{ "source_type": "knesset", "source_id": "plenum", "source_entry_id": "102769", "quality_score": 0.8726, "per_segment_quality_scores": [ { "start": 71.38, "end": 71.52, "probability": 0.1146 }, { "start": 71.52, "end": 71.52, "probability": 0.2133 }, { "start": 71.52, "end": 72.43, "probability": 0.1111 }, { "start": 73.72, "end": 77.08, "probability": 0.0454 }, { "start": 79.14, "end": 80.44, "probability": 0.03 }, { "start": 80.55, "end": 83.04, "probability": 0.0257 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 155.0, "end": 155.0, "probability": 0.0 }, { "start": 161.22, "end": 164.92, "probability": 0.8945 }, { "start": 168.64, "end": 170.0, "probability": 0.9941 }, { "start": 191.2, "end": 193.84, "probability": 0.6986 }, { "start": 194.5, "end": 195.6, "probability": 0.5191 }, { "start": 195.66, "end": 198.98, "probability": 0.891 }, { "start": 200.48, "end": 200.72, "probability": 0.1368 }, { "start": 200.72, "end": 200.72, "probability": 0.07 }, { "start": 200.72, "end": 200.72, "probability": 0.0643 }, { "start": 200.72, "end": 202.58, "probability": 0.8087 }, { "start": 203.54, "end": 206.44, "probability": 0.555 }, { "start": 206.68, "end": 206.98, "probability": 0.8216 }, { "start": 207.9, "end": 208.76, "probability": 0.6427 }, { "start": 209.02, "end": 210.58, "probability": 0.6974 }, { "start": 210.58, "end": 211.36, "probability": 0.0611 }, { "start": 237.7, "end": 239.8, "probability": 0.1182 }, { "start": 240.54, "end": 242.72, "probability": 0.5618 }, { "start": 243.56, "end": 244.74, "probability": 0.7856 }, { "start": 245.52, "end": 247.76, "probability": 0.964 }, { "start": 248.42, "end": 252.28, "probability": 0.7912 }, { "start": 252.78, "end": 255.44, "probability": 0.994 }, { "start": 256.0, "end": 261.9, "probability": 0.8755 }, { "start": 262.76, "end": 266.44, "probability": 0.9954 }, { "start": 267.02, "end": 268.14, "probability": 0.747 }, { "start": 268.76, "end": 270.5, "probability": 0.9888 }, { "start": 271.08, "end": 276.26, "probability": 0.9931 }, { "start": 276.26, "end": 282.06, "probability": 0.9723 }, { "start": 283.32, "end": 289.68, "probability": 0.9831 }, { "start": 290.32, "end": 292.0, "probability": 0.8984 }, { "start": 292.34, "end": 295.68, "probability": 0.7409 }, { "start": 296.22, "end": 297.7, "probability": 0.9623 }, { "start": 298.5, "end": 301.4, "probability": 0.6678 }, { "start": 301.98, "end": 308.26, "probability": 0.9757 }, { "start": 309.12, "end": 312.88, "probability": 0.9447 }, { "start": 313.72, "end": 316.24, "probability": 0.9532 }, { "start": 316.94, "end": 320.26, "probability": 0.9943 }, { "start": 320.84, "end": 322.74, "probability": 0.781 }, { "start": 324.52, "end": 324.58, "probability": 0.2148 }, { "start": 324.58, "end": 324.58, "probability": 0.4098 }, { "start": 324.58, "end": 329.9, "probability": 0.8432 }, { "start": 330.24, "end": 331.84, "probability": 0.5998 }, { "start": 332.6, "end": 333.36, "probability": 0.9319 }, { "start": 339.52, "end": 342.14, "probability": 0.8895 }, { "start": 342.92, "end": 343.98, "probability": 0.9066 }, { "start": 347.9, "end": 350.86, "probability": 0.6154 }, { "start": 353.04, "end": 353.68, "probability": 0.7936 }, { "start": 354.9, "end": 355.84, "probability": 0.8061 }, { "start": 366.52, "end": 368.08, "probability": 