{ "source_type": "knesset", "source_id": "plenum", "source_entry_id": "101690", "quality_score": 0.8972, "per_segment_quality_scores": [ { "start": 222.68, "end": 225.22, "probability": 0.6512 }, { "start": 226.26, "end": 229.6, "probability": 0.6253 }, { "start": 231.92, "end": 233.08, "probability": 0.9772 }, { "start": 234.8, "end": 236.0, "probability": 0.6697 }, { "start": 237.76, "end": 238.58, "probability": 0.6668 }, { "start": 238.58, "end": 239.94, "probability": 0.8172 }, { "start": 241.24, "end": 244.21, "probability": 0.6219 }, { "start": 245.64, "end": 248.64, "probability": 0.0203 }, { "start": 257.82, "end": 259.12, "probability": 0.142 }, { "start": 261.2, "end": 265.24, "probability": 0.3258 }, { "start": 265.32, "end": 270.94, "probability": 0.3858 }, { "start": 272.4, "end": 274.89, "probability": 0.8727 }, { "start": 275.7, "end": 281.36, "probability": 0.66 }, { "start": 281.68, "end": 282.44, "probability": 0.1761 }, { "start": 282.98, "end": 283.88, "probability": 0.18 }, { "start": 284.14, "end": 285.78, "probability": 0.4452 }, { "start": 286.7, "end": 288.06, "probability": 0.3727 }, { "start": 288.06, "end": 288.5, "probability": 0.376 }, { "start": 288.5, "end": 288.94, "probability": 0.3551 }, { "start": 291.44, "end": 293.29, "probability": 0.9954 }, { "start": 293.86, "end": 296.88, "probability": 0.6664 }, { "start": 298.44, "end": 298.72, "probability": 0.6523 }, { "start": 298.86, "end": 302.7, "probability": 0.8282 }, { "start": 303.16, "end": 306.44, "probability": 0.9102 }, { "start": 306.52, "end": 308.36, "probability": 0.9893 }, { "start": 308.42, "end": 310.44, "probability": 0.7696 }, { "start": 311.02, "end": 311.62, "probability": 0.4062 }, { "start": 313.46, "end": 318.64, "probability": 0.9611 }, { "start": 319.46, "end": 320.9, "probability": 0.2065 }, { "start": 321.22, "end": 323.7, "probability": 0.5651 }, { "start": 323.84, "end": 328.24, "probability": 0.9977 }, { "start": 328.72, "end": 331.42, "probability": 0.9701 }, { "start": 331.82, "end": 333.66, "probability": 0.896 }, { "start": 334.14, "end": 336.86, "probability": 0.8054 }, { "start": 337.16, "end": 340.66, "probability": 0.6626 }, { "start": 341.4, "end": 342.52, "probability": 0.4761 }, { "start": 344.4, "end": 346.22, "probability": 0.7952 }, { "start": 346.46, "end": 346.8, "probability": 0.5259 }, { "start": 347.46, "end": 347.68, "probability": 0.6467 }, { "start": 348.26, "end": 348.46, "probability": 0.5994 }, { "start": 348.62, "end": 349.22, "probability": 0.7617 }, { "start": 349.54, "end": 350.42, "probability": 0.794 }, { "start": 360.02, "end": 362.09, "probability": 0.6588 }, { "start": 362.98, "end": 364.46, "probability": 0.4487 }, { "start": 364.58, "end": 368.62, "probability": 0.8986 }, { "start": 369.5, "end": 372.56, "probability": 0.7634 }, { "start": 372.62, "end": 372.9, "probability": 0.4686 }, { "start": 375.46, "end": 377.24, "probability": 0.4013 }, { "start": 377.26, "end": 378.58, "probability": 0.5078 }, { "start": 380.08, "end": 382.74, "probability": 0.9741 }, { "start": 382.74, "end": 387.86, "probability": 0.9749 }, { "start": 388.16, "end": 390.82, "probability": 0.9235 }, { "start": 391.46, "end": 393.94, "probability": 0.9825 }, { "start": 394.68, "end": 396.86, "probability": 0.9615 }, { "start": 397.54, "end": 399.16, "probability": 0.9278 }, { "start": 399.7, "end": 403.04, "probability": 0.9673 }, { "start": 403.8, "end": 404.48, "probability": 0.7521 }, { "start": 405.12, "end": 408.32, "probability": 0.9791 }, { "start": 410.94, "end": 414.12, "probability": 0.7207 }, { "start": 415.5, "end": 417.69, "probability": 0.79 }, { "start": 419.5, "end": 420.08, "probability": 0.7571 }, { "start": 420.22, "end": 421.7, "probability": 0.9558 }, { "start": 421.8, "end": 424.0, "probability": 0.7772 }, { "start": 424.9, "end": 425.62, "probability": 0.9621 }, { "start": 426.73, "end": 428.16, "probability": 0.7381 }, { "start": 429.28, "end": 430.1, "probability": 0.8733 }, { "start": 430.54, "end": 432.08, "probability": 0.9091 }, { "start": 432.24, "end": 433.3, "probability": 0.8089 }, { "start": 433.34, "end": 436.96, "probability": 0.8847 }, { "start": 437.0, "end": 437.56, "probability": 0.7533 }, { "start": 438.08, "end": 439.22, "probability": 0.9733 }, { "start": 439.82, "end": 440.42, "probability": 0.4964 }, { "start": 441.88, "end": 442.82, "probability": 0.786 }, { "start": 443.36, "end": 445.94, "probability": 0.7634 }, { "start": 447.72, "end": 450.56, "probability": 0.4556 }, { "start": 450.62, "end": 451.64, "probability": 0.2744 }, { "start": 452.02, "end": 452.92, "probability": 0.754 }, { "start": 453.16, "end": 454.32, "probability": 0.6284 }, { "start": 455.04, "end": 457.84, "probability": 0.9624 }, { "start": 458.76, "end": 459.68, "probability": 0.7146 }, { "start": 459.72, "end": 463.57, "probability": 0.9705 }, { "start": 465.0, "end": 466.08, "probability": 0.9629 }, { "start": 468.74, "end": 469.98, "probability": 0.7632 }, { "start": 470.0, "end": 470.78, "probability": 0.4991 }, { "start": 471.48, "end": 471.98, "probability": 0.874 }, { "start": 472.22, "end": 475.12, "probability": 0.8072 }, { "start": 475.9, "end": 477.26, "probability": 0.939 }, { "start": 478.34, "end": 480.52, "probability": 0.9728 }, { "start": 481.28, "end": 482.72, "probability": 0.6986 }, { "start": 483.42, "end": 486.86, "probability": 0.9899 }, { "start": 488.2, "end": 491.22, "probability": 0.9132 }, { "start": 492.08, "end": 494.02, "probability": 0.9815 }, { "start": 494.14, "end": 495.98, "probability": 0.9691 }, { "start": 496.74, "end": 498.88, "probability": 0.8315 }, { "start": 499.54, "end": 501.46, "probability": 0.6905 }, { "start": 501.58, "end": 504.19, "probability": 0.7939 }, { "start": 505.16, "end": 505.26, "probability": 0.2667 }, { "start": 505.38, "end": 508.02, "probability": 0.9914 }, { "start": 508.58, "end": 510.24, "probability": 0.7531 }, { "start": 510.8, "end": 512.38, "probability": 0.6987 }, { "start": 512.48, "end": 513.26, "probability": 0.8347 }, { "start": 513.42, "end": 515.8, "probability": 0.9535 }, { "start": 515.8, "end": 518.16, "probability": 0.9946 }, { "start": 518.54, "end": 520.1, "probability": 0.9958 }, { "start": 520.94, "end": 522.76, "probability": 0.8115 }, { "start": 522.92, "end": 523.96, "probability": 0.6403 }, { "start": 524.9, "end": 525.42, "probability": 0.8218 }, { "start": 526.04, "end": 527.6, "probability": 0.973 }, { "start": 527.93, "end": 530.98, "probability": 0.7889 }, { "start": 531.14, "end": 531.61, "probability": 0.5069 }, { "start": 531.76, "end": 536.0, "probability": 0.4816 }, { "start": 536.08, "end": 539.66, "probability": 0.9666 }, { "start": 540.36, "end": 543.72, "probability": 0.6261 }, { "start": 544.24, "end": 547.04, "probability": 0.7498 }, { "start": 547.12, "end": 547.56, "probability": 0.7235 }, { "start": 547.68, "end": 547.74, "probability": 0.5842 }, { "start": 547.84, "end": 548.42, "probability": 0.7722 }, { "start": 548.5, "end": 549.32, "probability": 0.8613 }, { "start": 550.48, "end": 552.1, "probability": 0.709 }, { "start": 552.68, "end": 553.94, "probability": 0.8857 }, { "start": 553.96, "end": 554.1, "probability": 0.6639 }, { "start": 554.22, "end": 556.7, "probability": 0.985 }, { "start": 557.22, "end": 559.4, "probability": 0.9434 }, { "start": 559.52, "end": 560.54, "probability": 0.5943 }, { "start": 562.28, "end": 566.1, "probability": 0.858 }, { "start": 566.66, "end": 567.88, "probability": 0.4417 }, { "start": 568.08, "end": 569.84, "probability": 0.7271 }, { "start": 569.9, "end": 570.8, "probability": 0.7228 }, { "start": 571.28, "end": 573.72, "probability": 0.5084 }, { "start": 573.8, "end": 575.72, "probability": 0.8716 }, { "start": 576.5, "end": 578.94, "probability": 0.7834 }, { "start": 579.14, "end": 579.48, "probability": 0.778 }, { "start": 579.54, "end": 580.04, "probability": 0.7544 }, { "start": 580.12, "end": 581.8, "probability": 0.7974 }, { "start": 582.25, "end": 584.1, "probability": 0.987 }, { "start": 584.88, "end": 587.32, "probability": 0.9753 }, { "start": 588.6, "end": 590.04, "probability": 0.887 }, { "start": 590.08, "end": 592.52, "probability": 0.9289 }, { "start": 594.02, "end": 594.42, "probability": 0.371 }, { "start": 594.89, "end": 595.94, "probability": 0.7022 }, { "start": 596.34, "end": 598.32, "probability": 0.953 }, { "start": 598.96, "end": 599.94, "probability": 0.7319 }, { "start": 600.26, "end": 602.16, "probability": 0.9857 }, { "start": 602.94, "end": 604.32, "probability": 0.4962 }, { "start": 604.34, "end": 604.34, "probability": 0.1704 }, { "start": 604.86, "end": 605.76, "probability": 0.6927 }, { "start": 606.38, "end": 607.9, "probability": 0.8521 }, { "start": 608.72, "end": 608.88, "probability": 0.8184 }, { "start": 609.14, "end": 610.3, "probability": 0.9852 }, { "start": 612.3, "end": 615.98, "probability": 0.5486 }, { "start": 616.82, "end": 618.1, "probability": 0.0835 }, { "start": 619.07, "end": 622.34, "probability": 0.7611 }, { "start": 624.06, "end": 625.52, "probability": 0.7199 }, { "start": 626.2, "end": 628.49, "probability": 0.9746 }, { "start": 629.47, "end": 635.32, "probability": 0.96 }, { "start": 635.42, "end": 639.44, "probability": 0.0555 }, { "start": 639.5, "end": 639.5, "probability": 0.0797 }, { "start": 639.5, "end": 641.69, "probability": 0.6043 }, { "start": 642.78, "end": 648.48, "probability": 0.7534 }, { "start": 649.5, "end": 649.5, "probability": 0.0011 }, { "start": 652.54, "end": 652.64, "probability": 0.1077 }, { "start": 652.64, "end": 652.64, "probability": 0.1334 }, { "start": 652.64, "end": 654.4, "probability": 0.3013 }, { "start": 655.46, "end": 657.28, "probability": 0.8408 }, { "start": 658.06, "end": 658.44, "probability": 0.6666 }, { "start": 659.1, "end": 659.68, "probability": 0.9888 }, { "start": 660.3, "end": 664.6, "probability": 0.9805 }, { "start": 664.64, "end": 665.88, "probability": 0.8956 }, { "start": 666.34, "end": 667.45, "probability": 0.7921 }, { "start": 667.82, "end": 667.98, "probability": 0.7711 }, { "start": 668.6, "end": 668.72, "probability": 0.6314 }, { "start": 668.8, "end": 669.68, "probability": 0.6547 }, { "start": 669.82, "end": 672.44, "probability": 0.9648 }, { "start": 672.52, "end": 675.56, "probability": 0.9969 }, { "start": 675.9, "end": 677.7, "probability": 0.9069 }, { "start": 677.74, "end": 678.64, "probability": 0.8474 }, { "start": 679.22, "end": 680.61, "probability": 0.652 }, { "start": 681.36, "end": 682.56, "probability": 0.9495 }, { "start": 683.68, "end": 684.34, "probability": 0.8879 }, { "start": 684.58, "end": 687.22, "probability": 0.0208 }, { "start": 687.22, "end": 688.22, "probability": 0.3603 }, { "start": 688.26, "end": 689.44, "probability": 0.7812 }, { "start": 689.52, "end": 690.94, "probability": 0.9969 }, { "start": 691.5, "end": 692.82, "probability": 0.7607 }, { "start": 693.0, "end": 694.6, "probability": 0.9906 }, { "start": 695.5, "end": 695.6, "probability": 0.3354 }, { "start": 696.66, "end": 699.26, "probability": 0.9907 }, { "start": 699.64, "end": 701.38, "probability": 0.6017 }, { "start": 702.1, "end": 703.02, "probability": 0.9658 }, { "start": 704.04, "end": 704.52, "probability": 0.6777 }, { "start": 704.76, "end": 706.6, "probability": 0.5691 }, { "start": 709.66, "end": 711.1, "probability": 0.7242 }, { "start": 711.36, "end": 713.48, "probability": 0.5195 }, { "start": 714.38, "end": 715.68, "probability": 0.0011 }, { "start": 721.58, "end": 722.44, "probability": 0.0993 }, { "start": 724.62, "end": 725.78, "probability": 0.6214 }, { "start": 725.94, "end": 726.76, "probability": 0.4695 }, { "start": 727.06, "end": 728.76, "probability": 0.8292 }, { "start": 728.96, "end": 733.12, "probability": 0.9863 }, { "start": 733.12, "end": 736.9, "probability": 0.9845 }, { "start": 737.34, "end": 740.94, "probability": 0.9739 }, { "start": 741.0, "end": 741.56, "probability": 0.8165 }, { "start": 742.84, "end": 743.82, "probability": 0.9883 }, { "start": 746.48, "end": 747.24, "probability": 0.4429 }, { "start": 748.1, "end": 751.12, "probability": 0.9526 }, { "start": 752.32, "end": 760.72, "probability": 0.9835 }, { "start": 760.92, "end": 761.9, "probability": 0.9915 }, { "start": 763.18, "end": 763.64, "probability": 0.3099 }, { "start": 764.96, "end": 767.92, "probability": 0.999 }, { "start": 768.96, "end": 771.44, "probability": 0.997 }, { "start": 771.82, "end": 773.28, "probability": 0.602 }, { "start": 773.28, "end": 773.64, "probability": 0.5121 }, { "start": 774.86, "end": 775.42, "probability": 0.5848 }, { "start": 776.62, "end": 780.53, "probability": 0.8633 }, { "start": 782.2, "end": 784.1, "probability": 0.928 }, { "start": 785.04, "end": 786.92, "probability": 0.9064 }, { "start": 787.92, "end": 788.2, "probability": 0.5584 }, { "start": 790.08, "end": 796.02, "probability": 0.9051 }, { "start": 797.54, "end": 800.22, "probability": 0.8981 }, { "start": 801.56, "end": 802.2, "probability": 0.5527 }, { "start": 802.3, "end": 802.86, "probability": 0.3932 }, { "start": 803.02, "end": 806.4, "probability": 0.7947 }, { "start": 807.1, "end": 809.04, "probability": 0.9191 }, { "start": 810.24, "end": 814.36, "probability": 0.6693 }, { "start": 814.94, "end": 815.88, "probability": 0.9098 }, { "start": 816.72, "end": 817.52, "probability": 0.9659 }, { "start": 818.74, "end": 820.52, "probability": 0.9338 }, { "start": 821.14, "end": 823.6, "probability": 0.9178 }, { "start": 824.8, "end": 827.96, "probability": 0.9532 }, { "start": 828.18, "end": 830.34, "probability": 0.6643 }, { "start": 831.66, "end": 834.75, "probability": 0.6608 }, { "start": 835.12, "end": 839.32, "probability": 0.8624 }, { "start": 839.98, "end": 841.38, "probability": 0.9944 }, { "start": 841.52, "end": 841.98, "probability": 0.7158 }, { "start": 842.24, "end": 843.2, "probability": 0.7777 }, { "start": 843.54, "end": 847.48, "probability": 0.8541 }, { "start": 849.04, "end": 850.48, "probability": 0.9301 }, { "start": 852.4, "end": 852.52, "probability": 0.938 }, { "start": 852.56, "end": 855.14, "probability": 0.5588 }, { "start": 855.4, "end": 857.0, "probability": 0.6592 }, { "start": 857.56, "end": 859.66, "probability": 0.9976 }, { "start": 860.12, "end": 862.27, "probability": 0.9966 }, { "start": 862.82, "end": 863.36, "probability": 0.7704 }, { "start": 864.08, "end": 865.1, "probability": 0.9849 }, { "start": 865.92, "end": 867.34, "probability": 0.9017 }, { "start": 867.42, "end": 868.66, "probability": 0.9237 }, { "start": 869.8, "end": 870.88, "probability": 0.9966 }, { "start": 871.0, "end": 873.46, "probability": 0.7664 }, { "start": 874.9, "end": 875.74, "probability": 0.9036 }, { "start": 877.1, "end": 878.02, "probability": 0.9437 }, { "start": 878.02, "end": 878.86, "probability": 0.7574 }, { "start": 878.94, "end": 880.11, "probability": 0.9702 }, { "start": 880.92, "end": 882.47, "probability": 0.9424 }, { "start": 882.62, "end": 886.44, "probability": 0.9717 }, { "start": 887.28, "end": 887.86, "probability": 0.6089 }, { "start": 888.1, "end": 890.15, "probability": 0.992 }, { "start": 891.04, "end": 894.86, "probability": 0.8722 }, { "start": 896.5, "end": 897.32, "probability": 0.2785 }, { "start": 897.6, "end": 898.46, "probability": 0.603 }, { "start": 899.16, "end": 901.6, "probability": 0.9971 }, { "start": 902.56, "end": 904.12, "probability": 0.5185 }, { "start": 904.22, "end": 905.98, "probability": 0.9712 }, { "start": 906.14, "end": 906.66, "probability": 0.786 }, { "start": 907.1, "end": 907.58, "probability": 0.9321 }, { "start": 908.3, "end": 910.06, "probability": 0.8298 }, { "start": 910.18, "end": 910.66, "probability": 0.5906 }, { "start": 911.7, "end": 912.34, "probability": 0.6733 }, { "start": 920.74, "end": 922.52, "probability": 0.7286 }, { "start": 923.44, "end": 929.68, "probability": 0.9823 }, { "start": 930.14, "end": 935.58, "probability": 0.9408 }, { "start": 935.58, "end": 939.76, "probability": 0.971 }, { "start": 940.1, "end": 942.96, "probability": 0.9297 }, { "start": 943.84, "end": 949.9, "probability": 0.9727 }, { "start": 950.8, "end": 953.86, "probability": 0.9808 }, { "start": 954.3, "end": 956.96, "probability": 0.9315 }, { "start": 957.06, "end": 958.6, "probability": 0.9758 }, { "start": 959.18, "end": 961.62, "probability": 0.865 }, { "start": 962.4, "end": 963.9, "probability": 0.7292 }, { "start": 964.0, "end": 967.16, "probability": 0.9756 }, { "start": 969.82, "end": 973.0, "probability": 0.9049 }, { "start": 973.0, "end": 976.32, "probability": 0.9957 }, { "start": 976.48, "end": 978.18, "probability": 0.968 }, { "start": 978.68, "end": 984.96, "probability": 0.9965 }, { "start": 985.16, "end": 985.96, "probability": 0.7871 }, { "start": 986.46, "end": 989.92, "probability": 0.6339 }, { "start": 991.36, "end": 993.34, "probability": 0.6501 }, { "start": 993.9, "end": 994.22, "probability": 0.3725 }, { "start": 995.46, "end": 998.72, "probability": 0.966 }, { "start": 998.76, "end": 1002.5, "probability": 0.9956 }, { "start": 1002.74, "end": 1003.22, "probability": 0.8314 }, { "start": 1003.66, "end": 1004.2, "probability": 0.7823 }, { "start": 1005.36, "end": 1007.72, "probability": 0.8133 }, { "start": 1008.12, "end": 1010.52, "probability": 0.9644 }, { "start": 1010.6, "end": 1011.42, "probability": 0.8706 }, { "start": 1011.52, "end": 1011.92, "probability": 0.879 }, { "start": 1012.64, "end": 1013.78, "probability": 0.7733 }, { "start": 1014.68, "end": 1017.48, "probability": 0.975 }, { "start": 1017.74, "end": 1021.08, "probability": 0.8583 }, { "start": 1021.26, "end": 1021.54, "probability": 0.4322 }, { "start": 1021.62, "end": 1021.78, "probability": 0.4319 }, { "start": 1022.24, "end": 1022.98, "probability": 0.9607 }, { "start": 1023.26, "end": 1025.76, "probability": 0.6635 }, { "start": 1025.92, "end": 1027.42, "probability": 0.7664 }, { "start": 1027.52, "end": 1031.56, "probability": 0.5452 }, { "start": 1031.76, "end": 1032.38, "probability": 0.7716 }, { "start": 1032.94, "end": 1034.42, "probability": 0.8908 }, { "start": 1034.9, "end": 1035.18, "probability": 0.858 }, { "start": 1042.88, "end": 1043.76, "probability": 0.6242 }, { "start": 1044.58, "end": 1045.98, "probability": 0.8862 }, { "start": 1046.04, "end": 1046.4, "probability": 0.7492 }, { "start": 1046.54, "end": 1046.94, "probability": 0.6499 }, { "start": 1047.1, "end": 1047.22, "probability": 0.3072 }, { "start": 1047.22, "end": 1047.6, "probability": 0.5959 }, { "start": 1048.14, "end": 1048.76, "probability": 0.6448 }, { "start": 1050.96, "end": 1053.74, "probability": 0.8855 }, { "start": 1054.28, "end": 1055.88, "probability": 0.6016 }, { "start": 1056.88, "end": 1061.88, "probability": 0.9914 }, { "start": 1062.3, "end": 1066.0, "probability": 0.9422 }, { "start": 1067.12, "end": 1071.22, "probability": 0.9886 }, { "start": 1071.92, "end": 1074.52, "probability": 0.9323 }, { "start": 1075.06, "end": 1078.8, "probability": 0.9081 }, { "start": 1079.87, "end": 1084.98, "probability": 0.5329 }, { "start": 1085.12, "end": 1085.32, "probability": 0.3754 }, { "start": 1085.32, "end": 1085.34, "probability": 0.0233 }, { "start": 1085.5, "end": 1087.16, "probability": 0.8037 }, { "start": 1087.42, "end": 1088.22, "probability": 0.4587 }, { "start": 1089.68, "end": 1091.05, "probability": 0.4058 }, { "start": 1091.18, "end": 1095.14, "probability": 0.5071 }, { "start": 1095.2, "end": 1096.13, "probability": 0.7535 }, { "start": 1096.28, "end": 1097.05, "probability": 0.9172 }, { "start": 1097.92, "end": 1100.84, "probability": 0.9613 }, { "start": 1101.52, "end": 1102.65, "probability": 0.6687 }, { "start": 1103.8, "end": 1109.12, "probability": 0.6377 }, { "start": 1109.78, "end": 1114.18, "probability": 0.7166 }, { "start": 1114.98, "end": 1117.14, "probability": 0.4811 }, { "start": 1117.68, "end": 1121.2, "probability": 0.7637 }, { "start": 1123.74, "end": 1125.9, "probability": 0.8116 }, { "start": 1126.06, "end": 1130.36, "probability": 0.999 }, { "start": 1131.22, "end": 1132.98, "probability": 0.6664 }, { "start": 1133.5, "end": 1134.82, "probability": 0.8416 }, { "start": 1135.68, "end": 1137.84, "probability": 0.9471 }, { "start": 1138.06, "end": 1138.7, "probability": 0.9425 }, { "start": 1138.86, "end": 1142.18, "probability": 0.9819 }, { "start": 1142.74, "end": 1145.7, "probability": 0.9985 }, { "start": 1146.02, "end": 1147.56, "probability": 0.9692 }, { "start": 1147.56, "end": 1147.56, "probability": 0.364 }, { "start": 1147.56, "end": 1149.88, "probability": 0.6489 }, { "start": 1150.06, "end": 1150.4, "probability": 0.0321 }, { "start": 1150.42, "end": 1152.36, "probability": 0.8706 }, { "start": 1152.98, "end": 1153.72, "probability": 0.2217 }, { "start": 1153.78, "end": 1157.18, "probability": 0.9446 }, { "start": 1159.64, "end": 1161.28, "probability": 0.7433 }, { "start": 1162.34, "end": 1165.68, "probability": 0.9875 }, { "start": 1165.84, "end": 1166.48, "probability": 0.6728 }, { "start": 1166.84, "end": 1166.94, "probability": 0.6451 }, { "start": 1167.5, "end": 1169.74, "probability": 0.9678 }, { "start": 1169.86, "end": 1170.4, "probability": 0.9655 }, { "start": 1170.82, "end": 1172.1, "probability": 0.6798 }, { "start": 1172.58, "end": 1174.88, "probability": 0.9961 }, { "start": 1174.88, "end": 1176.9, "probability": 0.9435 }, { "start": 1177.86, "end": 1178.12, "probability": 0.545 }, { "start": 1178.26, "end": 1181.36, "probability": 0.7736 }, { "start": 1182.12, "end": 1183.24, "probability": 0.9858 }, { "start": 1183.3, "end": 1183.92, "probability": 0.6201 }, { "start": 1184.66, "end": 1188.94, "probability": 0.9695 }, { "start": 1189.58, "end": 1193.8, "probability": 0.56 }, { "start": 1193.9, "end": 1194.98, "probability": 0.9727 }, { "start": 1195.24, "end": 1196.7, "probability": 0.8234 }, { "start": 1196.82, "end": 1199.38, "probability": 0.7318 }, { "start": 1199.38, "end": 1201.96, "probability": 0.8088 }, { "start": 1202.14, "end": 1202.14, "probability": 0.6111 }, { "start": 1202.14, "end": 1202.14, "probability": 0.0078 }, { "start": 1202.14, "end": 1203.48, "probability": 0.8146 }, { "start": 1203.98, "end": 1204.88, "probability": 0.9197 }, { "start": 1205.12, "end": 1207.38, "probability": 0.7026 }, { "start": 1207.64, "end": 1210.56, "probability": 0.9191 }, { "start": 1210.78, "end": 1212.6, "probability": 0.9796 }, { "start": 1212.72, "end": 1213.1, "probability": 0.4543 }, { "start": 1213.8, "end": 1215.78, "probability": 0.9574 }, { "start": 1215.86, "end": 1217.9, "probability": 0.8634 }, { "start": 1217.94, "end": 1219.2, "probability": 0.8312 }, { "start": 1219.3, "end": 1223.0, "probability": 0.6522 }, { "start": 1223.0, "end": 1223.16, "probability": 0.6588 }, { "start": 1223.16, "end": 1224.34, "probability": 0.9956 }, { "start": 1224.76, "end": 1225.04, "probability": 0.6148 }, { "start": 1225.04, "end": 1225.38, "probability": 0.2404 }, { "start": 1225.38, "end": 1225.62, "probability": 0.8131 }, { "start": 1225.74, "end": 1227.1, "probability": 0.8528 }, { "start": 1227.32, "end": 1228.54, "probability": 0.4056 }, { "start": 1228.64, "end": 1228.8, "probability": 0.2578 }, { "start": 1228.8, "end": 1230.1, "probability": 0.6576 }, { "start": 1230.14, "end": 1230.52, "probability": 0.6137 }, { "start": 1230.76, "end": 1230.88, "probability": 0.0909 }, { "start": 1230.88, "end": 1230.97, "probability": 0.7094 }, { "start": 1231.02, "end": 1233.03, "probability": 0.9819 }, { "start": 1233.18, "end": 1234.2, "probability": 0.9918 }, { "start": 1234.2, "end": 1238.02, "probability": 0.7509 }, { "start": 1238.52, "end": 1239.57, "probability": 0.7537 }, { "start": 1239.7, "end": 1240.32, "probability": 0.9249 }, { "start": 1240.58, "end": 1240.6, "probability": 0.2021 }, { "start": 1240.6, "end": 1241.48, "probability": 0.452 }, { "start": 1241.7, "end": 1244.5, "probability": 0.7484 }, { "start": 1244.56, "end": 1244.94, "probability": 0.5876 }, { "start": 1245.56, "end": 1246.74, "probability": 0.5666 }, { "start": 1247.06, "end": 1248.6, "probability": 0.0797 }, { "start": 1248.6, "end": 1248.6, "probability": 0.0317 }, { "start": 1248.6, "end": 1248.6, "probability": 0.0268 }, { "start": 1248.6, "end": 1248.6, "probability": 0.0943 }, { "start": 1248.6, "end": 1250.24, "probability": 0.7466 }, { "start": 1250.8, "end": 1251.56, "probability": 0.3744 }, { "start": 1251.84, "end": 1252.8, "probability": 0.6928 }, { "start": 1253.48, "end": 1255.56, "probability": 0.5841 }, { "start": 1256.32, "end": 1258.0, "probability": 0.7521 }, { "start": 1258.2, "end": 1258.6, "probability": 0.4734 }, { "start": 1258.98, "end": 1259.06, "probability": 0.7385 }, { "start": 1259.12, "end": 1260.32, "probability": 0.9949 }, { "start": 1260.86, "end": 1261.56, "probability": 0.3506 }, { "start": 1261.62, "end": 1265.84, "probability": 0.9419 }, { "start": 1266.54, "end": 1268.46, "probability": 0.9966 }, { "start": 1268.9, "end": 1272.66, "probability": 0.9892 }, { "start": 1273.04, "end": 1275.0, "probability": 0.9601 }, { "start": 1275.42, "end": 1275.96, "probability": 0.7382 }, { "start": 1276.74, "end": 1278.88, "probability": 0.9868 }, { "start": 1279.68, "end": 1281.04, "probability": 0.9204 }, { "start": 1281.2, "end": 1283.2, "probability": 0.9678 }, { "start": 1283.32, "end": 1284.9, "probability": 0.7547 }, { "start": 1285.04, "end": 1288.6, "probability": 0.8765 }, { "start": 1288.88, "end": 1290.58, "probability": 0.6668 }, { "start": 1291.1, "end": 1292.02, "probability": 0.8123 }, { "start": 1292.42, "end": 1293.04, "probability": 0.7064 }, { "start": 1293.3, "end": 1294.76, "probability": 0.9688 }, { "start": 1294.9, "end": 1295.18, "probability": 0.8478 }, { "start": 1296.14, "end": 1297.16, "probability": 0.5703 }, { "start": 1297.22, "end": 1297.86, "probability": 0.4726 }, { "start": 1297.92, "end": 1297.92, "probability": 0.6553 }, { "start": 1297.92, "end": 1299.46, "probability": 0.582 }, { "start": 1300.76, "end": 1303.16, "probability": 0.7212 }, { "start": 1303.24, "end": 1306.58, "probability": 0.5683 }, { "start": 1306.66, "end": 1306.76, "probability": 0.791 }, { "start": 1316.34, "end": 1317.24, "probability": 0.6808 }, { "start": 1317.96, "end": 1319.47, "probability": 0.8625 }, { "start": 1320.72, "end": 1321.16, "probability": 0.6775 }, { "start": 1323.42, "end": 1324.26, "probability": 0.6822 }, { "start": 1325.66, "end": 1327.42, "probability": 0.9729 }, { "start": 1327.42, "end": 1329.96, "probability": 0.9884 }, { "start": 1330.0, "end": 1333.14, "probability": 0.9033 }, { "start": 1334.0, "end": 1337.44, "probability": 0.9326 }, { "start": 1337.82, "end": 1340.58, "probability": 0.9894 }, { "start": 1340.6, "end": 1345.22, "probability": 0.9864 }, { "start": 1346.38, "end": 1348.56, "probability": 0.8012 }, { "start": 1349.7, "end": 1353.12, "probability": 0.5029 }, { "start": 1354.32, "end": 1359.5, "probability": 0.5688 }, { "start": 1359.64, "end": 1361.12, "probability": 0.9647 }, { "start": 1361.68, "end": 1362.23, "probability": 0.9604 }, { "start": 1363.12, "end": 1365.47, "probability": 0.8597 }, { "start": 1365.74, "end": 1370.28, "probability": 0.8779 }, { "start": 1371.2, "end": 1372.9, "probability": 0.9556 }, { "start": 1373.46, "end": 1374.9, "probability": 0.9567 }, { "start": 1375.02, "end": 1375.62, "probability": 0.923 }, { "start": 1375.96, "end": 1377.8, "probability": 0.7852 }, { "start": 1378.12, "end": 1378.92, "probability": 0.5507 }, { "start": 1379.88, "end": 1381.86, "probability": 0.9807 }, { "start": 1381.94, "end": 1384.24, "probability": 0.9938 }, { "start": 1384.34, "end": 1384.96, "probability": 0.8138 }, { "start": 1385.61, "end": 1386.98, "probability": 0.9966 }, { "start": 1386.98, "end": 1389.22, "probability": 0.991 }, { "start": 1390.06, "end": 1393.22, "probability": 0.7793 }, { "start": 1393.42, "end": 1396.28, "probability": 0.6145 }, { "start": 1397.02, "end": 1400.8, "probability": 0.9175 }, { "start": 1401.75, "end": 1405.48, "probability": 0.8245 }, { "start": 1406.16, "end": 1409.3, "probability": 0.9552 }, { "start": 1409.44, "end": 1409.44, "probability": 0.0294 }, { "start": 1409.44, "end": 1409.44, "probability": 0.2438 }, { "start": 1409.44, "end": 1410.12, "probability": 0.6486 }, { "start": 1410.56, "end": 1411.18, "probability": 0.5909 }, { "start": 1411.72, "end": 1420.74, "probability": 0.9341 }, { "start": 1421.34, "end": 1422.2, "probability": 0.9717 }, { "start": 1422.36, "end": 1423.06, "probability": 0.6862 }, { "start": 1423.3, "end": 1424.26, "probability": 0.8958 }, { "start": 1425.02, "end": 1426.1, "probability": 0.9482 }, { "start": 1426.22, "end": 1428.24, "probability": 0.9258 }, { "start": 1428.64, "end": 1428.66, "probability": 0.6828 }, { "start": 1428.76, "end": 1431.18, "probability": 0.9536 }, { "start": 1432.2, "end": 1434.1, "probability": 0.9395 }, { "start": 1434.24, "end": 1434.68, "probability": 0.7546 }, { "start": 1434.88, "end": 1436.16, "probability": 0.9189 }, { "start": 1437.0, "end": 1438.22, "probability": 0.9592 }, { "start": 1438.84, "end": 1439.76, "probability": 0.9635 }, { "start": 1440.22, "end": 1443.1, "probability": 0.9842 }, { "start": 1443.1, "end": 1445.8, "probability": 0.9955 }, { "start": 1447.34, "end": 1450.14, "probability": 0.9946 }, { "start": 1450.26, "end": 1451.48, "probability": 0.8757 }, { "start": 1452.26, "end": 1455.52, "probability": 0.9927 }, { "start": 1455.6, "end": 1457.08, "probability": 0.984 }, { "start": 1457.66, "end": 1459.62, "probability": 0.8672 }, { "start": 1460.6, "end": 1460.94, "probability": 0.7092 }, { "start": 1461.82, "end": 1463.4, "probability": 0.9133 }, { "start": 1463.58, "end": 1464.2, "probability": 0.6957 }, { "start": 1464.22, "end": 1464.48, "probability": 0.3708 }, { "start": 1465.6, "end": 1470.56, "probability": 0.9458 }, { "start": 1470.76, "end": 1476.82, "probability": 0.9604 }, { "start": 1477.98, "end": 1478.86, "probability": 0.6842 }, { "start": 1479.38, "end": 1485.0, "probability": 0.9368 }, { "start": 1485.42, "end": 1487.92, "probability": 0.9634 }, { "start": 1488.0, "end": 1489.28, "probability": 0.8472 }, { "start": 1489.3, "end": 1490.56, "probability": 0.9353 }, { "start": 1491.38, "end": 1494.74, "probability": 0.931 }, { "start": 1495.34, "end": 1496.84, "probability": 0.8352 }, { "start": 1496.92, "end": 1497.72, "probability": 0.8501 }, { "start": 1497.8, "end": 1499.6, "probability": 0.9624 }, { "start": 1500.76, "end": 1501.34, "probability": 0.7729 }, { "start": 1501.44, "end": 1501.94, "probability": 0.7891 }, { "start": 1502.04, "end": 1502.98, "probability": 0.8256 }, { "start": 1503.1, "end": 1504.38, "probability": 0.9823 }, { "start": 1504.54, "end": 1504.92, "probability": 0.8739 }, { "start": 1505.3, "end": 1506.86, "probability": 0.9869 }, { "start": 1507.28, "end": 1508.6, "probability": 0.9912 }, { "start": 1509.14, "end": 1510.26, "probability": 0.9154 }, { "start": 1510.9, "end": 1512.36, "probability": 0.9606 }, { "start": 1512.46, "end": 1514.14, "probability": 0.9955 }, { "start": 1514.24, "end": 1517.26, "probability": 0.9257 }, { "start": 1517.36, "end": 1520.66, "probability": 0.9962 }, { "start": 1520.78, "end": 1525.16, "probability": 0.9451 }, { "start": 1525.62, "end": 1529.36, "probability": 0.9863 }, { "start": 1529.48, "end": 1530.38, "probability": 0.9038 }, { "start": 1530.78, "end": 1534.19, "probability": 0.9766 }, { "start": 1534.36, "end": 1536.26, "probability": 0.7494 }, { "start": 1536.84, "end": 1538.86, "probability": 0.9271 }, { "start": 1539.14, "end": 1541.26, "probability": 0.9834 }, { "start": 1542.28, "end": 1542.8, "probability": 0.6748 }, { "start": 1543.12, "end": 1543.62, "probability": 0.9788 }, { "start": 1544.12, "end": 1546.52, "probability": 0.9203 }, { "start": 1546.8, "end": 1547.18, "probability": 0.7275 }, { "start": 1547.28, "end": 1547.5, "probability": 0.7693 }, { "start": 1547.84, "end": 1550.4, "probability": 0.7135 }, { "start": 1551.0, "end": 1555.52, "probability": 0.8243 }, { "start": 1556.14, "end": 1557.0, "probability": 0.7644 }, { "start": 1557.58, "end": 1560.28, "probability": 0.8235 }, { "start": 1570.8, "end": 1570.94, "probability": 0.3928 }, { "start": 1571.08, "end": 1571.82, "probability": 0.7373 }, { "start": 1572.2, "end": 1573.82, "probability": 0.8861 }, { "start": 1574.04, "end": 1575.94, "probability": 0.9373 }, { "start": 1576.76, "end": 1580.8, "probability": 0.9924 }, { "start": 1580.8, "end": 1584.18, "probability": 0.9688 }, { "start": 1584.72, "end": 1585.68, "probability": 0.9774 }, { "start": 1586.2, "end": 1587.7, "probability": 0.8196 }, { "start": 1587.74, "end": 1589.38, "probability": 0.86 }, { "start": 1589.96, "end": 1591.34, "probability": 0.6726 }, { "start": 1591.34, "end": 1592.06, "probability": 0.8424 }, { "start": 1592.52, "end": 1593.26, "probability": 0.6143 }, { "start": 1594.26, "end": 1596.0, "probability": 0.8545 }, { "start": 1596.34, "end": 1599.28, "probability": 0.9667 }, { "start": 1599.96, "end": 1600.92, "probability": 0.425 }, { "start": 1601.54, "end": 1604.44, "probability": 0.0711 }, { "start": 1604.48, "end": 1605.82, "probability": 0.7866 }, { "start": 1606.2, "end": 1609.05, "probability": 0.5011 }, { "start": 1609.1, "end": 1611.24, "probability": 0.8098 }, { "start": 1612.34, "end": 1613.64, "probability": 0.409 }, { "start": 1614.2, "end": 1616.34, "probability": 0.0952 }, { "start": 1616.96, "end": 1619.56, "probability": 0.958 }, { "start": 1620.22, "end": 1620.63, "probability": 0.5042 }, { "start": 1621.94, "end": 1625.46, "probability": 0.5023 }, { "start": 1625.8, "end": 1627.84, "probability": 0.8885 }, { "start": 1628.44, "end": 1633.8, "probability": 0.609 }, { "start": 1634.78, "end": 1639.06, "probability": 0.7499 }, { "start": 1639.12, "end": 1640.68, "probability": 0.9164 }, { "start": 1640.94, "end": 1641.5, "probability": 0.4775 }, { "start": 1642.16, "end": 1644.3, "probability": 0.8937 }, { "start": 1644.66, "end": 1645.7, "probability": 0.7219 }, { "start": 1646.4, "end": 1647.44, "probability": 0.6301 }, { "start": 1648.0, "end": 1648.98, "probability": 0.9746 }, { "start": 1649.82, "end": 1650.72, "probability": 0.8302 }, { "start": 1651.24, "end": 1653.86, "probability": 0.6577 }, { "start": 1655.02, "end": 1656.24, "probability": 0.8224 }, { "start": 1656.4, "end": 1656.84, "probability": 0.7195 }, { "start": 1656.98, "end": 1657.86, "probability": 0.9879 }, { "start": 1657.96, "end": 1660.76, "probability": 0.8951 }, { "start": 1660.98, "end": 1662.66, "probability": 0.744 }, { "start": 1664.92, "end": 1668.52, "probability": 0.8415 }, { "start": 1668.58, "end": 1672.08, "probability": 0.7273 }, { "start": 1672.08, "end": 1673.62, "probability": 0.9473 }, { "start": 1674.46, "end": 1676.76, "probability": 0.2015 }, { "start": 1677.4, "end": 1680.82, "probability": 0.9741 }, { "start": 1681.82, "end": 1683.3, "probability": 0.777 }, { "start": 1683.78, "end": 1687.78, "probability": 0.9697 }, { "start": 1687.78, "end": 1689.46, "probability": 0.8718 }, { "start": 1690.16, "end": 1693.56, "probability": 0.9254 }, { "start": 1697.97, "end": 1699.14, "probability": 0.6442 }, { "start": 1700.14, "end": 1700.62, "probability": 0.8799 }, { "start": 1700.78, "end": 1702.8, "probability": 0.6659 }, { "start": 1702.92, "end": 1705.04, "probability": 0.8714 }, { "start": 1705.38, "end": 1706.04, "probability": 0.573 }, { "start": 1706.24, "end": 1706.66, "probability": 0.9721 }, { "start": 1707.9, "end": 1708.84, "probability": 0.895 }, { "start": 1709.02, "end": 1711.38, "probability": 0.2809 }, { "start": 1711.58, "end": 1713.12, "probability": 0.6081 }, { "start": 1713.36, "end": 1715.48, "probability": 0.7581 }, { "start": 1716.16, "end": 1721.64, "probability": 0.9079 }, { "start": 1722.86, "end": 1723.2, "probability": 0.5897 }, { "start": 1723.46, "end": 1724.42, "probability": 0.8089 }, { "start": 1732.0, "end": 1733.6, "probability": 0.6591 }, { "start": 1735.32, "end": 1736.36, "probability": 0.71 }, { "start": 1738.12, "end": 1742.56, "probability": 0.9465 }, { "start": 1743.48, "end": 1746.86, "probability": 0.9854 }, { "start": 1747.62, "end": 1751.4, "probability": 0.9905 }, { "start": 1752.3, "end": 1756.02, "probability": 0.7455 }, { "start": 1757.02, "end": 1759.9, "probability": 0.4915 }, { "start": 1760.0, "end": 1762.94, "probability": 0.7817 }, { "start": 1763.28, "end": 1763.72, "probability": 0.7092 }, { "start": 1763.94, "end": 1764.88, "probability": 0.5354 }, { "start": 1765.18, "end": 1767.16, "probability": 0.878 }, { "start": 1769.08, "end": 1769.42, "probability": 0.7353 }, { "start": 1769.48, "end": 1770.2, "probability": 0.9668 }, { "start": 1770.48, "end": 1771.5, "probability": 0.8641 }, { "start": 1771.7, "end": 1772.84, "probability": 0.9809 }, { "start": 1773.36, "end": 1774.42, "probability": 0.8168 }, { "start": 1775.16, "end": 1776.0, "probability": 0.9403 }, { "start": 1776.78, "end": 1779.86, "probability": 0.8771 }, { "start": 1782.08, "end": 1782.54, "probability": 0.2596 }, { "start": 1788.48, "end": 1796.16, "probability": 0.9829 }, { "start": 1797.14, "end": 1798.04, "probability": 0.7604 }, { "start": 1799.29, "end": 1803.44, "probability": 0.9954 }, { "start": 1803.76, "end": 1807.0, "probability": 0.9478 }, { "start": 1808.38, "end": 1813.66, "probability": 0.835 }, { "start": 1814.62, "end": 1817.32, "probability": 0.9953 }, { "start": 1817.52, "end": 1818.6, "probability": 0.4497 }, { "start": 1819.02, "end": 1822.32, "probability": 0.9962 }, { "start": 1822.42, "end": 1822.84, "probability": 0.4077 }, { "start": 1822.84, "end": 1826.3, "probability": 0.9857 }, { "start": 1826.34, "end": 1827.96, "probability": 0.9483 }, { "start": 1828.6, "end": 1829.26, "probability": 0.9185 }, { "start": 1829.88, "end": 1830.58, "probability": 0.7492 }, { "start": 1830.72, "end": 1833.64, "probability": 0.9738 }, { "start": 1833.84, "end": 1836.98, "probability": 0.9837 }, { "start": 1837.26, "end": 1837.9, "probability": 0.9456 }, { "start": 1838.62, "end": 1841.74, "probability": 0.9916 }, { "start": 1842.92, "end": 1846.06, "probability": 0.9808 }, { "start": 1846.18, "end": 1852.04, "probability": 0.9888 }, { "start": 1853.02, "end": 1854.44, "probability": 0.7085 }, { "start": 1855.22, "end": 1856.26, "probability": 0.9964 }, { "start": 1857.04, "end": 1860.48, "probability": 0.998 }, { "start": 1861.2, "end": 1862.84, "probability": 0.8918 }, { "start": 1863.24, "end": 1865.2, "probability": 0.9343 }, { "start": 1865.58, "end": 1868.92, "probability": 0.9939 }, { "start": 1869.24, "end": 1871.86, "probability": 0.9676 }, { "start": 1872.3, "end": 1874.0, "probability": 0.9938 }, { "start": 1874.0, "end": 1876.96, "probability": 0.9978 }, { "start": 1877.62, "end": 1878.4, "probability": 0.9652 }, { "start": 1879.64, "end": 1880.2, "probability": 0.0869 }, { "start": 1882.74, "end": 1882.74, "probability": 0.0149 }, { "start": 1882.74, "end": 1882.74, "probability": 0.2138 }, { "start": 1882.74, "end": 1883.0, "probability": 0.5957 }, { "start": 1887.8, "end": 1890.16, "probability": 0.9251 }, { "start": 1890.3, "end": 1894.18, "probability": 0.9938 }, { "start": 1894.22, "end": 1899.4, "probability": 0.9948 }, { "start": 1899.96, "end": 1903.9, "probability": 0.9747 }, { "start": 1903.96, "end": 1904.4, "probability": 0.2746 }, { "start": 1904.52, "end": 1904.88, "probability": 0.0564 }, { "start": 1905.38, "end": 1905.74, "probability": 0.8154 }, { "start": 1906.02, "end": 1913.42, "probability": 0.7276 }, { "start": 1913.54, "end": 1915.12, "probability": 0.9841 }, { "start": 1915.54, "end": 1916.04, "probability": 0.7621 }, { "start": 1916.4, "end": 1916.98, "probability": 0.7789 }, { "start": 1917.38, "end": 1919.74, "probability": 0.4763 }, { "start": 1919.8, "end": 1920.84, "probability": 0.8631 }, { "start": 1920.9, "end": 1925.72, "probability": 0.8565 }, { "start": 1925.72, "end": 1931.2, "probability": 0.9586 }, { "start": 1931.52, "end": 1933.44, "probability": 0.8422 }, { "start": 1933.64, "end": 1933.9, "probability": 0.8239 }, { "start": 1933.94, "end": 1937.34, "probability": 0.9948 }, { "start": 1937.4, "end": 1942.7, "probability": 0.9976 }, { "start": 1942.7, "end": 1943.04, "probability": 0.2561 }, { "start": 1943.36, "end": 1945.48, "probability": 0.9973 }, { "start": 1945.48, "end": 1947.52, "probability": 0.7961 }, { "start": 1947.58, "end": 1948.1, "probability": 0.9287 }, { "start": 1948.64, "end": 1948.9, "probability": 0.4721 }, { "start": 1950.64, "end": 1951.88, "probability": 0.4987 }, { "start": 1952.14, "end": 1955.94, "probability": 0.9736 }, { "start": 1956.56, "end": 1959.68, "probability": 0.8713 }, { "start": 1959.68, "end": 1962.08, "probability": 0.9178 }, { "start": 1962.52, "end": 1964.14, "probability": 0.8949 }, { "start": 1964.22, "end": 1968.9, "probability": 0.8211 }, { "start": 1969.5, "end": 1971.7, "probability": 0.7827 }, { "start": 1973.9, "end": 1974.5, "probability": 0.9909 }, { "start": 1980.18, "end": 1982.14, "probability": 0.8882 }, { "start": 1998.64, "end": 2000.84, "probability": 0.7469 }, { "start": 2002.48, "end": 2007.34, "probability": 0.9971 }, { "start": 2008.22, "end": 2011.92, "probability": 0.9366 }, { "start": 2013.12, "end": 2017.26, "probability": 0.9805 }, { "start": 2017.74, "end": 2021.46, "probability": 0.9327 }, { "start": 2022.18, "end": 2025.14, "probability": 0.9915 }, { "start": 2025.98, "end": 2026.66, "probability": 0.9738 }, { "start": 2027.3, "end": 2030.6, "probability": 0.9847 }, { "start": 2031.66, "end": 2034.9, "probability": 0.9965 }, { "start": 2035.04, "end": 2038.16, "probability": 0.9957 }, { "start": 2038.72, "end": 2041.24, "probability": 0.9841 }, { "start": 2041.24, "end": 2044.7, "probability": 0.9666 }, { "start": 2045.08, "end": 2050.44, "probability": 0.985 }, { "start": 2050.94, "end": 2053.74, "probability": 0.9286 }, { "start": 2055.52, "end": 2056.4, "probability": 0.6067 }, { "start": 2056.78, "end": 2058.82, "probability": 0.8818 }, { "start": 2058.94, "end": 2060.02, "probability": 0.9527 }, { "start": 2060.2, "end": 2062.64, "probability": 0.9634 }, { "start": 2063.26, "end": 2066.5, "probability": 0.9722 }, { "start": 2066.9, "end": 2069.36, "probability": 0.9952 }, { "start": 2069.78, "end": 2071.76, "probability": 0.8115 }, { "start": 2072.44, "end": 2076.04, "probability": 0.997 }, { "start": 2077.18, "end": 2082.8, "probability": 0.9945 }, { "start": 2082.8, "end": 2088.1, "probability": 0.9934 }, { "start": 2088.7, "end": 2090.6, "probability": 0.9316 }, { "start": 2091.02, "end": 2092.6, "probability": 0.995 }, { "start": 2093.32, "end": 2095.86, "probability": 0.9958 }, { "start": 2096.5, "end": 2097.12, "probability": 0.9414 }, { "start": 2097.34, "end": 2097.92, "probability": 0.9827 }, { "start": 2098.02, "end": 2098.6, "probability": 0.8878 }, { "start": 2099.0, "end": 2100.06, "probability": 0.9917 }, { "start": 2100.24, "end": 2101.48, "probability": 0.9704 }, { "start": 2101.92, "end": 2103.98, "probability": 0.9932 }, { "start": 2104.4, "end": 2106.12, "probability": 0.8331 }, { "start": 2106.58, "end": 2109.14, "probability": 0.9027 }, { "start": 2109.78, "end": 2110.22, "probability": 0.7351 }, { "start": 2110.32, "end": 2114.2, "probability": 0.9796 }, { "start": 2114.34, "end": 2117.78, "probability": 0.9893 }, { "start": 2118.22, "end": 2119.21, "probability": 0.9805 }, { "start": 2119.32, "end": 2120.12, "probability": 0.9727 }, { "start": 2120.86, "end": 2122.02, "probability": 0.9761 }, { "start": 2122.14, "end": 2123.06, "probability": 0.9836 }, { "start": 2124.14, "end": 2124.24, "probability": 0.8057 }, { "start": 2124.6, "end": 2125.12, "probability": 0.9706 }, { "start": 2125.48, "end": 2129.0, "probability": 0.9706 }, { "start": 2129.74, "end": 2132.84, "probability": 0.9941 }, { "start": 2132.94, "end": 2138.94, "probability": 0.9992 }, { "start": 2139.32, "end": 2142.28, "probability": 0.9814 }, { "start": 2142.72, "end": 2146.16, "probability": 0.9995 }, { "start": 2146.22, "end": 2147.56, "probability": 0.9573 }, { "start": 2147.96, "end": 2150.5, "probability": 0.9699 }, { "start": 2151.04, "end": 2155.28, "probability": 0.9935 }, { "start": 2155.94, "end": 2157.92, "probability": 0.996 }, { "start": 2158.58, "end": 2161.06, "probability": 0.9959 }, { "start": 2161.06, "end": 2165.8, "probability": 0.9976 }, { "start": 2166.5, "end": 2169.8, "probability": 0.7753 }, { "start": 2170.42, "end": 2173.4, "probability": 0.7828 }, { "start": 2173.9, "end": 2174.46, "probability": 0.8031 }, { "start": 2174.5, "end": 2176.86, "probability": 0.9727 }, { "start": 2177.4, "end": 2180.56, "probability": 0.9227 }, { "start": 2181.08, "end": 2182.36, "probability": 0.6264 }, { "start": 2182.98, "end": 2183.5, "probability": 0.9177 }, { "start": 2183.6, "end": 2184.9, "probability": 0.9077 }, { "start": 2185.36, "end": 2189.1, "probability": 0.9728 }, { "start": 2189.64, "end": 2193.54, "probability": 0.9967 }, { "start": 2193.54, "end": 2198.94, "probability": 0.9972 }, { "start": 2199.72, "end": 2202.74, "probability": 0.8464 }, { "start": 2203.04, "end": 2205.34, "probability": 0.9951 }, { "start": 2205.78, "end": 2209.24, "probability": 0.9907 }, { "start": 2209.66, "end": 2214.48, "probability": 0.993 }, { "start": 2214.8, "end": 2217.64, "probability": 0.9291 }, { "start": 2217.64, "end": 2220.84, "probability": 0.9992 }, { "start": 2221.6, "end": 2224.48, "probability": 0.9988 }, { "start": 2224.56, "end": 2226.18, "probability": 0.89 }, { "start": 2226.58, "end": 2227.6, "probability": 0.9126 }, { "start": 2227.84, "end": 2228.62, "probability": 0.9935 }, { "start": 2228.78, "end": 2229.66, "probability": 0.9763 }, { "start": 2229.78, "end": 2230.82, "probability": 0.9861 }, { "start": 2231.34, "end": 2232.62, "probability": 0.9626 }, { "start": 2233.18, "end": 2234.74, "probability": 0.9897 }, { "start": 2235.16, "end": 2237.0, "probability": 0.936 }, { "start": 2237.28, "end": 2239.46, "probability": 0.9227 }, { "start": 2239.68, "end": 2239.88, "probability": 0.7688 }, { "start": 2240.94, "end": 2241.5, "probability": 0.6142 }, { "start": 2241.72, "end": 2244.06, "probability": 0.9932 }, { "start": 2244.5, "end": 2247.82, "probability": 0.9939 }, { "start": 2248.34, "end": 2252.88, "probability": 0.9912 }, { "start": 2253.56, "end": 2258.0, "probability": 0.973 }, { "start": 2258.83, "end": 2264.88, "probability": 0.9839 }, { "start": 2264.96, "end": 2265.64, "probability": 0.9329 }, { "start": 2266.04, "end": 2267.5, "probability": 0.9705 }, { "start": 2267.76, "end": 2269.02, "probability": 0.9186 }, { "start": 2269.14, "end": 2270.9, "probability": 0.9844 }, { "start": 2271.4, "end": 2273.26, "probability": 0.9976 }, { "start": 2273.62, "end": 2277.74, "probability": 0.9959 }, { "start": 2278.26, "end": 2280.42, "probability": 0.9541 }, { "start": 2280.94, "end": 2282.16, "probability": 0.9488 }, { "start": 2282.6, "end": 2286.52, "probability": 0.9902 }, { "start": 2287.0, "end": 2288.24, "probability": 0.9602 }, { "start": 2288.78, "end": 2291.78, "probability": 0.9673 }, { "start": 2292.2, "end": 2294.9, "probability": 0.9244 }, { "start": 2295.24, "end": 2297.2, "probability": 0.9891 }, { "start": 2297.3, "end": 2300.04, "probability": 0.9561 }, { "start": 2300.88, "end": 2302.18, "probability": 0.7618 }, { "start": 2302.24, "end": 2305.84, "probability": 0.9546 }, { "start": 2306.18, "end": 2308.34, "probability": 0.9858 }, { "start": 2308.54, "end": 2311.9, "probability": 0.9847 }, { "start": 2311.94, "end": 2312.56, "probability": 0.7216 }, { "start": 2313.08, "end": 2315.14, "probability": 0.9851 }, { "start": 2315.66, "end": 2319.04, "probability": 0.9955 }, { "start": 2319.74, "end": 2324.26, "probability": 0.9952 }, { "start": 2324.72, "end": 2326.3, "probability": 0.9314 }, { "start": 2326.42, "end": 2327.72, "probability": 0.9299 }, { "start": 2328.06, "end": 2330.48, "probability": 0.9808 }, { "start": 2331.2, "end": 2331.66, "probability": 0.9362 }, { "start": 2331.94, "end": 2334.4, "probability": 0.9265 }, { "start": 2334.42, "end": 2338.8, "probability": 0.9281 }, { "start": 2339.8, "end": 2341.21, "probability": 0.8485 }, { "start": 2360.14, "end": 2361.02, "probability": 0.6088 }, { "start": 2361.04, "end": 2361.98, "probability": 0.7072 }, { "start": 2362.32, "end": 2365.94, "probability": 0.9421 }, { "start": 2367.8, "end": 2369.46, "probability": 0.9631 }, { "start": 2370.24, "end": 2372.14, "probability": 0.9898 }, { "start": 2372.32, "end": 2372.54, "probability": 0.9316 }, { "start": 2372.66, "end": 2373.34, "probability": 0.5572 }, { "start": 2373.36, "end": 2375.84, "probability": 0.9935 }, { "start": 2376.12, "end": 2377.46, "probability": 0.7965 }, { "start": 2377.78, "end": 2383.76, "probability": 0.9786 }, { "start": 2384.26, "end": 2384.74, "probability": 0.9339 }, { "start": 2385.5, "end": 2386.98, "probability": 0.9586 }, { "start": 2388.54, "end": 2389.96, "probability": 0.9088 }, { "start": 2390.08, "end": 2396.06, "probability": 0.9927 }, { "start": 2396.84, "end": 2399.46, "probability": 0.9902 }, { "start": 2399.52, "end": 2404.52, "probability": 0.9712 }, { "start": 2405.92, "end": 2408.28, "probability": 0.9216 }, { "start": 2408.28, "end": 2412.42, "probability": 0.9951 }, { "start": 2412.42, "end": 2416.9, "probability": 0.9409 }, { "start": 2419.01, "end": 2421.74, "probability": 0.8546 }, { "start": 2422.88, "end": 2426.54, "probability": 0.9819 }, { "start": 2426.54, "end": 2431.94, "probability": 0.9968 }, { "start": 2433.2, "end": 2437.18, "probability": 0.9974 }, { "start": 2437.18, "end": 2440.3, "probability": 0.9953 }, { "start": 2440.92, "end": 2441.62, "probability": 0.8402 }, { "start": 2441.76, "end": 2444.74, "probability": 0.8457 }, { "start": 2445.52, "end": 2448.1, "probability": 0.9858 }, { "start": 2448.1, "end": 2451.16, "probability": 0.9877 }, { "start": 2451.86, "end": 2454.94, "probability": 0.8704 }, { "start": 2455.36, "end": 2458.34, "probability": 0.9912 }, { "start": 2458.58, "end": 2462.18, "probability": 0.9653 }, { "start": 2463.4, "end": 2468.84, "probability": 0.9675 }, { "start": 2468.84, "end": 2472.72, "probability": 0.9995 }, { "start": 2473.78, "end": 2476.48, "probability": 0.8992 }, { "start": 2476.7, "end": 2478.36, "probability": 0.8271 }, { "start": 2480.78, "end": 2484.88, "probability": 0.9811 }, { "start": 2485.02, "end": 2485.78, "probability": 0.7864 }, { "start": 2485.9, "end": 2488.8, "probability": 0.9805 }, { "start": 2489.48, "end": 2491.2, "probability": 0.9416 }, { "start": 2491.7, "end": 2497.48, "probability": 0.894 }, { "start": 2510.3, "end": 2513.42, "probability": 0.5751 }, { "start": 2513.82, "end": 2514.18, "probability": 0.5953 }, { "start": 2516.28, "end": 2518.34, "probability": 0.825 }, { "start": 2519.62, "end": 2522.52, "probability": 0.9922 }, { "start": 2523.96, "end": 2531.0, "probability": 0.9815 }, { "start": 2531.9, "end": 2533.8, "probability": 0.9806 }, { "start": 2534.54, "end": 2537.88, "probability": 0.9925 }, { "start": 2538.2, "end": 2539.54, "probability": 0.7995 }, { "start": 2540.86, "end": 2541.52, "probability": 0.7387 }, { "start": 2541.58, "end": 2544.72, "probability": 0.754 }, { "start": 2544.8, "end": 2548.04, "probability": 0.9032 }, { "start": 2548.42, "end": 2549.08, "probability": 0.6924 }, { "start": 2549.72, "end": 2551.06, "probability": 0.9656 }, { "start": 2551.42, "end": 2551.82, "probability": 0.7978 }, { "start": 2552.9, "end": 2553.66, "probability": 0.9376 }, { "start": 2554.12, "end": 2559.78, "probability": 0.9751 }, { "start": 2560.34, "end": 2560.86, "probability": 0.9558 }, { "start": 2561.6, "end": 2562.22, "probability": 0.5464 }, { "start": 2563.28, "end": 2563.96, "probability": 0.6626 }, { "start": 2564.6, "end": 2566.54, "probability": 0.8561 }, { "start": 2568.26, "end": 2569.88, "probability": 0.3997 }, { "start": 2570.12, "end": 2570.9, "probability": 0.025 }, { "start": 2570.9, "end": 2570.9, "probability": 0.3673 }, { "start": 2570.9, "end": 2571.74, "probability": 0.7179 }, { "start": 2572.3, "end": 2573.76, "probability": 0.7851 }, { "start": 2573.88, "end": 2575.12, "probability": 0.9336 }, { "start": 2575.18, "end": 2577.24, "probability": 0.8397 }, { "start": 2578.68, "end": 2582.28, "probability": 0.9927 }, { "start": 2583.22, "end": 2584.62, "probability": 0.8239 }, { "start": 2586.36, "end": 2586.56, "probability": 0.5698 }, { "start": 2587.7, "end": 2589.32, "probability": 0.8394 }, { "start": 2590.46, "end": 2591.66, "probability": 0.9859 }, { "start": 2592.06, "end": 2593.56, "probability": 0.9189 }, { "start": 2594.4, "end": 2598.4, "probability": 0.9902 }, { "start": 2598.44, "end": 2600.16, "probability": 0.5385 }, { "start": 2600.7, "end": 2601.96, "probability": 0.7244 }, { "start": 2602.92, "end": 2605.54, "probability": 0.9497 }, { "start": 2606.7, "end": 2607.54, "probability": 0.7643 }, { "start": 2607.82, "end": 2610.4, "probability": 0.9969 }, { "start": 2611.44, "end": 2612.56, "probability": 0.8284 }, { "start": 2613.74, "end": 2614.66, "probability": 0.8799 }, { "start": 2615.2, "end": 2616.02, "probability": 0.8998 }, { "start": 2617.36, "end": 2619.78, "probability": 0.9149 }, { "start": 2620.64, "end": 2621.04, "probability": 0.9042 }, { "start": 2621.7, "end": 2623.16, "probability": 0.8377 }, { "start": 2623.24, "end": 2627.3, "probability": 0.8644 }, { "start": 2628.0, "end": 2631.52, "probability": 0.9847 }, { "start": 2632.7, "end": 2633.42, "probability": 0.7113 }, { "start": 2634.9, "end": 2636.62, "probability": 0.7915 }, { "start": 2636.76, "end": 2638.0, "probability": 0.9931 }, { "start": 2638.28, "end": 2638.44, "probability": 0.9146 }, { "start": 2639.06, "end": 2641.44, "probability": 0.6615 }, { "start": 2642.4, "end": 2643.52, "probability": 0.8594 }, { "start": 2644.1, "end": 2647.68, "probability": 0.8444 }, { "start": 2648.16, "end": 2649.92, "probability": 0.3149 }, { "start": 2650.02, "end": 2653.2, "probability": 0.7824 }, { "start": 2653.86, "end": 2655.22, "probability": 0.6663 }, { "start": 2655.28, "end": 2656.0, "probability": 0.4818 }, { "start": 2656.14, "end": 2656.88, "probability": 0.4228 }, { "start": 2657.36, "end": 2661.68, "probability": 0.0561 }, { "start": 2663.32, "end": 2663.46, "probability": 0.0494 }, { "start": 2675.52, "end": 2675.82, "probability": 0.4613 }, { "start": 2675.82, "end": 2678.4, "probability": 0.552 }, { "start": 2678.86, "end": 2681.02, "probability": 0.9442 }, { "start": 2682.06, "end": 2684.74, "probability": 0.6576 }, { "start": 2685.04, "end": 2685.88, "probability": 0.9835 }, { "start": 2687.08, "end": 2689.4, "probability": 0.8041 }, { "start": 2689.9, "end": 2690.38, "probability": 0.6708 }, { "start": 2691.75, "end": 2694.12, "probability": 0.7893 }, { "start": 2694.22, "end": 2695.36, "probability": 0.6822 }, { "start": 2695.42, "end": 2696.9, "probability": 0.9342 }, { "start": 2697.5, "end": 2699.4, "probability": 0.6405 }, { "start": 2699.98, "end": 2701.54, "probability": 0.9382 }, { "start": 2702.46, "end": 2705.58, "probability": 0.56 }, { "start": 2706.1, "end": 2707.26, "probability": 0.5397 }, { "start": 2708.32, "end": 2711.85, "probability": 0.8428 }, { "start": 2712.88, "end": 2716.8, "probability": 0.933 }, { "start": 2717.52, "end": 2720.78, "probability": 0.9305 }, { "start": 2721.42, "end": 2723.3, "probability": 0.6221 }, { "start": 2723.62, "end": 2724.94, "probability": 0.9205 }, { "start": 2725.02, "end": 2726.66, "probability": 0.8169 }, { "start": 2727.28, "end": 2730.26, "probability": 0.7184 }, { "start": 2730.92, "end": 2733.18, "probability": 0.5822 }, { "start": 2733.36, "end": 2736.68, "probability": 0.8535 }, { "start": 2736.68, "end": 2740.44, "probability": 0.9575 }, { "start": 2741.08, "end": 2742.18, "probability": 0.8393 }, { "start": 2743.32, "end": 2743.32, "probability": 0.2087 }, { "start": 2745.58, "end": 2746.34, "probability": 0.0422 }, { "start": 2747.04, "end": 2747.04, "probability": 0.4767 }, { "start": 2773.22, "end": 2776.68, "probability": 0.8316 }, { "start": 2780.62, "end": 2780.72, "probability": 0.5222 }, { "start": 2781.52, "end": 2784.66, "probability": 0.7677 }, { "start": 2784.76, "end": 2790.54, "probability": 0.9398 }, { "start": 2793.1, "end": 2794.26, "probability": 0.8898 }, { "start": 2794.3, "end": 2797.26, "probability": 0.9978 }, { "start": 2797.34, "end": 2801.56, "probability": 0.9975 }, { "start": 2801.62, "end": 2805.4, "probability": 0.9922 }, { "start": 2805.52, "end": 2807.16, "probability": 0.9885 }, { "start": 2808.96, "end": 2812.32, "probability": 0.9421 }, { "start": 2814.58, "end": 2817.2, "probability": 0.9959 }, { "start": 2819.22, "end": 2825.1, "probability": 0.9933 }, { "start": 2826.86, "end": 2829.32, "probability": 0.9951 }, { "start": 2830.26, "end": 2835.2, "probability": 0.989 }, { "start": 2835.82, "end": 2837.33, "probability": 0.9985 }, { "start": 2838.16, "end": 2840.14, "probability": 0.9836 }, { "start": 2841.44, "end": 2843.92, "probability": 0.9604 }, { "start": 2844.16, "end": 2845.1, "probability": 0.986 }, { "start": 2845.5, "end": 2845.96, "probability": 0.9626 }, { "start": 2846.1, "end": 2846.8, "probability": 0.9887 }, { "start": 2847.2, "end": 2847.54, "probability": 0.6423 }, { "start": 2848.1, "end": 2849.32, "probability": 0.9971 }, { "start": 2850.4, "end": 2852.22, "probability": 0.9977 }, { "start": 2853.92, "end": 2855.11, "probability": 0.9949 }, { "start": 2855.82, "end": 2861.02, "probability": 0.9796 }, { "start": 2862.2, "end": 2863.14, "probability": 0.5631 }, { "start": 2863.94, "end": 2865.22, "probability": 0.9761 }, { "start": 2865.74, "end": 2867.0, "probability": 0.9683 }, { "start": 2867.82, "end": 2871.02, "probability": 0.99 }, { "start": 2871.68, "end": 2876.92, "probability": 0.993 }, { "start": 2878.46, "end": 2881.88, "probability": 0.9465 }, { "start": 2882.7, "end": 2884.92, "probability": 0.9125 }, { "start": 2885.52, "end": 2887.28, "probability": 0.9006 }, { "start": 2887.4, "end": 2890.3, "probability": 0.9664 }, { "start": 2890.52, "end": 2891.7, "probability": 0.9855 }, { "start": 2891.82, "end": 2892.5, "probability": 0.645 }, { "start": 2893.08, "end": 2898.02, "probability": 0.9595 }, { "start": 2898.74, "end": 2901.0, "probability": 0.9548 }, { "start": 2901.88, "end": 2904.18, "probability": 0.8931 }, { "start": 2905.12, "end": 2907.02, "probability": 0.9441 }, { "start": 2907.8, "end": 2910.76, "probability": 0.9259 }, { "start": 2911.5, "end": 2913.16, "probability": 0.9798 }, { "start": 2913.68, "end": 2920.36, "probability": 0.9084 }, { "start": 2921.5, "end": 2922.7, "probability": 0.9335 }, { "start": 2923.74, "end": 2926.66, "probability": 0.8617 }, { "start": 2927.74, "end": 2929.36, "probability": 0.8782 }, { "start": 2930.02, "end": 2933.52, "probability": 0.998 }, { "start": 2934.04, "end": 2939.78, "probability": 0.7189 }, { "start": 2940.28, "end": 2941.32, "probability": 0.8447 }, { "start": 2941.48, "end": 2943.66, "probability": 0.5711 }, { "start": 2943.7, "end": 2944.44, "probability": 0.8395 }, { "start": 2944.56, "end": 2945.2, "probability": 0.9351 }, { "start": 2945.3, "end": 2945.95, "probability": 0.9388 }, { "start": 2946.1, "end": 2946.97, "probability": 0.9614 }, { "start": 2947.36, "end": 2948.88, "probability": 0.9748 }, { "start": 2949.02, "end": 2950.2, "probability": 0.9324 }, { "start": 2950.36, "end": 2951.46, "probability": 0.9629 }, { "start": 2951.9, "end": 2953.84, "probability": 0.9853 }, { "start": 2954.8, "end": 2957.46, "probability": 0.9561 }, { "start": 2958.3, "end": 2959.51, "probability": 0.9827 }, { "start": 2960.16, "end": 2961.08, "probability": 0.9674 }, { "start": 2961.9, "end": 2964.82, "probability": 0.9969 }, { "start": 2965.0, "end": 2969.48, "probability": 0.8826 }, { "start": 2971.98, "end": 2972.76, "probability": 0.07 }, { "start": 2972.76, "end": 2974.18, "probability": 0.7942 }, { "start": 2974.62, "end": 2975.34, "probability": 0.8579 }, { "start": 2976.18, "end": 2979.6, "probability": 0.9539 }, { "start": 2979.6, "end": 2982.4, "probability": 0.9972 }, { "start": 2982.92, "end": 2984.76, "probability": 0.9956 }, { "start": 2985.88, "end": 2987.09, "probability": 0.9833 }, { "start": 2987.68, "end": 2990.42, "probability": 0.9909 }, { "start": 2990.98, "end": 2992.32, "probability": 0.935 }, { "start": 2992.38, "end": 2992.92, "probability": 0.8881 }, { "start": 2993.62, "end": 2995.26, "probability": 0.8728 }, { "start": 2995.82, "end": 2998.64, "probability": 0.8528 }, { "start": 2999.34, "end": 3001.52, "probability": 0.9984 }, { "start": 3003.22, "end": 3004.26, "probability": 0.9062 }, { "start": 3004.58, "end": 3008.7, "probability": 0.9362 }, { "start": 3010.36, "end": 3010.6, "probability": 0.8811 }, { "start": 3010.82, "end": 3012.9, "probability": 0.9946 }, { "start": 3013.04, "end": 3015.61, "probability": 0.9706 }, { "start": 3017.24, "end": 3021.14, "probability": 0.9524 }, { "start": 3021.78, "end": 3023.34, "probability": 0.8926 }, { "start": 3024.16, "end": 3026.64, "probability": 0.9995 }, { "start": 3027.24, "end": 3028.64, "probability": 0.7986 }, { "start": 3028.72, "end": 3029.32, "probability": 0.9304 }, { "start": 3030.06, "end": 3031.02, "probability": 0.9417 }, { "start": 3031.66, "end": 3033.42, "probability": 0.994 }, { "start": 3034.32, "end": 3034.82, "probability": 0.978 }, { "start": 3035.48, "end": 3036.06, "probability": 0.7866 }, { "start": 3037.72, "end": 3040.02, "probability": 0.9311 }, { "start": 3040.74, "end": 3041.24, "probability": 0.986 }, { "start": 3041.3, "end": 3041.84, "probability": 0.9896 }, { "start": 3042.04, "end": 3043.4, "probability": 0.9956 }, { "start": 3043.44, "end": 3047.32, "probability": 0.9876 }, { "start": 3048.12, "end": 3049.6, "probability": 0.9942 }, { "start": 3049.68, "end": 3050.3, "probability": 0.9784 }, { "start": 3050.44, "end": 3050.82, "probability": 0.6782 }, { "start": 3050.84, "end": 3051.96, "probability": 0.9374 }, { "start": 3052.24, "end": 3054.84, "probability": 0.9881 }, { "start": 3055.4, "end": 3056.54, "probability": 0.7514 }, { "start": 3057.56, "end": 3061.44, "probability": 0.9987 }, { "start": 3061.44, "end": 3065.68, "probability": 0.9978 }, { "start": 3066.32, "end": 3069.12, "probability": 0.9969 }, { "start": 3069.92, "end": 3074.76, "probability": 0.9937 }, { "start": 3075.3, "end": 3077.54, "probability": 0.9791 }, { "start": 3078.18, "end": 3082.36, "probability": 0.9958 }, { "start": 3083.08, "end": 3084.02, "probability": 0.9963 }, { "start": 3086.58, "end": 3087.45, "probability": 0.7692 }, { "start": 3089.82, "end": 3094.18, "probability": 0.9196 }, { "start": 3095.2, "end": 3098.05, "probability": 0.8356 }, { "start": 3098.58, "end": 3102.8, "probability": 0.968 }, { "start": 3103.7, "end": 3105.92, "probability": 0.8692 }, { "start": 3106.02, "end": 3108.46, "probability": 0.9966 }, { "start": 3109.2, "end": 3113.14, "probability": 0.9006 }, { "start": 3114.26, "end": 3117.1, "probability": 0.9651 }, { "start": 3118.26, "end": 3118.82, "probability": 0.7558 }, { "start": 3119.46, "end": 3122.94, "probability": 0.8563 }, { "start": 3123.96, "end": 3124.62, "probability": 0.3919 }, { "start": 3124.7, "end": 3124.84, "probability": 0.8823 }, { "start": 3124.98, "end": 3125.34, "probability": 0.9191 }, { "start": 3125.7, "end": 3126.19, "probability": 0.9682 }, { "start": 3127.14, "end": 3127.8, "probability": 0.9392 }, { "start": 3127.92, "end": 3128.62, "probability": 0.9709 }, { "start": 3129.12, "end": 3129.92, "probability": 0.8313 }, { "start": 3130.52, "end": 3135.14, "probability": 0.8477 }, { "start": 3136.02, "end": 3140.24, "probability": 0.9832 }, { "start": 3140.48, "end": 3141.76, "probability": 0.8297 }, { "start": 3143.96, "end": 3149.28, "probability": 0.9243 }, { "start": 3150.42, "end": 3152.29, "probability": 0.9961 }, { "start": 3153.48, "end": 3156.34, "probability": 0.9224 }, { "start": 3156.74, "end": 3161.54, "probability": 0.9436 }, { "start": 3162.28, "end": 3167.64, "probability": 0.9981 }, { "start": 3168.2, "end": 3170.02, "probability": 0.7699 }, { "start": 3170.84, "end": 3173.96, "probability": 0.9889 }, { "start": 3173.98, "end": 3177.94, "probability": 0.996 }, { "start": 3178.3, "end": 3179.7, "probability": 0.763 }, { "start": 3180.04, "end": 3183.18, "probability": 0.8217 }, { "start": 3183.38, "end": 3184.14, "probability": 0.9701 }, { "start": 3184.24, "end": 3187.68, "probability": 0.8517 }, { "start": 3187.82, "end": 3193.02, "probability": 0.9611 }, { "start": 3193.12, "end": 3198.42, "probability": 0.7784 }, { "start": 3198.82, "end": 3201.36, "probability": 0.9961 }, { "start": 3201.92, "end": 3206.9, "probability": 0.9868 }, { "start": 3207.94, "end": 3210.3, "probability": 0.9216 }, { "start": 3211.42, "end": 3215.76, "probability": 0.8652 }, { "start": 3216.14, "end": 3217.82, "probability": 0.9817 }, { "start": 3218.92, "end": 3221.84, "probability": 0.9985 }, { "start": 3221.84, "end": 3225.32, "probability": 0.9957 }, { "start": 3225.66, "end": 3228.88, "probability": 0.991 }, { "start": 3229.4, "end": 3231.48, "probability": 0.9824 }, { "start": 3232.12, "end": 3235.86, "probability": 0.9978 }, { "start": 3236.82, "end": 3244.14, "probability": 0.9313 }, { "start": 3244.14, "end": 3248.34, "probability": 0.9756 }, { "start": 3248.68, "end": 3253.98, "probability": 0.9886 }, { "start": 3254.0, "end": 3254.5, "probability": 0.8658 }, { "start": 3254.62, "end": 3256.7, "probability": 0.9961 }, { "start": 3257.46, "end": 3262.76, "probability": 0.9708 }, { "start": 3264.06, "end": 3265.54, "probability": 0.8829 }, { "start": 3266.24, "end": 3267.02, "probability": 0.879 }, { "start": 3267.08, "end": 3271.1, "probability": 0.9777 }, { "start": 3271.26, "end": 3273.34, "probability": 0.9946 }, { "start": 3274.7, "end": 3275.62, "probability": 0.951 }, { "start": 3276.6, "end": 3280.48, "probability": 0.7174 }, { "start": 3281.24, "end": 3283.88, "probability": 0.8501 }, { "start": 3285.64, "end": 3287.14, "probability": 0.9284 }, { "start": 3287.42, "end": 3291.64, "probability": 0.9958 }, { "start": 3292.28, "end": 3293.52, "probability": 0.5201 }, { "start": 3294.1, "end": 3296.48, "probability": 0.8345 }, { "start": 3296.54, "end": 3299.22, "probability": 0.9979 }, { "start": 3299.96, "end": 3303.74, "probability": 0.9946 }, { "start": 3303.98, "end": 3304.48, "probability": 0.8411 }, { "start": 3304.72, "end": 3306.88, "probability": 0.8225 }, { "start": 3307.04, "end": 3311.03, "probability": 0.9945 }, { "start": 3311.78, "end": 3312.3, "probability": 0.998 }, { "start": 3312.58, "end": 3312.98, "probability": 0.6898 }, { "start": 3328.6, "end": 3329.7, "probability": 0.4793 }, { "start": 3332.46, "end": 3335.06, "probability": 0.9184 }, { "start": 3335.9, "end": 3336.82, "probability": 0.6473 }, { "start": 3337.66, "end": 3338.14, "probability": 0.7253 }, { "start": 3339.57, "end": 3345.28, "probability": 0.9704 }, { "start": 3345.52, "end": 3346.4, "probability": 0.7522 }, { "start": 3346.7, "end": 3346.84, "probability": 0.6799 }, { "start": 3347.22, "end": 3350.84, "probability": 0.6929 }, { "start": 3351.5, "end": 3354.24, "probability": 0.8795 }, { "start": 3354.96, "end": 3358.14, "probability": 0.9447 }, { "start": 3359.0, "end": 3360.16, "probability": 0.9653 }, { "start": 3361.36, "end": 3361.56, "probability": 0.8179 }, { "start": 3362.1, "end": 3362.22, "probability": 0.4716 }, { "start": 3362.24, "end": 3362.4, "probability": 0.4339 }, { "start": 3363.78, "end": 3367.56, "probability": 0.9875 }, { "start": 3367.56, "end": 3370.72, "probability": 0.9958 }, { "start": 3371.7, "end": 3374.32, "probability": 0.7972 }, { "start": 3375.1, "end": 3375.28, "probability": 0.494 }, { "start": 3375.3, "end": 3379.38, "probability": 0.9924 }, { "start": 3380.78, "end": 3389.96, "probability": 0.9907 }, { "start": 3390.52, "end": 3393.98, "probability": 0.9963 }, { "start": 3395.02, "end": 3398.6, "probability": 0.8478 }, { "start": 3399.16, "end": 3402.1, "probability": 0.9756 }, { "start": 3403.12, "end": 3404.48, "probability": 0.7593 }, { "start": 3405.18, "end": 3406.32, "probability": 0.9985 }, { "start": 3407.48, "end": 3411.1, "probability": 0.664 }, { "start": 3411.32, "end": 3414.6, "probability": 0.656 }, { "start": 3415.9, "end": 3417.76, "probability": 0.9299 }, { "start": 3418.4, "end": 3421.68, "probability": 0.8047 }, { "start": 3422.44, "end": 3426.02, "probability": 0.9949 }, { "start": 3426.22, "end": 3428.76, "probability": 0.6319 }, { "start": 3429.96, "end": 3430.62, "probability": 0.9031 }, { "start": 3430.68, "end": 3436.12, "probability": 0.9814 }, { "start": 3436.94, "end": 3439.08, "probability": 0.8801 }, { "start": 3439.3, "end": 3439.46, "probability": 0.1686 }, { "start": 3439.62, "end": 3446.74, "probability": 0.9666 }, { "start": 3446.98, "end": 3448.92, "probability": 0.8219 }, { "start": 3449.5, "end": 3450.2, "probability": 0.4616 }, { "start": 3450.58, "end": 3455.08, "probability": 0.9191 }, { "start": 3455.58, "end": 3456.48, "probability": 0.797 }, { "start": 3457.74, "end": 3461.88, "probability": 0.9763 }, { "start": 3462.6, "end": 3467.77, "probability": 0.3107 }, { "start": 3469.0, "end": 3470.28, "probability": 0.7128 }, { "start": 3470.4, "end": 3471.82, "probability": 0.9566 }, { "start": 3472.16, "end": 3474.64, "probability": 0.9548 }, { "start": 3474.64, "end": 3478.16, "probability": 0.9293 }, { "start": 3479.6, "end": 3480.74, "probability": 0.8064 }, { "start": 3480.8, "end": 3481.76, "probability": 0.7253 }, { "start": 3481.94, "end": 3482.88, "probability": 0.4894 }, { "start": 3482.98, "end": 3483.6, "probability": 0.7836 }, { "start": 3483.74, "end": 3485.6, "probability": 0.7516 }, { "start": 3485.68, "end": 3486.54, "probability": 0.9507 }, { "start": 3486.72, "end": 3487.5, "probability": 0.9216 }, { "start": 3487.94, "end": 3489.34, "probability": 0.6871 }, { "start": 3489.34, "end": 3489.54, "probability": 0.1295 }, { "start": 3489.54, "end": 3490.14, "probability": 0.0013 }, { "start": 3490.32, "end": 3490.66, "probability": 0.491 }, { "start": 3491.3, "end": 3492.06, "probability": 0.0196 }, { "start": 3492.4, "end": 3495.92, "probability": 0.8614 }, { "start": 3496.22, "end": 3497.67, "probability": 0.9951 }, { "start": 3498.36, "end": 3498.82, "probability": 0.6544 }, { "start": 3501.0, "end": 3501.88, "probability": 0.8669 }, { "start": 3502.0, "end": 3502.7, "probability": 0.7223 }, { "start": 3502.72, "end": 3503.02, "probability": 0.4683 }, { "start": 3503.1, "end": 3506.82, "probability": 0.793 }, { "start": 3506.86, "end": 3507.8, "probability": 0.4417 }, { "start": 3509.28, "end": 3513.0, "probability": 0.9792 }, { "start": 3513.08, "end": 3515.56, "probability": 0.8256 }, { "start": 3515.78, "end": 3516.93, "probability": 0.7519 }, { "start": 3517.7, "end": 3518.86, "probability": 0.7456 }, { "start": 3519.8, "end": 3520.98, "probability": 0.6245 }, { "start": 3521.84, "end": 3523.32, "probability": 0.9489 }, { "start": 3523.72, "end": 3524.32, "probability": 0.1346 }, { "start": 3524.42, "end": 3525.7, "probability": 0.6997 }, { "start": 3527.78, "end": 3531.2, "probability": 0.9865 }, { "start": 3531.32, "end": 3532.54, "probability": 0.9777 }, { "start": 3532.98, "end": 3534.8, "probability": 0.892 }, { "start": 3535.62, "end": 3536.62, "probability": 0.8775 }, { "start": 3537.7, "end": 3540.08, "probability": 0.9869 }, { "start": 3540.12, "end": 3541.26, "probability": 0.7707 }, { "start": 3541.4, "end": 3545.0, "probability": 0.9507 }, { "start": 3545.74, "end": 3546.08, "probability": 0.9664 }, { "start": 3546.64, "end": 3547.28, "probability": 0.6708 }, { "start": 3547.58, "end": 3549.02, "probability": 0.7311 }, { "start": 3549.2, "end": 3550.2, "probability": 0.8369 }, { "start": 3550.74, "end": 3553.2, "probability": 0.9385 }, { "start": 3563.78, "end": 3564.14, "probability": 0.2279 }, { "start": 3565.58, "end": 3565.58, "probability": 0.2207 }, { "start": 3568.54, "end": 3569.34, "probability": 0.6702 }, { "start": 3570.64, "end": 3571.64, "probability": 0.7858 }, { "start": 3571.78, "end": 3572.16, "probability": 0.5282 }, { "start": 3572.3, "end": 3574.6, "probability": 0.9532 }, { "start": 3578.16, "end": 3580.64, "probability": 0.5621 }, { "start": 3580.76, "end": 3582.7, "probability": 0.9844 }, { "start": 3583.38, "end": 3584.52, "probability": 0.9492 }, { "start": 3584.66, "end": 3591.34, "probability": 0.9667 }, { "start": 3591.8, "end": 3592.32, "probability": 0.5164 }, { "start": 3593.08, "end": 3596.16, "probability": 0.9363 }, { "start": 3596.86, "end": 3600.82, "probability": 0.9945 }, { "start": 3601.94, "end": 3602.92, "probability": 0.9221 }, { "start": 3603.04, "end": 3604.86, "probability": 0.7144 }, { "start": 3605.76, "end": 3606.68, "probability": 0.7866 }, { "start": 3607.66, "end": 3610.02, "probability": 0.5238 }, { "start": 3610.64, "end": 3612.16, "probability": 0.8273 }, { "start": 3612.6, "end": 3613.76, "probability": 0.9667 }, { "start": 3613.8, "end": 3614.58, "probability": 0.9265 }, { "start": 3614.6, "end": 3616.58, "probability": 0.7308 }, { "start": 3616.66, "end": 3617.0, "probability": 0.3712 }, { "start": 3617.64, "end": 3618.52, "probability": 0.6557 }, { "start": 3619.8, "end": 3621.24, "probability": 0.8606 }, { "start": 3622.4, "end": 3624.66, "probability": 0.9133 }, { "start": 3624.76, "end": 3626.78, "probability": 0.9255 }, { "start": 3627.5, "end": 3629.26, "probability": 0.979 }, { "start": 3629.4, "end": 3629.74, "probability": 0.4846 }, { "start": 3630.28, "end": 3631.38, "probability": 0.9168 }, { "start": 3631.72, "end": 3633.94, "probability": 0.9915 }, { "start": 