{ "source_type": "knesset", "source_id": "plenum", "source_entry_id": "101306", "quality_score": 0.9424, "per_segment_quality_scores": [ { "start": 140.56, "end": 143.49, "probability": 0.5894 }, { "start": 144.72, "end": 151.98, "probability": 0.9576 }, { "start": 153.7, "end": 155.86, "probability": 0.8063 }, { "start": 156.7, "end": 157.02, "probability": 0.6372 }, { "start": 158.5, "end": 159.68, "probability": 0.8511 }, { "start": 159.8, "end": 161.24, "probability": 0.9196 }, { "start": 161.82, "end": 163.22, "probability": 0.9194 }, { "start": 163.48, "end": 164.26, "probability": 0.7195 }, { "start": 164.26, "end": 165.36, "probability": 0.6505 }, { "start": 166.14, "end": 168.84, "probability": 0.9136 }, { "start": 169.46, "end": 171.1, "probability": 0.394 }, { "start": 171.82, "end": 173.92, "probability": 0.339 }, { "start": 174.98, "end": 178.52, "probability": 0.9993 }, { "start": 179.18, "end": 179.62, "probability": 0.8404 }, { "start": 180.56, "end": 184.42, "probability": 0.6535 }, { "start": 184.72, "end": 188.32, "probability": 0.6124 }, { "start": 188.9, "end": 189.74, "probability": 0.9856 }, { "start": 191.8, "end": 193.94, "probability": 0.3056 }, { "start": 194.78, "end": 196.1, "probability": 0.676 }, { "start": 197.38, "end": 202.74, "probability": 0.941 }, { "start": 203.66, "end": 205.78, "probability": 0.3736 }, { "start": 206.48, "end": 208.9, "probability": 0.9131 }, { "start": 210.17, "end": 212.86, "probability": 0.6639 }, { "start": 214.78, "end": 215.68, "probability": 0.1424 }, { "start": 217.78, "end": 219.06, "probability": 0.0993 }, { "start": 220.3, "end": 223.84, "probability": 0.3384 }, { "start": 224.84, "end": 227.31, "probability": 0.0581 }, { "start": 227.78, "end": 228.74, "probability": 0.0341 }, { "start": 228.74, "end": 228.74, "probability": 0.0209 }, { "start": 230.44, "end": 231.94, "probability": 0.0135 }, { "start": 241.08, "end": 243.02, "probability": 0.4192 }, { "start": 245.23, "end": 246.24, "probability": 0.014 }, { "start": 246.24, "end": 249.14, "probability": 0.0329 }, { "start": 250.28, "end": 253.84, "probability": 0.4558 }, { "start": 255.28, "end": 256.97, "probability": 0.0516 }, { "start": 257.84, "end": 259.18, "probability": 0.0178 }, { "start": 259.26, "end": 261.28, "probability": 0.212 }, { "start": 263.32, "end": 265.94, "probability": 0.2221 }, { "start": 266.7, "end": 266.84, "probability": 0.0028 }, { "start": 268.82, "end": 269.28, "probability": 0.1544 }, { "start": 290.34, "end": 291.0, "probability": 0.0264 }, { "start": 291.0, "end": 291.0, "probability": 0.083 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.0, "end": 291.0, "probability": 0.0 }, { "start": 291.14, "end": 291.36, "probability": 0.0269 }, { "start": 291.36, "end": 292.66, "probability": 0.6742 }, { "start": 294.54, "end": 296.3, "probability": 0.8014 }, { "start": 304.44, "end": 305.66, "probability": 0.8848 }, { "start": 306.06, "end": 307.64, "probability": 0.8072 }, { "start": 307.76, "end": 312.3, "probability": 0.9683 }, { "start": 313.02, "end": 314.24, "probability": 0.7645 }, { "start": 315.12, "end": 315.72, "probability": 0.7344 }, { "start": 315.82, "end": 316.56, "probability": 0.3778 }, { "start": 316.66, "end": 321.54, "probability": 0.9459 }, { "start": 322.1, "end": 323.78, "probability": 0.5853 }, { "start": 324.3, "end": 327.0, "probability": 0.9463 }, { "start": 328.54, "end": 329.42, "probability": 0.5883 }, { "start": 329.5, "end": 330.32, "probability": 0.6193 }, { "start": 330.42, "end": 331.71, "probability": 0.8599 }, { "start": 332.38, "end": 333.98, "probability": 0.6664 }, { "start": 335.32, "end": 337.48, "probability": 0.973 }, { "start": 337.92, "end": 339.46, "probability": 0.7871 }, { "start": 339.64, "end": 342.5, "probability": 0.8474 }, { "start": 343.24, "end": 345.4, "probability": 0.8809 }, { "start": 345.96, "end": 346.48, "probability": 0.7612 }, { "start": 346.84, "end": 347.84, "probability": 0.8229 }, { "start": 348.34, "end": 350.06, "probability": 0.9816 }, { "start": 351.86, "end": 352.26, "probability": 0.5721 }, { "start": 352.44, "end": 353.12, "probability": 0.4963 }, { "start": 353.2, "end": 354.34, "probability": 0.8044 }, { "start": 354.72, "end": 356.28, "probability": 0.915 }, { "start": 356.78, "end": 357.66, "probability": 0.7825 }, { "start": 357.8, "end": 360.52, "probability": 0.8016 }, { "start": 360.98, "end": 365.94, "probability": 0.8809 }, { "start": 367.0, "end": 368.18, "probability": 0.9124 }, { "start": 368.32, "end": 369.3, "probability": 0.9214 }, { "start": 369.58, "end": 372.24, "probability": 0.9576 }, { "start": 372.34, "end": 373.48, "probability": 0.4979 }, { "start": 373.9, "end": 374.98, "probability": 0.7114 }, { "start": 375.3, "end": 377.8, "probability": 0.9194 }, { "start": 378.76, "end": 385.2, "probability": 0.8422 }, { "start": 385.68, "end": 388.8, "probability": 0.9925 }, { "start": 389.26, "end": 392.66, "probability": 0.9901 }, { "start": 392.76, "end": 395.38, "probability": 0.6859 }, { "start": 396.08, "end": 396.68, "probability": 0.6776 }, { "start": 397.28, "end": 401.92, "probability": 0.9839 }, { "start": 402.32, "end": 403.94, "probability": 0.9946 }, { "start": 404.4, "end": 405.8, "probability": 0.9971 }, { "start": 406.0, "end": 407.04, "probability": 0.9299 }, { "start": 407.48, "end": 408.8, "probability": 0.9822 }, { "start": 409.48, "end": 409.64, "probability": 0.719 }, { "start": 413.02, "end": 413.54, "probability": 0.7016 }, { "start": 413.58, "end": 414.96, "probability": 0.645 }, { "start": 423.46, "end": 424.62, "probability": 0.5993 }, { "start": 425.3, "end": 425.86, "probability": 0.7141 }, { "start": 427.38, "end": 430.1, "probability": 0.775 }, { "start": 431.68, "end": 437.12, "probability": 0.8828 }, { "start": 437.8, "end": 439.56, "probability": 0.9556 }, { "start": 443.4, "end": 445.92, "probability": 0.9808 }, { "start": 448.18, "end": 448.9, "probability": 0.6227 }, { "start": 450.5, "end": 452.4, "probability": 0.8718 }, { "start": 453.34, "end": 455.82, "probability": 0.9723 }, { "start": 457.36, "end": 458.3, "probability": 0.5087 }, { "start": 460.7, "end": 466.68, "probability": 0.9863 }, { "start": 469.12, "end": 470.24, "probability": 0.9771 }, { "start": 471.54, "end": 473.92, "probability": 0.8506 }, { "start": 477.54, "end": 479.62, "probability": 0.7755 }, { "start": 480.6, "end": 481.76, "probability": 0.9026 }, { "start": 483.22, "end": 487.84, "probability": 0.9463 }, { "start": 488.38, "end": 490.66, "probability": 0.9941 }, { "start": 491.5, "end": 492.58, "probability": 0.978 }, { "start": 493.58, "end": 496.36, "probability": 0.6865 }, { "start": 496.4, "end": 501.6, "probability": 0.7428 }, { "start": 502.88, "end": 509.16, "probability": 0.929 }, { "start": 509.28, "end": 509.48, "probability": 0.5381 }, { "start": 509.74, "end": 511.54, "probability": 0.9037 }, { "start": 512.1, "end": 515.48, "probability": 0.795 }, { "start": 516.12, "end": 518.8, "probability": 0.9933 }, { "start": 520.6, "end": 524.74, "probability": 0.9912 }, { "start": 525.82, "end": 527.52, "probability": 0.999 }, { "start": 528.18, "end": 530.12, "probability": 0.4285 }, { "start": 530.84, "end": 531.52, "probability": 0.9017 }, { "start": 532.1, "end": 533.1, "probability": 0.9583 }, { "start": 533.56, "end": 534.56, "probability": 0.836 }, { "start": 534.94, "end": 536.4, "probability": 0.995 }, { "start": 537.14, "end": 544.66, "probability": 0.913 }, { "start": 546.04, "end": 546.84, "probability": 0.937 }, { "start": 547.4, "end": 548.48, "probability": 0.96 }, { "start": 549.16, "end": 551.62, "probability": 0.7211 }, { "start": 552.68, "end": 556.36, "probability": 0.9965 }, { "start": 557.06, "end": 558.9, "probability": 0.9976 }, { "start": 559.92, "end": 562.46, "probability": 0.9989 }, { "start": 565.54, "end": 566.92, "probability": 0.6357 }, { "start": 567.04, "end": 568.54, "probability": 0.9106 }, { "start": 582.3, "end": 584.38, "probability": 0.7574 }, { "start": 586.64, "end": 589.48, "probability": 0.8071 }, { "start": 589.64, "end": 594.9, "probability": 0.9863 }, { "start": 595.26, "end": 596.42, "probability": 0.9929 }, { "start": 597.62, "end": 599.78, "probability": 0.9695 }, { "start": 599.8, "end": 600.5, "probability": 0.7321 }, { "start": 600.64, "end": 601.2, "probability": 0.4446 }, { "start": 602.22, "end": 602.92, "probability": 0.696 }, { "start": 604.84, "end": 605.68, "probability": 0.8537 }, { "start": 606.56, "end": 608.02, "probability": 0.8875 }, { "start": 608.74, "end": 610.0, "probability": 0.9755 }, { "start": 611.86, "end": 612.44, "probability": 0.9601 }, { "start": 613.14, "end": 614.74, "probability": 0.9066 }, { "start": 615.54, "end": 615.8, "probability": 0.8621 }, { "start": 616.94, "end": 620.12, "probability": 0.9917 }, { "start": 621.2, "end": 621.7, "probability": 0.5982 }, { "start": 623.22, "end": 625.92, "probability": 0.9456 }, { "start": 626.9, "end": 628.38, "probability": 0.9799 }, { "start": 630.04, "end": 631.08, "probability": 0.9979 }, { "start": 633.5, "end": 634.6, "probability": 0.9423 }, { "start": 635.58, "end": 637.96, "probability": 0.9917 }, { "start": 639.28, "end": 642.5, "probability": 0.7839 }, { "start": 643.4, "end": 644.48, "probability": 0.9237 }, { "start": 645.68, "end": 646.98, "probability": 0.6987 }, { "start": 647.08, "end": 649.46, "probability": 0.9666 }, { "start": 650.12, "end": 651.54, "probability": 0.9928 }, { "start": 652.6, "end": 656.02, "probability": 0.9981 }, { "start": 656.92, "end": 659.84, "probability": 0.9595 }, { "start": 661.06, "end": 662.04, "probability": 0.9652 }, { "start": 662.4, "end": 663.94, "probability": 0.9997 }, { "start": 664.14, "end": 665.32, "probability": 0.9987 }, { "start": 665.84, "end": 668.34, "probability": 0.9939 }, { "start": 669.54, "end": 673.9, "probability": 0.9902 }, { "start": 674.06, "end": 676.32, "probability": 0.8561 }, { "start": 677.12, "end": 678.84, "probability": 0.4853 }, { "start": 680.14, "end": 681.12, "probability": 0.9152 }, { "start": 681.3, "end": 683.54, "probability": 0.998 }, { "start": 683.96, "end": 685.98, "probability": 0.9826 }, { "start": 686.6, "end": 686.84, "probability": 0.8 }, { "start": 688.98, "end": 689.54, "probability": 0.6416 }, { "start": 689.88, "end": 691.6, "probability": 0.9185 }, { "start": 705.12, "end": 707.32, "probability": 0.7444 }, { "start": 708.9, "end": 713.84, "probability": 0.9939 }, { "start": 715.16, "end": 718.02, "probability": 0.9752 }, { "start": 719.1, "end": 720.4, "probability": 0.9194 }, { "start": 720.58, "end": 724.82, "probability": 0.9862 }, { "start": 726.06, "end": 729.02, "probability": 0.8551 }, { "start": 729.7, "end": 731.68, "probability": 0.9092 }, { "start": 732.8, "end": 736.84, "probability": 0.9425 }, { "start": 737.58, "end": 739.96, "probability": 0.9775 }, { "start": 740.14, "end": 742.0, "probability": 0.9854 }, { "start": 743.0, "end": 745.52, "probability": 0.9855 }, { "start": 745.52, "end": 748.66, "probability": 0.9506 }, { "start": 749.38, "end": 750.08, "probability": 0.4001 }, { "start": 751.0, "end": 755.3, "probability": 0.9022 }, { "start": 756.24, "end": 757.08, "probability": 0.8033 }, { "start": 757.8, "end": 758.64, "probability": 0.7529 }, { "start": 759.3, "end": 764.42, "probability": 0.986 }, { "start": 765.4, "end": 766.54, "probability": 0.761 }, { "start": 767.48, "end": 769.22, "probability": 0.9865 }, { "start": 769.9, "end": 770.68, "probability": 0.9115 }, { "start": 770.84, "end": 773.06, "probability": 0.9953 }, { "start": 773.48, "end": 776.52, "probability": 0.9574 }, { "start": 778.94, "end": 779.71, "probability": 0.8613 }, { "start": 780.0, "end": 780.3, "probability": 0.7727 }, { "start": 780.4, "end": 782.46, "probability": 0.9283 }, { "start": 782.58, "end": 784.92, "probability": 0.9941 }, { "start": 785.04, "end": 785.8, "probability": 0.883 }, { "start": 785.96, "end": 786.38, "probability": 0.4661 }, { "start": 786.64, "end": 787.08, "probability": 0.396 }, { "start": 788.2, "end": 793.28, "probability": 0.9897 }, { "start": 793.36, "end": 796.25, "probability": 0.9985 }, { "start": 798.68, "end": 801.48, "probability": 0.9393 }, { "start": 802.04, "end": 804.44, "probability": 0.9892 }, { "start": 804.44, "end": 807.98, "probability": 0.986 }, { "start": 808.04, "end": 808.8, "probability": 0.9003 }, { "start": 809.52, "end": 812.22, "probability": 0.9697 }, { "start": 812.3, "end": 812.96, "probability": 0.8351 }, { "start": 813.56, "end": 815.72, "probability": 0.962 }, { "start": 816.4, "end": 818.6, "probability": 0.9976 }, { "start": 822.38, "end": 823.02, "probability": 0.6937 }, { "start": 823.96, "end": 825.12, "probability": 0.9299 }, { "start": 836.86, "end": 837.28, "probability": 0.4276 }, { "start": 837.38, "end": 842.42, "probability": 0.9497 }, { "start": 844.08, "end": 845.24, "probability": 0.7303 }, { "start": 845.32, "end": 848.7, "probability": 0.9948 }, { "start": 848.78, "end": 850.7, "probability": 0.9722 }, { "start": 851.7, "end": 854.8, "probability": 0.7677 }, { "start": 854.84, "end": 857.02, "probability": 0.8341 }, { "start": 857.88, "end": 859.88, "probability": 0.9954 }, { "start": 860.72, "end": 862.6, "probability": 0.8091 }, { "start": 863.48, "end": 868.7, "probability": 0.9868 }, { "start": 869.72, "end": 871.14, "probability": 0.9956 }, { "start": 871.82, "end": 873.18, "probability": 0.9996 }, { "start": 874.1, "end": 876.22, "probability": 0.9841 }, { "start": 876.98, "end": 877.64, "probability": 0.9634 }, { "start": 877.74, "end": 878.4, "probability": 0.5606 }, { "start": 878.46, "end": 879.52, "probability": 0.9478 }, { "start": 880.36, "end": 886.86, "probability": 0.9926 }, { "start": 887.46, "end": 894.4, "probability": 0.9954 }, { "start": 895.56, "end": 897.16, "probability": 0.8853 }, { "start": 897.3, "end": 899.08, "probability": 0.9966 }, { "start": 899.1, "end": 901.67, "probability": 0.9297 }, { "start": 902.72, "end": 905.42, "probability": 0.9902 }, { "start": 905.92, "end": 908.3, "probability": 0.8805 }, { "start": 908.38, "end": 908.94, "probability": 0.6648 }, { "start": 909.04, "end": 911.06, "probability": 0.8821 }, { "start": 911.74, "end": 913.24, "probability": 0.8271 }, { "start": 913.92, "end": 914.24, "probability": 0.3739 }, { "start": 914.28, "end": 916.28, "probability": 0.9821 }, { "start": 916.4, "end": 918.82, "probability": 0.959 }, { "start": 918.82, "end": 921.5, "probability": 0.9966 }, { "start": 921.56, "end": 922.0, "probability": 0.6316 }, { "start": 923.48, "end": 924.28, "probability": 0.5538 }, { "start": 925.1, "end": 926.22, "probability": 0.9719 }, { "start": 937.4, "end": 938.78, "probability": 0.6934 }, { "start": 940.14, "end": 942.26, "probability": 0.5793 }, { "start": 943.26, "end": 946.1, "probability": 0.9922 }, { "start": 947.52, "end": 949.7, "probability": 0.8145 }, { "start": 950.54, "end": 952.3, "probability": 0.9749 }, { "start": 952.44, "end": 955.6, "probability": 0.9986 }, { "start": 956.38, "end": 958.86, "probability": 0.847 }, { "start": 959.9, "end": 961.82, "probability": 0.7077 }, { "start": 962.6, "end": 964.38, "probability": 0.7273 }, { "start": 964.96, "end": 965.78, "probability": 0.7975 }, { "start": 966.5, "end": 967.44, "probability": 0.6058 }, { "start": 968.06, "end": 969.46, "probability": 0.9956 }, { "start": 970.28, "end": 975.48, "probability": 0.9987 }, { "start": 975.76, "end": 980.9, "probability": 0.9933 }, { "start": 981.38, "end": 982.58, "probability": 0.8553 }, { "start": 983.76, "end": 985.42, "probability": 0.9987 }, { "start": 986.44, "end": 987.36, "probability": 0.9432 }, { "start": 987.46, "end": 989.44, "probability": 0.4147 }, { "start": 989.54, "end": 992.9, "probability": 0.9919 }, { "start": 993.54, "end": 995.04, "probability": 0.9908 }, { "start": 996.0, "end": 997.1, "probability": 0.9932 }, { "start": 997.8, "end": 1001.54, "probability": 0.846 }, { "start": 1002.18, "end": 1003.62, "probability": 0.9554 }, { "start": 1004.26, "end": 1006.36, "probability": 0.9956 }, { "start": 1007.26, "end": 1008.6, "probability": 0.937 }, { "start": 1008.94, "end": 1013.52, "probability": 0.9869 }, { "start": 1013.52, "end": 1017.84, "probability": 0.9979 }, { "start": 1018.18, "end": 1018.42, "probability": 0.6546 }, { "start": 1020.3, "end": 1020.78, "probability": 0.5616 }, { "start": 1020.82, "end": 1023.02, "probability": 0.7364 }, { "start": 1029.56, "end": 1032.3, "probability": 0.8684 }, { "start": 1033.26, "end": 1036.64, "probability": 0.9738 }, { "start": 1037.45, "end": 1039.44, "probability": 0.662 }, { "start": 1039.62, "end": 1040.7, "probability": 0.8835 }, { "start": 1041.56, "end": 1043.72, "probability": 0.8372 }, { "start": 1044.42, "end": 1046.34, "probability": 0.9305 }, { "start": 1047.2, "end": 1047.62, "probability": 0.7502 }, { "start": 1048.56, "end": 1051.88, "probability": 0.8682 }, { "start": 1052.62, "end": 1054.96, "probability": 0.7099 }, { "start": 1055.0, "end": 1057.3, "probability": 0.8138 }, { "start": 1057.42, "end": 1059.72, "probability": 0.9951 }, { "start": 1059.72, "end": 1062.22, "probability": 0.9862 }, { "start": 1063.08, "end": 1065.7, "probability": 0.65 }, { "start": 1065.8, "end": 1068.14, "probability": 0.9886 }, { "start": 1068.34, "end": 1069.28, "probability": 0.9348 }, { "start": 1069.34, "end": 1070.3, "probability": 0.9918 }, { "start": 1070.38, "end": 1071.24, "probability": 0.9756 }, { "start": 1072.36, "end": 1073.42, "probability": 0.8633 }, { "start": 1073.5, "end": 1074.18, "probability": 0.7599 }, { "start": 1074.36, "end": 1077.6, "probability": 0.9949 }, { "start": 1078.2, "end": 1079.46, "probability": 0.9738 }, { "start": 1079.64, "end": 1085.14, "probability": 0.9966 }, { "start": 1085.86, "end": 1091.08, "probability": 0.9912 }, { "start": 1091.46, "end": 1094.9, "probability": 0.9741 }, { "start": 1095.06, "end": 1095.84, "probability": 0.6542 }, { "start": 1098.62, "end": 1099.14, "probability": 0.8279 }, { "start": 1101.5, "end": 1102.86, "probability": 0.9364 }, { "start": 1103.4, "end": 1104.14, "probability": 0.9456 }, { "start": 1105.38, "end": 1107.4, "probability": 0.073 }, { "start": 1118.97, "end": 1122.36, "probability": 0.5381 }, { "start": 1124.74, "end": 1126.62, "probability": 0.5215 }, { "start": 1130.84, "end": 1131.14, "probability": 0.5663 }, { "start": 1131.82, "end": 1132.4, "probability": 0.7902 }, { "start": 1132.4, "end": 1132.9, "probability": 0.6449 }, { "start": 1135.08, "end": 1135.34, "probability": 0.9379 }, { "start": 1138.4, "end": 1139.4, "probability": 0.8628 }, { "start": 1140.0, "end": 1144.68, "probability": 0.9969 }, { "start": 1146.84, "end": 1151.94, "probability": 0.9642 }, { "start": 1152.4, "end": 1155.4, "probability": 0.9768 }, { "start": 1158.04, "end": 1161.64, "probability": 0.9974 }, { "start": 1161.64, "end": 1164.54, "probability": 0.9985 }, { "start": 1164.88, "end": 1165.5, "probability": 0.9399 }, { "start": 1166.16, "end": 1168.84, "probability": 0.9988 }, { "start": 1169.8, "end": 1172.06, "probability": 0.9901 }, { "start": 1174.68, "end": 1176.12, "probability": 0.8042 }, { "start": 1176.56, "end": 1179.1, "probability": 0.9941 }, { "start": 1179.1, "end": 1181.72, "probability": 0.9915 }, { "start": 1183.98, "end": 1187.88, "probability": 0.9732 }, { "start": 1188.12, "end": 1190.24, "probability": 0.9502 }, { "start": 1190.54, "end": 1193.92, "probability": 0.9917 }, { "start": 1195.2, "end": 1198.72, "probability": 0.715 }, { "start": 1199.38, "end": 1203.22, "probability": 0.9862 }, { "start": 1204.54, "end": 1209.4, "probability": 0.9935 }, { "start": 1209.4, "end": 1215.54, "probability": 0.9995 }, { "start": 1216.26, "end": 1218.12, "probability": 0.9935 }, { "start": 1218.22, "end": 1220.3, "probability": 0.9282 }, { "start": 1221.04, "end": 1222.84, "probability": 0.5764 }, { "start": 1222.96, "end": 1228.3, "probability": 0.9956 }, { "start": 1229.08, "end": 1229.68, "probability": 0.9709 }, { "start": 1230.34, "end": 1233.28, "probability": 0.9449 }, { "start": 1233.94, "end": 1236.54, "probability": 0.8342 }, { "start": 1236.7, "end": 1237.14, "probability": 0.7403 }, { "start": 1241.06, "end": 1241.72, "probability": 0.6092 }, { "start": 1241.94, "end": 1243.35, "probability": 0.8379 }, { "start": 1253.74, "end": 1256.75, "probability": 0.8604 }, { "start": 1258.18, "end": 1259.92, "probability": 0.9038 }, { "start": 1260.48, "end": 1261.08, "probability": 0.7779 }, { "start": 1262.02, "end": 1263.32, "probability": 0.948 }, { "start": 1264.16, "end": 1267.02, "probability": 0.9482 }, { "start": 1267.9, "end": 1270.36, "probability": 0.9497 }, { "start": 1271.84, "end": 1274.08, "probability": 0.9407 }, { "start": 1274.64, "end": 1276.64, "probability": 0.9525 }, { "start": 1277.8, "end": 1278.96, "probability": 0.8107 }, { "start": 1279.52, "end": 1281.92, "probability": 0.9933 }, { "start": 1282.52, "end": 1284.18, "probability": 0.9858 }, { "start": 1285.08, "end": 1286.32, "probability": 0.9543 }, { "start": 1287.12, "end": 1289.72, "probability": 0.9861 }, { "start": 1290.34, "end": 1291.58, "probability": 0.999 }, { "start": 1292.44, "end": 1295.58, "probability": 0.9104 }, { "start": 1296.44, "end": 1298.14, "probability": 0.982 }, { "start": 1298.4, "end": 1299.08, "probability": 0.3097 }, { "start": 1299.58, "end": 1301.44, "probability": 0.9912 }, { "start": 1302.14, "end": 1302.9, "probability": 0.861 }, { "start": 1303.7, "end": 1304.6, "probability": 0.9003 }, { "start": 1305.56, "end": 1306.64, "probability": 0.8877 }, { "start": 1307.2, "end": 1308.62, "probability": 0.9421 }, { "start": 1309.2, "end": 1312.18, "probability": 0.9904 }, { "start": 1313.04, "end": 1317.42, "probability": 0.9539 }, { "start": 1318.52, "end": 1319.68, "probability": 0.8055 }, { "start": 1319.88, "end": 1323.04, "probability": 0.3991 }, { "start": 1323.88, "end": 1325.64, "probability": 0.9022 }, { "start": 1326.18, "end": 1326.82, "probability": 0.9133 }, { "start": 1327.4, "end": 1330.42, "probability": 0.9829 }, { "start": 1331.4, "end": 1332.82, "probability": 0.991 }, { "start": 1333.92, "end": 1337.44, "probability": 0.9749 }, { "start": 1338.3, "end": 1340.26, "probability": 0.9791 }, { "start": 1341.04, "end": 1342.22, "probability": 0.743 }, { "start": 1342.92, "end": 1344.96, "probability": 0.9955 }, { "start": 1345.5, "end": 1346.06, "probability": 0.6509 }, { "start": 1346.58, "end": 1348.16, "probability": 0.9665 }, { "start": 1349.0, "end": 1349.6, "probability": 0.8203 }, { "start": 1353.44, "end": 1354.18, "probability": 0.5986 }, { "start": 1354.2, "end": 1356.94, "probability": 0.7105 }, { "start": 1357.16, "end": 1359.32, "probability": 0.9406 }, { "start": 1369.24, "end": 1370.12, "probability": 0.7198 }, { "start": 1370.46, "end": 1371.78, "probability": 0.9438 }, { "start": 1371.98, "end": 1373.0, "probability": 0.6753 }, { "start": 1374.1, "end": 1379.42, "probability": 0.9836 }, { "start": 1380.46, "end": 1387.04, "probability": 0.9873 }, { "start": 1388.0, "end": 1391.52, "probability": 0.9882 }, { "start": 1392.18, "end": 1399.4, "probability": 0.9587 }, { "start": 1400.44, "end": 1403.42, "probability": 0.9935 }, { "start": 1404.22, "end": 1406.75, "probability": 0.9951 }, { "start": 1408.0, "end": 1410.48, "probability": 0.9976 }, { "start": 1411.1, "end": 1413.26, "probability": 0.9934 }, { "start": 1414.36, "end": 1418.5, "probability": 0.9937 }, { "start": 1419.32, "end": 1421.34, "probability": 0.9893 }, { "start": 1422.14, "end": 1422.94, "probability": 0.8837 }, { "start": 1423.04, "end": 1424.61, "probability": 0.9385 }, { "start": 1424.74, "end": 1425.62, "probability": 0.8224 }, { "start": 1426.78, "end": 1428.98, "probability": 0.9814 }, { "start": 1429.66, "end": 1431.68, "probability": 0.8745 }, { "start": 1432.4, "end": 1437.62, "probability": 0.9917 }, { "start": 1438.54, "end": 1442.28, "probability": 0.9953 }, { "start": 1443.06, "end": 1446.98, "probability": 0.8755 }, { "start": 1447.58, "end": 1448.38, "probability": 0.8157 }, { "start": 1448.86, "end": 1450.12, "probability": 0.9921 }, { "start": 1450.34, "end": 1454.12, "probability": 0.9841 }, { "start": 1454.12, "end": 1457.72, "probability": 0.9279 }, { "start": 1458.5, "end": 1461.4, "probability": 0.9049 }, { "start": 1461.98, "end": 1465.1, "probability": 0.9918 }, { "start": 1465.76, "end": 1468.08, "probability": 0.9939 }, { "start": 1468.62, "end": 1470.74, "probability": 0.9828 }, { "start": 1471.82, "end": 1475.12, "probability": 0.962 }, { "start": 1475.18, "end": 1476.94, "probability": 0.9365 }, { "start": 1477.6, "end": 1478.58, "probability": 0.9912 }, { "start": 1480.0, "end": 1481.74, "probability": 0.3491 }, { "start": 1482.78, "end": 1485.02, "probability": 0.7732 }, { "start": 1485.6, "end": 1487.54, "probability": 0.8559 }, { "start": 1487.7, "end": 1491.58, "probability": 0.9878 }, { "start": 1492.26, "end": 1495.22, "probability": 0.9819 }, { "start": 1495.22, "end": 1498.04, "probability": 0.9057 }, { "start": 1498.42, "end": 1505.84, "probability": 0.9951 }, { "start": 1507.48, "end": 1510.3, "probability": 0.9648 }, { "start": 1510.88, "end": 1514.56, "probability": 0.9948 }, { "start": 1515.16, "end": 1518.04, "probability": 0.9628 }, { "start": 1518.12, "end": 1521.82, "probability": 0.9832 }, { "start": 1522.6, "end": 1523.96, "probability": 0.8947 }, { "start": 1524.8, "end": 1526.42, "probability": 0.8092 }, { "start": 1527.0, "end": 1531.92, "probability": 0.9548 }, { "start": 1532.42, "end": 1533.46, "probability": 0.9818 }, { "start": 1541.14, "end": 1541.38, "probability": 0.2547 }, { "start": 1541.38, "end": 1541.78, "probability": 0.6189 }, { "start": 1548.98, "end": 1549.8, "probability": 0.859 }, { "start": 1550.82, "end": 1551.42, "probability": 0.036 }, { "start": 1551.56, "end": 1552.46, "probability": 0.1346 }, { "start": 1553.06, "end": 1553.36, "probability": 0.8088 }, { "start": 1554.44, "end": 1555.84, "probability": 0.1613 }, { "start": 1556.98, "end": 1558.82, "probability": 0.4705 }, { "start": 1575.98, "end": 1577.1, "probability": 0.6926 }, { "start": 1578.3, "end": 1583.08, "probability": 0.9956 }, { "start": 1584.92, "end": 1586.22, "probability": 0.6745 }, { "start": 1586.81, "end": 1588.88, "probability": 0.8257 }, { "start": 1588.92, "end": 1592.78, "probability": 0.9561 }, { "start": 1593.94, "end": 1595.68, "probability": 0.9993 }, { "start": 1596.12, "end": 1599.0, "probability": 0.9053 }, { "start": 1599.02, "end": 1602.15, "probability": 0.9652 }, { "start": 1603.4, "end": 1604.06, "probability": 0.5324 }, { "start": 1604.24, "end": 1608.36, "probability": 0.9929 }, { "start": 1609.14, "end": 1612.02, "probability": 0.988 }, { "start": 1612.96, "end": 1615.68, "probability": 0.9962 }, { "start": 1615.84, "end": 1616.72, "probability": 0.8892 }, { "start": 1617.86, "end": 1621.6, "probability": 0.9747 }, { "start": 1622.44, "end": 1623.44, "probability": 0.6722 }, { "start": 1623.5, "end": 1624.28, "probability": 0.5697 }, { "start": 1624.32, "end": 1630.08, "probability": 0.9869 }, { "start": 1630.9, "end": 1634.68, "probability": 0.9901 }, { "start": 1634.8, "end": 1635.47, "probability": 0.6497 }, { "start": 1637.74, "end": 1639.08, "probability": 0.844 }, { "start": 1640.02, "end": 1641.7, "probability": 0.9971 }, { "start": 1642.44, "end": 1644.96, "probability": 0.642 }, { "start": 1645.7, "end": 1647.14, "probability": 0.9937 }, { "start": 1648.64, "end": 1652.5, "probability": 0.9913 }, { "start": 1653.2, "end": 1654.38, "probability": 0.9146 }, { "start": 1654.44, "end": 1658.7, "probability": 0.936 }, { "start": 1659.36, "end": 1662.54, "probability": 0.9862 }, { "start": 1663.56, "end": 1666.22, "probability": 0.6339 }, { "start": 1666.38, "end": 1666.84, "probability": 0.5506 }, { "start": 1666.98, "end": 1669.36, "probability": 0.9863 }, { "start": 1670.46, "end": 1672.8, "probability": 0.9614 }, { "start": 1673.6, "end": 1678.6, "probability": 0.9143 }, { "start": 1678.6, "end": 1682.18, "probability": 0.9977 }, { "start": 1682.86, "end": 1684.58, "probability": 0.7676 }, { "start": 1684.7, "end": 1688.26, "probability": 0.9854 }, { "start": 1688.46, "end": 1692.4, "probability": 0.8468 }, { "start": 1693.06, "end": 1693.18, "probability": 0.5685 }, { "start": 1694.54, "end": 1695.44, "probability": 0.5657 }, { "start": 1695.48, "end": 1696.52, "probability": 0.8608 }, { "start": 1701.6, "end": 1703.44, "probability": 0.6548 }, { "start": 1711.48, "end": 1714.84, "probability": 0.9906 }, { "start": 1715.74, "end": 1716.06, "probability": 0.7153 }, { "start": 1716.99, "end": 1719.68, "probability": 0.9976 }, { "start": 1719.78, "end": 1722.34, "probability": 0.9915 }, { "start": 1723.36, "end": 1723.54, "probability": 0.8596 }, { "start": 1723.7, "end": 1724.02, "probability": 0.6665 }, { "start": 1724.38, "end": 1727.78, "probability": 0.9546 }, { "start": 1728.98, "end": 1732.3, "probability": 0.9697 }, { "start": 1732.48, "end": 1736.7, "probability": 0.8369 }, { "start": 1739.69, "end": 1742.3, "probability": 0.9608 }, { "start": 1742.38, "end": 1744.0, "probability": 0.9321 }, { "start": 1744.88, "end": 1751.6, "probability": 0.8051 }, { "start": 1752.28, "end": 1753.72, "probability": 0.8615 }, { "start": 1753.78, "end": 1755.08, "probability": 0.938 }, { "start": 1756.22, "end": 1760.32, "probability": 0.9877 }, { "start": 1760.74, "end": 1764.2, "probability": 0.8457 }, { "start": 1764.92, "end": 1766.08, "probability": 0.9977 }, { "start": 1768.48, "end": 1773.82, "probability": 0.9595 }, { "start": 1774.56, "end": 1776.8, "probability": 0.9766 }, { "start": 1777.34, "end": 1781.16, "probability": 0.9246 }, { "start": 1781.7, "end": 1784.9, "probability": 0.9792 }, { "start": 1785.1, "end": 1786.43, "probability": 0.8981 }, { "start": 1786.64, "end": 1787.98, "probability": 0.8669 }, { "start": 1788.5, "end": 1791.48, "probability": 0.788 }, { "start": 1791.64, "end": 1794.41, "probability": 0.9816 }, { "start": 1794.78, "end": 1796.18, "probability": 0.8517 }, { "start": 1796.38, "end": 1797.08, "probability": 0.7787 }, { "start": 1797.68, "end": 1798.2, "probability": 0.405 }, { "start": 1798.92, "end": 1799.78, "probability": 0.6093 }, { "start": 1800.28, "end": 1802.2, "probability": 0.7257 }, { "start": 1802.54, "end": 1804.4, "probability": 0.902 }, { "start": 1804.74, "end": 1806.12, "probability": 0.8435 }, { "start": 1806.64, "end": 1809.06, "probability": 0.985 }, { "start": 1809.16, "end": 1809.74, "probability": 0.951 }, { "start": 1809.82, "end": 1810.46, "probability": 0.8526 }, { "start": 1810.52, "end": 1811.0, "probability": 0.7281 }, { "start": 1811.84, "end": 1812.98, "probability": 0.7905 }, { "start": 1814.48, "end": 1816.84, "probability": 0.919 }, { "start": 1818.38, "end": 1820.36, "probability": 0.9524 }, { "start": 1821.5, "end": 1824.08, "probability": 0.8736 }, { "start": 1825.54, "end": 1827.74, "probability": 0.4271 }, { "start": 1827.74, "end": 1829.76, "probability": 0.1253 }, { "start": 1830.78, "end": 1832.96, "probability": 0.1144 }, { "start": 1836.74, "end": 1838.82, "probability": 0.2942 }, { "start": 1838.82, "end": 1838.82, "probability": 0.0384 }, { "start": 1838.82, "end": 1838.82, "probability": 0.0215 }, { "start": 1838.82, "end": 1839.54, "probability": 