0.7841 }, { "start": 368.78, "end": 370.5, "probability": 0.7248 }, { "start": 371.34, "end": 373.12, "probability": 0.5613 }, { "start": 373.64, "end": 374.92, "probability": 0.9401 }, { "start": 375.4, "end": 375.76, "probability": 0.2059 }, { "start": 375.96, "end": 376.06, "probability": 0.4896 }, { "start": 376.06, "end": 376.58, "probability": 0.7276 }, { "start": 377.4, "end": 382.16, "probability": 0.7707 }, { "start": 382.74, "end": 388.1, "probability": 0.8352 }, { "start": 388.44, "end": 390.88, "probability": 0.6948 }, { "start": 390.96, "end": 391.62, "probability": 0.9091 }, { "start": 392.74, "end": 394.48, "probability": 0.9948 }, { "start": 395.02, "end": 398.42, "probability": 0.7336 }, { "start": 398.74, "end": 400.36, "probability": 0.9261 }, { "start": 400.98, "end": 401.64, "probability": 0.7249 }, { "start": 402.02, "end": 402.53, "probability": 0.7141 }, { "start": 402.84, "end": 403.2, "probability": 0.9277 }, { "start": 403.4, "end": 403.64, "probability": 0.3814 }, { "start": 403.82, "end": 404.36, "probability": 0.9684 }, { "start": 405.0, "end": 407.5, "probability": 0.8557 }, { "start": 408.34, "end": 409.82, "probability": 0.4206 }, { "start": 411.16, "end": 413.94, "probability": 0.9086 }, { "start": 414.92, "end": 417.36, "probability": 0.9896 }, { "start": 418.12, "end": 419.3, "probability": 0.947 }, { "start": 420.18, "end": 421.62, "probability": 0.8055 }, { "start": 422.48, "end": 424.32, "probability": 0.9968 }, { "start": 425.32, "end": 428.14, "probability": 0.9983 }, { "start": 430.06, "end": 430.7, "probability": 0.9875 }, { "start": 431.3, "end": 432.38, "probability": 0.993 }, { "start": 433.14, "end": 434.36, "probability": 0.9062 }, { "start": 434.98, "end": 437.48, "probability": 0.9183 }, { "start": 437.48, "end": 441.06, "probability": 0.9563 }, { "start": 441.5, "end": 444.26, "probability": 0.9938 }, { "start": 444.9, "end": 448.58, "probability": 0.9717 }, { "start": 449.14, "end": 451.42, "probability": 0.8372 }, { "start": 452.0, "end": 453.54, "probability": 0.8897 }, { "start": 453.86, "end": 454.06, "probability": 0.775 }, { "start": 454.5, "end": 454.9, "probability": 0.8806 }, { "start": 455.98, "end": 456.64, "probability": 0.765 }, { "start": 456.78, "end": 457.24, "probability": 0.8598 }, { "start": 458.42, "end": 459.48, "probability": 0.9548 }, { "start": 466.7, "end": 469.1, "probability": 0.0626 }, { "start": 469.96, "end": 470.58, "probability": 0.457 }, { "start": 470.88, "end": 471.22, "probability": 0.0621 }, { "start": 473.02, "end": 475.38, "probability": 0.7883 }, { "start": 475.84, "end": 480.92, "probability": 0.1727 }, { "start": 482.32, "end": 483.02, "probability": 0.2029 }, { "start": 484.58, "end": 485.67, "probability": 0.7565 }, { "start": 486.74, "end": 488.74, "probability": 0.9978 }, { "start": 489.62, "end": 493.22, "probability": 0.9725 }, { "start": 493.22, "end": 497.3, "probability": 0.9929 }, { "start": 498.0, "end": 499.76, "probability": 0.8475 }, { "start": 500.86, "end": 505.06, "probability": 0.6978 }, { "start": 505.52, "end": 506.56, "probability": 0.8254 }, { "start": 506.76, "end": 508.42, "probability": 0.977 }, { "start": 508.78, "end": 509.96, "probability": 0.9004 }, { "start": 510.46, "end": 513.96, "probability": 0.9936 }, { "start": 514.22, "end": 515.68, "probability": 0.7582 }, { "start": 516.16, "end": 516.94, "probability": 0.9719 }, { "start": 517.12, "end": 517.76, "probability": 0.7285 }, { "start": 518.22, "end": 520.64, "probability": 0.9771 }, { "start": 521.08, "end": 523.76, "probability": 0.6665 }, { "start": 524.28, "end": 527.0, "probability": 0.9554 }, { "start": 527.42, "end": 530.28, "probability": 0.9849 }, { "start": 530.66, "end": 531.2, "probability": 0.8248 }, { "start": 531.64, "end": 532.58, "probability": 0.7352 }, { "start": 533.48, "end": 537.42, "probability": 0.9441 }, { "start": 537.94, "end": 538.48, "probability": 0.6717 }, { "start": 538.62, "end": 539.24, "probability": 0.7757 }, { "start": 539.36, "end": 542.9, "probability": 0.6038 }, { "start": 543.5, "end": 545.18, "probability": 0.8342 }, { "start": 545.56, "end": 548.68, "probability": 0.9839 }, { "start": 549.56, "end": 550.04, "probability": 0.6211 }, { "start": 550.26, "end": 551.6, "probability": 0.9519 }, { "start": 552.28, "end": 552.8, "probability": 0.5942 }, { "start": 561.62, "end": 561.96, "probability": 0.1553 }, { "start": 561.96, "end": 562.45, "probability": 0.1466 }, { "start": 562.46, "end": 562.66, "probability": 0.1037 }, { "start": 562.66, "end": 562.66, "probability": 0.0447 }, { "start": 562.66, "end": 562.78, "probability": 0.2272 }, { "start": 583.92, "end": 589.82, "probability": 0.9974 }, { "start": 591.24, "end": 592.92, "probability": 0.9871 }, { "start": 593.76, "end": 595.38, "probability": 0.9846 }, { "start": 596.8, "end": 598.78, "probability": 0.7392 }, { "start": 600.12, "end": 600.84, "probability": 0.9668 }, { "start": 602.3, "end": 605.66, "probability": 0.9578 }, { "start": 606.82, "end": 607.6, "probability": 0.8528 }, { "start": 609.48, "end": 611.82, "probability": 0.795 }, { "start": 612.68, "end": 613.78, "probability": 0.7459 }, { "start": 613.84, "end": 615.98, "probability": 0.9432 }, { "start": 616.38, "end": 617.72, "probability": 0.9971 }, { "start": 618.6, "end": 620.42, "probability": 0.6987 }, { "start": 621.3, "end": 622.14, "probability": 0.8053 }, { "start": 622.92, "end": 623.4, "probability": 0.2931 }, { "start": 623.44, "end": 624.36, "probability": 0.9451 }, { "start": 624.5, "end": 625.66, "probability": 0.7435 }, { "start": 625.98, "end": 627.12, "probability": 0.965 }, { "start": 628.64, "end": 632.28, "probability": 0.8734 }, { "start": 633.14, "end": 635.86, "probability": 0.9814 }, { "start": 636.88, "end": 641.88, "probability": 0.9927 }, { "start": 642.92, "end": 643.6, "probability": 0.6076 }, { "start": 644.24, "end": 645.66, "probability": 0.9794 }, { "start": 646.42, "end": 648.42, "probability": 0.9993 }, { "start": 650.0, "end": 650.72, "probability": 0.6182 }, { "start": 650.88, "end": 651.22, "probability": 0.8148 }, { "start": 651.4, "end": 651.96, "probability": 0.3864 }, { "start": 652.34, "end": 654.2, "probability": 0.9673 }, { "start": 654.78, "end": 655.55, "probability": 0.7917 }, { "start": 655.84, "end": 660.54, "probability": 0.9843 }, { "start": 660.94, "end": 661.52, "probability": 0.7843 }, { "start": 662.0, "end": 663.76, "probability": 0.7867 }, { "start": 664.38, "end": 665.04, "probability": 0.859 }, { "start": 665.8, "end": 666.62, "probability": 0.4663 }, { "start": 667.48, "end": 