3633.96, "end": 3634.4, "probability": 0.3099 }, { "start": 3634.84, "end": 3637.88, "probability": 0.9829 }, { "start": 3638.26, "end": 3640.56, "probability": 0.9315 }, { "start": 3640.7, "end": 3641.24, "probability": 0.3749 }, { "start": 3642.24, "end": 3644.98, "probability": 0.9941 }, { "start": 3645.02, "end": 3645.88, "probability": 0.9455 }, { "start": 3646.52, "end": 3647.52, "probability": 0.8989 }, { "start": 3647.7, "end": 3648.36, "probability": 0.6517 }, { "start": 3648.46, "end": 3648.46, "probability": 0.4948 }, { "start": 3648.46, "end": 3650.74, "probability": 0.6939 }, { "start": 3650.84, "end": 3654.44, "probability": 0.9895 }, { "start": 3655.04, "end": 3655.5, "probability": 0.9377 }, { "start": 3656.02, "end": 3656.4, "probability": 0.5049 }, { "start": 3656.52, "end": 3657.9, "probability": 0.6836 }, { "start": 3658.68, "end": 3659.18, "probability": 0.5969 }, { "start": 3659.78, "end": 3662.38, "probability": 0.962 }, { "start": 3663.29, "end": 3664.42, "probability": 0.7921 }, { "start": 3664.42, "end": 3664.78, "probability": 0.6155 }, { "start": 3665.84, "end": 3668.98, "probability": 0.9816 }, { "start": 3669.16, "end": 3671.1, "probability": 0.9338 }, { "start": 3671.24, "end": 3672.1, "probability": 0.9287 }, { "start": 3673.4, "end": 3674.98, "probability": 0.8867 }, { "start": 3676.66, "end": 3677.86, "probability": 0.9617 }, { "start": 3679.26, "end": 3679.82, "probability": 0.9355 }, { "start": 3680.52, "end": 3681.22, "probability": 0.9883 }, { "start": 3682.52, "end": 3683.4, "probability": 0.9497 }, { "start": 3684.72, "end": 3686.16, "probability": 0.9793 }, { "start": 3687.64, "end": 3689.97, "probability": 0.853 }, { "start": 3691.14, "end": 3692.36, "probability": 0.9347 }, { "start": 3693.54, "end": 3694.68, "probability": 0.9592 }, { "start": 3695.76, "end": 3697.24, "probability": 0.9802 }, { "start": 3698.04, "end": 3701.12, "probability": 0.9025 }, { "start": 3702.12, "end": 3703.5, "probability": 0.9385 }, { "start": 3704.6, "end": 3709.3, "probability": 0.9977 }, { "start": 3709.94, "end": 3714.26, "probability": 0.979 }, { "start": 3715.24, "end": 3716.18, "probability": 0.999 }, { "start": 3717.82, "end": 3721.02, "probability": 0.9795 }, { "start": 3721.06, "end": 3721.68, "probability": 0.807 }, { "start": 3721.74, "end": 3722.7, "probability": 0.9501 }, { "start": 3723.56, "end": 3724.52, "probability": 0.7358 }, { "start": 3725.22, "end": 3726.06, "probability": 0.4002 }, { "start": 3727.08, "end": 3728.62, "probability": 0.9863 }, { "start": 3728.76, "end": 3730.66, "probability": 0.9885 }, { "start": 3731.56, "end": 3734.0, "probability": 0.9277 }, { "start": 3734.22, "end": 3736.86, "probability": 0.6791 }, { "start": 3737.12, "end": 3738.17, "probability": 0.8668 }, { "start": 3738.54, "end": 3738.94, "probability": 0.4231 }, { "start": 3739.34, "end": 3740.14, "probability": 0.954 }, { "start": 3740.58, "end": 3741.76, "probability": 0.9856 }, { "start": 3741.82, "end": 3742.88, "probability": 0.9089 }, { "start": 3743.2, "end": 3744.38, "probability": 0.8802 }, { "start": 3744.6, "end": 3745.48, "probability": 0.9819 }, { "start": 3745.52, "end": 3746.04, "probability": 0.9841 }, { "start": 3747.2, "end": 3749.04, "probability": 0.968 }, { "start": 3751.34, "end": 3751.82, "probability": 0.4948 }, { "start": 3751.98, "end": 3752.66, "probability": 0.9404 }, { "start": 3753.54, "end": 3755.48, "probability": 0.6408 }, { "start": 3755.6, "end": 3760.36, "probability": 0.9208 }, { "start": 3761.04, "end": 3762.12, "probability": 0.9098 }, { "start": 3762.12, "end": 3762.34, "probability": 0.4046 }, { "start": 3762.4, "end": 3763.7, "probability": 0.8936 }, { "start": 3764.42, "end": 3765.88, "probability": 0.7356 }, { "start": 3765.9, "end": 3766.84, "probability": 0.9756 }, { "start": 3766.88, "end": 3767.38, "probability": 0.7177 }, { "start": 3767.58, "end": 3769.64, "probability": 0.9526 }, { "start": 3770.36, "end": 3771.56, "probability": 0.7497 }, { "start": 3771.66, "end": 3777.4, "probability": 0.8207 }, { "start": 3779.04, "end": 3779.94, "probability": 0.7783 }, { "start": 3780.26, "end": 3781.0, "probability": 0.9334 }, { "start": 3781.34, "end": 3781.92, "probability": 0.6429 }, { "start": 3782.96, "end": 3786.04, "probability": 0.1182 }, { "start": 3787.2, "end": 3787.32, "probability": 0.1314 }, { "start": 3799.54, "end": 3799.76, "probability": 0.0187 }, { "start": 3799.76, "end": 3799.76, "probability": 0.0428 }, { "start": 3799.76, "end": 3799.76, "probability": 0.4505 }, { "start": 3799.76, "end": 3802.5, "probability": 0.5453 }, { "start": 3802.68, "end": 3804.16, "probability": 0.9917 }, { "start": 3804.88, "end": 3809.82, "probability": 0.956 }, { "start": 3810.94, "end": 3812.42, "probability": 0.7147 }, { "start": 3812.56, "end": 3814.34, "probability": 0.7755 }, { "start": 3814.46, "end": 3817.72, "probability": 0.6946 }, { "start": 3818.2, "end": 3820.04, "probability": 0.8794 }, { "start": 3820.18, "end": 3825.88, "probability": 0.9382 }, { "start": 3825.94, "end": 3826.28, "probability": 0.7511 }, { "start": 3826.38, "end": 3826.6, "probability": 0.4729 }, { "start": 3828.31, "end": 3829.54, "probability": 0.7959 }, { "start": 3830.4, "end": 3832.24, "probability": 0.5256 }, { "start": 3836.68, "end": 3837.36, "probability": 0.6367 }, { "start": 3837.58, "end": 3837.82, "probability": 0.8833 }, { "start": 3839.5, "end": 3842.58, "probability": 0.7661 }, { "start": 3842.98, "end": 3845.37, "probability": 0.7657 }, { "start": 3845.86, "end": 3854.06, "probability": 0.9504 }, { "start": 3854.06, "end": 3862.0, "probability": 0.9833 }, { "start": 3862.52, "end": 3866.8, "probability": 0.9864 }, { "start": 3866.98, "end": 3870.32, "probability": 0.999 }, { "start": 3870.74, "end": 3875.64, "probability": 0.998 }, { "start": 3876.1, "end": 3876.4, "probability": 0.323 }, { "start": 3876.9, "end": 3877.63, "probability": 0.5585 }, { "start": 3878.32, "end": 3878.68, "probability": 0.6515 }, { "start": 3879.54, "end": 3881.6, "probability": 0.9835 }, { "start": 3882.36, "end": 3886.03, "probability": 0.9912 }, { "start": 3886.56, "end": 3890.54, "probability": 0.9985 }, { "start": 3891.02, "end": 3892.32, "probability": 0.9834 }, { "start": 3892.48, "end": 3897.72, "probability": 0.977 }, { "start": 3897.8, "end": 3901.2, "probability": 0.9643 }, { "start": 3901.66, "end": 3905.34, "probability": 0.9795 }, { "start": 3905.7, "end": 3908.76, "probability": 0.9965 }, { "start": 3908.88, "end": 3909.42, "probability": 0.5193 }, { "start": 3910.3, "end": 3912.01, "probability": 0.928 }, { "start": 3912.46, "end": 3915.28, "probability": 0.948 }, { "start": 3916.32, "end": 3918.3, "probability": 0.9875 }, { "start": 3918.44, "end": 3920.34, "probability": 0.9724 }, { "start": 3920.44, "end": 3921.72, "probability": 0.8038 }, { "start": 3922.0, "end": 3922.24, "probability": 0.7277 }, { "start": 3923.73, "end": 3927.3, "probability": 0.6912 }, { "start": 3928.22, "end": 3930.99, "probability": 0.9351 }, { "start": 3932.02, "end": 3933.36, "probability": 0.5266 }, { "start": 3933.54, "end": 3935.66, "probability": 0.8271 }, { "start": 3935.68, "end": 3937.16, "probability": 0.7892 }, { "start": 3938.04, "end": 3938.66, "probability": 0.6468 }, { "start": 3938.86, "end": 3941.0, "probability": 0.9564 }, { "start": 3941.42, "end": 3946.76, "probability": 0.9751 }, { "start": 3947.54, "end": 3950.16, "probability": 0.645 }, { "start": 3950.5, "end": 3951.12, "probability": 0.9553 }, { "start": 3951.56, "end": 3952.86, "probability": 0.7546 }, { "start": 3953.3, "end": 3953.78, "probability": 0.785 }, { "start": 3954.46, "end": 3957.64, "probability": 0.9459 }, { "start": 3958.32, "end": 3959.27, "probability": 0.8885 }, { "start": 3960.24, "end": 3962.32, "probability": 0.972 }, { "start": 3962.82, "end": 3964.52, "probability": 0.7922 }, { "start": 3965.08, "end": 3966.94, "probability": 0.9576 }, { "start": 3967.66, "end": 3968.66, "probability": 0.6209 }, { "start": 3969.34, "end": 3971.6, "probability": 0.9888 }, { "start": 3972.18, "end": 3978.4, "probability": 0.9925 }, { "start": 3978.96, "end": 3982.24, "probability": 0.9604 }, { "start": 3982.76, "end": 3986.34, "probability": 0.9862 }, { "start": 3986.34, "end": 3990.36, "probability": 0.9952 }, { "start": 3991.34, "end": 3995.38, "probability": 0.9443 }, { "start": 3996.02, "end": 4000.12, "probability": 0.9825 }, { "start": 4000.78, "end": 4002.34, "probability": 0.9736 }, { "start": 4002.56, "end": 4002.84, "probability": 0.7463 }, { "start": 4003.68, "end": 4004.0, "probability": 0.7164 }, { "start": 4004.26, "end": 4006.08, "probability": 0.6241 }, { "start": 4006.7, "end": 4007.26, "probability": 0.8038 }, { "start": 4007.94, "end": 4012.96, "probability": 0.7525 }, { "start": 4029.48, "end": 4030.08, "probability": 0.4658 }, { "start": 4030.22, "end": 4031.16, "probability": 0.6802 }, { "start": 4031.38, "end": 4034.18, "probability": 0.974 }, { "start": 4034.3, "end": 4035.82, "probability": 0.9005 }, { "start": 4036.54, "end": 4039.5, "probability": 0.9863 }, { "start": 4040.44, "end": 4042.62, "probability": 0.9551 }, { "start": 4042.62, "end": 4045.54, "probability": 0.9937 }, { "start": 4046.14, "end": 4048.52, "probability": 0.9473 }, { "start": 4049.58, "end": 4052.52, "probability": 0.9622 }, { "start": 4052.52, "end": 4055.88, "probability": 0.9954 }, { "start": 4056.52, "end": 4061.02, "probability": 0.996 }, { "start": 4063.78, "end": 4068.46, "probability": 0.9448 }, { "start": 4068.62, "end": 4071.0, "probability": 0.9888 }, { "start": 4071.0, "end": 4073.92, "probability": 0.9237 }, { "start": 4074.46, "end": 4075.68, "probability": 0.6986 }, { "start": 4076.32, "end": 4080.02, "probability": 0.996 }, { "start": 4080.64, "end": 4084.1, "probability": 0.9697 }, { "start": 4084.94, "end": 4089.16, "probability": 0.9856 }, { "start": 4089.88, "end": 4091.02, "probability": 0.7464 }, { "start": 4091.76, "end": 4095.78, "probability": 0.9748 }, { "start": 4096.82, "end": 4101.1, "probability": 0.9936 }, { "start": 4101.74, "end": 4102.74, "probability": 0.7981 }, { "start": 4103.4, "end": 4109.06, "probability": 0.9938 }, { "start": 4109.64, "end": 4114.16, "probability": 0.9886 }, { "start": 4114.54, "end": 4118.54, "probability": 0.9823 }, { "start": 4118.84, "end": 4119.26, "probability": 0.6994 }, { "start": 4119.88, "end": 4122.48, "probability": 0.9829 }, { "start": 4122.48, "end": 4125.5, "probability": 0.9404 }, { "start": 4125.78, "end": 4130.4, "probability": 0.9742 }, { "start": 4131.2, "end": 4132.86, "probability": 0.996 }, { "start": 4132.9, "end": 4135.26, "probability": 0.8427 }, { "start": 4135.84, "end": 4139.46, "probability": 0.994 }, { "start": 4140.04, "end": 4143.2, "probability": 0.9714 }, { "start": 4143.94, "end": 4144.5, "probability": 0.681 }, { "start": 4145.62, "end": 4148.54, "probability": 0.8858 }, { "start": 4149.2, "end": 4151.42, "probability": 0.9934 }, { "start": 4152.24, "end": 4152.8, "probability": 0.965 }, { "start": 4152.96, "end": 4156.68, "probability": 0.9889 }, { "start": 4157.84, "end": 4158.44, "probability": 0.4633 }, { "start": 4158.9, "end": 4161.16, "probability": 0.9517 }, { "start": 4161.26, "end": 4162.38, "probability": 0.6256 }, { "start": 4184.28, "end": 4184.88, "probability": 0.5337 }, { "start": 4184.92, "end": 4185.36, "probability": 0.4419 }, { "start": 4185.36, "end": 4185.6, "probability": 0.8021 }, { "start": 4185.68, "end": 4186.32, "probability": 0.9237 }, { "start": 4186.48, "end": 4191.28, "probability": 0.9944 }, { "start": 4192.62, "end": 4193.32, "probability": 0.9688 }, { "start": 4193.42, "end": 4194.21, "probability": 0.76 }, { "start": 4194.32, "end": 4195.98, "probability": 0.8468 }, { "start": 4196.64, "end": 4199.58, "probability": 0.8677 }, { "start": 4199.72, "end": 4202.98, "probability": 0.6908 }, { "start": 4203.46, "end": 4204.52, "probability": 0.6765 }, { "start": 4204.96, "end": 4207.2, "probability": 0.6613 }, { "start": 4208.26, "end": 4209.08, "probability": 0.6375 }, { "start": 4209.18, "end": 4212.77, "probability": 0.7621 }, { "start": 4213.14, "end": 4216.18, "probability": 0.7368 }, { "start": 4216.32, "end": 4217.36, "probability": 0.9255 }, { "start": 4217.96, "end": 4221.5, "probability": 0.6604 }, { "start": 4221.56, "end": 4222.14, "probability": 0.7098 }, { "start": 4223.08, "end": 4224.3, "probability": 0.8101 }, { "start": 4225.82, "end": 4227.38, "probability": 0.8701 }, { "start": 4228.36, "end": 4230.14, "probability": 0.8699 }, { "start": 4230.48, "end": 4231.82, "probability": 0.9502 }, { "start": 4233.26, "end": 4235.48, "probability": 0.8553 }, { "start": 4236.62, "end": 4237.12, "probability": 0.9878 }, { "start": 4237.42, "end": 4238.64, "probability": 0.9587 }, { "start": 4239.36, "end": 4239.44, "probability": 0.2899 }, { "start": 4239.56, "end": 4240.46, "probability": 0.739 }, { "start": 4240.54, "end": 4242.86, "probability": 0.7496 }, { "start": 4244.3, "end": 4246.1, "probability": 0.89 }, { "start": 4249.38, "end": 4250.5, "probability": 0.9694 }, { "start": 4251.24, "end": 4253.58, "probability": 0.931 }, { "start": 4254.16, "end": 4258.76, "probability": 0.998 }, { "start": 4259.64, "end": 4261.28, "probability": 0.9565 }, { "start": 4262.0, "end": 4262.82, "probability": 0.6489 }, { "start": 4265.18, "end": 4270.4, "probability": 0.7485 }, { "start": 4270.94, "end": 4271.8, "probability": 0.7397 }, { "start": 4271.92, "end": 4272.72, "probability": 0.8806 }, { "start": 4272.82, "end": 4273.4, "probability": 0.7539 }, { "start": 4273.68, "end": 4278.04, "probability": 0.9639 }, { "start": 4278.34, "end": 4280.52, "probability": 0.9552 }, { "start": 4280.96, "end": 4282.18, "probability": 0.7717 }, { "start": 4282.74, "end": 4284.5, "probability": 0.7574 }, { "start": 4285.96, "end": 4286.98, "probability": 0.5618 }, { "start": 4288.06, "end": 4289.68, "probability": 0.914 }, { "start": 4290.24, "end": 4292.66, "probability": 0.9831 }, { "start": 4293.58, "end": 4296.12, "probability": 0.8146 }, { "start": 4297.18, "end": 4299.12, "probability": 0.5935 }, { "start": 4299.14, "end": 4302.02, "probability": 0.5703 }, { "start": 4302.02, "end": 4302.02, "probability": 0.262 }, { "start": 4302.02, "end": 4302.22, "probability": 0.492 }, { "start": 4302.6, "end": 4304.18, "probability": 0.5817 }, { "start": 4304.6, "end": 4305.62, "probability": 0.9463 }, { "start": 4306.7, "end": 4308.44, "probability": 0.9709 }, { "start": 4308.98, "end": 4309.22, "probability": 0.0049 }, { "start": 4309.22, "end": 4309.22, "probability": 0.2444 }, { "start": 4309.22, "end": 4309.22, "probability": 0.0166 }, { "start": 4309.22, "end": 4310.48, "probability": 0.7777 }, { "start": 4310.96, "end": 4315.94, "probability": 0.9422 }, { "start": 4316.18, "end": 4316.36, "probability": 0.2713 }, { "start": 4316.38, "end": 4318.16, "probability": 0.7288 }, { "start": 4318.46, "end": 4318.82, "probability": 0.11 }, { "start": 4319.62, "end": 4320.04, "probability": 0.4217 }, { "start": 4320.7, "end": 4321.04, "probability": 0.0127 }, { "start": 4321.46, "end": 4322.24, "probability": 0.0259 }, { "start": 4323.18, "end": 4324.88, "probability": 0.0455 }, { "start": 4328.95, "end": 4330.92, "probability": 0.4719 }, { "start": 4331.44, "end": 4335.04, "probability": 0.9958 }, { "start": 4335.14, "end": 4337.3, "probability": 0.9482 }, { "start": 4337.74, "end": 4338.56, "probability": 0.8116 }, { "start": 4339.4, "end": 4341.28, "probability": 0.9038 }, { "start": 4342.06, "end": 4344.0, "probability": 0.9434 }, { "start": 4344.64, "end": 4346.88, "probability": 0.9989 }, { "start": 4347.66, "end": 4349.56, "probability": 0.9983 }, { "start": 4350.08, "end": 4354.06, "probability": 0.9896 }, { "start": 4354.76, "end": 4360.14, "probability": 0.9812 }, { "start": 4360.64, "end": 4363.08, "probability": 0.9978 }, { "start": 4363.88, "end": 4364.6, "probability": 0.6979 }, { "start": 4365.06, "end": 4365.72, "probability": 0.4767 }, { "start": 4365.74, "end": 4367.34, "probability": 0.989 }, { "start": 4367.42, "end": 4370.56, "probability": 0.9158 }, { "start": 4370.66, "end": 4371.54, "probability": 0.8364 }, { "start": 4372.2, "end": 4372.92, "probability": 0.7019 }, { "start": 4373.36, "end": 4373.36, "probability": 0.1723 }, { "start": 4373.38, "end": 4374.24, "probability": 0.7341 }, { "start": 4374.52, "end": 4376.42, "probability": 0.9729 }, { "start": 4376.64, "end": 4376.84, "probability": 0.6565 }, { "start": 4376.9, "end": 4379.54, "probability": 0.9165 }, { "start": 4380.08, "end": 4381.22, "probability": 0.7983 }, { "start": 4381.48, "end": 4382.28, "probability": 0.7372 }, { "start": 4382.48, "end": 4385.92, "probability": 0.9917 }, { "start": 4386.16, "end": 4387.6, "probability": 0.7115 }, { "start": 4388.06, "end": 4390.55, "probability": 0.8872 }, { "start": 4390.74, "end": 4393.28, "probability": 0.7328 }, { "start": 4393.32, "end": 4393.32, "probability": 0.0736 }, { "start": 4393.32, "end": 4394.84, "probability": 0.8109 }, { "start": 4394.92, "end": 4397.36, "probability": 0.9726 }, { "start": 4397.76, "end": 4398.18, "probability": 0.8898 }, { "start": 4399.29, "end": 4401.16, "probability": 0.8087 }, { "start": 4402.24, "end": 4402.58, "probability": 0.8261 }, { "start": 4402.9, "end": 4403.2, "probability": 0.8249 }, { "start": 4403.84, "end": 4406.72, "probability": 0.998 }, { "start": 4406.82, "end": 4407.84, "probability": 0.8463 }, { "start": 4408.68, "end": 4408.98, "probability": 0.9653 }, { "start": 4409.7, "end": 4412.74, "probability": 0.8703 }, { "start": 4413.24, "end": 4414.26, "probability": 0.8582 }, { "start": 4414.82, "end": 4414.92, "probability": 0.1589 }, { "start": 4416.4, "end": 4417.1, "probability": 0.0047 }, { "start": 4418.8, "end": 4419.04, "probability": 0.003 }, { "start": 4419.59, "end": 4419.66, "probability": 0.0568 }, { "start": 4419.66, "end": 4420.74, "probability": 0.4989 }, { "start": 4421.22, "end": 4421.34, "probability": 0.2034 }, { "start": 4421.34, "end": 4421.34, "probability": 0.0452 }, { "start": 4421.34, "end": 4421.34, "probability": 0.4 }, { "start": 4421.34, "end": 4421.36, "probability": 0.279 }, { "start": 4421.54, "end": 4425.36, "probability": 0.5132 }, { "start": 4425.58, "end": 4426.24, "probability": 0.6052 }, { "start": 4426.68, "end": 4431.46, "probability": 0.9861 }, { "start": 4431.46, "end": 4435.04, "probability": 0.9906 }, { "start": 4436.2, "end": 4438.58, "probability": 0.9943 }, { "start": 4439.62, "end": 4443.2, "probability": 0.9644 }, { "start": 4443.2, "end": 4445.38, "probability": 0.8233 }, { "start": 4446.7, "end": 4451.2, "probability": 0.945 }, { "start": 4452.4, "end": 4453.7, "probability": 0.9982 }, { "start": 4454.44, "end": 4457.73, "probability": 0.3683 }, { "start": 4457.94, "end": 4459.72, "probability": 0.781 }, { "start": 4459.94, "end": 4460.92, "probability": 0.2989 }, { "start": 4461.66, "end": 4463.58, "probability": 0.952 }, { "start": 4464.1, "end": 4470.8, "probability": 0.9682 }, { "start": 4471.78, "end": 4475.82, "probability": 0.9299 }, { "start": 4476.56, "end": 4479.38, "probability": 0.9919 }, { "start": 4479.94, "end": 4482.49, "probability": 0.9976 }, { "start": 4483.34, "end": 4483.82, "probability": 0.74 }, { "start": 4483.9, "end": 4487.4, "probability": 0.9948 }, { "start": 4488.18, "end": 4491.1, "probability": 0.9745 }, { "start": 4492.04, "end": 4494.84, "probability": 0.9676 }, { "start": 4495.56, "end": 4498.3, "probability": 0.8364 }, { "start": 4498.3, "end": 4499.56, "probability": 0.9525 }, { "start": 4499.9, "end": 4501.3, "probability": 0.9845 }, { "start": 4501.96, "end": 4503.06, "probability": 0.9783 }, { "start": 4503.46, "end": 4505.48, "probability": 0.9149 }, { "start": 4506.42, "end": 4507.9, "probability": 0.8893 }, { "start": 4508.2, "end": 4509.88, "probability": 0.9983 }, { "start": 4510.56, "end": 4514.1, "probability": 0.9736 }, { "start": 4514.22, "end": 4516.8, "probability": 0.6497 }, { "start": 4517.24, "end": 4519.0, "probability": 0.5916 }, { "start": 4519.12, "end": 4520.54, "probability": 0.4631 }, { "start": 4521.02, "end": 4521.66, "probability": 0.6338 }, { "start": 4521.78, "end": 4522.44, "probability": 0.6741 }, { "start": 4523.06, "end": 4523.6, "probability": 0.5296 }, { "start": 4524.54, "end": 4531.6, "probability": 0.1127 }, { "start": 4531.6, "end": 4533.3, "probability": 0.025 }, { "start": 4539.68, "end": 4540.36, "probability": 0.153 }, { "start": 4540.36, "end": 4540.36, "probability": 0.0279 }, { "start": 4540.36, "end": 4540.36, "probability": 0.3597 }, { "start": 4540.36, "end": 4540.36, "probability": 0.3723 }, { "start": 4540.36, "end": 4542.04, "probability": 0.4955 }, { "start": 4542.14, "end": 4543.78, "probability": 0.9792 }, { "start": 4544.34, "end": 4545.62, "probability": 0.7555 }, { "start": 4545.7, "end": 4546.34, "probability": 0.6654 }, { "start": 4548.4, "end": 4553.96, "probability": 0.6636 }, { "start": 4554.06, "end": 4556.24, "probability": 0.6518 }, { "start": 4556.66, "end": 4558.52, "probability": 0.6774 }, { "start": 4558.62, "end": 4560.14, "probability": 0.6532 }, { "start": 4560.36, "end": 4561.0, "probability": 0.6005 }, { "start": 4561.36, "end": 4561.64, "probability": 0.1816 }, { "start": 4561.9, "end": 4562.36, "probability": 0.6168 }, { "start": 4563.32, "end": 4565.94, "probability": 0.1523 }, { "start": 4580.54, "end": 4586.36, "probability": 0.052 }, { "start": 4586.36, "end": 4586.36, "probability": 0.0158 }, { "start": 4586.36, "end": 4587.34, "probability": 0.0241 }, { "start": 4587.34, "end": 4587.98, "probability": 0.2116 }, { "start": 4588.14, "end": 4588.96, "probability": 0.1366 }, { "start": 4589.74, "end": 4590.44, "probability": 0.061 }, { "start": 4590.44, "end": 4590.44, "probability": 0.0733 }, { "start": 4590.44, "end": 4590.44, "probability": 0.0735 }, { "start": 4590.44, "end": 4590.44, "probability": 0.0379 }, { "start": 4590.44, "end": 4590.44, "probability": 0.1954 }, { "start": 4590.44, "end": 4594.24, "probability": 0.5534 }, { "start": 4595.26, "end": 4595.96, "probability": 0.8867 }, { "start": 4596.56, "end": 4599.08, "probability": 0.6691 }, { "start": 4599.64, "end": 4603.74, "probability": 0.7875 }, { "start": 4604.08, "end": 4605.76, "probability": 0.9233 }, { "start": 4606.32, "end": 4608.92, "probability": 0.9937 }, { "start": 4610.14, "end": 4611.68, "probability": 0.7787 }, { "start": 4611.8, "end": 4614.2, "probability": 0.9144 }, { "start": 4614.66, "end": 4615.86, "probability": 0.7135 }, { "start": 4615.92, "end": 4619.96, "probability": 0.55 }, { "start": 4620.58, "end": 4623.58, "probability": 0.625 }, { "start": 4638.64, "end": 4638.78, "probability": 0.1267 }, { "start": 4638.78, "end": 4639.38, "probability": 0.071 }, { "start": 4639.38, "end": 4640.24, "probability": 0.8335 }, { "start": 4643.22, "end": 4646.48, "probability": 0.8622 }, { "start": 4647.26, "end": 4652.14, "probability": 0.9918 }, { "start": 4652.68, "end": 4657.96, "probability": 0.9979 }, { "start": 4659.54, "end": 4661.65, "probability": 0.9971 }, { "start": 4664.82, "end": 4672.5, "probability": 0.9985 }, { "start": 4672.76, "end": 4674.29, "probability": 0.7651 }, { "start": 4675.16, "end": 4677.4, "probability": 0.9481 }, { "start": 4678.1, "end": 4681.36, "probability": 0.9854 }, { "start": 4681.46, "end": 4682.24, "probability": 0.7205 }, { "start": 4682.34, "end": 4683.02, "probability": 0.8751 }, { "start": 4683.5, "end": 4685.18, "probability": 0.939 }, { "start": 4685.24, "end": 4686.06, "probability": 0.62 }, { "start": 4686.16, "end": 4693.78, "probability": 0.9207 }, { "start": 4694.5, "end": 4695.64, "probability": 0.8589 }, { "start": 4696.16, "end": 4697.4, "probability": 0.5029 }, { "start": 4697.4, "end": 4698.02, "probability": 0.9842 }, { "start": 4698.02, "end": 4698.34, "probability": 0.39 }, { "start": 4698.58, "end": 4698.62, "probability": 0.413 }, { "start": 4698.76, "end": 4700.76, "probability": 0.9053 }, { "start": 4701.14, "end": 4702.38, "probability": 0.9266 }, { "start": 4702.48, "end": 4703.52, "probability": 0.5638 }, { "start": 4703.74, "end": 4703.74, "probability": 0.2657 }, { "start": 4703.74, "end": 4705.06, "probability": 0.3667 }, { "start": 4705.06, "end": 4705.34, "probability": 0.593 }, { "start": 4705.4, "end": 4706.1, "probability": 0.9565 }, { "start": 4706.34, "end": 4707.02, "probability": 0.8833 }, { "start": 4708.7, "end": 4711.34, "probability": 0.9965 }, { "start": 4712.29, "end": 4716.56, "probability": 0.956 }, { "start": 4718.54, "end": 4721.58, "probability": 0.9845 }, { "start": 4722.12, "end": 4722.94, "probability": 0.7752 }, { "start": 4723.6, "end": 4726.78, "probability": 0.9977 }, { "start": 4726.82, "end": 4731.72, "probability": 0.9984 }, { "start": 4732.44, "end": 4739.7, "probability": 0.9979 }, { "start": 4739.86, "end": 4745.08, "probability": 0.9428 }, { "start": 4745.12, "end": 4745.56, "probability": 0.8671 }, { "start": 4745.64, "end": 4746.36, "probability": 0.5432 }, { "start": 4747.18, "end": 4750.68, "probability": 0.9899 }, { "start": 4750.68, "end": 4754.38, "probability": 0.9821 }, { "start": 4754.58, "end": 4755.6, "probability": 0.9442 }, { "start": 4757.1, "end": 4758.24, "probability": 0.8296 }, { "start": 4758.38, "end": 4759.5, "probability": 0.7552 }, { "start": 4759.54, "end": 4759.68, "probability": 0.426 }, { "start": 4760.34, "end": 4761.76, "probability": 0.8305 }, { "start": 4761.76, "end": 4762.82, "probability": 0.7644 }, { "start": 4764.1, "end": 4765.01, "probability": 0.58 }, { "start": 4765.08, "end": 4766.72, "probability": 0.9893 }, { "start": 4767.22, "end": 4767.74, "probability": 0.0301 }, { "start": 4768.0, "end": 4768.28, "probability": 0.2026 }, { "start": 4768.4, "end": 4769.64, "probability": 0.9697 }, { "start": 4771.28, "end": 4772.92, "probability": 0.4261 }, { "start": 4772.98, "end": 4777.16, "probability": 0.989 }, { "start": 4778.1, "end": 4780.26, "probability": 0.9979 }, { "start": 4780.3, "end": 4782.88, "probability": 0.9949 }, { "start": 4783.58, "end": 4783.86, "probability": 0.3036 }, { "start": 4783.96, "end": 4785.98, "probability": 0.9539 }, { "start": 4786.06, "end": 4791.92, "probability": 0.9727 }, { "start": 4791.92, "end": 4796.68, "probability": 0.9892 }, { "start": 4796.94, "end": 4797.94, "probability": 0.7784 }, { "start": 4798.76, "end": 4801.68, "probability": 0.98 }, { "start": 4801.68, "end": 4804.02, "probability": 0.9997 }, { "start": 4805.16, "end": 4809.66, "probability": 0.9314 }, { "start": 4810.48, "end": 4812.32, "probability": 0.9843 }, { "start": 4812.58, "end": 4816.38, "probability": 0.9805 }, { "start": 4817.18, "end": 4821.56, "probability": 0.8612 }, { "start": 4822.08, "end": 4824.72, "probability": 0.7621 }, { "start": 4825.42, "end": 4833.22, "probability": 0.9956 }, { "start": 4834.48, "end": 4838.32, "probability": 0.9297 }, { "start": 4839.82, "end": 4845.06, "probability": 0.9817 }, { "start": 4845.64, "end": 4847.92, "probability": 0.9976 }, { "start": 4848.86, "end": 4853.02, "probability": 0.9654 }, { "start": 4854.04, "end": 4856.44, "probability": 0.9575 }, { "start": 4857.56, "end": 4861.84, "probability": 0.962 }, { "start": 4862.98, "end": 4867.8, "probability": 0.9884 }, { "start": 4867.8, "end": 4870.58, "probability": 0.934 }, { "start": 4870.74, "end": 4871.84, "probability": 0.9186 }, { "start": 4872.4, "end": 4876.62, "probability": 0.921 }, { "start": 4878.14, "end": 4879.74, "probability": 0.003 }, { "start": 4879.74, "end": 4879.74, "probability": 0.0977 }, { "start": 4879.74, "end": 4879.8, "probability": 0.2422 }, { "start": 4880.0, "end": 4884.06, "probability": 0.9983 }, { "start": 4884.16, "end": 4889.62, "probability": 0.9968 }, { "start": 4889.72, "end": 4893.3, "probability": 0.9822 }, { "start": 4895.31, "end": 4897.7, "probability": 0.8325 }, { "start": 4898.58, "end": 4903.98, "probability": 0.9611 }, { "start": 4904.62, "end": 4912.46, "probability": 0.9906 }, { "start": 4912.9, "end": 4913.58, "probability": 0.6171 }, { "start": 4913.92, "end": 4914.88, "probability": 0.7196 }, { "start": 4914.88, "end": 4915.3, "probability": 0.9119 }, { "start": 4915.78, "end": 4917.42, "probability": 0.0655 }, { "start": 4920.16, "end": 4921.04, "probability": 0.403 }, { "start": 4921.46, "end": 4921.48, "probability": 0.2178 }, { "start": 4921.48, "end": 4921.48, "probability": 0.3751 }, { "start": 4921.48, "end": 4923.28, "probability": 0.3496 }, { "start": 4923.38, "end": 4923.88, "probability": 0.2874 }, { "start": 4923.88, "end": 4924.24, "probability": 0.5466 }, { "start": 4924.28, "end": 4924.81, "probability": 0.0106 }, { "start": 4925.2, "end": 4925.52, "probability": 0.4011 }, { "start": 4925.6, "end": 4928.96, "probability": 0.7969 }, { "start": 4929.88, "end": 4929.88, "probability": 0.0228 }, { "start": 4929.88, "end": 4932.06, "probability": 0.8886 }, { "start": 4932.6, "end": 4936.28, "probability": 0.8492 }, { "start": 4936.3, "end": 4936.68, "probability": 0.7714 }, { "start": 4936.8, "end": 4938.62, "probability": 0.9717 }, { "start": 4941.02, "end": 4941.76, "probability": 0.8554 }, { "start": 4941.92, "end": 4943.24, "probability": 0.8018 }, { "start": 4943.62, "end": 4944.68, "probability": 0.7637 }, { "start": 4944.8, "end": 4949.52, "probability": 0.9775 }, { "start": 4951.04, "end": 4954.98, "probability": 0.9512 }, { "start": 4956.8, "end": 4960.08, "probability": 0.8221 }, { "start": 4960.8, "end": 4966.42, "probability": 0.9825 }, { "start": 4966.98, "end": 4969.94, "probability": 0.9947 }, { "start": 4970.44, "end": 4973.24, "probability": 0.937 }, { "start": 4973.74, "end": 4978.06, "probability": 0.9881 }, { "start": 4978.46, "end": 4979.16, "probability": 0.9009 }, { "start": 4979.58, "end": 4981.64, "probability": 0.9928 }, { "start": 4982.18, "end": 4982.96, "probability": 0.7766 }, { "start": 4983.74, "end": 4989.44, "probability": 0.9893 }, { "start": 4989.44, "end": 4996.08, "probability": 0.9744 }, { "start": 4998.16, "end": 4999.52, "probability": 0.8604 }, { "start": 5000.28, "end": 5000.62, "probability": 0.4835 }, { "start": 5000.78, "end": 5001.14, "probability": 0.9111 }, { "start": 5001.26, "end": 5002.36, "probability": 0.9811 }, { "start": 5002.52, "end": 5004.32, "probability": 0.9946 }, { "start": 5004.4, "end": 5006.1, "probability": 0.9982 }, { "start": 5006.48, "end": 5008.16, "probability": 0.6506 }, { "start": 5008.9, "end": 5015.92, "probability": 0.9931 }, { "start": 5016.32, "end": 5019.14, "probability": 0.9471 }, { "start": 5019.16, "end": 5019.58, "probability": 0.7276 }, { "start": 5020.38, "end": 5022.38, "probability": 0.7144 }, { "start": 5022.98, "end": 5026.34, "probability": 0.9853 }, { "start": 5027.56, "end": 5028.24, "probability": 0.873 }, { "start": 5030.22, "end": 5031.7, "probability": 0.9974 }, { "start": 5032.54, "end": 5036.68, "probability": 0.9951 }, { "start": 5037.82, "end": 5040.3, "probability": 0.6941 }, { "start": 5040.84, "end": 5043.08, "probability": 0.9816 }, { "start": 5044.52, "end": 5047.68, "probability": 0.9871 }, { "start": 5049.14, "end": 5051.54, "probability": 0.9941 }, { "start": 5051.66, "end": 5055.26, "probability": 0.985 }, { "start": 5055.64, "end": 5058.18, "probability": 0.8738 }, { "start": 5058.56, "end": 5060.76, "probability": 0.9182 }, { "start": 5060.86, "end": 5061.28, "probability": 0.8188 }, { "start": 5062.2, "end": 5063.44, "probability": 0.9812 }, { "start": 5064.02, "end": 5065.24, "probability": 0.581 }, { "start": 5066.78, "end": 5068.42, "probability": 0.9213 }, { "start": 5068.68, "end": 5070.12, "probability": 0.9829 }, { "start": 5070.8, "end": 5072.54, "probability": 0.9978 }, { "start": 5073.22, "end": 5075.74, "probability": 0.959 }, { "start": 5076.5, "end": 5080.26, "probability": 0.9963 }, { "start": 5080.26, "end": 5083.48, "probability": 0.9958 }, { "start": 5084.24, "end": 5085.38, "probability": 0.9985 }, { "start": 5086.38, "end": 5092.5, "probability": 0.9976 }, { "start": 5092.5, "end": 5098.0, "probability": 0.99 }, { "start": 5098.48, "end": 5099.74, "probability": 0.6481 }, { "start": 5101.34, "end": 5103.02, "probability": 0.9806 }, { "start": 5103.5, "end": 5104.36, "probability": 0.4133 }, { "start": 5105.1, "end": 5108.44, "probability": 0.9995 }, { "start": 5109.4, "end": 5113.26, "probability": 0.9578 }, { "start": 5114.18, "end": 5119.62, "probability": 0.9251 }, { "start": 5120.04, "end": 5120.92, "probability": 0.8707 }, { "start": 5121.2, "end": 5121.86, "probability": 0.9436 }, { "start": 5122.26, "end": 5122.84, "probability": 0.9779 }, { "start": 5123.16, "end": 5123.9, "probability": 0.9805 }, { "start": 5124.08, "end": 5124.7, "probability": 0.8658 }, { "start": 5125.2, "end": 5126.28, "probability": 0.9792 }, { "start": 5127.66, "end": 5130.56, "probability": 0.9937 }, { "start": 5131.86, "end": 5136.78, "probability": 0.9186 }, { "start": 5137.76, "end": 5139.36, "probability": 0.9987 }, { "start": 5141.3, "end": 5146.24, "probability": 0.9717 }, { "start": 5147.22, "end": 5151.22, "probability": 0.9908 }, { "start": 5151.34, "end": 5151.42, "probability": 0.6309 }, { "start": 5151.56, "end": 5151.7, "probability": 0.2969 }, { "start": 5153.08, "end": 5154.64, "probability": 0.9983 }, { "start": 5155.9, "end": 5160.14, "probability": 0.9215 }, { "start": 5160.82, "end": 5164.22, "probability": 0.9197 }, { "start": 5166.02, "end": 5167.86, "probability": 0.9329 }, { "start": 5168.0, "end": 5169.7, "probability": 0.9385 }, { "start": 5170.08, "end": 5173.96, "probability": 0.8149 }, { "start": 5174.12, "end": 5174.34, "probability": 0.8864 }, { "start": 5175.36, "end": 5177.8, "probability": 0.9289 }, { "start": 5178.48, "end": 5184.58, "probability": 0.9993 }, { "start": 5184.96, "end": 5185.68, "probability": 0.5622 }, { "start": 5198.21, "end": 5200.56, "probability": 0.9846 }, { "start": 5201.66, "end": 5203.38, "probability": 0.9627 }, { "start": 5204.1, "end": 5204.68, "probability": 0.659 }, { "start": 5204.7, "end": 5208.88, "probability": 0.9838 }, { "start": 5210.08, "end": 5214.28, "probability": 0.9863 }, { "start": 5215.12, "end": 5216.34, "probability": 0.9987 }, { "start": 5216.5, "end": 5217.97, "probability": 0.8568 }, { "start": 5218.9, "end": 5220.02, "probability": 0.8109 }, { "start": 5220.76, "end": 5223.1, "probability": 0.9764 }, { "start": 5223.64, "end": 5224.94, "probability": 0.9879 }, { "start": 5225.3, "end": 5232.26, "probability": 0.9801 }, { "start": 5233.72, "end": 5237.22, "probability": 0.9937 }, { "start": 5237.22, "end": 5244.5, "probability": 0.985 }, { "start": 5244.5, "end": 5248.6, "probability": 0.999 }, { "start": 5249.16, "end": 5254.5, "probability": 0.9996 }, { "start": 5255.58, "end": 5257.42, "probability": 0.979 }, { "start": 5257.98, "end": 5258.3, "probability": 0.7182 }, { "start": 5259.74, "end": 5260.92, "probability": 0.9564 }, { "start": 5268.14, "end": 5269.24, "probability": 0.5135 }, { "start": 5272.82, "end": 5275.88, "probability": 0.9473 }, { "start": 5277.1, "end": 5280.32, "probability": 0.1349 }, { "start": 5281.16, "end": 5281.52, "probability": 0.7747 }, { "start": 5282.12, "end": 5284.58, "probability": 0.5723 }, { "start": 5286.78, "end": 5289.12, "probability": 0.7889 }, { "start": 5289.88, "end": 5291.1, "probability": 0.8061 }, { "start": 5294.54, "end": 5296.02, "probability": 0.252 }, { "start": 5297.04, "end": 5299.24, "probability": 0.8018 }, { "start": 5299.76, "end": 5300.3, "probability": 0.4761 }, { "start": 5301.63, "end": 5304.48, "probability": 0.8108 }, { "start": 5304.98, "end": 5307.76, "probability": 0.776 }, { "start": 5307.92, "end": 5308.64, "probability": 0.678 }, { "start": 5308.94, "end": 5310.44, "probability": 0.8089 }, { "start": 5311.24, "end": 5311.96, "probability": 0.7592 }, { "start": 5312.4, "end": 5313.12, "probability": 0.9312 }, { "start": 5313.28, "end": 5314.08, "probability": 0.5729 }, { "start": 5314.44, "end": 5314.72, "probability": 0.3029 }, { "start": 5316.6, "end": 5321.6, "probability": 0.1408 }, { "start": 5321.74, "end": 5323.46, "probability": 0.0381 }, { "start": 5323.82, "end": 5323.82, "probability": 0.0694 }, { "start": 5324.04, "end": 5324.72, "probability": 0.2142 }, { "start": 5334.72, "end": 5337.74, "probability": 0.6257 }, { "start": 5338.24, "end": 5340.44, "probability": 0.9548 }, { "start": 5341.3, "end": 5342.36, "probability": 0.8717 }, { "start": 5342.94, "end": 5345.54, "probability": 0.6902 }, { "start": 5345.6, "end": 5347.2, "probability": 0.7935 }, { "start": 5347.76, "end": 5349.68, "probability": 0.915 }, { "start": 5350.32, "end": 5351.5, "probability": 0.8255 }, { "start": 5354.02, "end": 5354.72, "probability": 0.2846 }, { "start": 5355.64, "end": 5356.34, "probability": 0.5985 }, { "start": 5358.62, "end": 5361.02, "probability": 0.7835 }, { "start": 5361.76, "end": 5363.42, "probability": 0.6504 }, { "start": 5364.24, "end": 5366.57, "probability": 0.7931 }, { "start": 5367.32, "end": 5368.22, "probability": 0.237 }, { "start": 5369.35, "end": 5372.08, "probability": 0.5845 }, { "start": 5372.12, "end": 5373.68, "probability": 0.6371 }, { "start": 5374.88, "end": 5375.52, "probability": 0.7263 }, { "start": 5376.14, "end": 5378.02, "probability": 0.9235 }, { "start": 5378.78, "end": 5379.48, "probability": 0.8564 }, { "start": 5379.72, "end": 5380.98, "probability": 0.8867 }, { "start": 5386.1, "end": 5387.26, "probability": 0.8368 }, { "start": 5388.96, "end": 5389.48, "probability": 0.912 }, { "start": 5390.35, "end": 5393.62, "probability": 0.8848 }, { "start": 5394.42, "end": 5394.91, "probability": 0.8862 }, { "start": 5396.12, "end": 5398.7, "probability": 0.5587 }, { "start": 5398.76, "end": 5399.54, "probability": 0.8875 }, { "start": 5400.1, "end": 5401.62, "probability": 0.9672 }, { "start": 5401.66, "end": 5402.18, "probability": 0.96 }, { "start": 5402.78, "end": 5404.42, "probability": 0.434 }, { "start": 5406.57, "end": 5407.63, "probability": 0.2551 }, { "start": 5408.3, "end": 5409.38, "probability": 0.5768 }, { "start": 5409.6, "end": 5410.6, "probability": 0.5496 }, { "start": 5410.86, "end": 5414.52, "probability": 0.7988 }, { "start": 5414.82, "end": 5416.08, "probability": 0.9795 }, { "start": 5416.46, "end": 5417.26, "probability": 0.652 }, { "start": 5417.56, "end": 5417.86, "probability": 0.1311 }, { "start": 5417.86, "end": 5420.3, "probability": 0.6371 }, { "start": 5420.46, "end": 5421.14, "probability": 0.8751 }, { "start": 5421.26, "end": 5421.84, "probability": 0.8022 }, { "start": 5422.1, "end": 5423.16, "probability": 0.8303 }, { "start": 5423.26, "end": 5426.66, "probability": 0.5892 }, { "start": 5426.94, "end": 5427.36, "probability": 0.2223 }, { "start": 5427.48, "end": 5430.58, "probability": 0.6804 }, { "start": 5431.1, "end": 5431.68, "probability": 0.1847 }, { "start": 5431.68, "end": 5431.68, "probability": 0.156 }, { "start": 5431.9, "end": 5434.04, "probability": 0.9811 }, { "start": 5434.44, "end": 5435.2, "probability": 0.2106 }, { "start": 5435.2, "end": 5438.04, "probability": 0.9018 }, { "start": 5438.3, "end": 5439.8, "probability": 0.5253 }, { "start": 5439.9, "end": 5441.24, "probability": 0.9849 }, { "start": 5444.28, "end": 5444.28, "probability": 0.2399 }, { "start": 5444.3, "end": 5444.8, "probability": 0.1609 }, { "start": 5444.8, "end": 5444.8, "probability": 0.0005 }, { "start": 5445.5, "end": 5445.74, "probability": 0.0636 }, { "start": 5445.74, "end": 5445.8, "probability": 0.4493 }, { "start": 5447.04, "end": 5448.48, "probability": 0.5787 }, { "start": 5449.0, "end": 5450.4, "probability": 0.3742 }, { "start": 5450.44, "end": 5452.14, "probability": 0.3694 }, { "start": 5461.63, "end": 5462.22, "probability": 0.3636 }, { "start": 5462.28, "end": 5462.54, "probability": 0.819 }, { "start": 5462.54, "end": 5463.42, "probability": 0.7514 }, { "start": 5463.56, "end": 5464.24, "probability": 0.5056 }, { "start": 5464.26, "end": 5464.78, "probability": 0.8339 }, { "start": 5465.0, "end": 5466.24, "probability": 0.9803 }, { "start": 5468.44, "end": 5471.32, "probability": 0.8349 }, { "start": 5472.32, "end": 5472.86, "probability": 0.9365 }, { "start": 5475.1, "end": 5476.74, "probability": 0.9344 }, { "start": 5476.98, "end": 5478.14, "probability": 0.9738 }, { "start": 5478.64, "end": 5479.94, "probability": 0.6647 }, { "start": 5480.46, "end": 5483.8, "probability": 0.8738 }, { "start": 5484.62, "end": 5493.64, "probability": 0.9067 }, { "start": 5494.18, "end": 5496.32, "probability": 0.9995 }, { "start": 5497.04, "end": 5497.76, "probability": 0.7367 }, { "start": 5498.76, "end": 5502.06, "probability": 0.7321 }, { "start": 5502.96, "end": 5505.04, "probability": 0.9897 }, { "start": 5505.16, "end": 5505.96, "probability": 0.7668 }, { "start": 5506.36, "end": 5507.88, "probability": 0.9351 }, { "start": 5508.52, "end": 5514.34, "probability": 0.9816 }, { "start": 5514.74, "end": 5515.12, "probability": 0.5833 }, { "start": 5515.92, "end": 5518.74, "probability": 0.8637 }, { "start": 5519.22, "end": 5522.84, "probability": 0.8745 }, { "start": 5523.58, "end": 5529.34, "probability": 0.9539 }, { "start": 5529.34, "end": 5534.58, "probability": 0.9886 }, { "start": 5534.86, "end": 5536.88, "probability": 0.9988 }, { "start": 5537.26, "end": 5539.14, "probability": 0.7526 }, { "start": 5539.16, "end": 5541.14, "probability": 0.9538 }, { "start": 5541.76, "end": 5542.88, "probability": 0.7769 }, { "start": 5543.38, "end": 5544.04, "probability": 0.968 }, { "start": 5544.24, "end": 5547.16, "probability": 0.9515 }, { "start": 5547.74, "end": 5548.88, "probability": 0.9313 }, { "start": 5548.94, "end": 5553.44, "probability": 0.986 }, { "start": 5555.15, "end": 5557.56, "probability": 0.9929 }, { "start": 5559.0, "end": 5564.02, "probability": 0.9653 }, { "start": 5564.52, "end": 5569.69, "probability": 0.9893 }, { "start": 5570.02, "end": 5573.26, "probability": 0.9991 }, { "start": 5574.18, "end": 5578.33, "probability": 0.9985 }, { "start": 5578.74, "end": 5581.88, "probability": 0.9828 }, { "start": 5582.46, "end": 5583.56, "probability": 0.9561 }, { "start": 5583.64, "end": 5590.04, "probability": 0.9795 }, { "start": 5591.56, "end": 5595.74, "probability": 0.9575 }, { "start": 5596.4, "end": 5598.48, "probability": 0.9965 }, { "start": 5598.9, "end": 5602.44, "probability": 0.9954 }, { "start": 5603.04, "end": 5605.34, "probability": 0.7443 }, { "start": 5607.94, "end": 5615.88, "probability": 0.9988 }, { "start": 5619.08, "end": 5620.46, "probability": 0.9258 }, { "start": 5621.02, "end": 5621.32, "probability": 0.7408 }, { "start": 5621.92, "end": 5624.22, "probability": 0.986 }, { "start": 5624.94, "end": 5626.36, "probability": 0.8004 }, { "start": 5626.52, "end": 5631.8, "probability": 0.9639 }, { "start": 5632.4, "end": 5636.44, "probability": 0.6582 }, { "start": 5637.24, "end": 5640.6, "probability": 0.7925 }, { "start": 5640.62, "end": 5643.24, "probability": 0.936 }, { "start": 5643.24, "end": 5647.78, "probability": 0.9932 }, { "start": 5649.56, "end": 5652.2, "probability": 0.7748 }, { "start": 5653.04, "end": 5653.58, "probability": 0.6405 }, { "start": 5654.5, "end": 5658.82, "probability": 0.9834 }, { "start": 5658.86, "end": 5663.58, "probability": 0.5274 }, { "start": 5663.6, "end": 5664.32, "probability": 0.8308 }, { "start": 5664.62, "end": 5666.1, "probability": 0.7893 }, { "start": 5666.18, "end": 5668.76, "probability": 0.7214 }, { "start": 5669.52, "end": 5672.68, "probability": 0.9556 }, { "start": 5674.0, "end": 5676.02, "probability": 0.5594 }, { "start": 5676.98, "end": 5677.58, "probability": 0.6051 }, { "start": 5679.0, "end": 5682.38, "probability": 0.7205 }, { "start": 5683.32, "end": 5683.9, "probability": 0.5581 }, { "start": 5684.0, "end": 5688.66, "probability": 0.6748 }, { "start": 5688.92, "end": 5690.96, "probability": 0.98 }, { "start": 5691.54, "end": 5692.7, "probability": 0.9471 }, { "start": 5693.28, "end": 5697.0, "probability": 0.9963 }, { "start": 5697.52, "end": 5703.34, "probability": 0.9669 }, { "start": 5703.74, "end": 5706.14, "probability": 0.9875 }, { "start": 5706.7, "end": 5708.28, "probability": 0.9941 }, { "start": 5708.94, "end": 5715.56, "probability": 0.9066 }, { "start": 5716.3, "end": 5718.06, "probability": 0.9498 }, { "start": 5718.5, "end": 5719.34, "probability": 0.9097 }, { "start": 5719.4, "end": 5719.62, "probability": 0.778 }, { "start": 5720.1, "end": 5724.42, "probability": 0.9443 }, { "start": 5724.76, "end": 5725.7, "probability": 0.9407 }, { "start": 5726.08, "end": 5727.14, "probability": 0.785 }, { "start": 5727.36, "end": 5727.76, "probability": 0.4034 }, { "start": 5728.5, "end": 5729.88, "probability": 0.9826 }, { "start": 5730.48, "end": 5731.96, "probability": 0.8976 }, { "start": 5732.74, "end": 5735.7, "probability": 0.9642 }, { "start": 5736.48, "end": 5737.84, "probability": 0.9714 }, { "start": 5738.26, "end": 5740.76, "probability": 0.8309 }, { "start": 5740.76, "end": 5743.56, "probability": 0.944 }, { "start": 5743.72, "end": 5744.96, "probability": 0.8449 }, { "start": 5745.02, "end": 5745.66, "probability": 0.68 }, { "start": 5746.56, "end": 5748.84, "probability": 0.999 }, { "start": 5749.44, "end": 5750.36, "probability": 0.7505 }, { "start": 5751.12, "end": 5755.18, "probability": 0.9939 }, { "start": 5756.32, "end": 5758.16, "probability": 0.7305 }, { "start": 5758.7, "end": 5759.76, "probability": 0.9394 }, { "start": 5760.34, "end": 5764.04, "probability": 0.9092 }, { "start": 5764.46, "end": 5768.2, "probability": 0.9451 }, { "start": 5768.58, "end": 5770.58, "probability": 0.9791 }, { "start": 5771.24, "end": 5775.82, "probability": 0.9638 }, { "start": 5776.66, "end": 5778.92, "probability": 0.8614 }, { "start": 5779.98, "end": 5786.66, "probability": 0.9966 }, { "start": 5786.96, "end": 5787.98, "probability": 0.9742 }, { "start": 5788.04, "end": 5789.5, "probability": 0.9866 }, { "start": 5794.13, "end": 5800.72, "probability": 0.9866 }, { "start": 5800.72, "end": 5804.12, "probability": 0.9976 }, { "start": 5804.58, "end": 5805.76, "probability": 0.7819 }, { "start": 5806.56, "end": 5809.48, "probability": 0.722 }, { "start": 5810.1, "end": 5811.2, "probability": 0.9082 }, { "start": 5811.28, "end": 5814.64, "probability": 0.992 }, { "start": 5815.26, "end": 5817.98, "probability": 0.9973 }, { "start": 5818.64, "end": 5819.9, "probability": 0.9692 }, { "start": 5820.58, "end": 5821.26, "probability": 0.8911 }, { "start": 5821.72, "end": 5822.42, "probability": 0.5942 }, { "start": 5822.52, "end": 5823.0, "probability": 0.6573 }, { "start": 5823.02, "end": 5824.24, "probability": 0.6709 }, { "start": 5824.72, "end": 5825.98, "probability": 0.9067 }, { "start": 5826.42, "end": 5826.62, "probability": 0.1437 }, { "start": 5826.7, "end": 5827.02, "probability": 0.8 }, { "start": 5827.08, "end": 5827.72, "probability": 0.8442 }, { "start": 5827.78, "end": 5829.78, "probability": 0.9904 }, { "start": 5830.33, "end": 5833.04, "probability": 0.9988 }, { "start": 5833.04, "end": 5835.8, "probability": 0.8533 }, { "start": 5836.24, "end": 5838.4, "probability": 0.8974 }, { "start": 5839.2, "end": 5844.14, "probability": 0.9897 }, { "start": 5844.66, "end": 5845.88, "probability": 0.9989 }, { "start": 5846.64, "end": 5848.38, "probability": 0.9089 }, { "start": 5848.9, "end": 5851.54, "probability": 0.9674 }, { "start": 5851.92, "end": 5854.08, "probability": 0.9719 }, { "start": 5854.74, "end": 5858.02, "probability": 0.9777 }, { "start": 5858.6, "end": 5862.52, "probability": 0.9837 }, { "start": 5862.6, "end": 5864.26, "probability": 0.9262 }, { "start": 5864.82, "end": 5869.64, "probability": 0.9819 }, { "start": 5869.92, "end": 5870.58, "probability": 0.3314 }, { "start": 5871.4, "end": 5872.1, "probability": 0.6924 }, { "start": 5872.78, "end": 5873.46, "probability": 0.7381 }, { "start": 5874.38, "end": 5876.8, "probability": 0.7234 }, { "start": 5884.02, "end": 5885.36, "probability": 0.0958 }, { "start": 5902.54, "end": 5904.52, "probability": 0.6136 }, { "start": 5904.72, "end": 5906.4, "probability": 0.6541 }, { "start": 5907.84, "end": 5910.74, "probability": 0.9593 }, { "start": 5910.74, "end": 5912.98, "probability": 0.9987 }, { "start": 5913.08, "end": 5913.52, "probability": 0.8224 }, { "start": 5914.18, "end": 5917.38, "probability": 0.9645 }, { "start": 5918.02, "end": 5918.84, "probability": 0.8868 }, { "start": 5919.36, "end": 5921.12, "probability": 0.8692 }, { "start": 5921.62, "end": 5925.5, "probability": 0.9803 }, { "start": 5926.8, "end": 5927.56, "probability": 0.8525 }, { "start": 5927.72, "end": 5930.58, "probability": 0.9808 }, { "start": 5931.24, "end": 5934.28, "probability": 0.9903 }, { "start": 5935.56, "end": 5937.78, "probability": 0.6617 }, { "start": 5938.32, "end": 5938.74, "probability": 0.7282 }, { "start": 5940.04, "end": 5944.4, "probability": 0.9985 }, { "start": 5945.18, "end": 5948.36, "probability": 0.9946 }, { "start": 5949.46, "end": 5951.34, "probability": 0.9592 }, { "start": 5951.92, "end": 5953.58, "probability": 0.9927 }, { "start": 5954.36, "end": 5954.8, "probability": 0.854 }, { "start": 5955.54, "end": 5958.74, "probability": 0.8822 }, { "start": 5959.62, "end": 5960.18, "probability": 0.5222 }, { "start": 5961.06, "end": 5965.42, "probability": 0.9965 }, { "start": 5965.42, "end": 5969.36, "probability": 0.9876 }, { "start": 5970.16, "end": 5975.0, "probability": 0.9338 }, { "start": 5975.0, "end": 5979.04, "probability": 0.9904 }, { "start": 5979.54, "end": 5982.44, "probability": 0.9941 }, { "start": 5982.44, "end": 5985.82, "probability": 0.9921 }, { "start": 5987.42, "end": 5988.54, "probability": 0.999 }, { "start": 5989.34, "end": 5993.74, "probability": 0.9771 }, { "start": 5994.8, "end": 5995.32, "probability": 0.7756 }, { "start": 5995.34, "end": 5999.4, "probability": 0.9756 }, { "start": 5999.94, "end": 6001.32, "probability": 0.9907 }, { "start": 6001.92, "end": 6003.42, "probability": 0.986 }, { "start": 6003.56, "end": 6006.78, "probability": 0.988 }, { "start": 6006.78, "end": 6012.62, "probability": 0.9991 }, { "start": 6015.0, "end": 6017.3, "probability": 0.9935 }, { "start": 6017.3, "end": 6020.84, "probability": 0.9989 }, { "start": 6021.68, "end": 6026.6, "probability": 0.9976 }, { "start": 6027.08, "end": 6029.18, "probability": 0.9825 }, { "start": 6029.98, "end": 6030.48, "probability": 0.9402 }, { "start": 6031.38, "end": 6033.44, "probability": 0.9966 }, { "start": 6034.24, "end": 6037.16, "probability": 0.9697 }, { "start": 6038.82, "end": 6045.06, "probability": 0.9408 }, { "start": 6046.66, "end": 6051.86, "probability": 0.9669 }, { "start": 6063.89, "end": 6069.88, "probability": 0.9834 }, { "start": 6070.78, "end": 6071.06, "probability": 0.4653 }, { "start": 6071.16, "end": 6073.64, "probability": 0.8259 }, { "start": 6073.76, "end": 6075.76, "probability": 0.9693 }, { "start": 6076.9, "end": 6079.44, "probability": 0.8457 }, { "start": 6080.22, "end": 6081.42, "probability": 0.9023 }, { "start": 6082.04, "end": 6086.66, "probability": 0.8025 }, { "start": 6087.34, "end": 6089.64, "probability": 0.7502 }, { "start": 6090.32, "end": 6092.2, "probability": 0.9919 }, { "start": 6094.36, "end": 6095.96, "probability": 0.9043 }, { "start": 6096.84, "end": 6097.36, "probability": 0.0133 }, { "start": 6098.44, "end": 6100.92, "probability": 0.8936 }, { "start": 6103.06, "end": 6103.9, "probability": 0.9835 }, { "start": 6104.52, "end": 6105.66, "probability": 0.5516 }, { "start": 6106.26, "end": 6106.68, "probability": 0.9395 }, { "start": 6107.66, "end": 6108.52, "probability": 0.8111 }, { "start": 6110.06, "end": 6110.78, "probability": 0.9284 }, { "start": 6111.38, "end": 6112.24, "probability": 0.9314 }, { "start": 6113.44, "end": 6115.64, "probability": 0.9046 }, { "start": 6117.06, "end": 6120.4, "probability": 0.5779 }, { "start": 6121.34, "end": 6122.5, "probability": 0.5105 }, { "start": 6123.46, "end": 6125.34, "probability": 0.8719 }, { "start": 6126.24, "end": 6126.5, "probability": 0.7009 }, { "start": 6127.76, "end": 6128.76, "probability": 0.9245 }, { "start": 6129.68, "end": 6130.14, "probability": 0.9045 }, { "start": 6130.7, "end": 6131.7, "probability": 0.9557 }, { "start": 6132.96, "end": 6133.78, "probability": 0.9909 }, { "start": 6134.38, "end": 6135.38, "probability": 0.973 }, { "start": 6137.3, "end": 6139.52, "probability": 0.9294 }, { "start": 6140.84, "end": 6141.28, "probability": 0.9897 }, { "start": 6142.88, "end": 6143.9, "probability": 0.946 }, { "start": 6145.22, "end": 6146.0, "probability": 0.9897 }, { "start": 6146.58, "end": 6147.38, "probability": 0.5752 }, { "start": 6148.48, "end": 6148.78, "probability": 0.9377 }, { "start": 6149.68, "end": 6150.6, "probability": 0.846 }, { "start": 6151.68, "end": 6152.52, "probability": 0.9878 }, { "start": 6160.18, "end": 6163.54, "probability": 0.4635 }, { "start": 6167.0, "end": 6169.7, "probability": 0.658 }, { "start": 6171.46, "end": 6172.22, "probability": 0.8671 }, { "start": 6173.06, "end": 6175.52, "probability": 0.6816 }, { "start": 6177.26, "end": 6178.14, "probability": 0.8944 }, { "start": 6179.86, "end": 6180.74, "probability": 0.9807 }, { "start": 6181.46, "end": 6182.2, "probability": 0.9735 }, { "start": 6183.08, "end": 6183.62, "probability": 0.9735 }, { "start": 6184.7, "end": 6188.78, "probability": 0.9712 }, { "start": 6189.88, "end": 6191.04, "probability": 0.9418 }, { "start": 6193.78, "end": 6196.68, "probability": 0.6367 }, { "start": 6197.36, "end": 6199.68, "probability": 0.7771 }, { "start": 6200.56, "end": 6200.86, "probability": 0.9733 }, { "start": 6201.6, "end": 6205.58, "probability": 0.7964 }, { "start": 6206.26, "end": 6207.1, "probability": 0.9067 }, { "start": 6208.54, "end": 6209.3, "probability": 0.9813 }, { "start": 6209.92, "end": 6210.8, "probability": 0.9657 }, { "start": 6211.64, "end": 6212.12, "probability": 0.9836 }, { "start": 6212.7, "end": 6213.66, "probability": 0.8136 }, { "start": 6217.48, "end": 6219.58, "probability": 0.6451 }, { "start": 6220.94, "end": 6221.96, "probability": 0.9085 }, { "start": 6222.58, "end": 6224.16, "probability": 0.6599 }, { "start": 6225.7, "end": 6226.44, "probability": 0.9537 }, { "start": 6227.56, "end": 6228.44, "probability": 0.821 }, { "start": 6229.56, "end": 6230.38, "probability": 0.9697 }, { "start": 6230.92, "end": 6231.96, "probability": 0.7477 }, { "start": 6232.8, "end": 6233.42, "probability": 0.991 }, { "start": 6234.76, "end": 6235.64, "probability": 0.9766 }, { "start": 6237.16, "end": 6239.3, "probability": 0.994 }, { "start": 6242.46, "end": 6243.22, "probability": 0.8316 }, { "start": 6244.16, "end": 6245.26, "probability": 0.9017 }, { "start": 6246.04, "end": 6246.56, "probability": 0.992 }, { "start": 6247.24, "end": 6248.14, "probability": 0.9899 }, { "start": 6249.38, "end": 6249.8, "probability": 0.9851 }, { "start": 6251.28, "end": 6252.7, "probability": 0.4835 }, { "start": 6253.32, "end": 6253.6, "probability": 0.5734 }, { "start": 6254.38, "end": 6255.14, "probability": 0.865 }, { "start": 6256.72, "end": 6257.76, "probability": 0.9873 }, { "start": 6258.36, "end": 6259.4, "probability": 0.9395 }, { "start": 6260.18, "end": 6260.74, "probability": 0.9806 }, { "start": 6261.68, "end": 6262.58, "probability": 0.6898 }, { "start": 6263.54, "end": 6265.74, "probability": 0.7049 }, { "start": 6267.1, "end": 6273.64, "probability": 0.9659 }, { "start": 6274.46, "end": 6275.02, "probability": 0.984 }, { "start": 6275.78, "end": 6277.18, "probability": 0.9538 }, { "start": 6277.94, "end": 6278.34, "probability": 0.5552 }, { "start": 6279.14, "end": 6280.48, "probability": 0.7269 }, { "start": 6281.6, "end": 6282.02, "probability": 0.9297 }, { "start": 6283.02, "end": 6284.22, "probability": 0.6524 }, { "start": 6285.18, "end": 6285.78, "probability": 0.9342 }, { "start": 6286.52, "end": 6287.72, "probability": 0.8493 }, { "start": 6288.64, "end": 6290.96, "probability": 0.8856 }, { "start": 6291.58, "end": 6292.06, "probability": 0.9876 }, { "start": 6292.7, "end": 6293.6, "probability": 0.927 }, { "start": 6298.76, "end": 6299.16, "probability": 0.5954 }, { "start": 6300.34, "end": 6301.18, "probability": 0.7149 }, { "start": 6302.62, "end": 6303.02, "probability": 0.9425 }, { "start": 6303.74, "end": 6305.06, "probability": 0.7654 }, { "start": 6306.62, "end": 6307.36, "probability": 0.9776 }, { "start": 6308.18, "end": 6309.44, "probability": 0.9388 }, { "start": 6311.78, "end": 6312.7, "probability": 0.9871 }, { "start": 6314.04, "end": 6316.7, "probability": 0.4824 }, { "start": 6318.5, "end": 6320.42, "probability": 0.8649 }, { "start": 6321.38, "end": 6322.2, "probability": 0.7243 }, { "start": 6323.04, "end": 6323.34, "probability": 0.9408 }, { "start": 6324.28, "end": 6325.54, "probability": 0.9366 }, { "start": 6327.22, "end": 6327.96, "probability": 0.9932 }, { "start": 6328.7, "end": 6329.62, "probability": 0.9118 }, { "start": 6330.86, "end": 6333.08, "probability": 0.9734 }, { "start": 6334.06, "end": 6334.52, "probability": 0.2937 }, { "start": 6336.52, "end": 6337.4, "probability": 0.8885 }, { "start": 6340.8, "end": 6341.52, "probability": 0.9547 }, { "start": 6342.76, "end": 6343.52, "probability": 0.5467 }, { "start": 6344.22, "end": 6347.72, "probability": 0.8103 }, { "start": 6348.52, "end": 6351.36, "probability": 0.6904 }, { "start": 6352.88, "end": 6354.48, "probability": 0.933 }, { "start": 6355.86, "end": 6358.36, "probability": 0.9736 }, { "start": 6359.6, "end": 6360.14, "probability": 0.9746 }, { "start": 6361.36, "end": 6362.26, "probability": 0.9738 }, { "start": 6363.48, "end": 6365.8, "probability": 0.9728 }, { "start": 6367.02, "end": 6367.54, "probability": 0.9816 }, { "start": 6368.34, "end": 6369.38, "probability": 0.9885 }, { "start": 6370.18, "end": 6370.58, "probability": 0.9875 }, { "start": 6371.56, "end": 6372.34, "probability": 0.6549 }, { "start": 6373.44, "end": 6374.06, "probability": 0.9536 }, { "start": 6374.82, "end": 6375.72, "probability": 0.8208 }, { "start": 6377.28, "end": 6382.16, "probability": 0.9709 }, { "start": 6383.14, "end": 6386.28, "probability": 0.936 }, { "start": 6387.08, "end": 6388.02, "probability": 0.8332 }, { "start": 6390.4, "end": 6393.74, "probability": 0.9102 }, { "start": 6397.98, "end": 6399.16, "probability": 0.925 }, { "start": 6400.12, "end": 6400.54, "probability": 0.7044 }, { "start": 6402.76, "end": 6405.58, "probability": 0.7928 }, { "start": 6406.84, "end": 6409.18, "probability": 0.948 }, { "start": 6410.98, "end": 6411.4, "probability": 0.9023 }, { "start": 6412.64, "end": 6413.4, "probability": 0.9664 }, { "start": 6414.88, "end": 6417.14, "probability": 0.9784 }, { "start": 6418.9, "end": 6419.46, "probability": 0.9905 }, { "start": 6420.14, "end": 6421.32, "probability": 0.4927 }, { "start": 6421.96, "end": 6422.44, "probability": 0.9704 }, { "start": 6422.96, "end": 6424.38, "probability": 0.9901 }, { "start": 6425.34, "end": 6425.74, "probability": 0.9819 }, { "start": 6427.1, "end": 6428.04, "probability": 0.7779 }, { "start": 6429.12, "end": 6429.58, "probability": 0.7389 }, { "start": 6430.58, "end": 6431.74, "probability": 0.7546 }, { "start": 6434.04, "end": 6437.2, "probability": 0.6512 }, { "start": 6438.32, "end": 6439.28, "probability": 0.7264 }, { "start": 6440.08, "end": 6440.54, "probability": 0.971 }, { "start": 6443.18, "end": 6444.2, "probability": 0.6055 }, { "start": 6445.62, "end": 6449.16, "probability": 0.7304 }, { "start": 6449.98, "end": 6450.36, "probability": 0.7922 }, { "start": 6451.2, "end": 6451.88, "probability": 0.6479 }, { "start": 6452.86, "end": 6454.36, "probability": 0.9243 }, { "start": 6456.18, "end": 6456.72, "probability": 0.9645 }, { "start": 6458.18, "end": 6459.28, "probability": 0.456 }, { "start": 6462.92, "end": 6463.58, "probability": 0.8083 }, { "start": 6464.32, "end": 6465.36, "probability": 0.6747 }, { "start": 6466.28, "end": 6466.72, "probability": 0.6866 }, { "start": 6467.88, "end": 6468.9, "probability": 0.5454 }, { "start": 6471.64, "end": 6472.38, "probability": 0.6444 }, { "start": 6473.22, "end": 6474.18, "probability": 0.8375 }, { "start": 6475.84, "end": 6476.34, "probability": 0.9868 }, { "start": 6477.32, "end": 6478.16, "probability": 0.9191 }, { "start": 6478.9, "end": 6479.34, "probability": 0.9819 }, { "start": 6480.36, "end": 6480.88, "probability": 0.49 }, { "start": 6481.72, "end": 6482.26, "probability": 0.9805 }, { "start": 6483.58, "end": 6484.92, "probability": 0.9287 }, { "start": 6485.98, "end": 6488.02, "probability": 0.9354 }, { "start": 6489.7, "end": 6491.98, "probability": 0.8122 }, { "start": 6493.2, "end": 6493.92, "probability": 0.9474 }, { "start": 6494.58, "end": 6495.62, "probability": 0.8957 }, { "start": 6496.52, "end": 6496.98, "probability": 0.9201 }, { "start": 6498.06, "end": 6498.92, "probability": 0.926 }, { "start": 6500.96, "end": 6501.54, "probability": 0.991 }, { "start": 6502.28, "end": 6503.34, "probability": 0.9162 }, { "start": 6504.4, "end": 6504.86, "probability": 0.9497 }, { "start": 6505.68, "end": 6510.12, "probability": 0.9367 }, { "start": 6510.98, "end": 6511.46, "probability": 0.9748 }, { "start": 6512.14, "end": 6513.16, "probability": 0.9501 }, { "start": 6514.28, "end": 6514.7, "probability": 0.9834 }, { "start": 6515.46, "end": 6516.22, "probability": 0.5891 }, { "start": 6517.72, "end": 6518.64, "probability": 0.8348 }, { "start": 6519.52, "end": 6520.66, "probability": 0.79 }, { "start": 6523.24, "end": 6523.8, "probability": 0.9806 }, { "start": 6525.2, "end": 6526.22, "probability": 0.9579 }, { "start": 6527.8, "end": 6530.38, "probability": 0.989 }, { "start": 6531.1, "end": 6531.54, "probability": 0.9478 }, { "start": 6532.72, "end": 6533.92, "probability": 0.9865 }, { "start": 6534.94, "end": 6535.36, "probability": 0.9979 }, { "start": 6536.3, "end": 6537.22, "probability": 0.9743 }, { "start": 6538.84, "end": 6539.36, "probability": 0.9943 }, { "start": 6540.04, "end": 6541.4, "probability": 0.9271 }, { "start": 6544.88, "end": 6545.68, "probability": 0.8779 }, { "start": 6546.44, "end": 6547.64, "probability": 0.5837 }, { "start": 6548.44, "end": 6548.74, "probability": 0.8363 }, { "start": 6549.76, "end": 6550.96, "probability": 0.832 }, { "start": 6552.06, "end": 6554.34, "probability": 0.8629 }, { "start": 6557.58, "end": 6558.34, "probability": 0.7908 }, { "start": 6559.54, "end": 6560.82, "probability": 0.849 }, { "start": 6562.32, "end": 6564.32, "probability": 0.7272 }, { "start": 6566.78, "end": 6567.98, "probability": 0.4207 }, { "start": 6571.06, "end": 6573.12, "probability": 0.7587 }, { "start": 6574.82, "end": 6575.34, "probability": 0.9355 }, { "start": 6576.24, "end": 6577.06, "probability": 0.7173 }, { "start": 6578.12, "end": 6580.34, "probability": 0.925 }, { "start": 6581.56, "end": 6584.52, "probability": 0.9355 }, { "start": 6586.72, "end": 6587.26, "probability": 0.9793 }, { "start": 6588.3, "end": 6589.22, "probability": 0.7833 }, { "start": 6590.2, "end": 6590.82, "probability": 0.9912 }, { "start": 6592.02, "end": 6592.8, "probability": 0.7989 }, { "start": 6594.38, "end": 6594.76, "probability": 0.9897 }, { "start": 6596.24, "end": 6597.38, "probability": 0.5887 }, { "start": 6599.62, "end": 6600.52, "probability": 0.9011 }, { "start": 6602.53, "end": 6605.98, "probability": 0.8629 }, { "start": 6614.36, "end": 6615.42, "probability": 0.2645 }, { "start": 6617.16, "end": 6617.84, "probability": 0.9672 }, { "start": 6618.44, "end": 6619.44, "probability": 0.8579 }, { "start": 6620.94, "end": 6622.84, "probability": 0.8978 }, { "start": 6624.6, "end": 6625.32, "probability": 0.961 }, { "start": 6625.98, "end": 6626.8, "probability": 0.8599 }, { "start": 6627.9, "end": 6630.0, "probability": 0.7311 }, { "start": 6632.44, "end": 6633.4, "probability": 0.4906 }, { "start": 6634.7, "end": 6635.68, "probability": 0.5299 }, { "start": 6636.92, "end": 6637.54, "probability": 0.823 }, { "start": 6638.48, "end": 6639.34, "probability": 0.7258 }, { "start": 6643.2, "end": 6643.44, "probability": 0.4483 }, { "start": 6645.7, "end": 6646.68, "probability": 0.6899 }, { "start": 6647.94, "end": 6649.46, "probability": 0.9397 }, { "start": 6650.26, "end": 6651.12, "probability": 0.9469 }, { "start": 6652.83, "end": 6655.12, "probability": 0.9844 }, { "start": 6656.68, "end": 6657.78, "probability": 0.9912 }, { "start": 6658.96, "end": 6660.18, "probability": 0.6195 }, { "start": 6661.48, "end": 6662.16, "probability": 0.791 }, { "start": 6663.28, "end": 6664.22, "probability": 0.8668 }, { "start": 6664.92, "end": 6665.82, "probability": 0.9817 }, { "start": 6668.68, "end": 6669.5, "probability": 0.655 }, { "start": 6671.16, "end": 6672.6, "probability": 0.8129 }, { "start": 6673.36, "end": 6675.76, "probability": 0.8067 }, { "start": 6677.56, "end": 6678.42, "probability": 0.9331 }, { "start": 6681.88, "end": 6682.62, "probability": 0.7905 }, { "start": 6683.22, "end": 6684.08, "probability": 0.8917 }, { "start": 6685.1, "end": 6685.86, "probability": 0.9916 }, { "start": 6686.78, "end": 6687.1, "probability": 0.9592 }, { "start": 6689.78, "end": 6691.82, "probability": 0.9182 }, { "start": 6693.3, "end": 6694.16, "probability": 0.4865 }, { "start": 6699.54, "end": 6702.12, "probability": 0.537 }, { "start": 6704.86, "end": 6706.38, "probability": 0.4725 }, { "start": 6707.68, "end": 6708.58, "probability": 0.6697 }, { "start": 6709.6, "end": 6711.58, "probability": 0.9246 }, { "start": 6713.96, "end": 6714.74, "probability": 0.888 }, { "start": 6715.52, "end": 6716.36, "probability": 0.5356 }, { "start": 6717.5, "end": 6718.36, "probability": 0.9607 }, { "start": 6719.16, "end": 6720.2, "probability": 0.4578 }, { "start": 6721.46, "end": 6722.24, "probability": 0.9923 }, { "start": 6723.0, "end": 6724.32, "probability": 0.9456 }, { "start": 6726.04, "end": 6726.88, "probability": 0.9954 }, { "start": 6727.92, "end": 6728.84, "probability": 0.9677 }, { "start": 6731.42, "end": 6732.2, "probability": 0.9856 }, { "start": 6732.9, "end": 6734.18, "probability": 0.734 }, { "start": 6735.54, "end": 6737.8, "probability": 0.7204 }, { "start": 6738.46, "end": 6740.32, "probability": 0.8286 }, { "start": 6741.08, "end": 6741.82, "probability": 0.7653 }, { "start": 6745.02, "end": 6745.82, "probability": 0.9535 }, { "start": 6747.56, "end": 6748.94, "probability": 0.7908 }, { "start": 6750.04, "end": 6752.08, "probability": 0.9785 }, { "start": 6753.18, "end": 6753.94, "probability": 0.9858 }, { "start": 6754.58, "end": 6755.42, "probability": 0.9791 }, { "start": 6756.54, "end": 6757.34, "probability": 0.9698 }, { "start": 6757.98, "end": 6758.92, "probability": 0.8492 }, { "start": 6761.82, "end": 6764.3, "probability": 0.782 }, { "start": 6766.24, "end": 6767.24, "probability": 0.9659 }, { "start": 6767.78, "end": 6769.06, "probability": 0.8535 }, { "start": 6770.2, "end": 6772.64, "probability": 0.9596 }, { "start": 6773.88, "end": 6776.24, "probability": 0.9727 }, { "start": 6776.84, "end": 6777.32, "probability": 0.9729 }, { "start": 6778.06, "end": 6780.96, "probability": 0.5618 }, { "start": 6782.54, "end": 6785.7, "probability": 0.9324 }, { "start": 6787.26, "end": 6788.0, "probability": 0.4932 }, { "start": 6788.86, "end": 6788.96, "probability": 0.727 }, { "start": 6803.04, "end": 6804.36, "probability": 0.243 }, { "start": 6805.3, "end": 6807.74, "probability": 0.7916 }, { "start": 6808.68, "end": 6809.06, "probability": 0.8771 }, { "start": 6811.34, "end": 6812.38, "probability": 0.7815 }, { "start": 6814.02, "end": 6814.76, "probability": 0.8908 }, { "start": 6815.66, "end": 6816.6, "probability": 0.7571 }, { "start": 6817.94, "end": 6818.84, "probability": 0.9804 }, { "start": 6821.48, "end": 6822.38, "probability": 0.6449 }, { "start": 6822.98, "end": 6825.68, "probability": 0.8611 }, { "start": 6826.94, "end": 6829.48, "probability": 0.9332 }, { "start": 6830.26, "end": 6832.34, "probability": 0.9336 }, { "start": 6834.38, "end": 6836.97, "probability": 0.444 }, { "start": 6839.1, "end": 6840.58, "probability": 0.512 }, { "start": 6842.22, "end": 6843.3, "probability": 0.6993 }, { "start": 6844.6, "end": 6847.22, "probability": 0.6512 }, { "start": 6848.26, "end": 6849.42, "probability": 0.7581 }, { "start": 6853.26, "end": 6855.14, "probability": 0.7341 }, { "start": 6855.56, "end": 6856.33, "probability": 0.4571 }, { "start": 6857.98, "end": 6860.66, "probability": 0.6163 }, { "start": 6863.51, "end": 6868.82, "probability": 0.5482 }, { "start": 6869.42, "end": 6871.62, "probability": 0.2383 }, { "start": 6872.76, "end": 6873.98, "probability": 0.6669 }, { "start": 6878.74, "end": 6879.3, "probability": 0.6515 }, { "start": 6879.44, "end": 6882.18, "probability": 0.3048 }, { "start": 6882.26, "end": 6883.12, "probability": 0.8018 }, { "start": 6971.26, "end": 6971.28, "probability": 0.4644 }, { "start": 6971.28, "end": 6973.54, "probability": 0.4961 }, { "start": 6973.76, "end": 6974.74, "probability": 0.4383 }, { "start": 6974.86, "end": 6975.16, "probability": 0.9544 }, { "start": 6975.22, "end": 6975.96, "probability": 0.9597 }, { "start": 6976.08, "end": 6976.72, "probability": 0.7379 }, { "start": 6977.14, "end": 6979.52, "probability": 0.9473 }, { "start": 6980.22, "end": 6983.67, "probability": 0.8587 }, { "start": 6985.1, "end": 6985.32, "probability": 0.1419 }, { "start": 6985.44, "end": 6988.24, "probability": 0.4477 }, { "start": 6988.28, "end": 6990.32, "probability": 0.5048 }, { "start": 6990.66, "end": 6991.52, "probability": 0.9054 }, { "start": 6992.08, "end": 6994.86, "probability": 0.8029 }, { "start": 6994.94, "end": 6995.44, "probability": 0.4641 }, { "start": 6995.54, "end": 6997.84, "probability": 0.9476 }, { "start": 6999.24, "end": 7002.44, "probability": 0.1334 }, { "start": 7019.18, "end": 7020.66, "probability": 0.6881 }, { "start": 7022.2, "end": 7022.56, "probability": 0.8161 }, { "start": 7026.66, "end": 7027.8, "probability": 0.7619 }, { "start": 7028.74, "end": 7033.82, "probability": 0.9927 }, { "start": 7034.94, "end": 7036.34, "probability": 0.9943 }, { "start": 7037.06, "end": 7040.12, "probability": 0.9791 }, { "start": 7040.88, "end": 7041.96, "probability": 0.9436 }, { "start": 7043.72, "end": 7044.34, "probability": 0.6898 }, { "start": 7044.94, "end": 7048.2, "probability": 0.7361 }, { "start": 7052.14, "end": 7053.88, "probability": 0.8885 }, { "start": 7055.6, "end": 7057.22, "probability": 0.7576 }, { "start": 7058.3, "end": 7059.2, "probability": 0.9085 }, { "start": 7059.94, "end": 7060.42, "probability": 0.9564 }, { "start": 7064.14, "end": 7067.66, "probability": 0.9089 }, { "start": 7068.04, "end": 7068.86, "probability": 0.8617 }, { "start": 7071.16, "end": 7072.6, "probability": 0.8666 }, { "start": 7073.06, "end": 7076.4, "probability": 0.6821 }, { "start": 7077.42, "end": 7085.1, "probability": 0.9871 }, { "start": 7085.44, "end": 7086.36, "probability": 0.8734 }, { "start": 7086.48, "end": 7087.46, "probability": 0.9478 }, { "start": 7089.76, "end": 7095.44, "probability": 0.9151 }, { "start": 7097.3, "end": 7099.26, "probability": 0.8571 }, { "start": 7101.84, "end": 7106.98, "probability": 0.993 }, { "start": 7107.74, "end": 7109.14, "probability": 0.7461 }, { "start": 7110.1, "end": 7111.9, "probability": 0.9993 }, { "start": 7115.58, "end": 7116.74, "probability": 0.6606 }, { "start": 7117.58, "end": 7118.74, "probability": 0.5829 }, { "start": 7124.6, "end": 7127.3, "probability": 0.7358 }, { "start": 7127.6, "end": 7128.68, "probability": 0.6436 }, { "start": 7129.7, "end": 7131.82, "probability": 0.739 }, { "start": 7132.46, "end": 7133.58, "probability": 0.7377 }, { "start": 7134.12, "end": 7134.42, "probability": 0.7617 }, { "start": 7134.6, "end": 7135.52, "probability": 0.9432 }, { "start": 7137.22, "end": 7137.84, "probability": 0.9332 }, { "start": 7138.7, "end": 7139.32, "probability": 0.9551 }, { "start": 7139.94, "end": 7140.54, "probability": 0.8887 }, { "start": 7143.72, "end": 7148.44, "probability": 0.7235 }, { "start": 7150.14, "end": 7152.48, "probability": 0.9821 }, { "start": 7153.54, "end": 7155.9, "probability": 0.8752 }, { "start": 7157.88, "end": 7160.68, "probability": 0.9735 }, { "start": 7161.72, "end": 7164.52, "probability": 0.9321 }, { "start": 7165.24, "end": 7167.14, "probability": 0.9786 }, { "start": 7168.66, "end": 7172.66, "probability": 0.994 }, { "start": 7173.52, "end": 7175.12, "probability": 0.9998 }, { "start": 7175.72, "end": 7178.94, "probability": 0.9968 }, { "start": 7179.68, "end": 7183.94, "probability": 0.958 }, { "start": 7184.64, "end": 7186.66, "probability": 0.8843 }, { "start": 7188.18, "end": 7193.0, "probability": 0.9819 }, { "start": 7194.08, "end": 7199.74, "probability": 0.9858 }, { "start": 7200.7, "end": 7201.5, "probability": 0.7467 }, { "start": 7202.64, "end": 7212.24, "probability": 0.9839 }, { "start": 7213.82, "end": 7216.62, "probability": 0.9969 }, { "start": 7217.68, "end": 7218.9, "probability": 0.8741 }, { "start": 7220.12, "end": 7222.1, "probability": 0.974 }, { "start": 7223.34, "end": 7227.34, "probability": 0.9982 }, { "start": 7229.04, "end": 7230.8, "probability": 0.9538 }, { "start": 7231.92, "end": 7233.22, "probability": 0.9458 }, { "start": 7234.28, "end": 7237.8, "probability": 0.8679 }, { "start": 7239.02, "end": 7241.46, "probability": 0.8381 }, { "start": 7244.04, "end": 7247.36, "probability": 0.9986 }, { "start": 7250.96, "end": 7258.8, "probability": 0.9934 }, { "start": 7259.5, "end": 7267.06, "probability": 0.7645 }, { "start": 7267.62, "end": 7268.76, "probability": 0.9666 }, { "start": 7269.48, "end": 7270.2, "probability": 0.8598 }, { "start": 