0.381 }, { "start": 1839.94, "end": 1842.34, "probability": 0.5602 }, { "start": 1842.74, "end": 1843.66, "probability": 0.3411 }, { "start": 1843.78, "end": 1845.26, "probability": 0.3172 }, { "start": 1846.96, "end": 1847.28, "probability": 0.3374 }, { "start": 1847.28, "end": 1847.28, "probability": 0.1791 }, { "start": 1847.28, "end": 1847.28, "probability": 0.3833 }, { "start": 1847.28, "end": 1848.92, "probability": 0.4993 }, { "start": 1849.06, "end": 1853.72, "probability": 0.9189 }, { "start": 1854.52, "end": 1857.12, "probability": 0.9976 }, { "start": 1857.82, "end": 1859.72, "probability": 0.9937 }, { "start": 1860.62, "end": 1861.72, "probability": 0.7367 }, { "start": 1863.08, "end": 1865.04, "probability": 0.7714 }, { "start": 1865.66, "end": 1868.62, "probability": 0.9185 }, { "start": 1869.38, "end": 1870.08, "probability": 0.6975 }, { "start": 1870.36, "end": 1873.06, "probability": 0.9942 }, { "start": 1874.38, "end": 1874.8, "probability": 0.4713 }, { "start": 1876.26, "end": 1879.36, "probability": 0.9893 }, { "start": 1879.36, "end": 1882.78, "probability": 0.6264 }, { "start": 1884.62, "end": 1885.38, "probability": 0.7073 }, { "start": 1885.8, "end": 1886.94, "probability": 0.5386 }, { "start": 1887.38, "end": 1889.54, "probability": 0.719 }, { "start": 1889.98, "end": 1891.28, "probability": 0.9202 }, { "start": 1891.64, "end": 1892.52, "probability": 0.687 }, { "start": 1892.64, "end": 1894.0, "probability": 0.8779 }, { "start": 1894.68, "end": 1895.36, "probability": 0.5224 }, { "start": 1895.38, "end": 1898.21, "probability": 0.8702 }, { "start": 1898.82, "end": 1900.12, "probability": 0.4265 }, { "start": 1900.74, "end": 1903.0, "probability": 0.7082 }, { "start": 1903.56, "end": 1906.14, "probability": 0.9935 }, { "start": 1906.14, "end": 1909.58, "probability": 0.9636 }, { "start": 1909.92, "end": 1911.1, "probability": 0.9832 }, { "start": 1912.0, "end": 1915.56, "probability": 0.9567 }, { "start": 1916.52, "end": 1918.15, "probability": 0.965 }, { "start": 1919.48, "end": 1924.24, "probability": 0.9596 }, { "start": 1924.78, "end": 1927.3, "probability": 0.9565 }, { "start": 1927.94, "end": 1933.46, "probability": 0.9662 }, { "start": 1933.5, "end": 1934.28, "probability": 0.958 }, { "start": 1934.76, "end": 1936.36, "probability": 0.9183 }, { "start": 1936.44, "end": 1939.16, "probability": 0.9912 }, { "start": 1939.16, "end": 1941.04, "probability": 0.9865 }, { "start": 1941.12, "end": 1941.74, "probability": 0.8064 }, { "start": 1942.54, "end": 1943.9, "probability": 0.9204 }, { "start": 1943.98, "end": 1944.9, "probability": 0.9869 }, { "start": 1945.3, "end": 1948.32, "probability": 0.9905 }, { "start": 1948.4, "end": 1950.98, "probability": 0.9571 }, { "start": 1951.28, "end": 1955.45, "probability": 0.9902 }, { "start": 1955.9, "end": 1956.56, "probability": 0.8878 }, { "start": 1956.96, "end": 1957.22, "probability": 0.5926 }, { "start": 1957.3, "end": 1958.72, "probability": 0.9792 }, { "start": 1959.16, "end": 1959.96, "probability": 0.9961 }, { "start": 1960.48, "end": 1962.28, "probability": 0.9885 }, { "start": 1963.0, "end": 1963.44, "probability": 0.9589 }, { "start": 1964.6, "end": 1965.3, "probability": 0.7069 }, { "start": 1965.96, "end": 1971.68, "probability": 0.8892 }, { "start": 1972.62, "end": 1973.28, "probability": 0.572 }, { "start": 1973.72, "end": 1974.98, "probability": 0.4936 }, { "start": 1975.06, "end": 1975.46, "probability": 0.2345 }, { "start": 1977.9, "end": 1978.16, "probability": 0.6744 }, { "start": 1992.76, "end": 1993.42, "probability": 0.7752 }, { "start": 1993.74, "end": 1994.36, "probability": 0.8339 }, { "start": 1994.44, "end": 1995.0, "probability": 0.998 }, { "start": 1995.36, "end": 1999.1, "probability": 0.9927 }, { "start": 1999.42, "end": 2004.08, "probability": 0.9844 }, { "start": 2004.54, "end": 2008.38, "probability": 0.998 }, { "start": 2008.38, "end": 2011.02, "probability": 0.9973 }, { "start": 2011.82, "end": 2012.58, "probability": 0.4065 }, { "start": 2012.66, "end": 2014.72, "probability": 0.9972 }, { "start": 2014.9, "end": 2018.9, "probability": 0.9956 }, { "start": 2019.4, "end": 2024.42, "probability": 0.9565 }, { "start": 2024.42, "end": 2027.26, "probability": 0.989 }, { "start": 2027.74, "end": 2029.52, "probability": 0.9807 }, { "start": 2030.18, "end": 2034.22, "probability": 0.9898 }, { "start": 2034.4, "end": 2035.3, "probability": 0.6098 }, { "start": 2036.32, "end": 2040.32, "probability": 0.5186 }, { "start": 2041.39, "end": 2045.62, "probability": 0.9932 }, { "start": 2046.52, "end": 2047.2, "probability": 0.8504 }, { "start": 2048.24, "end": 2049.2, "probability": 0.8503 }, { "start": 2049.72, "end": 2051.34, "probability": 0.8157 }, { "start": 2052.36, "end": 2055.32, "probability": 0.9813 }, { "start": 2055.52, "end": 2055.88, "probability": 0.7303 }, { "start": 2057.56, "end": 2058.02, "probability": 0.5948 }, { "start": 2058.16, "end": 2060.84, "probability": 0.9225 }, { "start": 2062.04, "end": 2065.94, "probability": 0.9808 }, { "start": 2067.08, "end": 2069.36, "probability": 0.9744 }, { "start": 2070.12, "end": 2074.28, "probability": 0.9863 }, { "start": 2075.02, "end": 2077.72, "probability": 0.8841 }, { "start": 2078.48, "end": 2079.0, "probability": 0.7606 }, { "start": 2079.54, "end": 2082.9, "probability": 0.9803 }, { "start": 2083.58, "end": 2086.76, "probability": 0.6217 }, { "start": 2087.72, "end": 2091.44, "probability": 0.9969 }, { "start": 2092.46, "end": 2096.34, "probability": 0.9937 }, { "start": 2097.44, "end": 2099.48, "probability": 0.7631 }, { "start": 2100.66, "end": 2101.6, "probability": 0.827 }, { "start": 2102.64, "end": 2109.1, "probability": 0.9964 }, { "start": 2109.76, "end": 2116.5, "probability": 0.9916 }, { "start": 2117.54, "end": 2119.96, "probability": 0.9221 }, { "start": 2120.54, "end": 2121.84, "probability": 0.9609 }, { "start": 2122.74, "end": 2126.12, "probability": 0.8632 }, { "start": 2127.0, "end": 2130.02, "probability": 0.9963 }, { "start": 2130.64, "end": 2132.82, "probability": 0.8273 }, { "start": 2133.52, "end": 2134.26, "probability": 0.9756 }, { "start": 2134.86, "end": 2139.24, "probability": 0.9917 }, { "start": 2140.12, "end": 2142.22, "probability": 0.8577 }, { "start": 2143.82, "end": 2146.88, "probability": 0.9854 }, { "start": 2147.58, "end": 2148.16, "probability": 0.9842 }, { "start": 2148.74, "end": 2150.5, "probability": 0.4756 }, { "start": 2151.56, "end": 2153.86, "probability": 0.9067 }, { "start": 2154.8, "end": 2156.84, "probability": 0.8582 }, { "start": 2157.36, "end": 2158.6, "probability": 0.7513 }, { "start": 2159.74, "end": 2167.04, "probability": 0.853 }, { "start": 2167.94, "end": 2169.24, "probability": 0.7394 }, { "start": 2169.42, "end": 2173.45, "probability": 0.9393 }, { "start": 2174.18, "end": 2175.94, "probability": 0.9916 }, { "start": 2177.26, "end": 2180.06, "probability": 0.9312 }, { "start": 2180.18, "end": 2183.52, "probability": 0.8388 }, { "start": 2184.08, "end": 2186.68, "probability": 0.518 }, { "start": 2187.46, "end": 2190.8, "probability": 0.9396 }, { "start": 2191.34, "end": 2193.98, "probability": 0.9328 }, { "start": 2194.72, "end": 2197.84, "probability": 0.8652 }, { "start": 2198.38, "end": 2201.16, "probability": 0.9851 }, { "start": 2203.6, "end": 2206.28, "probability": 0.7902 }, { "start": 2206.84, "end": 2211.32, "probability": 0.9671 }, { "start": 2212.04, "end": 2215.16, "probability": 0.9417 }, { "start": 2216.0, "end": 2219.38, "probability": 0.981 }, { "start": 2220.2, "end": 2222.92, "probability": 0.9985 }, { "start": 2223.5, "end": 2228.52, "probability": 0.9982 }, { "start": 2229.58, "end": 2233.56, "probability": 0.9771 }, { "start": 2235.66, "end": 2241.02, "probability": 0.9808 }, { "start": 2241.98, "end": 2244.1, "probability": 0.8945 }, { "start": 2244.92, "end": 2248.18, "probability": 0.9611 }, { "start": 2248.88, "end": 2254.36, "probability": 0.9954 }, { "start": 2254.88, "end": 2258.04, "probability": 0.9933 }, { "start": 2259.1, "end": 2262.4, "probability": 0.9897 }, { "start": 2263.4, "end": 2266.16, "probability": 0.9987 }, { "start": 2266.16, "end": 2270.86, "probability": 0.9958 }, { "start": 2271.56, "end": 2272.76, "probability": 0.9824 }, { "start": 2273.92, "end": 2274.26, "probability": 0.8962 }, { "start": 2274.98, "end": 2276.92, "probability": 0.9798 }, { "start": 2277.46, "end": 2281.04, "probability": 0.9978 }, { "start": 2281.6, "end": 2283.28, "probability": 0.9773 }, { "start": 2284.24, "end": 2287.58, "probability": 0.8115 }, { "start": 2288.44, "end": 2292.18, "probability": 0.9738 }, { "start": 2292.8, "end": 2295.58, "probability": 0.9927 }, { "start": 2296.26, "end": 2300.86, "probability": 0.9619 }, { "start": 2301.38, "end": 2302.04, "probability": 0.972 }, { "start": 2302.56, "end": 2303.16, "probability": 0.8738 }, { "start": 2303.88, "end": 2304.34, "probability": 0.7759 }, { "start": 2305.56, "end": 2308.2, "probability": 0.9939 }, { "start": 2308.84, "end": 2311.3, "probability": 0.9698 }, { "start": 2311.94, "end": 2312.62, "probability": 0.7017 }, { "start": 2314.04, "end": 2318.84, "probability": 0.9795 }, { "start": 2319.44, "end": 2321.86, "probability": 0.9642 }, { "start": 2322.84, "end": 2324.74, "probability": 0.9409 }, { "start": 2325.28, "end": 2329.2, "probability": 0.9727 }, { "start": 2329.84, "end": 2331.72, "probability": 0.504 }, { "start": 2332.66, "end": 2334.72, "probability": 0.8525 }, { "start": 2335.6, "end": 2337.94, "probability": 0.9935 }, { "start": 2338.78, "end": 2341.18, "probability": 0.9849 }, { "start": 2341.82, "end": 2344.68, "probability": 0.986 }, { "start": 2345.36, "end": 2348.4, "probability": 0.9381 }, { "start": 2349.2, "end": 2352.04, "probability": 0.9893 }, { "start": 2352.94, "end": 2354.28, "probability": 0.8269 }, { "start": 2355.14, "end": 2359.36, "probability": 0.9989 }, { "start": 2360.26, "end": 2364.04, "probability": 0.8503 }, { "start": 2364.56, "end": 2367.7, "probability": 0.9968 }, { "start": 2368.66, "end": 2371.08, "probability": 0.8987 }, { "start": 2372.18, "end": 2376.98, "probability": 0.9852 }, { "start": 2377.64, "end": 2381.04, "probability": 0.9475 }, { "start": 2382.1, "end": 2385.32, "probability": 0.9609 }, { "start": 2386.94, "end": 2390.26, "probability": 0.3267 }, { "start": 2390.34, "end": 2390.76, "probability": 0.1878 }, { "start": 2421.1, "end": 2421.98, "probability": 0.0541 }, { "start": 2429.34, "end": 2431.74, "probability": 0.6526 }, { "start": 2432.36, "end": 2433.5, "probability": 0.9712 }, { "start": 2434.68, "end": 2437.22, "probability": 0.9938 }, { "start": 2438.14, "end": 2441.1, "probability": 0.9951 }, { "start": 2442.2, "end": 2444.6, "probability": 0.856 }, { "start": 2446.5, "end": 2448.01, "probability": 0.7079 }, { "start": 2449.26, "end": 2451.1, "probability": 0.9963 }, { "start": 2451.98, "end": 2453.56, "probability": 0.8043 }, { "start": 2454.1, "end": 2455.62, "probability": 0.9024 }, { "start": 2456.76, "end": 2461.02, "probability": 0.9966 }, { "start": 2461.74, "end": 2465.38, "probability": 0.9961 }, { "start": 2466.18, "end": 2469.04, "probability": 0.9976 }, { "start": 2470.1, "end": 2471.28, "probability": 0.8407 }, { "start": 2473.38, "end": 2476.24, "probability": 0.9247 }, { "start": 2477.1, "end": 2478.92, "probability": 0.9454 }, { "start": 2479.56, "end": 2481.46, "probability": 0.7775 }, { "start": 2482.78, "end": 2489.72, "probability": 0.9668 }, { "start": 2490.44, "end": 2492.74, "probability": 0.9886 }, { "start": 2493.3, "end": 2494.14, "probability": 0.9964 }, { "start": 2494.68, "end": 2497.46, "probability": 0.9791 }, { "start": 2498.26, "end": 2499.98, "probability": 0.9556 }, { "start": 2502.18, "end": 2504.96, "probability": 0.9771 }, { "start": 2506.12, "end": 2508.02, "probability": 0.9684 }, { "start": 2509.38, "end": 2510.88, "probability": 0.947 }, { "start": 2512.2, "end": 2515.56, "probability": 0.9807 }, { "start": 2517.18, "end": 2518.38, "probability": 0.9661 }, { "start": 2520.44, "end": 2523.38, "probability": 0.9972 }, { "start": 2523.38, "end": 2527.9, "probability": 0.9516 }, { "start": 2528.58, "end": 2529.56, "probability": 0.9968 }, { "start": 2530.28, "end": 2531.06, "probability": 0.9514 }, { "start": 2532.46, "end": 2534.94, "probability": 0.9965 }, { "start": 2536.06, "end": 2537.4, "probability": 0.9886 }, { "start": 2539.18, "end": 2542.34, "probability": 0.999 }, { "start": 2543.0, "end": 2546.46, "probability": 0.8861 }, { "start": 2547.52, "end": 2550.22, "probability": 0.9863 }, { "start": 2551.44, "end": 2551.84, "probability": 0.5863 }, { "start": 2552.62, "end": 2552.98, "probability": 0.4149 }, { "start": 2554.08, "end": 2561.88, "probability": 0.9712 }, { "start": 2562.84, "end": 2565.02, "probability": 0.9607 }, { "start": 2565.98, "end": 2567.56, "probability": 0.9962 }, { "start": 2568.08, "end": 2571.52, "probability": 0.9913 }, { "start": 2571.94, "end": 2574.54, "probability": 0.984 }, { "start": 2575.26, "end": 2579.24, "probability": 0.9871 }, { "start": 2581.24, "end": 2583.38, "probability": 0.9898 }, { "start": 2584.92, "end": 2585.56, "probability": 0.9101 }, { "start": 2586.26, "end": 2590.24, "probability": 0.9774 }, { "start": 2590.96, "end": 2593.62, "probability": 0.9657 }, { "start": 2594.48, "end": 2595.44, "probability": 0.8849 }, { "start": 2597.54, "end": 2600.88, "probability": 0.9995 }, { "start": 2601.58, "end": 2602.14, "probability": 0.7617 }, { "start": 2603.64, "end": 2605.18, "probability": 0.8986 }, { "start": 2606.36, "end": 2607.28, "probability": 0.895 }, { "start": 2608.94, "end": 2611.6, "probability": 0.8452 }, { "start": 2612.52, "end": 2617.62, "probability": 0.9656 }, { "start": 2618.22, "end": 2624.07, "probability": 0.9771 }, { "start": 2624.72, "end": 2625.8, "probability": 0.9991 }, { "start": 2628.26, "end": 2631.58, "probability": 0.9062 }, { "start": 2632.6, "end": 2634.0, "probability": 0.9928 }, { "start": 2634.86, "end": 2635.3, "probability": 0.7021 }, { "start": 2636.32, "end": 2637.52, "probability": 0.9927 }, { "start": 2638.36, "end": 2640.7, "probability": 0.7739 }, { "start": 2643.36, "end": 2644.24, "probability": 0.8005 }, { "start": 2644.44, "end": 2647.92, "probability": 0.992 }, { "start": 2648.1, "end": 2649.06, "probability": 0.6104 }, { "start": 2649.88, "end": 2650.52, "probability": 0.617 }, { "start": 2651.06, "end": 2651.94, "probability": 0.8486 }, { "start": 2652.86, "end": 2653.56, "probability": 0.6967 }, { "start": 2654.56, "end": 2656.76, "probability": 0.9807 }, { "start": 2658.9, "end": 2659.76, "probability": 0.9811 }, { "start": 2660.32, "end": 2662.5, "probability": 0.993 }, { "start": 2663.0, "end": 2667.94, "probability": 0.9703 }, { "start": 2668.96, "end": 2672.16, "probability": 0.8929 }, { "start": 2674.28, "end": 2675.34, "probability": 0.7893 }, { "start": 2676.34, "end": 2678.0, "probability": 0.9792 }, { "start": 2679.78, "end": 2681.11, "probability": 0.7826 }, { "start": 2681.72, "end": 2684.76, "probability": 0.9756 }, { "start": 2685.58, "end": 2689.06, "probability": 0.7984 }, { "start": 2689.2, "end": 2689.56, "probability": 0.5335 }, { "start": 2690.1, "end": 2692.64, "probability": 0.9932 }, { "start": 2693.46, "end": 2693.9, "probability": 0.7995 }, { "start": 2694.84, "end": 2697.66, "probability": 0.9636 }, { "start": 2698.38, "end": 2699.24, "probability": 0.9216 }, { "start": 2700.98, "end": 2705.52, "probability": 0.9925 }, { "start": 2707.52, "end": 2715.32, "probability": 0.997 }, { "start": 2716.88, "end": 2718.04, "probability": 0.452 }, { "start": 2718.28, "end": 2721.18, "probability": 0.9272 }, { "start": 2721.18, "end": 2723.2, "probability": 0.6846 }, { "start": 2723.44, "end": 2725.1, "probability": 0.8583 }, { "start": 2726.32, "end": 2729.1, "probability": 0.7473 }, { "start": 2730.18, "end": 2732.8, "probability": 0.9814 }, { "start": 2734.46, "end": 2738.14, "probability": 0.9375 }, { "start": 2741.14, "end": 2742.28, "probability": 0.9609 }, { "start": 2742.7, "end": 2745.82, "probability": 0.9955 }, { "start": 2745.82, "end": 2750.08, "probability": 0.9854 }, { "start": 2750.86, "end": 2754.18, "probability": 0.998 }, { "start": 2755.02, "end": 2757.94, "probability": 0.9977 }, { "start": 2759.18, "end": 2761.04, "probability": 0.995 }, { "start": 2762.15, "end": 2765.0, "probability": 0.9863 }, { "start": 2765.66, "end": 2767.2, "probability": 0.6811 }, { "start": 2768.18, "end": 2772.4, "probability": 0.9985 }, { "start": 2772.56, "end": 2779.5, "probability": 0.9972 }, { "start": 2780.72, "end": 2782.0, "probability": 0.9718 }, { "start": 2782.86, "end": 2788.74, "probability": 0.927 }, { "start": 2789.96, "end": 2794.66, "probability": 0.5101 }, { "start": 2795.04, "end": 2798.18, "probability": 0.9099 }, { "start": 2798.18, "end": 2801.72, "probability": 0.9985 }, { "start": 2802.44, "end": 2805.32, "probability": 0.9955 }, { "start": 2805.98, "end": 2807.76, "probability": 0.6918 }, { "start": 2808.34, "end": 2808.82, "probability": 0.8217 }, { "start": 2810.86, "end": 2813.98, "probability": 0.9953 }, { "start": 2813.98, "end": 2819.66, "probability": 0.9971 }, { "start": 2820.18, "end": 2821.74, "probability": 0.9641 }, { "start": 2822.6, "end": 2823.0, "probability": 0.9352 }, { "start": 2823.56, "end": 2824.8, "probability": 0.9766 }, { "start": 2825.54, "end": 2829.94, "probability": 0.9964 }, { "start": 2830.56, "end": 2832.96, "probability": 0.9912 }, { "start": 2833.74, "end": 2837.5, "probability": 0.9882 }, { "start": 2838.82, "end": 2843.66, "probability": 0.9942 }, { "start": 2843.84, "end": 2845.58, "probability": 0.916 }, { "start": 2845.96, "end": 2847.36, "probability": 0.998 }, { "start": 2847.88, "end": 2848.68, "probability": 0.851 }, { "start": 2849.5, "end": 2849.52, "probability": 0.5229 }, { "start": 2850.32, "end": 2852.42, "probability": 0.9915 }, { "start": 2853.28, "end": 2856.86, "probability": 0.9888 }, { "start": 2857.52, "end": 2858.62, "probability": 0.9716 }, { "start": 2863.88, "end": 2864.62, "probability": 0.6857 }, { "start": 2866.42, "end": 2868.58, "probability": 0.7993 }, { "start": 2887.24, "end": 2890.03, "probability": 0.8702 }, { "start": 2891.2, "end": 2892.27, "probability": 0.7903 }, { "start": 2892.96, "end": 2893.71, "probability": 0.7194 }, { "start": 2895.82, "end": 2902.86, "probability": 0.9904 }, { "start": 2904.02, "end": 2908.62, "probability": 0.9272 }, { "start": 2910.12, "end": 2911.16, "probability": 0.8215 }, { "start": 2912.04, "end": 2914.72, "probability": 0.8796 }, { "start": 2916.4, "end": 2917.4, "probability": 0.963 }, { "start": 2917.48, "end": 2921.3, "probability": 0.9938 }, { "start": 2922.04, "end": 2923.14, "probability": 0.8222 }, { "start": 2924.46, "end": 2927.02, "probability": 0.9971 }, { "start": 2927.92, "end": 2929.8, "probability": 0.9385 }, { "start": 2930.68, "end": 2931.36, "probability": 0.9709 }, { "start": 2932.36, "end": 2932.98, "probability": 0.9643 }, { "start": 2933.32, "end": 2934.12, "probability": 0.9873 }, { "start": 2934.54, "end": 2935.58, "probability": 0.9779 }, { "start": 2935.74, "end": 2936.28, "probability": 0.7392 }, { "start": 2937.54, "end": 2939.3, "probability": 0.9679 }, { "start": 2939.44, "end": 2941.96, "probability": 0.9811 }, { "start": 2942.46, "end": 2942.94, "probability": 0.6866 }, { "start": 2943.08, "end": 2944.38, "probability": 0.8484 }, { "start": 2944.94, "end": 2946.4, "probability": 0.9956 }, { "start": 2948.6, "end": 2953.88, "probability": 0.8879 }, { "start": 2953.94, "end": 2956.02, "probability": 0.7976 }, { "start": 2956.12, "end": 2956.66, "probability": 0.921 }, { "start": 2957.08, "end": 2957.56, "probability": 0.7644 }, { "start": 2959.24, "end": 2961.3, "probability": 0.9025 }, { "start": 2961.48, "end": 2963.37, "probability": 0.938 }, { "start": 2964.32, "end": 2966.86, "probability": 0.999 }, { "start": 2967.64, "end": 2970.64, "probability": 0.9973 }, { "start": 2972.62, "end": 2974.07, "probability": 0.9222 }, { "start": 2974.22, "end": 2975.9, "probability": 0.9983 }, { "start": 2976.12, "end": 2978.06, "probability": 0.9307 }, { "start": 2978.16, "end": 2978.96, "probability": 0.693 }, { "start": 2979.08, "end": 2979.44, "probability": 0.7022 }, { "start": 2979.58, "end": 2983.06, "probability": 0.9028 }, { "start": 2985.12, "end": 2986.54, "probability": 0.7981 }, { "start": 2987.8, "end": 2991.9, "probability": 0.995 }, { "start": 2992.94, "end": 2995.98, "probability": 0.9932 }, { "start": 2996.4, "end": 2998.32, "probability": 0.9937 }, { "start": 3000.3, "end": 3000.52, "probability": 0.8448 }, { "start": 3000.62, "end": 3004.12, "probability": 0.8304 }, { "start": 3004.2, "end": 3005.06, "probability": 0.9651 }, { "start": 3005.74, "end": 3010.88, "probability": 0.9983 }, { "start": 3011.48, "end": 3012.12, "probability": 0.9951 }, { "start": 3014.58, "end": 3017.06, "probability": 0.9878 }, { "start": 3017.96, "end": 3020.36, "probability": 0.9945 }, { "start": 3020.82, "end": 3025.2, "probability": 0.998 }, { "start": 3025.96, "end": 3028.84, "probability": 0.6198 }, { "start": 3029.9, "end": 3032.88, "probability": 0.891 }, { "start": 3033.8, "end": 3034.58, "probability": 0.944 }, { "start": 3035.24, "end": 3035.92, "probability": 0.9453 }, { "start": 3036.42, "end": 3037.2, "probability": 0.9076 }, { "start": 3037.36, "end": 3037.88, "probability": 0.9927 }, { "start": 3038.3, "end": 3039.18, "probability": 0.9803 }, { "start": 3039.62, "end": 3040.78, "probability": 0.9291 }, { "start": 3042.1, "end": 3046.32, "probability": 0.8634 }, { "start": 3046.42, "end": 3047.5, "probability": 0.9277 }, { "start": 3048.0, "end": 3049.68, "probability": 0.9843 }, { "start": 3051.04, "end": 3052.28, "probability": 0.8703 }, { "start": 3053.29, "end": 3056.18, "probability": 0.8912 }, { "start": 3056.86, "end": 3058.06, "probability": 0.9198 }, { "start": 3059.3, "end": 3060.0, "probability": 0.883 }, { "start": 3060.6, "end": 3064.9, "probability": 0.9965 }, { "start": 3066.46, "end": 3068.82, "probability": 0.9919 }, { "start": 3069.0, "end": 3071.44, "probability": 0.9934 }, { "start": 3072.44, "end": 3073.7, "probability": 0.6615 }, { "start": 3074.32, "end": 3076.39, "probability": 0.9971 }, { "start": 3076.72, "end": 3077.92, "probability": 0.8593 }, { "start": 3078.02, "end": 3082.34, "probability": 0.9364 }, { "start": 3084.3, "end": 3089.48, "probability": 0.9941 }, { "start": 3090.86, "end": 3092.3, "probability": 0.8898 }, { "start": 3093.54, "end": 3095.36, "probability": 0.9834 }, { "start": 3095.96, "end": 3098.1, "probability": 0.8411 }, { "start": 3098.78, "end": 3100.0, "probability": 0.9971 }, { "start": 3101.54, "end": 3102.3, "probability": 0.9602 }, { "start": 3103.62, "end": 3105.66, "probability": 0.9767 }, { "start": 3105.76, "end": 3108.32, "probability": 0.9988 }, { "start": 3108.48, "end": 3108.94, "probability": 0.6318 }, { "start": 3110.0, "end": 3111.3, "probability": 0.7124 }, { "start": 3112.16, "end": 3114.78, "probability": 0.988 }, { "start": 3115.42, "end": 3119.0, "probability": 0.9934 }, { "start": 3120.4, "end": 3121.14, "probability": 0.9741 }, { "start": 3122.72, "end": 3123.68, "probability": 0.703 }, { "start": 3124.76, "end": 3126.06, "probability": 0.8194 }, { "start": 3126.8, "end": 3128.76, "probability": 0.9926 }, { "start": 3129.62, "end": 3133.58, "probability": 0.9958 }, { "start": 3134.06, "end": 3136.36, "probability": 0.9878 }, { "start": 3136.38, "end": 3138.36, "probability": 0.938 }, { "start": 3139.3, "end": 3141.3, "probability": 0.7569 }, { "start": 3142.7, "end": 3143.96, "probability": 0.9966 }, { "start": 3145.04, "end": 3145.58, "probability": 0.9482 }, { "start": 3146.94, "end": 3148.88, "probability": 0.8267 }, { "start": 3150.08, "end": 3155.28, "probability": 0.9749 }, { "start": 3156.56, "end": 3157.7, "probability": 0.6961 }, { "start": 3158.22, "end": 3158.78, "probability": 0.5704 }, { "start": 3160.16, "end": 3161.44, "probability": 0.9932 }, { "start": 3162.24, "end": 3164.4, "probability": 0.9272 }, { "start": 3164.62, "end": 3165.72, "probability": 0.992 }, { "start": 3165.86, "end": 3166.66, "probability": 0.8765 }, { "start": 3167.32, "end": 3169.46, "probability": 0.9941 }, { "start": 3170.2, "end": 3170.98, "probability": 0.8852 }, { "start": 3172.82, "end": 3178.68, "probability": 0.9985 }, { "start": 3179.26, "end": 3181.6, "probability": 0.9988 }, { "start": 3182.8, "end": 3185.14, "probability": 0.9941 }, { "start": 3186.52, "end": 3189.78, "probability": 0.9113 }, { "start": 3190.2, "end": 3193.02, "probability": 0.998 }, { "start": 3193.94, "end": 3194.58, "probability": 0.9803 }, { "start": 3196.22, "end": 3198.24, "probability": 0.9625 }, { "start": 3198.4, "end": 3198.9, "probability": 0.8491 }, { "start": 3200.08, "end": 3202.12, "probability": 0.9976 }, { "start": 3202.28, "end": 3204.78, "probability": 0.9929 }, { "start": 3205.72, "end": 3206.26, "probability": 0.5321 }, { "start": 3207.54, "end": 3209.92, "probability": 0.9964 }, { "start": 3210.4, "end": 3211.44, "probability": 0.9471 }, { "start": 3211.64, "end": 3216.12, "probability": 0.999 }, { "start": 3216.28, "end": 3216.78, "probability": 0.478 }, { "start": 3218.16, "end": 3218.92, "probability": 0.5791 }, { "start": 3220.46, "end": 3223.34, "probability": 0.9545 }, { "start": 3224.38, "end": 3226.62, "probability": 0.9881 }, { "start": 3227.4, "end": 3228.62, "probability": 0.8735 }, { "start": 3229.36, "end": 3231.08, "probability": 0.9981 }, { "start": 3231.88, "end": 3235.78, "probability": 0.9993 }, { "start": 3237.74, "end": 3239.13, "probability": 0.9715 }, { "start": 3239.96, "end": 3241.94, "probability": 0.729 }, { "start": 3243.3, "end": 3245.56, "probability": 0.9749 }, { "start": 3245.64, "end": 3247.88, "probability": 0.9912 }, { "start": 3248.28, "end": 3249.38, "probability": 0.9919 }, { "start": 3249.56, "end": 3251.22, "probability": 0.994 }, { "start": 3252.18, "end": 3256.34, "probability": 0.9964 }, { "start": 3257.74, "end": 3259.92, "probability": 0.8474 }, { "start": 3262.0, "end": 3264.98, "probability": 0.9968 }, { "start": 3266.1, "end": 3268.18, "probability": 0.9839 }, { "start": 3268.5, "end": 3271.12, "probability": 0.9978 }, { "start": 3271.52, "end": 3274.88, "probability": 0.9974 }, { "start": 3275.44, "end": 3276.12, "probability": 0.831 }, { "start": 3277.14, "end": 3280.46, "probability": 0.8784 }, { "start": 3282.04, "end": 3285.0, "probability": 0.9734 }, { "start": 3285.06, "end": 3286.36, "probability": 0.8259 }, { "start": 3286.5, "end": 3291.08, "probability": 0.9974 }, { "start": 3292.7, "end": 3295.44, "probability": 0.9923 }, { "start": 3295.48, "end": 3298.68, "probability": 0.9983 }, { "start": 3298.68, "end": 3303.62, "probability": 0.917 }, { "start": 3305.04, "end": 3308.62, "probability": 0.9982 }, { "start": 3310.24, "end": 3315.26, "probability": 0.9725 }, { "start": 3316.2, "end": 3320.24, "probability": 0.9792 }, { "start": 3322.22, "end": 3325.42, "probability": 0.9972 }, { "start": 3325.42, "end": 3329.12, "probability": 0.999 }, { "start": 3329.58, "end": 3332.7, "probability": 0.9551 }, { "start": 3332.82, "end": 3334.56, "probability": 0.9377 }, { "start": 3335.86, "end": 3338.04, "probability": 0.9985 }, { "start": 3338.26, "end": 3340.28, "probability": 0.959 }, { "start": 3341.42, "end": 3342.56, "probability": 0.9934 }, { "start": 3342.68, "end": 3345.44, "probability": 0.9676 }, { "start": 3347.3, "end": 3348.18, "probability": 0.9075 }, { "start": 3348.24, "end": 3349.36, "probability": 0.9775 }, { "start": 3349.58, "end": 3356.16, "probability": 0.9972 }, { "start": 3356.72, "end": 3359.86, "probability": 0.9616 }, { "start": 3360.92, "end": 3363.3, "probability": 0.9986 }, { "start": 3363.88, "end": 3365.2, "probability": 0.9946 }, { "start": 3366.02, "end": 3366.48, "probability": 0.9703 }, { "start": 3367.82, "end": 3370.0, "probability": 0.9855 }, { "start": 3371.48, "end": 3375.24, "probability": 0.9593 }, { "start": 3376.26, "end": 3377.36, "probability": 0.8761 }, { "start": 3378.6, "end": 3381.76, "probability": 0.9858 }, { "start": 3382.88, "end": 3385.38, "probability": 0.964 }, { "start": 3385.56, "end": 3386.36, "probability": 0.8222 }, { "start": 3386.5, "end": 3390.04, "probability": 0.9873 }, { "start": 3390.54, "end": 3393.22, "probability": 0.9945 }, { "start": 3393.66, "end": 3395.7, "probability": 0.9814 }, { "start": 3396.72, "end": 3398.06, "probability": 0.9873 }, { "start": 3399.16, "end": 3401.7, "probability": 0.9529 }, { "start": 3402.46, "end": 3406.72, "probability": 0.9985 }, { "start": 3408.22, "end": 3409.66, "probability": 0.9202 }, { "start": 3410.1, "end": 3411.36, "probability": 0.9575 }, { "start": 3412.56, "end": 3414.76, "probability": 0.9861 }, { "start": 3414.84, "end": 3416.3, "probability": 0.995 }, { "start": 3417.44, "end": 3419.08, "probability": 0.9766 }, { "start": 3420.28, "end": 3423.4, "probability": 0.9284 }, { "start": 3423.52, "end": 3426.9, "probability": 0.9314 }, { "start": 3426.9, "end": 3429.66, "probability": 0.9971 }, { "start": 3430.5, "end": 3433.36, "probability": 0.9119 }, { "start": 3434.46, "end": 3435.58, "probability": 0.9932 }, { "start": 3435.98, "end": 3438.37, "probability": 0.9937 }, { "start": 3438.44, "end": 3442.28, "probability": 0.9984 }, { "start": 3443.04, "end": 3443.88, "probability": 0.914 }, { "start": 3448.34, "end": 3453.28, "probability": 0.9839 }, { "start": 3453.32, "end": 3457.06, "probability": 0.9985 }, { "start": 3458.36, "end": 3460.02, "probability": 0.9568 }, { "start": 3461.54, "end": 3462.14, "probability": 0.9054 }, { "start": 3463.0, "end": 3465.88, "probability": 0.9608 }, { "start": 3466.04, "end": 3466.54, "probability": 0.9421 }, { "start": 3466.64, "end": 3468.22, "probability": 0.9849 }, { "start": 3469.02, "end": 3472.06, "probability": 0.9934 }, { "start": 3472.84, "end": 3473.18, "probability": 0.8972 }, { "start": 3474.42, "end": 3475.42, "probability": 0.9991 }, { "start": 3476.3, "end": 3477.36, "probability": 0.9781 }, { "start": 3477.94, "end": 3478.22, "probability": 0.7551 }, { "start": 3479.04, "end": 3479.62, "probability": 0.9395 }, { "start": 3480.16, "end": 3482.44, "probability": 0.9836 }, { "start": 3483.3, "end": 3484.64, "probability": 0.9722 }, { "start": 3484.76, "end": 3485.94, "probability": 0.881 }, { "start": 3487.3, "end": 3487.84, "probability": 0.425 }, { "start": 3489.16, "end": 3490.06, "probability": 0.9725 }, { "start": 3490.84, "end": 3491.66, "probability": 0.8588 }, { "start": 3492.66, "end": 3493.96, "probability": 0.5433 }, { "start": 3494.7, "end": 3497.32, "probability": 0.9619 }, { "start": 3497.46, "end": 3502.2, "probability": 0.9844 }, { "start": 3503.16, "end": 3504.28, "probability": 0.6412 }, { "start": 3505.14, "end": 3507.1, "probability": 0.9985 }, { "start": 3508.06, "end": 3509.48, "probability": 0.9747 }, { "start": 3510.32, "end": 3510.98, "probability": 0.6182 }, { "start": 3510.98, "end": 3511.44, "probability": 0.9579 }, { "start": 3514.32, "end": 3514.92, "probability": 0.7733 }, { "start": 3517.16, "end": 3519.92, "probability": 0.8416 }, { "start": 3532.94, "end": 3532.94, "probability": 0.4082 }, { "start": 3532.94, "end": 3532.96, "probability": 0.0399 }, { "start": 3542.26, "end": 