668.7, "probability": 0.9509 }, { "start": 677.0, "end": 678.18, "probability": 0.6519 }, { "start": 678.74, "end": 680.54, "probability": 0.7607 }, { "start": 681.54, "end": 684.24, "probability": 0.8721 }, { "start": 685.34, "end": 685.9, "probability": 0.5093 }, { "start": 688.34, "end": 689.06, "probability": 0.9172 }, { "start": 689.58, "end": 690.66, "probability": 0.3759 }, { "start": 690.72, "end": 693.54, "probability": 0.8126 }, { "start": 694.18, "end": 695.28, "probability": 0.8297 }, { "start": 695.96, "end": 698.92, "probability": 0.6229 }, { "start": 699.72, "end": 702.62, "probability": 0.9923 }, { "start": 703.28, "end": 704.06, "probability": 0.9764 }, { "start": 704.18, "end": 705.0, "probability": 0.8665 }, { "start": 705.84, "end": 709.4, "probability": 0.9844 }, { "start": 709.54, "end": 714.34, "probability": 0.8953 }, { "start": 714.9, "end": 720.38, "probability": 0.9327 }, { "start": 720.68, "end": 721.38, "probability": 0.5552 }, { "start": 721.82, "end": 724.96, "probability": 0.9864 }, { "start": 724.96, "end": 727.92, "probability": 0.9878 }, { "start": 728.16, "end": 728.54, "probability": 0.5285 }, { "start": 729.48, "end": 730.16, "probability": 0.5904 }, { "start": 731.18, "end": 732.42, "probability": 0.8891 }, { "start": 740.84, "end": 741.62, "probability": 0.5238 }, { "start": 743.44, "end": 744.58, "probability": 0.6736 }, { "start": 745.8, "end": 746.92, "probability": 0.7036 }, { "start": 746.98, "end": 748.68, "probability": 0.8529 }, { "start": 748.82, "end": 750.68, "probability": 0.8748 }, { "start": 751.76, "end": 753.0, "probability": 0.7903 }, { "start": 753.46, "end": 757.82, "probability": 0.7904 }, { "start": 758.48, "end": 759.76, "probability": 0.7865 }, { "start": 759.94, "end": 761.46, "probability": 0.8508 }, { "start": 761.54, "end": 763.04, "probability": 0.9465 }, { "start": 763.8, "end": 766.07, "probability": 0.9871 }, { "start": 766.8, "end": 771.24, "probability": 0.9564 }, { "start": 772.1, "end": 772.5, "probability": 0.4487 }, { "start": 773.08, "end": 774.22, "probability": 0.914 }, { "start": 774.74, "end": 774.92, "probability": 0.823 }, { "start": 774.94, "end": 776.56, "probability": 0.9303 }, { "start": 776.62, "end": 778.72, "probability": 0.9879 }, { "start": 779.28, "end": 780.92, "probability": 0.9653 }, { "start": 781.34, "end": 781.76, "probability": 0.9757 }, { "start": 781.8, "end": 782.3, "probability": 0.7566 }, { "start": 782.38, "end": 785.8, "probability": 0.9436 }, { "start": 786.32, "end": 786.74, "probability": 0.6952 }, { "start": 787.46, "end": 791.0, "probability": 0.6772 }, { "start": 791.04, "end": 793.74, "probability": 0.6915 }, { "start": 793.74, "end": 796.18, "probability": 0.8683 }, { "start": 796.82, "end": 799.16, "probability": 0.9941 }, { "start": 799.16, "end": 804.48, "probability": 0.9968 }, { "start": 804.82, "end": 805.54, "probability": 0.7228 }, { "start": 805.76, "end": 807.86, "probability": 0.9698 }, { "start": 808.36, "end": 810.98, "probability": 0.9591 }, { "start": 811.38, "end": 814.54, "probability": 0.9979 }, { "start": 814.54, "end": 816.44, "probability": 0.9399 }, { "start": 817.08, "end": 817.83, "probability": 0.8593 }, { "start": 818.38, "end": 820.42, "probability": 0.867 }, { "start": 820.5, "end": 