{ "source_type": "knesset", "source_id": "plenum", "source_entry_id": "102588", "quality_score": 0.854, "per_segment_quality_scores": [ { "start": 64.16, "end": 65.66, "probability": 0.0545 }, { "start": 65.82, "end": 67.02, "probability": 0.3365 }, { "start": 68.4, "end": 70.62, "probability": 0.3273 }, { "start": 72.0, "end": 73.5, "probability": 0.185 }, { "start": 74.24, "end": 82.12, "probability": 0.2199 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 206.0, "end": 206.0, "probability": 0.0 }, { "start": 227.54, "end": 228.98, "probability": 0.3195 }, { "start": 230.64, "end": 230.92, "probability": 0.0607 }, { "start": 233.72, "end": 234.44, "probability": 0.0144 }, { "start": 234.98, "end": 235.56, "probability": 0.0305 }, { "start": 236.22, "end": 236.92, "probability": 0.1703 }, { "start": 238.3, "end": 240.24, "probability": 0.0032 }, { "start": 246.16, "end": 247.42, "probability": 0.1346 }, { "start": 248.59, "end": 250.34, "probability": 0.0687 }, { "start": 330.0, "end": 330.0, "probability": 0.0 }, { "start": 330.0, "end": 330.0, "probability": 0.0 }, { "start": 330.0, "end": 330.0, "probability": 0.0 }, { "start": 330.0, "end": 330.0, "probability": 0.0 }, { "start": 330.0, "end": 330.0, "probability": 0.0 }, { "start": 330.0, "end": 330.0, "probability": 0.0 }, { "start": 330.0, "end": 330.0, "probability": 0.0 }, { "start": 330.0, "end": 330.0, "probability": 0.0 }, { "start": 330.0, "end": 330.0, "probability": 0.0 }, { "start": 330.0, "end": 330.0, "probability": 0.0 }, { "start": 330.0, "end": 330.0, "probability": 0.0 }, { "start": 330.0, "end": 330.0, "probability": 0.0 }, { "start": 330.0, "end": 330.0, "probability": 0.0 }, { "start": 330.0, "end": 330.0, "probability": 0.0 }, { "start": 330.0, "end": 330.0, "probability": 0.0 }, { "start": 330.0, "end": 330.0, "probability": 0.0 }, { "start": 330.0, "end": 330.0, "probability": 0.0 }, { "start": 330.0, "end": 330.0, "probability": 0.0 }, { "start": 330.0, "end": 330.0, "probability": 0.0 }, { "start": 330.0, "end": 330.0, "probability": 0.0 }, { "start": 330.0, "end": 330.0, "probability": 0.0 }, { "start": 330.0, "end": 330.0, "probability": 0.0 }, { "start": 330.0, "end": 330.0, "probability": 0.0 }, { "start": 330.0, "end": 330.0, "probability": 0.0 }, { "start": 330.38, "end": 330.92, "probability": 0.1167 }, { "start": 330.98, "end": 333.46, "probability": 0.7415 }, { "start": 334.64, "end": 335.26, "probability": 0.9763 }, { "start": 336.18, "end": 337.02, "probability": 0.9962 }, { "start": 337.84, "end": 338.9, "probability": 0.9807 }, { "start": 340.23, "end": 341.6, "probability": 0.998 }, { "start": 344.0, "end": 345.04, "probability": 0.4995 }, { "start": 349.62, "end": 352.24, "probability": 0.6088 }, { "start": 352.84, "end": 354.0, "probability": 0.6727 }, { "start": 354.44, "end": 357.32, "probability": 0.9795 }, { "start": 357.74, "end": 358.54, "probability": 0.9133 }, { "start": 359.88, "end": 363.38, "probability": 0.9843 }, { "start": 363.48, "end": 364.45, "probability": 0.9655 }, { "start": 366.42, "end": 368.48, "probability": 0.9495 }, { "start": 369.82, "end": 372.74, "probability": 0.9946 }, { "start": 372.92, "end": 375.5, "probability": 0.9988 }, { "start": 377.4, "end": 379.02, "probability": 0.9651 }, { "start": 380.82, "end": 383.72, "probability": 0.7484 }, { "start": 384.98, "end": 386.18, "probability": 0.9844 }, { "start": 386.38, "end": 387.76, "probability": 0.9131 }, { "start": 387.98, "end": 389.14, "probability": 0.9964 }, { "start": 389.26, "end": 390.28, "probability": 0.8805 }, { "start": 391.26, "end": 392.1, "probability": 0.9848 }, { "start": 394.62, "end": 395.69, "probability": 0.993 }, { "start": 396.72, "end": 397.72, "probability": 0.9979 }, { "start": 398.78, "end": 402.46, "probability": 0.9806 }, { "start": 403.44, "end": 407.28, "probability": 0.9949 }, { "start": 409.24, "end": 409.86, "probability": 0.6632 }, { "start": 410.44, "end": 412.92, "probability": 0.9887 }, { "start": 413.02, "end": 416.1, "probability": 0.8562 }, { "start": 416.22, "end": 417.46, "probability": 0.8608 }, { "start": 417.76, "end": 417.98, "probability": 0.9559 }, { "start": 420.1, "end": 420.85, "probability": 0.6886 }, { "start": 422.6, "end": 423.0, "probability": 0.7194 }, { "start": 423.74, "end": 424.63, "probability": 0.8528 }, { "start": 425.34, "end": 426.82, "probability": 0.8744 }, { "start": 427.34, "end": 428.28, "probability": 0.7874 }, { "start": 428.8, "end": 431.92, "probability": 0.7526 }, { "start": 432.16, "end": 433.24, "probability": 0.7013 }, { "start": 434.22, "end": 435.92, "probability": 0.9437 }, { "start": 436.8, "end": 439.04, "probability": 0.9922 }, { "start": 439.7, "end": 444.22, "probability": 0.9839 }, { "start": 444.32, "end": 445.04, "probability": 0.9457 }, { "start": 445.98, "end": 448.26, "probability": 0.9043 }, { "start": 449.0, "end": 450.76, "probability": 0.9658 }, { "start": 452.1, "end": 455.22, "probability": 0.9844 }, { "start": 456.68, "end": 457.84, "probability": 0.9318 }, { "start": 458.58, "end": 461.04, "probability": 0.974 }, { "start": 464.6, "end": 465.82, "probability": 0.9628 }, { "start": 468.46, "end": 469.04, "probability": 0.7735 }, { "start": 470.0, "end": 472.84, "probability": 0.9867 }, { "start": 473.76, "end": 475.02, "probability": 0.897 }, { "start": 476.78, "end": 478.32, "probability": 0.9121 }, { "start": 479.92, "end": 480.3, "probability": 0.9917 }, { "start": 481.2, "end": 485.82, "probability": 0.9585 }, { "start": 487.1, "end": 488.34, "probability": 0.9649 }, { "start": 489.54, "end": 490.72, "probability": 0.9309 }, { "start": 491.52, "end": 492.38, "probability": 0.9385 }, { "start": 493.0, "end": 494.22, "probability": 0.9922 }, { "start": 495.24, "end": 498.58, "probability": 0.9951 }, { "start": 499.22, "end": 500.3, "probability": 0.8865 }, { "start": 501.68, "end": 502.84, "probability": 0.8803 }, { "start": 503.3, "end": 503.8, "probability": 0.7526 }, { "start": 504.96, "end": 505.36, "probability": 0.8064 }, { "start": 508.8, "end": 509.96, "probability": 0.9968 }, { "start": 511.6, "end": 514.94, "probability": 0.9458 }, { "start": 516.12, "end": 518.58, "probability": 0.998 }, { "start": 519.42, "end": 520.98, "probability": 0.9751 }, { "start": 522.24, "end": 523.56, "probability": 0.8768 }, { "start": 524.5, "end": 525.86, "probability": 0.8706 }, { "start": 526.96, "end": 527.48, "probability": 0.9033 }, { "start": 528.4, "end": 529.1, "probability": 0.9565 }, { "start": 530.74, "end": 533.64, "probability": 0.9807 }, { "start": 534.64, "end": 537.64, "probability": 0.9944 }, { "start": 537.74, "end": 538.74, "probability": 0.9691 }, { "start": 539.88, "end": 540.56, "probability": 0.9287 }, { "start": 542.02, "end": 543.04, "probability": 0.9902 }, { "start": 544.04, "end": 546.9, "probability": 0.9566 }, { "start": 548.14, "end": 550.6, "probability": 0.9021 }, { "start": 550.62, "end": 552.96, "probability": 0.9952 }, { "start": 554.04, "end": 557.92, "probability": 0.9886 }, { "start": 561.18, "end": 563.82, "probability": 0.9971 }, { "start": 564.04, "end": 567.96, "probability": 0.9941 }, { "start": 569.3, "end": 570.6, "probability": 0.959 }, { "start": 572.14, "end": 575.58, "probability": 0.9914 }, { "start": 575.76, "end": 576.04, "probability": 0.5706 }, { "start": 577.32, "end": 581.3, "probability": 0.9971 }, { "start": 582.16, "end": 582.66, "probability": 0.9552 }, { "start": 583.9, "end": 585.98, "probability": 0.8253 }, { "start": 587.78, "end": 589.54, "probability": 0.9971 }, { "start": 589.54, "end": 593.06, "probability": 0.9987 }, { "start": 593.24, "end": 594.08, "probability": 0.8477 }, { "start": 596.4, "end": 597.8, "probability": 0.9971 }, { "start": 598.9, "end": 600.72, "probability": 0.972 }, { "start": 601.82, "end": 605.72, "probability": 0.9979 }, { "start": 606.7, "end": 607.38, "probability": 0.5387 }, { "start": 607.6, "end": 608.84, "probability": 0.9578 }, { "start": 609.66, "end": 611.14, "probability": 0.7975 }, { "start": 611.86, "end": 612.98, "probability": 0.7903 }, { "start": 613.52, "end": 615.2, "probability": 0.969 }, { "start": 616.9, "end": 617.46, "probability": 0.7911 }, { "start": 617.78, "end": 620.85, "probability": 0.9264 }, { "start": 622.06, "end": 623.96, "probability": 0.988 }, { "start": 625.02, "end": 627.06, "probability": 0.9814 }, { "start": 627.84, "end": 628.78, "probability": 0.8064 }, { "start": 629.71, "end": 631.96, "probability": 0.9269 }, { "start": 633.2, "end": 633.42, "probability": 0.6643 }, { "start": 636.04, "end": 636.78, "probability": 0.987 }, { "start": 637.34, "end": 639.24, "probability": 0.9631 }, { "start": 640.14, "end": 642.46, "probability": 0.9982 }, { "start": 644.1, "end": 644.74, "probability": 0.6567 }, { "start": 646.52, "end": 648.74, "probability": 0.9748 }, { "start": 649.34, "end": 652.12, "probability": 0.9822 }, { "start": 652.28, "end": 652.64, "probability": 0.9331 }, { "start": 652.9, "end": 653.42, "probability": 0.879 }, { "start": 654.32, "end": 655.54, "probability": 0.9967 }, { "start": 656.4, "end": 658.14, "probability": 0.9352 }, { "start": 658.66, "end": 659.4, "probability": 0.8734 }, { "start": 660.3, "end": 662.97, "probability": 0.8419 }, { "start": 663.78, "end": 666.56, "probability": 0.9595 }, { "start": 667.02, "end": 672.12, "probability": 0.9938 }, { "start": 674.86, "end": 675.98, "probability": 0.7792 }, { "start": 676.12, "end": 680.44, "probability": 0.8091 }, { "start": 680.88, "end": 681.52, "probability": 0.9314 }, { "start": 682.74, "end": 688.61, "probability": 0.9863 }, { "start": 689.12, "end": 690.1, "probability": 0.9548 }, { "start": 690.2, "end": 694.34, "probability": 0.8995 }, { "start": 694.54, "end": 697.74, "probability": 0.9992 }, { "start": 698.92, "end": 700.42, "probability": 0.9299 }, { "start": 701.4, "end": 702.92, "probability": 0.998 }, { "start": 704.08, "end": 706.6, "probability": 0.8521 }, { "start": 707.64, "end": 708.98, "probability": 0.9934 }, { "start": 709.86, "end": 712.46, "probability": 0.9352 }, { "start": 712.46, "end": 715.27, "probability": 0.9989 }, { "start": 717.5, "end": 720.91, "probability": 0.9917 }, { "start": 722.82, "end": 725.66, "probability": 0.832 }, { "start": 726.9, "end": 729.28, "probability": 0.821 }, { "start": 729.44, "end": 732.64, "probability": 0.9886 }, { "start": 733.42, "end": 734.06, "probability": 0.8792 }, { "start": 736.42, "end": 736.74, "probability": 0.8768 }, { "start": 737.74, "end": 739.94, "probability": 0.9986 }, { "start": 740.46, "end": 741.44, "probability": 0.4973 }, { "start": 741.56, "end": 742.2, "probability": 0.507 }, { "start": 742.32, "end": 742.94, "probability": 0.9771 }, { "start": 743.04, "end": 743.6, "probability": 0.9834 }, { "start": 743.72, "end": 745.36, "probability": 0.9639 }, { "start": 747.66, "end": 747.88, "probability": 0.9075 }, { "start": 748.54, "end": 749.6, "probability": 0.9009 }, { "start": 750.54, "end": 752.68, "probability": 0.9532 }, { "start": 755.56, "end": 759.16, "probability": 0.9901 }, { "start": 760.6, "end": 763.15, "probability": 0.9761 }, { "start": 765.22, "end": 769.66, "probability": 0.9989 }, { "start": 771.36, "end": 773.12, "probability": 0.9668 }, { "start": 774.64, "end": 774.72, "probability": 0.6202 }, { "start": 774.86, "end": 775.42, "probability": 0.9574 }, { "start": 775.52, "end": 776.1, "probability": 0.8113 }, { "start": 776.16, "end": 777.74, "probability": 0.9944 }, { "start": 778.46, "end": 780.66, "probability": 0.8883 }, { "start": 781.6, "end": 783.4, "probability": 0.9829 }, { "start": 783.48, "end": 784.44, "probability": 0.8582 }, { "start": 784.54, "end": 786.82, "probability": 0.9827 }, { "start": 786.94, "end": 787.96, "probability": 0.8326 }, { "start": 788.66, "end": 790.3, "probability": 0.8853 }, { "start": 792.01, "end": 794.4, "probability": 0.8132 }, { "start": 795.8, "end": 797.94, "probability": 0.9973 }, { "start": 799.94, "end": 803.4, "probability": 0.9468 }, { "start": 804.34, "end": 804.7, "probability": 0.9794 }, { "start": 805.74, "end": 807.36, "probability": 0.9697 }, { "start": 808.86, "end": 812.66, "probability": 0.9849 }, { "start": 812.84, "end": 818.56, "probability": 0.9973 }, { "start": 821.22, "end": 822.22, "probability": 0.7642 }, { "start": 822.36, "end": 823.04, "probability": 0.7691 }, { "start": 823.16, "end": 824.45, "probability": 0.8374 }, { "start": 825.86, "end": 828.32, "probability": 0.7685 }, { "start": 830.16, "end": 834.06, "probability": 0.9733 }, { "start": 835.74, "end": 837.1, "probability": 0.9988 }, { "start": 838.2, "end": 841.52, "probability": 0.9845 }, { "start": 842.68, "end": 846.52, "probability": 0.9986 }, { "start": 847.2, "end": 849.08, "probability": 0.9955 }, { "start": 850.6, "end": 855.22, "probability": 0.999 }, { "start": 856.94, "end": 857.5, "probability": 0.7594 }, { "start": 858.4, "end": 859.88, "probability": 0.8171 }, { "start": 860.0, "end": 863.74, "probability": 0.9963 }, { "start": 863.96, "end": 864.98, "probability": 0.9785 }, { "start": 866.1, "end": 868.12, "probability": 0.9126 }, { "start": 869.32, "end": 870.52, "probability": 0.8777 }, { "start": 871.24, "end": 872.2, "probability": 0.9652 }, { "start": 873.08, "end": 874.96, "probability": 0.9852 }, { "start": 876.02, "end": 879.06, "probability": 0.9221 }, { "start": 879.3, "end": 880.78, "probability": 0.9846 }, { "start": 881.2, "end": 882.76, "probability": 0.9953 }, { "start": 883.78, "end": 885.36, "probability": 0.9905 }, { "start": 885.72, "end": 886.66, "probability": 0.7383 }, { "start": 886.66, "end": 887.06, "probability": 0.5337 }, { "start": 887.56, "end": 889.1, "probability": 0.9951 }, { "start": 889.24, "end": 889.74, "probability": 0.6528 }, { "start": 890.08, "end": 891.22, "probability": 0.9661 }, { "start": 891.28, "end": 893.5, "probability": 0.9331 }, { "start": 893.64, "end": 896.24, "probability": 0.5941 }, { "start": 896.74, "end": 897.36, "probability": 0.0182 }, { "start": 898.0, "end": 898.64, "probability": 0.7413 }, { "start": 898.8, "end": 900.04, "probability": 0.7835 }, { "start": 900.14, "end": 901.5, "probability": 0.8745 }, { "start": 901.74, "end": 903.42, "probability": 0.7942 }, { "start": 903.56, "end": 904.92, "probability": 0.7974 }, { "start": 905.66, "end": 906.2, "probability": 0.8525 }, { "start": 906.22, "end": 908.18, "probability": 0.8729 }, { "start": 908.44, "end": 910.34, "probability": 0.8631 }, { "start": 910.52, "end": 911.88, "probability": 0.8058 }, { "start": 912.36, "end": 914.24, "probability": 0.4566 }, { "start": 915.37, "end": 916.88, "probability": 0.8966 }, { "start": 917.02, "end": 919.1, "probability": 0.7282 }, { "start": 919.36, "end": 922.1, "probability": 0.6664 }, { "start": 922.18, "end": 923.82, "probability": 0.7432 }, { "start": 924.06, "end": 925.86, "probability": 0.8633 }, { "start": 925.86, "end": 926.7, "probability": 0.5493 }, { "start": 927.26, "end": 931.98, "probability": 0.7109 }, { "start": 932.78, "end": 939.24, "probability": 0.9494 }, { "start": 939.8, "end": 943.12, "probability": 0.9903 }, { "start": 944.32, "end": 947.06, "probability": 0.9484 }, { "start": 948.5, "end": 951.72, "probability": 0.9907 }, { "start": 951.94, "end": 957.4, "probability": 0.9977 }, { "start": 957.7, "end": 957.92, "probability": 0.5493 }, { "start": 958.0, "end": 958.92, "probability": 0.7944 }, { "start": 960.04, "end": 962.0, "probability": 0.994 }, { "start": 962.08, "end": 963.39, "probability": 0.9975 }, { "start": 964.94, "end": 969.66, "probability": 0.9675 }, { "start": 970.38, "end": 971.86, "probability": 0.9724 }, { "start": 973.04, "end": 975.8, "probability": 0.9185 }, { "start": 976.46, "end": 979.16, "probability": 0.986 }, { "start": 980.36, "end": 981.82, "probability": 0.991 }, { "start": 983.98, "end": 986.22, "probability": 0.9756 }, { "start": 986.66, "end": 987.02, "probability": 0.7695 }, { "start": 987.44, "end": 987.96, "probability": 0.6523 }, { "start": 988.78, "end": 989.72, "probability": 0.9282 }, { "start": 997.7, "end": 997.7, "probability": 0.4932 }, { "start": 997.7, "end": 997.7, "probability": 0.1243 }, { "start": 997.7, "end": 997.7, "probability": 0.2567 }, { "start": 997.7, "end": 998.14, "probability": 0.1313 }, { "start": 1012.38, "end": 1012.7, "probability": 0.0815 }, { "start": 1012.7, "end": 1012.82, "probability": 0.0725 }, { "start": 1012.82, "end": 1012.82, "probability": 0.2214 }, { "start": 1021.26, "end": 1021.99, "probability": 0.0855 }, { "start": 1026.08, "end": 1027.52, "probability": 0.1025 }, { "start": 1039.48, "end": 1044.12, "probability": 0.9957 }, { "start": 1045.0, "end": 1045.72, "probability": 0.9448 }, { "start": 1046.84, "end": 1047.76, "probability": 0.8995 }, { "start": 1048.12, "end": 1050.72, "probability": 0.1195 }, { "start": 1050.72, "end": 1052.64, "probability": 0.9799 }, { "start": 1053.34, "end": 1054.66, "probability": 0.9945 }, { "start": 1055.2, "end": 1058.6, "probability": 0.9995 }, { "start": 1059.22, "end": 1060.16, "probability": 0.9902 }, { "start": 1061.12, "end": 1063.24, "probability": 0.6362 }, { "start": 1064.24, "end": 1066.92, "probability": 0.9616 }, { "start": 1068.18, "end": 1071.24, "probability": 0.9949 }, { "start": 1071.9, "end": 1074.82, "probability": 0.9646 }, { "start": 1074.82, "end": 1078.5, "probability": 0.9952 }, { "start": 1078.98, "end": 1084.14, "probability": 0.9711 }, { "start": 1085.04, "end": 1089.07, "probability": 0.5479 }, { "start": 1089.72, "end": 1090.54, "probability": 0.6118 }, { "start": 1091.1, "end": 1091.64, "probability": 0.7898 }, { "start": 1092.46, "end": 1094.28, "probability": 0.8294 }, { "start": 1095.14, "end": 1096.28, "probability": 0.9933 }, { "start": 1097.04, "end": 1098.26, "probability": 0.9231 }, { "start": 1098.88, "end": 1102.2, "probability": 0.9966 }, { "start": 1102.7, "end": 1105.82, "probability": 0.9758 }, { "start": 1106.1, "end": 1108.08, "probability": 0.964 }, { "start": 1108.8, "end": 1111.06, "probability": 0.9475 }, { "start": 1111.86, "end": 1112.74, "probability": 0.8713 }, { "start": 1114.02, "end": 1114.62, "probability": 0.0019 }, { "start": 1115.46, "end": 1116.46, "probability": 0.0565 }, { "start": 1116.46, "end": 1116.48, "probability": 0.1237 }, { "start": 1116.62, "end": 1122.44, "probability": 0.9876 }, { "start": 1123.4, "end": 1126.42, "probability": 0.9486 }, { "start": 1126.42, "end": 1130.0, "probability": 0.9989 }, { "start": 1130.12, "end": 1130.89, "probability": 0.7607 }, { "start": 1131.5, "end": 1133.4, "probability": 0.8695 }, { "start": 1133.96, "end": 1135.9, "probability": 0.9771 }, { "start": 1136.36, "end": 1138.74, "probability": 0.9913 }, { "start": 1139.38, "end": 1140.0, "probability": 0.7599 }, { "start": 1141.18, "end": 1144.16, "probability": 0.8243 }, { "start": 1146.26, "end": 1149.0, "probability": 0.4009 }, { "start": 1150.82, "end": 1151.94, "probability": 0.4066 }, { "start": 1152.98, "end": 1157.92, "probability": 0.7544 }, { "start": 1158.92, "end": 1160.32, "probability": 0.6942 }, { "start": 1182.68, "end": 1182.72, "probability": 0.1022 }, { "start": 1182.72, "end": 1183.96, "probability": 0.8183 }, { "start": 1187.02, "end": 1190.3, "probability": 0.9836 }, { "start": 1201.24, "end": 1202.86, "probability": 0.5675 }, { "start": 1206.02, "end": 1208.74, "probability": 0.7633 }, { "start": 1209.92, "end": 1211.04, "probability": 0.5264 }, { "start": 1211.64, "end": 1213.29, "probability": 0.9797 }, { "start": 1214.48, "end": 1217.72, "probability": 0.99 }, { "start": 1218.92, "end": 1222.22, "probability": 0.7319 }, { "start": 1222.22, "end": 1225.6, "probability": 0.5707 }, { "start": 1225.68, "end": 1226.02, "probability": 0.647 }, { "start": 1226.28, "end": 1227.44, "probability": 0.5629 }, { "start": 1228.18, "end": 1230.62, "probability": 0.9362 }, { "start": 1232.44, "end": 1235.1, "probability": 0.5864 }, { "start": 1236.22, "end": 1240.2, "probability": 0.9888 }, { "start": 1240.9, "end": 1241.82, "probability": 0.9985 }, { "start": 1242.52, "end": 1247.52, "probability": 0.9328 }, { "start": 1249.12, "end": 1250.96, "probability": 0.9021 }, { "start": 1251.08, "end": 1252.8, "probability": 0.9137 }, { "start": 1255.62, "end": 1263.5, "probability": 0.9281 }, { "start": 1264.66, "end": 1266.64, "probability": 0.9972 }, { "start": 1267.46, "end": 1269.5, "probability": 0.8184 }, { "start": 1270.74, "end": 1271.94, "probability": 0.8712 }, { "start": 1272.9, "end": 1277.38, "probability": 0.7814 }, { "start": 1279.86, "end": 1280.54, "probability": 0.9502 }, { "start": 1281.76, "end": 1282.24, "probability": 0.9619 }, { "start": 1283.3, "end": 1284.58, "probability": 0.9621 }, { "start": 1285.0, "end": 1286.44, "probability": 0.9966 }, { "start": 1286.56, "end": 1287.1, "probability": 0.7235 }, { "start": 1287.76, "end": 1289.6, "probability": 0.9816 }, { "start": 1290.98, "end": 1293.74, "probability": 0.9448 }, { "start": 1295.0, "end": 1297.98, "probability": 0.8423 }, { "start": 1298.82, "end": 1301.26, "probability": 0.7346 }, { "start": 1302.32, "end": 1305.54, "probability": 0.7579 }, { "start": 1305.78, "end": 1307.0, "probability": 0.8974 }, { "start": 1308.32, "end": 1312.25, "probability": 0.8827 }, { "start": 1313.18, "end": 1317.62, "probability": 0.936 }, { "start": 1318.3, "end": 1318.84, "probability": 0.3964 }, { "start": 1319.68, "end": 1320.32, "probability": 0.9639 }, { "start": 1321.1, "end": 1321.84, "probability": 0.9174 }, { "start": 1322.7, "end": 1324.46, "probability": 0.9676 }, { "start": 1325.3, "end": 1325.72, "probability": 0.7668 }, { "start": 1326.08, "end": 1328.84, "probability": 0.8208 }, { "start": 1328.9, "end": 1330.92, "probability": 0.9928 }, { "start": 1331.52, "end": 1335.02, "probability": 0.8941 }, { "start": 1335.86, "end": 1340.22, "probability": 0.8649 }, { "start": 1340.22, "end": 1344.3, "probability": 0.932 }, { "start": 1345.02, "end": 1347.4, "probability": 0.9951 }, { "start": 1348.18, "end": 1349.14, "probability": 0.9268 }, { "start": 1349.62, "end": 1350.46, "probability": 0.6179 }, { "start": 1350.46, "end": 1352.36, "probability": 0.9381 }, { "start": 1352.46, "end": 1354.16, "probability": 0.5651 }, { "start": 1354.24, "end": 1354.74, "probability": 0.8234 }, { "start": 1354.82, "end": 1355.12, "probability": 0.5918 }, { "start": 1355.82, "end": 1356.34, "probability": 0.5978 }, { "start": 1357.26, "end": 1360.22, "probability": 0.9845 }, { "start": 1360.7, "end": 1361.12, "probability": 0.8657 }, { "start": 1361.96, "end": 1365.54, "probability": 0.9854 }, { "start": 1366.34, "end": 1370.04, "probability": 0.9411 }, { "start": 1370.7, "end": 1374.25, "probability": 0.9608 }, { "start": 1374.86, "end": 1379.1, "probability": 0.9748 }, { "start": 1379.76, "end": 1380.52, "probability": 0.8815 }, { "start": 1381.06, "end": 1383.66, "probability": 0.8745 }, { "start": 1385.64, "end": 1386.2, "probability": 0.5346 }, { "start": 1386.92, "end": 1388.4, "probability": 0.9849 }, { "start": 1389.0, "end": 1390.3, "probability": 0.5032 }, { "start": 1390.5, "end": 1391.28, "probability": 0.9503 }, { "start": 1391.36, "end": 1394.42, "probability": 0.9496 }, { "start": 1395.08, "end": 1397.46, "probability": 0.7567 }, { "start": 1397.6, "end": 1399.54, "probability": 0.8628 }, { "start": 1400.16, "end": 1401.76, "probability": 0.9948 }, { "start": 1402.62, "end": 1402.84, "probability": 0.6812 }, { "start": 1403.64, "end": 1405.89, "probability": 0.99 }, { "start": 1406.44, "end": 1408.1, "probability": 0.9853 }, { "start": 1409.06, "end": 1409.7, "probability": 0.7943 }, { "start": 1409.9, "end": 1411.64, "probability": 0.6048 }, { "start": 1412.28, "end": 1414.5, "probability": 0.9313 }, { "start": 1415.96, "end": 1419.18, "probability": 0.9946 }, { "start": 1419.18, "end": 1422.84, "probability": 0.834 }, { "start": 1423.86, "end": 1425.44, "probability": 0.9048 }, { "start": 1426.48, "end": 1428.25, "probability": 0.9946 }, { "start": 1428.52, "end": 1430.74, "probability": 0.8801 }, { "start": 1432.12, "end": 1435.04, "probability": 0.7723 }, { "start": 1436.66, "end": 1438.48, "probability": 0.9957 }, { "start": 1439.38, "end": 1441.62, "probability": 0.9833 }, { "start": 1441.76, "end": 1443.62, "probability": 0.8065 }, { "start": 1443.78, "end": 1444.84, "probability": 0.8569 }, { "start": 1445.08, "end": 1446.64, "probability": 0.9601 }, { "start": 1447.48, "end": 1451.7, "probability": 0.8479 }, { "start": 1451.78, "end": 1454.06, "probability": 0.8929 }, { "start": 1454.26, "end": 1455.22, "probability": 0.9341 }, { "start": 1456.44, "end": 1460.72, "probability": 0.8184 }, { "start": 1461.8, "end": 1464.22, "probability": 0.9907 }, { "start": 1464.54, "end": 1466.84, "probability": 0.8849 }, { "start": 1467.06, "end": 1467.96, "probability": 0.6833 }, { "start": 1469.36, "end": 1469.58, "probability": 0.7014 }, { "start": 1470.64, "end": 1473.1, "probability": 0.9854 }, { "start": 1473.16, "end": 1475.08, "probability": 0.9955 }, { "start": 1478.56, "end": 1482.18, "probability": 0.984 }, { "start": 1482.4, "end": 1482.98, "probability": 0.4255 }, { "start": 1483.46, "end": 1484.13, "probability": 0.9283 }, { "start": 1486.32, "end": 1487.22, "probability": 0.6458 }, { "start": 1487.34, "end": 1489.84, "probability": 0.9556 }, { "start": 1490.68, "end": 1491.84, "probability": 0.6491 }, { "start": 1492.38, "end": 1493.8, "probability": 0.9523 }, { "start": 1495.22, "end": 1499.02, "probability": 0.9769 }, { "start": 1500.78, "end": 1502.2, "probability": 0.6364 }, { "start": 1503.0, "end": 1504.14, "probability": 0.9114 }, { "start": 1504.78, "end": 1506.22, "probability": 0.6826 }, { "start": 1507.2, "end": 1508.82, "probability": 0.9858 }, { "start": 1509.08, "end": 1511.46, "probability": 0.9978 }, { "start": 1511.52, "end": 1513.62, "probability": 0.992 }, { "start": 1513.62, "end": 1516.08, "probability": 0.9736 }, { "start": 1516.48, "end": 1517.48, "probability": 0.8351 }, { "start": 1519.24, "end": 1521.62, "probability": 0.8746 }, { "start": 1521.88, "end": 1525.86, "probability": 0.9665 }, { "start": 1525.86, "end": 1530.38, "probability": 0.9734 }, { "start": 1530.98, "end": 1531.58, "probability": 0.9328 }, { "start": 1535.16, "end": 1538.54, "probability": 0.9797 }, { "start": 1538.66, "end": 1540.06, "probability": 0.8574 }, { "start": 1540.64, "end": 1541.58, "probability": 0.7919 }, { "start": 1541.78, "end": 1544.94, "probability": 0.8787 }, { "start": 1546.12, "end": 1548.18, "probability": 0.9974 }, { "start": 1548.32, "end": 1550.08, "probability": 0.9937 }, { "start": 1550.8, "end": 1553.88, "probability": 0.9917 }, { "start": 1554.74, "end": 1560.3, "probability": 0.9499 }, { "start": 1560.39, "end": 1560.89, "probability": 0.2126 }, { "start": 1561.32, "end": 1561.9, "probability": 0.4967 }, { "start": 1562.28, "end": 1563.28, "probability": 0.9934 }, { "start": 1563.42, "end": 1564.37, "probability": 0.9526 }, { "start": 1565.82, "end": 1569.92, "probability": 0.9509 }, { "start": 1570.54, "end": 1572.48, "probability": 0.8983 }, { "start": 1572.48, "end": 1575.22, "probability": 0.9909 }, { "start": 1575.96, "end": 1580.72, "probability": 0.9861 }, { "start": 1583.4, "end": 1584.4, "probability": 0.6376 }, { "start": 1584.66, "end": 1585.5, "probability": 0.814 }, { "start": 1585.6, "end": 1586.32, "probability": 0.6403 }, { "start": 1586.54, "end": 1590.66, "probability": 0.6287 }, { "start": 1591.94, "end": 1592.38, "probability": 0.737 }, { "start": 1592.46, "end": 1593.2, "probability": 0.8406 }, { "start": 1594.58, "end": 1598.98, "probability": 0.9785 }, { "start": 1599.12, "end": 1600.04, "probability": 0.9698 }, { "start": 1600.54, "end": 1602.24, "probability": 0.9934 }, { "start": 1604.76, "end": 1607.4, "probability": 0.8677 }, { "start": 1607.48, "end": 1608.63, "probability": 0.9885 }, { "start": 1609.04, "end": 1609.74, "probability": 0.9954 }, { "start": 1610.32, "end": 1613.42, "probability": 0.9763 }, { "start": 1613.68, "end": 1617.04, "probability": 0.8804 }, { "start": 1618.48, "end": 1619.76, "probability": 0.703 }, { "start": 1620.48, "end": 1626.14, "probability": 0.9884 }, { "start": 1626.76, "end": 1630.62, "probability": 0.995 }, { "start": 1630.62, "end": 1634.66, "probability": 0.9954 }, { "start": 1635.3, "end": 1636.42, "probability": 0.7429 }, { "start": 1637.18, "end": 1642.66, "probability": 0.7665 }, { "start": 1643.58, "end": 1646.64, "probability": 0.7021 }, { "start": 1648.02, "end": 1649.17, "probability": 0.7447 }, { "start": 1650.12, "end": 1651.52, "probability": 0.64 }, { "start": 1651.66, "end": 1653.32, "probability": 0.855 }, { "start": 1653.46, "end": 1654.94, "probability": 0.4881 }, { "start": 1656.22, "end": 1661.62, "probability": 0.9531 }, { "start": 1661.7, "end": 1665.72, "probability": 0.8424 }, { "start": 1666.46, "end": 1669.9, "probability": 0.9525 }, { "start": 1669.9, "end": 1672.62, "probability": 0.9944 }, { "start": 1672.62, "end": 1673.42, "probability": 0.8177 }, { "start": 1673.94, "end": 1676.42, "probability": 0.9858 }, { "start": 1676.56, "end": 1679.32, "probability": 0.9976 }, { "start": 1680.74, "end": 1681.16, "probability": 0.1949 }, { "start": 1683.0, "end": 1683.58, "probability": 0.7629 }, { "start": 1684.16, "end": 1684.92, "probability": 0.3977 }, { "start": 1686.47, "end": 1688.08, "probability": 0.5595 }, { "start": 1688.18, "end": 1690.46, "probability": 0.607 }, { "start": 1691.08, "end": 1692.08, "probability": 0.98 }, { "start": 1692.18, "end": 1694.94, "probability": 0.9785 }, { "start": 1695.04, "end": 1695.52, "probability": 0.7068 }, { "start": 1696.66, "end": 1698.8, "probability": 0.902 }, { "start": 1698.8, "end": 1700.68, "probability": 0.9875 }, { "start": 1701.24, "end": 1702.28, "probability": 0.9538 }, { "start": 1702.4, "end": 1703.62, "probability": 0.9258 }, { "start": 1703.66, "end": 1704.22, "probability": 0.8833 }, { "start": 1704.3, "end": 1705.1, "probability": 0.7272 }, { "start": 1705.54, "end": 1708.66, "probability": 0.9332 }, { "start": 1708.8, "end": 1709.68, "probability": 0.9929 }, { "start": 1710.28, "end": 1712.16, "probability": 0.7896 }, { "start": 1713.52, "end": 1715.24, "probability": 0.8809 }, { "start": 1715.74, "end": 1717.72, "probability": 0.647 }, { "start": 1717.88, "end": 1720.54, "probability": 0.8031 }, { "start": 1720.8, "end": 1722.1, "probability": 0.4008 }, { "start": 1722.52, "end": 1727.74, "probability": 0.9835 }, { "start": 1728.75, "end": 1730.5, "probability": 0.8244 }, { "start": 1731.54, "end": 1731.92, "probability": 0.9296 }, { "start": 1732.62, "end": 1734.34, "probability": 0.9324 }, { "start": 1734.56, "end": 1737.9, "probability": 0.9518 }, { "start": 1738.28, "end": 1739.56, "probability": 0.9764 }, { "start": 1740.28, "end": 1742.48, "probability": 0.9725 }, { "start": 1745.6, "end": 1749.22, "probability": 0.6659 }, { "start": 1749.74, "end": 1750.1, "probability": 0.3213 }, { "start": 1750.18, "end": 1750.54, "probability": 0.3582 }, { "start": 1750.92, "end": 1751.58, "probability": 0.746 }, { "start": 1752.08, "end": 1752.98, "probability": 0.955 }, { "start": 1753.34, "end": 1753.98, "probability": 0.8511 }, { "start": 1754.4, "end": 1758.72, "probability": 0.7636 }, { "start": 1759.16, "end": 1759.89, "probability": 0.6283 }, { "start": 1760.04, "end": 1764.34, "probability": 0.9465 }, { "start": 1764.98, "end": 1765.9, "probability": 0.9953 }, { "start": 1766.1, "end": 1767.6, "probability": 0.9478 }, { "start": 1767.86, "end": 1769.68, "probability": 0.995 }, { "start": 1770.16, "end": 1772.61, "probability": 0.8065 }, { "start": 1773.48, "end": 1775.64, "probability": 0.9933 }, { "start": 1776.64, "end": 1778.16, "probability": 0.9976 }, { "start": 1778.32, "end": 1780.3, "probability": 0.9281 }, { "start": 1781.04, "end": 1783.08, "probability": 0.9958 }, { "start": 1784.04, "end": 1785.9, "probability": 0.8107 }, { "start": 1786.78, "end": 1787.68, "probability": 0.8494 }, { "start": 1788.52, "end": 1794.3, "probability": 0.9933 }, { "start": 1794.98, "end": 1795.72, "probability": 0.8184 }, { "start": 1796.88, "end": 1798.45, "probability": 0.9272 }, { "start": 1799.28, "end": 1800.42, "probability": 0.9685 }, { "start": 1800.5, "end": 1801.94, "probability": 0.8088 }, { "start": 1802.96, "end": 1807.98, "probability": 0.8903 }, { "start": 1808.48, "end": 1809.7, "probability": 0.9778 }, { "start": 1809.88, "end": 1812.6, "probability": 0.9915 }, { "start": 1813.02, "end": 1814.04, "probability": 0.9373 }, { "start": 1814.98, "end": 1819.12, "probability": 0.975 }, { "start": 1819.26, "end": 1820.9, "probability": 0.806 }, { "start": 1821.44, "end": 1822.96, "probability": 0.8151 }, { "start": 1823.32, "end": 1823.98, "probability": 0.7884 }, { "start": 1826.74, "end": 1827.3, "probability": 0.6862 }, { "start": 1827.48, "end": 1828.8, "probability": 0.6947 }, { "start": 1837.2, "end": 1849.8, "probability": 0.754 }, { "start": 1850.16, "end": 1851.06, "probability": 0.7494 }, { "start": 1851.36, "end": 1852.86, "probability": 0.9508 }, { "start": 1853.18, "end": 1854.12, "probability": 0.9588 }, { "start": 1854.96, "end": 1855.82, "probability": 0.7239 }, { "start": 1857.1, "end": 1861.12, "probability": 0.9375 }, { "start": 1861.42, "end": 1863.56, "probability": 0.9891 }, { "start": 1864.38, "end": 1865.0, "probability": 0.5276 }, { "start": 1865.72, "end": 1866.48, "probability": 0.9772 }, { "start": 1868.5, "end": 1870.61, "probability": 0.9451 }, { "start": 1870.82, "end": 1871.3, "probability": 0.6477 }, { "start": 1871.34, "end": 1873.8, "probability": 0.9798 }, { "start": 1874.94, "end": 1880.88, "probability": 0.9844 }, { "start": 1881.56, "end": 1886.9, "probability": 0.9954 }, { "start": 1888.9, "end": 1889.9, "probability": 0.7458 }, { "start": 1891.28, "end": 1893.92, "probability": 0.9244 }, { "start": 1895.44, "end": 1897.54, "probability": 0.978 }, { "start": 1897.64, "end": 1900.08, "probability": 0.867 }, { "start": 1901.74, "end": 1904.36, "probability": 0.9759 }, { "start": 1905.2, "end": 1908.84, "probability": 0.9914 }, { "start": 1909.4, "end": 1910.4, "probability": 0.7631 }, { "start": 1910.56, "end": 1913.15, "probability": 0.9611 }, { "start": 1913.94, "end": 1916.66, "probability": 0.997 }, { "start": 1917.42, "end": 1917.5, "probability": 0.4745 }, { "start": 1917.54, "end": 1918.0, "probability": 0.8324 }, { "start": 1918.0, "end": 1919.68, "probability": 0.9812 }, { "start": 1919.76, "end": 1920.73, "probability": 0.7922 }, { "start": 1922.56, "end": 1924.84, "probability": 0.9962 }, { "start": 1926.12, "end": 1926.9, "probability": 0.9832 }, { "start": 1927.92, "end": 1928.88, "probability": 0.7402 }, { "start": 1929.76, "end": 1930.5, "probability": 0.9539 }, { "start": 1931.2, "end": 1931.96, "probability": 0.8693 }, { "start": 1932.92, "end": 1934.0, "probability": 0.9872 }, { "start": 1934.3, "end": 1937.58, "probability": 0.989 }, { "start": 1937.68, "end": 1939.51, "probability": 0.9749 }, { "start": 1939.72, "end": 1940.44, "probability": 0.9132 }, { "start": 1942.22, "end": 1946.22, "probability": 0.9648 }, { "start": 1947.16, "end": 1949.06, "probability": 0.6217 }, { "start": 1949.76, "end": 1952.92, "probability": 0.6928 }, { "start": 1953.56, "end": 1954.64, "probability": 0.6587 }, { "start": 1956.02, "end": 1958.82, "probability": 0.9457 }, { "start": 1960.66, "end": 1962.98, "probability": 0.9974 }, { "start": 1963.88, "end": 1965.58, "probability": 0.9995 }, { "start": 1967.68, "end": 1970.06, "probability": 0.7714 }, { "start": 1972.16, "end": 1976.36, "probability": 0.9937 }, { "start": 1978.9, "end": 1979.72, "probability": 0.85 }, { "start": 1980.22, "end": 1980.92, "probability": 0.97 }, { "start": 1981.04, "end": 1982.62, "probability": 0.9762 }, { "start": 1982.86, "end": 1983.96, "probability": 0.58 }, { "start": 1983.98, "end": 1984.88, "probability": 0.9432 }, { "start": 1985.9, "end": 1987.38, "probability": 0.9862 }, { "start": 1987.88, "end": 1988.86, "probability": 0.8713 }, { "start": 1989.4, "end": 1990.7, "probability": 0.897 }, { "start": 1991.56, "end": 1994.22, "probability": 0.9868 }, { "start": 1995.3, "end": 1997.22, "probability": 0.9626 }, { "start": 1997.72, "end": 1998.5, "probability": 0.6489 }, { "start": 1999.1, "end": 2000.3, "probability": 0.4143 }, { "start": 2001.24, "end": 2001.42, "probability": 0.181 }, { "start": 2001.42, "end": 2002.64, "probability": 0.5127 }, { "start": 2003.58, "end": 2004.78, "probability": 0.245 }, { "start": 2004.78, "end": 2006.12, "probability": 0.9604 }, { "start": 2006.12, "end": 2007.52, "probability": 0.9917 }, { "start": 2008.16, "end": 2009.38, "probability": 0.6903 }, { "start": 2010.82, "end": 2013.45, "probability": 0.9639 }, { "start": 2015.32, "end": 2015.8, "probability": 0.9382 }, { "start": 2016.32, "end": 2018.4, "probability": 0.871 }, { "start": 2019.5, "end": 2020.93, "probability": 0.9976 }, { "start": 2022.86, "end": 2024.4, "probability": 0.9988 }, { "start": 2025.2, "end": 2026.62, "probability": 0.9864 }, { "start": 2028.5, "end": 2033.4, "probability": 0.9049 }, { "start": 2034.62, "end": 2035.84, "probability": 0.0407 }, { "start": 2035.84, "end": 2037.55, "probability": 0.5837 }, { "start": 2038.08, "end": 2039.62, "probability": 0.5701 }, { "start": 2040.28, "end": 2042.4, "probability": 0.0041 }, { "start": 2043.04, "end": 2043.32, "probability": 0.2213 }, { "start": 2043.32, "end": 2043.32, "probability": 0.0564 }, { "start": 2043.32, "end": 2043.32, "probability": 0.1541 }, { "start": 2043.32, "end": 2044.23, "probability": 0.0939 }, { "start": 2046.02, "end": 2047.18, "probability": 0.4116 }, { "start": 2047.18, "end": 2048.16, "probability": 0.6098 }, { "start": 2048.3, "end": 2053.56, "probability": 0.9609 }, { "start": 2053.56, "end": 2053.56, "probability": 0.521 }, { "start": 2053.56, "end": 2053.58, "probability": 0.04 }, { "start": 2053.58, "end": 2055.28, "probability": 0.5863 }, { "start": 2056.12, "end": 2056.64, "probability": 0.7113 }, { "start": 2056.64, "end": 2058.08, "probability": 0.9639 }, { "start": 2061.24, "end": 2061.4, "probability": 0.3912 }, { "start": 2061.4, "end": 2061.54, "probability": 0.0714 }, { "start": 2061.54, "end": 2062.24, "probability": 0.7548 }, { "start": 2062.56, "end": 2063.9, "probability": 0.4981 }, { "start": 2064.16, "end": 2065.18, "probability": 0.6686 }, { "start": 2065.2, "end": 2066.78, "probability": 0.9858 }, { "start": 2068.4, "end": 2069.22, "probability": 0.4056 }, { "start": 2069.22, "end": 2070.24, "probability": 0.3362 }, { "start": 2070.24, "end": 2071.98, "probability": 0.2532 }, { "start": 2073.94, "end": 2075.6, "probability": 0.3063 }, { "start": 2075.7, "end": 2075.86, "probability": 0.5753 }, { "start": 2075.86, "end": 2076.02, "probability": 0.6742 }, { "start": 2076.04, "end": 2077.82, "probability": 0.74 }, { "start": 2077.84, "end": 2078.46, "probability": 0.5348 }, { "start": 2079.96, "end": 2084.08, "probability": 0.8718 }, { "start": 2084.24, "end": 2085.72, "probability": 0.616 }, { "start": 2086.52, "end": 2091.52, "probability": 0.9847 }, { "start": 2092.06, "end": 2094.8, "probability": 0.989 }, { "start": 2095.34, "end": 2096.4, "probability": 0.0735 }, { "start": 2096.64, "end": 2096.64, "probability": 0.1587 }, { "start": 2096.64, "end": 2099.08, "probability": 0.7563 }, { "start": 2099.62, "end": 2100.06, "probability": 0.8229 }, { "start": 2100.8, "end": 2103.68, "probability": 0.8206 }, { "start": 2104.38, "end": 2104.38, "probability": 0.4809 }, { "start": 2104.38, "end": 2104.38, "probability": 0.6352 }, { "start": 2104.5, "end": 2105.94, "probability": 0.3136 }, { "start": 2106.54, "end": 2107.7, "probability": 0.9617 }, { "start": 2108.46, "end": 2109.02, "probability": 0.0657 }, { "start": 2109.14, "end": 2109.22, "probability": 0.1686 }, { "start": 2109.22, "end": 2109.22, "probability": 0.285 }, { "start": 2109.22, "end": 2110.68, "probability": 0.7338 }, { "start": 2110.8, "end": 2111.6, "probability": 0.9283 }, { "start": 2111.78, "end": 2112.94, "probability": 0.9949 }, { "start": 2113.56, "end": 2115.26, "probability": 0.9547 }, { "start": 2115.44, "end": 2115.44, "probability": 0.1707 }, { "start": 2115.44, "end": 2115.46, "probability": 0.3433 }, { "start": 2115.46, "end": 2118.22, "probability": 0.734 }, { "start": 2118.44, "end": 2119.76, "probability": 0.6866 }, { "start": 2120.2, "end": 2123.2, "probability": 0.9741 }, { "start": 2124.36, "end": 2125.55, "probability": 0.0027 }, { "start": 2125.66, "end": 2125.8, "probability": 0.4994 }, { "start": 2125.8, "end": 2126.14, "probability": 0.6165 }, { "start": 2126.34, "end": 2127.94, "probability": 0.3841 }, { "start": 2128.38, "end": 2130.98, "probability": 0.951 }, { "start": 2131.58, "end": 2134.5, "probability": 0.9509 }, { "start": 2134.58, "end": 2138.12, "probability": 0.7991 }, { "start": 2138.12, "end": 2138.68, "probability": 0.0638 }, { "start": 2138.86, "end": 2140.0, "probability": 0.5731 }, { "start": 2140.26, "end": 2141.44, "probability": 0.6939 }, { "start": 2141.8, "end": 2142.58, "probability": 0.0029 }, { "start": 2143.44, "end": 2146.02, "probability": 0.8427 }, { "start": 2146.16, "end": 2149.67, "probability": 0.1752 }, { "start": 2151.08, "end": 2152.74, "probability": 0.0907 }, { "start": 2152.74, "end": 2152.74, "probability": 0.1616 }, { "start": 2152.74, "end": 2152.74, "probability": 0.0098 }, { "start": 2152.74, "end": 2154.6, "probability": 0.5042 }, { "start": 2154.96, "end": 2155.68, "probability": 0.3792 }, { "start": 2155.68, "end": 2156.74, "probability": 0.1876 }, { "start": 2156.74, "end": 2158.08, "probability": 0.749 }, { "start": 2158.14, "end": 2160.7, "probability": 0.6614 }, { "start": 2161.94, "end": 2161.94, "probability": 0.0264 }, { "start": 2161.94, "end": 2161.94, "probability": 0.124 }, { "start": 2161.94, "end": 2161.94, "probability": 0.1124 }, { "start": 2161.94, "end": 2161.94, "probability": 0.2414 }, { "start": 2161.94, "end": 2165.04, "probability": 0.6425 }, { "start": 2166.32, "end": 2166.66, "probability": 0.3863 }, { "start": 2167.04, "end": 2168.18, "probability": 0.5386 }, { "start": 2169.0, "end": 2169.22, "probability": 0.1737 }, { "start": 2169.22, "end": 2171.0, "probability": 0.7653 }, { "start": 2171.14, "end": 2172.66, "probability": 0.7665 }, { "start": 2172.8, "end": 2174.32, "probability": 0.8607 }, { "start": 2174.4, "end": 2174.9, "probability": 0.3636 }, { "start": 2174.94, "end": 2175.04, "probability": 0.0024 }, { "start": 2175.14, "end": 2175.18, "probability": 0.0709 }, { "start": 2175.18, "end": 2177.5, "probability": 0.736 }, { "start": 2177.72, "end": 2180.24, "probability": 0.9084 }, { "start": 2180.6, "end": 2180.98, "probability": 0.001 }, { "start": 2181.02, "end": 2182.24, "probability": 0.7986 }, { "start": 2182.28, "end": 2185.38, "probability": 0.3307 }, { "start": 2185.38, "end": 2185.72, "probability": 0.5927 }, { "start": 2186.82, "end": 2186.82, "probability": 0.5802 }, { "start": 2186.82, "end": 2190.84, "probability": 0.3702 }, { "start": 2190.88, "end": 2191.92, "probability": 0.9178 }, { "start": 2191.92, "end": 2192.35, "probability": 0.0734 }, { "start": 2193.1, "end": 2194.96, "probability": 0.9878 }, { "start": 2195.58, "end": 2198.2, "probability": 0.6534 }, { "start": 2198.38, "end": 2200.76, "probability": 0.6255 }, { "start": 2200.8, "end": 2201.52, "probability": 0.9265 }, { "start": 2201.58, "end": 2203.12, "probability": 0.8746 }, { "start": 2203.3, "end": 2203.86, "probability": 0.7646 }, { "start": 2203.88, "end": 2207.5, "probability": 0.7344 }, { "start": 2207.5, "end": 2208.3, "probability": 0.6086 }, { "start": 2208.78, "end": 2208.8, "probability": 0.0953 }, { "start": 2208.8, "end": 2208.8, "probability": 0.1092 }, { "start": 2208.8, "end": 2209.94, "probability": 0.5412 }, { "start": 2209.94, "end": 2210.36, "probability": 0.7609 }, { "start": 2210.84, "end": 2211.86, "probability": 0.1181 }, { "start": 2212.16, "end": 2214.06, "probability": 0.6199 }, { "start": 2214.22, "end": 2215.84, "probability": 0.905 }, { "start": 2216.1, "end": 2216.4, "probability": 0.4885 }, { "start": 2217.85, "end": 2220.14, "probability": 0.2617 }, { "start": 2220.2, "end": 2220.38, "probability": 0.3823 }, { "start": 2220.38, "end": 2222.46, "probability": 0.9356 }, { "start": 2223.12, "end": 2226.06, "probability": 0.3698 }, { "start": 2226.96, "end": 2228.14, "probability": 0.1764 }, { "start": 2228.4, "end": 2229.26, "probability": 0.0997 }, { "start": 2229.38, "end": 2229.64, "probability": 0.0043 }, { "start": 2229.7, "end": 2229.72, "probability": 0.2005 }, { "start": 2229.72, "end": 2231.62, "probability": 0.0857 }, { "start": 2231.62, "end": 2234.64, "probability": 0.0423 }, { "start": 2234.88, "end": 2236.14, "probability": 0.038 }, { "start": 2236.36, "end": 2237.38, "probability": 0.8195 }, { "start": 2238.15, "end": 2239.58, "probability": 0.6224 }, { "start": 2239.7, "end": 2240.02, "probability": 0.1586 }, { "start": 2240.02, "end": 2240.84, "probability": 0.0228 }, { "start": 2241.02, "end": 2243.8, "probability": 0.0495 }, { "start": 2243.9, "end": 2244.38, "probability": 0.4222 }, { "start": 2318.0, "end": 2318.0, "probability": 0.0 }, { "start": 2318.0, "end": 2318.0, "probability": 0.0 }, { "start": 2318.0, "end": 2318.0, "probability": 0.0 }, { "start": 2318.0, "end": 2318.0, "probability": 0.0 }, { "start": 2318.0, "end": 2318.0, "probability": 0.0 }, { "start": 2318.0, "end": 2318.0, "probability": 0.0 }, { "start": 2318.0, "end": 2318.0, "probability": 0.0 }, { "start": 2318.0, "end": 2318.0, "probability": 0.0 }, { "start": 2318.0, "end": 2318.0, "probability": 0.0 }, { "start": 2318.0, "end": 2318.0, "probability": 0.0 }, { "start": 2318.0, "end": 2318.0, "probability": 0.0 }, { "start": 2318.0, "end": 2318.0, "probability": 0.0 }, { "start": 2318.0, "end": 2318.0, "probability": 0.0 }, { "start": 2318.0, "end": 2318.0, "probability": 0.0 }, { "start": 2318.0, "end": 2318.0, "probability": 0.0 }, { "start": 2318.0, "end": 2318.0, "probability": 0.0 }, { "start": 2318.0, "end": 2318.0, "probability": 0.0 }, { "start": 2318.0, "end": 2318.0, "probability": 0.0 }, { "start": 2318.0, "end": 2318.0, "probability": 0.0 }, { "start": 2318.0, "end": 2318.0, "probability": 0.0 }, { "start": 2318.0, "end": 2318.0, "probability": 0.0 }, { "start": 2318.0, "end": 2318.0, "probability": 0.0 }, { "start": 2318.0, "end": 2318.0, "probability": 0.0 }, { "start": 2318.0, "end": 2318.0, "probability": 0.0 }, { "start": 2318.0, "end": 2318.0, "probability": 0.0 }, { "start": 2318.0, "end": 2318.0, "probability": 0.0 }, { "start": 2318.0, "end": 2318.0, "probability": 0.0 }, { "start": 2318.0, "end": 2318.0, "probability": 0.0 }, { "start": 2318.0, "end": 2318.0, "probability": 0.0 }, { "start": 2318.0, "end": 2318.0, "probability": 0.0 }, { "start": 2318.0, "end": 2318.0, "probability": 0.0 }, { "start": 2318.0, "end": 2318.0, "probability": 0.0 }, { "start": 2318.0, "end": 2318.0, "probability": 0.0 }, { "start": 2318.0, "end": 2318.0, "probability": 0.0 }, { "start": 2318.0, "end": 2318.0, "probability": 0.0 }, { "start": 2318.0, "end": 2318.0, "probability": 0.0 }, { "start": 2318.0, "end": 2318.0, "probability": 0.0 }, { "start": 2318.0, "end": 2318.0, "probability": 0.0 }, { "start": 2318.0, "end": 2318.0, "probability": 0.0 }, { "start": 2318.0, "end": 2318.0, "probability": 0.0 }, { "start": 2318.0, "end": 2318.0, "probability": 0.0 }, { "start": 2318.0, "end": 2318.0, "probability": 0.0 }, { "start": 2318.0, "end": 2318.0, "probability": 0.0 }, { "start": 2318.0, "end": 2318.0, "probability": 0.0 }, { "start": 2318.0, "end": 2318.0, "probability": 0.0 }, { "start": 2318.0, "end": 2318.0, "probability": 0.0 }, { "start": 2318.0, "end": 2318.0, "probability": 0.0 }, { "start": 2318.0, "end": 2318.0, "probability": 0.0 }, { "start": 2327.48, "end": 2328.06, "probability": 0.0574 }, { "start": 2328.42, "end": 2336.24, "probability": 0.0769 }, { "start": 2336.5, "end": 2337.66, "probability": 0.0362 }, { "start": 2343.32, "end": 2344.9, "probability": 0.0291 }, { "start": 2344.9, "end": 2345.48, "probability": 0.0842 }, { "start": 2346.72, "end": 2347.65, "probability": 0.1401 }, { "start": 2348.3, "end": 2351.42, "probability": 0.1107 }, { "start": 2354.47, "end": 2356.56, "probability": 0.1457 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.0, "end": 2441.0, "probability": 0.0 }, { "start": 2441.08, "end": 2441.46, "probability": 0.0903 }, { "start": 2441.46, "end": 2441.6, "probability": 0.1606 }, { "start": 2442.36, "end": 2442.44, "probability": 0.1502 }, { "start": 2442.44, "end": 2442.86, "probability": 0.4778 }, { "start": 2443.24, "end": 2444.72, "probability": 0.9111 }, { "start": 2445.5, "end": 2445.72, "probability": 0.1476 }, { "start": 2445.72, "end": 2447.96, "probability": 0.9392 }, { "start": 2447.96, "end": 2451.86, "probability": 0.9028 }, { "start": 2451.86, "end": 2452.04, "probability": 0.1519 }, { "start": 2452.7, "end": 2455.04, "probability": 0.3054 }, { "start": 2455.06, "end": 2455.06, "probability": 0.719 }, { "start": 2455.06, "end": 2458.76, "probability": 0.5216 }, { "start": 2459.36, "end": 2462.23, "probability": 0.6789 }, { "start": 2463.32, "end": 2464.22, "probability": 0.9698 }, { "start": 2465.02, "end": 2465.92, "probability": 0.9717 }, { "start": 2466.54, "end": 2467.44, "probability": 0.9206 }, { "start": 2467.46, "end": 2469.4, "probability": 0.7513 }, { "start": 2469.44, "end": 2469.88, "probability": 0.7157 }, { "start": 2469.88, "end": 2470.5, "probability": 0.3341 }, { "start": 2470.9, "end": 2471.0, "probability": 0.2365 }, { "start": 2471.0, "end": 2471.4, "probability": 0.2966 }, { "start": 2471.46, "end": 2474.8, "probability": 0.8113 }, { "start": 2474.88, "end": 2475.5, "probability": 0.6677 }, { "start": 2475.58, "end": 2478.88, "probability": 0.9212 }, { "start": 2479.9, "end": 2482.76, "probability": 0.0591 }, { "start": 2482.76, "end": 2482.76, "probability": 0.0632 }, { "start": 2482.76, "end": 2483.36, "probability": 0.3547 }, { "start": 2483.6, "end": 2484.58, "probability": 0.8959 }, { "start": 2484.9, "end": 2486.49, "probability": 0.8374 }, { "start": 2486.94, "end": 2488.94, "probability": 0.7997 }, { "start": 2489.08, "end": 2489.12, "probability": 0.0811 }, { "start": 2489.36, "end": 2493.38, "probability": 0.7421 }, { "start": 2493.56, "end": 2497.86, "probability": 0.8205 }, { "start": 2498.26, "end": 2499.81, "probability": 0.8684 }, { "start": 2500.26, "end": 2501.77, "probability": 0.5421 }, { "start": 2502.36, "end": 2503.12, "probability": 0.0823 }, { "start": 2503.86, "end": 2504.06, "probability": 0.4364 }, { "start": 2504.06, "end": 2504.42, "probability": 0.0237 }, { "start": 2504.42, "end": 2504.62, "probability": 0.0548 }, { "start": 2504.76, "end": 2505.25, "probability": 0.0913 }, { "start": 2507.34, "end": 2510.7, "probability": 0.7655 }, { "start": 2511.3, "end": 2513.96, "probability": 0.8528 }, { "start": 2514.02, "end": 2516.46, "probability": 0.5885 }, { "start": 2516.56, "end": 2520.14, "probability": 0.8604 }, { "start": 2520.18, "end": 2520.92, "probability": 0.3649 }, { "start": 2520.92, "end": 2522.64, "probability": 0.8887 }, { "start": 2522.76, "end": 2523.94, "probability": 0.9121 }, { "start": 2523.94, "end": 2524.32, "probability": 0.8934 }, { "start": 2524.86, "end": 2526.64, "probability": 0.8024 }, { "start": 2527.86, "end": 2528.98, "probability": 0.8555 }, { "start": 2529.8, "end": 2530.04, "probability": 0.9768 }, { "start": 2530.84, "end": 2532.08, "probability": 0.973 }, { "start": 2532.88, "end": 2535.3, "probability": 0.9985 }, { "start": 2535.9, "end": 2537.18, "probability": 0.6813 }, { "start": 2537.92, "end": 2538.9, "probability": 0.8197 }, { "start": 2539.08, "end": 2541.14, "probability": 0.7367 }, { "start": 2541.32, "end": 2541.5, "probability": 0.5859 }, { "start": 2541.5, "end": 2544.38, "probability": 0.9841 }, { "start": 2544.38, "end": 2546.62, "probability": 0.9912 }, { "start": 2546.92, "end": 2547.58, "probability": 0.2614 }, { "start": 2548.16, "end": 2549.86, "probability": 0.7708 }, { "start": 2550.02, "end": 2551.4, "probability": 0.9761 }, { "start": 2552.16, "end": 2555.14, "probability": 0.9993 }, { "start": 2555.14, "end": 2557.58, "probability": 0.8095 }, { "start": 2557.7, "end": 2558.11, "probability": 0.5756 }, { "start": 2558.94, "end": 2562.72, "probability": 0.9253 }, { "start": 2563.28, "end": 2565.46, "probability": 0.9901 }, { "start": 2565.48, "end": 2566.36, "probability": 0.982 }, { "start": 2566.44, "end": 2567.88, "probability": 0.9277 }, { "start": 2568.62, "end": 2572.32, "probability": 0.9954 }, { "start": 2572.92, "end": 2573.7, "probability": 0.9153 }, { "start": 2573.86, "end": 2576.22, "probability": 0.9841 }, { "start": 2576.66, "end": 2577.72, "probability": 0.9771 }, { "start": 2578.14, "end": 2579.32, "probability": 0.5668 }, { "start": 2579.8, "end": 2580.46, "probability": 0.7136 }, { "start": 2583.58, "end": 2584.48, "probability": 0.5373 }, { "start": 2584.48, "end": 2585.24, "probability": 0.5598 }, { "start": 2585.92, "end": 2587.4, "probability": 0.7259 }, { "start": 2588.08, "end": 2589.42, "probability": 0.8359 }, { "start": 2591.02, "end": 2593.16, "probability": 0.1523 }, { "start": 2598.1, "end": 2599.54, "probability": 0.0344 }, { "start": 2612.52, "end": 2612.78, "probability": 0.0534 }, { "start": 2612.78, "end": 2612.78, "probability": 0.1629 }, { "start": 2612.78, "end": 2612.78, "probability": 0.0127 }, { "start": 2612.78, "end": 2613.42, "probability": 0.4321 }, { "start": 2613.5, "end": 2614.96, "probability": 0.9214 }, { "start": 2615.04, "end": 2616.06, "probability": 0.8173 }, { "start": 2616.14, "end": 2618.8, "probability": 0.8364 }, { "start": 2624.7, "end": 2626.52, "probability": 0.6131 }, { "start": 2628.18, "end": 2632.42, "probability": 0.9947 }, { "start": 2633.76, "end": 2638.06, "probability": 0.9929 }, { "start": 2639.32, "end": 2640.44, "probability": 0.9761 }, { "start": 2641.92, "end": 2644.16, "probability": 0.8643 }, { "start": 2644.98, "end": 2647.82, "probability": 0.9252 }, { "start": 2648.4, "end": 2649.18, "probability": 0.6712 }, { "start": 2650.24, "end": 2652.22, "probability": 0.9551 }, { "start": 2653.74, "end": 2658.44, "probability": 0.9058 }, { "start": 2659.06, "end": 2659.86, "probability": 0.9967 }, { "start": 2660.7, "end": 2667.4, "probability": 0.9467 }, { "start": 2668.26, "end": 2671.26, "probability": 0.8174 }, { "start": 2672.4, "end": 2673.94, "probability": 0.9083 }, { "start": 2675.04, "end": 2678.92, "probability": 0.9766 }, { "start": 2679.74, "end": 2680.68, "probability": 0.8132 }, { "start": 2682.42, "end": 2683.56, "probability": 0.6495 }, { "start": 2685.96, "end": 2687.24, "probability": 0.5606 }, { "start": 2687.98, "end": 2689.9, "probability": 0.9137 }, { "start": 2691.4, "end": 2692.36, "probability": 0.9119 }, { "start": 2693.2, "end": 2694.84, "probability": 0.9734 }, { "start": 2696.4, "end": 2697.14, "probability": 0.8213 }, { "start": 2697.96, "end": 2698.8, "probability": 0.9081 }, { "start": 2699.32, "end": 2699.78, "probability": 0.6912 }, { "start": 2701.37, "end": 2702.4, "probability": 0.9388 }, { "start": 2703.24, "end": 2705.0, "probability": 0.8713 }, { "start": 2705.7, "end": 2706.7, "probability": 0.7574 }, { "start": 2707.22, "end": 2707.84, "probability": 0.8896 }, { "start": 2709.28, "end": 2710.38, "probability": 0.7475 }, { "start": 2711.24, "end": 2712.54, "probability": 0.8799 }, { "start": 2713.16, "end": 2714.74, "probability": 0.7621 }, { "start": 2715.68, "end": 2717.58, "probability": 0.9404 }, { "start": 2718.52, "end": 2720.04, "probability": 0.9979 }, { "start": 2721.0, "end": 2723.26, "probability": 0.9044 }, { "start": 2724.18, "end": 2728.24, "probability": 0.9918 }, { "start": 2730.1, "end": 2731.94, "probability": 0.8128 }, { "start": 2732.56, "end": 2733.44, "probability": 0.7757 }, { "start": 2733.96, "end": 2734.92, "probability": 0.8654 }, { "start": 2735.8, "end": 2737.4, "probability": 0.9729 }, { "start": 2738.46, "end": 2739.6, "probability": 0.9638 }, { "start": 2740.2, "end": 2742.66, "probability": 0.7098 }, { "start": 2743.8, "end": 2744.14, "probability": 0.7817 }, { "start": 2744.66, "end": 2747.28, "probability": 0.5017 }, { "start": 2747.28, "end": 2747.44, "probability": 0.3121 }, { "start": 2747.98, "end": 2749.6, "probability": 0.9377 }, { "start": 2750.66, "end": 2751.86, "probability": 0.9725 }, { "start": 2753.54, "end": 2755.22, "probability": 0.8992 }, { "start": 2756.72, "end": 2759.48, "probability": 0.9772 }, { "start": 2761.38, "end": 2763.4, "probability": 0.7963 }, { "start": 2763.98, "end": 2764.88, "probability": 0.8848 }, { "start": 2765.56, "end": 2766.3, "probability": 0.9492 }, { "start": 2766.86, "end": 2767.66, "probability": 0.9763 }, { "start": 2769.28, "end": 2770.04, "probability": 0.8407 }, { "start": 2770.82, "end": 2776.88, "probability": 0.9949 }, { "start": 2777.64, "end": 2780.52, "probability": 0.9948 }, { "start": 2781.12, "end": 2784.6, "probability": 0.9941 }, { "start": 2784.72, "end": 2786.12, "probability": 0.8297 }, { "start": 2786.96, "end": 2787.6, "probability": 0.7878 }, { "start": 2788.44, "end": 2790.74, "probability": 0.8588 }, { "start": 2791.28, "end": 2792.02, "probability": 0.7478 }, { "start": 2792.78, "end": 2793.42, "probability": 0.7697 }, { "start": 2794.26, "end": 2794.76, "probability": 0.8271 }, { "start": 2797.14, "end": 2799.2, "probability": 0.9917 }, { "start": 2799.4, "end": 2800.54, "probability": 0.9074 }, { "start": 2824.12, "end": 2825.9, "probability": 0.6406 }, { "start": 2827.42, "end": 2832.04, "probability": 0.8664 }, { "start": 2833.38, "end": 2834.06, "probability": 0.9709 }, { "start": 2835.64, "end": 2838.1, "probability": 0.9802 }, { "start": 2838.96, "end": 2840.38, "probability": 0.7227 }, { "start": 2842.34, "end": 2845.02, "probability": 0.9272 }, { "start": 2846.5, "end": 2849.94, "probability": 0.993 }, { "start": 2850.0, "end": 2854.64, "probability": 0.999 }, { "start": 2856.04, "end": 2860.12, "probability": 0.9575 }, { "start": 2860.7, "end": 2864.66, "probability": 0.9391 }, { "start": 2864.66, "end": 2868.64, "probability": 0.8928 }, { "start": 2869.72, "end": 2870.26, "probability": 0.8309 }, { "start": 2870.44, "end": 2871.34, "probability": 0.9708 }, { "start": 2871.46, "end": 2871.82, "probability": 0.9867 }, { "start": 2871.92, "end": 2872.3, "probability": 0.9046 }, { "start": 2872.44, "end": 2872.8, "probability": 0.9896 }, { "start": 2873.02, "end": 2873.84, "probability": 0.6917 }, { "start": 2875.1, "end": 2878.28, "probability": 0.9606 }, { "start": 2880.38, "end": 2881.4, "probability": 0.948 }, { "start": 2883.02, "end": 2885.64, "probability": 0.9983 }, { "start": 2886.74, "end": 2889.42, "probability": 0.8998 }, { "start": 2890.46, "end": 2892.26, "probability": 0.9888 }, { "start": 2893.78, "end": 2894.72, "probability": 0.8682 }, { "start": 2895.32, "end": 2899.84, "probability": 0.9932 }, { "start": 2899.84, "end": 2903.24, "probability": 0.9987 }, { "start": 2904.36, "end": 2905.0, "probability": 0.7755 }, { "start": 2905.4, "end": 2906.42, "probability": 0.9966 }, { "start": 2906.68, "end": 2907.34, "probability": 0.8677 }, { "start": 2907.54, "end": 2908.38, "probability": 0.9541 }, { "start": 2908.88, "end": 2910.86, "probability": 0.998 }, { "start": 2911.86, "end": 2915.02, "probability": 0.988 }, { "start": 2916.25, "end": 2919.36, "probability": 0.9811 }, { "start": 2920.02, "end": 2923.54, "probability": 0.9846 }, { "start": 2924.92, "end": 2927.26, "probability": 0.9973 }, { "start": 2928.2, "end": 2929.9, "probability": 0.9842 }, { "start": 2931.26, "end": 2931.56, "probability": 0.5977 }, { "start": 2931.64, "end": 2935.76, "probability": 0.9366 }, { "start": 2935.88, "end": 2936.36, "probability": 0.6573 }, { "start": 2938.08, "end": 2941.6, "probability": 0.9801 }, { "start": 2943.33, "end": 2945.52, "probability": 0.6754 }, { "start": 2946.18, "end": 2948.58, "probability": 0.8434 }, { "start": 2949.42, "end": 2952.84, "probability": 0.9976 }, { "start": 2953.42, "end": 2954.4, "probability": 0.7431 }, { "start": 2955.42, "end": 2956.62, "probability": 0.5925 }, { "start": 2956.84, "end": 2959.58, "probability": 0.8581 }, { "start": 2960.2, "end": 2961.22, "probability": 0.9734 }, { "start": 2961.92, "end": 2964.46, "probability": 0.9624 }, { "start": 2964.98, "end": 2966.72, "probability": 0.7779 }, { "start": 2967.58, "end": 2967.94, "probability": 0.7294 }, { "start": 2968.02, "end": 2969.06, "probability": 0.938 }, { "start": 2969.54, "end": 2971.42, "probability": 0.8914 }, { "start": 2972.06, "end": 2977.6, "probability": 0.8747 }, { "start": 2979.64, "end": 2982.2, "probability": 0.8411 }, { "start": 2983.3, "end": 2986.56, "probability": 0.9891 }, { "start": 2986.58, "end": 2990.7, "probability": 0.946 }, { "start": 2990.96, "end": 2991.68, "probability": 0.7321 }, { "start": 2991.84, "end": 2992.94, "probability": 0.7605 }, { "start": 2995.14, "end": 2997.14, "probability": 0.7047 }, { "start": 2997.24, "end": 2997.76, "probability": 0.6683 }, { "start": 2998.36, "end": 2999.78, "probability": 0.8849 }, { "start": 3000.46, "end": 3004.64, "probability": 0.9792 }, { "start": 3005.06, "end": 3006.24, "probability": 0.9518 }, { "start": 3006.34, "end": 3008.82, "probability": 0.8871 }, { "start": 3009.82, "end": 3010.34, "probability": 0.5241 }, { "start": 3011.3, "end": 3011.62, "probability": 0.3448 }, { "start": 3011.78, "end": 3013.2, "probability": 0.8217 }, { "start": 3017.78, "end": 3018.38, "probability": 0.478 }, { "start": 3018.38, "end": 3019.06, "probability": 0.0153 }, { "start": 3028.64, "end": 3029.66, "probability": 0.2311 }, { "start": 3039.2, "end": 3039.76, "probability": 0.0368 }, { "start": 3044.06, "end": 3045.54, "probability": 0.752 }, { "start": 3045.54, "end": 3048.26, "probability": 0.2889 }, { "start": 3048.26, "end": 3048.26, "probability": 0.0189 }, { "start": 3048.26, "end": 3048.26, "probability": 0.472 }, { "start": 3048.26, "end": 3049.12, "probability": 0.8189 }, { "start": 3049.34, "end": 3049.62, "probability": 0.8206 }, { "start": 3054.44, "end": 3055.62, "probability": 0.3951 }, { "start": 3056.36, "end": 3057.92, "probability": 0.9065 }, { "start": 3061.96, "end": 3063.28, "probability": 0.9463 }, { "start": 3067.18, "end": 3067.76, "probability": 0.7573 }, { "start": 3068.12, "end": 3068.36, "probability": 0.1569 }, { "start": 3068.76, "end": 3069.3, "probability": 0.887 }, { "start": 3069.84, "end": 3070.56, "probability": 0.6801 }, { "start": 3070.74, "end": 3072.28, "probability": 0.7227 }, { "start": 3072.58, "end": 3073.34, "probability": 0.1915 }, { "start": 3073.34, "end": 3075.2, "probability": 0.7501 }, { "start": 3075.76, "end": 3076.88, "probability": 0.8696 }, { "start": 3078.06, "end": 3080.66, "probability": 0.7525 }, { "start": 3081.34, "end": 3083.0, "probability": 0.9677 }, { "start": 3083.68, "end": 3086.06, "probability": 0.9819 }, { "start": 3087.26, "end": 3087.84, "probability": 0.8463 }, { "start": 3088.76, "end": 3089.78, "probability": 0.7085 }, { "start": 3090.5, "end": 3093.82, "probability": 0.9761 }, { "start": 3094.46, "end": 3096.3, "probability": 0.9413 }, { "start": 3096.9, "end": 3097.54, "probability": 0.6363 }, { "start": 3098.48, "end": 3101.4, "probability": 0.8647 }, { "start": 3102.28, "end": 3103.48, "probability": 0.7536 }, { "start": 3106.66, "end": 3110.08, "probability": 0.8101 }, { "start": 3110.8, "end": 3112.92, "probability": 0.7962 }, { "start": 3113.5, "end": 3118.26, "probability": 0.772 }, { "start": 3120.72, "end": 3121.08, "probability": 0.9461 }, { "start": 3122.46, "end": 3123.66, "probability": 0.9805 }, { "start": 3124.66, "end": 3129.16, "probability": 0.9566 }, { "start": 3129.16, "end": 3132.28, "probability": 0.9325 }, { "start": 3133.94, "end": 3134.74, "probability": 0.7119 }, { "start": 3135.56, "end": 3138.46, "probability": 0.698 }, { "start": 3139.06, "end": 3140.98, "probability": 0.4512 }, { "start": 3141.34, "end": 3143.24, "probability": 0.9617 }, { "start": 3143.66, "end": 3144.34, "probability": 0.7208 }, { "start": 3144.48, "end": 3146.4, "probability": 0.9697 }, { "start": 3147.86, "end": 3149.34, "probability": 0.9983 }, { "start": 3151.28, "end": 3154.36, "probability": 0.9425 }, { "start": 3155.42, "end": 3156.4, "probability": 0.8633 }, { "start": 3157.3, "end": 3158.84, "probability": 0.687 }, { "start": 3159.82, "end": 3160.54, "probability": 0.8017 }, { "start": 3161.4, "end": 3164.18, "probability": 0.8676 }, { "start": 3165.24, "end": 3166.42, "probability": 0.8841 }, { "start": 3168.46, "end": 3170.58, "probability": 0.7686 }, { "start": 3172.46, "end": 3173.4, "probability": 0.9373 }, { "start": 3177.26, "end": 3177.88, "probability": 0.6965 }, { "start": 3178.6, "end": 3181.27, "probability": 0.5364 }, { "start": 3181.94, "end": 3183.86, "probability": 0.8704 }, { "start": 3184.14, "end": 3184.42, "probability": 0.9311 }, { "start": 3185.24, "end": 3189.48, "probability": 0.9703 }, { "start": 3190.24, "end": 3191.2, "probability": 0.7563 }, { "start": 3192.16, "end": 3194.41, "probability": 0.7105 }, { "start": 3195.68, "end": 3198.52, "probability": 0.974 }, { "start": 3199.5, "end": 3201.8, "probability": 0.9519 }, { "start": 3202.12, "end": 3204.28, "probability": 0.9363 }, { "start": 3205.84, "end": 3208.82, "probability": 0.915 }, { "start": 3209.72, "end": 3211.4, "probability": 0.9925 }, { "start": 3211.98, "end": 3213.1, "probability": 0.7035 }, { "start": 3214.82, "end": 3217.98, "probability": 0.7887 }, { "start": 3218.56, "end": 3221.86, "probability": 0.9749 }, { "start": 3222.64, "end": 3223.88, "probability": 0.758 }, { "start": 3225.6, "end": 3230.72, "probability": 0.9588 }, { "start": 3231.14, "end": 3232.06, "probability": 0.7563 }, { "start": 3232.2, "end": 3235.38, "probability": 0.9088 }, { "start": 3235.86, "end": 3238.06, "probability": 0.777 }, { "start": 3238.44, "end": 3240.86, "probability": 0.9894 }, { "start": 3241.94, "end": 3244.7, "probability": 0.9351 }, { "start": 3245.5, "end": 3249.12, "probability": 0.6329 }, { "start": 3250.98, "end": 3252.84, "probability": 0.7806 }, { "start": 3253.0, "end": 3255.7, "probability": 0.946 }, { "start": 3255.88, "end": 3257.39, "probability": 0.875 }, { "start": 3257.98, "end": 3258.7, "probability": 0.4697 }, { "start": 3259.74, "end": 3261.82, "probability": 0.9707 }, { "start": 3262.26, "end": 3262.92, "probability": 0.431 }, { "start": 3262.98, "end": 3263.26, "probability": 0.825 }, { "start": 3265.28, "end": 3268.86, "probability": 0.6158 }, { "start": 3269.66, "end": 3272.12, "probability": 0.9131 }, { "start": 3273.0, "end": 3274.76, "probability": 0.7149 }, { "start": 3275.44, "end": 3281.92, "probability": 0.9323 }, { "start": 3284.18, "end": 3287.82, "probability": 0.8093 }, { "start": 3288.56, "end": 3290.08, "probability": 0.9417 }, { "start": 3290.68, "end": 3292.12, "probability": 0.9976 }, { "start": 3292.68, "end": 3295.66, "probability": 0.795 }, { "start": 3296.64, "end": 3299.2, "probability": 0.7772 }, { "start": 3300.02, "end": 3301.9, "probability": 0.6054 }, { "start": 3302.86, "end": 3303.9, "probability": 0.8156 }, { "start": 3304.02, "end": 3308.54, "probability": 0.8438 }, { "start": 3309.18, "end": 3312.06, "probability": 0.7437 }, { "start": 3312.3, "end": 3313.3, "probability": 0.3849 }, { "start": 3314.12, "end": 3315.02, "probability": 0.3929 }, { "start": 3315.96, "end": 3317.66, "probability": 0.7031 }, { "start": 3318.28, "end": 3319.4, "probability": 0.5197 }, { "start": 3320.06, "end": 3321.22, "probability": 0.6413 }, { "start": 3322.22, "end": 3322.8, "probability": 0.8059 }, { "start": 3323.36, "end": 3324.76, "probability": 0.9696 }, { "start": 3326.84, "end": 3327.38, "probability": 0.9717 }, { "start": 3329.42, "end": 3330.39, "probability": 0.8208 }, { "start": 3333.18, "end": 3334.08, "probability": 0.2873 }, { "start": 3335.1, "end": 3336.36, "probability": 0.5244 }, { "start": 3339.68, "end": 3339.92, "probability": 0.7883 }, { "start": 3340.62, "end": 3341.28, "probability": 0.6329 }, { "start": 3342.22, "end": 3343.4, "probability": 0.8552 }, { "start": 3343.6, "end": 3344.94, "probability": 0.717 }, { "start": 3345.16, "end": 3347.04, "probability": 0.9719 }, { "start": 3374.34, "end": 3376.26, "probability": 0.6379 }, { "start": 3377.64, "end": 3380.12, "probability": 0.8097 }, { "start": 3381.92, "end": 3386.9, "probability": 0.9735 }, { "start": 3387.6, "end": 3389.7, "probability": 0.9389 }, { "start": 3390.3, "end": 3390.64, "probability": 0.7628 }, { "start": 3391.78, "end": 3395.16, "probability": 0.959 }, { "start": 3396.0, "end": 3398.62, "probability": 0.9788 }, { "start": 3399.3, "end": 3400.54, "probability": 0.7753 }, { "start": 3401.36, "end": 3401.92, "probability": 0.8687 }, { "start": 3402.28, "end": 3406.36, "probability": 0.953 }, { "start": 3407.22, "end": 3410.44, "probability": 0.843 }, { "start": 3411.44, "end": 3413.92, "probability": 0.9791 }, { "start": 3414.46, "end": 3417.64, "probability": 0.95 }, { "start": 3418.48, "end": 3423.26, "probability": 0.994 }, { "start": 3424.28, "end": 3426.34, "probability": 0.9736 }, { "start": 3427.24, "end": 3427.88, "probability": 0.8702 }, { "start": 3428.74, "end": 3432.78, "probability": 0.9764 }, { "start": 3433.42, "end": 3436.36, "probability": 0.9985 }, { "start": 3437.16, "end": 3440.56, "probability": 0.9945 }, { "start": 3441.54, "end": 3441.66, "probability": 0.9478 }, { "start": 3442.24, "end": 3442.83, "probability": 0.9563 }, { "start": 3443.84, "end": 3445.44, "probability": 0.9978 }, { "start": 3445.58, "end": 3448.78, "probability": 0.9967 }, { "start": 3449.72, "end": 3451.04, "probability": 0.7955 }, { "start": 3451.72, "end": 3452.34, "probability": 0.7422 }, { "start": 3453.16, "end": 3454.52, "probability": 0.9948 }, { "start": 3455.2, "end": 3456.16, "probability": 0.923 }, { "start": 3457.1, "end": 3459.18, "probability": 0.9844 }, { "start": 3460.12, "end": 3462.64, "probability": 0.9921 }, { "start": 3463.1, "end": 3466.76, "probability": 0.9172 }, { "start": 3467.68, "end": 3471.38, "probability": 0.9995 }, { "start": 3472.08, "end": 3476.68, "probability": 0.9967 }, { "start": 3477.9, "end": 3484.74, "probability": 0.9897 }, { "start": 3486.32, "end": 3490.62, "probability": 0.9926 }, { "start": 3491.3, "end": 3495.1, "probability": 0.994 }, { "start": 3495.1, "end": 3498.2, "probability": 0.9938 }, { "start": 3499.32, "end": 3500.1, "probability": 0.9794 }, { "start": 3501.08, "end": 3502.06, "probability": 0.897 }, { "start": 3502.76, "end": 3503.42, "probability": 0.932 }, { "start": 3504.1, "end": 3505.2, "probability": 0.9487 }, { "start": 3505.84, "end": 3508.32, "probability": 0.9905 }, { "start": 3508.32, "end": 3512.04, "probability": 0.9972 }, { "start": 3512.74, "end": 3514.48, "probability": 0.9056 }, { "start": 3515.02, "end": 3519.02, "probability": 0.998 }, { "start": 3519.66, "end": 3521.36, "probability": 0.9874 }, { "start": 3522.2, "end": 3527.62, "probability": 0.9937 }, { "start": 3527.62, "end": 3532.4, "probability": 0.9961 }, { "start": 3533.02, "end": 3535.44, "probability": 0.9949 }, { "start": 3536.1, "end": 3538.8, "probability": 0.9925 }, { "start": 3539.64, "end": 3542.8, "probability": 0.9384 }, { "start": 3543.58, "end": 3548.82, "probability": 0.9919 }, { "start": 3549.34, "end": 3552.48, "probability": 0.9783 }, { "start": 3553.1, "end": 3556.98, "probability": 0.9795 }, { "start": 3557.94, "end": 3561.6, "probability": 0.902 }, { "start": 3561.6, "end": 3562.54, "probability": 0.8202 }, { "start": 3562.66, "end": 3562.98, "probability": 0.7149 }, { "start": 3563.4, "end": 3564.6, "probability": 0.6978 }, { "start": 3564.8, "end": 3565.84, "probability": 0.5865 }, { "start": 3565.84, "end": 3567.04, "probability": 0.8846 }, { "start": 3567.36, "end": 3567.38, "probability": 0.3677 }, { "start": 3567.38, "end": 3571.24, "probability": 0.9832 }, { "start": 3571.78, "end": 3574.88, "probability": 0.9639 }, { "start": 3575.2, "end": 3576.62, "probability": 0.7165 }, { "start": 3577.44, "end": 3580.55, "probability": 0.9692 }, { "start": 3581.34, "end": 3583.18, "probability": 0.9744 }, { "start": 3583.88, "end": 3584.84, "probability": 0.9033 }, { "start": 3585.74, "end": 3586.92, "probability": 0.9013 }, { "start": 3587.46, "end": 3588.64, "probability": 0.7487 }, { "start": 3589.02, "end": 3591.9, "probability": 0.9979 }, { "start": 3592.46, "end": 3594.58, "probability": 0.9507 }, { "start": 3594.9, "end": 3595.32, "probability": 0.5096 }, { "start": 3595.4, "end": 3596.7, "probability": 0.9019 }, { "start": 3626.74, "end": 3628.56, "probability": 0.6645 }, { "start": 3629.72, "end": 3631.82, "probability": 0.8699 }, { "start": 3632.6, "end": 3633.04, "probability": 0.8783 }, { "start": 3634.5, "end": 3636.04, "probability": 0.8999 }, { "start": 3636.4, "end": 3640.28, "probability": 0.9318 }, { "start": 3640.48, "end": 3642.8, "probability": 0.9373 }, { "start": 3643.56, "end": 3643.84, "probability": 0.7713 }, { "start": 3646.18, "end": 3647.26, "probability": 0.8749 }, { "start": 3648.04, "end": 3650.6, "probability": 0.9957 }, { "start": 3651.84, "end": 3654.0, "probability": 0.9806 }, { "start": 3654.16, "end": 3654.94, "probability": 0.5943 }, { "start": 3655.77, "end": 3660.46, "probability": 0.9924 }, { "start": 3661.04, "end": 3665.82, "probability": 0.9994 }, { "start": 3665.82, "end": 3670.82, "probability": 0.9995 }, { "start": 3671.16, "end": 3671.68, "probability": 0.754 }, { "start": 3673.14, "end": 3675.5, "probability": 0.8654 }, { "start": 3675.74, "end": 3676.71, "probability": 0.7582 }, { "start": 3677.88, "end": 3678.7, "probability": 0.9231 }, { "start": 3680.26, "end": 3681.7, "probability": 0.9992 }, { "start": 3684.78, "end": 3690.12, "probability": 0.9973 }, { "start": 3690.12, "end": 3696.16, "probability": 0.9985 }, { "start": 3696.84, "end": 3698.92, "probability": 0.9922 }, { "start": 3699.44, "end": 3700.06, "probability": 0.9408 }, { "start": 3700.92, "end": 3701.16, "probability": 0.7027 }, { "start": 3703.0, "end": 3705.96, "probability": 0.9402 }, { "start": 3705.96, "end": 3709.54, "probability": 0.9994 }, { "start": 3710.12, "end": 3710.96, "probability": 0.6895 }, { "start": 3711.72, "end": 3712.86, "probability": 0.8765 }, { "start": 3713.56, "end": 3718.98, "probability": 0.9946 }, { "start": 3719.56, "end": 3720.72, "probability": 0.8927 }, { "start": 3721.56, "end": 3723.85, "probability": 0.9674 }, { "start": 3724.84, "end": 3726.9, "probability": 0.9797 }, { "start": 3728.18, "end": 3729.46, "probability": 0.9644 }, { "start": 3730.48, "end": 3730.94, "probability": 0.4522 }, { "start": 3731.72, "end": 3736.0, "probability": 0.9886 }, { "start": 3737.16, "end": 3740.22, "probability": 0.9566 }, { "start": 3740.92, "end": 3744.08, "probability": 0.9943 }, { "start": 3744.94, "end": 3749.44, "probability": 0.9893 }, { "start": 3750.26, "end": 3752.08, "probability": 0.9849 }, { "start": 3752.86, "end": 3754.88, "probability": 0.9975 }, { "start": 3755.48, "end": 3756.7, "probability": 0.7754 }, { "start": 3758.44, "end": 3761.32, "probability": 0.9344 }, { "start": 3762.12, "end": 3762.52, "probability": 0.4965 }, { "start": 3763.76, "end": 3767.18, "probability": 0.996 }, { "start": 3767.78, "end": 3769.28, "probability": 0.7349 }, { "start": 3770.1, "end": 3775.36, "probability": 0.9635 }, { "start": 3775.36, "end": 3781.12, "probability": 0.9984 }, { "start": 3781.76, "end": 3784.12, "probability": 1.0 }, { "start": 3785.56, "end": 3788.52, "probability": 0.7901 }, { "start": 3789.2, "end": 3792.76, "probability": 0.9982 }, { "start": 3792.76, "end": 3796.44, "probability": 0.9738 }, { "start": 3796.96, "end": 3799.54, "probability": 0.9768 }, { "start": 3799.94, "end": 3800.98, "probability": 0.774 }, { "start": 3801.0, "end": 3804.18, "probability": 0.9261 }, { "start": 3804.32, "end": 3805.1, "probability": 0.8811 }, { "start": 3805.58, "end": 3809.86, "probability": 0.9968 }, { "start": 3809.86, "end": 3813.9, "probability": 0.9832 }, { "start": 3814.21, "end": 3817.26, "probability": 0.9568 }, { "start": 3818.04, "end": 3823.46, "probability": 0.9879 }, { "start": 3824.54, "end": 3825.5, "probability": 0.9506 }, { "start": 3826.7, "end": 3832.78, "probability": 0.9429 }, { "start": 3832.78, "end": 3837.6, "probability": 0.9976 }, { "start": 3838.6, "end": 3842.44, "probability": 0.8486 }, { "start": 3843.42, "end": 3845.88, "probability": 0.9955 }, { "start": 3846.32, "end": 3848.9, "probability": 0.9925 }, { "start": 3850.06, "end": 3850.4, "probability": 0.7551 }, { "start": 3853.02, "end": 3854.7, "probability": 0.7487 }, { "start": 3855.94, "end": 3856.98, "probability": 0.7563 }, { "start": 3858.36, "end": 3860.02, "probability": 0.777 }, { "start": 3876.38, "end": 3877.86, "probability": 0.7762 }, { "start": 3879.26, "end": 3881.3, "probability": 0.9543 }, { "start": 3883.18, "end": 3884.88, "probability": 0.8989 }, { "start": 3885.52, "end": 3887.3, "probability": 0.6878 }, { "start": 3888.9, "end": 3893.78, "probability": 0.9709 }, { "start": 3894.4, "end": 3895.98, "probability": 0.8673 }, { "start": 3897.1, "end": 3899.98, "probability": 0.978 }, { "start": 3901.0, "end": 3902.96, "probability": 0.9971 }, { "start": 3905.46, "end": 3908.78, "probability": 0.9266 }, { "start": 3909.6, "end": 3912.58, "probability": 0.9591 }, { "start": 3913.4, "end": 3913.4, "probability": 0.2071 }, { "start": 3913.4, "end": 3913.4, "probability": 0.297 }, { "start": 3913.4, "end": 3913.4, "probability": 0.4581 }, { "start": 3913.4, "end": 3918.64, "probability": 0.8409 }, { "start": 3919.12, "end": 3920.16, "probability": 0.1048 }, { "start": 3920.24, "end": 3920.24, "probability": 0.0658 }, { "start": 3920.42, "end": 3924.52, "probability": 0.0427 }, { "start": 3928.04, "end": 3929.88, "probability": 0.3191 }, { "start": 3939.66, "end": 3941.84, "probability": 0.1647 }, { "start": 3941.84, "end": 3943.48, "probability": 0.0806 }, { "start": 3943.86, "end": 3945.5, "probability": 0.3032 }, { "start": 3945.62, "end": 3947.44, "probability": 0.3936 }, { "start": 3948.02, "end": 3949.58, "probability": 0.3301 }, { "start": 3950.82, "end": 3950.98, "probability": 0.0786 }, { "start": 3951.12, "end": 3955.6, "probability": 0.2339 }, { "start": 3955.68, "end": 3958.04, "probability": 0.1442 }, { "start": 3958.04, "end": 3961.06, "probability": 0.0313 }, { "start": 3962.16, "end": 3969.54, "probability": 0.1345 }, { "start": 4005.0, "end": 4005.0, "probability": 0.0 }, { "start": 4005.0, "end": 4005.0, "probability": 0.0 }, { "start": 4005.0, "end": 4005.0, "probability": 0.0 }, { "start": 4005.0, "end": 4005.0, "probability": 0.0 }, { "start": 4005.0, "end": 4005.0, "probability": 0.0 }, { "start": 4005.0, "end": 4005.0, "probability": 0.0 }, { "start": 4005.0, "end": 4005.0, "probability": 0.0 }, { "start": 4005.0, "end": 4005.0, "probability": 0.0 }, { "start": 4005.0, "end": 4005.0, "probability": 0.0 }, { "start": 4005.0, "end": 4005.0, "probability": 0.0 }, { "start": 4005.0, "end": 4005.0, "probability": 0.0 }, { "start": 4005.0, "end": 4005.0, "probability": 0.0 }, { "start": 4005.0, "end": 4005.0, "probability": 0.0 }, { "start": 4005.0, "end": 4005.0, "probability": 0.0 }, { "start": 4005.0, "end": 4005.0, "probability": 0.0 }, { "start": 4005.0, "end": 4005.0, "probability": 0.0 }, { "start": 4005.0, "end": 4005.0, "probability": 0.0 }, { "start": 4005.0, "end": 4005.0, "probability": 0.0 }, { "start": 4005.0, "end": 4005.0, "probability": 0.0 }, { "start": 4005.0, "end": 4005.0, "probability": 0.0 }, { "start": 4005.0, "end": 4005.0, "probability": 0.0 }, { "start": 4005.0, "end": 4005.0, "probability": 0.0 }, { "start": 4005.0, "end": 4005.0, "probability": 0.0 }, { "start": 4005.0, "end": 4005.0, "probability": 0.0 }, { "start": 4005.0, "end": 4005.0, "probability": 0.0 }, { "start": 4005.0, "end": 4005.0, "probability": 0.0 }, { "start": 4005.0, "end": 4005.0, "probability": 0.0 }, { "start": 4005.0, "end": 4005.0, "probability": 0.0 }, { "start": 4005.0, "end": 4005.0, "probability": 0.0 }, { "start": 4005.0, "end": 4005.0, "probability": 0.0 }, { "start": 4005.0, "end": 4005.0, "probability": 0.0 }, { "start": 4005.0, "end": 4005.0, "probability": 0.0 }, { "start": 4005.0, "end": 4005.0, "probability": 0.0 }, { "start": 4005.0, "end": 4005.0, "probability": 0.0 }, { "start": 4005.0, "end": 4005.0, "probability": 0.0 }, { "start": 4005.0, "end": 4005.0, "probability": 0.0 }, { "start": 4005.0, "end": 4005.0, "probability": 0.0 }, { "start": 4005.0, "end": 4005.0, "probability": 0.0 }, { "start": 4005.0, "end": 4005.0, "probability": 0.0 }, { "start": 4005.0, "end": 4005.0, "probability": 0.0 }, { "start": 4005.0, "end": 4005.0, "probability": 0.0 }, { "start": 4005.46, "end": 4006.51, "probability": 0.4374 }, { "start": 4007.0, "end": 4008.15, "probability": 0.7218 }, { "start": 4008.2, "end": 4008.42, "probability": 0.6846 }, { "start": 4008.62, "end": 4009.62, "probability": 0.1596 }, { "start": 4009.88, "end": 4013.7, "probability": 0.8704 }, { "start": 4014.2, "end": 4017.08, "probability": 0.6931 }, { "start": 4018.88, "end": 4019.68, "probability": 0.0698 }, { "start": 4019.68, "end": 4025.18, "probability": 0.782 }, { "start": 4025.2, "end": 4025.3, "probability": 0.2734 }, { "start": 4025.34, "end": 4025.34, "probability": 0.2054 }, { "start": 4025.42, "end": 4030.14, "probability": 0.7889 }, { "start": 4032.84, "end": 4034.22, "probability": 0.3038 }, { "start": 4034.46, "end": 4038.8, "probability": 0.7651 }, { "start": 4039.38, "end": 4039.56, "probability": 0.7524 }, { "start": 4040.74, "end": 4042.4, "probability": 0.2693 }, { "start": 4043.41, "end": 4045.32, "probability": 0.0672 }, { "start": 4046.04, "end": 4047.64, "probability": 0.0764 }, { "start": 4047.78, "end": 4049.06, "probability": 0.0782 }, { "start": 4049.06, "end": 4052.94, "probability": 0.0219 }, { "start": 4052.98, "end": 4054.5, "probability": 0.002 }, { "start": 4054.9, "end": 4055.78, "probability": 0.1398 }, { "start": 4055.78, "end": 4060.76, "probability": 0.408 }, { "start": 4063.6, "end": 4065.3, "probability": 0.4368 }, { "start": 4065.3, "end": 4065.96, "probability": 0.0092 }, { "start": 4065.96, "end": 4066.82, "probability": 0.0558 }, { "start": 4127.0, "end": 4127.0, "probability": 0.0 }, { "start": 4127.0, "end": 4127.0, "probability": 0.0 }, { "start": 4127.0, "end": 4127.0, "probability": 0.0 }, { "start": 4127.0, "end": 4127.0, "probability": 0.0 }, { "start": 4127.0, "end": 4127.0, "probability": 0.0 }, { "start": 4127.0, "end": 4127.0, "probability": 0.0 }, { "start": 4127.0, "end": 4127.0, "probability": 0.0 }, { "start": 4127.0, "end": 4127.0, "probability": 0.0 }, { "start": 4127.0, "end": 4127.0, "probability": 0.0 }, { "start": 4127.0, "end": 4127.0, "probability": 0.0 }, { "start": 4127.0, "end": 4127.0, "probability": 0.0 }, { "start": 4127.0, "end": 4127.0, "probability": 0.0 }, { "start": 4127.0, "end": 4127.0, "probability": 0.0 }, { "start": 4127.0, "end": 4127.0, "probability": 0.0 }, { "start": 4127.0, "end": 4127.0, "probability": 0.0 }, { "start": 4127.0, "end": 4127.0, "probability": 0.0 }, { "start": 4127.0, "end": 4127.0, "probability": 0.0 }, { "start": 4127.0, "end": 4127.0, "probability": 0.0 }, { "start": 4127.0, "end": 4127.0, "probability": 0.0 }, { "start": 4127.0, "end": 4127.0, "probability": 0.0 }, { "start": 4127.0, "end": 4127.0, "probability": 0.0 }, { "start": 4127.0, "end": 4127.0, "probability": 0.0 }, { "start": 4127.0, "end": 4127.0, "probability": 0.0 }, { "start": 4127.0, "end": 4127.0, "probability": 0.0 }, { "start": 4127.0, "end": 4127.0, "probability": 0.0 }, { "start": 4127.0, "end": 4127.0, "probability": 0.0 }, { "start": 4127.0, "end": 4127.0, "probability": 0.0 }, { "start": 4127.0, "end": 4127.0, "probability": 0.0 }, { "start": 4127.0, "end": 4127.0, "probability": 0.0 }, { "start": 4127.0, "end": 4127.0, "probability": 0.0 }, { "start": 4127.0, "end": 4127.0, "probability": 0.0 }, { "start": 4127.0, "end": 4127.0, "probability": 0.0 }, { "start": 4127.0, "end": 4127.0, "probability": 0.0 }, { "start": 4127.0, "end": 4127.0, "probability": 0.0 }, { "start": 4127.0, "end": 4127.0, "probability": 0.0 }, { "start": 4127.16, "end": 4127.45, "probability": 0.3441 }, { "start": 4127.54, "end": 4127.95, "probability": 0.2476 }, { "start": 4128.22, "end": 4128.96, "probability": 0.6691 }, { "start": 4129.14, "end": 4130.55, "probability": 0.0503 }, { "start": 4130.6, "end": 4130.6, "probability": 0.6769 }, { "start": 4130.6, "end": 4133.04, "probability": 0.7827 }, { "start": 4133.32, "end": 4136.6, "probability": 0.7457 }, { "start": 4136.6, "end": 4136.6, "probability": 0.414 }, { "start": 4136.6, "end": 4137.88, "probability": 0.7085 }, { "start": 4138.88, "end": 4140.84, "probability": 0.5211 }, { "start": 4140.92, "end": 4140.92, "probability": 0.448 }, { "start": 4140.92, "end": 4140.92, "probability": 0.4758 }, { "start": 4140.92, "end": 4142.77, "probability": 0.4965 }, { "start": 4143.66, "end": 4148.1, "probability": 0.3157 }, { "start": 4148.1, "end": 4148.58, "probability": 0.0467 }, { "start": 4148.76, "end": 4148.76, "probability": 0.1312 }, { "start": 4148.78, "end": 4154.64, "probability": 0.8954 }, { "start": 4154.64, "end": 4156.34, "probability": 0.0875 }, { "start": 4156.92, "end": 4163.06, "probability": 0.9526 }, { "start": 4163.68, "end": 4165.2, "probability": 0.4515 }, { "start": 4165.2, "end": 4166.1, "probability": 0.0581 }, { "start": 4166.3, "end": 4166.87, "probability": 0.1528 }, { "start": 4167.38, "end": 4168.92, "probability": 0.2639 }, { "start": 4169.14, "end": 4171.16, "probability": 0.1281 }, { "start": 4173.78, "end": 4176.3, "probability": 0.0565 }, { "start": 4176.82, "end": 4179.0, "probability": 0.0665 }, { "start": 4182.26, "end": 4184.74, "probability": 0.4779 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.0, "end": 4289.0, "probability": 0.0 }, { "start": 4289.26, "end": 4290.58, "probability": 0.1688 }, { "start": 4291.12, "end": 4291.58, "probability": 0.366 }, { "start": 4293.16, "end": 4297.4, "probability": 0.1148 }, { "start": 4298.5, "end": 4299.48, "probability": 0.0725 }, { "start": 4300.0, "end": 4304.66, "probability": 0.0159 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.0, "end": 4410.0, "probability": 0.0 }, { "start": 4410.48, "end": 4411.83, "probability": 0.1515 }, { "start": 4412.6, "end": 4414.44, "probability": 0.8323 }, { "start": 4414.6, "end": 4415.26, "probability": 0.8353 }, { "start": 4415.54, "end": 4417.74, "probability": 0.0357 }, { "start": 4417.74, "end": 4418.52, "probability": 0.0852 }, { "start": 4418.78, "end": 4421.06, "probability": 0.6034 }, { "start": 4421.44, "end": 4422.98, "probability": 0.9806 }, { "start": 4423.42, "end": 4424.62, "probability": 0.6725 }, { "start": 4425.02, "end": 4425.6, "probability": 0.8115 }, { "start": 4425.62, "end": 4427.41, "probability": 0.6862 }, { "start": 4427.52, "end": 4428.04, "probability": 0.8405 }, { "start": 4428.2, "end": 4429.1, "probability": 0.8076 }, { "start": 4429.1, "end": 4430.42, "probability": 0.7134 }, { "start": 4430.72, "end": 4433.54, "probability": 0.4992 }, { "start": 4433.54, "end": 4437.62, "probability": 0.1209 }, { "start": 4437.84, "end": 4439.4, "probability": 0.0439 }, { "start": 4439.4, "end": 4439.42, "probability": 0.029 }, { "start": 4439.42, "end": 4441.18, "probability": 0.463 }, { "start": 4441.66, "end": 4444.34, "probability": 0.1569 }, { "start": 4444.78, "end": 4446.44, "probability": 0.1563 }, { "start": 4540.0, "end": 4540.0, "probability": 0.0 }, { "start": 4540.0, "end": 4540.0, "probability": 0.0 }, { "start": 4540.0, "end": 4540.0, "probability": 0.0 }, { "start": 4540.0, "end": 4540.0, "probability": 0.0 }, { "start": 4540.0, "end": 4540.0, "probability": 0.0 }, { "start": 4540.0, "end": 4540.0, "probability": 0.0 }, { "start": 4540.0, "end": 4540.0, "probability": 0.0 }, { "start": 4540.0, "end": 4540.0, "probability": 0.0 }, { "start": 4540.0, "end": 4540.0, "probability": 0.0 }, { "start": 4540.0, "end": 4540.0, "probability": 0.0 }, { "start": 4540.0, "end": 4540.0, "probability": 0.0 }, { "start": 4540.0, "end": 4540.0, "probability": 0.0 }, { "start": 4540.0, "end": 4540.0, "probability": 0.0 }, { "start": 4540.0, "end": 4540.0, "probability": 0.0 }, { "start": 4540.0, "end": 4540.0, "probability": 0.0 }, { "start": 4540.0, "end": 4540.0, "probability": 0.0 }, { "start": 4540.0, "end": 4540.0, "probability": 0.0 }, { "start": 4540.0, "end": 4540.0, "probability": 0.0 }, { "start": 4540.0, "end": 4540.0, "probability": 0.0 }, { "start": 4540.0, "end": 4540.0, "probability": 0.0 }, { "start": 4540.0, "end": 4540.0, "probability": 0.0 }, { "start": 4540.0, "end": 4540.0, "probability": 0.0 }, { "start": 4540.0, "end": 4540.0, "probability": 0.0 }, { "start": 4540.0, "end": 4540.0, "probability": 0.0 }, { "start": 4540.0, "end": 4540.0, "probability": 0.0 }, { "start": 4540.0, "end": 4540.0, "probability": 0.0 }, { "start": 4540.0, "end": 4540.0, "probability": 0.0 }, { "start": 4540.0, "end": 4540.0, "probability": 0.0 }, { "start": 4540.0, "end": 4540.0, "probability": 0.0 }, { "start": 4540.0, "end": 4540.0, "probability": 0.0 }, { "start": 4540.0, "end": 4540.0, "probability": 0.0 }, { "start": 4540.0, "end": 4540.0, "probability": 0.0 }, { "start": 4540.0, "end": 4540.0, "probability": 0.0 }, { "start": 4540.0, "end": 4540.0, "probability": 0.0 }, { "start": 4540.0, "end": 4540.0, "probability": 0.0 }, { "start": 4540.0, "end": 4540.0, "probability": 0.0 }, { "start": 4540.0, "end": 4540.0, "probability": 0.0 }, { "start": 4540.0, "end": 4540.0, "probability": 0.0 }, { "start": 4540.0, "end": 4540.0, "probability": 0.0 }, { "start": 4540.0, "end": 4540.0, "probability": 0.0 }, { "start": 4540.0, "end": 4540.0, "probability": 0.0 }, { "start": 4540.0, "end": 4540.0, "probability": 0.0 }, { "start": 4540.0, "end": 4540.0, "probability": 0.0 }, { "start": 4543.0, "end": 4543.5, "probability": 0.2431 }, { "start": 4543.5, "end": 4546.48, "probability": 0.6976 }, { "start": 4547.3, "end": 4550.44, "probability": 0.8247 }, { "start": 4550.7, "end": 4557.06, "probability": 0.7522 }, { "start": 4558.2, "end": 4565.36, "probability": 0.7945 }, { "start": 4565.36, "end": 4572.72, "probability": 0.9844 }, { "start": 4573.4, "end": 4574.28, "probability": 0.6354 }, { "start": 4575.76, "end": 4581.82, "probability": 0.0073 }, { "start": 4584.08, "end": 4585.48, "probability": 0.0355 }, { "start": 4589.74, "end": 4590.76, "probability": 0.2831 }, { "start": 4593.64, "end": 4597.44, "probability": 0.5971 }, { "start": 4598.24, "end": 4600.68, "probability": 0.7742 }, { "start": 4602.08, "end": 4604.32, "probability": 0.917 }, { "start": 4604.92, "end": 4605.36, "probability": 0.2477 }, { "start": 4605.36, "end": 4605.36, "probability": 0.7151 }, { "start": 4605.36, "end": 4606.58, "probability": 0.6393 }, { "start": 4624.64, "end": 4626.5, "probability": 0.3878 }, { "start": 4627.26, "end": 4630.02, "probability": 0.8771 }, { "start": 4630.56, "end": 4634.06, "probability": 0.9896 }, { "start": 4634.58, "end": 4636.04, "probability": 0.945 }, { "start": 4636.72, "end": 4638.16, "probability": 0.676 }, { "start": 4638.88, "end": 4641.22, "probability": 0.9206 }, { "start": 4641.82, "end": 4647.1, "probability": 0.8722 }, { "start": 4647.2, "end": 4647.56, "probability": 0.8044 }, { "start": 4650.6, "end": 4651.71, "probability": 0.275 }, { "start": 4653.76, "end": 4655.5, "probability": 0.4902 }, { "start": 4655.66, "end": 4656.52, "probability": 0.9619 }, { "start": 4656.52, "end": 4662.48, "probability": 0.9788 }, { "start": 4662.68, "end": 4663.58, "probability": 0.1274 }, { "start": 4663.58, "end": 4664.04, "probability": 0.0154 }, { "start": 4664.06, "end": 4664.08, "probability": 0.2712 }, { "start": 4664.08, "end": 4667.18, "probability": 0.6393 }, { "start": 4668.42, "end": 4668.88, "probability": 0.0663 }, { "start": 4668.88, "end": 4668.88, "probability": 0.0433 }, { "start": 4668.88, "end": 4668.88, "probability": 0.2433 }, { "start": 4668.88, "end": 4668.88, "probability": 0.1095 }, { "start": 4668.88, "end": 4670.92, "probability": 0.7589 }, { "start": 4670.92, "end": 4673.54, "probability": 0.6815 }, { "start": 4673.7, "end": 4679.2, "probability": 0.7846 }, { "start": 4679.8, "end": 4680.48, "probability": 0.5493 }, { "start": 4680.62, "end": 4681.5, "probability": 0.3664 }, { "start": 4681.64, "end": 4683.86, "probability": 0.6111 }, { "start": 4684.0, "end": 4685.54, "probability": 0.8732 }, { "start": 4685.84, "end": 4687.78, "probability": 0.4013 }, { "start": 4689.62, "end": 4690.44, "probability": 0.6891 }, { "start": 4690.44, "end": 4690.48, "probability": 0.7905 }, { "start": 4690.58, "end": 4698.24, "probability": 0.9917 }, { "start": 4698.7, "end": 4705.74, "probability": 0.7835 }, { "start": 4705.96, "end": 4709.52, "probability": 0.9648 }, { "start": 4710.32, "end": 4712.88, "probability": 0.9924 }, { "start": 4713.64, "end": 4716.12, "probability": 0.9912 }, { "start": 4717.16, "end": 4720.74, "probability": 0.9554 }, { "start": 4720.9, "end": 4724.8, "probability": 0.9701 }, { "start": 4725.6, "end": 4726.22, "probability": 0.054 }, { "start": 4726.24, "end": 4727.16, "probability": 0.3477 }, { "start": 4728.36, "end": 4732.36, "probability": 0.4569 }, { "start": 4734.85, "end": 4738.4, "probability": 0.4524 }, { "start": 4738.4, "end": 4738.4, "probability": 0.0179 }, { "start": 4738.4, "end": 4739.2, "probability": 0.4419 }, { "start": 4739.2, "end": 4739.2, "probability": 0.0337 }, { "start": 4739.2, "end": 4740.42, "probability": 0.2168 }, { "start": 4741.26, "end": 4741.26, "probability": 0.2515 }, { "start": 4741.26, "end": 4741.26, "probability": 0.6549 }, { "start": 4741.26, "end": 4746.7, "probability": 0.9164 }, { "start": 4748.18, "end": 4749.86, "probability": 0.8281 }, { "start": 4751.42, "end": 4753.76, "probability": 0.8193 }, { "start": 4754.16, "end": 4754.2, "probability": 0.1416 }, { "start": 4754.2, "end": 4754.2, "probability": 0.1856 }, { "start": 4754.2, "end": 4759.68, "probability": 0.548 }, { "start": 4760.14, "end": 4761.18, "probability": 0.6833 }, { "start": 4761.7, "end": 4765.74, "probability": 0.7482 }, { "start": 4766.3, "end": 4768.94, "probability": 0.9604 }, { "start": 4769.9, "end": 4771.78, "probability": 0.9854 }, { "start": 4771.96, "end": 4773.18, "probability": 0.9756 }, { "start": 4773.34, "end": 4774.98, "probability": 0.9072 }, { "start": 4776.1, "end": 4779.06, "probability": 0.9824 }, { "start": 4779.44, "end": 4779.64, "probability": 0.7119 }, { "start": 4784.6, "end": 4786.64, "probability": 0.786 }, { "start": 4786.74, "end": 4792.78, "probability": 0.9843 }, { "start": 4793.86, "end": 4795.88, "probability": 0.3859 }, { "start": 4797.62, "end": 4799.12, "probability": 0.7995 }, { "start": 4799.46, "end": 4799.88, "probability": 0.9905 }, { "start": 4808.82, "end": 4811.02, "probability": 0.0398 }, { "start": 4811.02, "end": 4811.04, "probability": 0.4099 }, { "start": 4811.14, "end": 4811.74, "probability": 0.105 }, { "start": 4811.74, "end": 4811.74, "probability": 0.053 }, { "start": 4811.74, "end": 4811.92, "probability": 0.354 }, { "start": 4812.14, "end": 4812.14, "probability": 0.6012 }, { "start": 4818.02, "end": 4819.06, "probability": 0.918 }, { "start": 4819.6, "end": 4821.78, "probability": 0.5757 }, { "start": 4822.52, "end": 4826.32, "probability": 0.8443 }, { "start": 4826.46, "end": 4826.58, "probability": 0.5507 }, { "start": 4826.64, "end": 4831.54, "probability": 0.9736 }, { "start": 4831.66, "end": 4834.58, "probability": 0.5611 }, { "start": 4835.6, "end": 4837.7, "probability": 0.1602 }, { "start": 4841.09, "end": 4844.04, "probability": 0.3327 }, { "start": 4844.12, "end": 4845.88, "probability": 0.7398 }, { "start": 4846.58, "end": 4848.24, "probability": 0.5513 }, { "start": 4848.96, "end": 4850.28, "probability": 0.6362 }, { "start": 4850.52, "end": 4852.26, "probability": 0.793 }, { "start": 4853.12, "end": 4854.42, "probability": 0.7721 }, { "start": 4854.48, "end": 4855.02, "probability": 0.7462 }, { "start": 4855.22, "end": 4857.66, "probability": 0.925 }, { "start": 4857.76, "end": 4858.24, "probability": 0.7722 }, { "start": 4858.76, "end": 4860.76, "probability": 0.7654 }, { "start": 4861.84, "end": 4864.54, "probability": 0.7067 }, { "start": 4865.68, "end": 4867.02, "probability": 0.7895 }, { "start": 4867.16, "end": 4867.58, "probability": 0.3368 }, { "start": 4868.26, "end": 4869.52, "probability": 0.6234 }, { "start": 4870.18, "end": 4870.64, "probability": 0.6413 }, { "start": 4870.96, "end": 4872.08, "probability": 0.8419 }, { "start": 4873.36, "end": 4878.84, "probability": 0.8148 }, { "start": 4879.12, "end": 4881.34, "probability": 0.5638 }, { "start": 4882.46, "end": 4884.6, "probability": 0.9119 }, { "start": 4885.52, "end": 4886.06, "probability": 0.846 }, { "start": 4887.28, "end": 4889.36, "probability": 0.898 }, { "start": 4891.64, "end": 4895.36, "probability": 0.6178 }, { "start": 4896.28, "end": 4898.38, "probability": 0.83 }, { "start": 4899.2, "end": 4900.54, "probability": 0.9189 }, { "start": 4901.14, "end": 4907.06, "probability": 0.9878 }, { "start": 4907.76, "end": 4909.94, "probability": 0.9653 }, { "start": 4910.8, "end": 4913.0, "probability": 0.9995 }, { "start": 4913.54, "end": 4915.54, "probability": 0.9908 }, { "start": 4916.1, "end": 4918.92, "probability": 0.8695 }, { "start": 4919.0, "end": 4921.96, "probability": 0.7878 }, { "start": 4923.18, "end": 4925.54, "probability": 0.4489 }, { "start": 4925.66, "end": 4926.3, "probability": 0.5195 }, { "start": 4926.74, "end": 4927.54, "probability": 0.998 }, { "start": 4928.68, "end": 4929.74, "probability": 0.2078 }, { "start": 4929.74, "end": 4930.49, "probability": 0.5549 }, { "start": 4931.56, "end": 4933.76, "probability": 0.2786 }, { "start": 4934.2, "end": 4936.72, "probability": 0.8576 }, { "start": 4937.36, "end": 4942.8, "probability": 0.9582 }, { "start": 4943.3, "end": 4944.26, "probability": 0.9717 }, { "start": 4945.22, "end": 4947.58, "probability": 0.9902 }, { "start": 4948.32, "end": 4950.6, "probability": 0.9858 }, { "start": 4950.74, "end": 4952.44, "probability": 0.7737 }, { "start": 4953.6, "end": 4954.74, "probability": 0.9861 }, { "start": 4955.62, "end": 4958.08, "probability": 0.938 }, { "start": 4958.56, "end": 4958.88, "probability": 0.9206 }, { "start": 4958.9, "end": 4959.81, "probability": 0.9917 }, { "start": 4960.96, "end": 4963.8, "probability": 0.6051 }, { "start": 4963.86, "end": 4965.5, "probability": 0.8643 }, { "start": 4966.52, "end": 4968.94, "probability": 0.9745 }, { "start": 4969.4, "end": 4971.76, "probability": 0.9732 }, { "start": 4972.78, "end": 4975.48, "probability": 0.9815 }, { "start": 4977.06, "end": 4980.22, "probability": 0.9652 }, { "start": 4981.04, "end": 4982.6, "probability": 0.6006 }, { "start": 4983.66, "end": 4986.23, "probability": 0.7998 }, { "start": 4986.92, "end": 4987.72, "probability": 0.7895 }, { "start": 4987.72, "end": 4988.3, "probability": 0.9587 }, { "start": 4988.46, "end": 4989.24, "probability": 0.8405 }, { "start": 4989.36, "end": 4990.38, "probability": 0.7708 }, { "start": 4990.82, "end": 4991.68, "probability": 0.9828 }, { "start": 4992.84, "end": 4994.0, "probability": 0.9489 }, { "start": 4994.56, "end": 4995.16, "probability": 0.7039 }, { "start": 4995.48, "end": 4999.46, "probability": 0.9516 }, { "start": 5000.24, "end": 5001.52, "probability": 0.9858 }, { "start": 5002.26, "end": 5006.22, "probability": 0.9858 }, { "start": 5006.7, "end": 5010.94, "probability": 0.9197 }, { "start": 5011.5, "end": 5014.92, "probability": 0.6616 }, { "start": 5015.52, "end": 5016.84, "probability": 0.9709 }, { "start": 5017.84, "end": 5019.54, "probability": 0.9664 }, { "start": 5020.16, "end": 5023.96, "probability": 0.9175 }, { "start": 5024.48, "end": 5025.38, "probability": 0.9751 }, { "start": 5025.9, "end": 5028.62, "probability": 0.8794 }, { "start": 5028.68, "end": 5029.16, "probability": 0.8522 }, { "start": 5029.6, "end": 5030.46, "probability": 0.6616 }, { "start": 5031.86, "end": 5033.38, "probability": 0.917 }, { "start": 5034.16, "end": 5035.34, "probability": 0.9988 }, { "start": 5035.88, "end": 5039.46, "probability": 0.9815 }, { "start": 5039.94, "end": 5041.54, "probability": 0.8916 }, { "start": 5041.68, "end": 5043.32, "probability": 0.9629 }, { "start": 5043.98, "end": 5044.96, "probability": 0.4989 }, { "start": 5044.96, "end": 5046.58, "probability": 0.8813 }, { "start": 5047.1, "end": 5049.8, "probability": 0.6362 }, { "start": 5049.88, "end": 5050.36, "probability": 0.688 }, { "start": 5050.78, "end": 5051.46, "probability": 0.6997 }, { "start": 5051.6, "end": 5052.6, "probability": 0.7676 }, { "start": 5052.66, "end": 5053.92, "probability": 0.7698 }, { "start": 5055.38, "end": 5056.52, "probability": 0.7344 }, { "start": 5056.56, "end": 5057.78, "probability": 0.9376 }, { "start": 5057.88, "end": 5059.18, "probability": 0.7515 }, { "start": 5059.38, "end": 5063.12, "probability": 0.9791 }, { "start": 5063.86, "end": 5064.96, "probability": 0.9668 }, { "start": 5065.06, "end": 5066.28, "probability": 0.2938 }, { "start": 5067.12, "end": 5068.36, "probability": 0.9421 }, { "start": 5068.96, "end": 5072.16, "probability": 0.9721 }, { "start": 5072.44, "end": 5077.64, "probability": 0.9839 }, { "start": 5077.72, "end": 5079.08, "probability": 0.6679 }, { "start": 5079.16, "end": 5080.43, "probability": 0.9617 }, { "start": 5081.7, "end": 5084.02, "probability": 0.9836 }, { "start": 5084.12, "end": 5084.62, "probability": 0.7885 }, { "start": 5084.74, "end": 5089.24, "probability": 0.9327 }, { "start": 5089.66, "end": 5090.76, "probability": 0.6733 }, { "start": 5090.84, "end": 5091.48, "probability": 0.8668 }, { "start": 5091.98, "end": 5094.1, "probability": 0.7881 }, { "start": 5095.24, "end": 5097.04, "probability": 0.9801 }, { "start": 5098.42, "end": 5101.68, "probability": 0.9748 }, { "start": 5101.68, "end": 5104.92, "probability": 0.9744 }, { "start": 5105.6, "end": 5110.46, "probability": 0.9255 }, { "start": 5110.64, "end": 5111.36, "probability": 0.5677 }, { "start": 5111.54, "end": 5111.66, "probability": 0.1023 }, { "start": 5111.84, "end": 5112.82, "probability": 0.7094 }, { "start": 5113.44, "end": 5114.7, "probability": 0.8966 }, { "start": 5114.74, "end": 5117.02, "probability": 0.9186 }, { "start": 5117.62, "end": 5119.02, "probability": 0.9591 }, { "start": 5119.9, "end": 5121.64, "probability": 0.7765 }, { "start": 5122.74, "end": 5127.14, "probability": 0.9946 }, { "start": 5128.28, "end": 5129.74, "probability": 0.7531 }, { "start": 5130.78, "end": 5133.4, "probability": 0.9458 }, { "start": 5134.52, "end": 5138.5, "probability": 0.7193 }, { "start": 5138.54, "end": 5139.64, "probability": 0.969 }, { "start": 5141.24, "end": 5141.68, "probability": 0.7684 }, { "start": 5143.66, "end": 5146.98, "probability": 0.9951 }, { "start": 5147.54, "end": 5150.44, "probability": 0.958 }, { "start": 5150.76, "end": 5152.34, "probability": 0.9399 }, { "start": 5153.08, "end": 5155.18, "probability": 0.9905 }, { "start": 5155.76, "end": 5156.66, "probability": 0.702 }, { "start": 5157.06, "end": 5159.42, "probability": 0.6123 }, { "start": 5159.72, "end": 5161.6, "probability": 0.7677 }, { "start": 5161.72, "end": 5162.08, "probability": 0.4874 }, { "start": 5163.14, "end": 5163.78, "probability": 0.9493 }, { "start": 5164.72, "end": 5165.68, "probability": 0.8971 }, { "start": 5166.58, "end": 5167.06, "probability": 0.7554 }, { "start": 5168.16, "end": 5169.78, "probability": 0.9601 }, { "start": 5169.9, "end": 5170.34, "probability": 0.8518 }, { "start": 5170.34, "end": 5170.78, "probability": 0.9268 }, { "start": 5170.82, "end": 5172.9, "probability": 0.9909 }, { "start": 5173.6, "end": 5174.54, "probability": 0.6726 }, { "start": 5174.76, "end": 5179.1, "probability": 0.9961 }, { "start": 5180.8, "end": 5182.42, "probability": 0.8791 }, { "start": 5184.34, "end": 5187.38, "probability": 0.9374 }, { "start": 5188.02, "end": 5190.42, "probability": 0.9478 }, { "start": 5191.06, "end": 5194.12, "probability": 0.9963 }, { "start": 5194.28, "end": 5197.16, "probability": 0.6705 }, { "start": 5197.2, "end": 5197.56, "probability": 0.6698 }, { "start": 5197.98, "end": 5198.24, "probability": 0.8066 }, { "start": 5199.22, "end": 5200.02, "probability": 0.7456 }, { "start": 5201.24, "end": 5204.64, "probability": 0.3635 }, { "start": 5205.36, "end": 5207.2, "probability": 0.6865 }, { "start": 5207.22, "end": 5210.48, "probability": 0.7064 }, { "start": 5211.3, "end": 5212.0, "probability": 0.824 }, { "start": 5212.78, "end": 5213.58, "probability": 0.4656 }, { "start": 5213.76, "end": 5214.4, "probability": 0.5418 }, { "start": 5215.22, "end": 5216.5, "probability": 0.4816 }, { "start": 5216.88, "end": 5217.38, "probability": 0.3446 }, { "start": 5217.4, "end": 5217.76, "probability": 0.2801 }, { "start": 5217.84, "end": 5219.08, "probability": 0.728 }, { "start": 5219.18, "end": 5220.9, "probability": 0.9727 }, { "start": 5221.32, "end": 5223.44, "probability": 0.8828 }, { "start": 5224.08, "end": 5225.54, "probability": 0.8435 }, { "start": 5226.04, "end": 5226.44, "probability": 0.6614 }, { "start": 5226.46, "end": 5228.38, "probability": 0.9971 }, { "start": 5228.38, "end": 5230.9, "probability": 0.2985 }, { "start": 5230.9, "end": 5232.26, "probability": 0.8208 }, { "start": 5232.92, "end": 5233.32, "probability": 0.9575 }, { "start": 5233.74, "end": 5235.16, "probability": 0.8628 }, { "start": 5235.78, "end": 5237.88, "probability": 0.8667 }, { "start": 5238.7, "end": 5238.92, "probability": 0.6173 }, { "start": 5239.56, "end": 5241.8, "probability": 0.9957 }, { "start": 5242.0, "end": 5246.0, "probability": 0.9878 }, { "start": 5246.76, "end": 5246.86, "probability": 0.3824 }, { "start": 5246.9, "end": 5247.72, "probability": 0.8234 }, { "start": 5248.02, "end": 5250.62, "probability": 0.3885 }, { "start": 5251.0, "end": 5253.04, "probability": 0.8905 }, { "start": 5253.48, "end": 5254.72, "probability": 0.9984 }, { "start": 5255.36, "end": 5259.24, "probability": 0.9793 }, { "start": 5259.8, "end": 5260.9, "probability": 0.8711 }, { "start": 5284.98, "end": 5287.32, "probability": 0.5472 }, { "start": 5288.36, "end": 5292.32, "probability": 0.9891 }, { "start": 5292.32, "end": 5297.24, "probability": 0.9551 }, { "start": 5298.0, "end": 5299.0, "probability": 0.7525 }, { "start": 5300.24, "end": 5306.72, "probability": 0.9965 }, { "start": 5307.44, "end": 5311.24, "probability": 0.9588 }, { "start": 5311.76, "end": 5315.28, "probability": 0.9572 }, { "start": 5316.3, "end": 5320.46, "probability": 0.9746 }, { "start": 5321.0, "end": 5322.94, "probability": 0.7243 }, { "start": 5323.82, "end": 5329.16, "probability": 0.9867 }, { "start": 5329.16, "end": 5334.9, "probability": 0.9939 }, { "start": 5334.9, "end": 5340.26, "probability": 0.998 }, { "start": 5341.04, "end": 5348.0, "probability": 0.9715 }, { "start": 5348.78, "end": 5353.88, "probability": 0.9307 }, { "start": 5354.24, "end": 5358.64, "probability": 0.9805 }, { "start": 5358.64, "end": 5363.5, "probability": 0.9976 }, { "start": 5364.28, "end": 5366.58, "probability": 0.9927 }, { "start": 5367.16, "end": 5373.52, "probability": 0.9974 }, { "start": 5373.56, "end": 5378.1, "probability": 0.999 }, { "start": 5378.96, "end": 5382.86, "probability": 0.9795 }, { "start": 5383.4, "end": 5386.86, "probability": 0.9944 }, { "start": 5387.38, "end": 5392.78, "probability": 0.9832 }, { "start": 5393.52, "end": 5397.42, "probability": 0.9949 }, { "start": 5397.96, "end": 5402.56, "probability": 0.9981 }, { "start": 5402.56, "end": 5406.88, "probability": 0.9772 }, { "start": 5408.04, "end": 5408.06, "probability": 0.8091 }, { "start": 5408.7, "end": 5410.98, "probability": 0.5795 }, { "start": 5411.0, "end": 5415.48, "probability": 0.9735 }, { "start": 5416.2, "end": 5420.2, "probability": 0.9705 }, { "start": 5421.32, "end": 5425.36, "probability": 0.9482 }, { "start": 5425.96, "end": 5426.88, "probability": 0.7457 }, { "start": 5427.04, "end": 5429.4, "probability": 0.8542 }, { "start": 5429.5, "end": 5432.82, "probability": 0.9366 }, { "start": 5433.32, "end": 5436.0, "probability": 0.9869 }, { "start": 5436.54, "end": 5436.74, "probability": 0.9938 }, { "start": 5437.46, "end": 5438.04, "probability": 0.924 }, { "start": 5439.08, "end": 5439.8, "probability": 0.8358 }, { "start": 5439.88, "end": 5443.5, "probability": 0.9945 }, { "start": 5443.72, "end": 5450.44, "probability": 0.996 }, { "start": 5450.67, "end": 5457.92, "probability": 0.9974 }, { "start": 5458.76, "end": 5464.88, "probability": 0.9969 }, { "start": 5467.42, "end": 5470.72, "probability": 0.9953 }, { "start": 5470.72, "end": 5473.44, "probability": 0.9309 }, { "start": 5474.26, "end": 5480.8, "probability": 0.9889 }, { "start": 5481.88, "end": 5488.98, "probability": 0.9048 }, { "start": 5489.56, "end": 5492.7, "probability": 0.9729 }, { "start": 5493.2, "end": 5497.66, "probability": 0.9786 }, { "start": 5498.96, "end": 5505.76, "probability": 0.981 }, { "start": 5505.82, "end": 5510.34, "probability": 0.9736 }, { "start": 5512.4, "end": 5512.5, "probability": 0.2824 }, { "start": 5513.44, "end": 5514.4, "probability": 0.5396 }, { "start": 5514.82, "end": 5517.36, "probability": 0.7091 }, { "start": 5517.4, "end": 5519.03, "probability": 0.8091 }, { "start": 5519.4, "end": 5519.82, "probability": 0.7803 }, { "start": 5520.6, "end": 5523.82, "probability": 0.9882 }, { "start": 5523.86, "end": 5525.5, "probability": 0.8944 }, { "start": 5525.86, "end": 5531.6, "probability": 0.9281 }, { "start": 5532.24, "end": 5533.92, "probability": 0.7855 }, { "start": 5534.46, "end": 5535.52, "probability": 0.9075 }, { "start": 5536.28, "end": 5536.72, "probability": 0.6663 }, { "start": 5536.82, "end": 5543.76, "probability": 0.9924 }, { "start": 5544.34, "end": 5549.5, "probability": 0.9912 }, { "start": 5550.34, "end": 5555.1, "probability": 0.9972 }, { "start": 5555.74, "end": 5558.98, "probability": 0.9972 }, { "start": 5559.54, "end": 5564.4, "probability": 0.978 }, { "start": 5564.8, "end": 5570.24, "probability": 0.9993 }, { "start": 5571.22, "end": 5577.1, "probability": 0.9061 }, { "start": 5577.72, "end": 5580.12, "probability": 0.9862 }, { "start": 5580.66, "end": 5586.16, "probability": 0.9454 }, { "start": 5587.08, "end": 5587.08, "probability": 0.8506 }, { "start": 5587.68, "end": 5588.74, "probability": 0.5016 }, { "start": 5588.78, "end": 5591.14, "probability": 0.638 }, { "start": 5591.56, "end": 5594.12, "probability": 0.9468 }, { "start": 5594.9, "end": 5596.38, "probability": 0.9594 }, { "start": 5598.1, "end": 5599.32, "probability": 0.9651 }, { "start": 5599.4, "end": 5600.6, "probability": 0.8473 }, { "start": 5600.78, "end": 5603.62, "probability": 0.9792 }, { "start": 5603.88, "end": 5606.74, "probability": 0.9414 }, { "start": 5607.48, "end": 5609.0, "probability": 0.8195 }, { "start": 5610.0, "end": 5613.66, "probability": 0.9968 }, { "start": 5614.38, "end": 5615.7, "probability": 0.7718 }, { "start": 5615.8, "end": 5617.5, "probability": 0.8537 }, { "start": 5617.62, "end": 5619.7, "probability": 0.9009 }, { "start": 5620.3, "end": 5621.78, "probability": 0.6903 }, { "start": 5622.02, "end": 5626.44, "probability": 0.8218 }, { "start": 5626.82, "end": 5630.96, "probability": 0.933 }, { "start": 5631.14, "end": 5632.02, "probability": 0.8092 }, { "start": 5632.44, "end": 5633.28, "probability": 0.9885 }, { "start": 5633.94, "end": 5634.54, "probability": 0.4106 }, { "start": 5634.74, "end": 5635.84, "probability": 0.9863 }, { "start": 5636.24, "end": 5639.56, "probability": 0.9932 }, { "start": 5640.3, "end": 5643.32, "probability": 0.9485 }, { "start": 5644.65, "end": 5647.82, "probability": 0.8049 }, { "start": 5648.92, "end": 5653.3, "probability": 0.8289 }, { "start": 5653.96, "end": 5659.34, "probability": 0.9717 }, { "start": 5660.12, "end": 5663.1, "probability": 0.7298 }, { "start": 5664.82, "end": 5665.58, "probability": 0.7787 }, { "start": 5668.94, "end": 5673.64, "probability": 0.9974 }, { "start": 5674.54, "end": 5674.88, "probability": 0.027 }, { "start": 5675.52, "end": 5676.72, "probability": 0.9056 }, { "start": 5677.7, "end": 5678.52, "probability": 0.5883 }, { "start": 5698.88, "end": 5699.06, "probability": 0.0027 }, { "start": 5699.06, "end": 5703.1, "probability": 0.9413 }, { "start": 5704.0, "end": 5706.34, "probability": 0.7656 }, { "start": 5706.44, "end": 5712.18, "probability": 0.9477 }, { "start": 5714.7, "end": 5715.52, "probability": 0.6654 }, { "start": 5719.14, "end": 5722.48, "probability": 0.0151 }, { "start": 5722.52, "end": 5724.28, "probability": 0.0117 }, { "start": 5725.06, "end": 5725.34, "probability": 0.0314 }, { "start": 5726.62, "end": 5726.72, "probability": 0.1181 }, { "start": 5826.0, "end": 5826.0, "probability": 0.0 }, { "start": 5826.0, "end": 5826.0, "probability": 0.0 }, { "start": 5826.0, "end": 5826.0, "probability": 0.0 }, { "start": 5826.0, "end": 5826.0, "probability": 0.0 }, { "start": 5826.0, "end": 5826.0, "probability": 0.0 }, { "start": 5826.0, "end": 5826.0, "probability": 0.0 }, { "start": 5826.0, "end": 5826.0, "probability": 0.0 }, { "start": 5826.0, "end": 5826.0, "probability": 0.0 }, { "start": 5826.0, "end": 5826.0, "probability": 0.0 }, { "start": 5826.0, "end": 5826.0, "probability": 0.0 }, { "start": 5826.0, "end": 5826.0, "probability": 0.0 }, { "start": 5826.0, "end": 5826.0, "probability": 0.0 }, { "start": 5826.0, "end": 5826.0, "probability": 0.0 }, { "start": 5826.0, "end": 5826.0, "probability": 0.0 }, { "start": 5826.0, "end": 5826.0, "probability": 0.0 }, { "start": 5826.0, "end": 5826.0, "probability": 0.0 }, { "start": 5826.0, "end": 5826.0, "probability": 0.0 }, { "start": 5827.44, "end": 5828.04, "probability": 0.1736 }, { "start": 5828.04, "end": 5828.04, "probability": 0.0388 }, { "start": 5828.04, "end": 5828.62, "probability": 0.3789 }, { "start": 5829.8, "end": 5833.44, "probability": 0.5782 }, { "start": 5833.5, "end": 5837.3, "probability": 0.863 }, { "start": 5838.1, "end": 5839.8, "probability": 0.4398 }, { "start": 5843.54, "end": 5844.58, "probability": 0.1276 }, { "start": 5844.58, "end": 5848.5, "probability": 0.9534 }, { "start": 5849.11, "end": 5851.6, "probability": 0.8626 }, { "start": 5852.1, "end": 5854.02, "probability": 0.759 }, { "start": 5854.74, "end": 5856.44, "probability": 0.4386 }, { "start": 5859.38, "end": 5861.6, "probability": 0.198 }, { "start": 5861.6, "end": 5864.5, "probability": 0.6508 }, { "start": 5866.47, "end": 5869.22, "probability": 0.9314 }, { "start": 5870.12, "end": 5873.0, "probability": 0.5934 }, { "start": 5875.22, "end": 5876.88, "probability": 0.2072 }, { "start": 5877.7, "end": 5879.1, "probability": 0.7539 }, { "start": 5880.1, "end": 5886.04, "probability": 0.9886 }, { "start": 5886.88, "end": 5887.36, "probability": 0.7445 }, { "start": 5887.94, "end": 5890.5, "probability": 0.9967 }, { "start": 5890.5, "end": 5892.36, "probability": 0.9526 }, { "start": 5892.74, "end": 5895.38, "probability": 0.3168 }, { "start": 5895.42, "end": 5897.04, "probability": 0.2371 }, { "start": 5897.94, "end": 5901.96, "probability": 0.9785 }, { "start": 5902.16, "end": 5903.74, "probability": 0.8638 }, { "start": 5903.84, "end": 5906.58, "probability": 0.7006 }, { "start": 5909.61, "end": 5912.78, "probability": 0.6181 }, { "start": 5912.9, "end": 5913.92, "probability": 0.9696 }, { "start": 5916.18, "end": 5916.48, "probability": 0.6873 }, { "start": 5917.76, "end": 5918.58, "probability": 0.7683 }, { "start": 5918.72, "end": 5919.56, "probability": 0.9049 }, { "start": 5919.74, "end": 5922.26, "probability": 0.9951 }, { "start": 5923.0, "end": 5924.34, "probability": 0.7076 }, { "start": 5925.22, "end": 5929.46, "probability": 0.9812 }, { "start": 5930.74, "end": 5932.56, "probability": 0.4241 }, { "start": 5934.56, "end": 5936.16, "probability": 0.2093 }, { "start": 5936.86, "end": 5939.88, "probability": 0.9412 }, { "start": 5940.92, "end": 5942.72, "probability": 0.9891 }, { "start": 5942.9, "end": 5947.18, "probability": 0.9898 }, { "start": 5948.7, "end": 5949.3, "probability": 0.6582 }, { "start": 5949.9, "end": 5950.82, "probability": 0.2955 }, { "start": 5950.9, "end": 5951.46, "probability": 0.9189 }, { "start": 5952.08, "end": 5952.83, "probability": 0.8684 }, { "start": 5954.82, "end": 5955.54, "probability": 0.7821 }, { "start": 5955.74, "end": 5956.48, "probability": 0.6816 }, { "start": 5956.8, "end": 5957.56, "probability": 0.7303 }, { "start": 5957.72, "end": 5959.92, "probability": 0.8127 }, { "start": 5960.52, "end": 5962.6, "probability": 0.6011 }, { "start": 5963.56, "end": 5965.02, "probability": 0.5958 }, { "start": 5965.92, "end": 5968.4, "probability": 0.9969 }, { "start": 5968.48, "end": 5969.14, "probability": 0.8584 }, { "start": 5969.98, "end": 5972.6, "probability": 0.7642 }, { "start": 5972.8, "end": 5973.88, "probability": 0.9972 }, { "start": 5974.78, "end": 5976.82, "probability": 0.9308 }, { "start": 5978.84, "end": 5978.94, "probability": 0.0572 }, { "start": 5981.12, "end": 5983.72, "probability": 0.8576 }, { "start": 5984.4, "end": 5987.44, "probability": 0.74 }, { "start": 5987.58, "end": 5990.02, "probability": 0.9202 }, { "start": 5991.2, "end": 5992.64, "probability": 0.4272 }, { "start": 5993.3, "end": 5995.94, "probability": 0.0684 }, { "start": 5996.52, "end": 5998.3, "probability": 0.8825 }, { "start": 5998.58, "end": 6000.5, "probability": 0.8184 }, { "start": 6001.16, "end": 6002.1, "probability": 0.908 }, { "start": 6002.74, "end": 6008.48, "probability": 0.9714 }, { "start": 6009.94, "end": 6011.44, "probability": 0.7939 }, { "start": 6012.24, "end": 6013.56, "probability": 0.8822 }, { "start": 6013.72, "end": 6016.44, "probability": 0.9962 }, { "start": 6017.34, "end": 6019.2, "probability": 0.842 }, { "start": 6019.32, "end": 6020.18, "probability": 0.5833 }, { "start": 6021.32, "end": 6023.56, "probability": 0.6067 }, { "start": 6023.66, "end": 6024.45, "probability": 0.4236 }, { "start": 6025.54, "end": 6028.26, "probability": 0.5933 }, { "start": 6030.42, "end": 6033.7, "probability": 0.6395 }, { "start": 6034.02, "end": 6037.56, "probability": 0.9482 }, { "start": 6038.74, "end": 6039.58, "probability": 0.5543 }, { "start": 6056.18, "end": 6062.66, "probability": 0.0635 }, { "start": 6065.6, "end": 6067.8, "probability": 0.0026 }, { "start": 6069.54, "end": 6070.58, "probability": 0.0176 }, { "start": 6076.68, "end": 6080.06, "probability": 0.0549 }, { "start": 6080.44, "end": 6082.94, "probability": 0.0056 }, { "start": 6083.2, "end": 6083.34, "probability": 0.0293 }, { "start": 6084.5, "end": 6085.82, "probability": 0.0054 }, { "start": 6085.96, "end": 6087.26, "probability": 0.4348 }, { "start": 6087.26, "end": 6087.96, "probability": 0.1812 }, { "start": 6087.96, "end": 6089.26, "probability": 0.0427 }, { "start": 6093.34, "end": 6094.22, "probability": 0.2791 }, { "start": 6094.22, "end": 6094.56, "probability": 0.1202 }, { "start": 6094.56, "end": 6096.26, "probability": 0.4595 }, { "start": 6096.98, "end": 6096.98, "probability": 0.0109 }, { "start": 6101.88, "end": 6103.44, "probability": 0.2907 }, { "start": 6137.0, "end": 6137.0, "probability": 0.0 }, { "start": 6137.0, "end": 6137.0, "probability": 0.0 }, { "start": 6137.0, "end": 6137.0, "probability": 0.0 }, { "start": 6137.0, "end": 6137.0, "probability": 0.0 }, { "start": 6137.0, "end": 6137.0, "probability": 0.0 }, { "start": 6137.0, "end": 6137.0, "probability": 0.0 }, { "start": 6137.0, "end": 6137.0, "probability": 0.0 }, { "start": 6137.0, "end": 6137.0, "probability": 0.0 }, { "start": 6137.0, "end": 6137.0, "probability": 0.0 }, { "start": 6137.0, "end": 6137.0, "probability": 0.0 }, { "start": 6137.0, "end": 6137.0, "probability": 0.0 }, { "start": 6137.0, "end": 6137.0, "probability": 0.0 }, { "start": 6137.0, "end": 6137.0, "probability": 0.0 }, { "start": 6137.0, "end": 6137.0, "probability": 0.0 }, { "start": 6137.0, "end": 6137.0, "probability": 0.0 }, { "start": 6137.0, "end": 6137.0, "probability": 0.0 }, { "start": 6137.0, "end": 6137.0, "probability": 0.0 }, { "start": 6137.0, "end": 6137.0, "probability": 0.0 }, { "start": 6137.0, "end": 6137.0, "probability": 0.0 }, { "start": 6137.0, "end": 6137.0, "probability": 0.0 }, { "start": 6137.0, "end": 6137.0, "probability": 0.0 }, { "start": 6137.18, "end": 6137.34, "probability": 0.0386 }, { "start": 6137.94, "end": 6139.4, "probability": 0.6307 }, { "start": 6140.64, "end": 6144.28, "probability": 0.735 }, { "start": 6146.14, "end": 6147.98, "probability": 0.9778 }, { "start": 6149.38, "end": 6149.8, "probability": 0.1888 }, { "start": 6150.44, "end": 6154.52, "probability": 0.854 }, { "start": 6156.16, "end": 6160.08, "probability": 0.9991 }, { "start": 6160.08, "end": 6165.2, "probability": 0.9841 }, { "start": 6165.92, "end": 6168.58, "probability": 0.9912 }, { "start": 6169.28, "end": 6170.58, "probability": 0.7233 }, { "start": 6171.16, "end": 6174.38, "probability": 0.9857 }, { "start": 6175.68, "end": 6178.12, "probability": 0.9917 }, { "start": 6178.26, "end": 6180.7, "probability": 0.9969 }, { "start": 6181.48, "end": 6183.26, "probability": 0.8792 }, { "start": 6184.48, "end": 6187.24, "probability": 0.8906 }, { "start": 6188.52, "end": 6193.36, "probability": 0.9896 }, { "start": 6196.44, "end": 6198.16, "probability": 0.9937 }, { "start": 6198.48, "end": 6200.44, "probability": 0.8789 }, { "start": 6202.0, "end": 6203.86, "probability": 0.9277 }, { "start": 6204.08, "end": 6205.12, "probability": 0.1965 }, { "start": 6205.62, "end": 6207.2, "probability": 0.9214 }, { "start": 6207.8, "end": 6208.46, "probability": 0.5144 }, { "start": 6210.06, "end": 6210.46, "probability": 0.5009 }, { "start": 6212.0, "end": 6217.66, "probability": 0.7982 }, { "start": 6219.02, "end": 6221.92, "probability": 0.0093 }, { "start": 6223.4, "end": 6227.72, "probability": 0.9453 }, { "start": 6227.72, "end": 6232.01, "probability": 0.2331 }, { "start": 6233.64, "end": 6233.66, "probability": 0.0027 }, { "start": 6233.66, "end": 6233.66, "probability": 0.0901 }, { "start": 6233.66, "end": 6233.66, "probability": 0.0358 }, { "start": 6233.66, "end": 6233.98, "probability": 0.1834 }, { "start": 6233.98, "end": 6238.38, "probability": 0.9815 }, { "start": 6239.2, "end": 6242.58, "probability": 0.7806 }, { "start": 6243.28, "end": 6246.44, "probability": 0.9574 }, { "start": 6246.72, "end": 6250.3, "probability": 0.9104 }, { "start": 6250.88, "end": 6252.42, "probability": 0.7962 }, { "start": 6252.66, "end": 6255.16, "probability": 0.9978 }, { "start": 6256.84, "end": 6259.0, "probability": 0.4377 }, { "start": 6259.24, "end": 6259.38, "probability": 0.4384 }, { "start": 6260.43, "end": 6260.71, "probability": 0.0064 }, { "start": 6261.85, "end": 6262.1, "probability": 0.1374 }, { "start": 6262.1, "end": 6262.38, "probability": 0.1998 }, { "start": 6262.38, "end": 6264.04, "probability": 0.7384 }, { "start": 6264.26, "end": 6265.17, "probability": 0.0058 }, { "start": 6269.1, "end": 6270.34, "probability": 0.7347 }, { "start": 6270.64, "end": 6271.92, "probability": 0.1483 }, { "start": 6272.66, "end": 6275.0, "probability": 0.6947 }, { "start": 6281.05, "end": 6283.52, "probability": 0.4552 }, { "start": 6283.58, "end": 6289.96, "probability": 0.0485 }, { "start": 6290.6, "end": 6290.6, "probability": 0.176 }, { "start": 6290.6, "end": 6290.6, "probability": 0.0489 }, { "start": 6290.6, "end": 6290.6, "probability": 0.0071 }, { "start": 6290.6, "end": 6293.42, "probability": 0.2628 }, { "start": 6295.12, "end": 6296.42, "probability": 0.151 }, { "start": 6300.02, "end": 6301.74, "probability": 0.036 }, { "start": 6304.18, "end": 6306.6, "probability": 0.0565 }, { "start": 6306.6, "end": 6306.74, "probability": 0.0844 }, { "start": 6306.74, "end": 6306.8, "probability": 0.0366 }, { "start": 6306.8, "end": 6306.8, "probability": 0.1407 }, { "start": 6306.8, "end": 6306.8, "probability": 0.0372 }, { "start": 6306.8, "end": 6306.84, "probability": 0.0739 }, { "start": 6306.84, "end": 6306.84, "probability": 0.0233 }, { "start": 6307.0, "end": 6307.0, "probability": 0.0 }, { "start": 6307.0, "end": 6307.0, "probability": 0.0 }, { "start": 6307.0, "end": 6307.0, "probability": 0.0 }, { "start": 6307.0, "end": 6307.0, "probability": 0.0 }, { "start": 6307.0, "end": 6307.0, "probability": 0.0 }, { "start": 6307.0, "end": 6307.0, "probability": 0.0 }, { "start": 6307.0, "end": 6307.0, "probability": 0.0 }, { "start": 6307.0, "end": 6307.0, "probability": 0.0 }, { "start": 6307.0, "end": 6307.0, "probability": 0.0 }, { "start": 6307.0, "end": 6307.0, "probability": 0.0 }, { "start": 6307.0, "end": 6307.0, "probability": 0.0 }, { "start": 6307.0, "end": 6307.0, "probability": 0.0 }, { "start": 6307.0, "end": 6307.0, "probability": 0.0 }, { "start": 6308.01, "end": 6315.56, "probability": 0.995 }, { "start": 6316.52, "end": 6318.14, "probability": 0.7688 }, { "start": 6318.6, "end": 6321.28, "probability": 0.7859 }, { "start": 6321.98, "end": 6323.62, "probability": 0.9744 }, { "start": 6323.86, "end": 6323.88, "probability": 0.1218 }, { "start": 6323.88, "end": 6325.94, "probability": 0.6267 }, { "start": 6326.36, "end": 6328.23, "probability": 0.5199 }, { "start": 6328.96, "end": 6330.46, "probability": 0.7701 }, { "start": 6330.52, "end": 6330.8, "probability": 0.0504 }, { "start": 6330.9, "end": 6333.28, "probability": 0.8857 }, { "start": 6333.66, "end": 6336.38, "probability": 0.7914 }, { "start": 6337.4, "end": 6340.7, "probability": 0.865 }, { "start": 6343.52, "end": 6344.66, "probability": 0.3458 }, { "start": 6346.01, "end": 6351.8, "probability": 0.813 }, { "start": 6352.92, "end": 6354.4, "probability": 0.7644 }, { "start": 6355.02, "end": 6356.5, "probability": 0.9748 }, { "start": 6357.46, "end": 6358.24, "probability": 0.8902 }, { "start": 6359.08, "end": 6360.3, "probability": 0.9685 }, { "start": 6361.76, "end": 6363.3, "probability": 0.6823 }, { "start": 6364.96, "end": 6367.04, "probability": 0.6565 }, { "start": 6368.18, "end": 6370.96, "probability": 0.8611 }, { "start": 6372.54, "end": 6375.04, "probability": 0.863 }, { "start": 6377.38, "end": 6378.72, "probability": 0.9293 }, { "start": 6379.84, "end": 6380.44, "probability": 0.5003 }, { "start": 6381.32, "end": 6383.4, "probability": 0.6952 }, { "start": 6385.62, "end": 6387.76, "probability": 0.9378 }, { "start": 6389.3, "end": 6390.88, "probability": 0.9708 }, { "start": 6392.18, "end": 6394.48, "probability": 0.9819 }, { "start": 6395.38, "end": 6395.96, "probability": 0.5222 }, { "start": 6396.98, "end": 6402.32, "probability": 0.9227 }, { "start": 6404.0, "end": 6405.96, "probability": 0.9192 }, { "start": 6406.7, "end": 6408.04, "probability": 0.8994 }, { "start": 6409.2, "end": 6410.02, "probability": 0.9147 }, { "start": 6411.93, "end": 6414.12, "probability": 0.9255 }, { "start": 6417.66, "end": 6418.06, "probability": 0.0391 }, { "start": 6420.68, "end": 6422.54, "probability": 0.7209 }, { "start": 6424.18, "end": 6426.98, "probability": 0.7736 }, { "start": 6428.24, "end": 6430.48, "probability": 0.8573 }, { "start": 6431.62, "end": 6433.38, "probability": 0.9954 }, { "start": 6434.5, "end": 6436.76, "probability": 0.9935 }, { "start": 6441.66, "end": 6443.82, "probability": 0.8463 }, { "start": 6444.42, "end": 6445.84, "probability": 0.9726 }, { "start": 6445.88, "end": 6446.56, "probability": 0.9223 }, { "start": 6446.98, "end": 6447.8, "probability": 0.9718 }, { "start": 6448.12, "end": 6450.44, "probability": 0.5554 }, { "start": 6450.82, "end": 6451.78, "probability": 0.6118 }, { "start": 6456.76, "end": 6458.48, "probability": 0.908 }, { "start": 6462.86, "end": 6463.75, "probability": 0.6484 }, { "start": 6464.66, "end": 6467.42, "probability": 0.996 }, { "start": 6467.54, "end": 6469.84, "probability": 0.82 }, { "start": 6470.52, "end": 6471.7, "probability": 0.9682 }, { "start": 6472.06, "end": 6473.76, "probability": 0.9984 }, { "start": 6474.26, "end": 6475.44, "probability": 0.8326 }, { "start": 6475.86, "end": 6478.5, "probability": 0.6659 }, { "start": 6478.84, "end": 6481.96, "probability": 0.8526 }, { "start": 6482.58, "end": 6483.46, "probability": 0.9291 }, { "start": 6483.8, "end": 6485.52, "probability": 0.959 }, { "start": 6485.92, "end": 6486.62, "probability": 0.9396 }, { "start": 6487.8, "end": 6489.04, "probability": 0.8989 }, { "start": 6489.06, "end": 6490.47, "probability": 0.7202 }, { "start": 6490.62, "end": 6490.94, "probability": 0.5123 }, { "start": 6491.12, "end": 6492.94, "probability": 0.6672 }, { "start": 6493.04, "end": 6495.82, "probability": 0.8051 }, { "start": 6495.92, "end": 6497.94, "probability": 0.662 }, { "start": 6499.1, "end": 6500.44, "probability": 0.8766 }, { "start": 6502.24, "end": 6506.88, "probability": 0.8475 }, { "start": 6508.46, "end": 6508.56, "probability": 0.649 }, { "start": 6508.56, "end": 6509.08, "probability": 0.7311 }, { "start": 6509.14, "end": 6510.58, "probability": 0.9313 }, { "start": 6511.44, "end": 6514.12, "probability": 0.9604 }, { "start": 6515.28, "end": 6517.98, "probability": 0.9788 }, { "start": 6520.24, "end": 6521.65, "probability": 0.7783 }, { "start": 6522.34, "end": 6523.78, "probability": 0.6613 }, { "start": 6524.76, "end": 6527.02, "probability": 0.714 }, { "start": 6528.38, "end": 6529.1, "probability": 0.9626 }, { "start": 6530.06, "end": 6530.52, "probability": 0.8269 }, { "start": 6542.18, "end": 6543.49, "probability": 0.562 }, { "start": 6544.58, "end": 6547.7, "probability": 0.8571 }, { "start": 6548.44, "end": 6549.92, "probability": 0.9454 }, { "start": 6550.9, "end": 6554.46, "probability": 0.8994 }, { "start": 6555.32, "end": 6558.68, "probability": 0.9433 }, { "start": 6559.3, "end": 6559.66, "probability": 0.4172 }, { "start": 6559.7, "end": 6561.08, "probability": 0.8568 }, { "start": 6561.44, "end": 6562.48, "probability": 0.8965 }, { "start": 6562.64, "end": 6567.1, "probability": 0.9477 }, { "start": 6567.96, "end": 6570.28, "probability": 0.9914 }, { "start": 6570.82, "end": 6575.4, "probability": 0.9899 }, { "start": 6576.08, "end": 6578.58, "probability": 0.7229 }, { "start": 6578.58, "end": 6581.86, "probability": 0.9907 }, { "start": 6582.48, "end": 6583.62, "probability": 0.8182 }, { "start": 6583.74, "end": 6587.42, "probability": 0.7412 }, { "start": 6588.0, "end": 6588.3, "probability": 0.6311 }, { "start": 6588.84, "end": 6590.0, "probability": 0.9285 }, { "start": 6590.48, "end": 6591.46, "probability": 0.4462 }, { "start": 6591.62, "end": 6596.46, "probability": 0.8015 }, { "start": 6596.6, "end": 6597.2, "probability": 0.6255 }, { "start": 6597.46, "end": 6598.0, "probability": 0.6825 }, { "start": 6598.66, "end": 6598.68, "probability": 0.3563 }, { "start": 6598.9, "end": 6600.48, "probability": 0.7583 }, { "start": 6600.88, "end": 6605.28, "probability": 0.9365 }, { "start": 6605.56, "end": 6609.0, "probability": 0.8555 }, { "start": 6609.44, "end": 6610.38, "probability": 0.7396 }, { "start": 6610.7, "end": 6613.0, "probability": 0.7471 }, { "start": 6613.5, "end": 6614.8, "probability": 0.9506 }, { "start": 6614.95, "end": 6616.82, "probability": 0.3594 }, { "start": 6618.94, "end": 6619.44, "probability": 0.1394 }, { "start": 6619.44, "end": 6620.66, "probability": 0.833 }, { "start": 6621.59, "end": 6623.04, "probability": 0.2448 }, { "start": 6623.42, "end": 6627.96, "probability": 0.4497 }, { "start": 6628.32, "end": 6631.0, "probability": 0.639 }, { "start": 6634.1, "end": 6635.42, "probability": 0.0481 }, { "start": 6635.42, "end": 6636.56, "probability": 0.3024 }, { "start": 6636.56, "end": 6637.82, "probability": 0.322 }, { "start": 6638.08, "end": 6638.1, "probability": 0.0192 }, { "start": 6638.1, "end": 6639.14, "probability": 0.2277 }, { "start": 6639.66, "end": 6640.24, "probability": 0.6039 }, { "start": 6640.54, "end": 6641.2, "probability": 0.3126 }, { "start": 6641.74, "end": 6644.56, "probability": 0.489 }, { "start": 6646.26, "end": 6647.0, "probability": 0.0294 }, { "start": 6647.0, "end": 6647.98, "probability": 0.5189 }, { "start": 6648.24, "end": 6650.12, "probability": 0.7878 }, { "start": 6650.18, "end": 6650.88, "probability": 0.6336 }, { "start": 6651.12, "end": 6653.14, "probability": 0.9822 }, { "start": 6653.7, "end": 6655.17, "probability": 0.8743 }, { "start": 6655.9, "end": 6657.72, "probability": 0.8981 }, { "start": 6659.03, "end": 6662.04, "probability": 0.8781 }, { "start": 6662.12, "end": 6663.88, "probability": 0.7426 }, { "start": 6664.08, "end": 6665.26, "probability": 0.8103 }, { "start": 6665.44, "end": 6666.76, "probability": 0.802 }, { "start": 6666.82, "end": 6667.88, "probability": 0.8167 }, { "start": 6668.16, "end": 6669.34, "probability": 0.2863 }, { "start": 6669.34, "end": 6670.88, "probability": 0.1116 }, { "start": 6670.88, "end": 6670.88, "probability": 0.0678 }, { "start": 6670.9, "end": 6672.88, "probability": 0.7323 }, { "start": 6673.18, "end": 6674.24, "probability": 0.7184 }, { "start": 6674.56, "end": 6678.26, "probability": 0.128 }, { "start": 6678.28, "end": 6678.94, "probability": 0.1129 }, { "start": 6678.94, "end": 6680.84, "probability": 0.4351 }, { "start": 6681.02, "end": 6683.04, "probability": 0.7282 }, { "start": 6683.96, "end": 6686.16, "probability": 0.5154 }, { "start": 6686.28, "end": 6687.5, "probability": 0.9412 }, { "start": 6687.5, "end": 6690.66, "probability": 0.9435 }, { "start": 6690.66, "end": 6691.14, "probability": 0.3976 }, { "start": 6692.02, "end": 6692.74, "probability": 0.0533 }, { "start": 6694.05, "end": 6694.4, "probability": 0.0303 }, { "start": 6694.4, "end": 6697.31, "probability": 0.5094 }, { "start": 6705.24, "end": 6706.93, "probability": 0.7277 }, { "start": 6707.56, "end": 6710.2, "probability": 0.986 }, { "start": 6710.2, "end": 6713.45, "probability": 0.9806 }, { "start": 6714.8, "end": 6717.6, "probability": 0.9233 }, { "start": 6718.14, "end": 6723.06, "probability": 0.9705 }, { "start": 6724.1, "end": 6724.68, "probability": 0.7578 }, { "start": 6725.12, "end": 6726.08, "probability": 0.5049 }, { "start": 6726.24, "end": 6728.84, "probability": 0.7108 }, { "start": 6728.84, "end": 6732.68, "probability": 0.9854 }, { "start": 6732.68, "end": 6738.16, "probability": 0.9898 }, { "start": 6738.74, "end": 6741.08, "probability": 0.9007 }, { "start": 6741.68, "end": 6744.28, "probability": 0.9922 }, { "start": 6744.76, "end": 6747.92, "probability": 0.9963 }, { "start": 6748.44, "end": 6751.2, "probability": 0.9897 }, { "start": 6752.02, "end": 6755.02, "probability": 0.5894 }, { "start": 6755.76, "end": 6758.16, "probability": 0.9382 }, { "start": 6758.64, "end": 6759.86, "probability": 0.9835 }, { "start": 6760.36, "end": 6765.8, "probability": 0.9888 }, { "start": 6765.8, "end": 6772.08, "probability": 0.9735 }, { "start": 6772.96, "end": 6775.26, "probability": 0.957 }, { "start": 6776.08, "end": 6776.66, "probability": 0.8247 }, { "start": 6777.02, "end": 6778.24, "probability": 0.5076 }, { "start": 6778.36, "end": 6779.9, "probability": 0.6326 }, { "start": 6781.34, "end": 6781.82, "probability": 0.4092 }, { "start": 6782.78, "end": 6784.86, "probability": 0.7734 }, { "start": 6787.38, "end": 6789.28, "probability": 0.8268 }, { "start": 6789.86, "end": 6792.62, "probability": 0.4987 }, { "start": 6792.72, "end": 6794.86, "probability": 0.8013 }, { "start": 6795.96, "end": 6797.52, "probability": 0.9797 }, { "start": 6799.64, "end": 6802.16, "probability": 0.7944 }, { "start": 6802.94, "end": 6806.14, "probability": 0.7754 }, { "start": 6807.62, "end": 6810.42, "probability": 0.6532 }, { "start": 6812.9, "end": 6814.74, "probability": 0.8639 }, { "start": 6817.48, "end": 6819.02, "probability": 0.9836 }, { "start": 6820.68, "end": 6822.02, "probability": 0.9832 }, { "start": 6823.4, "end": 6825.14, "probability": 0.7875 }, { "start": 6826.7, "end": 6828.06, "probability": 0.9882 }, { "start": 6829.54, "end": 6831.7, "probability": 0.8636 }, { "start": 6834.22, "end": 6835.94, "probability": 0.8106 }, { "start": 6839.44, "end": 6841.28, "probability": 0.9489 }, { "start": 6843.06, "end": 6843.54, "probability": 0.7139 }, { "start": 6845.66, "end": 6848.78, "probability": 0.8486 }, { "start": 6850.92, "end": 6853.72, "probability": 0.98 }, { "start": 6855.64, "end": 6857.2, "probability": 0.8579 }, { "start": 6858.2, "end": 6859.84, "probability": 0.9252 }, { "start": 6860.58, "end": 6863.18, "probability": 0.9202 }, { "start": 6864.32, "end": 6866.7, "probability": 0.8727 }, { "start": 6867.64, "end": 6869.66, "probability": 0.9949 }, { "start": 6872.22, "end": 6874.19, "probability": 0.8124 }, { "start": 6875.78, "end": 6878.32, "probability": 0.9761 }, { "start": 6880.64, "end": 6883.8, "probability": 0.7649 }, { "start": 6884.16, "end": 6886.18, "probability": 0.4535 }, { "start": 6887.88, "end": 6889.4, "probability": 0.0022 }, { "start": 6903.04, "end": 6904.28, "probability": 0.6404 }, { "start": 6904.74, "end": 6906.04, "probability": 0.9357 }, { "start": 6906.2, "end": 6907.9, "probability": 0.8619 }, { "start": 6908.22, "end": 6908.6, "probability": 0.644 }, { "start": 6909.3, "end": 6910.06, "probability": 0.8018 }, { "start": 6911.6, "end": 6912.92, "probability": 0.999 }, { "start": 6914.08, "end": 6919.06, "probability": 0.8475 }, { "start": 6919.48, "end": 6920.12, "probability": 0.9266 }, { "start": 6920.34, "end": 6921.96, "probability": 0.8969 }, { "start": 6921.98, "end": 6922.36, "probability": 0.4831 }, { "start": 6923.54, "end": 6925.68, "probability": 0.6589 }, { "start": 6926.31, "end": 6926.86, "probability": 0.1317 }, { "start": 6926.92, "end": 6927.08, "probability": 0.5189 }, { "start": 6927.08, "end": 6932.72, "probability": 0.9293 }, { "start": 6932.72, "end": 6937.44, "probability": 0.9922 }, { "start": 6938.8, "end": 6941.3, "probability": 0.9597 }, { "start": 6941.34, "end": 6942.32, "probability": 0.7346 }, { "start": 6943.36, "end": 6945.48, "probability": 0.9895 }, { "start": 6946.4, "end": 6947.84, "probability": 0.9928 }, { "start": 6948.76, "end": 6951.26, "probability": 0.8001 }, { "start": 6951.86, "end": 6953.26, "probability": 0.9718 }, { "start": 6953.8, "end": 6956.42, "probability": 0.9814 }, { "start": 6957.04, "end": 6961.08, "probability": 0.7793 }, { "start": 6961.2, "end": 6961.7, "probability": 0.4297 }, { "start": 6961.7, "end": 6963.8, "probability": 0.8288 }, { "start": 6965.09, "end": 6968.46, "probability": 0.0225 }, { "start": 6969.24, "end": 6970.12, "probability": 0.0805 }, { "start": 6970.12, "end": 6974.22, "probability": 0.4814 }, { "start": 6974.26, "end": 6976.2, "probability": 0.0307 }, { "start": 6976.2, "end": 6977.58, "probability": 0.0826 }, { "start": 6977.8, "end": 6981.88, "probability": 0.167 }, { "start": 6981.92, "end": 6983.8, "probability": 0.4927 }, { "start": 6984.38, "end": 6984.38, "probability": 0.0368 }, { "start": 6984.38, "end": 6985.04, "probability": 0.0131 }, { "start": 6990.1, "end": 6991.68, "probability": 0.0938 }, { "start": 6994.4, "end": 6994.52, "probability": 0.0 }, { "start": 6996.43, "end": 6997.86, "probability": 0.0311 }, { "start": 7006.44, "end": 7006.44, "probability": 0.0364 }, { "start": 7006.44, "end": 7006.44, "probability": 0.0262 }, { "start": 7006.44, "end": 7006.44, "probability": 0.5817 }, { "start": 7006.44, "end": 7006.44, "probability": 0.4641 }, { "start": 7006.44, "end": 7008.78, "probability": 0.4863 }, { "start": 7009.58, "end": 7009.7, "probability": 0.739 }, { "start": 7010.3, "end": 7012.96, "probability": 0.9314 }, { "start": 7013.58, "end": 7015.38, "probability": 0.9827 }, { "start": 7016.16, "end": 7019.46, "probability": 0.6402 }, { "start": 7019.62, "end": 7024.4, "probability": 0.9115 }, { "start": 7024.58, "end": 7027.1, "probability": 0.9705 }, { "start": 7034.88, "end": 7036.88, "probability": 0.571 }, { "start": 7037.66, "end": 7039.72, "probability": 0.3965 }, { "start": 7039.8, "end": 7040.36, "probability": 0.9497 }, { "start": 7041.66, "end": 7043.46, "probability": 0.0725 }, { "start": 7043.46, "end": 7046.14, "probability": 0.9436 }, { "start": 7047.0, "end": 7049.84, "probability": 0.9735 }, { "start": 7050.42, "end": 7050.64, "probability": 0.6729 }, { "start": 7052.02, "end": 7052.36, "probability": 0.058 }, { "start": 7052.56, "end": 7056.5, "probability": 0.7738 }, { "start": 7056.74, "end": 7058.78, "probability": 0.9421 }, { "start": 7059.84, "end": 7061.0, "probability": 0.9089 }, { "start": 7061.38, "end": 7063.42, "probability": 0.9876 }, { "start": 7064.62, "end": 7065.48, "probability": 0.632 }, { "start": 7066.06, "end": 7067.58, "probability": 0.6314 }, { "start": 7068.66, "end": 7071.52, "probability": 0.9369 }, { "start": 7072.54, "end": 7077.44, "probability": 0.9282 }, { "start": 7078.18, "end": 7079.76, "probability": 0.967 }, { "start": 7080.3, "end": 7082.06, "probability": 0.9923 }, { "start": 7082.96, "end": 7083.88, "probability": 0.3778 }, { "start": 7084.48, "end": 7086.56, "probability": 0.6379 }, { "start": 7087.42, "end": 7088.06, "probability": 0.9549 }, { "start": 7089.68, "end": 7095.28, "probability": 0.7922 }, { "start": 7095.7, "end": 7096.2, "probability": 0.7629 }, { "start": 7096.22, "end": 7096.7, "probability": 0.7101 }, { "start": 7096.9, "end": 7099.0, "probability": 0.9949 }, { "start": 7099.2, "end": 7099.56, "probability": 0.9766 }, { "start": 7101.78, "end": 7104.14, "probability": 0.1499 }, { "start": 7104.44, "end": 7107.8, "probability": 0.5049 }, { "start": 7108.7, "end": 7112.36, "probability": 0.958 }, { "start": 7113.24, "end": 7115.28, "probability": 0.9366 }, { "start": 7116.3, "end": 7118.04, "probability": 0.8405 }, { "start": 7118.62, "end": 7122.32, "probability": 0.9775 }, { "start": 7122.86, "end": 7124.85, "probability": 0.7299 }, { "start": 7126.52, "end": 7129.16, "probability": 0.9953 }, { "start": 7129.94, "end": 7135.86, "probability": 0.9084 }, { "start": 7136.44, "end": 7137.98, "probability": 0.9653 }, { "start": 7138.58, "end": 7139.18, "probability": 0.8549 }, { "start": 7140.34, "end": 7143.28, "probability": 0.9385 }, { "start": 7144.3, "end": 7146.02, "probability": 0.7237 }, { "start": 7146.12, "end": 7146.54, "probability": 0.5789 }, { "start": 7147.68, "end": 7148.08, "probability": 0.8442 }, { "start": 7148.7, "end": 7152.88, "probability": 0.7886 }, { "start": 7153.62, "end": 7155.66, "probability": 0.9651 }, { "start": 7157.62, "end": 7166.0, "probability": 0.8831 }, { "start": 7167.02, "end": 7171.74, "probability": 0.9655 }, { "start": 7172.38, "end": 7173.2, "probability": 0.6162 }, { "start": 7173.84, "end": 7177.96, "probability": 0.9713 }, { "start": 7178.52, "end": 7179.62, "probability": 0.998 }, { "start": 7180.3, "end": 7181.14, "probability": 0.9349 }, { "start": 7182.14, "end": 7187.1, "probability": 0.9914 }, { "start": 7187.86, "end": 7192.06, "probability": 0.9891 }, { "start": 7193.88, "end": 7198.02, "probability": 0.8396 }, { "start": 7198.56, "end": 7200.44, "probability": 0.8851 }, { "start": 7201.18, "end": 7206.04, "probability": 0.9847 }, { "start": 7206.04, "end": 7209.7, "probability": 0.9778 }, { "start": 7211.42, "end": 7215.02, "probability": 0.9957 }, { "start": 7215.12, "end": 7220.02, "probability": 0.9202 }, { "start": 7220.82, "end": 7221.34, "probability": 0.4677 }, { "start": 7222.0, "end": 7225.36, "probability": 0.9902 }, { "start": 7226.12, "end": 7227.38, "probability": 0.9943 }, { "start": 7228.08, "end": 7233.35, "probability": 0.8389 }, { "start": 7234.18, "end": 7236.72, "probability": 0.9981 }, { "start": 7237.76, "end": 7239.77, "probability": 0.9723 }, { "start": 7240.62, "end": 7241.42, "probability": 0.9987 }, { "start": 7242.0, "end": 7243.48, "probability": 0.8337 }, { "start": 7245.24, "end": 7246.96, "probability": 0.925 }, { "start": 7248.68, "end": 7249.5, "probability": 0.8958 }, { "start": 7249.64, "end": 7250.2, "probability": 0.869 }, { "start": 7250.9, "end": 7252.26, "probability": 0.9932 }, { "start": 7252.58, "end": 7257.32, "probability": 0.9402 }, { "start": 7257.32, "end": 7262.2, "probability": 0.9938 }, { "start": 7262.76, "end": 7264.72, "probability": 0.949 }, { "start": 7265.82, "end": 7267.86, "probability": 0.9666 }, { "start": 7267.98, "end": 7268.4, "probability": 0.7897 }, { "start": 7268.64, "end": 7270.52, "probability": 0.9353 }, { "start": 7271.72, "end": 7273.48, "probability": 0.8659 }, { "start": 7274.72, "end": 7276.9, "probability": 0.9836 }, { "start": 7280.58, "end": 7281.5, "probability": 0.3789 }, { "start": 7282.1, "end": 7282.64, "probability": 0.6458 }, { "start": 7283.92, "end": 7289.94, "probability": 0.8426 }, { "start": 7292.52, "end": 7294.7, "probability": 0.9025 }, { "start": 7295.64, "end": 7296.62, "probability": 0.7903 }, { "start": 7297.04, "end": 7305.6, "probability": 0.023 }, { "start": 7309.42, "end": 7309.7, "probability": 0.0107 }, { "start": 7309.7, "end": 7309.7, "probability": 0.0201 }, { "start": 7309.7, "end": 7309.7, "probability": 0.0418 }, { "start": 7309.7, "end": 7311.42, "probability": 0.4848 }, { "start": 7312.32, "end": 7313.06, "probability": 0.3209 }, { "start": 7313.72, "end": 7313.96, "probability": 0.6411 }, { "start": 7317.66, "end": 7320.28, "probability": 0.3843 }, { "start": 7321.36, "end": 7322.66, "probability": 0.6108 }, { "start": 7327.26, "end": 7329.32, "probability": 0.6042 }, { "start": 7330.92, "end": 7333.94, "probability": 0.056 }, { "start": 7333.94, "end": 7335.06, "probability": 0.665 }, { "start": 7335.46, "end": 7336.5, "probability": 0.2507 }, { "start": 7337.0, "end": 7337.1, "probability": 0.1073 }, { "start": 7337.1, "end": 7337.36, "probability": 0.527 }, { "start": 7339.5, "end": 7341.04, "probability": 0.949 }, { "start": 7341.84, "end": 7342.96, "probability": 0.8146 }, { "start": 7343.54, "end": 7346.26, "probability": 0.9654 }, { "start": 7346.26, "end": 7348.88, "probability": 0.9969 }, { "start": 7350.6, "end": 7352.64, "probability": 0.1309 }, { "start": 7353.7, "end": 7354.94, "probability": 0.7541 }, { "start": 7356.14, "end": 7361.22, "probability": 0.9133 }, { "start": 7361.84, "end": 7363.18, "probability": 0.6836 }, { "start": 7363.76, "end": 7364.52, "probability": 0.6425 }, { "start": 7364.7, "end": 7366.16, "probability": 0.9905 }, { "start": 7366.86, "end": 7368.02, "probability": 0.7461 }, { "start": 7369.38, "end": 7369.84, "probability": 0.3744 }, { "start": 7370.36, "end": 7370.96, "probability": 0.8317 }, { "start": 7375.34, "end": 7377.34, "probability": 0.6952 }, { "start": 7378.76, "end": 7381.68, "probability": 0.8689 }, { "start": 7381.8, "end": 7382.4, "probability": 0.5928 }, { "start": 7382.52, "end": 7383.14, "probability": 0.3463 }, { "start": 7384.4, "end": 7387.46, "probability": 0.7788 }, { "start": 7389.42, "end": 7394.24, "probability": 0.4816 }, { "start": 7398.08, "end": 7399.94, "probability": 0.7911 }, { "start": 7401.18, "end": 7402.26, "probability": 0.572 }, { "start": 7431.64, "end": 7432.58, "probability": 0.645 }, { "start": 7433.22, "end": 7434.6, "probability": 0.6573 }, { "start": 7441.02, "end": 7444.63, "probability": 0.9277 }, { "start": 7446.44, "end": 7448.76, "probability": 0.9933 }, { "start": 7449.5, "end": 7452.18, "probability": 0.9892 }, { "start": 7452.3, "end": 7455.44, "probability": 0.7084 }, { "start": 7457.24, "end": 7467.28, "probability": 0.8161 }, { "start": 7468.24, "end": 7471.02, "probability": 0.9977 }, { "start": 7472.04, "end": 7474.72, "probability": 0.993 }, { "start": 7475.34, "end": 7480.62, "probability": 0.8602 }, { "start": 7481.18, "end": 7486.46, "probability": 0.9514 }, { "start": 7487.08, "end": 7491.28, "probability": 0.9956 }, { "start": 7493.08, "end": 7494.4, "probability": 0.637 }, { "start": 7494.96, "end": 7500.24, "probability": 0.9959 }, { "start": 7500.84, "end": 7502.26, "probability": 0.9366 }, { "start": 7504.14, "end": 7507.0, "probability": 0.9247 }, { "start": 7507.66, "end": 7510.82, "probability": 0.9941 }, { "start": 7511.94, "end": 7512.66, "probability": 0.8518 }, { "start": 7513.44, "end": 7515.52, "probability": 0.8267 }, { "start": 7515.68, "end": 7519.2, "probability": 0.9974 }, { "start": 7519.96, "end": 7522.42, "probability": 0.4827 }, { "start": 7523.3, "end": 7526.38, "probability": 0.9781 }, { "start": 7526.38, "end": 7528.84, "probability": 0.9875 }, { "start": 7529.72, "end": 7532.2, "probability": 0.9891 }, { "start": 7532.36, "end": 7534.12, "probability": 0.924 }, { "start": 7535.34, "end": 7538.98, "probability": 0.9972 }, { "start": 7540.0, "end": 7543.06, "probability": 0.992 }, { "start": 7543.06, "end": 7545.74, "probability": 0.9849 }, { "start": 7546.6, "end": 7547.8, "probability": 0.998 }, { "start": 7548.48, "end": 7552.22, "probability": 0.9971 }, { "start": 7553.42, "end": 7554.98, "probability": 0.9954 }, { "start": 7555.64, "end": 7559.1, "probability": 0.9954 }, { "start": 7559.64, "end": 7560.88, "probability": 0.9998 }, { "start": 7561.6, "end": 7564.44, "probability": 0.9829 }, { "start": 7564.44, "end": 7567.38, "probability": 0.9875 }, { "start": 7569.78, "end": 7575.52, "probability": 0.9991 }, { "start": 7576.3, "end": 7577.98, "probability": 0.9941 }, { "start": 7578.9, "end": 7582.72, "probability": 0.9954 }, { "start": 7583.54, "end": 7584.78, "probability": 0.7896 }, { "start": 7584.9, "end": 7588.8, "probability": 0.9827 }, { "start": 7590.18, "end": 7593.9, "probability": 0.9977 }, { "start": 7594.6, "end": 7597.44, "probability": 0.9997 }, { "start": 7597.44, "end": 7601.76, "probability": 0.998 }, { "start": 7602.46, "end": 7605.24, "probability": 0.9962 }, { "start": 7607.58, "end": 7610.64, "probability": 0.9978 }, { "start": 7611.32, "end": 7613.86, "probability": 0.9575 }, { "start": 7614.76, "end": 7617.54, "probability": 0.9982 }, { "start": 7617.8, "end": 7621.08, "probability": 0.8746 }, { "start": 7622.52, "end": 7625.22, "probability": 0.975 }, { "start": 7626.12, "end": 7630.1, "probability": 0.995 }, { "start": 7630.74, "end": 7634.46, "probability": 0.9988 }, { "start": 7634.58, "end": 7635.2, "probability": 0.4621 }, { "start": 7635.36, "end": 7636.38, "probability": 0.9754 }, { "start": 7637.58, "end": 7640.6, "probability": 0.9817 }, { "start": 7640.6, "end": 7643.88, "probability": 0.9926 }, { "start": 7644.56, "end": 7648.9, "probability": 0.9381 }, { "start": 7649.84, "end": 7653.02, "probability": 0.9011 }, { "start": 7654.04, "end": 7657.32, "probability": 0.9163 }, { "start": 7657.38, "end": 7659.8, "probability": 0.996 }, { "start": 7660.54, "end": 7664.16, "probability": 0.9946 }, { "start": 7665.14, "end": 7668.4, "probability": 0.9856 }, { "start": 7669.96, "end": 7676.66, "probability": 0.9543 }, { "start": 7680.39, "end": 7683.94, "probability": 0.4922 }, { "start": 7685.6, "end": 7688.1, "probability": 0.1214 }, { "start": 7688.56, "end": 7692.34, "probability": 0.9307 }, { "start": 7693.34, "end": 7696.52, "probability": 0.9972 }, { "start": 7696.8, "end": 7701.72, "probability": 0.9824 }, { "start": 7701.86, "end": 7702.98, "probability": 0.9664 }, { "start": 7703.5, "end": 7704.54, "probability": 0.8062 }, { "start": 7705.12, "end": 7708.24, "probability": 0.7158 }, { "start": 7709.86, "end": 7711.38, "probability": 0.7733 }, { "start": 7712.14, "end": 7717.52, "probability": 0.9961 }, { "start": 7717.92, "end": 7720.1, "probability": 0.981 }, { "start": 7720.66, "end": 7723.78, "probability": 0.9002 }, { "start": 7725.6, "end": 7728.3, "probability": 0.9825 }, { "start": 7729.14, "end": 7734.3, "probability": 0.9759 }, { "start": 7734.46, "end": 7735.5, "probability": 0.7878 }, { "start": 7739.42, "end": 7740.1, "probability": 0.2999 }, { "start": 7740.26, "end": 7741.46, "probability": 0.1137 }, { "start": 7741.56, "end": 7745.66, "probability": 0.973 }, { "start": 7745.66, "end": 7749.64, "probability": 0.9985 }, { "start": 7750.66, "end": 7757.5, "probability": 0.9659 }, { "start": 7758.02, "end": 7762.68, "probability": 0.9971 }, { "start": 7762.88, "end": 7766.9, "probability": 0.8126 }, { "start": 7767.4, "end": 7768.42, "probability": 0.7648 }, { "start": 7769.14, "end": 7770.44, "probability": 0.9305 }, { "start": 7770.58, "end": 7774.72, "probability": 0.9836 }, { "start": 7775.26, "end": 7776.78, "probability": 0.8255 }, { "start": 7778.1, "end": 7783.76, "probability": 0.847 }, { "start": 7784.86, "end": 7788.12, "probability": 0.9859 }, { "start": 7789.16, "end": 7789.58, "probability": 0.7181 }, { "start": 7790.24, "end": 7792.32, "probability": 0.9787 }, { "start": 7793.1, "end": 7795.02, "probability": 0.9836 }, { "start": 7795.2, "end": 7798.4, "probability": 0.9845 }, { "start": 7798.54, "end": 7799.96, "probability": 0.9845 }, { "start": 7800.08, "end": 7801.76, "probability": 0.9882 }, { "start": 7802.46, "end": 7805.78, "probability": 0.937 }, { "start": 7806.94, "end": 7811.4, "probability": 0.9946 }, { "start": 7812.1, "end": 7814.36, "probability": 0.4963 }, { "start": 7815.0, "end": 7820.84, "probability": 0.8784 }, { "start": 7821.32, "end": 7822.58, "probability": 0.9039 }, { "start": 7823.4, "end": 7825.6, "probability": 0.647 }, { "start": 7826.28, "end": 7827.96, "probability": 0.8617 }, { "start": 7828.7, "end": 7830.4, "probability": 0.9696 }, { "start": 7831.14, "end": 7834.56, "probability": 0.9168 }, { "start": 7834.66, "end": 7836.11, "probability": 0.9937 }, { "start": 7837.58, "end": 7838.87, "probability": 0.9976 }, { "start": 7840.18, "end": 7843.54, "probability": 0.5048 }, { "start": 7849.14, "end": 7849.7, "probability": 0.7069 }, { "start": 7856.36, "end": 7857.7, "probability": 0.4045 }, { "start": 7857.7, "end": 7859.24, "probability": 0.4334 }, { "start": 7859.92, "end": 7861.02, "probability": 0.2561 }, { "start": 7862.63, "end": 7864.3, "probability": 0.4756 }, { "start": 7864.3, "end": 7865.32, "probability": 0.8994 }, { "start": 7865.68, "end": 7866.74, "probability": 0.9526 }, { "start": 7867.44, "end": 7868.83, "probability": 0.9428 }, { "start": 7870.14, "end": 7870.92, "probability": 0.8977 }, { "start": 7871.26, "end": 7872.92, "probability": 0.9951 }, { "start": 7873.62, "end": 7875.54, "probability": 0.8229 }, { "start": 7875.76, "end": 7877.16, "probability": 0.9059 }, { "start": 7877.6, "end": 7877.94, "probability": 0.7239 }, { "start": 7878.94, "end": 7879.58, "probability": 0.8883 }, { "start": 7879.7, "end": 7885.82, "probability": 0.9608 }, { "start": 7886.54, "end": 7886.54, "probability": 0.6091 }, { "start": 7886.54, "end": 7888.58, "probability": 0.1181 }, { "start": 7888.94, "end": 7889.74, "probability": 0.2669 }, { "start": 7889.76, "end": 7890.88, "probability": 0.1263 }, { "start": 7897.22, "end": 7899.32, "probability": 0.8382 }, { "start": 7899.48, "end": 7902.24, "probability": 0.8413 }, { "start": 7902.92, "end": 7904.28, "probability": 0.525 }, { "start": 7906.74, "end": 7908.12, "probability": 0.9792 }, { "start": 7908.3, "end": 7911.12, "probability": 0.9839 }, { "start": 7912.4, "end": 7913.72, "probability": 0.7309 }, { "start": 7915.44, "end": 7918.86, "probability": 0.6186 }, { "start": 7920.7, "end": 7922.8, "probability": 0.8607 }, { "start": 7923.36, "end": 7925.06, "probability": 0.7713 }, { "start": 7925.9, "end": 7927.74, "probability": 0.9736 }, { "start": 7934.14, "end": 7936.8, "probability": 0.8711 }, { "start": 7939.36, "end": 7941.67, "probability": 0.9727 }, { "start": 7943.8, "end": 7945.42, "probability": 0.9901 }, { "start": 7947.0, "end": 7948.36, "probability": 0.9667 }, { "start": 7949.54, "end": 7951.08, "probability": 0.9703 }, { "start": 7952.68, "end": 7954.08, "probability": 0.9119 }, { "start": 7956.86, "end": 7958.46, "probability": 0.9852 }, { "start": 7960.92, "end": 7962.96, "probability": 0.9844 }, { "start": 7963.76, "end": 7965.24, "probability": 0.7458 }, { "start": 7967.0, "end": 7967.96, "probability": 0.9957 }, { "start": 7969.48, "end": 7971.64, "probability": 0.8163 }, { "start": 7973.18, "end": 7974.62, "probability": 0.9475 }, { "start": 7975.94, "end": 7978.2, "probability": 0.9469 }, { "start": 7984.54, "end": 7986.9, "probability": 0.8392 }, { "start": 7990.92, "end": 7993.0, "probability": 0.9421 }, { "start": 8003.14, "end": 8005.38, "probability": 0.9404 }, { "start": 8005.6, "end": 8006.5, "probability": 0.4985 }, { "start": 8009.28, "end": 8009.48, "probability": 0.8276 }, { "start": 8013.5, "end": 8013.98, "probability": 0.5761 }, { "start": 8016.48, "end": 8018.74, "probability": 0.6449 }, { "start": 8021.18, "end": 8024.06, "probability": 0.9967 }, { "start": 8024.2, "end": 8029.74, "probability": 0.9944 }, { "start": 8030.78, "end": 8033.2, "probability": 0.9977 }, { "start": 8034.96, "end": 8036.28, "probability": 0.6274 }, { "start": 8036.36, "end": 8039.72, "probability": 0.9951 }, { "start": 8040.78, "end": 8042.84, "probability": 0.957 }, { "start": 8044.22, "end": 8046.16, "probability": 0.987 }, { "start": 8047.08, "end": 8048.88, "probability": 0.9937 }, { "start": 8050.54, "end": 8053.52, "probability": 0.8652 }, { "start": 8054.42, "end": 8056.7, "probability": 0.7474 }, { "start": 8057.48, "end": 8060.16, "probability": 0.9645 }, { "start": 8060.9, "end": 8064.56, "probability": 0.9724 }, { "start": 8065.88, "end": 8066.08, "probability": 0.7451 }, { "start": 8066.16, "end": 8070.24, "probability": 0.9978 }, { "start": 8081.16, "end": 8088.88, "probability": 0.9973 }, { "start": 8091.12, "end": 8099.16, "probability": 0.9264 }, { "start": 8100.44, "end": 8100.96, "probability": 0.765 }, { "start": 8101.84, "end": 8103.74, "probability": 0.9369 }, { "start": 8104.52, "end": 8105.62, "probability": 0.6762 }, { "start": 8106.72, "end": 8107.66, "probability": 0.9065 }, { "start": 8108.46, "end": 8113.65, "probability": 0.9807 }, { "start": 8115.96, "end": 8122.29, "probability": 0.9348 }, { "start": 8123.52, "end": 8127.32, "probability": 0.9946 }, { "start": 8128.7, "end": 8130.77, "probability": 0.6241 }, { "start": 8131.9, "end": 8136.44, "probability": 0.9993 }, { "start": 8137.92, "end": 8141.7, "probability": 0.9846 }, { "start": 8143.5, "end": 8145.06, "probability": 0.7901 }, { "start": 8146.32, "end": 8150.56, "probability": 0.9177 }, { "start": 8151.14, "end": 8152.58, "probability": 0.9867 }, { "start": 8154.4, "end": 8156.9, "probability": 0.761 }, { "start": 8157.16, "end": 8157.32, "probability": 0.6827 }, { "start": 8157.38, "end": 8158.34, "probability": 0.9158 }, { "start": 8158.52, "end": 8159.2, "probability": 0.936 }, { "start": 8159.66, "end": 8160.72, "probability": 0.8544 }, { "start": 8160.78, "end": 8165.2, "probability": 0.9913 }, { "start": 8166.28, "end": 8170.04, "probability": 0.9987 }, { "start": 8170.46, "end": 8173.0, "probability": 0.9792 }, { "start": 8173.9, "end": 8175.5, "probability": 0.9967 }, { "start": 8175.58, "end": 8176.22, "probability": 0.6771 }, { "start": 8177.14, "end": 8178.24, "probability": 0.6777 }, { "start": 8179.02, "end": 8180.06, "probability": 0.8458 }, { "start": 8181.7, "end": 8184.44, "probability": 0.9933 }, { "start": 8184.7, "end": 8186.98, "probability": 0.961 }, { "start": 8188.06, "end": 8190.72, "probability": 0.987 }, { "start": 8191.36, "end": 8192.76, "probability": 0.5136 }, { "start": 8192.82, "end": 8194.38, "probability": 0.2942 }, { "start": 8194.56, "end": 8196.52, "probability": 0.3287 }, { "start": 8200.56, "end": 8201.61, "probability": 0.8076 }, { "start": 8202.06, "end": 8203.7, "probability": 0.804 }, { "start": 8205.31, "end": 8207.14, "probability": 0.8467 }, { "start": 8207.86, "end": 8208.46, "probability": 0.5354 }, { "start": 8208.72, "end": 8209.32, "probability": 0.2757 }, { "start": 8209.32, "end": 8210.59, "probability": 0.8105 }, { "start": 8210.88, "end": 8211.48, "probability": 0.9193 }, { "start": 8211.58, "end": 8212.26, "probability": 0.6359 }, { "start": 8213.02, "end": 8215.1, "probability": 0.9384 }, { "start": 8219.02, "end": 8220.36, "probability": 0.8228 }, { "start": 8221.04, "end": 8221.82, "probability": 0.5177 }, { "start": 8223.1, "end": 8225.3, "probability": 0.95 }, { "start": 8227.78, "end": 8232.04, "probability": 0.9578 }, { "start": 8233.57, "end": 8237.2, "probability": 0.9535 }, { "start": 8239.06, "end": 8240.82, "probability": 0.5121 }, { "start": 8243.28, "end": 8244.88, "probability": 0.9852 }, { "start": 8247.12, "end": 8249.62, "probability": 0.7123 }, { "start": 8251.44, "end": 8253.82, "probability": 0.9158 }, { "start": 8256.78, "end": 8257.04, "probability": 0.3601 }, { "start": 8257.04, "end": 8257.04, "probability": 0.0865 }, { "start": 8259.52, "end": 8260.94, "probability": 0.1215 }, { "start": 8262.98, "end": 8264.44, "probability": 0.6429 }, { "start": 8265.44, "end": 8268.0, "probability": 0.9224 }, { "start": 8269.54, "end": 8271.84, "probability": 0.7853 }, { "start": 8272.86, "end": 8275.18, "probability": 0.8587 }, { "start": 8279.86, "end": 8281.48, "probability": 0.6103 }, { "start": 8282.1, "end": 8283.5, "probability": 0.8958 }, { "start": 8287.0, "end": 8287.48, "probability": 0.4941 }, { "start": 8288.24, "end": 8289.56, "probability": 0.9481 }, { "start": 8291.72, "end": 8292.36, "probability": 0.3561 }, { "start": 8292.88, "end": 8295.14, "probability": 0.8904 }, { "start": 8298.02, "end": 8299.3, "probability": 0.5471 }, { "start": 8300.4, "end": 8303.4, "probability": 0.8143 }, { "start": 8305.34, "end": 8307.78, "probability": 0.7326 }, { "start": 8308.98, "end": 8310.28, "probability": 0.8743 }, { "start": 8312.12, "end": 8313.14, "probability": 0.961 }, { "start": 8314.64, "end": 8317.94, "probability": 0.8146 }, { "start": 8318.54, "end": 8320.56, "probability": 0.9792 }, { "start": 8321.54, "end": 8323.84, "probability": 0.9077 }, { "start": 8328.36, "end": 8328.92, "probability": 0.655 }, { "start": 8331.24, "end": 8332.76, "probability": 0.8879 }, { "start": 8334.06, "end": 8334.52, "probability": 0.7997 }, { "start": 8335.9, "end": 8337.58, "probability": 0.9658 }, { "start": 8341.84, "end": 8342.94, "probability": 0.8663 }, { "start": 8345.54, "end": 8347.98, "probability": 0.7272 }, { "start": 8349.44, "end": 8350.12, "probability": 0.5054 }, { "start": 8351.88, "end": 8354.84, "probability": 0.9591 }, { "start": 8355.44, "end": 8356.18, "probability": 0.2349 }, { "start": 8364.0, "end": 8365.2, "probability": 0.1235 }, { "start": 8365.2, "end": 8368.0, "probability": 0.0995 }, { "start": 8369.32, "end": 8370.12, "probability": 0.8091 }, { "start": 8370.34, "end": 8374.84, "probability": 0.9175 }, { "start": 8375.2, "end": 8376.12, "probability": 0.6365 }, { "start": 8376.43, "end": 8377.36, "probability": 0.1027 }, { "start": 8378.44, "end": 8379.5, "probability": 0.9118 }, { "start": 8380.0, "end": 8381.66, "probability": 0.0227 }, { "start": 8381.66, "end": 8384.62, "probability": 0.9747 }, { "start": 8385.48, "end": 8386.42, "probability": 0.7808 }, { "start": 8387.1, "end": 8387.1, "probability": 0.0429 }, { "start": 8387.72, "end": 8392.06, "probability": 0.9031 }, { "start": 8393.7, "end": 8397.66, "probability": 0.7509 }, { "start": 8398.78, "end": 8402.72, "probability": 0.9893 }, { "start": 8402.94, "end": 8408.78, "probability": 0.9676 }, { "start": 8409.54, "end": 8411.66, "probability": 0.0302 }, { "start": 8412.4, "end": 8412.58, "probability": 0.6562 }, { "start": 8413.48, "end": 8418.68, "probability": 0.9875 }, { "start": 8419.42, "end": 8422.5, "probability": 0.9878 }, { "start": 8423.48, "end": 8424.54, "probability": 0.9498 }, { "start": 8425.06, "end": 8426.34, "probability": 0.8055 }, { "start": 8426.38, "end": 8427.14, "probability": 0.6417 }, { "start": 8428.48, "end": 8429.48, "probability": 0.64 }, { "start": 8430.16, "end": 8434.12, "probability": 0.9028 }, { "start": 8434.94, "end": 8435.86, "probability": 0.884 }, { "start": 8436.62, "end": 8437.5, "probability": 0.8584 }, { "start": 8438.04, "end": 8438.34, "probability": 0.0857 }, { "start": 8439.4, "end": 8440.2, "probability": 0.0323 }, { "start": 8440.2, "end": 8440.2, "probability": 0.028 }, { "start": 8440.2, "end": 8442.18, "probability": 0.6233 }, { "start": 8443.74, "end": 8447.24, "probability": 0.736 }, { "start": 8448.5, "end": 8450.2, "probability": 0.6791 }, { "start": 8452.38, "end": 8457.2, "probability": 0.9951 }, { "start": 8457.76, "end": 8459.86, "probability": 0.9969 }, { "start": 8460.54, "end": 8462.5, "probability": 0.75 }, { "start": 8463.42, "end": 8465.7, "probability": 0.8435 }, { "start": 8467.92, "end": 8471.78, "probability": 0.9863 }, { "start": 8473.0, "end": 8476.36, "probability": 0.9913 }, { "start": 8476.96, "end": 8481.36, "probability": 0.9963 }, { "start": 8482.28, "end": 8483.98, "probability": 0.7275 }, { "start": 8485.12, "end": 8486.92, "probability": 0.9383 }, { "start": 8488.2, "end": 8489.76, "probability": 0.9484 }, { "start": 8490.9, "end": 8492.64, "probability": 0.7582 }, { "start": 8493.22, "end": 8494.48, "probability": 0.8093 }, { "start": 8495.46, "end": 8499.06, "probability": 0.7605 }, { "start": 8500.18, "end": 8500.94, "probability": 0.5505 }, { "start": 8502.42, "end": 8502.52, "probability": 0.077 }, { "start": 8502.52, "end": 8502.52, "probability": 0.1997 }, { "start": 8502.52, "end": 8504.3, "probability": 0.9947 }, { "start": 8505.94, "end": 8508.26, "probability": 0.9791 }, { "start": 8508.9, "end": 8515.4, "probability": 0.9814 }, { "start": 8515.9, "end": 8516.7, "probability": 0.007 }, { "start": 8517.28, "end": 8520.5, "probability": 0.4087 }, { "start": 8520.96, "end": 8527.4, "probability": 0.9828 }, { "start": 8527.78, "end": 8531.22, "probability": 0.7058 }, { "start": 8532.3, "end": 8533.74, "probability": 0.4108 }, { "start": 8534.18, "end": 8536.06, "probability": 0.8608 }, { "start": 8537.04, "end": 8539.84, "probability": 0.9819 }, { "start": 8539.94, "end": 8542.94, "probability": 0.7377 }, { "start": 8543.56, "end": 8547.2, "probability": 0.7517 }, { "start": 8547.62, "end": 8548.08, "probability": 0.5043 }, { "start": 8548.26, "end": 8548.54, "probability": 0.6068 }, { "start": 8548.62, "end": 8549.46, "probability": 0.232 }, { "start": 8550.14, "end": 8552.14, "probability": 0.7003 }, { "start": 8553.72, "end": 8554.52, "probability": 0.6621 }, { "start": 8555.0, "end": 8561.2, "probability": 0.7212 }, { "start": 8561.6, "end": 8562.06, "probability": 0.0734 }, { "start": 8563.02, "end": 8563.68, "probability": 0.1973 }, { "start": 8564.12, "end": 8564.98, "probability": 0.0715 }, { "start": 8566.24, "end": 8566.68, "probability": 0.1201 }, { "start": 8566.86, "end": 8566.86, "probability": 0.5872 }, { "start": 8566.86, "end": 8570.32, "probability": 0.5216 }, { "start": 8570.54, "end": 8571.24, "probability": 0.9359 }, { "start": 8574.22, "end": 8574.24, "probability": 0.4754 }, { "start": 8574.24, "end": 8575.52, "probability": 0.8859 }, { "start": 8575.8, "end": 8576.9, "probability": 0.5894 }, { "start": 8579.2, "end": 8580.68, "probability": 0.9412 }, { "start": 8583.26, "end": 8584.18, "probability": 0.8759 }, { "start": 8584.9, "end": 8585.4, "probability": 0.5174 }, { "start": 8586.82, "end": 8588.92, "probability": 0.7935 }, { "start": 8589.64, "end": 8590.32, "probability": 0.5838 }, { "start": 8591.32, "end": 8592.68, "probability": 0.575 }, { "start": 8594.66, "end": 8596.74, "probability": 0.4062 }, { "start": 8597.74, "end": 8600.08, "probability": 0.9639 }, { "start": 8603.26, "end": 8605.38, "probability": 0.5294 }, { "start": 8607.4, "end": 8609.5, "probability": 0.8835 }, { "start": 8610.98, "end": 8611.38, "probability": 0.9136 }, { "start": 8616.02, "end": 8617.66, "probability": 0.9512 }, { "start": 8618.6, "end": 8619.58, "probability": 0.9828 }, { "start": 8620.66, "end": 8622.08, "probability": 0.993 }, { "start": 8623.22, "end": 8624.34, "probability": 0.508 }, { "start": 8624.54, "end": 8626.28, "probability": 0.9833 }, { "start": 8629.88, "end": 8630.94, "probability": 0.4188 }, { "start": 8632.84, "end": 8634.74, "probability": 0.5881 }, { "start": 8635.32, "end": 8635.7, "probability": 0.6746 }, { "start": 8651.1, "end": 8651.98, "probability": 0.75 }, { "start": 8659.3, "end": 8659.6, "probability": 0.4726 }, { "start": 8659.98, "end": 8660.6, "probability": 0.4007 }, { "start": 8660.92, "end": 8664.04, "probability": 0.945 }, { "start": 8664.12, "end": 8664.7, "probability": 0.7002 }, { "start": 8665.9, "end": 8668.4, "probability": 0.9829 }, { "start": 8668.88, "end": 8670.08, "probability": 0.635 }, { "start": 8670.2, "end": 8672.32, "probability": 0.8823 }, { "start": 8672.56, "end": 8674.3, "probability": 0.9174 }, { "start": 8675.85, "end": 8679.26, "probability": 0.7133 }, { "start": 8679.48, "end": 8680.52, "probability": 0.7576 }, { "start": 8680.78, "end": 8682.24, "probability": 0.9961 }, { "start": 8682.46, "end": 8685.02, "probability": 0.9817 }, { "start": 8685.8, "end": 8689.1, "probability": 0.9928 }, { "start": 8690.42, "end": 8691.58, "probability": 0.5709 }, { "start": 8692.74, "end": 8697.28, "probability": 0.9653 }, { "start": 8698.04, "end": 8700.42, "probability": 0.9907 }, { "start": 8701.76, "end": 8704.1, "probability": 0.9977 }, { "start": 8704.5, "end": 8705.04, "probability": 0.886 }, { "start": 8705.12, "end": 8707.08, "probability": 0.8975 }, { "start": 8707.74, "end": 8710.12, "probability": 0.8284 }, { "start": 8710.42, "end": 8713.06, "probability": 0.998 }, { "start": 8713.2, "end": 8713.78, "probability": 0.7755 }, { "start": 8714.14, "end": 8716.4, "probability": 0.9987 }, { "start": 8717.18, "end": 8721.08, "probability": 0.9961 }, { "start": 8721.98, "end": 8724.78, "probability": 0.9888 }, { "start": 8724.9, "end": 8726.12, "probability": 0.7623 }, { "start": 8727.28, "end": 8729.64, "probability": 0.9255 }, { "start": 8730.62, "end": 8733.5, "probability": 0.8932 }, { "start": 8733.58, "end": 8734.56, "probability": 0.9702 }, { "start": 8735.08, "end": 8736.3, "probability": 0.9044 }, { "start": 8737.44, "end": 8738.14, "probability": 0.895 }, { "start": 8739.3, "end": 8740.8, "probability": 0.9976 }, { "start": 8741.72, "end": 8743.28, "probability": 0.967 }, { "start": 8743.5, "end": 8744.26, "probability": 0.3126 }, { "start": 8744.34, "end": 8745.72, "probability": 0.8944 }, { "start": 8746.4, "end": 8747.8, "probability": 0.9806 }, { "start": 8747.92, "end": 8748.5, "probability": 0.94 }, { "start": 8748.54, "end": 8751.24, "probability": 0.9902 }, { "start": 8752.72, "end": 8756.84, "probability": 0.9965 }, { "start": 8758.04, "end": 8765.04, "probability": 0.8641 }, { "start": 8765.28, "end": 8766.32, "probability": 0.6989 }, { "start": 8767.3, "end": 8770.86, "probability": 0.9956 }, { "start": 8770.94, "end": 8772.31, "probability": 0.6004 }, { "start": 8773.08, "end": 8775.14, "probability": 0.9272 }, { "start": 8777.0, "end": 8780.42, "probability": 0.948 }, { "start": 8780.6, "end": 8781.22, "probability": 0.3769 }, { "start": 8781.46, "end": 8781.98, "probability": 0.09 }, { "start": 8783.62, "end": 8783.96, "probability": 0.4709 }, { "start": 8784.18, "end": 8784.72, "probability": 0.2418 }, { "start": 8784.9, "end": 8786.86, "probability": 0.9172 }, { "start": 8787.24, "end": 8789.42, "probability": 0.5126 }, { "start": 8789.56, "end": 8790.42, "probability": 0.3298 }, { "start": 8790.88, "end": 8792.92, "probability": 0.8339 }, { "start": 8793.13, "end": 8797.52, "probability": 0.8039 }, { "start": 8797.52, "end": 8798.3, "probability": 0.0276 }, { "start": 8799.08, "end": 8799.34, "probability": 0.1254 }, { "start": 8799.34, "end": 8799.34, "probability": 0.5866 }, { "start": 8799.34, "end": 8799.34, "probability": 0.5103 }, { "start": 8799.34, "end": 8804.16, "probability": 0.7273 }, { "start": 8804.2, "end": 8805.44, "probability": 0.2059 }, { "start": 8806.72, "end": 8807.08, "probability": 0.1497 }, { "start": 8807.92, "end": 8809.1, "probability": 0.2044 }, { "start": 8809.17, "end": 8811.76, "probability": 0.3473 }, { "start": 8811.92, "end": 8811.92, "probability": 0.0476 }, { "start": 8812.14, "end": 8814.1, "probability": 0.3527 }, { "start": 8814.6, "end": 8816.2, "probability": 0.811 }, { "start": 8816.2, "end": 8817.7, "probability": 0.7897 }, { "start": 8818.32, "end": 8821.94, "probability": 0.7507 }, { "start": 8822.02, "end": 8824.6, "probability": 0.0231 }, { "start": 8824.68, "end": 8824.68, "probability": 0.0917 }, { "start": 8824.68, "end": 8824.68, "probability": 0.4984 }, { "start": 8824.68, "end": 8824.84, "probability": 0.2408 }, { "start": 8824.84, "end": 8826.6, "probability": 0.4903 }, { "start": 8826.63, "end": 8829.2, "probability": 0.6212 }, { "start": 8829.2, "end": 8834.2, "probability": 0.9282 }, { "start": 8835.34, "end": 8839.28, "probability": 0.8315 }, { "start": 8840.14, "end": 8840.9, "probability": 0.7635 }, { "start": 8842.06, "end": 8844.08, "probability": 0.9724 }, { "start": 8844.82, "end": 8846.0, "probability": 0.9939 }, { "start": 8847.22, "end": 8850.44, "probability": 0.9663 }, { "start": 8850.64, "end": 8850.9, "probability": 0.3637 }, { "start": 8850.92, "end": 8852.28, "probability": 0.6086 }, { "start": 8852.38, "end": 8854.46, "probability": 0.8046 }, { "start": 8856.0, "end": 8859.42, "probability": 0.8582 }, { "start": 8860.22, "end": 8864.16, "probability": 0.9782 }, { "start": 8864.8, "end": 8866.3, "probability": 0.89 }, { "start": 8866.86, "end": 8867.22, "probability": 0.8617 }, { "start": 8867.48, "end": 8868.82, "probability": 0.9008 }, { "start": 8869.84, "end": 8870.55, "probability": 0.9733 }, { "start": 8871.72, "end": 8872.73, "probability": 0.9561 }, { "start": 8873.44, "end": 8874.74, "probability": 0.7905 }, { "start": 8875.36, "end": 8876.84, "probability": 0.9967 }, { "start": 8877.58, "end": 8880.44, "probability": 0.9465 }, { "start": 8881.42, "end": 8882.98, "probability": 0.9197 }, { "start": 8883.68, "end": 8885.02, "probability": 0.9343 }, { "start": 8885.08, "end": 8885.76, "probability": 0.782 }, { "start": 8885.78, "end": 8886.7, "probability": 0.8854 }, { "start": 8886.92, "end": 8888.35, "probability": 0.9889 }, { "start": 8888.66, "end": 8888.8, "probability": 0.0803 }, { "start": 8888.94, "end": 8891.78, "probability": 0.699 }, { "start": 8892.64, "end": 8893.1, "probability": 0.0794 }, { "start": 8893.24, "end": 8894.31, "probability": 0.8826 }, { "start": 8895.22, "end": 8898.72, "probability": 0.9518 }, { "start": 8899.59, "end": 8901.24, "probability": 0.6791 }, { "start": 8901.24, "end": 8903.14, "probability": 0.3833 }, { "start": 8903.14, "end": 8903.36, "probability": 0.4397 }, { "start": 8903.5, "end": 8905.56, "probability": 0.4969 }, { "start": 8905.72, "end": 8909.28, "probability": 0.6822 }, { "start": 8911.7, "end": 8912.46, "probability": 0.6779 }, { "start": 8912.62, "end": 8916.62, "probability": 0.5563 }, { "start": 8917.32, "end": 8919.02, "probability": 0.7652 }, { "start": 8919.88, "end": 8922.0, "probability": 0.9257 }, { "start": 8922.72, "end": 8924.66, "probability": 0.7243 }, { "start": 8947.27, "end": 8951.98, "probability": 0.719 }, { "start": 8952.98, "end": 8957.6, "probability": 0.8506 }, { "start": 8957.66, "end": 8957.76, "probability": 0.8457 }, { "start": 8958.14, "end": 8960.99, "probability": 0.967 }, { "start": 8962.48, "end": 8967.68, "probability": 0.9971 }, { "start": 8968.42, "end": 8970.04, "probability": 0.8308 }, { "start": 8970.42, "end": 8972.76, "probability": 0.108 }, { "start": 8973.02, "end": 8974.96, "probability": 0.8075 }, { "start": 8977.92, "end": 8981.8, "probability": 0.9988 }, { "start": 8981.9, "end": 8986.74, "probability": 0.988 }, { "start": 8986.74, "end": 8991.74, "probability": 0.9912 }, { "start": 8991.86, "end": 8994.0, "probability": 0.9967 }, { "start": 8994.12, "end": 8995.26, "probability": 0.9023 }, { "start": 8995.82, "end": 9000.08, "probability": 0.9144 }, { "start": 9000.1, "end": 9001.64, "probability": 0.7295 }, { "start": 9002.38, "end": 9007.2, "probability": 0.9619 }, { "start": 9007.9, "end": 9008.94, "probability": 0.9792 }, { "start": 9009.5, "end": 9013.56, "probability": 0.8457 }, { "start": 9013.66, "end": 9016.16, "probability": 0.9847 }, { "start": 9016.82, "end": 9017.54, "probability": 0.8056 }, { "start": 9017.96, "end": 9018.34, "probability": 0.9111 }, { "start": 9018.44, "end": 9018.9, "probability": 0.5434 }, { "start": 9019.34, "end": 9022.3, "probability": 0.989 }, { "start": 9023.04, "end": 9025.94, "probability": 0.9299 }, { "start": 9026.4, "end": 9031.7, "probability": 0.9733 }, { "start": 9032.1, "end": 9032.54, "probability": 0.7363 }, { "start": 9033.78, "end": 9039.66, "probability": 0.8077 }, { "start": 9040.2, "end": 9046.51, "probability": 0.9884 }, { "start": 9047.12, "end": 9048.72, "probability": 0.7659 }, { "start": 9048.78, "end": 9049.42, "probability": 0.8256 }, { "start": 9050.02, "end": 9052.89, "probability": 0.9932 }, { "start": 9053.26, "end": 9055.94, "probability": 0.8172 }, { "start": 9056.14, "end": 9058.18, "probability": 0.6287 }, { "start": 9059.78, "end": 9067.0, "probability": 0.9912 }, { "start": 9067.26, "end": 9068.16, "probability": 0.9783 }, { "start": 9068.44, "end": 9069.34, "probability": 0.8685 }, { "start": 9069.78, "end": 9074.8, "probability": 0.9913 }, { "start": 9075.42, "end": 9077.88, "probability": 0.9794 }, { "start": 9078.48, "end": 9081.06, "probability": 0.998 }, { "start": 9081.68, "end": 9082.56, "probability": 0.7604 }, { "start": 9091.92, "end": 9097.8, "probability": 0.9834 }, { "start": 9098.5, "end": 9100.06, "probability": 0.9633 }, { "start": 9100.54, "end": 9104.64, "probability": 0.9912 }, { "start": 9105.54, "end": 9107.94, "probability": 0.8019 }, { "start": 9108.18, "end": 9111.2, "probability": 0.8984 }, { "start": 9113.1, "end": 9118.86, "probability": 0.9462 }, { "start": 9119.94, "end": 9122.56, "probability": 0.8677 }, { "start": 9123.22, "end": 9130.3, "probability": 0.7406 }, { "start": 9130.96, "end": 9132.44, "probability": 0.6202 }, { "start": 9134.22, "end": 9134.48, "probability": 0.295 }, { "start": 9135.24, "end": 9136.24, "probability": 0.7311 }, { "start": 9137.16, "end": 9139.38, "probability": 0.7965 }, { "start": 9139.7, "end": 9141.06, "probability": 0.076 }, { "start": 9141.24, "end": 9141.6, "probability": 0.8689 }, { "start": 9141.74, "end": 9145.02, "probability": 0.8877 }, { "start": 9146.08, "end": 9151.4, "probability": 0.9961 }, { "start": 9152.14, "end": 9152.82, "probability": 0.5803 }, { "start": 9155.06, "end": 9156.44, "probability": 0.9719 }, { "start": 9160.68, "end": 9160.94, "probability": 0.3591 }, { "start": 9161.78, "end": 9162.58, "probability": 0.7121 }, { "start": 9163.48, "end": 9164.92, "probability": 0.043 }, { "start": 9166.16, "end": 9167.29, "probability": 0.0973 }, { "start": 9168.36, "end": 9168.7, "probability": 0.6259 }, { "start": 9170.54, "end": 9171.98, "probability": 0.9327 }, { "start": 9172.52, "end": 9173.7, "probability": 0.7394 }, { "start": 9174.4, "end": 9174.84, "probability": 0.0142 }, { "start": 9177.74, "end": 9180.12, "probability": 0.0246 }, { "start": 9180.16, "end": 9180.46, "probability": 0.2673 }, { "start": 9181.82, "end": 9182.9, "probability": 0.5247 }, { "start": 9183.2, "end": 9183.44, "probability": 0.5792 }, { "start": 9183.44, "end": 9186.23, "probability": 0.2166 }, { "start": 9186.46, "end": 9187.58, "probability": 0.8342 }, { "start": 9187.68, "end": 9189.86, "probability": 0.8822 }, { "start": 9192.67, "end": 9196.78, "probability": 0.691 }, { "start": 9197.16, "end": 9198.64, "probability": 0.3898 }, { "start": 9199.38, "end": 9200.34, "probability": 0.9771 }, { "start": 9201.22, "end": 9201.88, "probability": 0.8741 }, { "start": 9202.68, "end": 9203.0, "probability": 0.0381 }, { "start": 9205.54, "end": 9207.0, "probability": 0.1978 }, { "start": 9208.6, "end": 9214.56, "probability": 0.0245 }, { "start": 9276.0, "end": 9276.0, "probability": 0.0 }, { "start": 9276.0, "end": 9276.0, "probability": 0.0 }, { "start": 9276.0, "end": 9276.0, "probability": 0.0 }, { "start": 9276.0, "end": 9276.0, "probability": 0.0 }, { "start": 9276.0, "end": 9276.0, "probability": 0.0 }, { "start": 9276.0, "end": 9276.0, "probability": 0.0 }, { "start": 9276.0, "end": 9276.0, "probability": 0.0 }, { "start": 9276.0, "end": 9276.0, "probability": 0.0 }, { "start": 9276.0, "end": 9276.0, "probability": 0.0 }, { "start": 9276.0, "end": 9276.0, "probability": 0.0 }, { "start": 9276.0, "end": 9276.0, "probability": 0.0 }, { "start": 9276.0, "end": 9276.0, "probability": 0.0 }, { "start": 9276.12, "end": 9279.2, "probability": 0.8392 }, { "start": 9281.24, "end": 9284.24, "probability": 0.3222 }, { "start": 9286.68, "end": 9289.42, "probability": 0.7379 }, { "start": 9292.76, "end": 9293.24, "probability": 0.2259 }, { "start": 9297.72, "end": 9299.12, "probability": 0.8644 }, { "start": 9302.02, "end": 9302.7, "probability": 0.8621 }, { "start": 9304.9, "end": 9305.44, "probability": 0.9704 }, { "start": 9307.24, "end": 9309.36, "probability": 0.9976 }, { "start": 9313.68, "end": 9314.28, "probability": 0.999 }, { "start": 9316.2, "end": 9318.18, "probability": 0.966 }, { "start": 9319.74, "end": 9320.64, "probability": 0.8218 }, { "start": 9322.22, "end": 9322.6, "probability": 0.134 }, { "start": 9322.86, "end": 9324.04, "probability": 0.8886 }, { "start": 9324.3, "end": 9324.6, "probability": 0.9655 }, { "start": 9324.72, "end": 9325.66, "probability": 0.7216 }, { "start": 9325.98, "end": 9329.2, "probability": 0.9917 }, { "start": 9330.28, "end": 9334.08, "probability": 0.9438 }, { "start": 9335.42, "end": 9337.52, "probability": 0.9946 }, { "start": 9339.4, "end": 9340.9, "probability": 0.8847 }, { "start": 9341.86, "end": 9341.88, "probability": 0.3212 }, { "start": 9341.88, "end": 9342.88, "probability": 0.2704 }, { "start": 9342.94, "end": 9343.42, "probability": 0.7872 }, { "start": 9343.5, "end": 9344.34, "probability": 0.3679 }, { "start": 9344.54, "end": 9345.96, "probability": 0.2562 }, { "start": 9346.02, "end": 9348.36, "probability": 0.8984 }, { "start": 9350.46, "end": 9351.96, "probability": 0.9972 }, { "start": 9354.24, "end": 9356.82, "probability": 0.9294 }, { "start": 9358.64, "end": 9360.2, "probability": 0.8899 }, { "start": 9362.2, "end": 9363.6, "probability": 0.7568 }, { "start": 9364.36, "end": 9366.12, "probability": 0.9937 }, { "start": 9367.64, "end": 9368.24, "probability": 0.5236 }, { "start": 9369.88, "end": 9372.7, "probability": 0.9961 }, { "start": 9376.23, "end": 9378.9, "probability": 0.753 }, { "start": 9380.04, "end": 9380.8, "probability": 0.9056 }, { "start": 9381.72, "end": 9383.16, "probability": 0.9839 }, { "start": 9387.48, "end": 9389.87, "probability": 0.9976 }, { "start": 9392.28, "end": 9393.58, "probability": 0.9787 }, { "start": 9394.48, "end": 9395.94, "probability": 0.9794 }, { "start": 9397.12, "end": 9401.84, "probability": 0.989 }, { "start": 9401.92, "end": 9403.0, "probability": 0.9505 }, { "start": 9403.86, "end": 9405.94, "probability": 0.9849 }, { "start": 9406.32, "end": 9406.68, "probability": 0.8126 }, { "start": 9406.96, "end": 9409.54, "probability": 0.1604 }, { "start": 9410.5, "end": 9412.04, "probability": 0.4783 }, { "start": 9415.12, "end": 9416.46, "probability": 0.4124 }, { "start": 9417.6, "end": 9419.26, "probability": 0.496 }, { "start": 9421.98, "end": 9424.42, "probability": 0.5393 }, { "start": 9425.07, "end": 9430.9, "probability": 0.784 }, { "start": 9432.26, "end": 9433.24, "probability": 0.9282 }, { "start": 9435.9, "end": 9437.56, "probability": 0.7812 }, { "start": 9440.18, "end": 9442.12, "probability": 0.1029 }, { "start": 9442.34, "end": 9445.28, "probability": 0.7997 }, { "start": 9445.46, "end": 9446.26, "probability": 0.6931 }, { "start": 9446.76, "end": 9447.92, "probability": 0.9778 }, { "start": 9448.1, "end": 9450.3, "probability": 0.8597 }, { "start": 9450.7, "end": 9451.76, "probability": 0.3082 }, { "start": 9452.74, "end": 9453.98, "probability": 0.0207 }, { "start": 9477.8, "end": 9480.2, "probability": 0.7988 }, { "start": 9485.74, "end": 9487.22, "probability": 0.3859 }, { "start": 9488.26, "end": 9490.12, "probability": 0.9528 }, { "start": 9493.92, "end": 9496.1, "probability": 0.2995 }, { "start": 9498.02, "end": 9499.44, "probability": 0.8526 }, { "start": 9502.26, "end": 9503.84, "probability": 0.8346 }, { "start": 9504.5, "end": 9505.9, "probability": 0.9634 }, { "start": 9506.8, "end": 9507.28, "probability": 0.9712 }, { "start": 9508.02, "end": 9509.42, "probability": 0.9746 }, { "start": 9511.36, "end": 9512.04, "probability": 0.9722 }, { "start": 9513.04, "end": 9514.4, "probability": 0.9932 }, { "start": 9515.58, "end": 9516.16, "probability": 0.9902 }, { "start": 9516.88, "end": 9519.6, "probability": 0.9875 }, { "start": 9520.14, "end": 9521.42, "probability": 0.9671 }, { "start": 9523.08, "end": 9523.44, "probability": 0.8368 }, { "start": 9524.18, "end": 9525.58, "probability": 0.9763 }, { "start": 9527.58, "end": 9530.64, "probability": 0.7671 }, { "start": 9531.74, "end": 9532.96, "probability": 0.9275 }, { "start": 9534.4, "end": 9534.98, "probability": 0.9818 }, { "start": 9535.52, "end": 9536.82, "probability": 0.9922 }, { "start": 9539.04, "end": 9539.42, "probability": 0.9552 }, { "start": 9540.46, "end": 9541.86, "probability": 0.9919 }, { "start": 9543.82, "end": 9546.32, "probability": 0.9929 }, { "start": 9547.66, "end": 9551.5, "probability": 0.5363 }, { "start": 9552.32, "end": 9553.84, "probability": 0.9096 }, { "start": 9555.02, "end": 9555.84, "probability": 0.9814 }, { "start": 9556.74, "end": 9558.24, "probability": 0.9888 }, { "start": 9559.02, "end": 9559.56, "probability": 0.9755 }, { "start": 9560.66, "end": 9562.02, "probability": 0.9929 }, { "start": 9563.06, "end": 9563.62, "probability": 0.9474 }, { "start": 9565.39, "end": 9567.62, "probability": 0.8176 }, { "start": 9569.62, "end": 9570.36, "probability": 0.7268 }, { "start": 9572.94, "end": 9574.62, "probability": 0.577 }, { "start": 9575.18, "end": 9575.56, "probability": 0.5435 }, { "start": 9576.48, "end": 9577.98, "probability": 0.955 }, { "start": 9579.34, "end": 9579.9, "probability": 0.9711 }, { "start": 9580.56, "end": 9581.86, "probability": 0.9941 }, { "start": 9582.58, "end": 9583.32, "probability": 0.9874 }, { "start": 9584.16, "end": 9585.52, "probability": 0.9985 }, { "start": 9589.3, "end": 9592.98, "probability": 0.9153 }, { "start": 9593.7, "end": 9594.46, "probability": 0.9939 }, { "start": 9595.34, "end": 9596.06, "probability": 0.7323 }, { "start": 9596.6, "end": 9597.32, "probability": 0.7237 }, { "start": 9598.7, "end": 9599.06, "probability": 0.6869 }, { "start": 9599.76, "end": 9601.18, "probability": 0.928 }, { "start": 9602.3, "end": 9603.02, "probability": 0.711 }, { "start": 9603.7, "end": 9604.86, "probability": 0.9807 }, { "start": 9607.72, "end": 9608.42, "probability": 0.9403 }, { "start": 9608.96, "end": 9611.22, "probability": 0.9174 }, { "start": 9611.92, "end": 9614.64, "probability": 0.9935 }, { "start": 9616.44, "end": 9617.92, "probability": 0.5721 }, { "start": 9618.8, "end": 9620.48, "probability": 0.6694 }, { "start": 9622.44, "end": 9624.38, "probability": 0.8051 }, { "start": 9648.14, "end": 9649.1, "probability": 0.6075 }, { "start": 9651.12, "end": 9652.06, "probability": 0.7319 }, { "start": 9653.1, "end": 9654.8, "probability": 0.9785 }, { "start": 9656.52, "end": 9659.14, "probability": 0.9082 }, { "start": 9659.24, "end": 9661.7, "probability": 0.9796 }, { "start": 9661.82, "end": 9663.52, "probability": 0.7666 }, { "start": 9664.84, "end": 9667.88, "probability": 0.9863 }, { "start": 9669.08, "end": 9672.88, "probability": 0.9474 }, { "start": 9673.44, "end": 9673.88, "probability": 0.4704 }, { "start": 9674.88, "end": 9679.48, "probability": 0.9569 }, { "start": 9679.78, "end": 9685.38, "probability": 0.9942 }, { "start": 9685.98, "end": 9691.26, "probability": 0.9982 }, { "start": 9691.36, "end": 9696.38, "probability": 0.9614 }, { "start": 9697.22, "end": 9699.08, "probability": 0.8938 }, { "start": 9699.22, "end": 9701.26, "probability": 0.9722 }, { "start": 9701.74, "end": 9706.48, "probability": 0.949 }, { "start": 9707.2, "end": 9709.02, "probability": 0.7163 }, { "start": 9709.66, "end": 9714.06, "probability": 0.9866 }, { "start": 9714.96, "end": 9720.3, "probability": 0.9914 }, { "start": 9720.82, "end": 9723.84, "probability": 0.9979 }, { "start": 9724.56, "end": 9727.64, "probability": 0.9641 }, { "start": 9727.66, "end": 9731.12, "probability": 0.998 }, { "start": 9731.64, "end": 9733.66, "probability": 0.9054 }, { "start": 9734.14, "end": 9735.64, "probability": 0.9432 }, { "start": 9736.28, "end": 9741.84, "probability": 0.9951 }, { "start": 9741.84, "end": 9745.94, "probability": 0.999 }, { "start": 9746.24, "end": 9746.76, "probability": 0.7089 }, { "start": 9750.52, "end": 9752.68, "probability": 0.945 }, { "start": 9753.32, "end": 9756.58, "probability": 0.9072 }, { "start": 9757.62, "end": 9758.5, "probability": 0.3563 }, { "start": 9759.2, "end": 9760.1, "probability": 0.6939 }, { "start": 9761.0, "end": 9761.7, "probability": 0.5311 }, { "start": 9763.36, "end": 9765.48, "probability": 0.9758 }, { "start": 9766.72, "end": 9767.66, "probability": 0.89 }, { "start": 9768.24, "end": 9769.66, "probability": 0.9924 }, { "start": 9771.08, "end": 9771.82, "probability": 0.9659 }, { "start": 9772.4, "end": 9773.58, "probability": 0.9971 }, { "start": 9774.94, "end": 9775.48, "probability": 0.1625 }, { "start": 9776.32, "end": 9778.14, "probability": 0.8396 }, { "start": 9779.34, "end": 9779.96, "probability": 0.9304 }, { "start": 9782.48, "end": 9783.38, "probability": 0.2609 }, { "start": 9783.64, "end": 9784.34, "probability": 0.5521 }, { "start": 9784.62, "end": 9785.78, "probability": 0.136 }, { "start": 9786.0, "end": 9787.44, "probability": 0.0199 }, { "start": 9788.1, "end": 9790.8, "probability": 0.0351 }, { "start": 9791.84, "end": 9792.82, "probability": 0.0868 }, { "start": 9793.92, "end": 9794.3, "probability": 0.0227 }, { "start": 9794.44, "end": 9795.56, "probability": 0.1649 }, { "start": 9798.06, "end": 9801.16, "probability": 0.116 }, { "start": 9803.54, "end": 9806.32, "probability": 0.0815 }, { "start": 9806.92, "end": 9809.28, "probability": 0.0574 }, { "start": 9810.44, "end": 9812.86, "probability": 0.0428 }, { "start": 9815.1, "end": 9816.74, "probability": 0.0923 }, { "start": 9842.12, "end": 9843.76, "probability": 0.6939 }, { "start": 9845.44, "end": 9847.0, "probability": 0.8174 }, { "start": 9847.16, "end": 9848.06, "probability": 0.7123 }, { "start": 9848.22, "end": 9849.15, "probability": 0.954 }, { "start": 9849.36, "end": 9850.33, "probability": 0.6704 }, { "start": 9852.18, "end": 9854.96, "probability": 0.9968 }, { "start": 9855.94, "end": 9857.24, "probability": 0.9149 }, { "start": 9859.14, "end": 9859.7, "probability": 0.9971 }, { "start": 9860.76, "end": 9863.72, "probability": 0.9893 }, { "start": 9864.72, "end": 9869.62, "probability": 0.9878 }, { "start": 9871.3, "end": 9873.88, "probability": 0.9845 }, { "start": 9874.06, "end": 9874.76, "probability": 0.9951 }, { "start": 9876.1, "end": 9879.06, "probability": 0.9761 }, { "start": 9879.72, "end": 9881.65, "probability": 0.9963 }, { "start": 9882.02, "end": 9883.4, "probability": 0.7796 }, { "start": 9885.06, "end": 9886.97, "probability": 0.9518 }, { "start": 9888.26, "end": 9888.9, "probability": 0.7596 }, { "start": 9890.58, "end": 9892.68, "probability": 0.905 }, { "start": 9893.24, "end": 9895.75, "probability": 0.9769 }, { "start": 9896.56, "end": 9901.46, "probability": 0.998 }, { "start": 9902.9, "end": 9902.92, "probability": 0.019 }, { "start": 9902.98, "end": 9904.02, "probability": 0.6747 }, { "start": 9904.1, "end": 9905.32, "probability": 0.8875 }, { "start": 9905.68, "end": 9909.44, "probability": 0.9836 }, { "start": 9909.98, "end": 9911.66, "probability": 0.7053 }, { "start": 9912.32, "end": 9915.0, "probability": 0.9654 }, { "start": 9916.16, "end": 9918.46, "probability": 0.9586 }, { "start": 9919.0, "end": 9920.76, "probability": 0.5216 }, { "start": 9922.58, "end": 9927.08, "probability": 0.9584 }, { "start": 9927.14, "end": 9927.46, "probability": 0.7243 }, { "start": 9928.01, "end": 9930.58, "probability": 0.998 }, { "start": 9931.08, "end": 9936.9, "probability": 0.999 }, { "start": 9937.08, "end": 9938.76, "probability": 0.9287 }, { "start": 9941.62, "end": 9944.1, "probability": 0.9471 }, { "start": 9944.16, "end": 9947.44, "probability": 0.9938 }, { "start": 9947.74, "end": 9949.06, "probability": 0.9778 }, { "start": 9950.1, "end": 9952.0, "probability": 0.839 }, { "start": 9952.92, "end": 9953.56, "probability": 0.8317 }, { "start": 9954.4, "end": 9954.92, "probability": 0.8816 }, { "start": 9955.82, "end": 9958.28, "probability": 0.985 }, { "start": 9959.22, "end": 9961.78, "probability": 0.9964 }, { "start": 9963.06, "end": 9966.52, "probability": 0.9846 }, { "start": 9967.43, "end": 9969.83, "probability": 0.9341 }, { "start": 9971.82, "end": 9974.02, "probability": 0.9309 }, { "start": 9975.18, "end": 9976.78, "probability": 0.9663 }, { "start": 9977.46, "end": 9980.18, "probability": 0.9979 }, { "start": 9980.34, "end": 9981.92, "probability": 0.9995 }, { "start": 9982.52, "end": 9983.1, "probability": 0.6921 }, { "start": 9983.76, "end": 9986.08, "probability": 0.95 }, { "start": 9987.02, "end": 9988.56, "probability": 0.9685 }, { "start": 9989.16, "end": 9990.24, "probability": 0.8754 }, { "start": 9990.9, "end": 9991.64, "probability": 0.7552 }, { "start": 9992.26, "end": 9993.92, "probability": 0.8731 }, { "start": 9994.52, "end": 9997.74, "probability": 0.9557 }, { "start": 9998.12, "end": 10001.08, "probability": 0.9235 }, { "start": 10001.94, "end": 10003.22, "probability": 0.96 }, { "start": 10003.68, "end": 10004.42, "probability": 0.7889 }, { "start": 10004.46, "end": 10006.3, "probability": 0.9262 }, { "start": 10006.84, "end": 10009.04, "probability": 0.9956 }, { "start": 10010.58, "end": 10012.24, "probability": 0.9984 }, { "start": 10013.18, "end": 10014.78, "probability": 0.8193 }, { "start": 10015.88, "end": 10017.68, "probability": 0.9919 }, { "start": 10018.32, "end": 10019.22, "probability": 0.6573 }, { "start": 10020.56, "end": 10023.1, "probability": 0.7487 }, { "start": 10023.92, "end": 10026.12, "probability": 0.7298 }, { "start": 10026.68, "end": 10029.4, "probability": 0.9958 }, { "start": 10030.22, "end": 10031.68, "probability": 0.9414 }, { "start": 10035.16, "end": 10039.22, "probability": 0.7944 }, { "start": 10039.82, "end": 10042.44, "probability": 0.959 }, { "start": 10043.04, "end": 10045.78, "probability": 0.8192 }, { "start": 10046.3, "end": 10048.02, "probability": 0.9589 }, { "start": 10048.62, "end": 10050.2, "probability": 0.9966 }, { "start": 10050.84, "end": 10051.91, "probability": 0.8422 }, { "start": 10052.28, "end": 10054.74, "probability": 0.9565 }, { "start": 10054.82, "end": 10059.5, "probability": 0.9976 }, { "start": 10059.98, "end": 10063.24, "probability": 0.7584 }, { "start": 10063.5, "end": 10064.68, "probability": 0.2146 }, { "start": 10064.68, "end": 10068.54, "probability": 0.2803 }, { "start": 10069.18, "end": 10069.72, "probability": 0.7721 }, { "start": 10069.98, "end": 10071.8, "probability": 0.7729 }, { "start": 10072.9, "end": 10075.16, "probability": 0.345 }, { "start": 10075.8, "end": 10076.5, "probability": 0.1496 }, { "start": 10077.3, "end": 10078.78, "probability": 0.3027 }, { "start": 10079.34, "end": 10080.18, "probability": 0.22 }, { "start": 10080.74, "end": 10081.6, "probability": 0.2378 }, { "start": 10082.4, "end": 10084.58, "probability": 0.6943 }, { "start": 10085.94, "end": 10088.42, "probability": 0.103 }, { "start": 10088.94, "end": 10092.52, "probability": 0.0149 }, { "start": 10092.68, "end": 10093.9, "probability": 0.1669 }, { "start": 10094.34, "end": 10095.77, "probability": 0.4253 }, { "start": 10096.32, "end": 10097.24, "probability": 0.022 }, { "start": 10098.52, "end": 10099.06, "probability": 0.2238 }, { "start": 10101.62, "end": 10102.52, "probability": 0.4626 }, { "start": 10109.46, "end": 10110.6, "probability": 0.0572 }, { "start": 10111.96, "end": 10112.8, "probability": 0.1904 }, { "start": 10134.6, "end": 10137.36, "probability": 0.9971 }, { "start": 10137.96, "end": 10141.6, "probability": 0.9208 }, { "start": 10143.34, "end": 10147.24, "probability": 0.9997 }, { "start": 10148.02, "end": 10150.78, "probability": 0.9814 }, { "start": 10151.78, "end": 10156.44, "probability": 0.9951 }, { "start": 10157.12, "end": 10161.56, "probability": 0.9458 }, { "start": 10162.19, "end": 10165.48, "probability": 0.9761 }, { "start": 10166.66, "end": 10167.1, "probability": 0.4297 }, { "start": 10168.5, "end": 10173.1, "probability": 0.995 }, { "start": 10174.96, "end": 10178.22, "probability": 0.9894 }, { "start": 10179.06, "end": 10179.56, "probability": 0.0774 }, { "start": 10179.56, "end": 10185.76, "probability": 0.7935 }, { "start": 10186.2, "end": 10190.06, "probability": 0.7253 }, { "start": 10190.64, "end": 10194.64, "probability": 0.9922 }, { "start": 10195.56, "end": 10199.1, "probability": 0.9181 }, { "start": 10199.78, "end": 10204.14, "probability": 0.9768 }, { "start": 10204.14, "end": 10208.6, "probability": 0.9967 }, { "start": 10209.26, "end": 10212.44, "probability": 0.9077 }, { "start": 10213.08, "end": 10220.06, "probability": 0.9767 }, { "start": 10222.0, "end": 10226.34, "probability": 0.923 }, { "start": 10227.1, "end": 10229.82, "probability": 0.8482 }, { "start": 10229.9, "end": 10230.36, "probability": 0.5689 }, { "start": 10230.48, "end": 10233.46, "probability": 0.8765 }, { "start": 10234.44, "end": 10238.36, "probability": 0.9547 }, { "start": 10239.34, "end": 10240.5, "probability": 0.9994 }, { "start": 10241.36, "end": 10244.22, "probability": 0.9982 }, { "start": 10244.9, "end": 10246.32, "probability": 0.8293 }, { "start": 10246.48, "end": 10247.2, "probability": 0.6621 }, { "start": 10247.5, "end": 10253.32, "probability": 0.9339 }, { "start": 10253.32, "end": 10257.86, "probability": 0.9952 }, { "start": 10258.44, "end": 10259.8, "probability": 0.9819 }, { "start": 10259.96, "end": 10260.4, "probability": 0.7823 }, { "start": 10260.5, "end": 10264.58, "probability": 0.8132 }, { "start": 10265.88, "end": 10273.05, "probability": 0.9927 }, { "start": 10273.22, "end": 10276.36, "probability": 0.9984 }, { "start": 10277.38, "end": 10279.6, "probability": 0.997 }, { "start": 10280.34, "end": 10285.22, "probability": 0.9474 }, { "start": 10285.22, "end": 10289.66, "probability": 0.9969 }, { "start": 10290.68, "end": 10296.24, "probability": 0.989 }, { "start": 10296.74, "end": 10300.6, "probability": 0.9976 }, { "start": 10300.68, "end": 10304.32, "probability": 0.777 }, { "start": 10305.51, "end": 10311.0, "probability": 0.4903 }, { "start": 10311.0, "end": 10313.52, "probability": 0.9445 }, { "start": 10314.42, "end": 10316.7, "probability": 0.8982 }, { "start": 10316.98, "end": 10317.66, "probability": 0.6601 }, { "start": 10317.8, "end": 10323.82, "probability": 0.9225 }, { "start": 10323.84, "end": 10328.84, "probability": 0.9816 }, { "start": 10329.3, "end": 10331.56, "probability": 0.9559 }, { "start": 10331.68, "end": 10332.18, "probability": 0.7236 }, { "start": 10334.76, "end": 10336.74, "probability": 0.9943 }, { "start": 10336.88, "end": 10339.34, "probability": 0.7985 }, { "start": 10359.8, "end": 10360.4, "probability": 0.7035 }, { "start": 10360.64, "end": 10361.9, "probability": 0.6393 }, { "start": 10362.2, "end": 10367.62, "probability": 0.998 }, { "start": 10367.82, "end": 10369.72, "probability": 0.9431 }, { "start": 10370.48, "end": 10370.48, "probability": 0.0356 }, { "start": 10370.48, "end": 10373.06, "probability": 0.9381 }, { "start": 10374.46, "end": 10376.46, "probability": 0.9995 }, { "start": 10377.18, "end": 10380.28, "probability": 0.998 }, { "start": 10380.6, "end": 10382.36, "probability": 0.9033 }, { "start": 10382.48, "end": 10383.74, "probability": 0.8701 }, { "start": 10385.24, "end": 10388.86, "probability": 0.9913 }, { "start": 10389.92, "end": 10397.32, "probability": 0.9385 }, { "start": 10397.36, "end": 10400.9, "probability": 0.9748 }, { "start": 10400.98, "end": 10402.1, "probability": 0.7216 }, { "start": 10402.32, "end": 10402.52, "probability": 0.7498 }, { "start": 10402.56, "end": 10403.54, "probability": 0.8467 }, { "start": 10403.68, "end": 10404.34, "probability": 0.947 }, { "start": 10404.36, "end": 10404.92, "probability": 0.6735 }, { "start": 10406.02, "end": 10406.96, "probability": 0.9458 }, { "start": 10407.24, "end": 10410.56, "probability": 0.9969 }, { "start": 10410.62, "end": 10417.28, "probability": 0.9764 }, { "start": 10418.06, "end": 10418.18, "probability": 0.9771 }, { "start": 10419.1, "end": 10420.78, "probability": 0.7156 }, { "start": 10423.06, "end": 10424.48, "probability": 0.7458 }, { "start": 10425.1, "end": 10426.34, "probability": 0.9238 }, { "start": 10426.94, "end": 10431.86, "probability": 0.9933 }, { "start": 10432.08, "end": 10432.9, "probability": 0.8381 }, { "start": 10434.58, "end": 10437.57, "probability": 0.998 }, { "start": 10437.62, "end": 10441.2, "probability": 0.9838 }, { "start": 10442.06, "end": 10444.02, "probability": 0.9403 }, { "start": 10444.94, "end": 10446.46, "probability": 0.9922 }, { "start": 10447.58, "end": 10451.32, "probability": 0.9241 }, { "start": 10451.44, "end": 10452.66, "probability": 0.9988 }, { "start": 10453.26, "end": 10455.68, "probability": 0.9824 }, { "start": 10456.24, "end": 10456.68, "probability": 0.7378 }, { "start": 10457.42, "end": 10460.1, "probability": 0.8961 }, { "start": 10460.9, "end": 10463.02, "probability": 0.9689 }, { "start": 10465.78, "end": 10466.42, "probability": 0.9679 }, { "start": 10466.54, "end": 10467.08, "probability": 0.6468 }, { "start": 10467.16, "end": 10467.94, "probability": 0.5292 }, { "start": 10468.28, "end": 10469.76, "probability": 0.8937 }, { "start": 10469.78, "end": 10471.28, "probability": 0.8676 }, { "start": 10472.04, "end": 10476.52, "probability": 0.9884 }, { "start": 10477.08, "end": 10479.59, "probability": 0.7413 }, { "start": 10480.56, "end": 10480.98, "probability": 0.5332 }, { "start": 10481.94, "end": 10483.4, "probability": 0.9893 }, { "start": 10485.4, "end": 10486.84, "probability": 0.8232 }, { "start": 10487.68, "end": 10488.34, "probability": 0.9638 }, { "start": 10488.52, "end": 10489.58, "probability": 0.9472 }, { "start": 10489.72, "end": 10490.51, "probability": 0.8149 }, { "start": 10490.9, "end": 10493.42, "probability": 0.9906 }, { "start": 10494.12, "end": 10494.86, "probability": 0.5021 }, { "start": 10495.0, "end": 10497.08, "probability": 0.9589 }, { "start": 10497.94, "end": 10501.53, "probability": 0.9496 }, { "start": 10503.46, "end": 10504.44, "probability": 0.993 }, { "start": 10506.4, "end": 10507.42, "probability": 0.9971 }, { "start": 10508.0, "end": 10508.56, "probability": 0.6889 }, { "start": 10509.0, "end": 10509.34, "probability": 0.7572 }, { "start": 10509.42, "end": 10510.27, "probability": 0.9897 }, { "start": 10511.04, "end": 10511.48, "probability": 0.9574 }, { "start": 10512.34, "end": 10512.92, "probability": 0.9247 }, { "start": 10514.24, "end": 10517.46, "probability": 0.9846 }, { "start": 10518.46, "end": 10519.63, "probability": 0.7789 }, { "start": 10520.54, "end": 10522.98, "probability": 0.9296 }, { "start": 10524.28, "end": 10524.74, "probability": 0.728 }, { "start": 10524.82, "end": 10526.76, "probability": 0.9966 }, { "start": 10526.92, "end": 10527.52, "probability": 0.6436 }, { "start": 10528.92, "end": 10534.74, "probability": 0.9977 }, { "start": 10535.98, "end": 10539.0, "probability": 0.9985 }, { "start": 10540.58, "end": 10541.46, "probability": 0.9276 }, { "start": 10541.52, "end": 10545.04, "probability": 0.9941 }, { "start": 10545.72, "end": 10549.2, "probability": 0.9993 }, { "start": 10549.72, "end": 10553.7, "probability": 0.979 }, { "start": 10554.26, "end": 10555.7, "probability": 0.9284 }, { "start": 10556.78, "end": 10558.0, "probability": 0.9732 }, { "start": 10558.52, "end": 10558.96, "probability": 0.9271 }, { "start": 10559.04, "end": 10560.1, "probability": 0.908 }, { "start": 10560.58, "end": 10562.84, "probability": 0.9841 }, { "start": 10564.84, "end": 10564.84, "probability": 0.3184 }, { "start": 10564.84, "end": 10567.44, "probability": 0.764 }, { "start": 10567.88, "end": 10570.5, "probability": 0.9822 }, { "start": 10570.76, "end": 10571.86, "probability": 0.9497 }, { "start": 10572.5, "end": 10574.76, "probability": 0.5311 }, { "start": 10575.16, "end": 10579.28, "probability": 0.8046 }, { "start": 10579.74, "end": 10580.98, "probability": 0.9676 }, { "start": 10581.68, "end": 10581.78, "probability": 0.081 }, { "start": 10581.78, "end": 10582.82, "probability": 0.4876 }, { "start": 10584.2, "end": 10586.85, "probability": 0.8258 }, { "start": 10587.48, "end": 10591.35, "probability": 0.9261 }, { "start": 10591.42, "end": 10591.72, "probability": 0.8086 }, { "start": 10594.02, "end": 10594.34, "probability": 0.1849 }, { "start": 10594.34, "end": 10596.6, "probability": 0.8562 }, { "start": 10597.52, "end": 10598.08, "probability": 0.1656 }, { "start": 10598.28, "end": 10599.06, "probability": 0.6205 }, { "start": 10599.06, "end": 10601.04, "probability": 0.7836 }, { "start": 10601.98, "end": 10602.79, "probability": 0.9967 }, { "start": 10604.18, "end": 10606.44, "probability": 0.9982 }, { "start": 10607.04, "end": 10610.68, "probability": 0.9006 }, { "start": 10611.16, "end": 10611.62, "probability": 0.868 }, { "start": 10611.78, "end": 10612.7, "probability": 0.6491 }, { "start": 10613.36, "end": 10614.22, "probability": 0.995 }, { "start": 10614.78, "end": 10618.6, "probability": 0.9961 }, { "start": 10618.72, "end": 10618.98, "probability": 0.8638 }, { "start": 10619.98, "end": 10623.1, "probability": 0.7484 }, { "start": 10624.46, "end": 10626.34, "probability": 0.7732 }, { "start": 10627.44, "end": 10629.44, "probability": 0.8186 }, { "start": 10642.92, "end": 10643.72, "probability": 0.7134 }, { "start": 10644.72, "end": 10645.64, "probability": 0.7742 }, { "start": 10647.0, "end": 10650.18, "probability": 0.9597 }, { "start": 10650.18, "end": 10652.9, "probability": 0.994 }, { "start": 10653.88, "end": 10657.38, "probability": 0.9246 }, { "start": 10658.5, "end": 10661.8, "probability": 0.9814 }, { "start": 10661.96, "end": 10663.58, "probability": 0.8684 }, { "start": 10664.38, "end": 10667.1, "probability": 0.9858 }, { "start": 10667.94, "end": 10670.4, "probability": 0.9407 }, { "start": 10671.46, "end": 10672.04, "probability": 0.9905 }, { "start": 10672.94, "end": 10676.68, "probability": 0.9873 }, { "start": 10677.4, "end": 10678.6, "probability": 0.9924 }, { "start": 10679.5, "end": 10683.02, "probability": 0.9953 }, { "start": 10683.68, "end": 10687.46, "probability": 0.9543 }, { "start": 10688.42, "end": 10689.2, "probability": 0.8059 }, { "start": 10691.26, "end": 10692.7, "probability": 0.9771 }, { "start": 10693.64, "end": 10698.22, "probability": 0.9859 }, { "start": 10699.02, "end": 10699.86, "probability": 0.6787 }, { "start": 10701.26, "end": 10702.3, "probability": 0.8711 }, { "start": 10702.9, "end": 10703.56, "probability": 0.9991 }, { "start": 10704.48, "end": 10709.04, "probability": 0.9966 }, { "start": 10709.24, "end": 10714.1, "probability": 0.9526 }, { "start": 10714.1, "end": 10715.98, "probability": 0.9966 }, { "start": 10716.88, "end": 10718.9, "probability": 0.973 }, { "start": 10719.54, "end": 10721.72, "probability": 0.998 }, { "start": 10721.72, "end": 10724.08, "probability": 0.9602 }, { "start": 10724.9, "end": 10726.58, "probability": 0.9948 }, { "start": 10727.28, "end": 10727.78, "probability": 0.999 }, { "start": 10729.24, "end": 10729.78, "probability": 0.9977 }, { "start": 10730.74, "end": 10733.32, "probability": 0.9764 }, { "start": 10734.22, "end": 10737.8, "probability": 0.9834 }, { "start": 10738.1, "end": 10741.42, "probability": 0.9667 }, { "start": 10741.94, "end": 10743.24, "probability": 0.9062 }, { "start": 10744.1, "end": 10744.96, "probability": 0.9827 }, { "start": 10745.76, "end": 10747.86, "probability": 0.9941 }, { "start": 10748.54, "end": 10751.72, "probability": 0.998 }, { "start": 10752.08, "end": 10753.16, "probability": 0.9941 }, { "start": 10753.86, "end": 10758.32, "probability": 0.9985 }, { "start": 10758.76, "end": 10760.48, "probability": 0.9858 }, { "start": 10760.94, "end": 10763.52, "probability": 0.9968 }, { "start": 10763.58, "end": 10764.92, "probability": 0.9878 }, { "start": 10766.02, "end": 10766.28, "probability": 0.9666 }, { "start": 10766.88, "end": 10767.82, "probability": 0.9447 }, { "start": 10768.34, "end": 10770.88, "probability": 0.9892 }, { "start": 10772.06, "end": 10773.64, "probability": 0.9351 }, { "start": 10774.82, "end": 10776.66, "probability": 0.8975 }, { "start": 10777.88, "end": 10779.7, "probability": 0.8042 }, { "start": 10780.24, "end": 10780.92, "probability": 0.9683 }, { "start": 10781.02, "end": 10784.42, "probability": 0.999 }, { "start": 10784.94, "end": 10787.22, "probability": 0.9979 }, { "start": 10787.92, "end": 10788.84, "probability": 0.9985 }, { "start": 10789.42, "end": 10790.56, "probability": 0.9697 }, { "start": 10790.66, "end": 10792.92, "probability": 0.8662 }, { "start": 10793.38, "end": 10797.78, "probability": 0.995 }, { "start": 10798.16, "end": 10798.52, "probability": 0.8397 }, { "start": 10800.64, "end": 10802.28, "probability": 0.7149 }, { "start": 10805.26, "end": 10807.04, "probability": 0.7735 }, { "start": 10807.48, "end": 10808.2, "probability": 0.9224 }, { "start": 10811.12, "end": 10811.82, "probability": 0.5419 }, { "start": 10812.5, "end": 10813.0, "probability": 0.7449 }, { "start": 10815.12, "end": 10815.58, "probability": 0.4183 }, { "start": 10816.06, "end": 10816.92, "probability": 0.2792 }, { "start": 10818.2, "end": 10819.26, "probability": 0.9947 }, { "start": 10823.34, "end": 10824.94, "probability": 0.3724 }, { "start": 10825.84, "end": 10828.54, "probability": 0.7736 }, { "start": 10852.1, "end": 10852.1, "probability": 0.1366 }, { "start": 10852.1, "end": 10852.1, "probability": 0.3104 }, { "start": 10852.1, "end": 10852.1, "probability": 0.0724 }, { "start": 10852.1, "end": 10852.14, "probability": 0.0371 }, { "start": 10852.14, "end": 10852.14, "probability": 0.0584 }, { "start": 10880.72, "end": 10889.26, "probability": 0.9662 }, { "start": 10890.8, "end": 10892.72, "probability": 0.7621 }, { "start": 10894.84, "end": 10895.24, "probability": 0.0391 }, { "start": 10895.24, "end": 10897.12, "probability": 0.9661 }, { "start": 10899.48, "end": 10909.58, "probability": 0.97 }, { "start": 10910.36, "end": 10911.78, "probability": 0.9985 }, { "start": 10913.5, "end": 10918.48, "probability": 0.8736 }, { "start": 10919.12, "end": 10920.1, "probability": 0.3296 }, { "start": 10920.52, "end": 10923.14, "probability": 0.984 }, { "start": 10924.36, "end": 10926.68, "probability": 0.9475 }, { "start": 10927.5, "end": 10932.54, "probability": 0.9868 }, { "start": 10934.38, "end": 10936.86, "probability": 0.3044 }, { "start": 10938.88, "end": 10939.0, "probability": 0.0075 }, { "start": 10939.0, "end": 10939.0, "probability": 0.0943 }, { "start": 10939.0, "end": 10941.54, "probability": 0.869 }, { "start": 10942.22, "end": 10944.7, "probability": 0.9536 }, { "start": 10945.62, "end": 10947.84, "probability": 0.9749 }, { "start": 10949.7, "end": 10950.46, "probability": 0.8555 }, { "start": 10952.5, "end": 10953.42, "probability": 0.8514 }, { "start": 10954.52, "end": 10957.46, "probability": 0.9086 }, { "start": 10958.88, "end": 10961.38, "probability": 0.7654 }, { "start": 10962.18, "end": 10963.96, "probability": 0.7278 }, { "start": 10965.54, "end": 10965.86, "probability": 0.1108 }, { "start": 10965.86, "end": 10969.46, "probability": 0.9598 }, { "start": 10970.46, "end": 10972.1, "probability": 0.6899 }, { "start": 10973.76, "end": 10973.82, "probability": 0.0733 }, { "start": 10973.82, "end": 10978.16, "probability": 0.9332 }, { "start": 10979.34, "end": 10982.4, "probability": 0.9713 }, { "start": 10983.16, "end": 10984.2, "probability": 0.9263 }, { "start": 10985.02, "end": 10988.24, "probability": 0.9466 }, { "start": 10988.82, "end": 10990.1, "probability": 0.8352 }, { "start": 10991.04, "end": 10994.42, "probability": 0.7202 }, { "start": 10995.3, "end": 10998.76, "probability": 0.9758 }, { "start": 10999.88, "end": 11005.58, "probability": 0.975 }, { "start": 11006.44, "end": 11011.86, "probability": 0.7822 }, { "start": 11013.52, "end": 11014.06, "probability": 0.0302 }, { "start": 11014.06, "end": 11015.8, "probability": 0.812 }, { "start": 11016.3, "end": 11016.92, "probability": 0.3407 }, { "start": 11017.58, "end": 11019.76, "probability": 0.4465 }, { "start": 11019.98, "end": 11020.42, "probability": 0.4499 }, { "start": 11020.42, "end": 11022.46, "probability": 0.8831 }, { "start": 11023.38, "end": 11029.84, "probability": 0.9847 }, { "start": 11030.52, "end": 11032.26, "probability": 0.1861 }, { "start": 11034.12, "end": 11037.02, "probability": 0.0086 }, { "start": 11037.38, "end": 11039.72, "probability": 0.8126 }, { "start": 11040.56, "end": 11043.58, "probability": 0.9059 }, { "start": 11044.5, "end": 11045.92, "probability": 0.9727 }, { "start": 11046.46, "end": 11056.8, "probability": 0.5614 }, { "start": 11056.88, "end": 11057.08, "probability": 0.4119 }, { "start": 11057.42, "end": 11057.54, "probability": 0.0659 }, { "start": 11057.54, "end": 11059.16, "probability": 0.5155 }, { "start": 11060.14, "end": 11062.36, "probability": 0.4351 }, { "start": 11062.4, "end": 11064.18, "probability": 0.1809 }, { "start": 11065.44, "end": 11066.58, "probability": 0.7079 }, { "start": 11066.76, "end": 11069.08, "probability": 0.3418 }, { "start": 11069.5, "end": 11070.36, "probability": 0.0141 }, { "start": 11071.33, "end": 11076.34, "probability": 0.8821 }, { "start": 11077.16, "end": 11079.48, "probability": 0.9507 }, { "start": 11079.78, "end": 11082.58, "probability": 0.9976 }, { "start": 11083.12, "end": 11084.92, "probability": 0.9691 }, { "start": 11086.1, "end": 11088.08, "probability": 0.9893 }, { "start": 11089.28, "end": 11090.82, "probability": 0.9888 }, { "start": 11091.86, "end": 11093.16, "probability": 0.9939 }, { "start": 11093.94, "end": 11095.96, "probability": 0.8514 }, { "start": 11096.84, "end": 11098.7, "probability": 0.9727 }, { "start": 11099.8, "end": 11102.28, "probability": 0.993 }, { "start": 11103.68, "end": 11108.66, "probability": 0.7273 }, { "start": 11109.56, "end": 11110.32, "probability": 0.7652 }, { "start": 11111.1, "end": 11112.64, "probability": 0.9891 }, { "start": 11113.36, "end": 11114.96, "probability": 0.9949 }, { "start": 11115.64, "end": 11119.08, "probability": 0.9966 }, { "start": 11119.86, "end": 11125.36, "probability": 0.9437 }, { "start": 11126.02, "end": 11127.72, "probability": 0.8352 }, { "start": 11128.4, "end": 11130.88, "probability": 0.8668 }, { "start": 11131.72, "end": 11134.54, "probability": 0.7673 }, { "start": 11134.72, "end": 11135.98, "probability": 0.7495 }, { "start": 11153.42, "end": 11154.04, "probability": 0.5092 }, { "start": 11154.2, "end": 11156.46, "probability": 0.6733 }, { "start": 11157.16, "end": 11158.74, "probability": 0.9985 }, { "start": 11159.82, "end": 11161.16, "probability": 0.9266 }, { "start": 11161.74, "end": 11161.84, "probability": 0.7695 }, { "start": 11163.42, "end": 11165.08, "probability": 0.8924 }, { "start": 11165.2, "end": 11166.98, "probability": 0.7536 }, { "start": 11169.96, "end": 11170.96, "probability": 0.6024 }, { "start": 11172.65, "end": 11174.92, "probability": 0.9729 }, { "start": 11175.38, "end": 11180.36, "probability": 0.9673 }, { "start": 11182.56, "end": 11185.34, "probability": 0.9109 }, { "start": 11186.02, "end": 11189.4, "probability": 0.9186 }, { "start": 11190.62, "end": 11192.18, "probability": 0.6658 }, { "start": 11193.02, "end": 11193.72, "probability": 0.312 }, { "start": 11193.9, "end": 11194.56, "probability": 0.4665 }, { "start": 11195.04, "end": 11198.58, "probability": 0.986 }, { "start": 11199.5, "end": 11200.72, "probability": 0.7991 }, { "start": 11201.3, "end": 11202.3, "probability": 0.9495 }, { "start": 11202.76, "end": 11204.74, "probability": 0.9407 }, { "start": 11204.92, "end": 11206.1, "probability": 0.9951 }, { "start": 11207.04, "end": 11208.62, "probability": 0.9446 }, { "start": 11209.38, "end": 11211.8, "probability": 0.9299 }, { "start": 11212.44, "end": 11214.32, "probability": 0.9488 }, { "start": 11214.78, "end": 11219.62, "probability": 0.9758 }, { "start": 11220.56, "end": 11226.1, "probability": 0.9781 }, { "start": 11226.44, "end": 11227.1, "probability": 0.7714 }, { "start": 11227.34, "end": 11229.04, "probability": 0.5571 }, { "start": 11229.1, "end": 11229.5, "probability": 0.8597 }, { "start": 11229.9, "end": 11230.98, "probability": 0.908 }, { "start": 11231.24, "end": 11234.52, "probability": 0.9435 }, { "start": 11234.92, "end": 11236.2, "probability": 0.96 }, { "start": 11236.46, "end": 11237.6, "probability": 0.9736 }, { "start": 11238.4, "end": 11239.2, "probability": 0.7593 }, { "start": 11239.24, "end": 11242.98, "probability": 0.8486 }, { "start": 11243.36, "end": 11247.12, "probability": 0.9935 }, { "start": 11247.6, "end": 11251.06, "probability": 0.9614 }, { "start": 11252.12, "end": 11254.38, "probability": 0.9172 }, { "start": 11255.3, "end": 11257.62, "probability": 0.9068 }, { "start": 11258.32, "end": 11263.12, "probability": 0.993 }, { "start": 11263.12, "end": 11267.32, "probability": 0.9958 }, { "start": 11268.54, "end": 11269.52, "probability": 0.9979 }, { "start": 11270.58, "end": 11273.94, "probability": 0.9978 }, { "start": 11274.5, "end": 11277.86, "probability": 0.9971 }, { "start": 11278.46, "end": 11281.42, "probability": 0.8896 }, { "start": 11281.9, "end": 11285.76, "probability": 0.9727 }, { "start": 11286.12, "end": 11287.04, "probability": 0.3582 }, { "start": 11287.58, "end": 11289.42, "probability": 0.8809 }, { "start": 11289.9, "end": 11290.86, "probability": 0.9818 }, { "start": 11291.22, "end": 11292.68, "probability": 0.9424 }, { "start": 11293.18, "end": 11294.28, "probability": 0.9285 }, { "start": 11294.3, "end": 11298.6, "probability": 0.9887 }, { "start": 11298.6, "end": 11302.34, "probability": 0.9822 }, { "start": 11302.82, "end": 11303.45, "probability": 0.6332 }, { "start": 11304.34, "end": 11305.18, "probability": 0.7025 }, { "start": 11306.5, "end": 11308.7, "probability": 0.7707 }, { "start": 11309.44, "end": 11311.92, "probability": 0.946 }, { "start": 11314.84, "end": 11315.48, "probability": 0.7755 }, { "start": 11316.16, "end": 11321.06, "probability": 0.3606 }, { "start": 11321.96, "end": 11322.38, "probability": 0.6157 }, { "start": 11324.21, "end": 11325.86, "probability": 0.084 }, { "start": 11350.82, "end": 11351.6, "probability": 0.1862 }, { "start": 11351.6, "end": 11353.54, "probability": 0.7055 }, { "start": 11355.26, "end": 11358.0, "probability": 0.9927 }, { "start": 11358.08, "end": 11361.38, "probability": 0.9528 }, { "start": 11361.96, "end": 11363.88, "probability": 0.9332 }, { "start": 11364.86, "end": 11366.86, "probability": 0.9937 }, { "start": 11367.54, "end": 11372.92, "probability": 0.9775 }, { "start": 11373.74, "end": 11377.04, "probability": 0.9961 }, { "start": 11377.66, "end": 11378.76, "probability": 0.8194 }, { "start": 11380.66, "end": 11382.66, "probability": 0.895 }, { "start": 11383.36, "end": 11383.9, "probability": 0.5598 }, { "start": 11384.98, "end": 11385.44, "probability": 0.797 }, { "start": 11386.7, "end": 11388.88, "probability": 0.8502 }, { "start": 11390.28, "end": 11397.06, "probability": 0.9124 }, { "start": 11397.8, "end": 11403.96, "probability": 0.9702 }, { "start": 11403.96, "end": 11408.14, "probability": 0.9977 }, { "start": 11408.62, "end": 11409.46, "probability": 0.7495 }, { "start": 11409.72, "end": 11410.6, "probability": 0.9534 }, { "start": 11410.78, "end": 11412.64, "probability": 0.9622 }, { "start": 11413.08, "end": 11415.78, "probability": 0.9538 }, { "start": 11416.86, "end": 11424.82, "probability": 0.9933 }, { "start": 11425.56, "end": 11426.74, "probability": 0.4772 }, { "start": 11427.3, "end": 11428.52, "probability": 0.9362 }, { "start": 11429.08, "end": 11433.16, "probability": 0.995 }, { "start": 11433.86, "end": 11436.16, "probability": 0.9896 }, { "start": 11436.16, "end": 11438.56, "probability": 0.9995 }, { "start": 11440.02, "end": 11444.26, "probability": 0.9895 }, { "start": 11444.44, "end": 11448.14, "probability": 0.9966 }, { "start": 11449.54, "end": 11450.89, "probability": 0.9745 }, { "start": 11451.44, "end": 11452.74, "probability": 0.9184 }, { "start": 11453.06, "end": 11453.8, "probability": 0.86 }, { "start": 11454.22, "end": 11455.58, "probability": 0.9711 }, { "start": 11456.0, "end": 11459.12, "probability": 0.9954 }, { "start": 11459.58, "end": 11459.94, "probability": 0.6676 }, { "start": 11460.02, "end": 11460.84, "probability": 0.9799 }, { "start": 11460.94, "end": 11463.68, "probability": 0.9843 }, { "start": 11464.0, "end": 11465.08, "probability": 0.9451 }, { "start": 11465.82, "end": 11467.32, "probability": 0.9397 }, { "start": 11467.6, "end": 11470.0, "probability": 0.9816 }, { "start": 11470.7, "end": 11471.44, "probability": 0.9739 }, { "start": 11472.74, "end": 11474.46, "probability": 0.7721 }, { "start": 11475.08, "end": 11478.0, "probability": 0.825 }, { "start": 11478.52, "end": 11480.22, "probability": 0.8159 }, { "start": 11481.28, "end": 11482.34, "probability": 0.9308 }, { "start": 11482.64, "end": 11483.06, "probability": 0.6481 }, { "start": 11483.86, "end": 11485.06, "probability": 0.8553 }, { "start": 11485.36, "end": 11490.52, "probability": 0.9658 }, { "start": 11491.34, "end": 11495.36, "probability": 0.9975 }, { "start": 11496.5, "end": 11499.4, "probability": 0.9744 }, { "start": 11499.68, "end": 11504.8, "probability": 0.9963 }, { "start": 11505.26, "end": 11506.36, "probability": 0.9866 }, { "start": 11506.6, "end": 11509.54, "probability": 0.9742 }, { "start": 11510.02, "end": 11512.22, "probability": 0.7637 }, { "start": 11512.74, "end": 11513.6, "probability": 0.4564 }, { "start": 11513.64, "end": 11514.64, "probability": 0.6529 }, { "start": 11514.8, "end": 11521.13, "probability": 0.9964 }, { "start": 11521.64, "end": 11524.64, "probability": 0.9841 }, { "start": 11524.64, "end": 11528.58, "probability": 0.9722 }, { "start": 11529.08, "end": 11533.44, "probability": 0.9648 }, { "start": 11533.5, "end": 11533.86, "probability": 0.7782 }, { "start": 11534.4, "end": 11535.38, "probability": 0.9494 }, { "start": 11535.98, "end": 11537.52, "probability": 0.7273 }, { "start": 11537.98, "end": 11538.68, "probability": 0.7003 }, { "start": 11539.99, "end": 11542.42, "probability": 0.4747 }, { "start": 11542.88, "end": 11545.34, "probability": 0.8898 }, { "start": 11545.62, "end": 11546.66, "probability": 0.8797 }, { "start": 11546.82, "end": 11547.52, "probability": 0.7949 }, { "start": 11548.36, "end": 11548.86, "probability": 0.0723 }, { "start": 11551.88, "end": 11554.48, "probability": 0.0214 }, { "start": 11555.5, "end": 11555.5, "probability": 0.269 }, { "start": 11555.66, "end": 11555.66, "probability": 0.3749 }, { "start": 11557.04, "end": 11562.06, "probability": 0.0038 }, { "start": 11587.98, "end": 11590.54, "probability": 0.6281 }, { "start": 11592.16, "end": 11594.18, "probability": 0.931 }, { "start": 11594.6, "end": 11595.58, "probability": 0.5984 }, { "start": 11596.28, "end": 11599.22, "probability": 0.97 }, { "start": 11599.34, "end": 11602.58, "probability": 0.9763 }, { "start": 11602.72, "end": 11603.16, "probability": 0.9832 }, { "start": 11604.06, "end": 11607.42, "probability": 0.9541 }, { "start": 11607.78, "end": 11608.46, "probability": 0.9619 }, { "start": 11609.28, "end": 11609.72, "probability": 0.385 }, { "start": 11612.72, "end": 11614.98, "probability": 0.0798 }, { "start": 11615.68, "end": 11618.86, "probability": 0.9971 }, { "start": 11619.08, "end": 11621.0, "probability": 0.9946 }, { "start": 11621.4, "end": 11626.42, "probability": 0.9982 }, { "start": 11627.18, "end": 11630.64, "probability": 0.9673 }, { "start": 11631.48, "end": 11635.4, "probability": 0.968 }, { "start": 11636.04, "end": 11639.5, "probability": 0.9993 }, { "start": 11640.36, "end": 11641.7, "probability": 0.9987 }, { "start": 11642.22, "end": 11645.48, "probability": 0.8847 }, { "start": 11646.16, "end": 11648.66, "probability": 0.9578 }, { "start": 11649.28, "end": 11650.6, "probability": 0.9767 }, { "start": 11650.7, "end": 11652.84, "probability": 0.9863 }, { "start": 11653.06, "end": 11654.7, "probability": 0.9977 }, { "start": 11655.76, "end": 11659.36, "probability": 0.9952 }, { "start": 11660.4, "end": 11660.9, "probability": 0.9062 }, { "start": 11662.1, "end": 11665.42, "probability": 0.9657 }, { "start": 11666.32, "end": 11670.98, "probability": 0.9835 }, { "start": 11671.44, "end": 11672.08, "probability": 0.8923 }, { "start": 11672.68, "end": 11674.3, "probability": 0.9492 }, { "start": 11674.58, "end": 11676.66, "probability": 0.9316 }, { "start": 11676.7, "end": 11680.44, "probability": 0.8225 }, { "start": 11680.8, "end": 11681.8, "probability": 0.9527 }, { "start": 11682.74, "end": 11687.08, "probability": 0.9291 }, { "start": 11687.2, "end": 11688.68, "probability": 0.945 }, { "start": 11689.72, "end": 11692.86, "probability": 0.9919 }, { "start": 11694.72, "end": 11697.68, "probability": 0.9642 }, { "start": 11698.74, "end": 11700.8, "probability": 0.9438 }, { "start": 11701.84, "end": 11704.02, "probability": 0.9937 }, { "start": 11705.12, "end": 11711.0, "probability": 0.9889 }, { "start": 11711.9, "end": 11714.08, "probability": 0.8761 }, { "start": 11714.42, "end": 11715.74, "probability": 0.9911 }, { "start": 11716.16, "end": 11718.94, "probability": 0.9937 }, { "start": 11719.62, "end": 11722.74, "probability": 0.9594 }, { "start": 11724.52, "end": 11727.84, "probability": 0.9346 }, { "start": 11728.52, "end": 11729.73, "probability": 0.9907 }, { "start": 11730.66, "end": 11731.74, "probability": 0.9888 }, { "start": 11732.52, "end": 11735.86, "probability": 0.9805 }, { "start": 11736.38, "end": 11738.58, "probability": 0.9115 }, { "start": 11739.02, "end": 11743.08, "probability": 0.994 }, { "start": 11743.76, "end": 11749.72, "probability": 0.9972 }, { "start": 11750.38, "end": 11752.1, "probability": 0.8885 }, { "start": 11753.2, "end": 11759.92, "probability": 0.9796 }, { "start": 11760.26, "end": 11761.78, "probability": 0.9495 }, { "start": 11762.76, "end": 11765.68, "probability": 0.9729 }, { "start": 11766.06, "end": 11767.14, "probability": 0.9805 }, { "start": 11768.02, "end": 11770.72, "probability": 0.9331 }, { "start": 11771.38, "end": 11776.86, "probability": 0.9932 }, { "start": 11777.52, "end": 11778.44, "probability": 0.9645 }, { "start": 11778.5, "end": 11781.92, "probability": 0.9945 }, { "start": 11782.62, "end": 11783.68, "probability": 0.9824 }, { "start": 11784.02, "end": 11785.76, "probability": 0.8446 }, { "start": 11786.32, "end": 11786.92, "probability": 0.9481 }, { "start": 11787.04, "end": 11788.04, "probability": 0.991 }, { "start": 11788.12, "end": 11788.92, "probability": 0.9471 }, { "start": 11789.24, "end": 11791.14, "probability": 0.9868 }, { "start": 11792.02, "end": 11792.48, "probability": 0.7637 }, { "start": 11792.66, "end": 11793.44, "probability": 0.9751 }, { "start": 11794.14, "end": 11795.9, "probability": 0.9956 }, { "start": 11796.48, "end": 11797.48, "probability": 0.9456 }, { "start": 11798.14, "end": 11800.54, "probability": 0.9882 }, { "start": 11801.04, "end": 11804.62, "probability": 0.9958 }, { "start": 11805.18, "end": 11807.0, "probability": 0.967 }, { "start": 11807.56, "end": 11810.98, "probability": 0.9825 }, { "start": 11811.72, "end": 11814.64, "probability": 0.9982 }, { "start": 11815.24, "end": 11816.46, "probability": 0.9307 }, { "start": 11817.14, "end": 11820.1, "probability": 0.9941 }, { "start": 11820.82, "end": 11824.2, "probability": 0.9949 }, { "start": 11825.36, "end": 11830.1, "probability": 0.9985 }, { "start": 11830.24, "end": 11831.22, "probability": 0.8828 }, { "start": 11832.04, "end": 11833.04, "probability": 0.9824 }, { "start": 11834.0, "end": 11837.46, "probability": 0.9837 }, { "start": 11837.46, "end": 11839.94, "probability": 0.9983 }, { "start": 11841.38, "end": 11843.66, "probability": 0.9933 }, { "start": 11844.34, "end": 11844.74, "probability": 0.781 }, { "start": 11845.32, "end": 11847.16, "probability": 0.9754 }, { "start": 11847.34, "end": 11847.52, "probability": 0.4669 }, { "start": 11847.74, "end": 11849.74, "probability": 0.9966 }, { "start": 11850.72, "end": 11853.44, "probability": 0.9954 }, { "start": 11853.58, "end": 11854.9, "probability": 0.9927 }, { "start": 11855.68, "end": 11858.68, "probability": 0.9944 }, { "start": 11859.42, "end": 11864.14, "probability": 0.9948 }, { "start": 11864.96, "end": 11867.92, "probability": 0.9958 }, { "start": 11868.56, "end": 11870.59, "probability": 0.9876 }, { "start": 11871.7, "end": 11874.7, "probability": 0.9994 }, { "start": 11875.36, "end": 11880.26, "probability": 0.9938 }, { "start": 11880.68, "end": 11882.16, "probability": 0.9803 }, { "start": 11882.86, "end": 11885.96, "probability": 0.9984 }, { "start": 11886.7, "end": 11888.6, "probability": 0.9978 }, { "start": 11889.04, "end": 11890.72, "probability": 0.8569 }, { "start": 11890.9, "end": 11891.0, "probability": 0.9329 }, { "start": 11892.24, "end": 11892.92, "probability": 0.9768 }, { "start": 11894.24, "end": 11896.6, "probability": 0.9746 }, { "start": 11897.72, "end": 11900.06, "probability": 0.9886 }, { "start": 11900.62, "end": 11900.84, "probability": 0.9446 }, { "start": 11901.76, "end": 11902.88, "probability": 0.8425 }, { "start": 11903.42, "end": 11906.86, "probability": 0.9111 }, { "start": 11907.64, "end": 11909.18, "probability": 0.8525 }, { "start": 11909.56, "end": 11911.44, "probability": 0.9843 }, { "start": 11912.04, "end": 11912.76, "probability": 0.9299 }, { "start": 11913.26, "end": 11916.8, "probability": 0.9792 }, { "start": 11917.04, "end": 11919.92, "probability": 0.9938 }, { "start": 11920.7, "end": 11923.04, "probability": 0.9944 }, { "start": 11924.06, "end": 11929.1, "probability": 