3544.38, "probability": 0.8273 }, { "start": 3545.66, "end": 3546.78, "probability": 0.9191 }, { "start": 3549.6, "end": 3551.84, "probability": 0.9641 }, { "start": 3553.92, "end": 3555.64, "probability": 0.9781 }, { "start": 3557.28, "end": 3558.92, "probability": 0.931 }, { "start": 3560.34, "end": 3561.52, "probability": 0.9887 }, { "start": 3563.18, "end": 3563.94, "probability": 0.9667 }, { "start": 3565.14, "end": 3565.74, "probability": 0.9839 }, { "start": 3567.56, "end": 3568.84, "probability": 0.7339 }, { "start": 3569.86, "end": 3571.1, "probability": 0.6645 }, { "start": 3572.66, "end": 3576.42, "probability": 0.9852 }, { "start": 3578.44, "end": 3580.4, "probability": 0.9751 }, { "start": 3581.62, "end": 3583.66, "probability": 0.9987 }, { "start": 3584.84, "end": 3588.46, "probability": 0.9202 }, { "start": 3589.74, "end": 3590.54, "probability": 0.9794 }, { "start": 3592.12, "end": 3593.22, "probability": 0.9807 }, { "start": 3594.04, "end": 3595.52, "probability": 0.9964 }, { "start": 3596.38, "end": 3598.8, "probability": 0.9043 }, { "start": 3600.82, "end": 3605.06, "probability": 0.9731 }, { "start": 3606.1, "end": 3607.06, "probability": 0.8369 }, { "start": 3609.06, "end": 3611.94, "probability": 0.9598 }, { "start": 3613.3, "end": 3616.52, "probability": 0.9961 }, { "start": 3617.16, "end": 3622.22, "probability": 0.9403 }, { "start": 3623.56, "end": 3624.48, "probability": 0.98 }, { "start": 3625.42, "end": 3627.56, "probability": 0.9927 }, { "start": 3629.64, "end": 3630.56, "probability": 0.9963 }, { "start": 3632.24, "end": 3633.28, "probability": 0.9789 }, { "start": 3634.48, "end": 3635.76, "probability": 0.9967 }, { "start": 3636.68, "end": 3637.12, "probability": 0.7518 }, { "start": 3638.26, "end": 3639.32, "probability": 0.8607 }, { "start": 3640.66, "end": 3643.16, "probability": 0.9979 }, { "start": 3644.18, "end": 3647.82, "probability": 0.8477 }, { "start": 3649.3, "end": 3651.78, "probability": 0.9548 }, { "start": 3653.02, "end": 3654.52, "probability": 0.9819 }, { "start": 3655.24, "end": 3656.76, "probability": 0.9834 }, { "start": 3657.44, "end": 3658.24, "probability": 0.9443 }, { "start": 3659.24, "end": 3660.68, "probability": 0.9948 }, { "start": 3664.18, "end": 3665.54, "probability": 0.9214 }, { "start": 3666.58, "end": 3668.8, "probability": 0.9979 }, { "start": 3669.52, "end": 3670.22, "probability": 0.9937 }, { "start": 3671.48, "end": 3676.1, "probability": 0.9468 }, { "start": 3677.5, "end": 3679.62, "probability": 0.9447 }, { "start": 3680.94, "end": 3681.88, "probability": 0.9277 }, { "start": 3684.14, "end": 3686.38, "probability": 0.957 }, { "start": 3687.76, "end": 3690.06, "probability": 0.8983 }, { "start": 3691.64, "end": 3692.66, "probability": 0.9961 }, { "start": 3693.66, "end": 3695.44, "probability": 0.8881 }, { "start": 3696.6, "end": 3699.02, "probability": 0.8506 }, { "start": 3699.72, "end": 3700.98, "probability": 0.9976 }, { "start": 3702.04, "end": 3702.92, "probability": 0.9882 }, { "start": 3704.24, "end": 3705.22, "probability": 0.8621 }, { "start": 3706.88, "end": 3709.38, "probability": 0.9839 }, { "start": 3709.98, "end": 3710.96, "probability": 0.7159 }, { "start": 3712.28, "end": 3716.94, "probability": 0.9965 }, { "start": 3718.46, "end": 3719.72, "probability": 0.999 }, { "start": 3721.72, "end": 3723.96, "probability": 0.9755 }, { "start": 3725.1, "end": 3726.34, "probability": 0.9982 }, { "start": 3727.24, "end": 3727.56, "probability": 0.917 }, { "start": 3728.46, "end": 3731.44, "probability": 0.9893 }, { "start": 3733.02, "end": 3734.38, "probability": 0.8792 }, { "start": 3736.32, "end": 3737.5, "probability": 0.9955 }, { "start": 3738.26, "end": 3742.32, "probability": 0.9996 }, { "start": 3744.04, "end": 3747.98, "probability": 0.9953 }, { "start": 3747.98, "end": 3751.84, "probability": 0.9837 }, { "start": 3752.94, "end": 3754.62, "probability": 0.9732 }, { "start": 3755.5, "end": 3756.44, "probability": 0.9266 }, { "start": 3757.34, "end": 3759.0, "probability": 0.8735 }, { "start": 3760.2, "end": 3761.28, "probability": 0.9635 }, { "start": 3762.84, "end": 3766.3, "probability": 0.9622 }, { "start": 3767.48, "end": 3769.0, "probability": 0.9865 }, { "start": 3769.92, "end": 3772.16, "probability": 0.9552 }, { "start": 3773.36, "end": 3776.14, "probability": 0.9313 }, { "start": 3776.98, "end": 3778.88, "probability": 0.986 }, { "start": 3779.76, "end": 3782.3, "probability": 0.9889 }, { "start": 3782.4, "end": 3787.26, "probability": 0.9914 }, { "start": 3788.2, "end": 3789.64, "probability": 0.9504 }, { "start": 3790.6, "end": 3792.26, "probability": 0.9981 }, { "start": 3792.88, "end": 3794.32, "probability": 0.872 }, { "start": 3795.16, "end": 3797.6, "probability": 0.9267 }, { "start": 3798.36, "end": 3800.68, "probability": 0.9664 }, { "start": 3801.4, "end": 3802.38, "probability": 0.9998 }, { "start": 3803.02, "end": 3806.66, "probability": 0.8782 }, { "start": 3807.46, "end": 3807.8, "probability": 0.8453 }, { "start": 3809.56, "end": 3811.84, "probability": 0.9103 }, { "start": 3812.8, "end": 3813.37, "probability": 0.9556 }, { "start": 3814.58, "end": 3815.38, "probability": 0.7792 }, { "start": 3816.22, "end": 3818.06, "probability": 0.9872 }, { "start": 3818.68, "end": 3822.46, "probability": 0.9919 }, { "start": 3823.72, "end": 3826.29, "probability": 0.9985 }, { "start": 3827.22, "end": 3828.56, "probability": 0.9868 }, { "start": 3829.6, "end": 3832.08, "probability": 0.9845 }, { "start": 3833.4, "end": 3834.82, "probability": 0.9818 }, { "start": 3836.54, "end": 3839.54, "probability": 0.979 }, { "start": 3840.68, "end": 3842.68, "probability": 0.8691 }, { "start": 3843.38, "end": 3844.46, "probability": 0.9858 }, { "start": 3845.28, "end": 3845.76, "probability": 0.7095 }, { "start": 3846.96, "end": 3850.02, "probability": 0.9818 }, { "start": 3851.46, "end": 3853.18, "probability": 0.9963 }, { "start": 3853.64, "end": 3855.82, "probability": 0.9976 }, { "start": 3856.54, "end": 3857.86, "probability": 0.5001 }, { "start": 3859.08, "end": 3860.18, "probability": 0.6666 }, { "start": 3862.28, "end": 3864.74, "probability": 0.9334 }, { "start": 3865.04, "end": 3866.38, "probability": 0.9415 }, { "start": 3867.6, "end": 3870.66, "probability": 0.7883 }, { "start": 3871.96, "end": 3873.42, "probability": 0.9607 }, { "start": 3874.7, "end": 3876.4, "probability": 0.9777 }, { "start": 3877.42, "end": 3878.88, "probability": 0.9803 }, { "start": 3880.3, "end": 3881.3, "probability": 0.7909 }, { "start": 3881.5, "end": 3882.74, "probability": 0.9279 }, { "start": 3882.86, "end": 3883.44, "probability": 0.937 }, { "start": 3883.54, "end": 3885.08, "probability": 0.9238 }, { "start": 3885.96, "end": 3887.26, "probability": 0.9384 }, { "start": 3888.18, "end": 3891.14, "probability": 0.9619 }, { "start": 3892.9, "end": 3892.9, "probability": 0.7437 }, { "start": 3894.14, "end": 3897.1, "probability": 0.9945 }, { "start": 3898.66, "end": 3900.04, "probability": 0.7523 }, { "start": 3901.4, "end": 3905.6, "probability": 0.9864 }, { "start": 3906.56, "end": 3907.56, "probability": 0.9164 }, { "start": 3907.64, "end": 3908.4, "probability": 0.9814 }, { "start": 3908.5, "end": 3909.64, "probability": 0.9297 }, { "start": 3910.52, "end": 3913.2, "probability": 0.9978 }, { "start": 3913.9, "end": 3914.74, "probability": 0.79 }, { "start": 3916.36, "end": 3918.0, "probability": 0.9688 }, { "start": 3918.94, "end": 3922.36, "probability": 0.3575 }, { "start": 3922.36, "end": 3924.28, "probability": 0.9924 }, { "start": 3925.82, "end": 3927.08, "probability": 0.9329 }, { "start": 3927.76, "end": 3928.52, "probability": 0.6963 }, { "start": 3930.3, "end": 3932.46, "probability": 0.9337 }, { "start": 3933.42, "end": 3936.0, "probability": 0.8135 }, { "start": 3938.2, "end": 3941.12, "probability": 0.9953 }, { "start": 3941.98, "end": 3944.88, "probability": 0.9966 }, { "start": 3946.18, "end": 3949.42, "probability": 0.7124 }, { "start": 3951.06, "end": 3953.32, "probability": 0.963 }, { "start": 3954.38, "end": 3956.32, "probability": 0.9803 }, { "start": 3957.44, "end": 3958.82, "probability": 0.9943 }, { "start": 3959.62, "end": 3961.34, "probability": 0.9806 }, { "start": 3961.88, "end": 3964.56, "probability": 0.8357 }, { "start": 3965.44, "end": 3967.36, "probability": 0.9784 }, { "start": 3968.4, "end": 3970.28, "probability": 0.9576 }, { "start": 3970.94, "end": 3972.56, "probability": 0.9662 }, { "start": 3973.28, "end": 3974.72, "probability": 0.996 }, { "start": 3975.32, "end": 3977.16, "probability": 0.7544 }, { "start": 3977.7, "end": 3978.68, "probability": 0.9243 }, { "start": 3980.72, "end": 3986.3, "probability": 0.9632 }, { "start": 3987.52, "end": 3991.36, "probability": 0.9648 }, { "start": 3992.26, "end": 3992.64, "probability": 0.7647 }, { "start": 3994.28, "end": 3997.02, "probability": 0.9672 }, { "start": 3998.04, "end": 3999.8, "probability": 0.9966 }, { "start": 4001.06, "end": 4005.56, "probability": 0.974 }, { "start": 4006.56, "end": 4007.3, "probability": 0.9003 }, { "start": 4009.66, "end": 4011.38, "probability": 0.996 }, { "start": 4012.5, "end": 4014.7, "probability": 0.9976 }, { "start": 4015.16, "end": 4020.78, "probability": 0.996 }, { "start": 4021.66, "end": 4022.4, "probability": 0.7559 }, { "start": 4023.7, "end": 4025.72, "probability": 0.9928 }, { "start": 4026.64, "end": 4028.46, "probability": 0.9468 }, { "start": 4030.04, "end": 4032.14, "probability": 0.9803 }, { "start": 4033.12, "end": 4034.92, "probability": 0.9993 }, { "start": 4036.04, "end": 4037.64, "probability": 0.9216 }, { "start": 4039.4, "end": 4042.3, "probability": 0.9935 }, { "start": 4043.06, "end": 4046.18, "probability": 0.9987 }, { "start": 4047.38, "end": 4048.92, "probability": 0.9512 }, { "start": 4050.14, "end": 4051.11, "probability": 0.9983 }, { "start": 4052.22, "end": 4054.96, "probability": 0.9943 }, { "start": 4057.6, "end": 4061.12, "probability": 0.9427 }, { "start": 4061.18, "end": 4064.24, "probability": 0.9788 }, { "start": 4065.6, "end": 4066.82, "probability": 0.9558 }, { "start": 4067.6, "end": 4068.54, "probability": 0.9762 }, { "start": 4069.56, "end": 4070.46, "probability": 0.9447 }, { "start": 4072.32, "end": 4072.96, "probability": 0.9535 }, { "start": 4073.56, "end": 4076.76, "probability": 0.9938 }, { "start": 4077.88, "end": 4078.82, "probability": 0.8119 }, { "start": 4079.62, "end": 4082.22, "probability": 0.9941 }, { "start": 4083.28, "end": 4085.18, "probability": 0.7471 }, { "start": 4086.72, "end": 4088.26, "probability": 0.9958 }, { "start": 4089.22, "end": 4094.56, "probability": 0.998 }, { "start": 4095.58, "end": 4098.38, "probability": 0.9958 }, { "start": 4099.72, "end": 4101.94, "probability": 0.9562 }, { "start": 4102.12, "end": 4102.9, "probability": 0.9964 }, { "start": 4102.98, "end": 4103.64, "probability": 0.9968 }, { "start": 4103.74, "end": 4105.34, "probability": 0.9734 }, { "start": 4105.8, "end": 4107.17, "probability": 0.9832 }, { "start": 4108.5, "end": 4110.76, "probability": 0.9971 }, { "start": 4111.7, "end": 4114.84, "probability": 0.6743 }, { "start": 4116.0, "end": 4119.84, "probability": 0.9883 }, { "start": 4121.34, "end": 4123.48, "probability": 0.8521 }, { "start": 4125.06, "end": 4127.72, "probability": 0.999 }, { "start": 4130.38, "end": 4132.1, "probability": 0.9615 }, { "start": 4133.88, "end": 4137.08, "probability": 0.9983 }, { "start": 4137.9, "end": 4140.56, "probability": 0.9717 }, { "start": 4141.38, "end": 4142.4, "probability": 0.9299 }, { "start": 4143.38, "end": 4145.94, "probability": 0.9871 }, { "start": 4146.52, "end": 4147.04, "probability": 0.979 }, { "start": 4147.96, "end": 4151.78, "probability": 0.9691 }, { "start": 4152.42, "end": 4154.22, "probability": 0.8299 }, { "start": 4155.44, "end": 4157.66, "probability": 0.9598 }, { "start": 4158.96, "end": 4162.98, "probability": 0.9937 }, { "start": 4164.24, "end": 4164.48, "probability": 0.6722 }, { "start": 4166.14, "end": 4169.48, "probability": 0.9976 }, { "start": 4170.24, "end": 4171.96, "probability": 0.9961 }, { "start": 4172.74, "end": 4177.18, "probability": 0.9464 }, { "start": 4177.26, "end": 4178.4, "probability": 0.5414 }, { "start": 4179.1, "end": 4181.32, "probability": 0.9972 }, { "start": 4182.62, "end": 4183.46, "probability": 0.7838 }, { "start": 4184.78, "end": 4186.62, "probability": 0.9978 }, { "start": 4187.68, "end": 4190.56, "probability": 0.7917 }, { "start": 4192.0, "end": 4194.93, "probability": 0.9856 }, { "start": 4196.08, "end": 4197.6, "probability": 0.998 }, { "start": 4198.44, "end": 4200.36, "probability": 0.9952 }, { "start": 4201.38, "end": 4204.4, "probability": 0.9934 }, { "start": 4205.22, "end": 4207.64, "probability": 0.9831 }, { "start": 4208.28, "end": 4209.48, "probability": 0.9588 }, { "start": 4210.12, "end": 4211.64, "probability": 0.9718 }, { "start": 4212.3, "end": 4215.46, "probability": 0.9912 }, { "start": 4215.9, "end": 4220.41, "probability": 0.951 }, { "start": 4221.64, "end": 4223.02, "probability": 0.8914 }, { "start": 4223.82, "end": 4226.06, "probability": 0.9104 }, { "start": 4226.92, "end": 4227.54, "probability": 0.579 }, { "start": 4229.42, "end": 4232.22, "probability": 0.9994 }, { "start": 4233.06, "end": 4235.4, "probability": 0.9331 }, { "start": 4239.76, "end": 4244.92, "probability": 0.9841 }, { "start": 4245.86, "end": 4248.04, "probability": 0.9995 }, { "start": 4248.96, "end": 4252.86, "probability": 0.9955 }, { "start": 4253.1, "end": 4253.64, "probability": 0.9084 }, { "start": 4254.36, "end": 4255.84, "probability": 0.9864 }, { "start": 4257.8, "end": 4260.16, "probability": 0.9026 }, { "start": 4261.54, "end": 4265.1, "probability": 0.981 }, { "start": 4265.38, "end": 4265.76, "probability": 0.8904 }, { "start": 4267.76, "end": 4269.78, "probability": 0.9448 }, { "start": 4271.68, "end": 4273.34, "probability": 0.9436 }, { "start": 4274.78, "end": 4278.34, "probability": 0.9858 }, { "start": 4279.28, "end": 4281.12, "probability": 0.9723 }, { "start": 4282.02, "end": 4287.78, "probability": 0.9918 }, { "start": 4288.78, "end": 4292.76, "probability": 0.9962 }, { "start": 4293.72, "end": 4295.46, "probability": 0.9826 }, { "start": 4296.34, "end": 4297.6, "probability": 0.969 }, { "start": 4298.4, "end": 4300.12, "probability": 0.9686 }, { "start": 4301.04, "end": 4302.22, "probability": 0.9841 }, { "start": 4308.5, "end": 4309.02, "probability": 0.5082 }, { "start": 4309.2, "end": 4311.22, "probability": 0.8748 }, { "start": 4322.2, "end": 4322.54, "probability": 0.5184 }, { "start": 4344.56, "end": 4345.44, "probability": 0.6733 }, { "start": 4346.94, "end": 4351.12, "probability": 0.9338 }, { "start": 4352.24, "end": 4352.46, "probability": 0.5528 }, { "start": 4352.58, "end": 4353.44, "probability": 0.9793 }, { "start": 4353.52, "end": 4354.16, "probability": 0.7812 }, { "start": 4354.3, "end": 4354.8, "probability": 0.4429 }, { "start": 4354.9, "end": 4357.16, "probability": 0.7834 }, { "start": 4357.3, "end": 4358.72, "probability": 0.8636 }, { "start": 4359.5, "end": 4363.6, "probability": 0.9653 }, { "start": 4363.72, "end": 4368.02, "probability": 0.9873 }, { "start": 4370.62, "end": 4371.34, "probability": 0.4523 }, { "start": 4372.66, "end": 4374.3, "probability": 0.9236 }, { "start": 4375.6, "end": 4377.6, "probability": 0.9766 }, { "start": 4379.3, "end": 4384.86, "probability": 0.9328 }, { "start": 4386.4, "end": 4389.9, "probability": 0.927 }, { "start": 4391.3, "end": 4393.96, "probability": 0.9961 }, { "start": 4395.4, "end": 4397.94, "probability": 0.998 }, { "start": 4399.0, "end": 4401.34, "probability": 0.66 }, { "start": 4402.96, "end": 4403.54, "probability": 0.7652 }, { "start": 4404.36, "end": 4406.4, "probability": 0.9685 }, { "start": 4408.8, "end": 4411.42, "probability": 0.7896 }, { "start": 4412.38, "end": 4414.0, "probability": 0.9927 }, { "start": 4415.9, "end": 4418.76, "probability": 0.9967 }, { "start": 4419.74, "end": 4421.38, "probability": 0.9622 }, { "start": 4423.04, "end": 4425.74, "probability": 0.9702 }, { "start": 4426.8, "end": 4430.34, "probability": 0.9689 }, { "start": 4432.16, "end": 4436.52, "probability": 0.9795 }, { "start": 4437.68, "end": 4440.66, "probability": 0.9662 }, { "start": 4441.14, "end": 4442.1, "probability": 0.9899 }, { "start": 4442.2, "end": 4444.44, "probability": 0.9989 }, { "start": 4445.74, "end": 4447.28, "probability": 0.9825 }, { "start": 4449.0, "end": 4450.6, "probability": 0.7144 }, { "start": 4451.64, "end": 4453.18, "probability": 0.9269 }, { "start": 4454.64, "end": 4456.82, "probability": 0.9736 }, { "start": 4456.82, "end": 4460.76, "probability": 0.9923 }, { "start": 4463.04, "end": 4464.5, "probability": 0.988 }, { "start": 4465.58, "end": 4470.96, "probability": 0.9985 }, { "start": 4471.12, "end": 4473.2, "probability": 0.7683 }, { "start": 4474.74, "end": 4474.74, "probability": 0.4402 }, { "start": 4475.88, "end": 4478.54, "probability": 0.9861 }, { "start": 4480.06, "end": 4483.14, "probability": 0.9923 }, { "start": 4484.98, "end": 4488.96, "probability": 0.9785 }, { "start": 4489.88, "end": 4492.02, "probability": 0.9985 }, { "start": 4493.94, "end": 4497.4, "probability": 0.9877 }, { "start": 4498.42, "end": 4504.02, "probability": 0.9722 }, { "start": 4504.02, "end": 4509.04, "probability": 0.991 }, { "start": 4510.7, "end": 4512.42, "probability": 0.9306 }, { "start": 4513.36, "end": 4514.02, "probability": 0.8293 }, { "start": 4515.6, "end": 4517.9, "probability": 0.9813 }, { "start": 4518.82, "end": 4521.22, "probability": 0.9969 }, { "start": 4522.24, "end": 4525.44, "probability": 0.9907 }, { "start": 4526.86, "end": 4529.58, "probability": 0.9788 }, { "start": 4529.62, "end": 4533.12, "probability": 0.9973 }, { "start": 4534.28, "end": 4537.42, "probability": 0.9939 }, { "start": 4538.64, "end": 4540.52, "probability": 0.9568 }, { "start": 4541.86, "end": 4546.62, "probability": 0.9507 }, { "start": 4547.7, "end": 4548.82, "probability": 0.7361 }, { "start": 4549.86, "end": 4550.62, "probability": 0.8172 }, { "start": 4551.28, "end": 4552.34, "probability": 0.8682 }, { "start": 4553.24, "end": 4559.66, "probability": 0.9364 }, { "start": 4561.76, "end": 4570.52, "probability": 0.9775 }, { "start": 4571.66, "end": 4571.98, "probability": 0.4619 }, { "start": 4572.92, "end": 4576.12, "probability": 0.995 }, { "start": 4577.08, "end": 4579.1, "probability": 0.9995 }, { "start": 4580.18, "end": 4582.62, "probability": 0.962 }, { "start": 4584.04, "end": 4588.28, "probability": 0.9812 }, { "start": 4591.06, "end": 4592.96, "probability": 0.9607 }, { "start": 4594.64, "end": 4599.04, "probability": 0.967 }, { "start": 4599.04, "end": 4604.34, "probability": 0.9945 }, { "start": 4605.86, "end": 4608.92, "probability": 0.9899 }, { "start": 4609.17, "end": 4612.6, "probability": 0.9435 }, { "start": 4613.58, "end": 4616.1, "probability": 0.8985 }, { "start": 4616.86, "end": 4618.28, "probability": 0.9835 }, { "start": 4620.26, "end": 4622.58, "probability": 0.9862 }, { "start": 4623.4, "end": 4627.01, "probability": 0.9523 }, { "start": 4627.24, "end": 4627.96, "probability": 0.9067 }, { "start": 4628.02, "end": 4629.04, "probability": 0.988 }, { "start": 4629.24, "end": 4630.58, "probability": 0.9712 }, { "start": 4631.58, "end": 4633.74, "probability": 0.8198 }, { "start": 4635.18, "end": 4636.58, "probability": 0.9984 }, { "start": 4637.3, "end": 4639.06, "probability": 0.9986 }, { "start": 4639.84, "end": 4641.98, "probability": 0.9973 }, { "start": 4643.66, "end": 4646.78, "probability": 0.998 }, { "start": 4647.04, "end": 4647.54, "probability": 0.6564 }, { "start": 4649.1, "end": 4650.02, "probability": 0.7666 }, { "start": 4651.38, "end": 4654.08, "probability": 0.85 }, { "start": 4654.3, "end": 4655.4, "probability": 0.8044 }, { "start": 4656.28, "end": 4657.46, "probability": 0.9951 }, { "start": 4659.42, "end": 4661.26, "probability": 0.9116 }, { "start": 4662.54, "end": 4666.1, "probability": 0.8937 }, { "start": 4666.44, "end": 4667.78, "probability": 0.8906 }, { "start": 4668.88, "end": 4671.64, "probability": 0.9948 }, { "start": 4672.42, "end": 4675.6, "probability": 0.9976 }, { "start": 4676.0, "end": 4677.1, "probability": 0.8754 }, { "start": 4678.78, "end": 4680.08, "probability": 0.9926 }, { "start": 4680.88, "end": 4683.7, "probability": 0.9489 }, { "start": 4684.38, "end": 4686.74, "probability": 0.9901 }, { "start": 4688.36, "end": 4692.12, "probability": 0.9859 }, { "start": 4692.32, "end": 4693.54, "probability": 0.9775 }, { "start": 4694.44, "end": 4698.34, "probability": 0.9639 }, { "start": 4699.32, "end": 4701.06, "probability": 0.9689 }, { "start": 4702.0, "end": 4707.62, "probability": 0.9988 }, { "start": 4708.24, "end": 4709.4, "probability": 0.9021 }, { "start": 4711.14, "end": 4711.28, "probability": 0.5728 }, { "start": 4712.48, "end": 4713.84, "probability": 0.8733 }, { "start": 4714.42, "end": 4716.28, "probability": 0.8412 }, { "start": 4727.14, "end": 4727.3, "probability": 0.0786 }, { "start": 4727.3, "end": 4727.5, "probability": 0.0881 }, { "start": 4727.5, "end": 4727.72, "probability": 0.1455 }, { "start": 4727.72, "end": 4727.76, "probability": 0.0777 }, { "start": 4727.76, "end": 4727.76, "probability": 0.1104 }, { "start": 4763.72, "end": 4765.28, "probability": 0.401 }, { "start": 4767.4, "end": 4769.96, "probability": 0.9835 }, { "start": 4770.84, "end": 4771.18, "probability": 0.3809 }, { "start": 4771.22, "end": 4772.04, "probability": 0.9139 }, { "start": 4772.22, "end": 4774.44, "probability": 0.9236 }, { "start": 4774.62, "end": 4776.86, "probability": 0.948 }, { "start": 4779.48, "end": 4783.3, "probability": 0.9796 }, { "start": 4783.9, "end": 4785.66, "probability": 0.9246 }, { "start": 4787.0, "end": 4791.86, "probability": 0.9912 }, { "start": 4791.86, "end": 4795.66, "probability": 0.9943 }, { "start": 4796.5, "end": 4800.84, "probability": 0.9989 }, { "start": 4801.98, "end": 4805.82, "probability": 0.7472 }, { "start": 4806.38, "end": 4807.94, "probability": 0.5127 }, { "start": 4809.4, "end": 4810.06, "probability": 0.8551 }, { "start": 4811.0, "end": 4813.78, "probability": 0.9972 }, { "start": 4813.78, "end": 4817.54, "probability": 0.9985 }, { "start": 4818.2, "end": 4820.82, "probability": 0.9975 }, { "start": 4821.94, "end": 4824.04, "probability": 0.8788 }, { "start": 4824.18, "end": 4826.38, "probability": 0.969 }, { "start": 4827.22, "end": 4830.12, "probability": 0.9884 }, { "start": 4830.36, "end": 4836.04, "probability": 0.9182 }, { "start": 4836.56, "end": 4839.0, "probability": 0.9927 }, { "start": 4841.24, "end": 4844.46, "probability": 0.9896 }, { "start": 4844.46, "end": 4847.96, "probability": 0.9967 }, { "start": 4848.2, "end": 4848.7, "probability": 0.519 }, { "start": 4849.96, "end": 4855.8, "probability": 0.9961 }, { "start": 4857.5, "end": 4862.28, "probability": 0.9966 }, { "start": 4863.08, "end": 4866.2, "probability": 0.9445 }, { "start": 4867.92, "end": 4872.88, "probability": 0.9967 }, { "start": 4873.58, "end": 4876.54, "probability": 0.9785 }, { "start": 4877.22, "end": 4878.86, "probability": 0.9877 }, { "start": 4879.82, "end": 4883.44, "probability": 0.9501 }, { "start": 4884.12, "end": 4887.84, "probability": 0.9849 }, { "start": 4889.54, "end": 4894.5, "probability": 0.9955 }, { "start": 4895.4, "end": 4898.44, "probability": 0.9893 }, { "start": 4899.08, "end": 4902.32, "probability": 0.9752 }, { "start": 4904.38, "end": 4909.02, "probability": 0.749 }, { "start": 4910.6, "end": 4915.22, "probability": 0.9761 }, { "start": 4915.94, "end": 4919.66, "probability": 0.9955 }, { "start": 4920.28, "end": 4925.1, "probability": 0.9958 }, { "start": 4925.1, "end": 4929.54, "probability": 0.9906 }, { "start": 4931.74, "end": 4936.9, "probability": 0.9329 }, { "start": 4937.6, "end": 4938.78, "probability": 0.5064 }, { "start": 4939.68, "end": 4941.46, "probability": 0.9106 }, { "start": 4941.6, "end": 4942.16, "probability": 0.5422 }, { "start": 4942.34, "end": 4944.0, "probability": 0.9801 }, { "start": 4945.62, "end": 4948.82, "probability": 0.9734 }, { "start": 4948.82, "end": 4952.92, "probability": 0.9926 }, { "start": 4952.92, "end": 4958.24, "probability": 0.9875 }, { "start": 4960.12, "end": 4965.02, "probability": 0.999 }, { "start": 4965.9, "end": 4969.98, "probability": 0.8118 }, { "start": 4971.14, "end": 4972.84, "probability": 0.9785 }, { "start": 4973.76, "end": 4978.34, "probability": 0.9961 }, { "start": 4979.0, "end": 4982.12, "probability": 0.9601 }, { "start": 4982.96, "end": 4985.92, "probability": 0.9984 }, { "start": 4985.92, "end": 4989.06, "probability": 0.9905 }, { "start": 4991.44, "end": 4995.78, "probability": 0.9955 }, { "start": 4996.38, "end": 4997.7, "probability": 0.8243 }, { "start": 4998.3, "end": 5001.2, "probability": 0.9816 }, { "start": 5002.42, "end": 5005.44, "probability": 0.9921 }, { "start": 5005.44, "end": 5008.28, "probability": 0.9794 }, { "start": 5009.36, "end": 5011.76, "probability": 0.9614 }, { "start": 5013.2, "end": 5013.54, "probability": 0.9831 }, { "start": 5014.16, "end": 5021.92, "probability": 0.9823 }, { "start": 5023.02, "end": 5025.12, "probability": 0.9868 }, { "start": 5025.52, "end": 5027.42, "probability": 0.9115 }, { "start": 5028.06, "end": 5031.3, "probability": 0.9358 }, { "start": 5032.2, "end": 5037.28, "probability": 0.9957 }, { "start": 5037.28, "end": 5042.78, "probability": 0.9964 }, { "start": 5043.78, "end": 5044.44, "probability": 0.9601 }, { "start": 5045.56, "end": 5045.78, "probability": 0.4378 }, { "start": 5045.9, "end": 5048.0, "probability": 0.4929 }, { "start": 5048.22, "end": 5050.22, "probability": 0.948 }, { "start": 5050.36, "end": 5051.8, "probability": 0.8017 }, { "start": 5051.84, "end": 5052.22, "probability": 0.3783 }, { "start": 5052.36, "end": 5052.7, "probability": 0.4333 }, { "start": 5055.44, "end": 5055.82, "probability": 0.5047 }, { "start": 5057.08, "end": 5057.72, "probability": 0.527 }, { "start": 5057.88, "end": 5058.54, "probability": 0.7827 }, { "start": 5059.18, "end": 5065.02, "probability": 0.943 }, { "start": 5065.02, "end": 5068.68, "probability": 0.9954 }, { "start": 5069.14, "end": 5069.5, "probability": 0.4638 }, { "start": 5069.6, "end": 5069.86, "probability": 0.6833 }, { "start": 5069.86, "end": 5070.42, "probability": 0.889 }, { "start": 5070.58, "end": 5072.62, "probability": 0.9469 }, { "start": 5073.06, "end": 5078.98, "probability": 0.9938 }, { "start": 5079.12, "end": 5081.6, "probability": 0.9924 }, { "start": 5081.78, "end": 5083.26, "probability": 0.8574 }, { "start": 5083.66, "end": 5084.18, "probability": 0.8579 }, { "start": 5084.54, "end": 5085.1, "probability": 0.9489 }, { "start": 5085.18, "end": 5085.9, "probability": 0.8481 }, { "start": 5086.22, "end": 5086.9, "probability": 0.6942 }, { "start": 5086.94, "end": 5087.52, "probability": 0.8132 }, { "start": 5087.56, "end": 5087.88, "probability": 0.8546 }, { "start": 5088.1, "end": 5090.82, "probability": 0.9686 }, { "start": 5091.32, "end": 5093.1, "probability": 0.756 }, { "start": 5093.1, "end": 5093.5, "probability": 0.8784 }, { "start": 5093.72, "end": 5094.06, "probability": 0.8496 }, { "start": 5094.6, "end": 5095.49, "probability": 0.6573 }, { "start": 5096.32, "end": 5098.14, "probability": 0.7371 }, { "start": 5098.18, "end": 5099.82, "probability": 0.9202 }, { "start": 5099.94, "end": 5100.82, "probability": 0.9977 }, { "start": 5101.34, "end": 5102.26, "probability": 0.962 }, { "start": 5102.7, "end": 5106.44, "probability": 0.986 }, { "start": 5106.54, "end": 5110.24, "probability": 0.986 }, { "start": 5110.62, "end": 5111.48, "probability": 0.6561 }, { "start": 5112.28, "end": 5113.68, "probability": 0.6727 }, { "start": 5113.92, "end": 5115.18, "probability": 0.9533 }, { "start": 5115.3, "end": 5115.88, "probability": 0.8857 }, { "start": 5116.24, "end": 5120.48, "probability": 0.9277 }, { "start": 5121.54, "end": 5122.14, "probability": 0.7703 }, { "start": 5122.22, "end": 5125.55, "probability": 0.9943 }, { "start": 5125.84, "end": 5129.0, "probability": 0.9529 }, { "start": 5129.44, "end": 5131.2, "probability": 0.9955 }, { "start": 5131.48, "end": 5132.08, "probability": 0.7488 }, { "start": 5132.14, "end": 5134.28, "probability": 0.9497 }, { "start": 5135.34, "end": 5137.06, "probability": 0.9578 }, { "start": 5138.02, "end": 5140.24, "probability": 0.9922 }, { "start": 5146.4, "end": 5147.18, "probability": 0.1618 }, { "start": 5147.18, "end": 5150.5, "probability": 0.8482 }, { "start": 5150.5, "end": 5154.64, "probability": 0.9982 }, { "start": 5155.14, "end": 5159.98, "probability": 0.9875 }, { "start": 5173.96, "end": 5174.7, "probability": 0.0458 }, { "start": 5175.44, "end": 5177.06, "probability": 0.8763 }, { "start": 5183.28, "end": 5188.4, "probability": 0.6208 }, { "start": 5197.74, "end": 5198.48, "probability": 0.6196 }, { "start": 5199.16, "end": 5200.96, "probability": 0.7107 }, { "start": 5202.48, "end": 5203.32, "probability": 0.8442 }, { "start": 5205.7, "end": 5206.88, "probability": 0.9054 }, { "start": 5208.82, "end": 5213.22, "probability": 0.91 }, { "start": 5214.38, "end": 5219.44, "probability": 0.988 }, { "start": 5220.1, "end": 5223.0, "probability": 0.9943 }, { "start": 5224.3, "end": 5226.32, "probability": 0.9891 }, { "start": 5228.62, "end": 5233.36, "probability": 0.9944 }, { "start": 5234.68, "end": 5236.6, "probability": 0.9786 }, { "start": 5238.18, "end": 5240.1, "probability": 0.9923 }, { "start": 5241.6, "end": 5243.52, "probability": 0.9985 }, { "start": 5244.46, "end": 5248.06, "probability": 0.9711 }, { "start": 5250.04, "end": 5251.94, "probability": 0.8654 }, { "start": 5252.46, "end": 5257.74, "probability": 0.8916 }, { "start": 5257.74, "end": 5261.08, "probability": 0.9912 }, { "start": 5262.2, "end": 5266.22, "probability": 0.9482 }, { "start": 5267.56, "end": 5270.66, "probability": 0.9839 }, { "start": 5271.98, "end": 5277.06, "probability": 0.9609 }, { "start": 5278.46, "end": 5280.06, "probability": 0.9544 }, { "start": 5280.92, "end": 5281.66, "probability": 0.3187 }, { "start": 5282.62, "end": 5283.68, "probability": 0.9661 }, { "start": 5284.4, "end": 5286.16, "probability": 0.8762 }, { "start": 5288.46, "end": 5288.56, "probability": 0.7275 }, { "start": 5289.92, "end": 5294.3, "probability": 0.9825 }, { "start": 5295.92, "end": 5297.82, "probability": 0.9142 }, { "start": 5299.26, "end": 5301.2, "probability": 0.9867 }, { "start": 5303.16, "end": 5303.66, "probability": 0.7319 }, { "start": 5303.8, "end": 5307.08, "probability": 0.7668 }, { "start": 5307.2, "end": 5309.8, "probability": 0.976 }, { "start": 5309.8, "end": 5310.64, "probability": 0.7221 }, { "start": 5310.68, "end": 5315.54, "probability": 0.8678 }, { "start": 5315.68, "end": 5316.0, "probability": 0.6819 }, { "start": 5316.1, "end": 5318.12, "probability": 0.919 }, { "start": 5319.78, "end": 5321.84, "probability": 0.7973 }, { "start": 5323.16, "end": 5324.38, "probability": 0.7303 }, { "start": 5324.86, "end": 5326.38, "probability": 0.8078 }, { "start": 5326.58, "end": 5327.12, "probability": 0.8086 }, { "start": 5328.62, "end": 5329.9, "probability": 0.7426 }, { "start": 5330.02, "end": 5334.22, "probability": 0.9982 }, { "start": 5335.04, "end": 5337.5, "probability": 