820.76, "probability": 0.8361 }, { "start": 821.94, "end": 824.16, "probability": 0.9824 }, { "start": 824.2, "end": 825.22, "probability": 0.7188 }, { "start": 837.42, "end": 839.34, "probability": 0.3418 }, { "start": 839.36, "end": 841.1, "probability": 0.747 }, { "start": 842.18, "end": 843.24, "probability": 0.711 }, { "start": 843.86, "end": 846.08, "probability": 0.9683 }, { "start": 847.08, "end": 852.16, "probability": 0.993 }, { "start": 853.06, "end": 854.66, "probability": 0.9963 }, { "start": 854.88, "end": 855.98, "probability": 0.8098 }, { "start": 856.1, "end": 859.84, "probability": 0.9378 }, { "start": 860.64, "end": 862.34, "probability": 0.7397 }, { "start": 862.58, "end": 863.48, "probability": 0.8085 }, { "start": 863.58, "end": 864.54, "probability": 0.3618 }, { "start": 865.08, "end": 868.3, "probability": 0.9866 }, { "start": 868.74, "end": 869.4, "probability": 0.6283 }, { "start": 869.6, "end": 870.42, "probability": 0.7579 }, { "start": 871.14, "end": 874.78, "probability": 0.9828 }, { "start": 875.56, "end": 878.96, "probability": 0.9821 }, { "start": 879.92, "end": 881.64, "probability": 0.8999 }, { "start": 882.42, "end": 883.46, "probability": 0.9375 }, { "start": 884.06, "end": 889.08, "probability": 0.9892 }, { "start": 889.14, "end": 890.04, "probability": 0.764 }, { "start": 890.64, "end": 894.24, "probability": 0.9926 }, { "start": 894.78, "end": 900.62, "probability": 0.9956 }, { "start": 901.34, "end": 906.62, "probability": 0.996 }, { "start": 907.26, "end": 908.26, "probability": 0.7113 }, { "start": 908.4, "end": 913.04, "probability": 0.9608 }, { "start": 914.02, "end": 914.26, "probability": 0.7218 }, { "start": 915.72, "end": 917.62, "probability": 0.7325 }, { "start": 918.72, "end": 919.9, "probability": 0.8999 }, { "start": 938.8, "end": 938.8, "probability": 0.3596 }, { "start": 938.8, "end": 938.8, "probability": 0.0314 }, { "start": 938.8, "end": 938.8, "probability": 0.0054 }, { "start": 938.8, "end": 938.8, "probability": 0.0973 }, { "start": 938.8, "end": 938.8, "probability": 0.0519 }, { "start": 938.8, "end": 938.96, "probability": 0.0648 }, { "start": 950.76, "end": 951.7, "probability": 0.227 }, { "start": 958.74, "end": 962.02, "probability": 0.9928 }, { "start": 962.02, "end": 964.66, "probability": 0.9963 }, { "start": 965.62, "end": 968.1, "probability": 0.8378 }, { "start": 968.88, "end": 970.88, "probability": 0.9859 }, { "start": 975.16, "end": 984.0, "probability": 0.9963 }, { "start": 984.86, "end": 987.7, "probability": 0.7993 }, { "start": 988.3, "end": 989.74, "probability": 0.9943 }, { "start": 989.86, "end": 990.44, "probability": 0.9079 }, { "start": 990.52, "end": 992.1, "probability": 0.8992 }, { "start": 992.66, "end": 995.48, "probability": 0.9883 }, { "start": 996.14, "end": 1001.42, "probability": 0.9811 }, { "start": 1001.84, "end": 1005.46, "probability": 0.9932 }, { "start": 1005.68, "end": 1009.8, "probability": 0.999 }, { "start": 1010.4, "end": 1012.66, "probability": 0.98 }, { "start": 1013.54, "end": 1017.69, "probability": 0.99 }, { "start": 1017.96, "end": 1020.74, "probability": 0.9991 }, { "start": 1021.2, "end": 1022.88, "probability": 0.8712 }, { "start": 1023.04, "end": 1024.28, "probability": 0.9233 }, { "start": 1024.76, "end": 1028.94, "probability": 