0.9977 }, { "start": 11929.38, "end": 11930.4, "probability": 0.9878 }, { "start": 11933.72, "end": 11939.22, "probability": 0.9657 }, { "start": 11939.22, "end": 11944.38, "probability": 0.9847 }, { "start": 11944.74, "end": 11946.22, "probability": 0.9307 }, { "start": 11947.08, "end": 11947.42, "probability": 0.1787 }, { "start": 11948.02, "end": 11950.0, "probability": 0.9955 }, { "start": 11950.28, "end": 11954.02, "probability": 0.9939 }, { "start": 11954.02, "end": 11957.74, "probability": 0.9987 }, { "start": 11958.1, "end": 11958.94, "probability": 0.8989 }, { "start": 11959.3, "end": 11960.48, "probability": 0.7841 }, { "start": 11960.98, "end": 11963.4, "probability": 0.9893 }, { "start": 11964.04, "end": 11966.34, "probability": 0.9347 }, { "start": 11967.14, "end": 11968.72, "probability": 0.9916 }, { "start": 11969.34, "end": 11971.42, "probability": 0.8523 }, { "start": 11972.18, "end": 11976.12, "probability": 0.9982 }, { "start": 11976.72, "end": 11977.68, "probability": 0.8992 }, { "start": 11978.5, "end": 11979.97, "probability": 0.9666 }, { "start": 11981.08, "end": 11982.8, "probability": 0.9819 }, { "start": 11983.84, "end": 11985.58, "probability": 0.9253 }, { "start": 11986.4, "end": 11987.98, "probability": 0.9943 }, { "start": 11988.6, "end": 11990.26, "probability": 0.5138 }, { "start": 11990.7, "end": 11994.24, "probability": 0.9933 }, { "start": 11994.7, "end": 11998.06, "probability": 0.9976 }, { "start": 11998.72, "end": 12000.74, "probability": 0.8443 }, { "start": 12001.52, "end": 12002.78, "probability": 0.9465 }, { "start": 12004.18, "end": 12009.36, "probability": 0.9969 }, { "start": 12009.94, "end": 12011.92, "probability": 0.988 }, { "start": 12012.5, "end": 12014.06, "probability": 0.9953 }, { "start": 12014.78, "end": 12016.1, "probability": 0.9784 }, { "start": 12017.6, "end": 12018.06, "probability": 0.8399 }, { "start": 12019.24, "end": 12022.82, "probability": 0.9928 }, { "start": 12023.5, "end": 12024.66, "probability": 0.7345 }, { "start": 12025.54, "end": 12029.32, "probability": 0.9883 }, { "start": 12030.18, "end": 12031.0, "probability": 0.9336 }, { "start": 12031.64, "end": 12032.44, "probability": 0.7677 }, { "start": 12033.2, "end": 12036.54, "probability": 0.9769 }, { "start": 12039.52, "end": 12042.84, "probability": 0.979 }, { "start": 12044.06, "end": 12047.48, "probability": 0.9963 }, { "start": 12047.94, "end": 12049.94, "probability": 0.9637 }, { "start": 12051.45, "end": 12054.91, "probability": 0.7263 }, { "start": 12056.18, "end": 12058.98, "probability": 0.5393 }, { "start": 12060.46, "end": 12061.24, "probability": 0.9565 }, { "start": 12063.32, "end": 12067.82, "probability": 0.9879 }, { "start": 12070.17, "end": 12073.5, "probability": 0.8096 }, { "start": 12074.38, "end": 12075.56, "probability": 0.9886 }, { "start": 12076.32, "end": 12081.22, "probability": 0.9935 }, { "start": 12084.84, "end": 12085.46, "probability": 0.7308 }, { "start": 12086.14, "end": 12090.24, "probability": 0.9919 }, { "start": 12091.14, "end": 12092.68, "probability": 0.9034 }, { "start": 12094.04, "end": 12095.2, "probability": 0.9097 }, { "start": 12095.6, "end": 12098.66, "probability": 0.9958 }, { "start": 12099.18, "end": 12099.82, "probability": 0.4672 }, { "start": 12100.46, "end": 12101.88, "probability": 0.9633 }, { "start": 12102.6, "end": 12105.66, "probability": 0.9298 }, { "start": 12106.24, "end": 12107.56, "probability": 0.9796 }, { "start": 12110.56, "end": 12110.66, "probability": 0.5065 }, { "start": 12112.12, "end": 12114.68, "probability": 0.9153 }, { "start": 12115.68, "end": 12118.78, "probability": 0.6217 }, { "start": 12119.16, "end": 12120.88, "probability": 0.595 }, { "start": 12122.02, "end": 12124.58, "probability": 0.9194 }, { "start": 12124.98, "end": 12127.34, "probability": 0.9401 }, { "start": 12127.58, "end": 12128.22, "probability": 0.7899 }, { "start": 12129.86, "end": 12131.04, "probability": 0.8609 }, { "start": 12131.64, "end": 12132.9, "probability": 0.6004 }, { "start": 12133.32, "end": 12134.38, "probability": 0.9298 }, { "start": 12134.52, "end": 12136.38, "probability": 0.5143 }, { "start": 12136.46, "end": 12136.84, "probability": 0.9214 }, { "start": 12137.46, "end": 12138.95, "probability": 0.3064 }, { "start": 12141.24, "end": 12141.9, "probability": 0.9615 }, { "start": 12144.84, "end": 12145.84, "probability": 0.7806 }, { "start": 12146.7, "end": 12147.2, "probability": 0.5948 }, { "start": 12148.22, "end": 12149.18, "probability": 0.6717 }, { "start": 12150.14, "end": 12153.9, "probability": 0.9383 }, { "start": 12154.44, "end": 12155.1, "probability": 0.8831 }, { "start": 12157.1, "end": 12157.96, "probability": 0.9955 }, { "start": 12159.24, "end": 12160.1, "probability": 0.7021 }, { "start": 12160.66, "end": 12163.52, "probability": 0.9601 }, { "start": 12164.32, "end": 12164.8, "probability": 0.9502 }, { "start": 12165.36, "end": 12166.4, "probability": 0.9203 }, { "start": 12167.66, "end": 12169.14, "probability": 0.8264 }, { "start": 12170.6, "end": 12172.58, "probability": 0.9348 }, { "start": 12173.74, "end": 12174.24, "probability": 0.9092 }, { "start": 12175.36, "end": 12176.3, "probability": 0.9079 }, { "start": 12177.22, "end": 12179.64, "probability": 0.9833 }, { "start": 12180.94, "end": 12182.4, "probability": 0.9167 }, { "start": 12183.2, "end": 12184.14, "probability": 0.9798 }, { "start": 12185.24, "end": 12185.78, "probability": 0.9941 }, { "start": 12187.0, "end": 12187.82, "probability": 0.9751 }, { "start": 12188.6, "end": 12190.92, "probability": 0.967 }, { "start": 12193.3, "end": 12194.2, "probability": 0.9952 }, { "start": 12194.82, "end": 12195.8, "probability": 0.387 }, { "start": 12197.16, "end": 12198.64, "probability": 0.7369 }, { "start": 12200.46, "end": 12201.98, "probability": 0.8595 }, { "start": 12202.64, "end": 12203.08, "probability": 0.7839 }, { "start": 12203.62, "end": 12204.42, "probability": 0.7847 }, { "start": 12207.32, "end": 12209.04, "probability": 0.7505 }, { "start": 12210.04, "end": 12210.67, "probability": 0.901 }, { "start": 12214.36, "end": 12214.82, "probability": 0.9075 }, { "start": 12215.96, "end": 12216.92, "probability": 0.9755 }, { "start": 12219.0, "end": 12219.9, "probability": 0.9399 }, { "start": 12220.82, "end": 12221.7, "probability": 0.9788 }, { "start": 12222.94, "end": 12223.44, "probability": 0.9868 }, { "start": 12224.56, "end": 12225.32, "probability": 0.8214 }, { "start": 12226.78, "end": 12229.3, "probability": 0.5822 }, { "start": 12229.98, "end": 12230.44, "probability": 0.6705 }, { "start": 12231.5, "end": 12235.14, "probability": 0.9407 }, { "start": 12236.64, "end": 12237.08, "probability": 0.9888 }, { "start": 12238.62, "end": 12239.4, "probability": 0.8509 }, { "start": 12240.21, "end": 12242.08, "probability": 0.949 }, { "start": 12244.6, "end": 12245.62, "probability": 0.9563 }, { "start": 12246.9, "end": 12247.78, "probability": 0.9419 }, { "start": 12248.44, "end": 12250.48, "probability": 0.9814 }, { "start": 12251.8, "end": 12253.36, "probability": 0.851 }, { "start": 12254.04, "end": 12254.48, "probability": 0.5548 }, { "start": 12255.38, "end": 12256.28, "probability": 0.726 }, { "start": 12256.88, "end": 12257.36, "probability": 0.9719 }, { "start": 12258.2, "end": 12258.96, "probability": 0.9099 }, { "start": 12260.4, "end": 12262.82, "probability": 0.8276 }, { "start": 12263.76, "end": 12264.2, "probability": 0.9746 }, { "start": 12264.96, "end": 12265.92, "probability": 0.9239 }, { "start": 12266.58, "end": 12267.48, "probability": 0.9917 }, { "start": 12268.22, "end": 12269.1, "probability": 0.9827 }, { "start": 12270.38, "end": 12272.46, "probability": 0.7434 }, { "start": 12274.28, "end": 12276.1, "probability": 0.9224 }, { "start": 12278.28, "end": 12279.88, "probability": 0.8114 }, { "start": 12280.78, "end": 12281.22, "probability": 0.8611 }, { "start": 12282.54, "end": 12283.44, "probability": 0.8017 }, { "start": 12285.0, "end": 12286.44, "probability": 0.6619 }, { "start": 12287.46, "end": 12287.92, "probability": 0.9719 }, { "start": 12288.72, "end": 12289.84, "probability": 0.8819 }, { "start": 12295.0, "end": 12298.36, "probability": 0.5509 }, { "start": 12299.92, "end": 12302.48, "probability": 0.8229 }, { "start": 12304.1, "end": 12306.02, "probability": 0.6911 }, { "start": 12308.46, "end": 12309.0, "probability": 0.9653 }, { "start": 12310.26, "end": 12311.08, "probability": 0.4787 }, { "start": 12312.24, "end": 12315.56, "probability": 0.9168 }, { "start": 12316.56, "end": 12318.36, "probability": 0.8081 }, { "start": 12319.4, "end": 12319.76, "probability": 0.9839 }, { "start": 12320.5, "end": 12321.1, "probability": 0.6378 }, { "start": 12322.9, "end": 12324.64, "probability": 0.7838 }, { "start": 12325.5, "end": 12325.82, "probability": 0.9707 }, { "start": 12326.62, "end": 12327.86, "probability": 0.7975 }, { "start": 12328.4, "end": 12329.16, "probability": 0.8986 }, { "start": 12330.5, "end": 12331.66, "probability": 0.9689 }, { "start": 12333.62, "end": 12334.84, "probability": 0.9812 }, { "start": 12337.02, "end": 12338.16, "probability": 0.9739 }, { "start": 12340.44, "end": 12343.34, "probability": 0.967 }, { "start": 12345.88, "end": 12347.5, "probability": 0.9599 }, { "start": 12348.88, "end": 12349.32, "probability": 0.5743 }, { "start": 12350.1, "end": 12350.38, "probability": 0.6127 }, { "start": 12353.34, "end": 12354.54, "probability": 0.8886 }, { "start": 12355.48, "end": 12357.46, "probability": 0.9456 }, { "start": 12358.56, "end": 12359.8, "probability": 0.9846 }, { "start": 12361.68, "end": 12362.12, "probability": 0.969 }, { "start": 12364.5, "end": 12365.64, "probability": 0.7888 }, { "start": 12367.54, "end": 12367.98, "probability": 0.9719 }, { "start": 12368.96, "end": 12369.68, "probability": 0.8659 }, { "start": 12371.38, "end": 12372.26, "probability": 0.9899 }, { "start": 12373.0, "end": 12374.06, "probability": 0.8854 }, { "start": 12375.9, "end": 12376.84, "probability": 0.9852 }, { "start": 12377.36, "end": 12377.76, "probability": 0.5232 }, { "start": 12380.14, "end": 12381.7, "probability": 0.798 }, { "start": 12384.92, "end": 12388.1, "probability": 0.8274 }, { "start": 12388.86, "end": 12390.98, "probability": 0.9563 }, { "start": 12392.1, "end": 12394.12, "probability": 0.9783 }, { "start": 12395.38, "end": 12397.32, "probability": 0.9829 }, { "start": 12398.08, "end": 12398.34, "probability": 0.988 }, { "start": 12399.1, "end": 12400.28, "probability": 0.8195 }, { "start": 12401.34, "end": 12401.6, "probability": 0.9893 }, { "start": 12402.12, "end": 12404.46, "probability": 0.6771 }, { "start": 12405.8, "end": 12406.2, "probability": 0.9905 }, { "start": 12407.2, "end": 12407.58, "probability": 0.7687 }, { "start": 12410.66, "end": 12412.64, "probability": 0.5186 }, { "start": 12413.46, "end": 12414.44, "probability": 0.5414 }, { "start": 12416.46, "end": 12418.26, "probability": 0.7316 }, { "start": 12420.06, "end": 12420.32, "probability": 0.9419 }, { "start": 12420.88, "end": 12421.92, "probability": 0.8388 }, { "start": 12422.68, "end": 12423.02, "probability": 0.9771 }, { "start": 12423.82, "end": 12424.5, "probability": 0.9031 }, { "start": 12426.18, "end": 12427.54, "probability": 0.8037 }, { "start": 12428.7, "end": 12429.2, "probability": 0.9885 }, { "start": 12430.22, "end": 12431.2, "probability": 0.4364 }, { "start": 12432.4, "end": 12432.72, "probability": 0.9866 }, { "start": 12433.44, "end": 12434.28, "probability": 0.9727 }, { "start": 12437.74, "end": 12437.98, "probability": 0.5125 }, { "start": 12438.72, "end": 12439.58, "probability": 0.7224 }, { "start": 12442.9, "end": 12443.4, "probability": 0.9226 }, { "start": 12444.4, "end": 12445.58, "probability": 0.8896 }, { "start": 12447.04, "end": 12449.0, "probability": 0.6377 }, { "start": 12451.3, "end": 12452.84, "probability": 0.8947 }, { "start": 12453.38, "end": 12453.8, "probability": 0.981 }, { "start": 12455.74, "end": 12456.5, "probability": 0.938 }, { "start": 12457.5, "end": 12457.96, "probability": 0.981 }, { "start": 12459.2, "end": 12459.84, "probability": 0.8515 }, { "start": 12461.1, "end": 12462.96, "probability": 0.9551 }, { "start": 12466.7, "end": 12468.56, "probability": 0.3176 }, { "start": 12469.66, "end": 12470.14, "probability": 0.7644 }, { "start": 12470.9, "end": 12471.82, "probability": 0.6861 }, { "start": 12473.04, "end": 12473.48, "probability": 0.958 }, { "start": 12474.2, "end": 12475.04, "probability": 0.6578 }, { "start": 12480.76, "end": 12481.24, "probability": 0.6082 }, { "start": 12482.5, "end": 12483.26, "probability": 0.6629 }, { "start": 12493.4, "end": 12497.02, "probability": 0.7417 }, { "start": 12497.72, "end": 12499.4, "probability": 0.6132 }, { "start": 12501.22, "end": 12503.82, "probability": 0.9116 }, { "start": 12506.24, "end": 12510.46, "probability": 0.8415 }, { "start": 12511.42, "end": 12512.2, "probability": 0.7678 }, { "start": 12514.94, "end": 12517.18, "probability": 0.9155 }, { "start": 12518.2, "end": 12518.46, "probability": 0.5376 }, { "start": 12519.7, "end": 12519.98, "probability": 0.6711 }, { "start": 12525.08, "end": 12525.32, "probability": 0.2438 }, { "start": 12528.54, "end": 12528.8, "probability": 0.5025 }, { "start": 12530.34, "end": 12531.2, "probability": 0.6862 }, { "start": 12532.2, "end": 12532.66, "probability": 0.623 }, { "start": 12534.6, "end": 12535.24, "probability": 0.8376 }, { "start": 12537.04, "end": 12539.48, "probability": 0.9617 }, { "start": 12540.5, "end": 12541.14, "probability": 0.6446 }, { "start": 12543.2, "end": 12545.24, "probability": 0.5229 }, { "start": 12547.74, "end": 12549.24, "probability": 0.6943 }, { "start": 12550.14, "end": 12551.72, "probability": 0.8612 }, { "start": 12553.96, "end": 12556.4, "probability": 0.6652 }, { "start": 12557.46, "end": 12559.94, "probability": 0.9005 }, { "start": 12561.26, "end": 12562.32, "probability": 0.9559 }, { "start": 12563.3, "end": 12564.8, "probability": 0.946 }, { "start": 12565.76, "end": 12566.0, "probability": 0.9751 }, { "start": 12566.9, "end": 12568.0, "probability": 0.8988 }, { "start": 12570.52, "end": 12573.06, "probability": 0.8562 }, { "start": 12573.74, "end": 12574.22, "probability": 0.9514 }, { "start": 12575.04, "end": 12576.08, "probability": 0.9049 }, { "start": 12579.32, "end": 12579.46, "probability": 0.5474 }, { "start": 12581.76, "end": 12584.54, "probability": 0.5081 }, { "start": 12586.82, "end": 12589.36, "probability": 0.772 }, { "start": 12589.9, "end": 12591.02, "probability": 0.5688 }, { "start": 12592.4, "end": 12594.08, "probability": 0.8703 }, { "start": 12594.88, "end": 12596.8, "probability": 0.874 }, { "start": 12598.02, "end": 12598.5, "probability": 0.9756 }, { "start": 12599.3, "end": 12600.24, "probability": 0.9401 }, { "start": 12602.08, "end": 12604.04, "probability": 0.8506 }, { "start": 12605.22, "end": 12605.66, "probability": 0.9729 }, { "start": 12607.08, "end": 12607.8, "probability": 0.7156 }, { "start": 12610.1, "end": 12612.62, "probability": 0.6942 }, { "start": 12613.42, "end": 12613.88, "probability": 0.833 }, { "start": 12614.9, "end": 12616.08, "probability": 0.5883 }, { "start": 12617.11, "end": 12620.62, "probability": 0.8278 }, { "start": 12621.64, "end": 12622.33, "probability": 0.5152 }, { "start": 12623.82, "end": 12624.62, "probability": 0.9911 }, { "start": 12625.36, "end": 12626.32, "probability": 0.5832 }, { "start": 12627.12, "end": 12628.58, "probability": 0.7971 }, { "start": 12629.62, "end": 12631.1, "probability": 0.9359 }, { "start": 12632.92, "end": 12633.38, "probability": 0.938 }, { "start": 12634.6, "end": 12635.6, "probability": 0.7199 }, { "start": 12636.34, "end": 12637.72, "probability": 0.9759 }, { "start": 12638.94, "end": 12640.9, "probability": 0.8689 }, { "start": 12644.94, "end": 12646.42, "probability": 0.6655 }, { "start": 12647.16, "end": 12648.2, "probability": 0.5716 }, { "start": 12650.1, "end": 12650.94, "probability": 0.7137 }, { "start": 12651.8, "end": 12653.38, "probability": 0.8857 }, { "start": 12655.34, "end": 12656.3, "probability": 0.9888 }, { "start": 12656.98, "end": 12657.9, "probability": 0.9482 }, { "start": 12659.88, "end": 12661.96, "probability": 0.9396 }, { "start": 12663.6, "end": 12665.08, "probability": 0.9095 }, { "start": 12666.04, "end": 12666.9, "probability": 0.9629 }, { "start": 12668.46, "end": 12669.3, "probability": 0.7802 }, { "start": 12670.38, "end": 12671.92, "probability": 0.8575 }, { "start": 12673.54, "end": 12675.86, "probability": 0.9654 }, { "start": 12676.42, "end": 12678.24, "probability": 0.7734 }, { "start": 12679.06, "end": 12680.82, "probability": 0.9268 }, { "start": 12682.84, "end": 12684.18, "probability": 0.8353 }, { "start": 12684.78, "end": 12685.24, "probability": 0.9104 }, { "start": 12687.12, "end": 12688.32, "probability": 0.9647 }, { "start": 12689.88, "end": 12691.36, "probability": 0.7752 }, { "start": 12692.86, "end": 12694.68, "probability": 0.9001 }, { "start": 12695.62, "end": 12697.08, "probability": 0.9803 }, { "start": 12698.44, "end": 12700.36, "probability": 0.9573 }, { "start": 12702.22, "end": 12703.4, "probability": 0.9917 }, { "start": 12705.48, "end": 12707.68, "probability": 0.9924 }, { "start": 12709.48, "end": 12710.24, "probability": 0.9463 }, { "start": 12711.98, "end": 12713.64, "probability": 0.9819 }, { "start": 12715.24, "end": 12716.56, "probability": 0.7591 }, { "start": 12720.55, "end": 12724.88, "probability": 0.4258 }, { "start": 12725.38, "end": 12727.16, "probability": 0.636 }, { "start": 12728.74, "end": 12730.32, "probability": 0.8822 }, { "start": 12731.16, "end": 12732.86, "probability": 0.9153 }, { "start": 12733.92, "end": 12734.9, "probability": 0.8025 }, { "start": 12735.82, "end": 12736.24, "probability": 0.7637 }, { "start": 12738.66, "end": 12739.46, "probability": 0.8273 }, { "start": 12741.56, "end": 12742.64, "probability": 0.9718 }, { "start": 12745.16, "end": 12745.58, "probability": 0.8168 }, { "start": 12748.02, "end": 12748.8, "probability": 0.7081 }, { "start": 12750.0, "end": 12753.08, "probability": 0.807 }, { "start": 12754.76, "end": 12756.12, "probability": 0.8617 }, { "start": 12758.82, "end": 12761.1, "probability": 0.4927 }, { "start": 12762.6, "end": 12766.42, "probability": 0.7358 }, { "start": 12768.62, "end": 12770.26, "probability": 0.8654 }, { "start": 12771.1, "end": 12773.24, "probability": 0.6412 }, { "start": 12773.98, "end": 12774.42, "probability": 0.7913 }, { "start": 12776.68, "end": 12777.5, "probability": 0.8063 }, { "start": 12778.5, "end": 12779.7, "probability": 0.7658 }, { "start": 12780.4, "end": 12782.14, "probability": 0.9241 }, { "start": 12784.14, "end": 12785.8, "probability": 0.8639 }, { "start": 12786.78, "end": 12788.18, "probability": 0.9686 }, { "start": 12789.46, "end": 12792.3, "probability": 0.7503 }, { "start": 12792.7, "end": 12793.28, "probability": 0.6357 }, { "start": 12794.2, "end": 12797.49, "probability": 0.2221 }, { "start": 12797.8, "end": 12800.02, "probability": 0.6982 }, { "start": 12801.68, "end": 12803.6, "probability": 0.8181 }, { "start": 12804.7, "end": 12805.4, "probability": 0.906 }, { "start": 12806.8, "end": 12807.1, "probability": 0.9761 }, { "start": 12807.86, "end": 12811.78, "probability": 0.7161 }, { "start": 12813.02, "end": 12814.1, "probability": 0.3596 }, { "start": 12814.18, "end": 12815.08, "probability": 0.722 }, { "start": 12816.48, "end": 12819.12, "probability": 0.0642 }, { "start": 12819.64, "end": 12822.94, "probability": 0.0955 }, { "start": 12823.9, "end": 12824.64, "probability": 0.0372 }, { "start": 12834.14, "end": 12838.74, "probability": 0.0126 }, { "start": 12840.42, "end": 12841.72, "probability": 0.0171 }, { "start": 12841.72, "end": 12842.47, "probability": 0.1268 }, { "start": 12983.32, "end": 12984.06, "probability": 0.0182 }, { "start": 12984.86, "end": 12986.48, "probability": 0.0664 }, { "start": 12987.42, "end": 12987.98, "probability": 0.0054 }, { "start": 12990.4, "end": 12991.46, "probability": 0.0654 }, { "start": 13001.3, "end": 13004.42, "probability": 0.0766 }, { "start": 13006.02, "end": 13006.06, "probability": 0.0651 }, { "start": 13009.28, "end": 13009.56, "probability": 0.1083 }, { "start": 13013.6, "end": 13014.28, "probability": 0.0864 }, { "start": 13015.66, "end": 13016.6, "probability": 0.0189 }, { "start": 13016.6, "end": 13019.16, "probability": 0.0848 }, { "start": 13102.0, "end": 13102.0, "probability": 0.0 }, { "start": 13102.0, "end": 13102.0, "probability": 0.0 }, { "start": 13102.0, "end": 13102.0, "probability": 0.0 }, { "start": 13102.0, "end": 13102.0, "probability": 0.0 }, { "start": 13102.0, "end": 13102.0, "probability": 0.0 }, { "start": 13102.0, "end": 13102.0, "probability": 0.0 }, { "start": 13102.0, "end": 13102.0, "probability": 0.0 }, { "start": 13102.0, "end": 13102.0, "probability": 0.0 }, { "start": 13102.0, "end": 13102.0, "probability": 0.0 }, { "start": 13102.0, "end": 13102.0, "probability": 0.0 }, { "start": 13102.0, "end": 13102.0, "probability": 0.0 }, { "start": 13102.0, "end": 13102.0, "probability": 0.0 }, { "start": 13102.08, "end": 13102.34, "probability": 0.2075 }, { "start": 13102.38, "end": 13103.2, "probability": 0.8085 }, { "start": 13104.66, "end": 13112.48, "probability": 0.9757 }, { "start": 13113.48, "end": 13117.04, "probability": 0.955 }, { "start": 13118.42, "end": 13120.34, "probability": 0.9315 }, { "start": 13121.48, "end": 13127.48, "probability": 0.9823 }, { "start": 13128.3, "end": 13134.1, "probability": 0.9976 }, { "start": 13134.84, "end": 13136.28, "probability": 0.9995 }, { "start": 13137.1, "end": 13139.44, "probability": 0.9968 }, { "start": 13140.6, "end": 13145.8, "probability": 0.9959 }, { "start": 13146.88, "end": 13148.88, "probability": 0.7573 }, { "start": 13150.02, "end": 13154.44, "probability": 0.7425 }, { "start": 13155.5, "end": 13155.96, "probability": 0.4722 }, { "start": 13157.3, "end": 13160.56, "probability": 0.7387 }, { "start": 13162.0, "end": 13169.32, "probability": 0.9697 }, { "start": 13170.2, "end": 13177.23, "probability": 0.9946 }, { "start": 13178.0, "end": 13181.06, "probability": 0.9981 }, { "start": 13181.8, "end": 13188.96, "probability": 0.9985 }, { "start": 13189.98, "end": 13190.26, "probability": 0.5108 }, { "start": 13190.28, "end": 13196.84, "probability": 0.9872 }, { "start": 13196.92, "end": 13197.54, "probability": 0.4263 }, { "start": 13198.36, "end": 13200.1, "probability": 0.9274 }, { "start": 13200.82, "end": 13201.06, "probability": 0.5057 }, { "start": 13201.78, "end": 13202.44, "probability": 0.7497 }, { "start": 13203.1, "end": 13207.02, "probability": 0.8069 }, { "start": 13207.42, "end": 13208.1, "probability": 0.834 }, { "start": 13208.64, "end": 13210.1, "probability": 0.9499 }, { "start": 13210.16, "end": 13210.78, "probability": 0.8014 }, { "start": 13210.88, "end": 13217.56, "probability": 0.9717 }, { "start": 13217.72, "end": 13223.58, "probability": 0.9931 }, { "start": 13225.4, "end": 13226.72, "probability": 0.7897 }, { "start": 13227.94, "end": 13228.54, "probability": 0.8074 }, { "start": 13230.1, "end": 13230.6, "probability": 0.7798 }, { "start": 13231.28, "end": 13231.72, "probability": 0.9561 }, { "start": 13232.26, "end": 13234.86, "probability": 0.9954 }, { "start": 13235.44, "end": 13237.02, "probability": 0.9591 }, { "start": 13239.18, "end": 13242.14, "probability": 0.9901 }, { "start": 13242.18, "end": 13247.16, "probability": 0.9976 }, { "start": 13248.84, "end": 13254.64, "probability": 0.9765 }, { "start": 13255.36, "end": 13256.62, "probability": 0.5242 }, { "start": 13257.18, "end": 13257.98, "probability": 0.7479 }, { "start": 13259.08, "end": 13261.1, "probability": 0.997 }, { "start": 13261.72, "end": 13268.44, "probability": 0.9842 }, { "start": 13270.58, "end": 13271.88, "probability": 0.9684 }, { "start": 13273.64, "end": 13277.48, "probability": 0.9863 }, { "start": 13277.48, "end": 13282.0, "probability": 0.9987 }, { "start": 13283.2, "end": 13285.28, "probability": 0.9977 }, { "start": 13286.0, "end": 13288.16, "probability": 0.9861 }, { "start": 13289.5, "end": 13292.2, "probability": 0.8914 }, { "start": 13292.86, "end": 13293.52, "probability": 0.9696 }, { "start": 13294.78, "end": 13295.3, "probability": 0.3965 }, { "start": 13295.86, "end": 13299.32, "probability": 0.9518 }, { "start": 13299.92, "end": 13302.2, "probability": 0.983 }, { "start": 13302.88, "end": 13304.18, "probability": 0.9949 }, { "start": 13305.08, "end": 13307.56, "probability": 0.9206 }, { "start": 13308.26, "end": 13311.9, "probability": 0.9938 }, { "start": 13313.36, "end": 13318.38, "probability": 0.9911 }, { "start": 13319.36, "end": 13322.26, "probability": 0.8704 }, { "start": 13322.88, "end": 13323.32, "probability": 0.7764 }, { "start": 13324.38, "end": 13325.98, "probability": 0.9405 }, { "start": 13326.62, "end": 13327.2, "probability": 0.6378 }, { "start": 13327.74, "end": 13328.38, "probability": 0.9832 }, { "start": 13328.9, "end": 13333.22, "probability": 0.9893 }, { "start": 13334.88, "end": 13339.56, "probability": 0.9905 }, { "start": 13340.44, "end": 13344.32, "probability": 0.8943 }, { "start": 13345.18, "end": 13348.04, "probability": 0.9924 }, { "start": 13348.7, "end": 13350.56, "probability": 0.988 }, { "start": 13352.36, "end": 13352.78, "probability": 0.8259 }, { "start": 13353.42, "end": 13355.92, "probability": 0.973 }, { "start": 13355.92, "end": 13358.98, "probability": 0.9827 }, { "start": 13359.74, "end": 13364.72, "probability": 0.94 }, { "start": 13365.28, "end": 13368.64, "probability": 0.9958 }, { "start": 13369.22, "end": 13372.14, "probability": 0.9898 }, { "start": 13373.14, "end": 13375.52, "probability": 0.9374 }, { "start": 13377.56, "end": 13382.09, "probability": 0.9954 }, { "start": 13383.54, "end": 13385.64, "probability": 0.9944 }, { "start": 13386.22, "end": 13387.12, "probability": 0.995 }, { "start": 13391.02, "end": 13391.54, "probability": 0.8755 }, { "start": 13392.36, "end": 13395.36, "probability": 0.9982 }, { "start": 13395.96, "end": 13397.3, "probability": 0.8136 }, { "start": 13398.58, "end": 13402.46, "probability": 0.9873 }, { "start": 13402.46, "end": 13408.9, "probability": 0.9924 }, { "start": 13410.28, "end": 13415.4, "probability": 0.9951 }, { "start": 13416.54, "end": 13419.0, "probability": 0.9966 }, { "start": 13419.7, "end": 13420.78, "probability": 0.7461 }, { "start": 13421.5, "end": 13423.84, "probability": 0.8868 }, { "start": 13425.62, "end": 13429.62, "probability": 0.937 }, { "start": 13430.04, "end": 13430.98, "probability": 0.963 }, { "start": 13431.8, "end": 13432.54, "probability": 0.7944 }, { "start": 13433.22, "end": 13438.74, "probability": 0.9724 }, { "start": 13440.54, "end": 13445.08, "probability": 0.9988 }, { "start": 13445.08, "end": 13449.04, "probability": 0.9986 }, { "start": 13449.74, "end": 13451.68, "probability": 0.9194 }, { "start": 13452.36, "end": 13457.74, "probability": 0.998 }, { "start": 13458.36, "end": 13462.6, "probability": 0.9976 }, { "start": 13462.6, "end": 13467.5, "probability": 0.992 }, { "start": 13468.04, "end": 13468.78, "probability": 0.8766 }, { "start": 13470.54, "end": 13475.6, "probability": 0.9253 }, { "start": 13476.18, "end": 13478.56, "probability": 0.9954 }, { "start": 13480.18, "end": 13480.44, "probability": 0.981 }, { "start": 13481.1, "end": 13485.08, "probability": 0.8443 }, { "start": 13486.02, "end": 13487.72, "probability": 0.9875 }, { "start": 13488.88, "end": 13491.68, "probability": 0.9589 }, { "start": 13493.06, "end": 13496.9, "probability": 0.9902 }, { "start": 13497.56, "end": 13501.84, "probability": 0.9967 }, { "start": 13502.4, "end": 13505.3, "probability": 0.988 }, { "start": 13506.12, "end": 13509.74, "probability": 0.9694 }, { "start": 13509.74, "end": 13513.56, "probability": 0.9822 }, { "start": 13515.42, "end": 13518.8, "probability": 0.9917 }, { "start": 13519.34, "end": 13521.46, "probability": 0.9995 }, { "start": 13522.0, "end": 13522.58, "probability": 0.9933 }, { "start": 13523.12, "end": 13524.28, "probability": 0.9995 }, { "start": 13524.8, "end": 13528.5, "probability": 0.9982 }, { "start": 13529.32, "end": 13531.76, "probability": 0.9991 }, { "start": 13532.36, "end": 13533.8, "probability": 0.9889 }, { "start": 13534.4, "end": 13536.74, "probability": 0.9768 }, { "start": 13537.44, "end": 13540.28, "probability": 0.9689 }, { "start": 13542.68, "end": 13545.24, "probability": 0.9839 }, { "start": 13545.84, "end": 13546.44, "probability": 0.8812 }, { "start": 13547.1, "end": 13550.36, "probability": 0.9963 }, { "start": 13550.94, "end": 13554.0, "probability": 0.9976 }, { "start": 13555.26, "end": 13556.36, "probability": 0.9077 }, { "start": 13557.02, "end": 13560.5, "probability": 0.9922 }, { "start": 13560.5, "end": 13565.94, "probability": 0.9977 }, { "start": 13567.78, "end": 13569.24, "probability": 0.8076 }, { "start": 13572.04, "end": 13573.6, "probability": 0.7802 }, { "start": 13575.0, "end": 13576.28, "probability": 0.8309 }, { "start": 13578.44, "end": 13579.16, "probability": 0.7398 }, { "start": 13579.98, "end": 13581.98, "probability": 0.9839 }, { "start": 13584.28, "end": 13585.72, "probability": 0.6441 }, { "start": 13586.46, "end": 13587.94, "probability": 0.9753 }, { "start": 13589.58, "end": 13590.18, "probability": 0.9006 }, { "start": 13591.04, "end": 13592.66, "probability": 0.9797 }, { "start": 13594.08, "end": 13594.84, "probability": 0.9882 }, { "start": 13595.56, "end": 13597.3, "probability": 0.9466 }, { "start": 13598.78, "end": 13600.56, "probability": 0.8174 }, { "start": 13601.64, "end": 13602.62, "probability": 0.7017 }, { "start": 13609.22, "end": 13610.21, "probability": 0.5536 }, { "start": 13611.9, "end": 13613.74, "probability": 0.6195 }, { "start": 13615.16, "end": 13615.76, "probability": 0.8025 }, { "start": 13616.38, "end": 13617.7, "probability": 0.9645 }, { "start": 13618.54, "end": 13620.84, "probability": 0.9167 }, { "start": 13621.66, "end": 13622.22, "probability": 0.9482 }, { "start": 13623.54, "end": 13624.64, "probability": 0.9349 }, { "start": 13626.3, "end": 13626.72, "probability": 0.3492 }, { "start": 13627.34, "end": 13629.04, "probability": 0.6852 }, { "start": 13630.06, "end": 13631.22, "probability": 0.923 }, { "start": 13632.06, "end": 13633.4, "probability": 0.9767 }, { "start": 13634.68, "end": 13635.32, "probability": 0.9805 }, { "start": 13635.96, "end": 13636.82, "probability": 0.9782 }, { "start": 13637.64, "end": 13638.44, "probability": 0.7343 }, { "start": 13638.54, "end": 13639.7, "probability": 0.8613 }, { "start": 13640.82, "end": 13643.12, "probability": 0.6271 }, { "start": 13646.9, "end": 13649.06, "probability": 0.2648 }, { "start": 13653.52, "end": 13655.04, "probability": 0.9816 }, { "start": 13656.2, "end": 13657.18, "probability": 0.0563 }, { "start": 13657.74, "end": 13659.22, "probability": 0.7571 }, { "start": 13660.51, "end": 13661.22, "probability": 0.3368 }, { "start": 13661.84, "end": 13662.36, "probability": 0.9144 }, { "start": 13662.68, "end": 13663.47, "probability": 0.8901 }, { "start": 13664.58, "end": 13665.42, "probability": 0.0446 }, { "start": 13666.84, "end": 13667.48, "probability": 0.7836 }, { "start": 13667.94, "end": 13669.22, "probability": 0.8783 }, { "start": 13669.54, "end": 13669.96, "probability": 0.6692 }, { "start": 13670.06, "end": 13670.7, "probability": 0.7862 }, { "start": 13671.74, "end": 13672.94, "probability": 0.9143 }, { "start": 13673.94, "end": 13677.88, "probability": 0.9952 }, { "start": 13677.88, "end": 13682.78, "probability": 0.9934 }, { "start": 13684.16, "end": 13686.8, "probability": 0.9358 }, { "start": 13688.32, "end": 13689.5, "probability": 0.7497 }, { "start": 13691.76, "end": 13697.14, "probability": 0.6749 }, { "start": 13698.38, "end": 13700.26, "probability": 0.9409 }, { "start": 13701.18, "end": 13702.74, "probability": 0.9718 }, { "start": 13704.1, "end": 13704.82, "probability": 0.7658 }, { "start": 13704.96, "end": 13707.86, "probability": 0.9956 }, { "start": 13708.52, "end": 13710.34, "probability": 0.9602 }, { "start": 13711.1, "end": 13712.34, "probability": 0.994 }, { "start": 13713.04, "end": 13713.46, "probability": 0.8412 }, { "start": 13714.38, "end": 13714.76, "probability": 0.8096 }, { "start": 13715.66, "end": 13717.0, "probability": 0.9487 }, { "start": 13717.94, "end": 13719.94, "probability": 0.9539 }, { "start": 13720.24, "end": 13720.61, "probability": 0.9641 }, { "start": 13721.44, "end": 13724.5, "probability": 0.9928 }, { "start": 13724.76, "end": 13725.0, "probability": 0.9235 }, { "start": 13725.4, "end": 13725.9, "probability": 0.9867 }, { "start": 13727.48, "end": 13732.18, "probability": 0.9865 }, { "start": 13732.36, "end": 13733.0, "probability": 0.5736 }, { "start": 13733.12, "end": 13733.2, "probability": 0.2806 }, { "start": 13733.2, "end": 13733.86, "probability": 0.3773 }, { "start": 13734.02, "end": 13735.84, "probability": 0.9532 }, { "start": 13735.86, "end": 13741.64, "probability": 0.9953 }, { "start": 13742.32, "end": 13745.38, "probability": 0.9907 }, { "start": 13747.44, "end": 13748.58, "probability": 0.8042 }, { "start": 13748.94, "end": 13752.3, "probability": 0.9966 }, { "start": 13752.44, "end": 13753.16, "probability": 0.775 }, { "start": 13754.0, "end": 13756.2, "probability": 0.8481 }, { "start": 13757.48, "end": 13758.42, "probability": 0.9716 }, { "start": 13759.24, "end": 13761.32, "probability": 0.986 }, { "start": 13761.62, "end": 13761.88, "probability": 0.6952 }, { "start": 13761.98, "end": 13764.96, "probability": 0.936 }, { "start": 13765.9, "end": 13769.06, "probability": 0.9834 }, { "start": 13769.16, "end": 13770.84, "probability": 0.7216 }, { "start": 13771.6, "end": 13771.74, "probability": 0.8701 }, { "start": 13772.56, "end": 13775.46, "probability": 0.9973 }, { "start": 13776.12, "end": 13776.88, "probability": 0.9849 }, { "start": 13777.2, "end": 13778.36, "probability": 0.8807 }, { "start": 13779.08, "end": 13783.54, "probability": 0.9658 }, { "start": 13784.72, "end": 13787.64, "probability": 0.8649 }, { "start": 13787.8, "end": 13790.64, "probability": 0.702 }, { "start": 13791.52, "end": 13792.99, "probability": 0.9855 }, { "start": 13794.14, "end": 13795.66, "probability": 0.9886 }, { "start": 13795.72, "end": 13796.46, "probability": 0.7603 }, { "start": 13798.14, "end": 13801.96, "probability": 0.991 }, { "start": 13802.39, "end": 13805.56, "probability": 0.9924 }, { "start": 13806.34, "end": 13808.8, "probability": 0.9976 }, { "start": 13808.88, "end": 13812.18, "probability": 0.9615 }, { "start": 13812.76, "end": 13816.22, "probability": 0.9963 }, { "start": 13817.2, "end": 13817.88, "probability": 0.897 }, { "start": 13818.9, "end": 13820.0, "probability": 0.9469 }, { "start": 13820.78, "end": 13824.28, "probability": 0.938 }, { "start": 13825.14, "end": 13828.04, "probability": 0.9681 }, { "start": 13829.14, "end": 13830.04, "probability": 0.8799 }, { "start": 13830.8, "end": 13834.98, "probability": 0.8306 }, { "start": 13835.72, "end": 13836.52, "probability": 0.7487 }, { "start": 13836.56, "end": 13840.96, "probability": 0.8992 }, { "start": 13841.1, "end": 13843.0, "probability": 0.9704 }, { "start": 13843.58, "end": 13846.12, "probability": 0.9748 }, { "start": 13847.2, "end": 13851.16, "probability": 0.8225 }, { "start": 13851.54, "end": 13852.5, "probability": 0.8707 }, { "start": 13852.66, "end": 13854.64, "probability": 0.9925 }, { "start": 13855.18, "end": 13855.86, "probability": 0.8467 }, { "start": 13856.4, "end": 13859.36, "probability": 0.8682 }, { "start": 13859.68, "end": 13860.2, "probability": 0.5282 }, { "start": 13860.32, "end": 13861.38, "probability": 0.9961 }, { "start": 13862.18, "end": 13863.76, "probability": 0.9824 }, { "start": 13864.34, "end": 13865.2, "probability": 0.7641 }, { "start": 13866.08, "end": 13867.12, "probability": 0.483 }, { "start": 13867.12, "end": 13869.24, "probability": 0.6042 }, { "start": 13869.94, "end": 13871.12, "probability": 0.853 }, { "start": 13872.34, "end": 13873.88, "probability": 0.4755 }, { "start": 13874.86, "end": 13876.9, "probability": 0.9001 }, { "start": 13878.46, "end": 13879.2, "probability": 0.7698 }, { "start": 13880.0, "end": 13880.9, "probability": 0.8539 }, { "start": 13881.92, "end": 13882.84, "probability": 0.9281 }, { "start": 13905.06, "end": 13907.36, "probability": 0.753 }, { "start": 13908.02, "end": 13911.7, "probability": 0.6804 }, { "start": 13914.2, "end": 13916.22, "probability": 0.814 }, { "start": 13916.76, "end": 13917.54, "probability": 0.7495 }, { "start": 13919.22, "end": 13920.51, "probability": 0.9373 }, { "start": 13922.36, "end": 13925.58, "probability": 0.9959 }, { "start": 13926.34, "end": 13926.96, "probability": 0.7168 }, { "start": 13928.34, "end": 13932.8, "probability": 0.9932 }, { "start": 13934.3, "end": 13937.66, "probability": 0.9736 }, { "start": 13938.54, "end": 13940.58, "probability": 0.9919 }, { "start": 13941.1, "end": 13943.7, "probability": 0.756 }, { "start": 13945.14, "end": 13947.68, "probability": 0.8898 }, { "start": 13948.78, "end": 13951.84, "probability": 0.9141 }, { "start": 13953.32, "end": 13953.94, "probability": 0.7929 }, { "start": 13954.92, "end": 13955.48, "probability": 0.8395 }, { "start": 13956.12, "end": 13959.06, "probability": 0.9937 }, { "start": 13960.0, "end": 13961.38, "probability": 0.8648 }, { "start": 13961.98, "end": 13962.86, "probability": 0.9197 }, { "start": 13964.48, "end": 13966.48, "probability": 0.9223 }, { "start": 13967.06, "end": 13968.0, "probability": 0.9055 }, { "start": 13969.18, "end": 13970.34, "probability": 0.963 }, { "start": 13972.06, "end": 13973.12, "probability": 0.9716 }, { "start": 13973.7, "end": 13974.66, "probability": 0.8574 }, { "start": 13976.04, "end": 13976.92, "probability": 0.5486 }, { "start": 13977.96, "end": 13980.58, "probability": 0.9957 }, { "start": 13981.56, "end": 13984.58, "probability": 0.9928 }, { "start": 13985.3, "end": 13987.32, "probability": 0.9767 }, { "start": 13988.54, "end": 13989.52, "probability": 0.7564 }, { "start": 13990.38, "end": 13991.64, "probability": 0.837 }, { "start": 13992.44, "end": 13998.5, "probability": 0.9943 }, { "start": 13999.42, "end": 14003.22, "probability": 0.9674 }, { "start": 14003.22, "end": 14007.66, "probability": 0.9983 }, { "start": 14008.72, "end": 14012.48, "probability": 0.9974 }, { "start": 14013.18, "end": 14021.24, "probability": 0.9623 }, { "start": 14023.32, "end": 14025.74, "probability": 0.7471 }, { "start": 14026.48, "end": 14029.0, "probability": 0.991 }, { "start": 14029.62, "end": 14032.66, "probability": 0.995 }, { "start": 14034.58, "end": 14035.16, "probability": 0.8621 }, { "start": 14035.76, "end": 14038.32, "probability": 0.8952 }, { "start": 14040.1, "end": 14041.26, "probability": 0.6599 }, { "start": 14041.9, "end": 14044.62, "probability": 0.7539 }, { "start": 14045.78, "end": 14048.92, "probability": 0.9568 }, { "start": 14049.82, "end": 14052.06, "probability": 0.7529 }, { "start": 14052.72, "end": 14060.84, "probability": 0.9608 }, { "start": 14062.42, "end": 14063.28, "probability": 0.9517 }, { "start": 14065.74, "end": 14066.06, "probability": 0.9644 }, { "start": 14067.3, "end": 14070.62, "probability": 0.7146 }, { "start": 14071.42, "end": 14071.88, "probability": 0.3199 }, { "start": 14073.16, "end": 14075.08, "probability": 0.7384 }, { "start": 14077.78, "end": 14079.12, "probability": 0.8943 }, { "start": 14080.7, "end": 14081.78, "probability": 0.7495 }, { "start": 14082.7, "end": 14083.82, "probability": 0.99 }, { "start": 14084.5, "end": 14085.5, "probability": 0.7971 }, { "start": 14108.42, "end": 14109.82, "probability": 0.7082 }, { "start": 14111.38, "end": 14112.34, "probability": 0.8289 }, { "start": 14113.78, "end": 14119.96, "probability": 0.857 }, { "start": 14121.2, "end": 14122.34, "probability": 0.9719 }, { "start": 14124.82, "end": 14126.2, "probability": 0.4806 }, { "start": 14127.0, "end": 14130.74, "probability": 0.7806 }, { "start": 14132.02, "end": 14135.28, "probability": 0.9797 }, { "start": 14135.9, "end": 14137.6, "probability": 0.7633 }, { "start": 14138.42, "end": 14140.48, "probability": 0.9902 }, { "start": 14141.0, "end": 14143.48, "probability": 0.9944 }, { "start": 14144.22, "end": 14145.06, "probability": 0.9845 }, { "start": 14145.78, "end": 14148.08, "probability": 0.9702 }, { "start": 14148.58, "end": 14151.19, "probability": 0.5419 }, { "start": 14151.46, "end": 14153.64, "probability": 0.494 }, { "start": 14155.18, "end": 14157.64, "probability": 0.9575 }, { "start": 14158.96, "end": 14163.8, "probability": 0.71 }, { "start": 14164.26, "end": 14165.18, "probability": 0.7716 }, { "start": 14165.24, "end": 14167.14, "probability": 0.7348 }, { "start": 14167.54, "end": 14169.5, "probability": 0.9803 }, { "start": 14170.92, "end": 14174.02, "probability": 0.9414 }, { "start": 14175.26, "end": 14177.22, "probability": 0.9011 }, { "start": 14177.22, "end": 14180.42, "probability": 0.901 }, { "start": 14181.26, "end": 14186.48, "probability": 0.9709 }, { "start": 14187.32, "end": 14189.96, "probability": 0.5578 }, { "start": 14190.58, "end": 14191.05, "probability": 0.6169 }, { "start": 14192.18, "end": 14195.32, "probability": 0.9204 }, { "start": 14196.3, "end": 14200.46, "probability": 0.9181 }, { "start": 14200.6, "end": 14201.54, "probability": 0.3682 }, { "start": 14201.66, "end": 14202.42, "probability": 0.5813 }, { "start": 14203.06, "end": 14204.37, "probability": 0.8677 }, { "start": 14206.24, "end": 14206.24, "probability": 0.1869 }, { "start": 14206.24, "end": 14207.85, "probability": 0.91 }, { "start": 14209.02, "end": 14211.48, "probability": 0.6782 }, { "start": 14212.36, "end": 14215.02, "probability": 0.9083 }, { "start": 14215.06, "end": 14220.06, "probability": 0.7329 }, { "start": 14220.98, "end": 14221.8, "probability": 0.6629 }, { "start": 14222.3, "end": 14224.48, "probability": 0.9969 }, { "start": 14224.58, "end": 14226.32, "probability": 0.8028 }, { "start": 14227.22, "end": 14232.26, "probability": 0.8817 }, { "start": 14232.8, "end": 14234.64, "probability": 0.7804 }, { "start": 14235.32, "end": 14239.56, "probability": 0.9442 }, { "start": 14240.02, "end": 14241.52, "probability": 0.8815 }, { "start": 14241.84, "end": 14244.72, "probability": 0.9746 }, { "start": 14245.42, "end": 14246.44, "probability": 0.9907 }, { "start": 14247.44, "end": 14248.36, "probability": 0.8492 }, { "start": 14248.86, "end": 14252.12, "probability": 0.8077 }, { "start": 14253.08, "end": 14253.8, "probability": 0.5583 }, { "start": 14253.86, "end": 14256.34, "probability": 0.568 }, { "start": 14256.46, "end": 14257.82, "probability": 0.8923 }, { "start": 14258.52, "end": 14259.02, "probability": 0.6603 }, { "start": 14259.18, "end": 14261.92, "probability": 0.8896 }, { "start": 14262.54, "end": 14264.22, "probability": 0.8882 }, { "start": 14264.82, "end": 14265.94, "probability": 0.8831 }, { "start": 14266.24, "end": 14267.52, "probability": 0.971 }, { "start": 14267.72, "end": 14268.7, "probability": 0.708 }, { "start": 14268.76, "end": 14268.86, "probability": 0.8046 }, { "start": 14270.06, "end": 14272.13, "probability": 0.9136 }, { "start": 14272.7, "end": 14274.94, "probability": 0.7904 }, { "start": 14274.94, "end": 14277.94, "probability": 0.7241 }, { "start": 14278.06, "end": 14279.14, "probability": 0.9138 }, { "start": 14279.9, "end": 14280.78, "probability": 0.6981 }, { "start": 14281.42, "end": 14283.84, "probability": 0.9743 }, { "start": 14284.66, "end": 14285.82, "probability": 0.8046 }, { "start": 14286.78, "end": 14289.06, "probability": 0.9673 }, { "start": 14290.26, "end": 14293.66, "probability": 0.9302 }, { "start": 14294.32, "end": 14297.7, "probability": 0.9711 }, { "start": 14297.7, "end": 14302.34, "probability": 0.9985 }, { "start": 14302.58, "end": 14302.82, "probability": 0.6754 }, { "start": 14304.08, "end": 14306.22, "probability": 0.74 }, { "start": 14306.54, "end": 14308.12, "probability": 0.9333 }, { "start": 14310.0, "end": 14310.58, "probability": 0.7261 }, { "start": 14311.6, "end": 14313.5, "probability": 0.8219 }, { "start": 14327.84, "end": 14329.78, "probability": 0.7784 }, { "start": 14329.82, "end": 14330.07, "probability": 0.5765 }, { "start": 14330.3, "end": 14331.1, "probability": 0.5703 }, { "start": 14332.82, "end": 14334.34, "probability": 0.7072 }, { "start": 14336.06, "end": 14339.32, "probability": 0.9546 }, { "start": 14339.54, "end": 14340.34, "probability": 0.7573 }, { "start": 14342.76, "end": 14343.56, "probability": 0.9189 }, { "start": 14344.02, "end": 14345.4, "probability": 0.786 }, { "start": 14345.9, "end": 14348.54, "probability": 0.8488 }, { "start": 14349.56, "end": 14349.66, "probability": 0.8683 }, { "start": 14349.88, "end": 14351.78, "probability": 0.6289 }, { "start": 14352.8, "end": 14354.08, "probability": 0.9929 }, { "start": 14355.08, "end": 14357.32, "probability": 0.804 }, { "start": 14357.88, "end": 14359.6, "probability": 0.9946 }, { "start": 14360.62, "end": 14363.38, "probability": 0.9915 }, { "start": 14363.96, "end": 14371.3, "probability": 0.9541 }, { "start": 14371.3, "end": 14375.7, "probability": 0.9937 }, { "start": 14375.82, "end": 14376.41, "probability": 0.721 }, { "start": 14377.7, "end": 14380.74, "probability": 0.9304 }, { "start": 14381.44, "end": 14383.22, "probability": 0.9168 }, { "start": 14383.96, "end": 14386.24, "probability": 0.9489 }, { "start": 14386.92, "end": 14388.5, "probability": 0.8688 }, { "start": 14389.36, "end": 14391.88, "probability": 0.9954 }, { "start": 14393.44, "end": 14396.88, "probability": 0.8299 }, { "start": 14397.84, "end": 14398.82, "probability": 0.8263 }, { "start": 14399.7, "end": 14401.96, "probability": 0.9939 }, { "start": 14403.66, "end": 14406.54, "probability": 0.9556 }, { "start": 14408.28, "end": 14414.26, "probability": 0.8634 }, { "start": 14415.58, "end": 14417.64, "probability": 0.7984 }, { "start": 14419.18, "end": 14421.56, "probability": 0.8638 }, { "start": 14421.64, "end": 14423.84, "probability": 0.9865 }, { "start": 14425.0, "end": 14426.4, "probability": 0.9867 }, { "start": 14427.34, "end": 14432.56, "probability": 0.754 }, { "start": 14434.3, "end": 14434.96, "probability": 0.8071 }, { "start": 14436.02, "end": 14438.46, "probability": 0.9703 }, { "start": 14439.06, "end": 14441.2, "probability": 0.6836 }, { "start": 14441.6, "end": 14445.36, "probability": 0.8003 }, { "start": 14446.5, "end": 14449.98, "probability": 0.9608 }, { "start": 14450.54, "end": 14451.06, "probability": 0.7977 }, { "start": 14452.22, "end": 14454.4, "probability": 0.9931 }, { "start": 14454.4, "end": 14456.74, "probability": 0.9956 }, { "start": 14457.26, "end": 14461.45, "probability": 0.9946 }, { "start": 14461.6, "end": 14464.2, "probability": 0.9722 }, { "start": 14465.34, "end": 14468.16, "probability": 0.9879 }, { "start": 14469.2, "end": 14474.92, "probability": 0.9014 }, { "start": 14475.86, "end": 14477.76, "probability": 0.7837 }, { "start": 14478.8, "end": 14479.96, "probability": 0.9793 }, { "start": 14481.44, "end": 14481.7, "probability": 0.5762 }, { "start": 14482.56, "end": 14483.42, "probability": 0.6229 }, { "start": 14483.82, "end": 14484.6, "probability": 0.9506 }, { "start": 14485.12, "end": 14487.44, "probability": 0.9276 }, { "start": 14488.12, "end": 14489.0, "probability": 0.8325 }, { "start": 14490.22, "end": 14493.46, "probability": 0.9449 }, { "start": 14494.36, "end": 14495.08, "probability": 0.738 }, { "start": 14496.38, "end": 14498.43, "probability": 0.9519 }, { "start": 14500.16, "end": 14501.56, "probability": 0.8638 }, { "start": 14502.32, "end": 14505.46, "probability": 0.6628 }, { "start": 14506.24, "end": 14507.54, "probability": 0.9477 }, { "start": 14507.7, "end": 14508.2, "probability": 0.8556 }, { "start": 14508.7, "end": 14511.04, "probability": 0.7757 }, { "start": 14511.14, "end": 14511.5, "probability": 0.7005 }, { "start": 14511.58, "end": 14512.78, "probability": 0.7656 }, { "start": 14513.2, "end": 14517.38, "probability": 0.8399 }, { "start": 14518.56, "end": 14521.38, "probability": 0.7534 }, { "start": 14523.12, "end": 14524.14, "probability": 0.6516 }, { "start": 14524.68, "end": 14528.92, "probability": 0.8895 }, { "start": 14529.84, "end": 14532.02, "probability": 0.8086 }, { "start": 14533.26, "end": 14534.12, "probability": 0.9911 }, { "start": 14535.1, "end": 14536.2, "probability": 0.9854 }, { "start": 14536.22, "end": 14538.76, "probability": 0.8652 }, { "start": 14540.08, "end": 14542.34, "probability": 0.998 }, { "start": 14543.0, "end": 14545.48, "probability": 0.9963 }, { "start": 14546.62, "end": 14548.96, "probability": 0.9981 }, { "start": 14549.58, "end": 14554.16, "probability": 0.9612 }, { "start": 14554.82, "end": 14557.68, "probability": 0.9551 }, { "start": 14558.36, "end": 14560.42, "probability": 0.6701 }, { "start": 14561.7, "end": 14565.42, "probability": 0.5008 }, { "start": 14565.56, "end": 14566.1, "probability": 0.8997 }, { "start": 14566.18, "end": 14567.6, "probability": 0.5631 }, { "start": 14568.12, "end": 14568.48, "probability": 0.9572 }, { "start": 14569.3, "end": 14569.76, "probability": 0.5979 }, { "start": 14570.46, "end": 14570.98, "probability": 0.9418 }, { "start": 14571.88, "end": 14573.3, "probability": 0.961 }, { "start": 14574.16, "end": 14577.26, "probability": 0.9521 }, { "start": 14579.44, "end": 14581.76, "probability": 0.9898 }, { "start": 14582.4, "end": 14583.7, "probability": 0.9451 }, { "start": 14584.48, "end": 14585.92, "probability": 0.9971 }, { "start": 14586.74, "end": 14588.52, "probability": 0.9243 }, { "start": 14589.08, "end": 14590.8, "probability": 0.9401 }, { "start": 14591.4, "end": 14595.42, "probability": 0.9436 }, { "start": 14596.18, "end": 14597.5, "probability": 0.9381 }, { "start": 14598.44, "end": 14599.4, "probability": 0.8645 }, { "start": 14599.46, "end": 14600.04, "probability": 0.6865 }, { "start": 14600.2, "end": 14601.52, "probability": 0.7902 }, { "start": 14601.62, "end": 14603.1, "probability": 0.9175 }, { "start": 14603.44, "end": 14607.1, "probability": 0.9899 }, { "start": 14608.16, "end": 14611.54, "probability": 0.5637 }, { "start": 14612.16, "end": 14612.58, "probability": 0.9883 }, { "start": 14613.28, "end": 14615.9, "probability": 0.9495 }, { "start": 14616.24, "end": 14616.48, "probability": 0.8365 }, { "start": 14616.9, "end": 14619.0, "probability": 0.8846 }, { "start": 14620.74, "end": 14622.7, "probability": 0.9902 }, { "start": 14623.66, "end": 14624.36, "probability": 0.7061 }, { "start": 14625.12, "end": 14626.14, "probability": 0.4963 }, { "start": 14627.16, "end": 14627.82, "probability": 0.5405 }, { "start": 14628.7, "end": 14629.94, "probability": 0.9513 }, { "start": 14630.56, "end": 14632.88, "probability": 0.9443 }, { "start": 14633.5, "end": 14635.1, "probability": 0.9528 }, { "start": 14636.02, "end": 14636.72, "probability": 0.9653 }, { "start": 14637.26, "end": 14638.22, "probability": 0.8984 }, { "start": 14638.92, "end": 14639.56, "probability": 0.3443 }, { "start": 14640.14, "end": 14641.62, "probability": 0.7865 }, { "start": 14642.12, "end": 14642.7, "probability": 0.5698 }, { "start": 14643.2, "end": 14644.4, "probability": 0.9465 }, { "start": 14645.04, "end": 14645.6, "probability": 0.9715 }, { "start": 14646.26, "end": 14647.06, "probability": 0.7908 }, { "start": 14647.98, "end": 14650.26, "probability": 0.7236 }, { "start": 14650.82, "end": 14652.6, "probability": 0.6301 }, { "start": 14653.12, "end": 14654.9, "probability": 0.9716 }, { "start": 14655.46, "end": 14656.66, "probability": 0.6123 }, { "start": 14657.26, "end": 14659.3, "probability": 0.964 }, { "start": 14661.7, "end": 14662.36, "probability": 0.9737 }, { "start": 14671.12, "end": 14671.42, "probability": 0.4116 }, { "start": 14671.67, "end": 14672.48, "probability": 0.4777 }, { "start": 14672.8, "end": 14673.54, "probability": 0.4992 }, { "start": 14674.42, "end": 14676.04, "probability": 0.7299 }, { "start": 14676.04, "end": 14678.36, "probability": 0.791 }, { "start": 14678.74, "end": 14679.5, "probability": 0.9849 }, { "start": 14679.64, "end": 14680.2, "probability": 0.8666 }, { "start": 14680.52, "end": 14681.78, "probability": 0.8887 }, { "start": 14682.3, "end": 14683.18, "probability": 0.9971 }, { "start": 14684.06, "end": 14685.22, "probability": 0.8017 }, { "start": 14686.16, "end": 14687.13, "probability": 0.9497 }, { "start": 14688.18, "end": 14691.6, "probability": 0.9895 }, { "start": 14691.6, "end": 14696.26, "probability": 0.9902 }, { "start": 14696.4, "end": 14696.94, "probability": 0.8833 }, { "start": 14697.28, "end": 14699.06, "probability": 0.8561 }, { "start": 14699.7, "end": 14700.48, "probability": 0.9712 }, { "start": 14702.46, "end": 14704.1, "probability": 0.9066 }, { "start": 14704.74, "end": 14705.75, "probability": 0.9512 }, { "start": 14706.5, "end": 14708.68, "probability": 0.9711 }, { "start": 14709.94, "end": 14712.46, "probability": 0.8353 }, { "start": 14713.22, "end": 14714.56, "probability": 0.9552 }, { "start": 14716.14, "end": 14717.92, "probability": 0.9497 }, { "start": 14718.58, "end": 14719.55, "probability": 0.9855 }, { "start": 14720.98, "end": 14724.24, "probability": 0.9972 }, { "start": 14724.72, "end": 14726.96, "probability": 0.9993 }, { "start": 14727.8, "end": 14730.22, "probability": 0.9211 }, { "start": 14731.46, "end": 14734.75, "probability": 0.9952 }, { "start": 14735.61, "end": 14737.02, "probability": 0.9614 }, { "start": 14737.4, "end": 14738.01, "probability": 0.5411 }, { "start": 14738.36, "end": 14740.12, "probability": 0.8049 }, { "start": 14741.14, "end": 14742.64, "probability": 0.978 }, { "start": 14743.68, "end": 14744.1, "probability": 0.3621 }, { "start": 14744.28, "end": 14746.68, "probability": 0.8407 }, { "start": 14746.8, "end": 14748.76, "probability": 0.963 }, { "start": 14748.96, "end": 14749.96, "probability": 0.6912 }, { "start": 14750.66, "end": 14753.09, "probability": 0.9606 }, { "start": 14753.68, "end": 14756.42, "probability": 0.9149 }, { "start": 14756.7, "end": 14758.42, "probability": 0.9247 }, { "start": 14758.85, "end": 14760.82, "probability": 0.9553 }, { "start": 14762.6, "end": 14763.36, "probability": 0.8298 }, { "start": 14763.56, "end": 14764.78, "probability": 0.6229 }, { "start": 14764.86, "end": 14765.24, "probability": 0.5825 }, { "start": 14765.28, "end": 14766.36, "probability": 0.7872 }, { "start": 14766.5, "end": 14768.48, "probability": 0.7067 }, { "start": 14769.98, "end": 14776.96, "probability": 0.4339 }, { "start": 14777.0, "end": 14778.8, "probability": 0.6239 }, { "start": 14779.5, "end": 14781.1, "probability": 0.4188 }, { "start": 14781.1, "end": 14783.22, "probability": 0.583 }, { "start": 14783.6, "end": 14784.32, "probability": 0.9551 }, { "start": 14784.64, "end": 14785.1, "probability": 0.9926 }, { "start": 14785.12, "end": 14787.4, "probability": 0.5571 }, { "start": 14788.16, "end": 14788.32, "probability": 0.6952 }, { "start": 14789.01, "end": 14789.84, "probability": 0.9698 }, { "start": 14790.28, "end": 14791.44, "probability": 0.8686 }, { "start": 14792.6, "end": 14793.56, "probability": 0.3857 }, { "start": 14794.32, "end": 14795.12, "probability": 0.6815 }, { "start": 14796.12, "end": 14800.28, "probability": 0.937 }, { "start": 14800.42, "end": 14802.46, "probability": 0.9912 }, { "start": 14803.1, "end": 14808.3, "probability": 0.9917 }, { "start": 14808.36, "end": 14809.38, "probability": 0.9016 }, { "start": 14810.06, "end": 14812.98, "probability": 0.9772 }, { "start": 14813.3, "end": 14814.44, "probability": 0.7941 }, { "start": 14814.62, "end": 14818.76, "probability": 0.9672 }, { "start": 14819.4, "end": 14821.18, "probability": 0.9652 }, { "start": 14821.9, "end": 14824.44, "probability": 0.6242 }, { "start": 14824.78, "end": 14828.12, "probability": 0.9918 }, { "start": 14828.2, "end": 14832.8, "probability": 0.8865 }, { "start": 14833.46, "end": 14834.26, "probability": 0.9906 }, { "start": 14834.56, "end": 14835.42, "probability": 0.5014 }, { "start": 14835.56, "end": 14836.28, "probability": 0.9248 }, { "start": 14836.76, "end": 14840.78, "probability": 0.9285 }, { "start": 14841.4, "end": 14843.26, "probability": 0.9912 }, { "start": 14843.36, "end": 14843.88, "probability": 0.9351 }, { "start": 14844.12, "end": 14845.2, "probability": 0.9634 }, { "start": 14845.36, "end": 14847.14, "probability": 0.9441 }, { "start": 14847.48, "end": 14848.32, "probability": 0.5029 }, { "start": 14848.92, "end": 14850.18, "probability": 0.9495 }, { "start": 14850.82, "end": 14852.08, "probability": 0.6941 }, { "start": 14852.2, "end": 14853.22, "probability": 0.9438 }, { "start": 14853.26, "end": 14853.46, "probability": 0.8486 }, { "start": 14853.56, "end": 14854.72, "probability": 0.8654 }, { "start": 14854.8, "end": 14856.68, "probability": 0.9056 }, { "start": 14856.78, "end": 14857.5, "probability": 0.9735 }, { "start": 14857.84, "end": 14858.6, "probability": 0.7409 }, { "start": 14859.22, "end": 14860.72, "probability": 0.8636 }, { "start": 14860.74, "end": 14863.7, "probability": 0.9786 }, { "start": 14864.06, "end": 14864.46, "probability": 0.9941 }, { "start": 14865.56, "end": 14866.26, "probability": 0.8794 }, { "start": 14866.32, "end": 14867.48, "probability": 0.9409 }, { "start": 14867.94, "end": 14868.4, "probability": 0.8316 }, { "start": 14868.84, "end": 14874.78, "probability": 0.9868 }, { "start": 14875.5, "end": 14875.78, "probability": 0.5453 }, { "start": 14875.96, "end": 14880.16, "probability": 0.993 }, { "start": 14880.16, "end": 14883.04, "probability": 0.9969 }, { "start": 14883.8, "end": 14886.6, "probability": 0.9896 }, { "start": 14886.98, "end": 14887.5, "probability": 0.579 }, { "start": 14887.52, "end": 14888.0, "probability": 0.2238 }, { "start": 14889.16, "end": 14889.94, "probability": 0.7081 }, { "start": 14890.84, "end": 14893.63, "probability": 0.8256 }, { "start": 14894.57, "end": 14897.74, "probability": 0.5548 }, { "start": 14897.92, "end": 14898.94, "probability": 0.3733 }, { "start": 14899.2, "end": 14900.32, "probability": 0.9811 }, { "start": 14900.48, "end": 14902.32, "probability": 0.9949 }, { "start": 14903.72, "end": 14904.54, "probability": 0.9365 }, { "start": 14905.7, "end": 14906.86, "probability": 0.9812 }, { "start": 14908.04, "end": 14910.26, "probability": 0.9351 }, { "start": 14911.02, "end": 14915.32, "probability": 0.9817 }, { "start": 14915.56, "end": 14916.46, "probability": 0.852 }, { "start": 14917.0, "end": 14917.77, "probability": 0.8594 }, { "start": 14918.34, "end": 14921.76, "probability": 0.9852 }, { "start": 14921.76, "end": 14923.96, "probability": 0.9823 }, { "start": 14924.12, "end": 14925.34, "probability": 0.8672 }, { "start": 14925.42, "end": 14926.32, "probability": 0.9177 }, { "start": 14926.5, "end": 14926.78, "probability": 0.7555 }, { "start": 14926.96, "end": 14928.8, "probability": 0.9973 }, { "start": 14928.94, "end": 14930.18, "probability": 0.8239 }, { "start": 14930.3, "end": 14934.74, "probability": 0.9993 }, { "start": 14935.64, "end": 14936.7, "probability": 0.967 }, { "start": 14937.4, "end": 14938.34, "probability": 0.793 }, { "start": 14938.96, "end": 14942.2, "probability": 0.8932 }, { "start": 14942.78, "end": 14944.86, "probability": 0.9925 }, { "start": 14944.86, "end": 14947.08, "probability": 0.7889 }, { "start": 14947.32, "end": 14947.74, "probability": 0.8963 }, { "start": 14948.9, "end": 14950.88, "probability": 0.8716 }, { "start": 14951.62, "end": 14953.58, "probability": 0.9436 }, { "start": 14955.18, "end": 14957.08, "probability": 0.5269 }, { "start": 14957.82, "end": 14960.02, "probability": 0.8621 }, { "start": 14962.08, "end": 14962.7, "probability": 0.7236 }, { "start": 14963.5, "end": 14964.92, "probability": 0.7141 }, { "start": 14966.56, "end": 14968.58, "probability": 0.7523 }, { "start": 14977.02, "end": 14980.24, "probability": 0.8818 }, { "start": 14982.5, "end": 14982.8, "probability": 0.7776 }, { "start": 14983.92, "end": 14985.48, "probability": 0.9317 }, { "start": 14991.96, "end": 14992.82, "probability": 0.3023 }, { "start": 14993.38, "end": 14994.89, "probability": 0.8876 }, { "start": 14995.82, "end": 14998.8, "probability": 0.7431 }, { "start": 14998.96, "end": 15000.02, "probability": 0.6629 }, { "start": 15000.68, "end": 15001.32, "probability": 0.7301 }, { "start": 15001.36, "end": 15001.86, "probability": 0.9849 }, { "start": 15001.94, "end": 15005.06, "probability": 0.9598 }, { "start": 15005.64, "end": 15006.38, "probability": 0.7928 }, { "start": 15007.04, "end": 15009.72, "probability": 0.9809 }, { "start": 15010.86, "end": 15015.64, "probability": 0.993 }, { "start": 15016.14, "end": 15022.46, "probability": 0.9585 }, { "start": 15022.66, "end": 15023.42, "probability": 0.8712 }, { "start": 15024.36, "end": 15026.44, "probability": 0.9747 }, { "start": 15026.72, "end": 15027.36, "probability": 0.7259 }, { "start": 15027.5, "end": 15027.78, "probability": 0.8446 }, { "start": 15028.7, "end": 15029.82, "probability": 0.919 }, { "start": 15030.12, "end": 15030.86, "probability": 0.9235 }, { "start": 15030.92, "end": 15032.24, "probability": 0.7048 }, { "start": 15032.38, "end": 15034.66, "probability": 0.9335 }, { "start": 15034.88, "end": 15035.72, "probability": 0.8059 }, { "start": 15036.16, "end": 15040.13, "probability": 0.9862 }, { "start": 15040.52, "end": 15040.82, "probability": 0.566 }, { "start": 15041.32, "end": 15042.16, "probability": 0.9766 }, { "start": 15042.64, "end": 15048.94, "probability": 0.9961 }, { "start": 15049.34, "end": 15049.7, "probability": 0.942 }, { "start": 15049.78, "end": 15052.68, "probability": 0.9715 }, { "start": 15052.82, "end": 15054.74, "probability": 0.9928 }, { "start": 15055.34, "end": 15058.46, "probability": 0.9871 }, { "start": 15059.96, "end": 15063.36, "probability": 0.8076 }, { "start": 15064.46, "end": 15066.86, "probability": 0.9973 }, { "start": 15066.96, "end": 15069.8, "probability": 0.7548 }, { "start": 15070.3, "end": 15074.54, "probability": 0.9666 }, { "start": 15074.86, "end": 15080.38, "probability": 0.9793 }, { "start": 15080.66, "end": 15082.28, "probability": 0.9185 }, { "start": 15082.66, "end": 15085.47, "probability": 0.8138 }, { "start": 15086.04, "end": 15089.04, "probability": 0.9561 }, { "start": 15089.58, "end": 15090.16, "probability": 0.6345 }, { "start": 15090.78, "end": 15094.06, "probability": 0.9762 }, { "start": 15095.1, "end": 15096.56, "probability": 0.6322 }, { "start": 15097.76, "end": 15098.68, "probability": 0.8939 }, { "start": 15098.76, "end": 15099.68, "probability": 0.7473 }, { "start": 15099.72, "end": 15100.94, "probability": 0.8884 }, { "start": 15101.4, "end": 15102.92, "probability": 0.9355 }, { "start": 15103.48, "end": 15107.5, "probability": 0.9915 }, { "start": 15108.38, "end": 15109.94, "probability": 0.7763 }, { "start": 15110.54, "end": 15113.96, "probability": 0.9918 }, { "start": 15115.06, "end": 15117.74, "probability": 0.9882 }, { "start": 15117.82, "end": 15121.7, "probability": 0.8945 }, { "start": 15122.08, "end": 15125.42, "probability": 0.9878 }, { "start": 15125.42, "end": 15129.08, "probability": 0.9939 }, { "start": 15130.08, "end": 15132.8, "probability": 0.8212 }, { "start": 15133.38, "end": 15135.16, "probability": 0.8778 }, { "start": 15136.1, "end": 15138.22, "probability": 0.9984 }, { "start": 15138.72, "end": 15144.44, "probability": 0.9938 }, { "start": 15145.08, "end": 15147.74, "probability": 0.9147 }, { "start": 15147.84, "end": 15148.2, "probability": 0.972 }, { "start": 15148.66, "end": 15149.68, "probability": 0.9599 }, { "start": 15149.74, "end": 15150.28, "probability": 0.7719 }, { "start": 15150.84, "end": 15152.86, "probability": 0.9846 }, { "start": 15153.84, "end": 15155.12, "probability": 0.9709 }, { "start": 15155.64, "end": 15159.92, "probability": 0.9738 }, { "start": 15160.5, "end": 15163.86, "probability": 0.8537 }, { "start": 15164.62, "end": 15166.54, "probability": 0.9279 }, { "start": 15166.92, "end": 15167.82, "probability": 0.9801 }, { "start": 15167.94, "end": 15168.88, "probability": 0.9717 }, { "start": 15169.04, "end": 15170.18, "probability": 0.5322 }, { "start": 15170.28, "end": 15171.3, "probability": 0.8557 }, { "start": 15171.78, "end": 15172.5, "probability": 0.4599 }, { "start": 15173.04, "end": 15174.84, "probability": 0.8115 }, { "start": 15174.96, "end": 15176.52, "probability": 0.9428 }, { "start": 15176.96, "end": 15178.1, "probability": 0.9636 }, { "start": 15178.82, "end": 15179.4, "probability": 0.7222 }, { "start": 15179.56, "end": 15180.46, "probability": 0.9729 }, { "start": 15180.64, "end": 15181.34, "probability": 0.9122 }, { "start": 15181.62, "end": 15182.48, "probability": 0.9191 }, { "start": 15182.8, "end": 15183.42, "probability": 0.7606 }, { "start": 15183.94, "end": 15184.28, "probability": 0.6678 }, { "start": 15185.8, "end": 15188.14, "probability": 0.5702 }, { "start": 15188.82, "end": 15190.77, "probability": 0.851 }, { "start": 15191.9, "end": 15192.8, "probability": 0.7351 }, { "start": 15193.22, "end": 15193.94, "probability": 0.9091 }, { "start": 15194.36, "end": 15194.92, "probability": 0.8553 }, { "start": 15195.08, "end": 15196.42, "probability": 0.9954 }, { "start": 15196.5, "end": 15197.32, "probability": 0.7413 }, { "start": 15198.16, "end": 15199.54, "probability": 0.985 }, { "start": 15200.14, "end": 15200.42, "probability": 0.7376 }, { "start": 15201.34, "end": 15201.98, "probability": 0.5339 }, { "start": 15202.78, "end": 15203.86, "probability": 0.3129 }, { "start": 15204.66, "end": 15204.87, "probability": 0.5884 }, { "start": 15208.0, "end": 15212.5, "probability": 0.5575 }, { "start": 15213.86, "end": 15214.74, "probability": 0.5581 }, { "start": 15215.52, "end": 15218.38, "probability": 0.9454 }, { "start": 15219.42, "end": 15221.26, "probability": 0.6669 }, { "start": 15223.66, "end": 15225.56, "probability": 0.4236 }, { "start": 15226.28, "end": 15228.98, "probability": 0.4919 }, { "start": 15229.0, "end": 15229.58, "probability": 0.8556 }, { "start": 15230.14, "end": 15230.62, "probability": 0.2489 }, { "start": 15231.92, "end": 15234.4, "probability": 0.8056 }, { "start": 15235.44, "end": 15239.02, "probability": 0.8252 }, { "start": 15239.66, "end": 15245.82, "probability": 0.9519 }, { "start": 15246.02, "end": 15253.38, "probability": 0.983 }, { "start": 15253.38, "end": 15256.66, "probability": 0.9998 }, { "start": 15257.56, "end": 15259.12, "probability": 0.9692 }, { "start": 15260.96, "end": 15265.16, "probability": 0.9307 }, { "start": 15266.36, "end": 15271.48, "probability": 0.995 }, { "start": 15273.3, "end": 15278.64, "probability": 0.6944 }, { "start": 15279.28, "end": 15284.4, "probability": 0.9876 }, { "start": 15284.54, "end": 15285.52, "probability": 0.9106 }, { "start": 15290.46, "end": 15292.32, "probability": 0.7537 }, { "start": 15292.88, "end": 15294.45, "probability": 0.9373 }, { "start": 15295.74, "end": 15302.02, "probability": 0.9908 }, { "start": 15303.52, "end": 15305.54, "probability": 0.9883 }, { "start": 15306.42, "end": 15310.02, "probability": 0.8253 }, { "start": 15311.08, "end": 15311.88, "probability": 0.5868 }, { "start": 15312.44, "end": 15318.92, "probability": 0.9779 }, { "start": 15320.2, "end": 15328.36, "probability": 0.7302 }, { "start": 15329.2, "end": 15334.38, "probability": 0.9984 }, { "start": 15335.02, "end": 15338.28, "probability": 0.853 }, { "start": 15339.0, "end": 15341.18, "probability": 0.9097 }, { "start": 15341.32, "end": 15341.7, "probability": 0.4735 }, { "start": 15341.76, "end": 15343.22, "probability": 0.984 }, { "start": 15344.1, "end": 15348.34, "probability": 0.9944 }, { "start": 15350.3, "end": 15351.68, "probability": 0.8777 }, { "start": 15351.86, "end": 15352.72, "probability": 0.8447 }, { "start": 15352.86, "end": 15357.32, "probability": 0.9648 }, { "start": 15358.1, "end": 15361.2, "probability": 0.7175 }, { "start": 15362.0, "end": 15366.12, "probability": 0.8472 }, { "start": 15366.82, "end": 15367.7, "probability": 0.9963 }, { "start": 15368.8, "end": 15371.3, "probability": 0.9781 }, { "start": 15371.66, "end": 15374.96, "probability": 0.8044 }, { "start": 15375.98, "end": 15380.94, "probability": 0.9983 }, { "start": 15381.86, "end": 15384.7, "probability": 0.9966 }, { "start": 15386.64, "end": 15389.34, "probability": 0.8414 }, { "start": 15389.5, "end": 15392.2, "probability": 0.9827 }, { "start": 15392.94, "end": 15395.66, "probability": 0.9944 }, { "start": 15396.26, "end": 15401.1, "probability": 0.9715 }, { "start": 15401.56, "end": 15404.3, "probability": 0.9992 }, { "start": 15404.82, "end": 15410.76, "probability": 0.9857 }, { "start": 15411.5, "end": 15417.76, "probability": 0.9973 }, { "start": 15417.76, "end": 15422.52, "probability": 0.9896 }, { "start": 15423.44, "end": 15430.3, "probability": 0.9861 }, { "start": 15430.3, "end": 15435.08, "probability": 0.9741 }, { "start": 15435.76, "end": 15441.64, "probability": 0.8696 }, { "start": 15442.06, "end": 15445.78, "probability": 0.926 }, { "start": 15446.42, "end": 15453.76, "probability": 0.9895 }, { "start": 15454.38, "end": 15457.22, "probability": 0.9954 }, { "start": 15457.86, "end": 15460.0, "probability": 0.9255 }, { "start": 15460.98, "end": 15464.88, "probability": 0.998 }, { "start": 15465.6, "end": 15467.98, "probability": 0.9982 }, { "start": 15469.82, "end": 15471.58, "probability": 0.9027 }, { "start": 15471.88, "end": 15471.9, "probability": 0.5801 }, { "start": 15471.9, "end": 15472.66, "probability": 0.8911 }, { "start": 15472.98, "end": 15474.06, "probability": 0.6924 }, { "start": 15474.12, "end": 15475.06, "probability": 0.998 }, { "start": 15476.14, "end": 15477.14, "probability": 0.8976 }, { "start": 15477.14, "end": 15477.25, "probability": 0.5221 }, { "start": 15477.56, "end": 15478.26, "probability": 0.9399 }, { "start": 15478.5, "end": 15478.8, "probability": 0.7504 }, { "start": 15478.98, "end": 15481.08, "probability": 0.8494 }, { "start": 15481.08, "end": 15481.4, "probability": 0.5029 }, { "start": 15481.48, "end": 15482.22, "probability": 0.7417 }, { "start": 15482.68, "end": 15482.94, "probability": 0.1722 }, { "start": 15482.94, "end": 15484.26, "probability": 0.547 }, { "start": 15484.82, "end": 15488.2, "probability": 0.9282 }, { "start": 15488.7, "end": 15493.92, "probability": 0.971 }, { "start": 15494.04, "end": 15495.34, "probability": 0.9285 }, { "start": 15495.44, "end": 15495.98, "probability": 0.6549 }, { "start": 15496.42, "end": 15497.16, "probability": 0.8199 }, { "start": 15498.62, "end": 15502.46, "probability": 0.7658 }, { "start": 15502.46, "end": 15504.93, "probability": 0.8342 }, { "start": 15505.88, "end": 15506.73, "probability": 0.7173 }, { "start": 15507.46, "end": 15509.06, "probability": 0.8976 }, { "start": 15509.68, "end": 15510.18, "probability": 0.562 }, { "start": 15512.54, "end": 15513.86, "probability": 0.9574 }, { "start": 15514.94, "end": 15517.26, "probability": 0.8042 }, { "start": 15518.1, "end": 15518.9, "probability": 0.7338 }, { "start": 15519.52, "end": 15521.08, "probability": 0.9725 }, { "start": 15522.04, "end": 15522.76, "probability": 0.6979 }, { "start": 15522.88, "end": 15524.58, "probability": 0.9121 }, { "start": 15525.26, "end": 15526.34, "probability": 0.6873 }, { "start": 15529.14, "end": 15529.16, "probability": 0.4367 }, { "start": 15548.2, "end": 15549.22, "probability": 0.623 }, { "start": 15549.78, "end": 15550.54, "probability": 0.8172 }, { "start": 15551.54, "end": 15552.54, "probability": 0.6089 }, { "start": 15553.64, "end": 15555.16, "probability": 0.8553 }, { "start": 15555.8, "end": 15562.28, "probability": 0.9575 }, { "start": 15562.46, "end": 15562.84, "probability": 0.9532 }, { "start": 15563.24, "end": 15564.28, "probability": 0.7192 }, { "start": 15564.38, "end": 15565.06, "probability": 0.6479 }, { "start": 15565.16, "end": 15569.38, "probability": 0.9987 }, { "start": 15569.38, "end": 15576.12, "probability": 0.9858 }, { "start": 15577.04, "end": 15579.14, "probability": 0.9502 }, { "start": 15579.22, "end": 15579.74, "probability": 0.7164 }, { "start": 15580.0, "end": 15580.42, "probability": 0.8427 }, { "start": 15580.66, "end": 15581.46, "probability": 0.6382 }, { "start": 15581.94, "end": 15584.46, "probability": 0.9888 }, { "start": 15585.1, "end": 15585.66, "probability": 0.5201 }, { "start": 15586.6, "end": 15589.32, "probability": 0.8499 }, { "start": 15589.48, "end": 15594.66, "probability": 0.9133 }, { "start": 15595.76, "end": 15601.16, "probability": 0.9942 }, { "start": 15601.4, "end": 15601.92, "probability": 0.8267 }, { "start": 15602.42, "end": 15603.1, "probability": 0.963 }, { "start": 15603.6, "end": 15604.54, "probability": 0.7913 }, { "start": 15605.48, "end": 15609.38, "probability": 0.9493 }, { "start": 15610.1, "end": 15613.08, "probability": 0.9724 }, { "start": 15614.22, "end": 15624.4, "probability": 0.9596 }, { "start": 15625.12, "end": 15628.7, "probability": 0.9382 }, { "start": 15630.02, "end": 15633.8, "probability": 0.9739 }, { "start": 15633.94, "end": 15635.44, "probability": 0.8586 }, { "start": 15636.22, "end": 15636.82, "probability": 0.7017 }, { "start": 15636.96, "end": 15638.54, "probability": 0.9488 }, { "start": 15638.6, "end": 15640.5, "probability": 0.9368 }, { "start": 15640.62, "end": 15643.02, "probability": 0.9522 }, { "start": 15644.38, "end": 15647.96, "probability": 0.8707 }, { "start": 15648.0, "end": 15648.22, "probability": 0.336 }, { "start": 15648.36, "end": 15649.34, "probability": 0.6882 }, { "start": 15650.08, "end": 15653.9, "probability": 0.9639 }, { "start": 15653.96, "end": 15654.76, "probability": 0.7717 }, { "start": 15655.64, "end": 15659.6, "probability": 0.9629 }, { "start": 15659.8, "end": 15660.94, "probability": 0.6414 }, { "start": 15661.84, "end": 15664.7, "probability": 0.9771 }, { "start": 15665.0, "end": 15668.38, "probability": 0.7144 }, { "start": 15668.6, "end": 15672.33, "probability": 0.924 }, { "start": 15673.48, "end": 15674.52, "probability": 0.8691 }, { "start": 15675.04, "end": 15679.44, "probability": 0.984 }, { "start": 15679.98, "end": 15682.62, "probability": 0.9993 }, { "start": 15683.44, "end": 15686.28, "probability": 0.8726 }, { "start": 15687.12, "end": 15691.28, "probability": 0.9878 }, { "start": 15691.96, "end": 15694.22, "probability": 0.93 }, { "start": 15694.96, "end": 15696.6, "probability": 0.8612 }, { "start": 15697.46, "end": 15700.52, "probability": 0.9574 }, { "start": 15700.62, "end": 15702.8, "probability": 0.9913 }, { "start": 15703.42, "end": 15707.22, "probability": 0.9473 }, { "start": 15707.8, "end": 15712.1, "probability": 0.989 }, { "start": 15712.92, "end": 15717.74, "probability": 0.7315 }, { "start": 15718.48, "end": 15720.72, "probability": 0.8188 }, { "start": 15721.42, "end": 15725.42, "probability": 0.9932 }, { "start": 15726.32, "end": 15727.34, "probability": 0.7118 }, { "start": 15727.94, "end": 15729.48, "probability": 0.7052 }, { "start": 15730.06, "end": 15732.06, "probability": 0.5697 }, { "start": 15733.38, "end": 15733.9, "probability": 0.4007 }, { "start": 15734.5, "end": 15735.88, "probability": 0.838 }, { "start": 15737.12, "end": 15738.24, "probability": 0.7253 }, { "start": 15738.84, "end": 15739.78, "probability": 0.9679 }, { "start": 15740.3, "end": 15740.76, "probability": 0.8624 }, { "start": 15742.6, "end": 15743.04, "probability": 0.7041 }, { "start": 15744.12, "end": 15744.92, "probability": 0.9511 }, { "start": 15745.6, "end": 15747.46, "probability": 0.576 }, { "start": 15747.82, "end": 15748.6, "probability": 0.5166 }, { "start": 15750.3, "end": 15752.38, "probability": 0.6936 }, { "start": 15758.0, "end": 15758.0, "probability": 0.4761 }, { "start": 15758.0, "end": 15760.02, "probability": 0.07 }, { "start": 15760.92, "end": 15761.84, "probability": 0.0617 }, { "start": 15763.02, "end": 15763.2, "probability": 0.7761 }, { "start": 15771.74, "end": 15773.02, "probability": 0.829 }, { "start": 15775.03, "end": 15776.16, "probability": 0.7383 }, { "start": 15777.52, "end": 15778.42, "probability": 0.7173 }, { "start": 15779.2, "end": 15780.26, "probability": 0.6899 }, { "start": 15781.06, "end": 15785.38, "probability": 0.9902 }, { "start": 15785.38, "end": 15790.86, "probability": 0.9878 }, { "start": 15792.16, "end": 15793.26, "probability": 0.7733 }, { "start": 15794.56, "end": 15796.54, "probability": 0.9732 }, { "start": 15798.52, "end": 15803.42, "probability": 0.9939 }, { "start": 15805.24, "end": 15806.88, "probability": 0.7818 }, { "start": 15808.02, "end": 15809.48, "probability": 0.9315 }, { "start": 15811.16, "end": 15812.6, "probability": 0.8425 }, { "start": 15814.04, "end": 15815.54, "probability": 0.8658 }, { "start": 15816.64, "end": 15819.46, "probability": 0.9653 }, { "start": 15820.22, "end": 15820.8, "probability": 0.6927 }, { "start": 15822.16, "end": 15824.91, "probability": 0.9961 }, { "start": 15825.44, "end": 15825.96, "probability": 0.416 }, { "start": 15826.06, "end": 15826.86, "probability": 0.6672 }, { "start": 15827.72, "end": 15828.49, "probability": 0.7025 }, { "start": 15830.56, "end": 15832.16, "probability": 0.985 }, { "start": 15833.22, "end": 15834.1, "probability": 0.9889 }, { "start": 15835.44, "end": 15837.6, "probability": 0.972 }, { "start": 15838.62, "end": 15839.8, "probability": 0.9867 }, { "start": 15841.34, "end": 15843.6, "probability": 0.9418 }, { "start": 15845.1, "end": 15845.92, "probability": 0.6975 }, { "start": 15846.12, "end": 15848.4, "probability": 0.9322 }, { "start": 15848.44, "end": 15849.04, "probability": 0.8242 }, { "start": 15850.24, "end": 15852.04, "probability": 0.9767 }, { "start": 15852.88, "end": 15856.56, "probability": 0.9301 }, { "start": 15857.32, "end": 15858.22, "probability": 0.9657 }, { "start": 15858.34, "end": 15859.02, "probability": 0.8688 }, { "start": 15859.16, "end": 15860.86, "probability": 0.9983 }, { "start": 15861.22, "end": 15862.66, "probability": 0.6384 }, { "start": 15862.82, "end": 15863.08, "probability": 0.6769 }, { "start": 15863.2, "end": 15863.52, "probability": 0.9376 }, { "start": 15866.14, "end": 15867.98, "probability": 0.798 }, { "start": 15868.26, "end": 15869.82, "probability": 0.8072 }, { "start": 15870.4, "end": 15873.02, "probability": 0.9542 }, { "start": 15873.82, "end": 15875.8, "probability": 0.9973 }, { "start": 15877.08, "end": 15879.2, "probability": 0.9995 }, { "start": 15879.94, "end": 15881.16, "probability": 0.9279 }, { "start": 15881.74, "end": 15883.52, "probability": 0.9962 }, { "start": 15884.68, "end": 15885.82, "probability": 0.8218 }, { "start": 15887.18, "end": 15890.34, "probability": 0.9988 }, { "start": 15891.22, "end": 15894.38, "probability": 0.9922 }, { "start": 15894.94, "end": 15896.38, "probability": 0.8279 }, { "start": 15897.04, "end": 15900.74, "probability": 0.9783 }, { "start": 15901.34, "end": 15902.32, "probability": 0.7482 }, { "start": 15902.4, "end": 15905.86, "probability": 0.9504 }, { "start": 15906.26, "end": 15908.9, "probability": 0.9866 }, { "start": 15909.38, "end": 15910.1, "probability": 0.854 }, { "start": 15911.48, "end": 15915.98, "probability": 0.6694 }, { "start": 15916.56, "end": 15919.82, "probability": 0.9958 }, { "start": 15920.54, "end": 15923.4, "probability": 0.902 }, { "start": 15923.7, "end": 15925.88, "probability": 0.9639 }, { "start": 15926.8, "end": 15927.84, "probability": 0.8643 }, { "start": 15928.58, "end": 15930.06, "probability": 0.9935 }, { "start": 15930.7, "end": 15931.7, "probability": 0.7532 }, { "start": 15932.36, "end": 15934.22, "probability": 0.9548 }, { "start": 15935.66, "end": 15939.58, "probability": 0.9858 }, { "start": 15940.16, "end": 15941.24, "probability": 0.9868 }, { "start": 15941.34, "end": 15942.38, "probability": 0.9731 }, { "start": 15942.94, "end": 15943.94, "probability": 0.9819 }, { "start": 15945.86, "end": 15947.06, "probability": 0.7207 }, { "start": 15947.84, "end": 15950.74, "probability": 0.9992 }, { "start": 15951.84, "end": 15952.72, "probability": 0.962 }, { "start": 15953.4, "end": 15955.72, "probability": 0.9969 }, { "start": 15956.36, "end": 15959.02, "probability": 0.9042 }, { "start": 15960.1, "end": 15963.42, "probability": 0.9991 }, { "start": 15963.9, "end": 15967.2, "probability": 0.7041 }, { "start": 15967.54, "end": 15968.36, "probability": 0.9425 }, { "start": 15969.08, "end": 15970.1, "probability": 0.8271 }, { "start": 15970.5, "end": 15970.84, "probability": 0.6933 }, { "start": 15971.02, "end": 15973.62, "probability": 0.9493 }, { "start": 15974.14, "end": 15976.26, "probability": 0.8939 }, { "start": 15981.42, "end": 15981.54, "probability": 0.2209 }, { "start": 15981.54, "end": 15983.31, "probability": 0.571 }, { "start": 16004.8, "end": 16006.24, "probability": 0.6341 }, { "start": 16007.74, "end": 16014.56, "probability": 0.8176 }, { "start": 16015.88, "end": 16020.42, "probability": 0.9913 }, { "start": 16020.42, "end": 16026.18, "probability": 0.9939 }, { "start": 16026.9, "end": 16032.92, "probability": 0.9526 }, { "start": 16033.04, "end": 16037.18, "probability": 0.9556 }, { "start": 16038.26, "end": 16041.68, "probability": 0.9551 }, { "start": 16042.76, "end": 16049.04, "probability": 0.8296 }, { "start": 16049.84, "end": 16051.98, "probability": 0.9764 }, { "start": 16052.84, "end": 16058.86, "probability": 0.9948 }, { "start": 16059.66, "end": 16060.82, "probability": 0.8185 }, { "start": 16061.92, "end": 16063.42, "probability": 0.9927 }, { "start": 16064.88, "end": 16075.44, "probability": 0.99 }, { "start": 16076.14, "end": 16077.4, "probability": 0.9621 }, { "start": 16078.2, "end": 16079.92, "probability": 0.8814 }, { "start": 16080.58, "end": 16083.34, "probability": 0.9657 }, { "start": 16084.48, "end": 16090.84, "probability": 0.9713 }, { "start": 16091.48, "end": 16094.0, "probability": 0.7538 }, { "start": 16094.9, "end": 16098.7, "probability": 0.9951 }, { "start": 16099.46, "end": 16100.72, "probability": 0.9074 }, { "start": 16102.14, "end": 16103.44, "probability": 0.8319 }, { "start": 16104.22, "end": 16105.82, "probability": 0.6937 }, { "start": 16108.22, "end": 16110.11, "probability": 0.7102 }, { "start": 16111.52, "end": 16113.66, "probability": 0.9509 }, { "start": 16114.02, "end": 16114.34, "probability": 0.5109 }, { "start": 16115.14, "end": 16120.7, "probability": 0.9727 }, { "start": 16121.62, "end": 16127.9, "probability": 0.9914 }, { "start": 16129.14, "end": 16132.64, "probability": 0.7443 }, { "start": 16133.18, "end": 16139.24, "probability": 0.892 }, { "start": 16139.98, "end": 16143.44, "probability": 0.8091 }, { "start": 16144.2, "end": 16145.58, "probability": 0.8929 }, { "start": 16146.38, "end": 16148.14, "probability": 0.7745 }, { "start": 16148.76, "end": 16152.88, "probability": 0.9526 }, { "start": 16153.3, "end": 16157.92, "probability": 0.9772 }, { "start": 16158.5, "end": 16159.02, "probability": 0.7957 }, { "start": 16160.0, "end": 16165.5, "probability": 0.9971 }, { "start": 16166.38, "end": 16168.78, "probability": 0.9851 }, { "start": 16169.42, "end": 16171.5, "probability": 0.9922 }, { "start": 16172.64, "end": 16174.32, "probability": 0.9908 }, { "start": 16174.92, "end": 16176.84, "probability": 0.9 }, { "start": 16178.26, "end": 16183.14, "probability": 0.9543 }, { "start": 16183.86, "end": 16184.64, "probability": 0.9093 }, { "start": 16185.88, "end": 16187.84, "probability": 0.9946 }, { "start": 16189.02, "end": 16191.46, "probability": 0.9485 }, { "start": 16191.98, "end": 16196.62, "probability": 0.9948 }, { "start": 16197.74, "end": 16202.66, "probability": 0.9536 }, { "start": 16203.46, "end": 16204.88, "probability": 0.9468 }, { "start": 16205.42, "end": 16207.88, "probability": 0.9919 }, { "start": 16209.18, "end": 16211.62, "probability": 0.8907 }, { "start": 16212.26, "end": 16220.34, "probability": 0.9969 }, { "start": 16220.34, "end": 16226.84, "probability": 0.9984 }, { "start": 16227.6, "end": 16229.66, "probability": 0.9922 }, { "start": 16231.26, "end": 16232.46, "probability": 0.9967 }, { "start": 16233.22, "end": 16234.6, "probability": 0.999 }, { "start": 16236.64, "end": 16239.85, "probability": 0.4965 }, { "start": 16240.26, "end": 16241.24, "probability": 0.8516 }, { "start": 16241.42, "end": 16241.86, "probability": 0.8668 }, { "start": 16242.0, "end": 16242.42, "probability": 0.7574 }, { "start": 16243.3, "end": 16244.8, "probability": 0.9276 }, { "start": 16245.9, "end": 16246.4, "probability": 0.7098 }, { "start": 16247.0, "end": 16248.84, "probability": 0.981 }, { "start": 16249.44, "end": 16251.26, "probability": 0.9688 }, { "start": 16252.12, "end": 16252.98, "probability": 0.9675 }, { "start": 16254.08, "end": 16254.66, "probability": 0.8047 }, { "start": 16255.44, "end": 16257.22, "probability": 0.9863 }, { "start": 16257.8, "end": 16258.76, "probability": 0.7753 }, { "start": 16259.4, "end": 16262.26, "probability": 0.975 }, { "start": 16262.62, "end": 16263.38, "probability": 0.4716 }, { "start": 16263.4, "end": 16265.76, "probability": 0.9679 }, { "start": 16266.34, "end": 16267.74, "probability": 0.9843 }, { "start": 16281.68, "end": 16281.68, "probability": 0.4147 }, { "start": 16281.68, "end": 16281.68, "probability": 0.1562 }, { "start": 16281.68, "end": 16281.68, "probability": 0.124 }, { "start": 16281.68, "end": 16281.76, "probability": 0.0139 }, { "start": 16281.78, "end": 16281.82, "probability": 0.1164 }, { "start": 16281.82, "end": 16281.82, "probability": 0.003 }, { "start": 16294.84, "end": 16295.38, "probability": 0.4579 }, { "start": 16300.22, "end": 16302.3, "probability": 0.9595 }, { "start": 16303.14, "end": 16305.84, "probability": 0.9688 }, { "start": 16305.96, "end": 16306.56, "probability": 0.712 }, { "start": 16307.14, "end": 16309.9, "probability": 0.8997 }, { "start": 16310.0, "end": 16310.76, "probability": 0.6584 }, { "start": 16310.82, "end": 16311.36, "probability": 0.5403 }, { "start": 16312.12, "end": 16314.18, "probability": 0.9736 }, { "start": 16314.46, "end": 16316.3, "probability": 0.9873 }, { "start": 16316.9, "end": 16319.12, "probability": 0.9211 }, { "start": 16319.18, "end": 16319.76, "probability": 0.9476 }, { "start": 16320.26, "end": 16322.06, "probability": 0.9558 }, { "start": 16322.1, "end": 16323.48, "probability": 0.7396 }, { "start": 16323.94, "end": 16324.62, "probability": 0.4511 }, { "start": 16324.62, "end": 16327.34, "probability": 0.9355 }, { "start": 16327.86, "end": 16332.62, "probability": 0.9788 }, { "start": 16333.18, "end": 16334.26, "probability": 0.5906 }, { "start": 16335.24, "end": 16338.68, "probability": 0.9545 }, { "start": 16338.76, "end": 16339.38, "probability": 0.7876 }, { "start": 16339.8, "end": 16342.46, "probability": 0.8103 }, { "start": 16342.46, "end": 16345.02, "probability": 0.9614 }, { "start": 16345.68, "end": 16346.4, "probability": 0.4387 }, { "start": 16346.5, "end": 16348.28, "probability": 0.8139 }, { "start": 16348.7, "end": 16349.86, "probability": 0.8078 }, { "start": 16349.94, "end": 16351.12, "probability": 0.923 }, { "start": 16352.2, "end": 16355.76, "probability": 0.7554 }, { "start": 16356.94, "end": 16358.26, "probability": 0.8689 }, { "start": 16358.82, "end": 16361.84, "probability": 0.9774 }, { "start": 16362.42, "end": 16365.24, "probability": 0.8785 }, { "start": 16366.12, "end": 16368.06, "probability": 0.7634 }, { "start": 16369.16, "end": 16374.3, "probability": 0.9945 }, { "start": 16374.3, "end": 16377.68, "probability": 0.995 }, { "start": 16379.52, "end": 16380.02, "probability": 0.4904 }, { "start": 16380.76, "end": 16381.65, "probability": 0.9533 }, { "start": 16383.72, "end": 16384.68, "probability": 0.9803 }, { "start": 16384.94, "end": 16389.88, "probability": 0.9744 }, { "start": 16390.38, "end": 16391.8, "probability": 0.9801 }, { "start": 16392.3, "end": 16393.48, "probability": 0.9462 }, { "start": 16394.62, "end": 16396.96, "probability": 0.9971 }, { "start": 16397.64, "end": 16401.08, "probability": 0.985 }, { "start": 16401.28, "end": 16401.66, "probability": 0.6243 }, { "start": 16402.2, "end": 16403.06, "probability": 0.9662 }, { "start": 16403.64, "end": 16404.56, "probability": 0.9102 }, { "start": 16405.2, "end": 16408.04, "probability": 0.9919 }, { "start": 16408.22, "end": 16408.64, "probability": 0.913 }, { "start": 16410.5, "end": 16412.16, "probability": 0.5676 }, { "start": 16412.32, "end": 16415.74, "probability": 0.8749 }, { "start": 16433.04, "end": 16437.76, "probability": 0.491 }, { "start": 16438.42, "end": 16440.48, "probability": 0.6875 }, { "start": 16441.26, "end": 16445.46, "probability": 0.8035 }, { "start": 16446.74, "end": 16448.36, "probability": 0.9172 }, { "start": 16448.54, "end": 16451.86, "probability": 0.9928 }, { "start": 16452.46, "end": 16452.6, "probability": 0.2893 }, { "start": 16452.7, "end": 16454.92, "probability": 0.9954 }, { "start": 16454.92, "end": 16458.62, "probability": 0.9897 }, { "start": 16459.34, "end": 16460.22, "probability": 0.4025 }, { "start": 16461.09, "end": 16464.54, "probability": 0.9778 }, { "start": 16464.8, "end": 16466.54, "probability": 0.582 }, { "start": 16467.24, "end": 16469.14, "probability": 0.6845 }, { "start": 16469.26, "end": 16471.02, "probability": 0.8202 }, { "start": 16472.32, "end": 16473.04, "probability": 0.597 }, { "start": 16473.44, "end": 16474.2, "probability": 0.702 }, { "start": 16474.5, "end": 16478.86, "probability": 0.6713 }, { "start": 16481.12, "end": 16482.62, "probability": 0.6485 }, { "start": 16484.04, "end": 16485.1, "probability": 0.6294 }, { "start": 16485.3, "end": 16490.92, "probability": 0.9971 }, { "start": 16491.88, "end": 16495.9, "probability": 0.9976 }, { "start": 16496.1, "end": 16501.32, "probability": 0.9119 }, { "start": 16501.6, "end": 16502.26, "probability": 0.7304 }, { "start": 16504.98, "end": 16507.84, "probability": 0.9935 }, { "start": 16508.9, "end": 16513.52, "probability": 0.9983 }, { "start": 16514.4, "end": 16516.76, "probability": 0.6838 }, { "start": 16517.54, "end": 16520.88, "probability": 0.9614 }, { "start": 16522.16, "end": 16524.24, "probability": 0.7551 }, { "start": 16525.62, "end": 16526.2, "probability": 0.7999 }, { "start": 16528.34, "end": 16529.8, "probability": 0.9818 }, { "start": 16530.58, "end": 16534.14, "probability": 0.9033 }, { "start": 16534.76, "end": 16536.6, "probability": 0.6593 }, { "start": 16537.82, "end": 16539.48, "probability": 0.998 }, { "start": 16539.66, "end": 16544.84, "probability": 0.9313 }, { "start": 16545.0, "end": 16546.04, "probability": 0.6271 }, { "start": 16548.08, "end": 16552.06, "probability": 0.9627 }, { "start": 16552.98, "end": 16553.78, "probability": 0.9159 }, { "start": 16554.84, "end": 16556.48, "probability": 0.7527 }, { "start": 16557.52, "end": 16560.54, "probability": 0.9683 }, { "start": 16561.1, "end": 16562.78, "probability": 0.989 }, { "start": 16564.42, "end": 16565.6, "probability": 0.9674 }, { "start": 16568.0, "end": 16568.8, "probability": 0.438 }, { "start": 16569.54, "end": 16570.68, "probability": 0.9614 }, { "start": 16571.2, "end": 16572.76, "probability": 0.9846 }, { "start": 16573.28, "end": 16575.82, "probability": 0.9581 }, { "start": 16576.86, "end": 16580.04, "probability": 0.9956 }, { "start": 16580.8, "end": 16590.08, "probability": 0.931 }, { "start": 16590.22, "end": 16592.92, "probability": 0.6695 }, { "start": 16594.48, "end": 16598.28, "probability": 0.9644 }, { "start": 16598.48, "end": 16602.94, "probability": 0.7783 }, { "start": 16603.8, "end": 16604.82, "probability": 0.8908 }, { "start": 16605.48, "end": 16607.08, "probability": 0.9827 }, { "start": 16608.62, "end": 16609.9, "probability": 0.9948 }, { "start": 16610.42, "end": 16612.84, "probability": 0.5179 }, { "start": 16613.4, "end": 16615.68, "probability": 0.7845 }, { "start": 16616.7, "end": 16619.8, "probability": 0.6836 }, { "start": 16620.04, "end": 16621.84, "probability": 0.6994 }, { "start": 16630.38, "end": 16634.24, "probability": 0.4271 }, { "start": 16635.4, "end": 16636.96, "probability": 0.3953 }, { "start": 16637.24, "end": 16637.86, "probability": 0.4553 }, { "start": 16638.04, "end": 16638.58, "probability": 0.5533 }, { "start": 16638.58, "end": 16645.92, "probability": 0.9056 }, { "start": 16645.98, "end": 16647.34, "probability": 0.9976 }, { "start": 16648.4, "end": 16649.9, "probability": 0.4046 }, { "start": 16650.04, "end": 16650.3, "probability": 0.3266 }, { "start": 16650.3, "end": 16650.56, "probability": 0.3411 }, { "start": 16650.68, "end": 16652.3, "probability": 0.9844 }, { "start": 16652.46, "end": 16653.12, "probability": 0.8491 }, { "start": 16653.2, "end": 16653.46, "probability": 0.9347 }, { "start": 16653.5, "end": 16655.98, "probability": 0.8901 }, { "start": 16656.28, "end": 16659.3, "probability": 0.6896 }, { "start": 16659.42, "end": 16661.12, "probability": 0.6956 }, { "start": 16661.14, "end": 16663.8, "probability": 0.7683 }, { "start": 16663.92, "end": 16665.3, "probability": 0.9044 }, { "start": 16665.46, "end": 16665.74, "probability": 0.7933 }, { "start": 16665.9, "end": 16667.41, "probability": 0.6241 }, { "start": 16668.16, "end": 16670.7, "probability": 0.72 }, { "start": 16670.76, "end": 16672.74, "probability": 0.5623 }, { "start": 16673.06, "end": 16674.7, "probability": 0.9511 }, { "start": 16674.9, "end": 16675.26, "probability": 0.6324 }, { "start": 16675.34, "end": 16675.92, "probability": 0.5612 }, { "start": 16675.94, "end": 16677.14, "probability": 0.6074 }, { "start": 16677.91, "end": 16679.78, "probability": 0.948 }, { "start": 16687.04, "end": 16687.34, "probability": 0.6107 }, { "start": 16690.24, "end": 16690.44, "probability": 0.3375 }, { "start": 16698.76, "end": 16699.68, "probability": 0.6744 }, { "start": 16701.34, "end": 16703.62, "probability": 0.4571 }, { "start": 16706.14, "end": 16707.56, "probability": 0.939 }, { "start": 16707.8, "end": 16707.96, "probability": 0.861 }, { "start": 16710.0, "end": 16711.06, "probability": 0.8747 }, { "start": 16714.84, "end": 16716.7, "probability": 0.5227 }, { "start": 16717.66, "end": 16719.26, "probability": 0.6487 }, { "start": 16720.3, "end": 16722.7, "probability": 0.9921 }, { "start": 16722.9, "end": 16724.12, "probability": 0.8109 }, { "start": 16724.94, "end": 16725.88, "probability": 0.6289 }, { "start": 16727.18, "end": 16729.24, "probability": 0.8779 }, { "start": 16729.42, "end": 16733.78, "probability": 0.9771 }, { "start": 16733.78, "end": 16737.76, "probability": 0.9993 }, { "start": 16737.96, "end": 16739.63, "probability": 0.9209 }, { "start": 16739.92, "end": 16743.64, "probability": 0.9816 }, { "start": 16744.06, "end": 16744.06, "probability": 0.3884 }, { "start": 16744.94, "end": 16746.24, "probability": 0.9238 }, { "start": 16746.9, "end": 16747.94, "probability": 0.6032 }, { "start": 16748.1, "end": 16749.14, "probability": 0.4141 }, { "start": 16751.56, "end": 16751.56, "probability": 0.0204 }, { "start": 16753.0, "end": 16753.0, "probability": 0.1583 }, { "start": 16753.14, "end": 16753.92, "probability": 0.784 }, { "start": 16755.4, "end": 16759.86, "probability": 0.8746 }, { "start": 16762.28, "end": 16764.44, "probability": 0.7631 }, { "start": 16765.46, "end": 16766.76, "probability": 0.8001 }, { "start": 16767.18, "end": 16770.34, "probability": 0.8037 }, { "start": 16770.48, "end": 16772.77, "probability": 0.8586 }, { "start": 16773.66, "end": 16776.96, "probability": 0.9949 }, { "start": 16778.72, "end": 16779.62, "probability": 0.9677 }, { "start": 16779.88, "end": 16780.6, "probability": 0.9255 }, { "start": 16780.98, "end": 16782.48, "probability": 0.8989 }, { "start": 16783.48, "end": 16786.95, "probability": 0.9605 }, { "start": 16788.62, "end": 16790.38, "probability": 0.9904 }, { "start": 16791.04, "end": 16791.4, "probability": 0.6855 }, { "start": 16792.8, "end": 16793.9, "probability": 0.9559 }, { "start": 16795.66, "end": 16798.36, "probability": 0.9644 }, { "start": 16799.32, "end": 16801.78, "probability": 0.9963 }, { "start": 16802.44, "end": 16803.64, "probability": 0.9615 }, { "start": 16803.98, "end": 16806.07, "probability": 0.9873 }, { "start": 16807.54, "end": 16808.18, "probability": 0.9985 }, { "start": 16809.08, "end": 16810.6, "probability": 0.9994 }, { "start": 16811.96, "end": 16812.06, "probability": 0.6299 }, { "start": 16812.84, "end": 16813.22, "probability": 0.6684 }, { "start": 16814.04, "end": 16814.4, "probability": 0.5857 }, { "start": 16814.56, "end": 16816.62, "probability": 0.6227 }, { "start": 16816.92, "end": 16818.84, "probability": 0.9197 }, { "start": 16818.9, "end": 16819.54, "probability": 0.9259 }, { "start": 16820.14, "end": 16823.02, "probability": 0.9677 }, { "start": 16823.52, "end": 16823.78, "probability": 0.7339 }, { "start": 16824.54, "end": 16827.4, "probability": 0.9315 }, { "start": 16828.26, "end": 16829.72, "probability": 0.6835 }, { "start": 16830.92, "end": 16836.22, "probability": 0.9806 }, { "start": 16837.36, "end": 16838.56, "probability": 0.5707 }, { "start": 16838.62, "end": 16839.4, "probability": 0.6961 }, { "start": 16840.42, "end": 16840.68, "probability": 0.8052 }, { "start": 16840.72, "end": 16841.36, "probability": 0.8555 }, { "start": 16841.36, "end": 16843.22, "probability": 0.6408 }, { "start": 16843.62, "end": 16844.3, "probability": 0.7533 }, { "start": 16844.58, "end": 16846.2, "probability": 0.1556 }, { "start": 16846.26, "end": 16846.28, "probability": 0.1481 }, { "start": 16846.28, "end": 16848.18, "probability": 0.5099 }, { "start": 16849.34, "end": 16851.68, "probability": 0.9728 }, { "start": 16852.66, "end": 16855.34, "probability": 0.6497 }, { "start": 16856.02, "end": 16856.5, "probability": 0.7695 }, { "start": 16857.42, "end": 16859.1, "probability": 0.8923 }, { "start": 16859.74, "end": 16860.72, "probability": 0.9751 }, { "start": 16861.4, "end": 16862.06, "probability": 0.6687 }, { "start": 16862.82, "end": 16866.7, "probability": 0.8717 }, { "start": 16867.72, "end": 16869.46, "probability": 0.7728 }, { "start": 16870.22, "end": 16871.16, "probability": 0.9507 }, { "start": 16871.58, "end": 16872.34, "probability": 0.842 }, { "start": 16872.54, "end": 16872.7, "probability": 0.6498 }, { "start": 16872.78, "end": 16875.28, "probability": 0.9207 }, { "start": 16875.84, "end": 16876.25, "probability": 0.7817 }, { "start": 16877.32, "end": 16877.52, "probability": 0.6764 }, { "start": 16878.7, "end": 16879.26, "probability": 0.7173 }, { "start": 16879.4, "end": 16881.64, "probability": 0.9494 }, { "start": 16881.88, "end": 16883.36, "probability": 0.7975 }, { "start": 16883.44, "end": 16884.2, "probability": 0.3706 }, { "start": 16884.32, "end": 16884.68, "probability": 0.9636 }, { "start": 16885.66, "end": 16887.33, "probability": 0.8193 }, { "start": 16888.84, "end": 16889.9, "probability": 0.5941 }, { "start": 16890.16, "end": 16894.48, "probability": 0.9626 }, { "start": 16895.0, "end": 16895.9, "probability": 0.813 }, { "start": 16896.82, "end": 16898.24, "probability": 0.9943 }, { "start": 16899.24, "end": 16900.2, "probability": 0.7944 }, { "start": 16901.56, "end": 16903.28, "probability": 0.665 }, { "start": 16904.34, "end": 16906.0, "probability": 0.9991 }, { "start": 16906.9, "end": 16909.0, "probability": 0.5953 }, { "start": 16909.08, "end": 16909.86, "probability": 0.8185 }, { "start": 16910.4, "end": 16913.56, "probability": 0.8103 }, { "start": 16914.16, "end": 16914.64, "probability": 0.9108 }, { "start": 16914.92, "end": 16916.06, "probability": 0.9283 }, { "start": 16916.48, "end": 16917.48, "probability": 0.9866 }, { "start": 16918.46, "end": 16920.48, "probability": 0.8066 }, { "start": 16921.28, "end": 16922.2, "probability": 0.8314 }, { "start": 16922.26, "end": 16924.62, "probability": 0.8002 }, { "start": 16926.64, "end": 16927.04, "probability": 0.0795 }, { "start": 16927.04, "end": 16927.34, "probability": 0.4616 }, { "start": 16929.88, "end": 16932.48, "probability": 0.7777 }, { "start": 16951.65, "end": 16952.46, "probability": 0.26 }, { "start": 16952.46, "end": 16953.92, "probability": 0.5576 }, { "start": 16955.46, "end": 16960.88, "probability": 0.9867 }, { "start": 16961.46, "end": 16965.9, "probability": 0.9875 }, { "start": 16966.64, "end": 16969.56, "probability": 0.9918 }, { "start": 16970.12, "end": 16974.12, "probability": 0.8909 }, { "start": 16974.22, "end": 16974.44, "probability": 0.0712 }, { "start": 16974.62, "end": 16975.88, "probability": 0.9428 }, { "start": 16976.5, "end": 16981.68, "probability": 0.7278 }, { "start": 16981.74, "end": 16982.56, "probability": 0.9262 }, { "start": 16983.34, "end": 16985.36, "probability": 0.9961 }, { "start": 16986.28, "end": 16990.8, "probability": 0.9839 }, { "start": 16991.6, "end": 16992.64, "probability": 0.9232 }, { "start": 16993.98, "end": 16996.06, "probability": 0.6541 }, { "start": 16996.62, "end": 16998.44, "probability": 0.8774 }, { "start": 16999.14, "end": 17006.92, "probability": 0.9771 }, { "start": 17007.5, "end": 17011.46, "probability": 0.9762 }, { "start": 17011.76, "end": 17016.36, "probability": 0.9971 }, { "start": 17016.86, "end": 17018.46, "probability": 0.8945 }, { "start": 17019.68, "end": 17020.96, "probability": 0.9866 }, { "start": 17022.66, "end": 17023.64, "probability": 0.395 }, { "start": 17023.88, "end": 17026.16, "probability": 0.9659 }, { "start": 17026.44, "end": 17030.14, "probability": 0.9541 }, { "start": 17032.16, "end": 17037.58, "probability": 0.8834 }, { "start": 17037.98, "end": 17039.46, "probability": 0.6847 }, { "start": 17040.14, "end": 17042.28, "probability": 0.9653 }, { "start": 17042.86, "end": 17044.02, "probability": 0.7917 }, { "start": 17044.83, "end": 17049.74, "probability": 0.7879 }, { "start": 17052.2, "end": 17053.82, "probability": 0.9005 }, { "start": 17054.06, "end": 17054.74, "probability": 0.7991 }, { "start": 17055.02, "end": 17055.9, "probability": 0.6512 }, { "start": 17055.94, "end": 17057.34, "probability": 0.8612 }, { "start": 17057.66, "end": 17058.76, "probability": 0.8784 }, { "start": 17060.08, "end": 17062.0, "probability": 0.9342 }, { "start": 17063.3, "end": 17067.64, "probability": 0.9113 }, { "start": 17068.34, "end": 17072.54, "probability": 0.9901 }, { "start": 17072.7, "end": 17075.14, "probability": 0.4706 }, { "start": 17075.9, "end": 17080.68, "probability": 0.9897 }, { "start": 17082.06, "end": 17083.12, "probability": 0.5915 }, { "start": 17083.32, "end": 17084.04, "probability": 0.5811 }, { "start": 17084.08, "end": 17084.66, "probability": 0.723 }, { "start": 17084.8, "end": 17087.02, "probability": 0.8751 }, { "start": 17087.16, "end": 17087.62, "probability": 0.8978 }, { "start": 17087.72, "end": 17089.7, "probability": 0.9968 }, { "start": 17090.5, "end": 17091.66, "probability": 0.3662 }, { "start": 17092.24, "end": 17094.06, "probability": 0.9073 }, { "start": 17094.52, "end": 17097.24, "probability": 0.9878 }, { "start": 17098.14, "end": 17102.96, "probability": 0.9398 }, { "start": 17103.68, "end": 17106.88, "probability": 0.996 }, { "start": 17107.22, "end": 17109.34, "probability": 0.9896 }, { "start": 17109.46, "end": 17115.02, "probability": 0.959 }, { "start": 17115.22, "end": 17115.54, "probability": 0.3546 }, { "start": 17115.7, "end": 17117.14, "probability": 0.6979 }, { "start": 17117.14, "end": 17119.12, "probability": 0.9867 }, { "start": 17119.68, "end": 17122.36, "probability": 0.9758 }, { "start": 17122.98, "end": 17124.03, "probability": 0.9768 }, { "start": 17125.08, "end": 17126.32, "probability": 0.83 }, { "start": 17126.7, "end": 17132.38, "probability": 0.8851 }, { "start": 17132.74, "end": 17135.4, "probability": 0.9722 }, { "start": 17135.98, "end": 17139.16, "probability": 0.9863 }, { "start": 17139.16, "end": 17142.18, "probability": 0.9841 }, { "start": 17142.52, "end": 17148.87, "probability": 0.8141 }, { "start": 17149.2, "end": 17150.2, "probability": 0.8549 }, { "start": 17150.46, "end": 17152.7, "probability": 0.9852 }, { "start": 17153.42, "end": 17153.72, "probability": 0.8672 }, { "start": 17154.52, "end": 17156.88, "probability": 0.7054 }, { "start": 17157.0, "end": 17158.94, "probability": 0.8584 }, { "start": 17159.66, "end": 17162.52, "probability": 0.6604 }, { "start": 17163.42, "end": 17163.42, "probability": 0.2947 }, { "start": 17170.94, "end": 17172.22, "probability": 0.0533 }, { "start": 17172.44, "end": 17172.92, "probability": 0.1948 }, { "start": 17203.0, "end": 17204.9, "probability": 0.6984 }, { "start": 17206.3, "end": 17213.8, "probability": 0.9829 }, { "start": 17213.98, "end": 17220.2, "probability": 0.991 }, { "start": 17221.78, "end": 17225.3, "probability": 0.9966 }, { "start": 17225.86, "end": 17228.96, "probability": 0.9919 }, { "start": 17228.96, "end": 17232.88, "probability": 0.9849 }, { "start": 17233.5, "end": 17234.88, "probability": 0.9441 }, { "start": 17236.0, "end": 17237.08, "probability": 0.7519 }, { "start": 17237.7, "end": 17240.32, "probability": 0.9523 }, { "start": 17241.54, "end": 17242.22, "probability": 0.82 }, { "start": 17243.24, "end": 17245.2, "probability": 0.9438 }, { "start": 17245.84, "end": 17250.8, "probability": 0.995 }, { "start": 17252.16, "end": 17257.8, "probability": 0.8814 }, { "start": 17258.52, "end": 17259.34, "probability": 0.9282 }, { "start": 17259.8, "end": 17261.36, "probability": 0.7955 }, { "start": 17262.78, "end": 17268.74, "probability": 0.9938 }, { "start": 17269.2, "end": 17272.28, "probability": 0.9909 }, { "start": 17273.38, "end": 17275.84, "probability": 0.9691 }, { "start": 17276.44, "end": 17280.38, "probability": 0.8503 }, { "start": 17280.46, "end": 17282.18, "probability": 0.8345 }, { "start": 17283.99, "end": 17284.06, "probability": 0.2071 }, { "start": 17284.48, "end": 17286.38, "probability": 0.7891 }, { "start": 17286.8, "end": 17291.48, "probability": 0.886 }, { "start": 17292.16, "end": 17296.28, "probability": 0.8774 }, { "start": 17297.08, "end": 17300.48, "probability": 0.8016 }, { "start": 17301.14, "end": 17302.56, "probability": 0.7367 }, { "start": 17303.54, "end": 17304.92, "probability": 0.9213 }, { "start": 17306.36, "end": 17307.86, "probability": 0.8565 }, { "start": 17308.5, "end": 17313.24, "probability": 0.9667 }, { "start": 17315.36, "end": 17315.98, "probability": 0.7111 }, { "start": 17316.6, "end": 17320.6, "probability": 0.9854 }, { "start": 17322.46, "end": 17325.56, "probability": 0.9439 }, { "start": 17326.38, "end": 17330.44, "probability": 0.9944 }, { "start": 17331.12, "end": 17335.2, "probability": 0.9878 }, { "start": 17335.82, "end": 17341.58, "probability": 0.9994 }, { "start": 17342.38, "end": 17349.14, "probability": 0.9559 }, { "start": 17349.46, "end": 17349.94, "probability": 0.5116 }, { "start": 17350.5, "end": 17352.54, "probability": 0.7377 }, { "start": 17353.24, "end": 17355.16, "probability": 0.9892 }, { "start": 17355.8, "end": 17356.92, "probability": 0.8976 }, { "start": 17357.6, "end": 17362.02, "probability": 0.9832 }, { "start": 17362.54, "end": 17369.76, "probability": 0.974 }, { "start": 17369.76, "end": 17375.28, "probability": 0.9977 }, { "start": 17376.24, "end": 17378.16, "probability": 0.4957 }, { "start": 17378.72, "end": 17379.66, "probability": 0.9087 }, { "start": 17380.7, "end": 17384.58, "probability": 0.9849 }, { "start": 17384.9, "end": 17385.32, "probability": 0.7591 }, { "start": 17386.2, "end": 17389.72, "probability": 0.7037 }, { "start": 17390.48, "end": 17391.1, "probability": 0.9618 }, { "start": 17391.92, "end": 17393.42, "probability": 0.7701 }, { "start": 17393.98, "end": 17394.96, "probability": 0.8378 }, { "start": 17396.36, "end": 17396.94, "probability": 0.6875 }, { "start": 17397.38, "end": 17398.06, "probability": 0.7969 }, { "start": 17398.26, "end": 17400.44, "probability": 0.1696 }, { "start": 17401.4, "end": 17402.66, "probability": 0.7744 }, { "start": 17403.44, "end": 17404.18, "probability": 0.9027 }, { "start": 17406.16, "end": 17407.44, "probability": 0.7399 }, { "start": 17409.08, "end": 17410.3, "probability": 0.8104 }, { "start": 17412.48, "end": 17413.66, "probability": 0.9456 }, { "start": 17414.1, "end": 17414.48, "probability": 0.3711 }, { "start": 17415.3, "end": 17416.96, "probability": 0.6578 }, { "start": 17418.24, "end": 17419.9, "probability": 0.6488 }, { "start": 17421.28, "end": 17421.5, "probability": 0.7768 }, { "start": 17421.66, "end": 17423.2, "probability": 0.947 }, { "start": 17424.0, "end": 17426.96, "probability": 0.797 }, { "start": 17427.92, "end": 17428.34, "probability": 0.4479 }, { "start": 17428.48, "end": 17432.44, "probability": 0.8032 }, { "start": 17432.5, "end": 17433.92, "probability": 0.9824 }, { "start": 17435.58, "end": 17441.24, "probability": 0.9844 }, { "start": 17442.98, "end": 17445.44, "probability": 0.7126 }, { "start": 17446.58, "end": 17447.54, "probability": 0.9878 }, { "start": 17449.9, "end": 17452.36, "probability": 0.6548 }, { "start": 17453.68, "end": 17455.88, "probability": 0.821 }, { "start": 17456.9, "end": 17459.14, "probability": 0.9824 }, { "start": 17459.24, "end": 17459.98, "probability": 0.9917 }, { "start": 17460.08, "end": 17460.98, "probability": 0.9807 }, { "start": 17461.04, "end": 17461.78, "probability": 0.9539 }, { "start": 17462.84, "end": 17467.1, "probability": 0.9893 }, { "start": 17468.56, "end": 17470.34, "probability": 0.3086 }, { "start": 17470.98, "end": 17473.04, "probability": 0.7585 }, { "start": 17474.1, "end": 17476.9, "probability": 0.9958 }, { "start": 17477.54, "end": 17481.17, "probability": 0.9789 }, { "start": 17483.04, "end": 17484.16, "probability": 0.8667 }, { "start": 17485.72, "end": 17488.16, "probability": 0.6861 }, { "start": 17488.86, "end": 17491.3, "probability": 0.9589 }, { "start": 17492.28, "end": 17493.78, "probability": 0.9128 }, { "start": 17495.9, "end": 17498.28, "probability": 0.4864 }, { "start": 17498.92, "end": 17501.1, "probability": 0.8274 }, { "start": 17502.46, "end": 17505.18, "probability": 0.9856 }, { "start": 17506.02, "end": 17508.82, "probability": 0.9141 }, { "start": 17510.88, "end": 17513.64, "probability": 0.9658 }, { "start": 17514.44, "end": 17515.5, "probability": 0.9664 }, { "start": 17516.16, "end": 17517.24, "probability": 0.5883 }, { "start": 17517.8, "end": 17518.1, "probability": 0.811 }, { "start": 17519.06, "end": 17520.64, "probability": 0.9888 }, { "start": 17522.1, "end": 17524.08, "probability": 0.9576 }, { "start": 17524.2, "end": 17527.36, "probability": 0.4891 }, { "start": 17527.58, "end": 17534.12, "probability": 0.9663 }, { "start": 17534.74, "end": 17537.28, "probability": 0.8499 }, { "start": 17537.88, "end": 17539.64, "probability": 0.904 }, { "start": 17540.58, "end": 17541.62, "probability": 0.74 }, { "start": 17542.8, "end": 17543.28, "probability": 0.8936 }, { "start": 17546.7, "end": 17549.54, "probability": 0.9535 }, { "start": 17550.1, "end": 17551.18, "probability": 0.064 }, { "start": 17551.98, "end": 17551.98, "probability": 0.2341 }, { "start": 17552.32, "end": 17553.82, "probability": 0.9293 }, { "start": 17555.48, "end": 17558.22, "probability": 0.7372 }, { "start": 17558.3, "end": 17564.94, "probability": 0.9776 }, { "start": 17566.06, "end": 17570.08, "probability": 0.7382 }, { "start": 17571.06, "end": 17577.62, "probability": 0.9077 }, { "start": 17579.38, "end": 17581.58, "probability": 0.9481 }, { "start": 17583.38, "end": 17584.44, "probability": 0.3717 }, { "start": 17584.44, "end": 17585.64, "probability": 0.6552 }, { "start": 17586.22, "end": 17587.35, "probability": 0.1687 }, { "start": 17588.24, "end": 17590.02, "probability": 0.4194 }, { "start": 17590.1, "end": 17591.04, "probability": 0.8129 }, { "start": 17591.98, "end": 17593.66, "probability": 0.2125 }, { "start": 17593.95, "end": 17594.02, "probability": 0.2068 }, { "start": 17594.1, "end": 17595.48, "probability": 0.4017 }, { "start": 17595.72, "end": 17595.72, "probability": 0.3188 }, { "start": 17595.72, "end": 17595.72, "probability": 0.0173 }, { "start": 17595.72, "end": 17596.42, "probability": 0.5951 }, { "start": 17596.6, "end": 17597.44, "probability": 0.8379 }, { "start": 17597.96, "end": 17597.98, "probability": 0.2782 }, { "start": 17597.98, "end": 17602.2, "probability": 0.6206 }, { "start": 17603.08, "end": 17604.76, "probability": 0.4546 }, { "start": 17604.78, "end": 17605.88, "probability": 0.8532 }, { "start": 17605.98, "end": 17607.06, "probability": 0.1195 }, { "start": 17607.34, "end": 17608.9, "probability": 0.6944 }, { "start": 17609.02, "end": 17609.44, "probability": 0.595 }, { "start": 17609.82, "end": 17611.52, "probability": 0.5359 }, { "start": 17612.72, "end": 17612.84, "probability": 0.541 }, { "start": 17612.86, "end": 17615.54, "probability": 0.9727 }, { "start": 17616.92, "end": 17620.76, "probability": 0.9888 }, { "start": 17622.06, "end": 17622.74, "probability": 0.9714 }, { "start": 17624.18, "end": 17624.97, "probability": 0.9839 }, { "start": 17625.96, "end": 17628.46, "probability": 0.9979 }, { "start": 17629.06, "end": 17630.16, "probability": 0.9404 }, { "start": 17630.94, "end": 17632.68, "probability": 0.9884 }, { "start": 17633.5, "end": 17635.1, "probability": 0.9914 }, { "start": 17635.62, "end": 17637.8, "probability": 0.969 }, { "start": 17637.9, "end": 17642.18, "probability": 0.9974 }, { "start": 17642.46, "end": 17642.74, "probability": 0.8306 }, { "start": 17643.12, "end": 17645.53, "probability": 0.9712 }, { "start": 17645.8, "end": 17647.06, "probability": 0.8032 }, { "start": 17647.6, "end": 17647.76, "probability": 0.7828 }, { "start": 17649.1, "end": 17649.4, "probability": 0.1158 }, { "start": 17649.4, "end": 17649.95, "probability": 0.4537 }, { "start": 17653.38, "end": 17653.73, "probability": 0.2297 }, { "start": 17655.47, "end": 17657.48, "probability": 0.595 }, { "start": 17661.06, "end": 17661.68, "probability": 0.8233 }, { "start": 17672.86, "end": 17673.52, "probability": 0.5427 }, { "start": 17673.88, "end": 17674.52, "probability": 0.8328 }, { "start": 17675.6, "end": 17677.1, "probability": 0.7184 }, { "start": 17677.68, "end": 17678.42, "probability": 0.7092 }, { "start": 17681.72, "end": 17683.48, "probability": 0.6399 }, { "start": 17683.6, "end": 17684.46, "probability": 0.6768 }, { "start": 17685.5, "end": 17686.38, "probability": 0.9346 }, { "start": 17687.5, "end": 17690.7, "probability": 0.9641 }, { "start": 17691.58, "end": 17696.32, "probability": 0.9222 }, { "start": 17696.42, "end": 17700.7, "probability": 0.9966 }, { "start": 17701.72, "end": 17704.82, "probability": 0.9929 }, { "start": 17705.44, "end": 17706.06, "probability": 0.8355 }, { "start": 17706.84, "end": 17711.2, "probability": 0.9966 }, { "start": 17712.9, "end": 17717.16, "probability": 0.9935 }, { "start": 17718.24, "end": 17719.12, "probability": 0.9426 }, { "start": 17719.9, "end": 17722.18, "probability": 0.9077 }, { "start": 17722.96, "end": 17724.32, "probability": 0.9979 }, { "start": 17725.28, "end": 17727.46, "probability": 0.954 }, { "start": 17727.64, "end": 17727.9, "probability": 0.9202 }, { "start": 17729.0, "end": 17729.6, "probability": 0.7676 }, { "start": 17729.6, "end": 17731.74, "probability": 