970.24, "end": 13971.4, "probability": 0.9871 }, { "start": 13971.52, "end": 13972.82, "probability": 0.9951 }, { "start": 13972.9, "end": 13974.78, "probability": 0.894 }, { "start": 13975.44, "end": 13975.78, "probability": 0.5762 }, { "start": 13975.96, "end": 13977.12, "probability": 0.7269 }, { "start": 13977.52, "end": 13982.03, "probability": 0.9124 }, { "start": 13983.62, "end": 13983.62, "probability": 0.1406 }, { "start": 13983.62, "end": 13984.18, "probability": 0.7647 }, { "start": 13984.94, "end": 13985.42, "probability": 0.7078 }, { "start": 13985.52, "end": 13987.0, "probability": 0.7456 }, { "start": 13987.14, "end": 13988.22, "probability": 0.8455 }, { "start": 13988.24, "end": 13989.08, "probability": 0.6867 }, { "start": 13989.08, "end": 13990.5, "probability": 0.4875 }, { "start": 13991.08, "end": 13991.68, "probability": 0.8463 }, { "start": 13992.24, "end": 13993.2, "probability": 0.8024 }, { "start": 13994.02, "end": 13996.94, "probability": 0.8054 }, { "start": 13997.32, "end": 14000.94, "probability": 0.7904 }, { "start": 14001.02, "end": 14003.86, "probability": 0.8033 }, { "start": 14004.0, "end": 14004.5, "probability": 0.609 }, { "start": 14004.66, "end": 14005.02, "probability": 0.3559 }, { "start": 14005.2, "end": 14005.62, "probability": 0.3496 }, { "start": 14005.88, "end": 14007.8, "probability": 0.8521 }, { "start": 14007.9, "end": 14008.4, "probability": 0.8867 }, { "start": 14008.86, "end": 14012.0, "probability": 0.7932 }, { "start": 14012.04, "end": 14012.98, "probability": 0.9643 }, { "start": 14013.12, "end": 14013.9, "probability": 0.9481 }, { "start": 14014.4, "end": 14022.58, "probability": 0.9672 }, { "start": 14022.76, "end": 14023.36, "probability": 0.8877 }, { "start": 14023.56, "end": 14024.44, "probability": 0.8369 }, { "start": 14024.62, "end": 14026.0, "probability": 0.8732 }, { "start": 14026.2, "end": 14027.4, "probability": 0.9114 }, { "start": 14027.46, "end": 14028.0, "probability": 0.7573 }, { "start": 14028.5, "end": 14030.3, "probability": 0.7058 }, { "start": 14030.6, "end": 14032.04, "probability": 0.5858 }, { "start": 14032.3, "end": 14034.43, "probability": 0.7466 }, { "start": 14034.68, "end": 14038.44, "probability": 0.9632 }, { "start": 14038.56, "end": 14040.54, "probability": 0.9126 }, { "start": 14040.66, "end": 14043.22, "probability": 0.7837 }, { "start": 14043.36, "end": 14045.06, "probability": 0.9639 }, { "start": 14045.16, "end": 14045.52, "probability": 0.2376 }, { "start": 14045.76, "end": 14046.94, "probability": 0.6266 }, { "start": 14047.2, "end": 14048.6, "probability": 0.9597 }, { "start": 14048.88, "end": 14054.18, "probability": 0.9633 }, { "start": 14054.88, "end": 14055.36, "probability": 0.7909 }, { "start": 14055.6, "end": 14056.1, "probability": 0.7064 }, { "start": 14056.2, "end": 14056.56, "probability": 0.3213 }, { "start": 14056.6, "end": 14057.48, "probability": 0.6407 }, { "start": 14057.6, "end": 14060.24, "probability": 0.9927 }, { "start": 14060.3, "end": 14060.86, "probability": 0.5217 }, { "start": 14061.4, "end": 14061.9, "probability": 0.6189 }, { "start": 14061.98, "end": 14063.38, "probability": 0.8773 }, { "start": 14067.26, "end": 14069.42, "probability": 0.7381 }, { "start": 14070.54, "end": 14071.82, "probability": 0.6825 }, { "start": 14072.58, "end": 14075.0, "probability": 0.8006 }, { "start": 14075.36, "end": 14077.78, "probability": 0.7421 }, { "start": 14077.78, "end": 14078.02, "probability": 0.2952 }, { "start": 14078.12, "end": 14078.8, "probability": 0.8213 }, { "start": 14079.0, "end": 14083.36, "probability": 0.6002 }, { "start": 14083.94, "end": 14084.64, "probability": 0.0396 }, { "start": 14084.66, "end": 14085.28, "probability": 0.392 }, { "start": 14085.78, "end": 14087.02, "probability": 0.628 }, { "start": 14088.26, "end": 14089.6, "probability": 0.9349 }, { "start": 14090.1, "end": 14096.1, "probability": 0.7808 }, { "start": 14096.32, "end": 14097.23, "probability": 0.3667 }, { "start": 14097.5, "end": 14098.66, "probability": 0.3835 }, { "start": 14098.98, "end": 14102.98, "probability": 0.6136 }, { "start": 14102.98, "end": 14105.76, "probability": 0.9782 }, { "start": 14106.24, "end": 14108.6, "probability": 0.5735 }, { "start": 14108.62, "end": 14109.26, "probability": 0.9003 }, { "start": 14109.52, "end": 14114.56, "probability": 0.963 }, { "start": 14115.02, "end": 14115.92, "probability": 0.9907 }, { "start": 14116.4, "end": 14117.34, "probability": 0.9214 }, { "start": 14117.38, "end": 14118.96, "probability": 0.6944 }, { "start": 14119.1, "end": 14122.48, "probability": 0.8028 }, { "start": 14122.88, "end": 14123.92, "probability": 0.9973 }, { "start": 14124.22, "end": 14124.88, "probability": 0.9756 }, { "start": 14124.94, "end": 14126.2, "probability": 0.9619 }, { "start": 14126.58, "end": 14129.14, "probability": 0.8867 }, { "start": 14129.14, "end": 14131.26, "probability": 0.8945 }, { "start": 14131.3, "end": 14133.82, "probability": 0.8735 }, { "start": 14134.44, "end": 14135.18, "probability": 0.8254 }, { "start": 14135.58, "end": 14136.98, "probability": 0.9285 }, { "start": 14137.02, "end": 14138.6, "probability": 0.8084 }, { "start": 14138.7, "end": 14139.56, "probability": 0.7656 }, { "start": 14140.44, "end": 14141.75, "probability": 0.2742 }, { "start": 14141.8, "end": 14142.42, "probability": 0.4977 }, { "start": 14142.42, "end": 14143.62, "probability": 0.5689 }, { "start": 14143.62, "end": 14143.69, "probability": 0.924 }, { "start": 14144.54, "end": 14145.44, "probability": 0.9436 }, { "start": 14145.6, "end": 14146.98, "probability": 0.9978 }, { "start": 14147.1, "end": 14147.44, "probability": 0.8644 }, { "start": 14147.52, "end": 14147.96, "probability": 0.6153 }, { "start": 14148.28, "end": 14151.52, "probability": 0.6582 }, { "start": 14151.94, "end": 14152.76, "probability": 0.0385 }, { "start": 14152.8, "end": 14153.58, "probability": 0.0186 }, { "start": 14153.58, "end": 14155.42, "probability": 0.9585 }, { "start": 14155.86, "end": 14157.56, "probability": 0.7539 }, { "start": 14157.62, "end": 14160.68, "probability": 0.7485 }, { "start": 14160.68, "end": 14162.92, "probability": 0.8845 }, { "start": 14162.92, "end": 14163.6, "probability": 0.4483 }, { "start": 14163.88, "end": 14166.52, "probability": 0.5464 }, { "start": 14166.52, "end": 14167.54, "probability": 0.0681 }, { "start": 14167.54, "end": 14168.56, "probability": 0.8883 }, { "start": 14169.26, "end": 14169.54, "probability": 0.6319 }, { "start": 14169.64, "end": 14170.76, "probability": 0.747 }, { "start": 14171.02, "end": 14171.68, "probability": 0.1866 }, { "start": 14171.76, "end": 14174.14, "probability": 0.8405 }, { "start": 14174.7, "end": 14176.82, "probability": 0.9124 }, { "start": 14176.84, "end": 14177.78, "probability": 0.8957 }, { "start": 14177.88, "end": 14178.2, "probability": 0.9172 }, { "start": 14178.28, "end": 14179.66, "probability": 0.7255 }, { "start": 14180.38, "end": 14183.72, "probability": 0.6861 }, { "start": 14183.8, "end": 14185.04, "probability": 0.6756 }, { "start": 14185.06, "end": 14185.26, "probability": 0.2154 }, { "start": 14185.4, "end": 14188.3, "probability": 0.9764 }, { "start": 14189.08, "end": 14189.98, "probability": 0.9797 }, { "start": 14190.18, "end": 14193.52, "probability": 0.8162 }, { "start": 14193.7, "end": 14195.32, "probability": 0.9539 }, { "start": 14195.66, "end": 14195.8, "probability": 0.695 }, { "start": 14196.48, "end": 14198.6, "probability": 0.9778 }, { "start": 14199.6, "end": 14200.48, "probability": 0.9728 }, { "start": 14201.94, "end": 14205.34, "probability": 0.9725 }, { "start": 14206.18, "end": 14210.74, "probability": 0.9912 }, { "start": 14212.7, "end": 14217.18, "probability": 0.8 }, { "start": 14217.9, "end": 14218.56, "probability": 0.4513 }, { "start": 14219.16, "end": 14220.5, "probability": 0.9941 }, { "start": 14223.04, "end": 14225.28, "probability": 0.9382 }, { "start": 14225.46, "end": 14226.74, "probability": 0.9321 }, { "start": 14226.9, "end": 14227.14, "probability": 0.7693 }, { "start": 14228.24, "end": 14229.3, "probability": 0.7917 }, { "start": 14229.36, "end": 14230.52, "probability": 0.5158 }, { "start": 14230.56, "end": 14231.88, "probability": 0.7064 }, { "start": 14232.52, "end": 14233.06, "probability": 0.7412 }, { "start": 14233.16, "end": 14236.24, "probability": 0.6704 }, { "start": 14237.26, "end": 14241.7, "probability": 0.8185 }, { "start": 14241.8, "end": 14243.16, "probability": 0.5819 }, { "start": 14244.14, "end": 14247.5, "probability": 0.7506 }, { "start": 14247.58, "end": 14248.96, "probability": 0.5703 }, { "start": 14249.96, "end": 14252.4, "probability": 0.8066 }, { "start": 14252.46, "end": 14253.54, "probability": 0.6818 }, { "start": 14253.74, "end": 14261.08, "probability": 0.9359 }, { "start": 14264.54, "end": 14266.1, "probability": 0.5761 }, { "start": 14266.32, "end": 14266.8, "probability": 0.6127 }, { "start": 14266.96, "end": 14267.56, "probability": 0.7735 }, { "start": 14267.72, "end": 14269.36, "probability": 0.8621 }, { "start": 14270.12, "end": 14272.34, "probability": 0.9624 }, { "start": 14273.68, "end": 14273.68, "probability": 0.1117 }, { "start": 14273.68, "end": 14273.68, "probability": 0.1508 }, { "start": 14273.68, "end": 14273.94, "probability": 0.1266 }, { "start": 14274.88, "end": 14275.26, "probability": 0.5781 }, { "start": 14276.24, "end": 14277.16, "probability": 0.2525 }, { "start": 14277.86, "end": 14280.92, "probability": 0.8765 }, { "start": 14281.0, "end": 14281.72, "probability": 0.6033 }, { "start": 14281.92, "end": 14282.52, "probability": 0.8221 }, { "start": 14283.18, "end": 14286.12, "probability": 0.7461 }, { "start": 14287.0, "end": 14290.5, "probability": 0.8673 }, { "start": 14290.5, "end": 14292.44, "probability": 0.9945 }, { "start": 14293.18, "end": 14293.59, "probability": 0.9891 }, { "start": 14294.58, "end": 14296.5, "probability": 0.7217 }, { "start": 14297.44, "end": 14298.8, "probability": 0.9819 }, { "start": 14299.46, "end": 14301.34, "probability": 0.6667 }, { "start": 14301.46, "end": 14301.48, "probability": 0.1829 }, { "start": 14301.48, "end": 14301.82, "probability": 0.5938 }, { "start": 14302.68, "end": 14303.2, "probability": 0.9124 }, { "start": 14305.52, "end": 14305.94, "probability": 0.9562 }, { "start": 14306.64, "end": 14306.92, "probability": 0.7668 }, { "start": 14307.2, "end": 14308.34, "probability": 0.9816 }, { "start": 14308.42, "end": 14309.18, "probability": 0.919 }, { "start": 14309.3, "end": 14309.86, "probability": 0.9827 }, { "start": 14311.08, "end": 14311.22, "probability": 0.0127 }, { "start": 14311.22, "end": 14312.36, "probability": 0.7316 }, { "start": 14313.88, "end": 14316.04, "probability": 0.8215 }, { "start": 14317.08, "end": 14319.6, "probability": 0.8174 }, { "start": 14320.52, "end": 14321.84, "probability": 0.8246 }, { "start": 14323.18, "end": 14325.4, "probability": 0.875 }, { "start": 14325.46, "end": 14330.24, "probability": 0.8325 }, { "start": 14332.57, "end": 14338.04, "probability": 0.8677 }, { "start": 14339.06, "end": 14340.96, "probability": 0.896 }, { "start": 14342.5, "end": 14345.76, "probability": 0.9326 }, { "start": 14347.84, "end": 14350.16, "probability": 0.9122 }, { "start": 14351.94, "end": 14354.28, "probability": 0.9678 }, { "start": 14355.94, "end": 14357.26, "probability": 0.8014 }, { "start": 14357.42, "end": 14362.35, "probability": 0.9854 }, { "start": 14364.52, "end": 14366.08, "probability": 0.8278 }, { "start": 14368.04, "end": 14374.1, "probability": 0.9709 }, { "start": 14374.1, "end": 14377.88, "probability": 0.9884 }, { "start": 14379.54, "end": 14381.06, "probability": 0.9949 }, { "start": 14381.3, "end": 14382.13, "probability": 0.9839 }, { "start": 14382.68, "end": 14387.1, "probability": 0.8749 }, { "start": 14388.46, "end": 14390.96, "probability": 0.9845 }, { "start": 14391.1, "end": 14392.06, "probability": 0.9651 }, { "start": 14392.76, "end": 14394.16, "probability": 0.875 }, { "start": 14395.78, "end": 14397.34, "probability": 0.6749 }, { "start": 14398.24, "end": 14399.12, "probability": 0.3536 }, { "start": 14400.32, "end": 14400.96, "probability": 0.7096 }, { "start": 14401.78, "end": 14402.76, "probability": 0.9397 }, { "start": 14405.08, "end": 14409.08, "probability": 0.8149 }, { "start": 14410.14, "end": 14413.02, "probability": 0.9338 }, { "start": 14414.42, "end": 14416.88, "probability": 0.7819 }, { "start": 14417.42, "end": 14419.02, "probability": 0.9884 }, { "start": 14420.28, "end": 14423.18, "probability": 0.866 }, { "start": 14423.3, "end": 14424.34, "probability": 0.9602 }, { "start": 14425.52, "end": 14429.2, "probability": 0.952 }, { "start": 14429.6, "end": 14431.95, "probability": 0.9874 }, { "start": 14432.44, "end": 14434.54, "probability": 0.99 }, { "start": 14436.34, "end": 14437.84, "probability": 0.957 }, { "start": 14439.38, "end": 14440.08, "probability": 0.6449 }, { "start": 14440.92, "end": 14441.48, "probability": 0.7966 }, { "start": 14442.32, "end": 14444.04, "probability": 0.6729 }, { "start": 14444.16, "end": 14447.06, "probability": 0.9437 }, { "start": 14448.62, "end": 14451.74, "probability": 0.9572 }, { "start": 14452.84, "end": 14454.62, "probability": 0.7055 }, { "start": 14454.74, "end": 14460.1, "probability": 0.7822 }, { "start": 14460.26, "end": 14463.3, "probability": 0.9601 }, { "start": 14463.86, "end": 14464.64, "probability": 0.9454 }, { "start": 14466.54, "end": 14469.4, "probability": 0.8767 }, { "start": 14471.44, "end": 14472.1, "probability": 0.7715 }, { "start": 14472.86, "end": 14474.74, "probability": 0.9969 }, { "start": 14476.16, "end": 14477.18, "probability": 0.8998 }, { "start": 14477.2, "end": 14477.86, "probability": 0.7513 }, { "start": 14478.18, "end": 14479.88, "probability": 0.9269 }, { "start": 14480.9, "end": 14482.76, "probability": 0.9985 }, { "start": 14483.54, "end": 14487.48, "probability": 0.9977 }, { "start": 14487.48, "end": 14488.18, "probability": 0.404 }, { "start": 14488.24, "end": 14491.64, "probability": 0.8662 }, { "start": 14493.16, "end": 14494.34, "probability": 0.9092 }, { "start": 14494.46, "end": 14495.18, "probability": 0.6494 }, { "start": 14495.32, "end": 14499.32, "probability": 0.978 }, { "start": 14499.78, "end": 14501.04, "probability": 0.9939 }, { "start": 14502.04, "end": 14507.9, "probability": 0.98 }, { "start": 14508.7, "end": 14510.5, "probability": 0.9967 }, { "start": 14511.24, "end": 14512.7, "probability": 0.8192 }, { "start": 14513.76, "end": 14515.4, "probability": 0.9909 }, { "start": 14515.46, "end": 14517.06, "probability": 0.8133 }, { "start": 14517.68, "end": 14518.52, "probability": 0.6738 }, { "start": 14519.48, "end": 14519.58, "probability": 0.3738 }, { "start": 14519.7, "end": 14521.82, "probability": 0.7295 }, { "start": 14521.92, "end": 14522.12, "probability": 0.4977 }, { "start": 14522.14, "end": 14522.64, "probability": 0.861 }, { "start": 14523.36, "end": 14524.01, "probability": 0.4124 }, { "start": 14524.66, "end": 14528.8, "probability": 0.9089 }, { "start": 14529.44, "end": 14531.02, "probability": 0.8836 }, { "start": 14531.7, "end": 14532.96, "probability": 0.9932 }, { "start": 14534.22, "end": 14537.78, "probability": 0.7786 }, { "start": 14538.8, "end": 14541.4, "probability": 0.9572 }, { "start": 14542.42, "end": 14546.26, "probability": 0.7869 }, { "start": 14546.96, "end": 14548.78, "probability": 0.9058 }, { "start": 14549.48, "end": 14553.06, "probability": 0.9983 }, { "start": 14553.36, "end": 14555.02, "probability": 0.9899 }, { "start": 14556.74, "end": 14558.39, "probability": 0.9973 }, { "start": 14559.04, "end": 14562.84, "probability": 0.7883 }, { "start": 14562.88, "end": 14563.18, "probability": 0.5503 }, { "start": 14563.36, "end": 14564.92, "probability": 0.9714 }, { "start": 14564.96, "end": 14565.64, "probability": 0.6825 }, { "start": 14566.44, "end": 14569.72, "probability": 0.7898 }, { "start": 14569.84, "end": 14572.9, "probability": 0.9979 }, { "start": 14572.9, "end": 14576.7, "probability": 0.9904 }, { "start": 14577.22, "end": 14582.04, "probability": 0.9578 }, { "start": 14582.58, "end": 14585.2, "probability": 0.9183 }, { "start": 14586.22, "end": 14589.64, "probability": 0.9795 }, { "start": 14590.2, "end": 14591.89, "probability": 0.9082 }, { "start": 14592.42, "end": 14595.2, "probability": 0.8057 }, { "start": 14596.6, "end": 14597.64, "probability": 0.9963 }, { "start": 14599.26, "end": 14602.68, "probability": 0.9189 }, { "start": 14603.22, "end": 14603.48, "probability": 0.7595 }, { "start": 14603.58, "end": 14607.31, "probability": 0.9785 }, { "start": 14607.8, "end": 14608.25, "probability": 0.9189 }, { "start": 14609.08, "end": 14609.5, "probability": 0.9792 }, { "start": 14610.4, "end": 14611.96, "probability": 0.9927 }, { "start": 14615.84, "end": 14617.56, "probability": 0.998 }, { "start": 14618.5, "end": 14621.36, "probability": 0.8953 }, { "start": 14621.48, "end": 14622.26, "probability": 0.9777 }, { "start": 14622.34, "end": 14623.08, "probability": 0.5896 }, { "start": 14623.12, "end": 14624.06, "probability": 0.9276 }, { "start": 14625.0, "end": 14627.66, "probability": 0.7683 }, { "start": 14628.54, "end": 14629.86, "probability": 0.7765 }, { "start": 14630.58, "end": 14632.04, "probability": 0.958 }, { "start": 14633.62, "end": 14637.32, "probability": 0.9343 }, { "start": 14639.44, "end": 14641.28, "probability": 0.9764 }, { "start": 14641.44, "end": 14642.36, "probability": 0.8862 }, { "start": 14642.74, "end": 14645.1, "probability": 0.9225 }, { "start": 14645.26, "end": 14646.98, "probability": 0.9978 }, { "start": 14647.2, "end": 14650.46, "probability": 0.9089 }, { "start": 14651.86, "end": 14653.56, "probability": 0.9827 }, { "start": 14655.08, "end": 14655.81, "probability": 0.4942 }, { "start": 14656.06, "end": 14658.9, "probability": 0.9961 }, { "start": 14658.98, "end": 14660.01, "probability": 0.7367 }, { "start": 14661.12, "end": 14663.96, "probability": 0.9808 }, { "start": 14664.78, "end": 14666.78, "probability": 0.9673 }, { "start": 14667.76, "end": 14670.58, "probability": 0.9497 }, { "start": 14670.58, "end": 14674.26, "probability": 0.9763 }, { "start": 14674.38, "end": 14674.64, "probability": 0.5886 }, { "start": 14674.8, "end": 14675.3, "probability": 0.8722 }, { "start": 14675.32, "end": 14677.68, "probability": 0.9797 }, { "start": 14678.5, "end": 14682.57, "probability": 0.9881 }, { "start": 14683.48, "end": 14683.78, "probability": 0.9958 }, { "start": 14684.3, "end": 14689.1, "probability": 0.9878 }, { "start": 14689.1, "end": 14691.98, "probability": 0.9556 }, { "start": 14692.56, "end": 14693.96, "probability": 0.9436 }, { "start": 14696.18, "end": 14697.5, "probability": 0.0469 }, { "start": 14697.5, "end": 14698.05, "probability": 0.5267 }, { "start": 14698.42, "end": 14700.0, "probability": 0.9265 }, { "start": 14701.08, "end": 14702.52, "probability": 0.8706 }, { "start": 14704.48, "end": 14705.5, "probability": 0.8061 }, { "start": 14706.58, "end": 14709.49, "probability": 0.8331 }, { "start": 14709.66, "end": 14711.02, "probability": 0.8949 }, { "start": 14712.1, "end": 14714.34, "probability": 0.8583 }, { "start": 14715.72, "end": 14717.66, "probability": 0.8816 }, { "start": 14720.24, "end": 14723.4, "probability": 0.9946 }, { "start": 14724.78, "end": 14726.0, "probability": 0.9487 }, { "start": 14726.84, "end": 14727.74, "probability": 0.891 }, { "start": 14728.82, "end": 14730.06, "probability": 0.9927 }, { "start": 14733.38, "end": 14733.76, "probability": 0.673 }, { "start": 14734.52, "end": 14737.58, "probability": 0.9704 }, { "start": 14738.7, "end": 14740.64, "probability": 0.9875 }, { "start": 14741.04, "end": 14744.32, "probability": 0.9967 }, { "start": 14745.24, "end": 14745.88, "probability": 0.9169 }, { "start": 14745.9, "end": 14747.06, "probability": 0.9818 }, { "start": 14747.18, "end": 14750.82, "probability": 0.9908 }, { "start": 14752.1, "end": 14754.2, "probability": 0.8183 }, { "start": 14756.43, "end": 14758.7, "probability": 0.8337 }, { "start": 14760.18, "end": 14761.24, "probability": 0.8427 }, { "start": 14762.72, "end": 14764.28, "probability": 0.8989 }, { "start": 14765.64, "end": 14766.4, "probability": 0.9946 }, { "start": 14766.52, "end": 14766.8, "probability": 0.9657 }, { "start": 14767.46, "end": 14769.22, "probability": 0.8866 }, { "start": 14770.44, "end": 14773.12, "probability": 0.9527 }, { "start": 14775.3, "end": 14777.28, "probability": 0.7041 }, { "start": 14777.83, "end": 14779.12, "probability": 0.9211 }, { "start": 14779.18, "end": 14781.52, "probability": 0.6313 }, { "start": 14782.08, "end": 14784.02, "probability": 0.8128 }, { "start": 14784.66, "end": 14785.48, "probability": 0.9087 }, { "start": 14786.56, "end": 14787.64, "probability": 0.59 }, { "start": 14789.14, "end": 14789.98, "probability": 0.2871 }, { "start": 14790.26, "end": 14790.68, "probability": 0.4958 }, { "start": 14791.12, "end": 14793.52, "probability": 0.702 }, { "start": 14793.54, "end": 14793.78, "probability": 0.7889 }, { "start": 14794.12, "end": 14795.34, "probability": 0.9722 }, { "start": 14795.8, "end": 14796.25, "probability": 0.9502 }, { "start": 14796.58, "end": 14799.11, "probability": 0.7158 }, { "start": 14799.38, "end": 14800.72, "probability": 0.8468 }, { "start": 14800.78, "end": 14801.69, "probability": 0.5933 }, { "start": 14802.08, "end": 14803.04, "probability": 0.4244 }, { "start": 14803.12, "end": 14806.48, "probability": 0.469 }, { "start": 14807.5, "end": 14809.66, "probability": 0.9921 }, { "start": 14809.7, "end": 14812.5, "probability": 0.7355 }, { "start": 14812.76, "end": 14814.0, "probability": 0.7695 }, { "start": 14814.2, "end": 14814.66, "probability": 0.074 }, { "start": 14814.66, "end": 14815.0, "probability": 0.1969 }, { "start": 14815.02, "end": 14815.96, "probability": 0.7101 }, { "start": 14816.64, "end": 14816.66, "probability": 0.6079 }, { "start": 14816.66, "end": 14818.68, "probability": 0.9074 }, { "start": 14819.82, "end": 14821.86, "probability": 0.9963 }, { "start": 14821.96, "end": 14825.44, "probability": 0.9907 }, { "start": 14826.22, "end": 14826.98, "probability": 0.7534 }, { "start": 14827.34, "end": 14829.18, "probability": 0.9308 }, { "start": 14829.62, "end": 14832.3, "probability": 0.8794 }, { "start": 14832.48, "end": 14834.02, "probability": 0.9736 }, { "start": 14834.84, "end": 14836.03, "probability": 0.9548 }, { "start": 14837.34, "end": 14838.94, "probability": 0.944 }, { "start": 14839.76, "end": 14842.82, "probability": 0.9779 }, { "start": 14844.24, "end": 14844.86, "probability": 0.9451 }, { "start": 14844.96, "end": 14845.76, "probability": 0.9145 }, { "start": 14845.82, "end": 14847.8, "probability": 0.9333 }, { "start": 14847.9, "end": 14849.5, "probability": 0.7915 }, { "start": 14849.62, "end": 14849.62, "probability": 0.563 }, { "start": 14850.34, "end": 14855.32, "probability": 0.9977 }, { "start": 14855.64, "end": 14858.66, "probability": 0.971 }, { "start": 14859.34, "end": 14860.34, "probability": 0.7173 }, { "start": 14860.98, "end": 14862.48, "probability": 0.9927 }, { "start": 14862.62, "end": 14864.5, "probability": 0.9335 }, { "start": 14864.62, "end": 14865.74, "probability": 0.9932 }, { "start": 14865.9, "end": 14866.38, "probability": 0.8583 }, { "start": 14866.92, "end": 14868.38, "probability": 0.9989 }, { "start": 14869.56, "end": 14870.62, "probability": 0.9946 }, { "start": 14871.34, "end": 14872.02, "probability": 0.9842 }, { "start": 14872.54, "end": 14873.42, "probability": 0.8787 }, { "start": 14873.48, "end": 14874.98, "probability": 0.954 }, { "start": 14875.66, "end": 14878.16, "probability": 0.9827 }, { "start": 14878.84, "end": 14880.66, "probability": 0.6876 }, { "start": 14881.28, "end": 14882.64, "probability": 0.644 }, { "start": 14882.92, "end": 14886.44, "probability": 0.9514 }, { "start": 14886.54, "end": 14889.86, "probability": 0.922 }, { "start": 14890.36, "end": 14892.3, "probability": 0.772 }, { "start": 14894.06, "end": 14896.58, "probability": 0.9221 }, { "start": 14897.46, "end": 14899.95, "probability": 0.961 }, { "start": 14900.66, "end": 14901.84, "probability": 0.907 }, { "start": 14902.54, "end": 14905.34, "probability": 0.9297 }, { "start": 14905.64, "end": 14907.3, "probability": 0.863 }, { "start": 14908.34, "end": 14908.46, "probability": 0.3473 }, { "start": 14908.66, "end": 14910.1, "probability": 0.2685 }, { "start": 14910.74, "end": 14911.58, "probability": 0.9614 }, { "start": 14911.84, "end": 14911.94, "probability": 0.1794 }, { "start": 14911.94, "end": 14913.9, "probability": 0.2828 }, { "start": 14913.9, "end": 14914.38, "probability": 0.537 }, { "start": 14914.72, "end": 14915.8, "probability": 0.7793 }, { "start": 14916.96, "end": 14920.3, "probability": 0.998 }, { "start": 14920.38, "end": 14924.19, "probability": 0.9868 }, { "start": 14925.16, "end": 14926.44, "probability": 0.7791 }, { "start": 14926.7, "end": 14927.56, "probability": 0.7973 }, { "start": 14928.46, "end": 14929.26, "probability": 0.6788 }, { "start": 14930.58, "end": 14932.56, "probability": 0.9629 }, { "start": 14934.2, "end": 14936.78, "probability": 0.7767 }, { "start": 14937.88, "end": 14939.94, "probability": 0.9705 }, { "start": 14941.28, "end": 14941.58, "probability": 0.9712 }, { "start": 14942.68, "end": 14945.04, "probability": 0.9578 }, { "start": 14945.16, "end": 14946.32, "probability": 0.8134 }, { "start": 14946.84, "end": 14946.96, "probability": 0.9135 }, { "start": 14947.22, "end": 14948.04, "probability": 0.9919 }, { "start": 14948.18, "end": 14949.22, "probability": 0.8143 }, { "start": 14949.32, "end": 14950.76, "probability": 0.4779 }, { "start": 14950.96, "end": 14953.48, "probability": 0.9708 }, { "start": 14953.94, "end": 14954.94, "probability": 0.5357 }, { "start": 14955.08, "end": 14955.22, "probability": 0.0268 }, { "start": 14955.34, "end": 14955.52, "probability": 0.4412 }, { "start": 14955.9, "end": 14956.98, "probability": 0.9823 }, { "start": 14957.1, "end": 14957.7, "probability": 0.4992 }, { "start": 14957.88, "end": 14959.1, "probability": 0.6526 }, { "start": 14961.8, "end": 14962.76, "probability": 0.1468 }, { "start": 14962.76, "end": 14963.6, "probability": 0.8107 }, { "start": 14963.68, "end": 14964.48, "probability": 0.9945 }, { "start": 14964.8, "end": 14968.02, "probability": 0.9885 }, { "start": 14968.16, "end": 14969.26, "probability": 0.9968 }, { "start": 14970.38, "end": 14970.38, "probability": 0.4967 }, { "start": 14970.44, "end": 14971.14, "probability": 0.9697 }, { "start": 14971.16, "end": 14971.8, "probability": 0.6017 }, { "start": 14971.9, "end": 14972.28, "probability": 0.9117 }, { "start": 14972.72, "end": 14973.11, "probability": 0.8462 }, { "start": 14973.34, "end": 14973.54, "probability": 0.7033 }, { "start": 14975.22, "end": 14977.1, "probability": 0.759 }, { "start": 14978.28, "end": 14979.94, "probability": 0.9252 }, { "start": 14981.66, "end": 14984.15, "probability": 0.7337 }, { "start": 14984.52, "end": 14985.98, "probability": 0.8548 }, { "start": 14986.44, "end": 14987.12, "probability": 0.9781 }, { "start": 14987.68, "end": 14989.44, "probability": 0.7574 }, { "start": 14990.62, "end": 14992.78, "probability": 0.8827 }, { "start": 14995.1, "end": 15000.22, "probability": 0.9427 }, { "start": 15001.8, "end": 15002.84, "probability": 0.9771 }, { "start": 15003.48, "end": 15003.78, "probability": 0.5339 }, { "start": 15004.36, "end": 15005.68, "probability": 0.8305 }, { "start": 15005.8, "end": 15006.72, "probability": 0.9978 }, { "start": 15006.8, "end": 15011.1, "probability": 0.9946 }, { "start": 15011.52, "end": 15011.86, "probability": 0.9063 }, { "start": 15012.68, "end": 15012.96, "probability": 0.85 }, { "start": 15013.2, "end": 15013.62, "probability": 0.6372 }, { "start": 15013.66, "end": 15014.7, "probability": 0.9495 }, { "start": 15015.76, "end": 15017.52, "probability": 0.5551 }, { "start": 15017.74, "end": 15019.84, "probability": 0.6578 }, { "start": 15020.78, "end": 15023.08, "probability": 0.5853 }, { "start": 15024.58, "end": 15025.2, "probability": 0.6208 }, { "start": 15026.06, "end": 15026.78, "probability": 0.8261 }, { "start": 15027.34, "end": 15028.42, "probability": 0.9873 }, { "start": 15029.3, "end": 15031.24, "probability": 0.9963 }, { "start": 15031.24, "end": 15034.34, "probability": 0.9989 }, { "start": 15034.88, "end": 15036.92, "probability": 0.9983 }, { "start": 15037.58, "end": 15039.86, "probability": 0.9637 }, { "start": 15040.26, "end": 15042.62, "probability": 0.9646 }, { "start": 15043.94, "end": 15045.78, "probability": 0.9868 }, { "start": 15046.56, "end": 15048.52, "probability": 0.8518 }, { "start": 15049.04, "end": 15052.04, "probability": 0.6811 }, { "start": 15052.6, "end": 15054.26, "probability": 0.9964 }, { "start": 15054.64, "end": 15057.68, "probability": 0.9805 }, { "start": 15057.68, "end": 15060.66, "probability": 0.9142 }, { "start": 15060.86, "end": 15063.2, "probability": 0.9576 }, { "start": 15063.26, "end": 15063.6, "probability": 0.7624 }, { "start": 15063.66, "end": 15065.9, "probability": 0.8577 }, { "start": 15066.2, "end": 15068.86, "probability": 0.8279 }, { "start": 15069.14, "end": 15070.05, "probability": 0.5392 }, { "start": 15072.42, "end": 15074.04, "probability": 0.746 }, { "start": 15076.06, "end": 15078.66, "probability": 0.279 }, { "start": 15081.24, "end": 15083.3, "probability": 0.9784 }, { "start": 15085.68, "end": 15088.02, "probability": 0.9082 }, { "start": 15088.76, "end": 15090.84, "probability": 0.9969 }, { "start": 15091.5, "end": 15094.0, "probability": 0.9329 }, { "start": 15094.56, "end": 15097.26, "probability": 0.9631 }, { "start": 15097.84, "end": 15099.32, "probability": 0.5485 }, { "start": 15099.88, "end": 15100.3, "probability": 0.3245 }, { "start": 15100.44, "end": 15101.06, "probability": 0.9366 }, { "start": 15102.24, "end": 15104.62, "probability": 0.756 }, { "start": 15105.08, "end": 15105.88, "probability": 0.1898 }, { "start": 15106.34, "end": 15108.51, "probability": 0.8516 }, { "start": 15109.64, "end": 15110.79, "probability": 0.9146 }, { "start": 15111.32, "end": 15112.14, "probability": 0.7944 }, { "start": 15112.18, "end": 15112.58, "probability": 0.4515 }, { "start": 15112.6, "end": 15116.1, "probability": 0.669 }, { "start": 15116.18, "end": 15116.46, "probability": 0.7384 }, { "start": 15116.76, "end": 15119.0, "probability": 0.5234 }, { "start": 15119.08, "end": 15119.4, "probability": 0.5831 }, { "start": 15119.4, "end": 15121.76, "probability": 0.2052 }, { "start": 15121.9, "end": 15122.7, "probability": 0.8483 }, { "start": 15122.7, "end": 15122.8, "probability": 0.802 }, { "start": 15123.08, "end": 15124.84, "probability": 0.669 }, { "start": 15125.1, "end": 15126.04, "probability": 0.6766 }, { "start": 15126.48, "end": 15127.32, "probability": 0.3305 }, { "start": 15128.06, "end": 15128.76, "probability": 0.6855 }, { "start": 15130.28, "end": 15130.92, "probability": 0.8598 }, { "start": 15131.06, "end": 15132.78, "probability": 0.8433 }, { "start": 15132.8, "end": 15134.14, "probability": 0.8223 }, { "start": 15134.14, "end": 15135.58, "probability": 0.7975 }, { "start": 15135.58, "end": 15136.84, "probability": 0.9688 }, { "start": 15137.44, "end": 15139.6, "probability": 0.5077 }, { "start": 15141.8, "end": 15142.88, "probability": 0.4727 }, { "start": 15144.46, "end": 15145.12, "probability": 0.8817 }, { "start": 15146.8, "end": 15155.34, "probability": 0.8628 }, { "start": 15155.86, "end": 15157.04, "probability": 0.9933 }, { "start": 15158.14, "end": 15162.88, "probability": 0.8444 }, { "start": 15163.84, "end": 15166.36, "probability": 0.9893 }, { "start": 15167.3, "end": 15169.62, "probability": 0.9884 }, { "start": 15170.98, "end": 15171.24, "probability": 0.8896 }, { "start": 15172.02, "end": 15172.22, "probability": 0.5086 }, { "start": 15172.74, "end": 15173.1, "probability": 0.8933 }, { "start": 15174.02, "end": 15174.85, "probability": 0.966 }, { "start": 15176.14, "end": 15178.68, "probability": 0.9827 }, { "start": 15179.84, "end": 15181.48, "probability": 0.9978 }, { "start": 15181.62, "end": 15182.84, "probability": 0.6543 }, { "start": 15182.96, "end": 15183.44, "probability": 0.9521 }, { "start": 15183.5, "end": 15183.72, "probability": 0.9094 }, { "start": 15184.54, "end": 15185.31, "probability": 0.8632 }, { "start": 15185.36, "end": 15185.76, "probability": 0.6569 }, { "start": 15185.78, "end": 15186.22, "probability": 0.9753 }, { "start": 15186.26, "end": 15186.54, "probability": 0.9742 }, { "start": 15188.04, "end": 15189.29, "probability": 0.8933 }, { "start": 15190.32, "end": 15192.92, "probability": 0.9374 }, { "start": 15195.46, "end": 15198.38, "probability": 0.9941 }, { "start": 15198.78, "end": 15199.98, "probability": 0.8797 }, { "start": 15202.84, "end": 15207.32, "probability": 0.9493 }, { "start": 15207.38, "end": 15212.82, "probability": 0.9871 }, { "start": 15213.6, "end": 15217.14, "probability": 0.9111 }, { "start": 15217.82, "end": 15219.72, "probability": 0.6166 }, { "start": 15220.78, "end": 15221.58, "probability": 0.8965 }, { "start": 15221.66, "end": 15222.82, "probability": 0.7081 }, { "start": 15223.02, "end": 15223.38, "probability": 0.5913 }, { "start": 15225.42, "end": 15227.7, "probability": 0.9307 }, { "start": 15227.7, "end": 15230.26, "probability": 0.9709 }, { "start": 15230.36, "end": 15231.82, "probability": 0.9814 }, { "start": 15232.1, "end": 15234.47, "probability": 0.7773 }, { "start": 15236.54, "end": 15241.04, "probability": 0.9609 }, { "start": 15242.66, "end": 15246.58, "probability": 0.9586 }, { "start": 15247.62, "end": 15248.5, "probability": 0.606 }, { "start": 15249.94, "end": 15252.06, "probability": 0.9456 }, { "start": 15252.88, "end": 15253.76, "probability": 0.8637 }, { "start": 15253.86, "end": 15255.54, "probability": 0.9958 }, { "start": 15255.84, "end": 15258.18, "probability": 0.9863 }, { "start": 15258.26, "end": 15258.98, "probability": 0.6713 }, { "start": 15259.76, "end": 15260.5, "probability": 0.9435 }, { "start": 15261.14, "end": 15267.1, "probability": 0.9333 }, { "start": 15267.3, "end": 15267.82, "probability": 0.4937 }, { "start": 15269.06, "end": 15270.28, "probability": 0.9462 }, { "start": 15270.54, "end": 15271.42, "probability": 0.8656 }, { "start": 15271.82, "end": 15272.92, "probability": 0.8341 }, { "start": 15274.0, "end": 15275.16, "probability": 0.8797 }, { "start": 15275.28, "end": 15276.12, "probability": 0.9751 }, { "start": 15276.52, "end": 15279.82, "probability": 0.9966 }, { "start": 15280.26, "end": 15280.79, "probability": 0.789 }, { "start": 15281.4, "end": 15282.7, "probability": 0.7752 }, { "start": 15282.74, "end": 15283.5, "probability": 0.9953 }, { "start": 15285.17, "end": 15288.08, "probability": 0.9832 }, { "start": 15288.08, "end": 15291.24, "probability": 0.9998 }, { "start": 15293.24, "end": 15294.14, "probability": 0.951 }, { "start": 15296.06, "end": 15297.88, "probability": 0.4572 }, { "start": 15298.46, "end": 15299.14, "probability": 0.8531 }, { "start": 15299.18, "end": 15299.46, "probability": 0.4112 }, { "start": 15300.6, "end": 15301.42, "probability": 0.8047 }, { "start": 15302.02, "end": 15304.18, "probability": 0.7928 }, { "start": 15304.24, "end": 15304.84, "probability": 0.7131 }, { "start": 15304.96, "end": 15306.12, "probability": 0.8162 }, { "start": 15306.18, "end": 15306.86, "probability": 0.9718 }, { "start": 15307.96, "end": 15309.02, "probability": 0.6066 }, { "start": 15309.4, "end": 15310.22, "probability": 0.969 }, { "start": 15310.64, "end": 15311.28, "probability": 0.735 }, { "start": 15311.88, "end": 15312.44, "probability": 0.9033 }, { "start": 15313.62, "end": 15317.4, "probability": 0.9072 }, { "start": 15317.82, "end": 15318.52, "probability": 0.786 }, { "start": 15319.44, "end": 15319.62, "probability": 0.5145 }, { "start": 15320.54, "end": 15320.7, "probability": 0.962 }, { "start": 15322.0, "end": 15323.24, "probability": 0.9667 }, { "start": 15323.36, "end": 15325.56, "probability": 0.9873 }, { "start": 15326.24, "end": 15326.86, "probability": 0.8881 }, { "start": 15327.78, "end": 15329.08, "probability": 0.6306 }, { "start": 15329.72, "end": 15331.74, "probability": 0.5368 }, { "start": 15331.78, "end": 15335.06, "probability": 0.9608 }, { "start": 15336.76, "end": 15340.88, "probability": 0.9936 }, { "start": 15342.52, "end": 15343.58, "probability": 0.9823 }, { "start": 15346.06, "end": 15350.56, "probability": 0.9514 }, { "start": 15350.8, "end": 15355.28, "probability": 0.9814 }, { "start": 15355.46, "end": 15356.92, "probability": 0.7869 }, { "start": 15358.08, "end": 15358.9, "probability": 0.6556 }, { "start": 15359.3, "end": 15361.28, "probability": 0.9841 }, { "start": 15361.38, "end": 15367.16, "probability": 0.9068 }, { "start": 15367.82, "end": 15369.46, "probability": 0.5371 }, { "start": 15369.72, "end": 15370.43, "probability": 0.9316 }, { "start": 15371.1, "end": 15371.98, "probability": 0.8348 }, { "start": 15372.58, "end": 15374.3, "probability": 0.9897 }, { "start": 15375.26, "end": 15377.62, "probability": 0.9967 }, { "start": 15377.62, "end": 15381.3, "probability": 0.9644 }, { "start": 15381.88, "end": 15385.42, "probability": 0.9971 }, { "start": 15385.94, "end": 15387.07, "probability": 0.9817 }, { "start": 15387.28, "end": 15388.22, "probability": 0.9676 }, { "start": 15389.44, "end": 15390.56, "probability": 0.9579 }, { "start": 15391.02, "end": 15394.06, "probability": 0.9974 }, { "start": 15394.44, "end": 15398.54, "probability": 0.9897 }, { "start": 15399.84, "end": 15403.66, "probability": 0.9011 }, { "start": 15405.44, "end": 15407.56, "probability": 0.9916 }, { "start": 15407.72, "end": 15408.36, "probability": 0.7322 }, { "start": 15409.46, "end": 15411.02, "probability": 0.9566 }, { "start": 15411.38, "end": 15412.36, "probability": 0.9739 }, { "start": 15412.44, "end": 15413.62, "probability": 0.8461 }, { "start": 15413.72, "end": 15415.7, "probability": 0.9818 }, { "start": 15417.68, "end": 15422.56, "probability": 0.9856 }, { "start": 15423.58, "end": 15425.44, "probability": 0.9873 }, { "start": 15427.91, "end": 15429.38, "probability": 0.8208 }, { "start": 15429.38, "end": 15431.84, "probability": 0.6618 }, { "start": 15432.08, "end": 15433.58, "probability": 0.9447 }, { "start": 15434.8, "end": 15435.88, "probability": 0.7366 }, { "start": 15436.16, "end": 15437.98, "probability": 0.9729 }, { "start": 15440.71, "end": 15442.64, "probability": 0.6287 }, { "start": 15442.64, "end": 15443.61, "probability": 0.4459 }, { "start": 15444.34, "end": 15446.24, "probability": 0.9572 }, { "start": 15447.08, "end": 15448.98, "probability": 0.853 }, { "start": 15449.04, "end": 15451.2, "probability": 0.9399 }, { "start": 15451.2, "end": 15453.82, "probability": 0.9953 }, { "start": 15454.3, "end": 15456.56, "probability": 0.9961 }, { "start": 15457.24, "end": 15459.88, "probability": 0.9635 }, { "start": 15460.66, "end": 15464.4, "probability": 0.9781 }, { "start": 15464.8, "end": 15467.42, "probability": 0.9915 }, { "start": 15468.86, "end": 15473.0, "probability": 0.6452 }, { "start": 15473.82, "end": 15475.24, "probability": 0.9931 }, { "start": 15476.02, "end": 15477.28, "probability": 0.8742 }, { "start": 15478.6, "end": 15481.44, "probability": 0.9579 }, { "start": 15483.52, "end": 15485.97, "probability": 0.9905 }, { "start": 15486.86, "end": 15489.66, "probability": 0.9722 }, { "start": 15489.76, "end": 15491.34, "probability": 0.7237 }, { "start": 15491.44, "end": 15492.54, "probability": 0.9208 }, { "start": 15493.08, "end": 15494.64, "probability": 0.9424 }, { "start": 15495.2, "end": 15495.98, "probability": 0.798 }, { "start": 15496.74, "end": 15497.84, "probability": 0.7983 }, { "start": 15498.42, "end": 15499.26, "probability": 0.9743 }, { "start": 15500.92, "end": 15502.0, "probability": 0.9822 }, { "start": 15502.74, "end": 15506.08, "probability": 0.8258 }, { "start": 15506.78, "end": 15509.14, "probability": 0.6958 }, { "start": 15509.92, "end": 15512.94, "probability": 0.936 }, { "start": 15514.24, "end": 15517.78, "probability": 0.8958 }, { "start": 15518.26, "end": 15519.3, "probability": 0.8896 }, { "start": 15519.36, "end": 15521.04, "probability": 0.8878 }, { "start": 15522.02, "end": 15522.92, "probability": 0.8989 }, { "start": 15523.48, "end": 15528.2, "probability": 0.8875 }, { "start": 15529.06, "end": 15530.72, "probability": 0.5511 }, { "start": 15531.1, "end": 15533.5, "probability": 0.9065 }, { "start": 15534.22, "end": 15535.37, "probability": 0.946 }, { "start": 15535.44, "end": 15536.4, "probability": 0.9902 }, { "start": 15536.74, "end": 15539.64, "probability": 0.9912 }, { "start": 15541.3, "end": 15544.1, "probability": 0.6652 }, { "start": 15544.64, "end": 15546.86, "probability": 0.9416 }, { "start": 15547.3, "end": 15548.74, "probability": 0.9575 }, { "start": 15549.1, "end": 15552.68, "probability": 0.9875 }, { "start": 15553.28, "end": 15555.64, "probability": 0.9419 }, { "start": 15556.12, "end": 15557.4, "probability": 0.9822 }, { "start": 15557.62, "end": 15558.86, "probability": 0.9984 }, { "start": 15559.2, "end": 15561.44, "probability": 0.9982 }, { "start": 15561.48, "end": 15563.9, "probability": 0.997 }, { "start": 15564.24, "end": 15564.72, "probability": 0.677 }, { "start": 15565.16, "end": 15565.96, "probability": 0.9688 }, { "start": 15567.12, "end": 15569.88, "probability": 0.9993 }, { "start": 15570.42, "end": 15571.28, "probability": 0.5055 }, { "start": 15571.84, "end": 15572.78, "probability": 0.9692 }, { "start": 15573.46, "end": 15577.96, "probability": 0.9728 }, { "start": 15578.08, "end": 15578.98, "probability": 0.9855 }, { "start": 15581.62, "end": 15585.04, "probability": 0.9335 }, { "start": 15585.24, "end": 15587.54, "probability": 0.9644 }, { "start": 15587.64, "end": 15588.46, "probability": 0.9854 }, { "start": 15589.68, "end": 15595.78, "probability": 0.8607 }, { "start": 15596.68, "end": 15598.8, "probability": 0.9918 }, { "start": 15599.9, "end": 15600.96, "probability": 0.9507 }, { "start": 15601.58, "end": 15602.64, "probability": 0.9841 }, { "start": 15603.14, "end": 15605.46, "probability": 0.9941 }, { "start": 15605.96, "end": 15610.44, "probability": 0.9356 }, { "start": 15612.4, "end": 15612.96, "probability": 0.6987 }, { "start": 15613.54, "end": 15614.98, "probability": 0.6536 }, { "start": 15615.34, "end": 15618.26, "probability": 0.9866 }, { "start": 15618.58, "end": 15621.4, "probability": 0.9995 }, { "start": 15621.82, "end": 15623.96, "probability": 0.9869 }, { "start": 15624.08, "end": 15626.12, "probability": 0.9952 }, { "start": 15627.32, "end": 15630.34, "probability": 0.8715 }, { "start": 15630.76, "end": 15631.5, "probability": 0.769 }, { "start": 15633.2, "end": 15635.18, "probability": 0.8132 }, { "start": 15635.78, "end": 15637.52, "probability": 0.5039 }, { "start": 15644.04, "end": 15645.36, "probability": 0.5162 }, { "start": 15646.78, "end": 15648.18, "probability": 0.7471 }, { "start": 15648.98, "end": 15650.1, "probability": 0.3728 }, { "start": 15651.12, "end": 15658.22, "probability": 0.7596 }, { "start": 15658.74, "end": 15658.92, "probability": 0.2536 }, { "start": 15658.92, "end": 15660.36, "probability": 0.5964 }, { "start": 15661.08, "end": 15661.78, "probability": 0.6689 }, { "start": 15662.0, "end": 15663.06, "probability": 0.9325 }, { "start": 15663.14, "end": 15663.54, "probability": 0.8832 }, { "start": 15663.6, "end": 15665.56, "probability": 0.902 }, { "start": 15667.64, "end": 15670.06, "probability": 0.9941 }, { "start": 15671.28, "end": 15671.96, "probability": 0.7815 }, { "start": 15673.76, "end": 15675.9, "probability": 0.8895 }, { "start": 15677.34, "end": 15679.22, "probability": 0.968 }, { "start": 15681.04, "end": 15684.1, "probability": 0.9432 }, { "start": 15686.38, "end": 15688.06, "probability": 0.8607 }, { "start": 15688.14, "end": 15688.94, "probability": 0.8418 }, { "start": 15689.0, "end": 15690.14, "probability": 0.9801 }, { "start": 15690.16, "end": 15690.76, "probability": 0.8896 }, { "start": 15692.4, "end": 15692.66, "probability": 0.4435 }, { "start": 15694.06, "end": 15694.68, "probability": 0.8291 }, { "start": 15696.3, "end": 15697.36, "probability": 0.913 }, { "start": 15698.72, "end": 15700.5, "probability": 0.9919 }, { "start": 15701.44, "end": 15702.08, "probability": 0.9847 }, { "start": 15702.94, "end": 15703.62, "probability": 0.9945 }, { "start": 15704.16, "end": 15704.9, "probability": 0.9866 }, { "start": 15706.04, "end": 15708.02, "probability": 0.9838 }, { "start": 15708.1, "end": 15708.82, "probability": 0.9984 }, { "start": 15708.98, "end": 15711.22, "probability": 0.9936 }, { "start": 15711.44, "end": 15714.52, "probability": 0.5459 }, { "start": 15714.62, "end": 15715.74, "probability": 0.4942 }, { "start": 15717.36, "end": 15718.04, "probability": 0.5602 }, { "start": 15718.8, "end": 15719.36, "probability": 0.6453 }, { "start": 15719.5, "end": 15720.48, "probability": 0.7799 }, { "start": 15720.88, "end": 15721.16, "probability": 0.7944 }, { "start": 15721.3, "end": 15722.7, "probability": 0.8628 }, { "start": 15723.16, "end": 15727.06, "probability": 0.6182 }, { "start": 15728.08, "end": 15728.2, "probability": 0.7434 }, { "start": 15728.8, "end": 15730.82, "probability": 0.9961 }, { "start": 15732.22, "end": 15733.3, "probability": 0.7808 }, { "start": 15734.9, "end": 15738.18, "probability": 0.9914 }, { "start": 15738.18, "end": 15741.84, "probability": 0.9935 }, { "start": 15743.94, "end": 15746.56, "probability": 0.9545 }, { "start": 15746.56, "end": 15749.62, "probability": 0.998 }, { "start": 15750.4, "end": 15751.38, "probability": 0.454 }, { "start": 15751.54, "end": 15751.78, "probability": 0.6437 }, { "start": 15751.88, "end": 15755.72, "probability": 0.9469 }, { "start": 15755.98, "end": 15756.1, "probability": 0.719 }, { "start": 15756.18, "end": 15756.98, "probability": 0.9686 }, { "start": 15757.1, "end": 15758.68, "probability": 0.9138 }, { "start": 15759.22, "end": 15763.56, "probability": 0.9409 }, { "start": 15763.72, "end": 15765.5, "probability": 0.9865 }, { "start": 15765.54, "end": 15766.04, "probability": 0.5114 }, { "start": 15766.06, "end": 15768.2, "probability": 0.9286 }, { "start": 15769.32, "end": 15772.34, "probability": 0.9448 }, { "start": 15773.06, "end": 15774.34, "probability": 0.9771 }, { "start": 15774.4, "end": 15775.84, "probability": 0.9323 }, { "start": 15775.98, "end": 15777.14, "probability": 0.9165 }, { "start": 15777.2, "end": 15780.3, "probability": 0.9958 }, { "start": 15780.3, "end": 15783.34, "probability": 0.9951 }, { "start": 15783.74, "end": 15785.4, "probability": 0.9971 }, { "start": 15785.58, "end": 15785.76, "probability": 0.6322 }, { "start": 15785.86, "end": 15787.76, "probability": 0.9926 }, { "start": 15788.16, "end": 15790.38, "probability": 0.9906 }, { "start": 15790.44, "end": 15791.9, "probability": 0.9951 }, { "start": 15793.84, "end": 15794.6, "probability": 0.8314 }, { "start": 15794.8, "end": 15795.32, "probability": 0.5936 }, { "start": 15795.4, "end": 15797.54, "probability": 0.9501 }, { "start": 15797.66, "end": 15800.02, "probability": 0.9888 }, { "start": 15801.22, "end": 15801.54, "probability": 0.7279 }, { "start": 15801.56, "end": 15801.9, "probability": 0.8965 }, { "start": 15802.02, "end": 15806.92, "probability": 0.9747 }, { "start": 15808.0, "end": 15809.92, "probability": 0.824 }, { "start": 15813.44, "end": 15814.18, "probability": 0.9927 }, { "start": 15815.16, "end": 15818.78, "probability": 0.8567 }, { "start": 15819.84, "end": 15821.66, "probability": 0.8979 }, { "start": 15821.76, "end": 15823.72, "probability": 0.9982 }, { "start": 15824.1, "end": 15824.94, "probability": 0.7758 }, { "start": 15825.08, "end": 15825.8, "probability": 0.7028 }, { "start": 15827.02, "end": 15827.76, "probability": 0.9052 }, { "start": 15827.96, "end": 15828.26, "probability": 0.5184 }, { "start": 15828.3, "end": 15828.72, "probability": 0.2147 }, { "start": 15828.72, "end": 15830.58, "probability": 0.9712 }, { "start": 15832.08, "end": 15833.28, "probability": 0.8745 }, { "start": 15834.4, "end": 15835.86, "probability": 0.9962 }, { "start": 15836.98, "end": 15842.44, "probability": 0.9938 }, { "start": 15843.4, "end": 15847.58, "probability": 0.9988 }, { "start": 15848.14, "end": 15850.02, "probability": 0.8696 }, { "start": 15850.1, "end": 15851.44, "probability": 0.9897 }, { "start": 15851.56, "end": 15852.46, "probability": 0.9735 }, { "start": 15852.78, "end": 15857.38, "probability": 0.9935 }, { "start": 15857.56, "end": 15859.78, "probability": 0.9952 }, { "start": 15859.84, "end": 15861.6, "probability": 0.7372 }, { "start": 15862.16, "end": 15863.56, "probability": 0.9126 }, { "start": 15863.56, "end": 15864.3, "probability": 0.6357 }, { "start": 15864.54, "end": 15865.94, "probability": 0.895 }, { "start": 15868.58, "end": 15870.82, "probability": 0.7245 }, { "start": 15871.04, "end": 15872.26, "probability": 0.9427 }, { "start": 15872.62, "end": 15874.42, "probability": 0.7523 }, { "start": 15874.48, "end": 15875.76, "probability": 0.8219 }, { "start": 15875.82, "end": 15876.76, "probability": 0.9702 }, { "start": 15878.18, "end": 15879.62, "probability": 0.8761 }, { "start": 15880.98, "end": 15884.7, "probability": 0.9587 }, { "start": 15885.66, "end": 15887.96, "probability": 0.9785 }, { "start": 15888.86, "end": 15890.36, "probability": 0.9854 }, { "start": 15891.2, "end": 15892.98, "probability": 0.9651 }, { "start": 15893.18, "end": 15894.46, "probability": 0.5612 }, { "start": 15894.56, "end": 15895.9, "probability": 0.8307 }, { "start": 15896.74, "end": 15899.2, "probability": 0.9646 }, { "start": 15899.2, "end": 15900.97, "probability": 0.9818 }, { "start": 15902.18, "end": 15905.1, "probability": 0.9738 }, { "start": 15906.28, "end": 15908.18, "probability": 0.9265 }, { "start": 15908.28, "end": 15910.64, "probability": 0.4904 }, { "start": 15912.1, "end": 15916.74, "probability": 0.9627 }, { "start": 15918.9, "end": 15920.24, "probability": 0.9483 }, { "start": 15920.94, "end": 15921.8, "probability": 0.8057 }, { "start": 15922.06, "end": 15922.12, "probability": 0.3047 }, { "start": 15922.22, "end": 15922.3, "probability": 0.9019 }, { "start": 15922.46, "end": 15925.12, "probability": 0.9889 }, { "start": 15926.64, "end": 15928.04, "probability": 0.686 }, { "start": 15929.56, "end": 15929.96, "probability": 0.9616 }, { "start": 15930.04, "end": 15930.36, "probability": 0.5326 }, { "start": 15930.64, "end": 15932.56, "probability": 0.9724 }, { "start": 15932.74, "end": 15933.12, "probability": 0.374 }, { "start": 15933.12, "end": 15933.76, "probability": 0.8799 }, { "start": 15934.34, "end": 15935.14, "probability": 0.9146 }, { "start": 15935.18, "end": 15935.64, "probability": 0.8537 }, { "start": 15935.74, "end": 15936.54, "probability": 0.8807 }, { "start": 15936.64, "end": 15937.38, "probability": 0.9302 }, { "start": 15937.72, "end": 15938.82, "probability": 0.955 }, { "start": 15938.9, "end": 15939.16, "probability": 0.8853 }, { "start": 15939.74, "end": 15940.62, "probability": 0.9153 }, { "start": 15941.7, "end": 15945.68, "probability": 0.991 }, { "start": 15945.68, "end": 15949.28, "probability": 0.9927 }, { "start": 15949.4, "end": 15951.18, "probability": 0.9219 }, { "start": 15952.04, "end": 15954.64, "probability": 0.9834 }, { "start": 15955.16, "end": 15958.08, "probability": 0.9791 }, { "start": 15958.36, "end": 15958.7, "probability": 0.9044 }, { "start": 15958.86, "end": 15961.76, "probability": 0.9822 }, { "start": 15961.88, "end": 15962.24, "probability": 0.3732 }, { "start": 15962.58, "end": 15964.48, "probability": 0.8896 }, { "start": 15964.48, "end": 15967.22, "probability": 0.9983 }, { "start": 15968.34, "end": 15969.54, "probability": 0.7523 }, { "start": 15969.66, "end": 15972.34, "probability": 0.9924 }, { "start": 15973.12, "end": 15975.1, "probability": 0.852 }, { "start": 15975.16, "end": 15976.74, "probability": 0.9336 }, { "start": 15978.24, "end": 15979.36, "probability": 0.9766 }, { "start": 15979.46, "end": 15980.6, "probability": 0.9915 }, { "start": 15980.68, "end": 15981.32, "probability": 0.7936 }, { "start": 15981.4, "end": 15982.2, "probability": 0.9085 }, { "start": 15982.32, "end": 15982.64, "probability": 0.7744 }, { "start": 15982.72, "end": 15984.26, "probability": 0.9476 }, { "start": 15986.6, "end": 15987.36, "probability": 0.8446 }, { "start": 15988.52, "end": 15989.97, "probability": 0.8806 }, { "start": 15990.54, "end": 15991.58, "probability": 0.9535 }, { "start": 15992.14, "end": 15992.66, "probability": 0.836 }, { "start": 15993.52, "end": 15994.16, "probability": 0.9963 }, { "start": 15995.2, "end": 15997.51, "probability": 0.8871 }, { "start": 15999.1, "end": 15999.96, "probability": 0.8402 }, { "start": 16001.0, "end": 16004.14, "probability": 0.9844 }, { "start": 16004.22, "end": 16007.1, "probability": 0.9812 }, { "start": 16007.94, "end": 16009.1, "probability": 0.9553 }, { "start": 16009.18, "end": 16010.44, "probability": 0.6931 }, { "start": 16010.5, "end": 16011.74, "probability": 0.8761 }, { "start": 16011.78, "end": 16013.94, "probability": 0.9968 }, { "start": 16015.52, "end": 16018.58, "probability": 0.9393 }, { "start": 16021.1, "end": 16021.54, "probability": 0.9374 }, { "start": 16022.4, "end": 16024.46, "probability": 0.9966 }, { "start": 16025.62, "end": 16028.5, "probability": 0.9906 }, { "start": 16028.74, "end": 16031.92, "probability": 0.9961 }, { "start": 16032.76, "end": 16033.34, "probability": 0.6345 }, { "start": 16034.08, "end": 16034.76, "probability": 0.871 }, { "start": 16036.66, "end": 16037.96, "probability": 0.9969 }, { "start": 16038.22, "end": 16039.12, "probability": 0.7661 }, { "start": 16039.42, "end": 16041.46, "probability": 0.9976 }, { "start": 16041.82, "end": 16043.76, "probability": 0.9835 }, { "start": 16046.18, "end": 16046.94, "probability": 0.9778 }, { "start": 16048.16, "end": 16048.82, "probability": 0.9448 }, { "start": 16049.54, "end": 16051.26, "probability": 0.9828 }, { "start": 16051.26, "end": 16053.4, "probability": 0.9897 }, { "start": 16053.48, "end": 16054.18, "probability": 0.9001 }, { "start": 16054.24, "end": 16054.9, "probability": 0.9576 }, { "start": 16055.0, "end": 16055.52, "probability": 0.4452 }, { "start": 16055.62, "end": 16056.12, "probability": 0.5272 }, { "start": 16056.48, "end": 16056.74, "probability": 0.5136 }, { "start": 16056.74, "end": 16057.48, "probability": 0.7837 }, { "start": 16057.56, "end": 16058.24, "probability": 0.8443 }, { "start": 16058.8, "end": 16061.2, "probability": 0.9078 }, { "start": 16061.8, "end": 16064.82, "probability": 0.7857 }, { "start": 16064.92, "end": 16065.96, "probability": 0.5015 }, { "start": 16066.06, "end": 16067.02, "probability": 0.8877 }, { "start": 16069.06, "end": 16070.9, "probability": 0.7267 }, { "start": 16071.02, "end": 16073.8, "probability": 0.9352 }, { "start": 16076.0, "end": 16076.85, "probability": 0.9849 }, { "start": 16077.56, "end": 16079.14, "probability": 0.9167 }, { "start": 16079.2, "end": 16079.68, "probability": 0.7653 }, { "start": 16079.76, "end": 16082.08, "probability": 0.9744 }, { "start": 16082.18, "end": 16084.4, "probability": 0.8305 }, { "start": 16084.68, "end": 16086.38, "probability": 0.9175 }, { "start": 16087.76, "end": 16089.76, "probability": 0.9731 }, { "start": 16090.02, "end": 16090.16, "probability": 0.5101 }, { "start": 16090.36, "end": 16092.88, "probability": 0.9875 }, { "start": 16093.08, "end": 16093.84, "probability": 0.9048 }, { "start": 16093.98, "end": 16094.88, "probability": 0.9646 }, { "start": 16095.32, "end": 16097.0, "probability": 0.9858 }, { "start": 16097.26, "end": 16099.98, "probability": 0.9924 }, { "start": 16100.08, "end": 16100.76, "probability": 0.8903 }, { "start": 16103.02, "end": 16107.2, "probability": 0.8159 }, { "start": 16108.04, "end": 16109.78, "probability": 0.9673 }, { "start": 16110.64, "end": 16111.26, "probability": 0.9894 }, { "start": 16112.0, "end": 16114.26, "probability": 0.9116 }, { "start": 16114.34, "end": 16115.52, "probability": 0.9302 }, { "start": 16115.6, "end": 16115.86, "probability": 0.451 }, { "start": 16115.98, "end": 16116.54, "probability": 0.4928 }, { "start": 16117.06, "end": 16118.78, "probability": 0.9976 }, { "start": 16119.42, "end": 16121.86, "probability": 0.9963 }, { "start": 16121.87, "end": 16124.92, "probability": 0.9541 }, { "start": 16125.04, "end": 16126.52, "probability": 0.8442 }, { "start": 16126.72, "end": 16127.78, "probability": 0.8864 }, { "start": 16130.52, "end": 16131.58, "probability": 0.6847 }, { "start": 16132.36, "end": 16133.48, "probability": 0.9895 }, { "start": 16134.24, "end": 16136.94, "probability": 0.97 }, { "start": 16137.24, "end": 16137.76, "probability": 0.3577 }, { "start": 16137.84, "end": 16138.48, "probability": 0.8869 }, { "start": 16139.64, "end": 16142.4, "probability": 0.9638 }, { "start": 16142.5, "end": 16145.56, "probability": 0.9749 }, { "start": 16146.16, "end": 16146.78, "probability": 0.988 }, { "start": 16146.86, "end": 16147.66, "probability": 0.8518 }, { "start": 16148.56, "end": 16150.66, "probability": 0.9692 }, { "start": 16151.44, "end": 16152.0, "probability": 0.7014 }, { "start": 16152.06, "end": 16154.26, "probability": 0.7657 }, { "start": 16154.32, "end": 16155.0, "probability": 0.8309 }, { "start": 16155.76, "end": 16158.06, "probability": 0.9308 }, { "start": 16158.06, "end": 16160.54, "probability": 0.7394 }, { "start": 16162.24, "end": 16163.88, "probability": 0.8663 }, { "start": 16166.06, "end": 16167.12, "probability": 0.8177 }, { "start": 16167.72, "end": 16168.34, "probability": 0.7286 }, { "start": 16168.58, "end": 16169.36, "probability": 0.7186 }, { "start": 16169.52, "end": 16170.42, "probability": 0.8818 }, { "start": 16170.46, "end": 16172.99, "probability": 0.9971 }, { "start": 16173.32, "end": 16175.36, "probability": 0.9956 }, { "start": 16177.44, "end": 16180.46, "probability": 0.81 }, { "start": 16180.5, "end": 16180.62, "probability": 0.6276 }, { "start": 16180.72, "end": 16183.96, "probability": 0.9887 }, { "start": 16184.22, "end": 16184.84, "probability": 0.8037 }, { "start": 16185.06, "end": 16185.84, "probability": 0.8471 }, { "start": 16187.46, "end": 16187.5, "probability": 0.1282 }, { "start": 16187.62, "end": 16187.84, "probability": 0.7871 }, { "start": 16187.94, "end": 16190.12, "probability": 0.9517 }, { "start": 16190.22, "end": 16192.98, "probability": 0.9977 }, { "start": 16195.54, "end": 16197.8, "probability": 0.9857 }, { "start": 16197.8, "end": 16200.34, "probability": 0.9811 }, { "start": 16200.68, "end": 16204.0, "probability": 0.9993 }, { "start": 16204.0, "end": 16206.38, "probability": 0.9905 }, { "start": 16206.74, "end": 16208.2, "probability": 0.9261 }, { "start": 16210.68, "end": 16211.76, "probability": 0.6364 }, { "start": 16212.16, "end": 16212.4, "probability": 0.6465 }, { "start": 16212.58, "end": 16215.38, "probability": 0.9873 }, { "start": 16216.84, "end": 16219.77, "probability": 0.9961 }, { "start": 16220.06, "end": 16220.66, "probability": 0.446 }, { "start": 16220.82, "end": 16221.34, "probability": 0.5403 }, { "start": 16221.4, "end": 16222.75, "probability": 0.8883 }, { "start": 16223.88, "end": 16226.1, "probability": 0.9883 }, { "start": 16226.9, "end": 16227.66, "probability": 0.9838 }, { "start": 16227.74, "end": 16229.9, "probability": 0.9874 }, { "start": 16229.9, "end": 16232.14, "probability": 0.9887 }, { "start": 16232.3, "end": 16233.5, "probability": 0.9035 }, { "start": 16233.58, "end": 16234.46, "probability": 0.973 }, { "start": 16234.84, "end": 16235.48, "probability": 0.656 }, { "start": 16235.6, "end": 16236.64, "probability": 0.8643 }, { "start": 16237.38, "end": 16239.18, "probability": 0.9357 }, { "start": 16239.82, "end": 16243.14, "probability": 0.9892 }, { "start": 16243.48, "end": 16243.76, "probability": 0.351 }, { "start": 16244.12, "end": 16245.74, "probability": 0.6888 }, { "start": 16246.38, "end": 16247.68, "probability": 0.6724 }, { "start": 16263.92, "end": 16264.4, "probability": 0.2196 }, { "start": 16264.4, "end": 16264.58, "probability": 0.4228 }, { "start": 16265.22, "end": 16266.14, "probability": 0.3231 }, { "start": 16268.5, "end": 16268.98, "probability": 0.6747 }, { "start": 16269.94, "end": 16273.9, "probability": 0.9503 }, { "start": 16275.4, "end": 16279.3, "probability": 0.9922 }, { "start": 16280.42, "end": 16283.08, "probability": 0.9509 }, { "start": 16283.9, "end": 16286.42, "probability": 0.9927 }, { "start": 16286.94, "end": 16287.34, "probability": 0.9075 }, { "start": 16289.04, "end": 16289.48, "probability": 0.953 }, { "start": 16290.08, "end": 16292.2, "probability": 0.936 }, { "start": 16294.3, "end": 16294.96, "probability": 0.8523 }, { "start": 16295.48, "end": 16296.18, "probability": 0.9635 }, { "start": 16297.3, "end": 16297.96, "probability": 0.7063 }, { "start": 16298.74, "end": 16300.28, "probability": 0.6716 }, { "start": 16301.72, "end": 16305.12, "probability": 0.9648 }, { "start": 16306.04, "end": 16310.16, "probability": 0.9922 }, { "start": 16310.8, "end": 16314.06, "probability": 0.9891 }, { "start": 16314.64, "end": 16317.28, "probability": 0.9591 }, { "start": 16318.98, "end": 16319.89, "probability": 0.8394 }, { "start": 16321.02, "end": 16322.26, "probability": 0.8451 }, { "start": 16322.9, "end": 16325.3, "probability": 0.9962 }, { "start": 16326.7, "end": 16328.14, "probability": 0.9976 }, { "start": 16328.76, "end": 16333.2, "probability": 0.9958 }, { "start": 16335.08, "end": 16335.62, "probability": 0.8304 }, { "start": 16337.02, "end": 16339.06, "probability": 0.9907 }, { "start": 16340.2, "end": 16341.74, "probability": 0.925 }, { "start": 16342.28, "end": 16344.34, "probability": 0.9915 }, { "start": 16344.96, "end": 16348.34, "probability": 0.9757 }, { "start": 16348.82, "end": 16351.18, "probability": 0.9971 }, { "start": 16352.68, "end": 16354.56, "probability": 0.9637 }, { "start": 16355.12, "end": 16357.56, "probability": 0.9937 }, { "start": 16358.86, "end": 16360.38, "probability": 0.821 }, { "start": 16361.12, "end": 16362.02, "probability": 0.9045 }, { "start": 16363.02, "end": 16366.32, "probability": 0.8649 }, { "start": 16366.76, "end": 16369.54, "probability": 0.9919 }, { "start": 16371.52, "end": 16375.3, "probability": 0.9624 }, { "start": 16376.66, "end": 16379.3, "probability": 0.8494 }, { "start": 16381.58, "end": 16382.22, "probability": 0.5034 }, { "start": 16383.38, "end": 16385.76, "probability": 0.9725 }, { "start": 16386.24, "end": 16386.72, "probability": 0.9641 }, { "start": 16387.08, "end": 16390.03, "probability": 0.8566 }, { "start": 16391.3, "end": 16394.88, "probability": 0.758 }, { "start": 16395.96, "end": 16396.52, "probability": 0.5336 }, { "start": 16397.64, "end": 16401.94, "probability": 0.7726 }, { "start": 16403.12, "end": 16406.1, "probability": 0.9902 }, { "start": 16406.8, "end": 16408.04, "probability": 0.9697 }, { "start": 16408.7, "end": 16411.1, "probability": 0.929 }, { "start": 16412.5, "end": 16415.1, "probability": 0.9988 }, { "start": 16416.66, "end": 16418.74, "probability": 0.8606 }, { "start": 16419.62, "end": 16422.52, "probability": 0.9941 }, { "start": 16423.14, "end": 16424.92, "probability": 0.8664 }, { "start": 16426.12, "end": 16428.0, "probability": 0.9165 }, { "start": 16429.46, "end": 16429.8, "probability": 0.8896 }, { "start": 16431.0, "end": 16431.68, "probability": 0.958 }, { "start": 16432.5, "end": 16433.42, "probability": 0.8264 }, { "start": 16434.62, "end": 16435.04, "probability": 0.9175 }, { "start": 16436.62, "end": 16439.08, "probability": 0.9392 }, { "start": 16439.96, "end": 16442.92, "probability": 0.9966 }, { "start": 16443.68, "end": 16445.2, "probability": 0.9334 }, { "start": 16446.46, "end": 16447.1, "probability": 0.9186 }, { "start": 16447.74, "end": 16448.84, "probability": 0.9622 }, { "start": 16449.68, "end": 16450.98, "probability": 0.9065 }, { "start": 16452.72, "end": 16453.04, "probability": 0.9734 }, { "start": 16453.78, "end": 16454.98, "probability": 0.8147 }, { "start": 16456.3, "end": 16460.56, "probability": 0.9989 }, { "start": 16461.7, "end": 16462.28, "probability": 0.7742 }, { "start": 16462.96, "end": 16464.54, "probability": 0.8804 }, { "start": 16465.64, "end": 16468.87, "probability": 0.8745 }, { "start": 16470.02, "end": 16470.3, "probability": 0.9183 }, { "start": 16470.9, "end": 16473.18, "probability": 0.956 }, { "start": 16474.22, "end": 16476.4, "probability": 0.9375 }, { "start": 16477.14, "end": 16479.52, "probability": 0.8369 }, { "start": 16480.28, "end": 16482.5, "probability": 0.9419 }, { "start": 16482.68, "end": 16483.41, "probability": 0.9961 }, { "start": 16484.04, "end": 16484.54, "probability": 0.9381 }, { "start": 16485.04, "end": 16487.32, "probability": 0.987 }, { "start": 16487.88, "end": 16488.14, "probability": 0.8809 }, { "start": 16488.16, "end": 16491.26, "probability": 0.8175 }, { "start": 16491.9, "end": 16493.74, "probability": 0.8337 }, { "start": 16494.36, "end": 16498.78, "probability": 0.9302 }, { "start": 16499.5, "end": 16500.28, "probability": 0.5955 }, { "start": 16500.88, "end": 16502.82, "probability": 0.8457 }, { "start": 16503.14, "end": 16503.49, "probability": 0.8149 }, { "start": 16504.02, "end": 16504.9, "probability": 0.9245 }, { "start": 16505.54, "end": 16505.98, "probability": 0.4923 }, { "start": 16506.12, "end": 16508.18, "probability": 0.9072 }, { "start": 16508.52, "end": 16509.46, "probability": 0.925 }, { "start": 16510.02, "end": 16511.4, "probability": 0.9202 }, { "start": 16512.06, "end": 16512.84, "probability": 0.9915 }, { "start": 16513.64, "end": 16514.62, "probability": 0.9907 }, { "start": 16515.0, "end": 16516.96, "probability": 0.9937 }, { "start": 16516.96, "end": 16519.48, "probability": 0.9097 }, { "start": 16521.32, "end": 16521.78, "probability": 0.8301 }, { "start": 16523.08, "end": 16525.76, "probability": 0.8987 }, { "start": 16526.8, "end": 16532.98, "probability": 0.9917 }, { "start": 16534.18, "end": 16536.6, "probability": 0.9966 }, { "start": 16537.06, "end": 16537.54, "probability": 0.457 }, { "start": 16537.7, "end": 16538.34, "probability": 0.3417 }, { "start": 16538.34, "end": 16538.66, "probability": 0.5969 }, { "start": 16539.26, "end": 16544.2, "probability": 0.8532 }, { "start": 16545.14, "end": 16545.96, "probability": 0.9873 }, { "start": 16547.16, "end": 16547.89, "probability": 0.7651 }, { "start": 16548.12, "end": 16549.42, "probability": 0.932 }, { "start": 16549.64, "end": 16550.98, "probability": 0.9658 }, { "start": 16551.46, "end": 16553.18, "probability": 0.8885 }, { "start": 16553.52, "end": 16554.76, "probability": 0.9534 }, { "start": 16555.42, "end": 16556.08, "probability": 0.7489 }, { "start": 16556.94, "end": 16560.6, "probability": 0.9937 }, { "start": 16562.22, "end": 16563.37, "probability": 0.9124 }, { "start": 16564.26, "end": 16566.7, "probability": 0.8267 }, { "start": 16567.28, "end": 16568.08, "probability": 0.9583 }, { "start": 16569.8, "end": 16570.64, "probability": 0.9949 }, { "start": 16573.54, "end": 16574.38, "probability": 0.0394 }, { "start": 16574.92, "end": 16575.4, "probability": 0.3647 }, { "start": 16576.12, "end": 16577.48, "probability": 0.8899 }, { "start": 16578.3, "end": 16579.62, "probability": 0.9682 }, { "start": 16580.44, "end": 16581.54, "probability": 0.5657 }, { "start": 16582.5, "end": 16583.51, "probability": 0.8281 }, { "start": 16584.02, "end": 16584.54, "probability": 0.7783 }, { "start": 16585.6, "end": 16586.17, "probability": 0.7676 }, { "start": 16586.82, "end": 16587.84, "probability": 0.8863 }, { "start": 16588.42, "end": 16589.4, "probability": 0.9211 }, { "start": 16589.5, "end": 16590.44, "probability": 0.7511 }, { "start": 16591.1, "end": 16593.02, "probability": 0.9042 }, { "start": 16593.86, "end": 16595.72, "probability": 0.9791 }, { "start": 16596.76, "end": 16598.92, "probability": 0.9731 }, { "start": 16599.68, "end": 16601.44, "probability": 0.8748 }, { "start": 16601.96, "end": 16604.4, "probability": 0.5638 }, { "start": 16604.98, "end": 16605.18, "probability": 0.5857 }, { "start": 16606.0, "end": 16606.86, "probability": 0.7072 }, { "start": 16607.14, "end": 16609.4, "probability": 0.8979 }, { "start": 16609.9, "end": 16611.0, "probability": 0.9775 }, { "start": 16611.1, "end": 16611.84, "probability": 0.7742 }, { "start": 16612.18, "end": 16613.1, "probability": 0.9854 }, { "start": 16613.46, "end": 16614.22, "probability": 0.9955 }, { "start": 16614.32, "end": 16615.64, "probability": 0.6864 }, { "start": 16616.22, "end": 16617.42, "probability": 0.811 }, { "start": 16618.0, "end": 16619.08, "probability": 0.9875 }, { "start": 16619.32, "end": 16620.14, "probability": 0.767 }, { "start": 16620.7, "end": 16622.88, "probability": 0.9646 }, { "start": 16623.3, "end": 16624.5, "probability": 0.8912 }, { "start": 16625.22, "end": 16625.7, "probability": 0.9836 }, { "start": 16626.44, "end": 16627.14, "probability": 0.8048 }, { "start": 16628.84, "end": 16630.14, "probability": 0.8758 }, { "start": 16630.9, "end": 16632.4, "probability": 0.9836 }, { "start": 16632.48, "end": 16633.86, "probability": 0.9503 }, { "start": 16634.26, "end": 16635.04, "probability": 0.8265 }, { "start": 16635.34, "end": 16637.92, "probability": 0.999 }, { "start": 16638.28, "end": 16640.64, "probability": 0.9932 }, { "start": 16641.08, "end": 16641.84, "probability": 0.99 }, { "start": 16642.32, "end": 16643.0, "probability": 0.9932 }, { "start": 16643.32, "end": 16643.94, "probability": 0.9803 }, { "start": 16644.78, "end": 16646.34, "probability": 0.9652 }, { "start": 16647.3, "end": 16649.86, "probability": 0.9688 }, { "start": 16650.68, "end": 16650.94, "probability": 0.8352 }, { "start": 16651.68, "end": 16653.4, "probability": 0.9404 }, { "start": 16653.92, "end": 16655.36, "probability": 0.9827 }, { "start": 16656.16, "end": 16658.26, "probability": 0.9144 }, { "start": 16659.04, "end": 16661.38, "probability": 0.9377 }, { "start": 16662.1, "end": 16662.78, "probability": 0.7296 }, { "start": 16663.84, "end": 16665.1, "probability": 0.8885 }, { "start": 16666.1, "end": 16666.72, "probability": 0.5457 }, { "start": 16666.82, "end": 16667.56, "probability": 0.9268 }, { "start": 16680.5, "end": 16683.92, "probability": 0.6876 }, { "start": 16684.76, "end": 16687.26, "probability": 0.886 }, { "start": 16687.9, "end": 16689.74, "probability": 0.8544 }, { "start": 16691.44, "end": 16693.86, "probability": 0.9525 }, { "start": 16695.24, "end": 16696.72, "probability": 0.6978 }, { "start": 16697.76, "end": 16698.42, "probability": 0.9473 }, { "start": 16700.0, "end": 16701.44, "probability": 0.8906 }, { "start": 16702.14, "end": 16705.96, "probability": 0.9576 }, { "start": 16706.98, "end": 16708.98, "probability": 0.6787 }, { "start": 16709.84, "end": 16711.84, "probability": 0.9568 }, { "start": 16712.58, "end": 16713.86, "probability": 0.969 }, { "start": 16713.92, "end": 16715.7, "probability": 0.9839 }, { "start": 16715.78, "end": 16716.12, "probability": 0.4089 }, { "start": 16716.18, "end": 16716.72, "probability": 0.7299 }, { "start": 16718.76, "end": 16720.94, "probability": 0.946 }, { "start": 16721.12, "end": 16721.62, "probability": 0.8692 }, { "start": 16721.72, "end": 16722.3, "probability": 0.7134 }, { "start": 16723.08, "end": 16723.61, "probability": 0.8589 }, { "start": 16723.9, "end": 16724.34, "probability": 0.8413 }, { "start": 16725.52, "end": 16727.14, "probability": 0.9736 }, { "start": 16727.84, "end": 16730.08, "probability": 0.9717 }, { "start": 16730.68, "end": 16732.3, "probability": 0.9757 }, { "start": 16734.22, "end": 16739.58, "probability": 0.9354 }, { "start": 16740.88, "end": 16744.8, "probability": 0.9873 }, { "start": 16745.52, "end": 16746.76, "probability": 0.6151 }, { "start": 16747.76, "end": 16751.4, "probability": 0.8655 }, { "start": 16752.04, "end": 16753.7, "probability": 0.9712 }, { "start": 16753.74, "end": 16754.48, "probability": 0.4888 }, { "start": 16755.62, "end": 16756.18, "probability": 0.9901 }, { "start": 16757.12, "end": 16760.04, "probability": 0.8013 }, { "start": 16761.62, "end": 16763.36, "probability": 0.9767 }, { "start": 16764.1, "end": 16765.04, "probability": 0.6735 }, { "start": 16765.26, "end": 16766.06, "probability": 0.9519 }, { "start": 16766.16, "end": 16767.38, "probability": 0.9648 }, { "start": 16767.98, "end": 16769.18, "probability": 0.9738 }, { "start": 16770.28, "end": 16771.48, "probability": 0.8421 }, { "start": 16772.02, "end": 16773.28, "probability": 0.7541 }, { "start": 16773.38, "end": 16776.76, "probability": 0.9784 }, { "start": 16777.68, "end": 16778.17, "probability": 0.7056 }, { "start": 16779.1, "end": 16780.74, "probability": 0.9482 }, { "start": 16781.46, "end": 16785.7, "probability": 0.9164 }, { "start": 16786.5, "end": 16787.98, "probability": 0.9429 }, { "start": 16788.44, "end": 16790.58, "probability": 0.942 }, { "start": 16791.56, "end": 16795.08, "probability": 0.9905 }, { "start": 16795.76, "end": 16799.0, "probability": 0.7545 }, { "start": 16799.52, "end": 16801.58, "probability": 0.9994 }, { "start": 16802.94, "end": 16802.94, "probability": 0.9897 }, { "start": 16803.54, "end": 16804.14, "probability": 0.9938 }, { "start": 16805.24, "end": 16805.82, "probability": 0.7601 }, { "start": 16806.66, "end": 16808.58, "probability": 0.6635 }, { "start": 16809.34, "end": 16810.44, "probability": 0.9415 }, { "start": 16811.28, "end": 16813.52, "probability": 0.9944 }, { "start": 16814.24, "end": 16815.16, "probability": 0.9501 }, { "start": 16816.0, "end": 16817.24, "probability": 0.9233 }, { "start": 16818.04, "end": 16819.44, "probability": 0.7054 }, { "start": 16820.84, "end": 16821.48, "probability": 0.7344 }, { "start": 16822.18, "end": 16822.74, "probability": 0.4406 }, { "start": 16824.88, "end": 16826.28, "probability": 0.946 }, { "start": 16827.34, "end": 16830.7, "probability": 0.8131 }, { "start": 16832.06, "end": 16833.18, "probability": 0.7149 }, { "start": 16834.36, "end": 16837.42, "probability": 0.9718 }, { "start": 16838.58, "end": 16839.16, "probability": 0.856 }, { "start": 16840.36, "end": 16843.48, "probability": 0.9562 }, { "start": 16844.46, "end": 16845.44, "probability": 0.9363 }, { "start": 16845.66, "end": 16852.02, "probability": 0.9685 }, { "start": 16853.38, "end": 16854.14, "probability": 0.8431 }, { "start": 16854.96, "end": 16856.32, "probability": 0.9336 }, { "start": 16856.84, "end": 16858.5, "probability": 0.989 }, { "start": 16859.52, "end": 16862.2, "probability": 0.8335 }, { "start": 16863.18, "end": 16866.12, "probability": 0.7587 }, { "start": 16871.42, "end": 16874.94, "probability": 0.7945 }, { "start": 16874.94, "end": 16875.34, "probability": 0.7612 }, { "start": 16877.0, "end": 16878.61, "probability": 0.9109 }, { "start": 16879.38, "end": 16880.58, "probability": 0.6477 }, { "start": 16881.68, "end": 16882.3, "probability": 0.7103 }, { "start": 16883.2, "end": 16884.16, "probability": 0.4428 }, { "start": 16885.58, "end": 16888.98, "probability": 0.3261 }, { "start": 16888.98, "end": 16889.44, "probability": 0.0588 }, { "start": 16889.44, "end": 16889.44, "probability": 0.1819 }, { "start": 16889.62, "end": 16890.46, "probability": 0.2367 }, { "start": 16891.58, "end": 16892.54, "probability": 0.7453 }, { "start": 16893.66, "end": 16897.78, "probability": 0.9897 }, { "start": 16897.78, "end": 16902.5, "probability": 0.9922 }, { "start": 16903.5, "end": 16907.26, "probability": 0.511 }, { "start": 16908.12, "end": 16908.9, "probability": 0.9827 }, { "start": 16909.3, "end": 16909.81, "probability": 0.8821 }, { "start": 16911.24, "end": 16915.38, "probability": 0.9163 }, { "start": 16916.66, "end": 16918.74, "probability": 0.9541 }, { "start": 16919.64, "end": 16921.84, "probability": 0.9189 }, { "start": 16922.84, "end": 16927.16, "probability": 0.9729 }, { "start": 16927.46, "end": 16928.68, "probability": 0.9906 }, { "start": 16930.76, "end": 16932.38, "probability": 0.9517 }, { "start": 16932.46, "end": 16933.22, "probability": 0.7866 }, { "start": 16933.32, "end": 16934.12, "probability": 0.8875 }, { "start": 16934.32, "end": 16934.96, "probability": 0.3939 }, { "start": 16935.76, "end": 16938.78, "probability": 0.9773 }, { "start": 16939.7, "end": 16943.0, "probability": 0.9925 }, { "start": 16944.28, "end": 16945.28, "probability": 0.958 }, { "start": 16946.14, "end": 16948.1, "probability": 0.9974 }, { "start": 16948.94, "end": 16951.1, "probability": 0.8911 }, { "start": 16951.8, "end": 16955.2, "probability": 0.9846 }, { "start": 16956.44, "end": 16957.36, "probability": 0.4736 }, { "start": 16958.36, "end": 16961.28, "probability": 0.995 }, { "start": 16962.0, "end": 16963.06, "probability": 0.8738 }, { "start": 16963.14, "end": 16965.82, "probability": 0.9388 }, { "start": 16966.36, "end": 16968.21, "probability": 0.9321 }, { "start": 16968.9, "end": 16969.26, "probability": 0.7267 }, { "start": 16969.84, "end": 16970.42, "probability": 0.47 }, { "start": 16970.96, "end": 16971.52, "probability": 0.8065 }, { "start": 16972.42, "end": 16973.14, "probability": 0.8761 }, { "start": 16974.44, "end": 16976.2, "probability": 0.9915 }, { "start": 16976.66, "end": 16978.52, "probability": 0.6564 }, { "start": 16979.48, "end": 16980.42, "probability": 0.4705 }, { "start": 16980.96, "end": 16981.82, "probability": 0.8635 }, { "start": 16982.5, "end": 16984.18, "probability": 0.6071 }, { "start": 16985.3, "end": 16986.18, "probability": 0.6938 }, { "start": 16987.08, "end": 16987.66, "probability": 0.3788 }, { "start": 16988.5, "end": 16989.0, "probability": 0.6557 }, { "start": 16989.02, "end": 16990.0, "probability": 0.6541 }, { "start": 16991.02, "end": 16992.88, "probability": 0.9037 }, { "start": 16992.9, "end": 16994.08, "probability": 0.8501 }, { "start": 16994.2, "end": 16994.86, "probability": 0.757 }, { "start": 16994.98, "end": 16995.34, "probability": 0.9421 }, { "start": 16995.8, "end": 16997.1, "probability": 0.9187 }, { "start": 16998.14, "end": 17001.04, "probability": 0.963 }, { "start": 17002.12, "end": 17002.8, "probability": 0.7331 }, { "start": 17003.96, "end": 17005.13, "probability": 0.5825 }, { "start": 17007.76, "end": 17009.58, "probability": 0.9953 }, { "start": 17010.42, "end": 17013.98, "probability": 0.9763 }, { "start": 17014.3, "end": 17016.28, "probability": 0.7704 }, { "start": 17018.02, "end": 17021.16, "probability": 0.9661 }, { "start": 17021.54, "end": 17024.06, "probability": 0.9653 }, { "start": 17024.74, "end": 17026.42, "probability": 0.7228 }, { "start": 17027.16, "end": 17028.74, "probability": 0.7619 }, { "start": 17029.3, "end": 17030.64, "probability": 0.667 }, { "start": 17031.24, "end": 17032.42, "probability": 0.8942 }, { "start": 17032.46, "end": 17032.96, "probability": 0.7293 }, { "start": 17033.8, "end": 17034.48, "probability": 0.7984 }, { "start": 17034.54, "end": 17035.6, "probability": 0.9705 }, { "start": 17036.62, "end": 17038.53, "probability": 0.9871 }, { "start": 17039.56, "end": 17041.22, "probability": 0.8574 }, { "start": 17041.68, "end": 17043.0, "probability": 0.9468 }, { "start": 17043.46, "end": 17044.96, "probability": 0.6674 }, { "start": 17045.96, "end": 17048.18, "probability": 0.9769 }, { "start": 17048.6, "end": 17049.7, "probability": 0.8739 }, { "start": 17049.76, "end": 17050.36, "probability": 0.9026 }, { "start": 17050.42, "end": 17050.68, "probability": 0.8459 }, { "start": 17050.74, "end": 17053.52, "probability": 0.9862 }, { "start": 17055.12, "end": 17056.12, "probability": 0.9397 }, { "start": 17057.0, "end": 17059.48, "probability": 0.956 }, { "start": 17060.6, "end": 17062.28, "probability": 0.7505 }, { "start": 17063.1, "end": 17067.24, "probability": 0.9907 }, { "start": 17067.58, "end": 17068.64, "probability": 0.942 }, { "start": 17069.02, "end": 17070.0, "probability": 0.9455 }, { "start": 17070.2, "end": 17071.32, "probability": 0.8806 }, { "start": 17072.9, "end": 17077.6, "probability": 0.9814 }, { "start": 17077.72, "end": 17079.98, "probability": 0.9749 }, { "start": 17080.84, "end": 17082.53, "probability": 0.9428 }, { "start": 17083.46, "end": 17086.26, "probability": 0.9953 }, { "start": 17086.94, "end": 17089.25, "probability": 0.9928 }, { "start": 17090.06, "end": 17092.07, "probability": 0.9939 }, { "start": 17093.66, "end": 17094.8, "probability": 0.5579 }, { "start": 17095.92, "end": 17097.12, "probability": 0.9622 }, { "start": 17097.94, "end": 17099.1, "probability": 0.9797 }, { "start": 17099.94, "end": 17102.44, "probability": 0.9727 }, { "start": 17103.06, "end": 17104.8, "probability": 0.9483 }, { "start": 17106.34, "end": 17108.9, "probability": 0.9926 }, { "start": 17110.66, "end": 17111.62, "probability": 0.7789 }, { "start": 17112.8, "end": 17115.04, "probability": 0.9604 }, { "start": 17115.88, "end": 17119.1, "probability": 0.881 }, { "start": 17119.24, "end": 17121.66, "probability": 0.9865 }, { "start": 17122.58, "end": 17123.66, "probability": 0.7994 }, { "start": 17123.92, "end": 17125.24, "probability": 0.9788 }, { "start": 17125.6, "end": 17126.74, "probability": 0.7241 }, { "start": 17126.9, "end": 17127.92, "probability": 0.9966 }, { "start": 17128.96, "end": 17129.76, "probability": 0.9409 }, { "start": 17130.94, "end": 17131.4, "probability": 0.484 }, { "start": 17132.24, "end": 17134.28, "probability": 0.9423 }, { "start": 17134.82, "end": 17137.6, "probability": 0.9963 }, { "start": 17138.2, "end": 17142.02, "probability": 0.9972 }, { "start": 17143.92, "end": 17143.96, "probability": 0.9858 }, { "start": 17144.84, "end": 17147.18, "probability": 0.9905 }, { "start": 17148.12, "end": 17149.82, "probability": 0.9914 }, { "start": 17150.58, "end": 17150.9, "probability": 0.8171 }, { "start": 17153.1, "end": 17153.88, "probability": 0.9745 }, { "start": 17154.74, "end": 17155.32, "probability": 0.8968 }, { "start": 17156.16, "end": 17156.78, "probability": 0.5222 }, { "start": 17158.02, "end": 17160.52, "probability": 0.9358 }, { "start": 17161.2, "end": 17163.18, "probability": 0.988 }, { "start": 17163.7, "end": 17164.6, "probability": 0.5027 }, { "start": 17165.54, "end": 17169.4, "probability": 0.8187 }, { "start": 17170.16, "end": 17173.84, "probability": 0.8033 }, { "start": 17174.32, "end": 17176.28, "probability": 0.9772 }, { "start": 17176.9, "end": 17177.71, "probability": 0.9835 }, { "start": 17178.7, "end": 17180.74, "probability": 0.954 }, { "start": 17181.3, "end": 17182.9, "probability": 0.9261 }, { "start": 17183.82, "end": 17185.24, "probability": 0.6305 }, { "start": 17185.98, "end": 17186.82, "probability": 0.9339 }, { "start": 17187.52, "end": 17189.4, "probability": 0.8324 }, { "start": 17190.46, "end": 17192.38, "probability": 0.9214 }, { "start": 17193.24, "end": 17196.28, "probability": 0.9492 }, { "start": 17196.72, "end": 17200.36, "probability": 0.9976 }, { "start": 17201.06, "end": 17201.82, "probability": 0.8623 }, { "start": 17202.62, "end": 17205.86, "probability": 0.9903 }, { "start": 17207.04, "end": 17208.12, "probability": 0.9998 }, { "start": 17210.28, "end": 17211.88, "probability": 0.9397 }, { "start": 17213.14, "end": 17214.18, "probability": 0.9965 }, { "start": 17215.44, "end": 17216.52, "probability": 0.8413 }, { "start": 17217.46, "end": 17218.4, "probability": 0.8882 }, { "start": 17219.18, "end": 17222.18, "probability": 0.9789 }, { "start": 17223.46, "end": 17229.16, "probability": 0.9974 }, { "start": 17230.76, "end": 17232.5, "probability": 0.9304 }, { "start": 17232.86, "end": 17235.58, "probability": 0.9713 }, { "start": 17235.7, "end": 17239.02, "probability": 0.9164 }, { "start": 17239.58, "end": 17241.22, "probability": 0.9938 }, { "start": 17241.84, "end": 17243.12, "probability": 0.9918 }, { "start": 17243.94, "end": 17245.96, "probability": 0.9891 }, { "start": 17246.8, "end": 17248.24, "probability": 0.9382 }, { "start": 17248.78, "end": 17249.54, "probability": 0.7377 }, { "start": 17249.72, "end": 17250.2, "probability": 0.4073 }, { "start": 17250.26, "end": 17252.52, "probability": 0.9921 }, { "start": 17252.52, "end": 17256.7, "probability": 0.9954 }, { "start": 17257.06, "end": 17259.32, "probability": 0.9653 }, { "start": 17260.28, "end": 17263.7, "probability": 0.8453 }, { "start": 17264.46, "end": 17266.28, "probability": 0.5119 }, { "start": 17266.82, "end": 17268.38, "probability": 0.8777 }, { "start": 17269.32, "end": 17272.4, "probability": 0.9988 }, { "start": 17272.98, "end": 17273.62, "probability": 0.9087 }, { "start": 17274.2, "end": 17274.96, "probability": 0.9932 }, { "start": 17275.52, "end": 17276.38, "probability": 0.7101 }, { "start": 17277.9, "end": 17278.89, "probability": 0.9996 }, { "start": 17279.62, "end": 17281.84, "probability": 0.9972 }, { "start": 17283.0, "end": 17283.2, "probability": 0.7477 }, { "start": 17284.12, "end": 17285.44, "probability": 0.971 }, { "start": 17285.56, "end": 17289.76, "probability": 0.9822 }, { "start": 17290.38, "end": 17294.08, "probability": 0.9978 }, { "start": 17294.68, "end": 17297.74, "probability": 0.9835 }, { "start": 17298.88, "end": 17299.24, "probability": 0.9974 }, { "start": 17299.86, "end": 17300.24, "probability": 0.9767 }, { "start": 17300.76, "end": 17301.08, "probability": 0.4509 }, { "start": 17301.26, "end": 17302.06, "probability": 0.7784 }, { "start": 17302.54, "end": 17305.02, "probability": 0.9251 }, { "start": 17317.78, "end": 17318.76, "probability": 0.193 }, { "start": 17327.42, "end": 17329.02, "probability": 0.3382 }, { "start": 17330.32, "end": 17332.84, "probability": 0.6643 }, { "start": 17334.1, "end": 17337.02, "probability": 0.9979 }, { "start": 17339.86, "end": 17343.56, "probability": 0.9884 }, { "start": 17344.6, "end": 17348.66, "probability": 0.8816 }, { "start": 17349.4, "end": 17350.82, "probability": 0.9991 }, { "start": 17351.62, "end": 17353.12, "probability": 0.9878 }, { "start": 17353.62, "end": 17356.92, "probability": 0.998 }, { "start": 17356.92, "end": 17361.02, "probability": 0.9493 }, { "start": 17362.12, "end": 17365.74, "probability": 0.9044 }, { "start": 17366.86, "end": 17368.56, "probability": 0.9199 }, { "start": 17368.7, "end": 17369.36, "probability": 0.6216 }, { "start": 17369.48, "end": 17373.76, "probability": 0.9658 }, { "start": 17374.48, "end": 17377.68, "probability": 0.9451 }, { "start": 17379.12, "end": 17383.84, "probability": 0.9993 }, { "start": 17385.08, "end": 17387.8, "probability": 0.9954 }, { "start": 17388.48, "end": 17392.38, "probability": 0.9441 }, { "start": 17393.66, "end": 17396.18, "probability": 0.999 }, { "start": 17397.78, "end": 17399.12, "probability": 0.9382 }, { "start": 17401.58, "end": 17402.32, "probability": 0.939 }, { "start": 17403.8, "end": 17404.44, "probability": 0.9672 }, { "start": 17404.78, "end": 17405.28, "probability": 0.378 }, { "start": 17405.44, "end": 17406.01, "probability": 0.4906 }, { "start": 17406.58, "end": 17409.84, "probability": 0.9688 }, { "start": 17410.72, "end": 17412.74, "probability": 0.8857 }, { "start": 17413.78, "end": 17414.76, "probability": 0.9668 }, { "start": 17416.08, "end": 17420.22, "probability": 0.8237 }, { "start": 17421.0, "end": 17425.4, "probability": 0.9116 }, { "start": 17426.32, "end": 17427.24, "probability": 0.4553 }, { "start": 17428.29, "end": 17431.5, "probability": 0.8847 }, { "start": 17432.0, "end": 17435.78, "probability": 0.8252 }, { "start": 17437.46, "end": 17442.94, "probability": 0.9765 }, { "start": 17444.08, "end": 17449.12, "probability": 0.9944 }, { "start": 17449.64, "end": 17452.26, "probability": 0.7341 }, { "start": 17453.48, "end": 17456.06, "probability": 0.9746 }, { "start": 17457.04, "end": 17462.96, "probability": 0.9982 }, { "start": 17462.96, "end": 17466.74, "probability": 0.9968 }, { "start": 17468.34, "end": 17474.02, "probability": 0.9823 }, { "start": 17474.48, "end": 17476.5, "probability": 0.8859 }, { "start": 17477.0, "end": 17477.86, "probability": 0.8013 }, { "start": 17478.04, "end": 17479.26, "probability": 0.8494 }, { "start": 17479.78, "end": 17481.94, "probability": 0.9848 }, { "start": 17483.98, "end": 17485.42, "probability": 0.798 }, { "start": 17486.76, "end": 17489.44, "probability": 0.8846 }, { "start": 17489.98, "end": 17491.16, "probability": 0.7664 }, { "start": 17492.26, "end": 17496.76, "probability": 0.9868 }, { "start": 17497.44, "end": 17499.38, "probability": 0.9385 }, { "start": 17499.48, "end": 17500.13, "probability": 0.9566 }, { "start": 17501.02, "end": 17504.66, "probability": 0.9946 }, { "start": 17506.5, "end": 17509.7, "probability": 0.9781 }, { "start": 17510.82, "end": 17513.12, "probability": 0.9062 }, { "start": 17514.02, "end": 17515.64, "probability": 0.9985 }, { "start": 17517.8, "end": 17521.58, "probability": 0.998 }, { "start": 17522.74, "end": 17527.72, "probability": 0.9956 }, { "start": 17529.1, "end": 17530.16, "probability": 0.9949 }, { "start": 17533.02, "end": 17538.62, "probability": 0.9969 }, { "start": 17538.72, "end": 17540.24, "probability": 0.9814 }, { "start": 17540.78, "end": 17544.86, "probability": 0.9818 }, { "start": 17545.36, "end": 17547.3, "probability": 0.7998 }, { "start": 17548.24, "end": 17551.76, "probability": 0.7671 }, { "start": 17552.52, "end": 17555.2, "probability": 0.9814 }, { "start": 17555.34, "end": 17556.02, "probability": 0.6878 }, { "start": 17556.38, "end": 17556.96, "probability": 0.6951 }, { "start": 17557.14, "end": 17560.22, "probability": 0.9878 }, { "start": 17560.6, "end": 17562.24, "probability": 0.9966 }, { "start": 17563.68, "end": 17565.94, "probability": 0.7729 }, { "start": 17567.3, "end": 17568.62, "probability": 0.9291 }, { "start": 17569.22, "end": 17572.02, "probability": 0.8335 }, { "start": 17573.8, "end": 17575.96, "probability": 0.991 }, { "start": 17576.96, "end": 17579.38, "probability": 0.5565 }, { "start": 17580.6, "end": 17584.32, "probability": 0.9901 }, { "start": 17585.34, "end": 17586.08, "probability": 0.9692 }, { "start": 17586.7, "end": 17588.12, "probability": 0.9628 }, { "start": 17588.64, "end": 17590.26, "probability": 0.999 }, { "start": 17591.22, "end": 17592.76, "probability": 0.8067 }, { "start": 17592.86, "end": 17596.5, "probability": 0.9502 }, { "start": 17597.42, "end": 17598.02, "probability": 0.7499 }, { "start": 17604.22, "end": 17604.82, "probability": 0.3606 }, { "start": 17605.42, "end": 17606.44, "probability": 0.8292 }, { "start": 17607.56, "end": 17608.52, "probability": 0.8745 }, { "start": 17609.64, "end": 17610.52, "probability": 0.998 }, { "start": 17611.44, "end": 17614.1, "probability": 0.8791 }, { "start": 17614.78, "end": 17614.78, "probability": 0.0064 }, { "start": 17615.3, "end": 17618.72, "probability": 0.9961 }, { "start": 17618.82, "end": 17619.84, "probability": 0.6918 }, { "start": 17620.86, "end": 17622.9, "probability": 0.9874 }, { "start": 17623.44, "end": 17625.32, "probability": 0.9941 }, { "start": 17625.46, "end": 17631.0, "probability": 0.9403 }, { "start": 17631.26, "end": 17635.74, "probability": 0.9824 }, { "start": 17638.34, "end": 17642.44, "probability": 0.9355 }, { "start": 17644.18, "end": 17648.66, "probability": 0.7559 }, { "start": 17649.82, "end": 17650.94, "probability": 0.6688 }, { "start": 17651.14, "end": 17652.4, "probability": 0.719 }, { "start": 17652.52, "end": 17657.76, "probability": 0.9532 }, { "start": 17659.24, "end": 17661.06, "probability": 0.9438 }, { "start": 17661.92, "end": 17663.98, "probability": 0.7534 }, { "start": 17664.62, "end": 17666.66, "probability": 0.9715 }, { "start": 17667.5, "end": 17671.36, "probability": 0.9015 }, { "start": 17672.88, "end": 17676.5, "probability": 0.9833 }, { "start": 17677.1, "end": 17678.68, "probability": 0.4727 }, { "start": 17679.86, "end": 17682.7, "probability": 0.9976 }, { "start": 17682.7, "end": 17685.34, "probability": 0.9997 }, { "start": 17686.12, "end": 17688.94, "probability": 0.8378 }, { "start": 17689.48, "end": 17693.58, "probability": 0.783 }, { "start": 17694.68, "end": 17695.16, "probability": 0.5073 }, { "start": 17696.08, "end": 17699.46, "probability": 0.9805 }, { "start": 17700.22, "end": 17701.54, "probability": 0.8566 }, { "start": 17703.74, "end": 17705.8, "probability": 0.9858 }, { "start": 17705.92, "end": 17706.36, "probability": 0.8125 }, { "start": 17706.58, "end": 17709.68, "probability": 0.982 }, { "start": 17711.12, "end": 17715.58, "probability": 0.9937 }, { "start": 17716.68, "end": 17721.5, "probability": 0.9955 }, { "start": 17721.66, "end": 17722.34, "probability": 0.8657 }, { "start": 17722.54, "end": 17724.0, "probability": 0.5383 }, { "start": 17724.64, "end": 17728.66, "probability": 0.9383 }, { "start": 17729.18, "end": 17731.6, "probability": 0.9094 }, { "start": 17732.34, "end": 17733.4, "probability": 0.8806 }, { "start": 17733.76, "end": 17738.0, "probability": 0.8875 }, { "start": 17739.78, "end": 17742.78, "probability": 0.9962 }, { "start": 17743.08, "end": 17745.2, "probability": 0.9873 }, { "start": 17745.2, "end": 17746.44, "probability": 0.8726 }, { "start": 17746.62, "end": 17747.12, "probability": 0.9085 }, { "start": 17747.94, "end": 17750.76, "probability": 0.9986 }, { "start": 17752.48, "end": 17753.28, "probability": 0.9434 }, { "start": 17754.32, "end": 17756.74, "probability": 0.8751 }, { "start": 17757.46, "end": 17760.04, "probability": 0.939 }, { "start": 17760.14, "end": 17760.62, "probability": 0.7593 }, { "start": 17760.72, "end": 17761.74, "probability": 0.4113 }, { "start": 17762.46, "end": 17764.74, "probability": 0.9865 }, { "start": 17764.74, "end": 17769.64, "probability": 0.9908 }, { "start": 17769.72, "end": 17770.66, "probability": 0.7476 }, { "start": 17770.82, "end": 17771.82, "probability": 0.7018 }, { "start": 17773.02, "end": 17775.64, "probability": 0.8637 }, { "start": 17776.64, "end": 17778.2, "probability": 0.9098 }, { "start": 17778.6, "end": 17781.52, "probability": 0.9802 }, { "start": 17781.94, "end": 17784.12, "probability": 0.9493 }, { "start": 17784.56, "end": 17786.3, "probability": 0.9791 }, { "start": 17787.3, "end": 17791.06, "probability": 0.9419 }, { "start": 17791.42, "end": 17795.36, "probability": 0.9958 }, { "start": 17795.46, "end": 17796.2, "probability": 0.9188 }, { "start": 17798.36, "end": 17800.12, "probability": 0.9951 }, { "start": 17801.16, "end": 17801.98, "probability": 0.8115 }, { "start": 17802.92, "end": 17807.52, "probability": 0.9878 }, { "start": 17807.98, "end": 17810.74, "probability": 0.9697 }, { "start": 17811.06, "end": 17812.44, "probability": 0.9724 }, { "start": 17812.62, "end": 17814.24, "probability": 0.9883 }, { "start": 17814.42, "end": 17816.54, "probability": 0.9348 }, { "start": 17817.0, "end": 17818.68, "probability": 0.9961 }, { "start": 17821.38, "end": 17821.8, "probability": 0.9746 }, { "start": 17823.56, "end": 17826.12, "probability": 0.9184 }, { "start": 17826.78, "end": 17827.66, "probability": 0.9343 }, { "start": 17828.7, "end": 17829.54, "probability": 0.8525 }, { "start": 17830.58, "end": 17833.2, "probability": 0.9637 }, { "start": 17835.58, "end": 17837.08, "probability": 0.998 }, { "start": 17837.88, "end": 17839.4, "probability": 0.9086 }, { "start": 17840.2, "end": 17840.82, "probability": 0.9131 }, { "start": 17841.58, "end": 17843.16, "probability": 0.8833 }, { "start": 17844.24, "end": 17844.82, "probability": 0.7244 }, { "start": 17845.0, "end": 17845.34, "probability": 0.6559 }, { "start": 17845.42, "end": 17847.16, "probability": 0.9883 }, { "start": 17848.46, "end": 17850.82, "probability": 0.9835 }, { "start": 17851.84, "end": 17854.12, "probability": 0.9777 }, { "start": 17857.16, "end": 17859.4, "probability": 0.99 }, { "start": 17860.26, "end": 17868.1, "probability": 0.9814 }, { "start": 17868.8, "end": 17871.04, "probability": 0.711 }, { "start": 17871.62, "end": 17873.83, "probability": 0.7727 }, { "start": 17874.98, "end": 17875.66, "probability": 0.6877 }, { "start": 17876.44, "end": 17879.66, "probability": 0.9961 }, { "start": 17879.66, "end": 17882.42, "probability": 0.9946 }, { "start": 17882.64, "end": 17883.64, "probability": 0.8752 }, { "start": 17884.28, "end": 17885.4, "probability": 0.84 }, { "start": 17885.78, "end": 17886.06, "probability": 0.3852 }, { "start": 17886.16, "end": 17886.96, "probability": 0.7966 }, { "start": 17887.08, "end": 17888.6, "probability": 0.9669 }, { "start": 17888.76, "end": 17889.76, "probability": 0.6877 }, { "start": 17891.52, "end": 17892.84, "probability": 0.9391 }, { "start": 17893.32, "end": 17897.4, "probability": 0.9946 }, { "start": 17898.24, "end": 17899.32, "probability": 0.8231 }, { "start": 17899.98, "end": 17904.42, "probability": 0.9702 }, { "start": 17905.84, "end": 17909.92, "probability": 0.8224 }, { "start": 17910.68, "end": 17911.68, "probability": 0.9186 }, { "start": 17912.3, "end": 17913.42, "probability": 0.9665 }, { "start": 17914.06, "end": 17914.98, "probability": 0.7699 }, { "start": 17915.66, "end": 17916.58, "probability": 0.9756 }, { "start": 17917.1, "end": 17918.22, "probability": 0.7602 }, { "start": 17919.82, "end": 17920.78, "probability": 0.9161 }, { "start": 17921.56, "end": 17922.54, "probability": 0.8662 }, { "start": 17923.66, "end": 17924.52, "probability": 0.965 }, { "start": 17925.2, "end": 17928.24, "probability": 0.9652 }, { "start": 17928.98, "end": 17931.62, "probability": 0.9133 }, { "start": 17932.2, "end": 17937.24, "probability": 0.9497 }, { "start": 17937.4, "end": 17940.28, "probability": 0.6008 }, { "start": 17941.04, "end": 17942.4, "probability": 0.9663 }, { "start": 17968.0, "end": 17968.54, "probability": 0.6555 }, { "start": 17970.02, "end": 17971.66, "probability": 0.7365 }, { "start": 17973.7, "end": 17974.72, "probability": 0.7767 }, { "start": 17976.32, "end": 17977.24, "probability": 0.6762 }, { "start": 17978.78, "end": 17980.6, "probability": 0.0084 }, { "start": 17982.08, "end": 17983.98, "probability": 0.9893 }, { "start": 17985.42, "end": 17986.96, "probability": 0.857 }, { "start": 17989.04, "end": 17989.96, "probability": 0.8755 }, { "start": 17995.5, "end": 17997.1, "probability": 0.7623 }, { "start": 17999.24, "end": 18000.9, "probability": 0.7825 }, { "start": 18005.36, "end": 18005.52, "probability": 0.5348 }, { "start": 18007.1, "end": 18008.28, "probability": 0.7974 }, { "start": 18010.82, "end": 18011.94, "probability": 0.977 }, { "start": 18012.84, "end": 18013.42, "probability": 0.9633 }, { "start": 18014.86, "end": 18017.06, "probability": 0.9889 }, { "start": 18018.58, "end": 18019.7, "probability": 0.8351 }, { "start": 18021.32, "end": 18022.72, "probability": 0.9653 }, { "start": 18023.94, "end": 18025.34, "probability": 0.9706 }, { "start": 18026.56, "end": 18031.86, "probability": 0.9592 }, { "start": 18035.88, "end": 18037.44, "probability": 0.8914 }, { "start": 18039.8, "end": 18040.92, "probability": 0.8942 }, { "start": 18042.0, "end": 18043.09, "probability": 0.9927 }, { "start": 18044.34, "end": 18047.06, "probability": 0.9146 }, { "start": 18048.36, "end": 18050.62, "probability": 0.8295 }, { "start": 18051.06, "end": 18054.74, "probability": 0.9951 }, { "start": 18058.02, "end": 18060.04, "probability": 0.9609 }, { "start": 18060.84, "end": 18061.7, "probability": 0.7406 }, { "start": 18062.96, "end": 18064.32, "probability": 0.8391 }, { "start": 18065.72, "end": 18067.56, "probability": 0.9656 }, { "start": 18068.08, "end": 18069.22, "probability": 0.9823 }, { "start": 18069.88, "end": 18074.92, "probability": 0.9661 }, { "start": 18076.84, "end": 18078.88, "probability": 0.9416 }, { "start": 18079.62, "end": 18081.88, "probability": 0.9894 }, { "start": 18083.2, "end": 18085.4, "probability": 0.7503 }, { "start": 18086.52, "end": 18089.88, "probability": 0.9568 }, { "start": 18091.02, "end": 18091.95, "probability": 0.9995 }, { "start": 18094.26, "end": 18095.84, "probability": 0.9843 }, { "start": 18097.56, "end": 18101.62, "probability": 0.9155 }, { "start": 18103.22, "end": 18106.38, "probability": 0.9901 }, { "start": 18108.96, "end": 18113.98, "probability": 0.9831 }, { "start": 18115.92, "end": 18119.2, "probability": 0.7262 }, { "start": 18120.72, "end": 18122.34, "probability": 0.9653 }, { "start": 18123.22, "end": 18124.06, "probability": 0.962 }, { "start": 18124.86, "end": 18126.22, "probability": 0.9941 }, { "start": 18126.92, "end": 18127.66, "probability": 0.8693 }, { "start": 18128.78, "end": 18130.28, "probability": 0.582 }, { "start": 18132.22, "end": 18133.32, "probability": 0.9719 }, { "start": 18136.3, "end": 18137.48, "probability": 0.9849 }, { "start": 18138.08, "end": 18138.72, "probability": 0.9795 }, { "start": 18139.58, "end": 18140.74, "probability": 0.9056 }, { "start": 18141.9, "end": 18143.72, "probability": 0.9222 }, { "start": 18147.74, "end": 18150.86, "probability": 0.8841 }, { "start": 18152.26, "end": 18153.54, "probability": 0.9252 }, { "start": 18154.1, "end": 18158.18, "probability": 0.9166 }, { "start": 18158.28, "end": 18160.26, "probability": 0.9806 }, { "start": 18161.24, "end": 18162.2, "probability": 0.9363 }, { "start": 18163.78, "end": 18164.4, "probability": 0.8483 }, { "start": 18166.78, "end": 18168.08, "probability": 0.8493 }, { "start": 18168.68, "end": 18172.74, "probability": 0.9863 }, { "start": 18173.7, "end": 18175.88, "probability": 0.9471 }, { "start": 18176.08, "end": 18177.68, "probability": 0.9701 }, { "start": 18178.54, "end": 18181.54, "probability": 0.9646 }, { "start": 18182.96, "end": 18185.34, "probability": 0.9762 }, { "start": 18186.48, "end": 18186.84, "probability": 0.7971 }, { "start": 18189.22, "end": 18189.74, "probability": 0.9655 }, { "start": 18190.86, "end": 18196.16, "probability": 0.9466 }, { "start": 18198.04, "end": 18200.76, "probability": 0.7815 }, { "start": 18204.6, "end": 18209.6, "probability": 0.992 }, { "start": 18211.04, "end": 18211.6, "probability": 0.7198 }, { "start": 18214.68, "end": 18216.38, "probability": 0.9746 }, { "start": 18218.12, "end": 18219.08, "probability": 0.7453 }, { "start": 18220.9, "end": 18221.86, "probability": 0.5001 }, { "start": 18222.78, "end": 18224.0, "probability": 0.679 }, { "start": 18226.36, "end": 18228.06, "probability": 0.9299 }, { "start": 18229.78, "end": 18230.64, "probability": 0.8823 }, { "start": 18231.36, "end": 18232.16, "probability": 0.7437 }, { "start": 18233.38, "end": 18233.94, "probability": 0.9685 }, { "start": 18235.48, "end": 18236.4, "probability": 0.9831 }, { "start": 18238.6, "end": 18239.28, "probability": 0.689 }, { "start": 18239.42, "end": 18239.58, "probability": 0.3396 }, { "start": 18239.66, "end": 18242.92, "probability": 0.9787 }, { "start": 18243.94, "end": 18245.04, "probability": 0.6754 }, { "start": 18246.8, "end": 18251.72, "probability": 0.9957 }, { "start": 18253.4, "end": 18259.96, "probability": 0.9967 }, { "start": 18261.28, "end": 18266.84, "probability": 0.9627 }, { "start": 18268.16, "end": 18273.64, "probability": 0.9746 }, { "start": 18275.48, "end": 18277.62, "probability": 0.9935 }, { "start": 18279.42, "end": 18284.04, "probability": 0.9717 }, { "start": 18284.38, "end": 18286.58, "probability": 0.9724 }, { "start": 18287.6, "end": 18289.24, "probability": 0.8927 }, { "start": 18290.72, "end": 18293.4, "probability": 0.9664 }, { "start": 18293.9, "end": 18294.78, "probability": 0.8215 }, { "start": 18296.08, "end": 18297.04, "probability": 0.8566 }, { "start": 18299.72, "end": 18302.24, "probability": 0.6934 }, { "start": 18304.2, "end": 18307.32, "probability": 0.8775 }, { "start": 18308.22, "end": 18310.52, "probability": 0.6261 }, { "start": 18311.04, "end": 18315.04, "probability": 0.9849 }, { "start": 18316.04, "end": 18317.3, "probability": 0.8334 }, { "start": 18319.24, "end": 18320.32, "probability": 0.9593 }, { "start": 18320.86, "end": 18322.94, "probability": 0.9849 }, { "start": 18323.08, "end": 18324.02, "probability": 0.8287 }, { "start": 18324.28, "end": 18325.56, "probability": 0.9908 }, { "start": 18325.68, "end": 18327.12, "probability": 0.9933 }, { "start": 18327.22, "end": 18328.92, "probability": 0.9563 }, { "start": 18329.68, "end": 18332.5, "probability": 0.9758 }, { "start": 18335.2, "end": 18335.74, "probability": 0.9222 }, { "start": 18338.62, "end": 18339.02, "probability": 0.6202 }, { "start": 18340.74, "end": 18342.4, "probability": 0.7517 }, { "start": 18344.84, "end": 18346.58, "probability": 0.8686 }, { "start": 18347.92, "end": 18351.0, "probability": 0.9937 }, { "start": 18352.08, "end": 18353.62, "probability": 0.9004 }, { "start": 18354.48, "end": 18355.05, "probability": 0.9497 }, { "start": 18357.56, "end": 18357.82, "probability": 0.9019 }, { "start": 18361.38, "end": 18366.08, "probability": 0.9837 }, { "start": 18367.2, "end": 18368.36, "probability": 0.5391 }, { "start": 18369.08, "end": 18370.1, "probability": 0.7532 }, { "start": 18372.04, "end": 18372.68, "probability": 0.8412 }, { "start": 18373.82, "end": 18375.92, "probability": 0.9971 }, { "start": 18377.4, "end": 18382.68, "probability": 0.9742 }, { "start": 18383.64, "end": 18384.92, "probability": 0.9333 }, { "start": 18385.7, "end": 18387.3, "probability": 0.9324 }, { "start": 18388.84, "end": 18391.42, "probability": 0.604 }, { "start": 18391.54, "end": 18392.54, "probability": 0.6855 }, { "start": 18392.6, "end": 18393.88, "probability": 0.7905 }, { "start": 18393.94, "end": 18394.7, "probability": 0.7948 }, { "start": 18395.64, "end": 18397.94, "probability": 0.9865 }, { "start": 18398.34, "end": 18398.78, "probability": 0.606 }, { "start": 18399.08, "end": 18402.76, "probability": 0.7725 }, { "start": 