0.9969 }, { "start": 1029.2, "end": 1030.06, "probability": 0.7935 }, { "start": 1030.98, "end": 1033.02, "probability": 0.9346 }, { "start": 1033.5, "end": 1035.0, "probability": 0.2236 }, { "start": 1035.04, "end": 1035.84, "probability": 0.9773 }, { "start": 1035.98, "end": 1038.35, "probability": 0.9824 }, { "start": 1041.86, "end": 1046.46, "probability": 0.9988 }, { "start": 1047.04, "end": 1048.98, "probability": 0.7037 }, { "start": 1049.62, "end": 1051.26, "probability": 0.7496 }, { "start": 1051.34, "end": 1053.64, "probability": 0.9933 }, { "start": 1054.08, "end": 1054.18, "probability": 0.7093 }, { "start": 1055.02, "end": 1055.76, "probability": 0.5332 }, { "start": 1056.16, "end": 1058.5, "probability": 0.5997 }, { "start": 1059.24, "end": 1061.0, "probability": 0.9539 }, { "start": 1068.68, "end": 1071.66, "probability": 0.6535 }, { "start": 1072.24, "end": 1079.32, "probability": 0.9932 }, { "start": 1079.6, "end": 1082.34, "probability": 0.9446 }, { "start": 1082.9, "end": 1083.96, "probability": 0.9873 }, { "start": 1085.1, "end": 1086.14, "probability": 0.6116 }, { "start": 1086.56, "end": 1090.92, "probability": 0.9981 }, { "start": 1091.42, "end": 1096.02, "probability": 0.9549 }, { "start": 1096.16, "end": 1099.26, "probability": 0.938 }, { "start": 1099.72, "end": 1101.06, "probability": 0.652 }, { "start": 1101.7, "end": 1105.14, "probability": 0.9883 }, { "start": 1105.34, "end": 1109.48, "probability": 0.9141 }, { "start": 1109.64, "end": 1112.66, "probability": 0.7147 }, { "start": 1112.68, "end": 1116.16, "probability": 0.8937 }, { "start": 1116.28, "end": 1116.78, "probability": 0.5001 }, { "start": 1117.02, "end": 1122.36, "probability": 0.9783 }, { "start": 1122.46, "end": 1126.6, "probability": 0.9514 }, { "start": 1126.6, "end": 1131.36, "probability": 0.9842 }, { "start": 1131.8, "end": 1134.02, "probability": 0.9907 }, { "start": 1134.2, "end": 1135.02, "probability": 0.6772 }, { "start": 1135.54, "end": 1140.92, "probability": 0.8849 }, { "start": 1140.96, "end": 1145.8, "probability": 0.7823 }, { "start": 1145.96, "end": 1149.84, "probability": 0.9809 }, { "start": 1150.4, "end": 1151.58, "probability": 0.5456 }, { "start": 1151.84, "end": 1153.0, "probability": 0.8354 }, { "start": 1153.04, "end": 1154.2, "probability": 0.7935 }, { "start": 1154.6, "end": 1156.76, "probability": 0.667 }, { "start": 1156.84, "end": 1158.2, "probability": 0.642 }, { "start": 1158.36, "end": 1161.24, "probability": 0.9863 }, { "start": 1161.3, "end": 1162.34, "probability": 0.6516 }, { "start": 1162.52, "end": 1162.74, "probability": 0.4798 }, { "start": 1162.94, "end": 1164.46, "probability": 0.8638 }, { "start": 1164.82, "end": 1166.12, "probability": 0.8817 }, { "start": 1166.24, "end": 1167.34, "probability": 0.9698 }, { "start": 1167.5, "end": 1169.58, "probability": 0.7039 }, { "start": 1170.04, "end": 1172.16, "probability": 0.9431 }, { "start": 1172.34, "end": 1178.5, "probability": 0.9917 }, { "start": 1178.7, "end": 1179.84, "probability": 0.963 }, { "start": 1179.98, "end": 1180.36, "probability": 0.778 }, { "start": 1180.68, "end": 1181.44, "probability": 0.7395 }, { "start": 1182.68, "end": 1184.76, "probability": 0.894 }, { "start": 1198.05, "end": 1201.28, "probability": 0.8579 }, { "start": 1201.34, "end": 