0.9971 }, { "start": 5339.76, "end": 5342.4, "probability": 0.6915 }, { "start": 5342.48, "end": 5344.0, "probability": 0.9934 }, { "start": 5344.52, "end": 5346.16, "probability": 0.9625 }, { "start": 5346.18, "end": 5348.36, "probability": 0.9311 }, { "start": 5348.74, "end": 5350.0, "probability": 0.9245 }, { "start": 5350.44, "end": 5352.22, "probability": 0.7206 }, { "start": 5354.5, "end": 5355.9, "probability": 0.907 }, { "start": 5357.06, "end": 5357.82, "probability": 0.8582 }, { "start": 5358.52, "end": 5358.66, "probability": 0.666 }, { "start": 5358.76, "end": 5363.02, "probability": 0.9931 }, { "start": 5364.42, "end": 5365.72, "probability": 0.8137 }, { "start": 5365.8, "end": 5366.62, "probability": 0.9702 }, { "start": 5366.76, "end": 5366.98, "probability": 0.386 }, { "start": 5367.12, "end": 5371.88, "probability": 0.9424 }, { "start": 5372.58, "end": 5376.1, "probability": 0.9674 }, { "start": 5378.66, "end": 5379.56, "probability": 0.6711 }, { "start": 5380.36, "end": 5381.26, "probability": 0.9797 }, { "start": 5383.42, "end": 5386.18, "probability": 0.9917 }, { "start": 5386.9, "end": 5388.1, "probability": 0.9997 }, { "start": 5389.24, "end": 5395.74, "probability": 0.9758 }, { "start": 5395.74, "end": 5400.3, "probability": 0.9983 }, { "start": 5401.9, "end": 5405.38, "probability": 0.8997 }, { "start": 5406.3, "end": 5409.42, "probability": 0.9992 }, { "start": 5410.36, "end": 5410.48, "probability": 0.8227 }, { "start": 5411.96, "end": 5415.32, "probability": 0.8572 }, { "start": 5416.54, "end": 5420.62, "probability": 0.9438 }, { "start": 5421.06, "end": 5422.94, "probability": 0.7512 }, { "start": 5423.64, "end": 5424.24, "probability": 0.8268 }, { "start": 5426.0, "end": 5427.86, "probability": 0.8129 }, { "start": 5428.76, "end": 5433.02, "probability": 0.9935 }, { "start": 5433.92, "end": 5435.48, "probability": 0.9976 }, { "start": 5437.04, "end": 5438.24, "probability": 0.9957 }, { "start": 5439.6, "end": 5441.86, "probability": 0.9971 }, { "start": 5443.04, "end": 5445.72, "probability": 0.945 }, { "start": 5446.54, "end": 5447.5, "probability": 0.9994 }, { "start": 5449.1, "end": 5450.24, "probability": 0.7903 }, { "start": 5452.22, "end": 5456.51, "probability": 0.9971 }, { "start": 5456.6, "end": 5457.62, "probability": 0.8301 }, { "start": 5458.56, "end": 5459.18, "probability": 0.8114 }, { "start": 5459.94, "end": 5461.02, "probability": 0.9245 }, { "start": 5462.42, "end": 5463.22, "probability": 0.7825 }, { "start": 5463.34, "end": 5464.36, "probability": 0.8676 }, { "start": 5464.5, "end": 5465.2, "probability": 0.8345 }, { "start": 5465.48, "end": 5466.5, "probability": 0.9274 }, { "start": 5467.12, "end": 5467.86, "probability": 0.9113 }, { "start": 5469.12, "end": 5469.26, "probability": 0.9424 }, { "start": 5469.48, "end": 5472.94, "probability": 0.9568 }, { "start": 5472.96, "end": 5476.5, "probability": 0.9937 }, { "start": 5476.58, "end": 5477.74, "probability": 0.9722 }, { "start": 5479.44, "end": 5479.76, "probability": 0.4874 }, { "start": 5481.26, "end": 5481.82, "probability": 0.5823 }, { "start": 5483.16, "end": 5484.82, "probability": 0.7487 }, { "start": 5485.6, "end": 5488.06, "probability": 0.9321 }, { "start": 5489.18, "end": 5493.92, "probability": 0.9821 }, { "start": 5494.12, "end": 5494.58, "probability": 0.8994 }, { "start": 5494.7, "end": 5496.0, "probability": 0.9895 }, { "start": 5497.7, "end": 5500.64, "probability": 0.9934 }, { "start": 5500.74, "end": 5503.68, "probability": 0.9963 }, { "start": 5507.04, "end": 5509.64, "probability": 0.9937 }, { "start": 5510.36, "end": 5512.92, "probability": 0.9839 }, { "start": 5513.04, "end": 5513.98, "probability": 0.9382 }, { "start": 5514.64, "end": 5517.8, "probability": 0.9939 }, { "start": 5518.0, "end": 5521.46, "probability": 0.9941 }, { "start": 5521.6, "end": 5523.74, "probability": 0.7475 }, { "start": 5524.5, "end": 5525.38, "probability": 0.9852 }, { "start": 5527.88, "end": 5528.7, "probability": 0.5138 }, { "start": 5529.48, "end": 5531.58, "probability": 0.999 }, { "start": 5532.44, "end": 5533.8, "probability": 0.5215 }, { "start": 5535.42, "end": 5537.94, "probability": 0.9724 }, { "start": 5538.68, "end": 5541.18, "probability": 0.9861 }, { "start": 5542.52, "end": 5544.3, "probability": 0.9925 }, { "start": 5545.38, "end": 5547.0, "probability": 0.9121 }, { "start": 5547.7, "end": 5548.14, "probability": 0.7741 }, { "start": 5548.9, "end": 5549.18, "probability": 0.8005 }, { "start": 5550.8, "end": 5552.26, "probability": 0.6662 }, { "start": 5552.38, "end": 5558.42, "probability": 0.9938 }, { "start": 5558.42, "end": 5563.2, "probability": 0.9993 }, { "start": 5564.4, "end": 5566.04, "probability": 0.8356 }, { "start": 5567.4, "end": 5571.6, "probability": 0.7457 }, { "start": 5572.42, "end": 5574.44, "probability": 0.9995 }, { "start": 5575.5, "end": 5581.18, "probability": 0.9847 }, { "start": 5582.2, "end": 5588.4, "probability": 0.9969 }, { "start": 5589.4, "end": 5590.71, "probability": 0.9927 }, { "start": 5591.56, "end": 5591.8, "probability": 0.9299 }, { "start": 5593.32, "end": 5598.02, "probability": 0.9957 }, { "start": 5598.9, "end": 5600.86, "probability": 0.9966 }, { "start": 5601.76, "end": 5604.38, "probability": 0.9769 }, { "start": 5605.3, "end": 5605.44, "probability": 0.1936 }, { "start": 5606.02, "end": 5607.42, "probability": 0.9714 }, { "start": 5608.42, "end": 5608.8, "probability": 0.8705 }, { "start": 5609.8, "end": 5610.84, "probability": 0.9528 }, { "start": 5612.0, "end": 5612.28, "probability": 0.6937 }, { "start": 5613.68, "end": 5615.36, "probability": 0.9821 }, { "start": 5616.34, "end": 5617.96, "probability": 0.9707 }, { "start": 5619.8, "end": 5620.72, "probability": 0.9181 }, { "start": 5621.78, "end": 5622.78, "probability": 0.9188 }, { "start": 5624.2, "end": 5625.54, "probability": 0.9787 }, { "start": 5627.7, "end": 5631.32, "probability": 0.9814 }, { "start": 5632.0, "end": 5637.06, "probability": 0.9985 }, { "start": 5638.42, "end": 5642.64, "probability": 0.9254 }, { "start": 5642.94, "end": 5645.04, "probability": 0.7292 }, { "start": 5645.28, "end": 5647.28, "probability": 0.8981 }, { "start": 5648.52, "end": 5649.34, "probability": 0.7909 }, { "start": 5650.66, "end": 5653.44, "probability": 0.9966 }, { "start": 5654.12, "end": 5655.68, "probability": 0.9976 }, { "start": 5656.96, "end": 5658.2, "probability": 0.9932 }, { "start": 5660.1, "end": 5661.94, "probability": 0.9951 }, { "start": 5662.22, "end": 5663.08, "probability": 0.3057 }, { "start": 5663.58, "end": 5664.16, "probability": 0.2177 }, { "start": 5664.3, "end": 5669.88, "probability": 0.9723 }, { "start": 5670.18, "end": 5671.46, "probability": 0.7073 }, { "start": 5672.42, "end": 5674.2, "probability": 0.9982 }, { "start": 5675.16, "end": 5676.28, "probability": 0.9415 }, { "start": 5677.78, "end": 5678.6, "probability": 0.9204 }, { "start": 5679.9, "end": 5681.38, "probability": 0.9969 }, { "start": 5682.34, "end": 5683.8, "probability": 0.6623 }, { "start": 5685.16, "end": 5686.31, "probability": 0.9816 }, { "start": 5687.46, "end": 5688.22, "probability": 0.9834 }, { "start": 5689.28, "end": 5691.34, "probability": 0.9836 }, { "start": 5692.82, "end": 5694.78, "probability": 0.9878 }, { "start": 5695.0, "end": 5699.02, "probability": 0.9841 }, { "start": 5699.68, "end": 5700.7, "probability": 0.7876 }, { "start": 5702.24, "end": 5706.06, "probability": 0.9941 }, { "start": 5707.04, "end": 5707.44, "probability": 0.5905 }, { "start": 5708.2, "end": 5708.94, "probability": 0.9164 }, { "start": 5710.36, "end": 5711.92, "probability": 0.787 }, { "start": 5712.74, "end": 5713.54, "probability": 0.993 }, { "start": 5714.48, "end": 5716.04, "probability": 0.8931 }, { "start": 5717.36, "end": 5717.82, "probability": 0.8436 }, { "start": 5719.0, "end": 5722.08, "probability": 0.9967 }, { "start": 5723.08, "end": 5727.06, "probability": 0.9987 }, { "start": 5728.14, "end": 5728.86, "probability": 0.8144 }, { "start": 5730.02, "end": 5731.36, "probability": 0.9209 }, { "start": 5732.18, "end": 5734.32, "probability": 0.9991 }, { "start": 5735.48, "end": 5738.36, "probability": 0.9754 }, { "start": 5740.0, "end": 5741.02, "probability": 0.9678 }, { "start": 5741.96, "end": 5745.26, "probability": 0.9856 }, { "start": 5745.26, "end": 5748.94, "probability": 0.9963 }, { "start": 5749.76, "end": 5751.26, "probability": 0.8384 }, { "start": 5752.54, "end": 5753.04, "probability": 0.9956 }, { "start": 5754.06, "end": 5754.94, "probability": 0.8354 }, { "start": 5755.8, "end": 5759.9, "probability": 0.9799 }, { "start": 5761.46, "end": 5762.14, "probability": 0.9682 }, { "start": 5763.16, "end": 5765.68, "probability": 0.9871 }, { "start": 5766.6, "end": 5767.64, "probability": 0.9772 }, { "start": 5768.48, "end": 5773.34, "probability": 0.9684 }, { "start": 5773.44, "end": 5776.26, "probability": 0.7629 }, { "start": 5777.2, "end": 5778.4, "probability": 0.8294 }, { "start": 5779.12, "end": 5780.1, "probability": 0.9803 }, { "start": 5781.5, "end": 5783.91, "probability": 0.9956 }, { "start": 5785.26, "end": 5787.3, "probability": 0.9908 }, { "start": 5788.76, "end": 5790.06, "probability": 0.8562 }, { "start": 5790.94, "end": 5792.42, "probability": 0.8847 }, { "start": 5793.38, "end": 5794.76, "probability": 0.7566 }, { "start": 5794.84, "end": 5797.54, "probability": 0.9023 }, { "start": 5799.14, "end": 5800.68, "probability": 0.9656 }, { "start": 5801.64, "end": 5804.1, "probability": 0.7719 }, { "start": 5804.72, "end": 5805.34, "probability": 0.6484 }, { "start": 5805.38, "end": 5805.98, "probability": 0.9688 }, { "start": 5806.06, "end": 5808.72, "probability": 0.9567 }, { "start": 5809.72, "end": 5812.94, "probability": 0.9933 }, { "start": 5813.1, "end": 5813.72, "probability": 0.5325 }, { "start": 5813.8, "end": 5813.84, "probability": 0.5652 }, { "start": 5813.84, "end": 5815.58, "probability": 0.9296 }, { "start": 5816.62, "end": 5818.64, "probability": 0.8763 }, { "start": 5818.9, "end": 5819.72, "probability": 0.8378 }, { "start": 5821.6, "end": 5824.45, "probability": 0.9579 }, { "start": 5828.12, "end": 5829.62, "probability": 0.1047 }, { "start": 5843.6, "end": 5844.1, "probability": 0.8235 }, { "start": 5845.26, "end": 5846.72, "probability": 0.5045 }, { "start": 5848.14, "end": 5850.68, "probability": 0.9893 }, { "start": 5851.42, "end": 5854.34, "probability": 0.9966 }, { "start": 5855.8, "end": 5859.7, "probability": 0.9968 }, { "start": 5859.78, "end": 5860.66, "probability": 0.8228 }, { "start": 5862.14, "end": 5867.7, "probability": 0.9646 }, { "start": 5868.78, "end": 5869.46, "probability": 0.5649 }, { "start": 5870.2, "end": 5871.94, "probability": 0.7888 }, { "start": 5872.7, "end": 5873.5, "probability": 0.823 }, { "start": 5873.86, "end": 5875.04, "probability": 0.9951 }, { "start": 5875.58, "end": 5877.7, "probability": 0.969 }, { "start": 5878.62, "end": 5880.32, "probability": 0.8628 }, { "start": 5880.48, "end": 5882.04, "probability": 0.9976 }, { "start": 5882.68, "end": 5886.08, "probability": 0.9909 }, { "start": 5886.54, "end": 5887.76, "probability": 0.8555 }, { "start": 5888.3, "end": 5890.08, "probability": 0.902 }, { "start": 5890.46, "end": 5895.08, "probability": 0.9886 }, { "start": 5895.3, "end": 5896.2, "probability": 0.6957 }, { "start": 5897.04, "end": 5899.44, "probability": 0.9954 }, { "start": 5900.6, "end": 5903.82, "probability": 0.9253 }, { "start": 5904.68, "end": 5906.74, "probability": 0.9159 }, { "start": 5907.44, "end": 5910.84, "probability": 0.9976 }, { "start": 5910.94, "end": 5911.7, "probability": 0.5846 }, { "start": 5912.76, "end": 5914.88, "probability": 0.973 }, { "start": 5915.0, "end": 5920.26, "probability": 0.973 }, { "start": 5921.2, "end": 5923.02, "probability": 0.9675 }, { "start": 5924.12, "end": 5925.46, "probability": 0.9705 }, { "start": 5926.3, "end": 5928.72, "probability": 0.8489 }, { "start": 5929.58, "end": 5931.84, "probability": 0.9861 }, { "start": 5933.62, "end": 5933.86, "probability": 0.8382 }, { "start": 5934.58, "end": 5938.3, "probability": 0.9889 }, { "start": 5940.02, "end": 5942.12, "probability": 0.9536 }, { "start": 5942.76, "end": 5943.42, "probability": 0.7645 }, { "start": 5943.74, "end": 5946.8, "probability": 0.9719 }, { "start": 5946.96, "end": 5947.48, "probability": 0.4233 }, { "start": 5948.26, "end": 5951.54, "probability": 0.8915 }, { "start": 5952.4, "end": 5953.34, "probability": 0.7436 }, { "start": 5954.08, "end": 5954.86, "probability": 0.8576 }, { "start": 5955.82, "end": 5956.56, "probability": 0.823 }, { "start": 5957.2, "end": 5957.96, "probability": 0.9506 }, { "start": 5958.52, "end": 5960.92, "probability": 0.9946 }, { "start": 5961.0, "end": 5962.02, "probability": 0.998 }, { "start": 5962.66, "end": 5964.92, "probability": 0.9972 }, { "start": 5965.28, "end": 5967.08, "probability": 0.9941 }, { "start": 5967.4, "end": 5968.2, "probability": 0.9285 }, { "start": 5968.3, "end": 5971.56, "probability": 0.9925 }, { "start": 5972.0, "end": 5972.42, "probability": 0.8838 }, { "start": 5973.02, "end": 5973.4, "probability": 0.9779 }, { "start": 5973.72, "end": 5976.42, "probability": 0.9097 }, { "start": 5976.86, "end": 5977.38, "probability": 0.7575 }, { "start": 5977.48, "end": 5977.62, "probability": 0.5768 }, { "start": 5977.68, "end": 5978.76, "probability": 0.339 }, { "start": 5979.16, "end": 5979.34, "probability": 0.3669 }, { "start": 5979.38, "end": 5981.14, "probability": 0.9462 }, { "start": 5981.44, "end": 5984.2, "probability": 0.9509 }, { "start": 5984.86, "end": 5986.56, "probability": 0.9927 }, { "start": 5986.94, "end": 5987.94, "probability": 0.8591 }, { "start": 5988.0, "end": 5988.36, "probability": 0.8198 }, { "start": 5988.44, "end": 5990.44, "probability": 0.8818 }, { "start": 5990.76, "end": 5991.54, "probability": 0.9525 }, { "start": 5992.86, "end": 5994.09, "probability": 0.8149 }, { "start": 5995.3, "end": 5996.62, "probability": 0.9819 }, { "start": 5997.94, "end": 6000.18, "probability": 0.9671 }, { "start": 6001.0, "end": 6005.4, "probability": 0.9637 }, { "start": 6006.32, "end": 6008.66, "probability": 0.9092 }, { "start": 6009.44, "end": 6010.22, "probability": 0.9976 }, { "start": 6011.4, "end": 6012.46, "probability": 0.9978 }, { "start": 6014.2, "end": 6015.44, "probability": 0.993 }, { "start": 6016.62, "end": 6018.94, "probability": 0.9847 }, { "start": 6019.86, "end": 6019.96, "probability": 0.9785 }, { "start": 6021.28, "end": 6024.3, "probability": 0.9997 }, { "start": 6026.06, "end": 6028.32, "probability": 0.9932 }, { "start": 6028.42, "end": 6029.78, "probability": 0.9558 }, { "start": 6041.64, "end": 6041.72, "probability": 0.4632 }, { "start": 6050.0, "end": 6052.22, "probability": 0.768 }, { "start": 6053.52, "end": 6055.1, "probability": 0.8994 }, { "start": 6056.54, "end": 6058.22, "probability": 0.9832 }, { "start": 6059.16, "end": 6060.32, "probability": 0.9922 }, { "start": 6061.74, "end": 6062.8, "probability": 0.9927 }, { "start": 6063.34, "end": 6063.8, "probability": 0.8973 }, { "start": 6065.16, "end": 6068.46, "probability": 0.9183 }, { "start": 6069.7, "end": 6072.32, "probability": 0.9934 }, { "start": 6073.12, "end": 6073.94, "probability": 0.8826 }, { "start": 6075.5, "end": 6075.96, "probability": 0.6882 }, { "start": 6076.84, "end": 6078.38, "probability": 0.9844 }, { "start": 6079.2, "end": 6081.14, "probability": 0.9041 }, { "start": 6082.54, "end": 6084.12, "probability": 0.9878 }, { "start": 6085.42, "end": 6086.84, "probability": 0.9984 }, { "start": 6087.38, "end": 6091.24, "probability": 0.997 }, { "start": 6092.24, "end": 6094.36, "probability": 0.9906 }, { "start": 6096.82, "end": 6099.52, "probability": 0.9971 }, { "start": 6099.52, "end": 6102.08, "probability": 0.8617 }, { "start": 6103.08, "end": 6104.78, "probability": 0.8485 }, { "start": 6105.98, "end": 6109.5, "probability": 0.9918 }, { "start": 6110.92, "end": 6113.1, "probability": 0.9429 }, { "start": 6114.5, "end": 6115.68, "probability": 0.7177 }, { "start": 6116.62, "end": 6118.34, "probability": 0.9048 }, { "start": 6119.24, "end": 6122.16, "probability": 0.9491 }, { "start": 6123.32, "end": 6124.06, "probability": 0.7356 }, { "start": 6124.76, "end": 6125.36, "probability": 0.8261 }, { "start": 6126.36, "end": 6127.02, "probability": 0.753 }, { "start": 6127.72, "end": 6129.34, "probability": 0.8186 }, { "start": 6130.06, "end": 6130.44, "probability": 0.6928 }, { "start": 6131.14, "end": 6134.78, "probability": 0.9563 }, { "start": 6135.3, "end": 6136.4, "probability": 0.979 }, { "start": 6137.72, "end": 6141.92, "probability": 0.9717 }, { "start": 6142.66, "end": 6143.2, "probability": 0.8912 }, { "start": 6144.5, "end": 6148.88, "probability": 0.868 }, { "start": 6149.1, "end": 6150.12, "probability": 0.8157 }, { "start": 6151.0, "end": 6151.86, "probability": 0.9585 }, { "start": 6152.66, "end": 6156.46, "probability": 0.9892 }, { "start": 6158.1, "end": 6159.62, "probability": 0.9767 }, { "start": 6160.78, "end": 6163.49, "probability": 0.768 }, { "start": 6164.26, "end": 6164.7, "probability": 0.8319 }, { "start": 6165.76, "end": 6168.2, "probability": 0.9958 }, { "start": 6168.2, "end": 6171.16, "probability": 0.9971 }, { "start": 6172.06, "end": 6172.92, "probability": 0.9159 }, { "start": 6173.66, "end": 6175.04, "probability": 0.9951 }, { "start": 6175.12, "end": 6176.34, "probability": 0.5722 }, { "start": 6177.32, "end": 6178.14, "probability": 0.9778 }, { "start": 6179.2, "end": 6181.58, "probability": 0.929 }, { "start": 6182.16, "end": 6183.72, "probability": 0.7884 }, { "start": 6184.5, "end": 6185.98, "probability": 0.9621 }, { "start": 6187.44, "end": 6192.88, "probability": 0.8904 }, { "start": 6193.74, "end": 6194.48, "probability": 0.7769 }, { "start": 6195.56, "end": 6200.06, "probability": 0.8192 }, { "start": 6201.82, "end": 6207.06, "probability": 0.9699 }, { "start": 6210.2, "end": 6211.4, "probability": 0.8306 }, { "start": 6213.16, "end": 6215.22, "probability": 0.9543 }, { "start": 6216.4, "end": 6219.58, "probability": 0.9811 }, { "start": 6220.26, "end": 6224.58, "probability": 0.9698 }, { "start": 6225.86, "end": 6227.0, "probability": 0.9862 }, { "start": 6228.06, "end": 6230.72, "probability": 0.9204 }, { "start": 6232.72, "end": 6236.96, "probability": 0.9616 }, { "start": 6237.46, "end": 6238.36, "probability": 0.8002 }, { "start": 6238.74, "end": 6240.18, "probability": 0.999 }, { "start": 6241.02, "end": 6241.98, "probability": 0.9675 }, { "start": 6242.78, "end": 6244.16, "probability": 0.8141 }, { "start": 6244.94, "end": 6245.0, "probability": 0.083 }, { "start": 6245.08, "end": 6245.58, "probability": 0.955 }, { "start": 6245.7, "end": 6246.58, "probability": 0.8778 }, { "start": 6246.74, "end": 6248.3, "probability": 0.87 }, { "start": 6249.08, "end": 6250.54, "probability": 0.9885 }, { "start": 6251.44, "end": 6253.34, "probability": 0.9493 }, { "start": 6254.2, "end": 6258.08, "probability": 0.7609 }, { "start": 6258.18, "end": 6259.24, "probability": 0.9475 }, { "start": 6260.48, "end": 6261.38, "probability": 0.9346 }, { "start": 6262.26, "end": 6266.28, "probability": 0.9167 }, { "start": 6267.12, "end": 6271.06, "probability": 0.9733 }, { "start": 6271.88, "end": 6276.44, "probability": 0.9724 }, { "start": 6277.02, "end": 6278.88, "probability": 0.9494 }, { "start": 6280.2, "end": 6280.76, "probability": 0.8926 }, { "start": 6281.44, "end": 6282.98, "probability": 0.9983 }, { "start": 6283.08, "end": 6287.96, "probability": 0.9969 }, { "start": 6288.92, "end": 6293.16, "probability": 0.9769 }, { "start": 6294.26, "end": 6295.6, "probability": 0.9567 }, { "start": 6297.16, "end": 6298.5, "probability": 0.9783 }, { "start": 6298.62, "end": 6301.04, "probability": 0.9941 }, { "start": 6301.88, "end": 6303.64, "probability": 0.9915 }, { "start": 6304.18, "end": 6304.88, "probability": 0.9595 }, { "start": 6306.18, "end": 6307.12, "probability": 0.292 }, { "start": 6307.56, "end": 6309.76, "probability": 0.9319 }, { "start": 6310.56, "end": 6311.88, "probability": 0.961 }, { "start": 6313.94, "end": 6317.48, "probability": 0.5666 }, { "start": 6317.64, "end": 6318.58, "probability": 0.7657 }, { "start": 6319.3, "end": 6323.68, "probability": 0.9933 }, { "start": 6324.66, "end": 6325.92, "probability": 0.9546 }, { "start": 6326.58, "end": 6327.14, "probability": 0.6782 }, { "start": 6328.08, "end": 6328.45, "probability": 0.9922 }, { "start": 6329.34, "end": 6330.84, "probability": 0.5914 }, { "start": 6331.84, "end": 6334.14, "probability": 0.9831 }, { "start": 6335.12, "end": 6337.54, "probability": 0.9589 }, { "start": 6338.52, "end": 6339.64, "probability": 0.8746 }, { "start": 6340.26, "end": 6341.34, "probability": 0.8323 }, { "start": 6341.52, "end": 6342.24, "probability": 0.8515 }, { "start": 6342.5, "end": 6343.44, "probability": 0.6123 }, { "start": 6343.98, "end": 6345.72, "probability": 0.9976 }, { "start": 6346.2, "end": 6349.8, "probability": 0.957 }, { "start": 6350.24, "end": 6352.32, "probability": 0.9491 }, { "start": 6352.6, "end": 6355.48, "probability": 0.9677 }, { "start": 6356.44, "end": 6357.1, "probability": 0.7724 }, { "start": 6357.8, "end": 6358.6, "probability": 0.9508 }, { "start": 6360.22, "end": 6361.16, "probability": 0.9635 }, { "start": 6362.22, "end": 6363.88, "probability": 0.9169 }, { "start": 6364.54, "end": 6365.64, "probability": 0.9108 }, { "start": 6366.02, "end": 6366.82, "probability": 0.9772 }, { "start": 6366.9, "end": 6367.48, "probability": 0.7291 }, { "start": 6367.6, "end": 6368.22, "probability": 0.5827 }, { "start": 6368.82, "end": 6369.44, "probability": 0.5963 }, { "start": 6370.38, "end": 6371.01, "probability": 0.5248 }, { "start": 6372.5, "end": 6375.76, "probability": 0.7162 }, { "start": 6379.16, "end": 6383.02, "probability": 0.993 }, { "start": 6383.4, "end": 6385.32, "probability": 0.9404 }, { "start": 6385.48, "end": 6385.62, "probability": 0.4126 }, { "start": 6387.52, "end": 6389.38, "probability": 0.8401 }, { "start": 6389.46, "end": 6391.36, "probability": 0.9577 }, { "start": 6398.18, "end": 6400.08, "probability": 0.0942 }, { "start": 6434.6, "end": 6439.02, "probability": 0.9481 }, { "start": 6440.84, "end": 6441.54, "probability": 0.8842 }, { "start": 6441.78, "end": 6443.42, "probability": 0.852 }, { "start": 6446.02, "end": 6447.0, "probability": 0.7401 }, { "start": 6447.08, "end": 6448.16, "probability": 0.9485 }, { "start": 6448.98, "end": 6450.1, "probability": 0.941 }, { "start": 6450.26, "end": 6451.3, "probability": 0.9755 }, { "start": 6453.18, "end": 6456.34, "probability": 0.9749 }, { "start": 6457.16, "end": 6460.8, "probability": 0.9175 }, { "start": 6461.18, "end": 6464.0, "probability": 0.9854 }, { "start": 6464.82, "end": 6469.72, "probability": 0.7505 }, { "start": 6470.38, "end": 6473.76, "probability": 0.8347 }, { "start": 6475.32, "end": 6480.1, "probability": 0.9323 }, { "start": 6481.76, "end": 6483.42, "probability": 0.398 }, { "start": 6484.58, "end": 6485.4, "probability": 0.8142 }, { "start": 6485.62, "end": 6489.98, "probability": 0.9801 }, { "start": 6490.58, "end": 6494.34, "probability": 0.8377 }, { "start": 6495.26, "end": 6495.72, "probability": 0.6491 }, { "start": 6496.46, "end": 6497.12, "probability": 0.66 }, { "start": 6497.92, "end": 6500.94, "probability": 0.833 }, { "start": 6502.3, "end": 6505.8, "probability": 0.8514 }, { "start": 6505.94, "end": 6506.7, "probability": 0.3622 }, { "start": 6507.7, "end": 6508.48, "probability": 0.6792 }, { "start": 6510.16, "end": 6512.08, "probability": 0.8116 }, { "start": 6513.1, "end": 6518.08, "probability": 0.707 }, { "start": 6518.62, "end": 6522.92, "probability": 0.9691 }, { "start": 6524.66, "end": 6525.94, "probability": 0.9109 }, { "start": 6526.66, "end": 6527.26, "probability": 0.436 }, { "start": 6527.8, "end": 6531.4, "probability": 0.9512 }, { "start": 6532.5, "end": 6537.14, "probability": 0.9926 }, { "start": 6538.24, "end": 6539.2, "probability": 0.7177 }, { "start": 6541.12, "end": 6541.54, "probability": 0.5562 }, { "start": 6542.08, "end": 6544.62, "probability": 0.9054 }, { "start": 6546.88, "end": 6548.38, "probability": 0.8156 }, { "start": 6550.06, "end": 6552.48, "probability": 0.7639 }, { "start": 6554.26, "end": 6557.0, "probability": 0.8762 }, { "start": 6557.44, "end": 6558.08, "probability": 0.8474 }, { "start": 6558.88, "end": 6561.78, "probability": 0.9719 }, { "start": 6562.42, "end": 6563.86, "probability": 0.9189 }, { "start": 6564.5, "end": 6565.38, "probability": 0.9182 }, { "start": 6566.48, "end": 6567.18, "probability": 0.968 }, { "start": 6567.36, "end": 6572.1, "probability": 0.9475 }, { "start": 6572.52, "end": 6575.58, "probability": 0.9832 }, { "start": 6575.72, "end": 6579.46, "probability": 0.948 }, { "start": 6580.02, "end": 6583.44, "probability": 0.866 }, { "start": 6583.78, "end": 6585.44, "probability": 0.7148 }, { "start": 6586.0, "end": 6586.5, "probability": 0.8204 }, { "start": 6586.58, "end": 6587.3, "probability": 0.7564 }, { "start": 6587.38, "end": 6588.08, "probability": 0.9115 }, { "start": 6588.12, "end": 6588.72, "probability": 0.9683 }, { "start": 6589.2, "end": 6591.58, "probability": 0.9201 }, { "start": 6592.66, "end": 6594.1, "probability": 0.9468 }, { "start": 6595.0, "end": 6597.46, "probability": 0.7927 }, { "start": 6597.8, "end": 6599.92, "probability": 0.8026 }, { "start": 6600.54, "end": 6601.18, "probability": 0.9185 }, { "start": 6601.32, "end": 6602.1, "probability": 0.5639 }, { "start": 6602.3, "end": 6604.7, "probability": 0.8728 }, { "start": 6605.14, "end": 6607.28, "probability": 0.9484 }, { "start": 6608.4, "end": 6609.22, "probability": 0.7954 }, { "start": 6609.92, "end": 6610.92, "probability": 0.644 }, { "start": 6612.16, "end": 6613.76, "probability": 0.6958 }, { "start": 6616.66, "end": 6622.9, "probability": 0.8358 }, { "start": 6623.3, "end": 6627.64, "probability": 0.6606 }, { "start": 6628.6, "end": 6632.28, "probability": 0.8689 }, { "start": 6632.38, "end": 6632.7, "probability": 0.8159 }, { "start": 6635.67, "end": 6638.42, "probability": 0.9736 }, { "start": 6638.52, "end": 6642.96, "probability": 0.9826 }, { "start": 6643.98, "end": 6645.2, "probability": 0.1381 }, { "start": 6645.38, "end": 6647.26, "probability": 0.0218 }, { "start": 6649.78, "end": 6650.08, "probability": 0.0043 }, { "start": 6650.08, "end": 6650.26, "probability": 0.0314 }, { "start": 6651.04, "end": 6652.16, "probability": 0.7731 }, { "start": 6652.74, "end": 6653.08, "probability": 0.7201 }, { "start": 6653.82, "end": 6653.82, "probability": 0.1005 }, { "start": 6653.82, "end": 6654.28, "probability": 0.6854 }, { "start": 6654.88, "end": 6656.44, "probability": 0.269 }, { "start": 6656.66, "end": 6657.12, "probability": 0.8412 }, { "start": 6659.26, "end": 6660.8, "probability": 0.6612 }, { "start": 6669.0, "end": 6669.42, "probability": 0.1632 }, { "start": 6669.42, "end": 6669.48, "probability": 0.0907 }, { "start": 6669.5, "end": 6669.5, "probability": 0.0657 }, { "start": 6669.5, "end": 6669.5, "probability": 0.0846 }, { "start": 6681.02, "end": 6682.06, "probability": 0.318 }, { "start": 6687.29, "end": 6689.49, "probability": 0.4893 }, { "start": 6689.55, "end": 6690.02, "probability": 0.8971 }, { "start": 6690.33, "end": 6692.53, "probability": 0.7428 }, { "start": 6692.53, "end": 6694.21, "probability": 0.8849 }, { "start": 6694.69, "end": 6697.77, "probability": 0.8311 }, { "start": 6698.41, "end": 6699.93, "probability": 0.9365 }, { "start": 6699.99, "end": 6700.81, "probability": 0.6612 }, { "start": 6700.91, "end": 6703.25, "probability": 0.8339 }, { "start": 6703.37, "end": 6704.66, "probability": 0.9115 }, { "start": 6705.18, "end": 6706.99, "probability": 0.9532 }, { "start": 6707.55, "end": 6711.87, "probability": 0.871 }, { "start": 6712.95, "end": 6714.27, "probability": 0.608 }, { "start": 6714.45, "end": 6714.45, "probability": 0.0402 }, { "start": 6714.45, "end": 6714.45, "probability": 0.0214 }, { "start": 6714.45, "end": 6716.61, "probability": 0.3685 }, { "start": 6716.77, "end": 6718.03, "probability": 0.4903 }, { "start": 6718.05, "end": 6718.37, "probability": 0.2871 }, { "start": 6718.57, "end": 6718.57, "probability": 0.5105 }, { "start": 6718.57, "end": 6720.77, "probability": 0.7896 }, { "start": 6721.85, "end": 6723.25, "probability": 0.8772 }, { "start": 6723.77, "end": 6726.23, "probability": 0.9644 }, { "start": 6726.29, "end": 6727.45, "probability": 0.8871 }, { "start": 6727.45, "end": 6728.51, "probability": 0.613 }, { "start": 6728.51, "end": 6728.58, "probability": 0.0128 }, { "start": 6728.89, "end": 6728.89, "probability": 0.0912 }, { "start": 6728.89, "end": 6730.77, "probability": 0.5179 }, { "start": 6731.49, "end": 6732.45, "probability": 0.8452 }, { "start": 6732.97, "end": 6734.03, "probability": 0.7534 }, { "start": 6734.47, "end": 6736.01, "probability": 0.87 }, { "start": 6737.05, "end": 6738.85, "probability": 0.0493 }, { "start": 6739.09, "end": 6741.31, "probability": 0.0692 }, { "start": 6742.15, "end": 6743.77, "probability": 0.9232 }, { "start": 6744.59, "end": 6745.25, "probability": 0.4796 }, { "start": 6745.73, "end": 6745.77, "probability": 0.0118 }, { "start": 6747.69, "end": 6749.17, "probability": 0.8286 }, { "start": 6750.23, "end": 6752.23, "probability": 0.0044 }, { "start": 6754.03, "end": 6754.43, "probability": 0.0391 }, { "start": 6754.43, "end": 6754.87, "probability": 0.1769 }, { "start": 6755.53, "end": 6758.31, "probability": 0.8179 }, { "start": 6759.03, "end": 6760.51, "probability": 0.9307 }, { "start": 6761.45, "end": 6763.57, "probability": 0.9849 }, { "start": 6765.37, "end": 6766.33, "probability": 0.8191 }, { "start": 6767.97, "end": 6769.51, "probability": 0.632 }, { "start": 6770.75, "end": 6771.53, "probability": 0.9448 }, { "start": 6772.11, "end": 6774.99, "probability": 0.9929 }, { "start": 6776.07, "end": 6778.67, "probability": 0.9616 }, { "start": 6778.95, "end": 6782.67, "probability": 0.98 }, { "start": 6783.59, "end": 6787.17, "probability": 0.9977 }, { "start": 6787.67, "end": 6796.59, "probability": 0.9925 }, { "start": 6797.29, "end": 6803.31, "probability": 0.9951 }, { "start": 6803.95, "end": 6806.37, "probability": 0.8078 }, { "start": 6806.97, "end": 6808.61, "probability": 0.8646 }, { "start": 6809.37, "end": 6811.97, "probability": 0.7954 }, { "start": 6812.35, "end": 6812.97, "probability": 0.6906 }, { "start": 6813.99, "end": 6815.79, "probability": 0.7614 }, { "start": 6816.81, "end": 6817.34, "probability": 0.9297 }, { "start": 6818.39, "end": 6819.79, "probability": 0.9553 }, { "start": 6820.29, "end": 6827.93, "probability": 0.9186 }, { "start": 6828.03, "end": 6830.31, "probability": 0.9881 }, { "start": 6831.15, "end": 6832.79, "probability": 0.9878 }, { "start": 6832.93, "end": 6834.11, "probability": 0.9838 }, { "start": 6835.39, "end": 6839.26, "probability": 0.8145 }, { "start": 6839.45, "end": 6840.95, "probability": 0.9802 }, { "start": 6841.63, "end": 6843.83, "probability": 0.9915 }, { "start": 6844.71, "end": 6848.93, "probability": 0.9783 }, { "start": 6848.97, "end": 6852.97, "probability": 0.9907 }, { "start": 6853.41, "end": 6858.49, "probability": 0.9978 }, { "start": 6858.59, "end": 6860.11, "probability": 