0.9587 }, { "start": 17731.98, "end": 17733.96, "probability": 0.7708 }, { "start": 17734.06, "end": 17735.94, "probability": 0.8785 }, { "start": 17736.04, "end": 17739.3, "probability": 0.7611 }, { "start": 17739.62, "end": 17739.64, "probability": 0.6553 }, { "start": 17739.66, "end": 17739.86, "probability": 0.4784 }, { "start": 17740.08, "end": 17741.18, "probability": 0.9629 }, { "start": 17741.58, "end": 17743.76, "probability": 0.9893 }, { "start": 17744.06, "end": 17747.56, "probability": 0.9875 }, { "start": 17748.12, "end": 17749.22, "probability": 0.7802 }, { "start": 17749.78, "end": 17751.78, "probability": 0.9863 }, { "start": 17752.22, "end": 17753.58, "probability": 0.9974 }, { "start": 17754.16, "end": 17755.46, "probability": 0.9023 }, { "start": 17756.0, "end": 17758.63, "probability": 0.9919 }, { "start": 17761.22, "end": 17761.24, "probability": 0.1248 }, { "start": 17761.24, "end": 17761.24, "probability": 0.1059 }, { "start": 17761.24, "end": 17762.88, "probability": 0.7719 }, { "start": 17763.12, "end": 17764.58, "probability": 0.5102 }, { "start": 17764.6, "end": 17765.06, "probability": 0.2047 }, { "start": 17765.16, "end": 17766.26, "probability": 0.6458 }, { "start": 17766.56, "end": 17767.15, "probability": 0.8451 }, { "start": 17767.78, "end": 17768.24, "probability": 0.2491 }, { "start": 17768.24, "end": 17768.48, "probability": 0.2398 }, { "start": 17768.92, "end": 17769.35, "probability": 0.8604 }, { "start": 17769.78, "end": 17771.58, "probability": 0.9154 }, { "start": 17771.58, "end": 17774.06, "probability": 0.527 }, { "start": 17774.22, "end": 17776.84, "probability": 0.8368 }, { "start": 17776.96, "end": 17778.36, "probability": 0.8754 }, { "start": 17778.7, "end": 17781.24, "probability": 0.8239 }, { "start": 17781.34, "end": 17785.04, "probability": 0.9602 }, { "start": 17785.1, "end": 17785.12, "probability": 0.3889 }, { "start": 17785.12, "end": 17785.12, "probability": 0.1031 }, { "start": 17785.12, "end": 17785.98, "probability": 0.6483 }, { "start": 17786.48, "end": 17787.66, "probability": 0.9803 }, { "start": 17787.88, "end": 17789.0, "probability": 0.9558 }, { "start": 17789.12, "end": 17789.8, "probability": 0.9829 }, { "start": 17789.92, "end": 17792.18, "probability": 0.816 }, { "start": 17792.68, "end": 17793.32, "probability": 0.663 }, { "start": 17793.42, "end": 17794.8, "probability": 0.7647 }, { "start": 17795.14, "end": 17795.38, "probability": 0.243 }, { "start": 17795.38, "end": 17796.04, "probability": 0.7576 }, { "start": 17796.8, "end": 17799.68, "probability": 0.991 }, { "start": 17800.34, "end": 17803.76, "probability": 0.9883 }, { "start": 17803.88, "end": 17806.28, "probability": 0.9927 }, { "start": 17806.84, "end": 17809.58, "probability": 0.871 }, { "start": 17809.96, "end": 17812.3, "probability": 0.9943 }, { "start": 17812.48, "end": 17815.68, "probability": 0.5922 }, { "start": 17815.7, "end": 17817.3, "probability": 0.8042 }, { "start": 17817.3, "end": 17817.76, "probability": 0.8479 }, { "start": 17818.24, "end": 17823.5, "probability": 0.7323 }, { "start": 17824.6, "end": 17826.42, "probability": 0.3533 }, { "start": 17826.58, "end": 17828.68, "probability": 0.9291 }, { "start": 17828.7, "end": 17828.82, "probability": 0.3756 }, { "start": 17828.98, "end": 17829.95, "probability": 0.814 }, { "start": 17830.12, "end": 17831.14, "probability": 0.0348 }, { "start": 17831.2, "end": 17832.6, "probability": 0.0573 }, { "start": 17833.82, "end": 17835.77, "probability": 0.3865 }, { "start": 17836.58, "end": 17837.62, "probability": 0.7183 }, { "start": 17837.96, "end": 17839.26, "probability": 0.626 }, { "start": 17839.3, "end": 17839.38, "probability": 0.3141 }, { "start": 17839.38, "end": 17839.38, "probability": 0.2088 }, { "start": 17839.38, "end": 17839.38, "probability": 0.32 }, { "start": 17839.38, "end": 17839.38, "probability": 0.0968 }, { "start": 17839.38, "end": 17841.12, "probability": 0.9261 }, { "start": 17841.2, "end": 17841.34, "probability": 0.3555 }, { "start": 17841.34, "end": 17841.54, "probability": 0.1366 }, { "start": 17841.54, "end": 17845.36, "probability": 0.9335 }, { "start": 17845.36, "end": 17845.4, "probability": 0.8569 }, { "start": 17845.4, "end": 17845.6, "probability": 0.2435 }, { "start": 17845.82, "end": 17847.09, "probability": 0.9775 }, { "start": 17847.2, "end": 17850.48, "probability": 0.9937 }, { "start": 17850.48, "end": 17853.02, "probability": 0.9988 }, { "start": 17853.02, "end": 17853.76, "probability": 0.7753 }, { "start": 17854.46, "end": 17855.62, "probability": 0.9907 }, { "start": 17855.68, "end": 17856.5, "probability": 0.7227 }, { "start": 17856.54, "end": 17859.02, "probability": 0.8279 }, { "start": 17859.84, "end": 17860.56, "probability": 0.1874 }, { "start": 17860.56, "end": 17860.6, "probability": 0.0777 }, { "start": 17860.6, "end": 17863.44, "probability": 0.9416 }, { "start": 17863.7, "end": 17863.98, "probability": 0.8373 }, { "start": 17864.02, "end": 17865.32, "probability": 0.7888 }, { "start": 17865.34, "end": 17866.18, "probability": 0.3799 }, { "start": 17866.18, "end": 17868.92, "probability": 0.7054 }, { "start": 17870.28, "end": 17872.96, "probability": 0.3442 }, { "start": 17873.02, "end": 17873.1, "probability": 0.297 }, { "start": 17873.1, "end": 17876.7, "probability": 0.9463 }, { "start": 17877.06, "end": 17878.08, "probability": 0.8772 }, { "start": 17878.5, "end": 17879.08, "probability": 0.3351 }, { "start": 17879.22, "end": 17881.33, "probability": 0.8267 }, { "start": 17881.44, "end": 17883.5, "probability": 0.8619 }, { "start": 17883.6, "end": 17885.92, "probability": 0.971 }, { "start": 17886.04, "end": 17886.76, "probability": 0.8066 }, { "start": 17886.84, "end": 17887.5, "probability": 0.9286 }, { "start": 17887.64, "end": 17888.08, "probability": 0.763 }, { "start": 17888.12, "end": 17890.02, "probability": 0.5469 }, { "start": 17890.08, "end": 17890.82, "probability": 0.5257 }, { "start": 17890.82, "end": 17892.24, "probability": 0.9895 }, { "start": 17892.54, "end": 17893.14, "probability": 0.6042 }, { "start": 17893.18, "end": 17893.78, "probability": 0.3426 }, { "start": 17893.86, "end": 17894.42, "probability": 0.0702 }, { "start": 17895.52, "end": 17897.5, "probability": 0.6722 }, { "start": 17897.6, "end": 17897.76, "probability": 0.853 }, { "start": 17897.82, "end": 17898.16, "probability": 0.8786 }, { "start": 17898.3, "end": 17899.46, "probability": 0.9653 }, { "start": 17899.5, "end": 17900.9, "probability": 0.8882 }, { "start": 17901.4, "end": 17901.74, "probability": 0.9438 }, { "start": 17901.92, "end": 17901.94, "probability": 0.6193 }, { "start": 17902.16, "end": 17902.38, "probability": 0.7841 }, { "start": 17902.52, "end": 17903.28, "probability": 0.5648 }, { "start": 17903.28, "end": 17903.38, "probability": 0.0532 }, { "start": 17903.38, "end": 17903.38, "probability": 0.0718 }, { "start": 17903.38, "end": 17904.0, "probability": 0.0542 }, { "start": 17904.0, "end": 17905.26, "probability": 0.5354 }, { "start": 17905.26, "end": 17905.89, "probability": 0.5736 }, { "start": 17906.18, "end": 17906.52, "probability": 0.3804 }, { "start": 17906.9, "end": 17908.54, "probability": 0.4711 }, { "start": 17908.54, "end": 17911.32, "probability": 0.3911 }, { "start": 17922.38, "end": 17923.26, "probability": 0.1554 }, { "start": 17923.26, "end": 17923.28, "probability": 0.0086 }, { "start": 17923.28, "end": 17925.36, "probability": 0.0281 }, { "start": 17925.58, "end": 17925.93, "probability": 0.0664 }, { "start": 17926.3, "end": 17926.3, "probability": 0.0274 }, { "start": 17927.18, "end": 17927.28, "probability": 0.0158 }, { "start": 17927.28, "end": 17928.45, "probability": 0.0229 }, { "start": 17929.04, "end": 17929.6, "probability": 0.3176 }, { "start": 17929.68, "end": 17930.22, "probability": 0.1844 }, { "start": 17931.1, "end": 17932.62, "probability": 0.0023 }, { "start": 17933.54, "end": 17938.08, "probability": 0.1508 }, { "start": 17938.08, "end": 17938.1, "probability": 0.2686 }, { "start": 17938.1, "end": 17938.1, "probability": 0.0372 }, { "start": 17938.1, "end": 17939.92, "probability": 0.1025 }, { "start": 17940.24, "end": 17941.36, "probability": 0.0499 }, { "start": 17941.64, "end": 17942.43, "probability": 0.0133 }, { "start": 17942.88, "end": 17943.02, "probability": 0.3001 }, { "start": 17943.02, "end": 17943.64, "probability": 0.6975 }, { "start": 17943.64, "end": 17943.84, "probability": 0.4305 }, { "start": 17944.1, "end": 17944.46, "probability": 0.0047 }, { "start": 17944.7, "end": 17944.82, "probability": 0.0838 }, { "start": 17944.82, "end": 17947.62, "probability": 0.4663 }, { "start": 17947.62, "end": 17948.82, "probability": 0.0486 }, { "start": 17951.8, "end": 17952.69, "probability": 0.0911 }, { "start": 17953.12, "end": 17954.32, "probability": 0.2593 }, { "start": 17955.08, "end": 17955.68, "probability": 0.043 }, { "start": 17956.62, "end": 17957.18, "probability": 0.0526 }, { "start": 17957.33, "end": 17961.44, "probability": 0.0583 }, { "start": 17962.0, "end": 17962.0, "probability": 0.0 }, { "start": 17962.0, "end": 17962.0, "probability": 0.0 }, { "start": 17962.0, "end": 17962.0, "probability": 0.0 }, { "start": 17962.0, "end": 17962.0, "probability": 0.0 }, { "start": 17962.0, "end": 17962.0, "probability": 0.0 }, { "start": 17962.0, "end": 17962.0, "probability": 0.0 }, { "start": 17962.0, "end": 17962.0, "probability": 0.0 }, { "start": 17962.0, "end": 17962.0, "probability": 0.0 }, { "start": 17962.0, "end": 17962.0, "probability": 0.0 }, { "start": 17962.0, "end": 17962.0, "probability": 0.0 }, { "start": 17962.0, "end": 17962.0, "probability": 0.0 }, { "start": 17962.08, "end": 17962.2, "probability": 0.1421 }, { "start": 17962.2, "end": 17962.2, "probability": 0.3133 }, { "start": 17962.2, "end": 17962.58, "probability": 0.0641 }, { "start": 17962.84, "end": 17964.98, "probability": 0.6299 }, { "start": 17965.26, "end": 17968.72, "probability": 0.8092 }, { "start": 17969.12, "end": 17971.92, "probability": 0.9673 }, { "start": 17971.96, "end": 17974.9, "probability": 0.9316 }, { "start": 17974.98, "end": 17975.46, "probability": 0.7716 }, { "start": 17976.9, "end": 17979.1, "probability": 0.7922 }, { "start": 17979.74, "end": 17981.7, "probability": 0.9537 }, { "start": 17982.04, "end": 17984.68, "probability": 0.8206 }, { "start": 17984.76, "end": 17985.5, "probability": 0.9513 }, { "start": 17985.84, "end": 17986.4, "probability": 0.9321 }, { "start": 17986.48, "end": 17988.24, "probability": 0.9954 }, { "start": 17988.72, "end": 17989.5, "probability": 0.8699 }, { "start": 17989.56, "end": 17990.12, "probability": 0.9426 }, { "start": 17990.5, "end": 17991.84, "probability": 0.9929 }, { "start": 17992.34, "end": 17993.76, "probability": 0.9983 }, { "start": 17994.1, "end": 17996.5, "probability": 0.9896 }, { "start": 17996.86, "end": 17998.44, "probability": 0.6479 }, { "start": 17998.9, "end": 18000.72, "probability": 0.3287 }, { "start": 18001.22, "end": 18001.58, "probability": 0.3346 }, { "start": 18001.76, "end": 18005.36, "probability": 0.6333 }, { "start": 18005.36, "end": 18006.96, "probability": 0.8191 }, { "start": 18008.08, "end": 18010.58, "probability": 0.767 }, { "start": 18010.98, "end": 18012.32, "probability": 0.8449 }, { "start": 18013.04, "end": 18014.72, "probability": 0.6236 }, { "start": 18015.98, "end": 18018.7, "probability": 0.7429 }, { "start": 18021.64, "end": 18022.22, "probability": 0.4413 }, { "start": 18022.46, "end": 18023.84, "probability": 0.9006 }, { "start": 18024.06, "end": 18025.77, "probability": 0.5895 }, { "start": 18036.56, "end": 18036.6, "probability": 0.0151 }, { "start": 18036.6, "end": 18037.81, "probability": 0.678 }, { "start": 18037.92, "end": 18039.1, "probability": 0.8239 }, { "start": 18040.1, "end": 18041.0, "probability": 0.8164 }, { "start": 18041.4, "end": 18044.54, "probability": 0.1342 }, { "start": 18045.48, "end": 18046.7, "probability": 0.7026 }, { "start": 18047.06, "end": 18047.62, "probability": 0.3124 }, { "start": 18047.72, "end": 18048.08, "probability": 0.162 }, { "start": 18048.18, "end": 18049.64, "probability": 0.4737 }, { "start": 18049.88, "end": 18053.28, "probability": 0.9489 }, { "start": 18053.38, "end": 18054.82, "probability": 0.8628 }, { "start": 18054.88, "end": 18054.98, "probability": 0.8758 }, { "start": 18056.2, "end": 18059.56, "probability": 0.6746 }, { "start": 18059.68, "end": 18061.31, "probability": 0.8641 }, { "start": 18061.52, "end": 18065.68, "probability": 0.8793 }, { "start": 18065.94, "end": 18066.6, "probability": 0.9187 }, { "start": 18066.84, "end": 18067.72, "probability": 0.8393 }, { "start": 18067.84, "end": 18072.1, "probability": 0.9855 }, { "start": 18072.86, "end": 18078.74, "probability": 0.9984 }, { "start": 18079.94, "end": 18085.2, "probability": 0.986 }, { "start": 18085.92, "end": 18086.7, "probability": 0.7003 }, { "start": 18087.3, "end": 18093.6, "probability": 0.9614 }, { "start": 18094.66, "end": 18097.82, "probability": 0.8432 }, { "start": 18098.42, "end": 18104.05, "probability": 0.9663 }, { "start": 18105.06, "end": 18106.28, "probability": 0.7341 }, { "start": 18106.36, "end": 18108.46, "probability": 0.9775 }, { "start": 18108.54, "end": 18111.32, "probability": 0.9066 }, { "start": 18111.48, "end": 18114.44, "probability": 0.9944 }, { "start": 18115.06, "end": 18117.36, "probability": 0.9673 }, { "start": 18117.96, "end": 18119.76, "probability": 0.9462 }, { "start": 18121.34, "end": 18123.12, "probability": 0.777 }, { "start": 18123.18, "end": 18124.14, "probability": 0.8146 }, { "start": 18124.68, "end": 18128.06, "probability": 0.9068 }, { "start": 18128.82, "end": 18131.12, "probability": 0.947 }, { "start": 18131.96, "end": 18133.86, "probability": 0.2993 }, { "start": 18134.02, "end": 18137.0, "probability": 0.9922 }, { "start": 18138.02, "end": 18141.62, "probability": 0.9587 }, { "start": 18141.68, "end": 18145.14, "probability": 0.9604 }, { "start": 18145.34, "end": 18148.0, "probability": 0.997 }, { "start": 18148.08, "end": 18152.3, "probability": 0.965 }, { "start": 18153.2, "end": 18156.84, "probability": 0.9922 }, { "start": 18156.84, "end": 18160.44, "probability": 0.9917 }, { "start": 18161.38, "end": 18161.8, "probability": 0.7627 }, { "start": 18161.86, "end": 18162.96, "probability": 0.9045 }, { "start": 18163.34, "end": 18166.42, "probability": 0.9901 }, { "start": 18166.9, "end": 18169.04, "probability": 0.9515 }, { "start": 18169.16, "end": 18169.76, "probability": 0.7478 }, { "start": 18170.44, "end": 18173.24, "probability": 0.9877 }, { "start": 18174.58, "end": 18178.08, "probability": 0.9834 }, { "start": 18178.16, "end": 18183.4, "probability": 0.9921 }, { "start": 18183.5, "end": 18184.46, "probability": 0.9709 }, { "start": 18184.92, "end": 18187.88, "probability": 0.992 }, { "start": 18187.88, "end": 18190.74, "probability": 0.9712 }, { "start": 18191.36, "end": 18193.96, "probability": 0.9409 }, { "start": 18194.52, "end": 18194.62, "probability": 0.7094 }, { "start": 18194.74, "end": 18198.3, "probability": 0.9888 }, { "start": 18199.6, "end": 18200.98, "probability": 0.8076 }, { "start": 18201.44, "end": 18203.3, "probability": 0.9873 }, { "start": 18204.68, "end": 18207.46, "probability": 0.7729 }, { "start": 18207.46, "end": 18210.7, "probability": 0.9982 }, { "start": 18211.36, "end": 18214.74, "probability": 0.917 }, { "start": 18215.48, "end": 18218.22, "probability": 0.9493 }, { "start": 18218.34, "end": 18219.58, "probability": 0.9874 }, { "start": 18219.66, "end": 18221.26, "probability": 0.9905 }, { "start": 18221.74, "end": 18222.82, "probability": 0.8392 }, { "start": 18223.34, "end": 18223.86, "probability": 0.6369 }, { "start": 18223.9, "end": 18224.86, "probability": 0.8397 }, { "start": 18225.0, "end": 18228.44, "probability": 0.9945 }, { "start": 18228.44, "end": 18232.98, "probability": 0.9944 }, { "start": 18233.26, "end": 18234.76, "probability": 0.999 }, { "start": 18234.82, "end": 18235.96, "probability": 0.8472 }, { "start": 18236.58, "end": 18239.32, "probability": 0.9992 }, { "start": 18239.32, "end": 18243.1, "probability": 0.9744 }, { "start": 18243.6, "end": 18245.58, "probability": 0.9642 }, { "start": 18246.06, "end": 18246.34, "probability": 0.7477 }, { "start": 18246.68, "end": 18249.3, "probability": 0.4888 }, { "start": 18249.96, "end": 18252.09, "probability": 0.8734 }, { "start": 18252.58, "end": 18252.6, "probability": 0.1046 }, { "start": 18252.72, "end": 18253.3, "probability": 0.7294 }, { "start": 18253.92, "end": 18255.32, "probability": 0.9739 }, { "start": 18256.42, "end": 18258.04, "probability": 0.7148 }, { "start": 18258.56, "end": 18259.78, "probability": 0.9927 }, { "start": 18261.84, "end": 18263.3, "probability": 0.5627 }, { "start": 18264.47, "end": 18267.24, "probability": 0.7589 }, { "start": 18268.18, "end": 18268.4, "probability": 0.7819 }, { "start": 18269.32, "end": 18270.17, "probability": 0.6704 }, { "start": 18272.0, "end": 18275.06, "probability": 0.8159 }, { "start": 18280.24, "end": 18282.5, "probability": 0.806 }, { "start": 18284.0, "end": 18285.4, "probability": 0.8658 }, { "start": 18286.02, "end": 18288.0, "probability": 0.8261 }, { "start": 18290.7, "end": 18296.88, "probability": 0.9419 }, { "start": 18297.12, "end": 18297.12, "probability": 0.9658 }, { "start": 18297.74, "end": 18299.6, "probability": 0.591 }, { "start": 18300.7, "end": 18301.86, "probability": 0.9027 }, { "start": 18302.88, "end": 18304.55, "probability": 0.9893 }, { "start": 18306.37, "end": 18307.06, "probability": 0.9672 }, { "start": 18308.16, "end": 18314.4, "probability": 0.7542 }, { "start": 18314.78, "end": 18314.8, "probability": 0.1984 }, { "start": 18314.8, "end": 18314.96, "probability": 0.2754 }, { "start": 18315.0, "end": 18317.86, "probability": 0.9153 }, { "start": 18318.42, "end": 18320.66, "probability": 0.613 }, { "start": 18321.32, "end": 18322.88, "probability": 0.6803 }, { "start": 18323.46, "end": 18324.54, "probability": 0.5066 }, { "start": 18325.2, "end": 18325.57, "probability": 0.1636 }, { "start": 18326.04, "end": 18326.6, "probability": 0.976 }, { "start": 18326.92, "end": 18334.9, "probability": 0.9697 }, { "start": 18336.64, "end": 18337.8, "probability": 0.144 }, { "start": 18339.6, "end": 18345.08, "probability": 0.9331 }, { "start": 18346.54, "end": 18348.42, "probability": 0.9896 }, { "start": 18350.3, "end": 18355.82, "probability": 0.9966 }, { "start": 18357.5, "end": 18359.58, "probability": 0.9985 }, { "start": 18360.78, "end": 18361.34, "probability": 0.8774 }, { "start": 18363.78, "end": 18365.86, "probability": 0.9844 }, { "start": 18367.26, "end": 18369.06, "probability": 0.9473 }, { "start": 18369.92, "end": 18372.08, "probability": 0.9515 }, { "start": 18372.8, "end": 18375.08, "probability": 0.9059 }, { "start": 18375.92, "end": 18377.46, "probability": 0.7639 }, { "start": 18379.22, "end": 18380.12, "probability": 0.9712 }, { "start": 18381.0, "end": 18381.3, "probability": 0.5424 }, { "start": 18381.52, "end": 18382.02, "probability": 0.6597 }, { "start": 18382.24, "end": 18385.16, "probability": 0.9959 }, { "start": 18388.22, "end": 18389.18, "probability": 0.6644 }, { "start": 18391.12, "end": 18392.18, "probability": 0.9611 }, { "start": 18393.12, "end": 18394.74, "probability": 0.9055 }, { "start": 18395.42, "end": 18398.2, "probability": 0.9774 }, { "start": 18398.96, "end": 18399.44, "probability": 0.9784 }, { "start": 18400.22, "end": 18402.66, "probability": 0.8931 }, { "start": 18404.68, "end": 18407.32, "probability": 0.7126 }, { "start": 18408.34, "end": 18412.64, "probability": 0.9924 }, { "start": 18414.6, "end": 18418.1, "probability": 0.8853 }, { "start": 18419.78, "end": 18421.02, "probability": 0.7414 }, { "start": 18422.54, "end": 18424.54, "probability": 0.9907 }, { "start": 18425.3, "end": 18426.86, "probability": 0.4331 }, { "start": 18428.72, "end": 18433.68, "probability": 0.8079 }, { "start": 18435.08, "end": 18435.6, "probability": 0.6412 }, { "start": 18436.22, "end": 18437.44, "probability": 0.7182 }, { "start": 18438.26, "end": 18439.78, "probability": 0.7431 }, { "start": 18440.38, "end": 18441.76, "probability": 0.8693 }, { "start": 18442.78, "end": 18444.76, "probability": 0.7619 }, { "start": 18446.04, "end": 18448.06, "probability": 0.8583 }, { "start": 18449.06, "end": 18451.46, "probability": 0.9753 }, { "start": 18452.18, "end": 18453.74, "probability": 0.9904 }, { "start": 18454.44, "end": 18455.68, "probability": 0.9958 }, { "start": 18458.42, "end": 18460.3, "probability": 0.8947 }, { "start": 18462.06, "end": 18463.8, "probability": 0.7835 }, { "start": 18465.34, "end": 18467.44, "probability": 0.9909 }, { "start": 18468.28, "end": 18470.4, "probability": 0.9413 }, { "start": 18471.3, "end": 18473.46, "probability": 0.872 }, { "start": 18475.58, "end": 18484.2, "probability": 0.9993 }, { "start": 18485.56, "end": 18486.12, "probability": 0.9486 }, { "start": 18486.74, "end": 18491.26, "probability": 0.8942 }, { "start": 18493.46, "end": 18494.86, "probability": 0.9261 }, { "start": 18496.4, "end": 18500.82, "probability": 0.9597 }, { "start": 18501.92, "end": 18502.74, "probability": 0.4165 }, { "start": 18503.3, "end": 18504.9, "probability": 0.7407 }, { "start": 18504.96, "end": 18508.42, "probability": 0.9214 }, { "start": 18508.86, "end": 18509.78, "probability": 0.9539 }, { "start": 18514.86, "end": 18519.58, "probability": 0.9265 }, { "start": 18520.42, "end": 18521.82, "probability": 0.6744 }, { "start": 18522.66, "end": 18524.24, "probability": 0.9716 }, { "start": 18525.08, "end": 18527.82, "probability": 0.9473 }, { "start": 18528.68, "end": 18531.0, "probability": 0.9175 }, { "start": 18532.52, "end": 18534.36, "probability": 0.9946 }, { "start": 18535.22, "end": 18537.58, "probability": 0.9476 }, { "start": 18541.04, "end": 18543.52, "probability": 0.9274 }, { "start": 18544.58, "end": 18548.5, "probability": 0.9547 }, { "start": 18549.62, "end": 18552.44, "probability": 0.9735 }, { "start": 18553.56, "end": 18555.08, "probability": 0.9877 }, { "start": 18555.92, "end": 18557.8, "probability": 0.7616 }, { "start": 18558.46, "end": 18560.16, "probability": 0.9125 }, { "start": 18561.56, "end": 18563.82, "probability": 0.8085 }, { "start": 18564.8, "end": 18568.1, "probability": 0.9895 }, { "start": 18569.96, "end": 18571.74, "probability": 0.6622 }, { "start": 18573.14, "end": 18574.86, "probability": 0.7771 }, { "start": 18575.76, "end": 18584.74, "probability": 0.9984 }, { "start": 18585.3, "end": 18588.42, "probability": 0.9926 }, { "start": 18590.12, "end": 18591.62, "probability": 0.4989 }, { "start": 18592.42, "end": 18594.36, "probability": 0.5253 }, { "start": 18595.38, "end": 18597.22, "probability": 0.8674 }, { "start": 18597.96, "end": 18599.46, "probability": 0.9899 }, { "start": 18600.84, "end": 18604.04, "probability": 0.9089 }, { "start": 18604.84, "end": 18607.24, "probability": 0.8072 }, { "start": 18607.64, "end": 18609.26, "probability": 0.9251 }, { "start": 18610.04, "end": 18613.16, "probability": 0.9922 }, { "start": 18614.08, "end": 18615.48, "probability": 0.9984 }, { "start": 18616.0, "end": 18619.9, "probability": 0.9398 }, { "start": 18620.34, "end": 18622.72, "probability": 0.99 }, { "start": 18623.66, "end": 18623.76, "probability": 0.5964 }, { "start": 18623.82, "end": 18624.32, "probability": 0.5578 }, { "start": 18624.32, "end": 18627.62, "probability": 0.6771 }, { "start": 18630.02, "end": 18634.56, "probability": 0.9128 }, { "start": 18634.66, "end": 18634.84, "probability": 0.9032 }, { "start": 18635.72, "end": 18636.78, "probability": 0.7845 }, { "start": 18636.88, "end": 18638.2, "probability": 0.5683 }, { "start": 18638.26, "end": 18639.72, "probability": 0.9062 }, { "start": 18640.56, "end": 18643.3, "probability": 0.9938 }, { "start": 18649.96, "end": 18652.56, "probability": 0.5468 }, { "start": 18653.2, "end": 18655.12, "probability": 0.75 }, { "start": 18669.86, "end": 18670.7, "probability": 0.199 }, { "start": 18672.62, "end": 18674.36, "probability": 0.0487 }, { "start": 18674.36, "end": 18674.36, "probability": 0.1697 }, { "start": 18674.78, "end": 18674.94, "probability": 0.1644 }, { "start": 18675.04, "end": 18675.7, "probability": 0.0975 }, { "start": 18678.64, "end": 18681.6, "probability": 0.5559 }, { "start": 18681.66, "end": 18688.2, "probability": 0.0397 }, { "start": 18688.2, "end": 18691.6, "probability": 0.05 }, { "start": 18699.76, "end": 18701.04, "probability": 0.0582 }, { "start": 18702.18, "end": 18706.16, "probability": 0.0659 }, { "start": 18707.19, "end": 18709.26, "probability": 0.0797 }, { "start": 18709.42, "end": 18710.89, "probability": 0.0175 }, { "start": 18712.2, "end": 18715.1, "probability": 0.1274 }, { "start": 18740.0, "end": 18740.0, "probability": 0.0 }, { "start": 18740.0, "end": 18740.0, "probability": 0.0 }, { "start": 18740.0, "end": 18740.0, "probability": 0.0 }, { "start": 18740.0, "end": 18740.0, "probability": 0.0 }, { "start": 18740.0, "end": 18740.0, "probability": 0.0 }, { "start": 18740.0, "end": 18740.0, "probability": 0.0 }, { "start": 18740.0, "end": 18740.0, "probability": 0.0 }, { "start": 18740.0, "end": 18740.0, "probability": 0.0 }, { "start": 18740.0, "end": 18740.0, "probability": 0.0 }, { "start": 18740.0, "end": 18740.0, "probability": 0.0 }, { "start": 18740.0, "end": 18740.0, "probability": 0.0 }, { "start": 18740.0, "end": 18740.0, "probability": 0.0 }, { "start": 18740.0, "end": 18740.0, "probability": 0.0 }, { "start": 18740.0, "end": 18740.0, "probability": 0.0 }, { "start": 18740.0, "end": 18740.0, "probability": 0.0 }, { "start": 18740.0, "end": 18740.0, "probability": 0.0 }, { "start": 18805.22, "end": 18805.72, "probability": 0.0414 }, { "start": 18806.27, "end": 18807.4, "probability": 0.0214 }, { "start": 18807.4, "end": 18808.6, "probability": 0.0595 }, { "start": 18808.89, "end": 18810.96, "probability": 0.0579 }, { "start": 18812.1, "end": 18813.0, "probability": 0.1963 }, { "start": 18815.3, "end": 18816.1, "probability": 0.2423 }, { "start": 18817.22, "end": 18817.78, "probability": 0.0065 }, { "start": 18818.22, "end": 18823.12, "probability": 0.0374 }, { "start": 18823.34, "end": 18827.1, "probability": 0.089 }, { "start": 18835.98, "end": 18836.48, "probability": 0.1641 }, { "start": 18866.0, "end": 18866.0, "probability": 0.0 }, { "start": 18866.0, "end": 18866.0, "probability": 0.0 }, { "start": 18866.0, "end": 18866.0, "probability": 0.0 }, { "start": 18866.0, "end": 18866.0, "probability": 0.0 }, { "start": 18866.0, "end": 18866.0, "probability": 0.0 }, { "start": 18866.0, "end": 18866.0, "probability": 0.0 }, { "start": 18866.0, "end": 18866.0, "probability": 0.0 }, { "start": 18866.0, "end": 18866.0, "probability": 0.0 }, { "start": 18866.0, "end": 18866.0, "probability": 0.0 }, { "start": 18866.0, "end": 18866.0, "probability": 0.0 }, { "start": 18866.0, "end": 18866.0, "probability": 0.0 }, { "start": 18866.0, "end": 18866.0, "probability": 0.0 }, { "start": 18866.0, "end": 18866.0, "probability": 0.0 }, { "start": 18866.0, "end": 18866.0, "probability": 0.0 }, { "start": 18866.0, "end": 18866.0, "probability": 0.0 }, { "start": 18866.0, "end": 18866.0, "probability": 0.0 }, { "start": 18866.0, "end": 18866.0, "probability": 0.0 }, { "start": 18866.0, "end": 18866.0, "probability": 0.0 }, { "start": 18866.0, "end": 18866.0, "probability": 0.0 }, { "start": 18866.0, "end": 18866.0, "probability": 0.0 }, { "start": 18866.0, "end": 18866.0, "probability": 0.0 }, { "start": 18866.0, "end": 18866.0, "probability": 0.0 }, { "start": 18866.0, "end": 18866.0, "probability": 0.0 }, { "start": 18866.0, "end": 18866.0, "probability": 0.0 }, { "start": 18866.0, "end": 18866.0, "probability": 0.0 }, { "start": 18866.0, "end": 18866.0, "probability": 0.0 }, { "start": 18866.0, "end": 18866.0, "probability": 0.0 }, { "start": 18866.0, "end": 18866.0, "probability": 0.0 }, { "start": 18866.0, "end": 18866.0, "probability": 0.0 }, { "start": 18866.0, "end": 18866.0, "probability": 0.0 }, { "start": 18866.0, "end": 18866.0, "probability": 0.0 }, { "start": 18866.0, "end": 18866.0, "probability": 0.0 }, { "start": 18866.0, "end": 18866.0, "probability": 0.0 }, { "start": 18866.0, "end": 18866.0, "probability": 0.0 }, { "start": 18866.0, "end": 18866.0, "probability": 0.0 }, { "start": 18866.0, "end": 18866.0, "probability": 0.0 }, { "start": 18866.0, "end": 18866.0, "probability": 0.0 }, { "start": 18866.0, "end": 18866.0, "probability": 0.0 }, { "start": 18866.08, "end": 18866.68, "probability": 0.0653 }, { "start": 18867.48, "end": 18868.36, "probability": 0.8175 }, { "start": 18868.94, "end": 18870.04, "probability": 0.9426 }, { "start": 18871.3, "end": 18872.32, "probability": 0.9718 }, { "start": 18872.88, "end": 18874.14, "probability": 0.879 }, { "start": 18875.14, "end": 18879.36, "probability": 0.9646 }, { "start": 18879.44, "end": 18882.72, "probability": 0.9814 }, { "start": 18883.1, "end": 18885.98, "probability": 0.9517 }, { "start": 18886.26, "end": 18889.22, "probability": 0.9767 }, { "start": 18890.02, "end": 18892.72, "probability": 0.9324 }, { "start": 18893.34, "end": 18893.82, "probability": 0.5229 }, { "start": 18893.9, "end": 18895.0, "probability": 0.9265 }, { "start": 18903.88, "end": 18904.38, "probability": 0.4259 }, { "start": 18904.38, "end": 18906.86, "probability": 0.1439 }, { "start": 18932.02, "end": 18938.16, "probability": 0.9974 }, { "start": 18939.74, "end": 18940.92, "probability": 0.6768 }, { "start": 18941.9, "end": 18945.22, "probability": 0.9064 }, { "start": 18945.88, "end": 18948.98, "probability": 0.998 }, { "start": 18949.8, "end": 18953.62, "probability": 0.9919 }, { "start": 18954.38, "end": 18955.1, "probability": 0.998 }, { "start": 18955.66, "end": 18958.06, "probability": 0.9883 }, { "start": 18959.62, "end": 18962.28, "probability": 0.8601 }, { "start": 18962.9, "end": 18964.6, "probability": 0.9805 }, { "start": 18964.66, "end": 18965.36, "probability": 0.9161 }, { "start": 18965.4, "end": 18965.52, "probability": 0.2807 }, { "start": 18965.6, "end": 18965.92, "probability": 0.8503 }, { "start": 18965.96, "end": 18968.36, "probability": 0.8728 }, { "start": 18969.0, "end": 18970.04, "probability": 0.9986 }, { "start": 18971.74, "end": 18973.92, "probability": 0.92 }, { "start": 18974.6, "end": 18975.7, "probability": 0.913 }, { "start": 18976.84, "end": 18978.22, "probability": 0.9766 }, { "start": 18978.74, "end": 18981.98, "probability": 0.9967 }, { "start": 18981.98, "end": 18984.84, "probability": 0.998 }, { "start": 18985.54, "end": 18986.8, "probability": 0.9226 }, { "start": 18987.4, "end": 18990.6, "probability": 0.7892 }, { "start": 18991.18, "end": 18994.42, "probability": 0.9168 }, { "start": 18996.9, "end": 18997.68, "probability": 0.8501 }, { "start": 18998.48, "end": 19003.3, "probability": 0.748 }, { "start": 19004.0, "end": 19005.08, "probability": 0.911 }, { "start": 19005.64, "end": 19009.64, "probability": 0.9707 }, { "start": 19011.04, "end": 19015.44, "probability": 0.9835 }, { "start": 19017.02, "end": 19022.72, "probability": 0.9751 }, { "start": 19023.86, "end": 19026.38, "probability": 0.8979 }, { "start": 19026.86, "end": 19029.28, "probability": 0.8668 }, { "start": 19029.32, "end": 19029.68, "probability": 0.9005 }, { "start": 19029.8, "end": 19030.88, "probability": 0.9227 }, { "start": 19033.52, "end": 19037.26, "probability": 0.179 }, { "start": 19037.56, "end": 19039.22, "probability": 0.8511 }, { "start": 19039.56, "end": 19041.36, "probability": 0.9772 }, { "start": 19042.78, "end": 19045.6, "probability": 0.9717 }, { "start": 19046.3, "end": 19052.28, "probability": 0.996 }, { "start": 19053.62, "end": 19054.5, "probability": 0.762 }, { "start": 19054.88, "end": 19055.52, "probability": 0.741 }, { "start": 19055.62, "end": 19059.82, "probability": 0.9742 }, { "start": 19061.56, "end": 19063.42, "probability": 0.7892 }, { "start": 19063.48, "end": 19067.46, "probability": 0.9539 }, { "start": 19069.08, "end": 19069.66, "probability": 0.9799 }, { "start": 19070.18, "end": 19073.34, "probability": 0.9886 }, { "start": 19073.46, "end": 19074.8, "probability": 0.999 }, { "start": 19076.06, "end": 19076.76, "probability": 0.8921 }, { "start": 19077.94, "end": 19081.48, "probability": 0.9515 }, { "start": 19082.16, "end": 19085.33, "probability": 0.9893 }, { "start": 19085.4, "end": 19088.66, "probability": 0.9941 }, { "start": 19089.62, "end": 19090.76, "probability": 0.9187 }, { "start": 19090.9, "end": 19093.44, "probability": 0.9856 }, { "start": 19093.98, "end": 19098.0, "probability": 0.9838 }, { "start": 19098.84, "end": 19102.02, "probability": 0.9989 }, { "start": 19103.62, "end": 19106.28, "probability": 0.9695 }, { "start": 19107.18, "end": 19110.56, "probability": 0.9832 }, { "start": 19110.64, "end": 19113.14, "probability": 0.8915 }, { "start": 19113.92, "end": 19114.9, "probability": 0.999 }, { "start": 19115.58, "end": 19119.72, "probability": 0.9761 }, { "start": 19120.16, "end": 19122.84, "probability": 0.7493 }, { "start": 19123.46, "end": 19126.28, "probability": 0.9264 }, { "start": 19126.86, "end": 19127.9, "probability": 0.5613 }, { "start": 19128.02, "end": 19129.54, "probability": 0.8514 }, { "start": 19129.6, "end": 19130.46, "probability": 0.7778 }, { "start": 19132.1, "end": 19134.3, "probability": 0.9607 }, { "start": 19134.96, "end": 19135.8, "probability": 0.9753 }, { "start": 19136.4, "end": 19139.74, "probability": 0.9807 }, { "start": 19140.32, "end": 19144.96, "probability": 0.9825 }, { "start": 19144.96, "end": 19149.9, "probability": 0.997 }, { "start": 19150.36, "end": 19152.02, "probability": 0.9473 }, { "start": 19152.48, "end": 19157.08, "probability": 0.9988 }, { "start": 19157.82, "end": 19158.6, "probability": 0.6694 }, { "start": 19159.26, "end": 19160.36, "probability": 0.958 }, { "start": 19160.9, "end": 19163.22, "probability": 0.9967 }, { "start": 19163.7, "end": 19167.92, "probability": 0.9938 }, { "start": 19168.92, "end": 19168.92, "probability": 0.0479 }, { "start": 19168.92, "end": 19170.26, "probability": 0.6761 }, { "start": 19170.48, "end": 19170.92, "probability": 0.4981 }, { "start": 19171.36, "end": 19172.62, "probability": 0.903 }, { "start": 19173.36, "end": 19178.02, "probability": 0.9839 }, { "start": 19178.02, "end": 19183.62, "probability": 0.9922 }, { "start": 19183.62, "end": 19189.02, "probability": 0.8647 }, { "start": 19189.96, "end": 19190.64, "probability": 0.591 }, { "start": 19191.06, "end": 19192.14, "probability": 0.8312 }, { "start": 19192.54, "end": 19193.96, "probability": 0.9049 }, { "start": 19194.12, "end": 19194.9, "probability": 0.8106 }, { "start": 19195.26, "end": 19199.56, "probability": 0.9572 }, { "start": 19200.04, "end": 19200.6, "probability": 0.7556 }, { "start": 19200.76, "end": 19203.08, "probability": 0.8943 }, { "start": 19203.68, "end": 19204.18, "probability": 0.7344 }, { "start": 19204.66, "end": 19205.82, "probability": 0.7844 }, { "start": 19206.34, "end": 19206.92, "probability": 0.6999 }, { "start": 19209.14, "end": 19211.6, "probability": 0.9623 }, { "start": 19212.54, "end": 19214.66, "probability": 0.9769 }, { "start": 19215.42, "end": 19219.04, "probability": 0.9728 }, { "start": 19219.96, "end": 19223.96, "probability": 0.9921 }, { "start": 19225.82, "end": 19227.14, "probability": 0.6951 }, { "start": 19227.42, "end": 19229.42, "probability": 0.9963 }, { "start": 19230.04, "end": 19232.2, "probability": 0.8077 }, { "start": 19233.12, "end": 19234.68, "probability": 0.9672 }, { "start": 19235.64, "end": 19236.6, "probability": 0.4502 }, { "start": 19238.42, "end": 19241.3, "probability": 0.9963 }, { "start": 19242.18, "end": 19243.12, "probability": 0.9941 }, { "start": 19245.84, "end": 19249.12, "probability": 0.99 }, { "start": 19249.94, "end": 19254.26, "probability": 0.9971 }, { "start": 19255.18, "end": 19258.66, "probability": 0.9941 }, { "start": 19260.28, "end": 19261.84, "probability": 0.8121 }, { "start": 19263.12, "end": 19265.48, "probability": 0.8434 }, { "start": 19266.54, "end": 19268.94, "probability": 0.9805 }, { "start": 19268.94, "end": 19272.0, "probability": 0.9974 }, { "start": 19273.16, "end": 19274.4, "probability": 0.9518 }, { "start": 19275.98, "end": 19277.44, "probability": 0.6641 }, { "start": 19278.88, "end": 19279.92, "probability": 0.83 }, { "start": 19280.66, "end": 19281.96, "probability": 0.9214 }, { "start": 19283.16, "end": 19287.46, "probability": 0.9708 }, { "start": 19288.2, "end": 19288.96, "probability": 0.8647 }, { "start": 19289.0, "end": 19292.84, "probability": 0.9907 }, { "start": 19293.08, "end": 19294.18, "probability": 0.805 }, { "start": 19294.92, "end": 19298.42, "probability": 0.984 }, { "start": 19299.62, "end": 19300.58, "probability": 0.9845 }, { "start": 19301.06, "end": 19301.78, "probability": 0.828 }, { "start": 19302.3, "end": 19304.06, "probability": 0.9948 }, { "start": 19306.44, "end": 19308.34, "probability": 0.6106 }, { "start": 19310.06, "end": 19310.76, "probability": 0.6887 }, { "start": 19312.4, "end": 19316.86, "probability": 0.9696 }, { "start": 19317.06, "end": 19317.72, "probability": 0.8828 }, { "start": 19318.12, "end": 19319.34, "probability": 0.5113 }, { "start": 19320.06, "end": 19322.13, "probability": 0.9956 }, { "start": 19322.18, "end": 19326.62, "probability": 0.8208 }, { "start": 19328.02, "end": 19331.98, "probability": 0.9539 }, { "start": 19332.72, "end": 19333.24, "probability": 0.5096 }, { "start": 19334.04, "end": 19336.82, "probability": 0.9886 }, { "start": 19337.66, "end": 19340.6, "probability": 0.9913 }, { "start": 19341.4, "end": 19343.95, "probability": 0.9785 }, { "start": 19344.54, "end": 19348.36, "probability": 0.9438 }, { "start": 19348.5, "end": 19349.4, "probability": 0.9371 }, { "start": 19349.58, "end": 19350.74, "probability": 0.8778 }, { "start": 19351.7, "end": 19353.74, "probability": 0.8444 }, { "start": 19354.56, "end": 19355.82, "probability": 0.9523 }, { "start": 19357.2, "end": 19360.2, "probability": 0.9376 }, { "start": 19360.72, "end": 19364.3, "probability": 0.9567 }, { "start": 19366.0, "end": 19369.22, "probability": 0.9929 }, { "start": 19370.28, "end": 19375.54, "probability": 0.9935 }, { "start": 19375.68, "end": 19375.78, "probability": 0.6457 }, { "start": 19376.78, "end": 19378.12, "probability": 0.9995 }, { "start": 19378.88, "end": 19384.36, "probability": 0.9653 }, { "start": 19384.84, "end": 19387.02, "probability": 0.9542 }, { "start": 19388.98, "end": 19391.68, "probability": 0.9065 }, { "start": 19392.2, "end": 19394.8, "probability": 0.9445 }, { "start": 19395.62, "end": 19398.72, "probability": 0.9902 }, { "start": 19399.06, "end": 19402.76, "probability": 0.9881 }, { "start": 19403.58, "end": 19404.28, "probability": 0.768 }, { "start": 19405.38, "end": 19407.24, "probability": 0.984 }, { "start": 19407.4, "end": 19409.3, "probability": 0.9428 }, { "start": 19409.88, "end": 19412.62, "probability": 0.9966 }, { "start": 19413.28, "end": 19414.26, "probability": 0.5961 }, { "start": 19414.52, "end": 19415.84, "probability": 0.9798 }, { "start": 19416.86, "end": 19418.6, "probability": 0.9185 }, { "start": 19418.72, "end": 19420.48, "probability": 0.8688 }, { "start": 19421.02, "end": 19423.64, "probability": 0.0812 }, { "start": 19424.24, "end": 19425.33, "probability": 0.0525 }, { "start": 19426.08, "end": 19427.82, "probability": 0.2335 }, { "start": 19428.38, "end": 19430.94, "probability": 0.3768 }, { "start": 19442.04, "end": 19442.04, "probability": 0.0138 }, { "start": 19442.04, "end": 19442.04, "probability": 0.0482 }, { "start": 19442.04, "end": 19442.04, "probability": 0.0386 }, { "start": 19442.04, "end": 19442.04, "probability": 0.025 }, { "start": 19442.04, "end": 19442.04, "probability": 0.0748 }, { "start": 19442.04, "end": 19442.66, "probability": 0.4014 }, { "start": 19442.84, "end": 19444.24, "probability": 0.5088 }, { "start": 19444.32, "end": 19446.2, "probability": 0.5719 }, { "start": 19446.52, "end": 19449.66, "probability": 0.8973 }, { "start": 19450.28, "end": 19453.84, "probability": 0.7913 }, { "start": 19454.74, "end": 19455.56, "probability": 0.8096 }, { "start": 19456.0, "end": 19458.78, "probability": 0.8621 }, { "start": 19458.86, "end": 19459.34, "probability": 0.7596 }, { "start": 19460.72, "end": 19464.14, "probability": 0.9786 }, { "start": 19464.24, "end": 19467.24, "probability": 0.7377 }, { "start": 19467.82, "end": 19469.04, "probability": 0.734 }, { "start": 19469.98, "end": 19474.98, "probability": 0.908 }, { "start": 19476.0, "end": 19478.2, "probability": 0.9613 }, { "start": 19479.16, "end": 19480.16, "probability": 0.8217 }, { "start": 19480.26, "end": 19483.28, "probability": 0.9872 }, { "start": 19483.9, "end": 19484.88, "probability": 0.6017 }, { "start": 19485.82, "end": 19488.0, "probability": 0.9606 }, { "start": 19488.88, "end": 19490.24, "probability": 0.9935 }, { "start": 19490.58, "end": 19491.64, "probability": 0.8967 }, { "start": 19492.14, "end": 19496.02, "probability": 0.9717 }, { "start": 19496.14, "end": 19501.86, "probability": 0.9791 }, { "start": 19503.36, "end": 19504.52, "probability": 0.9997 }, { "start": 19505.46, "end": 19505.94, "probability": 0.8798 }, { "start": 19507.42, "end": 19509.68, "probability": 0.9419 }, { "start": 19510.66, "end": 19513.2, "probability": 0.9407 }, { "start": 19513.7, "end": 19515.4, "probability": 0.9977 }, { "start": 19516.5, "end": 19522.06, "probability": 0.999 }, { "start": 19522.56, "end": 19525.26, "probability": 0.9972 }, { "start": 19526.66, "end": 19527.36, "probability": 0.7616 }, { "start": 19528.32, "end": 19532.56, "probability": 0.9937 }, { "start": 19532.56, "end": 19534.82, "probability": 0.9985 }, { "start": 19535.34, "end": 19535.92, "probability": 0.9989 }, { "start": 19536.44, "end": 19537.58, "probability": 0.9121 }, { "start": 19538.58, "end": 19540.48, "probability": 0.9985 }, { "start": 19540.64, "end": 19540.98, "probability": 0.5839 }, { "start": 19542.96, "end": 19544.16, "probability": 0.4762 }, { "start": 19544.26, "end": 19548.82, "probability": 0.9946 }, { "start": 19549.72, "end": 19550.24, "probability": 0.5945 }, { "start": 19550.9, "end": 19555.92, "probability": 0.9984 }, { "start": 19556.24, "end": 19559.74, "probability": 0.9945 }, { "start": 19560.8, "end": 19561.26, "probability": 0.8339 }, { "start": 19561.32, "end": 19563.8, "probability": 0.9844 }, { "start": 19565.62, "end": 19567.68, "probability": 0.9978 }, { "start": 19567.84, "end": 19571.1, "probability": 0.8705 }, { "start": 19571.84, "end": 19573.12, "probability": 0.8717 }, { "start": 19573.92, "end": 19574.9, "probability": 0.2845 }, { "start": 19576.08, "end": 19578.64, "probability": 0.9957 }, { "start": 19580.5, "end": 19582.74, "probability": 0.9896 }, { "start": 19583.84, "end": 19585.2, "probability": 0.8607 }, { "start": 19585.32, "end": 19585.62, "probability": 0.3715 }, { "start": 19585.7, "end": 19586.2, "probability": 0.5928 }, { "start": 19586.26, "end": 19588.62, "probability": 0.8381 }, { "start": 19590.08, "end": 19592.82, "probability": 0.8872 }, { "start": 19593.52, "end": 19594.36, "probability": 0.9727 }, { "start": 19595.84, "end": 19598.38, "probability": 0.9802 }, { "start": 19598.5, "end": 19600.28, "probability": 0.9974 }, { "start": 19600.46, "end": 19601.2, "probability": 0.9842 }, { "start": 19601.96, "end": 19603.48, "probability": 0.9054 }, { "start": 19604.22, "end": 19606.3, "probability": 0.9976 }, { "start": 19606.3, "end": 19609.06, "probability": 0.999 }, { "start": 19609.66, "end": 19610.84, "probability": 0.7485 }, { "start": 19612.08, "end": 19613.86, "probability": 0.994 }, { "start": 19614.74, "end": 19617.1, "probability": 0.9906 }, { "start": 19617.3, "end": 19619.7, "probability": 0.995 }, { "start": 19620.64, "end": 19623.7, "probability": 0.9756 }, { "start": 19624.44, "end": 19627.02, "probability": 0.9893 }, { "start": 19627.1, "end": 19627.62, "probability": 0.969 }, { "start": 19628.36, "end": 19630.96, "probability": 0.9922 }, { "start": 19631.74, "end": 19632.14, "probability": 0.308 }, { "start": 19632.28, "end": 19633.68, "probability": 0.9846 }, { "start": 19633.94, "end": 19638.88, "probability": 0.9739 }, { "start": 19638.92, "end": 19641.52, "probability": 0.9679 }, { "start": 19641.52, "end": 19644.68, "probability": 0.9146 }, { "start": 19644.8, "end": 19645.88, "probability": 0.7541 }, { "start": 19646.32, "end": 19648.86, "probability": 0.9613 }, { "start": 19649.58, "end": 19650.44, "probability": 0.7267 }, { "start": 19651.14, "end": 19652.8, "probability": 0.8003 }, { "start": 19652.9, "end": 19655.02, "probability": 0.9425 }, { "start": 19663.12, "end": 19663.12, "probability": 0.0008 }, { "start": 19664.1, "end": 19665.74, "probability": 0.0794 }, { "start": 19667.28, "end": 19669.32, "probability": 0.3242 }, { "start": 19682.04, "end": 19687.74, "probability": 0.8497 }, { "start": 19689.82, "end": 19691.68, "probability": 0.7859 }, { "start": 19691.96, "end": 19695.9, "probability": 0.9863 }, { "start": 19696.62, "end": 19700.94, "probability": 0.9399 }, { "start": 19701.74, "end": 19704.78, "probability": 0.911 }, { "start": 19705.14, "end": 19707.64, "probability": 0.7731 }, { "start": 19707.68, "end": 19711.9, "probability": 0.9422 }, { "start": 19712.56, "end": 19716.18, "probability": 0.9915 }, { "start": 19716.18, "end": 19721.76, "probability": 0.9834 }, { "start": 19722.74, "end": 19730.6, "probability": 0.9819 }, { "start": 19731.48, "end": 19735.36, "probability": 0.9575 }, { "start": 19736.2, "end": 19737.96, "probability": 0.9592 }, { "start": 19738.64, "end": 19739.96, "probability": 0.9204 }, { "start": 19740.66, "end": 19745.14, "probability": 0.9644 }, { "start": 19745.2, "end": 19745.5, "probability": 0.5937 }, { "start": 19745.56, "end": 19747.69, "probability": 0.9863 }, { "start": 19748.62, "end": 19750.68, "probability": 0.9443 }, { "start": 19751.88, "end": 19753.9, "probability": 0.8817 }, { "start": 19754.9, "end": 19757.94, "probability": 0.9583 }, { "start": 19758.92, "end": 19762.14, "probability": 0.9248 }, { "start": 19764.02, "end": 19771.22, "probability": 0.9644 }, { "start": 19772.06, "end": 19774.46, "probability": 0.835 }, { "start": 19774.82, "end": 19778.28, "probability": 0.9739 }, { "start": 19779.1, "end": 19783.08, "probability": 0.9976 }, { "start": 19783.08, "end": 19789.24, "probability": 0.9958 }, { "start": 19790.14, "end": 19793.02, "probability": 0.8723 }, { "start": 19793.24, "end": 19796.02, "probability": 0.9617 }, { "start": 19796.72, "end": 19801.1, "probability": 0.9827 }, { "start": 19801.1, "end": 19804.88, "probability": 0.9957 }, { "start": 19804.88, "end": 19809.16, "probability": 0.976 }, { "start": 19809.88, "end": 19813.46, "probability": 0.9004 }, { "start": 19814.28, "end": 19817.24, "probability": 0.9962 }, { "start": 19817.64, "end": 19823.26, "probability": 0.9632 }, { "start": 19824.04, "end": 19825.24, "probability": 0.9688 }, { "start": 19825.88, "end": 19830.72, "probability": 0.8461 }, { "start": 19830.78, "end": 19831.96, "probability": 0.8678 }, { "start": 19832.7, "end": 19836.54, "probability": 0.9195 }, { "start": 19836.9, "end": 19839.26, "probability": 0.2575 }, { "start": 19839.38, "end": 19840.4, "probability": 0.6033 }, { "start": 19840.4, "end": 19841.42, "probability": 0.0206 }, { "start": 19841.62, "end": 19841.76, "probability": 0.1595 }, { "start": 19842.28, "end": 19845.26, "probability": 0.8671 }, { "start": 19845.6, "end": 19850.14, "probability": 0.9946 }, { "start": 19850.58, "end": 19854.0, "probability": 0.9961 }, { "start": 19854.38, "end": 19856.68, "probability": 0.9937 }, { "start": 19856.84, "end": 19860.04, "probability": 0.9714 }, { "start": 19860.58, "end": 19864.42, "probability": 0.9862 }, { "start": 19864.98, "end": 19867.58, "probability": 0.9971 }, { "start": 19868.66, "end": 19869.68, "probability": 0.7402 }, { "start": 19869.82, "end": 19872.72, "probability": 0.9862 }, { "start": 19874.94, "end": 19876.44, "probability": 0.8462 }, { "start": 19877.94, "end": 19878.76, "probability": 0.9588 }, { "start": 19879.72, "end": 19884.49, "probability": 0.974 }, { "start": 19886.46, "end": 19888.84, "probability": 0.9857 }, { "start": 19889.92, "end": 19892.48, "probability": 0.8937 }, { "start": 19892.72, "end": 19896.6, "probability": 0.9661 }, { "start": 19897.52, "end": 19901.64, "probability": 0.999 }, { "start": 19901.64, "end": 19906.94, "probability": 0.994 }, { "start": 19907.38, "end": 19912.5, "probability": 0.9907 }, { "start": 19913.08, "end": 19918.2, "probability": 0.9893 }, { "start": 19918.34, "end": 19924.64, "probability": 0.9631 }, { "start": 19925.42, "end": 19928.72, "probability": 0.8485 }, { "start": 19929.44, "end": 19934.46, "probability": 0.9915 }, { "start": 19936.12, "end": 19942.58, "probability": 0.9901 }, { "start": 19942.58, "end": 19947.76, "probability": 0.9954 }, { "start": 19948.76, "end": 19953.04, "probability": 0.9973 }, { "start": 19953.62, "end": 19956.9, "probability": 0.7659 }, { "start": 19957.52, "end": 19958.8, "probability": 0.9502 }, { "start": 19959.52, "end": 19961.36, "probability": 0.9854 }, { "start": 19961.8, "end": 19963.1, "probability": 0.854 }, { "start": 19963.48, "end": 19965.2, "probability": 0.811 }, { "start": 19965.28, "end": 19967.6, "probability": 0.9851 }, { "start": 19968.02, "end": 19972.66, "probability": 0.9502 }, { "start": 19972.98, "end": 19977.88, "probability": 0.9621 }, { "start": 19978.44, "end": 19979.72, "probability": 0.9675 }, { "start": 19980.14, "end": 19982.92, "probability": 0.9653 }, { "start": 19984.1, "end": 19987.74, "probability": 0.8524 }, { "start": 19988.54, "end": 19991.46, "probability": 0.988 }, { "start": 19991.96, "end": 19995.66, "probability": 0.9881 }, { "start": 19996.02, "end": 19996.38, "probability": 0.8038 }, { "start": 19999.48, "end": 20001.56, "probability": 0.8501 }, { "start": 20002.86, "end": 20003.7, "probability": 0.7601 }, { "start": 20007.74, "end": 20008.6, "probability": 0.5383 }, { "start": 20010.44, "end": 20012.55, "probability": 0.966 }, { "start": 20014.38, "end": 20015.8, "probability": 0.3216 }, { "start": 20015.88, "end": 20017.26, "probability": 0.9672 }, { "start": 20018.04, "end": 20019.24, "probability": 0.6921 }, { "start": 20019.38, "end": 20020.58, "probability": 0.7575 }, { "start": 20020.66, "end": 20023.14, "probability": 0.699 }, { "start": 20043.62, "end": 20043.8, "probability": 0.0388 }, { "start": 20043.8, "end": 20043.8, "probability": 0.4494 }, { "start": 20043.8, "end": 20043.8, "probability": 0.1847 }, { "start": 20043.8, "end": 20043.8, "probability": 0.5879 }, { "start": 20043.8, "end": 20047.7, "probability": 0.7543 }, { "start": 20048.24, "end": 20049.68, "probability": 0.7078 }, { "start": 20050.8, "end": 20054.46, "probability": 0.9392 }, { "start": 20055.32, "end": 20060.36, "probability": 0.9251 }, { "start": 20061.42, "end": 20062.26, "probability": 0.4819 }, { "start": 20062.88, "end": 20063.96, "probability": 0.6844 }, { "start": 20064.5, "end": 20065.28, "probability": 0.382 }, { "start": 20066.6, "end": 20067.94, "probability": 0.9453 }, { "start": 20068.5, "end": 20070.34, "probability": 0.7603 }, { "start": 20070.56, "end": 20071.96, "probability": 0.7111 }, { "start": 20073.12, "end": 20078.0, "probability": 0.9761 }, { "start": 20078.14, "end": 20080.52, "probability": 0.823 }, { "start": 20081.54, "end": 20084.42, "probability": 0.8787 }, { "start": 20084.62, "end": 20088.02, "probability": 0.5929 }, { "start": 20089.48, "end": 20094.08, "probability": 0.8895 }, { "start": 20094.98, "end": 20098.28, "probability": 0.905 }, { "start": 20098.36, "end": 20101.62, "probability": 0.8408 }, { "start": 20102.68, "end": 20105.88, "probability": 0.8974 }, { "start": 20106.58, "end": 20111.86, "probability": 0.9802 }, { "start": 20112.34, "end": 20113.9, "probability": 0.9685 }, { "start": 20114.18, "end": 20120.76, "probability": 0.9548 }, { "start": 20122.42, "end": 20131.0, "probability": 0.7939 }, { "start": 20131.66, "end": 20137.24, "probability": 0.9263 }, { "start": 20139.12, "end": 20140.72, "probability": 0.8501 }, { "start": 20141.6, "end": 20146.92, "probability": 0.7724 }, { "start": 20147.88, "end": 20153.28, "probability": 0.9746 }, { "start": 20154.58, "end": 20156.44, "probability": 0.784 }, { "start": 20157.02, "end": 20158.64, "probability": 0.9716 }, { "start": 20158.9, "end": 20160.2, "probability": 0.9321 }, { "start": 20160.76, "end": 20163.32, "probability": 0.9857 }, { "start": 20164.06, "end": 20166.48, "probability": 0.8327 }, { "start": 20166.6, "end": 20169.32, "probability": 0.8714 }, { "start": 20170.08, "end": 20170.96, "probability": 0.9181 }, { "start": 20171.22, "end": 20175.96, "probability": 0.9939 }, { "start": 20177.04, "end": 20183.58, "probability": 0.9968 }, { "start": 20183.8, "end": 20185.5, "probability": 0.8104 }, { "start": 20186.22, "end": 20188.52, "probability": 0.7924 }, { "start": 20189.16, "end": 20191.14, "probability": 0.9842 }, { "start": 20191.22, "end": 20192.64, "probability": 0.9976 }, { "start": 20193.32, "end": 20195.62, "probability": 0.9919 }, { "start": 20196.24, "end": 20198.59, "probability": 0.9758 }, { "start": 20199.0, "end": 20203.54, "probability": 0.9473 }, { "start": 20204.34, "end": 20207.3, "probability": 0.7713 }, { "start": 20208.12, "end": 20211.34, "probability": 0.9876 }, { "start": 20212.54, "end": 20216.44, "probability": 0.9722 }, { "start": 20216.62, "end": 20217.82, "probability": 0.6668 }, { "start": 20218.34, "end": 20224.84, "probability": 0.927 }, { "start": 20224.9, "end": 20226.2, "probability": 0.78 }, { "start": 20226.72, "end": 20228.12, "probability": 0.7953 }, { "start": 20228.74, "end": 20233.98, "probability": 0.9867 }, { "start": 20234.04, "end": 20235.24, "probability": 0.9595 }, { "start": 20236.02, "end": 20240.12, "probability": 0.6573 }, { "start": 20240.24, "end": 20243.96, "probability": 0.8618 }, { "start": 20244.46, "end": 20247.28, "probability": 0.9873 }, { "start": 20247.54, "end": 20248.86, "probability": 0.7477 }, { "start": 20249.08, "end": 20253.94, "probability": 0.8781 }, { "start": 20254.0, "end": 20254.88, "probability": 0.8242 }, { "start": 20255.0, "end": 20257.0, "probability": 0.9858 }, { "start": 20257.54, "end": 20259.7, "probability": 0.994 }, { "start": 20260.22, "end": 20263.2, "probability": 0.9962 }, { "start": 20263.54, "end": 20265.96, "probability": 0.949 }, { "start": 20266.16, "end": 20270.08, "probability": 0.9878 }, { "start": 20270.08, "end": 20276.46, "probability": 0.9184 }, { "start": 20276.56, "end": 20277.58, "probability": 0.5257 }, { "start": 20278.6, "end": 20281.88, "probability": 0.8847 }, { "start": 20282.6, "end": 20284.24, "probability": 0.9946 }, { "start": 20287.36, "end": 20291.02, "probability": 0.9979 }, { "start": 20291.6, "end": 20294.72, "probability": 0.8551 }, { "start": 20294.72, "end": 20299.7, "probability": 0.9985 }, { "start": 20300.4, "end": 20305.66, "probability": 0.9944 }, { "start": 20306.12, "end": 20308.62, "probability": 0.8621 }, { "start": 20309.2, "end": 20309.48, "probability": 0.6812 }, { "start": 20310.06, "end": 20311.54, "probability": 0.2918 }, { "start": 20312.52, "end": 20322.8, "probability": 0.9757 }, { "start": 20323.87, "end": 20326.58, "probability": 0.9976 }, { "start": 20327.74, "end": 20328.22, "probability": 0.7326 }, { "start": 20329.5, "end": 20334.4, "probability": 0.926 }, { "start": 20334.92, "end": 20336.58, "probability": 0.9697 }, { "start": 20337.3, "end": 20337.94, "probability": 0.8052 }, { "start": 20338.08, "end": 20343.3, "probability": 0.9173 }, { "start": 20344.02, "end": 20347.86, "probability": 0.9661 }, { "start": 20348.32, "end": 20348.58, "probability": 0.288 }, { "start": 20348.9, "end": 20349.3, "probability": 0.9045 }, { "start": 20349.68, "end": 20350.26, "probability": 0.6781 }, { "start": 20350.26, "end": 20351.24, "probability": 0.8039 }, { "start": 20352.9, "end": 20355.02, "probability": 0.9494 }, { "start": 20376.32, "end": 20377.56, "probability": 0.7971 }, { "start": 20378.46, "end": 20378.98, "probability": 0.7376 }, { "start": 20380.2, "end": 20384.4, "probability": 0.9937 }, { "start": 20386.0, "end": 20388.42, "probability": 0.8037 }, { "start": 20388.42, "end": 20392.4, "probability": 0.9796 }, { "start": 20394.48, "end": 20396.42, "probability": 0.9019 }, { "start": 20397.78, "end": 20398.32, "probability": 0.95 }, { "start": 20398.72, "end": 20399.56, "probability": 0.5702 }, { "start": 20400.4, "end": 20405.12, "probability": 0.9572 }, { "start": 20405.22, "end": 20406.64, "probability": 0.8209 }, { "start": 20406.86, "end": 20407.86, "probability": 0.9861 }, { "start": 20408.66, "end": 20409.64, "probability": 0.9907 }, { "start": 20411.56, "end": 20416.28, "probability": 0.9778 }, { "start": 20416.44, "end": 20416.88, "probability": 0.8378 }, { "start": 20417.46, "end": 20420.7, "probability": 0.9644 }, { "start": 20421.58, "end": 20422.56, "probability": 0.9763 }, { "start": 20423.56, "end": 20426.88, "probability": 0.9975 }, { "start": 20427.66, "end": 20430.98, "probability": 0.9736 }, { "start": 20431.82, "end": 20435.5, "probability": 0.9816 }, { "start": 20436.42, "end": 20437.9, "probability": 0.9989 }, { "start": 20439.28, "end": 20441.48, "probability": 0.9993 }, { "start": 20442.16, "end": 20443.34, "probability": 0.9214 }, { "start": 20444.28, "end": 20445.82, "probability": 0.99 }, { "start": 20446.5, "end": 20449.76, "probability": 0.9687 }, { "start": 20450.94, "end": 20452.1, "probability": 0.9153 }, { "start": 20453.12, "end": 20454.36, "probability": 0.8411 }, { "start": 20455.38, "end": 20458.34, "probability": 0.9962 }, { "start": 20459.42, "end": 20460.06, "probability": 0.7998 }, { "start": 20460.98, "end": 20464.06, "probability": 0.9486 }, { "start": 20464.86, "end": 20467.16, "probability": 0.9985 }, { "start": 20468.8, "end": 20469.7, "probability": 0.8975 }, { "start": 20472.1, "end": 20473.92, "probability": 0.9829 }, { "start": 20474.74, "end": 20475.82, "probability": 0.8005 }, { "start": 20477.24, "end": 20478.68, "probability": 0.9992 }, { "start": 20480.08, "end": 20482.02, "probability": 0.875 }, { "start": 20483.6, "end": 20484.98, "probability": 0.8179 }, { "start": 20486.66, "end": 20490.2, "probability": 0.8756 }, { "start": 20491.84, "end": 20494.62, "probability": 0.9861 }, { "start": 20495.42, "end": 20496.06, "probability": 0.9569 }, { "start": 20498.04, "end": 20499.42, "probability": 0.9973 }, { "start": 20500.0, "end": 20502.44, "probability": 0.9877 }, { "start": 20503.86, "end": 20504.86, "probability": 0.9502 }, { "start": 20505.1, "end": 20507.5, "probability": 0.9673 }, { "start": 20508.42, "end": 20510.04, "probability": 0.9434 }, { "start": 20511.64, "end": 20513.6, "probability": 0.9893 }, { "start": 20515.06, "end": 20516.64, "probability": 0.4546 }, { "start": 20517.9, "end": 20522.86, "probability": 0.9344 }, { "start": 20524.06, "end": 20525.1, "probability": 0.9974 }, { "start": 20525.94, "end": 20526.8, "probability": 0.8494 }, { "start": 20527.34, "end": 20528.36, "probability": 0.8076 }, { "start": 20529.16, "end": 20529.73, "probability": 0.9592 }, { "start": 20531.64, "end": 20533.08, "probability": 0.5439 }, { "start": 20533.22, "end": 20537.68, "probability": 0.9451 }, { "start": 20538.24, "end": 20538.88, "probability": 0.5409 }, { "start": 20539.66, "end": 20541.08, "probability": 0.4989 }, { "start": 20542.08, "end": 20547.16, "probability": 0.9618 }, { "start": 20548.68, "end": 20549.52, "probability": 0.7479 }, { "start": 20550.22, "end": 20551.04, "probability": 0.7172 }, { "start": 20552.3, "end": 20553.96, "probability": 0.9229 }, { "start": 20554.6, "end": 20557.44, "probability": 0.9899 }, { "start": 20557.5, "end": 20558.16, "probability": 0.9857 }, { "start": 20558.22, "end": 20561.08, "probability": 0.9722 }, { "start": 20561.8, "end": 20564.54, "probability": 0.9884 }, { "start": 20565.38, "end": 20567.3, "probability": 0.998 }, { "start": 20568.12, "end": 20570.18, "probability": 0.9449 }, { "start": 20570.28, "end": 20574.82, "probability": 0.9909 }, { "start": 20575.74, "end": 20577.7, "probability": 0.7769 }, { "start": 20578.44, "end": 20579.7, "probability": 0.8182 }, { "start": 20580.66, "end": 20581.08, "probability": 0.9353 }, { "start": 20582.22, "end": 20586.74, "probability": 0.9907 }, { "start": 20587.18, "end": 20588.18, "probability": 0.9258 }, { "start": 20588.52, "end": 20589.5, "probability": 0.7594 }, { "start": 20589.86, "end": 20593.06, "probability": 0.9982 }, { "start": 20593.46, "end": 20593.98, "probability": 0.9155 }, { "start": 20594.3, "end": 20594.78, "probability": 0.5078 }, { "start": 20594.8, "end": 20595.86, "probability": 0.5742 }, { "start": 20605.44, "end": 20606.26, "probability": 0.4563 }, { "start": 20606.26, "end": 20607.5, "probability": 0.162 }, { "start": 20607.5, "end": 20607.84, "probability": 0.1812 }, { "start": 20607.84, "end": 20607.84, "probability": 0.0401 }, { "start": 20626.02, "end": 20627.8, "probability": 0.9894 }, { "start": 20628.56, "end": 20631.02, "probability": 0.9909 }, { "start": 20632.1, "end": 20634.46, "probability": 0.7345 }, { "start": 20636.34, "end": 20638.36, "probability": 0.9969 }, { "start": 20639.74, "end": 20641.38, "probability": 0.9165 }, { "start": 20643.66, "end": 20645.66, "probability": 0.9883 }, { "start": 20646.56, "end": 20649.28, "probability": 0.9761 }, { "start": 20650.8, "end": 20653.22, "probability": 0.9936 }, { "start": 20654.16, "end": 20654.92, "probability": 0.9337 }, { "start": 20656.28, "end": 20662.54, "probability": 0.9975 }, { "start": 20663.38, "end": 20664.2, "probability": 0.9794 }, { "start": 20665.82, "end": 20668.16, "probability": 0.9688 }, { "start": 20668.18, "end": 20669.14, "probability": 0.7095 }, { "start": 20670.24, "end": 20671.28, "probability": 0.9591 }, { "start": 20672.48, "end": 20675.26, "probability": 0.9561 }, { "start": 20676.02, "end": 20676.4, "probability": 0.784 }, { "start": 20677.7, "end": 20679.3, "probability": 0.9943 }, { "start": 20680.06, "end": 20681.58, "probability": 0.9427 }, { "start": 20681.6, "end": 20682.31, "probability": 0.998 }, { "start": 20682.64, "end": 20683.56, "probability": 0.9307 }, { "start": 20684.32, "end": 20687.06, "probability": 0.9602 }, { "start": 20687.94, "end": 20690.74, "probability": 0.9896 }, { "start": 20691.86, "end": 20693.22, "probability": 0.9213 }, { "start": 20694.02, "end": 20695.5, "probability": 0.971 }, { "start": 20696.4, "end": 20696.86, "probability": 0.9819 }, { "start": 20697.88, "end": 20699.04, "probability": 0.9748 }, { "start": 20700.1, "end": 20701.7, "probability": 0.7149 }, { "start": 20702.4, "end": 20706.94, "probability": 0.9907 }, { "start": 20707.8, "end": 20710.8, "probability": 0.9192 }, { "start": 20711.62, "end": 20713.16, "probability": 0.992 }, { "start": 20714.18, "end": 20715.46, "probability": 0.9954 }, { "start": 20715.8, "end": 20720.3, "probability": 0.9569 }, { "start": 20721.6, "end": 20722.3, "probability": 0.8937 }, { "start": 20723.08, "end": 20724.26, "probability": 0.9411 }, { "start": 20724.94, "end": 20726.88, "probability": 0.9759 }, { "start": 20727.6, "end": 20730.0, "probability": 0.9886 }, { "start": 20730.52, "end": 20730.84, "probability": 0.8135 }, { "start": 20731.88, "end": 20734.4, "probability": 0.9686 }, { "start": 20735.04, "end": 20736.28, "probability": 0.7708 }, { "start": 20737.86, "end": 20738.5, "probability": 0.8277 }, { "start": 20739.48, "end": 20740.06, "probability": 0.7413 }, { "start": 20740.26, "end": 20741.78, "probability": 0.9374 }, { "start": 20744.14, "end": 20745.4, "probability": 0.9717 }, { "start": 20746.36, "end": 20747.92, "probability": 0.9854 }, { "start": 20748.86, "end": 20752.24, "probability": 0.9744 }, { "start": 20752.9, "end": 20754.36, "probability": 0.8439 }, { "start": 20755.18, "end": 20758.29, "probability": 0.9835 }, { "start": 20760.14, "end": 20763.98, "probability": 0.9987 }, { "start": 20764.7, "end": 20767.26, "probability": 0.9927 }, { "start": 20767.86, "end": 20770.42, "probability": 0.9648 }, { "start": 20770.92, "end": 20774.28, "probability": 0.957 }, { "start": 20775.3, "end": 20777.42, "probability": 0.9364 }, { "start": 20778.26, "end": 20781.32, "probability": 0.8757 }, { "start": 20782.68, "end": 20788.18, "probability": 0.9517 }, { "start": 20789.12, "end": 20790.02, "probability": 0.537 }, { "start": 20791.58, "end": 20795.48, "probability": 0.9581 }, { "start": 20796.32, "end": 20797.64, "probability": 0.8739 }, { "start": 20798.18, "end": 20799.64, "probability": 0.9993 }, { "start": 20800.46, "end": 20802.88, "probability": 0.9785 }, { "start": 20804.52, "end": 20805.5, "probability": 0.9971 }, { "start": 20806.84, "end": 20808.02, "probability": 0.9858 }, { "start": 20809.74, "end": 20811.22, "probability": 0.9462 }, { "start": 20811.96, "end": 20817.36, "probability": 0.9759 }, { "start": 20817.9, "end": 20819.74, "probability": 0.6672 }, { "start": 20820.48, "end": 20822.78, "probability": 0.9933 }, { "start": 20824.12, "end": 20825.04, "probability": 0.9544 }, { "start": 20825.7, "end": 20826.34, "probability": 0.7993 }, { "start": 20827.68, "end": 20828.71, "probability": 0.9924 }, { "start": 20829.24, "end": 20829.8, "probability": 0.5395 }, { "start": 20829.94, "end": 20830.94, "probability": 0.7549 }, { "start": 20831.1, "end": 20834.7, "probability": 0.9946 }, { "start": 20835.66, "end": 20837.16, "probability": 0.8478 }, { "start": 20837.92, "end": 20838.8, "probability": 0.7725 }, { "start": 20839.54, "end": 20840.46, "probability": 0.9426 }, { "start": 20841.1, "end": 20842.32, "probability": 0.9769 }, { "start": 20842.94, "end": 20845.94, "probability": 0.8572 }, { "start": 20846.92, "end": 20847.18, "probability": 0.2757 }, { "start": 20847.98, "end": 20849.5, "probability": 0.9953 }, { "start": 20850.04, "end": 20851.1, "probability": 0.9492 }, { "start": 20851.62, "end": 20853.42, "probability": 0.9671 }, { "start": 20854.2, "end": 20856.32, "probability": 0.9773 }, { "start": 20856.86, "end": 20857.04, "probability": 0.8555 }, { "start": 20858.46, "end": 20859.04, "probability": 0.8409 }, { "start": 20861.8, "end": 20865.4, "probability": 0.9231 }, { "start": 20882.31, "end": 20885.5, "probability": 0.4526 }, { "start": 20885.8, "end": 20886.76, "probability": 0.6605 }, { "start": 20888.02, "end": 20889.68, "probability": 0.9204 }, { "start": 20890.6, "end": 20892.72, "probability": 0.9681 }, { "start": 20893.3, "end": 20894.08, "probability": 0.9705 }, { "start": 20894.7, "end": 20895.78, "probability": 0.9722 }, { "start": 20896.58, "end": 20898.74, "probability": 0.9919 }, { "start": 20899.9, "end": 20902.86, "probability": 0.9743 }, { "start": 20902.86, "end": 20906.38, "probability": 0.8467 }, { "start": 20907.22, "end": 20914.36, "probability": 0.9795 }, { "start": 20915.16, "end": 20916.68, "probability": 0.97 }, { "start": 20917.38, "end": 20919.34, "probability": 0.8035 }, { "start": 20919.82, "end": 20921.42, "probability": 0.8234 }, { "start": 20923.24, "end": 20926.36, "probability": 0.9731 }, { "start": 20927.0, "end": 20928.04, "probability": 0.888 }, { "start": 20928.98, "end": 20933.86, "probability": 0.9971 }, { "start": 20933.92, "end": 20938.32, "probability": 0.7031 }, { "start": 20939.32, "end": 20947.34, "probability": 0.8899 }, { "start": 20949.34, "end": 20952.06, "probability": 0.7382 }, { "start": 20952.84, "end": 20958.28, "probability": 0.9404 }, { "start": 20959.24, "end": 20964.3, "probability": 0.9888 }, { "start": 20965.12, "end": 20966.22, "probability": 0.4316 }, { "start": 20966.24, "end": 20969.52, "probability": 0.9945 }, { "start": 20970.64, "end": 20974.96, "probability": 0.936 }, { "start": 20976.16, "end": 20977.12, "probability": 0.8313 }, { "start": 20977.7, "end": 20980.32, "probability": 0.9946 }, { "start": 20981.58, "end": 20984.02, "probability": 0.9846 }, { "start": 20985.46, "end": 20986.52, "probability": 0.8141 }, { "start": 20986.9, "end": 20989.72, "probability": 0.9885 }, { "start": 20990.44, "end": 20992.34, "probability": 0.8495 }, { "start": 20993.26, "end": 20997.02, "probability": 0.9696 }, { "start": 20998.22, "end": 21001.3, "probability": 0.9949 }, { "start": 21002.52, "end": 21005.26, "probability": 0.9872 }, { "start": 21006.24, "end": 21009.34, "probability": 0.9975 }, { "start": 21010.94, "end": 21013.54, "probability": 0.6786 }, { "start": 21014.08, "end": 21015.46, "probability": 0.8893 }, { "start": 21016.7, "end": 21018.7, "probability": 0.6229 }, { "start": 21019.34, "end": 21021.66, "probability": 0.9777 }, { "start": 21022.28, "end": 21026.16, "probability": 0.9979 }, { "start": 21027.04, "end": 21029.44, "probability": 0.9604 }, { "start": 21031.8, "end": 21033.26, "probability": 0.9559 }, { "start": 21034.06, "end": 21036.76, "probability": 0.9155 }, { "start": 21037.44, "end": 21039.72, "probability": 0.9705 }, { "start": 21039.98, "end": 21041.0, "probability": 0.9182 }, { "start": 21042.16, "end": 21043.22, "probability": 0.5641 }, { "start": 21043.24, "end": 21047.08, "probability": 0.9929 }, { "start": 21047.76, "end": 21048.72, "probability": 0.7922 }, { "start": 21049.38, "end": 21050.76, "probability": 0.974 }, { "start": 21052.38, "end": 21053.22, "probability": 0.9339 }, { "start": 21053.42, "end": 21055.26, "probability": 0.9572 }, { "start": 21055.74, "end": 21058.32, "probability": 0.9329 }, { "start": 21060.66, "end": 21062.36, "probability": 0.9983 }, { "start": 21062.64, "end": 21065.92, "probability": 0.9872 }, { "start": 21066.9, "end": 21069.68, "probability": 0.5656 }, { "start": 21070.42, "end": 21074.2, "probability": 0.9948 }, { "start": 21075.46, "end": 21080.8, "probability": 0.9977 }, { "start": 21081.56, "end": 21082.64, "probability": 0.5054 }, { "start": 21082.64, "end": 21087.58, "probability": 0.9952 }, { "start": 21088.24, "end": 21091.2, "probability": 0.5719 }, { "start": 21091.66, "end": 21092.76, "probability": 0.7467 }, { "start": 21092.98, "end": 21095.24, "probability": 0.8995 }, { "start": 21096.66, "end": 21102.14, "probability": 0.9923 }, { "start": 21103.34, "end": 21106.94, "probability": 0.9177 }, { "start": 21107.96, "end": 21108.48, "probability": 0.6702 }, { "start": 21109.46, "end": 21112.48, "probability": 0.9885 }, { "start": 21113.04, "end": 21115.54, "probability": 0.9982 }, { "start": 21116.24, "end": 21116.64, "probability": 0.6883 }, { "start": 21117.24, "end": 21117.6, "probability": 0.2666 }, { "start": 21117.6, "end": 21117.9, "probability": 0.5891 }, { "start": 21118.4, "end": 21119.98, "probability": 0.9182 }, { "start": 21143.84, "end": 21146.24, "probability": 0.6683 }, { "start": 21148.62, "end": 21150.34, "probability": 0.967 }, { "start": 21150.94, "end": 21153.44, "probability": 0.3506 }, { "start": 21154.38, "end": 21157.96, "probability": 0.9884 }, { "start": 21157.96, "end": 21160.98, "probability": 0.9078 }, { "start": 21161.96, "end": 21170.6, "probability": 0.9988 }, { "start": 21172.34, "end": 21173.02, "probability": 0.3852 }, { "start": 21175.02, "end": 21176.24, "probability": 0.916 }, { "start": 21176.82, "end": 21178.1, "probability": 0.6716 }, { "start": 21179.0, "end": 21183.4, "probability": 0.9209 }, { "start": 21184.28, "end": 21186.18, "probability": 0.9616 }, { "start": 21186.78, "end": 21189.8, "probability": 0.9789 }, { "start": 21190.54, "end": 21193.28, "probability": 0.9838 }, { "start": 21193.28, "end": 21196.96, "probability": 0.9985 }, { "start": 21197.54, "end": 21199.08, "probability": 0.8479 }, { "start": 21200.54, "end": 21203.94, "probability": 0.9302 }, { "start": 21204.66, "end": 21206.12, "probability": 0.7863 }, { "start": 21206.7, "end": 21209.88, "probability": 0.7576 }, { "start": 21210.58, "end": 21211.02, "probability": 0.8093 }, { "start": 21211.92, "end": 21213.6, "probability": 0.9918 }, { "start": 21214.66, "end": 21217.58, "probability": 0.9376 }, { "start": 21218.3, "end": 21221.98, "probability": 0.9832 }, { "start": 21222.04, "end": 21224.92, "probability": 0.9839 }, { "start": 21226.04, "end": 21229.1, "probability": 0.9979 }, { "start": 21229.1, "end": 21232.86, "probability": 0.9891 }, { "start": 21233.62, "end": 21235.26, "probability": 0.8993 }, { "start": 21236.94, "end": 21238.6, "probability": 0.9463 }, { "start": 21238.9, "end": 21242.14, "probability": 0.9765 }, { "start": 21242.76, "end": 21244.82, "probability": 0.9042 }, { "start": 21245.4, "end": 21249.44, "probability": 0.9875 }, { "start": 21250.12, "end": 21252.84, "probability": 0.9536 }, { "start": 21253.32, "end": 21255.06, "probability": 0.9844 }, { "start": 21255.54, "end": 21258.06, "probability": 0.6097 }, { "start": 21258.64, "end": 21262.38, "probability": 0.9154 }, { "start": 21263.84, "end": 21265.8, "probability": 0.9676 }, { "start": 21266.46, "end": 21270.36, "probability": 0.886 }, { "start": 21271.16, "end": 21274.72, "probability": 0.9042 }, { "start": 21275.3, "end": 21277.74, "probability": 0.9925 }, { "start": 21277.74, "end": 21280.9, "probability": 0.9625 }, { "start": 21281.52, "end": 21286.72, "probability": 0.9928 }, { "start": 21287.18, "end": 21288.16, "probability": 0.6961 }, { "start": 21288.56, "end": 21291.48, "probability": 0.9829 }, { "start": 21292.04, "end": 21294.0, "probability": 0.8792 }, { "start": 21296.02, "end": 21298.5, "probability": 0.9631 }, { "start": 21298.56, "end": 21300.34, "probability": 0.9629 }, { "start": 21301.14, "end": 21304.56, "probability": 0.9756 }, { "start": 21305.52, "end": 21310.04, "probability": 0.9749 }, { "start": 21310.76, "end": 21313.46, "probability": 0.9954 }, { "start": 21316.34, "end": 21318.1, "probability": 0.9813 }, { "start": 21318.9, "end": 21319.88, "probability": 0.9832 }, { "start": 21320.1, "end": 21320.96, "probability": 0.7839 }, { "start": 21321.26, "end": 21323.7, "probability": 0.831 }, { "start": 21325.16, "end": 21328.18, "probability": 0.8468 }, { "start": 21328.38, "end": 21330.46, "probability": 0.9502 }, { "start": 21331.56, "end": 21339.48, "probability": 0.952 }, { "start": 21339.92, "end": 21340.88, "probability": 0.8646 }, { "start": 21343.4, "end": 21343.96, "probability": 0.5759 }, { "start": 21344.5, "end": 21346.5, "probability": 0.9248 }, { "start": 21347.3, "end": 21351.08, "probability": 0.9945 }, { "start": 21352.38, "end": 21353.46, "probability": 0.7882 }, { "start": 21354.0, "end": 21355.26, "probability": 0.9176 }, { "start": 21355.84, "end": 21361.02, "probability": 0.9839 }, { "start": 21361.82, "end": 21367.16, "probability": 0.9878 }, { "start": 21367.98, "end": 21369.18, "probability": 0.9023 }, { "start": 21369.42, "end": 21370.69, "probability": 0.9956 }, { "start": 21371.56, "end": 21373.52, "probability": 0.8578 }, { "start": 21374.32, "end": 21377.68, "probability": 0.96 }, { "start": 21377.88, "end": 21378.2, "probability": 0.8821 }, { "start": 21378.64, "end": 21379.04, "probability": 0.6673 }, { "start": 21379.12, "end": 21381.43, "probability": 0.9352 }, { "start": 21384.26, "end": 21389.58, "probability": 0.9276 }, { "start": 21390.32, "end": 21391.08, "probability": 0.637 }, { "start": 21391.34, "end": 21393.72, "probability": 0.7033 }, { "start": 21412.02, "end": 21413.08, "probability": 0.6763 }, { "start": 21413.48, "end": 21415.0, "probability": 0.8047 }, { "start": 21415.26, "end": 21416.28, "probability": 0.9948 }, { "start": 21417.24, "end": 21420.71, "probability": 0.9784 }, { "start": 21422.24, "end": 21425.76, "probability": 0.6509 }, { "start": 21426.88, "end": 21429.98, "probability": 0.8162 }, { "start": 21430.02, "end": 21431.68, "probability": 0.6845 }, { "start": 21432.5, "end": 21437.04, "probability": 0.9875 }, { "start": 21437.04, "end": 21442.06, "probability": 0.7867 }, { "start": 21443.68, "end": 21443.88, "probability": 0.5429 }, { "start": 21444.04, "end": 21444.98, "probability": 0.9098 }, { "start": 21445.18, "end": 21445.5, "probability": 0.052 }, { "start": 21445.52, "end": 21448.96, "probability": 0.3841 }, { "start": 21449.06, "end": 21450.42, "probability": 0.6256 }, { "start": 21451.76, "end": 21455.7, "probability": 0.9234 }, { "start": 21455.74, "end": 21456.42, "probability": 0.8141 }, { "start": 21456.7, "end": 21458.46, "probability": 0.9753 }, { "start": 21459.04, "end": 21462.3, "probability": 0.8232 }, { "start": 21462.48, "end": 21463.7, "probability": 0.4736 }, { "start": 21463.8, "end": 21468.52, "probability": 0.9221 }, { "start": 21468.54, "end": 21470.44, "probability": 0.8951 }, { "start": 21470.74, "end": 21471.56, "probability": 0.7155 }, { "start": 21472.34, "end": 21474.1, "probability": 0.855 }, { "start": 21474.82, "end": 21477.34, "probability": 0.9829 }, { "start": 21477.92, "end": 21480.84, "probability": 0.8303 }, { "start": 21481.1, "end": 21482.98, "probability": 0.0287 }, { "start": 21483.04, "end": 21483.04, "probability": 0.1986 }, { "start": 21483.12, "end": 21483.34, "probability": 0.4042 }, { "start": 21483.44, "end": 21483.98, "probability": 0.6171 }, { "start": 21485.4, "end": 21485.4, "probability": 0.2595 }, { "start": 21485.4, "end": 21485.4, "probability": 0.1009 }, { "start": 21485.4, "end": 21487.3, "probability": 0.5683 }, { "start": 21488.34, "end": 21492.5, "probability": 0.9755 }, { "start": 21492.52, "end": 21496.12, "probability": 0.9785 }, { "start": 21496.4, "end": 21497.42, "probability": 0.7409 }, { "start": 21497.54, "end": 21499.42, "probability": 0.7122 }, { "start": 21500.1, "end": 21502.92, "probability": 0.9187 }, { "start": 21503.74, "end": 21509.88, "probability": 0.9344 }, { "start": 21510.96, "end": 21513.68, "probability": 0.9954 }, { "start": 21515.38, "end": 21517.36, "probability": 0.9165 }, { "start": 21517.58, "end": 21518.32, "probability": 0.809 }, { "start": 21518.76, "end": 21522.58, "probability": 0.8191 }, { "start": 21522.76, "end": 21523.34, "probability": 0.8687 }, { "start": 21523.44, "end": 21526.43, "probability": 0.9805 }, { "start": 21527.66, "end": 21529.9, "probability": 0.9722 }, { "start": 21530.72, "end": 21533.28, "probability": 0.9684 }, { "start": 21533.36, "end": 21534.24, "probability": 0.7952 }, { "start": 21534.6, "end": 21536.74, "probability": 0.3351 }, { "start": 21537.14, "end": 21539.42, "probability": 0.897 }, { "start": 21540.16, "end": 21541.88, "probability": 0.7466 }, { "start": 21542.22, "end": 21543.91, "probability": 0.1581 }, { "start": 21544.78, "end": 21545.22, "probability": 0.301 }, { "start": 21546.08, "end": 21548.88, "probability": 0.0249 }, { "start": 21548.88, "end": 21548.94, "probability": 0.0054 }, { "start": 21548.94, "end": 21548.94, "probability": 0.4591 }, { "start": 21548.94, "end": 21549.22, "probability": 0.7625 }, { "start": 21549.26, "end": 21549.56, "probability": 0.5533 }, { "start": 21549.56, "end": 21551.48, "probability": 0.8762 }, { "start": 21551.54, "end": 21552.36, "probability": 0.9762 }, { "start": 21552.94, "end": 21556.14, "probability": 0.9824 }, { "start": 21558.61, "end": 21559.77, "probability": 0.775 }, { "start": 21560.46, "end": 21562.06, "probability": 0.9538 }, { "start": 21562.42, "end": 21563.82, "probability": 0.9553 }, { "start": 21564.36, "end": 21566.08, "probability": 0.9736 }, { "start": 21566.36, "end": 21568.28, "probability": 0.9709 }, { "start": 21568.7, "end": 21571.25, "probability": 0.9337 }, { "start": 21571.62, "end": 21572.52, "probability": 0.8933 }, { "start": 21574.32, "end": 21575.3, "probability": 0.9694 }, { "start": 21575.5, "end": 21576.54, "probability": 0.7179 }, { "start": 21577.1, "end": 21578.3, "probability": 0.5032 }, { "start": 21578.3, "end": 21579.2, "probability": 0.1194 }, { "start": 21579.2, "end": 21580.68, "probability": 0.0705 }, { "start": 21581.0, "end": 21581.92, "probability": 0.0792 }, { "start": 21581.92, "end": 21582.7, "probability": 0.4058 }, { "start": 21583.38, "end": 21585.8, "probability": 0.9805 }, { "start": 21587.17, "end": 21589.05, "probability": 0.281 }, { "start": 21589.72, "end": 21591.26, "probability": 0.853 }, { "start": 21591.46, "end": 21592.52, "probability": 0.8479 }, { "start": 21592.62, "end": 21592.9, "probability": 0.8352 }, { "start": 21593.0, "end": 21594.36, "probability": 0.9989 }, { "start": 21594.42, "end": 21595.72, "probability": 0.952 }, { "start": 21596.2, "end": 21598.12, "probability": 0.9906 }, { "start": 21599.1, "end": 21600.32, "probability": 0.9293 }, { "start": 21600.82, "end": 21604.98, "probability": 0.7767 }, { "start": 21605.24, "end": 21607.04, "probability": 0.9217 }, { "start": 21608.04, "end": 21610.36, "probability": 0.9557 }, { "start": 21611.22, "end": 21612.24, "probability": 0.7367 }, { "start": 21612.38, "end": 21614.03, "probability": 0.9674 }, { "start": 21614.54, "end": 21615.43, "probability": 0.9023 }, { "start": 21615.82, "end": 21619.52, "probability": 0.0052 }, { "start": 21619.66, "end": 21619.66, "probability": 0.0404 }, { "start": 21619.66, "end": 21619.8, "probability": 0.1507 }, { "start": 21621.72, "end": 21621.88, "probability": 0.0048 }, { "start": 21621.92, "end": 21622.98, "probability": 0.1897 }, { "start": 21623.02, "end": 21624.52, "probability": 0.4686 }, { "start": 21625.06, "end": 21627.08, "probability": 0.9489 }, { "start": 21627.48, "end": 21627.62, "probability": 0.4531 }, { "start": 21627.94, "end": 21628.64, "probability": 0.6979 }, { "start": 21629.34, "end": 21632.52, "probability": 0.7433 }, { "start": 21633.16, "end": 21634.68, "probability": 0.9917 }, { "start": 21635.36, "end": 21636.5, "probability": 0.5667 }, { "start": 21637.4, "end": 21638.88, "probability": 0.7558 }, { "start": 21639.82, "end": 21643.4, "probability": 0.5527 }, { "start": 21643.58, "end": 21644.82, "probability": 0.439 }, { "start": 21645.22, "end": 21646.14, "probability": 0.7348 }, { "start": 21646.18, "end": 21649.18, "probability": 0.5049 }, { "start": 21649.26, "end": 21649.98, "probability": 0.7611 }, { "start": 21650.04, "end": 21651.64, "probability": 0.8799 }, { "start": 21651.84, "end": 21652.94, "probability": 0.9918 }, { "start": 21653.48, "end": 21654.54, "probability": 0.9936 }, { "start": 21655.12, "end": 21658.06, "probability": 0.9487 }, { "start": 21659.36, "end": 21660.1, "probability": 0.8646 }, { "start": 21661.4, "end": 21661.8, "probability": 0.9626 }, { "start": 21662.32, "end": 21664.72, "probability": 0.7242 }, { "start": 21666.02, "end": 21666.98, "probability": 0.5048 }, { "start": 21670.04, "end": 21672.48, "probability": 0.8553 }, { "start": 21692.86, "end": 21694.9, "probability": 0.719 }, { "start": 21696.1, "end": 21697.86, "probability": 0.9775 }, { "start": 21698.86, "end": 21700.7, "probability": 0.998 }, { "start": 21700.8, "end": 21703.2, "probability": 0.991 }, { "start": 21706.52, "end": 21710.26, "probability": 0.9906 }, { "start": 21711.96, "end": 21714.22, "probability": 0.8652 }, { "start": 21714.66, "end": 21717.2, "probability": 0.7767 }, { "start": 21717.94, "end": 21719.92, "probability": 0.537 }, { "start": 21720.84, "end": 21722.3, "probability": 0.3651 }, { "start": 21722.88, "end": 21724.6, "probability": 0.4698 }, { "start": 21726.42, "end": 21728.7, "probability": 0.8095 }, { "start": 21729.5, "end": 21730.46, "probability": 0.6292 }, { "start": 21731.52, "end": 21732.38, "probability": 0.8484 }, { "start": 21733.08, "end": 21733.58, "probability": 0.9802 }, { "start": 21735.28, "end": 21737.88, "probability": 0.9417 }, { "start": 21738.96, "end": 21739.38, "probability": 0.7225 }, { "start": 21739.6, "end": 21740.44, "probability": 0.8768 }, { "start": 21740.68, "end": 21741.62, "probability": 0.4712 }, { "start": 21741.9, "end": 21743.48, "probability": 0.9659 }, { "start": 21743.52, "end": 21745.88, "probability": 0.9827 }, { "start": 21747.16, "end": 21750.62, "probability": 0.9596 }, { "start": 21750.9, "end": 21752.96, "probability": 0.7376 }, { "start": 21754.02, "end": 21756.24, "probability": 0.9925 }, { "start": 21757.02, "end": 21759.14, "probability": 0.9963 }, { "start": 21760.5, "end": 21763.6, "probability": 0.9929 }, { "start": 21764.66, "end": 21766.98, "probability": 0.9453 }, { "start": 21767.7, "end": 21769.7, "probability": 0.9626 }, { "start": 21770.96, "end": 21772.02, "probability": 0.9899 }, { "start": 21772.7, "end": 21776.72, "probability": 0.926 }, { "start": 21777.42, "end": 21778.76, "probability": 0.9619 }, { "start": 21779.36, "end": 21781.44, "probability": 0.9504 }, { "start": 21782.36, "end": 21783.69, "probability": 0.8823 }, { "start": 21784.96, "end": 21787.43, "probability": 0.8907 }, { "start": 21788.34, "end": 21791.42, "probability": 0.9884 }, { "start": 21792.18, "end": 21794.1, "probability": 0.9976 }, { "start": 21794.88, "end": 21795.64, "probability": 0.6974 }, { "start": 21796.16, "end": 21797.2, "probability": 0.9784 }, { "start": 21798.34, "end": 21801.64, "probability": 0.998 }, { "start": 21801.84, "end": 21802.72, "probability": 0.418 }, { "start": 21803.1, "end": 21803.92, "probability": 0.9086 }, { "start": 21804.02, "end": 21805.36, "probability": 0.424 }, { "start": 21805.58, "end": 21805.62, "probability": 0.4811 }, { "start": 21805.62, "end": 21806.08, "probability": 0.3172 }, { "start": 21806.22, "end": 21808.67, "probability": 0.646 }, { "start": 21811.26, "end": 21811.74, "probability": 0.7467 }, { "start": 21815.9, "end": 21819.78, "probability": 0.0598 }, { "start": 21821.82, "end": 21821.82, "probability": 0.0503 }, { "start": 21821.82, "end": 21823.58, "probability": 0.1235 }, { "start": 21823.58, "end": 21825.0, "probability": 0.4792 }, { "start": 21827.16, "end": 21828.8, "probability": 0.3891 }, { "start": 21829.72, "end": 21830.26, "probability": 0.2677 }, { "start": 21833.26, "end": 21834.86, "probability": 0.3898 }, { "start": 21835.94, "end": 21836.69, "probability": 0.0394 }, { "start": 21843.68, "end": 21851.66, "probability": 0.0212 }, { "start": 21862.78, "end": 21863.4, "probability": 0.0063 }, { "start": 21864.6, "end": 21866.74, "probability": 0.0994 }, { "start": 21867.64, "end": 21868.14, "probability": 0.0235 }, { "start": 21872.02, "end": 21872.6, "probability": 0.1636 }, { "start": 21873.48, "end": 21874.58, "probability": 0.2627 }, { "start": 21883.92, "end": 21886.38, "probability": 0.1403 }, { "start": 21892.1, "end": 21893.56, "probability": 0.0274 }, { "start": 21906.0, "end": 21906.0, "probability": 0.0 }, { "start": 21906.0, "end": 21906.0, "probability": 0.0 }, { "start": 21906.0, "end": 21906.0, "probability": 0.0 }, { "start": 21906.0, "end": 21906.0, "probability": 0.0 }, { "start": 21906.0, "end": 21906.0, "probability": 0.0 }, { "start": 21906.0, "end": 21906.0, "probability": 0.0 }, { "start": 21906.0, "end": 21906.0, "probability": 0.0 }, { "start": 21906.0, "end": 21906.0, "probability": 0.0 }, { "start": 21906.0, "end": 21906.0, "probability": 0.0 }, { "start": 21906.0, "end": 21906.0, "probability": 0.0 }, { "start": 21906.0, "end": 21906.0, "probability": 0.0 }, { "start": 21906.0, "end": 21906.0, "probability": 0.0 }, { "start": 21906.0, "end": 21906.0, "probability": 0.0 }, { "start": 21906.0, "end": 21906.0, "probability": 0.0 }, { "start": 21906.0, "end": 21906.0, "probability": 0.0 }, { "start": 21906.02, "end": 21907.32, "probability": 0.3368 }, { "start": 21908.84, "end": 21909.56, "probability": 0.6379 }, { "start": 21909.92, "end": 21910.6, "probability": 0.8039 }, { "start": 21912.32, "end": 21913.6, "probability": 0.2545 }, { "start": 21913.84, "end": 21914.06, "probability": 0.3233 }, { "start": 21921.76, "end": 21923.86, "probability": 0.6897 }, { "start": 21924.74, "end": 21928.26, "probability": 0.9783 }, { "start": 21928.4, "end": 21932.18, "probability": 0.9873 }, { "start": 21932.84, "end": 21935.32, "probability": 0.9739 }, { "start": 21937.6, "end": 21937.74, "probability": 0.278 }, { "start": 21937.88, "end": 21938.72, "probability": 0.8827 }, { "start": 21938.92, "end": 21940.34, "probability": 0.9457 }, { "start": 21940.58, "end": 21942.28, "probability": 0.9622 }, { "start": 21942.84, "end": 21948.24, "probability": 0.9182 }, { "start": 21950.31, "end": 21951.28, "probability": 0.0531 }, { "start": 21951.28, "end": 21955.46, "probability": 0.9948 }, { "start": 21956.6, "end": 21957.52, "probability": 0.9951 }, { "start": 21957.9, "end": 21962.06, "probability": 0.8921 }, { "start": 21963.42, "end": 21966.24, "probability": 0.8608 }, { "start": 21967.12, "end": 21967.92, "probability": 0.781 }, { "start": 21969.3, "end": 21970.26, "probability": 0.9704 }, { "start": 21971.62, "end": 21972.28, "probability": 0.9414 }, { "start": 21972.44, "end": 21973.24, "probability": 0.937 }, { "start": 21973.4, "end": 21975.03, "probability": 0.9697 }, { "start": 21975.46, "end": 21976.34, "probability": 0.9858 }, { "start": 21976.53, "end": 21977.12, "probability": 0.9661 }, { "start": 21979.52, "end": 21980.46, "probability": 0.5398 }, { "start": 21980.9, "end": 21985.4, "probability": 0.9949 }, { "start": 21985.4, "end": 21992.06, "probability": 0.9886 }, { "start": 21992.24, "end": 21996.08, "probability": 0.9751 }, { "start": 21996.8, "end": 21997.78, "probability": 0.4843 }, { "start": 21998.72, "end": 22001.88, "probability": 0.9924 }, { "start": 22002.48, "end": 22004.34, "probability": 0.9086 }, { "start": 22004.74, "end": 22007.06, "probability": 0.9884 }, { "start": 22008.04, "end": 22008.66, "probability": 0.9795 }, { "start": 22009.58, "end": 22013.42, "probability": 0.9967 }, { "start": 22013.66, "end": 22021.24, "probability": 0.9975 }, { "start": 22021.48, "end": 22024.32, "probability": 0.7775 }, { "start": 22025.2, "end": 22025.86, "probability": 0.5479 }, { "start": 22026.14, "end": 22028.4, "probability": 0.9955 }, { "start": 22029.12, "end": 22033.2, "probability": 0.9767 }, { "start": 22033.82, "end": 22035.14, "probability": 0.8585 }, { "start": 22035.96, "end": 22041.94, "probability": 0.9956 }, { "start": 22042.34, "end": 22043.24, "probability": 0.9301 }, { "start": 22043.88, "end": 22048.16, "probability": 0.998 }, { "start": 22048.96, "end": 22050.76, "probability": 0.6897 }, { "start": 22051.06, "end": 22051.62, "probability": 0.6859 }, { "start": 22052.04, "end": 22055.2, "probability": 0.9775 }, { "start": 22055.78, "end": 22057.22, "probability": 0.9946 }, { "start": 22057.86, "end": 22058.56, "probability": 0.9248 }, { "start": 22059.32, "end": 22061.86, "probability": 0.9972 }, { "start": 22062.5, "end": 22063.86, "probability": 0.7907 }, { "start": 22064.08, "end": 22067.98, "probability": 0.9741 }, { "start": 22068.72, "end": 22070.28, "probability": 0.8675 }, { "start": 22070.8, "end": 22072.02, "probability": 0.8631 }, { "start": 22072.62, "end": 22074.02, "probability": 0.906 }, { "start": 22074.24, "end": 22077.0, "probability": 0.9808 }, { "start": 22077.72, "end": 22078.72, "probability": 0.9846 }, { "start": 22079.74, "end": 22081.96, "probability": 0.7579 }, { "start": 22083.18, "end": 22085.27, "probability": 0.9953 }, { "start": 22085.8, "end": 22087.2, "probability": 0.9966 }, { "start": 22088.14, "end": 22093.64, "probability": 0.9889 }, { "start": 22093.92, "end": 22098.86, "probability": 0.9945 }, { "start": 22098.94, "end": 22103.42, "probability": 0.9882 }, { "start": 22103.6, "end": 22106.52, "probability": 0.9972 }, { "start": 22107.12, "end": 22107.8, "probability": 0.8328 }, { "start": 22107.88, "end": 22108.38, "probability": 0.7357 }, { "start": 22110.82, "end": 22111.32, "probability": 0.6348 }, { "start": 22111.36, "end": 22112.6, "probability": 0.9678 }, { "start": 22113.2, "end": 22114.26, "probability": 0.9465 }, { "start": 22124.52, "end": 22124.62, "probability": 0.4196 }, { "start": 22134.64, "end": 22136.58, "probability": 0.5051 }, { "start": 22137.28, "end": 22139.6, "probability": 0.8613 }, { "start": 22139.96, "end": 22140.5, "probability": 0.9181 }, { "start": 22140.88, "end": 22141.26, "probability": 0.7022 }, { "start": 22141.34, "end": 22141.84, "probability": 0.7233 }, { "start": 22142.0, "end": 22144.42, "probability": 0.9585 }, { "start": 22145.08, "end": 22147.54, "probability": 0.926 }, { "start": 22148.46, "end": 22150.98, "probability": 0.8138 }, { "start": 22151.22, "end": 22152.8, "probability": 0.8065 }, { "start": 22152.8, "end": 22153.12, "probability": 0.2681 }, { "start": 22153.6, "end": 22153.82, "probability": 0.8416 }, { "start": 22153.92, "end": 22155.5, "probability": 0.7471 }, { "start": 22155.5, "end": 22156.36, "probability": 0.153 }, { "start": 22156.36, "end": 22160.64, "probability": 0.8957 }, { "start": 22160.8, "end": 22161.16, "probability": 0.5785 }, { "start": 22161.24, "end": 22161.44, "probability": 0.1421 }, { "start": 22161.44, "end": 22161.66, "probability": 0.1859 }, { "start": 22161.76, "end": 22162.2, "probability": 0.4773 }, { "start": 22162.22, "end": 22162.5, "probability": 0.5578 }, { "start": 22162.66, "end": 22163.36, "probability": 0.9231 }, { "start": 22163.94, "end": 22164.86, "probability": 0.8207 }, { "start": 22165.22, "end": 22166.44, "probability": 0.9987 }, { "start": 22166.52, "end": 22167.84, "probability": 0.9974 }, { "start": 22167.94, "end": 22169.11, "probability": 0.9504 }, { "start": 22169.24, "end": 22170.38, "probability": 0.3902 }, { "start": 22170.5, "end": 22173.48, "probability": 0.9223 }, { "start": 22174.02, "end": 22174.4, "probability": 0.5103 }, { "start": 22174.52, "end": 22176.82, "probability": 0.9919 }, { "start": 22177.16, "end": 22178.42, "probability": 0.9458 }, { "start": 22178.5, "end": 22180.22, "probability": 0.9447 }, { "start": 22180.62, "end": 22182.26, "probability": 0.9219 }, { "start": 22182.9, "end": 22184.92, "probability": 0.8266 }, { "start": 22185.44, "end": 22188.44, "probability": 0.949 }, { "start": 22189.16, "end": 22191.44, "probability": 0.97 }, { "start": 22192.02, "end": 22193.22, "probability": 0.9929 }, { "start": 22194.02, "end": 22198.92, "probability": 0.7327 }, { "start": 22199.44, "end": 22201.68, "probability": 0.6362 }, { "start": 22202.56, "end": 22205.01, "probability": 0.8351 }, { "start": 22206.04, "end": 22207.52, "probability": 0.8579 }, { "start": 22208.14, "end": 22208.14, "probability": 0.1986 }, { "start": 22208.14, "end": 22208.14, "probability": 0.4902 }, { "start": 22208.14, "end": 22210.46, "probability": 0.984 }, { "start": 22211.12, "end": 22212.52, "probability": 0.7883 }, { "start": 22213.1, "end": 22217.9, "probability": 0.9734 }, { "start": 22218.62, "end": 22220.48, "probability": 0.9978 }, { "start": 22221.06, "end": 22223.06, "probability": 0.668 }, { "start": 22223.46, "end": 22224.42, "probability": 0.0379 }, { "start": 22224.42, "end": 22224.42, "probability": 0.439 }, { "start": 22224.42, "end": 22224.42, "probability": 0.0134 }, { "start": 22224.42, "end": 22226.58, "probability": 0.7475 }, { "start": 22226.72, "end": 22229.24, "probability": 0.731 }, { "start": 22229.62, "end": 22232.32, "probability": 0.9235 }, { "start": 22232.4, "end": 22234.39, "probability": 0.9736 }, { "start": 22234.88, "end": 22235.9, "probability": 0.1386 }, { "start": 22235.9, "end": 22235.98, "probability": 0.0587 }, { "start": 22235.98, "end": 22235.98, "probability": 0.0178 }, { "start": 22235.98, "end": 22236.88, "probability": 0.6511 }, { "start": 22236.88, "end": 22238.64, "probability": 0.7099 }, { "start": 22240.2, "end": 22240.86, "probability": 0.0719 }, { "start": 22240.86, "end": 22241.52, "probability": 0.6176 }, { "start": 22241.52, "end": 22241.78, "probability": 0.1653 }, { "start": 22241.78, "end": 22241.78, "probability": 0.3127 }, { "start": 22242.82, "end": 22242.82, "probability": 0.6703 }, { "start": 22242.82, "end": 22244.04, "probability": 0.3073 }, { "start": 22244.06, "end": 22244.1, "probability": 0.0054 }, { "start": 22244.1, "end": 22244.19, "probability": 0.0225 }, { "start": 22245.28, "end": 22245.28, "probability": 0.0647 }, { "start": 22245.28, "end": 22245.28, "probability": 0.5176 }, { "start": 22245.44, "end": 22249.68, "probability": 0.994 }, { "start": 22250.94, "end": 22253.44, "probability": 0.9984 }, { "start": 22254.4, "end": 22256.62, "probability": 0.9873 }, { "start": 22257.52, "end": 22260.1, "probability": 0.8738 }, { "start": 22260.72, "end": 22263.04, "probability": 0.9945 }, { "start": 22263.44, "end": 22264.76, "probability": 0.9462 }, { "start": 22265.26, "end": 22266.24, "probability": 0.8975 }, { "start": 22266.4, "end": 22267.76, "probability": 0.9839 }, { "start": 22268.12, "end": 22271.3, "probability": 0.9436 }, { "start": 22272.0, "end": 22272.62, "probability": 0.8839 }, { "start": 22272.64, "end": 22273.72, "probability": 0.8647 }, { "start": 22274.22, "end": 22276.76, "probability": 0.9824 }, { "start": 22277.32, "end": 22278.94, "probability": 0.9314 }, { "start": 22279.02, "end": 22281.98, "probability": 0.975 }, { "start": 22282.46, "end": 22287.9, "probability": 0.9987 }, { "start": 22288.64, "end": 22290.52, "probability": 0.8577 }, { "start": 22290.6, "end": 22291.54, "probability": 0.8929 }, { "start": 22292.06, "end": 22292.34, "probability": 0.4525 }, { "start": 22292.36, "end": 22293.34, "probability": 0.9312 }, { "start": 22293.74, "end": 22295.36, "probability": 0.9868 }, { "start": 22295.38, "end": 22296.24, "probability": 0.8921 }, { "start": 22296.48, "end": 22297.68, "probability": 0.9893 }, { "start": 22298.02, "end": 22300.0, "probability": 0.9822 }, { "start": 22300.04, "end": 22301.15, "probability": 0.6368 }, { "start": 22302.3, "end": 22306.56, "probability": 0.9316 }, { "start": 22306.98, "end": 22309.14, "probability": 0.9976 }, { "start": 22309.72, "end": 22309.96, "probability": 0.3812 }, { "start": 22310.06, "end": 22310.28, "probability": 0.657 }, { "start": 22310.66, "end": 22310.96, "probability": 0.8828 }, { "start": 22311.02, "end": 22312.78, "probability": 0.9742 }, { "start": 22312.94, "end": 22313.78, "probability": 0.9478 }, { "start": 22314.26, "end": 22315.16, "probability": 0.9614 }, { "start": 22315.5, "end": 22316.26, "probability": 0.8285 }, { "start": 22316.88, "end": 22320.16, "probability": 0.953 }, { "start": 22322.66, "end": 22323.46, "probability": 0.7132 }, { "start": 22325.14, "end": 22326.34, "probability": 0.6959 }, { "start": 22326.34, "end": 22327.12, "probability": 0.1072 }, { "start": 22327.36, "end": 22328.34, "probability": 0.0786 }, { "start": 22328.42, "end": 22330.16, "probability": 0.6956 }, { "start": 22330.16, "end": 22330.39, "probability": 0.231 }, { "start": 22330.74, "end": 22332.32, "probability": 0.9078 }, { "start": 22332.44, "end": 22333.1, "probability": 0.6461 }, { "start": 22333.3, "end": 22333.3, "probability": 0.2777 }, { "start": 22333.3, "end": 22335.52, "probability": 0.6693 }, { "start": 22335.52, "end": 22335.8, "probability": 0.0857 }, { "start": 22336.08, "end": 22336.42, "probability": 0.6893 }, { "start": 22337.1, "end": 22338.72, "probability": 0.9326 }, { "start": 22339.36, "end": 22340.86, "probability": 0.3082 }, { "start": 22340.96, "end": 22342.4, "probability": 0.7649 }, { "start": 22343.4, "end": 22345.2, "probability": 0.6129 }, { "start": 22345.46, "end": 22347.36, "probability": 0.78 }, { "start": 22347.36, "end": 22350.7, "probability": 0.2126 }, { "start": 22350.78, "end": 22352.8, "probability": 0.9792 }, { "start": 22353.28, "end": 22353.68, "probability": 0.7226 }, { "start": 22357.5, "end": 22359.49, "probability": 0.788 }, { "start": 22361.08, "end": 22362.2, "probability": 0.404 }, { "start": 22362.34, "end": 22362.58, "probability": 0.1962 }, { "start": 22362.62, "end": 22363.8, "probability": 0.7633 }, { "start": 22364.26, "end": 22365.64, "probability": 0.9377 }, { "start": 22366.7, "end": 22368.94, "probability": 0.3576 }, { "start": 22369.0, "end": 22371.68, "probability": 0.1445 }, { "start": 22372.42, "end": 22374.36, "probability": 0.2474 }, { "start": 22376.22, "end": 22376.22, "probability": 0.367 }, { "start": 22376.22, "end": 22377.5, "probability": 0.5026 }, { "start": 22377.58, "end": 22379.52, "probability": 0.7934 }, { "start": 22379.52, "end": 22379.94, "probability": 0.5714 }, { "start": 22382.06, "end": 22383.62, "probability": 0.5038 }, { "start": 22384.62, "end": 22384.96, "probability": 0.3874 }, { "start": 22384.96, "end": 22385.77, "probability": 0.0113 }, { "start": 22388.6, "end": 22389.78, "probability": 0.1096 }, { "start": 22390.32, "end": 22390.34, "probability": 0.1596 }, { "start": 22390.34, "end": 22392.28, "probability": 0.1755 }, { "start": 22392.28, "end": 22392.58, "probability": 0.469 }, { "start": 22394.16, "end": 22394.16, "probability": 0.1611 }, { "start": 22394.72, "end": 22395.92, "probability": 0.1881 }, { "start": 22396.42, "end": 22399.64, "probability": 0.5637 }, { "start": 22400.74, "end": 22401.3, "probability": 0.7185 }, { "start": 22402.14, "end": 22405.4, "probability": 0.1369 }, { "start": 22405.4, "end": 22406.8, "probability": 0.1935 }, { "start": 22407.22, "end": 22407.78, "probability": 0.3861 }, { "start": 22409.82, "end": 22413.07, "probability": 0.1295 }, { "start": 22414.0, "end": 22414.7, "probability": 0.0688 }, { "start": 22415.88, "end": 22418.56, "probability": 0.1113 }, { "start": 22420.24, "end": 22427.84, "probability": 0.0109 }, { "start": 22428.0, "end": 22428.0, "probability": 0.0 }, { "start": 22428.0, "end": 22428.0, "probability": 0.0 }, { "start": 22428.0, "end": 22428.0, "probability": 0.0 }, { "start": 22428.1, "end": 22430.26, "probability": 0.04 }, { "start": 22431.82, "end": 22432.42, "probability": 0.0289 }, { "start": 22435.06, "end": 22435.78, "probability": 0.1118 }, { "start": 22436.36, "end": 22436.54, "probability": 0.2491 }, { "start": 22436.54, "end": 22437.1, "probability": 0.247 }, { "start": 22440.54, "end": 22441.48, "probability": 0.1576 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.0, "end": 22548.0, "probability": 0.0 }, { "start": 22548.14, "end": 22548.62, "probability": 0.0395 }, { "start": 22548.62, "end": 22549.42, "probability": 0.3225 }, { "start": 22549.5, "end": 22549.72, "probability": 0.7245 }, { "start": 22550.08, "end": 22551.72, "probability": 0.998 }, { "start": 22552.74, "end": 22555.56, "probability": 0.9927 }, { "start": 22555.92, "end": 22556.2, "probability": 0.5085 }, { "start": 22556.42, "end": 22560.54, "probability": 0.9506 }, { "start": 22561.1, "end": 22564.56, "probability": 0.998 }, { "start": 22566.38, "end": 22572.26, "probability": 0.9253 }, { "start": 22572.96, "end": 22573.96, "probability": 0.0198 }, { "start": 22576.16, "end": 22576.62, "probability": 0.0208 }, { "start": 22577.14, "end": 22578.24, "probability": 0.0363 }, { "start": 22578.68, "end": 22578.74, "probability": 0.3717 }, { "start": 22578.74, "end": 22578.74, "probability": 0.3267 }, { "start": 22578.74, "end": 22578.74, "probability": 0.4277 }, { "start": 22578.74, "end": 22578.98, "probability": 0.3282 }, { "start": 22578.98, "end": 22581.54, "probability": 0.6801 }, { "start": 22582.4, "end": 22583.54, "probability": 0.5996 }, { "start": 22586.94, "end": 22590.92, "probability": 0.5935 }, { "start": 22590.92, "end": 22591.62, "probability": 0.2576 }, { "start": 22591.85, "end": 22593.9, "probability": 0.4083 }, { "start": 22593.96, "end": 22595.74, "probability": 0.7177 }, { "start": 22595.84, "end": 22598.46, "probability": 0.7737 }, { "start": 22598.62, "end": 22600.0, "probability": 0.6993 }, { "start": 22600.02, "end": 22600.18, "probability": 0.5822 }, { "start": 22600.36, "end": 22601.42, "probability": 0.0333 }, { "start": 22602.02, "end": 22602.02, "probability": 0.0664 }, { "start": 22602.02, "end": 22604.68, "probability": 0.9812 }, { "start": 22604.78, "end": 22606.4, "probability": 0.9653 }, { "start": 22606.54, "end": 22607.34, "probability": 0.4357 }, { "start": 22607.8, "end": 22608.12, "probability": 0.538 }, { "start": 22608.12, "end": 22608.12, "probability": 0.3665 }, { "start": 22608.26, "end": 22608.72, "probability": 0.4897 }, { "start": 22608.82, "end": 22609.88, "probability": 0.5537 }, { "start": 22610.02, "end": 22612.34, "probability": 0.9209 }, { "start": 22613.56, "end": 22614.66, "probability": 0.7575 }, { "start": 22615.44, "end": 22615.84, "probability": 0.3047 }, { "start": 22615.84, "end": 22617.84, "probability": 0.2235 }, { "start": 22617.84, "end": 22617.84, "probability": 0.5309 }, { "start": 22617.84, "end": 22618.66, "probability": 0.255 }, { "start": 22618.7, "end": 22619.26, "probability": 0.0228 }, { "start": 22619.26, "end": 22620.14, "probability": 0.4894 }, { "start": 22620.16, "end": 22621.1, "probability": 0.5369 }, { "start": 22621.1, "end": 22621.44, "probability": 0.2822 }, { "start": 22621.44, "end": 22621.94, "probability": 0.7959 }, { "start": 22623.06, "end": 22624.08, "probability": 0.3933 }, { "start": 22624.26, "end": 22625.5, "probability": 0.7526 }, { "start": 22625.8, "end": 22629.56, "probability": 0.3221 }, { "start": 22629.7, "end": 22630.66, "probability": 0.4558 }, { "start": 22630.66, "end": 22630.74, "probability": 0.1817 }, { "start": 22630.82, "end": 22635.22, "probability": 0.9668 }, { "start": 22635.5, "end": 22637.62, "probability": 0.8785 }, { "start": 22638.32, "end": 22639.93, "probability": 0.2404 }, { "start": 22641.88, "end": 22644.72, "probability": 0.3957 }, { "start": 22645.88, "end": 22646.42, "probability": 0.7867 }, { "start": 22648.46, "end": 22649.5, "probability": 0.6606 }, { "start": 22650.98, "end": 22652.54, "probability": 0.79 }, { "start": 22653.2, "end": 22653.94, "probability": 0.993 }, { "start": 22654.58, "end": 22657.68, "probability": 0.8889 }, { "start": 22659.48, "end": 22661.26, "probability": 0.8826 }, { "start": 22662.9, "end": 22666.5, "probability": 0.886 }, { "start": 22668.26, "end": 22671.24, "probability": 0.9633 }, { "start": 22672.24, "end": 22674.33, "probability": 0.2072 }, { "start": 22676.52, "end": 22678.04, "probability": 0.814 }, { "start": 22679.08, "end": 22679.7, "probability": 0.9642 }, { "start": 22681.38, "end": 22682.4, "probability": 0.8658 }, { "start": 22684.52, "end": 22685.32, "probability": 0.9481 }, { "start": 22685.92, "end": 22687.04, "probability": 0.7371 }, { "start": 22687.84, "end": 22688.28, "probability": 0.5337 }, { "start": 22688.98, "end": 22689.98, "probability": 0.7257 }, { "start": 22690.84, "end": 22691.42, "probability": 0.9207 }, { "start": 22692.14, "end": 22692.98, "probability": 0.8838 }, { "start": 22694.14, "end": 22696.38, "probability": 0.9431 }, { "start": 22700.88, "end": 22702.46, "probability": 0.6562 }, { "start": 22703.54, "end": 22705.92, "probability": 0.5047 }, { "start": 22706.9, "end": 22707.8, "probability": 0.713 }, { "start": 22711.42, "end": 22712.26, "probability": 0.8381 }, { "start": 22713.06, "end": 22713.98, "probability": 0.8745 }, { "start": 22716.12, "end": 22716.64, "probability": 0.9697 }, { "start": 22718.58, "end": 22719.42, "probability": 0.9451 }, { "start": 22720.48, "end": 22720.92, "probability": 0.916 }, { "start": 22721.92, "end": 22722.62, "probability": 0.9868 }, { "start": 22723.56, "end": 22726.24, "probability": 0.9247 }, { "start": 22728.9, "end": 22730.26, "probability": 0.669 }, { "start": 22733.7, "end": 22734.94, "probability": 0.7657 }, { "start": 22736.06, "end": 22736.84, "probability": 0.6501 }, { "start": 22738.36, "end": 22740.66, "probability": 0.6582 }, { "start": 22741.8, "end": 22742.26, "probability": 0.7783 }, { "start": 22743.08, "end": 22743.78, "probability": 0.8828 }, { "start": 22745.0, "end": 22745.56, "probability": 0.9954 }, { "start": 22746.36, "end": 22747.08, "probability": 0.8976 }, { "start": 22748.28, "end": 22751.76, "probability": 0.8936 }, { "start": 22755.86, "end": 22757.62, "probability": 0.9372 }, { "start": 22758.34, "end": 22759.4, "probability": 0.2275 }, { "start": 22768.02, "end": 22769.54, "probability": 0.6049 }, { "start": 22776.96, "end": 22779.18, "probability": 0.6933 }, { "start": 22779.96, "end": 22780.7, "probability": 0.7375 }, { "start": 22782.38, "end": 22783.32, "probability": 0.9354 }, { "start": 22783.88, "end": 22784.82, "probability": 0.7454 }, { "start": 22785.52, "end": 22785.98, "probability": 0.7922 }, { "start": 22786.98, "end": 22787.72, "probability": 0.8162 }, { "start": 22795.58, "end": 22796.66, "probability": 0.5003 }, { "start": 22797.68, "end": 22798.58, "probability": 0.5141 }, { "start": 22799.74, "end": 22800.16, "probability": 0.8682 }, { "start": 22801.38, "end": 22802.44, "probability": 0.8194 }, { "start": 22802.96, "end": 22803.42, "probability": 0.9668 }, { "start": 22804.14, "end": 22804.96, "probability": 0.8662 }, { "start": 22808.56, "end": 22810.84, "probability": 0.7407 }, { "start": 22811.56, "end": 22812.74, "probability": 0.9814 }, { "start": 22814.06, "end": 22815.22, "probability": 0.9046 }, { "start": 22817.74, "end": 22820.0, "probability": 0.7192 }, { "start": 22821.72, "end": 22822.54, "probability": 0.7026 }, { "start": 22823.16, "end": 22825.26, "probability": 0.8511 }, { "start": 22826.93, "end": 22829.02, "probability": 0.7634 }, { "start": 22829.96, "end": 22832.56, "probability": 0.9191 }, { "start": 22836.94, "end": 22837.32, "probability": 0.7654 }, { "start": 22837.84, "end": 22838.96, "probability": 0.7228 }, { "start": 22839.62, "end": 22840.12, "probability": 0.7642 }, { "start": 22840.86, "end": 22842.06, "probability": 0.8947 }, { "start": 22844.54, "end": 22846.54, "probability": 0.7863 }, { "start": 22847.9, "end": 22848.42, "probability": 0.9861 }, { "start": 22849.54, "end": 22850.34, "probability": 0.5894 }, { "start": 22851.94, "end": 22854.4, "probability": 0.8711 }, { "start": 22855.26, "end": 22855.66, "probability": 0.9795 }, { "start": 22856.6, "end": 22857.14, "probability": 0.8215 }, { "start": 22858.52, "end": 22858.8, "probability": 0.9729 }, { "start": 22859.46, "end": 22860.24, "probability": 0.6812 }, { "start": 22861.76, "end": 22862.3, "probability": 0.7324 }, { "start": 22863.28, "end": 22864.04, "probability": 0.7452 }, { "start": 22865.7, "end": 22866.24, "probability": 0.9587 }, { "start": 22866.98, "end": 22868.2, "probability": 0.7803 }, { "start": 22869.08, "end": 22870.12, "probability": 0.978 }, { "start": 22871.08, "end": 22872.2, "probability": 0.9514 }, { "start": 22872.82, "end": 22874.92, "probability": 0.9641 }, { "start": 22877.42, "end": 22879.94, "probability": 0.8804 }, { "start": 22880.96, "end": 22881.38, "probability": 0.9937 }, { "start": 22882.64, "end": 22883.78, "probability": 0.942 }, { "start": 22884.44, "end": 22884.84, "probability": 0.9895 }, { "start": 22886.54, "end": 22887.36, "probability": 0.9163 }, { "start": 22888.28, "end": 22888.78, "probability": 0.9717 }, { "start": 22889.68, "end": 22890.4, "probability": 0.5979 }, { "start": 22891.04, "end": 22891.84, "probability": 0.9852 }, { "start": 22892.6, "end": 22893.38, "probability": 0.8977 }, { "start": 22895.21, "end": 22897.18, "probability": 0.885 }, { "start": 22902.9, "end": 22903.24, "probability": 0.7643 }, { "start": 22903.96, "end": 22906.38, "probability": 0.731 }, { "start": 22907.76, "end": 22909.2, "probability": 0.554 }, { "start": 22910.26, "end": 22911.52, "probability": 0.8565 }, { "start": 22913.37, "end": 22914.92, "probability": 0.95 }, { "start": 22915.66, "end": 22917.9, "probability": 0.9372 }, { "start": 22919.1, "end": 22919.7, "probability": 0.9575 }, { "start": 22920.9, "end": 22921.66, "probability": 0.8776 }, { "start": 22923.78, "end": 22926.28, "probability": 0.072 }, { "start": 22934.86, "end": 22935.1, "probability": 0.5212 }, { "start": 22950.52, "end": 22952.4, "probability": 0.3682 }, { "start": 22953.52, "end": 22953.8, "probability": 0.5 }, { "start": 22954.54, "end": 22955.66, "probability": 0.9785 }, { "start": 22956.3, "end": 22958.84, "probability": 0.8126 }, { "start": 22962.04, "end": 22964.26, "probability": 0.7407 }, { "start": 22965.54, "end": 22966.02, "probability": 0.9482 }, { "start": 22967.3, "end": 22968.56, "probability": 0.6974 }, { "start": 22969.4, "end": 22969.82, "probability": 0.5894 }, { "start": 22970.64, "end": 22971.62, "probability": 0.5734 }, { "start": 22973.76, "end": 22976.16, "probability": 0.9814 }, { "start": 22976.72, "end": 22978.96, "probability": 0.8781 }, { "start": 22985.08, "end": 22985.64, "probability": 0.7935 }, { "start": 22987.46, "end": 22988.28, "probability": 0.8959 }, { "start": 22989.6, "end": 22990.2, "probability": 0.9813 }, { "start": 22991.6, "end": 22992.34, "probability": 0.8409 }, { "start": 22995.54, "end": 22996.46, "probability": 0.0585 }, { "start": 22998.98, "end": 23000.56, "probability": 0.0844 }, { "start": 23002.94, "end": 23004.04, "probability": 0.5181 }, { "start": 23005.88, "end": 23006.86, "probability": 0.8283 }, { "start": 23008.16, "end": 23008.64, "probability": 0.756 }, { "start": 23009.46, "end": 23010.34, "probability": 0.8772 }, { "start": 23011.48, "end": 23011.82, "probability": 0.9309 }, { "start": 23013.08, "end": 23014.2, "probability": 0.9548 }, { "start": 23016.62, "end": 23019.32, "probability": 0.7162 }, { "start": 23021.36, "end": 23021.82, "probability": 0.9719 }, { "start": 23023.68, "end": 23025.3, "probability": 0.9722 }, { "start": 23026.14, "end": 23027.1, "probability": 0.6415 }, { "start": 23029.18, "end": 23029.7, "probability": 0.7899 }, { "start": 23031.48, "end": 23032.22, "probability": 0.6703 }, { "start": 23034.8, "end": 23035.9, "probability": 0.848 }, { "start": 23037.02, "end": 23037.84, "probability": 0.8336 }, { "start": 23040.54, "end": 23042.88, "probability": 0.7601 }, { "start": 23044.12, "end": 23044.54, "probability": 0.9531 }, { "start": 23046.26, "end": 23047.22, "probability": 0.7383 }, { "start": 23048.2, "end": 23048.78, "probability": 0.9941 }, { "start": 23049.86, "end": 23050.84, "probability": 0.6835 }, { "start": 23051.84, "end": 23052.38, "probability": 0.9914 }, { "start": 23053.86, "end": 23054.82, "probability": 0.5939 }, { "start": 23062.68, "end": 23066.14, "probability": 0.5805 }, { "start": 23067.16, "end": 23069.46, "probability": 0.5502 }, { "start": 23071.9, "end": 23072.58, "probability": 0.9502 }, { "start": 23075.54, "end": 23076.26, "probability": 0.6372 }, { "start": 23077.56, "end": 23078.1, "probability": 0.9303 }, { "start": 23078.76, "end": 23081.74, "probability": 0.7939 }, { "start": 23083.26, "end": 23083.88, "probability": 0.9948 }, { "start": 23085.84, "end": 23086.78, "probability": 0.9726 }, { "start": 23088.08, "end": 23088.54, "probability": 0.9346 }, { "start": 23089.58, "end": 23090.4, "probability": 0.8425 }, { "start": 23093.98, "end": 23094.46, "probability": 0.9878 }, { "start": 23095.48, "end": 23096.46, "probability": 0.8769 }, { "start": 23100.6, "end": 23101.08, "probability": 0.9927 }, { "start": 23102.12, "end": 23102.82, "probability": 0.6515 }, { "start": 23103.92, "end": 23104.52, "probability": 0.6914 }, { "start": 23105.9, "end": 23106.68, "probability": 0.755 }, { "start": 23107.5, "end": 23108.0, "probability": 0.9287 }, { "start": 23108.96, "end": 23109.86, "probability": 0.7809 }, { "start": 23111.24, "end": 23111.84, "probability": 0.9722 }, { "start": 23112.84, "end": 23113.62, "probability": 0.8657 }, { "start": 23115.48, "end": 23116.46, "probability": 0.8454 }, { "start": 23117.12, "end": 