18403.98, "end": 18407.0, "probability": 0.8773 }, { "start": 18408.0, "end": 18411.22, "probability": 0.9357 }, { "start": 18411.3, "end": 18412.66, "probability": 0.9257 }, { "start": 18413.6, "end": 18416.82, "probability": 0.9724 }, { "start": 18417.6, "end": 18419.4, "probability": 0.9502 }, { "start": 18420.48, "end": 18422.1, "probability": 0.9612 }, { "start": 18423.08, "end": 18424.08, "probability": 0.9565 }, { "start": 18425.76, "end": 18426.12, "probability": 0.8591 }, { "start": 18428.46, "end": 18430.26, "probability": 0.6967 }, { "start": 18430.32, "end": 18431.48, "probability": 0.8979 }, { "start": 18431.94, "end": 18434.24, "probability": 0.9377 }, { "start": 18436.16, "end": 18438.16, "probability": 0.9885 }, { "start": 18439.48, "end": 18440.26, "probability": 0.9466 }, { "start": 18440.28, "end": 18441.24, "probability": 0.9823 }, { "start": 18441.38, "end": 18443.38, "probability": 0.7488 }, { "start": 18444.4, "end": 18446.3, "probability": 0.78 }, { "start": 18447.38, "end": 18454.6, "probability": 0.9951 }, { "start": 18455.4, "end": 18456.68, "probability": 0.6533 }, { "start": 18457.56, "end": 18459.18, "probability": 0.9761 }, { "start": 18461.76, "end": 18462.8, "probability": 0.9438 }, { "start": 18463.72, "end": 18464.34, "probability": 0.9541 }, { "start": 18466.48, "end": 18467.9, "probability": 0.8574 }, { "start": 18469.82, "end": 18471.08, "probability": 0.8039 }, { "start": 18471.58, "end": 18474.0, "probability": 0.8424 }, { "start": 18475.7, "end": 18477.9, "probability": 0.9746 }, { "start": 18479.18, "end": 18482.44, "probability": 0.9826 }, { "start": 18483.54, "end": 18487.5, "probability": 0.9946 }, { "start": 18488.58, "end": 18492.14, "probability": 0.9905 }, { "start": 18493.58, "end": 18497.14, "probability": 0.999 }, { "start": 18498.16, "end": 18502.04, "probability": 0.9993 }, { "start": 18502.96, "end": 18506.46, "probability": 0.9993 }, { "start": 18507.94, "end": 18514.58, "probability": 0.9979 }, { "start": 18516.08, "end": 18522.12, "probability": 0.9885 }, { "start": 18523.42, "end": 18528.64, "probability": 0.9813 }, { "start": 18529.76, "end": 18531.42, "probability": 0.8544 }, { "start": 18533.54, "end": 18534.18, "probability": 0.4699 }, { "start": 18534.74, "end": 18536.26, "probability": 0.7263 }, { "start": 18538.08, "end": 18539.48, "probability": 0.864 }, { "start": 18540.26, "end": 18541.88, "probability": 0.9565 }, { "start": 18542.1, "end": 18549.08, "probability": 0.9944 }, { "start": 18549.72, "end": 18551.24, "probability": 0.3416 }, { "start": 18551.58, "end": 18553.48, "probability": 0.9917 }, { "start": 18554.62, "end": 18558.38, "probability": 0.8236 }, { "start": 18558.76, "end": 18561.1, "probability": 0.8542 }, { "start": 18561.38, "end": 18563.52, "probability": 0.9557 }, { "start": 18564.74, "end": 18566.24, "probability": 0.9247 }, { "start": 18566.38, "end": 18568.06, "probability": 0.9799 }, { "start": 18569.34, "end": 18569.58, "probability": 0.9758 }, { "start": 18570.9, "end": 18571.88, "probability": 0.637 }, { "start": 18572.98, "end": 18573.61, "probability": 0.9912 }, { "start": 18574.9, "end": 18576.2, "probability": 0.6451 }, { "start": 18577.52, "end": 18580.12, "probability": 0.9966 }, { "start": 18580.8, "end": 18581.88, "probability": 0.9609 }, { "start": 18582.7, "end": 18586.94, "probability": 0.9262 }, { "start": 18587.7, "end": 18591.84, "probability": 0.9978 }, { "start": 18592.0, "end": 18592.24, "probability": 0.8379 }, { "start": 18593.18, "end": 18595.08, "probability": 0.7251 }, { "start": 18595.3, "end": 18597.24, "probability": 0.8518 }, { "start": 18598.04, "end": 18599.12, "probability": 0.5693 }, { "start": 18613.86, "end": 18615.24, "probability": 0.2665 }, { "start": 18615.46, "end": 18615.46, "probability": 0.2475 }, { "start": 18615.46, "end": 18615.46, "probability": 0.0794 }, { "start": 18615.46, "end": 18616.36, "probability": 0.3261 }, { "start": 18633.2, "end": 18635.04, "probability": 0.0599 }, { "start": 18635.66, "end": 18636.54, "probability": 0.7135 }, { "start": 18637.86, "end": 18639.93, "probability": 0.9801 }, { "start": 18641.46, "end": 18646.26, "probability": 0.9971 }, { "start": 18646.56, "end": 18651.98, "probability": 0.9704 }, { "start": 18653.9, "end": 18654.08, "probability": 0.2607 }, { "start": 18656.56, "end": 18657.84, "probability": 0.8209 }, { "start": 18659.22, "end": 18659.96, "probability": 0.7401 }, { "start": 18661.46, "end": 18662.68, "probability": 0.8761 }, { "start": 18663.22, "end": 18665.04, "probability": 0.9807 }, { "start": 18666.72, "end": 18668.14, "probability": 0.9819 }, { "start": 18669.52, "end": 18672.3, "probability": 0.923 }, { "start": 18672.92, "end": 18674.56, "probability": 0.9832 }, { "start": 18677.3, "end": 18681.96, "probability": 0.8896 }, { "start": 18682.46, "end": 18684.3, "probability": 0.9006 }, { "start": 18689.88, "end": 18692.7, "probability": 0.8199 }, { "start": 18693.64, "end": 18695.56, "probability": 0.999 }, { "start": 18697.24, "end": 18698.56, "probability": 0.998 }, { "start": 18702.56, "end": 18705.12, "probability": 0.7865 }, { "start": 18705.48, "end": 18707.06, "probability": 0.7064 }, { "start": 18707.16, "end": 18710.82, "probability": 0.9086 }, { "start": 18711.48, "end": 18712.4, "probability": 0.9888 }, { "start": 18713.62, "end": 18714.12, "probability": 0.8351 }, { "start": 18715.1, "end": 18717.58, "probability": 0.7509 }, { "start": 18718.3, "end": 18719.28, "probability": 0.9319 }, { "start": 18719.9, "end": 18723.86, "probability": 0.9809 }, { "start": 18728.66, "end": 18731.4, "probability": 0.95 }, { "start": 18733.26, "end": 18735.04, "probability": 0.9967 }, { "start": 18737.82, "end": 18738.88, "probability": 0.8637 }, { "start": 18739.4, "end": 18740.58, "probability": 0.7959 }, { "start": 18742.99, "end": 18746.82, "probability": 0.9844 }, { "start": 18746.92, "end": 18749.08, "probability": 0.9728 }, { "start": 18750.0, "end": 18751.72, "probability": 0.9821 }, { "start": 18754.82, "end": 18759.0, "probability": 0.9741 }, { "start": 18759.94, "end": 18764.36, "probability": 0.9812 }, { "start": 18766.6, "end": 18768.36, "probability": 0.8229 }, { "start": 18770.4, "end": 18774.88, "probability": 0.998 }, { "start": 18776.06, "end": 18779.22, "probability": 0.9881 }, { "start": 18780.96, "end": 18783.96, "probability": 0.8049 }, { "start": 18784.7, "end": 18787.42, "probability": 0.9885 }, { "start": 18788.12, "end": 18788.92, "probability": 0.6047 }, { "start": 18789.42, "end": 18792.46, "probability": 0.988 }, { "start": 18795.08, "end": 18797.32, "probability": 0.9976 }, { "start": 18798.62, "end": 18801.5, "probability": 0.9969 }, { "start": 18804.52, "end": 18807.92, "probability": 0.9598 }, { "start": 18808.1, "end": 18810.52, "probability": 0.8181 }, { "start": 18813.14, "end": 18816.6, "probability": 0.9862 }, { "start": 18816.72, "end": 18817.46, "probability": 0.948 }, { "start": 18818.86, "end": 18821.32, "probability": 0.9869 }, { "start": 18822.6, "end": 18823.36, "probability": 0.012 }, { "start": 18824.56, "end": 18826.82, "probability": 0.8959 }, { "start": 18828.18, "end": 18831.08, "probability": 0.973 }, { "start": 18832.3, "end": 18833.34, "probability": 0.8786 }, { "start": 18834.66, "end": 18837.16, "probability": 0.9949 }, { "start": 18839.48, "end": 18840.16, "probability": 0.8864 }, { "start": 18840.28, "end": 18842.96, "probability": 0.9984 }, { "start": 18843.06, "end": 18843.72, "probability": 0.7324 }, { "start": 18843.82, "end": 18850.66, "probability": 0.9961 }, { "start": 18853.02, "end": 18857.3, "probability": 0.9963 }, { "start": 18857.3, "end": 18859.86, "probability": 0.9863 }, { "start": 18861.1, "end": 18861.76, "probability": 0.9773 }, { "start": 18864.38, "end": 18866.5, "probability": 0.9981 }, { "start": 18867.7, "end": 18868.36, "probability": 0.7446 }, { "start": 18868.6, "end": 18869.54, "probability": 0.8188 }, { "start": 18869.62, "end": 18870.42, "probability": 0.8044 }, { "start": 18870.46, "end": 18871.77, "probability": 0.7942 }, { "start": 18873.62, "end": 18875.86, "probability": 0.9382 }, { "start": 18875.92, "end": 18879.57, "probability": 0.8067 }, { "start": 18880.42, "end": 18881.46, "probability": 0.9946 }, { "start": 18882.24, "end": 18883.92, "probability": 0.8655 }, { "start": 18885.36, "end": 18885.96, "probability": 0.8964 }, { "start": 18888.1, "end": 18890.88, "probability": 0.9842 }, { "start": 18891.72, "end": 18892.6, "probability": 0.991 }, { "start": 18895.14, "end": 18895.66, "probability": 0.9717 }, { "start": 18896.4, "end": 18898.64, "probability": 0.9972 }, { "start": 18900.28, "end": 18900.68, "probability": 0.8066 }, { "start": 18901.52, "end": 18907.72, "probability": 0.9917 }, { "start": 18908.36, "end": 18909.78, "probability": 0.9265 }, { "start": 18910.66, "end": 18911.88, "probability": 0.9989 }, { "start": 18912.46, "end": 18912.7, "probability": 0.5216 }, { "start": 18914.34, "end": 18919.31, "probability": 0.9779 }, { "start": 18919.76, "end": 18920.52, "probability": 0.7813 }, { "start": 18920.8, "end": 18921.8, "probability": 0.3192 }, { "start": 18922.22, "end": 18922.86, "probability": 0.6354 }, { "start": 18924.3, "end": 18926.8, "probability": 0.9814 }, { "start": 18927.12, "end": 18928.22, "probability": 0.4939 }, { "start": 18928.52, "end": 18929.18, "probability": 0.6323 }, { "start": 18929.28, "end": 18930.32, "probability": 0.7515 }, { "start": 18931.02, "end": 18933.1, "probability": 0.9875 }, { "start": 18933.84, "end": 18937.64, "probability": 0.9987 }, { "start": 18938.48, "end": 18939.76, "probability": 0.9943 }, { "start": 18940.84, "end": 18942.46, "probability": 0.9977 }, { "start": 18943.44, "end": 18950.28, "probability": 0.9921 }, { "start": 18951.18, "end": 18951.98, "probability": 0.6176 }, { "start": 18952.56, "end": 18954.26, "probability": 0.8334 }, { "start": 18955.54, "end": 18956.66, "probability": 0.9207 }, { "start": 18959.39, "end": 18961.7, "probability": 0.9095 }, { "start": 18961.7, "end": 18965.34, "probability": 0.9792 }, { "start": 18968.56, "end": 18974.2, "probability": 0.9182 }, { "start": 18975.64, "end": 18977.4, "probability": 0.9982 }, { "start": 18978.42, "end": 18978.78, "probability": 0.8763 }, { "start": 18980.96, "end": 18982.78, "probability": 0.7964 }, { "start": 18983.7, "end": 18984.04, "probability": 0.5135 }, { "start": 18985.38, "end": 18987.88, "probability": 0.9996 }, { "start": 18988.74, "end": 18989.6, "probability": 0.9878 }, { "start": 18990.2, "end": 18991.7, "probability": 0.8445 }, { "start": 18992.56, "end": 18993.82, "probability": 0.9626 }, { "start": 18994.68, "end": 18999.16, "probability": 0.9936 }, { "start": 18999.78, "end": 19001.18, "probability": 0.9745 }, { "start": 19002.48, "end": 19005.64, "probability": 0.9982 }, { "start": 19006.14, "end": 19008.28, "probability": 0.9945 }, { "start": 19008.84, "end": 19010.76, "probability": 0.8892 }, { "start": 19011.46, "end": 19014.86, "probability": 0.8917 }, { "start": 19017.52, "end": 19018.94, "probability": 0.7484 }, { "start": 19021.66, "end": 19024.04, "probability": 0.9862 }, { "start": 19026.98, "end": 19027.74, "probability": 0.9476 }, { "start": 19028.42, "end": 19029.88, "probability": 0.9216 }, { "start": 19030.92, "end": 19033.38, "probability": 0.7769 }, { "start": 19033.46, "end": 19034.54, "probability": 0.7295 }, { "start": 19034.7, "end": 19035.44, "probability": 0.9348 }, { "start": 19035.76, "end": 19036.44, "probability": 0.6581 }, { "start": 19036.64, "end": 19037.12, "probability": 0.5007 }, { "start": 19037.22, "end": 19037.82, "probability": 0.8487 }, { "start": 19038.56, "end": 19038.86, "probability": 0.8345 }, { "start": 19040.38, "end": 19044.82, "probability": 0.9981 }, { "start": 19045.32, "end": 19046.7, "probability": 0.6747 }, { "start": 19047.18, "end": 19048.9, "probability": 0.8629 }, { "start": 19049.12, "end": 19050.8, "probability": 0.935 }, { "start": 19051.28, "end": 19053.32, "probability": 0.9963 }, { "start": 19054.32, "end": 19055.34, "probability": 0.5747 }, { "start": 19055.68, "end": 19058.4, "probability": 0.9138 }, { "start": 19058.82, "end": 19060.28, "probability": 0.5408 }, { "start": 19060.38, "end": 19063.58, "probability": 0.9946 }, { "start": 19063.62, "end": 19066.28, "probability": 0.9866 }, { "start": 19066.28, "end": 19066.46, "probability": 0.5206 }, { "start": 19070.3, "end": 19071.64, "probability": 0.9568 }, { "start": 19072.6, "end": 19073.03, "probability": 0.7561 }, { "start": 19073.2, "end": 19076.0, "probability": 0.7731 }, { "start": 19076.68, "end": 19077.46, "probability": 0.645 }, { "start": 19079.38, "end": 19081.14, "probability": 0.9644 }, { "start": 19082.38, "end": 19086.22, "probability": 0.9648 }, { "start": 19087.02, "end": 19089.68, "probability": 0.9949 }, { "start": 19090.9, "end": 19091.52, "probability": 0.7166 }, { "start": 19091.66, "end": 19091.9, "probability": 0.4933 }, { "start": 19092.52, "end": 19093.22, "probability": 0.7654 }, { "start": 19096.12, "end": 19097.24, "probability": 0.8497 }, { "start": 19097.34, "end": 19099.94, "probability": 0.7088 }, { "start": 19100.26, "end": 19102.3, "probability": 0.5829 }, { "start": 19103.94, "end": 19105.8, "probability": 0.993 }, { "start": 19107.24, "end": 19108.16, "probability": 0.7519 }, { "start": 19108.44, "end": 19109.37, "probability": 0.8299 }, { "start": 19112.0, "end": 19114.02, "probability": 0.9976 }, { "start": 19117.72, "end": 19118.6, "probability": 0.9612 }, { "start": 19120.14, "end": 19120.84, "probability": 0.889 }, { "start": 19121.56, "end": 19123.14, "probability": 0.911 }, { "start": 19123.24, "end": 19123.68, "probability": 0.2862 }, { "start": 19123.74, "end": 19124.76, "probability": 0.7848 }, { "start": 19125.9, "end": 19128.35, "probability": 0.9552 }, { "start": 19129.14, "end": 19131.36, "probability": 0.462 }, { "start": 19131.38, "end": 19132.32, "probability": 0.8923 }, { "start": 19132.56, "end": 19133.84, "probability": 0.9639 }, { "start": 19134.0, "end": 19134.12, "probability": 0.7187 }, { "start": 19135.49, "end": 19138.28, "probability": 0.6697 }, { "start": 19141.36, "end": 19142.28, "probability": 0.4329 }, { "start": 19142.7, "end": 19143.82, "probability": 0.8864 }, { "start": 19144.1, "end": 19146.16, "probability": 0.7455 }, { "start": 19146.24, "end": 19146.34, "probability": 0.0145 }, { "start": 19146.34, "end": 19146.58, "probability": 0.7842 }, { "start": 19146.72, "end": 19147.08, "probability": 0.7114 }, { "start": 19147.64, "end": 19153.74, "probability": 0.9386 }, { "start": 19154.16, "end": 19155.36, "probability": 0.9956 }, { "start": 19155.66, "end": 19156.12, "probability": 0.9225 }, { "start": 19156.86, "end": 19162.04, "probability": 0.7592 }, { "start": 19162.92, "end": 19164.88, "probability": 0.8535 }, { "start": 19164.94, "end": 19166.88, "probability": 0.978 }, { "start": 19168.06, "end": 19169.06, "probability": 0.9716 }, { "start": 19169.6, "end": 19170.02, "probability": 0.8721 }, { "start": 19170.08, "end": 19175.42, "probability": 0.9134 }, { "start": 19177.82, "end": 19178.08, "probability": 0.4811 }, { "start": 19179.42, "end": 19181.76, "probability": 0.9166 }, { "start": 19182.78, "end": 19185.18, "probability": 0.9803 }, { "start": 19186.06, "end": 19189.68, "probability": 0.9588 }, { "start": 19190.28, "end": 19194.22, "probability": 0.9421 }, { "start": 19194.66, "end": 19198.28, "probability": 0.967 }, { "start": 19199.3, "end": 19201.66, "probability": 0.9299 }, { "start": 19202.26, "end": 19205.36, "probability": 0.8215 }, { "start": 19206.1, "end": 19206.8, "probability": 0.7918 }, { "start": 19207.08, "end": 19209.0, "probability": 0.8555 }, { "start": 19209.22, "end": 19210.05, "probability": 0.8413 }, { "start": 19210.42, "end": 19212.0, "probability": 0.9785 }, { "start": 19212.15, "end": 19214.56, "probability": 0.4928 }, { "start": 19214.8, "end": 19215.58, "probability": 0.4366 }, { "start": 19216.0, "end": 19218.06, "probability": 0.9876 }, { "start": 19220.04, "end": 19222.08, "probability": 0.9977 }, { "start": 19222.08, "end": 19224.52, "probability": 0.9328 }, { "start": 19224.58, "end": 19227.66, "probability": 0.96 }, { "start": 19228.2, "end": 19228.98, "probability": 0.834 }, { "start": 19231.54, "end": 19232.04, "probability": 0.872 }, { "start": 19232.14, "end": 19233.1, "probability": 0.5744 }, { "start": 19233.4, "end": 19234.12, "probability": 0.9667 }, { "start": 19234.74, "end": 19235.96, "probability": 0.4464 }, { "start": 19236.04, "end": 19236.84, "probability": 0.5921 }, { "start": 19237.05, "end": 19239.11, "probability": 0.9251 }, { "start": 19239.44, "end": 19240.42, "probability": 0.8226 }, { "start": 19243.96, "end": 19246.38, "probability": 0.3503 }, { "start": 19246.4, "end": 19246.96, "probability": 0.0308 }, { "start": 19252.96, "end": 19254.26, "probability": 0.8784 }, { "start": 19256.98, "end": 19261.4, "probability": 0.8271 }, { "start": 19261.48, "end": 19262.3, "probability": 0.9568 }, { "start": 19262.98, "end": 19263.08, "probability": 0.8207 }, { "start": 19264.56, "end": 19264.8, "probability": 0.6865 }, { "start": 19265.68, "end": 19268.9, "probability": 0.7356 }, { "start": 19269.88, "end": 19273.76, "probability": 0.2741 }, { "start": 19273.94, "end": 19274.28, "probability": 0.183 }, { "start": 19274.3, "end": 19276.42, "probability": 0.9504 }, { "start": 19276.98, "end": 19277.5, "probability": 0.7199 }, { "start": 19279.16, "end": 19280.26, "probability": 0.6453 }, { "start": 19281.2, "end": 19282.3, "probability": 0.9353 }, { "start": 19283.54, "end": 19286.2, "probability": 0.905 }, { "start": 19287.54, "end": 19289.36, "probability": 0.7994 }, { "start": 19290.18, "end": 19291.14, "probability": 0.7688 }, { "start": 19291.56, "end": 19292.76, "probability": 0.7014 }, { "start": 19292.82, "end": 19296.1, "probability": 0.9746 }, { "start": 19296.3, "end": 19296.42, "probability": 0.418 }, { "start": 19297.24, "end": 19297.98, "probability": 0.9468 }, { "start": 19298.0, "end": 19301.02, "probability": 0.9269 }, { "start": 19302.12, "end": 19303.1, "probability": 0.5639 }, { "start": 19303.86, "end": 19305.42, "probability": 0.8186 }, { "start": 19307.4, "end": 19309.92, "probability": 0.771 }, { "start": 19310.36, "end": 19312.78, "probability": 0.9882 }, { "start": 19313.22, "end": 19314.48, "probability": 0.9344 }, { "start": 19316.52, "end": 19323.02, "probability": 0.9915 }, { "start": 19324.48, "end": 19326.26, "probability": 0.9736 }, { "start": 19327.36, "end": 19333.2, "probability": 0.9831 }, { "start": 19334.04, "end": 19334.28, "probability": 0.8117 }, { "start": 19335.58, "end": 19338.96, "probability": 0.9988 }, { "start": 19340.9, "end": 19341.94, "probability": 0.7709 }, { "start": 19343.28, "end": 19346.9, "probability": 0.8633 }, { "start": 19347.6, "end": 19351.8, "probability": 0.9968 }, { "start": 19353.58, "end": 19355.18, "probability": 0.9624 }, { "start": 19356.26, "end": 19360.18, "probability": 0.9839 }, { "start": 19360.86, "end": 19361.3, "probability": 0.8371 }, { "start": 19361.96, "end": 19362.94, "probability": 0.9365 }, { "start": 19363.74, "end": 19364.94, "probability": 0.921 }, { "start": 19365.6, "end": 19367.34, "probability": 0.9936 }, { "start": 19368.38, "end": 19369.58, "probability": 0.9968 }, { "start": 19370.42, "end": 19372.84, "probability": 0.9877 }, { "start": 19373.7, "end": 19377.26, "probability": 0.9995 }, { "start": 19378.24, "end": 19384.12, "probability": 0.9929 }, { "start": 19385.78, "end": 19389.8, "probability": 0.9585 }, { "start": 19390.6, "end": 19391.14, "probability": 0.9524 }, { "start": 19392.26, "end": 19394.36, "probability": 0.9523 }, { "start": 19395.4, "end": 19399.74, "probability": 0.9973 }, { "start": 19399.74, "end": 19403.82, "probability": 0.9973 }, { "start": 19404.84, "end": 19409.68, "probability": 0.997 }, { "start": 19410.34, "end": 19410.7, "probability": 0.8107 }, { "start": 19411.36, "end": 19412.8, "probability": 0.6406 }, { "start": 19414.04, "end": 19418.38, "probability": 0.9823 }, { "start": 19418.38, "end": 19424.18, "probability": 0.9929 }, { "start": 19424.72, "end": 19425.54, "probability": 0.9866 }, { "start": 19426.12, "end": 19429.98, "probability": 0.8989 }, { "start": 19430.5, "end": 19432.6, "probability": 0.9486 }, { "start": 19433.38, "end": 19435.98, "probability": 0.9987 }, { "start": 19437.24, "end": 19441.18, "probability": 0.9258 }, { "start": 19442.04, "end": 19443.46, "probability": 0.8605 }, { "start": 19444.38, "end": 19445.44, "probability": 0.971 }, { "start": 19446.3, "end": 19446.74, "probability": 0.6798 }, { "start": 19447.42, "end": 19451.02, "probability": 0.9891 }, { "start": 19451.82, "end": 19452.48, "probability": 0.9158 }, { "start": 19453.4, "end": 19454.58, "probability": 0.9773 }, { "start": 19455.8, "end": 19459.18, "probability": 0.9929 }, { "start": 19460.42, "end": 19463.08, "probability": 0.9907 }, { "start": 19463.76, "end": 19469.12, "probability": 0.9829 }, { "start": 19470.48, "end": 19472.3, "probability": 0.0715 }, { "start": 19473.86, "end": 19474.0, "probability": 0.5517 }, { "start": 19474.1, "end": 19474.32, "probability": 0.7203 }, { "start": 19474.62, "end": 19476.42, "probability": 0.8051 }, { "start": 19478.28, "end": 19480.6, "probability": 0.7459 }, { "start": 19480.6, "end": 19482.52, "probability": 0.7911 }, { "start": 19482.97, "end": 19485.06, "probability": 0.5435 }, { "start": 19485.1, "end": 19491.04, "probability": 0.6454 }, { "start": 19491.04, "end": 19491.3, "probability": 0.0479 }, { "start": 19491.3, "end": 19491.3, "probability": 0.023 }, { "start": 19491.3, "end": 19491.3, "probability": 0.0772 }, { "start": 19491.3, "end": 19492.0, "probability": 0.0609 }, { "start": 19493.36, "end": 19495.54, "probability": 0.8853 }, { "start": 19496.0, "end": 19498.56, "probability": 0.5189 }, { "start": 19499.66, "end": 19503.46, "probability": 0.9956 }, { "start": 19504.18, "end": 19508.04, "probability": 0.9373 }, { "start": 19508.04, "end": 19512.08, "probability": 0.9906 }, { "start": 19513.3, "end": 19515.26, "probability": 0.9946 }, { "start": 19516.0, "end": 19516.74, "probability": 0.9642 }, { "start": 19517.82, "end": 19518.74, "probability": 0.8929 }, { "start": 19520.2, "end": 19523.66, "probability": 0.9658 }, { "start": 19524.26, "end": 19526.52, "probability": 0.9943 }, { "start": 19527.16, "end": 19529.36, "probability": 0.6404 }, { "start": 19530.36, "end": 19533.8, "probability": 0.9971 }, { "start": 19533.8, "end": 19538.24, "probability": 0.9956 }, { "start": 19538.9, "end": 19542.1, "probability": 0.999 }, { "start": 19543.08, "end": 19544.08, "probability": 0.9077 }, { "start": 19545.1, "end": 19545.4, "probability": 0.2833 }, { "start": 19545.54, "end": 19546.86, "probability": 0.744 }, { "start": 19547.88, "end": 19551.84, "probability": 0.9126 }, { "start": 19552.44, "end": 19554.08, "probability": 0.9985 }, { "start": 19555.0, "end": 19559.38, "probability": 0.8958 }, { "start": 19559.4, "end": 19560.76, "probability": 0.925 }, { "start": 19561.26, "end": 19562.82, "probability": 0.8541 }, { "start": 19563.48, "end": 19565.8, "probability": 0.9845 }, { "start": 19566.32, "end": 19568.94, "probability": 0.999 }, { "start": 19569.76, "end": 19570.24, "probability": 0.5779 }, { "start": 19571.0, "end": 19572.34, "probability": 0.6749 }, { "start": 19573.4, "end": 19577.28, "probability": 0.9631 }, { "start": 19577.28, "end": 19580.0, "probability": 0.9958 }, { "start": 19580.84, "end": 19582.9, "probability": 0.7874 }, { "start": 19583.56, "end": 19584.66, "probability": 0.9895 }, { "start": 19585.74, "end": 19588.3, "probability": 0.9646 }, { "start": 19589.32, "end": 19590.22, "probability": 0.99 }, { "start": 19590.88, "end": 19595.84, "probability": 0.9721 }, { "start": 19597.0, "end": 19601.56, "probability": 0.9941 }, { "start": 19602.82, "end": 19604.96, "probability": 0.9771 }, { "start": 19605.1, "end": 19607.6, "probability": 0.8394 }, { "start": 19608.18, "end": 19610.82, "probability": 0.9956 }, { "start": 19611.42, "end": 19612.26, "probability": 0.9321 }, { "start": 19612.32, "end": 19612.76, "probability": 0.8424 }, { "start": 19613.08, "end": 19614.86, "probability": 0.9669 }, { "start": 19615.88, "end": 19617.06, "probability": 0.7969 }, { "start": 19617.72, "end": 19619.24, "probability": 0.9083 }, { "start": 19619.9, "end": 19622.66, "probability": 0.9976 }, { "start": 19623.66, "end": 19624.86, "probability": 0.9952 }, { "start": 19625.6, "end": 19628.84, "probability": 0.9084 }, { "start": 19629.52, "end": 19630.96, "probability": 0.9795 }, { "start": 19631.78, "end": 19634.98, "probability": 0.9948 }, { "start": 19635.48, "end": 19638.42, "probability": 0.999 }, { "start": 19639.08, "end": 19642.3, "probability": 0.995 }, { "start": 19643.2, "end": 19644.0, "probability": 0.9899 }, { "start": 19644.68, "end": 19645.58, "probability": 0.8928 }, { "start": 19646.64, "end": 19650.18, "probability": 0.9972 }, { "start": 19650.3, "end": 19650.58, "probability": 0.8939 }, { "start": 19651.8, "end": 19652.54, "probability": 0.9636 }, { "start": 19653.72, "end": 19655.02, "probability": 0.8804 }, { "start": 19656.02, "end": 19656.7, "probability": 0.4179 }, { "start": 19656.88, "end": 19657.92, "probability": 0.6948 }, { "start": 19665.14, "end": 19666.32, "probability": 0.1902 }, { "start": 19666.32, "end": 19666.4, "probability": 0.0367 }, { "start": 19679.24, "end": 19684.26, "probability": 0.6417 }, { "start": 19684.36, "end": 19685.8, "probability": 0.5439 }, { "start": 19686.28, "end": 19689.72, "probability": 0.7785 }, { "start": 19690.58, "end": 19694.4, "probability": 0.8516 }, { "start": 19695.02, "end": 19697.08, "probability": 0.9754 }, { "start": 19697.76, "end": 19704.24, "probability": 0.993 }, { "start": 19704.72, "end": 19710.02, "probability": 0.9978 }, { "start": 19711.16, "end": 19715.96, "probability": 0.9794 }, { "start": 19716.66, "end": 19719.36, "probability": 0.9233 }, { "start": 19720.02, "end": 19724.0, "probability": 0.9033 }, { "start": 19725.24, "end": 19728.0, "probability": 0.8831 }, { "start": 19728.16, "end": 19728.6, "probability": 0.9112 }, { "start": 19728.66, "end": 19729.46, "probability": 0.909 }, { "start": 19730.08, "end": 19734.86, "probability": 0.9883 }, { "start": 19735.48, "end": 19737.62, "probability": 0.7828 }, { "start": 19738.24, "end": 19741.9, "probability": 0.991 }, { "start": 19741.94, "end": 19745.38, "probability": 0.996 }, { "start": 19745.92, "end": 19748.2, "probability": 0.843 }, { "start": 19748.7, "end": 19749.84, "probability": 0.8015 }, { "start": 19750.3, "end": 19754.8, "probability": 0.9904 }, { "start": 19755.76, "end": 19756.56, "probability": 0.632 }, { "start": 19757.46, "end": 19761.4, "probability": 0.9438 }, { "start": 19761.6, "end": 19762.3, "probability": 0.6636 }, { "start": 19763.02, "end": 19765.54, "probability": 0.9358 }, { "start": 19766.3, "end": 19767.36, "probability": 0.8281 }, { "start": 19768.1, "end": 19771.56, "probability": 0.992 }, { "start": 19771.66, "end": 19772.82, "probability": 0.8942 }, { "start": 19773.52, "end": 19776.66, "probability": 0.5932 }, { "start": 19777.22, "end": 19779.16, "probability": 0.7135 }, { "start": 19779.46, "end": 19783.62, "probability": 0.9324 }, { "start": 19784.2, "end": 19784.94, "probability": 0.9561 }, { "start": 19785.46, "end": 19788.26, "probability": 0.8713 }, { "start": 19788.84, "end": 19790.4, "probability": 0.7414 }, { "start": 19790.64, "end": 19791.44, "probability": 0.737 }, { "start": 19791.5, "end": 19792.5, "probability": 0.9802 }, { "start": 19792.9, "end": 19793.22, "probability": 0.9546 }, { "start": 19793.74, "end": 19795.0, "probability": 0.8052 }, { "start": 19795.08, "end": 19795.44, "probability": 0.7306 }, { "start": 19795.76, "end": 19798.76, "probability": 0.9745 }, { "start": 19799.08, "end": 19802.0, "probability": 0.9834 }, { "start": 19802.0, "end": 19804.68, "probability": 0.995 }, { "start": 19805.08, "end": 19806.08, "probability": 0.8757 }, { "start": 19806.42, "end": 19811.22, "probability": 0.9824 }, { "start": 19811.86, "end": 19816.68, "probability": 0.9555 }, { "start": 19816.78, "end": 19817.02, "probability": 0.3416 }, { "start": 19817.04, "end": 19818.1, "probability": 0.936 }, { "start": 19818.8, "end": 19820.96, "probability": 0.804 }, { "start": 19821.52, "end": 19822.72, "probability": 0.9316 }, { "start": 19823.12, "end": 19823.98, "probability": 0.6384 }, { "start": 19824.34, "end": 19825.36, "probability": 0.9482 }, { "start": 19825.7, "end": 19830.14, "probability": 0.9809 }, { "start": 19830.7, "end": 19832.87, "probability": 0.998 }, { "start": 19833.6, "end": 19833.92, "probability": 0.4014 }, { "start": 19833.98, "end": 19838.52, "probability": 0.9959 }, { "start": 19839.28, "end": 19842.82, "probability": 0.9119 }, { "start": 19843.4, "end": 19845.68, "probability": 0.6332 }, { "start": 19846.04, "end": 19847.28, "probability": 0.9793 }, { "start": 19847.44, "end": 19849.44, "probability": 0.732 }, { "start": 19849.64, "end": 19849.98, "probability": 0.0181 }, { "start": 19850.36, "end": 19854.68, "probability": 0.8329 }, { "start": 19855.1, "end": 19857.72, "probability": 0.7539 }, { "start": 19858.02, "end": 19859.2, "probability": 0.3856 }, { "start": 19859.64, "end": 19862.38, "probability": 0.9793 }, { "start": 19862.6, "end": 19863.28, "probability": 0.8831 }, { "start": 19863.3, "end": 19864.78, "probability": 0.803 }, { "start": 19865.16, "end": 19866.28, "probability": 0.8011 }, { "start": 19867.1, "end": 19872.05, "probability": 0.9927 }, { "start": 19872.66, "end": 19873.48, "probability": 0.975 }, { "start": 19873.96, "end": 19875.88, "probability": 0.8161 }, { "start": 19876.16, "end": 19878.98, "probability": 0.9765 }, { "start": 19879.54, "end": 19884.82, "probability": 0.9265 }, { "start": 19885.14, "end": 19885.84, "probability": 0.6766 }, { "start": 19886.04, "end": 19889.22, "probability": 0.9155 }, { "start": 19889.62, "end": 19890.36, "probability": 0.9253 }, { "start": 19891.6, "end": 19895.48, "probability": 0.9805 }, { "start": 19896.1, "end": 19899.3, "probability": 0.9688 }, { "start": 19900.04, "end": 19901.4, "probability": 0.7713 }, { "start": 19901.44, "end": 19901.89, "probability": 0.921 }, { "start": 19903.27, "end": 19904.91, "probability": 0.9551 }, { "start": 19905.35, "end": 19907.13, "probability": 0.9237 }, { "start": 19907.63, "end": 19908.75, "probability": 0.5786 }, { "start": 19908.83, "end": 19909.41, "probability": 0.8442 }, { "start": 19909.83, "end": 19911.17, "probability": 0.9413 }, { "start": 19911.17, "end": 19911.37, "probability": 0.391 }, { "start": 19911.53, "end": 19912.49, "probability": 0.754 }, { "start": 19912.79, "end": 19914.01, "probability": 0.9395 }, { "start": 19914.21, "end": 19916.09, "probability": 0.95 }, { "start": 19928.91, "end": 19929.57, "probability": 0.5099 }, { "start": 19930.31, "end": 19931.35, "probability": 0.0266 }, { "start": 19932.25, "end": 19933.33, "probability": 0.0016 }, { "start": 19933.55, "end": 19933.57, "probability": 0.1358 }, { "start": 19933.57, "end": 19934.37, "probability": 0.1017 }, { "start": 19934.37, "end": 19934.87, "probability": 0.0453 }, { "start": 19935.09, "end": 19936.53, "probability": 0.0718 }, { "start": 19938.69, "end": 19940.19, "probability": 0.1364 }, { "start": 19941.85, "end": 19941.85, "probability": 0.1058 }, { "start": 19941.85, "end": 19941.95, "probability": 0.0908 }, { "start": 19941.95, "end": 19945.39, "probability": 0.2761 }, { "start": 19946.01, "end": 19946.01, "probability": 0.2515 }, { "start": 19949.83, "end": 19950.57, "probability": 0.1414 }, { "start": 19951.49, "end": 19953.2, "probability": 0.031 }, { "start": 19955.49, "end": 19963.33, "probability": 0.2701 }, { "start": 20029.0, "end": 20029.0, "probability": 0.0 }, { "start": 20029.0, "end": 20029.0, "probability": 0.0 }, { "start": 20029.0, "end": 20029.0, "probability": 0.0 }, { "start": 20029.0, "end": 20029.0, "probability": 0.0 }, { "start": 20029.0, "end": 20029.0, "probability": 0.0 }, { "start": 20029.0, "end": 20029.0, "probability": 0.0 }, { "start": 20029.0, "end": 20029.0, "probability": 0.0 }, { "start": 20029.0, "end": 20029.0, "probability": 0.0 }, { "start": 20029.0, "end": 20029.0, "probability": 0.0 }, { "start": 20029.0, "end": 20029.0, "probability": 0.0 }, { "start": 20029.0, "end": 20029.0, "probability": 0.0 }, { "start": 20029.0, "end": 20029.0, "probability": 0.0 }, { "start": 20029.0, "end": 20029.0, "probability": 0.0 }, { "start": 20029.0, "end": 20029.0, "probability": 0.0 }, { "start": 20029.0, "end": 20029.0, "probability": 0.0 }, { "start": 20029.0, "end": 20029.0, "probability": 0.0 }, { "start": 20029.0, "end": 20029.0, "probability": 0.0 }, { "start": 20029.0, "end": 20029.0, "probability": 0.0 }, { "start": 20029.0, "end": 20029.0, "probability": 0.0 }, { "start": 20029.0, "end": 20029.0, "probability": 0.0 }, { "start": 20029.0, "end": 20029.0, "probability": 0.0 }, { "start": 20029.0, "end": 20029.0, "probability": 0.0 }, { "start": 20029.0, "end": 20029.0, "probability": 0.0 }, { "start": 20029.0, "end": 20029.0, "probability": 0.0 }, { "start": 20029.0, "end": 20029.0, "probability": 0.0 }, { "start": 20029.0, "end": 20029.0, "probability": 0.0 }, { "start": 20029.0, "end": 20029.0, "probability": 0.0 }, { "start": 20029.0, "end": 20029.0, "probability": 0.0 }, { "start": 20029.0, "end": 20029.0, "probability": 0.0 }, { "start": 20029.0, "end": 20029.0, "probability": 0.0 }, { "start": 20029.0, "end": 20029.0, "probability": 0.0 }, { "start": 20029.0, "end": 20029.0, "probability": 0.0 }, { "start": 20029.0, "end": 20029.0, "probability": 0.0 }, { "start": 20029.0, "end": 20029.0, "probability": 0.0 }, { "start": 20029.0, "end": 20029.0, "probability": 0.0 }, { "start": 20039.68, "end": 20041.28, "probability": 0.0738 }, { "start": 20041.9, "end": 20043.78, "probability": 0.1762 }, { "start": 20043.78, "end": 20047.72, "probability": 0.093 }, { "start": 20047.72, "end": 20047.72, "probability": 0.073 }, { "start": 20047.72, "end": 20049.92, "probability": 0.1923 }, { "start": 20149.0, "end": 20149.0, "probability": 0.0 }, { "start": 20149.0, "end": 20149.0, "probability": 0.0 }, { "start": 20149.0, "end": 20149.0, "probability": 0.0 }, { "start": 20149.0, "end": 20149.0, "probability": 0.0 }, { "start": 20149.0, "end": 20149.0, "probability": 0.0 }, { "start": 20149.0, "end": 20149.0, "probability": 0.0 }, { "start": 20149.0, "end": 20149.0, "probability": 0.0 }, { "start": 20149.0, "end": 20149.0, "probability": 0.0 }, { "start": 20149.0, "end": 20149.0, "probability": 0.0 }, { "start": 20149.0, "end": 20149.0, "probability": 0.0 }, { "start": 20149.0, "end": 20149.0, "probability": 0.0 }, { "start": 20149.0, "end": 20149.0, "probability": 0.0 }, { "start": 20149.0, "end": 20149.0, "probability": 0.0 }, { "start": 20149.0, "end": 20149.0, "probability": 0.0 }, { "start": 20149.0, "end": 20149.0, "probability": 0.0 }, { "start": 20149.0, "end": 20149.0, "probability": 0.0 }, { "start": 20149.0, "end": 20149.0, "probability": 0.0 }, { "start": 20149.0, "end": 20149.0, "probability": 0.0 }, { "start": 20149.0, "end": 20149.0, "probability": 0.0 }, { "start": 20149.0, "end": 20149.0, "probability": 0.0 }, { "start": 20149.0, "end": 20149.0, "probability": 0.0 }, { "start": 20149.0, "end": 20149.0, "probability": 0.0 }, { "start": 20149.0, "end": 20149.0, "probability": 0.0 }, { "start": 20149.0, "end": 20149.0, "probability": 0.0 }, { "start": 20149.0, "end": 20149.0, "probability": 0.0 }, { "start": 20149.0, "end": 20149.0, "probability": 0.0 }, { "start": 20149.0, "end": 20149.0, "probability": 0.0 }, { "start": 20149.0, "end": 20149.0, "probability": 0.0 }, { "start": 20149.0, "end": 20149.0, "probability": 0.0 }, { "start": 20149.0, "end": 20149.0, "probability": 0.0 }, { "start": 20149.0, "end": 20149.0, "probability": 0.0 }, { "start": 20149.0, "end": 20149.0, "probability": 0.0 }, { "start": 20149.0, "end": 20149.0, "probability": 0.0 }, { "start": 20149.0, "end": 20149.0, "probability": 0.0 }, { "start": 20149.0, "end": 20149.0, "probability": 0.0 }, { "start": 20149.0, "end": 20149.0, "probability": 0.0 }, { "start": 20149.0, "end": 20149.0, "probability": 0.0 }, { "start": 20149.0, "end": 20149.0, "probability": 0.0 }, { "start": 20149.0, "end": 20149.0, "probability": 0.0 }, { "start": 20149.0, "end": 20149.0, "probability": 0.0 }, { "start": 20149.0, "end": 20149.0, "probability": 0.0 }, { "start": 20149.0, "end": 20149.0, "probability": 0.0 }, { "start": 20149.0, "end": 20149.0, "probability": 0.0 }, { "start": 20149.0, "end": 20149.0, "probability": 0.0 }, { "start": 20149.18, "end": 20149.44, "probability": 0.0842 }, { "start": 20150.34, "end": 20154.58, "probability": 0.6689 }, { "start": 20155.66, "end": 20156.12, "probability": 0.866 }, { "start": 20157.68, "end": 20161.08, "probability": 0.6785 }, { "start": 20161.16, "end": 20161.76, "probability": 0.7681 }, { "start": 20161.76, "end": 20163.28, "probability": 0.6663 }, { "start": 20164.06, "end": 20167.06, "probability": 0.9907 }, { "start": 20167.98, "end": 20170.8, "probability": 0.8706 }, { "start": 20171.08, "end": 20175.14, "probability": 0.8566 }, { "start": 20175.3, "end": 20178.78, "probability": 0.9973 }, { "start": 20180.04, "end": 20182.16, "probability": 0.9861 }, { "start": 20182.88, "end": 20183.82, "probability": 0.7981 }, { "start": 20184.68, "end": 20187.06, "probability": 0.9741 }, { "start": 20189.6, "end": 20193.86, "probability": 0.7167 }, { "start": 20194.08, "end": 20194.74, "probability": 0.8599 }, { "start": 20194.8, "end": 20197.16, "probability": 0.8336 }, { "start": 20197.28, "end": 20199.17, "probability": 0.9725 }, { "start": 20199.86, "end": 20201.6, "probability": 0.9946 }, { "start": 20202.32, "end": 20206.68, "probability": 0.6692 }, { "start": 20207.48, "end": 20210.42, "probability": 0.6019 }, { "start": 20211.34, "end": 20212.0, "probability": 0.5317 }, { "start": 20212.0, "end": 20216.26, "probability": 0.7636 }, { "start": 20217.4, "end": 20218.25, "probability": 0.9917 }, { "start": 20219.12, "end": 20219.76, "probability": 0.4459 }, { "start": 20219.84, "end": 20221.62, "probability": 0.9341 }, { "start": 20221.68, "end": 20221.88, "probability": 0.9481 }, { "start": 20222.22, "end": 20223.1, "probability": 0.9712 }, { "start": 20224.36, "end": 20224.88, "probability": 0.809 }, { "start": 20225.56, "end": 20225.8, "probability": 0.9637 }, { "start": 20225.88, "end": 20226.4, "probability": 0.7029 }, { "start": 20226.46, "end": 20227.8, "probability": 0.9805 }, { "start": 20228.68, "end": 20231.08, "probability": 0.989 }, { "start": 20232.68, "end": 20235.24, "probability": 0.9976 }, { "start": 20235.48, "end": 20236.68, "probability": 0.9771 }, { "start": 20237.28, "end": 20238.32, "probability": 0.9831 }, { "start": 20239.64, "end": 20240.46, "probability": 0.9813 }, { "start": 20241.2, "end": 20245.62, "probability": 0.8213 }, { "start": 20246.28, "end": 20247.68, "probability": 0.9894 }, { "start": 20248.64, "end": 20248.92, "probability": 0.7122 }, { "start": 20249.1, "end": 20251.65, "probability": 0.9219 }, { "start": 20252.22, "end": 20255.94, "probability": 0.9453 }, { "start": 20255.98, "end": 20257.06, "probability": 0.8493 }, { "start": 20257.54, "end": 20260.5, "probability": 0.9382 }, { "start": 20261.2, "end": 20262.34, "probability": 0.9241 }, { "start": 20262.98, "end": 20265.94, "probability": 0.9233 }, { "start": 20265.94, "end": 20271.58, "probability": 0.9587 }, { "start": 20271.66, "end": 20272.06, "probability": 0.6772 }, { "start": 20274.9, "end": 20277.42, "probability": 0.6659 }, { "start": 20281.08, "end": 20283.0, "probability": 0.7365 }, { "start": 20284.74, "end": 20286.9, "probability": 0.8513 }, { "start": 20287.02, "end": 20291.18, "probability": 0.5779 }, { "start": 20291.18, "end": 20294.44, "probability": 0.9899 }, { "start": 20295.02, "end": 20297.08, "probability": 0.755 }, { "start": 20298.0, "end": 20301.42, "probability": 0.8239 }, { "start": 20302.02, "end": 20304.22, "probability": 0.9375 }, { "start": 20304.84, "end": 20306.62, "probability": 0.7147 }, { "start": 20308.24, "end": 20309.48, "probability": 0.9639 }, { "start": 20310.14, "end": 20313.0, "probability": 0.9069 }, { "start": 20313.06, "end": 20314.48, "probability": 0.8496 }, { "start": 20315.48, "end": 20317.74, "probability": 0.713 }, { "start": 20317.84, "end": 20319.24, "probability": 0.9386 }, { "start": 20319.86, "end": 20320.42, "probability": 0.9153 }, { "start": 20320.44, "end": 20322.68, "probability": 0.8655 }, { "start": 20322.78, "end": 20322.98, "probability": 0.6545 }, { "start": 20323.52, "end": 20325.32, "probability": 0.3337 }, { "start": 20325.68, "end": 20326.04, "probability": 0.2618 }, { "start": 20326.04, "end": 20327.5, "probability": 0.4307 }, { "start": 20327.6, "end": 20329.9, "probability": 0.9849 }, { "start": 20330.28, "end": 20332.2, "probability": 0.9819 }, { "start": 20332.26, "end": 20335.16, "probability": 0.917 }, { "start": 20336.78, "end": 20338.47, "probability": 0.8898 }, { "start": 20339.22, "end": 20340.54, "probability": 0.5835 }, { "start": 20341.06, "end": 20341.28, "probability": 0.5135 }, { "start": 20341.28, "end": 20345.14, "probability": 0.9194 }, { "start": 20345.28, "end": 20349.76, "probability": 0.9884 }, { "start": 20349.84, "end": 20351.38, "probability": 0.9486 }, { "start": 20352.14, "end": 20352.14, "probability": 0.9526 }, { "start": 20353.06, "end": 20353.14, "probability": 0.1648 }, { "start": 20353.3, "end": 20356.6, "probability": 0.9129 }, { "start": 20356.9, "end": 20357.46, "probability": 0.7656 }, { "start": 20357.74, "end": 20358.52, "probability": 0.9343 }, { "start": 20359.46, "end": 20360.52, "probability": 0.8219 }, { "start": 20360.82, "end": 20361.48, "probability": 0.6684 }, { "start": 20361.5, "end": 20365.04, "probability": 0.9944 }, { "start": 20365.12, "end": 20366.1, "probability": 0.9767 }, { "start": 20367.38, "end": 20368.32, "probability": 0.8383 }, { "start": 20368.6, "end": 20371.76, "probability": 0.6653 }, { "start": 20372.2, "end": 20375.02, "probability": 0.9797 }, { "start": 20375.26, "end": 20379.48, "probability": 0.9558 }, { "start": 20380.04, "end": 20380.22, "probability": 0.58 }, { "start": 20380.24, "end": 20380.62, "probability": 0.8794 }, { "start": 20380.66, "end": 20381.78, "probability": 0.9129 }, { "start": 20381.88, "end": 20383.8, "probability": 0.9692 }, { "start": 20383.96, "end": 20385.04, "probability": 0.6067 }, { "start": 20385.6, "end": 20386.56, "probability": 0.9005 }, { "start": 20387.06, "end": 20389.02, "probability": 0.996 }, { "start": 20389.06, "end": 20391.64, "probability": 0.7576 }, { "start": 20392.68, "end": 20394.5, "probability": 0.9272 }, { "start": 20394.98, "end": 20401.58, "probability": 0.9653 }, { "start": 20401.68, "end": 20402.4, "probability": 0.9062 }, { "start": 20402.44, "end": 20402.94, "probability": 0.941 }, { "start": 20403.0, "end": 20404.24, "probability": 0.6881 }, { "start": 20404.48, "end": 20405.48, "probability": 0.9345 }, { "start": 20405.8, "end": 20406.92, "probability": 0.7555 }, { "start": 20407.38, "end": 20409.26, "probability": 0.8565 }, { "start": 20409.58, "end": 20410.25, "probability": 0.7638 }, { "start": 20410.64, "end": 20412.06, "probability": 0.9715 }, { "start": 20412.36, "end": 20412.84, "probability": 0.2805 }, { "start": 20413.34, "end": 20413.34, "probability": 0.5283 }, { "start": 20413.36, "end": 20414.6, "probability": 0.6623 }, { "start": 20416.06, "end": 20416.74, "probability": 0.2286 }, { "start": 20426.6, "end": 20429.48, "probability": 0.9365 }, { "start": 20430.6, "end": 20431.38, "probability": 0.8886 }, { "start": 20432.66, "end": 20434.02, "probability": 0.6846 }, { "start": 20434.36, "end": 20436.9, "probability": 0.8715 }, { "start": 20443.68, "end": 20444.8, "probability": 0.5985 }, { "start": 20445.0, "end": 20447.48, "probability": 0.7958 }, { "start": 20449.08, "end": 20455.14, "probability": 0.8761 }, { "start": 20456.26, "end": 20457.8, "probability": 0.7803 }, { "start": 20459.04, "end": 20460.2, "probability": 0.7524 }, { "start": 20461.1, "end": 20461.78, "probability": 0.817 }, { "start": 20462.72, "end": 20464.6, "probability": 0.9633 }, { "start": 20465.78, "end": 20466.56, "probability": 0.8977 }, { "start": 20467.86, "end": 20468.66, "probability": 0.7374 }, { "start": 20469.76, "end": 20471.5, "probability": 0.9173 }, { "start": 20472.44, "end": 20473.24, "probability": 0.8593 }, { "start": 20474.26, "end": 20477.02, "probability": 0.8776 }, { "start": 20477.94, "end": 20479.66, "probability": 0.9727 }, { "start": 20480.66, "end": 20482.44, "probability": 0.9938 }, { "start": 20483.12, "end": 20486.0, "probability": 0.9198 }, { "start": 20487.34, "end": 20491.12, "probability": 0.9855 }, { "start": 20492.3, "end": 20493.44, "probability": 0.9364 }, { "start": 20494.16, "end": 20496.06, "probability": 0.9476 }, { "start": 20496.66, "end": 20497.72, "probability": 0.9349 }, { "start": 20498.74, "end": 20499.98, "probability": 0.9229 }, { "start": 20501.18, "end": 20502.18, "probability": 0.9132 }, { "start": 20502.76, "end": 20507.82, "probability": 0.9961 }, { "start": 20508.88, "end": 20510.72, "probability": 0.9751 }, { "start": 20511.64, "end": 20514.2, "probability": 0.8182 }, { "start": 20515.02, "end": 20517.5, "probability": 0.9787 }, { "start": 20518.98, "end": 20524.14, "probability": 0.9888 }, { "start": 20525.68, "end": 20527.98, "probability": 0.9751 }, { "start": 20528.84, "end": 20531.68, "probability": 0.9888 }, { "start": 20532.44, "end": 20534.08, "probability": 0.9881 }, { "start": 20534.86, "end": 20537.79, "probability": 0.8443 }, { "start": 20538.6, "end": 20543.18, "probability": 0.9857 }, { "start": 20543.18, "end": 20549.14, "probability": 0.9672 }, { "start": 20551.07, "end": 20553.52, "probability": 0.9994 }, { "start": 20554.26, "end": 20556.54, "probability": 0.9717 }, { "start": 20557.76, "end": 20558.7, "probability": 0.7006 }, { "start": 20558.82, "end": 20561.36, "probability": 0.8101 }, { "start": 20561.44, "end": 20563.12, "probability": 0.933 }, { "start": 20564.6, "end": 20566.96, "probability": 0.7373 }, { "start": 20567.08, "end": 20569.02, "probability": 0.9905 }, { "start": 20569.02, "end": 20569.26, "probability": 0.3301 }, { "start": 20569.38, "end": 20570.24, "probability": 0.1882 }, { "start": 20570.24, "end": 20572.51, "probability": 0.6422 }, { "start": 20572.56, "end": 20572.74, "probability": 0.4353 }, { "start": 20572.88, "end": 20575.24, "probability": 0.8669 }, { "start": 20576.26, "end": 20579.96, "probability": 0.9767 }, { "start": 20580.7, "end": 20581.98, "probability": 0.9568 }, { "start": 20582.62, "end": 20585.02, "probability": 0.9956 }, { "start": 20585.58, "end": 20587.1, "probability": 0.9821 }, { "start": 20588.26, "end": 20590.92, "probability": 0.8464 }, { "start": 20591.72, "end": 20598.8, "probability": 0.9866 }, { "start": 20599.16, "end": 20600.82, "probability": 0.999 }, { "start": 20601.46, "end": 20605.06, "probability": 0.9894 }, { "start": 20605.7, "end": 20608.64, "probability": 0.978 }, { "start": 20609.5, "end": 20611.56, "probability": 0.9249 }, { "start": 20612.04, "end": 20614.18, "probability": 0.9981 }, { "start": 20615.1, "end": 20616.28, "probability": 0.969 }, { "start": 20616.66, "end": 20617.52, "probability": 0.904 }, { "start": 20617.94, "end": 20620.28, "probability": 0.9882 }, { "start": 20621.48, "end": 20622.7, "probability": 0.8166 }, { "start": 20623.48, "end": 20625.46, "probability": 0.9274 }, { "start": 20627.42, "end": 20633.96, "probability": 0.8232 }, { "start": 20634.7, "end": 20638.28, "probability": 0.9878 }, { "start": 20639.78, "end": 20642.38, "probability": 0.999 }, { "start": 20644.1, "end": 20646.1, "probability": 0.87 }, { "start": 20647.1, "end": 20647.74, "probability": 0.8357 }, { "start": 20647.9, "end": 20652.24, "probability": 0.5127 }, { "start": 20652.52, "end": 20653.4, "probability": 0.4576 }, { "start": 20653.5, "end": 20654.68, "probability": 0.7189 }, { "start": 20654.86, "end": 20657.78, "probability": 0.8833 }, { "start": 20658.68, "end": 20660.5, "probability": 0.7898 }, { "start": 20661.64, "end": 20664.42, "probability": 0.8074 }, { "start": 20664.48, "end": 20665.44, "probability": 0.8357 }, { "start": 20666.08, "end": 20667.42, "probability": 0.97 }, { "start": 20668.28, "end": 20670.3, "probability": 0.9971 }, { "start": 20671.58, "end": 20675.88, "probability": 0.9927 }, { "start": 20676.56, "end": 20677.7, "probability": 0.9644 }, { "start": 20678.4, "end": 20680.04, "probability": 0.9178 }, { "start": 20680.76, "end": 20682.1, "probability": 0.8428 }, { "start": 20683.6, "end": 20688.3, "probability": 0.9741 }, { "start": 20688.94, "end": 20690.2, "probability": 0.9826 }, { "start": 20691.18, "end": 20693.64, "probability": 0.8129 }, { "start": 20694.86, "end": 20695.72, "probability": 0.8523 }, { "start": 20697.26, "end": 20698.38, "probability": 0.9585 }, { "start": 20699.02, "end": 20700.32, "probability": 0.8575 }, { "start": 20700.96, "end": 20702.78, "probability": 0.9826 }, { "start": 20703.96, "end": 20706.82, "probability": 0.9927 }, { "start": 20707.48, "end": 20709.08, "probability": 0.8498 }, { "start": 20709.68, "end": 20711.54, "probability": 0.9928 }, { "start": 20712.1, "end": 20715.1, "probability": 0.9797 }, { "start": 20715.7, "end": 20717.58, "probability": 0.9885 }, { "start": 20718.82, "end": 20721.1, "probability": 0.9016 }, { "start": 20721.88, "end": 20723.72, "probability": 0.9331 }, { "start": 20724.46, "end": 20728.84, "probability": 0.9956 }, { "start": 20729.86, "end": 20731.94, "probability": 0.9932 }, { "start": 20732.72, "end": 20736.0, "probability": 0.9899 }, { "start": 20736.56, "end": 20739.44, "probability": 0.9756 }, { "start": 20740.0, "end": 20742.96, "probability": 0.921 }, { "start": 20743.8, "end": 20744.5, "probability": 0.9993 }, { "start": 20745.54, "end": 20747.18, "probability": 0.9531 }, { "start": 20748.66, "end": 20750.36, "probability": 0.9341 }, { "start": 20750.92, "end": 20754.38, "probability": 0.9978 }, { "start": 20755.4, "end": 20756.76, "probability": 0.9455 }, { "start": 20756.8, "end": 20758.46, "probability": 0.9124 }, { "start": 20758.5, "end": 20760.48, "probability": 0.7757 }, { "start": 20760.9, "end": 20760.9, "probability": 0.3257 }, { "start": 20760.9, "end": 20760.9, "probability": 0.2294 }, { "start": 20761.18, "end": 20762.98, "probability": 0.8829 }, { "start": 20763.88, "end": 20768.52, "probability": 0.9752 }, { "start": 20769.14, "end": 20771.56, "probability": 0.7522 }, { "start": 20771.64, "end": 20771.88, "probability": 0.7702 }, { "start": 20772.3, "end": 20773.82, "probability": 0.9357 }, { "start": 20774.46, "end": 20776.06, "probability": 0.6567 }, { "start": 20776.9, "end": 20779.8, "probability": 0.9146 }, { "start": 20781.98, "end": 20782.7, "probability": 0.8455 }, { "start": 20795.58, "end": 20796.06, "probability": 0.6662 }, { "start": 20816.24, "end": 20817.2, "probability": 0.5628 }, { "start": 20818.56, "end": 20819.28, "probability": 0.8416 }, { "start": 20820.1, "end": 20821.28, "probability": 0.8989 }, { "start": 20822.32, "end": 20823.68, "probability": 0.8961 }, { "start": 20824.24, "end": 20826.76, "probability": 0.9932 }, { "start": 20828.92, "end": 20829.74, "probability": 0.7197 }, { "start": 20829.86, "end": 20832.6, "probability": 0.8569 }, { "start": 20833.0, "end": 20833.98, "probability": 0.9487 }, { "start": 20835.89, "end": 20837.94, "probability": 0.85 }, { "start": 20839.28, "end": 20841.16, "probability": 0.4117 }, { "start": 20841.48, "end": 20843.12, "probability": 0.8182 }, { "start": 20843.74, "end": 20845.32, "probability": 0.4956 }, { "start": 20846.06, "end": 20846.82, "probability": 0.4791 }, { "start": 20846.88, "end": 20848.58, "probability": 0.9695 }, { "start": 20850.22, "end": 20852.72, "probability": 0.9922 }, { "start": 20853.3, "end": 20857.62, "probability": 0.8451 }, { "start": 20858.74, "end": 20859.6, "probability": 0.8342 }, { "start": 20859.72, "end": 20859.88, "probability": 0.899 }, { "start": 20859.94, "end": 20862.28, "probability": 0.9306 }, { "start": 20862.76, "end": 20864.82, "probability": 0.9242 }, { "start": 20867.02, "end": 20868.26, "probability": 0.999 }, { "start": 20869.66, "end": 20872.74, "probability": 0.877 }, { "start": 20873.66, "end": 20875.66, "probability": 0.9094 }, { "start": 20876.9, "end": 20882.84, "probability": 0.9875 }, { "start": 20883.68, "end": 20884.92, "probability": 0.9761 }, { "start": 20885.42, "end": 20886.2, "probability": 0.8843 }, { "start": 20887.32, "end": 20889.28, "probability": 0.998 }, { "start": 20890.86, "end": 20891.46, "probability": 0.9548 }, { "start": 20891.58, "end": 20894.12, "probability": 0.9722 }, { "start": 20895.26, "end": 20896.16, "probability": 0.9872 }, { "start": 20897.12, "end": 20902.44, "probability": 0.9844 }, { "start": 20903.22, "end": 20905.12, "probability": 0.9902 }, { "start": 20906.2, "end": 20908.16, "probability": 0.9932 }, { "start": 20909.08, "end": 20912.29, "probability": 0.8132 }, { "start": 20913.48, "end": 20917.3, "probability": 0.5996 }, { "start": 20918.14, "end": 20920.36, "probability": 0.9098 }, { "start": 20920.4, "end": 20921.88, "probability": 0.9111 }, { "start": 20922.12, "end": 20923.08, "probability": 0.7299 }, { "start": 20923.74, "end": 20924.0, "probability": 0.5006 }, { "start": 20924.2, "end": 20925.34, "probability": 0.9925 }, { "start": 20926.22, "end": 20926.71, "probability": 0.9965 }, { "start": 20927.22, "end": 20927.72, "probability": 0.9124 }, { "start": 20928.04, "end": 20929.12, "probability": 0.992 }, { "start": 20930.12, "end": 20932.62, "probability": 0.9065 }, { "start": 20933.76, "end": 20934.78, "probability": 0.8087 }, { "start": 20935.32, "end": 20937.86, "probability": 0.9819 }, { "start": 20939.94, "end": 20943.42, "probability": 0.8888 }, { "start": 20945.42, "end": 20945.84, "probability": 0.6003 }, { "start": 20946.8, "end": 20947.34, "probability": 0.77 }, { "start": 20948.56, "end": 20951.14, "probability": 0.9803 }, { "start": 20951.24, "end": 20952.54, "probability": 0.7665 }, { "start": 20952.58, "end": 20952.96, "probability": 0.7208 }, { "start": 20953.84, "end": 20956.6, "probability": 0.6061 }, { "start": 20957.24, "end": 20958.12, "probability": 0.6461 }, { "start": 20958.18, "end": 20960.52, "probability": 0.9793 }, { "start": 20962.12, "end": 20964.22, "probability": 0.9792 }, { "start": 20964.28, "end": 20966.88, "probability": 0.796 }, { "start": 20968.76, "end": 20969.68, "probability": 0.6887 }, { "start": 20971.24, "end": 20972.1, "probability": 0.8354 }, { "start": 20972.2, "end": 20973.66, "probability": 0.9438 }, { "start": 20976.76, "end": 20977.88, "probability": 0.6292 }, { "start": 20978.34, "end": 20979.66, "probability": 0.2246 }, { "start": 20980.28, "end": 20982.06, "probability": 0.8293 }, { "start": 20982.08, "end": 20984.22, "probability": 0.8797 }, { "start": 20984.28, "end": 20986.76, "probability": 0.8379 }, { "start": 20987.56, "end": 20991.16, "probability": 0.9956 }, { "start": 20991.32, "end": 20991.7, "probability": 0.9053 }, { "start": 20991.78, "end": 20992.96, "probability": 0.652 }, { "start": 20992.96, "end": 20994.28, "probability": 0.8508 }, { "start": 20994.34, "end": 20995.1, "probability": 0.8376 }, { "start": 20995.36, "end": 20996.0, "probability": 0.7736 }, { "start": 20996.02, "end": 20997.04, "probability": 0.4464 }, { "start": 20997.76, "end": 20998.12, "probability": 0.5726 }, { "start": 20998.16, "end": 20999.9, "probability": 0.8995 }, { "start": 21000.7, "end": 21001.1, "probability": 0.7105 }, { "start": 21001.1, "end": 21004.98, "probability": 0.9768 }, { "start": 21005.04, "end": 21005.72, "probability": 0.7485 }, { "start": 21005.94, "end": 21008.38, "probability": 0.9775 }, { "start": 21009.16, "end": 21009.48, "probability": 0.4206 }, { "start": 21009.58, "end": 21012.14, "probability": 0.5573 }, { "start": 21012.18, "end": 21013.88, "probability": 0.8969 }, { "start": 21014.18, "end": 21017.38, "probability": 0.9655 }, { "start": 21017.76, "end": 21019.25, "probability": 0.9118 }, { "start": 21019.54, "end": 21021.78, "probability": 0.8932 }, { "start": 21022.22, "end": 21022.67, "probability": 0.7354 }, { "start": 21022.92, "end": 21024.02, "probability": 0.4392 }, { "start": 21024.1, "end": 21024.46, "probability": 0.8003 }, { "start": 21024.5, "end": 21025.78, "probability": 0.4939 }, { "start": 21027.22, "end": 21030.02, "probability": 0.9603 }, { "start": 21030.14, "end": 21030.4, "probability": 0.6743 }, { "start": 21031.24, "end": 21034.24, "probability": 0.9911 }, { "start": 21034.38, "end": 21035.42, "probability": 0.925 }, { "start": 21035.98, "end": 21037.02, "probability": 0.9556 }, { "start": 21038.06, "end": 21039.78, "probability": 0.9003 }, { "start": 21040.72, "end": 21042.4, "probability": 0.9915 }, { "start": 21043.1, "end": 21043.94, "probability": 0.8455 }, { "start": 21044.3, "end": 21046.3, "probability": 0.9513 }, { "start": 21046.62, "end": 21047.54, "probability": 0.8785 }, { "start": 21047.62, "end": 21048.48, "probability": 0.7098 }, { "start": 21049.14, "end": 21054.1, "probability": 0.9353 }, { "start": 21054.46, "end": 21057.36, "probability": 0.9419 }, { "start": 21057.68, "end": 21060.52, "probability": 0.9299 }, { "start": 21060.56, "end": 21063.44, "probability": 0.8121 }, { "start": 21063.72, "end": 21065.18, "probability": 0.8843 }, { "start": 21066.56, "end": 21069.24, "probability": 0.9159 }, { "start": 21069.96, "end": 21070.92, "probability": 0.3297 }, { "start": 21071.2, "end": 21072.38, "probability": 0.995 }, { "start": 21072.5, "end": 21073.48, "probability": 0.9144 }, { "start": 21073.6, "end": 21075.88, "probability": 0.7125 }, { "start": 21075.94, "end": 21076.43, "probability": 0.4857 }, { "start": 21077.5, "end": 21078.4, "probability": 0.7736 }, { "start": 21078.92, "end": 21081.36, "probability": 0.7037 }, { "start": 21082.48, "end": 21083.22, "probability": 0.8257 }, { "start": 21083.28, "end": 21084.08, "probability": 0.9572 }, { "start": 21085.24, "end": 21090.72, "probability": 0.9077 }, { "start": 21091.82, "end": 21092.9, "probability": 0.9509 }, { "start": 21092.98, "end": 21095.48, "probability": 0.8527 }, { "start": 21095.94, "end": 21096.5, "probability": 0.6441 }, { "start": 21096.54, "end": 21097.3, "probability": 0.8966 }, { "start": 21098.2, "end": 21100.82, "probability": 0.947 }, { "start": 21100.88, "end": 21104.78, "probability": 0.9175 }, { "start": 21105.2, "end": 21105.76, "probability": 0.7034 }, { "start": 21105.82, "end": 21106.44, "probability": 0.8876 }, { "start": 21106.58, "end": 21109.86, "probability": 0.9142 }, { "start": 21109.92, "end": 21111.0, "probability": 0.4401 }, { "start": 21111.12, "end": 21111.34, "probability": 0.3483 }, { "start": 21111.6, "end": 21111.84, "probability": 0.3942 }, { "start": 21111.96, "end": 21113.3, "probability": 0.7835 }, { "start": 21113.34, "end": 21115.08, "probability": 0.7473 }, { "start": 21115.74, "end": 21118.12, "probability": 0.9639 }, { "start": 21118.5, "end": 21119.74, "probability": 0.9102 }, { "start": 21120.72, "end": 21121.02, "probability": 0.5757 }, { "start": 21121.12, "end": 21121.54, "probability": 0.8052 }, { "start": 21121.64, "end": 21123.29, "probability": 0.9269 }, { "start": 21123.76, "end": 21124.6, "probability": 0.8208 }, { "start": 21124.64, "end": 21125.1, "probability": 0.696 }, { "start": 21125.14, "end": 21125.89, "probability": 0.9082 }, { "start": 21126.04, "end": 21126.72, "probability": 0.8592 }, { "start": 21127.12, "end": 21127.88, "probability": 0.9665 }, { "start": 21128.52, "end": 21128.78, "probability": 0.4277 }, { "start": 21128.78, "end": 21131.46, "probability": 0.1278 }, { "start": 21131.46, "end": 21131.64, "probability": 0.2427 }, { "start": 21131.64, "end": 21132.64, "probability": 0.7327 }, { "start": 21132.64, "end": 21133.46, "probability": 0.693 }, { "start": 21134.12, "end": 21135.82, "probability": 0.524 }, { "start": 21135.9, "end": 21138.26, "probability": 0.7218 }, { "start": 21139.28, "end": 21141.74, "probability": 0.2943 }, { "start": 21141.74, "end": 21141.74, "probability": 0.0096 }, { "start": 21141.74, "end": 21142.08, "probability": 0.2768 }, { "start": 21142.66, "end": 21145.22, "probability": 0.9695 }, { "start": 21146.02, "end": 21147.98, "probability": 0.6545 }, { "start": 21148.32, "end": 21149.9, "probability": 0.8021 }, { "start": 21150.06, "end": 21151.96, "probability": 0.6404 }, { "start": 21152.06, "end": 21153.02, "probability": 0.5154 }, { "start": 21153.98, "end": 21154.88, "probability": 0.769 }, { "start": 21155.14, "end": 21158.36, "probability": 0.7175 }, { "start": 21158.82, "end": 21159.86, "probability": 0.4259 }, { "start": 21159.92, "end": 21161.32, "probability": 0.7705 }, { "start": 21161.36, "end": 21163.76, "probability": 0.8641 }, { "start": 21164.0, "end": 21164.54, "probability": 0.8813 }, { "start": 21164.8, "end": 21165.48, "probability": 0.8918 }, { "start": 21165.58, "end": 21167.32, "probability": 0.6335 }, { "start": 21167.64, "end": 21168.07, "probability": 0.833 }, { "start": 21168.54, "end": 21173.62, "probability": 0.9932 }, { "start": 21173.7, "end": 21176.52, "probability": 0.9346 }, { "start": 21177.51, "end": 21178.18, "probability": 0.5153 }, { "start": 21178.18, "end": 21178.54, "probability": 0.4119 }, { "start": 21178.94, "end": 21181.64, "probability": 0.8759 }, { "start": 21182.04, "end": 21183.58, "probability": 0.2628 }, { "start": 21183.82, "end": 21184.26, "probability": 0.8901 }, { "start": 21184.82, "end": 21185.18, "probability": 0.5781 }, { "start": 21185.18, "end": 21186.76, "probability": 0.8578 }, { "start": 21187.86, "end": 21189.94, "probability": 0.9665 }, { "start": 21190.68, "end": 21191.12, "probability": 0.4656 }, { "start": 21191.98, "end": 21193.22, "probability": 0.9539 }, { "start": 21210.56, "end": 21210.66, "probability": 0.5871 }, { "start": 21210.88, "end": 21212.98, "probability": 0.9477 }, { "start": 21214.68, "end": 21215.44, "probability": 0.8321 }, { "start": 21217.42, "end": 21217.92, "probability": 0.7365 }, { "start": 21220.21, "end": 21222.5, "probability": 0.8564 }, { "start": 21222.76, "end": 21226.44, "probability": 0.0571 }, { "start": 21227.02, "end": 21227.58, "probability": 0.2214 }, { "start": 21227.78, "end": 21229.14, "probability": 0.5159 }, { "start": 21229.14, "end": 21230.48, "probability": 0.2944 }, { "start": 21230.88, "end": 21232.08, "probability": 0.6452 }, { "start": 21232.52, "end": 21233.1, "probability": 0.8107 }, { "start": 21255.08, "end": 21257.96, "probability": 0.7195 }, { "start": 21259.6, "end": 21264.48, "probability": 0.9891 }, { "start": 21265.0, "end": 21267.0, "probability": 0.9944 }, { "start": 21267.58, "end": 21270.02, "probability": 0.9546 }, { "start": 21270.74, "end": 21273.48, "probability": 0.9895 }, { "start": 21274.68, "end": 21278.6, "probability": 0.968 }, { "start": 21279.44, "end": 21282.34, "probability": 0.9844 }, { "start": 21282.34, "end": 21286.92, "probability": 0.9555 }, { "start": 21287.26, "end": 21291.14, "probability": 0.9481 }, { "start": 21291.98, "end": 21296.06, "probability": 0.6628 }, { "start": 21296.22, "end": 21297.62, "probability": 0.8818 }, { "start": 21298.3, "end": 21301.06, "probability": 0.9747 }, { "start": 21301.6, "end": 21303.94, "probability": 0.8938 }, { "start": 21304.46, "end": 21307.0, "probability": 0.9707 }, { "start": 21307.56, "end": 21309.64, "probability": 0.8592 }, { "start": 21310.24, "end": 21311.66, "probability": 0.9801 }, { "start": 21312.3, "end": 21315.46, "probability": 0.9941 }, { "start": 21316.56, "end": 21317.68, "probability": 0.8827 }, { "start": 21318.22, "end": 21319.52, "probability": 0.8075 }, { "start": 21320.12, "end": 21323.48, "probability": 0.9953 }, { "start": 21323.48, "end": 21327.04, "probability": 0.9961 }, { "start": 21327.94, "end": 21333.0, "probability": 0.9905 }, { "start": 21333.8, "end": 21337.98, "probability": 0.9946 }, { "start": 21338.66, "end": 21341.38, "probability": 0.9539 }, { "start": 21342.04, "end": 21345.44, "probability": 0.9625 }, { "start": 21345.86, "end": 21348.78, "probability": 0.9602 }, { "start": 21349.52, "end": 21350.32, "probability": 0.9719 }, { "start": 21351.06, "end": 21353.86, "probability": 0.6924 }, { "start": 21353.94, "end": 21355.06, "probability": 0.5769 }, { "start": 21356.12, "end": 21359.06, "probability": 0.796 }, { "start": 21359.6, "end": 21361.14, "probability": 0.9836 }, { "start": 21361.7, "end": 21363.0, "probability": 0.9601 }, { "start": 21363.44, "end": 21365.58, "probability": 0.8589 }, { "start": 21366.02, "end": 21371.76, "probability": 0.8769 }, { "start": 21372.38, "end": 21376.66, "probability": 0.8799 }, { "start": 21377.62, "end": 21380.08, "probability": 0.7388 }, { "start": 21381.06, "end": 21383.58, "probability": 0.8127 }, { "start": 21384.44, "end": 21386.96, "probability": 0.9979 }, { "start": 21386.96, "end": 21390.96, "probability": 0.8669 }, { "start": 21391.84, "end": 21394.82, "probability": 0.7824 }, { "start": 21395.16, "end": 21400.28, "probability": 0.9853 }, { "start": 21401.56, "end": 21406.54, "probability": 0.9027 }, { "start": 21407.08, "end": 21413.28, "probability": 0.9939 }, { "start": 21413.48, "end": 21414.84, "probability": 0.9463 }, { "start": 21415.56, "end": 21417.3, "probability": 0.7592 }, { "start": 21417.68, "end": 21422.88, "probability": 0.9219 }, { "start": 21422.88, "end": 21427.56, "probability": 0.9872 }, { "start": 21428.04, "end": 21429.95, "probability": 0.9756 }, { "start": 21430.06, "end": 21431.33, "probability": 0.8257 }, { "start": 21431.8, "end": 21434.38, "probability": 0.9865 }, { "start": 21434.96, "end": 21438.06, "probability": 0.9492 }, { "start": 21438.84, "end": 21439.99, "probability": 0.8403 }, { "start": 21440.6, "end": 21446.08, "probability": 0.9919 }, { "start": 21447.02, "end": 21451.48, "probability": 0.9934 }, { "start": 21451.94, "end": 21454.98, "probability": 0.9846 }, { "start": 21455.4, "end": 21456.74, "probability": 0.884 }, { "start": 21457.2, "end": 21458.14, "probability": 0.944 }, { "start": 21458.58, "end": 21460.64, "probability": 0.8751 }, { "start": 21460.96, "end": 21464.78, "probability": 0.9865 }, { "start": 21464.78, "end": 21469.1, "probability": 0.9937 }, { "start": 21469.82, "end": 21472.48, "probability": 0.8859 }, { "start": 21473.6, "end": 21474.96, "probability": 0.5492 }, { "start": 21475.4, "end": 21478.48, "probability": 0.9922 }, { "start": 21479.04, "end": 21480.38, "probability": 0.9689 }, { "start": 21480.84, "end": 21482.76, "probability": 0.8781 }, { "start": 21482.9, "end": 21487.28, "probability": 0.9905 }, { "start": 21487.68, "end": 21489.46, "probability": 0.8072 }, { "start": 21489.98, "end": 21492.3, "probability": 0.9867 }, { "start": 21492.76, "end": 21496.54, "probability": 0.995 }, { "start": 21496.86, "end": 21501.28, "probability": 0.9852 }, { "start": 21501.44, "end": 21502.06, "probability": 0.6325 }, { "start": 21502.52, "end": 21506.28, "probability": 0.99 }, { "start": 21506.28, "end": 21508.94, "probability": 0.9905 }, { "start": 21509.54, "end": 21512.78, "probability": 0.9935 }, { "start": 21512.78, "end": 21517.4, "probability": 0.9979 }, { "start": 21517.74, "end": 21520.44, "probability": 0.9965 }, { "start": 21521.04, "end": 21522.22, "probability": 0.8726 }, { "start": 21522.34, "end": 21523.51, "probability": 0.9971 }, { "start": 21524.38, "end": 21532.22, "probability": 0.665 }, { "start": 21532.74, "end": 21533.13, "probability": 0.8564 }, { "start": 21533.5, "end": 21534.76, "probability": 0.6877 }, { "start": 21535.2, "end": 21537.86, "probability": 0.9583 }, { "start": 21538.3, "end": 21542.12, "probability": 0.9315 }, { "start": 21542.4, "end": 21547.18, "probability": 0.9491 }, { "start": 21547.28, "end": 21551.48, "probability": 0.9652 }, { "start": 21552.0, "end": 21557.92, "probability": 0.8311 }, { "start": 21558.06, "end": 21562.78, "probability": 0.8176 }, { "start": 21563.02, "end": 21564.12, "probability": 0.6123 }, { "start": 21564.28, "end": 21564.98, "probability": 0.7849 }, { "start": 21565.1, "end": 21567.14, "probability": 0.8215 }, { "start": 21567.2, "end": 21567.86, "probability": 0.76 }, { "start": 21567.92, "end": 21568.32, "probability": 0.739 }, { "start": 21568.5, "end": 21568.86, "probability": 0.8815 }, { "start": 21569.38, "end": 21571.68, "probability": 0.9299 }, { "start": 21572.12, "end": 21574.06, "probability": 0.9107 }, { "start": 21576.02, "end": 21578.1, "probability": 0.6317 }, { "start": 21578.86, "end": 21581.3, "probability": 0.7791 }, { "start": 21597.1, "end": 21598.41, "probability": 0.7291 }, { "start": 21599.54, "end": 21600.56, "probability": 0.7453 }, { "start": 21601.46, "end": 21603.14, "probability": 0.6974 }, { "start": 21606.9, "end": 21609.16, "probability": 0.9764 }, { "start": 21610.72, "end": 21611.5, "probability": 0.9955 }, { "start": 21612.4, "end": 21614.42, "probability": 0.9189 }, { "start": 21616.02, "end": 21618.24, "probability": 0.6279 }, { "start": 21620.18, "end": 21621.42, "probability": 0.9241 }, { "start": 21622.66, "end": 21623.92, "probability": 0.7217 }, { "start": 21625.04, "end": 21632.86, "probability": 0.9323 }, { "start": 21634.12, "end": 21635.44, "probability": 0.6665 }, { "start": 21637.1, "end": 21637.88, "probability": 0.9997 }, { "start": 21638.98, "end": 21640.32, "probability": 0.7966 }, { "start": 21641.56, "end": 21643.48, "probability": 0.9367 }, { "start": 21643.76, "end": 21646.86, "probability": 0.989 }, { "start": 21648.88, "end": 21650.38, "probability": 0.9698 }, { "start": 21651.9, "end": 21653.26, "probability": 0.9988 }, { "start": 21655.6, "end": 21657.58, "probability": 0.9366 }, { "start": 21658.42, "end": 21659.64, "probability": 0.9977 }, { "start": 21661.32, "end": 21662.2, "probability": 0.8608 }, { "start": 21664.9, "end": 21666.98, "probability": 0.9211 }, { "start": 21667.18, "end": 21669.12, "probability": 0.8054 }, { "start": 21671.12, "end": 21672.0, "probability": 0.7587 }, { "start": 21673.02, "end": 21679.24, "probability": 0.9926 }, { "start": 21679.36, "end": 21680.12, "probability": 0.8702 }, { "start": 21680.84, "end": 21681.76, "probability": 0.7957 }, { "start": 21682.58, "end": 21683.42, "probability": 0.774 }, { "start": 21684.5, "end": 21685.68, "probability": 0.4027 }, { "start": 21686.58, "end": 21687.12, "probability": 0.7489 }, { "start": 21687.82, "end": 21691.62, "probability": 0.9924 }, { "start": 21691.76, "end": 21692.26, "probability": 0.9922 }, { "start": 21692.9, "end": 21693.78, "probability": 0.502 }, { "start": 21694.9, "end": 21695.08, "probability": 0.746 }, { "start": 21695.82, "end": 21696.16, "probability": 0.95 }, { "start": 21697.44, "end": 21701.1, "probability": 0.9846 }, { "start": 21701.8, "end": 21702.8, "probability": 0.5162 }, { "start": 21703.46, "end": 21705.08, "probability": 0.8032 }, { "start": 21705.9, "end": 21708.2, "probability": 0.9966 }, { "start": 21708.56, "end": 21711.42, "probability": 0.8949 }, { "start": 21712.92, "end": 21713.94, "probability": 0.9933 }, { "start": 21715.26, "end": 21716.56, "probability": 0.8991 }, { "start": 21717.22, "end": 21722.92, "probability": 0.9959 }, { "start": 21723.86, "end": 21726.3, "probability": 0.9029 }, { "start": 21727.3, "end": 21728.81, "probability": 0.9434 }, { "start": 21730.26, "end": 21732.74, "probability": 0.9827 }, { "start": 21736.64, "end": 21738.36, "probability": 0.9125 }, { "start": 21739.22, "end": 21740.02, "probability": 0.9983 }, { "start": 21740.76, "end": 21742.66, "probability": 0.7711 }, { "start": 21743.52, "end": 21746.12, "probability": 0.6977 }, { "start": 21747.42, "end": 21750.6, "probability": 0.9709 }, { "start": 21753.04, "end": 21756.88, "probability": 0.9977 }, { "start": 21758.8, "end": 21759.44, "probability": 0.7497 }, { "start": 21759.54, "end": 21764.86, "probability": 0.993 }, { "start": 21766.34, "end": 21768.66, "probability": 0.9766 }, { "start": 21771.42, "end": 21775.2, "probability": 0.9986 }, { "start": 21775.29, "end": 21780.06, "probability": 0.997 }, { "start": 21783.28, "end": 21784.0, "probability": 0.1944 }, { "start": 21785.08, "end": 21786.88, "probability": 0.8765 }, { "start": 21787.88, "end": 21788.42, "probability": 0.8297 }, { "start": 21789.22, "end": 21794.06, "probability": 0.9917 }, { "start": 21794.94, "end": 21797.25, "probability": 0.9541 }, { "start": 21798.3, "end": 21799.72, "probability": 0.9668 }, { "start": 21800.38, "end": 21800.86, "probability": 0.6707 }, { "start": 21801.84, "end": 21805.92, "probability": 0.6486 }, { "start": 21806.64, "end": 21808.3, "probability": 0.7925 }, { "start": 21809.6, "end": 21810.52, "probability": 0.9466 }, { "start": 21812.32, "end": 21813.58, "probability": 0.9582 }, { "start": 21813.62, "end": 21816.06, "probability": 0.9539 }, { "start": 21816.34, "end": 21816.6, "probability": 0.5058 }, { "start": 21817.2, "end": 21819.14, "probability": 0.5079 }, { "start": 21819.68, "end": 21820.54, "probability": 0.9628 }, { "start": 21821.4, "end": 21825.04, "probability": 0.9766 }, { "start": 21825.8, "end": 21827.58, "probability": 0.8705 }, { "start": 21827.82, "end": 21828.04, "probability": 0.9627 }, { "start": 21828.34, "end": 21829.19, "probability": 0.6738 }, { "start": 21829.46, "end": 21831.06, "probability": 0.7182 }, { "start": 21832.5, "end": 21834.54, "probability": 0.8474 }, { "start": 21836.34, "end": 21836.82, "probability": 0.7692 }, { "start": 21837.54, "end": 21839.2, "probability": 0.9946 }, { "start": 21840.36, "end": 21844.74, "probability": 0.9114 }, { "start": 21844.78, "end": 21846.42, "probability": 0.9014 }, { "start": 21848.38, "end": 21850.76, "probability": 0.998 }, { "start": 21851.98, "end": 21853.48, "probability": 0.883 }, { "start": 21853.66, "end": 21854.6, "probability": 0.9785 }, { "start": 21855.82, "end": 21857.1, "probability": 0.8423 }, { "start": 21858.22, "end": 21858.7, "probability": 0.9249 }, { "start": 21859.6, "end": 21860.46, "probability": 0.9478 }, { "start": 21861.42, "end": 21862.58, "probability": 0.9513 }, { "start": 21863.12, "end": 21864.02, "probability": 0.8409 }, { "start": 21866.22, "end": 21866.8, "probability": 0.8428 }, { "start": 21870.02, "end": 21870.86, "probability": 0.7885 }, { "start": 21873.02, "end": 21874.44, "probability": 0.9935 }, { "start": 21875.8, "end": 21877.6, "probability": 0.9918 }, { "start": 21879.02, "end": 21881.36, "probability": 0.987 }, { "start": 21881.96, "end": 21883.3, "probability": 0.8612 }, { "start": 21883.62, "end": 21884.13, "probability": 0.9019 }, { "start": 21885.92, "end": 21887.54, "probability": 0.7044 }, { "start": 21888.42, "end": 21892.42, "probability": 0.8633 }, { "start": 21893.38, "end": 21894.15, "probability": 0.9707 }, { "start": 21894.3, "end": 21895.02, "probability": 0.9833 }, { "start": 21895.24, "end": 21896.24, "probability": 0.8314 }, { "start": 21897.18, "end": 21899.38, "probability": 0.7485 }, { "start": 21901.09, "end": 21903.7, "probability": 0.7679 }, { "start": 21904.64, "end": 21906.6, "probability": 0.9261 }, { "start": 21907.48, "end": 21908.68, "probability": 0.974 }, { "start": 21909.04, "end": 21911.68, "probability": 0.9875 }, { "start": 21913.32, "end": 21915.22, "probability": 0.6236 }, { "start": 21915.62, "end": 21916.18, "probability": 0.9167 }, { "start": 21916.36, "end": 21918.1, "probability": 0.9276 }, { "start": 21918.72, "end": 21920.8, "probability": 0.8639 }, { "start": 21921.4, "end": 21922.26, "probability": 0.9628 }, { "start": 21922.7, "end": 21924.56, "probability": 0.6019 }, { "start": 21925.4, "end": 21927.96, "probability": 0.9876 }, { "start": 21928.68, "end": 21933.94, "probability": 0.9958 }, { "start": 21934.58, "end": 21936.44, "probability": 0.9976 }, { "start": 21937.04, "end": 21937.4, "probability": 0.8516 }, { "start": 21938.34, "end": 21941.79, "probability": 0.9642 }, { "start": 21942.04, "end": 21942.48, "probability": 0.8017 }, { "start": 21942.68, "end": 21942.68, "probability": 0.3564 }, { "start": 21942.7, "end": 21943.6, "probability": 0.8409 }, { "start": 21944.22, "end": 21945.48, "probability": 0.7414 }, { "start": 21945.5, "end": 21945.9, "probability": 0.8156 }, { "start": 21946.06, "end": 21946.9, "probability": 0.7878 }, { "start": 21951.94, "end": 21955.78, "probability": 0.8545 }, { "start": 21955.84, "end": 21957.06, "probability": 0.9792 }, { "start": 21957.58, "end": 21958.22, "probability": 0.9312 }, { "start": 21975.79, "end": 21978.48, "probability": 0.8056 }, { "start": 21980.2, "end": 21988.78, "probability": 0.9733 }, { "start": 21989.88, "end": 21991.5, "probability": 0.7555 }, { "start": 21991.7, "end": 21992.5, "probability": 0.7439 }, { "start": 21992.7, "end": 21993.3, "probability": 0.8832 }, { "start": 21993.48, "end": 21994.14, "probability": 0.4046 }, { "start": 21994.18, "end": 21994.38, "probability": 0.4597 }, { "start": 21994.56, "end": 21997.1, "probability": 0.8784 }, { "start": 21997.74, "end": 21998.06, "probability": 0.7014 }, { "start": 21998.14, "end": 22000.66, "probability": 0.6433 }, { "start": 22001.38, "end": 22003.86, "probability": 0.8508 }, { "start": 22004.16, "end": 22005.1, "probability": 0.7017 }, { "start": 22005.48, "end": 22006.02, "probability": 0.5184 }, { "start": 22006.38, "end": 22007.35, "probability": 0.7709 }, { "start": 22007.56, "end": 22009.46, "probability": 0.4363 }, { "start": 22009.46, "end": 22011.0, "probability": 0.7649 }, { "start": 22011.18, "end": 22011.7, "probability": 0.8062 }, { "start": 22011.98, "end": 22012.94, "probability": 0.9824 }, { "start": 22013.96, "end": 22016.56, "probability": 0.8002 }, { "start": 22016.72, "end": 22018.9, "probability": 0.7165 }, { "start": 22019.06, "end": 22025.16, "probability": 0.9736 }, { "start": 22025.62, "end": 22028.78, "probability": 0.9661 }, { "start": 22028.78, "end": 22029.24, "probability": 0.8342 }, { "start": 22029.66, "end": 22030.6, "probability": 0.5644 }, { "start": 22030.6, "end": 22032.38, "probability": 0.6924 }, { "start": 22032.76, "end": 22033.68, "probability": 0.5381 }, { "start": 22033.78, "end": 22035.94, "probability": 0.721 }, { "start": 22036.36, "end": 22038.16, "probability": 0.5828 }, { "start": 22038.16, "end": 22038.28, "probability": 0.043 }, { "start": 22038.3, "end": 22039.1, "probability": 0.7598 }, { "start": 22039.34, "end": 22041.72, "probability": 0.9487 }, { "start": 22041.98, "end": 22042.88, "probability": 0.5234 }, { "start": 22042.9, "end": 22043.48, "probability": 0.4115 }, { "start": 22043.54, "end": 22045.06, "probability": 0.9866 }, { "start": 22046.29, "end": 22048.24, "probability": 0.9951 }, { "start": 22048.28, "end": 22049.04, "probability": 0.7256 }, { "start": 22049.14, "end": 22052.12, "probability": 0.8673 }, { "start": 22052.68, "end": 22057.42, "probability": 0.9478 }, { "start": 22057.98, "end": 22061.54, "probability": 0.9562 }, { "start": 22062.06, "end": 22064.34, "probability": 0.8704 }, { "start": 22064.38, "end": 22066.36, "probability": 0.9773 }, { "start": 22066.44, "end": 22068.54, "probability": 0.9595 }, { "start": 22069.32, "end": 22069.94, "probability": 0.8247 }, { "start": 22070.54, "end": 22072.2, "probability": 0.7756 }, { "start": 22072.42, "end": 22074.03, "probability": 0.7988 }, { "start": 22074.2, "end": 22074.74, "probability": 0.859 }, { "start": 22074.8, "end": 22075.56, "probability": 0.6633 }, { "start": 22075.66, "end": 22076.55, "probability": 0.8542 }, { "start": 22076.6, "end": 22077.22, "probability": 0.7979 }, { "start": 22077.66, "end": 22079.6, "probability": 0.8252 }, { "start": 22079.98, "end": 22082.08, "probability": 0.9012 }, { "start": 22082.3, "end": 22083.46, "probability": 0.7233 }, { "start": 22083.46, "end": 22084.44, "probability": 0.1787 }, { "start": 22084.44, "end": 22086.18, "probability": 0.9661 }, { "start": 22086.3, "end": 22087.26, "probability": 0.7766 }, { "start": 22087.4, "end": 22087.9, "probability": 0.9318 }, { "start": 22088.14, "end": 22088.44, "probability": 0.7702 }, { "start": 22089.6, "end": 22090.3, "probability": 0.8267 }, { "start": 22090.56, "end": 22093.42, "probability": 0.7478 }, { "start": 22093.66, "end": 22096.04, "probability": 0.7218 }, { "start": 22096.42, "end": 22097.26, "probability": 0.9748 }, { "start": 22098.04, "end": 22101.48, "probability": 0.7561 }, { "start": 22101.92, "end": 22104.26, "probability": 0.9733 }, { "start": 22105.2, "end": 22106.46, "probability": 0.9882 }, { "start": 22107.52, "end": 22109.52, "probability": 0.9054 }, { "start": 22109.72, "end": 22110.24, "probability": 0.7882 }, { "start": 22110.24, "end": 22110.36, "probability": 0.365 }, { "start": 22110.38, "end": 22111.02, "probability": 0.9043 }, { "start": 22111.1, "end": 22112.37, "probability": 0.9482 }, { "start": 22112.74, "end": 22112.8, "probability": 0.6752 }, { "start": 22112.82, "end": 22115.2, "probability": 0.7202 }, { "start": 22115.58, "end": 22117.68, "probability": 0.9229 }, { "start": 22117.74, "end": 22121.02, "probability": 0.8181 }, { "start": 22121.12, "end": 22121.5, "probability": 0.7745 }, { "start": 22121.5, "end": 22123.5, "probability": 0.7074 }, { "start": 22123.6, "end": 22125.06, "probability": 0.8594 }, { "start": 22125.14, "end": 22127.1, "probability": 0.1383 }, { "start": 22127.16, "end": 22128.96, "probability": 0.9938 }, { "start": 22129.19, "end": 22131.0, "probability": 0.7351 }, { "start": 22131.42, "end": 22134.34, "probability": 0.8879 }, { "start": 22134.48, "end": 22136.66, "probability": 0.8468 }, { "start": 22136.8, "end": 22137.52, "probability": 0.4943 }, { "start": 22137.52, "end": 22137.52, "probability": 0.3271 }, { "start": 22137.52, "end": 22138.1, "probability": 0.9199 }, { "start": 22138.68, "end": 22140.58, "probability": 0.5831 }, { "start": 22143.98, "end": 22144.16, "probability": 0.8678 }, { "start": 22145.04, "end": 22145.04, "probability": 0.121 }, { "start": 22145.04, "end": 22145.04, "probability": 0.037 }, { "start": 22145.04, "end": 22145.96, "probability": 0.3584 }, { "start": 22146.08, "end": 22147.92, "probability": 0.5824 }, { "start": 22148.02, "end": 22148.6, "probability": 0.3578 }, { "start": 22149.2, "end": 22151.42, "probability": 0.7666 }, { "start": 22151.64, "end": 22153.08, "probability": 0.066 }, { "start": 22153.18, "end": 22154.06, "probability": 0.4331 }, { "start": 22154.64, "end": 22155.98, "probability": 0.9736 }, { "start": 22156.74, "end": 22157.92, "probability": 0.5727 }, { "start": 22157.92, "end": 22159.26, "probability": 0.9403 }, { "start": 22159.34, "end": 22162.26, "probability": 0.9913 }, { "start": 22163.38, "end": 22166.08, "probability": 0.9967 }, { "start": 22166.24, "end": 22169.2, "probability": 0.731 }, { "start": 22169.24, "end": 22172.36, "probability": 0.8752 }, { "start": 22172.72, "end": 22175.06, "probability": 0.9858 }, { "start": 22175.16, "end": 22176.1, "probability": 0.6233 }, { "start": 22176.12, "end": 22177.04, "probability": 0.2511 }, { "start": 22177.82, "end": 22177.9, "probability": 0.1436 }, { "start": 22178.18, "end": 22178.68, "probability": 0.6322 }, { "start": 22178.8, "end": 22180.78, "probability": 0.5172 }, { "start": 22180.78, "end": 22180.78, "probability": 0.4785 }, { "start": 22180.78, "end": 22181.72, "probability": 0.8988 }, { "start": 22183.01, "end": 22186.96, "probability": 0.79 }, { "start": 22187.04, "end": 22187.72, "probability": 0.503 }, { "start": 22190.98, "end": 22192.4, "probability": 0.3701 }, { "start": 22192.46, "end": 22193.54, "probability": 0.9114 }, { "start": 22193.82, "end": 22196.5, "probability": 0.9504 }, { "start": 22196.72, "end": 22197.16, "probability": 0.2624 }, { "start": 22198.0, "end": 22198.58, "probability": 0.5242 }, { "start": 22199.42, "end": 22199.62, "probability": 0.7376 }, { "start": 22199.8, "end": 22201.3, "probability": 0.8814 }, { "start": 22201.32, "end": 22201.5, "probability": 0.4619 }, { "start": 22201.7, "end": 22203.05, "probability": 0.431 }, { "start": 22203.92, "end": 22205.32, "probability": 0.7775 }, { "start": 22205.54, "end": 22207.46, "probability": 0.751 }, { "start": 22207.64, "end": 22209.18, "probability": 0.856 }, { "start": 22209.38, "end": 22211.14, "probability": 0.8041 }, { "start": 22211.28, "end": 22213.28, "probability": 0.7886 }, { "start": 22213.32, "end": 22215.74, "probability": 0.9173 }, { "start": 22216.3, "end": 22216.56, "probability": 0.9058 }, { "start": 22216.64, "end": 22217.38, "probability": 0.9441 }, { "start": 22217.54, "end": 22218.26, "probability": 0.7529 }, { "start": 22218.58, "end": 22220.66, "probability": 0.9538 }, { "start": 22221.26, "end": 22223.49, "probability": 0.5033 }, { "start": 22224.02, "end": 22226.76, "probability": 0.9749 }, { "start": 22227.24, "end": 22228.34, "probability": 0.8376 }, { "start": 22228.42, "end": 22230.48, "probability": 0.7783 }, { "start": 22230.48, "end": 22233.44, "probability": 0.8666 }, { "start": 22233.56, "end": 22234.86, "probability": 0.818 }, { "start": 22234.98, "end": 22237.32, "probability": 0.6583 }, { "start": 22237.46, "end": 22238.94, "probability": 0.7973 }, { "start": 22238.96, "end": 22240.88, "probability": 0.8135 }, { "start": 22241.58, "end": 22245.7, "probability": 0.8482 }, { "start": 22245.82, "end": 22246.16, "probability": 0.7878 }, { "start": 22246.2, "end": 22246.62, "probability": 0.8408 }, { "start": 22247.19, "end": 22248.98, "probability": 0.9059 }, { "start": 22249.08, "end": 22250.32, "probability": 0.7319 }, { "start": 22250.86, "end": 22251.44, "probability": 0.9004 }, { "start": 22252.04, "end": 22256.24, "probability": 0.8121 }, { "start": 22256.76, "end": 22257.38, "probability": 0.8542 }, { "start": 22258.06, "end": 22261.66, "probability": 0.7566 }, { "start": 22261.66, "end": 22264.76, "probability": 0.9762 }, { "start": 22264.92, "end": 22265.97, "probability": 0.4013 }, { "start": 22266.04, "end": 22267.18, "probability": 0.892 }, { "start": 22267.5, "end": 22268.38, "probability": 0.9417 }, { "start": 22268.66, "end": 22269.68, "probability": 0.9029 }, { "start": 22269.98, "end": 22271.11, "probability": 0.9838 }, { "start": 22271.38, "end": 22274.52, "probability": 0.9048 }, { "start": 22275.06, "end": 22275.44, "probability": 0.951 }, { "start": 22276.02, "end": 22277.47, "probability": 0.4932 }, { "start": 22277.76, "end": 22278.34, "probability": 0.7856 }, { "start": 22278.84, "end": 22281.06, "probability": 0.899 }, { "start": 22281.62, "end": 22282.34, "probability": 0.7316 }, { "start": 22282.8, "end": 22285.22, "probability": 0.89 }, { "start": 22286.56, "end": 22287.64, "probability": 0.539 }, { "start": 22288.08, "end": 22289.16, "probability": 0.8703 }, { "start": 22289.52, "end": 22292.38, "probability": 0.7919 }, { "start": 22292.94, "end": 22293.88, "probability": 0.7221 }, { "start": 22294.02, "end": 22295.58, "probability": 0.5644 }, { "start": 22296.74, "end": 22297.92, "probability": 0.6386 }, { "start": 22298.36, "end": 22300.7, "probability": 0.8242 }, { "start": 22301.14, "end": 22306.02, "probability": 0.6751 }, { "start": 22306.9, "end": 22309.06, "probability": 0.8514 }, { "start": 22310.88, "end": 22313.06, "probability": 0.8634 }, { "start": 22315.3, "end": 22318.68, "probability": 0.6837 }, { "start": 22319.0, "end": 22319.49, "probability": 0.7468 }, { "start": 22319.72, "end": 22324.86, "probability": 0.7279 }, { "start": 22324.98, "end": 22326.92, "probability": 0.9966 }, { "start": 22327.98, "end": 22329.84, "probability": 0.5702 }, { "start": 22330.0, "end": 22330.96, "probability": 0.3699 }, { "start": 22332.32, "end": 22333.92, "probability": 0.9773 }, { "start": 22334.62, "end": 22335.2, "probability": 0.3699 }, { "start": 22335.88, "end": 22337.16, "probability": 0.6894 }, { "start": 22337.52, "end": 22338.86, "probability": 0.811 }, { "start": 22339.02, "end": 22340.48, "probability": 0.6931 }, { "start": 22340.74, "end": 22341.28, "probability": 0.9293 }, { "start": 22341.44, "end": 22346.14, "probability": 0.9438 }, { "start": 22346.9, "end": 22349.06, "probability": 0.7258 }, { "start": 22350.56, "end": 22351.54, "probability": 0.6081 }, { "start": 22352.44, "end": 22353.3, "probability": 0.8895 }, { "start": 22353.61, "end": 22354.96, "probability": 0.7627 }, { "start": 22355.2, "end": 22356.02, "probability": 0.8953 }, { "start": 22356.36, "end": 22357.46, "probability": 0.9653 }, { "start": 22358.16, "end": 22358.69, "probability": 0.8757 }, { "start": 22360.18, "end": 22361.62, "probability": 0.7518 }, { "start": 22363.5, "end": 22366.9, "probability": 0.9339 }, { "start": 22367.42, "end": 22368.24, "probability": 0.9058 }, { "start": 22368.38, "end": 22369.0, "probability": 0.6852 }, { "start": 22371.06, "end": 22372.28, "probability": 0.4917 }, { "start": 22372.36, "end": 22374.02, "probability": 0.8628 }, { "start": 22374.9, "end": 22375.76, "probability": 0.9382 }, { "start": 22377.36, "end": 22380.78, "probability": 0.4229 }, { "start": 22380.88, "end": 22382.44, "probability": 0.5918 }, { "start": 22382.86, "end": 22383.64, "probability": 0.8578 }, { "start": 22383.9, "end": 22385.12, "probability": 0.8726 }, { "start": 22386.0, "end": 22388.62, "probability": 0.7686 }, { "start": 22389.08, "end": 22389.71, "probability": 0.4567 }, { "start": 22390.24, "end": 22390.98, "probability": 0.8174 }, { "start": 22391.7, "end": 22394.18, "probability": 0.9075 }, { "start": 22394.76, "end": 22395.36, "probability": 0.916 }, { "start": 22409.39, "end": 22410.64, "probability": 0.1837 }, { "start": 22410.64, "end": 22410.7, "probability": 0.2131 }, { "start": 22410.7, "end": 22410.7, "probability": 0.2563 }, { "start": 22410.7, "end": 22410.7, "probability": 0.0767 }, { "start": 22410.7, "end": 22410.7, "probability": 0.1097 }, { "start": 22410.7, "end": 22412.02, "probability": 0.0752 }, { "start": 22413.08, "end": 22413.74, "probability": 0.5143 }, { "start": 22414.92, "end": 22415.84, "probability": 0.8258 }, { "start": 22416.42, "end": 22417.54, "probability": 0.2412 }, { "start": 22417.66, "end": 22420.68, "probability": 0.7621 }, { "start": 22420.78, "end": 22421.54, "probability": 0.4391 }, { "start": 22421.7, "end": 22423.23, "probability": 0.9272 }, { "start": 22424.5, "end": 22425.13, "probability": 0.687 }, { "start": 22426.56, "end": 22428.12, "probability": 0.9783 }, { "start": 22428.94, "end": 22429.42, "probability": 0.9059 }, { "start": 22430.24, "end": 22431.22, "probability": 0.8575 }, { "start": 22431.52, "end": 22433.32, "probability": 0.7436 }, { "start": 22434.06, "end": 22435.94, "probability": 0.7972 }, { "start": 22436.7, "end": 22437.34, "probability": 0.9082 }, { "start": 22437.42, "end": 22437.56, "probability": 0.6124 }, { "start": 22438.1, "end": 22441.0, "probability": 0.4151 }, { "start": 22441.16, "end": 22441.76, "probability": 0.6682 }, { "start": 22442.56, "end": 22442.74, "probability": 0.5583 }, { "start": 22442.86, "end": 22443.57, "probability": 0.8343 }, { "start": 22443.78, "end": 22444.88, "probability": 0.8554 }, { "start": 22445.46, "end": 22448.04, "probability": 0.7153 }, { "start": 22449.64, "end": 22450.27, "probability": 0.7963 }, { "start": 22450.62, "end": 22451.6, "probability": 0.6981 }, { "start": 22452.48, "end": 22452.8, "probability": 0.4516 }, { "start": 22453.58, "end": 22456.72, "probability": 0.6611 }, { "start": 22459.44, "end": 22461.62, "probability": 0.8317 }, { "start": 22462.34, "end": 22463.83, "probability": 0.7288 }, { "start": 22465.04, "end": 22466.08, "probability": 0.96 }, { "start": 22466.12, "end": 22466.68, "probability": 0.5197 }, { "start": 22467.34, "end": 22468.5, "probability": 0.9308 }, { "start": 22468.98, "end": 22469.94, "probability": 0.5172 }, { "start": 22470.28, "end": 22472.0, "probability": 0.9631 }, { "start": 22472.14, "end": 22472.72, "probability": 0.864 }, { "start": 22473.34, "end": 22474.1, "probability": 0.8874 }, { "start": 22475.02, "end": 22475.3, "probability": 0.2228 }, { "start": 22476.42, "end": 22480.78, "probability": 0.8988 }, { "start": 22481.32, "end": 22482.92, "probability": 0.9521 }, { "start": 22484.7, "end": 22485.4, "probability": 0.6079 }, { "start": 22485.9, "end": 22489.18, "probability": 0.8848 }, { "start": 22489.6, "end": 22491.34, "probability": 0.8156 }, { "start": 22491.44, "end": 22494.38, "probability": 0.4889 }, { "start": 22495.02, "end": 22496.22, "probability": 0.881 }, { "start": 22497.2, "end": 22498.36, "probability": 0.6377 }, { "start": 22498.8, "end": 22500.98, "probability": 0.9854 }, { "start": 22501.64, "end": 22502.84, "probability": 0.5889 }, { "start": 22503.78, "end": 22507.4, "probability": 0.9848 }, { "start": 22507.86, "end": 22508.1, "probability": 0.4422 }, { "start": 22508.88, "end": 22509.94, "probability": 0.6417 }, { "start": 22511.28, "end": 22512.64, "probability": 0.8113 }, { "start": 22512.94, "end": 22513.55, "probability": 0.6577 }, { "start": 22514.26, "end": 22516.14, "probability": 0.9619 }, { "start": 22517.38, "end": 22517.48, "probability": 0.031 }, { "start": 22517.48, "end": 22521.62, "probability": 0.5055 }, { "start": 22521.62, "end": 22521.94, "probability": 0.621 }, { "start": 22522.36, "end": 22523.22, "probability": 0.5076 }, { "start": 22523.58, "end": 22524.04, "probability": 0.6402 }, { "start": 22524.08, "end": 22524.8, "probability": 0.908 }, { "start": 22524.86, "end": 22525.8, "probability": 0.7803 }, { "start": 22525.82, "end": 22527.32, "probability": 0.7424 }, { "start": 22527.34, "end": 22528.76, "probability": 0.8268 }, { "start": 22528.76, "end": 22528.83, "probability": 0.4624 }, { "start": 22529.6, "end": 22533.42, "probability": 0.8674 }, { "start": 22533.52, "end": 22534.4, "probability": 0.8779 }, { "start": 22534.48, "end": 22534.84, "probability": 0.8043 }, { "start": 22534.9, "end": 22536.08, "probability": 0.7402 }, { "start": 22536.38, "end": 22536.66, "probability": 0.6676 }, { "start": 22537.32, "end": 22538.12, "probability": 0.7157 }, { "start": 22538.22, "end": 22538.84, "probability": 0.6635 }, { "start": 22538.98, "end": 22539.28, "probability": 0.627 }, { "start": 22539.64, "end": 22540.26, "probability": 0.8051 }, { "start": 22540.32, "end": 22541.04, "probability": 0.8932 }, { "start": 22541.56, "end": 22542.6, "probability": 0.8695 }, { "start": 22543.08, "end": 22546.02, "probability": 0.7448 }, { "start": 22546.34, "end": 22546.96, "probability": 0.568 }, { "start": 22547.0, "end": 22548.78, "probability": 0.939 }, { "start": 22563.66, "end": 22564.76, "probability": 0.1635 }, { "start": 22564.76, "end": 22564.98, "probability": 0.1579 }, { "start": 22565.04, "end": 22565.12, "probability": 0.031 }, { "start": 22565.12, "end": 22565.12, "probability": 0.0998 }, { "start": 22565.12, "end": 22565.12, "probability": 0.0092 }, { "start": 22587.16, "end": 22588.04, "probability": 0.1864 }, { "start": 22591.08, "end": 22594.54, "probability": 0.2632 }, { "start": 22596.1, "end": 22598.04, "probability": 0.9513 }, { "start": 22598.2, "end": 22599.84, "probability": 0.9948 }, { "start": 22601.14, "end": 22603.9, "probability": 0.9464 }, { "start": 22604.14, "end": 22604.68, "probability": 0.6777 }, { "start": 22605.42, "end": 22606.29, "probability": 0.8989 }, { "start": 22607.26, "end": 22608.5, "probability": 0.8775 }, { "start": 22608.92, "end": 22609.84, "probability": 0.6987 }, { "start": 22611.01, "end": 22612.69, "probability": 0.6042 }, { "start": 22613.52, "end": 22614.12, "probability": 0.5446 }, { "start": 22614.56, "end": 22616.76, "probability": 0.8486 }, { "start": 22616.88, "end": 22617.3, "probability": 0.7415 }, { "start": 22617.7, "end": 22618.82, "probability": 0.9695 }, { "start": 22618.84, "end": 22620.48, "probability": 0.7473 }, { "start": 22620.56, "end": 22621.64, "probability": 0.9217 }, { "start": 22622.94, "end": 22623.18, "probability": 0.8407 }, { "start": 22624.88, "end": 22625.12, "probability": 0.467 }, { "start": 22625.12, "end": 22625.96, "probability": 0.8597 }, { "start": 22625.96, "end": 22628.48, "probability": 0.9642 }, { "start": 22628.74, "end": 22629.22, "probability": 0.8368 }, { "start": 22630.22, "end": 22631.22, "probability": 0.5592 }, { "start": 22631.94, "end": 22634.42, "probability": 0.963 }, { "start": 22636.06, "end": 22639.4, "probability": 0.5851 }, { "start": 22640.1, "end": 22642.52, "probability": 0.9858 }, { "start": 22642.54, "end": 22645.32, "probability": 0.9719 }, { "start": 22646.22, "end": 22649.86, "probability": 0.7526 }, { "start": 22650.42, "end": 22651.02, "probability": 0.7508 }, { "start": 22652.08, "end": 22654.74, "probability": 0.9554 }, { "start": 22655.56, "end": 22657.68, "probability": 0.9807 }, { "start": 22657.76, "end": 22661.7, "probability": 0.9784 }, { "start": 22663.02, "end": 22665.58, "probability": 0.7815 }, { "start": 22666.62, "end": 22667.35, "probability": 0.7648 }, { "start": 22668.34, "end": 22670.06, "probability": 0.9631 }, { "start": 22670.46, "end": 22671.46, "probability": 0.9893 }, { "start": 22672.04, "end": 22672.92, "probability": 0.9463 }, { "start": 22674.3, "end": 22676.28, "probability": 0.9828 }, { "start": 22676.56, "end": 22677.36, "probability": 0.7001 }, { "start": 22677.86, "end": 22680.18, "probability": 0.9976 }, { "start": 22681.04, "end": 22682.48, "probability": 0.9565 }, { "start": 22683.62, "end": 22687.14, "probability": 0.9922 }, { "start": 22690.2, "end": 22695.64, "probability": 0.9458 }, { "start": 22696.64, "end": 22698.12, "probability": 0.5515 }, { "start": 22699.0, "end": 22700.68, "probability": 0.9145 }, { "start": 22700.76, "end": 22701.08, "probability": 0.682 }, { "start": 22701.1, "end": 22702.48, "probability": 0.8738 }, { "start": 22703.4, "end": 22704.22, "probability": 0.78 }, { "start": 22705.18, "end": 22707.6, "probability": 0.9863 }, { "start": 22708.2, "end": 22711.32, "probability": 0.9935 }, { "start": 22711.84, "end": 22714.96, "probability": 0.9944 }, { "start": 22716.16, "end": 22719.72, "probability": 0.9776 }, { "start": 22720.62, "end": 22722.34, "probability": 0.9988 }, { "start": 22722.34, "end": 22726.6, "probability": 0.9949 }, { "start": 22728.12, "end": 22731.62, "probability": 0.9974 }, { "start": 22732.68, "end": 22736.14, "probability": 0.8859 }, { "start": 22737.0, "end": 22738.88, "probability": 0.987 }, { "start": 22739.66, "end": 22743.06, "probability": 0.7145 }, { "start": 22743.78, "end": 22745.56, "probability": 0.9907 }, { "start": 22745.56, "end": 22747.56, "probability": 0.9769 }, { "start": 22748.76, "end": 22751.0, "probability": 0.9017 }, { "start": 22751.82, "end": 22755.62, "probability": 0.9956 }, { "start": 22756.94, "end": 22760.76, "probability": 0.9872 }, { "start": 22761.86, "end": 22762.99, "probability": 0.8406 }, { "start": 22763.18, "end": 22765.34, "probability": 0.8479 }, { "start": 22765.82, "end": 22767.06, "probability": 0.7389 }, { "start": 22767.78, "end": 22769.3, "probability": 0.9681 }, { "start": 22770.76, "end": 22774.28, "probability": 0.988 }, { "start": 22775.66, "end": 22777.42, "probability": 0.8981 }, { "start": 22778.3, "end": 22782.6, "probability": 0.9331 }, { "start": 22783.3, "end": 22784.62, "probability": 0.9032 }, { "start": 22785.48, "end": 22788.54, "probability": 0.9941 }, { "start": 22789.32, "end": 22791.7, "probability": 0.9807 }, { "start": 22792.84, "end": 22794.46, "probability": 0.6609 }, { "start": 22795.6, "end": 22797.32, "probability": 0.9436 }, { "start": 22798.82, "end": 22801.98, "probability": 0.984 }, { "start": 22802.58, "end": 22804.08, "probability": 0.9509 }, { "start": 22804.6, "end": 22807.48, "probability": 0.9972 }, { "start": 22808.38, "end": 22810.4, "probability": 0.9331 }, { "start": 22810.4, "end": 22811.44, "probability": 0.688 }, { "start": 22812.14, "end": 22813.26, "probability": 0.8684 }, { "start": 22813.42, "end": 22814.52, "probability": 0.9283 }, { "start": 22814.6, "end": 22817.72, "probability": 0.9061 }, { "start": 22817.72, "end": 22821.12, "probability": 0.7991 }, { "start": 22821.52, "end": 22821.88, "probability": 0.4052 }, { "start": 22822.44, "end": 22822.94, "probability": 0.8185 }, { "start": 22823.78, "end": 22826.66, "probability": 0.9387 }, { "start": 22826.74, "end": 22828.06, "probability": 0.955 }, { "start": 22828.98, "end": 22829.32, "probability": 0.9307 }, { "start": 22829.4, "end": 22832.88, "probability": 0.8984 }, { "start": 22833.7, "end": 22835.46, "probability": 0.9637 }, { "start": 22836.02, "end": 22838.22, "probability": 0.9966 }, { "start": 22838.92, "end": 22843.12, "probability": 0.9435 }, { "start": 22844.32, "end": 22847.02, "probability": 0.724 }, { "start": 22848.12, "end": 22853.28, "probability": 0.9601 }, { "start": 22854.32, "end": 22857.62, "probability": 0.7758 }, { "start": 22858.12, "end": 22859.94, "probability": 0.7656 }, { "start": 22861.08, "end": 22862.72, "probability": 0.978 }, { "start": 22863.46, "end": 22865.32, "probability": 0.8955 }, { "start": 22866.38, "end": 22867.86, "probability": 0.906 }, { "start": 22868.54, "end": 22873.98, "probability": 0.947 }, { "start": 22873.98, "end": 22877.4, "probability": 0.9631 }, { "start": 22878.14, "end": 22880.98, "probability": 0.9961 }, { "start": 22881.8, "end": 22883.46, "probability": 0.7137 }, { "start": 22884.7, "end": 22886.21, "probability": 0.6655 }, { "start": 22886.66, "end": 22887.16, "probability": 0.5942 }, { "start": 22887.34, "end": 22888.48, "probability": 0.7528 }, { "start": 22888.54, "end": 22891.12, "probability": 0.6877 }, { "start": 22891.16, "end": 22891.32, "probability": 0.6465 }, { "start": 22891.32, "end": 22894.18, "probability": 0.9908 }, { "start": 22895.76, "end": 22897.04, "probability": 0.9458 }, { "start": 22897.56, "end": 22898.12, "probability": 0.9269 }, { "start": 22908.06, "end": 22910.24, "probability": 0.1313 }, { "start": 22910.55, "end": 22911.18, "probability": 0.1547 }, { "start": 22911.18, "end": 22912.38, "probability": 0.1757 }, { "start": 22912.38, "end": 22912.72, "probability": 0.0107 }, { "start": 22912.72, "end": 22912.72, "probability": 0.018 }, { "start": 22912.76, "end": 22912.76, "probability": 0.0497 }, { "start": 22941.78, "end": 22942.96, "probability": 0.5427 }, { "start": 22943.98, "end": 22948.34, "probability": 0.9979 }, { "start": 22949.6, "end": 22951.96, "probability": 0.5348 }, { "start": 22953.38, "end": 22956.06, "probability": 0.9062 }, { "start": 22956.3, "end": 22957.35, "probability": 0.7236 }, { "start": 22958.46, "end": 22960.58, "probability": 0.9912 }, { "start": 22960.96, "end": 22962.1, "probability": 0.9834 }, { "start": 22964.1, "end": 22969.7, "probability": 0.9738 }, { "start": 22971.14, "end": 22972.86, "probability": 0.9961 }, { "start": 22974.06, "end": 22975.74, "probability": 0.8857 }, { "start": 22977.16, "end": 22980.34, "probability": 0.9778 }, { "start": 22981.16, "end": 22983.48, "probability": 0.9938 }, { "start": 22983.94, "end": 22984.61, "probability": 0.8776 }, { "start": 22986.8, "end": 22990.84, "probability": 0.9595 }, { "start": 22991.88, "end": 22992.92, "probability": 0.7483 }, { "start": 22993.66, "end": 22994.14, "probability": 0.9612 }, { "start": 22996.0, "end": 22998.18, "probability": 0.9989 }, { "start": 23000.14, "end": 23001.38, "probability": 0.9052 }, { "start": 23001.76, "end": 23003.26, "probability": 0.9608 }, { "start": 23003.36, "end": 23004.76, "probability": 0.7988 }, { "start": 23005.98, "end": 23006.48, "probability": 0.973 }, { "start": 23008.24, "end": 23008.7, "probability": 0.8513 }, { "start": 23008.8, "end": 23011.92, "probability": 0.9913 }, { "start": 23012.82, "end": 23014.54, "probability": 0.9708 }, { "start": 23014.58, "end": 23016.4, "probability": 0.8115 }, { "start": 23016.56, "end": 23018.8, "probability": 0.6587 }, { "start": 23018.88, "end": 23020.8, "probability": 0.7802 }, { "start": 23020.94, "end": 23022.5, "probability": 0.9973 }, { "start": 23023.02, "end": 23023.58, "probability": 0.6543 }, { "start": 23024.18, "end": 23024.88, "probability": 0.641 }, { "start": 23026.34, "end": 23027.12, "probability": 0.8195 }, { "start": 23028.02, "end": 23029.8, "probability": 0.9573 }, { "start": 23029.88, "end": 23032.56, "probability": 0.9669 }, { "start": 23034.24, "end": 23036.52, "probability": 0.9107 }, { "start": 23038.44, "end": 23040.2, "probability": 0.6044 }, { "start": 23041.72, "end": 23044.5, "probability": 0.9878 }, { "start": 23046.18, "end": 23051.32, "probability": 0.993 }, { "start": 23051.32, "end": 23056.22, "probability": 0.9071 }, { "start": 23057.04, "end": 23057.74, "probability": 0.5593 }, { "start": 23058.56, "end": 23061.7, "probability": 0.8879 }, { "start": 23063.14, "end": 23064.26, "probability": 0.9769 }, { "start": 23066.06, "end": 23067.74, "probability": 0.7144 }, { "start": 23069.34, "end": 23070.74, "probability": 0.9893 }, { "start": 23071.8, "end": 23073.78, "probability": 0.9446 }, { "start": 23074.9, "end": 23076.94, "probability": 0.9311 }, { "start": 23078.8, "end": 23080.18, "probability": 0.9961 }, { "start": 23080.32, "end": 23082.84, "probability": 0.9668 }, { "start": 23083.72, "end": 23088.16, "probability": 0.9421 }, { "start": 23089.34, "end": 23090.62, "probability": 0.9842 }, { "start": 23091.36, "end": 23093.18, "probability": 0.8189 }, { "start": 23094.12, "end": 23096.72, "probability": 0.9644 }, { "start": 23097.26, "end": 23099.66, "probability": 0.9905 }, { "start": 23100.48, "end": 23102.2, "probability": 0.9795 }, { "start": 23102.3, "end": 23102.7, "probability": 0.4346 }, { "start": 