0.8365 }, { "start": 6860.67, "end": 6864.03, "probability": 0.8271 }, { "start": 6864.09, "end": 6868.35, "probability": 0.9409 }, { "start": 6868.41, "end": 6873.33, "probability": 0.9929 }, { "start": 6873.87, "end": 6876.95, "probability": 0.9839 }, { "start": 6877.49, "end": 6880.36, "probability": 0.979 }, { "start": 6880.93, "end": 6882.19, "probability": 0.9868 }, { "start": 6883.07, "end": 6884.75, "probability": 0.9844 }, { "start": 6885.61, "end": 6886.59, "probability": 0.7404 }, { "start": 6886.79, "end": 6888.47, "probability": 0.9216 }, { "start": 6888.81, "end": 6890.29, "probability": 0.9208 }, { "start": 6890.77, "end": 6891.37, "probability": 0.4935 }, { "start": 6891.47, "end": 6896.47, "probability": 0.9788 }, { "start": 6896.83, "end": 6897.47, "probability": 0.7801 }, { "start": 6898.01, "end": 6898.43, "probability": 0.3397 }, { "start": 6898.51, "end": 6899.17, "probability": 0.9626 }, { "start": 6899.57, "end": 6902.21, "probability": 0.9097 }, { "start": 6902.55, "end": 6904.75, "probability": 0.9933 }, { "start": 6905.75, "end": 6908.87, "probability": 0.8152 }, { "start": 6908.87, "end": 6909.95, "probability": 0.4397 }, { "start": 6909.95, "end": 6910.05, "probability": 0.2895 }, { "start": 6910.23, "end": 6912.89, "probability": 0.9893 }, { "start": 6913.43, "end": 6915.67, "probability": 0.6443 }, { "start": 6916.07, "end": 6923.39, "probability": 0.9043 }, { "start": 6924.09, "end": 6924.97, "probability": 0.1381 }, { "start": 6924.97, "end": 6924.97, "probability": 0.4879 }, { "start": 6924.97, "end": 6926.21, "probability": 0.3676 }, { "start": 6926.43, "end": 6926.57, "probability": 0.3 }, { "start": 6928.23, "end": 6931.35, "probability": 0.6714 }, { "start": 6943.02, "end": 6944.56, "probability": 0.0378 }, { "start": 6945.19, "end": 6945.48, "probability": 0.4934 }, { "start": 6946.16, "end": 6947.7, "probability": 0.21 }, { "start": 6948.3, "end": 6950.23, "probability": 0.8782 }, { "start": 6960.25, "end": 6960.84, "probability": 0.8647 }, { "start": 6961.68, "end": 6962.28, "probability": 0.2015 }, { "start": 6962.28, "end": 6968.28, "probability": 0.0714 }, { "start": 6970.2, "end": 6971.5, "probability": 0.7251 }, { "start": 6972.34, "end": 6973.92, "probability": 0.8718 }, { "start": 6974.94, "end": 6978.98, "probability": 0.9773 }, { "start": 6979.7, "end": 6984.42, "probability": 0.9919 }, { "start": 6986.36, "end": 6988.34, "probability": 0.9346 }, { "start": 6988.56, "end": 6991.28, "probability": 0.6989 }, { "start": 6992.28, "end": 6995.92, "probability": 0.9987 }, { "start": 6996.6, "end": 7003.92, "probability": 0.9995 }, { "start": 7005.04, "end": 7007.98, "probability": 0.9991 }, { "start": 7009.02, "end": 7012.0, "probability": 0.9864 }, { "start": 7013.08, "end": 7019.76, "probability": 0.9978 }, { "start": 7020.58, "end": 7020.66, "probability": 0.07 }, { "start": 7020.66, "end": 7021.82, "probability": 0.9134 }, { "start": 7022.46, "end": 7026.24, "probability": 0.9447 }, { "start": 7027.24, "end": 7030.15, "probability": 0.5328 }, { "start": 7032.96, "end": 7032.96, "probability": 0.5364 }, { "start": 7032.96, "end": 7035.46, "probability": 0.925 }, { "start": 7035.62, "end": 7038.32, "probability": 0.6718 }, { "start": 7039.01, "end": 7041.64, "probability": 0.9357 }, { "start": 7041.86, "end": 7043.76, "probability": 0.6637 }, { "start": 7043.98, "end": 7044.86, "probability": 0.4788 }, { "start": 7044.9, "end": 7045.52, "probability": 0.8456 }, { "start": 7046.16, "end": 7049.76, "probability": 0.549 }, { "start": 7049.76, "end": 7053.06, "probability": 0.686 }, { "start": 7053.16, "end": 7056.78, "probability": 0.8313 }, { "start": 7057.72, "end": 7060.78, "probability": 0.9035 }, { "start": 7061.38, "end": 7063.42, "probability": 0.9426 }, { "start": 7063.82, "end": 7066.62, "probability": 0.7332 }, { "start": 7067.5, "end": 7071.12, "probability": 0.9816 }, { "start": 7071.66, "end": 7073.0, "probability": 0.8683 }, { "start": 7073.5, "end": 7076.04, "probability": 0.8664 }, { "start": 7076.36, "end": 7079.82, "probability": 0.9888 }, { "start": 7080.48, "end": 7081.66, "probability": 0.9393 }, { "start": 7082.32, "end": 7083.64, "probability": 0.9649 }, { "start": 7083.9, "end": 7087.62, "probability": 0.999 }, { "start": 7088.74, "end": 7091.38, "probability": 0.9722 }, { "start": 7092.02, "end": 7097.4, "probability": 0.997 }, { "start": 7097.4, "end": 7101.76, "probability": 0.9927 }, { "start": 7102.6, "end": 7105.0, "probability": 0.9085 }, { "start": 7105.66, "end": 7107.78, "probability": 0.981 }, { "start": 7108.3, "end": 7113.62, "probability": 0.9824 }, { "start": 7114.4, "end": 7116.82, "probability": 0.9976 }, { "start": 7117.52, "end": 7122.52, "probability": 0.9861 }, { "start": 7123.5, "end": 7127.28, "probability": 0.9919 }, { "start": 7127.44, "end": 7128.62, "probability": 0.9334 }, { "start": 7129.3, "end": 7131.68, "probability": 0.9899 }, { "start": 7132.38, "end": 7134.64, "probability": 0.9528 }, { "start": 7135.34, "end": 7139.76, "probability": 0.9549 }, { "start": 7140.88, "end": 7146.64, "probability": 0.9633 }, { "start": 7147.16, "end": 7152.8, "probability": 0.9912 }, { "start": 7153.54, "end": 7158.52, "probability": 0.9935 }, { "start": 7158.82, "end": 7161.52, "probability": 0.9951 }, { "start": 7162.96, "end": 7163.16, "probability": 0.2478 }, { "start": 7163.24, "end": 7164.14, "probability": 0.7648 }, { "start": 7164.22, "end": 7165.32, "probability": 0.8335 }, { "start": 7165.38, "end": 7165.96, "probability": 0.9221 }, { "start": 7166.08, "end": 7171.32, "probability": 0.9503 }, { "start": 7171.7, "end": 7173.48, "probability": 0.6867 }, { "start": 7174.46, "end": 7176.5, "probability": 0.8901 }, { "start": 7177.04, "end": 7178.54, "probability": 0.9751 }, { "start": 7179.28, "end": 7186.24, "probability": 0.9473 }, { "start": 7186.9, "end": 7194.28, "probability": 0.9886 }, { "start": 7194.64, "end": 7198.28, "probability": 0.9619 }, { "start": 7199.82, "end": 7203.92, "probability": 0.9813 }, { "start": 7203.98, "end": 7208.94, "probability": 0.9616 }, { "start": 7209.84, "end": 7212.44, "probability": 0.7727 }, { "start": 7212.9, "end": 7214.82, "probability": 0.9797 }, { "start": 7233.24, "end": 7234.12, "probability": 0.7836 }, { "start": 7234.98, "end": 7235.44, "probability": 0.95 }, { "start": 7250.58, "end": 7252.7, "probability": 0.7259 }, { "start": 7255.2, "end": 7255.2, "probability": 0.8481 }, { "start": 7258.14, "end": 7258.94, "probability": 0.7512 }, { "start": 7259.08, "end": 7260.12, "probability": 0.6552 }, { "start": 7260.28, "end": 7262.98, "probability": 0.8894 }, { "start": 7263.92, "end": 7266.54, "probability": 0.9941 }, { "start": 7267.46, "end": 7270.42, "probability": 0.9929 }, { "start": 7271.46, "end": 7274.06, "probability": 0.8707 }, { "start": 7275.14, "end": 7275.8, "probability": 0.874 }, { "start": 7276.96, "end": 7279.24, "probability": 0.5344 }, { "start": 7280.68, "end": 7281.64, "probability": 0.8546 }, { "start": 7282.58, "end": 7284.64, "probability": 0.9742 }, { "start": 7285.92, "end": 7289.88, "probability": 0.9622 }, { "start": 7290.46, "end": 7292.04, "probability": 0.9513 }, { "start": 7293.18, "end": 7294.48, "probability": 0.9861 }, { "start": 7295.24, "end": 7296.24, "probability": 0.7556 }, { "start": 7296.92, "end": 7302.1, "probability": 0.9815 }, { "start": 7303.24, "end": 7307.95, "probability": 0.9623 }, { "start": 7308.62, "end": 7310.54, "probability": 0.9316 }, { "start": 7311.38, "end": 7312.24, "probability": 0.8776 }, { "start": 7313.54, "end": 7315.62, "probability": 0.8402 }, { "start": 7316.76, "end": 7321.46, "probability": 0.9517 }, { "start": 7322.3, "end": 7322.82, "probability": 0.8698 }, { "start": 7323.9, "end": 7327.54, "probability": 0.9922 }, { "start": 7328.2, "end": 7329.38, "probability": 0.8659 }, { "start": 7330.3, "end": 7330.92, "probability": 0.8902 }, { "start": 7332.3, "end": 7333.3, "probability": 0.873 }, { "start": 7334.56, "end": 7336.16, "probability": 0.9709 }, { "start": 7337.36, "end": 7339.4, "probability": 0.8846 }, { "start": 7339.48, "end": 7340.96, "probability": 0.9969 }, { "start": 7341.68, "end": 7343.4, "probability": 0.9862 }, { "start": 7343.52, "end": 7345.08, "probability": 0.7074 }, { "start": 7346.04, "end": 7349.32, "probability": 0.9913 }, { "start": 7349.84, "end": 7350.98, "probability": 0.7715 }, { "start": 7352.48, "end": 7355.9, "probability": 0.9965 }, { "start": 7357.12, "end": 7358.2, "probability": 0.5926 }, { "start": 7359.18, "end": 7361.0, "probability": 0.6155 }, { "start": 7361.68, "end": 7363.22, "probability": 0.995 }, { "start": 7363.82, "end": 7365.34, "probability": 0.5576 }, { "start": 7366.24, "end": 7366.88, "probability": 0.5397 }, { "start": 7367.54, "end": 7368.7, "probability": 0.9301 }, { "start": 7369.38, "end": 7370.1, "probability": 0.673 }, { "start": 7370.88, "end": 7374.78, "probability": 0.9044 }, { "start": 7375.52, "end": 7380.06, "probability": 0.9956 }, { "start": 7380.62, "end": 7381.74, "probability": 0.8887 }, { "start": 7382.68, "end": 7386.78, "probability": 0.9983 }, { "start": 7387.92, "end": 7388.86, "probability": 0.999 }, { "start": 7389.44, "end": 7390.18, "probability": 0.7365 }, { "start": 7392.0, "end": 7394.56, "probability": 0.9832 }, { "start": 7395.6, "end": 7398.3, "probability": 0.9972 }, { "start": 7398.3, "end": 7400.66, "probability": 0.7442 }, { "start": 7402.78, "end": 7403.6, "probability": 0.8754 }, { "start": 7404.2, "end": 7405.8, "probability": 0.9813 }, { "start": 7406.64, "end": 7408.3, "probability": 0.974 }, { "start": 7409.28, "end": 7410.72, "probability": 0.5374 }, { "start": 7411.68, "end": 7412.94, "probability": 0.9922 }, { "start": 7413.64, "end": 7415.64, "probability": 0.8017 }, { "start": 7416.96, "end": 7419.44, "probability": 0.8294 }, { "start": 7420.24, "end": 7422.96, "probability": 0.7634 }, { "start": 7423.96, "end": 7425.1, "probability": 0.7458 }, { "start": 7425.14, "end": 7427.14, "probability": 0.9931 }, { "start": 7427.98, "end": 7432.36, "probability": 0.9896 }, { "start": 7433.12, "end": 7434.84, "probability": 0.9878 }, { "start": 7435.78, "end": 7437.54, "probability": 0.9805 }, { "start": 7437.56, "end": 7439.2, "probability": 0.9941 }, { "start": 7440.3, "end": 7441.98, "probability": 0.9973 }, { "start": 7443.14, "end": 7444.98, "probability": 0.9986 }, { "start": 7446.08, "end": 7447.3, "probability": 0.9995 }, { "start": 7448.02, "end": 7449.7, "probability": 0.9803 }, { "start": 7450.28, "end": 7451.22, "probability": 0.9856 }, { "start": 7452.8, "end": 7454.62, "probability": 0.8578 }, { "start": 7455.52, "end": 7457.88, "probability": 0.9937 }, { "start": 7458.7, "end": 7463.96, "probability": 0.9875 }, { "start": 7465.46, "end": 7470.18, "probability": 0.8861 }, { "start": 7470.18, "end": 7474.14, "probability": 0.6047 }, { "start": 7475.44, "end": 7481.14, "probability": 0.8778 }, { "start": 7482.02, "end": 7484.28, "probability": 0.9247 }, { "start": 7484.92, "end": 7487.02, "probability": 0.7713 }, { "start": 7488.44, "end": 7491.44, "probability": 0.998 }, { "start": 7491.64, "end": 7497.08, "probability": 0.9702 }, { "start": 7497.36, "end": 7497.56, "probability": 0.659 }, { "start": 7498.0, "end": 7498.86, "probability": 0.9935 }, { "start": 7499.5, "end": 7500.14, "probability": 0.9614 }, { "start": 7500.76, "end": 7504.4, "probability": 0.9918 }, { "start": 7505.1, "end": 7510.0, "probability": 0.944 }, { "start": 7511.12, "end": 7514.68, "probability": 0.9877 }, { "start": 7515.32, "end": 7520.78, "probability": 0.9738 }, { "start": 7522.62, "end": 7524.48, "probability": 0.6394 }, { "start": 7525.3, "end": 7527.84, "probability": 0.6664 }, { "start": 7547.56, "end": 7548.9, "probability": 0.5747 }, { "start": 7551.38, "end": 7553.36, "probability": 0.8893 }, { "start": 7554.52, "end": 7557.7, "probability": 0.8037 }, { "start": 7560.08, "end": 7561.5, "probability": 0.6734 }, { "start": 7562.96, "end": 7567.2, "probability": 0.9987 }, { "start": 7568.28, "end": 7568.68, "probability": 0.9893 }, { "start": 7569.72, "end": 7570.36, "probability": 0.8693 }, { "start": 7571.72, "end": 7576.5, "probability": 0.9958 }, { "start": 7577.52, "end": 7578.52, "probability": 0.754 }, { "start": 7579.76, "end": 7581.02, "probability": 0.9824 }, { "start": 7583.3, "end": 7589.62, "probability": 0.8083 }, { "start": 7591.76, "end": 7596.02, "probability": 0.9818 }, { "start": 7597.46, "end": 7598.66, "probability": 0.9771 }, { "start": 7600.08, "end": 7601.28, "probability": 0.8256 }, { "start": 7603.0, "end": 7605.5, "probability": 0.7812 }, { "start": 7606.72, "end": 7610.4, "probability": 0.9923 }, { "start": 7612.34, "end": 7613.4, "probability": 0.9937 }, { "start": 7614.76, "end": 7615.74, "probability": 0.8514 }, { "start": 7616.48, "end": 7617.38, "probability": 0.7973 }, { "start": 7620.34, "end": 7623.16, "probability": 0.9966 }, { "start": 7624.52, "end": 7628.58, "probability": 0.9983 }, { "start": 7629.94, "end": 7631.12, "probability": 0.9998 }, { "start": 7632.22, "end": 7634.32, "probability": 0.9681 }, { "start": 7635.46, "end": 7637.64, "probability": 0.9474 }, { "start": 7638.58, "end": 7639.94, "probability": 0.9966 }, { "start": 7641.96, "end": 7643.64, "probability": 0.9869 }, { "start": 7644.84, "end": 7645.86, "probability": 0.9976 }, { "start": 7647.32, "end": 7648.02, "probability": 0.8158 }, { "start": 7648.9, "end": 7649.63, "probability": 0.9995 }, { "start": 7650.64, "end": 7652.24, "probability": 0.9998 }, { "start": 7654.42, "end": 7655.16, "probability": 0.7874 }, { "start": 7656.62, "end": 7657.98, "probability": 0.9978 }, { "start": 7659.7, "end": 7660.66, "probability": 0.8269 }, { "start": 7662.88, "end": 7668.6, "probability": 0.9985 }, { "start": 7669.76, "end": 7671.42, "probability": 0.9933 }, { "start": 7672.68, "end": 7673.4, "probability": 0.9715 }, { "start": 7674.22, "end": 7674.99, "probability": 0.7881 }, { "start": 7676.18, "end": 7677.02, "probability": 0.7317 }, { "start": 7680.1, "end": 7682.52, "probability": 0.9965 }, { "start": 7683.68, "end": 7686.06, "probability": 0.9772 }, { "start": 7687.56, "end": 7689.22, "probability": 0.9906 }, { "start": 7690.38, "end": 7693.12, "probability": 0.9993 }, { "start": 7694.38, "end": 7696.82, "probability": 0.9953 }, { "start": 7697.36, "end": 7698.52, "probability": 0.9969 }, { "start": 7699.98, "end": 7701.48, "probability": 0.9215 }, { "start": 7702.84, "end": 7707.1, "probability": 0.9535 }, { "start": 7707.8, "end": 7709.54, "probability": 0.837 }, { "start": 7712.14, "end": 7715.24, "probability": 0.9883 }, { "start": 7716.38, "end": 7719.84, "probability": 0.9833 }, { "start": 7720.58, "end": 7723.84, "probability": 0.9767 }, { "start": 7725.66, "end": 7727.52, "probability": 0.96 }, { "start": 7728.16, "end": 7729.82, "probability": 0.9343 }, { "start": 7732.62, "end": 7735.82, "probability": 0.9655 }, { "start": 7736.76, "end": 7741.32, "probability": 0.9334 }, { "start": 7742.6, "end": 7742.9, "probability": 0.4996 }, { "start": 7743.82, "end": 7746.12, "probability": 0.9548 }, { "start": 7746.82, "end": 7747.8, "probability": 0.8219 }, { "start": 7748.68, "end": 7753.5, "probability": 0.9889 }, { "start": 7754.16, "end": 7758.38, "probability": 0.9978 }, { "start": 7758.5, "end": 7760.12, "probability": 0.5487 }, { "start": 7760.9, "end": 7764.74, "probability": 0.9967 }, { "start": 7764.76, "end": 7768.2, "probability": 0.9977 }, { "start": 7768.5, "end": 7769.0, "probability": 0.7024 }, { "start": 7769.3, "end": 7772.06, "probability": 0.9688 }, { "start": 7772.76, "end": 7774.62, "probability": 0.7858 }, { "start": 7793.2, "end": 7795.08, "probability": 0.8521 }, { "start": 7795.6, "end": 7796.14, "probability": 0.8848 }, { "start": 7796.76, "end": 7797.82, "probability": 0.6915 }, { "start": 7799.68, "end": 7802.24, "probability": 0.9075 }, { "start": 7803.06, "end": 7805.7, "probability": 0.9497 }, { "start": 7805.7, "end": 7809.76, "probability": 0.929 }, { "start": 7810.3, "end": 7812.08, "probability": 0.8303 }, { "start": 7812.88, "end": 7814.02, "probability": 0.7059 }, { "start": 7814.1, "end": 7816.98, "probability": 0.8421 }, { "start": 7817.52, "end": 7819.36, "probability": 0.6685 }, { "start": 7820.42, "end": 7826.1, "probability": 0.9602 }, { "start": 7826.18, "end": 7831.0, "probability": 0.9282 }, { "start": 7831.42, "end": 7835.72, "probability": 0.9565 }, { "start": 7836.18, "end": 7837.5, "probability": 0.5554 }, { "start": 7837.52, "end": 7838.14, "probability": 0.9167 }, { "start": 7838.66, "end": 7841.12, "probability": 0.9826 }, { "start": 7842.56, "end": 7844.84, "probability": 0.6648 }, { "start": 7845.18, "end": 7848.98, "probability": 0.9739 }, { "start": 7849.38, "end": 7850.44, "probability": 0.6279 }, { "start": 7850.5, "end": 7851.86, "probability": 0.9623 }, { "start": 7852.44, "end": 7856.82, "probability": 0.9771 }, { "start": 7857.34, "end": 7861.78, "probability": 0.7831 }, { "start": 7862.4, "end": 7865.48, "probability": 0.9954 }, { "start": 7865.94, "end": 7870.94, "probability": 0.9385 }, { "start": 7871.6, "end": 7877.42, "probability": 0.994 }, { "start": 7877.42, "end": 7882.8, "probability": 0.8361 }, { "start": 7882.86, "end": 7884.8, "probability": 0.7311 }, { "start": 7885.3, "end": 7887.38, "probability": 0.8581 }, { "start": 7887.76, "end": 7893.06, "probability": 0.981 }, { "start": 7893.78, "end": 7896.7, "probability": 0.8751 }, { "start": 7896.7, "end": 7902.36, "probability": 0.9351 }, { "start": 7902.92, "end": 7903.94, "probability": 0.8785 }, { "start": 7904.54, "end": 7907.3, "probability": 0.9972 }, { "start": 7907.88, "end": 7909.78, "probability": 0.9966 }, { "start": 7911.62, "end": 7913.2, "probability": 0.746 }, { "start": 7914.04, "end": 7915.98, "probability": 0.8378 }, { "start": 7916.54, "end": 7918.88, "probability": 0.9971 }, { "start": 7920.76, "end": 7925.06, "probability": 0.9897 }, { "start": 7925.06, "end": 7927.52, "probability": 0.9924 }, { "start": 7928.44, "end": 7929.56, "probability": 0.8726 }, { "start": 7930.22, "end": 7931.98, "probability": 0.8702 }, { "start": 7932.84, "end": 7933.87, "probability": 0.9821 }, { "start": 7934.04, "end": 7934.92, "probability": 0.9883 }, { "start": 7935.08, "end": 7936.48, "probability": 0.9974 }, { "start": 7936.88, "end": 7938.8, "probability": 0.9788 }, { "start": 7939.64, "end": 7941.69, "probability": 0.9902 }, { "start": 7942.48, "end": 7945.28, "probability": 0.9878 }, { "start": 7945.86, "end": 7950.1, "probability": 0.9979 }, { "start": 7950.7, "end": 7957.06, "probability": 0.9784 }, { "start": 7957.84, "end": 7960.5, "probability": 0.9727 }, { "start": 7961.06, "end": 7965.62, "probability": 0.8262 }, { "start": 7966.52, "end": 7969.84, "probability": 0.9914 }, { "start": 7969.84, "end": 7972.64, "probability": 0.9911 }, { "start": 7973.82, "end": 7979.14, "probability": 0.9966 }, { "start": 7979.88, "end": 7984.64, "probability": 0.9961 }, { "start": 7985.36, "end": 7988.36, "probability": 0.9914 }, { "start": 7988.88, "end": 7991.36, "probability": 0.9841 }, { "start": 7991.52, "end": 7991.54, "probability": 0.2774 }, { "start": 7991.88, "end": 7993.1, "probability": 0.9434 }, { "start": 7993.74, "end": 7994.66, "probability": 0.9972 }, { "start": 7995.08, "end": 7999.9, "probability": 0.7286 }, { "start": 7999.9, "end": 8001.3, "probability": 0.8003 }, { "start": 8001.86, "end": 8003.52, "probability": 0.5284 }, { "start": 8003.88, "end": 8007.5, "probability": 0.9007 }, { "start": 8007.58, "end": 8008.8, "probability": 0.903 }, { "start": 8009.46, "end": 8011.2, "probability": 0.9851 }, { "start": 8011.66, "end": 8014.06, "probability": 0.8938 }, { "start": 8015.97, "end": 8019.62, "probability": 0.5803 }, { "start": 8020.24, "end": 8023.92, "probability": 0.8753 }, { "start": 8024.6, "end": 8024.66, "probability": 0.5355 }, { "start": 8024.74, "end": 8028.22, "probability": 0.8597 }, { "start": 8028.42, "end": 8029.08, "probability": 0.8293 }, { "start": 8030.08, "end": 8030.08, "probability": 0.2156 }, { "start": 8030.08, "end": 8036.5, "probability": 0.691 }, { "start": 8036.82, "end": 8036.92, "probability": 0.4181 }, { "start": 8037.6, "end": 8042.58, "probability": 0.8975 }, { "start": 8042.9, "end": 8042.9, "probability": 0.0753 }, { "start": 8042.9, "end": 8043.46, "probability": 0.4191 }, { "start": 8043.8, "end": 8045.74, "probability": 0.876 }, { "start": 8046.4, "end": 8047.32, "probability": 0.8867 }, { "start": 8047.54, "end": 8048.54, "probability": 0.6154 }, { "start": 8048.84, "end": 8051.56, "probability": 0.9727 }, { "start": 8052.3, "end": 8055.8, "probability": 0.9928 }, { "start": 8056.0, "end": 8061.2, "probability": 0.9971 }, { "start": 8061.78, "end": 8064.1, "probability": 0.5569 }, { "start": 8064.88, "end": 8066.04, "probability": 0.6977 }, { "start": 8066.18, "end": 8066.38, "probability": 0.3583 }, { "start": 8066.42, "end": 8068.74, "probability": 0.9327 }, { "start": 8070.26, "end": 8070.74, "probability": 0.2272 }, { "start": 8070.92, "end": 8072.56, "probability": 0.8337 }, { "start": 8091.76, "end": 8092.46, "probability": 0.6411 }, { "start": 8092.82, "end": 8092.82, "probability": 0.3017 }, { "start": 8093.02, "end": 8093.82, "probability": 0.8008 }, { "start": 8094.5, "end": 8095.08, "probability": 0.915 }, { "start": 8098.76, "end": 8099.36, "probability": 0.3994 }, { "start": 8099.4, "end": 8099.84, "probability": 0.7056 }, { "start": 8099.92, "end": 8100.58, "probability": 0.6722 }, { "start": 8100.74, "end": 8101.3, "probability": 0.8084 }, { "start": 8101.36, "end": 8101.98, "probability": 0.9398 }, { "start": 8102.62, "end": 8103.7, "probability": 0.8941 }, { "start": 8104.2, "end": 8106.92, "probability": 0.9661 }, { "start": 8107.72, "end": 8110.28, "probability": 0.9937 }, { "start": 8112.22, "end": 8116.86, "probability": 0.967 }, { "start": 8118.52, "end": 8120.54, "probability": 0.9709 }, { "start": 8122.06, "end": 8124.84, "probability": 0.877 }, { "start": 8125.66, "end": 8127.56, "probability": 0.976 }, { "start": 8129.16, "end": 8130.68, "probability": 0.885 }, { "start": 8132.08, "end": 8133.1, "probability": 0.7562 }, { "start": 8133.82, "end": 8135.48, "probability": 0.9905 }, { "start": 8136.72, "end": 8138.72, "probability": 0.9941 }, { "start": 8140.36, "end": 8143.3, "probability": 0.5667 }, { "start": 8145.46, "end": 8147.56, "probability": 0.9906 }, { "start": 8148.66, "end": 8149.38, "probability": 0.9509 }, { "start": 8150.58, "end": 8153.26, "probability": 0.984 }, { "start": 8154.1, "end": 8156.47, "probability": 0.9864 }, { "start": 8157.1, "end": 8158.03, "probability": 0.8936 }, { "start": 8159.44, "end": 8161.56, "probability": 0.7417 }, { "start": 8162.44, "end": 8164.58, "probability": 0.8538 }, { "start": 8165.14, "end": 8168.12, "probability": 0.9882 }, { "start": 8169.34, "end": 8170.14, "probability": 0.8111 }, { "start": 8171.5, "end": 8175.62, "probability": 0.8273 }, { "start": 8176.3, "end": 8181.3, "probability": 0.9985 }, { "start": 8182.3, "end": 8184.08, "probability": 0.992 }, { "start": 8185.44, "end": 8187.3, "probability": 0.9961 }, { "start": 8187.96, "end": 8189.62, "probability": 0.9148 }, { "start": 8190.04, "end": 8192.96, "probability": 0.9875 }, { "start": 8193.62, "end": 8197.18, "probability": 0.9356 }, { "start": 8197.76, "end": 8202.18, "probability": 0.9976 }, { "start": 8202.52, "end": 8208.99, "probability": 0.9631 }, { "start": 8209.0, "end": 8214.48, "probability": 0.9963 }, { "start": 8215.0, "end": 8216.04, "probability": 0.789 }, { "start": 8217.02, "end": 8217.98, "probability": 0.9243 }, { "start": 8218.78, "end": 8223.14, "probability": 0.9883 }, { "start": 8223.24, "end": 8226.38, "probability": 0.9987 }, { "start": 8227.02, "end": 8230.08, "probability": 0.9758 }, { "start": 8230.88, "end": 8231.26, "probability": 0.7887 }, { "start": 8231.78, "end": 8237.8, "probability": 0.9849 }, { "start": 8238.6, "end": 8243.2, "probability": 0.9614 }, { "start": 8243.24, "end": 8248.08, "probability": 0.9964 }, { "start": 8248.92, "end": 8249.3, "probability": 0.4291 }, { "start": 8250.28, "end": 8255.56, "probability": 0.9979 }, { "start": 8256.54, "end": 8262.08, "probability": 0.9775 }, { "start": 8263.34, "end": 8264.36, "probability": 0.8584 }, { "start": 8264.98, "end": 8265.98, "probability": 0.5214 }, { "start": 8266.86, "end": 8268.98, "probability": 0.8975 }, { "start": 8269.94, "end": 8272.06, "probability": 0.7182 }, { "start": 8272.92, "end": 8273.83, "probability": 0.9919 }, { "start": 8275.02, "end": 8281.44, "probability": 0.9935 }, { "start": 8281.44, "end": 8288.14, "probability": 0.9982 }, { "start": 8288.14, "end": 8295.02, "probability": 0.9995 }, { "start": 8295.6, "end": 8301.04, "probability": 0.9941 }, { "start": 8301.04, "end": 8305.74, "probability": 0.9995 }, { "start": 8306.76, "end": 8308.08, "probability": 0.8848 }, { "start": 8308.76, "end": 8312.52, "probability": 0.9384 }, { "start": 8313.08, "end": 8317.76, "probability": 0.9079 }, { "start": 8318.42, "end": 8320.64, "probability": 0.9875 }, { "start": 8321.66, "end": 8323.06, "probability": 0.9661 }, { "start": 8323.72, "end": 8325.56, "probability": 0.9938 }, { "start": 8326.16, "end": 8327.36, "probability": 0.8546 }, { "start": 8328.28, "end": 8329.66, "probability": 0.8981 }, { "start": 8330.44, "end": 8333.78, "probability": 0.989 }, { "start": 8337.22, "end": 8339.58, "probability": 0.8403 }, { "start": 8340.5, "end": 8343.74, "probability": 0.9609 }, { "start": 8351.24, "end": 8352.92, "probability": 0.7045 }, { "start": 8355.88, "end": 8359.2, "probability": 0.9099 }, { "start": 8366.88, "end": 8367.64, "probability": 0.6522 }, { "start": 8369.81, "end": 8371.1, "probability": 0.8607 }, { "start": 8372.12, "end": 8372.52, "probability": 0.8128 }, { "start": 8373.26, "end": 8377.34, "probability": 0.999 }, { "start": 8378.26, "end": 8379.32, "probability": 0.6216 }, { "start": 8380.12, "end": 8383.88, "probability": 0.9993 }, { "start": 8384.2, "end": 8384.38, "probability": 0.571 }, { "start": 8386.18, "end": 8388.52, "probability": 0.6667 }, { "start": 8388.84, "end": 8391.52, "probability": 0.6608 }, { "start": 8407.0, "end": 8407.28, "probability": 0.5274 }, { "start": 8407.28, "end": 8409.82, "probability": 0.632 }, { "start": 8411.11, "end": 8413.02, "probability": 0.8052 }, { "start": 8424.58, "end": 8424.74, "probability": 0.3736 }, { "start": 8424.76, "end": 8425.55, "probability": 0.6366 }, { "start": 8438.6, "end": 8439.02, "probability": 0.7592 }, { "start": 8454.2, "end": 8454.5, "probability": 0.3363 }, { "start": 8455.32, "end": 8460.14, "probability": 0.4733 }, { "start": 8463.26, "end": 8464.2, "probability": 0.6983 }, { "start": 8465.26, "end": 8465.8, "probability": 0.8503 }, { "start": 8468.0, "end": 8474.72, "probability": 0.9784 }, { "start": 8476.22, "end": 8476.54, "probability": 0.8038 }, { "start": 8477.42, "end": 8478.72, "probability": 0.9804 }, { "start": 8479.44, "end": 8479.78, "probability": 0.9102 }, { "start": 8480.52, "end": 8482.92, "probability": 0.9837 }, { "start": 8483.72, "end": 8484.06, "probability": 0.7719 }, { "start": 8484.68, "end": 8489.26, "probability": 0.9628 }, { "start": 8489.94, "end": 8492.04, "probability": 0.9889 }, { "start": 8493.72, "end": 8495.84, "probability": 0.9324 }, { "start": 8497.46, "end": 8503.24, "probability": 0.995 }, { "start": 8503.24, "end": 8507.5, "probability": 0.9902 }, { "start": 8508.74, "end": 8512.38, "probability": 0.7536 }, { "start": 8513.6, "end": 8514.28, "probability": 0.9995 }, { "start": 8514.9, "end": 8516.48, "probability": 0.9857 }, { "start": 8517.56, "end": 8523.24, "probability": 0.9622 }, { "start": 8524.36, "end": 8528.94, "probability": 0.9948 }, { "start": 8529.36, "end": 8531.36, "probability": 0.6815 }, { "start": 8532.6, "end": 8533.46, "probability": 0.901 }, { "start": 8534.88, "end": 8537.42, "probability": 0.3826 }, { "start": 8537.42, "end": 8537.62, "probability": 0.3189 }, { "start": 8538.32, "end": 8539.3, "probability": 0.7877 }, { "start": 8541.06, "end": 8543.02, "probability": 0.998 }, { "start": 8544.9, "end": 8545.48, "probability": 0.6677 }, { "start": 8545.74, "end": 8545.74, "probability": 0.6441 }, { "start": 8546.16, "end": 8548.66, "probability": 0.9974 }, { "start": 8550.0, "end": 8552.74, "probability": 0.9691 }, { "start": 8553.52, "end": 8557.48, "probability": 0.9897 }, { "start": 8558.42, "end": 8559.16, "probability": 0.8739 }, { "start": 8559.82, "end": 8563.56, "probability": 0.9995 }, { "start": 8563.68, "end": 8566.3, "probability": 0.9959 }, { "start": 8567.32, "end": 8567.94, "probability": 0.8511 }, { "start": 8568.56, "end": 8570.8, "probability": 0.9546 }, { "start": 8571.6, "end": 8574.44, "probability": 0.7753 }, { "start": 8576.2, "end": 8576.98, "probability": 0.9995 }, { "start": 8578.18, "end": 8579.8, "probability": 0.9739 }, { "start": 8581.08, "end": 8585.98, "probability": 0.9974 }, { "start": 8587.32, "end": 8590.6, "probability": 0.9569 }, { "start": 8591.8, "end": 8597.54, "probability": 0.9977 }, { "start": 8598.28, "end": 8599.66, "probability": 0.9868 }, { "start": 8601.12, "end": 8604.76, "probability": 0.9856 }, { "start": 8605.56, "end": 8610.82, "probability": 0.9828 }, { "start": 8611.88, "end": 8613.4, "probability": 0.9722 }, { "start": 8614.42, "end": 8615.1, "probability": 0.7141 }, { "start": 8615.82, "end": 8616.82, "probability": 0.9905 }, { "start": 8617.44, "end": 8619.14, "probability": 0.9811 }, { "start": 8620.18, "end": 8621.84, "probability": 0.9802 }, { "start": 8622.36, "end": 8623.82, "probability": 0.9775 }, { "start": 8624.32, "end": 8627.8, "probability": 0.9971 }, { "start": 8628.59, "end": 8633.12, "probability": 0.9715 }, { "start": 8634.42, "end": 8635.66, "probability": 0.9102 }, { "start": 8636.5, "end": 8637.22, "probability": 0.9012 }, { "start": 8637.9, "end": 8642.58, "probability": 0.9967 }, { "start": 8643.57, "end": 8645.04, "probability": 0.9365 }, { "start": 8645.14, "end": 8647.1, "probability": 0.9095 }, { "start": 8647.76, "end": 8650.26, "probability": 0.9993 }, { "start": 8651.1, "end": 8653.74, "probability": 0.8571 }, { "start": 8654.52, "end": 8656.64, "probability": 0.9912 }, { "start": 8657.52, "end": 8660.72, "probability": 0.9897 }, { "start": 8661.6, "end": 8663.52, "probability": 0.9018 }, { "start": 8664.62, "end": 8665.98, "probability": 0.9845 }, { "start": 8666.98, "end": 8671.4, "probability": 0.9982 }, { "start": 8671.9, "end": 8674.34, "probability": 0.991 }, { "start": 8675.34, "end": 8680.04, "probability": 0.9951 }, { "start": 8681.2, "end": 8682.72, "probability": 0.9971 }, { "start": 8683.32, "end": 8684.42, "probability": 0.9879 }, { "start": 8685.14, "end": 8687.86, "probability": 0.9916 }, { "start": 8689.1, "end": 8690.56, "probability": 0.9904 }, { "start": 8691.42, "end": 8694.06, "probability": 0.952 }, { "start": 8694.18, "end": 8694.72, "probability": 0.9648 }, { "start": 8694.82, "end": 8695.8, "probability": 0.9331 }, { "start": 8696.76, "end": 8697.84, "probability": 0.9629 }, { "start": 8698.72, "end": 8700.26, "probability": 0.9985 }, { "start": 8700.8, "end": 8701.26, "probability": 0.8772 }, { "start": 8701.84, "end": 8704.02, "probability": 0.9994 }, { "start": 8704.58, "end": 8705.66, "probability": 