23117.9, "probability": 0.8273 }, { "start": 23123.68, "end": 23125.36, "probability": 0.6361 }, { "start": 23128.94, "end": 23129.24, "probability": 0.7593 }, { "start": 23130.38, "end": 23131.46, "probability": 0.8069 }, { "start": 23132.58, "end": 23133.06, "probability": 0.7681 }, { "start": 23133.98, "end": 23135.02, "probability": 0.9661 }, { "start": 23136.6, "end": 23138.48, "probability": 0.9529 }, { "start": 23139.47, "end": 23142.34, "probability": 0.9662 }, { "start": 23143.28, "end": 23143.82, "probability": 0.9951 }, { "start": 23144.68, "end": 23145.88, "probability": 0.815 }, { "start": 23146.68, "end": 23147.14, "probability": 0.9934 }, { "start": 23148.0, "end": 23149.22, "probability": 0.8947 }, { "start": 23150.1, "end": 23150.36, "probability": 0.9902 }, { "start": 23151.3, "end": 23152.24, "probability": 0.9792 }, { "start": 23152.9, "end": 23153.38, "probability": 0.9949 }, { "start": 23154.38, "end": 23155.2, "probability": 0.7283 }, { "start": 23157.54, "end": 23158.12, "probability": 0.7107 }, { "start": 23158.88, "end": 23159.66, "probability": 0.6191 }, { "start": 23161.12, "end": 23161.78, "probability": 0.9774 }, { "start": 23162.66, "end": 23163.66, "probability": 0.9269 }, { "start": 23165.02, "end": 23165.58, "probability": 0.7583 }, { "start": 23166.64, "end": 23167.5, "probability": 0.7611 }, { "start": 23169.76, "end": 23172.18, "probability": 0.9718 }, { "start": 23173.06, "end": 23173.6, "probability": 0.9839 }, { "start": 23174.46, "end": 23175.54, "probability": 0.8929 }, { "start": 23176.44, "end": 23177.82, "probability": 0.9292 }, { "start": 23178.46, "end": 23179.28, "probability": 0.8532 }, { "start": 23182.9, "end": 23183.86, "probability": 0.2944 }, { "start": 23188.12, "end": 23188.54, "probability": 0.5485 }, { "start": 23189.16, "end": 23190.36, "probability": 0.6985 }, { "start": 23191.2, "end": 23191.76, "probability": 0.9694 }, { "start": 23193.26, "end": 23197.16, "probability": 0.6895 }, { "start": 23198.24, "end": 23198.96, "probability": 0.5453 }, { "start": 23199.74, "end": 23200.22, "probability": 0.9741 }, { "start": 23202.0, "end": 23202.92, "probability": 0.2641 }, { "start": 23204.56, "end": 23208.46, "probability": 0.697 }, { "start": 23215.28, "end": 23215.56, "probability": 0.7301 }, { "start": 23217.28, "end": 23218.14, "probability": 0.5074 }, { "start": 23219.32, "end": 23222.26, "probability": 0.9395 }, { "start": 23223.14, "end": 23223.56, "probability": 0.7599 }, { "start": 23225.08, "end": 23225.82, "probability": 0.5762 }, { "start": 23226.86, "end": 23227.5, "probability": 0.9611 }, { "start": 23229.32, "end": 23230.28, "probability": 0.7099 }, { "start": 23232.48, "end": 23233.02, "probability": 0.965 }, { "start": 23235.72, "end": 23236.5, "probability": 0.6051 }, { "start": 23237.42, "end": 23237.94, "probability": 0.9295 }, { "start": 23240.0, "end": 23240.94, "probability": 0.7431 }, { "start": 23241.74, "end": 23242.98, "probability": 0.9959 }, { "start": 23244.18, "end": 23245.32, "probability": 0.9822 }, { "start": 23248.02, "end": 23248.42, "probability": 0.689 }, { "start": 23251.34, "end": 23251.96, "probability": 0.6366 }, { "start": 23255.54, "end": 23256.5, "probability": 0.5006 }, { "start": 23258.44, "end": 23259.18, "probability": 0.6286 }, { "start": 23260.08, "end": 23260.52, "probability": 0.5337 }, { "start": 23264.06, "end": 23264.7, "probability": 0.4744 }, { "start": 23267.24, "end": 23267.78, "probability": 0.8472 }, { "start": 23270.9, "end": 23271.84, "probability": 0.6524 }, { "start": 23273.26, "end": 23275.38, "probability": 0.7783 }, { "start": 23280.34, "end": 23280.7, "probability": 0.7729 }, { "start": 23283.8, "end": 23284.52, "probability": 0.5361 }, { "start": 23285.6, "end": 23286.22, "probability": 0.9315 }, { "start": 23289.0, "end": 23289.28, "probability": 0.7524 }, { "start": 23292.56, "end": 23293.74, "probability": 0.5566 }, { "start": 23297.46, "end": 23299.3, "probability": 0.6645 }, { "start": 23299.98, "end": 23300.76, "probability": 0.4357 }, { "start": 23303.32, "end": 23304.28, "probability": 0.9365 }, { "start": 23305.16, "end": 23306.04, "probability": 0.7384 }, { "start": 23309.04, "end": 23314.48, "probability": 0.0602 }, { "start": 23314.78, "end": 23315.34, "probability": 0.2929 }, { "start": 23315.5, "end": 23318.32, "probability": 0.2979 }, { "start": 23319.98, "end": 23329.62, "probability": 0.2396 }, { "start": 23331.48, "end": 23332.52, "probability": 0.6477 }, { "start": 23332.6, "end": 23332.78, "probability": 0.722 }, { "start": 23338.16, "end": 23341.82, "probability": 0.0959 }, { "start": 23342.54, "end": 23343.26, "probability": 0.1061 }, { "start": 23357.1, "end": 23361.04, "probability": 0.0353 }, { "start": 23505.12, "end": 23505.3, "probability": 0.0247 }, { "start": 23505.3, "end": 23505.3, "probability": 0.0478 }, { "start": 23505.3, "end": 23506.7, "probability": 0.5804 }, { "start": 23507.64, "end": 23508.44, "probability": 0.1238 }, { "start": 23509.66, "end": 23509.8, "probability": 0.4917 }, { "start": 23509.8, "end": 23511.18, "probability": 0.4607 }, { "start": 23511.64, "end": 23512.4, "probability": 0.5958 }, { "start": 23513.32, "end": 23519.62, "probability": 0.9619 }, { "start": 23520.28, "end": 23522.7, "probability": 0.7694 }, { "start": 23524.12, "end": 23525.8, "probability": 0.8785 }, { "start": 23543.22, "end": 23546.82, "probability": 0.9843 }, { "start": 23546.96, "end": 23551.18, "probability": 0.516 }, { "start": 23551.88, "end": 23554.57, "probability": 0.9307 }, { "start": 23555.16, "end": 23560.6, "probability": 0.5889 }, { "start": 23561.28, "end": 23564.06, "probability": 0.3789 }, { "start": 23565.14, "end": 23567.54, "probability": 0.4938 }, { "start": 23567.66, "end": 23571.4, "probability": 0.9239 }, { "start": 23572.1, "end": 23575.06, "probability": 0.9024 }, { "start": 23586.6, "end": 23587.6, "probability": 0.6897 }, { "start": 23588.24, "end": 23589.04, "probability": 0.8464 }, { "start": 23589.82, "end": 23593.6, "probability": 0.9873 }, { "start": 23594.34, "end": 23598.48, "probability": 0.7506 }, { "start": 23599.18, "end": 23601.62, "probability": 0.4991 }, { "start": 23602.34, "end": 23606.46, "probability": 0.9128 }, { "start": 23607.16, "end": 23610.14, "probability": 0.6689 }, { "start": 23610.52, "end": 23615.4, "probability": 0.9836 }, { "start": 23615.4, "end": 23620.92, "probability": 0.9939 }, { "start": 23620.92, "end": 23626.22, "probability": 0.9995 }, { "start": 23627.06, "end": 23630.08, "probability": 0.9913 }, { "start": 23630.1, "end": 23631.24, "probability": 0.4165 }, { "start": 23632.14, "end": 23633.22, "probability": 0.9805 }, { "start": 23634.04, "end": 23638.66, "probability": 0.994 }, { "start": 23639.7, "end": 23643.48, "probability": 0.9505 }, { "start": 23643.48, "end": 23647.58, "probability": 0.9948 }, { "start": 23647.76, "end": 23649.56, "probability": 0.9788 }, { "start": 23650.0, "end": 23652.6, "probability": 0.9836 }, { "start": 23653.36, "end": 23655.88, "probability": 0.9691 }, { "start": 23656.96, "end": 23661.88, "probability": 0.9735 }, { "start": 23662.84, "end": 23666.0, "probability": 0.9956 }, { "start": 23666.68, "end": 23669.44, "probability": 0.9774 }, { "start": 23670.46, "end": 23671.48, "probability": 0.8357 }, { "start": 23672.14, "end": 23675.26, "probability": 0.8378 }, { "start": 23675.4, "end": 23678.46, "probability": 0.995 }, { "start": 23678.46, "end": 23682.96, "probability": 0.9943 }, { "start": 23683.56, "end": 23686.38, "probability": 0.9991 }, { "start": 23686.38, "end": 23689.34, "probability": 0.999 }, { "start": 23689.8, "end": 23693.72, "probability": 0.9477 }, { "start": 23695.4, "end": 23698.2, "probability": 0.994 }, { "start": 23698.74, "end": 23701.04, "probability": 0.999 }, { "start": 23701.86, "end": 23702.34, "probability": 0.573 }, { "start": 23702.38, "end": 23709.44, "probability": 0.9948 }, { "start": 23709.96, "end": 23710.86, "probability": 0.2788 }, { "start": 23710.86, "end": 23714.94, "probability": 0.9396 }, { "start": 23715.62, "end": 23717.94, "probability": 0.9977 }, { "start": 23718.54, "end": 23720.84, "probability": 0.9958 }, { "start": 23720.84, "end": 23723.76, "probability": 0.9424 }, { "start": 23724.24, "end": 23730.1, "probability": 0.9954 }, { "start": 23732.0, "end": 23733.6, "probability": 0.7939 }, { "start": 23734.26, "end": 23736.02, "probability": 0.5098 }, { "start": 23736.5, "end": 23739.12, "probability": 0.979 }, { "start": 23739.12, "end": 23742.48, "probability": 0.9779 }, { "start": 23743.14, "end": 23746.72, "probability": 0.9912 }, { "start": 23747.56, "end": 23750.74, "probability": 0.9906 }, { "start": 23750.74, "end": 23757.44, "probability": 0.9934 }, { "start": 23758.28, "end": 23762.74, "probability": 0.993 }, { "start": 23763.06, "end": 23765.24, "probability": 0.8823 }, { "start": 23765.62, "end": 23767.94, "probability": 0.968 }, { "start": 23768.8, "end": 23772.02, "probability": 0.9897 }, { "start": 23772.66, "end": 23774.98, "probability": 0.9894 }, { "start": 23775.36, "end": 23777.38, "probability": 0.9983 }, { "start": 23778.86, "end": 23783.5, "probability": 0.9795 }, { "start": 23784.96, "end": 23790.08, "probability": 0.9824 }, { "start": 23790.78, "end": 23794.78, "probability": 0.9963 }, { "start": 23795.04, "end": 23796.74, "probability": 0.7002 }, { "start": 23797.22, "end": 23801.68, "probability": 0.9894 }, { "start": 23802.02, "end": 23805.34, "probability": 0.9503 }, { "start": 23806.04, "end": 23808.18, "probability": 0.9953 }, { "start": 23808.18, "end": 23811.66, "probability": 0.9929 }, { "start": 23812.46, "end": 23813.26, "probability": 0.6417 }, { "start": 23813.8, "end": 23818.18, "probability": 0.9972 }, { "start": 23819.98, "end": 23823.1, "probability": 0.6395 }, { "start": 23823.7, "end": 23825.48, "probability": 0.9342 }, { "start": 23826.26, "end": 23829.92, "probability": 0.9671 }, { "start": 23829.92, "end": 23833.14, "probability": 0.963 }, { "start": 23834.12, "end": 23837.16, "probability": 0.8581 }, { "start": 23837.16, "end": 23839.94, "probability": 0.9834 }, { "start": 23840.08, "end": 23844.88, "probability": 0.9858 }, { "start": 23845.76, "end": 23846.6, "probability": 0.9988 }, { "start": 23847.14, "end": 23849.16, "probability": 0.9958 }, { "start": 23849.6, "end": 23853.38, "probability": 0.9979 }, { "start": 23853.8, "end": 23857.36, "probability": 0.9912 }, { "start": 23858.66, "end": 23862.82, "probability": 0.7946 }, { "start": 23863.28, "end": 23865.52, "probability": 0.9824 }, { "start": 23865.52, "end": 23868.62, "probability": 0.9985 }, { "start": 23869.3, "end": 23874.1, "probability": 0.9973 }, { "start": 23875.02, "end": 23878.02, "probability": 0.9951 }, { "start": 23878.46, "end": 23880.56, "probability": 0.9873 }, { "start": 23881.32, "end": 23884.42, "probability": 0.8611 }, { "start": 23884.96, "end": 23886.42, "probability": 0.9663 }, { "start": 23886.42, "end": 23889.78, "probability": 0.9972 }, { "start": 23891.62, "end": 23896.06, "probability": 0.9973 }, { "start": 23896.66, "end": 23900.53, "probability": 0.9982 }, { "start": 23900.6, "end": 23904.8, "probability": 0.9973 }, { "start": 23905.3, "end": 23906.22, "probability": 0.6971 }, { "start": 23906.94, "end": 23910.82, "probability": 0.7853 }, { "start": 23911.72, "end": 23913.72, "probability": 0.9984 }, { "start": 23913.72, "end": 23917.24, "probability": 0.9956 }, { "start": 23917.74, "end": 23922.06, "probability": 0.9349 }, { "start": 23922.68, "end": 23927.25, "probability": 0.9922 }, { "start": 23928.22, "end": 23930.28, "probability": 0.9986 }, { "start": 23930.38, "end": 23932.42, "probability": 0.9308 }, { "start": 23933.06, "end": 23937.56, "probability": 0.9698 }, { "start": 23938.94, "end": 23941.28, "probability": 0.9131 }, { "start": 23941.92, "end": 23943.96, "probability": 0.9925 }, { "start": 23944.48, "end": 23945.34, "probability": 0.9696 }, { "start": 23946.54, "end": 23946.8, "probability": 0.2572 }, { "start": 23946.8, "end": 23947.9, "probability": 0.8345 }, { "start": 23948.56, "end": 23951.26, "probability": 0.9326 }, { "start": 23951.34, "end": 23952.4, "probability": 0.9537 }, { "start": 23965.46, "end": 23965.88, "probability": 0.7309 }, { "start": 23965.9, "end": 23967.64, "probability": 0.2694 }, { "start": 23983.05, "end": 23983.8, "probability": 0.5085 }, { "start": 23984.5, "end": 23984.72, "probability": 0.6106 }, { "start": 23987.38, "end": 23989.46, "probability": 0.8307 }, { "start": 23989.6, "end": 23994.74, "probability": 0.8502 }, { "start": 23995.86, "end": 23997.66, "probability": 0.9764 }, { "start": 23998.3, "end": 23999.08, "probability": 0.7335 }, { "start": 24000.06, "end": 24003.34, "probability": 0.9939 }, { "start": 24004.06, "end": 24006.34, "probability": 0.9979 }, { "start": 24007.1, "end": 24007.86, "probability": 0.967 }, { "start": 24008.94, "end": 24012.98, "probability": 0.9963 }, { "start": 24013.6, "end": 24017.04, "probability": 0.9302 }, { "start": 24017.86, "end": 24022.12, "probability": 0.9467 }, { "start": 24022.68, "end": 24025.3, "probability": 0.8936 }, { "start": 24026.22, "end": 24029.72, "probability": 0.9395 }, { "start": 24030.9, "end": 24033.56, "probability": 0.9806 }, { "start": 24034.46, "end": 24039.86, "probability": 0.9946 }, { "start": 24040.46, "end": 24041.2, "probability": 0.72 }, { "start": 24041.46, "end": 24042.1, "probability": 0.9308 }, { "start": 24042.26, "end": 24044.24, "probability": 0.7987 }, { "start": 24044.24, "end": 24045.44, "probability": 0.7623 }, { "start": 24046.12, "end": 24049.48, "probability": 0.9885 }, { "start": 24049.48, "end": 24054.52, "probability": 0.8718 }, { "start": 24056.48, "end": 24061.92, "probability": 0.9014 }, { "start": 24062.04, "end": 24063.14, "probability": 0.8359 }, { "start": 24063.62, "end": 24065.82, "probability": 0.9484 }, { "start": 24066.8, "end": 24068.54, "probability": 0.995 }, { "start": 24070.08, "end": 24074.88, "probability": 0.9883 }, { "start": 24076.5, "end": 24077.7, "probability": 0.938 }, { "start": 24078.48, "end": 24080.14, "probability": 0.9094 }, { "start": 24080.9, "end": 24082.2, "probability": 0.9895 }, { "start": 24082.56, "end": 24086.72, "probability": 0.9011 }, { "start": 24087.8, "end": 24088.72, "probability": 0.5809 }, { "start": 24091.56, "end": 24094.76, "probability": 0.981 }, { "start": 24094.98, "end": 24096.82, "probability": 0.9921 }, { "start": 24097.48, "end": 24102.48, "probability": 0.9952 }, { "start": 24103.6, "end": 24105.3, "probability": 0.9821 }, { "start": 24105.42, "end": 24107.34, "probability": 0.957 }, { "start": 24107.92, "end": 24109.36, "probability": 0.9271 }, { "start": 24110.58, "end": 24117.7, "probability": 0.9818 }, { "start": 24118.34, "end": 24120.64, "probability": 0.954 }, { "start": 24120.8, "end": 24124.08, "probability": 0.9081 }, { "start": 24124.08, "end": 24128.92, "probability": 0.986 }, { "start": 24130.1, "end": 24131.3, "probability": 0.8744 }, { "start": 24131.58, "end": 24137.34, "probability": 0.9771 }, { "start": 24137.72, "end": 24140.4, "probability": 0.965 }, { "start": 24141.04, "end": 24144.53, "probability": 0.9708 }, { "start": 24144.82, "end": 24146.16, "probability": 0.5062 }, { "start": 24147.13, "end": 24153.86, "probability": 0.9809 }, { "start": 24154.48, "end": 24159.16, "probability": 0.9507 }, { "start": 24160.02, "end": 24167.36, "probability": 0.9315 }, { "start": 24167.8, "end": 24171.16, "probability": 0.8625 }, { "start": 24171.86, "end": 24173.78, "probability": 0.9929 }, { "start": 24174.14, "end": 24174.4, "probability": 0.7789 }, { "start": 24174.5, "end": 24175.16, "probability": 0.8761 }, { "start": 24175.6, "end": 24176.28, "probability": 0.6199 }, { "start": 24176.3, "end": 24180.8, "probability": 0.9959 }, { "start": 24182.16, "end": 24184.16, "probability": 0.8042 }, { "start": 24184.82, "end": 24190.24, "probability": 0.9403 }, { "start": 24190.66, "end": 24191.8, "probability": 0.8583 }, { "start": 24192.26, "end": 24195.72, "probability": 0.9932 }, { "start": 24196.1, "end": 24198.7, "probability": 0.9689 }, { "start": 24199.14, "end": 24199.51, "probability": 0.9804 }, { "start": 24200.62, "end": 24201.01, "probability": 0.9199 }, { "start": 24201.76, "end": 24202.98, "probability": 0.9509 }, { "start": 24203.18, "end": 24203.46, "probability": 0.8387 }, { "start": 24205.9, "end": 24207.2, "probability": 0.7802 }, { "start": 24220.28, "end": 24220.28, "probability": 0.1521 }, { "start": 24220.28, "end": 24220.3, "probability": 0.1459 }, { "start": 24220.3, "end": 24220.3, "probability": 0.1049 }, { "start": 24220.3, "end": 24220.3, "probability": 0.1389 }, { "start": 24220.3, "end": 24220.3, "probability": 0.1906 }, { "start": 24220.3, "end": 24220.3, "probability": 0.1994 }, { "start": 24246.0, "end": 24248.32, "probability": 0.481 }, { "start": 24249.6, "end": 24251.58, "probability": 0.6965 }, { "start": 24252.82, "end": 24255.26, "probability": 0.991 }, { "start": 24260.36, "end": 24261.5, "probability": 0.3779 }, { "start": 24262.06, "end": 24262.6, "probability": 0.6734 }, { "start": 24263.8, "end": 24267.12, "probability": 0.9192 }, { "start": 24268.38, "end": 24269.14, "probability": 0.9292 }, { "start": 24270.32, "end": 24271.06, "probability": 0.959 }, { "start": 24272.12, "end": 24273.04, "probability": 0.9858 }, { "start": 24273.72, "end": 24275.48, "probability": 0.9767 }, { "start": 24276.56, "end": 24276.94, "probability": 0.9111 }, { "start": 24277.52, "end": 24278.2, "probability": 0.2034 }, { "start": 24278.58, "end": 24283.16, "probability": 0.9916 }, { "start": 24284.72, "end": 24286.14, "probability": 0.9712 }, { "start": 24286.86, "end": 24287.42, "probability": 0.8225 }, { "start": 24288.22, "end": 24292.24, "probability": 0.9854 }, { "start": 24293.6, "end": 24295.3, "probability": 0.9561 }, { "start": 24296.12, "end": 24296.86, "probability": 0.6689 }, { "start": 24297.46, "end": 24299.4, "probability": 0.7933 }, { "start": 24300.02, "end": 24302.42, "probability": 0.9973 }, { "start": 24303.48, "end": 24306.46, "probability": 0.9849 }, { "start": 24308.06, "end": 24309.76, "probability": 0.952 }, { "start": 24310.58, "end": 24314.92, "probability": 0.7366 }, { "start": 24315.56, "end": 24316.9, "probability": 0.994 }, { "start": 24317.82, "end": 24323.18, "probability": 0.9832 }, { "start": 24323.52, "end": 24325.72, "probability": 0.8337 }, { "start": 24326.82, "end": 24327.52, "probability": 0.8644 }, { "start": 24329.16, "end": 24333.26, "probability": 0.8134 }, { "start": 24334.0, "end": 24334.56, "probability": 0.8863 }, { "start": 24335.14, "end": 24336.86, "probability": 0.7668 }, { "start": 24337.52, "end": 24341.08, "probability": 0.746 }, { "start": 24342.04, "end": 24346.2, "probability": 0.8856 }, { "start": 24346.82, "end": 24349.58, "probability": 0.9777 }, { "start": 24349.82, "end": 24351.14, "probability": 0.9032 }, { "start": 24351.24, "end": 24351.68, "probability": 0.8654 }, { "start": 24352.42, "end": 24353.74, "probability": 0.9725 }, { "start": 24354.8, "end": 24356.52, "probability": 0.9861 }, { "start": 24356.98, "end": 24360.14, "probability": 0.8964 }, { "start": 24360.98, "end": 24361.58, "probability": 0.859 }, { "start": 24362.76, "end": 24363.36, "probability": 0.8544 }, { "start": 24364.16, "end": 24366.38, "probability": 0.9818 }, { "start": 24367.88, "end": 24371.16, "probability": 0.9849 }, { "start": 24372.12, "end": 24375.0, "probability": 0.937 }, { "start": 24376.32, "end": 24378.52, "probability": 0.9974 }, { "start": 24379.16, "end": 24380.94, "probability": 0.9548 }, { "start": 24381.32, "end": 24382.44, "probability": 0.9456 }, { "start": 24382.9, "end": 24383.86, "probability": 0.8406 }, { "start": 24384.74, "end": 24388.94, "probability": 0.9888 }, { "start": 24390.94, "end": 24392.3, "probability": 0.9609 }, { "start": 24395.4, "end": 24397.56, "probability": 0.944 }, { "start": 24410.38, "end": 24411.16, "probability": 0.1542 }, { "start": 24411.16, "end": 24411.24, "probability": 0.1585 }, { "start": 24411.24, "end": 24411.52, "probability": 0.0739 }, { "start": 24411.84, "end": 24412.24, "probability": 0.007 }, { "start": 24431.66, "end": 24433.66, "probability": 0.9927 }, { "start": 24434.32, "end": 24437.3, "probability": 0.9932 }, { "start": 24438.0, "end": 24438.76, "probability": 0.8662 }, { "start": 24439.34, "end": 24440.08, "probability": 0.9119 }, { "start": 24441.38, "end": 24442.08, "probability": 0.7881 }, { "start": 24442.7, "end": 24443.3, "probability": 0.7324 }, { "start": 24443.94, "end": 24447.86, "probability": 0.996 }, { "start": 24447.86, "end": 24451.56, "probability": 0.9718 }, { "start": 24452.5, "end": 24453.94, "probability": 0.9908 }, { "start": 24454.74, "end": 24457.94, "probability": 0.9974 }, { "start": 24458.5, "end": 24461.46, "probability": 0.967 }, { "start": 24462.42, "end": 24465.22, "probability": 0.918 }, { "start": 24465.44, "end": 24466.12, "probability": 0.808 }, { "start": 24467.22, "end": 24470.08, "probability": 0.9903 }, { "start": 24470.74, "end": 24471.4, "probability": 0.4872 }, { "start": 24475.02, "end": 24477.24, "probability": 0.9867 }, { "start": 24478.14, "end": 24479.78, "probability": 0.7893 }, { "start": 24480.52, "end": 24482.56, "probability": 0.9775 }, { "start": 24483.74, "end": 24488.34, "probability": 0.9644 }, { "start": 24489.14, "end": 24491.98, "probability": 0.9792 }, { "start": 24492.84, "end": 24496.36, "probability": 0.994 }, { "start": 24496.9, "end": 24498.1, "probability": 0.9891 }, { "start": 24498.24, "end": 24498.92, "probability": 0.8606 }, { "start": 24498.94, "end": 24501.06, "probability": 0.984 }, { "start": 24501.92, "end": 24505.24, "probability": 0.9868 }, { "start": 24505.86, "end": 24506.5, "probability": 0.9318 }, { "start": 24507.06, "end": 24509.08, "probability": 0.8458 }, { "start": 24509.26, "end": 24511.8, "probability": 0.9852 }, { "start": 24512.76, "end": 24515.38, "probability": 0.9552 }, { "start": 24522.84, "end": 24524.66, "probability": 0.756 }, { "start": 24525.4, "end": 24525.9, "probability": 0.9267 }, { "start": 24527.34, "end": 24527.6, "probability": 0.0631 }, { "start": 24527.6, "end": 24527.6, "probability": 0.0285 }, { "start": 24527.6, "end": 24527.6, "probability": 0.0703 }, { "start": 24527.6, "end": 24527.8, "probability": 0.2792 }, { "start": 24528.02, "end": 24532.34, "probability": 0.9316 }, { "start": 24533.38, "end": 24533.9, "probability": 0.9331 }, { "start": 24534.48, "end": 24536.22, "probability": 0.9591 }, { "start": 24537.64, "end": 24539.86, "probability": 0.7723 }, { "start": 24540.02, "end": 24540.84, "probability": 0.9301 }, { "start": 24541.56, "end": 24543.87, "probability": 0.7714 }, { "start": 24544.42, "end": 24545.92, "probability": 0.9879 }, { "start": 24546.62, "end": 24547.26, "probability": 0.7036 }, { "start": 24548.16, "end": 24548.84, "probability": 0.7799 }, { "start": 24549.44, "end": 24550.42, "probability": 0.8079 }, { "start": 24551.04, "end": 24552.5, "probability": 0.9116 }, { "start": 24553.14, "end": 24558.76, "probability": 0.9893 }, { "start": 24559.58, "end": 24560.88, "probability": 0.9973 }, { "start": 24561.72, "end": 24565.24, "probability": 0.9048 }, { "start": 24565.78, "end": 24568.3, "probability": 0.9868 }, { "start": 24568.96, "end": 24569.74, "probability": 0.97 }, { "start": 24570.58, "end": 24572.72, "probability": 0.9248 }, { "start": 24573.26, "end": 24573.74, "probability": 0.9824 }, { "start": 24574.76, "end": 24576.66, "probability": 0.8782 }, { "start": 24577.26, "end": 24579.04, "probability": 0.8242 }, { "start": 24579.82, "end": 24583.38, "probability": 0.9982 }, { "start": 24584.18, "end": 24586.48, "probability": 0.9819 }, { "start": 24587.22, "end": 24590.62, "probability": 0.9883 }, { "start": 24591.5, "end": 24593.76, "probability": 0.9789 }, { "start": 24594.3, "end": 24596.86, "probability": 0.9952 }, { "start": 24597.52, "end": 24601.32, "probability": 0.9863 }, { "start": 24602.02, "end": 24605.6, "probability": 0.9983 }, { "start": 24606.34, "end": 24608.2, "probability": 0.96 }, { "start": 24608.86, "end": 24610.44, "probability": 0.7856 }, { "start": 24611.12, "end": 24612.6, "probability": 0.9743 }, { "start": 24613.1, "end": 24614.44, "probability": 0.9344 }, { "start": 24614.5, "end": 24615.96, "probability": 0.7612 }, { "start": 24616.62, "end": 24617.12, "probability": 0.926 }, { "start": 24617.82, "end": 24618.34, "probability": 0.8342 }, { "start": 24618.92, "end": 24620.14, "probability": 0.7646 }, { "start": 24620.48, "end": 24622.72, "probability": 0.9755 }, { "start": 24623.22, "end": 24626.3, "probability": 0.9547 }, { "start": 24626.76, "end": 24627.76, "probability": 0.9884 }, { "start": 24628.28, "end": 24630.16, "probability": 0.971 }, { "start": 24630.66, "end": 24633.76, "probability": 0.9991 }, { "start": 24634.46, "end": 24638.9, "probability": 0.8806 }, { "start": 24638.98, "end": 24639.48, "probability": 0.8868 }, { "start": 24639.92, "end": 24641.0, "probability": 0.9203 }, { "start": 24641.5, "end": 24643.42, "probability": 0.9491 }, { "start": 24657.0, "end": 24657.66, "probability": 0.5719 }, { "start": 24663.02, "end": 24665.0, "probability": 0.4772 }, { "start": 24667.32, "end": 24667.6, "probability": 0.333 }, { "start": 24667.6, "end": 24667.6, "probability": 0.0184 }, { "start": 24679.48, "end": 24679.62, "probability": 0.1547 }, { "start": 24679.62, "end": 24679.62, "probability": 0.089 }, { "start": 24679.62, "end": 24681.24, "probability": 0.5922 }, { "start": 24683.22, "end": 24684.71, "probability": 0.6347 }, { "start": 24686.3, "end": 24688.12, "probability": 0.9922 }, { "start": 24689.8, "end": 24692.18, "probability": 0.9478 }, { "start": 24693.02, "end": 24694.62, "probability": 0.6554 }, { "start": 24695.9, "end": 24700.04, "probability": 0.9285 }, { "start": 24700.16, "end": 24700.62, "probability": 0.7804 }, { "start": 24701.64, "end": 24710.2, "probability": 0.9805 }, { "start": 24710.84, "end": 24712.06, "probability": 0.9161 }, { "start": 24712.12, "end": 24714.78, "probability": 0.9865 }, { "start": 24716.74, "end": 24718.82, "probability": 0.9477 }, { "start": 24719.94, "end": 24720.94, "probability": 0.8638 }, { "start": 24722.46, "end": 24726.76, "probability": 0.9431 }, { "start": 24727.04, "end": 24729.48, "probability": 0.9888 }, { "start": 24729.56, "end": 24730.96, "probability": 0.9912 }, { "start": 24731.56, "end": 24732.32, "probability": 0.5772 }, { "start": 24732.98, "end": 24734.26, "probability": 0.7108 }, { "start": 24735.64, "end": 24738.1, "probability": 0.9855 }, { "start": 24738.4, "end": 24742.34, "probability": 0.7098 }, { "start": 24743.86, "end": 24746.02, "probability": 0.8693 }, { "start": 24748.28, "end": 24751.6, "probability": 0.9147 }, { "start": 24753.16, "end": 24758.4, "probability": 0.9854 }, { "start": 24759.56, "end": 24764.29, "probability": 0.9805 }, { "start": 24764.68, "end": 24769.54, "probability": 0.8329 }, { "start": 24769.6, "end": 24771.45, "probability": 0.8204 }, { "start": 24773.2, "end": 24773.9, "probability": 0.6958 }, { "start": 24774.02, "end": 24777.16, "probability": 0.9882 }, { "start": 24777.28, "end": 24781.4, "probability": 0.9409 }, { "start": 24781.46, "end": 24782.57, "probability": 0.9521 }, { "start": 24783.36, "end": 24786.78, "probability": 0.901 }, { "start": 24787.2, "end": 24790.96, "probability": 0.9758 }, { "start": 24791.28, "end": 24793.88, "probability": 0.6332 }, { "start": 24793.98, "end": 24796.14, "probability": 0.8661 }, { "start": 24797.02, "end": 24798.88, "probability": 0.9111 }, { "start": 24799.4, "end": 24802.8, "probability": 0.9429 }, { "start": 24803.44, "end": 24804.2, "probability": 0.9717 }, { "start": 24805.06, "end": 24808.8, "probability": 0.923 }, { "start": 24808.9, "end": 24811.88, "probability": 0.7676 }, { "start": 24811.96, "end": 24812.62, "probability": 0.806 }, { "start": 24813.06, "end": 24815.0, "probability": 0.8249 }, { "start": 24816.4, "end": 24816.86, "probability": 0.792 }, { "start": 24817.84, "end": 24819.54, "probability": 0.9905 }, { "start": 24820.48, "end": 24823.36, "probability": 0.9664 }, { "start": 24823.48, "end": 24825.28, "probability": 0.9847 }, { "start": 24826.06, "end": 24829.52, "probability": 0.6619 }, { "start": 24830.1, "end": 24831.58, "probability": 0.9432 }, { "start": 24833.28, "end": 24833.58, "probability": 0.4624 }, { "start": 24833.68, "end": 24835.76, "probability": 0.9741 }, { "start": 24836.0, "end": 24841.4, "probability": 0.9127 }, { "start": 24842.68, "end": 24844.9, "probability": 0.8921 }, { "start": 24845.92, "end": 24848.8, "probability": 0.959 }, { "start": 24849.46, "end": 24851.6, "probability": 0.9982 }, { "start": 24853.52, "end": 24856.67, "probability": 0.8844 }, { "start": 24856.84, "end": 24861.62, "probability": 0.9778 }, { "start": 24863.7, "end": 24864.08, "probability": 0.4298 }, { "start": 24864.22, "end": 24866.24, "probability": 0.9944 }, { "start": 24866.24, "end": 24870.08, "probability": 0.9507 }, { "start": 24870.26, "end": 24871.15, "probability": 0.981 }, { "start": 24872.66, "end": 24875.08, "probability": 0.8104 }, { "start": 24875.96, "end": 24878.54, "probability": 0.8778 }, { "start": 24878.9, "end": 24879.71, "probability": 0.9484 }, { "start": 24880.1, "end": 24880.36, "probability": 0.2609 }, { "start": 24880.54, "end": 24881.18, "probability": 0.8697 }, { "start": 24881.8, "end": 24883.88, "probability": 0.8482 }, { "start": 24884.42, "end": 24885.14, "probability": 0.6009 }, { "start": 24885.92, "end": 24886.36, "probability": 0.6119 }, { "start": 24887.42, "end": 24889.6, "probability": 0.9883 }, { "start": 24890.5, "end": 24892.48, "probability": 0.7551 }, { "start": 24893.5, "end": 24898.46, "probability": 0.9239 }, { "start": 24898.9, "end": 24901.24, "probability": 0.9254 }, { "start": 24901.36, "end": 24902.28, "probability": 0.6435 }, { "start": 24903.68, "end": 24906.54, "probability": 0.9508 }, { "start": 24906.6, "end": 24909.06, "probability": 0.917 }, { "start": 24910.46, "end": 24911.38, "probability": 0.979 }, { "start": 24911.86, "end": 24916.65, "probability": 0.95 }, { "start": 24917.14, "end": 24918.2, "probability": 0.6996 }, { "start": 24918.22, "end": 24918.98, "probability": 0.6988 }, { "start": 24919.1, "end": 24919.64, "probability": 0.4015 }, { "start": 24920.26, "end": 24922.84, "probability": 0.6685 }, { "start": 24923.96, "end": 24927.0, "probability": 0.7898 }, { "start": 24927.44, "end": 24928.03, "probability": 0.984 }, { "start": 24929.64, "end": 24932.68, "probability": 0.9836 }, { "start": 24933.0, "end": 24935.94, "probability": 0.8635 }, { "start": 24936.66, "end": 24937.68, "probability": 0.8528 }, { "start": 24938.2, "end": 24940.32, "probability": 0.9985 }, { "start": 24941.0, "end": 24944.56, "probability": 0.9525 }, { "start": 24944.92, "end": 24946.0, "probability": 0.5084 }, { "start": 24947.24, "end": 24948.54, "probability": 0.9563 }, { "start": 24948.96, "end": 24949.36, "probability": 0.6874 }, { "start": 24949.8, "end": 24950.56, "probability": 0.8389 }, { "start": 24966.44, "end": 24971.06, "probability": 0.4954 }, { "start": 24972.36, "end": 24973.9, "probability": 0.9708 }, { "start": 24975.56, "end": 24978.8, "probability": 0.9467 }, { "start": 24981.42, "end": 24983.16, "probability": 0.9767 }, { "start": 24983.46, "end": 24985.68, "probability": 0.9934 }, { "start": 24987.32, "end": 24991.16, "probability": 0.9988 }, { "start": 24993.04, "end": 24993.68, "probability": 0.711 }, { "start": 24993.78, "end": 24998.64, "probability": 0.9937 }, { "start": 24998.84, "end": 25001.66, "probability": 0.9355 }, { "start": 25001.8, "end": 25005.42, "probability": 0.9979 }, { "start": 25005.6, "end": 25005.88, "probability": 0.5871 }, { "start": 25006.96, "end": 25009.54, "probability": 0.9917 }, { "start": 25012.05, "end": 25014.78, "probability": 0.7597 }, { "start": 25016.24, "end": 25020.08, "probability": 0.9933 }, { "start": 25020.36, "end": 25022.18, "probability": 0.9861 }, { "start": 25022.26, "end": 25023.84, "probability": 0.8613 }, { "start": 25024.82, "end": 25025.66, "probability": 0.9992 }, { "start": 25028.38, "end": 25029.46, "probability": 0.8944 }, { "start": 25029.52, "end": 25030.76, "probability": 0.8999 }, { "start": 25031.02, "end": 25033.28, "probability": 0.9582 }, { "start": 25033.86, "end": 25035.1, "probability": 0.9855 }, { "start": 25036.76, "end": 25040.02, "probability": 0.9303 }, { "start": 25040.8, "end": 25047.32, "probability": 0.9938 }, { "start": 25047.38, "end": 25049.14, "probability": 0.9036 }, { "start": 25049.84, "end": 25050.36, "probability": 0.7674 }, { "start": 25050.98, "end": 25052.76, "probability": 0.9246 }, { "start": 25053.88, "end": 25054.38, "probability": 0.9224 }, { "start": 25055.86, "end": 25056.96, "probability": 0.9429 }, { "start": 25058.16, "end": 25064.06, "probability": 0.9969 }, { "start": 25064.58, "end": 25064.9, "probability": 0.6583 }, { "start": 25065.7, "end": 25066.27, "probability": 0.4387 }, { "start": 25067.02, "end": 25068.48, "probability": 0.959 }, { "start": 25069.3, "end": 25070.24, "probability": 0.9933 }, { "start": 25070.98, "end": 25073.66, "probability": 0.9068 }, { "start": 25074.22, "end": 25076.16, "probability": 0.9858 }, { "start": 25077.14, "end": 25078.5, "probability": 0.9526 }, { "start": 25079.56, "end": 25081.84, "probability": 0.4191 }, { "start": 25082.7, "end": 25087.62, "probability": 0.9948 }, { "start": 25088.1, "end": 25091.36, "probability": 0.9932 }, { "start": 25091.92, "end": 25096.44, "probability": 0.9918 }, { "start": 25097.08, "end": 25101.5, "probability": 0.9801 }, { "start": 25102.15, "end": 25103.22, "probability": 0.6856 }, { "start": 25104.3, "end": 25107.62, "probability": 0.9816 }, { "start": 25108.64, "end": 25113.4, "probability": 0.9934 }, { "start": 25114.52, "end": 25115.84, "probability": 0.5942 }, { "start": 25116.62, "end": 25117.74, "probability": 0.8978 }, { "start": 25118.34, "end": 25121.82, "probability": 0.9767 }, { "start": 25122.5, "end": 25123.72, "probability": 0.6001 }, { "start": 25123.8, "end": 25124.46, "probability": 0.8755 }, { "start": 25125.34, "end": 25128.62, "probability": 0.9811 }, { "start": 25128.76, "end": 25132.14, "probability": 0.9977 }, { "start": 25132.15, "end": 25135.18, "probability": 0.9684 }, { "start": 25136.54, "end": 25137.42, "probability": 0.7219 }, { "start": 25138.08, "end": 25141.0, "probability": 0.9849 }, { "start": 25142.32, "end": 25144.64, "probability": 0.9596 }, { "start": 25144.68, "end": 25147.52, "probability": 0.7329 }, { "start": 25148.74, "end": 25150.22, "probability": 0.9052 }, { "start": 25150.28, "end": 25151.5, "probability": 0.9106 }, { "start": 25151.86, "end": 25153.14, "probability": 0.8849 }, { "start": 25153.5, "end": 25154.3, "probability": 0.8644 }, { "start": 25154.8, "end": 25157.04, "probability": 0.9385 }, { "start": 25157.54, "end": 25159.52, "probability": 0.9047 }, { "start": 25160.08, "end": 25163.24, "probability": 0.9829 }, { "start": 25163.36, "end": 25163.6, "probability": 0.6154 }, { "start": 25164.28, "end": 25165.14, "probability": 0.979 }, { "start": 25165.52, "end": 25166.04, "probability": 0.886 }, { "start": 25166.46, "end": 25167.28, "probability": 0.9036 }, { "start": 25167.32, "end": 25170.44, "probability": 0.8835 }, { "start": 25171.04, "end": 25172.36, "probability": 0.9868 }, { "start": 25173.22, "end": 25173.74, "probability": 0.6885 }, { "start": 25173.86, "end": 25174.66, "probability": 0.763 }, { "start": 25175.28, "end": 25175.98, "probability": 0.8715 }, { "start": 25180.76, "end": 25180.82, "probability": 0.2692 }, { "start": 25186.42, "end": 25186.66, "probability": 0.014 }, { "start": 25187.54, "end": 25188.78, "probability": 0.1683 }, { "start": 25188.78, "end": 25192.06, "probability": 0.3421 }, { "start": 25192.06, "end": 25192.06, "probability": 0.0996 }, { "start": 25192.06, "end": 25192.08, "probability": 0.0325 }, { "start": 25192.08, "end": 25192.08, "probability": 0.0212 }, { "start": 25214.68, "end": 25217.78, "probability": 0.656 }, { "start": 25218.22, "end": 25219.3, "probability": 0.5221 }, { "start": 25219.38, "end": 25220.08, "probability": 0.6262 }, { "start": 25221.5, "end": 25221.92, "probability": 0.0424 }, { "start": 25223.32, "end": 25226.36, "probability": 0.6167 }, { "start": 25226.9, "end": 25229.08, "probability": 0.8971 }, { "start": 25229.96, "end": 25232.88, "probability": 0.7748 }, { "start": 25233.56, "end": 25236.24, "probability": 0.9371 }, { "start": 25236.34, "end": 25237.32, "probability": 0.6466 }, { "start": 25237.38, "end": 25239.12, "probability": 0.9696 }, { "start": 25239.28, "end": 25241.62, "probability": 0.991 }, { "start": 25243.86, "end": 25244.74, "probability": 0.8118 }, { "start": 25245.66, "end": 25246.44, "probability": 0.5909 }, { "start": 25246.68, "end": 25251.5, "probability": 0.9316 }, { "start": 25251.76, "end": 25253.78, "probability": 0.9136 }, { "start": 25254.02, "end": 25254.58, "probability": 0.535 }, { "start": 25256.48, "end": 25257.08, "probability": 0.9458 }, { "start": 25257.62, "end": 25261.02, "probability": 0.9959 }, { "start": 25262.1, "end": 25265.96, "probability": 0.9209 }, { "start": 25267.28, "end": 25268.68, "probability": 0.544 }, { "start": 25268.74, "end": 25269.72, "probability": 0.87 }, { "start": 25269.76, "end": 25274.5, "probability": 0.9425 }, { "start": 25274.66, "end": 25279.7, "probability": 0.9812 }, { "start": 25283.42, "end": 25283.94, "probability": 0.5942 }, { "start": 25286.42, "end": 25286.86, "probability": 0.5129 }, { "start": 25286.98, "end": 25287.94, "probability": 0.9302 }, { "start": 25289.64, "end": 25292.33, "probability": 0.937 }, { "start": 25294.34, "end": 25297.32, "probability": 0.9597 }, { "start": 25297.42, "end": 25298.48, "probability": 0.8749 }, { "start": 25298.56, "end": 25300.36, "probability": 0.9768 }, { "start": 25300.38, "end": 25302.56, "probability": 0.9267 }, { "start": 25303.44, "end": 25305.36, "probability": 0.973 }, { "start": 25306.26, "end": 25309.78, "probability": 0.9927 }, { "start": 25311.22, "end": 25313.88, "probability": 0.99 }, { "start": 25315.92, "end": 25316.58, "probability": 0.6495 }, { "start": 25317.98, "end": 25321.2, "probability": 0.9968 }, { "start": 25322.06, "end": 25328.24, "probability": 0.9938 }, { "start": 25329.68, "end": 25331.72, "probability": 0.5503 }, { "start": 25331.84, "end": 25333.48, "probability": 0.9095 }, { "start": 25333.68, "end": 25337.06, "probability": 0.996 }, { "start": 25339.0, "end": 25341.04, "probability": 0.8647 }, { "start": 25341.8, "end": 25344.7, "probability": 0.9808 }, { "start": 25346.92, "end": 25348.04, "probability": 0.7767 }, { "start": 25349.42, "end": 25351.36, "probability": 0.8634 }, { "start": 25351.88, "end": 25354.3, "probability": 0.9961 }, { "start": 25354.56, "end": 25355.86, "probability": 0.9958 }, { "start": 25356.0, "end": 25356.62, "probability": 0.8141 }, { "start": 25357.3, "end": 25358.66, "probability": 0.9604 }, { "start": 25359.44, "end": 25361.06, "probability": 0.9966 }, { "start": 25361.66, "end": 25363.12, "probability": 0.9954 }, { "start": 25363.98, "end": 25364.78, "probability": 0.7871 }, { "start": 25364.84, "end": 25372.52, "probability": 0.9019 }, { "start": 25373.98, "end": 25375.66, "probability": 0.9825 }, { "start": 25377.14, "end": 25380.16, "probability": 0.9893 }, { "start": 25380.9, "end": 25382.16, "probability": 0.7327 }, { "start": 25382.84, "end": 25383.76, "probability": 0.748 }, { "start": 25384.9, "end": 25386.08, "probability": 0.9072 }, { "start": 25387.04, "end": 25387.78, "probability": 0.7245 }, { "start": 25388.76, "end": 25391.44, "probability": 0.9556 }, { "start": 25392.36, "end": 25396.9, "probability": 0.9359 }, { "start": 25397.6, "end": 25398.26, "probability": 0.5255 }, { "start": 25398.44, "end": 25399.84, "probability": 0.9462 }, { "start": 25399.96, "end": 25400.34, "probability": 0.775 }, { "start": 25401.74, "end": 25403.28, "probability": 0.8588 }, { "start": 25404.76, "end": 25406.72, "probability": 0.9512 }, { "start": 25408.54, "end": 25410.6, "probability": 0.9642 }, { "start": 25410.68, "end": 25412.58, "probability": 0.924 }, { "start": 25414.6, "end": 25416.96, "probability": 0.9772 }, { "start": 25417.16, "end": 25417.79, "probability": 0.936 }, { "start": 25419.72, "end": 25423.46, "probability": 0.8862 }, { "start": 25424.12, "end": 25427.24, "probability": 0.8105 }, { "start": 25427.7, "end": 25428.68, "probability": 0.9531 }, { "start": 25431.86, "end": 25433.46, "probability": 0.2256 }, { "start": 25442.82, "end": 25444.84, "probability": 0.1603 }, { "start": 25445.72, "end": 25447.72, "probability": 0.1997 }, { "start": 25461.42, "end": 25461.42, "probability": 0.0672 }, { "start": 25461.42, "end": 25461.42, "probability": 0.1564 }, { "start": 25461.42, "end": 25461.42, "probability": 0.0461 }, { "start": 25461.42, "end": 25461.42, "probability": 0.0835 }, { "start": 25461.42, "end": 25461.42, "probability": 0.0797 }, { "start": 25461.42, "end": 25461.42, "probability": 0.0243 }, { "start": 25461.42, "end": 25461.44, "probability": 0.1321 }, { "start": 25461.44, "end": 25461.46, "probability": 0.031 }, { "start": 25461.46, "end": 25461.46, "probability": 0.0157 }, { "start": 25482.04, "end": 25484.06, "probability": 0.422 }, { "start": 25485.98, "end": 25486.58, "probability": 0.4354 }, { "start": 25487.8, "end": 25489.32, "probability": 0.9651 }, { "start": 25490.34, "end": 25492.46, "probability": 0.6933 }, { "start": 25493.1, "end": 25493.46, "probability": 0.5229 }, { "start": 25493.8, "end": 25494.52, "probability": 0.9354 }, { "start": 25495.94, "end": 25496.74, "probability": 0.9514 }, { "start": 25497.7, "end": 25499.04, "probability": 0.7713 }, { "start": 25499.82, "end": 25503.34, "probability": 0.9646 }, { "start": 25504.12, "end": 25504.42, "probability": 0.7539 }, { "start": 25505.04, "end": 25505.68, "probability": 0.5632 }, { "start": 25506.58, "end": 25506.86, "probability": 0.3391 }, { "start": 25507.6, "end": 25508.46, "probability": 0.6549 }, { "start": 25508.6, "end": 25509.44, "probability": 0.9478 }, { "start": 25509.64, "end": 25510.7, "probability": 0.9217 }, { "start": 25512.26, "end": 25512.7, "probability": 0.8603 }, { "start": 25512.88, "end": 25514.74, "probability": 0.9548 }, { "start": 25514.78, "end": 25516.46, "probability": 0.9929 }, { "start": 25518.04, "end": 25518.92, "probability": 0.7004 }, { "start": 25519.86, "end": 25523.5, "probability": 0.9331 }, { "start": 25525.0, "end": 25526.12, "probability": 0.5458 }, { "start": 25526.26, "end": 25526.78, "probability": 0.6761 }, { "start": 25529.08, "end": 25531.1, "probability": 0.944 }, { "start": 25531.12, "end": 25533.08, "probability": 0.9593 }, { "start": 25533.56, "end": 25534.72, "probability": 0.8126 }, { "start": 25535.48, "end": 25536.94, "probability": 0.9952 }, { "start": 25537.38, "end": 25538.72, "probability": 0.9718 }, { "start": 25539.82, "end": 25543.85, "probability": 0.7455 }, { "start": 25546.26, "end": 25546.3, "probability": 0.3513 }, { "start": 25546.3, "end": 25546.3, "probability": 0.4728 }, { "start": 25546.3, "end": 25547.42, "probability": 0.7927 }, { "start": 25548.76, "end": 25549.17, "probability": 0.5079 }, { "start": 25550.6, "end": 25553.88, "probability": 0.7381 }, { "start": 25554.38, "end": 25555.56, "probability": 0.6782 }, { "start": 25555.58, "end": 25558.57, "probability": 0.9888 }, { "start": 25559.54, "end": 25559.92, "probability": 0.3271 }, { "start": 25560.02, "end": 25562.14, "probability": 0.8739 }, { "start": 25562.67, "end": 25564.22, "probability": 0.9805 }, { "start": 25564.8, "end": 25566.54, "probability": 0.5509 }, { "start": 25567.06, "end": 25570.86, "probability": 0.8697 }, { "start": 25570.92, "end": 25571.88, "probability": 0.6809 }, { "start": 25572.5, "end": 25574.92, "probability": 0.9868 }, { "start": 25576.5, "end": 25577.62, "probability": 0.6227 }, { "start": 25579.16, "end": 25582.26, "probability": 0.896 }, { "start": 25583.2, "end": 25584.25, "probability": 0.9489 }, { "start": 25584.9, "end": 25585.76, "probability": 0.7128 }, { "start": 25586.34, "end": 25588.48, "probability": 0.6497 }, { "start": 25589.94, "end": 25591.46, "probability": 0.922 }, { "start": 25592.2, "end": 25593.84, "probability": 0.8111 }, { "start": 25594.2, "end": 25596.2, "probability": 0.9967 }, { "start": 25596.2, "end": 25600.02, "probability": 0.9915 }, { "start": 25600.26, "end": 25600.38, "probability": 0.1489 }, { "start": 25601.0, "end": 25602.84, "probability": 0.9561 }, { "start": 25603.44, "end": 25604.16, "probability": 0.9214 }, { "start": 25605.2, "end": 25606.88, "probability": 0.9743 }, { "start": 25607.38, "end": 25608.75, "probability": 0.8604 }, { "start": 25608.78, "end": 25610.44, "probability": 0.8882 }, { "start": 25612.5, "end": 25613.52, "probability": 0.6088 }, { "start": 25614.78, "end": 25616.1, "probability": 0.7808 }, { "start": 25616.82, "end": 25618.96, "probability": 0.9341 }, { "start": 25619.1, "end": 25620.54, "probability": 0.9919 }, { "start": 25621.66, "end": 25623.92, "probability": 0.8765 }, { "start": 25624.02, "end": 25624.44, "probability": 0.9087 }, { "start": 25627.06, "end": 25628.04, "probability": 0.979 }, { "start": 25628.9, "end": 25630.9, "probability": 0.6988 }, { "start": 25631.52, "end": 25631.9, "probability": 0.9623 }, { "start": 25632.62, "end": 25633.06, "probability": 0.4866 }, { "start": 25633.06, "end": 25635.92, "probability": 0.6141 }, { "start": 25636.5, "end": 25636.98, "probability": 0.9553 }, { "start": 25637.18, "end": 25638.98, "probability": 0.9087 }, { "start": 25639.54, "end": 25639.96, "probability": 0.3223 }, { "start": 25640.94, "end": 25641.92, "probability": 0.8447 }, { "start": 25642.64, "end": 25644.48, "probability": 0.9956 }, { "start": 25645.0, "end": 25645.74, "probability": 0.7452 }, { "start": 25646.3, "end": 25648.88, "probability": 0.9554 }, { "start": 25650.28, "end": 25651.78, "probability": 0.9674 }, { "start": 25652.66, "end": 25654.08, "probability": 0.9727 }, { "start": 25654.5, "end": 25655.68, "probability": 0.625 }, { "start": 25655.78, "end": 25656.3, "probability": 0.4788 }, { "start": 25656.6, "end": 25657.36, "probability": 0.9721 }, { "start": 25659.38, "end": 25662.36, "probability": 0.964 }, { "start": 25662.44, "end": 25663.46, "probability": 0.643 }, { "start": 25663.7, "end": 25664.42, "probability": 0.6166 }, { "start": 25666.48, "end": 25669.52, "probability": 0.9866 }, { "start": 25671.86, "end": 25674.88, "probability": 0.6724 }, { "start": 25675.54, "end": 25676.1, "probability": 0.6226 }, { "start": 25676.4, "end": 25677.22, "probability": 0.8994 }, { "start": 25678.82, "end": 25679.94, "probability": 0.7655 }, { "start": 25681.34, "end": 25683.9, "probability": 0.9808 }, { "start": 25685.16, "end": 25686.82, "probability": 0.9723 }, { "start": 25687.88, "end": 25689.52, "probability": 0.9938 }, { "start": 25690.06, "end": 25691.56, "probability": 0.5422 }, { "start": 25691.9, "end": 25692.3, "probability": 0.01 }, { "start": 25692.62, "end": 25694.22, "probability": 0.8336 }, { "start": 25694.62, "end": 25694.62, "probability": 0.2906 }, { "start": 25694.74, "end": 25695.0, "probability": 0.3214 }, { "start": 25695.0, "end": 25695.0, "probability": 0.1611 }, { "start": 25695.0, "end": 25697.52, "probability": 0.6473 }, { "start": 25698.14, "end": 25698.14, "probability": 0.0051 }, { "start": 25698.14, "end": 25698.14, "probability": 0.0925 }, { "start": 25698.14, "end": 25701.4, "probability": 0.8896 }, { "start": 25702.3, "end": 25702.92, "probability": 0.8635 }, { "start": 25703.48, "end": 25704.22, "probability": 0.7266 }, { "start": 25704.34, "end": 25706.9, "probability": 0.4669 }, { "start": 25706.94, "end": 25708.18, "probability": 0.6109 }, { "start": 25708.54, "end": 25710.3, "probability": 0.9065 }, { "start": 25711.08, "end": 25715.04, "probability": 0.9775 }, { "start": 25716.3, "end": 25717.56, "probability": 0.8193 }, { "start": 25718.46, "end": 25720.36, "probability": 0.9639 }, { "start": 25720.96, "end": 25722.65, "probability": 0.8875 }, { "start": 25723.68, "end": 25723.68, "probability": 0.7347 }, { "start": 25723.94, "end": 25725.74, "probability": 0.9645 }, { "start": 25726.28, "end": 25730.74, "probability": 0.9522 }, { "start": 25731.2, "end": 25732.72, "probability": 0.9158 }, { "start": 25732.78, "end": 25734.32, "probability": 0.6831 }, { "start": 25734.98, "end": 25736.44, "probability": 0.9627 }, { "start": 25736.74, "end": 25737.46, "probability": 0.7163 }, { "start": 25737.46, "end": 25738.6, "probability": 0.9683 }, { "start": 25738.7, "end": 25739.97, "probability": 0.6769 }, { "start": 25740.88, "end": 25742.04, "probability": 0.6586 }, { "start": 25742.46, "end": 25743.76, "probability": 0.7915 }, { "start": 25743.88, "end": 25744.82, "probability": 0.6575 }, { "start": 25745.78, "end": 25748.5, "probability": 0.9477 }, { "start": 25749.0, "end": 25751.52, "probability": 0.8701 }, { "start": 25752.24, "end": 25753.36, "probability": 0.5125 }, { "start": 25754.19, "end": 25754.94, "probability": 0.7759 }, { "start": 25754.94, "end": 25756.23, "probability": 0.6639 }, { "start": 25756.34, "end": 25756.54, "probability": 0.7396 }, { "start": 25757.14, "end": 25758.26, "probability": 0.9678 }, { "start": 25758.46, "end": 25760.72, "probability": 0.7388 }, { "start": 25760.8, "end": 25760.88, "probability": 0.6501 }, { "start": 25760.88, "end": 25763.63, "probability": 0.8076 }, { "start": 25764.48, "end": 25766.18, "probability": 0.9583 }, { "start": 25766.88, "end": 25768.48, "probability": 0.8656 }, { "start": 25768.98, "end": 25768.98, "probability": 0.1603 }, { "start": 25768.98, "end": 25769.56, "probability": 0.3901 }, { "start": 25769.78, "end": 25771.62, "probability": 0.7979 }, { "start": 25772.24, "end": 25773.06, "probability": 0.915 }, { "start": 25774.32, "end": 25775.38, "probability": 0.9229 }, { "start": 25776.48, "end": 25777.1, "probability": 0.7722 }, { "start": 25777.6, "end": 25778.0, "probability": 0.0877 }, { "start": 25778.44, "end": 25779.04, "probability": 0.6959 }, { "start": 25779.64, "end": 25782.3, "probability": 0.9829 }, { "start": 25782.42, "end": 25782.42, "probability": 0.0311 }, { "start": 25782.42, "end": 25785.48, "probability": 0.8359 }, { "start": 25785.66, "end": 25786.14, "probability": 0.7552 }, { "start": 25786.54, "end": 25786.78, "probability": 0.7643 }, { "start": 25792.38, "end": 25793.04, "probability": 0.6462 }, { "start": 25796.63, "end": 25797.56, "probability": 0.0384 }, { "start": 25797.74, "end": 25798.3, "probability": 0.4448 }, { "start": 25799.14, "end": 25799.72, "probability": 0.6693 }, { "start": 25806.28, "end": 25806.48, "probability": 0.0441 }, { "start": 25806.48, "end": 25806.48, "probability": 0.0942 }, { "start": 25806.48, "end": 25806.72, "probability": 0.1564 }, { "start": 25809.12, "end": 25810.18, "probability": 0.054 }, { "start": 25824.55, "end": 25827.78, "probability": 0.9995 }, { "start": 25829.52, "end": 25832.82, "probability": 0.927 }, { "start": 25834.6, "end": 25841.88, "probability": 0.9172 }, { "start": 25842.66, "end": 25843.92, "probability": 0.9701 }, { "start": 25845.94, "end": 25849.18, "probability": 0.9854 }, { "start": 25851.58, "end": 25854.42, "probability": 0.9927 }, { "start": 25856.6, "end": 25859.54, "probability": 0.9932 }, { "start": 25859.8, "end": 25861.86, "probability": 0.7694 }, { "start": 25863.96, "end": 25866.7, "probability": 0.9653 }, { "start": 25868.42, "end": 25869.26, "probability": 0.872 }, { "start": 25871.2, "end": 25872.5, "probability": 0.9857 }, { "start": 25874.06, "end": 25878.3, "probability": 0.9601 }, { "start": 25879.44, "end": 25885.4, "probability": 0.8251 }, { "start": 25886.94, "end": 25886.94, "probability": 0.1347 }, { "start": 25886.94, "end": 25888.34, "probability": 0.8396 }, { "start": 25888.52, "end": 25890.54, "probability": 0.563 }, { "start": 25892.16, "end": 25894.88, "probability": 0.5936 }, { "start": 25895.88, "end": 25899.6, "probability": 0.9907 }, { "start": 25901.34, "end": 25902.13, "probability": 0.8445 }, { "start": 25902.56, "end": 25905.24, "probability": 0.8318 }, { "start": 25906.16, "end": 25908.08, "probability": 0.9127 }, { "start": 25909.3, "end": 25910.9, "probability": 0.9727 }, { "start": 25912.0, "end": 25913.54, "probability": 0.9783 }, { "start": 25914.66, "end": 25915.72, "probability": 0.9984 }, { "start": 25916.48, "end": 25918.56, "probability": 0.9784 }, { "start": 25919.82, "end": 25921.67, "probability": 0.9889 }, { "start": 25923.5, "end": 25925.24, "probability": 0.6514 }, { "start": 25926.0, "end": 25927.48, "probability": 0.9284 }, { "start": 25929.6, "end": 25934.42, "probability": 0.8454 }, { "start": 25935.26, "end": 25938.56, "probability": 0.998 }, { "start": 25939.46, "end": 25940.2, "probability": 0.7734 }, { "start": 25941.42, "end": 25943.34, "probability": 0.9883 }, { "start": 25944.76, "end": 25947.6, "probability": 0.9961 }, { "start": 25948.4, "end": 25949.48, "probability": 0.6851 }, { "start": 25950.5, "end": 25953.54, "probability": 0.8458 }, { "start": 25954.26, "end": 25956.26, "probability": 0.9878 }, { "start": 25957.12, "end": 25957.52, "probability": 0.1903 }, { "start": 25958.74, "end": 25959.36, "probability": 0.0221 }, { "start": 25962.82, "end": 25963.02, "probability": 0.8398 }, { "start": 25963.74, "end": 25965.04, "probability": 0.0535 }, { "start": 25965.62, "end": 25967.06, "probability": 0.9802 }, { "start": 25967.76, "end": 25968.68, "probability": 0.9611 }, { "start": 25976.22, "end": 25977.1, "probability": 0.6332 }, { "start": 25977.68, "end": 25978.28, "probability": 0.3488 }, { "start": 25978.3, "end": 25979.1, "probability": 0.7815 }, { "start": 25980.1, "end": 25980.16, "probability": 0.2536 }, { "start": 26006.02, "end": 26008.4, "probability": 0.6917 }, { "start": 26009.18, "end": 26011.28, "probability": 0.7015 }, { "start": 26013.6, "end": 26015.76, "probability": 0.0501 }, { "start": 26016.9, "end": 26017.98, "probability": 0.0549 }, { "start": 26017.98, "end": 26018.0, "probability": 0.3028 }, { "start": 26019.4, "end": 26020.82, "probability": 0.2047 }, { "start": 26022.38, "end": 26023.04, "probability": 0.0506 }, { "start": 26027.7, "end": 26028.52, "probability": 0.2794 }, { "start": 26029.06, "end": 26030.31, "probability": 0.0461 }, { "start": 26034.14, "end": 26035.26, "probability": 0.0003 }, { "start": 26037.44, "end": 26038.57, "probability": 0.0321 }, { "start": 26039.76, "end": 26041.77, "probability": 0.0603 }, { "start": 26043.32, "end": 26045.88, "probability": 0.0479 }, { "start": 26171.0, "end": 26171.0, "probability": 0.0 }, { "start": 26171.0, "end": 26171.0, "probability": 0.0 }, { "start": 26171.0, "end": 26171.0, "probability": 0.0 }, { "start": 26171.0, "end": 26171.0, "probability": 0.0 }, { "start": 26171.0, "end": 26171.0, "probability": 0.0 }, { "start": 26171.0, "end": 26171.0, "probability": 0.0 }, { "start": 26171.0, "end": 26171.0, "probability": 0.0 }, { "start": 26171.0, "end": 26171.0, "probability": 0.0 }, { "start": 26171.0, "end": 26171.0, "probability": 0.0 }, { "start": 26171.0, "end": 26171.0, "probability": 0.0 }, { "start": 26171.0, "end": 26171.0, "probability": 0.0 }, { "start": 26171.0, "end": 26171.0, "probability": 0.0 }, { "start": 26171.0, "end": 26171.0, "probability": 0.0 }, { "start": 26171.0, "end": 26171.0, "probability": 0.0 }, { "start": 26171.0, "end": 26171.0, "probability": 0.0 }, { "start": 26171.0, "end": 26171.0, "probability": 0.0 }, { "start": 26171.0, "end": 26171.0, "probability": 0.0 }, { "start": 26171.0, "end": 26171.0, "probability": 0.0 }, { "start": 26171.0, "end": 26171.0, "probability": 0.0 }, { "start": 26171.0, "end": 26171.0, "probability": 0.0 }, { "start": 26171.0, "end": 26171.0, "probability": 0.0 }, { "start": 26171.0, "end": 26171.0, "probability": 0.0 }, { "start": 26171.0, "end": 26171.0, "probability": 0.0 }, { "start": 26171.0, "end": 26171.0, "probability": 0.0 }, { "start": 26171.0, "end": 26171.0, "probability": 0.0 }, { "start": 26171.0, "end": 26171.0, "probability": 0.0 }, { "start": 26171.0, "end": 26171.0, "probability": 0.0 }, { "start": 26171.0, "end": 26171.0, "probability": 0.0 }, { "start": 26171.0, "end": 26171.0, "probability": 0.0 }, { "start": 26171.0, "end": 26171.0, "probability": 0.0 }, { "start": 26171.0, "end": 26171.0, "probability": 0.0 }, { "start": 26171.0, "end": 26171.0, "probability": 0.0 }, { "start": 26171.0, "end": 26171.0, "probability": 0.0 }, { "start": 26171.0, "end": 26171.0, "probability": 0.0 }, { "start": 26171.0, "end": 26171.0, "probability": 0.0 }, { "start": 26171.0, "end": 26171.0, "probability": 0.0 }, { "start": 26171.0, "end": 26171.0, "probability": 0.0 }, { "start": 26171.0, "end": 26171.0, "probability": 0.0 }, { "start": 26171.0, "end": 26171.0, "probability": 0.0 }, { "start": 26171.0, "end": 26171.0, "probability": 0.0 }, { "start": 26171.0, "end": 26171.0, "probability": 0.0 }, { "start": 26171.0, "end": 26171.0, "probability": 0.0 }, { "start": 26171.0, "end": 26171.0, "probability": 0.0 }, { "start": 26171.0, "end": 26171.0, "probability": 0.0 }, { "start": 26171.0, "end": 26171.0, "probability": 0.0 }, { "start": 26171.0, "end": 26171.0, "probability": 0.0 }, { "start": 26171.14, "end": 26177.94, "probability": 0.0168 }, { "start": 26179.66, "end": 26182.56, "probability": 0.905 }, { "start": 26183.92, "end": 26186.52, "probability": 0.8204 }, { "start": 26188.58, "end": 26188.9, "probability": 0.0098 }, { "start": 26189.98, "end": 26191.1, "probability": 0.141 }, { "start": 26191.8, "end": 26192.62, "probability": 0.725 }, { "start": 26292.0, "end": 26292.0, "probability": 0.0 }, { "start": 26292.0, "end": 26292.0, "probability": 0.0 }, { "start": 26292.0, "end": 26292.0, "probability": 0.0 }, { "start": 26292.0, "end": 26292.0, "probability": 0.0 }, { "start": 26292.0, "end": 26292.0, "probability": 0.0 }, { "start": 26292.0, "end": 26292.0, "probability": 0.0 }, { "start": 26292.0, "end": 26292.0, "probability": 0.0 }, { "start": 26292.0, "end": 26292.0, "probability": 0.0 }, { "start": 26292.0, "end": 26292.0, "probability": 0.0 }, { "start": 26292.0, "end": 26292.0, "probability": 0.0 }, { "start": 26292.0, "end": 26292.0, "probability": 0.0 }, { "start": 26292.0, "end": 26292.0, "probability": 0.0 }, { "start": 26292.0, "end": 26292.0, "probability": 0.0 }, { "start": 26292.0, "end": 26292.0, "probability": 0.0 }, { "start": 26292.0, "end": 26292.0, "probability": 0.0 }, { "start": 26292.0, "end": 26292.0, "probability": 0.0 }, { "start": 26292.0, "end": 26292.0, "probability": 0.0 }, { "start": 26292.0, "end": 26292.0, "probability": 0.0 }, { "start": 26292.0, "end": 26292.0, "probability": 0.0 }, { "start": 26292.0, "end": 26292.0, "probability": 0.0 }, { "start": 26292.0, "end": 26292.0, "probability": 0.0 }, { "start": 26292.0, "end": 26292.0, "probability": 0.0 }, { "start": 26292.0, "end": 26292.0, "probability": 0.0 }, { "start": 26292.0, "end": 26292.0, "probability": 0.0 }, { "start": 26292.0, "end": 26292.0, "probability": 0.0 }, { "start": 26292.0, "end": 26292.0, "probability": 0.0 }, { "start": 26292.0, "end": 26292.0, "probability": 0.0 }, { "start": 26292.0, "end": 26292.0, "probability": 0.0 }, { "start": 26292.0, "end": 26292.0, "probability": 0.0 }, { "start": 26292.0, "end": 26292.0, "probability": 0.0 }, { "start": 26292.0, "end": 26292.0, "probability": 0.0 }, { "start": 26292.0, "end": 26292.0, "probability": 0.0 }, { "start": 26292.0, "end": 26292.0, "probability": 0.0 }, { "start": 26292.0, "end": 26292.0, "probability": 0.0 }, { "start": 26292.0, "end": 26292.0, "probability": 0.0 }, { "start": 26292.0, "end": 26292.0, "probability": 0.0 }, { "start": 26292.0, "end": 26292.0, "probability": 0.0 }, { "start": 26292.0, "end": 26292.0, "probability": 0.0 }, { "start": 26292.0, "end": 26292.0, "probability": 0.0 }, { "start": 26292.0, "end": 26292.0, "probability": 0.0 }, { "start": 26292.0, "end": 26292.0, "probability": 0.0 }, { "start": 26292.0, "end": 26292.0, "probability": 0.0 }, { "start": 26292.0, "end": 26292.0, "probability": 0.0 }, { "start": 26292.0, "end": 26292.0, "probability": 0.0 }, { "start": 26292.0, "end": 26293.78, "probability": 0.8379 }, { "start": 26293.82, "end": 26294.3, "probability": 0.6348 }, { "start": 26294.54, "end": 26295.3, "probability": 0.743 }, { "start": 26295.86, "end": 26298.0, "probability": 0.9916 }, { "start": 26298.6, "end": 26300.9, "probability": 0.8978 }, { "start": 26301.02, "end": 26303.38, "probability": 0.9706 }, { "start": 26303.82, "end": 26305.5, "probability": 0.9148 }, { "start": 26305.86, "end": 26307.7, "probability": 0.9153 }, { "start": 26308.4, "end": 26309.56, "probability": 0.8018 }, { "start": 26310.06, "end": 26314.04, "probability": 0.9642 }, { "start": 26314.9, "end": 26318.68, "probability": 0.8649 }, { "start": 26319.1, "end": 26321.28, "probability": 0.9955 }, { "start": 26321.28, "end": 26324.6, "probability": 0.952 }, { "start": 26324.98, "end": 26327.56, "probability": 0.8759 }, { "start": 26327.96, "end": 26331.94, "probability": 0.9811 }, { "start": 26332.06, "end": 26333.02, "probability": 0.579 }, { "start": 26333.6, "end": 26334.14, "probability": 0.7156 }, { "start": 26335.04, "end": 26339.94, "probability": 0.9721 }, { "start": 26341.24, "end": 26342.78, "probability": 0.9397 }, { "start": 26342.92, "end": 26345.38, "probability": 0.9985 }, { "start": 26345.38, "end": 26349.9, "probability": 0.9875 }, { "start": 26350.7, "end": 26351.38, "probability": 0.5683 }, { "start": 26352.66, "end": 26357.54, "probability": 0.7607 }, { "start": 26358.24, "end": 26358.97, "probability": 0.7924 }, { "start": 26359.96, "end": 26363.0, "probability": 0.7466 }, { "start": 26363.56, "end": 26365.32, "probability": 0.9409 }, { "start": 26366.02, "end": 26368.82, "probability": 0.9011 }, { "start": 26368.94, "end": 26370.22, "probability": 0.5913 }, { "start": 26371.5, "end": 26372.98, "probability": 0.8567 }, { "start": 26373.56, "end": 26376.1, "probability": 0.9394 }, { "start": 26376.84, "end": 26377.66, "probability": 0.6656 }, { "start": 26379.06, "end": 26380.56, "probability": 0.977 }, { "start": 26382.22, "end": 26385.22, "probability": 0.1119 }, { "start": 26385.22, "end": 26390.44, "probability": 0.9095 }, { "start": 26391.4, "end": 26392.56, "probability": 0.9855 }, { "start": 26393.38, "end": 26396.02, "probability": 0.6491 }, { "start": 26396.62, "end": 26397.92, "probability": 0.2652 }, { "start": 26397.92, "end": 26397.92, "probability": 0.0265 }, { "start": 26397.92, "end": 26398.91, "probability": 0.044 }, { "start": 26399.16, "end": 26399.3, "probability": 0.0026 }, { "start": 26399.38, "end": 26399.98, "probability": 0.7067 }, { "start": 26401.88, "end": 26403.68, "probability": 0.999 }, { "start": 26404.78, "end": 26406.3, "probability": 0.7971 }, { "start": 26406.94, "end": 26407.88, "probability": 0.5001 }, { "start": 26409.56, "end": 26409.76, "probability": 0.5502 }, { "start": 26410.3, "end": 26411.58, "probability": 0.9448 }, { "start": 26412.18, "end": 26412.4, "probability": 0.1345 }, { "start": 26414.12, "end": 26416.18, "probability": 0.0286 }, { "start": 26416.74, "end": 26417.7, "probability": 0.4886 }, { "start": 26418.72, "end": 26422.28, "probability": 0.6809 }, { "start": 26423.46, "end": 26424.16, "probability": 0.8085 }, { "start": 26424.4, "end": 26424.9, "probability": 0.9819 }, { "start": 26425.36, "end": 26425.74, "probability": 0.4145 }, { "start": 26425.74, "end": 26426.06, "probability": 0.3091 }, { "start": 26427.02, "end": 26427.9, "probability": 0.9351 }, { "start": 26428.12, "end": 26429.1, "probability": 0.8979 }, { "start": 26433.22, "end": 26434.22, "probability": 0.5027 }, { "start": 26434.63, "end": 26435.42, "probability": 0.8784 }, { "start": 26436.78, "end": 26437.32, "probability": 0.6985 }, { "start": 26450.58, "end": 26450.68, "probability": 0.3173 }, { "start": 26455.22, "end": 26455.86, "probability": 0.5948 }, { "start": 26455.86, "end": 26458.26, "probability": 0.8701 }, { "start": 26458.42, "end": 26459.16, "probability": 0.7101 }, { "start": 26459.58, "end": 26463.28, "probability": 0.2398 }, { "start": 26463.88, "end": 26464.68, "probability": 0.8195 }, { "start": 26464.92, "end": 26468.76, "probability": 0.7763 }, { "start": 26472.14, "end": 26472.22, "probability": 0.0749 }, { "start": 26472.22, "end": 26472.22, "probability": 0.1055 }, { "start": 26472.22, "end": 26472.29, "probability": 0.0116 }, { "start": 26473.72, "end": 26474.74, "probability": 0.1745 }, { "start": 26474.92, "end": 26476.04, "probability": 0.1369 }, { "start": 26476.2, "end": 26476.72, "probability": 0.3262 }, { "start": 26476.72, "end": 26477.02, "probability": 0.4866 }, { "start": 26477.32, "end": 26477.7, "probability": 0.3085 }, { "start": 26479.0, "end": 26481.46, "probability": 0.0684 }, { "start": 26482.48, "end": 26484.02, "probability": 0.7157 }, { "start": 26484.24, "end": 26485.02, "probability": 0.5238 }, { "start": 26485.16, "end": 26491.08, "probability": 0.9814 }, { "start": 26491.84, "end": 26493.42, "probability": 0.9628 }, { "start": 26494.46, "end": 26497.54, "probability": 0.9782 }, { "start": 26498.22, "end": 26501.04, "probability": 0.9794 }, { "start": 26501.92, "end": 26505.86, "probability": 0.999 }, { "start": 26506.42, "end": 26510.16, "probability": 0.9133 }, { "start": 26510.56, "end": 26512.06, "probability": 0.9995 }, { "start": 26512.92, "end": 26514.82, "probability": 0.9601 }, { "start": 26515.76, "end": 26517.1, "probability": 0.8677 }, { "start": 26517.74, "end": 26520.64, "probability": 0.8996 }, { "start": 26521.34, "end": 26524.2, "probability": 0.99 }, { "start": 26524.86, "end": 26525.7, "probability": 0.6482 }, { "start": 26525.76, "end": 26527.64, "probability": 0.9539 }, { "start": 26527.76, "end": 26528.87, "probability": 0.9697 }, { "start": 26529.82, "end": 26531.52, "probability": 0.9902 }, { "start": 26532.22, "end": 26536.26, "probability": 0.9345 }, { "start": 26537.28, "end": 26538.3, "probability": 0.9875 }, { "start": 26539.72, "end": 26540.63, "probability": 0.8354 }, { "start": 26541.24, "end": 26542.62, "probability": 0.5814 }, { "start": 26542.8, "end": 26544.52, "probability": 0.896 }, { "start": 26545.02, "end": 26549.22, "probability": 0.946 }, { "start": 26550.66, "end": 26552.06, "probability": 0.9115 }, { "start": 26552.78, "end": 26554.9, "probability": 0.9939 }, { "start": 26556.42, "end": 26561.26, "probability": 0.8682 }, { "start": 26561.78, "end": 26564.24, "probability": 0.9066 }, { "start": 26566.02, "end": 26567.14, "probability": 0.6778 }, { "start": 26568.22, "end": 26569.1, "probability": 0.9413 }, { "start": 26569.76, "end": 26570.76, "probability": 0.9715 }, { "start": 26571.44, "end": 26574.46, "probability": 0.9729 }, { "start": 26575.3, "end": 26576.4, "probability": 0.9171 }, { "start": 26577.22, "end": 26580.9, "probability": 0.9822 }, { "start": 26581.7, "end": 26583.5, "probability": 0.999 }, { "start": 26584.48, "end": 26589.32, "probability": 0.9642 }, { "start": 26590.98, "end": 26594.62, "probability": 0.9976 }, { "start": 26595.56, "end": 26598.74, "probability": 0.9821 }, { "start": 26599.5, "end": 26603.8, "probability": 0.9478 }, { "start": 26604.0, "end": 26607.66, "probability": 0.9957 }, { "start": 26609.24, "end": 26610.2, "probability": 0.5045 }, { "start": 26611.24, "end": 26613.6, "probability": 0.9368 }, { "start": 26614.18, "end": 26616.88, "probability": 0.9114 }, { "start": 26618.6, "end": 26618.8, "probability": 0.948 }, { "start": 26620.1, "end": 26622.18, "probability": 0.9989 }, { "start": 26622.3, "end": 26624.16, "probability": 0.8256 }, { "start": 26625.72, "end": 26626.7, "probability": 0.8574 }, { "start": 26627.86, "end": 26631.46, "probability": 0.9971 }, { "start": 26631.56, "end": 26632.01, "probability": 0.8993 }, { "start": 26633.08, "end": 26635.54, "probability": 0.9897 }, { "start": 26637.06, "end": 26639.26, "probability": 0.9958 }, { "start": 26640.36, "end": 26641.3, "probability": 0.7221 }, { "start": 26641.44, "end": 26641.94, "probability": 0.4896 }, { "start": 26642.46, "end": 26643.84, "probability": 0.566 }, { "start": 26644.42, "end": 26646.73, "probability": 0.5645 }, { "start": 26647.44, "end": 26650.02, "probability": 0.9983 }, { "start": 26651.12, "end": 26651.91, "probability": 0.9897 }, { "start": 26653.06, "end": 26655.32, "probability": 0.9968 }, { "start": 26656.02, "end": 26659.4, "probability": 0.9563 }, { "start": 26660.78, "end": 26662.5, "probability": 0.9808 }, { "start": 26663.18, "end": 26666.67, "probability": 0.9931 }, { "start": 26667.48, "end": 26669.07, "probability": 0.9669 }, { "start": 26670.04, "end": 26670.91, "probability": 0.9882 }, { "start": 26671.18, "end": 26672.16, "probability": 0.998 }, { "start": 26673.54, "end": 26676.46, "probability": 0.9125 }, { "start": 26677.86, "end": 26678.94, "probability": 0.5291 }, { "start": 26680.6, "end": 26681.26, "probability": 0.4079 }, { "start": 26681.46, "end": 26683.8, "probability": 0.9935 }, { "start": 26684.32, "end": 26685.02, "probability": 0.7976 }, { "start": 26686.4, "end": 26686.85, "probability": 0.9819 }, { "start": 26689.82, "end": 26691.12, "probability": 0.7968 }, { "start": 26691.5, "end": 26695.02, "probability": 0.9958 }, { "start": 26696.94, "end": 26697.81, "probability": 0.7255 }, { "start": 26699.76, "end": 26702.36, "probability": 0.8757 }, { "start": 26704.54, "end": 26705.86, "probability": 0.7865 }, { "start": 26706.44, "end": 26707.52, "probability": 0.9937 }, { "start": 26708.1, "end": 26713.02, "probability": 0.9834 }, { "start": 26713.74, "end": 26714.8, "probability": 0.8884 }, { "start": 26715.48, "end": 26717.46, "probability": 0.9956 }, { "start": 26718.4, "end": 26719.92, "probability": 0.8871 }, { "start": 26720.44, "end": 26725.34, "probability": 0.9761 }, { "start": 26726.62, "end": 26728.54, "probability": 0.9726 }, { "start": 26729.44, "end": 26731.74, "probability": 0.9985 }, { "start": 26732.62, "end": 26733.96, "probability": 0.8043 }, { "start": 26735.0, "end": 26735.9, "probability": 0.7321 }, { "start": 26737.56, "end": 26739.8, "probability": 0.8616 }, { "start": 26740.48, "end": 26742.48, "probability": 0.9568 }, { "start": 26743.6, "end": 26745.72, "probability": 0.8767 }, { "start": 26747.12, "end": 26750.48, "probability": 0.9961 }, { "start": 26751.52, "end": 26752.46, "probability": 0.7847 }, { "start": 26753.12, "end": 26753.74, "probability": 0.9463 }, { "start": 26754.44, "end": 26756.22, "probability": 0.9604 }, { "start": 26756.88, "end": 26757.02, "probability": 0.96 }, { "start": 26758.24, "end": 26759.0, "probability": 0.4601 }, { "start": 26759.54, "end": 26761.3, "probability": 0.9292 }, { "start": 26762.16, "end": 26762.94, "probability": 0.7185 }, { "start": 26777.98, "end": 26777.98, "probability": 0.1876 }, { "start": 26777.98, "end": 26777.98, "probability": 0.1278 }, { "start": 26777.98, "end": 26778.4, "probability": 0.1459 }, { "start": 26781.64, "end": 26784.54, "probability": 0.0463 }, { "start": 26784.54, "end": 26785.34, "probability": 0.0179 }, { "start": 26785.34, "end": 26785.34, "probability": 0.1752 }, { "start": 26785.34, "end": 26786.72, "probability": 0.2654 }, { "start": 26787.12, "end": 26787.34, "probability": 0.6122 }, { "start": 26787.92, "end": 26789.22, "probability": 0.9459 }, { "start": 26789.98, "end": 26792.0, "probability": 0.6711 }, { "start": 26792.08, "end": 26792.75, "probability": 0.6744 }, { "start": 26793.4, "end": 26794.12, "probability": 0.432 }, { "start": 26794.54, "end": 26795.62, "probability": 0.5554 }, { "start": 26796.62, "end": 26798.74, "probability": 0.5617 }, { "start": 26799.88, "end": 26800.74, "probability": 0.7319 }, { "start": 26800.8, "end": 26802.46, "probability": 0.2303 }, { "start": 26802.8, "end": 26805.14, "probability": 0.9844 }, { "start": 26805.26, "end": 26805.4, "probability": 0.8103 }, { "start": 26805.92, "end": 26806.5, "probability": 0.3862 }, { "start": 26807.1, "end": 26809.38, "probability": 0.475 }, { "start": 26810.38, "end": 26812.64, "probability": 0.7888 }, { "start": 26812.78, "end": 26814.2, "probability": 0.7043 }, { "start": 26814.36, "end": 26814.6, "probability": 0.081 }, { "start": 26814.74, "end": 26815.7, "probability": 0.7367 }, { "start": 26816.42, "end": 26817.28, "probability": 0.8758 }, { "start": 26819.32, "end": 26820.18, "probability": 0.9026 }, { "start": 26821.94, "end": 26824.36, "probability": 0.9964 }, { "start": 26825.98, "end": 26826.08, "probability": 0.5257 }, { "start": 26827.1, "end": 26827.92, "probability": 0.0752 }, { "start": 26828.62, "end": 26829.16, "probability": 0.6227 }, { "start": 26829.82, "end": 26832.16, "probability": 0.9803 }, { "start": 26832.96, "end": 26834.1, "probability": 0.9712 }, { "start": 26835.14, "end": 26839.08, "probability": 0.9841 }, { "start": 26840.22, "end": 26842.56, "probability": 0.8879 }, { "start": 26843.16, "end": 26846.58, "probability": 0.9921 }, { "start": 26849.52, "end": 26850.26, "probability": 0.7286 }, { "start": 26851.32, "end": 26853.38, "probability": 0.9402 }, { "start": 26854.02, "end": 26855.5, "probability": 0.9089 }, { "start": 26856.66, "end": 26859.78, "probability": 0.7127 }, { "start": 26859.94, "end": 26860.36, "probability": 0.5176 }, { "start": 26862.56, "end": 26863.64, "probability": 0.9575 }, { "start": 26865.4, "end": 26866.6, "probability": 0.8419 }, { "start": 26866.9, "end": 26867.7, "probability": 0.7439 }, { "start": 26867.86, "end": 26871.2, "probability": 0.8044 }, { "start": 26871.3, "end": 26872.48, "probability": 0.9305 }, { "start": 26872.68, "end": 26873.52, "probability": 0.9039 }, { "start": 26873.88, "end": 26874.84, "probability": 0.7475 }, { "start": 26875.34, "end": 26878.52, "probability": 0.9954 }, { "start": 26879.52, "end": 26880.8, "probability": 0.9541 }, { "start": 26881.6, "end": 26883.58, "probability": 0.9855 }, { "start": 26885.02, "end": 26888.74, "probability": 0.9985 }, { "start": 26889.18, "end": 26890.56, "probability": 0.914 }, { "start": 26891.98, "end": 26893.38, "probability": 0.8759 }, { "start": 26893.38, "end": 26896.88, "probability": 0.9561 }, { "start": 26898.86, "end": 26899.58, "probability": 0.8434 }, { "start": 26900.36, "end": 26901.96, "probability": 0.9324 }, { "start": 26902.04, "end": 26903.32, "probability": 0.9143 }, { "start": 26903.98, "end": 26905.46, "probability": 0.8938 }, { "start": 26905.98, "end": 26906.78, "probability": 0.836 }, { "start": 26907.4, "end": 26909.16, "probability": 0.7543 }, { "start": 26909.78, "end": 26911.84, "probability": 0.9888 }, { "start": 26912.16, "end": 26916.28, "probability": 0.9923 }, { "start": 26917.42, "end": 26920.82, "probability": 0.9394 }, { "start": 26921.7, "end": 26924.26, "probability": 0.9425 }, { "start": 26924.72, "end": 26928.12, "probability": 0.9937 }, { "start": 26928.12, "end": 26931.7, "probability": 0.968 }, { "start": 26932.68, "end": 26933.4, "probability": 0.8077 }, { "start": 26934.1, "end": 26935.26, "probability": 0.8573 }, { "start": 26938.72, "end": 26939.48, "probability": 0.9495 }, { "start": 26940.08, "end": 26943.88, "probability": 0.9995 }, { "start": 26944.5, "end": 26947.62, "probability": 0.9996 }, { "start": 26948.22, "end": 26953.32, "probability": 0.9984 }, { "start": 26953.74, "end": 26957.92, "probability": 0.9976 }, { "start": 26958.6, "end": 26964.22, "probability": 0.9925 }, { "start": 26965.76, "end": 26968.48, "probability": 0.9116 }, { "start": 26969.14, "end": 26971.02, "probability": 0.766 }, { "start": 26971.8, "end": 26972.68, "probability": 0.7222 }, { "start": 26972.88, "end": 26973.8, "probability": 0.9928 }, { "start": 26975.12, "end": 26979.76, "probability": 0.9387 }, { "start": 26979.76, "end": 26983.5, "probability": 0.9878 }, { "start": 26984.22, "end": 26988.38, "probability": 0.973 }, { "start": 26988.86, "end": 26989.52, "probability": 0.7725 }, { "start": 26993.84, "end": 26995.29, "probability": 0.8817 }, { "start": 26996.06, "end": 26996.48, "probability": 0.5149 }, { "start": 26997.68, "end": 26998.82, "probability": 0.749 }, { "start": 26999.02, "end": 27001.06, "probability": 0.9775 }, { "start": 27001.58, "end": 27003.24, "probability": 0.9863 }, { "start": 27003.58, "end": 27004.28, "probability": 0.989 }, { "start": 27004.38, "end": 27005.32, "probability": 0.96 }, { "start": 27005.46, "end": 27006.32, "probability": 0.6786 }, { "start": 27006.72, "end": 27007.4, "probability": 0.7223 }, { "start": 27007.5, "end": 27009.72, "probability": 0.9392 }, { "start": 27010.89, "end": 27013.62, "probability": 0.8872 }, { "start": 27014.06, "end": 27017.2, "probability": 0.9898 }, { "start": 27018.18, "end": 27022.08, "probability": 0.999 }, { "start": 27022.92, "end": 27025.48, "probability": 0.8043 }, { "start": 27025.48, "end": 27026.72, "probability": 0.9572 }, { "start": 27026.88, "end": 27027.16, "probability": 0.9107 }, { "start": 27027.52, "end": 27028.66, "probability": 0.9489 }, { "start": 27047.3, "end": 27049.46, "probability": 0.6813 }, { "start": 27053.44, "end": 27057.54, "probability": 0.9972 }, { "start": 27058.42, "end": 27064.22, "probability": 0.9969 }, { "start": 27065.24, "end": 27066.6, "probability": 0.8553 }, { "start": 27066.68, "end": 27068.66, "probability": 0.9607 }, { "start": 27069.54, "end": 27071.6, "probability": 0.1521 }, { "start": 27072.08, "end": 27078.92, "probability": 0.9344 }, { "start": 27079.76, "end": 27080.88, "probability": 0.7061 }, { "start": 27081.8, "end": 27086.14, "probability": 0.9884 }, { "start": 27086.82, "end": 27088.38, "probability": 0.9772 }, { "start": 27089.7, "end": 27090.94, "probability": 0.8846 }, { "start": 27093.08, "end": 27099.18, "probability": 0.9974 }, { "start": 27100.14, "end": 27103.7, "probability": 0.752 }, { "start": 27106.2, "end": 27107.4, "probability": 0.5121 }, { "start": 27108.32, "end": 27110.86, "probability": 0.9291 }, { "start": 27112.42, "end": 27115.66, "probability": 0.9366 }, { "start": 27116.64, "end": 27118.46, "probability": 0.9984 }, { "start": 27119.74, "end": 27120.84, "probability": 0.7397 }, { "start": 27122.26, "end": 27123.06, "probability": 0.7789 }, { "start": 27124.12, "end": 27125.31, "probability": 0.833 }, { "start": 27125.92, "end": 27127.72, "probability": 0.5039 }, { "start": 27128.38, "end": 27130.3, "probability": 0.9736 }, { "start": 27131.3, "end": 27133.79, "probability": 0.8975 }, { "start": 27134.36, "end": 27137.18, "probability": 0.9968 }, { "start": 27137.24, "end": 27138.36, "probability": 0.9976 }, { "start": 27139.3, "end": 27139.84, "probability": 0.8148 }, { "start": 27140.92, "end": 27142.8, "probability": 0.8729 }, { "start": 27144.24, "end": 27146.43, "probability": 0.7349 }, { "start": 27147.3, "end": 27151.94, "probability": 0.9092 }, { "start": 27153.3, "end": 27155.58, "probability": 0.4952 }, { "start": 27156.83, "end": 27159.53, "probability": 0.4727 }, { "start": 27160.88, "end": 27163.76, "probability": 0.5039 }, { "start": 27163.76, "end": 27165.9, "probability": 0.4911 }, { "start": 27165.98, "end": 27169.1, "probability": 0.6785 }, { "start": 27169.26, "end": 27170.02, "probability": 0.159 }, { "start": 27170.06, "end": 27170.66, "probability": 0.0724 }, { "start": 27170.71, "end": 27172.5, "probability": 0.8122 }, { "start": 27172.8, "end": 27173.52, "probability": 0.6594 }, { "start": 27175.26, "end": 27175.84, "probability": 0.4061 }, { "start": 27176.78, "end": 27177.14, "probability": 0.0633 }, { "start": 27177.14, "end": 27177.14, "probability": 0.2698 }, { "start": 27177.14, "end": 27181.02, "probability": 0.4345 }, { "start": 27181.02, "end": 27182.42, "probability": 0.9076 }, { "start": 27183.14, "end": 27186.78, "probability": 0.9612 }, { "start": 27187.14, "end": 27188.8, "probability": 0.8867 }, { "start": 27189.28, "end": 27194.6, "probability": 0.8478 }, { "start": 27195.78, "end": 27198.2, "probability": 0.9937 }, { "start": 27199.26, "end": 27200.82, "probability": 0.9948 }, { "start": 27201.34, "end": 27202.3, "probability": 0.7839 }, { "start": 27202.7, "end": 27203.88, "probability": 0.9081 }, { "start": 27204.24, "end": 27204.52, "probability": 0.6268 }, { "start": 27204.6, "end": 27206.78, "probability": 0.6744 }, { "start": 27206.82, "end": 27207.72, "probability": 0.8596 }, { "start": 27208.26, "end": 27209.72, "probability": 0.5086 }, { "start": 27210.34, "end": 27213.72, "probability": 0.9113 }, { "start": 27214.18, "end": 27214.32, "probability": 0.8719 }, { "start": 27215.02, "end": 27216.18, "probability": 0.8831 }, { "start": 27216.32, "end": 27216.76, "probability": 0.214 }, { "start": 27217.08, "end": 27219.04, "probability": 0.7188 }, { "start": 27219.26, "end": 27221.79, "probability": 0.8569 }, { "start": 27222.46, "end": 27223.94, "probability": 0.4953 }, { "start": 27224.12, "end": 27227.07, "probability": 0.7807 }, { "start": 27227.7, "end": 27232.52, "probability": 0.898 }, { "start": 27232.76, "end": 27236.34, "probability": 0.9703 }, { "start": 27236.68, "end": 27241.18, "probability": 0.0175 }, { "start": 27241.82, "end": 27241.82, "probability": 0.0955 }, { "start": 27241.82, "end": 27241.82, "probability": 0.0714 }, { "start": 27241.82, "end": 27242.24, "probability": 0.0378 }, { "start": 27242.66, "end": 27245.28, "probability": 0.8973 }, { "start": 27246.38, "end": 27251.72, "probability": 0.9914 }, { "start": 27252.34, "end": 27255.36, "probability": 0.6212 }, { "start": 27255.56, "end": 27256.72, "probability": 0.6212 }, { "start": 27256.82, "end": 27257.54, "probability": 0.9346 }, { "start": 27258.32, "end": 27259.28, "probability": 0.8228 }, { "start": 27259.74, "end": 27261.86, "probability": 0.9582 }, { "start": 27262.62, "end": 27264.42, "probability": 0.9534 }, { "start": 27264.94, "end": 27265.28, "probability": 0.9375 }, { "start": 27265.8, "end": 27266.54, "probability": 0.8117 }, { "start": 27266.64, "end": 27268.54, "probability": 0.9512 }, { "start": 27269.22, "end": 27272.0, "probability": 0.9966 }, { "start": 27272.66, "end": 27273.4, "probability": 0.9885 }, { "start": 27273.92, "end": 27276.92, "probability": 0.996 }, { "start": 27277.5, "end": 27278.46, "probability": 0.8081 }, { "start": 27279.86, "end": 27280.06, "probability": 0.0246 }, { "start": 27280.06, "end": 27280.06, "probability": 0.45 }, { "start": 27280.06, "end": 27284.66, "probability": 0.4442 }, { "start": 27285.42, "end": 27286.58, "probability": 0.688 }, { "start": 27287.14, "end": 27289.2, "probability": 0.8057 }, { "start": 27289.74, "end": 27295.74, "probability": 0.6898 }, { "start": 27296.38, "end": 27296.92, "probability": 0.2233 }, { "start": 27297.0, "end": 27298.8, "probability": 0.882 }, { "start": 27298.82, "end": 27299.62, "probability": 0.7118 }, { "start": 27299.74, "end": 27300.24, "probability": 0.2256 }, { "start": 27300.26, "end": 27301.3, "probability": 0.9106 }, { "start": 27301.3, "end": 27301.88, "probability": 0.101 }, { "start": 27302.48, "end": 27305.12, "probability": 0.9331 }, { "start": 27305.22, "end": 27308.86, "probability": 0.978 }, { "start": 27309.26, "end": 27313.22, "probability": 0.9823 }, { "start": 27313.28, "end": 27314.18, "probability": 0.5973 }, { "start": 27314.3, "end": 27316.06, "probability": 0.7531 }, { "start": 27316.34, "end": 27316.58, "probability": 0.9248 }, { "start": 27320.38, "end": 27321.38, "probability": 0.5869 }, { "start": 27321.48, "end": 27322.08, "probability": 0.0683 }, { "start": 27322.36, "end": 27323.4, "probability": 0.8787 }, { "start": 27323.56, "end": 27324.14, "probability": 0.6437 }, { "start": 27325.88, "end": 27329.44, "probability": 0.345 }, { "start": 27331.26, "end": 27331.96, "probability": 0.2095 }, { "start": 27331.96, "end": 27332.54, "probability": 0.1049 }, { "start": 27332.54, "end": 27332.94, "probability": 0.5916 }, { "start": 27333.86, "end": 27338.52, "probability": 0.0831 }, { "start": 27339.28, "end": 27339.58, "probability": 0.4711 }, { "start": 27339.58, "end": 27339.98, "probability": 0.2993 }, { "start": 27339.98, "end": 27341.18, "probability": 0.2369 }, { "start": 27341.2, "end": 27343.44, "probability": 0.4889 }, { "start": 27344.66, "end": 27345.38, "probability": 0.2838 }, { "start": 27345.7, "end": 27346.2, "probability": 0.764 }, { "start": 27348.56, "end": 27349.98, "probability": 0.4981 }, { "start": 27350.86, "end": 27353.72, "probability": 0.8826 }, { "start": 27354.58, "end": 27357.36, "probability": 0.9507 }, { "start": 27357.84, "end": 27359.74, "probability": 0.9972 }, { "start": 27360.52, "end": 27361.28, "probability": 0.7408 }, { "start": 27361.32, "end": 27361.62, "probability": 0.7499 }, { "start": 27362.04, "end": 27365.3, "probability": 0.814 }, { "start": 27365.3, "end": 27365.58, "probability": 0.6432 }, { "start": 27365.6, "end": 27367.9, "probability": 0.8851 }, { "start": 27368.2, "end": 27372.96, "probability": 0.9904 }, { "start": 27373.1, "end": 27373.92, "probability": 0.9697 }, { "start": 27374.04, "end": 27375.88, "probability": 0.8027 }, { "start": 27376.24, "end": 27378.9, "probability": 0.9338 }, { "start": 27379.14, "end": 27383.26, "probability": 0.7337 }, { "start": 27383.34, "end": 27383.34, "probability": 0.375 }, { "start": 27383.34, "end": 27385.92, "probability": 0.768 }, { "start": 27385.94, "end": 27390.18, "probability": 0.993 }, { "start": 27390.18, "end": 27391.9, "probability": 0.8194 }, { "start": 27391.9, "end": 27392.6, "probability": 0.066 }, { "start": 27392.64, "end": 27393.82, "probability": 0.8945 }, { "start": 27393.82, "end": 27393.86, "probability": 0.3329 }, { "start": 27393.86, "end": 27396.28, "probability": 0.2915 }, { "start": 27396.28, "end": 27397.46, "probability": 0.7966 }, { "start": 27399.18, "end": 27399.82, "probability": 0.0077 }, { "start": 27399.82, "end": 27399.82, "probability": 0.2682 }, { "start": 27399.82, "end": 27401.26, "probability": 0.481 }, { "start": 27414.7, "end": 27415.12, "probability": 0.3465 }, { "start": 27417.68, "end": 27420.82, "probability": 0.5872 }, { "start": 27423.36, "end": 27426.22, "probability": 0.9376 }, { "start": 27426.42, "end": 27427.88, "probability": 0.9956 }, { "start": 27429.24, "end": 27431.04, "probability": 0.9546 }, { "start": 27432.48, "end": 27434.32, "probability": 0.8843 }, { "start": 27435.76, "end": 27436.46, "probability": 0.9065 }, { "start": 27437.6, "end": 27440.23, "probability": 0.998 }, { "start": 27440.66, "end": 27442.52, "probability": 0.9848 }, { "start": 27443.4, "end": 27444.34, "probability": 0.9111 }, { "start": 27445.82, "end": 27450.42, "probability": 0.985 }, { "start": 27450.44, "end": 27451.4, "probability": 0.7975 }, { "start": 27452.54, "end": 27458.96, "probability": 0.9437 }, { "start": 27459.18, "end": 27460.44, "probability": 0.9995 }, { "start": 27461.04, "end": 27461.3, "probability": 0.999 }, { "start": 27461.82, "end": 27462.8, "probability": 0.9848 }, { "start": 27463.82, "end": 27464.94, "probability": 0.9427 }, { "start": 27465.22, "end": 27472.08, "probability": 0.9565 }, { "start": 27472.7, "end": 27475.04, "probability": 0.9968 }, { "start": 27475.9, "end": 27480.56, "probability": 0.9956 }, { "start": 27481.3, "end": 27482.06, "probability": 0.9439 }, { "start": 27482.98, "end": 27485.08, "probability": 0.999 }, { "start": 27485.08, "end": 27489.02, "probability": 0.9884 }, { "start": 27489.36, "end": 27489.94, "probability": 0.9109 }, { "start": 27491.16, "end": 27491.98, "probability": 0.9846 }, { "start": 27493.5, "end": 27496.28, "probability": 0.9985 }, { "start": 27496.46, "end": 27497.42, "probability": 0.8333 }, { "start": 27498.38, "end": 27500.0, "probability": 0.828 }, { "start": 27500.12, "end": 27502.28, "probability": 0.9841 }, { "start": 27503.78, "end": 27505.62, "probability": 0.9736 }, { "start": 27506.36, "end": 27508.6, "probability": 0.5022 }, { "start": 27510.22, "end": 27517.22, "probability": 0.9964 }, { "start": 27517.28, "end": 27520.78, "probability": 0.9954 }, { "start": 27520.78, "end": 27525.94, "probability": 0.9984 }, { "start": 27526.02, "end": 27529.36, "probability": 0.7857 }, { "start": 27529.94, "end": 27535.02, "probability": 0.9965 }, { "start": 27535.54, "end": 27537.52, "probability": 0.969 }, { "start": 27538.0, "end": 27538.88, "probability": 0.9305 }, { "start": 27539.06, "end": 27544.7, "probability": 0.9949 }, { "start": 27545.34, "end": 27548.44, "probability": 0.958 }, { "start": 27548.6, "end": 27548.6, "probability": 0.1206 }, { "start": 27548.6, "end": 27552.78, "probability": 0.9747 }, { "start": 27552.78, "end": 27556.18, "probability": 0.9963 }, { "start": 27556.76, "end": 27558.16, "probability": 0.8453 }, { "start": 27558.2, "end": 27558.76, "probability": 0.846 }, { "start": 27559.26, "end": 27560.62, "probability": 0.6565 }, { "start": 27561.04, "end": 27565.58, "probability": 0.9842 }, { "start": 27566.1, "end": 27567.91, "probability": 0.9969 }, { "start": 27568.64, "end": 27574.28, "probability": 0.9902 }, { "start": 27574.54, "end": 27576.36, "probability": 0.9256 }, { "start": 27576.76, "end": 27577.5, "probability": 0.9264 }, { "start": 27578.36, "end": 27581.82, "probability": 0.9823 }, { "start": 27582.44, "end": 27585.74, "probability": 0.8565 }, { "start": 27586.44, "end": 27588.26, "probability": 0.9639 }, { "start": 27589.64, "end": 27593.02, "probability": 0.8615 }, { "start": 27593.44, "end": 27599.18, "probability": 0.9896 }, { "start": 27599.6, "end": 27600.46, "probability": 0.5335 }, { "start": 27601.0, "end": 27602.06, "probability": 0.588 }, { "start": 27603.36, "end": 27605.42, "probability": 0.9295 }, { "start": 27605.62, "end": 27607.02, "probability": 0.9875 }, { "start": 27607.6, "end": 27609.96, "probability": 0.966 }, { "start": 27610.12, "end": 27611.18, "probability": 0.8986 }, { "start": 27611.74, "end": 27612.4, "probability": 0.6878 }, { "start": 27612.88, "end": 27616.14, "probability": 0.9662 }, { "start": 27616.32, "end": 27620.26, "probability": 0.8809 }, { "start": 27620.82, "end": 27621.92, "probability": 0.9305 }, { "start": 27622.4, "end": 27625.02, "probability": 0.9951 }, { "start": 27625.78, "end": 27627.93, "probability": 0.9172 }, { "start": 27628.64, "end": 27634.6, "probability": 0.8942 }, { "start": 27635.22, "end": 27638.66, "probability": 0.9654 }, { "start": 27639.2, "end": 27640.98, "probability": 0.5419 }, { "start": 27641.54, "end": 27642.14, "probability": 0.7906 }, { "start": 27642.88, "end": 27647.74, "probability": 0.9935 }, { "start": 27648.64, "end": 27652.58, "probability": 0.9995 }, { "start": 27653.2, "end": 27656.66, "probability": 0.9791 }, { "start": 27657.34, "end": 27659.32, "probability": 0.5544 }, { "start": 27659.5, "end": 27660.08, "probability": 0.4132 }, { "start": 27660.4, "end": 27661.01, "probability": 0.8592 }, { "start": 27661.32, "end": 27662.36, "probability": 0.939 }, { "start": 27662.38, "end": 27662.78, "probability": 0.7395 }, { "start": 27662.86, "end": 27663.46, "probability": 0.7531 }, { "start": 27663.98, "end": 27665.75, "probability": 0.951 }, { "start": 27679.0, "end": 27679.14, "probability": 0.3738 }, { "start": 27680.54, "end": 27683.5, "probability": 0.658 }, { "start": 27684.92, "end": 27689.19, "probability": 0.8174 }, { "start": 27691.58, "end": 27692.12, "probability": 0.8784 }, { "start": 27693.76, "end": 27697.9, "probability": 0.767 }, { "start": 27698.96, "end": 27700.12, "probability": 0.7659 }, { "start": 27701.16, "end": 27701.7, "probability": 0.9852 }, { "start": 27702.68, "end": 27706.08, "probability": 0.9683 }, { "start": 27709.1, "end": 27711.42, "probability": 0.4037 }, { "start": 27712.68, "end": 27713.84, "probability": 0.8317 }, { "start": 27714.54, "end": 27715.62, "probability": 0.6842 }, { "start": 27716.7, "end": 27718.4, "probability": 0.7058 }, { "start": 27719.0, "end": 27719.42, "probability": 0.3372 }, { "start": 27720.0, "end": 27724.72, "probability": 0.9954 }, { "start": 27725.9, "end": 27726.44, "probability": 0.9409 }, { "start": 27727.32, "end": 27728.04, "probability": 0.9465 }, { "start": 27728.2, "end": 27729.04, "probability": 0.9688 }, { "start": 27731.58, "end": 27733.6, "probability": 0.4256 }, { "start": 27734.82, "end": 27736.76, "probability": 0.8175 }, { "start": 27737.82, "end": 27739.92, "probability": 0.9563 }, { "start": 27741.28, "end": 27742.26, "probability": 0.9973 }, { "start": 27743.06, "end": 27743.78, "probability": 0.866 }, { "start": 27744.48, "end": 27745.68, "probability": 0.8699 }, { "start": 27746.24, "end": 27747.6, "probability": 0.9747 }, { "start": 27748.4, "end": 27749.34, "probability": 0.7509 }, { "start": 27749.82, "end": 27753.94, "probability": 0.9624 }, { "start": 27755.86, "end": 27756.72, "probability": 0.8138 }, { "start": 27756.94, "end": 27759.18, "probability": 0.9853 }, { "start": 27760.3, "end": 27763.32, "probability": 0.8967 }, { "start": 27764.18, "end": 27764.62, "probability": 0.4014 }, { "start": 27764.8, "end": 27765.8, "probability": 0.9531 }, { "start": 27766.62, "end": 27767.6, "probability": 0.6062 }, { "start": 27768.22, "end": 27769.28, "probability": 0.9987 }, { "start": 27770.1, "end": 27770.74, "probability": 0.6861 }, { "start": 27770.76, "end": 27771.58, "probability": 0.9775 }, { "start": 27772.1, "end": 27774.12, "probability": 0.5781 }, { "start": 27774.16, "end": 27777.4, "probability": 0.7397 }, { "start": 27778.72, "end": 27781.96, "probability": 0.9202 }, { "start": 27782.7, "end": 27784.88, "probability": 0.7595 }, { "start": 27785.5, "end": 27786.42, "probability": 0.7379 }, { "start": 27787.14, "end": 27788.66, "probability": 0.5482 }, { "start": 27790.12, "end": 27791.62, "probability": 0.9206 }, { "start": 27792.76, "end": 27793.34, "probability": 0.6443 }, { "start": 27794.04, "end": 27799.02, "probability": 0.7258 }, { "start": 27799.4, "end": 27801.2, "probability": 0.9723 }, { "start": 27802.9, "end": 27803.6, "probability": 0.7592 }, { "start": 27805.34, "end": 27807.54, "probability": 0.9813 }, { "start": 27808.6, "end": 27810.16, "probability": 0.9927 }, { "start": 27811.26, "end": 27813.08, "probability": 0.9938 }, { "start": 27813.86, "end": 27815.39, "probability": 0.9426 }, { "start": 27816.52, "end": 27820.88, "probability": 0.9518 }, { "start": 27820.88, "end": 27824.6, "probability": 0.9946 }, { "start": 27825.66, "end": 27826.82, "probability": 0.5133 }, { "start": 27827.4, "end": 27829.76, "probability": 0.9364 }, { "start": 27831.14, "end": 27835.08, "probability": 0.8652 }, { "start": 27836.14, "end": 27837.18, "probability": 0.8721 }, { "start": 27837.84, "end": 27838.92, "probability": 0.9523 }, { "start": 27839.8, "end": 27841.1, "probability": 0.8037 }, { "start": 27841.78, "end": 27844.98, "probability": 0.9588 }, { "start": 27846.85, "end": 27848.3, "probability": 0.6391 }, { "start": 27849.96, "end": 27853.2, "probability": 0.9858 }, { "start": 27853.84, "end": 27854.76, "probability": 0.9348 }, { "start": 27855.34, "end": 27856.5, "probability": 0.8796 }, { "start": 27857.04, "end": 27859.14, "probability": 0.9463 }, { "start": 27859.88, "end": 27860.5, "probability": 0.7522 }, { "start": 27860.76, "end": 27863.42, "probability": 0.3324 }, { "start": 27870.14, "end": 27871.48, "probability": 0.0285 }, { "start": 27881.86, "end": 27882.66, "probability": 0.4232 }, { "start": 27882.96, "end": 27883.22, "probability": 0.7557 }, { "start": 27884.24, "end": 27885.94, "probability": 0.8333 }, { "start": 27887.38, "end": 27890.86, "probability": 0.9451 }, { "start": 27891.66, "end": 27893.08, "probability": 0.849 }, { "start": 27893.16, "end": 27893.74, "probability": 0.8554 }, { "start": 27893.88, "end": 27896.02, "probability": 0.8317 }, { "start": 27897.86, "end": 27898.68, "probability": 0.5956 }, { "start": 27899.82, "end": 27900.76, "probability": 0.9575 }, { "start": 27903.62, "end": 27904.2, "probability": 0.9715 }, { "start": 27904.72, "end": 27906.34, "probability": 0.9948 }, { "start": 27907.3, "end": 27908.9, "probability": 0.9252 }, { "start": 27909.78, "end": 27910.82, "probability": 0.9756 }, { "start": 27911.42, "end": 27913.12, "probability": 0.9414 }, { "start": 27913.72, "end": 27914.52, "probability": 0.5959 }, { "start": 27915.04, "end": 27916.42, "probability": 0.9789 }, { "start": 27917.14, "end": 27918.16, "probability": 0.9985 }, { "start": 27919.06, "end": 27921.08, "probability": 0.9966 }, { "start": 27921.34, "end": 27922.1, "probability": 0.5663 }, { "start": 27922.3, "end": 27923.12, "probability": 0.8856 }, { "start": 27924.2, "end": 27926.3, "probability": 0.9458 }, { "start": 27927.24, "end": 27928.3, "probability": 0.8386 }, { "start": 27929.72, "end": 27930.82, "probability": 0.4712 }, { "start": 27932.32, "end": 27932.78, "probability": 0.98 }, { "start": 27933.72, "end": 27934.38, "probability": 0.7299 }, { "start": 27934.92, "end": 27938.66, "probability": 0.6749 }, { "start": 27939.24, "end": 27940.24, "probability": 0.8598 }, { "start": 27941.34, "end": 27944.42, "probability": 0.9834 }, { "start": 27946.0, "end": 27948.74, "probability": 0.9492 }, { "start": 27949.66, "end": 27950.78, "probability": 0.9937 }, { "start": 27951.02, "end": 27952.34, "probability": 0.9853 }, { "start": 27952.7, "end": 27953.56, "probability": 0.4616 }, { "start": 27953.64, "end": 27954.76, "probability": 0.8435 }, { "start": 27955.36, "end": 27956.63, "probability": 0.99 }, { "start": 27957.22, "end": 27959.82, "probability": 0.8231 }, { "start": 27960.38, "end": 27962.98, "probability": 0.9248 }, { "start": 27963.14, "end": 27965.22, "probability": 0.8525 }, { "start": 27966.04, "end": 27968.12, "probability": 0.8909 }, { "start": 27968.5, "end": 27969.54, "probability": 0.6006 }, { "start": 27970.36, "end": 27971.72, "probability": 0.8534 }, { "start": 27972.48, "end": 27974.32, "probability": 0.852 }, { "start": 27975.16, "end": 27978.86, "probability": 0.9351 }, { "start": 27980.58, "end": 27984.18, "probability": 0.6955 }, { "start": 27984.36, "end": 27985.58, "probability": 0.4922 }, { "start": 27985.78, "end": 27987.62, "probability": 0.9022 }, { "start": 27988.84, "end": 27993.3, "probability": 0.9747 }, { "start": 27993.94, "end": 27997.04, "probability": 0.8861 }, { "start": 27997.9, "end": 27998.39, "probability": 0.8257 }, { "start": 27999.32, "end": 28001.03, "probability": 0.978 }, { "start": 28001.16, "end": 28002.86, "probability": 0.9829 }, { "start": 28002.9, "end": 28003.9, "probability": 0.9498 }, { "start": 28005.08, "end": 28007.6, "probability": 0.8255 }, { "start": 28008.96, "end": 28009.38, "probability": 0.8726 }, { "start": 28009.98, "end": 28013.14, "probability": 0.8737 }, { "start": 28014.1, "end": 28016.54, "probability": 0.8585 }, { "start": 28016.94, "end": 28022.3, "probability": 0.99 }, { "start": 28023.8, "end": 28024.48, "probability": 0.5793 }, { "start": 28025.28, "end": 28026.08, "probability": 0.5953 }, { "start": 28027.2, "end": 28028.86, "probability": 0.9482 }, { "start": 28029.44, "end": 28033.88, "probability": 0.9343 }, { "start": 28034.7, "end": 28035.9, "probability": 0.8775 }, { "start": 28039.7, "end": 28041.46, "probability": 0.9895 }, { "start": 28041.62, "end": 28042.74, "probability": 0.7519 }, { "start": 28042.84, "end": 28044.44, "probability": 0.4866 }, { "start": 28048.4, "end": 28051.42, "probability": 0.6948 }, { "start": 28052.0, "end": 28056.48, "probability": 0.9268 }, { "start": 28058.28, "end": 28059.94, "probability": 0.9373 }, { "start": 28060.08, "end": 28061.92, "probability": 0.9603 }, { "start": 28064.44, "end": 28067.58, "probability": 0.6892 }, { "start": 28068.38, "end": 28068.96, "probability": 0.614 }, { "start": 28070.1, "end": 28071.72, "probability": 0.3379 }, { "start": 28073.06, "end": 28074.96, "probability": 0.908 }, { "start": 28076.7, "end": 28078.72, "probability": 0.9921 }, { "start": 28079.86, "end": 28082.84, "probability": 0.773 }, { "start": 28083.74, "end": 28086.82, "probability": 0.7285 }, { "start": 28087.6, "end": 28089.06, "probability": 0.9539 }, { "start": 28090.04, "end": 28091.56, "probability": 0.7963 }, { "start": 28091.8, "end": 28095.12, "probability": 0.9814 }, { "start": 28096.1, "end": 28097.08, "probability": 0.9661 }, { "start": 28097.6, "end": 28098.37, "probability": 0.749 }, { "start": 28099.42, "end": 28105.04, "probability": 0.9714 }, { "start": 28105.72, "end": 28107.96, "probability": 0.865 }, { "start": 28110.26, "end": 28110.52, "probability": 0.7694 }, { "start": 28113.38, "end": 28114.48, "probability": 0.9463 }, { "start": 28115.4, "end": 28117.06, "probability": 0.9881 }, { "start": 28117.64, "end": 28122.38, "probability": 0.8662 }, { "start": 28123.18, "end": 28126.1, "probability": 0.9805 }, { "start": 28127.82, "end": 28128.24, "probability": 0.8218 }, { "start": 28128.88, "end": 28130.26, "probability": 0.8199 }, { "start": 28131.0, "end": 28135.34, "probability": 0.9291 }, { "start": 28137.26, "end": 28143.16, "probability": 0.9951 }, { "start": 28145.34, "end": 28149.32, "probability": 0.6794 }, { "start": 28150.68, "end": 28152.14, "probability": 0.9119 }, { "start": 28152.86, "end": 28154.53, "probability": 0.9812 }, { "start": 28156.5, "end": 28157.9, "probability": 0.5714 }, { "start": 28157.94, "end": 28158.38, "probability": 0.3722 }, { "start": 28159.96, "end": 28162.35, "probability": 0.8365 }, { "start": 28164.2, "end": 28165.08, "probability": 0.969 }, { "start": 28165.76, "end": 28168.68, "probability": 0.8882 }, { "start": 28168.84, "end": 28171.0, "probability": 0.8639 }, { "start": 28172.36, "end": 28173.7, "probability": 0.8849 }, { "start": 28174.52, "end": 28176.1, "probability": 0.9961 }, { "start": 28178.36, "end": 28178.8, "probability": 0.8041 }, { "start": 28180.34, "end": 28183.0, "probability": 0.9213 }, { "start": 28183.02, "end": 28183.02, "probability": 0.3042 }, { "start": 28183.1, "end": 28183.8, "probability": 0.7217 }, { "start": 28184.34, "end": 28186.86, "probability": 0.9805 }, { "start": 28188.42, "end": 28189.84, "probability": 0.901 }, { "start": 28190.44, "end": 28192.92, "probability": 0.995 }, { "start": 28193.4, "end": 28194.24, "probability": 0.7483 }, { "start": 28194.78, "end": 28199.02, "probability": 0.9826 }, { "start": 28200.42, "end": 28203.58, "probability": 0.98 }, { "start": 28204.46, "end": 28204.8, "probability": 0.9115 }, { "start": 28205.04, "end": 28205.42, "probability": 0.6634 }, { "start": 28205.56, "end": 28207.5, "probability": 0.9893 }, { "start": 28207.5, "end": 28208.22, "probability": 0.9143 }, { "start": 28209.71, "end": 28211.72, "probability": 0.6369 }, { "start": 28211.78, "end": 28212.77, "probability": 0.5752 }, { "start": 28213.08, "end": 28213.38, "probability": 0.3026 }, { "start": 28213.66, "end": 28216.12, "probability": 0.2566 }, { "start": 28216.12, "end": 28216.22, "probability": 0.0153 }, { "start": 28216.22, "end": 28216.22, "probability": 0.2283 }, { "start": 28216.22, "end": 28216.6, "probability": 0.3822 }, { "start": 28217.28, "end": 28218.24, "probability": 0.3878 }, { "start": 28219.0, "end": 28219.34, "probability": 0.5172 }, { "start": 28220.08, "end": 28220.42, "probability": 0.39 }, { "start": 28221.62, "end": 28222.26, "probability": 0.9363 }, { "start": 28222.74, "end": 28223.92, "probability": 0.6338 }, { "start": 28224.32, "end": 28226.72, "probability": 0.9652 }, { "start": 28227.04, "end": 28227.38, "probability": 0.889 }, { "start": 28227.58, "end": 28228.56, "probability": 0.918 }, { "start": 28228.74, "end": 28228.98, "probability": 0.7264 }, { "start": 28229.04, "end": 28229.76, "probability": 0.7064 }, { "start": 28229.76, "end": 28233.5, "probability": 0.6738 }, { "start": 28233.9, "end": 28238.78, "probability": 0.9425 }, { "start": 28239.4, "end": 28240.73, "probability": 0.8631 }, { "start": 28241.6, "end": 28250.64, "probability": 0.7221 }, { "start": 28251.22, "end": 28253.6, "probability": 0.9085 }, { "start": 28254.62, "end": 28255.56, "probability": 0.763 }, { "start": 28256.32, "end": 28262.74, "probability": 0.9678 }, { "start": 28263.56, "end": 28263.56, "probability": 0.4641 }, { "start": 28263.56, "end": 28263.56, "probability": 0.6868 }, { "start": 28263.56, "end": 28264.28, "probability": 0.5145 }, { "start": 28280.98, "end": 28281.08, "probability": 0.5138 }, { "start": 28281.88, "end": 28281.96, "probability": 0.1606 }, { "start": 28281.96, "end": 28281.96, "probability": 0.1285 }, { "start": 28281.96, "end": 28281.96, "probability": 0.0565 }, { "start": 28281.96, "end": 28282.78, "probability": 0.0396 }, { "start": 28283.74, "end": 28283.84, "probability": 0.0856 }, { "start": 28295.88, "end": 28297.29, "probability": 0.368 }, { "start": 28312.34, "end": 28316.2, "probability": 0.7523 }, { "start": 28317.12, "end": 28318.5, "probability": 0.9813 }, { "start": 28319.22, "end": 28322.0, "probability": 0.8269 }, { "start": 28322.64, "end": 28323.32, "probability": 0.6294 }, { "start": 28324.02, "end": 28326.22, "probability": 0.9942 }, { "start": 28327.12, "end": 28327.9, "probability": 0.9006 }, { "start": 28328.64, "end": 28329.16, "probability": 0.6663 }, { "start": 28329.9, "end": 28332.46, "probability": 0.8493 }, { "start": 28333.36, "end": 28334.14, "probability": 0.6764 }, { "start": 28335.02, "end": 28337.92, "probability": 0.8857 }, { "start": 28338.72, "end": 28339.42, "probability": 0.7654 }, { "start": 28340.84, "end": 28342.96, "probability": 0.9344 }, { "start": 28344.48, "end": 28345.3, "probability": 0.964 }, { "start": 28345.4, "end": 28345.78, "probability": 0.8487 }, { "start": 28345.86, "end": 28346.42, "probability": 0.5114 }, { "start": 28346.78, "end": 28348.18, "probability": 0.2438 }, { "start": 28348.32, "end": 28349.02, "probability": 0.9285 }, { "start": 28352.26, "end": 28354.32, "probability": 0.6903 }, { "start": 28354.9, "end": 28357.04, "probability": 0.7726 }, { "start": 28357.24, "end": 28358.18, "probability": 0.9874 }, { "start": 28358.84, "end": 28359.72, "probability": 0.8244 }, { "start": 28360.48, "end": 28367.22, "probability": 0.9329 }, { "start": 28367.22, "end": 28372.18, "probability": 0.8992 }, { "start": 28373.7, "end": 28374.6, "probability": 0.1556 }, { "start": 28375.4, "end": 28376.32, "probability": 0.5732 }, { "start": 28376.56, "end": 28376.7, "probability": 0.6493 }, { "start": 28376.82, "end": 28378.13, "probability": 0.4026 }, { "start": 28378.7, "end": 28378.86, "probability": 0.3286 }, { "start": 28380.6, "end": 28380.6, "probability": 0.0257 }, { "start": 28380.6, "end": 28381.22, "probability": 0.1567 }, { "start": 28381.22, "end": 28381.96, "probability": 0.3577 }, { "start": 28382.52, "end": 28383.64, "probability": 0.9152 }, { "start": 28384.6, "end": 28386.28, "probability": 0.8146 }, { "start": 28386.92, "end": 28388.22, "probability": 0.896 }, { "start": 28389.76, "end": 28389.76, "probability": 0.1381 }, { "start": 28389.76, "end": 28391.76, "probability": 0.5292 }, { "start": 28392.52, "end": 28397.84, "probability": 0.9463 }, { "start": 28398.0, "end": 28399.6, "probability": 0.9961 }, { "start": 28400.32, "end": 28401.04, "probability": 0.7982 }, { "start": 28401.14, "end": 28401.8, "probability": 0.8936 }, { "start": 28401.98, "end": 28406.06, "probability": 0.9307 }, { "start": 28406.66, "end": 28407.72, "probability": 0.9879 }, { "start": 28409.02, "end": 28409.94, "probability": 0.5343 }, { "start": 28410.08, "end": 28410.98, "probability": 0.7861 }, { "start": 28411.24, "end": 28413.92, "probability": 0.8882 }, { "start": 28414.44, "end": 28414.76, "probability": 0.0018 }, { "start": 28416.06, "end": 28416.22, "probability": 0.0462 }, { "start": 28416.22, "end": 28417.1, "probability": 0.2973 }, { "start": 28418.46, "end": 28418.96, "probability": 0.4248 }, { "start": 28419.18, "end": 28420.08, "probability": 0.6405 }, { "start": 28420.52, "end": 28424.7, "probability": 0.847 }, { "start": 28424.86, "end": 28425.18, "probability": 0.9109 }, { "start": 28426.2, "end": 28428.28, "probability": 0.8911 }, { "start": 28428.94, "end": 28433.2, "probability": 0.9712 }, { "start": 28433.38, "end": 28435.74, "probability": 0.703 }, { "start": 28436.32, "end": 28437.88, "probability": 0.9233 }, { "start": 28439.06, "end": 28439.94, "probability": 0.8158 }, { "start": 28440.12, "end": 28441.18, "probability": 0.9731 }, { "start": 28441.62, "end": 28445.42, "probability": 0.9988 }, { "start": 28446.08, "end": 28448.52, "probability": 0.6927 }, { "start": 28449.44, "end": 28449.88, "probability": 0.839 }, { "start": 28451.32, "end": 28452.38, "probability": 0.8521 }, { "start": 28453.08, "end": 28454.2, "probability": 0.9905 }, { "start": 28454.26, "end": 28454.62, "probability": 0.8921 }, { "start": 28454.72, "end": 28459.5, "probability": 0.9183 }, { "start": 28459.58, "end": 28460.64, "probability": 0.5383 }, { "start": 28460.76, "end": 28464.42, "probability": 0.9976 }, { "start": 28465.23, "end": 28466.14, "probability": 0.2686 }, { "start": 28466.22, "end": 28468.32, "probability": 0.9906 }, { "start": 28469.28, "end": 28469.54, "probability": 0.7755 }, { "start": 28470.2, "end": 28471.12, "probability": 0.5012 }, { "start": 28471.42, "end": 28474.2, "probability": 0.9668 }, { "start": 28474.78, "end": 28476.04, "probability": 0.9054 }, { "start": 28476.76, "end": 28477.84, "probability": 0.6542 }, { "start": 28478.2, "end": 28481.02, "probability": 0.8646 }, { "start": 28481.86, "end": 28482.38, "probability": 0.9025 }, { "start": 28483.1, "end": 28485.06, "probability": 0.9753 }, { "start": 28486.16, "end": 28487.7, "probability": 0.7388 }, { "start": 28488.4, "end": 28491.84, "probability": 0.8463 }, { "start": 28492.36, "end": 28492.96, "probability": 0.5009 }, { "start": 28493.74, "end": 28496.52, "probability": 0.8952 }, { "start": 28496.92, "end": 28499.7, "probability": 0.9868 }, { "start": 28500.38, "end": 28501.0, "probability": 0.8541 }, { "start": 28501.96, "end": 28504.3, "probability": 0.6014 }, { "start": 28504.5, "end": 28505.08, "probability": 0.5093 }, { "start": 28505.14, "end": 28507.7, "probability": 0.7277 }, { "start": 28508.42, "end": 28510.82, "probability": 0.8511 }, { "start": 28511.72, "end": 28512.68, "probability": 0.6122 }, { "start": 28512.98, "end": 28514.27, "probability": 0.3111 }, { "start": 28515.16, "end": 28515.16, "probability": 0.0928 }, { "start": 28515.16, "end": 28518.44, "probability": 0.9836 }, { "start": 28519.02, "end": 28520.96, "probability": 0.8893 }, { "start": 28521.02, "end": 28521.62, "probability": 0.162 }, { "start": 28521.92, "end": 28522.88, "probability": 0.8962 }, { "start": 28523.46, "end": 28525.4, "probability": 0.223 }, { "start": 28526.56, "end": 28526.56, "probability": 0.0144 }, { "start": 28526.56, "end": 28527.26, "probability": 0.948 }, { "start": 28527.56, "end": 28528.04, "probability": 0.7438 }, { "start": 28528.38, "end": 28529.74, "probability": 0.2704 }, { "start": 28529.74, "end": 28529.74, "probability": 0.5676 }, { "start": 28530.22, "end": 28533.78, "probability": 0.9706 }, { "start": 28535.3, "end": 28537.28, "probability": 0.936 }, { "start": 28538.3, "end": 28540.88, "probability": 0.9865 }, { "start": 28541.54, "end": 28547.18, "probability": 0.9805 }, { "start": 28547.7, "end": 28547.84, "probability": 0.9997 }, { "start": 28548.44, "end": 28549.46, "probability": 0.973 }, { "start": 28550.42, "end": 28551.46, "probability": 0.9102 }, { "start": 28551.54, "end": 28551.82, "probability": 0.8062 }, { "start": 28552.18, "end": 28552.7, "probability": 0.793 }, { "start": 28552.76, "end": 28553.24, "probability": 0.3836 }, { "start": 28553.34, "end": 28554.72, "probability": 0.2049 }, { "start": 28554.82, "end": 28556.88, "probability": 0.1731 }, { "start": 28556.98, "end": 28558.94, "probability": 0.2151 }, { "start": 28559.19, "end": 28561.84, "probability": 0.7973 }, { "start": 28562.78, "end": 28563.28, "probability": 0.8307 }, { "start": 28563.54, "end": 28564.84, "probability": 0.8415 }, { "start": 28564.94, "end": 28565.96, "probability": 0.7441 }, { "start": 28566.38, "end": 28568.72, "probability": 0.9588 }, { "start": 28569.4, "end": 28572.18, "probability": 0.2554 }, { "start": 28572.82, "end": 28574.02, "probability": 0.449 }, { "start": 28574.6, "end": 28575.2, "probability": 0.2254 }, { "start": 28575.24, "end": 28575.98, "probability": 0.7842 }, { "start": 28576.74, "end": 28578.66, "probability": 0.9554 }, { "start": 28578.94, "end": 28581.08, "probability": 0.821 }, { "start": 28582.24, "end": 28585.76, "probability": 0.6693 }, { "start": 28586.38, "end": 28589.54, "probability": 0.8113 }, { "start": 28590.44, "end": 28594.08, "probability": 0.7757 }, { "start": 28594.4, "end": 28594.96, "probability": 0.6219 }, { "start": 28596.02, "end": 28598.14, "probability": 0.8562 }, { "start": 28599.5, "end": 28602.1, "probability": 0.8535 }, { "start": 28605.52, "end": 28607.1, "probability": 0.2968 }, { "start": 28607.74, "end": 28610.89, "probability": 0.6678 }, { "start": 28611.06, "end": 28611.38, "probability": 0.6842 }, { "start": 28611.88, "end": 28612.96, "probability": 0.957 }, { "start": 28613.1, "end": 28616.2, "probability": 0.9451 }, { "start": 28616.56, "end": 28617.08, "probability": 0.9753 }, { "start": 28617.54, "end": 28619.32, "probability": 0.971 }, { "start": 28619.66, "end": 28621.32, "probability": 0.9569 }, { "start": 28621.52, "end": 28623.88, "probability": 0.9534 }, { "start": 28624.36, "end": 28625.04, "probability": 0.9518 }, { "start": 28625.16, "end": 28627.12, "probability": 0.9972 }, { "start": 28628.08, "end": 28631.76, "probability": 0.985 }, { "start": 28631.86, "end": 28633.92, "probability": 0.9565 }, { "start": 28634.56, "end": 28638.78, "probability": 0.98 }, { "start": 28639.4, "end": 28640.08, "probability": 0.6984 }, { "start": 28640.42, "end": 28643.64, "probability": 0.8718 }, { "start": 28643.78, "end": 28645.0, "probability": 0.9844 }, { "start": 28645.88, "end": 28648.42, "probability": 0.9302 }, { "start": 28649.12, "end": 28651.72, "probability": 0.9731 }, { "start": 28652.38, "end": 28654.9, "probability": 0.9852 }, { "start": 28654.9, "end": 28658.32, "probability": 0.9902 }, { "start": 28658.42, "end": 28659.48, "probability": 0.6808 }, { "start": 28660.06, "end": 28662.88, "probability": 0.8723 }, { "start": 28663.34, "end": 28664.08, "probability": 0.5495 }, { "start": 28664.32, "end": 28665.08, "probability": 0.6718 }, { "start": 28665.3, "end": 28666.27, "probability": 0.829 }, { "start": 28666.76, "end": 28667.56, "probability": 0.6525 }, { "start": 28667.68, "end": 28668.44, "probability": 0.9553 }, { "start": 28669.2, "end": 28669.86, "probability": 0.8079 }, { "start": 28672.22, "end": 28674.9, "probability": 0.6689 }, { "start": 28675.68, "end": 28678.58, "probability": 0.9961 }, { "start": 28679.12, "end": 28679.3, "probability": 0.6999 }, { "start": 28679.44, "end": 28683.96, "probability": 0.9761 }, { "start": 28685.0, "end": 28686.37, "probability": 0.9976 }, { "start": 28687.12, "end": 28688.96, "probability": 0.9187 }, { "start": 28689.16, "end": 28691.62, "probability": 0.9888 }, { "start": 28692.24, "end": 28695.54, "probability": 0.9857 }, { "start": 28696.58, "end": 28700.88, "probability": 0.7534 }, { "start": 28701.6, "end": 28702.0, "probability": 