23102.78, "end": 23103.3, "probability": 0.6491 }, { "start": 23103.4, "end": 23103.7, "probability": 0.369 }, { "start": 23104.64, "end": 23105.28, "probability": 0.9648 }, { "start": 23105.32, "end": 23105.7, "probability": 0.6131 }, { "start": 23105.74, "end": 23107.78, "probability": 0.8331 }, { "start": 23108.8, "end": 23113.15, "probability": 0.9834 }, { "start": 23114.08, "end": 23116.06, "probability": 0.9932 }, { "start": 23118.26, "end": 23122.06, "probability": 0.9958 }, { "start": 23123.1, "end": 23126.08, "probability": 0.9928 }, { "start": 23126.84, "end": 23130.56, "probability": 0.8634 }, { "start": 23130.96, "end": 23131.44, "probability": 0.5119 }, { "start": 23131.94, "end": 23133.56, "probability": 0.9797 }, { "start": 23133.7, "end": 23134.38, "probability": 0.6045 }, { "start": 23135.35, "end": 23137.5, "probability": 0.9575 }, { "start": 23140.48, "end": 23141.62, "probability": 0.9698 }, { "start": 23142.46, "end": 23143.5, "probability": 0.8979 }, { "start": 23144.1, "end": 23144.18, "probability": 0.155 }, { "start": 23144.18, "end": 23144.46, "probability": 0.889 }, { "start": 23145.9, "end": 23148.32, "probability": 0.9213 }, { "start": 23149.28, "end": 23151.76, "probability": 0.9552 }, { "start": 23152.42, "end": 23153.84, "probability": 0.9937 }, { "start": 23154.24, "end": 23155.46, "probability": 0.5806 }, { "start": 23155.48, "end": 23156.16, "probability": 0.7939 }, { "start": 23156.16, "end": 23156.72, "probability": 0.8647 }, { "start": 23158.26, "end": 23160.04, "probability": 0.5181 }, { "start": 23160.24, "end": 23162.54, "probability": 0.6805 }, { "start": 23164.68, "end": 23167.84, "probability": 0.9456 }, { "start": 23168.04, "end": 23170.04, "probability": 0.8237 }, { "start": 23171.08, "end": 23173.54, "probability": 0.9572 }, { "start": 23174.7, "end": 23177.52, "probability": 0.989 }, { "start": 23179.24, "end": 23181.12, "probability": 0.9512 }, { "start": 23181.24, "end": 23182.29, "probability": 0.991 }, { "start": 23183.18, "end": 23184.45, "probability": 0.8342 }, { "start": 23185.46, "end": 23187.9, "probability": 0.8701 }, { "start": 23189.04, "end": 23193.42, "probability": 0.9875 }, { "start": 23194.66, "end": 23196.44, "probability": 0.9731 }, { "start": 23198.34, "end": 23199.92, "probability": 0.998 }, { "start": 23202.0, "end": 23203.56, "probability": 0.864 }, { "start": 23203.96, "end": 23205.94, "probability": 0.9691 }, { "start": 23207.22, "end": 23208.89, "probability": 0.9776 }, { "start": 23209.82, "end": 23210.8, "probability": 0.8477 }, { "start": 23211.56, "end": 23214.28, "probability": 0.9386 }, { "start": 23214.42, "end": 23215.78, "probability": 0.9741 }, { "start": 23216.94, "end": 23218.76, "probability": 0.865 }, { "start": 23219.24, "end": 23220.36, "probability": 0.8631 }, { "start": 23220.96, "end": 23221.58, "probability": 0.5789 }, { "start": 23221.64, "end": 23221.88, "probability": 0.4669 }, { "start": 23221.92, "end": 23222.69, "probability": 0.9338 }, { "start": 23224.38, "end": 23230.28, "probability": 0.9792 }, { "start": 23231.5, "end": 23233.2, "probability": 0.9728 }, { "start": 23233.78, "end": 23236.02, "probability": 0.7536 }, { "start": 23237.08, "end": 23241.66, "probability": 0.7461 }, { "start": 23241.76, "end": 23242.46, "probability": 0.5847 }, { "start": 23243.46, "end": 23245.9, "probability": 0.8295 }, { "start": 23246.04, "end": 23246.64, "probability": 0.6408 }, { "start": 23246.82, "end": 23248.42, "probability": 0.6157 }, { "start": 23248.56, "end": 23249.22, "probability": 0.9608 }, { "start": 23249.84, "end": 23250.43, "probability": 0.6621 }, { "start": 23251.44, "end": 23256.36, "probability": 0.9912 }, { "start": 23256.42, "end": 23256.72, "probability": 0.7519 }, { "start": 23257.12, "end": 23257.98, "probability": 0.9541 }, { "start": 23258.64, "end": 23262.52, "probability": 0.9717 }, { "start": 23262.96, "end": 23263.32, "probability": 0.9941 }, { "start": 23264.52, "end": 23265.9, "probability": 0.8885 }, { "start": 23266.0, "end": 23266.76, "probability": 0.9613 }, { "start": 23266.92, "end": 23267.12, "probability": 0.3501 }, { "start": 23268.7, "end": 23270.38, "probability": 0.9136 }, { "start": 23271.3, "end": 23271.8, "probability": 0.9948 }, { "start": 23272.94, "end": 23274.56, "probability": 0.8421 }, { "start": 23276.72, "end": 23277.68, "probability": 0.9711 }, { "start": 23277.82, "end": 23278.54, "probability": 0.9593 }, { "start": 23279.42, "end": 23280.62, "probability": 0.7988 }, { "start": 23281.5, "end": 23282.72, "probability": 0.9926 }, { "start": 23283.76, "end": 23286.44, "probability": 0.8888 }, { "start": 23286.98, "end": 23289.54, "probability": 0.9763 }, { "start": 23290.64, "end": 23294.88, "probability": 0.9469 }, { "start": 23295.1, "end": 23299.52, "probability": 0.9808 }, { "start": 23300.06, "end": 23302.98, "probability": 0.9604 }, { "start": 23303.86, "end": 23305.94, "probability": 0.971 }, { "start": 23306.52, "end": 23307.46, "probability": 0.729 }, { "start": 23309.6, "end": 23311.12, "probability": 0.791 }, { "start": 23312.36, "end": 23314.22, "probability": 0.9941 }, { "start": 23314.22, "end": 23317.08, "probability": 0.965 }, { "start": 23318.12, "end": 23320.12, "probability": 0.9516 }, { "start": 23321.18, "end": 23323.74, "probability": 0.9761 }, { "start": 23324.26, "end": 23325.8, "probability": 0.9731 }, { "start": 23326.54, "end": 23328.44, "probability": 0.9985 }, { "start": 23329.14, "end": 23332.44, "probability": 0.9919 }, { "start": 23332.5, "end": 23333.32, "probability": 0.5096 }, { "start": 23333.4, "end": 23336.98, "probability": 0.8391 }, { "start": 23337.42, "end": 23339.02, "probability": 0.8258 }, { "start": 23339.12, "end": 23340.66, "probability": 0.9709 }, { "start": 23369.6, "end": 23370.58, "probability": 0.7346 }, { "start": 23372.62, "end": 23373.32, "probability": 0.8872 }, { "start": 23374.3, "end": 23378.02, "probability": 0.9922 }, { "start": 23379.78, "end": 23382.14, "probability": 0.8966 }, { "start": 23383.86, "end": 23385.22, "probability": 0.9733 }, { "start": 23385.4, "end": 23387.64, "probability": 0.9966 }, { "start": 23388.64, "end": 23392.58, "probability": 0.7413 }, { "start": 23395.94, "end": 23396.96, "probability": 0.9587 }, { "start": 23397.76, "end": 23400.78, "probability": 0.8958 }, { "start": 23401.6, "end": 23404.96, "probability": 0.7443 }, { "start": 23406.14, "end": 23407.48, "probability": 0.9783 }, { "start": 23408.02, "end": 23408.98, "probability": 0.9347 }, { "start": 23409.08, "end": 23411.1, "probability": 0.9253 }, { "start": 23411.34, "end": 23412.99, "probability": 0.9956 }, { "start": 23414.94, "end": 23415.46, "probability": 0.8976 }, { "start": 23415.96, "end": 23416.44, "probability": 0.8448 }, { "start": 23416.96, "end": 23417.8, "probability": 0.5318 }, { "start": 23418.3, "end": 23425.02, "probability": 0.9946 }, { "start": 23425.48, "end": 23426.12, "probability": 0.9849 }, { "start": 23427.28, "end": 23431.02, "probability": 0.9783 }, { "start": 23431.28, "end": 23433.87, "probability": 0.9969 }, { "start": 23435.92, "end": 23437.54, "probability": 0.8599 }, { "start": 23437.64, "end": 23438.8, "probability": 0.9781 }, { "start": 23439.38, "end": 23440.68, "probability": 0.8838 }, { "start": 23441.42, "end": 23442.64, "probability": 0.7189 }, { "start": 23446.42, "end": 23450.38, "probability": 0.9686 }, { "start": 23451.32, "end": 23454.12, "probability": 0.8457 }, { "start": 23455.36, "end": 23459.38, "probability": 0.7458 }, { "start": 23461.12, "end": 23463.4, "probability": 0.928 }, { "start": 23464.2, "end": 23465.44, "probability": 0.7859 }, { "start": 23465.5, "end": 23465.88, "probability": 0.7142 }, { "start": 23465.94, "end": 23466.54, "probability": 0.5705 }, { "start": 23467.6, "end": 23469.16, "probability": 0.9277 }, { "start": 23470.02, "end": 23472.44, "probability": 0.8616 }, { "start": 23474.26, "end": 23476.26, "probability": 0.907 }, { "start": 23476.88, "end": 23477.38, "probability": 0.9601 }, { "start": 23477.52, "end": 23478.62, "probability": 0.5288 }, { "start": 23478.66, "end": 23479.68, "probability": 0.7569 }, { "start": 23480.24, "end": 23481.6, "probability": 0.7587 }, { "start": 23481.92, "end": 23482.48, "probability": 0.4341 }, { "start": 23482.54, "end": 23483.28, "probability": 0.9143 }, { "start": 23485.26, "end": 23485.96, "probability": 0.8907 }, { "start": 23486.02, "end": 23486.36, "probability": 0.8011 }, { "start": 23486.84, "end": 23489.36, "probability": 0.916 }, { "start": 23490.08, "end": 23494.66, "probability": 0.8833 }, { "start": 23495.36, "end": 23496.82, "probability": 0.9912 }, { "start": 23496.9, "end": 23500.74, "probability": 0.9352 }, { "start": 23501.46, "end": 23504.86, "probability": 0.9735 }, { "start": 23504.94, "end": 23507.26, "probability": 0.8458 }, { "start": 23507.4, "end": 23508.0, "probability": 0.7518 }, { "start": 23508.0, "end": 23508.66, "probability": 0.4426 }, { "start": 23509.5, "end": 23511.52, "probability": 0.9594 }, { "start": 23512.06, "end": 23513.04, "probability": 0.6735 }, { "start": 23513.7, "end": 23514.96, "probability": 0.891 }, { "start": 23515.52, "end": 23516.28, "probability": 0.7466 }, { "start": 23517.3, "end": 23521.98, "probability": 0.5246 }, { "start": 23522.82, "end": 23524.64, "probability": 0.6444 }, { "start": 23525.76, "end": 23527.94, "probability": 0.9652 }, { "start": 23528.26, "end": 23530.38, "probability": 0.8966 }, { "start": 23531.94, "end": 23534.88, "probability": 0.8992 }, { "start": 23535.46, "end": 23537.82, "probability": 0.8206 }, { "start": 23539.14, "end": 23539.48, "probability": 0.1493 }, { "start": 23539.48, "end": 23540.3, "probability": 0.7482 }, { "start": 23540.52, "end": 23542.38, "probability": 0.9634 }, { "start": 23542.5, "end": 23546.48, "probability": 0.9741 }, { "start": 23546.52, "end": 23548.32, "probability": 0.844 }, { "start": 23548.32, "end": 23548.68, "probability": 0.7157 }, { "start": 23549.72, "end": 23550.74, "probability": 0.327 }, { "start": 23551.7, "end": 23556.3, "probability": 0.9449 }, { "start": 23556.38, "end": 23558.28, "probability": 0.916 }, { "start": 23559.12, "end": 23560.56, "probability": 0.8555 }, { "start": 23561.8, "end": 23565.0, "probability": 0.8456 }, { "start": 23566.58, "end": 23567.72, "probability": 0.9639 }, { "start": 23568.84, "end": 23570.66, "probability": 0.9762 }, { "start": 23571.32, "end": 23571.72, "probability": 0.7105 }, { "start": 23572.38, "end": 23575.96, "probability": 0.9814 }, { "start": 23576.46, "end": 23576.6, "probability": 0.9381 }, { "start": 23577.84, "end": 23578.46, "probability": 0.6173 }, { "start": 23578.64, "end": 23580.38, "probability": 0.9879 }, { "start": 23580.9, "end": 23584.66, "probability": 0.9033 }, { "start": 23585.08, "end": 23585.9, "probability": 0.9951 }, { "start": 23586.58, "end": 23586.92, "probability": 0.6784 }, { "start": 23587.68, "end": 23588.2, "probability": 0.939 }, { "start": 23588.88, "end": 23590.8, "probability": 0.9131 }, { "start": 23591.02, "end": 23592.49, "probability": 0.8434 }, { "start": 23593.68, "end": 23595.02, "probability": 0.89 }, { "start": 23595.9, "end": 23598.5, "probability": 0.8636 }, { "start": 23599.22, "end": 23602.2, "probability": 0.898 }, { "start": 23602.8, "end": 23606.46, "probability": 0.9776 }, { "start": 23606.64, "end": 23608.04, "probability": 0.9966 }, { "start": 23608.28, "end": 23610.92, "probability": 0.8609 }, { "start": 23612.06, "end": 23613.22, "probability": 0.8989 }, { "start": 23613.88, "end": 23614.72, "probability": 0.8975 }, { "start": 23615.22, "end": 23616.22, "probability": 0.7838 }, { "start": 23616.86, "end": 23617.56, "probability": 0.7935 }, { "start": 23617.66, "end": 23620.34, "probability": 0.9575 }, { "start": 23620.4, "end": 23623.02, "probability": 0.6935 }, { "start": 23623.66, "end": 23624.68, "probability": 0.6719 }, { "start": 23625.36, "end": 23626.82, "probability": 0.5329 }, { "start": 23627.36, "end": 23627.6, "probability": 0.6412 }, { "start": 23628.2, "end": 23630.84, "probability": 0.932 }, { "start": 23631.4, "end": 23633.82, "probability": 0.9873 }, { "start": 23636.62, "end": 23637.46, "probability": 0.2022 }, { "start": 23637.46, "end": 23639.08, "probability": 0.8326 }, { "start": 23639.52, "end": 23641.8, "probability": 0.9944 }, { "start": 23642.5, "end": 23643.54, "probability": 0.9609 }, { "start": 23643.64, "end": 23644.23, "probability": 0.8965 }, { "start": 23645.05, "end": 23648.08, "probability": 0.9971 }, { "start": 23648.2, "end": 23649.4, "probability": 0.6723 }, { "start": 23650.32, "end": 23652.86, "probability": 0.9963 }, { "start": 23653.66, "end": 23654.1, "probability": 0.9448 }, { "start": 23654.68, "end": 23657.08, "probability": 0.996 }, { "start": 23657.18, "end": 23658.86, "probability": 0.9904 }, { "start": 23659.64, "end": 23662.74, "probability": 0.851 }, { "start": 23662.88, "end": 23663.06, "probability": 0.8073 }, { "start": 23663.14, "end": 23666.62, "probability": 0.7175 }, { "start": 23667.32, "end": 23667.86, "probability": 0.7434 }, { "start": 23668.8, "end": 23672.22, "probability": 0.894 }, { "start": 23672.74, "end": 23675.0, "probability": 0.9877 }, { "start": 23675.0, "end": 23678.78, "probability": 0.967 }, { "start": 23679.18, "end": 23680.22, "probability": 0.9269 }, { "start": 23680.7, "end": 23681.34, "probability": 0.7161 }, { "start": 23682.32, "end": 23683.1, "probability": 0.9696 }, { "start": 23683.62, "end": 23685.52, "probability": 0.9141 }, { "start": 23686.5, "end": 23687.46, "probability": 0.7896 }, { "start": 23688.1, "end": 23690.98, "probability": 0.9815 }, { "start": 23691.1, "end": 23693.06, "probability": 0.9685 }, { "start": 23693.3, "end": 23694.12, "probability": 0.4155 }, { "start": 23694.68, "end": 23695.22, "probability": 0.8046 }, { "start": 23695.76, "end": 23699.04, "probability": 0.9754 }, { "start": 23699.82, "end": 23701.45, "probability": 0.9912 }, { "start": 23702.42, "end": 23703.86, "probability": 0.9979 }, { "start": 23704.64, "end": 23707.54, "probability": 0.9974 }, { "start": 23708.02, "end": 23709.16, "probability": 0.5383 }, { "start": 23709.72, "end": 23711.32, "probability": 0.9084 }, { "start": 23711.38, "end": 23711.8, "probability": 0.7822 }, { "start": 23712.14, "end": 23712.52, "probability": 0.7886 }, { "start": 23713.38, "end": 23716.76, "probability": 0.0797 }, { "start": 23723.42, "end": 23726.88, "probability": 0.0544 }, { "start": 23739.74, "end": 23740.66, "probability": 0.2696 }, { "start": 23753.88, "end": 23754.56, "probability": 0.4329 }, { "start": 23754.66, "end": 23756.88, "probability": 0.9801 }, { "start": 23756.96, "end": 23757.96, "probability": 0.7866 }, { "start": 23758.32, "end": 23759.64, "probability": 0.9843 }, { "start": 23760.08, "end": 23760.48, "probability": 0.5825 }, { "start": 23760.5, "end": 23761.38, "probability": 0.8188 }, { "start": 23761.8, "end": 23764.96, "probability": 0.8936 }, { "start": 23766.2, "end": 23770.48, "probability": 0.9875 }, { "start": 23771.6, "end": 23776.04, "probability": 0.9956 }, { "start": 23777.6, "end": 23779.78, "probability": 0.8972 }, { "start": 23780.8, "end": 23782.26, "probability": 0.8754 }, { "start": 23784.12, "end": 23785.34, "probability": 0.5037 }, { "start": 23786.24, "end": 23786.86, "probability": 0.8564 }, { "start": 23787.62, "end": 23788.62, "probability": 0.7087 }, { "start": 23790.08, "end": 23791.7, "probability": 0.3611 }, { "start": 23791.82, "end": 23793.31, "probability": 0.8408 }, { "start": 23794.06, "end": 23794.7, "probability": 0.9703 }, { "start": 23795.34, "end": 23799.16, "probability": 0.979 }, { "start": 23800.46, "end": 23803.2, "probability": 0.9242 }, { "start": 23804.48, "end": 23805.34, "probability": 0.927 }, { "start": 23805.42, "end": 23805.7, "probability": 0.5492 }, { "start": 23805.72, "end": 23806.4, "probability": 0.7398 }, { "start": 23806.56, "end": 23807.2, "probability": 0.9627 }, { "start": 23807.24, "end": 23807.8, "probability": 0.9751 }, { "start": 23807.9, "end": 23808.84, "probability": 0.9806 }, { "start": 23809.46, "end": 23813.0, "probability": 0.9646 }, { "start": 23814.08, "end": 23819.36, "probability": 0.9819 }, { "start": 23820.38, "end": 23823.28, "probability": 0.8145 }, { "start": 23824.38, "end": 23826.44, "probability": 0.9412 }, { "start": 23827.48, "end": 23830.32, "probability": 0.9673 }, { "start": 23831.2, "end": 23835.0, "probability": 0.9867 }, { "start": 23835.74, "end": 23836.96, "probability": 0.8511 }, { "start": 23837.9, "end": 23839.56, "probability": 0.9251 }, { "start": 23840.08, "end": 23840.98, "probability": 0.8457 }, { "start": 23841.6, "end": 23843.26, "probability": 0.7299 }, { "start": 23843.98, "end": 23845.6, "probability": 0.7491 }, { "start": 23846.6, "end": 23847.7, "probability": 0.848 }, { "start": 23848.78, "end": 23851.16, "probability": 0.8118 }, { "start": 23852.58, "end": 23854.48, "probability": 0.9329 }, { "start": 23855.5, "end": 23858.26, "probability": 0.9685 }, { "start": 23858.84, "end": 23859.8, "probability": 0.9496 }, { "start": 23860.72, "end": 23861.16, "probability": 0.6089 }, { "start": 23861.34, "end": 23863.56, "probability": 0.7837 }, { "start": 23863.7, "end": 23864.28, "probability": 0.6306 }, { "start": 23864.32, "end": 23864.82, "probability": 0.5365 }, { "start": 23865.38, "end": 23869.72, "probability": 0.9803 }, { "start": 23871.53, "end": 23875.12, "probability": 0.9616 }, { "start": 23876.04, "end": 23881.9, "probability": 0.9815 }, { "start": 23882.92, "end": 23885.84, "probability": 0.9995 }, { "start": 23887.02, "end": 23887.72, "probability": 0.839 }, { "start": 23888.53, "end": 23892.48, "probability": 0.8677 }, { "start": 23893.0, "end": 23894.48, "probability": 0.8933 }, { "start": 23894.88, "end": 23897.1, "probability": 0.9843 }, { "start": 23897.2, "end": 23897.86, "probability": 0.6298 }, { "start": 23898.56, "end": 23901.68, "probability": 0.993 }, { "start": 23902.62, "end": 23905.02, "probability": 0.9858 }, { "start": 23906.56, "end": 23909.5, "probability": 0.9897 }, { "start": 23910.84, "end": 23913.92, "probability": 0.9645 }, { "start": 23914.54, "end": 23918.32, "probability": 0.7434 }, { "start": 23919.36, "end": 23922.84, "probability": 0.9857 }, { "start": 23923.9, "end": 23927.0, "probability": 0.995 }, { "start": 23927.73, "end": 23929.58, "probability": 0.9186 }, { "start": 23930.54, "end": 23933.24, "probability": 0.9605 }, { "start": 23934.76, "end": 23936.52, "probability": 0.9232 }, { "start": 23936.58, "end": 23938.56, "probability": 0.842 }, { "start": 23938.74, "end": 23939.3, "probability": 0.6782 }, { "start": 23939.8, "end": 23944.06, "probability": 0.9399 }, { "start": 23944.6, "end": 23948.16, "probability": 0.9727 }, { "start": 23949.04, "end": 23952.46, "probability": 0.9573 }, { "start": 23953.48, "end": 23955.98, "probability": 0.8001 }, { "start": 23956.68, "end": 23958.36, "probability": 0.7582 }, { "start": 23960.0, "end": 23960.44, "probability": 0.6973 }, { "start": 23961.26, "end": 23965.2, "probability": 0.949 }, { "start": 23965.62, "end": 23967.53, "probability": 0.8962 }, { "start": 23969.34, "end": 23970.06, "probability": 0.9152 }, { "start": 23970.32, "end": 23971.3, "probability": 0.9434 }, { "start": 23975.56, "end": 23977.08, "probability": 0.1219 }, { "start": 23978.04, "end": 23978.92, "probability": 0.6504 }, { "start": 23979.5, "end": 23980.86, "probability": 0.9878 }, { "start": 23981.9, "end": 23982.84, "probability": 0.915 }, { "start": 23982.9, "end": 23984.66, "probability": 0.9744 }, { "start": 23985.22, "end": 23986.8, "probability": 0.8696 }, { "start": 23987.48, "end": 23989.08, "probability": 0.8849 }, { "start": 23989.14, "end": 23989.98, "probability": 0.9526 }, { "start": 23990.46, "end": 23990.8, "probability": 0.5218 }, { "start": 23991.4, "end": 23995.72, "probability": 0.9896 }, { "start": 23996.32, "end": 23998.22, "probability": 0.9911 }, { "start": 24000.04, "end": 24004.88, "probability": 0.9202 }, { "start": 24004.88, "end": 24007.66, "probability": 0.917 }, { "start": 24009.46, "end": 24012.78, "probability": 0.943 }, { "start": 24013.7, "end": 24016.02, "probability": 0.8021 }, { "start": 24018.24, "end": 24020.5, "probability": 0.9407 }, { "start": 24021.22, "end": 24027.24, "probability": 0.9427 }, { "start": 24028.06, "end": 24031.5, "probability": 0.9937 }, { "start": 24032.2, "end": 24033.2, "probability": 0.9745 }, { "start": 24033.58, "end": 24036.6, "probability": 0.6924 }, { "start": 24038.03, "end": 24040.24, "probability": 0.5613 }, { "start": 24040.4, "end": 24041.78, "probability": 0.8699 }, { "start": 24042.42, "end": 24044.24, "probability": 0.9268 }, { "start": 24045.36, "end": 24047.7, "probability": 0.878 }, { "start": 24048.62, "end": 24049.04, "probability": 0.7451 }, { "start": 24049.36, "end": 24052.34, "probability": 0.9629 }, { "start": 24053.8, "end": 24054.6, "probability": 0.926 }, { "start": 24055.3, "end": 24058.1, "probability": 0.989 }, { "start": 24058.92, "end": 24060.68, "probability": 0.9995 }, { "start": 24061.2, "end": 24065.13, "probability": 0.9995 }, { "start": 24065.32, "end": 24066.08, "probability": 0.6717 }, { "start": 24066.64, "end": 24067.48, "probability": 0.9993 }, { "start": 24068.18, "end": 24070.58, "probability": 0.8678 }, { "start": 24072.06, "end": 24073.1, "probability": 0.9732 }, { "start": 24074.0, "end": 24074.14, "probability": 0.3667 }, { "start": 24074.28, "end": 24074.46, "probability": 0.949 }, { "start": 24074.52, "end": 24079.18, "probability": 0.9673 }, { "start": 24080.92, "end": 24083.46, "probability": 0.8688 }, { "start": 24084.56, "end": 24085.82, "probability": 0.9971 }, { "start": 24086.58, "end": 24087.4, "probability": 0.9155 }, { "start": 24088.46, "end": 24088.92, "probability": 0.9319 }, { "start": 24088.96, "end": 24089.98, "probability": 0.7719 }, { "start": 24090.24, "end": 24091.42, "probability": 0.9932 }, { "start": 24091.92, "end": 24093.73, "probability": 0.9971 }, { "start": 24094.18, "end": 24095.82, "probability": 0.5758 }, { "start": 24095.82, "end": 24096.64, "probability": 0.8184 }, { "start": 24096.82, "end": 24098.34, "probability": 0.792 }, { "start": 24098.88, "end": 24099.88, "probability": 0.9761 }, { "start": 24100.78, "end": 24102.5, "probability": 0.9451 }, { "start": 24103.12, "end": 24107.22, "probability": 0.9963 }, { "start": 24107.52, "end": 24107.74, "probability": 0.7128 }, { "start": 24108.18, "end": 24108.64, "probability": 0.5763 }, { "start": 24108.66, "end": 24110.38, "probability": 0.9343 }, { "start": 24115.04, "end": 24116.14, "probability": 0.95 }, { "start": 24116.28, "end": 24117.26, "probability": 0.7398 }, { "start": 24117.32, "end": 24118.22, "probability": 0.9344 }, { "start": 24120.24, "end": 24122.9, "probability": 0.7973 }, { "start": 24122.98, "end": 24123.24, "probability": 0.7289 }, { "start": 24125.74, "end": 24126.04, "probability": 0.033 }, { "start": 24126.04, "end": 24126.97, "probability": 0.5747 }, { "start": 24127.3, "end": 24128.76, "probability": 0.9282 }, { "start": 24129.48, "end": 24130.7, "probability": 0.935 }, { "start": 24130.78, "end": 24132.2, "probability": 0.925 }, { "start": 24132.66, "end": 24132.94, "probability": 0.5717 }, { "start": 24133.3, "end": 24135.42, "probability": 0.9022 }, { "start": 24137.6, "end": 24138.64, "probability": 0.7233 }, { "start": 24138.88, "end": 24140.04, "probability": 0.9173 }, { "start": 24140.43, "end": 24142.62, "probability": 0.998 }, { "start": 24142.68, "end": 24143.78, "probability": 0.7169 }, { "start": 24143.88, "end": 24144.6, "probability": 0.637 }, { "start": 24147.08, "end": 24152.28, "probability": 0.994 }, { "start": 24154.04, "end": 24156.16, "probability": 0.9969 }, { "start": 24158.1, "end": 24160.18, "probability": 0.9994 }, { "start": 24160.74, "end": 24165.12, "probability": 0.9973 }, { "start": 24166.12, "end": 24168.66, "probability": 0.8778 }, { "start": 24169.64, "end": 24173.42, "probability": 0.9513 }, { "start": 24175.14, "end": 24177.2, "probability": 0.658 }, { "start": 24178.86, "end": 24179.76, "probability": 0.8338 }, { "start": 24180.7, "end": 24182.04, "probability": 0.8792 }, { "start": 24183.02, "end": 24184.12, "probability": 0.8783 }, { "start": 24185.98, "end": 24187.44, "probability": 0.9645 }, { "start": 24188.84, "end": 24190.62, "probability": 0.9844 }, { "start": 24193.02, "end": 24195.61, "probability": 0.9957 }, { "start": 24196.96, "end": 24197.6, "probability": 0.8448 }, { "start": 24199.14, "end": 24199.58, "probability": 0.7496 }, { "start": 24199.66, "end": 24200.08, "probability": 0.821 }, { "start": 24200.22, "end": 24203.14, "probability": 0.9865 }, { "start": 24203.26, "end": 24207.38, "probability": 0.9822 }, { "start": 24207.66, "end": 24209.76, "probability": 0.8677 }, { "start": 24211.84, "end": 24216.48, "probability": 0.9889 }, { "start": 24217.38, "end": 24218.44, "probability": 0.6905 }, { "start": 24219.78, "end": 24225.68, "probability": 0.9924 }, { "start": 24225.92, "end": 24227.3, "probability": 0.9244 }, { "start": 24227.78, "end": 24229.34, "probability": 0.9891 }, { "start": 24229.66, "end": 24229.76, "probability": 0.2061 }, { "start": 24229.88, "end": 24231.9, "probability": 0.5554 }, { "start": 24232.52, "end": 24233.74, "probability": 0.644 }, { "start": 24235.68, "end": 24236.86, "probability": 0.9659 }, { "start": 24237.08, "end": 24240.52, "probability": 0.9943 }, { "start": 24240.52, "end": 24244.64, "probability": 0.9947 }, { "start": 24244.7, "end": 24245.3, "probability": 0.7471 }, { "start": 24245.8, "end": 24246.76, "probability": 0.8076 }, { "start": 24246.88, "end": 24247.3, "probability": 0.9742 }, { "start": 24247.42, "end": 24247.82, "probability": 0.9695 }, { "start": 24247.88, "end": 24248.46, "probability": 0.741 }, { "start": 24249.2, "end": 24252.48, "probability": 0.9767 }, { "start": 24252.48, "end": 24254.82, "probability": 0.9617 }, { "start": 24254.94, "end": 24256.88, "probability": 0.8573 }, { "start": 24257.04, "end": 24259.1, "probability": 0.9248 }, { "start": 24259.36, "end": 24262.02, "probability": 0.9932 }, { "start": 24264.14, "end": 24266.54, "probability": 0.7897 }, { "start": 24267.7, "end": 24270.0, "probability": 0.9297 }, { "start": 24271.18, "end": 24275.9, "probability": 0.9901 }, { "start": 24277.1, "end": 24279.1, "probability": 0.9978 }, { "start": 24279.18, "end": 24279.48, "probability": 0.4718 }, { "start": 24279.68, "end": 24282.7, "probability": 0.9813 }, { "start": 24282.7, "end": 24284.56, "probability": 0.9923 }, { "start": 24286.44, "end": 24290.42, "probability": 0.8539 }, { "start": 24291.58, "end": 24292.3, "probability": 0.7737 }, { "start": 24293.42, "end": 24296.7, "probability": 0.9578 }, { "start": 24297.34, "end": 24298.6, "probability": 0.8835 }, { "start": 24301.18, "end": 24301.78, "probability": 0.1761 }, { "start": 24301.78, "end": 24302.0, "probability": 0.3129 }, { "start": 24302.64, "end": 24303.22, "probability": 0.7051 }, { "start": 24304.9, "end": 24305.89, "probability": 0.9878 }, { "start": 24306.24, "end": 24307.92, "probability": 0.9768 }, { "start": 24308.0, "end": 24309.24, "probability": 0.9713 }, { "start": 24309.3, "end": 24311.06, "probability": 0.9803 }, { "start": 24313.04, "end": 24317.24, "probability": 0.9966 }, { "start": 24319.62, "end": 24320.6, "probability": 0.6365 }, { "start": 24321.38, "end": 24322.54, "probability": 0.7763 }, { "start": 24322.72, "end": 24324.26, "probability": 0.9891 }, { "start": 24324.36, "end": 24325.04, "probability": 0.8394 }, { "start": 24325.06, "end": 24326.46, "probability": 0.9173 }, { "start": 24326.54, "end": 24327.13, "probability": 0.5215 }, { "start": 24327.5, "end": 24327.88, "probability": 0.8169 }, { "start": 24328.02, "end": 24328.52, "probability": 0.7298 }, { "start": 24329.16, "end": 24330.2, "probability": 0.8405 }, { "start": 24330.56, "end": 24333.66, "probability": 0.7324 }, { "start": 24333.72, "end": 24334.48, "probability": 0.7684 }, { "start": 24334.58, "end": 24335.48, "probability": 0.7373 }, { "start": 24336.9, "end": 24338.9, "probability": 0.9968 }, { "start": 24338.92, "end": 24342.84, "probability": 0.8896 }, { "start": 24342.9, "end": 24344.36, "probability": 0.7465 }, { "start": 24344.8, "end": 24346.76, "probability": 0.9889 }, { "start": 24346.9, "end": 24348.2, "probability": 0.672 }, { "start": 24349.32, "end": 24351.36, "probability": 0.9761 }, { "start": 24351.36, "end": 24353.32, "probability": 0.9047 }, { "start": 24353.5, "end": 24355.14, "probability": 0.9907 }, { "start": 24355.26, "end": 24355.72, "probability": 0.6966 }, { "start": 24355.74, "end": 24358.0, "probability": 0.9892 }, { "start": 24358.64, "end": 24360.42, "probability": 0.999 }, { "start": 24360.46, "end": 24361.16, "probability": 0.491 }, { "start": 24361.91, "end": 24366.18, "probability": 0.9924 }, { "start": 24366.28, "end": 24366.86, "probability": 0.5115 }, { "start": 24367.1, "end": 24368.2, "probability": 0.8091 }, { "start": 24368.24, "end": 24369.6, "probability": 0.8792 }, { "start": 24369.7, "end": 24370.72, "probability": 0.7891 }, { "start": 24371.02, "end": 24372.36, "probability": 0.6068 }, { "start": 24372.84, "end": 24374.04, "probability": 0.4755 }, { "start": 24374.3, "end": 24375.24, "probability": 0.8047 }, { "start": 24376.92, "end": 24378.5, "probability": 0.8115 }, { "start": 24378.7, "end": 24380.04, "probability": 0.9949 }, { "start": 24381.46, "end": 24382.78, "probability": 0.6611 }, { "start": 24383.84, "end": 24384.84, "probability": 0.9748 }, { "start": 24385.08, "end": 24385.94, "probability": 0.3562 }, { "start": 24386.46, "end": 24387.84, "probability": 0.8709 }, { "start": 24388.02, "end": 24389.06, "probability": 0.9604 }, { "start": 24389.1, "end": 24389.86, "probability": 0.7788 }, { "start": 24389.96, "end": 24391.22, "probability": 0.9574 }, { "start": 24391.26, "end": 24391.48, "probability": 0.6187 }, { "start": 24391.62, "end": 24391.72, "probability": 0.894 }, { "start": 24391.78, "end": 24395.9, "probability": 0.9223 }, { "start": 24396.44, "end": 24397.52, "probability": 0.782 }, { "start": 24398.48, "end": 24399.58, "probability": 0.8727 }, { "start": 24401.86, "end": 24402.68, "probability": 0.6694 }, { "start": 24402.78, "end": 24403.16, "probability": 0.97 }, { "start": 24403.26, "end": 24404.39, "probability": 0.9818 }, { "start": 24404.66, "end": 24405.56, "probability": 0.8205 }, { "start": 24405.66, "end": 24406.02, "probability": 0.7715 }, { "start": 24406.08, "end": 24406.98, "probability": 0.7379 }, { "start": 24407.02, "end": 24408.3, "probability": 0.6654 }, { "start": 24408.36, "end": 24410.1, "probability": 0.966 }, { "start": 24410.24, "end": 24410.4, "probability": 0.2242 }, { "start": 24411.3, "end": 24412.52, "probability": 0.8975 }, { "start": 24414.08, "end": 24416.96, "probability": 0.9845 }, { "start": 24416.96, "end": 24419.4, "probability": 0.9919 }, { "start": 24419.52, "end": 24420.4, "probability": 0.9971 }, { "start": 24421.4, "end": 24423.12, "probability": 0.731 }, { "start": 24423.9, "end": 24424.74, "probability": 0.9499 }, { "start": 24425.9, "end": 24426.76, "probability": 0.8807 }, { "start": 24428.42, "end": 24433.1, "probability": 0.9626 }, { "start": 24434.44, "end": 24434.94, "probability": 0.9094 }, { "start": 24436.72, "end": 24439.4, "probability": 0.7494 }, { "start": 24440.9, "end": 24442.28, "probability": 0.9864 }, { "start": 24442.74, "end": 24443.28, "probability": 0.8848 }, { "start": 24443.56, "end": 24445.06, "probability": 0.9189 }, { "start": 24445.16, "end": 24446.0, "probability": 0.7612 }, { "start": 24446.38, "end": 24446.58, "probability": 0.8123 }, { "start": 24446.66, "end": 24447.02, "probability": 0.7462 }, { "start": 24447.02, "end": 24447.12, "probability": 0.6643 }, { "start": 24447.24, "end": 24447.98, "probability": 0.9663 }, { "start": 24448.4, "end": 24450.2, "probability": 0.993 }, { "start": 24450.28, "end": 24451.1, "probability": 0.8325 }, { "start": 24451.48, "end": 24451.92, "probability": 0.9359 }, { "start": 24452.88, "end": 24455.5, "probability": 0.9581 }, { "start": 24455.5, "end": 24458.16, "probability": 0.9097 }, { "start": 24458.26, "end": 24458.62, "probability": 0.7513 }, { "start": 24458.76, "end": 24460.7, "probability": 0.8756 }, { "start": 24460.76, "end": 24461.58, "probability": 0.9754 }, { "start": 24461.7, "end": 24462.14, "probability": 0.5241 }, { "start": 24462.36, "end": 24466.74, "probability": 0.9735 }, { "start": 24467.24, "end": 24469.68, "probability": 0.751 }, { "start": 24469.78, "end": 24472.18, "probability": 0.959 }, { "start": 24472.28, "end": 24474.44, "probability": 0.8651 }, { "start": 24474.9, "end": 24476.38, "probability": 0.564 }, { "start": 24476.42, "end": 24477.46, "probability": 0.5565 }, { "start": 24477.74, "end": 24478.62, "probability": 0.9888 }, { "start": 24478.76, "end": 24481.18, "probability": 0.9946 }, { "start": 24481.44, "end": 24482.76, "probability": 0.8877 }, { "start": 24482.86, "end": 24483.61, "probability": 0.5915 }, { "start": 24484.68, "end": 24488.8, "probability": 0.9199 }, { "start": 24489.02, "end": 24491.98, "probability": 0.983 }, { "start": 24491.98, "end": 24494.94, "probability": 0.986 }, { "start": 24495.1, "end": 24496.28, "probability": 0.7982 }, { "start": 24496.4, "end": 24498.02, "probability": 0.8488 }, { "start": 24498.5, "end": 24499.2, "probability": 0.9829 }, { "start": 24500.22, "end": 24505.46, "probability": 0.9863 }, { "start": 24506.1, "end": 24508.22, "probability": 0.9482 }, { "start": 24509.0, "end": 24510.02, "probability": 0.963 }, { "start": 24510.3, "end": 24510.48, "probability": 0.7838 }, { "start": 24511.04, "end": 24512.38, "probability": 0.7253 }, { "start": 24515.58, "end": 24517.14, "probability": 0.8447 }, { "start": 24522.2, "end": 24524.1, "probability": 0.5462 }, { "start": 24525.32, "end": 24526.4, "probability": 0.2268 }, { "start": 24537.5, "end": 24538.66, "probability": 0.3905 }, { "start": 24540.32, "end": 24543.1, "probability": 0.7452 }, { "start": 24543.1, "end": 24545.66, "probability": 0.897 }, { "start": 24547.92, "end": 24550.42, "probability": 0.5236 }, { "start": 24551.34, "end": 24555.34, "probability": 0.9951 }, { "start": 24556.18, "end": 24558.52, "probability": 0.6749 }, { "start": 24559.84, "end": 24564.72, "probability": 0.9927 }, { "start": 24565.32, "end": 24567.72, "probability": 0.9774 }, { "start": 24569.08, "end": 24573.24, "probability": 0.9802 }, { "start": 24574.28, "end": 24576.16, "probability": 0.982 }, { "start": 24577.6, "end": 24579.32, "probability": 0.844 }, { "start": 24580.32, "end": 24581.9, "probability": 0.9385 }, { "start": 24582.7, "end": 24586.64, "probability": 0.9896 }, { "start": 24587.22, "end": 24589.64, "probability": 0.9844 }, { "start": 24591.46, "end": 24593.88, "probability": 0.957 }, { "start": 24594.66, "end": 24595.64, "probability": 0.9269 }, { "start": 24595.74, "end": 24597.54, "probability": 0.8855 }, { "start": 24597.84, "end": 24600.32, "probability": 0.7556 }, { "start": 24600.68, "end": 24603.92, "probability": 0.9812 }, { "start": 24604.86, "end": 24606.24, "probability": 0.9709 }, { "start": 24607.08, "end": 24607.3, "probability": 0.9847 }, { "start": 24608.2, "end": 24610.1, "probability": 0.8576 }, { "start": 24610.72, "end": 24611.86, "probability": 0.8477 }, { "start": 24612.46, "end": 24613.0, "probability": 0.8742 }, { "start": 24614.22, "end": 24615.28, "probability": 0.5781 }, { "start": 24616.6, "end": 24617.28, "probability": 0.7774 }, { "start": 24617.78, "end": 24618.5, "probability": 0.592 }, { "start": 24618.64, "end": 24624.7, "probability": 0.989 }, { "start": 24625.94, "end": 24626.22, "probability": 0.9386 }, { "start": 24627.54, "end": 24628.56, "probability": 0.9812 }, { "start": 24629.24, "end": 24631.06, "probability": 0.9941 }, { "start": 24632.34, "end": 24634.18, "probability": 0.9976 }, { "start": 24634.78, "end": 24635.54, "probability": 0.9826 }, { "start": 24637.2, "end": 24638.78, "probability": 0.9489 }, { "start": 24639.52, "end": 24640.24, "probability": 0.7718 }, { "start": 24640.92, "end": 24641.52, "probability": 0.8395 }, { "start": 24642.66, "end": 24643.8, "probability": 0.7422 }, { "start": 24644.62, "end": 24646.12, "probability": 0.9886 }, { "start": 24646.28, "end": 24647.22, "probability": 0.8831 }, { "start": 24647.58, "end": 24652.3, "probability": 0.9003 }, { "start": 24652.82, "end": 24653.32, "probability": 0.7406 }, { "start": 24654.24, "end": 24657.88, "probability": 0.9431 }, { "start": 24658.06, "end": 24659.12, "probability": 0.7617 }, { "start": 24659.68, "end": 24660.76, "probability": 0.7975 }, { "start": 24661.36, "end": 24662.26, "probability": 0.8497 }, { "start": 24663.0, "end": 24667.22, "probability": 0.9885 }, { "start": 24668.88, "end": 24670.24, "probability": 0.9958 }, { "start": 24670.78, "end": 24672.42, "probability": 0.9989 }, { "start": 24673.0, "end": 24673.7, "probability": 0.9941 }, { "start": 24674.56, "end": 24678.48, "probability": 0.9825 }, { "start": 24679.16, "end": 24680.86, "probability": 0.7557 }, { "start": 24681.5, "end": 24683.22, "probability": 0.7442 }, { "start": 24683.74, "end": 24686.26, "probability": 0.9291 }, { "start": 24688.08, "end": 24688.6, "probability": 0.636 }, { "start": 24690.5, "end": 24693.9, "probability": 0.9959 }, { "start": 24694.96, "end": 24696.0, "probability": 0.9173 }, { "start": 24696.8, "end": 24700.54, "probability": 0.8735 }, { "start": 24701.14, "end": 24702.08, "probability": 0.9736 }, { "start": 24702.48, "end": 24703.52, "probability": 0.9896 }, { "start": 24704.4, "end": 24704.83, "probability": 0.9803 }, { "start": 24705.9, "end": 24706.6, "probability": 0.912 }, { "start": 24707.84, "end": 24709.62, "probability": 0.9716 }, { "start": 24711.96, "end": 24714.82, "probability": 0.9727 }, { "start": 24715.52, "end": 24718.8, "probability": 0.9888 }, { "start": 24719.22, "end": 24720.2, "probability": 0.9898 }, { "start": 24720.58, "end": 24721.24, "probability": 0.8505 }, { "start": 24721.34, "end": 24721.86, "probability": 0.8779 }, { "start": 24722.84, "end": 24725.38, "probability": 0.9767 }, { "start": 24725.62, "end": 24726.0, "probability": 0.3422 }, { "start": 24726.54, "end": 24729.6, "probability": 0.9816 }, { "start": 24729.66, "end": 24730.54, "probability": 0.8656 }, { "start": 24731.06, "end": 24732.12, "probability": 0.9763 }, { "start": 24732.22, "end": 24732.68, "probability": 0.9859 }, { "start": 24733.02, "end": 24733.58, "probability": 0.9898 }, { "start": 24733.68, "end": 24734.2, "probability": 0.864 }, { "start": 24734.24, "end": 24734.68, "probability": 0.9615 }, { "start": 24735.04, "end": 24735.48, "probability": 0.5966 }, { "start": 24738.18, "end": 24741.74, "probability": 0.8301 }, { "start": 24743.08, "end": 24743.95, "probability": 0.9595 }, { "start": 24744.12, "end": 24744.56, "probability": 0.9648 }, { "start": 24744.76, "end": 24745.14, "probability": 0.7732 }, { "start": 24745.24, "end": 24746.3, "probability": 0.7614 }, { "start": 24748.22, "end": 24749.78, "probability": 0.7508 }, { "start": 24750.76, "end": 24753.86, "probability": 0.9603 }, { "start": 24754.52, "end": 24757.6, "probability": 0.8268 }, { "start": 24758.3, "end": 24760.14, "probability": 0.9626 }, { "start": 24761.1, "end": 24765.32, "probability": 0.9487 }, { "start": 24765.42, "end": 24766.48, "probability": 0.9995 }, { "start": 24767.84, "end": 24769.28, "probability": 0.9904 }, { "start": 24769.74, "end": 24771.92, "probability": 0.9899 }, { "start": 24773.4, "end": 24774.92, "probability": 0.772 }, { "start": 24775.46, "end": 24775.76, "probability": 0.4707 }, { "start": 24776.56, "end": 24779.76, "probability": 0.9949 }, { "start": 24780.3, "end": 24783.66, "probability": 0.9921 }, { "start": 24783.98, "end": 24784.8, "probability": 0.998 }, { "start": 24785.4, "end": 24787.42, "probability": 0.9791 }, { "start": 24788.32, "end": 24789.94, "probability": 0.9057 }, { "start": 24790.94, "end": 24792.18, "probability": 0.9351 }, { "start": 24792.88, "end": 24794.2, "probability": 0.9459 }, { "start": 24794.94, "end": 24797.3, "probability": 0.8468 }, { "start": 24798.04, "end": 24802.02, "probability": 0.9235 }, { "start": 24802.12, "end": 24803.16, "probability": 0.4421 }, { "start": 24803.76, "end": 24805.8, "probability": 0.6576 }, { "start": 24806.34, "end": 24807.9, "probability": 0.6568 }, { "start": 24809.82, "end": 24811.22, "probability": 0.9107 }, { "start": 24811.98, "end": 24814.38, "probability": 0.9893 }, { "start": 24816.2, "end": 24819.0, "probability": 0.8755 }, { "start": 24819.08, "end": 24820.82, "probability": 0.7743 }, { "start": 24823.06, "end": 24825.44, "probability": 0.9245 }, { "start": 24825.44, "end": 24826.4, "probability": 0.0831 }, { "start": 24826.4, "end": 24826.8, "probability": 0.5639 }, { "start": 24827.38, "end": 24829.58, "probability": 0.7886 }, { "start": 24830.28, "end": 24832.3, "probability": 0.9733 }, { "start": 24833.02, "end": 24833.2, "probability": 0.6455 }, { "start": 24833.98, "end": 24834.54, "probability": 0.6693 }, { "start": 24834.56, "end": 24837.16, "probability": 0.9827 }, { "start": 24837.44, "end": 24839.1, "probability": 0.6193 }, { "start": 24839.34, "end": 24840.24, "probability": 0.6583 }, { "start": 24840.4, "end": 24841.9, "probability": 0.8184 }, { "start": 24842.0, "end": 24844.16, "probability": 0.9215 }, { "start": 24844.76, "end": 24847.04, "probability": 0.8977 }, { "start": 24847.34, "end": 24849.18, "probability": 0.7708 }, { "start": 24852.68, "end": 24856.06, "probability": 0.8493 }, { "start": 24863.27, "end": 24865.76, "probability": 0.1393 }, { "start": 24884.36, "end": 24888.14, "probability": 0.9971 }, { "start": 24889.26, "end": 24890.72, "probability": 0.8826 }, { "start": 24891.54, "end": 24894.34, "probability": 0.9185 }, { "start": 24895.76, "end": 24898.92, "probability": 0.9562 }, { "start": 24900.88, "end": 24907.12, "probability": 0.9663 }, { "start": 24907.84, "end": 24909.74, "probability": 0.8694 }, { "start": 24910.74, "end": 24916.82, "probability": 0.9938 }, { "start": 24917.02, "end": 24918.52, "probability": 0.5407 }, { "start": 24919.1, "end": 24924.36, "probability": 0.9489 }, { "start": 24925.12, "end": 24927.58, "probability": 0.8916 }, { "start": 24928.98, "end": 24930.38, "probability": 0.896 }, { "start": 24930.88, "end": 24932.02, "probability": 0.6364 }, { "start": 24932.16, "end": 24933.44, "probability": 0.9607 }, { "start": 24933.62, "end": 24935.46, "probability": 0.9495 }, { "start": 24938.06, "end": 24940.2, "probability": 0.958 }, { "start": 24940.72, "end": 24942.9, "probability": 0.9707 }, { "start": 24943.6, "end": 24944.51, "probability": 0.834 }, { "start": 24945.8, "end": 24948.76, "probability": 0.968 }, { "start": 24949.54, "end": 24949.54, "probability": 0.5917 }, { "start": 24949.74, "end": 24951.78, "probability": 0.9531 }, { "start": 24952.16, "end": 24955.18, "probability": 0.9465 }, { "start": 24955.76, "end": 24956.86, "probability": 0.8183 }, { "start": 24957.54, "end": 24959.24, "probability": 0.9956 }, { "start": 24959.32, "end": 24959.92, "probability": 0.8748 }, { "start": 24960.06, "end": 24960.66, "probability": 0.8736 }, { "start": 24961.54, "end": 24963.79, "probability": 0.9432 }, { "start": 24964.5, "end": 24966.64, "probability": 0.8394 }, { "start": 24967.94, "end": 24968.72, "probability": 0.6996 }, { "start": 24970.24, "end": 24972.48, "probability": 0.75 }, { "start": 24973.14, "end": 24976.92, "probability": 0.965 }, { "start": 24979.04, "end": 24982.88, "probability": 0.8765 }, { "start": 24983.8, "end": 24988.4, "probability": 0.9802 }, { "start": 24989.86, "end": 24990.62, "probability": 0.817 }, { "start": 24991.24, "end": 24991.94, "probability": 0.88 }, { "start": 24992.76, "end": 24996.82, "probability": 0.8978 }, { "start": 24998.0, "end": 25001.86, "probability": 0.9411 }, { "start": 25002.34, "end": 25004.24, "probability": 0.4007 }, { "start": 25004.42, "end": 25006.04, "probability": 0.9114 }, { "start": 25006.92, "end": 25013.44, "probability": 0.8793 }, { "start": 25014.74, "end": 25017.92, "probability": 0.9949 }, { "start": 25018.22, "end": 25021.38, "probability": 0.9945 }, { "start": 25021.4, "end": 25025.4, "probability": 0.9837 }, { "start": 25026.44, "end": 25027.16, "probability": 0.703 }, { "start": 25028.3, "end": 25029.48, "probability": 0.7118 }, { "start": 25030.28, "end": 25032.38, "probability": 0.9937 }, { "start": 25033.1, "end": 25035.08, "probability": 0.6142 }, { "start": 25036.46, "end": 25037.4, "probability": 0.5372 }, { "start": 25037.96, "end": 25041.46, "probability": 0.994 }, { "start": 25042.06, "end": 25044.88, "probability": 0.974 }, { "start": 25045.62, "end": 25046.5, "probability": 0.6403 }, { "start": 25048.62, "end": 25050.06, "probability": 0.6962 }, { "start": 25051.36, "end": 25052.74, "probability": 0.9821 }, { "start": 25054.38, "end": 25058.64, "probability": 0.9734 }, { "start": 25058.64, "end": 25064.84, "probability": 0.9539 }, { "start": 25065.8, "end": 25071.58, "probability": 0.9901 }, { "start": 25072.02, "end": 25075.46, "probability": 0.9894 }, { "start": 25075.94, "end": 25077.22, "probability": 0.9761 }, { "start": 25078.64, "end": 25085.62, "probability": 0.9507 }, { "start": 25086.86, "end": 25087.4, "probability": 0.5319 }, { "start": 25088.08, "end": 25089.0, "probability": 0.8972 }, { "start": 25089.9, "end": 25091.08, "probability": 0.6631 }, { "start": 25092.56, "end": 25095.6, "probability": 0.7636 }, { "start": 25096.52, "end": 25099.86, "probability": 0.7473 }, { "start": 25100.4, "end": 25101.21, "probability": 0.8647 }, { "start": 25103.14, "end": 25103.14, "probability": 0.9722 }, { "start": 25103.78, "end": 25108.12, "probability": 0.9889 }, { "start": 25109.22, "end": 25111.28, "probability": 0.4309 }, { "start": 25112.74, "end": 25115.22, "probability": 0.9553 }, { "start": 25115.22, "end": 25118.1, "probability": 0.6365 }, { "start": 25119.02, "end": 25121.6, "probability": 0.9644 }, { "start": 25122.22, "end": 25124.24, "probability": 0.9636 }, { "start": 25124.56, "end": 25126.5, "probability": 0.9375 }, { "start": 25126.86, "end": 25129.96, "probability": 0.9619 }, { "start": 25131.88, "end": 25132.68, "probability": 0.6606 }, { "start": 25133.36, "end": 25138.4, "probability": 0.994 }, { "start": 25139.1, "end": 25140.84, "probability": 0.9457 }, { "start": 25141.44, "end": 25143.62, "probability": 0.9655 }, { "start": 25144.2, "end": 25147.64, "probability": 0.9852 }, { "start": 25149.28, "end": 25150.16, "probability": 0.7422 }, { "start": 25151.42, "end": 25155.58, "probability": 0.9888 }, { "start": 25156.48, "end": 25160.54, "probability": 0.9556 }, { "start": 25161.18, "end": 25162.54, "probability": 0.943 }, { "start": 25163.14, "end": 25164.81, "probability": 0.9863 }, { "start": 25165.46, "end": 25168.18, "probability": 0.1635 }, { "start": 25168.18, "end": 25171.48, "probability": 0.7749 }, { "start": 25171.96, "end": 25174.34, "probability": 0.8541 }, { "start": 25174.86, "end": 25179.86, "probability": 0.9365 }, { "start": 25181.72, "end": 25184.6, "probability": 0.9492 }, { "start": 25184.7, "end": 25185.34, "probability": 0.652 }, { "start": 25185.64, "end": 25188.72, "probability": 0.989 }, { "start": 25189.8, "end": 25191.22, "probability": 0.6322 }, { "start": 25192.82, "end": 25196.3, "probability": 0.8752 }, { "start": 25227.18, "end": 25228.26, "probability": 0.5942 }, { "start": 25231.22, "end": 25233.3, "probability": 0.8479 }, { "start": 25236.52, "end": 25237.62, "probability": 0.9503 }, { "start": 25238.7, "end": 25239.14, "probability": 0.9146 }, { "start": 25242.32, "end": 25243.34, "probability": 0.9644 }, { "start": 25243.6, "end": 25246.2, "probability": 0.9937 }, { "start": 25247.42, "end": 25248.98, "probability": 0.9781 }, { "start": 25250.48, "end": 25252.08, "probability": 0.7451 }, { "start": 25253.2, "end": 25257.48, "probability": 0.9927 }, { "start": 25259.96, "end": 25262.0, "probability": 0.9982 }, { "start": 25263.84, "end": 25264.62, "probability": 0.9277 }, { "start": 25266.0, "end": 25270.62, "probability": 0.9983 }, { "start": 25271.78, "end": 25273.44, "probability": 0.8962 }, { "start": 25274.48, "end": 25277.28, "probability": 0.8381 }, { "start": 25278.06, "end": 25280.28, "probability": 0.9608 }, { "start": 25281.2, "end": 25281.98, "probability": 0.9926 }, { "start": 25282.88, "end": 25284.24, "probability": 0.9594 }, { "start": 25285.84, "end": 25289.6, "probability": 0.9988 }, { "start": 25290.52, "end": 25292.08, "probability": 0.9672 }, { "start": 25294.7, "end": 25299.76, "probability": 0.9927 }, { "start": 25301.2, "end": 25305.24, "probability": 0.8849 }, { "start": 25305.86, "end": 25307.32, "probability": 0.9761 }, { "start": 25308.46, "end": 25311.48, "probability": 0.9764 }, { "start": 25312.0, "end": 25313.7, "probability": 0.9808 }, { "start": 25315.48, "end": 25316.24, "probability": 0.5925 }, { "start": 25317.04, "end": 25317.44, "probability": 0.7581 }, { "start": 25318.22, "end": 25318.98, "probability": 0.5503 }, { "start": 25320.16, "end": 25320.52, "probability": 0.9603 }, { "start": 25320.9, "end": 25325.58, "probability": 0.9981 }, { "start": 25326.36, "end": 25328.04, "probability": 0.9889 }, { "start": 25329.12, "end": 25332.72, "probability": 0.9975 }, { "start": 25332.72, "end": 25335.94, "probability": 0.9983 }, { "start": 25336.52, "end": 25339.84, "probability": 0.9443 }, { "start": 25340.42, "end": 25342.06, "probability": 0.7634 }, { "start": 25342.16, "end": 25344.86, "probability": 0.8848 }, { "start": 25345.58, "end": 25348.2, "probability": 0.9912 }, { "start": 25349.2, "end": 25352.72, "probability": 0.9974 }, { "start": 25352.72, "end": 25357.58, "probability": 0.9829 }, { "start": 25358.52, "end": 25360.36, "probability": 0.7797 }, { "start": 25361.48, "end": 25363.9, "probability": 0.8853 }, { "start": 25365.18, "end": 25368.86, "probability": 0.993 }, { "start": 25370.74, "end": 25371.88, "probability": 0.7926 }, { "start": 25372.3, "end": 25373.62, "probability": 0.8583 }, { "start": 25373.94, "end": 25375.82, "probability": 0.9871 }, { "start": 25376.72, "end": 25381.52, "probability": 0.9969 }, { "start": 25382.82, "end": 25384.22, "probability": 0.8493 }, { "start": 25385.36, "end": 25386.52, "probability": 0.7255 }, { "start": 25387.52, "end": 25389.78, "probability": 0.8729 }, { "start": 25390.5, "end": 25395.44, "probability": 0.9834 }, { "start": 25396.22, "end": 25398.92, "probability": 0.8261 }, { "start": 25400.05, "end": 25403.04, "probability": 0.9903 }, { "start": 25404.64, "end": 25407.94, "probability": 0.9978 }, { "start": 25407.94, "end": 25411.1, "probability": 0.9865 }, { "start": 25411.98, "end": 25415.42, "probability": 0.9893 }, { "start": 25415.42, "end": 25418.84, "probability": 0.9809 }, { "start": 25419.38, "end": 25422.44, "probability": 0.9399 }, { "start": 25423.04, "end": 25424.58, "probability": 0.9857 }, { "start": 25425.52, "end": 25427.4, "probability": 0.8017 }, { "start": 25428.3, "end": 25433.08, "probability": 0.9958 }, { "start": 25434.24, "end": 25437.68, "probability": 0.9951 }, { "start": 25438.58, "end": 25442.24, "probability": 0.9977 }, { "start": 25442.94, "end": 25445.78, "probability": 0.9951 }, { "start": 25446.42, "end": 25450.36, "probability": 0.9988 }, { "start": 25451.26, "end": 25457.0, "probability": 0.9944 }, { "start": 25457.0, "end": 25462.02, "probability": 0.9954 }, { "start": 25463.22, "end": 25464.74, "probability": 0.9961 }, { "start": 25465.34, "end": 25466.6, "probability": 0.9513 }, { "start": 25468.6, "end": 25468.72, "probability": 0.5966 }, { "start": 25471.46, "end": 25472.4, "probability": 0.6556 }, { "start": 25472.6, "end": 25476.0, "probability": 0.9696 }, { "start": 25476.96, "end": 25478.7, "probability": 0.5402 }, { "start": 25479.64, "end": 25481.88, "probability": 0.9772 }, { "start": 25483.24, "end": 25486.7, "probability": 0.9489 }, { "start": 25488.04, "end": 25491.32, "probability": 0.9455 }, { "start": 25492.38, "end": 25493.68, "probability": 0.8498 }, { "start": 25494.58, "end": 25496.46, "probability": 0.9263 }, { "start": 25497.02, "end": 25502.66, "probability": 0.99 }, { "start": 25502.88, "end": 25503.14, "probability": 0.8389 }, { "start": 25503.56, "end": 25504.36, "probability": 0.6938 }, { "start": 25505.02, "end": 25506.36, "probability": 0.6939 }, { "start": 25507.14, "end": 25507.62, "probability": 0.3576 }, { "start": 25507.84, "end": 25510.26, "probability": 0.7036 }, { "start": 25511.42, "end": 25511.58, "probability": 0.7862 }, { "start": 25523.52, "end": 25529.06, "probability": 0.6928 }, { "start": 25533.88, "end": 25535.48, "probability": 0.7016 }, { "start": 25537.33, "end": 25539.58, "probability": 0.9922 }, { "start": 25542.3, "end": 25542.64, "probability": 0.8008 }, { "start": 25542.72, "end": 25543.76, "probability": 0.9984 }, { "start": 25543.9, "end": 25546.99, "probability": 0.7234 }, { "start": 25548.6, "end": 25549.48, "probability": 0.7379 }, { "start": 25550.82, "end": 25552.82, "probability": 0.9968 }, { "start": 25553.3, "end": 25554.42, "probability": 0.9695 }, { "start": 25556.56, "end": 25556.6, "probability": 0.9009 }, { "start": 25559.42, "end": 25559.54, "probability": 0.8008 }, { "start": 25562.4, "end": 25563.14, "probability": 0.9182 }, { "start": 25563.18, "end": 25563.96, "probability": 0.999 }, { "start": 25564.02, "end": 25565.37, "probability": 0.9137 }, { "start": 25565.96, "end": 25567.38, "probability": 0.9528 }, { "start": 25568.04, "end": 25570.2, "probability": 0.9982 }, { "start": 25570.66, "end": 25571.34, "probability": 0.718 }, { "start": 25572.22, "end": 25573.68, "probability": 0.9891 }, { "start": 25576.37, "end": 25578.82, "probability": 0.9373 }, { "start": 25579.92, "end": 25582.38, "probability": 0.9855 }, { "start": 25584.24, "end": 25584.28, "probability": 0.7379 }, { "start": 25584.42, "end": 25588.46, "probability": 0.9786 }, { "start": 25590.44, "end": 25591.24, "probability": 0.9067 }, { "start": 25591.78, "end": 25592.42, "probability": 0.9052 }, { "start": 25593.3, "end": 25594.24, "probability": 0.8097 }, { "start": 25594.54, "end": 25598.58, "probability": 0.9336 }, { "start": 25599.3, "end": 25601.2, "probability": 0.7039 }, { "start": 25601.84, "end": 25602.46, "probability": 0.8959 }, { "start": 25603.22, "end": 25605.28, "probability": 0.9437 }, { "start": 25605.56, "end": 25606.64, "probability": 0.9186 }, { "start": 25606.78, "end": 25607.22, "probability": 0.9852 }, { "start": 25608.4, "end": 25612.12, "probability": 0.9751 }, { "start": 25613.28, "end": 25616.58, "probability": 0.9927 }, { "start": 25616.58, "end": 25620.44, "probability": 0.9922 }, { "start": 25621.68, "end": 25622.3, "probability": 0.4472 }, { "start": 25623.14, "end": 25625.76, "probability": 0.9841 }, { "start": 25626.48, "end": 25628.04, "probability": 0.746 }, { "start": 25629.08, "end": 25630.14, "probability": 0.9637 }, { "start": 25630.62, "end": 25636.34, "probability": 0.9492 }, { "start": 25636.42, "end": 25636.6, "probability": 0.3359 }, { "start": 25636.68, "end": 25637.48, "probability": 0.8192 }, { "start": 25638.36, "end": 25640.04, "probability": 0.9604 }, { "start": 25641.56, "end": 25643.94, "probability": 0.9829 }, { "start": 25644.54, "end": 25646.96, "probability": 0.979 }, { "start": 25647.5, "end": 25649.84, "probability": 0.9966 }, { "start": 25652.76, "end": 25653.7, "probability": 0.5051 }, { "start": 25653.7, "end": 25654.64, "probability": 0.3468 }, { "start": 25654.68, "end": 25658.76, "probability": 0.9945 }, { "start": 25659.96, "end": 25662.36, "probability": 0.9966 }, { "start": 25662.98, "end": 25664.9, "probability": 0.7681 }, { "start": 25665.78, "end": 25668.78, "probability": 0.9266 }, { "start": 25669.8, "end": 25672.34, "probability": 0.9912 }, { "start": 25672.46, "end": 25672.62, "probability": 0.5027 }, { "start": 25673.28, "end": 25676.62, "probability": 0.9689 }, { "start": 25676.62, "end": 25679.5, "probability": 0.8768 }, { "start": 25679.98, "end": 25681.04, "probability": 0.9011 }, { "start": 25681.62, "end": 25683.72, "probability": 0.8324 }, { "start": 25685.4, "end": 25686.5, "probability": 0.9498 }, { "start": 25687.38, "end": 25692.38, "probability": 0.9779 }, { "start": 25693.26, "end": 25693.74, "probability": 0.4697 }, { "start": 25693.82, "end": 25695.9, "probability": 0.9609 }, { "start": 25695.94, "end": 25698.58, "probability": 0.6301 }, { "start": 25698.68, "end": 25700.92, "probability": 0.9697 }, { "start": 25701.44, "end": 25702.94, "probability": 0.9431 }, { "start": 25703.14, "end": 25703.86, "probability": 0.4424 }, { "start": 25703.88, "end": 25705.0, "probability": 0.9623 }, { "start": 25705.1, "end": 25706.3, "probability": 0.9871 }, { "start": 25707.34, "end": 25709.26, "probability": 0.9977 }, { "start": 25709.32, "end": 25714.22, "probability": 0.9983 }, { "start": 25715.94, "end": 25717.12, "probability": 0.998 }, { "start": 25717.68, "end": 25719.76, "probability": 0.998 }, { "start": 25719.8, "end": 25721.1, "probability": 0.9822 }, { "start": 25721.16, "end": 25721.74, "probability": 0.8539 }, { "start": 25721.76, "end": 25724.32, "probability": 0.9861 }, { "start": 25724.62, "end": 25725.06, "probability": 0.8913 }, { "start": 25726.52, "end": 25727.22, "probability": 0.5615 }, { "start": 25727.88, "end": 25730.72, "probability": 0.7061 }, { "start": 25730.88, "end": 25735.1, "probability": 0.9859 }, { "start": 25735.24, "end": 25735.34, "probability": 0.7314 }, { "start": 25736.06, "end": 25737.67, "probability": 0.8501 }, { "start": 25738.5, "end": 25741.26, "probability": 0.9977 }, { "start": 25741.78, "end": 25746.24, "probability": 0.9794 }, { "start": 25747.16, "end": 25749.38, "probability": 0.9219 }, { "start": 25749.84, "end": 25751.3, "probability": 0.6849 }, { "start": 25752.32, "end": 25753.44, "probability": 0.9775 }, { "start": 25753.66, "end": 25758.86, "probability": 0.9993 }, { "start": 25759.68, "end": 25760.74, "probability": 0.6879 }, { "start": 25761.64, "end": 25762.64, "probability": 0.3336 }, { "start": 25763.22, "end": 25765.12, "probability": 0.8737 }, { "start": 25765.38, "end": 25765.74, "probability": 0.7695 }, { "start": 25771.58, "end": 25777.56, "probability": 0.7252 }, { "start": 25778.34, "end": 25780.48, "probability": 0.9186 }, { "start": 25781.16, "end": 25782.52, "probability": 0.6597 }, { "start": 25783.38, "end": 25787.04, "probability": 0.5013 }, { "start": 25787.74, "end": 25792.08, "probability": 0.8875 }, { "start": 25792.9, "end": 25795.74, "probability": 0.1484 }, { "start": 25812.56, "end": 25813.66, "probability": 0.7478 }, { "start": 25815.02, "end": 25816.62, "probability": 0.7608 }, { "start": 25818.94, "end": 25819.64, "probability": 0.9713 }, { "start": 25822.38, "end": 25823.22, "probability": 0.761 }, { "start": 25823.82, "end": 25824.73, "probability": 0.6746 }, { "start": 25825.62, "end": 25826.44, "probability": 0.7652 }, { "start": 25827.69, "end": 25828.54, "probability": 0.9155 }, { "start": 25828.62, "end": 25829.22, "probability": 0.5245 }, { "start": 25829.98, "end": 25832.44, "probability": 0.9268 }, { "start": 25834.3, "end": 25834.3, "probability": 0.9854 }, { "start": 25835.36, "end": 25836.86, "probability": 0.9634 }, { "start": 25837.42, "end": 25838.46, "probability": 0.4616 }, { "start": 25839.08, "end": 25839.96, "probability": 0.9053 }, { "start": 25840.84, "end": 25845.38, "probability": 0.9483 }, { "start": 25846.74, "end": 25849.5, "probability": 0.915 }, { "start": 25849.62, "end": 25851.92, "probability": 0.4711 }, { "start": 25854.68, "end": 25855.34, "probability": 0.2834 }, { "start": 25856.4, "end": 25858.3, "probability": 0.9709 }, { "start": 25859.02, "end": 25860.15, "probability": 0.8644 }, { "start": 25861.2, "end": 25862.0, "probability": 0.9474 }, { "start": 25863.08, "end": 25863.24, "probability": 0.4829 }, { "start": 25864.86, "end": 25865.8, "probability": 0.722 }, { "start": 25867.96, "end": 25872.06, "probability": 0.9478 }, { "start": 25872.74, "end": 25874.12, "probability": 0.9739 }, { "start": 25875.3, "end": 25877.2, "probability": 0.8556 }, { "start": 25878.2, "end": 25881.36, "probability": 0.9949 }, { "start": 25881.36, "end": 25883.68, "probability": 0.9786 }, { "start": 25884.68, "end": 25888.28, "probability": 0.9526 }, { "start": 25888.68, "end": 25889.39, "probability": 0.3415 }, { "start": 25890.78, "end": 25891.22, "probability": 0.5685 }, { "start": 25892.24, "end": 25894.46, "probability": 0.9783 }, { "start": 25895.54, "end": 25896.2, "probability": 0.98 }, { "start": 25896.88, "end": 25900.82, "probability": 0.996 }, { "start": 25901.36, "end": 25902.6, "probability": 0.6667 }, { "start": 25903.46, "end": 25904.04, "probability": 0.9902 }, { "start": 25905.56, "end": 25906.34, "probability": 0.614 }, { "start": 25907.7, "end": 25910.62, "probability": 0.7767 }, { "start": 25911.14, "end": 25913.0, "probability": 0.9056 }, { "start": 25915.46, "end": 25916.98, "probability": 0.8645 }, { "start": 25919.68, "end": 25921.52, "probability": 0.6994 }, { "start": 25923.06, "end": 25927.02, "probability": 0.9766 }, { "start": 25927.1, "end": 25928.88, "probability": 0.734 }, { "start": 25928.98, "end": 25929.52, "probability": 0.8855 }, { "start": 25929.88, "end": 25931.42, "probability": 0.9714 }, { "start": 25932.52, "end": 25933.82, "probability": 0.995 }, { "start": 25934.76, "end": 25936.26, "probability": 0.696 }, { "start": 25937.14, "end": 25938.9, "probability": 0.9512 }, { "start": 25939.66, "end": 25939.74, "probability": 0.6753 }, { "start": 25939.82, "end": 25940.48, "probability": 0.8311 }, { "start": 25940.5, "end": 25945.22, "probability": 0.9001 }, { "start": 25945.52, "end": 25946.12, "probability": 0.8747 }, { "start": 25947.86, "end": 25949.9, "probability": 0.823 }, { "start": 25949.9, "end": 25951.68, "probability": 0.9047 }, { "start": 25953.0, "end": 25954.8, "probability": 0.9929 }, { "start": 25955.26, "end": 25956.88, "probability": 0.6532 }, { "start": 25957.86, "end": 25958.4, "probability": 0.5381 }, { "start": 25958.4, "end": 25958.98, "probability": 0.246 }, { "start": 25959.24, "end": 25959.42, "probability": 0.2937 }, { "start": 25959.5, "end": 25961.3, "probability": 0.9937 }, { "start": 25961.78, "end": 25961.8, "probability": 0.793 }, { "start": 25962.36, "end": 25965.02, "probability": 0.733 }, { "start": 25967.1, "end": 25967.26, "probability": 0.4113 }, { "start": 25968.4, "end": 25969.02, "probability": 0.7232 }, { "start": 25970.76, "end": 25975.32, "probability": 0.9937 }, { "start": 25976.48, "end": 25979.49, "probability": 0.9937 }, { "start": 25981.92, "end": 25982.82, "probability": 0.4219 }, { "start": 25983.38, "end": 25984.7, "probability": 0.7218 }, { "start": 25985.7, "end": 25990.14, "probability": 0.9966 }, { "start": 25992.38, "end": 25992.82, "probability": 0.8786 }, { "start": 25992.92, "end": 25993.98, "probability": 0.9431 }, { "start": 25994.06, "end": 25994.64, "probability": 0.7625 }, { "start": 25994.94, "end": 25998.04, "probability": 0.9929 }, { "start": 25999.84, "end": 26001.12, "probability": 0.7938 }, { "start": 26002.22, "end": 26003.32, "probability": 0.9592 }, { "start": 26003.88, "end": 26005.44, "probability": 0.5474 }, { "start": 26005.54, "end": 26007.59, "probability": 0.9554 }, { "start": 26009.02, "end": 26012.08, "probability": 0.6378 }, { "start": 26012.2, "end": 26013.0, "probability": 0.7467 }, { "start": 26013.52, "end": 26015.52, "probability": 0.8918 }, { "start": 26016.32, "end": 26018.44, "probability": 0.6683 }, { "start": 26018.44, "end": 26023.12, "probability": 0.8198 }, { "start": 26023.56, "end": 26024.92, "probability": 0.9116 }, { "start": 26025.22, "end": 26026.94, "probability": 0.9798 }, { "start": 26027.34, "end": 26031.38, "probability": 0.9824 }, { "start": 26031.58, "end": 26035.4, "probability": 0.9649 }, { "start": 26035.7, "end": 26036.26, "probability": 0.7228 }, { "start": 26042.2, "end": 26042.6, "probability": 0.8612 }, { "start": 26042.7, "end": 26043.18, "probability": 0.6179 }, { "start": 26043.44, "end": 26043.96, "probability": 0.8179 }, { "start": 26044.08, "end": 26044.64, "probability": 0.4899 }, { "start": 26045.06, "end": 26045.87, "probability": 0.9644 }, { "start": 26049.12, "end": 26051.06, "probability": 0.9818 }, { "start": 26051.94, "end": 26052.24, "probability": 0.7495 }, { "start": 26052.68, "end": 26053.74, "probability": 0.9791 }, { "start": 26055.8, "end": 26055.9, "probability": 0.7126 }, { "start": 26058.14, "end": 26059.08, "probability": 0.4775 }, { "start": 26060.38, "end": 26061.95, "probability": 0.9623 }, { "start": 26063.36, "end": 26064.16, "probability": 0.8861 }, { "start": 26065.96, "end": 26066.64, "probability": 0.7701 }, { "start": 26067.88, "end": 26068.88, "probability": 0.8118 }, { "start": 26070.7, "end": 26072.7, "probability": 0.967 }, { "start": 26073.84, "end": 26075.16, "probability": 0.9348 }, { "start": 26075.78, "end": 26077.7, "probability": 0.8962 }, { "start": 26078.18, "end": 26078.4, "probability": 0.0677 }, { "start": 26078.5, "end": 26079.44, "probability": 0.3577 }, { "start": 26079.54, "end": 26079.96, "probability": 0.3078 }, { "start": 26080.46, "end": 26080.86, "probability": 0.7361 }, { "start": 26081.3, "end": 26081.52, "probability": 0.7617 }, { "start": 26081.82, "end": 26081.98, "probability": 0.6322 }, { "start": 26082.52, "end": 26085.9, "probability": 0.9725 }, { "start": 26086.56, "end": 26089.28, "probability": 0.9746 }, { "start": 26089.96, "end": 26091.38, "probability": 0.8964 }, { "start": 26091.4, "end": 26091.86, "probability": 0.1845 }, { "start": 26092.78, "end": 26093.64, "probability": 0.7921 }, { "start": 26096.36, "end": 26097.88, "probability": 0.9884 }, { "start": 26099.84, "end": 26102.3, "probability": 0.9731 }, { "start": 26102.8, "end": 26103.32, "probability": 0.9797 }, { "start": 26103.92, "end": 26105.52, "probability": 0.9843 }, { "start": 26106.78, "end": 26108.02, "probability": 0.9897 }, { "start": 26109.68, "end": 26111.02, "probability": 0.925 }, { "start": 26112.08, "end": 26114.06, "probability": 0.7817 }, { "start": 26114.66, "end": 26115.3, "probability": 0.1085 }, { "start": 26115.3, "end": 26116.76, "probability": 0.951 }, { "start": 26117.2, "end": 26120.26, "probability": 0.8904 }, { "start": 26121.04, "end": 26122.68, "probability": 0.9261 }, { "start": 26123.2, "end": 26126.86, "probability": 0.8955 }, { "start": 26127.7, "end": 26128.24, "probability": 0.2966 }, { "start": 26128.24, "end": 26131.2, "probability": 0.9146 }, { "start": 26131.62, "end": 26132.96, "probability": 0.9958 }, { "start": 26133.74, "end": 26135.02, "probability": 0.5913 }, { "start": 26136.08, "end": 26136.82, "probability": 0.7411 }, { "start": 26137.6, "end": 26140.32, "probability": 0.9469 }, { "start": 26140.88, "end": 26141.3, "probability": 0.6317 }, { "start": 26142.62, "end": 26144.05, "probability": 0.9915 }, { "start": 26144.22, "end": 26146.36, "probability": 0.9507 }, { "start": 26147.08, "end": 26148.32, "probability": 0.9969 }, { "start": 26148.94, "end": 26151.84, "probability": 0.9261 }, { "start": 26152.62, "end": 26153.58, "probability": 0.938 }, { "start": 26155.3, "end": 26157.92, "probability": 0.9651 }, { "start": 26159.46, "end": 26161.4, "probability": 0.871 }, { "start": 26162.64, "end": 26163.97, "probability": 0.7805 }, { "start": 26165.08, "end": 26166.64, "probability": 0.8834 }, { "start": 26169.12, "end": 26170.78, "probability": 0.9807 }, { "start": 26171.62, "end": 26172.72, "probability": 0.9818 }, { "start": 26173.36, "end": 26173.72, "probability": 0.9005 }, { "start": 26174.84, "end": 26178.04, "probability": 0.7383 }, { "start": 26178.18, "end": 26179.9, "probability": 0.8989 }, { "start": 26180.62, "end": 26183.28, "probability": 0.8502 }, { "start": 26184.0, "end": 26185.44, "probability": 0.9907 }, { "start": 26188.38, "end": 26194.34, "probability": 0.8813 }, { "start": 26195.94, "end": 26197.2, "probability": 0.8977 }, { "start": 26197.32, "end": 26198.08, "probability": 0.5547 }, { "start": 26198.3, "end": 26199.9, "probability": 0.8182 }, { "start": 26199.92, "end": 26200.04, "probability": 0.8431 }, { "start": 26200.98, "end": 26203.02, "probability": 0.9449 }, { "start": 26203.74, "end": 26205.6, "probability": 0.9949 }, { "start": 26221.42, "end": 26222.28, "probability": 0.6472 }, { "start": 26224.22, "end": 26224.94, "probability": 0.8966 }, { "start": 26225.98, "end": 26226.96, "probability": 0.814 }, { "start": 26228.56, "end": 26229.34, "probability": 0.6471 }, { "start": 26229.48, "end": 26230.06, "probability": 0.8835 }, { "start": 26230.18, "end": 26231.08, "probability": 0.9984 }, { "start": 26232.06, "end": 26234.58, "probability": 0.9843 }, { "start": 26235.76, "end": 26237.22, "probability": 0.939 }, { "start": 26237.78, "end": 26239.06, "probability": 0.9678 }, { "start": 26240.74, "end": 26241.18, "probability": 0.8087 }, { "start": 26242.68, "end": 26243.84, "probability": 0.7669 }, { "start": 26245.48, "end": 26247.72, "probability": 0.9656 }, { "start": 26249.22, "end": 26252.78, "probability": 0.9358 }, { "start": 26253.6, "end": 26257.62, "probability": 0.9941 }, { "start": 26257.9, "end": 26261.84, "probability": 0.8925 }, { "start": 26263.08, "end": 26264.72, "probability": 0.951 }, { "start": 26265.24, "end": 26269.48, "probability": 0.9893 }, { "start": 26270.94, "end": 26272.68, "probability": 0.9312 }, { "start": 26273.68, "end": 26277.16, "probability": 0.9895 }, { "start": 26278.32, "end": 26279.18, "probability": 0.9846 }, { "start": 26280.38, "end": 26286.66, "probability": 0.995 }, { "start": 26287.4, "end": 26294.36, "probability": 0.9937 }, { "start": 26295.4, "end": 26296.78, "probability": 0.9125 }, { "start": 26298.24, "end": 26302.6, "probability": 0.9978 }, { "start": 26302.8, "end": 26304.32, "probability": 0.7005 }, { "start": 26304.86, "end": 26306.5, "probability": 0.9955 }, { "start": 26307.16, "end": 26309.72, "probability": 0.7146 }, { "start": 26311.34, "end": 26312.06, "probability": 0.9059 }, { "start": 26312.82, "end": 26313.5, "probability": 0.973 }, { "start": 26314.32, "end": 26317.54, "probability": 0.9941 }, { "start": 26318.3, "end": 26321.34, "probability": 0.9438 }, { "start": 26322.32, "end": 26330.72, "probability": 0.9424 }, { "start": 26331.78, "end": 26334.32, "probability": 0.9889 }, { "start": 26335.36, "end": 26338.88, "probability": 0.7933 }, { "start": 26339.72, "end": 26340.68, "probability": 0.9365 }, { "start": 26341.3, "end": 26343.94, "probability": 0.9966 }, { "start": 26344.8, "end": 26348.22, "probability": 0.7946 }, { "start": 26348.8, "end": 26350.98, "probability": 0.8923 }, { "start": 26351.82, "end": 26355.0, "probability": 0.972 }, { "start": 26355.46, "end": 26355.96, "probability": 0.9451 }, { "start": 26356.86, "end": 26360.58, "probability": 0.9004 }, { "start": 26361.32, "end": 26365.12, "probability": 0.9858 }, { "start": 26365.98, "end": 26366.54, "probability": 0.998 }, { "start": 26367.8, "end": 26369.54, "probability": 0.9663 }, { "start": 26370.2, "end": 26371.54, "probability": 0.9562 }, { "start": 26371.76, "end": 26373.08, "probability": 0.8534 }, { "start": 26373.3, "end": 26374.1, "probability": 0.8817 }, { "start": 26375.1, "end": 26375.52, "probability": 0.7736 }, { "start": 26376.74, "end": 26376.84, "probability": 0.107 }, { "start": 26376.84, "end": 26379.48, "probability": 0.9181 }, { "start": 26380.5, "end": 26383.3, "probability": 0.8686 }, { "start": 26384.44, "end": 26385.7, "probability": 0.9671 }, { "start": 26386.48, "end": 26387.88, "probability": 0.9946 }, { "start": 26387.94, "end": 26388.66, "probability": 0.9926 }, { "start": 26388.72, "end": 26390.56, "probability": 0.5139 }, { "start": 26390.56, "end": 26391.72, "probability": 0.263 }, { "start": 26391.86, "end": 26391.92, "probability": 0.4533 }, { "start": 26391.94, "end": 26392.58, "probability": 0.5799 }, { "start": 26392.78, "end": 26393.12, "probability": 0.4699 }, { "start": 26393.8, "end": 26393.8, "probability": 0.5089 }, { "start": 26393.92, "end": 26395.8, "probability": 0.9869 }, { "start": 26396.88, "end": 26398.52, "probability": 0.98 }, { "start": 26400.28, "end": 26400.84, "probability": 0.9791 }, { "start": 26401.44, "end": 26402.56, "probability": 0.9006 }, { "start": 26402.58, "end": 26402.6, "probability": 0.0587 }, { "start": 26402.6, "end": 26404.42, "probability": 0.5713 }, { "start": 26404.42, "end": 26406.86, "probability": 0.5025 }, { "start": 26407.02, "end": 26408.86, "probability": 0.538 }, { "start": 26409.1, "end": 26411.18, "probability": 0.9429 }, { "start": 26411.46, "end": 26415.18, "probability": 0.8449 }, { "start": 26415.34, "end": 26415.52, "probability": 0.5956 }, { "start": 26415.84, "end": 26416.38, "probability": 0.8586 }, { "start": 26417.12, "end": 26417.8, "probability": 0.6992 }, { "start": 26418.18, "end": 26418.88, "probability": 0.9192 }, { "start": 26419.0, "end": 26419.3, "probability": 0.6926 }, { "start": 26419.4, "end": 26421.78, "probability": 0.9988 }, { "start": 26422.28, "end": 26423.14, "probability": 0.7533 }, { "start": 26423.42, "end": 26424.82, "probability": 0.9425 }, { "start": 26425.44, "end": 26426.38, "probability": 0.9712 }, { "start": 26426.48, "end": 26428.04, "probability": 0.9651 }, { "start": 26428.58, "end": 26431.32, "probability": 0.7025 }, { "start": 26431.86, "end": 26432.92, "probability": 0.9761 }, { "start": 26433.18, "end": 26435.08, "probability": 0.9741 }, { "start": 26435.44, "end": 26437.11, "probability": 0.9746 }, { "start": 26437.42, "end": 26441.18, "probability": 0.9868 }, { "start": 26441.96, "end": 26443.5, "probability": 0.9775 }, { "start": 26444.58, "end": 26445.46, "probability": 0.9512 }, { "start": 26445.58, "end": 26449.42, "probability": 0.9858 }, { "start": 26449.96, "end": 26450.9, "probability": 0.8086 }, { "start": 26451.02, "end": 26451.6, "probability": 0.4501 }, { "start": 26452.44, "end": 26453.7, "probability": 0.9806 }, { "start": 26454.72, "end": 26455.16, "probability": 0.9681 }, { "start": 26456.38, "end": 26458.18, "probability": 0.8582 }, { "start": 26459.46, "end": 26460.94, "probability": 0.9727 }, { "start": 26461.06, "end": 26461.58, "probability": 0.485 }, { "start": 26461.64, "end": 26462.8, "probability": 0.978 }, { "start": 26464.28, "end": 26466.1, "probability": 0.8207 }, { "start": 26467.5, "end": 26469.1, "probability": 0.9507 }, { "start": 26469.78, "end": 26473.4, "probability": 0.8094 }, { "start": 26473.48, "end": 26474.9, "probability": 0.8407 }, { "start": 26476.64, "end": 26481.15, "probability": 0.9893 }, { "start": 26481.64, "end": 26482.28, "probability": 0.7867 }, { "start": 26483.34, "end": 26485.8, "probability": 0.8462 }, { "start": 26487.04, "end": 26488.94, "probability": 0.9189 }, { "start": 26489.72, "end": 26491.28, "probability": 0.9756 }, { "start": 26492.58, "end": 26497.44, "probability": 0.9839 }, { "start": 26498.08, "end": 26498.56, "probability": 0.9777 }, { "start": 26499.56, "end": 26500.88, "probability": 0.9798 }, { "start": 26500.98, "end": 26502.33, "probability": 0.9898 }, { "start": 26502.48, "end": 26505.7, "probability": 0.9819 }, { "start": 26506.24, "end": 26506.76, "probability": 0.7981 }, { "start": 26507.94, "end": 26508.98, "probability": 0.9869 }, { "start": 26510.88, "end": 26510.9, "probability": 0.4149 }, { "start": 26510.9, "end": 26511.36, "probability": 0.8399 }, { "start": 26512.7, "end": 26513.94, "probability": 0.9581 }, { "start": 26514.46, "end": 26516.42, "probability": 0.8382 }, { "start": 26517.5, "end": 26520.26, "probability": 0.6704 }, { "start": 26521.04, "end": 26522.48, "probability": 0.9954 }, { "start": 26522.64, "end": 26525.24, "probability": 0.9045 }, { "start": 26525.28, "end": 26526.04, "probability": 0.9369 }, { "start": 26526.48, "end": 26527.07, "probability": 0.9808 }, { "start": 26527.18, "end": 26527.63, "probability": 0.5306 }, { "start": 26527.72, "end": 26529.17, "probability": 0.9902 }, { "start": 26530.34, "end": 26531.24, "probability": 0.9386 }, { "start": 26531.84, "end": 26532.24, "probability": 0.9926 }, { "start": 26533.42, "end": 26534.7, "probability": 0.8771 }, { "start": 26535.9, "end": 26537.04, "probability": 0.7971 }, { "start": 26537.74, "end": 26538.5, "probability": 0.9835 }, { "start": 26538.62, "end": 26539.52, "probability": 0.956 }, { "start": 26539.94, "end": 26541.3, "probability": 0.9934 }, { "start": 26541.94, "end": 26542.28, "probability": 0.9683 }, { "start": 26542.92, "end": 26547.42, "probability": 0.9813 }, { "start": 26548.28, "end": 26548.44, "probability": 0.2111 }, { "start": 26549.42, "end": 26551.22, "probability": 0.9871 }, { "start": 26551.42, "end": 26553.54, "probability": 0.9234 }, { "start": 26553.86, "end": 26556.18, "probability": 0.7551 }, { "start": 26556.36, "end": 26557.24, "probability": 0.8231 }, { "start": 26557.46, "end": 26558.08, "probability": 0.6067 }, { "start": 26558.92, "end": 26559.94, "probability": 0.9155 }, { "start": 26561.96, "end": 26564.64, "probability": 0.9433 }, { "start": 26565.16, "end": 26566.3, "probability": 0.9618 }, { "start": 26567.32, "end": 26568.8, "probability": 0.6589 }, { "start": 26569.24, "end": 26570.0, "probability": 0.7952 }, { "start": 26570.04, "end": 26573.16, "probability": 0.9592 }, { "start": 26574.04, "end": 26575.22, "probability": 0.9828 }, { "start": 26577.18, "end": 26578.14, "probability": 0.9583 }, { "start": 26579.16, "end": 26579.94, "probability": 0.9438 }, { "start": 26580.68, "end": 26582.16, "probability": 0.962 }, { "start": 26583.46, "end": 26583.9, "probability": 0.9167 }, { "start": 26584.2, "end": 26586.3, "probability": 0.9585 }, { "start": 26586.5, "end": 26587.6, "probability": 0.1241 }, { "start": 26588.24, "end": 26590.02, "probability": 0.979 }, { "start": 26590.36, "end": 26593.58, "probability": 0.8063 }, { "start": 26593.78, "end": 26594.38, "probability": 0.1346 }, { "start": 26594.92, "end": 26595.94, "probability": 0.7433 }, { "start": 26596.64, "end": 26597.62, "probability": 0.4359 }, { "start": 26597.62, "end": 26597.86, "probability": 0.2866 }, { "start": 26603.22, "end": 26604.5, "probability": 0.2671 }, { "start": 26604.76, "end": 26605.3, "probability": 0.6367 }, { "start": 26605.3, "end": 26606.74, "probability": 0.6236 }, { "start": 26606.82, "end": 26607.26, "probability": 0.5351 }, { "start": 26607.66, "end": 26608.66, "probability": 0.9799 }, { "start": 26609.26, "end": 26612.86, "probability": 0.9879 }, { "start": 26612.86, "end": 26616.78, "probability": 0.9965 }, { "start": 26617.48, "end": 26623.52, "probability": 0.9919 }, { "start": 26623.88, "end": 26625.94, "probability": 0.9985 }, { "start": 26626.76, "end": 26628.28, "probability": 0.8181 }, { "start": 26628.92, "end": 26631.64, "probability": 0.9912 }, { "start": 26631.88, "end": 26632.78, "probability": 0.776 }, { "start": 26632.84, "end": 26634.06, "probability": 0.8567 }, { "start": 26634.2, "end": 26635.1, "probability": 0.7188 }, { "start": 26635.7, "end": 26636.34, "probability": 0.8124 }, { "start": 26636.62, "end": 26637.02, "probability": 0.4755 }, { "start": 26637.42, "end": 26640.3, "probability": 0.5616 }, { "start": 26640.54, "end": 26642.6, "probability": 0.6096 }, { "start": 26643.48, "end": 26648.0, "probability": 0.9831 }, { "start": 26648.2, "end": 26650.86, "probability": 0.3647 }, { "start": 26650.86, "end": 26651.4, "probability": 0.8687 }, { "start": 26651.58, "end": 26653.76, "probability": 0.8691 }, { "start": 26653.88, "end": 26654.36, "probability": 0.5124 }, { "start": 26654.48, "end": 26654.72, "probability": 0.3459 }, { "start": 26654.72, "end": 26655.36, "probability": 0.1806 }, { "start": 26655.54, "end": 26656.93, "probability": 0.9504 }, { "start": 26657.1, "end": 26658.36, "probability": 0.8607 }, { "start": 26658.44, "end": 26660.54, "probability": 0.6982 }, { "start": 26661.1, "end": 26663.34, "probability": 0.9712 }, { "start": 26663.64, "end": 26664.56, "probability": 0.2106 }, { "start": 26665.24, "end": 26667.0, "probability": 0.6375 }, { "start": 26667.1, "end": 26667.5, "probability": 0.3313 }, { "start": 26667.54, "end": 26668.5, "probability": 0.8523 }, { "start": 26668.62, "end": 26670.46, "probability": 0.931 }, { "start": 26670.86, "end": 26673.52, "probability": 0.9827 }, { "start": 26674.08, "end": 26677.78, "probability": 0.9688 }, { "start": 26681.3, "end": 26684.46, "probability": 0.9951 }, { "start": 26687.16, "end": 26691.42, "probability": 0.9891 }, { "start": 26692.1, "end": 26695.48, "probability": 0.9938 }, { "start": 26696.24, "end": 26698.66, "probability": 0.9979 }, { "start": 26699.64, "end": 26700.66, "probability": 0.8729 }, { "start": 26700.78, "end": 26702.3, "probability": 0.6441 }, { "start": 26702.34, "end": 26703.98, "probability": 0.9265 }, { "start": 26704.42, "end": 26707.28, "probability": 0.9495 }, { "start": 26708.04, "end": 26711.76, "probability": 0.9941 }, { "start": 26712.38, "end": 26715.98, "probability": 0.9846 }, { "start": 26716.78, "end": 26717.8, "probability": 0.9883 }, { "start": 26718.34, "end": 26720.86, "probability": 0.9883 }, { "start": 26721.4, "end": 26721.92, "probability": 0.977 }, { "start": 26723.02, "end": 26727.84, "probability": 0.9783 }, { "start": 26728.3, "end": 26729.62, "probability": 0.9937 }, { "start": 26730.96, "end": 26732.4, "probability": 0.9068 }, { "start": 26733.08, "end": 26737.46, "probability": 0.9926 }, { "start": 26738.12, "end": 26739.08, "probability": 0.957 }, { "start": 26739.82, "end": 26742.54, "probability": 0.9888 }, { "start": 26743.3, "end": 26746.08, "probability": 0.8524 }, { "start": 26746.82, "end": 26748.48, "probability": 0.9965 }, { "start": 26749.4, "end": 26750.82, "probability": 0.9195 }, { "start": 26751.34, "end": 26753.72, "probability": 0.9559 }, { "start": 26754.28, "end": 26757.52, "probability": 0.9914 }, { "start": 26757.96, "end": 26760.46, "probability": 0.862 }, { "start": 26762.64, "end": 26763.0, "probability": 0.4893 }, { "start": 26764.69, "end": 26765.9, "probability": 0.818 }, { "start": 26766.18, "end": 26767.8, "probability": 0.9775 }, { "start": 26768.0, "end": 26770.04, "probability": 0.7778 }, { "start": 26770.12, "end": 26770.62, "probability": 0.9066 }, { "start": 26770.98, "end": 26771.36, "probability": 0.0275 }, { "start": 26772.1, "end": 26772.74, "probability": 0.8285 }, { "start": 26772.88, "end": 26773.18, "probability": 0.6661 }, { "start": 26773.18, "end": 26773.18, "probability": 0.0645 }, { "start": 26773.52, "end": 26774.84, "probability": 0.6656 }, { "start": 26775.02, "end": 26775.98, "probability": 0.8913 }, { "start": 26776.04, "end": 26777.78, "probability": 0.9866 }, { "start": 26778.0, "end": 26780.4, "probability": 0.9951 }, { "start": 26781.04, "end": 26785.6, "probability": 0.9718 }, { "start": 26785.84, "end": 26786.98, "probability": 0.9704 }, { "start": 26787.36, "end": 26788.44, "probability": 0.9922 }, { "start": 26789.0, "end": 26789.58, "probability": 0.7288 }, { "start": 26789.72, "end": 26792.6, "probability": 0.9363 }, { "start": 26792.7, "end": 26794.04, "probability": 0.7374 }, { "start": 26794.04, "end": 26797.08, "probability": 0.883 }, { "start": 26797.74, "end": 26799.84, "probability": 0.8709 }, { "start": 26800.32, "end": 26800.64, "probability": 0.8399 }, { "start": 26801.46, "end": 26802.14, "probability": 0.5221 }, { "start": 26802.4, "end": 26804.06, "probability": 0.8314 }, { "start": 26804.12, "end": 26805.98, "probability": 0.9053 }, { "start": 26827.2, "end": 26828.13, "probability": 0.5838 }, { "start": 26828.7, "end": 26829.08, "probability": 0.4986 }, { "start": 26829.9, "end": 26830.54, "probability": 0.7765 }, { "start": 26831.5, "end": 26833.5, "probability": 0.9657 }, { "start": 26833.82, "end": 26835.64, "probability": 0.9872 }, { "start": 26836.84, "end": 26838.12, "probability": 0.9102 }, { "start": 26839.68, "end": 26843.64, "probability": 0.6552 }, { "start": 26844.48, "end": 26846.6, "probability": 0.535 }, { "start": 26847.66, "end": 26849.58, "probability": 0.9514 }, { "start": 26850.22, "end": 26851.72, "probability": 0.906 }, { "start": 26852.2, "end": 26855.74, "probability": 0.9949 }, { "start": 26856.8, "end": 26857.06, "probability": 0.8445 }, { "start": 26858.22, "end": 26861.12, "probability": 0.8685 }, { "start": 26861.78, "end": 26864.6, "probability": 0.9956 }, { "start": 26865.28, "end": 26867.43, "probability": 0.8997 }, { "start": 26868.2, "end": 26873.6, "probability": 0.9206 }, { "start": 26873.98, "end": 26874.96, "probability": 0.9917 }, { "start": 26875.98, "end": 26876.34, "probability": 0.7626 }, { "start": 26876.4, "end": 26877.0, "probability": 0.7025 }, { "start": 26877.1, "end": 26879.52, "probability": 0.9947 }, { "start": 26881.06, "end": 26883.62, "probability": 0.9168 }, { "start": 26884.44, "end": 26886.38, "probability": 0.8579 }, { "start": 26886.94, "end": 26888.46, "probability": 0.4811 }, { "start": 26889.2, "end": 26891.5, "probability": 0.8882 }, { "start": 26892.32, "end": 26894.52, "probability": 0.993 }, { "start": 26894.6, "end": 26895.04, "probability": 0.8826 }, { "start": 26895.14, "end": 26895.96, "probability": 0.978 }, { "start": 26896.44, "end": 26898.06, "probability": 0.8709 }, { "start": 26898.46, "end": 26899.22, "probability": 0.8818 }, { "start": 26899.62, "end": 26900.44, "probability": 0.7798 }, { "start": 26900.94, "end": 26901.82, "probability": 0.7631 }, { "start": 26902.1, "end": 26903.0, "probability": 0.9447 }, { "start": 26903.64, "end": 26905.98, "probability": 0.9023 }, { "start": 26906.38, "end": 26907.52, "probability": 0.958 }, { "start": 26907.62, "end": 26908.22, "probability": 0.7438 }, { "start": 26908.6, "end": 26909.92, "probability": 0.9595 }, { "start": 26910.3, "end": 26912.14, "probability": 0.8489 }, { "start": 26912.48, "end": 26915.42, "probability": 0.9378 }, { "start": 26915.52, "end": 26917.68, "probability": 0.923 }, { "start": 26917.9, "end": 26918.54, "probability": 0.8276 }, { "start": 26919.18, "end": 26921.16, "probability": 0.8901 }, { "start": 26921.86, "end": 26924.64, "probability": 0.9346 }, { "start": 26925.46, "end": 26930.1, "probability": 0.9804 }, { "start": 26930.8, "end": 26932.2, "probability": 0.9005 }, { "start": 26932.62, "end": 26933.96, "probability": 0.9533 }, { "start": 26934.64, "end": 26938.02, "probability": 0.9341 }, { "start": 26938.54, "end": 26940.18, "probability": 0.9827 }, { "start": 26940.28, "end": 26942.06, "probability": 0.9512 }, { "start": 26942.14, "end": 26942.42, "probability": 0.953 }, { "start": 26942.54, "end": 26943.2, "probability": 0.9494 }, { "start": 26943.28, "end": 26945.0, "probability": 0.9161 }, { "start": 26945.34, "end": 26946.48, "probability": 0.7671 }, { "start": 26946.88, "end": 26948.98, "probability": 0.6928 }, { "start": 26949.32, "end": 26950.44, "probability": 0.9309 }, { "start": 26950.8, "end": 26952.7, "probability": 0.5903 }, { "start": 26952.82, "end": 26953.22, "probability": 0.635 }, { "start": 26953.32, "end": 26953.62, "probability": 0.941 }, { "start": 26953.7, "end": 26957.94, "probability": 0.9618 }, { "start": 26957.98, "end": 26958.64, "probability": 0.8012 }, { "start": 26959.2, "end": 26963.28, "probability": 0.9471 }, { "start": 26963.64, "end": 26966.0, "probability": 0.8649 }, { "start": 26966.08, "end": 26967.78, "probability": 0.9719 }, { "start": 26968.8, "end": 26970.64, "probability": 0.6362 }, { "start": 26970.9, "end": 26973.7, "probability": 0.8851 }, { "start": 26973.8, "end": 26974.74, "probability": 0.8338 }, { "start": 26976.48, "end": 26976.6, "probability": 0.7429 }, { "start": 26976.72, "end": 26977.5, "probability": 0.7577 }, { "start": 26977.84, "end": 26980.34, "probability": 0.9702 }, { "start": 26981.24, "end": 26983.38, "probability": 0.9543 }, { "start": 26983.9, "end": 26987.86, "probability": 0.8748 }, { "start": 26988.46, "end": 26990.94, "probability": 0.8579 }, { "start": 26991.28, "end": 26992.16, "probability": 0.8406 }, { "start": 26992.36, "end": 26993.07, "probability": 0.9976 }, { "start": 26993.88, "end": 26996.54, "probability": 0.7108 }, { "start": 26997.24, "end": 27001.68, "probability": 0.9827 }, { "start": 27002.44, "end": 27004.58, "probability": 0.9626 }, { "start": 27005.18, "end": 27005.68, "probability": 0.9387 }, { "start": 27006.34, "end": 27008.96, "probability": 0.9919 }, { "start": 27009.32, "end": 27010.48, "probability": 0.4904 }, { "start": 27010.78, "end": 27011.7, "probability": 0.9791 }, { "start": 27012.46, "end": 27014.84, "probability": 0.7659 }, { "start": 27014.92, "end": 27016.64, "probability": 0.9398 }, { "start": 27017.02, "end": 27018.32, "probability": 0.9817 }, { "start": 27018.72, "end": 27020.1, "probability": 0.6406 }, { "start": 27020.84, "end": 27022.62, "probability": 0.6018 }, { "start": 27023.26, "end": 27026.18, "probability": 0.9781 }, { "start": 27026.8, "end": 27029.72, "probability": 0.9302 }, { "start": 27030.24, "end": 27031.1, "probability": 0.9487 }, { "start": 27031.8, "end": 27035.76, "probability": 0.8965 }, { "start": 27035.76, "end": 27039.94, "probability": 0.9076 }, { "start": 27040.48, "end": 27044.7, "probability": 0.9954 }, { "start": 27045.24, "end": 27046.66, "probability": 0.9966 }, { "start": 27047.08, "end": 27050.6, "probability": 0.7594 }, { "start": 27050.6, "end": 27054.72, "probability": 0.9902 }, { "start": 27055.24, "end": 27059.48, "probability": 0.8335 }, { "start": 27059.94, "end": 27061.0, "probability": 0.8644 }, { "start": 27061.22, "end": 27062.61, "probability": 0.8846 }, { "start": 27063.56, "end": 27065.64, "probability": 0.9147 }, { "start": 27066.38, "end": 27071.54, "probability": 0.9972 }, { "start": 27072.08, "end": 27074.5, "probability": 0.9923 }, { "start": 27075.18, "end": 27076.1, "probability": 0.8289 }, { "start": 27076.98, "end": 27077.74, "probability": 0.8768 }, { "start": 27077.88, "end": 27078.76, "probability": 0.7332 }, { "start": 27079.12, "end": 27081.8, "probability": 0.9229 }, { "start": 27082.46, "end": 27085.78, "probability": 0.9983 }, { "start": 27085.78, "end": 27088.74, "probability": 0.9993 }, { "start": 27089.12, "end": 27090.68, "probability": 0.7884 }, { "start": 27091.14, "end": 27094.94, "probability": 0.9917 }, { "start": 27096.02, "end": 27096.78, "probability": 0.9371 }, { "start": 27097.8, "end": 27101.5, "probability": 0.8585 }, { "start": 27101.92, "end": 27103.0, "probability": 0.8322 }, { "start": 27103.46, "end": 27107.98, "probability": 0.9765 }, { "start": 27108.5, "end": 27109.04, "probability": 0.9054 }, { "start": 27109.18, "end": 27111.94, "probability": 0.9834 }, { "start": 27112.22, "end": 27114.74, "probability": 0.9012 }, { "start": 27114.82, "end": 27116.62, "probability": 0.9328 }, { "start": 27116.68, "end": 27118.96, "probability": 0.9489 }, { "start": 27119.26, "end": 27121.16, "probability": 0.9754 }, { "start": 27121.54, "end": 27125.68, "probability": 0.9851 }, { "start": 27126.16, "end": 27128.0, "probability": 0.8545 }, { "start": 27128.04, "end": 27130.38, "probability": 0.774 }, { "start": 27130.88, "end": 27133.2, "probability": 0.7747 }, { "start": 27133.66, "end": 27136.98, "probability": 0.8141 }, { "start": 27136.98, "end": 27140.36, "probability": 0.9488 }, { "start": 27140.72, "end": 27144.2, "probability": 0.9963 }, { "start": 27144.58, "end": 27148.08, "probability": 0.9834 }, { "start": 27148.3, "end": 27150.92, "probability": 0.9847 }, { "start": 27150.92, "end": 27151.4, "probability": 0.7495 }, { "start": 27151.64, "end": 27152.56, "probability": 0.7419 }, { "start": 27153.56, "end": 27157.38, "probability": 0.8917 }, { "start": 27158.26, "end": 27159.58, "probability": 0.9756 }, { "start": 27159.84, "end": 27161.02, "probability": 0.9756 }, { "start": 27161.12, "end": 27163.0, "probability": 0.9934 }, { "start": 27163.58, "end": 27167.3, "probability": 0.8114 }, { "start": 27168.22, "end": 27173.2, "probability": 0.8683 }, { "start": 27173.34, "end": 27174.56, "probability": 0.9114 }, { "start": 27175.48, "end": 27177.48, "probability": 0.9716 }, { "start": 27178.28, "end": 27179.4, "probability": 0.2026 }, { "start": 27181.28, "end": 27184.84, "probability": 0.5275 }, { "start": 27186.34, "end": 27187.98, "probability": 0.5863 }, { "start": 27189.34, "end": 27190.28, "probability": 0.7829 }, { "start": 27191.0, "end": 27192.82, "probability": 0.9392 }, { "start": 27194.94, "end": 27195.72, "probability": 0.9509 }, { "start": 27195.84, "end": 27196.9, "probability": 0.8625 }, { "start": 27197.04, "end": 27198.32, "probability": 0.9009 }, { "start": 27198.46, "end": 27199.42, "probability": 0.9017 }, { "start": 27200.44, "end": 27201.72, "probability": 0.9854 }, { "start": 27202.52, "end": 27205.64, "probability": 0.8818 }, { "start": 27207.56, "end": 27209.81, "probability": 0.8651 }, { "start": 27209.9, "end": 27213.52, "probability": 0.9862 }, { "start": 27216.22, "end": 27218.46, "probability": 0.8154 }, { "start": 27219.62, "end": 27222.52, "probability": 0.856 }, { "start": 27225.14, "end": 27226.86, "probability": 0.9031 }, { "start": 27227.4, "end": 27228.64, "probability": 0.5379 }, { "start": 27229.33, "end": 27232.5, "probability": 0.8423 }, { "start": 27232.6, "end": 27236.04, "probability": 0.6879 }, { "start": 27237.0, "end": 27240.76, "probability": 0.9745 }, { "start": 27241.8, "end": 27242.82, "probability": 0.7775 }, { "start": 27243.92, "end": 27251.58, "probability": 0.6283 }, { "start": 27252.04, "end": 27256.72, "probability": 0.999 }, { "start": 27256.72, "end": 27260.0, "probability": 0.9744 }, { "start": 27260.34, "end": 27263.1, "probability": 0.9685 }, { "start": 27264.16, "end": 27267.66, "probability": 0.9776 }, { "start": 27268.62, "end": 27270.62, "probability": 0.9813 }, { "start": 27271.16, "end": 27272.6, "probability": 0.5015 }, { "start": 27272.92, "end": 27274.94, "probability": 0.9888 }, { "start": 27275.04, "end": 27275.94, "probability": 0.5588 }, { "start": 27277.7, "end": 27278.32, "probability": 0.6937 }, { "start": 27279.35, "end": 27282.19, "probability": 0.9278 }, { "start": 27282.5, "end": 27282.84, "probability": 0.0169 }, { "start": 27283.7, "end": 27286.52, "probability": 0.5667 }, { "start": 27286.56, "end": 27288.82, "probability": 0.7159 }, { "start": 27289.06, "end": 27290.94, "probability": 0.5203 }, { "start": 27291.02, "end": 27292.06, "probability": 0.3038 }, { "start": 27293.02, "end": 27293.96, "probability": 0.5939 }, { "start": 27294.04, "end": 27294.84, "probability": 0.9934 }, { "start": 27295.6, "end": 27296.02, "probability": 0.9087 }, { "start": 27298.86, "end": 27301.26, "probability": 0.7793 }, { "start": 27301.36, "end": 27302.08, "probability": 0.8658 }, { "start": 27302.2, "end": 27305.2, "probability": 0.981 }, { "start": 27305.48, "end": 27307.74, "probability": 0.9803 }, { "start": 27307.74, "end": 27310.6, "probability": 0.994 }, { "start": 27310.74, "end": 27312.66, "probability": 0.9079 }, { "start": 27312.7, "end": 27313.8, "probability": 0.8175 }, { "start": 27314.6, "end": 27317.22, "probability": 0.9907 }, { "start": 27317.92, "end": 27321.04, "probability": 0.7033 }, { "start": 27321.16, "end": 27321.86, "probability": 0.7222 }, { "start": 27321.92, "end": 27323.22, "probability": 0.9039 }, { "start": 27324.1, "end": 27326.44, "probability": 0.5875 }, { "start": 27327.66, "end": 27328.98, "probability": 0.8208 }, { "start": 27329.74, "end": 27334.42, "probability": 0.9023 }, { "start": 27334.82, "end": 27335.88, "probability": 0.693 }, { "start": 27336.32, "end": 27338.12, "probability": 0.7596 }, { "start": 27339.12, "end": 27339.5, "probability": 0.6837 }, { "start": 27341.22, "end": 27342.84, "probability": 0.5615 }, { "start": 27343.14, "end": 27344.2, "probability": 0.1689 }, { "start": 27344.2, "end": 27344.5, "probability": 0.7221 }, { "start": 27344.6, "end": 27345.02, "probability": 0.9469 }, { "start": 27345.2, "end": 27345.82, "probability": 0.4354 }, { "start": 27346.08, "end": 27346.48, "probability": 0.5627 }, { "start": 27347.85, "end": 27350.34, "probability": 0.8496 }, { "start": 27350.78, "end": 27351.06, "probability": 0.3731 }, { "start": 27351.18, "end": 27351.64, "probability": 0.9269 }, { "start": 27352.22, "end": 27354.94, "probability": 0.8997 }, { "start": 27355.5, "end": 27355.76, "probability": 0.6763 }, { "start": 27355.82, "end": 27358.0, "probability": 0.9681 }, { "start": 27358.08, "end": 27358.36, "probability": 0.585 }, { "start": 27358.44, "end": 27360.26, "probability": 0.9272 }, { "start": 27360.66, "end": 27362.0, "probability": 0.8442 }, { "start": 27362.08, "end": 27362.7, "probability": 0.26 }, { "start": 27363.16, "end": 27364.32, "probability": 0.6128 }, { "start": 27364.44, "end": 27366.06, "probability": 0.2488 }, { "start": 27367.32, "end": 27368.0, "probability": 0.6133 }, { "start": 27368.76, "end": 27371.28, "probability": 0.9882 }, { "start": 27372.02, "end": 27375.12, "probability": 0.9878 }, { "start": 27376.2, "end": 27376.62, "probability": 0.9164 }, { "start": 27376.8, "end": 27380.78, "probability": 0.998 }, { "start": 27380.86, "end": 27381.31, "probability": 0.9457 }, { "start": 27381.92, "end": 27383.46, "probability": 0.8877 }, { "start": 27383.56, "end": 27385.22, "probability": 0.9632 }, { "start": 27385.88, "end": 27387.58, "probability": 0.9814 }, { "start": 27389.32, "end": 27392.86, "probability": 0.76 }, { "start": 27394.02, "end": 27395.64, "probability": 0.9716 }, { "start": 27397.84, "end": 27402.36, "probability": 0.9941 }, { "start": 27402.92, "end": 27405.68, "probability": 0.8449 }, { "start": 27406.36, "end": 27408.04, "probability": 0.6545 }, { "start": 27408.08, "end": 27408.68, "probability": 0.8104 }, { "start": 27409.3, "end": 27410.78, "probability": 0.6588 }, { "start": 27410.9, "end": 27411.22, "probability": 0.6941 }, { "start": 27411.28, "end": 27411.64, "probability": 0.376 }, { "start": 27411.64, "end": 27411.84, "probability": 0.2411 }, { "start": 27411.98, "end": 27413.37, "probability": 0.9219 }, { "start": 27413.7, "end": 27415.26, "probability": 0.9745 }, { "start": 27416.0, "end": 27417.02, "probability": 0.6514 }, { "start": 27418.4, "end": 27423.8, "probability": 0.9805 }, { "start": 27423.9, "end": 27424.18, "probability": 0.5337 }, { "start": 27424.24, "end": 27426.28, "probability": 0.9795 }, { "start": 27426.46, "end": 27429.04, "probability": 0.9951 }, { "start": 27429.78, "end": 27431.46, "probability": 0.8331 }, { "start": 27431.66, "end": 27435.8, "probability": 0.9231 }, { "start": 27435.8, "end": 27440.02, "probability": 0.9903 }, { "start": 27440.08, "end": 27441.58, "probability": 0.8706 }, { "start": 27441.78, "end": 27446.68, "probability": 0.9902 }, { "start": 27446.78, "end": 27449.0, "probability": 0.7819 }, { "start": 27449.86, "end": 27454.72, "probability": 0.9733 }, { "start": 27455.18, "end": 27456.48, "probability": 0.7737 }, { "start": 27456.68, "end": 27458.1, "probability": 0.4743 }, { "start": 27459.2, "end": 27462.3, "probability": 0.7966 }, { "start": 27463.18, "end": 27468.6, "probability": 0.9079 }, { "start": 27468.68, "end": 27469.46, "probability": 0.7664 }, { "start": 27469.6, "end": 27469.76, "probability": 0.6518 }, { "start": 27469.84, "end": 27470.26, "probability": 0.8553 }, { "start": 27470.28, "end": 27471.54, "probability": 0.4225 }, { "start": 27471.7, "end": 27473.66, "probability": 0.8303 }, { "start": 27474.14, "end": 27476.02, "probability": 0.8862 }, { "start": 27476.82, "end": 27478.91, "probability": 0.9468 }, { "start": 27479.68, "end": 27482.64, "probability": 0.8428 }, { "start": 27483.66, "end": 27487.38, "probability": 0.9748 }, { "start": 27488.18, "end": 27488.86, "probability": 0.4709 }, { "start": 27489.6, "end": 27492.16, "probability": 0.9961 }, { "start": 27492.4, "end": 27493.64, "probability": 0.196 }, { "start": 27494.22, "end": 27496.94, "probability": 0.8346 }, { "start": 27497.5, "end": 27502.02, "probability": 0.9939 }, { "start": 27502.14, "end": 27504.7, "probability": 0.9897 }, { "start": 27505.64, "end": 27507.06, "probability": 0.7689 }, { "start": 27507.42, "end": 27507.76, "probability": 0.7627 }, { "start": 27509.06, "end": 27509.54, "probability": 0.7104 }, { "start": 27509.68, "end": 27511.88, "probability": 0.8267 }, { "start": 27512.38, "end": 27513.52, "probability": 0.9207 }, { "start": 27515.56, "end": 27518.24, "probability": 0.9203 }, { "start": 27519.1, "end": 27522.06, "probability": 0.4435 }, { "start": 27525.48, "end": 27528.83, "probability": 0.8436 }, { "start": 27529.44, "end": 27531.86, "probability": 0.9035 }, { "start": 27532.58, "end": 27533.72, "probability": 0.9676 }, { "start": 27534.76, "end": 27536.16, "probability": 0.904 }, { "start": 27539.32, "end": 27540.48, "probability": 0.5279 }, { "start": 27540.68, "end": 27540.92, "probability": 0.672 }, { "start": 27541.8, "end": 27542.02, "probability": 0.9178 }, { "start": 27542.8, "end": 27544.94, "probability": 0.8678 }, { "start": 27544.94, "end": 27545.32, "probability": 0.9641 }, { "start": 27547.32, "end": 27547.94, "probability": 0.889 }, { "start": 27548.86, "end": 27549.76, "probability": 0.7884 }, { "start": 27550.7, "end": 27552.46, "probability": 0.904 }, { "start": 27553.5, "end": 27554.38, "probability": 0.7414 }, { "start": 27554.38, "end": 27555.08, "probability": 0.6944 }, { "start": 27555.2, "end": 27556.92, "probability": 0.7599 }, { "start": 27557.04, "end": 27558.18, "probability": 0.6851 }, { "start": 27558.96, "end": 27562.62, "probability": 0.8751 }, { "start": 27563.52, "end": 27566.62, "probability": 0.8905 }, { "start": 27566.74, "end": 27568.72, "probability": 0.9515 }, { "start": 27569.8, "end": 27572.0, "probability": 0.6756 }, { "start": 27572.0, "end": 27573.56, "probability": 0.5428 }, { "start": 27574.74, "end": 27579.6, "probability": 0.9268 }, { "start": 27580.98, "end": 27584.78, "probability": 0.7353 }, { "start": 27585.64, "end": 27590.72, "probability": 0.8714 }, { "start": 27592.24, "end": 27596.06, "probability": 0.8429 }, { "start": 27598.33, "end": 27606.0, "probability": 0.9435 }, { "start": 27606.8, "end": 27609.88, "probability": 0.9971 }, { "start": 27610.86, "end": 27612.66, "probability": 0.9868 }, { "start": 27613.42, "end": 27614.3, "probability": 0.9635 }, { "start": 27614.52, "end": 27616.42, "probability": 0.9165 }, { "start": 27616.62, "end": 27617.32, "probability": 0.9385 }, { "start": 27617.34, "end": 27618.12, "probability": 0.9891 }, { "start": 27618.88, "end": 27619.8, "probability": 0.9441 }, { "start": 27620.94, "end": 27623.26, "probability": 0.886 }, { "start": 27623.86, "end": 27624.78, "probability": 0.9309 }, { "start": 27625.3, "end": 27626.4, "probability": 0.7436 }, { "start": 27627.42, "end": 27630.78, "probability": 0.9733 }, { "start": 27631.08, "end": 27631.7, "probability": 0.2363 }, { "start": 27632.16, "end": 27634.6, "probability": 0.7495 }, { "start": 27635.18, "end": 27637.08, "probability": 0.9141 }, { "start": 27638.52, "end": 27642.48, "probability": 0.9337 }, { "start": 27643.66, "end": 27645.72, "probability": 0.9218 }, { "start": 27646.82, "end": 27648.1, "probability": 0.9685 }, { "start": 27648.14, "end": 27648.5, "probability": 0.7126 }, { "start": 27648.74, "end": 27650.73, "probability": 0.9917 }, { "start": 27651.38, "end": 27652.0, "probability": 0.818 }, { "start": 27654.24, "end": 27656.58, "probability": 0.9675 }, { "start": 27657.16, "end": 27657.36, "probability": 0.987 }, { "start": 27658.78, "end": 27660.58, "probability": 0.3956 }, { "start": 27660.58, "end": 27660.74, "probability": 0.0763 }, { "start": 27660.74, "end": 27661.94, "probability": 0.6294 }, { "start": 27662.08, "end": 27663.32, "probability": 0.8167 }, { "start": 27664.3, "end": 27666.0, "probability": 0.2678 }, { "start": 27666.8, "end": 27669.3, "probability": 0.4985 }, { "start": 27669.56, "end": 27671.18, "probability": 0.9153 }, { "start": 27671.88, "end": 27673.32, "probability": 0.9871 }, { "start": 27674.08, "end": 27675.86, "probability": 0.9846 }, { "start": 27676.42, "end": 27678.56, "probability": 0.4885 }, { "start": 27679.78, "end": 27680.84, "probability": 0.7645 }, { "start": 27680.94, "end": 27681.95, "probability": 0.9588 }, { "start": 27682.38, "end": 27683.83, "probability": 0.9933 }, { "start": 27685.1, "end": 27685.46, "probability": 0.5491 }, { "start": 27686.0, "end": 27687.3, "probability": 0.8814 }, { "start": 27688.1, "end": 27688.76, "probability": 0.4892 }, { "start": 27689.48, "end": 27690.76, "probability": 0.4386 }, { "start": 27690.94, "end": 27691.62, "probability": 0.8763 }, { "start": 27691.72, "end": 27692.88, "probability": 0.9842 }, { "start": 27692.96, "end": 27693.66, "probability": 0.8973 }, { "start": 27694.1, "end": 27695.26, "probability": 0.5975 }, { "start": 27698.82, "end": 27702.88, "probability": 0.8526 }, { "start": 27704.45, "end": 27707.44, "probability": 0.5869 }, { "start": 27708.64, "end": 27711.08, "probability": 0.9018 }, { "start": 27711.9, "end": 27713.84, "probability": 0.9937 }, { "start": 27714.7, "end": 27717.22, "probability": 0.9823 }, { "start": 27718.42, "end": 27720.94, "probability": 0.9731 }, { "start": 27721.74, "end": 27726.66, "probability": 0.9909 }, { "start": 27727.84, "end": 27732.9, "probability": 0.9453 }, { "start": 27733.46, "end": 27734.38, "probability": 0.9976 }, { "start": 27735.5, "end": 27737.96, "probability": 0.9991 }, { "start": 27739.46, "end": 27741.98, "probability": 0.8866 }, { "start": 27742.42, "end": 27743.44, "probability": 0.5705 }, { "start": 27743.5, "end": 27744.04, "probability": 0.7165 }, { "start": 