7272.98, "end": 7274.94, "probability": 0.9035 }, { "start": 7276.14, "end": 7277.42, "probability": 0.7678 }, { "start": 7280.18, "end": 7283.8, "probability": 0.8298 }, { "start": 7285.38, "end": 7290.96, "probability": 0.9565 }, { "start": 7291.62, "end": 7292.44, "probability": 0.7801 }, { "start": 7293.04, "end": 7293.9, "probability": 0.5877 }, { "start": 7294.1, "end": 7294.74, "probability": 0.963 }, { "start": 7295.04, "end": 7296.1, "probability": 0.9915 }, { "start": 7296.28, "end": 7297.73, "probability": 0.9194 }, { "start": 7298.22, "end": 7302.62, "probability": 0.7777 }, { "start": 7306.88, "end": 7309.14, "probability": 0.986 }, { "start": 7311.3, "end": 7312.36, "probability": 0.9651 }, { "start": 7313.26, "end": 7316.8, "probability": 0.8323 }, { "start": 7317.42, "end": 7320.04, "probability": 0.877 }, { "start": 7320.58, "end": 7323.06, "probability": 0.9967 }, { "start": 7323.7, "end": 7328.68, "probability": 0.8914 }, { "start": 7328.68, "end": 7333.32, "probability": 0.986 }, { "start": 7334.06, "end": 7335.76, "probability": 0.9977 }, { "start": 7336.44, "end": 7337.44, "probability": 0.9932 }, { "start": 7338.12, "end": 7338.64, "probability": 0.7435 }, { "start": 7339.2, "end": 7343.48, "probability": 0.9973 }, { "start": 7343.7, "end": 7348.0, "probability": 0.9479 }, { "start": 7348.78, "end": 7352.34, "probability": 0.7016 }, { "start": 7353.08, "end": 7354.18, "probability": 0.785 }, { "start": 7354.34, "end": 7355.04, "probability": 0.9248 }, { "start": 7355.12, "end": 7358.94, "probability": 0.9867 }, { "start": 7360.9, "end": 7361.86, "probability": 0.9707 }, { "start": 7363.54, "end": 7364.54, "probability": 0.7175 }, { "start": 7365.86, "end": 7366.7, "probability": 0.5585 }, { "start": 7367.4, "end": 7368.51, "probability": 0.9114 }, { "start": 7369.24, "end": 7373.0, "probability": 0.8693 }, { "start": 7374.46, "end": 7375.36, "probability": 0.8317 }, { "start": 7375.52, "end": 7376.12, "probability": 0.5535 }, { "start": 7376.32, "end": 7376.66, "probability": 0.4984 }, { "start": 7376.68, "end": 7379.08, "probability": 0.9719 }, { "start": 7380.18, "end": 7381.08, "probability": 0.9917 }, { "start": 7382.84, "end": 7388.06, "probability": 0.9673 }, { "start": 7388.9, "end": 7391.08, "probability": 0.9922 }, { "start": 7391.92, "end": 7393.04, "probability": 0.9639 }, { "start": 7393.7, "end": 7395.26, "probability": 0.9587 }, { "start": 7395.56, "end": 7396.52, "probability": 0.6538 }, { "start": 7399.04, "end": 7403.38, "probability": 0.9891 }, { "start": 7403.68, "end": 7404.38, "probability": 0.9346 }, { "start": 7406.7, "end": 7409.39, "probability": 0.8601 }, { "start": 7409.86, "end": 7410.0, "probability": 0.8194 }, { "start": 7410.1, "end": 7415.6, "probability": 0.9788 }, { "start": 7417.26, "end": 7418.42, "probability": 0.0109 }, { "start": 7421.26, "end": 7426.74, "probability": 0.8479 }, { "start": 7428.16, "end": 7430.21, "probability": 0.9814 }, { "start": 7431.51, "end": 7433.49, "probability": 0.581 }, { "start": 7433.71, "end": 7434.63, "probability": 0.8064 }, { "start": 7434.93, "end": 7439.25, "probability": 0.9984 }, { "start": 7440.01, "end": 7442.59, "probability": 0.9089 }, { "start": 7443.61, "end": 7447.11, "probability": 0.7808 }, { "start": 7448.17, "end": 7451.11, "probability": 0.9916 }, { "start": 7452.63, "end": 7453.55, "probability": 0.9487 }, { "start": 7455.21, "end": 7457.45, "probability": 0.9976 }, { "start": 7457.53, "end": 7459.23, "probability": 0.9816 }, { "start": 7460.25, "end": 7461.13, "probability": 0.7657 }, { "start": 7462.47, "end": 7467.31, "probability": 0.9612 }, { "start": 7468.97, "end": 7475.25, "probability": 0.9923 }, { "start": 7475.59, "end": 7476.83, "probability": 0.8584 }, { "start": 7479.61, "end": 7480.41, "probability": 0.4977 }, { "start": 7481.59, "end": 7482.02, "probability": 0.7628 }, { "start": 7482.31, "end": 7484.75, "probability": 0.9497 }, { "start": 7485.89, "end": 7485.89, "probability": 0.8325 }, { "start": 7486.79, "end": 7490.46, "probability": 0.9924 }, { "start": 7491.69, "end": 7498.25, "probability": 0.9875 }, { "start": 7500.19, "end": 7501.39, "probability": 0.9579 }, { "start": 7503.31, "end": 7505.65, "probability": 0.0502 }, { "start": 7506.53, "end": 7507.61, "probability": 0.0025 }, { "start": 7508.81, "end": 7509.69, "probability": 0.0765 }, { "start": 7510.01, "end": 7510.15, "probability": 0.036 }, { "start": 7510.15, "end": 7510.15, "probability": 0.1482 }, { "start": 7510.15, "end": 7510.89, "probability": 0.0624 }, { "start": 7511.57, "end": 7512.55, "probability": 0.0384 }, { "start": 7513.15, "end": 7514.87, "probability": 0.3037 }, { "start": 7515.45, "end": 7515.53, "probability": 0.0951 }, { "start": 7518.13, "end": 7519.15, "probability": 0.0747 }, { "start": 7519.17, "end": 7521.35, "probability": 0.059 }, { "start": 7521.39, "end": 7522.01, "probability": 0.8374 }, { "start": 7522.11, "end": 7522.65, "probability": 0.8564 }, { "start": 7522.71, "end": 7523.75, "probability": 0.3349 }, { "start": 7524.91, "end": 7527.84, "probability": 0.035 }, { "start": 7529.65, "end": 7536.47, "probability": 0.1706 }, { "start": 7537.33, "end": 7537.87, "probability": 0.3602 }, { "start": 7538.47, "end": 7539.49, "probability": 0.3353 }, { "start": 7540.67, "end": 7542.23, "probability": 0.0512 }, { "start": 7543.45, "end": 7545.81, "probability": 0.0276 }, { "start": 7546.37, "end": 7549.23, "probability": 0.2395 }, { "start": 7550.65, "end": 7551.23, "probability": 0.0282 }, { "start": 7551.75, "end": 7558.95, "probability": 0.0593 }, { "start": 7558.95, "end": 7560.83, "probability": 0.0278 }, { "start": 7561.81, "end": 7563.95, "probability": 0.0816 }, { "start": 7564.55, "end": 7566.45, "probability": 0.1426 }, { "start": 7629.0, "end": 7629.0, "probability": 0.0 }, { "start": 7629.0, "end": 7629.0, "probability": 0.0 }, { "start": 7629.0, "end": 7629.0, "probability": 0.0 }, { "start": 7629.0, "end": 7629.0, "probability": 0.0 }, { "start": 7629.0, "end": 7629.0, "probability": 0.0 }, { "start": 7629.0, "end": 7629.0, "probability": 0.0 }, { "start": 7629.0, "end": 7629.0, "probability": 0.0 }, { "start": 7629.0, "end": 7629.0, "probability": 0.0 }, { "start": 7629.0, "end": 7629.0, "probability": 0.0 }, { "start": 7629.0, "end": 7629.0, "probability": 0.0 }, { "start": 7629.0, "end": 7629.0, "probability": 0.0 }, { "start": 7629.0, "end": 7629.0, "probability": 0.0 }, { "start": 7629.0, "end": 7629.0, "probability": 0.0 }, { "start": 7629.0, "end": 7629.0, "probability": 0.0 }, { "start": 7629.0, "end": 7629.0, "probability": 0.0 }, { "start": 7629.0, "end": 7629.0, "probability": 0.0 }, { "start": 7629.0, "end": 7629.0, "probability": 0.0 }, { "start": 7629.0, "end": 7629.0, "probability": 0.0 }, { "start": 7629.0, "end": 7629.0, "probability": 0.0 }, { "start": 7629.0, "end": 7629.0, "probability": 0.0 }, { "start": 7629.0, "end": 7629.0, "probability": 0.0 }, { "start": 7629.0, "end": 7629.0, "probability": 0.0 }, { "start": 7629.0, "end": 7629.0, "probability": 0.0 }, { "start": 7629.14, "end": 7633.4, "probability": 0.9404 }, { "start": 7633.52, "end": 7634.38, "probability": 0.5205 }, { "start": 7634.46, "end": 7636.14, "probability": 0.772 }, { "start": 7636.24, "end": 7638.15, "probability": 0.7145 }, { "start": 7638.9, "end": 7642.56, "probability": 0.9337 }, { "start": 7651.34, "end": 7657.5, "probability": 0.2112 }, { "start": 7670.2, "end": 7670.9, "probability": 0.6276 }, { "start": 7671.24, "end": 7675.96, "probability": 0.4525 }, { "start": 7676.26, "end": 7678.16, "probability": 0.8456 }, { "start": 7678.42, "end": 7680.2, "probability": 0.3255 }, { "start": 7680.32, "end": 7681.4, "probability": 0.3136 }, { "start": 7681.88, "end": 7683.06, "probability": 0.365 }, { "start": 7683.18, "end": 7685.62, "probability": 0.7204 }, { "start": 7687.26, "end": 7687.4, "probability": 0.6096 }, { "start": 7687.4, "end": 7689.12, "probability": 0.4446 }, { "start": 7689.12, "end": 7689.24, "probability": 0.1933 }, { "start": 7689.24, "end": 7690.8, "probability": 0.0672 }, { "start": 7690.86, "end": 7691.5, "probability": 0.3512 }, { "start": 7691.58, "end": 7692.8, "probability": 0.4021 }, { "start": 7693.2, "end": 7693.88, "probability": 0.4386 }, { "start": 7693.98, "end": 7694.78, "probability": 0.2641 }, { "start": 7694.96, "end": 7696.66, "probability": 0.6603 }, { "start": 7696.98, "end": 7698.22, "probability": 0.671 }, { "start": 7698.42, "end": 7698.8, "probability": 0.7201 }, { "start": 7698.92, "end": 7699.4, "probability": 0.4746 }, { "start": 7699.65, "end": 7702.18, "probability": 0.6028 }, { "start": 7702.46, "end": 7703.28, "probability": 0.5939 }, { "start": 7703.74, "end": 7704.78, "probability": 0.569 }, { "start": 7705.92, "end": 7707.18, "probability": 0.9411 }, { "start": 7707.26, "end": 7708.92, "probability": 0.2032 }, { "start": 7709.0, "end": 7710.44, "probability": 0.6043 }, { "start": 7710.54, "end": 7711.16, "probability": 0.4377 }, { "start": 7711.26, "end": 7712.56, "probability": 0.6638 }, { "start": 7713.52, "end": 7715.44, "probability": 0.0643 }, { "start": 7715.44, "end": 7717.0, "probability": 0.0825 }, { "start": 7717.0, "end": 7721.02, "probability": 0.969 }, { "start": 7721.42, "end": 7726.0, "probability": 0.9258 }, { "start": 7726.78, "end": 7727.82, "probability": 0.9387 }, { "start": 7728.46, "end": 7733.86, "probability": 0.998 }, { "start": 7734.4, "end": 7739.6, "probability": 0.887 }, { "start": 7739.88, "end": 7740.98, "probability": 0.6667 }, { "start": 7741.72, "end": 7742.72, "probability": 0.6072 }, { "start": 7743.46, "end": 7750.06, "probability": 0.7915 }, { "start": 7750.06, "end": 7753.25, "probability": 0.8586 }, { "start": 7754.36, "end": 7756.28, "probability": 0.0382 }, { "start": 7757.44, "end": 7758.36, "probability": 0.3299 }, { "start": 7759.6, "end": 7762.72, "probability": 0.9832 }, { "start": 7763.0, "end": 7763.68, "probability": 0.8957 }, { "start": 7764.5, "end": 7767.58, "probability": 0.9988 }, { "start": 7768.12, "end": 7769.2, "probability": 0.9551 }, { "start": 7769.64, "end": 7770.12, "probability": 0.8486 }, { "start": 7770.22, "end": 7771.42, "probability": 0.8421 }, { "start": 7771.82, "end": 7773.8, "probability": 0.6086 }, { "start": 7774.56, "end": 7777.48, "probability": 0.9928 }, { "start": 7777.48, "end": 7779.92, "probability": 0.983 }, { "start": 7781.16, "end": 7783.72, "probability": 0.9771 }, { "start": 7784.46, "end": 7789.94, "probability": 0.9641 }, { "start": 7790.24, "end": 7792.44, "probability": 0.8416 }, { "start": 7793.34, "end": 7797.68, "probability": 0.9967 }, { "start": 7797.76, "end": 7799.72, "probability": 0.9785 }, { "start": 7800.3, "end": 7802.44, "probability": 0.3754 }, { "start": 7802.48, "end": 7802.54, "probability": 0.0052 }, { "start": 7802.54, "end": 7802.54, "probability": 0.662 }, { "start": 7802.54, "end": 7803.66, "probability": 0.5979 }, { "start": 7803.72, "end": 7805.8, "probability": 0.5603 }, { "start": 7805.8, "end": 7810.62, "probability": 0.1866 }, { "start": 7811.08, "end": 7811.08, "probability": 0.0136 }, { "start": 7811.08, "end": 7811.08, "probability": 0.0256 }, { "start": 7811.08, "end": 7814.8, "probability": 0.9415 }, { "start": 7815.36, "end": 7815.36, "probability": 0.0056 }, { "start": 7815.36, "end": 7816.96, "probability": 0.8782 }, { "start": 7817.58, "end": 7821.42, "probability": 0.9422 }, { "start": 7822.48, "end": 7823.34, "probability": 0.953 }, { "start": 7823.48, "end": 7825.16, "probability": 0.9398 }, { "start": 7825.26, "end": 7825.82, "probability": 0.8782 }, { "start": 7825.88, "end": 7827.74, "probability": 0.9933 }, { "start": 7828.4, "end": 7831.72, "probability": 0.9931 }, { "start": 7832.4, "end": 7832.9, "probability": 0.7853 }, { "start": 7833.0, "end": 7834.28, "probability": 0.8001 }, { "start": 7834.76, "end": 7837.76, "probability": 0.6324 }, { "start": 7837.8, "end": 7840.48, "probability": 0.7941 }, { "start": 7841.04, "end": 7844.46, "probability": 0.9609 }, { "start": 7844.98, "end": 7850.36, "probability": 0.9934 }, { "start": 7850.96, "end": 7852.4, "probability": 0.7554 }, { "start": 7853.0, "end": 7854.56, "probability": 0.6905 }, { "start": 7855.32, "end": 7863.58, "probability": 0.926 }, { "start": 7863.88, "end": 7865.86, "probability": 0.9561 }, { "start": 7866.5, "end": 7867.14, "probability": 0.8726 }, { "start": 7867.48, "end": 7872.02, "probability": 0.9725 }, { "start": 7872.88, "end": 7875.72, "probability": 0.7523 }, { "start": 7876.42, "end": 7880.04, "probability": 0.8727 }, { "start": 7882.82, "end": 7885.56, "probability": 0.9954 }, { "start": 7885.56, "end": 7888.36, "probability": 0.9794 }, { "start": 7888.56, "end": 7889.92, "probability": 0.9661 }, { "start": 7890.32, "end": 7894.88, "probability": 0.997 }, { "start": 7897.0, "end": 7900.62, "probability": 0.9741 }, { "start": 7900.62, "end": 7903.82, "probability": 0.9946 }, { "start": 7903.9, "end": 7903.9, "probability": 0.0001 }, { "start": 7904.44, "end": 7905.38, "probability": 0.0241 }, { "start": 7905.38, "end": 7907.2, "probability": 0.485 }, { "start": 7907.98, "end": 7913.54, "probability": 0.1862 }, { "start": 7913.54, "end": 7916.32, "probability": 0.378 }, { "start": 7916.32, "end": 7918.1, "probability": 0.0985 }, { "start": 7918.1, "end": 7920.14, "probability": 0.5904 }, { "start": 7921.62, "end": 7921.9, "probability": 0.0071 }, { "start": 7921.9, "end": 7921.9, "probability": 0.0694 }, { "start": 7921.9, "end": 7921.9, "probability": 0.0885 }, { "start": 7921.9, "end": 7924.7, "probability": 0.0499 }, { "start": 7924.7, "end": 7929.38, "probability": 0.9618 }, { "start": 7929.46, "end": 7931.16, "probability": 0.9189 }, { "start": 7931.58, "end": 7933.57, "probability": 0.7927 }, { "start": 7934.62, "end": 7934.72, "probability": 0.0867 }, { "start": 7934.72, "end": 7937.96, "probability": 0.7182 }, { "start": 7938.5, "end": 7938.7, "probability": 0.2232 }, { "start": 7938.7, "end": 7938.7, "probability": 0.0158 }, { "start": 7938.7, "end": 7940.06, "probability": 0.365 }, { "start": 7940.42, "end": 7942.7, "probability": 0.9649 }, { "start": 7942.7, "end": 7946.56, "probability": 0.9717 }, { "start": 7946.66, "end": 7951.62, "probability": 0.0459 }, { "start": 7954.44, "end": 7954.66, "probability": 0.0241 }, { "start": 7954.66, "end": 7954.74, "probability": 0.1325 }, { "start": 7954.74, "end": 7954.74, "probability": 0.0807 }, { "start": 7954.74, "end": 7954.74, "probability": 0.1957 }, { "start": 7954.74, "end": 7954.74, "probability": 0.0345 }, { "start": 7954.74, "end": 7956.7, "probability": 0.4863 }, { "start": 7956.8, "end": 7960.54, "probability": 0.8945 }, { "start": 7960.98, "end": 7963.26, "probability": 0.9762 }, { "start": 7964.04, "end": 7965.04, "probability": 0.8193 }, { "start": 7965.8, "end": 7967.68, "probability": 0.9731 }, { "start": 7968.38, "end": 7972.6, "probability": 0.9746 }, { "start": 7973.14, "end": 7977.98, "probability": 0.9637 }, { "start": 7978.62, "end": 7981.76, "probability": 0.9976 }, { "start": 7982.3, "end": 7986.9, "probability": 0.9941 }, { "start": 7986.98, "end": 7991.44, "probability": 0.991 }, { "start": 8001.88, "end": 8005.14, "probability": 0.8824 }, { "start": 8006.22, "end": 8008.18, "probability": 0.9937 }, { "start": 8009.16, "end": 8012.36, "probability": 0.9935 }, { "start": 8013.3, "end": 8015.82, "probability": 0.9984 }, { "start": 8015.96, "end": 8017.46, "probability": 0.9919 }, { "start": 8018.14, "end": 8018.7, "probability": 0.9119 }, { "start": 8020.0, "end": 8022.26, "probability": 0.5394 }, { "start": 8023.22, "end": 8024.62, "probability": 0.5868 }, { "start": 8024.78, "end": 8025.96, "probability": 0.6969 }, { "start": 8026.4, "end": 8026.8, "probability": 0.3914 }, { "start": 8030.16, "end": 8033.16, "probability": 0.7154 }, { "start": 8035.22, "end": 8036.86, "probability": 0.8072 }, { "start": 8042.04, "end": 8042.04, "probability": 0.322 }, { "start": 8042.04, "end": 8043.84, "probability": 0.0289 }, { "start": 8045.58, "end": 8048.04, "probability": 0.129 }, { "start": 8049.68, "end": 8049.78, "probability": 0.0867 }, { "start": 8050.0, "end": 8050.28, "probability": 0.4851 }, { "start": 8050.54, "end": 8050.56, "probability": 0.6196 }, { "start": 8050.56, "end": 8050.64, "probability": 0.6753 }, { "start": 8050.72, "end": 8051.79, "probability": 0.0202 }, { "start": 8052.96, "end": 8054.62, "probability": 0.0585 }, { "start": 8056.26, "end": 8058.08, "probability": 0.6957 }, { "start": 8059.2, "end": 8064.24, "probability": 0.8871 }, { "start": 8065.28, "end": 8069.04, "probability": 0.8282 }, { "start": 8069.76, "end": 8071.02, "probability": 0.9625 }, { "start": 8071.16, "end": 8071.95, "probability": 0.0891 }, { "start": 8072.7, "end": 8073.5, "probability": 0.0691 }, { "start": 8073.6, "end": 8077.16, "probability": 0.8532 }, { "start": 8077.34, "end": 8078.18, "probability": 0.8638 }, { "start": 8078.26, "end": 8078.98, "probability": 0.5646 }, { "start": 8079.82, "end": 8085.4, "probability": 0.996 }, { "start": 8085.48, "end": 8086.72, "probability": 0.3067 }, { "start": 8087.46, "end": 8089.7, "probability": 0.88 }, { "start": 8090.76, "end": 8097.62, "probability": 0.9843 }, { "start": 8098.7, "end": 8103.1, "probability": 0.6369 }, { "start": 8103.62, "end": 8109.88, "probability": 0.9954 }, { "start": 8109.88, "end": 8116.22, "probability": 0.9958 }, { "start": 8117.28, "end": 8118.58, "probability": 0.9775 }, { "start": 8120.58, "end": 8122.86, "probability": 0.9545 }, { "start": 8123.76, "end": 8125.24, "probability": 0.5184 }, { "start": 8126.2, "end": 8127.74, "probability": 0.7716 }, { "start": 8128.56, "end": 8135.0, "probability": 0.9993 }, { "start": 8135.48, "end": 8138.0, "probability": 0.7759 }, { "start": 8138.62, "end": 8140.22, "probability": 0.8415 }, { "start": 8140.52, "end": 8143.3, "probability": 0.9376 }, { "start": 8143.56, "end": 8145.74, "probability": 0.9883 }, { "start": 8147.1, "end": 8149.6, "probability": 0.0609 }, { "start": 8150.34, "end": 8154.5, "probability": 0.2259 }, { "start": 8155.7, "end": 8157.94, "probability": 0.8569 }, { "start": 8161.4, "end": 8162.6, "probability": 0.656 }, { "start": 8163.06, "end": 8164.24, "probability": 0.7716 }, { "start": 8165.88, "end": 8169.04, "probability": 0.9904 }, { "start": 8170.06, "end": 8170.56, "probability": 0.9395 }, { "start": 8172.94, "end": 8176.22, "probability": 0.7593 }, { "start": 8177.0, "end": 8179.86, "probability": 0.9897 }, { "start": 8180.24, "end": 8182.6, "probability": 0.8486 }, { "start": 8182.98, "end": 8184.28, "probability": 0.9092 }, { "start": 8185.28, "end": 8185.64, "probability": 0.6084 }, { "start": 8185.94, "end": 8187.28, "probability": 0.9741 }, { "start": 8188.28, "end": 8191.08, "probability": 0.8867 }, { "start": 8191.84, "end": 8192.86, "probability": 0.7399 }, { "start": 8192.94, "end": 8196.8, "probability": 0.9936 }, { "start": 8197.26, "end": 8200.8, "probability": 0.9001 }, { "start": 8202.5, "end": 8204.92, "probability": 0.9251 }, { "start": 8205.7, "end": 8206.2, "probability": 0.6559 }, { "start": 8207.1, "end": 8209.91, "probability": 0.9897 }, { "start": 8210.54, "end": 8212.76, "probability": 0.7723 }, { "start": 8212.84, "end": 8214.34, "probability": 0.8292 }, { "start": 8214.42, "end": 8214.7, "probability": 0.8375 }, { "start": 8215.38, "end": 8217.38, "probability": 0.7852 }, { "start": 8217.98, "end": 8219.2, "probability": 0.7912 }, { "start": 8219.3, "end": 8219.9, "probability": 0.6863 }, { "start": 8220.24, "end": 8224.0, "probability": 0.9915 }, { "start": 8224.14, "end": 8225.03, "probability": 0.9021 }, { "start": 8225.64, "end": 8228.8, "probability": 0.9806 }, { "start": 8228.88, "end": 8229.62, "probability": 0.8192 }, { "start": 8229.9, "end": 8230.86, "probability": 0.9298 }, { "start": 8231.28, "end": 8233.08, "probability": 0.6639 }, { "start": 8233.14, "end": 8236.0, "probability": 0.7703 }, { "start": 8236.02, "end": 8238.86, "probability": 0.7992 }, { "start": 8238.86, "end": 8239.08, "probability": 0.8149 }, { "start": 8239.6, "end": 8240.28, "probability": 0.9609 }, { "start": 8241.45, "end": 8242.05, "probability": 0.0164 }, { "start": 8243.72, "end": 8244.42, "probability": 0.8941 }, { "start": 8244.98, "end": 8246.04, "probability": 0.7064 }, { "start": 8247.02, "end": 8247.42, "probability": 0.9473 }, { "start": 8248.26, "end": 8249.29, "probability": 0.7505 }, { "start": 8250.24, "end": 8250.66, "probability": 0.9128 }, { "start": 8251.42, "end": 8252.32, "probability": 0.8591 }, { "start": 8253.48, "end": 8255.4, "probability": 0.9669 }, { "start": 8256.48, "end": 8256.92, "probability": 0.9893 }, { "start": 8257.9, "end": 8258.78, "probability": 0.6417 }, { "start": 8260.36, "end": 8261.14, "probability": 0.927 }, { "start": 8262.94, "end": 8264.0, "probability": 0.8352 }, { "start": 8264.74, "end": 8266.78, "probability": 0.7166 }, { "start": 8267.7, "end": 8268.1, "probability": 0.814 }, { "start": 8269.34, "end": 8269.98, "probability": 0.9628 }, { "start": 8271.1, "end": 8271.7, "probability": 0.8711 }, { "start": 8272.44, "end": 8273.24, "probability": 0.9463 }, { "start": 8277.12, "end": 8277.88, "probability": 0.7254 }, { "start": 8278.44, "end": 8279.32, "probability": 0.987 }, { "start": 8280.18, "end": 8282.58, "probability": 0.9683 }, { "start": 8283.8, "end": 8284.26, "probability": 0.9857 }, { "start": 8285.28, "end": 8286.18, "probability": 0.9809 }, { "start": 8287.12, "end": 8289.14, "probability": 0.9901 }, { "start": 8289.98, "end": 8290.4, "probability": 0.9308 }, { "start": 8291.18, "end": 8291.98, "probability": 0.7942 }, { "start": 8292.7, "end": 8293.04, "probability": 0.6099 }, { "start": 8293.86, "end": 8294.84, "probability": 0.6707 }, { "start": 8296.12, "end": 8296.8, "probability": 0.7839 }, { "start": 8298.1, "end": 8299.04, "probability": 0.8791 }, { "start": 8302.24, "end": 8303.0, "probability": 0.8296 }, { "start": 8304.12, "end": 8305.14, "probability": 0.918 }, { "start": 8307.24, "end": 8307.7, "probability": 0.9749 }, { "start": 8309.06, "end": 8309.86, "probability": 0.9578 }, { "start": 8311.7, "end": 8312.48, "probability": 0.9882 }, { "start": 8313.24, "end": 8313.96, "probability": 0.9825 }, { "start": 8314.9, "end": 8315.36, "probability": 0.9144 }, { "start": 8316.3, "end": 8317.42, "probability": 0.9901 }, { "start": 8319.2, "end": 8320.68, "probability": 0.9723 }, { "start": 8321.8, "end": 8322.56, "probability": 0.6509 }, { "start": 8323.9, "end": 8325.54, "probability": 0.7599 }, { "start": 8326.32, "end": 8326.98, "probability": 0.8349 }, { "start": 8327.92, "end": 8328.62, "probability": 0.9729 }, { "start": 8329.26, "end": 8330.42, "probability": 0.738 }, { "start": 8334.72, "end": 8335.64, "probability": 0.9858 }, { "start": 8336.18, "end": 8336.84, "probability": 0.9464 }, { "start": 8338.88, "end": 8339.26, "probability": 0.5781 }, { "start": 8340.42, "end": 8341.2, "probability": 0.9416 }, { "start": 8342.28, "end": 8343.08, "probability": 0.9905 }, { "start": 8344.04, "end": 8344.82, "probability": 0.9609 }, { "start": 8346.88, "end": 8347.58, "probability": 0.9924 }, { "start": 8348.54, "end": 8349.42, "probability": 0.8926 }, { "start": 8351.46, "end": 8352.4, "probability": 0.736 }, { "start": 8353.58, "end": 8354.6, "probability": 0.6021 }, { "start": 8355.26, "end": 8356.64, "probability": 0.7887 }, { "start": 8358.66, "end": 8358.98, "probability": 0.5408 }, { "start": 8360.02, "end": 8360.9, "probability": 0.8678 }, { "start": 8362.34, "end": 8362.78, "probability": 0.9412 }, { "start": 8363.62, "end": 8364.46, "probability": 0.7948 }, { "start": 8365.3, "end": 8365.78, "probability": 0.9419 }, { "start": 8366.72, "end": 8367.54, "probability": 0.8525 }, { "start": 8373.34, "end": 8374.22, "probability": 0.7629 }, { "start": 8375.4, "end": 8376.46, "probability": 0.9248 }, { "start": 8378.54, "end": 8379.02, "probability": 0.537 }, { "start": 8379.66, "end": 8380.66, "probability": 0.694 }, { "start": 8381.48, "end": 8381.98, "probability": 0.6969 }, { "start": 8382.78, "end": 8383.62, "probability": 0.8303 }, { "start": 8384.5, "end": 8384.84, "probability": 0.8044 }, { "start": 8385.88, "end": 8387.5, "probability": 0.8704 }, { "start": 8388.38, "end": 8388.78, "probability": 0.9546 }, { "start": 8389.7, "end": 8390.86, "probability": 0.9427 }, { "start": 8393.02, "end": 8395.7, "probability": 0.985 }, { "start": 8396.72, "end": 8397.2, "probability": 0.9839 }, { "start": 8398.04, "end": 8399.04, "probability": 0.9545 }, { "start": 8399.94, "end": 8400.42, "probability": 0.9912 }, { "start": 8401.26, "end": 8402.2, "probability": 0.416 }, { "start": 8403.98, "end": 8404.94, "probability": 0.9651 }, { "start": 8405.98, "end": 8406.48, "probability": 0.7896 }, { "start": 8409.04, "end": 8410.02, "probability": 0.9078 }, { "start": 8410.68, "end": 8412.14, "probability": 0.7936 }, { "start": 8413.44, "end": 8413.96, "probability": 0.9839 }, { "start": 8416.16, "end": 8417.32, "probability": 0.9896 }, { "start": 8417.98, "end": 8420.36, "probability": 0.7631 }, { "start": 8425.02, "end": 8425.94, "probability": 0.8954 }, { "start": 8427.06, "end": 8428.3, "probability": 0.5598 }, { "start": 8429.34, "end": 8429.84, "probability": 0.9686 }, { "start": 8430.96, "end": 8432.92, "probability": 0.7858 }, { "start": 8433.98, "end": 8435.0, "probability": 0.8652 }, { "start": 8435.82, "end": 8436.16, "probability": 0.7038 }, { "start": 8437.18, "end": 8438.08, "probability": 0.6486 }, { "start": 8439.14, "end": 8439.46, "probability": 0.8867 }, { "start": 8440.48, "end": 8441.3, "probability": 0.9084 }, { "start": 8442.18, "end": 8444.9, "probability": 0.6812 }, { "start": 8445.86, "end": 8446.3, "probability": 0.958 }, { "start": 8447.28, "end": 8448.6, "probability": 0.9426 }, { "start": 8449.86, "end": 8450.6, "probability": 0.9825 }, { "start": 8451.26, "end": 8451.98, "probability": 0.9576 }, { "start": 8453.86, "end": 8454.66, "probability": 0.9861 }, { "start": 8455.56, "end": 8456.4, "probability": 0.9458 }, { "start": 8457.54, "end": 8458.46, "probability": 0.8984 }, { "start": 8459.72, "end": 8461.1, "probability": 0.9346 }, { "start": 8461.92, "end": 8462.36, "probability": 0.9842 }, { "start": 8463.3, "end": 8464.22, "probability": 0.9284 }, { "start": 8465.4, "end": 8465.64, "probability": 0.5132 }, { "start": 8466.58, "end": 8467.36, "probability": 0.7753 }, { "start": 8468.74, "end": 8471.64, "probability": 0.9312 }, { "start": 8474.94, "end": 8478.84, "probability": 0.5148 }, { "start": 8479.68, "end": 8480.28, "probability": 0.8652 }, { "start": 8481.06, "end": 8481.72, "probability": 0.7248 }, { "start": 8483.0, "end": 8484.68, "probability": 0.7244 }, { "start": 8487.18, "end": 8488.22, "probability": 0.6094 }, { "start": 8489.48, "end": 8490.18, "probability": 0.9559 }, { "start": 8490.78, "end": 8491.52, "probability": 0.8169 }, { "start": 8493.3, "end": 8494.44, "probability": 0.9659 }, { "start": 8495.12, "end": 8496.38, "probability": 0.9603 }, { "start": 8497.78, "end": 8498.22, "probability": 0.8174 }, { "start": 8499.52, "end": 8500.4, "probability": 0.902 }, { "start": 8501.28, "end": 8501.62, "probability": 0.9619 }, { "start": 8502.64, "end": 8503.6, "probability": 0.5895 }, { "start": 8505.16, "end": 8505.68, "probability": 0.9552 }, { "start": 8506.96, "end": 8507.9, "probability": 0.9741 }, { "start": 8508.58, "end": 8509.0, "probability": 0.9761 }, { "start": 8509.74, "end": 8510.56, "probability": 0.9795 }, { "start": 8511.78, "end": 8512.24, "probability": 0.9904 }, { "start": 8513.34, "end": 8514.12, "probability": 0.9762 }, { "start": 8515.7, "end": 8516.48, "probability": 0.9772 }, { "start": 8517.74, "end": 8518.82, "probability": 0.8952 }, { "start": 8519.78, "end": 8520.26, "probability": 0.9907 }, { "start": 8521.78, "end": 8522.72, "probability": 0.8347 }, { "start": 8524.26, "end": 8524.78, "probability": 0.9902 }, { "start": 8525.82, "end": 8526.66, "probability": 0.8302 }, { "start": 8527.82, "end": 8528.58, "probability": 0.9908 }, { "start": 8529.56, "end": 8530.62, "probability": 0.7952 }, { "start": 8532.16, "end": 8533.08, "probability": 0.8895 }, { "start": 8534.2, "end": 8535.22, "probability": 0.6064 }, { "start": 8536.98, "end": 8537.44, "probability": 0.9635 }, { "start": 8538.54, "end": 8539.7, "probability": 0.8856 }, { "start": 8540.96, "end": 8541.8, "probability": 0.9818 }, { "start": 8542.34, "end": 8543.48, "probability": 0.9426 }, { "start": 8544.52, "end": 8544.92, "probability": 0.9297 }, { "start": 8546.08, "end": 8546.84, "probability": 0.9575 }, { "start": 8549.38, "end": 8553.12, "probability": 0.7352 }, { "start": 8554.48, "end": 8555.26, "probability": 0.8396 }, { "start": 8556.24, "end": 8556.62, "probability": 0.967 }, { "start": 8558.22, "end": 8559.34, "probability": 0.4263 }, { "start": 8560.06, "end": 8560.56, "probability": 0.9364 }, { "start": 8561.46, "end": 8562.36, "probability": 0.8858 }, { "start": 8563.56, "end": 8563.96, "probability": 0.979 }, { "start": 8564.8, "end": 8565.7, "probability": 0.9264 }, { "start": 8568.34, "end": 8568.78, "probability": 0.9727 }, { "start": 8570.38, "end": 8571.52, "probability": 0.918 }, { "start": 8576.24, "end": 8581.74, "probability": 0.6258 }, { "start": 8582.96, "end": 8583.34, "probability": 0.9476 }, { "start": 8584.4, "end": 8585.62, "probability": 0.6994 }, { "start": 8586.46, "end": 8588.38, "probability": 0.9697 }, { "start": 8591.44, "end": 8591.86, "probability": 0.8491 }, { "start": 8593.42, "end": 8594.18, "probability": 0.708 }, { "start": 8595.06, "end": 8595.86, "probability": 0.95 }, { "start": 8596.38, "end": 8597.34, "probability": 0.8146 }, { "start": 8598.96, "end": 8599.42, "probability": 0.9526 }, { "start": 8600.82, "end": 8601.8, "probability": 0.3751 }, { "start": 8602.84, "end": 8605.36, "probability": 0.8265 }, { "start": 8606.82, "end": 8607.18, "probability": 0.5489 }, { "start": 8609.2, "end": 8610.06, "probability": 0.5009 }, { "start": 8611.1, "end": 8613.36, "probability": 0.9583 }, { "start": 8614.62, "end": 8615.12, "probability": 0.9727 }, { "start": 8616.18, "end": 8617.0, "probability": 0.9366 }, { "start": 8618.2, "end": 8618.8, "probability": 0.9802 }, { "start": 8619.84, "end": 8620.68, "probability": 0.493 }, { "start": 8622.72, "end": 8623.24, "probability": 0.9907 }, { "start": 8626.06, "end": 8627.04, "probability": 0.7524 }, { "start": 8628.12, "end": 8628.84, "probability": 0.8103 }, { "start": 8629.7, "end": 8630.94, "probability": 0.9395 }, { "start": 8631.6, "end": 8632.08, "probability": 0.9813 }, { "start": 8633.02, "end": 8633.98, "probability": 0.8382 }, { "start": 8635.7, "end": 8636.52, "probability": 0.9872 }, { "start": 8637.48, "end": 8638.58, "probability": 0.9537 }, { "start": 8639.74, "end": 8640.22, "probability": 0.984 }, { "start": 8641.3, "end": 8642.22, "probability": 0.9186 }, { "start": 8644.4, "end": 8644.86, "probability": 0.9964 }, { "start": 8645.8, "end": 8646.74, "probability": 0.9404 }, { "start": 8647.42, "end": 8647.88, "probability": 0.9925 }, { "start": 8648.68, "end": 8649.56, "probability": 0.9761 }, { "start": 8652.66, "end": 8653.02, "probability": 0.7484 }, { "start": 8655.18, "end": 8655.98, "probability": 0.8712 }, { "start": 8657.24, "end": 8657.66, "probability": 0.788 }, { "start": 8658.58, "end": 8659.46, "probability": 0.7374 }, { "start": 8660.3, "end": 8660.74, "probability": 0.9282 }, { "start": 8661.68, "end": 8662.5, "probability": 0.9633 }, { "start": 8663.66, "end": 8665.78, "probability": 0.8939 }, { "start": 8673.58, "end": 8674.42, "probability": 0.6984 }, { "start": 8675.64, "end": 8676.58, "probability": 0.5977 }, { "start": 8678.54, "end": 8679.22, "probability": 0.8647 }, { "start": 8679.98, "end": 8680.82, "probability": 0.9298 }, { "start": 8681.86, "end": 8682.34, "probability": 0.9749 }, { "start": 8683.28, "end": 8684.46, "probability": 0.984 }, { "start": 8685.34, "end": 8685.82, "probability": 0.9964 }, { "start": 8686.76, "end": 8687.46, "probability": 0.9561 }, { "start": 8688.34, "end": 8688.78, "probability": 0.9847 }, { "start": 8689.88, "end": 8690.96, "probability": 0.8516 }, { "start": 8692.88, "end": 8693.84, "probability": 0.9843 }, { "start": 8694.96, "end": 8696.36, "probability": 0.8935 }, { "start": 8696.98, "end": 8697.52, "probability": 0.9924 }, { "start": 8698.72, "end": 8699.68, "probability": 0.7557 }, { "start": 8700.78, "end": 8701.64, "probability": 0.7918 }, { "start": 8702.48, "end": 8703.34, "probability": 0.5406 }, { "start": 8704.98, "end": 8707.64, "probability": 0.8062 }, { "start": 8709.22, "end": 8710.1, "probability": 0.7489 }, { "start": 8711.12, "end": 8711.42, "probability": 0.5446 }, { "start": 8712.38, "end": 8713.26, "probability": 0.3866 }, { "start": 8715.78, "end": 8718.02, "probability": 0.3989 }, { "start": 8719.0, "end": 8721.1, "probability": 0.0647 }, { "start": 8721.1, "end": 8721.98, "probability": 0.0969 }, { "start": 8721.98, "end": 8724.92, "probability": 0.1057 }, { "start": 8726.02, "end": 8728.02, "probability": 0.2347 }, { "start": 8748.82, "end": 8750.18, "probability": 0.3985 }, { "start": 8751.0, "end": 8751.74, "probability": 0.3373 }, { "start": 8756.06, "end": 8757.86, "probability": 0.6292 }, { "start": 8758.66, "end": 8759.9, "probability": 0.3041 }, { "start": 8760.74, "end": 8761.18, "probability": 0.5963 }, { "start": 8762.08, "end": 8764.04, "probability": 0.6185 }, { "start": 8767.04, "end": 8767.48, "probability": 0.3467 }, { "start": 8774.42, "end": 8776.58, "probability": 0.49 }, { "start": 8780.3, "end": 8781.06, "probability": 0.5888 }, { "start": 8782.74, "end": 8784.74, "probability": 0.756 }, { "start": 8785.86, "end": 8786.74, "probability": 0.8582 }, { "start": 8787.9, "end": 8788.82, "probability": 0.9449 }, { "start": 8790.18, "end": 8792.02, "probability": 0.8965 }, { "start": 8793.04, "end": 8793.36, "probability": 0.9868 }, { "start": 8795.44, "end": 8796.42, "probability": 0.9189 }, { "start": 8797.38, "end": 8798.12, "probability": 0.9333 }, { "start": 8798.7, "end": 8799.64, "probability": 0.9301 }, { "start": 8800.34, "end": 8802.12, "probability": 0.9873 }, { "start": 8803.14, "end": 8804.06, "probability": 0.742 }, { "start": 8805.06, "end": 8805.44, "probability": 0.9845 }, { "start": 8808.32, "end": 8809.34, "probability": 0.7403 }, { "start": 8812.26, "end": 8813.04, "probability": 0.8283 }, { "start": 8814.1, "end": 8815.08, "probability": 0.9709 }, { "start": 8818.12, "end": 8820.14, "probability": 0.9019 }, { "start": 8821.9, "end": 8822.34, "probability": 0.9777 }, { "start": 8825.96, "end": 8827.28, "probability": 0.4901 }, { "start": 8828.34, "end": 8828.76, "probability": 0.96 }, { "start": 8829.84, "end": 8832.1, "probability": 0.0467 }, { "start": 8833.1, "end": 8835.18, "probability": 0.7802 }, { "start": 8837.64, "end": 8840.1, "probability": 0.8813 }, { "start": 8843.24, "end": 8844.22, "probability": 0.9324 }, { "start": 8846.02, "end": 8846.94, "probability": 0.7567 }, { "start": 8847.86, "end": 8848.58, "probability": 0.9568 }, { "start": 8849.64, "end": 8850.56, "probability": 0.351 }, { "start": 8852.3, "end": 8854.92, "probability": 0.6316 }, { "start": 8855.8, "end": 8857.2, "probability": 0.6414 }, { "start": 8859.22, "end": 8860.6, "probability": 0.6494 }, { "start": 8862.34, "end": 8865.3, "probability": 0.8898 }, { "start": 8868.42, "end": 8869.7, "probability": 0.5157 }, { "start": 8871.0, "end": 8871.86, "probability": 0.9379 }, { "start": 8873.08, "end": 8873.56, "probability": 0.7695 }, { "start": 8875.98, "end": 8876.44, "probability": 0.6666 }, { "start": 8879.9, "end": 8881.28, "probability": 0.403 }, { "start": 8883.06, "end": 8885.02, "probability": 0.7846 }, { "start": 8887.5, "end": 8891.36, "probability": 0.8856 }, { "start": 8892.54, "end": 8895.02, "probability": 0.919 }, { "start": 8896.38, "end": 8897.04, "probability": 0.9873 }, { "start": 8897.82, "end": 8898.98, "probability": 0.8559 }, { "start": 8899.96, "end": 8902.36, "probability": 0.6037 }, { "start": 8903.46, "end": 8905.18, "probability": 0.9259 }, { "start": 8906.42, "end": 8907.18, "probability": 0.9258 }, { "start": 8908.28, "end": 8909.5, "probability": 0.4624 }, { "start": 8911.56, "end": 8912.22, "probability": 0.9701 }, { "start": 8914.3, "end": 8914.62, "probability": 0.9582 }, { "start": 8916.08, "end": 8918.24, "probability": 0.9696 }, { "start": 8919.2, "end": 8921.56, "probability": 0.9743 }, { "start": 8922.44, "end": 8924.28, "probability": 0.9283 }, { "start": 8925.28, "end": 8926.14, "probability": 0.7699 }, { "start": 8927.1, "end": 8928.2, "probability": 0.9071 }, { "start": 8929.66, "end": 8930.64, "probability": 0.981 }, { "start": 8931.16, "end": 8931.94, "probability": 0.6525 }, { "start": 8933.14, "end": 8938.6, "probability": 0.8067 }, { "start": 8943.06, "end": 8946.1, "probability": 0.4157 }, { "start": 8946.94, "end": 8947.82, "probability": 0.7443 }, { "start": 8949.42, "end": 8951.24, "probability": 0.6019 }, { "start": 8951.8, "end": 8952.86, "probability": 0.4672 }, { "start": 8953.32, "end": 8954.82, "probability": 0.4465 }, { "start": 8954.9, "end": 8955.64, "probability": 0.5845 }, { "start": 9050.51, "end": 9050.83, "probability": 0.495 }, { "start": 9051.31, "end": 9053.51, "probability": 0.6331 }, { "start": 9053.89, "end": 9054.85, "probability": 0.5593 }, { "start": 9055.27, "end": 9055.59, "probability": 0.9588 }, { "start": 9055.83, "end": 9057.41, "probability": 0.401 }, { "start": 9057.61, "end": 9059.79, "probability": 0.9775 }, { "start": 9060.41, "end": 9061.57, "probability": 0.8287 }, { "start": 9062.61, "end": 9063.25, "probability": 0.8382 }, { "start": 9064.05, "end": 9067.27, "probability": 0.7598 }, { "start": 9068.13, "end": 9070.73, "probability": 0.9095 }, { "start": 9085.98, "end": 9087.27, "probability": 0.8296 }, { "start": 9093.09, "end": 9095.09, "probability": 0.7008 }, { "start": 9097.09, "end": 9097.09, "probability": 0.437 }, { "start": 9097.17, "end": 9098.56, "probability": 0.6233 }, { "start": 9099.63, "end": 9102.15, "probability": 0.8943 }, { "start": 9103.33, "end": 9104.73, "probability": 0.8674 }, { "start": 9105.61, "end": 9106.59, "probability": 0.8056 }, { "start": 9107.59, "end": 9110.21, "probability": 0.9467 }, { "start": 9111.09, "end": 9112.25, "probability": 0.9099 }, { "start": 9112.97, "end": 9113.83, "probability": 0.8831 }, { "start": 9114.67, "end": 9115.51, "probability": 0.9752 }, { "start": 9116.09, "end": 9116.97, "probability": 0.9384 }, { "start": 9117.51, "end": 9120.15, "probability": 0.3644 }, { "start": 9136.69, "end": 9139.61, "probability": 0.9946 }, { "start": 9140.07, "end": 9140.87, "probability": 0.8229 }, { "start": 9141.35, "end": 9143.97, "probability": 0.9791 }, { "start": 9146.21, "end": 9147.47, "probability": 0.1559 }, { "start": 9149.03, "end": 9152.77, "probability": 0.0795 }, { "start": 9153.39, "end": 9154.73, "probability": 0.0791 }, { "start": 9155.68, "end": 9159.81, "probability": 0.0384 }, { "start": 9162.01, "end": 9169.75, "probability": 0.098 }, { "start": 9171.29, "end": 9173.85, "probability": 0.2036 }, { "start": 9174.11, "end": 9175.03, "probability": 0.0069 }, { "start": 9175.85, "end": 9176.45, "probability": 0.0738 }, { "start": 9184.41, "end": 9185.61, "probability": 0.0486 }, { "start": 9186.25, "end": 9188.75, "probability": 0.0381 }, { "start": 9188.75, "end": 9188.77, "probability": 0.0419 }, { "start": 9188.77, "end": 9190.67, "probability": 0.0857 }, { "start": 9190.67, "end": 9194.71, "probability": 0.0506 }, { "start": 9196.01, "end": 9198.91, "probability": 0.0279 }, { "start": 9199.59, "end": 9201.33, "probability": 0.0608 }, { "start": 9216.0, "end": 9216.0, "probability": 0.0 }, { "start": 9216.0, "end": 9216.0, "probability": 0.0 }, { "start": 9216.0, "end": 9216.0, "probability": 0.0 }, { "start": 9216.0, "end": 9216.0, "probability": 0.0 }, { "start": 9216.0, "end": 9216.0, "probability": 0.0 }, { "start": 9216.0, "end": 9216.0, "probability": 0.0 }, { "start": 9216.0, "end": 9216.0, "probability": 0.0 }, { "start": 9216.0, "end": 9216.0, "probability": 0.0 }, { "start": 9216.0, "end": 9216.0, "probability": 0.0 }, { "start": 9216.0, "end": 9216.0, "probability": 0.0 }, { "start": 9216.0, "end": 9216.0, "probability": 0.0 }, { "start": 9216.64, "end": 9216.64, "probability": 0.0933 }, { "start": 9216.64, "end": 9218.92, "probability": 0.8667 }, { "start": 9219.74, "end": 9220.3, "probability": 0.9637 }, { "start": 9220.82, "end": 9223.78, "probability": 0.9883 }, { "start": 9224.34, "end": 9225.56, "probability": 0.8932 }, { "start": 9228.02, "end": 9230.28, "probability": 0.6028 }, { "start": 9231.26, "end": 9232.02, "probability": 0.7842 }, { "start": 9232.8, "end": 9233.42, "probability": 0.7858 }, { "start": 9235.06, "end": 9237.5, "probability": 0.9543 }, { "start": 9238.86, "end": 9241.64, "probability": 0.8718 }, { "start": 9245.06, "end": 9246.2, "probability": 0.6957 }, { "start": 9246.44, "end": 9249.98, "probability": 0.9962 }, { "start": 9250.58, "end": 9254.46, "probability": 0.8813 }, { "start": 9255.78, "end": 9256.3, "probability": 0.918 }, { "start": 9257.2, "end": 9261.08, "probability": 0.9207 }, { "start": 9262.04, "end": 9264.74, "probability": 0.9955 }, { "start": 9266.2, "end": 9267.3, "probability": 0.6518 }, { "start": 9268.26, "end": 9269.24, "probability": 0.9259 }, { "start": 9270.38, "end": 9272.74, "probability": 0.9946 }, { "start": 9273.96, "end": 9275.42, "probability": 0.9483 }, { "start": 9277.64, "end": 9280.32, "probability": 0.8694 }, { "start": 9281.72, "end": 9283.8, "probability": 0.7481 }, { "start": 9285.1, "end": 9287.82, "probability": 0.7542 }, { "start": 9288.78, "end": 9291.02, "probability": 0.8718 }, { "start": 9291.92, "end": 9292.98, "probability": 0.8358 }, { "start": 9295.16, "end": 9297.76, "probability": 0.9626 }, { "start": 9298.9, "end": 9303.46, "probability": 0.996 }, { "start": 9304.08, "end": 9305.44, "probability": 0.9885 }, { "start": 9306.94, "end": 9308.28, "probability": 0.9507 }, { "start": 9309.38, "end": 9311.44, "probability": 0.9802 }, { "start": 9313.1, "end": 9314.1, "probability": 0.9973 }, { "start": 9314.64, "end": 9316.62, "probability": 0.9824 }, { "start": 9318.14, "end": 9320.36, "probability": 0.9949 }, { "start": 9321.26, "end": 9321.79, "probability": 0.9336 }, { "start": 9322.66, "end": 9323.12, "probability": 0.8623 }, { "start": 9325.34, "end": 9328.2, "probability": 0.991 }, { "start": 9328.82, "end": 9330.62, "probability": 0.9979 }, { "start": 9333.62, "end": 9334.3, "probability": 0.5377 }, { "start": 9334.92, "end": 9336.82, "probability": 0.9979 }, { "start": 9338.06, "end": 9339.96, "probability": 0.9373 }, { "start": 9341.2, "end": 9344.12, "probability": 0.9969 }, { "start": 9346.6, "end": 9347.5, "probability": 0.9995 }, { "start": 9348.06, "end": 9349.18, "probability": 0.9894 }, { "start": 9350.0, "end": 9351.34, "probability": 0.8274 }, { "start": 9351.74, "end": 9352.42, "probability": 0.5094 }, { "start": 9352.94, "end": 9355.4, "probability": 0.8805 }, { "start": 9356.26, "end": 9358.82, "probability": 0.9569 }, { "start": 9361.54, "end": 9363.22, "probability": 0.9567 }, { "start": 9364.32, "end": 9366.34, "probability": 0.9771 }, { "start": 9367.24, "end": 9369.04, "probability": 0.9896 }, { "start": 9369.66, "end": 9370.78, "probability": 0.9797 }, { "start": 9372.18, "end": 9373.26, "probability": 0.9333 }, { "start": 9374.12, "end": 9377.54, "probability": 0.9486 }, { "start": 9378.68, "end": 9381.56, "probability": 0.9729 }, { "start": 9382.44, "end": 9383.66, "probability": 0.9666 }, { "start": 9385.36, "end": 9390.06, "probability": 0.9982 }, { "start": 9390.68, "end": 9391.72, "probability": 0.98 }, { "start": 9394.2, "end": 9397.0, "probability": 0.9995 }, { "start": 9397.86, "end": 9399.04, "probability": 0.999 }, { "start": 9399.78, "end": 9400.9, "probability": 0.9989 }, { "start": 9401.64, "end": 9402.48, "probability": 0.989 }, { "start": 9403.3, "end": 9404.42, "probability": 0.9792 }, { "start": 9406.34, "end": 9407.93, "probability": 0.9993 }, { "start": 9408.52, "end": 9409.6, "probability": 0.9958 }, { "start": 9411.48, "end": 9412.9, "probability": 0.9786 }, { "start": 9413.26, "end": 9415.22, "probability": 0.9436 }, { "start": 9415.68, "end": 9420.34, "probability": 0.9979 }, { "start": 9421.24, "end": 9425.96, "probability": 0.9781 }, { "start": 9426.86, "end": 9430.58, "probability": 0.9576 }, { "start": 9432.82, "end": 9437.38, "probability": 0.9925 }, { "start": 9438.3, "end": 9443.4, "probability": 0.9877 }, { "start": 9443.96, "end": 9445.34, "probability": 0.9559 }, { "start": 9446.32, "end": 9448.9, "probability": 0.9815 }, { "start": 9450.8, "end": 9454.54, "probability": 0.9832 }, { "start": 9455.26, "end": 9457.52, "probability": 0.9754 }, { "start": 9458.54, "end": 9461.14, "probability": 0.9872 }, { "start": 9461.68, "end": 9466.48, "probability": 0.998 }, { "start": 9467.51, "end": 9469.06, "probability": 0.6012 }, { "start": 9471.16, "end": 9472.51, "probability": 0.9684 }, { "start": 9473.46, "end": 9474.12, "probability": 0.877 }, { "start": 9475.2, "end": 9477.78, "probability": 0.9858 }, { "start": 9479.9, "end": 9483.5, "probability": 0.9873 }, { "start": 9484.58, "end": 9485.68, "probability": 0.7047 }, { "start": 9486.56, "end": 9487.94, "probability": 0.999 }, { "start": 9488.4, "end": 9489.9, "probability": 0.9704 }, { "start": 9490.96, "end": 9493.12, "probability": 0.9976 }, { "start": 9494.36, "end": 9495.58, "probability": 0.8239 }, { "start": 9496.2, "end": 9498.86, "probability": 0.8523 }, { "start": 9499.92, "end": 9502.36, "probability": 0.9644 }, { "start": 9502.86, "end": 9505.76, "probability": 0.9307 }, { "start": 9506.76, "end": 9507.1, "probability": 0.645 }, { "start": 9508.36, "end": 9511.82, "probability": 0.9977 }, { "start": 9511.82, "end": 9515.47, "probability": 0.9944 }, { "start": 9516.34, "end": 9518.64, "probability": 0.9901 }, { "start": 9519.1, "end": 9520.04, "probability": 0.9236 }, { "start": 9520.4, "end": 9521.54, "probability": 0.9834 }, { "start": 9522.04, "end": 9522.98, "probability": 0.9253 }, { "start": 9523.8, "end": 9525.22, "probability": 0.979 }, { "start": 9525.68, "end": 9527.5, "probability": 0.9876 }, { "start": 9528.22, "end": 9528.8, "probability": 0.5907 }, { "start": 9529.46, "end": 9531.42, "probability": 0.9706 }, { "start": 9532.28, "end": 9533.3, "probability": 0.9595 }, { "start": 9535.4, "end": 9536.74, "probability": 0.9397 }, { "start": 9537.94, "end": 9539.46, "probability": 0.8385 }, { "start": 9539.96, "end": 9541.78, "probability": 0.9536 }, { "start": 9543.04, "end": 9544.38, "probability": 0.9467 }, { "start": 9544.96, "end": 9548.46, "probability": 0.9587 }, { "start": 9548.62, "end": 9549.24, "probability": 0.7173 }, { "start": 9549.82, "end": 9551.88, "probability": 0.7952 }, { "start": 9553.54, "end": 9556.08, "probability": 0.9087 }, { "start": 9556.56, "end": 9557.48, "probability": 0.9235 }, { "start": 9558.18, "end": 9561.94, "probability": 0.9619 }, { "start": 9562.4, "end": 9563.9, "probability": 0.8177 }, { "start": 9564.32, "end": 9565.2, "probability": 0.924 }, { "start": 9565.66, "end": 9567.12, "probability": 0.9767 }, { "start": 9567.96, "end": 9568.5, "probability": 0.9862 }, { "start": 9569.14, "end": 9569.72, "probability": 0.7083 }, { "start": 9571.86, "end": 9575.34, "probability": 0.9936 }, { "start": 9576.94, "end": 9578.45, "probability": 0.9966 }, { "start": 9579.42, "end": 9581.44, "probability": 0.957 }, { "start": 9584.34, "end": 9584.92, "probability": 0.6703 }, { "start": 9585.82, "end": 9589.6, "probability": 0.9809 }, { "start": 9590.7, "end": 9592.42, "probability": 0.997 }, { "start": 9593.48, "end": 9595.58, "probability": 0.9858 }, { "start": 9597.42, "end": 9597.88, "probability": 0.967 }, { "start": 9598.36, "end": 9599.38, "probability": 0.9248 }, { "start": 9599.56, "end": 9601.96, "probability": 0.948 }, { "start": 9602.52, "end": 9603.64, "probability": 0.8654 }, { "start": 9604.44, "end": 9606.12, "probability": 0.9835 }, { "start": 9607.22, "end": 9610.68, "probability": 0.87 }, { "start": 9611.5, "end": 9612.4, "probability": 0.9927 }, { "start": 9612.72, "end": 9613.5, "probability": 0.935 }, { "start": 9613.52, "end": 9614.4, "probability": 0.8962 }, { "start": 9614.86, "end": 9616.4, "probability": 0.98 }, { "start": 9617.38, "end": 9619.94, "probability": 0.9801 }, { "start": 9620.62, "end": 9621.76, "probability": 0.5343 }, { "start": 9622.62, "end": 9624.68, "probability": 0.976 }, { "start": 9625.32, "end": 9626.14, "probability": 0.8765 }, { "start": 9626.92, "end": 9629.22, "probability": 0.9731 }, { "start": 9631.18, "end": 9633.5, "probability": 0.9489 }, { "start": 9634.1, "end": 9638.48, "probability": 0.9795 }, { "start": 9638.6, "end": 9639.42, "probability": 0.8861 }, { "start": 9639.92, "end": 9640.3, "probability": 0.9565 }, { "start": 9641.68, "end": 9642.92, "probability": 0.9616 }, { "start": 9644.04, "end": 9644.78, "probability": 0.9526 }, { "start": 9644.88, "end": 9647.49, "probability": 0.9826 }, { "start": 9648.02, "end": 9650.12, "probability": 0.9913 }, { "start": 9650.84, "end": 9653.76, "probability": 0.9111 }, { "start": 9654.28, "end": 9654.92, "probability": 0.7729 }, { "start": 9655.68, "end": 9657.72, "probability": 0.8187 }, { "start": 9658.0, "end": 9658.42, "probability": 0.6863 }, { "start": 9658.7, "end": 9659.97, "probability": 0.9609 }, { "start": 9660.24, "end": 9662.84, "probability": 0.9268 }, { "start": 9675.02, "end": 9677.1, "probability": 0.6807 }, { "start": 9677.2, "end": 9678.62, "probability": 0.5833 }, { "start": 9681.72, "end": 9683.58, "probability": 0.896 }, { "start": 9684.42, "end": 9684.94, "probability": 0.2897 }, { "start": 9685.2, "end": 9685.98, "probability": 0.4696 }, { "start": 9686.06, "end": 9687.08, "probability": 0.696 }, { "start": 9687.42, "end": 9690.42, "probability": 0.9694 }, { "start": 9691.54, "end": 9693.2, "probability": 0.6483 }, { "start": 9693.74, "end": 9696.5, "probability": 0.9946 }, { "start": 9697.44, "end": 9700.0, "probability": 0.8809 }, { "start": 9700.46, "end": 9702.56, "probability": 0.9776 }, { "start": 9704.76, "end": 9709.65, "probability": 0.9768 }, { "start": 9710.4, "end": 9713.06, "probability": 0.9971 }, { "start": 9715.36, "end": 9718.22, "probability": 0.9694 }, { "start": 9719.7, "end": 9721.56, "probability": 0.9685 }, { "start": 9723.68, "end": 9730.84, "probability": 0.9953 }, { "start": 9730.98, "end": 9731.14, "probability": 0.6451 }, { "start": 9731.24, "end": 9732.34, "probability": 0.844 }, { "start": 9734.68, "end": 9738.58, "probability": 0.5162 }, { "start": 9738.92, "end": 9740.6, "probability": 0.7338 }, { "start": 9740.86, "end": 9741.9, "probability": 0.6773 }, { "start": 9742.22, "end": 9744.46, "probability": 0.1874 }, { "start": 9745.76, "end": 9748.92, "probability": 0.9934 }, { "start": 9749.68, "end": 9750.66, "probability": 0.5897 }, { "start": 9751.7, "end": 9753.11, "probability": 0.9678 }, { "start": 9754.06, "end": 9757.8, "probability": 0.9609 }, { "start": 9757.9, "end": 9761.84, "probability": 0.9406 }, { "start": 9763.04, "end": 9766.8, "probability": 0.9734 }, { "start": 9767.14, "end": 9769.32, "probability": 0.9555 }, { "start": 9769.44, "end": 9773.1, "probability": 0.9984 }, { "start": 9773.84, "end": 9778.32, "probability": 0.9874 }, { "start": 9778.54, "end": 9780.56, "probability": 0.9642 }, { "start": 9781.98, "end": 9787.92, "probability": 0.5016 }, { "start": 9787.92, "end": 9790.48, "probability": 0.981 }, { "start": 9790.72, "end": 9792.72, "probability": 0.8613 }, { "start": 9793.44, "end": 9794.44, "probability": 0.9881 }, { "start": 9794.56, "end": 9795.74, "probability": 0.991 }, { "start": 9796.96, "end": 9803.3, "probability": 0.971 }, { "start": 9803.36, "end": 9806.02, "probability": 0.9808 }, { "start": 9807.2, "end": 9808.14, "probability": 0.8499 }, { "start": 9809.02, "end": 9810.38, "probability": 0.5632 }, { "start": 9811.92, "end": 9812.94, "probability": 0.8798 }, { "start": 9813.04, "end": 9813.76, "probability": 0.8292 }, { "start": 9813.84, "end": 9814.1, "probability": 0.8235 }, { "start": 9814.22, "end": 9815.24, "probability": 0.846 }, { "start": 9815.6, "end": 9817.94, "probability": 0.8024 }, { "start": 9818.02, "end": 9821.94, "probability": 0.9442 }, { "start": 9821.94, "end": 9824.83, "probability": 0.9939 }, { "start": 9825.1, "end": 9828.1, "probability": 0.9576 }, { "start": 9834.08, "end": 9834.9, "probability": 0.5288 }, { "start": 9835.0, "end": 9835.68, "probability": 0.7226 }, { "start": 9835.7, "end": 9837.76, "probability": 0.9226 }, { "start": 9838.34, "end": 9841.78, "probability": 0.6243 }, { "start": 9843.02, "end": 9843.86, "probability": 0.5233 }, { "start": 9844.1, "end": 9844.76, "probability": 0.0799 }, { "start": 9846.66, "end": 9848.3, "probability": 0.2903 }, { "start": 9849.16, "end": 9850.46, "probability": 0.0782 }, { "start": 9850.46, "end": 9851.4, "probability": 0.2066 }, { "start": 9854.12, "end": 9854.26, "probability": 0.108 }, { "start": 9854.26, "end": 9855.14, "probability": 0.0163 }, { "start": 9857.96, "end": 9859.0, "probability": 0.113 }, { "start": 9859.24, "end": 9861.82, "probability": 0.7914 }, { "start": 9867.64, "end": 9871.18, "probability": 0.7698 }, { "start": 9872.02, "end": 9872.48, "probability": 0.7905 }, { "start": 9873.7, "end": 9874.76, "probability": 0.7221 }, { "start": 9875.08, "end": 9875.91, "probability": 0.6555 }, { "start": 9876.62, "end": 9877.88, "probability": 0.9437 }, { "start": 9877.94, "end": 9879.3, "probability": 0.9067 }, { "start": 9879.74, "end": 9884.08, "probability": 0.9893 }, { "start": 9884.58, "end": 9886.96, "probability": 0.9912 }, { "start": 9890.5, "end": 9891.1, "probability": 0.472 }, { "start": 9891.1, "end": 9893.06, "probability": 0.8284 }, { "start": 9893.2, "end": 9897.36, "probability": 0.903 }, { "start": 9899.16, "end": 9901.22, "probability": 0.8994 }, { "start": 9901.26, "end": 9902.64, "probability": 0.7188 }, { "start": 9903.24, "end": 9904.9, "probability": 0.9935 }, { "start": 9905.3, "end": 9905.34, "probability": 0.0383 }, { "start": 9905.34, "end": 9908.36, "probability": 0.8424 }, { "start": 9908.5, "end": 9912.22, "probability": 0.9957 }, { "start": 9912.26, "end": 9912.54, "probability": 0.8039 }, { "start": 9925.6, "end": 9927.0, "probability": 0.8515 }, { "start": 9928.7, "end": 9930.36, "probability": 0.9424 }, { "start": 9932.38, "end": 9933.18, "probability": 0.8809 }, { "start": 9935.18, "end": 9936.14, "probability": 0.9393 }, { "start": 9937.48, "end": 9940.74, "probability": 0.9912 }, { "start": 9941.86, "end": 9943.02, "probability": 0.9041 }, { "start": 9945.0, "end": 9947.1, "probability": 0.6806 }, { "start": 9949.64, "end": 9953.82, "probability": 0.9795 }, { "start": 9954.38, "end": 9955.52, "probability": 0.8569 }, { "start": 9956.58, "end": 9959.76, "probability": 0.9849 }, { "start": 9961.14, "end": 9962.36, "probability": 0.9996 }, { "start": 9962.94, "end": 9964.48, "probability": 0.9977 }, { "start": 9965.7, "end": 9967.14, "probability": 0.9961 }, { "start": 9967.94, "end": 9971.06, "probability": 0.9854 }, { "start": 9972.2, "end": 9973.5, "probability": 0.9307 }, { "start": 9974.98, "end": 9983.66, "probability": 0.9819 }, { "start": 9984.24, "end": 9986.18, "probability": 0.9658 }, { "start": 9987.52, "end": 9992.4, "probability": 0.9852 }, { "start": 9994.18, "end": 10001.28, "probability": 0.9004 }, { "start": 10001.78, "end": 10002.58, "probability": 0.8737 }, { "start": 10003.14, "end": 10005.64, "probability": 0.9975 }, { "start": 10006.36, "end": 10007.84, "probability": 0.9985 }, { "start": 10009.58, "end": 10012.08, "probability": 0.7489 }, { "start": 10013.04, "end": 10018.58, "probability": 0.9092 }, { "start": 10019.82, "end": 10022.28, "probability": 0.8682 }, { "start": 10022.9, "end": 10024.82, "probability": 0.9903 }, { "start": 10024.82, "end": 10029.4, "probability": 0.988 }, { "start": 10030.24, "end": 10030.66, "probability": 0.4918 }, { "start": 10032.24, "end": 10035.0, "probability": 0.9935 }, { "start": 10036.1, "end": 10038.46, "probability": 0.9247 }, { "start": 10039.28, "end": 10041.22, "probability": 0.9623 }, { "start": 10042.88, "end": 10046.3, "probability": 0.8292 }, { "start": 10047.08, "end": 10048.36, "probability": 0.7882 }, { "start": 10049.34, "end": 10050.2, "probability": 0.7657 }, { "start": 10051.1, "end": 10056.38, "probability": 0.9937 }, { "start": 10056.38, "end": 10061.56, "probability": 0.9946 }, { "start": 10062.44, "end": 10064.8, "probability": 0.99 }, { "start": 10066.18, "end": 10070.44, "probability": 0.9657 }, { "start": 10070.62, "end": 10072.0, "probability": 0.5278 }, { "start": 10072.0, "end": 10073.67, "probability": 0.501 }, { "start": 10074.6, "end": 10075.3, "probability": 0.7763 }, { "start": 10076.36, "end": 10078.31, "probability": 0.7865 }, { "start": 10079.48, "end": 10084.16, "probability": 0.8833 }, { "start": 10084.7, "end": 10086.66, "probability": 0.8826 }, { "start": 10087.18, "end": 10089.36, "probability": 0.8412 }, { "start": 10090.8, "end": 10094.84, "probability": 0.9967 }, { "start": 10094.84, "end": 10097.38, "probability": 0.9957 }, { "start": 10098.7, "end": 10101.74, "probability": 0.9698 }, { "start": 10103.5, "end": 10106.15, "probability": 0.9818 }, { "start": 10107.14, "end": 10108.0, "probability": 0.9795 }, { "start": 10108.04, "end": 10109.94, "probability": 0.8546 }, { "start": 10110.72, "end": 10113.75, "probability": 0.9978 }, { "start": 10114.96, "end": 10115.82, "probability": 0.7906 }, { "start": 10116.48, "end": 10117.78, "probability": 0.9663 }, { "start": 10117.86, "end": 10121.06, "probability": 0.7169 }, { "start": 10121.62, "end": 10125.14, "probability": 0.7715 }, { "start": 10125.7, "end": 10128.34, "probability": 0.9958 }, { "start": 10129.54, "end": 10131.83, "probability": 0.9135 }, { "start": 10132.62, "end": 10139.66, "probability": 0.9899 }, { "start": 10140.44, "end": 10143.12, "probability": 0.9958 }, { "start": 10143.54, "end": 10144.44, "probability": 0.9015 }, { "start": 10145.14, "end": 10148.22, "probability": 0.9919 }, { "start": 10149.52, "end": 10152.44, "probability": 0.9971 }, { "start": 10153.84, "end": 10158.32, "probability": 0.9491 }, { "start": 10158.36, "end": 10159.12, "probability": 0.574 }, { "start": 10159.54, "end": 10160.6, "probability": 0.7517 }, { "start": 10161.66, "end": 10164.15, "probability": 0.9635 }, { "start": 10164.96, "end": 10166.72, "probability": 0.9037 }, { "start": 10167.46, "end": 10168.77, "probability": 0.9863 }, { "start": 10170.48, "end": 10172.66, "probability": 0.9917 }, { "start": 10173.8, "end": 10174.68, "probability": 0.8466 }, { "start": 10176.04, "end": 10181.7, "probability": 0.9746 }, { "start": 10181.76, "end": 10183.96, "probability": 0.9978 }, { "start": 10184.04, "end": 10184.82, "probability": 0.9414 }, { "start": 10186.46, "end": 10189.92, "probability": 0.9131 }, { "start": 10190.46, "end": 10192.7, "probability": 0.9357 }, { "start": 10194.0, "end": 10195.88, "probability": 0.6686 }, { "start": 10196.44, "end": 10198.32, "probability": 0.9935 }, { "start": 10199.98, "end": 10202.86, "probability": 0.9657 }, { "start": 10203.72, "end": 10206.84, "probability": 0.9875 }, { "start": 10207.52, "end": 10208.5, "probability": 0.7159 }, { "start": 10209.68, "end": 10212.7, "probability": 0.9946 }, { "start": 10214.04, "end": 10214.93, "probability": 0.7412 }, { "start": 10217.0, "end": 10217.94, "probability": 0.4568 }, { "start": 10219.18, "end": 10222.84, "probability": 0.61 }, { "start": 10223.6, "end": 10227.2, "probability": 0.9839 }, { "start": 10228.2, "end": 10231.92, "probability": 0.9717 }, { "start": 10233.04, "end": 10233.8, "probability": 0.2607 }, { "start": 10234.72, "end": 10240.1, "probability": 0.8965 }, { "start": 10241.06, "end": 10245.82, "probability": 0.987 }, { "start": 10246.5, "end": 10247.78, "probability": 0.9933 }, { "start": 10249.08, "end": 10254.6, "probability": 0.978 }, { "start": 10254.7, "end": 10259.5, "probability": 0.9386 }, { "start": 10259.96, "end": 10260.22, "probability": 0.8605 }, { "start": 10260.3, "end": 10261.31, "probability": 0.9979 }, { "start": 10262.3, "end": 10264.38, "probability": 0.9899 }, { "start": 10265.48, "end": 10266.24, "probability": 0.9889 }, { "start": 10266.3, "end": 10267.36, "probability": 0.8404 }, { "start": 10267.54, "end": 10268.54, "probability": 0.6187 }, { "start": 10270.18, "end": 10271.38, "probability": 0.9384 }, { "start": 10272.32, "end": 10273.7, "probability": 0.9761 }, { "start": 10273.92, "end": 10274.76, "probability": 0.7501 }, { "start": 10275.48, "end": 10276.56, "probability": 0.9268 }, { "start": 10277.6, "end": 10279.4, "probability": 0.9946 }, { "start": 10280.08, "end": 10284.36, "probability": 0.9983 }, { "start": 10285.4, "end": 10286.36, "probability": 0.9989 }, { "start": 10287.28, "end": 10289.9, "probability": 0.9871 }, { "start": 10290.4, "end": 10291.83, "probability": 0.9226 }, { "start": 10292.7, "end": 10294.64, "probability": 0.9917 }, { "start": 10294.76, "end": 10295.46, "probability": 0.7181 }, { "start": 10295.6, "end": 10295.8, "probability": 0.6398 }, { "start": 10295.88, "end": 10296.92, "probability": 0.9915 }, { "start": 10297.44, "end": 10302.54, "probability": 0.8778 }, { "start": 10303.46, "end": 10303.88, "probability": 0.8117 }, { "start": 10304.46, "end": 10305.26, "probability": 0.878 }, { "start": 10306.36, "end": 10307.62, "probability": 0.9224 }, { "start": 10309.42, "end": 10310.9, "probability": 0.9561 }, { "start": 10311.42, "end": 10312.5, "probability": 0.8838 }, { "start": 10313.34, "end": 10317.86, "probability": 0.9896 }, { "start": 10318.44, "end": 10319.28, "probability": 0.3679 }, { "start": 10320.56, "end": 10321.32, "probability": 0.9049 }, { "start": 10323.36, "end": 10325.76, "probability": 0.5414 }, { "start": 10327.3, "end": 10329.04, "probability": 0.9937 }, { "start": 10329.92, "end": 10333.4, "probability": 0.6784 }, { "start": 10334.2, "end": 10335.32, "probability": 0.6403 }, { "start": 10336.34, "end": 10337.2, "probability": 0.7964 }, { "start": 10337.78, "end": 10338.86, "probability": 0.9487 }, { "start": 10339.4, "end": 10341.7, "probability": 0.6904 }, { "start": 10342.64, "end": 10345.36, "probability": 0.992 }, { "start": 10346.1, "end": 10348.46, "probability": 0.966 }, { "start": 10349.08, "end": 10352.52, "probability": 0.9938 }, { "start": 10352.9, "end": 10355.66, "probability": 0.9633 }, { "start": 10356.34, "end": 10356.7, "probability": 0.9386 }, { "start": 10357.56, "end": 10358.1, "probability": 0.985 }, { "start": 10359.16, "end": 10366.28, "probability": 0.9891 }, { "start": 10367.04, "end": 10369.46, "probability": 0.9916 }, { "start": 10369.96, "end": 10370.52, "probability": 0.9772 }, { "start": 10370.68, "end": 10371.54, "probability": 0.9471 }, { "start": 10371.86, "end": 10372.84, "probability": 0.9938 }, { "start": 10373.54, "end": 10378.54, "probability": 0.9616 }, { "start": 10379.94, "end": 10381.74, "probability": 0.9135 }, { "start": 10381.86, "end": 10384.16, "probability": 0.9514 }, { "start": 10384.72, "end": 10387.06, "probability": 0.9877 }, { "start": 10387.62, "end": 10391.04, "probability": 0.9966 }, { "start": 10391.04, "end": 10394.58, "probability": 0.9974 }, { "start": 10395.26, "end": 10395.92, "probability": 0.895 }, { "start": 10396.48, "end": 10399.14, "probability": 0.9982 }, { "start": 10399.66, "end": 10401.58, "probability": 0.9448 }, { "start": 10401.88, "end": 10402.88, "probability": 0.5075 }, { "start": 10403.02, "end": 10403.54, "probability": 0.7656 }, { "start": 10404.12, "end": 10406.98, "probability": 0.8914 }, { "start": 10407.62, "end": 10410.82, "probability": 0.9958 }, { "start": 10410.82, "end": 10413.58, "probability": 0.9993 }, { "start": 10414.46, "end": 10416.74, "probability": 0.9956 }, { "start": 10417.26, "end": 10418.92, "probability": 0.973 }, { "start": 10419.56, "end": 10420.52, "probability": 0.9921 }, { "start": 10421.16, "end": 10421.88, "probability": 0.8161 }, { "start": 10421.98, "end": 10422.56, "probability": 0.7283 }, { "start": 10422.66, "end": 10424.52, "probability": 0.8806 }, { "start": 10424.98, "end": 10428.56, "probability": 0.9459 }, { "start": 10428.94, "end": 10429.48, "probability": 0.9792 }, { "start": 10429.54, "end": 10430.12, "probability": 0.9863 }, { "start": 10430.38, "end": 10432.56, "probability": 0.9865 }, { "start": 10433.56, "end": 10434.26, "probability": 0.9673 }, { "start": 10434.3, "end": 10435.08, "probability": 0.9869 }, { "start": 10435.44, "end": 10438.7, "probability": 0.9928 }, { "start": 10439.54, "end": 10442.62, "probability": 0.9225 }, { "start": 10443.18, "end": 10444.36, "probability": 0.9557 }, { "start": 10445.62, "end": 10448.92, "probability": 0.9128 }, { "start": 10449.68, "end": 10450.16, "probability": 0.9288 }, { "start": 10450.22, "end": 10451.8, "probability": 0.9845 }, { "start": 10452.34, "end": 10455.12, "probability": 0.0751 }, { "start": 10455.18, "end": 10456.26, "probability": 0.8615 }, { "start": 10456.88, "end": 10460.24, "probability": 0.9055 }, { "start": 10460.88, "end": 10465.86, "probability": 0.9976 }, { "start": 10466.8, "end": 10467.31, "probability": 0.9939 }, { "start": 10467.68, "end": 10468.06, "probability": 0.8359 }, { "start": 10469.0, "end": 10471.46, "probability": 0.8104 }, { "start": 10473.3, "end": 10477.18, "probability": 0.9991 }, { "start": 10477.92, "end": 10479.8, "probability": 0.9526 }, { "start": 10480.62, "end": 10481.72, "probability": 0.7738 }, { "start": 10482.42, "end": 10483.8, "probability": 0.9838 }, { "start": 10484.34, "end": 10486.28, "probability": 0.6866 }, { "start": 10486.9, "end": 10487.18, "probability": 0.3772 }, { "start": 10487.28, "end": 10491.71, "probability": 0.9585 }, { "start": 10491.9, "end": 10493.44, "probability": 0.9642 }, { "start": 10494.12, "end": 10496.54, "probability": 0.9755 }, { "start": 10497.68, "end": 10501.14, "probability": 0.9927 }, { "start": 10501.98, "end": 10503.02, "probability": 0.2724 }, { "start": 10503.12, "end": 10504.25, "probability": 0.762 }, { "start": 10504.62, "end": 10505.18, "probability": 0.4165 }, { "start": 10505.34, "end": 10505.69, "probability": 0.0065 }, { "start": 10506.7, "end": 10509.66, "probability": 0.9985 }, { "start": 10510.52, "end": 10512.86, "probability": 0.9584 }, { "start": 10513.72, "end": 10516.92, "probability": 0.9541 }, { "start": 10517.5, "end": 10519.9, "probability": 0.8775 }, { "start": 10520.84, "end": 10523.98, "probability": 0.9541 }, { "start": 10524.86, "end": 10526.74, "probability": 0.6097 }, { "start": 10527.42, "end": 10529.4, "probability": 0.9541 }, { "start": 10529.84, "end": 10533.32, "probability": 0.9912 }, { "start": 10533.74, "end": 10535.84, "probability": 0.5901 }, { "start": 10536.26, "end": 10536.96, "probability": 0.9785 }, { "start": 10537.48, "end": 10538.6, "probability": 0.924 }, { "start": 10539.28, "end": 10544.48, "probability": 0.9852 }, { "start": 10544.92, "end": 10545.74, "probability": 0.8512 }, { "start": 10545.86, "end": 10547.26, "probability": 0.9814 }, { "start": 10547.84, "end": 10550.63, "probability": 0.9915 }, { "start": 10551.24, "end": 10552.82, "probability": 0.9841 }, { "start": 10553.02, "end": 10556.76, "probability": 0.732 }, { "start": 10556.86, "end": 10557.56, "probability": 0.9397 }, { "start": 10558.32, "end": 10560.39, "probability": 0.7014 }, { "start": 10561.08, "end": 10561.26, "probability": 0.937 }, { "start": 10561.28, "end": 10562.76, "probability": 0.9761 }, { "start": 10562.86, "end": 10567.22, "probability": 0.9387 }, { "start": 10568.24, "end": 10568.24, "probability": 0.5362 }, { "start": 10568.56, "end": 10569.16, "probability": 0.4846 }, { "start": 10569.88, "end": 10572.32, "probability": 0.924 }, { "start": 10572.88, "end": 10574.1, "probability": 0.9803 }, { "start": 10575.0, "end": 10575.66, "probability": 0.4358 }, { "start": 10576.24, "end": 10578.66, "probability": 0.899 }, { "start": 10579.48, "end": 10582.02, "probability": 0.991 }, { "start": 10582.72, "end": 10585.42, "probability": 0.9966 }, { "start": 10586.44, "end": 10589.44, "probability": 0.9474 }, { "start": 10590.02, "end": 10591.18, "probability": 0.8549 }, { "start": 10591.9, "end": 10596.4, "probability": 0.9902 }, { "start": 10596.52, "end": 10597.2, "probability": 0.6416 }, { "start": 10598.46, "end": 10599.3, "probability": 0.6957 }, { "start": 10600.3, "end": 10600.95, "probability": 0.9081 }, { "start": 10601.8, "end": 10603.24, "probability": 0.9364 }, { "start": 10603.8, "end": 10605.1, "probability": 0.9984 }, { "start": 10605.68, "end": 10606.86, "probability": 0.9976 }, { "start": 10606.96, "end": 10607.38, "probability": 0.8932 }, { "start": 10607.5, "end": 10609.98, "probability": 0.8279 }, { "start": 10610.12, "end": 10614.46, "probability": 0.8245 }, { "start": 10636.08, "end": 10637.24, "probability": 0.5924 }, { "start": 10637.5, "end": 10639.62, "probability": 0.837 }, { "start": 10641.66, "end": 10642.18, "probability": 0.7363 }, { "start": 10642.36, "end": 10644.26, "probability": 0.9484 }, { "start": 10644.56, "end": 10645.34, "probability": 0.7591 }, { "start": 10645.38, "end": 10649.22, "probability": 0.9934 }, { "start": 10649.76, "end": 10651.5, "probability": 0.9979 }, { "start": 10652.16, "end": 10655.56, "probability": 0.6462 }, { "start": 10655.56, "end": 10659.66, "probability": 0.8501 }, { "start": 10659.88, "end": 10661.44, "probability": 0.8442 }, { "start": 10661.5, "end": 10665.34, "probability": 0.9866 }, { "start": 10665.38, "end": 10667.64, "probability": 0.9847 }, { "start": 10668.26, "end": 10669.24, "probability": 0.6659 }, { "start": 10669.92, "end": 10674.78, "probability": 0.854 }, { "start": 10674.78, "end": 10678.0, "probability": 0.9478 }, { "start": 10678.72, "end": 10684.12, "probability": 0.9881 }, { "start": 10684.28, "end": 10688.98, "probability": 0.95 }, { "start": 10690.38, "end": 10692.42, "probability": 0.4886 }, { "start": 10692.96, "end": 10695.02, "probability": 0.6162 }, { "start": 10695.8, "end": 10697.12, "probability": 0.7547 }, { "start": 10697.22, "end": 10698.26, "probability": 0.7515 }, { "start": 10698.3, "end": 10701.86, "probability": 0.9093 }, { "start": 10702.4, "end": 10705.66, "probability": 0.9358 }, { "start": 10705.72, "end": 10709.96, "probability": 0.9988 }, { "start": 10710.12, "end": 10713.96, "probability": 0.7769 }, { "start": 10714.64, "end": 10718.88, "probability": 0.9954 }, { "start": 10718.98, "end": 10722.98, "probability": 0.8012 }, { "start": 10723.18, "end": 10724.9, "probability": 0.8206 }, { "start": 10725.64, "end": 10726.32, "probability": 0.7527 }, { "start": 10726.42, "end": 10728.5, "probability": 0.8105 }, { "start": 10729.04, "end": 10732.89, "probability": 0.9141 }, { "start": 10733.58, "end": 10737.16, "probability": 0.9683 }, { "start": 10737.16, "end": 10741.2, "probability": 0.9954 }, { "start": 10741.3, "end": 10742.68, "probability": 0.9312 }, { "start": 10743.46, "end": 10743.9, "probability": 0.9749 }, { "start": 10746.3, "end": 10748.74, "probability": 0.0417 }, { "start": 10749.42, "end": 10754.48, "probability": 0.9954 }, { "start": 10755.02, "end": 10758.9, "probability": 0.9961 }, { "start": 10759.8, "end": 10763.24, "probability": 0.8455 }, { "start": 10763.6, "end": 10766.8, "probability": 0.9823 }, { "start": 10767.4, "end": 10770.28, "probability": 0.998 }, { "start": 10770.38, "end": 10772.34, "probability": 0.995 }, { "start": 10772.86, "end": 10773.94, "probability": 0.9971 }, { "start": 10774.04, "end": 10775.22, "probability": 0.9517 }, { "start": 10775.28, "end": 10776.08, "probability": 0.7507 }, { "start": 10776.28, "end": 10777.4, "probability": 0.9092 }, { "start": 10777.5, "end": 10778.9, "probability": 0.9023 }, { "start": 10779.04, "end": 10779.54, "probability": 0.5485 }, { "start": 10780.12, "end": 10784.06, "probability": 0.9814 }, { "start": 10784.06, "end": 10787.52, "probability": 0.9072 }, { "start": 10787.52, "end": 10789.48, "probability": 0.7598 }, { "start": 10790.26, "end": 10790.68, "probability": 0.4347 }, { "start": 10790.82, "end": 10791.12, "probability": 0.8992 }, { "start": 10791.26, "end": 10792.44, "probability": 0.883 }, { "start": 10792.72, "end": 10797.86, "probability": 0.9884 }, { "start": 10798.76, "end": 10801.8, "probability": 0.9211 }, { "start": 10801.8, "end": 10805.82, "probability": 0.9916 }, { "start": 10805.86, "end": 10807.66, "probability": 0.9727 }, { "start": 10807.9, "end": 10809.24, "probability": 0.9778 }, { "start": 10809.46, "end": 10812.22, "probability": 0.902 }, { "start": 10812.6, "end": 10815.56, "probability": 0.9934 }, { "start": 10816.52, "end": 10817.48, "probability": 0.2616 }, { "start": 10817.74, "end": 10821.78, "probability": 0.8307 }, { "start": 10821.78, "end": 10824.03, "probability": 0.9575 }, { "start": 10825.98, "end": 10828.59, "probability": 0.7769 }, { "start": 10831.78, "end": 10834.41, "probability": 0.3517 }, { "start": 10834.42, "end": 10835.4, "probability": 0.1032 }, { "start": 10835.72, "end": 10837.88, "probability": 0.9016 }, { "start": 10839.36, "end": 10841.16, "probability": 0.8328 }, { "start": 10841.74, "end": 10843.5, "probability": 0.8871 }, { "start": 10844.26, "end": 10846.7, "probability": 0.8975 }, { "start": 10847.14, "end": 10847.94, "probability": 0.8042 }, { "start": 10848.0, "end": 10849.18, "probability": 0.9429 }, { "start": 10849.74, "end": 10851.3, "probability": 0.6647 }, { "start": 10852.3, "end": 