0.5832 }, { "start": 28702.52, "end": 28707.98, "probability": 0.9966 }, { "start": 28708.62, "end": 28710.47, "probability": 0.9894 }, { "start": 28711.32, "end": 28712.26, "probability": 0.1856 }, { "start": 28712.4, "end": 28713.78, "probability": 0.5453 }, { "start": 28714.04, "end": 28714.86, "probability": 0.5112 }, { "start": 28715.18, "end": 28717.7, "probability": 0.9055 }, { "start": 28717.76, "end": 28718.32, "probability": 0.7847 }, { "start": 28718.84, "end": 28722.3, "probability": 0.9781 }, { "start": 28722.68, "end": 28725.24, "probability": 0.6406 }, { "start": 28725.56, "end": 28728.18, "probability": 0.9961 }, { "start": 28728.7, "end": 28731.2, "probability": 0.6702 }, { "start": 28731.32, "end": 28731.74, "probability": 0.968 }, { "start": 28732.18, "end": 28732.9, "probability": 0.6343 }, { "start": 28734.44, "end": 28738.06, "probability": 0.9924 }, { "start": 28738.48, "end": 28742.94, "probability": 0.9098 }, { "start": 28743.48, "end": 28744.92, "probability": 0.9867 }, { "start": 28745.36, "end": 28746.86, "probability": 0.8125 }, { "start": 28747.14, "end": 28751.84, "probability": 0.9854 }, { "start": 28751.84, "end": 28758.91, "probability": 0.9824 }, { "start": 28760.5, "end": 28761.75, "probability": 0.9805 }, { "start": 28762.38, "end": 28763.45, "probability": 0.8339 }, { "start": 28764.18, "end": 28765.84, "probability": 0.9858 }, { "start": 28766.14, "end": 28767.44, "probability": 0.6991 }, { "start": 28768.0, "end": 28768.4, "probability": 0.3971 }, { "start": 28769.18, "end": 28771.29, "probability": 0.9648 }, { "start": 28771.64, "end": 28777.86, "probability": 0.897 }, { "start": 28778.46, "end": 28780.26, "probability": 0.9406 }, { "start": 28780.76, "end": 28781.6, "probability": 0.5225 }, { "start": 28781.82, "end": 28783.88, "probability": 0.9946 }, { "start": 28784.58, "end": 28787.22, "probability": 0.8674 }, { "start": 28787.7, "end": 28789.66, "probability": 0.7883 }, { "start": 28789.66, "end": 28793.87, "probability": 0.7925 }, { "start": 28794.4, "end": 28794.5, "probability": 0.0296 }, { "start": 28795.08, "end": 28797.72, "probability": 0.9407 }, { "start": 28797.82, "end": 28797.82, "probability": 0.6842 }, { "start": 28797.88, "end": 28799.02, "probability": 0.959 }, { "start": 28799.54, "end": 28800.14, "probability": 0.9299 }, { "start": 28800.66, "end": 28802.66, "probability": 0.959 }, { "start": 28803.82, "end": 28804.04, "probability": 0.7647 }, { "start": 28804.26, "end": 28805.26, "probability": 0.9202 }, { "start": 28805.84, "end": 28807.04, "probability": 0.9919 }, { "start": 28807.72, "end": 28808.83, "probability": 0.9951 }, { "start": 28809.1, "end": 28810.32, "probability": 0.9258 }, { "start": 28811.16, "end": 28814.83, "probability": 0.7693 }, { "start": 28815.24, "end": 28816.94, "probability": 0.9841 }, { "start": 28817.6, "end": 28818.7, "probability": 0.9481 }, { "start": 28818.84, "end": 28819.37, "probability": 0.5179 }, { "start": 28819.5, "end": 28826.96, "probability": 0.9767 }, { "start": 28826.96, "end": 28831.96, "probability": 0.9795 }, { "start": 28832.52, "end": 28833.7, "probability": 0.5283 }, { "start": 28833.9, "end": 28838.62, "probability": 0.354 }, { "start": 28838.62, "end": 28838.62, "probability": 0.0279 }, { "start": 28838.68, "end": 28840.62, "probability": 0.667 }, { "start": 28841.58, "end": 28842.98, "probability": 0.0122 }, { "start": 28843.72, "end": 28843.82, "probability": 0.4383 }, { "start": 28843.82, "end": 28844.72, "probability": 0.4718 }, { "start": 28845.46, "end": 28846.84, "probability": 0.9227 }, { "start": 28846.84, "end": 28848.12, "probability": 0.7706 }, { "start": 28849.58, "end": 28851.26, "probability": 0.0058 }, { "start": 28856.6, "end": 28856.76, "probability": 0.0191 }, { "start": 28859.24, "end": 28861.08, "probability": 0.023 }, { "start": 28861.38, "end": 28863.38, "probability": 0.2622 }, { "start": 28863.9, "end": 28864.78, "probability": 0.2429 }, { "start": 28864.78, "end": 28866.02, "probability": 0.1527 }, { "start": 28866.64, "end": 28866.89, "probability": 0.0143 }, { "start": 28884.68, "end": 28886.76, "probability": 0.9948 }, { "start": 28887.52, "end": 28888.76, "probability": 0.5914 }, { "start": 28889.8, "end": 28893.44, "probability": 0.8512 }, { "start": 28894.52, "end": 28898.7, "probability": 0.713 }, { "start": 28898.7, "end": 28904.26, "probability": 0.9344 }, { "start": 28904.96, "end": 28906.44, "probability": 0.9275 }, { "start": 28907.14, "end": 28909.64, "probability": 0.8074 }, { "start": 28911.04, "end": 28914.7, "probability": 0.8348 }, { "start": 28914.9, "end": 28916.18, "probability": 0.7444 }, { "start": 28917.2, "end": 28918.04, "probability": 0.9429 }, { "start": 28919.44, "end": 28922.14, "probability": 0.9919 }, { "start": 28922.78, "end": 28923.58, "probability": 0.7595 }, { "start": 28924.36, "end": 28927.0, "probability": 0.8575 }, { "start": 28927.54, "end": 28928.2, "probability": 0.8848 }, { "start": 28928.94, "end": 28930.48, "probability": 0.9338 }, { "start": 28931.2, "end": 28935.62, "probability": 0.6823 }, { "start": 28936.6, "end": 28939.4, "probability": 0.9979 }, { "start": 28939.58, "end": 28940.64, "probability": 0.9304 }, { "start": 28941.28, "end": 28946.38, "probability": 0.9875 }, { "start": 28946.44, "end": 28948.54, "probability": 0.9005 }, { "start": 28948.94, "end": 28950.5, "probability": 0.9785 }, { "start": 28951.08, "end": 28956.36, "probability": 0.958 }, { "start": 28957.08, "end": 28958.18, "probability": 0.976 }, { "start": 28959.06, "end": 28959.92, "probability": 0.8229 }, { "start": 28960.74, "end": 28968.88, "probability": 0.8644 }, { "start": 28969.52, "end": 28970.98, "probability": 0.9907 }, { "start": 28971.68, "end": 28974.16, "probability": 0.9847 }, { "start": 28974.68, "end": 28978.24, "probability": 0.9351 }, { "start": 28978.24, "end": 28980.42, "probability": 0.9993 }, { "start": 28981.34, "end": 28987.14, "probability": 0.9989 }, { "start": 28987.68, "end": 28989.48, "probability": 0.9341 }, { "start": 28990.3, "end": 28992.2, "probability": 0.9986 }, { "start": 28992.94, "end": 28995.16, "probability": 0.9976 }, { "start": 28995.74, "end": 28998.96, "probability": 0.9937 }, { "start": 28999.84, "end": 29003.0, "probability": 0.7617 }, { "start": 29003.66, "end": 29006.04, "probability": 0.9467 }, { "start": 29006.68, "end": 29009.32, "probability": 0.8505 }, { "start": 29009.94, "end": 29011.34, "probability": 0.8871 }, { "start": 29012.54, "end": 29014.12, "probability": 0.9276 }, { "start": 29014.66, "end": 29016.8, "probability": 0.8331 }, { "start": 29017.5, "end": 29018.86, "probability": 0.8523 }, { "start": 29019.42, "end": 29026.9, "probability": 0.9636 }, { "start": 29027.56, "end": 29028.5, "probability": 0.9183 }, { "start": 29029.58, "end": 29031.9, "probability": 0.9901 }, { "start": 29032.46, "end": 29034.42, "probability": 0.9071 }, { "start": 29035.08, "end": 29035.72, "probability": 0.9292 }, { "start": 29035.84, "end": 29038.03, "probability": 0.9751 }, { "start": 29038.72, "end": 29042.88, "probability": 0.9961 }, { "start": 29042.88, "end": 29046.04, "probability": 0.9114 }, { "start": 29047.08, "end": 29050.92, "probability": 0.9994 }, { "start": 29050.92, "end": 29055.34, "probability": 0.9988 }, { "start": 29056.0, "end": 29057.22, "probability": 0.7637 }, { "start": 29058.0, "end": 29061.84, "probability": 0.9634 }, { "start": 29061.84, "end": 29063.42, "probability": 0.6786 }, { "start": 29063.78, "end": 29065.68, "probability": 0.885 }, { "start": 29066.08, "end": 29067.7, "probability": 0.9303 }, { "start": 29068.1, "end": 29071.18, "probability": 0.859 }, { "start": 29072.58, "end": 29072.58, "probability": 0.6828 }, { "start": 29073.1, "end": 29073.68, "probability": 0.764 }, { "start": 29074.92, "end": 29075.4, "probability": 0.7657 }, { "start": 29076.54, "end": 29076.8, "probability": 0.4756 }, { "start": 29079.32, "end": 29080.2, "probability": 0.5037 }, { "start": 29081.4, "end": 29084.12, "probability": 0.6885 }, { "start": 29103.56, "end": 29104.5, "probability": 0.6388 }, { "start": 29106.22, "end": 29106.86, "probability": 0.8249 }, { "start": 29107.56, "end": 29108.18, "probability": 0.6442 }, { "start": 29108.63, "end": 29111.78, "probability": 0.9729 }, { "start": 29112.26, "end": 29113.56, "probability": 0.9632 }, { "start": 29113.8, "end": 29115.42, "probability": 0.8969 }, { "start": 29117.34, "end": 29118.12, "probability": 0.9377 }, { "start": 29121.48, "end": 29122.12, "probability": 0.1554 }, { "start": 29124.78, "end": 29127.22, "probability": 0.9163 }, { "start": 29128.74, "end": 29131.8, "probability": 0.9871 }, { "start": 29131.94, "end": 29133.52, "probability": 0.5697 }, { "start": 29134.62, "end": 29139.12, "probability": 0.9809 }, { "start": 29140.56, "end": 29143.48, "probability": 0.9989 }, { "start": 29143.48, "end": 29147.46, "probability": 0.9972 }, { "start": 29147.72, "end": 29149.6, "probability": 0.8537 }, { "start": 29150.48, "end": 29154.92, "probability": 0.6334 }, { "start": 29155.46, "end": 29156.46, "probability": 0.9463 }, { "start": 29156.56, "end": 29159.37, "probability": 0.9605 }, { "start": 29161.2, "end": 29161.8, "probability": 0.6669 }, { "start": 29162.4, "end": 29162.88, "probability": 0.9808 }, { "start": 29163.58, "end": 29165.14, "probability": 0.9985 }, { "start": 29166.08, "end": 29167.46, "probability": 0.9896 }, { "start": 29169.46, "end": 29172.4, "probability": 0.9822 }, { "start": 29173.78, "end": 29175.02, "probability": 0.9941 }, { "start": 29176.4, "end": 29180.42, "probability": 0.9727 }, { "start": 29180.5, "end": 29184.64, "probability": 0.9978 }, { "start": 29185.14, "end": 29186.22, "probability": 0.9181 }, { "start": 29186.34, "end": 29187.68, "probability": 0.6706 }, { "start": 29188.52, "end": 29191.16, "probability": 0.9785 }, { "start": 29191.92, "end": 29193.34, "probability": 0.9101 }, { "start": 29194.22, "end": 29199.14, "probability": 0.9502 }, { "start": 29199.88, "end": 29203.4, "probability": 0.9779 }, { "start": 29204.22, "end": 29205.94, "probability": 0.9968 }, { "start": 29206.72, "end": 29207.28, "probability": 0.9551 }, { "start": 29207.28, "end": 29207.82, "probability": 0.826 }, { "start": 29207.98, "end": 29210.34, "probability": 0.9943 }, { "start": 29211.1, "end": 29212.48, "probability": 0.7474 }, { "start": 29213.48, "end": 29215.06, "probability": 0.935 }, { "start": 29215.74, "end": 29216.92, "probability": 0.9398 }, { "start": 29217.84, "end": 29219.74, "probability": 0.7478 }, { "start": 29220.32, "end": 29221.65, "probability": 0.9028 }, { "start": 29222.94, "end": 29224.18, "probability": 0.9141 }, { "start": 29224.36, "end": 29227.32, "probability": 0.7815 }, { "start": 29228.16, "end": 29230.68, "probability": 0.9053 }, { "start": 29231.62, "end": 29232.34, "probability": 0.9243 }, { "start": 29233.8, "end": 29236.22, "probability": 0.9374 }, { "start": 29236.3, "end": 29237.6, "probability": 0.9934 }, { "start": 29237.78, "end": 29239.14, "probability": 0.9189 }, { "start": 29239.2, "end": 29240.36, "probability": 0.4234 }, { "start": 29241.9, "end": 29245.64, "probability": 0.9691 }, { "start": 29245.72, "end": 29248.52, "probability": 0.9852 }, { "start": 29248.7, "end": 29250.68, "probability": 0.9573 }, { "start": 29250.76, "end": 29253.12, "probability": 0.9768 }, { "start": 29254.2, "end": 29256.22, "probability": 0.4995 }, { "start": 29257.04, "end": 29258.88, "probability": 0.9919 }, { "start": 29259.52, "end": 29262.18, "probability": 0.8604 }, { "start": 29263.4, "end": 29264.46, "probability": 0.9683 }, { "start": 29265.04, "end": 29265.5, "probability": 0.9849 }, { "start": 29266.54, "end": 29268.9, "probability": 0.9826 }, { "start": 29269.02, "end": 29269.8, "probability": 0.4656 }, { "start": 29269.94, "end": 29270.7, "probability": 0.7747 }, { "start": 29271.14, "end": 29271.94, "probability": 0.753 }, { "start": 29273.4, "end": 29276.66, "probability": 0.9993 }, { "start": 29276.78, "end": 29277.88, "probability": 0.6537 }, { "start": 29278.78, "end": 29281.2, "probability": 0.8731 }, { "start": 29281.76, "end": 29284.12, "probability": 0.913 }, { "start": 29286.7, "end": 29289.12, "probability": 0.6031 }, { "start": 29289.68, "end": 29291.42, "probability": 0.7463 }, { "start": 29291.96, "end": 29296.68, "probability": 0.7363 }, { "start": 29297.84, "end": 29298.08, "probability": 0.5493 }, { "start": 29298.98, "end": 29304.06, "probability": 0.9919 }, { "start": 29304.72, "end": 29306.7, "probability": 0.9995 }, { "start": 29307.32, "end": 29309.76, "probability": 0.9907 }, { "start": 29310.42, "end": 29312.52, "probability": 0.9215 }, { "start": 29313.08, "end": 29315.0, "probability": 0.9658 }, { "start": 29315.98, "end": 29318.28, "probability": 0.8427 }, { "start": 29318.74, "end": 29319.38, "probability": 0.8301 }, { "start": 29319.98, "end": 29320.68, "probability": 0.9739 }, { "start": 29320.88, "end": 29321.76, "probability": 0.9894 }, { "start": 29322.18, "end": 29322.72, "probability": 0.9842 }, { "start": 29323.08, "end": 29323.68, "probability": 0.8143 }, { "start": 29324.08, "end": 29325.4, "probability": 0.9946 }, { "start": 29325.48, "end": 29326.35, "probability": 0.503 }, { "start": 29326.7, "end": 29329.98, "probability": 0.8136 }, { "start": 29330.62, "end": 29334.5, "probability": 0.8408 }, { "start": 29334.64, "end": 29335.1, "probability": 0.8124 }, { "start": 29335.74, "end": 29335.74, "probability": 0.6238 }, { "start": 29335.84, "end": 29336.68, "probability": 0.8105 }, { "start": 29345.6, "end": 29346.06, "probability": 0.356 }, { "start": 29362.88, "end": 29365.16, "probability": 0.6254 }, { "start": 29367.74, "end": 29370.12, "probability": 0.8477 }, { "start": 29372.62, "end": 29373.86, "probability": 0.9896 }, { "start": 29375.68, "end": 29377.36, "probability": 0.6901 }, { "start": 29379.1, "end": 29380.16, "probability": 0.7535 }, { "start": 29381.18, "end": 29383.98, "probability": 0.9751 }, { "start": 29386.74, "end": 29388.82, "probability": 0.9155 }, { "start": 29390.44, "end": 29391.22, "probability": 0.9182 }, { "start": 29393.24, "end": 29394.0, "probability": 0.7613 }, { "start": 29397.48, "end": 29400.54, "probability": 0.9305 }, { "start": 29402.04, "end": 29404.7, "probability": 0.8212 }, { "start": 29407.14, "end": 29408.74, "probability": 0.9756 }, { "start": 29411.34, "end": 29413.29, "probability": 0.8577 }, { "start": 29414.9, "end": 29415.66, "probability": 0.8451 }, { "start": 29417.18, "end": 29421.25, "probability": 0.6688 }, { "start": 29425.72, "end": 29428.24, "probability": 0.9636 }, { "start": 29429.94, "end": 29430.8, "probability": 0.8232 }, { "start": 29433.5, "end": 29435.44, "probability": 0.7467 }, { "start": 29436.12, "end": 29436.72, "probability": 0.8617 }, { "start": 29437.3, "end": 29438.16, "probability": 0.8888 }, { "start": 29440.16, "end": 29448.24, "probability": 0.8756 }, { "start": 29449.42, "end": 29449.94, "probability": 0.7231 }, { "start": 29452.04, "end": 29454.28, "probability": 0.993 }, { "start": 29455.14, "end": 29457.24, "probability": 0.9944 }, { "start": 29458.84, "end": 29463.26, "probability": 0.6881 }, { "start": 29464.62, "end": 29467.24, "probability": 0.8771 }, { "start": 29470.7, "end": 29474.32, "probability": 0.976 }, { "start": 29475.36, "end": 29476.14, "probability": 0.7447 }, { "start": 29479.18, "end": 29483.16, "probability": 0.8906 }, { "start": 29483.98, "end": 29484.58, "probability": 0.9222 }, { "start": 29487.9, "end": 29489.0, "probability": 0.5086 }, { "start": 29491.02, "end": 29493.08, "probability": 0.9761 }, { "start": 29494.04, "end": 29494.52, "probability": 0.6307 }, { "start": 29495.36, "end": 29496.28, "probability": 0.9542 }, { "start": 29499.36, "end": 29500.62, "probability": 0.5706 }, { "start": 29504.78, "end": 29506.0, "probability": 0.8141 }, { "start": 29506.72, "end": 29509.92, "probability": 0.9897 }, { "start": 29510.78, "end": 29512.6, "probability": 0.9869 }, { "start": 29513.32, "end": 29516.72, "probability": 0.9263 }, { "start": 29520.67, "end": 29524.05, "probability": 0.9966 }, { "start": 29524.72, "end": 29528.14, "probability": 0.8976 }, { "start": 29529.76, "end": 29533.44, "probability": 0.8191 }, { "start": 29535.68, "end": 29538.96, "probability": 0.8577 }, { "start": 29539.62, "end": 29542.3, "probability": 0.8375 }, { "start": 29543.84, "end": 29546.6, "probability": 0.8623 }, { "start": 29547.94, "end": 29551.22, "probability": 0.5636 }, { "start": 29551.96, "end": 29552.72, "probability": 0.6142 }, { "start": 29553.24, "end": 29554.18, "probability": 0.9102 }, { "start": 29555.24, "end": 29556.96, "probability": 0.8159 }, { "start": 29558.16, "end": 29559.44, "probability": 0.5097 }, { "start": 29560.4, "end": 29562.06, "probability": 0.7604 }, { "start": 29562.2, "end": 29563.52, "probability": 0.7741 }, { "start": 29563.98, "end": 29564.42, "probability": 0.7402 }, { "start": 29564.76, "end": 29565.36, "probability": 0.7977 }, { "start": 29566.12, "end": 29567.64, "probability": 0.9199 }, { "start": 29571.02, "end": 29571.02, "probability": 0.7747 }, { "start": 29577.88, "end": 29578.66, "probability": 0.1618 }, { "start": 29578.66, "end": 29578.66, "probability": 0.0584 }, { "start": 29578.81, "end": 29579.02, "probability": 0.1815 }, { "start": 29579.02, "end": 29579.02, "probability": 0.0054 }, { "start": 29591.86, "end": 29592.7, "probability": 0.3668 }, { "start": 29594.9, "end": 29596.76, "probability": 0.8522 }, { "start": 29598.64, "end": 29599.66, "probability": 0.9071 }, { "start": 29602.24, "end": 29606.52, "probability": 0.9717 }, { "start": 29607.98, "end": 29611.12, "probability": 0.9978 }, { "start": 29611.94, "end": 29616.08, "probability": 0.9983 }, { "start": 29616.2, "end": 29617.78, "probability": 0.815 }, { "start": 29619.94, "end": 29621.2, "probability": 0.996 }, { "start": 29621.32, "end": 29622.52, "probability": 0.939 }, { "start": 29622.56, "end": 29623.52, "probability": 0.7253 }, { "start": 29623.68, "end": 29626.78, "probability": 0.8467 }, { "start": 29626.9, "end": 29627.66, "probability": 0.8382 }, { "start": 29627.78, "end": 29629.32, "probability": 0.9945 }, { "start": 29630.9, "end": 29634.44, "probability": 0.9918 }, { "start": 29636.42, "end": 29637.86, "probability": 0.9616 }, { "start": 29639.22, "end": 29642.92, "probability": 0.9858 }, { "start": 29643.72, "end": 29647.4, "probability": 0.9179 }, { "start": 29647.48, "end": 29649.26, "probability": 0.6777 }, { "start": 29649.28, "end": 29649.96, "probability": 0.9597 }, { "start": 29650.04, "end": 29650.94, "probability": 0.7858 }, { "start": 29653.26, "end": 29656.94, "probability": 0.9843 }, { "start": 29658.3, "end": 29659.36, "probability": 0.6695 }, { "start": 29663.72, "end": 29664.3, "probability": 0.7747 }, { "start": 29664.4, "end": 29664.64, "probability": 0.7361 }, { "start": 29664.78, "end": 29664.98, "probability": 0.7485 }, { "start": 29665.18, "end": 29666.74, "probability": 0.7706 }, { "start": 29666.86, "end": 29667.48, "probability": 0.5714 }, { "start": 29667.66, "end": 29669.87, "probability": 0.9779 }, { "start": 29670.84, "end": 29672.86, "probability": 0.9919 }, { "start": 29672.9, "end": 29675.1, "probability": 0.9901 }, { "start": 29676.62, "end": 29678.14, "probability": 0.8059 }, { "start": 29678.9, "end": 29680.0, "probability": 0.8937 }, { "start": 29680.12, "end": 29683.46, "probability": 0.8794 }, { "start": 29683.58, "end": 29685.86, "probability": 0.8241 }, { "start": 29686.52, "end": 29693.34, "probability": 0.9903 }, { "start": 29698.12, "end": 29699.74, "probability": 0.8793 }, { "start": 29700.56, "end": 29702.2, "probability": 0.9061 }, { "start": 29702.3, "end": 29704.54, "probability": 0.2796 }, { "start": 29704.78, "end": 29708.6, "probability": 0.9485 }, { "start": 29710.54, "end": 29716.53, "probability": 0.9277 }, { "start": 29717.2, "end": 29717.68, "probability": 0.4461 }, { "start": 29717.88, "end": 29719.3, "probability": 0.9136 }, { "start": 29719.86, "end": 29722.76, "probability": 0.9464 }, { "start": 29724.4, "end": 29724.82, "probability": 0.0979 }, { "start": 29725.38, "end": 29726.38, "probability": 0.5575 }, { "start": 29726.94, "end": 29726.98, "probability": 0.8386 }, { "start": 29727.1, "end": 29727.72, "probability": 0.7329 }, { "start": 29727.88, "end": 29728.52, "probability": 0.6672 }, { "start": 29728.72, "end": 29731.26, "probability": 0.9651 }, { "start": 29731.72, "end": 29733.34, "probability": 0.9888 }, { "start": 29733.34, "end": 29737.08, "probability": 0.9703 }, { "start": 29739.36, "end": 29744.24, "probability": 0.9852 }, { "start": 29744.4, "end": 29745.1, "probability": 0.498 }, { "start": 29745.38, "end": 29749.52, "probability": 0.9961 }, { "start": 29751.6, "end": 29753.08, "probability": 0.9847 }, { "start": 29753.4, "end": 29754.84, "probability": 0.9558 }, { "start": 29755.38, "end": 29756.04, "probability": 0.2522 }, { "start": 29757.14, "end": 29760.56, "probability": 0.973 }, { "start": 29761.26, "end": 29763.54, "probability": 0.9102 }, { "start": 29764.32, "end": 29765.76, "probability": 0.9254 }, { "start": 29765.88, "end": 29766.56, "probability": 0.9059 }, { "start": 29766.58, "end": 29767.72, "probability": 0.8983 }, { "start": 29767.88, "end": 29773.14, "probability": 0.9979 }, { "start": 29773.28, "end": 29775.04, "probability": 0.8398 }, { "start": 29775.08, "end": 29777.4, "probability": 0.9912 }, { "start": 29778.0, "end": 29781.6, "probability": 0.7594 }, { "start": 29782.98, "end": 29786.22, "probability": 0.9842 }, { "start": 29786.3, "end": 29786.46, "probability": 0.4453 }, { "start": 29786.54, "end": 29790.52, "probability": 0.9903 }, { "start": 29791.22, "end": 29794.45, "probability": 0.9977 }, { "start": 29795.72, "end": 29798.34, "probability": 0.9494 }, { "start": 29800.22, "end": 29801.94, "probability": 0.9952 }, { "start": 29808.22, "end": 29810.84, "probability": 0.0434 }, { "start": 29833.04, "end": 29833.22, "probability": 0.0156 }, { "start": 29833.22, "end": 29833.22, "probability": 0.1995 }, { "start": 29833.22, "end": 29835.04, "probability": 0.6839 }, { "start": 29836.88, "end": 29838.02, "probability": 0.6533 }, { "start": 29839.48, "end": 29841.16, "probability": 0.9965 }, { "start": 29843.24, "end": 29847.54, "probability": 0.9888 }, { "start": 29848.54, "end": 29850.48, "probability": 0.9843 }, { "start": 29851.76, "end": 29854.36, "probability": 0.9991 }, { "start": 29854.44, "end": 29859.1, "probability": 0.9983 }, { "start": 29860.16, "end": 29861.28, "probability": 0.8789 }, { "start": 29864.4, "end": 29865.12, "probability": 0.1106 }, { "start": 29866.4, "end": 29869.72, "probability": 0.9576 }, { "start": 29870.56, "end": 29873.94, "probability": 0.9186 }, { "start": 29874.82, "end": 29876.36, "probability": 0.9846 }, { "start": 29878.12, "end": 29882.32, "probability": 0.9515 }, { "start": 29883.38, "end": 29886.24, "probability": 0.9855 }, { "start": 29887.56, "end": 29892.4, "probability": 0.9591 }, { "start": 29893.12, "end": 29897.96, "probability": 0.978 }, { "start": 29899.02, "end": 29902.8, "probability": 0.9709 }, { "start": 29904.28, "end": 29908.74, "probability": 0.9312 }, { "start": 29908.74, "end": 29912.12, "probability": 0.9993 }, { "start": 29913.46, "end": 29917.7, "probability": 0.9957 }, { "start": 29918.38, "end": 29919.92, "probability": 0.9904 }, { "start": 29920.08, "end": 29922.24, "probability": 0.9444 }, { "start": 29922.78, "end": 29927.72, "probability": 0.9879 }, { "start": 29928.44, "end": 29932.18, "probability": 0.863 }, { "start": 29932.82, "end": 29934.42, "probability": 0.9439 }, { "start": 29935.38, "end": 29938.86, "probability": 0.9806 }, { "start": 29938.86, "end": 29942.7, "probability": 0.999 }, { "start": 29943.38, "end": 29946.02, "probability": 0.9964 }, { "start": 29946.02, "end": 29948.3, "probability": 0.9376 }, { "start": 29948.46, "end": 29950.1, "probability": 0.9467 }, { "start": 29950.84, "end": 29954.3, "probability": 0.9684 }, { "start": 29955.34, "end": 29957.76, "probability": 0.9833 }, { "start": 29957.86, "end": 29961.32, "probability": 0.9495 }, { "start": 29961.46, "end": 29964.0, "probability": 0.9404 }, { "start": 29964.46, "end": 29967.44, "probability": 0.9949 }, { "start": 29968.36, "end": 29970.0, "probability": 0.908 }, { "start": 29971.08, "end": 29973.7, "probability": 0.9891 }, { "start": 29974.48, "end": 29979.68, "probability": 0.9978 }, { "start": 29979.68, "end": 29984.74, "probability": 0.9994 }, { "start": 29985.3, "end": 29989.26, "probability": 0.9916 }, { "start": 29990.22, "end": 29995.86, "probability": 0.9969 }, { "start": 29995.86, "end": 29999.3, "probability": 0.9944 }, { "start": 30000.22, "end": 30005.1, "probability": 0.9971 }, { "start": 30005.7, "end": 30006.62, "probability": 0.5375 }, { "start": 30007.38, "end": 30008.46, "probability": 0.5581 }, { "start": 30008.7, "end": 30013.42, "probability": 0.9914 }, { "start": 30014.12, "end": 30016.44, "probability": 0.9874 }, { "start": 30016.66, "end": 30020.42, "probability": 0.993 }, { "start": 30020.88, "end": 30021.16, "probability": 0.7035 }, { "start": 30021.18, "end": 30025.16, "probability": 0.998 }, { "start": 30025.68, "end": 30030.54, "probability": 0.992 }, { "start": 30031.12, "end": 30031.62, "probability": 0.7996 }, { "start": 30032.36, "end": 30037.0, "probability": 0.93 }, { "start": 30037.38, "end": 30037.9, "probability": 0.8522 }, { "start": 30038.2, "end": 30038.22, "probability": 0.6097 }, { "start": 30038.38, "end": 30039.68, "probability": 0.6054 }, { "start": 30040.2, "end": 30042.62, "probability": 0.6249 }, { "start": 30049.22, "end": 30049.98, "probability": 0.7311 }, { "start": 30053.58, "end": 30055.5, "probability": 0.9242 }, { "start": 30056.82, "end": 30064.44, "probability": 0.506 }, { "start": 30066.18, "end": 30066.18, "probability": 0.352 }, { "start": 30066.18, "end": 30067.27, "probability": 0.5708 }, { "start": 30068.2, "end": 30068.68, "probability": 0.9334 }, { "start": 30068.68, "end": 30068.68, "probability": 0.0822 }, { "start": 30075.06, "end": 30076.08, "probability": 0.7837 }, { "start": 30082.0, "end": 30082.76, "probability": 0.5208 }, { "start": 30082.98, "end": 30084.43, "probability": 0.7993 }, { "start": 30085.3, "end": 30086.3, "probability": 0.6751 }, { "start": 30087.24, "end": 30087.42, "probability": 0.9403 }, { "start": 30087.48, "end": 30090.39, "probability": 0.9949 }, { "start": 30091.06, "end": 30091.82, "probability": 0.9305 }, { "start": 30092.56, "end": 30096.1, "probability": 0.9941 }, { "start": 30096.8, "end": 30100.06, "probability": 0.9878 }, { "start": 30101.74, "end": 30105.11, "probability": 0.987 }, { "start": 30106.76, "end": 30109.84, "probability": 0.9679 }, { "start": 30110.62, "end": 30112.32, "probability": 0.9131 }, { "start": 30112.96, "end": 30113.86, "probability": 0.7354 }, { "start": 30114.92, "end": 30116.34, "probability": 0.99 }, { "start": 30116.44, "end": 30118.06, "probability": 0.9908 }, { "start": 30118.64, "end": 30120.62, "probability": 0.978 }, { "start": 30121.42, "end": 30122.76, "probability": 0.9878 }, { "start": 30123.08, "end": 30125.56, "probability": 0.8928 }, { "start": 30125.58, "end": 30126.68, "probability": 0.8934 }, { "start": 30126.76, "end": 30128.4, "probability": 0.86 }, { "start": 30129.2, "end": 30130.47, "probability": 0.7663 }, { "start": 30131.48, "end": 30134.2, "probability": 0.9773 }, { "start": 30135.16, "end": 30138.56, "probability": 0.9961 }, { "start": 30139.42, "end": 30143.66, "probability": 0.9847 }, { "start": 30145.04, "end": 30148.76, "probability": 0.9885 }, { "start": 30149.98, "end": 30150.58, "probability": 0.5027 }, { "start": 30151.48, "end": 30153.94, "probability": 0.9988 }, { "start": 30154.04, "end": 30154.78, "probability": 0.9951 }, { "start": 30155.32, "end": 30157.16, "probability": 0.9893 }, { "start": 30158.92, "end": 30159.2, "probability": 0.8408 }, { "start": 30160.5, "end": 30167.04, "probability": 0.9122 }, { "start": 30168.38, "end": 30174.42, "probability": 0.8594 }, { "start": 30175.1, "end": 30175.84, "probability": 0.6428 }, { "start": 30176.78, "end": 30177.86, "probability": 0.8948 }, { "start": 30178.82, "end": 30181.76, "probability": 0.9932 }, { "start": 30181.86, "end": 30182.92, "probability": 0.7771 }, { "start": 30183.82, "end": 30186.96, "probability": 0.5041 }, { "start": 30186.96, "end": 30191.5, "probability": 0.9886 }, { "start": 30192.48, "end": 30192.96, "probability": 0.6819 }, { "start": 30193.12, "end": 30195.8, "probability": 0.9659 }, { "start": 30195.8, "end": 30201.1, "probability": 0.9473 }, { "start": 30201.1, "end": 30204.22, "probability": 0.9959 }, { "start": 30204.74, "end": 30205.32, "probability": 0.7573 }, { "start": 30206.02, "end": 30207.94, "probability": 0.9549 }, { "start": 30208.84, "end": 30212.14, "probability": 0.9922 }, { "start": 30212.46, "end": 30216.54, "probability": 0.999 }, { "start": 30217.36, "end": 30222.76, "probability": 0.9623 }, { "start": 30224.34, "end": 30226.05, "probability": 0.3475 }, { "start": 30226.92, "end": 30228.96, "probability": 0.9974 }, { "start": 30229.6, "end": 30232.78, "probability": 0.9951 }, { "start": 30233.4, "end": 30236.72, "probability": 0.9824 }, { "start": 30237.12, "end": 30243.34, "probability": 0.9784 }, { "start": 30243.96, "end": 30245.22, "probability": 0.6932 }, { "start": 30246.34, "end": 30248.84, "probability": 0.9434 }, { "start": 30249.44, "end": 30250.9, "probability": 0.8355 }, { "start": 30251.6, "end": 30252.54, "probability": 0.97 }, { "start": 30253.14, "end": 30256.34, "probability": 0.998 }, { "start": 30256.96, "end": 30258.1, "probability": 0.5714 }, { "start": 30259.08, "end": 30259.92, "probability": 0.806 }, { "start": 30260.82, "end": 30264.84, "probability": 0.9977 }, { "start": 30264.84, "end": 30268.44, "probability": 0.8386 }, { "start": 30269.08, "end": 30270.36, "probability": 0.6542 }, { "start": 30271.26, "end": 30272.0, "probability": 0.9174 }, { "start": 30272.84, "end": 30274.92, "probability": 0.9985 }, { "start": 30275.6, "end": 30279.7, "probability": 0.9925 }, { "start": 30280.22, "end": 30281.08, "probability": 0.9773 }, { "start": 30281.22, "end": 30283.82, "probability": 0.9497 }, { "start": 30284.36, "end": 30285.04, "probability": 0.7507 }, { "start": 30285.9, "end": 30289.36, "probability": 0.9057 }, { "start": 30290.28, "end": 30290.93, "probability": 0.6085 }, { "start": 30292.06, "end": 30295.0, "probability": 0.9408 }, { "start": 30295.34, "end": 30298.92, "probability": 0.9477 }, { "start": 30298.98, "end": 30299.2, "probability": 0.8233 }, { "start": 30299.92, "end": 30299.92, "probability": 0.4664 }, { "start": 30300.22, "end": 30300.98, "probability": 0.8537 }, { "start": 30301.76, "end": 30302.18, "probability": 0.8113 }, { "start": 30302.54, "end": 30303.2, "probability": 0.644 }, { "start": 30316.86, "end": 30318.56, "probability": 0.7474 }, { "start": 30320.78, "end": 30323.68, "probability": 0.9661 }, { "start": 30324.7, "end": 30326.42, "probability": 0.4939 }, { "start": 30327.16, "end": 30330.12, "probability": 0.9945 }, { "start": 30330.8, "end": 30331.48, "probability": 0.6457 }, { "start": 30332.84, "end": 30336.04, "probability": 0.9949 }, { "start": 30336.78, "end": 30338.64, "probability": 0.9574 }, { "start": 30339.2, "end": 30340.76, "probability": 0.9976 }, { "start": 30341.78, "end": 30342.72, "probability": 0.9993 }, { "start": 30343.34, "end": 30348.38, "probability": 0.9988 }, { "start": 30349.38, "end": 30351.36, "probability": 0.9276 }, { "start": 30352.0, "end": 30355.2, "probability": 0.999 }, { "start": 30355.2, "end": 30360.16, "probability": 0.9938 }, { "start": 30360.84, "end": 30362.54, "probability": 0.9794 }, { "start": 30363.94, "end": 30365.98, "probability": 0.9965 }, { "start": 30367.34, "end": 30370.86, "probability": 0.9849 }, { "start": 30372.08, "end": 30372.77, "probability": 0.8987 }, { "start": 30373.88, "end": 30374.28, "probability": 0.8412 }, { "start": 30375.1, "end": 30376.5, "probability": 0.9966 }, { "start": 30377.86, "end": 30381.82, "probability": 0.9674 }, { "start": 30383.06, "end": 30386.08, "probability": 0.8846 }, { "start": 30386.78, "end": 30389.64, "probability": 0.7744 }, { "start": 30390.32, "end": 30392.0, "probability": 0.9928 }, { "start": 30392.52, "end": 30395.42, "probability": 0.9843 }, { "start": 30396.52, "end": 30400.46, "probability": 0.9995 }, { "start": 30401.12, "end": 30406.48, "probability": 0.9982 }, { "start": 30407.02, "end": 30408.46, "probability": 0.9839 }, { "start": 30408.98, "end": 30412.16, "probability": 0.9898 }, { "start": 30412.94, "end": 30413.71, "probability": 0.6811 }, { "start": 30415.08, "end": 30418.96, "probability": 0.9897 }, { "start": 30419.68, "end": 30422.72, "probability": 0.976 }, { "start": 30422.72, "end": 30427.72, "probability": 0.9983 }, { "start": 30428.14, "end": 30429.6, "probability": 0.9124 }, { "start": 30430.28, "end": 30431.66, "probability": 0.9969 }, { "start": 30432.28, "end": 30434.42, "probability": 0.9989 }, { "start": 30434.94, "end": 30436.8, "probability": 0.7404 }, { "start": 30437.28, "end": 30438.8, "probability": 0.8379 }, { "start": 30439.72, "end": 30443.18, "probability": 0.804 }, { "start": 30444.82, "end": 30446.76, "probability": 0.981 }, { "start": 30447.44, "end": 30448.04, "probability": 0.2737 }, { "start": 30448.58, "end": 30454.08, "probability": 0.9909 }, { "start": 30454.46, "end": 30454.8, "probability": 0.8214 }, { "start": 30455.0, "end": 30455.58, "probability": 0.75 }, { "start": 30456.22, "end": 30457.78, "probability": 0.9186 }, { "start": 30459.02, "end": 30460.72, "probability": 0.241 }, { "start": 30472.28, "end": 30472.28, "probability": 0.069 }, { "start": 30472.28, "end": 30472.28, "probability": 0.1182 }, { "start": 30472.28, "end": 30472.3, "probability": 0.1693 }, { "start": 30472.3, "end": 30472.3, "probability": 0.0315 }, { "start": 30472.3, "end": 30472.32, "probability": 0.03 }, { "start": 30472.32, "end": 30472.52, "probability": 0.0804 }, { "start": 30498.86, "end": 30499.48, "probability": 0.6143 }, { "start": 30500.38, "end": 30501.46, "probability": 0.6974 }, { "start": 30501.78, "end": 30503.07, "probability": 0.9966 }, { "start": 30504.08, "end": 30505.88, "probability": 0.8196 }, { "start": 30506.94, "end": 30507.16, "probability": 0.2785 }, { "start": 30509.4, "end": 30510.46, "probability": 0.8675 }, { "start": 30511.22, "end": 30513.04, "probability": 0.9403 }, { "start": 30513.04, "end": 30516.18, "probability": 0.9511 }, { "start": 30516.72, "end": 30517.86, "probability": 0.6102 }, { "start": 30519.42, "end": 30521.3, "probability": 0.7605 }, { "start": 30521.38, "end": 30522.58, "probability": 0.9396 }, { "start": 30523.86, "end": 30526.48, "probability": 0.9784 }, { "start": 30527.18, "end": 30531.84, "probability": 0.7364 }, { "start": 30533.14, "end": 30535.34, "probability": 0.6231 }, { "start": 30535.86, "end": 30537.3, "probability": 0.9512 }, { "start": 30538.08, "end": 30543.36, "probability": 0.9788 }, { "start": 30544.5, "end": 30544.54, "probability": 0.3118 }, { "start": 30545.16, "end": 30547.92, "probability": 0.9541 }, { "start": 30548.44, "end": 30549.28, "probability": 0.979 }, { "start": 30549.86, "end": 30551.5, "probability": 0.9306 }, { "start": 30552.14, "end": 30556.46, "probability": 0.7351 }, { "start": 30557.12, "end": 30561.78, "probability": 0.6758 }, { "start": 30561.9, "end": 30563.6, "probability": 0.9884 }, { "start": 30564.08, "end": 30568.24, "probability": 0.927 }, { "start": 30569.04, "end": 30569.5, "probability": 0.3689 }, { "start": 30569.58, "end": 30569.9, "probability": 0.7681 }, { "start": 30570.08, "end": 30571.12, "probability": 0.9758 }, { "start": 30571.16, "end": 30576.8, "probability": 0.9968 }, { "start": 30577.32, "end": 30578.82, "probability": 0.9589 }, { "start": 30579.4, "end": 30582.54, "probability": 0.9995 }, { "start": 30582.54, "end": 30586.66, "probability": 0.8349 }, { "start": 30587.22, "end": 30591.34, "probability": 0.9071 }, { "start": 30591.88, "end": 30595.1, "probability": 0.9287 }, { "start": 30595.64, "end": 30599.5, "probability": 0.9722 }, { "start": 30599.54, "end": 30602.78, "probability": 0.6949 }, { "start": 30603.12, "end": 30606.12, "probability": 0.9633 }, { "start": 30606.84, "end": 30608.14, "probability": 0.5838 }, { "start": 30608.32, "end": 30609.12, "probability": 0.9031 }, { "start": 30609.2, "end": 30613.06, "probability": 0.9567 }, { "start": 30613.06, "end": 30617.36, "probability": 0.9963 }, { "start": 30617.88, "end": 30624.08, "probability": 0.9919 }, { "start": 30624.52, "end": 30625.0, "probability": 0.8908 }, { "start": 30625.34, "end": 30625.78, "probability": 0.5618 }, { "start": 30626.28, "end": 30630.16, "probability": 0.8062 }, { "start": 30630.26, "end": 30631.68, "probability": 0.9625 }, { "start": 30632.32, "end": 30632.88, "probability": 0.931 }, { "start": 30633.38, "end": 30636.5, "probability": 0.8843 }, { "start": 30636.54, "end": 30639.72, "probability": 0.9993 }, { "start": 30640.74, "end": 30644.1, "probability": 0.9736 }, { "start": 30644.36, "end": 30648.04, "probability": 0.9956 }, { "start": 30648.34, "end": 30652.96, "probability": 0.8511 }, { "start": 30652.96, "end": 30655.86, "probability": 0.7431 }, { "start": 30656.66, "end": 30657.8, "probability": 0.9128 }, { "start": 30658.06, "end": 30660.66, "probability": 0.9844 }, { "start": 30660.84, "end": 30664.22, "probability": 0.9323 }, { "start": 30664.74, "end": 30665.94, "probability": 0.919 }, { "start": 30666.72, "end": 30670.36, "probability": 0.7493 }, { "start": 30670.78, "end": 30674.24, "probability": 0.9845 }, { "start": 30674.68, "end": 30679.14, "probability": 0.9871 }, { "start": 30679.52, "end": 30680.74, "probability": 0.7615 }, { "start": 30681.5, "end": 30685.58, "probability": 0.8026 }, { "start": 30685.9, "end": 30691.3, "probability": 0.7966 }, { "start": 30691.64, "end": 30696.14, "probability": 0.9912 }, { "start": 30696.38, "end": 30700.08, "probability": 0.9086 }, { "start": 30700.08, "end": 30703.56, "probability": 0.8883 }, { "start": 30703.82, "end": 30705.04, "probability": 0.89 }, { "start": 30705.4, "end": 30708.44, "probability": 0.9917 }, { "start": 30708.96, "end": 30709.48, "probability": 0.7965 }, { "start": 30710.78, "end": 30713.42, "probability": 0.4249 }, { "start": 30713.42, "end": 30713.52, "probability": 0.4698 }, { "start": 30713.82, "end": 30716.2, "probability": 0.6924 }, { "start": 30716.2, "end": 30718.22, "probability": 0.706 }, { "start": 30719.78, "end": 30720.66, "probability": 0.811 }, { "start": 30720.94, "end": 30721.28, "probability": 0.9588 }, { "start": 30722.26, "end": 30724.32, "probability": 0.5703 }, { "start": 30724.94, "end": 30726.22, "probability": 0.7419 }, { "start": 30728.0, "end": 30731.16, "probability": 0.6015 }, { "start": 30731.86, "end": 30732.24, "probability": 0.827 }, { "start": 30750.38, "end": 30752.16, "probability": 0.7319 }, { "start": 30753.72, "end": 30754.58, "probability": 0.1491 }, { "start": 30754.58, "end": 30757.16, "probability": 0.0122 }, { "start": 30757.16, "end": 30758.02, "probability": 0.1439 }, { "start": 30760.27, "end": 30761.14, "probability": 0.0366 }, { "start": 30761.14, "end": 30761.16, "probability": 0.0039 }, { "start": 30762.82, "end": 30762.98, "probability": 0.0193 }, { "start": 30783.1, "end": 30789.66, "probability": 0.8965 }, { "start": 30790.76, "end": 30791.9, "probability": 0.6891 }, { "start": 30793.1, "end": 30795.22, "probability": 0.9865 }, { "start": 30796.36, "end": 30804.94, "probability": 0.9906 }, { "start": 30806.08, "end": 30808.97, "probability": 0.9927 }, { "start": 30810.26, "end": 30811.5, "probability": 0.8476 }, { "start": 30811.84, "end": 30812.76, "probability": 0.9807 }, { "start": 30813.7, "end": 30817.26, "probability": 0.9898 }, { "start": 30818.24, "end": 30819.66, "probability": 0.5747 }, { "start": 30820.78, "end": 30824.72, "probability": 0.9753 }, { "start": 30825.14, "end": 30828.18, "probability": 0.9792 }, { "start": 30829.28, "end": 30830.14, "probability": 0.9248 }, { "start": 30832.02, "end": 30839.12, "probability": 0.9963 }, { "start": 30839.76, "end": 30842.16, "probability": 0.6779 }, { "start": 30843.16, "end": 30844.74, "probability": 0.9567 }, { "start": 30846.98, "end": 30847.74, "probability": 0.9794 }, { "start": 30848.84, "end": 30850.58, "probability": 0.9854 }, { "start": 30852.24, "end": 30854.8, "probability": 0.6637 }, { "start": 30855.9, "end": 30857.42, "probability": 0.9305 }, { "start": 30858.02, "end": 30859.62, "probability": 0.9831 }, { "start": 30860.16, "end": 30862.02, "probability": 0.9839 }, { "start": 30862.76, "end": 30864.86, "probability": 0.7624 }, { "start": 30865.72, "end": 30867.68, "probability": 0.9944 }, { "start": 30867.98, "end": 30871.48, "probability": 0.9692 }, { "start": 30872.16, "end": 30873.7, "probability": 0.777 }, { "start": 30874.72, "end": 30879.46, "probability": 0.786 }, { "start": 30879.96, "end": 30882.58, "probability": 0.9028 }, { "start": 30884.34, "end": 30887.04, "probability": 0.9928 }, { "start": 30887.6, "end": 30890.24, "probability": 0.7921 }, { "start": 30891.08, "end": 30892.18, "probability": 0.9635 }, { "start": 30893.6, "end": 30896.96, "probability": 0.9795 }, { "start": 30897.56, "end": 30903.56, "probability": 0.9689 }, { "start": 30904.7, "end": 30907.73, "probability": 0.9749 }, { "start": 30908.56, "end": 30910.32, "probability": 0.9202 }, { "start": 30911.1, "end": 30916.56, "probability": 0.978 }, { "start": 30917.66, "end": 30921.2, "probability": 0.9668 }, { "start": 30921.94, "end": 30925.85, "probability": 0.9159 }, { "start": 30926.44, "end": 30929.92, "probability": 0.9604 }, { "start": 30931.72, "end": 30934.16, "probability": 0.9169 }, { "start": 30934.56, "end": 30935.56, "probability": 0.847 }, { "start": 30935.68, "end": 30937.58, "probability": 0.9827 }, { "start": 30937.68, "end": 30938.28, "probability": 0.9518 }, { "start": 30939.94, "end": 30942.34, "probability": 0.9813 }, { "start": 30943.1, "end": 30946.68, "probability": 0.9945 }, { "start": 30946.96, "end": 30947.74, "probability": 0.7819 }, { "start": 30948.4, "end": 30949.52, "probability": 0.999 }, { "start": 30949.76, "end": 30951.9, "probability": 0.9917 }, { "start": 30952.5, "end": 30953.34, "probability": 0.7664 }, { "start": 30953.48, "end": 30954.42, "probability": 0.895 }, { "start": 30955.46, "end": 30957.84, "probability": 0.6692 }, { "start": 30958.54, "end": 30962.74, "probability": 0.993 }, { "start": 30963.12, "end": 30963.46, "probability": 0.7414 }, { "start": 30963.64, "end": 30964.18, "probability": 0.6668 }, { "start": 30964.84, "end": 30970.32, "probability": 0.9992 }, { "start": 30970.94, "end": 30971.16, "probability": 0.7702 }, { "start": 30971.7, "end": 30975.88, "probability": 0.9983 }, { "start": 30975.88, "end": 30981.24, "probability": 0.9769 }, { "start": 30982.16, "end": 30982.9, "probability": 0.5506 }, { "start": 30984.92, "end": 30985.6, "probability": 0.9132 }, { "start": 31017.52, "end": 31018.82, "probability": 0.5098 }, { "start": 31021.92, "end": 31024.76, "probability": 0.9662 }, { "start": 31024.9, "end": 31025.28, "probability": 0.555 }, { "start": 31025.46, "end": 31026.74, "probability": 0.9531 }, { "start": 31028.49, "end": 31030.44, "probability": 0.986 }, { "start": 31030.58, "end": 31034.6, "probability": 0.9741 }, { "start": 31035.64, "end": 31037.38, "probability": 0.8152 }, { "start": 31038.0, "end": 31043.34, "probability": 0.994 }, { "start": 31044.46, "end": 31049.38, "probability": 0.9922 }, { "start": 31050.1, "end": 31054.72, "probability": 0.8695 }, { "start": 31056.16, "end": 31059.32, "probability": 0.9902 }, { "start": 31060.06, "end": 31066.52, "probability": 0.9401 }, { "start": 31067.68, "end": 31069.72, "probability": 0.9946 }, { "start": 31069.76, "end": 31072.68, "probability": 0.9371 }, { "start": 31073.2, "end": 31074.82, "probability": 0.9792 }, { "start": 31075.62, "end": 31077.46, "probability": 0.735 }, { "start": 31078.0, "end": 31079.86, "probability": 0.9219 }, { "start": 31080.8, "end": 31084.9, "probability": 0.9956 }, { "start": 31085.14, "end": 31087.94, "probability": 0.998 }, { "start": 31088.64, "end": 31089.82, "probability": 0.8569 }, { "start": 31090.42, "end": 31090.92, "probability": 0.7311 }, { "start": 31091.3, "end": 31093.06, "probability": 0.0551 }, { "start": 31093.78, "end": 31093.78, "probability": 0.24 }, { "start": 31093.86, "end": 31094.1, "probability": 0.9066 }, { "start": 31094.18, "end": 31094.66, "probability": 0.9749 }, { "start": 31095.82, "end": 31097.08, "probability": 0.2141 }, { "start": 31097.5, "end": 31097.88, "probability": 0.4598 }, { "start": 31097.96, "end": 31099.52, "probability": 0.8915 }, { "start": 31099.52, "end": 31100.98, "probability": 0.8081 }, { "start": 31101.3, "end": 31103.5, "probability": 0.7448 }, { "start": 31103.74, "end": 31103.82, "probability": 0.0274 }, { "start": 31103.82, "end": 31104.62, "probability": 0.0226 }, { "start": 31104.68, "end": 31105.3, "probability": 0.5769 }, { "start": 31105.54, "end": 31106.08, "probability": 0.9571 }, { "start": 31106.18, "end": 31106.56, "probability": 0.9373 }, { "start": 31107.32, "end": 31107.86, "probability": 0.7524 }, { "start": 31108.45, "end": 31109.02, "probability": 0.1863 }, { "start": 31109.02, "end": 31109.2, "probability": 0.5988 }, { "start": 31110.22, "end": 31114.14, "probability": 0.9693 }, { "start": 31114.84, "end": 31118.78, "probability": 0.9761 }, { "start": 31119.62, "end": 31121.46, "probability": 0.9791 }, { "start": 31121.58, "end": 31122.57, "probability": 0.9275 }, { "start": 31123.9, "end": 31125.8, "probability": 0.9849 }, { "start": 31126.48, "end": 31128.58, "probability": 0.8927 }, { "start": 31129.64, "end": 31131.36, "probability": 0.9397 }, { "start": 31132.34, "end": 31133.62, "probability": 0.8447 }, { "start": 31133.86, "end": 31135.28, "probability": 0.9917 }, { "start": 31136.64, "end": 31137.66, "probability": 0.9503 }, { "start": 31139.04, "end": 31141.06, "probability": 0.8375 }, { "start": 31141.32, "end": 31147.4, "probability": 0.9731 }, { "start": 31147.62, "end": 31151.72, "probability": 0.8657 }, { "start": 31152.04, "end": 31153.1, "probability": 0.9969 }, { "start": 31153.58, "end": 31156.76, "probability": 0.4004 }, { "start": 31156.88, "end": 31157.52, "probability": 0.2607 }, { "start": 31157.74, "end": 31159.32, "probability": 0.8597 }, { "start": 31159.42, "end": 31159.76, "probability": 0.5148 }, { "start": 31159.84, "end": 31161.26, "probability": 0.7912 }, { "start": 31161.7, "end": 31167.8, "probability": 0.9837 }, { "start": 31168.4, "end": 31169.78, "probability": 0.3764 }, { "start": 31170.12, "end": 31172.46, "probability": 0.9478 }, { "start": 31173.62, "end": 31174.42, "probability": 0.6737 }, { "start": 31174.7, "end": 31175.32, "probability": 0.9222 }, { "start": 31175.8, "end": 31177.42, "probability": 0.9584 }, { "start": 31178.58, "end": 31181.88, "probability": 0.8739 }, { "start": 31182.58, "end": 31184.68, "probability": 0.9979 }, { "start": 31184.68, "end": 31188.08, "probability": 0.998 }, { "start": 31188.88, "end": 31192.32, "probability": 0.8976 }, { "start": 31193.42, "end": 31194.88, "probability": 0.1398 }, { "start": 31195.28, "end": 31198.6, "probability": 0.9956 }, { "start": 31199.54, "end": 31202.36, "probability": 0.9178 }, { "start": 31203.08, "end": 31205.06, "probability": 0.9883 }, { "start": 31205.1, "end": 31206.3, "probability": 0.997 }, { "start": 31207.12, "end": 31209.58, "probability": 0.9529 }, { "start": 31210.12, "end": 31211.94, "probability": 0.3248 }, { "start": 31212.46, "end": 31218.76, "probability": 0.9788 }, { "start": 31218.78, "end": 31221.54, "probability": 0.571 }, { "start": 31222.32, "end": 31224.82, "probability": 0.6917 }, { "start": 31225.66, "end": 31226.02, "probability": 0.3979 }, { "start": 31226.46, "end": 31228.7, "probability": 0.9952 }, { "start": 31229.2, "end": 31231.04, "probability": 0.7681 }, { "start": 31231.84, "end": 31238.1, "probability": 0.9596 }, { "start": 31238.76, "end": 31242.52, "probability": 0.9935 }, { "start": 31242.72, "end": 31245.1, "probability": 0.9934 }, { "start": 31245.82, "end": 31247.16, "probability": 0.9709 }, { "start": 31247.22, "end": 31250.78, "probability": 0.9762 }, { "start": 31250.9, "end": 31251.12, "probability": 0.4746 }, { "start": 31252.58, "end": 31255.56, "probability": 0.9955 }, { "start": 31255.76, "end": 31259.1, "probability": 0.9981 }, { "start": 31259.62, "end": 31262.32, "probability": 0.9984 }, { "start": 31262.56, "end": 31262.7, "probability": 0.7375 }, { "start": 31262.7, "end": 31265.82, "probability": 0.9736 }, { "start": 31266.1, "end": 31266.32, "probability": 0.8046 }, { "start": 31266.38, "end": 31270.36, "probability": 0.9621 }, { "start": 31271.04, "end": 31272.66, "probability": 0.9607 }, { "start": 31272.84, "end": 31273.24, "probability": 0.746 }, { "start": 31273.9, "end": 31275.22, "probability": 0.961 }, { "start": 31275.44, "end": 31276.06, "probability": 0.7381 }, { "start": 31278.86, "end": 31279.86, "probability": 0.917 }, { "start": 31281.98, "end": 31282.9, "probability": 0.7902 }, { "start": 31290.6, "end": 31291.0, "probability": 0.371 }, { "start": 31291.0, "end": 31291.64, "probability": 0.0789 }, { "start": 31291.64, "end": 31291.72, "probability": 0.3895 }, { "start": 31306.4, "end": 31306.6, "probability": 0.3253 }, { "start": 31307.76, "end": 31309.54, "probability": 0.83 }, { "start": 31312.86, "end": 31313.5, "probability": 0.7896 }, { "start": 31314.08, "end": 31315.8, "probability": 0.5185 }, { "start": 31316.46, "end": 31316.96, "probability": 0.4215 }, { "start": 31316.96, "end": 31317.24, "probability": 0.8457 }, { "start": 31319.46, "end": 31322.7, "probability": 0.7097 }, { "start": 31324.02, "end": 31326.98, "probability": 0.9292 }, { "start": 31328.18, "end": 31331.24, "probability": 0.7673 }, { "start": 31332.18, "end": 31332.28, "probability": 0.6807 }, { "start": 31333.32, "end": 31333.82, "probability": 0.8167 }, { "start": 31334.18, "end": 31334.86, "probability": 0.2219 }, { "start": 31336.38, "end": 31336.56, "probability": 0.3922 }, { "start": 31338.1, "end": 31339.28, "probability": 0.9375 }, { "start": 31339.72, "end": 31340.62, "probability": 0.2299 }, { "start": 31340.94, "end": 31342.46, "probability": 0.2937 }, { "start": 31342.62, "end": 31344.02, "probability": 0.5093 }, { "start": 31344.26, "end": 31346.18, "probability": 0.8318 }, { "start": 31346.32, "end": 31347.66, "probability": 0.7835 }, { "start": 31348.2, "end": 31349.26, "probability": 0.7176 }, { "start": 31349.34, "end": 31350.64, "probability": 0.6442 }, { "start": 31350.7, "end": 31355.5, "probability": 0.9788 }, { "start": 31356.44, "end": 31358.48, "probability": 0.0594 }, { "start": 31358.54, "end": 31364.1, "probability": 0.98 }, { "start": 31364.24, "end": 31364.68, "probability": 0.1644 }, { "start": 31364.82, "end": 31368.64, "probability": 0.818 }, { "start": 31368.78, "end": 31369.22, "probability": 0.7627 }, { "start": 31369.32, "end": 31371.24, "probability": 0.9758 }, { "start": 31371.54, "end": 31374.44, "probability": 0.8596 }, { "start": 31375.72, "end": 31376.12, "probability": 0.5575 }, { "start": 31377.72, "end": 31381.04, "probability": 0.0728 }, { "start": 31382.04, "end": 31383.28, "probability": 0.5175 }, { "start": 31383.48, "end": 31385.68, "probability": 0.9375 }, { "start": 31385.8, "end": 31386.3, "probability": 0.119 }, { "start": 31386.32, "end": 31387.48, "probability": 0.6295 }, { "start": 31387.66, "end": 31388.6, "probability": 0.0319 }, { "start": 31388.76, "end": 31393.24, "probability": 0.991 }, { "start": 31394.76, "end": 31399.53, "probability": 0.9875 }, { "start": 31399.94, "end": 31404.92, "probability": 0.8877 }, { "start": 31405.54, "end": 31407.34, "probability": 0.9764 }, { "start": 31408.0, "end": 31409.2, "probability": 0.9754 }, { "start": 31409.38, "end": 31411.28, "probability": 0.9788 }, { "start": 31411.38, "end": 31412.7, "probability": 0.9886 }, { "start": 31413.3, "end": 31415.5, "probability": 0.9884 }, { "start": 31416.12, "end": 31421.46, "probability": 0.7465 }, { "start": 31421.62, "end": 31422.88, "probability": 0.8814 }, { "start": 31423.74, "end": 31424.68, "probability": 0.9554 }, { "start": 31425.48, "end": 31427.6, "probability": 0.9875 }, { "start": 31427.76, "end": 31428.73, "probability": 0.835 }, { "start": 31429.48, "end": 31430.19, "probability": 0.9043 }, { "start": 31431.52, "end": 31432.1, "probability": 0.8312 }, { "start": 31432.42, "end": 31437.12, "probability": 0.989 }, { "start": 31437.6, "end": 31440.52, "probability": 0.9934 }, { "start": 31442.06, "end": 31442.52, "probability": 0.7721 }, { "start": 31443.68, "end": 31444.98, "probability": 0.9792 }, { "start": 31445.06, "end": 31446.5, "probability": 0.9595 }, { "start": 31446.96, "end": 31448.52, "probability": 0.9871 }, { "start": 31448.58, "end": 31450.7, "probability": 0.9954 }, { "start": 31451.26, "end": 31454.12, "probability": 0.9958 }, { "start": 31455.18, "end": 31459.52, "probability": 0.9961 }, { "start": 31460.44, "end": 31463.1, "probability": 0.9849 }, { "start": 31463.1, "end": 31466.1, "probability": 0.9221 }, { "start": 31467.94, "end": 31469.02, "probability": 0.9966 }, { "start": 31469.28, "end": 31472.94, "probability": 0.9113 }, { "start": 31474.14, "end": 31474.94, "probability": 0.8553 }, { "start": 31475.22, "end": 31478.14, "probability": 0.6445 }, { "start": 31478.16, "end": 31480.44, "probability": 0.9863 }, { "start": 31480.52, "end": 31481.11, "probability": 0.9813 }, { "start": 31482.54, "end": 31482.78, "probability": 0.5822 }, { "start": 31482.98, "end": 31487.98, "probability": 0.8005 }, { "start": 31488.14, "end": 31488.63, "probability": 0.5024 }, { "start": 31488.76, "end": 31490.38, "probability": 0.5068 }, { "start": 31490.86, "end": 31492.82, "probability": 0.7702 }, { "start": 31493.28, "end": 31495.2, "probability": 0.9193 }, { "start": 31496.76, "end": 31500.64, "probability": 0.867 }, { "start": 31501.34, "end": 31502.76, "probability": 0.644 }, { "start": 31502.82, "end": 31505.4, "probability": 0.9735 }, { "start": 31506.0, "end": 31507.66, "probability": 0.9951 }, { "start": 31508.62, "end": 31510.48, "probability": 0.8252 }, { "start": 31511.84, "end": 31512.58, "probability": 0.3602 }, { "start": 31512.6, "end": 31513.4, "probability": 0.7045 }, { "start": 31513.44, "end": 31516.0, "probability": 0.9846 }, { "start": 31516.22, "end": 31517.2, "probability": 0.9572 }, { "start": 31517.88, "end": 31519.76, "probability": 0.9456 }, { "start": 31522.5, "end": 31525.22, "probability": 0.9673 }, { "start": 31526.08, "end": 31527.02, "probability": 0.7232 }, { "start": 31527.4, "end": 31528.28, "probability": 0.8064 }, { "start": 31528.34, "end": 31529.74, "probability": 0.9967 }, { "start": 31529.84, "end": 31531.44, "probability": 0.9532 }, { "start": 31532.42, "end": 31533.46, "probability": 0.7233 }, { "start": 31534.78, "end": 31536.94, "probability": 0.6167 }, { "start": 31537.02, "end": 31538.44, "probability": 0.9928 }, { "start": 31539.06, "end": 31539.86, "probability": 0.467 }, { "start": 31540.44, "end": 31545.78, "probability": 0.9968 }, { "start": 31546.02, "end": 31547.14, "probability": 0.919 }, { "start": 31547.56, "end": 31555.45, "probability": 0.9692 }, { "start": 31556.28, "end": 31557.62, "probability": 0.8508 }, { "start": 31557.68, "end": 31557.92, "probability": 0.7698 }, { "start": 31557.92, "end": 31558.02, "probability": 0.6506 }, { "start": 31558.14, "end": 31559.14, "probability": 0.9208 }, { "start": 31564.14, "end": 31566.94, "probability": 0.6102 }, { "start": 31566.94, "end": 31567.46, "probability": 0.4214 }, { "start": 31570.18, "end": 31573.06, "probability": 0.6967 }, { "start": 31574.66, "end": 31578.12, "probability": 0.384 }, { "start": 31579.72, "end": 31580.62, "probability": 0.7571 }, { "start": 31581.24, "end": 31581.96, "probability": 0.6966 }, { "start": 31582.18, "end": 31584.92, "probability": 0.9476 }, { "start": 31585.48, "end": 31586.91, "probability": 0.8032 }, { "start": 31587.86, "end": 31591.14, "probability": 0.75 }, { "start": 31592.3, "end": 31592.74, "probability": 0.2551 }, { "start": 31593.36, "end": 31595.79, "probability": 0.9769 }, { "start": 31596.52, "end": 31597.34, "probability": 0.6888 }, { "start": 31597.44, "end": 31601.1, "probability": 0.9314 }, { "start": 31601.28, "end": 31602.22, "probability": 0.8802 }, { "start": 31603.14, "end": 31606.6, "probability": 0.8485 }, { "start": 31606.6, "end": 31606.96, "probability": 0.137 }, { "start": 31608.08, "end": 31610.66, "probability": 0.4868 }, { "start": 31612.72, "end": 31613.46, "probability": 0.7443 }, { "start": 31613.86, "end": 31614.84, "probability": 0.9427 }, { "start": 31616.53, "end": 31620.64, "probability": 0.9369 }, { "start": 31620.86, "end": 31622.0, "probability": 0.9449 }, { "start": 31624.64, "end": 31626.98, "probability": 0.9963 }, { "start": 31627.54, "end": 31629.66, "probability": 0.905 }, { "start": 31631.25, "end": 31632.28, "probability": 0.7511 }, { "start": 31632.82, "end": 31634.02, "probability": 0.9767 }, { "start": 31635.52, "end": 31637.16, "probability": 0.805 }, { "start": 31639.05, "end": 31639.68, "probability": 0.2707 }, { "start": 31640.62, "end": 31641.76, "probability": 0.8421 }, { "start": 31642.04, "end": 31643.94, "probability": 0.2524 }, { "start": 31643.94, "end": 31643.94, "probability": 0.0844 }, { "start": 31643.94, "end": 31644.96, "probability": 0.4913 }, { "start": 31645.36, "end": 31646.26, "probability": 0.4932 }, { "start": 31646.98, "end": 31647.8, "probability": 0.6044 }, { "start": 31648.26, "end": 31650.24, "probability": 0.7682 }, { "start": 31650.42, "end": 31652.8, "probability": 0.9741 }, { "start": 31653.08, "end": 31653.92, "probability": 0.7652 }, { "start": 31656.04, "end": 31660.62, "probability": 0.9758 }, { "start": 31661.22, "end": 31663.38, "probability": 0.999 }, { "start": 31664.1, "end": 31664.6, "probability": 0.5479 }, { "start": 31665.42, "end": 31666.58, "probability": 0.9743 }, { "start": 31667.02, "end": 31667.43, "probability": 0.9607 }, { "start": 31668.14, "end": 31671.94, "probability": 0.3661 }, { "start": 31672.44, "end": 31673.81, "probability": 0.813 }, { "start": 31674.44, "end": 31674.82, "probability": 0.1216 }, { "start": 31675.44, "end": 31677.28, "probability": 0.9773 }, { "start": 31677.9, "end": 31680.4, "probability": 0.8754 }, { "start": 31680.6, "end": 31681.4, "probability": 0.8962 }, { "start": 31681.6, "end": 31682.22, "probability": 0.9589 }, { "start": 31683.44, "end": 31683.62, "probability": 0.3184 }, { "start": 31683.9, "end": 31684.52, "probability": 0.9793 }, { "start": 31686.96, "end": 31692.22, "probability": 0.9793 }, { "start": 31693.1, "end": 31695.17, "probability": 0.9991 }, { "start": 31695.96, "end": 31697.7, "probability": 0.9993 }, { "start": 31698.2, "end": 31700.58, "probability": 0.9065 }, { "start": 31700.74, "end": 31701.54, "probability": 0.7497 }, { "start": 31702.38, "end": 31703.6, "probability": 0.7875 }, { "start": 31703.66, "end": 31703.98, "probability": 0.8624 }, { "start": 31704.34, "end": 31708.32, "probability": 0.9883 }, { "start": 31708.92, "end": 31712.48, "probability": 0.6064 }, { "start": 31713.08, "end": 31714.76, "probability": 0.0045 }, { "start": 31715.38, "end": 31716.48, "probability": 0.3398 }, { "start": 31717.18, "end": 31717.28, "probability": 0.1086 }, { "start": 31717.28, "end": 31717.28, "probability": 0.0434 }, { "start": 31717.28, "end": 31720.22, "probability": 0.7999 }, { "start": 31721.24, "end": 31722.44, "probability": 0.689 }, { "start": 31723.82, "end": 31727.0, "probability": 0.9713 }, { "start": 31727.94, "end": 31728.88, "probability": 0.775 }, { "start": 31730.28, "end": 31730.94, "probability": 0.8896 }, { "start": 31732.04, "end": 31733.58, "probability": 0.8894 }, { "start": 31734.16, "end": 31734.86, "probability": 0.8561 }, { "start": 31735.02, "end": 31735.52, "probability": 0.8265 }, { "start": 31735.64, "end": 31736.48, "probability": 0.9082 }, { "start": 31736.96, "end": 31739.92, "probability": 0.9889 }, { "start": 31740.18, "end": 31743.64, "probability": 0.907 }, { "start": 31744.62, "end": 31747.56, "probability": 0.9461 }, { "start": 31748.32, "end": 31750.28, "probability": 0.4985 }, { "start": 31750.92, "end": 31752.68, "probability": 0.9678 }, { "start": 31753.68, "end": 31755.3, "probability": 0.9993 }, { "start": 31756.22, "end": 31759.12, "probability": 0.8954 }, { "start": 31759.56, "end": 31761.48, "probability": 0.7537 }, { "start": 31762.28, "end": 31762.82, "probability": 0.9175 }, { "start": 31763.78, "end": 31764.26, "probability": 0.6899 }, { "start": 31770.22, "end": 31771.66, "probability": 0.5095 }, { "start": 31771.86, "end": 31772.22, "probability": 0.3175 }, { "start": 31772.54, "end": 31772.58, "probability": 0.1527 }, { "start": 31772.58, "end": 31774.52, "probability": 0.2473 }, { "start": 31775.04, "end": 31775.6, "probability": 0.8313 }, { "start": 31775.84, "end": 31777.4, "probability": 0.8571 }, { "start": 31777.52, "end": 31781.26, "probability": 0.9932 }, { "start": 31781.84, "end": 31784.32, "probability": 0.8979 }, { "start": 31784.42, "end": 31784.98, "probability": 0.9722 }, { "start": 31786.04, "end": 31787.22, "probability": 0.9878 }, { "start": 31787.86, "end": 31789.4, "probability": 0.8685 }, { "start": 31790.28, "end": 31792.56, "probability": 0.9809 }, { "start": 31793.58, "end": 31796.1, "probability": 0.9752 }, { "start": 31797.16, "end": 31800.46, "probability": 0.9604 }, { "start": 31801.36, "end": 31801.6, "probability": 0.725 }, { "start": 31802.64, "end": 31803.04, "probability": 0.6038 }, { "start": 31803.18, "end": 31803.6, "probability": 0.2671 }, { "start": 31803.7, "end": 31805.48, "probability": 0.9651 }, { "start": 31806.36, "end": 31806.46, "probability": 0.0168 }, { "start": 31806.46, "end": 31807.2, "probability": 0.8167 }, { "start": 31808.02, "end": 31808.88, "probability": 0.424 }, { "start": 31809.36, "end": 31809.76, "probability": 0.9214 }, { "start": 31810.56, "end": 31810.68, "probability": 0.6906 }, { "start": 31810.96, "end": 31812.02, "probability": 0.971 }, { "start": 31813.14, "end": 31814.72, "probability": 0.9052 }, { "start": 31815.55, "end": 31817.22, "probability": 0.8577 }, { "start": 31818.12, "end": 31819.6, "probability": 0.9973 }, { "start": 31820.46, "end": 31821.82, "probability": 0.9056 }, { "start": 31822.86, "end": 31824.58, "probability": 0.9583 }, { "start": 31825.48, "end": 31828.04, "probability": 0.9385 }, { "start": 31828.84, "end": 31830.52, "probability": 0.9794 }, { "start": 31831.14, "end": 31833.34, "probability": 0.8449 }, { "start": 31833.72, "end": 31834.4, "probability": 0.8765 }, { "start": 31836.42, "end": 31836.42, "probability": 0.2925 }, { "start": 31836.42, "end": 31837.07, "probability": 0.5563 }, { "start": 31837.28, "end": 31837.78, "probability": 0.4322 }, { "start": 31838.12, "end": 31839.28, "probability": 0.6352 }, { "start": 31840.3, "end": 31844.82, "probability": 0.0589 }, { "start": 31845.22, "end": 31846.4, "probability": 0.5165 }, { "start": 31855.58, "end": 31856.4, "probability": 0.6617 }, { "start": 31856.94, "end": 31857.52, "probability": 0.5668 }, { "start": 31858.46, "end": 31859.3, "probability": 0.6893 }, { "start": 31860.18, "end": 31861.16, "probability": 0.9788 }, { "start": 31862.62, "end": 31863.42, "probability": 0.7554 }, { "start": 31865.52, "end": 31870.68, "probability": 0.8992 }, { "start": 31871.62, "end": 31876.34, "probability": 0.9741 }, { "start": 31876.88, "end": 31880.08, "probability": 0.9919 }, { "start": 31881.46, "end": 31882.18, "probability": 0.9739 }, { "start": 31882.74, "end": 31883.52, "probability": 0.8149 }, { "start": 31884.32, "end": 31886.96, "probability": 0.9103 }, { "start": 31888.0, "end": 31891.6, "probability": 0.9759 }, { "start": 31893.12, "end": 31898.2, "probability": 0.9638 }, { "start": 31899.78, "end": 31903.74, "probability": 0.6127 }, { "start": 31904.48, "end": 31906.54, "probability": 0.9922 }, { "start": 31907.9, "end": 31908.92, "probability": 0.3668 }, { "start": 31909.5, "end": 31911.44, "probability": 0.9779 }, { "start": 31912.24, "end": 31913.12, "probability": 0.6126 }, { "start": 31913.82, "end": 31914.34, "probability": 0.9526 }, { "start": 31914.9, "end": 31915.14, "probability": 0.4917 }, { "start": 31916.24, "end": 31917.78, "probability": 0.9309 }, { "start": 31918.72, "end": 31920.86, "probability": 0.994 }, { "start": 31921.84, "end": 31922.8, "probability": 0.7125 }, { "start": 31923.42, "end": 31924.5, "probability": 0.4962 }, { "start": 31925.1, "end": 31925.58, "probability": 0.6822 }, { "start": 31926.1, "end": 31926.76, "probability": 0.7515 }, { "start": 31928.42, "end": 31931.66, "probability": 0.9707 }, { "start": 31932.28, "end": 31933.67, "probability": 0.8042 }, { "start": 31935.37, "end": 31937.72, "probability": 0.4693 }, { "start": 31938.38, "end": 31940.08, "probability": 0.833 }, { "start": 31940.84, "end": 31943.0, "probability": 0.9982 }, { "start": 31944.18, "end": 31950.1, "probability": 0.9949 }, { "start": 31950.94, "end": 31952.7, "probability": 0.989 }, { "start": 31953.5, "end": 31953.9, "probability": 0.5671 }, { "start": 31954.92, "end": 31957.56, "probability": 0.9945 }, { "start": 31959.02, "end": 31961.38, "probability": 0.8145 }, { "start": 31961.98, "end": 31964.9, "probability": 0.9932 }, { "start": 31965.52, "end": 31967.68, "probability": 0.9234 }, { "start": 31968.58, "end": 31971.36, "probability": 0.793 }, { "start": 31972.2, "end": 31975.3, "probability": 0.996 }, { "start": 31976.66, "end": 31980.32, "probability": 0.9913 }, { "start": 31980.98, "end": 31981.62, "probability": 0.9489 }, { "start": 31982.58, "end": 31983.18, "probability": 0.6277 }, { "start": 31983.88, "end": 31984.34, "probability": 0.7751 }, { "start": 31984.98, "end": 31987.84, "probability": 0.9622 }, { "start": 31990.46, "end": 31992.15, "probability": 0.7694 }, { "start": 31993.86, "end": 31995.4, "probability": 0.9593 }, { "start": 31996.54, "end": 31998.96, "probability": 0.8197 }, { "start": 31999.86, "end": 32003.04, "probability": 0.9806 }, { "start": 32003.98, "end": 32005.66, "probability": 0.9976 }, { "start": 32006.6, "end": 32009.74, "probability": 0.9 }, { "start": 32010.92, "end": 32011.3, "probability": 0.8157 }, { "start": 32011.98, "end": 32013.0, "probability": 0.8063 }, { "start": 32014.0, "end": 32015.5, "probability": 0.9951 }, { "start": 32016.08, "end": 32017.24, "probability": 0.9918 }, { "start": 32017.94, "end": 32019.62, "probability": 0.9219 }, { "start": 32020.58, "end": 32021.62, "probability": 0.9327 }, { "start": 32022.62, "end": 32023.24, "probability": 0.7716 }, { "start": 32024.08, "end": 32025.24, "probability": 0.9543 }, { "start": 32025.94, "end": 32027.23, "probability": 0.9697 }, { "start": 32028.16, "end": 32029.38, "probability": 0.9811 }, { "start": 32030.96, "end": 32031.7, "probability": 0.8734 }, { "start": 32032.38, "end": 32037.56, "probability": 0.9647 }, { "start": 32038.34, "end": 32040.04, "probability": 0.99 }, { "start": 32040.68, "end": 32042.1, "probability": 0.9534 }, { "start": 32043.24, "end": 32043.9, "probability": 0.4694 }, { "start": 32044.7, "end": 32045.78, "probability": 0.8749 }, { "start": 32046.66, "end": 32047.8, "probability": 0.9875 }, { "start": 32048.68, "end": 32049.78, "probability": 0.9429 }, { "start": 32050.2, "end": 32050.9, "probability": 0.7871 }, { "start": 32051.78, "end": 32053.96, "probability": 0.9905 }, { "start": 32054.86, "end": 32055.52, "probability": 0.0433 }, { "start": 32063.26, "end": 32063.68, "probability": 0.137 }, { "start": 32063.68, "end": 32063.76, "probability": 0.2335 }, { "start": 32063.94, "end": 32065.96, "probability": 0.045 }, { "start": 32070.32, "end": 32070.94, "probability": 0.0323 }, { "start": 32071.9, "end": 32072.86, "probability": 0.0774 }, { "start": 32073.9, "end": 32074.4, "probability": 0.0349 }, { "start": 32084.38, "end": 32084.4, "probability": 0.164 }, { "start": 32092.06, "end": 32093.76, "probability": 0.6541 }, { "start": 32107.04, "end": 32108.1, "probability": 0.9875 }, { "start": 32109.78, "end": 32110.26, "probability": 0.7611 }, { "start": 32111.22, "end": 32111.3, "probability": 0.2371 }, { "start": 32112.32, "end": 32113.38, "probability": 0.9698 }, { "start": 32114.04, "end": 32115.84, "probability": 0.9944 }, { "start": 32116.62, "end": 32118.16, "probability": 0.9927 }, { "start": 32119.22, "end": 32120.4, "probability": 0.7425 }, { "start": 32121.92, "end": 32122.46, "probability": 0.6168 }, { "start": 32122.74, "end": 32123.86, "probability": 0.5779 }, { "start": 32123.86, "end": 32124.21, "probability": 0.6049 }, { "start": 32124.44, "end": 32125.21, "probability": 0.9927 }, { "start": 32125.6, "end": 32126.34, "probability": 0.5067 }, { "start": 32126.44, "end": 32127.82, "probability": 0.7111 }, { "start": 32128.68, "end": 32130.12, "probability": 0.9609 }, { "start": 32131.08, "end": 32132.98, "probability": 0.8857 }, { "start": 32134.1, "end": 32137.02, "probability": 0.9857 }, { "start": 32137.1, "end": 32137.56, "probability": 0.5297 }, { "start": 32138.88, "end": 32139.92, "probability": 0.5781 }, { "start": 32140.74, "end": 32144.26, "probability": 0.9899 }, { "start": 32144.26, "end": 32148.78, "probability": 0.9969 }, { "start": 32150.12, "end": 32153.54, "probability": 0.9946 }, { "start": 32154.64, "end": 32155.27, "probability": 0.8457 }, { "start": 32155.88, "end": 32160.06, "probability": 0.983 }, { "start": 32160.84, "end": 32164.86, "probability": 0.9958 }, { "start": 32165.16, "end": 32165.8, "probability": 0.6579 }, { "start": 32166.48, "end": 32170.04, "probability": 0.9257 }, { "start": 32170.74, "end": 32175.06, "probability": 0.9921 }, { "start": 32175.26, "end": 32175.34, "probability": 0.1928 }, { "start": 32176.3, "end": 32178.18, "probability": 0.8447 }, { "start": 32179.44, "end": 32180.18, "probability": 0.9919 }, { "start": 32182.06, "end": 32183.62, "probability": 0.9805 }, { "start": 32184.96, "end": 32186.52, "probability": 0.9603 }, { "start": 32188.66, "end": 32189.42, "probability": 0.7701 }, { "start": 32190.12, "end": 32191.18, "probability": 0.9287 }, { "start": 32192.2, "end": 32194.31, "probability": 0.9557 }, { "start": 32195.48, "end": 32198.44, "probability": 0.8021 }, { "start": 32199.56, "end": 32201.82, "probability": 0.9294 }, { "start": 32202.66, "end": 32203.36, "probability": 0.9537 }, { "start": 32204.68, "end": 32207.58, "probability": 0.7703 }, { "start": 32208.52, "end": 32210.2, "probability": 0.9582 }, { "start": 32211.4, "end": 32212.32, "probability": 0.6807 }, { "start": 32213.82, "end": 32214.08, "probability": 0.0572 }, { "start": 32216.06, "end": 32218.2, "probability": 0.268 }, { "start": 32218.78, "end": 32219.95, "probability": 0.425 }, { "start": 32221.34, "end": 32223.48, "probability": 0.9798 }, { "start": 32224.22, "end": 32227.8, "probability": 0.9779 }, { "start": 32228.52, "end": 32230.53, "probability": 0.6409 }, { "start": 32230.86, "end": 32231.44, "probability": 0.1424 }, { "start": 32232.76, "end": 32233.7, "probability": 0.4795 }, { "start": 32233.78, "end": 32235.48, "probability": 0.5564 }, { "start": 32236.04, "end": 32237.94, "probability": 0.8559 }, { "start": 32238.02, "end": 32240.52, "probability": 0.8405 }, { "start": 32241.58, "end": 32242.04, "probability": 0.5443 }, { "start": 32242.1, "end": 32242.68, "probability": 0.4281 }, { "start": 32242.74, "end": 32243.04, "probability": 0.5895 }, { "start": 32243.42, "end": 32243.91, "probability": 0.9615 }, { "start": 32244.08, "end": 32244.3, "probability": 0.4505 }, { "start": 32244.46, "end": 32246.68, "probability": 0.6025 }, { "start": 32246.84, "end": 32248.7, "probability": 0.211 }, { "start": 32248.8, "end": 32251.83, "probability": 0.5703 }, { "start": 32252.08, "end": 32252.32, "probability": 0.1664 }, { "start": 32252.82, "end": 32254.06, "probability": 0.9705 }, { "start": 32254.68, "end": 32255.04, "probability": 0.719 }, { "start": 32255.08, "end": 32255.96, "probability": 0.4939 }, { "start": 32256.08, "end": 32256.7, "probability": 0.5778 }, { "start": 32256.84, "end": 32257.12, "probability": 0.7513 }, { "start": 32257.2, "end": 32259.44, "probability": 0.871 }, { "start": 32259.44, "end": 32259.6, "probability": 0.4782 }, { "start": 32259.6, "end": 32260.32, "probability": 0.2466 }, { "start": 32260.5, "end": 32263.08, "probability": 0.9783 }, { "start": 32263.28, "end": 32266.46, "probability": 0.9555 }, { "start": 32266.56, "end": 32269.92, "probability": 0.986 }, { "start": 32270.62, "end": 32273.32, "probability": 0.9126 }, { "start": 32274.1, "end": 32278.44, "probability": 0.9547 }, { "start": 32278.9, "end": 32281.34, "probability": 0.9253 }, { "start": 32281.64, "end": 32288.12, "probability": 0.9761 }, { "start": 32289.04, "end": 32290.82, "probability": 0.9036 }, { "start": 32291.38, "end": 32292.16, "probability": 0.9673 }, { "start": 32292.34, "end": 32295.0, "probability": 0.9621 }, { "start": 32295.14, "end": 32295.6, "probability": 0.7455 }, { "start": 32296.26, "end": 32297.82, "probability": 0.9016 }, { "start": 32298.36, "end": 32299.4, "probability": 0.9187 }, { "start": 32299.74, "end": 32300.06, "probability": 0.6455 }, { "start": 32300.84, "end": 32301.66, "probability": 0.5444 }, { "start": 32301.92, "end": 32304.02, "probability": 0.502 }, { "start": 32304.62, "end": 32305.91, "probability": 0.677 }, { "start": 32306.92, "end": 32308.68, "probability": 0.8027 }, { "start": 32308.68, "end": 32310.03, "probability": 0.5502 }, { "start": 32310.86, "end": 32311.36, "probability": 0.0577 }, { "start": 32311.74, "end": 32312.42, "probability": 0.5691 }, { "start": 32312.78, "end": 32313.4, "probability": 0.6415 }, { "start": 32313.4, "end": 32313.96, "probability": 0.2379 }, { "start": 32314.04, "end": 32314.3, "probability": 0.7053 }, { "start": 32314.46, "end": 32314.46, "probability": 0.0983 }, { "start": 32314.46, "end": 32314.46, "probability": 0.0924 }, { "start": 32314.46, "end": 32314.64, "probability": 0.0503 }, { "start": 32314.76, "end": 32315.08, "probability": 0.3241 }, { "start": 32316.16, "end": 32317.72, "probability": 0.3237 }, { "start": 32318.34, "end": 32318.76, "probability": 0.4049 }, { "start": 32319.08, "end": 32319.18, "probability": 0.1714 }, { "start": 32319.18, "end": 32319.18, "probability": 0.4766 }, { "start": 32319.18, "end": 32320.52, "probability": 0.9966 }, { "start": 32320.82, "end": 32321.42, "probability": 0.3806 }, { "start": 32321.5, "end": 32322.1, "probability": 0.4372 }, { "start": 32322.46, "end": 32324.88, "probability": 0.7915 }, { "start": 32325.0, "end": 32325.36, "probability": 0.6543 }, { "start": 32325.36, "end": 32326.2, "probability": 0.8604 }, { "start": 32326.28, "end": 32326.5, "probability": 0.5692 }, { "start": 32326.54, "end": 32326.88, "probability": 0.723 }, { "start": 32326.88, "end": 32327.32, "probability": 0.3649 }, { "start": 32327.6, "end": 32328.68, "probability": 0.2037 }, { "start": 32328.72, "end": 32328.72, "probability": 0.1171 }, { "start": 32328.78, "end": 32331.66, "probability": 0.813 }, { "start": 32332.34, "end": 32333.5, "probability": 0.9951 }, { "start": 32334.4, "end": 32335.54, "probability": 0.9835 }, { "start": 32338.16, "end": 32339.52, "probability": 0.8922 }, { "start": 32339.78, "end": 32340.66, "probability": 0.9646 }, { "start": 32340.66, "end": 32343.62, "probability": 0.3141 }, { "start": 32343.94, "end": 32343.98, "probability": 0.0417 }, { "start": 32343.98, "end": 32345.7, "probability": 0.8195 }, { "start": 32345.86, "end": 32346.63, "probability": 0.9272 }, { "start": 32347.16, "end": 32348.04, "probability": 0.7057 }, { "start": 32348.16, "end": 32350.26, "probability": 0.9581 }, { "start": 32350.54, "end": 32351.22, "probability": 0.7674 }, { "start": 32351.5, "end": 32352.1, "probability": 0.9139 }, { "start": 32352.42, "end": 32352.82, "probability": 0.8594 }, { "start": 32352.98, "end": 32353.46, "probability": 0.537 }, { "start": 32353.58, "end": 32354.74, "probability": 0.5596 }, { "start": 32354.76, "end": 32355.42, "probability": 0.3704 }, { "start": 32355.48, "end": 32358.44, "probability": 0.6437 }, { "start": 32360.72, "end": 32365.0, "probability": 0.4407 }, { "start": 32365.12, "end": 32365.92, "probability": 0.5892 }, { "start": 32366.12, "end": 32367.18, "probability": 0.4223 }, { "start": 32368.2, "end": 32369.52, "probability": 0.2091 }, { "start": 32370.78, "end": 32373.34, "probability": 0.7411 }, { "start": 32373.46, "end": 32373.8, "probability": 0.809 }, { "start": 32374.42, "end": 32376.99, "probability": 0.4418 }, { "start": 32381.78, "end": 32382.64, "probability": 0.2696 }, { "start": 32382.66, "end": 32383.7, "probability": 0.1816 }, { "start": 32383.84, "end": 32384.3, "probability": 0.3315 }, { "start": 32385.18, "end": 32385.96, "probability": 0.2774 }, { "start": 32385.96, "end": 32386.45, "probability": 0.0091 }, { "start": 32387.44, "end": 32389.19, "probability": 0.4246 }, { "start": 32390.58, "end": 32392.8, "probability": 0.195 }, { "start": 32393.02, "end": 32394.44, "probability": 0.874 }, { "start": 32394.74, "end": 32396.22, "probability": 0.6816 }, { "start": 32397.36, "end": 32400.64, "probability": 0.9858 }, { "start": 32402.4, "end": 32406.1, "probability": 0.1071 }, { "start": 32407.04, "end": 32416.14, "probability": 0.2222 }, { "start": 32417.52, "end": 32419.06, "probability": 0.2388 }, { "start": 32419.82, "end": 32420.32, "probability": 0.5347 }, { "start": 32420.92, "end": 32422.96, "probability": 0.7626 }, { "start": 32423.9, "end": 32427.92, "probability": 0.0556 }, { "start": 32428.26, "end": 32430.7, "probability": 0.0166 }, { "start": 32430.78, "end": 32431.58, "probability": 0.3207 }, { "start": 32431.58, "end": 32433.94, "probability": 0.0568 }, { "start": 32435.37, "end": 32436.77, "probability": 0.0942 }, { "start": 32438.18, "end": 32438.72, "probability": 0.1663 }, { "start": 32441.68, "end": 32443.98, "probability": 0.2272 }, { "start": 32444.0, "end": 32444.0, "probability": 0.0 }, { "start": 32444.0, "end": 32444.0, "probability": 0.0 }, { "start": 32444.0, "end": 32444.0, "probability": 0.0 }, { "start": 32444.0, "end": 32444.0, "probability": 0.0 }, { "start": 32444.0, "end": 32444.0, "probability": 0.0 }, { "start": 32444.0, "end": 32444.0, "probability": 0.0 }, { "start": 32444.0, "end": 32444.0, "probability": 0.0 }, { "start": 32444.0, "end": 32444.0, "probability": 0.0 }, { "start": 32444.0, "end": 32444.0, "probability": 0.0 }, { "start": 32444.0, "end": 32444.0, "probability": 0.0 }, { "start": 32444.04, "end": 32444.68, "probability": 0.1877 }, { "start": 32445.1, "end": 32445.1, "probability": 0.6051 }, { "start": 32445.1, "end": 32446.42, "probability": 0.6411 }, { "start": 32446.46, "end": 32446.84, "probability": 0.9472 }, { "start": 32447.88, "end": 32449.78, "probability": 0.6479 }, { "start": 32451.4, "end": 32453.56, "probability": 0.5034 }, { "start": 32453.56, "end": 32454.61, "probability": 0.3755 }, { "start": 32455.56, "end": 32456.08, "probability": 0.0374 }, { "start": 32456.08, "end": 32457.14, "probability": 0.2921 }, { "start": 32457.6, "end": 32459.94, "probability": 0.8472 }, { "start": 32460.38, "end": 32461.88, "probability": 0.9866 }, { "start": 32463.18, "end": 32464.74, "probability": 0.7603 }, { "start": 32465.26, "end": 32468.56, "probability": 0.9305 }, { "start": 32469.3, "end": 32472.74, "probability": 0.9347 }, { "start": 32473.58, "end": 32475.2, "probability": 0.7507 }, { "start": 32477.07, "end": 32479.12, "probability": 0.7706 }, { "start": 32479.46, "end": 32479.94, "probability": 0.7097 }, { "start": 32481.16, "end": 32485.3, "probability": 0.9971 }, { "start": 32485.8, "end": 32490.1, "probability": 0.9862 }, { "start": 32490.56, "end": 32491.46, "probability": 0.8916 }, { "start": 32491.78, "end": 32493.06, "probability": 0.6019 }, { "start": 32493.08, "end": 32495.08, "probability": 0.9962 }, { "start": 32495.7, "end": 32497.9, "probability": 0.9784 }, { "start": 32498.56, "end": 32501.64, "probability": 0.9756 }, { "start": 32502.38, "end": 32505.34, "probability": 0.9787 }, { "start": 32506.48, "end": 32507.74, "probability": 0.9969 }, { "start": 32508.42, "end": 32510.72, "probability": 0.924 }, { "start": 32511.66, "end": 32514.22, "probability": 0.6353 }, { "start": 32514.4, "end": 32516.18, "probability": 0.6196 }, { "start": 32516.8, "end": 32520.33, "probability": 0.446 }, { "start": 32520.54, "end": 32521.36, "probability": 0.0723 }, { "start": 32521.58, "end": 32522.22, "probability": 0.5728 }, { "start": 32522.94, "end": 32523.26, "probability": 0.7086 }, { "start": 32523.64, "end": 32524.32, "probability": 0.4926 }, { "start": 32524.46, "end": 32524.66, "probability": 0.1639 }, { "start": 32524.92, "end": 32525.89, "probability": 0.9536 }, { "start": 32526.84, "end": 32527.46, "probability": 0.8126 }, { "start": 32527.7, "end": 32532.88, "probability": 0.5943 }, { "start": 32533.44, "end": 32533.64, "probability": 0.0821 }, { "start": 32533.64, "end": 32534.26, "probability": 0.0735 }, { "start": 32534.48, "end": 32538.5, "probability": 0.9808 }, { "start": 32538.5, "end": 32541.58, "probability": 0.9984 }, { "start": 32541.94, "end": 32548.36, "probability": 0.9922 }, { "start": 32548.9, "end": 32553.56, "probability": 0.9782 }, { "start": 32553.76, "end": 32555.72, "probability": 0.95 }, { "start": 32556.38, "end": 32556.74, "probability": 0.8085 }, { "start": 32556.8, "end": 32557.06, "probability": 0.9605 }, { "start": 32557.2, "end": 32560.3, "probability": 0.9945 }, { "start": 32560.46, "end": 32561.76, "probability": 0.8104 }, { "start": 32561.92, "end": 32562.26, "probability": 0.7771 }, { "start": 32562.48, "end": 32563.04, "probability": 0.8392 }, { "start": 32563.4, "end": 32564.42, "probability": 0.6245 }, { "start": 32564.54, "end": 32565.58, "probability": 0.7317 }, { "start": 32565.94, "end": 32566.88, "probability": 0.7122 }, { "start": 32567.5, "end": 32568.94, "probability": 0.9676 }, { "start": 32569.04, "end": 32569.74, "probability": 0.93 }, { "start": 32569.8, "end": 32573.5, "probability": 0.9529 }, { "start": 32573.92, "end": 32575.56, "probability": 0.9412 }, { "start": 32576.5, "end": 32577.46, "probability": 0.6138 }, { "start": 32577.62, "end": 32578.62, "probability": 0.8808 }, { "start": 32579.2, "end": 32584.04, "probability": 0.9907 }, { "start": 32584.04, "end": 32588.34, "probability": 0.999 }, { "start": 32589.28, "end": 32594.0, "probability": 0.9854 }, { "start": 32594.92, "end": 32596.84, "probability": 0.9221 }, { "start": 32597.32, "end": 32598.22, "probability": 0.556 }, { "start": 32598.44, "end": 32603.36, "probability": 0.9813 }, { "start": 32604.47, "end": 32611.74, "probability": 0.8822 }, { "start": 32611.9, "end": 32617.5, "probability": 0.9384 }, { "start": 32617.6, "end": 32619.4, "probability": 0.9971 }, { "start": 32619.74, "end": 32621.42, "probability": 0.9979 }, { "start": 32621.86, "end": 32623.14, "probability": 0.8752 }, { "start": 32624.16, "end": 32628.8, "probability": 0.9796 }, { "start": 32628.88, "end": 32630.3, "probability": 0.9976 }, { "start": 32630.92, "end": 32632.6, "probability": 0.9843 }, { "start": 32632.76, "end": 32633.34, "probability": 0.5322 }, { "start": 32633.46, "end": 32634.76, "probability": 0.9223 }, { "start": 32636.18, "end": 32636.38, "probability": 0.7405 }, { "start": 32637.22, "end": 32639.32, "probability": 0.1977 }, { "start": 32639.32, "end": 32641.1, "probability": 0.0826 }, { "start": 32641.2, "end": 32642.92, "probability": 0.9828 }, { "start": 32644.6, "end": 32645.68, "probability": 0.1582 }, { "start": 32645.68, "end": 32647.84, "probability": 0.8263 }, { "start": 32650.1, "end": 32650.42, "probability": 0.6978 }, { "start": 32650.58, "end": 32654.8, "probability": 0.3571 }, { "start": 32655.36, "end": 32659.54, "probability": 0.0632 }, { "start": 32659.82, "end": 32660.96, "probability": 0.3618 }, { "start": 32661.22, "end": 32661.83, "probability": 0.6558 }, { "start": 32661.98, "end": 32662.88, "probability": 0.8047 }, { "start": 32662.92, "end": 32664.92, "probability": 0.9297 }, { "start": 32674.38, "end": 32674.94, "probability": 0.7338 }, { "start": 32675.66, "end": 32677.24, "probability": 0.4071 }, { "start": 32677.32, "end": 32678.36, "probability": 0.5594 }, { "start": 32680.38, "end": 32682.24, "probability": 0.6868 }, { "start": 32685.06, "end": 32687.58, "probability": 0.5474 }, { "start": 32687.78, "end": 32688.28, "probability": 0.3666 }, { "start": 32688.38, "end": 32688.78, "probability": 0.5236 }, { "start": 32689.78, "end": 32691.4, "probability": 0.8148 }, { "start": 32691.56, "end": 32692.2, "probability": 0.6407 }, { "start": 32692.4, "end": 32700.18, "probability": 0.9623 }, { "start": 32701.35, "end": 32703.74, "probability": 0.8555 }, { "start": 32704.84, "end": 32709.18, "probability": 0.912 }, { "start": 32709.62, "end": 32710.86, "probability": 0.9197 }, { "start": 32712.76, "end": 32714.24, "probability": 0.8189 }, { "start": 32715.42, "end": 32722.54, "probability": 0.9805 }, { "start": 32724.77, "end": 32727.35, "probability": 0.3225 }, { "start": 32728.46, "end": 32730.1, "probability": 0.7244 }, { "start": 32733.04, "end": 32734.2, "probability": 0.9304 }, { "start": 32737.12, "end": 32739.32, "probability": 0.6166 }, { "start": 32740.28, "end": 32742.3, "probability": 0.9897 }, { "start": 32744.32, "end": 32745.28, "probability": 0.6795 }, { "start": 32746.58, "end": 32748.84, "probability": 0.8406 }, { "start": 32750.4, "end": 32751.76, "probability": 0.6501 }, { "start": 32752.64, "end": 32754.16, "probability": 0.7316 }, { "start": 32755.18, "end": 32756.88, "probability": 0.9976 }, { "start": 32757.12, "end": 32759.5, "probability": 0.9972 }, { "start": 32760.88, "end": 32761.8, "probability": 0.7816 }, { "start": 32763.2, "end": 32768.96, "probability": 0.9978 }, { "start": 32770.88, "end": 32772.86, "probability": 0.7263 }, { "start": 32773.68, "end": 32777.72, "probability": 0.9941 }, { "start": 32778.6, "end": 32779.39, "probability": 0.9676 }, { "start": 32780.76, "end": 32781.14, "probability": 0.9714 }, { "start": 32781.94, "end": 32782.44, "probability": 0.742 }, { "start": 32783.4, "end": 32784.62, "probability": 0.5328 }, { "start": 32786.7, "end": 32790.14, "probability": 0.8948 }, { "start": 32791.92, "end": 32792.68, "probability": 0.8177 }, { "start": 32794.14, "end": 32796.82, "probability": 0.9856 }, { "start": 32796.98, "end": 32798.1, "probability": 0.6818 }, { "start": 32799.46, "end": 32801.01, "probability": 0.5143 }, { "start": 32801.56, "end": 32802.06, "probability": 0.7734 }, { "start": 32802.12, "end": 32802.98, "probability": 0.9858 }, { "start": 32804.52, "end": 32805.22, "probability": 0.5195 }, { "start": 32806.6, "end": 32809.88, "probability": 0.981 }, { "start": 32811.14, "end": 32812.84, "probability": 0.8962 }, { "start": 32814.42, "end": 32815.9, "probability": 0.9667 }, { "start": 32816.06, "end": 32817.14, "probability": 0.8998 }, { "start": 32817.28, "end": 32817.66, "probability": 0.739 }, { "start": 32817.76, "end": 32818.04, "probability": 0.9673 }, { "start": 32819.88, "end": 32821.54, "probability": 0.9882 }, { "start": 32822.94, "end": 32825.38, "probability": 0.9851 }, { "start": 32826.56, "end": 32829.36, "probability": 0.9434 }, { "start": 32830.46, "end": 32832.38, "probability": 0.7896 }, { "start": 32833.2, "end": 32835.24, "probability": 0.998 }, { "start": 32835.78, "end": 32836.62, "probability": 0.9282 }, { "start": 32837.62, "end": 32839.84, "probability": 0.8963 }, { "start": 32841.56, "end": 32843.92, "probability": 0.9511 }, { "start": 32845.22, "end": 32848.18, "probability": 0.8943 }, { "start": 32848.74, "end": 32850.42, "probability": 0.8593 }, { "start": 32851.46, "end": 32855.78, "probability": 0.703 }, { "start": 32857.78, "end": 32859.1, "probability": 0.7008 }, { "start": 32860.78, "end": 32861.78, "probability": 0.8923 }, { "start": 32862.7, "end": 32863.8, "probability": 0.983 }, { "start": 32864.8, "end": 32866.5, "probability": 0.9957 }, { "start": 32867.2, "end": 32868.1, "probability": 0.9631 }, { "start": 32868.2, "end": 32868.76, "probability": 0.6034 }, { "start": 32868.9, "end": 32872.1, "probability": 0.9751 }, { "start": 32873.06, "end": 32874.72, "probability": 0.9243 }, { "start": 32875.6, "end": 32877.26, "probability": 0.7383 }, { "start": 32878.46, "end": 32880.54, "probability": 0.9844 }, { "start": 32881.42, "end": 32885.18, "probability": 0.9463 }, { "start": 32885.74, "end": 32887.76, "probability": 0.979 }, { "start": 32888.32, "end": 32890.04, "probability": 0.9979 }, { "start": 32890.54, "end": 32893.5, "probability": 0.9734 }, { "start": 32894.16, "end": 32895.12, "probability": 0.833 }, { "start": 32895.24, "end": 32898.9, "probability": 0.968 }, { "start": 32899.82, "end": 32900.61, "probability": 0.8892 }, { "start": 32901.24, "end": 32902.34, "probability": 0.9139 }, { "start": 32902.76, "end": 32904.5, "probability": 0.9799 }, { "start": 32904.96, "end": 32905.74, "probability": 0.9632 }, { "start": 32906.56, "end": 32907.2, "probability": 0.4609 }, { "start": 32909.54, "end": 32912.34, "probability": 0.8074 }, { "start": 32916.06, "end": 32916.44, "probability": 0.0389 }, { "start": 32943.1, "end": 32943.2, "probability": 0.2715 }, { "start": 32943.3, "end": 32948.46, "probability": 0.5829 }, { "start": 32948.46, "end": 32948.58, "probability": 0.6388 }, { "start": 32950.64, "end": 32951.38, "probability": 0.6591 }, { "start": 32957.7, "end": 32961.94, "probability": 0.9948 }, { "start": 32963.5, "end": 32965.78, "probability": 0.9224 }, { "start": 32965.9, "end": 32966.68, "probability": 0.5252 }, { "start": 32966.78, "end": 32968.14, "probability": 0.5768 }, { "start": 32968.32, "end": 32974.86, "probability": 0.3059 }, { "start": 32977.06, "end": 32977.06, "probability": 0.0276 }, { "start": 32979.22, "end": 32979.32, "probability": 0.0526 }, { "start": 32979.32, "end": 32980.08, "probability": 0.1133 }, { "start": 32980.08, "end": 32980.94, "probability": 0.1067 }, { "start": 32981.04, "end": 32984.84, "probability": 0.8604 }, { "start": 32985.52, "end": 32989.72, "probability": 0.9811 }, { "start": 32990.06, "end": 32991.16, "probability": 0.9756 }, { "start": 32991.44, "end": 32992.14, "probability": 0.6001 }, { "start": 32992.64, "end": 32993.74, "probability": 0.1839 }, { "start": 32993.82, "end": 32994.8, "probability": 0.3109 }, { "start": 32994.94, "end": 32997.08, "probability": 0.9095 }, { "start": 32997.16, "end": 32999.14, "probability": 0.9777 }, { "start": 32999.22, "end": 33004.84, "probability": 0.99 }, { "start": 33005.32, "end": 33011.98, "probability": 0.9985 }, { "start": 33012.6, "end": 33013.5, "probability": 0.999 }, { "start": 33015.9, "end": 33019.96, "probability": 0.5679 }, { "start": 33020.08, "end": 33021.22, "probability": 0.8462 }, { "start": 33022.26, "end": 33023.56, "probability": 0.9436 }, { "start": 33024.52, "end": 33025.14, "probability": 0.2511 }, { "start": 33025.26, "end": 33030.26, "probability": 0.979 }, { "start": 33031.12, "end": 33035.24, "probability": 0.8256 }, { "start": 33036.0, "end": 33037.26, "probability": 0.8752 }, { "start": 33037.44, "end": 33039.54, "probability": 0.9956 }, { "start": 33040.06, "end": 33041.64, "probability": 0.7833 }, { "start": 33042.22, "end": 33048.84, "probability": 0.9834 }, { "start": 33049.56, "end": 33051.38, "probability": 0.7051 }, { "start": 33051.62, "end": 33053.02, "probability": 0.8872 }, { "start": 33053.34, "end": 33061.1, "probability": 0.7281 }, { "start": 33061.88, "end": 33062.96, "probability": 0.8827 }, { "start": 33063.36, "end": 33064.8, "probability": 0.9114 }, { "start": 33064.98, "end": 33066.12, "probability": 0.9573 }, { "start": 33066.7, "end": 33068.12, "probability": 0.993 }, { "start": 33068.72, "end": 33071.28, "probability": 0.9989 }, { "start": 33072.22, "end": 33074.58, "probability": 0.8775 }, { "start": 33075.2, "end": 33082.82, "probability": 0.8754 }, { "start": 33084.06, "end": 33088.16, "probability": 0.9879 }, { "start": 33089.62, "end": 33090.94, "probability": 0.6622 }, { "start": 33091.74, "end": 33092.83, "probability": 0.9979 }, { "start": 33093.5, "end": 33099.18, "probability": 0.9908 }, { "start": 33099.38, "end": 33100.88, "probability": 0.8262 }, { "start": 33101.62, "end": 33102.38, "probability": 0.5279 }, { "start": 33102.58, "end": 33103.06, "probability": 0.7706 }, { "start": 33103.14, "end": 33104.5, "probability": 0.9244 }, { "start": 33104.98, "end": 33106.06, "probability": 0.9755 }, { "start": 33106.18, "end": 33107.28, "probability": 0.9419 }, { "start": 33107.8, "end": 33109.24, "probability": 0.7603 }, { "start": 33109.9, "end": 33114.62, "probability": 0.871 }, { "start": 33114.88, "end": 33118.18, "probability": 0.9971 }, { "start": 33118.32, "end": 33122.66, "probability": 0.9995 }, { "start": 33123.1, "end": 33123.26, "probability": 0.5526 }, { "start": 33124.04, "end": 33128.06, "probability": 0.9968 }, { "start": 33128.06, "end": 33132.68, "probability": 0.9981 }, { "start": 33132.94, "end": 33134.0, "probability": 0.8745 }, { "start": 33134.54, "end": 33135.62, "probability": 0.9565 }, { "start": 33136.56, "end": 33139.52, "probability": 0.9949 }, { "start": 33140.2, "end": 33141.62, "probability": 0.9523 }, { "start": 33142.14, "end": 33148.08, "probability": 0.9926 }, { "start": 33148.66, "end": 33152.76, "probability": 0.7849 }, { "start": 33153.62, "end": 33154.48, "probability": 0.5264 }, { "start": 33154.64, "end": 33157.54, "probability": 0.7012 }, { "start": 33157.78, "end": 33158.72, "probability": 0.7102 }, { "start": 33160.9, "end": 33165.54, "probability": 0.9365 }, { "start": 33166.04, "end": 33171.3, "probability": 0.9561 }, { "start": 33171.93, "end": 33172.8, "probability": 0.9091 }, { "start": 33173.24, "end": 33177.0, "probability": 0.9941 }, { "start": 33177.0, "end": 33181.9, "probability": 0.9917 }, { "start": 33182.6, "end": 33184.04, "probability": 0.9713 }, { "start": 33184.18, "end": 33185.6, "probability": 0.9469 }, { "start": 33185.82, "end": 33186.12, "probability": 0.7996 }, { "start": 33186.58, "end": 33190.3, "probability": 0.9239 }, { "start": 33190.38, "end": 33191.65, "probability": 0.4998 }, { "start": 33193.44, "end": 33196.66, "probability": 0.9902 }, { "start": 33197.08, "end": 33203.18, "probability": 0.9673 }, { "start": 33203.66, "end": 33207.92, "probability": 0.9419 }, { "start": 33208.1, "end": 33213.88, "probability": 0.9365 }, { "start": 33214.54, "end": 33219.46, "probability": 0.9453 }, { "start": 33219.46, "end": 33220.52, "probability": 0.0536 }, { "start": 33220.72, "end": 33222.7, "probability": 0.9827 }, { "start": 33222.92, "end": 33223.62, "probability": 0.8072 }, { "start": 33223.7, "end": 33230.08, "probability": 0.9897 }, { "start": 33230.56, "end": 33232.6, "probability": 0.9922 }, { "start": 33232.9, "end": 33232.9, "probability": 0.6942 }, { "start": 33233.2, "end": 33237.72, "probability": 0.9932 }, { "start": 33238.14, "end": 33242.9, "probability": 0.8815 }, { "start": 33243.6, "end": 33244.46, "probability": 0.9907 }, { "start": 33244.72, "end": 33245.34, "probability": 0.6008 }, { "start": 33245.5, "end": 33246.94, "probability": 0.8667 }, { "start": 33247.94, "end": 33254.04, "probability": 0.9722 }, { "start": 33254.04, "end": 33254.34, "probability": 0.5834 }, { "start": 33254.52, "end": 33256.84, "probability": 0.9896 }, { "start": 33257.36, "end": 33260.51, "probability": 0.9647 }, { "start": 33261.86, "end": 33261.86, "probability": 0.1694 }, { "start": 33261.86, "end": 33262.66, "probability": 0.5553 }, { "start": 33266.91, "end": 33268.74, "probability": 0.6413 }, { "start": 33270.1, "end": 33271.68, "probability": 0.3605 }, { "start": 33286.92, "end": 33287.13, "probability": 0.3551 }, { "start": 33287.46, "end": 33288.24, "probability": 0.6392 }, { "start": 33289.16, "end": 33292.18, "probability": 0.9827 }, { "start": 33293.52, "end": 33297.84, "probability": 0.9904 }, { "start": 33299.04, "end": 33300.18, "probability": 0.9963 }, { "start": 33300.88, "end": 33301.54, "probability": 0.5321 }, { "start": 33302.58, "end": 33302.86, "probability": 0.5721 }, { "start": 33303.66, "end": 33305.52, "probability": 0.989 }, { "start": 33307.32, "end": 33311.32, "probability": 0.8763 }, { "start": 33311.96, "end": 33313.9, "probability": 0.9963 }, { "start": 33314.48, "end": 33315.48, "probability": 0.3129 }, { "start": 33316.1, "end": 33317.82, "probability": 0.8811 }, { "start": 33318.62, "end": 33320.16, "probability": 0.9297 }, { "start": 33320.72, "end": 33323.88, "probability": 0.9325 }, { "start": 33325.1, "end": 33326.92, "probability": 0.8901 }, { "start": 33327.64, "end": 33328.66, "probability": 0.6989 }, { "start": 33329.46, "end": 33331.64, "probability": 0.9939 }, { "start": 33332.4, "end": 33334.08, "probability": 0.9254 }, { "start": 33334.72, "end": 33334.98, "probability": 0.9918 }, { "start": 33335.7, "end": 33340.3, "probability": 0.8341 }, { "start": 33341.42, "end": 33343.38, "probability": 0.9956 }, { "start": 33344.14, "end": 33346.32, "probability": 0.9351 }, { "start": 33347.74, "end": 33352.7, "probability": 0.7092 }, { "start": 33353.48, "end": 33355.02, "probability": 0.9945 }, { "start": 33355.54, "end": 33359.62, "probability": 0.9502 }, { "start": 33360.22, "end": 33361.9, "probability": 0.9013 }, { "start": 33362.38, "end": 33365.78, "probability": 0.964 }, { "start": 33366.42, "end": 33368.57, "probability": 0.9994 }, { "start": 33369.28, "end": 33369.64, "probability": 0.6593 }, { "start": 33370.4, "end": 33373.38, "probability": 0.9831 }, { "start": 33374.5, "end": 33374.84, "probability": 0.3141 }, { "start": 33375.0, "end": 33376.42, "probability": 0.7518 }, { "start": 33377.1, "end": 33380.62, "probability": 0.9967 }, { "start": 33381.04, "end": 33381.28, "probability": 0.7764 }, { "start": 33381.96, "end": 33382.22, "probability": 0.9304 }, { "start": 33383.3, "end": 33384.06, "probability": 0.9611 }, { "start": 33384.68, "end": 33386.16, "probability": 0.9452 }, { "start": 33386.64, "end": 33389.28, "probability": 0.8521 }, { "start": 33390.02, "end": 33392.67, "probability": 0.9757 }, { "start": 33393.38, "end": 33393.62, "probability": 0.9897 }, { "start": 33393.86, "end": 33398.68, "probability": 0.9739 }, { "start": 33399.0, "end": 33400.08, "probability": 0.8986 }, { "start": 33401.52, "end": 33403.84, "probability": 0.9935 }, { "start": 33404.04, "end": 33407.08, "probability": 0.9927 }, { "start": 33407.74, "end": 33408.3, "probability": 0.9569 }, { "start": 33409.44, "end": 33411.22, "probability": 0.9262 }, { "start": 33412.14, "end": 33413.36, "probability": 0.5536 }, { "start": 33413.94, "end": 33414.78, "probability": 0.7404 }, { "start": 33415.4, "end": 33416.04, "probability": 0.7231 }, { "start": 33417.14, "end": 33419.4, "probability": 0.9442 }, { "start": 33420.58, "end": 33422.04, "probability": 0.8162 }, { "start": 33422.44, "end": 33423.8, "probability": 0.9631 }, { "start": 33424.14, "end": 33424.86, "probability": 0.856 }, { "start": 33425.52, "end": 33427.8, "probability": 0.9455 }, { "start": 33428.16, "end": 33429.18, "probability": 0.9956 }, { "start": 33430.44, "end": 33431.7, "probability": 0.9024 }, { "start": 33432.26, "end": 33432.72, "probability": 0.916 }, { "start": 33433.32, "end": 33435.38, "probability": 0.9614 }, { "start": 33436.18, "end": 33438.88, "probability": 0.9209 }, { "start": 33439.38, "end": 33443.04, "probability": 0.9938 }, { "start": 33443.56, "end": 33446.06, "probability": 0.9919 }, { "start": 33446.54, "end": 33448.66, "probability": 0.992 }, { "start": 33449.68, "end": 33452.46, "probability": 0.9609 }, { "start": 33453.54, "end": 33455.96, "probability": 0.9351 }, { "start": 33456.6, "end": 33460.04, "probability": 0.755 }, { "start": 33460.08, "end": 33461.38, "probability": 0.6436 }, { "start": 33461.76, "end": 33463.66, "probability": 0.982 }, { "start": 33463.92, "end": 33464.84, "probability": 0.8564 }, { "start": 33465.08, "end": 33465.08, "probability": 0.3557 }, { "start": 33465.12, "end": 33466.28, "probability": 0.6257 }, { "start": 33487.44, "end": 33490.06, "probability": 0.521 }, { "start": 33508.16, "end": 33509.7, "probability": 0.7643 }, { "start": 33512.68, "end": 33514.62, "probability": 0.926 }, { "start": 33522.72, "end": 33528.46, "probability": 0.9981 }, { "start": 33529.4, "end": 33531.98, "probability": 0.8793 }, { "start": 33533.24, "end": 33533.86, "probability": 0.8832 }, { "start": 33534.86, "end": 33535.64, "probability": 0.9417 }, { "start": 33536.34, "end": 33537.86, "probability": 0.9228 }, { "start": 33539.26, "end": 33541.84, "probability": 0.9824 }, { "start": 33542.9, "end": 33547.2, "probability": 0.9954 }, { "start": 33549.56, "end": 33552.9, "probability": 0.9392 }, { "start": 33554.22, "end": 33555.37, "probability": 0.7661 }, { "start": 33556.42, "end": 33560.84, "probability": 0.8975 }, { "start": 33561.38, "end": 33563.84, "probability": 0.9438 }, { "start": 33564.62, "end": 33566.12, "probability": 0.9293 }, { "start": 33566.8, "end": 33567.88, "probability": 0.9518 }, { "start": 33567.98, "end": 33570.14, "probability": 0.9976 }, { "start": 33570.3, "end": 33574.92, "probability": 0.9912 }, { "start": 33575.6, "end": 33578.68, "probability": 0.9909 }, { "start": 33581.82, "end": 33582.6, "probability": 0.6243 }, { "start": 33584.5, "end": 33587.12, "probability": 0.7161 }, { "start": 33588.66, "end": 33589.96, "probability": 0.962 }, { "start": 33590.82, "end": 33597.26, "probability": 0.9365 }, { "start": 33598.74, "end": 33600.16, "probability": 0.9861 }, { "start": 33600.98, "end": 33602.06, "probability": 0.9371 }, { "start": 33603.5, "end": 33605.64, "probability": 0.9524 }, { "start": 33606.3, "end": 33609.74, "probability": 0.6671 }, { "start": 33610.5, "end": 33614.08, "probability": 0.9068 }, { "start": 33615.36, "end": 33618.96, "probability": 0.969 }, { "start": 33619.62, "end": 33620.8, "probability": 0.741 }, { "start": 33620.86, "end": 33622.0, "probability": 0.9297 }, { "start": 33622.62, "end": 33624.1, "probability": 0.9868 }, { "start": 33624.82, "end": 33625.94, "probability": 0.8568 }, { "start": 33626.5, "end": 33630.08, "probability": 0.7234 }, { "start": 33631.1, "end": 33632.62, "probability": 0.9882 }, { "start": 33633.42, "end": 33635.96, "probability": 0.9193 }, { "start": 33637.82, "end": 33639.9, "probability": 0.9655 }, { "start": 33640.78, "end": 33644.66, "probability": 0.969 }, { "start": 33645.74, "end": 33648.98, "probability": 0.9788 }, { "start": 33649.84, "end": 33651.46, "probability": 0.9693 }, { "start": 33653.08, "end": 33657.84, "probability": 0.9933 }, { "start": 33658.42, "end": 33659.58, "probability": 0.8713 }, { "start": 33660.5, "end": 33661.72, "probability": 0.9402 }, { "start": 33662.7, "end": 33665.52, "probability": 0.9941 }, { "start": 33667.08, "end": 33669.42, "probability": 0.8007 }, { "start": 33669.9, "end": 33670.66, "probability": 0.7235 }, { "start": 33671.24, "end": 33672.04, "probability": 0.8555 }, { "start": 33672.4, "end": 33674.28, "probability": 0.9277 }, { "start": 33674.34, "end": 33674.52, "probability": 0.0659 }, { "start": 33674.56, "end": 33675.94, "probability": 0.6962 }, { "start": 33676.36, "end": 33679.5, "probability": 0.9966 }, { "start": 33679.92, "end": 33681.38, "probability": 0.8691 }, { "start": 33683.75, "end": 33687.54, "probability": 0.9979 }, { "start": 33688.38, "end": 33690.66, "probability": 0.9171 }, { "start": 33691.2, "end": 33693.82, "probability": 0.9894 }, { "start": 33694.24, "end": 33696.74, "probability": 0.8329 }, { "start": 33697.36, "end": 33698.98, "probability": 0.9992 }, { "start": 33699.52, "end": 33702.9, "probability": 0.7918 }, { "start": 33703.72, "end": 33705.94, "probability": 0.941 }, { "start": 33707.78, "end": 33711.92, "probability": 0.9544 }, { "start": 33712.14, "end": 33712.94, "probability": 0.8534 }, { "start": 33713.02, "end": 33716.22, "probability": 0.9866 }, { "start": 33717.04, "end": 33717.76, "probability": 0.722 }, { "start": 33718.4, "end": 33720.72, "probability": 0.7568 }, { "start": 33721.42, "end": 33723.52, "probability": 0.8842 }, { "start": 33724.06, "end": 33727.52, "probability": 0.978 }, { "start": 33728.14, "end": 33728.78, "probability": 0.9122 }, { "start": 33729.76, "end": 33729.84, "probability": 0.4756 }, { "start": 33729.84, "end": 33732.12, "probability": 0.8136 }, { "start": 33732.14, "end": 33733.3, "probability": 0.9989 }, { "start": 33733.84, "end": 33735.04, "probability": 0.9245 }, { "start": 33735.8, "end": 33737.3, "probability": 0.5578 }, { "start": 33737.5, "end": 33738.28, "probability": 0.5818 }, { "start": 33738.34, "end": 33739.44, "probability": 0.9561 }, { "start": 33740.66, "end": 33740.92, "probability": 0.9033 }, { "start": 33742.76, "end": 33744.62, "probability": 0.8431 }, { "start": 33745.62, "end": 33749.1, "probability": 0.5468 }, { "start": 33749.74, "end": 33751.8, "probability": 0.7664 }, { "start": 33752.74, "end": 33752.74, "probability": 0.3128 }, { "start": 33754.76, "end": 33756.26, "probability": 0.0524 }, { "start": 33759.02, "end": 33759.8, "probability": 0.0658 }, { "start": 33779.04, "end": 33780.9, "probability": 0.5815 }, { "start": 33781.88, "end": 33783.26, "probability": 0.7804 }, { "start": 33786.8, "end": 33788.94, "probability": 0.9606 }, { "start": 33789.26, "end": 33790.1, "probability": 0.848 }, { "start": 33791.9, "end": 33793.1, "probability": 0.9801 }, { "start": 33794.88, "end": 33794.88, "probability": 0.8701 }, { "start": 33796.2, "end": 33796.9, "probability": 0.9068 }, { "start": 33798.18, "end": 33799.62, "probability": 0.9336 }, { "start": 33800.58, "end": 33801.46, "probability": 0.9582 }, { "start": 33802.82, "end": 33804.62, "probability": 0.8705 }, { "start": 33804.96, "end": 33807.08, "probability": 0.9082 }, { "start": 33808.06, "end": 33808.26, "probability": 0.9651 }, { "start": 33809.3, "end": 33810.1, "probability": 0.7661 }, { "start": 33811.16, "end": 33811.52, "probability": 0.8026 }, { "start": 33812.08, "end": 33815.76, "probability": 0.9771 }, { "start": 33816.4, "end": 33817.04, "probability": 0.9589 }, { "start": 33818.96, "end": 33820.26, "probability": 0.9421 }, { "start": 33822.28, "end": 33826.88, "probability": 0.9922 }, { "start": 33827.1, "end": 33827.94, "probability": 0.7495 }, { "start": 33828.92, "end": 33829.68, "probability": 0.8447 }, { "start": 33830.39, "end": 33833.96, "probability": 0.8358 }, { "start": 33834.54, "end": 33835.54, "probability": 0.9341 }, { "start": 33836.08, "end": 33839.94, "probability": 0.8019 }, { "start": 33840.04, "end": 33840.5, "probability": 0.324 }, { "start": 33840.64, "end": 33841.2, "probability": 0.5862 }, { "start": 33842.4, "end": 33843.2, "probability": 0.8267 }, { "start": 33843.8, "end": 33844.98, "probability": 0.7612 }, { "start": 33845.08, "end": 33845.7, "probability": 0.6748 }, { "start": 33845.72, "end": 33847.72, "probability": 0.8696 }, { "start": 33848.4, "end": 33852.2, "probability": 0.9164 }, { "start": 33853.02, "end": 33853.78, "probability": 0.8139 }, { "start": 33854.24, "end": 33855.8, "probability": 0.9922 }, { "start": 33856.36, "end": 33857.28, "probability": 0.9888 }, { "start": 33857.44, "end": 33859.0, "probability": 0.9359 }, { "start": 33859.24, "end": 33861.54, "probability": 0.9171 }, { "start": 33861.62, "end": 33867.24, "probability": 0.9911 }, { "start": 33868.08, "end": 33868.88, "probability": 0.9763 }, { "start": 33870.34, "end": 33871.9, "probability": 0.9888 }, { "start": 33872.04, "end": 33874.54, "probability": 0.984 }, { "start": 33875.92, "end": 33876.72, "probability": 0.939 }, { "start": 33876.82, "end": 33878.32, "probability": 0.9635 }, { "start": 33879.74, "end": 33880.64, "probability": 0.9878 }, { "start": 33880.9, "end": 33882.34, "probability": 0.9312 }, { "start": 33882.92, "end": 33883.58, "probability": 0.9404 }, { "start": 33884.48, "end": 33891.86, "probability": 0.997 }, { "start": 33891.96, "end": 33892.32, "probability": 0.8648 }, { "start": 33892.88, "end": 33894.06, "probability": 0.9726 }, { "start": 33894.62, "end": 33895.9, "probability": 0.9724 }, { "start": 33896.26, "end": 33898.7, "probability": 0.998 }, { "start": 33900.22, "end": 33900.91, "probability": 0.5333 }, { "start": 33901.84, "end": 33904.82, "probability": 0.9849 }, { "start": 33905.84, "end": 33906.78, "probability": 0.8782 }, { "start": 33906.78, "end": 33907.62, "probability": 0.6505 }, { "start": 33907.72, "end": 33908.38, "probability": 0.8385 }, { "start": 33908.46, "end": 33909.1, "probability": 0.8605 }, { "start": 33909.22, "end": 33909.76, "probability": 0.7537 }, { "start": 33910.76, "end": 33912.4, "probability": 0.3031 }, { "start": 33912.72, "end": 33913.3, "probability": 0.227 }, { "start": 33914.85, "end": 33918.56, "probability": 0.7717 }, { "start": 33919.36, "end": 33922.42, "probability": 0.9308 }, { "start": 33922.98, "end": 33925.18, "probability": 0.7012 }, { "start": 33925.32, "end": 33925.81, "probability": 0.9919 }, { "start": 33927.0, "end": 33927.72, "probability": 0.7911 }, { "start": 33928.68, "end": 33929.32, "probability": 0.6057 }, { "start": 33929.56, "end": 33930.54, "probability": 0.6984 }, { "start": 33931.12, "end": 33931.38, "probability": 0.6381 }, { "start": 33931.46, "end": 33931.95, "probability": 0.9808 }, { "start": 33932.3, "end": 33932.69, "probability": 0.9767 }, { "start": 33933.34, "end": 33933.91, "probability": 0.9421 }, { "start": 33934.22, "end": 33934.68, "probability": 0.7354 }, { "start": 33935.76, "end": 33937.42, "probability": 0.8245 }, { "start": 33938.08, "end": 33939.52, "probability": 0.9843 }, { "start": 33942.18, "end": 33945.04, "probability": 0.6651 }, { "start": 33945.18, "end": 33947.32, "probability": 0.8741 }, { "start": 33948.5, "end": 33950.26, "probability": 0.916 }, { "start": 33950.32, "end": 33952.36, "probability": 0.9514 }, { "start": 33952.7, "end": 33953.92, "probability": 0.9424 }, { "start": 33954.34, "end": 33955.68, "probability": 0.9956 }, { "start": 33955.92, "end": 33956.42, "probability": 0.9506 }, { "start": 33957.44, "end": 33960.38, "probability": 0.905 }, { "start": 33960.86, "end": 33963.9, "probability": 0.9566 }, { "start": 33964.46, "end": 33967.1, "probability": 0.9207 }, { "start": 33967.8, "end": 33969.48, "probability": 0.9869 }, { "start": 33970.4, "end": 33971.62, "probability": 0.9844 }, { "start": 33971.7, "end": 33972.2, "probability": 0.898 }, { "start": 33973.68, "end": 33974.26, "probability": 0.9678 }, { "start": 33976.32, "end": 33979.64, "probability": 0.9946 }, { "start": 33979.64, "end": 33983.44, "probability": 0.9949 }, { "start": 33984.06, "end": 33985.08, "probability": 0.5884 }, { "start": 33985.74, "end": 33987.54, "probability": 0.7192 }, { "start": 33988.26, "end": 33990.46, "probability": 0.7496 }, { "start": 33990.76, "end": 33995.5, "probability": 0.9762 }, { "start": 33995.58, "end": 33995.94, "probability": 0.5952 }, { "start": 33996.34, "end": 33997.64, "probability": 0.6764 }, { "start": 33998.24, "end": 33998.62, "probability": 0.645 }, { "start": 33999.76, "end": 34001.78, "probability": 0.9555 }, { "start": 34002.7, "end": 34003.04, "probability": 0.9437 }, { "start": 34003.38, "end": 34005.68, "probability": 0.7717 }, { "start": 34016.5, "end": 34016.74, "probability": 0.1025 }, { "start": 34017.12, "end": 34017.78, "probability": 0.0222 }, { "start": 34030.1, "end": 34031.48, "probability": 0.6386 }, { "start": 34033.04, "end": 34034.14, "probability": 0.7209 }, { "start": 34035.0, "end": 34036.4, "probability": 0.6286 }, { "start": 34045.42, "end": 34045.78, "probability": 0.5566 }, { "start": 34048.56, "end": 34049.82, "probability": 0.4256 }, { "start": 34050.26, "end": 34050.7, "probability": 0.8116 }, { "start": 34050.82, "end": 34051.0, "probability": 0.8365 }, { "start": 34053.86, "end": 34058.42, "probability": 0.9984 }, { "start": 34059.94, "end": 34061.37, "probability": 0.4507 }, { "start": 34062.94, "end": 34063.22, "probability": 0.9026 }, { "start": 34065.02, "end": 34070.02, "probability": 0.9572 }, { "start": 34070.06, "end": 34070.68, "probability": 0.5896 }, { "start": 34072.48, "end": 34073.9, "probability": 0.9163 }, { "start": 34074.6, "end": 34075.18, "probability": 0.8861 }, { "start": 34075.84, "end": 34076.64, "probability": 0.7738 }, { "start": 34077.96, "end": 34080.14, "probability": 0.9976 }, { "start": 34081.24, "end": 34082.56, "probability": 0.7502 }, { "start": 34083.32, "end": 34084.6, "probability": 0.9165 }, { "start": 34085.18, "end": 34087.78, "probability": 0.9819 }, { "start": 34089.54, "end": 34091.86, "probability": 0.9729 }, { "start": 34092.14, "end": 34095.13, "probability": 0.6845 }, { "start": 34097.16, "end": 34101.12, "probability": 0.9986 }, { "start": 34101.8, "end": 34103.76, "probability": 0.9875 }, { "start": 34104.04, "end": 34105.08, "probability": 0.8669 }, { "start": 34106.3, "end": 34110.5, "probability": 0.9412 }, { "start": 34111.16, "end": 34113.44, "probability": 0.9808 }, { "start": 34114.94, "end": 34116.64, "probability": 0.9929 }, { "start": 34117.24, "end": 34120.55, "probability": 0.9989 }, { "start": 34122.9, "end": 34124.52, "probability": 0.9247 }, { "start": 34125.74, "end": 34127.3, "probability": 0.9838 }, { "start": 34128.74, "end": 34130.37, "probability": 0.7816 }, { "start": 34132.06, "end": 34134.98, "probability": 0.9912 }, { "start": 34136.02, "end": 34145.66, "probability": 0.992 }, { "start": 34146.52, "end": 34147.22, "probability": 0.7598 }, { "start": 34148.66, "end": 34149.28, "probability": 0.9442 }, { "start": 34150.44, "end": 34153.12, "probability": 0.965 }, { "start": 34154.56, "end": 34156.8, "probability": 0.9705 }, { "start": 34157.8, "end": 34159.2, "probability": 0.9347 }, { "start": 34161.08, "end": 34164.52, "probability": 0.9904 }, { "start": 34164.69, "end": 34171.74, "probability": 0.9861 }, { "start": 34173.4, "end": 34177.91, "probability": 0.8397 }, { "start": 34178.5, "end": 34179.74, "probability": 0.9212 }, { "start": 34180.52, "end": 34181.1, "probability": 0.7679 }, { "start": 34182.58, "end": 34183.34, "probability": 0.9625 }, { "start": 34184.76, "end": 34186.62, "probability": 0.999 }, { "start": 34187.54, "end": 34190.14, "probability": 0.9927 }, { "start": 34191.78, "end": 34193.6, "probability": 0.9574 }, { "start": 34196.02, "end": 34197.16, "probability": 0.7935 }, { "start": 34198.1, "end": 34203.5, "probability": 0.9745 }, { "start": 34204.14, "end": 34205.36, "probability": 0.5138 }, { "start": 34205.44, "end": 34208.18, "probability": 0.9857 }, { "start": 34209.14, "end": 34210.1, "probability": 0.8943 }, { "start": 34211.02, "end": 34214.12, "probability": 0.995 }, { "start": 34215.08, "end": 34216.1, "probability": 0.9836 }, { "start": 34216.72, "end": 34217.97, "probability": 0.9902 }, { "start": 34219.5, "end": 34220.76, "probability": 0.9929 }, { "start": 