27745.12, "end": 27748.78, "probability": 0.9973 }, { "start": 27748.78, "end": 27752.5, "probability": 0.979 }, { "start": 27753.16, "end": 27754.92, "probability": 0.8509 }, { "start": 27755.62, "end": 27758.06, "probability": 0.9966 }, { "start": 27759.02, "end": 27761.52, "probability": 0.9952 }, { "start": 27761.52, "end": 27765.42, "probability": 0.981 }, { "start": 27766.46, "end": 27766.9, "probability": 0.678 }, { "start": 27767.52, "end": 27770.44, "probability": 0.9664 }, { "start": 27771.1, "end": 27774.68, "probability": 0.9613 }, { "start": 27775.4, "end": 27777.82, "probability": 0.9787 }, { "start": 27778.84, "end": 27780.6, "probability": 0.9551 }, { "start": 27781.32, "end": 27781.8, "probability": 0.5825 }, { "start": 27782.6, "end": 27785.22, "probability": 0.9656 }, { "start": 27785.82, "end": 27786.68, "probability": 0.9344 }, { "start": 27787.44, "end": 27791.52, "probability": 0.9584 }, { "start": 27792.56, "end": 27793.36, "probability": 0.7833 }, { "start": 27793.5, "end": 27794.49, "probability": 0.9471 }, { "start": 27795.2, "end": 27798.14, "probability": 0.9555 }, { "start": 27798.84, "end": 27801.36, "probability": 0.9925 }, { "start": 27802.72, "end": 27804.61, "probability": 0.9214 }, { "start": 27805.36, "end": 27809.26, "probability": 0.9753 }, { "start": 27810.06, "end": 27812.2, "probability": 0.9916 }, { "start": 27812.2, "end": 27812.74, "probability": 0.8563 }, { "start": 27813.38, "end": 27813.68, "probability": 0.8728 }, { "start": 27813.74, "end": 27814.02, "probability": 0.9497 }, { "start": 27814.02, "end": 27816.08, "probability": 0.7808 }, { "start": 27816.32, "end": 27819.04, "probability": 0.9455 }, { "start": 27819.72, "end": 27822.5, "probability": 0.9952 }, { "start": 27822.5, "end": 27826.74, "probability": 0.9712 }, { "start": 27826.74, "end": 27830.26, "probability": 0.9801 }, { "start": 27831.16, "end": 27832.84, "probability": 0.9839 }, { "start": 27833.4, "end": 27834.56, "probability": 0.9756 }, { "start": 27835.36, "end": 27837.44, "probability": 0.9968 }, { "start": 27837.44, "end": 27840.92, "probability": 0.9907 }, { "start": 27841.94, "end": 27843.16, "probability": 0.8082 }, { "start": 27843.86, "end": 27847.8, "probability": 0.996 }, { "start": 27848.32, "end": 27848.96, "probability": 0.9114 }, { "start": 27849.94, "end": 27852.86, "probability": 0.9487 }, { "start": 27853.56, "end": 27860.6, "probability": 0.9863 }, { "start": 27860.76, "end": 27861.04, "probability": 0.7789 }, { "start": 27862.68, "end": 27864.74, "probability": 0.7404 }, { "start": 27865.26, "end": 27866.82, "probability": 0.9731 }, { "start": 27875.38, "end": 27876.86, "probability": 0.0957 }, { "start": 27892.04, "end": 27893.34, "probability": 0.835 }, { "start": 27894.88, "end": 27896.0, "probability": 0.3453 }, { "start": 27897.12, "end": 27897.68, "probability": 0.9088 }, { "start": 27900.04, "end": 27901.54, "probability": 0.9382 }, { "start": 27903.86, "end": 27909.54, "probability": 0.9771 }, { "start": 27910.62, "end": 27912.62, "probability": 0.968 }, { "start": 27913.18, "end": 27914.58, "probability": 0.7605 }, { "start": 27915.06, "end": 27916.66, "probability": 0.927 }, { "start": 27916.72, "end": 27917.58, "probability": 0.7725 }, { "start": 27919.1, "end": 27919.74, "probability": 0.5436 }, { "start": 27920.36, "end": 27922.12, "probability": 0.9121 }, { "start": 27922.98, "end": 27923.48, "probability": 0.2212 }, { "start": 27924.98, "end": 27927.94, "probability": 0.6541 }, { "start": 27928.14, "end": 27929.69, "probability": 0.2245 }, { "start": 27929.87, "end": 27931.34, "probability": 0.5454 }, { "start": 27931.42, "end": 27933.06, "probability": 0.778 }, { "start": 27933.06, "end": 27934.64, "probability": 0.5851 }, { "start": 27935.54, "end": 27937.98, "probability": 0.8108 }, { "start": 27939.52, "end": 27942.08, "probability": 0.8677 }, { "start": 27942.76, "end": 27943.72, "probability": 0.586 }, { "start": 27946.7, "end": 27949.2, "probability": 0.4898 }, { "start": 27949.66, "end": 27950.8, "probability": 0.693 }, { "start": 27950.9, "end": 27951.52, "probability": 0.7482 }, { "start": 27951.62, "end": 27952.96, "probability": 0.7098 }, { "start": 27954.0, "end": 27955.5, "probability": 0.7927 }, { "start": 27957.5, "end": 27959.72, "probability": 0.6028 }, { "start": 27961.26, "end": 27962.92, "probability": 0.7464 }, { "start": 27963.64, "end": 27966.26, "probability": 0.9072 }, { "start": 27966.96, "end": 27967.98, "probability": 0.9288 }, { "start": 27968.52, "end": 27969.33, "probability": 0.9828 }, { "start": 27969.66, "end": 27970.38, "probability": 0.8819 }, { "start": 27970.44, "end": 27970.78, "probability": 0.728 }, { "start": 27970.8, "end": 27971.22, "probability": 0.9359 }, { "start": 27971.34, "end": 27974.22, "probability": 0.8209 }, { "start": 27975.26, "end": 27977.22, "probability": 0.8239 }, { "start": 27979.06, "end": 27979.92, "probability": 0.3182 }, { "start": 27980.7, "end": 27981.04, "probability": 0.8018 }, { "start": 27983.16, "end": 27985.0, "probability": 0.9501 }, { "start": 27985.74, "end": 27987.86, "probability": 0.8463 }, { "start": 27988.42, "end": 27989.97, "probability": 0.9897 }, { "start": 27990.06, "end": 27990.94, "probability": 0.6949 }, { "start": 27991.34, "end": 27992.54, "probability": 0.9585 }, { "start": 27992.96, "end": 27995.76, "probability": 0.5803 }, { "start": 27996.42, "end": 27997.6, "probability": 0.8479 }, { "start": 27997.9, "end": 27998.82, "probability": 0.5778 }, { "start": 27999.26, "end": 28000.31, "probability": 0.8794 }, { "start": 28000.66, "end": 28001.5, "probability": 0.7995 }, { "start": 28001.5, "end": 28002.04, "probability": 0.6882 }, { "start": 28002.04, "end": 28002.96, "probability": 0.4108 }, { "start": 28004.9, "end": 28005.9, "probability": 0.8921 }, { "start": 28006.24, "end": 28007.8, "probability": 0.5038 }, { "start": 28007.8, "end": 28008.54, "probability": 0.3861 }, { "start": 28008.68, "end": 28009.38, "probability": 0.6323 }, { "start": 28009.46, "end": 28010.14, "probability": 0.6309 }, { "start": 28010.72, "end": 28014.32, "probability": 0.9626 }, { "start": 28016.04, "end": 28017.06, "probability": 0.7136 }, { "start": 28017.12, "end": 28017.82, "probability": 0.9451 }, { "start": 28017.92, "end": 28019.54, "probability": 0.9141 }, { "start": 28021.04, "end": 28022.86, "probability": 0.737 }, { "start": 28023.52, "end": 28027.16, "probability": 0.8666 }, { "start": 28028.12, "end": 28029.22, "probability": 0.9442 }, { "start": 28029.78, "end": 28032.06, "probability": 0.9648 }, { "start": 28033.0, "end": 28034.12, "probability": 0.4981 }, { "start": 28034.12, "end": 28034.82, "probability": 0.6134 }, { "start": 28035.66, "end": 28036.5, "probability": 0.8652 }, { "start": 28037.48, "end": 28042.22, "probability": 0.9763 }, { "start": 28043.12, "end": 28047.28, "probability": 0.9482 }, { "start": 28047.9, "end": 28050.35, "probability": 0.8303 }, { "start": 28051.52, "end": 28053.74, "probability": 0.9891 }, { "start": 28053.84, "end": 28054.46, "probability": 0.8781 }, { "start": 28054.52, "end": 28055.34, "probability": 0.6864 }, { "start": 28055.44, "end": 28056.72, "probability": 0.5939 }, { "start": 28056.82, "end": 28057.42, "probability": 0.4424 }, { "start": 28058.34, "end": 28058.8, "probability": 0.7179 }, { "start": 28058.9, "end": 28059.84, "probability": 0.9806 }, { "start": 28059.96, "end": 28063.66, "probability": 0.9928 }, { "start": 28064.18, "end": 28065.14, "probability": 0.5339 }, { "start": 28065.18, "end": 28066.38, "probability": 0.9651 }, { "start": 28067.08, "end": 28069.14, "probability": 0.9893 }, { "start": 28069.42, "end": 28071.1, "probability": 0.8185 }, { "start": 28071.8, "end": 28074.26, "probability": 0.8265 }, { "start": 28074.32, "end": 28075.44, "probability": 0.5805 }, { "start": 28075.5, "end": 28077.3, "probability": 0.7801 }, { "start": 28078.86, "end": 28079.66, "probability": 0.7531 }, { "start": 28079.68, "end": 28080.3, "probability": 0.2364 }, { "start": 28080.38, "end": 28081.3, "probability": 0.9054 }, { "start": 28081.34, "end": 28082.88, "probability": 0.8794 }, { "start": 28082.96, "end": 28083.5, "probability": 0.901 }, { "start": 28083.56, "end": 28085.44, "probability": 0.3829 }, { "start": 28086.62, "end": 28088.56, "probability": 0.9446 }, { "start": 28089.34, "end": 28090.38, "probability": 0.9637 }, { "start": 28091.46, "end": 28093.14, "probability": 0.9453 }, { "start": 28093.56, "end": 28095.34, "probability": 0.9413 }, { "start": 28095.46, "end": 28096.96, "probability": 0.7062 }, { "start": 28097.42, "end": 28100.42, "probability": 0.9664 }, { "start": 28100.9, "end": 28102.04, "probability": 0.8695 }, { "start": 28102.1, "end": 28104.5, "probability": 0.9613 }, { "start": 28104.7, "end": 28105.38, "probability": 0.6769 }, { "start": 28107.52, "end": 28108.44, "probability": 0.5548 }, { "start": 28108.46, "end": 28109.82, "probability": 0.6969 }, { "start": 28109.94, "end": 28110.16, "probability": 0.6662 }, { "start": 28110.24, "end": 28110.86, "probability": 0.6763 }, { "start": 28110.92, "end": 28112.86, "probability": 0.9941 }, { "start": 28113.64, "end": 28114.46, "probability": 0.7465 }, { "start": 28114.5, "end": 28115.0, "probability": 0.5444 }, { "start": 28115.02, "end": 28116.16, "probability": 0.8194 }, { "start": 28116.26, "end": 28117.18, "probability": 0.7075 }, { "start": 28117.18, "end": 28119.84, "probability": 0.9209 }, { "start": 28120.52, "end": 28123.44, "probability": 0.827 }, { "start": 28124.08, "end": 28124.7, "probability": 0.4562 }, { "start": 28124.74, "end": 28125.12, "probability": 0.3226 }, { "start": 28125.34, "end": 28126.62, "probability": 0.9328 }, { "start": 28127.06, "end": 28131.06, "probability": 0.936 }, { "start": 28131.98, "end": 28133.28, "probability": 0.9355 }, { "start": 28133.34, "end": 28137.04, "probability": 0.9928 }, { "start": 28137.2, "end": 28140.2, "probability": 0.9341 }, { "start": 28140.2, "end": 28144.4, "probability": 0.9976 }, { "start": 28144.94, "end": 28145.71, "probability": 0.8784 }, { "start": 28146.34, "end": 28146.84, "probability": 0.5307 }, { "start": 28146.86, "end": 28149.58, "probability": 0.732 }, { "start": 28150.36, "end": 28151.1, "probability": 0.611 }, { "start": 28151.1, "end": 28152.92, "probability": 0.9441 }, { "start": 28153.1, "end": 28156.78, "probability": 0.8227 }, { "start": 28156.9, "end": 28157.8, "probability": 0.9599 }, { "start": 28157.92, "end": 28158.28, "probability": 0.8732 }, { "start": 28158.34, "end": 28158.6, "probability": 0.8746 }, { "start": 28158.68, "end": 28159.06, "probability": 0.9194 }, { "start": 28159.68, "end": 28160.52, "probability": 0.9644 }, { "start": 28160.58, "end": 28164.4, "probability": 0.9698 }, { "start": 28164.74, "end": 28166.48, "probability": 0.9951 }, { "start": 28167.38, "end": 28168.16, "probability": 0.8486 }, { "start": 28168.72, "end": 28170.44, "probability": 0.9868 }, { "start": 28170.48, "end": 28171.41, "probability": 0.9595 }, { "start": 28171.7, "end": 28172.96, "probability": 0.7672 }, { "start": 28173.54, "end": 28175.46, "probability": 0.5615 }, { "start": 28176.0, "end": 28176.52, "probability": 0.9634 }, { "start": 28176.84, "end": 28178.4, "probability": 0.9922 }, { "start": 28179.04, "end": 28179.94, "probability": 0.9937 }, { "start": 28180.5, "end": 28182.8, "probability": 0.9972 }, { "start": 28184.54, "end": 28185.58, "probability": 0.9253 }, { "start": 28186.4, "end": 28187.46, "probability": 0.9567 }, { "start": 28187.5, "end": 28187.72, "probability": 0.8347 }, { "start": 28187.76, "end": 28189.8, "probability": 0.9565 }, { "start": 28190.36, "end": 28191.77, "probability": 0.9407 }, { "start": 28192.5, "end": 28194.18, "probability": 0.9908 }, { "start": 28195.32, "end": 28196.7, "probability": 0.915 }, { "start": 28197.02, "end": 28200.24, "probability": 0.9659 }, { "start": 28200.3, "end": 28200.74, "probability": 0.8567 }, { "start": 28200.94, "end": 28203.74, "probability": 0.9318 }, { "start": 28204.08, "end": 28204.46, "probability": 0.8389 }, { "start": 28204.52, "end": 28205.34, "probability": 0.9694 }, { "start": 28205.66, "end": 28207.12, "probability": 0.7656 }, { "start": 28208.16, "end": 28208.96, "probability": 0.6238 }, { "start": 28208.98, "end": 28210.24, "probability": 0.8392 }, { "start": 28210.56, "end": 28212.38, "probability": 0.9219 }, { "start": 28212.72, "end": 28213.76, "probability": 0.9475 }, { "start": 28213.8, "end": 28218.3, "probability": 0.9307 }, { "start": 28218.42, "end": 28218.7, "probability": 0.3182 }, { "start": 28218.74, "end": 28219.86, "probability": 0.929 }, { "start": 28219.96, "end": 28220.88, "probability": 0.7516 }, { "start": 28221.0, "end": 28222.18, "probability": 0.6976 }, { "start": 28222.32, "end": 28223.26, "probability": 0.9819 }, { "start": 28223.34, "end": 28223.92, "probability": 0.5987 }, { "start": 28224.12, "end": 28224.9, "probability": 0.2568 }, { "start": 28224.9, "end": 28225.38, "probability": 0.2912 }, { "start": 28225.74, "end": 28226.26, "probability": 0.759 }, { "start": 28226.3, "end": 28226.54, "probability": 0.8248 }, { "start": 28226.62, "end": 28227.7, "probability": 0.9082 }, { "start": 28228.2, "end": 28228.98, "probability": 0.6869 }, { "start": 28229.1, "end": 28230.62, "probability": 0.6844 }, { "start": 28230.76, "end": 28232.54, "probability": 0.8585 }, { "start": 28232.84, "end": 28236.64, "probability": 0.9951 }, { "start": 28236.96, "end": 28238.98, "probability": 0.9487 }, { "start": 28239.54, "end": 28240.48, "probability": 0.9351 }, { "start": 28240.54, "end": 28242.2, "probability": 0.9858 }, { "start": 28242.58, "end": 28244.3, "probability": 0.9694 }, { "start": 28244.36, "end": 28245.12, "probability": 0.8292 }, { "start": 28245.56, "end": 28247.7, "probability": 0.7306 }, { "start": 28247.7, "end": 28249.94, "probability": 0.9357 }, { "start": 28249.98, "end": 28250.36, "probability": 0.5346 }, { "start": 28251.02, "end": 28255.34, "probability": 0.8679 }, { "start": 28256.22, "end": 28260.8, "probability": 0.695 }, { "start": 28261.4, "end": 28262.6, "probability": 0.9907 }, { "start": 28263.86, "end": 28264.44, "probability": 0.9524 }, { "start": 28265.46, "end": 28268.68, "probability": 0.9745 }, { "start": 28268.94, "end": 28271.52, "probability": 0.9458 }, { "start": 28271.68, "end": 28272.47, "probability": 0.9508 }, { "start": 28273.02, "end": 28277.64, "probability": 0.754 }, { "start": 28277.76, "end": 28281.22, "probability": 0.7972 }, { "start": 28281.42, "end": 28283.0, "probability": 0.8333 }, { "start": 28283.56, "end": 28290.1, "probability": 0.9951 }, { "start": 28290.72, "end": 28291.8, "probability": 0.6047 }, { "start": 28292.34, "end": 28294.26, "probability": 0.9058 }, { "start": 28294.78, "end": 28295.12, "probability": 0.6192 }, { "start": 28295.18, "end": 28295.25, "probability": 0.7107 }, { "start": 28295.88, "end": 28296.48, "probability": 0.7192 }, { "start": 28297.2, "end": 28298.96, "probability": 0.8647 }, { "start": 28299.0, "end": 28301.04, "probability": 0.6599 }, { "start": 28301.24, "end": 28301.68, "probability": 0.2606 }, { "start": 28301.72, "end": 28301.98, "probability": 0.5632 }, { "start": 28301.98, "end": 28302.76, "probability": 0.75 }, { "start": 28303.34, "end": 28304.4, "probability": 0.5094 }, { "start": 28304.86, "end": 28309.04, "probability": 0.686 }, { "start": 28309.04, "end": 28310.5, "probability": 0.8191 }, { "start": 28310.98, "end": 28313.12, "probability": 0.7876 }, { "start": 28313.28, "end": 28314.11, "probability": 0.508 }, { "start": 28315.32, "end": 28317.04, "probability": 0.5154 }, { "start": 28317.14, "end": 28317.66, "probability": 0.0743 }, { "start": 28317.66, "end": 28323.54, "probability": 0.8658 }, { "start": 28324.26, "end": 28327.44, "probability": 0.9297 }, { "start": 28328.05, "end": 28328.99, "probability": 0.9238 }, { "start": 28329.76, "end": 28333.04, "probability": 0.9319 }, { "start": 28333.34, "end": 28334.02, "probability": 0.8895 }, { "start": 28335.06, "end": 28336.3, "probability": 0.7946 }, { "start": 28336.5, "end": 28337.02, "probability": 0.5803 }, { "start": 28337.1, "end": 28337.36, "probability": 0.6457 }, { "start": 28337.38, "end": 28337.96, "probability": 0.9678 }, { "start": 28338.04, "end": 28338.82, "probability": 0.9761 }, { "start": 28339.84, "end": 28341.3, "probability": 0.9749 }, { "start": 28341.3, "end": 28343.06, "probability": 0.9967 }, { "start": 28343.28, "end": 28344.64, "probability": 0.9551 }, { "start": 28344.78, "end": 28345.58, "probability": 0.7979 }, { "start": 28345.9, "end": 28346.68, "probability": 0.9314 }, { "start": 28347.12, "end": 28348.26, "probability": 0.7692 }, { "start": 28348.42, "end": 28349.66, "probability": 0.9752 }, { "start": 28349.7, "end": 28350.38, "probability": 0.6665 }, { "start": 28350.48, "end": 28350.78, "probability": 0.8359 }, { "start": 28351.08, "end": 28352.16, "probability": 0.9004 }, { "start": 28352.18, "end": 28352.2, "probability": 0.5572 }, { "start": 28352.2, "end": 28352.2, "probability": 0.4096 }, { "start": 28352.2, "end": 28352.88, "probability": 0.5388 }, { "start": 28353.25, "end": 28354.94, "probability": 0.9593 }, { "start": 28355.0, "end": 28356.9, "probability": 0.9861 }, { "start": 28356.9, "end": 28357.06, "probability": 0.6522 }, { "start": 28357.18, "end": 28357.74, "probability": 0.5641 }, { "start": 28357.76, "end": 28359.1, "probability": 0.811 }, { "start": 28359.12, "end": 28360.08, "probability": 0.8989 }, { "start": 28360.2, "end": 28360.82, "probability": 0.1986 }, { "start": 28360.88, "end": 28361.7, "probability": 0.9473 }, { "start": 28362.2, "end": 28364.6, "probability": 0.9113 }, { "start": 28364.84, "end": 28365.78, "probability": 0.3438 }, { "start": 28365.8, "end": 28367.06, "probability": 0.7045 }, { "start": 28367.18, "end": 28367.48, "probability": 0.7926 }, { "start": 28374.2, "end": 28376.22, "probability": 0.8823 }, { "start": 28377.92, "end": 28379.19, "probability": 0.9956 }, { "start": 28380.18, "end": 28383.47, "probability": 0.9942 }, { "start": 28385.26, "end": 28387.76, "probability": 0.5478 }, { "start": 28388.32, "end": 28390.46, "probability": 0.1666 }, { "start": 28390.86, "end": 28393.51, "probability": 0.7919 }, { "start": 28393.86, "end": 28396.54, "probability": 0.777 }, { "start": 28396.9, "end": 28398.1, "probability": 0.5932 }, { "start": 28398.24, "end": 28398.72, "probability": 0.9053 }, { "start": 28399.66, "end": 28401.28, "probability": 0.7712 }, { "start": 28401.3, "end": 28402.3, "probability": 0.843 }, { "start": 28402.74, "end": 28404.24, "probability": 0.7538 }, { "start": 28404.8, "end": 28406.28, "probability": 0.7247 }, { "start": 28409.48, "end": 28411.98, "probability": 0.577 }, { "start": 28412.72, "end": 28413.54, "probability": 0.7986 }, { "start": 28413.82, "end": 28417.02, "probability": 0.8036 }, { "start": 28418.26, "end": 28420.14, "probability": 0.9321 }, { "start": 28420.26, "end": 28424.54, "probability": 0.9582 }, { "start": 28424.54, "end": 28428.64, "probability": 0.9885 }, { "start": 28429.18, "end": 28430.34, "probability": 0.7554 }, { "start": 28430.84, "end": 28435.94, "probability": 0.969 }, { "start": 28436.36, "end": 28437.66, "probability": 0.7708 }, { "start": 28438.16, "end": 28439.14, "probability": 0.7065 }, { "start": 28439.2, "end": 28439.6, "probability": 0.6449 }, { "start": 28439.6, "end": 28444.74, "probability": 0.9604 }, { "start": 28445.66, "end": 28445.72, "probability": 0.146 }, { "start": 28445.72, "end": 28446.8, "probability": 0.6307 }, { "start": 28446.96, "end": 28447.62, "probability": 0.8575 }, { "start": 28447.76, "end": 28451.72, "probability": 0.9523 }, { "start": 28452.06, "end": 28453.24, "probability": 0.9836 }, { "start": 28453.56, "end": 28454.43, "probability": 0.8687 }, { "start": 28454.84, "end": 28456.02, "probability": 0.9138 }, { "start": 28456.34, "end": 28457.38, "probability": 0.7212 }, { "start": 28457.48, "end": 28457.94, "probability": 0.9739 }, { "start": 28458.22, "end": 28460.56, "probability": 0.9712 }, { "start": 28460.86, "end": 28466.04, "probability": 0.9632 }, { "start": 28466.46, "end": 28468.05, "probability": 0.7407 }, { "start": 28468.76, "end": 28470.58, "probability": 0.8685 }, { "start": 28470.82, "end": 28472.38, "probability": 0.583 }, { "start": 28472.68, "end": 28474.32, "probability": 0.9305 }, { "start": 28474.48, "end": 28480.18, "probability": 0.9748 }, { "start": 28480.34, "end": 28482.18, "probability": 0.8423 }, { "start": 28482.76, "end": 28488.66, "probability": 0.9944 }, { "start": 28489.34, "end": 28489.94, "probability": 0.7518 }, { "start": 28490.14, "end": 28494.56, "probability": 0.9194 }, { "start": 28495.24, "end": 28497.02, "probability": 0.9638 }, { "start": 28497.02, "end": 28501.04, "probability": 0.9136 }, { "start": 28501.54, "end": 28502.3, "probability": 0.7159 }, { "start": 28502.86, "end": 28504.02, "probability": 0.6581 }, { "start": 28504.06, "end": 28504.6, "probability": 0.9063 }, { "start": 28504.6, "end": 28506.26, "probability": 0.8447 }, { "start": 28506.42, "end": 28507.28, "probability": 0.8613 }, { "start": 28507.78, "end": 28510.66, "probability": 0.9839 }, { "start": 28511.04, "end": 28513.76, "probability": 0.8318 }, { "start": 28514.66, "end": 28517.62, "probability": 0.9697 }, { "start": 28518.08, "end": 28519.02, "probability": 0.6359 }, { "start": 28519.58, "end": 28521.26, "probability": 0.8689 }, { "start": 28521.66, "end": 28529.34, "probability": 0.9706 }, { "start": 28529.7, "end": 28534.04, "probability": 0.8033 }, { "start": 28534.04, "end": 28540.0, "probability": 0.9339 }, { "start": 28540.0, "end": 28544.44, "probability": 0.9971 }, { "start": 28544.82, "end": 28545.78, "probability": 0.5331 }, { "start": 28546.68, "end": 28551.56, "probability": 0.9845 }, { "start": 28551.68, "end": 28553.52, "probability": 0.8141 }, { "start": 28553.94, "end": 28554.72, "probability": 0.9519 }, { "start": 28555.36, "end": 28557.4, "probability": 0.98 }, { "start": 28558.24, "end": 28560.14, "probability": 0.9532 }, { "start": 28560.48, "end": 28561.2, "probability": 0.7014 }, { "start": 28561.84, "end": 28563.51, "probability": 0.6807 }, { "start": 28563.86, "end": 28565.1, "probability": 0.7975 }, { "start": 28565.58, "end": 28568.26, "probability": 0.8025 }, { "start": 28568.4, "end": 28570.7, "probability": 0.3859 }, { "start": 28570.88, "end": 28572.02, "probability": 0.9824 }, { "start": 28572.56, "end": 28573.72, "probability": 0.9917 }, { "start": 28573.82, "end": 28577.02, "probability": 0.926 }, { "start": 28577.12, "end": 28577.86, "probability": 0.5073 }, { "start": 28578.58, "end": 28581.9, "probability": 0.9845 }, { "start": 28582.34, "end": 28584.4, "probability": 0.8306 }, { "start": 28584.66, "end": 28586.28, "probability": 0.8714 }, { "start": 28586.44, "end": 28588.08, "probability": 0.9297 }, { "start": 28588.62, "end": 28589.32, "probability": 0.709 }, { "start": 28589.48, "end": 28590.26, "probability": 0.4264 }, { "start": 28590.84, "end": 28592.8, "probability": 0.8311 }, { "start": 28592.86, "end": 28593.9, "probability": 0.5894 }, { "start": 28594.08, "end": 28597.06, "probability": 0.9768 }, { "start": 28597.14, "end": 28599.08, "probability": 0.9685 }, { "start": 28599.7, "end": 28601.18, "probability": 0.9051 }, { "start": 28601.64, "end": 28603.76, "probability": 0.6599 }, { "start": 28603.86, "end": 28604.86, "probability": 0.8757 }, { "start": 28605.18, "end": 28606.92, "probability": 0.9279 }, { "start": 28607.28, "end": 28610.66, "probability": 0.9302 }, { "start": 28610.94, "end": 28613.78, "probability": 0.9875 }, { "start": 28613.94, "end": 28614.84, "probability": 0.9624 }, { "start": 28615.24, "end": 28617.48, "probability": 0.826 }, { "start": 28617.8, "end": 28619.22, "probability": 0.9937 }, { "start": 28619.38, "end": 28619.64, "probability": 0.5754 }, { "start": 28620.14, "end": 28621.66, "probability": 0.9364 }, { "start": 28622.5, "end": 28625.56, "probability": 0.9721 }, { "start": 28626.12, "end": 28629.86, "probability": 0.9802 }, { "start": 28629.98, "end": 28631.08, "probability": 0.8527 }, { "start": 28631.58, "end": 28633.67, "probability": 0.8966 }, { "start": 28633.94, "end": 28634.5, "probability": 0.8539 }, { "start": 28634.62, "end": 28636.78, "probability": 0.9698 }, { "start": 28637.26, "end": 28638.32, "probability": 0.9829 }, { "start": 28639.28, "end": 28642.48, "probability": 0.9409 }, { "start": 28642.84, "end": 28644.7, "probability": 0.8059 }, { "start": 28646.46, "end": 28648.1, "probability": 0.8752 }, { "start": 28648.9, "end": 28649.9, "probability": 0.884 }, { "start": 28650.04, "end": 28654.88, "probability": 0.9836 }, { "start": 28655.58, "end": 28656.46, "probability": 0.5005 }, { "start": 28656.9, "end": 28658.6, "probability": 0.9794 }, { "start": 28658.7, "end": 28659.74, "probability": 0.9559 }, { "start": 28659.78, "end": 28660.64, "probability": 0.7555 }, { "start": 28660.98, "end": 28661.48, "probability": 0.9628 }, { "start": 28662.18, "end": 28664.78, "probability": 0.7576 }, { "start": 28665.82, "end": 28666.28, "probability": 0.7378 }, { "start": 28666.46, "end": 28667.16, "probability": 0.9641 }, { "start": 28667.3, "end": 28667.86, "probability": 0.9233 }, { "start": 28667.9, "end": 28669.96, "probability": 0.9059 }, { "start": 28670.02, "end": 28674.6, "probability": 0.9658 }, { "start": 28674.98, "end": 28676.24, "probability": 0.9716 }, { "start": 28676.92, "end": 28679.72, "probability": 0.2844 }, { "start": 28680.12, "end": 28680.28, "probability": 0.1225 }, { "start": 28680.48, "end": 28682.54, "probability": 0.7704 }, { "start": 28684.04, "end": 28687.1, "probability": 0.9362 }, { "start": 28689.26, "end": 28691.04, "probability": 0.0883 }, { "start": 28691.04, "end": 28692.7, "probability": 0.3991 }, { "start": 28693.82, "end": 28695.64, "probability": 0.6375 }, { "start": 28695.94, "end": 28698.22, "probability": 0.96 }, { "start": 28698.86, "end": 28699.86, "probability": 0.6913 }, { "start": 28700.04, "end": 28700.3, "probability": 0.6705 }, { "start": 28700.4, "end": 28701.38, "probability": 0.7709 }, { "start": 28701.56, "end": 28705.8, "probability": 0.9797 }, { "start": 28706.84, "end": 28710.3, "probability": 0.9603 }, { "start": 28710.42, "end": 28710.7, "probability": 0.917 }, { "start": 28711.52, "end": 28712.54, "probability": 0.9175 }, { "start": 28712.62, "end": 28716.26, "probability": 0.8184 }, { "start": 28716.5, "end": 28720.26, "probability": 0.8282 }, { "start": 28720.66, "end": 28722.22, "probability": 0.8617 }, { "start": 28722.68, "end": 28726.26, "probability": 0.9717 }, { "start": 28726.56, "end": 28729.26, "probability": 0.9946 }, { "start": 28730.04, "end": 28734.58, "probability": 0.9652 }, { "start": 28735.1, "end": 28739.54, "probability": 0.7223 }, { "start": 28739.68, "end": 28740.64, "probability": 0.7766 }, { "start": 28740.82, "end": 28741.54, "probability": 0.8717 }, { "start": 28741.96, "end": 28742.62, "probability": 0.7366 }, { "start": 28742.72, "end": 28745.36, "probability": 0.6921 }, { "start": 28745.72, "end": 28746.58, "probability": 0.4369 }, { "start": 28747.14, "end": 28747.78, "probability": 0.6774 }, { "start": 28748.54, "end": 28751.64, "probability": 0.6219 }, { "start": 28751.72, "end": 28753.76, "probability": 0.9573 }, { "start": 28754.64, "end": 28755.12, "probability": 0.8984 }, { "start": 28756.04, "end": 28756.4, "probability": 0.9516 }, { "start": 28757.3, "end": 28757.72, "probability": 0.6667 }, { "start": 28758.08, "end": 28759.84, "probability": 0.9866 }, { "start": 28761.56, "end": 28764.18, "probability": 0.2042 }, { "start": 28783.08, "end": 28784.38, "probability": 0.3419 }, { "start": 28785.72, "end": 28786.32, "probability": 0.8237 }, { "start": 28787.28, "end": 28787.82, "probability": 0.9034 }, { "start": 28789.06, "end": 28793.22, "probability": 0.9275 }, { "start": 28793.78, "end": 28795.36, "probability": 0.9968 }, { "start": 28796.42, "end": 28798.06, "probability": 0.822 }, { "start": 28798.7, "end": 28801.78, "probability": 0.9744 }, { "start": 28802.8, "end": 28805.78, "probability": 0.9106 }, { "start": 28805.9, "end": 28807.54, "probability": 0.8848 }, { "start": 28808.3, "end": 28810.14, "probability": 0.9561 }, { "start": 28811.18, "end": 28812.46, "probability": 0.9609 }, { "start": 28813.26, "end": 28814.8, "probability": 0.9596 }, { "start": 28814.92, "end": 28815.02, "probability": 0.5208 }, { "start": 28815.12, "end": 28815.52, "probability": 0.9439 }, { "start": 28815.62, "end": 28817.48, "probability": 0.9963 }, { "start": 28818.14, "end": 28820.96, "probability": 0.9869 }, { "start": 28821.46, "end": 28822.7, "probability": 0.9846 }, { "start": 28822.78, "end": 28824.32, "probability": 0.5283 }, { "start": 28825.12, "end": 28827.72, "probability": 0.5726 }, { "start": 28829.28, "end": 28831.63, "probability": 0.9099 }, { "start": 28831.98, "end": 28833.4, "probability": 0.9695 }, { "start": 28833.52, "end": 28836.66, "probability": 0.8628 }, { "start": 28837.24, "end": 28840.18, "probability": 0.9532 }, { "start": 28841.0, "end": 28843.84, "probability": 0.8393 }, { "start": 28844.98, "end": 28847.3, "probability": 0.4033 }, { "start": 28847.4, "end": 28848.16, "probability": 0.7852 }, { "start": 28849.16, "end": 28851.99, "probability": 0.877 }, { "start": 28853.84, "end": 28857.62, "probability": 0.6692 }, { "start": 28857.72, "end": 28858.44, "probability": 0.9728 }, { "start": 28859.5, "end": 28859.98, "probability": 0.7755 }, { "start": 28860.26, "end": 28862.14, "probability": 0.9688 }, { "start": 28863.42, "end": 28867.76, "probability": 0.7759 }, { "start": 28867.82, "end": 28871.38, "probability": 0.8796 }, { "start": 28871.9, "end": 28876.52, "probability": 0.9597 }, { "start": 28876.6, "end": 28877.14, "probability": 0.8018 }, { "start": 28877.6, "end": 28881.6, "probability": 0.99 }, { "start": 28881.8, "end": 28884.36, "probability": 0.9935 }, { "start": 28884.8, "end": 28886.42, "probability": 0.8745 }, { "start": 28886.86, "end": 28891.02, "probability": 0.9147 }, { "start": 28891.66, "end": 28893.56, "probability": 0.4536 }, { "start": 28893.98, "end": 28895.22, "probability": 0.6816 }, { "start": 28895.4, "end": 28896.3, "probability": 0.8077 }, { "start": 28896.3, "end": 28900.4, "probability": 0.9341 }, { "start": 28900.4, "end": 28900.92, "probability": 0.6323 }, { "start": 28901.14, "end": 28901.34, "probability": 0.7566 }, { "start": 28901.42, "end": 28902.54, "probability": 0.9324 }, { "start": 28902.64, "end": 28903.26, "probability": 0.7136 }, { "start": 28903.36, "end": 28904.14, "probability": 0.9697 }, { "start": 28904.22, "end": 28904.92, "probability": 0.9367 }, { "start": 28905.44, "end": 28906.3, "probability": 0.7501 }, { "start": 28907.28, "end": 28909.22, "probability": 0.7841 }, { "start": 28909.88, "end": 28912.4, "probability": 0.9665 }, { "start": 28912.82, "end": 28918.14, "probability": 0.9681 }, { "start": 28918.64, "end": 28919.82, "probability": 0.9873 }, { "start": 28920.54, "end": 28922.2, "probability": 0.9939 }, { "start": 28922.42, "end": 28922.94, "probability": 0.5434 }, { "start": 28923.08, "end": 28924.26, "probability": 0.9599 }, { "start": 28924.38, "end": 28925.44, "probability": 0.9364 }, { "start": 28925.88, "end": 28927.36, "probability": 0.917 }, { "start": 28927.96, "end": 28929.78, "probability": 0.976 }, { "start": 28930.46, "end": 28933.36, "probability": 0.9773 }, { "start": 28933.44, "end": 28935.04, "probability": 0.8259 }, { "start": 28935.58, "end": 28939.24, "probability": 0.9849 }, { "start": 28940.18, "end": 28941.4, "probability": 0.6391 }, { "start": 28941.48, "end": 28942.1, "probability": 0.987 }, { "start": 28943.72, "end": 28944.12, "probability": 0.6964 }, { "start": 28944.2, "end": 28947.58, "probability": 0.9722 }, { "start": 28947.68, "end": 28950.36, "probability": 0.9979 }, { "start": 28951.38, "end": 28952.68, "probability": 0.9288 }, { "start": 28953.24, "end": 28956.3, "probability": 0.8692 }, { "start": 28957.36, "end": 28962.3, "probability": 0.9915 }, { "start": 28963.0, "end": 28968.62, "probability": 0.8473 }, { "start": 28969.98, "end": 28972.38, "probability": 0.8589 }, { "start": 28973.74, "end": 28978.36, "probability": 0.8278 }, { "start": 28979.02, "end": 28983.06, "probability": 0.9846 }, { "start": 28983.64, "end": 28986.84, "probability": 0.9521 }, { "start": 28988.02, "end": 28989.22, "probability": 0.975 }, { "start": 28989.34, "end": 28990.7, "probability": 0.959 }, { "start": 28992.24, "end": 28994.4, "probability": 0.9872 }, { "start": 28995.2, "end": 28998.46, "probability": 0.9718 }, { "start": 28999.44, "end": 29003.04, "probability": 0.92 }, { "start": 29003.98, "end": 29006.44, "probability": 0.9982 }, { "start": 29007.68, "end": 29008.94, "probability": 0.999 }, { "start": 29010.84, "end": 29013.92, "probability": 0.9683 }, { "start": 29016.44, "end": 29023.92, "probability": 0.876 }, { "start": 29025.12, "end": 29026.22, "probability": 0.6735 }, { "start": 29026.86, "end": 29028.34, "probability": 0.7764 }, { "start": 29029.52, "end": 29031.84, "probability": 0.95 }, { "start": 29032.18, "end": 29033.38, "probability": 0.8682 }, { "start": 29034.3, "end": 29035.07, "probability": 0.5547 }, { "start": 29035.84, "end": 29037.38, "probability": 0.8755 }, { "start": 29037.46, "end": 29039.92, "probability": 0.9351 }, { "start": 29040.88, "end": 29041.26, "probability": 0.9065 }, { "start": 29041.36, "end": 29044.6, "probability": 0.9916 }, { "start": 29045.2, "end": 29046.68, "probability": 0.7082 }, { "start": 29046.94, "end": 29047.38, "probability": 0.2901 }, { "start": 29048.38, "end": 29050.12, "probability": 0.8902 }, { "start": 29051.18, "end": 29053.14, "probability": 0.9139 }, { "start": 29054.58, "end": 29056.62, "probability": 0.9391 }, { "start": 29056.92, "end": 29059.22, "probability": 0.9447 }, { "start": 29059.72, "end": 29062.64, "probability": 0.9304 }, { "start": 29062.78, "end": 29064.2, "probability": 0.6997 }, { "start": 29064.94, "end": 29065.66, "probability": 0.2522 }, { "start": 29065.7, "end": 29066.58, "probability": 0.3678 }, { "start": 29066.7, "end": 29068.42, "probability": 0.9093 }, { "start": 29068.96, "end": 29069.35, "probability": 0.7547 }, { "start": 29070.8, "end": 29072.68, "probability": 0.9725 }, { "start": 29073.02, "end": 29075.1, "probability": 0.9755 }, { "start": 29075.62, "end": 29077.52, "probability": 0.6367 }, { "start": 29078.48, "end": 29079.7, "probability": 0.8097 }, { "start": 29081.04, "end": 29083.82, "probability": 0.9841 }, { "start": 29084.8, "end": 29087.5, "probability": 0.989 }, { "start": 29089.24, "end": 29090.3, "probability": 0.6021 }, { "start": 29090.4, "end": 29090.78, "probability": 0.7889 }, { "start": 29090.86, "end": 29091.52, "probability": 0.7993 }, { "start": 29091.62, "end": 29093.46, "probability": 0.9849 }, { "start": 29095.44, "end": 29097.4, "probability": 0.9791 }, { "start": 29099.02, "end": 29102.22, "probability": 0.0808 }, { "start": 29102.22, "end": 29103.92, "probability": 0.2834 }, { "start": 29105.06, "end": 29106.1, "probability": 0.3608 }, { "start": 29106.1, "end": 29108.12, "probability": 0.305 }, { "start": 29108.2, "end": 29111.84, "probability": 0.7077 }, { "start": 29113.25, "end": 29118.46, "probability": 0.9685 }, { "start": 29119.26, "end": 29120.0, "probability": 0.9682 }, { "start": 29121.0, "end": 29122.64, "probability": 0.8373 }, { "start": 29123.24, "end": 29124.26, "probability": 0.6812 }, { "start": 29124.98, "end": 29127.64, "probability": 0.7227 }, { "start": 29128.42, "end": 29130.42, "probability": 0.6615 }, { "start": 29131.18, "end": 29132.0, "probability": 0.9183 }, { "start": 29132.7, "end": 29134.88, "probability": 0.7139 }, { "start": 29135.08, "end": 29135.78, "probability": 0.958 }, { "start": 29135.9, "end": 29139.7, "probability": 0.8704 }, { "start": 29141.2, "end": 29142.58, "probability": 0.564 }, { "start": 29142.76, "end": 29143.9, "probability": 0.9734 }, { "start": 29144.62, "end": 29144.84, "probability": 0.9465 }, { "start": 29145.96, "end": 29146.38, "probability": 0.0957 }, { "start": 29149.72, "end": 29152.95, "probability": 0.2588 }, { "start": 29153.98, "end": 29157.14, "probability": 0.1054 }, { "start": 29157.66, "end": 29160.42, "probability": 0.6299 }, { "start": 29161.28, "end": 29161.7, "probability": 0.2053 }, { "start": 29168.04, "end": 29170.88, "probability": 0.6217 }, { "start": 29172.86, "end": 29178.42, "probability": 0.8239 }, { "start": 29178.42, "end": 29179.96, "probability": 0.6036 }, { "start": 29180.1, "end": 29181.33, "probability": 0.8413 }, { "start": 29182.62, "end": 29183.96, "probability": 0.8026 }, { "start": 29183.98, "end": 29185.44, "probability": 0.5178 }, { "start": 29185.52, "end": 29187.78, "probability": 0.7754 }, { "start": 29189.8, "end": 29190.94, "probability": 0.6756 }, { "start": 29192.32, "end": 29194.2, "probability": 0.8161 }, { "start": 29195.3, "end": 29196.94, "probability": 0.5549 }, { "start": 29199.28, "end": 29200.78, "probability": 0.4557 }, { "start": 29201.76, "end": 29203.56, "probability": 0.6668 }, { "start": 29204.56, "end": 29206.46, "probability": 0.9867 }, { "start": 29207.28, "end": 29210.14, "probability": 0.9694 }, { "start": 29210.57, "end": 29214.1, "probability": 0.8529 }, { "start": 29215.32, "end": 29219.06, "probability": 0.8823 }, { "start": 29219.18, "end": 29222.18, "probability": 0.9604 }, { "start": 29223.44, "end": 29226.34, "probability": 0.7085 }, { "start": 29226.8, "end": 29232.0, "probability": 0.9019 }, { "start": 29233.84, "end": 29237.54, "probability": 0.8082 }, { "start": 29238.14, "end": 29238.44, "probability": 0.6698 }, { "start": 29239.7, "end": 29242.5, "probability": 0.6997 }, { "start": 29243.26, "end": 29246.46, "probability": 0.8064 }, { "start": 29247.64, "end": 29247.8, "probability": 0.4788 }, { "start": 29248.32, "end": 29251.04, "probability": 0.8537 }, { "start": 29252.3, "end": 29254.32, "probability": 0.9126 }, { "start": 29254.4, "end": 29256.08, "probability": 0.835 }, { "start": 29256.52, "end": 29257.76, "probability": 0.636 }, { "start": 29258.54, "end": 29260.52, "probability": 0.8545 }, { "start": 29262.16, "end": 29264.26, "probability": 0.9436 }, { "start": 29264.4, "end": 29265.48, "probability": 0.9136 }, { "start": 29265.64, "end": 29266.88, "probability": 0.768 }, { "start": 29267.94, "end": 29268.8, "probability": 0.8478 }, { "start": 29269.74, "end": 29274.28, "probability": 0.8911 }, { "start": 29275.16, "end": 29275.48, "probability": 0.438 }, { "start": 29276.04, "end": 29279.64, "probability": 0.5682 }, { "start": 29280.4, "end": 29281.02, "probability": 0.4236 }, { "start": 29281.92, "end": 29282.1, "probability": 0.7893 }, { "start": 29284.02, "end": 29284.94, "probability": 0.8775 }, { "start": 29286.98, "end": 29288.02, "probability": 0.9072 }, { "start": 29291.12, "end": 29292.8, "probability": 0.9712 }, { "start": 29293.06, "end": 29295.69, "probability": 0.9604 }, { "start": 29295.82, "end": 29298.12, "probability": 0.731 }, { "start": 29298.98, "end": 29299.7, "probability": 0.6431 }, { "start": 29300.46, "end": 29301.44, "probability": 0.4989 }, { "start": 29302.44, "end": 29303.84, "probability": 0.9475 }, { "start": 29305.28, "end": 29306.86, "probability": 0.7943 }, { "start": 29308.74, "end": 29314.2, "probability": 0.7999 }, { "start": 29314.4, "end": 29315.44, "probability": 0.8093 }, { "start": 29315.86, "end": 29317.68, "probability": 0.6783 }, { "start": 29318.24, "end": 29319.08, "probability": 0.6511 }, { "start": 29319.66, "end": 29320.28, "probability": 0.413 }, { "start": 29323.68, "end": 29324.5, "probability": 0.8608 }, { "start": 29325.54, "end": 29331.02, "probability": 0.8621 }, { "start": 29331.18, "end": 29331.64, "probability": 0.1426 }, { "start": 29333.78, "end": 29335.8, "probability": 0.5039 }, { "start": 29335.82, "end": 29337.48, "probability": 0.6746 }, { "start": 29338.54, "end": 29339.82, "probability": 0.9608 }, { "start": 29340.84, "end": 29342.44, "probability": 0.9702 }, { "start": 29343.66, "end": 29346.8, "probability": 0.7826 }, { "start": 29347.64, "end": 29348.98, "probability": 0.7178 }, { "start": 29351.14, "end": 29353.36, "probability": 0.8862 }, { "start": 29353.68, "end": 29354.64, "probability": 0.9355 }, { "start": 29355.22, "end": 29358.32, "probability": 0.7415 }, { "start": 29360.12, "end": 29362.28, "probability": 0.8957 }, { "start": 29363.98, "end": 29365.64, "probability": 0.8848 }, { "start": 29366.72, "end": 29367.86, "probability": 0.6506 }, { "start": 29369.4, "end": 29369.98, "probability": 0.8585 }, { "start": 29371.4, "end": 29372.1, "probability": 0.8563 }, { "start": 29372.28, "end": 29373.2, "probability": 0.8789 }, { "start": 29375.98, "end": 29381.95, "probability": 0.7392 }, { "start": 29382.4, "end": 29383.94, "probability": 0.845 }, { "start": 29385.06, "end": 29385.56, "probability": 0.8506 }, { "start": 29385.66, "end": 29388.84, "probability": 0.9333 }, { "start": 29389.48, "end": 29391.58, "probability": 0.9372 }, { "start": 29393.54, "end": 29396.14, "probability": 0.8241 }, { "start": 29396.38, "end": 29397.16, "probability": 0.8048 }, { "start": 29397.28, "end": 29397.66, "probability": 0.3437 }, { "start": 29398.8, "end": 29404.58, "probability": 0.6256 }, { "start": 29404.74, "end": 29410.32, "probability": 0.6654 }, { "start": 29410.86, "end": 29411.44, "probability": 0.8289 }, { "start": 29413.58, "end": 29419.6, "probability": 0.9548 }, { "start": 29419.96, "end": 29422.47, "probability": 0.6482 }, { "start": 29423.3, "end": 29426.08, "probability": 0.3235 }, { "start": 29427.26, "end": 29427.91, "probability": 0.9414 }, { "start": 29428.62, "end": 29430.88, "probability": 0.6842 }, { "start": 29432.1, "end": 29434.24, "probability": 0.8496 }, { "start": 29435.56, "end": 29436.68, "probability": 0.5262 }, { "start": 29436.76, "end": 29440.82, "probability": 0.8684 }, { "start": 29441.52, "end": 29443.12, "probability": 0.9568 }, { "start": 29443.18, "end": 29444.02, "probability": 0.7265 }, { "start": 29444.48, "end": 29449.94, "probability": 0.9029 }, { "start": 29451.48, "end": 29452.04, "probability": 0.682 }, { "start": 29452.78, "end": 29454.52, "probability": 0.9536 }, { "start": 29455.2, "end": 29455.5, "probability": 0.7889 }, { "start": 29456.12, "end": 29456.8, "probability": 0.8736 }, { "start": 29457.42, "end": 29457.92, "probability": 0.6596 }, { "start": 29459.68, "end": 29462.58, "probability": 0.8298 }, { "start": 29464.1, "end": 29466.42, "probability": 0.9288 }, { "start": 29491.44, "end": 29492.84, "probability": 0.7233 }, { "start": 29493.94, "end": 29494.54, "probability": 0.5251 }, { "start": 29495.4, "end": 29495.92, "probability": 0.3337 }, { "start": 29496.7, "end": 29497.02, "probability": 0.302 }, { "start": 29497.36, "end": 29498.1, "probability": 0.8784 }, { "start": 29498.38, "end": 29498.66, "probability": 0.8167 }, { "start": 29499.7, "end": 29502.16, "probability": 0.7579 }, { "start": 29504.96, "end": 29504.96, "probability": 0.1204 }, { "start": 29504.96, "end": 29508.66, "probability": 0.628 }, { "start": 29509.74, "end": 29513.16, "probability": 0.9941 }, { "start": 29513.4, "end": 29515.22, "probability": 0.606 }, { "start": 29515.3, "end": 29515.92, "probability": 0.6855 }, { "start": 29516.08, "end": 29517.84, "probability": 0.6025 }, { "start": 29517.92, "end": 29518.92, "probability": 0.973 }, { "start": 29519.04, "end": 29521.78, "probability": 0.665 }, { "start": 29522.29, "end": 29525.5, "probability": 0.9227 }, { "start": 29525.6, "end": 29526.0, "probability": 0.3645 }, { "start": 29526.5, "end": 29529.94, "probability": 0.9495 }, { "start": 29530.24, "end": 29532.98, "probability": 0.9254 }, { "start": 29533.88, "end": 29535.94, "probability": 0.7912 }, { "start": 29536.84, "end": 29542.14, "probability": 0.3556 }, { "start": 29542.16, "end": 29542.28, "probability": 0.6558 }, { "start": 29544.55, "end": 29547.46, "probability": 0.8684 }, { "start": 29547.6, "end": 29550.64, "probability": 0.7575 }, { "start": 29550.72, "end": 29552.92, "probability": 0.7142 }, { "start": 29553.0, "end": 29553.7, "probability": 0.9017 }, { "start": 29554.16, "end": 29554.32, "probability": 0.8569 }, { "start": 29554.78, "end": 29555.22, "probability": 0.8677 }, { "start": 29555.34, "end": 29556.26, "probability": 0.8366 }, { "start": 29556.32, "end": 29557.1, "probability": 0.7842 }, { "start": 29557.22, "end": 29558.7, "probability": 0.6813 }, { "start": 29559.18, "end": 29560.95, "probability": 0.9083 }, { "start": 29564.24, "end": 29564.74, "probability": 0.7244 }, { "start": 29564.96, "end": 29565.52, "probability": 0.4304 }, { "start": 29567.0, "end": 29572.54, "probability": 0.5111 }, { "start": 29572.84, "end": 29575.04, "probability": 0.9534 }, { "start": 29575.4, "end": 29577.66, "probability": 0.719 }, { "start": 29577.7, "end": 29578.14, "probability": 0.4413 }, { "start": 29578.22, "end": 29579.52, "probability": 0.9832 }, { "start": 29579.88, "end": 29581.52, "probability": 0.8683 }, { "start": 29581.66, "end": 29584.02, "probability": 0.8171 }, { "start": 29584.02, "end": 29586.42, "probability": 0.8645 }, { "start": 29586.9, "end": 29589.61, "probability": 0.9878 }, { "start": 29591.36, "end": 29591.57, "probability": 0.1725 }, { "start": 29592.48, "end": 29595.24, "probability": 0.7003 }, { "start": 29595.7, "end": 29596.14, "probability": 0.6016 }, { "start": 29596.32, "end": 29599.38, "probability": 0.9806 }, { "start": 29599.4, "end": 29603.26, "probability": 0.9839 }, { "start": 29603.5, "end": 29606.6, "probability": 0.8758 }, { "start": 29606.76, "end": 29609.31, "probability": 0.9375 }, { "start": 29610.58, "end": 29613.55, "probability": 0.9149 }, { "start": 29614.64, "end": 29616.96, "probability": 0.9865 }, { "start": 29617.7, "end": 29619.2, "probability": 0.9424 }, { "start": 29619.26, "end": 29619.72, "probability": 0.9203 }, { "start": 29619.86, "end": 29620.54, "probability": 0.5649 }, { "start": 29620.54, "end": 29622.86, "probability": 0.9231 }, { "start": 29623.34, "end": 29626.38, "probability": 0.8922 }, { "start": 29627.0, "end": 29628.16, "probability": 0.2498 }, { "start": 29628.16, "end": 29629.06, "probability": 0.7656 }, { "start": 29629.6, "end": 29633.64, "probability": 0.9705 }, { "start": 29633.84, "end": 29636.84, "probability": 0.9896 }, { "start": 29637.3, "end": 29637.68, "probability": 0.0948 }, { "start": 29637.68, "end": 29639.92, "probability": 0.5376 }, { "start": 29640.64, "end": 29641.97, "probability": 0.9209 }, { "start": 29642.22, "end": 29647.56, "probability": 0.8258 }, { "start": 29649.56, "end": 29650.76, "probability": 0.3368 }, { "start": 29651.28, "end": 29652.26, "probability": 0.989 }, { "start": 29653.06, "end": 29655.8, "probability": 0.9941 }, { "start": 29655.9, "end": 29657.3, "probability": 0.5715 }, { "start": 29657.4, "end": 29660.9, "probability": 0.9883 }, { "start": 29661.02, "end": 29661.86, "probability": 0.7666 }, { "start": 29662.56, "end": 29663.18, "probability": 0.4822 }, { "start": 29663.36, "end": 29665.84, "probability": 0.6639 }, { "start": 29666.32, "end": 29667.68, "probability": 0.9921 }, { "start": 29668.68, "end": 29670.8, "probability": 0.7112 }, { "start": 29670.86, "end": 29671.74, "probability": 0.7987 }, { "start": 29671.76, "end": 29673.1, "probability": 0.6704 }, { "start": 29674.05, "end": 29675.58, "probability": 0.5113 }, { "start": 29675.68, "end": 29678.38, "probability": 0.926 }, { "start": 29678.38, "end": 29680.44, "probability": 0.9868 }, { "start": 29680.52, "end": 29681.4, "probability": 0.5856 }, { "start": 29681.5, "end": 29684.46, "probability": 0.9927 }, { "start": 29684.54, "end": 29685.34, "probability": 0.9575 }, { "start": 29685.86, "end": 29689.36, "probability": 0.7845 }, { "start": 29690.04, "end": 29691.98, "probability": 0.9781 }, { "start": 29692.1, "end": 29694.42, "probability": 0.9481 }, { "start": 29694.68, "end": 29695.12, "probability": 0.813 }, { "start": 29695.24, "end": 29696.02, "probability": 0.5078 }, { "start": 29696.36, "end": 29698.92, "probability": 0.6896 }, { "start": 29698.98, "end": 29699.72, "probability": 0.6833 }, { "start": 29699.8, "end": 29700.72, "probability": 0.9558 }, { "start": 29700.8, "end": 29701.8, "probability": 0.8852 }, { "start": 29702.12, "end": 29705.42, "probability": 0.6671 }, { "start": 29705.62, "end": 29708.26, "probability": 0.7459 }, { "start": 29708.56, "end": 29709.18, "probability": 0.7396 }, { "start": 29709.58, "end": 29711.7, "probability": 0.8065 }, { "start": 29711.94, "end": 29712.94, "probability": 0.9231 }, { "start": 29713.36, "end": 29714.6, "probability": 0.7195 }, { "start": 29715.04, "end": 29718.66, "probability": 0.8554 }, { "start": 29718.76, "end": 29722.0, "probability": 0.959 }, { "start": 29722.12, "end": 29722.56, "probability": 0.4607 }, { "start": 29722.7, "end": 29724.14, "probability": 0.1497 }, { "start": 29724.22, "end": 29725.6, "probability": 0.8948 }, { "start": 29725.68, "end": 29728.34, "probability": 0.8598 }, { "start": 29728.38, "end": 29730.24, "probability": 0.8694 }, { "start": 29730.64, "end": 29732.66, "probability": 0.9105 }, { "start": 29733.04, "end": 29734.2, "probability": 0.9883 }, { "start": 29734.96, "end": 29739.12, "probability": 0.5102 }, { "start": 29739.2, "end": 29740.84, "probability": 0.8024 }, { "start": 29741.38, "end": 29743.66, "probability": 0.7684 }, { "start": 29745.1, "end": 29747.74, "probability": 0.966 }, { "start": 29748.3, "end": 29749.76, "probability": 0.9777 }, { "start": 29749.9, "end": 29751.8, "probability": 0.9252 }, { "start": 29752.16, "end": 29753.18, "probability": 0.9933 }, { "start": 29753.62, "end": 29758.12, "probability": 0.8678 }, { "start": 29759.01, "end": 29762.0, "probability": 0.7198 }, { "start": 29763.08, "end": 29765.08, "probability": 0.7389 }, { "start": 29765.18, "end": 29765.78, "probability": 0.2408 }, { "start": 29765.96, "end": 29766.54, "probability": 0.8929 }, { "start": 29766.64, "end": 29767.78, "probability": 0.7674 }, { "start": 29767.94, "end": 29768.8, "probability": 0.4899 }, { "start": 29768.94, "end": 29772.44, "probability": 0.9843 }, { "start": 29773.0, "end": 29774.96, "probability": 0.8279 }, { "start": 29775.12, "end": 29775.8, "probability": 0.9236 }, { "start": 29776.0, "end": 29777.8, "probability": 0.9377 }, { "start": 29777.86, "end": 29780.58, "probability": 0.8332 }, { "start": 29780.7, "end": 29781.42, "probability": 0.7613 }, { "start": 29781.79, "end": 29786.06, "probability": 0.9142 }, { "start": 29786.54, "end": 29788.68, "probability": 0.9277 }, { "start": 29789.08, "end": 29790.24, "probability": 0.8251 }, { "start": 29790.6, "end": 29794.78, "probability": 0.8231 }, { "start": 29795.12, "end": 29798.06, "probability": 0.7662 }, { "start": 29798.16, "end": 29802.36, "probability": 0.3976 }, { "start": 29802.44, "end": 29803.38, "probability": 0.9143 }, { "start": 29803.46, "end": 29805.52, "probability": 0.4134 }, { "start": 29806.0, "end": 29806.88, "probability": 0.8563 }, { "start": 29807.24, "end": 29810.16, "probability": 0.9289 }, { "start": 29810.34, "end": 29810.96, "probability": 0.8274 }, { "start": 29811.08, "end": 29812.44, "probability": 0.8826 }, { "start": 29812.54, "end": 29816.44, "probability": 0.8306 }, { "start": 29816.6, "end": 29818.68, "probability": 0.7772 }, { "start": 29818.76, "end": 29819.66, "probability": 0.9677 }, { "start": 29820.52, "end": 29823.1, "probability": 0.9092 }, { "start": 29823.38, "end": 29825.3, "probability": 0.3431 }, { "start": 29825.82, "end": 29827.12, "probability": 0.9276 }, { "start": 29827.16, "end": 29828.1, "probability": 0.988 }, { "start": 29828.14, "end": 29828.7, "probability": 0.677 }, { "start": 29829.08, "end": 29831.95, "probability": 0.9253 }, { "start": 29833.24, "end": 29835.52, "probability": 0.9925 }, { "start": 29835.58, "end": 29836.16, "probability": 0.7199 }, { "start": 29836.28, "end": 29837.6, "probability": 0.5729 }, { "start": 29837.62, "end": 29838.41, "probability": 0.5712 }, { "start": 29838.78, "end": 29841.08, "probability": 0.9062 }, { "start": 29841.16, "end": 29841.54, "probability": 0.571 }, { "start": 29841.86, "end": 29843.44, "probability": 0.9946 }, { "start": 29843.98, "end": 29844.43, "probability": 0.496 }, { "start": 29844.72, "end": 29847.5, "probability": 0.9497 }, { "start": 29847.98, "end": 29849.16, "probability": 0.8035 }, { "start": 29849.18, "end": 29850.96, "probability": 0.9884 }, { "start": 29851.76, "end": 29852.4, "probability": 0.9691 }, { "start": 29852.5, "end": 29853.64, "probability": 0.9196 }, { "start": 29853.78, "end": 29856.01, "probability": 0.7046 }, { "start": 29856.24, "end": 29858.32, "probability": 0.8151 }, { "start": 29858.54, "end": 29863.0, "probability": 0.6265 }, { "start": 29863.16, "end": 29864.6, "probability": 0.4054 }, { "start": 29865.14, "end": 29867.74, "probability": 0.9613 }, { "start": 29868.94, "end": 29869.62, "probability": 0.5963 }, { "start": 29869.7, "end": 29871.14, "probability": 0.9673 }, { "start": 29890.6, "end": 29894.18, "probability": 0.4598 }, { "start": 29895.52, "end": 29897.24, "probability": 0.1504 }, { "start": 29897.24, "end": 29899.76, "probability": 0.23 }, { "start": 29901.23, "end": 29903.26, "probability": 0.1318 }, { "start": 29904.48, "end": 29905.2, "probability": 0.0704 }, { "start": 29905.92, "end": 29905.98, "probability": 0.0248 }, { "start": 29907.96, "end": 29910.12, "probability": 0.3547 }, { "start": 29921.3, "end": 29923.96, "probability": 0.825 }, { "start": 29924.02, "end": 29926.72, "probability": 0.7941 }, { "start": 29927.94, "end": 29931.04, "probability": 0.9082 }, { "start": 29931.18, "end": 29932.08, "probability": 0.9327 }, { "start": 29932.24, "end": 29933.0, "probability": 0.8353 }, { "start": 29933.76, "end": 29936.58, "probability": 0.7451 }, { "start": 29938.32, "end": 29940.06, "probability": 0.7439 }, { "start": 29940.8, "end": 29941.23, "probability": 0.7825 }, { "start": 29942.06, "end": 29944.8, "probability": 0.9888 }, { "start": 29945.28, "end": 29947.36, "probability": 0.7883 }, { "start": 29948.24, "end": 29951.5, "probability": 0.9721 }, { "start": 29952.76, "end": 29955.7, "probability": 0.9145 }, { "start": 29956.16, "end": 29957.36, "probability": 0.6946 }, { "start": 29958.02, "end": 29958.8, "probability": 0.7078 }, { "start": 29959.18, "end": 29960.24, "probability": 0.8559 }, { "start": 29960.8, "end": 29962.04, "probability": 0.9696 }, { "start": 29963.02, "end": 29963.36, "probability": 0.8729 }, { "start": 29964.0, "end": 29965.12, "probability": 0.9614 }, { "start": 29965.78, "end": 29967.44, "probability": 0.8543 }, { "start": 29967.56, "end": 29970.02, "probability": 0.8472 }, { "start": 29970.14, "end": 29971.1, "probability": 0.7202 }, { "start": 29972.04, "end": 29972.72, "probability": 0.472 }, { "start": 29973.7, "end": 29978.08, "probability": 0.625 }, { "start": 29978.86, "end": 29979.89, "probability": 0.22 }, { "start": 29980.84, "end": 29982.16, "probability": 0.4581 }, { "start": 29983.14, "end": 29984.9, "probability": 0.6215 }, { "start": 29987.26, "end": 29991.24, "probability": 0.7542 }, { "start": 29992.04, "end": 29993.6, "probability": 0.2694 }, { "start": 29994.24, "end": 29995.74, "probability": 0.6534 }, { "start": 29997.44, "end": 29999.88, "probability": 0.4053 }, { "start": 29999.94, "end": 30002.58, "probability": 0.6471 }, { "start": 30003.58, "end": 30004.08, "probability": 0.5662 }, { "start": 30004.16, "end": 30004.84, "probability": 0.7858 }, { "start": 30004.92, "end": 30006.92, "probability": 0.7599 }, { "start": 30007.6, "end": 30009.84, "probability": 0.8999 }, { "start": 30010.6, "end": 30013.32, "probability": 0.6639 }, { "start": 30014.44, "end": 30019.16, "probability": 0.9308 }, { "start": 30019.18, "end": 30022.4, "probability": 0.9805 }, { "start": 30023.46, "end": 30027.2, "probability": 0.8969 }, { "start": 30027.96, "end": 30031.26, "probability": 0.8961 }, { "start": 30032.64, "end": 30034.42, "probability": 0.7682 }, { "start": 30035.08, "end": 30036.76, "probability": 0.508 }, { "start": 30037.58, "end": 30042.57, "probability": 0.9829 }, { "start": 30043.42, "end": 30044.82, "probability": 0.5789 }, { "start": 30044.9, "end": 30045.61, "probability": 0.8481 }, { "start": 30045.74, "end": 30046.9, "probability": 0.816 }, { "start": 30046.94, "end": 30048.36, "probability": 0.9805 }, { "start": 30049.14, "end": 30051.02, "probability": 0.8936 }, { "start": 30051.08, "end": 30053.34, "probability": 0.9104 }, { "start": 30054.0, "end": 30056.46, "probability": 0.8557 }, { "start": 30057.32, "end": 30060.98, "probability": 0.9903 }, { "start": 30061.64, "end": 30063.96, "probability": 0.7173 }, { "start": 30064.52, "end": 30065.68, "probability": 0.9773 }, { "start": 30066.48, "end": 30068.48, "probability": 0.9532 }, { "start": 30069.24, "end": 30070.84, "probability": 0.9554 }, { "start": 30071.36, "end": 30072.98, "probability": 0.8708 }, { "start": 30073.76, "end": 30075.0, "probability": 0.4696 }, { "start": 30075.56, "end": 30078.5, "probability": 0.7674 }, { "start": 30079.02, "end": 30081.42, "probability": 0.9277 }, { "start": 30081.86, "end": 30082.6, "probability": 0.6592 }, { "start": 30083.42, "end": 30088.16, "probability": 0.8745 }, { "start": 30088.8, "end": 30091.81, "probability": 0.9784 }, { "start": 30092.42, "end": 30094.7, "probability": 0.9656 }, { "start": 30095.32, "end": 30096.38, "probability": 0.8718 }, { "start": 30096.82, "end": 30098.02, "probability": 0.8744 }, { "start": 30098.16, "end": 30099.32, "probability": 0.7223 }, { "start": 30099.86, "end": 30104.1, "probability": 0.989 }, { "start": 30105.64, "end": 30109.24, "probability": 0.7142 }, { "start": 30110.0, "end": 30112.56, "probability": 0.5257 }, { "start": 30113.5, "end": 30115.34, "probability": 0.636 }, { "start": 30115.52, "end": 30117.02, "probability": 0.8774 }, { "start": 30117.84, "end": 30118.18, "probability": 0.835 }, { "start": 30118.98, "end": 30121.54, "probability": 0.8403 }, { "start": 30121.82, "end": 30123.08, "probability": 0.6726 }, { "start": 30123.68, "end": 30126.68, "probability": 0.8769 }, { "start": 30127.28, "end": 30129.46, "probability": 0.6635 }, { "start": 30129.98, "end": 30132.33, "probability": 0.9585 }, { "start": 30133.1, "end": 30136.0, "probability": 0.7739 }, { "start": 30136.58, "end": 30139.88, "probability": 0.9666 }, { "start": 30140.28, "end": 30140.94, "probability": 0.9728 }, { "start": 30141.68, "end": 30143.2, "probability": 0.9954 }, { "start": 30143.82, "end": 30144.52, "probability": 0.6656 }, { "start": 30145.26, "end": 30147.38, "probability": 0.8814 }, { "start": 30149.62, "end": 30150.28, "probability": 0.7142 }, { "start": 30150.48, "end": 30151.52, "probability": 0.8689 }, { "start": 30151.8, "end": 30153.82, "probability": 0.9481 }, { "start": 30154.62, "end": 30156.5, "probability": 0.6459 }, { "start": 30157.12, "end": 30160.98, "probability": 0.9299 }, { "start": 30161.62, "end": 30163.9, "probability": 0.7211 }, { "start": 30164.36, "end": 30168.84, "probability": 0.9337 }, { "start": 30169.42, "end": 30170.78, "probability": 0.8149 }, { "start": 30170.92, "end": 30172.77, "probability": 0.8132 }, { "start": 30173.46, "end": 30176.12, "probability": 0.865 }, { "start": 30176.56, "end": 30179.5, "probability": 0.8762 }, { "start": 30180.1, "end": 30181.58, "probability": 0.9357 }, { "start": 30182.34, "end": 30185.04, "probability": 0.9735 }, { "start": 30185.76, "end": 30187.62, "probability": 0.9821 }, { "start": 30187.9, "end": 30190.78, "probability": 0.9185 }, { "start": 30191.34, "end": 30193.74, "probability": 0.7417 }, { "start": 30194.52, "end": 30198.8, "probability": 0.9834 }, { "start": 30198.92, "end": 30202.78, "probability": 0.9875 }, { "start": 30202.9, "end": 30205.1, "probability": 0.9429 }, { "start": 30206.04, "end": 30208.2, "probability": 0.9565 }, { "start": 30208.32, "end": 30211.14, "probability": 0.9787 }, { "start": 30211.42, "end": 30211.7, "probability": 0.2577 }, { "start": 30212.0, "end": 30212.94, "probability": 0.5173 }, { "start": 30213.66, "end": 30215.88, "probability": 0.6522 }, { "start": 30215.88, "end": 30217.92, "probability": 0.996 }, { "start": 30218.54, "end": 30220.61, "probability": 0.6615 }, { "start": 30222.1, "end": 30225.15, "probability": 0.6872 }, { "start": 30225.98, "end": 30228.54, "probability": 0.8335 }, { "start": 30229.04, "end": 30229.46, "probability": 0.5291 }, { "start": 30229.5, "end": 30229.86, "probability": 0.985 }, { "start": 30229.92, "end": 30231.86, "probability": 0.8353 }, { "start": 30231.92, "end": 30233.64, "probability": 0.6094 }, { "start": 30234.24, "end": 30236.46, "probability": 0.8589 }, { "start": 30236.96, "end": 30240.56, "probability": 0.8285 }, { "start": 30241.32, "end": 30242.86, "probability": 0.4276 }, { "start": 30243.66, "end": 30247.3, "probability": 0.9727 }, { "start": 30247.46, "end": 30248.52, "probability": 0.5217 }, { "start": 30249.38, "end": 30252.14, "probability": 0.8613 }, { "start": 30252.14, "end": 30254.5, "probability": 0.8743 }, { "start": 30254.72, "end": 30256.32, "probability": 0.9524 }, { "start": 30256.34, "end": 30257.12, "probability": 0.3779 }, { "start": 30257.48, "end": 30259.8, "probability": 0.5749 }, { "start": 30259.8, "end": 30260.48, "probability": 0.4641 }, { "start": 30260.52, "end": 30261.4, "probability": 0.9775 }, { "start": 30261.96, "end": 30263.61, "probability": 0.8831 }, { "start": 30264.36, "end": 30266.96, "probability": 0.7883 }, { "start": 30267.82, "end": 30269.82, "probability": 0.7394 }, { "start": 30269.96, "end": 30273.04, "probability": 0.8219 }, { "start": 30274.1, "end": 30276.78, "probability": 0.9546 }, { "start": 30277.04, "end": 30277.94, "probability": 0.3615 }, { "start": 30278.26, "end": 30279.04, "probability": 0.9307 }, { "start": 30279.74, "end": 30281.88, "probability": 0.696 }, { "start": 30282.48, "end": 30283.12, "probability": 0.6645 }, { "start": 30284.0, "end": 30284.52, "probability": 0.5998 }, { "start": 30285.3, "end": 30285.52, "probability": 0.306 }, { "start": 30285.54, "end": 30286.38, "probability": 0.8452 }, { "start": 30286.7, "end": 30287.32, "probability": 0.9489 }, { "start": 30287.42, "end": 30287.82, "probability": 0.8287 }, { "start": 30288.24, "end": 30289.5, "probability": 0.9489 }, { "start": 30290.18, "end": 30291.86, "probability": 0.5823 }, { "start": 30292.04, "end": 30296.24, "probability": 0.8613 }, { "start": 30296.52, "end": 30296.74, "probability": 0.6066 }, { "start": 30297.08, "end": 30298.08, "probability": 0.6368 }, { "start": 30299.12, "end": 30300.6, "probability": 0.8997 }, { "start": 30301.46, "end": 30304.12, "probability": 0.1109 }, { "start": 30306.62, "end": 30308.3, "probability": 0.0206 }, { "start": 30336.56, "end": 30341.06, "probability": 0.5072 }, { "start": 30341.16, "end": 30341.3, "probability": 0.5868 }, { "start": 30341.42, "end": 30343.68, "probability": 0.8322 }, { "start": 30344.28, "end": 30345.72, "probability": 0.9424 }, { "start": 30347.58, "end": 30349.36, "probability": 0.9812 }, { "start": 30350.2, "end": 30353.34, "probability": 0.9313 }, { "start": 30354.92, "end": 30360.16, "probability": 0.9604 }, { "start": 30360.68, "end": 30361.46, "probability": 0.6507 }, { "start": 30361.46, "end": 30362.46, "probability": 0.9592 }, { "start": 30362.6, "end": 30364.18, "probability": 0.9669 }, { "start": 30364.46, "end": 30364.94, "probability": 0.7918 }, { "start": 30365.08, "end": 30365.64, "probability": 0.6134 }, { "start": 30366.06, "end": 30366.36, "probability": 0.3606 }, { "start": 30367.02, "end": 30367.92, "probability": 0.7135 }, { "start": 30368.76, "end": 30371.14, "probability": 0.9548 }, { "start": 30371.74, "end": 30373.3, "probability": 0.9902 }, { "start": 30373.58, "end": 30374.44, "probability": 0.632 }, { "start": 30374.96, "end": 30374.96, "probability": 0.0744 }, { "start": 30374.96, "end": 30376.4, "probability": 0.8547 }, { "start": 30377.12, "end": 30378.66, "probability": 0.9847 }, { "start": 30379.18, "end": 30380.04, "probability": 0.998 }, { "start": 30381.38, "end": 30382.12, "probability": 0.8145 }, { "start": 30383.28, "end": 30385.76, "probability": 0.9923 }, { "start": 30388.18, "end": 30388.69, "probability": 0.8066 }, { "start": 30390.26, "end": 30392.24, "probability": 0.9478 }, { "start": 30392.34, "end": 30393.16, "probability": 0.8921 }, { "start": 30393.34, "end": 30394.04, "probability": 0.8455 }, { "start": 30395.08, "end": 30395.78, "probability": 0.9729 }, { "start": 30396.72, "end": 30399.0, "probability": 0.9958 }, { "start": 30400.9, "end": 30402.48, "probability": 0.4634 }, { "start": 30407.19, "end": 30410.24, "probability": 0.925 }, { "start": 30410.99, "end": 30412.91, "probability": 0.9979 }, { "start": 30413.92, "end": 30414.88, "probability": 0.7667 }, { "start": 30415.84, "end": 30417.0, "probability": 0.4078 }, { "start": 30417.69, "end": 30418.45, "probability": 0.5614 }, { "start": 30419.43, "end": 30421.54, "probability": 0.9937 }, { "start": 30423.25, "end": 30425.47, "probability": 0.5493 }, { "start": 30426.57, "end": 30429.71, "probability": 0.9953 }, { "start": 30430.46, "end": 30432.21, "probability": 0.8346 }, { "start": 30433.47, "end": 30435.03, "probability": 0.9899 }, { "start": 30435.69, "end": 30437.77, "probability": 0.771 }, { "start": 30438.63, "end": 30441.51, "probability": 0.8287 }, { "start": 30442.45, "end": 30444.19, "probability": 0.4014 }, { "start": 30444.41, "end": 30446.37, "probability": 0.9366 }, { "start": 30446.77, "end": 30446.87, "probability": 0.4225 }, { "start": 30447.43, "end": 30448.45, "probability": 0.7268 }, { "start": 30448.99, "end": 30451.47, "probability": 0.7585 }, { "start": 30451.91, "end": 30454.53, "probability": 0.9716 }, { "start": 30457.67, "end": 30458.27, "probability": 0.2254 }, { "start": 30458.27, "end": 30459.17, "probability": 0.6885 }, { "start": 30459.19, "end": 30462.25, "probability": 0.5975 }, { "start": 30462.39, "end": 30463.73, "probability": 0.9304 }, { "start": 30464.17, "end": 30465.92, "probability": 0.9005 }, { "start": 30468.75, "end": 30469.87, "probability": 0.9196 }, { "start": 30470.89, "end": 30475.81, "probability": 0.6962 }, { "start": 30475.89, "end": 30476.81, "probability": 0.5762 }, { "start": 30477.87, "end": 30481.19, "probability": 0.8687 }, { "start": 30481.93, "end": 30485.33, "probability": 0.9451 }, { "start": 30486.03, "end": 30490.59, "probability": 0.9282 }, { "start": 30491.69, "end": 30496.23, "probability": 0.9938 }, { "start": 30496.23, "end": 30501.09, "probability": 0.9865 }, { "start": 30502.07, "end": 30504.31, "probability": 0.5989 }, { "start": 30504.85, "end": 30505.83, "probability": 0.8465 }, { "start": 30508.2, "end": 30510.29, "probability": 0.9956 }, { "start": 30510.83, "end": 30511.53, "probability": 0.6744 }, { "start": 30512.49, "end": 30514.13, "probability": 0.825 }, { "start": 30515.77, "end": 30515.95, "probability": 0.4454 }, { "start": 30517.59, "end": 30521.81, "probability": 0.8968 }, { "start": 30523.03, "end": 30526.37, "probability": 0.6633 }, { "start": 30527.27, "end": 30528.61, "probability": 0.6636 }, { "start": 30529.39, "end": 30530.15, "probability": 0.5635 }, { "start": 30530.85, "end": 30532.11, "probability": 0.6608 }, { "start": 30532.25, "end": 30535.91, "probability": 0.9717 }, { "start": 30536.71, "end": 30537.85, "probability": 0.9227 }, { "start": 30538.71, "end": 30539.69, "probability": 0.7309 }, { "start": 30539.77, "end": 30542.45, "probability": 0.9983 }, { "start": 30542.61, "end": 30545.69, "probability": 0.9826 }, { "start": 30546.55, "end": 30549.45, "probability": 0.9427 }, { "start": 30550.39, "end": 30552.73, "probability": 0.7901 }, { "start": 30553.35, "end": 30554.33, "probability": 0.532 }, { "start": 30554.45, "end": 30558.71, "probability": 0.995 }, { "start": 30560.21, "end": 30568.17, "probability": 0.9368 }, { "start": 30570.99, "end": 30572.27, "probability": 0.8737 }, { "start": 30573.57, "end": 30573.83, "probability": 0.4011 }, { "start": 30575.57, "end": 30576.69, "probability": 0.9966 }, { "start": 30577.63, "end": 30579.11, "probability": 0.9553 }, { "start": 30579.91, "end": 30581.23, "probability": 0.8445 }, { "start": 30581.87, "end": 30583.11, "probability": 0.9854 }, { "start": 30583.49, "end": 30584.43, "probability": 0.9588 }, { "start": 30584.47, "end": 30586.55, "probability": 0.9676 }, { "start": 30587.29, "end": 30590.91, "probability": 0.9978 }, { "start": 30592.01, "end": 30595.07, "probability": 0.9033 }, { "start": 30596.05, "end": 30598.27, "probability": 0.8982 }, { "start": 30599.27, "end": 30602.33, "probability": 0.8184 }, { "start": 30603.17, "end": 30604.71, "probability": 0.6403 }, { "start": 30605.25, "end": 30606.57, "probability": 0.9982 }, { "start": 30607.23, "end": 30608.93, "probability": 0.9688 }, { "start": 30610.89, "end": 30613.55, "probability": 0.9102 }, { "start": 30613.67, "end": 30615.07, "probability": 0.9601 }, { "start": 30615.17, "end": 30615.75, "probability": 0.7309 }, { "start": 30615.99, "end": 30616.69, "probability": 0.9966 }, { "start": 30616.95, "end": 30619.21, "probability": 0.4176 }, { "start": 30619.31, "end": 30620.93, "probability": 0.5849 }, { "start": 30621.49, "end": 30621.87, "probability": 0.8522 }, { "start": 30622.09, "end": 30625.35, "probability": 0.7507 }, { "start": 30626.37, "end": 30629.09, "probability": 0.8848 }, { "start": 30629.77, "end": 30632.53, "probability": 0.9043 }, { "start": 30633.09, "end": 30634.51, "probability": 0.707 }, { "start": 30635.05, "end": 30635.91, "probability": 0.9602 }, { "start": 30636.55, "end": 30637.65, "probability": 0.9224 }, { "start": 30638.03, "end": 30638.83, "probability": 0.9667 }, { "start": 30639.21, "end": 30640.01, "probability": 0.7731 }, { "start": 30640.41, "end": 30641.25, "probability": 0.9428 }, { "start": 30641.35, "end": 30641.97, "probability": 0.689 }, { "start": 30642.57, "end": 30644.11, "probability": 0.9802 }, { "start": 30644.11, "end": 30645.61, "probability": 0.4816 }, { "start": 30646.27, "end": 30647.25, "probability": 0.7253 }, { "start": 30647.91, "end": 30652.13, "probability": 0.928 }, { "start": 30653.19, "end": 30654.09, "probability": 0.9528 }, { "start": 30654.19, "end": 30657.11, "probability": 0.9849 }, { "start": 30657.47, "end": 30657.57, "probability": 0.4225 }, { "start": 30658.39, "end": 30661.73, "probability": 0.9487 }, { "start": 30662.99, "end": 30665.07, "probability": 0.998 }, { "start": 30665.77, "end": 30670.47, "probability": 0.9648 }, { "start": 30671.61, "end": 30675.07, "probability": 0.9954 }, { "start": 30675.19, "end": 30676.45, "probability": 0.9991 }, { "start": 30677.11, "end": 30677.89, "probability": 0.957 }, { "start": 30678.73, "end": 30679.13, "probability": 0.4435 }, { "start": 30679.27, "end": 30679.73, "probability": 0.3672 }, { "start": 30679.85, "end": 30681.11, "probability": 0.9169 }, { "start": 30681.27, "end": 30683.27, "probability": 0.7635 }, { "start": 30683.43, "end": 30685.35, "probability": 0.6604 }, { "start": 30686.33, "end": 30687.67, "probability": 0.8189 }, { "start": 30688.27, "end": 30690.63, "probability": 0.7923 }, { "start": 30691.21, "end": 30692.59, "probability": 0.9453 }, { "start": 30693.23, "end": 30694.15, "probability": 0.9946 }, { "start": 30694.85, "end": 30695.31, "probability": 0.6811 }, { "start": 30695.51, "end": 30697.93, "probability": 0.9212 }, { "start": 30698.91, "end": 30700.63, "probability": 0.7189 }, { "start": 30700.95, "end": 30703.55, "probability": 0.8429 }, { "start": 30726.03, "end": 30727.15, "probability": 0.7435 }, { "start": 30727.39, "end": 30728.27, "probability": 0.8303 }, { "start": 30728.37, "end": 30729.43, "probability": 0.9983 }, { "start": 30729.49, "end": 30731.91, "probability": 0.7319 }, { "start": 30732.13, "end": 30733.65, "probability": 0.6928 }, { "start": 30733.81, "end": 30735.77, "probability": 0.8762 }, { "start": 30735.85, "end": 30736.87, "probability": 0.6996 }, { "start": 30737.35, "end": 30739.51, "probability": 0.996 }, { "start": 30739.55, "end": 30740.43, "probability": 0.9643 }, { "start": 30742.61, "end": 30743.11, "probability": 0.8758 }, { "start": 30744.51, "end": 30744.97, "probability": 0.8825 }, { "start": 30745.61, "end": 30747.91, "probability": 0.9253 }, { "start": 30748.35, "end": 30748.63, "probability": 0.8893 }, { "start": 30749.68, "end": 30751.53, "probability": 0.3554 }, { "start": 30751.59, "end": 30751.91, "probability": 0.6697 }, { "start": 30754.15, "end": 30756.43, "probability": 0.9863 }, { "start": 30757.49, "end": 30759.97, "probability": 0.9001 }, { "start": 30760.69, "end": 30766.03, "probability": 0.9961 }, { "start": 30766.17, "end": 30772.35, "probability": 0.9867 }, { "start": 30772.69, "end": 30777.35, "probability": 0.9976 }, { "start": 30778.27, "end": 30781.01, "probability": 0.9213 }, { "start": 30781.61, "end": 30782.21, "probability": 0.7048 }, { "start": 30783.21, "end": 30785.65, "probability": 0.9583 }, { "start": 30786.05, "end": 30786.37, "probability": 0.6896 }, { "start": 30787.05, "end": 30787.41, "probability": 0.8942 }, { "start": 30787.99, "end": 30791.23, "probability": 0.9531 }, { "start": 30792.17, "end": 30793.39, "probability": 0.8024 }, { "start": 30794.09, "end": 30796.27, "probability": 0.9416 }, { "start": 30797.03, "end": 30798.27, "probability": 0.9551 }, { "start": 30798.83, "end": 30799.93, "probability": 0.5939 }, { "start": 30800.57, "end": 30802.95, "probability": 0.9097 }, { "start": 30803.64, "end": 30804.09, "probability": 0.9717 }, { "start": 30805.37, "end": 30808.38, "probability": 0.9385 }, { "start": 30808.93, "end": 30809.71, "probability": 0.5218 }, { "start": 30809.93, "end": 30812.15, "probability": 0.9438 }, { "start": 30812.23, "end": 30813.37, "probability": 0.873 }, { "start": 30813.65, "end": 30815.33, "probability": 0.5191 }, { "start": 30815.47, "end": 30816.88, "probability": 0.8499 }, { "start": 30817.11, "end": 30817.91, "probability": 0.562 }, { "start": 30818.49, "end": 30819.37, "probability": 0.9669 }, { "start": 30819.47, "end": 30820.47, "probability": 0.8774 }, { "start": 30821.49, "end": 30822.77, "probability": 0.9746 }, { "start": 30823.45, "end": 30824.39, "probability": 0.9778 }, { "start": 30824.51, "end": 30826.43, "probability": 0.9236 }, { "start": 30826.45, "end": 30827.81, "probability": 0.9384 }, { "start": 30828.37, "end": 30831.05, "probability": 0.9214 }, { "start": 30831.05, "end": 30833.5, "probability": 0.9771 }, { "start": 30834.31, "end": 30835.63, "probability": 0.739 }, { "start": 30835.69, "end": 30838.85, "probability": 0.9155 }, { "start": 30839.69, "end": 30841.61, "probability": 0.7424 }, { "start": 30841.65, "end": 30842.49, "probability": 0.8741 }, { "start": 30842.85, "end": 30844.23, "probability": 0.8871 }, { "start": 30846.61, "end": 30847.81, "probability": 0.6761 }, { "start": 30847.95, "end": 30849.71, "probability": 0.7565 }, { "start": 30849.77, "end": 30849.99, "probability": 0.469 }, { "start": 30852.69, "end": 30854.13, "probability": 0.9427 }, { "start": 30854.93, "end": 30861.49, "probability": 0.996 }, { "start": 30861.57, "end": 30863.27, "probability": 0.7683 }, { "start": 30864.29, "end": 30865.59, "probability": 0.8708 }, { "start": 30866.19, "end": 30868.57, "probability": 0.9707 }, { "start": 30869.89, "end": 30870.31, "probability": 0.9781 }, { "start": 30871.55, "end": 30874.75, "probability": 0.9353 }, { "start": 30875.39, "end": 30882.39, "probability": 0.9912 }, { "start": 30882.53, "end": 30887.47, "probability": 0.9893 }, { "start": 30888.27, "end": 30891.55, "probability": 0.9604 }, { "start": 30891.67, "end": 30893.35, "probability": 0.9511 }, { "start": 30894.03, "end": 30895.09, "probability": 0.8728 }, { "start": 30896.53, "end": 30898.35, "probability": 0.9688 }, { "start": 30898.51, "end": 30899.77, "probability": 0.9854 }, { "start": 30899.83, "end": 30903.73, "probability": 0.9929 }, { "start": 30904.83, "end": 30907.15, "probability": 0.9722 }, { "start": 30907.39, "end": 30911.47, "probability": 0.8516 }, { "start": 30911.55, "end": 30914.65, "probability": 0.9924 }, { "start": 30915.17, "end": 30916.89, "probability": 0.8282 }, { "start": 30917.05, "end": 30917.81, "probability": 0.8069 }, { "start": 30917.97, "end": 30919.23, "probability": 0.9648 }, { "start": 30919.41, "end": 30920.21, "probability": 0.9772 }, { "start": 30921.63, "end": 30922.37, "probability": 0.998 }, { "start": 30923.25, "end": 30924.43, "probability": 0.5283 }, { "start": 30925.11, "end": 30926.35, "probability": 0.9958 }, { "start": 30926.91, "end": 30928.43, "probability": 0.9556 }, { "start": 30930.45, "end": 30934.27, "probability": 0.9948 }, { "start": 30935.25, "end": 30935.61, "probability": 0.3851 }, { "start": 30936.17, "end": 30937.83, "probability": 0.8794 }, { "start": 30938.57, "end": 30941.21, "probability": 0.9207 }, { "start": 30941.75, "end": 30942.75, "probability": 0.9383 }, { "start": 30942.83, "end": 30945.65, "probability": 0.9006 }, { "start": 30946.45, "end": 30947.18, "probability": 0.9729 }, { "start": 30949.51, "end": 30950.45, "probability": 0.996 }, { "start": 30950.83, "end": 30951.67, "probability": 0.9893 }, { "start": 30951.75, "end": 30953.02, "probability": 0.9771 }, { "start": 30954.01, "end": 30955.29, "probability": 0.9653 }, { "start": 30956.03, "end": 30960.35, "probability": 0.9925 }, { "start": 30962.35, "end": 30964.35, "probability": 0.6607 }, { "start": 30965.57, "end": 30966.47, "probability": 0.9819 }, { "start": 30966.77, "end": 30967.59, "probability": 0.9245 }, { "start": 30967.65, "end": 30969.13, "probability": 0.9644 }, { "start": 30969.57, "end": 30971.95, "probability": 0.9995 }, { "start": 30972.05, "end": 30973.93, "probability": 0.8239 }, { "start": 30974.45, "end": 30974.71, "probability": 0.7069 }, { "start": 30974.75, "end": 30979.21, "probability": 0.9951 }, { "start": 30979.35, "end": 30981.45, "probability": 0.9661 }, { "start": 30981.53, "end": 30982.05, "probability": 0.456 }, { "start": 30982.17, "end": 30984.31, "probability": 0.7989 }, { "start": 30984.41, "end": 30985.11, "probability": 0.8545 }, { "start": 30985.69, "end": 30986.79, "probability": 0.8995 }, { "start": 30987.09, "end": 30988.43, "probability": 0.9502 }, { "start": 30988.51, "end": 30989.37, "probability": 0.8829 }, { "start": 30989.45, "end": 30989.95, "probability": 0.8477 }, { "start": 30990.03, "end": 30990.97, "probability": 0.7827 }, { "start": 30992.49, "end": 30994.01, "probability": 0.8726 }, { "start": 30994.11, "end": 30995.49, "probability": 0.9432 }, { "start": 30995.57, "end": 30995.59, "probability": 0.9883 }, { "start": 30995.59, "end": 30997.09, "probability": 0.9904 }, { "start": 30997.51, "end": 30998.73, "probability": 0.9125 }, { "start": 30999.25, "end": 31001.3, "probability": 0.7573 }, { "start": 31001.53, "end": 31002.21, "probability": 0.9576 }, { "start": 31002.31, "end": 31002.37, "probability": 0.447 }, { "start": 31002.89, "end": 31003.71, "probability": 0.7324 }, { "start": 31004.25, "end": 31006.63, "probability": 0.5272 }, { "start": 31007.15, "end": 31009.41, "probability": 0.8716 }, { "start": 31010.07, "end": 31010.23, "probability": 0.3496 }, { "start": 31010.27, "end": 31015.81, "probability": 0.9412 }, { "start": 31015.91, "end": 31017.23, "probability": 0.9802 }, { "start": 31017.29, "end": 31018.35, "probability": 0.9961 }, { "start": 31019.05, "end": 31019.87, "probability": 0.8281 }, { "start": 31019.99, "end": 31020.29, "probability": 0.7424 }, { "start": 31020.39, "end": 31022.05, "probability": 0.918 }, { "start": 31022.13, "end": 31022.65, "probability": 0.8202 }, { "start": 31023.19, "end": 31023.97, "probability": 0.4343 }, { "start": 31023.97, "end": 31024.69, "probability": 0.6688 }, { "start": 31024.77, "end": 31025.45, "probability": 0.9342 }, { "start": 31025.59, "end": 31026.49, "probability": 0.8994 }, { "start": 31027.63, "end": 31029.27, "probability": 0.9484 }, { "start": 31029.51, "end": 31033.31, "probability": 0.9976 }, { "start": 31034.35, "end": 31035.77, "probability": 0.998 }, { "start": 31036.65, "end": 31040.03, "probability": 0.9987 }, { "start": 31040.73, "end": 31041.29, "probability": 0.7593 }, { "start": 31041.55, "end": 31042.71, "probability": 0.8726 }, { "start": 31043.45, "end": 31048.43, "probability": 0.998 }, { "start": 31048.61, "end": 31049.11, "probability": 0.6685 }, { "start": 31049.85, "end": 31052.31, "probability": 0.9908 }, { "start": 31052.77, "end": 31054.17, "probability": 0.892 }, { "start": 31054.27, "end": 31056.01, "probability": 0.9758 }, { "start": 31056.33, "end": 31057.95, "probability": 0.9884 }, { "start": 31058.71, "end": 31060.25, "probability": 0.9534 }, { "start": 31060.47, "end": 31061.85, "probability": 0.9923 }, { "start": 31062.95, "end": 31066.27, "probability": 0.9983 }, { "start": 31066.31, "end": 31067.7, "probability": 0.9231 }, { "start": 31068.81, "end": 31070.21, "probability": 0.8947 }, { "start": 31070.83, "end": 31075.11, "probability": 0.7727 }, { "start": 31075.19, "end": 31075.41, "probability": 0.7493 }, { "start": 31075.69, "end": 31077.41, "probability": 0.8044 }, { "start": 31077.51, "end": 31078.81, "probability": 0.8675 }, { "start": 31090.29, "end": 31090.45, "probability": 0.3077 }, { "start": 31098.35, "end": 31100.75, "probability": 0.5773 }, { "start": 31101.23, "end": 31102.13, "probability": 0.3765 }, { "start": 31102.23, "end": 31102.33, "probability": 0.179 }, { "start": 31102.55, "end": 31104.45, "probability": 0.7407 }, { "start": 31104.63, "end": 31105.15, "probability": 0.4589 }, { "start": 31105.21, "end": 31106.07, "probability": 0.6654 }, { "start": 31108.53, "end": 31111.89, "probability": 0.9904 }, { "start": 31113.33, "end": 31113.97, "probability": 0.9916 }, { "start": 31115.61, "end": 31119.73, "probability": 0.72 }, { "start": 31121.03, "end": 31122.21, "probability": 0.9907 }, { "start": 31123.03, "end": 31123.61, "probability": 0.4999 }, { "start": 31125.99, "end": 31129.81, "probability": 0.9859 }, { "start": 31130.57, "end": 31133.41, "probability": 0.9714 }, { "start": 31133.89, "end": 31134.65, "probability": 0.7422 }, { "start": 31134.85, "end": 31136.37, "probability": 0.8025 }, { "start": 31138.67, "end": 31141.89, "probability": 0.9883 }, { "start": 31141.89, "end": 31146.99, "probability": 0.9978 }, { "start": 31147.29, "end": 31147.77, "probability": 0.7962 }, { "start": 31148.55, "end": 31152.81, "probability": 0.9962 }, { "start": 31153.75, "end": 31157.31, "probability": 0.9921 }, { "start": 31158.33, "end": 31159.55, "probability": 0.8407 }, { "start": 31161.41, "end": 31164.75, "probability": 0.9962 }, { "start": 31166.75, "end": 31169.71, "probability": 0.998 }, { "start": 31169.93, "end": 31170.93, "probability": 0.9993 }, { "start": 31172.87, "end": 31177.33, "probability": 0.9476 }, { "start": 31179.65, "end": 31181.44, "probability": 0.9887 }, { "start": 31182.45, "end": 31186.03, "probability": 0.9349 }, { "start": 31188.37, "end": 31188.65, "probability": 0.6411 }, { "start": 31188.65, "end": 31190.51, "probability": 0.9858 }, { "start": 31190.59, "end": 31193.05, "probability": 0.8561 }, { "start": 31196.53, "end": 31196.71, "probability": 0.4423 }, { "start": 31198.17, "end": 31203.17, "probability": 0.9896 }, { "start": 31204.41, "end": 31206.82, "probability": 0.9937 }, { "start": 31209.85, "end": 31212.56, "probability": 0.9875 }, { "start": 31214.05, "end": 31214.89, "probability": 0.9853 }, { "start": 31215.83, "end": 31216.69, "probability": 0.9867 }, { "start": 31218.09, "end": 31219.81, "probability": 0.9922 }, { "start": 31220.49, "end": 31221.37, "probability": 0.9812 }, { "start": 31222.51, "end": 31226.43, "probability": 0.988 }, { "start": 31228.93, "end": 31231.23, "probability": 0.9674 }, { "start": 31232.15, "end": 31234.09, "probability": 0.9915 }, { "start": 31234.25, "end": 31237.21, "probability": 0.9255 }, { "start": 31237.41, "end": 31240.29, "probability": 0.9903 }, { "start": 31240.29, "end": 31243.05, "probability": 0.9836 }, { "start": 31244.85, "end": 31248.25, "probability": 0.8979 }, { "start": 31248.89, "end": 31249.55, "probability": 0.9822 }, { "start": 31250.23, "end": 31252.05, "probability": 0.9668 }, { "start": 31254.31, "end": 31258.53, "probability": 0.9938 }, { "start": 31261.23, "end": 31263.49, "probability": 0.9962 }, { "start": 31263.55, "end": 31266.41, "probability": 0.887 }, { "start": 31266.69, "end": 31267.93, "probability": 0.9637 }, { "start": 31270.25, "end": 31273.23, "probability": 0.9503 }, { "start": 31273.23, "end": 31276.95, "probability": 0.9956 }, { "start": 31277.13, "end": 31277.75, "probability": 0.6322 }, { "start": 31277.79, "end": 31278.99, "probability": 0.9193 }, { "start": 31279.09, "end": 31282.65, "probability": 0.9943 }, { "start": 31283.67, "end": 31285.53, "probability": 0.9365 }, { "start": 31286.53, "end": 31287.63, "probability": 0.9059 }, { "start": 31288.87, "end": 31291.01, "probability": 0.9077 }, { "start": 31292.17, "end": 31293.15, "probability": 0.6681 }, { "start": 31294.21, "end": 31296.31, "probability": 0.8728 }, { "start": 31296.85, "end": 31297.99, "probability": 0.8468 }, { "start": 31298.81, "end": 31300.29, "probability": 0.7377 }, { "start": 31300.95, "end": 31301.21, "probability": 0.9618 }, { "start": 31302.33, "end": 31303.43, "probability": 0.9038 }, { "start": 31304.87, "end": 31307.31, "probability": 0.9908 }, { "start": 31307.31, "end": 31309.81, "probability": 0.9928 }, { "start": 31309.97, "end": 31311.59, "probability": 0.9734 }, { "start": 31313.93, "end": 31314.75, "probability": 0.8846 }, { "start": 31314.77, "end": 31317.35, "probability": 0.9611 }, { "start": 31317.75, "end": 31324.91, "probability": 0.7549 }, { "start": 31325.11, "end": 31326.19, "probability": 0.7085 }, { "start": 31327.99, "end": 31329.93, "probability": 0.9748 }, { "start": 31331.01, "end": 31333.57, "probability": 0.9276 }, { "start": 31334.77, "end": 31337.77, "probability": 0.9877 }, { "start": 31339.63, "end": 31340.91, "probability": 0.6169 }, { "start": 31342.77, "end": 31345.37, "probability": 0.9906 }, { "start": 31346.57, "end": 31349.77, "probability": 0.8184 }, { "start": 31350.57, "end": 31351.57, "probability": 0.9884 }, { "start": 31351.73, "end": 31352.31, "probability": 0.4971 }, { "start": 31352.43, "end": 31353.09, "probability": 0.9037 }, { "start": 31353.21, "end": 31355.07, "probability": 0.9491 }, { "start": 31358.69, "end": 31362.33, "probability": 0.9924 }, { "start": 31362.65, "end": 31364.09, "probability": 0.9412 }, { "start": 31364.19, "end": 31366.95, "probability": 0.8799 }, { "start": 31366.95, "end": 31369.33, "probability": 0.869 }, { "start": 31369.73, "end": 31370.51, "probability": 0.806 }, { "start": 31371.69, "end": 31374.11, "probability": 0.995 }, { "start": 31375.35, "end": 31378.13, "probability": 0.9292 }, { "start": 31378.59, "end": 31381.27, "probability": 0.9806 }, { "start": 31381.97, "end": 31385.57, "probability": 0.9026 }, { "start": 31386.21, "end": 31387.45, "probability": 0.9725 }, { "start": 31387.67, "end": 31391.73, "probability": 0.9749 }, { "start": 31391.73, "end": 31396.69, "probability": 0.9587 }, { "start": 31397.73, "end": 31400.01, "probability": 0.994 }, { "start": 31400.03, "end": 31404.79, "probability": 0.9546 }, { "start": 31404.97, "end": 31409.11, "probability": 0.9036 }, { "start": 31409.19, "end": 31411.95, "probability": 0.9746 }, { "start": 31413.91, "end": 31415.03, "probability": 0.9675 }, { "start": 31415.79, "end": 31416.7, "probability": 0.9946 }, { "start": 31417.07, "end": 31418.91, "probability": 0.5861 }, { "start": 31420.31, "end": 31421.43, "probability": 0.6384 }, { "start": 31436.77, "end": 31437.89, "probability": 0.6635 }, { "start": 31438.63, "end": 31439.63, "probability": 0.8447 }, { "start": 31440.77, "end": 31440.97, "probability": 0.2576 }, { "start": 31441.23, "end": 31441.85, "probability": 0.5608 }, { "start": 31441.85, "end": 31442.45, "probability": 0.8351 }, { "start": 31443.23, "end": 31443.73, "probability": 0.7526 }, { "start": 31445.13, "end": 31445.53, "probability": 0.7096 }, { "start": 31445.67, "end": 31446.89, "probability": 0.9936 }, { "start": 31447.59, "end": 31449.41, "probability": 0.9897 }, { "start": 31450.05, "end": 31451.01, "probability": 0.9982 }, { "start": 31451.85, "end": 31454.71, "probability": 0.9767 }, { "start": 31455.71, "end": 31458.31, "probability": 0.9203 }, { "start": 31459.01, "end": 31464.41, "probability": 0.9808 }, { "start": 31466.19, "end": 31471.27, "probability": 0.9377 }, { "start": 31471.93, "end": 31475.13, "probability": 0.7549 }, { "start": 31476.05, "end": 31476.65, "probability": 0.75 }, { "start": 31477.57, "end": 31482.31, "probability": 0.9522 }, { "start": 31483.35, "end": 31486.43, "probability": 0.9907 }, { "start": 31487.99, "end": 31489.63, "probability": 0.9472 }, { "start": 31490.51, "end": 31494.45, "probability": 0.7529 }, { "start": 31494.69, "end": 31496.62, "probability": 0.9103 }, { "start": 31497.37, "end": 31499.75, "probability": 0.9961 }, { "start": 31500.31, "end": 31503.77, "probability": 0.9922 }, { "start": 31506.29, "end": 31510.81, "probability": 0.9926 }, { "start": 31512.21, "end": 31513.09, "probability": 0.7358 }, { "start": 31514.03, "end": 31517.53, "probability": 0.9888 }, { "start": 31518.23, "end": 31523.65, "probability": 0.96 }, { "start": 31524.17, "end": 31526.85, "probability": 0.9667 }, { "start": 31527.47, "end": 31532.85, "probability": 0.9829 }, { "start": 31533.41, "end": 31536.67, "probability": 0.9906 }, { "start": 31537.99, "end": 31542.43, "probability": 0.8805 }, { "start": 31543.31, "end": 31544.07, "probability": 0.6768 }, { "start": 31544.27, "end": 31545.35, "probability": 0.8418 }, { "start": 31548.44, "end": 31548.93, "probability": 0.0787 }, { "start": 31548.93, "end": 31552.97, "probability": 0.7831 }, { "start": 31553.77, "end": 31555.79, "probability": 0.6251 }, { "start": 31555.89, "end": 31558.77, "probability": 0.9121 }, { "start": 31559.31, "end": 31560.41, "probability": 0.9667 }, { "start": 31561.29, "end": 31563.79, "probability": 0.9647 }, { "start": 31564.91, "end": 31568.83, "probability": 0.9938 }, { "start": 31568.83, "end": 31569.25, "probability": 0.8419 }, { "start": 31569.97, "end": 31572.67, "probability": 0.7333 }, { "start": 31573.09, "end": 31577.65, "probability": 0.9967 }, { "start": 31578.13, "end": 31579.79, "probability": 0.9836 }, { "start": 31581.13, "end": 31582.79, "probability": 0.7682 }, { "start": 31583.31, "end": 31585.17, "probability": 0.9906 }, { "start": 31585.85, "end": 31587.37, "probability": 0.9905 }, { "start": 31587.69, "end": 31589.51, "probability": 0.9891 }, { "start": 31591.75, "end": 31595.73, "probability": 0.9325 }, { "start": 31596.43, "end": 31598.01, "probability": 0.7437 }, { "start": 31599.11, "end": 31599.53, "probability": 0.9451 }, { "start": 31599.99, "end": 31601.91, "probability": 0.7927 }, { "start": 31602.61, "end": 31604.51, "probability": 0.9404 }, { "start": 31604.95, "end": 31605.79, "probability": 0.9685 }, { "start": 31606.21, "end": 31607.53, "probability": 0.9565 }, { "start": 31608.03, "end": 31611.51, "probability": 0.9036 }, { "start": 31612.33, "end": 31613.13, "probability": 0.6702 }, { "start": 31614.23, "end": 31617.31, "probability": 0.991 }, { "start": 31617.57, "end": 31618.61, "probability": 0.9767 }, { "start": 31619.37, "end": 31620.71, "probability": 0.9917 }, { "start": 31621.13, "end": 31622.57, "probability": 0.9946 }, { "start": 31624.13, "end": 31625.61, "probability": 0.9944 }, { "start": 31626.31, "end": 31628.29, "probability": 0.9029 }, { "start": 31628.87, "end": 31629.99, "probability": 0.8595 }, { "start": 31630.25, "end": 31632.21, "probability": 0.9862 }, { "start": 31632.91, "end": 31634.39, "probability": 0.9231 }, { "start": 31636.45, "end": 31641.15, "probability": 0.9697 }, { "start": 31641.95, "end": 31645.05, "probability": 0.9061 }, { "start": 31645.91, "end": 31648.85, "probability": 0.9962 }, { "start": 31649.15, "end": 31650.33, "probability": 0.8461 }, { "start": 31651.33, "end": 31651.53, "probability": 0.6051 }, { "start": 31651.61, "end": 31652.19, "probability": 0.8322 }, { "start": 31652.29, "end": 31654.25, "probability": 0.9158 }, { "start": 31654.73, "end": 31656.85, "probability": 0.9976 }, { "start": 31657.85, "end": 31659.45, "probability": 0.8641 }, { "start": 31660.29, "end": 31660.59, "probability": 0.927 }, { "start": 31661.23, "end": 31662.53, "probability": 0.8711 }, { "start": 31663.23, "end": 31663.74, "probability": 0.7432 }, { "start": 31664.43, "end": 31664.93, "probability": 0.7128 }, { "start": 31665.49, "end": 31666.91, "probability": 0.9785 }, { "start": 31667.65, "end": 31669.79, "probability": 0.9512 }, { "start": 31671.83, "end": 31672.91, "probability": 0.8977 }, { "start": 31673.71, "end": 31677.73, "probability": 0.9927 }, { "start": 31678.15, "end": 31681.01, "probability": 0.8755 }, { "start": 31681.49, "end": 31684.48, "probability": 0.9906 }, { "start": 31685.03, "end": 31689.21, "probability": 0.9873 }, { "start": 31689.33, "end": 31689.87, "probability": 0.8878 }, { "start": 31690.43, "end": 31693.65, "probability": 0.5558 }, { "start": 31694.41, "end": 31698.07, "probability": 0.9704 }, { "start": 31698.07, "end": 31701.61, "probability": 0.9954 }, { "start": 31702.39, "end": 31707.01, "probability": 0.8939 }, { "start": 31707.11, "end": 31707.61, "probability": 0.6309 }, { "start": 31707.97, "end": 31708.43, "probability": 0.4259 }, { "start": 31708.43, "end": 31709.17, "probability": 0.3156 }, { "start": 31709.25, "end": 31712.09, "probability": 0.9976 }, { "start": 31712.69, "end": 31714.45, "probability": 0.9211 }, { "start": 31714.79, "end": 31716.83, "probability": 0.9874 }, { "start": 31717.17, "end": 31719.98, "probability": 0.8925 }, { "start": 31720.91, "end": 31724.83, "probability": 0.8582 }, { "start": 31724.89, "end": 31727.11, "probability": 0.8288 }, { "start": 31727.51, "end": 31734.89, "probability": 0.9843 }, { "start": 31735.39, "end": 31737.55, "probability": 0.7793 }, { "start": 31738.01, "end": 31738.95, "probability": 0.8617 }, { "start": 31739.35, "end": 31739.69, "probability": 0.641 }, { "start": 31740.19, "end": 31741.77, "probability": 0.6374 }, { "start": 31741.91, "end": 31743.13, "probability": 0.7708 }, { "start": 31751.19, "end": 31752.35, "probability": 0.0175 }, { "start": 31760.09, "end": 31763.19, "probability": 0.7648 }, { "start": 31764.03, "end": 31769.25, "probability": 0.9779 }, { "start": 31769.25, "end": 31772.77, "probability": 0.9974 }, { "start": 31772.97, "end": 31773.23, "probability": 0.8089 }, { "start": 31774.89, "end": 31777.29, "probability": 0.964 }, { "start": 31777.81, "end": 31780.87, "probability": 0.9935 }, { "start": 31781.61, "end": 31784.01, "probability": 0.9958 }, { "start": 31784.19, "end": 31785.09, "probability": 0.7196 }, { "start": 31785.97, "end": 31789.47, "probability": 0.8374 }, { "start": 31790.53, "end": 31795.63, "probability": 0.9626 }, { "start": 31796.69, "end": 31800.25, "probability": 0.9741 }, { "start": 31800.83, "end": 31804.79, "probability": 0.9429 }, { "start": 31804.79, "end": 31807.43, "probability": 0.9911 }, { "start": 31808.29, "end": 31809.23, "probability": 0.9823 }, { "start": 31810.09, "end": 31812.83, "probability": 0.9762 }, { "start": 31813.07, "end": 31814.83, "probability": 0.8602 }, { "start": 31816.15, "end": 31817.49, "probability": 0.6802 }, { "start": 31818.25, "end": 31819.29, "probability": 0.8044 }, { "start": 31820.05, "end": 31823.43, "probability": 0.9909 }, { "start": 31824.03, "end": 31825.95, "probability": 0.988 }, { "start": 31827.33, "end": 31828.57, "probability": 0.5736 }, { "start": 31829.95, "end": 31830.59, "probability": 0.9956 }, { "start": 31831.87, "end": 31832.39, "probability": 0.7897 }, { "start": 31833.27, "end": 31837.93, "probability": 0.9882 }, { "start": 31837.99, "end": 31840.61, "probability": 0.9964 }, { "start": 31840.83, "end": 31841.97, "probability": 0.987 }, { "start": 31842.59, "end": 31844.99, "probability": 0.9761 }, { "start": 31845.73, "end": 31846.53, "probability": 0.8385 }, { "start": 31847.05, "end": 31848.01, "probability": 0.7138 }, { "start": 31848.59, "end": 31849.37, "probability": 0.6691 }, { "start": 31850.23, "end": 31851.05, "probability": 0.5147 }, { "start": 31851.25, "end": 31851.47, "probability": 0.8851 }, { "start": 31852.11, "end": 31853.61, "probability": 0.9836 }, { "start": 31854.31, "end": 31857.67, "probability": 0.9712 }, { "start": 31858.21, "end": 31860.7, "probability": 0.8984 }, { "start": 31861.59, "end": 31863.48, "probability": 0.9176 }, { "start": 31864.73, "end": 31868.75, "probability": 0.9899 }, { "start": 31868.9, "end": 31873.65, "probability": 0.9771 }, { "start": 31873.83, "end": 31875.71, "probability": 0.5423 }, { "start": 31876.21, "end": 31877.09, "probability": 0.8651 }, { "start": 31877.83, "end": 31879.02, "probability": 0.9912 }, { "start": 31879.51, "end": 31881.37, "probability": 0.6792 }, { "start": 31881.97, "end": 31883.85, "probability": 0.9954 }, { "start": 31883.93, "end": 31887.47, "probability": 0.9851 }, { "start": 31887.83, "end": 31888.59, "probability": 0.9888 }, { "start": 31888.73, "end": 31891.71, "probability": 0.9755 }, { "start": 31892.81, "end": 31893.89, "probability": 0.6651 }, { "start": 31895.09, "end": 31895.97, "probability": 0.4518 }, { "start": 31897.27, "end": 31900.47, "probability": 0.9694 }, { "start": 31901.41, "end": 31906.17, "probability": 0.9827 }, { "start": 31906.73, "end": 31908.23, "probability": 0.9905 }, { "start": 31908.83, "end": 31911.15, "probability": 0.9768 }, { "start": 31911.97, "end": 31913.58, "probability": 0.8552 }, { "start": 31915.81, "end": 31915.81, "probability": 0.0538 }, { "start": 31915.81, "end": 31915.81, "probability": 0.1371 }, { "start": 31915.81, "end": 31920.07, "probability": 0.9868 }, { "start": 31920.79, "end": 31923.59, "probability": 0.8362 }, { "start": 31924.77, "end": 31927.87, "probability": 0.9941 }, { "start": 31927.95, "end": 31928.65, "probability": 0.6853 }, { "start": 31928.71, "end": 31929.09, "probability": 0.7664 }, { "start": 31932.51, "end": 31934.15, "probability": 0.9702 }, { "start": 31934.79, "end": 31935.97, "probability": 0.951 }, { "start": 31936.03, "end": 31937.87, "probability": 0.8725 }, { "start": 31938.01, "end": 31938.79, "probability": 0.9129 }, { "start": 31938.89, "end": 31940.89, "probability": 0.9185 }, { "start": 31941.55, "end": 31943.13, "probability": 0.8966 }, { "start": 31944.05, "end": 31945.57, "probability": 0.6881 }, { "start": 31945.71, "end": 31946.11, "probability": 0.9399 }, { "start": 31946.85, "end": 31947.47, "probability": 0.9966 }, { "start": 31948.47, "end": 31950.43, "probability": 0.8664 }, { "start": 31950.89, "end": 31952.83, "probability": 0.9326 }, { "start": 31954.43, "end": 31957.85, "probability": 0.9789 }, { "start": 31958.23, "end": 31962.61, "probability": 0.9946 }, { "start": 31963.31, "end": 31963.97, "probability": 0.6687 }, { "start": 31964.49, "end": 31965.05, "probability": 0.4319 }, { "start": 31965.57, "end": 31967.65, "probability": 0.9096 }, { "start": 31968.03, "end": 31970.11, "probability": 0.9896 }, { "start": 31970.49, "end": 31971.31, "probability": 0.9642 }, { "start": 31972.57, "end": 31974.4, "probability": 0.9647 }, { "start": 31975.57, "end": 31976.27, "probability": 0.5032 }, { "start": 31976.79, "end": 31980.41, "probability": 0.9602 }, { "start": 31981.19, "end": 31983.25, "probability": 0.9152 }, { "start": 31983.91, "end": 31984.47, "probability": 0.5821 }, { "start": 31984.71, "end": 31985.61, "probability": 0.6182 }, { "start": 31986.49, "end": 31987.13, "probability": 0.7114 }, { "start": 31988.09, "end": 31988.83, "probability": 0.9137 }, { "start": 31989.55, "end": 31990.47, "probability": 0.76 }, { "start": 31991.37, "end": 31992.39, "probability": 0.9932 }, { "start": 31993.47, "end": 31994.97, "probability": 0.9702 }, { "start": 31995.65, "end": 32001.31, "probability": 0.9954 }, { "start": 32002.25, "end": 32005.09, "probability": 0.7555 }, { "start": 32005.69, "end": 32009.07, "probability": 0.9624 }, { "start": 32009.49, "end": 32010.25, "probability": 0.9518 }, { "start": 32010.89, "end": 32012.42, "probability": 0.6314 }, { "start": 32013.07, "end": 32014.21, "probability": 0.8407 }, { "start": 32014.77, "end": 32016.61, "probability": 0.9167 }, { "start": 32017.35, "end": 32017.85, "probability": 0.9184 }, { "start": 32017.99, "end": 32020.69, "probability": 0.6243 }, { "start": 32021.15, "end": 32022.81, "probability": 0.7793 }, { "start": 32023.39, "end": 32025.17, "probability": 0.9951 }, { "start": 32025.77, "end": 32030.29, "probability": 0.9852 }, { "start": 32031.17, "end": 32031.75, "probability": 0.7864 }, { "start": 32033.17, "end": 32034.01, "probability": 0.6709 }, { "start": 32034.93, "end": 32036.63, "probability": 0.9608 }, { "start": 32037.77, "end": 32042.07, "probability": 0.9883 }, { "start": 32042.79, "end": 32045.55, "probability": 0.9309 }, { "start": 32046.39, "end": 32047.23, "probability": 0.5827 }, { "start": 32047.31, "end": 32047.93, "probability": 0.7712 }, { "start": 32048.01, "end": 32048.97, "probability": 0.9927 }, { "start": 32050.79, "end": 32050.85, "probability": 0.0597 }, { "start": 32050.85, "end": 32051.63, "probability": 0.2255 }, { "start": 32051.63, "end": 32052.93, "probability": 0.3527 }, { "start": 32054.45, "end": 32056.35, "probability": 0.8038 }, { "start": 32056.47, "end": 32057.47, "probability": 0.7529 }, { "start": 32057.47, "end": 32058.03, "probability": 0.899 }, { "start": 32058.39, "end": 32058.61, "probability": 0.5863 }, { "start": 32058.61, "end": 32058.89, "probability": 0.1182 }, { "start": 32059.05, "end": 32061.27, "probability": 0.5479 }, { "start": 32061.87, "end": 32062.53, "probability": 0.9059 }, { "start": 32062.97, "end": 32065.33, "probability": 0.9003 }, { "start": 32066.03, "end": 32067.75, "probability": 0.9228 }, { "start": 32068.39, "end": 32069.31, "probability": 0.8053 }, { "start": 32069.41, "end": 32069.49, "probability": 0.6995 }, { "start": 32069.57, "end": 32069.99, "probability": 0.7312 }, { "start": 32070.09, "end": 32070.79, "probability": 0.5513 }, { "start": 32070.81, "end": 32070.83, "probability": 0.5634 }, { "start": 32070.95, "end": 32071.57, "probability": 0.3382 }, { "start": 32071.65, "end": 32071.87, "probability": 0.0959 }, { "start": 32072.47, "end": 32073.17, "probability": 0.6047 }, { "start": 32073.21, "end": 32073.67, "probability": 0.6758 }, { "start": 32073.67, "end": 32074.47, "probability": 0.6589 }, { "start": 32074.55, "end": 32075.61, "probability": 0.6306 }, { "start": 32075.65, "end": 32076.73, "probability": 0.9866 }, { "start": 32076.77, "end": 32077.05, "probability": 0.6111 }, { "start": 32077.63, "end": 32079.53, "probability": 0.7864 }, { "start": 32079.57, "end": 32079.94, "probability": 0.4754 }, { "start": 32080.29, "end": 32080.97, "probability": 0.4663 }, { "start": 32081.15, "end": 32081.35, "probability": 0.0321 }, { "start": 32081.61, "end": 32082.83, "probability": 0.4324 }, { "start": 32083.23, "end": 32084.17, "probability": 0.8407 }, { "start": 32085.29, "end": 32088.11, "probability": 0.9438 }, { "start": 32088.91, "end": 32092.89, "probability": 0.8854 }, { "start": 32092.93, "end": 32093.55, "probability": 0.9084 }, { "start": 32093.59, "end": 32095.35, "probability": 0.9937 }, { "start": 32095.91, "end": 32096.59, "probability": 0.6843 }, { "start": 32097.31, "end": 32099.01, "probability": 0.9658 }, { "start": 32099.27, "end": 32099.55, "probability": 0.6566 }, { "start": 32099.55, "end": 32100.31, "probability": 0.7504 }, { "start": 32100.39, "end": 32103.95, "probability": 0.8376 }, { "start": 32104.29, "end": 32106.23, "probability": 0.9485 }, { "start": 32106.47, "end": 32106.81, "probability": 0.7666 }, { "start": 32106.81, "end": 32107.43, "probability": 0.4689 }, { "start": 32107.89, "end": 32109.41, "probability": 0.9265 }, { "start": 32112.27, "end": 32113.11, "probability": 0.3607 }, { "start": 32113.77, "end": 32114.29, "probability": 0.9448 }, { "start": 32134.83, "end": 32136.03, "probability": 0.5332 }, { "start": 32136.37, "end": 32136.47, "probability": 0.1007 }, { "start": 32137.21, "end": 32137.68, "probability": 0.9126 }, { "start": 32138.47, "end": 32139.37, "probability": 0.9275 }, { "start": 32139.97, "end": 32140.43, "probability": 0.6154 }, { "start": 32141.35, "end": 32143.0, "probability": 0.894 }, { "start": 32143.13, "end": 32143.75, "probability": 0.9696 }, { "start": 32144.11, "end": 32145.75, "probability": 0.975 }, { "start": 32146.27, "end": 32147.19, "probability": 0.9395 }, { "start": 32148.21, "end": 32148.69, "probability": 0.9138 }, { "start": 32161.57, "end": 32163.37, "probability": 0.5703 }, { "start": 32163.37, "end": 32163.53, "probability": 0.064 }, { "start": 32163.53, "end": 32163.53, "probability": 0.0594 }, { "start": 32163.53, "end": 32163.53, "probability": 0.3009 }, { "start": 32163.53, "end": 32163.53, "probability": 0.0477 }, { "start": 32163.53, "end": 32165.47, "probability": 0.2026 }, { "start": 32165.47, "end": 32167.85, "probability": 0.5779 }, { "start": 32169.71, "end": 32174.05, "probability": 0.7645 }, { "start": 32174.95, "end": 32176.61, "probability": 0.8582 }, { "start": 32178.05, "end": 32181.11, "probability": 0.8577 }, { "start": 32181.61, "end": 32186.91, "probability": 0.6576 }, { "start": 