10852.76, "probability": 0.8334 }, { "start": 10859.22, "end": 10859.22, "probability": 0.3317 }, { "start": 10859.22, "end": 10859.46, "probability": 0.6961 }, { "start": 10860.62, "end": 10861.0, "probability": 0.8529 }, { "start": 10863.66, "end": 10865.42, "probability": 0.9482 }, { "start": 10865.88, "end": 10866.24, "probability": 0.4856 }, { "start": 10866.24, "end": 10866.32, "probability": 0.0009 }, { "start": 10866.94, "end": 10867.92, "probability": 0.6606 }, { "start": 10869.8, "end": 10870.26, "probability": 0.2281 }, { "start": 10870.26, "end": 10871.28, "probability": 0.5223 }, { "start": 10871.5, "end": 10871.6, "probability": 0.5783 }, { "start": 10871.92, "end": 10872.48, "probability": 0.881 }, { "start": 10872.66, "end": 10872.82, "probability": 0.4587 }, { "start": 10872.88, "end": 10873.12, "probability": 0.7298 }, { "start": 10875.79, "end": 10878.88, "probability": 0.7424 }, { "start": 10879.6, "end": 10881.92, "probability": 0.9752 }, { "start": 10882.1, "end": 10882.7, "probability": 0.9462 }, { "start": 10882.98, "end": 10883.5, "probability": 0.9526 }, { "start": 10883.76, "end": 10887.99, "probability": 0.9817 }, { "start": 10888.6, "end": 10891.96, "probability": 0.9551 }, { "start": 10892.64, "end": 10894.98, "probability": 0.9933 }, { "start": 10895.44, "end": 10895.84, "probability": 0.4556 }, { "start": 10895.9, "end": 10897.58, "probability": 0.9666 }, { "start": 10898.54, "end": 10903.76, "probability": 0.927 }, { "start": 10904.16, "end": 10905.1, "probability": 0.981 }, { "start": 10905.3, "end": 10907.18, "probability": 0.8016 }, { "start": 10907.92, "end": 10911.38, "probability": 0.9597 }, { "start": 10911.86, "end": 10912.58, "probability": 0.7158 }, { "start": 10912.66, "end": 10913.66, "probability": 0.8438 }, { "start": 10914.14, "end": 10915.02, "probability": 0.933 }, { "start": 10915.12, "end": 10916.18, "probability": 0.9685 }, { "start": 10916.28, "end": 10917.4, "probability": 0.9467 }, { "start": 10917.94, "end": 10920.78, "probability": 0.8864 }, { "start": 10921.4, "end": 10923.74, "probability": 0.9426 }, { "start": 10924.76, "end": 10925.76, "probability": 0.9171 }, { "start": 10926.28, "end": 10927.36, "probability": 0.3809 }, { "start": 10927.78, "end": 10932.64, "probability": 0.9849 }, { "start": 10934.0, "end": 10937.9, "probability": 0.8299 }, { "start": 10938.0, "end": 10939.32, "probability": 0.9686 }, { "start": 10939.64, "end": 10941.52, "probability": 0.938 }, { "start": 10941.58, "end": 10947.26, "probability": 0.9915 }, { "start": 10947.64, "end": 10948.2, "probability": 0.7716 }, { "start": 10948.88, "end": 10950.56, "probability": 0.9575 }, { "start": 10950.66, "end": 10952.7, "probability": 0.9989 }, { "start": 10952.7, "end": 10954.76, "probability": 0.9963 }, { "start": 10955.48, "end": 10956.54, "probability": 0.8429 }, { "start": 10956.68, "end": 10959.3, "probability": 0.7071 }, { "start": 10959.58, "end": 10961.04, "probability": 0.3932 }, { "start": 10961.44, "end": 10962.4, "probability": 0.5454 }, { "start": 10962.8, "end": 10964.32, "probability": 0.7915 }, { "start": 10964.64, "end": 10965.78, "probability": 0.6301 }, { "start": 10965.78, "end": 10965.9, "probability": 0.3712 }, { "start": 10966.02, "end": 10966.18, "probability": 0.3825 }, { "start": 10966.44, "end": 10974.53, "probability": 0.9728 }, { "start": 10974.58, "end": 10979.63, "probability": 0.8604 }, { "start": 10980.34, "end": 10980.5, "probability": 0.0398 }, { "start": 10980.5, "end": 10981.74, "probability": 0.7297 }, { "start": 10981.82, "end": 10983.24, "probability": 0.975 }, { "start": 10983.36, "end": 10984.22, "probability": 0.6049 }, { "start": 10984.84, "end": 10988.78, "probability": 0.9882 }, { "start": 10988.78, "end": 10991.42, "probability": 0.996 }, { "start": 10991.5, "end": 10992.92, "probability": 0.7039 }, { "start": 10993.64, "end": 10994.12, "probability": 0.7925 }, { "start": 10994.2, "end": 10998.34, "probability": 0.8429 }, { "start": 10998.54, "end": 10999.56, "probability": 0.6956 }, { "start": 10999.8, "end": 11005.86, "probability": 0.9517 }, { "start": 11008.6, "end": 11013.98, "probability": 0.8792 }, { "start": 11014.26, "end": 11017.58, "probability": 0.9839 }, { "start": 11018.14, "end": 11018.92, "probability": 0.4778 }, { "start": 11019.14, "end": 11020.22, "probability": 0.9946 }, { "start": 11020.3, "end": 11020.74, "probability": 0.8679 }, { "start": 11020.78, "end": 11022.4, "probability": 0.9807 }, { "start": 11022.6, "end": 11024.46, "probability": 0.9739 }, { "start": 11024.82, "end": 11027.04, "probability": 0.9972 }, { "start": 11027.54, "end": 11028.48, "probability": 0.9781 }, { "start": 11028.82, "end": 11029.6, "probability": 0.8113 }, { "start": 11029.68, "end": 11033.36, "probability": 0.9827 }, { "start": 11033.94, "end": 11036.42, "probability": 0.91 }, { "start": 11036.84, "end": 11040.22, "probability": 0.9197 }, { "start": 11040.76, "end": 11044.24, "probability": 0.9222 }, { "start": 11045.32, "end": 11048.14, "probability": 0.9898 }, { "start": 11048.88, "end": 11052.16, "probability": 0.9442 }, { "start": 11052.2, "end": 11054.36, "probability": 0.977 }, { "start": 11054.44, "end": 11056.72, "probability": 0.8928 }, { "start": 11057.58, "end": 11058.14, "probability": 0.521 }, { "start": 11058.54, "end": 11060.04, "probability": 0.7454 }, { "start": 11060.18, "end": 11062.59, "probability": 0.4832 }, { "start": 11063.32, "end": 11068.34, "probability": 0.9712 }, { "start": 11068.44, "end": 11073.22, "probability": 0.9967 }, { "start": 11073.48, "end": 11073.82, "probability": 0.3759 }, { "start": 11074.02, "end": 11078.48, "probability": 0.9966 }, { "start": 11078.64, "end": 11079.16, "probability": 0.832 }, { "start": 11079.6, "end": 11082.5, "probability": 0.9924 }, { "start": 11083.12, "end": 11084.96, "probability": 0.9053 }, { "start": 11085.16, "end": 11085.82, "probability": 0.7647 }, { "start": 11086.28, "end": 11087.1, "probability": 0.882 }, { "start": 11087.18, "end": 11087.74, "probability": 0.9548 }, { "start": 11088.92, "end": 11089.14, "probability": 0.5809 }, { "start": 11089.36, "end": 11090.54, "probability": 0.9321 }, { "start": 11091.96, "end": 11094.26, "probability": 0.4797 }, { "start": 11094.36, "end": 11094.6, "probability": 0.7484 }, { "start": 11094.62, "end": 11095.86, "probability": 0.596 }, { "start": 11096.04, "end": 11096.94, "probability": 0.7538 }, { "start": 11097.06, "end": 11098.72, "probability": 0.5113 }, { "start": 11099.08, "end": 11101.98, "probability": 0.8529 }, { "start": 11102.7, "end": 11103.58, "probability": 0.6755 }, { "start": 11108.52, "end": 11109.32, "probability": 0.3944 }, { "start": 11110.06, "end": 11111.5, "probability": 0.6295 }, { "start": 11112.62, "end": 11113.5, "probability": 0.6601 }, { "start": 11114.94, "end": 11115.86, "probability": 0.606 }, { "start": 11117.12, "end": 11117.88, "probability": 0.9056 }, { "start": 11120.86, "end": 11121.3, "probability": 0.8936 }, { "start": 11123.12, "end": 11125.74, "probability": 0.9269 }, { "start": 11125.82, "end": 11128.12, "probability": 0.9886 }, { "start": 11128.48, "end": 11129.76, "probability": 0.8901 }, { "start": 11129.9, "end": 11131.02, "probability": 0.561 }, { "start": 11131.68, "end": 11132.4, "probability": 0.8383 }, { "start": 11132.4, "end": 11133.98, "probability": 0.9267 }, { "start": 11134.16, "end": 11136.3, "probability": 0.991 }, { "start": 11136.9, "end": 11140.08, "probability": 0.9624 }, { "start": 11140.32, "end": 11142.94, "probability": 0.8984 }, { "start": 11143.4, "end": 11144.78, "probability": 0.9698 }, { "start": 11145.18, "end": 11147.16, "probability": 0.9504 }, { "start": 11147.28, "end": 11148.78, "probability": 0.7803 }, { "start": 11149.48, "end": 11150.94, "probability": 0.9929 }, { "start": 11157.9, "end": 11158.82, "probability": 0.7903 }, { "start": 11159.52, "end": 11160.42, "probability": 0.6356 }, { "start": 11160.5, "end": 11163.04, "probability": 0.9226 }, { "start": 11163.04, "end": 11166.24, "probability": 0.9927 }, { "start": 11166.32, "end": 11166.99, "probability": 0.7717 }, { "start": 11167.82, "end": 11170.46, "probability": 0.9113 }, { "start": 11171.1, "end": 11172.4, "probability": 0.4617 }, { "start": 11172.48, "end": 11173.66, "probability": 0.8108 }, { "start": 11173.9, "end": 11174.22, "probability": 0.8864 }, { "start": 11174.98, "end": 11177.96, "probability": 0.9944 }, { "start": 11178.56, "end": 11183.54, "probability": 0.9779 }, { "start": 11183.7, "end": 11185.32, "probability": 0.9897 }, { "start": 11185.44, "end": 11188.88, "probability": 0.8723 }, { "start": 11188.88, "end": 11192.32, "probability": 0.9962 }, { "start": 11192.36, "end": 11192.76, "probability": 0.4907 }, { "start": 11192.86, "end": 11197.78, "probability": 0.909 }, { "start": 11197.78, "end": 11203.46, "probability": 0.9939 }, { "start": 11203.52, "end": 11207.38, "probability": 0.9634 }, { "start": 11207.48, "end": 11210.6, "probability": 0.673 }, { "start": 11210.68, "end": 11211.52, "probability": 0.7644 }, { "start": 11211.6, "end": 11214.66, "probability": 0.9924 }, { "start": 11214.66, "end": 11217.94, "probability": 0.9618 }, { "start": 11218.2, "end": 11221.66, "probability": 0.7958 }, { "start": 11221.8, "end": 11223.22, "probability": 0.9971 }, { "start": 11223.4, "end": 11224.56, "probability": 0.9034 }, { "start": 11224.72, "end": 11228.04, "probability": 0.985 }, { "start": 11228.04, "end": 11230.84, "probability": 0.996 }, { "start": 11230.88, "end": 11232.84, "probability": 0.9173 }, { "start": 11233.32, "end": 11235.48, "probability": 0.9729 }, { "start": 11235.58, "end": 11235.99, "probability": 0.7517 }, { "start": 11236.52, "end": 11241.53, "probability": 0.9671 }, { "start": 11242.26, "end": 11247.26, "probability": 0.9609 }, { "start": 11249.3, "end": 11250.66, "probability": 0.5773 }, { "start": 11250.68, "end": 11253.78, "probability": 0.9897 }, { "start": 11255.37, "end": 11260.08, "probability": 0.767 }, { "start": 11260.58, "end": 11261.66, "probability": 0.9912 }, { "start": 11261.8, "end": 11264.76, "probability": 0.9414 }, { "start": 11264.96, "end": 11271.56, "probability": 0.9917 }, { "start": 11271.66, "end": 11277.94, "probability": 0.9931 }, { "start": 11279.16, "end": 11283.52, "probability": 0.5532 }, { "start": 11283.7, "end": 11285.55, "probability": 0.9585 }, { "start": 11286.1, "end": 11288.66, "probability": 0.98 }, { "start": 11288.66, "end": 11290.9, "probability": 0.9482 }, { "start": 11291.06, "end": 11292.82, "probability": 0.7716 }, { "start": 11293.52, "end": 11298.64, "probability": 0.9946 }, { "start": 11298.84, "end": 11302.83, "probability": 0.9803 }, { "start": 11303.24, "end": 11307.3, "probability": 0.8604 }, { "start": 11307.46, "end": 11309.8, "probability": 0.8489 }, { "start": 11309.86, "end": 11310.6, "probability": 0.9627 }, { "start": 11311.02, "end": 11311.06, "probability": 0.0343 }, { "start": 11311.06, "end": 11313.42, "probability": 0.8877 }, { "start": 11313.86, "end": 11317.43, "probability": 0.9575 }, { "start": 11318.42, "end": 11319.1, "probability": 0.5421 }, { "start": 11319.2, "end": 11319.74, "probability": 0.7379 }, { "start": 11320.32, "end": 11323.46, "probability": 0.9974 }, { "start": 11323.46, "end": 11328.02, "probability": 0.9843 }, { "start": 11329.0, "end": 11331.26, "probability": 0.9982 }, { "start": 11331.26, "end": 11335.02, "probability": 0.988 }, { "start": 11335.14, "end": 11341.34, "probability": 0.9744 }, { "start": 11342.56, "end": 11344.02, "probability": 0.5735 }, { "start": 11344.16, "end": 11344.68, "probability": 0.9043 }, { "start": 11344.84, "end": 11346.06, "probability": 0.9655 }, { "start": 11346.1, "end": 11351.26, "probability": 0.9027 }, { "start": 11351.26, "end": 11357.6, "probability": 0.9607 }, { "start": 11358.12, "end": 11361.7, "probability": 0.9846 }, { "start": 11361.78, "end": 11363.6, "probability": 0.9948 }, { "start": 11365.86, "end": 11369.6, "probability": 0.5572 }, { "start": 11369.6, "end": 11370.86, "probability": 0.1471 }, { "start": 11371.47, "end": 11373.18, "probability": 0.139 }, { "start": 11374.02, "end": 11374.23, "probability": 0.3132 }, { "start": 11374.76, "end": 11378.6, "probability": 0.9867 }, { "start": 11378.7, "end": 11380.2, "probability": 0.184 }, { "start": 11384.36, "end": 11384.48, "probability": 0.2286 }, { "start": 11384.48, "end": 11386.31, "probability": 0.7882 }, { "start": 11386.92, "end": 11389.88, "probability": 0.991 }, { "start": 11389.88, "end": 11394.44, "probability": 0.9936 }, { "start": 11394.68, "end": 11395.54, "probability": 0.7723 }, { "start": 11395.94, "end": 11398.26, "probability": 0.0388 }, { "start": 11398.26, "end": 11398.26, "probability": 0.0556 }, { "start": 11398.26, "end": 11403.42, "probability": 0.9941 }, { "start": 11403.42, "end": 11409.02, "probability": 0.9647 }, { "start": 11409.2, "end": 11409.77, "probability": 0.6241 }, { "start": 11410.84, "end": 11410.84, "probability": 0.0325 }, { "start": 11410.84, "end": 11410.84, "probability": 0.0961 }, { "start": 11410.84, "end": 11413.56, "probability": 0.8792 }, { "start": 11413.74, "end": 11415.18, "probability": 0.7934 }, { "start": 11416.0, "end": 11417.72, "probability": 0.4303 }, { "start": 11418.22, "end": 11420.82, "probability": 0.875 }, { "start": 11421.04, "end": 11423.32, "probability": 0.7504 }, { "start": 11423.68, "end": 11426.98, "probability": 0.9858 }, { "start": 11427.44, "end": 11428.28, "probability": 0.9337 }, { "start": 11428.44, "end": 11429.02, "probability": 0.962 }, { "start": 11429.44, "end": 11429.98, "probability": 0.4931 }, { "start": 11430.52, "end": 11431.12, "probability": 0.2822 }, { "start": 11431.4, "end": 11433.54, "probability": 0.9863 }, { "start": 11433.86, "end": 11436.9, "probability": 0.9979 }, { "start": 11437.02, "end": 11441.02, "probability": 0.9438 }, { "start": 11441.14, "end": 11443.02, "probability": 0.9848 }, { "start": 11443.16, "end": 11445.22, "probability": 0.9934 }, { "start": 11445.74, "end": 11448.64, "probability": 0.9863 }, { "start": 11449.0, "end": 11450.58, "probability": 0.8745 }, { "start": 11450.94, "end": 11453.58, "probability": 0.974 }, { "start": 11453.72, "end": 11456.86, "probability": 0.793 }, { "start": 11457.4, "end": 11460.14, "probability": 0.9263 }, { "start": 11460.68, "end": 11463.2, "probability": 0.9969 }, { "start": 11463.26, "end": 11465.38, "probability": 0.9894 }, { "start": 11466.38, "end": 11467.52, "probability": 0.0638 }, { "start": 11467.52, "end": 11470.92, "probability": 0.644 }, { "start": 11471.68, "end": 11473.0, "probability": 0.8883 }, { "start": 11473.44, "end": 11477.68, "probability": 0.9702 }, { "start": 11477.68, "end": 11482.0, "probability": 0.9896 }, { "start": 11482.14, "end": 11485.65, "probability": 0.9921 }, { "start": 11486.2, "end": 11486.86, "probability": 0.8365 }, { "start": 11487.06, "end": 11487.42, "probability": 0.5686 }, { "start": 11487.7, "end": 11490.84, "probability": 0.9772 }, { "start": 11490.94, "end": 11491.34, "probability": 0.8437 }, { "start": 11492.94, "end": 11493.72, "probability": 0.7898 }, { "start": 11494.02, "end": 11496.16, "probability": 0.945 }, { "start": 11510.08, "end": 11511.24, "probability": 0.7754 }, { "start": 11513.24, "end": 11516.42, "probability": 0.9976 }, { "start": 11517.2, "end": 11522.84, "probability": 0.998 }, { "start": 11524.3, "end": 11525.62, "probability": 0.9852 }, { "start": 11526.86, "end": 11529.06, "probability": 0.9987 }, { "start": 11529.3, "end": 11532.52, "probability": 0.9564 }, { "start": 11533.02, "end": 11533.9, "probability": 0.7716 }, { "start": 11535.26, "end": 11539.04, "probability": 0.996 }, { "start": 11539.04, "end": 11543.18, "probability": 0.9909 }, { "start": 11545.0, "end": 11545.52, "probability": 0.0318 }, { "start": 11545.52, "end": 11551.16, "probability": 0.749 }, { "start": 11552.02, "end": 11554.08, "probability": 0.1762 }, { "start": 11554.08, "end": 11554.08, "probability": 0.3218 }, { "start": 11554.08, "end": 11557.74, "probability": 0.8236 }, { "start": 11557.88, "end": 11560.36, "probability": 0.5107 }, { "start": 11560.56, "end": 11561.71, "probability": 0.7365 }, { "start": 11562.86, "end": 11562.86, "probability": 0.0042 }, { "start": 11562.86, "end": 11565.14, "probability": 0.6992 }, { "start": 11565.16, "end": 11565.9, "probability": 0.632 }, { "start": 11566.46, "end": 11566.98, "probability": 0.457 }, { "start": 11567.24, "end": 11568.72, "probability": 0.5161 }, { "start": 11568.72, "end": 11571.44, "probability": 0.8946 }, { "start": 11571.54, "end": 11572.34, "probability": 0.7528 }, { "start": 11572.34, "end": 11573.4, "probability": 0.6597 }, { "start": 11573.4, "end": 11573.9, "probability": 0.2954 }, { "start": 11573.96, "end": 11574.8, "probability": 0.2494 }, { "start": 11575.36, "end": 11579.3, "probability": 0.9963 }, { "start": 11580.22, "end": 11584.14, "probability": 0.8112 }, { "start": 11584.46, "end": 11585.24, "probability": 0.7873 }, { "start": 11585.82, "end": 11588.1, "probability": 0.9694 }, { "start": 11588.58, "end": 11589.68, "probability": 0.906 }, { "start": 11589.76, "end": 11590.86, "probability": 0.9795 }, { "start": 11591.06, "end": 11594.64, "probability": 0.8667 }, { "start": 11595.06, "end": 11596.12, "probability": 0.7853 }, { "start": 11596.22, "end": 11597.14, "probability": 0.7949 }, { "start": 11597.58, "end": 11599.67, "probability": 0.9609 }, { "start": 11600.5, "end": 11604.6, "probability": 0.8773 }, { "start": 11605.88, "end": 11612.62, "probability": 0.9551 }, { "start": 11613.14, "end": 11614.5, "probability": 0.9863 }, { "start": 11615.22, "end": 11618.2, "probability": 0.7226 }, { "start": 11618.84, "end": 11620.3, "probability": 0.9162 }, { "start": 11620.64, "end": 11621.75, "probability": 0.9717 }, { "start": 11622.24, "end": 11625.28, "probability": 0.9707 }, { "start": 11625.36, "end": 11626.36, "probability": 0.9858 }, { "start": 11626.92, "end": 11628.47, "probability": 0.9929 }, { "start": 11629.02, "end": 11631.24, "probability": 0.9465 }, { "start": 11632.0, "end": 11633.9, "probability": 0.9407 }, { "start": 11634.32, "end": 11637.96, "probability": 0.8302 }, { "start": 11638.62, "end": 11641.52, "probability": 0.9679 }, { "start": 11642.0, "end": 11643.58, "probability": 0.9327 }, { "start": 11643.94, "end": 11645.3, "probability": 0.7779 }, { "start": 11646.08, "end": 11649.9, "probability": 0.6171 }, { "start": 11651.26, "end": 11654.92, "probability": 0.9902 }, { "start": 11655.42, "end": 11659.36, "probability": 0.8423 }, { "start": 11660.02, "end": 11661.4, "probability": 0.9753 }, { "start": 11662.74, "end": 11664.72, "probability": 0.9963 }, { "start": 11666.22, "end": 11666.98, "probability": 0.9976 }, { "start": 11667.82, "end": 11669.96, "probability": 0.1078 }, { "start": 11670.5, "end": 11676.58, "probability": 0.9866 }, { "start": 11677.06, "end": 11678.4, "probability": 0.9805 }, { "start": 11678.64, "end": 11683.64, "probability": 0.856 }, { "start": 11683.8, "end": 11684.48, "probability": 0.8315 }, { "start": 11684.74, "end": 11685.38, "probability": 0.8275 }, { "start": 11685.84, "end": 11687.08, "probability": 0.9731 }, { "start": 11687.16, "end": 11688.24, "probability": 0.7048 }, { "start": 11688.94, "end": 11690.94, "probability": 0.9912 }, { "start": 11691.44, "end": 11694.82, "probability": 0.9914 }, { "start": 11695.2, "end": 11696.54, "probability": 0.9849 }, { "start": 11697.06, "end": 11701.82, "probability": 0.7718 }, { "start": 11702.22, "end": 11704.16, "probability": 0.6435 }, { "start": 11704.16, "end": 11707.74, "probability": 0.883 }, { "start": 11708.3, "end": 11710.08, "probability": 0.8369 }, { "start": 11710.18, "end": 11712.74, "probability": 0.9362 }, { "start": 11713.26, "end": 11714.66, "probability": 0.7777 }, { "start": 11714.98, "end": 11717.7, "probability": 0.9886 }, { "start": 11717.92, "end": 11718.44, "probability": 0.3711 }, { "start": 11718.44, "end": 11719.2, "probability": 0.5534 }, { "start": 11719.88, "end": 11720.76, "probability": 0.6951 }, { "start": 11721.12, "end": 11721.46, "probability": 0.7004 }, { "start": 11721.9, "end": 11722.84, "probability": 0.9303 }, { "start": 11722.94, "end": 11723.42, "probability": 0.7253 }, { "start": 11723.68, "end": 11724.16, "probability": 0.7714 }, { "start": 11724.4, "end": 11726.76, "probability": 0.9187 }, { "start": 11727.68, "end": 11730.62, "probability": 0.9711 }, { "start": 11730.9, "end": 11730.94, "probability": 0.6843 }, { "start": 11731.04, "end": 11731.76, "probability": 0.9248 }, { "start": 11731.82, "end": 11733.44, "probability": 0.779 }, { "start": 11733.46, "end": 11734.68, "probability": 0.8569 }, { "start": 11734.76, "end": 11735.2, "probability": 0.7101 }, { "start": 11735.28, "end": 11736.42, "probability": 0.8486 }, { "start": 11736.78, "end": 11738.22, "probability": 0.859 }, { "start": 11738.76, "end": 11743.48, "probability": 0.9624 }, { "start": 11743.62, "end": 11743.84, "probability": 0.6496 }, { "start": 11743.92, "end": 11744.96, "probability": 0.9578 }, { "start": 11745.48, "end": 11746.12, "probability": 0.9704 }, { "start": 11746.38, "end": 11747.0, "probability": 0.8806 }, { "start": 11747.24, "end": 11747.24, "probability": 0.7102 }, { "start": 11747.9, "end": 11750.56, "probability": 0.98 }, { "start": 11750.98, "end": 11752.2, "probability": 0.6303 }, { "start": 11752.24, "end": 11753.96, "probability": 0.8605 }, { "start": 11755.24, "end": 11755.38, "probability": 0.0078 }, { "start": 11757.78, "end": 11758.6, "probability": 0.0076 }, { "start": 11759.12, "end": 11763.8, "probability": 0.5937 }, { "start": 11765.12, "end": 11768.3, "probability": 0.382 }, { "start": 11768.84, "end": 11770.98, "probability": 0.7417 }, { "start": 11772.56, "end": 11773.28, "probability": 0.9296 }, { "start": 11773.94, "end": 11774.56, "probability": 0.7732 }, { "start": 11775.9, "end": 11776.36, "probability": 0.7932 }, { "start": 11777.34, "end": 11778.14, "probability": 0.5858 }, { "start": 11778.98, "end": 11779.32, "probability": 0.887 }, { "start": 11780.26, "end": 11780.96, "probability": 0.8268 }, { "start": 11783.92, "end": 11786.26, "probability": 0.8759 }, { "start": 11787.82, "end": 11788.28, "probability": 0.9917 }, { "start": 11789.46, "end": 11790.16, "probability": 0.9724 }, { "start": 11790.86, "end": 11791.26, "probability": 0.9819 }, { "start": 11791.94, "end": 11792.76, "probability": 0.93 }, { "start": 11793.82, "end": 11794.1, "probability": 0.9897 }, { "start": 11797.24, "end": 11798.18, "probability": 0.6758 }, { "start": 11800.18, "end": 11802.14, "probability": 0.7705 }, { "start": 11803.0, "end": 11804.12, "probability": 0.8709 }, { "start": 11805.08, "end": 11805.46, "probability": 0.8817 }, { "start": 11806.2, "end": 11807.04, "probability": 0.9457 }, { "start": 11807.69, "end": 11809.98, "probability": 0.9561 }, { "start": 11810.98, "end": 11813.62, "probability": 0.9825 }, { "start": 11814.6, "end": 11815.0, "probability": 0.9753 }, { "start": 11816.0, "end": 11816.86, "probability": 0.8103 }, { "start": 11817.94, "end": 11818.64, "probability": 0.9648 }, { "start": 11819.26, "end": 11819.8, "probability": 0.7964 }, { "start": 11820.58, "end": 11823.42, "probability": 0.2261 }, { "start": 11827.76, "end": 11828.78, "probability": 0.1852 }, { "start": 11829.98, "end": 11830.36, "probability": 0.7788 }, { "start": 11831.36, "end": 11832.12, "probability": 0.7384 }, { "start": 11833.44, "end": 11834.18, "probability": 0.7947 }, { "start": 11834.8, "end": 11835.52, "probability": 0.9386 }, { "start": 11837.38, "end": 11837.8, "probability": 0.9857 }, { "start": 11839.68, "end": 11840.74, "probability": 0.9919 }, { "start": 11841.72, "end": 11842.08, "probability": 0.8538 }, { "start": 11842.98, "end": 11843.9, "probability": 0.9943 }, { "start": 11845.2, "end": 11845.78, "probability": 0.8766 }, { "start": 11847.38, "end": 11847.68, "probability": 0.9712 }, { "start": 11849.1, "end": 11850.7, "probability": 0.9834 }, { "start": 11851.46, "end": 11852.36, "probability": 0.8014 }, { "start": 11853.48, "end": 11853.9, "probability": 0.9559 }, { "start": 11854.74, "end": 11855.54, "probability": 0.9953 }, { "start": 11856.16, "end": 11856.5, "probability": 0.9734 }, { "start": 11857.3, "end": 11857.96, "probability": 0.8588 }, { "start": 11858.94, "end": 11859.54, "probability": 0.804 }, { "start": 11860.32, "end": 11861.32, "probability": 0.7452 }, { "start": 11862.6, "end": 11863.02, "probability": 0.9202 }, { "start": 11864.36, "end": 11865.38, "probability": 0.7229 }, { "start": 11868.9, "end": 11869.78, "probability": 0.9033 }, { "start": 11870.92, "end": 11871.96, "probability": 0.8576 }, { "start": 11873.46, "end": 11873.96, "probability": 0.9818 }, { "start": 11874.88, "end": 11875.8, "probability": 0.8758 }, { "start": 11882.58, "end": 11886.06, "probability": 0.6278 }, { "start": 11889.12, "end": 11889.94, "probability": 0.8629 }, { "start": 11890.54, "end": 11891.62, "probability": 0.6485 }, { "start": 11892.28, "end": 11892.74, "probability": 0.9285 }, { "start": 11893.92, "end": 11896.92, "probability": 0.9439 }, { "start": 11897.46, "end": 11898.76, "probability": 0.9597 }, { "start": 11899.66, "end": 11903.22, "probability": 0.9275 }, { "start": 11903.98, "end": 11904.44, "probability": 0.9681 }, { "start": 11905.26, "end": 11906.12, "probability": 0.9787 }, { "start": 11907.08, "end": 11907.5, "probability": 0.9617 }, { "start": 11908.28, "end": 11909.66, "probability": 0.7619 }, { "start": 11910.94, "end": 11911.8, "probability": 0.9929 }, { "start": 11912.4, "end": 11913.5, "probability": 0.9432 }, { "start": 11914.42, "end": 11914.8, "probability": 0.6399 }, { "start": 11915.88, "end": 11916.68, "probability": 0.7411 }, { "start": 11917.46, "end": 11917.98, "probability": 0.8644 }, { "start": 11918.76, "end": 11919.62, "probability": 0.636 }, { "start": 11920.6, "end": 11922.82, "probability": 0.6907 }, { "start": 11923.94, "end": 11924.8, "probability": 0.8748 }, { "start": 11925.38, "end": 11926.5, "probability": 0.8705 }, { "start": 11927.86, "end": 11928.26, "probability": 0.9902 }, { "start": 11929.9, "end": 11931.12, "probability": 0.9526 }, { "start": 11932.2, "end": 11932.7, "probability": 0.9888 }, { "start": 11933.66, "end": 11934.82, "probability": 0.86 }, { "start": 11936.64, "end": 11939.16, "probability": 0.8758 }, { "start": 11939.92, "end": 11941.08, "probability": 0.677 }, { "start": 11942.24, "end": 11942.52, "probability": 0.7088 }, { "start": 11943.98, "end": 11944.94, "probability": 0.4719 }, { "start": 11945.66, "end": 11946.06, "probability": 0.9289 }, { "start": 11946.96, "end": 11948.0, "probability": 0.822 }, { "start": 11949.08, "end": 11949.5, "probability": 0.9951 }, { "start": 11950.28, "end": 11951.2, "probability": 0.7505 }, { "start": 11952.21, "end": 11953.72, "probability": 0.9858 }, { "start": 11955.68, "end": 11957.62, "probability": 0.9496 }, { "start": 11958.14, "end": 11958.8, "probability": 0.84 }, { "start": 11959.86, "end": 11961.04, "probability": 0.9919 }, { "start": 11961.88, "end": 11963.14, "probability": 0.8154 }, { "start": 11963.68, "end": 11964.48, "probability": 0.9282 }, { "start": 11965.34, "end": 11966.44, "probability": 0.9491 }, { "start": 11967.56, "end": 11968.26, "probability": 0.9823 }, { "start": 11969.02, "end": 11969.72, "probability": 0.8109 }, { "start": 11970.62, "end": 11970.96, "probability": 0.5326 }, { "start": 11972.7, "end": 11973.18, "probability": 0.7494 }, { "start": 11974.38, "end": 11974.72, "probability": 0.8656 }, { "start": 11975.52, "end": 11976.88, "probability": 0.9755 }, { "start": 11977.8, "end": 11978.66, "probability": 0.9912 }, { "start": 11979.56, "end": 11980.3, "probability": 0.8832 }, { "start": 11983.3, "end": 11983.96, "probability": 0.8776 }, { "start": 11984.68, "end": 11985.4, "probability": 0.9645 }, { "start": 11986.48, "end": 11986.86, "probability": 0.9722 }, { "start": 11987.86, "end": 11988.42, "probability": 0.9878 }, { "start": 11989.34, "end": 11989.72, "probability": 0.9866 }, { "start": 11990.54, "end": 11991.12, "probability": 0.9745 }, { "start": 11994.06, "end": 11994.42, "probability": 0.9915 }, { "start": 11995.36, "end": 11995.94, "probability": 0.9863 }, { "start": 11997.18, "end": 11997.58, "probability": 0.9946 }, { "start": 11998.66, "end": 11999.84, "probability": 0.4641 }, { "start": 12000.8, "end": 12002.48, "probability": 0.79 }, { "start": 12003.5, "end": 12003.84, "probability": 0.9351 }, { "start": 12005.52, "end": 12006.76, "probability": 0.793 }, { "start": 12010.94, "end": 12011.16, "probability": 0.5715 }, { "start": 12012.06, "end": 12012.9, "probability": 0.9332 }, { "start": 12013.72, "end": 12014.48, "probability": 0.8919 }, { "start": 12015.26, "end": 12015.66, "probability": 0.8357 }, { "start": 12016.74, "end": 12017.68, "probability": 0.8799 }, { "start": 12019.22, "end": 12019.68, "probability": 0.9912 }, { "start": 12020.5, "end": 12021.4, "probability": 0.9814 }, { "start": 12022.42, "end": 12022.86, "probability": 0.967 }, { "start": 12023.74, "end": 12024.54, "probability": 0.9852 }, { "start": 12025.74, "end": 12026.18, "probability": 0.9925 }, { "start": 12027.14, "end": 12027.8, "probability": 0.8718 }, { "start": 12029.36, "end": 12030.06, "probability": 0.8746 }, { "start": 12030.96, "end": 12031.98, "probability": 0.9471 }, { "start": 12033.1, "end": 12033.5, "probability": 0.9476 }, { "start": 12034.98, "end": 12035.9, "probability": 0.8147 }, { "start": 12037.04, "end": 12037.52, "probability": 0.9891 }, { "start": 12038.3, "end": 12039.0, "probability": 0.8007 }, { "start": 12041.7, "end": 12044.22, "probability": 0.8946 }, { "start": 12045.4, "end": 12046.28, "probability": 0.9907 }, { "start": 12047.14, "end": 12048.1, "probability": 0.7296 }, { "start": 12050.14, "end": 12050.68, "probability": 0.9888 }, { "start": 12051.8, "end": 12052.96, "probability": 0.8879 }, { "start": 12054.1, "end": 12054.9, "probability": 0.9364 }, { "start": 12055.54, "end": 12057.8, "probability": 0.5436 }, { "start": 12058.88, "end": 12059.54, "probability": 0.82 }, { "start": 12061.24, "end": 12064.32, "probability": 0.8745 }, { "start": 12067.68, "end": 12068.42, "probability": 0.9914 }, { "start": 12069.02, "end": 12070.14, "probability": 0.4039 }, { "start": 12070.84, "end": 12071.22, "probability": 0.9645 }, { "start": 12072.28, "end": 12072.82, "probability": 0.9571 }, { "start": 12075.74, "end": 12078.12, "probability": 0.8506 }, { "start": 12078.92, "end": 12079.7, "probability": 0.9204 }, { "start": 12080.76, "end": 12081.1, "probability": 0.8701 }, { "start": 12086.36, "end": 12087.74, "probability": 0.7292 }, { "start": 12088.78, "end": 12089.5, "probability": 0.785 }, { "start": 12091.32, "end": 12092.22, "probability": 0.574 }, { "start": 12092.88, "end": 12093.28, "probability": 0.9631 }, { "start": 12094.22, "end": 12095.08, "probability": 0.759 }, { "start": 12095.82, "end": 12097.8, "probability": 0.8877 }, { "start": 12098.6, "end": 12098.98, "probability": 0.9473 }, { "start": 12099.92, "end": 12100.58, "probability": 0.8164 }, { "start": 12101.46, "end": 12101.86, "probability": 0.9851 }, { "start": 12102.64, "end": 12103.54, "probability": 0.9268 }, { "start": 12105.3, "end": 12109.92, "probability": 0.6624 }, { "start": 12111.12, "end": 12111.8, "probability": 0.9519 }, { "start": 12112.8, "end": 12113.62, "probability": 0.6606 }, { "start": 12114.68, "end": 12115.02, "probability": 0.6979 }, { "start": 12118.9, "end": 12120.12, "probability": 0.6924 }, { "start": 12121.12, "end": 12121.78, "probability": 0.7408 }, { "start": 12122.48, "end": 12123.38, "probability": 0.8459 }, { "start": 12125.06, "end": 12125.42, "probability": 0.8906 }, { "start": 12126.86, "end": 12127.58, "probability": 0.9117 }, { "start": 12130.11, "end": 12132.34, "probability": 0.2189 }, { "start": 12133.36, "end": 12135.28, "probability": 0.5213 }, { "start": 12136.42, "end": 12137.26, "probability": 0.6913 }, { "start": 12138.16, "end": 12139.0, "probability": 0.963 }, { "start": 12140.56, "end": 12141.3, "probability": 0.9139 }, { "start": 12142.04, "end": 12143.14, "probability": 0.9556 }, { "start": 12144.02, "end": 12145.24, "probability": 0.4894 }, { "start": 12146.4, "end": 12147.9, "probability": 0.2797 }, { "start": 12149.22, "end": 12150.62, "probability": 0.7814 }, { "start": 12151.52, "end": 12152.26, "probability": 0.7567 }, { "start": 12153.74, "end": 12154.04, "probability": 0.9071 }, { "start": 12155.2, "end": 12155.92, "probability": 0.8458 }, { "start": 12156.94, "end": 12157.46, "probability": 0.9831 }, { "start": 12158.22, "end": 12159.08, "probability": 0.8741 }, { "start": 12160.08, "end": 12160.58, "probability": 0.9437 }, { "start": 12161.34, "end": 12162.12, "probability": 0.8944 }, { "start": 12177.64, "end": 12178.28, "probability": 0.5014 }, { "start": 12180.44, "end": 12181.12, "probability": 0.6545 }, { "start": 12182.26, "end": 12183.3, "probability": 0.7406 }, { "start": 12184.12, "end": 12184.84, "probability": 0.704 }, { "start": 12185.66, "end": 12185.96, "probability": 0.9563 }, { "start": 12186.86, "end": 12187.6, "probability": 0.783 }, { "start": 12189.04, "end": 12190.9, "probability": 0.8796 }, { "start": 12193.84, "end": 12195.92, "probability": 0.8991 }, { "start": 12197.6, "end": 12198.26, "probability": 0.9175 }, { "start": 12198.98, "end": 12201.12, "probability": 0.9424 }, { "start": 12202.12, "end": 12203.28, "probability": 0.9609 }, { "start": 12203.96, "end": 12204.6, "probability": 0.9925 }, { "start": 12205.6, "end": 12206.32, "probability": 0.9285 }, { "start": 12207.2, "end": 12207.48, "probability": 0.7944 }, { "start": 12208.26, "end": 12209.38, "probability": 0.6007 }, { "start": 12210.6, "end": 12213.3, "probability": 0.8388 }, { "start": 12220.74, "end": 12221.2, "probability": 0.7804 }, { "start": 12222.36, "end": 12223.52, "probability": 0.6998 }, { "start": 12224.86, "end": 12225.66, "probability": 0.9482 }, { "start": 12226.36, "end": 12227.2, "probability": 0.7677 }, { "start": 12227.98, "end": 12228.32, "probability": 0.9648 }, { "start": 12230.0, "end": 12231.04, "probability": 0.9011 }, { "start": 12232.62, "end": 12233.48, "probability": 0.7275 }, { "start": 12235.02, "end": 12235.86, "probability": 0.549 }, { "start": 12237.14, "end": 12239.34, "probability": 0.8076 }, { "start": 12241.72, "end": 12243.54, "probability": 0.6383 }, { "start": 12244.98, "end": 12245.46, "probability": 0.7791 }, { "start": 12246.32, "end": 12247.32, "probability": 0.7394 }, { "start": 12248.8, "end": 12249.42, "probability": 0.8377 }, { "start": 12250.14, "end": 12250.96, "probability": 0.8841 }, { "start": 12252.42, "end": 12252.86, "probability": 0.9683 }, { "start": 12254.34, "end": 12255.04, "probability": 0.798 }, { "start": 12257.22, "end": 12260.04, "probability": 0.9261 }, { "start": 12261.18, "end": 12261.96, "probability": 0.6545 }, { "start": 12263.66, "end": 12264.64, "probability": 0.9769 }, { "start": 12265.16, "end": 12266.44, "probability": 0.6713 }, { "start": 12267.72, "end": 12268.18, "probability": 0.8284 }, { "start": 12269.74, "end": 12269.96, "probability": 0.3944 }, { "start": 12271.68, "end": 12274.78, "probability": 0.2965 }, { "start": 12275.2, "end": 12275.8, "probability": 0.0144 }, { "start": 12276.54, "end": 12278.6, "probability": 0.6292 }, { "start": 12280.2, "end": 12282.38, "probability": 0.886 }, { "start": 12283.58, "end": 12285.68, "probability": 0.8604 }, { "start": 12288.26, "end": 12290.82, "probability": 0.5137 }, { "start": 12291.56, "end": 12293.48, "probability": 0.9462 }, { "start": 12294.66, "end": 12295.56, "probability": 0.9802 }, { "start": 12296.7, "end": 12297.4, "probability": 0.865 }, { "start": 12299.68, "end": 12300.44, "probability": 0.8395 }, { "start": 12301.22, "end": 12301.98, "probability": 0.7308 }, { "start": 12302.94, "end": 12304.86, "probability": 0.964 }, { "start": 12306.04, "end": 12307.3, "probability": 0.9769 }, { "start": 12308.76, "end": 12309.64, "probability": 0.93 }, { "start": 12311.28, "end": 12312.12, "probability": 0.9906 }, { "start": 12312.64, "end": 12314.64, "probability": 0.9744 }, { "start": 12315.24, "end": 12316.56, "probability": 0.8042 }, { "start": 12318.28, "end": 12319.16, "probability": 0.9918 }, { "start": 12320.1, "end": 12320.94, "probability": 0.6384 }, { "start": 12321.78, "end": 12322.56, "probability": 0.7157 }, { "start": 12323.28, "end": 12324.3, "probability": 0.5905 }, { "start": 12327.84, "end": 12328.6, "probability": 0.9292 }, { "start": 12329.2, "end": 12330.12, "probability": 0.7194 }, { "start": 12332.5, "end": 12332.96, "probability": 0.5206 }, { "start": 12334.26, "end": 12335.72, "probability": 0.8931 }, { "start": 12337.34, "end": 12338.3, "probability": 0.9936 }, { "start": 12339.98, "end": 12340.92, "probability": 0.87 }, { "start": 12342.52, "end": 12343.4, "probability": 0.9918 }, { "start": 12345.66, "end": 12347.06, "probability": 0.7189 }, { "start": 12348.42, "end": 12350.62, "probability": 0.9313 }, { "start": 12353.3, "end": 12354.38, "probability": 0.5024 }, { "start": 12356.32, "end": 12357.18, "probability": 0.6061 }, { "start": 12358.54, "end": 12359.36, "probability": 0.9092 }, { "start": 12359.88, "end": 12360.62, "probability": 0.7143 }, { "start": 12362.92, "end": 12365.5, "probability": 0.8834 }, { "start": 12366.92, "end": 12369.06, "probability": 0.9786 }, { "start": 12370.64, "end": 12372.44, "probability": 0.9713 }, { "start": 12374.1, "end": 12375.72, "probability": 0.9791 }, { "start": 12377.56, "end": 12379.32, "probability": 0.7128 }, { "start": 12380.26, "end": 12381.48, "probability": 0.8902 }, { "start": 12383.4, "end": 12386.84, "probability": 0.7787 }, { "start": 12389.44, "end": 12390.44, "probability": 0.642 }, { "start": 12391.38, "end": 12393.1, "probability": 0.9102 }, { "start": 12395.9, "end": 12397.88, "probability": 0.9822 }, { "start": 12398.82, "end": 12399.54, "probability": 0.9912 }, { "start": 12400.94, "end": 12401.82, "probability": 0.9889 }, { "start": 12402.54, "end": 12404.24, "probability": 0.8889 }, { "start": 12406.84, "end": 12407.76, "probability": 0.918 }, { "start": 12408.46, "end": 12409.2, "probability": 0.4111 }, { "start": 12410.02, "end": 12411.92, "probability": 0.6801 }, { "start": 12412.96, "end": 12414.6, "probability": 0.8337 }, { "start": 12415.74, "end": 12417.72, "probability": 0.9474 }, { "start": 12418.72, "end": 12420.62, "probability": 0.9536 }, { "start": 12422.58, "end": 12425.28, "probability": 0.4111 }, { "start": 12426.2, "end": 12427.28, "probability": 0.6463 }, { "start": 12428.52, "end": 12431.04, "probability": 0.777 }, { "start": 12431.7, "end": 12433.04, "probability": 0.6933 }, { "start": 12437.02, "end": 12438.62, "probability": 0.5349 }, { "start": 12439.16, "end": 12440.06, "probability": 0.8108 }, { "start": 12441.36, "end": 12446.78, "probability": 0.7847 }, { "start": 12448.21, "end": 12448.7, "probability": 0.1628 }, { "start": 12449.72, "end": 12455.74, "probability": 0.6299 }, { "start": 12455.84, "end": 12456.88, "probability": 0.6782 }, { "start": 12464.33, "end": 12466.5, "probability": 0.6981 }, { "start": 12466.94, "end": 12470.18, "probability": 0.4277 }, { "start": 12470.28, "end": 12471.96, "probability": 0.3087 }, { "start": 12472.7, "end": 12476.68, "probability": 0.8643 }, { "start": 12477.22, "end": 12478.54, "probability": 0.389 }, { "start": 12478.94, "end": 12479.76, "probability": 0.516 }, { "start": 12479.94, "end": 12481.65, "probability": 0.4378 }, { "start": 12481.98, "end": 12484.12, "probability": 0.7136 }, { "start": 12485.08, "end": 12487.06, "probability": 0.0638 }, { "start": 12487.88, "end": 12488.78, "probability": 0.269 }, { "start": 12488.98, "end": 12491.28, "probability": 0.1066 }, { "start": 12493.42, "end": 12497.18, "probability": 0.5618 }, { "start": 12497.98, "end": 12499.44, "probability": 0.6321 }, { "start": 12507.9, "end": 12512.26, "probability": 0.6664 }, { "start": 12512.6, "end": 12514.74, "probability": 0.7372 }, { "start": 12515.3, "end": 12517.82, "probability": 0.622 }, { "start": 12517.88, "end": 12519.06, "probability": 0.2969 }, { "start": 12519.22, "end": 12519.74, "probability": 0.3012 }, { "start": 12519.88, "end": 12525.36, "probability": 0.4773 }, { "start": 12526.4, "end": 12528.56, "probability": 0.4915 }, { "start": 12529.32, "end": 12529.99, "probability": 0.2211 }, { "start": 12531.91, "end": 12535.06, "probability": 0.4458 }, { "start": 12535.34, "end": 12537.72, "probability": 0.0277 }, { "start": 12537.82, "end": 12541.96, "probability": 0.7855 }, { "start": 12542.14, "end": 12543.98, "probability": 0.3584 }, { "start": 12545.46, "end": 12546.24, "probability": 0.7108 }, { "start": 12546.48, "end": 12547.96, "probability": 0.5611 }, { "start": 12547.96, "end": 12554.4, "probability": 0.9956 }, { "start": 12555.1, "end": 12558.68, "probability": 0.9844 }, { "start": 12558.82, "end": 12560.72, "probability": 0.8461 }, { "start": 12561.32, "end": 12563.04, "probability": 0.37 }, { "start": 12563.05, "end": 12568.66, "probability": 0.9803 }, { "start": 12569.3, "end": 12572.42, "probability": 0.9596 }, { "start": 12572.46, "end": 12572.56, "probability": 0.9 }, { "start": 12574.88, "end": 12576.18, "probability": 0.9126 }, { "start": 12604.34, "end": 12605.56, "probability": 0.7753 }, { "start": 12607.18, "end": 12609.12, "probability": 0.8999 }, { "start": 12611.04, "end": 12614.88, "probability": 0.9974 }, { "start": 12616.04, "end": 12620.68, "probability": 0.6675 }, { "start": 12620.84, "end": 12621.76, "probability": 0.9634 }, { "start": 12623.2, "end": 12627.86, "probability": 0.9831 }, { "start": 12628.56, "end": 12631.92, "probability": 0.9832 }, { "start": 12633.82, "end": 12635.92, "probability": 0.9928 }, { "start": 12636.44, "end": 12639.98, "probability": 0.983 }, { "start": 12639.98, "end": 12644.18, "probability": 0.9749 }, { "start": 12644.48, "end": 12645.94, "probability": 0.8915 }, { "start": 12646.1, "end": 12648.14, "probability": 0.9664 }, { "start": 12648.58, "end": 12651.48, "probability": 0.8058 }, { "start": 12651.72, "end": 12657.08, "probability": 0.0901 }, { "start": 12657.32, "end": 12658.82, "probability": 0.6498 }, { "start": 12659.46, "end": 12660.78, "probability": 0.8787 }, { "start": 12660.78, "end": 12664.82, "probability": 0.9866 }, { "start": 12665.7, "end": 12671.52, "probability": 0.9291 }, { "start": 12672.56, "end": 12674.86, "probability": 0.9526 }, { "start": 12675.98, "end": 12679.1, "probability": 0.9819 }, { "start": 12680.22, "end": 12682.7, "probability": 0.867 }, { "start": 12685.44, "end": 12686.92, "probability": 0.9465 }, { "start": 12687.72, "end": 12689.82, "probability": 0.9997 }, { "start": 12690.8, "end": 12694.46, "probability": 0.8813 }, { "start": 12694.5, "end": 12696.69, "probability": 0.9958 }, { "start": 12698.28, "end": 12701.2, "probability": 0.5823 }, { "start": 12702.42, "end": 12706.26, "probability": 0.8338 }, { "start": 12706.34, "end": 12711.86, "probability": 0.8092 }, { "start": 12712.02, "end": 12719.94, "probability": 0.991 }, { "start": 12720.26, "end": 12721.9, "probability": 0.8758 }, { "start": 12722.28, "end": 12726.8, "probability": 0.9756 }, { "start": 12727.9, "end": 12731.5, "probability": 0.9983 }, { "start": 12733.0, "end": 12737.32, "probability": 0.9766 }, { "start": 12739.72, "end": 12743.7, "probability": 0.9113 }, { "start": 12745.14, "end": 12748.2, "probability": 0.6405 }, { "start": 12748.2, "end": 12753.46, "probability": 0.6215 }, { "start": 12754.26, "end": 12759.14, "probability": 0.9932 }, { "start": 12760.48, "end": 12762.2, "probability": 0.9504 }, { "start": 12763.62, "end": 12769.66, "probability": 0.8375 }, { "start": 12771.42, "end": 12776.66, "probability": 0.9912 }, { "start": 12777.34, "end": 12781.44, "probability": 0.8362 }, { "start": 12782.72, "end": 12783.92, "probability": 0.9967 }, { "start": 12785.02, "end": 12787.2, "probability": 0.8923 }, { "start": 12787.36, "end": 12789.76, "probability": 0.7271 }, { "start": 12790.78, "end": 12793.74, "probability": 0.9468 }, { "start": 12794.1, "end": 12795.32, "probability": 0.9242 }, { "start": 12796.0, "end": 12798.54, "probability": 0.9338 }, { "start": 12799.78, "end": 12801.22, "probability": 0.6018 }, { "start": 12802.54, "end": 12804.1, "probability": 0.9062 }, { "start": 12805.84, "end": 12807.32, "probability": 0.9866 }, { "start": 12807.98, "end": 12809.32, "probability": 0.9207 }, { "start": 12810.26, "end": 12811.88, "probability": 0.9961 }, { "start": 12813.04, "end": 12814.6, "probability": 0.7951 }, { "start": 12818.98, "end": 12820.08, "probability": 0.9287 }, { "start": 12821.14, "end": 12821.96, "probability": 0.7446 }, { "start": 12824.35, "end": 12829.3, "probability": 0.8965 }, { "start": 12830.08, "end": 12831.38, "probability": 0.7949 }, { "start": 12831.96, "end": 12833.58, "probability": 0.9932 }, { "start": 12833.6, "end": 12836.52, "probability": 0.9958 }, { "start": 12837.6, "end": 12839.8, "probability": 0.957 }, { "start": 12840.54, "end": 12842.48, "probability": 0.9955 }, { "start": 12843.3, "end": 12845.4, "probability": 0.9726 }, { "start": 12846.06, "end": 12848.32, "probability": 0.6814 }, { "start": 12848.46, "end": 12851.5, "probability": 0.9881 }, { "start": 12852.26, "end": 12853.12, "probability": 0.9748 }, { "start": 12854.46, "end": 12856.88, "probability": 0.9131 }, { "start": 12857.68, "end": 12859.0, "probability": 0.8326 }, { "start": 12860.56, "end": 12862.75, "probability": 0.7671 }, { "start": 12864.2, "end": 12867.54, "probability": 0.9359 }, { "start": 12867.54, "end": 12871.22, "probability": 0.6979 }, { "start": 12872.2, "end": 12875.68, "probability": 0.9613 }, { "start": 12877.9, "end": 12879.26, "probability": 0.998 }, { "start": 12879.36, "end": 12885.68, "probability": 0.9806 }, { "start": 12886.78, "end": 12888.14, "probability": 0.9958 }, { "start": 12890.18, "end": 12890.84, "probability": 0.7739 }, { "start": 12891.28, "end": 12893.0, "probability": 0.6089 }, { "start": 12894.14, "end": 12896.0, "probability": 0.9902 }, { "start": 12896.98, "end": 12899.3, "probability": 0.8961 }, { "start": 12899.44, "end": 12902.36, "probability": 0.957 }, { "start": 12902.82, "end": 12903.62, "probability": 0.7363 }, { "start": 12904.58, "end": 12908.14, "probability": 0.8608 }, { "start": 12909.12, "end": 12911.86, "probability": 0.9944 }, { "start": 12912.84, "end": 12914.38, "probability": 0.9736 }, { "start": 12915.0, "end": 12919.44, "probability": 0.9195 }, { "start": 12921.86, "end": 12924.58, "probability": 0.7665 }, { "start": 12927.1, "end": 12930.06, "probability": 0.6294 }, { "start": 12931.36, "end": 12933.42, "probability": 0.9951 }, { "start": 12933.96, "end": 12936.22, "probability": 0.7325 }, { "start": 12936.76, "end": 12938.7, "probability": 0.9783 }, { "start": 12939.72, "end": 12940.18, "probability": 0.8009 }, { "start": 12941.32, "end": 12941.6, "probability": 0.0145 }, { "start": 12944.48, "end": 12945.92, "probability": 0.8721 }, { "start": 12947.46, "end": 12948.88, "probability": 0.8615 }, { "start": 12949.82, "end": 12951.16, "probability": 0.5042 }, { "start": 12953.76, "end": 12956.44, "probability": 0.7653 }, { "start": 12956.96, "end": 12958.24, "probability": 0.8722 }, { "start": 12958.8, "end": 12964.78, "probability": 0.9883 }, { "start": 12965.36, "end": 12970.36, "probability": 0.9242 }, { "start": 12971.08, "end": 12974.32, "probability": 0.9971 }, { "start": 12974.9, "end": 12976.64, "probability": 0.8801 }, { "start": 12977.22, "end": 12979.7, "probability": 0.9968 }, { "start": 12979.78, "end": 12982.36, "probability": 0.9988 }, { "start": 12983.56, "end": 12984.0, "probability": 0.7904 }, { "start": 12984.7, "end": 12986.92, "probability": 0.98 }, { "start": 12986.92, "end": 12989.86, "probability": 0.9972 }, { "start": 12990.56, "end": 12992.48, "probability": 0.6921 }, { "start": 12993.62, "end": 12994.94, "probability": 0.7332 }, { "start": 12995.9, "end": 12998.94, "probability": 0.9829 }, { "start": 12998.94, "end": 13002.18, "probability": 0.9626 }, { "start": 13002.78, "end": 13009.29, "probability": 0.9368 }, { "start": 13010.3, "end": 13012.06, "probability": 0.5717 }, { "start": 13012.68, "end": 13016.76, "probability": 0.9408 }, { "start": 13017.56, "end": 13019.84, "probability": 0.9526 }, { "start": 13020.08, "end": 13022.62, "probability": 0.7585 }, { "start": 13023.28, "end": 13025.76, "probability": 0.9815 }, { "start": 13025.76, "end": 13029.42, "probability": 0.9839 }, { "start": 13030.62, "end": 13031.56, "probability": 0.7229 }, { "start": 13032.2, "end": 13037.0, "probability": 0.7324 }, { "start": 13037.6, "end": 13038.42, "probability": 0.6411 }, { "start": 13038.9, "end": 13040.26, "probability": 0.9007 }, { "start": 13040.38, "end": 13043.48, "probability": 0.9497 }, { "start": 13043.82, "end": 13044.94, "probability": 0.9834 }, { "start": 13046.0, "end": 13049.16, "probability": 0.7207 }, { "start": 13050.22, "end": 13053.04, "probability": 0.8277 }, { "start": 13053.74, "end": 13056.52, "probability": 0.4911 }, { "start": 13057.42, "end": 13059.54, "probability": 0.9831 }, { "start": 13059.54, "end": 13062.72, "probability": 0.9889 }, { "start": 13063.28, "end": 13066.8, "probability": 0.6401 }, { "start": 13068.44, "end": 13070.04, "probability": 0.9618 }, { "start": 13070.12, "end": 13070.72, "probability": 0.7579 }, { "start": 13072.06, "end": 13074.78, "probability": 0.8858 }, { "start": 13076.0, "end": 13078.32, "probability": 0.4818 }, { "start": 13079.3, "end": 13080.58, "probability": 0.4606 }, { "start": 13081.12, "end": 13083.08, "probability": 0.8216 }, { "start": 13083.5, "end": 13084.78, "probability": 0.9871 }, { "start": 13087.42, "end": 13089.0, "probability": 0.4977 }, { "start": 13089.6, "end": 13090.54, "probability": 0.7712 }, { "start": 13091.0, "end": 13092.62, "probability": 0.7252 }, { "start": 13092.8, "end": 13092.9, "probability": 0.9115 }, { "start": 13094.56, "end": 13095.6, "probability": 0.828 }, { "start": 13096.3, "end": 13099.0, "probability": 0.9482 }, { "start": 13100.28, "end": 13104.68, "probability": 0.9621 }, { "start": 13105.64, "end": 13106.84, "probability": 0.7649 }, { "start": 13106.94, "end": 13108.34, "probability": 0.9961 }, { "start": 13108.48, "end": 13111.68, "probability": 0.9846 }, { "start": 13112.34, "end": 13116.4, "probability": 0.7838 }, { "start": 13117.56, "end": 13120.4, "probability": 0.9515 }, { "start": 13121.64, "end": 13123.66, "probability": 0.9873 }, { "start": 13124.64, "end": 13125.24, "probability": 0.7161 }, { "start": 13126.56, "end": 13127.14, "probability": 0.79 }, { "start": 13128.34, "end": 13130.52, "probability": 0.8737 }, { "start": 13131.32, "end": 13136.2, "probability": 0.9877 }, { "start": 13136.28, "end": 13138.02, "probability": 0.8707 }, { "start": 13138.98, "end": 13140.8, "probability": 0.9956 }, { "start": 13141.32, "end": 13144.21, "probability": 0.9077 }, { "start": 13144.86, "end": 13145.56, "probability": 0.9868 }, { "start": 13146.98, "end": 13151.1, "probability": 0.7227 }, { "start": 13151.3, "end": 13153.14, "probability": 0.9649 }, { "start": 13156.95, "end": 13162.06, "probability": 0.979 }, { "start": 13162.06, "end": 13165.9, "probability": 0.7187 }, { "start": 13166.5, "end": 13170.32, "probability": 0.641 }, { "start": 13171.74, "end": 13171.76, "probability": 0.3181 }, { "start": 13171.76, "end": 13173.61, "probability": 0.7007 }, { "start": 13173.94, "end": 13175.0, "probability": 0.2429 }, { "start": 13175.59, "end": 13178.12, "probability": 0.5332 }, { "start": 13178.38, "end": 13180.18, "probability": 0.9925 }, { "start": 13181.1, "end": 13181.98, "probability": 0.3962 }, { "start": 13183.4, "end": 13185.56, "probability": 0.9222 }, { "start": 13186.52, "end": 13187.52, "probability": 0.9507 }, { "start": 13188.1, "end": 13189.06, "probability": 0.7251 }, { "start": 13190.72, "end": 13193.16, "probability": 0.7738 }, { "start": 13194.44, "end": 13201.46, "probability": 0.9204 }, { "start": 13201.64, "end": 13203.78, "probability": 0.9098 }, { "start": 13204.4, "end": 13204.8, "probability": 0.5504 }, { "start": 13205.02, "end": 13207.48, "probability": 0.8625 }, { "start": 13208.12, "end": 13211.72, "probability": 0.97 }, { "start": 13212.44, "end": 13213.76, "probability": 0.9974 }, { "start": 13214.68, "end": 13217.14, "probability": 0.6895 }, { "start": 13217.88, "end": 13220.7, "probability": 0.9941 }, { "start": 13222.34, "end": 13223.5, "probability": 0.7417 }, { "start": 13224.8, "end": 13226.06, "probability": 0.6056 }, { "start": 13227.16, "end": 13230.24, "probability": 0.9871 }, { "start": 13230.32, "end": 13231.08, "probability": 0.9525 }, { "start": 13231.16, "end": 13234.2, "probability": 0.9604 }, { "start": 13235.4, "end": 13236.98, "probability": 0.7422 }, { "start": 13237.1, "end": 13240.58, "probability": 0.993 }, { "start": 13241.28, "end": 13242.68, "probability": 0.8247 }, { "start": 13243.04, "end": 13245.2, "probability": 0.9739 }, { "start": 13246.28, "end": 13248.76, "probability": 0.9912 }, { "start": 13250.14, "end": 13254.62, "probability": 0.9912 }, { "start": 13256.22, "end": 13257.76, "probability": 0.9993 }, { "start": 13259.58, "end": 13262.1, "probability": 0.8988 }, { "start": 13266.32, "end": 13268.32, "probability": 0.4041 }, { "start": 13269.04, "end": 13269.94, "probability": 0.9417 }, { "start": 13269.98, "end": 13270.6, "probability": 0.0927 }, { "start": 13270.88, "end": 13271.38, "probability": 0.564 }, { "start": 13271.46, "end": 13272.92, "probability": 0.86 }, { "start": 13273.06, "end": 13273.3, "probability": 0.419 }, { "start": 13273.76, "end": 13274.28, "probability": 0.5126 }, { "start": 13274.88, "end": 13276.26, "probability": 0.9158 }, { "start": 13276.74, "end": 13276.9, "probability": 0.177 }, { "start": 13276.9, "end": 13278.89, "probability": 0.9007 }, { "start": 13279.26, "end": 13281.46, "probability": 0.9863 }, { "start": 13282.12, "end": 13284.54, "probability": 0.9159 }, { "start": 13285.5, "end": 13285.66, "probability": 0.1602 }, { "start": 13285.66, "end": 13287.22, "probability": 0.7075 }, { "start": 13287.66, "end": 13289.84, "probability": 0.8055 }, { "start": 13291.1, "end": 13292.5, "probability": 0.4263 }, { "start": 13292.78, "end": 13293.2, "probability": 0.4588 }, { "start": 13294.28, "end": 13294.84, "probability": 0.866 }, { "start": 13294.92, "end": 13296.78, "probability": 0.8455 }, { "start": 13297.3, "end": 13297.98, "probability": 0.7468 }, { "start": 13299.06, "end": 13300.58, "probability": 0.9194 }, { "start": 13301.64, "end": 13303.42, "probability": 0.8235 }, { "start": 13305.12, "end": 13308.4, "probability": 0.9839 }, { "start": 13309.0, "end": 13311.5, "probability": 0.9781 }, { "start": 13312.86, "end": 13313.64, "probability": 0.7763 }, { "start": 13314.7, "end": 13315.92, "probability": 0.9795 }, { "start": 13316.02, "end": 13317.96, "probability": 0.9719 }, { "start": 13318.04, "end": 13320.34, "probability": 0.9846 }, { "start": 13320.88, "end": 13321.48, "probability": 0.9001 }, { "start": 13321.48, "end": 13322.42, "probability": 0.6448 }, { "start": 13323.22, "end": 13323.62, "probability": 0.9742 }, { "start": 13326.0, "end": 13328.94, "probability": 0.7806 }, { "start": 13331.0, "end": 13333.46, "probability": 0.9713 }, { "start": 13334.5, "end": 13337.62, "probability": 0.5024 }, { "start": 13339.02, "end": 13340.98, "probability": 0.835 }, { "start": 13342.82, "end": 13344.48, "probability": 0.461 }, { "start": 13345.76, "end": 13347.18, "probability": 0.5187 }, { "start": 13349.52, "end": 13351.64, "probability": 0.7233 }, { "start": 13353.6, "end": 13355.54, "probability": 0.8058 }, { "start": 13356.1, "end": 13357.36, "probability": 0.3857 }, { "start": 13359.92, "end": 13362.2, "probability": 0.0591 }, { "start": 13362.44, "end": 13365.26, "probability": 0.3607 }, { "start": 13366.1, "end": 13366.92, "probability": 0.4886 }, { "start": 13367.4, "end": 13368.51, "probability": 0.1693 }, { "start": 13369.52, "end": 13369.68, "probability": 0.0115 }, { "start": 13369.68, "end": 13369.68, "probability": 0.0712 }, { "start": 13369.68, "end": 13370.02, "probability": 0.1417 }, { "start": 13370.02, "end": 13370.82, "probability": 0.3866 }, { "start": 13371.84, "end": 13373.78, "probability": 0.8352 }, { "start": 13374.46, "end": 13377.14, "probability": 0.5898 }, { "start": 13377.14, "end": 13377.86, "probability": 0.099 }, { "start": 13378.16, "end": 13378.56, "probability": 0.3709 }, { "start": 13379.22, "end": 13380.0, "probability": 0.6346 }, { "start": 13381.42, "end": 13383.36, "probability": 0.9766 }, { "start": 13384.06, "end": 13384.88, "probability": 0.4676 }, { "start": 13384.96, "end": 13385.76, "probability": 0.801 }, { "start": 13385.98, "end": 13387.72, "probability": 0.9136 }, { "start": 13388.6, "end": 13389.54, "probability": 0.8838 }, { "start": 13389.7, "end": 13392.64, "probability": 0.9391 }, { "start": 13393.54, "end": 13395.06, "probability": 0.999 }, { "start": 13395.86, "end": 13398.36, "probability": 0.9972 }, { "start": 13398.78, "end": 13400.54, "probability": 0.9057 }, { "start": 13401.04, "end": 13402.72, "probability": 0.998 }, { "start": 13402.72, "end": 13403.74, "probability": 0.9938 }, { "start": 13404.38, "end": 13407.52, "probability": 0.9952 }, { "start": 13408.0, "end": 13408.44, "probability": 0.7067 }, { "start": 13409.18, "end": 13409.68, "probability": 0.6669 }, { "start": 13409.88, "end": 13411.8, "probability": 0.8782 }, { "start": 13416.2, "end": 13420.12, "probability": 0.9187 }, { "start": 13420.12, "end": 13424.46, "probability": 0.9773 }, { "start": 13424.61, "end": 13425.54, "probability": 0.7969 }, { "start": 13426.24, "end": 13427.76, "probability": 0.0592 }, { "start": 13428.66, "end": 13431.36, "probability": 0.7224 }, { "start": 13431.62, "end": 13432.78, "probability": 0.6721 }, { "start": 13433.44, "end": 13437.56, "probability": 0.6927 }, { "start": 13437.86, "end": 13439.6, "probability": 0.7517 }, { "start": 13440.82, "end": 13447.46, "probability": 0.9706 }, { "start": 13448.52, "end": 13450.58, "probability": 0.9879 }, { "start": 13451.68, "end": 13453.74, "probability": 0.9873 }, { "start": 13455.2, "end": 13459.46, "probability": 0.9495 }, { "start": 13460.18, "end": 13462.54, "probability": 0.8606 }, { "start": 13462.78, "end": 13466.41, "probability": 0.9037 }, { "start": 13467.64, "end": 13469.72, "probability": 0.999 }, { "start": 13470.34, "end": 13475.76, "probability": 0.9985 }, { "start": 13476.58, "end": 13485.1, "probability": 0.9824 }, { "start": 13486.18, "end": 13489.66, "probability": 0.9814 }, { "start": 13490.74, "end": 13493.32, "probability": 0.997 }, { "start": 13494.04, "end": 13497.24, "probability": 0.9816 }, { "start": 13497.96, "end": 13502.04, "probability": 0.9851 }, { "start": 13502.66, "end": 13509.14, "probability": 0.9763 }, { "start": 13509.7, "end": 13516.94, "probability": 0.9731 }, { "start": 13517.56, "end": 13520.32, "probability": 0.7075 }, { "start": 13521.44, "end": 13525.6, "probability": 0.9935 }, { "start": 13526.22, "end": 13527.54, "probability": 0.8676 }, { "start": 13528.22, "end": 13531.12, "probability": 0.9932 }, { "start": 13531.82, "end": 13533.52, "probability": 0.7448 }, { "start": 13534.52, "end": 13540.66, "probability": 0.9792 }, { "start": 13541.84, "end": 13544.92, "probability": 0.9111 }, { "start": 13545.64, "end": 13554.14, "probability": 0.9912 }, { "start": 13554.88, "end": 13557.54, "probability": 0.9836 }, { "start": 13558.32, "end": 13561.12, "probability": 0.8848 }, { "start": 13563.14, "end": 13568.24, "probability": 0.999 }, { "start": 13568.36, "end": 13572.33, "probability": 0.9258 }, { "start": 13573.04, "end": 13578.36, "probability": 0.9906 }, { "start": 13579.74, "end": 13583.56, "probability": 0.9956 }, { "start": 13584.28, "end": 13586.09, "probability": 0.5844 }, { "start": 13587.02, "end": 13589.72, "probability": 0.6611 }, { "start": 13590.58, "end": 13591.8, "probability": 0.9289 }, { "start": 13592.36, "end": 13593.34, "probability": 0.9803 }, { "start": 13593.88, "end": 13600.32, "probability": 0.798 }, { "start": 13600.82, "end": 13607.72, "probability": 0.9919 }, { "start": 13608.18, "end": 13610.9, "probability": 0.814 }, { "start": 13611.76, "end": 13613.46, "probability": 0.9971 }, { "start": 13613.88, "end": 13615.28, "probability": 0.7279 }, { "start": 13616.0, "end": 13620.14, "probability": 0.9429 }, { "start": 13621.0, "end": 13624.68, "probability": 0.7586 }, { "start": 13625.54, "end": 13628.35, "probability": 0.8519 }, { "start": 13628.94, "end": 13633.06, "probability": 0.8859 }, { "start": 13634.56, "end": 13636.54, "probability": 0.722 }, { "start": 13637.18, "end": 13639.61, "probability": 0.7801 }, { "start": 13640.94, "end": 13642.2, "probability": 0.7124 }, { "start": 13642.34, "end": 13645.6, "probability": 0.9631 }, { "start": 13645.9, "end": 13648.02, "probability": 0.6662 }, { "start": 13650.78, "end": 13654.52, "probability": 0.8344 }, { "start": 13655.88, "end": 13658.28, "probability": 0.9652 }, { "start": 13659.26, "end": 13665.4, "probability": 0.9723 }, { "start": 13665.86, "end": 13668.58, "probability": 0.8849 }, { "start": 13669.02, "end": 13670.74, "probability": 0.6628 }, { "start": 13671.4, "end": 13671.54, "probability": 0.3326 }, { "start": 13671.54, "end": 13671.66, "probability": 0.4175 }, { "start": 13672.34, "end": 13676.58, "probability": 0.9893 }, { "start": 13677.08, "end": 13679.38, "probability": 0.9896 }, { "start": 13679.94, "end": 13680.68, "probability": 0.7859 }, { "start": 13680.76, "end": 13683.08, "probability": 0.8222 }, { "start": 13684.16, "end": 13685.34, "probability": 0.8995 }, { "start": 13686.12, "end": 13686.44, "probability": 0.7059 }, { "start": 13688.24, "end": 13689.88, "probability": 0.3518 }, { "start": 13690.44, "end": 13690.68, "probability": 0.9279 }, { "start": 13692.6, "end": 13696.66, "probability": 0.9392 }, { "start": 13708.08, "end": 13709.9, "probability": 0.6006 }, { "start": 13711.52, "end": 13717.04, "probability": 0.9221 }, { "start": 13717.04, "end": 13721.46, "probability": 0.9978 }, { "start": 13722.56, "end": 13723.8, "probability": 0.95 }, { "start": 13724.32, "end": 13725.46, "probability": 0.9585 }, { "start": 13725.96, "end": 13726.78, "probability": 0.7613 }, { "start": 13726.94, "end": 13729.16, "probability": 0.4937 }, { "start": 13730.54, "end": 13732.56, "probability": 0.5009 }, { "start": 13732.56, "end": 13733.0, "probability": 0.5909 }, { "start": 13733.94, "end": 13735.98, "probability": 0.9914 }, { "start": 13736.66, "end": 13739.96, "probability": 0.878 }, { "start": 13745.76, "end": 13751.04, "probability": 0.9601 }, { "start": 13751.1, "end": 13756.26, "probability": 0.9977 }, { "start": 13756.36, "end": 13761.48, "probability": 0.9989 }, { "start": 13762.56, "end": 13764.66, "probability": 0.9763 }, { "start": 13765.08, "end": 13767.42, "probability": 0.9709 }, { "start": 13768.22, "end": 13772.14, "probability": 0.973 }, { "start": 13773.88, "end": 13775.3, "probability": 0.9806 }, { "start": 13775.48, "end": 13778.36, "probability": 0.8137 }, { "start": 13778.98, "end": 13783.7, "probability": 0.9608 }, { "start": 13785.64, "end": 13789.7, "probability": 0.9873 }, { "start": 13790.58, "end": 13792.24, "probability": 0.6933 }, { "start": 13792.94, "end": 13794.26, "probability": 0.6348 }, { "start": 13795.68, "end": 13799.92, "probability": 0.9727 }, { "start": 13800.68, "end": 13801.56, "probability": 0.8159 }, { "start": 13802.64, "end": 13804.76, "probability": 0.8364 }, { "start": 13806.04, "end": 13807.3, "probability": 0.8638 }, { "start": 13808.2, "end": 13811.32, "probability": 0.9829 }, { "start": 13812.74, "end": 13815.06, "probability": 0.9905 }, { "start": 13815.68, "end": 13819.04, "probability": 0.9924 }, { "start": 13819.64, "end": 13826.14, "probability": 0.7623 }, { "start": 13826.24, "end": 13831.22, "probability": 0.973 }, { "start": 13832.42, "end": 13835.16, "probability": 0.6599 }, { "start": 13835.22, "end": 13837.78, "probability": 0.4967 }, { "start": 13838.16, "end": 13838.82, "probability": 0.5833 }, { "start": 13839.28, "end": 13843.16, "probability": 0.9817 }, { "start": 13844.02, "end": 13848.92, "probability": 0.9884 }, { "start": 13850.74, "end": 13856.96, "probability": 0.9193 }, { "start": 13857.84, "end": 13860.8, "probability": 0.979 }, { "start": 13860.98, "end": 13861.98, "probability": 0.9404 }, { "start": 13864.28, "end": 13868.92, "probability": 0.9264 }, { "start": 13868.92, "end": 13873.08, "probability": 0.9993 }, { "start": 13873.08, "end": 13879.14, "probability": 0.9832 }, { "start": 13879.16, "end": 13884.06, "probability": 0.9917 }, { "start": 13885.5, "end": 13888.84, "probability": 0.9909 }, { "start": 13888.84, "end": 13893.7, "probability": 0.9841 }, { "start": 13895.22, "end": 13898.72, "probability": 0.993 }, { "start": 13898.74, "end": 13903.06, "probability": 0.9854 }, { "start": 13904.24, "end": 13908.68, "probability": 0.8073 }, { "start": 13910.08, "end": 13913.22, "probability": 0.9952 }, { "start": 13913.64, "end": 13915.82, "probability": 0.9737 }, { "start": 13916.64, "end": 13918.27, "probability": 0.9957 }, { "start": 13918.92, "end": 13921.5, "probability": 0.9696 }, { "start": 13921.5, "end": 13924.64, "probability": 0.9968 }, { "start": 13925.3, "end": 13928.6, "probability": 0.9933 }, { "start": 13930.26, "end": 13935.38, "probability": 0.988 }, { "start": 13935.38, "end": 13940.14, "probability": 0.9976 }, { "start": 13940.9, "end": 13944.1, "probability": 0.8016 }, { "start": 13945.58, "end": 13948.78, "probability": 0.654 }, { "start": 13949.5, "end": 13951.42, "probability": 0.9373 }, { "start": 13951.96, "end": 13954.62, "probability": 0.8936 }, { "start": 13954.8, "end": 13960.32, "probability": 0.8114 }, { "start": 13960.32, "end": 13964.36, "probability": 0.9948 }, { "start": 13966.16, "end": 13969.86, "probability": 0.9825 }, { "start": 13971.08, "end": 13972.08, "probability": 0.6243 }, { "start": 13972.6, "end": 13976.78, "probability": 0.9972 }, { "start": 13976.92, "end": 13981.36, "probability": 0.9906 }, { "start": 13982.64, "end": 13988.3, "probability": 0.9954 }, { "start": 13988.36, "end": 13990.7, "probability": 0.998 }, { "start": 13991.32, "end": 13993.32, "probability": 0.8099 }, { "start": 13994.04, "end": 13997.54, "probability": 0.9969 }, { "start": 13997.68, "end": 14001.22, "probability": 0.9036 }, { "start": 14002.02, "end": 14004.56, "probability": 0.9523 }, { "start": 14004.56, "end": 14007.98, "probability": 0.9982 }, { "start": 14008.62, "end": 14010.38, "probability": 0.7721 }, { "start": 14011.83, "end": 14013.72, "probability": 0.9028 }, { "start": 14015.62, "end": 14016.86, "probability": 0.858 }, { "start": 14017.04, "end": 14020.68, "probability": 0.9793 }, { "start": 14020.68, "end": 14024.72, "probability": 0.9839 }, { "start": 14024.84, "end": 14027.88, "probability": 0.9008 }, { "start": 14029.9, "end": 14034.24, "probability": 0.9949 }, { "start": 14034.24, "end": 14041.3, "probability": 0.9093 }, { "start": 14042.16, "end": 14045.66, "probability": 0.938 }, { "start": 14046.4, "end": 14049.85, "probability": 0.6121 }, { "start": 14050.42, "end": 14050.44, "probability": 0.5565 }, { "start": 14050.44, "end": 14052.04, "probability": 0.924 }, { "start": 14052.18, "end": 14052.82, "probability": 0.6529 }, { "start": 14052.92, "end": 14054.68, "probability": 0.9562 }, { "start": 14055.44, "end": 14058.34, "probability": 0.9878 }, { "start": 14059.2, "end": 14065.23, "probability": 0.8867 }, { "start": 14066.06, "end": 14071.22, "probability": 0.9759 }, { "start": 14072.12, "end": 14074.68, "probability": 0.9453 }, { "start": 14075.8, "end": 14079.98, "probability": 0.9458 }, { "start": 14079.98, "end": 14083.32, "probability": 0.9032 }, { "start": 14083.82, "end": 14087.88, "probability": 0.6918 }, { "start": 14088.56, "end": 14089.94, "probability": 0.8454 }, { "start": 14090.44, "end": 14091.1, "probability": 0.7489 }, { "start": 14091.2, "end": 14092.28, "probability": 0.6899 }, { "start": 14092.76, "end": 14093.92, "probability": 0.9368 }, { "start": 14095.34, "end": 14101.16, "probability": 0.9401 }, { "start": 14101.2, "end": 14105.84, "probability": 0.9937 }, { "start": 14107.9, "end": 14112.86, "probability": 0.9815 }, { "start": 14113.78, "end": 14118.3, "probability": 0.992 }, { "start": 14119.46, "end": 14121.02, "probability": 0.8948 }, { "start": 14121.38, "end": 14123.92, "probability": 0.9637 }, { "start": 14125.1, "end": 14130.56, "probability": 0.9873 }, { "start": 14131.3, "end": 14132.46, "probability": 0.9961 }, { "start": 14133.2, "end": 14134.72, "probability": 0.8278 }, { "start": 14135.8, "end": 14135.84, "probability": 0.1633 }, { "start": 14135.84, "end": 14136.76, "probability": 0.4539 }, { "start": 14137.48, "end": 14138.76, "probability": 0.9935 }, { "start": 14139.66, "end": 14142.3, "probability": 0.9111 }, { "start": 14142.82, "end": 14148.4, "probability": 0.9759 }, { "start": 14149.38, "end": 14154.98, "probability": 0.6064 }, { "start": 14155.52, "end": 14157.58, "probability": 0.9655 }, { "start": 14161.32, "end": 14164.68, "probability": 0.7189 }, { "start": 14165.7, "end": 14170.32, "probability": 0.9795 }, { "start": 14174.82, "end": 14176.58, "probability": 0.6636 }, { "start": 14176.88, "end": 14176.98, "probability": 0.1676 }, { "start": 14176.98, "end": 14178.6, "probability": 0.3759 }, { "start": 14178.66, "end": 14180.54, "probability": 0.6704 }, { "start": 14180.56, "end": 14180.72, "probability": 0.0079 }, { "start": 14180.74, "end": 14184.64, "probability": 0.2311 }, { "start": 14184.64, "end": 14187.84, "probability": 0.1358 }, { "start": 14188.1, "end": 14190.2, "probability": 0.1991 }, { "start": 14190.74, "end": 14193.2, "probability": 0.4947 }, { "start": 14193.3, "end": 14193.84, "probability": 0.7273 }, { "start": 14194.02, "end": 14198.6, "probability": 0.9129 }, { "start": 14199.96, "end": 14205.14, "probability": 0.7106 }, { "start": 14207.02, "end": 14209.98, "probability": 0.8571 }, { "start": 14211.38, "end": 14216.62, "probability": 0.9961 }, { "start": 14217.5, "end": 14218.5, "probability": 0.9021 }, { "start": 14218.62, "end": 14219.42, "probability": 0.8565 }, { "start": 14219.42, "end": 14220.59, "probability": 0.9658 }, { "start": 14221.04, "end": 14223.54, "probability": 0.9371 }, { "start": 14223.9, "end": 14226.58, "probability": 0.9211 }, { "start": 14227.44, "end": 14230.74, "probability": 0.9982 }, { "start": 14231.44, "end": 14235.1, "probability": 0.9613 }, { "start": 14235.84, "end": 14243.2, "probability": 0.9989 }, { "start": 14243.52, "end": 14244.68, "probability": 0.9951 }, { "start": 14245.34, "end": 14245.66, "probability": 0.6033 }, { "start": 14246.06, "end": 14250.48, "probability": 0.9899 }, { "start": 14250.68, "end": 14253.21, "probability": 0.9374 }, { "start": 14254.02, "end": 14257.72, "probability": 0.719 }, { "start": 14257.78, "end": 14259.46, "probability": 0.7524 }, { "start": 14259.5, "end": 14268.06, "probability": 0.9714 }, { "start": 14268.06, "end": 14268.72, "probability": 0.9114 }, { "start": 14269.32, "end": 14271.26, "probability": 0.6999 }, { "start": 14271.44, "end": 14275.43, "probability": 0.613 }, { "start": 14276.08, "end": 14276.78, "probability": 0.1532 }, { "start": 14277.06, "end": 14277.7, "probability": 0.2648 }, { "start": 14277.9, "end": 14280.62, "probability": 0.7869 }, { "start": 14281.9, "end": 14286.64, "probability": 0.7657 }, { "start": 14286.84, "end": 14288.58, "probability": 0.3834 }, { "start": 14289.36, "end": 14291.9, "probability": 0.9535 }, { "start": 14293.48, "end": 14297.38, "probability": 0.8133 }, { "start": 14297.38, "end": 14298.58, "probability": 0.1218 }, { "start": 14299.04, "end": 14299.52, "probability": 0.5747 }, { "start": 14300.12, "end": 14302.32, "probability": 0.7651 }, { "start": 14303.0, "end": 14306.94, "probability": 0.7137 }, { "start": 14307.54, "end": 14312.64, "probability": 0.9581 }, { "start": 14313.14, "end": 14318.76, "probability": 0.9976 }, { "start": 14319.34, "end": 14321.56, "probability": 0.9191 }, { "start": 14321.96, "end": 14322.3, "probability": 0.8577 }, { "start": 14322.88, "end": 14323.42, "probability": 0.6839 }, { "start": 14323.42, "end": 14325.7, "probability": 0.9491 }, { "start": 14359.34, "end": 14361.06, "probability": 0.5595 }, { "start": 14361.18, "end": 14363.06, "probability": 0.9118 }, { "start": 14363.8, "end": 14364.2, "probability": 0.8895 }, { "start": 14374.29, "end": 14378.22, "probability": 0.6951 }, { "start": 14379.28, "end": 14384.44, "probability": 0.9969 }, { "start": 14390.5, "end": 14391.97, "probability": 0.7848 }, { "start": 14394.51, "end": 14396.96, "probability": 0.2333 }, { "start": 14397.18, "end": 14397.86, "probability": 0.7413 }, { "start": 14399.18, "end": 14405.08, "probability": 0.9932 }, { "start": 14405.54, "end": 14407.54, "probability": 0.9972 }, { "start": 14408.22, "end": 14410.76, "probability": 0.9927 }, { "start": 14411.34, "end": 14413.68, "probability": 0.767 }, { "start": 14414.64, "end": 14415.58, "probability": 0.9645 }, { "start": 14415.64, "end": 14416.58, "probability": 0.6934 }, { "start": 14417.08, "end": 14418.34, "probability": 0.7723 }, { "start": 14418.58, "end": 14419.92, "probability": 0.9871 }, { "start": 14420.7, "end": 14421.46, "probability": 0.6686 }, { "start": 14421.94, "end": 14422.4, "probability": 0.939 }, { "start": 14423.18, "end": 14424.06, "probability": 0.913 }, { "start": 14424.12, "end": 14426.56, "probability": 