34221.56, "end": 34223.74, "probability": 0.9986 }, { "start": 34225.3, "end": 34228.52, "probability": 0.9848 }, { "start": 34229.34, "end": 34232.0, "probability": 0.9859 }, { "start": 34233.28, "end": 34235.96, "probability": 0.9565 }, { "start": 34236.5, "end": 34236.96, "probability": 0.9503 }, { "start": 34237.02, "end": 34237.48, "probability": 0.7631 }, { "start": 34237.74, "end": 34237.9, "probability": 0.0238 }, { "start": 34237.92, "end": 34239.7, "probability": 0.9731 }, { "start": 34240.46, "end": 34241.36, "probability": 0.7898 }, { "start": 34242.3, "end": 34246.04, "probability": 0.8876 }, { "start": 34247.42, "end": 34251.55, "probability": 0.9564 }, { "start": 34252.5, "end": 34255.92, "probability": 0.9849 }, { "start": 34256.7, "end": 34260.84, "probability": 0.9402 }, { "start": 34261.92, "end": 34263.42, "probability": 0.5765 }, { "start": 34264.1, "end": 34264.68, "probability": 0.5293 }, { "start": 34265.08, "end": 34266.3, "probability": 0.8292 }, { "start": 34267.96, "end": 34270.78, "probability": 0.9917 }, { "start": 34271.22, "end": 34273.92, "probability": 0.9994 }, { "start": 34274.16, "end": 34274.54, "probability": 0.733 }, { "start": 34274.62, "end": 34278.0, "probability": 0.8345 }, { "start": 34285.3, "end": 34286.32, "probability": 0.8067 }, { "start": 34286.32, "end": 34288.02, "probability": 0.3258 }, { "start": 34288.88, "end": 34290.34, "probability": 0.5076 }, { "start": 34291.26, "end": 34293.04, "probability": 0.2409 }, { "start": 34293.16, "end": 34293.46, "probability": 0.0157 }, { "start": 34302.22, "end": 34304.52, "probability": 0.8628 }, { "start": 34304.6, "end": 34307.17, "probability": 0.6031 }, { "start": 34307.42, "end": 34308.22, "probability": 0.8836 }, { "start": 34308.54, "end": 34309.86, "probability": 0.9634 }, { "start": 34310.98, "end": 34314.24, "probability": 0.9536 }, { "start": 34315.2, "end": 34318.26, "probability": 0.9971 }, { "start": 34318.46, "end": 34321.14, "probability": 0.9946 }, { "start": 34321.74, "end": 34327.24, "probability": 0.9518 }, { "start": 34328.06, "end": 34334.7, "probability": 0.9972 }, { "start": 34334.7, "end": 34341.54, "probability": 0.9987 }, { "start": 34343.1, "end": 34344.2, "probability": 0.6409 }, { "start": 34345.76, "end": 34348.56, "probability": 0.7654 }, { "start": 34349.62, "end": 34353.38, "probability": 0.6649 }, { "start": 34354.28, "end": 34357.96, "probability": 0.9749 }, { "start": 34358.78, "end": 34359.48, "probability": 0.9146 }, { "start": 34360.12, "end": 34361.9, "probability": 0.9824 }, { "start": 34362.86, "end": 34364.0, "probability": 0.8318 }, { "start": 34366.36, "end": 34369.02, "probability": 0.9817 }, { "start": 34369.5, "end": 34371.76, "probability": 0.1646 }, { "start": 34371.76, "end": 34372.14, "probability": 0.2199 }, { "start": 34372.14, "end": 34372.52, "probability": 0.3439 }, { "start": 34372.86, "end": 34375.94, "probability": 0.8536 }, { "start": 34376.82, "end": 34378.84, "probability": 0.8765 }, { "start": 34379.58, "end": 34380.4, "probability": 0.9939 }, { "start": 34383.34, "end": 34386.1, "probability": 0.9951 }, { "start": 34386.82, "end": 34391.98, "probability": 0.9916 }, { "start": 34392.92, "end": 34394.62, "probability": 0.998 }, { "start": 34395.54, "end": 34395.74, "probability": 0.3813 }, { "start": 34396.36, "end": 34398.26, "probability": 0.9138 }, { "start": 34398.54, "end": 34402.02, "probability": 0.9718 }, { "start": 34402.18, "end": 34402.36, "probability": 0.7913 }, { "start": 34403.6, "end": 34404.28, "probability": 0.8942 }, { "start": 34405.7, "end": 34407.98, "probability": 0.9779 }, { "start": 34409.54, "end": 34411.8, "probability": 0.9971 }, { "start": 34412.52, "end": 34414.94, "probability": 0.9679 }, { "start": 34415.8, "end": 34417.7, "probability": 0.9958 }, { "start": 34419.28, "end": 34425.72, "probability": 0.9665 }, { "start": 34426.08, "end": 34428.44, "probability": 0.9945 }, { "start": 34429.1, "end": 34430.24, "probability": 0.5441 }, { "start": 34430.78, "end": 34436.66, "probability": 0.9792 }, { "start": 34437.5, "end": 34440.88, "probability": 0.9975 }, { "start": 34442.46, "end": 34447.9, "probability": 0.9222 }, { "start": 34449.02, "end": 34450.02, "probability": 0.6817 }, { "start": 34450.12, "end": 34451.08, "probability": 0.9333 }, { "start": 34451.82, "end": 34453.06, "probability": 0.9025 }, { "start": 34454.52, "end": 34455.07, "probability": 0.9946 }, { "start": 34455.72, "end": 34456.86, "probability": 0.9431 }, { "start": 34458.5, "end": 34459.18, "probability": 0.962 }, { "start": 34460.13, "end": 34465.66, "probability": 0.9951 }, { "start": 34465.84, "end": 34466.36, "probability": 0.9924 }, { "start": 34466.96, "end": 34467.92, "probability": 0.9088 }, { "start": 34468.96, "end": 34472.14, "probability": 0.8083 }, { "start": 34472.86, "end": 34475.04, "probability": 0.9522 }, { "start": 34475.44, "end": 34476.84, "probability": 0.9017 }, { "start": 34477.06, "end": 34479.16, "probability": 0.9972 }, { "start": 34480.08, "end": 34484.38, "probability": 0.9681 }, { "start": 34485.36, "end": 34486.72, "probability": 0.9834 }, { "start": 34487.76, "end": 34491.36, "probability": 0.8882 }, { "start": 34492.22, "end": 34495.9, "probability": 0.9988 }, { "start": 34496.72, "end": 34500.62, "probability": 0.9871 }, { "start": 34501.5, "end": 34504.23, "probability": 0.9807 }, { "start": 34505.2, "end": 34509.26, "probability": 0.8147 }, { "start": 34509.26, "end": 34512.8, "probability": 0.9958 }, { "start": 34513.18, "end": 34517.1, "probability": 0.9487 }, { "start": 34517.86, "end": 34518.62, "probability": 0.8207 }, { "start": 34519.38, "end": 34521.86, "probability": 0.9762 }, { "start": 34523.36, "end": 34526.64, "probability": 0.9927 }, { "start": 34527.4, "end": 34530.51, "probability": 0.9881 }, { "start": 34530.76, "end": 34530.98, "probability": 0.5459 }, { "start": 34531.18, "end": 34532.46, "probability": 0.8976 }, { "start": 34534.22, "end": 34534.98, "probability": 0.95 }, { "start": 34535.52, "end": 34536.64, "probability": 0.7612 }, { "start": 34536.94, "end": 34537.46, "probability": 0.9885 }, { "start": 34537.82, "end": 34538.52, "probability": 0.9075 }, { "start": 34539.16, "end": 34542.12, "probability": 0.9785 }, { "start": 34542.68, "end": 34545.78, "probability": 0.8518 }, { "start": 34552.1, "end": 34552.62, "probability": 0.8837 }, { "start": 34552.62, "end": 34556.2, "probability": 0.0237 }, { "start": 34567.9, "end": 34568.84, "probability": 0.0573 }, { "start": 34570.08, "end": 34570.62, "probability": 0.6225 }, { "start": 34570.78, "end": 34572.78, "probability": 0.8398 }, { "start": 34573.1, "end": 34575.36, "probability": 0.8623 }, { "start": 34576.66, "end": 34577.4, "probability": 0.9394 }, { "start": 34577.94, "end": 34580.76, "probability": 0.8012 }, { "start": 34581.46, "end": 34587.9, "probability": 0.8271 }, { "start": 34588.68, "end": 34589.86, "probability": 0.8299 }, { "start": 34591.6, "end": 34595.76, "probability": 0.8281 }, { "start": 34597.04, "end": 34598.5, "probability": 0.9323 }, { "start": 34599.26, "end": 34601.8, "probability": 0.9327 }, { "start": 34603.54, "end": 34605.2, "probability": 0.3977 }, { "start": 34606.86, "end": 34612.4, "probability": 0.984 }, { "start": 34613.04, "end": 34617.28, "probability": 0.9408 }, { "start": 34617.34, "end": 34618.0, "probability": 0.8184 }, { "start": 34619.32, "end": 34623.84, "probability": 0.974 }, { "start": 34624.8, "end": 34630.68, "probability": 0.9763 }, { "start": 34631.4, "end": 34637.18, "probability": 0.9993 }, { "start": 34638.22, "end": 34641.64, "probability": 0.9571 }, { "start": 34642.24, "end": 34649.04, "probability": 0.9961 }, { "start": 34650.36, "end": 34657.14, "probability": 0.7407 }, { "start": 34657.92, "end": 34660.48, "probability": 0.9782 }, { "start": 34662.26, "end": 34664.36, "probability": 0.7398 }, { "start": 34665.08, "end": 34669.06, "probability": 0.9835 }, { "start": 34670.2, "end": 34675.98, "probability": 0.9786 }, { "start": 34677.34, "end": 34680.96, "probability": 0.9316 }, { "start": 34683.38, "end": 34686.04, "probability": 0.689 }, { "start": 34687.14, "end": 34691.32, "probability": 0.9712 }, { "start": 34692.7, "end": 34697.9, "probability": 0.9287 }, { "start": 34698.9, "end": 34701.5, "probability": 0.9678 }, { "start": 34702.84, "end": 34707.16, "probability": 0.9937 }, { "start": 34708.0, "end": 34709.16, "probability": 0.9899 }, { "start": 34710.12, "end": 34717.44, "probability": 0.9758 }, { "start": 34718.6, "end": 34721.02, "probability": 0.859 }, { "start": 34722.24, "end": 34732.36, "probability": 0.9902 }, { "start": 34732.5, "end": 34733.34, "probability": 0.9866 }, { "start": 34733.94, "end": 34735.3, "probability": 0.9832 }, { "start": 34736.06, "end": 34739.68, "probability": 0.9827 }, { "start": 34740.38, "end": 34746.36, "probability": 0.7345 }, { "start": 34747.2, "end": 34748.0, "probability": 0.7492 }, { "start": 34748.74, "end": 34749.64, "probability": 0.894 }, { "start": 34750.32, "end": 34754.24, "probability": 0.9705 }, { "start": 34755.26, "end": 34756.22, "probability": 0.9764 }, { "start": 34758.06, "end": 34761.18, "probability": 0.9371 }, { "start": 34761.88, "end": 34763.8, "probability": 0.7128 }, { "start": 34764.94, "end": 34769.18, "probability": 0.8724 }, { "start": 34769.76, "end": 34772.68, "probability": 0.8342 }, { "start": 34773.76, "end": 34775.62, "probability": 0.5289 }, { "start": 34776.1, "end": 34780.46, "probability": 0.5902 }, { "start": 34781.02, "end": 34783.64, "probability": 0.157 }, { "start": 34783.72, "end": 34786.08, "probability": 0.8204 }, { "start": 34786.78, "end": 34793.72, "probability": 0.9909 }, { "start": 34793.72, "end": 34801.04, "probability": 0.9944 }, { "start": 34801.12, "end": 34811.7, "probability": 0.9232 }, { "start": 34812.76, "end": 34817.34, "probability": 0.9172 }, { "start": 34819.18, "end": 34820.46, "probability": 0.9951 }, { "start": 34821.08, "end": 34824.71, "probability": 0.9808 }, { "start": 34825.26, "end": 34831.98, "probability": 0.9652 }, { "start": 34832.56, "end": 34835.52, "probability": 0.9884 }, { "start": 34835.74, "end": 34842.86, "probability": 0.9911 }, { "start": 34843.34, "end": 34848.44, "probability": 0.9272 }, { "start": 34849.7, "end": 34854.24, "probability": 0.5557 }, { "start": 34855.02, "end": 34858.66, "probability": 0.9757 }, { "start": 34859.48, "end": 34865.02, "probability": 0.9799 }, { "start": 34865.58, "end": 34868.62, "probability": 0.9396 }, { "start": 34872.92, "end": 34874.64, "probability": 0.5962 }, { "start": 34875.28, "end": 34877.7, "probability": 0.993 }, { "start": 34878.38, "end": 34880.78, "probability": 0.9778 }, { "start": 34881.68, "end": 34882.73, "probability": 0.7256 }, { "start": 34883.4, "end": 34884.14, "probability": 0.9125 }, { "start": 34884.86, "end": 34889.34, "probability": 0.9756 }, { "start": 34889.56, "end": 34893.5, "probability": 0.9927 }, { "start": 34894.16, "end": 34900.78, "probability": 0.9941 }, { "start": 34900.78, "end": 34906.38, "probability": 0.9976 }, { "start": 34907.72, "end": 34907.92, "probability": 0.1043 }, { "start": 34908.14, "end": 34915.36, "probability": 0.9745 }, { "start": 34916.0, "end": 34917.16, "probability": 0.8944 }, { "start": 34917.88, "end": 34920.98, "probability": 0.8376 }, { "start": 34921.88, "end": 34924.26, "probability": 0.9169 }, { "start": 34925.12, "end": 34930.02, "probability": 0.9956 }, { "start": 34930.58, "end": 34934.96, "probability": 0.9819 }, { "start": 34935.74, "end": 34939.76, "probability": 0.8497 }, { "start": 34940.44, "end": 34942.02, "probability": 0.6878 }, { "start": 34942.72, "end": 34944.74, "probability": 0.9893 }, { "start": 34945.42, "end": 34948.98, "probability": 0.9806 }, { "start": 34949.08, "end": 34949.88, "probability": 0.7832 }, { "start": 34950.28, "end": 34953.74, "probability": 0.9905 }, { "start": 34953.78, "end": 34955.68, "probability": 0.9946 }, { "start": 34956.34, "end": 34960.16, "probability": 0.95 }, { "start": 34960.86, "end": 34965.54, "probability": 0.9463 }, { "start": 34965.88, "end": 34966.7, "probability": 0.8872 }, { "start": 34967.62, "end": 34970.28, "probability": 0.9524 }, { "start": 34971.24, "end": 34972.42, "probability": 0.9828 }, { "start": 34973.14, "end": 34977.62, "probability": 0.9399 }, { "start": 34978.18, "end": 34978.84, "probability": 0.8956 }, { "start": 34978.92, "end": 34980.56, "probability": 0.9471 }, { "start": 34980.9, "end": 34982.94, "probability": 0.9827 }, { "start": 34983.5, "end": 34986.72, "probability": 0.9875 }, { "start": 34986.72, "end": 34992.2, "probability": 0.9937 }, { "start": 34992.64, "end": 34994.34, "probability": 0.9567 }, { "start": 34995.68, "end": 34996.9, "probability": 0.9547 }, { "start": 34997.62, "end": 34999.28, "probability": 0.9284 }, { "start": 35000.9, "end": 35003.26, "probability": 0.9744 }, { "start": 35004.2, "end": 35005.54, "probability": 0.9859 }, { "start": 35007.02, "end": 35013.18, "probability": 0.8067 }, { "start": 35013.96, "end": 35015.56, "probability": 0.8874 }, { "start": 35016.16, "end": 35019.84, "probability": 0.6473 }, { "start": 35020.5, "end": 35025.0, "probability": 0.9556 }, { "start": 35025.86, "end": 35026.86, "probability": 0.8027 }, { "start": 35027.78, "end": 35030.22, "probability": 0.8287 }, { "start": 35030.86, "end": 35032.66, "probability": 0.7955 }, { "start": 35033.56, "end": 35034.7, "probability": 0.9471 }, { "start": 35035.66, "end": 35036.24, "probability": 0.5952 }, { "start": 35036.78, "end": 35039.12, "probability": 0.9908 }, { "start": 35040.12, "end": 35050.1, "probability": 0.9644 }, { "start": 35050.98, "end": 35056.4, "probability": 0.9707 }, { "start": 35057.58, "end": 35063.04, "probability": 0.7372 }, { "start": 35063.04, "end": 35068.6, "probability": 0.9086 }, { "start": 35069.7, "end": 35070.8, "probability": 0.2752 }, { "start": 35072.24, "end": 35072.84, "probability": 0.5132 }, { "start": 35072.9, "end": 35075.76, "probability": 0.7796 }, { "start": 35076.4, "end": 35076.42, "probability": 0.5054 }, { "start": 35077.2, "end": 35078.58, "probability": 0.938 }, { "start": 35078.64, "end": 35085.1, "probability": 0.9863 }, { "start": 35085.18, "end": 35089.26, "probability": 0.9602 }, { "start": 35089.42, "end": 35093.34, "probability": 0.9214 }, { "start": 35094.1, "end": 35104.58, "probability": 0.9961 }, { "start": 35105.22, "end": 35110.02, "probability": 0.9991 }, { "start": 35110.66, "end": 35111.5, "probability": 0.7829 }, { "start": 35111.92, "end": 35118.04, "probability": 0.8805 }, { "start": 35118.18, "end": 35119.0, "probability": 0.7668 }, { "start": 35120.14, "end": 35121.68, "probability": 0.9533 }, { "start": 35122.46, "end": 35125.16, "probability": 0.7335 }, { "start": 35126.62, "end": 35127.2, "probability": 0.5444 }, { "start": 35127.36, "end": 35129.02, "probability": 0.9985 }, { "start": 35129.24, "end": 35134.14, "probability": 0.8661 }, { "start": 35134.28, "end": 35136.06, "probability": 0.7094 }, { "start": 35136.52, "end": 35139.28, "probability": 0.9888 }, { "start": 35142.8, "end": 35144.54, "probability": 0.8345 }, { "start": 35145.24, "end": 35146.84, "probability": 0.6055 }, { "start": 35147.56, "end": 35152.17, "probability": 0.9917 }, { "start": 35153.32, "end": 35158.34, "probability": 0.9924 }, { "start": 35159.2, "end": 35163.68, "probability": 0.9294 }, { "start": 35164.56, "end": 35166.04, "probability": 0.8307 }, { "start": 35166.62, "end": 35170.94, "probability": 0.9448 }, { "start": 35172.36, "end": 35173.0, "probability": 0.7352 }, { "start": 35173.02, "end": 35182.38, "probability": 0.9893 }, { "start": 35182.9, "end": 35186.62, "probability": 0.9368 }, { "start": 35187.14, "end": 35188.02, "probability": 0.7745 }, { "start": 35188.56, "end": 35190.12, "probability": 0.9963 }, { "start": 35190.64, "end": 35193.38, "probability": 0.9932 }, { "start": 35193.38, "end": 35197.5, "probability": 0.9878 }, { "start": 35198.02, "end": 35198.28, "probability": 0.7042 }, { "start": 35198.3, "end": 35201.54, "probability": 0.9753 }, { "start": 35201.64, "end": 35204.24, "probability": 0.8456 }, { "start": 35204.6, "end": 35206.76, "probability": 0.8146 }, { "start": 35207.36, "end": 35209.41, "probability": 0.9186 }, { "start": 35210.44, "end": 35211.18, "probability": 0.7026 }, { "start": 35211.72, "end": 35213.76, "probability": 0.9306 }, { "start": 35214.64, "end": 35216.22, "probability": 0.9099 }, { "start": 35216.8, "end": 35221.52, "probability": 0.9255 }, { "start": 35222.5, "end": 35225.34, "probability": 0.9111 }, { "start": 35226.5, "end": 35228.08, "probability": 0.9367 }, { "start": 35228.82, "end": 35230.18, "probability": 0.905 }, { "start": 35230.8, "end": 35231.24, "probability": 0.986 }, { "start": 35232.56, "end": 35240.06, "probability": 0.9784 }, { "start": 35241.08, "end": 35250.28, "probability": 0.9935 }, { "start": 35250.82, "end": 35257.26, "probability": 0.979 }, { "start": 35258.28, "end": 35264.4, "probability": 0.9765 }, { "start": 35264.5, "end": 35267.3, "probability": 0.7899 }, { "start": 35268.1, "end": 35270.12, "probability": 0.9777 }, { "start": 35270.86, "end": 35272.54, "probability": 0.7477 }, { "start": 35273.14, "end": 35278.48, "probability": 0.9254 }, { "start": 35279.24, "end": 35285.28, "probability": 0.8229 }, { "start": 35286.24, "end": 35290.24, "probability": 0.9876 }, { "start": 35292.3, "end": 35294.26, "probability": 0.3062 }, { "start": 35296.48, "end": 35304.56, "probability": 0.9982 }, { "start": 35304.56, "end": 35308.58, "probability": 0.9964 }, { "start": 35309.33, "end": 35313.5, "probability": 0.9973 }, { "start": 35314.08, "end": 35316.38, "probability": 0.9692 }, { "start": 35317.26, "end": 35318.48, "probability": 0.3933 }, { "start": 35319.52, "end": 35320.36, "probability": 0.7347 }, { "start": 35321.38, "end": 35321.72, "probability": 0.8265 }, { "start": 35322.48, "end": 35331.5, "probability": 0.9883 }, { "start": 35332.26, "end": 35343.02, "probability": 0.9074 }, { "start": 35343.16, "end": 35347.0, "probability": 0.7603 }, { "start": 35348.24, "end": 35349.56, "probability": 0.9824 }, { "start": 35349.7, "end": 35350.62, "probability": 0.964 }, { "start": 35351.04, "end": 35352.72, "probability": 0.8961 }, { "start": 35354.0, "end": 35357.18, "probability": 0.9155 }, { "start": 35357.7, "end": 35361.88, "probability": 0.9915 }, { "start": 35362.2, "end": 35366.9, "probability": 0.9815 }, { "start": 35384.34, "end": 35384.64, "probability": 0.7276 }, { "start": 35384.7, "end": 35385.22, "probability": 0.878 }, { "start": 35385.3, "end": 35388.1, "probability": 0.9849 }, { "start": 35388.1, "end": 35392.53, "probability": 0.9313 }, { "start": 35393.88, "end": 35395.7, "probability": 0.8826 }, { "start": 35396.36, "end": 35400.32, "probability": 0.9932 }, { "start": 35400.84, "end": 35403.98, "probability": 0.9445 }, { "start": 35404.7, "end": 35410.48, "probability": 0.7144 }, { "start": 35411.1, "end": 35417.84, "probability": 0.9829 }, { "start": 35418.5, "end": 35419.44, "probability": 0.0464 }, { "start": 35419.44, "end": 35419.46, "probability": 0.1143 }, { "start": 35419.46, "end": 35424.72, "probability": 0.8805 }, { "start": 35425.28, "end": 35426.05, "probability": 0.6543 }, { "start": 35426.82, "end": 35431.52, "probability": 0.9896 }, { "start": 35431.52, "end": 35437.84, "probability": 0.9954 }, { "start": 35438.68, "end": 35443.66, "probability": 0.9459 }, { "start": 35446.64, "end": 35446.92, "probability": 0.0028 }, { "start": 35446.92, "end": 35448.87, "probability": 0.7917 }, { "start": 35449.58, "end": 35453.32, "probability": 0.9681 }, { "start": 35454.46, "end": 35458.0, "probability": 0.9546 }, { "start": 35458.86, "end": 35462.98, "probability": 0.9899 }, { "start": 35463.54, "end": 35473.26, "probability": 0.9016 }, { "start": 35473.68, "end": 35474.24, "probability": 0.7943 }, { "start": 35474.72, "end": 35475.4, "probability": 0.8009 }, { "start": 35476.02, "end": 35479.78, "probability": 0.9822 }, { "start": 35479.94, "end": 35481.9, "probability": 0.9233 }, { "start": 35482.38, "end": 35483.72, "probability": 0.8854 }, { "start": 35484.4, "end": 35490.78, "probability": 0.8421 }, { "start": 35491.48, "end": 35496.08, "probability": 0.9812 }, { "start": 35496.94, "end": 35501.0, "probability": 0.9747 }, { "start": 35501.64, "end": 35505.22, "probability": 0.9897 }, { "start": 35506.06, "end": 35506.92, "probability": 0.8898 }, { "start": 35507.52, "end": 35508.14, "probability": 0.7421 }, { "start": 35508.94, "end": 35511.58, "probability": 0.8531 }, { "start": 35512.48, "end": 35519.34, "probability": 0.7965 }, { "start": 35520.52, "end": 35523.36, "probability": 0.9948 }, { "start": 35523.94, "end": 35525.06, "probability": 0.9354 }, { "start": 35526.0, "end": 35534.16, "probability": 0.9419 }, { "start": 35534.64, "end": 35539.58, "probability": 0.9381 }, { "start": 35541.0, "end": 35542.46, "probability": 0.9522 }, { "start": 35542.74, "end": 35542.96, "probability": 0.6139 }, { "start": 35543.92, "end": 35546.32, "probability": 0.9886 }, { "start": 35547.3, "end": 35548.02, "probability": 0.9493 }, { "start": 35548.1, "end": 35548.56, "probability": 0.9317 }, { "start": 35549.36, "end": 35550.76, "probability": 0.8208 }, { "start": 35551.42, "end": 35554.28, "probability": 0.8391 }, { "start": 35556.16, "end": 35556.3, "probability": 0.1975 }, { "start": 35557.36, "end": 35557.79, "probability": 0.0117 }, { "start": 35558.68, "end": 35558.96, "probability": 0.5709 }, { "start": 35561.34, "end": 35563.78, "probability": 0.9625 }, { "start": 35564.0, "end": 35566.96, "probability": 0.4629 }, { "start": 35567.02, "end": 35568.56, "probability": 0.6725 }, { "start": 35568.64, "end": 35569.94, "probability": 0.6112 }, { "start": 35569.98, "end": 35571.68, "probability": 0.5031 }, { "start": 35571.68, "end": 35572.61, "probability": 0.0153 }, { "start": 35573.78, "end": 35573.8, "probability": 0.0184 }, { "start": 35573.8, "end": 35573.8, "probability": 0.0647 }, { "start": 35573.8, "end": 35574.22, "probability": 0.3048 }, { "start": 35574.94, "end": 35580.84, "probability": 0.9795 }, { "start": 35580.96, "end": 35582.39, "probability": 0.2412 }, { "start": 35582.4, "end": 35583.48, "probability": 0.1085 }, { "start": 35583.88, "end": 35584.36, "probability": 0.1681 }, { "start": 35584.78, "end": 35587.78, "probability": 0.74 }, { "start": 35588.38, "end": 35588.66, "probability": 0.2635 }, { "start": 35588.66, "end": 35588.66, "probability": 0.0514 }, { "start": 35588.66, "end": 35591.4, "probability": 0.9106 }, { "start": 35591.98, "end": 35598.09, "probability": 0.9879 }, { "start": 35599.76, "end": 35603.08, "probability": 0.92 }, { "start": 35604.38, "end": 35605.26, "probability": 0.2923 }, { "start": 35606.02, "end": 35606.76, "probability": 0.6222 }, { "start": 35607.4, "end": 35610.8, "probability": 0.9085 }, { "start": 35611.04, "end": 35611.82, "probability": 0.276 }, { "start": 35612.02, "end": 35612.22, "probability": 0.1214 }, { "start": 35612.44, "end": 35613.0, "probability": 0.4297 }, { "start": 35613.66, "end": 35616.74, "probability": 0.8732 }, { "start": 35617.6, "end": 35618.88, "probability": 0.8474 }, { "start": 35619.66, "end": 35624.74, "probability": 0.9092 }, { "start": 35625.48, "end": 35625.96, "probability": 0.5556 }, { "start": 35626.42, "end": 35636.1, "probability": 0.8763 }, { "start": 35636.6, "end": 35638.04, "probability": 0.768 }, { "start": 35638.18, "end": 35639.66, "probability": 0.7956 }, { "start": 35640.16, "end": 35641.24, "probability": 0.9627 }, { "start": 35642.16, "end": 35642.9, "probability": 0.8688 }, { "start": 35644.54, "end": 35648.4, "probability": 0.9875 }, { "start": 35648.5, "end": 35649.22, "probability": 0.8207 }, { "start": 35650.04, "end": 35657.16, "probability": 0.999 }, { "start": 35658.0, "end": 35664.62, "probability": 0.998 }, { "start": 35666.1, "end": 35667.18, "probability": 0.7644 }, { "start": 35667.82, "end": 35668.4, "probability": 0.4786 }, { "start": 35669.54, "end": 35676.5, "probability": 0.9922 }, { "start": 35677.04, "end": 35685.8, "probability": 0.998 }, { "start": 35685.94, "end": 35686.84, "probability": 0.6623 }, { "start": 35687.32, "end": 35689.68, "probability": 0.8869 }, { "start": 35691.54, "end": 35697.62, "probability": 0.8884 }, { "start": 35697.68, "end": 35699.38, "probability": 0.9582 }, { "start": 35699.56, "end": 35700.18, "probability": 0.7763 }, { "start": 35700.9, "end": 35701.64, "probability": 0.6426 }, { "start": 35702.34, "end": 35702.66, "probability": 0.8428 }, { "start": 35703.32, "end": 35710.96, "probability": 0.9918 }, { "start": 35710.96, "end": 35714.78, "probability": 0.9944 }, { "start": 35715.66, "end": 35716.12, "probability": 0.7896 }, { "start": 35718.14, "end": 35719.75, "probability": 0.3634 }, { "start": 35720.42, "end": 35720.64, "probability": 0.5144 }, { "start": 35721.46, "end": 35722.02, "probability": 0.0577 }, { "start": 35722.32, "end": 35722.66, "probability": 0.6826 }, { "start": 35723.04, "end": 35724.62, "probability": 0.7827 }, { "start": 35724.66, "end": 35726.03, "probability": 0.6194 }, { "start": 35726.72, "end": 35726.72, "probability": 0.0784 }, { "start": 35726.72, "end": 35727.08, "probability": 0.5963 }, { "start": 35727.2, "end": 35729.26, "probability": 0.699 }, { "start": 35729.68, "end": 35729.68, "probability": 0.068 }, { "start": 35729.68, "end": 35733.05, "probability": 0.9851 }, { "start": 35734.06, "end": 35734.06, "probability": 0.057 }, { "start": 35734.06, "end": 35736.84, "probability": 0.9648 }, { "start": 35737.56, "end": 35737.84, "probability": 0.3367 }, { "start": 35739.18, "end": 35739.2, "probability": 0.1037 }, { "start": 35739.42, "end": 35741.3, "probability": 0.8406 }, { "start": 35741.3, "end": 35742.46, "probability": 0.7072 }, { "start": 35743.18, "end": 35745.06, "probability": 0.0639 }, { "start": 35745.06, "end": 35746.1, "probability": 0.5545 }, { "start": 35747.04, "end": 35747.16, "probability": 0.3149 }, { "start": 35747.16, "end": 35747.7, "probability": 0.7317 }, { "start": 35748.02, "end": 35749.4, "probability": 0.0133 }, { "start": 35749.4, "end": 35750.52, "probability": 0.7245 }, { "start": 35750.66, "end": 35751.12, "probability": 0.0894 }, { "start": 35752.5, "end": 35752.88, "probability": 0.0016 }, { "start": 35754.0, "end": 35756.08, "probability": 0.2569 }, { "start": 35757.64, "end": 35757.64, "probability": 0.2977 }, { "start": 35757.64, "end": 35760.06, "probability": 0.7595 }, { "start": 35760.1, "end": 35761.43, "probability": 0.1243 }, { "start": 35763.88, "end": 35765.98, "probability": 0.8213 }, { "start": 35766.06, "end": 35766.24, "probability": 0.0905 }, { "start": 35767.52, "end": 35767.96, "probability": 0.9317 }, { "start": 35768.38, "end": 35768.9, "probability": 0.3649 }, { "start": 35768.96, "end": 35769.78, "probability": 0.1354 }, { "start": 35769.94, "end": 35772.96, "probability": 0.9755 }, { "start": 35773.18, "end": 35773.86, "probability": 0.2622 }, { "start": 35773.92, "end": 35776.52, "probability": 0.9919 }, { "start": 35776.8, "end": 35777.96, "probability": 0.3723 }, { "start": 35778.04, "end": 35778.04, "probability": 0.1264 }, { "start": 35778.04, "end": 35779.16, "probability": 0.7827 }, { "start": 35779.24, "end": 35780.72, "probability": 0.7188 }, { "start": 35780.82, "end": 35783.46, "probability": 0.751 }, { "start": 35783.84, "end": 35785.28, "probability": 0.9572 }, { "start": 35785.6, "end": 35788.44, "probability": 0.5687 }, { "start": 35788.9, "end": 35789.34, "probability": 0.7225 }, { "start": 35790.08, "end": 35791.8, "probability": 0.1366 }, { "start": 35791.86, "end": 35794.18, "probability": 0.8809 }, { "start": 35794.2, "end": 35795.0, "probability": 0.6625 }, { "start": 35795.36, "end": 35796.66, "probability": 0.7967 }, { "start": 35797.16, "end": 35802.9, "probability": 0.9685 }, { "start": 35803.58, "end": 35807.28, "probability": 0.7153 }, { "start": 35807.82, "end": 35810.22, "probability": 0.8791 }, { "start": 35810.44, "end": 35811.14, "probability": 0.8628 }, { "start": 35812.16, "end": 35813.92, "probability": 0.9259 }, { "start": 35814.48, "end": 35817.08, "probability": 0.7501 }, { "start": 35817.58, "end": 35818.12, "probability": 0.5661 }, { "start": 35818.34, "end": 35819.89, "probability": 0.7382 }, { "start": 35820.9, "end": 35825.08, "probability": 0.151 }, { "start": 35825.08, "end": 35825.08, "probability": 0.6367 }, { "start": 35825.08, "end": 35825.08, "probability": 0.0083 }, { "start": 35825.08, "end": 35828.36, "probability": 0.6623 }, { "start": 35828.52, "end": 35829.06, "probability": 0.2458 }, { "start": 35830.08, "end": 35831.52, "probability": 0.0272 }, { "start": 35831.54, "end": 35835.54, "probability": 0.2975 }, { "start": 35835.74, "end": 35837.13, "probability": 0.8012 }, { "start": 35837.52, "end": 35840.12, "probability": 0.5244 }, { "start": 35840.18, "end": 35843.1, "probability": 0.8781 }, { "start": 35847.08, "end": 35847.5, "probability": 0.3333 }, { "start": 35849.42, "end": 35854.32, "probability": 0.0405 }, { "start": 35856.04, "end": 35860.08, "probability": 0.0744 }, { "start": 35865.2, "end": 35865.82, "probability": 0.0926 }, { "start": 35865.84, "end": 35870.64, "probability": 0.6292 }, { "start": 35872.3, "end": 35875.88, "probability": 0.0787 }, { "start": 35877.72, "end": 35878.41, "probability": 0.0189 }, { "start": 35879.38, "end": 35883.18, "probability": 0.0372 }, { "start": 35883.18, "end": 35889.38, "probability": 0.0713 }, { "start": 35889.38, "end": 35890.58, "probability": 0.0573 }, { "start": 35900.0, "end": 35900.0, "probability": 0.0 }, { "start": 35900.0, "end": 35900.0, "probability": 0.0 }, { "start": 35900.0, "end": 35900.0, "probability": 0.0 }, { "start": 35900.0, "end": 35900.0, "probability": 0.0 }, { "start": 35900.0, "end": 35900.0, "probability": 0.0 }, { "start": 35900.0, "end": 35900.0, "probability": 0.0 }, { "start": 35900.0, "end": 35900.0, "probability": 0.0 }, { "start": 35900.0, "end": 35900.0, "probability": 0.0 }, { "start": 35900.0, "end": 35900.0, "probability": 0.0 }, { "start": 35900.0, "end": 35900.0, "probability": 0.0 }, { "start": 35900.0, "end": 35900.0, "probability": 0.0 }, { "start": 35900.0, "end": 35900.0, "probability": 0.0 }, { "start": 35900.0, "end": 35900.0, "probability": 0.0 }, { "start": 35900.0, "end": 35900.0, "probability": 0.0 }, { "start": 35900.0, "end": 35900.0, "probability": 0.0 }, { "start": 35900.0, "end": 35900.0, "probability": 0.0 }, { "start": 35900.0, "end": 35900.0, "probability": 0.0 }, { "start": 35900.0, "end": 35900.0, "probability": 0.0 }, { "start": 35900.0, "end": 35900.0, "probability": 0.0 }, { "start": 35900.0, "end": 35900.0, "probability": 0.0 }, { "start": 35900.0, "end": 35900.0, "probability": 0.0 }, { "start": 35900.0, "end": 35900.0, "probability": 0.0 }, { "start": 35900.0, "end": 35900.0, "probability": 0.0 }, { "start": 35900.0, "end": 35900.0, "probability": 0.0 }, { "start": 35900.0, "end": 35900.0, "probability": 0.0 }, { "start": 35900.0, "end": 35900.0, "probability": 0.0 }, { "start": 35900.0, "end": 35900.0, "probability": 0.0 }, { "start": 35900.0, "end": 35900.0, "probability": 0.0 }, { "start": 35901.96, "end": 35903.98, "probability": 0.1799 }, { "start": 35903.98, "end": 35906.82, "probability": 0.3545 }, { "start": 35906.82, "end": 35906.88, "probability": 0.0154 }, { "start": 35910.56, "end": 35913.24, "probability": 0.6004 }, { "start": 35913.78, "end": 35913.92, "probability": 0.3801 }, { "start": 35913.92, "end": 35916.06, "probability": 0.7211 }, { "start": 35916.42, "end": 35917.34, "probability": 0.443 }, { "start": 35917.92, "end": 35919.2, "probability": 0.7546 }, { "start": 35919.7, "end": 35920.72, "probability": 0.1534 }, { "start": 36022.0, "end": 36022.0, "probability": 0.0 }, { "start": 36022.0, "end": 36022.0, "probability": 0.0 }, { "start": 36022.0, "end": 36022.0, "probability": 0.0 }, { "start": 36022.0, "end": 36022.0, "probability": 0.0 }, { "start": 36022.0, "end": 36022.0, "probability": 0.0 }, { "start": 36022.0, "end": 36022.0, "probability": 0.0 }, { "start": 36022.0, "end": 36022.0, "probability": 0.0 }, { "start": 36022.0, "end": 36022.0, "probability": 0.0 }, { "start": 36022.0, "end": 36022.0, "probability": 0.0 }, { "start": 36022.0, "end": 36022.0, "probability": 0.0 }, { "start": 36022.0, "end": 36022.0, "probability": 0.0 }, { "start": 36022.0, "end": 36022.0, "probability": 0.0 }, { "start": 36022.0, "end": 36022.0, "probability": 0.0 }, { "start": 36022.0, "end": 36022.0, "probability": 0.0 }, { "start": 36022.0, "end": 36022.0, "probability": 0.0 }, { "start": 36022.0, "end": 36022.0, "probability": 0.0 }, { "start": 36022.0, "end": 36022.0, "probability": 0.0 }, { "start": 36022.0, "end": 36022.0, "probability": 0.0 }, { "start": 36022.0, "end": 36022.0, "probability": 0.0 }, { "start": 36022.0, "end": 36022.0, "probability": 0.0 }, { "start": 36022.0, "end": 36022.0, "probability": 0.0 }, { "start": 36022.0, "end": 36022.0, "probability": 0.0 }, { "start": 36022.0, "end": 36022.0, "probability": 0.0 }, { "start": 36022.0, "end": 36022.0, "probability": 0.0 }, { "start": 36022.0, "end": 36022.0, "probability": 0.0 }, { "start": 36022.0, "end": 36022.0, "probability": 0.0 }, { "start": 36022.0, "end": 36022.0, "probability": 0.0 }, { "start": 36022.0, "end": 36022.0, "probability": 0.0 }, { "start": 36022.0, "end": 36022.0, "probability": 0.0 }, { "start": 36022.0, "end": 36022.0, "probability": 0.0 }, { "start": 36022.0, "end": 36022.0, "probability": 0.0 }, { "start": 36022.0, "end": 36022.0, "probability": 0.0 }, { "start": 36022.0, "end": 36022.0, "probability": 0.0 }, { "start": 36022.0, "end": 36022.0, "probability": 0.0 }, { "start": 36022.0, "end": 36022.0, "probability": 0.0 }, { "start": 36022.0, "end": 36022.0, "probability": 0.0 }, { "start": 36022.0, "end": 36022.0, "probability": 0.0 }, { "start": 36022.0, "end": 36022.0, "probability": 0.0 }, { "start": 36022.0, "end": 36022.0, "probability": 0.0 }, { "start": 36022.0, "end": 36022.0, "probability": 0.0 }, { "start": 36022.0, "end": 36022.0, "probability": 0.0 }, { "start": 36022.0, "end": 36022.0, "probability": 0.0 }, { "start": 36022.16, "end": 36023.84, "probability": 0.1299 }, { "start": 36023.96, "end": 36024.88, "probability": 0.275 }, { "start": 36024.96, "end": 36024.96, "probability": 0.0212 }, { "start": 36024.98, "end": 36027.18, "probability": 0.2284 }, { "start": 36027.44, "end": 36029.56, "probability": 0.5139 }, { "start": 36030.06, "end": 36030.88, "probability": 0.0143 }, { "start": 36050.36, "end": 36052.32, "probability": 0.3147 }, { "start": 36052.32, "end": 36052.32, "probability": 0.0711 }, { "start": 36052.32, "end": 36052.32, "probability": 0.2265 }, { "start": 36052.32, "end": 36052.32, "probability": 0.0816 }, { "start": 36052.32, "end": 36052.32, "probability": 0.2742 }, { "start": 36052.32, "end": 36053.16, "probability": 0.511 }, { "start": 36054.74, "end": 36057.54, "probability": 0.7503 }, { "start": 36058.4, "end": 36060.76, "probability": 0.9528 }, { "start": 36063.22, "end": 36064.5, "probability": 0.5854 }, { "start": 36065.62, "end": 36066.08, "probability": 0.9769 }, { "start": 36066.94, "end": 36068.06, "probability": 0.9232 }, { "start": 36069.14, "end": 36069.62, "probability": 0.9954 }, { "start": 36070.74, "end": 36071.44, "probability": 0.9725 }, { "start": 36072.2, "end": 36073.5, "probability": 0.7206 }, { "start": 36074.04, "end": 36074.94, "probability": 0.7939 }, { "start": 36076.28, "end": 36076.96, "probability": 0.9784 }, { "start": 36077.72, "end": 36078.64, "probability": 0.6198 }, { "start": 36079.58, "end": 36080.26, "probability": 0.9238 }, { "start": 36081.48, "end": 36082.74, "probability": 0.9452 }, { "start": 36083.82, "end": 36084.4, "probability": 0.9891 }, { "start": 36085.46, "end": 36086.8, "probability": 0.9685 }, { "start": 36088.06, "end": 36091.04, "probability": 0.8786 }, { "start": 36091.88, "end": 36092.26, "probability": 0.7494 }, { "start": 36093.48, "end": 36094.94, "probability": 0.8147 }, { "start": 36095.68, "end": 36096.16, "probability": 0.7554 }, { "start": 36097.26, "end": 36097.78, "probability": 0.5202 }, { "start": 36101.42, "end": 36105.34, "probability": 0.9176 }, { "start": 36106.34, "end": 36108.48, "probability": 0.8439 }, { "start": 36111.12, "end": 36111.6, "probability": 0.9944 }, { "start": 36114.3, "end": 36115.26, "probability": 0.6861 }, { "start": 36116.58, "end": 36116.92, "probability": 0.8075 }, { "start": 36117.98, "end": 36118.82, "probability": 0.8736 }, { "start": 36120.54, "end": 36124.42, "probability": 0.7332 }, { "start": 36125.98, "end": 36126.5, "probability": 0.9504 }, { "start": 36127.42, "end": 36128.7, "probability": 0.9654 }, { "start": 36129.58, "end": 36130.02, "probability": 0.9924 }, { "start": 36131.1, "end": 36131.9, "probability": 0.9832 }, { "start": 36132.96, "end": 36133.44, "probability": 0.9549 }, { "start": 36134.3, "end": 36135.06, "probability": 0.9974 }, { "start": 36135.86, "end": 36136.32, "probability": 0.9954 }, { "start": 36137.3, "end": 36138.56, "probability": 0.974 }, { "start": 36139.72, "end": 36140.0, "probability": 0.9944 }, { "start": 36141.04, "end": 36141.5, "probability": 0.7143 }, { "start": 36143.52, "end": 36143.88, "probability": 0.704 }, { "start": 36145.02, "end": 36145.84, "probability": 0.809 }, { "start": 36147.0, "end": 36147.36, "probability": 0.7719 }, { "start": 36148.18, "end": 36149.02, "probability": 0.535 }, { "start": 36150.4, "end": 36150.74, "probability": 0.9871 }, { "start": 36151.64, "end": 36152.64, "probability": 0.9185 }, { "start": 36154.4, "end": 36156.0, "probability": 0.9413 }, { "start": 36157.98, "end": 36158.42, "probability": 0.4117 }, { "start": 36160.66, "end": 36161.48, "probability": 0.7746 }, { "start": 36163.0, "end": 36163.32, "probability": 0.9795 }, { "start": 36164.3, "end": 36165.16, "probability": 0.9672 }, { "start": 36166.34, "end": 36169.2, "probability": 0.9196 }, { "start": 36170.2, "end": 36171.87, "probability": 0.1357 }, { "start": 36172.88, "end": 36173.2, "probability": 0.4386 }, { "start": 36173.2, "end": 36173.2, "probability": 0.0216 }, { "start": 36179.68, "end": 36180.58, "probability": 0.2499 }, { "start": 36180.58, "end": 36181.56, "probability": 0.1582 }, { "start": 36182.94, "end": 36189.9, "probability": 0.3377 }, { "start": 36196.08, "end": 36197.08, "probability": 0.0081 }, { "start": 36197.62, "end": 36199.44, "probability": 0.5063 }, { "start": 36200.04, "end": 36201.78, "probability": 0.9108 }, { "start": 36202.02, "end": 36205.4, "probability": 0.3536 }, { "start": 36205.7, "end": 36205.8, "probability": 0.7416 }, { "start": 36205.8, "end": 36207.76, "probability": 0.7828 }, { "start": 36208.64, "end": 36209.68, "probability": 0.852 }, { "start": 36209.76, "end": 36211.3, "probability": 0.5117 }, { "start": 36212.1, "end": 36212.62, "probability": 0.0492 }, { "start": 36213.53, "end": 36217.18, "probability": 0.0301 }, { "start": 36217.7, "end": 36217.98, "probability": 0.0052 }, { "start": 36219.16, "end": 36219.71, "probability": 0.0621 }, { "start": 36224.54, "end": 36225.56, "probability": 0.4972 }, { "start": 36226.1, "end": 36228.34, "probability": 0.1815 }, { "start": 36228.42, "end": 36228.42, "probability": 0.1448 }, { "start": 36228.42, "end": 36229.58, "probability": 0.6352 }, { "start": 36231.12, "end": 36233.49, "probability": 0.8362 }, { "start": 36234.1, "end": 36235.84, "probability": 0.5514 }, { "start": 36235.86, "end": 36236.54, "probability": 0.0171 }, { "start": 36236.7, "end": 36237.82, "probability": 0.3644 }, { "start": 36237.9, "end": 36239.62, "probability": 0.4685 }, { "start": 36239.62, "end": 36240.16, "probability": 0.6704 }, { "start": 36240.66, "end": 36241.58, "probability": 0.7103 }, { "start": 36241.58, "end": 36243.22, "probability": 0.927 }, { "start": 36243.28, "end": 36244.47, "probability": 0.0413 }, { "start": 36246.2, "end": 36247.72, "probability": 0.039 }, { "start": 36247.72, "end": 36247.72, "probability": 0.1488 }, { "start": 36247.72, "end": 36248.39, "probability": 0.5967 }, { "start": 36250.06, "end": 36250.96, "probability": 0.7557 }, { "start": 36251.78, "end": 36253.08, "probability": 0.9635 }, { "start": 36255.48, "end": 36256.88, "probability": 0.8723 }, { "start": 36257.78, "end": 36258.67, "probability": 0.5152 }, { "start": 36259.18, "end": 36261.16, "probability": 0.9316 }, { "start": 36263.58, "end": 36264.98, "probability": 0.2343 }, { "start": 36265.52, "end": 36266.48, "probability": 0.1081 }, { "start": 36266.48, "end": 36266.62, "probability": 0.0132 }, { "start": 36267.02, "end": 36268.84, "probability": 0.1057 }, { "start": 36269.08, "end": 36270.62, "probability": 0.8388 }, { "start": 36271.78, "end": 36272.62, "probability": 0.8188 }, { "start": 36274.06, "end": 36274.72, "probability": 0.9235 }, { "start": 36275.12, "end": 36276.06, "probability": 0.9264 }, { "start": 36276.56, "end": 36281.54, "probability": 0.843 }, { "start": 36282.2, "end": 36284.82, "probability": 0.7139 }, { "start": 36284.94, "end": 36285.56, "probability": 0.7902 }, { "start": 36285.68, "end": 36288.46, "probability": 0.9127 }, { "start": 36289.16, "end": 36290.86, "probability": 0.1346 }, { "start": 36290.98, "end": 36291.6, "probability": 0.8557 }, { "start": 36292.08, "end": 36292.76, "probability": 0.2842 }, { "start": 36293.12, "end": 36296.54, "probability": 0.5019 }, { "start": 36296.66, "end": 36297.04, "probability": 0.2058 }, { "start": 36297.04, "end": 36298.12, "probability": 0.7555 }, { "start": 36298.6, "end": 36301.26, "probability": 0.651 }, { "start": 36301.66, "end": 36302.3, "probability": 0.3693 }, { "start": 36302.52, "end": 36303.86, "probability": 0.4892 }, { "start": 36303.9, "end": 36306.36, "probability": 0.7081 }, { "start": 36306.52, "end": 36306.94, "probability": 0.3389 }, { "start": 36308.48, "end": 36308.86, "probability": 0.744 }, { "start": 36310.14, "end": 36311.58, "probability": 0.2902 }, { "start": 36312.28, "end": 36315.78, "probability": 0.0527 }, { "start": 36319.34, "end": 36322.44, "probability": 0.5412 }, { "start": 36323.48, "end": 36324.8, "probability": 0.7766 }, { "start": 36325.56, "end": 36326.3, "probability": 0.644 }, { "start": 36326.4, "end": 36327.58, "probability": 0.9878 }, { "start": 36327.82, "end": 36331.04, "probability": 0.9733 }, { "start": 36331.08, "end": 36332.08, "probability": 0.7521 }, { "start": 36332.64, "end": 36332.98, "probability": 0.1615 }, { "start": 36333.18, "end": 36333.42, "probability": 0.7651 }, { "start": 36335.2, "end": 36336.72, "probability": 0.1712 }, { "start": 36338.64, "end": 36340.32, "probability": 0.2021 }, { "start": 36341.86, "end": 36344.72, "probability": 0.3548 }, { "start": 36347.3, "end": 36352.26, "probability": 0.6715 }, { "start": 36352.98, "end": 36355.24, "probability": 0.7719 }, { "start": 36356.6, "end": 36357.86, "probability": 0.9121 }, { "start": 36359.48, "end": 36360.2, "probability": 0.5576 }, { "start": 36364.36, "end": 36365.74, "probability": 0.1096 }, { "start": 36366.5, "end": 36367.93, "probability": 0.4997 }, { "start": 36368.2, "end": 36369.04, "probability": 0.8339 }, { "start": 36369.8, "end": 36371.68, "probability": 0.0145 }, { "start": 36372.3, "end": 36373.56, "probability": 0.2057 }, { "start": 36373.96, "end": 36374.28, "probability": 0.3358 }, { "start": 36374.6, "end": 36376.94, "probability": 0.4456 }, { "start": 36376.96, "end": 36377.9, "probability": 0.0359 }, { "start": 36377.9, "end": 36378.53, "probability": 0.4322 }, { "start": 36380.8, "end": 36381.08, "probability": 0.8801 }, { "start": 36382.1, "end": 36383.26, "probability": 0.4859 }, { "start": 36383.98, "end": 36386.66, "probability": 0.8821 }, { "start": 36390.08, "end": 36392.76, "probability": 0.7924 }, { "start": 36398.88, "end": 36399.8, "probability": 0.5263 }, { "start": 36405.9, "end": 36407.26, "probability": 0.6862 }, { "start": 36408.34, "end": 36409.08, "probability": 0.4568 }, { "start": 36413.42, "end": 36413.72, "probability": 0.7417 }, { "start": 36414.24, "end": 36417.3, "probability": 0.2871 }, { "start": 36424.4, "end": 36424.72, "probability": 0.45 }, { "start": 36426.06, "end": 36427.18, "probability": 0.8331 }, { "start": 36428.32, "end": 36429.2, "probability": 0.9362 }, { "start": 36431.94, "end": 36433.08, "probability": 0.6203 }, { "start": 36434.06, "end": 36435.34, "probability": 0.2273 }, { "start": 36437.02, "end": 36438.2, "probability": 0.8174 }, { "start": 36440.86, "end": 36441.28, "probability": 0.9019 }, { "start": 36442.8, "end": 36443.16, "probability": 0.6825 }, { "start": 36444.6, "end": 36444.98, "probability": 0.9739 }, { "start": 36446.54, "end": 36447.58, "probability": 0.7672 }, { "start": 36448.62, "end": 36451.88, "probability": 0.9544 }, { "start": 36460.46, "end": 36461.5, "probability": 0.6175 }, { "start": 36462.9, "end": 36463.4, "probability": 0.4552 }, { "start": 36465.82, "end": 36467.18, "probability": 0.1272 }, { "start": 36469.42, "end": 36472.1, "probability": 0.7454 }, { "start": 36474.12, "end": 36474.42, "probability": 0.7632 }, { "start": 36476.36, "end": 36476.66, "probability": 0.3278 }, { "start": 36489.82, "end": 36491.46, "probability": 0.3574 }, { "start": 36492.58, "end": 36493.48, "probability": 0.6868 }, { "start": 36494.26, "end": 36494.76, "probability": 0.9481 }, { "start": 36496.0, "end": 36496.94, "probability": 0.5109 }, { "start": 36498.24, "end": 36498.72, "probability": 0.9922 }, { "start": 36500.28, "end": 36501.0, "probability": 0.9348 }, { "start": 36502.76, "end": 36503.24, "probability": 0.9336 }, { "start": 36504.4, "end": 36505.28, "probability": 0.9338 }, { "start": 36506.66, "end": 36507.2, "probability": 0.9961 }, { "start": 36508.42, "end": 36509.31, "probability": 0.4964 }, { "start": 36510.1, "end": 36510.58, "probability": 0.984 }, { "start": 36512.86, "end": 36513.16, "probability": 0.8176 }, { "start": 36516.38, "end": 36519.72, "probability": 0.1174 }, { "start": 36520.3, "end": 36521.2, "probability": 0.8232 }, { "start": 36521.58, "end": 36524.22, "probability": 0.0091 }, { "start": 36527.26, "end": 36530.6, "probability": 0.7136 }, { "start": 36531.16, "end": 36531.92, "probability": 0.4427 }, { "start": 36533.64, "end": 36538.0, "probability": 0.7771 }, { "start": 36540.26, "end": 36540.66, "probability": 0.8523 }, { "start": 36541.2, "end": 36541.84, "probability": 0.7069 }, { "start": 36543.96, "end": 36544.36, "probability": 0.9873 }, { "start": 36545.7, "end": 36546.76, "probability": 0.8301 }, { "start": 36549.88, "end": 36553.12, "probability": 0.5798 }, { "start": 36554.2, "end": 36555.62, "probability": 0.048 }, { "start": 36559.1, "end": 36560.12, "probability": 0.5007 }, { "start": 36560.12, "end": 36560.56, "probability": 0.9322 }, { "start": 36562.52, "end": 36565.54, "probability": 0.02 }, { "start": 36566.08, "end": 36567.12, "probability": 0.7885 }, { "start": 36569.16, "end": 36571.9, "probability": 0.6615 }, { "start": 36572.82, "end": 36576.36, "probability": 0.0921 }, { "start": 36576.36, "end": 36576.72, "probability": 0.0981 }, { "start": 36576.72, "end": 36577.32, "probability": 0.6532 }, { "start": 36578.76, "end": 36580.0, "probability": 0.2481 }, { "start": 36580.56, "end": 36581.92, "probability": 0.2443 }, { "start": 36582.52, "end": 36583.1, "probability": 0.2756 }, { "start": 36583.82, "end": 36585.94, "probability": 0.1783 }, { "start": 36589.28, "end": 36590.22, "probability": 0.6461 }, { "start": 36591.38, "end": 36592.12, "probability": 0.3565 }, { "start": 36602.84, "end": 36603.78, "probability": 0.3978 }, { "start": 36604.98, "end": 36605.98, "probability": 0.8409 }, { "start": 36607.22, "end": 36609.78, "probability": 0.6826 }, { "start": 36611.32, "end": 36613.0, "probability": 0.9514 }, { "start": 36614.02, "end": 36614.38, "probability": 0.6866 }, { "start": 36615.92, "end": 36617.72, "probability": 0.9807 }, { "start": 36618.75, "end": 36620.82, "probability": 0.9504 }, { "start": 36621.94, "end": 36624.52, "probability": 0.9131 }, { "start": 36625.38, "end": 36626.04, "probability": 0.9937 }, { "start": 36627.2, "end": 36628.58, "probability": 0.8003 }, { "start": 36629.63, "end": 36632.86, "probability": 0.8437 }, { "start": 36634.92, "end": 36635.18, "probability": 0.3206 }, { "start": 36640.74, "end": 36641.7, "probability": 0.5186 }, { "start": 36642.62, "end": 36642.84, "probability": 0.5185 }, { "start": 36644.04, "end": 36644.54, "probability": 0.661 }, { "start": 36652.85, "end": 36657.02, "probability": 0.5698 }, { "start": 36658.04, "end": 36660.28, "probability": 0.7977 }, { "start": 36661.49, "end": 36663.26, "probability": 0.632 }, { "start": 36664.98, "end": 36667.76, "probability": 0.8875 }, { "start": 36673.62, "end": 36678.72, "probability": 0.6675 }, { "start": 36679.76, "end": 36680.14, "probability": 0.6805 }, { "start": 36681.62, "end": 36682.52, "probability": 0.8475 }, { "start": 36684.24, "end": 36686.04, "probability": 0.9294 }, { "start": 36687.21, "end": 36690.08, "probability": 0.7925 }, { "start": 36691.14, "end": 36691.66, "probability": 0.9619 }, { "start": 36695.96, "end": 36700.3, "probability": 0.9396 }, { "start": 36707.8, "end": 36709.22, "probability": 0.3575 }, { "start": 36710.8, "end": 36714.06, "probability": 0.0219 }, { "start": 36715.2, "end": 36716.84, "probability": 0.1119 }, { "start": 36716.92, "end": 36718.54, "probability": 0.7858 }, { "start": 36718.58, "end": 36719.26, "probability": 0.4814 }, { "start": 36720.22, "end": 36720.22, "probability": 0.0217 }, { "start": 36720.22, "end": 36721.68, "probability": 0.6516 }, { "start": 36721.86, "end": 36722.69, "probability": 0.6453 }, { "start": 36722.8, "end": 36723.92, "probability": 0.6711 }, { "start": 36724.36, "end": 36724.8, "probability": 0.0711 }, { "start": 36726.22, "end": 36727.86, "probability": 0.2294 }, { "start": 36727.92, "end": 36729.28, "probability": 0.0497 }, { "start": 36729.54, "end": 36730.28, "probability": 0.6833 }, { "start": 36731.6, "end": 36732.64, "probability": 0.2531 }, { "start": 36733.6, "end": 36734.3, "probability": 0.0802 }, { "start": 36735.76, "end": 36736.32, "probability": 0.0992 }, { "start": 36737.08, "end": 36737.44, "probability": 0.8356 }, { "start": 36737.72, "end": 36740.46, "probability": 0.0092 }, { "start": 36746.04, "end": 36747.07, "probability": 0.537 }, { "start": 36749.08, "end": 36749.62, "probability": 0.0591 }, { "start": 36749.86, "end": 36749.92, "probability": 0.2829 }, { "start": 36749.92, "end": 36757.26, "probability": 0.5171 }, { "start": 36759.42, "end": 36762.56, "probability": 0.3219 }, { "start": 36763.8, "end": 36764.78, "probability": 0.0782 }, { "start": 36767.21, "end": 36767.4, "probability": 0.2556 }, { "start": 36767.4, "end": 36767.4, "probability": 0.2007 }, { "start": 36767.4, "end": 36767.52, "probability": 0.3514 }, { "start": 36767.82, "end": 36768.28, "probability": 0.0373 }, { "start": 36768.28, "end": 36771.2, "probability": 0.0605 }, { "start": 36772.47, "end": 36774.4, "probability": 0.1388 }, { "start": 36774.5, "end": 36776.26, "probability": 0.0363 }, { "start": 36776.26, "end": 36778.02, "probability": 0.1004 }, { "start": 36778.06, "end": 36779.89, "probability": 0.3282 }, { "start": 36782.18, "end": 36783.1, "probability": 0.3936 }, { "start": 36784.06, "end": 36787.44, "probability": 0.0652 }, { "start": 36789.32, "end": 36789.32, "probability": 0.2494 }, { "start": 36789.4, "end": 36789.4, "probability": 0.0063 }, { "start": 36828.0, "end": 36828.0, "probability": 0.0 }, { "start": 36828.0, "end": 36828.0, "probability": 0.0 }, { "start": 36828.0, "end": 36828.0, "probability": 0.0 }, { "start": 36828.0, "end": 36828.0, "probability": 0.0 }, { "start": 36828.0, "end": 36828.0, "probability": 0.0 }, { "start": 36828.0, "end": 36828.0, "probability": 0.0 }, { "start": 36828.0, "end": 36828.0, "probability": 0.0 }, { "start": 36828.0, "end": 36828.0, "probability": 0.0 }, { "start": 36828.0, "end": 36828.0, "probability": 0.0 }, { "start": 36828.0, "end": 36828.0, "probability": 0.0 }, { "start": 36828.0, "end": 36828.0, "probability": 0.0 }, { "start": 36828.0, "end": 36828.0, "probability": 0.0 }, { "start": 36828.0, "end": 36828.0, "probability": 0.0 }, { "start": 36828.0, "end": 36828.0, "probability": 0.0 }, { "start": 36828.0, "end": 36828.0, "probability": 0.0 }, { "start": 36828.0, "end": 36828.0, "probability": 0.0 }, { "start": 36828.0, "end": 36828.0, "probability": 0.0 }, { "start": 36828.0, "end": 36828.0, "probability": 0.0 }, { "start": 36828.0, "end": 36828.0, "probability": 0.0 }, { "start": 36828.0, "end": 36828.0, "probability": 0.0 }, { "start": 36828.0, "end": 36828.0, "probability": 0.0 }, { "start": 36828.0, "end": 36828.0, "probability": 0.0 }, { "start": 36828.0, "end": 36828.0, "probability": 0.0 }, { "start": 36828.0, "end": 36828.0, "probability": 0.0 }, { "start": 36828.0, "end": 36828.0, "probability": 0.0 }, { "start": 36828.0, "end": 36828.0, "probability": 0.0 }, { "start": 36828.0, "end": 36828.0, "probability": 0.0 }, { "start": 36828.0, "end": 36828.0, "probability": 0.0 }, { "start": 36828.0, "end": 36828.0, "probability": 0.0 }, { "start": 36828.64, "end": 36831.52, "probability": 0.3133 }, { "start": 36833.92, "end": 36836.54, "probability": 0.6677 }, { "start": 36838.26, "end": 36841.04, "probability": 0.6057 }, { "start": 36841.88, "end": 36844.14, "probability": 0.564 }, { "start": 36844.96, "end": 36846.92, "probability": 0.5216 }, { "start": 36846.96, "end": 36854.46, "probability": 0.2751 }, { "start": 36855.62, "end": 36855.88, "probability": 0.9451 }, { "start": 36859.12, "end": 36860.18, "probability": 0.7508 }, { "start": 36863.13, "end": 36873.7, "probability": 0.9245 }, { "start": 36876.2, "end": 36877.26, "probability": 0.6886 }, { "start": 36877.52, "end": 36877.82, "probability": 0.2687 }, { "start": 36879.34, "end": 36879.72, "probability": 0.4138 }, { "start": 36881.62, "end": 36885.48, "probability": 0.9238 }, { "start": 36892.2, "end": 36893.36, "probability": 0.116 }, { "start": 36896.36, "end": 36897.76, "probability": 0.0687 }, { "start": 36905.1, "end": 36906.48, "probability": 0.1581 }, { "start": 36917.98, "end": 36918.72, "probability": 0.0557 }, { "start": 36923.12, "end": 36923.12, "probability": 0.0469 }, { "start": 37005.2, "end": 37007.52, "probability": 0.8022 }, { "start": 37008.28, "end": 37009.04, "probability": 0.0837 }, { "start": 37009.7, "end": 37010.2, "probability": 0.025 }, { "start": 37010.8, "end": 37011.7, "probability": 0.4012 }, { "start": 37012.24, "end": 37015.5, "probability": 0.507 }, { "start": 37016.78, "end": 37020.68, "probability": 0.9556 }, { "start": 37021.12, "end": 37023.14, "probability": 0.8544 }, { "start": 37023.66, "end": 37024.54, "probability": 0.6646 }, { "start": 37025.12, "end": 37028.64, "probability": 0.6981 }, { "start": 37030.68, "end": 37031.26, "probability": 0.4971 }, { "start": 37052.64, "end": 37053.4, "probability": 0.6774 }, { "start": 37054.99, "end": 37057.06, "probability": 0.9771 }, { "start": 37057.44, "end": 37058.56, "probability": 0.4767 }, { "start": 37063.02, "end": 37065.8, "probability": 0.6909 }, { "start": 37066.94, "end": 37067.5, "probability": 0.9792 }, { "start": 37069.02, "end": 37070.27, "probability": 0.7162 }, { "start": 37070.82, "end": 37073.12, "probability": 0.9635 }, { "start": 37074.13, "end": 37076.06, "probability": 0.9744 }, { "start": 37077.22, "end": 37077.62, "probability": 0.2289 }, { "start": 37078.56, "end": 37079.48, "probability": 0.7575 }, { "start": 37080.74, "end": 37081.16, "probability": 0.9979 }, { "start": 37082.14, "end": 37082.96, "probability": 0.9373 }, { "start": 37083.76, "end": 37086.08, "probability": 0.9314 }, { "start": 37087.94, "end": 37090.66, "probability": 0.6916 }, { "start": 37092.48, "end": 37093.02, "probability": 0.6962 }, { "start": 37093.86, "end": 37094.74, "probability": 0.7406 }, { "start": 37096.32, "end": 37096.84, "probability": 0.9834 }, { "start": 37097.6, "end": 37098.74, "probability": 0.9573 }, { "start": 37099.94, "end": 37100.48, "probability": 0.9932 }, { "start": 37101.56, "end": 37102.96, "probability": 0.9884 }, { "start": 37103.82, "end": 37106.02, "probability": 0.9794 }, { "start": 37106.7, "end": 37107.24, "probability": 0.937 }, { "start": 37108.16, "end": 37108.94, "probability": 0.9835 }, { "start": 37109.8, "end": 37110.22, "probability": 0.9827 }, { "start": 37111.12, "end": 37111.9, "probability": 0.9905 }, { "start": 37112.76, "end": 37113.28, "probability": 0.8994 }, { "start": 37114.79, "end": 37116.32, "probability": 0.9316 }, { "start": 37116.88, "end": 37117.28, "probability": 0.9778 }, { "start": 37118.16, "end": 37118.48, "probability": 0.753 }, { "start": 37120.3, "end": 37120.78, "probability": 0.737 }, { "start": 37121.64, "end": 37122.7, "probability": 0.8033 }, { "start": 37123.58, "end": 37124.0, "probability": 0.6884 }, { "start": 37125.94, "end": 37126.74, "probability": 0.9638 }, { "start": 37128.18, "end": 37128.6, "probability": 0.9746 }, { "start": 37129.56, "end": 37130.28, "probability": 0.9164 }, { "start": 37133.52, "end": 37135.88, "probability": 0.9882 }, { "start": 37136.82, "end": 37137.28, "probability": 0.9699 }, { "start": 37138.16, "end": 37139.1, "probability": 0.9764 }, { "start": 37140.14, "end": 37140.66, "probability": 0.9455 }, { "start": 37141.62, "end": 37142.54, "probability": 0.9464 }, { "start": 37146.71, "end": 37148.31, "probability": 0.0124 }, { "start": 37153.94, "end": 37154.72, "probability": 0.6258 }, { "start": 37156.0, "end": 37156.3, "probability": 0.9525 }, { "start": 37157.38, "end": 37158.2, "probability": 0.816 }, { "start": 37162.66, "end": 37162.92, "probability": 0.7603 }, { "start": 37163.62, "end": 37164.42, "probability": 0.7386 }, { "start": 37165.52, "end": 37165.9, "probability": 0.7515 }, { "start": 37166.92, "end": 37167.64, "probability": 0.8844 }, { "start": 37169.24, "end": 37169.66, "probability": 0.909 }, { "start": 37171.14, "end": 37172.16, "probability": 0.9319 }, { "start": 37173.44, "end": 37173.88, "probability": 0.9514 }, { "start": 37174.84, "end": 37175.16, "probability": 0.9713 }, { "start": 37176.56, "end": 37177.04, "probability": 0.803 }, { "start": 37178.02, "end": 37178.78, "probability": 0.9295 }, { "start": 37180.66, "end": 37181.16, "probability": 0.9886 }, { "start": 37182.02, "end": 37183.06, "probability": 0.8357 }, { "start": 37184.4, "end": 37184.84, "probability": 0.9915 }, { "start": 37186.54, "end": 37187.46, "probability": 0.9807 }, { "start": 37188.96, "end": 37189.24, "probability": 0.5172 }, { "start": 37192.08, "end": 37192.9, "probability": 0.5807 }, { "start": 37194.04, "end": 37194.48, "probability": 0.9329 }, { "start": 37195.66, "end": 37196.68, "probability": 0.749 }, { "start": 37197.4, "end": 37197.84, "probability": 0.9902 }, { "start": 37198.74, "end": 37199.56, "probability": 0.9647 }, { "start": 37200.5, "end": 37203.1, "probability": 0.8001 }, { "start": 37204.06, "end": 37204.54, "probability": 0.9933 }, { "start": 37205.24, "end": 37206.32, "probability": 0.9373 }, { "start": 37207.44, "end": 37207.92, "probability": 0.9958 }, { "start": 37209.12, "end": 37209.78, "probability": 0.9775 }, { "start": 37210.5, "end": 37210.92, "probability": 0.9929 }, { "start": 37211.78, "end": 37212.76, "probability": 0.7959 }, { "start": 37215.78, "end": 37216.16, "probability": 0.7619 }, { "start": 37217.74, "end": 37218.52, "probability": 0.181 }, { "start": 37221.3, "end": 37222.42, "probability": 0.5315 }, { "start": 37224.0, "end": 37225.06, "probability": 0.832 }, { "start": 37226.12, "end": 37226.68, "probability": 0.887 }, { "start": 37227.38, "end": 37228.76, "probability": 0.9238 }, { "start": 37230.02, "end": 37230.5, "probability": 0.9387 }, { "start": 37231.64, "end": 37232.88, "probability": 0.9585 }, { "start": 37233.98, "end": 37234.52, "probability": 0.9748 }, { "start": 37235.36, "end": 37236.68, "probability": 0.7431 }, { "start": 37237.46, "end": 37237.96, "probability": 0.8628 }, { "start": 37238.94, "end": 37239.48, "probability": 0.4902 }, { "start": 37242.18, "end": 37242.58, "probability": 0.9897 }, { "start": 37244.22, "end": 37245.22, "probability": 0.6598 }, { "start": 37245.76, "end": 37246.08, "probability": 0.907 }, { "start": 37246.9, "end": 37247.76, "probability": 0.7182 }, { "start": 37248.66, "end": 37250.86, "probability": 0.9743 }, { "start": 37253.12, "end": 37253.64, "probability": 0.9771 }, { "start": 37254.6, "end": 37255.38, "probability": 0.9125 }, { "start": 37258.86, "end": 37261.98, "probability": 0.9031 }, { "start": 37262.96, "end": 37263.44, "probability": 0.9653 }, { "start": 37264.98, "end": 37266.24, "probability": 0.9661 }, { "start": 37267.38, "end": 37267.82, "probability": 0.9951 }, { "start": 37268.58, "end": 37269.46, "probability": 0.9871 }, { "start": 37272.7, "end": 37272.98, "probability": 0.697 }, { "start": 37274.0, "end": 37274.74, "probability": 0.7302 }, { "start": 37275.74, "end": 37276.08, "probability": 0.5831 }, { "start": 37276.96, "end": 37277.86, "probability": 0.8444 }, { "start": 37279.12, "end": 37279.56, "probability": 0.9836 }, { "start": 37280.46, "end": 37281.34, "probability": 0.9522 }, { "start": 37282.48, "end": 37282.98, "probability": 0.9199 }, { "start": 37283.94, "end": 37284.5, "probability": 0.9478 }, { "start": 37285.84, "end": 37286.4, "probability": 0.9325 }, { "start": 37287.2, "end": 37287.98, "probability": 0.9937 }, { "start": 37288.94, "end": 37289.42, "probability": 0.9844 }, { "start": 37290.46, "end": 37291.2, "probability": 0.996 }, { "start": 37292.08, "end": 37292.52, "probability": 0.9635 }, { "start": 37293.26, "end": 37293.92, "probability": 0.991 }, { "start": 37294.7, "end": 37295.7, "probability": 0.937 }, { "start": 37296.56, "end": 37297.66, "probability": 0.5674 }, { "start": 37298.5, "end": 37298.86, "probability": 0.9885 }, { "start": 37299.84, "end": 37300.46, "probability": 0.859 }, { "start": 37301.52, "end": 37301.74, "probability": 0.5449 }, { "start": 37302.72, "end": 37303.96, "probability": 0.8559 }, { "start": 37307.3, "end": 37307.84, "probability": 0.951 }, { "start": 37309.0, "end": 37309.9, "probability": 0.9291 }, { "start": 37311.08, "end": 37313.52, "probability": 0.9825 }, { "start": 37315.2, "end": 37316.88, "probability": 0.9718 }, { "start": 37318.34, "end": 37318.84, "probability": 0.911 }, { "start": 37319.76, "end": 37320.68, "probability": 0.987 }, { "start": 37322.08, "end": 37322.58, "probability": 0.9485 }, { "start": 37329.32, "end": 37330.12, "probability": 0.6997 }, { "start": 37331.58, "end": 37334.34, "probability": 0.5178 }, { "start": 37335.56, "end": 37336.72, "probability": 0.9724 }, { "start": 37337.9, "end": 37340.38, "probability": 0.8239 }, { "start": 37342.58, "end": 37344.94, "probability": 0.8892 }, { "start": 37350.0, "end": 37350.3, "probability": 0.7607 }, { "start": 37351.44, "end": 37352.32, "probability": 0.7542 }, { "start": 37353.52, "end": 37353.98, "probability": 0.5889 }, { "start": 37355.14, "end": 37356.28, "probability": 0.772 }, { "start": 37358.16, "end": 37360.54, "probability": 0.9025 }, { "start": 37361.1, "end": 37363.92, "probability": 0.9143 }, { "start": 37366.06, "end": 37366.56, "probability": 0.9919 }, { "start": 37368.12, "end": 37368.88, "probability": 0.9759 }, { "start": 37369.94, "end": 37370.4, "probability": 0.9907 }, { "start": 37372.14, "end": 37372.92, "probability": 0.9079 }, { "start": 37373.96, "end": 37374.92, "probability": 0.243 }, { "start": 37380.54, "end": 37381.96, "probability": 0.5581 }, { "start": 37382.98, "end": 37383.36, "probability": 0.7094 }, { "start": 37384.9, "end": 37385.92, "probability": 0.7763 }, { "start": 37388.86, "end": 37389.16, "probability": 0.5126 }, { "start": 37391.34, "end": 37392.52, "probability": 0.7943 }, { "start": 37394.86, "end": 37396.26, "probability": 0.7942 }, { "start": 37397.6, "end": 37398.52, "probability": 0.7893 }, { "start": 37402.2, "end": 37402.44, "probability": 0.5812 }, { "start": 37403.32, "end": 37404.26, "probability": 0.569 }, { "start": 37405.4, "end": 37407.56, "probability": 0.9517 }, { "start": 37409.34, "end": 37409.8, "probability": 0.9543 }, { "start": 37410.32, "end": 37412.76, "probability": 0.4008 }, { "start": 37416.78, "end": 37417.74, "probability": 0.929 }, { "start": 37418.48, "end": 37419.48, "probability": 0.8708 }, { "start": 37420.82, "end": 37423.58, "probability": 0.7687 }, { "start": 37425.08, "end": 37425.52, "probability": 0.9199 }, { "start": 37426.2, "end": 37427.26, "probability": 0.8435 }, { "start": 37429.32, "end": 37430.28, "probability": 0.5098 }, { "start": 37431.6, "end": 37432.04, "probability": 0.9896 }, { "start": 37432.72, "end": 37433.6, "probability": 0.9518 }, { "start": 37434.54, "end": 37435.0, "probability": 0.9414 }, { "start": 37435.82, "end": 37436.64, "probability": 0.9303 }, { "start": 37437.62, "end": 37438.18, "probability": 0.9951 }, { "start": 37438.82, "end": 37439.88, "probability": 0.7015 }, { "start": 37440.64, "end": 37441.56, "probability": 0.9964 }, { "start": 37442.8, "end": 37443.6, "probability": 0.987 }, { "start": 37444.62, "end": 37445.14, "probability": 0.992 }, { "start": 37445.8, "end": 37448.2, "probability": 0.9501 }, { "start": 37449.62, "end": 37450.42, "probability": 0.9386 }, { "start": 37452.52, "end": 37452.98, "probability": 0.8942 }, { "start": 37453.74, "end": 37454.22, "probability": 0.6352 }, { "start": 37455.64, "end": 37456.0, "probability": 0.541 }, { "start": 37457.0, "end": 37457.8, "probability": 0.7497 }, { "start": 37460.0, "end": 37460.42, "probability": 0.9771 }, { "start": 37461.26, "end": 37462.26, "probability": 0.8294 }, { "start": 37463.4, "end": 37463.7, "probability": 0.9729 }, { "start": 37464.74, "end": 37465.5, "probability": 0.9022 }, { "start": 37468.04, "end": 37470.88, "probability": 0.9775 }, { "start": 37471.82, "end": 37472.1, "probability": 0.979 }, { "start": 37473.04, "end": 37473.84, "probability": 0.8799 }, { "start": 37474.86, "end": 37475.28, "probability": 0.9735 }, { "start": 37476.12, "end": 37479.78, "probability": 0.8569 }, { "start": 37481.06, "end": 37481.96, "probability": 0.8889 }, { "start": 37483.98, "end": 37484.1, "probability": 0.9888 }, { "start": 37485.32, "end": 37486.32, "probability": 0.6983 }, { "start": 37487.22, "end": 37487.68, "probability": 0.9092 }, { "start": 37488.44, "end": 37489.92, "probability": 0.968 }, { "start": 37490.79, "end": 37493.36, "probability": 0.9836 }, { "start": 37494.46, "end": 37496.18, "probability": 0.959 }, { "start": 37497.04, "end": 37499.12, "probability": 0.9655 }, { "start": 37499.72, "end": 37500.38, "probability": 0.9924 }, { "start": 37501.02, "end": 37502.3, "probability": 0.8008 }, { "start": 37502.98, "end": 37503.44, "probability": 0.991 }, { "start": 37504.1, "end": 37505.54, "probability": 0.916 }, { "start": 37506.54, "end": 37508.32, "probability": 0.9492 }, { "start": 37509.22, "end": 37509.48, "probability": 0.5492 }, { "start": 37510.66, "end": 37511.58, "probability": 0.7544 }, { "start": 37512.7, "end": 37513.12, "probability": 0.9033 }, { "start": 37513.94, "end": 37514.74, "probability": 0.7069 }, { "start": 37518.4, "end": 37519.0, "probability": 0.9772 }, { "start": 37519.88, "end": 37521.0, "probability": 0.9422 }, { "start": 37521.96, "end": 37522.46, "probability": 0.9624 }, { "start": 37523.26, "end": 37523.86, "probability": 0.7528 }, { "start": 37525.52, "end": 37527.1, "probability": 0.9719 }, { "start": 37527.66, "end": 37528.74, "probability": 0.807 }, { "start": 37534.16, "end": 37534.36, "probability": 0.5937 }, { "start": 37535.3, "end": 37536.5, "probability": 0.5912 }, { "start": 37538.7, "end": 37539.08, "probability": 0.8757 }, { "start": 37540.26, "end": 37541.12, "probability": 0.7432 }, { "start": 37542.27, "end": 37544.22, "probability": 0.8314 }, { "start": 37546.86, "end": 37548.66, "probability": 0.6248 }, { "start": 37549.56, "end": 37550.76, "probability": 0.5985 }, { "start": 37551.72, "end": 37552.16, "probability": 0.8402 }, { "start": 37555.42, "end": 37557.18, "probability": 0.7753 }, { "start": 37557.58, "end": 37558.76, "probability": 0.5588 }, { "start": 37559.5, "end": 37560.36, "probability": 0.1072 }, { "start": 37563.3, "end": 37564.8, "probability": 0.6698 }, { "start": 37566.52, "end": 37569.66, "probability": 0.6583 }, { "start": 37577.64, "end": 37583.94, "probability": 0.8372 }, { "start": 37584.8, "end": 37584.82, "probability": 0.3093 }, { "start": 37584.82, "end": 37585.04, "probability": 0.1873 }, { "start": 37585.2, "end": 37585.46, "probability": 0.7248 }, { "start": 37586.68, "end": 37588.62, "probability": 0.7548 }, { "start": 37589.32, "end": 37590.08, "probability": 0.6801 }, { "start": 37590.18, "end": 37590.18, "probability": 0.2851 }, { "start": 37590.18, "end": 37593.72, "probability": 0.9456 }, { "start": 37594.92, "end": 37596.32, "probability": 0.6925 }, { "start": 37596.4, "end": 37597.58, "probability": 0.6677 }, { "start": 37597.66, "end": 37598.12, "probability": 0.8822 }, { "start": 37599.52, "end": 37599.52, "probability": 0.4892 }, { "start": 37605.14, "end": 37606.16, "probability": 0.3736 }, { "start": 37607.86, "end": 37609.64, "probability": 0.0677 }, { "start": 37621.34, "end": 37623.78, "probability": 0.1296 }, { "start": 37663.96, "end": 37664.3, "probability": 0.0849 }, { "start": 37664.88, "end": 37666.92, "probability": 0.0586 }, { "start": 37668.1, "end": 37670.18, "probability": 0.107 }, { "start": 37672.26, "end": 37676.28, "probability": 0.0189 }, { "start": 37677.64, "end": 37678.4, "probability": 0.0429 }, { "start": 37679.59, "end": 37681.02, "probability": 0.0352 }, { "start": 37681.36, "end": 37681.48, "probability": 0.0016 }, { "start": 37683.2, "end": 37685.82, "probability": 0.03 }, { "start": 37686.18, "end": 37687.33, "probability": 0.0073 }, { "start": 37717.1, "end": 37717.16, "probability": 0.2032 }, { "start": 37717.16, "end": 37717.68, "probability": 0.7139 }, { "start": 37718.1, "end": 37718.56, "probability": 0.71 }, { "start": 37718.62, "end": 37723.54, "probability": 0.8931 }, { "start": 37723.9, "end": 37725.12, "probability": 0.7404 }, { "start": 37725.8, "end": 37728.94, "probability": 0.9646 }, { "start": 37735.49, "end": 37743.74, "probability": 0.0209 }, { "start": 37744.36, "end": 37745.48, "probability": 0.0636 }, { "start": 37745.48, "end": 37746.72, "probability": 0.017 }, { "start": 37748.24, "end": 37749.26, "probability": 0.0231 }, { "start": 37749.28, "end": 37750.18, "probability": 0.3419 }, { "start": 37753.66, "end": 37754.26, "probability": 0.2245 }, { "start": 37842.0, "end": 37842.0, "probability": 0.0 }, { "start": 37842.0, "end": 37842.0, "probability": 0.0 }, { "start": 37842.0, "end": 37842.0, "probability": 0.0 }, { "start": 37842.0, "end": 37842.0, "probability": 0.0 }, { "start": 37842.0, "end": 37842.0, "probability": 0.0 }, { "start": 37842.0, "end": 37842.0, "probability": 0.0 }, { "start": 37842.0, "end": 37842.0, "probability": 0.0 }, { "start": 37842.0, "end": 37842.0, "probability": 0.0 }, { "start": 37842.08, "end": 37842.4, "probability": 0.0219 }, { "start": 37842.4, "end": 37844.86, "probability": 0.562 }, { "start": 37846.3, "end": 37848.32, "probability": 0.9639 }, { "start": 37848.88, "end": 37852.08, "probability": 0.9722 }, { "start": 37853.64, "end": 37857.26, "probability": 0.9006 }, { "start": 37858.34, "end": 37858.96, "probability": 0.7842 }, { "start": 37859.42, "end": 37864.62, "probability": 0.9282 }, { "start": 37865.52, "end": 37869.0, "probability": 0.7729 }, { "start": 37869.0, "end": 37874.12, "probability": 0.9743 }, { "start": 37874.64, "end": 37875.86, "probability": 0.9721 }, { "start": 37876.16, "end": 37877.18, "probability": 0.893 }, { "start": 37877.58, "end": 37882.44, "probability": 0.9807 }, { "start": 37883.48, "end": 37885.56, "probability": 0.9979 }, { "start": 37886.42, "end": 37889.16, "probability": 0.9851 }, { "start": 37889.54, "end": 37890.48, "probability": 0.9316 }, { "start": 37891.14, "end": 37895.96, "probability": 0.9902 }, { "start": 37897.26, "end": 37899.86, "probability": 0.79 }, { "start": 37900.44, "end": 37901.62, "probability": 0.9429 }, { "start": 37902.08, "end": 37905.9, "probability": 0.9931 }, { "start": 37905.9, "end": 37910.44, "probability": 0.927 }, { "start": 37910.44, "end": 37915.74, "probability": 0.9878 }, { "start": 37916.26, "end": 37917.62, "probability": 0.8143 }, { "start": 37918.42, "end": 37919.44, "probability": 0.9695 }, { "start": 37920.46, "end": 37923.84, "probability": 0.9089 }, { "start": 37925.44, "end": 37927.8, "probability": 0.9972 }, { "start": 37928.54, "end": 37931.16, "probability": 0.6586 }, { "start": 37931.68, "end": 37933.18, "probability": 0.9797 }, { "start": 37934.58, "end": 37935.54, "probability": 0.8303 }, { "start": 37935.8, "end": 37937.12, "probability": 0.9602 }, { "start": 37937.26, "end": 37937.98, "probability": 0.9761 }, { "start": 37938.28, "end": 37940.32, "probability": 0.968 }, { "start": 37940.84, "end": 37944.04, "probability": 0.8781 }, { "start": 37944.74, "end": 37946.72, "probability": 0.9909 }, { "start": 37946.72, "end": 37950.2, "probability": 0.9856 }, { "start": 37950.84, "end": 37952.22, "probability": 0.9764 }, { "start": 37953.54, "end": 37957.88, "probability": 0.9971 }, { "start": 37958.08, "end": 37960.54, "probability": 0.9933 }, { "start": 37960.72, "end": 37963.36, "probability": 0.9919 }, { "start": 37964.38, "end": 37964.8, "probability": 0.8824 }, { "start": 37966.04, "end": 37967.88, "probability": 0.9986 }, { "start": 37968.14, "end": 37970.92, "probability": 0.9953 }, { "start": 37970.92, "end": 37973.0, "probability": 0.963 }, { "start": 37974.22, "end": 37977.46, "probability": 0.8589 }, { "start": 37977.54, "end": 37983.82, "probability": 0.9772 }, { "start": 37984.64, "end": 37986.22, "probability": 0.9021 }, { "start": 37986.4, "end": 37990.18, "probability": 0.8331 }, { "start": 37990.56, "end": 37992.06, "probability": 0.9272 }, { "start": 37993.26, "end": 37994.44, "probability": 0.9771 }, { "start": 37995.06, "end": 37997.34, "probability": 0.9191 }, { "start": 37997.82, "end": 38000.14, "probability": 0.9426 }, { "start": 38000.32, "end": 38001.5, "probability": 0.9348 }, { "start": 38002.86, "end": 38007.56, "probability": 0.9948 }, { "start": 38008.24, "end": 38012.0, "probability": 0.8615 }, { "start": 38012.36, "end": 38017.44, "probability": 0.9596 }, { "start": 38018.3, "end": 38021.8, "probability": 0.9792 }, { "start": 38022.44, "end": 38022.74, "probability": 0.7395 }, { "start": 38022.88, "end": 38024.86, "probability": 0.8919 }, { "start": 38024.86, "end": 38027.44, "probability": 0.9978 }, { "start": 38027.82, "end": 38030.68, "probability": 0.9487 }, { "start": 38031.16, "end": 38031.44, "probability": 0.5055 }, { "start": 38031.5, "end": 38032.76, "probability": 0.9718 }, { "start": 38032.94, "end": 38034.88, "probability": 0.9565 }, { "start": 38036.14, "end": 38039.14, "probability": 0.9336 }, { "start": 38039.25, "end": 38042.26, "probability": 0.988 }, { "start": 38043.54, "end": 38046.42, "probability": 0.9822 }, { "start": 38046.42, "end": 38050.06, "probability": 0.9874 }, { "start": 38050.76, "end": 38052.16, "probability": 0.9508 }, { "start": 38052.9, "end": 38055.06, "probability": 0.9978 }, { "start": 38055.06, "end": 38058.82, "probability": 0.8468 }, { "start": 38059.32, "end": 38064.28, "probability": 0.9937 }, { "start": 38064.76, "end": 38065.86, "probability": 0.9016 }, { "start": 38066.3, "end": 38068.76, "probability": 0.9956 }, { "start": 38068.94, "end": 38069.92, "probability": 0.8329 }, { "start": 38071.82, "end": 38074.5, "probability": 0.8391 }, { "start": 38075.66, "end": 38079.14, "probability": 0.7614 }, { "start": 38079.78, "end": 38081.26, "probability": 0.9689 }, { "start": 38099.64, "end": 38099.71, "probability": 0.1932 }, { "start": 38100.36, "end": 38104.27, "probability": 0.075 }, { "start": 38104.3, "end": 38104.94, "probability": 0.0247 }, { "start": 38105.86, "end": 38107.79, "probability": 0.4459 }, { "start": 38108.42, "end": 38109.28, "probability": 0.2021 }, { "start": 38110.44, "end": 38111.38, "probability": 0.0446 }, { "start": 38113.38, "end": 38116.08, "probability": 0.351 }, { "start": 38119.36, "end": 38123.68, "probability": 0.04 }, { "start": 38131.12, "end": 38131.48, "probability": 0.2549 }, { "start": 38135.92, "end": 38139.14, "probability": 0.7048 }, { "start": 38140.6, "end": 38141.68, "probability": 0.6684 }, { "start": 38143.14, "end": 38145.66, "probability": 0.999 }, { "start": 38147.16, "end": 38151.44, "probability": 0.9103 }, { "start": 38152.46, "end": 38153.88, "probability": 0.5555 }, { "start": 38154.6, "end": 38155.6, "probability": 0.9785 }, { "start": 38156.86, "end": 38161.5, "probability": 0.9938 }, { "start": 38162.64, "end": 38167.42, "probability": 0.9969 }, { "start": 38168.5, "end": 38171.86, "probability": 0.9979 }, { "start": 38171.86, "end": 38175.2, "probability": 0.9957 }, { "start": 38176.58, "end": 38180.3, "probability": 0.9793 }, { "start": 38180.6, "end": 38182.88, "probability": 0.6896 }, { "start": 38183.54, "end": 38187.18, "probability": 0.9786 }, { "start": 38188.18, "end": 38190.34, "probability": 0.9907 }, { "start": 38191.08, "end": 38191.64, "probability": 0.6261 }, { "start": 38192.36, "end": 38193.86, "probability": 0.8007 }, { "start": 38194.56, "end": 38195.86, "probability": 0.8768 }, { "start": 38195.94, "end": 38198.62, "probability": 0.9924 }, { "start": 38199.62, "end": 38202.88, "probability": 0.8782 }, { "start": 38203.9, "end": 38205.98, "probability": 0.8058 }, { "start": 38206.94, "end": 38210.98, "probability": 0.818 }, { "start": 38212.18, "end": 38212.86, "probability": 0.9778 }, { "start": 38213.44, "end": 38215.7, "probability": 0.9253 }, { "start": 38217.56, "end": 38221.84, "probability": 0.9946 }, { "start": 38222.84, "end": 38226.1, "probability": 0.9922 }, { "start": 38226.18, "end": 38228.16, "probability": 0.915 }, { "start": 38228.74, "end": 38232.48, "probability": 0.9969 }, { "start": 38233.16, "end": 38236.82, "probability": 0.9814 }, { "start": 38237.04, "end": 38238.44, "probability": 0.9456 }, { "start": 38239.02, "end": 38240.42, "probability": 0.8993 }, { "start": 38241.24, "end": 38242.36, "probability": 0.9785 }, { "start": 38242.98, "end": 38244.7, "probability": 0.9905 }, { "start": 38245.8, "end": 38250.0, "probability": 0.9969 }, { "start": 38250.52, "end": 38253.34, "probability": 0.9886 }, { "start": 38253.86, "end": 38258.14, "probability": 0.9985 }, { "start": 38258.94, "end": 38262.64, "probability": 0.9906 }, { "start": 38263.46, "end": 38266.24, "probability": 0.9593 }, { "start": 38266.96, "end": 38273.0, "probability": 0.9949 }, { "start": 38273.2, "end": 38273.72, "probability": 0.5877 }, { "start": 38274.32, "end": 38275.88, "probability": 0.9859 }, { "start": 38276.68, "end": 38280.32, "probability": 0.9481 }, { "start": 38280.36, "end": 38284.64, "probability": 0.9919 }, { "start": 38285.6, "end": 38287.9, "probability": 0.9355 }, { "start": 38288.52, "end": 38291.48, "probability": 0.9944 }, { "start": 38291.54, "end": 38294.66, "probability": 0.992 }, { "start": 38295.36, "end": 38297.94, "probability": 0.9205 }, { "start": 38298.12, "end": 38300.4, "probability": 0.8281 }, { "start": 38300.62, "end": 38302.38, "probability": 0.9812 }, { "start": 38302.86, "end": 38304.1, "probability": 0.8235 }, { "start": 38304.24, "end": 38307.08, "probability": 0.9919 }, { "start": 38307.62, "end": 38308.48, "probability": 0.9846 }, { "start": 38309.22, "end": 38313.64, "probability": 0.9919 }, { "start": 38314.2, "end": 38314.62, "probability": 0.9779 }, { "start": 38315.24, "end": 38316.58, "probability": 0.9928 }, { "start": 38316.84, "end": 38319.82, "probability": 0.9963 }, { "start": 38320.72, "end": 38325.06, "probability": 0.9951 }, { "start": 38325.66, "end": 38329.0, "probability": 0.9924 }, { "start": 38329.56, "end": 38330.12, "probability": 0.9694 }, { "start": 38330.64, "end": 38332.28, "probability": 0.9874 }, { "start": 38332.64, "end": 38332.9, "probability": 0.7444 }, { "start": 38333.4, "end": 38334.1, "probability": 0.5777 }, { "start": 38335.1, "end": 38336.6, "probability": 0.7349 }, { "start": 38344.74, "end": 38345.78, "probability": 0.0328 }, { "start": 38347.81, "end": 38349.22, "probability": 0.726 }, { "start": 38353.8, "end": 38354.6, "probability": 0.3778 }, { "start": 38355.32, "end": 38356.14, "probability": 0.6535 }, { "start": 38362.94, "end": 38365.64, "probability": 0.6675 }, { "start": 38366.38, "end": 38367.24, "probability": 0.704 }, { "start": 38368.68, "end": 38370.42, "probability": 0.3015 }, { "start": 38370.5, "end": 38371.28, "probability": 0.8496 }, { "start": 38372.58, "end": 38373.3, "probability": 0.2337 }, { "start": 38375.04, "end": 38375.67, "probability": 0.7871 }, { "start": 38377.61, "end": 38380.28, "probability": 0.9902 }, { "start": 38380.92, "end": 38383.76, "probability": 0.1074 }, { "start": 38390.8, "end": 38392.48, "probability": 0.9139 }, { "start": 38392.78, "end": 38396.84, "probability": 0.8969 }, { "start": 38398.92, "end": 38400.18, "probability": 0.8152 }, { "start": 38400.84, "end": 38402.38, "probability": 0.8395 }, { "start": 38403.0, "end": 38404.58, "probability": 0.5501 }, { "start": 38405.44, "end": 38408.3, "probability": 0.9471 }, { "start": 38408.88, "end": 38409.8, "probability": 0.7196 }, { "start": 38411.74, "end": 38412.28, "probability": 0.9169 }, { "start": 38413.1, "end": 38413.92, "probability": 0.7131 }, { "start": 38415.08, "end": 38415.54, "probability": 0.5672 }, { "start": 38416.52, "end": 38418.6, "probability": 0.5756 }, { "start": 38419.9, "end": 38420.64, "probability": 0.8638 }, { "start": 38421.58, "end": 38422.26, "probability": 0.9416 }, { "start": 38422.86, "end": 38423.6, "probability": 0.933 }, { "start": 38424.58, "end": 38425.22, "probability": 0.9503 }, { "start": 38425.8, "end": 38426.86, "probability": 0.9722 }, { "start": 38428.4, "end": 38428.88, "probability": 0.9822 }, { "start": 38429.66, "end": 38430.34, "probability": 0.9202 }, { "start": 38431.12, "end": 38431.58, "probability": 0.7375 }, { "start": 38432.28, "end": 38433.1, "probability": 0.952 }, { "start": 38433.92, "end": 38435.32, "probability": 0.5694 }, { "start": 38464.04, "end": 38464.56, "probability": 0.1802 }, { "start": 38466.34, "end": 38467.14, "probability": 0.7361 }, { "start": 38468.52, "end": 38470.18, "probability": 0.9125 }, { "start": 38472.72, "end": 38473.96, "probability": 0.9644 }, { "start": 38476.06, "end": 38482.18, "probability": 0.9434 }, { "start": 38482.24, "end": 38482.94, "probability": 0.6799 }, { "start": 38484.3, "end": 38488.6, "probability": 0.9826 }, { "start": 38489.78, "end": 38492.26, "probability": 0.9928 }, { "start": 38493.08, "end": 38494.52, "probability": 0.9458 }, { "start": 38495.48, "end": 38496.4, "probability": 0.9844 }, { "start": 38498.12, "end": 38499.44, "probability": 0.8257 }, { "start": 38500.36, "end": 38504.82, "probability": 0.9834 }, { "start": 38507.62, "end": 38508.9, "probability": 0.5191 }, { "start": 38510.76, "end": 38513.68, "probability": 0.9565 }, { "start": 38514.28, "end": 38516.96, "probability": 0.999 }, { "start": 38518.1, "end": 38519.32, "probability": 0.9996 }, { "start": 38520.32, "end": 38521.7, "probability": 0.9893 }, { "start": 38522.98, "end": 38525.16, "probability": 0.9935 }, { "start": 38526.06, "end": 38527.8, "probability": 0.9992 }, { "start": 38529.44, "end": 38530.36, "probability": 0.7646 }, { "start": 38530.5, "end": 38530.88, "probability": 0.4739 }, { "start": 38531.1, "end": 38532.54, "probability": 0.9756 }, { "start": 38534.0, "end": 38535.2, "probability": 0.9556 }, { "start": 38536.14, "end": 38537.54, "probability": 0.9946 }, { "start": 38538.44, "end": 38539.6, "probability": 0.9961 }, { "start": 38540.24, "end": 38541.52, "probability": 0.9988 }, { "start": 38542.14, "end": 38542.96, "probability": 0.8244 }, { "start": 38544.14, "end": 38548.42, "probability": 0.9976 }, { "start": 38550.14, "end": 38551.34, "probability": 0.7406 }, { "start": 38552.0, "end": 38553.64, "probability": 0.986 }, { "start": 38554.32, "end": 38556.12, "probability": 0.8829 }, { "start": 38557.3, "end": 38558.3, "probability": 0.7501 }, { "start": 38559.38, "end": 38560.36, "probability": 0.8544 }, { "start": 38561.32, "end": 38562.22, "probability": 0.6748 }, { "start": 38562.86, "end": 38566.46, "probability": 0.9846 }, { "start": 38567.68, "end": 38568.8, "probability": 0.983 }, { "start": 38570.54, "end": 38571.9, "probability": 0.9295 }, { "start": 38572.92, "end": 38574.46, "probability": 0.9849 }, { "start": 38575.76, "end": 38579.12, "probability": 0.9691 }, { "start": 38579.74, "end": 38581.18, "probability": 0.7688 }, { "start": 38581.9, "end": 38582.84, "probability": 0.7052 }, { "start": 38584.12, "end": 38585.58, "probability": 0.9863 }, { "start": 38586.56, "end": 38591.84, "probability": 0.8432 }, { "start": 38592.68, "end": 38594.78, "probability": 0.9657 }, { "start": 38595.58, "end": 38597.5, "probability": 0.9956 }, { "start": 38598.28, "end": 38598.88, "probability": 0.5617 }, { "start": 38599.44, "end": 38600.92, "probability": 0.8666 }, { "start": 38601.14, "end": 38603.24, "probability": 0.9312 }, { "start": 38603.96, "end": 38607.62, "probability": 0.9587 }, { "start": 38609.2, "end": 38611.42, "probability": 0.8999 }, { "start": 38612.0, "end": 38613.94, "probability": 0.9798 }, { "start": 38614.52, "end": 38616.26, "probability": 0.983 }, { "start": 38617.44, "end": 38618.88, "probability": 0.9889 }, { "start": 38619.92, "end": 38622.04, "probability": 0.9916 }, { "start": 38623.54, "end": 38625.24, "probability": 0.9853 }, { "start": 38627.24, "end": 38629.46, "probability": 0.9642 }, { "start": 38629.64, "end": 38633.14, "probability": 0.9963 }, { "start": 38634.54, "end": 38635.74, "probability": 0.9961 }, { "start": 38637.6, "end": 38639.56, "probability": 0.9586 }, { "start": 38640.22, "end": 38641.48, "probability": 0.9717 }, { "start": 38642.78, "end": 38645.34, "probability": 0.8291 }, { "start": 38646.58, "end": 38649.18, "probability": 0.9964 }, { "start": 38649.28, "end": 38649.86, "probability": 0.7682 }, { "start": 38651.38, "end": 38653.48, "probability": 0.9805 }, { "start": 38654.12, "end": 38655.5, "probability": 0.9985 }, { "start": 38656.14, "end": 38657.48, "probability": 0.6825 }, { "start": 38657.92, "end": 38658.6, "probability": 0.6938 }, { "start": 38659.94, "end": 38663.94, "probability": 0.5721 }, { "start": 38665.14, "end": 38665.9, "probability": 0.6638 }, { "start": 38667.4, "end": 38668.48, "probability": 0.7101 }, { "start": 38669.78, "end": 38671.72, "probability": 0.6687 }, { "start": 38672.58, "end": 38673.72, "probability": 0.6917 }, { "start": 38674.2, "end": 38675.62, "probability": 0.988 }, { "start": 38682.5, "end": 38682.6, "probability": 0.0185 }, { "start": 38682.6, "end": 38682.89, "probability": 0.2738 }, { "start": 38683.12, "end": 38685.6, "probability": 0.0259 }, { "start": 38686.32, "end": 38687.2, "probability": 0.1076 }, { "start": 38690.14, "end": 38690.78, "probability": 0.5115 }, { "start": 38690.86, "end": 38692.0, "probability": 0.9114 }, { "start": 38692.88, "end": 38694.3, "probability": 0.9106 }, { "start": 38697.28, "end": 38698.34, "probability": 0.5209 }, { "start": 38698.7, "end": 38699.3, "probability": 0.731 }, { "start": 38699.5, "end": 38700.56, "probability": 0.9583 }, { "start": 38701.52, "end": 38702.52, "probability": 0.8527 }, { "start": 38703.58, "end": 38703.98, "probability": 0.7769 }, { "start": 38704.92, "end": 38705.66, "probability": 0.749 }, { "start": 38706.84, "end": 38707.46, "probability": 0.6893 }, { "start": 38708.04, "end": 38708.94, "probability": 0.4331 }, { "start": 38725.72, "end": 38726.44, "probability": 0.168 }, { "start": 38728.3, "end": 38729.03, "probability": 0.6136 }, { "start": 38730.49, "end": 38732.88, "probability": 0.5436 }, { "start": 38748.68, "end": 38751.76, "probability": 0.6514 }, { "start": 38752.8, "end": 38752.9, "probability": 0.9268 }, { "start": 38755.94, "end": 38757.3, "probability": 0.9933 }, { "start": 38757.4, "end": 38758.11, "probability": 0.9777 }, { "start": 38759.26, "end": 38761.26, "probability": 0.3959 }, { "start": 38761.28, "end": 38762.16, "probability": 0.9409 }, { "start": 38763.3, "end": 38764.66, "probability": 0.3372 }, { "start": 38765.24, "end": 38765.96, "probability": 0.694 }, { "start": 38766.58, "end": 38769.45, "probability": 0.5489 }, { "start": 38770.96, "end": 38771.96, "probability": 0.7951 }, { "start": 38773.18, "end": 38779.78, "probability": 0.9748 }, { "start": 38781.96, "end": 38783.24, "probability": 0.9578 }, { "start": 38786.0, "end": 38787.76, "probability": 0.9977 }, { "start": 38789.48, "end": 38793.58, "probability": 0.9869 }, { "start": 38794.98, "end": 38796.46, "probability": 0.4782 }, { "start": 38798.26, "end": 38798.66, "probability": 0.498 }, { "start": 38799.42, "end": 38800.22, "probability": 0.5486 }, { "start": 38801.26, "end": 38804.8, "probability": 0.9669 }, { "start": 38805.72, "end": 38806.66, "probability": 0.9863 }, { "start": 38808.54, "end": 38808.66, "probability": 0.6924 }, { "start": 38810.7, "end": 38812.5, "probability": 0.6649 }, { "start": 38813.26, "end": 38814.06, "probability": 0.6967 }, { "start": 38815.44, "end": 38816.48, "probability": 0.7835 }, { "start": 38817.66, "end": 38818.86, "probability": 0.7461 }, { "start": 38821.2, "end": 38824.84, "probability": 0.9755 }, { "start": 38825.86, "end": 38827.22, "probability": 0.9856 }, { "start": 38828.72, "end": 38829.64, "probability": 0.6956 }, { "start": 38831.28, "end": 38837.6, "probability": 0.9272 }, { "start": 38838.1, "end": 38840.94, "probability": 0.7939 }, { "start": 38843.64, "end": 38844.08, "probability": 0.5651 }, { "start": 38844.62, "end": 38846.4, "probability": 0.7875 }, { "start": 38847.48, "end": 38851.2, "probability": 0.6698 }, { "start": 38851.94, "end": 38853.62, "probability": 0.7645 }, { "start": 38854.6, "end": 38857.56, "probability": 0.0499 }, { "start": 38857.56, "end": 38857.56, "probability": 0.1629 }, { "start": 38857.56, "end": 38858.62, "probability": 0.4902 }, { "start": 38859.96, "end": 38862.0, "probability": 0.7058 }, { "start": 38863.42, "end": 38864.12, "probability": 0.8107 }, { "start": 38864.94, "end": 38866.76, "probability": 0.9148 }, { "start": 38868.12, "end": 38869.26, "probability": 0.8579 }, { "start": 38870.14, "end": 38871.52, "probability": 0.9305 }, { "start": 38872.74, "end": 38877.78, "probability": 0.698 }, { "start": 38878.66, "end": 38880.06, "probability": 0.6787 }, { "start": 38881.44, "end": 38883.12, "probability": 0.8839 }, { "start": 38884.54, "end": 38885.22, "probability": 0.9392 }, { "start": 38886.08, "end": 38886.5, "probability": 0.6301 }, { "start": 38887.76, "end": 38888.32, "probability": 0.9436 }, { "start": 38889.44, "end": 38890.1, "probability": 0.988 }, { "start": 38890.86, "end": 38893.92, "probability": 0.9064 }, { "start": 38894.66, "end": 38898.17, "probability": 0.9951 }, { "start": 38899.12, "end": 38902.86, "probability": 0.8857 }, { "start": 38903.38, "end": 38908.72, "probability": 0.7938 }, { "start": 38909.4, "end": 38912.82, "probability": 0.98 }, { "start": 38913.68, "end": 38915.74, "probability": 0.9814 }, { "start": 38917.14, "end": 38917.56, "probability": 0.9767 }, { "start": 38918.9, "end": 38923.32, "probability": 0.6487 }, { "start": 38924.02, "end": 38925.16, "probability": 0.8397 }, { "start": 38925.22, "end": 38925.96, "probability": 0.4749 }, { "start": 38926.16, "end": 38927.62, "probability": 0.718 }, { "start": 38928.16, "end": 38929.72, "probability": 0.5855 }, { "start": 38931.18, "end": 38933.54, "probability": 0.9961 }, { "start": 38934.44, "end": 38935.94, "probability": 0.7594 }, { "start": 38936.98, "end": 38937.42, "probability": 0.8048 }, { "start": 38938.24, "end": 38940.42, "probability": 0.9398 }, { "start": 38940.96, "end": 38945.9, "probability": 0.6826 }, { "start": 38946.68, "end": 38949.83, "probability": 0.7623 }, { "start": 38951.12, "end": 38952.38, "probability": 0.9434 }, { "start": 38953.86, "end": 38955.52, "probability": 0.8919 }, { "start": 38956.6, "end": 38958.16, "probability": 0.9541 }, { "start": 38958.34, "end": 38958.83, "probability": 0.9263 }, { "start": 38959.98, "end": 38961.2, "probability": 0.7892 }, { "start": 38961.98, "end": 38963.98, "probability": 0.9755 }, { "start": 38965.3, "end": 38968.06, "probability": 0.9332 }, { "start": 38969.5, "end": 38971.68, "probability": 0.6912 }, { "start": 38972.96, "end": 38973.44, "probability": 0.5102 }, { "start": 38974.34, "end": 38977.04, "probability": 0.6715 }, { "start": 38980.58, "end": 38982.4, "probability": 0.6662 }, { "start": 38982.92, "end": 38984.84, "probability": 0.9458 }, { "start": 38986.04, "end": 38987.66, "probability": 0.988 }, { "start": 38988.46, "end": 38994.34, "probability": 0.9593 }, { "start": 38995.74, "end": 38996.48, "probability": 0.8273 }, { "start": 38997.7, "end": 39000.92, "probability": 0.8748 }, { "start": 39002.28, "end": 39004.42, "probability": 0.4998 }, { "start": 39005.82, "end": 39007.22, "probability": 0.6679 }, { "start": 39008.6, "end": 39012.3, "probability": 0.9868 }, { "start": 39012.48, "end": 39014.7, "probability": 0.5134 }, { "start": 39016.08, "end": 39018.36, "probability": 0.9948 }, { "start": 39019.08, "end": 39019.72, "probability": 0.7296 }, { "start": 39020.46, "end": 39023.52, "probability": 0.7676 }, { "start": 39023.58, "end": 39024.39, "probability": 0.9025 }, { "start": 39025.04, "end": 39026.04, "probability": 0.6912 }, { "start": 39026.96, "end": 39028.0, "probability": 0.9308 }, { "start": 39028.82, "end": 39029.98, "probability": 0.97 }, { "start": 39030.72, "end": 39035.3, "probability": 0.9331 }, { "start": 39036.18, "end": 39037.34, "probability": 0.9854 }, { "start": 39038.02, "end": 39039.9, "probability": 0.5721 }, { "start": 39040.56, "end": 39040.8, "probability": 0.743 }, { "start": 39043.24, "end": 39044.22, "probability": 0.7621 }, { "start": 39045.24, "end": 39045.86, "probability": 0.9281 }, { "start": 39046.5, "end": 39048.46, "probability": 0.7361 }, { "start": 39049.52, "end": 39051.94, "probability": 0.9919 }, { "start": 39052.52, "end": 39053.6, "probability": 0.9832 }, { "start": 39056.66, "end": 39057.26, "probability": 0.5962 }, { "start": 39058.24, "end": 39058.54, "probability": 0.3119 }, { "start": 39059.0, "end": 39060.66, "probability": 0.8137 }, { "start": 39061.1, "end": 39063.72, "probability": 0.8429 }, { "start": 39064.72, "end": 39066.86, "probability": 0.9338 }, { "start": 39067.56, "end": 39067.94, "probability": 0.9734 }, { "start": 39069.08, "end": 39070.42, "probability": 0.8715 }, { "start": 39071.32, "end": 39072.94, "probability": 0.9906 }, { "start": 39075.12, "end": 39078.42, "probability": 0.0347 }, { "start": 39079.6, "end": 39082.0, "probability": 0.0203 }, { "start": 39083.04, "end": 39084.64, "probability": 0.1039 }, { "start": 39084.97, "end": 39085.56, "probability": 0.0566 }, { "start": 39085.56, "end": 39086.54, "probability": 0.2078 }, { "start": 39087.8, "end": 39090.3, "probability": 0.365 }, { "start": 39090.3, "end": 39095.68, "probability": 0.1341 }, { "start": 39095.68, "end": 39098.06, "probability": 0.0387 }, { "start": 39100.02, "end": 39100.16, "probability": 0.0306 }, { "start": 39102.84, "end": 39106.02, "probability": 0.1239 }, { "start": 39107.63, "end": 39111.52, "probability": 0.0763 }, { "start": 39112.62, "end": 39114.62, "probability": 0.1253 }, { "start": 39115.58, "end": 39119.26, "probability": 0.1126 }, { "start": 39234.0, "end": 39234.0, "probability": 0.0 }, { "start": 39234.0, "end": 39234.0, "probability": 0.0 }, { "start": 39234.0, "end": 39234.0, "probability": 0.0 }, { "start": 39234.0, "end": 39234.0, "probability": 0.0 }, { "start": 39234.0, "end": 39234.0, "probability": 0.0 }, { "start": 39234.0, "end": 39234.0, "probability": 0.0 }, { "start": 39234.0, "end": 39234.0, "probability": 0.0 }, { "start": 39234.0, "end": 39234.0, "probability": 0.0 }, { "start": 39234.0, "end": 39234.0, "probability": 0.0 }, { "start": 39234.0, "end": 39234.0, "probability": 0.0 }, { "start": 39234.0, "end": 39234.0, "probability": 0.0 }, { "start": 39234.0, "end": 39234.0, "probability": 0.0 }, { "start": 39234.0, "end": 39234.0, "probability": 0.0 }, { "start": 39234.0, "end": 39234.0, "probability": 0.0 }, { "start": 39234.0, "end": 39234.0, "probability": 0.0 }, { "start": 39234.0, "end": 39234.0, "probability": 0.0 }, { "start": 39234.0, "end": 39234.0, "probability": 0.0 }, { "start": 39234.0, "end": 39234.0, "probability": 0.0 }, { "start": 39234.0, "end": 39234.0, "probability": 0.0 }, { "start": 39234.0, "end": 39234.0, "probability": 0.0 }, { "start": 39234.0, "end": 39234.0, "probability": 0.0 }, { "start": 39234.24, "end": 39234.78, "probability": 0.0085 }, { "start": 39234.78, "end": 39234.78, "probability": 0.1674 }, { "start": 39234.78, "end": 39234.78, "probability": 0.2067 }, { "start": 39234.78, "end": 39234.78, "probability": 0.098 }, { "start": 39234.78, "end": 39234.78, "probability": 0.091 }, { "start": 39234.78, "end": 39238.1, "probability": 0.1172 }, { "start": 39238.24, "end": 39242.78, "probability": 0.8986 }, { "start": 39244.02, "end": 39249.58, "probability": 0.9945 }, { "start": 39252.22, "end": 39253.52, "probability": 0.3613 }, { "start": 39254.88, "end": 39255.56, "probability": 0.3874 }, { "start": 39255.7, "end": 39257.34, "probability": 0.7874 }, { "start": 39258.1, "end": 39258.48, "probability": 0.2649 }, { "start": 39258.5, "end": 39258.98, "probability": 0.329 }, { "start": 39259.14, "end": 39260.98, "probability": 0.8953 }, { "start": 39261.94, "end": 39262.82, "probability": 0.9431 }, { "start": 39265.54, "end": 39269.1, "probability": 0.9929 }, { "start": 39269.8, "end": 39275.18, "probability": 0.8351 }, { "start": 39275.92, "end": 39277.02, "probability": 0.5269 }, { "start": 39278.5, "end": 39283.16, "probability": 0.9531 }, { "start": 39284.08, "end": 39286.08, "probability": 0.8278 }, { "start": 39286.7, "end": 39288.44, "probability": 0.9556 }, { "start": 39289.02, "end": 39290.44, "probability": 0.3688 }, { "start": 39291.4, "end": 39293.72, "probability": 0.8647 }, { "start": 39294.36, "end": 39295.34, "probability": 0.5961 }, { "start": 39296.06, "end": 39301.56, "probability": 0.9974 }, { "start": 39302.08, "end": 39303.88, "probability": 0.8435 }, { "start": 39304.44, "end": 39304.78, "probability": 0.8643 }, { "start": 39305.3, "end": 39308.74, "probability": 0.8889 }, { "start": 39308.82, "end": 39311.41, "probability": 0.7997 }, { "start": 39312.32, "end": 39319.14, "probability": 0.9966 }, { "start": 39319.14, "end": 39324.92, "probability": 0.9987 }, { "start": 39326.0, "end": 39327.28, "probability": 0.8459 }, { "start": 39328.02, "end": 39330.22, "probability": 0.6964 }, { "start": 39330.62, "end": 39331.08, "probability": 0.87 }, { "start": 39331.68, "end": 39334.58, "probability": 0.9727 }, { "start": 39335.46, "end": 39340.12, "probability": 0.9985 }, { "start": 39341.36, "end": 39344.72, "probability": 0.9905 }, { "start": 39345.24, "end": 39350.42, "probability": 0.9928 }, { "start": 39350.88, "end": 39351.58, "probability": 0.8137 }, { "start": 39352.84, "end": 39356.32, "probability": 0.9933 }, { "start": 39357.08, "end": 39359.08, "probability": 0.9559 }, { "start": 39360.42, "end": 39366.14, "probability": 0.957 }, { "start": 39366.24, "end": 39369.4, "probability": 0.6625 }, { "start": 39370.6, "end": 39372.18, "probability": 0.8399 }, { "start": 39372.32, "end": 39374.78, "probability": 0.9957 }, { "start": 39375.5, "end": 39376.12, "probability": 0.9133 }, { "start": 39376.94, "end": 39379.8, "probability": 0.9531 }, { "start": 39380.06, "end": 39388.1, "probability": 0.9391 }, { "start": 39388.64, "end": 39389.96, "probability": 0.9475 }, { "start": 39391.0, "end": 39397.14, "probability": 0.9648 }, { "start": 39398.2, "end": 39402.1, "probability": 0.9879 }, { "start": 39402.66, "end": 39407.4, "probability": 0.8661 }, { "start": 39408.33, "end": 39415.28, "probability": 0.9365 }, { "start": 39415.84, "end": 39419.18, "probability": 0.9107 }, { "start": 39419.94, "end": 39424.52, "probability": 0.9925 }, { "start": 39425.88, "end": 39431.62, "probability": 0.9917 }, { "start": 39431.92, "end": 39432.3, "probability": 0.7822 }, { "start": 39432.5, "end": 39432.76, "probability": 0.8937 }, { "start": 39433.06, "end": 39433.32, "probability": 0.5659 }, { "start": 39434.58, "end": 39438.6, "probability": 0.5442 }, { "start": 39439.16, "end": 39441.42, "probability": 0.5546 }, { "start": 39441.58, "end": 39445.36, "probability": 0.9437 }, { "start": 39445.5, "end": 39446.48, "probability": 0.9507 }, { "start": 39447.28, "end": 39448.5, "probability": 0.9819 }, { "start": 39449.94, "end": 39455.56, "probability": 0.9829 }, { "start": 39456.26, "end": 39458.14, "probability": 0.9889 }, { "start": 39458.36, "end": 39459.1, "probability": 0.9172 }, { "start": 39459.6, "end": 39461.72, "probability": 0.8675 }, { "start": 39462.28, "end": 39463.74, "probability": 0.5236 }, { "start": 39464.48, "end": 39467.6, "probability": 0.9636 }, { "start": 39467.92, "end": 39473.68, "probability": 0.9421 }, { "start": 39474.14, "end": 39479.44, "probability": 0.9962 }, { "start": 39480.18, "end": 39481.7, "probability": 0.9398 }, { "start": 39482.34, "end": 39483.22, "probability": 0.8869 }, { "start": 39483.98, "end": 39487.84, "probability": 0.98 }, { "start": 39488.46, "end": 39489.48, "probability": 0.8596 }, { "start": 39490.55, "end": 39494.66, "probability": 0.9385 }, { "start": 39495.98, "end": 39497.16, "probability": 0.8745 }, { "start": 39498.32, "end": 39499.3, "probability": 0.5372 }, { "start": 39499.4, "end": 39500.02, "probability": 0.868 }, { "start": 39500.62, "end": 39505.38, "probability": 0.9956 }, { "start": 39507.48, "end": 39507.64, "probability": 0.6439 }, { "start": 39508.78, "end": 39510.72, "probability": 0.5366 }, { "start": 39513.4, "end": 39516.64, "probability": 0.6838 }, { "start": 39517.2, "end": 39519.4, "probability": 0.6477 }, { "start": 39520.06, "end": 39521.86, "probability": 0.9658 }, { "start": 39522.44, "end": 39522.46, "probability": 0.8843 }, { "start": 39523.68, "end": 39525.64, "probability": 0.8127 }, { "start": 39526.6, "end": 39530.18, "probability": 0.9722 }, { "start": 39530.32, "end": 39530.9, "probability": 0.621 }, { "start": 39531.48, "end": 39534.72, "probability": 0.8276 }, { "start": 39535.22, "end": 39536.62, "probability": 0.7861 }, { "start": 39538.44, "end": 39540.04, "probability": 0.9741 }, { "start": 39546.04, "end": 39547.67, "probability": 0.849 }, { "start": 39548.22, "end": 39548.64, "probability": 0.7351 }, { "start": 39549.74, "end": 39550.66, "probability": 0.7779 }, { "start": 39552.64, "end": 39553.28, "probability": 0.9488 }, { "start": 39555.0, "end": 39555.8, "probability": 0.9442 }, { "start": 39557.8, "end": 39558.1, "probability": 0.957 }, { "start": 39559.4, "end": 39564.34, "probability": 0.6992 }, { "start": 39564.8, "end": 39565.68, "probability": 0.8772 }, { "start": 39566.84, "end": 39568.94, "probability": 0.5665 }, { "start": 39570.88, "end": 39572.42, "probability": 0.7352 }, { "start": 39576.76, "end": 39578.58, "probability": 0.8615 }, { "start": 39594.4, "end": 39594.64, "probability": 0.9729 }, { "start": 39595.46, "end": 39599.78, "probability": 0.7425 }, { "start": 39601.7, "end": 39606.42, "probability": 0.9627 }, { "start": 39608.0, "end": 39610.0, "probability": 0.9417 }, { "start": 39610.56, "end": 39613.26, "probability": 0.9291 }, { "start": 39613.94, "end": 39614.4, "probability": 0.6265 }, { "start": 39614.46, "end": 39617.1, "probability": 0.6727 }, { "start": 39617.26, "end": 39618.05, "probability": 0.7072 }, { "start": 39619.0, "end": 39619.52, "probability": 0.964 }, { "start": 39620.04, "end": 39620.84, "probability": 0.9429 }, { "start": 39622.0, "end": 39625.72, "probability": 0.9852 }, { "start": 39626.58, "end": 39627.84, "probability": 0.976 }, { "start": 39628.36, "end": 39631.54, "probability": 0.7969 }, { "start": 39632.32, "end": 39633.2, "probability": 0.9583 }, { "start": 39634.12, "end": 39638.96, "probability": 0.848 }, { "start": 39639.58, "end": 39643.3, "probability": 0.8525 }, { "start": 39644.94, "end": 39647.08, "probability": 0.9948 }, { "start": 39648.58, "end": 39650.88, "probability": 0.9694 }, { "start": 39652.0, "end": 39653.98, "probability": 0.9939 }, { "start": 39657.56, "end": 39659.74, "probability": 0.839 }, { "start": 39661.0, "end": 39661.76, "probability": 0.9617 }, { "start": 39663.0, "end": 39664.28, "probability": 0.9486 }, { "start": 39664.74, "end": 39666.22, "probability": 0.8418 }, { "start": 39666.44, "end": 39668.96, "probability": 0.8578 }, { "start": 39669.46, "end": 39670.78, "probability": 0.9652 }, { "start": 39671.64, "end": 39673.81, "probability": 0.9844 }, { "start": 39674.36, "end": 39675.72, "probability": 0.7627 }, { "start": 39676.68, "end": 39677.16, "probability": 0.7348 }, { "start": 39677.28, "end": 39679.02, "probability": 0.9731 }, { "start": 39679.86, "end": 39682.32, "probability": 0.9354 }, { "start": 39682.46, "end": 39684.84, "probability": 0.9863 }, { "start": 39685.34, "end": 39690.4, "probability": 0.8525 }, { "start": 39691.8, "end": 39694.42, "probability": 0.8935 }, { "start": 39695.36, "end": 39698.32, "probability": 0.9912 }, { "start": 39699.04, "end": 39703.22, "probability": 0.9871 }, { "start": 39703.66, "end": 39705.9, "probability": 0.8924 }, { "start": 39707.5, "end": 39710.22, "probability": 0.995 }, { "start": 39710.82, "end": 39715.26, "probability": 0.7865 }, { "start": 39715.66, "end": 39717.94, "probability": 0.9114 }, { "start": 39718.46, "end": 39719.25, "probability": 0.981 }, { "start": 39720.16, "end": 39723.72, "probability": 0.9729 }, { "start": 39724.18, "end": 39726.68, "probability": 0.9817 }, { "start": 39727.24, "end": 39728.08, "probability": 0.7253 }, { "start": 39729.1, "end": 39732.3, "probability": 0.9951 }, { "start": 39732.3, "end": 39735.38, "probability": 0.9819 }, { "start": 39735.9, "end": 39736.5, "probability": 0.8502 }, { "start": 39737.28, "end": 39740.86, "probability": 0.8075 }, { "start": 39740.98, "end": 39742.08, "probability": 0.9338 }, { "start": 39743.22, "end": 39745.4, "probability": 0.638 }, { "start": 39746.04, "end": 39746.94, "probability": 0.7622 }, { "start": 39747.7, "end": 39750.56, "probability": 0.9347 }, { "start": 39751.68, "end": 39753.06, "probability": 0.9535 }, { "start": 39753.24, "end": 39757.22, "probability": 0.7119 }, { "start": 39757.66, "end": 39758.46, "probability": 0.7339 }, { "start": 39759.8, "end": 39760.84, "probability": 0.7929 }, { "start": 39761.38, "end": 39763.04, "probability": 0.83 }, { "start": 39763.7, "end": 39765.42, "probability": 0.7399 }, { "start": 39767.18, "end": 39770.14, "probability": 0.9909 }, { "start": 39771.1, "end": 39773.64, "probability": 0.9808 }, { "start": 39776.36, "end": 39779.92, "probability": 0.9973 }, { "start": 39781.12, "end": 39783.94, "probability": 0.9988 }, { "start": 39785.34, "end": 39788.77, "probability": 0.9238 }, { "start": 39789.22, "end": 39793.38, "probability": 0.8877 }, { "start": 39793.98, "end": 39795.5, "probability": 0.9983 }, { "start": 39796.06, "end": 39797.68, "probability": 0.8425 }, { "start": 39798.26, "end": 39799.98, "probability": 0.9105 }, { "start": 39800.14, "end": 39800.34, "probability": 0.6838 }, { "start": 39800.48, "end": 39804.82, "probability": 0.8697 }, { "start": 39804.82, "end": 39806.72, "probability": 0.851 }, { "start": 39807.22, "end": 39808.62, "probability": 0.9155 }, { "start": 39808.82, "end": 39809.38, "probability": 0.3568 }, { "start": 39810.8, "end": 39813.72, "probability": 0.9845 }, { "start": 39814.54, "end": 39816.3, "probability": 0.7035 }, { "start": 39817.62, "end": 39819.88, "probability": 0.885 }, { "start": 39819.98, "end": 39820.98, "probability": 0.7557 }, { "start": 39821.36, "end": 39823.32, "probability": 0.8816 }, { "start": 39825.32, "end": 39826.96, "probability": 0.7371 }, { "start": 39827.1, "end": 39828.0, "probability": 0.9388 }, { "start": 39828.72, "end": 39831.46, "probability": 0.8027 }, { "start": 39832.9, "end": 39834.08, "probability": 0.8028 }, { "start": 39839.02, "end": 39839.66, "probability": 0.7036 }, { "start": 39841.23, "end": 39845.64, "probability": 0.6733 }, { "start": 39846.3, "end": 39849.54, "probability": 0.8486 }, { "start": 39851.32, "end": 39854.46, "probability": 0.9275 }, { "start": 39857.46, "end": 39857.82, "probability": 0.9748 }, { "start": 39858.6, "end": 39859.32, "probability": 0.5678 }, { "start": 39860.98, "end": 39861.22, "probability": 0.4681 }, { "start": 39861.8, "end": 39862.48, "probability": 0.514 }, { "start": 39865.02, "end": 39865.98, "probability": 0.6205 }, { "start": 39878.98, "end": 39880.42, "probability": 0.7347 }, { "start": 39881.74, "end": 39884.74, "probability": 0.8519 }, { "start": 39884.92, "end": 39885.9, "probability": 0.7815 }, { "start": 39898.14, "end": 39899.11, "probability": 0.8803 }, { "start": 39906.06, "end": 39906.34, "probability": 0.628 }, { "start": 39909.86, "end": 39911.8, "probability": 0.9664 }, { "start": 39912.56, "end": 39913.32, "probability": 0.1711 }, { "start": 39914.32, "end": 39914.78, "probability": 0.0865 }, { "start": 39915.0, "end": 39918.8, "probability": 0.7189 }, { "start": 39921.44, "end": 39925.65, "probability": 0.9841 }, { "start": 39925.74, "end": 39930.3, "probability": 0.9966 }, { "start": 39930.3, "end": 39931.18, "probability": 0.8212 }, { "start": 39931.36, "end": 39932.14, "probability": 0.7181 }, { "start": 39934.62, "end": 39935.62, "probability": 0.6525 }, { "start": 39938.04, "end": 39939.06, "probability": 0.5856 }, { "start": 39939.38, "end": 39941.26, "probability": 0.7801 }, { "start": 39941.26, "end": 39942.66, "probability": 0.9699 }, { "start": 39943.06, "end": 39944.03, "probability": 0.5477 }, { "start": 39944.56, "end": 39948.38, "probability": 0.389 }, { "start": 39948.72, "end": 39950.76, "probability": 0.3578 }, { "start": 39951.32, "end": 39957.8, "probability": 0.7244 }, { "start": 39958.52, "end": 39961.38, "probability": 0.9278 }, { "start": 39962.26, "end": 39965.1, "probability": 0.9987 }, { "start": 39966.28, "end": 39969.96, "probability": 0.938 }, { "start": 39970.64, "end": 39972.66, "probability": 0.9862 }, { "start": 39973.58, "end": 39975.94, "probability": 0.9922 }, { "start": 39977.64, "end": 39981.3, "probability": 0.9977 }, { "start": 39982.46, "end": 39983.5, "probability": 0.943 }, { "start": 39985.32, "end": 39986.6, "probability": 0.9227 }, { "start": 39988.12, "end": 39988.88, "probability": 0.9206 }, { "start": 39990.5, "end": 39992.86, "probability": 0.9968 }, { "start": 39993.64, "end": 39999.6, "probability": 0.8017 }, { "start": 40000.68, "end": 40005.86, "probability": 0.9434 }, { "start": 40006.44, "end": 40006.88, "probability": 0.6826 }, { "start": 40007.42, "end": 40010.08, "probability": 0.9974 }, { "start": 40010.62, "end": 40016.84, "probability": 0.9867 }, { "start": 40017.32, "end": 40017.82, "probability": 0.8634 }, { "start": 40017.96, "end": 40022.68, "probability": 0.9967 }, { "start": 40022.68, "end": 40026.24, "probability": 0.9982 }, { "start": 40027.2, "end": 40029.56, "probability": 0.9991 }, { "start": 40030.44, "end": 40033.0, "probability": 0.994 }, { "start": 40033.54, "end": 40039.28, "probability": 0.9995 }, { "start": 40039.88, "end": 40040.52, "probability": 0.7576 }, { "start": 40041.48, "end": 40044.54, "probability": 0.8945 }, { "start": 40046.64, "end": 40047.54, "probability": 0.656 }, { "start": 40048.02, "end": 40053.3, "probability": 0.5914 }, { "start": 40054.1, "end": 40055.56, "probability": 0.7378 }, { "start": 40055.98, "end": 40057.53, "probability": 0.9949 }, { "start": 40058.24, "end": 40066.72, "probability": 0.97 }, { "start": 40067.88, "end": 40070.56, "probability": 0.8992 }, { "start": 40070.8, "end": 40072.16, "probability": 0.9731 }, { "start": 40073.5, "end": 40074.84, "probability": 0.986 }, { "start": 40075.46, "end": 40077.98, "probability": 0.942 }, { "start": 40078.52, "end": 40082.26, "probability": 0.9752 }, { "start": 40083.2, "end": 40083.68, "probability": 0.5269 }, { "start": 40084.56, "end": 40086.46, "probability": 0.9291 }, { "start": 40086.86, "end": 40088.84, "probability": 0.973 }, { "start": 40088.98, "end": 40090.38, "probability": 0.9851 }, { "start": 40090.58, "end": 40093.62, "probability": 0.981 }, { "start": 40095.34, "end": 40097.0, "probability": 0.6768 }, { "start": 40097.86, "end": 40100.24, "probability": 0.9854 }, { "start": 40100.96, "end": 40102.88, "probability": 0.8274 }, { "start": 40104.34, "end": 40106.1, "probability": 0.9727 }, { "start": 40107.08, "end": 40108.14, "probability": 0.99 }, { "start": 40108.78, "end": 40115.26, "probability": 0.9847 }, { "start": 40115.82, "end": 40119.18, "probability": 0.9326 }, { "start": 40120.28, "end": 40122.54, "probability": 0.9651 }, { "start": 40122.84, "end": 40123.94, "probability": 0.6914 }, { "start": 40124.44, "end": 40127.18, "probability": 0.9863 }, { "start": 40127.84, "end": 40130.18, "probability": 0.98 }, { "start": 40130.6, "end": 40134.9, "probability": 0.7121 }, { "start": 40136.14, "end": 40137.24, "probability": 0.8556 }, { "start": 40137.96, "end": 40142.2, "probability": 0.9487 }, { "start": 40142.24, "end": 40143.16, "probability": 0.8689 }, { "start": 40143.54, "end": 40145.28, "probability": 0.8254 }, { "start": 40145.4, "end": 40145.78, "probability": 0.2685 }, { "start": 40145.78, "end": 40147.8, "probability": 0.9922 }, { "start": 40148.1, "end": 40150.08, "probability": 0.7755 }, { "start": 40150.7, "end": 40151.54, "probability": 0.6735 }, { "start": 40151.7, "end": 40152.9, "probability": 0.9756 }, { "start": 40152.94, "end": 40154.4, "probability": 0.9626 }, { "start": 40154.62, "end": 40158.54, "probability": 0.9567 }, { "start": 40159.08, "end": 40161.16, "probability": 0.3297 }, { "start": 40163.8, "end": 40165.9, "probability": 0.5358 }, { "start": 40166.84, "end": 40167.82, "probability": 0.9519 }, { "start": 40168.0, "end": 40168.74, "probability": 0.9341 }, { "start": 40168.9, "end": 40169.92, "probability": 0.8687 }, { "start": 40173.26, "end": 40178.0, "probability": 0.23 }, { "start": 40179.6, "end": 40180.88, "probability": 0.1247 }, { "start": 40181.0, "end": 40181.88, "probability": 0.4139 }, { "start": 40182.84, "end": 40187.62, "probability": 0.8687 }, { "start": 40188.16, "end": 40188.6, "probability": 0.2605 }, { "start": 40190.3, "end": 40193.7, "probability": 0.5387 }, { "start": 40193.7, "end": 40197.26, "probability": 0.5758 }, { "start": 40198.52, "end": 40204.48, "probability": 0.9239 }, { "start": 40205.54, "end": 40205.74, "probability": 0.6405 }, { "start": 40205.74, "end": 40207.16, "probability": 0.7472 }, { "start": 40207.82, "end": 