32189.71, "end": 32190.43, "probability": 0.6303 }, { "start": 32190.69, "end": 32191.43, "probability": 0.7034 }, { "start": 32191.49, "end": 32193.25, "probability": 0.8885 }, { "start": 32193.33, "end": 32194.03, "probability": 0.6229 }, { "start": 32194.57, "end": 32194.67, "probability": 0.5354 }, { "start": 32195.61, "end": 32201.71, "probability": 0.9622 }, { "start": 32201.71, "end": 32203.79, "probability": 0.9958 }, { "start": 32203.83, "end": 32206.23, "probability": 0.955 }, { "start": 32206.73, "end": 32208.31, "probability": 0.8376 }, { "start": 32209.15, "end": 32211.97, "probability": 0.9004 }, { "start": 32212.15, "end": 32213.71, "probability": 0.8096 }, { "start": 32214.31, "end": 32214.73, "probability": 0.6823 }, { "start": 32214.77, "end": 32217.57, "probability": 0.9302 }, { "start": 32218.21, "end": 32223.13, "probability": 0.9908 }, { "start": 32223.17, "end": 32227.65, "probability": 0.9828 }, { "start": 32228.49, "end": 32232.13, "probability": 0.8066 }, { "start": 32233.21, "end": 32236.81, "probability": 0.9517 }, { "start": 32238.35, "end": 32242.69, "probability": 0.9329 }, { "start": 32243.43, "end": 32244.65, "probability": 0.6802 }, { "start": 32246.19, "end": 32247.59, "probability": 0.138 }, { "start": 32248.69, "end": 32248.79, "probability": 0.0083 }, { "start": 32248.79, "end": 32251.03, "probability": 0.8546 }, { "start": 32251.53, "end": 32253.58, "probability": 0.8664 }, { "start": 32255.65, "end": 32256.27, "probability": 0.7682 }, { "start": 32256.37, "end": 32257.41, "probability": 0.9268 }, { "start": 32257.53, "end": 32259.19, "probability": 0.9873 }, { "start": 32259.27, "end": 32261.75, "probability": 0.8664 }, { "start": 32263.73, "end": 32265.89, "probability": 0.861 }, { "start": 32266.77, "end": 32272.43, "probability": 0.9966 }, { "start": 32272.99, "end": 32273.67, "probability": 0.9503 }, { "start": 32274.75, "end": 32276.31, "probability": 0.9111 }, { "start": 32276.87, "end": 32278.11, "probability": 0.9385 }, { "start": 32278.89, "end": 32282.43, "probability": 0.9941 }, { "start": 32283.09, "end": 32285.25, "probability": 0.9203 }, { "start": 32286.61, "end": 32287.63, "probability": 0.8209 }, { "start": 32290.59, "end": 32291.47, "probability": 0.8703 }, { "start": 32292.89, "end": 32294.79, "probability": 0.7681 }, { "start": 32295.65, "end": 32299.09, "probability": 0.9475 }, { "start": 32300.13, "end": 32302.31, "probability": 0.7216 }, { "start": 32302.95, "end": 32306.99, "probability": 0.8269 }, { "start": 32308.25, "end": 32309.97, "probability": 0.9732 }, { "start": 32311.37, "end": 32315.15, "probability": 0.9723 }, { "start": 32316.13, "end": 32318.27, "probability": 0.9178 }, { "start": 32318.91, "end": 32319.75, "probability": 0.8128 }, { "start": 32320.65, "end": 32321.31, "probability": 0.479 }, { "start": 32321.69, "end": 32324.3, "probability": 0.811 }, { "start": 32324.89, "end": 32325.85, "probability": 0.8792 }, { "start": 32326.43, "end": 32326.79, "probability": 0.432 }, { "start": 32326.87, "end": 32327.73, "probability": 0.7861 }, { "start": 32328.81, "end": 32330.09, "probability": 0.6916 }, { "start": 32330.77, "end": 32332.69, "probability": 0.6912 }, { "start": 32332.77, "end": 32333.53, "probability": 0.9711 }, { "start": 32334.61, "end": 32337.67, "probability": 0.9797 }, { "start": 32338.69, "end": 32339.23, "probability": 0.8301 }, { "start": 32340.71, "end": 32343.71, "probability": 0.8868 }, { "start": 32344.81, "end": 32349.11, "probability": 0.8967 }, { "start": 32349.89, "end": 32351.07, "probability": 0.8739 }, { "start": 32352.29, "end": 32354.05, "probability": 0.9985 }, { "start": 32354.15, "end": 32355.35, "probability": 0.9766 }, { "start": 32355.49, "end": 32356.85, "probability": 0.8225 }, { "start": 32357.33, "end": 32361.73, "probability": 0.991 }, { "start": 32361.73, "end": 32365.77, "probability": 0.7222 }, { "start": 32367.01, "end": 32367.65, "probability": 0.7442 }, { "start": 32368.81, "end": 32371.03, "probability": 0.965 }, { "start": 32371.63, "end": 32373.15, "probability": 0.9893 }, { "start": 32373.51, "end": 32374.39, "probability": 0.9335 }, { "start": 32376.85, "end": 32378.59, "probability": 0.9941 }, { "start": 32378.77, "end": 32379.21, "probability": 0.8032 }, { "start": 32379.23, "end": 32379.63, "probability": 0.9044 }, { "start": 32379.79, "end": 32382.49, "probability": 0.7827 }, { "start": 32382.67, "end": 32385.53, "probability": 0.7671 }, { "start": 32385.53, "end": 32386.37, "probability": 0.6176 }, { "start": 32388.61, "end": 32391.63, "probability": 0.9798 }, { "start": 32392.73, "end": 32395.97, "probability": 0.9622 }, { "start": 32397.39, "end": 32399.13, "probability": 0.9855 }, { "start": 32399.93, "end": 32404.19, "probability": 0.9642 }, { "start": 32404.47, "end": 32410.01, "probability": 0.9807 }, { "start": 32410.73, "end": 32411.97, "probability": 0.8271 }, { "start": 32412.73, "end": 32415.17, "probability": 0.9722 }, { "start": 32415.57, "end": 32420.05, "probability": 0.9056 }, { "start": 32421.57, "end": 32422.11, "probability": 0.6957 }, { "start": 32422.75, "end": 32426.57, "probability": 0.959 }, { "start": 32427.81, "end": 32434.53, "probability": 0.9924 }, { "start": 32435.07, "end": 32438.15, "probability": 0.9955 }, { "start": 32439.41, "end": 32441.15, "probability": 0.908 }, { "start": 32441.91, "end": 32446.47, "probability": 0.9805 }, { "start": 32447.15, "end": 32452.43, "probability": 0.8433 }, { "start": 32453.09, "end": 32458.73, "probability": 0.978 }, { "start": 32458.85, "end": 32460.63, "probability": 0.9325 }, { "start": 32460.71, "end": 32461.87, "probability": 0.9408 }, { "start": 32462.63, "end": 32463.73, "probability": 0.9189 }, { "start": 32464.51, "end": 32468.07, "probability": 0.823 }, { "start": 32468.39, "end": 32468.47, "probability": 0.6466 }, { "start": 32468.55, "end": 32472.07, "probability": 0.6393 }, { "start": 32472.63, "end": 32474.07, "probability": 0.9416 }, { "start": 32474.51, "end": 32479.65, "probability": 0.9393 }, { "start": 32480.21, "end": 32480.65, "probability": 0.9125 }, { "start": 32480.81, "end": 32481.43, "probability": 0.8261 }, { "start": 32481.59, "end": 32483.85, "probability": 0.9819 }, { "start": 32483.87, "end": 32484.43, "probability": 0.6666 }, { "start": 32485.75, "end": 32491.75, "probability": 0.9852 }, { "start": 32492.39, "end": 32496.97, "probability": 0.9917 }, { "start": 32497.75, "end": 32500.13, "probability": 0.7217 }, { "start": 32500.23, "end": 32503.69, "probability": 0.9956 }, { "start": 32503.79, "end": 32505.91, "probability": 0.979 }, { "start": 32505.99, "end": 32506.57, "probability": 0.913 }, { "start": 32506.95, "end": 32508.25, "probability": 0.7927 }, { "start": 32509.67, "end": 32510.39, "probability": 0.2735 }, { "start": 32510.39, "end": 32511.07, "probability": 0.798 }, { "start": 32534.39, "end": 32536.01, "probability": 0.7357 }, { "start": 32539.91, "end": 32541.25, "probability": 0.2465 }, { "start": 32541.25, "end": 32543.43, "probability": 0.7745 }, { "start": 32547.03, "end": 32549.17, "probability": 0.9905 }, { "start": 32549.17, "end": 32553.43, "probability": 0.9872 }, { "start": 32554.47, "end": 32559.07, "probability": 0.9893 }, { "start": 32559.95, "end": 32561.47, "probability": 0.8154 }, { "start": 32562.43, "end": 32565.83, "probability": 0.7451 }, { "start": 32567.07, "end": 32568.73, "probability": 0.9619 }, { "start": 32569.51, "end": 32572.35, "probability": 0.9695 }, { "start": 32572.65, "end": 32573.23, "probability": 0.7999 }, { "start": 32574.01, "end": 32578.77, "probability": 0.994 }, { "start": 32578.77, "end": 32583.61, "probability": 0.9964 }, { "start": 32584.65, "end": 32589.15, "probability": 0.9805 }, { "start": 32589.15, "end": 32592.33, "probability": 0.9949 }, { "start": 32593.37, "end": 32596.89, "probability": 0.9963 }, { "start": 32597.43, "end": 32598.59, "probability": 0.8615 }, { "start": 32598.93, "end": 32604.01, "probability": 0.9893 }, { "start": 32605.93, "end": 32610.05, "probability": 0.8986 }, { "start": 32610.17, "end": 32610.87, "probability": 0.6274 }, { "start": 32610.97, "end": 32612.55, "probability": 0.7017 }, { "start": 32613.47, "end": 32616.91, "probability": 0.9839 }, { "start": 32617.97, "end": 32619.45, "probability": 0.8888 }, { "start": 32620.07, "end": 32621.65, "probability": 0.9766 }, { "start": 32622.67, "end": 32629.11, "probability": 0.9925 }, { "start": 32630.13, "end": 32631.99, "probability": 0.6588 }, { "start": 32632.69, "end": 32636.71, "probability": 0.9898 }, { "start": 32636.77, "end": 32641.33, "probability": 0.9969 }, { "start": 32642.15, "end": 32644.57, "probability": 0.9839 }, { "start": 32645.23, "end": 32647.41, "probability": 0.9972 }, { "start": 32648.23, "end": 32650.11, "probability": 0.7991 }, { "start": 32652.86, "end": 32657.07, "probability": 0.9902 }, { "start": 32657.75, "end": 32658.75, "probability": 0.9924 }, { "start": 32660.01, "end": 32666.57, "probability": 0.9771 }, { "start": 32667.45, "end": 32670.77, "probability": 0.8727 }, { "start": 32671.65, "end": 32673.87, "probability": 0.8657 }, { "start": 32674.95, "end": 32678.29, "probability": 0.9934 }, { "start": 32679.41, "end": 32684.25, "probability": 0.9421 }, { "start": 32684.97, "end": 32687.85, "probability": 0.7853 }, { "start": 32688.65, "end": 32692.19, "probability": 0.9963 }, { "start": 32692.89, "end": 32695.93, "probability": 0.9956 }, { "start": 32696.67, "end": 32701.39, "probability": 0.9996 }, { "start": 32704.25, "end": 32705.01, "probability": 0.9316 }, { "start": 32706.21, "end": 32706.63, "probability": 0.9168 }, { "start": 32708.07, "end": 32710.29, "probability": 0.9642 }, { "start": 32710.87, "end": 32712.21, "probability": 0.8874 }, { "start": 32713.21, "end": 32715.97, "probability": 0.9968 }, { "start": 32716.75, "end": 32718.21, "probability": 0.6516 }, { "start": 32718.31, "end": 32719.13, "probability": 0.9462 }, { "start": 32719.23, "end": 32722.99, "probability": 0.9566 }, { "start": 32723.81, "end": 32726.65, "probability": 0.9691 }, { "start": 32727.51, "end": 32728.97, "probability": 0.997 }, { "start": 32729.89, "end": 32730.81, "probability": 0.988 }, { "start": 32732.31, "end": 32733.81, "probability": 0.7943 }, { "start": 32735.33, "end": 32738.41, "probability": 0.8623 }, { "start": 32738.59, "end": 32740.63, "probability": 0.7215 }, { "start": 32741.37, "end": 32743.69, "probability": 0.9104 }, { "start": 32744.79, "end": 32745.75, "probability": 0.7535 }, { "start": 32746.57, "end": 32748.47, "probability": 0.9988 }, { "start": 32749.49, "end": 32752.29, "probability": 0.981 }, { "start": 32754.11, "end": 32754.39, "probability": 0.8356 }, { "start": 32755.01, "end": 32755.49, "probability": 0.8879 }, { "start": 32755.87, "end": 32761.99, "probability": 0.9859 }, { "start": 32763.03, "end": 32766.31, "probability": 0.9976 }, { "start": 32766.99, "end": 32767.63, "probability": 0.6696 }, { "start": 32768.75, "end": 32771.39, "probability": 0.9136 }, { "start": 32772.67, "end": 32775.17, "probability": 0.9965 }, { "start": 32775.41, "end": 32779.67, "probability": 0.9698 }, { "start": 32782.29, "end": 32785.91, "probability": 0.8914 }, { "start": 32786.65, "end": 32789.81, "probability": 0.9728 }, { "start": 32790.61, "end": 32793.77, "probability": 0.964 }, { "start": 32794.59, "end": 32796.85, "probability": 0.993 }, { "start": 32797.71, "end": 32801.51, "probability": 0.9968 }, { "start": 32802.39, "end": 32806.11, "probability": 0.9872 }, { "start": 32806.69, "end": 32808.57, "probability": 0.9669 }, { "start": 32809.07, "end": 32811.33, "probability": 0.9802 }, { "start": 32812.09, "end": 32815.39, "probability": 0.9592 }, { "start": 32815.39, "end": 32818.69, "probability": 0.9863 }, { "start": 32819.45, "end": 32822.13, "probability": 0.9492 }, { "start": 32822.97, "end": 32826.65, "probability": 0.9546 }, { "start": 32827.35, "end": 32829.95, "probability": 0.9653 }, { "start": 32830.87, "end": 32831.01, "probability": 0.7683 }, { "start": 32831.91, "end": 32832.85, "probability": 0.6981 }, { "start": 32834.19, "end": 32837.87, "probability": 0.9672 }, { "start": 32838.71, "end": 32838.97, "probability": 0.3453 }, { "start": 32839.01, "end": 32839.93, "probability": 0.6156 }, { "start": 32839.95, "end": 32840.15, "probability": 0.7295 }, { "start": 32840.33, "end": 32842.17, "probability": 0.9679 }, { "start": 32842.71, "end": 32846.61, "probability": 0.9987 }, { "start": 32846.61, "end": 32850.29, "probability": 0.9982 }, { "start": 32850.51, "end": 32850.77, "probability": 0.6903 }, { "start": 32851.89, "end": 32852.29, "probability": 0.3333 }, { "start": 32852.31, "end": 32853.99, "probability": 0.6833 }, { "start": 32862.15, "end": 32863.27, "probability": 0.1592 }, { "start": 32863.27, "end": 32863.27, "probability": 0.1605 }, { "start": 32863.41, "end": 32863.89, "probability": 0.1955 }, { "start": 32863.89, "end": 32863.89, "probability": 0.5305 }, { "start": 32863.89, "end": 32864.25, "probability": 0.0275 }, { "start": 32892.35, "end": 32892.75, "probability": 0.2005 }, { "start": 32894.83, "end": 32895.72, "probability": 0.8401 }, { "start": 32897.03, "end": 32902.45, "probability": 0.9824 }, { "start": 32904.89, "end": 32909.41, "probability": 0.7633 }, { "start": 32909.55, "end": 32910.51, "probability": 0.6704 }, { "start": 32910.53, "end": 32913.69, "probability": 0.946 }, { "start": 32916.31, "end": 32919.13, "probability": 0.9751 }, { "start": 32920.85, "end": 32922.49, "probability": 0.8477 }, { "start": 32925.87, "end": 32928.17, "probability": 0.9956 }, { "start": 32930.07, "end": 32933.15, "probability": 0.9965 }, { "start": 32934.73, "end": 32936.45, "probability": 0.983 }, { "start": 32939.19, "end": 32940.79, "probability": 0.4048 }, { "start": 32942.49, "end": 32945.77, "probability": 0.8937 }, { "start": 32948.13, "end": 32950.49, "probability": 0.9988 }, { "start": 32951.97, "end": 32953.89, "probability": 0.9682 }, { "start": 32953.97, "end": 32955.47, "probability": 0.7084 }, { "start": 32955.53, "end": 32956.17, "probability": 0.7831 }, { "start": 32956.93, "end": 32957.75, "probability": 0.8481 }, { "start": 32958.61, "end": 32960.75, "probability": 0.9275 }, { "start": 32961.53, "end": 32962.65, "probability": 0.938 }, { "start": 32962.69, "end": 32963.65, "probability": 0.8676 }, { "start": 32963.69, "end": 32964.94, "probability": 0.294 }, { "start": 32965.19, "end": 32966.43, "probability": 0.9897 }, { "start": 32967.29, "end": 32970.11, "probability": 0.8388 }, { "start": 32972.53, "end": 32974.45, "probability": 0.8672 }, { "start": 32975.11, "end": 32976.63, "probability": 0.9133 }, { "start": 32976.77, "end": 32978.91, "probability": 0.6462 }, { "start": 32979.35, "end": 32982.19, "probability": 0.9919 }, { "start": 32982.43, "end": 32983.51, "probability": 0.7964 }, { "start": 32987.23, "end": 32992.55, "probability": 0.9586 }, { "start": 32992.77, "end": 32994.19, "probability": 0.9931 }, { "start": 32996.05, "end": 32997.96, "probability": 0.9887 }, { "start": 33000.05, "end": 33002.59, "probability": 0.75 }, { "start": 33003.33, "end": 33005.33, "probability": 0.9878 }, { "start": 33006.27, "end": 33009.45, "probability": 0.8747 }, { "start": 33015.09, "end": 33018.01, "probability": 0.867 }, { "start": 33020.03, "end": 33023.13, "probability": 0.9637 }, { "start": 33023.29, "end": 33024.23, "probability": 0.6858 }, { "start": 33024.85, "end": 33027.27, "probability": 0.6816 }, { "start": 33027.48, "end": 33030.51, "probability": 0.998 }, { "start": 33031.17, "end": 33033.33, "probability": 0.9976 }, { "start": 33033.93, "end": 33038.18, "probability": 0.9924 }, { "start": 33039.07, "end": 33041.97, "probability": 0.9895 }, { "start": 33043.17, "end": 33043.59, "probability": 0.5013 }, { "start": 33044.27, "end": 33045.57, "probability": 0.9973 }, { "start": 33047.03, "end": 33049.69, "probability": 0.808 }, { "start": 33050.47, "end": 33052.19, "probability": 0.9231 }, { "start": 33053.23, "end": 33055.19, "probability": 0.9736 }, { "start": 33055.21, "end": 33057.25, "probability": 0.9978 }, { "start": 33057.27, "end": 33059.77, "probability": 0.6064 }, { "start": 33060.83, "end": 33062.13, "probability": 0.9418 }, { "start": 33063.65, "end": 33066.81, "probability": 0.9927 }, { "start": 33066.81, "end": 33070.47, "probability": 0.998 }, { "start": 33073.57, "end": 33074.75, "probability": 0.3716 }, { "start": 33075.29, "end": 33075.87, "probability": 0.3288 }, { "start": 33077.71, "end": 33078.73, "probability": 0.8411 }, { "start": 33078.77, "end": 33080.15, "probability": 0.9343 }, { "start": 33080.53, "end": 33082.03, "probability": 0.5087 }, { "start": 33082.37, "end": 33084.65, "probability": 0.5262 }, { "start": 33085.63, "end": 33089.65, "probability": 0.9889 }, { "start": 33090.19, "end": 33091.72, "probability": 0.7035 }, { "start": 33093.21, "end": 33096.13, "probability": 0.9841 }, { "start": 33097.81, "end": 33101.77, "probability": 0.9941 }, { "start": 33101.77, "end": 33103.83, "probability": 0.9995 }, { "start": 33103.87, "end": 33105.65, "probability": 0.9978 }, { "start": 33106.19, "end": 33107.19, "probability": 0.9919 }, { "start": 33108.13, "end": 33109.46, "probability": 0.7035 }, { "start": 33111.32, "end": 33113.37, "probability": 0.9872 }, { "start": 33114.79, "end": 33116.51, "probability": 0.9856 }, { "start": 33117.21, "end": 33119.59, "probability": 0.9519 }, { "start": 33120.79, "end": 33122.23, "probability": 0.7438 }, { "start": 33122.33, "end": 33127.28, "probability": 0.9708 }, { "start": 33128.41, "end": 33130.67, "probability": 0.9992 }, { "start": 33131.51, "end": 33132.33, "probability": 0.5621 }, { "start": 33133.25, "end": 33135.81, "probability": 0.9899 }, { "start": 33135.87, "end": 33137.43, "probability": 0.9866 }, { "start": 33138.17, "end": 33140.27, "probability": 0.9946 }, { "start": 33140.73, "end": 33141.15, "probability": 0.7445 }, { "start": 33141.83, "end": 33142.37, "probability": 0.738 }, { "start": 33142.43, "end": 33145.57, "probability": 0.9127 }, { "start": 33146.37, "end": 33147.61, "probability": 0.6193 }, { "start": 33148.45, "end": 33150.47, "probability": 0.9767 }, { "start": 33153.41, "end": 33159.57, "probability": 0.6073 }, { "start": 33159.61, "end": 33161.08, "probability": 0.5269 }, { "start": 33162.7, "end": 33164.27, "probability": 0.9512 }, { "start": 33164.67, "end": 33166.37, "probability": 0.7796 }, { "start": 33167.33, "end": 33170.21, "probability": 0.6834 }, { "start": 33170.55, "end": 33171.63, "probability": 0.8488 }, { "start": 33173.27, "end": 33174.31, "probability": 0.6901 }, { "start": 33176.89, "end": 33180.33, "probability": 0.9307 }, { "start": 33181.33, "end": 33184.07, "probability": 0.9119 }, { "start": 33185.23, "end": 33187.15, "probability": 0.6657 }, { "start": 33187.61, "end": 33188.93, "probability": 0.8178 }, { "start": 33189.79, "end": 33192.41, "probability": 0.8957 }, { "start": 33193.07, "end": 33196.37, "probability": 0.9653 }, { "start": 33196.67, "end": 33197.65, "probability": 0.9924 }, { "start": 33198.59, "end": 33199.77, "probability": 0.525 }, { "start": 33200.35, "end": 33201.17, "probability": 0.9951 }, { "start": 33202.53, "end": 33203.53, "probability": 0.718 }, { "start": 33203.57, "end": 33204.25, "probability": 0.316 }, { "start": 33205.29, "end": 33208.08, "probability": 0.7593 }, { "start": 33209.25, "end": 33209.95, "probability": 0.8809 }, { "start": 33210.33, "end": 33211.61, "probability": 0.9863 }, { "start": 33212.67, "end": 33213.67, "probability": 0.9845 }, { "start": 33214.93, "end": 33219.51, "probability": 0.9771 }, { "start": 33219.65, "end": 33221.59, "probability": 0.8507 }, { "start": 33222.49, "end": 33222.77, "probability": 0.8215 }, { "start": 33223.67, "end": 33226.57, "probability": 0.9647 }, { "start": 33227.55, "end": 33229.19, "probability": 0.9186 }, { "start": 33229.93, "end": 33231.09, "probability": 0.8745 }, { "start": 33231.25, "end": 33231.59, "probability": 0.7842 }, { "start": 33231.67, "end": 33235.66, "probability": 0.9552 }, { "start": 33237.07, "end": 33237.43, "probability": 0.6989 }, { "start": 33238.39, "end": 33240.11, "probability": 0.9917 }, { "start": 33240.13, "end": 33243.69, "probability": 0.9257 }, { "start": 33244.91, "end": 33247.43, "probability": 0.973 }, { "start": 33247.43, "end": 33250.33, "probability": 0.9527 }, { "start": 33251.33, "end": 33252.71, "probability": 0.9708 }, { "start": 33253.37, "end": 33255.17, "probability": 0.9296 }, { "start": 33256.09, "end": 33256.47, "probability": 0.1274 }, { "start": 33256.55, "end": 33261.21, "probability": 0.9883 }, { "start": 33262.17, "end": 33264.41, "probability": 0.9209 }, { "start": 33264.55, "end": 33267.33, "probability": 0.9784 }, { "start": 33268.09, "end": 33270.11, "probability": 0.6708 }, { "start": 33272.21, "end": 33277.65, "probability": 0.9686 }, { "start": 33277.87, "end": 33280.07, "probability": 0.9412 }, { "start": 33281.31, "end": 33282.81, "probability": 0.822 }, { "start": 33284.11, "end": 33286.81, "probability": 0.4921 }, { "start": 33287.85, "end": 33289.03, "probability": 0.8153 }, { "start": 33289.17, "end": 33291.87, "probability": 0.9774 }, { "start": 33292.45, "end": 33295.75, "probability": 0.722 }, { "start": 33296.75, "end": 33298.29, "probability": 0.9747 }, { "start": 33299.37, "end": 33302.87, "probability": 0.8609 }, { "start": 33303.81, "end": 33305.97, "probability": 0.2474 }, { "start": 33306.77, "end": 33309.17, "probability": 0.819 }, { "start": 33310.31, "end": 33314.19, "probability": 0.9663 }, { "start": 33314.87, "end": 33318.21, "probability": 0.9715 }, { "start": 33319.45, "end": 33323.05, "probability": 0.9899 }, { "start": 33323.05, "end": 33327.83, "probability": 0.9957 }, { "start": 33327.95, "end": 33330.31, "probability": 0.9905 }, { "start": 33330.71, "end": 33331.33, "probability": 0.9329 }, { "start": 33331.47, "end": 33331.77, "probability": 0.9685 }, { "start": 33331.85, "end": 33332.17, "probability": 0.9753 }, { "start": 33332.31, "end": 33332.59, "probability": 0.9698 }, { "start": 33332.69, "end": 33333.87, "probability": 0.957 }, { "start": 33335.47, "end": 33335.87, "probability": 0.628 }, { "start": 33335.93, "end": 33336.63, "probability": 0.6814 }, { "start": 33336.85, "end": 33338.31, "probability": 0.9938 }, { "start": 33338.47, "end": 33339.43, "probability": 0.7826 }, { "start": 33340.03, "end": 33342.19, "probability": 0.9962 }, { "start": 33343.55, "end": 33347.37, "probability": 0.9006 }, { "start": 33348.13, "end": 33351.03, "probability": 0.9374 }, { "start": 33352.31, "end": 33354.01, "probability": 0.9752 }, { "start": 33354.07, "end": 33357.33, "probability": 0.4758 }, { "start": 33357.51, "end": 33359.27, "probability": 0.9684 }, { "start": 33359.97, "end": 33362.33, "probability": 0.9854 }, { "start": 33363.01, "end": 33365.13, "probability": 0.8403 }, { "start": 33366.37, "end": 33366.75, "probability": 0.4758 }, { "start": 33367.77, "end": 33370.15, "probability": 0.9879 }, { "start": 33370.15, "end": 33372.41, "probability": 0.9959 }, { "start": 33373.09, "end": 33376.27, "probability": 0.82 }, { "start": 33377.07, "end": 33379.57, "probability": 0.9731 }, { "start": 33379.57, "end": 33381.83, "probability": 0.5041 }, { "start": 33381.99, "end": 33385.09, "probability": 0.968 }, { "start": 33386.39, "end": 33387.57, "probability": 0.8638 }, { "start": 33387.77, "end": 33390.91, "probability": 0.6287 }, { "start": 33391.35, "end": 33393.39, "probability": 0.8577 }, { "start": 33393.43, "end": 33395.71, "probability": 0.8193 }, { "start": 33395.87, "end": 33398.71, "probability": 0.7056 }, { "start": 33399.21, "end": 33399.65, "probability": 0.6755 }, { "start": 33399.71, "end": 33403.13, "probability": 0.8115 }, { "start": 33403.65, "end": 33404.71, "probability": 0.7689 }, { "start": 33405.05, "end": 33406.87, "probability": 0.9583 }, { "start": 33406.87, "end": 33411.37, "probability": 0.9604 }, { "start": 33412.15, "end": 33417.09, "probability": 0.8151 }, { "start": 33417.61, "end": 33420.95, "probability": 0.9746 }, { "start": 33421.01, "end": 33424.07, "probability": 0.9635 }, { "start": 33424.59, "end": 33426.37, "probability": 0.7217 }, { "start": 33426.87, "end": 33430.15, "probability": 0.9731 }, { "start": 33430.95, "end": 33431.85, "probability": 0.5654 }, { "start": 33431.97, "end": 33433.15, "probability": 0.8989 }, { "start": 33433.23, "end": 33435.43, "probability": 0.9093 }, { "start": 33435.43, "end": 33438.11, "probability": 0.9851 }, { "start": 33438.97, "end": 33443.63, "probability": 0.9653 }, { "start": 33445.91, "end": 33451.39, "probability": 0.8369 }, { "start": 33451.49, "end": 33453.83, "probability": 0.9692 }, { "start": 33453.83, "end": 33456.28, "probability": 0.9808 }, { "start": 33457.11, "end": 33460.39, "probability": 0.7868 }, { "start": 33461.17, "end": 33465.13, "probability": 0.951 }, { "start": 33465.99, "end": 33467.61, "probability": 0.6705 }, { "start": 33468.43, "end": 33471.29, "probability": 0.5538 }, { "start": 33471.37, "end": 33472.87, "probability": 0.7076 }, { "start": 33472.93, "end": 33473.54, "probability": 0.7709 }, { "start": 33474.37, "end": 33478.17, "probability": 0.8593 }, { "start": 33478.49, "end": 33482.45, "probability": 0.9608 }, { "start": 33482.45, "end": 33487.73, "probability": 0.9949 }, { "start": 33488.37, "end": 33491.63, "probability": 0.9968 }, { "start": 33492.17, "end": 33493.69, "probability": 0.9781 }, { "start": 33494.25, "end": 33497.35, "probability": 0.9565 }, { "start": 33497.45, "end": 33497.77, "probability": 0.3923 }, { "start": 33497.89, "end": 33498.65, "probability": 0.9039 }, { "start": 33499.31, "end": 33499.69, "probability": 0.9872 }, { "start": 33500.43, "end": 33502.11, "probability": 0.9226 }, { "start": 33503.19, "end": 33504.29, "probability": 0.9883 }, { "start": 33505.67, "end": 33506.25, "probability": 0.9067 }, { "start": 33506.61, "end": 33509.45, "probability": 0.9905 }, { "start": 33509.45, "end": 33511.35, "probability": 0.9712 }, { "start": 33511.89, "end": 33514.37, "probability": 0.9587 }, { "start": 33514.37, "end": 33518.25, "probability": 0.8867 }, { "start": 33519.93, "end": 33520.29, "probability": 0.4602 }, { "start": 33523.92, "end": 33524.95, "probability": 0.3413 }, { "start": 33524.95, "end": 33524.95, "probability": 0.0312 }, { "start": 33524.95, "end": 33525.03, "probability": 0.288 }, { "start": 33527.17, "end": 33532.41, "probability": 0.9906 }, { "start": 33533.55, "end": 33534.71, "probability": 0.7943 }, { "start": 33535.29, "end": 33537.63, "probability": 0.9355 }, { "start": 33538.83, "end": 33541.89, "probability": 0.9883 }, { "start": 33542.59, "end": 33546.79, "probability": 0.9932 }, { "start": 33548.41, "end": 33550.29, "probability": 0.8574 }, { "start": 33561.43, "end": 33562.47, "probability": 0.6741 }, { "start": 33563.43, "end": 33565.43, "probability": 0.7041 }, { "start": 33565.49, "end": 33566.23, "probability": 0.9946 }, { "start": 33568.05, "end": 33569.51, "probability": 0.0171 }, { "start": 33570.81, "end": 33571.37, "probability": 0.4246 }, { "start": 33572.33, "end": 33573.47, "probability": 0.7251 }, { "start": 33574.97, "end": 33580.13, "probability": 0.9977 }, { "start": 33581.41, "end": 33582.47, "probability": 0.9986 }, { "start": 33583.29, "end": 33586.47, "probability": 0.9963 }, { "start": 33587.21, "end": 33589.37, "probability": 0.9834 }, { "start": 33590.45, "end": 33591.09, "probability": 0.8592 }, { "start": 33592.25, "end": 33593.99, "probability": 0.9951 }, { "start": 33594.77, "end": 33596.41, "probability": 0.825 }, { "start": 33597.11, "end": 33598.87, "probability": 0.9911 }, { "start": 33599.51, "end": 33600.33, "probability": 0.6989 }, { "start": 33601.39, "end": 33602.99, "probability": 0.7474 }, { "start": 33603.67, "end": 33606.67, "probability": 0.9775 }, { "start": 33607.43, "end": 33608.19, "probability": 0.8745 }, { "start": 33609.31, "end": 33610.99, "probability": 0.8124 }, { "start": 33611.67, "end": 33614.67, "probability": 0.9698 }, { "start": 33615.39, "end": 33619.09, "probability": 0.9958 }, { "start": 33619.79, "end": 33623.79, "probability": 0.9865 }, { "start": 33624.51, "end": 33627.09, "probability": 0.9425 }, { "start": 33627.87, "end": 33628.79, "probability": 0.9531 }, { "start": 33629.53, "end": 33630.93, "probability": 0.7688 }, { "start": 33631.51, "end": 33634.09, "probability": 0.9745 }, { "start": 33634.87, "end": 33635.51, "probability": 0.5784 }, { "start": 33637.09, "end": 33638.43, "probability": 0.9625 }, { "start": 33638.51, "end": 33641.41, "probability": 0.8867 }, { "start": 33642.03, "end": 33643.11, "probability": 0.9219 }, { "start": 33643.71, "end": 33646.49, "probability": 0.9839 }, { "start": 33647.39, "end": 33647.75, "probability": 0.9702 }, { "start": 33648.37, "end": 33650.33, "probability": 0.8508 }, { "start": 33651.35, "end": 33652.43, "probability": 0.6484 }, { "start": 33653.15, "end": 33653.87, "probability": 0.9414 }, { "start": 33655.05, "end": 33656.99, "probability": 0.9095 }, { "start": 33658.99, "end": 33661.73, "probability": 0.0392 }, { "start": 33662.59, "end": 33662.73, "probability": 0.0594 }, { "start": 33662.73, "end": 33662.83, "probability": 0.0275 }, { "start": 33662.83, "end": 33664.19, "probability": 0.8843 }, { "start": 33664.59, "end": 33671.47, "probability": 0.983 }, { "start": 33673.89, "end": 33676.67, "probability": 0.8966 }, { "start": 33677.07, "end": 33678.09, "probability": 0.7998 }, { "start": 33678.81, "end": 33680.57, "probability": 0.8617 }, { "start": 33682.23, "end": 33684.21, "probability": 0.9931 }, { "start": 33684.83, "end": 33689.01, "probability": 0.9894 }, { "start": 33689.11, "end": 33689.95, "probability": 0.8611 }, { "start": 33691.15, "end": 33694.45, "probability": 0.9958 }, { "start": 33695.55, "end": 33696.89, "probability": 0.7781 }, { "start": 33698.61, "end": 33698.99, "probability": 0.9136 }, { "start": 33699.55, "end": 33702.09, "probability": 0.9822 }, { "start": 33702.69, "end": 33703.29, "probability": 0.846 }, { "start": 33705.77, "end": 33711.07, "probability": 0.9954 }, { "start": 33711.57, "end": 33712.69, "probability": 0.792 }, { "start": 33713.41, "end": 33715.49, "probability": 0.9922 }, { "start": 33716.09, "end": 33719.25, "probability": 0.9455 }, { "start": 33719.99, "end": 33721.93, "probability": 0.9266 }, { "start": 33722.47, "end": 33723.29, "probability": 0.999 }, { "start": 33724.03, "end": 33724.87, "probability": 0.9307 }, { "start": 33725.73, "end": 33728.07, "probability": 0.8769 }, { "start": 33728.73, "end": 33731.19, "probability": 0.95 }, { "start": 33732.07, "end": 33734.23, "probability": 0.9817 }, { "start": 33735.09, "end": 33736.19, "probability": 0.9517 }, { "start": 33736.91, "end": 33740.17, "probability": 0.9355 }, { "start": 33740.89, "end": 33741.11, "probability": 0.6511 }, { "start": 33742.13, "end": 33742.75, "probability": 0.9418 }, { "start": 33743.99, "end": 33745.31, "probability": 0.9831 }, { "start": 33745.97, "end": 33746.67, "probability": 0.9927 }, { "start": 33747.25, "end": 33751.69, "probability": 0.9897 }, { "start": 33752.43, "end": 33754.77, "probability": 0.9958 }, { "start": 33755.63, "end": 33755.73, "probability": 0.4285 }, { "start": 33756.37, "end": 33757.84, "probability": 0.8388 }, { "start": 33758.63, "end": 33761.11, "probability": 0.9409 }, { "start": 33761.77, "end": 33764.45, "probability": 0.9718 }, { "start": 33764.73, "end": 33765.47, "probability": 0.9783 }, { "start": 33766.09, "end": 33770.17, "probability": 0.9663 }, { "start": 33771.49, "end": 33773.21, "probability": 0.9956 }, { "start": 33773.87, "end": 33775.63, "probability": 0.989 }, { "start": 33776.85, "end": 33778.99, "probability": 0.9561 }, { "start": 33779.63, "end": 33780.95, "probability": 0.9871 }, { "start": 33781.35, "end": 33781.53, "probability": 0.5734 }, { "start": 33782.49, "end": 33786.03, "probability": 0.9988 }, { "start": 33786.99, "end": 33788.07, "probability": 0.8213 }, { "start": 33788.25, "end": 33790.99, "probability": 0.9912 }, { "start": 33791.37, "end": 33791.81, "probability": 0.9788 }, { "start": 33792.79, "end": 33798.03, "probability": 0.9972 }, { "start": 33798.71, "end": 33801.51, "probability": 0.9898 }, { "start": 33802.35, "end": 33806.19, "probability": 0.9581 }, { "start": 33807.25, "end": 33811.25, "probability": 0.9885 }, { "start": 33811.79, "end": 33812.91, "probability": 0.9263 }, { "start": 33813.37, "end": 33814.83, "probability": 0.9368 }, { "start": 33815.05, "end": 33816.57, "probability": 0.8308 }, { "start": 33817.27, "end": 33817.85, "probability": 0.9438 }, { "start": 33818.55, "end": 33820.59, "probability": 0.9958 }, { "start": 33821.03, "end": 33823.23, "probability": 0.9956 }, { "start": 33824.37, "end": 33824.47, "probability": 0.877 }, { "start": 33825.15, "end": 33825.69, "probability": 0.8081 }, { "start": 33826.33, "end": 33828.01, "probability": 0.9982 }, { "start": 33829.83, "end": 33830.51, "probability": 0.9648 }, { "start": 33831.03, "end": 33833.26, "probability": 0.9932 }, { "start": 33833.47, "end": 33836.57, "probability": 0.8914 }, { "start": 33837.17, "end": 33838.97, "probability": 0.6299 }, { "start": 33839.63, "end": 33841.61, "probability": 0.8608 }, { "start": 33842.35, "end": 33842.63, "probability": 0.9302 }, { "start": 33843.51, "end": 33847.89, "probability": 0.9873 }, { "start": 33848.53, "end": 33851.53, "probability": 0.98 }, { "start": 33852.27, "end": 33853.33, "probability": 0.8395 }, { "start": 33853.35, "end": 33855.37, "probability": 0.9963 }, { "start": 33855.95, "end": 33858.23, "probability": 0.9202 }, { "start": 33858.83, "end": 33863.33, "probability": 0.9941 }, { "start": 33863.89, "end": 33865.87, "probability": 0.9502 }, { "start": 33866.63, "end": 33869.21, "probability": 0.9903 }, { "start": 33869.87, "end": 33870.51, "probability": 0.3315 }, { "start": 33870.51, "end": 33871.03, "probability": 0.4646 }, { "start": 33871.57, "end": 33874.95, "probability": 0.9925 }, { "start": 33875.79, "end": 33877.89, "probability": 0.9407 }, { "start": 33877.99, "end": 33879.73, "probability": 0.8227 }, { "start": 33880.37, "end": 33882.69, "probability": 0.9004 }, { "start": 33883.21, "end": 33884.53, "probability": 0.9914 }, { "start": 33885.05, "end": 33886.75, "probability": 0.9868 }, { "start": 33887.35, "end": 33889.67, "probability": 0.9795 }, { "start": 33890.33, "end": 33892.03, "probability": 0.4502 }, { "start": 33892.09, "end": 33892.98, "probability": 0.7598 }, { "start": 33894.33, "end": 33897.15, "probability": 0.715 }, { "start": 33897.33, "end": 33898.73, "probability": 0.8834 }, { "start": 33907.15, "end": 33908.55, "probability": 0.9772 }, { "start": 33909.98, "end": 33912.75, "probability": 0.5036 }, { "start": 33913.13, "end": 33913.71, "probability": 0.3049 }, { "start": 33913.71, "end": 33914.27, "probability": 0.9604 }, { "start": 33915.03, "end": 33916.91, "probability": 0.1693 }, { "start": 33917.03, "end": 33918.81, "probability": 0.7582 }, { "start": 33919.47, "end": 33920.01, "probability": 0.8911 }, { "start": 33920.09, "end": 33922.61, "probability": 0.6567 }, { "start": 33923.97, "end": 33925.85, "probability": 0.7832 }, { "start": 33925.89, "end": 33926.91, "probability": 0.7354 }, { "start": 33928.81, "end": 33931.01, "probability": 0.9497 }, { "start": 33931.37, "end": 33931.57, "probability": 0.5205 }, { "start": 33931.73, "end": 33932.57, "probability": 0.8522 }, { "start": 33932.57, "end": 33933.72, "probability": 0.9688 }, { "start": 33933.87, "end": 33934.55, "probability": 0.9445 }, { "start": 33934.61, "end": 33936.25, "probability": 0.9879 }, { "start": 33937.21, "end": 33938.25, "probability": 0.8407 }, { "start": 33939.67, "end": 33940.41, "probability": 0.8253 }, { "start": 33941.03, "end": 33941.77, "probability": 0.853 }, { "start": 33943.25, "end": 33944.25, "probability": 0.7199 }, { "start": 33946.39, "end": 33948.63, "probability": 0.8474 }, { "start": 33949.53, "end": 33951.59, "probability": 0.637 }, { "start": 33951.69, "end": 33951.97, "probability": 0.6651 }, { "start": 33952.07, "end": 33952.17, "probability": 0.2705 }, { "start": 33952.71, "end": 33953.47, "probability": 0.7745 }, { "start": 33953.83, "end": 33954.81, "probability": 0.3311 }, { "start": 33954.85, "end": 33956.09, "probability": 0.6533 }, { "start": 33956.31, "end": 33957.59, "probability": 0.9522 }, { "start": 33957.67, "end": 33961.63, "probability": 0.3562 }, { "start": 33962.55, "end": 33965.51, "probability": 0.1064 }, { "start": 33966.29, "end": 33966.33, "probability": 0.3074 }, { "start": 33966.33, "end": 33966.33, "probability": 0.0742 }, { "start": 33966.33, "end": 33967.31, "probability": 0.8713 }, { "start": 33967.63, "end": 33968.07, "probability": 0.3201 }, { "start": 33968.83, "end": 33971.39, "probability": 0.8449 }, { "start": 33971.95, "end": 33973.95, "probability": 0.9839 }, { "start": 33974.67, "end": 33976.61, "probability": 0.9894 }, { "start": 33977.13, "end": 33978.75, "probability": 0.9845 }, { "start": 33980.51, "end": 33981.97, "probability": 0.5599 }, { "start": 33982.09, "end": 33983.25, "probability": 0.872 }, { "start": 33983.55, "end": 33987.29, "probability": 0.8037 }, { "start": 33987.33, "end": 33987.57, "probability": 0.9264 }, { "start": 33988.01, "end": 33989.21, "probability": 0.963 }, { "start": 33989.87, "end": 33995.23, "probability": 0.9772 }, { "start": 33995.79, "end": 33997.11, "probability": 0.9348 }, { "start": 33998.55, "end": 34001.45, "probability": 0.8468 }, { "start": 34002.19, "end": 34007.87, "probability": 0.9575 }, { "start": 34008.89, "end": 34013.27, "probability": 0.9946 }, { "start": 34013.33, "end": 34014.95, "probability": 0.942 }, { "start": 34015.73, "end": 34018.49, "probability": 0.9949 }, { "start": 34019.41, "end": 34024.99, "probability": 0.8173 }, { "start": 34025.43, "end": 34027.17, "probability": 0.6266 }, { "start": 34029.07, "end": 34029.51, "probability": 0.188 }, { "start": 34029.51, "end": 34032.45, "probability": 0.9766 }, { "start": 34032.61, "end": 34033.29, "probability": 0.8004 }, { "start": 34033.41, "end": 34033.77, "probability": 0.8234 }, { "start": 34034.07, "end": 34034.62, "probability": 0.9268 }, { "start": 34035.77, "end": 34037.37, "probability": 0.191 }, { "start": 34038.67, "end": 34039.61, "probability": 0.9342 }, { "start": 34041.29, "end": 34042.19, "probability": 0.0096 }, { "start": 34042.19, "end": 34043.59, "probability": 0.4421 }, { "start": 34046.01, "end": 34048.77, "probability": 0.9434 }, { "start": 34048.77, "end": 34051.41, "probability": 0.9937 }, { "start": 34051.45, "end": 34052.57, "probability": 0.986 }, { "start": 34052.73, "end": 34056.27, "probability": 0.9962 }, { "start": 34056.41, "end": 34058.13, "probability": 0.8705 }, { "start": 34059.37, "end": 34062.03, "probability": 0.6584 }, { "start": 34065.03, "end": 34068.33, "probability": 0.6109 }, { "start": 34068.99, "end": 34071.79, "probability": 0.9852 }, { "start": 34072.51, "end": 34075.19, "probability": 0.8599 }, { "start": 34077.17, "end": 34081.07, "probability": 0.9111 }, { "start": 34081.93, "end": 34085.65, "probability": 0.8926 }, { "start": 34085.71, "end": 34088.01, "probability": 0.9619 }, { "start": 34088.73, "end": 34093.43, "probability": 0.9769 }, { "start": 34095.87, "end": 34098.41, "probability": 0.7524 }, { "start": 34098.97, "end": 34102.49, "probability": 0.8247 }, { "start": 34103.59, "end": 34104.33, "probability": 0.665 }, { "start": 34104.79, "end": 34105.6, "probability": 0.9644 }, { "start": 34106.41, "end": 34107.23, "probability": 0.9747 }, { "start": 34107.65, "end": 34108.61, "probability": 0.1709 }, { "start": 34110.55, "end": 34113.67, "probability": 0.8438 }, { "start": 34114.91, "end": 34115.29, "probability": 0.4496 }, { "start": 34116.37, "end": 34118.29, "probability": 0.6675 }, { "start": 34119.29, "end": 34121.13, "probability": 0.9869 }, { "start": 34121.85, "end": 34123.45, "probability": 0.969 }, { "start": 34124.33, "end": 34124.69, "probability": 0.769 }, { "start": 34125.25, "end": 34125.81, "probability": 0.6892 }, { "start": 34126.55, "end": 34128.33, "probability": 0.8211 }, { "start": 34129.41, "end": 34130.97, "probability": 0.849 }, { "start": 34132.01, "end": 34135.91, "probability": 0.9859 }, { "start": 34136.11, "end": 34139.21, "probability": 0.9875 }, { "start": 34140.07, "end": 34142.73, "probability": 0.9976 }, { "start": 34143.43, "end": 34146.37, "probability": 0.9346 }, { "start": 34147.41, "end": 34149.69, "probability": 0.8213 }, { "start": 34150.35, "end": 34151.23, "probability": 0.6276 }, { "start": 34151.33, "end": 34154.37, "probability": 0.9728 }, { "start": 34154.37, "end": 34156.73, "probability": 0.9897 }, { "start": 34157.41, "end": 34157.95, "probability": 0.455 }, { "start": 34158.03, "end": 34160.39, "probability": 0.9899 }, { "start": 34160.89, "end": 34164.03, "probability": 0.9959 }, { "start": 34164.19, "end": 34165.05, "probability": 0.8649 }, { "start": 34166.07, "end": 34167.65, "probability": 0.9067 }, { "start": 34167.79, "end": 34168.89, "probability": 0.5075 }, { "start": 34169.35, "end": 34171.13, "probability": 0.7478 }, { "start": 34171.57, "end": 34173.85, "probability": 0.9119 }, { "start": 34173.85, "end": 34177.01, "probability": 0.9722 }, { "start": 34177.67, "end": 34179.83, "probability": 0.9886 }, { "start": 34181.55, "end": 34182.99, "probability": 0.7445 }, { "start": 34183.81, "end": 34184.72, "probability": 0.6763 }, { "start": 34186.03, "end": 34186.07, "probability": 0.0164 }, { "start": 34186.07, "end": 34190.51, "probability": 0.8958 }, { "start": 34191.75, "end": 34193.69, "probability": 0.9498 }, { "start": 34194.89, "end": 34197.93, "probability": 0.8251 }, { "start": 34198.11, "end": 34198.79, "probability": 0.797 }, { "start": 34199.41, "end": 34202.57, "probability": 0.9688 }, { "start": 34202.71, "end": 34203.95, "probability": 0.8057 }, { "start": 34204.63, "end": 34207.61, "probability": 0.9946 }, { "start": 34208.29, "end": 34210.79, "probability": 0.8057 }, { "start": 34212.01, "end": 34214.07, "probability": 0.8037 }, { "start": 34214.69, "end": 34215.79, "probability": 0.978 }, { "start": 34216.77, "end": 34220.01, "probability": 0.8272 }, { "start": 34222.01, "end": 34223.33, "probability": 0.8314 }, { "start": 34223.87, "end": 34224.95, "probability": 0.9485 }, { "start": 34225.41, "end": 34229.51, "probability": 0.8961 }, { "start": 34229.85, "end": 34231.15, "probability": 0.7352 }, { "start": 34231.51, "end": 34234.79, "probability": 0.7175 }, { "start": 34235.39, "end": 34236.43, "probability": 0.9308 }, { "start": 34239.17, "end": 34240.63, "probability": 0.8401 }, { "start": 34240.85, "end": 34243.03, "probability": 0.7633 }, { "start": 34243.55, "end": 34244.25, "probability": 0.829 }, { "start": 34245.27, "end": 34248.11, "probability": 0.1694 }, { "start": 34265.61, "end": 34266.83, "probability": 0.5264 }, { "start": 34267.65, "end": 34270.49, "probability": 0.5394 }, { "start": 34271.03, "end": 34271.67, "probability": 0.4232 }, { "start": 34271.99, "end": 34274.01, "probability": 0.681 }, { "start": 34275.01, "end": 34276.87, "probability": 0.929 }, { "start": 34278.11, "end": 34280.09, "probability": 0.9951 }, { "start": 34281.49, "end": 34282.27, "probability": 0.6126 }, { "start": 34282.29, "end": 34284.67, "probability": 0.772 }, { "start": 34284.73, "end": 34285.27, "probability": 0.7678 }, { "start": 34285.33, "end": 34287.11, "probability": 0.8981 }, { "start": 34287.75, "end": 34290.13, "probability": 0.8133 }, { "start": 34290.25, "end": 34290.99, "probability": 0.1257 }, { "start": 34291.01, "end": 34293.45, "probability": 0.7529 }, { "start": 34294.27, "end": 34298.29, "probability": 0.8509 }, { "start": 34298.49, "end": 34299.93, "probability": 0.7502 }, { "start": 34300.43, "end": 34302.31, "probability": 0.9241 }, { "start": 34302.31, "end": 34304.83, "probability": 0.9852 }, { "start": 34305.21, "end": 34307.08, "probability": 0.9912 }, { "start": 34307.89, "end": 34309.99, "probability": 0.8728 }, { "start": 34310.03, "end": 34310.25, "probability": 0.6957 }, { "start": 34310.27, "end": 34310.81, "probability": 0.7821 }, { "start": 34310.81, "end": 34313.79, "probability": 0.9713 }, { "start": 34315.31, "end": 34317.43, "probability": 0.9513 }, { "start": 34317.79, "end": 34320.49, "probability": 0.9325 }, { "start": 34321.47, "end": 34322.48, "probability": 0.9092 }, { "start": 34323.13, "end": 34326.01, "probability": 0.6549 }, { "start": 34327.05, "end": 34328.69, "probability": 0.6023 }, { "start": 34329.87, "end": 34331.55, "probability": 0.7794 }, { "start": 34332.05, "end": 34333.69, "probability": 0.8777 }, { "start": 34333.87, "end": 34335.93, "probability": 0.8746 }, { "start": 34336.13, "end": 34338.97, "probability": 0.7848 }, { "start": 34339.95, "end": 34341.25, "probability": 0.5396 }, { "start": 34342.63, "end": 34346.03, "probability": 0.5808 }, { "start": 34346.15, "end": 34349.47, "probability": 0.9975 }, { "start": 34351.07, "end": 34351.99, "probability": 0.9192 }, { "start": 34352.49, "end": 34358.85, "probability": 0.8843 }, { "start": 34359.37, "end": 34360.59, "probability": 0.6496 }, { "start": 34361.33, "end": 34365.31, "probability": 0.7271 }, { "start": 34366.21, "end": 34369.57, "probability": 0.9704 }, { "start": 34369.63, "end": 34370.17, "probability": 0.8747 }, { "start": 34370.29, "end": 34371.93, "probability": 0.9053 }, { "start": 34373.05, "end": 34374.09, "probability": 0.8813 }, { "start": 34375.87, "end": 34377.63, "probability": 0.7258 }, { "start": 34377.75, "end": 34378.83, "probability": 0.6783 }, { "start": 34379.39, "end": 34380.67, "probability": 0.5076 }, { "start": 34381.83, "end": 34382.31, "probability": 0.1639 }, { "start": 34382.37, "end": 34384.05, "probability": 0.8496 }, { "start": 34384.19, "end": 34384.87, "probability": 0.8429 }, { "start": 34384.89, "end": 34385.15, "probability": 0.5941 }, { "start": 34385.47, "end": 34387.09, "probability": 0.5143 }, { "start": 34387.09, "end": 34388.67, "probability": 0.93 }, { "start": 34389.37, "end": 34390.85, "probability": 0.9827 }, { "start": 34391.59, "end": 34394.23, "probability": 0.9535 }, { "start": 34394.29, "end": 34395.19, "probability": 0.8729 }, { "start": 34395.49, "end": 34399.15, "probability": 0.9862 }, { "start": 34400.27, "end": 34401.83, "probability": 0.8283 }, { "start": 34401.91, "end": 34403.61, "probability": 0.9736 }, { "start": 34403.79, "end": 34406.01, "probability": 0.6749 }, { "start": 34406.91, "end": 34407.23, "probability": 0.4371 }, { "start": 34407.35, "end": 34408.23, "probability": 0.8209 }, { "start": 34408.31, "end": 34412.15, "probability": 0.8952 }, { "start": 34412.63, "end": 34413.29, "probability": 0.8687 }, { "start": 34413.69, "end": 34416.43, "probability": 0.7007 }, { "start": 34417.27, "end": 34419.29, "probability": 0.9929 }, { "start": 34420.79, "end": 34421.53, "probability": 0.8815 }, { "start": 34422.75, "end": 34425.33, "probability": 0.9448 }, { "start": 34425.37, "end": 34426.77, "probability": 0.687 }, { "start": 34427.89, "end": 34430.79, "probability": 0.9421 }, { "start": 34430.85, "end": 34431.83, "probability": 0.7152 }, { "start": 34431.91, "end": 34432.29, "probability": 0.9026 }, { "start": 34432.61, "end": 34436.63, "probability": 0.9872 }, { "start": 34436.73, "end": 34437.81, "probability": 0.5038 }, { "start": 34437.81, "end": 34438.71, "probability": 0.5152 }, { "start": 34439.73, "end": 34440.91, "probability": 0.9263 }, { "start": 34442.59, "end": 34444.05, "probability": 0.9411 }, { "start": 34444.21, "end": 34445.81, "probability": 0.939 }, { "start": 34446.07, "end": 34448.81, "probability": 0.9903 }, { "start": 34449.55, "end": 34453.47, "probability": 0.9941 }, { "start": 34453.85, "end": 34454.69, "probability": 0.7041 }, { "start": 34455.25, "end": 34456.11, "probability": 0.8623 }, { "start": 34456.23, "end": 34459.41, "probability": 0.791 }, { "start": 34459.53, "end": 34461.21, "probability": 0.887 }, { "start": 34462.11, "end": 34462.73, "probability": 0.6339 }, { "start": 34462.87, "end": 34463.51, "probability": 0.7208 }, { "start": 34463.59, "end": 34464.13, "probability": 0.7876 }, { "start": 34464.99, "end": 34466.81, "probability": 0.9951 }, { "start": 34468.41, "end": 34470.15, "probability": 0.8845 }, { "start": 34470.45, "end": 34470.81, "probability": 0.7251 }, { "start": 34470.91, "end": 34471.54, "probability": 0.9259 }, { "start": 34471.95, "end": 34472.58, "probability": 0.7989 }, { "start": 34473.21, "end": 34476.03, "probability": 0.8269 }, { "start": 34476.05, "end": 34479.53, "probability": 0.9355 }, { "start": 34480.41, "end": 34481.41, "probability": 0.8597 }, { "start": 34482.37, "end": 34484.21, "probability": 0.9942 }, { "start": 34484.95, "end": 34489.91, "probability": 0.9672 }, { "start": 34490.71, "end": 34491.11, "probability": 0.9077 }, { "start": 34491.69, "end": 34492.93, "probability": 0.5694 }, { "start": 34492.95, "end": 34496.63, "probability": 0.9499 }, { "start": 34497.69, "end": 34498.71, "probability": 0.7607 }, { "start": 34499.49, "end": 34499.93, "probability": 0.6934 }, { "start": 34500.59, "end": 34501.37, "probability": 0.4874 }, { "start": 34502.53, "end": 34505.37, "probability": 0.9396 }, { "start": 34506.13, "end": 34506.41, "probability": 0.0828 }, { "start": 34506.41, "end": 34506.97, "probability": 0.7438 }, { "start": 34507.13, "end": 34507.47, "probability": 0.8306 }, { "start": 34507.97, "end": 34509.53, "probability": 0.8619 }, { "start": 34509.77, "end": 34510.05, "probability": 0.7319 }, { "start": 34510.57, "end": 34512.21, "probability": 0.7007 }, { "start": 34512.77, "end": 34513.23, "probability": 0.5914 }, { "start": 34513.27, "end": 34514.02, "probability": 0.9949 }, { "start": 34514.71, "end": 34516.47, "probability": 0.8506 }, { "start": 34516.69, "end": 34518.75, "probability": 0.6866 }, { "start": 34519.31, "end": 34520.21, "probability": 0.8987 }, { "start": 34521.25, "end": 34523.57, "probability": 0.9963 }, { "start": 34524.19, "end": 34525.97, "probability": 0.9978 }, { "start": 34526.81, "end": 34529.51, "probability": 0.9188 }, { "start": 34529.61, "end": 34530.19, "probability": 0.6691 }, { "start": 34532.15, "end": 34536.37, "probability": 0.9062 }, { "start": 34536.49, "end": 34537.59, "probability": 0.8007 }, { "start": 34537.63, "end": 34538.65, "probability": 0.8254 }, { "start": 34539.57, "end": 34540.41, "probability": 0.8901 }, { "start": 34541.19, "end": 34542.69, "probability": 0.8097 }, { "start": 34543.11, "end": 34544.49, "probability": 0.8776 }, { "start": 34544.63, "end": 34545.55, "probability": 0.5772 }, { "start": 34545.93, "end": 34547.53, "probability": 0.926 }, { "start": 34547.59, "end": 34548.27, "probability": 0.905 }, { "start": 34550.51, "end": 34552.07, "probability": 0.9292 }, { "start": 34552.21, "end": 34553.31, "probability": 0.9609 }, { "start": 34557.61, "end": 34557.71, "probability": 0.2019 }, { "start": 34557.71, "end": 34557.71, "probability": 0.0755 }, { "start": 34557.71, "end": 34558.73, "probability": 0.9069 }, { "start": 34558.89, "end": 34560.27, "probability": 0.9216 }, { "start": 34560.27, "end": 34561.11, "probability": 0.8473 }, { "start": 34563.07, "end": 34563.73, "probability": 0.3532 }, { "start": 34596.11, "end": 34597.29, "probability": 0.7441 }, { "start": 34597.45, "end": 34601.99, "probability": 0.9172 }, { "start": 34602.53, "end": 34603.43, "probability": 0.7357 }, { "start": 34603.67, "end": 34605.75, "probability": 0.8111 }, { "start": 34607.11, "end": 34608.27, "probability": 0.9178 }, { "start": 34608.79, "end": 34611.09, "probability": 0.963 }, { "start": 34611.89, "end": 34612.59, "probability": 0.8945 }, { "start": 34612.79, "end": 34613.39, "probability": 0.9111 }, { "start": 34613.59, "end": 34613.85, "probability": 0.7251 }, { "start": 34614.11, "end": 34615.83, "probability": 0.5489 }, { "start": 34616.05, "end": 34618.29, "probability": 0.7186 }, { "start": 34618.29, "end": 34621.75, "probability": 0.9155 }, { "start": 34622.43, "end": 34623.03, "probability": 0.9614 }, { "start": 34623.89, "end": 34624.93, "probability": 0.5176 }, { "start": 34625.79, "end": 34626.67, "probability": 0.7314 }, { "start": 34627.57, "end": 34630.97, "probability": 0.9912 }, { "start": 34632.05, "end": 34633.93, "probability": 0.9276 }, { "start": 34634.59, "end": 34640.07, "probability": 0.9506 }, { "start": 34641.01, "end": 34644.33, "probability": 0.9424 }, { "start": 34644.45, "end": 34651.17, "probability": 0.9981 }, { "start": 34651.79, "end": 34656.79, "probability": 0.8889 }, { "start": 34657.13, "end": 34659.25, "probability": 0.6226 }, { "start": 34659.69, "end": 34663.65, "probability": 0.9785 }, { "start": 34663.81, "end": 34665.22, "probability": 0.9843 }, { "start": 34666.13, "end": 34667.19, "probability": 0.9727 }, { "start": 34668.03, "end": 34669.13, "probability": 0.9046 }, { "start": 34669.23, "end": 34669.51, "probability": 0.653 }, { "start": 34669.59, "end": 34671.77, "probability": 0.8277 }, { "start": 34671.83, "end": 34674.29, "probability": 0.9761 }, { "start": 34675.27, "end": 34676.17, "probability": 0.7899 }, { "start": 34676.73, "end": 34677.83, "probability": 0.8461 }, { "start": 34678.29, "end": 34679.55, "probability": 0.8154 }, { "start": 34680.15, "end": 34680.53, "probability": 0.772 }, { "start": 34680.55, "end": 34681.45, "probability": 0.9499 }, { "start": 34681.63, "end": 34683.21, "probability": 0.9861 }, { "start": 34683.95, "end": 34687.23, "probability": 0.989 }, { "start": 34688.23, "end": 34691.33, "probability": 0.9915 }, { "start": 34691.42, "end": 34693.84, "probability": 0.9994 }, { "start": 34695.07, "end": 34699.19, "probability": 0.8538 }, { "start": 34700.19, "end": 34702.59, "probability": 0.9747 }, { "start": 34704.17, "end": 34705.39, "probability": 0.6462 }, { "start": 34706.13, "end": 34709.17, "probability": 0.9958 }, { "start": 34709.67, "end": 34711.53, "probability": 0.874 }, { "start": 34712.17, "end": 34714.31, "probability": 0.7733 }, { "start": 34715.15, "end": 34717.09, "probability": 0.9709 }, { "start": 34717.69, "end": 34718.79, "probability": 0.6782 }, { "start": 34719.89, "end": 34722.29, "probability": 0.9829 }, { "start": 34722.81, "end": 34724.73, "probability": 0.9824 }, { "start": 34725.35, "end": 34727.49, "probability": 0.8735 }, { "start": 34727.63, "end": 34728.74, "probability": 0.919 }, { "start": 34730.19, "end": 34735.55, "probability": 0.9708 }, { "start": 34735.59, "end": 34740.17, "probability": 0.9929 }, { "start": 34740.35, "end": 34740.89, "probability": 0.7204 }, { "start": 34741.47, "end": 34742.25, "probability": 0.8175 }, { "start": 34742.55, "end": 34743.35, "probability": 0.957 }, { "start": 34743.63, "end": 34747.57, "probability": 0.9458 }, { "start": 34748.31, "end": 34752.77, "probability": 0.9888 }, { "start": 34753.21, "end": 34754.13, "probability": 0.9907 }, { "start": 34755.07, "end": 34757.21, "probability": 0.9824 }, { "start": 34757.77, "end": 34758.43, "probability": 0.7927 }, { "start": 34758.67, "end": 34759.37, "probability": 0.4731 }, { "start": 34759.53, "end": 34762.35, "probability": 0.9792 }, { "start": 34762.77, "end": 34764.33, "probability": 0.9883 }, { "start": 34764.83, "end": 34765.89, "probability": 0.5586 }, { "start": 34766.03, "end": 34766.51, "probability": 0.9277 }, { "start": 34767.33, "end": 34770.06, "probability": 0.9362 }, { "start": 34770.65, "end": 34773.21, "probability": 0.8198 }, { "start": 34773.37, "end": 34775.22, "probability": 0.9899 }, { "start": 34776.09, "end": 34778.21, "probability": 0.9732 }, { "start": 34778.32, "end": 34780.41, "probability": 0.5184 }, { "start": 34780.61, "end": 34782.31, "probability": 0.7993 }, { "start": 34782.87, "end": 34784.29, "probability": 0.9377 }, { "start": 34785.27, "end": 34785.99, "probability": 0.9198 }, { "start": 34786.13, "end": 34788.53, "probability": 0.9614 }, { "start": 34789.03, "end": 34791.31, "probability": 0.5139 }, { "start": 34791.31, "end": 34791.31, "probability": 0.0128 }, { "start": 34791.31, "end": 34792.16, "probability": 0.2401 }, { "start": 34793.15, "end": 34795.21, "probability": 0.9872 }, { "start": 34796.03, "end": 34796.62, "probability": 0.4919 }, { "start": 34797.45, "end": 34799.93, "probability": 0.9915 }, { "start": 34801.69, "end": 34802.97, "probability": 0.9502 }, { "start": 34803.05, "end": 34803.4, "probability": 0.9248 }, { "start": 34803.73, "end": 34804.83, "probability": 0.7605 }, { "start": 34805.55, "end": 34805.75, "probability": 0.5298 }, { "start": 34805.85, "end": 34809.61, "probability": 0.8152 }, { "start": 34809.75, "end": 34810.49, "probability": 0.6697 }, { "start": 34811.35, "end": 34814.17, "probability": 0.9739 }, { "start": 34814.17, "end": 34819.53, "probability": 0.8511 }, { "start": 34819.99, "end": 34821.51, "probability": 0.9873 }, { "start": 34822.19, "end": 34823.71, "probability": 0.9924 }, { "start": 34824.25, "end": 34829.81, "probability": 0.9783 }, { "start": 34829.85, "end": 34830.59, "probability": 0.7501 }, { "start": 34830.73, "end": 34831.23, "probability": 0.9682 }, { "start": 34832.39, "end": 34837.61, "probability": 0.735 }, { "start": 34837.71, "end": 34838.97, "probability": 0.8631 }, { "start": 34839.03, "end": 34839.67, "probability": 0.7606 }, { "start": 34840.33, "end": 34845.61, "probability": 0.996 }, { "start": 34846.93, "end": 34850.91, "probability": 0.9839 }, { "start": 34851.49, "end": 34852.15, "probability": 0.9299 }, { "start": 34852.29, "end": 34855.17, "probability": 0.5532 }, { "start": 34855.23, "end": 34856.03, "probability": 0.8444 }, { "start": 34856.79, "end": 34859.05, "probability": 0.9571 }, { "start": 34859.63, "end": 34861.59, "probability": 0.8632 }, { "start": 34862.11, "end": 34863.69, "probability": 0.952 }, { "start": 34864.05, "end": 34865.11, "probability": 0.7332 }, { "start": 34865.73, "end": 34872.15, "probability": 0.8972 }, { "start": 34872.25, "end": 34872.63, "probability": 0.4381 }, { "start": 34874.39, "end": 34874.39, "probability": 0.2431 }, { "start": 34874.39, "end": 34874.79, "probability": 0.3117 }, { "start": 34876.19, "end": 34877.57, "probability": 0.4916 }, { "start": 34877.81, "end": 34882.09, "probability": 0.437 }, { "start": 34882.15, "end": 34883.59, "probability": 0.5596 }, { "start": 34883.59, "end": 34885.82, "probability": 0.8691 }, { "start": 34885.97, "end": 34887.07, "probability": 0.5527 }, { "start": 34887.15, "end": 34888.59, "probability": 0.5142 }, { "start": 34889.45, "end": 34890.71, "probability": 0.1095 }, { "start": 34890.81, "end": 34892.67, "probability": 0.296 }, { "start": 34892.77, "end": 34893.83, "probability": 0.8243 }, { "start": 34893.95, "end": 34895.55, "probability": 0.8493 }, { "start": 34895.99, "end": 34899.53, "probability": 0.3213 }, { "start": 34899.77, "end": 34899.77, "probability": 0.0417 }, { "start": 34899.77, "end": 34899.77, "probability": 0.2044 }, { "start": 34899.77, "end": 34905.09, "probability": 0.6649 }, { "start": 34905.25, "end": 34907.6, "probability": 0.9844 }, { "start": 34908.23, "end": 34908.67, "probability": 0.6885 }, { "start": 34908.93, "end": 34910.03, "probability": 0.7506 }, { "start": 34910.21, "end": 34913.91, "probability": 0.6302 }, { "start": 34914.05, "end": 34915.33, "probability": 0.932 }, { "start": 34915.57, "end": 34920.03, "probability": 0.7974 }, { "start": 34920.03, "end": 34921.13, "probability": 0.8936 }, { "start": 34921.27, "end": 34921.57, "probability": 0.4388 }, { "start": 34921.59, "end": 34922.27, "probability": 0.4604 }, { "start": 34922.89, "end": 34924.85, "probability": 0.8932 }, { "start": 34925.37, "end": 34927.39, "probability": 0.5258 }, { "start": 34927.59, "end": 34927.69, "probability": 0.4717 }, { "start": 34927.69, "end": 34927.83, "probability": 0.1869 }, { "start": 34928.39, "end": 34933.09, "probability": 0.7977 }, { "start": 34933.09, "end": 34933.67, "probability": 0.7247 }, { "start": 34933.93, "end": 34935.33, "probability": 0.5238 }, { "start": 34935.37, "end": 34936.55, "probability": 0.6839 }, { "start": 34937.39, "end": 34937.71, "probability": 0.7656 }, { "start": 34939.55, "end": 34940.41, "probability": 0.0381 }, { "start": 34940.41, "end": 34940.47, "probability": 0.0399 }, { "start": 34940.87, "end": 34941.43, "probability": 0.4966 }, { "start": 34941.75, "end": 34942.17, "probability": 0.3398 }, { "start": 34942.35, "end": 34943.89, "probability": 0.9477 }, { "start": 34944.07, "end": 34944.75, "probability": 0.7521 }, { "start": 34944.77, "end": 34944.95, "probability": 0.5813 }, { "start": 34944.95, "end": 34945.11, "probability": 0.3493 }, { "start": 34945.11, "end": 34947.55, "probability": 0.7432 }, { "start": 34947.55, "end": 34948.51, "probability": 0.6592 }, { "start": 34948.71, "end": 34950.29, "probability": 0.647 }, { "start": 34950.37, "end": 34955.49, "probability": 0.7394 }, { "start": 34955.65, "end": 34955.69, "probability": 0.0696 }, { "start": 34955.69, "end": 34955.69, "probability": 0.2774 }, { "start": 34955.69, "end": 34956.13, "probability": 0.3753 }, { "start": 34956.19, "end": 34958.79, "probability": 0.9138 }, { "start": 34959.35, "end": 34962.53, "probability": 0.8622 }, { "start": 34962.95, "end": 34965.49, "probability": 0.8479 }, { "start": 34966.05, "end": 34966.05, "probability": 0.1451 }, { "start": 34966.05, "end": 34966.53, "probability": 0.669 }, { "start": 34966.75, "end": 34967.09, "probability": 0.0081 }, { "start": 34967.09, "end": 34967.89, "probability": 0.4225 }, { "start": 34967.93, "end": 34972.09, "probability": 0.3319 }, { "start": 34972.25, "end": 34973.27, "probability": 0.1475 }, { "start": 34973.71, "end": 34974.03, "probability": 0.2894 }, { "start": 34974.03, "end": 34975.01, "probability": 0.6042 }, { "start": 34975.25, "end": 34975.89, "probability": 0.798 }, { "start": 34975.97, "end": 34976.39, "probability": 0.7005 }, { "start": 34976.51, "end": 34977.53, "probability": 0.4691 }, { "start": 34977.73, "end": 34978.01, "probability": 0.3124 }, { "start": 34978.21, "end": 34979.23, "probability": 0.894 }, { "start": 34979.31, "end": 34980.33, "probability": 0.894 }, { "start": 34981.13, "end": 34981.13, "probability": 0.3552 }, { "start": 34981.15, "end": 34981.33, "probability": 0.4278 }, { "start": 34981.33, "end": 34981.47, "probability": 0.5719 }, { "start": 34981.55, "end": 34982.57, "probability": 0.382 }, { "start": 34983.01, "end": 34984.77, "probability": 0.6383 }, { "start": 34984.77, "end": 34986.07, "probability": 0.1898 }, { "start": 34986.07, "end": 34987.19, "probability": 0.885 }, { "start": 34987.35, "end": 34988.65, "probability": 0.9722 }, { "start": 34988.67, "end": 34989.27, "probability": 0.5775 }, { "start": 34989.39, "end": 34990.59, "probability": 0.918 }, { "start": 34990.79, "end": 34991.33, "probability": 0.7628 }, { "start": 34991.45, "end": 34993.17, "probability": 0.9009 }, { "start": 34993.41, "end": 34993.49, "probability": 0.1738 }, { "start": 34993.49, "end": 34993.91, "probability": 0.7036 }, { "start": 34994.47, "end": 34995.37, "probability": 0.4128 }, { "start": 34995.53, "end": 34996.47, "probability": 0.8679 }, { "start": 34996.69, "end": 34996.79, "probability": 0.3428 }, { "start": 34996.79, "end": 34997.35, "probability": 0.1081 }, { "start": 34997.77, "end": 34998.05, "probability": 0.6742 }, { "start": 34998.21, "end": 34998.72, "probability": 0.8756 }, { "start": 34999.27, "end": 34999.93, "probability": 0.5332 }, { "start": 35000.41, "end": 35000.89, "probability": 0.3069 }, { "start": 35000.97, "end": 35001.61, "probability": 0.6434 }, { "start": 35001.75, "end": 35002.43, "probability": 0.6643 }, { "start": 35002.61, "end": 35003.57, "probability": 0.7012 }, { "start": 35004.19, "end": 35004.93, "probability": 0.3279 }, { "start": 35007.21, "end": 35008.43, "probability": 0.3996 }, { "start": 35008.43, "end": 35008.43, "probability": 0.5971 }, { "start": 35008.47, "end": 35008.82, "probability": 0.8167 }, { "start": 35009.87, "end": 35010.89, "probability": 0.82 }, { "start": 35011.11, "end": 35012.61, "probability": 0.7755 }, { "start": 35012.67, "end": 35014.97, "probability": 0.8715 }, { "start": 35014.99, "end": 35015.29, "probability": 0.7402 }, { "start": 35015.29, "end": 35017.03, "probability": 0.4934 }, { "start": 35017.13, "end": 35018.07, "probability": 0.2813 }, { "start": 35018.13, "end": 35018.87, "probability": 0.4434 }, { "start": 35018.97, "end": 35020.55, "probability": 0.611 }, { "start": 35020.73, "end": 35021.27, "probability": 0.3388 }, { "start": 35021.29, "end": 35021.85, "probability": 0.822 }, { "start": 35021.87, "end": 35022.51, "probability": 0.7354 }, { "start": 35022.71, "end": 35027.07, "probability": 0.7005 }, { "start": 35027.19, "end": 35028.25, "probability": 0.465 }, { "start": 35028.37, "end": 35029.57, "probability": 0.4137 }, { "start": 35029.95, "end": 35033.87, "probability": 0.9956 }, { "start": 35033.95, "end": 35036.17, "probability": 0.8471 }, { "start": 35036.25, "end": 35037.79, "probability": 0.7772 }, { "start": 35038.19, "end": 35038.61, "probability": 0.6558 }, { "start": 35039.67, "end": 35041.43, "probability": 0.6512 }, { "start": 35042.39, "end": 35044.47, "probability": 0.5588 }, { "start": 35045.31, "end": 35045.99, "probability": 0.9678 }, { "start": 35047.35, "end": 35048.69, "probability": 0.9846 }, { "start": 35048.79, "end": 35050.71, "probability": 0.9853 }, { "start": 35052.51, "end": 35053.53, "probability": 0.7829 }, { "start": 35054.55, "end": 35056.88, "probability": 0.7704 }, { "start": 35058.05, "end": 35060.87, "probability": 0.9846 }, { "start": 35062.13, "end": 35064.61, "probability": 0.774 }, { "start": 35065.51, "end": 35066.51, "probability": 0.7019 }, { "start": 35066.57, "end": 35067.41, "probability": 0.6808 }, { "start": 35067.41, "end": 35071.47, "probability": 0.9684 }, { "start": 35072.09, "end": 35073.85, "probability": 0.6351 }, { "start": 35074.95, "end": 35076.59, "probability": 0.9486 }, { "start": 35076.77, "end": 35079.53, "probability": 0.8963 }, { "start": 35079.95, "end": 35081.81, "probability": 0.8504 }, { "start": 35081.89, "end": 35083.07, "probability": 0.6572 }, { "start": 35083.09, "end": 35083.65, "probability": 0.8428 }, { "start": 35083.93, "end": 35084.47, "probability": 0.9551 }, { "start": 35085.33, "end": 35086.95, "probability": 0.9805 }, { "start": 35087.47, "end": 35088.17, "probability": 0.8933 }, { "start": 35089.71, "end": 35091.15, "probability": 0.4383 }, { "start": 35091.67, "end": 35097.23, "probability": 0.9966 }, { "start": 35098.23, "end": 35100.43, "probability": 0.8933 }, { "start": 35100.51, "end": 35102.51, "probability": 0.6818 }, { "start": 35103.37, "end": 35104.53, "probability": 0.2009 }, { "start": 35106.15, "end": 35106.65, "probability": 0.5952 }, { "start": 35106.65, "end": 35106.75, "probability": 0.5122 }, { "start": 35106.87, "end": 35107.33, "probability": 0.3917 }, { "start": 35107.33, "end": 35107.81, "probability": 0.9582 }, { "start": 35107.97, "end": 35110.29, "probability": 0.5431 }, { "start": 35110.43, "end": 35110.95, "probability": 0.8091 }, { "start": 35111.03, "end": 35113.29, "probability": 0.9409 }, { "start": 35113.95, "end": 35114.57, "probability": 0.7291 }, { "start": 35115.57, "end": 35117.15, "probability": 0.8458 }, { "start": 35118.35, "end": 35123.07, "probability": 0.9436 }, { "start": 35123.87, "end": 35125.89, "probability": 0.9813 }, { "start": 35126.81, "end": 35128.07, "probability": 0.7334 }, { "start": 35128.67, "end": 35131.13, "probability": 0.791 }, { "start": 35133.25, "end": 35135.63, "probability": 0.8879 }, { "start": 35136.79, "end": 35137.51, "probability": 0.2718 }, { "start": 35139.05, "end": 35142.17, "probability": 0.7874 }, { "start": 35143.55, "end": 35145.27, "probability": 0.9422 }, { "start": 35145.29, "end": 35148.24, "probability": 0.9475 }, { "start": 35149.71, "end": 35150.53, "probability": 0.7006 }, { "start": 35151.33, "end": 35153.69, "probability": 0.8613 }, { "start": 35154.31, "end": 35156.39, "probability": 0.9686 }, { "start": 35157.21, "end": 35158.03, "probability": 0.921 }, { "start": 35159.61, "end": 35161.95, "probability": 0.9753 }, { "start": 35162.27, "end": 35164.03, "probability": 0.9678 }, { "start": 35164.13, "end": 35165.37, "probability": 0.4693 }, { "start": 35166.01, "end": 35169.51, "probability": 0.9308 }, { "start": 35170.67, "end": 35170.89, "probability": 0.661 }, { "start": 35171.97, "end": 35172.45, "probability": 0.7616 }, { "start": 35173.41, "end": 35175.55, "probability": 0.8398 }, { "start": 35176.8, "end": 35179.61, "probability": 0.9321 }, { "start": 35180.29, "end": 35184.13, "probability": 0.9908 }, { "start": 35184.13, "end": 35189.49, "probability": 0.9869 }, { "start": 35190.35, "end": 35192.53, "probability": 0.8395 }, { "start": 35192.71, "end": 35194.73, "probability": 0.3107 }, { "start": 35195.45, "end": 35197.01, "probability": 0.8614 }, { "start": 35197.09, "end": 35197.83, "probability": 0.8508 }, { "start": 35197.93, "end": 35201.21, "probability": 0.8806 }, { "start": 35202.11, "end": 35205.09, "probability": 0.9081 }, { "start": 35205.85, "end": 35206.51, "probability": 0.9151 }, { "start": 35207.05, "end": 35207.95, "probability": 0.8531 }, { "start": 35208.97, "end": 35211.39, "probability": 0.9827 }, { "start": 35212.07, "end": 35213.51, "probability": 0.8267 }, { "start": 35215.43, "end": 35218.05, "probability": 0.7489 }, { "start": 35218.05, "end": 35223.37, "probability": 0.8249 }, { "start": 35224.41, "end": 35227.95, "probability": 0.9624 }, { "start": 35229.29, "end": 35233.25, "probability": 0.9786 }, { "start": 35234.13, "end": 35235.35, "probability": 0.9308 }, { "start": 35235.87, "end": 35237.51, "probability": 0.9923 }, { "start": 35237.75, "end": 35239.07, "probability": 0.8482 }, { "start": 35240.01, "end": 35241.65, "probability": 0.8461 }, { "start": 35241.87, "end": 35243.39, "probability": 0.7972 }, { "start": 35243.47, "end": 35244.37, "probability": 0.8313 }, { "start": 35244.49, "end": 35245.39, "probability": 0.9644 }, { "start": 35246.43, "end": 35247.21, "probability": 0.9399 }, { "start": 35247.31, "end": 35248.05, "probability": 0.8668 }, { "start": 35248.05, "end": 35248.25, "probability": 0.1679 }, { "start": 35248.43, "end": 35249.65, "probability": 0.5209 }, { "start": 35250.05, "end": 35251.25, "probability": 0.4984 }, { "start": 35251.29, "end": 35254.61, "probability": 0.9227 }, { "start": 35254.71, "end": 35255.03, "probability": 0.9824 }, { "start": 35255.81, "end": 35257.11, "probability": 0.9803 }, { "start": 35259.08, "end": 35260.91, "probability": 0.8979 }, { "start": 35264.45, "end": 35264.97, "probability": 0.6866 }, { "start": 35265.05, "end": 35268.06, "probability": 0.9355 }, { "start": 35269.63, "end": 35270.01, "probability": 0.8123 }, { "start": 35271.23, "end": 35272.43, "probability": 0.9377 }, { "start": 35272.55, "end": 35274.59, "probability": 0.9878 }, { "start": 35275.35, "end": 35276.89, "probability": 0.9965 }, { "start": 35277.45, "end": 35279.07, "probability": 0.9606 }, { "start": 35281.59, "end": 35282.83, "probability": 0.6515 }, { "start": 35284.13, "end": 35286.37, "probability": 0.9443 }, { "start": 35287.37, "end": 35289.39, "probability": 0.9346 }, { "start": 35290.05, "end": 35292.91, "probability": 0.9547 }, { "start": 35294.03, "end": 35294.73, "probability": 0.9352 }, { "start": 35295.55, "end": 35296.91, "probability": 0.934 }, { "start": 35297.59, "end": 35300.69, "probability": 0.9504 }, { "start": 35300.77, "end": 35301.61, "probability": 0.8442 }, { "start": 35302.11, "end": 35302.91, "probability": 0.9009 }, { "start": 35302.95, "end": 35303.19, "probability": 0.633 }, { "start": 35304.03, "end": 35305.35, "probability": 0.9429 }, { "start": 35307.87, "end": 35309.09, "probability": 0.7844 }, { "start": 35309.75, "end": 35311.65, "probability": 0.6913 }, { "start": 35311.93, "end": 35312.86, "probability": 0.9974 }, { "start": 35313.61, "end": 35318.53, "probability": 0.8102 }, { "start": 35319.03, "end": 35323.13, "probability": 0.9828 }, { "start": 35323.77, "end": 35326.77, "probability": 0.9611 }, { "start": 35326.87, "end": 35327.27, "probability": 0.7938 }, { "start": 35327.47, "end": 35328.93, "probability": 0.6505 }, { "start": 35329.23, "end": 35330.53, "probability": 0.4761 }, { "start": 35330.73, "end": 35331.87, "probability": 0.9176 }, { "start": 35337.87, "end": 35339.39, "probability": 0.8737 }, { "start": 35339.71, "end": 35340.25, "probability": 0.5594 }, { "start": 35340.65, "end": 35347.37, "probability": 0.8847 }, { "start": 35347.37, "end": 35350.89, "probability": 0.9091 }, { "start": 35351.11, "end": 35353.91, "probability": 0.9778 }, { "start": 35354.49, "end": 35358.31, "probability": 0.762 }, { "start": 35359.11, "end": 35361.31, "probability": 0.8608 }, { "start": 35361.47, "end": 35362.09, "probability": 0.8308 }, { "start": 35362.21, "end": 35363.85, "probability": 0.874 }, { "start": 35364.03, "end": 35368.89, "probability": 0.9701 }, { "start": 35369.01, "end": 35370.17, "probability": 0.6092 }, { "start": 35370.55, "end": 35371.85, "probability": 0.7005 }, { "start": 35371.91, "end": 35376.71, "probability": 0.7527 }, { "start": 35378.51, "end": 35380.01, "probability": 0.5688 }, { "start": 35381.93, "end": 35384.43, "probability": 0.9893 }, { "start": 35385.47, "end": 35387.05, "probability": 0.803 }, { "start": 35388.13, "end": 35389.71, "probability": 0.6447 }, { "start": 35391.99, "end": 35398.71, "probability": 0.7868 }, { "start": 35400.55, "end": 35403.23, "probability": 0.6613 }, { "start": 35405.29, "end": 35407.45, "probability": 0.0061 }, { "start": 35408.43, "end": 35410.37, "probability": 0.5108 }, { "start": 35411.29, "end": 35415.15, "probability": 0.4764 }, { "start": 35415.95, "end": 35416.21, "probability": 0.6198 }, { "start": 35418.59, "end": 35420.01, "probability": 0.4042 }, { "start": 35422.47, "end": 35425.11, "probability": 0.9293 }, { "start": 35427.37, "end": 35431.39, "probability": 0.9907 }, { "start": 35432.45, "end": 35433.61, "probability": 0.9927 }, { "start": 35435.03, "end": 35436.99, "probability": 0.8069 }, { "start": 35437.29, "end": 35443.65, "probability": 0.8687 }, { "start": 35443.67, "end": 35445.84, "probability": 0.8091 }, { "start": 35447.81, "end": 35449.69, "probability": 0.5236 }, { "start": 35451.1, "end": 35456.13, "probability": 0.7823 }, { "start": 35457.79, "end": 35459.65, "probability": 0.8617 }, { "start": 35460.81, "end": 35465.29, "probability": 0.8189 }, { "start": 35466.83, "end": 35467.53, "probability": 0.8683 }, { "start": 35468.13, "end": 35470.87, "probability": 0.763 }, { "start": 35471.49, "end": 35476.63, "probability": 0.7572 }, { "start": 35478.86, "end": 35482.81, "probability": 0.4638 }, { "start": 35483.49, "end": 35486.86, "probability": 0.9518 }, { "start": 35488.81, "end": 35492.27, "probability": 0.8687 }, { "start": 35492.81, "end": 35493.31, "probability": 0.7875 }, { "start": 35494.55, "end": 35496.36, "probability": 0.6809 }, { "start": 35497.29, "end": 35499.95, "probability": 0.8518 }, { "start": 35500.63, "end": 35502.07, "probability": 0.874 }, { "start": 35503.99, "end": 35504.19, "probability": 0.0647 }, { "start": 35504.81, "end": 35509.25, "probability": 0.9163 }, { "start": 35509.35, "end": 35510.29, "probability": 0.9905 }, { "start": 35511.35, "end": 35513.61, "probability": 0.9201 }, { "start": 35515.65, "end": 35517.13, "probability": 0.9291 }, { "start": 35518.45, "end": 35522.53, "probability": 0.7906 }, { "start": 35523.47, "end": 35525.45, "probability": 0.8413 }, { "start": 35525.55, "end": 35526.57, "probability": 0.7914 }, { "start": 35528.39, "end": 35529.45, "probability": 0.545 }, { "start": 35529.65, "end": 35531.09, "probability": 0.9424 }, { "start": 35531.23, "end": 35533.61, "probability": 0.9467 }, { "start": 35533.71, "end": 35534.7, "probability": 0.5789 }, { "start": 35535.97, "end": 35538.33, "probability": 0.884 }, { "start": 35539.79, "end": 35542.25, "probability": 0.7362 }, { "start": 35542.99, "end": 35543.59, "probability": 0.9543 }, { "start": 35544.57, "end": 35550.21, "probability": 0.6394 }, { "start": 35550.31, "end": 35552.67, "probability": 0.6692 }, { "start": 35554.29, "end": 35558.23, "probability": 0.663 }, { "start": 35558.51, "end": 35560.11, "probability": 0.9504 }, { "start": 35560.43, "end": 35561.97, "probability": 0.9767 }, { "start": 35562.61, "end": 35564.21, "probability": 0.9778 }, { "start": 35564.47, "end": 35566.01, "probability": 0.8413 }, { "start": 35566.17, "end": 35567.97, "probability": 0.5522 }, { "start": 35568.01, "end": 35569.21, "probability": 0.4519 }, { "start": 35569.51, "end": 35570.03, "probability": 0.2424 }, { "start": 35570.63, "end": 35574.97, "probability": 0.7631 }, { "start": 35576.33, "end": 35577.79, "probability": 0.9082 }, { "start": 35578.85, "end": 35579.87, "probability": 0.631 }, { "start": 35581.73, "end": 35585.69, "probability": 0.5798 }, { "start": 35586.49, "end": 35586.93, "probability": 0.7542 }, { "start": 35586.93, "end": 35587.37, "probability": 0.7866 }, { "start": 35587.43, "end": 35589.29, "probability": 0.8365 }, { "start": 35589.67, "end": 35590.31, "probability": 0.9824 }, { "start": 35592.47, "end": 35594.45, "probability": 0.911 }, { "start": 35595.17, "end": 35596.63, "probability": 0.8385 }, { "start": 35597.09, "end": 35597.88, "probability": 0.7031 }, { "start": 35598.09, "end": 35598.51, "probability": 0.5203 }, { "start": 35599.15, "end": 35600.56, "probability": 0.6981 }, { "start": 35602.01, "end": 35605.11, "probability": 0.9078 }, { "start": 35605.55, "end": 35610.71, "probability": 0.9516 }, { "start": 35610.87, "end": 35611.95, "probability": 0.9658 }, { "start": 35612.95, "end": 35613.65, "probability": 0.0088 }, { "start": 35613.91, "end": 35614.19, "probability": 0.2216 }, { "start": 35614.75, "end": 35615.99, "probability": 0.6467 }, { "start": 35617.15, "end": 35623.29, "probability": 0.975 }, { "start": 35624.23, "end": 35624.44, "probability": 0.7695 }, { "start": 35624.67, "end": 35625.03, "probability": 0.301 }, { "start": 35625.35, "end": 35626.03, "probability": 0.8407 }, { "start": 35626.13, "end": 35626.69, "probability": 0.1116 }, { "start": 35626.71, "end": 35626.83, "probability": 0.4379 }, { "start": 35627.33, "end": 35627.51, "probability": 0.678 }, { "start": 35628.31, "end": 35631.23, "probability": 0.7736 }, { "start": 35632.75, "end": 35633.99, "probability": 0.7357 }, { "start": 35634.41, "end": 35636.37, "probability": 0.6805 }, { "start": 35637.17, "end": 35640.59, "probability": 0.749 }, { "start": 35641.89, "end": 35650.69, "probability": 0.7949 }, { "start": 35653.11, "end": 35658.87, "probability": 0.8838 }, { "start": 35659.01, "end": 35659.35, "probability": 0.2687 }, { "start": 35659.97, "end": 35664.57, "probability": 0.9883 }, { "start": 35664.81, "end": 35666.27, "probability": 0.9948 }, { "start": 35667.55, "end": 35671.63, "probability": 0.6887 }, { "start": 35672.25, "end": 35673.23, "probability": 0.8984 }, { "start": 35673.89, "end": 35674.73, "probability": 0.8773 }, { "start": 35676.57, "end": 35679.53, "probability": 0.6104 }, { "start": 35679.53, "end": 35680.21, "probability": 0.4449 }, { "start": 35680.61, "end": 35682.0, "probability": 0.7563 }, { "start": 35683.49, "end": 35683.75, "probability": 0.3739 }, { "start": 35683.75, "end": 35686.13, "probability": 0.5842 }, { "start": 35686.67, "end": 35690.23, "probability": 0.9217 }, { "start": 35691.65, "end": 35692.03, "probability": 0.8026 }, { "start": 35692.03, "end": 35695.03, "probability": 0.7122 }, { "start": 35695.99, "end": 35698.09, "probability": 0.7587 }, { "start": 35698.63, "end": 35700.51, "probability": 0.8599 }, { "start": 35700.59, "end": 35701.05, "probability": 0.7418 }, { "start": 35701.65, "end": 35702.97, "probability": 0.6377 }, { "start": 35703.07, "end": 35704.15, "probability": 0.7211 }, { "start": 35705.29, "end": 35706.99, "probability": 0.8042 }, { "start": 35709.4, "end": 35709.81, "probability": 0.1331 }, { "start": 35709.81, "end": 35711.29, "probability": 0.2769 }, { "start": 35712.67, "end": 35714.3, "probability": 0.7342 }, { "start": 35716.03, "end": 35718.57, "probability": 0.8672 }, { "start": 35725.59, "end": 35727.23, "probability": 0.7131 }, { "start": 35730.61, "end": 35732.13, "probability": 0.679 }, { "start": 35733.91, "end": 35735.25, "probability": 0.8685 }, { "start": 35735.81, "end": 35737.55, "probability": 0.2807 }, { "start": 35737.55, "end": 35737.71, "probability": 0.4003 }, { "start": 35737.91, "end": 35737.99, "probability": 0.188 }, { "start": 35738.15, "end": 35738.71, "probability": 0.924 }, { "start": 35739.23, "end": 35740.65, "probability": 0.6311 }, { "start": 35741.71, "end": 35746.96, "probability": 0.9478 }, { "start": 35747.95, "end": 35755.77, "probability": 0.8667 }, { "start": 35755.83, "end": 35757.71, "probability": 0.9332 }, { "start": 35757.81, "end": 35758.97, "probability": 0.9767 }, { "start": 35759.15, "end": 35759.85, "probability": 0.7593 }, { "start": 35760.71, "end": 35763.45, "probability": 0.9985 }, { "start": 35764.15, "end": 35766.63, "probability": 0.9793 }, { "start": 35766.69, "end": 35766.99, "probability": 0.5233 }, { "start": 35767.23, "end": 35768.13, "probability": 0.7909 }, { "start": 35768.23, "end": 35772.03, "probability": 0.8794 }, { "start": 35772.17, "end": 35774.07, "probability": 0.9031 }, { "start": 35774.23, "end": 35775.59, "probability": 0.807 }, { "start": 35776.37, "end": 35780.33, "probability": 0.9661 }, { "start": 35780.49, "end": 35781.83, "probability": 0.7165 }, { "start": 35781.91, "end": 35784.27, "probability": 0.8354 }, { "start": 35784.33, "end": 35785.87, "probability": 0.978 }, { "start": 35785.95, "end": 35788.07, "probability": 0.834 }, { "start": 35788.29, "end": 35789.43, "probability": 0.7578 }, { "start": 35789.49, "end": 35793.07, "probability": 0.9921 }, { "start": 35793.25, "end": 35800.25, "probability": 0.6401 }, { "start": 35800.47, "end": 35800.79, "probability": 0.4101 }, { "start": 35801.13, "end": 35801.83, "probability": 0.5803 }, { "start": 35801.89, "end": 35805.25, "probability": 0.7056 }, { "start": 35805.39, "end": 35808.65, "probability": 0.7897 }, { "start": 35809.07, "end": 35812.69, "probability": 0.8313 }, { "start": 35812.83, "end": 35813.23, "probability": 0.9417 }, { "start": 35814.19, "end": 35815.61, "probability": 0.5721 }, { "start": 35815.85, "end": 35818.95, "probability": 0.6555 }, { "start": 35819.31, "end": 35820.27, "probability": 0.6772 }, { "start": 35820.81, "end": 35822.91, "probability": 0.7952 }, { "start": 35823.73, "end": 35826.05, "probability": 0.9863 }, { "start": 35826.17, "end": 35827.69, "probability": 0.9436 }, { "start": 35827.83, "end": 35828.95, "probability": 0.984 }, { "start": 35829.11, "end": 35830.49, "probability": 0.8997 }, { "start": 35830.53, "end": 35831.23, "probability": 0.7677 }, { "start": 35831.89, "end": 35836.59, "probability": 0.9056 }, { "start": 35836.75, "end": 35838.05, "probability": 0.9946 }, { "start": 35838.13, "end": 35842.05, "probability": 0.9036 }, { "start": 35842.17, "end": 35842.85, "probability": 0.4416 }, { "start": 35842.87, "end": 35848.45, "probability": 0.7456 }, { "start": 35848.61, "end": 35850.47, "probability": 0.9586 }, { "start": 35850.65, "end": 35855.01, "probability": 0.6357 }, { "start": 35855.37, "end": 35856.64, "probability": 0.3607 }, { "start": 35856.81, "end": 35858.55, "probability": 0.3023 }, { "start": 35859.03, "end": 35860.37, "probability": 0.7468 }, { "start": 35860.79, "end": 35861.97, "probability": 0.7817 }, { "start": 35862.41, "end": 35863.59, "probability": 0.8331 }, { "start": 35863.65, "end": 35864.27, "probability": 0.8957 }, { "start": 35864.39, "end": 35865.63, "probability": 0.8232 }, { "start": 35865.71, "end": 35866.25, "probability": 0.8649 }, { "start": 35866.75, "end": 35867.53, "probability": 0.6997 }, { "start": 35867.63, "end": 35869.85, "probability": 0.87 }, { "start": 35869.91, "end": 35869.91, "probability": 0.3186 }, { "start": 35869.91, "end": 35871.73, "probability": 0.9739 }, { "start": 35871.79, "end": 35872.69, "probability": 0.8275 }, { "start": 35872.75, "end": 35873.33, "probability": 0.4993 }, { "start": 35873.67, "end": 35875.53, "probability": 0.7093 }, { "start": 35875.59, "end": 35876.15, "probability": 0.4109 }, { "start": 35876.73, "end": 35879.63, "probability": 0.7608 }, { "start": 35879.69, "end": 35880.41, "probability": 0.6398 }, { "start": 35880.97, "end": 35883.43, "probability": 0.623 }, { "start": 35883.65, "end": 35885.48, "probability": 0.6901 }, { "start": 35885.83, "end": 35889.53, "probability": 0.9824 }, { "start": 35889.63, "end": 35890.51, "probability": 0.6826 }, { "start": 35890.77, "end": 35892.49, "probability": 0.4762 }, { "start": 35893.21, "end": 35893.45, "probability": 0.3772 }, { "start": 35893.45, "end": 35898.49, "probability": 0.8101 }, { "start": 35898.67, "end": 35900.69, "probability": 0.2004 }, { "start": 35900.69, "end": 35901.21, "probability": 0.4125 }, { "start": 35902.21, "end": 35903.45, "probability": 0.7323 }, { "start": 35903.69, "end": 35905.75, "probability": 0.8975 }, { "start": 35906.21, "end": 35909.59, "probability": 0.8405 }, { "start": 35909.59, "end": 35912.61, "probability": 0.6755 }, { "start": 35913.87, "end": 35915.35, "probability": 0.7349 }, { "start": 35915.53, "end": 35915.93, "probability": 0.7607 }, { "start": 35916.05, "end": 35916.83, "probability": 0.2469 }, { "start": 35918.15, "end": 35919.21, "probability": 0.9331 }, { "start": 35919.53, "end": 35919.95, "probability": 0.9465 }, { "start": 35920.11, "end": 35921.55, "probability": 0.8925 }, { "start": 35921.59, "end": 35922.73, "probability": 0.8263 }, { "start": 35923.07, "end": 35927.01, "probability": 0.8657 }, { "start": 35927.37, "end": 35928.61, "probability": 0.9741 }, { "start": 35929.05, "end": 35929.77, "probability": 0.8079 }, { "start": 35929.83, "end": 35931.93, "probability": 0.9683 }, { "start": 35932.37, "end": 35933.01, "probability": 0.6357 }, { "start": 35933.01, "end": 35934.61, "probability": 0.8521 }, { "start": 35935.05, "end": 35935.65, "probability": 0.961 }, { "start": 35935.81, "end": 35936.89, "probability": 0.536 }, { "start": 35936.97, "end": 35936.97, "probability": 0.4945 }, { "start": 35937.15, "end": 35938.39, "probability": 0.8458 }, { "start": 35938.59, "end": 35939.19, "probability": 0.8123 }, { "start": 35939.47, "end": 35939.73, "probability": 0.016 }, { "start": 35939.95, "end": 35941.29, "probability": 0.8389 }, { "start": 35941.43, "end": 35943.21, "probability": 0.8762 }, { "start": 35943.65, "end": 35944.26, "probability": 0.8237 }, { "start": 35944.35, "end": 35945.0, "probability": 0.5984 }, { "start": 35945.71, "end": 35949.65, "probability": 0.5856 }, { "start": 35950.27, "end": 35954.39, "probability": 0.9881 }, { "start": 35954.45, "end": 35957.17, "probability": 0.841 }, { "start": 35958.21, "end": 35961.03, "probability": 0.8925 }, { "start": 35962.71, "end": 35963.87, "probability": 0.8364 }, { "start": 35963.97, "end": 35965.49, "probability": 0.6354 }, { "start": 35965.79, "end": 35966.81, "probability": 0.9495 }, { "start": 35967.07, "end": 35967.97, "probability": 0.373 }, { "start": 35968.03, "end": 35969.49, "probability": 0.9897 }, { "start": 35970.47, "end": 35971.61, "probability": 0.795 }, { "start": 35971.65, "end": 35973.45, "probability": 0.873 }, { "start": 35974.41, "end": 35975.09, "probability": 0.7386 }, { "start": 35975.21, "end": 35983.61, "probability": 0.7893 }, { "start": 35983.67, "end": 35984.85, "probability": 0.9624 }, { "start": 35984.97, "end": 35985.69, "probability": 0.7068 }, { "start": 35986.09, "end": 35989.27, "probability": 0.554 }, { "start": 35989.35, "end": 35989.35, "probability": 0.2724 }, { "start": 35989.35, "end": 35989.83, "probability": 0.5081 }, { "start": 35990.85, "end": 35991.09, "probability": 0.8515 }, { "start": 35991.23, "end": 35991.91, "probability": 0.5426 }, { "start": 35992.75, "end": 35996.49, "probability": 0.8771 }, { "start": 35996.81, "end": 35998.77, "probability": 0.4678 }, { "start": 35999.21, "end": 36000.59, "probability": 0.5872 }, { "start": 36001.35, "end": 36002.47, "probability": 0.9528 }, { "start": 36002.77, "end": 36003.69, "probability": 0.9115 }, { "start": 36003.79, "end": 36004.74, "probability": 0.4909 }, { "start": 36007.67, "end": 36008.29, "probability": 0.0249 }, { "start": 36008.29, "end": 36008.29, "probability": 0.0418 }, { "start": 36008.29, "end": 36009.31, "probability": 0.4879 }, { "start": 36009.55, "end": 36011.65, "probability": 0.3845 }, { "start": 36012.03, "end": 36015.97, "probability": 0.8063 }, { "start": 36016.01, "end": 36017.75, "probability": 0.6382 }, { "start": 36017.91, "end": 36018.13, "probability": 0.506 }, { "start": 36019.15, "end": 36021.95, "probability": 0.9937 }, { "start": 36022.11, "end": 36024.27, "probability": 0.9941 }, { "start": 36024.35, "end": 36024.97, "probability": 0.4346 }, { "start": 36025.59, "end": 36026.83, "probability": 0.5421 }, { "start": 36026.95, "end": 36028.21, "probability": 0.8774 }, { "start": 36028.37, "end": 36029.06, "probability": 0.3199 }, { "start": 36030.03, "end": 36032.21, "probability": 0.9121 }, { "start": 36032.31, "end": 36033.01, "probability": 0.7559 }, { "start": 36033.11, "end": 36033.19, "probability": 0.6744 }, { "start": 36033.51, "end": 36036.33, "probability": 0.9801 }, { "start": 36037.07, "end": 36039.15, "probability": 0.9086 }, { "start": 36039.31, "end": 36042.07, "probability": 0.6755 }, { "start": 36042.35, "end": 36044.25, "probability": 0.8868 }, { "start": 36044.35, "end": 36045.98, "probability": 0.729 }, { "start": 36046.25, "end": 36047.71, "probability": 0.5937 }, { "start": 36047.77, "end": 36051.54, "probability": 0.9874 }, { "start": 36052.05, "end": 36053.15, "probability": 0.8839 }, { "start": 36053.15, "end": 36054.51, "probability": 0.9148 }, { "start": 36054.69, "end": 36056.03, "probability": 0.9866 }, { "start": 36057.81, "end": 36058.31, "probability": 0.1487 }, { "start": 36058.31, "end": 36058.83, "probability": 0.4543 }, { "start": 36058.83, "end": 36060.85, "probability": 0.9845 }, { "start": 36061.63, "end": 36062.35, "probability": 0.3382 }, { "start": 36062.47, "end": 36063.98, "probability": 0.9696 }, { "start": 36064.59, "end": 36066.71, "probability": 0.2014 }, { "start": 36066.83, "end": 36067.61, "probability": 0.6095 }, { "start": 36067.67, "end": 36068.37, "probability": 0.6792 }, { "start": 36068.43, "end": 36069.65, "probability": 0.9154 }, { "start": 36070.33, "end": 36071.29, "probability": 0.877 }, { "start": 36071.85, "end": 36073.47, "probability": 0.5852 }, { "start": 36073.59, "end": 36074.43, "probability": 0.511 }, { "start": 36074.43, "end": 36077.29, "probability": 0.7915 }, { "start": 36077.29, "end": 36077.77, "probability": 0.3744 }, { "start": 36077.87, "end": 36078.36, "probability": 0.7957 }, { "start": 36078.64, "end": 36081.37, "probability": 0.9413 }, { "start": 36081.47, "end": 36082.67, "probability": 0.7522 }, { "start": 36083.13, "end": 36083.13, "probability": 0.185 }, { "start": 36083.13, "end": 36085.81, "probability": 0.5439 }, { "start": 36086.57, "end": 36089.09, "probability": 0.8037 }, { "start": 36089.43, "end": 36089.75, "probability": 0.567 }, { "start": 36089.87, "end": 36090.62, "probability": 0.8467 }, { "start": 36090.95, "end": 36094.29, "probability": 0.8778 }, { "start": 36094.63, "end": 36095.59, "probability": 0.8882 }, { "start": 36095.59, "end": 36096.82, "probability": 0.5325 }, { "start": 36097.47, "end": 36099.33, "probability": 0.3408 }, { "start": 36099.39, "end": 36101.27, "probability": 0.9842 }, { "start": 36101.63, "end": 36102.61, "probability": 0.7128 }, { "start": 36102.61, "end": 36103.05, "probability": 0.3235 }, { "start": 36103.27, "end": 36104.31, "probability": 0.71 }, { "start": 36104.81, "end": 36107.11, "probability": 0.9037 }, { "start": 36119.63, "end": 36121.21, "probability": 0.1864 }, { "start": 36121.41, "end": 36122.51, "probability": 0.1543 }, { "start": 36122.51, "end": 36123.75, "probability": 0.1189 }, { "start": 36123.75, "end": 36123.81, "probability": 0.0573 }, { "start": 36141.81, "end": 36145.75, "probability": 0.2781 }, { "start": 36146.45, "end": 36150.03, "probability": 0.8862 }, { "start": 36150.45, "end": 36152.83, "probability": 0.6266 }, { "start": 36153.09, "end": 36155.45, "probability": 0.929 }, { "start": 36156.27, "end": 36159.93, "probability": 0.8741 }, { "start": 36160.63, "end": 36161.41, "probability": 0.4865 }, { "start": 36162.19, "end": 36164.31, "probability": 0.998 }, { "start": 36164.39, "end": 36165.19, "probability": 0.7337 }, { "start": 36166.03, "end": 36168.79, "probability": 0.9951 }, { "start": 36169.61, "end": 36171.77, "probability": 0.9717 }, { "start": 36172.65, "end": 36174.79, "probability": 0.9756 }, { "start": 36175.27, "end": 36178.07, "probability": 0.7723 }, { "start": 36178.77, "end": 36179.49, "probability": 0.7779 }, { "start": 36180.45, "end": 36181.55, "probability": 0.4559 }, { "start": 36181.85, "end": 36182.71, "probability": 0.5162 }, { "start": 36182.79, "end": 36184.15, "probability": 0.6156 }, { "start": 36184.93, "end": 36186.69, "probability": 0.9716 }, { "start": 36187.39, "end": 36190.25, "probability": 0.7863 }, { "start": 36190.95, "end": 36192.79, "probability": 0.9706 }, { "start": 36193.03, "end": 36194.59, "probability": 0.9883 }, { "start": 36194.89, "end": 36197.39, "probability": 0.8818 }, { "start": 36198.19, "end": 36199.09, "probability": 0.9829 }, { "start": 36199.37, "end": 36201.37, "probability": 0.9784 }, { "start": 36202.87, "end": 36208.39, "probability": 0.9759 }, { "start": 36209.17, "end": 36212.85, "probability": 0.8915 }, { "start": 36213.01, "end": 36214.73, "probability": 0.9912 }, { "start": 36214.73, "end": 36217.19, "probability": 0.9875 }, { "start": 36218.17, "end": 36221.11, "probability": 0.8963 }, { "start": 36221.19, "end": 36224.17, "probability": 0.9634 }, { "start": 36224.71, "end": 36227.05, "probability": 0.9442 }, { "start": 36227.99, "end": 36230.53, "probability": 0.9453 }, { "start": 36230.81, "end": 36232.11, "probability": 0.5191 }, { "start": 36232.79, "end": 36235.83, "probability": 0.9655 }, { "start": 36236.51, "end": 36237.39, "probability": 0.8948 }, { "start": 36238.39, "end": 36240.97, "probability": 0.8645 }, { "start": 36241.59, "end": 36242.95, "probability": 0.8356 }, { "start": 36243.49, "end": 36244.35, "probability": 0.5522 }, { "start": 36244.87, "end": 36248.35, "probability": 0.991 }, { "start": 36248.91, "end": 36250.77, "probability": 0.8481 }, { "start": 36251.71, "end": 36253.98, "probability": 0.9443 }, { "start": 36254.63, "end": 36256.83, "probability": 0.7003 }, { "start": 36256.83, "end": 36259.81, "probability": 0.9971 }, { "start": 36260.69, "end": 36263.4, "probability": 0.9785 }, { "start": 36263.91, "end": 36266.95, "probability": 0.9706 }, { "start": 36267.65, "end": 36269.57, "probability": 0.7917 }, { "start": 36270.33, "end": 36272.09, "probability": 0.696 }, { "start": 36273.03, "end": 36274.59, "probability": 0.9433 }, { "start": 36274.75, "end": 36276.53, "probability": 0.8262 }, { "start": 36276.59, "end": 36278.49, "probability": 0.8633 }, { "start": 36279.75, "end": 36280.29, "probability": 0.7456 }, { "start": 36280.83, "end": 36282.25, "probability": 0.8469 }, { "start": 36282.43, "end": 36284.73, "probability": 0.9212 }, { "start": 36285.57, "end": 36288.73, "probability": 0.8014 }, { "start": 36288.79, "end": 36289.41, "probability": 0.6361 }, { "start": 36290.11, "end": 36294.49, "probability": 0.7172 }, { "start": 36294.61, "end": 36297.75, "probability": 0.8059 }, { "start": 36297.99, "end": 36299.81, "probability": 0.8973 }, { "start": 36299.81, "end": 36303.49, "probability": 0.7716 }, { "start": 36304.31, "end": 36307.51, "probability": 0.9332 }, { "start": 36307.89, "end": 36308.48, "probability": 0.7512 }, { "start": 36308.63, "end": 36308.97, "probability": 0.4728 }, { "start": 36309.73, "end": 36313.41, "probability": 0.9343 }, { "start": 36314.55, "end": 36317.97, "probability": 0.6014 }, { "start": 36317.97, "end": 36320.13, "probability": 0.98 }, { "start": 36320.61, "end": 36321.19, "probability": 0.7438 }, { "start": 36321.93, "end": 36323.49, "probability": 0.4774 }, { "start": 36324.13, "end": 36325.53, "probability": 0.9777 }, { "start": 36326.19, "end": 36328.09, "probability": 0.9404 }, { "start": 36328.39, "end": 36330.39, "probability": 0.9745 }, { "start": 36330.93, "end": 36334.89, "probability": 0.9662 }, { "start": 36335.61, "end": 36337.01, "probability": 0.5996 }, { "start": 36337.99, "end": 36338.91, "probability": 0.9071 }, { "start": 36339.03, "end": 36342.33, "probability": 0.9912 }, { "start": 36343.61, "end": 36344.29, "probability": 0.9282 }, { "start": 36344.95, "end": 36348.15, "probability": 0.9097 }, { "start": 36348.99, "end": 36349.87, "probability": 0.9349 }, { "start": 36349.91, "end": 36351.85, "probability": 0.8884 }, { "start": 36351.95, "end": 36353.97, "probability": 0.9465 }, { "start": 36354.83, "end": 36356.65, "probability": 0.9292 }, { "start": 36357.27, "end": 36358.17, "probability": 0.7302 }, { "start": 36358.95, "end": 36359.79, "probability": 0.4507 }, { "start": 36360.55, "end": 36363.13, "probability": 0.6114 }, { "start": 36363.69, "end": 36367.77, "probability": 0.6875 }, { "start": 36368.59, "end": 36372.71, "probability": 0.9923 }, { "start": 36373.35, "end": 36374.98, "probability": 0.9604 }, { "start": 36376.01, "end": 36376.85, "probability": 0.98 }, { "start": 36377.57, "end": 36381.07, "probability": 0.8521 }, { "start": 36381.61, "end": 36381.85, "probability": 0.7375 }, { "start": 36382.93, "end": 36384.23, "probability": 0.726 }, { "start": 36384.33, "end": 36386.43, "probability": 0.861 }, { "start": 36391.09, "end": 36393.25, "probability": 0.628 }, { "start": 36403.15, "end": 36406.63, "probability": 0.917 }, { "start": 36414.39, "end": 36415.37, "probability": 0.7096 }, { "start": 36423.29, "end": 36425.49, "probability": 0.7119 }, { "start": 36425.89, "end": 36426.55, "probability": 0.6128 }, { "start": 36426.55, "end": 36427.79, "probability": 0.86 }, { "start": 36427.97, "end": 36431.45, "probability": 0.5276 }, { "start": 36432.67, "end": 36433.77, "probability": 0.7607 }, { "start": 36434.29, "end": 36434.85, "probability": 0.8742 }, { "start": 36434.97, "end": 36436.07, "probability": 0.9515 }, { "start": 36436.65, "end": 36438.87, "probability": 0.8025 }, { "start": 36439.71, "end": 36440.47, "probability": 0.9893 }, { "start": 36441.45, "end": 36441.87, "probability": 0.8626 }, { "start": 36442.71, "end": 36443.55, "probability": 0.4546 }, { "start": 36444.61, "end": 36445.21, "probability": 0.728 }, { "start": 36446.19, "end": 36449.03, "probability": 0.9167 }, { "start": 36449.91, "end": 36452.55, "probability": 0.9805 }, { "start": 36453.43, "end": 36456.75, "probability": 0.5975 }, { "start": 36457.65, "end": 36458.59, "probability": 0.5246 }, { "start": 36458.65, "end": 36459.19, "probability": 0.6494 }, { "start": 36459.21, "end": 36459.45, "probability": 0.8684 }, { "start": 36459.61, "end": 36462.05, "probability": 0.7989 }, { "start": 36463.31, "end": 36463.97, "probability": 0.9219 }, { "start": 36465.13, "end": 36466.08, "probability": 0.7083 }, { "start": 36466.39, "end": 36468.21, "probability": 0.727 }, { "start": 36468.81, "end": 36469.73, "probability": 0.8899 }, { "start": 36469.83, "end": 36471.75, "probability": 0.9504 }, { "start": 36472.13, "end": 36472.15, "probability": 0.1817 }, { "start": 36472.15, "end": 36472.15, "probability": 0.5473 }, { "start": 36472.15, "end": 36472.19, "probability": 0.0085 }, { "start": 36472.19, "end": 36472.29, "probability": 0.0905 }, { "start": 36474.37, "end": 36476.83, "probability": 0.9967 }, { "start": 36477.47, "end": 36479.71, "probability": 0.9714 }, { "start": 36480.35, "end": 36480.39, "probability": 0.0515 }, { "start": 36480.39, "end": 36480.39, "probability": 0.2038 }, { "start": 36480.39, "end": 36481.71, "probability": 0.7545 }, { "start": 36482.89, "end": 36484.59, "probability": 0.7862 }, { "start": 36485.75, "end": 36486.95, "probability": 0.8779 }, { "start": 36487.03, "end": 36488.15, "probability": 0.9565 }, { "start": 36488.27, "end": 36489.47, "probability": 0.5814 }, { "start": 36490.03, "end": 36491.49, "probability": 0.9067 }, { "start": 36492.07, "end": 36496.21, "probability": 0.5242 }, { "start": 36496.41, "end": 36496.65, "probability": 0.7363 }, { "start": 36497.45, "end": 36500.25, "probability": 0.8105 }, { "start": 36500.29, "end": 36501.55, "probability": 0.7118 }, { "start": 36502.63, "end": 36505.83, "probability": 0.9669 }, { "start": 36506.63, "end": 36507.55, "probability": 0.8691 }, { "start": 36508.29, "end": 36508.97, "probability": 0.7268 }, { "start": 36509.75, "end": 36514.53, "probability": 0.9822 }, { "start": 36515.13, "end": 36515.59, "probability": 0.9277 }, { "start": 36515.77, "end": 36516.25, "probability": 0.46 }, { "start": 36517.39, "end": 36521.01, "probability": 0.8852 }, { "start": 36521.89, "end": 36525.45, "probability": 0.7706 }, { "start": 36526.31, "end": 36527.09, "probability": 0.7607 }, { "start": 36527.75, "end": 36531.75, "probability": 0.7634 }, { "start": 36532.19, "end": 36533.09, "probability": 0.9672 }, { "start": 36533.57, "end": 36535.31, "probability": 0.9052 }, { "start": 36535.35, "end": 36539.35, "probability": 0.9443 }, { "start": 36539.35, "end": 36543.67, "probability": 0.9019 }, { "start": 36545.45, "end": 36546.55, "probability": 0.6383 }, { "start": 36547.39, "end": 36548.75, "probability": 0.2467 }, { "start": 36549.13, "end": 36550.95, "probability": 0.9937 }, { "start": 36551.57, "end": 36554.29, "probability": 0.8151 }, { "start": 36555.91, "end": 36559.77, "probability": 0.9473 }, { "start": 36560.21, "end": 36562.09, "probability": 0.8746 }, { "start": 36562.29, "end": 36563.13, "probability": 0.4862 }, { "start": 36563.35, "end": 36564.39, "probability": 0.4972 }, { "start": 36564.99, "end": 36567.53, "probability": 0.957 }, { "start": 36568.35, "end": 36571.29, "probability": 0.9139 }, { "start": 36572.37, "end": 36573.55, "probability": 0.6016 }, { "start": 36573.63, "end": 36574.25, "probability": 0.8319 }, { "start": 36574.33, "end": 36577.45, "probability": 0.7832 }, { "start": 36578.61, "end": 36579.79, "probability": 0.5703 }, { "start": 36580.13, "end": 36582.19, "probability": 0.7888 }, { "start": 36582.29, "end": 36583.17, "probability": 0.9966 }, { "start": 36583.33, "end": 36583.63, "probability": 0.7805 }, { "start": 36585.11, "end": 36587.29, "probability": 0.8772 }, { "start": 36587.41, "end": 36589.09, "probability": 0.0125 }, { "start": 36589.61, "end": 36590.45, "probability": 0.0387 }, { "start": 36590.57, "end": 36593.03, "probability": 0.4744 }, { "start": 36593.37, "end": 36595.35, "probability": 0.7563 }, { "start": 36596.03, "end": 36598.95, "probability": 0.9945 }, { "start": 36599.15, "end": 36600.61, "probability": 0.9968 }, { "start": 36601.47, "end": 36601.61, "probability": 0.1769 }, { "start": 36602.31, "end": 36603.57, "probability": 0.3484 }, { "start": 36604.45, "end": 36607.79, "probability": 0.9818 }, { "start": 36608.37, "end": 36609.77, "probability": 0.7592 }, { "start": 36610.49, "end": 36612.33, "probability": 0.9889 }, { "start": 36613.59, "end": 36615.77, "probability": 0.8802 }, { "start": 36616.67, "end": 36619.57, "probability": 0.9203 }, { "start": 36620.29, "end": 36620.81, "probability": 0.4357 }, { "start": 36623.49, "end": 36628.25, "probability": 0.7199 }, { "start": 36628.97, "end": 36630.17, "probability": 0.8387 }, { "start": 36632.45, "end": 36634.63, "probability": 0.9375 }, { "start": 36634.75, "end": 36638.39, "probability": 0.9961 }, { "start": 36638.51, "end": 36641.25, "probability": 0.9797 }, { "start": 36641.41, "end": 36643.13, "probability": 0.7865 }, { "start": 36644.27, "end": 36646.89, "probability": 0.913 }, { "start": 36647.65, "end": 36648.77, "probability": 0.7517 }, { "start": 36650.03, "end": 36650.93, "probability": 0.9432 }, { "start": 36651.33, "end": 36651.79, "probability": 0.5137 }, { "start": 36652.49, "end": 36655.31, "probability": 0.8017 }, { "start": 36656.41, "end": 36658.11, "probability": 0.8633 }, { "start": 36658.95, "end": 36662.47, "probability": 0.9672 }, { "start": 36663.31, "end": 36665.67, "probability": 0.807 }, { "start": 36666.29, "end": 36670.09, "probability": 0.9196 }, { "start": 36675.13, "end": 36676.75, "probability": 0.984 }, { "start": 36677.5, "end": 36680.85, "probability": 0.4602 }, { "start": 36680.85, "end": 36681.71, "probability": 0.1295 }, { "start": 36681.91, "end": 36682.63, "probability": 0.6979 }, { "start": 36683.57, "end": 36685.7, "probability": 0.6619 }, { "start": 36686.53, "end": 36686.93, "probability": 0.568 }, { "start": 36687.09, "end": 36687.61, "probability": 0.8682 }, { "start": 36687.77, "end": 36688.85, "probability": 0.6665 }, { "start": 36689.82, "end": 36693.05, "probability": 0.8207 }, { "start": 36693.15, "end": 36693.99, "probability": 0.5293 }, { "start": 36694.17, "end": 36694.83, "probability": 0.7784 }, { "start": 36695.33, "end": 36695.55, "probability": 0.5375 }, { "start": 36695.65, "end": 36697.61, "probability": 0.0124 }, { "start": 36697.61, "end": 36700.97, "probability": 0.9624 }, { "start": 36701.57, "end": 36703.67, "probability": 0.7645 }, { "start": 