0.6796 }, { "start": 8706.6, "end": 8709.24, "probability": 0.9809 }, { "start": 8710.3, "end": 8710.9, "probability": 0.6537 }, { "start": 8711.84, "end": 8713.38, "probability": 0.9819 }, { "start": 8713.9, "end": 8714.74, "probability": 0.9884 }, { "start": 8716.28, "end": 8717.28, "probability": 0.9774 }, { "start": 8717.52, "end": 8719.42, "probability": 0.9897 }, { "start": 8720.6, "end": 8721.52, "probability": 0.826 }, { "start": 8722.52, "end": 8724.42, "probability": 0.9938 }, { "start": 8725.6, "end": 8727.2, "probability": 0.902 }, { "start": 8728.26, "end": 8729.2, "probability": 0.8808 }, { "start": 8730.0, "end": 8736.0, "probability": 0.9833 }, { "start": 8737.16, "end": 8738.22, "probability": 0.9967 }, { "start": 8738.98, "end": 8740.4, "probability": 0.923 }, { "start": 8741.46, "end": 8743.94, "probability": 0.991 }, { "start": 8744.88, "end": 8748.34, "probability": 0.9273 }, { "start": 8749.42, "end": 8750.16, "probability": 0.9788 }, { "start": 8750.86, "end": 8757.8, "probability": 0.9928 }, { "start": 8757.88, "end": 8758.94, "probability": 0.9487 }, { "start": 8759.74, "end": 8763.08, "probability": 0.9818 }, { "start": 8763.88, "end": 8766.6, "probability": 0.948 }, { "start": 8767.68, "end": 8768.58, "probability": 0.8163 }, { "start": 8769.8, "end": 8770.72, "probability": 0.9423 }, { "start": 8770.84, "end": 8771.32, "probability": 0.9157 }, { "start": 8771.6, "end": 8773.16, "probability": 0.9677 }, { "start": 8774.16, "end": 8774.86, "probability": 0.8911 }, { "start": 8775.44, "end": 8776.16, "probability": 0.9907 }, { "start": 8776.2, "end": 8777.06, "probability": 0.9749 }, { "start": 8777.08, "end": 8778.2, "probability": 0.9302 }, { "start": 8779.08, "end": 8779.08, "probability": 0.0872 }, { "start": 8779.08, "end": 8780.04, "probability": 0.7546 }, { "start": 8780.9, "end": 8781.38, "probability": 0.3707 }, { "start": 8781.9, "end": 8783.18, "probability": 0.9811 }, { "start": 8783.2, "end": 8784.32, "probability": 0.7207 }, { "start": 8784.7, "end": 8786.3, "probability": 0.6669 }, { "start": 8786.42, "end": 8787.79, "probability": 0.8291 }, { "start": 8788.32, "end": 8791.0, "probability": 0.9701 }, { "start": 8791.78, "end": 8795.54, "probability": 0.9744 }, { "start": 8796.3, "end": 8800.14, "probability": 0.9805 }, { "start": 8800.94, "end": 8801.36, "probability": 0.9601 }, { "start": 8802.26, "end": 8804.34, "probability": 0.8747 }, { "start": 8805.9, "end": 8808.12, "probability": 0.9885 }, { "start": 8808.96, "end": 8809.78, "probability": 0.8456 }, { "start": 8810.38, "end": 8811.42, "probability": 0.8296 }, { "start": 8812.2, "end": 8815.52, "probability": 0.9883 }, { "start": 8816.7, "end": 8817.96, "probability": 0.9515 }, { "start": 8818.66, "end": 8820.4, "probability": 0.9731 }, { "start": 8822.64, "end": 8824.26, "probability": 0.9473 }, { "start": 8824.36, "end": 8824.68, "probability": 0.9674 }, { "start": 8824.78, "end": 8827.46, "probability": 0.9951 }, { "start": 8828.68, "end": 8830.28, "probability": 0.9993 }, { "start": 8833.08, "end": 8837.5, "probability": 0.7664 }, { "start": 8837.64, "end": 8837.9, "probability": 0.8242 }, { "start": 8838.54, "end": 8839.18, "probability": 0.6398 }, { "start": 8840.36, "end": 8841.98, "probability": 0.9938 }, { "start": 8842.62, "end": 8844.4, "probability": 0.9952 }, { "start": 8845.14, "end": 8850.28, "probability": 0.7986 }, { "start": 8850.5, "end": 8851.16, "probability": 0.7476 }, { "start": 8851.32, "end": 8851.6, "probability": 0.5039 }, { "start": 8852.86, "end": 8855.54, "probability": 0.9961 }, { "start": 8856.14, "end": 8858.94, "probability": 0.8726 }, { "start": 8859.72, "end": 8861.02, "probability": 0.9238 }, { "start": 8861.22, "end": 8863.57, "probability": 0.938 }, { "start": 8864.46, "end": 8866.16, "probability": 0.9567 }, { "start": 8866.54, "end": 8867.52, "probability": 0.8542 }, { "start": 8867.8, "end": 8869.18, "probability": 0.9447 }, { "start": 8869.76, "end": 8872.42, "probability": 0.9816 }, { "start": 8873.36, "end": 8874.52, "probability": 0.9474 }, { "start": 8875.12, "end": 8877.28, "probability": 0.9933 }, { "start": 8877.8, "end": 8879.94, "probability": 0.9939 }, { "start": 8880.3, "end": 8881.14, "probability": 0.9689 }, { "start": 8881.56, "end": 8884.14, "probability": 0.9499 }, { "start": 8884.66, "end": 8886.08, "probability": 0.9862 }, { "start": 8886.64, "end": 8888.8, "probability": 0.99 }, { "start": 8889.12, "end": 8891.02, "probability": 0.9989 }, { "start": 8891.42, "end": 8893.56, "probability": 0.9985 }, { "start": 8894.1, "end": 8895.2, "probability": 0.9844 }, { "start": 8896.36, "end": 8897.11, "probability": 0.9109 }, { "start": 8898.28, "end": 8899.74, "probability": 0.9003 }, { "start": 8899.86, "end": 8900.3, "probability": 0.7236 }, { "start": 8901.1, "end": 8901.86, "probability": 0.8608 }, { "start": 8903.92, "end": 8904.48, "probability": 0.6732 }, { "start": 8906.24, "end": 8907.94, "probability": 0.9134 }, { "start": 8909.04, "end": 8910.84, "probability": 0.9967 }, { "start": 8911.46, "end": 8912.34, "probability": 0.988 }, { "start": 8912.98, "end": 8914.92, "probability": 0.9917 }, { "start": 8915.84, "end": 8919.8, "probability": 0.987 }, { "start": 8920.54, "end": 8922.08, "probability": 0.894 }, { "start": 8923.26, "end": 8924.38, "probability": 0.6661 }, { "start": 8925.12, "end": 8927.48, "probability": 0.999 }, { "start": 8928.42, "end": 8931.78, "probability": 0.9757 }, { "start": 8932.88, "end": 8934.14, "probability": 0.9717 }, { "start": 8935.16, "end": 8936.14, "probability": 0.6517 }, { "start": 8937.56, "end": 8940.48, "probability": 0.9964 }, { "start": 8941.66, "end": 8944.08, "probability": 0.9409 }, { "start": 8944.94, "end": 8945.32, "probability": 0.7488 }, { "start": 8946.56, "end": 8949.04, "probability": 0.9637 }, { "start": 8950.1, "end": 8952.08, "probability": 0.6281 }, { "start": 8953.1, "end": 8954.12, "probability": 0.7711 }, { "start": 8955.58, "end": 8955.96, "probability": 0.9104 }, { "start": 8956.88, "end": 8960.5, "probability": 0.9337 }, { "start": 8962.0, "end": 8965.12, "probability": 0.9888 }, { "start": 8965.9, "end": 8967.32, "probability": 0.8845 }, { "start": 8967.82, "end": 8968.6, "probability": 0.9856 }, { "start": 8968.72, "end": 8969.68, "probability": 0.9077 }, { "start": 8970.62, "end": 8972.2, "probability": 0.929 }, { "start": 8972.86, "end": 8974.0, "probability": 0.8678 }, { "start": 8974.86, "end": 8977.7, "probability": 0.9869 }, { "start": 8979.44, "end": 8981.22, "probability": 0.9855 }, { "start": 8981.92, "end": 8982.88, "probability": 0.9781 }, { "start": 8983.78, "end": 8984.3, "probability": 0.9355 }, { "start": 8995.7, "end": 8996.86, "probability": 0.0679 }, { "start": 8996.86, "end": 8997.1, "probability": 0.0864 }, { "start": 8997.1, "end": 8999.37, "probability": 0.4216 }, { "start": 8999.4, "end": 9000.0, "probability": 0.5902 }, { "start": 9001.22, "end": 9006.62, "probability": 0.9708 }, { "start": 9007.48, "end": 9009.0, "probability": 0.939 }, { "start": 9009.16, "end": 9010.38, "probability": 0.8386 }, { "start": 9011.56, "end": 9012.96, "probability": 0.843 }, { "start": 9013.7, "end": 9015.4, "probability": 0.7703 }, { "start": 9016.24, "end": 9019.6, "probability": 0.8862 }, { "start": 9020.16, "end": 9023.82, "probability": 0.619 }, { "start": 9023.9, "end": 9024.18, "probability": 0.6732 }, { "start": 9025.56, "end": 9025.84, "probability": 0.6406 }, { "start": 9026.54, "end": 9028.78, "probability": 0.8908 }, { "start": 9030.02, "end": 9032.08, "probability": 0.9992 }, { "start": 9033.04, "end": 9034.82, "probability": 0.9693 }, { "start": 9035.96, "end": 9038.54, "probability": 0.8532 }, { "start": 9039.64, "end": 9041.8, "probability": 0.9924 }, { "start": 9042.9, "end": 9043.38, "probability": 0.8129 }, { "start": 9044.08, "end": 9044.62, "probability": 0.7356 }, { "start": 9044.84, "end": 9047.58, "probability": 0.9097 }, { "start": 9048.38, "end": 9049.62, "probability": 0.9589 }, { "start": 9050.64, "end": 9051.26, "probability": 0.7109 }, { "start": 9051.96, "end": 9054.96, "probability": 0.9982 }, { "start": 9055.7, "end": 9056.88, "probability": 0.949 }, { "start": 9057.5, "end": 9059.08, "probability": 0.9908 }, { "start": 9060.26, "end": 9063.54, "probability": 0.9434 }, { "start": 9064.46, "end": 9066.02, "probability": 0.8796 }, { "start": 9067.5, "end": 9069.12, "probability": 0.9619 }, { "start": 9070.3, "end": 9071.46, "probability": 0.707 }, { "start": 9072.5, "end": 9074.18, "probability": 0.9513 }, { "start": 9075.42, "end": 9076.58, "probability": 0.9958 }, { "start": 9077.32, "end": 9078.26, "probability": 0.9917 }, { "start": 9079.06, "end": 9081.16, "probability": 0.9971 }, { "start": 9081.86, "end": 9084.46, "probability": 0.92 }, { "start": 9085.3, "end": 9086.66, "probability": 0.8684 }, { "start": 9087.46, "end": 9088.04, "probability": 0.813 }, { "start": 9089.06, "end": 9090.34, "probability": 0.8096 }, { "start": 9091.58, "end": 9092.86, "probability": 0.9922 }, { "start": 9093.78, "end": 9094.44, "probability": 0.9221 }, { "start": 9094.64, "end": 9096.44, "probability": 0.8005 }, { "start": 9097.4, "end": 9098.7, "probability": 0.8923 }, { "start": 9099.44, "end": 9103.68, "probability": 0.9973 }, { "start": 9104.36, "end": 9105.88, "probability": 0.9035 }, { "start": 9105.94, "end": 9108.0, "probability": 0.9971 }, { "start": 9108.36, "end": 9109.0, "probability": 0.6854 }, { "start": 9109.88, "end": 9112.5, "probability": 0.9976 }, { "start": 9113.24, "end": 9115.54, "probability": 0.9765 }, { "start": 9116.46, "end": 9117.78, "probability": 0.9987 }, { "start": 9118.36, "end": 9120.78, "probability": 0.9964 }, { "start": 9121.48, "end": 9122.7, "probability": 0.9901 }, { "start": 9122.78, "end": 9124.16, "probability": 0.9895 }, { "start": 9124.98, "end": 9126.46, "probability": 0.9426 }, { "start": 9127.7, "end": 9129.44, "probability": 0.9585 }, { "start": 9130.02, "end": 9132.38, "probability": 0.6288 }, { "start": 9133.48, "end": 9133.62, "probability": 0.3858 }, { "start": 9133.62, "end": 9135.02, "probability": 0.8323 }, { "start": 9135.98, "end": 9138.6, "probability": 0.4914 }, { "start": 9138.6, "end": 9142.77, "probability": 0.5728 }, { "start": 9144.46, "end": 9145.12, "probability": 0.3043 }, { "start": 9146.0, "end": 9147.2, "probability": 0.8212 }, { "start": 9148.46, "end": 9149.7, "probability": 0.9956 }, { "start": 9150.62, "end": 9152.3, "probability": 0.9894 }, { "start": 9152.3, "end": 9155.2, "probability": 0.9949 }, { "start": 9155.98, "end": 9158.98, "probability": 0.9211 }, { "start": 9160.04, "end": 9160.78, "probability": 0.9372 }, { "start": 9161.78, "end": 9162.36, "probability": 0.9066 }, { "start": 9163.2, "end": 9164.88, "probability": 0.9565 }, { "start": 9165.66, "end": 9168.14, "probability": 0.9751 }, { "start": 9168.26, "end": 9171.0, "probability": 0.8936 }, { "start": 9171.7, "end": 9172.84, "probability": 0.6648 }, { "start": 9173.78, "end": 9176.34, "probability": 0.9944 }, { "start": 9176.34, "end": 9179.02, "probability": 0.9941 }, { "start": 9180.04, "end": 9181.12, "probability": 0.9432 }, { "start": 9182.28, "end": 9183.38, "probability": 0.9618 }, { "start": 9183.94, "end": 9186.26, "probability": 0.9424 }, { "start": 9188.54, "end": 9189.97, "probability": 0.1623 }, { "start": 9190.44, "end": 9190.54, "probability": 0.1266 }, { "start": 9190.54, "end": 9191.1, "probability": 0.0675 }, { "start": 9191.48, "end": 9192.24, "probability": 0.3093 }, { "start": 9192.88, "end": 9194.66, "probability": 0.5938 }, { "start": 9195.24, "end": 9197.2, "probability": 0.9409 }, { "start": 9197.46, "end": 9199.84, "probability": 0.9311 }, { "start": 9200.06, "end": 9202.56, "probability": 0.851 }, { "start": 9203.68, "end": 9206.16, "probability": 0.4258 }, { "start": 9206.74, "end": 9212.9, "probability": 0.7397 }, { "start": 9213.08, "end": 9214.44, "probability": 0.7905 }, { "start": 9215.52, "end": 9216.58, "probability": 0.6815 }, { "start": 9217.42, "end": 9217.42, "probability": 0.8298 }, { "start": 9218.32, "end": 9219.54, "probability": 0.938 }, { "start": 9219.7, "end": 9220.46, "probability": 0.8433 }, { "start": 9220.94, "end": 9222.46, "probability": 0.8927 }, { "start": 9223.58, "end": 9225.5, "probability": 0.9766 }, { "start": 9226.16, "end": 9228.02, "probability": 0.9741 }, { "start": 9228.46, "end": 9230.06, "probability": 0.1237 }, { "start": 9230.62, "end": 9231.02, "probability": 0.4188 }, { "start": 9231.04, "end": 9231.22, "probability": 0.2656 }, { "start": 9231.22, "end": 9232.08, "probability": 0.6541 }, { "start": 9232.08, "end": 9232.12, "probability": 0.7007 }, { "start": 9232.2, "end": 9232.4, "probability": 0.8346 }, { "start": 9232.54, "end": 9233.8, "probability": 0.895 }, { "start": 9236.47, "end": 9237.04, "probability": 0.0698 }, { "start": 9237.04, "end": 9237.04, "probability": 0.1416 }, { "start": 9237.04, "end": 9237.53, "probability": 0.2822 }, { "start": 9238.34, "end": 9241.32, "probability": 0.1283 }, { "start": 9242.12, "end": 9244.48, "probability": 0.9937 }, { "start": 9244.48, "end": 9247.96, "probability": 0.8014 }, { "start": 9248.58, "end": 9249.14, "probability": 0.4643 }, { "start": 9249.98, "end": 9250.32, "probability": 0.931 }, { "start": 9251.0, "end": 9251.92, "probability": 0.6667 }, { "start": 9252.12, "end": 9253.36, "probability": 0.6612 }, { "start": 9253.94, "end": 9255.52, "probability": 0.8783 }, { "start": 9256.82, "end": 9258.44, "probability": 0.8497 }, { "start": 9259.36, "end": 9260.16, "probability": 0.1159 }, { "start": 9261.42, "end": 9262.12, "probability": 0.3819 }, { "start": 9262.72, "end": 9265.2, "probability": 0.6816 }, { "start": 9266.28, "end": 9269.9, "probability": 0.9961 }, { "start": 9270.66, "end": 9270.72, "probability": 0.0133 }, { "start": 9270.72, "end": 9275.0, "probability": 0.9446 }, { "start": 9275.82, "end": 9277.86, "probability": 0.9058 }, { "start": 9278.38, "end": 9280.8, "probability": 0.8232 }, { "start": 9281.4, "end": 9282.46, "probability": 0.9897 }, { "start": 9283.18, "end": 9284.18, "probability": 0.9537 }, { "start": 9286.02, "end": 9287.32, "probability": 0.9964 }, { "start": 9288.18, "end": 9288.76, "probability": 0.2116 }, { "start": 9289.84, "end": 9292.32, "probability": 0.9906 }, { "start": 9293.12, "end": 9294.74, "probability": 0.9977 }, { "start": 9295.28, "end": 9297.44, "probability": 0.8704 }, { "start": 9298.24, "end": 9298.56, "probability": 0.4178 }, { "start": 9298.93, "end": 9300.36, "probability": 0.7275 }, { "start": 9300.82, "end": 9302.54, "probability": 0.899 }, { "start": 9302.88, "end": 9305.86, "probability": 0.9832 }, { "start": 9305.94, "end": 9308.7, "probability": 0.981 }, { "start": 9309.88, "end": 9313.08, "probability": 0.8029 }, { "start": 9316.8, "end": 9317.6, "probability": 0.091 }, { "start": 9318.48, "end": 9319.32, "probability": 0.2798 }, { "start": 9319.32, "end": 9321.12, "probability": 0.398 }, { "start": 9321.52, "end": 9323.96, "probability": 0.8971 }, { "start": 9325.0, "end": 9325.0, "probability": 0.0263 }, { "start": 9325.0, "end": 9328.84, "probability": 0.3606 }, { "start": 9330.08, "end": 9332.08, "probability": 0.6426 }, { "start": 9332.18, "end": 9335.1, "probability": 0.8998 }, { "start": 9335.86, "end": 9338.0, "probability": 0.9495 }, { "start": 9338.6, "end": 9341.24, "probability": 0.9891 }, { "start": 9342.32, "end": 9343.4, "probability": 0.9062 }, { "start": 9343.82, "end": 9344.24, "probability": 0.8937 }, { "start": 9344.48, "end": 9346.56, "probability": 0.9956 }, { "start": 9347.26, "end": 9348.32, "probability": 0.8903 }, { "start": 9349.6, "end": 9350.34, "probability": 0.9037 }, { "start": 9351.32, "end": 9354.22, "probability": 0.9852 }, { "start": 9355.14, "end": 9357.24, "probability": 0.9395 }, { "start": 9357.9, "end": 9361.82, "probability": 0.9954 }, { "start": 9361.88, "end": 9365.66, "probability": 0.9852 }, { "start": 9366.44, "end": 9368.36, "probability": 0.9496 }, { "start": 9369.02, "end": 9376.24, "probability": 0.9982 }, { "start": 9377.34, "end": 9378.32, "probability": 0.5067 }, { "start": 9379.06, "end": 9380.0, "probability": 0.8865 }, { "start": 9380.62, "end": 9381.54, "probability": 0.8132 }, { "start": 9382.6, "end": 9386.06, "probability": 0.9929 }, { "start": 9387.08, "end": 9388.34, "probability": 0.9733 }, { "start": 9389.16, "end": 9389.7, "probability": 0.7693 }, { "start": 9390.92, "end": 9391.92, "probability": 0.8854 }, { "start": 9393.82, "end": 9395.2, "probability": 0.9654 }, { "start": 9395.5, "end": 9398.04, "probability": 0.2326 }, { "start": 9398.04, "end": 9398.04, "probability": 0.2311 }, { "start": 9398.04, "end": 9398.32, "probability": 0.2424 }, { "start": 9398.32, "end": 9399.72, "probability": 0.884 }, { "start": 9400.68, "end": 9402.22, "probability": 0.9024 }, { "start": 9403.14, "end": 9404.07, "probability": 0.9845 }, { "start": 9404.84, "end": 9409.46, "probability": 0.9888 }, { "start": 9409.62, "end": 9409.9, "probability": 0.6597 }, { "start": 9410.7, "end": 9412.36, "probability": 0.9487 }, { "start": 9413.32, "end": 9414.38, "probability": 0.873 }, { "start": 9414.5, "end": 9415.54, "probability": 0.9149 }, { "start": 9415.66, "end": 9419.39, "probability": 0.9333 }, { "start": 9419.78, "end": 9420.54, "probability": 0.8933 }, { "start": 9421.16, "end": 9421.98, "probability": 0.8755 }, { "start": 9422.84, "end": 9423.46, "probability": 0.9888 }, { "start": 9424.04, "end": 9424.86, "probability": 0.7265 }, { "start": 9425.94, "end": 9427.08, "probability": 0.6878 }, { "start": 9427.92, "end": 9428.92, "probability": 0.924 }, { "start": 9429.86, "end": 9432.98, "probability": 0.99 }, { "start": 9433.44, "end": 9434.42, "probability": 0.9297 }, { "start": 9435.32, "end": 9436.36, "probability": 0.9854 }, { "start": 9437.74, "end": 9442.46, "probability": 0.9443 }, { "start": 9442.7, "end": 9444.82, "probability": 0.7735 }, { "start": 9445.02, "end": 9446.06, "probability": 0.7094 }, { "start": 9447.44, "end": 9449.42, "probability": 0.9222 }, { "start": 9450.32, "end": 9453.88, "probability": 0.7977 }, { "start": 9453.98, "end": 9454.2, "probability": 0.8977 }, { "start": 9454.22, "end": 9455.38, "probability": 0.6576 }, { "start": 9456.62, "end": 9458.64, "probability": 0.9873 }, { "start": 9459.16, "end": 9459.92, "probability": 0.7645 }, { "start": 9460.04, "end": 9462.74, "probability": 0.8252 }, { "start": 9463.74, "end": 9466.2, "probability": 0.9976 }, { "start": 9467.04, "end": 9468.08, "probability": 0.9854 }, { "start": 9468.82, "end": 9472.54, "probability": 0.9461 }, { "start": 9472.54, "end": 9475.52, "probability": 0.9893 }, { "start": 9477.2, "end": 9479.24, "probability": 0.9995 }, { "start": 9480.18, "end": 9481.66, "probability": 0.9679 }, { "start": 9482.58, "end": 9483.36, "probability": 0.9766 }, { "start": 9483.84, "end": 9484.98, "probability": 0.9557 }, { "start": 9485.24, "end": 9486.66, "probability": 0.9595 }, { "start": 9487.38, "end": 9489.55, "probability": 0.9688 }, { "start": 9490.84, "end": 9493.24, "probability": 0.9985 }, { "start": 9493.94, "end": 9495.04, "probability": 0.999 }, { "start": 9496.0, "end": 9497.18, "probability": 0.7725 }, { "start": 9498.5, "end": 9501.88, "probability": 0.996 }, { "start": 9501.92, "end": 9502.5, "probability": 0.7975 }, { "start": 9502.96, "end": 9503.24, "probability": 0.608 }, { "start": 9503.34, "end": 9504.3, "probability": 0.9707 }, { "start": 9504.94, "end": 9505.56, "probability": 0.9612 }, { "start": 9505.66, "end": 9509.1, "probability": 0.9852 }, { "start": 9509.16, "end": 9510.84, "probability": 0.9492 }, { "start": 9511.56, "end": 9512.2, "probability": 0.8553 }, { "start": 9513.32, "end": 9514.12, "probability": 0.9827 }, { "start": 9515.22, "end": 9516.16, "probability": 0.7648 }, { "start": 9516.4, "end": 9517.42, "probability": 0.8655 }, { "start": 9518.72, "end": 9519.98, "probability": 0.978 }, { "start": 9520.44, "end": 9521.46, "probability": 0.9951 }, { "start": 9522.56, "end": 9522.78, "probability": 0.8065 }, { "start": 9522.84, "end": 9529.24, "probability": 0.9521 }, { "start": 9530.26, "end": 9531.74, "probability": 0.9517 }, { "start": 9532.86, "end": 9534.64, "probability": 0.9785 }, { "start": 9535.66, "end": 9536.96, "probability": 0.9741 }, { "start": 9537.54, "end": 9542.86, "probability": 0.9828 }, { "start": 9542.94, "end": 9546.44, "probability": 0.9823 }, { "start": 9547.46, "end": 9549.52, "probability": 0.8432 }, { "start": 9550.4, "end": 9551.96, "probability": 0.9951 }, { "start": 9552.68, "end": 9553.76, "probability": 0.9976 }, { "start": 9555.04, "end": 9560.51, "probability": 0.9986 }, { "start": 9563.08, "end": 9564.52, "probability": 0.9196 }, { "start": 9564.58, "end": 9565.62, "probability": 0.8678 }, { "start": 9566.12, "end": 9567.38, "probability": 0.9575 }, { "start": 9568.06, "end": 9568.74, "probability": 0.836 }, { "start": 9569.56, "end": 9570.74, "probability": 0.7423 }, { "start": 9571.84, "end": 9572.72, "probability": 0.7869 }, { "start": 9573.58, "end": 9574.74, "probability": 0.9729 }, { "start": 9574.88, "end": 9577.24, "probability": 0.9646 }, { "start": 9577.64, "end": 9579.66, "probability": 0.7753 }, { "start": 9582.1, "end": 9582.98, "probability": 0.9849 }, { "start": 9584.1, "end": 9585.86, "probability": 0.8574 }, { "start": 9586.8, "end": 9587.44, "probability": 0.9888 }, { "start": 9588.34, "end": 9589.24, "probability": 0.8523 }, { "start": 9589.48, "end": 9589.96, "probability": 0.4099 }, { "start": 9590.04, "end": 9591.72, "probability": 0.7039 }, { "start": 9592.84, "end": 9595.56, "probability": 0.519 }, { "start": 9596.2, "end": 9597.98, "probability": 0.7166 }, { "start": 9599.0, "end": 9600.06, "probability": 0.904 }, { "start": 9600.76, "end": 9604.36, "probability": 0.9106 }, { "start": 9605.08, "end": 9608.94, "probability": 0.8143 }, { "start": 9609.52, "end": 9611.1, "probability": 0.9705 }, { "start": 9611.92, "end": 9612.2, "probability": 0.7834 }, { "start": 9615.84, "end": 9618.56, "probability": 0.9536 }, { "start": 9619.48, "end": 9620.32, "probability": 0.6953 }, { "start": 9621.48, "end": 9626.48, "probability": 0.9748 }, { "start": 9628.12, "end": 9628.12, "probability": 0.1391 }, { "start": 9628.12, "end": 9628.9, "probability": 0.7345 }, { "start": 9629.6, "end": 9630.62, "probability": 0.4961 }, { "start": 9630.62, "end": 9633.8, "probability": 0.9856 }, { "start": 9634.7, "end": 9636.12, "probability": 0.9385 }, { "start": 9636.26, "end": 9637.06, "probability": 0.9585 }, { "start": 9645.58, "end": 9648.36, "probability": 0.9838 }, { "start": 9650.74, "end": 9652.46, "probability": 0.6116 }, { "start": 9652.5, "end": 9653.4, "probability": 0.8632 }, { "start": 9654.34, "end": 9660.97, "probability": 0.1315 }, { "start": 9677.78, "end": 9678.2, "probability": 0.1482 }, { "start": 9687.5, "end": 9688.06, "probability": 0.0114 }, { "start": 9690.62, "end": 9691.94, "probability": 0.9159 }, { "start": 9694.46, "end": 9698.82, "probability": 0.8448 }, { "start": 9700.24, "end": 9701.72, "probability": 0.9192 }, { "start": 9702.56, "end": 9703.56, "probability": 0.7304 }, { "start": 9704.7, "end": 9711.2, "probability": 0.9919 }, { "start": 9711.82, "end": 9713.3, "probability": 0.5961 }, { "start": 9714.66, "end": 9716.92, "probability": 0.9861 }, { "start": 9718.28, "end": 9727.02, "probability": 0.8753 }, { "start": 9727.56, "end": 9728.24, "probability": 0.6492 }, { "start": 9729.42, "end": 9735.76, "probability": 0.9831 }, { "start": 9735.96, "end": 9737.28, "probability": 0.1651 }, { "start": 9737.84, "end": 9739.2, "probability": 0.9926 }, { "start": 9740.0, "end": 9744.18, "probability": 0.9139 }, { "start": 9745.34, "end": 9746.64, "probability": 0.8246 }, { "start": 9747.5, "end": 9750.16, "probability": 0.9912 }, { "start": 9750.84, "end": 9752.56, "probability": 0.731 }, { "start": 9753.1, "end": 9754.26, "probability": 0.988 }, { "start": 9755.74, "end": 9759.96, "probability": 0.9099 }, { "start": 9760.46, "end": 9763.3, "probability": 0.9544 }, { "start": 9764.1, "end": 9765.38, "probability": 0.9059 }, { "start": 9766.44, "end": 9768.66, "probability": 0.9618 }, { "start": 9769.68, "end": 9777.88, "probability": 0.9724 }, { "start": 9779.0, "end": 9780.26, "probability": 0.9741 }, { "start": 9781.02, "end": 9782.54, "probability": 0.8422 }, { "start": 9783.4, "end": 9784.98, "probability": 0.9362 }, { "start": 9785.52, "end": 9786.74, "probability": 0.9617 }, { "start": 9787.9, "end": 9788.82, "probability": 0.9801 }, { "start": 9793.92, "end": 9795.66, "probability": 0.9738 }, { "start": 9795.78, "end": 9796.08, "probability": 0.7901 }, { "start": 9819.38, "end": 9820.1, "probability": 0.598 }, { "start": 9822.72, "end": 9823.42, "probability": 0.8111 }, { "start": 9824.3, "end": 9825.68, "probability": 0.9532 }, { "start": 9828.42, "end": 9829.06, "probability": 0.2362 }, { "start": 9831.06, "end": 9832.1, "probability": 0.4818 }, { "start": 9832.62, "end": 9835.5, "probability": 0.7591 }, { "start": 9837.2, "end": 9837.9, "probability": 0.9272 }, { "start": 9839.02, "end": 9840.08, "probability": 0.998 }, { "start": 9841.32, "end": 9842.16, "probability": 0.9955 }, { "start": 9843.06, "end": 9846.74, "probability": 0.9876 }, { "start": 9848.74, "end": 9849.48, "probability": 0.9768 }, { "start": 9850.28, "end": 9851.98, "probability": 0.9834 }, { "start": 9852.68, "end": 9854.06, "probability": 0.8337 }, { "start": 9854.66, "end": 9855.46, "probability": 0.9805 }, { "start": 9857.08, "end": 9859.46, "probability": 0.9775 }, { "start": 9861.2, "end": 9862.56, "probability": 0.9892 }, { "start": 9864.68, "end": 9865.14, "probability": 0.9742 }, { "start": 9865.86, "end": 9869.54, "probability": 0.9951 }, { "start": 9870.52, "end": 9873.46, "probability": 0.8297 }, { "start": 9873.98, "end": 9875.88, "probability": 0.9911 }, { "start": 9876.68, "end": 9877.76, "probability": 0.9722 }, { "start": 9879.08, "end": 9879.82, "probability": 0.6092 }, { "start": 9880.42, "end": 9882.7, "probability": 0.9922 }, { "start": 9882.8, "end": 9883.76, "probability": 0.9838 }, { "start": 9886.4, "end": 9887.3, "probability": 0.8445 }, { "start": 9888.34, "end": 9890.33, "probability": 0.953 }, { "start": 9890.94, "end": 9892.72, "probability": 0.9843 }, { "start": 9893.5, "end": 9896.26, "probability": 0.999 }, { "start": 9896.86, "end": 9899.92, "probability": 0.9945 }, { "start": 9902.6, "end": 9903.06, "probability": 0.8059 }, { "start": 9903.52, "end": 9908.76, "probability": 0.9861 }, { "start": 9910.2, "end": 9912.0, "probability": 0.9856 }, { "start": 9913.1, "end": 9913.64, "probability": 0.9347 }, { "start": 9914.32, "end": 9915.92, "probability": 0.8945 }, { "start": 9917.74, "end": 9918.38, "probability": 0.8241 }, { "start": 9918.92, "end": 9919.7, "probability": 0.8679 }, { "start": 9920.48, "end": 9920.9, "probability": 0.9822 }, { "start": 9922.08, "end": 9922.7, "probability": 0.9639 }, { "start": 9923.36, "end": 9923.98, "probability": 0.6987 }, { "start": 9926.3, "end": 9927.18, "probability": 0.9594 }, { "start": 9927.9, "end": 9929.32, "probability": 0.9527 }, { "start": 9930.64, "end": 9931.12, "probability": 0.9399 }, { "start": 9931.74, "end": 9933.82, "probability": 0.366 }, { "start": 9934.36, "end": 9935.92, "probability": 0.882 }, { "start": 9936.96, "end": 9938.58, "probability": 0.9675 }, { "start": 9939.08, "end": 9944.02, "probability": 0.952 }, { "start": 9944.58, "end": 9946.7, "probability": 0.7748 }, { "start": 9946.78, "end": 9947.78, "probability": 0.9214 }, { "start": 9949.6, "end": 9950.76, "probability": 0.9277 }, { "start": 9951.92, "end": 9955.64, "probability": 0.8874 }, { "start": 9956.18, "end": 9957.66, "probability": 0.9365 }, { "start": 9958.32, "end": 9960.04, "probability": 0.9816 }, { "start": 9961.7, "end": 9963.04, "probability": 0.7093 }, { "start": 9963.18, "end": 9965.56, "probability": 0.8906 }, { "start": 9966.42, "end": 9967.34, "probability": 0.7523 }, { "start": 9968.16, "end": 9969.62, "probability": 0.9649 }, { "start": 9972.16, "end": 9973.28, "probability": 0.8577 }, { "start": 9974.06, "end": 9976.36, "probability": 0.9661 }, { "start": 9978.48, "end": 9983.28, "probability": 0.7743 }, { "start": 9983.48, "end": 9984.52, "probability": 0.8022 }, { "start": 9984.74, "end": 9985.54, "probability": 0.9458 }, { "start": 9985.98, "end": 9989.5, "probability": 0.9521 }, { "start": 9989.98, "end": 9993.56, "probability": 0.8017 }, { "start": 9994.56, "end": 9995.55, "probability": 0.811 }, { "start": 9997.56, "end": 9999.1, "probability": 0.9978 }, { "start": 9999.68, "end": 10001.14, "probability": 0.8821 }, { "start": 10001.92, "end": 10002.7, "probability": 0.7356 }, { "start": 10003.46, "end": 10004.62, "probability": 0.8851 }, { "start": 10005.5, "end": 10010.2, "probability": 0.9848 }, { "start": 10011.0, "end": 10012.86, "probability": 0.9529 }, { "start": 10013.86, "end": 10015.52, "probability": 0.9727 }, { "start": 10017.62, "end": 10020.24, "probability": 0.9579 }, { "start": 10020.24, "end": 10023.34, "probability": 0.8988 }, { "start": 10024.94, "end": 10026.08, "probability": 0.9398 }, { "start": 10026.64, "end": 10030.14, "probability": 0.946 }, { "start": 10031.34, "end": 10034.54, "probability": 0.9834 }, { "start": 10035.38, "end": 10036.6, "probability": 0.8741 }, { "start": 10037.16, "end": 10040.52, "probability": 0.6558 }, { "start": 10041.04, "end": 10043.62, "probability": 0.9064 }, { "start": 10044.12, "end": 10045.36, "probability": 0.85 }, { "start": 10045.9, "end": 10047.94, "probability": 0.9928 }, { "start": 10049.58, "end": 10051.74, "probability": 0.8978 }, { "start": 10052.86, "end": 10055.06, "probability": 0.7522 }, { "start": 10056.3, "end": 10061.8, "probability": 0.9897 }, { "start": 10062.52, "end": 10063.8, "probability": 0.583 }, { "start": 10064.84, "end": 10065.18, "probability": 0.0105 }, { "start": 10065.18, "end": 10067.48, "probability": 0.7914 }, { "start": 10067.5, "end": 10070.46, "probability": 0.7958 }, { "start": 10071.74, "end": 10075.7, "probability": 0.5746 }, { "start": 10076.76, "end": 10077.52, "probability": 0.9811 }, { "start": 10079.26, "end": 10080.3, "probability": 0.8982 }, { "start": 10081.82, "end": 10083.96, "probability": 0.9328 }, { "start": 10084.62, "end": 10086.0, "probability": 0.8794 }, { "start": 10086.78, "end": 10087.62, "probability": 0.8882 }, { "start": 10087.88, "end": 10089.4, "probability": 0.6887 }, { "start": 10090.07, "end": 10091.04, "probability": 0.9432 }, { "start": 10091.06, "end": 10091.44, "probability": 0.9149 }, { "start": 10091.52, "end": 10092.04, "probability": 0.5495 }, { "start": 10092.56, "end": 10093.93, "probability": 0.9567 }, { "start": 10094.78, "end": 10097.16, "probability": 0.9863 }, { "start": 10097.24, "end": 10097.9, "probability": 0.8896 }, { "start": 10098.26, "end": 10099.9, "probability": 0.9608 }, { "start": 10101.34, "end": 10101.85, "probability": 0.9751 }, { "start": 10102.9, "end": 10106.54, "probability": 0.9557 }, { "start": 10107.06, "end": 10113.06, "probability": 0.981 }, { "start": 10113.7, "end": 10116.36, "probability": 0.8835 }, { "start": 10116.52, "end": 10116.54, "probability": 0.0038 }, { "start": 10119.42, "end": 10121.8, "probability": 0.8457 }, { "start": 10122.76, "end": 