40212.22, "probability": 0.6588 }, { "start": 40213.04, "end": 40216.74, "probability": 0.5811 }, { "start": 40217.58, "end": 40221.8, "probability": 0.6648 }, { "start": 40222.08, "end": 40222.54, "probability": 0.5409 }, { "start": 40223.04, "end": 40224.9, "probability": 0.4554 }, { "start": 40225.74, "end": 40230.12, "probability": 0.0498 }, { "start": 40230.12, "end": 40231.28, "probability": 0.3796 }, { "start": 40231.46, "end": 40233.26, "probability": 0.1892 }, { "start": 40233.62, "end": 40235.38, "probability": 0.5573 }, { "start": 40236.38, "end": 40237.6, "probability": 0.4975 }, { "start": 40237.82, "end": 40239.27, "probability": 0.3084 }, { "start": 40240.04, "end": 40243.2, "probability": 0.8823 }, { "start": 40243.32, "end": 40246.14, "probability": 0.9674 }, { "start": 40246.3, "end": 40247.8, "probability": 0.8436 }, { "start": 40248.52, "end": 40249.16, "probability": 0.0844 }, { "start": 40249.16, "end": 40249.23, "probability": 0.054 }, { "start": 40249.68, "end": 40250.38, "probability": 0.533 }, { "start": 40250.54, "end": 40253.54, "probability": 0.7552 }, { "start": 40253.94, "end": 40257.9, "probability": 0.6236 }, { "start": 40257.94, "end": 40263.04, "probability": 0.7785 }, { "start": 40263.16, "end": 40264.81, "probability": 0.5831 }, { "start": 40265.86, "end": 40268.58, "probability": 0.6647 }, { "start": 40269.44, "end": 40270.64, "probability": 0.9746 }, { "start": 40271.52, "end": 40274.32, "probability": 0.9437 }, { "start": 40275.16, "end": 40276.7, "probability": 0.7504 }, { "start": 40276.96, "end": 40280.3, "probability": 0.6834 }, { "start": 40280.48, "end": 40282.3, "probability": 0.9031 }, { "start": 40282.82, "end": 40284.46, "probability": 0.8901 }, { "start": 40284.82, "end": 40288.86, "probability": 0.9517 }, { "start": 40289.36, "end": 40291.02, "probability": 0.9814 }, { "start": 40291.72, "end": 40295.94, "probability": 0.886 }, { "start": 40295.94, "end": 40298.2, "probability": 0.9985 }, { "start": 40298.84, "end": 40299.78, "probability": 0.9971 }, { "start": 40300.88, "end": 40302.84, "probability": 0.9555 }, { "start": 40303.58, "end": 40306.05, "probability": 0.543 }, { "start": 40306.82, "end": 40311.28, "probability": 0.9917 }, { "start": 40311.52, "end": 40315.0, "probability": 0.9989 }, { "start": 40315.64, "end": 40319.56, "probability": 0.9609 }, { "start": 40319.98, "end": 40322.52, "probability": 0.9316 }, { "start": 40322.64, "end": 40324.32, "probability": 0.4914 }, { "start": 40324.7, "end": 40325.85, "probability": 0.934 }, { "start": 40325.96, "end": 40326.42, "probability": 0.8771 }, { "start": 40326.5, "end": 40329.08, "probability": 0.9782 }, { "start": 40329.56, "end": 40333.04, "probability": 0.9961 }, { "start": 40333.22, "end": 40334.1, "probability": 0.9564 }, { "start": 40335.94, "end": 40337.16, "probability": 0.5375 }, { "start": 40356.04, "end": 40362.14, "probability": 0.7221 }, { "start": 40363.22, "end": 40365.26, "probability": 0.8835 }, { "start": 40366.46, "end": 40366.94, "probability": 0.9707 }, { "start": 40368.3, "end": 40370.24, "probability": 0.8416 }, { "start": 40370.86, "end": 40370.98, "probability": 0.678 }, { "start": 40371.56, "end": 40372.6, "probability": 0.9124 }, { "start": 40373.52, "end": 40375.38, "probability": 0.9745 }, { "start": 40376.52, "end": 40377.28, "probability": 0.9811 }, { "start": 40378.34, "end": 40378.94, "probability": 0.9787 }, { "start": 40379.6, "end": 40379.96, "probability": 0.4715 }, { "start": 40380.84, "end": 40384.36, "probability": 0.7771 }, { "start": 40387.7, "end": 40388.3, "probability": 0.2505 }, { "start": 40389.04, "end": 40390.12, "probability": 0.6579 }, { "start": 40392.32, "end": 40393.62, "probability": 0.8892 }, { "start": 40394.84, "end": 40394.94, "probability": 0.234 }, { "start": 40396.58, "end": 40397.88, "probability": 0.6124 }, { "start": 40403.4, "end": 40403.94, "probability": 0.5209 }, { "start": 40404.66, "end": 40406.04, "probability": 0.1051 }, { "start": 40409.88, "end": 40409.88, "probability": 0.0476 }, { "start": 40410.1, "end": 40410.1, "probability": 0.0985 }, { "start": 40410.1, "end": 40410.84, "probability": 0.06 }, { "start": 40413.06, "end": 40415.0, "probability": 0.1902 }, { "start": 40422.45, "end": 40427.92, "probability": 0.1126 }, { "start": 40429.18, "end": 40430.58, "probability": 0.1213 }, { "start": 40443.74, "end": 40444.42, "probability": 0.2795 }, { "start": 40445.94, "end": 40446.24, "probability": 0.0409 }, { "start": 40446.74, "end": 40447.18, "probability": 0.8587 }, { "start": 40449.86, "end": 40453.56, "probability": 0.4617 }, { "start": 40453.84, "end": 40456.7, "probability": 0.5871 }, { "start": 40457.47, "end": 40457.82, "probability": 0.0788 }, { "start": 40458.02, "end": 40458.9, "probability": 0.271 }, { "start": 40459.04, "end": 40460.16, "probability": 0.0893 }, { "start": 40460.16, "end": 40461.55, "probability": 0.3089 }, { "start": 40464.33, "end": 40468.5, "probability": 0.5198 }, { "start": 40470.52, "end": 40470.96, "probability": 0.7524 }, { "start": 40473.12, "end": 40473.58, "probability": 0.6165 }, { "start": 40474.52, "end": 40476.36, "probability": 0.9888 }, { "start": 40476.4, "end": 40476.98, "probability": 0.9192 }, { "start": 40477.06, "end": 40477.8, "probability": 0.8564 }, { "start": 40478.48, "end": 40479.92, "probability": 0.8997 }, { "start": 40481.26, "end": 40483.26, "probability": 0.8661 }, { "start": 40484.82, "end": 40486.4, "probability": 0.7861 }, { "start": 40488.24, "end": 40490.78, "probability": 0.739 }, { "start": 40494.5, "end": 40497.5, "probability": 0.8856 }, { "start": 40499.14, "end": 40500.14, "probability": 0.8159 }, { "start": 40501.74, "end": 40504.08, "probability": 0.9858 }, { "start": 40504.28, "end": 40505.32, "probability": 0.8915 }, { "start": 40507.66, "end": 40510.36, "probability": 0.9641 }, { "start": 40511.66, "end": 40514.11, "probability": 0.9692 }, { "start": 40516.74, "end": 40517.42, "probability": 0.8164 }, { "start": 40519.04, "end": 40520.94, "probability": 0.9664 }, { "start": 40521.98, "end": 40523.46, "probability": 0.9517 }, { "start": 40525.44, "end": 40525.6, "probability": 0.2302 }, { "start": 40525.62, "end": 40525.9, "probability": 0.6613 }, { "start": 40526.14, "end": 40527.8, "probability": 0.6171 }, { "start": 40528.64, "end": 40530.5, "probability": 0.5718 }, { "start": 40531.08, "end": 40531.38, "probability": 0.6021 }, { "start": 40535.96, "end": 40541.68, "probability": 0.3935 }, { "start": 40543.46, "end": 40547.58, "probability": 0.4417 }, { "start": 40547.74, "end": 40549.92, "probability": 0.0511 }, { "start": 40551.36, "end": 40552.9, "probability": 0.2662 }, { "start": 40553.08, "end": 40557.64, "probability": 0.6574 }, { "start": 40557.76, "end": 40558.5, "probability": 0.6704 }, { "start": 40558.5, "end": 40559.1, "probability": 0.7026 }, { "start": 40559.92, "end": 40561.46, "probability": 0.761 }, { "start": 40562.82, "end": 40565.72, "probability": 0.854 }, { "start": 40566.34, "end": 40567.36, "probability": 0.9541 }, { "start": 40569.14, "end": 40570.54, "probability": 0.5825 }, { "start": 40571.19, "end": 40573.34, "probability": 0.8921 }, { "start": 40574.48, "end": 40577.8, "probability": 0.9826 }, { "start": 40578.96, "end": 40580.06, "probability": 0.967 }, { "start": 40581.8, "end": 40582.54, "probability": 0.9662 }, { "start": 40583.82, "end": 40584.5, "probability": 0.9499 }, { "start": 40586.1, "end": 40587.51, "probability": 0.9785 }, { "start": 40588.82, "end": 40590.78, "probability": 0.977 }, { "start": 40590.88, "end": 40591.46, "probability": 0.9596 }, { "start": 40591.5, "end": 40594.72, "probability": 0.9846 }, { "start": 40594.72, "end": 40597.54, "probability": 0.97 }, { "start": 40601.61, "end": 40604.58, "probability": 0.7439 }, { "start": 40605.14, "end": 40608.08, "probability": 0.9526 }, { "start": 40608.72, "end": 40608.76, "probability": 0.2172 }, { "start": 40608.76, "end": 40609.84, "probability": 0.8549 }, { "start": 40610.26, "end": 40610.86, "probability": 0.5456 }, { "start": 40611.08, "end": 40612.8, "probability": 0.7277 }, { "start": 40613.26, "end": 40619.64, "probability": 0.9479 }, { "start": 40619.98, "end": 40620.5, "probability": 0.5296 }, { "start": 40620.9, "end": 40622.42, "probability": 0.9733 }, { "start": 40622.78, "end": 40623.86, "probability": 0.8298 }, { "start": 40623.92, "end": 40624.38, "probability": 0.827 }, { "start": 40625.1, "end": 40625.1, "probability": 0.0541 }, { "start": 40625.1, "end": 40626.94, "probability": 0.6783 }, { "start": 40627.98, "end": 40628.78, "probability": 0.8579 }, { "start": 40629.3, "end": 40630.2, "probability": 0.9531 }, { "start": 40630.6, "end": 40631.8, "probability": 0.994 }, { "start": 40632.66, "end": 40633.76, "probability": 0.9977 }, { "start": 40634.32, "end": 40636.96, "probability": 0.873 }, { "start": 40637.96, "end": 40640.86, "probability": 0.9897 }, { "start": 40642.5, "end": 40643.14, "probability": 0.8763 }, { "start": 40643.76, "end": 40644.68, "probability": 0.0055 }, { "start": 40645.98, "end": 40646.16, "probability": 0.0824 }, { "start": 40646.16, "end": 40646.16, "probability": 0.1002 }, { "start": 40646.16, "end": 40652.52, "probability": 0.4471 }, { "start": 40653.84, "end": 40656.26, "probability": 0.9136 }, { "start": 40656.78, "end": 40658.8, "probability": 0.9635 }, { "start": 40658.9, "end": 40659.66, "probability": 0.791 }, { "start": 40660.28, "end": 40664.06, "probability": 0.8027 }, { "start": 40664.8, "end": 40667.08, "probability": 0.4862 }, { "start": 40667.6, "end": 40669.99, "probability": 0.5252 }, { "start": 40671.39, "end": 40673.94, "probability": 0.3418 }, { "start": 40674.18, "end": 40676.32, "probability": 0.5755 }, { "start": 40676.74, "end": 40682.9, "probability": 0.5076 }, { "start": 40683.48, "end": 40688.52, "probability": 0.8809 }, { "start": 40688.76, "end": 40691.12, "probability": 0.6878 }, { "start": 40691.34, "end": 40691.6, "probability": 0.4818 }, { "start": 40691.88, "end": 40693.68, "probability": 0.3874 }, { "start": 40693.78, "end": 40694.78, "probability": 0.3964 }, { "start": 40696.0, "end": 40696.83, "probability": 0.9873 }, { "start": 40697.8, "end": 40700.22, "probability": 0.9533 }, { "start": 40701.0, "end": 40702.58, "probability": 0.6862 }, { "start": 40702.6, "end": 40703.44, "probability": 0.513 }, { "start": 40703.54, "end": 40705.77, "probability": 0.4649 }, { "start": 40706.34, "end": 40707.46, "probability": 0.9929 }, { "start": 40708.46, "end": 40709.72, "probability": 0.9524 }, { "start": 40710.54, "end": 40712.12, "probability": 0.9616 }, { "start": 40713.16, "end": 40714.36, "probability": 0.723 }, { "start": 40714.98, "end": 40717.86, "probability": 0.9908 }, { "start": 40719.14, "end": 40719.4, "probability": 0.7782 }, { "start": 40719.5, "end": 40721.82, "probability": 0.98 }, { "start": 40721.82, "end": 40722.28, "probability": 0.5436 }, { "start": 40722.58, "end": 40723.64, "probability": 0.9743 }, { "start": 40723.64, "end": 40726.66, "probability": 0.6611 }, { "start": 40727.54, "end": 40728.16, "probability": 0.9229 }, { "start": 40729.14, "end": 40731.56, "probability": 0.9907 }, { "start": 40731.9, "end": 40733.6, "probability": 0.9906 }, { "start": 40734.0, "end": 40738.96, "probability": 0.9555 }, { "start": 40739.72, "end": 40740.54, "probability": 0.1573 }, { "start": 40741.12, "end": 40741.84, "probability": 0.041 }, { "start": 40741.84, "end": 40742.02, "probability": 0.3078 }, { "start": 40742.02, "end": 40744.78, "probability": 0.527 }, { "start": 40746.18, "end": 40747.58, "probability": 0.3562 }, { "start": 40747.8, "end": 40750.62, "probability": 0.8094 }, { "start": 40750.9, "end": 40751.9, "probability": 0.777 }, { "start": 40752.08, "end": 40752.74, "probability": 0.7109 }, { "start": 40752.96, "end": 40757.0, "probability": 0.8765 }, { "start": 40757.0, "end": 40759.06, "probability": 0.9961 }, { "start": 40759.18, "end": 40760.88, "probability": 0.5765 }, { "start": 40761.05, "end": 40764.28, "probability": 0.9985 }, { "start": 40764.86, "end": 40769.46, "probability": 0.8105 }, { "start": 40769.54, "end": 40772.62, "probability": 0.3522 }, { "start": 40772.62, "end": 40772.96, "probability": 0.2379 }, { "start": 40773.16, "end": 40773.16, "probability": 0.1065 }, { "start": 40773.16, "end": 40773.7, "probability": 0.67 }, { "start": 40773.7, "end": 40775.2, "probability": 0.674 }, { "start": 40775.42, "end": 40776.2, "probability": 0.1905 }, { "start": 40776.94, "end": 40778.3, "probability": 0.8154 }, { "start": 40778.36, "end": 40779.3, "probability": 0.488 }, { "start": 40779.82, "end": 40780.39, "probability": 0.276 }, { "start": 40780.74, "end": 40786.08, "probability": 0.2533 }, { "start": 40786.46, "end": 40787.08, "probability": 0.4396 }, { "start": 40787.38, "end": 40788.32, "probability": 0.8953 }, { "start": 40788.38, "end": 40790.73, "probability": 0.6788 }, { "start": 40791.78, "end": 40793.12, "probability": 0.1207 }, { "start": 40795.58, "end": 40800.16, "probability": 0.8091 }, { "start": 40800.42, "end": 40802.8, "probability": 0.6933 }, { "start": 40803.26, "end": 40805.18, "probability": 0.9787 }, { "start": 40805.9, "end": 40806.52, "probability": 0.5853 }, { "start": 40806.82, "end": 40806.92, "probability": 0.5414 }, { "start": 40807.76, "end": 40808.94, "probability": 0.7791 }, { "start": 40811.06, "end": 40813.8, "probability": 0.0483 }, { "start": 40813.98, "end": 40816.16, "probability": 0.0603 }, { "start": 40816.16, "end": 40816.16, "probability": 0.0882 }, { "start": 40816.28, "end": 40819.2, "probability": 0.8007 }, { "start": 40819.36, "end": 40821.46, "probability": 0.2819 }, { "start": 40822.78, "end": 40825.92, "probability": 0.1695 }, { "start": 40826.38, "end": 40830.45, "probability": 0.9307 }, { "start": 40831.34, "end": 40831.6, "probability": 0.3684 }, { "start": 40831.72, "end": 40832.38, "probability": 0.8663 }, { "start": 40832.5, "end": 40834.32, "probability": 0.6071 }, { "start": 40834.36, "end": 40834.36, "probability": 0.5227 }, { "start": 40834.36, "end": 40835.12, "probability": 0.4567 }, { "start": 40836.28, "end": 40837.26, "probability": 0.9788 }, { "start": 40837.62, "end": 40838.7, "probability": 0.4356 }, { "start": 40838.7, "end": 40840.92, "probability": 0.2331 }, { "start": 40841.02, "end": 40843.14, "probability": 0.7997 }, { "start": 40843.54, "end": 40846.28, "probability": 0.838 }, { "start": 40847.06, "end": 40847.46, "probability": 0.2602 }, { "start": 40847.58, "end": 40848.82, "probability": 0.8625 }, { "start": 40849.38, "end": 40849.98, "probability": 0.4622 }, { "start": 40850.18, "end": 40850.52, "probability": 0.3689 }, { "start": 40851.34, "end": 40852.2, "probability": 0.5247 }, { "start": 40852.36, "end": 40853.16, "probability": 0.2624 }, { "start": 40853.16, "end": 40853.62, "probability": 0.5764 }, { "start": 40854.06, "end": 40859.26, "probability": 0.3753 }, { "start": 40860.32, "end": 40860.94, "probability": 0.2212 }, { "start": 40863.35, "end": 40863.64, "probability": 0.5049 }, { "start": 40863.64, "end": 40865.94, "probability": 0.5412 }, { "start": 40866.34, "end": 40867.3, "probability": 0.3295 }, { "start": 40867.36, "end": 40872.52, "probability": 0.4359 }, { "start": 40872.82, "end": 40873.88, "probability": 0.3499 }, { "start": 40875.54, "end": 40875.54, "probability": 0.0259 }, { "start": 40875.54, "end": 40877.43, "probability": 0.3917 }, { "start": 40877.66, "end": 40878.76, "probability": 0.8781 }, { "start": 40880.9, "end": 40885.74, "probability": 0.076 }, { "start": 40885.94, "end": 40885.94, "probability": 0.0192 }, { "start": 40886.02, "end": 40887.48, "probability": 0.4117 }, { "start": 40888.18, "end": 40893.48, "probability": 0.7932 }, { "start": 40893.76, "end": 40894.94, "probability": 0.6958 }, { "start": 40895.6, "end": 40896.08, "probability": 0.6159 }, { "start": 40896.6, "end": 40897.66, "probability": 0.7464 }, { "start": 40898.78, "end": 40900.28, "probability": 0.9113 }, { "start": 40900.59, "end": 40904.5, "probability": 0.9843 }, { "start": 40904.62, "end": 40906.52, "probability": 0.7984 }, { "start": 40906.78, "end": 40908.94, "probability": 0.156 }, { "start": 40913.1, "end": 40916.08, "probability": 0.5763 }, { "start": 40917.44, "end": 40919.66, "probability": 0.8465 }, { "start": 40922.76, "end": 40924.42, "probability": 0.8637 }, { "start": 40925.74, "end": 40927.2, "probability": 0.926 }, { "start": 40927.28, "end": 40928.72, "probability": 0.0822 }, { "start": 40928.9, "end": 40930.1, "probability": 0.8207 }, { "start": 40930.5, "end": 40930.74, "probability": 0.0307 }, { "start": 40931.18, "end": 40931.84, "probability": 0.2277 }, { "start": 40931.96, "end": 40933.08, "probability": 0.1063 }, { "start": 40933.2, "end": 40934.32, "probability": 0.3971 }, { "start": 40939.48, "end": 40939.58, "probability": 0.7417 }, { "start": 40939.58, "end": 40939.58, "probability": 0.0491 }, { "start": 40939.58, "end": 40941.82, "probability": 0.13 }, { "start": 40952.26, "end": 40952.88, "probability": 0.6303 }, { "start": 40954.82, "end": 40959.8, "probability": 0.9288 }, { "start": 40960.34, "end": 40960.94, "probability": 0.8897 }, { "start": 40961.82, "end": 40963.0, "probability": 0.6763 }, { "start": 40963.88, "end": 40966.5, "probability": 0.9927 }, { "start": 40966.5, "end": 40972.14, "probability": 0.8135 }, { "start": 40973.94, "end": 40978.02, "probability": 0.9962 }, { "start": 40978.88, "end": 40984.24, "probability": 0.8618 }, { "start": 40985.48, "end": 40986.88, "probability": 0.9376 }, { "start": 40987.02, "end": 40989.58, "probability": 0.8657 }, { "start": 40989.78, "end": 40996.26, "probability": 0.8098 }, { "start": 40997.66, "end": 41002.1, "probability": 0.9929 }, { "start": 41002.23, "end": 41007.86, "probability": 0.9783 }, { "start": 41008.16, "end": 41009.04, "probability": 0.1551 }, { "start": 41009.04, "end": 41009.14, "probability": 0.5592 }, { "start": 41009.4, "end": 41009.56, "probability": 0.2973 }, { "start": 41009.6, "end": 41012.4, "probability": 0.9878 }, { "start": 41012.4, "end": 41016.0, "probability": 0.9629 }, { "start": 41016.36, "end": 41016.46, "probability": 0.0909 }, { "start": 41016.76, "end": 41018.48, "probability": 0.9968 }, { "start": 41019.72, "end": 41023.88, "probability": 0.9958 }, { "start": 41023.88, "end": 41027.84, "probability": 0.9994 }, { "start": 41028.56, "end": 41032.26, "probability": 0.981 }, { "start": 41032.8, "end": 41036.04, "probability": 0.9946 }, { "start": 41036.26, "end": 41037.04, "probability": 0.9323 }, { "start": 41037.92, "end": 41038.42, "probability": 0.4998 }, { "start": 41038.96, "end": 41041.58, "probability": 0.672 }, { "start": 41042.66, "end": 41044.78, "probability": 0.7328 }, { "start": 41045.7, "end": 41047.44, "probability": 0.9625 }, { "start": 41047.94, "end": 41049.06, "probability": 0.9383 }, { "start": 41049.16, "end": 41050.19, "probability": 0.8606 }, { "start": 41050.7, "end": 41051.48, "probability": 0.52 }, { "start": 41051.66, "end": 41052.58, "probability": 0.8636 }, { "start": 41052.66, "end": 41054.76, "probability": 0.9497 }, { "start": 41054.76, "end": 41057.18, "probability": 0.8896 }, { "start": 41057.82, "end": 41058.92, "probability": 0.9727 }, { "start": 41060.44, "end": 41061.6, "probability": 0.7233 }, { "start": 41061.7, "end": 41062.88, "probability": 0.8222 }, { "start": 41063.0, "end": 41064.85, "probability": 0.9714 }, { "start": 41065.56, "end": 41066.5, "probability": 0.5934 }, { "start": 41067.14, "end": 41069.62, "probability": 0.9907 }, { "start": 41069.84, "end": 41073.26, "probability": 0.9822 }, { "start": 41073.56, "end": 41078.08, "probability": 0.9751 }, { "start": 41079.0, "end": 41079.64, "probability": 0.4975 }, { "start": 41080.22, "end": 41080.84, "probability": 0.8841 }, { "start": 41081.66, "end": 41082.94, "probability": 0.9234 }, { "start": 41083.6, "end": 41089.64, "probability": 0.9513 }, { "start": 41090.44, "end": 41093.78, "probability": 0.7725 }, { "start": 41094.1, "end": 41094.4, "probability": 0.7961 }, { "start": 41094.64, "end": 41095.3, "probability": 0.8394 }, { "start": 41095.9, "end": 41097.04, "probability": 0.1691 }, { "start": 41097.62, "end": 41098.56, "probability": 0.3104 }, { "start": 41100.38, "end": 41103.36, "probability": 0.7235 }, { "start": 41105.04, "end": 41106.24, "probability": 0.8777 }, { "start": 41106.58, "end": 41129.0, "probability": 0.6229 }, { "start": 41129.62, "end": 41130.4, "probability": 0.7558 }, { "start": 41131.18, "end": 41134.36, "probability": 0.9852 }, { "start": 41135.42, "end": 41142.48, "probability": 0.9824 }, { "start": 41142.68, "end": 41143.86, "probability": 0.9421 }, { "start": 41143.9, "end": 41146.28, "probability": 0.9897 }, { "start": 41147.08, "end": 41149.92, "probability": 0.8315 }, { "start": 41150.62, "end": 41155.12, "probability": 0.9832 }, { "start": 41155.12, "end": 41160.92, "probability": 0.979 }, { "start": 41161.68, "end": 41162.78, "probability": 0.6687 }, { "start": 41163.58, "end": 41165.76, "probability": 0.7532 }, { "start": 41166.52, "end": 41169.38, "probability": 0.9954 }, { "start": 41169.92, "end": 41170.4, "probability": 0.4836 }, { "start": 41170.92, "end": 41175.48, "probability": 0.9885 }, { "start": 41176.18, "end": 41176.36, "probability": 0.567 }, { "start": 41176.42, "end": 41178.46, "probability": 0.9813 }, { "start": 41178.68, "end": 41179.67, "probability": 0.8247 }, { "start": 41180.62, "end": 41182.5, "probability": 0.9814 }, { "start": 41183.12, "end": 41184.28, "probability": 0.9976 }, { "start": 41185.7, "end": 41188.42, "probability": 0.9314 }, { "start": 41189.68, "end": 41191.94, "probability": 0.61 }, { "start": 41193.14, "end": 41196.64, "probability": 0.9621 }, { "start": 41197.38, "end": 41198.35, "probability": 0.9966 }, { "start": 41199.92, "end": 41201.58, "probability": 0.9843 }, { "start": 41202.28, "end": 41205.12, "probability": 0.9946 }, { "start": 41205.2, "end": 41206.62, "probability": 0.998 }, { "start": 41207.06, "end": 41212.1, "probability": 0.9673 }, { "start": 41213.54, "end": 41215.44, "probability": 0.7852 }, { "start": 41215.66, "end": 41218.02, "probability": 0.9521 }, { "start": 41218.64, "end": 41221.02, "probability": 0.9778 }, { "start": 41221.36, "end": 41222.56, "probability": 0.9836 }, { "start": 41223.14, "end": 41223.6, "probability": 0.8511 }, { "start": 41224.58, "end": 41229.94, "probability": 0.9675 }, { "start": 41230.02, "end": 41230.72, "probability": 0.5165 }, { "start": 41230.84, "end": 41233.74, "probability": 0.9977 }, { "start": 41234.3, "end": 41237.68, "probability": 0.9863 }, { "start": 41238.2, "end": 41241.62, "probability": 0.9899 }, { "start": 41242.58, "end": 41243.76, "probability": 0.7241 }, { "start": 41244.44, "end": 41245.7, "probability": 0.6919 }, { "start": 41246.52, "end": 41250.02, "probability": 0.6649 }, { "start": 41250.54, "end": 41254.22, "probability": 0.9071 }, { "start": 41255.5, "end": 41256.36, "probability": 0.4817 }, { "start": 41257.38, "end": 41258.14, "probability": 0.5899 }, { "start": 41258.22, "end": 41260.62, "probability": 0.9663 }, { "start": 41261.32, "end": 41262.86, "probability": 0.6114 }, { "start": 41264.82, "end": 41266.14, "probability": 0.7178 }, { "start": 41267.16, "end": 41268.22, "probability": 0.8632 }, { "start": 41268.46, "end": 41268.74, "probability": 0.6005 }, { "start": 41268.84, "end": 41273.52, "probability": 0.9854 }, { "start": 41273.84, "end": 41274.32, "probability": 0.65 }, { "start": 41274.36, "end": 41274.9, "probability": 0.8857 }, { "start": 41276.16, "end": 41277.62, "probability": 0.9993 }, { "start": 41278.28, "end": 41279.12, "probability": 0.9421 }, { "start": 41279.6, "end": 41282.2, "probability": 0.9771 }, { "start": 41282.66, "end": 41283.64, "probability": 0.9778 }, { "start": 41284.0, "end": 41285.62, "probability": 0.955 }, { "start": 41287.22, "end": 41288.08, "probability": 0.878 }, { "start": 41289.34, "end": 41292.6, "probability": 0.9721 }, { "start": 41293.3, "end": 41294.24, "probability": 0.7329 }, { "start": 41294.42, "end": 41297.22, "probability": 0.987 }, { "start": 41297.38, "end": 41300.88, "probability": 0.9268 }, { "start": 41301.62, "end": 41301.8, "probability": 0.5013 }, { "start": 41302.32, "end": 41302.46, "probability": 0.9965 }, { "start": 41303.48, "end": 41304.76, "probability": 0.8256 }, { "start": 41305.05, "end": 41306.32, "probability": 0.3865 }, { "start": 41306.4, "end": 41306.4, "probability": 0.5838 }, { "start": 41306.4, "end": 41306.4, "probability": 0.3867 }, { "start": 41306.4, "end": 41306.54, "probability": 0.4583 }, { "start": 41306.54, "end": 41307.72, "probability": 0.8983 }, { "start": 41308.44, "end": 41310.2, "probability": 0.9915 }, { "start": 41310.32, "end": 41311.68, "probability": 0.5002 }, { "start": 41312.3, "end": 41312.7, "probability": 0.4342 }, { "start": 41312.82, "end": 41313.02, "probability": 0.737 }, { "start": 41313.3, "end": 41319.08, "probability": 0.9642 }, { "start": 41320.14, "end": 41321.18, "probability": 0.7129 }, { "start": 41321.66, "end": 41322.46, "probability": 0.8184 }, { "start": 41323.48, "end": 41325.84, "probability": 0.8607 }, { "start": 41326.5, "end": 41328.5, "probability": 0.8766 }, { "start": 41329.02, "end": 41330.1, "probability": 0.7316 }, { "start": 41330.34, "end": 41331.42, "probability": 0.9382 }, { "start": 41331.82, "end": 41334.34, "probability": 0.9506 }, { "start": 41334.54, "end": 41334.76, "probability": 0.7478 }, { "start": 41335.8, "end": 41337.26, "probability": 0.9526 }, { "start": 41337.92, "end": 41341.53, "probability": 0.9729 }, { "start": 41342.16, "end": 41344.88, "probability": 0.9913 }, { "start": 41345.4, "end": 41348.4, "probability": 0.9985 }, { "start": 41349.18, "end": 41349.46, "probability": 0.873 }, { "start": 41350.06, "end": 41351.84, "probability": 0.9736 }, { "start": 41352.4, "end": 41352.58, "probability": 0.581 }, { "start": 41352.58, "end": 41352.92, "probability": 0.7284 }, { "start": 41353.92, "end": 41356.56, "probability": 0.9977 }, { "start": 41357.16, "end": 41357.66, "probability": 0.9481 }, { "start": 41358.24, "end": 41360.22, "probability": 0.5692 }, { "start": 41360.22, "end": 41361.26, "probability": 0.2965 }, { "start": 41361.34, "end": 41362.74, "probability": 0.8231 }, { "start": 41363.24, "end": 41366.58, "probability": 0.9429 }, { "start": 41366.88, "end": 41368.7, "probability": 0.0665 }, { "start": 41370.98, "end": 41371.18, "probability": 0.0075 }, { "start": 41371.2, "end": 41371.36, "probability": 0.2576 }, { "start": 41372.12, "end": 41372.12, "probability": 0.0696 }, { "start": 41372.12, "end": 41374.3, "probability": 0.9321 }, { "start": 41375.3, "end": 41375.3, "probability": 0.008 }, { "start": 41375.52, "end": 41381.74, "probability": 0.8792 }, { "start": 41382.1, "end": 41384.16, "probability": 0.0524 }, { "start": 41384.16, "end": 41388.62, "probability": 0.868 }, { "start": 41388.62, "end": 41389.62, "probability": 0.2382 }, { "start": 41389.76, "end": 41389.76, "probability": 0.1394 }, { "start": 41389.88, "end": 41392.14, "probability": 0.1214 }, { "start": 41392.52, "end": 41393.56, "probability": 0.5747 }, { "start": 41393.66, "end": 41394.58, "probability": 0.7607 }, { "start": 41394.94, "end": 41395.1, "probability": 0.4829 }, { "start": 41395.2, "end": 41396.24, "probability": 0.0436 }, { "start": 41396.24, "end": 41396.36, "probability": 0.0436 }, { "start": 41396.36, "end": 41396.36, "probability": 0.0123 }, { "start": 41396.36, "end": 41401.5, "probability": 0.6931 }, { "start": 41402.26, "end": 41403.11, "probability": 0.1732 }, { "start": 41403.38, "end": 41404.42, "probability": 0.947 }, { "start": 41404.62, "end": 41404.76, "probability": 0.042 }, { "start": 41404.88, "end": 41405.72, "probability": 0.3731 }, { "start": 41405.72, "end": 41406.92, "probability": 0.9292 }, { "start": 41406.92, "end": 41407.26, "probability": 0.0185 }, { "start": 41407.48, "end": 41407.97, "probability": 0.1737 }, { "start": 41408.14, "end": 41408.68, "probability": 0.6349 }, { "start": 41409.06, "end": 41410.66, "probability": 0.8736 }, { "start": 41413.1, "end": 41413.66, "probability": 0.5279 }, { "start": 41414.3, "end": 41415.71, "probability": 0.9731 }, { "start": 41416.02, "end": 41416.73, "probability": 0.9422 }, { "start": 41416.96, "end": 41419.64, "probability": 0.9487 }, { "start": 41421.54, "end": 41423.68, "probability": 0.5312 }, { "start": 41424.26, "end": 41424.46, "probability": 0.0003 }, { "start": 41426.98, "end": 41428.06, "probability": 0.2968 }, { "start": 41428.38, "end": 41429.24, "probability": 0.026 }, { "start": 41429.24, "end": 41431.52, "probability": 0.7729 }, { "start": 41431.6, "end": 41432.34, "probability": 0.7582 }, { "start": 41432.94, "end": 41433.68, "probability": 0.9079 }, { "start": 41434.24, "end": 41437.12, "probability": 0.2032 }, { "start": 41437.12, "end": 41438.72, "probability": 0.4464 }, { "start": 41440.67, "end": 41444.1, "probability": 0.606 }, { "start": 41445.1, "end": 41445.72, "probability": 0.6032 }, { "start": 41445.9, "end": 41447.2, "probability": 0.3145 }, { "start": 41447.32, "end": 41448.68, "probability": 0.4079 }, { "start": 41448.8, "end": 41449.68, "probability": 0.8522 }, { "start": 41450.26, "end": 41451.39, "probability": 0.266 }, { "start": 41461.48, "end": 41463.98, "probability": 0.4552 }, { "start": 41464.88, "end": 41465.64, "probability": 0.0924 }, { "start": 41472.68, "end": 41475.2, "probability": 0.7868 }, { "start": 41477.12, "end": 41478.64, "probability": 0.9168 }, { "start": 41479.24, "end": 41480.36, "probability": 0.7636 }, { "start": 41480.38, "end": 41480.82, "probability": 0.7481 }, { "start": 41483.56, "end": 41485.44, "probability": 0.8204 }, { "start": 41486.0, "end": 41487.36, "probability": 0.6261 }, { "start": 41488.06, "end": 41490.28, "probability": 0.8621 }, { "start": 41492.24, "end": 41493.12, "probability": 0.7614 }, { "start": 41493.72, "end": 41494.88, "probability": 0.9905 }, { "start": 41495.6, "end": 41495.78, "probability": 0.6322 }, { "start": 41497.2, "end": 41498.64, "probability": 0.282 }, { "start": 41500.56, "end": 41501.04, "probability": 0.0255 }, { "start": 41501.28, "end": 41502.82, "probability": 0.2912 }, { "start": 41504.52, "end": 41507.1, "probability": 0.2055 }, { "start": 41507.64, "end": 41508.78, "probability": 0.0149 }, { "start": 41511.54, "end": 41511.8, "probability": 0.0228 }, { "start": 41511.8, "end": 41513.86, "probability": 0.0229 }, { "start": 41515.42, "end": 41517.22, "probability": 0.0775 }, { "start": 41517.26, "end": 41518.18, "probability": 0.0285 }, { "start": 41518.3, "end": 41520.7, "probability": 0.0713 }, { "start": 41522.0, "end": 41524.3, "probability": 0.3121 }, { "start": 41524.3, "end": 41526.14, "probability": 0.2639 }, { "start": 41526.16, "end": 41526.34, "probability": 0.509 }, { "start": 41526.66, "end": 41529.14, "probability": 0.1215 }, { "start": 41529.14, "end": 41530.3, "probability": 0.2165 }, { "start": 41537.0, "end": 41537.0, "probability": 0.0 }, { "start": 41537.0, "end": 41537.0, "probability": 0.0 }, { "start": 41537.0, "end": 41537.0, "probability": 0.0 }, { "start": 41538.06, "end": 41538.2, "probability": 0.112 }, { "start": 41538.2, "end": 41538.2, "probability": 0.3996 }, { "start": 41538.2, "end": 41543.46, "probability": 0.82 }, { "start": 41543.46, "end": 41545.7, "probability": 0.536 }, { "start": 41545.86, "end": 41546.86, "probability": 0.3584 }, { "start": 41547.92, "end": 41553.64, "probability": 0.9567 }, { "start": 41554.3, "end": 41554.3, "probability": 0.0162 }, { "start": 41554.3, "end": 41557.58, "probability": 0.889 }, { "start": 41557.58, "end": 41560.28, "probability": 0.9883 }, { "start": 41560.86, "end": 41563.04, "probability": 0.7362 }, { "start": 41563.86, "end": 41565.4, "probability": 0.9877 }, { "start": 41566.08, "end": 41566.2, "probability": 0.1447 }, { "start": 41566.2, "end": 41568.66, "probability": 0.9956 }, { "start": 41569.52, "end": 41570.52, "probability": 0.9375 }, { "start": 41572.38, "end": 41573.42, "probability": 0.8262 }, { "start": 41574.46, "end": 41575.26, "probability": 0.6572 }, { "start": 41575.36, "end": 41577.02, "probability": 0.1425 }, { "start": 41577.64, "end": 41581.3, "probability": 0.2503 }, { "start": 41581.7, "end": 41584.08, "probability": 0.6231 }, { "start": 41585.3, "end": 41588.87, "probability": 0.959 }, { "start": 41589.32, "end": 41591.02, "probability": 0.8313 }, { "start": 41592.08, "end": 41593.9, "probability": 0.7202 }, { "start": 41594.54, "end": 41594.54, "probability": 0.3837 }, { "start": 41594.54, "end": 41601.16, "probability": 0.9768 }, { "start": 41601.82, "end": 41604.9, "probability": 0.9915 }, { "start": 41605.04, "end": 41607.94, "probability": 0.8838 }, { "start": 41608.58, "end": 41611.52, "probability": 0.9247 }, { "start": 41612.34, "end": 41612.82, "probability": 0.8337 }, { "start": 41614.06, "end": 41614.78, "probability": 0.8408 }, { "start": 41615.54, "end": 41619.46, "probability": 0.9072 }, { "start": 41620.28, "end": 41625.56, "probability": 0.993 }, { "start": 41626.36, "end": 41628.86, "probability": 0.9946 }, { "start": 41629.48, "end": 41631.78, "probability": 0.9769 }, { "start": 41632.62, "end": 41633.1, "probability": 0.0549 }, { "start": 41633.1, "end": 41633.1, "probability": 0.3215 }, { "start": 41633.1, "end": 41634.71, "probability": 0.7297 }, { "start": 41635.12, "end": 41637.04, "probability": 0.8964 }, { "start": 41637.14, "end": 41640.1, "probability": 0.5443 }, { "start": 41640.12, "end": 41641.8, "probability": 0.2895 }, { "start": 41641.84, "end": 41642.28, "probability": 0.1637 }, { "start": 41642.68, "end": 41643.02, "probability": 0.5208 }, { "start": 41643.02, "end": 41643.24, "probability": 0.2367 }, { "start": 41644.06, "end": 41645.0, "probability": 0.087 }, { "start": 41646.16, "end": 41646.16, "probability": 0.0701 }, { "start": 41646.16, "end": 41648.14, "probability": 0.0174 }, { "start": 41648.6, "end": 41652.06, "probability": 0.321 }, { "start": 41652.46, "end": 41653.54, "probability": 0.704 }, { "start": 41653.86, "end": 41656.1, "probability": 0.4853 }, { "start": 41656.64, "end": 41658.12, "probability": 0.846 }, { "start": 41658.2, "end": 41658.79, "probability": 0.2665 }, { "start": 41659.62, "end": 41660.76, "probability": 0.0018 }, { "start": 41664.28, "end": 41664.78, "probability": 0.0689 }, { "start": 41664.78, "end": 41665.82, "probability": 0.234 }, { "start": 41665.82, "end": 41666.22, "probability": 0.1698 }, { "start": 41666.34, "end": 41666.58, "probability": 0.0196 }, { "start": 41667.04, "end": 41667.18, "probability": 0.2299 }, { "start": 41667.34, "end": 41667.4, "probability": 0.3451 }, { "start": 41667.62, "end": 41667.62, "probability": 0.004 }, { "start": 41667.62, "end": 41672.08, "probability": 0.8203 }, { "start": 41672.48, "end": 41673.91, "probability": 0.995 }, { "start": 41674.82, "end": 41675.45, "probability": 0.5636 }, { "start": 41675.65, "end": 41678.95, "probability": 0.7275 }, { "start": 41679.87, "end": 41680.87, "probability": 0.703 }, { "start": 41681.51, "end": 41682.79, "probability": 0.9883 }, { "start": 41682.89, "end": 41684.01, "probability": 0.9883 }, { "start": 41685.25, "end": 41687.51, "probability": 0.8765 }, { "start": 41688.11, "end": 41690.97, "probability": 0.7815 }, { "start": 41691.29, "end": 41697.23, "probability": 0.6073 }, { "start": 41697.65, "end": 41698.95, "probability": 0.8034 }, { "start": 41699.43, "end": 41701.69, "probability": 0.7102 }, { "start": 41702.09, "end": 41707.83, "probability": 0.959 }, { "start": 41708.35, "end": 41709.49, "probability": 0.5717 }, { "start": 41710.43, "end": 41710.55, "probability": 0.7222 }, { "start": 41710.59, "end": 41712.03, "probability": 0.7903 }, { "start": 41712.03, "end": 41713.59, "probability": 0.3553 }, { "start": 41714.07, "end": 41715.09, "probability": 0.8682 }, { "start": 41715.13, "end": 41715.87, "probability": 0.9211 }, { "start": 41716.05, "end": 41717.55, "probability": 0.9568 }, { "start": 41717.67, "end": 41719.43, "probability": 0.905 }, { "start": 41719.87, "end": 41721.61, "probability": 0.8955 }, { "start": 41723.15, "end": 41725.95, "probability": 0.3073 }, { "start": 41726.63, "end": 41727.79, "probability": 0.075 }, { "start": 41732.01, "end": 41736.07, "probability": 0.1206 }, { "start": 41736.07, "end": 41736.31, "probability": 0.4999 }, { "start": 41737.33, "end": 41739.45, "probability": 0.2331 }, { "start": 41742.55, "end": 41743.47, "probability": 0.1556 }, { "start": 41744.19, "end": 41747.13, "probability": 0.0834 }, { "start": 41750.83, "end": 41752.21, "probability": 0.0818 }, { "start": 41752.21, "end": 41753.22, "probability": 0.0961 }, { "start": 41756.13, "end": 41757.83, "probability": 0.3622 }, { "start": 41758.09, "end": 41758.51, "probability": 0.0553 }, { "start": 41759.36, "end": 41759.57, "probability": 0.1676 }, { "start": 41762.4, "end": 41763.09, "probability": 0.0646 }, { "start": 41763.09, "end": 41764.05, "probability": 0.1802 }, { "start": 41764.81, "end": 41768.09, "probability": 0.4384 }, { "start": 41769.41, "end": 41772.07, "probability": 0.3882 }, { "start": 41773.97, "end": 41774.31, "probability": 0.015 }, { "start": 41774.79, "end": 41775.43, "probability": 0.3574 }, { "start": 41775.51, "end": 41775.55, "probability": 0.0289 }, { "start": 41775.55, "end": 41776.11, "probability": 0.0278 }, { "start": 41778.57, "end": 41779.47, "probability": 0.3328 }, { "start": 41782.81, "end": 41786.33, "probability": 0.5357 }, { "start": 41786.33, "end": 41788.57, "probability": 0.0157 }, { "start": 41788.61, "end": 41789.89, "probability": 0.1625 }, { "start": 41789.89, "end": 41794.97, "probability": 0.0112 }, { "start": 41799.0, "end": 41799.0, "probability": 0.0 }, { "start": 41799.0, "end": 41799.0, "probability": 0.0 }, { "start": 41799.0, "end": 41799.0, "probability": 0.0 }, { "start": 41799.0, "end": 41799.0, "probability": 0.0 }, { "start": 41799.0, "end": 41799.0, "probability": 0.0 }, { "start": 41799.0, "end": 41799.0, "probability": 0.0 }, { "start": 41799.0, "end": 41799.0, "probability": 0.0 }, { "start": 41799.0, "end": 41799.0, "probability": 0.0 }, { "start": 41799.0, "end": 41799.0, "probability": 0.0 }, { "start": 41799.0, "end": 41799.0, "probability": 0.0 }, { "start": 41799.0, "end": 41799.0, "probability": 0.0 }, { "start": 41799.0, "end": 41799.0, "probability": 0.0 }, { "start": 41799.0, "end": 41799.0, "probability": 0.0 }, { "start": 41799.0, "end": 41799.0, "probability": 0.0 }, { "start": 41799.0, "end": 41799.0, "probability": 0.0 }, { "start": 41799.0, "end": 41799.0, "probability": 0.0 }, { "start": 41799.0, "end": 41799.0, "probability": 0.0 }, { "start": 41799.0, "end": 41799.0, "probability": 0.0 }, { "start": 41799.0, "end": 41799.0, "probability": 0.0 }, { "start": 41799.0, "end": 41799.0, "probability": 0.0 }, { "start": 41799.0, "end": 41799.0, "probability": 0.0 }, { "start": 41799.0, "end": 41799.0, "probability": 0.0 }, { "start": 41799.0, "end": 41799.0, "probability": 0.0 }, { "start": 41799.0, "end": 41799.0, "probability": 0.0 }, { "start": 41799.0, "end": 41799.0, "probability": 0.0 }, { "start": 41799.0, "end": 41799.0, "probability": 0.0 }, { "start": 41799.0, "end": 41799.0, "probability": 0.0 }, { "start": 41799.0, "end": 41799.0, "probability": 0.0 }, { "start": 41799.0, "end": 41799.0, "probability": 0.0 }, { "start": 41799.0, "end": 41799.0, "probability": 0.0 }, { "start": 41799.0, "end": 41799.0, "probability": 0.0 }, { "start": 41799.0, "end": 41799.0, "probability": 0.0 }, { "start": 41812.06, "end": 41812.2, "probability": 0.0567 }, { "start": 41812.2, "end": 41812.2, "probability": 0.0752 }, { "start": 41812.2, "end": 41812.2, "probability": 0.0208 }, { "start": 41812.2, "end": 41812.7, "probability": 0.3484 }, { "start": 41813.16, "end": 41813.74, "probability": 0.3385 }, { "start": 41814.02, "end": 41814.74, "probability": 0.6414 }, { "start": 41814.84, "end": 41815.23, "probability": 0.9282 }, { "start": 41815.46, "end": 41815.82, "probability": 0.6532 }, { "start": 41815.92, "end": 41821.38, "probability": 0.9199 }, { "start": 41822.84, "end": 41825.02, "probability": 0.9854 }, { "start": 41825.64, "end": 41827.34, "probability": 0.7779 }, { "start": 41827.42, "end": 41828.82, "probability": 0.9105 }, { "start": 41829.14, "end": 41829.54, "probability": 0.7965 }, { "start": 41829.62, "end": 41833.66, "probability": 0.9394 }, { "start": 41834.04, "end": 41834.52, "probability": 0.5212 }, { "start": 41836.12, "end": 41838.28, "probability": 0.9837 }, { "start": 41838.48, "end": 41839.44, "probability": 0.8925 }, { "start": 41839.64, "end": 41840.28, "probability": 0.809 }, { "start": 41840.34, "end": 41843.0, "probability": 0.9771 }, { "start": 41845.12, "end": 41848.36, "probability": 0.9842 }, { "start": 41848.98, "end": 41850.08, "probability": 0.7892 }, { "start": 41850.12, "end": 41851.1, "probability": 0.9072 }, { "start": 41851.3, "end": 41852.2, "probability": 0.8762 }, { "start": 41852.68, "end": 41856.6, "probability": 0.9917 }, { "start": 41857.68, "end": 41860.7, "probability": 0.9629 }, { "start": 41861.28, "end": 41863.9, "probability": 0.9937 }, { "start": 41866.06, "end": 41871.0, "probability": 0.9411 }, { "start": 41871.18, "end": 41872.26, "probability": 0.7151 }, { "start": 41872.38, "end": 41873.16, "probability": 0.8745 }, { "start": 41873.2, "end": 41874.08, "probability": 0.8746 }, { "start": 41874.16, "end": 41875.98, "probability": 0.9634 }, { "start": 41876.36, "end": 41877.11, "probability": 0.7206 }, { "start": 41878.38, "end": 41879.4, "probability": 0.7566 }, { "start": 41879.58, "end": 41882.32, "probability": 0.9042 }, { "start": 41883.5, "end": 41886.18, "probability": 0.9841 }, { "start": 41886.36, "end": 41888.7, "probability": 0.8838 }, { "start": 41888.7, "end": 41889.94, "probability": 0.8823 }, { "start": 41891.28, "end": 41893.68, "probability": 0.9944 }, { "start": 41893.68, "end": 41897.29, "probability": 0.9917 }, { "start": 41898.48, "end": 41901.54, "probability": 0.9958 }, { "start": 41902.34, "end": 41902.88, "probability": 0.8258 }, { "start": 41907.76, "end": 41907.88, "probability": 0.0037 }, { "start": 41909.58, "end": 41910.18, "probability": 0.1729 }, { "start": 41910.18, "end": 41910.18, "probability": 0.1472 }, { "start": 41910.18, "end": 41910.18, "probability": 0.0082 }, { "start": 41910.18, "end": 41910.18, "probability": 0.1097 }, { "start": 41910.18, "end": 41910.18, "probability": 0.0544 }, { "start": 41910.18, "end": 41911.32, "probability": 0.9021 }, { "start": 41911.74, "end": 41913.84, "probability": 0.8374 }, { "start": 41914.0, "end": 41917.18, "probability": 0.9628 }, { "start": 41917.34, "end": 41920.46, "probability": 0.9808 }, { "start": 41920.68, "end": 41922.96, "probability": 0.9868 }, { "start": 41923.1, "end": 41925.4, "probability": 0.8787 }, { "start": 41925.94, "end": 41926.86, "probability": 0.9773 }, { "start": 41930.96, "end": 41931.52, "probability": 0.6725 }, { "start": 41931.52, "end": 41931.56, "probability": 0.4283 }, { "start": 41931.56, "end": 41931.86, "probability": 0.0255 }, { "start": 41931.86, "end": 41932.24, "probability": 0.3815 }, { "start": 41932.24, "end": 41932.34, "probability": 0.3205 }, { "start": 41932.34, "end": 41934.45, "probability": 0.9774 }, { "start": 41935.62, "end": 41937.12, "probability": 0.9918 }, { "start": 41938.0, "end": 41939.0, "probability": 0.0655 }, { "start": 41939.0, "end": 41940.32, "probability": 0.5647 }, { "start": 41940.4, "end": 41941.88, "probability": 0.9843 }, { "start": 41942.06, "end": 41942.5, "probability": 0.4294 }, { "start": 41942.62, "end": 41945.13, "probability": 0.425 }, { "start": 41947.64, "end": 41948.24, "probability": 0.0319 }, { "start": 41948.24, "end": 41948.24, "probability": 0.0925 }, { "start": 41948.24, "end": 41948.24, "probability": 0.152 }, { "start": 41948.24, "end": 41950.52, "probability": 0.7235 }, { "start": 41951.16, "end": 41951.86, "probability": 0.1203 }, { "start": 41951.86, "end": 41952.0, "probability": 0.0704 }, { "start": 41952.12, "end": 41952.12, "probability": 0.2176 }, { "start": 41952.26, "end": 41954.92, "probability": 0.6479 }, { "start": 41955.66, "end": 41956.64, "probability": 0.0783 }, { "start": 41958.0, "end": 41959.16, "probability": 0.0551 }, { "start": 41959.16, "end": 41959.16, "probability": 0.0295 }, { "start": 41959.16, "end": 41960.84, "probability": 0.2971 }, { "start": 41961.34, "end": 41961.94, "probability": 0.5431 }, { "start": 41961.94, "end": 41963.0, "probability": 0.3879 }, { "start": 41963.1, "end": 41964.54, "probability": 0.6638 }, { "start": 41964.72, "end": 41965.84, "probability": 0.6772 }, { "start": 41966.34, "end": 41968.98, "probability": 0.9026 }, { "start": 41968.98, "end": 41972.32, "probability": 0.7607 }, { "start": 41972.32, "end": 41972.92, "probability": 0.0451 }, { "start": 41973.04, "end": 41976.66, "probability": 0.9769 }, { "start": 41976.72, "end": 41977.22, "probability": 0.1287 }, { "start": 41977.3, "end": 41977.34, "probability": 0.658 }, { "start": 41977.34, "end": 41981.44, "probability": 0.9273 }, { "start": 41981.52, "end": 41982.52, "probability": 0.4638 }, { "start": 41997.08, "end": 41998.46, "probability": 0.4428 }, { "start": 41998.58, "end": 41999.18, "probability": 0.1071 }, { "start": 41999.18, "end": 42000.16, "probability": 0.087 }, { "start": 42000.42, "end": 42002.24, "probability": 0.1414 }, { "start": 42005.14, "end": 42006.84, "probability": 0.0327 }, { "start": 42009.72, "end": 42012.34, "probability": 0.0369 }, { "start": 42012.8, "end": 42016.26, "probability": 0.0258 }, { "start": 42016.62, "end": 42023.18, "probability": 0.0409 }, { "start": 42023.56, "end": 42026.22, "probability": 0.1257 }, { "start": 42026.22, "end": 42026.22, "probability": 0.0117 }, { "start": 42026.58, "end": 42027.76, "probability": 0.0403 }, { "start": 42044.0, "end": 42044.0, "probability": 0.0 }, { "start": 42044.0, "end": 42044.0, "probability": 0.0 }, { "start": 42044.0, "end": 42044.0, "probability": 0.0 }, { "start": 42044.0, "end": 42044.0, "probability": 0.0 }, { "start": 42044.0, "end": 42044.0, "probability": 0.0 }, { "start": 42044.0, "end": 42044.0, "probability": 0.0 }, { "start": 42044.0, "end": 42044.0, "probability": 0.0 }, { "start": 42044.0, "end": 42044.0, "probability": 0.0 }, { "start": 42044.0, "end": 42044.0, "probability": 0.0 }, { "start": 42044.0, "end": 42044.0, "probability": 0.0 }, { "start": 42044.0, "end": 42044.0, "probability": 0.0 }, { "start": 42044.0, "end": 42044.0, "probability": 0.0 }, { "start": 42044.0, "end": 42044.0, "probability": 0.0 }, { "start": 42044.0, "end": 42044.0, "probability": 0.0 }, { "start": 42044.0, "end": 42044.0, "probability": 0.0 }, { "start": 42044.0, "end": 42044.0, "probability": 0.0 }, { "start": 42044.0, "end": 42044.0, "probability": 0.0 }, { "start": 42044.0, "end": 42044.0, "probability": 0.0 }, { "start": 42044.0, "end": 42044.0, "probability": 0.0 }, { "start": 42044.0, "end": 42044.0, "probability": 0.0 }, { "start": 42044.0, "end": 42044.0, "probability": 0.0 }, { "start": 42044.0, "end": 42044.0, "probability": 0.0 }, { "start": 42044.0, "end": 42044.0, "probability": 0.0 }, { "start": 42044.0, "end": 42044.0, "probability": 0.0 }, { "start": 42044.0, "end": 42044.0, "probability": 0.0 }, { "start": 42044.0, "end": 42044.0, "probability": 0.0 }, { "start": 42044.0, "end": 42044.0, "probability": 0.0 }, { "start": 42044.0, "end": 42044.0, "probability": 0.0 }, { "start": 42044.0, "end": 42044.0, "probability": 0.0 }, { "start": 42044.56, "end": 42048.24, "probability": 0.8137 }, { "start": 42048.24, "end": 42051.78, "probability": 0.6125 }, { "start": 42051.94, "end": 42054.2, "probability": 0.7375 }, { "start": 42054.24, "end": 42054.32, "probability": 0.5783 }, { "start": 42054.41, "end": 42055.94, "probability": 0.4809 }, { "start": 42056.0, "end": 42059.96, "probability": 0.9561 }, { "start": 42059.96, "end": 42061.52, "probability": 0.9374 }, { "start": 42061.52, "end": 42062.22, "probability": 0.2494 }, { "start": 42062.6, "end": 42063.78, "probability": 0.6365 }, { "start": 42064.4, "end": 42065.12, "probability": 0.7029 }, { "start": 42066.0, "end": 42068.08, "probability": 0.9366 }, { "start": 42069.58, "end": 42071.96, "probability": 0.1754 }, { "start": 42073.04, "end": 42073.78, "probability": 0.0179 }, { "start": 42074.3, "end": 42077.14, "probability": 0.0128 }, { "start": 42077.34, "end": 42079.8, "probability": 0.0314 }, { "start": 42080.36, "end": 42080.7, "probability": 0.0598 }, { "start": 42082.76, "end": 42083.7, "probability": 0.3904 }, { "start": 42084.32, "end": 42084.66, "probability": 0.7529 }, { "start": 42085.72, "end": 42086.78, "probability": 0.4324 }, { "start": 42086.78, "end": 42087.76, "probability": 0.2414 }, { "start": 42088.9, "end": 42089.66, "probability": 0.0071 }, { "start": 42090.4, "end": 42090.64, "probability": 0.026 }, { "start": 42090.64, "end": 42092.52, "probability": 0.5627 }, { "start": 42093.94, "end": 42094.84, "probability": 0.3091 }, { "start": 42095.24, "end": 42095.64, "probability": 0.7919 }, { "start": 42097.24, "end": 42097.24, "probability": 0.3448 }, { "start": 42097.24, "end": 42097.82, "probability": 0.5125 }, { "start": 42097.82, "end": 42098.82, "probability": 0.087 }, { "start": 42100.32, "end": 42101.72, "probability": 0.5535 }, { "start": 42101.72, "end": 42102.9, "probability": 0.3902 }, { "start": 42104.5, "end": 42106.16, "probability": 0.1357 }, { "start": 42106.72, "end": 42109.3, "probability": 0.315 }, { "start": 42111.36, "end": 42113.3, "probability": 0.3449 }, { "start": 42115.04, "end": 42115.58, "probability": 0.136 }, { "start": 42115.86, "end": 42121.38, "probability": 0.5205 }, { "start": 42126.04, "end": 42128.7, "probability": 0.5146 }, { "start": 42130.32, "end": 42130.44, "probability": 0.0119 }, { "start": 42130.44, "end": 42130.96, "probability": 0.0556 }, { "start": 42132.1, "end": 42132.12, "probability": 0.4761 }, { "start": 42132.12, "end": 42133.2, "probability": 0.1654 }, { "start": 42133.52, "end": 42134.04, "probability": 0.2226 }, { "start": 42134.96, "end": 42135.08, "probability": 0.3114 }, { "start": 42135.88, "end": 42140.8, "probability": 0.0694 }, { "start": 42147.4, "end": 42149.96, "probability": 0.564 }, { "start": 42185.0, "end": 42185.0, "probability": 0.0 }, { "start": 42185.0, "end": 42185.0, "probability": 0.0 }, { "start": 42185.0, "end": 42185.0, "probability": 0.0 }, { "start": 42185.0, "end": 42185.0, "probability": 0.0 }, { "start": 42185.0, "end": 42185.0, "probability": 0.0 }, { "start": 42185.0, "end": 42185.0, "probability": 0.0 }, { "start": 42185.0, "end": 42185.0, "probability": 0.0 }, { "start": 42185.0, "end": 42185.0, "probability": 0.0 }, { "start": 42185.0, "end": 42185.0, "probability": 0.0 }, { "start": 42185.0, "end": 42185.0, "probability": 0.0 }, { "start": 42185.0, "end": 42185.0, "probability": 0.0 }, { "start": 42191.32, "end": 42192.92, "probability": 0.6125 }, { "start": 42193.0, "end": 42195.0, "probability": 0.4244 }, { "start": 42195.0, "end": 42198.74, "probability": 0.8855 }, { "start": 42199.7, "end": 42200.48, "probability": 0.6339 }, { "start": 42201.84, "end": 42203.52, "probability": 0.6299 }, { "start": 42208.2, "end": 42214.4, "probability": 0.9777 }, { "start": 42214.78, "end": 42215.98, "probability": 0.4215 }, { "start": 42216.46, "end": 42225.66, "probability": 0.942 }, { "start": 42226.12, "end": 42227.84, "probability": 0.7842 }, { "start": 42228.7, "end": 42230.74, "probability": 0.0764 }, { "start": 42231.22, "end": 42237.2, "probability": 0.9712 }, { "start": 42237.32, "end": 42238.34, "probability": 0.5134 }, { "start": 42238.76, "end": 42241.4, "probability": 0.9097 }, { "start": 42241.4, "end": 42241.92, "probability": 0.5343 }, { "start": 42242.04, "end": 42243.42, "probability": 0.7345 }, { "start": 42244.3, "end": 42249.32, "probability": 0.7477 }, { "start": 42249.34, "end": 42250.02, "probability": 0.5784 }, { "start": 42250.66, "end": 42254.76, "probability": 0.5134 }, { "start": 42255.38, "end": 42260.26, "probability": 0.3155 }, { "start": 42261.12, "end": 42262.31, "probability": 0.808 }, { "start": 42275.22, "end": 42275.78, "probability": 0.0996 }, { "start": 42275.78, "end": 42276.6, "probability": 0.4537 }, { "start": 42277.26, "end": 42282.98, "probability": 0.6158 }, { "start": 42283.2, "end": 42283.66, "probability": 0.0637 }, { "start": 42284.05, "end": 42284.9, "probability": 0.0503 }, { "start": 42285.14, "end": 42286.14, "probability": 0.242 }, { "start": 42286.79, "end": 42288.82, "probability": 0.1194 }, { "start": 42288.82, "end": 42289.76, "probability": 0.3282 }, { "start": 42290.68, "end": 42292.88, "probability": 0.2727 }, { "start": 42296.58, "end": 42297.94, "probability": 0.3386 }, { "start": 42298.34, "end": 42299.82, "probability": 0.3018 }, { "start": 42300.58, "end": 42301.36, "probability": 0.0224 }, { "start": 42301.88, "end": 42301.88, "probability": 0.1323 }, { "start": 42301.98, "end": 42303.26, "probability": 0.5811 }, { "start": 42303.26, "end": 42305.66, "probability": 0.9331 }, { "start": 42305.74, "end": 42306.54, "probability": 0.6441 }, { "start": 42306.66, "end": 42311.3, "probability": 0.2551 }, { "start": 42311.4, "end": 42312.22, "probability": 0.3842 }, { "start": 42312.38, "end": 42312.96, "probability": 0.0243 }, { "start": 42313.24, "end": 42314.51, "probability": 0.0304 }, { "start": 42358.0, "end": 42358.0, "probability": 0.0 }, { "start": 42358.0, "end": 42358.0, "probability": 0.0 }, { "start": 42358.0, "end": 42358.0, "probability": 0.0 }, { "start": 42358.0, "end": 42358.0, "probability": 0.0 }, { "start": 42358.0, "end": 42358.0, "probability": 0.0 }, { "start": 42358.0, "end": 42358.0, "probability": 0.0 }, { "start": 42358.0, "end": 42358.0, "probability": 0.0 }, { "start": 42358.0, "end": 42358.0, "probability": 0.0 }, { "start": 42358.0, "end": 42358.0, "probability": 0.0 }, { "start": 42358.0, "end": 42358.0, "probability": 0.0 }, { "start": 42358.0, "end": 42358.0, "probability": 0.0 }, { "start": 42358.0, "end": 42358.0, "probability": 0.0 }, { "start": 42358.0, "end": 42358.0, "probability": 0.0 }, { "start": 42358.0, "end": 42358.0, "probability": 0.0 }, { "start": 42358.0, "end": 42358.0, "probability": 0.0 }, { "start": 42358.0, "end": 42358.0, "probability": 0.0 }, { "start": 42358.0, "end": 42358.0, "probability": 0.0 }, { "start": 42358.0, "end": 42358.0, "probability": 0.0 }, { "start": 42358.0, "end": 42358.0, "probability": 0.0 }, { "start": 42358.0, "end": 42358.0, "probability": 0.0 }, { "start": 42358.0, "end": 42358.0, "probability": 0.0 }, { "start": 42358.0, "end": 42358.0, "probability": 0.0 }, { "start": 42358.0, "end": 42358.0, "probability": 0.0 }, { "start": 42358.0, "end": 42358.0, "probability": 0.0 }, { "start": 42358.0, "end": 42358.0, "probability": 0.0 }, { "start": 42358.0, "end": 42358.0, "probability": 0.0 }, { "start": 42358.0, "end": 42358.0, "probability": 0.0 }, { "start": 42358.0, "end": 42358.0, "probability": 0.0 }, { "start": 42358.0, "end": 42358.0, "probability": 0.0 }, { "start": 42358.0, "end": 42358.0, "probability": 0.0 }, { "start": 42358.0, "end": 42358.0, "probability": 0.0 }, { "start": 42358.0, "end": 42358.0, "probability": 0.0 }, { "start": 42358.0, "end": 42358.0, "probability": 0.0 }, { "start": 42358.0, "end": 42358.0, "probability": 0.0 }, { "start": 42358.0, "end": 42358.0, "probability": 0.0 }, { "start": 42358.0, "end": 42358.0, "probability": 0.0 }, { "start": 42358.0, "end": 42358.0, "probability": 0.0 }, { "start": 42358.0, "end": 42358.0, "probability": 0.0 }, { "start": 42358.0, "end": 42358.0, "probability": 0.0 }, { "start": 42358.0, "end": 42358.0, "probability": 0.0 }, { "start": 42358.0, "end": 42358.0, "probability": 0.0 }, { "start": 42358.0, "end": 42358.0, "probability": 0.0 }, { "start": 42358.0, "end": 42358.0, "probability": 0.0 }, { "start": 42358.0, "end": 42358.0, "probability": 0.0 }, { "start": 42358.0, "end": 42358.0, "probability": 0.0 }, { "start": 42358.0, "end": 42358.0, "probability": 0.0 }, { "start": 42358.0, "end": 42358.0, "probability": 0.0 }, { "start": 42358.0, "end": 42358.0, "probability": 0.0 }, { "start": 42358.0, "end": 42358.0, "probability": 0.0 }, { "start": 42359.27, "end": 42359.62, "probability": 0.0444 }, { "start": 42359.64, "end": 42360.84, "probability": 0.8104 }, { "start": 42360.92, "end": 42362.1, "probability": 0.9815 }, { "start": 42362.38, "end": 42363.38, "probability": 0.896 }, { "start": 42364.58, "end": 42367.96, "probability": 0.9963 }, { "start": 42368.72, "end": 42371.56, "probability": 0.9954 }, { "start": 42372.16, "end": 42374.11, "probability": 0.9902 }, { "start": 42374.68, "end": 42377.64, "probability": 0.9201 }, { "start": 42378.08, "end": 42379.4, "probability": 0.952 }, { "start": 42381.2, "end": 42381.84, "probability": 0.6855 }, { "start": 42381.9, "end": 42382.34, "probability": 0.8818 }, { "start": 42382.42, "end": 42383.5, "probability": 0.6862 }, { "start": 42385.07, "end": 42386.4, "probability": 0.5976 }, { "start": 42387.22, "end": 42389.46, "probability": 0.6712 }, { "start": 42392.67, "end": 42395.3, "probability": 0.3626 }, { "start": 42395.3, "end": 42395.84, "probability": 0.0703 }, { "start": 42395.84, "end": 42395.98, "probability": 0.3498 }, { "start": 42397.34, "end": 42397.94, "probability": 0.615 }, { "start": 42398.08, "end": 42398.88, "probability": 0.3111 }, { "start": 42399.04, "end": 42399.56, "probability": 0.2198 }, { "start": 42400.12, "end": 42404.32, "probability": 0.3686 }, { "start": 42404.54, "end": 42405.08, "probability": 0.3959 }, { "start": 42407.0, "end": 42407.1, "probability": 0.3597 }, { "start": 42407.84, "end": 42408.33, "probability": 0.55 }, { "start": 42420.06, "end": 42420.2, "probability": 0.0212 }, { "start": 42420.2, "end": 42420.2, "probability": 0.0389 }, { "start": 42420.2, "end": 42420.2, "probability": 0.0768 }, { "start": 42420.2, "end": 42421.7, "probability": 0.2204 }, { "start": 42423.7, "end": 42425.38, "probability": 0.1394 }, { "start": 42430.38, "end": 42431.18, "probability": 0.0644 }, { "start": 42431.38, "end": 42433.73, "probability": 0.1401 }, { "start": 42435.84, "end": 42436.26, "probability": 0.061 }, { "start": 42436.34, "end": 42437.82, "probability": 0.83 }, { "start": 42438.4, "end": 42438.4, "probability": 0.1011 }, { "start": 42438.56, "end": 42438.56, "probability": 0.4338 }, { "start": 42438.56, "end": 42441.66, "probability": 0.1852 }, { "start": 42454.5, "end": 42455.88, "probability": 0.0539 }, { "start": 42482.0, "end": 42482.0, "probability": 0.0 }, { "start": 42482.0, "end": 42482.0, "probability": 0.0 }, { "start": 42482.0, "end": 42482.0, "probability": 0.0 }, { "start": 42482.0, "end": 42482.0, "probability": 0.0 }, { "start": 42482.0, "end": 42482.0, "probability": 0.0 }, { "start": 42482.0, "end": 42482.0, "probability": 0.0 }, { "start": 42482.0, "end": 42482.0, "probability": 0.0 }, { "start": 42482.0, "end": 42482.0, "probability": 0.0 }, { "start": 42482.0, "end": 42482.0, "probability": 0.0 }, { "start": 42482.0, "end": 42482.0, "probability": 0.0 }, { "start": 42482.0, "end": 42482.0, "probability": 0.0 }, { "start": 42482.0, "end": 42482.0, "probability": 0.0 }, { "start": 42482.0, "end": 42482.0, "probability": 0.0 }, { "start": 42482.0, "end": 42482.0, "probability": 0.0 }, { "start": 42482.0, "end": 42482.0, "probability": 0.0 }, { "start": 42482.0, "end": 42482.0, "probability": 0.0 }, { "start": 42482.0, "end": 42482.0, "probability": 0.0 }, { "start": 42482.0, "end": 42482.0, "probability": 0.0 }, { "start": 42482.0, "end": 42482.0, "probability": 0.0 }, { "start": 42482.0, "end": 42482.0, "probability": 0.0 }, { "start": 42482.0, "end": 42482.0, "probability": 0.0 }, { "start": 42482.0, "end": 42482.0, "probability": 0.0 }, { "start": 42482.0, "end": 42482.0, "probability": 0.0 }, { "start": 42482.0, "end": 42482.0, "probability": 0.0 }, { "start": 42482.0, "end": 42482.0, "probability": 0.0 }, { "start": 42482.0, "end": 42482.0, "probability": 0.0 }, { "start": 42482.0, "end": 42482.0, "probability": 0.0 }, { "start": 42482.0, "end": 42482.0, "probability": 0.0 }, { "start": 42482.0, "end": 42482.0, "probability": 0.0 }, { "start": 42482.0, "end": 42482.0, "probability": 0.0 }, { "start": 42482.0, "end": 42482.0, "probability": 0.0 }, { "start": 42482.0, "end": 42482.0, "probability": 0.0 }, { "start": 42482.0, "end": 42482.0, "probability": 0.0 }, { "start": 42482.0, "end": 42482.0, "probability": 0.0 }, { "start": 42482.0, "end": 42482.0, "probability": 0.0 }, { "start": 42482.0, "end": 42482.0, "probability": 0.0 }, { "start": 42482.0, "end": 42482.0, "probability": 0.0 }, { "start": 42482.0, "end": 42482.0, "probability": 0.0 }, { "start": 42482.04, "end": 42482.48, "probability": 0.1577 }, { "start": 42483.0, "end": 42483.52, "probability": 0.8711 }, { "start": 42483.6, "end": 42484.28, "probability": 0.514 }, { "start": 42486.0, "end": 42486.68, "probability": 0.8513 }, { "start": 42487.62, "end": 42489.18, "probability": 0.8626 }, { "start": 42489.98, "end": 42492.38, "probability": 0.9204 }, { "start": 42493.04, "end": 42496.14, "probability": 0.8625 }, { "start": 42496.7, "end": 42497.6, "probability": 0.2181 }, { "start": 42498.16, "end": 42499.08, "probability": 0.7012 }, { "start": 42499.1, "end": 42501.5, "probability": 0.285 }, { "start": 42502.92, "end": 42505.78, "probability": 0.1834 }, { "start": 42506.6, "end": 42509.73, "probability": 0.283 }, { "start": 42511.94, "end": 42512.74, "probability": 0.2665 }, { "start": 42512.74, "end": 42514.94, "probability": 0.4757 }, { "start": 42518.3, "end": 42522.38, "probability": 0.0736 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.0, "end": 42605.0, "probability": 0.0 }, { "start": 42605.1, "end": 42605.56, "probability": 0.0124 }, { "start": 42605.56, "end": 42606.58, "probability": 0.3514 }, { "start": 42607.04, "end": 42609.16, "probability": 0.8875 }, { "start": 42609.3, "end": 42610.24, "probability": 0.6954 }, { "start": 42610.82, "end": 42612.0, "probability": 0.9755 }, { "start": 42612.22, "end": 42612.64, "probability": 0.6366 }, { "start": 42612.88, "end": 42613.72, "probability": 0.0254 }, { "start": 42613.8, "end": 42615.05, "probability": 0.7939 }, { "start": 42615.26, "end": 42622.74, "probability": 0.8828 }, { "start": 42622.84, "end": 42625.92, "probability": 0.9604 }, { "start": 42625.92, "end": 42627.68, "probability": 0.9255 }, { "start": 42628.08, "end": 42628.74, "probability": 0.7736 }, { "start": 42629.18, "end": 42630.1, "probability": 0.1945 }, { "start": 42630.28, "end": 42632.48, "probability": 0.7296 }, { "start": 42633.16, "end": 42636.16, "probability": 0.7454 }, { "start": 42636.86, "end": 42639.72, "probability": 0.8259 }, { "start": 42640.3, "end": 42641.22, "probability": 0.4052 }, { "start": 42642.58, "end": 42646.42, "probability": 0.8032 }, { "start": 42646.54, "end": 42649.48, "probability": 0.7613 }, { "start": 42649.76, "end": 42650.56, "probability": 0.7553 }, { "start": 42650.88, "end": 42652.1, "probability": 0.5638 }, { "start": 42652.18, "end": 42652.98, "probability": 0.5584 }, { "start": 42653.32, "end": 42653.44, "probability": 0.8489 }, { "start": 42654.08, "end": 42654.62, "probability": 0.2356 }, { "start": 42654.62, "end": 42655.34, "probability": 0.1739 }, { "start": 42655.46, "end": 42657.06, "probability": 0.6007 }, { "start": 42657.16, "end": 42658.72, "probability": 0.5912 }, { "start": 42658.72, "end": 42660.75, "probability": 0.5695 }, { "start": 42661.2, "end": 42663.26, "probability": 0.8657 }, { "start": 42664.73, "end": 42665.88, "probability": 0.0119 }, { "start": 42666.84, "end": 42667.18, "probability": 0.0163 }, { "start": 42668.26, "end": 42669.34, "probability": 0.6427 }, { "start": 42670.26, "end": 42672.36, "probability": 0.7455 }, { "start": 42673.18, "end": 42675.46, "probability": 0.9712 }, { "start": 42676.1, "end": 42676.64, "probability": 0.9945 }, { "start": 42677.56, "end": 42678.52, "probability": 0.9213 }, { "start": 42679.12, "end": 42681.16, "probability": 0.837 }, { "start": 42682.34, "end": 42682.78, "probability": 0.9971 }, { "start": 42683.46, "end": 42684.6, "probability": 0.8703 }, { "start": 42687.44, "end": 42689.84, "probability": 0.4366 }, { "start": 42690.7, "end": 42691.2, "probability": 0.7608 }, { "start": 42692.7, "end": 42693.46, "probability": 0.8314 }, { "start": 42695.68, "end": 42696.18, "probability": 0.9855 }, { "start": 42697.02, "end": 42698.12, "probability": 0.85 }, { "start": 42699.26, "end": 42701.86, "probability": 0.9801 }, { "start": 42702.7, "end": 42705.32, "probability": 0.9914 }, { "start": 42706.38, "end": 42708.24, "probability": 0.9557 }, { "start": 42710.2, "end": 42713.3, "probability": 0.7256 }, { "start": 42714.26, "end": 42716.46, "probability": 0.9417 }, { "start": 42717.26, "end": 42717.8, "probability": 0.9215 }, { "start": 42718.32, "end": 42722.68, "probability": 0.9355 }, { "start": 42725.9, "end": 42726.44, "probability": 0.9661 }, { "start": 42727.54, "end": 42728.72, "probability": 0.9047 }, { "start": 42729.56, "end": 42730.42, "probability": 0.9465 }, { "start": 42731.14, "end": 42732.06, "probability": 0.9589 }, { "start": 42732.62, "end": 42734.56, "probability": 0.9839 }, { "start": 42735.2, "end": 42737.32, "probability": 0.9836 }, { "start": 42738.32, "end": 42738.86, "probability": 0.7209 }, { "start": 42739.9, "end": 42740.84, "probability": 0.488 }, { "start": 42741.82, "end": 42742.42, "probability": 0.9382 }, { "start": 42743.76, "end": 42744.68, "probability": 0.8796 }, { "start": 42746.56, "end": 42749.64, "probability": 0.7712 }, { "start": 42750.36, "end": 42750.88, "probability": 0.8018 }, { "start": 42751.74, "end": 42752.68, "probability": 0.9309 }, { "start": 42753.52, "end": 42754.1, "probability": 0.9959 }, { "start": 42755.02, "end": 42759.38, "probability": 0.9658 }, { "start": 42760.4, "end": 42760.9, "probability": 0.8691 }, { "start": 42761.5, "end": 42762.2, "probability": 0.8992 }, { "start": 42763.26, "end": 42763.78, "probability": 0.9927 }, { "start": 42765.24, "end": 42766.2, "probability": 0.8972 }, { "start": 42767.16, "end": 42769.8, "probability": 0.8333 }, { "start": 42771.02, "end": 42771.64, "probability": 0.9009 }, { "start": 42773.04, "end": 42773.94, "probability": 0.8894 }, { "start": 42774.8, "end": 42775.44, "probability": 0.9777 }, { "start": 42776.22, "end": 42777.2, "probability": 0.7466 }, { "start": 42778.58, "end": 42779.14, "probability": 0.9639 }, { "start": 42779.76, "end": 42780.8, "probability": 0.9796 }, { "start": 42782.38, "end": 42786.36, "probability": 0.98 }, { "start": 42788.04, "end": 42788.66, "probability": 0.991 }, { "start": 42789.72, "end": 42790.7, "probability": 0.908 }, { "start": 42791.54, "end": 42791.94, "probability": 0.9773 }, { "start": 42792.9, "end": 42793.86, "probability": 0.9799 }, { "start": 42794.72, "end": 42795.28, "probability": 0.9943 }, { "start": 42795.92, "end": 42797.18, "probability": 0.6402 }, { "start": 42798.16, "end": 42798.54, "probability": 0.7397 }, { "start": 42799.22, "end": 42800.32, "probability": 0.8278 }, { "start": 42801.8, "end": 42802.84, "probability": 0.9723 }, { "start": 42803.94, "end": 42804.78, "probability": 0.9091 }, { "start": 42805.3, "end": 42806.7, "probability": 0.647 }, { "start": 42807.32, "end": 42808.22, "probability": 0.9711 }, { "start": 42809.02, "end": 42809.72, "probability": 0.9539 }, { "start": 42810.4, "end": 42811.32, "probability": 0.662 }, { "start": 42812.06, "end": 42814.48, "probability": 0.9041 }, { "start": 42815.36, "end": 42817.8, "probability": 0.8602 }, { "start": 42819.5, "end": 42822.18, "probability": 0.9412 }, { "start": 42822.84, "end": 42823.36, "probability": 0.7894 }, { "start": 42824.12, "end": 42825.24, "probability": 0.788 }, { "start": 42826.18, "end": 42826.68, "probability": 0.7849 }, { "start": 42827.76, "end": 42828.7, "probability": 0.4722 }, { "start": 42829.62, "end": 42830.62, "probability": 0.9885 }, { "start": 42831.84, "end": 42835.9, "probability": 0.8495 }, { "start": 42836.58, "end": 42838.52, "probability": 0.993 }, { "start": 42839.54, "end": 42840.12, "probability": 0.9788 }, { "start": 42841.16, "end": 42842.02, "probability": 0.9459 }, { "start": 42843.12, "end": 42845.82, "probability": 0.8262 }, { "start": 42846.64, "end": 42847.22, "probability": 0.9761 }, { "start": 42847.98, "end": 42850.16, "probability": 0.7579 }, { "start": 42851.62, "end": 42852.5, "probability": 0.7191 }, { "start": 42853.42, "end": 42854.06, "probability": 0.9701 }, { "start": 42854.78, "end": 42855.56, "probability": 0.9353 }, { "start": 42857.34, "end": 42858.68, "probability": 0.9695 }, { "start": 42859.66, "end": 42860.76, "probability": 0.9693 }, { "start": 42861.84, "end": 42863.48, "probability": 0.9565 }, { "start": 42864.68, "end": 42867.06, "probability": 0.9854 }, { "start": 42868.01, "end": 42870.12, "probability": 0.9697 }, { "start": 42872.42, "end": 42876.32, "probability": 0.9747 }, { "start": 42877.49, "end": 42878.28, "probability": 0.4883 }, { "start": 42884.22, "end": 42885.44, "probability": 0.3889 }, { "start": 42886.38, "end": 42886.82, "probability": 0.5567 }, { "start": 42887.72, "end": 42888.66, "probability": 0.8145 }, { "start": 42889.32, "end": 42891.4, "probability": 0.955 }, { "start": 42892.4, "end": 42895.06, "probability": 0.9473 }, { "start": 42895.64, "end": 42898.28, "probability": 0.9479 }, { "start": 42899.18, "end": 42901.88, "probability": 0.9884 }, { "start": 42902.62, "end": 42903.22, "probability": 0.9383 }, { "start": 42904.8, "end": 42905.7, "probability": 0.9876 }, { "start": 42906.84, "end": 42907.32, "probability": 0.9653 }, { "start": 42908.4, "end": 42908.4, "probability": 0.0431 }, { "start": 42908.4, "end": 42909.06, "probability": 0.2072 }, { "start": 42909.82, "end": 42913.34, "probability": 0.8998 }, { "start": 42914.52, "end": 42918.02, "probability": 0.8406 }, { "start": 42918.82, "end": 42921.82, "probability": 0.7788 }, { "start": 42922.62, "end": 42923.14, "probability": 0.9868 }, { "start": 42924.42, "end": 42925.52, "probability": 0.6656 }, { "start": 42926.12, "end": 42928.42, "probability": 0.5372 }, { "start": 42929.58, "end": 42930.08, "probability": 0.9731 }, { "start": 42930.78, "end": 42935.52, "probability": 0.9344 }, { "start": 42936.6, "end": 42937.0, "probability": 0.9326 }, { "start": 42938.22, "end": 42938.96, "probability": 0.9295 }, { "start": 42940.1, "end": 42940.7, "probability": 0.994 }, { "start": 42942.1, "end": 42943.0, "probability": 0.9247 }, { "start": 42945.66, "end": 42946.26, "probability": 0.9922 }, { "start": 42947.38, "end": 42948.48, "probability": 0.5187 }, { "start": 42949.3, "end": 42951.9, "probability": 0.9901 }, { "start": 42952.94, "end": 42953.48, "probability": 0.9971 }, { "start": 42954.76, "end": 42955.68, "probability": 0.5543 }, { "start": 42956.36, "end": 42959.16, "probability": 0.7983 }, { "start": 42960.6, "end": 42961.1, "probability": 0.9928 }, { "start": 42962.54, "end": 42963.68, "probability": 0.8375 }, { "start": 42967.06, "end": 42967.54, "probability": 0.5659 }, { "start": 42969.26, "end": 42970.26, "probability": 0.6288 }, { "start": 42971.16, "end": 42973.26, "probability": 0.9557 }, { "start": 42975.54, "end": 42976.18, "probability": 0.9727 }, { "start": 42977.7, "end": 42977.98, "probability": 0.881 }, { "start": 42980.96, "end": 42983.16, "probability": 0.1828 }, { "start": 42984.7, "end": 42985.74, "probability": 0.6441 }, { "start": 42986.86, "end": 42987.72, "probability": 0.8098 }, { "start": 42988.78, "end": 42989.3, "probability": 0.7754 }, { "start": 42991.44, "end": 42992.48, "probability": 0.5712 }, { "start": 42996.54, "end": 42999.22, "probability": 0.8928 }, { "start": 43003.24, "end": 43004.72, "probability": 0.9713 }, { "start": 43005.68, "end": 43006.68, "probability": 0.715 }, { "start": 43008.08, "end": 43008.7, "probability": 0.8215 }, { "start": 43009.74, "end": 43010.82, "probability": 0.688 }, { "start": 43011.44, "end": 43012.0, "probability": 0.8601 }, { "start": 43013.0, "end": 43013.9, "probability": 0.9314 }, { "start": 43014.52, "end": 43015.3, "probability": 0.9751 }, { "start": 43015.96, "end": 43016.78, "probability": 0.4913 }, { "start": 43018.68, "end": 43019.38, "probability": 0.9767 }, { "start": 43020.84, "end": 43021.68, "probability": 0.9762 }, { "start": 43023.06, "end": 43023.92, "probability": 0.9788 }, { "start": 43024.88, "end": 43026.82, "probability": 0.9391 }, { "start": 43029.44, "end": 43030.36, "probability": 0.87 }, { "start": 43031.18, "end": 43031.76, "probability": 0.9424 }, { "start": 43033.08, "end": 43034.14, "probability": 0.9761 }, { "start": 43034.98, "end": 43035.48, "probability": 0.9927 }, { "start": 43036.98, "end": 43037.78, "probability": 0.7071 }, { "start": 43038.98, "end": 43041.34, "probability": 0.5976 }, { "start": 43042.12, "end": 43043.08, "probability": 0.9463 }, { "start": 43044.12, "end": 43044.8, "probability": 0.849 }, { "start": 43046.16, "end": 43046.56, "probability": 0.9209 }, { "start": 43048.08, "end": 43048.86, "probability": 0.8134 }, { "start": 43050.28, "end": 43052.42, "probability": 0.8477 }, { "start": 43056.8, "end": 43059.78, "probability": 0.7998 }, { "start": 43062.38, "end": 43063.92, "probability": 0.512 }, { "start": 43065.28, "end": 43066.2, "probability": 0.1903 }, { "start": 43067.4, "end": 43067.86, "probability": 0.5094 }, { "start": 43069.44, "end": 43070.48, "probability": 0.7955 }, { "start": 43072.5, "end": 43073.02, "probability": 0.9256 }, { "start": 43074.72, "end": 43075.78, "probability": 0.958 }, { "start": 43077.0, "end": 43078.6, "probability": 0.9363 }, { "start": 43079.46, "end": 43080.52, "probability": 0.9909 }, { "start": 43082.13, "end": 43083.72, "probability": 0.9331 }, { "start": 43085.3, "end": 43088.2, "probability": 0.9571 }, { "start": 43089.1, "end": 43089.46, "probability": 0.9834 }, { "start": 43090.44, "end": 43091.64, "probability": 0.7817 }, { "start": 43092.36, "end": 43092.88, "probability": 0.9924 }, { "start": 43093.84, "end": 43094.18, "probability": 0.0058 }, { "start": 43099.02, "end": 43100.22, "probability": 0.3353 }, { "start": 43100.94, "end": 43101.38, "probability": 0.56 }, { "start": 43102.22, "end": 43103.16, "probability": 0.7384 }, { "start": 43104.44, "end": 43106.46, "probability": 0.9082 }, { "start": 43109.54, "end": 43110.2, "probability": 0.9212 }, { "start": 43112.64, "end": 43113.46, "probability": 0.7625 }, { "start": 43114.58, "end": 43116.68, "probability": 0.9572 }, { "start": 43117.9, "end": 43118.2, "probability": 0.5505 }, { "start": 43119.32, "end": 43120.1, "probability": 0.41 }, { "start": 43121.33, "end": 43123.72, "probability": 0.948 }, { "start": 43124.38, "end": 43124.96, "probability": 0.916 }, { "start": 43126.38, "end": 43127.58, "probability": 0.8851 }, { "start": 43128.88, "end": 43131.4, "probability": 0.8772 }, { "start": 43135.94, "end": 43136.38, "probability": 0.6321 }, { "start": 43138.0, "end": 43138.52, "probability": 0.618 }, { "start": 43139.86, "end": 43141.92, "probability": 0.7493 }, { "start": 43142.9, "end": 43143.3, "probability": 0.9629 }, { "start": 43147.4, "end": 43150.66, "probability": 0.9032 }, { "start": 43150.92, "end": 43152.3, "probability": 0.2417 }, { "start": 43155.02, "end": 43155.76, "probability": 0.7709 }, { "start": 43160.04, "end": 43160.68, "probability": 0.3724 }, { "start": 43168.42, "end": 43170.74, "probability": 0.6951 }, { "start": 43171.64, "end": 43172.22, "probability": 0.9601 }, { "start": 43175.36, "end": 43177.36, "probability": 0.6072 }, { "start": 43178.14, "end": 43179.04, "probability": 0.3158 }, { "start": 43179.72, "end": 43180.14, "probability": 0.8612 }, { "start": 43185.7, "end": 43189.18, "probability": 0.9465 }, { "start": 43189.84, "end": 43190.84, "probability": 0.5969 }, { "start": 43190.86, "end": 43192.04, "probability": 0.7981 }, { "start": 43193.5, "end": 43194.12, "probability": 0.0958 }, { "start": 43320.24, "end": 43320.24, "probability": 0.0253 }, { "start": 43320.24, "end": 43320.24, "probability": 0.0418 }, { "start": 43320.24, "end": 43322.2, "probability": 0.4659 }, { "start": 43323.06, "end": 43325.94, "probability": 0.5812 }, { "start": 43326.12, "end": 43329.38, "probability": 0.9738 }, { "start": 43331.1, "end": 43332.34, "probability": 0.2034 }, { "start": 43334.48, "end": 43335.56, "probability": 0.783 }, { "start": 43335.66, "end": 43336.02, "probability": 0.6294 }, { "start": 43336.16, "end": 43337.68, "probability": 0.6747 }, { "start": 43338.12, "end": 43340.0, "probability": 0.6577 }, { "start": 43341.36, "end": 43341.94, "probability": 0.8281 }, { "start": 43343.06, "end": 43346.54, "probability": 0.9828 }, { "start": 43346.62, "end": 43347.06, "probability": 0.9456 }, { "start": 43347.58, "end": 43353.22, "probability": 0.9518 }, { "start": 43353.38, "end": 43355.0, "probability": 0.7516 }, { "start": 43355.74, "end": 43359.04, "probability": 0.9361 }, { "start": 43359.16, "end": 43365.88, "probability": 0.2867 }, { "start": 43366.56, "end": 43371.52, "probability": 0.5121 }, { "start": 43372.2, "end": 43372.92, "probability": 0.6232 }, { "start": 43373.1, "end": 43377.5, "probability": 0.9175 }, { "start": 43380.08, "end": 43380.08, "probability": 0.0002 }, { "start": 43389.4, "end": 43390.08, "probability": 0.2565 }, { "start": 43390.08, "end": 43390.08, "probability": 0.4618 }, { "start": 43390.08, "end": 43390.36, "probability": 0.0453 }, { "start": 43393.0, "end": 43393.8, "probability": 0.023 }, { "start": 43396.78, "end": 43398.03, "probability": 0.5173 }, { "start": 43398.88, "end": 43399.36, "probability": 0.8325 }, { "start": 43399.52, "end": 43400.5, "probability": 0.2715 }, { "start": 43411.12, "end": 43412.64, "probability": 0.0936 }, { "start": 43414.26, "end": 43416.64, "probability": 0.4137 }, { "start": 43417.26, "end": 43419.84, "probability": 0.3633 }, { "start": 43422.98, "end": 43425.6, "probability": 0.2737 }, { "start": 43426.16, "end": 43427.52, "probability": 0.3707 }, { "start": 43427.52, "end": 43428.9, "probability": 0.7664 }, { "start": 43429.02, "end": 43429.08, "probability": 0.42 }, { "start": 43429.86, "end": 43430.84, "probability": 0.5978 }, { "start": 43430.84, "end": 43432.66, "probability": 0.5745 }, { "start": 43432.86, "end": 43434.6, "probability": 0.0341 }, { "start": 43446.66, "end": 43449.72, "probability": 0.5412 }, { "start": 43465.54, "end": 43471.56, "probability": 0.9943 }, { "start": 43472.42, "end": 43475.62, "probability": 0.9956 }, { "start": 43475.62, "end": 43479.3, "probability": 0.9935 }, { "start": 43480.16, "end": 43482.44, "probability": 0.9876 }, { "start": 43482.44, "end": 43486.24, "probability": 0.9731 }, { "start": 43486.64, "end": 43487.0, "probability": 0.7123 }, { "start": 43487.16, "end": 43487.54, "probability": 0.9342 }, { "start": 43488.06, "end": 43488.78, "probability": 0.5714 }, { "start": 43489.36, "end": 43491.58, "probability": 0.9984 }, { "start": 43491.58, "end": 43495.96, "probability": 0.8555 }, { "start": 43496.12, "end": 43496.88, "probability": 0.6582 }, { "start": 43497.7, "end": 43500.24, "probability": 0.989 }, { "start": 43500.92, "end": 43504.72, "probability": 0.9924 }, { "start": 43504.72, "end": 43508.04, "probability": 0.9996 }, { "start": 43508.7, "end": 43514.66, "probability": 0.9912 }, { "start": 43515.6, "end": 43523.92, "probability": 0.9908 }, { "start": 43523.92, "end": 43528.36, "probability": 0.9984 }, { "start": 43528.36, "end": 43534.04, "probability": 0.999 }, { "start": 43534.6, "end": 43538.88, "probability": 0.9994 }, { "start": 43538.88, "end": 43543.76, "probability": 0.9992 }, { "start": 43545.0, "end": 43546.06, "probability": 0.9011 }, { "start": 43546.88, "end": 43552.46, "probability": 0.9727 }, { "start": 43553.12, "end": 43557.96, "probability": 0.9583 }, { "start": 43558.66, "end": 43559.18, "probability": 0.7674 }, { "start": 43559.42, "end": 43564.56, "probability": 0.9959 }, { "start": 43565.22, "end": 43567.06, "probability": 0.9729 }, { "start": 43567.66, "end": 43571.0, "probability": 0.9979 }, { "start": 43571.0, "end": 43574.52, "probability": 0.9814 }, { "start": 43575.22, "end": 43575.92, "probability": 0.689 }, { "start": 43576.44, "end": 43577.41, "probability": 0.6223 }, { "start": 43577.54, "end": 43580.6, "probability": 0.8535 }, { "start": 43581.12, "end": 43583.0, "probability": 0.9148 }, { "start": 43589.18, "end": 43590.08, "probability": 0.9844 }, { "start": 43591.26, "end": 43591.8, "probability": 0.5085 }, { "start": 43592.8, "end": 43594.2, "probability": 0.9339 }, { "start": 43595.16, "end": 43597.28, "probability": 0.9679 }, { "start": 43601.18, "end": 43602.52, "probability": 0.9856 }, { "start": 43609.54, "end": 43611.52, "probability": 0.7908 }, { "start": 43612.16, "end": 43613.58, "probability": 0.9868 }, { "start": 43615.1, "end": 43617.44, "probability": 0.9669 }, { "start": 43618.6, "end": 43620.86, "probability": 0.7194 }, { "start": 43624.1, "end": 43625.62, "probability": 0.6544 }, { "start": 43626.5, "end": 43628.44, "probability": 0.9524 }, { "start": 43630.48, "end": 43631.24, "probability": 0.5012 }, { "start": 43631.9, "end": 43632.92, "probability": 0.9956 }, { "start": 43633.88, "end": 43636.7, "probability": 0.8354 }, { "start": 43637.24, "end": 43638.42, "probability": 0.9958 }, { "start": 43639.94, "end": 43640.46, "probability": 0.8745 }, { "start": 43640.98, "end": 43642.36, "probability": 0.983 }, { "start": 43644.58, "end": 43645.3, "probability": 0.886 }, { "start": 43645.96, "end": 43647.04, "probability": 0.9971 }, { "start": 43648.22, "end": 43650.72, "probability": 0.8428 }, { "start": 43652.06, "end": 43654.14, "probability": 0.8837 }, { "start": 43657.28, "end": 43658.12, "probability": 0.8079 }, { "start": 43658.5, "end": 43661.48, "probability": 0.8497 }, { "start": 43661.84, "end": 43662.76, "probability": 0.7089 }, { "start": 43662.86, "end": 43664.0, "probability": 0.9829 }, { "start": 43666.18, "end": 43667.42, "probability": 0.9572 }, { "start": 43668.22, "end": 43670.16, "probability": 0.9956 }, { "start": 43671.04, "end": 43671.8, "probability": 0.8384 }, { "start": 43676.76, "end": 43678.18, "probability": 0.7267 }, { "start": 43679.24, "end": 43681.34, "probability": 0.9303 }, { "start": 43682.62, "end": 43685.12, "probability": 0.9661 }, { "start": 43687.0, "end": 43688.68, "probability": 0.9871 }, { "start": 43690.06, "end": 43691.94, "probability": 0.9892 }, { "start": 43693.1, "end": 43695.0, "probability": 0.7382 }, { "start": 43695.62, "end": 43699.1, "probability": 0.966 }, { "start": 43700.26, "end": 43700.9, "probability": 0.5236 }, { "start": 43701.2, "end": 43702.52, "probability": 0.979 }, { "start": 43703.08, "end": 43703.64, "probability": 0.9359 }, { "start": 43710.62, "end": 43710.62, "probability": 0.2857 }, { "start": 43721.3, "end": 43723.66, "probability": 0.787 }, { "start": 43724.2, "end": 43730.08, "probability": 0.5381 }, { "start": 43731.32, "end": 43735.84, "probability": 0.966 }, { "start": 43737.28, "end": 43737.87, "probability": 0.9546 }, { "start": 43740.98, "end": 43745.5, "probability": 0.9972 }, { "start": 43747.0, "end": 43751.3, "probability": 0.9797 }, { "start": 43752.76, "end": 43755.42, "probability": 0.9992 }, { "start": 43756.84, "end": 43758.22, "probability": 0.8776 }, { "start": 43759.34, "end": 43760.68, "probability": 0.9437 }, { "start": 43763.18, "end": 43767.88, "probability": 0.9953 }, { "start": 43771.0, "end": 43773.14, "probability": 0.9338 }, { "start": 43775.34, "end": 43775.9, "probability": 0.6986 }, { "start": 43778.54, "end": 43779.26, "probability": 0.8556 }, { "start": 43780.92, "end": 43782.2, "probability": 0.7062 }, { "start": 43782.4, "end": 43783.52, "probability": 0.8462 }, { "start": 43783.6, "end": 43788.28, "probability": 0.9913 }, { "start": 43790.48, "end": 43791.64, "probability": 0.7546 }, { "start": 43791.72, "end": 43795.94, "probability": 0.9849 }, { "start": 43797.18, "end": 43800.52, "probability": 0.9985 }, { "start": 43801.42, "end": 43803.84, "probability": 0.9958 }, { "start": 43806.02, "end": 43809.41, "probability": 0.9964 }, { "start": 43809.58, "end": 43817.86, "probability": 0.9975 }, { "start": 43817.86, "end": 43822.0, "probability": 0.9995 }, { "start": 43823.78, "end": 43827.82, "probability": 0.9808 }, { "start": 43829.42, "end": 43830.52, "probability": 0.9138 }, { "start": 43832.16, "end": 43836.28, "probability": 0.982 }, { "start": 43837.32, "end": 43839.28, "probability": 0.9551 }, { "start": 43841.44, "end": 43844.9, "probability": 0.9492 }, { "start": 43845.07, "end": 43846.23, "probability": 0.9819 }, { "start": 43846.42, "end": 43847.52, "probability": 0.768 }, { "start": 43848.24, "end": 43852.45, "probability": 0.9735 }, { "start": 43853.18, "end": 43854.7, "probability": 0.8579 }, { "start": 43855.32, "end": 43861.97, "probability": 0.8331 }, { "start": 43862.42, "end": 43863.32, "probability": 0.8719 }, { "start": 43866.26, "end": 43871.52, "probability": 0.868 }, { "start": 43871.72, "end": 43877.54, "probability": 0.8044 }, { "start": 43880.46, "end": 43882.28, "probability": 0.8953 }, { "start": 43883.14, "end": 43884.48, "probability": 0.9615 }, { "start": 43885.26, "end": 43890.45, "probability": 0.9991 }, { "start": 43891.26, "end": 43892.38, "probability": 0.5981 }, { "start": 43892.5, "end": 43895.38, "probability": 0.9803 }, { "start": 43895.68, "end": 43898.32, "probability": 0.857 }, { "start": 43902.06, "end": 43906.36, "probability": 0.673 }, { "start": 43906.68, "end": 43907.02, "probability": 0.5609 }, { "start": 43907.12, "end": 43907.4, "probability": 0.4779 }, { "start": 43907.74, "end": 43909.38, "probability": 0.8148 }, { "start": 43909.5, "end": 43910.44, "probability": 0.7701 }, { "start": 43911.3, "end": 43914.16, "probability": 0.7029 }, { "start": 43915.54, "end": 43917.14, "probability": 0.2428 }, { "start": 43917.22, "end": 43917.62, "probability": 0.0783 }, { "start": 43917.62, "end": 43917.62, "probability": 0.1937 }, { "start": 43917.62, "end": 43922.04, "probability": 0.9678 }, { "start": 43922.14, "end": 43924.92, "probability": 0.6786 }, { "start": 43926.58, "end": 43927.36, "probability": 0.5738 }, { "start": 43929.24, "end": 43929.62, "probability": 0.1482 }, { "start": 43930.7, "end": 43931.52, "probability": 0.1277 }, { "start": 43931.52, "end": 43932.3, "probability": 0.3861 }, { "start": 43932.68, "end": 43934.62, "probability": 0.5846 }, { "start": 43934.66, "end": 43935.96, "probability": 0.4613 }, { "start": 43936.62, "end": 43936.62, "probability": 0.7455 }, { "start": 43937.38, "end": 43937.62, "probability": 0.6344 }, { "start": 43938.42, "end": 43939.31, "probability": 0.2968 }, { "start": 43939.62, "end": 43942.54, "probability": 0.6202 }, { "start": 43943.22, "end": 43944.86, "probability": 0.7276 }, { "start": 43945.3, "end": 43946.44, "probability": 0.9951 }, { "start": 43947.16, "end": 43950.58, "probability": 0.9918 }, { "start": 43950.72, "end": 43952.02, "probability": 0.8967 }, { "start": 43952.04, "end": 43952.82, "probability": 0.3534 }, { "start": 43953.0, "end": 43954.9, "probability": 0.7773 }, { "start": 43955.12, "end": 43955.62, "probability": 0.6084 }, { "start": 43955.8, "end": 43957.08, "probability": 0.9357 }, { "start": 43957.52, "end": 43958.82, "probability": 0.8333 }, { "start": 43963.46, "end": 43965.8, "probability": 0.9646 }, { "start": 43966.94, "end": 43967.58, "probability": 0.7804 }, { "start": 43968.14, "end": 43970.26, "probability": 0.961 }, { "start": 43971.22, "end": 43973.62, "probability": 0.8064 }, { "start": 43974.14, "end": 43975.14, "probability": 0.8174 }, { "start": 43976.94, "end": 43977.52, "probability": 0.786 }, { "start": 43978.16, "end": 43980.38, "probability": 0.9625 }, { "start": 43980.86, "end": 43982.68, "probability": 0.972 }, { "start": 43983.34, "end": 43984.98, "probability": 0.1531 }, { "start": 43986.52, "end": 43987.62, "probability": 0.0197 }, { "start": 44012.26, "end": 44014.9, "probability": 0.6454 }, { "start": 44015.06, "end": 44017.6, "probability": 0.9914 }, { "start": 44018.82, "end": 44022.56, "probability": 0.9887 }, { "start": 44023.38, "end": 44026.1, "probability": 0.9434 }, { "start": 44026.62, "end": 44029.7, "probability": 0.8936 }, { "start": 44030.28, "end": 44035.9, "probability": 0.9987 }, { "start": 44036.74, "end": 44040.66, "probability": 0.9941 }, { "start": 44041.5, "end": 44043.04, "probability": 0.9736 }, { "start": 44043.6, "end": 44044.84, "probability": 0.9586 }, { "start": 44045.14, "end": 44046.14, "probability": 0.9985 }, { "start": 44047.12, "end": 44048.66, "probability": 0.9869 }, { "start": 44049.9, "end": 44053.88, "probability": 0.9823 }, { "start": 44054.42, "end": 44055.74, "probability": 0.7089 }, { "start": 44056.1, "end": 44058.85, "probability": 0.9905 }, { "start": 44059.28, "end": 44061.0, "probability": 0.9341 }, { "start": 44061.4, "end": 44063.3, "probability": 0.999 }, { "start": 44063.76, "end": 44067.6, "probability": 0.9851 }, { "start": 44068.04, "end": 44072.28, "probability": 0.9222 }, { "start": 44073.12, "end": 44073.46, "probability": 0.5952 }, { "start": 44073.68, "end": 44074.42, "probability": 0.9756 }, { "start": 44074.46, "end": 44075.28, "probability": 0.7965 }, { "start": 44075.58, "end": 44078.7, "probability": 0.9311 }, { "start": 44079.2, "end": 44085.66, "probability": 0.801 }, { "start": 44086.08, "end": 44087.68, "probability": 0.6236 }, { "start": 44088.2, "end": 44093.32, "probability": 0.9829 }, { "start": 44093.7, "end": 44095.8, "probability": 0.816 }, { "start": 44096.38, "end": 44099.48, "probability": 0.9634 }, { "start": 44100.04, "end": 44102.32, "probability": 0.2701 }, { "start": 44102.9, "end": 44103.22, "probability": 0.053 }, { "start": 44103.22, "end": 44105.72, "probability": 0.5565 }, { "start": 44106.16, "end": 44110.86, "probability": 0.9918 }, { "start": 44111.7, "end": 44113.76, "probability": 0.9935 }, { "start": 44114.28, "end": 44116.52, "probability": 0.9285 }, { "start": 44117.24, "end": 44123.6, "probability": 0.9971 }, { "start": 44124.44, "end": 44127.38, "probability": 0.8688 }, { "start": 44127.9, "end": 44128.6, "probability": 0.7672 }, { "start": 44129.3, "end": 44129.36, "probability": 0.644 }, { "start": 44129.88, "end": 44133.02, "probability": 0.9936 }, { "start": 44133.74, "end": 44135.28, "probability": 0.9528 }, { "start": 44135.82, "end": 44138.12, "probability": 0.9958 }, { "start": 44140.34, "end": 44141.52, "probability": 0.0111 }, { "start": 44141.6, "end": 44142.22, "probability": 0.0298 }, { "start": 44142.4, "end": 44144.6, "probability": 0.8737 }, { "start": 44144.94, "end": 44144.94, "probability": 0.2524 }, { "start": 44144.94, "end": 44147.0, "probability": 0.8571 }, { "start": 44148.06, "end": 44150.45, "probability": 0.8865 }, { "start": 44152.65, "end": 44155.98, "probability": 0.8089 }, { "start": 44156.32, "end": 44157.34, "probability": 0.7391 }, { "start": 44158.28, "end": 44160.74, "probability": 0.9915 }, { "start": 44160.88, "end": 44161.54, "probability": 0.8377 }, { "start": 44161.66, "end": 44162.86, "probability": 0.7804 }, { "start": 44162.92, "end": 44165.89, "probability": 0.9624 }, { "start": 44166.2, "end": 44167.07, "probability": 0.9954 }, { "start": 44167.98, "end": 44168.32, "probability": 0.9425 }, { "start": 44168.64, "end": 44168.92, "probability": 0.7853 }, { "start": 44169.0, "end": 44172.44, "probability": 0.932 }, { "start": 44172.82, "end": 44174.48, "probability": 0.9951 }, { "start": 44175.76, "end": 44177.0, "probability": 0.9677 }, { "start": 44178.1, "end": 44182.3, "probability": 0.991 }, { "start": 44182.3, "end": 44185.98, "probability": 0.9963 }, { "start": 44186.68, "end": 44190.78, "probability": 0.9985 }, { "start": 44190.78, "end": 44194.08, "probability": 0.9884 }, { "start": 44194.44, "end": 44195.54, "probability": 0.9612 }, { "start": 44196.1, "end": 44197.86, "probability": 0.9976 }, { "start": 44198.2, "end": 44200.29, "probability": 0.7461 }, { "start": 44200.78, "end": 44202.64, "probability": 0.9956 }, { "start": 44203.22, "end": 44203.98, "probability": 0.5308 }, { "start": 44204.08, "end": 44205.98, "probability": 0.6715 }, { "start": 44206.14, "end": 44207.06, "probability": 0.8975 }, { "start": 44207.12, "end": 44213.34, "probability": 0.9932 }, { "start": 44213.36, "end": 44218.14, "probability": 0.9938 }, { "start": 44218.64, "end": 44221.86, "probability": 0.8614 }, { "start": 44222.32, "end": 44223.5, "probability": 0.8629 }, { "start": 44223.86, "end": 44225.66, "probability": 0.9404 }, { "start": 44225.74, "end": 44226.24, "probability": 0.8667 }, { "start": 44226.7, "end": 44227.26, "probability": 0.5467 }, { "start": 44227.4, "end": 44228.58, "probability": 0.9883 }, { "start": 44229.86, "end": 44232.0, "probability": 0.7607 }, { "start": 44232.86, "end": 44235.18, "probability": 0.9429 }, { "start": 44236.36, "end": 44237.46, "probability": 0.4838 }, { "start": 44237.46, "end": 44240.8, "probability": 0.9701 }, { "start": 44251.84, "end": 44252.5, "probability": 0.4554 }, { "start": 44254.26, "end": 44260.08, "probability": 0.8667 }, { "start": 44262.66, "end": 44264.82, "probability": 0.9988 }, { "start": 44265.88, "end": 44269.88, "probability": 0.9539 }, { "start": 44270.52, "end": 44272.8, "probability": 0.0187 }, { "start": 44274.5, "end": 44274.66, "probability": 0.302 }, { "start": 44276.98, "end": 44278.98, "probability": 0.5677 }, { "start": 44281.63, "end": 44282.57, "probability": 0.0324 }, { "start": 44289.62, "end": 44290.9, "probability": 0.5775 }, { "start": 44290.9, "end": 44292.52, "probability": 0.6908 }, { "start": 44292.52, "end": 44296.88, "probability": 0.1127 }, { "start": 44298.2, "end": 44300.6, "probability": 0.0132 }, { "start": 44301.6, "end": 44303.54, "probability": 0.0302 }, { "start": 44304.54, "end": 44304.72, "probability": 0.6864 }, { "start": 44304.72, "end": 44304.72, "probability": 0.653 }, { "start": 44304.72, "end": 44306.44, "probability": 0.1624 }, { "start": 44306.48, "end": 44306.94, "probability": 0.1049 }, { "start": 44341.8, "end": 44344.3, "probability": 0.5846 }, { "start": 44345.06, "end": 44345.65, "probability": 0.6809 }, { "start": 44345.9, "end": 44346.46, "probability": 0.9658 }, { "start": 44346.68, "end": 44348.56, "probability": 0.7937 }, { "start": 44349.1, "end": 44350.02, "probability": 0.9355 }, { "start": 44351.38, "end": 44351.68, "probability": 0.5199 }, { "start": 44351.68, "end": 44353.62, "probability": 0.8032 }, { "start": 44354.08, "end": 44356.28, "probability": 0.9918 }, { "start": 44356.96, "end": 44364.6, "probability": 0.9714 }, { "start": 44364.6, "end": 44369.6, "probability": 0.9998 }, { "start": 44370.46, "end": 44375.84, "probability": 0.96 }, { "start": 44375.84, "end": 44379.9, "probability": 0.9988 }, { "start": 44381.72, "end": 44383.56, "probability": 0.7084 }, { "start": 44383.66, "end": 44384.44, "probability": 0.9556 }, { "start": 44384.94, "end": 44386.44, "probability": 0.6392 }, { "start": 44386.58, "end": 44387.74, "probability": 0.5458 }, { "start": 44388.06, "end": 44388.58, "probability": 0.954 }, { "start": 44389.04, "end": 44391.52, "probability": 0.6968 }, { "start": 44391.76, "end": 44395.04, "probability": 0.7937 }, { "start": 44395.1, "end": 44397.14, "probability": 0.9844 }, { "start": 44397.3, "end": 44399.88, "probability": 0.9585 }, { "start": 44401.34, "end": 44401.84, "probability": 0.5376 }, { "start": 44402.48, "end": 44403.98, "probability": 0.8271 }, { "start": 44404.8, "end": 44405.64, "probability": 0.9482 }, { "start": 44406.8, "end": 44407.6, "probability": 0.7571 }, { "start": 44408.58, "end": 44410.48, "probability": 0.223 }, { "start": 44410.74, "end": 44412.88, "probability": 0.7269 }, { "start": 44413.12, "end": 44414.94, "probability": 0.7452 }, { "start": 44433.98, "end": 44435.94, "probability": 0.6685 }, { "start": 44436.96, "end": 44437.8, "probability": 0.6682 }, { "start": 44439.86, "end": 44446.12, "probability": 0.9141 }, { "start": 44447.78, "end": 44449.98, "probability": 0.828 }, { "start": 44450.84, "end": 44456.08, "probability": 0.9474 }, { "start": 44457.06, "end": 44460.22, "probability": 0.3902 }, { "start": 44461.14, "end": 44466.44, "probability": 0.9801 }, { "start": 44466.94, "end": 44469.86, "probability": 0.9976 }, { "start": 44472.52, "end": 44473.42, "probability": 0.8069 }, { "start": 44474.74, "end": 44476.4, "probability": 0.9455 }, { "start": 44477.48, "end": 44482.88, "probability": 0.9976 }, { "start": 44483.74, "end": 44486.82, "probability": 0.9203 }, { "start": 44487.36, "end": 44493.82, "probability": 0.9935 }, { "start": 44494.42, "end": 44498.86, "probability": 0.9993 }, { "start": 44499.94, "end": 44503.14, "probability": 0.8568 }, { "start": 44504.16, "end": 44505.72, "probability": 0.9944 }, { "start": 44506.28, "end": 44514.86, "probability": 0.9938 }, { "start": 44515.66, "end": 44521.02, "probability": 0.9965 }, { "start": 44522.44, "end": 44526.02, "probability": 0.9619 }, { "start": 44526.92, "end": 44529.64, "probability": 0.836 }, { "start": 44530.52, "end": 44532.74, "probability": 0.9885 }, { "start": 44535.48, "end": 44537.84, "probability": 0.9839 }, { "start": 44538.66, "end": 44540.1, "probability": 0.9185 }, { "start": 44540.22, "end": 44542.88, "probability": 0.865 }, { "start": 44543.42, "end": 44551.4, "probability": 0.9337 }, { "start": 44551.92, "end": 44555.02, "probability": 0.9757 }, { "start": 44555.66, "end": 44557.22, "probability": 0.9778 }, { "start": 44557.98, "end": 44561.64, "probability": 0.9414 }, { "start": 44562.22, "end": 44563.52, "probability": 0.9723 }, { "start": 44567.14, "end": 44569.46, "probability": 0.7719 }, { "start": 44570.6, "end": 44571.58, "probability": 0.9871 }, { "start": 44572.56, "end": 44578.86, "probability": 0.9944 }, { "start": 44579.72, "end": 44581.5, "probability": 0.9346 }, { "start": 44582.12, "end": 44583.5, "probability": 0.9614 }, { "start": 44584.3, "end": 44586.54, "probability": 0.9834 }, { "start": 44587.0, "end": 44589.2, "probability": 0.9976 }, { "start": 44589.78, "end": 44592.8, "probability": 0.9708 }, { "start": 44593.36, "end": 44594.98, "probability": 0.9873 }, { "start": 44596.24, "end": 44599.66, "probability": 0.9881 }, { "start": 44600.7, "end": 44605.11, "probability": 0.9617 }, { "start": 44605.62, "end": 44607.72, "probability": 0.9924 }, { "start": 44608.26, "end": 44609.62, "probability": 0.6879 }, { "start": 44610.16, "end": 44611.68, "probability": 0.7504 }, { "start": 44612.22, "end": 44617.08, "probability": 0.9845 }, { "start": 44617.08, "end": 44621.92, "probability": 0.9728 }, { "start": 44622.54, "end": 44624.2, "probability": 0.7577 }, { "start": 44624.78, "end": 44628.64, "probability": 0.9774 }, { "start": 44629.42, "end": 44631.68, "probability": 0.9962 }, { "start": 44631.7, "end": 44632.54, "probability": 0.8199 }, { "start": 44633.4, "end": 44634.2, "probability": 0.3558 }, { "start": 44636.22, "end": 44638.0, "probability": 0.9359 }, { "start": 44640.91, "end": 44642.96, "probability": 0.9238 }, { "start": 44644.02, "end": 44645.5, "probability": 0.9519 }, { "start": 44671.78, "end": 44673.52, "probability": 0.6252 }, { "start": 44674.64, "end": 44677.08, "probability": 0.9717 }, { "start": 44680.2, "end": 44682.6, "probability": 0.4723 }, { "start": 44683.72, "end": 44684.74, "probability": 0.6707 }, { "start": 44686.14, "end": 44688.92, "probability": 0.924 }, { "start": 44690.14, "end": 44692.02, "probability": 0.9987 }, { "start": 44693.82, "end": 44696.08, "probability": 0.9641 }, { "start": 44697.76, "end": 44702.9, "probability": 0.6302 }, { "start": 44704.08, "end": 44709.16, "probability": 0.957 }, { "start": 44712.54, "end": 44713.66, "probability": 0.9412 }, { "start": 44715.9, "end": 44718.32, "probability": 0.923 }, { "start": 44720.64, "end": 44725.2, "probability": 0.9837 }, { "start": 44726.34, "end": 44727.2, "probability": 0.987 }, { "start": 44728.28, "end": 44735.34, "probability": 0.979 }, { "start": 44737.08, "end": 44739.14, "probability": 0.9312 }, { "start": 44740.64, "end": 44744.8, "probability": 0.9856 }, { "start": 44745.94, "end": 44747.72, "probability": 0.8153 }, { "start": 44748.74, "end": 44750.86, "probability": 0.9904 }, { "start": 44751.72, "end": 44753.12, "probability": 0.9965 }, { "start": 44754.22, "end": 44758.6, "probability": 0.6565 }, { "start": 44759.94, "end": 44761.07, "probability": 0.9399 }, { "start": 44761.58, "end": 44763.84, "probability": 0.619 }, { "start": 44765.7, "end": 44767.06, "probability": 0.9691 }, { "start": 44767.3, "end": 44768.42, "probability": 0.9521 }, { "start": 44768.78, "end": 44769.54, "probability": 0.8446 }, { "start": 44770.12, "end": 44771.24, "probability": 0.9106 }, { "start": 44772.06, "end": 44772.6, "probability": 0.7897 }, { "start": 44773.41, "end": 44775.84, "probability": 0.9766 }, { "start": 44777.12, "end": 44779.46, "probability": 0.5475 }, { "start": 44780.4, "end": 44787.64, "probability": 0.9543 }, { "start": 44788.56, "end": 44790.07, "probability": 0.7178 }, { "start": 44791.44, "end": 44793.3, "probability": 0.988 }, { "start": 44795.12, "end": 44795.96, "probability": 0.6699 }, { "start": 44796.4, "end": 44798.2, "probability": 0.877 }, { "start": 44799.4, "end": 44800.1, "probability": 0.455 }, { "start": 44800.84, "end": 44803.04, "probability": 0.9799 }, { "start": 44803.88, "end": 44807.78, "probability": 0.9783 }, { "start": 44808.56, "end": 44809.84, "probability": 0.8502 }, { "start": 44810.44, "end": 44814.3, "probability": 0.9949 }, { "start": 44814.9, "end": 44820.64, "probability": 0.9951 }, { "start": 44820.82, "end": 44821.3, "probability": 0.9146 }, { "start": 44822.7, "end": 44823.98, "probability": 0.7429 }, { "start": 44825.76, "end": 44829.2, "probability": 0.8671 }, { "start": 44830.62, "end": 44831.06, "probability": 0.3673 }, { "start": 44831.68, "end": 44833.62, "probability": 0.7155 }, { "start": 44836.46, "end": 44838.7, "probability": 0.7724 }, { "start": 44839.24, "end": 44840.36, "probability": 0.8097 }, { "start": 44841.1, "end": 44843.02, "probability": 0.7104 }, { "start": 44844.24, "end": 44845.6, "probability": 0.4676 }, { "start": 44848.92, "end": 44853.58, "probability": 0.9259 }, { "start": 44856.22, "end": 44857.9, "probability": 0.6225 }, { "start": 44858.98, "end": 44859.56, "probability": 0.3256 }, { "start": 44860.1, "end": 44861.54, "probability": 0.8348 }, { "start": 44862.84, "end": 44865.36, "probability": 0.9341 }, { "start": 44866.1, "end": 44866.52, "probability": 0.8814 }, { "start": 44878.16, "end": 44878.34, "probability": 0.3259 }, { "start": 44878.52, "end": 44880.02, "probability": 0.9495 }, { "start": 44880.28, "end": 44881.82, "probability": 0.983 }, { "start": 44882.0, "end": 44883.66, "probability": 0.9562 }, { "start": 44884.02, "end": 44884.84, "probability": 0.9716 }, { "start": 44884.86, "end": 44887.82, "probability": 0.9827 }, { "start": 44888.4, "end": 44889.26, "probability": 0.9421 }, { "start": 44889.9, "end": 44891.1, "probability": 0.7442 }, { "start": 44891.4, "end": 44894.32, "probability": 0.9971 }, { "start": 44894.32, "end": 44897.0, "probability": 0.995 }, { "start": 44900.98, "end": 44902.3, "probability": 0.5593 }, { "start": 44903.36, "end": 44904.8, "probability": 0.9561 }, { "start": 44907.2, "end": 44910.0, "probability": 0.8542 }, { "start": 44911.34, "end": 44912.8, "probability": 0.5114 }, { "start": 44913.42, "end": 44914.38, "probability": 0.9975 }, { "start": 44915.32, "end": 44915.96, "probability": 0.6724 }, { "start": 44919.66, "end": 44919.76, "probability": 0.7265 }, { "start": 44921.4, "end": 44921.96, "probability": 0.0084 }, { "start": 44974.84, "end": 44975.54, "probability": 0.0461 }, { "start": 44975.54, "end": 44977.14, "probability": 0.1524 }, { "start": 44977.9, "end": 44978.0, "probability": 0.1736 }, { "start": 44978.06, "end": 44978.72, "probability": 0.3787 }, { "start": 44980.4, "end": 44980.4, "probability": 0.0358 }, { "start": 44980.72, "end": 44981.5, "probability": 0.1028 }, { "start": 44984.09, "end": 44985.74, "probability": 0.0735 }, { "start": 44987.77, "end": 44989.92, "probability": 0.0562 }, { "start": 44991.12, "end": 44992.7, "probability": 0.153 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45917.0, "end": 45917.0, "probability": 0.0 }, { "start": 45923.06, "end": 45925.06, "probability": 0.3758 }, { "start": 45925.68, "end": 45927.9, "probability": 0.5841 }, { "start": 45928.68, "end": 45929.28, "probability": 0.8523 }, { "start": 45930.1, "end": 45931.06, "probability": 0.6224 }, { "start": 45938.58, "end": 45939.16, "probability": 0.6463 }, { "start": 45940.84, "end": 45941.44, "probability": 0.1739 }, { "start": 45941.44, "end": 45941.7, "probability": 0.0133 }, { "start": 45941.7, "end": 45941.7, "probability": 0.0743 }, { "start": 45960.8, "end": 45961.74, "probability": 0.517 }, { "start": 45963.4, "end": 45963.78, "probability": 0.7796 }, { "start": 45965.72, "end": 45966.78, "probability": 0.726 }, { "start": 45968.36, "end": 45969.08, "probability": 0.7724 }, { "start": 45971.38, "end": 45974.86, "probability": 0.9208 }, { "start": 45975.58, "end": 45976.47, "probability": 0.5155 }, { "start": 45977.0, "end": 45978.04, "probability": 0.4929 }, { "start": 45978.16, "end": 45978.76, "probability": 0.8159 }, { "start": 45980.72, "end": 45981.04, "probability": 0.0997 }, { "start": 46002.96, "end": 46068.02, "probability": 0.0769 }, { "start": 46069.62, "end": 46075.22, "probability": 0.9945 }, { "start": 46076.14, "end": 46078.98, "probability": 0.9388 }, { "start": 46079.22, "end": 46080.26, "probability": 0.6682 }, { "start": 46080.76, "end": 46081.86, "probability": 0.9095 }, { "start": 46082.5, "end": 46086.18, "probability": 0.727 }, { "start": 46086.82, "end": 46088.42, "probability": 0.985 }, { "start": 46090.32, "end": 46094.18, "probability": 0.7634 }, { "start": 46094.76, "end": 46097.18, "probability": 0.5695 }, { "start": 46097.68, "end": 46100.26, "probability": 0.3209 }, { "start": 46100.86, "end": 46103.56, "probability": 0.7435 }, { "start": 46103.98, "end": 46110.14, "probability": 0.9591 }, { "start": 46118.24, "end": 46118.24, "probability": 0.418 }, { "start": 46118.24, "end": 46118.24, "probability": 0.06 }, { "start": 46118.24, "end": 46118.24, "probability": 0.2065 }, { "start": 46118.24, "end": 46118.24, "probability": 0.1376 }, { "start": 46118.24, "end": 46118.24, "probability": 0.138 }, { "start": 46118.24, "end": 46118.24, "probability": 0.0182 }, { "start": 46118.24, "end": 46118.24, "probability": 0.1585 }, { "start": 46118.24, "end": 46118.32, "probability": 0.0764 }, { "start": 46118.32, "end": 46118.32, "probability": 0.429 }, { "start": 46140.1, "end": 46140.5, "probability": 0.2442 }, { "start": 46141.42, "end": 46145.08, "probability": 0.7927 }, { "start": 46146.28, "end": 46149.5, "probability": 0.9965 }, { "start": 46149.5, "end": 46152.8, "probability": 0.9821 }, { "start": 46153.76, "end": 46154.14, "probability": 0.5545 }, { "start": 46154.54, "end": 46155.6, "probability": 0.9017 }, { "start": 46155.76, "end": 46157.92, "probability": 0.9338 }, { "start": 46158.24, "end": 46159.76, "probability": 0.9979 }, { "start": 46160.32, "end": 46163.02, "probability": 0.9777 }, { "start": 46163.16, "end": 46166.34, "probability": 0.9934 }, { "start": 46167.24, "end": 46169.46, "probability": 0.9935 }, { "start": 46170.42, "end": 46171.62, "probability": 0.448 }, { "start": 46171.78, "end": 46171.78, "probability": 0.097 }, { "start": 46171.78, "end": 46174.78, "probability": 0.8972 }, { "start": 46174.78, "end": 46177.84, "probability": 0.9966 }, { "start": 46178.56, "end": 46181.58, "probability": 0.9982 }, { "start": 46181.72, "end": 46184.04, "probability": 0.8045 }, { "start": 46184.56, "end": 46187.98, "probability": 0.9566 }, { "start": 46188.78, "end": 46191.22, "probability": 0.9413 }, { "start": 46192.0, "end": 46192.5, "probability": 0.2485 }, { "start": 46192.64, "end": 46194.88, "probability": 0.9626 }, { "start": 46196.06, "end": 46200.5, "probability": 0.9875 }, { "start": 46201.16, "end": 46205.62, "probability": 0.9922 }, { "start": 46206.24, "end": 46208.9, "probability": 0.9801 }, { "start": 46209.46, "end": 46212.18, "probability": 0.7514 }, { "start": 46212.9, "end": 46217.78, "probability": 0.959 }, { "start": 46217.78, "end": 46221.88, "probability": 0.9152 }, { "start": 46222.44, "end": 46227.46, "probability": 0.995 }, { "start": 46227.46, "end": 46233.04, "probability": 0.999 }, { "start": 46233.16, "end": 46233.42, "probability": 0.4855 }, { "start": 46233.54, "end": 46237.24, "probability": 0.9799 }, { "start": 46237.24, "end": 46240.64, "probability": 0.8388 }, { "start": 46241.18, "end": 46243.22, "probability": 0.9842 }, { "start": 46244.74, "end": 46247.56, "probability": 0.8984 }, { "start": 46247.84, "end": 46251.6, "probability": 0.9957 }, { "start": 46251.6, "end": 46254.5, "probability": 0.8353 }, { "start": 46254.84, "end": 46260.0, "probability": 0.801 }, { "start": 46260.0, "end": 46263.44, "probability": 0.9953 }, { "start": 46263.44, "end": 46267.56, "probability": 0.9974 }, { "start": 46268.06, "end": 46268.7, "probability": 0.5315 }, { "start": 46268.84, "end": 46272.42, "probability": 0.995 }, { "start": 46272.42, "end": 46276.8, "probability": 0.996 }, { "start": 46277.7, "end": 46279.9, "probability": 0.9652 }, { "start": 46280.06, "end": 46283.52, "probability": 0.907 }, { "start": 46284.04, "end": 46286.24, "probability": 0.9365 }, { "start": 46286.24, "end": 46289.26, "probability": 0.9936 }, { "start": 46290.14, "end": 46291.78, "probability": 0.8308 }, { "start": 46292.82, "end": 46293.88, "probability": 0.884 }, { "start": 46295.46, "end": 46298.72, "probability": 0.9973 }, { "start": 46299.72, "end": 46299.72, "probability": 0.9326 }, { "start": 46300.74, "end": 46303.04, "probability": 0.9163 }, { "start": 46303.94, "end": 46306.68, "probability": 0.9797 }, { "start": 46307.58, "end": 46308.34, "probability": 0.7085 }, { "start": 46309.6, "end": 46312.1, "probability": 0.8922 }, { "start": 46312.2, "end": 46316.06, "probability": 0.9644 }, { "start": 46317.24, "end": 46319.4, "probability": 0.9727 }, { "start": 46320.26, "end": 46323.1, "probability": 0.9757 }, { "start": 46323.7, "end": 46325.86, "probability": 0.9948 }, { "start": 46326.82, "end": 46332.44, "probability": 0.9925 }, { "start": 46332.96, "end": 46334.94, "probability": 0.7072 }, { "start": 46335.72, "end": 46340.72, "probability": 0.9982 }, { "start": 46342.16, "end": 46342.84, "probability": 0.7667 }, { "start": 46343.74, "end": 46345.24, "probability": 0.9618 }, { "start": 46346.2, "end": 46346.46, "probability": 0.0337 }, { "start": 46347.22, "end": 46347.36, "probability": 0.1536 }, { "start": 46347.36, "end": 46349.76, "probability": 0.0098 }, { "start": 46349.76, "end": 46349.76, "probability": 0.0601 }, { "start": 46349.76, "end": 46350.13, "probability": 0.1473 }, { "start": 46351.7, "end": 46354.64, "probability": 0.9976 }, { "start": 46354.64, "end": 46359.3, "probability": 0.9708 }, { "start": 46359.78, "end": 46361.34, "probability": 0.7014 }, { "start": 46361.38, "end": 46362.14, "probability": 0.7302 }, { "start": 46362.22, "end": 46365.66, "probability": 0.9897 }, { "start": 46365.68, "end": 46368.96, "probability": 0.999 }, { "start": 46369.2, "end": 46370.74, "probability": 0.976 }, { "start": 46371.46, "end": 46373.18, "probability": 0.9678 }, { "start": 46373.7, "end": 46378.16, "probability": 0.9228 }, { "start": 46378.72, "end": 46381.18, "probability": 0.9562 }, { "start": 46381.98, "end": 46382.88, "probability": 0.9867 }, { "start": 46383.46, "end": 46384.38, "probability": 0.7745 }, { "start": 46384.84, "end": 46391.16, "probability": 0.9861 }, { "start": 46391.78, "end": 46395.46, "probability": 0.9928 }, { "start": 46395.5, "end": 46400.36, "probability": 0.9376 }, { "start": 46400.98, "end": 46407.44, "probability": 0.991 }, { "start": 46408.74, "end": 46409.88, "probability": 0.9915 }, { "start": 46411.2, "end": 46411.88, "probability": 0.7939 }, { "start": 46413.44, "end": 46413.74, "probability": 0.0072 }, { "start": 46413.74, "end": 46414.28, "probability": 0.0115 }, { "start": 46414.5, "end": 46416.02, "probability": 0.8801 }, { "start": 46416.12, "end": 46418.34, "probability": 0.9006 }, { "start": 46423.74, "end": 46424.46, "probability": 0.6136 }, { "start": 46424.56, "end": 46426.0, "probability": 0.6504 }, { "start": 46426.14, "end": 46427.32, "probability": 0.9054 }, { "start": 46428.06, "end": 46432.0, "probability": 0.6023 }, { "start": 46432.46, "end": 46434.46, "probability": 0.8799 }, { "start": 46435.68, "end": 46438.38, "probability": 0.9889 }, { "start": 46438.58, "end": 46443.38, "probability": 0.9961 }, { "start": 46443.62, "end": 46449.34, "probability": 0.9837 }, { "start": 46449.34, "end": 46452.7, "probability": 0.9542 }, { "start": 46452.98, "end": 46456.46, "probability": 0.9907 }, { "start": 46456.64, "end": 46459.06, "probability": 0.8271 }, { "start": 46459.86, "end": 46463.28, "probability": 0.8871 }, { "start": 46463.72, "end": 46465.44, "probability": 0.9588 }, { "start": 46466.2, "end": 46467.86, "probability": 0.6904 }, { "start": 46468.38, "end": 46468.8, "probability": 0.814 }, { "start": 46469.94, "end": 46471.42, "probability": 0.0265 }, { "start": 46487.0, "end": 46487.58, "probability": 0.109 }, { "start": 46489.17, "end": 46493.98, "probability": 0.9486 }, { "start": 46494.68, "end": 46499.16, "probability": 0.9338 }, { "start": 46499.82, "end": 46500.5, "probability": 0.1157 }, { "start": 46500.68, "end": 46501.3, "probability": 0.7416 }, { "start": 46501.34, "end": 46503.63, "probability": 0.8359 }, { "start": 46503.9, "end": 46510.76, "probability": 0.966 }, { "start": 46511.34, "end": 46515.08, "probability": 0.9523 }, { "start": 46515.3, "end": 46516.16, "probability": 0.6689 }, { "start": 46516.8, "end": 46518.22, "probability": 0.8677 }, { "start": 46521.8, "end": 46522.34, "probability": 0.0068 }, { "start": 46538.34, "end": 46538.34, "probability": 0.0492 }, { "start": 46538.34, "end": 46538.58, "probability": 0.1476 }, { "start": 46538.62, "end": 46539.5, "probability": 0.3519 }, { "start": 46539.84, "end": 46540.2, "probability": 0.5322 }, { "start": 46540.2, "end": 46545.66, "probability": 0.6656 }, { "start": 46546.32, "end": 46548.78, "probability": 0.9786 }, { "start": 46550.06, "end": 46551.64, "probability": 0.9989 }, { "start": 46553.34, "end": 46554.78, "probability": 0.6386 }, { "start": 46555.26, "end": 46557.76, "probability": 0.79 }, { "start": 46558.52, "end": 46561.64, "probability": 0.4002 }, { "start": 46562.5, "end": 46565.16, "probability": 0.7316 }, { "start": 46566.2, "end": 46566.26, "probability": 0.0005 } ], "segments_count": 15892, "words_count": 72254, "avg_words_per_segment": 4.5466, "avg_segment_duration": 1.7746, "avg_words_per_minute": 69.6424, "plenum_id": "102588", "duration": 62249.99, "title": null, "plenum_date": "2021-12-13" }