36703.67, "end": 36706.57, "probability": 0.9739 }, { "start": 36706.71, "end": 36713.51, "probability": 0.7752 }, { "start": 36713.73, "end": 36716.25, "probability": 0.9235 }, { "start": 36717.57, "end": 36718.6, "probability": 0.9045 }, { "start": 36719.35, "end": 36721.4, "probability": 0.9927 }, { "start": 36722.37, "end": 36727.07, "probability": 0.9319 }, { "start": 36728.91, "end": 36731.71, "probability": 0.9932 }, { "start": 36731.83, "end": 36732.69, "probability": 0.8525 }, { "start": 36733.37, "end": 36735.11, "probability": 0.9981 }, { "start": 36737.03, "end": 36740.65, "probability": 0.9524 }, { "start": 36740.81, "end": 36741.81, "probability": 0.5399 }, { "start": 36741.87, "end": 36742.09, "probability": 0.382 }, { "start": 36742.41, "end": 36742.73, "probability": 0.7759 }, { "start": 36743.37, "end": 36745.09, "probability": 0.9665 }, { "start": 36746.65, "end": 36750.43, "probability": 0.9397 }, { "start": 36751.31, "end": 36754.87, "probability": 0.9843 }, { "start": 36756.11, "end": 36759.69, "probability": 0.9931 }, { "start": 36759.81, "end": 36763.85, "probability": 0.999 }, { "start": 36764.73, "end": 36766.17, "probability": 0.7847 }, { "start": 36766.19, "end": 36766.89, "probability": 0.7871 }, { "start": 36767.91, "end": 36769.85, "probability": 0.6948 }, { "start": 36770.59, "end": 36774.57, "probability": 0.9655 }, { "start": 36774.75, "end": 36775.58, "probability": 0.9902 }, { "start": 36776.85, "end": 36778.31, "probability": 0.5165 }, { "start": 36779.43, "end": 36783.35, "probability": 0.9863 }, { "start": 36784.33, "end": 36788.19, "probability": 0.9958 }, { "start": 36788.85, "end": 36789.91, "probability": 0.8435 }, { "start": 36790.27, "end": 36791.23, "probability": 0.9488 }, { "start": 36791.69, "end": 36792.49, "probability": 0.4994 }, { "start": 36792.65, "end": 36793.81, "probability": 0.7915 }, { "start": 36794.61, "end": 36800.17, "probability": 0.9792 }, { "start": 36801.17, "end": 36802.09, "probability": 0.7886 }, { "start": 36802.17, "end": 36803.85, "probability": 0.991 }, { "start": 36804.45, "end": 36807.64, "probability": 0.9831 }, { "start": 36807.79, "end": 36811.39, "probability": 0.9873 }, { "start": 36812.09, "end": 36814.55, "probability": 0.8274 }, { "start": 36815.13, "end": 36816.37, "probability": 0.9159 }, { "start": 36816.69, "end": 36816.89, "probability": 0.7892 }, { "start": 36817.37, "end": 36819.87, "probability": 0.9805 }, { "start": 36820.03, "end": 36822.41, "probability": 0.9575 }, { "start": 36824.37, "end": 36824.69, "probability": 0.1532 }, { "start": 36850.87, "end": 36851.51, "probability": 0.6204 }, { "start": 36853.93, "end": 36854.63, "probability": 0.7186 }, { "start": 36858.51, "end": 36859.11, "probability": 0.4809 }, { "start": 36859.11, "end": 36861.71, "probability": 0.9305 }, { "start": 36861.75, "end": 36862.09, "probability": 0.7223 }, { "start": 36862.27, "end": 36862.67, "probability": 0.5938 }, { "start": 36863.41, "end": 36864.95, "probability": 0.946 }, { "start": 36865.21, "end": 36868.13, "probability": 0.8488 }, { "start": 36868.81, "end": 36869.83, "probability": 0.6612 }, { "start": 36869.91, "end": 36873.28, "probability": 0.8586 }, { "start": 36873.53, "end": 36877.43, "probability": 0.984 }, { "start": 36878.13, "end": 36879.05, "probability": 0.8761 }, { "start": 36879.13, "end": 36880.87, "probability": 0.9972 }, { "start": 36881.51, "end": 36882.49, "probability": 0.0341 }, { "start": 36882.59, "end": 36883.93, "probability": 0.4522 }, { "start": 36885.51, "end": 36886.83, "probability": 0.4402 }, { "start": 36887.55, "end": 36890.37, "probability": 0.8363 }, { "start": 36890.49, "end": 36894.27, "probability": 0.9692 }, { "start": 36894.87, "end": 36898.15, "probability": 0.5632 }, { "start": 36898.23, "end": 36899.61, "probability": 0.9934 }, { "start": 36901.05, "end": 36906.19, "probability": 0.9963 }, { "start": 36907.83, "end": 36908.57, "probability": 0.7289 }, { "start": 36909.23, "end": 36910.07, "probability": 0.998 }, { "start": 36910.51, "end": 36913.49, "probability": 0.9902 }, { "start": 36914.39, "end": 36917.41, "probability": 0.9933 }, { "start": 36917.53, "end": 36918.43, "probability": 0.6879 }, { "start": 36919.49, "end": 36919.89, "probability": 0.8477 }, { "start": 36921.01, "end": 36923.61, "probability": 0.8685 }, { "start": 36924.35, "end": 36925.25, "probability": 0.9878 }, { "start": 36927.37, "end": 36928.05, "probability": 0.9113 }, { "start": 36929.64, "end": 36933.33, "probability": 0.7481 }, { "start": 36933.33, "end": 36936.69, "probability": 0.9919 }, { "start": 36937.31, "end": 36938.51, "probability": 0.767 }, { "start": 36939.23, "end": 36940.46, "probability": 0.9023 }, { "start": 36941.97, "end": 36944.41, "probability": 0.9453 }, { "start": 36945.03, "end": 36945.97, "probability": 0.9857 }, { "start": 36947.19, "end": 36948.17, "probability": 0.6152 }, { "start": 36949.25, "end": 36950.45, "probability": 0.8965 }, { "start": 36950.95, "end": 36953.15, "probability": 0.963 }, { "start": 36953.21, "end": 36954.41, "probability": 0.9976 }, { "start": 36954.71, "end": 36958.87, "probability": 0.966 }, { "start": 36958.99, "end": 36959.69, "probability": 0.8763 }, { "start": 36960.09, "end": 36964.33, "probability": 0.9907 }, { "start": 36966.53, "end": 36971.05, "probability": 0.8947 }, { "start": 36971.73, "end": 36973.25, "probability": 0.8657 }, { "start": 36974.95, "end": 36977.23, "probability": 0.9607 }, { "start": 36977.61, "end": 36979.21, "probability": 0.9802 }, { "start": 36980.11, "end": 36984.89, "probability": 0.9972 }, { "start": 36985.43, "end": 36986.15, "probability": 0.5446 }, { "start": 36987.33, "end": 36988.29, "probability": 0.783 }, { "start": 36988.99, "end": 36993.97, "probability": 0.9974 }, { "start": 36995.67, "end": 36997.97, "probability": 0.751 }, { "start": 36998.45, "end": 37001.29, "probability": 0.9983 }, { "start": 37001.31, "end": 37004.79, "probability": 0.949 }, { "start": 37004.91, "end": 37005.71, "probability": 0.789 }, { "start": 37006.75, "end": 37007.63, "probability": 0.684 }, { "start": 37007.73, "end": 37008.85, "probability": 0.8959 }, { "start": 37008.95, "end": 37011.57, "probability": 0.9816 }, { "start": 37012.21, "end": 37012.84, "probability": 0.9268 }, { "start": 37013.73, "end": 37018.37, "probability": 0.989 }, { "start": 37020.33, "end": 37020.35, "probability": 0.117 }, { "start": 37020.87, "end": 37021.89, "probability": 0.9515 }, { "start": 37022.03, "end": 37026.19, "probability": 0.835 }, { "start": 37026.19, "end": 37030.75, "probability": 0.9964 }, { "start": 37031.31, "end": 37035.09, "probability": 0.9755 }, { "start": 37035.61, "end": 37038.01, "probability": 0.8696 }, { "start": 37038.97, "end": 37043.93, "probability": 0.988 }, { "start": 37044.19, "end": 37045.03, "probability": 0.9705 }, { "start": 37045.29, "end": 37045.93, "probability": 0.5859 }, { "start": 37046.47, "end": 37048.15, "probability": 0.99 }, { "start": 37049.49, "end": 37050.25, "probability": 0.5701 }, { "start": 37051.31, "end": 37051.69, "probability": 0.0648 }, { "start": 37052.55, "end": 37055.23, "probability": 0.988 }, { "start": 37056.33, "end": 37058.09, "probability": 0.9783 }, { "start": 37058.23, "end": 37060.67, "probability": 0.8992 }, { "start": 37062.03, "end": 37062.69, "probability": 0.8376 }, { "start": 37063.07, "end": 37065.85, "probability": 0.8812 }, { "start": 37065.99, "end": 37067.37, "probability": 0.9311 }, { "start": 37068.13, "end": 37070.85, "probability": 0.9926 }, { "start": 37071.49, "end": 37072.79, "probability": 0.8747 }, { "start": 37073.39, "end": 37075.57, "probability": 0.9409 }, { "start": 37076.05, "end": 37077.49, "probability": 0.7955 }, { "start": 37077.95, "end": 37080.71, "probability": 0.9945 }, { "start": 37081.25, "end": 37085.17, "probability": 0.4902 }, { "start": 37085.83, "end": 37086.51, "probability": 0.5676 }, { "start": 37086.71, "end": 37087.73, "probability": 0.516 }, { "start": 37087.75, "end": 37091.43, "probability": 0.9194 }, { "start": 37092.27, "end": 37096.31, "probability": 0.9952 }, { "start": 37097.35, "end": 37097.73, "probability": 0.2681 }, { "start": 37098.07, "end": 37099.81, "probability": 0.9329 }, { "start": 37100.51, "end": 37105.39, "probability": 0.9967 }, { "start": 37106.61, "end": 37107.55, "probability": 0.9269 }, { "start": 37108.05, "end": 37108.57, "probability": 0.9289 }, { "start": 37109.11, "end": 37112.49, "probability": 0.9941 }, { "start": 37113.07, "end": 37114.11, "probability": 0.8703 }, { "start": 37114.69, "end": 37115.73, "probability": 0.8327 }, { "start": 37117.13, "end": 37120.49, "probability": 0.9709 }, { "start": 37121.07, "end": 37123.31, "probability": 0.9886 }, { "start": 37123.93, "end": 37126.05, "probability": 0.9954 }, { "start": 37126.19, "end": 37127.69, "probability": 0.9962 }, { "start": 37127.83, "end": 37128.81, "probability": 0.9336 }, { "start": 37129.55, "end": 37134.15, "probability": 0.9387 }, { "start": 37134.87, "end": 37137.85, "probability": 0.9977 }, { "start": 37138.47, "end": 37141.41, "probability": 0.9972 }, { "start": 37142.31, "end": 37144.66, "probability": 0.9994 }, { "start": 37145.25, "end": 37147.98, "probability": 0.9995 }, { "start": 37148.05, "end": 37148.39, "probability": 0.0277 }, { "start": 37149.19, "end": 37150.57, "probability": 0.891 }, { "start": 37151.01, "end": 37156.05, "probability": 0.9658 }, { "start": 37156.05, "end": 37161.41, "probability": 0.9817 }, { "start": 37161.87, "end": 37164.17, "probability": 0.9722 }, { "start": 37164.87, "end": 37167.57, "probability": 0.9944 }, { "start": 37169.03, "end": 37170.73, "probability": 0.6933 }, { "start": 37171.43, "end": 37173.29, "probability": 0.9688 }, { "start": 37173.31, "end": 37175.19, "probability": 0.9718 }, { "start": 37175.71, "end": 37181.05, "probability": 0.9966 }, { "start": 37181.41, "end": 37182.03, "probability": 0.4794 }, { "start": 37182.19, "end": 37182.81, "probability": 0.6339 }, { "start": 37182.89, "end": 37183.33, "probability": 0.6375 }, { "start": 37183.41, "end": 37184.15, "probability": 0.8115 }, { "start": 37184.17, "end": 37184.49, "probability": 0.6423 }, { "start": 37184.63, "end": 37185.19, "probability": 0.6759 }, { "start": 37185.25, "end": 37186.85, "probability": 0.9338 }, { "start": 37187.65, "end": 37190.11, "probability": 0.926 }, { "start": 37207.65, "end": 37208.45, "probability": 0.6565 }, { "start": 37209.03, "end": 37211.05, "probability": 0.8577 }, { "start": 37211.27, "end": 37211.91, "probability": 0.6666 }, { "start": 37211.99, "end": 37212.17, "probability": 0.8331 }, { "start": 37212.25, "end": 37214.59, "probability": 0.8768 }, { "start": 37214.97, "end": 37216.25, "probability": 0.6952 }, { "start": 37216.65, "end": 37216.81, "probability": 0.4407 }, { "start": 37216.91, "end": 37217.37, "probability": 0.916 }, { "start": 37217.47, "end": 37220.55, "probability": 0.7932 }, { "start": 37221.3, "end": 37222.98, "probability": 0.9797 }, { "start": 37223.15, "end": 37226.43, "probability": 0.9968 }, { "start": 37226.43, "end": 37227.51, "probability": 0.878 }, { "start": 37227.73, "end": 37228.17, "probability": 0.2228 }, { "start": 37228.21, "end": 37230.19, "probability": 0.7775 }, { "start": 37230.33, "end": 37231.25, "probability": 0.7436 }, { "start": 37231.67, "end": 37232.15, "probability": 0.5762 }, { "start": 37232.43, "end": 37234.47, "probability": 0.9951 }, { "start": 37235.43, "end": 37236.43, "probability": 0.7519 }, { "start": 37239.07, "end": 37245.55, "probability": 0.9783 }, { "start": 37247.15, "end": 37251.43, "probability": 0.9988 }, { "start": 37252.25, "end": 37254.31, "probability": 0.9771 }, { "start": 37256.21, "end": 37256.73, "probability": 0.7508 }, { "start": 37257.75, "end": 37259.36, "probability": 0.9805 }, { "start": 37260.81, "end": 37262.99, "probability": 0.9889 }, { "start": 37263.59, "end": 37265.87, "probability": 0.9857 }, { "start": 37267.38, "end": 37268.97, "probability": 0.9775 }, { "start": 37270.31, "end": 37271.03, "probability": 0.6462 }, { "start": 37274.71, "end": 37276.17, "probability": 0.9753 }, { "start": 37276.35, "end": 37277.45, "probability": 0.5846 }, { "start": 37277.51, "end": 37279.45, "probability": 0.668 }, { "start": 37279.51, "end": 37282.19, "probability": 0.7299 }, { "start": 37283.53, "end": 37284.75, "probability": 0.9176 }, { "start": 37286.13, "end": 37287.51, "probability": 0.916 }, { "start": 37287.67, "end": 37289.61, "probability": 0.9881 }, { "start": 37290.47, "end": 37294.69, "probability": 0.9014 }, { "start": 37295.05, "end": 37296.31, "probability": 0.8941 }, { "start": 37296.91, "end": 37300.15, "probability": 0.9528 }, { "start": 37302.35, "end": 37305.97, "probability": 0.9966 }, { "start": 37305.99, "end": 37307.35, "probability": 0.8798 }, { "start": 37307.41, "end": 37308.23, "probability": 0.4957 }, { "start": 37308.29, "end": 37310.09, "probability": 0.9927 }, { "start": 37312.35, "end": 37316.65, "probability": 0.9912 }, { "start": 37316.65, "end": 37321.23, "probability": 0.9989 }, { "start": 37323.99, "end": 37325.41, "probability": 0.4413 }, { "start": 37327.15, "end": 37327.91, "probability": 0.9169 }, { "start": 37328.11, "end": 37328.61, "probability": 0.7961 }, { "start": 37329.73, "end": 37332.07, "probability": 0.3503 }, { "start": 37332.29, "end": 37334.77, "probability": 0.8828 }, { "start": 37335.57, "end": 37338.43, "probability": 0.9583 }, { "start": 37339.85, "end": 37343.25, "probability": 0.9892 }, { "start": 37343.25, "end": 37347.69, "probability": 0.7571 }, { "start": 37349.91, "end": 37353.51, "probability": 0.9513 }, { "start": 37353.57, "end": 37354.93, "probability": 0.6764 }, { "start": 37355.03, "end": 37355.83, "probability": 0.8932 }, { "start": 37356.11, "end": 37357.49, "probability": 0.9323 }, { "start": 37357.61, "end": 37359.83, "probability": 0.8991 }, { "start": 37361.13, "end": 37361.83, "probability": 0.4641 }, { "start": 37361.91, "end": 37363.27, "probability": 0.7757 }, { "start": 37363.35, "end": 37365.83, "probability": 0.8623 }, { "start": 37365.95, "end": 37367.45, "probability": 0.4961 }, { "start": 37367.49, "end": 37368.13, "probability": 0.5226 }, { "start": 37368.31, "end": 37368.57, "probability": 0.8789 }, { "start": 37369.11, "end": 37370.75, "probability": 0.8324 }, { "start": 37372.53, "end": 37377.13, "probability": 0.9875 }, { "start": 37377.23, "end": 37379.89, "probability": 0.9238 }, { "start": 37379.93, "end": 37380.79, "probability": 0.5231 }, { "start": 37382.89, "end": 37388.91, "probability": 0.9927 }, { "start": 37390.81, "end": 37394.55, "probability": 0.9553 }, { "start": 37396.47, "end": 37398.43, "probability": 0.6985 }, { "start": 37398.71, "end": 37403.85, "probability": 0.9884 }, { "start": 37404.73, "end": 37409.03, "probability": 0.9633 }, { "start": 37409.43, "end": 37410.31, "probability": 0.9835 }, { "start": 37410.33, "end": 37412.09, "probability": 0.9707 }, { "start": 37412.45, "end": 37413.37, "probability": 0.8909 }, { "start": 37415.65, "end": 37417.93, "probability": 0.9937 }, { "start": 37418.03, "end": 37418.81, "probability": 0.7294 }, { "start": 37418.89, "end": 37419.49, "probability": 0.906 }, { "start": 37419.63, "end": 37422.77, "probability": 0.8088 }, { "start": 37422.87, "end": 37424.27, "probability": 0.6972 }, { "start": 37427.57, "end": 37430.29, "probability": 0.9928 }, { "start": 37430.37, "end": 37432.77, "probability": 0.9558 }, { "start": 37433.75, "end": 37436.35, "probability": 0.9387 }, { "start": 37436.45, "end": 37436.99, "probability": 0.6039 }, { "start": 37437.48, "end": 37439.97, "probability": 0.947 }, { "start": 37441.63, "end": 37444.89, "probability": 0.8527 }, { "start": 37447.19, "end": 37449.05, "probability": 0.9856 }, { "start": 37449.15, "end": 37450.49, "probability": 0.8824 }, { "start": 37450.61, "end": 37451.43, "probability": 0.9297 }, { "start": 37451.47, "end": 37452.57, "probability": 0.9736 }, { "start": 37452.63, "end": 37453.29, "probability": 0.7139 }, { "start": 37454.31, "end": 37456.57, "probability": 0.9041 }, { "start": 37456.85, "end": 37457.39, "probability": 0.4027 }, { "start": 37457.45, "end": 37457.85, "probability": 0.8794 }, { "start": 37457.93, "end": 37458.31, "probability": 0.9092 }, { "start": 37458.43, "end": 37459.11, "probability": 0.9619 }, { "start": 37459.23, "end": 37459.79, "probability": 0.8629 }, { "start": 37460.83, "end": 37461.86, "probability": 0.979 }, { "start": 37462.79, "end": 37464.53, "probability": 0.9924 }, { "start": 37465.87, "end": 37466.43, "probability": 0.8992 }, { "start": 37467.33, "end": 37468.35, "probability": 0.8336 }, { "start": 37470.73, "end": 37471.67, "probability": 0.8627 }, { "start": 37471.85, "end": 37472.73, "probability": 0.6025 }, { "start": 37472.79, "end": 37474.65, "probability": 0.9633 }, { "start": 37474.81, "end": 37478.05, "probability": 0.9917 }, { "start": 37479.79, "end": 37482.51, "probability": 0.9587 }, { "start": 37482.55, "end": 37484.03, "probability": 0.877 }, { "start": 37487.37, "end": 37488.71, "probability": 0.9056 }, { "start": 37490.83, "end": 37491.19, "probability": 0.7458 }, { "start": 37491.73, "end": 37493.19, "probability": 0.7829 }, { "start": 37493.27, "end": 37495.83, "probability": 0.9343 }, { "start": 37497.07, "end": 37498.11, "probability": 0.5189 }, { "start": 37498.13, "end": 37500.43, "probability": 0.9548 }, { "start": 37500.51, "end": 37504.23, "probability": 0.9482 }, { "start": 37504.93, "end": 37507.03, "probability": 0.7467 }, { "start": 37507.29, "end": 37509.49, "probability": 0.746 }, { "start": 37509.55, "end": 37510.55, "probability": 0.9812 }, { "start": 37513.17, "end": 37514.27, "probability": 0.8707 }, { "start": 37514.59, "end": 37514.75, "probability": 0.5359 }, { "start": 37514.75, "end": 37516.27, "probability": 0.688 }, { "start": 37516.39, "end": 37517.67, "probability": 0.9239 }, { "start": 37517.79, "end": 37518.65, "probability": 0.8878 }, { "start": 37518.83, "end": 37519.69, "probability": 0.9511 }, { "start": 37520.07, "end": 37520.67, "probability": 0.9681 }, { "start": 37520.83, "end": 37521.63, "probability": 0.8799 }, { "start": 37522.67, "end": 37523.99, "probability": 0.87 }, { "start": 37525.73, "end": 37526.91, "probability": 0.7645 }, { "start": 37527.65, "end": 37529.81, "probability": 0.9268 }, { "start": 37529.89, "end": 37531.04, "probability": 0.8428 }, { "start": 37531.89, "end": 37534.07, "probability": 0.9852 }, { "start": 37534.11, "end": 37534.99, "probability": 0.9223 }, { "start": 37535.53, "end": 37538.59, "probability": 0.9518 }, { "start": 37538.91, "end": 37539.07, "probability": 0.5258 }, { "start": 37540.35, "end": 37541.99, "probability": 0.7296 }, { "start": 37542.49, "end": 37545.03, "probability": 0.7849 }, { "start": 37563.23, "end": 37564.89, "probability": 0.5597 }, { "start": 37565.05, "end": 37568.41, "probability": 0.8333 }, { "start": 37569.59, "end": 37570.59, "probability": 0.8386 }, { "start": 37571.27, "end": 37572.03, "probability": 0.9325 }, { "start": 37572.65, "end": 37574.99, "probability": 0.9173 }, { "start": 37575.35, "end": 37577.77, "probability": 0.8568 }, { "start": 37578.25, "end": 37579.15, "probability": 0.8337 }, { "start": 37580.31, "end": 37581.35, "probability": 0.7416 }, { "start": 37582.35, "end": 37584.07, "probability": 0.9934 }, { "start": 37584.79, "end": 37585.65, "probability": 0.7157 }, { "start": 37586.47, "end": 37587.65, "probability": 0.926 }, { "start": 37588.25, "end": 37590.27, "probability": 0.73 }, { "start": 37591.13, "end": 37592.93, "probability": 0.92 }, { "start": 37593.47, "end": 37594.17, "probability": 0.9102 }, { "start": 37594.71, "end": 37595.25, "probability": 0.946 }, { "start": 37595.83, "end": 37597.41, "probability": 0.9653 }, { "start": 37598.39, "end": 37598.81, "probability": 0.803 }, { "start": 37599.39, "end": 37600.41, "probability": 0.9512 }, { "start": 37601.19, "end": 37604.33, "probability": 0.9849 }, { "start": 37605.49, "end": 37608.25, "probability": 0.9053 }, { "start": 37609.05, "end": 37611.43, "probability": 0.9872 }, { "start": 37612.29, "end": 37614.29, "probability": 0.7473 }, { "start": 37614.93, "end": 37617.15, "probability": 0.9925 }, { "start": 37617.99, "end": 37619.41, "probability": 0.942 }, { "start": 37620.67, "end": 37622.79, "probability": 0.9945 }, { "start": 37624.57, "end": 37625.79, "probability": 0.4962 }, { "start": 37626.71, "end": 37627.75, "probability": 0.7469 }, { "start": 37628.29, "end": 37630.23, "probability": 0.9536 }, { "start": 37631.01, "end": 37632.54, "probability": 0.9214 }, { "start": 37633.41, "end": 37634.61, "probability": 0.7416 }, { "start": 37636.29, "end": 37636.71, "probability": 0.931 }, { "start": 37637.87, "end": 37638.85, "probability": 0.972 }, { "start": 37639.71, "end": 37641.31, "probability": 0.931 }, { "start": 37642.23, "end": 37644.91, "probability": 0.8264 }, { "start": 37645.79, "end": 37650.41, "probability": 0.9805 }, { "start": 37653.13, "end": 37653.53, "probability": 0.9045 }, { "start": 37654.41, "end": 37656.69, "probability": 0.9885 }, { "start": 37658.11, "end": 37660.41, "probability": 0.9934 }, { "start": 37661.61, "end": 37664.43, "probability": 0.9751 }, { "start": 37666.01, "end": 37667.19, "probability": 0.6449 }, { "start": 37667.91, "end": 37668.57, "probability": 0.9537 }, { "start": 37669.51, "end": 37672.27, "probability": 0.9717 }, { "start": 37672.61, "end": 37676.21, "probability": 0.9949 }, { "start": 37676.77, "end": 37678.34, "probability": 0.9138 }, { "start": 37679.23, "end": 37680.07, "probability": 0.7618 }, { "start": 37681.09, "end": 37682.57, "probability": 0.981 }, { "start": 37683.47, "end": 37689.01, "probability": 0.9987 }, { "start": 37691.49, "end": 37693.87, "probability": 0.9917 }, { "start": 37694.99, "end": 37695.69, "probability": 0.9543 }, { "start": 37697.07, "end": 37697.87, "probability": 0.8638 }, { "start": 37698.51, "end": 37699.61, "probability": 0.6325 }, { "start": 37700.83, "end": 37701.73, "probability": 0.9268 }, { "start": 37702.63, "end": 37704.81, "probability": 0.9916 }, { "start": 37705.67, "end": 37709.15, "probability": 0.9922 }, { "start": 37709.75, "end": 37711.03, "probability": 0.6423 }, { "start": 37711.89, "end": 37715.57, "probability": 0.9881 }, { "start": 37716.57, "end": 37717.15, "probability": 0.8678 }, { "start": 37717.57, "end": 37718.15, "probability": 0.9617 }, { "start": 37718.75, "end": 37719.21, "probability": 0.778 }, { "start": 37719.79, "end": 37721.95, "probability": 0.9295 }, { "start": 37722.51, "end": 37725.55, "probability": 0.9153 }, { "start": 37726.75, "end": 37728.83, "probability": 0.8644 }, { "start": 37729.41, "end": 37730.83, "probability": 0.8114 }, { "start": 37731.95, "end": 37733.95, "probability": 0.8446 }, { "start": 37734.97, "end": 37737.09, "probability": 0.9857 }, { "start": 37738.43, "end": 37741.57, "probability": 0.6741 }, { "start": 37742.69, "end": 37743.33, "probability": 0.88 }, { "start": 37744.37, "end": 37745.49, "probability": 0.9747 }, { "start": 37746.19, "end": 37748.6, "probability": 0.9456 }, { "start": 37749.67, "end": 37750.77, "probability": 0.9277 }, { "start": 37751.63, "end": 37754.69, "probability": 0.9842 }, { "start": 37757.07, "end": 37758.69, "probability": 0.8715 }, { "start": 37759.31, "end": 37760.31, "probability": 0.6994 }, { "start": 37760.85, "end": 37761.83, "probability": 0.9534 }, { "start": 37762.73, "end": 37764.43, "probability": 0.9588 }, { "start": 37765.19, "end": 37768.17, "probability": 0.9984 }, { "start": 37768.17, "end": 37771.49, "probability": 0.9878 }, { "start": 37772.93, "end": 37773.55, "probability": 0.7963 }, { "start": 37774.09, "end": 37776.25, "probability": 0.9987 }, { "start": 37778.53, "end": 37779.97, "probability": 0.9976 }, { "start": 37780.55, "end": 37782.01, "probability": 0.993 }, { "start": 37782.09, "end": 37782.73, "probability": 0.8477 }, { "start": 37783.39, "end": 37785.27, "probability": 0.984 }, { "start": 37786.71, "end": 37789.49, "probability": 0.9883 }, { "start": 37790.33, "end": 37793.51, "probability": 0.9788 }, { "start": 37794.07, "end": 37798.27, "probability": 0.8851 }, { "start": 37799.23, "end": 37800.21, "probability": 0.8994 }, { "start": 37801.41, "end": 37801.79, "probability": 0.3286 }, { "start": 37802.57, "end": 37804.67, "probability": 0.9975 }, { "start": 37805.41, "end": 37807.53, "probability": 0.897 }, { "start": 37808.17, "end": 37814.37, "probability": 0.9878 }, { "start": 37814.45, "end": 37814.81, "probability": 0.5986 }, { "start": 37815.59, "end": 37817.21, "probability": 0.9941 }, { "start": 37818.07, "end": 37819.61, "probability": 0.999 }, { "start": 37820.73, "end": 37821.39, "probability": 0.994 }, { "start": 37821.93, "end": 37823.39, "probability": 0.9925 }, { "start": 37824.21, "end": 37825.27, "probability": 0.6289 }, { "start": 37825.83, "end": 37830.95, "probability": 0.973 }, { "start": 37832.07, "end": 37835.13, "probability": 0.8491 }, { "start": 37836.19, "end": 37837.23, "probability": 0.8202 }, { "start": 37839.67, "end": 37843.79, "probability": 0.9441 }, { "start": 37843.91, "end": 37846.65, "probability": 0.9408 }, { "start": 37847.27, "end": 37852.19, "probability": 0.9917 }, { "start": 37853.01, "end": 37855.99, "probability": 0.6648 }, { "start": 37856.69, "end": 37859.07, "probability": 0.9904 }, { "start": 37859.83, "end": 37863.27, "probability": 0.968 }, { "start": 37863.69, "end": 37866.81, "probability": 0.9959 }, { "start": 37867.33, "end": 37867.53, "probability": 0.6348 }, { "start": 37868.05, "end": 37869.65, "probability": 0.8714 }, { "start": 37869.83, "end": 37871.91, "probability": 0.9194 }, { "start": 37889.97, "end": 37892.25, "probability": 0.7334 }, { "start": 37892.93, "end": 37896.93, "probability": 0.9761 }, { "start": 37898.45, "end": 37901.73, "probability": 0.9888 }, { "start": 37902.89, "end": 37905.65, "probability": 0.7826 }, { "start": 37906.43, "end": 37907.86, "probability": 0.9769 }, { "start": 37909.09, "end": 37910.33, "probability": 0.9246 }, { "start": 37911.25, "end": 37914.55, "probability": 0.6957 }, { "start": 37914.99, "end": 37916.85, "probability": 0.9941 }, { "start": 37917.57, "end": 37919.69, "probability": 0.7468 }, { "start": 37920.63, "end": 37923.87, "probability": 0.0537 }, { "start": 37924.05, "end": 37925.73, "probability": 0.7133 }, { "start": 37926.25, "end": 37928.43, "probability": 0.8717 }, { "start": 37929.37, "end": 37930.47, "probability": 0.6098 }, { "start": 37931.55, "end": 37932.67, "probability": 0.6288 }, { "start": 37933.65, "end": 37934.75, "probability": 0.9539 }, { "start": 37935.27, "end": 37938.59, "probability": 0.8718 }, { "start": 37939.93, "end": 37941.95, "probability": 0.9495 }, { "start": 37942.73, "end": 37949.19, "probability": 0.9795 }, { "start": 37949.99, "end": 37952.63, "probability": 0.9803 }, { "start": 37953.25, "end": 37956.43, "probability": 0.6906 }, { "start": 37956.43, "end": 37959.37, "probability": 0.9201 }, { "start": 37960.53, "end": 37962.47, "probability": 0.6719 }, { "start": 37963.21, "end": 37964.17, "probability": 0.8109 }, { "start": 37965.01, "end": 37966.17, "probability": 0.8503 }, { "start": 37967.51, "end": 37969.44, "probability": 0.8728 }, { "start": 37969.53, "end": 37972.21, "probability": 0.9667 }, { "start": 37972.67, "end": 37973.43, "probability": 0.3258 }, { "start": 37974.95, "end": 37977.03, "probability": 0.5857 }, { "start": 37977.77, "end": 37978.93, "probability": 0.793 }, { "start": 37979.95, "end": 37980.82, "probability": 0.8718 }, { "start": 37981.69, "end": 37986.71, "probability": 0.963 }, { "start": 37987.61, "end": 37989.03, "probability": 0.8547 }, { "start": 37989.59, "end": 37990.43, "probability": 0.7952 }, { "start": 37990.95, "end": 37993.37, "probability": 0.8357 }, { "start": 37994.49, "end": 37995.03, "probability": 0.1929 }, { "start": 37995.65, "end": 37997.03, "probability": 0.7803 }, { "start": 37998.05, "end": 38000.65, "probability": 0.9739 }, { "start": 38001.41, "end": 38003.0, "probability": 0.9946 }, { "start": 38005.13, "end": 38005.75, "probability": 0.7714 }, { "start": 38006.51, "end": 38007.71, "probability": 0.7787 }, { "start": 38008.37, "end": 38010.59, "probability": 0.9348 }, { "start": 38011.23, "end": 38011.73, "probability": 0.2732 }, { "start": 38011.73, "end": 38012.41, "probability": 0.7306 }, { "start": 38012.55, "end": 38016.31, "probability": 0.7649 }, { "start": 38016.75, "end": 38018.13, "probability": 0.8708 }, { "start": 38018.17, "end": 38019.35, "probability": 0.2358 }, { "start": 38019.35, "end": 38021.07, "probability": 0.0529 }, { "start": 38021.07, "end": 38023.47, "probability": 0.7483 }, { "start": 38024.25, "end": 38027.93, "probability": 0.8894 }, { "start": 38028.29, "end": 38029.69, "probability": 0.0936 }, { "start": 38030.61, "end": 38034.37, "probability": 0.9796 }, { "start": 38035.13, "end": 38037.13, "probability": 0.8419 }, { "start": 38038.25, "end": 38040.13, "probability": 0.9512 }, { "start": 38040.31, "end": 38041.85, "probability": 0.9109 }, { "start": 38042.55, "end": 38045.83, "probability": 0.8116 }, { "start": 38047.13, "end": 38048.69, "probability": 0.8064 }, { "start": 38049.09, "end": 38050.05, "probability": 0.2103 }, { "start": 38050.39, "end": 38052.29, "probability": 0.5003 }, { "start": 38052.45, "end": 38053.11, "probability": 0.6523 }, { "start": 38053.35, "end": 38054.51, "probability": 0.8612 }, { "start": 38055.77, "end": 38059.41, "probability": 0.724 }, { "start": 38060.21, "end": 38061.37, "probability": 0.8577 }, { "start": 38062.01, "end": 38063.19, "probability": 0.6828 }, { "start": 38063.87, "end": 38065.11, "probability": 0.6278 }, { "start": 38065.87, "end": 38066.67, "probability": 0.78 }, { "start": 38067.33, "end": 38068.2, "probability": 0.5813 }, { "start": 38070.63, "end": 38070.79, "probability": 0.0244 }, { "start": 38070.79, "end": 38072.45, "probability": 0.8097 }, { "start": 38073.15, "end": 38074.73, "probability": 0.7391 }, { "start": 38074.99, "end": 38078.46, "probability": 0.7254 }, { "start": 38078.83, "end": 38081.45, "probability": 0.6044 }, { "start": 38081.55, "end": 38086.29, "probability": 0.8875 }, { "start": 38086.33, "end": 38086.75, "probability": 0.3933 }, { "start": 38086.79, "end": 38087.21, "probability": 0.7277 }, { "start": 38087.79, "end": 38088.67, "probability": 0.9971 }, { "start": 38089.43, "end": 38089.43, "probability": 0.1837 }, { "start": 38089.43, "end": 38091.11, "probability": 0.766 }, { "start": 38091.11, "end": 38091.13, "probability": 0.4085 }, { "start": 38091.15, "end": 38091.99, "probability": 0.7762 }, { "start": 38092.17, "end": 38092.75, "probability": 0.8016 }, { "start": 38092.81, "end": 38094.43, "probability": 0.0099 }, { "start": 38095.39, "end": 38096.75, "probability": 0.6507 }, { "start": 38097.45, "end": 38099.03, "probability": 0.9629 }, { "start": 38099.77, "end": 38102.87, "probability": 0.8636 }, { "start": 38105.23, "end": 38105.31, "probability": 0.0162 }, { "start": 38105.31, "end": 38106.33, "probability": 0.5519 }, { "start": 38106.97, "end": 38109.55, "probability": 0.739 }, { "start": 38110.57, "end": 38112.01, "probability": 0.6729 }, { "start": 38112.77, "end": 38114.53, "probability": 0.7994 }, { "start": 38115.13, "end": 38117.35, "probability": 0.7881 }, { "start": 38118.09, "end": 38119.49, "probability": 0.9845 }, { "start": 38120.77, "end": 38121.56, "probability": 0.8879 }, { "start": 38122.65, "end": 38124.29, "probability": 0.7366 }, { "start": 38125.07, "end": 38125.77, "probability": 0.8406 }, { "start": 38126.73, "end": 38127.63, "probability": 0.8785 }, { "start": 38129.67, "end": 38132.95, "probability": 0.9038 }, { "start": 38133.83, "end": 38136.81, "probability": 0.6914 }, { "start": 38137.95, "end": 38139.19, "probability": 0.8763 }, { "start": 38139.83, "end": 38141.36, "probability": 0.8987 }, { "start": 38142.35, "end": 38144.94, "probability": 0.6444 }, { "start": 38145.83, "end": 38146.6, "probability": 0.6849 }, { "start": 38147.09, "end": 38149.63, "probability": 0.6787 }, { "start": 38149.67, "end": 38150.83, "probability": 0.9072 }, { "start": 38151.35, "end": 38152.61, "probability": 0.7631 }, { "start": 38153.17, "end": 38154.29, "probability": 0.8464 }, { "start": 38155.13, "end": 38156.89, "probability": 0.6946 }, { "start": 38157.87, "end": 38158.69, "probability": 0.7105 }, { "start": 38159.41, "end": 38161.01, "probability": 0.6304 }, { "start": 38161.09, "end": 38164.81, "probability": 0.9846 }, { "start": 38165.45, "end": 38166.33, "probability": 0.7356 }, { "start": 38166.45, "end": 38167.01, "probability": 0.8599 }, { "start": 38167.09, "end": 38168.03, "probability": 0.9479 }, { "start": 38168.11, "end": 38170.01, "probability": 0.7882 }, { "start": 38170.45, "end": 38170.75, "probability": 0.9516 }, { "start": 38170.87, "end": 38171.23, "probability": 0.8639 }, { "start": 38171.23, "end": 38172.67, "probability": 0.8657 }, { "start": 38173.69, "end": 38176.39, "probability": 0.978 }, { "start": 38176.87, "end": 38179.31, "probability": 0.9912 }, { "start": 38179.73, "end": 38181.13, "probability": 0.7383 }, { "start": 38181.67, "end": 38185.03, "probability": 0.993 }, { "start": 38186.05, "end": 38187.67, "probability": 0.5312 }, { "start": 38187.97, "end": 38189.41, "probability": 0.7079 }, { "start": 38189.61, "end": 38190.81, "probability": 0.8019 }, { "start": 38219.27, "end": 38219.49, "probability": 0.605 }, { "start": 38226.01, "end": 38226.31, "probability": 0.6081 }, { "start": 38228.33, "end": 38229.81, "probability": 0.8719 }, { "start": 38230.67, "end": 38232.03, "probability": 0.7899 }, { "start": 38235.18, "end": 38240.11, "probability": 0.9042 }, { "start": 38241.55, "end": 38242.95, "probability": 0.8621 }, { "start": 38244.13, "end": 38246.01, "probability": 0.7592 }, { "start": 38246.69, "end": 38250.37, "probability": 0.8999 }, { "start": 38251.95, "end": 38256.37, "probability": 0.9965 }, { "start": 38257.55, "end": 38263.55, "probability": 0.9988 }, { "start": 38264.43, "end": 38268.77, "probability": 0.9149 }, { "start": 38269.95, "end": 38272.01, "probability": 0.8426 }, { "start": 38273.11, "end": 38274.31, "probability": 0.9966 }, { "start": 38275.77, "end": 38277.56, "probability": 0.9985 }, { "start": 38278.79, "end": 38284.77, "probability": 0.8791 }, { "start": 38285.65, "end": 38286.57, "probability": 0.7474 }, { "start": 38287.31, "end": 38291.23, "probability": 0.9595 }, { "start": 38291.67, "end": 38292.09, "probability": 0.4766 }, { "start": 38292.13, "end": 38292.49, "probability": 0.9698 }, { "start": 38294.35, "end": 38295.75, "probability": 0.0444 }, { "start": 38297.07, "end": 38297.63, "probability": 0.657 }, { "start": 38298.31, "end": 38298.77, "probability": 0.7603 }, { "start": 38298.91, "end": 38303.56, "probability": 0.7097 }, { "start": 38304.13, "end": 38304.39, "probability": 0.5403 }, { "start": 38304.47, "end": 38306.97, "probability": 0.7575 }, { "start": 38307.57, "end": 38308.79, "probability": 0.994 }, { "start": 38308.89, "end": 38311.49, "probability": 0.9795 }, { "start": 38311.49, "end": 38314.03, "probability": 0.9847 }, { "start": 38315.55, "end": 38318.93, "probability": 0.677 }, { "start": 38319.45, "end": 38319.83, "probability": 0.3915 }, { "start": 38320.43, "end": 38322.97, "probability": 0.7979 }, { "start": 38323.65, "end": 38331.47, "probability": 0.9891 }, { "start": 38331.55, "end": 38332.39, "probability": 0.8746 }, { "start": 38332.47, "end": 38335.21, "probability": 0.9551 }, { "start": 38335.35, "end": 38336.73, "probability": 0.5017 }, { "start": 38337.35, "end": 38342.19, "probability": 0.9503 }, { "start": 38342.27, "end": 38342.71, "probability": 0.8353 }, { "start": 38343.97, "end": 38345.39, "probability": 0.8861 }, { "start": 38345.69, "end": 38346.15, "probability": 0.9648 }, { "start": 38346.21, "end": 38348.53, "probability": 0.9045 }, { "start": 38348.55, "end": 38351.35, "probability": 0.9531 }, { "start": 38352.09, "end": 38355.61, "probability": 0.9949 }, { "start": 38355.93, "end": 38358.07, "probability": 0.9971 }, { "start": 38358.13, "end": 38361.67, "probability": 0.9883 }, { "start": 38363.23, "end": 38365.17, "probability": 0.8145 }, { "start": 38366.19, "end": 38370.13, "probability": 0.9878 }, { "start": 38370.13, "end": 38375.73, "probability": 0.979 }, { "start": 38375.87, "end": 38378.35, "probability": 0.9457 }, { "start": 38378.49, "end": 38380.33, "probability": 0.6955 }, { "start": 38380.89, "end": 38381.47, "probability": 0.5789 }, { "start": 38382.23, "end": 38383.9, "probability": 0.8354 }, { "start": 38384.03, "end": 38388.37, "probability": 0.9321 }, { "start": 38388.75, "end": 38390.39, "probability": 0.9875 }, { "start": 38391.11, "end": 38392.11, "probability": 0.8232 }, { "start": 38393.19, "end": 38393.61, "probability": 0.5961 }, { "start": 38393.83, "end": 38394.21, "probability": 0.9004 }, { "start": 38394.89, "end": 38394.95, "probability": 0.0214 }, { "start": 38394.95, "end": 38394.95, "probability": 0.6301 }, { "start": 38394.95, "end": 38396.39, "probability": 0.9791 }, { "start": 38396.95, "end": 38398.55, "probability": 0.9592 }, { "start": 38399.35, "end": 38401.61, "probability": 0.911 }, { "start": 38401.71, "end": 38402.21, "probability": 0.9812 }, { "start": 38402.99, "end": 38404.69, "probability": 0.917 }, { "start": 38408.03, "end": 38412.65, "probability": 0.9856 }, { "start": 38413.77, "end": 38414.85, "probability": 0.778 }, { "start": 38416.07, "end": 38420.63, "probability": 0.5003 }, { "start": 38421.55, "end": 38425.99, "probability": 0.5363 }, { "start": 38426.81, "end": 38426.87, "probability": 0.301 }, { "start": 38426.95, "end": 38430.0, "probability": 0.9931 }, { "start": 38430.57, "end": 38431.29, "probability": 0.7755 }, { "start": 38431.31, "end": 38433.81, "probability": 0.7236 }, { "start": 38434.81, "end": 38436.05, "probability": 0.8202 }, { "start": 38436.83, "end": 38439.09, "probability": 0.8185 }, { "start": 38439.83, "end": 38440.85, "probability": 0.9379 }, { "start": 38442.97, "end": 38444.74, "probability": 0.9597 }, { "start": 38445.49, "end": 38446.55, "probability": 0.9783 }, { "start": 38449.63, "end": 38453.89, "probability": 0.8267 }, { "start": 38455.21, "end": 38457.41, "probability": 0.9894 }, { "start": 38457.69, "end": 38460.33, "probability": 0.936 }, { "start": 38460.85, "end": 38461.07, "probability": 0.7932 }, { "start": 38463.01, "end": 38464.65, "probability": 0.9984 }, { "start": 38465.69, "end": 38471.81, "probability": 0.9775 }, { "start": 38472.03, "end": 38476.31, "probability": 0.9986 }, { "start": 38476.57, "end": 38479.19, "probability": 0.9917 }, { "start": 38479.31, "end": 38481.25, "probability": 0.9417 }, { "start": 38483.01, "end": 38483.95, "probability": 0.9329 }, { "start": 38484.15, "end": 38486.57, "probability": 0.9788 }, { "start": 38487.89, "end": 38489.69, "probability": 0.781 }, { "start": 38490.35, "end": 38493.23, "probability": 0.8609 }, { "start": 38493.83, "end": 38494.37, "probability": 0.5546 }, { "start": 38494.51, "end": 38495.17, "probability": 0.9316 }, { "start": 38495.27, "end": 38497.09, "probability": 0.8304 }, { "start": 38497.59, "end": 38499.01, "probability": 0.8761 }, { "start": 38501.15, "end": 38501.87, "probability": 0.7986 }, { "start": 38502.59, "end": 38503.63, "probability": 0.9737 }, { "start": 38504.19, "end": 38505.21, "probability": 0.735 }, { "start": 38505.65, "end": 38507.31, "probability": 0.9692 }, { "start": 38508.11, "end": 38509.23, "probability": 0.9768 }, { "start": 38509.83, "end": 38510.73, "probability": 0.8702 }, { "start": 38511.47, "end": 38514.47, "probability": 0.9971 }, { "start": 38514.99, "end": 38517.03, "probability": 0.8979 }, { "start": 38517.79, "end": 38519.39, "probability": 0.9162 }, { "start": 38519.79, "end": 38520.58, "probability": 0.4982 }, { "start": 38521.59, "end": 38523.17, "probability": 0.9568 }, { "start": 38524.07, "end": 38526.49, "probability": 0.9416 }, { "start": 38527.65, "end": 38528.85, "probability": 0.6934 }, { "start": 38529.79, "end": 38531.99, "probability": 0.9908 }, { "start": 38533.05, "end": 38535.23, "probability": 0.6963 }, { "start": 38536.03, "end": 38538.81, "probability": 0.9858 }, { "start": 38539.01, "end": 38542.25, "probability": 0.9933 }, { "start": 38542.93, "end": 38543.65, "probability": 0.6083 }, { "start": 38543.83, "end": 38545.35, "probability": 0.8748 }, { "start": 38545.39, "end": 38547.53, "probability": 0.8416 }, { "start": 38547.71, "end": 38550.07, "probability": 0.9492 }, { "start": 38550.15, "end": 38551.97, "probability": 0.7749 }, { "start": 38552.79, "end": 38557.5, "probability": 0.9835 }, { "start": 38558.19, "end": 38562.27, "probability": 0.997 }, { "start": 38562.95, "end": 38568.71, "probability": 0.9351 }, { "start": 38568.71, "end": 38575.13, "probability": 0.9917 }, { "start": 38575.19, "end": 38575.67, "probability": 0.7596 }, { "start": 38575.71, "end": 38577.25, "probability": 0.9927 }, { "start": 38577.79, "end": 38578.43, "probability": 0.882 }, { "start": 38578.55, "end": 38579.15, "probability": 0.5434 }, { "start": 38579.67, "end": 38581.51, "probability": 0.9788 }, { "start": 38581.81, "end": 38582.31, "probability": 0.6598 }, { "start": 38584.05, "end": 38585.21, "probability": 0.7066 }, { "start": 38585.77, "end": 38586.21, "probability": 0.9423 }, { "start": 38587.29, "end": 38588.63, "probability": 0.8151 }, { "start": 38617.95, "end": 38618.93, "probability": 0.6513 }, { "start": 38619.75, "end": 38620.79, "probability": 0.8424 }, { "start": 38622.17, "end": 38622.89, "probability": 0.8436 }, { "start": 38625.47, "end": 38629.81, "probability": 0.8271 }, { "start": 38630.95, "end": 38634.09, "probability": 0.9948 }, { "start": 38636.01, "end": 38638.65, "probability": 0.9953 }, { "start": 38638.65, "end": 38640.69, "probability": 0.9807 }, { "start": 38645.39, "end": 38647.17, "probability": 0.307 }, { "start": 38647.53, "end": 38649.99, "probability": 0.9378 }, { "start": 38650.05, "end": 38651.83, "probability": 0.9953 }, { "start": 38652.43, "end": 38655.14, "probability": 0.91 }, { "start": 38655.83, "end": 38658.91, "probability": 0.9828 }, { "start": 38659.61, "end": 38662.69, "probability": 0.991 }, { "start": 38663.27, "end": 38664.81, "probability": 0.9912 }, { "start": 38665.81, "end": 38667.23, "probability": 0.7426 }, { "start": 38668.87, "end": 38673.03, "probability": 0.9781 }, { "start": 38673.09, "end": 38674.73, "probability": 0.9824 }, { "start": 38675.45, "end": 38676.85, "probability": 0.7745 }, { "start": 38677.95, "end": 38683.71, "probability": 0.9978 }, { "start": 38683.93, "end": 38686.33, "probability": 0.9971 }, { "start": 38687.15, "end": 38689.09, "probability": 0.9912 }, { "start": 38690.27, "end": 38694.24, "probability": 0.9984 }, { "start": 38695.27, "end": 38696.95, "probability": 0.976 }, { "start": 38697.73, "end": 38699.91, "probability": 0.7739 }, { "start": 38701.27, "end": 38701.79, "probability": 0.9706 }, { "start": 38702.81, "end": 38707.51, "probability": 0.9937 }, { "start": 38708.11, "end": 38712.23, "probability": 0.9967 }, { "start": 38713.05, "end": 38716.63, "probability": 0.997 }, { "start": 38717.71, "end": 38720.97, "probability": 0.8711 }, { "start": 38721.93, "end": 38725.38, "probability": 0.9803 }, { "start": 38726.03, "end": 38731.65, "probability": 0.8498 }, { "start": 38731.65, "end": 38736.57, "probability": 0.8064 }, { "start": 38736.57, "end": 38741.07, "probability": 0.9987 }, { "start": 38742.41, "end": 38748.71, "probability": 0.9655 }, { "start": 38749.53, "end": 38754.45, "probability": 0.9514 }, { "start": 38754.45, "end": 38759.01, "probability": 0.9971 }, { "start": 38759.53, "end": 38760.97, "probability": 0.9833 }, { "start": 38761.55, "end": 38763.47, "probability": 0.9996 }, { "start": 38764.17, "end": 38767.27, "probability": 0.9924 }, { "start": 38767.85, "end": 38769.77, "probability": 0.9834 }, { "start": 38770.53, "end": 38772.13, "probability": 0.846 }, { "start": 38772.19, "end": 38775.05, "probability": 0.8391 }, { "start": 38775.77, "end": 38778.89, "probability": 0.9873 }, { "start": 38779.53, "end": 38782.49, "probability": 0.9826 }, { "start": 38782.65, "end": 38785.89, "probability": 0.996 }, { "start": 38787.73, "end": 38789.11, "probability": 0.9976 }, { "start": 38790.63, "end": 38794.87, "probability": 0.9917 }, { "start": 38796.19, "end": 38797.87, "probability": 0.9885 }, { "start": 38798.01, "end": 38799.03, "probability": 0.8261 }, { "start": 38799.35, "end": 38801.77, "probability": 0.9962 }, { "start": 38802.37, "end": 38806.97, "probability": 0.9955 }, { "start": 38806.97, "end": 38813.19, "probability": 0.999 }, { "start": 38814.15, "end": 38819.71, "probability": 0.9757 }, { "start": 38820.25, "end": 38822.07, "probability": 0.9998 }, { "start": 38823.33, "end": 38826.13, "probability": 0.9988 }, { "start": 38826.13, "end": 38830.09, "probability": 0.9856 }, { "start": 38830.65, "end": 38831.53, "probability": 0.7105 }, { "start": 38832.55, "end": 38833.27, "probability": 0.7203 }, { "start": 38834.03, "end": 38835.17, "probability": 0.884 }, { "start": 38837.29, "end": 38838.31, "probability": 0.6752 }, { "start": 38839.65, "end": 38840.85, "probability": 0.989 }, { "start": 38842.17, "end": 38845.33, "probability": 0.98 }, { "start": 38845.53, "end": 38850.45, "probability": 0.9866 }, { "start": 38851.67, "end": 38854.69, "probability": 0.9703 }, { "start": 38855.49, "end": 38857.59, "probability": 0.5088 }, { "start": 38858.61, "end": 38859.95, "probability": 0.8832 }, { "start": 38860.15, "end": 38862.43, "probability": 0.9392 }, { "start": 38862.91, "end": 38864.49, "probability": 0.9176 }, { "start": 38864.95, "end": 38865.33, "probability": 0.7661 }, { "start": 38866.47, "end": 38868.49, "probability": 0.9363 }, { "start": 38868.99, "end": 38871.44, "probability": 0.9922 }, { "start": 38871.99, "end": 38874.59, "probability": 0.9437 }, { "start": 38875.15, "end": 38876.57, "probability": 0.7119 }, { "start": 38877.45, "end": 38879.99, "probability": 0.9985 }, { "start": 38880.49, "end": 38881.67, "probability": 0.9468 }, { "start": 38882.13, "end": 38883.93, "probability": 0.8423 }, { "start": 38885.01, "end": 38885.83, "probability": 0.6882 }, { "start": 38887.21, "end": 38889.81, "probability": 0.9915 }, { "start": 38890.43, "end": 38891.81, "probability": 0.972 }, { "start": 38893.31, "end": 38893.61, "probability": 0.7642 }, { "start": 38894.69, "end": 38897.07, "probability": 0.9617 }, { "start": 38898.17, "end": 38900.03, "probability": 0.9836 }, { "start": 38901.13, "end": 38901.91, "probability": 0.9572 }, { "start": 38902.71, "end": 38903.85, "probability": 0.5945 }, { "start": 38904.73, "end": 38907.49, "probability": 0.9897 }, { "start": 38908.37, "end": 38908.63, "probability": 0.5577 }, { "start": 38909.33, "end": 38912.29, "probability": 0.9572 }, { "start": 38912.93, "end": 38916.71, "probability": 0.9727 }, { "start": 38916.95, "end": 38917.47, "probability": 0.9196 }, { "start": 38917.85, "end": 38918.69, "probability": 0.6669 }, { "start": 38918.75, "end": 38920.31, "probability": 0.934 }, { "start": 38920.43, "end": 38921.13, "probability": 0.8157 }, { "start": 38929.19, "end": 38929.41, "probability": 0.1603 }, { "start": 38929.41, "end": 38929.41, "probability": 0.1427 }, { "start": 38929.41, "end": 38929.41, "probability": 0.1759 }, { "start": 38929.41, "end": 38929.41, "probability": 0.0054 }, { "start": 38929.41, "end": 38929.63, "probability": 0.149 }, { "start": 38968.13, "end": 38970.89, "probability": 0.8731 }, { "start": 38971.95, "end": 38973.73, "probability": 0.9989 }, { "start": 38977.01, "end": 38980.59, "probability": 0.9927 }, { "start": 38980.63, "end": 38982.97, "probability": 0.9976 }, { "start": 38984.37, "end": 38985.31, "probability": 0.8586 }, { "start": 38985.69, "end": 38987.57, "probability": 0.9987 }, { "start": 38988.79, "end": 38989.63, "probability": 0.0483 }, { "start": 38991.3, "end": 38992.71, "probability": 0.469 }, { "start": 38992.95, "end": 38993.07, "probability": 0.1214 }, { "start": 38993.07, "end": 38994.48, "probability": 0.4016 }, { "start": 38994.97, "end": 38995.97, "probability": 0.2649 }, { "start": 38997.29, "end": 38998.87, "probability": 0.7825 }, { "start": 39000.41, "end": 39003.11, "probability": 0.9962 }, { "start": 39003.53, "end": 39005.37, "probability": 0.9114 }, { "start": 39005.71, "end": 39007.21, "probability": 0.1935 }, { "start": 39007.43, "end": 39010.13, "probability": 0.3728 }, { "start": 39010.93, "end": 39011.73, "probability": 0.3768 }, { "start": 39013.87, "end": 39015.75, "probability": 0.9846 }, { "start": 39016.71, "end": 39018.67, "probability": 0.8562 }, { "start": 39018.67, "end": 39020.99, "probability": 0.597 }, { "start": 39021.07, "end": 39022.23, "probability": 0.8698 }, { "start": 39022.31, "end": 39022.95, "probability": 0.9311 }, { "start": 39023.03, "end": 39023.69, "probability": 0.9175 }, { "start": 39023.77, "end": 39024.23, "probability": 0.9407 }, { "start": 39024.77, "end": 39026.05, "probability": 0.828 }, { "start": 39027.25, "end": 39028.61, "probability": 0.9983 }, { "start": 39029.57, "end": 39033.85, "probability": 0.9399 }, { "start": 39034.99, "end": 39037.71, "probability": 0.8963 }, { "start": 39038.05, "end": 39040.63, "probability": 0.9954 }, { "start": 39041.53, "end": 39042.57, "probability": 0.9705 }, { "start": 39042.79, "end": 39043.15, "probability": 0.7618 }, { "start": 39043.21, "end": 39044.81, "probability": 0.9972 }, { "start": 39046.19, "end": 39048.99, "probability": 0.9905 }, { "start": 39049.47, "end": 39049.63, "probability": 0.7587 }, { "start": 39049.69, "end": 39051.57, "probability": 0.98 }, { "start": 39051.65, "end": 39054.05, "probability": 0.9964 }, { "start": 39054.59, "end": 39057.77, "probability": 0.9852 }, { "start": 39057.77, "end": 39061.35, "probability": 0.9201 }, { "start": 39062.21, "end": 39064.57, "probability": 0.6962 }, { "start": 39064.65, "end": 39066.45, "probability": 0.989 }, { "start": 39066.97, "end": 39073.44, "probability": 0.9959 }, { "start": 39073.82, "end": 39078.67, "probability": 0.9987 }, { "start": 39079.21, "end": 39080.75, "probability": 0.7463 }, { "start": 39080.91, "end": 39084.17, "probability": 0.825 }, { "start": 39084.97, "end": 39085.35, "probability": 0.4807 }, { "start": 39086.01, "end": 39088.15, "probability": 0.9279 }, { "start": 39088.97, "end": 39089.13, "probability": 0.4812 }, { "start": 39092.91, "end": 39095.31, "probability": 0.9077 }, { "start": 39096.37, "end": 39096.63, "probability": 0.6138 }, { "start": 39096.87, "end": 39097.33, "probability": 0.718 }, { "start": 39097.43, "end": 39099.51, "probability": 0.9904 }, { "start": 39101.78, "end": 39104.08, "probability": 0.9949 }, { "start": 39105.43, "end": 39108.15, "probability": 0.9902 }, { "start": 39108.21, "end": 39109.78, "probability": 0.9775 }, { "start": 39111.13, "end": 39114.71, "probability": 0.9939 }, { "start": 39115.49, "end": 39118.5, "probability": 0.9983 }, { "start": 39119.45, "end": 39119.85, "probability": 0.6146 }, { "start": 39120.05, "end": 39123.63, "probability": 0.9907 }, { "start": 39123.69, "end": 39124.43, "probability": 0.9568 }, { "start": 39125.27, "end": 39130.61, "probability": 0.9903 }, { "start": 39130.71, "end": 39131.2, "probability": 0.6253 }, { "start": 39131.49, "end": 39136.69, "probability": 0.9346 }, { "start": 39138.75, "end": 39139.25, "probability": 0.3767 }, { "start": 39139.71, "end": 39141.23, "probability": 0.9528 }, { "start": 39141.53, "end": 39143.67, "probability": 0.9777 }, { "start": 39143.93, "end": 39147.17, "probability": 0.9941 }, { "start": 39147.97, "end": 39152.05, "probability": 0.9995 }, { "start": 39152.95, "end": 39154.05, "probability": 0.7474 }, { "start": 39154.49, "end": 39158.37, "probability": 0.9954 }, { "start": 39159.09, "end": 39162.05, "probability": 0.9475 }, { "start": 39162.17, "end": 39164.85, "probability": 0.8876 }, { "start": 39165.17, "end": 39170.09, "probability": 0.9061 }, { "start": 39170.43, "end": 39171.45, "probability": 0.6095 }, { "start": 39173.11, "end": 39173.93, "probability": 0.777 }, { "start": 39174.34, "end": 39176.43, "probability": 0.8473 }, { "start": 39177.01, "end": 39177.67, "probability": 0.7125 }, { "start": 39178.53, "end": 39179.46, "probability": 0.8379 }, { "start": 39179.51, "end": 39182.25, "probability": 0.9973 }, { "start": 39182.83, "end": 39184.41, "probability": 0.9089 }, { "start": 39184.53, "end": 39186.51, "probability": 0.9766 }, { "start": 39186.83, "end": 39187.23, "probability": 0.6472 }, { "start": 39187.59, "end": 39188.05, "probability": 0.5069 }, { "start": 39188.11, "end": 39188.67, "probability": 0.907 }, { "start": 39188.83, "end": 39192.13, "probability": 0.6197 }, { "start": 39192.25, "end": 39194.79, "probability": 0.9798 }, { "start": 39195.85, "end": 39200.13, "probability": 0.9175 }, { "start": 39200.19, "end": 39201.59, "probability": 0.9954 }, { "start": 39201.93, "end": 39204.43, "probability": 0.8273 }, { "start": 39205.59, "end": 39207.81, "probability": 0.6947 }, { "start": 39209.15, "end": 39209.61, "probability": 0.2582 }, { "start": 39210.71, "end": 39211.37, "probability": 0.6452 }, { "start": 39211.65, "end": 39212.33, "probability": 0.8147 }, { "start": 39212.41, "end": 39212.59, "probability": 0.1449 }, { "start": 39212.59, "end": 39213.77, "probability": 0.4305 }, { "start": 39213.95, "end": 39216.77, "probability": 0.5582 }, { "start": 39217.41, "end": 39219.13, "probability": 0.9746 }, { "start": 39221.09, "end": 39222.37, "probability": 0.8016 }, { "start": 39223.55, "end": 39224.93, "probability": 0.9058 }, { "start": 39225.95, "end": 39227.09, "probability": 0.9014 }, { "start": 39227.73, "end": 39228.86, "probability": 0.7237 }, { "start": 39229.29, "end": 39231.71, "probability": 0.9067 }, { "start": 39231.89, "end": 39233.59, "probability": 0.9696 }, { "start": 39233.67, "end": 39234.17, "probability": 0.3398 }, { "start": 39234.17, "end": 39234.27, "probability": 0.1629 }, { "start": 39234.27, "end": 39235.54, "probability": 0.3654 }, { "start": 39235.91, "end": 39237.09, "probability": 0.323 }, { "start": 39237.45, "end": 39240.43, "probability": 0.6636 }, { "start": 39241.67, "end": 39242.31, "probability": 0.7499 }, { "start": 39242.43, "end": 39243.75, "probability": 0.8066 }, { "start": 39243.79, "end": 39246.11, "probability": 0.8263 }, { "start": 39250.25, "end": 39254.93, "probability": 0.5812 }, { "start": 39255.33, "end": 39257.07, "probability": 0.7372 }, { "start": 39257.71, "end": 39258.41, "probability": 0.7929 }, { "start": 39258.65, "end": 39260.87, "probability": 0.7743 }, { "start": 39261.83, "end": 39266.37, "probability": 0.5964 }, { "start": 39266.91, "end": 39269.25, "probability": 0.8412 }, { "start": 39269.91, "end": 39271.87, "probability": 0.9288 }, { "start": 39282.09, "end": 39283.15, "probability": 0.0192 }, { "start": 39290.45, "end": 39290.89, "probability": 0.4091 }, { "start": 39290.99, "end": 39292.55, "probability": 0.4924 }, { "start": 39295.09, "end": 39295.57, "probability": 0.7279 }, { "start": 39296.63, "end": 39297.19, "probability": 0.644 }, { "start": 39303.62, "end": 39306.03, "probability": 0.7537 }, { "start": 39306.33, "end": 39307.43, "probability": 0.4829 }, { "start": 39307.49, "end": 39308.29, "probability": 0.8916 }, { "start": 39309.15, "end": 39316.45, "probability": 0.9733 }, { "start": 39316.65, "end": 39316.89, "probability": 0.6296 }, { "start": 39317.51, "end": 39319.11, "probability": 0.998 }, { "start": 39319.55, "end": 39320.09, "probability": 0.505 }, { "start": 39320.53, "end": 39323.27, "probability": 0.3828 }, { "start": 39323.47, "end": 39325.35, "probability": 0.0997 }, { "start": 39325.87, "end": 39328.57, "probability": 0.4782 }, { "start": 39328.67, "end": 39331.13, "probability": 0.7485 }, { "start": 39332.01, "end": 39332.75, "probability": 0.671 }, { "start": 39334.73, "end": 39338.59, "probability": 0.7199 }, { "start": 39338.59, "end": 39339.31, "probability": 0.9162 }, { "start": 39342.59, "end": 39345.87, "probability": 0.335 }, { "start": 39345.97, "end": 39346.11, "probability": 0.416 }, { "start": 39346.37, "end": 39346.53, "probability": 0.9194 }, { "start": 39348.15, "end": 39350.29, "probability": 0.9553 }, { "start": 39353.07, "end": 39354.03, "probability": 0.8899 }, { "start": 39360.41, "end": 39361.45, "probability": 0.9917 }, { "start": 39361.49, "end": 39362.05, "probability": 0.7419 }, { "start": 39362.13, "end": 39362.69, "probability": 0.6453 }, { "start": 39362.77, "end": 39363.43, "probability": 0.8819 }, { "start": 39365.83, "end": 39368.41, "probability": 0.8277 }, { "start": 39368.43, "end": 39372.67, "probability": 0.78 }, { "start": 39372.75, "end": 39373.13, "probability": 0.4814 }, { "start": 39373.67, "end": 39374.23, "probability": 0.6456 }, { "start": 39374.89, "end": 39375.57, "probability": 0.7466 }, { "start": 39375.71, "end": 39376.25, "probability": 0.5938 }, { "start": 39376.47, "end": 39382.01, "probability": 0.7575 }, { "start": 39382.93, "end": 39385.45, "probability": 0.9814 }, { "start": 39388.51, "end": 39390.73, "probability": 0.9849 }, { "start": 39391.79, "end": 39392.65, "probability": 0.7872 }, { "start": 39393.79, "end": 39395.45, "probability": 0.9785 }, { "start": 39397.19, "end": 39398.21, "probability": 0.9706 }, { "start": 39398.29, "end": 39400.27, "probability": 0.669 }, { "start": 39401.15, "end": 39402.17, "probability": 0.8986 }, { "start": 39404.93, "end": 39407.37, "probability": 0.6688 }, { "start": 39410.03, "end": 39412.93, "probability": 0.9962 }, { "start": 39414.91, "end": 39415.25, "probability": 0.7747 }, { "start": 39417.57, "end": 39418.2, "probability": 0.9995 }, { "start": 39421.49, "end": 39423.05, "probability": 0.9102 }, { "start": 39423.61, "end": 39423.99, "probability": 0.9034 }, { "start": 39425.09, "end": 39425.53, "probability": 0.4428 }, { "start": 39426.07, "end": 39429.89, "probability": 0.8612 }, { "start": 39430.13, "end": 39434.37, "probability": 0.7834 }, { "start": 39435.87, "end": 39437.87, "probability": 0.6957 }, { "start": 39438.55, "end": 39440.05, "probability": 0.6732 }, { "start": 39440.33, "end": 39443.74, "probability": 0.8276 }, { "start": 39444.21, "end": 39444.81, "probability": 0.5823 }, { "start": 39445.17, "end": 39446.15, "probability": 0.8845 }, { "start": 39446.99, "end": 39447.23, "probability": 0.5054 }, { "start": 39447.61, "end": 39449.37, "probability": 0.8843 }, { "start": 39450.33, "end": 39451.09, "probability": 0.9905 }, { "start": 39452.11, "end": 39455.17, "probability": 0.9163 }, { "start": 39455.61, "end": 39458.01, "probability": 0.9362 }, { "start": 39458.45, "end": 39459.66, "probability": 0.9492 }, { "start": 39460.57, "end": 39462.03, "probability": 0.5879 }, { "start": 39464.29, "end": 39465.73, "probability": 0.917 }, { "start": 39467.97, "end": 39470.05, "probability": 0.9199 }, { "start": 39470.77, "end": 39474.25, "probability": 0.9228 }, { "start": 39475.09, "end": 39476.61, "probability": 0.9297 }, { "start": 39478.07, "end": 39480.01, "probability": 0.9595 }, { "start": 39480.83, "end": 39481.97, "probability": 0.9007 }, { "start": 39482.77, "end": 39484.65, "probability": 0.9014 }, { "start": 39485.11, "end": 39486.39, "probability": 0.8674 }, { "start": 39486.77, "end": 39487.49, "probability": 0.9478 }, { "start": 39487.63, "end": 39488.03, "probability": 0.9802 }, { "start": 39488.79, "end": 39490.65, "probability": 0.8619 }, { "start": 39491.11, "end": 39491.45, "probability": 0.724 }, { "start": 39491.53, "end": 39492.73, "probability": 0.9941 }, { "start": 39493.95, "end": 39495.35, "probability": 0.9849 }, { "start": 39495.51, "end": 39496.23, "probability": 0.9315 }, { "start": 39496.43, "end": 39500.89, "probability": 0.4651 }, { "start": 39500.99, "end": 39501.77, "probability": 0.8958 }, { "start": 39502.13, "end": 39504.25, "probability": 0.9717 }, { "start": 39504.95, "end": 39505.23, "probability": 0.0842 }, { "start": 39506.43, "end": 39507.17, "probability": 0.6605 }, { "start": 39507.91, "end": 39510.07, "probability": 0.6354 }, { "start": 39510.17, "end": 39510.45, "probability": 0.403 }, { "start": 39511.11, "end": 39513.85, "probability": 0.7554 }, { "start": 39514.31, "end": 39514.85, "probability": 0.6984 }, { "start": 39515.43, "end": 39515.43, "probability": 0.2172 }, { "start": 39515.43, "end": 39516.77, "probability": 0.3149 }, { "start": 39516.89, "end": 39517.57, "probability": 0.6318 }, { "start": 39517.71, "end": 39518.03, "probability": 0.5736 }, { "start": 39518.23, "end": 39522.37, "probability": 0.7078 }, { "start": 39523.01, "end": 39524.23, "probability": 0.9235 }, { "start": 39525.05, "end": 39528.77, "probability": 0.9756 }, { "start": 39529.61, "end": 39530.15, "probability": 0.8799 }, { "start": 39530.87, "end": 39531.25, "probability": 0.9672 }, { "start": 39532.15, "end": 39532.23, "probability": 0.4028 }, { "start": 39532.31, "end": 39534.4, "probability": 0.9167 }, { "start": 39534.91, "end": 39535.89, "probability": 0.816 }, { "start": 39536.03, "end": 39536.85, "probability": 0.8852 }, { "start": 39537.17, "end": 39538.27, "probability": 0.8911 }, { "start": 39539.83, "end": 39543.91, "probability": 0.9868 }, { "start": 39547.71, "end": 39551.67, "probability": 0.7285 }, { "start": 39551.97, "end": 39552.59, "probability": 0.8717 }, { "start": 39554.29, "end": 39555.25, "probability": 0.9773 }, { "start": 39557.27, "end": 39559.19, "probability": 0.6131 }, { "start": 39559.97, "end": 39563.95, "probability": 0.8686 }, { "start": 39564.55, "end": 39564.55, "probability": 0.1957 }, { "start": 39564.55, "end": 39565.75, "probability": 0.7769 }, { "start": 39567.19, "end": 39569.27, "probability": 0.8515 }, { "start": 39570.33, "end": 39570.83, "probability": 0.9743 }, { "start": 39572.33, "end": 39575.33, "probability": 0.7982 }, { "start": 39576.11, "end": 39582.07, "probability": 0.873 }, { "start": 39583.27, "end": 39583.37, "probability": 0.4714 }, { "start": 39583.37, "end": 39584.23, "probability": 0.6216 }, { "start": 39584.65, "end": 39587.25, "probability": 0.7561 }, { "start": 39587.95, "end": 39590.45, "probability": 0.9856 }, { "start": 39590.79, "end": 39591.97, "probability": 0.9583 }, { "start": 39592.23, "end": 39594.99, "probability": 0.6741 }, { "start": 39595.05, "end": 39596.01, "probability": 0.897 }, { "start": 39596.77, "end": 39597.75, "probability": 0.9409 }, { "start": 39598.89, "end": 39600.67, "probability": 0.7061 }, { "start": 39600.93, "end": 39603.43, "probability": 0.6825 }, { "start": 39603.81, "end": 39604.75, "probability": 0.5631 }, { "start": 39604.81, "end": 39605.03, "probability": 0.5303 }, { "start": 39605.37, "end": 39608.25, "probability": 0.8646 }, { "start": 39608.85, "end": 39609.09, "probability": 0.9214 }, { "start": 39609.67, "end": 39612.47, "probability": 0.9438 }, { "start": 39613.69, "end": 39615.41, "probability": 0.8543 }, { "start": 39616.09, "end": 39617.78, "probability": 0.8926 }, { "start": 39619.51, "end": 39619.83, "probability": 0.0003 }, { "start": 39620.39, "end": 39622.03, "probability": 0.8662 }, { "start": 39623.41, "end": 39625.55, "probability": 0.7603 }, { "start": 39627.97, "end": 39630.83, "probability": 0.8834 }, { "start": 39631.71, "end": 39634.19, "probability": 0.9167 }, { "start": 39634.45, "end": 39635.31, "probability": 0.8784 }, { "start": 39635.65, "end": 39636.49, "probability": 0.5468 }, { "start": 39637.31, "end": 39640.59, "probability": 0.5006 }, { "start": 39642.05, "end": 39645.05, "probability": 0.8385 }, { "start": 39645.07, "end": 39645.49, "probability": 0.5689 }, { "start": 39645.63, "end": 39646.15, "probability": 0.7158 }, { "start": 39646.37, "end": 39648.33, "probability": 0.93 }, { "start": 39649.13, "end": 39650.29, "probability": 0.9187 }, { "start": 39651.23, "end": 39652.83, "probability": 0.9086 }, { "start": 39653.79, "end": 39655.37, "probability": 0.0773 }, { "start": 39672.89, "end": 39672.99, "probability": 0.0185 }, { "start": 39672.99, "end": 39673.09, "probability": 0.3668 }, { "start": 39674.99, "end": 39675.53, "probability": 0.5059 }, { "start": 39675.53, "end": 39675.91, "probability": 0.0458 }, { "start": 39678.55, "end": 39678.81, "probability": 0.2148 }, { "start": 39680.03, "end": 39680.65, "probability": 0.3065 }, { "start": 39681.07, "end": 39682.73, "probability": 0.0356 }, { "start": 39682.73, "end": 39682.73, "probability": 0.1465 }, { "start": 39682.73, "end": 39682.73, "probability": 0.0512 }, { "start": 39683.25, "end": 39683.53, "probability": 0.2163 }, { "start": 39697.01, "end": 39697.73, "probability": 0.2135 }, { "start": 39708.93, "end": 39709.89, "probability": 0.7966 }, { "start": 39712.05, "end": 39720.05, "probability": 0.9946 }, { "start": 39721.77, "end": 39725.29, "probability": 0.9959 }, { "start": 39725.87, "end": 39726.99, "probability": 0.8241 }, { "start": 39728.05, "end": 39730.65, "probability": 0.9739 }, { "start": 39733.47, "end": 39734.75, "probability": 0.9525 }, { "start": 39736.03, "end": 39742.23, "probability": 0.9907 }, { "start": 39744.41, "end": 39745.47, "probability": 0.9689 }, { "start": 39746.89, "end": 39747.99, "probability": 0.9537 }, { "start": 39749.45, "end": 39750.38, "probability": 0.958 }, { "start": 39751.09, "end": 39753.07, "probability": 0.7338 }, { "start": 39753.83, "end": 39758.33, "probability": 0.9417 }, { "start": 39759.43, "end": 39764.87, "probability": 0.995 }, { "start": 39764.87, "end": 39767.47, "probability": 0.9849 }, { "start": 39768.79, "end": 39771.77, "probability": 0.9961 }, { "start": 39772.53, "end": 39773.15, "probability": 0.5031 }, { "start": 39774.03, "end": 39774.73, "probability": 0.939 }, { "start": 39775.99, "end": 39777.65, "probability": 0.9932 }, { "start": 39778.77, "end": 39780.63, "probability": 0.9637 }, { "start": 39781.39, "end": 39783.93, "probability": 0.998 }, { "start": 39784.79, "end": 39785.15, "probability": 0.8936 }, { "start": 39786.37, "end": 39787.75, "probability": 0.8771 }, { "start": 39789.25, "end": 39795.75, "probability": 0.9561 }, { "start": 39796.37, "end": 39798.35, "probability": 0.9219 }, { "start": 39799.37, "end": 39803.19, "probability": 0.8909 }, { "start": 39803.99, "end": 39806.41, "probability": 0.9856 }, { "start": 39807.09, "end": 39811.75, "probability": 0.9683 }, { "start": 39812.61, "end": 39813.27, "probability": 0.7707 }, { "start": 39814.01, "end": 39820.83, "probability": 0.7454 }, { "start": 39821.41, "end": 39823.45, "probability": 0.9638 }, { "start": 39824.37, "end": 39826.95, "probability": 0.9896 }, { "start": 39827.69, "end": 39831.97, "probability": 0.9895 }, { "start": 39832.67, "end": 39838.01, "probability": 0.9459 }, { "start": 39838.83, "end": 39839.55, "probability": 0.855 }, { "start": 39840.35, "end": 39841.41, "probability": 0.9002 }, { "start": 39841.79, "end": 39845.17, "probability": 0.9921 }, { "start": 39845.17, "end": 39847.73, "probability": 0.9556 }, { "start": 39848.47, "end": 39854.95, "probability": 0.9587 }, { "start": 39855.07, "end": 39859.39, "probability": 0.9648 }, { "start": 39859.87, "end": 39860.21, "probability": 0.7164 }, { "start": 39860.75, "end": 39865.39, "probability": 0.9844 }, { "start": 39865.65, "end": 39870.31, "probability": 0.9857 }, { "start": 39870.75, "end": 39872.63, "probability": 0.9777 }, { "start": 39874.15, "end": 39875.93, "probability": 0.8057 }, { "start": 39876.55, "end": 39877.39, "probability": 0.8445 }, { "start": 39878.23, "end": 39878.23, "probability": 0.202 }, { "start": 39878.87, "end": 39883.53, "probability": 0.9818 }, { "start": 39884.27, "end": 39884.89, "probability": 0.9304 }, { "start": 39885.65, "end": 39888.41, "probability": 0.8865 }, { "start": 39889.29, "end": 39893.09, "probability": 0.9673 }, { "start": 39893.73, "end": 39894.77, "probability": 0.817 }, { "start": 39895.29, "end": 39896.15, "probability": 0.8325 }, { "start": 39896.95, "end": 39897.79, "probability": 0.9088 }, { "start": 39898.27, "end": 39898.89, "probability": 0.7139 }, { "start": 39898.97, "end": 39902.37, "probability": 0.9957 }, { "start": 39903.21, "end": 39904.41, "probability": 0.6637 }, { "start": 39905.49, "end": 39907.23, "probability": 0.9984 }, { "start": 39907.95, "end": 39911.43, "probability": 0.8479 }, { "start": 39912.07, "end": 39914.97, "probability": 0.9867 }, { "start": 39916.09, "end": 39917.11, "probability": 0.9834 }, { "start": 39918.11, "end": 39924.07, "probability": 0.9897 }, { "start": 39924.27, "end": 39924.79, "probability": 0.4917 }, { "start": 39925.61, "end": 39927.63, "probability": 0.9979 }, { "start": 39928.39, "end": 39931.07, "probability": 0.951 }, { "start": 39931.79, "end": 39932.87, "probability": 0.9688 }, { "start": 39933.37, "end": 39938.79, "probability": 0.9961 }, { "start": 39939.55, "end": 39943.21, "probability": 0.9923 }, { "start": 39943.69, "end": 39944.53, "probability": 0.7514 }, { "start": 39945.11, "end": 39948.45, "probability": 0.9358 }, { "start": 39949.03, "end": 39952.05, "probability": 0.9965 }, { "start": 39952.57, "end": 39954.25, "probability": 0.6992 }, { "start": 39954.93, "end": 39958.03, "probability": 0.9574 }, { "start": 39958.77, "end": 39959.97, "probability": 0.962 }, { "start": 39960.65, "end": 39963.07, "probability": 0.9617 }, { "start": 39963.07, "end": 39965.67, "probability": 0.9873 }, { "start": 39966.55, "end": 39968.09, "probability": 0.9402 }, { "start": 39969.29, "end": 39969.71, "probability": 0.4391 }, { "start": 39970.61, "end": 39973.25, "probability": 0.9735 }, { "start": 39973.99, "end": 39977.85, "probability": 0.9789 }, { "start": 39978.93, "end": 39982.95, "probability": 0.9854 }, { "start": 39983.05, "end": 39983.45, "probability": 0.9316 }, { "start": 39984.23, "end": 39986.45, "probability": 0.1264 }, { "start": 39987.47, "end": 39989.09, "probability": 0.9987 }, { "start": 39989.63, "end": 39992.35, "probability": 0.7964 }, { "start": 39993.17, "end": 39995.67, "probability": 0.8328 }, { "start": 39996.35, "end": 39998.53, "probability": 0.9648 }, { "start": 39998.97, "end": 39999.55, "probability": 0.7268 }, { "start": 40000.23, "end": 40001.83, "probability": 0.9858 }, { "start": 40002.41, "end": 40003.27, "probability": 0.2498 }, { "start": 40004.01, "end": 40004.01, "probability": 0.6678 }, { "start": 40004.03, "end": 40004.47, "probability": 0.1602 }, { "start": 40006.29, "end": 40006.37, "probability": 0.2413 }, { "start": 40006.37, "end": 40006.37, "probability": 0.0121 }, { "start": 40006.37, "end": 40008.25, "probability": 0.8777 }, { "start": 40008.39, "end": 40011.03, "probability": 0.9869 }, { "start": 40011.09, "end": 40011.61, "probability": 0.8984 }, { "start": 40012.23, "end": 40013.18, "probability": 0.8033 }, { "start": 40014.05, "end": 40014.69, "probability": 0.9525 }, { "start": 40015.49, "end": 40018.15, "probability": 0.9667 }, { "start": 40018.23, "end": 40019.21, "probability": 0.6946 }, { "start": 40019.65, "end": 40021.51, "probability": 0.9976 }, { "start": 40022.13, "end": 40027.39, "probability": 0.9162 }, { "start": 40027.47, "end": 40027.53, "probability": 0.3546 }, { "start": 40027.57, "end": 40029.31, "probability": 0.9052 }, { "start": 40029.81, "end": 40030.29, "probability": 0.9677 }, { "start": 40030.89, "end": 40032.53, "probability": 0.8418 }, { "start": 40033.31, "end": 40034.77, "probability": 0.9964 }, { "start": 40035.27, "end": 40039.73, "probability": 0.9344 }, { "start": 40039.73, "end": 40042.61, "probability": 0.6643 }, { "start": 40042.95, "end": 40044.01, "probability": 0.5888 }, { "start": 40044.69, "end": 40045.27, "probability": 0.5791 }, { "start": 40045.31, "end": 40045.79, "probability": 0.8703 }, { "start": 40046.27, "end": 40048.91, "probability": 0.8466 }, { "start": 40048.91, "end": 40051.23, "probability": 0.9842 }, { "start": 40051.57, "end": 40054.69, "probability": 0.9873 }, { "start": 40056.03, "end": 40058.75, "probability": 0.9572 }, { "start": 40059.29, "end": 40061.93, "probability": 0.7947 }, { "start": 40063.41, "end": 40065.89, "probability": 0.8037 }, { "start": 40070.89, "end": 40070.99, "probability": 0.1679 }, { "start": 40071.81, "end": 40071.81, "probability": 0.7051 }, { "start": 40091.95, "end": 40092.89, "probability": 0.3254 }, { "start": 40093.09, "end": 40093.77, "probability": 0.6877 }, { "start": 40094.57, "end": 40095.55, "probability": 0.731 }, { "start": 40097.01, "end": 40100.23, "probability": 0.7969 }, { "start": 40101.19, "end": 40102.89, "probability": 0.9834 }, { "start": 40103.97, "end": 40105.55, "probability": 0.9001 }, { "start": 40106.93, "end": 40109.87, "probability": 0.9827 }, { "start": 40111.07, "end": 40112.57, "probability": 0.9598 }, { "start": 40113.63, "end": 40114.33, "probability": 0.8348 }, { "start": 40115.15, "end": 40115.59, "probability": 0.7197 }, { "start": 40117.08, "end": 40119.59, "probability": 0.9668 }, { "start": 40120.57, "end": 40122.15, "probability": 0.7459 }, { "start": 40123.37, "end": 40124.83, "probability": 0.4899 }, { "start": 40124.85, "end": 40125.35, "probability": 0.9234 }, { "start": 40125.49, "end": 40127.71, "probability": 0.6437 }, { "start": 40129.97, "end": 40130.18, "probability": 0.0149 }, { "start": 40130.21, "end": 40131.27, "probability": 0.0431 }, { "start": 40131.37, "end": 40136.75, "probability": 0.8459 }, { "start": 40137.57, "end": 40139.21, "probability": 0.8445 }, { "start": 40139.99, "end": 40142.81, "probability": 0.9546 }, { "start": 40142.89, "end": 40143.57, "probability": 0.5494 }, { "start": 40143.97, "end": 40144.69, "probability": 0.7434 }, { "start": 40144.87, "end": 40145.61, "probability": 0.7176 }, { "start": 40146.63, "end": 40147.43, "probability": 0.9003 }, { "start": 40148.07, "end": 40151.21, "probability": 0.9847 }, { "start": 40151.85, "end": 40156.09, "probability": 0.991 }, { "start": 40156.09, "end": 40160.95, "probability": 0.9806 }, { "start": 40161.73, "end": 40162.73, "probability": 0.8979 }, { "start": 40162.83, "end": 40163.65, "probability": 0.7425 }, { "start": 40163.85, "end": 40165.57, "probability": 0.6004 }, { "start": 40165.79, "end": 40166.89, "probability": 0.8234 }, { "start": 40167.77, "end": 40170.39, "probability": 0.9885 }, { "start": 40170.39, "end": 40173.97, "probability": 0.9958 }, { "start": 40174.65, "end": 40175.63, "probability": 0.7562 }, { "start": 40176.33, "end": 40180.85, "probability": 0.9653 }, { "start": 40181.51, "end": 40182.41, "probability": 0.9652 }, { "start": 40183.55, "end": 40185.79, "probability": 0.9626 }, { "start": 40187.67, "end": 40189.17, "probability": 0.8501 }, { "start": 40190.41, "end": 40195.37, "probability": 0.9912 }, { "start": 40195.95, "end": 40197.75, "probability": 0.9334 }, { "start": 40198.81, "end": 40200.94, "probability": 0.9736 }, { "start": 40201.83, "end": 40205.69, "probability": 0.9404 }, { "start": 40205.69, "end": 40209.57, "probability": 0.8513 }, { "start": 40209.91, "end": 40211.96, "probability": 0.93 }, { "start": 40212.61, "end": 40213.27, "probability": 0.8202 }, { "start": 40213.75, "end": 40214.79, "probability": 0.903 }, { "start": 40214.87, "end": 40215.71, "probability": 0.7439 }, { "start": 40216.31, "end": 40218.71, "probability": 0.9823 }, { "start": 40219.27, "end": 40220.73, "probability": 0.8853 }, { "start": 40220.79, "end": 40223.87, "probability": 0.9023 }, { "start": 40224.99, "end": 40227.11, "probability": 0.9769 }, { "start": 40228.13, "end": 40230.63, "probability": 0.6557 }, { "start": 40231.23, "end": 40232.76, "probability": 0.5563 }, { "start": 40233.93, "end": 40238.25, "probability": 0.9355 }, { "start": 40239.01, "end": 40239.51, "probability": 0.7645 }, { "start": 40240.13, "end": 40241.77, "probability": 0.991 }, { "start": 40242.31, "end": 40243.31, "probability": 0.9187 }, { "start": 40244.17, "end": 40248.25, "probability": 0.8293 }, { "start": 40249.01, "end": 40250.31, "probability": 0.373 }, { "start": 40250.69, "end": 40251.43, "probability": 0.8624 }, { "start": 40252.59, "end": 40252.81, "probability": 0.1136 }, { "start": 40252.81, "end": 40253.98, "probability": 0.6995 }, { "start": 40254.53, "end": 40258.58, "probability": 0.9432 }, { "start": 40259.37, "end": 40260.51, "probability": 0.7633 }, { "start": 40261.07, "end": 40264.95, "probability": 0.9123 }, { "start": 40265.59, "end": 40266.49, "probability": 0.6064 }, { "start": 40267.23, "end": 40268.61, "probability": 0.7237 }, { "start": 40268.73, "end": 40270.41, "probability": 0.6304 }, { "start": 40270.95, "end": 40272.43, "probability": 0.5193 }, { "start": 40272.43, "end": 40273.97, "probability": 0.9772 }, { "start": 40274.35, "end": 40274.71, "probability": 0.9707 }, { "start": 40275.09, "end": 40275.43, "probability": 0.8987 }, { "start": 40276.01, "end": 40277.47, "probability": 0.9387 }, { "start": 40277.79, "end": 40278.97, "probability": 0.6806 }, { "start": 40280.13, "end": 40280.73, "probability": 0.8686 }, { "start": 40281.31, "end": 40284.33, "probability": 0.992 }, { "start": 40285.15, "end": 40287.55, "probability": 0.9907 }, { "start": 40288.25, "end": 40291.41, "probability": 0.9798 }, { "start": 40291.93, "end": 40293.47, "probability": 0.9026 }, { "start": 40294.07, "end": 40295.33, "probability": 0.958 }, { "start": 40295.97, "end": 40299.57, "probability": 0.9926 }, { "start": 40300.25, "end": 40304.15, "probability": 0.9968 }, { "start": 40305.07, "end": 40307.15, "probability": 0.8837 }, { "start": 40307.79, "end": 40309.97, "probability": 0.9953 }, { "start": 40310.43, "end": 40311.43, "probability": 0.8527 }, { "start": 40311.43, "end": 40311.79, "probability": 0.5817 }, { "start": 40311.87, "end": 40312.47, "probability": 0.8062 }, { "start": 40312.57, "end": 40313.45, "probability": 0.8366 }, { "start": 40313.81, "end": 40314.21, "probability": 0.4162 }, { "start": 40314.29, "end": 40315.37, "probability": 0.829 }, { "start": 40315.95, "end": 40317.45, "probability": 0.9145 }, { "start": 40318.25, "end": 40322.39, "probability": 0.7454 }, { "start": 40323.43, "end": 40323.91, "probability": 0.6541 }, { "start": 40324.27, "end": 40330.55, "probability": 0.9561 }, { "start": 40331.25, "end": 40331.79, "probability": 0.7962 }, { "start": 40331.91, "end": 40333.93, "probability": 0.9288 }, { "start": 40334.55, "end": 40336.19, "probability": 0.7873 }, { "start": 40336.95, "end": 40337.31, "probability": 0.7562 }, { "start": 40337.57, "end": 40338.63, "probability": 0.9709 }, { "start": 40338.87, "end": 40340.65, "probability": 0.7734 }, { "start": 40340.77, "end": 40341.14, "probability": 0.7311 }, { "start": 40342.17, "end": 40347.21, "probability": 0.9955 }, { "start": 40347.85, "end": 40348.51, "probability": 0.9492 }, { "start": 40349.15, "end": 40349.59, "probability": 0.5596 }, { "start": 40350.11, "end": 40351.73, "probability": 0.9652 }, { "start": 40352.17, "end": 40353.45, "probability": 0.9246 }, { "start": 40353.59, "end": 40355.51, "probability": 0.9706 }, { "start": 40356.31, "end": 40359.89, "probability": 0.998 }, { "start": 40360.95, "end": 40364.39, "probability": 0.9977 }, { "start": 40365.15, "end": 40367.53, "probability": 0.9928 }, { "start": 40368.11, "end": 40371.01, "probability": 0.8994 }, { "start": 40371.57, "end": 40374.63, "probability": 0.9325 }, { "start": 40374.81, "end": 40375.09, "probability": 0.1627 }, { "start": 40375.21, "end": 40375.95, "probability": 0.4244 }, { "start": 40376.49, "end": 40378.01, "probability": 0.9771 }, { "start": 40378.47, "end": 40380.15, "probability": 0.9724 }, { "start": 40380.25, "end": 40382.41, "probability": 0.0272 }, { "start": 40382.41, "end": 40382.69, "probability": 0.0202 }, { "start": 40383.19, "end": 40387.37, "probability": 0.7159 }, { "start": 40387.99, "end": 40390.09, "probability": 0.9455 }, { "start": 40390.65, "end": 40392.11, "probability": 0.9826 }, { "start": 40392.91, "end": 40394.85, "probability": 0.9371 }, { "start": 40395.73, "end": 40397.27, "probability": 0.7652 }, { "start": 40397.85, "end": 40399.13, "probability": 0.9377 }, { "start": 40399.79, "end": 40402.35, "probability": 0.9482 }, { "start": 40402.95, "end": 40404.71, "probability": 0.9722 }, { "start": 40405.23, "end": 40410.63, "probability": 0.9758 }, { "start": 40411.05, "end": 40415.23, "probability": 0.9929 }, { "start": 40416.01, "end": 40417.45, "probability": 0.8087 }, { "start": 40417.89, "end": 40420.43, "probability": 0.9684 }, { "start": 40420.89, "end": 40422.35, "probability": 0.959 }, { "start": 40423.47, "end": 40423.51, "probability": 0.4437 }, { "start": 40423.61, "end": 40427.37, "probability": 0.8425 }, { "start": 40427.71, "end": 40432.31, "probability": 0.9976 }, { "start": 40432.31, "end": 40437.17, "probability": 0.9984 }, { "start": 40437.17, "end": 40439.21, "probability": 0.6791 }, { "start": 40439.27, "end": 40439.85, "probability": 0.6733 }, { "start": 40440.71, "end": 40442.45, "probability": 0.7543 }, { "start": 40444.67, "end": 40445.29, "probability": 0.7262 }, { "start": 40445.49, "end": 40446.81, "probability": 0.899 }, { "start": 40469.61, "end": 40470.81, "probability": 0.6677 }, { "start": 40474.08, "end": 40476.23, "probability": 0.9232 }, { "start": 40476.77, "end": 40478.11, "probability": 0.042 }, { "start": 40480.05, "end": 40483.03, "probability": 0.7258 }, { "start": 40483.15, "end": 40485.41, "probability": 0.9973 }, { "start": 40488.13, "end": 40490.75, "probability": 0.1583 }, { "start": 40491.51, "end": 40491.77, "probability": 0.7515 }, { "start": 40493.69, "end": 40496.77, "probability": 0.9854 }, { "start": 40498.37, "end": 40502.03, "probability": 0.8414 }, { "start": 40502.81, "end": 40508.34, "probability": 0.9492 }, { "start": 40509.49, "end": 40509.91, "probability": 0.9852 }, { "start": 40510.65, "end": 40512.97, "probability": 0.5021 }, { "start": 40517.17, "end": 40518.85, "probability": 0.495 }, { "start": 40518.93, "end": 40520.07, "probability": 0.8935 }, { "start": 40520.17, "end": 40521.29, "probability": 0.6721 }, { "start": 40521.89, "end": 40523.01, "probability": 0.9658 }, { "start": 40524.25, "end": 40526.69, "probability": 0.9722 }, { "start": 40526.69, "end": 40528.87, "probability": 0.632 }, { "start": 40528.97, "end": 40531.47, "probability": 0.8263 }, { "start": 40531.65, "end": 40532.0, "probability": 0.6235 }, { "start": 40533.77, "end": 40537.41, "probability": 0.896 }, { "start": 40539.37, "end": 40541.81, "probability": 0.9892 }, { "start": 40544.01, "end": 40547.35, "probability": 0.9797 }, { "start": 40547.43, "end": 40547.91, "probability": 0.4981 }, { "start": 40547.99, "end": 40549.31, "probability": 0.9872 }, { "start": 40549.79, "end": 40551.04, "probability": 0.9777 }, { "start": 40551.81, "end": 40552.92, "probability": 0.7485 }, { "start": 40553.53, "end": 40558.55, "probability": 0.9672 }, { "start": 40560.39, "end": 40564.54, "probability": 0.9976 }, { "start": 40568.79, "end": 40568.97, "probability": 0.1052 }, { "start": 40568.97, "end": 40571.27, "probability": 0.9943 }, { "start": 40573.51, "end": 40574.47, "probability": 0.9961 }, { "start": 40575.37, "end": 40579.97, "probability": 0.9828 }, { "start": 40580.91, "end": 40582.35, "probability": 0.88 }, { "start": 40583.61, "end": 40585.39, "probability": 0.984 }, { "start": 40586.73, "end": 40587.63, "probability": 0.755 }, { "start": 40588.85, "end": 40589.43, "probability": 0.8403 }, { "start": 40590.01, "end": 40590.93, "probability": 0.6687 }, { "start": 40591.91, "end": 40593.81, "probability": 0.9507 }, { "start": 40594.75, "end": 40596.24, "probability": 0.978 }, { "start": 40597.41, "end": 40599.79, "probability": 0.8872 }, { "start": 40600.73, "end": 40601.41, "probability": 0.9657 }, { "start": 40602.63, "end": 40606.71, "probability": 0.9785 }, { "start": 40607.67, "end": 40612.85, "probability": 0.8438 }, { "start": 40613.49, "end": 40614.87, "probability": 0.9046 }, { "start": 40615.51, "end": 40619.35, "probability": 0.7469 }, { "start": 40620.23, "end": 40622.95, "probability": 0.7254 }, { "start": 40623.69, "end": 40626.31, "probability": 0.9009 }, { "start": 40627.11, "end": 40628.13, "probability": 0.7495 }, { "start": 40630.03, "end": 40631.34, "probability": 0.9839 }, { "start": 40631.87, "end": 40633.61, "probability": 0.9789 }, { "start": 40635.65, "end": 40640.01, "probability": 0.8784 }, { "start": 40641.13, "end": 40643.35, "probability": 0.8984 }, { "start": 40643.35, "end": 40647.75, "probability": 0.9889 }, { "start": 40648.51, "end": 40650.09, "probability": 0.9851 }, { "start": 40651.37, "end": 40652.15, "probability": 0.7425 }, { "start": 40652.33, "end": 40654.57, "probability": 0.8252 }, { "start": 40655.61, "end": 40657.33, "probability": 0.9949 }, { "start": 40659.09, "end": 40660.99, "probability": 0.6566 }, { "start": 40661.55, "end": 40664.59, "probability": 0.7656 }, { "start": 40665.39, "end": 40668.19, "probability": 0.9153 }, { "start": 40669.65, "end": 40675.75, "probability": 0.9877 }, { "start": 40676.29, "end": 40678.03, "probability": 0.8647 }, { "start": 40678.69, "end": 40681.27, "probability": 0.9726 }, { "start": 40682.03, "end": 40682.69, "probability": 0.9523 }, { "start": 40683.83, "end": 40686.51, "probability": 0.8934 }, { "start": 40686.55, "end": 40688.43, "probability": 0.7752 }, { "start": 40688.81, "end": 40689.69, "probability": 0.9483 }, { "start": 40690.27, "end": 40691.67, "probability": 0.928 }, { "start": 40692.33, "end": 40694.99, "probability": 0.9275 }, { "start": 40696.15, "end": 40697.13, "probability": 0.9352 }, { "start": 40697.27, "end": 40697.39, "probability": 0.4009 }, { "start": 40697.47, "end": 40699.01, "probability": 0.6349 }, { "start": 40699.09, "end": 40700.36, "probability": 0.6567 }, { "start": 40701.29, "end": 40701.49, "probability": 0.7646 }, { "start": 40702.09, "end": 40703.51, "probability": 0.6864 }, { "start": 40704.79, "end": 40706.69, "probability": 0.7764 }, { "start": 40707.09, "end": 40708.59, "probability": 0.5397 }, { "start": 40709.19, "end": 40712.13, "probability": 0.8381 }, { "start": 40712.19, "end": 40713.31, "probability": 0.7222 }, { "start": 40714.27, "end": 40714.65, "probability": 0.63 }, { "start": 40716.27, "end": 40719.47, "probability": 0.9867 }, { "start": 40720.37, "end": 40722.15, "probability": 0.9805 }, { "start": 40722.71, "end": 40724.31, "probability": 0.9504 }, { "start": 40724.45, "end": 40725.93, "probability": 0.5216 }, { "start": 40726.93, "end": 40728.05, "probability": 0.8754 }, { "start": 40729.55, "end": 40730.59, "probability": 0.5283 }, { "start": 40731.45, "end": 40734.29, "probability": 0.8909 }, { "start": 40736.01, "end": 40737.49, "probability": 0.9684 }, { "start": 40737.53, "end": 40738.65, "probability": 0.9902 }, { "start": 40738.73, "end": 40739.81, "probability": 0.9037 }, { "start": 40739.95, "end": 40740.61, "probability": 0.5726 }, { "start": 40741.35, "end": 40742.97, "probability": 0.68 }, { "start": 40743.75, "end": 40744.09, "probability": 0.6265 }, { "start": 40744.09, "end": 40745.25, "probability": 0.6599 }, { "start": 40745.37, "end": 40748.63, "probability": 0.8066 }, { "start": 40749.09, "end": 40749.76, "probability": 0.9546 }, { "start": 40751.01, "end": 40753.11, "probability": 0.9958 }, { "start": 40753.97, "end": 40756.38, "probability": 0.9961 }, { "start": 40757.25, "end": 40758.77, "probability": 0.9111 }, { "start": 40759.53, "end": 40762.51, "probability": 0.9943 }, { "start": 40762.87, "end": 40764.4, "probability": 0.9949 }, { "start": 40764.97, "end": 40766.77, "probability": 0.798 }, { "start": 40767.35, "end": 40769.73, "probability": 0.7832 }, { "start": 40770.23, "end": 40773.47, "probability": 0.9147 }, { "start": 40774.86, "end": 40778.59, "probability": 0.7325 }, { "start": 40779.49, "end": 40781.01, "probability": 0.8166 }, { "start": 40782.09, "end": 40783.53, "probability": 0.748 }, { "start": 40783.83, "end": 40785.05, "probability": 0.9199 }, { "start": 40785.33, "end": 40787.79, "probability": 0.9755 }, { "start": 40788.33, "end": 40789.33, "probability": 0.9819 }, { "start": 40789.87, "end": 40790.94, "probability": 0.9609 }, { "start": 40791.27, "end": 40793.47, "probability": 0.873 }, { "start": 40793.55, "end": 40794.17, "probability": 0.5621 }, { "start": 40796.21, "end": 40797.69, "probability": 0.9004 }, { "start": 40806.77, "end": 40807.11, "probability": 0.0217 }, { "start": 40808.99, "end": 40810.31, "probability": 0.9906 }, { "start": 40811.01, "end": 40811.91, "probability": 0.9521 }, { "start": 40813.07, "end": 40813.51, "probability": 0.8864 }, { "start": 40813.63, "end": 40814.25, "probability": 0.8982 }, { "start": 40814.29, "end": 40815.29, "probability": 0.913 }, { "start": 40815.95, "end": 40816.53, "probability": 0.7782 }, { "start": 40816.67, "end": 40818.69, "probability": 0.6136 }, { "start": 40818.81, "end": 40819.61, "probability": 0.9047 }, { "start": 40819.81, "end": 40827.29, "probability": 0.9729 }, { "start": 40827.47, "end": 40829.55, "probability": 0.6342 }, { "start": 40830.99, "end": 40832.23, "probability": 0.3274 }, { "start": 40832.29, "end": 40833.43, "probability": 0.4053 }, { "start": 40833.55, "end": 40835.03, "probability": 0.7009 }, { "start": 40835.17, "end": 40835.95, "probability": 0.0035 }, { "start": 40836.19, "end": 40838.49, "probability": 0.8118 }, { "start": 40839.01, "end": 40839.15, "probability": 0.3197 }, { "start": 40839.15, "end": 40839.67, "probability": 0.3936 }, { "start": 40839.67, "end": 40839.67, "probability": 0.9301 }, { "start": 40839.67, "end": 40840.23, "probability": 0.5285 }, { "start": 40840.31, "end": 40840.97, "probability": 0.9278 }, { "start": 40841.05, "end": 40842.64, "probability": 0.8867 }, { "start": 40842.95, "end": 40844.21, "probability": 0.9771 }, { "start": 40844.23, "end": 40845.23, "probability": 0.7648 }, { "start": 40847.97, "end": 40848.15, "probability": 0.1433 }, { "start": 40848.15, "end": 40848.19, "probability": 0.0216 }, { "start": 40848.19, "end": 40848.67, "probability": 0.3021 }, { "start": 40848.79, "end": 40849.65, "probability": 0.1446 }, { "start": 40849.83, "end": 40851.11, "probability": 0.1819 }, { "start": 40851.15, "end": 40854.09, "probability": 0.9364 }, { "start": 40854.15, "end": 40854.61, "probability": 0.8748 }, { "start": 40854.73, "end": 40859.51, "probability": 0.7935 }, { "start": 40859.81, "end": 40860.81, "probability": 0.3303 }, { "start": 40860.97, "end": 40861.85, "probability": 0.2245 }, { "start": 40861.85, "end": 40863.07, "probability": 0.1457 }, { "start": 40863.17, "end": 40866.19, "probability": 0.0186 }, { "start": 40866.19, "end": 40866.71, "probability": 0.588 }, { "start": 40866.79, "end": 40868.03, "probability": 0.5437 }, { "start": 40868.05, "end": 40868.67, "probability": 0.7782 }, { "start": 40868.85, "end": 40869.19, "probability": 0.0155 }, { "start": 40869.19, "end": 40869.23, "probability": 0.6536 }, { "start": 40869.35, "end": 40870.17, "probability": 0.912 }, { "start": 40870.23, "end": 40872.33, "probability": 0.9487 }, { "start": 40872.37, "end": 40872.37, "probability": 0.0916 }, { "start": 40872.37, "end": 40872.37, "probability": 0.3595 }, { "start": 40872.51, "end": 40873.15, "probability": 0.9559 }, { "start": 40873.19, "end": 40874.95, "probability": 0.9113 }, { "start": 40875.67, "end": 40880.67, "probability": 0.9731 }, { "start": 40882.57, "end": 40882.83, "probability": 0.0661 }, { "start": 40882.83, "end": 40886.33, "probability": 0.5358 }, { "start": 40886.33, "end": 40886.4, "probability": 0.239 }, { "start": 40886.99, "end": 40888.69, "probability": 0.3115 }, { "start": 40889.53, "end": 40890.91, "probability": 0.0401 }, { "start": 40890.91, "end": 40891.67, "probability": 0.1471 }, { "start": 40891.89, "end": 40892.05, "probability": 0.2001 }, { "start": 40892.09, "end": 40894.13, "probability": 0.1139 }, { "start": 40894.15, "end": 40894.73, "probability": 0.3887 }, { "start": 40895.23, "end": 40896.55, "probability": 0.5508 }, { "start": 40896.97, "end": 40897.11, "probability": 0.2055 }, { "start": 40897.11, "end": 40900.97, "probability": 0.9416 }, { "start": 40901.15, "end": 40903.79, "probability": 0.8465 }, { "start": 40904.79, "end": 40905.89, "probability": 0.0244 }, { "start": 40906.05, "end": 40908.17, "probability": 0.9023 }, { "start": 40908.17, "end": 40908.47, "probability": 0.6667 }, { "start": 40908.63, "end": 40910.93, "probability": 0.7238 }, { "start": 40911.15, "end": 40911.71, "probability": 0.639 }, { "start": 40912.07, "end": 40913.13, "probability": 0.8506 }, { "start": 40913.17, "end": 40914.25, "probability": 0.5596 }, { "start": 40914.25, "end": 40914.71, "probability": 0.3209 }, { "start": 40914.91, "end": 40916.39, "probability": 0.2571 }, { "start": 40916.63, "end": 40917.49, "probability": 0.2989 }, { "start": 40917.81, "end": 40920.19, "probability": 0.8713 }, { "start": 40920.67, "end": 40920.91, "probability": 0.264 }, { "start": 40920.91, "end": 40920.97, "probability": 0.0753 }, { "start": 40920.97, "end": 40920.97, "probability": 0.3372 }, { "start": 40920.97, "end": 40923.23, "probability": 0.7048 }, { "start": 40924.11, "end": 40925.23, "probability": 0.651 }, { "start": 40925.29, "end": 40925.75, "probability": 0.1476 }, { "start": 40926.45, "end": 40927.51, "probability": 0.065 }, { "start": 40928.03, "end": 40930.21, "probability": 0.517 }, { "start": 40930.21, "end": 40931.27, "probability": 0.2042 }, { "start": 40931.43, "end": 40935.11, "probability": 0.9478 }, { "start": 40935.65, "end": 40936.41, "probability": 0.7922 }, { "start": 40936.51, "end": 40936.89, "probability": 0.602 }, { "start": 40937.13, "end": 40938.23, "probability": 0.9275 }, { "start": 40938.85, "end": 40941.01, "probability": 0.6697 }, { "start": 40941.81, "end": 40947.67, "probability": 0.9446 }, { "start": 40947.83, "end": 40954.73, "probability": 0.9915 }, { "start": 40955.07, "end": 40956.91, "probability": 0.9433 }, { "start": 40957.99, "end": 40960.89, "probability": 0.6435 }, { "start": 40961.07, "end": 40962.67, "probability": 0.8535 }, { "start": 40963.49, "end": 40964.63, "probability": 0.9985 }, { "start": 40965.69, "end": 40967.77, "probability": 0.878 }, { "start": 40968.61, "end": 40970.87, "probability": 0.9893 }, { "start": 40971.51, "end": 40973.49, "probability": 0.9972 }, { "start": 40974.37, "end": 40976.27, "probability": 0.9823 }, { "start": 40976.97, "end": 40979.07, "probability": 0.9193 }, { "start": 40979.67, "end": 40983.82, "probability": 0.9968 }, { "start": 40983.99, "end": 40985.29, "probability": 0.633 }, { "start": 40986.27, "end": 40990.05, "probability": 0.9873 }, { "start": 40991.09, "end": 40992.23, "probability": 0.4977 }, { "start": 40993.69, "end": 40996.47, "probability": 0.886 }, { "start": 40997.51, "end": 41003.43, "probability": 0.9673 }, { "start": 41003.61, "end": 41004.11, "probability": 0.0243 }, { "start": 41005.19, "end": 41006.35, "probability": 0.8182 }, { "start": 41007.67, "end": 41011.29, "probability": 0.9902 }, { "start": 41012.15, "end": 41013.41, "probability": 0.6824 }, { "start": 41013.51, "end": 41016.19, "probability": 0.9923 }, { "start": 41016.19, "end": 41018.39, "probability": 0.7163 }, { "start": 41019.11, "end": 41022.15, "probability": 0.8212 }, { "start": 41022.37, "end": 41023.19, "probability": 0.6918 }, { "start": 41024.19, "end": 41025.05, "probability": 0.4469 }, { "start": 41025.87, "end": 41027.51, "probability": 0.8462 }, { "start": 41028.41, "end": 41033.73, "probability": 0.9663 }, { "start": 41033.73, "end": 41039.31, "probability": 0.9091 }, { "start": 41040.15, "end": 41041.47, "probability": 0.9382 }, { "start": 41041.55, "end": 41044.79, "probability": 0.9803 }, { "start": 41045.65, "end": 41048.19, "probability": 0.9474 }, { "start": 41049.07, "end": 41055.09, "probability": 0.9984 }, { "start": 41056.39, "end": 41057.35, "probability": 0.8018 }, { "start": 41058.17, "end": 41062.95, "probability": 0.9885 }, { "start": 41063.83, "end": 41064.67, "probability": 0.761 }, { "start": 41064.73, "end": 41066.23, "probability": 0.7522 }, { "start": 41066.35, "end": 41067.89, "probability": 0.7872 }, { "start": 41068.85, "end": 41074.09, "probability": 0.9925 }, { "start": 41074.83, "end": 41075.99, "probability": 0.9424 }, { "start": 41076.61, "end": 41077.83, "probability": 0.9539 }, { "start": 41078.73, "end": 41079.55, "probability": 0.9798 }, { "start": 41080.15, "end": 41084.69, "probability": 0.9722 }, { "start": 41085.51, "end": 41090.75, "probability": 0.9735 }, { "start": 41091.17, "end": 41092.23, "probability": 0.9827 }, { "start": 41092.71, "end": 41093.57, "probability": 0.803 }, { "start": 41094.33, "end": 41099.11, "probability": 0.918 }, { "start": 41099.81, "end": 41102.19, "probability": 0.9915 }, { "start": 41102.79, "end": 41106.47, "probability": 0.9937 }, { "start": 41106.81, "end": 41108.38, "probability": 0.996 }, { "start": 41108.95, "end": 41111.61, "probability": 0.9973 }, { "start": 41112.75, "end": 41113.73, "probability": 0.6595 }, { "start": 41114.45, "end": 41115.85, "probability": 0.9303 }, { "start": 41116.43, "end": 41117.45, "probability": 0.9681 }, { "start": 41117.95, "end": 41121.73, "probability": 0.9935 }, { "start": 41122.41, "end": 41126.79, "probability": 0.0235 }, { "start": 41126.79, "end": 41130.01, "probability": 0.4749 }, { "start": 41130.95, "end": 41131.55, "probability": 0.8969 }, { "start": 41132.11, "end": 41132.97, "probability": 0.9186 }, { "start": 41134.67, "end": 41141.67, "probability": 0.9884 }, { "start": 41142.19, "end": 41144.41, "probability": 0.9222 }, { "start": 41144.93, "end": 41147.23, "probability": 0.9986 }, { "start": 41147.79, "end": 41150.83, "probability": 0.9718 }, { "start": 41151.39, "end": 41154.01, "probability": 0.9533 }, { "start": 41154.73, "end": 41156.09, "probability": 0.9303 }, { "start": 41156.85, "end": 41159.47, "probability": 0.4975 }, { "start": 41159.55, "end": 41161.49, "probability": 0.9648 }, { "start": 41161.97, "end": 41165.13, "probability": 0.9946 }, { "start": 41166.09, "end": 41167.93, "probability": 0.8551 }, { "start": 41167.95, "end": 41168.27, "probability": 0.8879 }, { "start": 41170.89, "end": 41173.13, "probability": 0.8386 }, { "start": 41185.45, "end": 41188.49, "probability": 0.1954 }, { "start": 41188.49, "end": 41188.61, "probability": 0.0837 }, { "start": 41188.61, "end": 41188.63, "probability": 0.1269 }, { "start": 41188.63, "end": 41188.63, "probability": 0.573 }, { "start": 41206.99, "end": 41207.73, "probability": 0.3994 }, { "start": 41210.67, "end": 41212.29, "probability": 0.8592 }, { "start": 41212.71, "end": 41213.97, "probability": 0.9844 }, { "start": 41214.09, "end": 41214.59, "probability": 0.8528 }, { "start": 41214.69, "end": 41214.93, "probability": 0.5887 }, { "start": 41215.45, "end": 41217.48, "probability": 0.8279 }, { "start": 41217.93, "end": 41218.67, "probability": 0.7261 }, { "start": 41218.87, "end": 41220.01, "probability": 0.9805 }, { "start": 41220.21, "end": 41220.95, "probability": 0.5613 }, { "start": 41220.97, "end": 41221.85, "probability": 0.4015 }, { "start": 41221.99, "end": 41222.19, "probability": 0.1842 }, { "start": 41223.03, "end": 41225.07, "probability": 0.5178 }, { "start": 41225.09, "end": 41226.71, "probability": 0.6097 }, { "start": 41227.07, "end": 41227.55, "probability": 0.4924 }, { "start": 41227.89, "end": 41230.05, "probability": 0.8538 }, { "start": 41230.19, "end": 41234.11, "probability": 0.855 }, { "start": 41235.03, "end": 41237.89, "probability": 0.5144 }, { "start": 41238.25, "end": 41239.25, "probability": 0.6848 }, { "start": 41239.43, "end": 41240.01, "probability": 0.151 }, { "start": 41240.17, "end": 41242.18, "probability": 0.8227 }, { "start": 41242.43, "end": 41242.85, "probability": 0.1076 }, { "start": 41243.97, "end": 41244.57, "probability": 0.8074 }, { "start": 41244.59, "end": 41245.35, "probability": 0.6583 }, { "start": 41245.39, "end": 41246.48, "probability": 0.6773 }, { "start": 41246.77, "end": 41248.39, "probability": 0.9356 }, { "start": 41248.73, "end": 41251.71, "probability": 0.9832 }, { "start": 41252.25, "end": 41255.07, "probability": 0.9485 }, { "start": 41255.29, "end": 41255.59, "probability": 0.3567 }, { "start": 41255.67, "end": 41256.21, "probability": 0.644 }, { "start": 41256.21, "end": 41257.73, "probability": 0.9777 }, { "start": 41257.83, "end": 41258.37, "probability": 0.7434 }, { "start": 41258.63, "end": 41259.05, "probability": 0.5517 }, { "start": 41259.87, "end": 41260.89, "probability": 0.3853 }, { "start": 41261.19, "end": 41262.71, "probability": 0.9087 }, { "start": 41262.97, "end": 41267.11, "probability": 0.9816 }, { "start": 41267.23, "end": 41268.75, "probability": 0.9971 }, { "start": 41269.71, "end": 41271.91, "probability": 0.6988 }, { "start": 41272.87, "end": 41274.39, "probability": 0.7876 }, { "start": 41274.99, "end": 41275.61, "probability": 0.5865 }, { "start": 41275.63, "end": 41278.73, "probability": 0.9045 }, { "start": 41279.19, "end": 41279.89, "probability": 0.7175 }, { "start": 41280.17, "end": 41285.39, "probability": 0.9792 }, { "start": 41285.51, "end": 41287.07, "probability": 0.9158 }, { "start": 41287.71, "end": 41288.37, "probability": 0.7773 }, { "start": 41288.39, "end": 41289.61, "probability": 0.7991 }, { "start": 41289.71, "end": 41292.53, "probability": 0.8989 }, { "start": 41292.93, "end": 41294.37, "probability": 0.8957 }, { "start": 41294.53, "end": 41295.91, "probability": 0.9049 }, { "start": 41296.37, "end": 41297.31, "probability": 0.9657 }, { "start": 41297.35, "end": 41298.25, "probability": 0.9299 }, { "start": 41298.91, "end": 41303.33, "probability": 0.9775 }, { "start": 41303.37, "end": 41303.67, "probability": 0.2853 }, { "start": 41303.69, "end": 41304.45, "probability": 0.8217 }, { "start": 41304.51, "end": 41305.05, "probability": 0.5445 }, { "start": 41305.27, "end": 41307.23, "probability": 0.8215 }, { "start": 41307.31, "end": 41308.59, "probability": 0.9308 }, { "start": 41308.73, "end": 41310.99, "probability": 0.9748 }, { "start": 41313.23, "end": 41313.41, "probability": 0.7708 }, { "start": 41314.51, "end": 41315.37, "probability": 0.8196 }, { "start": 41315.53, "end": 41316.99, "probability": 0.9843 }, { "start": 41319.49, "end": 41324.93, "probability": 0.474 }, { "start": 41326.66, "end": 41331.71, "probability": 0.8 }, { "start": 41331.83, "end": 41333.29, "probability": 0.5496 }, { "start": 41333.55, "end": 41334.15, "probability": 0.8477 }, { "start": 41334.49, "end": 41336.87, "probability": 0.9691 }, { "start": 41337.43, "end": 41338.75, "probability": 0.737 }, { "start": 41340.07, "end": 41343.29, "probability": 0.9945 }, { "start": 41343.73, "end": 41347.37, "probability": 0.8894 }, { "start": 41347.97, "end": 41350.77, "probability": 0.9327 }, { "start": 41351.55, "end": 41355.99, "probability": 0.9142 }, { "start": 41356.57, "end": 41360.25, "probability": 0.9734 }, { "start": 41361.27, "end": 41362.15, "probability": 0.7808 }, { "start": 41362.37, "end": 41363.41, "probability": 0.9506 }, { "start": 41363.83, "end": 41365.71, "probability": 0.9831 }, { "start": 41366.17, "end": 41371.05, "probability": 0.9961 }, { "start": 41371.05, "end": 41376.03, "probability": 0.9945 }, { "start": 41376.65, "end": 41377.55, "probability": 0.6971 }, { "start": 41377.99, "end": 41382.23, "probability": 0.9438 }, { "start": 41382.23, "end": 41385.77, "probability": 0.9226 }, { "start": 41386.35, "end": 41390.01, "probability": 0.9305 }, { "start": 41390.45, "end": 41390.95, "probability": 0.4189 }, { "start": 41391.93, "end": 41396.13, "probability": 0.9682 }, { "start": 41396.21, "end": 41399.91, "probability": 0.946 }, { "start": 41399.97, "end": 41400.87, "probability": 0.9027 }, { "start": 41401.63, "end": 41403.45, "probability": 0.9934 }, { "start": 41404.69, "end": 41408.87, "probability": 0.9932 }, { "start": 41408.91, "end": 41409.33, "probability": 0.9034 }, { "start": 41409.65, "end": 41412.53, "probability": 0.9687 }, { "start": 41412.53, "end": 41415.39, "probability": 0.9921 }, { "start": 41416.03, "end": 41417.45, "probability": 0.9611 }, { "start": 41418.05, "end": 41419.55, "probability": 0.9133 }, { "start": 41420.25, "end": 41423.39, "probability": 0.8493 }, { "start": 41424.07, "end": 41428.05, "probability": 0.9268 }, { "start": 41428.05, "end": 41432.83, "probability": 0.9647 }, { "start": 41433.37, "end": 41437.55, "probability": 0.8752 }, { "start": 41438.21, "end": 41442.59, "probability": 0.9784 }, { "start": 41443.11, "end": 41448.11, "probability": 0.7364 }, { "start": 41448.55, "end": 41449.29, "probability": 0.6765 }, { "start": 41449.73, "end": 41451.55, "probability": 0.9752 }, { "start": 41451.85, "end": 41453.23, "probability": 0.9622 }, { "start": 41453.45, "end": 41453.91, "probability": 0.9659 }, { "start": 41454.59, "end": 41457.91, "probability": 0.7152 }, { "start": 41458.45, "end": 41460.49, "probability": 0.9134 }, { "start": 41460.87, "end": 41465.75, "probability": 0.9195 }, { "start": 41466.17, "end": 41468.49, "probability": 0.9679 }, { "start": 41469.03, "end": 41471.47, "probability": 0.889 }, { "start": 41471.79, "end": 41472.13, "probability": 0.6422 }, { "start": 41472.97, "end": 41474.21, "probability": 0.8047 }, { "start": 41474.69, "end": 41480.99, "probability": 0.9613 }, { "start": 41481.89, "end": 41482.89, "probability": 0.9852 }, { "start": 41483.61, "end": 41487.22, "probability": 0.9282 }, { "start": 41487.97, "end": 41490.71, "probability": 0.9971 }, { "start": 41494.87, "end": 41496.55, "probability": 0.8518 }, { "start": 41496.63, "end": 