0.9766 }, { "start": 14427.3, "end": 14428.19, "probability": 0.7881 }, { "start": 14429.04, "end": 14430.3, "probability": 0.9958 }, { "start": 14431.34, "end": 14433.53, "probability": 0.9651 }, { "start": 14433.92, "end": 14434.66, "probability": 0.933 }, { "start": 14435.1, "end": 14436.46, "probability": 0.8684 }, { "start": 14437.3, "end": 14438.42, "probability": 0.9069 }, { "start": 14439.32, "end": 14442.76, "probability": 0.9875 }, { "start": 14443.84, "end": 14445.9, "probability": 0.6709 }, { "start": 14446.66, "end": 14448.58, "probability": 0.8113 }, { "start": 14449.46, "end": 14451.35, "probability": 0.8942 }, { "start": 14452.0, "end": 14453.8, "probability": 0.9486 }, { "start": 14455.3, "end": 14456.72, "probability": 0.8389 }, { "start": 14457.78, "end": 14458.01, "probability": 0.4126 }, { "start": 14458.86, "end": 14463.38, "probability": 0.9472 }, { "start": 14464.02, "end": 14465.24, "probability": 0.999 }, { "start": 14466.3, "end": 14468.28, "probability": 0.8334 }, { "start": 14469.0, "end": 14469.46, "probability": 0.5664 }, { "start": 14470.68, "end": 14474.02, "probability": 0.95 }, { "start": 14474.72, "end": 14476.28, "probability": 0.7678 }, { "start": 14477.04, "end": 14480.02, "probability": 0.9855 }, { "start": 14480.86, "end": 14481.5, "probability": 0.9881 }, { "start": 14481.64, "end": 14482.62, "probability": 0.9122 }, { "start": 14482.68, "end": 14484.3, "probability": 0.7358 }, { "start": 14484.42, "end": 14489.34, "probability": 0.9618 }, { "start": 14490.36, "end": 14492.38, "probability": 0.9912 }, { "start": 14492.72, "end": 14495.08, "probability": 0.9476 }, { "start": 14495.84, "end": 14496.72, "probability": 0.9712 }, { "start": 14497.38, "end": 14498.14, "probability": 0.5567 }, { "start": 14498.24, "end": 14499.71, "probability": 0.9827 }, { "start": 14500.68, "end": 14502.06, "probability": 0.8181 }, { "start": 14503.12, "end": 14505.11, "probability": 0.9387 }, { "start": 14506.4, "end": 14508.6, "probability": 0.9865 }, { "start": 14509.26, "end": 14513.7, "probability": 0.9528 }, { "start": 14514.2, "end": 14516.08, "probability": 0.9474 }, { "start": 14516.26, "end": 14519.48, "probability": 0.3073 }, { "start": 14520.06, "end": 14520.86, "probability": 0.1344 }, { "start": 14521.52, "end": 14526.28, "probability": 0.4725 }, { "start": 14526.66, "end": 14529.32, "probability": 0.3553 }, { "start": 14529.58, "end": 14529.76, "probability": 0.8162 }, { "start": 14530.4, "end": 14533.52, "probability": 0.71 }, { "start": 14533.88, "end": 14535.94, "probability": 0.8774 }, { "start": 14536.66, "end": 14537.29, "probability": 0.6679 }, { "start": 14538.58, "end": 14542.42, "probability": 0.9949 }, { "start": 14543.4, "end": 14545.18, "probability": 0.7494 }, { "start": 14546.6, "end": 14548.12, "probability": 0.5205 }, { "start": 14548.16, "end": 14550.14, "probability": 0.7928 }, { "start": 14550.7, "end": 14555.32, "probability": 0.9826 }, { "start": 14555.68, "end": 14557.54, "probability": 0.9793 }, { "start": 14557.64, "end": 14558.56, "probability": 0.8895 }, { "start": 14560.58, "end": 14563.32, "probability": 0.688 }, { "start": 14581.32, "end": 14583.1, "probability": 0.6483 }, { "start": 14584.72, "end": 14586.66, "probability": 0.7579 }, { "start": 14587.52, "end": 14590.58, "probability": 0.9416 }, { "start": 14592.14, "end": 14595.14, "probability": 0.9093 }, { "start": 14596.4, "end": 14598.76, "probability": 0.9551 }, { "start": 14599.54, "end": 14605.06, "probability": 0.8542 }, { "start": 14605.68, "end": 14609.5, "probability": 0.7231 }, { "start": 14610.12, "end": 14612.44, "probability": 0.6534 }, { "start": 14612.78, "end": 14619.1, "probability": 0.995 }, { "start": 14619.5, "end": 14621.56, "probability": 0.7538 }, { "start": 14622.14, "end": 14622.48, "probability": 0.5589 }, { "start": 14623.02, "end": 14625.48, "probability": 0.9084 }, { "start": 14626.06, "end": 14636.42, "probability": 0.9922 }, { "start": 14636.94, "end": 14638.52, "probability": 0.5984 }, { "start": 14638.66, "end": 14643.36, "probability": 0.7432 }, { "start": 14643.96, "end": 14645.14, "probability": 0.7631 }, { "start": 14645.32, "end": 14650.22, "probability": 0.9956 }, { "start": 14650.62, "end": 14653.04, "probability": 0.9922 }, { "start": 14653.52, "end": 14655.03, "probability": 0.8293 }, { "start": 14655.7, "end": 14661.56, "probability": 0.938 }, { "start": 14662.32, "end": 14669.5, "probability": 0.9894 }, { "start": 14670.14, "end": 14675.2, "probability": 0.9892 }, { "start": 14675.44, "end": 14679.18, "probability": 0.8412 }, { "start": 14679.36, "end": 14681.58, "probability": 0.8522 }, { "start": 14682.52, "end": 14686.54, "probability": 0.9979 }, { "start": 14686.9, "end": 14692.28, "probability": 0.7994 }, { "start": 14692.82, "end": 14694.2, "probability": 0.9628 }, { "start": 14694.62, "end": 14698.12, "probability": 0.9884 }, { "start": 14698.26, "end": 14699.24, "probability": 0.9716 }, { "start": 14700.18, "end": 14705.42, "probability": 0.9888 }, { "start": 14706.04, "end": 14707.34, "probability": 0.981 }, { "start": 14708.24, "end": 14709.34, "probability": 0.9194 }, { "start": 14709.8, "end": 14715.0, "probability": 0.8557 }, { "start": 14715.52, "end": 14719.36, "probability": 0.9259 }, { "start": 14719.82, "end": 14722.1, "probability": 0.5386 }, { "start": 14722.52, "end": 14727.1, "probability": 0.9518 }, { "start": 14729.02, "end": 14729.58, "probability": 0.5847 }, { "start": 14729.7, "end": 14735.04, "probability": 0.7358 }, { "start": 14735.08, "end": 14736.74, "probability": 0.8557 }, { "start": 14737.46, "end": 14739.99, "probability": 0.2244 }, { "start": 14740.16, "end": 14743.74, "probability": 0.778 }, { "start": 14743.74, "end": 14747.42, "probability": 0.6521 }, { "start": 14748.0, "end": 14750.42, "probability": 0.853 }, { "start": 14751.66, "end": 14756.06, "probability": 0.7015 }, { "start": 14757.3, "end": 14761.62, "probability": 0.7659 }, { "start": 14762.52, "end": 14764.66, "probability": 0.8991 }, { "start": 14765.46, "end": 14767.68, "probability": 0.9857 }, { "start": 14768.32, "end": 14770.96, "probability": 0.9923 }, { "start": 14771.72, "end": 14774.14, "probability": 0.9862 }, { "start": 14774.82, "end": 14777.2, "probability": 0.9835 }, { "start": 14778.5, "end": 14784.86, "probability": 0.9802 }, { "start": 14785.52, "end": 14785.84, "probability": 0.7364 }, { "start": 14787.16, "end": 14788.02, "probability": 0.6029 }, { "start": 14790.54, "end": 14794.88, "probability": 0.679 }, { "start": 14795.5, "end": 14797.24, "probability": 0.8525 }, { "start": 14799.04, "end": 14804.1, "probability": 0.9031 }, { "start": 14805.44, "end": 14806.46, "probability": 0.9182 }, { "start": 14808.06, "end": 14809.06, "probability": 0.972 }, { "start": 14809.64, "end": 14810.55, "probability": 0.9835 }, { "start": 14812.1, "end": 14812.74, "probability": 0.9945 }, { "start": 14814.12, "end": 14815.12, "probability": 0.7133 }, { "start": 14816.9, "end": 14822.46, "probability": 0.9818 }, { "start": 14823.62, "end": 14826.36, "probability": 0.8354 }, { "start": 14828.12, "end": 14834.14, "probability": 0.9373 }, { "start": 14835.28, "end": 14837.88, "probability": 0.9702 }, { "start": 14838.62, "end": 14840.82, "probability": 0.8594 }, { "start": 14841.66, "end": 14842.68, "probability": 0.8342 }, { "start": 14844.48, "end": 14845.54, "probability": 0.7697 }, { "start": 14848.02, "end": 14850.1, "probability": 0.9258 }, { "start": 14853.6, "end": 14854.43, "probability": 0.7178 }, { "start": 14864.32, "end": 14866.8, "probability": 0.6133 }, { "start": 14867.48, "end": 14870.44, "probability": 0.9052 }, { "start": 14870.92, "end": 14873.16, "probability": 0.9303 }, { "start": 14873.46, "end": 14876.08, "probability": 0.8342 }, { "start": 14876.66, "end": 14879.18, "probability": 0.9708 }, { "start": 14880.66, "end": 14883.74, "probability": 0.8037 }, { "start": 14885.7, "end": 14887.86, "probability": 0.6918 }, { "start": 14888.6, "end": 14889.04, "probability": 0.8228 }, { "start": 14889.72, "end": 14890.56, "probability": 0.8233 }, { "start": 14891.62, "end": 14892.1, "probability": 0.9471 }, { "start": 14892.74, "end": 14893.66, "probability": 0.889 }, { "start": 14894.1, "end": 14896.98, "probability": 0.7492 }, { "start": 14897.34, "end": 14899.98, "probability": 0.9348 }, { "start": 14900.9, "end": 14908.8, "probability": 0.8845 }, { "start": 14910.88, "end": 14911.76, "probability": 0.9415 }, { "start": 14912.84, "end": 14914.04, "probability": 0.6762 }, { "start": 14915.2, "end": 14915.74, "probability": 0.8135 }, { "start": 14916.96, "end": 14918.22, "probability": 0.3481 }, { "start": 14919.1, "end": 14921.72, "probability": 0.6347 }, { "start": 14922.6, "end": 14923.78, "probability": 0.7587 }, { "start": 14924.52, "end": 14926.66, "probability": 0.8381 }, { "start": 14927.38, "end": 14929.4, "probability": 0.991 }, { "start": 14930.42, "end": 14933.32, "probability": 0.8999 }, { "start": 14934.2, "end": 14934.86, "probability": 0.952 }, { "start": 14936.22, "end": 14937.48, "probability": 0.8067 }, { "start": 14937.9, "end": 14941.02, "probability": 0.9731 }, { "start": 14941.32, "end": 14944.0, "probability": 0.6805 }, { "start": 14944.92, "end": 14947.62, "probability": 0.7566 }, { "start": 14948.6, "end": 14951.72, "probability": 0.9264 }, { "start": 14953.1, "end": 14960.68, "probability": 0.9726 }, { "start": 14961.22, "end": 14964.3, "probability": 0.9788 }, { "start": 14965.02, "end": 14966.96, "probability": 0.9805 }, { "start": 14968.1, "end": 14970.02, "probability": 0.9146 }, { "start": 14970.9, "end": 14976.98, "probability": 0.5917 }, { "start": 14977.5, "end": 14980.3, "probability": 0.9804 }, { "start": 14980.86, "end": 14981.76, "probability": 0.674 }, { "start": 14982.38, "end": 14987.06, "probability": 0.9469 }, { "start": 14988.08, "end": 14990.94, "probability": 0.9871 }, { "start": 14991.76, "end": 14994.42, "probability": 0.6893 }, { "start": 14995.18, "end": 14998.06, "probability": 0.9674 }, { "start": 14998.74, "end": 15001.6, "probability": 0.8786 }, { "start": 15002.2, "end": 15005.12, "probability": 0.7289 }, { "start": 15006.04, "end": 15008.78, "probability": 0.6634 }, { "start": 15010.92, "end": 15017.16, "probability": 0.7679 }, { "start": 15019.03, "end": 15023.34, "probability": 0.7387 }, { "start": 15024.08, "end": 15027.04, "probability": 0.8937 }, { "start": 15027.7, "end": 15029.82, "probability": 0.8428 }, { "start": 15031.14, "end": 15033.22, "probability": 0.8931 }, { "start": 15033.88, "end": 15036.6, "probability": 0.6779 }, { "start": 15037.92, "end": 15041.42, "probability": 0.9802 }, { "start": 15041.94, "end": 15044.58, "probability": 0.9617 }, { "start": 15048.2, "end": 15051.06, "probability": 0.7308 }, { "start": 15051.16, "end": 15056.4, "probability": 0.7004 }, { "start": 15056.9, "end": 15059.28, "probability": 0.9588 }, { "start": 15061.66, "end": 15065.48, "probability": 0.7565 }, { "start": 15066.46, "end": 15068.86, "probability": 0.8015 }, { "start": 15072.04, "end": 15072.64, "probability": 0.9933 }, { "start": 15074.22, "end": 15075.14, "probability": 0.2305 }, { "start": 15080.3, "end": 15082.36, "probability": 0.7421 }, { "start": 15084.84, "end": 15086.88, "probability": 0.779 }, { "start": 15088.38, "end": 15091.66, "probability": 0.8201 }, { "start": 15093.32, "end": 15096.86, "probability": 0.9486 }, { "start": 15097.7, "end": 15098.43, "probability": 0.4928 }, { "start": 15099.88, "end": 15103.98, "probability": 0.9724 }, { "start": 15104.6, "end": 15108.0, "probability": 0.9226 }, { "start": 15108.88, "end": 15115.62, "probability": 0.7497 }, { "start": 15118.8, "end": 15121.26, "probability": 0.8983 }, { "start": 15121.9, "end": 15122.52, "probability": 0.9943 }, { "start": 15123.52, "end": 15124.48, "probability": 0.8802 }, { "start": 15127.26, "end": 15133.72, "probability": 0.8772 }, { "start": 15134.58, "end": 15140.0, "probability": 0.5007 }, { "start": 15140.62, "end": 15143.38, "probability": 0.8167 }, { "start": 15144.84, "end": 15147.26, "probability": 0.9655 }, { "start": 15148.3, "end": 15154.98, "probability": 0.9622 }, { "start": 15155.54, "end": 15157.64, "probability": 0.9715 }, { "start": 15158.66, "end": 15161.08, "probability": 0.9214 }, { "start": 15161.94, "end": 15164.74, "probability": 0.7061 }, { "start": 15165.32, "end": 15170.88, "probability": 0.9013 }, { "start": 15172.6, "end": 15177.86, "probability": 0.8717 }, { "start": 15178.68, "end": 15181.2, "probability": 0.9421 }, { "start": 15184.22, "end": 15187.48, "probability": 0.4366 }, { "start": 15191.1, "end": 15191.6, "probability": 0.7742 }, { "start": 15192.7, "end": 15193.62, "probability": 0.8561 }, { "start": 15194.14, "end": 15196.6, "probability": 0.881 }, { "start": 15197.14, "end": 15197.68, "probability": 0.952 }, { "start": 15198.42, "end": 15199.48, "probability": 0.8524 }, { "start": 15200.2, "end": 15202.46, "probability": 0.6073 }, { "start": 15203.92, "end": 15206.38, "probability": 0.7808 }, { "start": 15207.38, "end": 15209.58, "probability": 0.8083 }, { "start": 15213.82, "end": 15217.68, "probability": 0.5478 }, { "start": 15217.74, "end": 15219.12, "probability": 0.3475 }, { "start": 15220.5, "end": 15222.84, "probability": 0.7915 }, { "start": 15223.64, "end": 15226.12, "probability": 0.8541 }, { "start": 15228.04, "end": 15229.12, "probability": 0.9629 }, { "start": 15231.28, "end": 15234.7, "probability": 0.7063 }, { "start": 15235.44, "end": 15237.28, "probability": 0.8083 }, { "start": 15237.4, "end": 15238.1, "probability": 0.3417 }, { "start": 15238.48, "end": 15243.56, "probability": 0.6584 }, { "start": 15243.72, "end": 15244.2, "probability": 0.1936 }, { "start": 15244.34, "end": 15246.92, "probability": 0.9574 }, { "start": 15247.48, "end": 15248.2, "probability": 0.343 }, { "start": 15248.34, "end": 15250.54, "probability": 0.6341 }, { "start": 15251.26, "end": 15253.8, "probability": 0.9493 }, { "start": 15254.98, "end": 15258.58, "probability": 0.7871 }, { "start": 15259.9, "end": 15261.36, "probability": 0.7248 }, { "start": 15262.76, "end": 15266.12, "probability": 0.8925 }, { "start": 15266.66, "end": 15267.94, "probability": 0.8877 }, { "start": 15268.48, "end": 15270.24, "probability": 0.9498 }, { "start": 15272.2, "end": 15274.44, "probability": 0.9378 }, { "start": 15274.6, "end": 15278.08, "probability": 0.7713 }, { "start": 15278.18, "end": 15279.36, "probability": 0.8816 }, { "start": 15280.08, "end": 15283.38, "probability": 0.7073 }, { "start": 15283.96, "end": 15285.27, "probability": 0.7148 }, { "start": 15287.06, "end": 15294.24, "probability": 0.5382 }, { "start": 15294.82, "end": 15298.26, "probability": 0.915 }, { "start": 15299.3, "end": 15303.52, "probability": 0.9708 }, { "start": 15303.94, "end": 15306.16, "probability": 0.847 }, { "start": 15306.64, "end": 15309.58, "probability": 0.976 }, { "start": 15310.02, "end": 15311.8, "probability": 0.4713 }, { "start": 15316.06, "end": 15319.04, "probability": 0.648 }, { "start": 15319.14, "end": 15321.86, "probability": 0.7878 }, { "start": 15321.88, "end": 15324.72, "probability": 0.405 }, { "start": 15325.14, "end": 15328.64, "probability": 0.9393 }, { "start": 15329.76, "end": 15335.08, "probability": 0.7447 }, { "start": 15335.12, "end": 15340.76, "probability": 0.8969 }, { "start": 15341.54, "end": 15342.44, "probability": 0.6751 }, { "start": 15342.96, "end": 15347.8, "probability": 0.8384 }, { "start": 15348.5, "end": 15350.94, "probability": 0.798 }, { "start": 15352.94, "end": 15354.92, "probability": 0.8796 }, { "start": 15355.82, "end": 15357.6, "probability": 0.9207 }, { "start": 15359.36, "end": 15362.18, "probability": 0.8561 }, { "start": 15362.6, "end": 15365.1, "probability": 0.811 }, { "start": 15365.16, "end": 15368.32, "probability": 0.7078 }, { "start": 15369.42, "end": 15372.98, "probability": 0.6683 }, { "start": 15373.64, "end": 15379.74, "probability": 0.9674 }, { "start": 15379.82, "end": 15379.84, "probability": 0.0066 }, { "start": 15380.0, "end": 15380.77, "probability": 0.2308 }, { "start": 15381.86, "end": 15386.3, "probability": 0.5788 }, { "start": 15386.32, "end": 15388.82, "probability": 0.9198 }, { "start": 15391.82, "end": 15393.12, "probability": 0.6209 }, { "start": 15393.2, "end": 15394.82, "probability": 0.6139 }, { "start": 15414.5, "end": 15415.54, "probability": 0.2221 }, { "start": 15415.82, "end": 15418.92, "probability": 0.9241 }, { "start": 15419.24, "end": 15420.59, "probability": 0.6536 }, { "start": 15421.1, "end": 15424.7, "probability": 0.787 }, { "start": 15427.31, "end": 15431.26, "probability": 0.8064 }, { "start": 15431.4, "end": 15433.18, "probability": 0.8047 }, { "start": 15433.26, "end": 15433.56, "probability": 0.7496 }, { "start": 15433.74, "end": 15435.54, "probability": 0.8962 }, { "start": 15435.66, "end": 15438.64, "probability": 0.9045 }, { "start": 15439.02, "end": 15439.78, "probability": 0.0422 }, { "start": 15440.36, "end": 15441.76, "probability": 0.0983 }, { "start": 15442.68, "end": 15445.0, "probability": 0.0513 }, { "start": 15445.56, "end": 15445.92, "probability": 0.0162 }, { "start": 15452.12, "end": 15456.28, "probability": 0.0149 }, { "start": 15459.96, "end": 15460.74, "probability": 0.0017 }, { "start": 15563.0, "end": 15563.0, "probability": 0.0 }, { "start": 15563.0, "end": 15563.0, "probability": 0.0 }, { "start": 15563.0, "end": 15563.0, "probability": 0.0 }, { "start": 15563.0, "end": 15563.0, "probability": 0.0 }, { "start": 15563.0, "end": 15563.0, "probability": 0.0 }, { "start": 15563.0, "end": 15563.0, "probability": 0.0 }, { "start": 15563.0, "end": 15563.0, "probability": 0.0 }, { "start": 15563.0, "end": 15563.0, "probability": 0.0 }, { "start": 15563.0, "end": 15563.0, "probability": 0.0 }, { "start": 15563.0, "end": 15563.0, "probability": 0.0 }, { "start": 15563.0, "end": 15563.0, "probability": 0.0 }, { "start": 15563.0, "end": 15563.0, "probability": 0.0 }, { "start": 15563.0, "end": 15563.0, "probability": 0.0 }, { "start": 15563.0, "end": 15563.0, "probability": 0.0 }, { "start": 15563.0, "end": 15563.0, "probability": 0.0 }, { "start": 15563.0, "end": 15563.0, "probability": 0.0 }, { "start": 15563.0, "end": 15563.0, "probability": 0.0 }, { "start": 15563.0, "end": 15563.0, "probability": 0.0 }, { "start": 15563.0, "end": 15563.0, "probability": 0.0 }, { "start": 15563.0, "end": 15563.0, "probability": 0.0 }, { "start": 15563.0, "end": 15563.0, "probability": 0.0 }, { "start": 15563.12, "end": 15563.78, "probability": 0.3012 }, { "start": 15563.88, "end": 15563.88, "probability": 0.3478 }, { "start": 15563.94, "end": 15564.18, "probability": 0.4583 }, { "start": 15564.22, "end": 15565.9, "probability": 0.5038 }, { "start": 15565.98, "end": 15571.34, "probability": 0.811 }, { "start": 15572.4, "end": 15574.44, "probability": 0.8173 }, { "start": 15584.14, "end": 15587.46, "probability": 0.6918 }, { "start": 15587.56, "end": 15591.78, "probability": 0.9341 }, { "start": 15591.84, "end": 15594.29, "probability": 0.0059 }, { "start": 15594.38, "end": 15594.82, "probability": 0.2495 }, { "start": 15595.58, "end": 15598.26, "probability": 0.996 }, { "start": 15599.47, "end": 15602.78, "probability": 0.8805 }, { "start": 15603.4, "end": 15603.66, "probability": 0.2366 }, { "start": 15607.74, "end": 15609.22, "probability": 0.0326 }, { "start": 15613.22, "end": 15614.04, "probability": 0.5754 }, { "start": 15614.5, "end": 15616.84, "probability": 0.9983 }, { "start": 15617.18, "end": 15617.8, "probability": 0.2999 }, { "start": 15618.12, "end": 15618.16, "probability": 0.0057 }, { "start": 15618.16, "end": 15618.76, "probability": 0.0829 }, { "start": 15618.88, "end": 15619.65, "probability": 0.8771 }, { "start": 15652.2, "end": 15656.06, "probability": 0.9774 }, { "start": 15656.2, "end": 15660.24, "probability": 0.9902 }, { "start": 15661.36, "end": 15663.18, "probability": 0.4001 }, { "start": 15663.8, "end": 15668.94, "probability": 0.9478 }, { "start": 15669.14, "end": 15671.8, "probability": 0.8174 }, { "start": 15672.54, "end": 15674.9, "probability": 0.9429 }, { "start": 15675.6, "end": 15677.58, "probability": 0.758 }, { "start": 15677.92, "end": 15681.32, "probability": 0.9768 }, { "start": 15681.32, "end": 15681.88, "probability": 0.4826 }, { "start": 15682.12, "end": 15683.12, "probability": 0.8679 }, { "start": 15683.86, "end": 15685.74, "probability": 0.9097 }, { "start": 15687.24, "end": 15687.76, "probability": 0.5051 }, { "start": 15687.82, "end": 15688.74, "probability": 0.6776 }, { "start": 15690.42, "end": 15691.76, "probability": 0.7799 }, { "start": 15692.78, "end": 15694.2, "probability": 0.719 }, { "start": 15694.86, "end": 15696.0, "probability": 0.7472 }, { "start": 15696.12, "end": 15701.5, "probability": 0.9967 }, { "start": 15702.56, "end": 15703.94, "probability": 0.7314 }, { "start": 15705.62, "end": 15708.32, "probability": 0.978 }, { "start": 15710.12, "end": 15712.26, "probability": 0.9156 }, { "start": 15713.4, "end": 15714.4, "probability": 0.7554 }, { "start": 15716.08, "end": 15723.72, "probability": 0.9431 }, { "start": 15724.94, "end": 15729.9, "probability": 0.9816 }, { "start": 15732.16, "end": 15737.88, "probability": 0.9912 }, { "start": 15737.88, "end": 15743.88, "probability": 0.9976 }, { "start": 15745.16, "end": 15747.22, "probability": 0.8917 }, { "start": 15748.2, "end": 15752.34, "probability": 0.9924 }, { "start": 15753.14, "end": 15756.92, "probability": 0.9868 }, { "start": 15757.54, "end": 15758.22, "probability": 0.8784 }, { "start": 15758.76, "end": 15761.48, "probability": 0.9897 }, { "start": 15762.06, "end": 15766.76, "probability": 0.9908 }, { "start": 15766.76, "end": 15770.8, "probability": 0.999 }, { "start": 15771.76, "end": 15775.5, "probability": 0.9827 }, { "start": 15776.74, "end": 15780.19, "probability": 0.958 }, { "start": 15781.04, "end": 15784.3, "probability": 0.9954 }, { "start": 15785.3, "end": 15786.84, "probability": 0.9535 }, { "start": 15787.32, "end": 15791.74, "probability": 0.988 }, { "start": 15792.34, "end": 15797.76, "probability": 0.9967 }, { "start": 15798.5, "end": 15799.36, "probability": 0.4213 }, { "start": 15800.08, "end": 15807.22, "probability": 0.7471 }, { "start": 15807.82, "end": 15810.6, "probability": 0.9951 }, { "start": 15811.18, "end": 15815.64, "probability": 0.9814 }, { "start": 15816.64, "end": 15820.8, "probability": 0.9193 }, { "start": 15823.22, "end": 15825.97, "probability": 0.9798 }, { "start": 15829.24, "end": 15830.0, "probability": 0.1734 }, { "start": 15830.53, "end": 15832.94, "probability": 0.9965 }, { "start": 15834.08, "end": 15836.32, "probability": 0.3687 }, { "start": 15838.1, "end": 15840.04, "probability": 0.7971 }, { "start": 15843.3, "end": 15845.66, "probability": 0.8885 }, { "start": 15846.2, "end": 15847.38, "probability": 0.83 }, { "start": 15848.22, "end": 15850.74, "probability": 0.9595 }, { "start": 15852.28, "end": 15854.12, "probability": 0.1855 }, { "start": 15854.12, "end": 15854.12, "probability": 0.1214 }, { "start": 15854.12, "end": 15857.5, "probability": 0.2011 }, { "start": 15858.6, "end": 15866.28, "probability": 0.7483 }, { "start": 15868.18, "end": 15875.02, "probability": 0.2685 }, { "start": 15875.76, "end": 15881.72, "probability": 0.9896 }, { "start": 15882.62, "end": 15887.84, "probability": 0.9233 }, { "start": 15888.6, "end": 15890.24, "probability": 0.6572 }, { "start": 15890.44, "end": 15894.44, "probability": 0.6647 }, { "start": 15895.0, "end": 15899.16, "probability": 0.7493 }, { "start": 15901.04, "end": 15902.1, "probability": 0.7033 }, { "start": 15903.16, "end": 15905.8, "probability": 0.9839 }, { "start": 15905.94, "end": 15908.3, "probability": 0.9951 }, { "start": 15908.3, "end": 15911.74, "probability": 0.9902 }, { "start": 15912.36, "end": 15914.78, "probability": 0.9989 }, { "start": 15916.08, "end": 15920.98, "probability": 0.9873 }, { "start": 15920.98, "end": 15926.16, "probability": 0.9883 }, { "start": 15927.0, "end": 15929.64, "probability": 0.8508 }, { "start": 15929.82, "end": 15936.26, "probability": 0.9685 }, { "start": 15936.84, "end": 15938.12, "probability": 0.9438 }, { "start": 15939.08, "end": 15941.02, "probability": 0.9788 }, { "start": 15941.18, "end": 15942.0, "probability": 0.88 }, { "start": 15942.56, "end": 15948.88, "probability": 0.9761 }, { "start": 15949.38, "end": 15958.22, "probability": 0.7946 }, { "start": 15958.86, "end": 15959.62, "probability": 0.8292 }, { "start": 15960.38, "end": 15962.64, "probability": 0.9964 }, { "start": 15963.52, "end": 15964.44, "probability": 0.8259 }, { "start": 15964.82, "end": 15966.3, "probability": 0.9703 }, { "start": 15966.72, "end": 15969.58, "probability": 0.8994 }, { "start": 15970.12, "end": 15971.84, "probability": 0.9971 }, { "start": 15972.46, "end": 15975.88, "probability": 0.9943 }, { "start": 15976.54, "end": 15977.25, "probability": 0.9766 }, { "start": 15978.42, "end": 15979.26, "probability": 0.7097 }, { "start": 15979.92, "end": 15981.56, "probability": 0.9827 }, { "start": 15982.08, "end": 15983.98, "probability": 0.9971 }, { "start": 15984.96, "end": 15986.64, "probability": 0.9966 }, { "start": 15987.06, "end": 15988.18, "probability": 0.996 }, { "start": 15988.56, "end": 15989.44, "probability": 0.9618 }, { "start": 15990.7, "end": 15995.4, "probability": 0.996 }, { "start": 15995.4, "end": 15998.84, "probability": 0.999 }, { "start": 15999.54, "end": 16002.5, "probability": 0.9943 }, { "start": 16003.12, "end": 16005.9, "probability": 0.6577 }, { "start": 16006.52, "end": 16009.64, "probability": 0.8911 }, { "start": 16010.3, "end": 16010.54, "probability": 0.0117 }, { "start": 16014.28, "end": 16016.78, "probability": 0.655 }, { "start": 16016.86, "end": 16020.98, "probability": 0.9965 }, { "start": 16020.98, "end": 16026.24, "probability": 0.9181 }, { "start": 16027.34, "end": 16031.44, "probability": 0.9746 }, { "start": 16032.3, "end": 16034.76, "probability": 0.8511 }, { "start": 16035.46, "end": 16037.12, "probability": 0.9097 }, { "start": 16038.72, "end": 16041.78, "probability": 0.8062 }, { "start": 16043.06, "end": 16044.68, "probability": 0.9487 }, { "start": 16044.86, "end": 16047.52, "probability": 0.7094 }, { "start": 16049.02, "end": 16053.62, "probability": 0.9199 }, { "start": 16054.36, "end": 16056.74, "probability": 0.9971 }, { "start": 16056.88, "end": 16060.14, "probability": 0.9889 }, { "start": 16061.84, "end": 16065.13, "probability": 0.9401 }, { "start": 16066.5, "end": 16070.44, "probability": 0.9955 }, { "start": 16070.8, "end": 16071.46, "probability": 0.8321 }, { "start": 16072.48, "end": 16074.26, "probability": 0.9971 }, { "start": 16075.32, "end": 16075.81, "probability": 0.998 }, { "start": 16076.84, "end": 16081.36, "probability": 0.968 }, { "start": 16082.5, "end": 16084.24, "probability": 0.9994 }, { "start": 16085.18, "end": 16089.06, "probability": 0.9886 }, { "start": 16089.68, "end": 16092.48, "probability": 0.9829 }, { "start": 16092.54, "end": 16094.78, "probability": 0.9727 }, { "start": 16094.94, "end": 16095.64, "probability": 0.9312 }, { "start": 16096.08, "end": 16099.15, "probability": 0.9902 }, { "start": 16099.7, "end": 16101.62, "probability": 0.6499 }, { "start": 16101.7, "end": 16101.84, "probability": 0.5471 }, { "start": 16101.9, "end": 16102.52, "probability": 0.9491 }, { "start": 16103.44, "end": 16104.52, "probability": 0.7351 }, { "start": 16105.26, "end": 16107.38, "probability": 0.9843 }, { "start": 16108.82, "end": 16110.8, "probability": 0.8352 }, { "start": 16111.96, "end": 16118.48, "probability": 0.9719 }, { "start": 16119.3, "end": 16119.56, "probability": 0.3174 }, { "start": 16120.0, "end": 16122.04, "probability": 0.9795 }, { "start": 16122.48, "end": 16123.98, "probability": 0.9854 }, { "start": 16124.44, "end": 16124.86, "probability": 0.5998 }, { "start": 16125.34, "end": 16126.88, "probability": 0.8237 }, { "start": 16127.3, "end": 16133.04, "probability": 0.9666 }, { "start": 16133.94, "end": 16139.56, "probability": 0.9872 }, { "start": 16139.68, "end": 16140.64, "probability": 0.9753 }, { "start": 16141.48, "end": 16143.42, "probability": 0.996 }, { "start": 16145.18, "end": 16146.34, "probability": 0.9946 }, { "start": 16147.4, "end": 16151.0, "probability": 0.9469 }, { "start": 16151.56, "end": 16153.2, "probability": 0.8917 }, { "start": 16153.72, "end": 16155.38, "probability": 0.6678 }, { "start": 16155.42, "end": 16160.78, "probability": 0.9868 }, { "start": 16160.88, "end": 16165.94, "probability": 0.9986 }, { "start": 16166.72, "end": 16169.52, "probability": 0.9355 }, { "start": 16169.78, "end": 16172.74, "probability": 0.9312 }, { "start": 16173.66, "end": 16175.54, "probability": 0.7912 }, { "start": 16175.74, "end": 16178.48, "probability": 0.8656 }, { "start": 16179.02, "end": 16180.54, "probability": 0.9594 }, { "start": 16181.0, "end": 16182.13, "probability": 0.981 }, { "start": 16183.02, "end": 16185.52, "probability": 0.97 }, { "start": 16186.06, "end": 16186.78, "probability": 0.6372 }, { "start": 16187.0, "end": 16187.66, "probability": 0.9961 }, { "start": 16188.22, "end": 16191.12, "probability": 0.9928 }, { "start": 16191.84, "end": 16194.62, "probability": 0.8319 }, { "start": 16195.54, "end": 16197.92, "probability": 0.9946 }, { "start": 16199.16, "end": 16200.4, "probability": 0.9951 }, { "start": 16201.16, "end": 16202.94, "probability": 0.9917 }, { "start": 16203.84, "end": 16207.78, "probability": 0.9954 }, { "start": 16208.5, "end": 16214.34, "probability": 0.8032 }, { "start": 16214.9, "end": 16218.78, "probability": 0.9975 }, { "start": 16219.76, "end": 16220.56, "probability": 0.9736 }, { "start": 16221.16, "end": 16222.22, "probability": 0.9798 }, { "start": 16222.66, "end": 16223.72, "probability": 0.9903 }, { "start": 16223.8, "end": 16224.5, "probability": 0.6525 }, { "start": 16224.62, "end": 16226.48, "probability": 0.7084 }, { "start": 16226.82, "end": 16227.46, "probability": 0.9256 }, { "start": 16227.58, "end": 16228.36, "probability": 0.9075 }, { "start": 16228.96, "end": 16231.14, "probability": 0.9922 }, { "start": 16231.92, "end": 16233.2, "probability": 0.9811 }, { "start": 16233.8, "end": 16234.98, "probability": 0.8762 }, { "start": 16237.88, "end": 16240.22, "probability": 0.6475 }, { "start": 16241.26, "end": 16244.38, "probability": 0.9688 }, { "start": 16245.02, "end": 16246.94, "probability": 0.7259 }, { "start": 16247.06, "end": 16248.59, "probability": 0.9907 }, { "start": 16249.22, "end": 16250.0, "probability": 0.7468 }, { "start": 16250.64, "end": 16251.71, "probability": 0.9937 }, { "start": 16252.0, "end": 16255.1, "probability": 0.8241 }, { "start": 16255.86, "end": 16257.48, "probability": 0.5067 }, { "start": 16257.92, "end": 16260.7, "probability": 0.895 }, { "start": 16260.8, "end": 16265.94, "probability": 0.9755 }, { "start": 16266.66, "end": 16267.5, "probability": 0.918 }, { "start": 16267.58, "end": 16270.9, "probability": 0.8581 }, { "start": 16270.96, "end": 16272.14, "probability": 0.995 }, { "start": 16273.14, "end": 16273.68, "probability": 0.5848 }, { "start": 16274.36, "end": 16277.3, "probability": 0.9883 }, { "start": 16277.78, "end": 16278.74, "probability": 0.4778 }, { "start": 16279.22, "end": 16280.36, "probability": 0.9963 }, { "start": 16280.62, "end": 16282.42, "probability": 0.9711 }, { "start": 16283.08, "end": 16283.64, "probability": 0.9719 }, { "start": 16284.84, "end": 16286.06, "probability": 0.9703 }, { "start": 16286.24, "end": 16286.26, "probability": 0.466 }, { "start": 16286.5, "end": 16288.72, "probability": 0.8015 }, { "start": 16289.32, "end": 16292.8, "probability": 0.9982 }, { "start": 16293.3, "end": 16295.3, "probability": 0.9691 }, { "start": 16295.82, "end": 16296.36, "probability": 0.7669 }, { "start": 16296.98, "end": 16299.18, "probability": 0.6754 }, { "start": 16299.42, "end": 16301.78, "probability": 0.9781 }, { "start": 16302.84, "end": 16305.58, "probability": 0.9878 }, { "start": 16311.04, "end": 16315.32, "probability": 0.884 }, { "start": 16315.36, "end": 16321.78, "probability": 0.951 }, { "start": 16322.2, "end": 16324.76, "probability": 0.6721 }, { "start": 16325.22, "end": 16327.72, "probability": 0.2417 }, { "start": 16328.96, "end": 16329.14, "probability": 0.0165 }, { "start": 16329.14, "end": 16329.14, "probability": 0.2302 }, { "start": 16329.14, "end": 16329.14, "probability": 0.1913 }, { "start": 16329.14, "end": 16329.72, "probability": 0.7939 }, { "start": 16332.14, "end": 16336.68, "probability": 0.939 }, { "start": 16351.2, "end": 16353.92, "probability": 0.8467 }, { "start": 16355.52, "end": 16357.92, "probability": 0.8022 }, { "start": 16359.28, "end": 16360.54, "probability": 0.8595 }, { "start": 16372.58, "end": 16373.81, "probability": 0.2833 }, { "start": 16374.0, "end": 16374.46, "probability": 0.6443 }, { "start": 16374.66, "end": 16376.42, "probability": 0.7932 }, { "start": 16377.0, "end": 16381.1, "probability": 0.9141 }, { "start": 16381.16, "end": 16382.84, "probability": 0.0865 }, { "start": 16383.04, "end": 16387.28, "probability": 0.3153 }, { "start": 16388.68, "end": 16389.68, "probability": 0.7336 }, { "start": 16389.86, "end": 16390.94, "probability": 0.5831 }, { "start": 16392.04, "end": 16394.44, "probability": 0.9325 }, { "start": 16395.52, "end": 16397.3, "probability": 0.9601 }, { "start": 16399.1, "end": 16400.8, "probability": 0.7658 }, { "start": 16403.06, "end": 16406.23, "probability": 0.8859 }, { "start": 16411.34, "end": 16413.14, "probability": 0.751 }, { "start": 16414.42, "end": 16419.42, "probability": 0.9113 }, { "start": 16420.0, "end": 16421.1, "probability": 0.8877 }, { "start": 16422.14, "end": 16422.84, "probability": 0.9038 }, { "start": 16424.2, "end": 16428.02, "probability": 0.6798 }, { "start": 16429.7, "end": 16431.48, "probability": 0.8806 }, { "start": 16432.4, "end": 16434.5, "probability": 0.9097 }, { "start": 16434.98, "end": 16436.74, "probability": 0.844 }, { "start": 16438.02, "end": 16439.98, "probability": 0.8318 }, { "start": 16439.98, "end": 16440.79, "probability": 0.1081 }, { "start": 16441.26, "end": 16444.96, "probability": 0.9124 }, { "start": 16445.8, "end": 16447.96, "probability": 0.9805 }, { "start": 16448.48, "end": 16450.64, "probability": 0.96 }, { "start": 16451.74, "end": 16453.02, "probability": 0.8669 }, { "start": 16453.14, "end": 16454.02, "probability": 0.7165 }, { "start": 16454.22, "end": 16456.52, "probability": 0.6169 }, { "start": 16457.4, "end": 16458.96, "probability": 0.7618 }, { "start": 16459.78, "end": 16462.44, "probability": 0.9966 }, { "start": 16462.5, "end": 16462.72, "probability": 0.8591 }, { "start": 16462.78, "end": 16463.72, "probability": 0.7921 }, { "start": 16464.26, "end": 16466.32, "probability": 0.7418 }, { "start": 16467.0, "end": 16469.34, "probability": 0.8135 }, { "start": 16469.96, "end": 16470.48, "probability": 0.9741 }, { "start": 16471.4, "end": 16472.34, "probability": 0.7536 }, { "start": 16473.84, "end": 16475.96, "probability": 0.9561 }, { "start": 16476.64, "end": 16477.27, "probability": 0.9966 }, { "start": 16478.18, "end": 16481.44, "probability": 0.9976 }, { "start": 16482.0, "end": 16486.0, "probability": 0.7252 }, { "start": 16486.62, "end": 16489.26, "probability": 0.5889 }, { "start": 16489.86, "end": 16494.22, "probability": 0.6327 }, { "start": 16494.58, "end": 16494.88, "probability": 0.498 }, { "start": 16495.5, "end": 16496.44, "probability": 0.9614 }, { "start": 16497.52, "end": 16499.48, "probability": 0.5294 }, { "start": 16500.42, "end": 16501.4, "probability": 0.9191 }, { "start": 16501.52, "end": 16502.26, "probability": 0.9325 }, { "start": 16502.46, "end": 16503.02, "probability": 0.9807 }, { "start": 16503.32, "end": 16506.62, "probability": 0.9532 }, { "start": 16507.62, "end": 16511.48, "probability": 0.9568 }, { "start": 16513.86, "end": 16515.18, "probability": 0.9937 }, { "start": 16515.38, "end": 16518.76, "probability": 0.7857 }, { "start": 16519.96, "end": 16520.52, "probability": 0.7992 }, { "start": 16521.8, "end": 16523.26, "probability": 0.958 }, { "start": 16527.54, "end": 16531.59, "probability": 0.998 }, { "start": 16532.32, "end": 16533.06, "probability": 0.8751 }, { "start": 16533.38, "end": 16534.9, "probability": 0.7707 }, { "start": 16536.18, "end": 16539.78, "probability": 0.8177 }, { "start": 16541.06, "end": 16542.6, "probability": 0.5029 }, { "start": 16544.8, "end": 16546.06, "probability": 0.5215 }, { "start": 16546.32, "end": 16548.06, "probability": 0.9481 }, { "start": 16548.16, "end": 16549.66, "probability": 0.7137 }, { "start": 16549.74, "end": 16550.92, "probability": 0.9381 }, { "start": 16553.5, "end": 16556.28, "probability": 0.9844 }, { "start": 16557.36, "end": 16558.9, "probability": 0.9328 }, { "start": 16559.0, "end": 16559.74, "probability": 0.6071 }, { "start": 16559.98, "end": 16565.22, "probability": 0.9668 }, { "start": 16565.86, "end": 16567.82, "probability": 0.9942 }, { "start": 16568.46, "end": 16572.98, "probability": 0.8979 }, { "start": 16573.88, "end": 16576.98, "probability": 0.8982 }, { "start": 16577.78, "end": 16583.2, "probability": 0.9953 }, { "start": 16584.74, "end": 16586.5, "probability": 0.9769 }, { "start": 16587.66, "end": 16589.71, "probability": 0.9357 }, { "start": 16590.72, "end": 16590.92, "probability": 0.9512 }, { "start": 16591.82, "end": 16593.98, "probability": 0.8811 }, { "start": 16595.1, "end": 16600.74, "probability": 0.8555 }, { "start": 16602.08, "end": 16603.66, "probability": 0.79 }, { "start": 16604.88, "end": 16607.52, "probability": 0.9943 }, { "start": 16608.1, "end": 16609.16, "probability": 0.9098 }, { "start": 16610.62, "end": 16611.66, "probability": 0.6461 }, { "start": 16612.74, "end": 16618.84, "probability": 0.9944 }, { "start": 16619.56, "end": 16621.26, "probability": 0.9461 }, { "start": 16621.4, "end": 16622.68, "probability": 0.9039 }, { "start": 16623.46, "end": 16626.82, "probability": 0.9388 }, { "start": 16627.76, "end": 16628.88, "probability": 0.9548 }, { "start": 16631.12, "end": 16633.28, "probability": 0.9888 }, { "start": 16635.96, "end": 16639.78, "probability": 0.9602 }, { "start": 16640.46, "end": 16643.62, "probability": 0.9697 }, { "start": 16644.16, "end": 16646.16, "probability": 0.9325 }, { "start": 16646.84, "end": 16647.78, "probability": 0.8136 }, { "start": 16648.5, "end": 16651.78, "probability": 0.9348 }, { "start": 16652.66, "end": 16653.82, "probability": 0.9372 }, { "start": 16654.52, "end": 16656.86, "probability": 0.9493 }, { "start": 16656.94, "end": 16658.24, "probability": 0.9447 }, { "start": 16659.2, "end": 16659.81, "probability": 0.5312 }, { "start": 16660.4, "end": 16661.38, "probability": 0.9927 }, { "start": 16663.02, "end": 16664.06, "probability": 0.9267 }, { "start": 16664.86, "end": 16666.72, "probability": 0.8139 }, { "start": 16667.54, "end": 16668.58, "probability": 0.8459 }, { "start": 16668.66, "end": 16670.2, "probability": 0.7236 }, { "start": 16670.3, "end": 16671.24, "probability": 0.9298 }, { "start": 16671.26, "end": 16674.66, "probability": 0.9438 }, { "start": 16675.2, "end": 16677.82, "probability": 0.9915 }, { "start": 16682.5, "end": 16683.24, "probability": 0.9737 }, { "start": 16683.38, "end": 16685.38, "probability": 0.8857 }, { "start": 16685.48, "end": 16686.32, "probability": 0.509 }, { "start": 16687.2, "end": 16687.98, "probability": 0.9564 }, { "start": 16688.7, "end": 16690.56, "probability": 0.8325 }, { "start": 16691.8, "end": 16693.12, "probability": 0.8687 }, { "start": 16693.5, "end": 16696.4, "probability": 0.7075 }, { "start": 16696.4, "end": 16700.64, "probability": 0.9771 }, { "start": 16702.22, "end": 16703.58, "probability": 0.7355 }, { "start": 16703.76, "end": 16704.32, "probability": 0.6898 }, { "start": 16705.28, "end": 16706.0, "probability": 0.3562 }, { "start": 16706.64, "end": 16708.78, "probability": 0.5947 }, { "start": 16708.78, "end": 16710.32, "probability": 0.505 }, { "start": 16710.42, "end": 16710.82, "probability": 0.7802 }, { "start": 16711.14, "end": 16712.76, "probability": 0.9675 }, { "start": 16712.94, "end": 16713.66, "probability": 0.5804 }, { "start": 16713.9, "end": 16717.6, "probability": 0.7241 }, { "start": 16717.76, "end": 16718.96, "probability": 0.6875 }, { "start": 16719.04, "end": 16720.02, "probability": 0.5049 }, { "start": 16720.6, "end": 16726.28, "probability": 0.1357 }, { "start": 16726.28, "end": 16727.08, "probability": 0.6237 }, { "start": 16727.32, "end": 16729.5, "probability": 0.6528 }, { "start": 16729.66, "end": 16730.81, "probability": 0.9722 }, { "start": 16730.96, "end": 16731.67, "probability": 0.9966 }, { "start": 16732.62, "end": 16734.62, "probability": 0.954 }, { "start": 16735.18, "end": 16738.62, "probability": 0.9312 }, { "start": 16739.06, "end": 16742.62, "probability": 0.4829 }, { "start": 16742.62, "end": 16744.74, "probability": 0.3754 }, { "start": 16745.3, "end": 16746.6, "probability": 0.8287 }, { "start": 16747.6, "end": 16750.54, "probability": 0.9664 }, { "start": 16751.1, "end": 16755.42, "probability": 0.9299 }, { "start": 16755.82, "end": 16757.56, "probability": 0.5562 }, { "start": 16758.22, "end": 16760.42, "probability": 0.9812 }, { "start": 16760.68, "end": 16762.14, "probability": 0.653 }, { "start": 16763.42, "end": 16764.12, "probability": 0.825 }, { "start": 16764.32, "end": 16765.42, "probability": 0.9314 }, { "start": 16768.96, "end": 16771.04, "probability": 0.8342 }, { "start": 16771.7, "end": 16774.48, "probability": 0.5267 }, { "start": 16775.14, "end": 16776.6, "probability": 0.8719 }, { "start": 16777.44, "end": 16784.36, "probability": 0.9669 }, { "start": 16784.92, "end": 16786.12, "probability": 0.8708 }, { "start": 16787.1, "end": 16788.22, "probability": 0.8345 }, { "start": 16788.3, "end": 16788.62, "probability": 0.723 }, { "start": 16788.66, "end": 16789.78, "probability": 0.9727 }, { "start": 16790.9, "end": 16791.84, "probability": 0.8082 }, { "start": 16792.78, "end": 16794.06, "probability": 0.8755 }, { "start": 16795.0, "end": 16796.86, "probability": 0.959 }, { "start": 16798.02, "end": 16798.76, "probability": 0.2216 }, { "start": 16798.8, "end": 16799.18, "probability": 0.8324 }, { "start": 16799.98, "end": 16801.56, "probability": 0.9995 }, { "start": 16802.48, "end": 16804.36, "probability": 0.9878 }, { "start": 16805.22, "end": 16808.04, "probability": 0.9927 }, { "start": 16808.84, "end": 16808.98, "probability": 0.3008 }, { "start": 16808.98, "end": 16810.42, "probability": 0.9501 }, { "start": 16811.42, "end": 16812.14, "probability": 0.7458 }, { "start": 16812.16, "end": 16813.92, "probability": 0.9753 }, { "start": 16814.92, "end": 16815.9, "probability": 0.6642 }, { "start": 16816.08, "end": 16817.7, "probability": 0.4819 }, { "start": 16818.32, "end": 16819.6, "probability": 0.9904 }, { "start": 16820.16, "end": 16821.2, "probability": 0.8385 }, { "start": 16822.06, "end": 16824.46, "probability": 0.8398 }, { "start": 16824.84, "end": 16826.95, "probability": 0.9316 }, { "start": 16828.22, "end": 16829.02, "probability": 0.0927 }, { "start": 16829.24, "end": 16829.98, "probability": 0.7107 }, { "start": 16830.58, "end": 16831.8, "probability": 0.4582 }, { "start": 16831.8, "end": 16833.52, "probability": 0.872 }, { "start": 16833.92, "end": 16835.7, "probability": 0.9344 }, { "start": 16836.24, "end": 16839.72, "probability": 0.6836 }, { "start": 16840.14, "end": 16842.64, "probability": 0.9624 }, { "start": 16843.48, "end": 16846.2, "probability": 0.6626 }, { "start": 16846.62, "end": 16847.12, "probability": 0.5745 }, { "start": 16848.06, "end": 16852.42, "probability": 0.7068 }, { "start": 16853.02, "end": 16854.04, "probability": 0.7785 }, { "start": 16854.42, "end": 16857.32, "probability": 0.7848 }, { "start": 16857.4, "end": 16858.14, "probability": 0.1121 }, { "start": 16858.2, "end": 16859.06, "probability": 0.7224 }, { "start": 16859.46, "end": 16859.96, "probability": 0.4625 }, { "start": 16860.18, "end": 16861.52, "probability": 0.6947 }, { "start": 16861.56, "end": 16864.16, "probability": 0.9419 }, { "start": 16864.64, "end": 16866.56, "probability": 0.6713 }, { "start": 16867.08, "end": 16868.02, "probability": 0.7921 }, { "start": 16868.54, "end": 16869.58, "probability": 0.8157 }, { "start": 16869.82, "end": 16870.12, "probability": 0.6416 }, { "start": 16870.92, "end": 16873.75, "probability": 0.9797 }, { "start": 16874.9, "end": 16877.1, "probability": 0.9949 }, { "start": 16877.92, "end": 16879.34, "probability": 0.9718 }, { "start": 16880.18, "end": 16881.05, "probability": 0.5671 }, { "start": 16881.72, "end": 16882.64, "probability": 0.688 }, { "start": 16883.16, "end": 16883.94, "probability": 0.9102 }, { "start": 16884.64, "end": 16886.08, "probability": 0.9246 }, { "start": 16886.94, "end": 16888.24, "probability": 0.8919 }, { "start": 16889.04, "end": 16891.4, "probability": 0.9795 }, { "start": 16892.16, "end": 16896.82, "probability": 0.997 }, { "start": 16897.52, "end": 16899.08, "probability": 0.8048 }, { "start": 16899.66, "end": 16902.3, "probability": 0.8549 }, { "start": 16903.08, "end": 16903.86, "probability": 0.7387 }, { "start": 16904.32, "end": 16905.84, "probability": 0.9836 }, { "start": 16906.32, "end": 16908.38, "probability": 0.9208 }, { "start": 16908.82, "end": 16911.54, "probability": 0.855 }, { "start": 16911.72, "end": 16913.87, "probability": 0.8101 }, { "start": 16914.7, "end": 16916.72, "probability": 0.8657 }, { "start": 16917.68, "end": 16920.76, "probability": 0.5622 }, { "start": 16921.44, "end": 16921.84, "probability": 0.4417 }, { "start": 16922.38, "end": 16927.22, "probability": 0.9626 }, { "start": 16927.62, "end": 16928.62, "probability": 0.8026 }, { "start": 16928.7, "end": 16932.08, "probability": 0.9431 }, { "start": 16932.58, "end": 16933.8, "probability": 0.8227 }, { "start": 16933.88, "end": 16934.41, "probability": 0.8268 }, { "start": 16935.32, "end": 16938.58, "probability": 0.3067 }, { "start": 16938.84, "end": 16939.14, "probability": 0.5662 }, { "start": 16940.52, "end": 16942.1, "probability": 0.6995 }, { "start": 16943.54, "end": 16944.94, "probability": 0.966 }, { "start": 16946.22, "end": 16949.46, "probability": 0.9502 }, { "start": 16949.94, "end": 16950.8, "probability": 0.6178 }, { "start": 16951.28, "end": 16954.36, "probability": 0.9033 }, { "start": 16955.08, "end": 16958.08, "probability": 0.9121 }, { "start": 16959.64, "end": 16962.02, "probability": 0.9407 }, { "start": 16962.58, "end": 16968.14, "probability": 0.8868 }, { "start": 16968.26, "end": 16971.65, "probability": 0.8015 }, { "start": 16973.11, "end": 16977.62, "probability": 0.8714 }, { "start": 16978.56, "end": 16979.48, "probability": 0.797 }, { "start": 16980.46, "end": 16981.62, "probability": 0.8804 }, { "start": 16982.22, "end": 16985.04, "probability": 0.932 }, { "start": 16985.82, "end": 16986.9, "probability": 0.6924 }, { "start": 16987.52, "end": 16989.16, "probability": 0.9893 }, { "start": 16989.28, "end": 16990.98, "probability": 0.3655 }, { "start": 16991.04, "end": 16992.8, "probability": 0.8042 }, { "start": 16992.86, "end": 16995.58, "probability": 0.9684 }, { "start": 16995.78, "end": 16996.7, "probability": 0.5813 }, { "start": 16997.26, "end": 16998.42, "probability": 0.5008 }, { "start": 16999.02, "end": 17002.7, "probability": 0.8743 }, { "start": 17003.2, "end": 17005.62, "probability": 0.805 }, { "start": 17006.1, "end": 17008.4, "probability": 0.9597 }, { "start": 17008.48, "end": 17011.82, "probability": 0.952 }, { "start": 17012.38, "end": 17015.18, "probability": 0.9373 }, { "start": 17015.74, "end": 17018.98, "probability": 0.9559 }, { "start": 17019.52, "end": 17022.52, "probability": 0.9162 }, { "start": 17023.08, "end": 17024.18, "probability": 0.9741 }, { "start": 17024.62, "end": 17025.57, "probability": 0.9673 }, { "start": 17026.54, "end": 17027.34, "probability": 0.9268 }, { "start": 17027.38, "end": 17028.6, "probability": 0.9306 }, { "start": 17030.34, "end": 17030.58, "probability": 0.2925 }, { "start": 17030.58, "end": 17032.1, "probability": 0.6324 }, { "start": 17032.45, "end": 17035.48, "probability": 0.9803 }, { "start": 17036.24, "end": 17038.44, "probability": 0.9567 }, { "start": 17039.8, "end": 17041.12, "probability": 0.9323 }, { "start": 17041.26, "end": 17043.92, "probability": 0.9208 }, { "start": 17046.24, "end": 17047.98, "probability": 0.4335 }, { "start": 17049.34, "end": 17051.44, "probability": 0.9808 }, { "start": 17061.96, "end": 17064.14, "probability": 0.9547 }, { "start": 17064.26, "end": 17065.2, "probability": 0.6381 }, { "start": 17065.68, "end": 17066.1, "probability": 0.8706 }, { "start": 17066.42, "end": 17066.62, "probability": 0.7292 }, { "start": 17067.38, "end": 17069.94, "probability": 0.7983 }, { "start": 17070.46, "end": 17071.88, "probability": 0.9869 }, { "start": 17072.04, "end": 17073.32, "probability": 0.9754 }, { "start": 17073.94, "end": 17077.22, "probability": 0.6324 }, { "start": 17077.7, "end": 17079.32, "probability": 0.3732 }, { "start": 17079.42, "end": 17080.52, "probability": 0.9762 }, { "start": 17080.68, "end": 17081.26, "probability": 0.9488 }, { "start": 17081.54, "end": 17081.74, "probability": 0.8374 }, { "start": 17082.14, "end": 17082.48, "probability": 0.8104 }, { "start": 17083.62, "end": 17085.38, "probability": 0.9066 }, { "start": 17085.46, "end": 17085.56, "probability": 0.5905 }, { "start": 17085.76, "end": 17086.78, "probability": 0.8448 }, { "start": 17086.84, "end": 17087.46, "probability": 0.9587 }, { "start": 17087.6, "end": 17088.3, "probability": 0.889 }, { "start": 17089.58, "end": 17093.0, "probability": 0.5384 }, { "start": 17103.33, "end": 17103.44, "probability": 0.2871 }, { "start": 17103.54, "end": 17107.3, "probability": 0.8539 }, { "start": 17109.26, "end": 17112.3, "probability": 0.995 }, { "start": 17113.22, "end": 17115.08, "probability": 0.9673 }, { "start": 17115.66, "end": 17117.28, "probability": 0.6838 }, { "start": 17117.36, "end": 17117.72, "probability": 0.8396 }, { "start": 17117.72, "end": 17117.79, "probability": 0.5459 }, { "start": 17119.2, "end": 17120.12, "probability": 0.4091 }, { "start": 17120.14, "end": 17121.92, "probability": 0.9831 }, { "start": 17122.06, "end": 17126.2, "probability": 0.8072 }, { "start": 17126.5, "end": 17128.08, "probability": 0.6954 }, { "start": 17128.76, "end": 17129.64, "probability": 0.8158 }, { "start": 17129.64, "end": 17132.3, "probability": 0.9938 }, { "start": 17132.36, "end": 17133.1, "probability": 0.8027 }, { "start": 17133.12, "end": 17134.18, "probability": 0.9881 }, { "start": 17134.58, "end": 17135.78, "probability": 0.3036 }, { "start": 17136.2, "end": 17140.18, "probability": 0.5001 }, { "start": 17140.9, "end": 17141.76, "probability": 0.7559 }, { "start": 17142.44, "end": 17143.2, "probability": 0.7366 }, { "start": 17143.82, "end": 17143.92, "probability": 0.5828 }, { "start": 17144.58, "end": 17144.68, "probability": 0.3673 }, { "start": 17144.76, "end": 17145.16, "probability": 0.9429 }, { "start": 17145.68, "end": 17145.96, "probability": 0.9739 }, { "start": 17151.78, "end": 17155.74, "probability": 0.9841 }, { "start": 17156.14, "end": 17156.68, "probability": 0.5884 }, { "start": 17156.74, "end": 17157.52, "probability": 0.8665 }, { "start": 17158.16, "end": 17161.04, "probability": 0.8641 }, { "start": 17161.72, "end": 17162.97, "probability": 0.9542 }, { "start": 17163.66, "end": 17167.08, "probability": 0.9952 }, { "start": 17167.6, "end": 17173.92, "probability": 0.9893 }, { "start": 17174.96, "end": 17175.84, "probability": 0.6114 }, { "start": 17176.1, "end": 17180.36, "probability": 0.916 }, { "start": 17180.58, "end": 17183.44, "probability": 0.9932 }, { "start": 17184.56, "end": 17185.5, "probability": 0.9626 }, { "start": 17185.6, "end": 17186.24, "probability": 0.9919 }, { "start": 17187.12, "end": 17188.04, "probability": 0.6112 }, { "start": 17188.24, "end": 17190.88, "probability": 0.9126 }, { "start": 17192.02, "end": 17194.84, "probability": 0.9717 }, { "start": 17196.4, "end": 17198.14, "probability": 0.9969 }, { "start": 17199.04, "end": 17200.58, "probability": 0.7943 }, { "start": 17202.42, "end": 17206.38, "probability": 0.9921 }, { "start": 17206.38, "end": 17209.56, "probability": 0.9976 }, { "start": 17210.78, "end": 17214.1, "probability": 0.9971 }, { "start": 17215.02, "end": 17218.72, "probability": 0.9922 }, { "start": 17219.81, "end": 17225.3, "probability": 0.967 }, { "start": 17225.88, "end": 17231.56, "probability": 0.9272 }, { "start": 17236.54, "end": 17237.22, "probability": 0.661 }, { "start": 17237.34, "end": 17237.34, "probability": 0.6905 }, { "start": 17237.34, "end": 17237.42, "probability": 0.1776 }, { "start": 17237.42, "end": 17237.42, "probability": 0.3326 }, { "start": 17237.42, "end": 17237.42, "probability": 0.0178 }, { "start": 17237.42, "end": 17237.42, "probability": 0.2236 }, { "start": 17237.42, "end": 17237.42, "probability": 0.0152 }, { "start": 17237.42, "end": 17237.42, "probability": 0.1118 }, { "start": 17237.42, "end": 17237.42, "probability": 0.2264 }, { "start": 17237.42, "end": 17239.16, "probability": 0.4337 }, { "start": 17240.46, "end": 17242.78, "probability": 0.3238 }, { "start": 17243.68, "end": 17244.78, "probability": 0.4935 }, { "start": 17245.86, "end": 17247.16, "probability": 0.8373 }, { "start": 17247.32, "end": 17248.66, "probability": 0.9736 }, { "start": 17248.84, "end": 17251.9, "probability": 0.6512 }, { "start": 17251.98, "end": 17254.28, "probability": 0.9692 }, { "start": 17254.82, "end": 17257.22, "probability": 0.9517 }, { "start": 17257.9, "end": 17261.18, "probability": 0.9803 }, { "start": 17261.36, "end": 17264.32, "probability": 0.8009 }, { "start": 17264.94, "end": 17265.14, "probability": 0.5256 }, { "start": 17265.3, "end": 17266.9, "probability": 0.9674 }, { "start": 17266.9, "end": 17269.12, "probability": 0.6183 }, { "start": 17269.84, "end": 17270.54, "probability": 0.9865 }, { "start": 17271.74, "end": 17273.04, "probability": 0.9225 }, { "start": 17273.54, "end": 17277.54, "probability": 0.7683 }, { "start": 17278.35, "end": 17283.4, "probability": 0.9976 }, { "start": 17284.34, "end": 17288.74, "probability": 0.9946 }, { "start": 17288.74, "end": 17294.76, "probability": 0.9863 }, { "start": 17296.88, "end": 17304.32, "probability": 0.857 }, { "start": 17304.54, "end": 17308.32, "probability": 0.9915 }, { "start": 17308.76, "end": 17310.5, "probability": 0.8994 }, { "start": 17311.2, "end": 17315.16, "probability": 0.8682 }, { "start": 17315.56, "end": 17318.82, "probability": 0.8824 }, { "start": 17319.32, "end": 17320.02, "probability": 0.8095 }, { "start": 17320.54, "end": 17321.2, "probability": 0.956 }, { "start": 17322.06, "end": 17324.02, "probability": 0.7711 }, { "start": 17324.56, "end": 17325.34, "probability": 0.7567 }, { "start": 17325.86, "end": 17331.86, "probability": 0.9478 }, { "start": 17332.18, "end": 17333.15, "probability": 0.9326 }, { "start": 17333.74, "end": 17335.0, "probability": 0.9814 }, { "start": 17335.1, "end": 17336.12, "probability": 0.6771 }, { "start": 17336.22, "end": 17339.0, "probability": 0.9658 }, { "start": 17339.48, "end": 17340.6, "probability": 0.7977 }, { "start": 17341.0, "end": 17344.5, "probability": 0.9746 }, { "start": 17345.16, "end": 17348.34, "probability": 0.9518 }, { "start": 17350.84, "end": 17352.9, "probability": 0.6084 }, { "start": 17352.92, "end": 17357.76, "probability": 0.9139 }, { "start": 17357.82, "end": 17358.58, "probability": 0.5385 }, { "start": 17358.7, "end": 17359.24, "probability": 0.9423 }, { "start": 17359.32, "end": 17360.5, "probability": 0.9917 }, { "start": 17360.52, "end": 17361.72, "probability": 0.7261 }, { "start": 17361.8, "end": 17362.7, "probability": 0.9468 }, { "start": 17363.36, "end": 17367.74, "probability": 0.9614 }, { "start": 17368.26, "end": 17368.72, "probability": 0.4841 }, { "start": 17369.98, "end": 17370.52, "probability": 0.8199 }, { "start": 17370.62, "end": 17372.14, "probability": 0.7477 }, { "start": 17372.2, "end": 17372.2, "probability": 0.485 }, { "start": 17372.2, "end": 17372.32, "probability": 0.6276 }, { "start": 17372.4, "end": 17373.02, "probability": 0.6797 }, { "start": 17373.06, "end": 17373.52, "probability": 0.8823 }, { "start": 17373.54, "end": 17375.18, "probability": 0.6081 }, { "start": 17375.22, "end": 17375.94, "probability": 0.6069 }, { "start": 17376.0, "end": 17376.4, "probability": 0.6438 }, { "start": 17376.62, "end": 17376.72, "probability": 0.5966 }, { "start": 17376.72, "end": 17379.32, "probability": 0.9333 }, { "start": 17379.42, "end": 17379.76, "probability": 0.2904 }, { "start": 17380.68, "end": 17383.08, "probability": 0.4779 }, { "start": 17383.14, "end": 17383.48, "probability": 0.8003 }, { "start": 17383.48, "end": 17384.13, "probability": 0.5329 }, { "start": 17385.94, "end": 17387.26, "probability": 0.2539 }, { "start": 17388.3, "end": 17391.72, "probability": 0.7432 }, { "start": 17392.44, "end": 17394.86, "probability": 0.9405 }, { "start": 17395.38, "end": 17399.04, "probability": 0.678 }, { "start": 17399.24, "end": 17399.72, "probability": 0.9115 }, { "start": 17400.22, "end": 17403.2, "probability": 0.9651 }, { "start": 17404.26, "end": 17406.54, "probability": 0.9838 }, { "start": 17407.0, "end": 17408.66, "probability": 0.9805 }, { "start": 17410.18, "end": 17411.74, "probability": 0.7684 }, { "start": 17411.74, "end": 17415.04, "probability": 0.9972 }, { "start": 17416.06, "end": 17418.6, "probability": 0.9952 }, { "start": 17419.12, "end": 17421.12, "probability": 0.9604 }, { "start": 17421.82, "end": 17423.19, "probability": 0.4338 }, { "start": 17423.98, "end": 17427.58, "probability": 0.9751 }, { "start": 17428.72, "end": 17430.52, "probability": 0.9924 }, { "start": 17431.06, "end": 17432.06, "probability": 0.9768 }, { "start": 17432.96, "end": 17435.08, "probability": 0.7525 }, { "start": 17435.24, "end": 17435.56, "probability": 0.5693 }, { "start": 17436.04, "end": 17437.34, "probability": 0.9413 }, { "start": 17437.8, "end": 17438.53, "probability": 0.9729 }, { "start": 17439.38, "end": 17442.42, "probability": 0.8225 }, { "start": 17442.5, "end": 17442.9, "probability": 0.9157 }, { "start": 17443.88, "end": 17444.32, "probability": 0.4876 }, { "start": 17444.98, "end": 17446.07, "probability": 0.888 }, { "start": 17446.26, "end": 17449.38, "probability": 0.978 }, { "start": 17449.38, "end": 17451.7, "probability": 0.8809 }, { "start": 17452.18, "end": 17453.3, "probability": 0.9329 }, { "start": 17453.44, "end": 17454.58, "probability": 0.989 }, { "start": 17455.3, "end": 17455.82, "probability": 0.8159 }, { "start": 17456.04, "end": 17457.68, "probability": 0.8615 }, { "start": 17458.54, "end": 17462.76, "probability": 0.8227 }, { "start": 17463.26, "end": 17467.56, "probability": 0.9718 }, { "start": 17468.67, "end": 17469.82, "probability": 0.672 }, { "start": 17470.98, "end": 17472.1, "probability": 0.7651 }, { "start": 17472.26, "end": 17473.86, "probability": 0.9755 }, { "start": 17474.58, "end": 17477.28, "probability": 0.9616 }, { "start": 17477.95, "end": 17482.88, "probability": 0.9217 }, { "start": 17483.02, "end": 17483.44, "probability": 0.7686 }, { "start": 17483.5, "end": 17484.72, "probability": 0.9847 }, { "start": 17485.06, "end": 17485.99, "probability": 0.9861 }, { "start": 17486.88, "end": 17488.5, "probability": 0.5656 }, { "start": 17488.54, "end": 17489.86, "probability": 0.9814 }, { "start": 17490.38, "end": 17492.5, "probability": 0.8291 }, { "start": 17493.14, "end": 17495.22, "probability": 0.6792 }, { "start": 17495.84, "end": 17496.4, "probability": 0.9116 }, { "start": 17496.88, "end": 17498.84, "probability": 0.9831 }, { "start": 17499.32, "end": 17500.16, "probability": 0.8452 }, { "start": 17500.5, "end": 17503.58, "probability": 0.8498 }, { "start": 17503.96, "end": 17504.63, "probability": 0.9653 }, { "start": 17505.3, "end": 17507.18, "probability": 0.9683 }, { "start": 17508.96, "end": 17511.0, "probability": 0.9971 }, { "start": 17511.88, "end": 17515.16, "probability": 0.8309 }, { "start": 17515.84, "end": 17518.46, "probability": 0.9443 }, { "start": 17518.46, "end": 17521.02, "probability": 0.9975 }, { "start": 17522.0, "end": 17525.14, "probability": 0.9647 }, { "start": 17525.14, "end": 17528.44, "probability": 0.9951 }, { "start": 17529.0, "end": 17529.46, "probability": 0.4936 }, { "start": 17530.42, "end": 17533.2, "probability": 0.9701 }, { "start": 17533.92, "end": 17540.1, "probability": 0.9956 }, { "start": 17540.78, "end": 17541.54, "probability": 0.9735 }, { "start": 17541.86, "end": 17542.36, "probability": 0.9846 }, { "start": 17542.52, "end": 17542.8, "probability": 0.8024 }, { "start": 17542.98, "end": 17544.82, "probability": 0.9752 }, { "start": 17545.34, "end": 17548.9, "probability": 0.835 }, { "start": 17549.52, "end": 17553.87, "probability": 0.9249 }, { "start": 17554.48, "end": 17559.32, "probability": 0.9962 }, { "start": 17560.76, "end": 17561.88, "probability": 0.9701 }, { "start": 17562.36, "end": 17568.26, "probability": 0.803 }, { "start": 17568.3, "end": 17569.24, "probability": 0.6944 }, { "start": 17570.14, "end": 17571.06, "probability": 0.9937 }, { "start": 17571.62, "end": 17573.62, "probability": 0.8041 }, { "start": 17575.48, "end": 17578.64, "probability": 0.8374 }, { "start": 17579.22, "end": 17579.7, "probability": 0.8106 }, { "start": 17580.6, "end": 17583.28, "probability": 0.9583 }, { "start": 17583.42, "end": 17584.64, "probability": 0.8973 }, { "start": 17584.76, "end": 17586.06, "probability": 0.9344 }, { "start": 17586.38, "end": 17588.38, "probability": 0.9857 }, { "start": 17588.46, "end": 17589.24, "probability": 0.9288 }, { "start": 17589.78, "end": 17591.38, "probability": 0.9983 }, { "start": 17591.52, "end": 17592.86, "probability": 0.956 }, { "start": 17592.9, "end": 17593.12, "probability": 0.845 }, { "start": 17593.58, "end": 17595.24, "probability": 0.9985 }, { "start": 17595.52, "end": 17596.68, "probability": 0.9189 }, { "start": 17596.88, "end": 17597.49, "probability": 0.9891 }, { "start": 17597.92, "end": 17598.5, "probability": 0.5008 }, { "start": 17602.22, "end": 17605.36, "probability": 0.9893 }, { "start": 17605.46, "end": 17609.74, "probability": 0.9927 }, { "start": 17609.74, "end": 17613.14, "probability": 0.9929 }, { "start": 17615.46, "end": 17619.32, "probability": 0.9131 }, { "start": 17619.32, "end": 17623.04, "probability": 0.9933 }, { "start": 17623.68, "end": 17624.96, "probability": 0.9309 }, { "start": 17625.08, "end": 17626.8, "probability": 0.9985 }, { "start": 17627.18, "end": 17628.8, "probability": 0.9858 }, { "start": 17629.74, "end": 17630.3, "probability": 0.9865 }, { "start": 17630.74, "end": 17632.26, "probability": 0.9859 }, { "start": 17633.14, "end": 17635.08, "probability": 0.5977 }, { "start": 17635.6, "end": 17636.6, "probability": 0.8412 }, { "start": 17637.26, "end": 17638.5, "probability": 0.9745 }, { "start": 17638.84, "end": 17640.56, "probability": 0.8607 }, { "start": 17640.64, "end": 17642.42, "probability": 0.9835 }, { "start": 17642.68, "end": 17643.88, "probability": 0.9678 }, { "start": 17644.36, "end": 17646.08, "probability": 0.9978 }, { "start": 17646.32, "end": 17647.24, "probability": 0.8361 }, { "start": 17647.74, "end": 17648.54, "probability": 0.5384 }, { "start": 17648.76, "end": 17649.42, "probability": 0.8215 }, { "start": 17649.52, "end": 17650.4, "probability": 0.5347 }, { "start": 17650.48, "end": 17651.46, "probability": 0.8434 }, { "start": 17651.88, "end": 17655.64, "probability": 0.8165 }, { "start": 17655.66, "end": 17656.4, "probability": 0.9357 }, { "start": 17656.74, "end": 17660.08, "probability": 0.9757 }, { "start": 17660.28, "end": 17666.6, "probability": 0.938 }, { "start": 17667.18, "end": 17670.16, "probability": 0.7332 }, { "start": 17670.16, "end": 17670.9, "probability": 0.826 }, { "start": 17672.26, "end": 17672.6, "probability": 0.8435 }, { "start": 17673.26, "end": 17673.84, "probability": 0.8538 }, { "start": 17673.84, "end": 17674.62, "probability": 0.9749 }, { "start": 17674.72, "end": 17677.94, "probability": 0.8711 }, { "start": 17679.08, "end": 17680.9, "probability": 0.7817 }, { "start": 17681.16, "end": 17682.52, "probability": 0.9748 }, { "start": 17682.62, "end": 17683.92, "probability": 0.8645 }, { "start": 17684.68, "end": 17687.76, "probability": 0.9744 }, { "start": 17688.3, "end": 17691.58, "probability": 0.9946 }, { "start": 17692.6, "end": 17696.34, "probability": 0.7911 }, { "start": 17696.44, "end": 17697.02, "probability": 0.8125 }, { "start": 17697.1, "end": 17697.95, "probability": 0.8939 }, { "start": 17698.64, "end": 17700.74, "probability": 0.9897 }, { "start": 17701.24, "end": 17703.8, "probability": 0.8988 }, { "start": 17704.08, "end": 17706.0, "probability": 0.928 }, { "start": 17706.5, "end": 17710.34, "probability": 0.9886 }, { "start": 17710.52, "end": 17710.66, "probability": 0.1322 }, { "start": 17710.84, "end": 17713.14, "probability": 0.7987 }, { "start": 17713.48, "end": 17714.37, "probability": 0.996 }, { "start": 17715.1, "end": 17716.8, "probability": 0.9961 }, { "start": 17717.26, "end": 17717.9, "probability": 0.8324 }, { "start": 17719.84, "end": 17721.54, "probability": 0.9535 }, { "start": 17736.44, "end": 17737.2, "probability": 0.7211 }, { "start": 17738.02, "end": 17738.84, "probability": 0.6662 }, { "start": 17740.04, "end": 17742.4, "probability": 0.9283 }, { "start": 17742.56, "end": 17744.76, "probability": 0.9017 }, { "start": 17748.16, "end": 17750.12, "probability": 0.788 }, { "start": 17751.52, "end": 17751.87, "probability": 0.0774 }, { "start": 17753.56, "end": 17757.14, "probability": 0.9714 }, { "start": 17757.18, "end": 17761.8, "probability": 0.9679 }, { "start": 17761.8, "end": 17764.42, "probability": 0.9655 }, { "start": 17765.92, "end": 17772.34, "probability": 0.9786 }, { "start": 17772.92, "end": 17774.02, "probability": 0.9361 }, { "start": 17774.72, "end": 17775.08, "probability": 0.7686 }, { "start": 17775.72, "end": 17777.42, "probability": 0.949 }, { "start": 17777.9, "end": 17778.96, "probability": 0.5057 }, { "start": 17779.1, "end": 17779.6, "probability": 0.7654 }, { "start": 17780.08, "end": 17780.94, "probability": 0.9052 }, { "start": 17781.0, "end": 17782.42, "probability": 0.7924 }, { "start": 17783.12, "end": 17786.08, "probability": 0.8063 }, { "start": 17787.38, "end": 17790.54, "probability": 0.8396 }, { "start": 17790.8, "end": 17791.74, "probability": 0.7572 }, { "start": 17792.7, "end": 17796.14, "probability": 0.9598 }, { "start": 17796.7, "end": 17798.94, "probability": 0.9717 }, { "start": 17799.22, "end": 17799.22, "probability": 0.1407 }, { "start": 17799.22, "end": 17800.1, "probability": 0.7 }, { "start": 17800.9, "end": 17807.58, "probability": 0.9827 }, { "start": 17808.22, "end": 17808.94, "probability": 0.5944 }, { "start": 17809.18, "end": 17810.96, "probability": 0.7402 }, { "start": 17811.1, "end": 17812.07, "probability": 0.9554 }, { "start": 17812.98, "end": 17816.52, "probability": 0.9788 }, { "start": 17817.26, "end": 17818.78, "probability": 0.8367 }, { "start": 17818.88, "end": 17822.84, "probability": 0.9799 }, { "start": 17823.48, "end": 17826.32, "probability": 0.9197 }, { "start": 17826.92, "end": 17828.1, "probability": 0.7764 }, { "start": 17828.64, "end": 17831.92, "probability": 0.9804 }, { "start": 17833.26, "end": 17836.82, "probability": 0.9772 }, { "start": 17837.58, "end": 17838.56, "probability": 0.5508 }, { "start": 17838.9, "end": 17839.78, "probability": 0.0897 }, { "start": 17839.86, "end": 17842.06, "probability": 0.9048 }, { "start": 17842.62, "end": 17844.1, "probability": 0.6228 }, { "start": 17844.34, "end": 17846.26, "probability": 0.8342 }, { "start": 17846.62, "end": 17849.1, "probability": 0.8179 }, { "start": 17850.7, "end": 17853.9, "probability": 0.4424 }, { "start": 17854.56, "end": 17854.8, "probability": 0.0155 }, { "start": 17854.8, "end": 17854.8, "probability": 0.1965 }, { "start": 17854.8, "end": 17855.32, "probability": 0.0624 }, { "start": 17855.86, "end": 17856.34, "probability": 0.4329 }, { "start": 17856.48, "end": 17860.5, "probability": 0.5236 }, { "start": 17860.52, "end": 17862.72, "probability": 0.7003 }, { "start": 17863.26, "end": 17867.0, "probability": 0.7285 }, { "start": 17867.86, "end": 17868.54, "probability": 0.3279 }, { "start": 17869.78, "end": 17873.7, "probability": 0.9971 }, { "start": 17873.98, "end": 17873.98, "probability": 0.0063 }, { "start": 17874.0, "end": 17874.0, "probability": 0.0645 }, { "start": 17874.0, "end": 17875.52, "probability": 0.501 }, { "start": 17877.74, "end": 17880.24, "probability": 0.874 }, { "start": 17883.17, "end": 17884.4, "probability": 0.3121 }, { "start": 17884.42, "end": 17886.5, "probability": 0.8107 }, { "start": 17887.62, "end": 17892.26, "probability": 0.8142 }, { "start": 17892.36, "end": 17894.46, "probability": 0.5098 }, { "start": 17894.46, "end": 17896.82, "probability": 0.6992 }, { "start": 17897.06, "end": 17898.54, "probability": 0.9824 }, { "start": 17900.02, "end": 17901.91, "probability": 0.762 }, { "start": 17903.78, "end": 17904.33, "probability": 0.1719 }, { "start": 17905.32, "end": 17907.3, "probability": 0.375 }, { "start": 17907.3, "end": 17907.68, "probability": 0.4951 }, { "start": 17907.68, "end": 17909.24, "probability": 0.5584 }, { "start": 17910.02, "end": 17913.14, "probability": 0.9866 }, { "start": 17913.92, "end": 17914.6, "probability": 0.7169 }, { "start": 17914.6, "end": 17915.24, "probability": 0.3965 }, { "start": 17915.38, "end": 17916.67, "probability": 0.6622 }, { "start": 17917.9, "end": 17919.16, "probability": 0.9878 }, { "start": 17919.34, "end": 17919.38, "probability": 0.0377 }, { "start": 17919.38, "end": 17919.7, "probability": 0.5859 }, { "start": 17919.78, "end": 17919.88, "probability": 0.5459 }, { "start": 17920.9, "end": 17923.34, "probability": 0.7186 }, { "start": 17923.8, "end": 17925.44, "probability": 0.6878 }, { "start": 17926.36, "end": 17929.08, "probability": 0.4871 }, { "start": 17930.04, "end": 17932.64, "probability": 0.4623 }, { "start": 17932.72, "end": 17936.56, "probability": 0.8477 }, { "start": 17936.88, "end": 17940.42, "probability": 0.9902 }, { "start": 17940.48, "end": 17941.02, "probability": 0.9885 }, { "start": 17941.2, "end": 17941.92, "probability": 0.2251 }, { "start": 17942.16, "end": 17943.1, "probability": 0.5673 }, { "start": 17943.74, "end": 17944.24, "probability": 0.2308 }, { "start": 17944.24, "end": 17947.34, "probability": 0.3463 }, { "start": 17948.1, "end": 17948.64, "probability": 0.1401 }, { "start": 17951.18, "end": 17953.24, "probability": 0.6286 }, { "start": 17955.34, "end": 17957.28, "probability": 0.654 }, { "start": 17957.54, "end": 17957.54, "probability": 0.1165 }, { "start": 17957.64, "end": 17961.88, "probability": 0.8204 }, { "start": 17963.58, "end": 17964.14, "probability": 0.646 }, { "start": 17964.52, "end": 17965.82, "probability": 0.4492 }, { "start": 17966.92, "end": 17969.06, "probability": 0.9786 }, { "start": 17969.66, "end": 17970.2, "probability": 0.2396 }, { "start": 17970.92, "end": 17971.3, "probability": 0.1905 }, { "start": 17971.3, "end": 17971.32, "probability": 0.2524 }, { "start": 17971.68, "end": 17976.3, "probability": 0.6382 }, { "start": 17976.86, "end": 17977.0, "probability": 0.4973 }, { "start": 17977.12, "end": 17977.5, "probability": 0.588 }, { "start": 17978.64, "end": 17980.88, "probability": 0.9217 }, { "start": 17980.96, "end": 17982.0, "probability": 0.9231 }, { "start": 17982.7, "end": 17985.72, "probability": 0.9414 }, { "start": 17986.38, "end": 17987.52, "probability": 0.9773 }, { "start": 17989.12, "end": 17991.92, "probability": 0.9836 }, { "start": 17995.66, "end": 17996.94, "probability": 0.9914 }, { "start": 17997.16, "end": 18000.2, "probability": 0.9704 }, { "start": 18001.18, "end": 18001.38, "probability": 0.2113 }, { "start": 18001.38, "end": 18003.58, "probability": 0.1858 }, { "start": 18004.18, "end": 18005.5, "probability": 0.7601 }, { "start": 18008.06, "end": 18008.18, "probability": 0.0663 }, { "start": 18008.18, "end": 18009.12, "probability": 0.3507 }, { "start": 18009.12, "end": 18009.94, "probability": 0.7228 }, { "start": 18010.48, "end": 18010.9, "probability": 0.6466 }, { "start": 18011.0, "end": 18011.26, "probability": 0.7882 }, { "start": 18011.36, "end": 18014.56, "probability": 0.9411 }, { "start": 18014.72, "end": 18015.64, "probability": 0.9492 }, { "start": 18016.0, "end": 18018.46, "probability": 0.9798 }, { "start": 18018.74, "end": 18019.7, "probability": 0.9731 }, { "start": 18020.54, "end": 18021.34, "probability": 0.2271 }, { "start": 18021.34, "end": 18021.46, "probability": 0.4051 }, { "start": 18021.54, "end": 18022.44, "probability": 0.93 }, { "start": 18022.5, "end": 18023.56, "probability": 0.887 }, { "start": 18023.56, "end": 18023.96, "probability": 0.1207 }, { "start": 18024.42, "end": 18024.58, "probability": 0.4047 }, { "start": 18024.64, "end": 18025.42, "probability": 0.921 }, { "start": 18025.92, "end": 18028.42, "probability": 0.916 }, { "start": 18028.92, "end": 18030.74, "probability": 0.5436 }, { "start": 18030.84, "end": 18031.9, "probability": 0.8792 }, { "start": 18031.94, "end": 18032.6, "probability": 0.8313 }, { "start": 18033.08, "end": 18035.14, "probability": 0.0236 }, { "start": 18035.2, "end": 18035.9, "probability": 0.8211 }, { "start": 18037.26, "end": 18038.08, "probability": 0.914 }, { "start": 18038.12, "end": 18039.4, "probability": 