10123.94, "probability": 0.9607 }, { "start": 10124.6, "end": 10125.74, "probability": 0.9917 }, { "start": 10126.32, "end": 10128.72, "probability": 0.5065 }, { "start": 10129.72, "end": 10129.92, "probability": 0.6048 }, { "start": 10130.38, "end": 10131.08, "probability": 0.357 }, { "start": 10131.2, "end": 10131.88, "probability": 0.5595 }, { "start": 10132.02, "end": 10134.62, "probability": 0.7828 }, { "start": 10135.2, "end": 10135.96, "probability": 0.6252 }, { "start": 10138.15, "end": 10141.18, "probability": 0.874 }, { "start": 10141.38, "end": 10142.98, "probability": 0.5163 }, { "start": 10143.56, "end": 10145.06, "probability": 0.8545 }, { "start": 10145.72, "end": 10147.16, "probability": 0.8391 }, { "start": 10150.06, "end": 10155.32, "probability": 0.7523 }, { "start": 10155.44, "end": 10156.14, "probability": 0.7134 }, { "start": 10156.72, "end": 10157.08, "probability": 0.7454 }, { "start": 10157.98, "end": 10161.42, "probability": 0.9543 }, { "start": 10161.42, "end": 10164.78, "probability": 0.9887 }, { "start": 10165.66, "end": 10168.22, "probability": 0.6114 }, { "start": 10168.9, "end": 10170.4, "probability": 0.7954 }, { "start": 10171.02, "end": 10173.38, "probability": 0.8655 }, { "start": 10174.2, "end": 10174.96, "probability": 0.932 }, { "start": 10175.64, "end": 10176.36, "probability": 0.8506 }, { "start": 10179.7, "end": 10180.64, "probability": 0.8465 }, { "start": 10181.52, "end": 10184.56, "probability": 0.9746 }, { "start": 10185.2, "end": 10186.0, "probability": 0.8348 }, { "start": 10186.3, "end": 10187.58, "probability": 0.99 }, { "start": 10188.74, "end": 10189.84, "probability": 0.7476 }, { "start": 10190.92, "end": 10192.64, "probability": 0.8837 }, { "start": 10193.24, "end": 10194.42, "probability": 0.9485 }, { "start": 10195.74, "end": 10198.32, "probability": 0.9746 }, { "start": 10199.08, "end": 10200.84, "probability": 0.9228 }, { "start": 10201.56, "end": 10202.46, "probability": 0.8424 }, { "start": 10203.3, "end": 10204.22, "probability": 0.9101 }, { "start": 10204.38, "end": 10204.92, "probability": 0.7907 }, { "start": 10205.08, "end": 10205.8, "probability": 0.79 }, { "start": 10205.92, "end": 10207.21, "probability": 0.5687 }, { "start": 10208.12, "end": 10209.06, "probability": 0.5075 }, { "start": 10209.32, "end": 10211.09, "probability": 0.9402 }, { "start": 10211.52, "end": 10213.08, "probability": 0.8878 }, { "start": 10213.16, "end": 10214.5, "probability": 0.8378 }, { "start": 10215.08, "end": 10218.4, "probability": 0.958 }, { "start": 10218.4, "end": 10221.42, "probability": 0.9834 }, { "start": 10222.52, "end": 10225.08, "probability": 0.6054 }, { "start": 10225.16, "end": 10225.62, "probability": 0.6324 }, { "start": 10225.72, "end": 10226.12, "probability": 0.8315 }, { "start": 10227.16, "end": 10228.48, "probability": 0.734 }, { "start": 10228.76, "end": 10231.06, "probability": 0.9985 }, { "start": 10231.58, "end": 10232.96, "probability": 0.4894 }, { "start": 10233.54, "end": 10234.86, "probability": 0.9512 }, { "start": 10235.36, "end": 10236.64, "probability": 0.9644 }, { "start": 10237.08, "end": 10238.12, "probability": 0.9851 }, { "start": 10239.04, "end": 10239.62, "probability": 0.958 }, { "start": 10240.66, "end": 10241.62, "probability": 0.7234 }, { "start": 10241.86, "end": 10242.68, "probability": 0.7198 }, { "start": 10243.14, "end": 10245.08, "probability": 0.9473 }, { "start": 10245.24, "end": 10245.88, "probability": 0.6752 }, { "start": 10246.58, "end": 10247.3, "probability": 0.9341 }, { "start": 10248.38, "end": 10248.86, "probability": 0.7942 }, { "start": 10249.92, "end": 10250.5, "probability": 0.7812 }, { "start": 10251.48, "end": 10252.86, "probability": 0.8933 }, { "start": 10253.74, "end": 10256.64, "probability": 0.9237 }, { "start": 10257.16, "end": 10257.6, "probability": 0.7683 }, { "start": 10258.28, "end": 10259.9, "probability": 0.9757 }, { "start": 10260.62, "end": 10263.14, "probability": 0.9453 }, { "start": 10263.78, "end": 10264.42, "probability": 0.9601 }, { "start": 10265.12, "end": 10265.68, "probability": 0.9518 }, { "start": 10266.78, "end": 10270.66, "probability": 0.9948 }, { "start": 10271.4, "end": 10272.52, "probability": 0.5769 }, { "start": 10272.82, "end": 10274.46, "probability": 0.8683 }, { "start": 10275.04, "end": 10276.83, "probability": 0.9426 }, { "start": 10277.8, "end": 10278.64, "probability": 0.9173 }, { "start": 10279.7, "end": 10284.86, "probability": 0.9594 }, { "start": 10284.98, "end": 10285.52, "probability": 0.9325 }, { "start": 10285.6, "end": 10286.26, "probability": 0.9814 }, { "start": 10286.34, "end": 10287.14, "probability": 0.9748 }, { "start": 10287.42, "end": 10288.28, "probability": 0.9485 }, { "start": 10288.46, "end": 10288.94, "probability": 0.8851 }, { "start": 10289.8, "end": 10290.86, "probability": 0.9441 }, { "start": 10291.66, "end": 10293.28, "probability": 0.4558 }, { "start": 10293.38, "end": 10294.16, "probability": 0.7747 }, { "start": 10294.66, "end": 10295.42, "probability": 0.9738 }, { "start": 10296.1, "end": 10296.68, "probability": 0.9845 }, { "start": 10297.3, "end": 10297.78, "probability": 0.6456 }, { "start": 10298.32, "end": 10298.78, "probability": 0.9224 }, { "start": 10299.48, "end": 10301.04, "probability": 0.7742 }, { "start": 10301.46, "end": 10302.08, "probability": 0.9875 }, { "start": 10303.58, "end": 10304.58, "probability": 0.8918 }, { "start": 10304.72, "end": 10306.04, "probability": 0.9537 }, { "start": 10322.06, "end": 10323.94, "probability": 0.7214 }, { "start": 10326.02, "end": 10328.28, "probability": 0.9421 }, { "start": 10328.28, "end": 10330.96, "probability": 0.9846 }, { "start": 10331.6, "end": 10334.44, "probability": 0.8633 }, { "start": 10335.08, "end": 10339.8, "probability": 0.973 }, { "start": 10340.82, "end": 10345.3, "probability": 0.9253 }, { "start": 10345.82, "end": 10348.2, "probability": 0.9889 }, { "start": 10348.24, "end": 10348.6, "probability": 0.6849 }, { "start": 10349.66, "end": 10350.1, "probability": 0.2207 }, { "start": 10350.24, "end": 10352.94, "probability": 0.9302 }, { "start": 10353.48, "end": 10356.38, "probability": 0.9951 }, { "start": 10357.54, "end": 10359.3, "probability": 0.8993 }, { "start": 10359.7, "end": 10361.48, "probability": 0.991 }, { "start": 10361.96, "end": 10362.38, "probability": 0.5947 }, { "start": 10363.14, "end": 10366.88, "probability": 0.9837 }, { "start": 10367.54, "end": 10371.0, "probability": 0.9893 }, { "start": 10371.54, "end": 10373.78, "probability": 0.945 }, { "start": 10374.4, "end": 10379.16, "probability": 0.9951 }, { "start": 10379.62, "end": 10381.3, "probability": 0.9461 }, { "start": 10382.66, "end": 10384.72, "probability": 0.9885 }, { "start": 10385.9, "end": 10387.84, "probability": 0.9475 }, { "start": 10388.24, "end": 10391.88, "probability": 0.9878 }, { "start": 10392.4, "end": 10395.04, "probability": 0.9893 }, { "start": 10395.5, "end": 10398.24, "probability": 0.9899 }, { "start": 10399.1, "end": 10400.0, "probability": 0.7337 }, { "start": 10400.12, "end": 10401.7, "probability": 0.974 }, { "start": 10401.76, "end": 10406.16, "probability": 0.9901 }, { "start": 10407.32, "end": 10411.32, "probability": 0.9788 }, { "start": 10411.48, "end": 10414.8, "probability": 0.9935 }, { "start": 10415.42, "end": 10416.96, "probability": 0.9763 }, { "start": 10417.94, "end": 10422.14, "probability": 0.9913 }, { "start": 10422.7, "end": 10428.38, "probability": 0.957 }, { "start": 10429.56, "end": 10430.28, "probability": 0.6245 }, { "start": 10430.52, "end": 10431.5, "probability": 0.861 }, { "start": 10431.96, "end": 10436.8, "probability": 0.9862 }, { "start": 10437.36, "end": 10440.06, "probability": 0.6852 }, { "start": 10440.78, "end": 10445.14, "probability": 0.6666 }, { "start": 10445.9, "end": 10448.9, "probability": 0.8014 }, { "start": 10449.96, "end": 10454.22, "probability": 0.6824 }, { "start": 10455.1, "end": 10457.3, "probability": 0.8833 }, { "start": 10457.54, "end": 10462.32, "probability": 0.9564 }, { "start": 10462.92, "end": 10463.96, "probability": 0.7344 }, { "start": 10464.52, "end": 10468.2, "probability": 0.947 }, { "start": 10468.9, "end": 10470.28, "probability": 0.9751 }, { "start": 10471.06, "end": 10473.3, "probability": 0.9683 }, { "start": 10473.76, "end": 10474.9, "probability": 0.9783 }, { "start": 10475.38, "end": 10476.86, "probability": 0.9113 }, { "start": 10477.38, "end": 10480.7, "probability": 0.9932 }, { "start": 10481.4, "end": 10482.7, "probability": 0.9391 }, { "start": 10483.32, "end": 10486.2, "probability": 0.9837 }, { "start": 10486.22, "end": 10491.0, "probability": 0.9593 }, { "start": 10491.64, "end": 10495.52, "probability": 0.9916 }, { "start": 10496.26, "end": 10500.92, "probability": 0.9747 }, { "start": 10501.56, "end": 10504.74, "probability": 0.7152 }, { "start": 10505.32, "end": 10508.7, "probability": 0.7895 }, { "start": 10508.82, "end": 10509.76, "probability": 0.7586 }, { "start": 10510.34, "end": 10514.3, "probability": 0.9652 }, { "start": 10514.46, "end": 10516.04, "probability": 0.8881 }, { "start": 10516.58, "end": 10519.76, "probability": 0.9178 }, { "start": 10520.46, "end": 10523.18, "probability": 0.9893 }, { "start": 10523.56, "end": 10525.26, "probability": 0.9891 }, { "start": 10525.78, "end": 10530.68, "probability": 0.8584 }, { "start": 10531.28, "end": 10534.52, "probability": 0.9816 }, { "start": 10535.16, "end": 10541.04, "probability": 0.9552 }, { "start": 10541.64, "end": 10543.18, "probability": 0.9636 }, { "start": 10543.7, "end": 10545.86, "probability": 0.9513 }, { "start": 10546.28, "end": 10549.38, "probability": 0.9862 }, { "start": 10550.08, "end": 10553.28, "probability": 0.7369 }, { "start": 10553.56, "end": 10554.28, "probability": 0.9718 }, { "start": 10559.2, "end": 10561.0, "probability": 0.6267 }, { "start": 10561.22, "end": 10569.14, "probability": 0.8936 }, { "start": 10569.76, "end": 10571.98, "probability": 0.9513 }, { "start": 10572.76, "end": 10574.42, "probability": 0.1258 }, { "start": 10575.36, "end": 10576.24, "probability": 0.297 }, { "start": 10577.72, "end": 10578.56, "probability": 0.2059 }, { "start": 10578.91, "end": 10579.68, "probability": 0.3137 }, { "start": 10579.68, "end": 10580.24, "probability": 0.0496 }, { "start": 10580.6, "end": 10581.06, "probability": 0.0209 }, { "start": 10581.06, "end": 10581.06, "probability": 0.1347 }, { "start": 10581.06, "end": 10581.99, "probability": 0.2612 }, { "start": 10583.86, "end": 10589.2, "probability": 0.7975 }, { "start": 10590.62, "end": 10593.04, "probability": 0.3134 }, { "start": 10595.46, "end": 10596.36, "probability": 0.2148 }, { "start": 10605.28, "end": 10605.74, "probability": 0.2356 }, { "start": 10615.66, "end": 10616.62, "probability": 0.0031 }, { "start": 10617.22, "end": 10621.16, "probability": 0.9916 }, { "start": 10622.36, "end": 10623.62, "probability": 0.7136 }, { "start": 10625.53, "end": 10630.26, "probability": 0.989 }, { "start": 10630.46, "end": 10634.32, "probability": 0.9595 }, { "start": 10634.74, "end": 10638.88, "probability": 0.9877 }, { "start": 10638.88, "end": 10639.74, "probability": 0.8409 }, { "start": 10640.39, "end": 10641.47, "probability": 0.2524 }, { "start": 10642.24, "end": 10645.9, "probability": 0.788 }, { "start": 10646.24, "end": 10652.86, "probability": 0.8029 }, { "start": 10654.86, "end": 10656.08, "probability": 0.68 }, { "start": 10657.0, "end": 10657.86, "probability": 0.544 }, { "start": 10658.6, "end": 10659.12, "probability": 0.958 }, { "start": 10659.84, "end": 10660.46, "probability": 0.8334 }, { "start": 10661.4, "end": 10663.34, "probability": 0.7437 }, { "start": 10664.42, "end": 10666.96, "probability": 0.9604 }, { "start": 10667.78, "end": 10669.72, "probability": 0.9551 }, { "start": 10670.62, "end": 10671.1, "probability": 0.9867 }, { "start": 10671.74, "end": 10672.56, "probability": 0.9716 }, { "start": 10673.5, "end": 10675.38, "probability": 0.9858 }, { "start": 10676.5, "end": 10679.58, "probability": 0.9911 }, { "start": 10680.4, "end": 10680.88, "probability": 0.9959 }, { "start": 10681.98, "end": 10683.22, "probability": 0.9251 }, { "start": 10684.52, "end": 10686.74, "probability": 0.8915 }, { "start": 10687.84, "end": 10688.36, "probability": 0.9395 }, { "start": 10689.54, "end": 10690.32, "probability": 0.9777 }, { "start": 10691.38, "end": 10692.22, "probability": 0.9702 }, { "start": 10692.74, "end": 10693.56, "probability": 0.9784 }, { "start": 10694.58, "end": 10695.08, "probability": 0.9883 }, { "start": 10696.32, "end": 10697.38, "probability": 0.8452 }, { "start": 10698.72, "end": 10699.46, "probability": 0.9895 }, { "start": 10700.0, "end": 10701.0, "probability": 0.9779 }, { "start": 10702.08, "end": 10702.62, "probability": 0.9928 }, { "start": 10703.52, "end": 10704.54, "probability": 0.9448 }, { "start": 10705.34, "end": 10706.12, "probability": 0.9931 }, { "start": 10708.3, "end": 10709.14, "probability": 0.9867 }, { "start": 10709.72, "end": 10712.46, "probability": 0.985 }, { "start": 10713.18, "end": 10714.08, "probability": 0.749 }, { "start": 10714.9, "end": 10718.6, "probability": 0.9737 }, { "start": 10719.3, "end": 10721.76, "probability": 0.9976 }, { "start": 10722.4, "end": 10724.74, "probability": 0.6976 }, { "start": 10725.32, "end": 10726.1, "probability": 0.9711 }, { "start": 10726.76, "end": 10727.48, "probability": 0.9938 }, { "start": 10728.72, "end": 10731.26, "probability": 0.9787 }, { "start": 10731.9, "end": 10733.1, "probability": 0.7722 }, { "start": 10733.8, "end": 10736.7, "probability": 0.8116 }, { "start": 10738.28, "end": 10741.22, "probability": 0.8963 }, { "start": 10741.84, "end": 10742.64, "probability": 0.9361 }, { "start": 10744.28, "end": 10745.14, "probability": 0.9232 }, { "start": 10746.6, "end": 10747.22, "probability": 0.9842 }, { "start": 10748.9, "end": 10749.74, "probability": 0.9406 }, { "start": 10750.74, "end": 10753.22, "probability": 0.7926 }, { "start": 10754.02, "end": 10756.0, "probability": 0.9826 }, { "start": 10756.92, "end": 10758.48, "probability": 0.6386 }, { "start": 10759.54, "end": 10760.02, "probability": 0.9458 }, { "start": 10760.96, "end": 10764.86, "probability": 0.9519 }, { "start": 10766.18, "end": 10768.2, "probability": 0.8645 }, { "start": 10772.96, "end": 10773.48, "probability": 0.9129 }, { "start": 10774.36, "end": 10775.58, "probability": 0.9045 }, { "start": 10776.84, "end": 10778.94, "probability": 0.9788 }, { "start": 10779.78, "end": 10781.74, "probability": 0.7812 }, { "start": 10783.14, "end": 10783.66, "probability": 0.7417 }, { "start": 10784.5, "end": 10785.38, "probability": 0.4848 }, { "start": 10786.02, "end": 10789.24, "probability": 0.9221 }, { "start": 10790.1, "end": 10790.6, "probability": 0.9782 }, { "start": 10791.36, "end": 10792.58, "probability": 0.9343 }, { "start": 10793.3, "end": 10795.86, "probability": 0.9038 }, { "start": 10799.06, "end": 10799.62, "probability": 0.9852 }, { "start": 10800.6, "end": 10801.9, "probability": 0.7316 }, { "start": 10802.76, "end": 10803.68, "probability": 0.9821 }, { "start": 10804.52, "end": 10808.64, "probability": 0.573 }, { "start": 10811.82, "end": 10812.66, "probability": 0.9309 }, { "start": 10813.72, "end": 10814.72, "probability": 0.7942 }, { "start": 10816.02, "end": 10816.82, "probability": 0.985 }, { "start": 10817.92, "end": 10818.76, "probability": 0.9705 }, { "start": 10820.32, "end": 10821.04, "probability": 0.996 }, { "start": 10821.76, "end": 10822.54, "probability": 0.9178 }, { "start": 10823.62, "end": 10824.44, "probability": 0.9631 }, { "start": 10828.22, "end": 10831.2, "probability": 0.385 }, { "start": 10831.98, "end": 10833.3, "probability": 0.6851 }, { "start": 10834.86, "end": 10835.66, "probability": 0.8282 }, { "start": 10836.7, "end": 10837.58, "probability": 0.9362 }, { "start": 10839.28, "end": 10839.78, "probability": 0.9762 }, { "start": 10841.04, "end": 10841.92, "probability": 0.9814 }, { "start": 10843.3, "end": 10846.0, "probability": 0.9446 }, { "start": 10847.16, "end": 10847.96, "probability": 0.9902 }, { "start": 10848.84, "end": 10849.76, "probability": 0.8494 }, { "start": 10851.3, "end": 10853.4, "probability": 0.2542 }, { "start": 10856.0, "end": 10857.08, "probability": 0.2482 }, { "start": 10857.88, "end": 10858.22, "probability": 0.7949 }, { "start": 10861.98, "end": 10863.86, "probability": 0.47 }, { "start": 10869.38, "end": 10869.92, "probability": 0.9206 }, { "start": 10870.88, "end": 10871.5, "probability": 0.7457 }, { "start": 10872.56, "end": 10873.32, "probability": 0.9234 }, { "start": 10874.36, "end": 10875.5, "probability": 0.6655 }, { "start": 10876.34, "end": 10878.32, "probability": 0.8327 }, { "start": 10878.86, "end": 10881.62, "probability": 0.915 }, { "start": 10882.56, "end": 10883.02, "probability": 0.9474 }, { "start": 10886.54, "end": 10887.18, "probability": 0.5599 }, { "start": 10888.12, "end": 10888.66, "probability": 0.9259 }, { "start": 10889.58, "end": 10890.46, "probability": 0.8163 }, { "start": 10891.06, "end": 10893.02, "probability": 0.945 }, { "start": 10894.04, "end": 10896.04, "probability": 0.9225 }, { "start": 10898.14, "end": 10903.02, "probability": 0.8054 }, { "start": 10903.54, "end": 10904.14, "probability": 0.8669 }, { "start": 10904.9, "end": 10906.34, "probability": 0.8864 }, { "start": 10907.12, "end": 10909.28, "probability": 0.8435 }, { "start": 10909.46, "end": 10910.72, "probability": 0.5109 }, { "start": 10912.08, "end": 10915.86, "probability": 0.883 }, { "start": 10916.54, "end": 10918.66, "probability": 0.8535 }, { "start": 10919.58, "end": 10922.31, "probability": 0.9294 }, { "start": 10922.38, "end": 10924.86, "probability": 0.9597 }, { "start": 10925.5, "end": 10926.22, "probability": 0.9902 }, { "start": 10927.54, "end": 10928.42, "probability": 0.97 }, { "start": 10929.02, "end": 10929.58, "probability": 0.9834 }, { "start": 10930.32, "end": 10931.06, "probability": 0.8452 }, { "start": 10932.22, "end": 10932.72, "probability": 0.7659 }, { "start": 10933.68, "end": 10934.68, "probability": 0.4843 }, { "start": 10935.58, "end": 10937.66, "probability": 0.9257 }, { "start": 10938.94, "end": 10939.36, "probability": 0.9694 }, { "start": 10943.86, "end": 10944.66, "probability": 0.6823 }, { "start": 10945.68, "end": 10947.7, "probability": 0.8818 }, { "start": 10948.36, "end": 10948.8, "probability": 0.9793 }, { "start": 10949.74, "end": 10950.54, "probability": 0.7356 }, { "start": 10951.08, "end": 10953.0, "probability": 0.9403 }, { "start": 10953.56, "end": 10955.44, "probability": 0.9846 }, { "start": 10958.04, "end": 10958.48, "probability": 0.9134 }, { "start": 10959.3, "end": 10960.02, "probability": 0.8359 }, { "start": 10962.14, "end": 10962.62, "probability": 0.9824 }, { "start": 10963.82, "end": 10964.64, "probability": 0.9163 }, { "start": 10965.5, "end": 10966.7, "probability": 0.9095 }, { "start": 10967.38, "end": 10968.32, "probability": 0.1999 }, { "start": 10969.58, "end": 10971.3, "probability": 0.7573 }, { "start": 10972.2, "end": 10972.56, "probability": 0.7515 }, { "start": 10974.52, "end": 10976.16, "probability": 0.7817 }, { "start": 10980.74, "end": 10981.68, "probability": 0.5191 }, { "start": 10993.86, "end": 10994.54, "probability": 0.8304 }, { "start": 10995.38, "end": 10996.1, "probability": 0.6964 }, { "start": 10997.12, "end": 10997.82, "probability": 0.9694 }, { "start": 10998.6, "end": 10998.98, "probability": 0.9076 }, { "start": 11001.0, "end": 11003.16, "probability": 0.6063 }, { "start": 11004.52, "end": 11004.94, "probability": 0.9523 }, { "start": 11005.76, "end": 11006.9, "probability": 0.9167 }, { "start": 11010.42, "end": 11010.9, "probability": 0.9497 }, { "start": 11012.04, "end": 11013.52, "probability": 0.8177 }, { "start": 11014.7, "end": 11015.5, "probability": 0.9536 }, { "start": 11016.08, "end": 11016.9, "probability": 0.7831 }, { "start": 11017.44, "end": 11018.88, "probability": 0.8862 }, { "start": 11019.74, "end": 11020.2, "probability": 0.6282 }, { "start": 11021.78, "end": 11022.64, "probability": 0.9523 }, { "start": 11023.2, "end": 11023.96, "probability": 0.7965 }, { "start": 11024.48, "end": 11025.12, "probability": 0.9375 }, { "start": 11025.68, "end": 11026.72, "probability": 0.8291 }, { "start": 11027.82, "end": 11029.26, "probability": 0.9621 }, { "start": 11031.26, "end": 11033.28, "probability": 0.9417 }, { "start": 11034.14, "end": 11034.82, "probability": 0.8866 }, { "start": 11035.52, "end": 11036.32, "probability": 0.9168 }, { "start": 11039.36, "end": 11040.28, "probability": 0.9451 }, { "start": 11041.22, "end": 11042.32, "probability": 0.8302 }, { "start": 11044.96, "end": 11045.44, "probability": 0.9901 }, { "start": 11046.04, "end": 11047.22, "probability": 0.773 }, { "start": 11047.98, "end": 11049.64, "probability": 0.785 }, { "start": 11051.02, "end": 11051.52, "probability": 0.9289 }, { "start": 11052.96, "end": 11054.18, "probability": 0.9463 }, { "start": 11054.8, "end": 11057.12, "probability": 0.9673 }, { "start": 11057.72, "end": 11059.2, "probability": 0.9478 }, { "start": 11059.9, "end": 11061.78, "probability": 0.947 }, { "start": 11062.56, "end": 11065.3, "probability": 0.9614 }, { "start": 11066.02, "end": 11066.92, "probability": 0.7829 }, { "start": 11067.54, "end": 11068.84, "probability": 0.5104 }, { "start": 11070.24, "end": 11071.14, "probability": 0.9888 }, { "start": 11071.84, "end": 11072.76, "probability": 0.7384 }, { "start": 11073.84, "end": 11075.98, "probability": 0.9151 }, { "start": 11076.76, "end": 11079.86, "probability": 0.5879 }, { "start": 11081.88, "end": 11082.32, "probability": 0.9731 }, { "start": 11083.08, "end": 11084.12, "probability": 0.8834 }, { "start": 11085.22, "end": 11085.82, "probability": 0.9828 }, { "start": 11086.54, "end": 11087.3, "probability": 0.7359 }, { "start": 11087.86, "end": 11088.58, "probability": 0.9936 }, { "start": 11089.18, "end": 11090.16, "probability": 0.8074 }, { "start": 11091.22, "end": 11091.9, "probability": 0.81 }, { "start": 11092.64, "end": 11094.12, "probability": 0.8643 }, { "start": 11094.8, "end": 11098.44, "probability": 0.9283 }, { "start": 11099.26, "end": 11101.27, "probability": 0.6714 }, { "start": 11104.82, "end": 11110.88, "probability": 0.9264 }, { "start": 11110.92, "end": 11111.38, "probability": 0.6906 }, { "start": 11112.3, "end": 11115.6, "probability": 0.0617 }, { "start": 11116.2, "end": 11119.06, "probability": 0.7715 }, { "start": 11119.6, "end": 11120.34, "probability": 0.5923 }, { "start": 11121.1, "end": 11123.56, "probability": 0.5792 }, { "start": 11124.14, "end": 11124.78, "probability": 0.7706 }, { "start": 11126.9, "end": 11128.04, "probability": 0.8649 }, { "start": 11128.86, "end": 11130.52, "probability": 0.9107 }, { "start": 11133.98, "end": 11136.48, "probability": 0.8635 }, { "start": 11137.16, "end": 11137.78, "probability": 0.9562 }, { "start": 11138.1, "end": 11140.22, "probability": 0.6163 }, { "start": 11140.54, "end": 11142.56, "probability": 0.9613 }, { "start": 11143.0, "end": 11143.68, "probability": 0.8562 }, { "start": 11144.2, "end": 11147.08, "probability": 0.8907 }, { "start": 11147.96, "end": 11150.1, "probability": 0.8759 }, { "start": 11150.78, "end": 11153.04, "probability": 0.9219 }, { "start": 11153.6, "end": 11156.72, "probability": 0.9281 }, { "start": 11157.74, "end": 11158.4, "probability": 0.962 }, { "start": 11158.78, "end": 11160.38, "probability": 0.6288 }, { "start": 11160.44, "end": 11162.22, "probability": 0.8091 }, { "start": 11162.26, "end": 11163.04, "probability": 0.9157 }, { "start": 11163.92, "end": 11166.2, "probability": 0.6806 }, { "start": 11166.4, "end": 11168.74, "probability": 0.5034 }, { "start": 11168.74, "end": 11169.32, "probability": 0.8437 }, { "start": 11170.04, "end": 11171.3, "probability": 0.7634 }, { "start": 11172.26, "end": 11173.14, "probability": 0.9724 }, { "start": 11173.88, "end": 11174.72, "probability": 0.8157 }, { "start": 11175.48, "end": 11176.58, "probability": 0.9795 }, { "start": 11177.62, "end": 11178.36, "probability": 0.9939 }, { "start": 11179.32, "end": 11180.22, "probability": 0.9495 }, { "start": 11181.02, "end": 11181.82, "probability": 0.9954 }, { "start": 11182.4, "end": 11187.64, "probability": 0.9675 }, { "start": 11192.94, "end": 11194.52, "probability": 0.312 }, { "start": 11195.52, "end": 11196.3, "probability": 0.9419 }, { "start": 11198.58, "end": 11199.74, "probability": 0.4017 }, { "start": 11199.8, "end": 11201.76, "probability": 0.637 }, { "start": 11201.82, "end": 11203.46, "probability": 0.9245 }, { "start": 11203.66, "end": 11205.92, "probability": 0.9626 }, { "start": 11206.0, "end": 11208.8, "probability": 0.846 }, { "start": 11211.61, "end": 11211.94, "probability": 0.0227 }, { "start": 11211.94, "end": 11213.34, "probability": 0.3987 }, { "start": 11213.4, "end": 11215.08, "probability": 0.7688 }, { "start": 11215.82, "end": 11218.32, "probability": 0.918 }, { "start": 11219.42, "end": 11220.32, "probability": 0.4461 }, { "start": 11220.78, "end": 11222.02, "probability": 0.5187 }, { "start": 11222.1, "end": 11226.4, "probability": 0.7485 }, { "start": 11226.52, "end": 11227.72, "probability": 0.72 }, { "start": 11227.94, "end": 11228.66, "probability": 0.9353 }, { "start": 11229.66, "end": 11230.6, "probability": 0.4399 }, { "start": 11231.34, "end": 11232.12, "probability": 0.7635 }, { "start": 11232.66, "end": 11233.28, "probability": 0.5103 }, { "start": 11235.52, "end": 11236.94, "probability": 0.6848 }, { "start": 11238.84, "end": 11239.6, "probability": 0.913 }, { "start": 11240.46, "end": 11241.2, "probability": 0.7198 }, { "start": 11241.84, "end": 11242.72, "probability": 0.5912 }, { "start": 11244.2, "end": 11244.88, "probability": 0.981 }, { "start": 11246.96, "end": 11248.06, "probability": 0.9553 }, { "start": 11248.7, "end": 11249.58, "probability": 0.9808 }, { "start": 11250.72, "end": 11251.54, "probability": 0.8738 }, { "start": 11251.66, "end": 11252.88, "probability": 0.945 }, { "start": 11253.04, "end": 11255.44, "probability": 0.8873 }, { "start": 11255.58, "end": 11257.1, "probability": 0.9025 }, { "start": 11257.44, "end": 11258.12, "probability": 0.8931 }, { "start": 11259.24, "end": 11260.06, "probability": 0.6688 }, { "start": 11260.52, "end": 11262.48, "probability": 0.8724 }, { "start": 11262.56, "end": 11263.92, "probability": 0.909 }, { "start": 11264.0, "end": 11265.06, "probability": 0.8858 }, { "start": 11265.14, "end": 11265.76, "probability": 0.8611 }, { "start": 11267.34, "end": 11268.78, "probability": 0.9768 }, { "start": 11268.9, "end": 11271.06, "probability": 0.9449 }, { "start": 11271.42, "end": 11273.24, "probability": 0.7297 }, { "start": 11273.34, "end": 11274.88, "probability": 0.8849 }, { "start": 11275.82, "end": 11279.36, "probability": 0.7465 }, { "start": 11280.5, "end": 11283.1, "probability": 0.8862 }, { "start": 11283.16, "end": 11286.34, "probability": 0.8407 }, { "start": 11286.56, "end": 11288.24, "probability": 0.9261 }, { "start": 11288.24, "end": 11289.46, "probability": 0.7967 }, { "start": 11290.14, "end": 11291.3, "probability": 0.9922 }, { "start": 11291.82, "end": 11292.66, "probability": 0.6646 }, { "start": 11294.06, "end": 11295.28, "probability": 0.7914 }, { "start": 11296.9, "end": 11302.6, "probability": 0.4172 }, { "start": 11302.82, "end": 11307.3, "probability": 0.7937 }, { "start": 11307.6, "end": 11308.19, "probability": 0.8108 }, { "start": 11308.4, "end": 11310.8, "probability": 0.7326 }, { "start": 11312.02, "end": 11313.66, "probability": 0.2456 }, { "start": 11314.94, "end": 11317.58, "probability": 0.1574 }, { "start": 11321.24, "end": 11323.36, "probability": 0.0312 }, { "start": 11326.9, "end": 11328.32, "probability": 0.051 }, { "start": 11329.76, "end": 11332.9, "probability": 0.1197 }, { "start": 11338.86, "end": 11339.94, "probability": 0.1339 }, { "start": 11340.0, "end": 11340.0, "probability": 0.1046 }, { "start": 11343.44, "end": 11344.98, "probability": 0.1066 }, { "start": 11345.5, "end": 11345.92, "probability": 0.2984 }, { "start": 11346.2, "end": 11347.58, "probability": 0.2825 }, { "start": 11393.68, "end": 11394.34, "probability": 0.0113 }, { "start": 11398.3, "end": 11400.04, "probability": 0.2532 }, { "start": 11400.7, "end": 11401.0, "probability": 0.0294 }, { "start": 11402.42, "end": 11404.68, "probability": 0.4515 }, { "start": 11405.5, "end": 11408.22, "probability": 0.7274 }, { "start": 11409.14, "end": 11411.18, "probability": 0.9517 }, { "start": 11412.1, "end": 11414.42, "probability": 0.7853 }, { "start": 11414.52, "end": 11416.42, "probability": 0.0569 }, { "start": 11418.52, "end": 11419.1, "probability": 0.672 }, { "start": 11419.24, "end": 11420.46, "probability": 0.2176 }, { "start": 11420.9, "end": 11422.84, "probability": 0.5837 }, { "start": 11423.18, "end": 11425.58, "probability": 0.4558 }, { "start": 11427.22, "end": 11428.22, "probability": 0.4081 }, { "start": 11428.22, "end": 11432.24, "probability": 0.3325 }, { "start": 11432.24, "end": 11434.56, "probability": 0.2294 }, { "start": 11435.04, "end": 11435.3, "probability": 0.0604 }, { "start": 11435.3, "end": 11435.88, "probability": 0.2431 }, { "start": 11440.18, "end": 11444.22, "probability": 0.7043 }, { "start": 11444.28, "end": 11444.28, "probability": 0.1283 }, { "start": 11444.28, "end": 11445.32, "probability": 0.5967 }, { "start": 11445.64, "end": 11448.84, "probability": 0.0435 }, { "start": 11450.29, "end": 11453.74, "probability": 0.5517 }, { "start": 11454.96, "end": 11455.4, "probability": 0.3796 }, { "start": 11455.4, "end": 11456.5, "probability": 0.0508 }, { "start": 11456.96, "end": 11457.45, "probability": 0.043 }, { "start": 11540.0, "end": 11540.0, "probability": 0.0 }, { "start": 11540.0, "end": 11540.0, "probability": 0.0 }, { "start": 11540.0, "end": 11540.0, "probability": 0.0 }, { "start": 11540.0, "end": 11540.0, "probability": 0.0 }, { "start": 11540.0, "end": 11540.0, "probability": 0.0 }, { "start": 11540.0, "end": 11540.0, "probability": 0.0 }, { "start": 11540.0, "end": 11540.0, "probability": 0.0 }, { "start": 11540.0, "end": 11540.0, "probability": 0.0 }, { "start": 11540.0, "end": 11540.0, "probability": 0.0 }, { "start": 11540.0, "end": 11540.0, "probability": 0.0 }, { "start": 11540.0, "end": 11540.0, "probability": 0.0 }, { "start": 11540.0, "end": 11540.0, "probability": 0.0 }, { "start": 11540.0, "end": 11540.0, "probability": 0.0 }, { "start": 11540.0, "end": 11540.0, "probability": 0.0 }, { "start": 11540.0, "end": 11540.0, "probability": 0.0 }, { "start": 11540.0, "end": 11540.0, "probability": 0.0 }, { "start": 11540.0, "end": 11540.0, "probability": 0.0 }, { "start": 11540.0, "end": 11540.0, "probability": 0.0 }, { "start": 11540.0, "end": 11540.0, "probability": 0.0 }, { "start": 11540.0, "end": 11540.0, "probability": 0.0 }, { "start": 11540.0, "end": 11540.0, "probability": 0.0 }, { "start": 11540.0, "end": 11540.0, "probability": 0.0 }, { "start": 11542.02, "end": 11543.52, "probability": 0.4949 }, { "start": 11545.04, "end": 11547.58, "probability": 0.8176 }, { "start": 11557.6, "end": 11560.14, "probability": 0.8587 }, { "start": 11560.54, "end": 11564.98, "probability": 0.8563 }, { "start": 11565.92, "end": 11566.58, "probability": 