41497.21, "probability": 0.8237 }, { "start": 41497.31, "end": 41499.71, "probability": 0.8406 }, { "start": 41500.15, "end": 41502.59, "probability": 0.9659 }, { "start": 41503.21, "end": 41508.45, "probability": 0.9359 }, { "start": 41508.93, "end": 41512.51, "probability": 0.9082 }, { "start": 41512.51, "end": 41516.55, "probability": 0.9954 }, { "start": 41517.23, "end": 41518.67, "probability": 0.7604 }, { "start": 41519.11, "end": 41520.51, "probability": 0.9337 }, { "start": 41520.93, "end": 41521.87, "probability": 0.8814 }, { "start": 41522.13, "end": 41522.47, "probability": 0.4396 }, { "start": 41522.61, "end": 41524.79, "probability": 0.8126 }, { "start": 41525.37, "end": 41527.91, "probability": 0.9858 }, { "start": 41527.91, "end": 41531.79, "probability": 0.9884 }, { "start": 41532.15, "end": 41532.71, "probability": 0.6589 }, { "start": 41532.93, "end": 41534.89, "probability": 0.9792 }, { "start": 41535.25, "end": 41537.29, "probability": 0.9267 }, { "start": 41537.91, "end": 41541.95, "probability": 0.7326 }, { "start": 41542.45, "end": 41543.39, "probability": 0.5781 }, { "start": 41544.01, "end": 41546.89, "probability": 0.8356 }, { "start": 41547.61, "end": 41551.95, "probability": 0.9912 }, { "start": 41552.53, "end": 41554.43, "probability": 0.9658 }, { "start": 41554.97, "end": 41559.81, "probability": 0.9879 }, { "start": 41560.13, "end": 41560.73, "probability": 0.7145 }, { "start": 41561.23, "end": 41562.83, "probability": 0.7943 }, { "start": 41562.91, "end": 41566.83, "probability": 0.9513 }, { "start": 41567.31, "end": 41570.59, "probability": 0.6075 }, { "start": 41571.05, "end": 41575.99, "probability": 0.9855 }, { "start": 41575.99, "end": 41576.61, "probability": 0.7103 }, { "start": 41576.91, "end": 41577.47, "probability": 0.6067 }, { "start": 41581.41, "end": 41582.87, "probability": 0.5262 }, { "start": 41583.09, "end": 41585.65, "probability": 0.8493 }, { "start": 41605.45, "end": 41605.45, "probability": 0.0293 }, { "start": 41605.45, "end": 41606.53, "probability": 0.4471 }, { "start": 41609.49, "end": 41610.27, "probability": 0.7869 }, { "start": 41611.85, "end": 41612.93, "probability": 0.6952 }, { "start": 41615.45, "end": 41622.05, "probability": 0.8269 }, { "start": 41622.05, "end": 41624.59, "probability": 0.9887 }, { "start": 41626.13, "end": 41628.37, "probability": 0.8706 }, { "start": 41629.83, "end": 41632.27, "probability": 0.9998 }, { "start": 41634.79, "end": 41641.05, "probability": 0.9984 }, { "start": 41642.01, "end": 41643.85, "probability": 0.9008 }, { "start": 41645.69, "end": 41646.57, "probability": 0.5103 }, { "start": 41647.79, "end": 41652.68, "probability": 0.9972 }, { "start": 41655.79, "end": 41658.73, "probability": 0.8323 }, { "start": 41660.05, "end": 41661.27, "probability": 0.5609 }, { "start": 41662.99, "end": 41664.69, "probability": 0.928 }, { "start": 41664.87, "end": 41666.61, "probability": 0.9853 }, { "start": 41667.87, "end": 41669.81, "probability": 0.9985 }, { "start": 41671.47, "end": 41672.89, "probability": 0.9631 }, { "start": 41674.43, "end": 41676.27, "probability": 0.8719 }, { "start": 41676.73, "end": 41679.95, "probability": 0.9571 }, { "start": 41680.91, "end": 41682.03, "probability": 0.9436 }, { "start": 41682.97, "end": 41684.43, "probability": 0.9423 }, { "start": 41685.31, "end": 41687.05, "probability": 0.9492 }, { "start": 41687.23, "end": 41687.49, "probability": 0.9366 }, { "start": 41687.55, "end": 41689.45, "probability": 0.9779 }, { "start": 41689.51, "end": 41690.25, "probability": 0.9917 }, { "start": 41691.81, "end": 41694.29, "probability": 0.878 }, { "start": 41695.67, "end": 41698.69, "probability": 0.9922 }, { "start": 41699.51, "end": 41702.18, "probability": 0.9614 }, { "start": 41702.91, "end": 41707.85, "probability": 0.9788 }, { "start": 41709.53, "end": 41712.61, "probability": 0.9559 }, { "start": 41713.81, "end": 41714.33, "probability": 0.8182 }, { "start": 41715.65, "end": 41722.09, "probability": 0.9805 }, { "start": 41722.27, "end": 41722.81, "probability": 0.8173 }, { "start": 41724.91, "end": 41726.73, "probability": 0.6634 }, { "start": 41727.41, "end": 41730.55, "probability": 0.9378 }, { "start": 41731.79, "end": 41735.75, "probability": 0.9944 }, { "start": 41736.79, "end": 41739.79, "probability": 0.9909 }, { "start": 41739.85, "end": 41740.97, "probability": 0.9212 }, { "start": 41741.17, "end": 41743.37, "probability": 0.8076 }, { "start": 41744.95, "end": 41748.35, "probability": 0.9308 }, { "start": 41748.87, "end": 41750.67, "probability": 0.9539 }, { "start": 41750.99, "end": 41754.49, "probability": 0.987 }, { "start": 41755.05, "end": 41755.99, "probability": 0.7967 }, { "start": 41764.73, "end": 41767.93, "probability": 0.95 }, { "start": 41768.39, "end": 41769.63, "probability": 0.9916 }, { "start": 41770.61, "end": 41777.11, "probability": 0.9888 }, { "start": 41778.45, "end": 41779.75, "probability": 0.7889 }, { "start": 41780.35, "end": 41781.57, "probability": 0.9043 }, { "start": 41783.17, "end": 41785.69, "probability": 0.9604 }, { "start": 41786.53, "end": 41788.91, "probability": 0.983 }, { "start": 41789.95, "end": 41790.85, "probability": 0.8859 }, { "start": 41791.91, "end": 41794.65, "probability": 0.9326 }, { "start": 41794.65, "end": 41798.71, "probability": 0.9749 }, { "start": 41800.83, "end": 41805.85, "probability": 0.9611 }, { "start": 41806.61, "end": 41810.35, "probability": 0.9766 }, { "start": 41811.15, "end": 41813.59, "probability": 0.9688 }, { "start": 41814.39, "end": 41816.77, "probability": 0.9895 }, { "start": 41817.65, "end": 41821.79, "probability": 0.9712 }, { "start": 41822.41, "end": 41826.33, "probability": 0.9835 }, { "start": 41827.25, "end": 41828.03, "probability": 0.9983 }, { "start": 41830.25, "end": 41830.85, "probability": 0.6752 }, { "start": 41830.99, "end": 41838.87, "probability": 0.9324 }, { "start": 41839.73, "end": 41840.08, "probability": 0.64 }, { "start": 41840.35, "end": 41842.49, "probability": 0.9966 }, { "start": 41842.55, "end": 41845.33, "probability": 0.9094 }, { "start": 41846.49, "end": 41850.15, "probability": 0.873 }, { "start": 41850.15, "end": 41853.85, "probability": 0.9435 }, { "start": 41854.83, "end": 41857.69, "probability": 0.9943 }, { "start": 41858.79, "end": 41861.49, "probability": 0.9456 }, { "start": 41862.59, "end": 41864.61, "probability": 0.9171 }, { "start": 41864.61, "end": 41867.75, "probability": 0.9681 }, { "start": 41868.81, "end": 41869.19, "probability": 0.8185 }, { "start": 41870.09, "end": 41876.35, "probability": 0.9937 }, { "start": 41876.35, "end": 41882.21, "probability": 0.991 }, { "start": 41883.53, "end": 41887.15, "probability": 0.9988 }, { "start": 41887.15, "end": 41892.25, "probability": 0.9948 }, { "start": 41892.25, "end": 41896.33, "probability": 0.958 }, { "start": 41898.59, "end": 41901.15, "probability": 0.998 }, { "start": 41901.69, "end": 41903.09, "probability": 0.9935 }, { "start": 41904.37, "end": 41908.57, "probability": 0.8942 }, { "start": 41909.53, "end": 41910.55, "probability": 0.9247 }, { "start": 41911.63, "end": 41914.17, "probability": 0.9119 }, { "start": 41914.17, "end": 41918.91, "probability": 0.8721 }, { "start": 41919.09, "end": 41919.53, "probability": 0.6272 }, { "start": 41921.11, "end": 41922.09, "probability": 0.6347 }, { "start": 41923.97, "end": 41927.95, "probability": 0.9536 }, { "start": 41928.63, "end": 41930.33, "probability": 0.851 }, { "start": 41948.39, "end": 41949.17, "probability": 0.4725 }, { "start": 41952.81, "end": 41952.97, "probability": 0.3844 }, { "start": 41953.53, "end": 41955.81, "probability": 0.9368 }, { "start": 41957.19, "end": 41957.87, "probability": 0.7808 }, { "start": 41959.45, "end": 41961.85, "probability": 0.8297 }, { "start": 41962.39, "end": 41963.09, "probability": 0.8593 }, { "start": 41964.19, "end": 41967.43, "probability": 0.9248 }, { "start": 41968.41, "end": 41972.61, "probability": 0.9776 }, { "start": 41973.35, "end": 41974.65, "probability": 0.9761 }, { "start": 41975.37, "end": 41977.13, "probability": 0.4512 }, { "start": 41977.67, "end": 41977.74, "probability": 0.8706 }, { "start": 41978.17, "end": 41978.61, "probability": 0.6455 }, { "start": 41978.89, "end": 41979.89, "probability": 0.6056 }, { "start": 41979.99, "end": 41980.7, "probability": 0.9868 }, { "start": 41981.17, "end": 41981.68, "probability": 0.0066 }, { "start": 41982.21, "end": 41983.21, "probability": 0.5988 }, { "start": 41983.31, "end": 41983.57, "probability": 0.2554 }, { "start": 41983.57, "end": 41984.45, "probability": 0.5605 }, { "start": 41984.81, "end": 41986.87, "probability": 0.7977 }, { "start": 41986.93, "end": 41987.57, "probability": 0.4459 }, { "start": 41987.63, "end": 41990.23, "probability": 0.7426 }, { "start": 41990.53, "end": 41993.13, "probability": 0.3712 }, { "start": 41993.29, "end": 41994.09, "probability": 0.5935 }, { "start": 41994.23, "end": 41997.45, "probability": 0.9735 }, { "start": 41998.15, "end": 42003.03, "probability": 0.9581 }, { "start": 42003.86, "end": 42008.83, "probability": 0.8877 }, { "start": 42009.41, "end": 42011.39, "probability": 0.7607 }, { "start": 42011.85, "end": 42014.65, "probability": 0.6795 }, { "start": 42014.71, "end": 42016.96, "probability": 0.8582 }, { "start": 42017.23, "end": 42018.81, "probability": 0.936 }, { "start": 42018.91, "end": 42020.71, "probability": 0.7603 }, { "start": 42021.59, "end": 42022.97, "probability": 0.6476 }, { "start": 42024.79, "end": 42026.11, "probability": 0.7801 }, { "start": 42027.35, "end": 42028.77, "probability": 0.637 }, { "start": 42028.85, "end": 42029.37, "probability": 0.61 }, { "start": 42029.43, "end": 42030.33, "probability": 0.9531 }, { "start": 42030.71, "end": 42032.45, "probability": 0.913 }, { "start": 42032.51, "end": 42033.45, "probability": 0.9087 }, { "start": 42033.85, "end": 42036.53, "probability": 0.9682 }, { "start": 42036.53, "end": 42038.31, "probability": 0.9977 }, { "start": 42039.57, "end": 42040.73, "probability": 0.7083 }, { "start": 42040.75, "end": 42042.61, "probability": 0.9812 }, { "start": 42042.85, "end": 42044.47, "probability": 0.8752 }, { "start": 42045.07, "end": 42046.53, "probability": 0.9739 }, { "start": 42046.79, "end": 42050.37, "probability": 0.9585 }, { "start": 42050.45, "end": 42051.13, "probability": 0.5757 }, { "start": 42051.29, "end": 42051.99, "probability": 0.9108 }, { "start": 42052.87, "end": 42054.03, "probability": 0.9576 }, { "start": 42054.11, "end": 42057.53, "probability": 0.8751 }, { "start": 42058.07, "end": 42060.25, "probability": 0.9111 }, { "start": 42060.35, "end": 42062.45, "probability": 0.5145 }, { "start": 42063.11, "end": 42064.65, "probability": 0.8698 }, { "start": 42065.35, "end": 42068.73, "probability": 0.8707 }, { "start": 42069.89, "end": 42071.35, "probability": 0.993 }, { "start": 42071.39, "end": 42073.29, "probability": 0.9681 }, { "start": 42073.53, "end": 42075.15, "probability": 0.8218 }, { "start": 42075.59, "end": 42079.11, "probability": 0.5243 }, { "start": 42080.23, "end": 42080.53, "probability": 0.0328 }, { "start": 42080.53, "end": 42082.33, "probability": 0.8268 }, { "start": 42082.83, "end": 42084.71, "probability": 0.9356 }, { "start": 42085.29, "end": 42088.35, "probability": 0.9724 }, { "start": 42088.67, "end": 42090.51, "probability": 0.8049 }, { "start": 42090.75, "end": 42091.51, "probability": 0.8689 }, { "start": 42091.55, "end": 42094.53, "probability": 0.9658 }, { "start": 42095.49, "end": 42095.91, "probability": 0.834 }, { "start": 42095.97, "end": 42096.71, "probability": 0.7845 }, { "start": 42096.75, "end": 42100.12, "probability": 0.9867 }, { "start": 42100.71, "end": 42102.19, "probability": 0.5949 }, { "start": 42102.85, "end": 42104.89, "probability": 0.9362 }, { "start": 42105.53, "end": 42107.29, "probability": 0.4923 }, { "start": 42107.81, "end": 42110.91, "probability": 0.9875 }, { "start": 42111.11, "end": 42111.46, "probability": 0.9236 }, { "start": 42112.33, "end": 42113.99, "probability": 0.9635 }, { "start": 42114.47, "end": 42116.01, "probability": 0.9785 }, { "start": 42116.11, "end": 42119.55, "probability": 0.9326 }, { "start": 42119.69, "end": 42121.79, "probability": 0.5136 }, { "start": 42121.83, "end": 42123.59, "probability": 0.9927 }, { "start": 42124.39, "end": 42125.57, "probability": 0.9539 }, { "start": 42126.21, "end": 42128.31, "probability": 0.923 }, { "start": 42128.91, "end": 42130.48, "probability": 0.6346 }, { "start": 42130.95, "end": 42131.31, "probability": 0.1463 }, { "start": 42131.37, "end": 42132.51, "probability": 0.9396 }, { "start": 42132.59, "end": 42137.85, "probability": 0.982 }, { "start": 42138.41, "end": 42143.07, "probability": 0.9242 }, { "start": 42143.21, "end": 42145.17, "probability": 0.9786 }, { "start": 42145.23, "end": 42148.35, "probability": 0.9966 }, { "start": 42148.45, "end": 42149.37, "probability": 0.998 }, { "start": 42150.34, "end": 42152.81, "probability": 0.8224 }, { "start": 42152.91, "end": 42153.07, "probability": 0.409 }, { "start": 42153.11, "end": 42153.43, "probability": 0.5427 }, { "start": 42153.57, "end": 42153.85, "probability": 0.8818 }, { "start": 42154.41, "end": 42155.73, "probability": 0.9785 }, { "start": 42156.01, "end": 42157.79, "probability": 0.9779 }, { "start": 42157.95, "end": 42158.27, "probability": 0.9312 }, { "start": 42158.71, "end": 42159.75, "probability": 0.736 }, { "start": 42160.13, "end": 42160.95, "probability": 0.5252 }, { "start": 42161.45, "end": 42162.63, "probability": 0.7922 }, { "start": 42162.67, "end": 42163.51, "probability": 0.7913 }, { "start": 42163.67, "end": 42166.05, "probability": 0.6873 }, { "start": 42166.73, "end": 42169.69, "probability": 0.6216 }, { "start": 42169.73, "end": 42172.71, "probability": 0.8064 }, { "start": 42172.81, "end": 42175.81, "probability": 0.9971 }, { "start": 42176.15, "end": 42179.65, "probability": 0.9595 }, { "start": 42179.73, "end": 42181.21, "probability": 0.7897 }, { "start": 42181.81, "end": 42187.45, "probability": 0.9222 }, { "start": 42189.07, "end": 42190.39, "probability": 0.6354 }, { "start": 42191.01, "end": 42191.69, "probability": 0.4084 }, { "start": 42194.11, "end": 42196.59, "probability": 0.4228 }, { "start": 42197.57, "end": 42201.49, "probability": 0.7036 }, { "start": 42201.73, "end": 42201.73, "probability": 0.0252 }, { "start": 42201.73, "end": 42202.29, "probability": 0.5953 }, { "start": 42202.37, "end": 42202.91, "probability": 0.6936 }, { "start": 42203.35, "end": 42204.65, "probability": 0.9751 }, { "start": 42204.81, "end": 42205.43, "probability": 0.5912 }, { "start": 42205.59, "end": 42207.23, "probability": 0.9008 }, { "start": 42207.79, "end": 42210.37, "probability": 0.8672 }, { "start": 42210.97, "end": 42214.11, "probability": 0.7692 }, { "start": 42214.49, "end": 42216.85, "probability": 0.9461 }, { "start": 42216.89, "end": 42219.05, "probability": 0.9861 }, { "start": 42219.13, "end": 42219.83, "probability": 0.873 }, { "start": 42219.85, "end": 42220.49, "probability": 0.8391 }, { "start": 42220.53, "end": 42221.57, "probability": 0.9258 }, { "start": 42221.59, "end": 42224.09, "probability": 0.9016 }, { "start": 42224.55, "end": 42225.09, "probability": 0.6286 }, { "start": 42225.11, "end": 42226.61, "probability": 0.5441 }, { "start": 42226.73, "end": 42227.57, "probability": 0.9304 }, { "start": 42227.89, "end": 42229.01, "probability": 0.7058 }, { "start": 42229.35, "end": 42231.39, "probability": 0.503 }, { "start": 42231.73, "end": 42232.79, "probability": 0.7866 }, { "start": 42232.85, "end": 42235.19, "probability": 0.9355 }, { "start": 42235.27, "end": 42236.15, "probability": 0.6167 }, { "start": 42236.33, "end": 42236.79, "probability": 0.6364 }, { "start": 42237.03, "end": 42239.03, "probability": 0.4485 }, { "start": 42239.03, "end": 42239.66, "probability": 0.6962 }, { "start": 42239.85, "end": 42240.87, "probability": 0.5337 }, { "start": 42242.13, "end": 42243.79, "probability": 0.3438 }, { "start": 42243.93, "end": 42245.95, "probability": 0.718 }, { "start": 42246.35, "end": 42247.31, "probability": 0.6271 }, { "start": 42248.43, "end": 42250.57, "probability": 0.9322 }, { "start": 42250.65, "end": 42252.29, "probability": 0.5199 }, { "start": 42252.33, "end": 42254.17, "probability": 0.66 }, { "start": 42254.21, "end": 42254.99, "probability": 0.4665 }, { "start": 42254.99, "end": 42255.67, "probability": 0.4373 }, { "start": 42255.67, "end": 42257.39, "probability": 0.8242 }, { "start": 42257.47, "end": 42259.49, "probability": 0.789 }, { "start": 42259.55, "end": 42261.45, "probability": 0.09 }, { "start": 42261.95, "end": 42262.67, "probability": 0.5141 }, { "start": 42262.67, "end": 42263.73, "probability": 0.9062 }, { "start": 42264.31, "end": 42265.27, "probability": 0.8934 }, { "start": 42265.41, "end": 42266.31, "probability": 0.7602 }, { "start": 42266.79, "end": 42268.85, "probability": 0.8567 }, { "start": 42269.21, "end": 42272.32, "probability": 0.7047 }, { "start": 42272.53, "end": 42273.71, "probability": 0.7824 }, { "start": 42273.85, "end": 42274.83, "probability": 0.1966 }, { "start": 42274.87, "end": 42275.29, "probability": 0.5204 }, { "start": 42275.36, "end": 42277.33, "probability": 0.6621 }, { "start": 42277.85, "end": 42280.45, "probability": 0.8357 }, { "start": 42281.03, "end": 42281.15, "probability": 0.7903 }, { "start": 42281.19, "end": 42284.87, "probability": 0.9429 }, { "start": 42284.95, "end": 42285.85, "probability": 0.837 }, { "start": 42285.95, "end": 42286.85, "probability": 0.9776 }, { "start": 42287.23, "end": 42288.57, "probability": 0.8573 }, { "start": 42288.65, "end": 42289.95, "probability": 0.6284 }, { "start": 42290.51, "end": 42292.97, "probability": 0.8111 }, { "start": 42293.35, "end": 42296.35, "probability": 0.8627 }, { "start": 42296.35, "end": 42299.13, "probability": 0.9971 }, { "start": 42299.29, "end": 42299.39, "probability": 0.4987 }, { "start": 42299.61, "end": 42303.47, "probability": 0.9495 }, { "start": 42303.87, "end": 42305.79, "probability": 0.9244 }, { "start": 42306.07, "end": 42307.03, "probability": 0.4316 }, { "start": 42307.11, "end": 42307.57, "probability": 0.9918 }, { "start": 42308.73, "end": 42309.17, "probability": 0.7173 }, { "start": 42309.72, "end": 42311.87, "probability": 0.99 }, { "start": 42311.93, "end": 42313.87, "probability": 0.7338 }, { "start": 42314.13, "end": 42316.57, "probability": 0.8638 }, { "start": 42316.59, "end": 42321.39, "probability": 0.7789 }, { "start": 42321.41, "end": 42323.45, "probability": 0.361 }, { "start": 42323.55, "end": 42324.25, "probability": 0.8752 }, { "start": 42324.33, "end": 42325.09, "probability": 0.652 }, { "start": 42325.45, "end": 42326.89, "probability": 0.7033 }, { "start": 42326.91, "end": 42327.93, "probability": 0.9256 }, { "start": 42327.97, "end": 42330.61, "probability": 0.948 }, { "start": 42331.03, "end": 42333.33, "probability": 0.8903 }, { "start": 42333.53, "end": 42334.51, "probability": 0.7134 }, { "start": 42334.69, "end": 42336.46, "probability": 0.725 }, { "start": 42337.69, "end": 42338.45, "probability": 0.6359 }, { "start": 42338.57, "end": 42339.97, "probability": 0.9137 }, { "start": 42340.39, "end": 42341.39, "probability": 0.933 }, { "start": 42341.49, "end": 42343.77, "probability": 0.9868 }, { "start": 42344.21, "end": 42345.29, "probability": 0.9655 }, { "start": 42345.73, "end": 42349.41, "probability": 0.7547 }, { "start": 42349.53, "end": 42352.45, "probability": 0.8329 }, { "start": 42353.11, "end": 42353.79, "probability": 0.8652 }, { "start": 42354.19, "end": 42356.24, "probability": 0.9507 }, { "start": 42356.54, "end": 42358.77, "probability": 0.9512 }, { "start": 42358.87, "end": 42361.11, "probability": 0.9368 }, { "start": 42361.67, "end": 42362.79, "probability": 0.5733 }, { "start": 42363.37, "end": 42366.29, "probability": 0.4698 }, { "start": 42366.49, "end": 42366.83, "probability": 0.571 }, { "start": 42367.29, "end": 42368.07, "probability": 0.6792 }, { "start": 42368.15, "end": 42370.19, "probability": 0.9448 }, { "start": 42370.25, "end": 42372.01, "probability": 0.5662 }, { "start": 42372.13, "end": 42373.41, "probability": 0.798 }, { "start": 42373.51, "end": 42374.55, "probability": 0.8799 }, { "start": 42374.63, "end": 42376.59, "probability": 0.7408 }, { "start": 42377.11, "end": 42377.73, "probability": 0.4056 }, { "start": 42377.85, "end": 42379.75, "probability": 0.6483 }, { "start": 42380.29, "end": 42380.93, "probability": 0.7607 }, { "start": 42381.07, "end": 42381.91, "probability": 0.8316 }, { "start": 42381.97, "end": 42386.68, "probability": 0.7495 }, { "start": 42387.95, "end": 42390.02, "probability": 0.6174 }, { "start": 42390.09, "end": 42391.95, "probability": 0.3797 }, { "start": 42392.49, "end": 42393.61, "probability": 0.863 }, { "start": 42393.71, "end": 42396.73, "probability": 0.7775 }, { "start": 42396.81, "end": 42399.89, "probability": 0.9917 }, { "start": 42401.62, "end": 42405.65, "probability": 0.8137 }, { "start": 42406.73, "end": 42409.91, "probability": 0.4717 }, { "start": 42410.45, "end": 42411.17, "probability": 0.142 }, { "start": 42411.85, "end": 42415.35, "probability": 0.889 }, { "start": 42415.61, "end": 42416.37, "probability": 0.7837 }, { "start": 42416.71, "end": 42420.83, "probability": 0.7759 }, { "start": 42420.87, "end": 42422.29, "probability": 0.9293 }, { "start": 42422.55, "end": 42423.99, "probability": 0.9795 }, { "start": 42424.21, "end": 42425.77, "probability": 0.8473 }, { "start": 42425.85, "end": 42427.37, "probability": 0.679 }, { "start": 42427.93, "end": 42429.99, "probability": 0.9263 }, { "start": 42430.39, "end": 42432.17, "probability": 0.71 }, { "start": 42432.47, "end": 42433.21, "probability": 0.6885 }, { "start": 42433.27, "end": 42435.13, "probability": 0.7844 }, { "start": 42435.17, "end": 42435.79, "probability": 0.2543 }, { "start": 42435.85, "end": 42436.45, "probability": 0.8416 }, { "start": 42436.87, "end": 42437.69, "probability": 0.932 }, { "start": 42438.53, "end": 42441.53, "probability": 0.9692 }, { "start": 42442.15, "end": 42444.71, "probability": 0.7984 }, { "start": 42445.03, "end": 42447.17, "probability": 0.5167 }, { "start": 42447.29, "end": 42449.65, "probability": 0.8818 }, { "start": 42449.73, "end": 42450.07, "probability": 0.887 }, { "start": 42450.53, "end": 42453.35, "probability": 0.9185 }, { "start": 42454.59, "end": 42458.79, "probability": 0.9368 }, { "start": 42477.09, "end": 42478.95, "probability": 0.5208 }, { "start": 42484.41, "end": 42486.41, "probability": 0.98 }, { "start": 42488.11, "end": 42491.0, "probability": 0.7871 }, { "start": 42491.67, "end": 42494.37, "probability": 0.9962 }, { "start": 42495.31, "end": 42498.25, "probability": 0.9948 }, { "start": 42500.13, "end": 42501.51, "probability": 0.6462 }, { "start": 42502.23, "end": 42502.94, "probability": 0.9443 }, { "start": 42504.13, "end": 42507.97, "probability": 0.8906 }, { "start": 42509.47, "end": 42512.39, "probability": 0.9884 }, { "start": 42512.53, "end": 42513.25, "probability": 0.6883 }, { "start": 42513.39, "end": 42515.77, "probability": 0.9614 }, { "start": 42518.79, "end": 42524.67, "probability": 0.969 }, { "start": 42525.15, "end": 42529.13, "probability": 0.9267 }, { "start": 42529.25, "end": 42530.09, "probability": 0.9448 }, { "start": 42530.75, "end": 42532.61, "probability": 0.9155 }, { "start": 42534.55, "end": 42537.09, "probability": 0.7551 }, { "start": 42538.01, "end": 42538.17, "probability": 0.6776 }, { "start": 42539.51, "end": 42539.73, "probability": 0.6439 }, { "start": 42540.65, "end": 42543.76, "probability": 0.7567 }, { "start": 42545.65, "end": 42546.28, "probability": 0.952 }, { "start": 42547.13, "end": 42548.51, "probability": 0.807 }, { "start": 42548.85, "end": 42551.49, "probability": 0.924 }, { "start": 42553.07, "end": 42554.06, "probability": 0.9844 }, { "start": 42555.67, "end": 42557.15, "probability": 0.6668 }, { "start": 42558.51, "end": 42563.65, "probability": 0.9739 }, { "start": 42565.31, "end": 42571.05, "probability": 0.8087 }, { "start": 42571.05, "end": 42579.89, "probability": 0.9845 }, { "start": 42584.43, "end": 42585.39, "probability": 0.9721 }, { "start": 42588.25, "end": 42589.31, "probability": 0.9839 }, { "start": 42589.65, "end": 42591.65, "probability": 0.9886 }, { "start": 42593.27, "end": 42594.93, "probability": 0.9863 }, { "start": 42596.09, "end": 42596.93, "probability": 0.8589 }, { "start": 42597.31, "end": 42598.37, "probability": 0.8464 }, { "start": 42598.49, "end": 42599.03, "probability": 0.8315 }, { "start": 42599.35, "end": 42600.13, "probability": 0.7332 }, { "start": 42601.21, "end": 42602.77, "probability": 0.9918 }, { "start": 42602.79, "end": 42603.87, "probability": 0.8285 }, { "start": 42604.23, "end": 42605.09, "probability": 0.7169 }, { "start": 42605.99, "end": 42611.19, "probability": 0.9791 }, { "start": 42612.87, "end": 42613.93, "probability": 0.915 }, { "start": 42614.73, "end": 42615.87, "probability": 0.9917 }, { "start": 42617.27, "end": 42621.97, "probability": 0.9875 }, { "start": 42623.95, "end": 42624.47, "probability": 0.4456 }, { "start": 42627.25, "end": 42628.23, "probability": 0.8641 }, { "start": 42628.39, "end": 42632.49, "probability": 0.9634 }, { "start": 42633.47, "end": 42635.83, "probability": 0.9043 }, { "start": 42635.99, "end": 42637.03, "probability": 0.9373 }, { "start": 42637.53, "end": 42637.71, "probability": 0.6942 }, { "start": 42637.79, "end": 42642.65, "probability": 0.9756 }, { "start": 42642.91, "end": 42643.83, "probability": 0.7565 }, { "start": 42643.83, "end": 42644.63, "probability": 0.6409 }, { "start": 42645.31, "end": 42649.47, "probability": 0.647 }, { "start": 42650.09, "end": 42653.01, "probability": 0.5237 }, { "start": 42654.26, "end": 42659.11, "probability": 0.9827 }, { "start": 42660.03, "end": 42660.87, "probability": 0.9985 }, { "start": 42660.97, "end": 42663.37, "probability": 0.9891 }, { "start": 42664.49, "end": 42665.52, "probability": 0.9971 }, { "start": 42666.05, "end": 42669.13, "probability": 0.9968 }, { "start": 42669.71, "end": 42670.33, "probability": 0.9608 }, { "start": 42673.27, "end": 42676.21, "probability": 0.7019 }, { "start": 42677.47, "end": 42679.59, "probability": 0.9119 }, { "start": 42680.45, "end": 42681.87, "probability": 0.9951 }, { "start": 42682.83, "end": 42683.99, "probability": 0.9031 }, { "start": 42685.27, "end": 42685.93, "probability": 0.7639 }, { "start": 42686.51, "end": 42689.59, "probability": 0.5395 }, { "start": 42691.37, "end": 42691.39, "probability": 0.461 }, { "start": 42691.39, "end": 42693.35, "probability": 0.7808 }, { "start": 42693.85, "end": 42694.64, "probability": 0.874 }, { "start": 42695.33, "end": 42695.81, "probability": 0.9526 }, { "start": 42695.89, "end": 42698.27, "probability": 0.9557 }, { "start": 42698.33, "end": 42698.68, "probability": 0.825 }, { "start": 42698.99, "end": 42699.07, "probability": 0.3716 }, { "start": 42699.81, "end": 42701.03, "probability": 0.9054 }, { "start": 42703.11, "end": 42704.49, "probability": 0.9883 }, { "start": 42705.23, "end": 42708.73, "probability": 0.7316 }, { "start": 42709.53, "end": 42710.35, "probability": 0.6749 }, { "start": 42711.55, "end": 42712.97, "probability": 0.9561 }, { "start": 42714.91, "end": 42717.74, "probability": 0.9153 }, { "start": 42722.21, "end": 42729.49, "probability": 0.9854 }, { "start": 42730.35, "end": 42732.85, "probability": 0.7297 }, { "start": 42733.93, "end": 42737.61, "probability": 0.7393 }, { "start": 42738.47, "end": 42739.81, "probability": 0.9198 }, { "start": 42739.95, "end": 42740.59, "probability": 0.8652 }, { "start": 42740.65, "end": 42740.93, "probability": 0.8323 }, { "start": 42740.95, "end": 42741.13, "probability": 0.9178 }, { "start": 42741.29, "end": 42741.59, "probability": 0.8408 }, { "start": 42742.05, "end": 42744.03, "probability": 0.8493 }, { "start": 42744.13, "end": 42744.13, "probability": 0.0841 }, { "start": 42745.07, "end": 42745.99, "probability": 0.4848 }, { "start": 42746.35, "end": 42749.05, "probability": 0.8039 }, { "start": 42750.03, "end": 42754.59, "probability": 0.9098 }, { "start": 42755.23, "end": 42756.03, "probability": 0.9972 }, { "start": 42756.99, "end": 42758.61, "probability": 0.9933 }, { "start": 42759.39, "end": 42760.33, "probability": 0.9575 }, { "start": 42760.51, "end": 42764.89, "probability": 0.9941 }, { "start": 42766.15, "end": 42767.67, "probability": 0.8531 }, { "start": 42768.39, "end": 42769.11, "probability": 0.566 }, { "start": 42769.13, "end": 42773.71, "probability": 0.9849 }, { "start": 42774.23, "end": 42775.57, "probability": 0.8258 }, { "start": 42776.03, "end": 42777.17, "probability": 0.9485 }, { "start": 42777.33, "end": 42777.33, "probability": 0.7402 }, { "start": 42777.97, "end": 42780.75, "probability": 0.991 }, { "start": 42781.39, "end": 42787.99, "probability": 0.8962 }, { "start": 42788.45, "end": 42789.03, "probability": 0.7423 }, { "start": 42789.37, "end": 42789.41, "probability": 0.708 }, { "start": 42791.13, "end": 42792.5, "probability": 0.748 }, { "start": 42792.65, "end": 42793.59, "probability": 0.9834 }, { "start": 42793.95, "end": 42799.53, "probability": 0.9784 }, { "start": 42799.93, "end": 42802.23, "probability": 0.9807 }, { "start": 42802.27, "end": 42802.71, "probability": 0.7324 }, { "start": 42803.19, "end": 42803.99, "probability": 0.6219 }, { "start": 42804.45, "end": 42806.93, "probability": 0.7546 }, { "start": 42807.99, "end": 42810.75, "probability": 0.7691 }, { "start": 42810.83, "end": 42811.71, "probability": 0.958 }, { "start": 42834.37, "end": 42835.45, "probability": 0.9645 }, { "start": 42836.31, "end": 42838.97, "probability": 0.8541 }, { "start": 42841.85, "end": 42842.35, "probability": 0.7484 }, { "start": 42843.99, "end": 42846.47, "probability": 0.6404 }, { "start": 42847.47, "end": 42852.15, "probability": 0.9696 }, { "start": 42852.69, "end": 42854.43, "probability": 0.9967 }, { "start": 42854.67, "end": 42855.27, "probability": 0.6069 }, { "start": 42856.11, "end": 42857.79, "probability": 0.904 }, { "start": 42857.79, "end": 42858.99, "probability": 0.7696 }, { "start": 42861.95, "end": 42863.83, "probability": 0.7344 }, { "start": 42865.31, "end": 42868.39, "probability": 0.9113 }, { "start": 42869.57, "end": 42872.39, "probability": 0.9931 }, { "start": 42874.49, "end": 42874.99, "probability": 0.8641 }, { "start": 42875.93, "end": 42876.77, "probability": 0.9641 }, { "start": 42876.93, "end": 42883.29, "probability": 0.9985 }, { "start": 42883.97, "end": 42884.98, "probability": 0.8438 }, { "start": 42886.47, "end": 42888.13, "probability": 0.9351 }, { "start": 42889.29, "end": 42892.21, "probability": 0.801 }, { "start": 42893.15, "end": 42894.53, "probability": 0.8438 }, { "start": 42896.41, "end": 42902.59, "probability": 0.9955 }, { "start": 42904.33, "end": 42906.45, "probability": 0.4727 }, { "start": 42906.93, "end": 42907.67, "probability": 0.7467 }, { "start": 42907.87, "end": 42908.17, "probability": 0.6939 }, { "start": 42908.25, "end": 42908.95, "probability": 0.7591 }, { "start": 42909.05, "end": 42909.69, "probability": 0.7352 }, { "start": 42910.79, "end": 42913.37, "probability": 0.9909 }, { "start": 42913.85, "end": 42914.94, "probability": 0.9479 }, { "start": 42918.21, "end": 42919.85, "probability": 0.9691 }, { "start": 42921.37, "end": 42922.37, "probability": 0.819 }, { "start": 42925.05, "end": 42928.69, "probability": 0.9953 }, { "start": 42929.95, "end": 42930.85, "probability": 0.8027 }, { "start": 42931.83, "end": 42935.27, "probability": 0.9944 }, { "start": 42936.55, "end": 42937.51, "probability": 0.9016 }, { "start": 42939.67, "end": 42941.37, "probability": 0.9995 }, { "start": 42942.83, "end": 42944.51, "probability": 0.588 }, { "start": 42947.19, "end": 42950.53, "probability": 0.8261 }, { "start": 42951.95, "end": 42953.91, "probability": 0.9914 }, { "start": 42954.63, "end": 42956.67, "probability": 0.9979 }, { "start": 42959.39, "end": 42960.69, "probability": 0.9971 }, { "start": 42964.03, "end": 42966.01, "probability": 0.7539 }, { "start": 42968.31, "end": 42971.33, "probability": 0.9941 }, { "start": 42972.29, "end": 42972.57, "probability": 0.8015 }, { "start": 42973.29, "end": 42974.51, "probability": 0.9709 }, { "start": 42975.17, "end": 42977.24, "probability": 0.9865 }, { "start": 42978.35, "end": 42979.39, "probability": 0.9816 }, { "start": 42980.49, "end": 42982.19, "probability": 0.9727 }, { "start": 42982.29, "end": 42984.61, "probability": 0.9556 }, { "start": 42985.93, "end": 42988.95, "probability": 0.9964 }, { "start": 42991.63, "end": 42997.37, "probability": 0.9912 }, { "start": 42997.37, "end": 43002.47, "probability": 0.9936 }, { "start": 43003.23, "end": 43009.83, "probability": 0.9159 }, { "start": 43011.13, "end": 43011.97, "probability": 0.9873 }, { "start": 43012.35, "end": 43013.85, "probability": 0.9924 }, { "start": 43013.95, "end": 43015.49, "probability": 0.9178 }, { "start": 43017.15, "end": 43017.98, "probability": 0.9629 }, { "start": 43018.93, "end": 43021.05, "probability": 0.8651 }, { "start": 43022.73, "end": 43025.07, "probability": 0.9554 }, { "start": 43025.83, "end": 43027.87, "probability": 0.959 }, { "start": 43028.33, "end": 43030.43, "probability": 0.9928 }, { "start": 43032.49, "end": 43034.05, "probability": 0.9537 }, { "start": 43034.11, "end": 43035.61, "probability": 0.8142 }, { "start": 43035.9, "end": 43037.73, "probability": 0.8479 }, { "start": 43037.79, "end": 43040.09, "probability": 0.9497 }, { "start": 43041.41, "end": 43042.99, "probability": 0.4174 }, { "start": 43042.99, "end": 43043.35, "probability": 0.3498 }, { "start": 43043.35, "end": 43045.83, "probability": 0.9355 }, { "start": 43046.01, "end": 43046.23, "probability": 0.3455 }, { "start": 43049.73, "end": 43050.93, "probability": 0.4126 }, { "start": 43050.95, "end": 43051.05, "probability": 0.4878 }, { "start": 43051.59, "end": 43052.05, "probability": 0.7036 }, { "start": 43052.13, "end": 43052.87, "probability": 0.6043 }, { "start": 43054.33, "end": 43054.87, "probability": 0.3435 }, { "start": 43057.75, "end": 43060.41, "probability": 0.9919 }, { "start": 43060.55, "end": 43064.15, "probability": 0.9806 }, { "start": 43064.85, "end": 43066.97, "probability": 0.8536 }, { "start": 43068.25, "end": 43070.65, "probability": 0.9876 }, { "start": 43071.99, "end": 43075.27, "probability": 0.9194 }, { "start": 43075.33, "end": 43078.4, "probability": 0.9902 }, { "start": 43079.49, "end": 43081.87, "probability": 0.9868 }, { "start": 43082.39, "end": 43086.01, "probability": 0.7198 }, { "start": 43086.97, "end": 43087.89, "probability": 0.9648 }, { "start": 43088.55, "end": 43092.23, "probability": 0.991 }, { "start": 43093.59, "end": 43095.47, "probability": 0.9756 }, { "start": 43098.03, "end": 43101.73, "probability": 0.8531 }, { "start": 43104.85, "end": 43105.61, "probability": 0.9456 }, { "start": 43105.63, "end": 43106.17, "probability": 0.9969 }, { "start": 43108.47, "end": 43111.77, "probability": 0.9797 }, { "start": 43112.63, "end": 43114.41, "probability": 0.6753 }, { "start": 43115.65, "end": 43117.77, "probability": 0.7242 }, { "start": 43118.95, "end": 43120.75, "probability": 0.5352 }, { "start": 43122.59, "end": 43123.87, "probability": 0.7569 }, { "start": 43124.61, "end": 43126.13, "probability": 0.88 }, { "start": 43126.45, "end": 43129.45, "probability": 0.8797 }, { "start": 43131.41, "end": 43132.57, "probability": 0.5271 }, { "start": 43132.65, "end": 43134.15, "probability": 0.5392 }, { "start": 43134.19, "end": 43134.87, "probability": 0.8743 }, { "start": 43135.13, "end": 43136.21, "probability": 0.7981 }, { "start": 43137.19, "end": 43137.95, "probability": 0.4741 }, { "start": 43138.65, "end": 43140.59, "probability": 0.8816 }, { "start": 43142.53, "end": 43147.03, "probability": 0.9904 }, { "start": 43147.07, "end": 43147.89, "probability": 0.6672 }, { "start": 43149.23, "end": 43149.75, "probability": 0.8412 }, { "start": 43151.55, "end": 43155.13, "probability": 0.9569 }, { "start": 43155.23, "end": 43156.65, "probability": 0.9396 }, { "start": 43157.15, "end": 43158.53, "probability": 0.9448 }, { "start": 43160.95, "end": 43162.11, "probability": 0.9696 }, { "start": 43162.23, "end": 43163.99, "probability": 0.9942 }, { "start": 43165.37, "end": 43166.07, "probability": 0.8654 }, { "start": 43168.01, "end": 43169.61, "probability": 0.9946 }, { "start": 43170.45, "end": 43170.75, "probability": 0.6291 }, { "start": 43170.87, "end": 43171.43, "probability": 0.7372 }, { "start": 43171.63, "end": 43172.59, "probability": 0.9331 }, { "start": 43172.67, "end": 43172.91, "probability": 0.8203 }, { "start": 43172.97, "end": 43174.85, "probability": 0.4206 }, { "start": 43177.21, "end": 43179.49, "probability": 0.8674 }, { "start": 43180.21, "end": 43182.24, "probability": 0.88 }, { "start": 43183.33, "end": 43185.95, "probability": 0.9698 }, { "start": 43187.09, "end": 43192.05, "probability": 0.8556 }, { "start": 43193.09, "end": 43194.55, "probability": 0.8693 }, { "start": 43194.69, "end": 43195.96, "probability": 0.9031 }, { "start": 43196.41, "end": 43196.81, "probability": 0.8354 }, { "start": 43197.35, "end": 43198.71, "probability": 0.5188 }, { "start": 43200.51, "end": 43201.79, "probability": 0.8521 }, { "start": 43202.67, "end": 43204.31, "probability": 0.9829 }, { "start": 43205.77, "end": 43206.21, "probability": 0.6333 }, { "start": 43206.79, "end": 43208.65, "probability": 0.7649 }, { "start": 43209.93, "end": 43214.77, "probability": 0.9917 }, { "start": 43214.81, "end": 43217.05, "probability": 0.9445 }, { "start": 43219.37, "end": 43219.55, "probability": 0.0863 }, { "start": 43219.55, "end": 43222.65, "probability": 0.9197 }, { "start": 43223.77, "end": 43226.27, "probability": 0.509 }, { "start": 43226.99, "end": 43231.87, "probability": 0.9806 }, { "start": 43232.69, "end": 43234.27, "probability": 0.6541 }, { "start": 43234.73, "end": 43236.01, "probability": 0.4842 }, { "start": 43236.51, "end": 43239.57, "probability": 0.8921 }, { "start": 43239.67, "end": 43241.03, "probability": 0.8799 }, { "start": 43241.11, "end": 43241.73, "probability": 0.5718 }, { "start": 43241.83, "end": 43243.53, "probability": 0.8341 }, { "start": 43245.37, "end": 43247.09, "probability": 0.1222 }, { "start": 43247.25, "end": 43248.35, "probability": 0.4893 }, { "start": 43249.15, "end": 43250.71, "probability": 0.7422 }, { "start": 43250.71, "end": 43251.05, "probability": 0.2029 }, { "start": 43251.07, "end": 43251.85, "probability": 0.8196 }, { "start": 43251.95, "end": 43252.95, "probability": 0.7827 }, { "start": 43253.09, "end": 43253.17, "probability": 0.0087 }, { "start": 43253.83, "end": 43254.87, "probability": 0.2384 }, { "start": 43255.03, "end": 43256.87, "probability": 0.5419 }, { "start": 43257.23, "end": 43259.37, "probability": 0.7728 }, { "start": 43259.45, "end": 43260.43, "probability": 0.916 }, { "start": 43261.01, "end": 43263.25, "probability": 0.9846 }, { "start": 43263.41, "end": 43264.55, "probability": 0.6644 }, { "start": 43264.55, "end": 43265.97, "probability": 0.7311 }, { "start": 43266.15, "end": 43267.23, "probability": 0.8064 }, { "start": 43267.55, "end": 43268.45, "probability": 0.2647 }, { "start": 43268.49, "end": 43268.49, "probability": 0.546 }, { "start": 43268.49, "end": 43270.87, "probability": 0.3796 }, { "start": 43271.09, "end": 43272.45, "probability": 0.5522 }, { "start": 43272.59, "end": 43274.95, "probability": 0.894 }, { "start": 43275.11, "end": 43275.21, "probability": 0.1137 }, { "start": 43275.21, "end": 43275.21, "probability": 0.0469 }, { "start": 43275.21, "end": 43275.21, "probability": 0.0475 }, { "start": 43275.21, "end": 43277.02, "probability": 0.884 }, { "start": 43277.45, "end": 43277.57, "probability": 0.1832 }, { "start": 43277.73, "end": 43280.31, "probability": 0.4896 }, { "start": 43280.53, "end": 43282.73, "probability": 0.8762 }, { "start": 43282.93, "end": 43284.03, "probability": 0.743 }, { "start": 43284.09, "end": 43284.57, "probability": 0.692 }, { "start": 43284.77, "end": 43286.59, "probability": 0.4554 }, { "start": 43286.61, "end": 43286.61, "probability": 0.0965 }, { "start": 43286.61, "end": 43287.29, "probability": 0.1311 }, { "start": 43287.31, "end": 43287.31, "probability": 0.284 }, { "start": 43287.31, "end": 43287.35, "probability": 0.0948 }, { "start": 43287.63, "end": 43292.55, "probability": 0.9023 }, { "start": 43292.55, "end": 43293.37, "probability": 0.8501 }, { "start": 43294.19, "end": 43294.77, "probability": 0.7466 }, { "start": 43295.51, "end": 43296.19, "probability": 0.6635 }, { "start": 43296.29, "end": 43297.35, "probability": 0.9136 }, { "start": 43297.35, "end": 43298.75, "probability": 0.3629 }, { "start": 43300.59, "end": 43302.09, "probability": 0.7534 }, { "start": 43303.23, "end": 43305.39, "probability": 0.6599 }, { "start": 43318.79, "end": 43319.09, "probability": 0.5125 }, { "start": 43319.09, "end": 43319.71, "probability": 0.2043 }, { "start": 43319.71, "end": 43319.71, "probability": 0.0773 }, { "start": 43319.71, "end": 43321.75, "probability": 0.8322 }, { "start": 43322.05, "end": 43325.71, "probability": 0.9966 }, { "start": 43326.55, "end": 43329.01, "probability": 0.8787 }, { "start": 43329.63, "end": 43331.93, "probability": 0.9969 }, { "start": 43331.99, "end": 43335.15, "probability": 0.9937 }, { "start": 43335.59, "end": 43336.07, "probability": 0.4742 }, { "start": 43336.21, "end": 43336.63, "probability": 0.9022 }, { "start": 43336.69, "end": 43338.43, "probability": 0.8472 }, { "start": 43338.65, "end": 43339.63, "probability": 0.655 }, { "start": 43339.91, "end": 43343.35, "probability": 0.8349 }, { "start": 43343.37, "end": 43344.13, "probability": 0.6184 }, { "start": 43344.35, "end": 43348.83, "probability": 0.7368 }, { "start": 43349.15, "end": 43353.23, "probability": 0.5757 }, { "start": 43353.89, "end": 43357.57, "probability": 0.5334 }, { "start": 43357.81, "end": 43359.23, "probability": 0.9683 }, { "start": 43359.31, "end": 43359.78, "probability": 0.4967 }, { "start": 43359.97, "end": 43362.15, "probability": 0.6328 }, { "start": 43362.27, "end": 43368.21, "probability": 0.7129 }, { "start": 43369.43, "end": 43369.95, "probability": 0.3452 }, { "start": 43370.49, "end": 43371.66, "probability": 0.5964 }, { "start": 43374.89, "end": 43375.67, "probability": 0.0896 }, { "start": 43375.67, "end": 43375.67, "probability": 0.1412 }, { "start": 43375.67, "end": 43375.67, "probability": 0.0784 }, { "start": 43375.67, "end": 43375.89, "probability": 0.0641 }, { "start": 43375.89, "end": 43375.89, "probability": 0.055 }, { "start": 43375.89, "end": 43375.89, "probability": 0.0047 }, { "start": 43375.89, "end": 43378.45, "probability": 0.3409 }, { "start": 43378.69, "end": 43380.51, "probability": 0.7575 }, { "start": 43381.85, "end": 43385.21, "probability": 0.9582 }, { "start": 43385.21, "end": 43390.39, "probability": 0.9509 }, { "start": 43392.39, "end": 43394.61, "probability": 0.9298 }, { "start": 43395.69, "end": 43397.11, "probability": 0.9823 }, { "start": 43397.69, "end": 43398.85, "probability": 0.9882 }, { "start": 43400.13, "end": 43404.11, "probability": 0.8815 }, { "start": 43404.85, "end": 43406.61, "probability": 0.9121 }, { "start": 43407.49, "end": 43408.37, "probability": 0.6882 }, { "start": 43408.67, "end": 43413.65, "probability": 0.9845 }, { "start": 43414.19, "end": 43415.65, "probability": 0.9466 }, { "start": 43415.85, "end": 43416.21, "probability": 0.5795 }, { "start": 43416.61, "end": 43420.85, "probability": 0.9934 }, { "start": 43421.59, "end": 43425.69, "probability": 0.9908 }, { "start": 43425.87, "end": 43426.97, "probability": 0.6529 }, { "start": 43427.03, "end": 43427.55, "probability": 0.853 }, { "start": 43427.61, "end": 43428.17, "probability": 0.7684 }, { "start": 43428.83, "end": 43430.21, "probability": 0.9478 }, { "start": 43430.27, "end": 43430.59, "probability": 0.8264 }, { "start": 43430.77, "end": 43432.37, "probability": 0.8316 }, { "start": 43432.45, "end": 43432.77, "probability": 0.8061 }, { "start": 43432.97, "end": 43433.55, "probability": 0.8582 }, { "start": 43434.47, "end": 43437.57, "probability": 0.9838 }, { "start": 43442.65, "end": 43444.87, "probability": 0.6952 }, { "start": 43445.83, "end": 43448.33, "probability": 0.8964 }, { "start": 43448.49, "end": 43450.83, "probability": 0.8914 }, { "start": 43452.09, "end": 43457.05, "probability": 0.8206 }, { "start": 43457.25, "end": 43458.42, "probability": 0.6517 }, { "start": 43459.17, "end": 43461.61, "probability": 0.9431 }, { "start": 43463.77, "end": 43466.41, "probability": 0.8279 }, { "start": 43466.93, "end": 43468.53, "probability": 0.7221 }, { "start": 43468.89, "end": 43470.59, "probability": 0.9694 }, { "start": 43471.69, "end": 43472.45, "probability": 0.9474 }, { "start": 43473.61, "end": 43475.71, "probability": 0.756 }, { "start": 43477.29, "end": 43478.31, "probability": 0.6553 }, { "start": 43479.15, "end": 43480.45, "probability": 0.8936 }, { "start": 43482.29, "end": 43483.11, "probability": 0.9932 }, { "start": 43484.01, "end": 43485.23, "probability": 0.9768 }, { "start": 43485.67, "end": 43487.27, "probability": 0.9816 }, { "start": 43487.31, "end": 43488.25, "probability": 0.9566 }, { "start": 43488.59, "end": 43489.85, "probability": 0.9781 }, { "start": 43491.38, "end": 43495.23, "probability": 0.6438 }, { "start": 43498.91, "end": 43501.49, "probability": 0.9389 }, { "start": 43501.53, "end": 43509.03, "probability": 0.9813 }, { "start": 43509.03, "end": 43512.67, "probability": 0.9862 }, { "start": 43513.71, "end": 43516.71, "probability": 0.9909 }, { "start": 43516.97, "end": 43521.87, "probability": 0.8172 }, { "start": 43523.67, "end": 43525.65, "probability": 0.9889 }, { "start": 43526.21, "end": 43527.85, "probability": 0.9857 }, { "start": 43529.39, "end": 43530.35, "probability": 0.8052 }, { "start": 43533.03, "end": 43536.23, "probability": 0.997 }, { "start": 43536.31, "end": 43537.31, "probability": 0.7177 }, { "start": 43537.89, "end": 43538.83, "probability": 0.54 }, { "start": 43539.59, "end": 43540.59, "probability": 0.8135 }, { "start": 43540.69, "end": 43541.63, "probability": 0.7296 }, { "start": 43541.69, "end": 43545.23, "probability": 0.6293 }, { "start": 43549.12, "end": 43553.23, "probability": 0.9124 }, { "start": 43554.03, "end": 43556.63, "probability": 0.9593 }, { "start": 43557.41, "end": 43562.51, "probability": 0.9458 }, { "start": 43563.19, "end": 43564.32, "probability": 0.9751 }, { "start": 43565.07, "end": 43567.41, "probability": 0.8764 }, { "start": 43568.09, "end": 43575.03, "probability": 0.9875 }, { "start": 43575.03, "end": 43576.81, "probability": 0.5185 }, { "start": 43577.19, "end": 43583.77, "probability": 0.9238 }, { "start": 43584.39, "end": 43585.75, "probability": 0.947 }, { "start": 43586.37, "end": 43588.33, "probability": 0.9734 }, { "start": 43588.45, "end": 43588.95, "probability": 0.5398 }, { "start": 43589.03, "end": 43594.07, "probability": 0.9928 }, { "start": 43596.05, "end": 43600.13, "probability": 0.995 }, { "start": 43600.13, "end": 43604.47, "probability": 0.98 }, { "start": 43605.01, "end": 43605.27, "probability": 0.5975 }, { "start": 43605.77, "end": 43606.15, "probability": 0.3543 }, { "start": 43606.15, "end": 43606.43, "probability": 0.4313 }, { "start": 43606.61, "end": 43608.03, "probability": 0.9202 }, { "start": 43616.37, "end": 43616.71, "probability": 0.53 }, { "start": 43623.77, "end": 43626.59, "probability": 0.6442 }, { "start": 43630.21, "end": 43637.93, "probability": 0.9648 }, { "start": 43640.91, "end": 43643.29, "probability": 0.9819 }, { "start": 43644.63, "end": 43648.65, "probability": 0.9927 }, { "start": 43651.55, "end": 43655.53, "probability": 0.9995 }, { "start": 43656.87, "end": 43662.41, "probability": 0.999 }, { "start": 43662.59, "end": 43664.21, "probability": 0.9925 }, { "start": 43665.89, "end": 43670.03, "probability": 0.989 }, { "start": 43670.75, "end": 43672.55, "probability": 0.9792 }, { "start": 43676.65, "end": 43680.05, "probability": 0.9425 }, { "start": 43681.09, "end": 43684.63, "probability": 0.932 }, { "start": 43684.63, "end": 43687.47, "probability": 0.9917 }, { "start": 43690.61, "end": 43692.07, "probability": 0.9097 }, { "start": 43692.19, "end": 43693.03, "probability": 0.9927 }, { "start": 43693.95, "end": 43696.71, "probability": 0.9993 }, { "start": 43698.39, "end": 43701.79, "probability": 0.9967 }, { "start": 43703.17, "end": 43704.81, "probability": 0.9926 }, { "start": 43708.39, "end": 43708.88, "probability": 0.9854 }, { "start": 43712.19, "end": 43714.09, "probability": 0.5409 }, { "start": 43715.09, "end": 43717.35, "probability": 0.7929 }, { "start": 43719.33, "end": 43721.45, "probability": 0.5986 }, { "start": 43721.47, "end": 43722.15, "probability": 0.8284 }, { "start": 43722.15, "end": 43723.99, "probability": 0.9419 }, { "start": 43724.13, "end": 43725.07, "probability": 0.9966 }, { "start": 43726.41, "end": 43728.15, "probability": 0.8888 }, { "start": 43728.25, "end": 43728.59, "probability": 0.7012 }, { "start": 43728.67, "end": 43730.91, "probability": 0.9859 }, { "start": 43730.97, "end": 43731.91, "probability": 0.7604 }, { "start": 43732.07, "end": 43732.17, "probability": 0.7063 }, { "start": 43732.47, "end": 43732.51, "probability": 0.0239 }, { "start": 43732.63, "end": 43734.15, "probability": 0.9195 }, { "start": 43734.29, "end": 43735.37, "probability": 0.7242 }, { "start": 43737.95, "end": 43739.03, "probability": 0.667 }, { "start": 43741.47, "end": 43745.65, "probability": 0.9502 }, { "start": 43750.07, "end": 43752.41, "probability": 0.8618 }, { "start": 43754.29, "end": 43756.63, "probability": 0.9549 }, { "start": 43756.83, "end": 43760.41, "probability": 0.9647 }, { "start": 43762.55, "end": 43763.81, "probability": 0.8886 }, { "start": 43764.37, "end": 43765.45, "probability": 0.9935 }, { "start": 43766.17, "end": 43767.25, "probability": 0.9888 }, { "start": 43768.55, "end": 43770.71, "probability": 0.9418 }, { "start": 43773.11, "end": 43777.55, "probability": 0.8423 }, { "start": 43778.57, "end": 43779.55, "probability": 0.991 }, { "start": 43779.67, "end": 43780.91, "probability": 0.9878 }, { "start": 43780.97, "end": 43782.91, "probability": 0.9506 }, { "start": 43784.75, "end": 43790.33, "probability": 0.9956 }, { "start": 43792.91, "end": 43794.49, "probability": 0.9843 }, { "start": 43794.95, "end": 43798.39, "probability": 0.8991 }, { "start": 43798.83, "end": 43801.89, "probability": 0.9804 }, { "start": 43802.67, "end": 43805.03, "probability": 0.9443 }, { "start": 43806.17, "end": 43808.51, "probability": 0.9855 }, { "start": 43810.33, "end": 43811.41, "probability": 0.9884 }, { "start": 43811.81, "end": 43815.05, "probability": 0.9753 }, { "start": 43816.71, "end": 43818.83, "probability": 0.9932 }, { "start": 43818.91, "end": 43820.03, "probability": 0.5365 }, { "start": 43820.35, "end": 43821.33, "probability": 0.7173 }, { "start": 43821.39, "end": 43822.11, "probability": 0.9354 }, { "start": 43822.19, "end": 43823.05, "probability": 0.9795 }, { "start": 43823.17, "end": 43823.72, "probability": 0.9491 }, { "start": 43825.41, "end": 43827.31, "probability": 0.978 }, { "start": 43828.79, "end": 43831.29, "probability": 0.9793 }, { "start": 43831.51, "end": 43833.01, "probability": 0.9717 }, { "start": 43833.75, "end": 43835.95, "probability": 0.9854 }, { "start": 43836.09, "end": 43837.21, "probability": 0.81 }, { "start": 43837.21, "end": 43838.29, "probability": 0.8124 }, { "start": 43838.41, "end": 43840.0, "probability": 0.9867 }, { "start": 43841.45, "end": 43842.47, "probability": 0.575 }, { "start": 43842.67, "end": 43843.37, "probability": 0.9036 }, { "start": 43843.45, "end": 43845.05, "probability": 0.9685 }, { "start": 43845.17, "end": 43846.75, "probability": 0.9961 }, { "start": 43848.13, "end": 43849.73, "probability": 0.9977 }, { "start": 43851.59, "end": 43855.49, "probability": 0.9963 }, { "start": 43856.87, "end": 43857.65, "probability": 0.9388 }, { "start": 43858.75, "end": 43860.34, "probability": 0.9536 }, { "start": 43860.75, "end": 43862.27, "probability": 0.9006 }, { "start": 43862.91, "end": 43863.93, "probability": 0.8607 }, { "start": 43867.43, "end": 43870.63, "probability": 0.9794 }, { "start": 43870.97, "end": 43873.17, "probability": 0.9962 }, { "start": 43876.79, "end": 43877.99, "probability": 0.9246 }, { "start": 43879.33, "end": 43880.47, "probability": 0.9792 }, { "start": 43880.99, "end": 43881.87, "probability": 0.9995 }, { "start": 43883.91, "end": 43885.93, "probability": 0.703 }, { "start": 43887.17, "end": 43888.89, "probability": 0.9506 }, { "start": 43890.61, "end": 43891.94, "probability": 0.9305 }, { "start": 43892.25, "end": 43892.99, "probability": 0.8557 }, { "start": 43893.07, "end": 43895.55, "probability": 0.9138 }, { "start": 43897.19, "end": 43898.29, "probability": 0.7231 }, { "start": 43899.69, "end": 43901.63, "probability": 0.9192 }, { "start": 43903.25, "end": 43905.23, "probability": 0.8649 }, { "start": 43905.43, "end": 43907.09, "probability": 0.9047 }, { "start": 43907.21, "end": 43907.79, "probability": 0.9913 }, { "start": 43908.19, "end": 43909.29, "probability": 0.9696 }, { "start": 43912.15, "end": 43913.95, "probability": 0.9956 }, { "start": 43914.85, "end": 43915.71, "probability": 0.7901 }, { "start": 43916.27, "end": 43916.87, "probability": 0.6771 }, { "start": 43916.91, "end": 43918.47, "probability": 0.9315 }, { "start": 43918.55, "end": 43919.29, "probability": 0.6823 }, { "start": 43919.43, "end": 43920.17, "probability": 0.5019 }, { "start": 43920.29, "end": 43922.51, "probability": 0.8786 }, { "start": 43923.67, "end": 43924.83, "probability": 0.8258 }, { "start": 43925.17, "end": 43928.33, "probability": 0.9878 }, { "start": 43929.99, "end": 43930.29, "probability": 0.6807 }, { "start": 43930.29, "end": 43930.85, "probability": 0.6558 }, { "start": 43931.95, "end": 43932.55, "probability": 0.8624 }, { "start": 43933.29, "end": 43934.63, "probability": 0.7792 }, { "start": 43935.35, "end": 43936.15, "probability": 0.5889 }, { "start": 43950.71, "end": 43952.15, "probability": 0.3656 }, { "start": 43954.97, "end": 43956.63, "probability": 0.2757 }, { "start": 43957.87, "end": 43958.23, "probability": 0.1058 }, { "start": 43961.79, "end": 43962.61, "probability": 0.0186 }, { "start": 43974.45, "end": 43975.83, "probability": 0.6761 }, { "start": 43976.49, "end": 43977.49, "probability": 0.937 }, { "start": 43978.15, "end": 43980.55, "probability": 0.8947 }, { "start": 43981.85, "end": 43987.45, "probability": 0.9278 }, { "start": 43989.05, "end": 43990.83, "probability": 0.8988 }, { "start": 43991.71, "end": 43994.13, "probability": 0.9875 }, { "start": 43994.71, "end": 43995.87, "probability": 0.7522 }, { "start": 43997.59, "end": 44004.23, "probability": 0.9976 }, { "start": 44004.81, "end": 44007.79, "probability": 0.9971 }, { "start": 44009.37, "end": 44010.31, "probability": 0.9013 }, { "start": 44011.29, "end": 44012.93, "probability": 0.8049 }, { "start": 44013.49, "end": 44014.37, "probability": 0.8879 }, { "start": 44014.91, "end": 44015.35, "probability": 0.9515 }, { "start": 44016.01, "end": 44016.99, "probability": 0.8519 }, { "start": 44017.37, "end": 44024.17, "probability": 0.9826 }, { "start": 44025.05, "end": 44025.77, "probability": 0.7416 }, { "start": 44026.41, "end": 44029.59, "probability": 0.8876 }, { "start": 44030.19, "end": 44031.37, "probability": 0.9663 }, { "start": 44037.17, "end": 44039.53, "probability": 0.9009 }, { "start": 44040.81, "end": 44044.51, "probability": 0.9904 }, { "start": 44045.21, "end": 44047.41, "probability": 0.9947 }, { "start": 44048.41, "end": 44051.61, "probability": 0.9754 }, { "start": 44052.31, "end": 44052.81, "probability": 0.9422 }, { "start": 44053.51, "end": 44056.37, "probability": 0.8919 }, { "start": 44059.09, "end": 44060.33, "probability": 0.8527 }, { "start": 44061.05, "end": 44063.17, "probability": 0.9602 }, { "start": 44063.83, "end": 44066.41, "probability": 0.9347 }, { "start": 44067.13, "end": 44068.02, "probability": 0.8569 }, { "start": 44069.05, "end": 44071.69, "probability": 0.9969 }, { "start": 44072.05, "end": 44072.39, "probability": 0.5441 }, { "start": 44072.51, "end": 44072.83, "probability": 0.251 }, { "start": 44074.05, "end": 44076.93, "probability": 0.8509 }, { "start": 44077.61, "end": 44080.37, "probability": 0.8726 }, { "start": 44081.15, "end": 44081.83, "probability": 0.9834 }, { "start": 44082.87, "end": 44084.79, "probability": 0.9264 }, { "start": 44086.35, "end": 44087.97, "probability": 0.9347 }, { "start": 44088.69, "end": 44089.27, "probability": 0.9526 }, { "start": 44089.89, "end": 44092.25, "probability": 0.8823 }, { "start": 44093.21, "end": 44096.59, "probability": 0.9823 }, { "start": 44097.27, "end": 44098.89, "probability": 0.721 }, { "start": 44099.97, "end": 44102.61, "probability": 0.7729 }, { "start": 44103.17, "end": 44104.35, "probability": 0.6637 }, { "start": 44105.35, "end": 44108.07, "probability": 0.9992 }, { "start": 44110.05, "end": 44110.87, "probability": 0.9191 }, { "start": 44112.25, "end": 44114.13, "probability": 0.9814 }, { "start": 44115.65, "end": 44116.25, "probability": 0.5209 }, { "start": 44117.33, "end": 44122.05, "probability": 0.9744 }, { "start": 44122.81, "end": 44123.85, "probability": 0.866 }, { "start": 44124.41, "end": 44124.97, "probability": 0.9688 }, { "start": 44125.65, "end": 44127.51, "probability": 0.9966 }, { "start": 44128.09, "end": 44129.81, "probability": 0.9988 }, { "start": 44130.49, "end": 44132.25, "probability": 0.9983 }, { "start": 44132.95, "end": 44133.63, "probability": 0.8148 }, { "start": 44134.15, "end": 44134.37, "probability": 0.9671 }, { "start": 44134.99, "end": 44136.97, "probability": 0.9872 }, { "start": 44138.59, "end": 44138.85, "probability": 0.9167 }, { "start": 44139.89, "end": 44141.07, "probability": 0.9711 }, { "start": 44143.15, "end": 44145.05, "probability": 0.8002 }, { "start": 44145.81, "end": 44147.6, "probability": 0.9868 }, { "start": 44148.89, "end": 44150.79, "probability": 0.9524 }, { "start": 44151.67, "end": 44152.89, "probability": 0.9939 }, { "start": 44153.65, "end": 44157.03, "probability": 0.9852 }, { "start": 44159.89, "end": 44164.27, "probability": 0.9963 }, { "start": 44164.95, "end": 44165.45, "probability": 0.2586 }, { "start": 44166.51, "end": 44170.75, "probability": 0.9713 }, { "start": 44171.99, "end": 44173.69, "probability": 0.9507 }, { "start": 44176.41, "end": 44182.85, "probability": 0.9924 }, { "start": 44183.61, "end": 44185.21, "probability": 0.8341 }, { "start": 44186.15, "end": 44187.43, "probability": 0.7126 }, { "start": 44188.03, "end": 44190.01, "probability": 0.9374 }, { "start": 44191.15, "end": 44193.81, "probability": 0.9362 }, { "start": 44194.57, "end": 44194.79, "probability": 0.8233 }, { "start": 44195.65, "end": 44196.09, "probability": 0.673 }, { "start": 44197.87, "end": 44200.91, "probability": 0.6317 }, { "start": 44202.03, "end": 44203.39, "probability": 0.9763 }, { "start": 44204.09, "end": 44204.19, "probability": 0.4102 }, { "start": 44207.89, "end": 44210.37, "probability": 0.9616 }, { "start": 44231.89, "end": 44232.72, "probability": 0.4931 }, { "start": 44234.43, "end": 44236.61, "probability": 0.8372 }, { "start": 44236.83, "end": 44238.63, "probability": 0.9738 }, { "start": 44239.31, "end": 44240.19, "probability": 0.4105 }, { "start": 44241.85, "end": 44243.57, "probability": 0.5576 }, { "start": 44244.25, "end": 44247.37, "probability": 0.5034 }, { "start": 44247.57, "end": 44249.17, "probability": 0.469 }, { "start": 44249.31, "end": 44250.79, "probability": 0.5131 }, { "start": 44254.63, "end": 44259.53, "probability": 0.8174 }, { "start": 44260.59, "end": 44265.39, "probability": 0.9972 }, { "start": 44266.37, "end": 44269.41, "probability": 0.9932 }, { "start": 44269.97, "end": 44272.43, "probability": 0.9585 }, { "start": 44272.53, "end": 44273.23, "probability": 0.7516 }, { "start": 44273.79, "end": 44276.93, "probability": 0.9963 }, { "start": 44277.71, "end": 44282.08, "probability": 0.9987 }, { "start": 44282.52, "end": 44284.71, "probability": 0.1787 }, { "start": 44285.25, "end": 44285.29, "probability": 0.2073 }, { "start": 44285.29, "end": 44287.83, "probability": 0.7523 }, { "start": 44288.55, "end": 44294.63, "probability": 0.9856 }, { "start": 44298.05, "end": 44302.19, "probability": 0.9987 }, { "start": 44302.89, "end": 44307.99, "probability": 0.9804 }, { "start": 44309.11, "end": 44310.03, "probability": 0.5016 }, { "start": 44310.55, "end": 44315.73, "probability": 0.9966 }, { "start": 44316.61, "end": 44319.55, "probability": 0.9508 }, { "start": 44320.45, "end": 44324.31, "probability": 0.9944 }, { "start": 44325.15, "end": 44327.99, "probability": 0.9922 }, { "start": 44328.87, "end": 44332.11, "probability": 0.8569 }, { "start": 44333.17, "end": 44335.43, "probability": 0.97 }, { "start": 44336.55, "end": 44341.11, "probability": 0.9866 }, { "start": 44342.97, "end": 44345.15, "probability": 0.9112 }, { "start": 44346.29, "end": 44349.05, "probability": 0.8752 }, { "start": 44349.89, "end": 44351.43, "probability": 0.9251 }, { "start": 44352.29, "end": 44353.77, "probability": 0.8879 }, { "start": 44354.37, "end": 44355.97, "probability": 0.7386 }, { "start": 44356.53, "end": 44360.27, "probability": 0.9847 }, { "start": 44360.27, "end": 44365.33, "probability": 0.9985 }, { "start": 44366.71, "end": 44368.09, "probability": 0.9664 }, { "start": 44370.59, "end": 44376.27, "probability": 0.9969 }, { "start": 44377.51, "end": 44380.96, "probability": 0.9956 }, { "start": 44381.41, "end": 44385.55, "probability": 0.9816 }, { "start": 44386.71, "end": 44388.19, "probability": 0.5134 }, { "start": 44388.21, "end": 44389.35, "probability": 0.8251 }, { "start": 44389.39, "end": 44394.47, "probability": 0.9803 }, { "start": 44395.99, "end": 44403.29, "probability": 0.9686 }, { "start": 44405.17, "end": 44408.47, "probability": 0.9848 }, { "start": 44409.11, "end": 44411.77, "probability": 0.8488 }, { "start": 44413.85, "end": 44415.77, "probability": 0.9785 }, { "start": 44416.97, "end": 44419.79, "probability": 0.9258 }, { "start": 44420.15, "end": 44426.17, "probability": 0.9907 }, { "start": 44426.17, "end": 44434.49, "probability": 0.9877 }, { "start": 44436.15, "end": 44441.23, "probability": 0.9772 }, { "start": 44442.99, "end": 44446.15, "probability": 0.9889 }, { "start": 44446.51, "end": 44451.45, "probability": 0.953 }, { "start": 44451.85, "end": 44454.05, "probability": 0.9472 }, { "start": 44455.71, "end": 44457.91, "probability": 0.9946 }, { "start": 44458.47, "end": 44459.71, "probability": 0.814 }, { "start": 44459.85, "end": 44464.23, "probability": 0.7843 }, { "start": 44465.11, "end": 44467.33, "probability": 0.9044 }, { "start": 44467.89, "end": 44470.03, "probability": 0.9959 }, { "start": 44470.97, "end": 44472.37, "probability": 0.9561 }, { "start": 44473.73, "end": 44477.13, "probability": 0.6815 }, { "start": 44477.73, "end": 44482.41, "probability": 0.8164 }, { "start": 44484.13, "end": 44485.19, "probability": 0.6617 }, { "start": 44486.33, "end": 44493.27, "probability": 0.9908 }, { "start": 44493.89, "end": 44495.55, "probability": 0.9402 }, { "start": 44496.69, "end": 44503.23, "probability": 0.9734 }, { "start": 44503.59, "end": 44507.05, "probability": 0.9972 }, { "start": 44507.25, "end": 44510.99, "probability": 0.9824 }, { "start": 44512.91, "end": 44513.69, "probability": 0.6521 }, { "start": 44514.79, "end": 44518.61, "probability": 0.9973 }, { "start": 44518.61, "end": 44522.61, "probability": 0.9979 }, { "start": 44523.25, "end": 44528.49, "probability": 0.9766 }, { "start": 44528.75, "end": 44530.06, "probability": 0.9818 }, { "start": 44530.99, "end": 44533.89, "probability": 0.913 }, { "start": 44533.93, "end": 44537.37, "probability": 0.9444 }, { "start": 44537.71, "end": 44541.43, "probability": 0.9949 }, { "start": 44541.43, "end": 44546.75, "probability": 0.9495 }, { "start": 44546.97, "end": 44546.97, "probability": 0.4308 }, { "start": 44547.11, "end": 44553.95, "probability": 0.9767 }, { "start": 44554.59, "end": 44557.83, "probability": 0.4942 }, { "start": 44557.83, "end": 44557.83, "probability": 0.4025 }, { "start": 44557.83, "end": 44562.27, "probability": 0.9552 }, { "start": 44562.29, "end": 44562.83, "probability": 0.8481 }, { "start": 44562.83, "end": 44564.05, "probability": 0.9145 }, { "start": 44595.41, "end": 44598.69, "probability": 0.7714 }, { "start": 44600.47, "end": 44601.39, "probability": 0.5212 }, { "start": 44605.35, "end": 44606.41, "probability": 0.9783 }, { "start": 44607.53, "end": 44610.41, "probability": 0.7436 }, { "start": 44611.21, "end": 44614.89, "probability": 0.9901 }, { "start": 44616.53, "end": 44619.65, "probability": 0.9632 }, { "start": 44622.19, "end": 44625.21, "probability": 0.8382 }, { "start": 44626.69, "end": 44629.93, "probability": 0.9982 }, { "start": 44630.83, "end": 44634.15, "probability": 0.9933 }, { "start": 44635.13, "end": 44636.39, "probability": 0.8856 }, { "start": 44637.07, "end": 44638.17, "probability": 0.9427 }, { "start": 44639.19, "end": 44641.85, "probability": 0.9974 }, { "start": 44641.85, "end": 44645.33, "probability": 0.9996 }, { "start": 44646.59, "end": 44648.19, "probability": 0.9983 }, { "start": 44648.95, "end": 44649.57, "probability": 0.9384 }, { "start": 44650.87, "end": 44651.95, "probability": 0.6889 }, { "start": 44653.71, "end": 44656.01, "probability": 0.9461 }, { "start": 44657.07, "end": 44658.75, "probability": 0.8696 }, { "start": 44659.77, "end": 44661.53, "probability": 0.9537 }, { "start": 44662.07, "end": 44662.67, "probability": 0.8328 }, { "start": 44663.21, "end": 44669.79, "probability": 0.9779 }, { "start": 44670.45, "end": 44674.39, "probability": 0.9953 }, { "start": 44675.55, "end": 44679.53, "probability": 0.999 }, { "start": 44679.59, "end": 44685.83, "probability": 0.9934 }, { "start": 44687.95, "end": 44691.99, "probability": 0.8511 }, { "start": 44693.19, "end": 44698.59, "probability": 0.997 }, { "start": 44699.33, "end": 44703.49, "probability": 0.9564 }, { "start": 44704.03, "end": 44706.15, "probability": 0.7122 }, { "start": 44707.19, "end": 44708.01, "probability": 0.9411 }, { "start": 44708.29, "end": 44709.61, "probability": 0.9388 }, { "start": 44709.85, "end": 44712.75, "probability": 0.9888 }, { "start": 44713.43, "end": 44717.7, "probability": 0.9928 }, { "start": 44718.99, "end": 44721.11, "probability": 0.9717 }, { "start": 44721.75, "end": 44725.01, "probability": 0.9976 }, { "start": 44725.81, "end": 44728.77, "probability": 0.9974 }, { "start": 44729.29, "end": 44735.33, "probability": 0.9774 }, { "start": 44736.23, "end": 44737.79, "probability": 0.9081 }, { "start": 44739.72, "end": 44742.33, "probability": 0.8401 }, { "start": 44742.41, "end": 44744.55, "probability": 0.9868 }, { "start": 44745.09, "end": 44746.07, "probability": 0.9703 }, { "start": 44746.73, "end": 44747.67, "probability": 0.5078 }, { "start": 44748.77, "end": 44753.61, "probability": 0.9876 }, { "start": 44754.03, "end": 44757.33, "probability": 0.863 }, { "start": 44758.19, "end": 44764.05, "probability": 0.9867 }, { "start": 44764.79, "end": 44767.95, "probability": 0.9976 }, { "start": 44767.95, "end": 44773.21, "probability": 0.9962 }, { "start": 44775.43, "end": 44778.69, "probability": 0.9958 }, { "start": 44778.69, "end": 44782.77, "probability": 0.9996 }, { "start": 44783.83, "end": 44786.37, "probability": 0.9395 }, { "start": 44787.83, "end": 44789.73, "probability": 0.9924 }, { "start": 44790.53, "end": 44792.25, "probability": 0.9914 }, { "start": 44792.91, "end": 44796.33, "probability": 0.9948 }, { "start": 44798.29, "end": 44801.89, "probability": 0.9972 }, { "start": 44802.47, "end": 44805.93, "probability": 0.9868 }, { "start": 44806.37, "end": 44810.91, "probability": 0.9889 }, { "start": 44811.69, "end": 44813.29, "probability": 0.9872 }, { "start": 44814.21, "end": 44816.07, "probability": 0.989 }, { "start": 44816.83, "end": 44818.81, "probability": 0.8876 }, { "start": 44819.59, "end": 44823.39, "probability": 0.957 }, { "start": 44824.23, "end": 44827.39, "probability": 0.8462 }, { "start": 44828.23, "end": 44829.19, "probability": 0.9678 }, { "start": 44829.71, "end": 44830.69, "probability": 0.9944 }, { "start": 44831.25, "end": 44832.75, "probability": 0.8752 }, { "start": 44833.31, "end": 44836.41, "probability": 0.8599 }, { "start": 44837.51, "end": 44840.33, "probability": 0.8456 }, { "start": 44841.03, "end": 44842.97, "probability": 0.9976 }, { "start": 44843.63, "end": 44847.63, "probability": 0.9022 }, { "start": 44848.15, "end": 44852.05, "probability": 0.9055 }, { "start": 44852.67, "end": 44854.55, "probability": 0.9563 }, { "start": 44855.21, "end": 44855.83, "probability": 0.805 }, { "start": 44856.67, "end": 44861.39, "probability": 0.9791 }, { "start": 44861.97, "end": 44862.23, "probability": 0.6808 }, { "start": 44862.91, "end": 44863.85, "probability": 0.739 }, { "start": 44864.47, "end": 44866.95, "probability": 0.9857 }, { "start": 44867.37, "end": 44867.73, "probability": 0.7363 }, { "start": 44869.11, "end": 44870.39, "probability": 0.6423 }, { "start": 44870.41, "end": 44871.55, "probability": 0.9307 }, { "start": 44891.57, "end": 44895.01, "probability": 0.6684 }, { "start": 44898.41, "end": 44900.25, "probability": 0.8283 }, { "start": 44901.03, "end": 44902.05, "probability": 0.7774 }, { "start": 44903.31, "end": 44904.51, "probability": 0.9976 }, { "start": 44906.77, "end": 44907.95, "probability": 0.9345 }, { "start": 44909.87, "end": 44913.67, "probability": 0.9936 }, { "start": 44914.57, "end": 44917.43, "probability": 0.9922 }, { "start": 44919.13, "end": 44920.93, "probability": 0.9983 }, { "start": 44922.33, "end": 44923.89, "probability": 0.9567 }, { "start": 44925.79, "end": 44927.71, "probability": 0.9932 }, { "start": 44928.81, "end": 44931.25, "probability": 0.9303 }, { "start": 44932.23, "end": 44937.87, "probability": 0.9612 }, { "start": 44940.39, "end": 44943.41, "probability": 0.9861 }, { "start": 44944.29, "end": 44945.17, "probability": 0.9814 }, { "start": 44946.79, "end": 44951.37, "probability": 0.9873 }, { "start": 44952.45, "end": 44953.65, "probability": 0.8666 }, { "start": 44954.09, "end": 44957.69, "probability": 0.9738 }, { "start": 44958.51, "end": 44963.55, "probability": 0.9632 }, { "start": 44964.25, "end": 44964.81, "probability": 0.7751 }, { "start": 44964.87, "end": 44969.11, "probability": 0.9984 }, { "start": 44969.49, "end": 44973.43, "probability": 0.9894 }, { "start": 44973.71, "end": 44976.35, "probability": 0.9966 }, { "start": 44979.05, "end": 44980.19, "probability": 0.7814 }, { "start": 44981.97, "end": 44983.19, "probability": 0.7501 }, { "start": 44983.99, "end": 44987.39, "probability": 0.9822 }, { "start": 44989.61, "end": 44990.27, "probability": 0.9323 }, { "start": 44993.15, "end": 44993.37, "probability": 0.8975 }, { "start": 44994.35, "end": 44996.89, "probability": 0.9971 }, { "start": 44998.83, "end": 44999.87, "probability": 0.9581 }, { "start": 45000.07, "end": 45002.77, "probability": 0.9097 }, { "start": 45005.51, "end": 45007.91, "probability": 0.9982 }, { "start": 45008.13, "end": 45012.55, "probability": 0.9648 }, { "start": 45014.39, "end": 45016.35, "probability": 0.9628 }, { "start": 45018.69, "end": 45019.53, "probability": 0.9739 }, { "start": 45021.97, "end": 45023.95, "probability": 0.9971 }, { "start": 45027.33, "end": 45029.57, "probability": 0.9913 }, { "start": 45029.59, "end": 45030.43, "probability": 0.9979 }, { "start": 45032.09, "end": 45035.31, "probability": 0.9987 }, { "start": 45037.09, "end": 45038.46, "probability": 0.8984 }, { "start": 45040.03, "end": 45040.29, "probability": 0.6722 }, { "start": 45040.87, "end": 45042.65, "probability": 0.9313 }, { "start": 45049.07, "end": 45054.55, "probability": 0.8978 }, { "start": 45055.25, "end": 45058.41, "probability": 0.9834 }, { "start": 45058.91, "end": 45061.06, "probability": 0.9261 }, { "start": 45064.01, "end": 45065.95, "probability": 0.9035 }, { "start": 45068.11, "end": 45068.81, "probability": 0.2793 }, { "start": 45069.33, "end": 45071.91, "probability": 0.916 }, { "start": 45072.55, "end": 45074.27, "probability": 0.9827 }, { "start": 45075.09, "end": 45076.39, "probability": 0.7489 }, { "start": 45078.33, "end": 45079.69, "probability": 0.8815 }, { "start": 45079.87, "end": 45080.49, "probability": 0.3893 }, { "start": 45080.57, "end": 45081.27, "probability": 0.5926 }, { "start": 45081.43, "end": 45083.39, "probability": 0.8829 }, { "start": 45084.15, "end": 45085.73, "probability": 0.6121 }, { "start": 45086.13, "end": 45087.47, "probability": 0.8904 }, { "start": 45087.75, "end": 45088.41, "probability": 0.8027 }, { "start": 45088.53, "end": 45090.27, "probability": 0.756 }, { "start": 45091.01, "end": 45096.47, "probability": 0.9935 }, { "start": 45097.69, "end": 45099.25, "probability": 0.9683 }, { "start": 45100.55, "end": 45101.61, "probability": 0.9243 }, { "start": 45103.15, "end": 45106.31, "probability": 0.9695 }, { "start": 45107.17, "end": 45110.91, "probability": 0.9705 }, { "start": 45113.39, "end": 45114.51, "probability": 0.6233 }, { "start": 45115.37, "end": 45117.89, "probability": 0.9968 }, { "start": 45119.19, "end": 45121.49, "probability": 0.7949 }, { "start": 45122.23, "end": 45123.49, "probability": 0.6807 }, { "start": 45124.13, "end": 45125.13, "probability": 0.8872 }, { "start": 45125.73, "end": 45127.23, "probability": 0.9201 }, { "start": 45127.35, "end": 45130.87, "probability": 0.8856 }, { "start": 45131.91, "end": 45133.14, "probability": 0.8594 }, { "start": 45134.05, "end": 45135.49, "probability": 0.9758 }, { "start": 45135.59, "end": 45137.06, "probability": 0.8599 }, { "start": 45137.75, "end": 45139.93, "probability": 0.8264 }, { "start": 45139.93, "end": 45143.21, "probability": 0.9937 }, { "start": 45148.59, "end": 45150.29, "probability": 0.7578 }, { "start": 45150.31, "end": 45153.79, "probability": 0.9928 }, { "start": 45155.01, "end": 45157.83, "probability": 0.7757 }, { "start": 45158.01, "end": 45159.83, "probability": 0.9963 }, { "start": 45160.07, "end": 45161.19, "probability": 0.8062 }, { "start": 45161.61, "end": 45163.45, "probability": 0.9558 }, { "start": 45163.53, "end": 45163.75, "probability": 0.4473 }, { "start": 45164.69, "end": 45167.23, "probability": 0.9248 }, { "start": 45167.97, "end": 45170.69, "probability": 0.9739 }, { "start": 45172.91, "end": 45175.49, "probability": 0.9316 }, { "start": 45176.25, "end": 45176.77, "probability": 0.5883 }, { "start": 45177.95, "end": 45178.31, "probability": 0.5315 }, { "start": 45178.47, "end": 45179.01, "probability": 0.6718 }, { "start": 45179.09, "end": 45181.05, "probability": 0.5376 }, { "start": 45181.91, "end": 45189.35, "probability": 0.8286 }, { "start": 45189.51, "end": 45191.21, "probability": 0.771 }, { "start": 45191.95, "end": 45193.4, "probability": 0.7352 }, { "start": 45194.51, "end": 45195.43, "probability": 0.5514 }, { "start": 45197.79, "end": 45198.13, "probability": 0.8707 }, { "start": 45199.99, "end": 45201.01, "probability": 0.7571 }, { "start": 45201.11, "end": 45203.45, "probability": 0.9712 }, { "start": 45206.23, "end": 45209.65, "probability": 0.9213 }, { "start": 45234.37, "end": 45236.47, "probability": 0.6071 }, { "start": 45237.35, "end": 45240.07, "probability": 0.9556 }, { "start": 45240.33, "end": 45241.78, "probability": 0.9834 }, { "start": 45242.93, "end": 45244.97, "probability": 0.9862 }, { "start": 45245.77, "end": 45246.51, "probability": 0.6565 }, { "start": 45250.69, "end": 45251.35, "probability": 0.2248 }, { "start": 45252.59, "end": 45254.67, "probability": 0.9432 }, { "start": 45254.87, "end": 45255.73, "probability": 0.8978 }, { "start": 45257.13, "end": 45257.75, "probability": 0.7453 }, { "start": 45258.81, "end": 45260.65, "probability": 0.9815 }, { "start": 45262.85, "end": 45265.59, "probability": 0.972 }, { "start": 45266.97, "end": 45267.91, "probability": 0.9641 }, { "start": 45268.53, "end": 45269.09, "probability": 0.8338 }, { "start": 45269.61, "end": 45271.19, "probability": 0.6976 }, { "start": 45271.21, "end": 45272.37, "probability": 0.9686 }, { "start": 45273.23, "end": 45276.19, "probability": 0.9546 }, { "start": 45277.07, "end": 45278.23, "probability": 0.9675 }, { "start": 45279.53, "end": 45280.11, "probability": 0.975 }, { "start": 45283.03, "end": 45284.27, "probability": 0.9633 }, { "start": 45285.87, "end": 45289.57, "probability": 0.8858 }, { "start": 45290.79, "end": 45291.45, "probability": 0.539 }, { "start": 45291.99, "end": 45294.23, "probability": 0.654 }, { "start": 45297.36, "end": 45300.71, "probability": 0.7843 }, { "start": 45303.93, "end": 45304.42, "probability": 0.9672 }, { "start": 45305.53, "end": 45306.68, "probability": 0.9562 }, { "start": 45308.05, "end": 45309.32, "probability": 0.8286 }, { "start": 45311.51, "end": 45315.29, "probability": 0.8459 }, { "start": 45316.65, "end": 45318.45, "probability": 0.7477 }, { "start": 45319.79, "end": 45321.84, "probability": 0.8457 }, { "start": 45322.91, "end": 45324.45, "probability": 0.8066 }, { "start": 45327.07, "end": 45330.39, "probability": 0.8718 }, { "start": 45331.49, "end": 45332.33, "probability": 0.8308 }, { "start": 45333.73, "end": 45336.17, "probability": 0.9753 }, { "start": 45338.95, "end": 45342.53, "probability": 0.986 }, { "start": 45344.67, "end": 45348.55, "probability": 0.976 }, { "start": 45349.89, "end": 45350.27, "probability": 0.9601 }, { "start": 45350.37, "end": 45351.23, "probability": 0.539 }, { "start": 45351.27, "end": 45355.81, "probability": 0.9785 }, { "start": 45356.83, "end": 45357.61, "probability": 0.9874 }, { "start": 45358.73, "end": 45359.19, "probability": 0.5802 }, { "start": 45362.13, "end": 45367.09, "probability": 0.8084 }, { "start": 45367.09, "end": 45370.81, "probability": 0.9522 }, { "start": 45371.99, "end": 45373.23, "probability": 0.8123 }, { "start": 45373.97, "end": 45375.05, "probability": 0.9242 }, { "start": 45378.63, "end": 45382.73, "probability": 0.9967 }, { "start": 45382.73, "end": 45384.65, "probability": 0.8833 }, { "start": 45385.55, "end": 45386.97, "probability": 0.8348 }, { "start": 45388.19, "end": 45390.49, "probability": 0.6334 }, { "start": 45392.11, "end": 45392.71, "probability": 0.6597 }, { "start": 45396.55, "end": 45397.57, "probability": 0.8931 }, { "start": 45399.37, "end": 45402.13, "probability": 0.7867 }, { "start": 45406.29, "end": 45407.17, "probability": 0.9939 }, { "start": 45408.71, "end": 45412.89, "probability": 0.9786 }, { "start": 45415.79, "end": 45417.25, "probability": 0.9256 }, { "start": 45419.31, "end": 45420.19, "probability": 0.9956 }, { "start": 45421.49, "end": 45422.37, "probability": 0.7641 }, { "start": 45423.85, "end": 45427.19, "probability": 0.9916 }, { "start": 45428.99, "end": 45430.07, "probability": 0.7751 }, { "start": 45431.27, "end": 45432.43, "probability": 0.9958 }, { "start": 45433.79, "end": 45434.69, "probability": 0.9452 }, { "start": 45435.99, "end": 45440.35, "probability": 0.9899 }, { "start": 45441.03, "end": 45443.47, "probability": 0.9707 }, { "start": 45444.37, "end": 45445.87, "probability": 0.8529 }, { "start": 45446.83, "end": 45447.37, "probability": 0.7729 }, { "start": 45449.95, "end": 45453.63, "probability": 0.9866 }, { "start": 45455.31, "end": 45456.35, "probability": 0.8761 }, { "start": 45458.71, "end": 45461.17, "probability": 0.8508 }, { "start": 45461.47, "end": 45464.01, "probability": 0.9961 }, { "start": 45464.81, "end": 45465.55, "probability": 0.8916 }, { "start": 45467.71, "end": 45468.27, "probability": 0.9816 }, { "start": 45468.61, "end": 45472.35, "probability": 0.9071 }, { "start": 45472.87, "end": 45474.29, "probability": 0.9373 }, { "start": 45475.03, "end": 45475.75, "probability": 0.7378 }, { "start": 45476.49, "end": 45478.59, "probability": 0.9919 }, { "start": 45479.17, "end": 45480.19, "probability": 0.9893 }, { "start": 45481.21, "end": 45481.91, "probability": 0.7485 }, { "start": 45482.51, "end": 45483.27, "probability": 0.7466 }, { "start": 45483.97, "end": 45485.13, "probability": 0.9691 }, { "start": 45486.05, "end": 45486.83, "probability": 0.7772 }, { "start": 45488.05, "end": 45489.45, "probability": 0.9213 }, { "start": 45489.71, "end": 45492.95, "probability": 0.9516 }, { "start": 45494.19, "end": 45495.33, "probability": 0.7024 }, { "start": 45496.65, "end": 45499.29, "probability": 0.9539 }, { "start": 45499.29, "end": 45501.91, "probability": 0.7655 }, { "start": 45502.57, "end": 45502.73, "probability": 0.3775 }, { "start": 45504.07, "end": 45505.33, "probability": 0.5014 }, { "start": 45505.71, "end": 45506.01, "probability": 0.9034 }, { "start": 45508.81, "end": 45511.09, "probability": 0.9767 }, { "start": 45512.01, "end": 45513.95, "probability": 0.7854 }, { "start": 45515.13, "end": 45516.73, "probability": 0.8884 }, { "start": 45516.79, "end": 45517.04, "probability": 0.5194 }, { "start": 45517.73, "end": 45519.47, "probability": 0.8283 }, { "start": 45520.09, "end": 45521.01, "probability": 0.6474 }, { "start": 45521.71, "end": 45523.37, "probability": 0.9478 }, { "start": 45524.05, "end": 45528.62, "probability": 0.6926 }, { "start": 45529.95, "end": 45530.55, "probability": 0.3503 }, { "start": 45531.25, "end": 45533.27, "probability": 0.8935 }, { "start": 45534.01, "end": 45536.57, "probability": 0.7795 }, { "start": 45537.25, "end": 45540.71, "probability": 0.9452 }, { "start": 45542.11, "end": 45543.23, "probability": 0.8146 }, { "start": 45543.27, "end": 45544.49, "probability": 0.8423 }, { "start": 45544.79, "end": 45545.93, "probability": 0.5428 }, { "start": 45546.09, "end": 45546.49, "probability": 0.4648 }, { "start": 45547.77, "end": 45548.35, "probability": 0.7905 }, { "start": 45549.21, "end": 45550.75, "probability": 0.9792 }, { "start": 45551.91, "end": 45553.95, "probability": 0.9634 }, { "start": 45554.23, "end": 45554.67, "probability": 0.716 }, { "start": 45555.49, "end": 45555.7, "probability": 0.9837 }, { "start": 45556.33, "end": 45557.49, "probability": 0.8832 }, { "start": 45558.43, "end": 45559.67, "probability": 0.8955 }, { "start": 45560.07, "end": 45562.57, "probability": 0.9795 }, { "start": 45562.63, "end": 45562.83, "probability": 0.785 }, { "start": 45571.31, "end": 45571.71, "probability": 0.5605 }, { "start": 45572.05, "end": 45573.31, "probability": 0.9337 }, { "start": 45593.05, "end": 45594.03, "probability": 0.609 }, { "start": 45595.43, "end": 45597.27, "probability": 0.7065 }, { "start": 45597.93, "end": 45599.39, "probability": 0.8822 }, { "start": 45600.49, "end": 45603.81, "probability": 0.9771 }, { "start": 45604.39, "end": 45605.55, "probability": 0.5428 }, { "start": 45606.37, "end": 45608.43, "probability": 0.9888 }, { "start": 45609.77, "end": 45611.61, "probability": 0.9524 }, { "start": 45611.71, "end": 45614.11, "probability": 0.9431 }, { "start": 45614.81, "end": 45616.59, "probability": 0.7988 }, { "start": 45617.21, "end": 45618.85, "probability": 0.9855 }, { "start": 45619.65, "end": 45624.01, "probability": 0.9777 }, { "start": 45624.75, "end": 45627.15, "probability": 0.9937 }, { "start": 45628.03, "end": 45629.19, "probability": 0.6773 }, { "start": 45630.43, "end": 45632.13, "probability": 0.9991 }, { "start": 45633.57, "end": 45635.19, "probability": 0.9854 }, { "start": 45635.83, "end": 45636.81, "probability": 0.8727 }, { "start": 45638.49, "end": 45642.59, "probability": 0.9453 }, { "start": 45643.33, "end": 45645.07, "probability": 0.7432 }, { "start": 45645.73, "end": 45647.71, "probability": 0.9497 }, { "start": 45649.55, "end": 45653.81, "probability": 0.9847 }, { "start": 45653.81, "end": 45658.03, "probability": 0.9833 }, { "start": 45658.83, "end": 45661.31, "probability": 0.8906 }, { "start": 45661.95, "end": 45664.45, "probability": 0.9448 }, { "start": 45665.25, "end": 45666.79, "probability": 0.7289 }, { "start": 45667.31, "end": 45669.39, "probability": 0.8889 }, { "start": 45670.09, "end": 45671.79, "probability": 0.986 }, { "start": 45672.73, "end": 45676.65, "probability": 0.9963 }, { "start": 45677.21, "end": 45678.51, "probability": 0.7452 }, { "start": 45679.07, "end": 45682.11, "probability": 0.9255 }, { "start": 45682.11, "end": 45685.99, "probability": 0.9834 }, { "start": 45687.11, "end": 45690.97, "probability": 0.9909 }, { "start": 45691.11, "end": 45692.31, "probability": 0.9034 }, { "start": 45693.05, "end": 45695.53, "probability": 0.9971 }, { "start": 45696.17, "end": 45700.17, "probability": 0.9716 }, { "start": 45701.13, "end": 45704.29, "probability": 0.9733 }, { "start": 45704.89, "end": 45706.61, "probability": 0.9879 }, { "start": 45707.57, "end": 45711.47, "probability": 0.9637 }, { "start": 45711.47, "end": 45715.15, "probability": 0.9981 }, { "start": 45716.95, "end": 45719.55, "probability": 0.99 }, { "start": 45720.27, "end": 45721.93, "probability": 0.9906 }, { "start": 45721.99, "end": 45725.01, "probability": 0.9915 }, { "start": 45725.01, "end": 45727.87, "probability": 0.9955 }, { "start": 45728.79, "end": 45730.33, "probability": 0.7414 }, { "start": 45730.47, "end": 45731.95, "probability": 0.8376 }, { "start": 45732.51, "end": 45733.39, "probability": 0.941 }, { "start": 45734.13, "end": 45736.37, "probability": 0.9839 }, { "start": 45737.75, "end": 45742.17, "probability": 0.8352 }, { "start": 45742.81, "end": 45746.01, "probability": 0.9878 }, { "start": 45747.15, "end": 45751.33, "probability": 0.9949 }, { "start": 45751.33, "end": 45755.39, "probability": 0.9989 }, { "start": 45755.51, "end": 45756.15, "probability": 0.8713 }, { "start": 45756.47, "end": 45758.27, "probability": 0.9263 }, { "start": 45758.75, "end": 45760.83, "probability": 0.9128 }, { "start": 45761.11, "end": 45763.03, "probability": 0.9573 }, { "start": 45763.55, "end": 45765.17, "probability": 0.9616 }, { "start": 45765.73, "end": 45768.17, "probability": 0.9915 }, { "start": 45768.97, "end": 45770.35, "probability": 0.8043 }, { "start": 45771.13, "end": 45773.15, "probability": 0.9453 }, { "start": 45773.65, "end": 45774.53, "probability": 0.9778 }, { "start": 45775.39, "end": 45778.01, "probability": 0.9842 }, { "start": 45778.01, "end": 45780.73, "probability": 0.9943 }, { "start": 45781.41, "end": 45784.37, "probability": 0.9917 }, { "start": 45784.37, "end": 45788.53, "probability": 0.9883 }, { "start": 45789.25, "end": 45791.53, "probability": 0.9696 }, { "start": 45791.53, "end": 45794.47, "probability": 0.9985 }, { "start": 45795.37, "end": 45797.45, "probability": 0.9929 }, { "start": 45798.17, "end": 45801.15, "probability": 0.944 }, { "start": 45801.71, "end": 45802.45, "probability": 0.9388 }, { "start": 45803.49, "end": 45804.17, "probability": 0.6968 }, { "start": 45804.17, "end": 45805.23, "probability": 0.8989 }, { "start": 45805.61, "end": 45808.03, "probability": 0.9763 }, { "start": 45808.95, "end": 45812.39, "probability": 0.9919 }, { "start": 45812.63, "end": 45813.09, "probability": 0.7554 }, { "start": 45813.83, "end": 45815.87, "probability": 0.9062 }, { "start": 45816.05, "end": 45817.15, "probability": 0.7805 }, { "start": 45817.67, "end": 45820.35, "probability": 0.9854 }, { "start": 45821.35, "end": 45824.99, "probability": 0.9902 }, { "start": 45825.73, "end": 45827.37, "probability": 0.9219 }, { "start": 45828.03, "end": 45831.21, "probability": 0.8989 }, { "start": 45831.41, "end": 45832.04, "probability": 0.4554 }, { "start": 45832.85, "end": 45833.75, "probability": 0.9621 }, { "start": 45834.55, "end": 45835.49, "probability": 0.9757 }, { "start": 45836.39, "end": 45838.93, "probability": 0.8831 }, { "start": 45839.05, "end": 45843.21, "probability": 0.9613 }, { "start": 45843.87, "end": 45846.41, "probability": 0.976 }, { "start": 45847.03, "end": 45848.09, "probability": 0.9495 }, { "start": 45848.41, "end": 45850.37, "probability": 0.9231 }, { "start": 45850.91, "end": 45853.33, "probability": 0.9939 }, { "start": 45853.81, "end": 45857.33, "probability": 0.7638 }, { "start": 45857.85, "end": 45860.59, "probability": 0.9376 }, { "start": 45861.17, "end": 45865.11, "probability": 0.9563 }, { "start": 45865.69, "end": 45868.73, "probability": 0.9943 }, { "start": 45868.73, "end": 45872.35, "probability": 0.9987 }, { "start": 45873.13, "end": 45874.63, "probability": 0.93 }, { "start": 45875.21, "end": 45875.75, "probability": 0.6665 }, { "start": 45876.29, "end": 45877.65, "probability": 0.7638 }, { "start": 45878.53, "end": 45879.49, "probability": 0.9319 }, { "start": 45880.17, "end": 45881.23, "probability": 0.7325 }, { "start": 45881.67, "end": 45884.35, "probability": 0.9895 }, { "start": 45885.09, "end": 45885.89, "probability": 0.7881 }, { "start": 45886.57, "end": 45890.17, "probability": 0.9766 }, { "start": 45890.79, "end": 45893.25, "probability": 0.9899 }, { "start": 45894.09, "end": 45897.91, "probability": 0.9865 }, { "start": 45899.11, "end": 45902.07, "probability": 0.8195 }, { "start": 45902.65, "end": 45903.39, "probability": 0.9863 }, { "start": 45904.05, "end": 45904.71, "probability": 0.766 }, { "start": 45904.87, "end": 45906.31, "probability": 0.9958 }, { "start": 45906.79, "end": 45911.77, "probability": 0.9653 }, { "start": 45913.23, "end": 45914.29, "probability": 0.6463 }, { "start": 45915.27, "end": 45916.53, "probability": 0.5344 }, { "start": 45917.51, "end": 45918.97, "probability": 0.7145 }, { "start": 45927.93, "end": 45929.79, "probability": 0.3164 }, { "start": 45935.03, "end": 45936.05, "probability": 0.6114 }, { "start": 45936.93, "end": 45938.81, "probability": 0.8806 }, { "start": 45939.77, "end": 45941.25, "probability": 0.9709 }, { "start": 45942.05, "end": 45943.61, "probability": 0.949 }, { "start": 45944.87, "end": 45947.51, "probability": 0.9686 }, { "start": 45949.77, "end": 45951.01, "probability": 0.6522 }, { "start": 45952.45, "end": 45954.01, "probability": 0.9984 }, { "start": 45954.67, "end": 45957.73, "probability": 0.8716 }, { "start": 45958.34, "end": 45961.16, "probability": 0.9167 }, { "start": 45961.59, "end": 45961.69, "probability": 0.4449 }, { "start": 45962.55, "end": 45965.03, "probability": 0.9441 }, { "start": 45967.07, "end": 45968.51, "probability": 0.6327 }, { "start": 45969.53, "end": 45969.55, "probability": 0.1241 }, { "start": 45970.45, "end": 45970.45, "probability": 0.2822 }, { "start": 45970.45, "end": 45972.03, "probability": 0.0338 }, { "start": 45972.63, "end": 45975.19, "probability": 0.8134 }, { "start": 45975.51, "end": 45976.91, "probability": 0.0977 }, { "start": 45977.03, "end": 45977.49, "probability": 0.4389 }, { "start": 45977.99, "end": 45981.11, "probability": 0.7742 }, { "start": 45982.15, "end": 45986.69, "probability": 0.8623 }, { "start": 45987.53, "end": 45988.93, "probability": 0.9741 }, { "start": 45989.07, "end": 45990.95, "probability": 0.9428 }, { "start": 45991.21, "end": 45991.98, "probability": 0.671 }, { "start": 45993.15, "end": 45994.13, "probability": 0.4236 }, { "start": 45994.97, "end": 45995.63, "probability": 0.7458 }, { "start": 45997.01, "end": 45997.6, "probability": 0.7935 }, { "start": 45997.75, "end": 45998.41, "probability": 0.6463 }, { "start": 45998.77, "end": 46001.09, "probability": 0.7992 }, { "start": 46001.13, "end": 46003.71, "probability": 0.9442 }, { "start": 46004.91, "end": 46005.77, "probability": 0.9344 }, { "start": 46006.07, "end": 46007.93, "probability": 0.8628 }, { "start": 46008.19, "end": 46009.49, "probability": 0.7354 }, { "start": 46011.19, "end": 46012.97, "probability": 0.67 }, { "start": 46013.33, "end": 46015.43, "probability": 0.5032 }, { "start": 46015.72, "end": 46017.95, "probability": 0.9878 }, { "start": 46018.87, "end": 46020.77, "probability": 0.9958 }, { "start": 46021.49, "end": 46027.67, "probability": 0.9941 }, { "start": 46028.25, "end": 46028.75, "probability": 0.86 }, { "start": 46029.29, "end": 46031.11, "probability": 0.9743 }, { "start": 46031.45, "end": 46032.81, "probability": 0.9985 }, { "start": 46033.73, "end": 46035.29, "probability": 0.8604 }, { "start": 46035.41, "end": 46038.49, "probability": 0.7964 }, { "start": 46038.93, "end": 46039.01, "probability": 0.5049 }, { "start": 46039.01, "end": 46040.01, "probability": 0.6078 }, { "start": 46040.35, "end": 46042.41, "probability": 0.987 }, { "start": 46042.45, "end": 46044.65, "probability": 0.692 }, { "start": 46045.37, "end": 46046.83, "probability": 0.9543 }, { "start": 46047.03, "end": 46048.61, "probability": 0.6944 }, { "start": 46048.61, "end": 46051.87, "probability": 0.7068 }, { "start": 46051.99, "end": 46052.57, "probability": 0.9943 }, { "start": 46053.33, "end": 46053.43, "probability": 0.5006 }, { "start": 46053.85, "end": 46055.78, "probability": 0.6351 }, { "start": 46056.15, "end": 46056.79, "probability": 0.6682 }, { "start": 46057.21, "end": 46058.29, "probability": 0.9833 }, { "start": 46058.85, "end": 46061.43, "probability": 0.9775 }, { "start": 46062.25, "end": 46063.83, "probability": 0.7329 }, { "start": 46063.93, "end": 46065.15, "probability": 0.5125 }, { "start": 46065.67, "end": 46067.77, "probability": 0.976 }, { "start": 46068.61, "end": 46070.49, "probability": 0.8191 }, { "start": 46070.51, "end": 46073.45, "probability": 0.9724 }, { "start": 46073.79, "end": 46074.37, "probability": 0.9508 }, { "start": 46074.89, "end": 46076.29, "probability": 0.826 }, { "start": 46076.65, "end": 46078.15, "probability": 0.822 }, { "start": 46078.39, "end": 46081.49, "probability": 0.8977 }, { "start": 46081.81, "end": 46081.83, "probability": 0.37 }, { "start": 46081.89, "end": 46082.79, "probability": 0.3229 }, { "start": 46082.87, "end": 46083.61, "probability": 0.9199 }, { "start": 46083.61, "end": 46083.68, "probability": 0.1991 }, { "start": 46084.17, "end": 46087.65, "probability": 0.8576 }, { "start": 46087.83, "end": 46088.93, "probability": 0.8892 }, { "start": 46088.93, "end": 46089.53, "probability": 0.2173 }, { "start": 46089.83, "end": 46091.81, "probability": 0.5004 }, { "start": 46092.85, "end": 46094.24, "probability": 0.9966 }, { "start": 46094.89, "end": 46095.39, "probability": 0.6251 }, { "start": 46096.09, "end": 46096.57, "probability": 0.7859 }, { "start": 46097.25, "end": 46097.37, "probability": 0.3628 }, { "start": 46097.43, "end": 46099.17, "probability": 0.7652 }, { "start": 46100.51, "end": 46101.75, "probability": 0.504 }, { "start": 46101.75, "end": 46103.29, "probability": 0.7293 }, { "start": 46103.51, "end": 46107.49, "probability": 0.7185 }, { "start": 46107.49, "end": 46107.87, "probability": 0.4275 }, { "start": 46107.91, "end": 46108.01, "probability": 0.0322 }, { "start": 46108.09, "end": 46109.99, "probability": 0.2546 }, { "start": 46110.09, "end": 46111.01, "probability": 0.9961 }, { "start": 46111.79, "end": 46115.01, "probability": 0.7604 }, { "start": 46115.13, "end": 46116.81, "probability": 0.5861 }, { "start": 46116.89, "end": 46117.07, "probability": 0.0882 }, { "start": 46117.57, "end": 46117.63, "probability": 0.0552 }, { "start": 46117.63, "end": 46118.11, "probability": 0.4733 }, { "start": 46118.95, "end": 46124.45, "probability": 0.9956 }, { "start": 46125.07, "end": 46126.87, "probability": 0.9954 }, { "start": 46127.23, "end": 46127.93, "probability": 0.6852 }, { "start": 46130.87, "end": 46133.19, "probability": 0.8816 }, { "start": 46134.05, "end": 46134.91, "probability": 0.7889 }, { "start": 46134.99, "end": 46138.21, "probability": 0.9835 }, { "start": 46138.21, "end": 46141.49, "probability": 0.9961 }, { "start": 46141.99, "end": 46142.77, "probability": 0.5704 }, { "start": 46142.93, "end": 46144.17, "probability": 0.9058 }, { "start": 46144.47, "end": 46144.89, "probability": 0.4743 }, { "start": 46144.97, "end": 46145.83, "probability": 0.6519 }, { "start": 46146.17, "end": 46148.35, "probability": 0.9294 }, { "start": 46149.03, "end": 46150.95, "probability": 0.9385 }, { "start": 46151.43, "end": 46153.01, "probability": 0.915 }, { "start": 46153.65, "end": 46156.29, "probability": 0.9305 }, { "start": 46157.11, "end": 46160.97, "probability": 0.9015 }, { "start": 46161.03, "end": 46163.73, "probability": 0.9968 }, { "start": 46163.73, "end": 46166.77, "probability": 0.9843 }, { "start": 46166.91, "end": 46167.71, "probability": 0.498 }, { "start": 46168.39, "end": 46168.45, "probability": 0.6091 }, { "start": 46168.55, "end": 46169.27, "probability": 0.6593 }, { "start": 46169.57, "end": 46170.83, "probability": 0.9629 }, { "start": 46171.87, "end": 46174.11, "probability": 0.5781 }, { "start": 46174.49, "end": 46180.47, "probability": 0.794 }, { "start": 46181.23, "end": 46182.87, "probability": 0.9487 }, { "start": 46183.53, "end": 46186.57, "probability": 0.9553 }, { "start": 46187.69, "end": 46188.91, "probability": 0.8853 }, { "start": 46189.57, "end": 46191.77, "probability": 0.8378 }, { "start": 46192.25, "end": 46194.23, "probability": 0.9854 }, { "start": 46194.85, "end": 46195.83, "probability": 0.702 }, { "start": 46195.87, "end": 46197.36, "probability": 0.9713 }, { "start": 46197.79, "end": 46198.79, "probability": 0.5156 }, { "start": 46199.03, "end": 46202.43, "probability": 0.7424 }, { "start": 46202.73, "end": 46204.27, "probability": 0.3991 }, { "start": 46205.15, "end": 46205.33, "probability": 0.7653 }, { "start": 46205.35, "end": 46206.43, "probability": 0.5915 }, { "start": 46206.83, "end": 46208.99, "probability": 0.6594 }, { "start": 46209.31, "end": 46211.29, "probability": 0.9775 }, { "start": 46211.37, "end": 46211.59, "probability": 0.5597 }, { "start": 46211.65, "end": 46212.19, "probability": 0.4825 }, { "start": 46212.23, "end": 46215.07, "probability": 0.7764 }, { "start": 46215.15, "end": 46216.01, "probability": 0.9113 }, { "start": 46216.39, "end": 46218.73, "probability": 0.7602 }, { "start": 46219.49, "end": 46221.03, "probability": 0.9122 }, { "start": 46221.69, "end": 46222.91, "probability": 0.6944 }, { "start": 46223.03, "end": 46223.55, "probability": 0.7182 }, { "start": 46223.69, "end": 46224.32, "probability": 0.9294 }, { "start": 46224.99, "end": 46229.69, "probability": 0.9966 }, { "start": 46230.29, "end": 46231.79, "probability": 0.9213 }, { "start": 46232.13, "end": 46234.17, "probability": 0.74 }, { "start": 46234.85, "end": 46236.29, "probability": 0.6746 }, { "start": 46236.53, "end": 46238.33, "probability": 0.9964 }, { "start": 46239.23, "end": 46242.51, "probability": 0.9608 }, { "start": 46242.67, "end": 46243.42, "probability": 0.6449 }, { "start": 46243.81, "end": 46244.65, "probability": 0.8511 }, { "start": 46244.73, "end": 46246.47, "probability": 0.9382 }, { "start": 46246.95, "end": 46247.53, "probability": 0.6677 }, { "start": 46247.75, "end": 46249.45, "probability": 0.6642 }, { "start": 46249.81, "end": 46250.49, "probability": 0.8071 }, { "start": 46250.79, "end": 46253.57, "probability": 0.9481 }, { "start": 46253.91, "end": 46254.87, "probability": 0.5521 }, { "start": 46255.71, "end": 46257.17, "probability": 0.3873 }, { "start": 46257.59, "end": 46258.78, "probability": 0.9443 }, { "start": 46259.83, "end": 46260.67, "probability": 0.6448 }, { "start": 46261.17, "end": 46261.19, "probability": 0.618 }, { "start": 46261.31, "end": 46262.87, "probability": 0.9842 }, { "start": 46262.95, "end": 46263.49, "probability": 0.6325 }, { "start": 46263.71, "end": 46265.43, "probability": 0.7092 }, { "start": 46265.47, "end": 46266.37, "probability": 0.5095 }, { "start": 46266.73, "end": 46266.91, "probability": 0.7839 }, { "start": 46267.48, "end": 46269.91, "probability": 0.8334 }, { "start": 46270.51, "end": 46272.45, "probability": 0.9364 }, { "start": 46272.65, "end": 46273.41, "probability": 0.7818 }, { "start": 46279.71, "end": 46280.91, "probability": 0.0521 }, { "start": 46281.49, "end": 46281.75, "probability": 0.4841 }, { "start": 46282.57, "end": 46283.73, "probability": 0.6868 }, { "start": 46284.97, "end": 46288.09, "probability": 0.7463 }, { "start": 46288.09, "end": 46288.45, "probability": 0.6774 }, { "start": 46288.47, "end": 46292.53, "probability": 0.9767 }, { "start": 46292.53, "end": 46298.31, "probability": 0.9626 }, { "start": 46298.39, "end": 46298.63, "probability": 0.303 }, { "start": 46298.71, "end": 46301.07, "probability": 0.7616 }, { "start": 46301.75, "end": 46303.73, "probability": 0.8832 }, { "start": 46305.93, "end": 46306.59, "probability": 0.1073 }, { "start": 46306.61, "end": 46308.47, "probability": 0.7062 }, { "start": 46309.54, "end": 46312.05, "probability": 0.5656 }, { "start": 46312.17, "end": 46314.13, "probability": 0.7266 }, { "start": 46316.53, "end": 46318.75, "probability": 0.578 }, { "start": 46318.91, "end": 46320.99, "probability": 0.9546 }, { "start": 46321.09, "end": 46321.21, "probability": 0.5699 }, { "start": 46321.21, "end": 46322.79, "probability": 0.9326 }, { "start": 46324.41, "end": 46324.93, "probability": 0.5505 }, { "start": 46325.33, "end": 46329.43, "probability": 0.9941 }, { "start": 46330.31, "end": 46331.67, "probability": 0.3795 }, { "start": 46332.33, "end": 46334.71, "probability": 0.4078 }, { "start": 46334.71, "end": 46338.37, "probability": 0.7583 }, { "start": 46338.99, "end": 46342.86, "probability": 0.9928 }, { "start": 46343.35, "end": 46347.17, "probability": 0.9145 }, { "start": 46347.25, "end": 46350.97, "probability": 0.9978 }, { "start": 46351.07, "end": 46351.31, "probability": 0.5254 }, { "start": 46351.31, "end": 46352.95, "probability": 0.6656 }, { "start": 46353.11, "end": 46357.05, "probability": 0.818 }, { "start": 46357.15, "end": 46359.95, "probability": 0.9858 }, { "start": 46360.07, "end": 46361.35, "probability": 0.9007 }, { "start": 46362.25, "end": 46363.69, "probability": 0.3728 }, { "start": 46363.81, "end": 46365.83, "probability": 0.7822 }, { "start": 46365.87, "end": 46366.67, "probability": 0.875 }, { "start": 46366.81, "end": 46367.23, "probability": 0.5294 }, { "start": 46368.13, "end": 46370.13, "probability": 0.6413 }, { "start": 46370.25, "end": 46372.26, "probability": 0.5926 }, { "start": 46372.71, "end": 46372.93, "probability": 0.8142 }, { "start": 46372.97, "end": 46375.67, "probability": 0.6431 }, { "start": 46375.79, "end": 46377.23, "probability": 0.9907 }, { "start": 46379.38, "end": 46381.23, "probability": 0.9851 }, { "start": 46382.07, "end": 46383.04, "probability": 0.9971 }, { "start": 46383.33, "end": 46385.12, "probability": 0.8941 }, { "start": 46386.27, "end": 46386.93, "probability": 0.4326 }, { "start": 46387.77, "end": 46388.99, "probability": 0.6143 }, { "start": 46389.09, "end": 46390.75, "probability": 0.9905 }, { "start": 46390.89, "end": 46392.65, "probability": 0.976 }, { "start": 46393.47, "end": 46395.69, "probability": 0.9984 }, { "start": 46396.49, "end": 46399.63, "probability": 0.9977 }, { "start": 46399.71, "end": 46402.77, "probability": 0.9761 }, { "start": 46404.19, "end": 46405.23, "probability": 0.9392 }, { "start": 46405.95, "end": 46405.95, "probability": 0.3455 }, { "start": 46405.95, "end": 46405.99, "probability": 0.0439 }, { "start": 46405.99, "end": 46407.91, "probability": 0.8662 }, { "start": 46408.27, "end": 46409.01, "probability": 0.9629 }, { "start": 46409.17, "end": 46411.09, "probability": 0.9563 }, { "start": 46411.31, "end": 46411.99, "probability": 0.7782 }, { "start": 46412.01, "end": 46412.6, "probability": 0.8958 }, { "start": 46412.93, "end": 46415.05, "probability": 0.7041 }, { "start": 46415.99, "end": 46416.17, "probability": 0.5494 }, { "start": 46416.71, "end": 46417.45, "probability": 0.8193 }, { "start": 46417.77, "end": 46421.95, "probability": 0.9964 }, { "start": 46422.25, "end": 46422.89, "probability": 0.8154 }, { "start": 46423.05, "end": 46423.33, "probability": 0.4553 }, { "start": 46423.43, "end": 46424.23, "probability": 0.4302 }, { "start": 46424.23, "end": 46428.45, "probability": 0.9414 }, { "start": 46429.65, "end": 46431.87, "probability": 0.9883 }, { "start": 46432.07, "end": 46432.49, "probability": 0.8356 }, { "start": 46432.59, "end": 46434.15, "probability": 0.2948 }, { "start": 46434.25, "end": 46437.27, "probability": 0.8259 }, { "start": 46437.91, "end": 46439.63, "probability": 0.5461 }, { "start": 46439.73, "end": 46443.45, "probability": 0.9653 }, { "start": 46444.89, "end": 46446.69, "probability": 0.9491 }, { "start": 46447.39, "end": 46450.38, "probability": 0.902 }, { "start": 46450.83, "end": 46455.43, "probability": 0.9356 }, { "start": 46458.85, "end": 46463.05, "probability": 0.8833 }, { "start": 46464.28, "end": 46465.89, "probability": 0.8715 }, { "start": 46466.09, "end": 46468.93, "probability": 0.9709 }, { "start": 46469.03, "end": 46470.19, "probability": 0.8793 }, { "start": 46470.31, "end": 46471.65, "probability": 0.7425 }, { "start": 46471.73, "end": 46472.74, "probability": 0.9303 }, { "start": 46473.11, "end": 46473.99, "probability": 0.9719 }, { "start": 46474.39, "end": 46477.01, "probability": 0.9606 }, { "start": 46477.11, "end": 46477.59, "probability": 0.884 }, { "start": 46477.77, "end": 46478.29, "probability": 0.8148 }, { "start": 46478.33, "end": 46479.33, "probability": 0.994 }, { "start": 46480.65, "end": 46481.85, "probability": 0.862 }, { "start": 46482.63, "end": 46483.79, "probability": 0.6908 }, { "start": 46484.57, "end": 46487.99, "probability": 0.9961 }, { "start": 46488.43, "end": 46489.97, "probability": 0.9458 }, { "start": 46490.03, "end": 