0.9963 }, { "start": 18039.68, "end": 18042.46, "probability": 0.8503 }, { "start": 18042.52, "end": 18045.02, "probability": 0.9699 }, { "start": 18045.02, "end": 18045.02, "probability": 0.0882 }, { "start": 18045.02, "end": 18048.48, "probability": 0.9495 }, { "start": 18049.04, "end": 18051.7, "probability": 0.9771 }, { "start": 18051.88, "end": 18054.28, "probability": 0.9618 }, { "start": 18054.34, "end": 18055.79, "probability": 0.9577 }, { "start": 18055.94, "end": 18060.44, "probability": 0.9577 }, { "start": 18061.38, "end": 18064.22, "probability": 0.8828 }, { "start": 18064.5, "end": 18064.76, "probability": 0.5857 }, { "start": 18065.04, "end": 18065.94, "probability": 0.1768 }, { "start": 18066.02, "end": 18066.9, "probability": 0.4905 }, { "start": 18067.28, "end": 18068.2, "probability": 0.2711 }, { "start": 18068.74, "end": 18071.56, "probability": 0.8608 }, { "start": 18072.4, "end": 18073.4, "probability": 0.9491 }, { "start": 18073.7, "end": 18074.48, "probability": 0.9594 }, { "start": 18074.52, "end": 18077.7, "probability": 0.9723 }, { "start": 18078.6, "end": 18082.54, "probability": 0.9724 }, { "start": 18083.02, "end": 18083.28, "probability": 0.9783 }, { "start": 18083.84, "end": 18084.34, "probability": 0.9233 }, { "start": 18084.88, "end": 18086.0, "probability": 0.9163 }, { "start": 18087.3, "end": 18089.82, "probability": 0.9828 }, { "start": 18090.8, "end": 18093.42, "probability": 0.9856 }, { "start": 18093.78, "end": 18094.4, "probability": 0.6578 }, { "start": 18094.82, "end": 18095.22, "probability": 0.9292 }, { "start": 18096.76, "end": 18097.66, "probability": 0.8729 }, { "start": 18098.6, "end": 18099.76, "probability": 0.996 }, { "start": 18100.8, "end": 18102.88, "probability": 0.9672 }, { "start": 18104.02, "end": 18105.64, "probability": 0.9917 }, { "start": 18106.2, "end": 18109.72, "probability": 0.9937 }, { "start": 18111.0, "end": 18113.2, "probability": 0.968 }, { "start": 18113.24, "end": 18114.64, "probability": 0.9951 }, { "start": 18114.72, "end": 18116.76, "probability": 0.9937 }, { "start": 18117.4, "end": 18118.36, "probability": 0.8604 }, { "start": 18119.1, "end": 18120.4, "probability": 0.9951 }, { "start": 18121.31, "end": 18123.32, "probability": 0.9946 }, { "start": 18124.04, "end": 18125.34, "probability": 0.9435 }, { "start": 18125.78, "end": 18127.9, "probability": 0.962 }, { "start": 18128.32, "end": 18129.22, "probability": 0.9771 }, { "start": 18130.46, "end": 18131.08, "probability": 0.8513 }, { "start": 18132.12, "end": 18132.86, "probability": 0.9672 }, { "start": 18133.28, "end": 18137.46, "probability": 0.974 }, { "start": 18139.68, "end": 18144.22, "probability": 0.9953 }, { "start": 18144.9, "end": 18147.98, "probability": 0.9106 }, { "start": 18149.98, "end": 18156.06, "probability": 0.9752 }, { "start": 18156.56, "end": 18157.68, "probability": 0.9868 }, { "start": 18158.24, "end": 18160.54, "probability": 0.9282 }, { "start": 18161.08, "end": 18161.52, "probability": 0.9084 }, { "start": 18162.16, "end": 18164.36, "probability": 0.9632 }, { "start": 18164.46, "end": 18165.54, "probability": 0.9451 }, { "start": 18165.9, "end": 18166.96, "probability": 0.9233 }, { "start": 18167.92, "end": 18169.02, "probability": 0.937 }, { "start": 18169.12, "end": 18170.84, "probability": 0.8523 }, { "start": 18170.88, "end": 18173.14, "probability": 0.7456 }, { "start": 18174.76, "end": 18176.1, "probability": 0.9947 }, { "start": 18176.64, "end": 18180.72, "probability": 0.709 }, { "start": 18180.9, "end": 18184.3, "probability": 0.8729 }, { "start": 18185.16, "end": 18185.3, "probability": 0.3122 }, { "start": 18185.48, "end": 18186.78, "probability": 0.9897 }, { "start": 18186.92, "end": 18187.58, "probability": 0.7909 }, { "start": 18188.04, "end": 18190.86, "probability": 0.9744 }, { "start": 18192.04, "end": 18192.62, "probability": 0.8885 }, { "start": 18192.9, "end": 18198.14, "probability": 0.9922 }, { "start": 18198.72, "end": 18203.42, "probability": 0.9856 }, { "start": 18203.42, "end": 18207.2, "probability": 0.9864 }, { "start": 18207.78, "end": 18208.46, "probability": 0.7592 }, { "start": 18209.02, "end": 18210.68, "probability": 0.9863 }, { "start": 18211.84, "end": 18212.45, "probability": 0.8337 }, { "start": 18213.6, "end": 18215.42, "probability": 0.9829 }, { "start": 18215.7, "end": 18218.3, "probability": 0.9938 }, { "start": 18218.88, "end": 18220.22, "probability": 0.9565 }, { "start": 18220.82, "end": 18222.22, "probability": 0.8698 }, { "start": 18223.44, "end": 18226.54, "probability": 0.9749 }, { "start": 18227.2, "end": 18229.3, "probability": 0.9852 }, { "start": 18229.78, "end": 18231.32, "probability": 0.9867 }, { "start": 18231.98, "end": 18233.8, "probability": 0.9504 }, { "start": 18234.54, "end": 18235.68, "probability": 0.9697 }, { "start": 18236.66, "end": 18239.0, "probability": 0.9966 }, { "start": 18240.64, "end": 18241.98, "probability": 0.9898 }, { "start": 18242.76, "end": 18246.72, "probability": 0.9932 }, { "start": 18247.36, "end": 18249.26, "probability": 0.899 }, { "start": 18249.68, "end": 18249.98, "probability": 0.8804 }, { "start": 18251.9, "end": 18253.98, "probability": 0.7042 }, { "start": 18254.08, "end": 18255.9, "probability": 0.6611 }, { "start": 18255.9, "end": 18256.68, "probability": 0.6208 }, { "start": 18258.28, "end": 18259.66, "probability": 0.0599 }, { "start": 18259.66, "end": 18260.88, "probability": 0.1634 }, { "start": 18260.96, "end": 18266.8, "probability": 0.8909 }, { "start": 18267.42, "end": 18270.94, "probability": 0.8984 }, { "start": 18272.32, "end": 18274.98, "probability": 0.7795 }, { "start": 18275.58, "end": 18279.34, "probability": 0.9766 }, { "start": 18280.44, "end": 18281.08, "probability": 0.1735 }, { "start": 18283.66, "end": 18283.94, "probability": 0.0728 }, { "start": 18284.28, "end": 18285.68, "probability": 0.3848 }, { "start": 18286.32, "end": 18292.12, "probability": 0.8878 }, { "start": 18292.12, "end": 18298.54, "probability": 0.9829 }, { "start": 18298.64, "end": 18299.52, "probability": 0.998 }, { "start": 18303.08, "end": 18305.28, "probability": 0.8762 }, { "start": 18306.12, "end": 18307.72, "probability": 0.2543 }, { "start": 18307.86, "end": 18308.96, "probability": 0.5057 }, { "start": 18310.35, "end": 18317.38, "probability": 0.2512 }, { "start": 18319.0, "end": 18320.92, "probability": 0.0633 }, { "start": 18332.3, "end": 18334.9, "probability": 0.4849 }, { "start": 18335.58, "end": 18338.72, "probability": 0.4935 }, { "start": 18338.88, "end": 18340.84, "probability": 0.9842 }, { "start": 18341.06, "end": 18341.28, "probability": 0.763 }, { "start": 18341.36, "end": 18345.7, "probability": 0.9955 }, { "start": 18346.72, "end": 18350.6, "probability": 0.8664 }, { "start": 18351.3, "end": 18356.9, "probability": 0.9979 }, { "start": 18357.9, "end": 18358.76, "probability": 0.9082 }, { "start": 18359.42, "end": 18363.38, "probability": 0.9677 }, { "start": 18364.22, "end": 18365.12, "probability": 0.8445 }, { "start": 18365.64, "end": 18369.0, "probability": 0.8491 }, { "start": 18369.58, "end": 18373.24, "probability": 0.9386 }, { "start": 18373.3, "end": 18374.32, "probability": 0.9327 }, { "start": 18374.48, "end": 18376.0, "probability": 0.4361 }, { "start": 18376.28, "end": 18376.64, "probability": 0.6871 }, { "start": 18377.34, "end": 18378.38, "probability": 0.7732 }, { "start": 18379.58, "end": 18379.58, "probability": 0.3576 }, { "start": 18379.58, "end": 18380.04, "probability": 0.9714 }, { "start": 18380.6, "end": 18382.16, "probability": 0.7641 }, { "start": 18383.06, "end": 18387.36, "probability": 0.9984 }, { "start": 18387.96, "end": 18392.88, "probability": 0.9905 }, { "start": 18393.84, "end": 18397.86, "probability": 0.9927 }, { "start": 18398.44, "end": 18400.0, "probability": 0.9417 }, { "start": 18400.96, "end": 18402.8, "probability": 0.9285 }, { "start": 18403.54, "end": 18407.38, "probability": 0.9885 }, { "start": 18408.24, "end": 18410.18, "probability": 0.9948 }, { "start": 18410.98, "end": 18412.9, "probability": 0.9896 }, { "start": 18413.42, "end": 18414.34, "probability": 0.7951 }, { "start": 18415.8, "end": 18416.94, "probability": 0.9977 }, { "start": 18418.2, "end": 18419.22, "probability": 0.8885 }, { "start": 18419.92, "end": 18426.74, "probability": 0.998 }, { "start": 18426.9, "end": 18428.64, "probability": 0.8962 }, { "start": 18429.18, "end": 18432.86, "probability": 0.9917 }, { "start": 18433.06, "end": 18434.28, "probability": 0.8535 }, { "start": 18434.72, "end": 18437.94, "probability": 0.9868 }, { "start": 18437.94, "end": 18441.46, "probability": 0.9434 }, { "start": 18441.56, "end": 18442.26, "probability": 0.6748 }, { "start": 18443.28, "end": 18443.84, "probability": 0.5629 }, { "start": 18444.78, "end": 18445.84, "probability": 0.6448 }, { "start": 18446.04, "end": 18447.7, "probability": 0.8778 }, { "start": 18447.72, "end": 18449.84, "probability": 0.9704 }, { "start": 18449.94, "end": 18451.62, "probability": 0.9796 }, { "start": 18452.08, "end": 18452.8, "probability": 0.451 }, { "start": 18452.92, "end": 18453.46, "probability": 0.6949 }, { "start": 18453.78, "end": 18455.12, "probability": 0.2662 }, { "start": 18455.62, "end": 18455.8, "probability": 0.8171 }, { "start": 18456.76, "end": 18456.76, "probability": 0.5044 }, { "start": 18456.76, "end": 18457.04, "probability": 0.8986 }, { "start": 18457.72, "end": 18459.34, "probability": 0.9891 }, { "start": 18459.9, "end": 18461.62, "probability": 0.9891 }, { "start": 18462.24, "end": 18467.18, "probability": 0.9955 }, { "start": 18467.76, "end": 18469.39, "probability": 0.9827 }, { "start": 18470.46, "end": 18471.7, "probability": 0.8652 }, { "start": 18471.8, "end": 18474.52, "probability": 0.9982 }, { "start": 18475.06, "end": 18476.52, "probability": 0.9991 }, { "start": 18477.36, "end": 18480.48, "probability": 0.9946 }, { "start": 18480.48, "end": 18484.46, "probability": 0.9951 }, { "start": 18485.18, "end": 18490.48, "probability": 0.9875 }, { "start": 18490.64, "end": 18491.04, "probability": 0.9465 }, { "start": 18491.88, "end": 18494.78, "probability": 0.9251 }, { "start": 18495.28, "end": 18496.04, "probability": 0.4411 }, { "start": 18496.08, "end": 18496.36, "probability": 0.7402 }, { "start": 18497.38, "end": 18498.86, "probability": 0.9323 }, { "start": 18499.42, "end": 18503.44, "probability": 0.9652 }, { "start": 18504.16, "end": 18505.68, "probability": 0.932 }, { "start": 18506.46, "end": 18506.74, "probability": 0.673 }, { "start": 18506.78, "end": 18506.98, "probability": 0.9923 }, { "start": 18507.16, "end": 18508.68, "probability": 0.6013 }, { "start": 18509.06, "end": 18510.8, "probability": 0.9849 }, { "start": 18511.36, "end": 18512.06, "probability": 0.9493 }, { "start": 18512.92, "end": 18515.3, "probability": 0.3361 }, { "start": 18515.86, "end": 18516.74, "probability": 0.2433 }, { "start": 18517.2, "end": 18518.04, "probability": 0.5695 }, { "start": 18518.66, "end": 18519.32, "probability": 0.9048 }, { "start": 18519.9, "end": 18520.62, "probability": 0.7779 }, { "start": 18520.98, "end": 18522.16, "probability": 0.0444 }, { "start": 18522.16, "end": 18522.62, "probability": 0.2835 }, { "start": 18523.16, "end": 18525.36, "probability": 0.817 }, { "start": 18530.3, "end": 18534.6, "probability": 0.9962 }, { "start": 18534.62, "end": 18538.86, "probability": 0.9989 }, { "start": 18539.52, "end": 18541.86, "probability": 0.9979 }, { "start": 18542.42, "end": 18543.96, "probability": 0.7342 }, { "start": 18544.62, "end": 18546.68, "probability": 0.9578 }, { "start": 18547.24, "end": 18550.12, "probability": 0.9928 }, { "start": 18550.68, "end": 18556.4, "probability": 0.9977 }, { "start": 18556.88, "end": 18559.86, "probability": 0.9707 }, { "start": 18560.4, "end": 18562.78, "probability": 0.9907 }, { "start": 18563.28, "end": 18564.62, "probability": 0.6868 }, { "start": 18564.66, "end": 18565.44, "probability": 0.9301 }, { "start": 18565.54, "end": 18568.22, "probability": 0.9406 }, { "start": 18568.44, "end": 18571.34, "probability": 0.9583 }, { "start": 18571.92, "end": 18575.56, "probability": 0.9843 }, { "start": 18576.0, "end": 18578.5, "probability": 0.9865 }, { "start": 18578.88, "end": 18580.42, "probability": 0.9438 }, { "start": 18580.76, "end": 18582.16, "probability": 0.9614 }, { "start": 18582.68, "end": 18583.42, "probability": 0.9179 }, { "start": 18584.02, "end": 18584.4, "probability": 0.9292 }, { "start": 18585.4, "end": 18585.8, "probability": 0.8911 }, { "start": 18587.88, "end": 18589.3, "probability": 0.7915 }, { "start": 18592.92, "end": 18597.78, "probability": 0.8757 }, { "start": 18598.08, "end": 18598.2, "probability": 0.5731 }, { "start": 18598.54, "end": 18599.74, "probability": 0.8971 }, { "start": 18599.74, "end": 18602.18, "probability": 0.6565 }, { "start": 18602.7, "end": 18602.84, "probability": 0.5021 }, { "start": 18602.84, "end": 18605.5, "probability": 0.9348 }, { "start": 18605.56, "end": 18606.48, "probability": 0.6628 }, { "start": 18606.48, "end": 18608.74, "probability": 0.8158 }, { "start": 18609.04, "end": 18609.26, "probability": 0.8682 }, { "start": 18609.52, "end": 18610.62, "probability": 0.9736 }, { "start": 18610.74, "end": 18613.98, "probability": 0.8395 }, { "start": 18614.42, "end": 18616.02, "probability": 0.98 }, { "start": 18616.74, "end": 18616.94, "probability": 0.4539 }, { "start": 18616.94, "end": 18618.94, "probability": 0.9728 }, { "start": 18618.96, "end": 18618.96, "probability": 0.2776 }, { "start": 18618.96, "end": 18621.54, "probability": 0.5117 }, { "start": 18623.04, "end": 18624.76, "probability": 0.8604 }, { "start": 18625.82, "end": 18627.48, "probability": 0.1781 }, { "start": 18627.56, "end": 18630.2, "probability": 0.1053 }, { "start": 18630.74, "end": 18631.5, "probability": 0.6543 }, { "start": 18631.98, "end": 18632.45, "probability": 0.3301 }, { "start": 18633.1, "end": 18635.62, "probability": 0.0071 }, { "start": 18636.4, "end": 18637.2, "probability": 0.0062 }, { "start": 18637.97, "end": 18640.12, "probability": 0.1611 }, { "start": 18640.25, "end": 18640.86, "probability": 0.01 }, { "start": 18641.16, "end": 18642.12, "probability": 0.1537 }, { "start": 18644.4, "end": 18646.2, "probability": 0.0327 }, { "start": 18646.58, "end": 18649.22, "probability": 0.9558 }, { "start": 18649.28, "end": 18651.12, "probability": 0.3826 }, { "start": 18652.4, "end": 18654.62, "probability": 0.8428 }, { "start": 18655.82, "end": 18656.44, "probability": 0.5243 }, { "start": 18658.78, "end": 18661.78, "probability": 0.7968 }, { "start": 18661.94, "end": 18663.44, "probability": 0.5829 }, { "start": 18663.54, "end": 18664.48, "probability": 0.8375 }, { "start": 18665.64, "end": 18667.46, "probability": 0.8033 }, { "start": 18667.64, "end": 18667.96, "probability": 0.5996 }, { "start": 18676.46, "end": 18677.32, "probability": 0.5534 }, { "start": 18677.4, "end": 18678.06, "probability": 0.7116 }, { "start": 18678.22, "end": 18678.42, "probability": 0.718 }, { "start": 18678.58, "end": 18679.26, "probability": 0.9226 }, { "start": 18680.02, "end": 18681.12, "probability": 0.9207 }, { "start": 18682.0, "end": 18682.36, "probability": 0.8573 }, { "start": 18683.1, "end": 18685.24, "probability": 0.9561 }, { "start": 18686.82, "end": 18689.88, "probability": 0.8794 }, { "start": 18691.36, "end": 18692.56, "probability": 0.8392 }, { "start": 18693.58, "end": 18694.96, "probability": 0.7177 }, { "start": 18695.04, "end": 18696.97, "probability": 0.6633 }, { "start": 18697.82, "end": 18698.86, "probability": 0.7682 }, { "start": 18699.86, "end": 18700.94, "probability": 0.7461 }, { "start": 18701.06, "end": 18701.92, "probability": 0.8002 }, { "start": 18703.02, "end": 18705.86, "probability": 0.8423 }, { "start": 18706.22, "end": 18707.3, "probability": 0.9835 }, { "start": 18707.66, "end": 18708.24, "probability": 0.9419 }, { "start": 18709.0, "end": 18710.5, "probability": 0.7498 }, { "start": 18710.54, "end": 18711.28, "probability": 0.9987 }, { "start": 18712.64, "end": 18714.5, "probability": 0.6213 }, { "start": 18715.36, "end": 18715.92, "probability": 0.6904 }, { "start": 18716.82, "end": 18717.9, "probability": 0.938 }, { "start": 18718.78, "end": 18720.88, "probability": 0.8887 }, { "start": 18721.28, "end": 18722.58, "probability": 0.9966 }, { "start": 18723.7, "end": 18727.78, "probability": 0.9758 }, { "start": 18727.92, "end": 18728.68, "probability": 0.6715 }, { "start": 18729.56, "end": 18732.5, "probability": 0.866 }, { "start": 18733.46, "end": 18734.2, "probability": 0.6384 }, { "start": 18734.2, "end": 18735.2, "probability": 0.959 }, { "start": 18735.36, "end": 18736.82, "probability": 0.7895 }, { "start": 18738.42, "end": 18740.22, "probability": 0.9958 }, { "start": 18741.36, "end": 18742.22, "probability": 0.872 }, { "start": 18743.06, "end": 18743.96, "probability": 0.7644 }, { "start": 18745.26, "end": 18746.86, "probability": 0.8105 }, { "start": 18747.6, "end": 18747.92, "probability": 0.0228 }, { "start": 18748.06, "end": 18751.16, "probability": 0.758 }, { "start": 18751.16, "end": 18754.36, "probability": 0.9857 }, { "start": 18755.4, "end": 18757.56, "probability": 0.7636 }, { "start": 18759.42, "end": 18760.91, "probability": 0.9819 }, { "start": 18763.16, "end": 18763.16, "probability": 0.114 }, { "start": 18763.16, "end": 18764.12, "probability": 0.1484 }, { "start": 18764.68, "end": 18765.38, "probability": 0.4131 }, { "start": 18765.4, "end": 18768.36, "probability": 0.9036 }, { "start": 18769.56, "end": 18771.58, "probability": 0.9746 }, { "start": 18772.3, "end": 18773.58, "probability": 0.6607 }, { "start": 18773.86, "end": 18775.85, "probability": 0.9956 }, { "start": 18776.7, "end": 18777.32, "probability": 0.4926 }, { "start": 18777.38, "end": 18777.68, "probability": 0.7268 }, { "start": 18777.68, "end": 18779.92, "probability": 0.9079 }, { "start": 18780.44, "end": 18782.42, "probability": 0.9113 }, { "start": 18782.76, "end": 18782.76, "probability": 0.5734 }, { "start": 18782.86, "end": 18784.96, "probability": 0.8401 }, { "start": 18786.0, "end": 18787.9, "probability": 0.7929 }, { "start": 18788.76, "end": 18790.62, "probability": 0.8192 }, { "start": 18791.48, "end": 18794.32, "probability": 0.9844 }, { "start": 18795.3, "end": 18798.54, "probability": 0.7849 }, { "start": 18800.84, "end": 18801.8, "probability": 0.142 }, { "start": 18801.82, "end": 18802.6, "probability": 0.3962 }, { "start": 18803.24, "end": 18804.92, "probability": 0.9917 }, { "start": 18805.64, "end": 18808.94, "probability": 0.8046 }, { "start": 18810.0, "end": 18810.98, "probability": 0.9663 }, { "start": 18812.28, "end": 18814.1, "probability": 0.8467 }, { "start": 18814.22, "end": 18815.04, "probability": 0.7454 }, { "start": 18815.62, "end": 18816.66, "probability": 0.719 }, { "start": 18817.26, "end": 18819.02, "probability": 0.8728 }, { "start": 18820.28, "end": 18821.94, "probability": 0.9559 }, { "start": 18823.16, "end": 18824.52, "probability": 0.283 }, { "start": 18824.96, "end": 18826.66, "probability": 0.9728 }, { "start": 18826.76, "end": 18828.94, "probability": 0.9943 }, { "start": 18829.04, "end": 18829.8, "probability": 0.7497 }, { "start": 18831.44, "end": 18833.1, "probability": 0.6741 }, { "start": 18835.14, "end": 18837.3, "probability": 0.6699 }, { "start": 18838.22, "end": 18842.1, "probability": 0.9872 }, { "start": 18842.24, "end": 18842.8, "probability": 0.8183 }, { "start": 18844.44, "end": 18848.02, "probability": 0.7878 }, { "start": 18849.34, "end": 18850.64, "probability": 0.701 }, { "start": 18851.98, "end": 18853.28, "probability": 0.806 }, { "start": 18854.1, "end": 18854.96, "probability": 0.9604 }, { "start": 18855.3, "end": 18855.66, "probability": 0.884 }, { "start": 18855.72, "end": 18856.48, "probability": 0.9096 }, { "start": 18856.68, "end": 18857.64, "probability": 0.9566 }, { "start": 18858.02, "end": 18858.58, "probability": 0.9194 }, { "start": 18858.64, "end": 18859.54, "probability": 0.8264 }, { "start": 18861.08, "end": 18861.82, "probability": 0.9561 }, { "start": 18862.54, "end": 18864.1, "probability": 0.9123 }, { "start": 18864.2, "end": 18865.78, "probability": 0.9556 }, { "start": 18866.18, "end": 18868.5, "probability": 0.9575 }, { "start": 18868.68, "end": 18869.42, "probability": 0.8748 }, { "start": 18870.94, "end": 18872.4, "probability": 0.8133 }, { "start": 18873.46, "end": 18878.7, "probability": 0.9926 }, { "start": 18879.48, "end": 18881.08, "probability": 0.9956 }, { "start": 18881.64, "end": 18884.24, "probability": 0.5135 }, { "start": 18885.0, "end": 18887.96, "probability": 0.9611 }, { "start": 18889.2, "end": 18890.1, "probability": 0.9825 }, { "start": 18891.26, "end": 18896.26, "probability": 0.9248 }, { "start": 18896.28, "end": 18897.28, "probability": 0.8139 }, { "start": 18897.92, "end": 18900.08, "probability": 0.9688 }, { "start": 18900.94, "end": 18902.76, "probability": 0.8979 }, { "start": 18903.76, "end": 18904.86, "probability": 0.8267 }, { "start": 18906.02, "end": 18908.84, "probability": 0.9409 }, { "start": 18908.94, "end": 18910.28, "probability": 0.5302 }, { "start": 18911.4, "end": 18912.16, "probability": 0.6264 }, { "start": 18912.78, "end": 18915.4, "probability": 0.7196 }, { "start": 18915.5, "end": 18917.92, "probability": 0.8513 }, { "start": 18918.84, "end": 18920.54, "probability": 0.9578 }, { "start": 18921.08, "end": 18923.2, "probability": 0.6908 }, { "start": 18923.42, "end": 18927.0, "probability": 0.9446 }, { "start": 18927.78, "end": 18929.1, "probability": 0.6533 }, { "start": 18930.24, "end": 18932.5, "probability": 0.9573 }, { "start": 18933.0, "end": 18935.76, "probability": 0.8412 }, { "start": 18936.74, "end": 18938.02, "probability": 0.7209 }, { "start": 18938.62, "end": 18940.34, "probability": 0.9229 }, { "start": 18940.88, "end": 18943.54, "probability": 0.9853 }, { "start": 18943.96, "end": 18944.4, "probability": 0.3603 }, { "start": 18944.84, "end": 18947.68, "probability": 0.9656 }, { "start": 18948.1, "end": 18950.78, "probability": 0.7537 }, { "start": 18951.14, "end": 18953.48, "probability": 0.956 }, { "start": 18953.74, "end": 18956.14, "probability": 0.8619 }, { "start": 18956.6, "end": 18962.44, "probability": 0.9698 }, { "start": 18963.54, "end": 18964.24, "probability": 0.8883 }, { "start": 18964.4, "end": 18964.76, "probability": 0.8838 }, { "start": 18964.88, "end": 18971.02, "probability": 0.9831 }, { "start": 18971.26, "end": 18971.44, "probability": 0.8838 }, { "start": 18971.94, "end": 18972.1, "probability": 0.4272 }, { "start": 18972.1, "end": 18976.4, "probability": 0.6224 }, { "start": 18976.56, "end": 18978.42, "probability": 0.8138 }, { "start": 18978.48, "end": 18981.02, "probability": 0.6312 }, { "start": 18981.56, "end": 18983.54, "probability": 0.9395 }, { "start": 18983.64, "end": 18984.3, "probability": 0.38 }, { "start": 18984.8, "end": 18986.9, "probability": 0.6792 }, { "start": 18987.0, "end": 18987.96, "probability": 0.9921 }, { "start": 18988.12, "end": 18991.4, "probability": 0.963 }, { "start": 18991.56, "end": 18992.62, "probability": 0.9402 }, { "start": 18993.06, "end": 18993.97, "probability": 0.7708 }, { "start": 18994.64, "end": 18995.16, "probability": 0.6506 }, { "start": 18995.2, "end": 18996.89, "probability": 0.6119 }, { "start": 18997.42, "end": 19001.32, "probability": 0.7538 }, { "start": 19001.32, "end": 19001.32, "probability": 0.0696 }, { "start": 19001.32, "end": 19001.32, "probability": 0.0457 }, { "start": 19001.32, "end": 19006.94, "probability": 0.6502 }, { "start": 19006.94, "end": 19008.2, "probability": 0.4433 }, { "start": 19008.22, "end": 19009.96, "probability": 0.8945 }, { "start": 19010.06, "end": 19010.52, "probability": 0.6578 }, { "start": 19011.2, "end": 19011.7, "probability": 0.9707 }, { "start": 19012.28, "end": 19014.08, "probability": 0.9799 }, { "start": 19015.0, "end": 19017.16, "probability": 0.9841 }, { "start": 19017.22, "end": 19018.0, "probability": 0.8378 }, { "start": 19018.34, "end": 19019.58, "probability": 0.6118 }, { "start": 19020.04, "end": 19020.6, "probability": 0.7263 }, { "start": 19020.68, "end": 19021.6, "probability": 0.9746 }, { "start": 19021.68, "end": 19021.74, "probability": 0.8297 }, { "start": 19021.82, "end": 19024.02, "probability": 0.8351 }, { "start": 19024.1, "end": 19026.1, "probability": 0.9534 }, { "start": 19026.52, "end": 19030.38, "probability": 0.9948 }, { "start": 19030.58, "end": 19031.34, "probability": 0.6728 }, { "start": 19031.64, "end": 19031.9, "probability": 0.744 }, { "start": 19032.16, "end": 19035.72, "probability": 0.7291 }, { "start": 19035.76, "end": 19038.38, "probability": 0.9756 }, { "start": 19038.46, "end": 19040.82, "probability": 0.3938 }, { "start": 19041.54, "end": 19045.22, "probability": 0.4724 }, { "start": 19045.22, "end": 19048.94, "probability": 0.6659 }, { "start": 19049.14, "end": 19051.06, "probability": 0.5673 }, { "start": 19051.57, "end": 19052.2, "probability": 0.4802 }, { "start": 19052.26, "end": 19052.52, "probability": 0.1642 }, { "start": 19052.52, "end": 19053.52, "probability": 0.6602 }, { "start": 19054.08, "end": 19056.34, "probability": 0.666 }, { "start": 19057.58, "end": 19061.24, "probability": 0.7241 }, { "start": 19062.8, "end": 19065.52, "probability": 0.6731 }, { "start": 19066.08, "end": 19073.02, "probability": 0.9413 }, { "start": 19074.44, "end": 19075.4, "probability": 0.786 }, { "start": 19076.08, "end": 19077.94, "probability": 0.4009 }, { "start": 19078.06, "end": 19078.44, "probability": 0.7905 }, { "start": 19078.98, "end": 19080.34, "probability": 0.7064 }, { "start": 19080.66, "end": 19081.56, "probability": 0.6984 }, { "start": 19081.64, "end": 19082.64, "probability": 0.96 }, { "start": 19082.7, "end": 19084.72, "probability": 0.9839 }, { "start": 19085.2, "end": 19086.88, "probability": 0.6571 }, { "start": 19087.18, "end": 19088.08, "probability": 0.9786 }, { "start": 19088.48, "end": 19090.42, "probability": 0.9526 }, { "start": 19090.42, "end": 19091.84, "probability": 0.9245 }, { "start": 19092.36, "end": 19092.92, "probability": 0.8098 }, { "start": 19093.72, "end": 19094.44, "probability": 0.9121 }, { "start": 19097.04, "end": 19098.78, "probability": 0.9622 }, { "start": 19098.88, "end": 19100.5, "probability": 0.9949 }, { "start": 19101.32, "end": 19103.52, "probability": 0.4278 }, { "start": 19103.54, "end": 19105.16, "probability": 0.4299 }, { "start": 19105.28, "end": 19106.56, "probability": 0.6947 }, { "start": 19106.82, "end": 19107.9, "probability": 0.3824 }, { "start": 19108.02, "end": 19108.86, "probability": 0.8053 }, { "start": 19109.04, "end": 19115.32, "probability": 0.9491 }, { "start": 19116.46, "end": 19119.62, "probability": 0.7833 }, { "start": 19119.8, "end": 19121.96, "probability": 0.9515 }, { "start": 19122.68, "end": 19124.58, "probability": 0.5205 }, { "start": 19125.02, "end": 19125.95, "probability": 0.9386 }, { "start": 19127.04, "end": 19129.1, "probability": 0.7738 }, { "start": 19130.52, "end": 19134.61, "probability": 0.9945 }, { "start": 19135.0, "end": 19139.4, "probability": 0.9772 }, { "start": 19139.52, "end": 19140.74, "probability": 0.9963 }, { "start": 19141.3, "end": 19142.54, "probability": 0.9061 }, { "start": 19144.08, "end": 19147.22, "probability": 0.96 }, { "start": 19148.84, "end": 19149.6, "probability": 0.8111 }, { "start": 19151.62, "end": 19154.96, "probability": 0.7524 }, { "start": 19155.48, "end": 19158.38, "probability": 0.9551 }, { "start": 19159.16, "end": 19160.48, "probability": 0.838 }, { "start": 19161.58, "end": 19163.24, "probability": 0.9954 }, { "start": 19164.06, "end": 19164.73, "probability": 0.8774 }, { "start": 19165.5, "end": 19166.7, "probability": 0.7162 }, { "start": 19168.3, "end": 19171.66, "probability": 0.9423 }, { "start": 19172.5, "end": 19173.16, "probability": 0.4332 }, { "start": 19174.36, "end": 19177.66, "probability": 0.9795 }, { "start": 19178.32, "end": 19180.54, "probability": 0.991 }, { "start": 19180.66, "end": 19184.22, "probability": 0.9901 }, { "start": 19186.02, "end": 19188.34, "probability": 0.8173 }, { "start": 19190.0, "end": 19194.18, "probability": 0.996 }, { "start": 19194.38, "end": 19198.0, "probability": 0.992 }, { "start": 19198.76, "end": 19199.36, "probability": 0.9957 }, { "start": 19200.1, "end": 19203.2, "probability": 0.9595 }, { "start": 19203.76, "end": 19204.26, "probability": 0.8572 }, { "start": 19204.6, "end": 19206.04, "probability": 0.9795 }, { "start": 19206.96, "end": 19209.75, "probability": 0.9453 }, { "start": 19210.82, "end": 19215.72, "probability": 0.7891 }, { "start": 19216.84, "end": 19217.28, "probability": 0.8698 }, { "start": 19217.9, "end": 19220.26, "probability": 0.9565 }, { "start": 19221.3, "end": 19224.84, "probability": 0.9791 }, { "start": 19225.64, "end": 19226.18, "probability": 0.5993 }, { "start": 19226.2, "end": 19229.64, "probability": 0.7488 }, { "start": 19229.64, "end": 19232.2, "probability": 0.9787 }, { "start": 19232.92, "end": 19233.74, "probability": 0.7756 }, { "start": 19234.3, "end": 19236.74, "probability": 0.6681 }, { "start": 19237.62, "end": 19238.04, "probability": 0.7431 }, { "start": 19238.16, "end": 19241.5, "probability": 0.9922 }, { "start": 19241.92, "end": 19243.22, "probability": 0.7348 }, { "start": 19243.56, "end": 19244.42, "probability": 0.9753 }, { "start": 19245.08, "end": 19249.7, "probability": 0.8967 }, { "start": 19250.14, "end": 19250.44, "probability": 0.8618 }, { "start": 19250.5, "end": 19251.14, "probability": 0.537 }, { "start": 19251.34, "end": 19252.86, "probability": 0.9316 }, { "start": 19253.04, "end": 19253.46, "probability": 0.6626 }, { "start": 19253.86, "end": 19254.3, "probability": 0.6851 }, { "start": 19254.32, "end": 19254.74, "probability": 0.733 }, { "start": 19254.84, "end": 19255.2, "probability": 0.8347 }, { "start": 19255.72, "end": 19256.84, "probability": 0.7327 }, { "start": 19257.44, "end": 19260.52, "probability": 0.9098 }, { "start": 19261.02, "end": 19261.9, "probability": 0.844 }, { "start": 19262.48, "end": 19265.1, "probability": 0.7824 }, { "start": 19265.76, "end": 19267.12, "probability": 0.9779 }, { "start": 19267.7, "end": 19269.4, "probability": 0.8755 }, { "start": 19269.98, "end": 19273.46, "probability": 0.9447 }, { "start": 19274.8, "end": 19274.9, "probability": 0.8672 }, { "start": 19276.96, "end": 19277.52, "probability": 0.8989 }, { "start": 19279.1, "end": 19280.22, "probability": 0.9636 }, { "start": 19281.58, "end": 19282.54, "probability": 0.7286 }, { "start": 19283.9, "end": 19284.46, "probability": 0.6934 }, { "start": 19285.76, "end": 19288.92, "probability": 0.9959 }, { "start": 19289.92, "end": 19293.28, "probability": 0.8924 }, { "start": 19294.48, "end": 19295.14, "probability": 0.9239 }, { "start": 19296.34, "end": 19297.2, "probability": 0.9025 }, { "start": 19298.22, "end": 19299.89, "probability": 0.719 }, { "start": 19301.0, "end": 19303.38, "probability": 0.753 }, { "start": 19303.82, "end": 19304.7, "probability": 0.8866 }, { "start": 19305.78, "end": 19310.48, "probability": 0.979 }, { "start": 19311.28, "end": 19311.8, "probability": 0.8573 }, { "start": 19312.38, "end": 19312.96, "probability": 0.9671 }, { "start": 19313.8, "end": 19314.58, "probability": 0.9561 }, { "start": 19315.42, "end": 19316.19, "probability": 0.9876 }, { "start": 19317.3, "end": 19318.5, "probability": 0.8988 }, { "start": 19318.72, "end": 19320.48, "probability": 0.945 }, { "start": 19321.24, "end": 19322.78, "probability": 0.9412 }, { "start": 19323.42, "end": 19323.86, "probability": 0.923 }, { "start": 19324.5, "end": 19326.14, "probability": 0.9813 }, { "start": 19326.3, "end": 19326.86, "probability": 0.9676 }, { "start": 19327.7, "end": 19328.56, "probability": 0.8721 }, { "start": 19330.34, "end": 19330.66, "probability": 0.557 }, { "start": 19331.32, "end": 19332.86, "probability": 0.9824 }, { "start": 19333.78, "end": 19337.18, "probability": 0.9958 }, { "start": 19338.62, "end": 19340.2, "probability": 0.9913 }, { "start": 19340.28, "end": 19341.36, "probability": 0.8931 }, { "start": 19341.5, "end": 19342.34, "probability": 0.7961 }, { "start": 19342.72, "end": 19344.92, "probability": 0.9908 }, { "start": 19345.76, "end": 19350.04, "probability": 0.9214 }, { "start": 19350.6, "end": 19352.02, "probability": 0.9775 }, { "start": 19352.92, "end": 19355.04, "probability": 0.9871 }, { "start": 19356.12, "end": 19356.52, "probability": 0.4987 }, { "start": 19357.48, "end": 19360.38, "probability": 0.9732 }, { "start": 19360.54, "end": 19362.12, "probability": 0.866 }, { "start": 19362.94, "end": 19364.6, "probability": 0.9739 }, { "start": 19365.24, "end": 19369.14, "probability": 0.9731 }, { "start": 19371.98, "end": 19374.82, "probability": 0.9589 }, { "start": 19376.02, "end": 19377.86, "probability": 0.7981 }, { "start": 19378.78, "end": 19380.88, "probability": 0.8486 }, { "start": 19381.6, "end": 19383.96, "probability": 0.9028 }, { "start": 19384.74, "end": 19388.88, "probability": 0.6538 }, { "start": 19390.06, "end": 19391.82, "probability": 0.9279 }, { "start": 19392.88, "end": 19394.82, "probability": 0.9944 }, { "start": 19394.96, "end": 19396.12, "probability": 0.9961 }, { "start": 19396.9, "end": 19397.98, "probability": 0.9659 }, { "start": 19398.86, "end": 19399.66, "probability": 0.9829 }, { "start": 19400.18, "end": 19400.32, "probability": 0.0556 }, { "start": 19400.32, "end": 19401.18, "probability": 0.5323 }, { "start": 19401.44, "end": 19402.38, "probability": 0.933 }, { "start": 19403.1, "end": 19404.36, "probability": 0.8447 }, { "start": 19405.18, "end": 19406.24, "probability": 0.9863 }, { "start": 19406.34, "end": 19406.98, "probability": 0.9121 }, { "start": 19408.42, "end": 19410.18, "probability": 0.9925 }, { "start": 19410.18, "end": 19412.18, "probability": 0.9987 }, { "start": 19412.54, "end": 19413.82, "probability": 0.992 }, { "start": 19413.84, "end": 19415.66, "probability": 0.9712 }, { "start": 19415.98, "end": 19418.06, "probability": 0.7983 }, { "start": 19418.62, "end": 19421.94, "probability": 0.9541 }, { "start": 19424.78, "end": 19428.34, "probability": 0.8563 }, { "start": 19430.12, "end": 19431.76, "probability": 0.8555 }, { "start": 19432.92, "end": 19434.52, "probability": 0.9561 }, { "start": 19435.42, "end": 19439.38, "probability": 0.9847 }, { "start": 19440.14, "end": 19441.84, "probability": 0.952 }, { "start": 19442.46, "end": 19447.0, "probability": 0.9629 }, { "start": 19447.76, "end": 19449.84, "probability": 0.7969 }, { "start": 19450.44, "end": 19451.7, "probability": 0.998 }, { "start": 19452.22, "end": 19452.9, "probability": 0.4993 }, { "start": 19454.32, "end": 19455.52, "probability": 0.927 }, { "start": 19456.14, "end": 19456.46, "probability": 0.5592 }, { "start": 19457.24, "end": 19457.74, "probability": 0.8371 }, { "start": 19458.48, "end": 19464.6, "probability": 0.9951 }, { "start": 19464.72, "end": 19467.02, "probability": 0.9968 }, { "start": 19468.1, "end": 19470.87, "probability": 0.9783 }, { "start": 19471.6, "end": 19475.44, "probability": 0.9971 }, { "start": 19476.2, "end": 19477.88, "probability": 0.9758 }, { "start": 19478.48, "end": 19480.48, "probability": 0.9809 }, { "start": 19481.4, "end": 19482.68, "probability": 0.7022 }, { "start": 19485.3, "end": 19486.32, "probability": 0.9053 }, { "start": 19489.38, "end": 19490.98, "probability": 0.7206 }, { "start": 19492.66, "end": 19493.0, "probability": 0.6896 }, { "start": 19494.18, "end": 19495.82, "probability": 0.973 }, { "start": 19497.04, "end": 19497.4, "probability": 0.9232 }, { "start": 19498.28, "end": 19499.24, "probability": 0.932 }, { "start": 19500.54, "end": 19501.59, "probability": 0.9902 }, { "start": 19502.74, "end": 19503.66, "probability": 0.8087 }, { "start": 19504.52, "end": 19506.58, "probability": 0.7409 }, { "start": 19507.38, "end": 19508.44, "probability": 0.8885 }, { "start": 19508.64, "end": 19512.74, "probability": 0.9802 }, { "start": 19512.82, "end": 19516.86, "probability": 0.9835 }, { "start": 19517.56, "end": 19518.62, "probability": 0.8059 }, { "start": 19518.8, "end": 19519.29, "probability": 0.8484 }, { "start": 19519.92, "end": 19520.4, "probability": 0.8674 }, { "start": 19521.06, "end": 19525.32, "probability": 0.8941 }, { "start": 19525.82, "end": 19527.78, "probability": 0.9808 }, { "start": 19528.3, "end": 19531.06, "probability": 0.9339 }, { "start": 19531.86, "end": 19532.58, "probability": 0.5459 }, { "start": 19533.8, "end": 19535.4, "probability": 0.864 }, { "start": 19536.52, "end": 19541.94, "probability": 0.9434 }, { "start": 19542.42, "end": 19543.74, "probability": 0.9956 }, { "start": 19544.86, "end": 19546.7, "probability": 0.9752 }, { "start": 19547.24, "end": 19549.02, "probability": 0.9747 }, { "start": 19549.72, "end": 19550.32, "probability": 0.8385 }, { "start": 19550.88, "end": 19552.92, "probability": 0.7766 }, { "start": 19553.7, "end": 19554.18, "probability": 0.4382 }, { "start": 19554.42, "end": 19556.32, "probability": 0.8496 }, { "start": 19556.7, "end": 19557.42, "probability": 0.9455 }, { "start": 19557.72, "end": 19559.84, "probability": 0.9621 }, { "start": 19562.12, "end": 19564.76, "probability": 0.9578 }, { "start": 19566.4, "end": 19566.82, "probability": 0.7458 }, { "start": 19566.9, "end": 19567.6, "probability": 0.9553 }, { "start": 19567.62, "end": 19569.18, "probability": 0.9915 }, { "start": 19570.06, "end": 19571.46, "probability": 0.8914 }, { "start": 19571.68, "end": 19574.28, "probability": 0.9648 }, { "start": 19574.7, "end": 19575.78, "probability": 0.9535 }, { "start": 19575.88, "end": 19576.32, "probability": 0.9589 }, { "start": 19577.86, "end": 19578.82, "probability": 0.8551 }, { "start": 19578.98, "end": 19579.74, "probability": 0.9559 }, { "start": 19579.92, "end": 19582.32, "probability": 0.9809 }, { "start": 19583.58, "end": 19586.66, "probability": 0.8534 }, { "start": 19586.94, "end": 19588.16, "probability": 0.5393 }, { "start": 19588.3, "end": 19589.2, "probability": 0.8846 }, { "start": 19589.32, "end": 19590.22, "probability": 0.8982 }, { "start": 19590.7, "end": 19595.68, "probability": 0.9551 }, { "start": 19596.36, "end": 19601.64, "probability": 0.9625 }, { "start": 19602.82, "end": 19602.92, "probability": 0.6218 }, { "start": 19603.48, "end": 19605.12, "probability": 0.6185 }, { "start": 19606.24, "end": 19606.74, "probability": 0.6917 }, { "start": 19608.08, "end": 19609.88, "probability": 0.7183 }, { "start": 19622.04, "end": 19622.42, "probability": 0.5722 }, { "start": 19623.38, "end": 19625.18, "probability": 0.4988 }, { "start": 19625.8, "end": 19626.42, "probability": 0.6231 }, { "start": 19626.76, "end": 19626.76, "probability": 0.0344 }, { "start": 19626.76, "end": 19626.78, "probability": 0.1645 }, { "start": 19626.78, "end": 19627.08, "probability": 0.2665 }, { "start": 19629.15, "end": 19633.02, "probability": 0.4664 }, { "start": 19634.72, "end": 19636.76, "probability": 0.5861 }, { "start": 19637.94, "end": 19639.6, "probability": 0.5891 }, { "start": 19639.88, "end": 19639.88, "probability": 0.0024 }, { "start": 19640.98, "end": 19641.46, "probability": 0.5382 }, { "start": 19641.96, "end": 19642.8, "probability": 0.4728 }, { "start": 19642.88, "end": 19643.74, "probability": 0.9744 }, { "start": 19645.4, "end": 19648.44, "probability": 0.6825 }, { "start": 19648.7, "end": 19651.2, "probability": 0.8546 }, { "start": 19652.22, "end": 19654.6, "probability": 0.8064 }, { "start": 19654.8, "end": 19657.52, "probability": 0.8965 }, { "start": 19658.04, "end": 19658.76, "probability": 0.7806 }, { "start": 19660.08, "end": 19663.74, "probability": 0.9737 }, { "start": 19664.12, "end": 19666.88, "probability": 0.7715 }, { "start": 19667.06, "end": 19667.42, "probability": 0.9208 }, { "start": 19667.52, "end": 19670.16, "probability": 0.8307 }, { "start": 19670.96, "end": 19673.24, "probability": 0.7512 }, { "start": 19673.54, "end": 19677.74, "probability": 0.9969 }, { "start": 19678.26, "end": 19680.24, "probability": 0.9745 }, { "start": 19680.96, "end": 19682.34, "probability": 0.9463 }, { "start": 19683.12, "end": 19683.46, "probability": 0.9819 }, { "start": 19684.82, "end": 19687.16, "probability": 0.9968 }, { "start": 19687.28, "end": 19688.14, "probability": 0.7124 }, { "start": 19688.76, "end": 19691.57, "probability": 0.9966 }, { "start": 19692.26, "end": 19695.68, "probability": 0.9808 }, { "start": 19696.62, "end": 19699.2, "probability": 0.9954 }, { "start": 19699.74, "end": 19699.98, "probability": 0.5032 }, { "start": 19700.14, "end": 19701.28, "probability": 0.8901 }, { "start": 19701.74, "end": 19703.07, "probability": 0.9685 }, { "start": 19703.28, "end": 19703.76, "probability": 0.7322 }, { "start": 19703.8, "end": 19704.7, "probability": 0.9849 }, { "start": 19705.2, "end": 19707.1, "probability": 0.9771 }, { "start": 19707.16, "end": 19708.34, "probability": 0.9131 }, { "start": 19709.06, "end": 19713.74, "probability": 0.828 }, { "start": 19713.74, "end": 19717.04, "probability": 0.9893 }, { "start": 19717.68, "end": 19718.88, "probability": 0.7559 }, { "start": 19720.6, "end": 19721.38, "probability": 0.4994 }, { "start": 19723.22, "end": 19724.26, "probability": 0.9927 }, { "start": 19726.74, "end": 19727.92, "probability": 0.818 }, { "start": 19728.04, "end": 19730.54, "probability": 0.9988 }, { "start": 19731.24, "end": 19734.34, "probability": 0.9909 }, { "start": 19734.34, "end": 19737.08, "probability": 0.9909 }, { "start": 19737.98, "end": 19739.68, "probability": 0.9988 }, { "start": 19740.3, "end": 19741.9, "probability": 0.9111 }, { "start": 19742.64, "end": 19744.72, "probability": 0.9993 }, { "start": 19745.64, "end": 19747.56, "probability": 0.9954 }, { "start": 19747.56, "end": 19749.7, "probability": 0.9976 }, { "start": 19750.26, "end": 19752.16, "probability": 0.9521 }, { "start": 19753.04, "end": 19754.22, "probability": 0.7147 }, { "start": 19754.3, "end": 19757.06, "probability": 0.9882 }, { "start": 19757.72, "end": 19758.26, "probability": 0.8183 }, { "start": 19758.8, "end": 19763.24, "probability": 0.9979 }, { "start": 19763.68, "end": 19766.78, "probability": 0.9973 }, { "start": 19767.32, "end": 19767.94, "probability": 0.7802 }, { "start": 19768.58, "end": 19772.5, "probability": 0.5952 }, { "start": 19772.84, "end": 19773.52, "probability": 0.848 }, { "start": 19773.58, "end": 19774.52, "probability": 0.667 }, { "start": 19775.0, "end": 19780.66, "probability": 0.7274 }, { "start": 19780.66, "end": 19784.9, "probability": 0.946 }, { "start": 19786.81, "end": 19788.14, "probability": 0.0263 }, { "start": 19788.22, "end": 19789.24, "probability": 0.4216 }, { "start": 19789.34, "end": 19790.62, "probability": 0.427 }, { "start": 19790.86, "end": 19792.0, "probability": 0.7878 }, { "start": 19792.84, "end": 19795.04, "probability": 0.7905 }, { "start": 19795.18, "end": 19798.24, "probability": 0.7425 }, { "start": 19798.8, "end": 19800.02, "probability": 0.796 }, { "start": 19800.74, "end": 19803.2, "probability": 0.6259 }, { "start": 19803.34, "end": 19804.56, "probability": 0.3788 }, { "start": 19804.64, "end": 19805.88, "probability": 0.7743 }, { "start": 19805.88, "end": 19806.32, "probability": 0.0064 }, { "start": 19809.72, "end": 19809.92, "probability": 0.0559 }, { "start": 19809.92, "end": 19810.22, "probability": 0.085 }, { "start": 19810.46, "end": 19813.32, "probability": 0.2249 }, { "start": 19813.32, "end": 19814.46, "probability": 0.6461 }, { "start": 19814.92, "end": 19817.22, "probability": 0.0844 }, { "start": 19818.26, "end": 19820.0, "probability": 0.2011 }, { "start": 19820.0, "end": 19820.1, "probability": 0.3019 }, { "start": 19820.52, "end": 19820.98, "probability": 0.4357 }, { "start": 19821.14, "end": 19823.16, "probability": 0.1437 }, { "start": 19823.58, "end": 19824.02, "probability": 0.373 }, { "start": 19824.16, "end": 19826.0, "probability": 0.575 }, { "start": 19826.04, "end": 19827.22, "probability": 0.1378 }, { "start": 19827.4, "end": 19828.24, "probability": 0.5345 }, { "start": 19828.44, "end": 19829.2, "probability": 0.6797 }, { "start": 19829.4, "end": 19832.78, "probability": 0.11 }, { "start": 19833.16, "end": 19834.86, "probability": 0.0514 }, { "start": 19834.9, "end": 19836.46, "probability": 0.067 }, { "start": 19837.54, "end": 19838.94, "probability": 0.4599 }, { "start": 19842.5, "end": 19844.28, "probability": 0.658 }, { "start": 19845.54, "end": 19847.96, "probability": 0.963 }, { "start": 19849.14, "end": 19853.02, "probability": 0.9862 }, { "start": 19853.62, "end": 19854.8, "probability": 0.9692 }, { "start": 19855.56, "end": 19856.96, "probability": 0.9922 }, { "start": 19857.68, "end": 19860.36, "probability": 0.9885 }, { "start": 19860.36, "end": 19864.12, "probability": 0.9954 }, { "start": 19864.68, "end": 19866.98, "probability": 0.9951 }, { "start": 19867.82, "end": 19874.5, "probability": 0.9919 }, { "start": 19875.44, "end": 19878.34, "probability": 0.9922 }, { "start": 19879.2, "end": 19881.92, "probability": 0.9433 }, { "start": 19882.72, "end": 19885.88, "probability": 0.9651 }, { "start": 19886.44, "end": 19888.52, "probability": 0.8201 }, { "start": 19889.36, "end": 19891.28, "probability": 0.9873 }, { "start": 19892.22, "end": 19894.38, "probability": 0.9587 }, { "start": 19895.28, "end": 19902.46, "probability": 0.9962 }, { "start": 19902.56, "end": 19905.04, "probability": 0.953 }, { "start": 19905.68, "end": 19908.3, "probability": 0.9342 }, { "start": 19909.16, "end": 19913.22, "probability": 0.3152 }, { "start": 19914.26, "end": 19914.48, "probability": 0.1105 }, { "start": 19914.48, "end": 19916.24, "probability": 0.4763 }, { "start": 19916.6, "end": 19919.94, "probability": 0.8462 }, { "start": 19922.58, "end": 19926.48, "probability": 0.1148 }, { "start": 19927.3, "end": 19928.98, "probability": 0.1742 }, { "start": 19929.68, "end": 19930.46, "probability": 0.1661 }, { "start": 19930.46, "end": 19937.58, "probability": 0.527 }, { "start": 19938.88, "end": 19942.37, "probability": 0.9578 }, { "start": 19942.68, "end": 19949.96, "probability": 0.9432 }, { "start": 19951.02, "end": 19955.02, "probability": 0.7957 }, { "start": 19955.02, "end": 19958.68, "probability": 0.9866 }, { "start": 19959.2, "end": 19960.56, "probability": 0.899 }, { "start": 19961.08, "end": 19962.52, "probability": 0.7939 }, { "start": 19963.4, "end": 19964.44, "probability": 0.8273 }, { "start": 19965.02, "end": 19972.18, "probability": 0.9925 }, { "start": 19972.74, "end": 19974.92, "probability": 0.9236 }, { "start": 19975.64, "end": 19979.42, "probability": 0.9095 }, { "start": 19979.54, "end": 19981.62, "probability": 0.9338 }, { "start": 19982.32, "end": 19986.44, "probability": 0.9694 }, { "start": 19986.52, "end": 19988.14, "probability": 0.5845 }, { "start": 19989.48, "end": 19993.8, "probability": 0.8759 }, { "start": 19994.92, "end": 19996.7, "probability": 0.6675 }, { "start": 19997.32, "end": 19999.16, "probability": 0.9958 }, { "start": 19999.78, "end": 20000.74, "probability": 0.555 }, { "start": 20001.22, "end": 20004.8, "probability": 0.987 }, { "start": 20004.8, "end": 20009.12, "probability": 0.9666 }, { "start": 20009.6, "end": 20011.16, "probability": 0.9817 }, { "start": 20011.92, "end": 20015.94, "probability": 0.9959 }, { "start": 20017.68, "end": 20022.24, "probability": 0.7742 }, { "start": 20023.0, "end": 20028.18, "probability": 0.641 }, { "start": 20028.18, "end": 20032.8, "probability": 0.0206 }, { "start": 20033.48, "end": 20036.24, "probability": 0.0472 }, { "start": 20037.84, "end": 20038.74, "probability": 0.0699 }, { "start": 20039.0, "end": 20041.0, "probability": 0.8134 }, { "start": 20041.0, "end": 20047.68, "probability": 0.9398 }, { "start": 20048.46, "end": 20052.28, "probability": 0.5253 }, { "start": 20052.34, "end": 20052.82, "probability": 0.3908 }, { "start": 20052.86, "end": 20052.96, "probability": 0.4436 }, { "start": 20053.71, "end": 20055.76, "probability": 0.2946 }, { "start": 20055.9, "end": 20057.54, "probability": 0.9551 }, { "start": 20059.1, "end": 20060.64, "probability": 0.2348 }, { "start": 20061.24, "end": 20062.16, "probability": 0.0817 }, { "start": 20062.9, "end": 20062.9, "probability": 0.4046 }, { "start": 20063.21, "end": 20064.28, "probability": 0.4837 }, { "start": 20064.28, "end": 20065.16, "probability": 0.4239 }, { "start": 20065.38, "end": 20066.56, "probability": 0.517 }, { "start": 20066.84, "end": 20070.2, "probability": 0.6646 }, { "start": 20071.02, "end": 20076.5, "probability": 0.8071 }, { "start": 20077.58, "end": 20078.12, "probability": 0.5561 }, { "start": 20078.74, "end": 20081.72, "probability": 0.2715 }, { "start": 20081.72, "end": 20082.05, "probability": 0.2535 }, { "start": 20082.3, "end": 20085.24, "probability": 0.9486 }, { "start": 20086.18, "end": 20088.16, "probability": 0.3881 }, { "start": 20089.9, "end": 20092.16, "probability": 0.4241 }, { "start": 20092.7, "end": 20095.88, "probability": 0.4763 }, { "start": 20095.88, "end": 20095.88, "probability": 0.5156 }, { "start": 20095.88, "end": 20100.22, "probability": 0.7195 }, { "start": 20100.48, "end": 20109.48, "probability": 0.5474 }, { "start": 20109.72, "end": 20115.02, "probability": 0.1134 }, { "start": 20115.92, "end": 20116.78, "probability": 0.0536 }, { "start": 20116.78, "end": 20118.48, "probability": 0.1053 }, { "start": 20118.48, "end": 20118.62, "probability": 0.0114 }, { "start": 20127.48, "end": 20129.56, "probability": 0.0222 }, { "start": 20133.99, "end": 20139.08, "probability": 0.7099 }, { "start": 20144.5, "end": 20148.66, "probability": 0.8283 }, { "start": 20148.84, "end": 20149.56, "probability": 0.3304 }, { "start": 20149.7, "end": 20154.9, "probability": 0.2378 }, { "start": 20155.7, "end": 20156.5, "probability": 0.2504 }, { "start": 20156.5, "end": 20157.48, "probability": 0.0464 }, { "start": 20158.6, "end": 20158.86, "probability": 0.0303 }, { "start": 20158.86, "end": 20159.64, "probability": 0.3167 }, { "start": 20159.68, "end": 20161.58, "probability": 0.6363 }, { "start": 20161.58, "end": 20162.48, "probability": 0.6701 }, { "start": 20162.48, "end": 20164.92, "probability": 0.9734 }, { "start": 20165.04, "end": 20166.44, "probability": 0.9836 }, { "start": 20166.48, "end": 20167.9, "probability": 0.6872 }, { "start": 20168.42, "end": 20169.83, "probability": 0.8905 }, { "start": 20170.02, "end": 20170.57, "probability": 0.3474 }, { "start": 20171.1, "end": 20174.88, "probability": 0.0434 }, { "start": 20176.82, "end": 20177.7, "probability": 0.1379 }, { "start": 20182.74, "end": 20184.54, "probability": 0.7467 }, { "start": 20184.64, "end": 20187.8, "probability": 0.3513 }, { "start": 20188.44, "end": 20189.21, "probability": 0.505 }, { "start": 20189.54, "end": 20189.72, "probability": 0.2714 }, { "start": 20189.86, "end": 20190.1, "probability": 0.7069 }, { "start": 20190.18, "end": 20190.94, "probability": 0.789 }, { "start": 20191.06, "end": 20193.01, "probability": 0.9157 }, { "start": 20194.42, "end": 20195.48, "probability": 0.2838 }, { "start": 20195.66, "end": 20198.24, "probability": 0.9598 }, { "start": 20200.96, "end": 20205.54, "probability": 0.7647 }, { "start": 20206.89, "end": 20212.32, "probability": 0.9787 }, { "start": 20213.75, "end": 20216.36, "probability": 0.8656 }, { "start": 20216.52, "end": 20217.18, "probability": 0.4569 }, { "start": 20217.32, "end": 20218.46, "probability": 0.2935 }, { "start": 20218.62, "end": 20219.95, "probability": 0.2056 }, { "start": 20220.5, "end": 20221.24, "probability": 0.5641 }, { "start": 20221.48, "end": 20223.6, "probability": 0.6925 }, { "start": 20224.08, "end": 20225.6, "probability": 0.9541 }, { "start": 20225.74, "end": 20226.92, "probability": 0.8933 }, { "start": 20228.06, "end": 20231.36, "probability": 0.8942 }, { "start": 20232.1, "end": 20233.3, "probability": 0.7203 }, { "start": 20233.68, "end": 20236.42, "probability": 0.5634 }, { "start": 20236.42, "end": 20237.02, "probability": 0.7603 }, { "start": 20237.5, "end": 20237.9, "probability": 0.8921 }, { "start": 20237.9, "end": 20240.76, "probability": 0.8759 }, { "start": 20240.84, "end": 20242.68, "probability": 0.5846 }, { "start": 20243.32, "end": 20246.68, "probability": 0.0338 }, { "start": 20246.68, "end": 20246.76, "probability": 0.7222 }, { "start": 20246.76, "end": 20247.32, "probability": 0.642 }, { "start": 20248.2, "end": 20249.85, "probability": 0.5839 }, { "start": 20250.12, "end": 20250.5, "probability": 0.6956 }, { "start": 20250.96, "end": 20253.5, "probability": 0.974 }, { "start": 20253.54, "end": 20255.28, "probability": 0.8438 }, { "start": 20256.4, "end": 20258.56, "probability": 0.4133 }, { "start": 20258.72, "end": 20260.84, "probability": 0.6977 }, { "start": 20261.08, "end": 20262.94, "probability": 0.7257 }, { "start": 20263.08, "end": 20264.46, "probability": 0.7432 }, { "start": 20264.58, "end": 20266.5, "probability": 0.887 }, { "start": 20266.72, "end": 20270.8, "probability": 0.8243 }, { "start": 20271.18, "end": 20273.58, "probability": 0.9937 }, { "start": 20273.7, "end": 20274.82, "probability": 0.0246 }, { "start": 20275.28, "end": 20276.86, "probability": 0.4415 }, { "start": 20277.08, "end": 20277.08, "probability": 0.1184 }, { "start": 20277.08, "end": 20277.08, "probability": 0.4945 }, { "start": 20277.08, "end": 20279.86, "probability": 0.9263 }, { "start": 20280.54, "end": 20281.76, "probability": 0.8744 }, { "start": 20284.28, "end": 20286.72, "probability": 0.8386 }, { "start": 20287.94, "end": 20291.94, "probability": 0.5812 }, { "start": 20291.98, "end": 20292.8, "probability": 0.5412 }, { "start": 20295.72, "end": 20299.76, "probability": 0.6349 }, { "start": 20301.46, "end": 20302.5, "probability": 0.6509 }, { "start": 20303.54, "end": 20304.96, "probability": 0.7329 }, { "start": 20306.76, "end": 20307.68, "probability": 0.2869 }, { "start": 20308.92, "end": 20313.02, "probability": 0.8188 }, { "start": 20313.54, "end": 20314.46, "probability": 0.994 }, { "start": 20315.0, "end": 20318.22, "probability": 0.9988 }, { "start": 20319.22, "end": 20323.51, "probability": 0.9929 }, { "start": 20324.6, "end": 20325.82, "probability": 0.9022 }, { "start": 20326.54, "end": 20330.38, "probability": 0.9922 }, { "start": 20330.38, "end": 20333.74, "probability": 0.9993 }, { "start": 20334.86, "end": 20336.0, "probability": 0.8337 }, { "start": 20337.6, "end": 20339.44, "probability": 0.7388 }, { "start": 20340.05, "end": 20342.36, "probability": 0.9166 }, { "start": 20343.45, "end": 20346.28, "probability": 0.1607 }, { "start": 20346.3, "end": 20350.12, "probability": 0.9526 }, { "start": 20351.06, "end": 20355.84, "probability": 0.9393 }, { "start": 20355.84, "end": 20360.58, "probability": 0.9878 }, { "start": 20360.74, "end": 20360.74, "probability": 0.0496 }, { "start": 20360.74, "end": 20361.08, "probability": 0.447 }, { "start": 20361.18, "end": 20366.18, "probability": 0.9176 }, { "start": 20366.18, "end": 20369.98, "probability": 0.9978 }, { "start": 20370.4, "end": 20372.44, "probability": 0.9048 }, { "start": 20373.16, "end": 20374.5, "probability": 0.6773 }, { "start": 20375.26, "end": 20375.76, "probability": 0.7609 }, { "start": 20376.36, "end": 20377.64, "probability": 0.5784 }, { "start": 20377.74, "end": 20380.44, "probability": 0.9079 }, { "start": 20381.0, "end": 20382.78, "probability": 0.829 }, { "start": 20382.88, "end": 20383.2, "probability": 0.6444 }, { "start": 20385.77, "end": 20387.5, "probability": 0.9355 }, { "start": 20393.24, "end": 20395.24, "probability": 0.6239 }, { "start": 20395.32, "end": 20398.04, "probability": 0.9944 }, { "start": 20398.26, "end": 20400.84, "probability": 0.48 }, { "start": 20401.14, "end": 20405.4, "probability": 0.8709 }, { "start": 20405.48, "end": 20405.82, "probability": 0.5042 }, { "start": 20407.1, "end": 20408.48, "probability": 0.7721 }, { "start": 20412.24, "end": 20413.98, "probability": 0.8738 }, { "start": 20415.76, "end": 20417.62, "probability": 0.9983 }, { "start": 20417.72, "end": 20419.08, "probability": 0.9005 }, { "start": 20420.06, "end": 20422.08, "probability": 0.9989 }, { "start": 20422.32, "end": 20425.1, "probability": 0.7932 }, { "start": 20425.68, "end": 20429.38, "probability": 0.9875 }, { "start": 20429.5, "end": 20431.62, "probability": 0.9182 }, { "start": 20431.74, "end": 20433.72, "probability": 0.9939 }, { "start": 20434.58, "end": 20438.76, "probability": 0.8628 }, { "start": 20439.96, "end": 20442.86, "probability": 0.8171 }, { "start": 20443.0, "end": 20444.34, "probability": 0.7917 }, { "start": 20444.76, "end": 20445.62, "probability": 0.917 }, { "start": 20446.26, "end": 20447.14, "probability": 0.9412 }, { "start": 20447.86, "end": 20450.1, "probability": 0.9883 }, { "start": 20451.76, "end": 20452.24, "probability": 0.1481 }, { "start": 20455.34, "end": 20456.1, "probability": 0.1115 }, { "start": 20457.28, "end": 20461.38, "probability": 0.916 }, { "start": 20462.46, "end": 20465.24, "probability": 0.9978 }, { "start": 20465.76, "end": 20466.56, "probability": 0.7988 }, { "start": 20466.6, "end": 20468.98, "probability": 0.8687 }, { "start": 20469.12, "end": 20469.94, "probability": 0.8984 }, { "start": 20470.24, "end": 20473.42, "probability": 0.7878 }, { "start": 20473.5, "end": 20476.12, "probability": 0.9785 }, { "start": 20476.68, "end": 20477.2, "probability": 0.9577 }, { "start": 20478.34, "end": 20479.3, "probability": 0.3664 }, { "start": 20479.3, "end": 20479.92, "probability": 0.095 }, { "start": 20480.28, "end": 20481.42, "probability": 0.4504 }, { "start": 20481.94, "end": 20483.78, "probability": 0.3441 }, { "start": 20483.78, "end": 20484.69, "probability": 0.8463 }, { "start": 20485.02, "end": 20487.06, "probability": 0.653 }, { "start": 20487.08, "end": 20487.98, "probability": 0.1863 }, { "start": 20488.89, "end": 20491.99, "probability": 0.8452 }, { "start": 20492.08, "end": 20493.54, "probability": 0.5501 }, { "start": 20493.68, "end": 20494.76, "probability": 0.3575 }, { "start": 20494.78, "end": 20498.87, "probability": 0.1979 }, { "start": 20509.74, "end": 20511.36, "probability": 0.1344 }, { "start": 20511.48, "end": 20513.02, "probability": 0.2402 }, { "start": 20513.24, "end": 20514.98, "probability": 0.7876 }, { "start": 20515.14, "end": 20516.58, "probability": 0.3482 }, { "start": 20517.02, "end": 20517.76, "probability": 0.4664 }, { "start": 20517.94, "end": 20519.6, "probability": 0.6788 }, { "start": 20520.04, "end": 20521.88, "probability": 0.4246 }, { "start": 20522.3, "end": 20523.24, "probability": 0.8692 }, { "start": 20523.4, "end": 20523.96, "probability": 0.7403 }, { "start": 20523.98, "end": 20524.9, "probability": 0.4898 }, { "start": 20524.9, "end": 20526.28, "probability": 0.2387 }, { "start": 20527.08, "end": 20528.22, "probability": 0.1949 }, { "start": 20528.5, "end": 20532.46, "probability": 0.7085 }, { "start": 20532.46, "end": 20536.42, "probability": 0.9832 }, { "start": 20536.56, "end": 20541.42, "probability": 0.9916 }, { "start": 20541.7, "end": 20541.94, "probability": 0.7247 }, { "start": 20542.04, "end": 20544.37, "probability": 0.7683 }, { "start": 20544.92, "end": 20545.18, "probability": 0.3937 }, { "start": 20545.18, "end": 20548.62, "probability": 0.8707 }, { "start": 20548.7, "end": 20549.02, "probability": 0.7644 }, { "start": 20549.5, "end": 20552.26, "probability": 0.9849 }, { "start": 20553.38, "end": 20554.8, "probability": 0.633 }, { "start": 20555.88, "end": 20558.56, "probability": 0.5443 }, { "start": 20559.86, "end": 20563.16, "probability": 0.8567 }, { "start": 20565.1, "end": 20567.52, "probability": 0.9052 }, { "start": 20568.44, "end": 20571.18, "probability": 0.1417 }, { "start": 20579.52, "end": 20580.62, "probability": 0.3399 }, { "start": 20583.98, "end": 20585.92, "probability": 0.0626 }, { "start": 20586.71, "end": 20589.3, "probability": 0.2715 }, { "start": 20590.68, "end": 20593.18, "probability": 0.9767 }, { "start": 20594.8, "end": 20595.42, "probability": 0.9504 }, { "start": 20596.92, "end": 20599.38, "probability": 0.8138 }, { "start": 20600.06, "end": 20604.74, "probability": 0.9598 }, { "start": 20605.4, "end": 20606.48, "probability": 0.8448 }, { "start": 20606.66, "end": 20608.98, "probability": 0.8133 }, { "start": 20610.22, "end": 20610.32, "probability": 0.2993 }, { "start": 20610.32, "end": 20615.98, "probability": 0.882 }, { "start": 20616.62, "end": 20616.96, "probability": 0.919 }, { "start": 20619.84, "end": 20620.28, "probability": 0.9423 }, { "start": 20623.14, "end": 20624.1, "probability": 0.8085 }, { "start": 20624.22, "end": 20625.14, "probability": 0.9091 }, { "start": 20625.2, "end": 20625.98, "probability": 0.7249 }, { "start": 20627.06, "end": 20629.58, "probability": 0.9036 }, { "start": 20630.54, "end": 20632.8, "probability": 0.9819 }, { "start": 20633.58, "end": 20634.72, "probability": 0.6631 }, { "start": 20635.26, "end": 20636.56, "probability": 0.8642 }, { "start": 20637.16, "end": 20638.94, "probability": 0.8738 }, { "start": 20640.14, "end": 20642.14, "probability": 0.6691 }, { "start": 20644.22, "end": 20645.9, "probability": 0.993 }, { "start": 20647.26, "end": 20648.18, "probability": 0.4657 }, { "start": 20648.26, "end": 20650.6, "probability": 0.6463 }, { "start": 20650.6, "end": 20653.58, "probability": 0.9314 }, { "start": 20653.62, "end": 20655.92, "probability": 0.9697 }, { "start": 20656.32, "end": 20657.24, "probability": 0.9492 }, { "start": 20657.38, "end": 20661.74, "probability": 0.9663 }, { "start": 20663.4, "end": 20666.26, "probability": 0.8721 }, { "start": 20667.3, "end": 20670.46, "probability": 0.9716 }, { "start": 20671.08, "end": 20673.3, "probability": 0.9808 }, { "start": 20674.52, "end": 20675.72, "probability": 0.9143 }, { "start": 20676.4, "end": 20678.5, "probability": 0.7776 }, { "start": 20679.38, "end": 20682.8, "probability": 0.9834 }, { "start": 20683.38, "end": 20684.46, "probability": 0.6526 }, { "start": 20685.26, "end": 20687.68, "probability": 0.8138 }, { "start": 20688.34, "end": 20689.0, "probability": 0.9731 }, { "start": 20689.42, "end": 20693.18, "probability": 0.9963 }, { "start": 20694.9, "end": 20695.7, "probability": 0.7315 }, { "start": 20696.42, "end": 20697.7, "probability": 0.8755 }, { "start": 20698.6, "end": 20700.74, "probability": 0.9944 }, { "start": 20700.82, "end": 20702.26, "probability": 0.9915 }, { "start": 20702.82, "end": 20704.1, "probability": 0.9504 }, { "start": 20704.3, "end": 20707.81, "probability": 0.9976 }, { "start": 20708.82, "end": 20710.56, "probability": 0.9945 }, { "start": 20711.28, "end": 20714.53, "probability": 0.8531 }, { "start": 20715.32, "end": 20718.1, "probability": 0.789 }, { "start": 20718.22, "end": 20718.96, "probability": 0.8069 }, { "start": 20719.86, "end": 20727.7, "probability": 0.9832 }, { "start": 20728.48, "end": 20730.74, "probability": 0.7602 }, { "start": 20731.58, "end": 20734.3, "probability": 0.9912 }, { "start": 20735.06, "end": 20737.0, "probability": 0.8595 }, { "start": 20737.48, "end": 20738.1, "probability": 0.5014 }, { "start": 20738.14, "end": 20739.08, "probability": 0.9358 }, { "start": 20739.2, "end": 20742.96, "probability": 0.9954 }, { "start": 20743.4, "end": 20744.7, "probability": 0.5751 }, { "start": 20745.48, "end": 20749.98, "probability": 0.9858 }, { "start": 20750.5, "end": 20751.22, "probability": 0.8707 }, { "start": 20751.28, "end": 20751.64, "probability": 0.7892 }, { "start": 20755.02, "end": 20756.94, "probability": 0.8523 }, { "start": 20757.58, "end": 20759.17, "probability": 0.9984 }, { "start": 20760.1, "end": 20761.68, "probability": 0.6088 }, { "start": 20763.04, "end": 20764.58, "probability": 0.7418 }, { "start": 20765.42, "end": 20768.02, "probability": 0.8883 }, { "start": 20768.1, "end": 20769.42, "probability": 0.8728 }, { "start": 20770.04, "end": 20770.14, "probability": 0.0007 }, { "start": 20770.14, "end": 20774.12, "probability": 0.6688 }, { "start": 20774.62, "end": 20777.34, "probability": 0.6125 }, { "start": 20777.5, "end": 20778.86, "probability": 0.7127 }, { "start": 20778.98, "end": 20779.3, "probability": 0.7365 }, { "start": 20780.44, "end": 20783.1, "probability": 0.7772 }, { "start": 20787.99, "end": 20789.24, "probability": 0.514 }, { "start": 20794.02, "end": 20797.28, "probability": 0.6617 }, { "start": 20797.4, "end": 20798.56, "probability": 0.8301 }, { "start": 20798.78, "end": 20800.26, "probability": 0.8813 }, { "start": 20800.36, "end": 20801.62, "probability": 0.9132 }, { "start": 20802.88, "end": 20804.42, "probability": 0.8465 }, { "start": 20804.6, "end": 20807.28, "probability": 0.9956 }, { "start": 20807.28, "end": 20810.88, "probability": 0.9751 }, { "start": 20811.9, "end": 20812.92, "probability": 0.7298 }, { "start": 20813.12, "end": 20813.6, "probability": 0.7041 }, { "start": 20814.16, "end": 20815.26, "probability": 0.9043 }, { "start": 20815.68, "end": 20820.28, "probability": 0.9194 }, { "start": 20820.44, "end": 20822.46, "probability": 0.961 }, { "start": 20822.96, "end": 20825.96, "probability": 0.1194 }, { "start": 20826.32, "end": 20827.26, "probability": 0.7588 }, { "start": 20827.42, "end": 20828.14, "probability": 0.8637 }, { "start": 20828.24, "end": 20828.78, "probability": 0.8936 }, { "start": 20828.94, "end": 20829.74, "probability": 0.4055 }, { "start": 20829.74, "end": 20830.1, "probability": 0.1918 }, { "start": 20830.28, "end": 20830.8, "probability": 0.871 }, { "start": 20830.84, "end": 20832.02, "probability": 0.9466 }, { "start": 20832.08, "end": 20833.46, "probability": 0.9818 }, { "start": 20833.54, "end": 20835.1, "probability": 0.9733 }, { "start": 20835.74, "end": 20837.18, "probability": 0.424 }, { "start": 20837.9, "end": 20840.7, "probability": 0.3071 }, { "start": 20841.02, "end": 20841.88, "probability": 0.2344 }, { "start": 20842.06, "end": 20843.4, "probability": 0.8377 }, { "start": 20843.56, "end": 20846.64, "probability": 0.9897 }, { "start": 20847.24, "end": 20849.74, "probability": 0.9964 }, { "start": 20849.94, "end": 20850.8, "probability": 0.8705 }, { "start": 20850.94, "end": 20853.28, "probability": 0.8727 }, { "start": 20853.98, "end": 20854.5, "probability": 0.8383 }, { "start": 20854.58, "end": 20858.43, "probability": 0.9299 }, { "start": 20859.56, "end": 20864.44, "probability": 0.9857 }, { "start": 20864.54, "end": 20867.42, "probability": 0.9895 }, { "start": 20867.98, "end": 20868.9, "probability": 0.8254 }, { "start": 20870.02, "end": 20872.28, "probability": 0.8875 }, { "start": 20876.12, "end": 20877.22, "probability": 0.4564 }, { "start": 20877.3, "end": 20878.09, "probability": 0.8733 }, { "start": 20878.72, "end": 20880.78, "probability": 0.9871 }, { "start": 20881.22, "end": 20884.9, "probability": 0.9395 }, { "start": 20884.92, "end": 20886.5, "probability": 0.9701 }, { "start": 20886.66, "end": 20888.26, "probability": 0.9805 }, { "start": 20888.92, "end": 20894.74, "probability": 0.9844 }, { "start": 20895.72, "end": 20897.78, "probability": 0.6749 }, { "start": 20898.51, "end": 20903.54, "probability": 0.8555 }, { "start": 20904.28, "end": 20904.68, "probability": 0.5072 }, { "start": 20904.82, "end": 20907.02, "probability": 0.7082 }, { "start": 20907.06, "end": 20907.44, "probability": 0.6403 }, { "start": 20907.58, "end": 20908.64, "probability": 0.9029 }, { "start": 20909.08, "end": 20911.7, "probability": 0.9949 }, { "start": 20912.08, "end": 20917.62, "probability": 0.9932 }, { "start": 20917.78, "end": 20919.0, "probability": 0.8665 }, { "start": 20919.08, "end": 20922.21, "probability": 0.996 }, { "start": 20922.76, "end": 20923.42, "probability": 0.8582 }, { "start": 20923.48, "end": 20926.4, "probability": 0.9936 }, { "start": 20926.62, "end": 20928.86, "probability": 0.9255 }, { "start": 20929.2, "end": 20930.92, "probability": 0.9526 }, { "start": 20931.34, "end": 20933.26, "probability": 0.9969 }, { "start": 20933.46, "end": 20934.48, "probability": 0.503 }, { "start": 20934.82, "end": 20938.96, "probability": 0.9774 }, { "start": 20939.36, "end": 20942.26, "probability": 0.8863 }, { "start": 20942.36, "end": 20945.18, "probability": 0.8787 }, { "start": 20945.62, "end": 20947.66, "probability": 0.9273 }, { "start": 20948.02, "end": 20949.24, "probability": 0.5064 }, { "start": 20950.38, "end": 20953.72, "probability": 0.837 }, { "start": 20954.3, "end": 20955.26, "probability": 0.5943 }, { "start": 20955.72, "end": 20956.54, "probability": 0.7824 }, { "start": 20956.62, "end": 20957.38, "probability": 0.8324 }, { "start": 20957.72, "end": 20958.8, "probability": 0.9735 }, { "start": 20958.96, "end": 20959.22, "probability": 0.7298 }, { "start": 20959.26, "end": 20960.42, "probability": 0.9848 }, { "start": 20960.52, "end": 20961.54, "probability": 0.9511 }, { "start": 20961.92, "end": 20962.66, "probability": 0.8995 }, { "start": 20962.7, "end": 20963.52, "probability": 0.5442 }, { "start": 20963.82, "end": 20967.16, "probability": 0.9951 }, { "start": 20967.54, "end": 20967.9, "probability": 0.8239 }, { "start": 20968.32, "end": 20971.28, "probability": 0.9855 }, { "start": 20971.42, "end": 20972.12, "probability": 0.821 }, { "start": 20972.52, "end": 20974.84, "probability": 0.9915 }, { "start": 20975.88, "end": 20980.08, "probability": 0.9409 }, { "start": 20980.2, "end": 20983.92, "probability": 0.9371 }, { "start": 20984.36, "end": 20988.47, "probability": 0.9857 }, { "start": 20988.82, "end": 20991.74, "probability": 0.9954 }, { "start": 20991.74, "end": 20995.72, "probability": 0.9902 }, { "start": 20996.14, "end": 20998.02, "probability": 0.8403 }, { "start": 20998.58, "end": 21001.32, "probability": 0.6346 }, { "start": 21001.9, "end": 21004.66, "probability": 0.7967 }, { "start": 21005.06, "end": 21007.02, "probability": 0.8636 }, { "start": 21007.66, "end": 21008.95, "probability": 0.9824 }, { "start": 21010.66, "end": 21012.8, "probability": 0.9255 }, { "start": 21012.9, "end": 21013.64, "probability": 0.8773 }, { "start": 21013.74, "end": 21014.54, "probability": 0.6939 }, { "start": 21015.02, "end": 21016.12, "probability": 0.9968 }, { "start": 21016.5, "end": 21019.9, "probability": 0.991 }, { "start": 21020.12, "end": 21021.34, "probability": 0.9299 }, { "start": 21021.48, "end": 21022.02, "probability": 0.4253 }, { "start": 21022.98, "end": 21024.66, "probability": 0.507 }, { "start": 21025.6, "end": 21026.8, "probability": 0.5388 }, { "start": 21027.02, "end": 21028.84, "probability": 0.7738 }, { "start": 21029.24, "end": 21033.42, "probability": 0.9785 }, { "start": 21034.22, "end": 21036.52, "probability": 0.5493 }, { "start": 21036.98, "end": 21040.88, "probability": 0.9744 }, { "start": 21041.22, "end": 21042.41, "probability": 0.8334 }, { "start": 21042.86, "end": 21044.06, "probability": 0.9781 }, { "start": 21044.38, "end": 21049.56, "probability": 0.98 }, { "start": 21049.84, "end": 21052.02, "probability": 0.9969 }, { "start": 21052.2, "end": 21052.78, "probability": 0.9152 }, { "start": 21053.24, "end": 21053.84, "probability": 0.267 }, { "start": 21054.3, "end": 21056.98, "probability": 0.9927 }, { "start": 21057.06, "end": 21057.76, "probability": 0.915 }, { "start": 21057.92, "end": 21058.74, "probability": 0.6865 }, { "start": 21058.86, "end": 21059.04, "probability": 0.5216 }, { "start": 21059.4, "end": 21062.28, "probability": 0.997 }, { "start": 21062.6, "end": 21064.44, "probability": 0.9967 }, { "start": 21064.98, "end": 21066.8, "probability": 0.999 }, { "start": 21067.2, "end": 21068.9, "probability": 0.7812 }, { "start": 21069.48, "end": 21073.0, "probability": 0.9862 }, { "start": 21073.42, "end": 21075.28, "probability": 0.96 }, { "start": 21075.44, "end": 21077.12, "probability": 0.9798 }, { "start": 21077.32, "end": 21078.6, "probability": 0.846 }, { "start": 21078.68, "end": 21079.84, "probability": 0.9084 }, { "start": 21080.26, "end": 21081.16, "probability": 0.9583 }, { "start": 21081.36, "end": 21082.54, "probability": 0.7883 }, { "start": 21082.84, "end": 21082.84, "probability": 0.6044 }, { "start": 21083.1, "end": 21085.16, "probability": 0.9705 }, { "start": 21085.16, "end": 21087.76, "probability": 0.9953 }, { "start": 21088.18, "end": 21091.5, "probability": 0.9961 }, { "start": 21091.62, "end": 21093.1, "probability": 0.9347 }, { "start": 21093.1, "end": 21093.84, "probability": 0.7343 }, { "start": 21094.68, "end": 21096.72, "probability": 0.5729 }, { "start": 21096.78, "end": 21098.46, "probability": 0.8214 }, { "start": 21099.96, "end": 21100.96, "probability": 0.5768 }, { "start": 21102.66, "end": 21104.76, "probability": 0.5213 }, { "start": 21105.76, "end": 21108.56, "probability": 0.8785 }, { "start": 21108.68, "end": 21109.18, "probability": 0.6756 }, { "start": 21128.84, "end": 21129.66, "probability": 0.5143 }, { "start": 21129.82, "end": 21134.18, "probability": 0.8423 }, { "start": 21134.5, "end": 21135.62, "probability": 0.4564 }, { "start": 21136.2, "end": 21138.64, "probability": 0.7505 }, { "start": 21139.46, "end": 21139.91, "probability": 0.8587 }, { "start": 21143.39, "end": 21144.22, "probability": 0.0221 }, { "start": 21144.22, "end": 21144.22, "probability": 0.0355 }, { "start": 21144.22, "end": 21144.84, "probability": 0.4742 }, { "start": 21145.14, "end": 21146.18, "probability": 0.0926 }, { "start": 21148.36, "end": 21153.18, "probability": 0.2276 }, { "start": 21153.64, "end": 21154.08, "probability": 0.5908 }, { "start": 21154.7, "end": 21155.34, "probability": 0.8289 }, { "start": 21155.62, "end": 21155.94, "probability": 0.6838 }, { "start": 21156.52, "end": 21157.85, "probability": 0.9907 }, { "start": 