0.4047 }, { "start": 11568.2, "end": 11569.86, "probability": 0.2662 }, { "start": 11579.24, "end": 11584.48, "probability": 0.5242 }, { "start": 11586.66, "end": 11587.4, "probability": 0.8849 }, { "start": 11587.46, "end": 11588.52, "probability": 0.9703 }, { "start": 11588.6, "end": 11589.2, "probability": 0.8475 }, { "start": 11589.26, "end": 11590.56, "probability": 0.9703 }, { "start": 11599.14, "end": 11599.14, "probability": 0.4802 }, { "start": 11599.14, "end": 11601.96, "probability": 0.7819 }, { "start": 11602.54, "end": 11603.64, "probability": 0.8684 }, { "start": 11605.82, "end": 11607.18, "probability": 0.9905 }, { "start": 11608.02, "end": 11608.98, "probability": 0.9104 }, { "start": 11609.0, "end": 11610.22, "probability": 0.9948 }, { "start": 11610.28, "end": 11611.38, "probability": 0.9794 }, { "start": 11611.92, "end": 11612.44, "probability": 0.8906 }, { "start": 11616.2, "end": 11618.56, "probability": 0.9709 }, { "start": 11619.24, "end": 11621.08, "probability": 0.8304 }, { "start": 11626.28, "end": 11628.4, "probability": 0.8029 }, { "start": 11629.96, "end": 11630.5, "probability": 0.8157 }, { "start": 11630.64, "end": 11631.92, "probability": 0.953 }, { "start": 11632.98, "end": 11635.14, "probability": 0.6849 }, { "start": 11636.9, "end": 11641.74, "probability": 0.9935 }, { "start": 11643.88, "end": 11646.82, "probability": 0.9763 }, { "start": 11647.88, "end": 11652.86, "probability": 0.9891 }, { "start": 11655.06, "end": 11655.7, "probability": 0.6283 }, { "start": 11658.1, "end": 11659.98, "probability": 0.9626 }, { "start": 11661.76, "end": 11662.34, "probability": 0.8745 }, { "start": 11663.26, "end": 11667.92, "probability": 0.9968 }, { "start": 11670.64, "end": 11672.5, "probability": 0.8394 }, { "start": 11673.44, "end": 11679.14, "probability": 0.9565 }, { "start": 11679.48, "end": 11679.96, "probability": 0.5792 }, { "start": 11680.18, "end": 11680.74, "probability": 0.6257 }, { "start": 11681.4, "end": 11684.82, "probability": 0.9854 }, { "start": 11685.8, "end": 11687.3, "probability": 0.9373 }, { "start": 11689.52, "end": 11695.42, "probability": 0.6031 }, { "start": 11695.56, "end": 11696.98, "probability": 0.8119 }, { "start": 11697.78, "end": 11698.84, "probability": 0.7879 }, { "start": 11700.88, "end": 11704.74, "probability": 0.9512 }, { "start": 11704.74, "end": 11708.18, "probability": 0.9962 }, { "start": 11708.32, "end": 11708.88, "probability": 0.2645 }, { "start": 11710.2, "end": 11712.2, "probability": 0.8493 }, { "start": 11712.36, "end": 11716.0, "probability": 0.9619 }, { "start": 11716.94, "end": 11721.14, "probability": 0.9739 }, { "start": 11721.22, "end": 11725.02, "probability": 0.9196 }, { "start": 11725.94, "end": 11726.62, "probability": 0.9614 }, { "start": 11726.7, "end": 11727.46, "probability": 0.6946 }, { "start": 11727.58, "end": 11731.3, "probability": 0.9563 }, { "start": 11732.48, "end": 11737.14, "probability": 0.9889 }, { "start": 11738.46, "end": 11742.44, "probability": 0.662 }, { "start": 11743.54, "end": 11750.76, "probability": 0.9961 }, { "start": 11751.54, "end": 11754.34, "probability": 0.9985 }, { "start": 11754.53, "end": 11758.2, "probability": 0.9891 }, { "start": 11763.66, "end": 11766.92, "probability": 0.9628 }, { "start": 11767.24, "end": 11770.8, "probability": 0.991 }, { "start": 11771.54, "end": 11774.98, "probability": 0.9928 }, { "start": 11775.66, "end": 11777.86, "probability": 0.8226 }, { "start": 11778.9, "end": 11781.56, "probability": 0.9922 }, { "start": 11782.56, "end": 11786.98, "probability": 0.9689 }, { "start": 11787.7, "end": 11790.66, "probability": 0.9302 }, { "start": 11791.8, "end": 11793.68, "probability": 0.8365 }, { "start": 11794.46, "end": 11796.48, "probability": 0.9536 }, { "start": 11797.78, "end": 11799.46, "probability": 0.5436 }, { "start": 11800.56, "end": 11805.9, "probability": 0.9821 }, { "start": 11807.44, "end": 11811.46, "probability": 0.9941 }, { "start": 11812.62, "end": 11814.18, "probability": 0.9161 }, { "start": 11815.1, "end": 11822.06, "probability": 0.9984 }, { "start": 11824.72, "end": 11827.52, "probability": 0.9977 }, { "start": 11828.62, "end": 11831.84, "probability": 0.9773 }, { "start": 11832.3, "end": 11836.32, "probability": 0.986 }, { "start": 11837.58, "end": 11839.4, "probability": 0.9787 }, { "start": 11840.04, "end": 11842.36, "probability": 0.9829 }, { "start": 11843.2, "end": 11845.44, "probability": 0.9992 }, { "start": 11846.06, "end": 11848.24, "probability": 0.9648 }, { "start": 11849.06, "end": 11852.12, "probability": 0.9901 }, { "start": 11852.92, "end": 11854.42, "probability": 0.9935 }, { "start": 11856.06, "end": 11856.76, "probability": 0.9329 }, { "start": 11857.48, "end": 11860.74, "probability": 0.9979 }, { "start": 11861.3, "end": 11867.36, "probability": 0.9784 }, { "start": 11868.06, "end": 11872.76, "probability": 0.9753 }, { "start": 11873.46, "end": 11878.56, "probability": 0.9977 }, { "start": 11878.56, "end": 11883.0, "probability": 0.9984 }, { "start": 11885.56, "end": 11885.9, "probability": 0.7459 }, { "start": 11886.62, "end": 11887.46, "probability": 0.9706 }, { "start": 11890.1, "end": 11890.84, "probability": 0.877 }, { "start": 11892.9, "end": 11894.74, "probability": 0.9846 }, { "start": 11895.34, "end": 11898.26, "probability": 0.4455 }, { "start": 11899.78, "end": 11904.04, "probability": 0.9931 }, { "start": 11904.04, "end": 11907.96, "probability": 0.9662 }, { "start": 11908.66, "end": 11911.26, "probability": 0.9883 }, { "start": 11911.26, "end": 11914.28, "probability": 0.999 }, { "start": 11915.0, "end": 11918.7, "probability": 0.8766 }, { "start": 11918.7, "end": 11921.9, "probability": 0.9829 }, { "start": 11921.9, "end": 11924.8, "probability": 0.9557 }, { "start": 11927.54, "end": 11929.55, "probability": 0.9962 }, { "start": 11933.68, "end": 11936.62, "probability": 0.8912 }, { "start": 11936.68, "end": 11938.42, "probability": 0.8435 }, { "start": 11938.5, "end": 11939.26, "probability": 0.8602 }, { "start": 11939.94, "end": 11941.16, "probability": 0.97 }, { "start": 11941.72, "end": 11947.65, "probability": 0.9928 }, { "start": 11948.62, "end": 11953.48, "probability": 0.9871 }, { "start": 11953.54, "end": 11953.96, "probability": 0.6191 }, { "start": 11954.54, "end": 11955.18, "probability": 0.9964 }, { "start": 11956.12, "end": 11959.94, "probability": 0.7963 }, { "start": 11960.36, "end": 11961.1, "probability": 0.7587 }, { "start": 11961.34, "end": 11962.8, "probability": 0.902 }, { "start": 11963.4, "end": 11966.42, "probability": 0.9471 }, { "start": 11967.08, "end": 11970.22, "probability": 0.9848 }, { "start": 11970.8, "end": 11977.7, "probability": 0.9604 }, { "start": 11978.34, "end": 11979.4, "probability": 0.978 }, { "start": 11980.0, "end": 11984.84, "probability": 0.9918 }, { "start": 11985.62, "end": 11990.38, "probability": 0.7331 }, { "start": 11991.02, "end": 11994.6, "probability": 0.9973 }, { "start": 11995.26, "end": 11999.29, "probability": 0.9988 }, { "start": 12002.17, "end": 12004.29, "probability": 0.6748 }, { "start": 12005.74, "end": 12010.54, "probability": 0.9865 }, { "start": 12011.14, "end": 12014.68, "probability": 0.9955 }, { "start": 12014.92, "end": 12016.5, "probability": 0.641 }, { "start": 12017.24, "end": 12019.74, "probability": 0.9028 }, { "start": 12020.76, "end": 12025.33, "probability": 0.9779 }, { "start": 12026.88, "end": 12030.82, "probability": 0.9688 }, { "start": 12031.7, "end": 12034.14, "probability": 0.9763 }, { "start": 12034.84, "end": 12036.62, "probability": 0.9998 }, { "start": 12037.0, "end": 12039.14, "probability": 0.9989 }, { "start": 12039.88, "end": 12045.06, "probability": 0.9919 }, { "start": 12046.22, "end": 12047.38, "probability": 0.9989 }, { "start": 12048.0, "end": 12052.06, "probability": 0.9418 }, { "start": 12052.14, "end": 12054.42, "probability": 0.8806 }, { "start": 12055.5, "end": 12059.62, "probability": 0.8672 }, { "start": 12060.72, "end": 12063.36, "probability": 0.9941 }, { "start": 12063.5, "end": 12063.6, "probability": 0.388 }, { "start": 12069.7, "end": 12072.66, "probability": 0.5498 }, { "start": 12076.28, "end": 12078.26, "probability": 0.5061 }, { "start": 12078.68, "end": 12079.38, "probability": 0.1151 }, { "start": 12099.36, "end": 12099.36, "probability": 0.2005 }, { "start": 12099.36, "end": 12099.36, "probability": 0.3872 }, { "start": 12099.36, "end": 12099.36, "probability": 0.1386 }, { "start": 12099.36, "end": 12100.54, "probability": 0.041 }, { "start": 12100.54, "end": 12100.62, "probability": 0.0323 }, { "start": 12100.8, "end": 12101.94, "probability": 0.0776 }, { "start": 12116.02, "end": 12123.08, "probability": 0.1779 }, { "start": 12135.14, "end": 12137.01, "probability": 0.9839 }, { "start": 12137.68, "end": 12140.48, "probability": 0.9604 }, { "start": 12141.62, "end": 12142.72, "probability": 0.5242 }, { "start": 12143.48, "end": 12147.68, "probability": 0.4939 }, { "start": 12148.76, "end": 12150.5, "probability": 0.5147 }, { "start": 12151.46, "end": 12153.0, "probability": 0.9956 }, { "start": 12153.66, "end": 12156.86, "probability": 0.9658 }, { "start": 12157.64, "end": 12159.36, "probability": 0.8847 }, { "start": 12160.72, "end": 12163.6, "probability": 0.9176 }, { "start": 12164.3, "end": 12166.5, "probability": 0.8565 }, { "start": 12168.4, "end": 12169.74, "probability": 0.8757 }, { "start": 12171.16, "end": 12175.48, "probability": 0.9707 }, { "start": 12176.76, "end": 12178.56, "probability": 0.9917 }, { "start": 12178.86, "end": 12180.9, "probability": 0.882 }, { "start": 12181.66, "end": 12183.98, "probability": 0.9832 }, { "start": 12184.16, "end": 12186.88, "probability": 0.9156 }, { "start": 12187.66, "end": 12189.3, "probability": 0.8154 }, { "start": 12190.5, "end": 12192.16, "probability": 0.9419 }, { "start": 12193.26, "end": 12194.88, "probability": 0.976 }, { "start": 12196.1, "end": 12197.6, "probability": 0.9896 }, { "start": 12198.46, "end": 12198.96, "probability": 0.7053 }, { "start": 12199.89, "end": 12203.04, "probability": 0.9707 }, { "start": 12204.1, "end": 12206.9, "probability": 0.8877 }, { "start": 12207.46, "end": 12210.02, "probability": 0.9395 }, { "start": 12210.08, "end": 12213.88, "probability": 0.9198 }, { "start": 12213.94, "end": 12216.12, "probability": 0.6446 }, { "start": 12216.86, "end": 12217.92, "probability": 0.8276 }, { "start": 12218.04, "end": 12218.83, "probability": 0.8617 }, { "start": 12220.26, "end": 12221.18, "probability": 0.5623 }, { "start": 12221.34, "end": 12225.66, "probability": 0.6681 }, { "start": 12225.72, "end": 12228.62, "probability": 0.8559 }, { "start": 12228.7, "end": 12229.96, "probability": 0.9764 }, { "start": 12230.4, "end": 12231.38, "probability": 0.7029 }, { "start": 12231.46, "end": 12232.24, "probability": 0.4713 }, { "start": 12232.91, "end": 12233.82, "probability": 0.3862 }, { "start": 12233.92, "end": 12237.34, "probability": 0.8967 }, { "start": 12238.48, "end": 12241.96, "probability": 0.9912 }, { "start": 12241.96, "end": 12245.2, "probability": 0.9755 }, { "start": 12245.78, "end": 12246.41, "probability": 0.8304 }, { "start": 12247.3, "end": 12247.52, "probability": 0.1729 }, { "start": 12248.34, "end": 12252.3, "probability": 0.9831 }, { "start": 12252.78, "end": 12253.13, "probability": 0.8389 }, { "start": 12253.96, "end": 12257.4, "probability": 0.9774 }, { "start": 12257.76, "end": 12260.12, "probability": 0.9265 }, { "start": 12260.68, "end": 12261.53, "probability": 0.9548 }, { "start": 12262.43, "end": 12264.6, "probability": 0.8588 }, { "start": 12265.02, "end": 12265.96, "probability": 0.8155 }, { "start": 12267.4, "end": 12269.32, "probability": 0.9666 }, { "start": 12269.38, "end": 12271.34, "probability": 0.9964 }, { "start": 12271.69, "end": 12275.52, "probability": 0.9868 }, { "start": 12275.7, "end": 12278.18, "probability": 0.994 }, { "start": 12278.88, "end": 12282.94, "probability": 0.9274 }, { "start": 12283.72, "end": 12287.84, "probability": 0.5154 }, { "start": 12288.32, "end": 12290.14, "probability": 0.8318 }, { "start": 12291.14, "end": 12293.58, "probability": 0.9318 }, { "start": 12294.56, "end": 12296.88, "probability": 0.7873 }, { "start": 12297.32, "end": 12297.92, "probability": 0.939 }, { "start": 12298.02, "end": 12299.32, "probability": 0.9736 }, { "start": 12300.0, "end": 12303.7, "probability": 0.9852 }, { "start": 12304.62, "end": 12305.64, "probability": 0.9636 }, { "start": 12306.42, "end": 12307.56, "probability": 0.9126 }, { "start": 12308.54, "end": 12311.56, "probability": 0.8319 }, { "start": 12311.7, "end": 12315.14, "probability": 0.9091 }, { "start": 12315.68, "end": 12318.34, "probability": 0.9609 }, { "start": 12318.62, "end": 12319.07, "probability": 0.7412 }, { "start": 12319.28, "end": 12320.34, "probability": 0.9591 }, { "start": 12321.56, "end": 12322.6, "probability": 0.9419 }, { "start": 12323.32, "end": 12325.96, "probability": 0.9927 }, { "start": 12326.32, "end": 12327.12, "probability": 0.7834 }, { "start": 12327.2, "end": 12327.66, "probability": 0.7766 }, { "start": 12330.06, "end": 12330.94, "probability": 0.9478 }, { "start": 12331.42, "end": 12331.98, "probability": 0.958 }, { "start": 12333.42, "end": 12334.42, "probability": 0.4977 }, { "start": 12335.64, "end": 12336.42, "probability": 0.6788 }, { "start": 12336.98, "end": 12340.5, "probability": 0.7534 }, { "start": 12341.09, "end": 12342.94, "probability": 0.9031 }, { "start": 12361.94, "end": 12362.3, "probability": 0.355 }, { "start": 12362.32, "end": 12363.18, "probability": 0.6755 }, { "start": 12363.3, "end": 12364.18, "probability": 0.7315 }, { "start": 12364.78, "end": 12365.24, "probability": 0.78 }, { "start": 12366.04, "end": 12369.69, "probability": 0.9855 }, { "start": 12370.18, "end": 12374.16, "probability": 0.9963 }, { "start": 12374.26, "end": 12375.34, "probability": 0.7473 }, { "start": 12378.08, "end": 12382.46, "probability": 0.9732 }, { "start": 12382.98, "end": 12386.18, "probability": 0.9781 }, { "start": 12386.78, "end": 12388.12, "probability": 0.8027 }, { "start": 12389.44, "end": 12391.24, "probability": 0.9918 }, { "start": 12391.94, "end": 12394.32, "probability": 0.9956 }, { "start": 12395.3, "end": 12398.84, "probability": 0.9756 }, { "start": 12398.84, "end": 12401.74, "probability": 0.9972 }, { "start": 12402.06, "end": 12402.36, "probability": 0.7047 }, { "start": 12403.16, "end": 12408.92, "probability": 0.9801 }, { "start": 12408.92, "end": 12413.62, "probability": 0.9948 }, { "start": 12414.18, "end": 12419.34, "probability": 0.9797 }, { "start": 12419.34, "end": 12426.2, "probability": 0.9102 }, { "start": 12426.82, "end": 12428.28, "probability": 0.8382 }, { "start": 12428.84, "end": 12429.32, "probability": 0.6914 }, { "start": 12429.38, "end": 12433.28, "probability": 0.9514 }, { "start": 12433.98, "end": 12435.0, "probability": 0.8992 }, { "start": 12435.22, "end": 12440.16, "probability": 0.9619 }, { "start": 12440.64, "end": 12441.0, "probability": 0.4321 }, { "start": 12441.04, "end": 12441.4, "probability": 0.739 }, { "start": 12442.46, "end": 12444.42, "probability": 0.9959 }, { "start": 12444.64, "end": 12448.5, "probability": 0.9866 }, { "start": 12449.94, "end": 12453.08, "probability": 0.7437 }, { "start": 12453.28, "end": 12454.58, "probability": 0.8595 }, { "start": 12454.68, "end": 12456.1, "probability": 0.921 }, { "start": 12456.72, "end": 12460.1, "probability": 0.5863 }, { "start": 12460.5, "end": 12461.82, "probability": 0.8068 }, { "start": 12462.02, "end": 12462.8, "probability": 0.2578 }, { "start": 12463.06, "end": 12464.88, "probability": 0.6131 }, { "start": 12465.66, "end": 12467.68, "probability": 0.9738 }, { "start": 12467.74, "end": 12468.7, "probability": 0.9448 }, { "start": 12468.78, "end": 12469.77, "probability": 0.9329 }, { "start": 12470.0, "end": 12470.42, "probability": 0.9396 }, { "start": 12471.68, "end": 12472.45, "probability": 0.9594 }, { "start": 12473.16, "end": 12476.76, "probability": 0.7338 }, { "start": 12477.52, "end": 12479.0, "probability": 0.6065 }, { "start": 12479.4, "end": 12479.94, "probability": 0.801 }, { "start": 12480.06, "end": 12482.58, "probability": 0.9072 }, { "start": 12483.24, "end": 12484.1, "probability": 0.9587 }, { "start": 12485.0, "end": 12485.6, "probability": 0.8958 }, { "start": 12486.12, "end": 12489.82, "probability": 0.8433 }, { "start": 12490.5, "end": 12495.16, "probability": 0.9921 }, { "start": 12495.64, "end": 12499.28, "probability": 0.8797 }, { "start": 12500.24, "end": 12501.42, "probability": 0.7918 }, { "start": 12501.54, "end": 12503.94, "probability": 0.972 }, { "start": 12504.58, "end": 12504.96, "probability": 0.871 }, { "start": 12504.98, "end": 12507.66, "probability": 0.9086 }, { "start": 12508.0, "end": 12510.98, "probability": 0.9565 }, { "start": 12511.2, "end": 12512.1, "probability": 0.9672 }, { "start": 12512.2, "end": 12512.9, "probability": 0.697 }, { "start": 12513.58, "end": 12516.72, "probability": 0.867 }, { "start": 12516.96, "end": 12519.82, "probability": 0.67 }, { "start": 12520.78, "end": 12524.26, "probability": 0.7603 }, { "start": 12524.62, "end": 12527.22, "probability": 0.9776 }, { "start": 12527.24, "end": 12528.34, "probability": 0.9449 }, { "start": 12528.86, "end": 12531.74, "probability": 0.7517 }, { "start": 12531.78, "end": 12533.32, "probability": 0.5008 }, { "start": 12534.0, "end": 12537.54, "probability": 0.8505 }, { "start": 12538.28, "end": 12542.38, "probability": 0.602 }, { "start": 12543.5, "end": 12544.12, "probability": 0.5867 }, { "start": 12544.68, "end": 12547.6, "probability": 0.9638 }, { "start": 12547.6, "end": 12549.94, "probability": 0.9888 }, { "start": 12550.36, "end": 12552.82, "probability": 0.8637 }, { "start": 12552.82, "end": 12556.16, "probability": 0.776 }, { "start": 12556.2, "end": 12559.5, "probability": 0.4739 }, { "start": 12559.5, "end": 12559.5, "probability": 0.3513 }, { "start": 12559.5, "end": 12560.04, "probability": 0.5868 }, { "start": 12560.26, "end": 12560.86, "probability": 0.6132 }, { "start": 12561.34, "end": 12562.36, "probability": 0.7667 }, { "start": 12563.24, "end": 12564.92, "probability": 0.8143 }, { "start": 12565.62, "end": 12566.82, "probability": 0.8813 }, { "start": 12567.64, "end": 12569.56, "probability": 0.5348 }, { "start": 12570.26, "end": 12575.15, "probability": 0.8887 }, { "start": 12576.54, "end": 12577.5, "probability": 0.4141 }, { "start": 12578.42, "end": 12579.62, "probability": 0.7505 }, { "start": 12581.26, "end": 12581.98, "probability": 0.8083 }, { "start": 12582.58, "end": 12583.66, "probability": 0.9221 }, { "start": 12585.16, "end": 12585.94, "probability": 0.9378 }, { "start": 12586.56, "end": 12587.66, "probability": 0.9639 }, { "start": 12588.5, "end": 12589.22, "probability": 0.9823 }, { "start": 12589.82, "end": 12591.0, "probability": 0.9627 }, { "start": 12591.62, "end": 12592.76, "probability": 0.6381 }, { "start": 12593.4, "end": 12595.7, "probability": 0.8095 }, { "start": 12597.46, "end": 12599.3, "probability": 0.7952 }, { "start": 12600.24, "end": 12603.3, "probability": 0.9868 }, { "start": 12603.98, "end": 12605.5, "probability": 0.9296 }, { "start": 12606.42, "end": 12607.6, "probability": 0.9879 }, { "start": 12609.77, "end": 12610.8, "probability": 0.6299 }, { "start": 12610.8, "end": 12610.8, "probability": 0.4407 }, { "start": 12610.8, "end": 12611.42, "probability": 0.7655 }, { "start": 12611.66, "end": 12612.34, "probability": 0.8648 }, { "start": 12613.02, "end": 12614.62, "probability": 0.8831 }, { "start": 12615.6, "end": 12616.22, "probability": 0.8852 }, { "start": 12616.76, "end": 12618.82, "probability": 0.5104 }, { "start": 12619.14, "end": 12619.3, "probability": 0.0007 }, { "start": 12620.58, "end": 12620.7, "probability": 0.2062 }, { "start": 12620.7, "end": 12622.4, "probability": 0.6229 }, { "start": 12623.32, "end": 12624.72, "probability": 0.6137 }, { "start": 12625.52, "end": 12626.22, "probability": 0.5821 }, { "start": 12626.78, "end": 12627.94, "probability": 0.75 }, { "start": 12628.92, "end": 12631.64, "probability": 0.902 }, { "start": 12632.48, "end": 12633.42, "probability": 0.9345 }, { "start": 12634.68, "end": 12636.1, "probability": 0.9854 }, { "start": 12636.76, "end": 12638.9, "probability": 0.866 }, { "start": 12639.46, "end": 12640.28, "probability": 0.7148 }, { "start": 12640.82, "end": 12641.42, "probability": 0.67 }, { "start": 12642.76, "end": 12643.16, "probability": 0.8821 }, { "start": 12644.3, "end": 12645.12, "probability": 0.8068 }, { "start": 12646.9, "end": 12647.62, "probability": 0.767 }, { "start": 12648.14, "end": 12649.18, "probability": 0.9653 }, { "start": 12649.8, "end": 12651.62, "probability": 0.9948 }, { "start": 12652.6, "end": 12654.08, "probability": 0.8901 }, { "start": 12654.84, "end": 12656.06, "probability": 0.9377 }, { "start": 12657.46, "end": 12659.27, "probability": 0.9151 }, { "start": 12660.78, "end": 12662.58, "probability": 0.8934 }, { "start": 12663.58, "end": 12664.34, "probability": 0.9804 }, { "start": 12664.98, "end": 12666.24, "probability": 0.9516 }, { "start": 12667.16, "end": 12667.84, "probability": 0.9673 }, { "start": 12668.48, "end": 12672.84, "probability": 0.9574 }, { "start": 12675.86, "end": 12676.56, "probability": 0.6359 }, { "start": 12680.06, "end": 12681.3, "probability": 0.8784 }, { "start": 12681.44, "end": 12682.08, "probability": 0.7964 }, { "start": 12682.2, "end": 12683.04, "probability": 0.9196 }, { "start": 12683.76, "end": 12685.82, "probability": 0.9786 }, { "start": 12687.34, "end": 12687.84, "probability": 0.8108 }, { "start": 12688.94, "end": 12691.22, "probability": 0.8485 }, { "start": 12693.42, "end": 12694.02, "probability": 0.9601 }, { "start": 12695.1, "end": 12697.28, "probability": 0.7677 }, { "start": 12697.86, "end": 12699.0, "probability": 0.7299 }, { "start": 12699.58, "end": 12701.8, "probability": 0.915 }, { "start": 12702.34, "end": 12702.84, "probability": 0.9041 }, { "start": 12702.94, "end": 12704.09, "probability": 0.7688 }, { "start": 12704.66, "end": 12705.4, "probability": 0.9349 }, { "start": 12705.52, "end": 12706.46, "probability": 0.7945 }, { "start": 12706.5, "end": 12707.04, "probability": 0.9481 }, { "start": 12707.64, "end": 12709.58, "probability": 0.8866 }, { "start": 12710.3, "end": 12711.26, "probability": 0.4283 }, { "start": 12712.6, "end": 12713.58, "probability": 0.9686 }, { "start": 12714.26, "end": 12716.78, "probability": 0.9766 }, { "start": 12717.32, "end": 12718.04, "probability": 0.9717 }, { "start": 12719.06, "end": 12720.56, "probability": 0.8696 }, { "start": 12721.42, "end": 12722.64, "probability": 0.96 }, { "start": 12723.16, "end": 12724.23, "probability": 0.98 }, { "start": 12724.92, "end": 12726.94, "probability": 0.6595 }, { "start": 12727.48, "end": 12728.34, "probability": 0.9279 }, { "start": 12728.4, "end": 12729.34, "probability": 0.9709 }, { "start": 12729.76, "end": 12730.44, "probability": 0.9576 }, { "start": 12730.9, "end": 12732.42, "probability": 0.9796 }, { "start": 12732.82, "end": 12733.6, "probability": 0.9712 }, { "start": 12733.66, "end": 12734.66, "probability": 0.9954 }, { "start": 12734.7, "end": 12735.44, "probability": 0.9812 }, { "start": 12738.24, "end": 12739.06, "probability": 0.4919 }, { "start": 12739.08, "end": 12739.08, "probability": 0.6251 }, { "start": 12739.08, "end": 12739.36, "probability": 0.8367 }, { "start": 12740.52, "end": 12742.48, "probability": 0.9224 }, { "start": 12743.28, "end": 12744.88, "probability": 0.889 }, { "start": 12745.42, "end": 12746.66, "probability": 0.6996 }, { "start": 12747.38, "end": 12748.16, "probability": 0.8148 }, { "start": 12748.66, "end": 12751.46, "probability": 0.8535 }, { "start": 12752.88, "end": 12753.52, "probability": 0.9071 }, { "start": 12756.4, "end": 12757.2, "probability": 0.9716 }, { "start": 12758.16, "end": 12759.24, "probability": 0.6377 }, { "start": 12759.6, "end": 12759.6, "probability": 0.0095 }, { "start": 12759.62, "end": 12760.14, "probability": 0.7602 }, { "start": 12760.7, "end": 12762.43, "probability": 0.6234 }, { "start": 12762.82, "end": 12766.88, "probability": 0.6664 }, { "start": 12767.42, "end": 12769.38, "probability": 0.5678 }, { "start": 12772.1, "end": 12775.94, "probability": 0.4364 }, { "start": 12775.96, "end": 12776.6, "probability": 0.6281 }, { "start": 12776.64, "end": 12777.3, "probability": 0.4133 }, { "start": 12777.36, "end": 12777.84, "probability": 0.4956 }, { "start": 12784.15, "end": 12785.42, "probability": 0.1425 }, { "start": 12789.2, "end": 12790.74, "probability": 0.0232 }, { "start": 12791.6, "end": 12791.72, "probability": 0.4976 }, { "start": 12791.72, "end": 12795.92, "probability": 0.6101 }, { "start": 12797.52, "end": 12801.48, "probability": 0.5256 }, { "start": 12802.26, "end": 12804.18, "probability": 0.7364 }, { "start": 12804.3, "end": 12810.3, "probability": 0.9788 }, { "start": 12810.78, "end": 12811.78, "probability": 0.9426 }, { "start": 12816.96, "end": 12821.18, "probability": 0.6583 }, { "start": 12822.06, "end": 12823.24, "probability": 0.6765 }, { "start": 12823.9, "end": 12827.06, "probability": 0.2847 }, { "start": 12845.8, "end": 12847.84, "probability": 0.5393 }, { "start": 12847.96, "end": 12849.38, "probability": 0.6242 }, { "start": 12849.84, "end": 12850.6, "probability": 0.7022 }, { "start": 12851.4, "end": 12851.54, "probability": 0.7234 }, { "start": 12852.3, "end": 12853.82, "probability": 0.5295 }, { "start": 12853.92, "end": 12857.14, "probability": 0.9869 }, { "start": 12857.5, "end": 12859.12, "probability": 0.8229 }, { "start": 12859.86, "end": 12862.02, "probability": 0.9962 }, { "start": 12862.02, "end": 12864.34, "probability": 0.998 }, { "start": 12864.94, "end": 12866.56, "probability": 0.7273 }, { "start": 12867.36, "end": 12867.58, "probability": 0.1868 }, { "start": 12867.8, "end": 12869.16, "probability": 0.5649 }, { "start": 12869.64, "end": 12870.54, "probability": 0.8094 }, { "start": 12872.5, "end": 12876.86, "probability": 0.8184 }, { "start": 12878.02, "end": 12879.58, "probability": 0.5606 }, { "start": 12879.9, "end": 12881.62, "probability": 0.7818 }, { "start": 12897.08, "end": 12898.96, "probability": 0.7259 }, { "start": 12900.32, "end": 12904.52, "probability": 0.9957 }, { "start": 12905.08, "end": 12909.8, "probability": 0.9893 }, { "start": 12910.6, "end": 12912.82, "probability": 0.8518 }, { "start": 12912.92, "end": 12914.6, "probability": 0.4071 }, { "start": 12914.98, "end": 12917.74, "probability": 0.9351 }, { "start": 12918.02, "end": 12919.84, "probability": 0.6776 }, { "start": 12920.38, "end": 12924.08, "probability": 0.9678 }, { "start": 12924.66, "end": 12929.7, "probability": 0.8806 }, { "start": 12930.52, "end": 12931.84, "probability": 0.832 }, { "start": 12932.74, "end": 12934.36, "probability": 0.95 }, { "start": 12934.36, "end": 12936.06, "probability": 0.9922 }, { "start": 12937.6, "end": 12940.14, "probability": 0.9958 }, { "start": 12940.14, "end": 12942.3, "probability": 0.9871 }, { "start": 12942.36, "end": 12943.08, "probability": 0.639 }, { "start": 12943.78, "end": 12945.2, "probability": 0.8261 }, { "start": 12946.12, "end": 12948.64, "probability": 0.6035 }, { "start": 12948.86, "end": 12950.76, "probability": 0.8515 }, { "start": 12951.06, "end": 12952.38, "probability": 0.4456 }, { "start": 12953.02, "end": 12954.6, "probability": 0.387 }, { "start": 12955.26, "end": 12957.68, "probability": 0.9896 }, { "start": 12957.68, "end": 12960.59, "probability": 0.9789 }, { "start": 12960.76, "end": 12962.54, "probability": 0.9383 }, { "start": 12962.54, "end": 12964.58, "probability": 0.3317 }, { "start": 12965.84, "end": 12967.04, "probability": 0.1529 }, { "start": 12967.75, "end": 12969.82, "probability": 0.9746 }, { "start": 12971.34, "end": 12972.02, "probability": 0.7935 }, { "start": 12972.1, "end": 12972.9, "probability": 0.8091 }, { "start": 12973.12, "end": 12976.34, "probability": 0.6799 }, { "start": 12976.48, "end": 12978.63, "probability": 0.7517 }, { "start": 12979.66, "end": 12983.48, "probability": 0.9509 }, { "start": 12984.08, "end": 12986.88, "probability": 0.3901 }, { "start": 12987.44, "end": 12989.36, "probability": 0.9733 }, { "start": 12989.96, "end": 12992.68, "probability": 0.9983 }, { "start": 12993.16, "end": 12994.7, "probability": 0.9976 }, { "start": 12996.12, "end": 12998.7, "probability": 0.9899 }, { "start": 12999.24, "end": 13001.6, "probability": 0.9823 }, { "start": 13002.24, "end": 13006.08, "probability": 0.9871 }, { "start": 13006.28, "end": 13007.42, "probability": 0.5939 }, { "start": 13008.7, "end": 13011.16, "probability": 0.7448 }, { "start": 13011.52, "end": 13013.9, "probability": 0.6776 }, { "start": 13014.7, "end": 13015.14, "probability": 0.9763 }, { "start": 13015.94, "end": 13017.98, "probability": 0.9924 }, { "start": 13018.06, "end": 13019.22, "probability": 0.4143 }, { "start": 13019.36, "end": 13020.94, "probability": 0.4492 }, { "start": 13021.46, "end": 13022.7, "probability": 0.9867 }, { "start": 13023.6, "end": 13027.16, "probability": 0.9989 }, { "start": 13027.3, "end": 13029.98, "probability": 0.9929 }, { "start": 13030.17, "end": 13034.08, "probability": 0.7778 }, { "start": 13034.14, "end": 13036.76, "probability": 0.9811 }, { "start": 13038.28, "end": 13041.38, "probability": 0.7277 }, { "start": 13041.86, "end": 13044.88, "probability": 0.7603 }, { "start": 13044.98, "end": 13046.96, "probability": 0.9647 }, { "start": 13047.72, "end": 13048.57, "probability": 0.5707 }, { "start": 13048.98, "end": 13052.68, "probability": 0.9602 }, { "start": 13055.46, "end": 13056.3, "probability": 0.6222 }, { "start": 13056.36, "end": 13056.94, "probability": 0.6414 }, { "start": 13057.36, "end": 13057.76, "probability": 0.5422 }, { "start": 13062.5, "end": 13064.54, "probability": 0.2646 }, { "start": 13076.28, "end": 13076.96, "probability": 0.0279 }, { "start": 13078.0, "end": 13078.18, "probability": 0.0152 }, { "start": 13085.2, "end": 13086.42, "probability": 0.0343 }, { "start": 13086.52, "end": 13086.92, "probability": 0.074 }, { "start": 13091.04, "end": 13091.54, "probability": 0.0534 }, { "start": 13091.78, "end": 13096.98, "probability": 0.0235 }, { "start": 13097.76, "end": 13099.8, "probability": 0.1151 }, { "start": 13479.98, "end": 13480.1, "probability": 0.0729 }, { "start": 13480.16, "end": 13480.54, "probability": 0.066 }, { "start": 13480.54, "end": 13480.54, "probability": 0.2036 }, { "start": 13480.54, "end": 13480.86, "probability": 0.1464 }, { "start": 13480.86, "end": 13480.86, "probability": 0.0213 }, { "start": 13482.71, "end": 13482.71, "probability": 0.0 }, { "start": 13482.71, "end": 13482.71, "probability": 0.0 }, { "start": 13482.71, "end": 13482.71, "probability": 0.0 }, { "start": 13482.71, "end": 13482.71, "probability": 0.0 }, { "start": 13482.71, "end": 13482.71, "probability": 0.0 }, { "start": 13482.71, "end": 13482.71, "probability": 0.0 }, { "start": 13482.71, "end": 13482.71, "probability": 0.0 } ], "segments_count": 4278, "words_count": 20348, "avg_words_per_segment": 4.7564, "avg_segment_duration": 1.9789, "avg_words_per_minute": 90.5515, "plenum_id": "101306", "duration": 13482.71, "title": null, "plenum_date": "2021-11-08" }