46491.29, "probability": 0.9946 }, { "start": 46491.39, "end": 46492.25, "probability": 0.8353 }, { "start": 46492.35, "end": 46493.95, "probability": 0.7284 }, { "start": 46494.07, "end": 46499.05, "probability": 0.9727 }, { "start": 46499.13, "end": 46502.93, "probability": 0.9919 }, { "start": 46503.07, "end": 46503.89, "probability": 0.9719 }, { "start": 46503.89, "end": 46504.45, "probability": 0.7026 }, { "start": 46504.85, "end": 46507.79, "probability": 0.9786 }, { "start": 46508.05, "end": 46510.61, "probability": 0.7108 }, { "start": 46511.59, "end": 46513.59, "probability": 0.8792 }, { "start": 46515.46, "end": 46518.49, "probability": 0.9767 }, { "start": 46518.95, "end": 46520.23, "probability": 0.7217 }, { "start": 46520.63, "end": 46524.31, "probability": 0.7129 }, { "start": 46527.79, "end": 46528.77, "probability": 0.0511 }, { "start": 46528.77, "end": 46528.77, "probability": 0.2899 }, { "start": 46528.77, "end": 46529.33, "probability": 0.4084 }, { "start": 46530.05, "end": 46531.53, "probability": 0.7455 }, { "start": 46532.67, "end": 46534.58, "probability": 0.6984 }, { "start": 46535.35, "end": 46537.16, "probability": 0.925 }, { "start": 46537.95, "end": 46539.87, "probability": 0.9971 }, { "start": 46540.73, "end": 46542.59, "probability": 0.9953 }, { "start": 46542.71, "end": 46544.13, "probability": 0.938 }, { "start": 46544.17, "end": 46546.65, "probability": 0.9531 }, { "start": 46547.01, "end": 46548.0, "probability": 0.9904 }, { "start": 46549.01, "end": 46551.71, "probability": 0.9092 }, { "start": 46551.87, "end": 46553.01, "probability": 0.6741 }, { "start": 46553.47, "end": 46557.55, "probability": 0.9336 }, { "start": 46557.89, "end": 46559.27, "probability": 0.7495 }, { "start": 46559.37, "end": 46559.93, "probability": 0.8784 }, { "start": 46559.93, "end": 46561.63, "probability": 0.8121 }, { "start": 46561.95, "end": 46563.35, "probability": 0.6537 }, { "start": 46563.41, "end": 46563.91, "probability": 0.7271 }, { "start": 46563.91, "end": 46564.87, "probability": 0.9614 }, { "start": 46564.97, "end": 46567.95, "probability": 0.9259 }, { "start": 46568.7, "end": 46571.29, "probability": 0.9591 }, { "start": 46572.01, "end": 46573.03, "probability": 0.5123 }, { "start": 46573.17, "end": 46575.39, "probability": 0.609 }, { "start": 46575.39, "end": 46576.77, "probability": 0.6572 }, { "start": 46577.03, "end": 46578.11, "probability": 0.9937 }, { "start": 46578.31, "end": 46579.11, "probability": 0.7882 }, { "start": 46579.89, "end": 46580.39, "probability": 0.5792 }, { "start": 46580.53, "end": 46582.17, "probability": 0.9746 }, { "start": 46583.49, "end": 46583.85, "probability": 0.9392 }, { "start": 46583.99, "end": 46587.05, "probability": 0.9768 }, { "start": 46587.09, "end": 46587.88, "probability": 0.4089 }, { "start": 46588.35, "end": 46591.13, "probability": 0.6316 }, { "start": 46591.29, "end": 46592.39, "probability": 0.4002 }, { "start": 46592.47, "end": 46594.45, "probability": 0.9653 }, { "start": 46595.27, "end": 46600.03, "probability": 0.9394 }, { "start": 46602.15, "end": 46606.27, "probability": 0.824 }, { "start": 46606.35, "end": 46607.15, "probability": 0.5947 }, { "start": 46607.49, "end": 46608.23, "probability": 0.819 }, { "start": 46608.94, "end": 46610.63, "probability": 0.7986 }, { "start": 46611.55, "end": 46613.69, "probability": 0.9797 }, { "start": 46614.23, "end": 46614.87, "probability": 0.9717 }, { "start": 46615.67, "end": 46616.03, "probability": 0.6727 }, { "start": 46616.19, "end": 46618.15, "probability": 0.9533 }, { "start": 46618.65, "end": 46618.99, "probability": 0.9774 }, { "start": 46619.39, "end": 46621.21, "probability": 0.9705 }, { "start": 46621.29, "end": 46624.67, "probability": 0.9692 }, { "start": 46625.11, "end": 46629.67, "probability": 0.7603 }, { "start": 46630.73, "end": 46633.85, "probability": 0.9383 }, { "start": 46634.67, "end": 46635.63, "probability": 0.8954 }, { "start": 46635.73, "end": 46640.13, "probability": 0.9933 }, { "start": 46640.59, "end": 46641.65, "probability": 0.839 }, { "start": 46641.69, "end": 46644.73, "probability": 0.9909 }, { "start": 46644.83, "end": 46646.53, "probability": 0.7433 }, { "start": 46647.25, "end": 46647.63, "probability": 0.5135 }, { "start": 46647.99, "end": 46648.35, "probability": 0.4227 }, { "start": 46648.43, "end": 46650.03, "probability": 0.7179 }, { "start": 46650.45, "end": 46650.91, "probability": 0.8798 }, { "start": 46651.23, "end": 46652.27, "probability": 0.9087 }, { "start": 46652.63, "end": 46656.31, "probability": 0.9896 }, { "start": 46656.61, "end": 46657.95, "probability": 0.2493 }, { "start": 46658.21, "end": 46659.49, "probability": 0.5476 }, { "start": 46659.97, "end": 46660.81, "probability": 0.2103 }, { "start": 46661.37, "end": 46665.85, "probability": 0.6036 }, { "start": 46680.01, "end": 46680.57, "probability": 0.7476 }, { "start": 46681.03, "end": 46681.11, "probability": 0.6022 }, { "start": 46681.19, "end": 46681.77, "probability": 0.6964 }, { "start": 46681.89, "end": 46684.13, "probability": 0.9705 }, { "start": 46684.13, "end": 46686.35, "probability": 0.9986 }, { "start": 46687.11, "end": 46688.85, "probability": 0.8609 }, { "start": 46691.3, "end": 46692.1, "probability": 0.0696 }, { "start": 46692.1, "end": 46695.16, "probability": 0.9662 }, { "start": 46697.64, "end": 46700.22, "probability": 0.9405 }, { "start": 46700.68, "end": 46704.56, "probability": 0.9457 }, { "start": 46713.9, "end": 46713.9, "probability": 0.2333 }, { "start": 46713.9, "end": 46715.28, "probability": 0.1257 }, { "start": 46716.82, "end": 46717.6, "probability": 0.683 }, { "start": 46718.36, "end": 46721.28, "probability": 0.8715 }, { "start": 46721.28, "end": 46723.44, "probability": 0.0541 }, { "start": 46724.3, "end": 46727.7, "probability": 0.0942 }, { "start": 46727.78, "end": 46730.72, "probability": 0.6788 }, { "start": 46730.72, "end": 46732.64, "probability": 0.5279 }, { "start": 46733.74, "end": 46735.92, "probability": 0.4883 }, { "start": 46748.18, "end": 46750.56, "probability": 0.9001 }, { "start": 46750.56, "end": 46751.32, "probability": 0.9421 }, { "start": 46751.42, "end": 46753.44, "probability": 0.1063 }, { "start": 46753.44, "end": 46753.62, "probability": 0.1985 }, { "start": 46753.62, "end": 46753.62, "probability": 0.0093 }, { "start": 46753.62, "end": 46754.8, "probability": 0.1275 }, { "start": 46755.64, "end": 46756.5, "probability": 0.0923 }, { "start": 46782.84, "end": 46783.36, "probability": 0.1248 }, { "start": 46783.64, "end": 46789.66, "probability": 0.0423 }, { "start": 46792.89, "end": 46793.27, "probability": 0.0242 }, { "start": 46793.56, "end": 46794.4, "probability": 0.0783 }, { "start": 46795.24, "end": 46799.62, "probability": 0.0253 }, { "start": 46812.0, "end": 46812.0, "probability": 0.0 }, { "start": 46812.0, "end": 46812.0, "probability": 0.0 }, { "start": 46812.0, "end": 46812.0, "probability": 0.0 }, { "start": 46812.0, "end": 46812.0, "probability": 0.0 }, { "start": 46812.0, "end": 46812.0, "probability": 0.0 }, { "start": 46812.0, "end": 46812.0, "probability": 0.0 }, { "start": 46812.0, "end": 46812.0, "probability": 0.0 }, { "start": 46812.0, "end": 46812.0, "probability": 0.0 }, { "start": 46812.0, "end": 46812.0, "probability": 0.0 }, { "start": 46812.0, "end": 46812.0, "probability": 0.0 }, { "start": 46812.0, "end": 46812.0, "probability": 0.0 }, { "start": 46812.0, "end": 46812.0, "probability": 0.0 }, { "start": 46812.0, "end": 46812.0, "probability": 0.0 }, { "start": 46812.0, "end": 46812.0, "probability": 0.0 }, { "start": 46812.0, "end": 46812.0, "probability": 0.0 }, { "start": 46812.0, "end": 46812.0, "probability": 0.0 }, { "start": 46812.9, "end": 46812.9, "probability": 0.1452 }, { "start": 46812.9, "end": 46813.68, "probability": 0.4809 }, { "start": 46814.28, "end": 46818.76, "probability": 0.9881 }, { "start": 46819.8, "end": 46821.12, "probability": 0.9409 }, { "start": 46821.64, "end": 46823.04, "probability": 0.8663 }, { "start": 46823.36, "end": 46826.82, "probability": 0.9087 }, { "start": 46827.22, "end": 46827.88, "probability": 0.8141 }, { "start": 46827.96, "end": 46830.1, "probability": 0.9834 }, { "start": 46830.8, "end": 46831.52, "probability": 0.4895 }, { "start": 46832.4, "end": 46833.34, "probability": 0.7873 }, { "start": 46834.02, "end": 46836.42, "probability": 0.9954 }, { "start": 46836.44, "end": 46838.5, "probability": 0.9916 }, { "start": 46839.14, "end": 46842.04, "probability": 0.998 }, { "start": 46842.7, "end": 46843.02, "probability": 0.7526 }, { "start": 46843.1, "end": 46847.86, "probability": 0.9917 }, { "start": 46847.92, "end": 46851.24, "probability": 0.9417 }, { "start": 46851.88, "end": 46854.06, "probability": 0.9688 }, { "start": 46854.7, "end": 46855.57, "probability": 0.9937 }, { "start": 46856.64, "end": 46859.34, "probability": 0.9307 }, { "start": 46860.0, "end": 46862.48, "probability": 0.9796 }, { "start": 46863.14, "end": 46864.1, "probability": 0.8265 }, { "start": 46864.36, "end": 46865.46, "probability": 0.7363 }, { "start": 46866.04, "end": 46868.76, "probability": 0.9248 }, { "start": 46869.44, "end": 46872.12, "probability": 0.9866 }, { "start": 46872.94, "end": 46875.84, "probability": 0.9744 }, { "start": 46876.4, "end": 46879.38, "probability": 0.9943 }, { "start": 46880.12, "end": 46881.9, "probability": 0.9608 }, { "start": 46882.48, "end": 46887.36, "probability": 0.9778 }, { "start": 46888.2, "end": 46892.48, "probability": 0.9938 }, { "start": 46893.5, "end": 46895.24, "probability": 0.6561 }, { "start": 46895.82, "end": 46898.6, "probability": 0.8911 }, { "start": 46899.16, "end": 46900.58, "probability": 0.9197 }, { "start": 46901.04, "end": 46902.66, "probability": 0.9432 }, { "start": 46903.46, "end": 46903.7, "probability": 0.5429 }, { "start": 46904.96, "end": 46907.52, "probability": 0.673 }, { "start": 46908.92, "end": 46909.47, "probability": 0.6913 }, { "start": 46911.12, "end": 46912.02, "probability": 0.7361 }, { "start": 46912.78, "end": 46914.24, "probability": 0.9961 }, { "start": 46915.12, "end": 46917.24, "probability": 0.9153 }, { "start": 46918.32, "end": 46921.02, "probability": 0.9043 }, { "start": 46921.02, "end": 46924.76, "probability": 0.9082 }, { "start": 46924.94, "end": 46925.62, "probability": 0.5302 }, { "start": 46925.98, "end": 46928.5, "probability": 0.9967 }, { "start": 46929.2, "end": 46931.68, "probability": 0.7247 }, { "start": 46931.8, "end": 46933.78, "probability": 0.9442 }, { "start": 46934.66, "end": 46939.44, "probability": 0.9868 }, { "start": 46939.44, "end": 46944.0, "probability": 0.9966 }, { "start": 46944.12, "end": 46946.12, "probability": 0.9805 }, { "start": 46947.9, "end": 46949.06, "probability": 0.7622 }, { "start": 46949.52, "end": 46951.8, "probability": 0.9922 }, { "start": 46951.8, "end": 46955.7, "probability": 0.9774 }, { "start": 46956.08, "end": 46956.68, "probability": 0.8218 }, { "start": 46957.3, "end": 46962.74, "probability": 0.6775 }, { "start": 46963.12, "end": 46964.66, "probability": 0.9057 }, { "start": 46965.92, "end": 46967.52, "probability": 0.903 }, { "start": 46968.1, "end": 46968.82, "probability": 0.9863 }, { "start": 46969.4, "end": 46970.29, "probability": 0.705 }, { "start": 46970.76, "end": 46971.2, "probability": 0.7502 }, { "start": 46971.74, "end": 46972.58, "probability": 0.6865 }, { "start": 46973.38, "end": 46974.74, "probability": 0.9972 }, { "start": 46975.6, "end": 46977.86, "probability": 0.4991 }, { "start": 46978.74, "end": 46980.74, "probability": 0.7493 }, { "start": 46981.54, "end": 46984.74, "probability": 0.9783 }, { "start": 46985.86, "end": 46987.96, "probability": 0.6919 }, { "start": 46988.82, "end": 46991.2, "probability": 0.9844 }, { "start": 46991.2, "end": 46993.74, "probability": 0.995 }, { "start": 46993.78, "end": 46994.58, "probability": 0.9214 }, { "start": 46995.18, "end": 46997.54, "probability": 0.8694 }, { "start": 46997.56, "end": 46999.3, "probability": 0.8719 }, { "start": 46999.96, "end": 46999.98, "probability": 0.093 }, { "start": 46999.98, "end": 47004.06, "probability": 0.9732 }, { "start": 47004.68, "end": 47006.28, "probability": 0.7553 }, { "start": 47006.56, "end": 47006.9, "probability": 0.8719 }, { "start": 47007.12, "end": 47007.76, "probability": 0.7273 }, { "start": 47007.98, "end": 47008.88, "probability": 0.9355 }, { "start": 47021.5, "end": 47021.72, "probability": 0.191 }, { "start": 47022.66, "end": 47022.68, "probability": 0.2713 }, { "start": 47022.68, "end": 47022.68, "probability": 0.0759 }, { "start": 47022.68, "end": 47022.68, "probability": 0.1309 }, { "start": 47022.68, "end": 47022.76, "probability": 0.5205 }, { "start": 47045.04, "end": 47046.8, "probability": 0.7485 }, { "start": 47047.06, "end": 47047.78, "probability": 0.8188 }, { "start": 47050.38, "end": 47050.9, "probability": 0.1715 }, { "start": 47051.08, "end": 47052.15, "probability": 0.4578 }, { "start": 47052.48, "end": 47053.2, "probability": 0.25 }, { "start": 47053.32, "end": 47053.9, "probability": 0.0221 }, { "start": 47054.1, "end": 47054.6, "probability": 0.749 }, { "start": 47056.32, "end": 47059.84, "probability": 0.7571 }, { "start": 47060.46, "end": 47062.4, "probability": 0.8106 }, { "start": 47063.06, "end": 47063.84, "probability": 0.5445 }, { "start": 47064.44, "end": 47064.62, "probability": 0.6708 }, { "start": 47064.78, "end": 47068.18, "probability": 0.4835 }, { "start": 47068.64, "end": 47069.25, "probability": 0.4405 }, { "start": 47069.68, "end": 47073.41, "probability": 0.7513 }, { "start": 47073.44, "end": 47074.58, "probability": 0.656 }, { "start": 47075.4, "end": 47077.8, "probability": 0.5211 }, { "start": 47078.56, "end": 47082.26, "probability": 0.7553 }, { "start": 47082.7, "end": 47086.84, "probability": 0.9786 }, { "start": 47088.2, "end": 47088.64, "probability": 0.2936 }, { "start": 47089.48, "end": 47089.5, "probability": 0.4176 }, { "start": 47089.5, "end": 47090.77, "probability": 0.7832 }, { "start": 47091.14, "end": 47093.76, "probability": 0.3143 }, { "start": 47094.86, "end": 47097.07, "probability": 0.8797 }, { "start": 47097.98, "end": 47098.94, "probability": 0.8241 }, { "start": 47099.08, "end": 47100.44, "probability": 0.6538 }, { "start": 47100.44, "end": 47100.9, "probability": 0.2806 }, { "start": 47102.7, "end": 47102.7, "probability": 0.1399 }, { "start": 47102.7, "end": 47102.7, "probability": 0.0692 }, { "start": 47102.7, "end": 47105.3, "probability": 0.3133 }, { "start": 47106.38, "end": 47109.24, "probability": 0.8984 }, { "start": 47109.5, "end": 47112.4, "probability": 0.9696 }, { "start": 47112.62, "end": 47113.08, "probability": 0.5219 }, { "start": 47114.04, "end": 47115.08, "probability": 0.9294 }, { "start": 47116.52, "end": 47117.48, "probability": 0.9485 }, { "start": 47119.52, "end": 47122.28, "probability": 0.7674 }, { "start": 47124.22, "end": 47126.8, "probability": 0.7386 }, { "start": 47127.0, "end": 47128.6, "probability": 0.8657 }, { "start": 47129.64, "end": 47130.52, "probability": 0.9473 }, { "start": 47130.6, "end": 47131.2, "probability": 0.9629 }, { "start": 47131.28, "end": 47133.56, "probability": 0.8154 }, { "start": 47135.86, "end": 47138.74, "probability": 0.9694 }, { "start": 47139.88, "end": 47140.77, "probability": 0.9619 }, { "start": 47142.32, "end": 47143.54, "probability": 0.9429 }, { "start": 47145.16, "end": 47146.66, "probability": 0.9458 }, { "start": 47148.54, "end": 47152.08, "probability": 0.7198 }, { "start": 47152.08, "end": 47154.36, "probability": 0.7766 }, { "start": 47154.5, "end": 47154.68, "probability": 0.7493 }, { "start": 47154.8, "end": 47156.38, "probability": 0.987 }, { "start": 47156.62, "end": 47162.38, "probability": 0.8783 }, { "start": 47162.92, "end": 47166.4, "probability": 0.9637 }, { "start": 47166.54, "end": 47166.54, "probability": 0.0434 }, { "start": 47166.88, "end": 47167.58, "probability": 0.9561 }, { "start": 47168.52, "end": 47169.58, "probability": 0.8751 }, { "start": 47170.36, "end": 47170.86, "probability": 0.8887 }, { "start": 47170.98, "end": 47174.96, "probability": 0.966 }, { "start": 47175.02, "end": 47175.65, "probability": 0.7998 }, { "start": 47176.36, "end": 47178.34, "probability": 0.7908 }, { "start": 47178.44, "end": 47180.6, "probability": 0.7612 }, { "start": 47181.52, "end": 47184.14, "probability": 0.974 }, { "start": 47184.64, "end": 47186.22, "probability": 0.8108 }, { "start": 47186.58, "end": 47189.02, "probability": 0.6608 }, { "start": 47191.26, "end": 47194.28, "probability": 0.6681 }, { "start": 47194.46, "end": 47195.82, "probability": 0.6819 }, { "start": 47195.87, "end": 47198.2, "probability": 0.644 }, { "start": 47199.7, "end": 47202.92, "probability": 0.9718 }, { "start": 47203.22, "end": 47203.88, "probability": 0.8125 }, { "start": 47204.8, "end": 47207.02, "probability": 0.9659 }, { "start": 47207.88, "end": 47210.98, "probability": 0.9234 }, { "start": 47212.8, "end": 47213.7, "probability": 0.9705 }, { "start": 47213.92, "end": 47216.18, "probability": 0.9971 }, { "start": 47216.72, "end": 47217.65, "probability": 0.8667 }, { "start": 47218.78, "end": 47220.14, "probability": 0.9819 }, { "start": 47220.62, "end": 47221.88, "probability": 0.9873 }, { "start": 47222.56, "end": 47223.64, "probability": 0.9569 }, { "start": 47226.76, "end": 47227.44, "probability": 0.9146 }, { "start": 47227.72, "end": 47229.52, "probability": 0.8893 }, { "start": 47229.6, "end": 47230.7, "probability": 0.9841 }, { "start": 47232.44, "end": 47237.76, "probability": 0.8232 }, { "start": 47239.92, "end": 47240.52, "probability": 0.4454 }, { "start": 47241.28, "end": 47243.02, "probability": 0.627 }, { "start": 47243.52, "end": 47243.54, "probability": 0.0068 }, { "start": 47243.54, "end": 47243.54, "probability": 0.0238 }, { "start": 47243.54, "end": 47244.3, "probability": 0.3062 }, { "start": 47244.36, "end": 47248.96, "probability": 0.9119 }, { "start": 47249.1, "end": 47252.3, "probability": 0.9403 }, { "start": 47253.7, "end": 47254.59, "probability": 0.9368 }, { "start": 47255.0, "end": 47255.98, "probability": 0.9172 }, { "start": 47255.98, "end": 47256.56, "probability": 0.4876 }, { "start": 47256.64, "end": 47256.88, "probability": 0.7603 }, { "start": 47257.06, "end": 47257.88, "probability": 0.5702 }, { "start": 47258.82, "end": 47259.04, "probability": 0.937 }, { "start": 47259.1, "end": 47260.86, "probability": 0.771 }, { "start": 47260.92, "end": 47262.8, "probability": 0.9893 }, { "start": 47265.1, "end": 47265.88, "probability": 0.929 }, { "start": 47266.12, "end": 47269.66, "probability": 0.9019 }, { "start": 47271.36, "end": 47272.24, "probability": 0.9824 }, { "start": 47272.24, "end": 47275.3, "probability": 0.9327 }, { "start": 47277.22, "end": 47278.16, "probability": 0.6906 }, { "start": 47278.36, "end": 47280.88, "probability": 0.814 }, { "start": 47280.88, "end": 47284.2, "probability": 0.9785 }, { "start": 47284.24, "end": 47285.4, "probability": 0.994 }, { "start": 47286.6, "end": 47288.68, "probability": 0.9198 }, { "start": 47288.78, "end": 47290.1, "probability": 0.8975 }, { "start": 47291.84, "end": 47293.36, "probability": 0.9396 }, { "start": 47295.32, "end": 47301.18, "probability": 0.971 }, { "start": 47302.54, "end": 47304.66, "probability": 0.8486 }, { "start": 47306.9, "end": 47308.6, "probability": 0.4328 }, { "start": 47309.04, "end": 47309.06, "probability": 0.7987 }, { "start": 47309.06, "end": 47310.64, "probability": 0.6908 }, { "start": 47311.06, "end": 47312.72, "probability": 0.9888 }, { "start": 47312.76, "end": 47313.44, "probability": 0.5409 }, { "start": 47313.58, "end": 47315.08, "probability": 0.9316 }, { "start": 47315.6, "end": 47317.0, "probability": 0.6042 }, { "start": 47318.74, "end": 47319.82, "probability": 0.2182 }, { "start": 47320.58, "end": 47321.76, "probability": 0.5975 }, { "start": 47321.76, "end": 47322.58, "probability": 0.7228 }, { "start": 47322.68, "end": 47324.56, "probability": 0.5476 }, { "start": 47324.66, "end": 47325.12, "probability": 0.715 }, { "start": 47325.24, "end": 47327.14, "probability": 0.7896 }, { "start": 47327.26, "end": 47327.82, "probability": 0.607 }, { "start": 47327.9, "end": 47329.62, "probability": 0.9236 }, { "start": 47330.18, "end": 47335.86, "probability": 0.9642 }, { "start": 47336.22, "end": 47337.1, "probability": 0.958 }, { "start": 47337.9, "end": 47339.61, "probability": 0.7443 }, { "start": 47340.84, "end": 47343.68, "probability": 0.8816 }, { "start": 47344.6, "end": 47345.22, "probability": 0.6665 }, { "start": 47345.26, "end": 47346.28, "probability": 0.3933 }, { "start": 47346.64, "end": 47349.94, "probability": 0.8447 }, { "start": 47350.74, "end": 47352.02, "probability": 0.6595 }, { "start": 47352.5, "end": 47352.5, "probability": 0.6436 }, { "start": 47352.7, "end": 47355.02, "probability": 0.6758 }, { "start": 47357.02, "end": 47357.74, "probability": 0.7189 }, { "start": 47358.98, "end": 47360.71, "probability": 0.9619 }, { "start": 47362.0, "end": 47363.54, "probability": 0.8164 }, { "start": 47363.64, "end": 47364.13, "probability": 0.7244 }, { "start": 47364.38, "end": 47364.66, "probability": 0.5791 }, { "start": 47364.74, "end": 47365.44, "probability": 0.8601 }, { "start": 47365.62, "end": 47366.26, "probability": 0.6446 }, { "start": 47367.18, "end": 47368.84, "probability": 0.6909 }, { "start": 47369.44, "end": 47370.46, "probability": 0.7544 }, { "start": 47370.62, "end": 47375.02, "probability": 0.873 }, { "start": 47375.6, "end": 47377.28, "probability": 0.6913 }, { "start": 47377.76, "end": 47379.12, "probability": 0.8659 }, { "start": 47379.14, "end": 47380.22, "probability": 0.4163 }, { "start": 47380.76, "end": 47382.98, "probability": 0.9915 }, { "start": 47383.3, "end": 47384.22, "probability": 0.937 }, { "start": 47384.52, "end": 47385.36, "probability": 0.8161 }, { "start": 47385.4, "end": 47387.08, "probability": 0.9229 }, { "start": 47387.7, "end": 47388.44, "probability": 0.9904 }, { "start": 47388.48, "end": 47389.44, "probability": 0.9352 }, { "start": 47389.82, "end": 47391.0, "probability": 0.9895 }, { "start": 47391.1, "end": 47392.46, "probability": 0.6914 }, { "start": 47393.1, "end": 47393.4, "probability": 0.7183 }, { "start": 47393.48, "end": 47394.45, "probability": 0.9709 }, { "start": 47395.56, "end": 47396.06, "probability": 0.9458 }, { "start": 47396.12, "end": 47397.02, "probability": 0.9014 }, { "start": 47397.06, "end": 47398.2, "probability": 0.7842 }, { "start": 47398.34, "end": 47399.32, "probability": 0.964 }, { "start": 47400.2, "end": 47402.06, "probability": 0.7271 }, { "start": 47402.32, "end": 47404.16, "probability": 0.5869 }, { "start": 47404.36, "end": 47405.66, "probability": 0.8596 }, { "start": 47406.06, "end": 47407.66, "probability": 0.2453 }, { "start": 47407.66, "end": 47407.66, "probability": 0.208 }, { "start": 47407.66, "end": 47407.86, "probability": 0.3225 }, { "start": 47408.02, "end": 47408.96, "probability": 0.8128 }, { "start": 47409.0, "end": 47410.12, "probability": 0.8652 }, { "start": 47410.58, "end": 47413.88, "probability": 0.8711 }, { "start": 47414.08, "end": 47414.72, "probability": 0.9392 }, { "start": 47414.72, "end": 47419.62, "probability": 0.4567 }, { "start": 47419.74, "end": 47420.72, "probability": 0.5635 }, { "start": 47420.86, "end": 47421.32, "probability": 0.8877 }, { "start": 47421.72, "end": 47423.24, "probability": 0.9344 }, { "start": 47423.84, "end": 47424.08, "probability": 0.9662 }, { "start": 47424.78, "end": 47425.9, "probability": 0.6325 }, { "start": 47426.6, "end": 47427.92, "probability": 0.9546 }, { "start": 47428.78, "end": 47429.46, "probability": 0.6762 }, { "start": 47430.84, "end": 47433.05, "probability": 0.6237 }, { "start": 47433.28, "end": 47434.4, "probability": 0.979 }, { "start": 47434.46, "end": 47435.1, "probability": 0.8274 }, { "start": 47435.22, "end": 47435.46, "probability": 0.9482 }, { "start": 47435.48, "end": 47435.78, "probability": 0.6138 }, { "start": 47436.22, "end": 47437.08, "probability": 0.5205 }, { "start": 47437.24, "end": 47439.36, "probability": 0.6851 }, { "start": 47440.3, "end": 47441.24, "probability": 0.8831 }, { "start": 47441.76, "end": 47443.78, "probability": 0.9785 }, { "start": 47444.0, "end": 47445.52, "probability": 0.9972 }, { "start": 47446.04, "end": 47446.68, "probability": 0.9111 }, { "start": 47447.32, "end": 47450.4, "probability": 0.9831 }, { "start": 47451.04, "end": 47453.84, "probability": 0.9545 }, { "start": 47454.4, "end": 47457.68, "probability": 0.9839 }, { "start": 47457.68, "end": 47459.48, "probability": 0.9844 }, { "start": 47460.18, "end": 47461.14, "probability": 0.9938 }, { "start": 47461.28, "end": 47461.62, "probability": 0.6103 }, { "start": 47461.68, "end": 47463.23, "probability": 0.8506 }, { "start": 47463.86, "end": 47464.84, "probability": 0.9941 }, { "start": 47465.32, "end": 47465.68, "probability": 0.8731 }, { "start": 47466.68, "end": 47467.38, "probability": 0.6865 }, { "start": 47467.6, "end": 47468.22, "probability": 0.8231 }, { "start": 47469.12, "end": 47469.97, "probability": 0.9697 }, { "start": 47470.66, "end": 47471.46, "probability": 0.8962 }, { "start": 47472.78, "end": 47475.26, "probability": 0.9348 }, { "start": 47476.22, "end": 47477.48, "probability": 0.1726 }, { "start": 47477.98, "end": 47478.28, "probability": 0.1254 }, { "start": 47478.28, "end": 47478.28, "probability": 0.0212 }, { "start": 47478.3, "end": 47481.32, "probability": 0.8765 }, { "start": 47481.64, "end": 47482.18, "probability": 0.2768 }, { "start": 47482.18, "end": 47482.98, "probability": 0.5785 }, { "start": 47483.8, "end": 47484.4, "probability": 0.0832 }, { "start": 47484.5, "end": 47485.12, "probability": 0.3149 }, { "start": 47485.14, "end": 47486.76, "probability": 0.9891 }, { "start": 47489.68, "end": 47491.0, "probability": 0.8024 }, { "start": 47493.34, "end": 47493.84, "probability": 0.9144 }, { "start": 47500.88, "end": 47501.78, "probability": 0.6949 }, { "start": 47501.8, "end": 47503.08, "probability": 0.3197 }, { "start": 47504.16, "end": 47505.86, "probability": 0.8463 }, { "start": 47506.14, "end": 47506.76, "probability": 0.895 }, { "start": 47507.5, "end": 47510.26, "probability": 0.5044 }, { "start": 47511.66, "end": 47513.68, "probability": 0.3979 }, { "start": 47516.32, "end": 47522.8, "probability": 0.8618 }, { "start": 47523.31, "end": 47523.89, "probability": 0.0608 }, { "start": 47524.38, "end": 47528.66, "probability": 0.7747 }, { "start": 47528.7, "end": 47529.1, "probability": 0.1493 }, { "start": 47529.24, "end": 47529.72, "probability": 0.9534 }, { "start": 47530.76, "end": 47531.14, "probability": 0.1407 }, { "start": 47531.28, "end": 47531.98, "probability": 0.2824 }, { "start": 47532.18, "end": 47533.34, "probability": 0.515 }, { "start": 47533.86, "end": 47534.56, "probability": 0.1138 }, { "start": 47535.36, "end": 47536.32, "probability": 0.2584 }, { "start": 47537.69, "end": 47541.42, "probability": 0.8088 }, { "start": 47541.52, "end": 47543.14, "probability": 0.9264 }, { "start": 47543.6, "end": 47546.46, "probability": 0.767 }, { "start": 47546.7, "end": 47547.1, "probability": 0.9762 }, { "start": 47547.3, "end": 47548.4, "probability": 0.962 }, { "start": 47549.04, "end": 47549.84, "probability": 0.6913 }, { "start": 47549.84, "end": 47550.14, "probability": 0.5103 }, { "start": 47550.18, "end": 47550.96, "probability": 0.8739 }, { "start": 47551.02, "end": 47551.88, "probability": 0.8953 }, { "start": 47552.6, "end": 47552.88, "probability": 0.7905 }, { "start": 47553.02, "end": 47556.42, "probability": 0.7469 }, { "start": 47556.66, "end": 47557.52, "probability": 0.5902 }, { "start": 47558.28, "end": 47558.78, "probability": 0.7896 }, { "start": 47558.92, "end": 47559.72, "probability": 0.6888 }, { "start": 47559.76, "end": 47560.26, "probability": 0.6765 }, { "start": 47560.34, "end": 47560.66, "probability": 0.8688 }, { "start": 47561.52, "end": 47562.76, "probability": 0.9862 }, { "start": 47562.9, "end": 47563.46, "probability": 0.6813 }, { "start": 47563.66, "end": 47565.48, "probability": 0.9968 }, { "start": 47565.96, "end": 47566.22, "probability": 0.7251 }, { "start": 47566.74, "end": 47568.62, "probability": 0.628 }, { "start": 47568.78, "end": 47569.96, "probability": 0.7754 }, { "start": 47570.06, "end": 47571.42, "probability": 0.7515 }, { "start": 47571.8, "end": 47572.36, "probability": 0.3152 }, { "start": 47572.62, "end": 47574.54, "probability": 0.9763 }, { "start": 47574.72, "end": 47575.68, "probability": 0.7712 }, { "start": 47576.26, "end": 47579.32, "probability": 0.9665 }, { "start": 47579.92, "end": 47580.28, "probability": 0.7966 }, { "start": 47580.34, "end": 47581.05, "probability": 0.0259 }, { "start": 47582.36, "end": 47582.84, "probability": 0.093 }, { "start": 47582.84, "end": 47585.76, "probability": 0.8569 }, { "start": 47586.26, "end": 47588.36, "probability": 0.7808 }, { "start": 47588.74, "end": 47589.78, "probability": 0.2377 }, { "start": 47612.54, "end": 47613.24, "probability": 0.4885 }, { "start": 47614.46, "end": 47615.34, "probability": 0.4523 }, { "start": 47616.0, "end": 47617.33, "probability": 0.9276 }, { "start": 47617.54, "end": 47622.34, "probability": 0.8331 }, { "start": 47622.6, "end": 47623.74, "probability": 0.8455 }, { "start": 47624.82, "end": 47630.62, "probability": 0.9964 }, { "start": 47630.96, "end": 47637.62, "probability": 0.9914 }, { "start": 47638.02, "end": 47640.4, "probability": 0.8759 }, { "start": 47641.22, "end": 47644.72, "probability": 0.9828 }, { "start": 47645.96, "end": 47646.8, "probability": 0.934 }, { "start": 47646.9, "end": 47647.6, "probability": 0.7481 }, { "start": 47647.68, "end": 47652.16, "probability": 0.9934 }, { "start": 47653.18, "end": 47653.38, "probability": 0.8125 }, { "start": 47654.82, "end": 47655.58, "probability": 0.7653 }, { "start": 47656.16, "end": 47662.64, "probability": 0.9883 }, { "start": 47663.16, "end": 47666.14, "probability": 0.9976 }, { "start": 47666.9, "end": 47668.72, "probability": 0.9573 }, { "start": 47669.22, "end": 47671.32, "probability": 0.8585 }, { "start": 47671.8, "end": 47672.9, "probability": 0.8627 }, { "start": 47674.1, "end": 47678.32, "probability": 0.9866 }, { "start": 47678.32, "end": 47681.9, "probability": 0.9946 }, { "start": 47682.82, "end": 47684.66, "probability": 0.9904 }, { "start": 47685.2, "end": 47689.74, "probability": 0.9954 }, { "start": 47690.6, "end": 47691.64, "probability": 0.9094 }, { "start": 47692.7, "end": 47695.78, "probability": 0.9934 }, { "start": 47696.84, "end": 47700.78, "probability": 0.9889 }, { "start": 47700.78, "end": 47705.18, "probability": 0.9936 }, { "start": 47705.7, "end": 47708.32, "probability": 0.8171 }, { "start": 47709.08, "end": 47710.98, "probability": 0.6951 }, { "start": 47712.18, "end": 47715.64, "probability": 0.4961 }, { "start": 47716.0, "end": 47716.0, "probability": 0.4969 }, { "start": 47716.06, "end": 47718.92, "probability": 0.7178 }, { "start": 47719.58, "end": 47723.08, "probability": 0.9785 }, { "start": 47724.02, "end": 47731.28, "probability": 0.9405 }, { "start": 47731.9, "end": 47733.96, "probability": 0.9838 }, { "start": 47734.54, "end": 47738.9, "probability": 0.9873 }, { "start": 47739.64, "end": 47746.64, "probability": 0.9604 }, { "start": 47747.24, "end": 47749.7, "probability": 0.6638 }, { "start": 47750.18, "end": 47750.86, "probability": 0.6717 }, { "start": 47750.94, "end": 47752.96, "probability": 0.9175 }, { "start": 47753.14, "end": 47754.32, "probability": 0.9346 }, { "start": 47754.46, "end": 47755.14, "probability": 0.7344 }, { "start": 47755.72, "end": 47757.14, "probability": 0.9964 }, { "start": 47757.74, "end": 47761.16, "probability": 0.7812 }, { "start": 47762.08, "end": 47764.28, "probability": 0.9351 }, { "start": 47764.7, "end": 47769.22, "probability": 0.7918 }, { "start": 47769.34, "end": 47770.29, "probability": 0.848 }, { "start": 47771.56, "end": 47775.38, "probability": 0.9752 }, { "start": 47775.38, "end": 47780.22, "probability": 0.994 }, { "start": 47781.08, "end": 47784.36, "probability": 0.9004 }, { "start": 47785.06, "end": 47789.68, "probability": 0.9466 }, { "start": 47790.06, "end": 47793.46, "probability": 0.9988 }, { "start": 47794.14, "end": 47795.88, "probability": 0.9948 }, { "start": 47796.24, "end": 47798.56, "probability": 0.8809 }, { "start": 47799.54, "end": 47802.2, "probability": 0.9727 }, { "start": 47803.4, "end": 47807.78, "probability": 0.9904 }, { "start": 47808.28, "end": 47810.08, "probability": 0.7581 }, { "start": 47810.56, "end": 47814.4, "probability": 0.9776 }, { "start": 47815.34, "end": 47817.68, "probability": 0.9944 }, { "start": 47818.26, "end": 47823.52, "probability": 0.9973 }, { "start": 47824.26, "end": 47826.7, "probability": 0.9949 }, { "start": 47826.7, "end": 47829.9, "probability": 0.8643 }, { "start": 47830.62, "end": 47834.42, "probability": 0.9948 }, { "start": 47834.48, "end": 47834.84, "probability": 0.2905 }, { "start": 47834.98, "end": 47836.28, "probability": 0.7174 }, { "start": 47836.98, "end": 47842.38, "probability": 0.9866 }, { "start": 47842.52, "end": 47845.64, "probability": 0.9516 }, { "start": 47846.18, "end": 47851.16, "probability": 0.8672 }, { "start": 47851.38, "end": 47855.14, "probability": 0.9932 }, { "start": 47855.64, "end": 47856.32, "probability": 0.9759 }, { "start": 47856.4, "end": 47862.68, "probability": 0.9852 }, { "start": 47863.5, "end": 47865.42, "probability": 0.9969 }, { "start": 47866.5, "end": 47869.42, "probability": 0.9829 }, { "start": 47869.54, "end": 47870.02, "probability": 0.5945 }, { "start": 47870.58, "end": 47873.44, "probability": 0.8867 }, { "start": 47874.44, "end": 47876.7, "probability": 0.9797 }, { "start": 47877.2, "end": 47879.56, "probability": 0.9834 }, { "start": 47879.68, "end": 47879.82, "probability": 0.5102 }, { "start": 47879.96, "end": 47880.04, "probability": 0.5089 }, { "start": 47880.04, "end": 47880.4, "probability": 0.6804 }, { "start": 47880.5, "end": 47881.2, "probability": 0.6377 }, { "start": 47882.22, "end": 47884.04, "probability": 0.8756 }, { "start": 47884.12, "end": 47885.48, "probability": 0.7115 }, { "start": 47885.92, "end": 47889.04, "probability": 0.9643 }, { "start": 47889.76, "end": 47890.98, "probability": 0.7481 }, { "start": 47891.16, "end": 47892.96, "probability": 0.9741 }, { "start": 47893.36, "end": 47895.78, "probability": 0.9243 }, { "start": 47896.16, "end": 47897.2, "probability": 0.74 }, { "start": 47897.32, "end": 47898.8, "probability": 0.8232 }, { "start": 47899.5, "end": 47901.32, "probability": 0.9963 }, { "start": 47903.18, "end": 47906.52, "probability": 0.9277 }, { "start": 47907.76, "end": 47910.2, "probability": 0.6619 }, { "start": 47910.8, "end": 47910.8, "probability": 0.5292 }, { "start": 47910.8, "end": 47914.82, "probability": 0.973 }, { "start": 47914.82, "end": 47915.1, "probability": 0.6394 }, { "start": 47915.12, "end": 47917.08, "probability": 0.9276 }, { "start": 47918.17, "end": 47919.42, "probability": 0.5554 }, { "start": 47931.24, "end": 47932.12, "probability": 0.1028 }, { "start": 47934.42, "end": 47936.08, "probability": 0.6697 }, { "start": 47936.88, "end": 47938.22, "probability": 0.8828 }, { "start": 47943.9, "end": 47944.6, "probability": 0.7448 }, { "start": 47945.12, "end": 47945.94, "probability": 0.5686 }, { "start": 47948.58, "end": 47949.98, "probability": 0.6937 }, { "start": 47952.7, "end": 47954.94, "probability": 0.9513 }, { "start": 47956.14, "end": 47956.78, "probability": 0.8047 }, { "start": 47958.86, "end": 47963.18, "probability": 0.9523 }, { "start": 47963.3, "end": 47966.06, "probability": 0.9956 }, { "start": 47967.24, "end": 47970.04, "probability": 0.9929 }, { "start": 47971.28, "end": 47973.34, "probability": 0.8909 }, { "start": 47974.96, "end": 47977.06, "probability": 0.854 }, { "start": 47977.68, "end": 47979.82, "probability": 0.782 }, { "start": 47980.66, "end": 47982.87, "probability": 0.9346 }, { "start": 47985.08, "end": 47986.38, "probability": 0.9792 }, { "start": 47987.92, "end": 47991.12, "probability": 0.954 }, { "start": 47992.22, "end": 47993.3, "probability": 0.9878 }, { "start": 47994.18, "end": 47996.82, "probability": 0.9946 }, { "start": 47998.04, "end": 47998.88, "probability": 0.9842 }, { "start": 47999.96, "end": 48001.28, "probability": 0.6808 }, { "start": 48004.12, "end": 48008.88, "probability": 0.9939 }, { "start": 48010.36, "end": 48011.96, "probability": 0.9521 }, { "start": 48012.84, "end": 48015.14, "probability": 0.7797 }, { "start": 48016.64, "end": 48019.6, "probability": 0.9913 }, { "start": 48021.04, "end": 48021.32, "probability": 0.825 }, { "start": 48022.44, "end": 48028.08, "probability": 0.9852 }, { "start": 48028.22, "end": 48029.94, "probability": 0.3203 }, { "start": 48030.68, "end": 48032.84, "probability": 0.9971 }, { "start": 48033.38, "end": 48034.4, "probability": 0.5109 }, { "start": 48036.44, "end": 48038.54, "probability": 0.7567 }, { "start": 48038.72, "end": 48041.4, "probability": 0.4939 }, { "start": 48042.34, "end": 48046.18, "probability": 0.8325 }, { "start": 48047.02, "end": 48047.72, "probability": 0.5426 }, { "start": 48050.36, "end": 48052.0, "probability": 0.9296 }, { "start": 48052.1, "end": 48057.04, "probability": 0.9293 }, { "start": 48057.18, "end": 48057.84, "probability": 0.702 }, { "start": 48059.08, "end": 48063.52, "probability": 0.9709 }, { "start": 48063.68, "end": 48066.5, "probability": 0.8277 }, { "start": 48066.82, "end": 48068.18, "probability": 0.9292 }, { "start": 48068.84, "end": 48072.16, "probability": 0.9465 }, { "start": 48073.36, "end": 48076.24, "probability": 0.9617 }, { "start": 48076.24, "end": 48080.12, "probability": 0.991 }, { "start": 48080.78, "end": 48082.06, "probability": 0.9985 }, { "start": 48083.38, "end": 48085.18, "probability": 0.5511 }, { "start": 48085.8, "end": 48086.46, "probability": 0.7198 }, { "start": 48088.27, "end": 48090.3, "probability": 0.4935 }, { "start": 48091.06, "end": 48091.8, "probability": 0.9613 }, { "start": 48092.5, "end": 48094.32, "probability": 0.7527 }, { "start": 48096.56, "end": 48101.18, "probability": 0.5803 }, { "start": 48101.3, "end": 48107.54, "probability": 0.9751 }, { "start": 48107.68, "end": 48110.76, "probability": 0.9815 }, { "start": 48112.04, "end": 48112.3, "probability": 0.6058 }, { "start": 48112.36, "end": 48114.3, "probability": 0.8614 }, { "start": 48114.6, "end": 48118.42, "probability": 0.9816 }, { "start": 48119.4, "end": 48121.86, "probability": 0.4204 }, { "start": 48122.22, "end": 48124.54, "probability": 0.9524 }, { "start": 48124.7, "end": 48125.14, "probability": 0.7277 }, { "start": 48125.76, "end": 48128.1, "probability": 0.9948 }, { "start": 48129.5, "end": 48130.18, "probability": 0.8621 }, { "start": 48131.8, "end": 48133.32, "probability": 0.9968 }, { "start": 48134.06, "end": 48137.0, "probability": 0.9845 }, { "start": 48137.76, "end": 48139.24, "probability": 0.999 }, { "start": 48140.94, "end": 48142.98, "probability": 0.8979 }, { "start": 48143.26, "end": 48146.54, "probability": 0.8977 }, { "start": 48147.32, "end": 48149.1, "probability": 0.8069 }, { "start": 48150.26, "end": 48153.4, "probability": 0.9962 }, { "start": 48155.18, "end": 48157.9, "probability": 0.9197 }, { "start": 48158.08, "end": 48158.18, "probability": 0.9392 }, { "start": 48158.28, "end": 48159.74, "probability": 0.994 }, { "start": 48160.48, "end": 48162.94, "probability": 0.9401 }, { "start": 48163.38, "end": 48165.08, "probability": 0.6811 }, { "start": 48165.74, "end": 48166.28, "probability": 0.5813 }, { "start": 48166.54, "end": 48167.98, "probability": 0.7374 }, { "start": 48168.72, "end": 48171.14, "probability": 0.9852 }, { "start": 48171.24, "end": 48171.72, "probability": 0.7758 }, { "start": 48171.94, "end": 48172.93, "probability": 0.9985 }, { "start": 48173.16, "end": 48175.0, "probability": 0.9952 }, { "start": 48175.42, "end": 48176.46, "probability": 0.762 }, { "start": 48176.62, "end": 48177.78, "probability": 0.5015 }, { "start": 48177.96, "end": 48180.58, "probability": 0.8752 }, { "start": 48181.1, "end": 48183.82, "probability": 0.9352 }, { "start": 48184.46, "end": 48186.14, "probability": 0.8567 }, { "start": 48186.78, "end": 48187.56, "probability": 0.917 }, { "start": 48189.6, "end": 48190.66, "probability": 0.6522 }, { "start": 48190.84, "end": 48192.5, "probability": 0.7097 }, { "start": 48192.86, "end": 48194.6, "probability": 0.9608 }, { "start": 48194.64, "end": 48196.1, "probability": 0.4998 }, { "start": 48196.52, "end": 48198.54, "probability": 0.7519 }, { "start": 48198.86, "end": 48200.12, "probability": 0.9988 }, { "start": 48201.02, "end": 48201.96, "probability": 0.7062 }, { "start": 48202.98, "end": 48205.38, "probability": 0.8843 }, { "start": 48206.38, "end": 48208.7, "probability": 0.9733 }, { "start": 48209.76, "end": 48212.86, "probability": 0.5037 }, { "start": 48212.96, "end": 48214.7, "probability": 0.8608 }, { "start": 48214.82, "end": 48215.36, "probability": 0.8174 }, { "start": 48215.48, "end": 48218.8, "probability": 0.9924 }, { "start": 48219.2, "end": 48223.34, "probability": 0.8959 }, { "start": 48223.42, "end": 48226.02, "probability": 0.8583 }, { "start": 48226.52, "end": 48231.16, "probability": 0.9178 }, { "start": 48231.66, "end": 48237.5, "probability": 0.4131 }, { "start": 48237.5, "end": 48238.92, "probability": 0.6379 }, { "start": 48238.92, "end": 48239.78, "probability": 0.8375 }, { "start": 48240.86, "end": 48243.44, "probability": 0.8033 }, { "start": 48244.04, "end": 48244.68, "probability": 0.8761 }, { "start": 48245.56, "end": 48247.22, "probability": 0.8329 }, { "start": 48247.54, "end": 48249.86, "probability": 0.6095 }, { "start": 48250.22, "end": 48250.9, "probability": 0.7871 }, { "start": 48251.36, "end": 48251.76, "probability": 0.9784 }, { "start": 48252.48, "end": 48253.25, "probability": 0.9707 }, { "start": 48253.8, "end": 48255.62, "probability": 0.9313 }, { "start": 48255.98, "end": 48256.67, "probability": 0.9592 }, { "start": 48257.6, "end": 48260.26, "probability": 0.8983 }, { "start": 48260.82, "end": 48263.04, "probability": 0.9985 }, { "start": 48263.68, "end": 48265.04, "probability": 0.8284 }, { "start": 48265.14, "end": 48265.72, "probability": 0.9976 }, { "start": 48266.36, "end": 48268.7, "probability": 0.751 }, { "start": 48269.36, "end": 48269.72, "probability": 0.9277 }, { "start": 48270.12, "end": 48270.64, "probability": 0.8723 }, { "start": 48270.8, "end": 48272.32, "probability": 0.756 }, { "start": 48273.31, "end": 48276.0, "probability": 0.7347 }, { "start": 48276.72, "end": 48279.6, "probability": 0.8648 }, { "start": 48280.08, "end": 48283.78, "probability": 0.9718 }, { "start": 48284.38, "end": 48286.28, "probability": 0.986 }, { "start": 48286.64, "end": 48287.52, "probability": 0.5112 }, { "start": 48288.12, "end": 48288.6, "probability": 0.6412 }, { "start": 48289.24, "end": 48290.82, "probability": 0.6772 }, { "start": 48291.16, "end": 48291.56, "probability": 0.7555 }, { "start": 48291.88, "end": 48292.64, "probability": 0.5131 }, { "start": 48292.8, "end": 48294.01, "probability": 0.9338 }, { "start": 48295.24, "end": 48296.92, "probability": 0.8835 }, { "start": 48298.16, "end": 48298.6, "probability": 0.6266 }, { "start": 48299.02, "end": 48301.98, "probability": 0.8396 }, { "start": 48302.4, "end": 48304.24, "probability": 0.7805 }, { "start": 48310.0, "end": 48310.68, "probability": 0.0348 }, { "start": 48313.8, "end": 48316.1, "probability": 0.048 }, { "start": 48317.62, "end": 48317.74, "probability": 0.2173 }, { "start": 48317.74, "end": 48318.36, "probability": 0.0532 }, { "start": 48318.94, "end": 48319.48, "probability": 0.532 }, { "start": 48322.96, "end": 48323.44, "probability": 0.1908 }, { "start": 48340.64, "end": 48344.84, "probability": 0.3672 }, { "start": 48347.18, "end": 48348.46, "probability": 0.5134 }, { "start": 48348.86, "end": 48349.92, "probability": 0.4557 }, { "start": 48350.32, "end": 48351.66, "probability": 0.6188 }, { "start": 48352.44, "end": 48357.18, "probability": 0.9517 }, { "start": 48357.26, "end": 48358.02, "probability": 0.5758 }, { "start": 48358.6, "end": 48359.11, "probability": 0.5043 }, { "start": 48360.0, "end": 48361.72, "probability": 0.8946 }, { "start": 48361.76, "end": 48362.4, "probability": 0.7518 }, { "start": 48362.9, "end": 48363.32, "probability": 0.6717 }, { "start": 48363.34, "end": 48364.01, "probability": 0.3376 }, { "start": 48364.1, "end": 48365.42, "probability": 0.8361 }, { "start": 48365.86, "end": 48367.88, "probability": 0.6404 }, { "start": 48368.54, "end": 48371.36, "probability": 0.6266 }, { "start": 48371.5, "end": 48372.26, "probability": 0.7785 }, { "start": 48372.5, "end": 48374.68, "probability": 0.6304 }, { "start": 48374.74, "end": 48375.13, "probability": 0.8303 }, { "start": 48375.22, "end": 48376.9, "probability": 0.9902 }, { "start": 48377.46, "end": 48379.0, "probability": 0.7118 }, { "start": 48381.14, "end": 48385.62, "probability": 0.7756 }, { "start": 48385.78, "end": 48386.56, "probability": 0.7741 }, { "start": 48386.58, "end": 48388.12, "probability": 0.5457 }, { "start": 48388.22, "end": 48393.54, "probability": 0.9404 }, { "start": 48395.42, "end": 48399.72, "probability": 0.6597 }, { "start": 48399.84, "end": 48400.94, "probability": 0.7203 }, { "start": 48401.04, "end": 48402.0, "probability": 0.7704 }, { "start": 48402.44, "end": 48406.54, "probability": 0.7458 }, { "start": 48406.68, "end": 48407.2, "probability": 0.835 }, { "start": 48407.28, "end": 48408.24, "probability": 0.8228 }, { "start": 48408.42, "end": 48408.78, "probability": 0.7289 }, { "start": 48409.04, "end": 48412.64, "probability": 0.6822 }, { "start": 48413.85, "end": 48415.78, "probability": 0.7781 }, { "start": 48415.96, "end": 48416.94, "probability": 0.9741 }, { "start": 48417.58, "end": 48419.56, "probability": 0.5301 }, { "start": 48419.78, "end": 48420.52, "probability": 0.8221 }, { "start": 48421.38, "end": 48423.98, "probability": 0.9019 }, { "start": 48424.26, "end": 48425.8, "probability": 0.7945 }, { "start": 48426.62, "end": 48429.12, "probability": 0.9863 }, { "start": 48429.24, "end": 48433.48, "probability": 0.7249 }, { "start": 48433.64, "end": 48434.4, "probability": 0.4534 }, { "start": 48435.24, "end": 48438.82, "probability": 0.5836 }, { "start": 48439.54, "end": 48444.08, "probability": 0.953 }, { "start": 48445.0, "end": 48445.44, "probability": 0.9097 }, { "start": 48445.76, "end": 48446.3, "probability": 0.3217 }, { "start": 48446.42, "end": 48447.19, "probability": 0.1674 }, { "start": 48448.32, "end": 48449.82, "probability": 0.5641 }, { "start": 48450.08, "end": 48450.18, "probability": 0.4603 }, { "start": 48450.44, "end": 48453.04, "probability": 0.7952 }, { "start": 48453.58, "end": 48454.84, "probability": 0.9731 }, { "start": 48458.94, "end": 48460.28, "probability": 0.4547 }, { "start": 48460.48, "end": 48461.64, "probability": 0.7748 }, { "start": 48463.0, "end": 48466.38, "probability": 0.9609 }, { "start": 48466.7, "end": 48467.64, "probability": 0.5478 }, { "start": 48469.16, "end": 48472.86, "probability": 0.9424 }, { "start": 48473.08, "end": 48476.18, "probability": 0.7542 }, { "start": 48477.02, "end": 48477.78, "probability": 0.5094 }, { "start": 48477.78, "end": 48478.56, "probability": 0.2802 }, { "start": 48479.1, "end": 48480.32, "probability": 0.5742 }, { "start": 48481.16, "end": 48482.62, "probability": 0.5575 }, { "start": 48482.66, "end": 48483.04, "probability": 0.656 }, { "start": 48483.38, "end": 48483.54, "probability": 0.1966 }, { "start": 48483.7, "end": 48484.1, "probability": 0.7926 }, { "start": 48484.68, "end": 48486.74, "probability": 0.9845 }, { "start": 48486.98, "end": 48488.36, "probability": 0.7323 }, { "start": 48490.3, "end": 48492.08, "probability": 0.7555 }, { "start": 48492.22, "end": 48492.84, "probability": 0.8087 }, { "start": 48493.34, "end": 48498.62, "probability": 0.9795 }, { "start": 48499.24, "end": 48499.68, "probability": 0.5355 }, { "start": 48499.86, "end": 48500.84, "probability": 0.7301 }, { "start": 48500.86, "end": 48504.96, "probability": 0.5544 }, { "start": 48505.82, "end": 48508.84, "probability": 0.7185 }, { "start": 48509.8, "end": 48512.68, "probability": 0.7899 }, { "start": 48513.52, "end": 48514.14, "probability": 0.9131 }, { "start": 48514.22, "end": 48518.5, "probability": 0.5337 }, { "start": 48518.72, "end": 48524.04, "probability": 0.6693 }, { "start": 48524.08, "end": 48526.66, "probability": 0.9533 }, { "start": 48527.2, "end": 48527.98, "probability": 0.8336 }, { "start": 48528.64, "end": 48531.94, "probability": 0.9723 }, { "start": 48532.32, "end": 48536.44, "probability": 0.7047 }, { "start": 48536.56, "end": 48537.52, "probability": 0.5388 }, { "start": 48537.58, "end": 48543.68, "probability": 0.969 }, { "start": 48544.88, "end": 48546.28, "probability": 0.9722 }, { "start": 48546.38, "end": 48547.28, "probability": 0.7955 }, { "start": 48547.38, "end": 48548.66, "probability": 0.7044 }, { "start": 48548.86, "end": 48551.56, "probability": 0.5878 }, { "start": 48551.62, "end": 48554.34, "probability": 0.8563 }, { "start": 48554.4, "end": 48558.08, "probability": 0.7575 }, { "start": 48558.48, "end": 48559.2, "probability": 0.7379 }, { "start": 48559.8, "end": 48561.08, "probability": 0.7586 }, { "start": 48561.66, "end": 48562.14, "probability": 0.3385 }, { "start": 48562.32, "end": 48562.96, "probability": 0.8709 }, { "start": 48563.84, "end": 48565.8, "probability": 0.9315 }, { "start": 48565.92, "end": 48566.62, "probability": 0.5659 }, { "start": 48566.62, "end": 48567.04, "probability": 0.3131 }, { "start": 48567.28, "end": 48569.7, "probability": 0.809 }, { "start": 48570.42, "end": 48572.52, "probability": 0.9969 }, { "start": 48573.24, "end": 48576.48, "probability": 0.8557 }, { "start": 48576.5, "end": 48578.42, "probability": 0.4903 }, { "start": 48578.52, "end": 48578.9, "probability": 0.8184 }, { "start": 48580.12, "end": 48581.2, "probability": 0.9554 }, { "start": 48581.46, "end": 48582.32, "probability": 0.8796 }, { "start": 48583.22, "end": 48584.74, "probability": 0.8035 }, { "start": 48585.36, "end": 48587.7, "probability": 0.2628 }, { "start": 48587.92, "end": 48592.32, "probability": 0.8264 }, { "start": 48592.48, "end": 48593.24, "probability": 0.922 }, { "start": 48593.8, "end": 48594.35, "probability": 0.5053 }, { "start": 48595.34, "end": 48597.84, "probability": 0.5815 }, { "start": 48597.96, "end": 48598.54, "probability": 0.9103 }, { "start": 48599.2, "end": 48602.56, "probability": 0.7607 }, { "start": 48602.62, "end": 48604.16, "probability": 0.739 }, { "start": 48604.7, "end": 48606.34, "probability": 0.4903 }, { "start": 48606.54, "end": 48608.86, "probability": 0.8788 }, { "start": 48608.86, "end": 48609.02, "probability": 0.0526 }, { "start": 48609.02, "end": 48610.14, "probability": 0.4753 }, { "start": 48611.42, "end": 48614.72, "probability": 0.4936 }, { "start": 48615.42, "end": 48616.76, "probability": 0.9044 }, { "start": 48617.56, "end": 48619.16, "probability": 0.9943 }, { "start": 48619.52, "end": 48622.86, "probability": 0.7297 }, { "start": 48623.42, "end": 48625.98, "probability": 0.6842 }, { "start": 48626.56, "end": 48631.54, "probability": 0.9876 }, { "start": 48631.54, "end": 48634.92, "probability": 0.9774 }, { "start": 48635.85, "end": 48638.21, "probability": 0.6671 }, { "start": 48638.94, "end": 48642.02, "probability": 0.3182 }, { "start": 48642.1, "end": 48643.92, "probability": 0.6709 }, { "start": 48644.36, "end": 48647.0, "probability": 0.8794 }, { "start": 48647.38, "end": 48651.1, "probability": 0.7214 }, { "start": 48652.0, "end": 48652.66, "probability": 0.3917 }, { "start": 48653.18, "end": 48656.48, "probability": 0.8823 }, { "start": 48656.56, "end": 48658.1, "probability": 0.8833 }, { "start": 48658.26, "end": 48660.18, "probability": 0.979 }, { "start": 48660.28, "end": 48660.9, "probability": 0.8019 }, { "start": 48661.2, "end": 48662.6, "probability": 0.3799 }, { "start": 48663.38, "end": 48665.32, "probability": 0.7626 }, { "start": 48666.36, "end": 48668.06, "probability": 0.9858 }, { "start": 48669.38, "end": 48671.08, "probability": 0.8442 }, { "start": 48671.26, "end": 48671.8, "probability": 0.9482 }, { "start": 48672.12, "end": 48673.36, "probability": 0.6045 }, { "start": 48673.5, "end": 48674.86, "probability": 0.3429 }, { "start": 48675.22, "end": 48675.74, "probability": 0.5099 }, { "start": 48676.36, "end": 48676.72, "probability": 0.9316 }, { "start": 48677.42, "end": 48679.72, "probability": 0.8367 }, { "start": 48679.78, "end": 48680.35, "probability": 0.8079 }, { "start": 48680.72, "end": 48681.14, "probability": 0.7277 }, { "start": 48681.18, "end": 48684.12, "probability": 0.585 }, { "start": 48684.24, "end": 48687.38, "probability": 0.9788 }, { "start": 48687.8, "end": 48688.62, "probability": 0.8843 }, { "start": 48688.8, "end": 48690.0, "probability": 0.6753 }, { "start": 48690.62, "end": 48691.24, "probability": 0.8642 }, { "start": 48691.88, "end": 48692.6, "probability": 0.976 }, { "start": 48693.24, "end": 48694.84, "probability": 0.5781 }, { "start": 48694.92, "end": 48695.82, "probability": 0.624 }, { "start": 48696.22, "end": 48697.22, "probability": 0.9521 }, { "start": 48697.68, "end": 48698.96, "probability": 0.7206 }, { "start": 48699.08, "end": 48701.44, "probability": 0.769 }, { "start": 48701.82, "end": 48702.7, "probability": 0.6028 }, { "start": 48702.88, "end": 48704.12, "probability": 0.654 }, { "start": 48704.18, "end": 48704.98, "probability": 0.5903 }, { "start": 48706.06, "end": 48706.88, "probability": 0.926 }, { "start": 48707.58, "end": 48710.55, "probability": 0.8104 }, { "start": 48711.34, "end": 48713.96, "probability": 0.9976 }, { "start": 48713.96, "end": 48716.88, "probability": 0.9989 }, { "start": 48717.0, "end": 48717.8, "probability": 0.8259 }, { "start": 48718.02, "end": 48718.94, "probability": 0.6693 }, { "start": 48719.18, "end": 48720.24, "probability": 0.9204 }, { "start": 48720.7, "end": 48724.58, "probability": 0.9685 }, { "start": 48725.16, "end": 48726.1, "probability": 0.4841 }, { "start": 48726.46, "end": 48726.46, "probability": 0.4527 }, { "start": 48726.46, "end": 48728.54, "probability": 0.6826 }, { "start": 48728.6, "end": 48729.56, "probability": 0.9679 }, { "start": 48730.04, "end": 48730.26, "probability": 0.4067 }, { "start": 48730.46, "end": 48732.65, "probability": 0.8005 }, { "start": 48733.34, "end": 48741.28, "probability": 0.8839 }, { "start": 48741.28, "end": 48741.38, "probability": 0.1206 }, { "start": 48763.82, "end": 48764.8, "probability": 0.6916 }, { "start": 48768.82, "end": 48769.5, "probability": 0.8548 }, { "start": 48769.92, "end": 48776.33, "probability": 0.9373 }, { "start": 48776.68, "end": 48777.7, "probability": 0.4749 }, { "start": 48778.52, "end": 48782.32, "probability": 0.9834 }, { "start": 48782.98, "end": 48785.5, "probability": 0.8449 }, { "start": 48786.7, "end": 48787.96, "probability": 0.9434 }, { "start": 48789.32, "end": 48790.94, "probability": 0.562 }, { "start": 48791.9, "end": 48793.72, "probability": 0.5566 }, { "start": 48795.0, "end": 48798.45, "probability": 0.9484 }, { "start": 48798.48, "end": 48802.38, "probability": 0.8607 }, { "start": 48804.0, "end": 48804.32, "probability": 0.5389 }, { "start": 48804.37, "end": 48810.06, "probability": 0.6586 }, { "start": 48819.4, "end": 48822.66, "probability": 0.764 }, { "start": 48823.66, "end": 48824.8, "probability": 0.9708 }, { "start": 48825.06, "end": 48827.74, "probability": 0.9844 }, { "start": 48829.44, "end": 48832.22, "probability": 0.9961 }, { "start": 48834.74, "end": 48836.32, "probability": 0.9712 }, { "start": 48837.44, "end": 48839.12, "probability": 0.9901 }, { "start": 48840.46, "end": 48841.78, "probability": 0.986 }, { "start": 48842.96, "end": 48844.08, "probability": 0.9897 }, { "start": 48846.54, "end": 48847.02, "probability": 0.9463 }, { "start": 48848.74, "end": 48851.84, "probability": 0.9438 }, { "start": 48853.04, "end": 48855.94, "probability": 0.9793 }, { "start": 48855.98, "end": 48857.4, "probability": 0.4703 }, { "start": 48858.24, "end": 48860.88, "probability": 0.8242 }, { "start": 48862.18, "end": 48863.56, "probability": 0.8302 }, { "start": 48863.64, "end": 48863.98, "probability": 0.9463 }, { "start": 48864.48, "end": 48867.12, "probability": 0.9864 }, { "start": 48871.54, "end": 48872.94, "probability": 0.9598 }, { "start": 48875.06, "end": 48876.5, "probability": 0.7605 }, { "start": 48877.72, "end": 48878.32, "probability": 0.7448 }, { "start": 48878.54, "end": 48882.1, "probability": 0.8312 }, { "start": 48883.68, "end": 48886.08, "probability": 0.9366 }, { "start": 48887.26, "end": 48890.44, "probability": 0.8174 }, { "start": 48891.66, "end": 48892.1, "probability": 0.9542 }, { "start": 48892.74, "end": 48894.04, "probability": 0.9783 }, { "start": 48894.24, "end": 48896.2, "probability": 0.9932 }, { "start": 48897.78, "end": 48900.62, "probability": 0.6801 }, { "start": 48900.76, "end": 48902.5, "probability": 0.9986 }, { "start": 48902.98, "end": 48904.66, "probability": 0.9976 }, { "start": 48906.24, "end": 48906.5, "probability": 0.5641 }, { "start": 48906.64, "end": 48907.06, "probability": 0.9643 }, { "start": 48907.18, "end": 48909.1, "probability": 0.8715 }, { "start": 48909.4, "end": 48911.48, "probability": 0.9877 }, { "start": 48912.62, "end": 48914.52, "probability": 0.9499 }, { "start": 48915.58, "end": 48916.1, "probability": 0.7954 }, { "start": 48917.2, "end": 48921.02, "probability": 0.9946 }, { "start": 48921.74, "end": 48922.26, "probability": 0.7557 }, { "start": 48925.02, "end": 48928.18, "probability": 0.9077 }, { "start": 48928.2, "end": 48931.0, "probability": 0.9074 }, { "start": 48932.28, "end": 48932.8, "probability": 0.4661 }, { "start": 48935.52, "end": 48937.79, "probability": 0.7928 }, { "start": 48938.3, "end": 48941.1, "probability": 0.9926 }, { "start": 48941.76, "end": 48944.6, "probability": 0.7623 }, { "start": 48945.48, "end": 48947.1, "probability": 0.9547 }, { "start": 48947.84, "end": 48949.02, "probability": 0.99 }, { "start": 48949.6, "end": 48953.44, "probability": 0.9976 }, { "start": 48954.74, "end": 48955.34, "probability": 0.9943 }, { "start": 48957.2, "end": 48960.76, "probability": 0.9925 }, { "start": 48962.8, "end": 48963.04, "probability": 0.589 }, { "start": 48963.94, "end": 48965.56, "probability": 0.9787 }, { "start": 48966.34, "end": 48967.94, "probability": 0.9146 }, { "start": 48968.56, "end": 48969.58, "probability": 0.6696 }, { "start": 48971.2, "end": 48971.88, "probability": 0.5643 }, { "start": 48972.24, "end": 48972.66, "probability": 0.9483 }, { "start": 48972.7, "end": 48975.38, "probability": 0.9382 }, { "start": 48975.56, "end": 48978.0, "probability": 0.9966 }, { "start": 48978.9, "end": 48981.12, "probability": 0.9907 }, { "start": 48981.2, "end": 48984.44, "probability": 0.9965 }, { "start": 48985.66, "end": 48990.68, "probability": 0.9995 }, { "start": 48991.4, "end": 48992.18, "probability": 0.7133 }, { "start": 48992.72, "end": 48996.08, "probability": 0.999 }, { "start": 48996.32, "end": 48997.8, "probability": 0.882 }, { "start": 48998.38, "end": 49003.22, "probability": 0.9824 }, { "start": 49003.3, "end": 49004.24, "probability": 0.8513 }, { "start": 49006.54, "end": 49009.6, "probability": 0.9969 }, { "start": 49010.08, "end": 49011.42, "probability": 0.9698 }, { "start": 49012.5, "end": 49014.54, "probability": 0.9895 }, { "start": 49014.7, "end": 49015.1, "probability": 0.5375 }, { "start": 49015.28, "end": 49016.06, "probability": 0.5061 }, { "start": 49016.34, "end": 49019.7, "probability": 0.863 }, { "start": 49020.34, "end": 49021.48, "probability": 0.9976 }, { "start": 49022.08, "end": 49027.04, "probability": 0.9842 }, { "start": 49027.7, "end": 49031.72, "probability": 0.9868 }, { "start": 49032.82, "end": 49033.88, "probability": 0.7676 }, { "start": 49034.44, "end": 49038.02, "probability": 0.9437 }, { "start": 49038.88, "end": 49039.87, "probability": 0.9971 }, { "start": 49040.54, "end": 49040.7, "probability": 0.6851 }, { "start": 49040.74, "end": 49042.9, "probability": 0.9143 }, { "start": 49043.28, "end": 49045.08, "probability": 0.9958 }, { "start": 49045.46, "end": 49046.36, "probability": 0.9887 }, { "start": 49046.48, "end": 49047.86, "probability": 0.9841 }, { "start": 49048.0, "end": 49049.3, "probability": 0.9847 }, { "start": 49049.76, "end": 49051.18, "probability": 0.9732 }, { "start": 49051.98, "end": 49054.29, "probability": 0.9526 }, { "start": 49054.72, "end": 49055.56, "probability": 0.6369 }, { "start": 49056.22, "end": 49056.34, "probability": 0.4741 }, { "start": 49056.56, "end": 49057.7, "probability": 0.6382 }, { "start": 49058.12, "end": 49059.86, "probability": 0.6706 }, { "start": 49059.92, "end": 49063.1, "probability": 0.8734 }, { "start": 49063.2, "end": 49067.4, "probability": 0.9874 }, { "start": 49067.52, "end": 49068.74, "probability": 0.928 }, { "start": 49068.82, "end": 49069.78, "probability": 0.98 }, { "start": 49069.84, "end": 49072.9, "probability": 0.8538 }, { "start": 49073.44, "end": 49078.64, "probability": 0.9691 }, { "start": 49080.78, "end": 49082.04, "probability": 0.7739 }, { "start": 49082.86, "end": 49087.2, "probability": 0.9989 }, { "start": 49087.78, "end": 49091.38, "probability": 0.9924 }, { "start": 49091.38, "end": 49094.2, "probability": 0.8696 }, { "start": 49094.2, "end": 49097.34, "probability": 0.9902 }, { "start": 49097.34, "end": 49097.96, "probability": 0.9056 }, { "start": 49098.04, "end": 49098.6, "probability": 0.7622 }, { "start": 49099.72, "end": 49100.34, "probability": 0.7117 }, { "start": 49100.42, "end": 49101.82, "probability": 0.813 }, { "start": 49112.88, "end": 49113.02, "probability": 0.3032 }, { "start": 49118.92, "end": 49119.8, "probability": 0.4539 }, { "start": 49120.06, "end": 49121.16, "probability": 0.5331 }, { "start": 49121.54, "end": 49126.06, "probability": 0.9653 }, { "start": 49126.2, "end": 49127.1, "probability": 0.7322 }, { "start": 49129.92, "end": 49132.1, "probability": 0.9827 }, { "start": 49134.6, "end": 49135.58, "probability": 0.7168 }, { "start": 49137.38, "end": 49139.14, "probability": 0.8175 }, { "start": 49139.74, "end": 49140.4, "probability": 0.9332 }, { "start": 49142.36, "end": 49144.32, "probability": 0.9121 }, { "start": 49146.68, "end": 49149.52, "probability": 0.8079 }, { "start": 49151.84, "end": 49156.6, "probability": 0.8558 }, { "start": 49159.92, "end": 49160.6, "probability": 0.552 }, { "start": 49161.42, "end": 49164.04, "probability": 0.9529 }, { "start": 49166.5, "end": 49167.54, "probability": 0.9546 }, { "start": 49167.64, "end": 49168.1, "probability": 0.56 }, { "start": 49168.12, "end": 49169.14, "probability": 0.726 }, { "start": 49170.02, "end": 49171.08, "probability": 0.9688 }, { "start": 49173.1, "end": 49173.74, "probability": 0.9808 }, { "start": 49177.26, "end": 49179.45, "probability": 0.9409 }, { "start": 49182.0, "end": 49185.98, "probability": 0.9832 }, { "start": 49186.06, "end": 49186.96, "probability": 0.9882 }, { "start": 49189.22, "end": 49191.3, "probability": 0.8052 }, { "start": 49191.3, "end": 49191.82, "probability": 0.0694 }, { "start": 49193.68, "end": 49197.1, "probability": 0.9911 }, { "start": 49199.38, "end": 49202.3, "probability": 0.9919 }, { "start": 49202.36, "end": 49204.96, "probability": 0.9609 }, { "start": 49205.06, "end": 49206.33, "probability": 0.9924 }, { "start": 49210.2, "end": 49212.54, "probability": 0.9894 }, { "start": 49214.88, "end": 49218.4, "probability": 0.9712 }, { "start": 49220.96, "end": 49223.06, "probability": 0.991 }, { "start": 49224.88, "end": 49225.52, "probability": 0.9961 }, { "start": 49227.06, "end": 49228.44, "probability": 0.9849 }, { "start": 49228.72, "end": 49229.36, "probability": 0.68 }, { "start": 49229.44, "end": 49229.72, "probability": 0.9587 }, { "start": 49230.12, "end": 49230.98, "probability": 0.6887 }, { "start": 49232.26, "end": 49232.96, "probability": 0.9365 }, { "start": 49234.68, "end": 49235.1, "probability": 0.9229 }, { "start": 49235.92, "end": 49236.92, "probability": 0.9321 }, { "start": 49238.92, "end": 49240.02, "probability": 0.8561 }, { "start": 49241.04, "end": 49242.89, "probability": 0.9866 }, { "start": 49243.12, "end": 49243.64, "probability": 0.7339 }, { "start": 49243.78, "end": 49247.98, "probability": 0.9751 }, { "start": 49248.1, "end": 49250.72, "probability": 0.9937 }, { "start": 49250.98, "end": 49253.72, "probability": 0.9824 }, { "start": 49253.84, "end": 49254.96, "probability": 0.9038 }, { "start": 49255.26, "end": 49256.66, "probability": 0.9953 }, { "start": 49257.64, "end": 49258.22, "probability": 0.726 }, { "start": 49258.3, "end": 49258.8, "probability": 0.9768 }, { "start": 49261.98, "end": 49262.4, "probability": 0.6048 }, { "start": 49262.42, "end": 49263.2, "probability": 0.8014 }, { "start": 49263.26, "end": 49270.88, "probability": 0.9984 }, { "start": 49271.44, "end": 49273.58, "probability": 0.9951 }, { "start": 49273.8, "end": 49275.0, "probability": 0.9719 }, { "start": 49279.0, "end": 49281.14, "probability": 0.7523 }, { "start": 49282.3, "end": 49282.92, "probability": 0.8625 }, { "start": 49285.2, "end": 49289.28, "probability": 0.9787 }, { "start": 49289.28, "end": 49292.6, "probability": 0.7034 }, { "start": 49294.64, "end": 49297.68, "probability": 0.8267 }, { "start": 49297.9, "end": 49298.25, "probability": 0.6498 }, { "start": 49298.44, "end": 49300.4, "probability": 0.9673 }, { "start": 49303.5, "end": 49305.21, "probability": 0.9875 }, { "start": 49306.28, "end": 49307.62, "probability": 0.994 }, { "start": 49309.54, "end": 49311.6, "probability": 0.9424 }, { "start": 49311.72, "end": 49311.8, "probability": 0.9386 }, { "start": 49311.86, "end": 49313.24, "probability": 0.9348 }, { "start": 49313.28, "end": 49313.92, "probability": 0.8497 }, { "start": 49314.02, "end": 49314.3, "probability": 0.3571 }, { "start": 49314.4, "end": 49314.8, "probability": 0.7716 }, { "start": 49315.7, "end": 49318.24, "probability": 0.8208 }, { "start": 49320.98, "end": 49325.22, "probability": 0.8743 }, { "start": 49327.02, "end": 49330.64, "probability": 0.9951 }, { "start": 49331.98, "end": 49334.18, "probability": 0.966 }, { "start": 49336.0, "end": 49337.38, "probability": 0.8594 }, { "start": 49340.3, "end": 49342.14, "probability": 0.9829 }, { "start": 49342.56, "end": 49344.38, "probability": 0.9956 }, { "start": 49344.52, "end": 49345.58, "probability": 0.932 }, { "start": 49345.74, "end": 49348.4, "probability": 0.942 }, { "start": 49348.56, "end": 49353.42, "probability": 0.9827 }, { "start": 49355.64, "end": 49356.46, "probability": 0.9915 }, { "start": 49358.84, "end": 49361.54, "probability": 0.99 }, { "start": 49361.64, "end": 49362.36, "probability": 0.6341 }, { "start": 49362.44, "end": 49364.88, "probability": 0.9406 }, { "start": 49367.26, "end": 49370.3, "probability": 0.9941 }, { "start": 49370.52, "end": 49371.12, "probability": 0.9633 }, { "start": 49371.26, "end": 49374.36, "probability": 0.9846 }, { "start": 49376.04, "end": 49379.46, "probability": 0.9963 }, { "start": 49379.46, "end": 49384.02, "probability": 0.9885 }, { "start": 49384.6, "end": 49385.82, "probability": 0.9976 }, { "start": 49386.28, "end": 49386.84, "probability": 0.9298 }, { "start": 49386.92, "end": 49387.36, "probability": 0.9251 }, { "start": 49387.44, "end": 49387.94, "probability": 0.7563 }, { "start": 49389.36, "end": 49390.22, "probability": 0.9185 }, { "start": 49392.52, "end": 49394.38, "probability": 0.7615 }, { "start": 49395.08, "end": 49396.58, "probability": 0.9215 }, { "start": 49399.84, "end": 49401.64, "probability": 0.8989 }, { "start": 49402.96, "end": 49405.96, "probability": 0.9697 }, { "start": 49405.96, "end": 49409.52, "probability": 0.9877 }, { "start": 49409.9, "end": 49415.22, "probability": 0.9794 }, { "start": 49416.22, "end": 49418.28, "probability": 0.9546 }, { "start": 49419.0, "end": 49419.94, "probability": 0.9845 }, { "start": 49420.46, "end": 49425.46, "probability": 0.9614 }, { "start": 49425.92, "end": 49426.28, "probability": 0.7081 }, { "start": 49427.42, "end": 49428.18, "probability": 0.7392 }, { "start": 49428.92, "end": 49432.14, "probability": 0.9995 }, { "start": 49433.54, "end": 49434.36, "probability": 0.9608 }, { "start": 49434.44, "end": 49436.46, "probability": 0.998 }, { "start": 49436.54, "end": 49436.88, "probability": 0.9205 }, { "start": 49437.26, "end": 49438.59, "probability": 0.9763 }, { "start": 49438.74, "end": 49439.46, "probability": 0.5009 }, { "start": 49439.66, "end": 49441.22, "probability": 0.5664 }, { "start": 49443.2, "end": 49444.64, "probability": 0.6454 }, { "start": 49447.0, "end": 49448.72, "probability": 0.9118 }, { "start": 49448.78, "end": 49453.58, "probability": 0.8675 }, { "start": 49453.72, "end": 49454.72, "probability": 0.4822 }, { "start": 49454.74, "end": 49455.4, "probability": 0.1811 }, { "start": 49456.36, "end": 49457.76, "probability": 0.1916 }, { "start": 49460.58, "end": 49460.84, "probability": 0.7191 }, { "start": 49460.94, "end": 49463.5, "probability": 0.9866 }, { "start": 49464.06, "end": 49465.98, "probability": 0.9731 }, { "start": 49465.98, "end": 49469.18, "probability": 0.9935 }, { "start": 49470.22, "end": 49472.28, "probability": 0.1415 }, { "start": 49472.3, "end": 49473.06, "probability": 0.7769 }, { "start": 49473.06, "end": 49473.34, "probability": 0.2985 }, { "start": 49473.42, "end": 49474.1, "probability": 0.9531 }, { "start": 49474.52, "end": 49475.48, "probability": 0.9624 }, { "start": 49475.64, "end": 49476.4, "probability": 0.9507 }, { "start": 49477.16, "end": 49477.5, "probability": 0.7911 }, { "start": 49477.8, "end": 49479.44, "probability": 0.9965 }, { "start": 49479.56, "end": 49480.64, "probability": 0.8188 }, { "start": 49480.72, "end": 49481.2, "probability": 0.5273 }, { "start": 49481.28, "end": 49482.69, "probability": 0.989 }, { "start": 49483.4, "end": 49484.16, "probability": 0.8489 }, { "start": 49484.32, "end": 49485.17, "probability": 0.9893 }, { "start": 49485.76, "end": 49486.62, "probability": 0.9795 }, { "start": 49486.86, "end": 49488.88, "probability": 0.9717 }, { "start": 49489.68, "end": 49490.58, "probability": 0.9637 }, { "start": 49491.62, "end": 49492.1, "probability": 0.6124 }, { "start": 49492.18, "end": 49492.86, "probability": 0.9308 }, { "start": 49493.94, "end": 49494.36, "probability": 0.661 }, { "start": 49495.18, "end": 49495.98, "probability": 0.4824 }, { "start": 49497.8, "end": 49498.04, "probability": 0.6977 }, { "start": 49498.04, "end": 49498.96, "probability": 0.1678 }, { "start": 49499.0, "end": 49499.54, "probability": 0.1294 }, { "start": 49500.28, "end": 49501.34, "probability": 0.2024 }, { "start": 49501.78, "end": 49502.3, "probability": 0.9342 }, { "start": 49503.46, "end": 49505.3, "probability": 0.4857 }, { "start": 49505.44, "end": 49508.4, "probability": 0.8806 }, { "start": 49511.16, "end": 49511.66, "probability": 0.0024 }, { "start": 49512.42, "end": 49512.56, "probability": 0.2203 }, { "start": 49512.56, "end": 49512.56, "probability": 0.1298 }, { "start": 49512.56, "end": 49515.24, "probability": 0.4367 }, { "start": 49518.28, "end": 49518.36, "probability": 0.0241 }, { "start": 49519.2, "end": 49522.54, "probability": 0.9341 }, { "start": 49522.88, "end": 49523.52, "probability": 0.2444 }, { "start": 49524.14, "end": 49525.66, "probability": 0.0607 }, { "start": 49526.1, "end": 49526.38, "probability": 0.2013 }, { "start": 49526.4, "end": 49527.0, "probability": 0.6573 }, { "start": 49527.0, "end": 49527.84, "probability": 0.9804 }, { "start": 49529.44, "end": 49531.76, "probability": 0.6677 }, { "start": 49533.04, "end": 49534.84, "probability": 0.7747 }, { "start": 49535.5, "end": 49537.84, "probability": 0.9674 }, { "start": 49538.6, "end": 49539.11, "probability": 0.937 }, { "start": 49540.72, "end": 49544.18, "probability": 0.9419 }, { "start": 49544.4, "end": 49545.14, "probability": 0.8161 }, { "start": 49546.08, "end": 49548.68, "probability": 0.9251 }, { "start": 49550.0, "end": 49551.02, "probability": 0.9132 }, { "start": 49551.62, "end": 49554.72, "probability": 0.987 }, { "start": 49556.04, "end": 49558.8, "probability": 0.9951 }, { "start": 49559.4, "end": 49560.2, "probability": 0.7869 }, { "start": 49562.22, "end": 49564.72, "probability": 0.9028 }, { "start": 49566.22, "end": 49566.85, "probability": 0.9896 }, { "start": 49567.58, "end": 49568.54, "probability": 0.9818 }, { "start": 49569.56, "end": 49571.88, "probability": 0.9195 }, { "start": 49572.98, "end": 49575.16, "probability": 0.9639 }, { "start": 49576.18, "end": 49579.8, "probability": 0.9878 }, { "start": 49581.92, "end": 49584.7, "probability": 0.9967 }, { "start": 49585.24, "end": 49586.06, "probability": 0.8901 }, { "start": 49586.96, "end": 49588.84, "probability": 0.9255 }, { "start": 49590.12, "end": 49591.76, "probability": 0.9345 }, { "start": 49592.62, "end": 49593.56, "probability": 0.9849 }, { "start": 49594.7, "end": 49595.28, "probability": 0.9924 }, { "start": 49595.68, "end": 49597.42, "probability": 0.9839 }, { "start": 49598.24, "end": 49599.04, "probability": 0.9432 }, { "start": 49599.6, "end": 49600.72, "probability": 0.9556 }, { "start": 49601.6, "end": 49603.26, "probability": 0.9725 }, { "start": 49603.92, "end": 49604.74, "probability": 0.9983 }, { "start": 49606.02, "end": 49606.52, "probability": 0.9541 }, { "start": 49607.52, "end": 49608.32, "probability": 0.862 }, { "start": 49609.26, "end": 49612.58, "probability": 0.9954 }, { "start": 49613.86, "end": 49615.86, "probability": 0.9817 }, { "start": 49616.36, "end": 49617.55, "probability": 0.5821 }, { "start": 49618.16, "end": 49620.02, "probability": 0.886 }, { "start": 49620.78, "end": 49622.24, "probability": 0.9598 }, { "start": 49624.06, "end": 49626.22, "probability": 0.974 }, { "start": 49626.22, "end": 49629.84, "probability": 0.9931 }, { "start": 49630.4, "end": 49633.06, "probability": 0.8839 }, { "start": 49634.26, "end": 49634.94, "probability": 0.9465 }, { "start": 49635.46, "end": 49637.36, "probability": 0.9957 }, { "start": 49638.14, "end": 49640.48, "probability": 0.7475 }, { "start": 49641.1, "end": 49642.5, "probability": 0.9691 }, { "start": 49643.34, "end": 49647.24, "probability": 0.9331 }, { "start": 49648.06, "end": 49649.24, "probability": 0.9619 }, { "start": 49650.46, "end": 49651.32, "probability": 0.8707 }, { "start": 49652.0, "end": 49654.46, "probability": 0.9909 }, { "start": 49655.18, "end": 49657.26, "probability": 0.8276 }, { "start": 49657.74, "end": 49659.1, "probability": 0.9167 }, { "start": 49660.0, "end": 49663.08, "probability": 0.8655 }, { "start": 49663.88, "end": 49666.02, "probability": 0.9517 }, { "start": 49666.54, "end": 49668.08, "probability": 0.9923 }, { "start": 49668.56, "end": 49669.4, "probability": 0.8218 }, { "start": 49669.82, "end": 49670.46, "probability": 0.942 }, { "start": 49671.02, "end": 49673.8, "probability": 0.8668 }, { "start": 49674.44, "end": 49675.04, "probability": 0.9434 }, { "start": 49675.6, "end": 49677.2, "probability": 0.9929 }, { "start": 49678.44, "end": 49679.54, "probability": 0.4972 }, { "start": 49680.28, "end": 49682.1, "probability": 0.9413 }, { "start": 49683.64, "end": 49685.46, "probability": 0.5474 }, { "start": 49686.24, "end": 49691.28, "probability": 0.9672 }, { "start": 49691.7, "end": 49692.48, "probability": 0.8771 }, { "start": 49693.14, "end": 49695.84, "probability": 0.4852 }, { "start": 49696.44, "end": 49697.0, "probability": 0.8994 }, { "start": 49698.46, "end": 49700.1, "probability": 0.7738 }, { "start": 49700.82, "end": 49702.02, "probability": 0.9292 }, { "start": 49702.8, "end": 49703.92, "probability": 0.7318 }, { "start": 49704.92, "end": 49707.2, "probability": 0.9934 }, { "start": 49707.72, "end": 49709.8, "probability": 0.8643 }, { "start": 49710.42, "end": 49710.94, "probability": 0.6702 }, { "start": 49711.5, "end": 49711.92, "probability": 0.8808 }, { "start": 49712.52, "end": 49713.14, "probability": 0.931 }, { "start": 49714.36, "end": 49717.6, "probability": 0.9775 }, { "start": 49718.96, "end": 49721.16, "probability": 0.9854 }, { "start": 49721.82, "end": 49722.94, "probability": 0.7772 }, { "start": 49723.94, "end": 49726.7, "probability": 0.952 }, { "start": 49727.22, "end": 49727.8, "probability": 0.9886 }, { "start": 49728.4, "end": 49730.34, "probability": 0.7132 }, { "start": 49730.96, "end": 49734.84, "probability": 0.9937 }, { "start": 49735.94, "end": 49738.5, "probability": 0.9724 }, { "start": 49739.34, "end": 49740.06, "probability": 0.6969 }, { "start": 49740.96, "end": 49742.3, "probability": 0.9888 }, { "start": 49743.68, "end": 49744.62, "probability": 0.9971 }, { "start": 49745.58, "end": 49746.98, "probability": 0.9587 }, { "start": 49747.88, "end": 49751.0, "probability": 0.9591 }, { "start": 49751.48, "end": 49752.68, "probability": 0.8297 }, { "start": 49753.32, "end": 49756.66, "probability": 0.9839 }, { "start": 49757.44, "end": 49758.5, "probability": 0.6451 }, { "start": 49759.04, "end": 49759.5, "probability": 0.6338 }, { "start": 49761.1, "end": 49762.6, "probability": 0.8758 }, { "start": 49763.22, "end": 49765.02, "probability": 0.971 }, { "start": 49765.62, "end": 49770.18, "probability": 0.9797 }, { "start": 49771.12, "end": 49773.74, "probability": 0.9939 }, { "start": 49774.46, "end": 49778.8, "probability": 0.7615 }, { "start": 49778.96, "end": 49780.22, "probability": 0.9694 }, { "start": 49780.84, "end": 49781.78, "probability": 0.9967 }, { "start": 49782.54, "end": 49785.34, "probability": 0.9211 }, { "start": 49786.16, "end": 49788.5, "probability": 0.9738 }, { "start": 49789.18, "end": 49791.94, "probability": 0.8597 }, { "start": 49792.36, "end": 49792.96, "probability": 0.9351 }, { "start": 49793.54, "end": 49797.02, "probability": 0.9888 }, { "start": 49797.52, "end": 49798.14, "probability": 0.8942 }, { "start": 49798.32, "end": 49799.12, "probability": 0.9978 }, { "start": 49799.64, "end": 49803.76, "probability": 0.9795 }, { "start": 49806.75, "end": 49807.46, "probability": 0.5916 }, { "start": 49808.28, "end": 49808.68, "probability": 0.9521 }, { "start": 49813.02, "end": 49814.92, "probability": 0.8508 }, { "start": 49833.78, "end": 49835.0, "probability": 0.7021 }, { "start": 49835.52, "end": 49836.26, "probability": 0.7367 }, { "start": 49838.32, "end": 49842.82, "probability": 0.9845 }, { "start": 49843.38, "end": 49847.42, "probability": 0.9207 }, { "start": 49848.04, "end": 49850.46, "probability": 0.7717 }, { "start": 49852.63, "end": 49856.32, "probability": 0.9415 }, { "start": 49857.56, "end": 49859.7, "probability": 0.8601 }, { "start": 49860.96, "end": 49863.5, "probability": 0.9955 }, { "start": 49864.58, "end": 49866.67, "probability": 0.7422 }, { "start": 49868.94, "end": 49869.54, "probability": 0.622 }, { "start": 49870.74, "end": 49872.16, "probability": 0.8746 }, { "start": 49872.68, "end": 49873.34, "probability": 0.439 }, { "start": 49874.52, "end": 49875.28, "probability": 0.9669 }, { "start": 49876.1, "end": 49878.43, "probability": 0.9396 }, { "start": 49878.86, "end": 49881.04, "probability": 0.5304 }, { "start": 49881.82, "end": 49882.1, "probability": 0.9037 }, { "start": 49882.68, "end": 49883.38, "probability": 0.6161 }, { "start": 49884.12, "end": 49889.78, "probability": 0.9774 }, { "start": 49889.86, "end": 49890.76, "probability": 0.7336 }, { "start": 49890.88, "end": 49891.45, "probability": 0.9693 }, { "start": 49892.34, "end": 49896.39, "probability": 0.9655 }, { "start": 49897.12, "end": 49899.2, "probability": 0.4706 }, { "start": 49899.32, "end": 49901.84, "probability": 0.8437 }, { "start": 49902.9, "end": 49903.94, "probability": 0.9692 }, { "start": 49905.24, "end": 49906.22, "probability": 0.9816 }, { "start": 49906.86, "end": 49907.5, "probability": 0.8138 }, { "start": 49909.12, "end": 49911.84, "probability": 0.9247 }, { "start": 49912.56, "end": 49915.86, "probability": 0.9085 }, { "start": 49916.56, "end": 49916.76, "probability": 0.322 }, { "start": 49916.98, "end": 49918.48, "probability": 0.5155 }, { "start": 49918.6, "end": 49920.54, "probability": 0.8363 }, { "start": 49920.68, "end": 49920.92, "probability": 0.6852 }, { "start": 49922.08, "end": 49922.78, "probability": 0.9839 }, { "start": 49922.84, "end": 49923.98, "probability": 0.723 }, { "start": 49924.62, "end": 49925.22, "probability": 0.7694 }, { "start": 49926.28, "end": 49928.82, "probability": 0.9128 }, { "start": 49929.58, "end": 49930.32, "probability": 0.9253 }, { "start": 49931.44, "end": 49932.28, "probability": 0.1048 }, { "start": 49932.58, "end": 49934.44, "probability": 0.8831 }, { "start": 49935.18, "end": 49935.94, "probability": 0.9192 }, { "start": 49936.02, "end": 49938.86, "probability": 0.9001 }, { "start": 49939.16, "end": 49941.68, "probability": 0.985 }, { "start": 49941.78, "end": 49943.34, "probability": 0.6835 }, { "start": 49943.82, "end": 49945.46, "probability": 0.8289 }, { "start": 49946.48, "end": 49952.94, "probability": 0.9963 }, { "start": 49953.44, "end": 49953.76, "probability": 0.5976 }, { "start": 49954.54, "end": 49956.32, "probability": 0.9922 }, { "start": 49956.86, "end": 49959.02, "probability": 0.9871 }, { "start": 49959.52, "end": 49959.9, "probability": 0.8572 }, { "start": 49960.42, "end": 49960.98, "probability": 0.6441 }, { "start": 49961.58, "end": 49963.3, "probability": 0.8883 }, { "start": 49963.52, "end": 49964.02, "probability": 0.9596 }, { "start": 49965.38, "end": 49966.12, "probability": 0.7908 }, { "start": 49967.76, "end": 49970.36, "probability": 0.9958 }, { "start": 49972.36, "end": 49973.88, "probability": 0.8828 }, { "start": 49975.14, "end": 49976.42, "probability": 0.8389 }, { "start": 49977.04, "end": 49979.3, "probability": 0.9898 }, { "start": 49979.48, "end": 49980.48, "probability": 0.7627 }, { "start": 49980.48, "end": 49980.76, "probability": 0.9061 }, { "start": 49980.8, "end": 49981.44, "probability": 0.7294 }, { "start": 49981.56, "end": 49983.44, "probability": 0.726 }, { "start": 49984.36, "end": 49985.28, "probability": 0.9907 }, { "start": 49986.56, "end": 49988.08, "probability": 0.9961 }, { "start": 49990.1, "end": 49994.4, "probability": 0.8221 }, { "start": 49995.14, "end": 49996.45, "probability": 0.9487 }, { "start": 49997.18, "end": 49998.76, "probability": 0.9359 }, { "start": 50000.1, "end": 50002.44, "probability": 0.9957 }, { "start": 50002.64, "end": 50003.52, "probability": 0.9141 }, { "start": 50005.4, "end": 50007.14, "probability": 0.8992 }, { "start": 50008.1, "end": 50009.96, "probability": 0.8508 }, { "start": 50010.62, "end": 50014.06, "probability": 0.8909 }, { "start": 50014.74, "end": 50015.1, "probability": 0.942 }, { "start": 50016.96, "end": 50016.96, "probability": 0.6738 }, { "start": 50017.98, "end": 50019.06, "probability": 0.9435 }, { "start": 50020.26, "end": 50023.44, "probability": 0.9977 }, { "start": 50024.02, "end": 50025.04, "probability": 0.8328 }, { "start": 50025.88, "end": 50026.68, "probability": 0.8672 }, { "start": 50027.58, "end": 50031.0, "probability": 0.983 }, { "start": 50031.7, "end": 50034.6, "probability": 0.989 }, { "start": 50035.4, "end": 50038.14, "probability": 0.9924 }, { "start": 50038.68, "end": 50043.16, "probability": 0.9319 }, { "start": 50044.34, "end": 50045.92, "probability": 0.8119 }, { "start": 50046.92, "end": 50048.04, "probability": 0.8525 }, { "start": 50049.02, "end": 50050.16, "probability": 0.9749 }, { "start": 50051.26, "end": 50053.68, "probability": 0.9488 }, { "start": 50054.48, "end": 50058.29, "probability": 0.9947 }, { "start": 50060.82, "end": 50061.08, "probability": 0.2025 }, { "start": 50061.08, "end": 50061.98, "probability": 0.6335 }, { "start": 50062.36, "end": 50066.24, "probability": 0.998 }, { "start": 50066.26, "end": 50067.34, "probability": 0.9375 }, { "start": 50068.28, "end": 50070.0, "probability": 0.8187 }, { "start": 50070.64, "end": 50071.96, "probability": 0.9622 }, { "start": 50072.6, "end": 50073.52, "probability": 0.9083 }, { "start": 50074.06, "end": 50075.12, "probability": 0.9796 }, { "start": 50075.72, "end": 50076.6, "probability": 0.5209 }, { "start": 50077.16, "end": 50078.04, "probability": 0.7053 }, { "start": 50078.62, "end": 50079.46, "probability": 0.9649 }, { "start": 50080.06, "end": 50082.06, "probability": 0.9759 }, { "start": 50082.76, "end": 50083.72, "probability": 0.9168 }, { "start": 50084.38, "end": 50086.16, "probability": 0.9492 }, { "start": 50086.76, "end": 50089.62, "probability": 0.9754 }, { "start": 50090.16, "end": 50092.4, "probability": 0.9901 }, { "start": 50093.92, "end": 50095.78, "probability": 0.8787 }, { "start": 50096.68, "end": 50097.24, "probability": 0.4817 }, { "start": 50098.4, "end": 50103.42, "probability": 0.9927 }, { "start": 50104.28, "end": 50104.46, "probability": 0.3818 }, { "start": 50105.08, "end": 50106.76, "probability": 0.9702 }, { "start": 50108.14, "end": 50111.16, "probability": 0.9383 }, { "start": 50112.1, "end": 50113.02, "probability": 0.8927 }, { "start": 50113.95, "end": 50115.88, "probability": 0.4317 }, { "start": 50115.88, "end": 50116.66, "probability": 0.2198 }, { "start": 50117.16, "end": 50119.34, "probability": 0.6744 }, { "start": 50119.5, "end": 50120.96, "probability": 0.9545 }, { "start": 50121.6, "end": 50123.22, "probability": 0.8043 }, { "start": 50123.92, "end": 50125.68, "probability": 0.9937 }, { "start": 50126.4, "end": 50128.54, "probability": 0.9967 }, { "start": 50129.0, "end": 50131.0, "probability": 0.9884 }, { "start": 50131.54, "end": 50135.3, "probability": 0.996 }, { "start": 50135.98, "end": 50140.08, "probability": 0.8628 }, { "start": 50140.6, "end": 50141.88, "probability": 0.648 }, { "start": 50142.2, "end": 50142.4, "probability": 0.9894 }, { "start": 50142.98, "end": 50143.78, "probability": 0.8679 }, { "start": 50144.52, "end": 50146.96, "probability": 0.6789 }, { "start": 50147.68, "end": 50147.9, "probability": 0.9495 }, { "start": 50148.92, "end": 50150.24, "probability": 0.8003 }, { "start": 50151.62, "end": 50152.07, "probability": 0.9594 }, { "start": 50152.68, "end": 50154.78, "probability": 0.6196 }, { "start": 50155.4, "end": 50155.4, "probability": 0.4183 }, { "start": 50156.0, "end": 50157.02, "probability": 0.8279 }, { "start": 50157.24, "end": 50157.6, "probability": 0.946 }, { "start": 50159.32, "end": 50160.32, "probability": 0.8276 }, { "start": 50161.08, "end": 50163.94, "probability": 0.9481 }, { "start": 50166.48, "end": 50168.6, "probability": 0.776 }, { "start": 50181.06, "end": 50181.18, "probability": 0.4264 }, { "start": 50184.08, "end": 50184.92, "probability": 0.7938 }, { "start": 50186.14, "end": 50186.7, "probability": 0.7815 }, { "start": 50186.7, "end": 50186.7, "probability": 0.0331 }, { "start": 50187.0, "end": 50187.2, "probability": 0.7151 }, { "start": 50187.74, "end": 50188.04, "probability": 0.7268 }, { "start": 50188.48, "end": 50189.29, "probability": 0.0008 }, { "start": 50189.85, "end": 50192.5, "probability": 0.7181 }, { "start": 50193.28, "end": 50193.9, "probability": 0.7004 }, { "start": 50194.34, "end": 50195.2, "probability": 0.8794 }, { "start": 50195.98, "end": 50197.86, "probability": 0.5007 }, { "start": 50197.98, "end": 50199.82, "probability": 0.7915 }, { "start": 50199.94, "end": 50200.52, "probability": 0.8904 }, { "start": 50200.69, "end": 50201.14, "probability": 0.0689 }, { "start": 50201.14, "end": 50201.74, "probability": 0.1196 }, { "start": 50201.74, "end": 50202.92, "probability": 0.218 }, { "start": 50203.0, "end": 50204.92, "probability": 0.8267 }, { "start": 50204.94, "end": 50206.57, "probability": 0.9154 }, { "start": 50206.79, "end": 50207.3, "probability": 0.7267 }, { "start": 50207.8, "end": 50208.32, "probability": 0.8723 }, { "start": 50208.44, "end": 50209.84, "probability": 0.9955 }, { "start": 50210.58, "end": 50210.76, "probability": 0.1949 }, { "start": 50211.1, "end": 50211.42, "probability": 0.1878 }, { "start": 50211.54, "end": 50212.58, "probability": 0.9374 }, { "start": 50212.7, "end": 50213.74, "probability": 0.6668 }, { "start": 50214.32, "end": 50215.5, "probability": 0.7705 }, { "start": 50215.52, "end": 50215.8, "probability": 0.9736 }, { "start": 50217.5, "end": 50219.14, "probability": 0.0092 }, { "start": 50234.36, "end": 50235.66, "probability": 0.9039 }, { "start": 50235.78, "end": 50237.7, "probability": 0.6935 }, { "start": 50238.13, "end": 50238.48, "probability": 0.4182 }, { "start": 50238.48, "end": 50239.14, "probability": 0.0867 }, { "start": 50239.46, "end": 50240.62, "probability": 0.7553 }, { "start": 50240.86, "end": 50243.54, "probability": 0.8521 }, { "start": 50244.76, "end": 50246.01, "probability": 0.5643 }, { "start": 50246.3, "end": 50247.76, "probability": 0.7074 }, { "start": 50247.8, "end": 50251.24, "probability": 0.9272 }, { "start": 50251.24, "end": 50253.48, "probability": 0.8525 }, { "start": 50254.38, "end": 50258.46, "probability": 0.1653 }, { "start": 50258.46, "end": 50259.14, "probability": 0.4996 }, { "start": 50259.78, "end": 50260.02, "probability": 0.7198 }, { "start": 50260.44, "end": 50262.34, "probability": 0.3594 }, { "start": 50262.74, "end": 50262.74, "probability": 0.4623 }, { "start": 50262.74, "end": 50262.92, "probability": 0.1577 }, { "start": 50262.92, "end": 50265.5, "probability": 0.6438 }, { "start": 50265.62, "end": 50267.23, "probability": 0.8594 }, { "start": 50268.28, "end": 50268.4, "probability": 0.2497 }, { "start": 50272.62, "end": 50274.14, "probability": 0.6681 }, { "start": 50275.5, "end": 50275.86, "probability": 0.0703 }, { "start": 50277.06, "end": 50278.14, "probability": 0.3014 }, { "start": 50279.32, "end": 50279.64, "probability": 0.1971 }, { "start": 50280.38, "end": 50282.26, "probability": 0.1853 }, { "start": 50282.26, "end": 50283.22, "probability": 0.2007 }, { "start": 50283.54, "end": 50283.66, "probability": 0.3377 }, { "start": 50287.62, "end": 50288.16, "probability": 0.4499 }, { "start": 50293.62, "end": 50293.62, "probability": 0.4178 }, { "start": 50293.62, "end": 50294.4, "probability": 0.115 }, { "start": 50295.57, "end": 50295.78, "probability": 0.0752 }, { "start": 50295.78, "end": 50295.78, "probability": 0.0113 }, { "start": 50295.78, "end": 50296.41, "probability": 0.0433 }, { "start": 50298.72, "end": 50301.34, "probability": 0.0093 }, { "start": 50301.36, "end": 50304.16, "probability": 0.1128 }, { "start": 50305.22, "end": 50306.1, "probability": 0.279 }, { "start": 50306.9, "end": 50307.86, "probability": 0.2837 }, { "start": 50310.34, "end": 50311.56, "probability": 0.0439 }, { "start": 50314.23, "end": 50314.98, "probability": 0.0171 }, { "start": 50315.9, "end": 50319.86, "probability": 0.0532 }, { "start": 50320.1, "end": 50321.5, "probability": 0.0511 }, { "start": 50322.6, "end": 50324.58, "probability": 0.03 }, { "start": 50325.0, "end": 50325.0, "probability": 0.0 }, { "start": 50325.0, "end": 50325.0, "probability": 0.0 }, { "start": 50325.0, "end": 50325.0, "probability": 0.0 }, { "start": 50325.0, "end": 50325.0, "probability": 0.0 }, { "start": 50325.22, "end": 50325.22, "probability": 0.2426 }, { "start": 50325.22, "end": 50325.22, "probability": 0.0652 }, { "start": 50325.22, "end": 50325.22, "probability": 0.1923 }, { "start": 50325.22, "end": 50325.96, "probability": 0.0476 }, { "start": 50327.08, "end": 50330.65, "probability": 0.9705 }, { "start": 50331.12, "end": 50333.8, "probability": 0.9797 }, { "start": 50334.24, "end": 50334.74, "probability": 0.641 }, { "start": 50334.78, "end": 50335.74, "probability": 0.7887 }, { "start": 50336.72, "end": 50340.54, "probability": 0.9904 }, { "start": 50341.96, "end": 50347.1, "probability": 0.9895 }, { "start": 50347.1, "end": 50350.0, "probability": 0.9995 }, { "start": 50351.18, "end": 50352.84, "probability": 0.6176 }, { "start": 50353.8, "end": 50354.94, "probability": 0.9682 }, { "start": 50356.0, "end": 50358.72, "probability": 0.9684 }, { "start": 50359.16, "end": 50361.24, "probability": 0.8485 }, { "start": 50361.8, "end": 50362.62, "probability": 0.4957 }, { "start": 50363.36, "end": 50365.26, "probability": 0.6884 }, { "start": 50365.42, "end": 50366.98, "probability": 0.9474 }, { "start": 50367.04, "end": 50367.96, "probability": 0.9618 }, { "start": 50368.56, "end": 50374.52, "probability": 0.8624 }, { "start": 50375.06, "end": 50377.02, "probability": 0.6559 }, { "start": 50377.08, "end": 50378.12, "probability": 0.7681 }, { "start": 50378.9, "end": 50381.26, "probability": 0.9198 }, { "start": 50382.42, "end": 50389.08, "probability": 0.9956 }, { "start": 50389.24, "end": 50392.11, "probability": 0.9951 }, { "start": 50392.28, "end": 50395.66, "probability": 0.9963 }, { "start": 50396.86, "end": 50399.02, "probability": 0.7899 }, { "start": 50399.6, "end": 50400.88, "probability": 0.9808 }, { "start": 50401.48, "end": 50407.28, "probability": 0.9907 }, { "start": 50407.28, "end": 50415.64, "probability": 0.9526 }, { "start": 50415.74, "end": 50417.58, "probability": 0.8286 }, { "start": 50417.66, "end": 50418.38, "probability": 0.6196 }, { "start": 50418.6, "end": 50420.44, "probability": 0.9707 }, { "start": 50421.44, "end": 50422.94, "probability": 0.9929 }, { "start": 50423.74, "end": 50425.4, "probability": 0.9978 }, { "start": 50425.44, "end": 50426.68, "probability": 0.7694 }, { "start": 50427.32, "end": 50432.14, "probability": 0.9958 }, { "start": 50432.28, "end": 50434.7, "probability": 0.9964 }, { "start": 50435.0, "end": 50438.22, "probability": 0.9937 }, { "start": 50438.7, "end": 50441.68, "probability": 0.9956 }, { "start": 50442.44, "end": 50444.28, "probability": 0.8782 }, { "start": 50444.46, "end": 50447.52, "probability": 0.884 }, { "start": 50447.9, "end": 50451.96, "probability": 0.9758 }, { "start": 50451.98, "end": 50453.38, "probability": 0.9966 }, { "start": 50453.44, "end": 50454.96, "probability": 0.9934 }, { "start": 50455.6, "end": 50457.02, "probability": 0.9115 }, { "start": 50457.7, "end": 50459.53, "probability": 0.941 }, { "start": 50461.74, "end": 50467.64, "probability": 0.9922 }, { "start": 50468.9, "end": 50471.42, "probability": 0.9854 }, { "start": 50471.42, "end": 50474.72, "probability": 0.8559 }, { "start": 50475.74, "end": 50480.04, "probability": 0.9464 }, { "start": 50480.82, "end": 50481.54, "probability": 0.9456 }, { "start": 50482.0, "end": 50483.32, "probability": 0.9219 }, { "start": 50484.18, "end": 50486.8, "probability": 0.7553 }, { "start": 50487.6, "end": 50489.22, "probability": 0.9263 }, { "start": 50490.06, "end": 50491.24, "probability": 0.8587 }, { "start": 50492.06, "end": 50494.84, "probability": 0.7583 }, { "start": 50495.54, "end": 50498.38, "probability": 0.9334 }, { "start": 50498.6, "end": 50501.22, "probability": 0.9372 }, { "start": 50501.52, "end": 50502.54, "probability": 0.7212 }, { "start": 50503.52, "end": 50505.54, "probability": 0.8146 }, { "start": 50505.96, "end": 50507.96, "probability": 0.9352 }, { "start": 50508.24, "end": 50510.78, "probability": 0.8358 }, { "start": 50511.26, "end": 50511.78, "probability": 0.9557 }, { "start": 50513.02, "end": 50514.05, "probability": 0.9847 }, { "start": 50514.5, "end": 50515.33, "probability": 0.9849 }, { "start": 50516.96, "end": 50517.34, "probability": 0.6022 }, { "start": 50517.94, "end": 50520.82, "probability": 0.9762 }, { "start": 50520.82, "end": 50523.92, "probability": 0.992 }, { "start": 50525.16, "end": 50526.16, "probability": 0.8887 }, { "start": 50526.8, "end": 50528.28, "probability": 0.8579 }, { "start": 50529.58, "end": 50531.42, "probability": 0.9823 }, { "start": 50532.7, "end": 50534.24, "probability": 0.4943 }, { "start": 50534.4, "end": 50535.2, "probability": 0.5814 }, { "start": 50535.24, "end": 50536.92, "probability": 0.9907 }, { "start": 50537.1, "end": 50540.56, "probability": 0.9859 }, { "start": 50540.56, "end": 50546.28, "probability": 0.9985 }, { "start": 50546.92, "end": 50549.02, "probability": 0.727 }, { "start": 50549.16, "end": 50551.02, "probability": 0.9251 }, { "start": 50551.16, "end": 50552.28, "probability": 0.9971 }, { "start": 50552.62, "end": 50557.29, "probability": 0.9645 }, { "start": 50557.5, "end": 50558.66, "probability": 0.5085 }, { "start": 50559.18, "end": 50559.56, "probability": 0.3872 }, { "start": 50560.22, "end": 50561.4, "probability": 0.9336 }, { "start": 50562.48, "end": 50563.07, "probability": 0.9927 }, { "start": 50563.84, "end": 50566.9, "probability": 0.9941 }, { "start": 50567.2, "end": 50569.54, "probability": 0.9966 }, { "start": 50570.54, "end": 50572.0, "probability": 0.9817 }, { "start": 50572.04, "end": 50573.54, "probability": 0.903 }, { "start": 50573.7, "end": 50574.3, "probability": 0.8115 }, { "start": 50574.34, "end": 50575.04, "probability": 0.9374 }, { "start": 50575.04, "end": 50575.8, "probability": 0.9201 }, { "start": 50576.5, "end": 50578.12, "probability": 0.9292 }, { "start": 50578.22, "end": 50579.48, "probability": 0.6687 }, { "start": 50579.78, "end": 50581.1, "probability": 0.9861 }, { "start": 50581.46, "end": 50583.8, "probability": 0.991 }, { "start": 50583.88, "end": 50584.06, "probability": 0.7085 }, { "start": 50584.28, "end": 50584.38, "probability": 0.8245 }, { "start": 50584.56, "end": 50585.0, "probability": 0.3294 }, { "start": 50585.02, "end": 50586.48, "probability": 0.4573 }, { "start": 50586.5, "end": 50587.15, "probability": 0.5836 }, { "start": 50587.32, "end": 50588.04, "probability": 0.6545 }, { "start": 50588.46, "end": 50590.1, "probability": 0.7005 }, { "start": 50591.22, "end": 50593.36, "probability": 0.8775 }, { "start": 50593.42, "end": 50593.5, "probability": 0.3907 }, { "start": 50593.5, "end": 50594.18, "probability": 0.6701 }, { "start": 50594.32, "end": 50597.04, "probability": 0.6965 }, { "start": 50598.5, "end": 50598.7, "probability": 0.4308 }, { "start": 50598.94, "end": 50598.94, "probability": 0.2118 }, { "start": 50598.94, "end": 50599.1, "probability": 0.3788 }, { "start": 50599.24, "end": 50601.46, "probability": 0.9849 }, { "start": 50603.09, "end": 50605.38, "probability": 0.3423 }, { "start": 50606.5, "end": 50609.36, "probability": 0.9721 }, { "start": 50609.66, "end": 50610.64, "probability": 0.7828 }, { "start": 50611.16, "end": 50611.82, "probability": 0.3956 }, { "start": 50611.84, "end": 50614.7, "probability": 0.578 }, { "start": 50615.02, "end": 50618.28, "probability": 0.6504 }, { "start": 50619.76, "end": 50621.98, "probability": 0.6799 }, { "start": 50622.68, "end": 50623.5, "probability": 0.9541 }, { "start": 50626.96, "end": 50628.62, "probability": 0.5242 }, { "start": 50628.62, "end": 50633.32, "probability": 0.9701 }, { "start": 50633.96, "end": 50634.52, "probability": 0.4357 }, { "start": 50637.0, "end": 50638.76, "probability": 0.7332 }, { "start": 50639.72, "end": 50640.47, "probability": 0.5474 }, { "start": 50640.9, "end": 50643.56, "probability": 0.9458 }, { "start": 50643.76, "end": 50643.88, "probability": 0.3617 }, { "start": 50643.88, "end": 50645.22, "probability": 0.8948 }, { "start": 50645.4, "end": 50648.54, "probability": 0.9712 }, { "start": 50648.58, "end": 50649.08, "probability": 0.5565 }, { "start": 50649.96, "end": 50651.22, "probability": 0.9956 }, { "start": 50651.44, "end": 50652.24, "probability": 0.8996 }, { "start": 50652.7, "end": 50653.96, "probability": 0.9363 }, { "start": 50654.02, "end": 50655.48, "probability": 0.8251 }, { "start": 50655.76, "end": 50656.08, "probability": 0.7993 }, { "start": 50656.62, "end": 50656.62, "probability": 0.7637 }, { "start": 50656.84, "end": 50658.3, "probability": 0.7499 }, { "start": 50659.08, "end": 50662.18, "probability": 0.788 }, { "start": 50665.22, "end": 50666.46, "probability": 0.9987 }, { "start": 50667.0, "end": 50667.22, "probability": 0.9951 }, { "start": 50668.72, "end": 50671.16, "probability": 0.8996 }, { "start": 50672.06, "end": 50674.02, "probability": 0.9897 }, { "start": 50675.2, "end": 50676.0, "probability": 0.9819 }, { "start": 50677.56, "end": 50679.08, "probability": 0.7527 }, { "start": 50679.76, "end": 50684.76, "probability": 0.9395 }, { "start": 50686.76, "end": 50690.7, "probability": 0.9987 }, { "start": 50693.42, "end": 50695.32, "probability": 0.9631 }, { "start": 50695.54, "end": 50698.36, "probability": 0.965 }, { "start": 50701.88, "end": 50707.52, "probability": 0.9962 }, { "start": 50708.91, "end": 50713.28, "probability": 0.978 }, { "start": 50715.46, "end": 50716.88, "probability": 0.6622 }, { "start": 50719.18, "end": 50721.64, "probability": 0.9906 }, { "start": 50722.58, "end": 50727.28, "probability": 0.8641 }, { "start": 50727.28, "end": 50731.64, "probability": 0.9217 }, { "start": 50733.04, "end": 50735.54, "probability": 0.8668 }, { "start": 50736.48, "end": 50737.1, "probability": 0.6494 }, { "start": 50738.4, "end": 50740.72, "probability": 0.9795 }, { "start": 50741.76, "end": 50745.6, "probability": 0.5623 }, { "start": 50745.91, "end": 50750.94, "probability": 0.9866 }, { "start": 50753.68, "end": 50757.14, "probability": 0.7137 }, { "start": 50758.0, "end": 50760.74, "probability": 0.9621 }, { "start": 50760.76, "end": 50764.54, "probability": 0.7952 }, { "start": 50765.28, "end": 50769.66, "probability": 0.9598 }, { "start": 50770.46, "end": 50772.44, "probability": 0.9486 }, { "start": 50773.8, "end": 50776.82, "probability": 0.9465 }, { "start": 50777.12, "end": 50778.38, "probability": 0.757 }, { "start": 50779.86, "end": 50780.38, "probability": 0.7004 }, { "start": 50781.22, "end": 50783.04, "probability": 0.9224 }, { "start": 50784.58, "end": 50788.1, "probability": 0.7049 }, { "start": 50789.0, "end": 50790.74, "probability": 0.9646 }, { "start": 50791.94, "end": 50795.98, "probability": 0.96 }, { "start": 50797.04, "end": 50799.96, "probability": 0.8452 }, { "start": 50800.7, "end": 50802.8, "probability": 0.9319 }, { "start": 50803.66, "end": 50808.44, "probability": 0.8092 }, { "start": 50808.96, "end": 50813.94, "probability": 0.978 }, { "start": 50814.82, "end": 50818.18, "probability": 0.9989 }, { "start": 50818.32, "end": 50820.06, "probability": 0.9973 }, { "start": 50820.58, "end": 50822.28, "probability": 0.883 }, { "start": 50822.54, "end": 50826.86, "probability": 0.794 }, { "start": 50827.5, "end": 50828.48, "probability": 0.8364 }, { "start": 50829.46, "end": 50835.82, "probability": 0.9929 }, { "start": 50836.6, "end": 50837.94, "probability": 0.8636 }, { "start": 50838.18, "end": 50845.9, "probability": 0.9683 }, { "start": 50846.62, "end": 50849.28, "probability": 0.9945 }, { "start": 50849.88, "end": 50852.2, "probability": 0.9922 }, { "start": 50852.74, "end": 50855.8, "probability": 0.9827 }, { "start": 50856.86, "end": 50859.72, "probability": 0.9795 }, { "start": 50860.46, "end": 50861.88, "probability": 0.8672 }, { "start": 50862.4, "end": 50864.12, "probability": 0.9933 }, { "start": 50864.98, "end": 50867.32, "probability": 0.9453 }, { "start": 50868.04, "end": 50874.98, "probability": 0.9829 }, { "start": 50875.82, "end": 50876.22, "probability": 0.4741 }, { "start": 50876.86, "end": 50877.86, "probability": 0.6041 }, { "start": 50878.44, "end": 50881.12, "probability": 0.9632 }, { "start": 50881.4, "end": 50881.76, "probability": 0.8185 }, { "start": 50882.64, "end": 50883.4, "probability": 0.7671 }, { "start": 50883.48, "end": 50885.52, "probability": 0.8812 }, { "start": 50903.72, "end": 50904.9, "probability": 0.6949 }, { "start": 50905.3, "end": 50906.24, "probability": 0.9147 }, { "start": 50906.56, "end": 50908.1, "probability": 0.9201 }, { "start": 50908.62, "end": 50914.76, "probability": 0.9377 }, { "start": 50915.3, "end": 50916.66, "probability": 0.9065 }, { "start": 50917.24, "end": 50923.56, "probability": 0.8925 }, { "start": 50923.66, "end": 50924.24, "probability": 0.3146 }, { "start": 50924.24, "end": 50925.56, "probability": 0.734 }, { "start": 50925.8, "end": 50927.14, "probability": 0.5543 }, { "start": 50927.22, "end": 50927.82, "probability": 0.816 }, { "start": 50927.92, "end": 50932.91, "probability": 0.9861 }, { "start": 50933.64, "end": 50936.64, "probability": 0.9386 }, { "start": 50937.22, "end": 50941.54, "probability": 0.981 }, { "start": 50942.14, "end": 50944.7, "probability": 0.9761 }, { "start": 50944.7, "end": 50947.62, "probability": 0.9272 }, { "start": 50949.0, "end": 50950.26, "probability": 0.2574 }, { "start": 50950.26, "end": 50950.88, "probability": 0.7711 }, { "start": 50951.42, "end": 50953.54, "probability": 0.9043 }, { "start": 50954.02, "end": 50958.44, "probability": 0.9624 }, { "start": 50958.44, "end": 50963.38, "probability": 0.9971 }, { "start": 50963.52, "end": 50968.36, "probability": 0.9805 }, { "start": 50968.44, "end": 50969.34, "probability": 0.7571 }, { "start": 50969.5, "end": 50971.2, "probability": 0.2158 }, { "start": 50971.32, "end": 50971.9, "probability": 0.4878 }, { "start": 50972.3, "end": 50972.42, "probability": 0.4214 }, { "start": 50972.52, "end": 50973.82, "probability": 0.6835 }, { "start": 50974.42, "end": 50976.34, "probability": 0.6046 }, { "start": 50976.4, "end": 50976.4, "probability": 0.0001 }, { "start": 50978.32, "end": 50981.06, "probability": 0.0345 }, { "start": 50981.06, "end": 50981.14, "probability": 0.0344 } ], "segments_count": 18926, "words_count": 91395, "avg_words_per_segment": 4.8291, "avg_segment_duration": 1.854, "avg_words_per_minute": 107.392, "plenum_id": "100832", "duration": 51062.47, "title": null, "plenum_date": "2021-11-01" }