21160.54, "end": 21163.62, "probability": 0.5299 }, { "start": 21163.62, "end": 21163.62, "probability": 0.3161 }, { "start": 21163.62, "end": 21166.14, "probability": 0.655 }, { "start": 21167.3, "end": 21167.98, "probability": 0.3561 }, { "start": 21169.04, "end": 21170.74, "probability": 0.9552 }, { "start": 21170.84, "end": 21171.84, "probability": 0.7401 }, { "start": 21171.92, "end": 21173.52, "probability": 0.9963 }, { "start": 21174.68, "end": 21176.04, "probability": 0.9882 }, { "start": 21177.4, "end": 21178.3, "probability": 0.9858 }, { "start": 21179.06, "end": 21180.78, "probability": 0.9645 }, { "start": 21181.4, "end": 21183.12, "probability": 0.798 }, { "start": 21183.82, "end": 21186.98, "probability": 0.9929 }, { "start": 21187.06, "end": 21188.22, "probability": 0.8306 }, { "start": 21188.5, "end": 21192.4, "probability": 0.9468 }, { "start": 21192.92, "end": 21197.6, "probability": 0.9644 }, { "start": 21198.14, "end": 21201.32, "probability": 0.9816 }, { "start": 21201.32, "end": 21207.09, "probability": 0.9916 }, { "start": 21207.12, "end": 21209.78, "probability": 0.9977 }, { "start": 21210.34, "end": 21212.14, "probability": 0.9012 }, { "start": 21212.84, "end": 21216.6, "probability": 0.9448 }, { "start": 21217.14, "end": 21218.7, "probability": 0.9489 }, { "start": 21218.76, "end": 21222.82, "probability": 0.9907 }, { "start": 21223.2, "end": 21229.18, "probability": 0.9812 }, { "start": 21229.3, "end": 21229.86, "probability": 0.1338 }, { "start": 21229.92, "end": 21230.78, "probability": 0.4125 }, { "start": 21231.8, "end": 21235.98, "probability": 0.9929 }, { "start": 21236.18, "end": 21237.6, "probability": 0.9819 }, { "start": 21238.36, "end": 21242.68, "probability": 0.969 }, { "start": 21243.2, "end": 21246.63, "probability": 0.9697 }, { "start": 21247.48, "end": 21248.56, "probability": 0.4784 }, { "start": 21249.46, "end": 21251.52, "probability": 0.9668 }, { "start": 21251.58, "end": 21252.7, "probability": 0.9967 }, { "start": 21253.12, "end": 21257.02, "probability": 0.9544 }, { "start": 21257.28, "end": 21261.46, "probability": 0.9404 }, { "start": 21262.48, "end": 21263.92, "probability": 0.8438 }, { "start": 21264.12, "end": 21267.2, "probability": 0.9611 }, { "start": 21267.5, "end": 21268.96, "probability": 0.9775 }, { "start": 21269.46, "end": 21271.22, "probability": 0.9802 }, { "start": 21271.74, "end": 21274.02, "probability": 0.9463 }, { "start": 21274.58, "end": 21274.86, "probability": 0.4982 }, { "start": 21274.96, "end": 21277.85, "probability": 0.9258 }, { "start": 21278.42, "end": 21279.38, "probability": 0.9312 }, { "start": 21279.58, "end": 21281.72, "probability": 0.8177 }, { "start": 21281.96, "end": 21282.28, "probability": 0.7549 }, { "start": 21282.58, "end": 21286.26, "probability": 0.8632 }, { "start": 21286.88, "end": 21291.56, "probability": 0.8791 }, { "start": 21292.16, "end": 21298.02, "probability": 0.9851 }, { "start": 21298.1, "end": 21298.8, "probability": 0.3554 }, { "start": 21299.0, "end": 21301.8, "probability": 0.7874 }, { "start": 21302.26, "end": 21304.94, "probability": 0.952 }, { "start": 21305.36, "end": 21305.62, "probability": 0.7368 }, { "start": 21305.7, "end": 21306.36, "probability": 0.8985 }, { "start": 21306.52, "end": 21310.08, "probability": 0.9321 }, { "start": 21310.08, "end": 21315.56, "probability": 0.981 }, { "start": 21316.04, "end": 21317.96, "probability": 0.7491 }, { "start": 21318.4, "end": 21323.18, "probability": 0.9934 }, { "start": 21324.26, "end": 21326.16, "probability": 0.8385 }, { "start": 21326.92, "end": 21330.54, "probability": 0.8502 }, { "start": 21330.7, "end": 21331.8, "probability": 0.6171 }, { "start": 21332.54, "end": 21335.44, "probability": 0.9835 }, { "start": 21335.52, "end": 21336.04, "probability": 0.7459 }, { "start": 21336.12, "end": 21336.64, "probability": 0.6986 }, { "start": 21336.76, "end": 21337.02, "probability": 0.4278 }, { "start": 21337.26, "end": 21344.2, "probability": 0.7971 }, { "start": 21344.52, "end": 21346.6, "probability": 0.4847 }, { "start": 21347.4, "end": 21348.86, "probability": 0.2598 }, { "start": 21349.64, "end": 21352.48, "probability": 0.7894 }, { "start": 21353.0, "end": 21355.78, "probability": 0.7351 }, { "start": 21356.82, "end": 21359.78, "probability": 0.8997 }, { "start": 21360.34, "end": 21362.96, "probability": 0.7382 }, { "start": 21363.52, "end": 21366.48, "probability": 0.9979 }, { "start": 21367.02, "end": 21371.76, "probability": 0.9995 }, { "start": 21372.1, "end": 21375.06, "probability": 0.9907 }, { "start": 21375.8, "end": 21378.32, "probability": 0.9951 }, { "start": 21378.76, "end": 21382.06, "probability": 0.8821 }, { "start": 21382.52, "end": 21385.68, "probability": 0.9735 }, { "start": 21385.72, "end": 21388.12, "probability": 0.9826 }, { "start": 21388.98, "end": 21390.02, "probability": 0.4989 }, { "start": 21390.98, "end": 21395.24, "probability": 0.7398 }, { "start": 21395.76, "end": 21398.24, "probability": 0.777 }, { "start": 21398.98, "end": 21400.88, "probability": 0.997 }, { "start": 21401.92, "end": 21403.08, "probability": 0.8101 }, { "start": 21403.24, "end": 21404.72, "probability": 0.9641 }, { "start": 21404.82, "end": 21405.76, "probability": 0.9775 }, { "start": 21406.78, "end": 21408.0, "probability": 0.965 }, { "start": 21408.08, "end": 21411.72, "probability": 0.9967 }, { "start": 21412.36, "end": 21413.28, "probability": 0.8762 }, { "start": 21413.46, "end": 21413.9, "probability": 0.5292 }, { "start": 21413.9, "end": 21416.66, "probability": 0.7298 }, { "start": 21417.44, "end": 21419.02, "probability": 0.9824 }, { "start": 21419.28, "end": 21419.42, "probability": 0.4896 }, { "start": 21419.56, "end": 21424.14, "probability": 0.9884 }, { "start": 21424.66, "end": 21426.56, "probability": 0.7739 }, { "start": 21426.96, "end": 21427.7, "probability": 0.9589 }, { "start": 21427.76, "end": 21429.08, "probability": 0.9849 }, { "start": 21429.2, "end": 21429.7, "probability": 0.8922 }, { "start": 21430.14, "end": 21433.88, "probability": 0.972 }, { "start": 21434.48, "end": 21437.82, "probability": 0.9956 }, { "start": 21438.22, "end": 21439.16, "probability": 0.8583 }, { "start": 21439.32, "end": 21443.3, "probability": 0.9746 }, { "start": 21443.82, "end": 21445.6, "probability": 0.6754 }, { "start": 21445.9, "end": 21447.7, "probability": 0.8689 }, { "start": 21448.38, "end": 21451.58, "probability": 0.9984 }, { "start": 21452.04, "end": 21452.72, "probability": 0.4805 }, { "start": 21453.24, "end": 21455.76, "probability": 0.5949 }, { "start": 21457.88, "end": 21461.84, "probability": 0.6211 }, { "start": 21462.8, "end": 21463.16, "probability": 0.469 }, { "start": 21463.16, "end": 21465.32, "probability": 0.7816 }, { "start": 21465.6, "end": 21468.78, "probability": 0.9623 }, { "start": 21470.68, "end": 21473.24, "probability": 0.9668 }, { "start": 21473.82, "end": 21476.62, "probability": 0.9836 }, { "start": 21476.72, "end": 21481.64, "probability": 0.6143 }, { "start": 21481.84, "end": 21482.54, "probability": 0.4672 }, { "start": 21482.96, "end": 21483.32, "probability": 0.4173 }, { "start": 21485.72, "end": 21486.18, "probability": 0.1348 }, { "start": 21486.18, "end": 21487.1, "probability": 0.9148 }, { "start": 21487.32, "end": 21490.38, "probability": 0.9941 }, { "start": 21490.38, "end": 21493.14, "probability": 0.965 }, { "start": 21493.62, "end": 21497.84, "probability": 0.9908 }, { "start": 21499.26, "end": 21503.3, "probability": 0.99 }, { "start": 21503.32, "end": 21504.98, "probability": 0.6906 }, { "start": 21507.16, "end": 21507.7, "probability": 0.6014 }, { "start": 21508.52, "end": 21509.84, "probability": 0.4889 }, { "start": 21509.84, "end": 21510.34, "probability": 0.0342 }, { "start": 21513.64, "end": 21513.66, "probability": 0.0292 }, { "start": 21514.74, "end": 21515.64, "probability": 0.086 }, { "start": 21515.72, "end": 21516.4, "probability": 0.2343 }, { "start": 21516.4, "end": 21517.02, "probability": 0.2324 }, { "start": 21520.68, "end": 21520.78, "probability": 0.051 }, { "start": 21520.78, "end": 21521.0, "probability": 0.0154 }, { "start": 21521.0, "end": 21521.0, "probability": 0.262 }, { "start": 21521.0, "end": 21521.54, "probability": 0.255 }, { "start": 21523.38, "end": 21524.02, "probability": 0.137 }, { "start": 21525.16, "end": 21528.12, "probability": 0.2013 }, { "start": 21528.76, "end": 21529.28, "probability": 0.082 }, { "start": 21529.28, "end": 21529.28, "probability": 0.2506 }, { "start": 21529.28, "end": 21529.28, "probability": 0.0397 }, { "start": 21529.28, "end": 21530.66, "probability": 0.139 }, { "start": 21530.94, "end": 21531.92, "probability": 0.4023 }, { "start": 21532.54, "end": 21533.52, "probability": 0.547 }, { "start": 21533.58, "end": 21535.96, "probability": 0.7512 }, { "start": 21536.42, "end": 21540.64, "probability": 0.8448 }, { "start": 21540.64, "end": 21543.46, "probability": 0.9985 }, { "start": 21543.7, "end": 21545.58, "probability": 0.8481 }, { "start": 21545.78, "end": 21545.84, "probability": 0.157 }, { "start": 21545.84, "end": 21547.1, "probability": 0.9238 }, { "start": 21547.52, "end": 21548.48, "probability": 0.9023 }, { "start": 21548.92, "end": 21550.0, "probability": 0.9599 }, { "start": 21550.4, "end": 21551.62, "probability": 0.5734 }, { "start": 21552.16, "end": 21552.68, "probability": 0.4907 }, { "start": 21552.84, "end": 21554.04, "probability": 0.9976 }, { "start": 21554.54, "end": 21554.98, "probability": 0.3867 }, { "start": 21555.0, "end": 21557.28, "probability": 0.5457 }, { "start": 21557.42, "end": 21561.82, "probability": 0.9475 }, { "start": 21561.94, "end": 21563.84, "probability": 0.7504 }, { "start": 21564.32, "end": 21566.46, "probability": 0.8892 }, { "start": 21566.56, "end": 21569.62, "probability": 0.6291 }, { "start": 21569.82, "end": 21573.64, "probability": 0.9075 }, { "start": 21574.56, "end": 21576.62, "probability": 0.8208 }, { "start": 21576.88, "end": 21577.56, "probability": 0.6817 }, { "start": 21577.68, "end": 21580.22, "probability": 0.9226 }, { "start": 21580.72, "end": 21582.94, "probability": 0.9687 }, { "start": 21583.24, "end": 21585.78, "probability": 0.9816 }, { "start": 21585.96, "end": 21589.52, "probability": 0.9829 }, { "start": 21589.8, "end": 21591.2, "probability": 0.9102 }, { "start": 21591.42, "end": 21592.22, "probability": 0.5049 }, { "start": 21593.2, "end": 21597.18, "probability": 0.9928 }, { "start": 21597.18, "end": 21601.78, "probability": 0.9967 }, { "start": 21601.78, "end": 21602.42, "probability": 0.4671 }, { "start": 21602.42, "end": 21604.0, "probability": 0.8072 }, { "start": 21604.64, "end": 21604.74, "probability": 0.7367 }, { "start": 21605.56, "end": 21611.2, "probability": 0.9563 }, { "start": 21611.75, "end": 21613.38, "probability": 0.9481 }, { "start": 21613.5, "end": 21615.6, "probability": 0.9766 }, { "start": 21616.86, "end": 21617.06, "probability": 0.1788 }, { "start": 21617.06, "end": 21618.5, "probability": 0.7087 }, { "start": 21618.9, "end": 21619.81, "probability": 0.9749 }, { "start": 21620.58, "end": 21622.28, "probability": 0.7375 }, { "start": 21622.34, "end": 21622.64, "probability": 0.419 }, { "start": 21622.84, "end": 21623.2, "probability": 0.7338 }, { "start": 21623.48, "end": 21624.4, "probability": 0.9564 }, { "start": 21624.48, "end": 21624.58, "probability": 0.5693 }, { "start": 21624.94, "end": 21628.38, "probability": 0.9683 }, { "start": 21628.38, "end": 21632.46, "probability": 0.9958 }, { "start": 21632.8, "end": 21633.54, "probability": 0.882 }, { "start": 21633.94, "end": 21636.36, "probability": 0.7606 }, { "start": 21636.58, "end": 21637.68, "probability": 0.884 }, { "start": 21637.7, "end": 21641.18, "probability": 0.9927 }, { "start": 21641.64, "end": 21642.4, "probability": 0.957 }, { "start": 21642.94, "end": 21646.32, "probability": 0.8005 }, { "start": 21646.84, "end": 21648.76, "probability": 0.9901 }, { "start": 21649.72, "end": 21650.08, "probability": 0.754 }, { "start": 21650.22, "end": 21650.66, "probability": 0.8337 }, { "start": 21651.16, "end": 21651.98, "probability": 0.8793 }, { "start": 21652.72, "end": 21652.84, "probability": 0.4511 }, { "start": 21653.4, "end": 21654.22, "probability": 0.7367 }, { "start": 21655.02, "end": 21657.68, "probability": 0.339 }, { "start": 21658.3, "end": 21659.08, "probability": 0.494 }, { "start": 21659.86, "end": 21661.12, "probability": 0.4143 }, { "start": 21662.18, "end": 21664.6, "probability": 0.6072 }, { "start": 21665.34, "end": 21668.58, "probability": 0.8306 }, { "start": 21668.64, "end": 21669.98, "probability": 0.3042 }, { "start": 21670.06, "end": 21672.84, "probability": 0.7844 }, { "start": 21673.1, "end": 21676.84, "probability": 0.8365 }, { "start": 21677.36, "end": 21682.68, "probability": 0.9912 }, { "start": 21683.2, "end": 21684.28, "probability": 0.6824 }, { "start": 21685.36, "end": 21688.42, "probability": 0.9194 }, { "start": 21689.32, "end": 21689.38, "probability": 0.2812 }, { "start": 21689.54, "end": 21693.04, "probability": 0.9506 }, { "start": 21693.1, "end": 21696.32, "probability": 0.8525 }, { "start": 21696.4, "end": 21696.5, "probability": 0.4409 }, { "start": 21696.9, "end": 21698.34, "probability": 0.3943 }, { "start": 21698.38, "end": 21700.32, "probability": 0.2469 }, { "start": 21700.44, "end": 21700.72, "probability": 0.0558 }, { "start": 21700.72, "end": 21701.08, "probability": 0.7947 }, { "start": 21701.42, "end": 21701.42, "probability": 0.7925 }, { "start": 21701.68, "end": 21701.7, "probability": 0.8286 }, { "start": 21701.82, "end": 21701.9, "probability": 0.4645 }, { "start": 21702.06, "end": 21703.14, "probability": 0.9761 }, { "start": 21703.3, "end": 21706.0, "probability": 0.4977 }, { "start": 21708.78, "end": 21709.12, "probability": 0.0122 }, { "start": 21709.12, "end": 21709.12, "probability": 0.2884 }, { "start": 21709.12, "end": 21709.12, "probability": 0.1205 }, { "start": 21709.12, "end": 21709.84, "probability": 0.3107 }, { "start": 21710.84, "end": 21711.46, "probability": 0.753 }, { "start": 21712.8, "end": 21713.78, "probability": 0.752 }, { "start": 21716.38, "end": 21716.62, "probability": 0.8454 }, { "start": 21719.54, "end": 21721.68, "probability": 0.3741 }, { "start": 21722.16, "end": 21724.38, "probability": 0.6106 }, { "start": 21724.58, "end": 21726.92, "probability": 0.8063 }, { "start": 21727.82, "end": 21728.78, "probability": 0.765 }, { "start": 21729.48, "end": 21729.96, "probability": 0.5735 }, { "start": 21736.66, "end": 21736.66, "probability": 0.5483 }, { "start": 21736.66, "end": 21738.6, "probability": 0.5929 }, { "start": 21738.6, "end": 21740.84, "probability": 0.8664 }, { "start": 21740.96, "end": 21741.6, "probability": 0.7598 }, { "start": 21741.64, "end": 21742.14, "probability": 0.609 }, { "start": 21742.78, "end": 21744.1, "probability": 0.63 }, { "start": 21744.86, "end": 21746.35, "probability": 0.9572 }, { "start": 21747.74, "end": 21749.44, "probability": 0.6253 }, { "start": 21749.44, "end": 21751.5, "probability": 0.9684 }, { "start": 21752.8, "end": 21754.0, "probability": 0.0165 }, { "start": 21755.56, "end": 21755.66, "probability": 0.0503 }, { "start": 21755.66, "end": 21755.66, "probability": 0.0591 }, { "start": 21755.66, "end": 21756.64, "probability": 0.5476 }, { "start": 21756.82, "end": 21757.26, "probability": 0.3822 }, { "start": 21757.4, "end": 21758.97, "probability": 0.6262 }, { "start": 21759.32, "end": 21759.7, "probability": 0.725 }, { "start": 21760.08, "end": 21761.5, "probability": 0.8213 }, { "start": 21771.12, "end": 21772.1, "probability": 0.6347 }, { "start": 21772.72, "end": 21774.26, "probability": 0.7807 }, { "start": 21775.38, "end": 21778.6, "probability": 0.8473 }, { "start": 21779.5, "end": 21780.68, "probability": 0.7457 }, { "start": 21781.52, "end": 21781.94, "probability": 0.721 }, { "start": 21785.08, "end": 21785.52, "probability": 0.1553 }, { "start": 21786.68, "end": 21787.74, "probability": 0.8 }, { "start": 21787.96, "end": 21788.5, "probability": 0.8382 }, { "start": 21788.54, "end": 21791.5, "probability": 0.8795 }, { "start": 21792.62, "end": 21795.3, "probability": 0.875 }, { "start": 21795.42, "end": 21797.14, "probability": 0.6937 }, { "start": 21798.14, "end": 21800.66, "probability": 0.7038 }, { "start": 21801.22, "end": 21804.06, "probability": 0.9382 }, { "start": 21804.12, "end": 21805.32, "probability": 0.9741 }, { "start": 21805.86, "end": 21808.42, "probability": 0.9186 }, { "start": 21809.26, "end": 21811.14, "probability": 0.8375 }, { "start": 21811.78, "end": 21813.82, "probability": 0.828 }, { "start": 21814.02, "end": 21816.2, "probability": 0.9775 }, { "start": 21817.22, "end": 21820.12, "probability": 0.8143 }, { "start": 21821.12, "end": 21823.1, "probability": 0.9271 }, { "start": 21824.02, "end": 21825.5, "probability": 0.7749 }, { "start": 21825.74, "end": 21827.56, "probability": 0.988 }, { "start": 21827.56, "end": 21831.22, "probability": 0.9924 }, { "start": 21831.8, "end": 21835.58, "probability": 0.9589 }, { "start": 21836.4, "end": 21836.4, "probability": 0.6849 }, { "start": 21836.4, "end": 21839.88, "probability": 0.9543 }, { "start": 21841.08, "end": 21842.74, "probability": 0.9374 }, { "start": 21843.34, "end": 21844.82, "probability": 0.5868 }, { "start": 21845.96, "end": 21848.72, "probability": 0.9843 }, { "start": 21849.68, "end": 21849.68, "probability": 0.0922 }, { "start": 21849.68, "end": 21851.84, "probability": 0.9844 }, { "start": 21852.0, "end": 21854.28, "probability": 0.9194 }, { "start": 21854.48, "end": 21854.56, "probability": 0.3782 }, { "start": 21854.62, "end": 21854.88, "probability": 0.8634 }, { "start": 21855.12, "end": 21856.04, "probability": 0.8238 }, { "start": 21858.34, "end": 21859.86, "probability": 0.6239 }, { "start": 21860.0, "end": 21860.28, "probability": 0.834 }, { "start": 21860.32, "end": 21861.8, "probability": 0.953 }, { "start": 21862.18, "end": 21862.98, "probability": 0.0127 }, { "start": 21863.98, "end": 21864.54, "probability": 0.39 }, { "start": 21864.62, "end": 21866.68, "probability": 0.3475 }, { "start": 21867.12, "end": 21870.58, "probability": 0.825 }, { "start": 21871.22, "end": 21872.76, "probability": 0.8503 }, { "start": 21872.94, "end": 21873.26, "probability": 0.3338 }, { "start": 21873.4, "end": 21874.66, "probability": 0.9387 }, { "start": 21875.34, "end": 21875.74, "probability": 0.2856 }, { "start": 21875.96, "end": 21876.58, "probability": 0.7395 }, { "start": 21876.66, "end": 21877.22, "probability": 0.6144 }, { "start": 21877.24, "end": 21878.55, "probability": 0.9496 }, { "start": 21879.25, "end": 21879.45, "probability": 0.0945 }, { "start": 21879.45, "end": 21881.93, "probability": 0.9201 }, { "start": 21882.79, "end": 21885.95, "probability": 0.6923 }, { "start": 21887.83, "end": 21889.57, "probability": 0.3555 }, { "start": 21889.57, "end": 21889.57, "probability": 0.0945 }, { "start": 21889.57, "end": 21890.5, "probability": 0.2267 }, { "start": 21891.39, "end": 21891.85, "probability": 0.0536 }, { "start": 21891.85, "end": 21895.17, "probability": 0.8289 }, { "start": 21895.61, "end": 21899.85, "probability": 0.9683 }, { "start": 21900.41, "end": 21904.85, "probability": 0.9954 }, { "start": 21905.59, "end": 21907.47, "probability": 0.9905 }, { "start": 21907.85, "end": 21910.75, "probability": 0.9949 }, { "start": 21911.63, "end": 21912.91, "probability": 0.999 }, { "start": 21913.65, "end": 21915.35, "probability": 0.9076 }, { "start": 21915.99, "end": 21917.47, "probability": 0.8996 }, { "start": 21917.81, "end": 21920.2, "probability": 0.9735 }, { "start": 21920.43, "end": 21921.83, "probability": 0.9094 }, { "start": 21922.79, "end": 21926.45, "probability": 0.9703 }, { "start": 21926.87, "end": 21928.47, "probability": 0.9966 }, { "start": 21928.85, "end": 21932.89, "probability": 0.9943 }, { "start": 21934.51, "end": 21936.45, "probability": 0.7632 }, { "start": 21937.23, "end": 21939.05, "probability": 0.9888 }, { "start": 21939.05, "end": 21942.17, "probability": 0.7805 }, { "start": 21942.41, "end": 21944.31, "probability": 0.9489 }, { "start": 21944.45, "end": 21945.13, "probability": 0.6335 }, { "start": 21945.39, "end": 21948.53, "probability": 0.9965 }, { "start": 21949.19, "end": 21951.81, "probability": 0.8928 }, { "start": 21952.47, "end": 21954.43, "probability": 0.9872 }, { "start": 21954.43, "end": 21956.59, "probability": 0.991 }, { "start": 21957.77, "end": 21958.43, "probability": 0.8332 }, { "start": 21958.55, "end": 21959.23, "probability": 0.9808 }, { "start": 21959.33, "end": 21961.97, "probability": 0.9453 }, { "start": 21961.97, "end": 21964.23, "probability": 0.9929 }, { "start": 21965.01, "end": 21966.05, "probability": 0.7683 }, { "start": 21966.19, "end": 21966.59, "probability": 0.9583 }, { "start": 21966.63, "end": 21967.29, "probability": 0.9495 }, { "start": 21967.39, "end": 21968.01, "probability": 0.771 }, { "start": 21968.63, "end": 21970.35, "probability": 0.9514 }, { "start": 21970.75, "end": 21975.19, "probability": 0.981 }, { "start": 21975.47, "end": 21979.91, "probability": 0.9507 }, { "start": 21980.31, "end": 21982.43, "probability": 0.9928 }, { "start": 21983.59, "end": 21985.99, "probability": 0.981 }, { "start": 21986.11, "end": 21991.07, "probability": 0.9898 }, { "start": 21991.07, "end": 21994.67, "probability": 0.997 }, { "start": 21995.15, "end": 21996.61, "probability": 0.9311 }, { "start": 21997.31, "end": 22000.07, "probability": 0.8526 }, { "start": 22000.61, "end": 22002.65, "probability": 0.9908 }, { "start": 22002.65, "end": 22004.59, "probability": 0.9021 }, { "start": 22005.31, "end": 22006.69, "probability": 0.904 }, { "start": 22006.77, "end": 22008.41, "probability": 0.9246 }, { "start": 22009.19, "end": 22010.79, "probability": 0.9048 }, { "start": 22010.79, "end": 22014.63, "probability": 0.8532 }, { "start": 22014.73, "end": 22016.85, "probability": 0.8637 }, { "start": 22017.99, "end": 22020.05, "probability": 0.9922 }, { "start": 22020.05, "end": 22023.33, "probability": 0.9878 }, { "start": 22023.93, "end": 22027.35, "probability": 0.9971 }, { "start": 22027.35, "end": 22030.87, "probability": 0.9925 }, { "start": 22031.37, "end": 22034.85, "probability": 0.8877 }, { "start": 22035.55, "end": 22037.31, "probability": 0.9965 }, { "start": 22037.35, "end": 22040.01, "probability": 0.7216 }, { "start": 22040.53, "end": 22042.03, "probability": 0.927 }, { "start": 22042.49, "end": 22043.77, "probability": 0.9797 }, { "start": 22043.85, "end": 22047.11, "probability": 0.9905 }, { "start": 22047.75, "end": 22049.35, "probability": 0.8766 }, { "start": 22049.81, "end": 22051.92, "probability": 0.9966 }, { "start": 22052.29, "end": 22053.49, "probability": 0.9476 }, { "start": 22053.63, "end": 22056.17, "probability": 0.8926 }, { "start": 22056.75, "end": 22058.89, "probability": 0.9961 }, { "start": 22059.25, "end": 22060.87, "probability": 0.9809 }, { "start": 22061.27, "end": 22063.71, "probability": 0.9915 }, { "start": 22064.15, "end": 22066.55, "probability": 0.9425 }, { "start": 22067.07, "end": 22069.25, "probability": 0.9824 }, { "start": 22069.25, "end": 22072.01, "probability": 0.9766 }, { "start": 22072.45, "end": 22074.07, "probability": 0.9614 }, { "start": 22074.59, "end": 22076.67, "probability": 0.9868 }, { "start": 22076.75, "end": 22079.95, "probability": 0.9183 }, { "start": 22080.53, "end": 22080.81, "probability": 0.4005 }, { "start": 22080.83, "end": 22083.83, "probability": 0.9689 }, { "start": 22083.83, "end": 22086.31, "probability": 0.998 }, { "start": 22087.65, "end": 22088.31, "probability": 0.6436 }, { "start": 22088.45, "end": 22091.77, "probability": 0.9882 }, { "start": 22092.35, "end": 22094.29, "probability": 0.9436 }, { "start": 22095.07, "end": 22095.61, "probability": 0.7149 }, { "start": 22095.77, "end": 22099.09, "probability": 0.9517 }, { "start": 22099.09, "end": 22101.45, "probability": 0.9827 }, { "start": 22102.01, "end": 22104.35, "probability": 0.9939 }, { "start": 22104.79, "end": 22107.23, "probability": 0.9888 }, { "start": 22107.27, "end": 22107.43, "probability": 0.3758 }, { "start": 22107.55, "end": 22109.41, "probability": 0.5018 }, { "start": 22110.01, "end": 22112.23, "probability": 0.2782 }, { "start": 22112.67, "end": 22113.73, "probability": 0.9574 }, { "start": 22113.91, "end": 22115.79, "probability": 0.9953 }, { "start": 22115.79, "end": 22118.69, "probability": 0.9882 }, { "start": 22119.05, "end": 22122.43, "probability": 0.8721 }, { "start": 22123.07, "end": 22125.1, "probability": 0.7855 }, { "start": 22125.15, "end": 22126.69, "probability": 0.5755 }, { "start": 22126.83, "end": 22127.67, "probability": 0.9792 }, { "start": 22158.5, "end": 22161.25, "probability": 0.8594 }, { "start": 22161.89, "end": 22161.91, "probability": 0.0719 }, { "start": 22162.19, "end": 22162.95, "probability": 0.328 }, { "start": 22163.45, "end": 22165.79, "probability": 0.5705 }, { "start": 22167.89, "end": 22169.07, "probability": 0.9112 }, { "start": 22169.23, "end": 22171.85, "probability": 0.86 }, { "start": 22171.87, "end": 22172.85, "probability": 0.8135 }, { "start": 22174.95, "end": 22176.11, "probability": 0.9269 }, { "start": 22177.05, "end": 22178.41, "probability": 0.7533 }, { "start": 22180.13, "end": 22185.01, "probability": 0.9222 }, { "start": 22186.63, "end": 22191.75, "probability": 0.8885 }, { "start": 22192.83, "end": 22196.55, "probability": 0.9836 }, { "start": 22196.67, "end": 22197.89, "probability": 0.8088 }, { "start": 22198.85, "end": 22199.17, "probability": 0.8568 }, { "start": 22199.25, "end": 22201.01, "probability": 0.9485 }, { "start": 22201.01, "end": 22204.33, "probability": 0.9807 }, { "start": 22204.97, "end": 22205.37, "probability": 0.7892 }, { "start": 22205.47, "end": 22205.99, "probability": 0.7341 }, { "start": 22206.07, "end": 22209.21, "probability": 0.9578 }, { "start": 22210.49, "end": 22213.16, "probability": 0.8531 }, { "start": 22214.01, "end": 22218.13, "probability": 0.75 }, { "start": 22218.97, "end": 22221.69, "probability": 0.8403 }, { "start": 22222.57, "end": 22224.53, "probability": 0.9539 }, { "start": 22225.93, "end": 22229.23, "probability": 0.8261 }, { "start": 22230.05, "end": 22234.67, "probability": 0.7672 }, { "start": 22235.81, "end": 22237.93, "probability": 0.7008 }, { "start": 22238.05, "end": 22240.25, "probability": 0.8231 }, { "start": 22241.17, "end": 22246.55, "probability": 0.7394 }, { "start": 22247.77, "end": 22252.65, "probability": 0.9816 }, { "start": 22252.75, "end": 22254.05, "probability": 0.9018 }, { "start": 22254.97, "end": 22256.39, "probability": 0.9929 }, { "start": 22256.67, "end": 22258.13, "probability": 0.9709 }, { "start": 22258.21, "end": 22259.03, "probability": 0.964 }, { "start": 22259.73, "end": 22265.77, "probability": 0.8752 }, { "start": 22265.89, "end": 22266.27, "probability": 0.8212 }, { "start": 22266.35, "end": 22267.96, "probability": 0.9838 }, { "start": 22268.75, "end": 22269.87, "probability": 0.7176 }, { "start": 22270.67, "end": 22274.21, "probability": 0.7386 }, { "start": 22274.99, "end": 22276.41, "probability": 0.9473 }, { "start": 22276.67, "end": 22280.83, "probability": 0.9408 }, { "start": 22281.89, "end": 22283.83, "probability": 0.7859 }, { "start": 22284.43, "end": 22284.67, "probability": 0.6522 }, { "start": 22284.79, "end": 22285.05, "probability": 0.6708 }, { "start": 22285.11, "end": 22285.71, "probability": 0.7668 }, { "start": 22285.79, "end": 22286.63, "probability": 0.7821 }, { "start": 22286.85, "end": 22287.89, "probability": 0.7303 }, { "start": 22288.59, "end": 22292.49, "probability": 0.5034 }, { "start": 22292.53, "end": 22294.29, "probability": 0.6038 }, { "start": 22296.63, "end": 22298.63, "probability": 0.8882 }, { "start": 22298.65, "end": 22298.99, "probability": 0.3936 }, { "start": 22299.05, "end": 22299.69, "probability": 0.5917 }, { "start": 22299.73, "end": 22303.75, "probability": 0.9725 }, { "start": 22304.85, "end": 22307.17, "probability": 0.8575 }, { "start": 22308.07, "end": 22311.55, "probability": 0.9897 }, { "start": 22311.69, "end": 22312.85, "probability": 0.9946 }, { "start": 22313.57, "end": 22317.29, "probability": 0.9954 }, { "start": 22317.45, "end": 22318.49, "probability": 0.8277 }, { "start": 22319.83, "end": 22321.13, "probability": 0.958 }, { "start": 22321.89, "end": 22324.89, "probability": 0.9591 }, { "start": 22325.43, "end": 22327.39, "probability": 0.9785 }, { "start": 22328.49, "end": 22328.77, "probability": 0.8803 }, { "start": 22331.47, "end": 22335.13, "probability": 0.9243 }, { "start": 22336.29, "end": 22337.85, "probability": 0.5815 }, { "start": 22338.01, "end": 22341.89, "probability": 0.9528 }, { "start": 22343.49, "end": 22343.77, "probability": 0.204 }, { "start": 22343.77, "end": 22346.21, "probability": 0.7014 }, { "start": 22346.47, "end": 22347.53, "probability": 0.5658 }, { "start": 22347.59, "end": 22349.35, "probability": 0.7175 }, { "start": 22349.65, "end": 22350.89, "probability": 0.3296 }, { "start": 22350.99, "end": 22354.31, "probability": 0.9827 }, { "start": 22365.29, "end": 22367.41, "probability": 0.0885 }, { "start": 22367.41, "end": 22368.57, "probability": 0.0059 }, { "start": 22370.49, "end": 22372.59, "probability": 0.1106 }, { "start": 22372.93, "end": 22373.45, "probability": 0.5618 }, { "start": 22374.23, "end": 22375.41, "probability": 0.7115 }, { "start": 22376.17, "end": 22376.95, "probability": 0.7963 }, { "start": 22377.53, "end": 22378.25, "probability": 0.8708 }, { "start": 22378.63, "end": 22379.13, "probability": 0.5912 }, { "start": 22379.45, "end": 22380.47, "probability": 0.8895 }, { "start": 22381.83, "end": 22385.57, "probability": 0.8622 }, { "start": 22385.99, "end": 22387.49, "probability": 0.0931 }, { "start": 22389.29, "end": 22391.61, "probability": 0.7351 }, { "start": 22392.93, "end": 22394.05, "probability": 0.7996 }, { "start": 22394.17, "end": 22398.91, "probability": 0.8267 }, { "start": 22399.87, "end": 22406.65, "probability": 0.9676 }, { "start": 22407.49, "end": 22415.75, "probability": 0.9893 }, { "start": 22416.47, "end": 22417.15, "probability": 0.8001 }, { "start": 22417.93, "end": 22422.05, "probability": 0.8909 }, { "start": 22423.03, "end": 22423.51, "probability": 0.5432 }, { "start": 22424.61, "end": 22429.23, "probability": 0.9845 }, { "start": 22429.87, "end": 22431.07, "probability": 0.8594 }, { "start": 22431.65, "end": 22432.49, "probability": 0.9739 }, { "start": 22432.63, "end": 22432.99, "probability": 0.7754 }, { "start": 22434.09, "end": 22435.23, "probability": 0.7808 }, { "start": 22436.51, "end": 22437.19, "probability": 0.2179 }, { "start": 22438.31, "end": 22440.27, "probability": 0.4812 }, { "start": 22440.99, "end": 22443.05, "probability": 0.7727 }, { "start": 22443.61, "end": 22444.51, "probability": 0.4164 }, { "start": 22444.95, "end": 22445.69, "probability": 0.1715 }, { "start": 22445.69, "end": 22446.32, "probability": 0.2425 }, { "start": 22446.37, "end": 22451.17, "probability": 0.1923 }, { "start": 22473.49, "end": 22474.22, "probability": 0.3508 }, { "start": 22482.1, "end": 22485.37, "probability": 0.9889 }, { "start": 22485.47, "end": 22486.79, "probability": 0.9943 }, { "start": 22486.87, "end": 22490.47, "probability": 0.4346 }, { "start": 22492.29, "end": 22493.71, "probability": 0.7202 }, { "start": 22493.83, "end": 22494.13, "probability": 0.4289 }, { "start": 22494.13, "end": 22494.13, "probability": 0.646 }, { "start": 22495.43, "end": 22496.35, "probability": 0.2453 }, { "start": 22496.43, "end": 22496.95, "probability": 0.5824 }, { "start": 22497.05, "end": 22499.23, "probability": 0.9762 }, { "start": 22499.39, "end": 22500.01, "probability": 0.7257 }, { "start": 22501.11, "end": 22502.93, "probability": 0.5103 }, { "start": 22503.15, "end": 22503.97, "probability": 0.8682 }, { "start": 22505.03, "end": 22505.17, "probability": 0.6003 }, { "start": 22507.95, "end": 22510.27, "probability": 0.4493 }, { "start": 22514.67, "end": 22517.33, "probability": 0.8394 }, { "start": 22518.23, "end": 22520.55, "probability": 0.9285 }, { "start": 22522.47, "end": 22523.83, "probability": 0.9917 }, { "start": 22523.89, "end": 22527.05, "probability": 0.9092 }, { "start": 22527.17, "end": 22527.65, "probability": 0.7141 }, { "start": 22527.71, "end": 22528.11, "probability": 0.9149 }, { "start": 22528.21, "end": 22529.81, "probability": 0.8306 }, { "start": 22529.95, "end": 22531.93, "probability": 0.736 }, { "start": 22532.77, "end": 22534.63, "probability": 0.9879 }, { "start": 22534.77, "end": 22535.54, "probability": 0.9834 }, { "start": 22536.83, "end": 22542.65, "probability": 0.9496 }, { "start": 22543.77, "end": 22544.55, "probability": 0.7291 }, { "start": 22545.09, "end": 22547.43, "probability": 0.917 }, { "start": 22548.47, "end": 22549.26, "probability": 0.981 }, { "start": 22549.63, "end": 22550.13, "probability": 0.8891 }, { "start": 22551.14, "end": 22554.68, "probability": 0.9937 }, { "start": 22554.83, "end": 22557.61, "probability": 0.8886 }, { "start": 22558.39, "end": 22560.67, "probability": 0.9982 }, { "start": 22561.27, "end": 22564.73, "probability": 0.9846 }, { "start": 22565.39, "end": 22566.55, "probability": 0.6817 }, { "start": 22566.63, "end": 22567.97, "probability": 0.4821 }, { "start": 22568.07, "end": 22568.99, "probability": 0.6809 }, { "start": 22569.07, "end": 22570.6, "probability": 0.9852 }, { "start": 22577.21, "end": 22577.83, "probability": 0.7793 }, { "start": 22579.49, "end": 22581.75, "probability": 0.6881 }, { "start": 22581.97, "end": 22583.77, "probability": 0.9481 }, { "start": 22584.79, "end": 22587.37, "probability": 0.792 }, { "start": 22587.47, "end": 22591.57, "probability": 0.9576 }, { "start": 22592.15, "end": 22597.83, "probability": 0.9827 }, { "start": 22597.83, "end": 22601.87, "probability": 0.9832 }, { "start": 22602.69, "end": 22606.43, "probability": 0.8328 }, { "start": 22606.7, "end": 22607.07, "probability": 0.1738 }, { "start": 22607.19, "end": 22608.13, "probability": 0.6727 }, { "start": 22608.45, "end": 22611.01, "probability": 0.8404 }, { "start": 22611.09, "end": 22611.85, "probability": 0.6368 }, { "start": 22612.41, "end": 22614.31, "probability": 0.8477 }, { "start": 22614.41, "end": 22615.35, "probability": 0.9782 }, { "start": 22615.45, "end": 22616.89, "probability": 0.9939 }, { "start": 22617.15, "end": 22619.49, "probability": 0.9906 }, { "start": 22619.53, "end": 22622.21, "probability": 0.8387 }, { "start": 22622.33, "end": 22624.29, "probability": 0.6631 }, { "start": 22626.13, "end": 22627.45, "probability": 0.9834 }, { "start": 22627.51, "end": 22631.01, "probability": 0.8445 }, { "start": 22631.09, "end": 22634.01, "probability": 0.9785 }, { "start": 22634.09, "end": 22634.65, "probability": 0.6948 }, { "start": 22635.49, "end": 22636.97, "probability": 0.7841 }, { "start": 22637.71, "end": 22638.15, "probability": 0.7111 }, { "start": 22639.31, "end": 22644.71, "probability": 0.8114 }, { "start": 22645.17, "end": 22645.79, "probability": 0.7261 }, { "start": 22645.89, "end": 22650.43, "probability": 0.7788 }, { "start": 22651.13, "end": 22654.37, "probability": 0.7929 }, { "start": 22655.11, "end": 22657.55, "probability": 0.9851 }, { "start": 22658.31, "end": 22662.91, "probability": 0.5949 }, { "start": 22663.55, "end": 22664.19, "probability": 0.8738 }, { "start": 22664.85, "end": 22666.57, "probability": 0.8835 }, { "start": 22667.03, "end": 22668.54, "probability": 0.236 }, { "start": 22669.11, "end": 22672.35, "probability": 0.79 }, { "start": 22673.91, "end": 22675.37, "probability": 0.0713 }, { "start": 22675.85, "end": 22678.45, "probability": 0.3917 }, { "start": 22678.47, "end": 22681.61, "probability": 0.745 }, { "start": 22681.61, "end": 22684.45, "probability": 0.3018 }, { "start": 22684.69, "end": 22686.03, "probability": 0.5741 }, { "start": 22686.49, "end": 22689.43, "probability": 0.4834 }, { "start": 22689.95, "end": 22690.87, "probability": 0.6806 }, { "start": 22691.93, "end": 22693.37, "probability": 0.9174 }, { "start": 22693.45, "end": 22695.33, "probability": 0.6299 }, { "start": 22695.49, "end": 22698.69, "probability": 0.0686 }, { "start": 22698.69, "end": 22699.92, "probability": 0.7881 }, { "start": 22700.11, "end": 22700.71, "probability": 0.2561 }, { "start": 22700.71, "end": 22701.57, "probability": 0.0257 }, { "start": 22702.13, "end": 22704.55, "probability": 0.7057 }, { "start": 22704.93, "end": 22706.48, "probability": 0.9937 }, { "start": 22706.75, "end": 22707.97, "probability": 0.0347 }, { "start": 22707.97, "end": 22710.19, "probability": 0.0539 }, { "start": 22710.29, "end": 22711.13, "probability": 0.0111 }, { "start": 22711.59, "end": 22715.07, "probability": 0.7329 }, { "start": 22715.23, "end": 22716.71, "probability": 0.5539 }, { "start": 22716.89, "end": 22717.69, "probability": 0.313 }, { "start": 22717.73, "end": 22718.25, "probability": 0.6563 }, { "start": 22718.33, "end": 22719.1, "probability": 0.9229 }, { "start": 22719.61, "end": 22719.89, "probability": 0.0165 }, { "start": 22719.99, "end": 22720.59, "probability": 0.2247 }, { "start": 22720.65, "end": 22721.57, "probability": 0.0218 }, { "start": 22721.73, "end": 22722.41, "probability": 0.2796 }, { "start": 22722.49, "end": 22725.01, "probability": 0.9031 }, { "start": 22725.13, "end": 22726.28, "probability": 0.924 }, { "start": 22726.87, "end": 22727.17, "probability": 0.0294 }, { "start": 22727.17, "end": 22727.39, "probability": 0.8286 }, { "start": 22727.45, "end": 22728.83, "probability": 0.9893 }, { "start": 22728.83, "end": 22732.47, "probability": 0.9882 }, { "start": 22732.67, "end": 22735.07, "probability": 0.8063 }, { "start": 22735.19, "end": 22735.73, "probability": 0.5744 }, { "start": 22736.23, "end": 22737.89, "probability": 0.2833 }, { "start": 22737.99, "end": 22738.73, "probability": 0.3706 }, { "start": 22738.91, "end": 22739.26, "probability": 0.4386 }, { "start": 22739.55, "end": 22740.43, "probability": 0.1539 }, { "start": 22740.73, "end": 22742.23, "probability": 0.3933 }, { "start": 22742.35, "end": 22742.49, "probability": 0.3966 }, { "start": 22742.61, "end": 22743.83, "probability": 0.4364 }, { "start": 22744.01, "end": 22744.75, "probability": 0.7273 }, { "start": 22745.45, "end": 22746.41, "probability": 0.0398 }, { "start": 22746.91, "end": 22749.41, "probability": 0.4756 }, { "start": 22749.59, "end": 22751.55, "probability": 0.9668 }, { "start": 22751.63, "end": 22753.25, "probability": 0.1628 }, { "start": 22753.39, "end": 22753.71, "probability": 0.4359 }, { "start": 22753.85, "end": 22755.03, "probability": 0.4654 }, { "start": 22755.25, "end": 22757.49, "probability": 0.9588 }, { "start": 22757.49, "end": 22757.84, "probability": 0.3109 }, { "start": 22758.27, "end": 22759.71, "probability": 0.9825 }, { "start": 22759.87, "end": 22765.45, "probability": 0.832 }, { "start": 22766.15, "end": 22766.81, "probability": 0.9937 }, { "start": 22769.97, "end": 22770.35, "probability": 0.7691 }, { "start": 22770.43, "end": 22770.63, "probability": 0.7538 }, { "start": 22771.01, "end": 22774.11, "probability": 0.9863 }, { "start": 22774.17, "end": 22774.87, "probability": 0.4988 }, { "start": 22775.59, "end": 22777.99, "probability": 0.4767 }, { "start": 22778.27, "end": 22778.83, "probability": 0.8703 }, { "start": 22778.97, "end": 22780.19, "probability": 0.4449 }, { "start": 22780.23, "end": 22780.23, "probability": 0.0522 }, { "start": 22780.23, "end": 22783.2, "probability": 0.6335 }, { "start": 22784.35, "end": 22787.17, "probability": 0.9974 }, { "start": 22787.17, "end": 22790.23, "probability": 0.9858 }, { "start": 22790.33, "end": 22792.39, "probability": 0.9026 }, { "start": 22792.83, "end": 22795.07, "probability": 0.987 }, { "start": 22795.49, "end": 22799.23, "probability": 0.9983 }, { "start": 22799.81, "end": 22803.03, "probability": 0.9977 }, { "start": 22803.73, "end": 22804.83, "probability": 0.9402 }, { "start": 22805.17, "end": 22806.37, "probability": 0.7185 }, { "start": 22806.45, "end": 22808.79, "probability": 0.9194 }, { "start": 22809.63, "end": 22813.27, "probability": 0.8039 }, { "start": 22813.67, "end": 22816.57, "probability": 0.9 }, { "start": 22817.23, "end": 22819.65, "probability": 0.9976 }, { "start": 22820.13, "end": 22822.91, "probability": 0.9872 }, { "start": 22823.79, "end": 22825.13, "probability": 0.8435 }, { "start": 22825.61, "end": 22829.27, "probability": 0.9902 }, { "start": 22829.85, "end": 22834.21, "probability": 0.9717 }, { "start": 22834.55, "end": 22836.83, "probability": 0.9883 }, { "start": 22836.85, "end": 22840.23, "probability": 0.9374 }, { "start": 22840.75, "end": 22843.39, "probability": 0.9984 }, { "start": 22843.39, "end": 22845.05, "probability": 0.9919 }, { "start": 22846.13, "end": 22849.23, "probability": 0.8156 }, { "start": 22849.77, "end": 22852.21, "probability": 0.6574 }, { "start": 22852.97, "end": 22856.65, "probability": 0.9965 }, { "start": 22856.65, "end": 22859.61, "probability": 0.955 }, { "start": 22860.15, "end": 22860.63, "probability": 0.4709 }, { "start": 22860.65, "end": 22864.27, "probability": 0.9955 }, { "start": 22864.45, "end": 22865.55, "probability": 0.9007 }, { "start": 22866.21, "end": 22866.69, "probability": 0.9734 }, { "start": 22867.33, "end": 22870.17, "probability": 0.74 }, { "start": 22871.01, "end": 22874.35, "probability": 0.4512 }, { "start": 22874.35, "end": 22875.61, "probability": 0.3562 }, { "start": 22875.75, "end": 22876.38, "probability": 0.2169 }, { "start": 22877.93, "end": 22880.03, "probability": 0.9255 }, { "start": 22882.41, "end": 22884.03, "probability": 0.2073 }, { "start": 22884.75, "end": 22885.33, "probability": 0.4969 }, { "start": 22885.33, "end": 22886.61, "probability": 0.1854 }, { "start": 22886.63, "end": 22887.36, "probability": 0.147 }, { "start": 22887.59, "end": 22888.31, "probability": 0.3696 }, { "start": 22888.31, "end": 22889.25, "probability": 0.4852 }, { "start": 22889.37, "end": 22889.99, "probability": 0.9712 }, { "start": 22890.99, "end": 22893.55, "probability": 0.8857 }, { "start": 22894.39, "end": 22896.53, "probability": 0.4531 }, { "start": 22898.03, "end": 22898.35, "probability": 0.0913 }, { "start": 22900.23, "end": 22907.23, "probability": 0.7363 }, { "start": 22910.23, "end": 22912.35, "probability": 0.9492 }, { "start": 22913.09, "end": 22916.89, "probability": 0.9803 }, { "start": 22917.07, "end": 22920.79, "probability": 0.9951 }, { "start": 22921.45, "end": 22924.71, "probability": 0.8889 }, { "start": 22925.35, "end": 22928.45, "probability": 0.9954 }, { "start": 22929.73, "end": 22933.35, "probability": 0.9743 }, { "start": 22933.91, "end": 22936.13, "probability": 0.6134 }, { "start": 22936.81, "end": 22940.51, "probability": 0.9778 }, { "start": 22940.51, "end": 22943.49, "probability": 0.9076 }, { "start": 22944.31, "end": 22945.35, "probability": 0.6274 }, { "start": 22950.65, "end": 22950.85, "probability": 0.0224 }, { "start": 22950.85, "end": 22951.61, "probability": 0.4497 }, { "start": 22951.61, "end": 22952.69, "probability": 0.9666 }, { "start": 22952.83, "end": 22954.51, "probability": 0.9956 }, { "start": 22954.59, "end": 22955.75, "probability": 0.5815 }, { "start": 22955.97, "end": 22957.51, "probability": 0.7625 }, { "start": 22958.11, "end": 22959.25, "probability": 0.2371 }, { "start": 22959.57, "end": 22961.53, "probability": 0.9902 }, { "start": 22961.53, "end": 22963.98, "probability": 0.6999 }, { "start": 22964.39, "end": 22965.55, "probability": 0.8922 }, { "start": 22965.55, "end": 22966.49, "probability": 0.1697 }, { "start": 22966.73, "end": 22967.89, "probability": 0.1742 }, { "start": 22967.95, "end": 22969.37, "probability": 0.5838 }, { "start": 22970.39, "end": 22971.79, "probability": 0.9604 }, { "start": 22972.11, "end": 22972.95, "probability": 0.823 }, { "start": 22972.95, "end": 22974.93, "probability": 0.9907 }, { "start": 22974.93, "end": 22975.46, "probability": 0.0766 }, { "start": 22975.61, "end": 22979.55, "probability": 0.4803 }, { "start": 22979.95, "end": 22981.57, "probability": 0.119 }, { "start": 22981.57, "end": 22986.45, "probability": 0.9929 }, { "start": 22986.73, "end": 22987.29, "probability": 0.5751 }, { "start": 22987.29, "end": 22989.49, "probability": 0.4043 }, { "start": 22990.9, "end": 22992.95, "probability": 0.8376 }, { "start": 22994.29, "end": 22998.19, "probability": 0.995 }, { "start": 22998.51, "end": 23002.45, "probability": 0.9919 }, { "start": 23002.45, "end": 23006.89, "probability": 0.7835 }, { "start": 23007.35, "end": 23009.39, "probability": 0.7303 }, { "start": 23011.45, "end": 23011.79, "probability": 0.7237 }, { "start": 23011.97, "end": 23016.15, "probability": 0.9947 }, { "start": 23016.61, "end": 23019.02, "probability": 0.7267 }, { "start": 23019.53, "end": 23020.63, "probability": 0.9167 }, { "start": 23020.93, "end": 23021.91, "probability": 0.5093 }, { "start": 23021.97, "end": 23022.94, "probability": 0.5605 }, { "start": 23023.37, "end": 23023.82, "probability": 0.9619 }, { "start": 23025.18, "end": 23028.13, "probability": 0.8177 }, { "start": 23028.39, "end": 23029.05, "probability": 0.1863 }, { "start": 23029.17, "end": 23031.65, "probability": 0.8853 }, { "start": 23031.73, "end": 23032.89, "probability": 0.7352 }, { "start": 23033.01, "end": 23035.97, "probability": 0.8455 }, { "start": 23036.11, "end": 23036.99, "probability": 0.7634 }, { "start": 23037.11, "end": 23038.37, "probability": 0.6855 }, { "start": 23038.63, "end": 23040.33, "probability": 0.7135 }, { "start": 23043.03, "end": 23044.05, "probability": 0.0128 }, { "start": 23045.61, "end": 23047.27, "probability": 0.8953 }, { "start": 23050.13, "end": 23051.39, "probability": 0.545 }, { "start": 23053.07, "end": 23057.17, "probability": 0.3704 }, { "start": 23057.93, "end": 23061.31, "probability": 0.4588 }, { "start": 23061.63, "end": 23065.81, "probability": 0.6854 }, { "start": 23066.23, "end": 23068.33, "probability": 0.4076 }, { "start": 23068.99, "end": 23072.91, "probability": 0.9323 }, { "start": 23073.77, "end": 23075.85, "probability": 0.5271 }, { "start": 23077.93, "end": 23079.31, "probability": 0.9602 }, { "start": 23080.35, "end": 23081.99, "probability": 0.8806 }, { "start": 23082.65, "end": 23085.05, "probability": 0.5652 }, { "start": 23085.13, "end": 23087.13, "probability": 0.8245 }, { "start": 23087.71, "end": 23088.27, "probability": 0.1376 }, { "start": 23088.43, "end": 23091.53, "probability": 0.4581 }, { "start": 23091.81, "end": 23094.51, "probability": 0.6139 }, { "start": 23095.27, "end": 23096.97, "probability": 0.917 }, { "start": 23097.09, "end": 23099.92, "probability": 0.8399 }, { "start": 23102.97, "end": 23106.77, "probability": 0.6635 }, { "start": 23106.93, "end": 23107.43, "probability": 0.5954 }, { "start": 23107.53, "end": 23110.09, "probability": 0.8965 }, { "start": 23110.65, "end": 23112.43, "probability": 0.8296 }, { "start": 23112.99, "end": 23114.17, "probability": 0.9365 }, { "start": 23114.25, "end": 23117.97, "probability": 0.9644 }, { "start": 23119.13, "end": 23120.83, "probability": 0.4838 }, { "start": 23122.21, "end": 23123.67, "probability": 0.7661 }, { "start": 23123.97, "end": 23123.97, "probability": 0.3002 }, { "start": 23123.97, "end": 23123.99, "probability": 0.3195 }, { "start": 23124.15, "end": 23124.43, "probability": 0.5269 }, { "start": 23124.43, "end": 23125.25, "probability": 0.9377 }, { "start": 23125.33, "end": 23128.03, "probability": 0.7425 }, { "start": 23128.27, "end": 23130.93, "probability": 0.9872 }, { "start": 23131.77, "end": 23131.93, "probability": 0.4101 }, { "start": 23131.93, "end": 23131.93, "probability": 0.2083 }, { "start": 23131.93, "end": 23132.17, "probability": 0.2196 }, { "start": 23132.25, "end": 23133.13, "probability": 0.5937 }, { "start": 23133.13, "end": 23133.37, "probability": 0.0066 }, { "start": 23133.37, "end": 23133.65, "probability": 0.2415 }, { "start": 23133.75, "end": 23135.93, "probability": 0.8203 }, { "start": 23135.95, "end": 23136.15, "probability": 0.7471 }, { "start": 23138.77, "end": 23144.05, "probability": 0.5733 }, { "start": 23144.47, "end": 23146.34, "probability": 0.9561 }, { "start": 23147.01, "end": 23148.11, "probability": 0.9945 }, { "start": 23148.47, "end": 23149.05, "probability": 0.7364 }, { "start": 23149.25, "end": 23150.11, "probability": 0.899 }, { "start": 23150.21, "end": 23151.25, "probability": 0.5872 }, { "start": 23152.45, "end": 23154.81, "probability": 0.1064 }, { "start": 23155.17, "end": 23156.85, "probability": 0.493 }, { "start": 23157.37, "end": 23157.37, "probability": 0.7341 }, { "start": 23157.37, "end": 23157.37, "probability": 0.0748 }, { "start": 23157.37, "end": 23158.45, "probability": 0.3179 }, { "start": 23158.75, "end": 23159.77, "probability": 0.3129 }, { "start": 23159.77, "end": 23163.61, "probability": 0.8263 }, { "start": 23169.67, "end": 23172.39, "probability": 0.7879 }, { "start": 23172.93, "end": 23174.47, "probability": 0.0203 }, { "start": 23175.09, "end": 23177.29, "probability": 0.2631 }, { "start": 23177.83, "end": 23179.14, "probability": 0.4174 }, { "start": 23179.19, "end": 23180.37, "probability": 0.5871 }, { "start": 23183.27, "end": 23183.89, "probability": 0.1105 }, { "start": 23183.89, "end": 23184.89, "probability": 0.3978 }, { "start": 23204.75, "end": 23206.19, "probability": 0.6756 }, { "start": 23207.13, "end": 23207.57, "probability": 0.8127 }, { "start": 23208.09, "end": 23209.23, "probability": 0.6445 }, { "start": 23209.55, "end": 23210.05, "probability": 0.7999 }, { "start": 23210.21, "end": 23212.09, "probability": 0.8196 }, { "start": 23212.59, "end": 23213.61, "probability": 0.8928 }, { "start": 23213.81, "end": 23215.25, "probability": 0.5913 }, { "start": 23215.71, "end": 23215.77, "probability": 0.2842 }, { "start": 23215.89, "end": 23218.49, "probability": 0.2035 }, { "start": 23218.49, "end": 23219.15, "probability": 0.0745 }, { "start": 23219.83, "end": 23220.91, "probability": 0.5101 }, { "start": 23221.03, "end": 23221.74, "probability": 0.8944 }, { "start": 23222.07, "end": 23222.69, "probability": 0.6167 }, { "start": 23223.39, "end": 23226.47, "probability": 0.8745 }, { "start": 23226.69, "end": 23227.75, "probability": 0.6263 }, { "start": 23228.07, "end": 23228.59, "probability": 0.0675 }, { "start": 23229.55, "end": 23235.95, "probability": 0.7976 }, { "start": 23236.45, "end": 23237.11, "probability": 0.3979 }, { "start": 23237.61, "end": 23240.23, "probability": 0.7891 }, { "start": 23240.37, "end": 23241.56, "probability": 0.9795 }, { "start": 23241.65, "end": 23247.61, "probability": 0.9718 }, { "start": 23248.71, "end": 23252.17, "probability": 0.9756 }, { "start": 23252.17, "end": 23255.33, "probability": 0.9042 }, { "start": 23255.77, "end": 23257.19, "probability": 0.8758 }, { "start": 23257.45, "end": 23257.45, "probability": 0.1755 }, { "start": 23257.45, "end": 23257.91, "probability": 0.8427 }, { "start": 23260.87, "end": 23263.51, "probability": 0.6889 }, { "start": 23264.15, "end": 23267.49, "probability": 0.9955 }, { "start": 23267.83, "end": 23268.21, "probability": 0.8303 }, { "start": 23268.33, "end": 23270.93, "probability": 0.7044 }, { "start": 23271.15, "end": 23273.43, "probability": 0.4332 }, { "start": 23273.43, "end": 23275.25, "probability": 0.8366 }, { "start": 23275.47, "end": 23277.07, "probability": 0.9087 }, { "start": 23277.15, "end": 23278.43, "probability": 0.6588 }, { "start": 23278.77, "end": 23279.53, "probability": 0.7293 }, { "start": 23279.67, "end": 23280.51, "probability": 0.8617 }, { "start": 23280.77, "end": 23281.19, "probability": 0.3596 }, { "start": 23281.19, "end": 23281.57, "probability": 0.7888 }, { "start": 23284.95, "end": 23288.25, "probability": 0.687 }, { "start": 23288.61, "end": 23291.57, "probability": 0.9873 }, { "start": 23291.63, "end": 23291.79, "probability": 0.2433 }, { "start": 23291.85, "end": 23292.61, "probability": 0.7514 }, { "start": 23292.69, "end": 23293.03, "probability": 0.5687 }, { "start": 23293.51, "end": 23296.27, "probability": 0.9519 }, { "start": 23296.37, "end": 23296.95, "probability": 0.7271 }, { "start": 23297.23, "end": 23298.99, "probability": 0.9812 }, { "start": 23299.21, "end": 23300.49, "probability": 0.8625 }, { "start": 23300.53, "end": 23301.45, "probability": 0.5605 }, { "start": 23301.85, "end": 23302.95, "probability": 0.9779 }, { "start": 23303.21, "end": 23305.09, "probability": 0.8448 }, { "start": 23305.22, "end": 23307.45, "probability": 0.647 }, { "start": 23308.07, "end": 23309.83, "probability": 0.9346 }, { "start": 23311.05, "end": 23312.19, "probability": 0.7868 }, { "start": 23312.73, "end": 23314.75, "probability": 0.8657 }, { "start": 23314.93, "end": 23315.79, "probability": 0.7814 }, { "start": 23315.99, "end": 23316.43, "probability": 0.894 }, { "start": 23319.87, "end": 23319.99, "probability": 0.2373 }, { "start": 23320.17, "end": 23323.79, "probability": 0.8286 }, { "start": 23324.87, "end": 23328.87, "probability": 0.8852 }, { "start": 23329.45, "end": 23331.89, "probability": 0.3333 }, { "start": 23333.75, "end": 23335.55, "probability": 0.7643 }, { "start": 23337.95, "end": 23338.21, "probability": 0.5162 }, { "start": 23339.71, "end": 23339.81, "probability": 0.398 }, { "start": 23339.81, "end": 23339.81, "probability": 0.3308 }, { "start": 23339.81, "end": 23340.97, "probability": 0.7578 }, { "start": 23341.37, "end": 23342.43, "probability": 0.7879 }, { "start": 23343.33, "end": 23346.73, "probability": 0.8644 }, { "start": 23346.83, "end": 23347.67, "probability": 0.2605 }, { "start": 23347.67, "end": 23348.87, "probability": 0.4954 }, { "start": 23349.17, "end": 23350.15, "probability": 0.5625 }, { "start": 23352.69, "end": 23354.19, "probability": 0.7362 }, { "start": 23354.83, "end": 23356.67, "probability": 0.2179 }, { "start": 23357.11, "end": 23359.11, "probability": 0.6541 }, { "start": 23359.21, "end": 23361.95, "probability": 0.6304 }, { "start": 23361.95, "end": 23365.11, "probability": 0.5971 }, { "start": 23365.29, "end": 23367.11, "probability": 0.6581 }, { "start": 23367.15, "end": 23367.97, "probability": 0.9026 }, { "start": 23367.97, "end": 23368.63, "probability": 0.3117 }, { "start": 23369.17, "end": 23369.88, "probability": 0.8403 }, { "start": 23371.17, "end": 23372.75, "probability": 0.351 }, { "start": 23372.91, "end": 23374.43, "probability": 0.3422 }, { "start": 23374.63, "end": 23375.61, "probability": 0.7242 }, { "start": 23376.17, "end": 23376.91, "probability": 0.4372 }, { "start": 23377.07, "end": 23381.43, "probability": 0.9924 }, { "start": 23382.13, "end": 23388.0, "probability": 0.9821 }, { "start": 23388.97, "end": 23390.11, "probability": 0.2316 }, { "start": 23392.28, "end": 23394.82, "probability": 0.9875 }, { "start": 23395.49, "end": 23396.51, "probability": 0.9268 }, { "start": 23397.73, "end": 23398.71, "probability": 0.2336 }, { "start": 23398.71, "end": 23400.49, "probability": 0.896 }, { "start": 23400.61, "end": 23401.41, "probability": 0.6894 }, { "start": 23401.89, "end": 23403.43, "probability": 0.4824 }, { "start": 23403.49, "end": 23405.07, "probability": 0.4687 }, { "start": 23405.55, "end": 23407.9, "probability": 0.4322 }, { "start": 23409.42, "end": 23410.28, "probability": 0.0805 }, { "start": 23410.29, "end": 23414.11, "probability": 0.9106 }, { "start": 23415.21, "end": 23420.31, "probability": 0.8704 }, { "start": 23421.09, "end": 23423.89, "probability": 0.7275 }, { "start": 23423.89, "end": 23424.27, "probability": 0.3791 }, { "start": 23429.91, "end": 23432.29, "probability": 0.7984 }, { "start": 23433.35, "end": 23434.73, "probability": 0.8713 }, { "start": 23435.27, "end": 23435.95, "probability": 0.8079 }, { "start": 23436.57, "end": 23436.97, "probability": 0.8115 }, { "start": 23437.09, "end": 23438.05, "probability": 0.5781 }, { "start": 23438.09, "end": 23439.07, "probability": 0.655 }, { "start": 23439.07, "end": 23439.79, "probability": 0.4611 }, { "start": 23439.93, "end": 23440.25, "probability": 0.1714 }, { "start": 23440.81, "end": 23440.91, "probability": 0.6907 }, { "start": 23441.63, "end": 23446.41, "probability": 0.8262 }, { "start": 23446.61, "end": 23446.99, "probability": 0.7229 }, { "start": 23447.03, "end": 23450.07, "probability": 0.9778 }, { "start": 23451.11, "end": 23455.15, "probability": 0.8438 }, { "start": 23456.19, "end": 23456.37, "probability": 0.4658 }, { "start": 23457.27, "end": 23460.31, "probability": 0.7505 }, { "start": 23460.79, "end": 23463.81, "probability": 0.5073 }, { "start": 23464.01, "end": 23465.29, "probability": 0.4878 }, { "start": 23465.77, "end": 23467.41, "probability": 0.2741 }, { "start": 23467.53, "end": 23469.35, "probability": 0.8533 }, { "start": 23474.07, "end": 23477.19, "probability": 0.4217 }, { "start": 23477.35, "end": 23478.97, "probability": 0.699 }, { "start": 23479.33, "end": 23481.87, "probability": 0.5196 }, { "start": 23481.87, "end": 23482.49, "probability": 0.6539 }, { "start": 23482.53, "end": 23483.13, "probability": 0.5012 }, { "start": 23483.25, "end": 23483.95, "probability": 0.8266 }, { "start": 23484.07, "end": 23485.07, "probability": 0.7572 }, { "start": 23485.19, "end": 23488.69, "probability": 0.65 }, { "start": 23489.55, "end": 23490.81, "probability": 0.712 }, { "start": 23491.41, "end": 23495.85, "probability": 0.7294 }, { "start": 23496.41, "end": 23498.33, "probability": 0.7858 }, { "start": 23498.37, "end": 23499.01, "probability": 0.5314 }, { "start": 23499.73, "end": 23503.29, "probability": 0.7802 }, { "start": 23503.37, "end": 23503.53, "probability": 0.6281 }, { "start": 23503.63, "end": 23505.87, "probability": 0.9738 }, { "start": 23506.39, "end": 23508.27, "probability": 0.7742 }, { "start": 23508.87, "end": 23512.85, "probability": 0.9502 }, { "start": 23513.99, "end": 23515.78, "probability": 0.999 }, { "start": 23516.93, "end": 23517.79, "probability": 0.5116 }, { "start": 23518.35, "end": 23519.27, "probability": 0.8226 }, { "start": 23519.89, "end": 23520.89, "probability": 0.965 }, { "start": 23521.29, "end": 23524.79, "probability": 0.9902 }, { "start": 23525.33, "end": 23526.57, "probability": 0.9995 }, { "start": 23527.15, "end": 23531.03, "probability": 0.9976 }, { "start": 23531.31, "end": 23532.09, "probability": 0.682 }, { "start": 23532.43, "end": 23534.99, "probability": 0.8832 }, { "start": 23535.35, "end": 23536.77, "probability": 0.8679 }, { "start": 23537.19, "end": 23538.69, "probability": 0.9714 }, { "start": 23539.21, "end": 23541.89, "probability": 0.7776 }, { "start": 23542.31, "end": 23544.65, "probability": 0.9663 }, { "start": 23545.31, "end": 23548.53, "probability": 0.9506 }, { "start": 23549.03, "end": 23551.67, "probability": 0.9961 }, { "start": 23552.47, "end": 23553.33, "probability": 0.8043 }, { "start": 23554.79, "end": 23558.83, "probability": 0.9038 }, { "start": 23559.87, "end": 23560.27, "probability": 0.746 }, { "start": 23560.99, "end": 23562.81, "probability": 0.6182 }, { "start": 23563.81, "end": 23565.93, "probability": 0.9941 }, { "start": 23566.26, "end": 23568.61, "probability": 0.9753 }, { "start": 23568.69, "end": 23569.41, "probability": 0.9365 }, { "start": 23569.45, "end": 23569.61, "probability": 0.0112 }, { "start": 23570.57, "end": 23571.29, "probability": 0.9797 }, { "start": 23571.85, "end": 23572.81, "probability": 0.9646 }, { "start": 23573.75, "end": 23576.33, "probability": 0.9915 }, { "start": 23576.51, "end": 23579.17, "probability": 0.7715 }, { "start": 23580.47, "end": 23583.09, "probability": 0.754 }, { "start": 23583.61, "end": 23583.95, "probability": 0.7217 }, { "start": 23585.09, "end": 23588.45, "probability": 0.9312 }, { "start": 23589.19, "end": 23592.13, "probability": 0.9854 }, { "start": 23592.85, "end": 23595.05, "probability": 0.9875 }, { "start": 23595.21, "end": 23599.79, "probability": 0.9954 }, { "start": 23601.05, "end": 23603.63, "probability": 0.8237 }, { "start": 23603.65, "end": 23605.41, "probability": 0.9781 }, { "start": 23605.51, "end": 23605.89, "probability": 0.2695 }, { "start": 23607.11, "end": 23609.87, "probability": 0.7973 }, { "start": 23610.41, "end": 23610.93, "probability": 0.9443 }, { "start": 23611.33, "end": 23612.51, "probability": 0.9309 }, { "start": 23612.99, "end": 23614.15, "probability": 0.9478 }, { "start": 23614.95, "end": 23615.45, "probability": 0.7215 }, { "start": 23615.93, "end": 23617.03, "probability": 0.7405 }, { "start": 23617.21, "end": 23619.51, "probability": 0.4688 }, { "start": 23619.79, "end": 23620.17, "probability": 0.5617 }, { "start": 23620.33, "end": 23622.82, "probability": 0.7458 }, { "start": 23623.17, "end": 23625.55, "probability": 0.99 }, { "start": 23626.03, "end": 23626.81, "probability": 0.737 }, { "start": 23627.47, "end": 23629.95, "probability": 0.9771 }, { "start": 23630.31, "end": 23631.71, "probability": 0.7912 }, { "start": 23631.75, "end": 23632.89, "probability": 0.9151 }, { "start": 23633.61, "end": 23636.69, "probability": 0.9551 }, { "start": 23636.87, "end": 23639.37, "probability": 0.9669 }, { "start": 23640.17, "end": 23641.03, "probability": 0.8259 }, { "start": 23641.59, "end": 23641.65, "probability": 0.7117 }, { "start": 23641.77, "end": 23642.71, "probability": 0.9692 }, { "start": 23642.79, "end": 23644.25, "probability": 0.9875 }, { "start": 23645.21, "end": 23650.79, "probability": 0.9946 }, { "start": 23651.23, "end": 23652.43, "probability": 0.9978 }, { "start": 23653.03, "end": 23656.29, "probability": 0.5292 }, { "start": 23656.93, "end": 23657.57, "probability": 0.4718 }, { "start": 23658.19, "end": 23659.57, "probability": 0.9192 }, { "start": 23660.07, "end": 23661.01, "probability": 0.8394 }, { "start": 23661.53, "end": 23663.93, "probability": 0.9421 }, { "start": 23664.57, "end": 23666.55, "probability": 0.9438 }, { "start": 23666.83, "end": 23667.09, "probability": 0.545 }, { "start": 23667.13, "end": 23667.79, "probability": 0.7953 }, { "start": 23668.23, "end": 23669.96, "probability": 0.9901 }, { "start": 23671.43, "end": 23672.99, "probability": 0.797 }, { "start": 23673.11, "end": 23673.33, "probability": 0.7445 }, { "start": 23674.09, "end": 23675.03, "probability": 0.8343 }, { "start": 23676.45, "end": 23677.63, "probability": 0.9939 }, { "start": 23678.53, "end": 23681.77, "probability": 0.8994 }, { "start": 23682.83, "end": 23685.05, "probability": 0.9791 }, { "start": 23685.15, "end": 23689.33, "probability": 0.9726 }, { "start": 23689.43, "end": 23689.97, "probability": 0.842 }, { "start": 23690.07, "end": 23692.87, "probability": 0.9447 }, { "start": 23694.05, "end": 23695.75, "probability": 0.6513 }, { "start": 23696.69, "end": 23698.01, "probability": 0.9865 }, { "start": 23698.77, "end": 23700.59, "probability": 0.9985 }, { "start": 23701.05, "end": 23703.19, "probability": 0.9987 }, { "start": 23703.89, "end": 23707.41, "probability": 0.9956 }, { "start": 23707.73, "end": 23707.93, "probability": 0.4694 }, { "start": 23707.99, "end": 23708.87, "probability": 0.7154 }, { "start": 23708.97, "end": 23710.09, "probability": 0.9106 }, { "start": 23711.11, "end": 23711.49, "probability": 0.6128 }, { "start": 23711.61, "end": 23712.07, "probability": 0.7973 }, { "start": 23712.97, "end": 23714.83, "probability": 0.9602 }, { "start": 23715.79, "end": 23716.77, "probability": 0.8411 }, { "start": 23716.95, "end": 23719.49, "probability": 0.966 }, { "start": 23720.87, "end": 23723.31, "probability": 0.9414 }, { "start": 23724.19, "end": 23726.68, "probability": 0.7913 }, { "start": 23727.65, "end": 23727.67, "probability": 0.6313 }, { "start": 23728.49, "end": 23732.45, "probability": 0.8201 }, { "start": 23733.03, "end": 23734.34, "probability": 0.6897 }, { "start": 23735.03, "end": 23737.67, "probability": 0.9614 }, { "start": 23739.27, "end": 23744.25, "probability": 0.9831 }, { "start": 23745.13, "end": 23745.25, "probability": 0.6898 }, { "start": 23745.43, "end": 23752.59, "probability": 0.9467 }, { "start": 23753.71, "end": 23756.51, "probability": 0.9583 }, { "start": 23758.15, "end": 23758.61, "probability": 0.0102 }, { "start": 23758.67, "end": 23758.67, "probability": 0.0051 }, { "start": 23758.67, "end": 23759.01, "probability": 0.0182 }, { "start": 23759.01, "end": 23759.59, "probability": 0.8118 }, { "start": 23759.85, "end": 23764.37, "probability": 0.9849 }, { "start": 23764.43, "end": 23765.21, "probability": 0.314 }, { "start": 23765.29, "end": 23765.89, "probability": 0.4163 }, { "start": 23766.13, "end": 23766.73, "probability": 0.9019 }, { "start": 23767.35, "end": 23769.71, "probability": 0.9812 }, { "start": 23770.23, "end": 23771.43, "probability": 0.8381 }, { "start": 23771.53, "end": 23773.55, "probability": 0.9421 }, { "start": 23774.05, "end": 23775.95, "probability": 0.9134 }, { "start": 23777.01, "end": 23778.65, "probability": 0.9457 }, { "start": 23778.79, "end": 23780.29, "probability": 0.9939 }, { "start": 23781.19, "end": 23783.51, "probability": 0.9957 }, { "start": 23784.71, "end": 23787.4, "probability": 0.9673 }, { "start": 23788.21, "end": 23790.77, "probability": 0.9871 }, { "start": 23791.45, "end": 23793.19, "probability": 0.8721 }, { "start": 23793.75, "end": 23794.72, "probability": 0.9841 }, { "start": 23795.15, "end": 23796.46, "probability": 0.9604 }, { "start": 23797.03, "end": 23799.82, "probability": 0.7311 }, { "start": 23800.03, "end": 23800.89, "probability": 0.3817 }, { "start": 23801.07, "end": 23802.63, "probability": 0.6474 }, { "start": 23802.65, "end": 23804.01, "probability": 0.9049 }, { "start": 23805.07, "end": 23807.67, "probability": 0.9932 }, { "start": 23807.67, "end": 23808.53, "probability": 0.8148 }, { "start": 23809.13, "end": 23810.83, "probability": 0.9847 }, { "start": 23811.45, "end": 23811.65, "probability": 0.3939 }, { "start": 23812.19, "end": 23813.69, "probability": 0.7902 }, { "start": 23813.76, "end": 23814.32, "probability": 0.4558 }, { "start": 23814.53, "end": 23815.25, "probability": 0.9907 }, { "start": 23815.33, "end": 23815.97, "probability": 0.9961 }, { "start": 23816.59, "end": 23816.79, "probability": 0.9419 }, { "start": 23816.91, "end": 23818.81, "probability": 0.9132 }, { "start": 23818.95, "end": 23819.53, "probability": 0.3293 }, { "start": 23819.63, "end": 23820.47, "probability": 0.0961 }, { "start": 23820.65, "end": 23821.41, "probability": 0.806 }, { "start": 23821.71, "end": 23821.77, "probability": 0.406 }, { "start": 23821.77, "end": 23821.97, "probability": 0.791 }, { "start": 23821.99, "end": 23823.43, "probability": 0.1408 }, { "start": 23823.43, "end": 23826.65, "probability": 0.6289 }, { "start": 23826.69, "end": 23827.11, "probability": 0.7826 }, { "start": 23827.63, "end": 23829.73, "probability": 0.854 }, { "start": 23829.81, "end": 23832.01, "probability": 0.9906 }, { "start": 23833.51, "end": 23833.93, "probability": 0.264 }, { "start": 23833.93, "end": 23833.93, "probability": 0.12 }, { "start": 23833.93, "end": 23834.59, "probability": 0.7568 }, { "start": 23835.23, "end": 23838.41, "probability": 0.9823 }, { "start": 23838.97, "end": 23840.71, "probability": 0.9814 }, { "start": 23840.75, "end": 23840.85, "probability": 0.5371 }, { "start": 23841.25, "end": 23841.29, "probability": 0.0557 }, { "start": 23841.29, "end": 23844.47, "probability": 0.9583 }, { "start": 23844.53, "end": 23845.31, "probability": 0.6512 }, { "start": 23845.35, "end": 23849.53, "probability": 0.8022 }, { "start": 23849.63, "end": 23849.79, "probability": 0.6208 }, { "start": 23850.11, "end": 23853.07, "probability": 0.9708 }, { "start": 23853.47, "end": 23856.45, "probability": 0.9911 }, { "start": 23856.47, "end": 23857.57, "probability": 0.8688 }, { "start": 23858.21, "end": 23862.59, "probability": 0.9784 }, { "start": 23863.09, "end": 23863.49, "probability": 0.8757 }, { "start": 23863.83, "end": 23866.59, "probability": 0.8046 }, { "start": 23866.59, "end": 23869.53, "probability": 0.9604 }, { "start": 23870.43, "end": 23872.77, "probability": 0.9313 }, { "start": 23873.07, "end": 23875.33, "probability": 0.9526 }, { "start": 23875.69, "end": 23875.89, "probability": 0.6995 }, { "start": 23875.99, "end": 23877.69, "probability": 0.9205 }, { "start": 23878.49, "end": 23878.79, "probability": 0.7432 }, { "start": 23879.61, "end": 23881.53, "probability": 0.9595 }, { "start": 23883.17, "end": 23883.61, "probability": 0.0307 }, { "start": 23883.61, "end": 23883.81, "probability": 0.6113 }, { "start": 23884.15, "end": 23885.79, "probability": 0.9498 }, { "start": 23886.49, "end": 23887.17, "probability": 0.9808 }, { "start": 23888.37, "end": 23888.85, "probability": 0.9857 }, { "start": 23889.45, "end": 23890.97, "probability": 0.9783 }, { "start": 23891.25, "end": 23892.01, "probability": 0.8895 }, { "start": 23892.27, "end": 23893.45, "probability": 0.6103 }, { "start": 23893.49, "end": 23894.37, "probability": 0.7491 }, { "start": 23894.77, "end": 23895.21, "probability": 0.8674 }, { "start": 23895.31, "end": 23895.73, "probability": 0.9096 }, { "start": 23895.81, "end": 23896.63, "probability": 0.7555 }, { "start": 23896.91, "end": 23897.27, "probability": 0.8701 }, { "start": 23898.25, "end": 23899.37, "probability": 0.9272 }, { "start": 23899.65, "end": 23899.87, "probability": 0.9535 }, { "start": 23900.25, "end": 23900.87, "probability": 0.7414 }, { "start": 23901.25, "end": 23902.59, "probability": 0.9731 }, { "start": 23902.65, "end": 23902.97, "probability": 0.9351 }, { "start": 23903.28, "end": 23903.69, "probability": 0.854 }, { "start": 23904.51, "end": 23905.85, "probability": 0.9224 }, { "start": 23905.91, "end": 23906.49, "probability": 0.667 }, { "start": 23906.93, "end": 23910.15, "probability": 0.9958 }, { "start": 23910.71, "end": 23912.65, "probability": 0.7055 }, { "start": 23912.91, "end": 23915.53, "probability": 0.9601 }, { "start": 23915.69, "end": 23918.51, "probability": 0.9815 }, { "start": 23918.51, "end": 23920.53, "probability": 0.9917 }, { "start": 23920.97, "end": 23923.07, "probability": 0.9551 }, { "start": 23923.17, "end": 23923.81, "probability": 0.6017 }, { "start": 23924.31, "end": 23926.75, "probability": 0.9194 }, { "start": 23930.15, "end": 23932.23, "probability": 0.8635 }, { "start": 23933.45, "end": 23936.57, "probability": 0.969 }, { "start": 23936.95, "end": 23939.41, "probability": 0.9446 }, { "start": 23940.25, "end": 23942.97, "probability": 0.1989 }, { "start": 23945.53, "end": 23946.09, "probability": 0.6387 }, { "start": 23948.63, "end": 23950.15, "probability": 0.1464 }, { "start": 23951.99, "end": 23953.33, "probability": 0.4015 }, { "start": 23953.41, "end": 23954.83, "probability": 0.6184 }, { "start": 23955.9, "end": 23957.61, "probability": 0.6513 }, { "start": 23958.09, "end": 23960.82, "probability": 0.9629 }, { "start": 23961.47, "end": 23963.57, "probability": 0.5518 }, { "start": 23963.65, "end": 23963.75, "probability": 0.8631 }, { "start": 23964.88, "end": 23967.99, "probability": 0.7177 }, { "start": 23979.19, "end": 23983.81, "probability": 0.7561 }, { "start": 23983.91, "end": 23986.27, "probability": 0.8057 }, { "start": 23987.71, "end": 23988.31, "probability": 0.0581 }, { "start": 23988.79, "end": 23990.49, "probability": 0.4899 }, { "start": 23990.57, "end": 23991.81, "probability": 0.4744 }, { "start": 23991.99, "end": 23992.85, "probability": 0.8356 }, { "start": 23993.03, "end": 23994.09, "probability": 0.8172 }, { "start": 23994.63, "end": 23996.99, "probability": 0.9642 }, { "start": 23997.11, "end": 23998.75, "probability": 0.9411 }, { "start": 23999.75, "end": 24003.53, "probability": 0.6486 }, { "start": 24003.53, "end": 24004.03, "probability": 0.7564 }, { "start": 24004.79, "end": 24008.63, "probability": 0.9041 }, { "start": 24008.75, "end": 24009.65, "probability": 0.8193 }, { "start": 24009.73, "end": 24010.47, "probability": 0.8439 }, { "start": 24010.57, "end": 24010.75, "probability": 0.4619 }, { "start": 24010.81, "end": 24016.17, "probability": 0.8487 }, { "start": 24016.95, "end": 24018.29, "probability": 0.9973 }, { "start": 24019.17, "end": 24021.35, "probability": 0.5973 }, { "start": 24022.7, "end": 24025.69, "probability": 0.8688 }, { "start": 24026.91, "end": 24029.41, "probability": 0.6223 }, { "start": 24029.83, "end": 24031.25, "probability": 0.9593 }, { "start": 24031.35, "end": 24033.15, "probability": 0.9984 }, { "start": 24033.63, "end": 24035.37, "probability": 0.9328 }, { "start": 24036.33, "end": 24039.53, "probability": 0.9798 }, { "start": 24039.67, "end": 24044.59, "probability": 0.922 }, { "start": 24044.97, "end": 24045.41, "probability": 0.7924 }, { "start": 24046.57, "end": 24046.93, "probability": 0.552 }, { "start": 24048.85, "end": 24050.51, "probability": 0.972 }, { "start": 24051.35, "end": 24052.07, "probability": 0.9021 }, { "start": 24052.53, "end": 24055.85, "probability": 0.9978 }, { "start": 24056.71, "end": 24059.05, "probability": 0.8087 }, { "start": 24059.69, "end": 24060.27, "probability": 0.7502 }, { "start": 24060.81, "end": 24061.43, "probability": 0.8038 }, { "start": 24062.31, "end": 24063.25, "probability": 0.5934 }, { "start": 24063.37, "end": 24067.35, "probability": 0.9956 }, { "start": 24067.69, "end": 24068.61, "probability": 0.5773 }, { "start": 24068.95, "end": 24069.51, "probability": 0.5917 }, { "start": 24069.99, "end": 24072.07, "probability": 0.6233 }, { "start": 24072.21, "end": 24073.95, "probability": 0.6403 }, { "start": 24074.65, "end": 24076.15, "probability": 0.964 }, { "start": 24077.65, "end": 24081.73, "probability": 0.9912 }, { "start": 24081.85, "end": 24082.91, "probability": 0.9825 }, { "start": 24083.71, "end": 24083.89, "probability": 0.9412 }, { "start": 24084.41, "end": 24088.17, "probability": 0.8259 }, { "start": 24088.29, "end": 24088.39, "probability": 0.47 }, { "start": 24089.05, "end": 24093.77, "probability": 0.798 }, { "start": 24095.13, "end": 24097.25, "probability": 0.9546 }, { "start": 24098.31, "end": 24099.17, "probability": 0.4846 }, { "start": 24100.47, "end": 24103.61, "probability": 0.8146 }, { "start": 24105.29, "end": 24108.16, "probability": 0.866 }, { "start": 24109.17, "end": 24111.41, "probability": 0.7844 }, { "start": 24112.51, "end": 24113.59, "probability": 0.6335 }, { "start": 24113.77, "end": 24115.13, "probability": 0.9139 }, { "start": 24115.99, "end": 24117.71, "probability": 0.9745 }, { "start": 24118.43, "end": 24120.89, "probability": 0.9769 }, { "start": 24122.03, "end": 24122.97, "probability": 0.6137 }, { "start": 24122.97, "end": 24125.47, "probability": 0.8857 }, { "start": 24126.09, "end": 24128.12, "probability": 0.9688 }, { "start": 24128.19, "end": 24131.29, "probability": 0.9536 }, { "start": 24131.61, "end": 24132.37, "probability": 0.6657 }, { "start": 24132.51, "end": 24134.18, "probability": 0.9595 }, { "start": 24134.45, "end": 24138.63, "probability": 0.9951 }, { "start": 24139.07, "end": 24139.95, "probability": 0.7208 }, { "start": 24140.81, "end": 24142.35, "probability": 0.6554 }, { "start": 24142.43, "end": 24144.45, "probability": 0.9937 }, { "start": 24144.73, "end": 24147.17, "probability": 0.9653 }, { "start": 24147.27, "end": 24150.33, "probability": 0.9678 }, { "start": 24150.49, "end": 24151.63, "probability": 0.979 }, { "start": 24151.85, "end": 24154.81, "probability": 0.9482 }, { "start": 24155.01, "end": 24156.11, "probability": 0.876 }, { "start": 24158.31, "end": 24159.93, "probability": 0.9993 }, { "start": 24160.07, "end": 24160.37, "probability": 0.9272 }, { "start": 24162.27, "end": 24162.63, "probability": 0.9618 }, { "start": 24163.43, "end": 24164.33, "probability": 0.9963 }, { "start": 24165.07, "end": 24172.15, "probability": 0.8656 }, { "start": 24172.97, "end": 24176.93, "probability": 0.9966 }, { "start": 24176.93, "end": 24180.77, "probability": 0.9968 }, { "start": 24181.57, "end": 24181.93, "probability": 0.0499 }, { "start": 24181.93, "end": 24182.93, "probability": 0.9895 }, { "start": 24183.41, "end": 24186.14, "probability": 0.8162 }, { "start": 24188.49, "end": 24191.75, "probability": 0.9377 }, { "start": 24193.09, "end": 24195.09, "probability": 0.9631 }, { "start": 24195.15, "end": 24195.57, "probability": 0.1055 }, { "start": 24195.63, "end": 24196.81, "probability": 0.7405 }, { "start": 24196.91, "end": 24197.29, "probability": 0.5118 }, { "start": 24198.33, "end": 24200.23, "probability": 0.9383 }, { "start": 24200.83, "end": 24204.35, "probability": 0.9813 }, { "start": 24205.51, "end": 24206.14, "probability": 0.9863 }, { "start": 24206.41, "end": 24209.29, "probability": 0.9865 }, { "start": 24210.55, "end": 24212.17, "probability": 0.4638 }, { "start": 24212.17, "end": 24216.59, "probability": 0.8384 }, { "start": 24217.15, "end": 24217.89, "probability": 0.7389 }, { "start": 24218.88, "end": 24218.95, "probability": 0.184 }, { "start": 24218.95, "end": 24223.25, "probability": 0.6914 }, { "start": 24223.63, "end": 24223.81, "probability": 0.2082 }, { "start": 24224.11, "end": 24224.11, "probability": 0.1138 }, { "start": 24224.13, "end": 24224.35, "probability": 0.2638 }, { "start": 24224.43, "end": 24229.09, "probability": 0.9414 }, { "start": 24229.45, "end": 24231.17, "probability": 0.9602 }, { "start": 24231.89, "end": 24234.99, "probability": 0.959 }, { "start": 24235.11, "end": 24235.55, "probability": 0.9446 }, { "start": 24236.01, "end": 24237.79, "probability": 0.959 }, { "start": 24238.51, "end": 24238.99, "probability": 0.9526 }, { "start": 24239.51, "end": 24244.61, "probability": 0.9951 }, { "start": 24245.07, "end": 24246.32, "probability": 0.71 }, { "start": 24246.91, "end": 24251.37, "probability": 0.8048 }, { "start": 24251.89, "end": 24252.49, "probability": 0.9814 }, { "start": 24253.15, "end": 24254.01, "probability": 0.7574 }, { "start": 24254.01, "end": 24257.65, "probability": 0.9412 }, { "start": 24258.21, "end": 24260.83, "probability": 0.7466 }, { "start": 24260.95, "end": 24261.31, "probability": 0.4181 }, { "start": 24261.63, "end": 24264.39, "probability": 0.8724 }, { "start": 24265.11, "end": 24266.35, "probability": 0.9779 }, { "start": 24267.09, "end": 24268.71, "probability": 0.3832 }, { "start": 24269.73, "end": 24271.17, "probability": 0.855 }, { "start": 24271.69, "end": 24274.96, "probability": 0.9937 }, { "start": 24275.87, "end": 24281.63, "probability": 0.9915 }, { "start": 24282.11, "end": 24284.29, "probability": 0.9536 }, { "start": 24284.87, "end": 24285.85, "probability": 0.9956 }, { "start": 24286.47, "end": 24287.15, "probability": 0.9951 }, { "start": 24287.67, "end": 24288.25, "probability": 0.7321 }, { "start": 24288.81, "end": 24291.07, "probability": 0.5651 }, { "start": 24291.81, "end": 24293.77, "probability": 0.4436 }, { "start": 24293.77, "end": 24297.43, "probability": 0.4194 }, { "start": 24297.43, "end": 24301.11, "probability": 0.1134 }, { "start": 24301.45, "end": 24302.29, "probability": 0.6976 }, { "start": 24302.86, "end": 24305.95, "probability": 0.0412 }, { "start": 24306.41, "end": 24307.35, "probability": 0.0992 }, { "start": 24309.06, "end": 24311.01, "probability": 0.339 }, { "start": 24311.57, "end": 24312.09, "probability": 0.0247 }, { "start": 24312.09, "end": 24312.53, "probability": 0.1212 }, { "start": 24312.53, "end": 24316.93, "probability": 0.2677 }, { "start": 24317.59, "end": 24318.63, "probability": 0.1921 }, { "start": 24320.61, "end": 24321.31, "probability": 0.0105 }, { "start": 24323.01, "end": 24326.41, "probability": 0.1188 }, { "start": 24327.29, "end": 24327.39, "probability": 0.0125 }, { "start": 24348.49, "end": 24350.43, "probability": 0.1382 }, { "start": 24396.0, "end": 24396.0, "probability": 0.0 }, { "start": 24396.0, "end": 24396.0, "probability": 0.0 }, { "start": 24396.0, "end": 24396.0, "probability": 0.0 }, { "start": 24396.0, "end": 24396.0, "probability": 0.0 }, { "start": 24396.0, "end": 24396.0, "probability": 0.0 }, { "start": 24396.0, "end": 24396.0, "probability": 0.0 }, { "start": 24396.0, "end": 24396.0, "probability": 0.0 }, { "start": 24396.0, "end": 24396.0, "probability": 0.0 }, { "start": 24396.0, "end": 24396.0, "probability": 0.0 }, { "start": 24396.0, "end": 24396.0, "probability": 0.0 }, { "start": 24396.0, "end": 24396.0, "probability": 0.0 }, { "start": 24396.0, "end": 24396.0, "probability": 0.0 }, { "start": 24396.0, "end": 24396.0, "probability": 0.0 }, { "start": 24396.0, "end": 24396.0, "probability": 0.0 }, { "start": 24396.0, "end": 24396.0, "probability": 0.0 }, { "start": 24396.0, "end": 24396.0, "probability": 0.0 }, { "start": 24396.0, "end": 24396.0, "probability": 0.0 }, { "start": 24396.0, "end": 24396.0, "probability": 0.0 }, { "start": 24396.0, "end": 24396.0, "probability": 0.0 }, { "start": 24396.0, "end": 24396.0, "probability": 0.0 }, { "start": 24396.04, "end": 24396.36, "probability": 0.1316 }, { "start": 24397.24, "end": 24398.78, "probability": 0.4094 }, { "start": 24399.08, "end": 24400.48, "probability": 0.5764 }, { "start": 24400.58, "end": 24402.38, "probability": 0.167 }, { "start": 24402.86, "end": 24403.9, "probability": 0.8811 }, { "start": 24404.48, "end": 24405.24, "probability": 0.8995 }, { "start": 24405.3, "end": 24407.82, "probability": 0.8097 }, { "start": 24407.96, "end": 24408.4, "probability": 0.6089 }, { "start": 24409.14, "end": 24410.28, "probability": 0.6725 }, { "start": 24410.84, "end": 24413.03, "probability": 0.4061 }, { "start": 24419.46, "end": 24422.42, "probability": 0.3018 }, { "start": 24423.06, "end": 24423.48, "probability": 0.3365 }, { "start": 24424.26, "end": 24424.72, "probability": 0.9167 }, { "start": 24425.88, "end": 24427.26, "probability": 0.8777 }, { "start": 24427.26, "end": 24430.72, "probability": 0.9366 }, { "start": 24433.47, "end": 24434.94, "probability": 0.5946 }, { "start": 24434.94, "end": 24442.4, "probability": 0.9126 }, { "start": 24443.3, "end": 24445.44, "probability": 0.9878 }, { "start": 24446.52, "end": 24447.34, "probability": 0.8225 }, { "start": 24448.6, "end": 24452.44, "probability": 0.874 }, { "start": 24453.52, "end": 24457.66, "probability": 0.8264 }, { "start": 24457.78, "end": 24458.28, "probability": 0.8192 }, { "start": 24458.76, "end": 24463.3, "probability": 0.9977 }, { "start": 24463.3, "end": 24467.78, "probability": 0.9957 }, { "start": 24468.36, "end": 24474.0, "probability": 0.7939 }, { "start": 24474.1, "end": 24474.52, "probability": 0.5038 }, { "start": 24474.52, "end": 24474.52, "probability": 0.508 }, { "start": 24474.52, "end": 24476.46, "probability": 0.6803 }, { "start": 24476.46, "end": 24476.46, "probability": 0.757 }, { "start": 24476.46, "end": 24478.36, "probability": 0.4473 }, { "start": 24479.15, "end": 24479.94, "probability": 0.8475 }, { "start": 24480.62, "end": 24482.6, "probability": 0.7642 }, { "start": 24482.8, "end": 24483.96, "probability": 0.9375 }, { "start": 24484.52, "end": 24486.66, "probability": 0.3654 }, { "start": 24488.22, "end": 24490.44, "probability": 0.9969 }, { "start": 24490.44, "end": 24493.6, "probability": 0.9797 }, { "start": 24494.7, "end": 24494.92, "probability": 0.8939 }, { "start": 24495.28, "end": 24496.85, "probability": 0.9772 }, { "start": 24498.18, "end": 24499.08, "probability": 0.8716 }, { "start": 24499.08, "end": 24500.34, "probability": 0.9967 }, { "start": 24501.06, "end": 24502.72, "probability": 0.998 }, { "start": 24503.28, "end": 24504.04, "probability": 0.4327 }, { "start": 24504.82, "end": 24507.5, "probability": 0.9958 }, { "start": 24508.38, "end": 24510.4, "probability": 0.8646 }, { "start": 24510.92, "end": 24512.2, "probability": 0.924 }, { "start": 24513.12, "end": 24516.14, "probability": 0.9922 }, { "start": 24516.2, "end": 24517.0, "probability": 0.6649 }, { "start": 24518.04, "end": 24520.24, "probability": 0.7031 }, { "start": 24520.36, "end": 24524.24, "probability": 0.8917 }, { "start": 24524.24, "end": 24527.82, "probability": 0.991 }, { "start": 24528.68, "end": 24531.52, "probability": 0.2442 }, { "start": 24531.7, "end": 24531.86, "probability": 0.5613 }, { "start": 24531.88, "end": 24532.04, "probability": 0.7271 }, { "start": 24532.14, "end": 24532.56, "probability": 0.6026 }, { "start": 24532.68, "end": 24534.66, "probability": 0.5015 }, { "start": 24535.26, "end": 24535.52, "probability": 0.7809 }, { "start": 24535.52, "end": 24535.66, "probability": 0.8794 }, { "start": 24535.68, "end": 24536.66, "probability": 0.924 }, { "start": 24537.21, "end": 24538.5, "probability": 0.9297 }, { "start": 24538.6, "end": 24540.86, "probability": 0.7239 }, { "start": 24541.12, "end": 24542.08, "probability": 0.9565 }, { "start": 24542.32, "end": 24542.66, "probability": 0.95 }, { "start": 24546.16, "end": 24547.22, "probability": 0.9979 }, { "start": 24548.0, "end": 24552.32, "probability": 0.9857 }, { "start": 24552.74, "end": 24554.38, "probability": 0.9198 }, { "start": 24555.12, "end": 24559.02, "probability": 0.9734 }, { "start": 24559.82, "end": 24563.72, "probability": 0.9934 }, { "start": 24565.16, "end": 24569.16, "probability": 0.0311 }, { "start": 24569.16, "end": 24569.16, "probability": 0.5455 }, { "start": 24569.16, "end": 24569.69, "probability": 0.486 }, { "start": 24570.8, "end": 24574.76, "probability": 0.8003 }, { "start": 24575.38, "end": 24579.89, "probability": 0.9906 }, { "start": 24580.79, "end": 24583.37, "probability": 0.8549 }, { "start": 24583.65, "end": 24586.01, "probability": 0.9852 }, { "start": 24586.73, "end": 24587.25, "probability": 0.8539 }, { "start": 24587.51, "end": 24588.37, "probability": 0.7679 }, { "start": 24588.47, "end": 24588.87, "probability": 0.4104 }, { "start": 24588.87, "end": 24589.55, "probability": 0.2091 }, { "start": 24589.55, "end": 24590.41, "probability": 0.4282 }, { "start": 24590.65, "end": 24591.09, "probability": 0.586 }, { "start": 24591.13, "end": 24591.77, "probability": 0.5502 }, { "start": 24591.99, "end": 24594.43, "probability": 0.2079 }, { "start": 24595.11, "end": 24596.65, "probability": 0.8087 }, { "start": 24596.77, "end": 24597.59, "probability": 0.8 }, { "start": 24598.03, "end": 24601.51, "probability": 0.8447 }, { "start": 24601.59, "end": 24604.23, "probability": 0.6812 }, { "start": 24604.25, "end": 24605.99, "probability": 0.7288 }, { "start": 24607.11, "end": 24610.32, "probability": 0.9178 }, { "start": 24612.07, "end": 24614.71, "probability": 0.8409 }, { "start": 24614.71, "end": 24619.2, "probability": 0.9141 }, { "start": 24620.25, "end": 24622.33, "probability": 0.821 }, { "start": 24623.27, "end": 24624.33, "probability": 0.6676 }, { "start": 24625.29, "end": 24627.13, "probability": 0.7598 }, { "start": 24627.95, "end": 24633.49, "probability": 0.4055 }, { "start": 24634.19, "end": 24635.53, "probability": 0.0746 }, { "start": 24635.97, "end": 24637.42, "probability": 0.3657 }, { "start": 24637.57, "end": 24638.4, "probability": 0.5772 }, { "start": 24638.97, "end": 24640.72, "probability": 0.4718 }, { "start": 24640.83, "end": 24642.27, "probability": 0.2819 }, { "start": 24642.43, "end": 24643.41, "probability": 0.0863 }, { "start": 24645.03, "end": 24645.47, "probability": 0.0215 }, { "start": 24645.47, "end": 24646.23, "probability": 0.0925 }, { "start": 24646.23, "end": 24646.23, "probability": 0.0616 }, { "start": 24646.23, "end": 24646.23, "probability": 0.0695 }, { "start": 24646.23, "end": 24648.61, "probability": 0.7783 }, { "start": 24648.63, "end": 24650.37, "probability": 0.6817 }, { "start": 24651.01, "end": 24652.71, "probability": 0.9254 }, { "start": 24653.17, "end": 24654.59, "probability": 0.879 }, { "start": 24654.75, "end": 24655.09, "probability": 0.2787 }, { "start": 24655.13, "end": 24655.82, "probability": 0.5884 }, { "start": 24656.15, "end": 24657.87, "probability": 0.2888 }, { "start": 24658.71, "end": 24662.0, "probability": 0.4707 }, { "start": 24663.65, "end": 24663.89, "probability": 0.431 }, { "start": 24665.21, "end": 24665.95, "probability": 0.1705 }, { "start": 24666.19, "end": 24666.27, "probability": 0.0504 }, { "start": 24666.27, "end": 24666.27, "probability": 0.1467 }, { "start": 24666.27, "end": 24666.37, "probability": 0.1914 }, { "start": 24666.37, "end": 24668.07, "probability": 0.1054 }, { "start": 24669.01, "end": 24669.69, "probability": 0.6785 }, { "start": 24669.81, "end": 24672.03, "probability": 0.9255 }, { "start": 24672.03, "end": 24673.33, "probability": 0.4091 }, { "start": 24673.95, "end": 24674.05, "probability": 0.3676 }, { "start": 24674.79, "end": 24674.79, "probability": 0.0095 }, { "start": 24674.83, "end": 24675.49, "probability": 0.6063 }, { "start": 24675.67, "end": 24678.19, "probability": 0.937 }, { "start": 24678.37, "end": 24679.31, "probability": 0.7624 }, { "start": 24679.71, "end": 24680.37, "probability": 0.6898 }, { "start": 24680.53, "end": 24681.11, "probability": 0.5866 }, { "start": 24682.47, "end": 24684.79, "probability": 0.2605 }, { "start": 24684.89, "end": 24686.65, "probability": 0.342 }, { "start": 24686.65, "end": 24687.07, "probability": 0.1327 }, { "start": 24687.07, "end": 24687.97, "probability": 0.6541 }, { "start": 24688.25, "end": 24689.21, "probability": 0.9657 }, { "start": 24689.35, "end": 24690.65, "probability": 0.6842 }, { "start": 24690.97, "end": 24693.05, "probability": 0.9424 }, { "start": 24693.35, "end": 24696.65, "probability": 0.6265 }, { "start": 24697.01, "end": 24699.71, "probability": 0.998 }, { "start": 24700.05, "end": 24705.11, "probability": 0.906 }, { "start": 24705.11, "end": 24707.53, "probability": 0.5746 }, { "start": 24707.59, "end": 24707.71, "probability": 0.223 }, { "start": 24707.71, "end": 24709.03, "probability": 0.7364 }, { "start": 24709.59, "end": 24711.49, "probability": 0.9821 }, { "start": 24711.57, "end": 24712.79, "probability": 0.6981 }, { "start": 24713.23, "end": 24713.79, "probability": 0.7436 }, { "start": 24713.81, "end": 24714.09, "probability": 0.5362 }, { "start": 24714.43, "end": 24714.95, "probability": 0.7012 }, { "start": 24714.99, "end": 24715.61, "probability": 0.5607 }, { "start": 24715.93, "end": 24717.49, "probability": 0.9802 }, { "start": 24717.73, "end": 24719.09, "probability": 0.8762 }, { "start": 24719.15, "end": 24719.81, "probability": 0.8193 }, { "start": 24719.81, "end": 24720.17, "probability": 0.1311 }, { "start": 24721.41, "end": 24721.87, "probability": 0.2304 }, { "start": 24723.21, "end": 24723.47, "probability": 0.1075 }, { "start": 24723.47, "end": 24724.31, "probability": 0.3876 }, { "start": 24724.33, "end": 24724.83, "probability": 0.157 }, { "start": 24724.83, "end": 24726.57, "probability": 0.0251 }, { "start": 24726.57, "end": 24728.52, "probability": 0.7705 }, { "start": 24729.35, "end": 24731.41, "probability": 0.8882 }, { "start": 24731.99, "end": 24737.45, "probability": 0.6328 }, { "start": 24737.63, "end": 24739.67, "probability": 0.5279 }, { "start": 24739.83, "end": 24740.63, "probability": 0.2974 }, { "start": 24740.75, "end": 24741.31, "probability": 0.5649 }, { "start": 24741.83, "end": 24742.53, "probability": 0.6207 }, { "start": 24742.61, "end": 24743.25, "probability": 0.0463 }, { "start": 24745.35, "end": 24745.91, "probability": 0.046 }, { "start": 24745.99, "end": 24746.07, "probability": 0.0715 }, { "start": 24746.07, "end": 24746.42, "probability": 0.4165 }, { "start": 24747.85, "end": 24748.67, "probability": 0.8408 }, { "start": 24749.19, "end": 24749.49, "probability": 0.2445 }, { "start": 24749.49, "end": 24753.13, "probability": 0.3423 }, { "start": 24753.23, "end": 24755.11, "probability": 0.1861 }, { "start": 24755.93, "end": 24758.49, "probability": 0.97 }, { "start": 24759.01, "end": 24762.25, "probability": 0.8776 }, { "start": 24762.59, "end": 24765.03, "probability": 0.7485 }, { "start": 24765.07, "end": 24765.17, "probability": 0.6951 }, { "start": 24766.13, "end": 24768.19, "probability": 0.9103 }, { "start": 24769.15, "end": 24770.31, "probability": 0.8792 }, { "start": 24770.99, "end": 24772.91, "probability": 0.9375 }, { "start": 24772.97, "end": 24774.89, "probability": 0.9657 }, { "start": 24775.43, "end": 24778.49, "probability": 0.8542 }, { "start": 24778.63, "end": 24779.37, "probability": 0.5443 }, { "start": 24779.87, "end": 24780.71, "probability": 0.8546 }, { "start": 24781.53, "end": 24785.33, "probability": 0.9993 }, { "start": 24786.01, "end": 24787.97, "probability": 0.7091 }, { "start": 24788.17, "end": 24790.79, "probability": 0.9911 }, { "start": 24790.93, "end": 24793.39, "probability": 0.9043 }, { "start": 24795.25, "end": 24796.25, "probability": 0.7165 }, { "start": 24796.69, "end": 24798.27, "probability": 0.4667 }, { "start": 24798.51, "end": 24802.65, "probability": 0.9883 }, { "start": 24803.09, "end": 24804.31, "probability": 0.7333 }, { "start": 24804.49, "end": 24806.59, "probability": 0.9689 }, { "start": 24806.59, "end": 24808.83, "probability": 0.9334 }, { "start": 24809.39, "end": 24809.97, "probability": 0.6948 }, { "start": 24810.89, "end": 24812.85, "probability": 0.9744 }, { "start": 24812.97, "end": 24813.89, "probability": 0.9041 }, { "start": 24814.03, "end": 24815.09, "probability": 0.8184 }, { "start": 24815.75, "end": 24816.79, "probability": 0.9649 }, { "start": 24816.89, "end": 24818.73, "probability": 0.9917 }, { "start": 24819.57, "end": 24821.77, "probability": 0.7291 }, { "start": 24821.91, "end": 24824.69, "probability": 0.9901 }, { "start": 24824.85, "end": 24825.23, "probability": 0.2673 }, { "start": 24825.57, "end": 24825.95, "probability": 0.8337 }, { "start": 24826.03, "end": 24829.73, "probability": 0.7498 }, { "start": 24830.75, "end": 24837.23, "probability": 0.6991 }, { "start": 24837.83, "end": 24838.75, "probability": 0.9971 }, { "start": 24839.33, "end": 24839.71, "probability": 0.6913 }, { "start": 24840.13, "end": 24845.03, "probability": 0.9597 }, { "start": 24845.39, "end": 24845.79, "probability": 0.318 }, { "start": 24845.79, "end": 24847.35, "probability": 0.9165 }, { "start": 24847.81, "end": 24849.23, "probability": 0.9235 }, { "start": 24849.67, "end": 24850.75, "probability": 0.865 }, { "start": 24851.45, "end": 24852.77, "probability": 0.0522 }, { "start": 24852.77, "end": 24859.35, "probability": 0.9766 }, { "start": 24860.91, "end": 24862.57, "probability": 0.2635 }, { "start": 24862.71, "end": 24862.71, "probability": 0.0168 }, { "start": 24862.71, "end": 24864.29, "probability": 0.6773 }, { "start": 24864.87, "end": 24866.77, "probability": 0.9688 }, { "start": 24867.35, "end": 24868.99, "probability": 0.6826 }, { "start": 24869.79, "end": 24875.45, "probability": 0.9756 }, { "start": 24875.87, "end": 24876.67, "probability": 0.8481 }, { "start": 24876.75, "end": 24877.01, "probability": 0.0096 }, { "start": 24877.37, "end": 24878.97, "probability": 0.8879 }, { "start": 24880.21, "end": 24880.65, "probability": 0.1073 }, { "start": 24880.65, "end": 24881.35, "probability": 0.2194 }, { "start": 24881.99, "end": 24885.99, "probability": 0.0947 }, { "start": 24885.99, "end": 24886.49, "probability": 0.0275 }, { "start": 24886.85, "end": 24886.95, "probability": 0.0467 }, { "start": 24886.95, "end": 24889.63, "probability": 0.6468 }, { "start": 24889.73, "end": 24890.11, "probability": 0.4638 }, { "start": 24890.31, "end": 24894.77, "probability": 0.942 }, { "start": 24894.77, "end": 24896.89, "probability": 0.7858 }, { "start": 24897.01, "end": 24897.01, "probability": 0.2985 }, { "start": 24897.15, "end": 24897.53, "probability": 0.8354 }, { "start": 24897.55, "end": 24897.85, "probability": 0.3685 }, { "start": 24897.93, "end": 24898.87, "probability": 0.7301 }, { "start": 24899.85, "end": 24904.35, "probability": 0.9512 }, { "start": 24904.89, "end": 24907.49, "probability": 0.9946 }, { "start": 24908.15, "end": 24910.75, "probability": 0.8124 }, { "start": 24911.03, "end": 24911.1, "probability": 0.4093 }, { "start": 24911.91, "end": 24913.73, "probability": 0.8005 }, { "start": 24913.75, "end": 24914.39, "probability": 0.926 }, { "start": 24914.41, "end": 24914.41, "probability": 0.6687 }, { "start": 24914.47, "end": 24916.43, "probability": 0.9844 }, { "start": 24916.59, "end": 24918.93, "probability": 0.6749 }, { "start": 24919.05, "end": 24919.33, "probability": 0.0771 }, { "start": 24919.33, "end": 24919.33, "probability": 0.387 }, { "start": 24919.33, "end": 24921.55, "probability": 0.585 }, { "start": 24921.55, "end": 24922.91, "probability": 0.7669 }, { "start": 24923.01, "end": 24923.73, "probability": 0.6193 }, { "start": 24923.73, "end": 24926.19, "probability": 0.784 }, { "start": 24926.53, "end": 24926.71, "probability": 0.3318 }, { "start": 24926.71, "end": 24929.87, "probability": 0.7351 }, { "start": 24930.15, "end": 24930.15, "probability": 0.2131 }, { "start": 24930.17, "end": 24930.79, "probability": 0.7695 }, { "start": 24930.85, "end": 24931.71, "probability": 0.7905 }, { "start": 24931.75, "end": 24932.49, "probability": 0.5504 }, { "start": 24932.49, "end": 24932.81, "probability": 0.3704 }, { "start": 24932.81, "end": 24935.45, "probability": 0.4193 }, { "start": 24935.45, "end": 24935.45, "probability": 0.2955 }, { "start": 24935.45, "end": 24935.45, "probability": 0.2772 }, { "start": 24935.45, "end": 24936.55, "probability": 0.9771 }, { "start": 24936.91, "end": 24938.01, "probability": 0.5607 }, { "start": 24938.17, "end": 24940.95, "probability": 0.4419 }, { "start": 24943.29, "end": 24943.73, "probability": 0.043 }, { "start": 24944.59, "end": 24944.91, "probability": 0.0543 }, { "start": 24944.91, "end": 24944.91, "probability": 0.0281 }, { "start": 24944.91, "end": 24945.07, "probability": 0.0453 }, { "start": 24945.07, "end": 24945.11, "probability": 0.1473 }, { "start": 24945.11, "end": 24945.11, "probability": 0.5195 }, { "start": 24945.11, "end": 24945.11, "probability": 0.361 }, { "start": 24945.11, "end": 24945.11, "probability": 0.8724 }, { "start": 24945.11, "end": 24946.79, "probability": 0.7906 }, { "start": 24947.13, "end": 24951.54, "probability": 0.9618 }, { "start": 24951.73, "end": 24951.73, "probability": 0.2863 }, { "start": 24951.73, "end": 24958.93, "probability": 0.9712 }, { "start": 24958.93, "end": 24958.97, "probability": 0.6064 }, { "start": 24958.98, "end": 24959.13, "probability": 0.8892 }, { "start": 24959.21, "end": 24963.06, "probability": 0.9392 }, { "start": 24963.45, "end": 24964.63, "probability": 0.6672 }, { "start": 24964.63, "end": 24964.63, "probability": 0.578 }, { "start": 24964.63, "end": 24965.35, "probability": 0.8122 }, { "start": 24965.47, "end": 24966.83, "probability": 0.8853 }, { "start": 24966.95, "end": 24967.21, "probability": 0.5417 }, { "start": 24967.21, "end": 24969.17, "probability": 0.5508 }, { "start": 24969.41, "end": 24969.43, "probability": 0.4617 }, { "start": 24969.43, "end": 24969.59, "probability": 0.6523 }, { "start": 24970.09, "end": 24971.23, "probability": 0.7476 }, { "start": 24971.23, "end": 24971.99, "probability": 0.8066 }, { "start": 24971.99, "end": 24972.01, "probability": 0.5533 }, { "start": 24972.01, "end": 24973.61, "probability": 0.9925 }, { "start": 24974.73, "end": 24976.43, "probability": 0.7535 }, { "start": 24976.43, "end": 24978.47, "probability": 0.5841 }, { "start": 24978.69, "end": 24979.11, "probability": 0.5152 }, { "start": 24979.33, "end": 24980.41, "probability": 0.8236 }, { "start": 24980.41, "end": 24980.77, "probability": 0.8761 }, { "start": 24980.79, "end": 24982.83, "probability": 0.5825 }, { "start": 24982.97, "end": 24983.56, "probability": 0.8701 }, { "start": 24984.09, "end": 24984.21, "probability": 0.6073 }, { "start": 24984.29, "end": 24987.15, "probability": 0.9481 }, { "start": 24987.61, "end": 24988.77, "probability": 0.9362 }, { "start": 24988.87, "end": 24991.07, "probability": 0.9124 }, { "start": 24991.65, "end": 24993.33, "probability": 0.9293 }, { "start": 24993.89, "end": 24995.89, "probability": 0.9746 }, { "start": 24996.03, "end": 25000.37, "probability": 0.9603 }, { "start": 25000.37, "end": 25003.45, "probability": 0.7881 }, { "start": 25003.45, "end": 25004.67, "probability": 0.6644 }, { "start": 25004.67, "end": 25005.59, "probability": 0.6277 }, { "start": 25005.67, "end": 25007.51, "probability": 0.5759 }, { "start": 25008.21, "end": 25010.03, "probability": 0.8481 }, { "start": 25010.19, "end": 25010.21, "probability": 0.7299 }, { "start": 25010.21, "end": 25010.46, "probability": 0.939 }, { "start": 25010.78, "end": 25011.92, "probability": 0.7402 }, { "start": 25012.91, "end": 25014.21, "probability": 0.8495 }, { "start": 25014.33, "end": 25016.87, "probability": 0.9927 }, { "start": 25017.27, "end": 25017.69, "probability": 0.5868 }, { "start": 25017.69, "end": 25017.75, "probability": 0.2022 }, { "start": 25017.75, "end": 25018.37, "probability": 0.3223 }, { "start": 25018.79, "end": 25023.97, "probability": 0.8089 }, { "start": 25024.49, "end": 25024.49, "probability": 0.3158 }, { "start": 25024.49, "end": 25025.27, "probability": 0.6279 }, { "start": 25025.35, "end": 25025.87, "probability": 0.3559 }, { "start": 25025.95, "end": 25027.85, "probability": 0.8004 }, { "start": 25028.13, "end": 25028.63, "probability": 0.5376 }, { "start": 25028.73, "end": 25029.48, "probability": 0.9684 }, { "start": 25030.47, "end": 25032.41, "probability": 0.6954 }, { "start": 25032.45, "end": 25033.05, "probability": 0.6381 }, { "start": 25034.95, "end": 25035.05, "probability": 0.4001 }, { "start": 25035.59, "end": 25036.93, "probability": 0.3821 }, { "start": 25036.93, "end": 25038.35, "probability": 0.6132 }, { "start": 25038.51, "end": 25039.27, "probability": 0.6941 }, { "start": 25039.41, "end": 25040.07, "probability": 0.3883 }, { "start": 25041.03, "end": 25041.47, "probability": 0.4031 }, { "start": 25044.54, "end": 25044.61, "probability": 0.0284 }, { "start": 25044.61, "end": 25044.61, "probability": 0.0188 }, { "start": 25044.61, "end": 25044.61, "probability": 0.061 }, { "start": 25044.61, "end": 25044.91, "probability": 0.1988 }, { "start": 25045.09, "end": 25045.35, "probability": 0.1988 }, { "start": 25045.35, "end": 25045.77, "probability": 0.0635 }, { "start": 25045.97, "end": 25045.97, "probability": 0.3703 }, { "start": 25045.97, "end": 25046.55, "probability": 0.4411 }, { "start": 25046.57, "end": 25048.73, "probability": 0.6932 }, { "start": 25049.43, "end": 25050.67, "probability": 0.0101 }, { "start": 25050.69, "end": 25050.99, "probability": 0.1119 }, { "start": 25052.63, "end": 25052.83, "probability": 0.0503 }, { "start": 25052.83, "end": 25052.83, "probability": 0.0569 }, { "start": 25052.83, "end": 25052.83, "probability": 0.0793 }, { "start": 25052.83, "end": 25052.83, "probability": 0.2151 }, { "start": 25052.83, "end": 25053.32, "probability": 0.5903 }, { "start": 25053.73, "end": 25054.29, "probability": 0.6617 }, { "start": 25054.63, "end": 25055.07, "probability": 0.5637 }, { "start": 25055.07, "end": 25056.25, "probability": 0.7467 }, { "start": 25056.61, "end": 25056.93, "probability": 0.5812 }, { "start": 25057.51, "end": 25059.03, "probability": 0.6292 }, { "start": 25059.31, "end": 25059.35, "probability": 0.0461 }, { "start": 25059.35, "end": 25061.83, "probability": 0.6051 }, { "start": 25061.83, "end": 25063.53, "probability": 0.7471 }, { "start": 25063.67, "end": 25063.67, "probability": 0.0429 }, { "start": 25063.67, "end": 25064.91, "probability": 0.8992 }, { "start": 25065.03, "end": 25065.21, "probability": 0.8216 }, { "start": 25065.29, "end": 25066.53, "probability": 0.7061 }, { "start": 25066.53, "end": 25070.22, "probability": 0.7459 }, { "start": 25070.51, "end": 25074.95, "probability": 0.9656 }, { "start": 25075.89, "end": 25079.89, "probability": 0.9214 }, { "start": 25080.79, "end": 25082.19, "probability": 0.7482 }, { "start": 25082.23, "end": 25084.09, "probability": 0.2195 }, { "start": 25084.27, "end": 25084.73, "probability": 0.3731 }, { "start": 25084.85, "end": 25085.17, "probability": 0.9289 }, { "start": 25085.33, "end": 25087.53, "probability": 0.9316 }, { "start": 25087.63, "end": 25092.13, "probability": 0.2898 }, { "start": 25092.13, "end": 25092.13, "probability": 0.0667 }, { "start": 25092.13, "end": 25092.15, "probability": 0.2001 }, { "start": 25092.15, "end": 25094.5, "probability": 0.684 }, { "start": 25094.63, "end": 25094.84, "probability": 0.212 }, { "start": 25094.91, "end": 25097.67, "probability": 0.9219 }, { "start": 25097.89, "end": 25098.29, "probability": 0.578 }, { "start": 25098.29, "end": 25100.65, "probability": 0.4615 }, { "start": 25100.73, "end": 25101.57, "probability": 0.5774 }, { "start": 25101.99, "end": 25103.47, "probability": 0.9521 }, { "start": 25103.53, "end": 25105.95, "probability": 0.9077 }, { "start": 25106.19, "end": 25108.63, "probability": 0.9934 }, { "start": 25109.13, "end": 25110.31, "probability": 0.9455 }, { "start": 25110.39, "end": 25110.84, "probability": 0.9403 }, { "start": 25111.15, "end": 25111.29, "probability": 0.7383 }, { "start": 25111.47, "end": 25112.01, "probability": 0.8051 }, { "start": 25112.09, "end": 25112.85, "probability": 0.8289 }, { "start": 25112.89, "end": 25113.65, "probability": 0.6635 }, { "start": 25113.65, "end": 25114.47, "probability": 0.7371 }, { "start": 25114.69, "end": 25115.37, "probability": 0.7186 }, { "start": 25115.37, "end": 25117.17, "probability": 0.3605 }, { "start": 25117.79, "end": 25118.09, "probability": 0.4398 }, { "start": 25119.1, "end": 25119.17, "probability": 0.2574 }, { "start": 25119.17, "end": 25119.55, "probability": 0.1409 }, { "start": 25119.63, "end": 25119.77, "probability": 0.003 }, { "start": 25119.77, "end": 25121.86, "probability": 0.7781 }, { "start": 25122.11, "end": 25123.15, "probability": 0.2045 }, { "start": 25123.15, "end": 25123.61, "probability": 0.6511 }, { "start": 25124.33, "end": 25124.75, "probability": 0.1846 }, { "start": 25125.45, "end": 25126.17, "probability": 0.9716 }, { "start": 25126.91, "end": 25126.99, "probability": 0.3765 }, { "start": 25126.99, "end": 25127.31, "probability": 0.5716 }, { "start": 25127.63, "end": 25127.63, "probability": 0.4944 }, { "start": 25127.69, "end": 25128.11, "probability": 0.7686 }, { "start": 25129.51, "end": 25132.17, "probability": 0.9647 }, { "start": 25132.71, "end": 25137.03, "probability": 0.9807 }, { "start": 25137.21, "end": 25138.67, "probability": 0.9546 }, { "start": 25138.85, "end": 25141.57, "probability": 0.9602 }, { "start": 25141.57, "end": 25145.69, "probability": 0.9962 }, { "start": 25146.11, "end": 25146.91, "probability": 0.0375 }, { "start": 25146.91, "end": 25148.21, "probability": 0.5838 }, { "start": 25148.21, "end": 25148.53, "probability": 0.2819 }, { "start": 25149.19, "end": 25149.85, "probability": 0.1234 }, { "start": 25150.03, "end": 25150.71, "probability": 0.0231 }, { "start": 25151.43, "end": 25151.57, "probability": 0.0678 }, { "start": 25151.57, "end": 25153.29, "probability": 0.0529 }, { "start": 25153.31, "end": 25153.31, "probability": 0.0207 }, { "start": 25153.31, "end": 25153.87, "probability": 0.3628 }, { "start": 25153.95, "end": 25155.45, "probability": 0.3201 }, { "start": 25155.45, "end": 25156.13, "probability": 0.147 }, { "start": 25156.83, "end": 25158.51, "probability": 0.8343 }, { "start": 25158.93, "end": 25159.51, "probability": 0.0591 }, { "start": 25160.03, "end": 25160.53, "probability": 0.6609 }, { "start": 25160.69, "end": 25162.89, "probability": 0.8634 }, { "start": 25162.99, "end": 25164.49, "probability": 0.8043 }, { "start": 25165.07, "end": 25165.07, "probability": 0.0015 }, { "start": 25165.07, "end": 25165.33, "probability": 0.0452 }, { "start": 25165.43, "end": 25167.59, "probability": 0.8647 }, { "start": 25167.89, "end": 25171.89, "probability": 0.5422 }, { "start": 25171.89, "end": 25172.59, "probability": 0.1152 }, { "start": 25172.61, "end": 25172.89, "probability": 0.2179 }, { "start": 25172.89, "end": 25173.63, "probability": 0.6088 }, { "start": 25173.63, "end": 25176.51, "probability": 0.7811 }, { "start": 25176.55, "end": 25177.37, "probability": 0.9643 }, { "start": 25177.37, "end": 25177.44, "probability": 0.5288 }, { "start": 25178.23, "end": 25179.33, "probability": 0.838 }, { "start": 25179.49, "end": 25180.47, "probability": 0.9976 }, { "start": 25180.53, "end": 25183.35, "probability": 0.0231 }, { "start": 25183.35, "end": 25183.35, "probability": 0.6 }, { "start": 25183.35, "end": 25183.65, "probability": 0.0978 }, { "start": 25183.65, "end": 25184.03, "probability": 0.1045 }, { "start": 25184.03, "end": 25184.65, "probability": 0.7014 }, { "start": 25184.65, "end": 25185.79, "probability": 0.829 }, { "start": 25185.79, "end": 25186.03, "probability": 0.6714 }, { "start": 25186.13, "end": 25187.39, "probability": 0.5713 }, { "start": 25187.53, "end": 25190.57, "probability": 0.9598 }, { "start": 25190.71, "end": 25191.95, "probability": 0.9718 }, { "start": 25192.13, "end": 25193.33, "probability": 0.1205 }, { "start": 25193.35, "end": 25195.89, "probability": 0.3791 }, { "start": 25196.01, "end": 25196.47, "probability": 0.5093 }, { "start": 25196.57, "end": 25196.57, "probability": 0.5056 }, { "start": 25196.57, "end": 25196.57, "probability": 0.6426 }, { "start": 25196.57, "end": 25197.07, "probability": 0.5358 }, { "start": 25197.51, "end": 25197.51, "probability": 0.2302 }, { "start": 25197.51, "end": 25199.05, "probability": 0.3331 }, { "start": 25199.05, "end": 25199.65, "probability": 0.5445 }, { "start": 25199.67, "end": 25200.99, "probability": 0.0944 }, { "start": 25201.09, "end": 25202.08, "probability": 0.6793 }, { "start": 25202.84, "end": 25206.09, "probability": 0.8115 }, { "start": 25221.0, "end": 25221.0, "probability": 0.0 }, { "start": 25221.0, "end": 25221.0, "probability": 0.0 }, { "start": 25221.0, "end": 25221.0, "probability": 0.0 }, { "start": 25221.0, "end": 25221.0, "probability": 0.0 }, { "start": 25221.0, "end": 25221.0, "probability": 0.0 }, { "start": 25221.0, "end": 25221.0, "probability": 0.0 }, { "start": 25221.0, "end": 25221.0, "probability": 0.0 }, { "start": 25221.0, "end": 25221.0, "probability": 0.0 }, { "start": 25221.0, "end": 25221.0, "probability": 0.0 }, { "start": 25221.0, "end": 25221.0, "probability": 0.0 }, { "start": 25221.0, "end": 25221.0, "probability": 0.0 }, { "start": 25221.0, "end": 25221.0, "probability": 0.0 }, { "start": 25221.06, "end": 25221.06, "probability": 0.1485 }, { "start": 25221.06, "end": 25221.5, "probability": 0.2234 }, { "start": 25221.68, "end": 25222.18, "probability": 0.9551 }, { "start": 25222.44, "end": 25222.5, "probability": 0.0092 }, { "start": 25222.5, "end": 25223.16, "probability": 0.5278 }, { "start": 25223.86, "end": 25228.82, "probability": 0.9855 }, { "start": 25228.9, "end": 25229.32, "probability": 0.7513 }, { "start": 25230.06, "end": 25231.56, "probability": 0.9381 }, { "start": 25231.74, "end": 25233.44, "probability": 0.7847 }, { "start": 25233.86, "end": 25234.58, "probability": 0.9408 }, { "start": 25234.62, "end": 25235.42, "probability": 0.9307 }, { "start": 25235.66, "end": 25236.28, "probability": 0.7068 }, { "start": 25236.9, "end": 25237.28, "probability": 0.8579 }, { "start": 25237.4, "end": 25240.4, "probability": 0.9957 }, { "start": 25240.4, "end": 25243.06, "probability": 0.9155 }, { "start": 25243.46, "end": 25245.08, "probability": 0.9523 }, { "start": 25246.06, "end": 25246.06, "probability": 0.0009 }, { "start": 25246.06, "end": 25246.75, "probability": 0.8543 }, { "start": 25247.28, "end": 25248.08, "probability": 0.9289 }, { "start": 25248.16, "end": 25249.4, "probability": 0.7915 }, { "start": 25249.52, "end": 25251.26, "probability": 0.696 }, { "start": 25251.46, "end": 25252.3, "probability": 0.6609 }, { "start": 25252.82, "end": 25254.9, "probability": 0.8047 }, { "start": 25255.68, "end": 25255.68, "probability": 0.0337 }, { "start": 25255.68, "end": 25256.46, "probability": 0.5732 }, { "start": 25256.86, "end": 25257.46, "probability": 0.0799 }, { "start": 25257.46, "end": 25257.46, "probability": 0.0251 }, { "start": 25257.48, "end": 25260.86, "probability": 0.8887 }, { "start": 25261.24, "end": 25263.62, "probability": 0.487 }, { "start": 25263.72, "end": 25264.36, "probability": 0.7436 }, { "start": 25264.5, "end": 25265.5, "probability": 0.6408 }, { "start": 25265.72, "end": 25266.96, "probability": 0.6871 }, { "start": 25267.32, "end": 25269.38, "probability": 0.1441 }, { "start": 25269.48, "end": 25270.78, "probability": 0.8187 }, { "start": 25270.8, "end": 25271.2, "probability": 0.3155 }, { "start": 25271.2, "end": 25272.06, "probability": 0.9233 }, { "start": 25274.25, "end": 25276.2, "probability": 0.0417 }, { "start": 25276.56, "end": 25276.58, "probability": 0.1561 }, { "start": 25276.58, "end": 25276.58, "probability": 0.1368 }, { "start": 25276.58, "end": 25279.04, "probability": 0.7066 }, { "start": 25279.42, "end": 25279.86, "probability": 0.5071 }, { "start": 25280.5, "end": 25281.38, "probability": 0.0168 }, { "start": 25281.38, "end": 25281.38, "probability": 0.1788 }, { "start": 25281.38, "end": 25281.38, "probability": 0.1326 }, { "start": 25281.38, "end": 25283.46, "probability": 0.084 }, { "start": 25283.72, "end": 25287.14, "probability": 0.6012 }, { "start": 25287.24, "end": 25290.13, "probability": 0.8658 }, { "start": 25290.16, "end": 25290.96, "probability": 0.3264 }, { "start": 25291.16, "end": 25292.06, "probability": 0.7041 }, { "start": 25292.16, "end": 25293.33, "probability": 0.2848 }, { "start": 25293.36, "end": 25295.81, "probability": 0.682 }, { "start": 25296.54, "end": 25297.72, "probability": 0.5936 }, { "start": 25298.46, "end": 25298.86, "probability": 0.4332 }, { "start": 25299.34, "end": 25301.52, "probability": 0.8764 }, { "start": 25301.52, "end": 25303.96, "probability": 0.3979 }, { "start": 25304.04, "end": 25304.88, "probability": 0.7759 }, { "start": 25304.88, "end": 25305.18, "probability": 0.4593 }, { "start": 25306.18, "end": 25308.32, "probability": 0.2315 }, { "start": 25308.56, "end": 25309.68, "probability": 0.0311 }, { "start": 25309.68, "end": 25309.68, "probability": 0.1771 }, { "start": 25309.68, "end": 25312.2, "probability": 0.6816 }, { "start": 25312.26, "end": 25313.66, "probability": 0.9154 }, { "start": 25314.26, "end": 25314.68, "probability": 0.2494 }, { "start": 25314.72, "end": 25316.3, "probability": 0.6561 }, { "start": 25316.6, "end": 25319.0, "probability": 0.915 }, { "start": 25319.72, "end": 25322.44, "probability": 0.7545 }, { "start": 25323.22, "end": 25329.34, "probability": 0.7483 }, { "start": 25330.16, "end": 25333.06, "probability": 0.8914 }, { "start": 25333.1, "end": 25334.12, "probability": 0.9541 }, { "start": 25336.68, "end": 25337.94, "probability": 0.2813 }, { "start": 25337.98, "end": 25338.78, "probability": 0.7351 }, { "start": 25339.06, "end": 25339.13, "probability": 0.2977 }, { "start": 25341.6, "end": 25342.41, "probability": 0.0118 }, { "start": 25342.58, "end": 25343.57, "probability": 0.4221 }, { "start": 25346.36, "end": 25347.64, "probability": 0.7335 }, { "start": 25347.64, "end": 25350.01, "probability": 0.8463 }, { "start": 25350.22, "end": 25351.34, "probability": 0.9928 }, { "start": 25351.46, "end": 25353.06, "probability": 0.9132 }, { "start": 25353.14, "end": 25354.38, "probability": 0.9091 }, { "start": 25354.54, "end": 25355.74, "probability": 0.7448 }, { "start": 25356.3, "end": 25358.88, "probability": 0.9941 }, { "start": 25359.08, "end": 25363.84, "probability": 0.9465 }, { "start": 25363.84, "end": 25367.34, "probability": 0.8421 }, { "start": 25368.04, "end": 25371.32, "probability": 0.9971 }, { "start": 25371.82, "end": 25377.1, "probability": 0.9823 }, { "start": 25377.62, "end": 25379.88, "probability": 0.9917 }, { "start": 25380.52, "end": 25382.72, "probability": 0.9177 }, { "start": 25382.78, "end": 25385.5, "probability": 0.987 }, { "start": 25385.5, "end": 25388.58, "probability": 0.9954 }, { "start": 25389.14, "end": 25391.76, "probability": 0.9823 }, { "start": 25391.78, "end": 25395.24, "probability": 0.9951 }, { "start": 25395.32, "end": 25395.76, "probability": 0.8706 }, { "start": 25396.14, "end": 25397.54, "probability": 0.7384 }, { "start": 25397.62, "end": 25398.62, "probability": 0.9821 }, { "start": 25398.98, "end": 25399.96, "probability": 0.9644 }, { "start": 25400.54, "end": 25402.84, "probability": 0.9939 }, { "start": 25403.38, "end": 25407.14, "probability": 0.7468 }, { "start": 25408.24, "end": 25410.34, "probability": 0.8618 }, { "start": 25411.2, "end": 25412.38, "probability": 0.0553 }, { "start": 25412.46, "end": 25418.22, "probability": 0.9508 }, { "start": 25418.4, "end": 25421.44, "probability": 0.983 }, { "start": 25422.0, "end": 25423.96, "probability": 0.9314 }, { "start": 25425.28, "end": 25427.4, "probability": 0.6375 }, { "start": 25428.14, "end": 25431.28, "probability": 0.9746 }, { "start": 25431.28, "end": 25432.95, "probability": 0.6614 }, { "start": 25433.04, "end": 25433.6, "probability": 0.5982 }, { "start": 25433.7, "end": 25435.03, "probability": 0.9067 }, { "start": 25435.44, "end": 25435.54, "probability": 0.2475 }, { "start": 25436.02, "end": 25437.16, "probability": 0.8656 }, { "start": 25437.72, "end": 25439.54, "probability": 0.909 }, { "start": 25440.94, "end": 25443.12, "probability": 0.8851 }, { "start": 25443.92, "end": 25446.9, "probability": 0.9421 }, { "start": 25449.63, "end": 25450.7, "probability": 0.6219 }, { "start": 25450.7, "end": 25450.7, "probability": 0.4139 }, { "start": 25450.7, "end": 25451.33, "probability": 0.8143 }, { "start": 25451.62, "end": 25451.8, "probability": 0.8599 }, { "start": 25452.8, "end": 25454.64, "probability": 0.991 }, { "start": 25454.88, "end": 25455.34, "probability": 0.9752 }, { "start": 25455.5, "end": 25456.84, "probability": 0.9597 }, { "start": 25457.56, "end": 25459.66, "probability": 0.9735 }, { "start": 25460.24, "end": 25460.64, "probability": 0.3005 }, { "start": 25461.44, "end": 25462.94, "probability": 0.7393 }, { "start": 25463.16, "end": 25463.64, "probability": 0.8112 }, { "start": 25463.76, "end": 25464.98, "probability": 0.8743 }, { "start": 25465.02, "end": 25465.5, "probability": 0.7172 }, { "start": 25465.68, "end": 25467.14, "probability": 0.9758 }, { "start": 25467.18, "end": 25467.76, "probability": 0.9632 }, { "start": 25468.5, "end": 25471.14, "probability": 0.9632 }, { "start": 25471.14, "end": 25473.94, "probability": 0.9068 }, { "start": 25475.62, "end": 25477.64, "probability": 0.7686 }, { "start": 25477.72, "end": 25478.38, "probability": 0.3337 }, { "start": 25478.44, "end": 25479.78, "probability": 0.9329 }, { "start": 25479.82, "end": 25480.24, "probability": 0.4024 }, { "start": 25480.3, "end": 25481.84, "probability": 0.9786 }, { "start": 25482.46, "end": 25486.3, "probability": 0.859 }, { "start": 25486.84, "end": 25487.32, "probability": 0.2443 }, { "start": 25488.06, "end": 25489.02, "probability": 0.4725 }, { "start": 25489.02, "end": 25489.02, "probability": 0.4853 }, { "start": 25489.02, "end": 25489.75, "probability": 0.79 }, { "start": 25491.06, "end": 25491.68, "probability": 0.4417 }, { "start": 25491.68, "end": 25493.38, "probability": 0.8194 }, { "start": 25493.42, "end": 25493.66, "probability": 0.6335 }, { "start": 25496.2, "end": 25498.18, "probability": 0.9305 }, { "start": 25498.26, "end": 25498.74, "probability": 0.3094 }, { "start": 25498.86, "end": 25500.02, "probability": 0.8007 }, { "start": 25500.12, "end": 25500.42, "probability": 0.7134 }, { "start": 25500.7, "end": 25501.14, "probability": 0.6763 }, { "start": 25501.74, "end": 25502.7, "probability": 0.7191 }, { "start": 25503.14, "end": 25505.44, "probability": 0.9438 }, { "start": 25507.69, "end": 25510.64, "probability": 0.4576 }, { "start": 25513.78, "end": 25515.02, "probability": 0.6714 }, { "start": 25517.22, "end": 25518.22, "probability": 0.1204 }, { "start": 25529.2, "end": 25531.14, "probability": 0.7354 }, { "start": 25533.0, "end": 25534.0, "probability": 0.7085 }, { "start": 25534.82, "end": 25535.78, "probability": 0.897 }, { "start": 25536.6, "end": 25537.7, "probability": 0.9443 }, { "start": 25538.76, "end": 25544.7, "probability": 0.9548 }, { "start": 25545.14, "end": 25547.74, "probability": 0.8086 }, { "start": 25548.3, "end": 25553.36, "probability": 0.9548 }, { "start": 25554.24, "end": 25555.94, "probability": 0.9355 }, { "start": 25556.8, "end": 25561.64, "probability": 0.9976 }, { "start": 25562.7, "end": 25563.88, "probability": 0.9197 }, { "start": 25565.2, "end": 25566.55, "probability": 0.7093 }, { "start": 25567.44, "end": 25568.38, "probability": 0.8208 }, { "start": 25568.62, "end": 25569.32, "probability": 0.7485 }, { "start": 25570.32, "end": 25577.72, "probability": 0.9161 }, { "start": 25578.02, "end": 25578.86, "probability": 0.8049 }, { "start": 25578.96, "end": 25579.72, "probability": 0.3728 }, { "start": 25579.88, "end": 25580.64, "probability": 0.4168 }, { "start": 25581.06, "end": 25581.94, "probability": 0.2771 }, { "start": 25582.28, "end": 25582.98, "probability": 0.5338 }, { "start": 25583.12, "end": 25584.04, "probability": 0.7929 }, { "start": 25585.22, "end": 25587.7, "probability": 0.5357 }, { "start": 25589.0, "end": 25589.98, "probability": 0.5445 }, { "start": 25590.06, "end": 25590.62, "probability": 0.8647 }, { "start": 25590.78, "end": 25591.38, "probability": 0.8669 }, { "start": 25591.42, "end": 25592.24, "probability": 0.5803 }, { "start": 25592.48, "end": 25595.62, "probability": 0.9299 }, { "start": 25596.72, "end": 25600.04, "probability": 0.9551 }, { "start": 25600.68, "end": 25601.96, "probability": 0.9852 }, { "start": 25602.28, "end": 25604.32, "probability": 0.9937 }, { "start": 25604.96, "end": 25607.2, "probability": 0.8135 }, { "start": 25607.78, "end": 25610.68, "probability": 0.9357 }, { "start": 25611.26, "end": 25614.38, "probability": 0.7757 }, { "start": 25615.22, "end": 25616.36, "probability": 0.8578 }, { "start": 25617.2, "end": 25619.12, "probability": 0.4024 }, { "start": 25628.36, "end": 25630.58, "probability": 0.1836 }, { "start": 25630.58, "end": 25630.58, "probability": 0.0147 }, { "start": 25630.58, "end": 25630.58, "probability": 0.0631 }, { "start": 25630.58, "end": 25630.58, "probability": 0.1122 }, { "start": 25630.58, "end": 25630.58, "probability": 0.326 }, { "start": 25630.58, "end": 25630.58, "probability": 0.0668 }, { "start": 25630.58, "end": 25630.58, "probability": 0.0172 }, { "start": 25630.58, "end": 25630.58, "probability": 0.2658 }, { "start": 25630.58, "end": 25633.72, "probability": 0.4921 }, { "start": 25634.0, "end": 25634.0, "probability": 0.2167 }, { "start": 25634.0, "end": 25637.0, "probability": 0.7477 }, { "start": 25638.08, "end": 25639.69, "probability": 0.979 }, { "start": 25640.68, "end": 25642.24, "probability": 0.1637 }, { "start": 25643.42, "end": 25645.82, "probability": 0.7869 }, { "start": 25647.02, "end": 25648.45, "probability": 0.9966 }, { "start": 25649.0, "end": 25652.44, "probability": 0.9788 }, { "start": 25652.44, "end": 25656.28, "probability": 0.8295 }, { "start": 25656.7, "end": 25660.58, "probability": 0.4204 }, { "start": 25661.36, "end": 25663.42, "probability": 0.9908 }, { "start": 25664.2, "end": 25668.22, "probability": 0.9911 }, { "start": 25669.88, "end": 25671.64, "probability": 0.7537 }, { "start": 25671.72, "end": 25673.66, "probability": 0.891 }, { "start": 25674.28, "end": 25675.92, "probability": 0.8144 }, { "start": 25677.52, "end": 25677.92, "probability": 0.4214 }, { "start": 25677.92, "end": 25678.94, "probability": 0.9845 }, { "start": 25679.98, "end": 25680.64, "probability": 0.5559 }, { "start": 25693.36, "end": 25694.26, "probability": 0.5254 }, { "start": 25695.64, "end": 25697.1, "probability": 0.9241 }, { "start": 25698.16, "end": 25699.56, "probability": 0.9421 }, { "start": 25700.4, "end": 25701.24, "probability": 0.9755 }, { "start": 25702.5, "end": 25703.96, "probability": 0.3992 }, { "start": 25705.34, "end": 25707.3, "probability": 0.9457 }, { "start": 25708.6, "end": 25714.6, "probability": 0.8515 }, { "start": 25716.74, "end": 25717.94, "probability": 0.8958 }, { "start": 25720.38, "end": 25722.78, "probability": 0.9731 }, { "start": 25722.98, "end": 25724.12, "probability": 0.8525 }, { "start": 25725.26, "end": 25726.8, "probability": 0.6267 }, { "start": 25728.2, "end": 25733.54, "probability": 0.8688 }, { "start": 25734.34, "end": 25737.08, "probability": 0.8276 }, { "start": 25737.9, "end": 25738.48, "probability": 0.5721 }, { "start": 25739.62, "end": 25743.3, "probability": 0.951 }, { "start": 25743.94, "end": 25745.02, "probability": 0.9544 }, { "start": 25745.42, "end": 25751.06, "probability": 0.9357 }, { "start": 25752.12, "end": 25754.92, "probability": 0.5986 }, { "start": 25755.88, "end": 25757.81, "probability": 0.2933 }, { "start": 25759.12, "end": 25762.24, "probability": 0.9795 }, { "start": 25763.24, "end": 25764.0, "probability": 0.9771 }, { "start": 25765.52, "end": 25766.0, "probability": 0.9288 }, { "start": 25767.1, "end": 25768.72, "probability": 0.9774 }, { "start": 25769.5, "end": 25772.14, "probability": 0.9832 }, { "start": 25773.68, "end": 25779.52, "probability": 0.993 }, { "start": 25779.54, "end": 25780.06, "probability": 0.4496 }, { "start": 25781.2, "end": 25781.58, "probability": 0.6635 }, { "start": 25783.18, "end": 25784.82, "probability": 0.9971 }, { "start": 25785.06, "end": 25788.64, "probability": 0.897 }, { "start": 25788.78, "end": 25791.06, "probability": 0.9978 }, { "start": 25792.8, "end": 25793.77, "probability": 0.9663 }, { "start": 25795.66, "end": 25798.96, "probability": 0.995 }, { "start": 25799.64, "end": 25801.2, "probability": 0.9861 }, { "start": 25801.4, "end": 25805.06, "probability": 0.8568 }, { "start": 25805.1, "end": 25807.08, "probability": 0.9589 }, { "start": 25807.56, "end": 25807.76, "probability": 0.7291 }, { "start": 25808.86, "end": 25810.44, "probability": 0.8962 }, { "start": 25810.56, "end": 25812.46, "probability": 0.9575 }, { "start": 25813.34, "end": 25814.28, "probability": 0.5161 }, { "start": 25814.4, "end": 25816.62, "probability": 0.676 }, { "start": 25822.76, "end": 25824.98, "probability": 0.6136 }, { "start": 25841.08, "end": 25841.92, "probability": 0.5222 }, { "start": 25842.04, "end": 25842.24, "probability": 0.2872 }, { "start": 25842.28, "end": 25843.82, "probability": 0.6111 }, { "start": 25843.89, "end": 25844.96, "probability": 0.9784 }, { "start": 25846.22, "end": 25846.72, "probability": 0.6811 }, { "start": 25847.2, "end": 25847.46, "probability": 0.9221 }, { "start": 25847.78, "end": 25849.83, "probability": 0.9561 }, { "start": 25850.76, "end": 25853.42, "probability": 0.9464 }, { "start": 25854.54, "end": 25857.02, "probability": 0.7295 }, { "start": 25857.18, "end": 25857.84, "probability": 0.8333 }, { "start": 25858.06, "end": 25860.6, "probability": 0.862 }, { "start": 25861.48, "end": 25863.46, "probability": 0.9489 }, { "start": 25863.54, "end": 25864.56, "probability": 0.9404 }, { "start": 25865.56, "end": 25865.93, "probability": 0.8447 }, { "start": 25866.52, "end": 25868.88, "probability": 0.9376 }, { "start": 25869.44, "end": 25870.42, "probability": 0.9395 }, { "start": 25871.74, "end": 25874.84, "probability": 0.9884 }, { "start": 25875.36, "end": 25876.22, "probability": 0.5352 }, { "start": 25876.84, "end": 25878.78, "probability": 0.8795 }, { "start": 25879.24, "end": 25879.98, "probability": 0.9854 }, { "start": 25880.72, "end": 25884.38, "probability": 0.9752 }, { "start": 25885.44, "end": 25888.32, "probability": 0.8786 }, { "start": 25888.88, "end": 25890.22, "probability": 0.6736 }, { "start": 25890.8, "end": 25894.46, "probability": 0.7155 }, { "start": 25894.86, "end": 25897.24, "probability": 0.6669 }, { "start": 25897.92, "end": 25901.46, "probability": 0.9106 }, { "start": 25902.48, "end": 25904.48, "probability": 0.7633 }, { "start": 25905.12, "end": 25907.52, "probability": 0.9631 }, { "start": 25908.02, "end": 25914.12, "probability": 0.9644 }, { "start": 25914.74, "end": 25917.58, "probability": 0.8336 }, { "start": 25917.6, "end": 25919.78, "probability": 0.8408 }, { "start": 25920.22, "end": 25927.26, "probability": 0.9839 }, { "start": 25927.26, "end": 25932.72, "probability": 0.9956 }, { "start": 25932.72, "end": 25939.42, "probability": 0.9886 }, { "start": 25940.48, "end": 25942.12, "probability": 0.8888 }, { "start": 25942.76, "end": 25943.42, "probability": 0.0497 }, { "start": 25946.12, "end": 25948.5, "probability": 0.255 }, { "start": 25948.72, "end": 25952.86, "probability": 0.0664 }, { "start": 25953.12, "end": 25955.16, "probability": 0.5608 }, { "start": 25955.36, "end": 25963.4, "probability": 0.7053 }, { "start": 25963.76, "end": 25966.24, "probability": 0.8397 }, { "start": 25966.36, "end": 25969.23, "probability": 0.9115 }, { "start": 25971.06, "end": 25975.04, "probability": 0.9971 }, { "start": 25975.16, "end": 25975.56, "probability": 0.4453 }, { "start": 25975.7, "end": 25976.49, "probability": 0.7457 }, { "start": 25977.22, "end": 25981.48, "probability": 0.9969 }, { "start": 25982.32, "end": 25984.28, "probability": 0.7831 }, { "start": 25984.52, "end": 25985.56, "probability": 0.562 }, { "start": 25985.64, "end": 25986.24, "probability": 0.5472 }, { "start": 25986.24, "end": 25987.94, "probability": 0.7699 }, { "start": 25988.04, "end": 25988.9, "probability": 0.7467 }, { "start": 25989.54, "end": 25989.56, "probability": 0.0581 }, { "start": 25992.62, "end": 25993.02, "probability": 0.0922 }, { "start": 25993.02, "end": 25993.02, "probability": 0.1287 }, { "start": 25993.02, "end": 25993.02, "probability": 0.0659 }, { "start": 25993.02, "end": 25993.02, "probability": 0.3196 }, { "start": 25993.02, "end": 25997.2, "probability": 0.8335 }, { "start": 25997.32, "end": 25997.82, "probability": 0.7369 }, { "start": 25997.88, "end": 25998.32, "probability": 0.5539 }, { "start": 25998.44, "end": 25999.42, "probability": 0.7199 }, { "start": 25999.5, "end": 26003.86, "probability": 0.8705 }, { "start": 26005.22, "end": 26008.48, "probability": 0.6497 }, { "start": 26008.48, "end": 26009.32, "probability": 0.4131 }, { "start": 26010.4, "end": 26012.22, "probability": 0.9915 }, { "start": 26013.1, "end": 26016.96, "probability": 0.9881 }, { "start": 26017.48, "end": 26022.16, "probability": 0.9824 }, { "start": 26022.58, "end": 26024.64, "probability": 0.9683 }, { "start": 26024.68, "end": 26026.46, "probability": 0.9526 }, { "start": 26026.9, "end": 26028.58, "probability": 0.9464 }, { "start": 26028.8, "end": 26030.08, "probability": 0.7715 }, { "start": 26030.62, "end": 26032.76, "probability": 0.9826 }, { "start": 26033.62, "end": 26034.48, "probability": 0.977 }, { "start": 26036.22, "end": 26037.74, "probability": 0.6086 }, { "start": 26038.44, "end": 26038.96, "probability": 0.2737 }, { "start": 26039.02, "end": 26040.74, "probability": 0.4169 }, { "start": 26041.64, "end": 26043.24, "probability": 0.981 }, { "start": 26059.42, "end": 26059.66, "probability": 0.2736 }, { "start": 26061.32, "end": 26063.84, "probability": 0.9198 }, { "start": 26065.8, "end": 26066.74, "probability": 0.0841 }, { "start": 26067.52, "end": 26069.4, "probability": 0.6431 }, { "start": 26069.68, "end": 26070.92, "probability": 0.7554 }, { "start": 26071.32, "end": 26072.14, "probability": 0.794 }, { "start": 26072.18, "end": 26072.7, "probability": 0.5092 }, { "start": 26072.8, "end": 26077.14, "probability": 0.9374 }, { "start": 26077.58, "end": 26078.36, "probability": 0.9794 }, { "start": 26079.38, "end": 26080.22, "probability": 0.6426 }, { "start": 26080.42, "end": 26081.21, "probability": 0.5342 }, { "start": 26083.04, "end": 26084.14, "probability": 0.9434 }, { "start": 26086.28, "end": 26086.56, "probability": 0.9539 }, { "start": 26086.78, "end": 26088.13, "probability": 0.9966 }, { "start": 26088.88, "end": 26090.64, "probability": 0.9574 }, { "start": 26091.18, "end": 26093.16, "probability": 0.9355 }, { "start": 26095.58, "end": 26095.8, "probability": 0.297 }, { "start": 26095.8, "end": 26100.54, "probability": 0.9045 }, { "start": 26100.62, "end": 26103.58, "probability": 0.9972 }, { "start": 26104.3, "end": 26105.86, "probability": 0.9817 }, { "start": 26106.7, "end": 26110.54, "probability": 0.9927 }, { "start": 26112.6, "end": 26112.7, "probability": 0.2881 }, { "start": 26112.7, "end": 26113.18, "probability": 0.528 }, { "start": 26113.84, "end": 26115.04, "probability": 0.887 }, { "start": 26115.04, "end": 26116.48, "probability": 0.7004 }, { "start": 26117.34, "end": 26119.9, "probability": 0.9101 }, { "start": 26120.3, "end": 26121.36, "probability": 0.4462 }, { "start": 26121.9, "end": 26123.38, "probability": 0.8984 }, { "start": 26123.71, "end": 26124.96, "probability": 0.9385 }, { "start": 26124.96, "end": 26128.44, "probability": 0.7868 }, { "start": 26128.68, "end": 26129.44, "probability": 0.0612 }, { "start": 26129.64, "end": 26130.7, "probability": 0.7138 }, { "start": 26130.84, "end": 26132.78, "probability": 0.9707 }, { "start": 26132.8, "end": 26134.08, "probability": 0.6714 }, { "start": 26134.24, "end": 26134.24, "probability": 0.1208 }, { "start": 26134.24, "end": 26135.94, "probability": 0.9339 }, { "start": 26136.12, "end": 26136.26, "probability": 0.8141 }, { "start": 26136.72, "end": 26137.9, "probability": 0.8216 }, { "start": 26138.06, "end": 26141.36, "probability": 0.9934 }, { "start": 26141.5, "end": 26142.6, "probability": 0.9838 }, { "start": 26143.26, "end": 26145.1, "probability": 0.9879 }, { "start": 26145.7, "end": 26146.4, "probability": 0.882 }, { "start": 26146.58, "end": 26147.96, "probability": 0.9912 }, { "start": 26148.3, "end": 26149.35, "probability": 0.9406 }, { "start": 26149.68, "end": 26150.96, "probability": 0.8809 }, { "start": 26151.32, "end": 26152.96, "probability": 0.9079 }, { "start": 26153.5, "end": 26154.14, "probability": 0.7759 }, { "start": 26155.03, "end": 26155.72, "probability": 0.0619 }, { "start": 26155.72, "end": 26158.87, "probability": 0.9597 }, { "start": 26159.42, "end": 26160.2, "probability": 0.4561 }, { "start": 26160.62, "end": 26163.52, "probability": 0.9523 }, { "start": 26164.28, "end": 26165.74, "probability": 0.8668 }, { "start": 26166.42, "end": 26168.76, "probability": 0.9904 }, { "start": 26169.28, "end": 26173.96, "probability": 0.9528 }, { "start": 26174.8, "end": 26177.26, "probability": 0.7686 }, { "start": 26177.72, "end": 26178.26, "probability": 0.4973 }, { "start": 26178.42, "end": 26178.78, "probability": 0.421 }, { "start": 26178.96, "end": 26180.54, "probability": 0.9839 }, { "start": 26180.92, "end": 26184.74, "probability": 0.9742 }, { "start": 26185.72, "end": 26188.28, "probability": 0.9456 }, { "start": 26188.94, "end": 26192.98, "probability": 0.8327 }, { "start": 26193.4, "end": 26195.96, "probability": 0.9752 }, { "start": 26196.26, "end": 26197.76, "probability": 0.9322 }, { "start": 26198.1, "end": 26200.48, "probability": 0.9546 }, { "start": 26200.9, "end": 26203.96, "probability": 0.9959 }, { "start": 26204.68, "end": 26206.32, "probability": 0.7399 }, { "start": 26206.9, "end": 26208.92, "probability": 0.9956 }, { "start": 26209.46, "end": 26210.88, "probability": 0.9673 }, { "start": 26211.44, "end": 26212.06, "probability": 0.5442 }, { "start": 26212.44, "end": 26213.5, "probability": 0.9324 }, { "start": 26213.64, "end": 26214.52, "probability": 0.2429 }, { "start": 26214.64, "end": 26216.02, "probability": 0.9137 }, { "start": 26216.14, "end": 26216.24, "probability": 0.3831 }, { "start": 26216.5, "end": 26217.42, "probability": 0.5718 }, { "start": 26218.1, "end": 26218.86, "probability": 0.7903 }, { "start": 26219.38, "end": 26220.08, "probability": 0.9531 }, { "start": 26220.52, "end": 26221.31, "probability": 0.8875 }, { "start": 26221.62, "end": 26223.26, "probability": 0.9638 }, { "start": 26223.92, "end": 26227.34, "probability": 0.9561 }, { "start": 26227.62, "end": 26229.34, "probability": 0.9977 }, { "start": 26229.36, "end": 26232.1, "probability": 0.9749 }, { "start": 26232.56, "end": 26237.14, "probability": 0.9948 }, { "start": 26237.46, "end": 26240.98, "probability": 0.9398 }, { "start": 26241.5, "end": 26243.58, "probability": 0.9952 }, { "start": 26243.94, "end": 26246.76, "probability": 0.9746 }, { "start": 26247.68, "end": 26248.46, "probability": 0.9407 }, { "start": 26248.84, "end": 26249.58, "probability": 0.7789 }, { "start": 26249.9, "end": 26250.88, "probability": 0.9789 }, { "start": 26250.92, "end": 26252.82, "probability": 0.6049 }, { "start": 26252.9, "end": 26253.28, "probability": 0.6915 }, { "start": 26253.3, "end": 26254.1, "probability": 0.9413 }, { "start": 26254.2, "end": 26254.6, "probability": 0.7006 }, { "start": 26254.6, "end": 26256.06, "probability": 0.9299 }, { "start": 26256.46, "end": 26256.8, "probability": 0.7593 }, { "start": 26256.96, "end": 26257.16, "probability": 0.7142 }, { "start": 26257.74, "end": 26258.94, "probability": 0.9594 }, { "start": 26259.14, "end": 26259.56, "probability": 0.2692 }, { "start": 26259.78, "end": 26261.76, "probability": 0.85 }, { "start": 26262.62, "end": 26265.14, "probability": 0.7672 }, { "start": 26266.18, "end": 26266.68, "probability": 0.8717 }, { "start": 26268.43, "end": 26269.28, "probability": 0.4275 }, { "start": 26269.28, "end": 26269.28, "probability": 0.2586 }, { "start": 26269.28, "end": 26269.91, "probability": 0.8339 }, { "start": 26270.98, "end": 26273.26, "probability": 0.7341 }, { "start": 26274.3, "end": 26276.34, "probability": 0.6565 }, { "start": 26276.88, "end": 26277.32, "probability": 0.9555 }, { "start": 26278.16, "end": 26278.34, "probability": 0.4577 }, { "start": 26281.98, "end": 26281.98, "probability": 0.0287 }, { "start": 26281.98, "end": 26281.98, "probability": 0.3425 }, { "start": 26281.98, "end": 26282.52, "probability": 0.754 }, { "start": 26283.3, "end": 26285.34, "probability": 0.7738 }, { "start": 26286.48, "end": 26288.54, "probability": 0.9791 }, { "start": 26289.06, "end": 26291.28, "probability": 0.8678 }, { "start": 26292.32, "end": 26293.42, "probability": 0.3898 }, { "start": 26293.42, "end": 26293.42, "probability": 0.224 }, { "start": 26293.42, "end": 26294.32, "probability": 0.8733 }, { "start": 26294.66, "end": 26295.02, "probability": 0.6526 }, { "start": 26295.2, "end": 26297.08, "probability": 0.724 }, { "start": 26297.84, "end": 26298.44, "probability": 0.5467 }, { "start": 26298.58, "end": 26299.86, "probability": 0.9847 }, { "start": 26299.92, "end": 26302.44, "probability": 0.8827 }, { "start": 26302.78, "end": 26303.54, "probability": 0.336 }, { "start": 26303.54, "end": 26303.54, "probability": 0.3835 }, { "start": 26303.54, "end": 26304.12, "probability": 0.7357 }, { "start": 26304.92, "end": 26305.72, "probability": 0.6752 }, { "start": 26307.94, "end": 26311.7, "probability": 0.8694 }, { "start": 26312.72, "end": 26315.98, "probability": 0.6202 }, { "start": 26327.9, "end": 26329.22, "probability": 0.5145 }, { "start": 26329.22, "end": 26329.24, "probability": 0.0283 }, { "start": 26329.24, "end": 26329.3, "probability": 0.0413 }, { "start": 26329.3, "end": 26329.3, "probability": 0.097 }, { "start": 26329.3, "end": 26329.3, "probability": 0.1001 }, { "start": 26329.3, "end": 26329.3, "probability": 0.1784 }, { "start": 26329.3, "end": 26329.66, "probability": 0.2052 }, { "start": 26330.64, "end": 26331.26, "probability": 0.2442 }, { "start": 26332.14, "end": 26334.62, "probability": 0.7839 }, { "start": 26336.5, "end": 26337.04, "probability": 0.019 }, { "start": 26337.04, "end": 26337.28, "probability": 0.1518 }, { "start": 26337.28, "end": 26339.76, "probability": 0.9226 }, { "start": 26341.7, "end": 26343.08, "probability": 0.9401 }, { "start": 26344.08, "end": 26346.38, "probability": 0.856 }, { "start": 26346.58, "end": 26352.09, "probability": 0.5897 }, { "start": 26353.22, "end": 26354.62, "probability": 0.0617 }, { "start": 26355.06, "end": 26356.78, "probability": 0.5912 }, { "start": 26356.92, "end": 26359.2, "probability": 0.5433 }, { "start": 26361.18, "end": 26372.96, "probability": 0.4657 }, { "start": 26377.82, "end": 26379.56, "probability": 0.1669 }, { "start": 26381.98, "end": 26381.98, "probability": 0.2718 }, { "start": 26381.98, "end": 26382.9, "probability": 0.0885 }, { "start": 26383.2, "end": 26384.82, "probability": 0.0684 }, { "start": 26385.1, "end": 26385.68, "probability": 0.28 }, { "start": 26395.74, "end": 26397.06, "probability": 0.4462 }, { "start": 26403.96, "end": 26407.04, "probability": 0.8038 }, { "start": 26407.64, "end": 26408.42, "probability": 0.6977 }, { "start": 26408.6, "end": 26409.02, "probability": 0.492 }, { "start": 26409.58, "end": 26412.18, "probability": 0.988 }, { "start": 26412.72, "end": 26415.76, "probability": 0.9218 }, { "start": 26416.36, "end": 26417.96, "probability": 0.531 }, { "start": 26418.84, "end": 26419.82, "probability": 0.3402 }, { "start": 26419.92, "end": 26420.65, "probability": 0.6454 }, { "start": 26420.98, "end": 26427.3, "probability": 0.9673 }, { "start": 26427.48, "end": 26431.48, "probability": 0.9466 }, { "start": 26432.68, "end": 26435.72, "probability": 0.7779 }, { "start": 26436.82, "end": 26440.54, "probability": 0.8989 }, { "start": 26441.44, "end": 26442.08, "probability": 0.1876 }, { "start": 26442.18, "end": 26442.96, "probability": 0.9338 }, { "start": 26443.54, "end": 26445.9, "probability": 0.439 }, { "start": 26446.22, "end": 26449.12, "probability": 0.7298 }, { "start": 26449.7, "end": 26451.76, "probability": 0.6024 }, { "start": 26452.14, "end": 26454.92, "probability": 0.9756 }, { "start": 26457.8, "end": 26458.1, "probability": 0.8735 }, { "start": 26458.18, "end": 26458.4, "probability": 0.8687 }, { "start": 26458.42, "end": 26459.34, "probability": 0.9933 }, { "start": 26459.42, "end": 26460.68, "probability": 0.9742 }, { "start": 26461.56, "end": 26463.94, "probability": 0.9043 }, { "start": 26464.04, "end": 26469.0, "probability": 0.9912 }, { "start": 26470.16, "end": 26471.88, "probability": 0.8715 }, { "start": 26472.94, "end": 26476.82, "probability": 0.9941 }, { "start": 26477.28, "end": 26478.06, "probability": 0.9746 }, { "start": 26478.1, "end": 26481.26, "probability": 0.9929 }, { "start": 26482.08, "end": 26483.4, "probability": 0.9663 }, { "start": 26483.54, "end": 26487.0, "probability": 0.9949 }, { "start": 26487.7, "end": 26491.02, "probability": 0.9015 }, { "start": 26491.72, "end": 26492.74, "probability": 0.9856 }, { "start": 26493.34, "end": 26494.66, "probability": 0.935 }, { "start": 26495.58, "end": 26496.78, "probability": 0.9058 }, { "start": 26497.56, "end": 26499.14, "probability": 0.6574 }, { "start": 26499.18, "end": 26500.18, "probability": 0.7995 }, { "start": 26500.3, "end": 26503.26, "probability": 0.9943 }, { "start": 26504.1, "end": 26508.2, "probability": 0.7875 }, { "start": 26509.0, "end": 26510.26, "probability": 0.9324 }, { "start": 26510.6, "end": 26514.96, "probability": 0.9943 }, { "start": 26516.8, "end": 26517.22, "probability": 0.9991 }, { "start": 26517.94, "end": 26520.17, "probability": 0.7743 }, { "start": 26520.46, "end": 26522.02, "probability": 0.6256 }, { "start": 26522.64, "end": 26526.7, "probability": 0.9886 }, { "start": 26527.35, "end": 26529.9, "probability": 0.9457 }, { "start": 26530.9, "end": 26533.52, "probability": 0.7597 }, { "start": 26535.22, "end": 26536.18, "probability": 0.8362 }, { "start": 26540.38, "end": 26543.26, "probability": 0.9635 }, { "start": 26543.64, "end": 26546.56, "probability": 0.8823 }, { "start": 26548.98, "end": 26552.04, "probability": 0.7787 }, { "start": 26552.62, "end": 26556.48, "probability": 0.948 }, { "start": 26557.06, "end": 26558.5, "probability": 0.8945 }, { "start": 26558.86, "end": 26562.48, "probability": 0.9922 }, { "start": 26562.96, "end": 26565.56, "probability": 0.9956 }, { "start": 26566.1, "end": 26569.76, "probability": 0.9937 }, { "start": 26570.06, "end": 26570.08, "probability": 0.1389 }, { "start": 26570.08, "end": 26570.98, "probability": 0.6929 }, { "start": 26572.68, "end": 26573.56, "probability": 0.6398 }, { "start": 26574.02, "end": 26580.6, "probability": 0.7119 }, { "start": 26581.12, "end": 26585.0, "probability": 0.5027 }, { "start": 26585.68, "end": 26586.56, "probability": 0.0761 }, { "start": 26586.9, "end": 26589.58, "probability": 0.979 }, { "start": 26589.72, "end": 26592.25, "probability": 0.771 }, { "start": 26592.74, "end": 26594.26, "probability": 0.7483 }, { "start": 26594.34, "end": 26599.06, "probability": 0.9844 }, { "start": 26599.42, "end": 26602.42, "probability": 0.9963 }, { "start": 26602.96, "end": 26604.12, "probability": 0.9366 }, { "start": 26604.62, "end": 26605.48, "probability": 0.4735 }, { "start": 26605.64, "end": 26609.22, "probability": 0.9395 }, { "start": 26609.24, "end": 26609.4, "probability": 0.0371 }, { "start": 26609.4, "end": 26609.75, "probability": 0.325 }, { "start": 26609.84, "end": 26610.61, "probability": 0.5981 }, { "start": 26611.6, "end": 26617.16, "probability": 0.9209 }, { "start": 26617.24, "end": 26617.44, "probability": 0.3292 }, { "start": 26618.3, "end": 26618.3, "probability": 0.0046 }, { "start": 26618.3, "end": 26620.0, "probability": 0.6303 }, { "start": 26620.28, "end": 26621.72, "probability": 0.8486 }, { "start": 26621.76, "end": 26622.54, "probability": 0.8516 }, { "start": 26622.6, "end": 26624.64, "probability": 0.7964 }, { "start": 26624.82, "end": 26626.3, "probability": 0.5425 }, { "start": 26627.0, "end": 26629.88, "probability": 0.9721 }, { "start": 26631.44, "end": 26637.16, "probability": 0.3297 }, { "start": 26637.72, "end": 26642.22, "probability": 0.5534 }, { "start": 26643.48, "end": 26647.66, "probability": 0.1279 }, { "start": 26649.96, "end": 26651.38, "probability": 0.0069 }, { "start": 26651.38, "end": 26651.38, "probability": 0.0329 }, { "start": 26651.38, "end": 26654.1, "probability": 0.1319 }, { "start": 26654.2, "end": 26656.45, "probability": 0.2801 }, { "start": 26658.56, "end": 26659.82, "probability": 0.4636 }, { "start": 26660.38, "end": 26661.46, "probability": 0.2526 }, { "start": 26661.74, "end": 26662.18, "probability": 0.1822 }, { "start": 26662.76, "end": 26663.84, "probability": 0.4748 }, { "start": 26665.28, "end": 26666.9, "probability": 0.2418 }, { "start": 26667.22, "end": 26668.26, "probability": 0.3012 }, { "start": 26668.26, "end": 26668.66, "probability": 0.6879 }, { "start": 26668.78, "end": 26669.54, "probability": 0.1689 }, { "start": 26670.14, "end": 26671.28, "probability": 0.8892 }, { "start": 26671.86, "end": 26674.34, "probability": 0.8659 }, { "start": 26674.4, "end": 26678.78, "probability": 0.6743 }, { "start": 26678.78, "end": 26682.32, "probability": 0.8318 }, { "start": 26683.52, "end": 26684.92, "probability": 0.9974 }, { "start": 26685.54, "end": 26692.72, "probability": 0.9762 }, { "start": 26693.36, "end": 26694.45, "probability": 0.9041 }, { "start": 26716.58, "end": 26719.52, "probability": 0.2878 }, { "start": 26719.58, "end": 26721.7, "probability": 0.9476 }, { "start": 26722.3, "end": 26727.3, "probability": 0.3919 }, { "start": 26728.1, "end": 26730.42, "probability": 0.4378 } ], "segments_count": 9528, "words_count": 44001, "avg_words_per_segment": 4.6181, "avg_segment_duration": 1.928, "avg_words_per_minute": 98.6475, "plenum_id": "101690", "duration": 26762.57, "title": null, "plenum_date": "2021-11-17" }