1202.06, "probability": 0.7021 }, { "start": 1204.06, "end": 1206.14, "probability": 0.9499 }, { "start": 1206.14, "end": 1210.3, "probability": 0.9905 }, { "start": 1211.32, "end": 1216.02, "probability": 0.9939 }, { "start": 1216.02, "end": 1219.18, "probability": 0.9512 }, { "start": 1220.44, "end": 1223.22, "probability": 0.9985 }, { "start": 1223.8, "end": 1228.88, "probability": 0.9724 }, { "start": 1229.94, "end": 1234.58, "probability": 0.9946 }, { "start": 1234.58, "end": 1238.74, "probability": 0.9434 }, { "start": 1239.88, "end": 1241.28, "probability": 0.7722 }, { "start": 1241.76, "end": 1242.9, "probability": 0.6088 }, { "start": 1243.02, "end": 1244.84, "probability": 0.8802 }, { "start": 1245.02, "end": 1245.74, "probability": 0.9086 }, { "start": 1245.9, "end": 1246.42, "probability": 0.9753 }, { "start": 1246.6, "end": 1247.08, "probability": 0.9932 }, { "start": 1247.26, "end": 1247.76, "probability": 0.9873 }, { "start": 1248.14, "end": 1248.58, "probability": 0.6947 }, { "start": 1249.12, "end": 1250.66, "probability": 0.5435 }, { "start": 1251.08, "end": 1251.94, "probability": 0.9119 }, { "start": 1252.08, "end": 1257.82, "probability": 0.9749 }, { "start": 1258.32, "end": 1259.52, "probability": 0.9159 }, { "start": 1259.94, "end": 1261.34, "probability": 0.9961 }, { "start": 1261.92, "end": 1266.02, "probability": 0.8976 }, { "start": 1266.58, "end": 1268.06, "probability": 0.7795 }, { "start": 1268.18, "end": 1268.96, "probability": 0.6998 }, { "start": 1269.46, "end": 1271.16, "probability": 0.7917 }, { "start": 1271.5, "end": 1276.38, "probability": 0.9209 }, { "start": 1276.48, "end": 1277.8, "probability": 0.8018 }, { "start": 1278.12, "end": 1278.46, "probability": 0.8704 }, { "start": 1278.54, "end": 1281.86, "probability": 0.9458 }, { "start": 1281.98, "end": 1283.76, "probability": 0.9929 }, { "start": 1284.24, "end": 1286.64, "probability": 0.9888 }, { "start": 1286.82, "end": 1289.24, "probability": 0.9205 }, { "start": 1289.5, "end": 1290.32, "probability": 0.9866 }, { "start": 1290.82, "end": 1295.0, "probability": 0.9934 }, { "start": 1295.48, "end": 1296.38, "probability": 0.9225 }, { "start": 1296.46, "end": 1297.86, "probability": 0.8765 }, { "start": 1298.1, "end": 1299.04, "probability": 0.9427 }, { "start": 1299.32, "end": 1300.0, "probability": 0.4732 }, { "start": 1300.48, "end": 1300.9, "probability": 0.7552 }, { "start": 1301.2, "end": 1305.5, "probability": 0.9874 }, { "start": 1305.54, "end": 1306.16, "probability": 0.4232 }, { "start": 1306.32, "end": 1307.14, "probability": 0.8462 }, { "start": 1307.22, "end": 1308.04, "probability": 0.7325 }, { "start": 1308.6, "end": 1310.0, "probability": 0.981 }, { "start": 1310.4, "end": 1311.46, "probability": 0.8468 }, { "start": 1311.74, "end": 1313.28, "probability": 0.9983 }, { "start": 1313.56, "end": 1315.36, "probability": 0.9333 }, { "start": 1316.0, "end": 1316.4, "probability": 0.5008 }, { "start": 1316.72, "end": 1317.36, "probability": 0.8378 }, { "start": 1317.66, "end": 1319.32, "probability": 0.8548 }, { "start": 1319.58, "end": 1320.64, "probability": 0.432 }, { "start": 1320.96, "end": 1321.84, "probability": 0.9689 }, { "start": 1321.94, "end": 1322.94, "probability": 0.9047 }, { "start": 1323.02, "end": 1323.86, "probability": 0.6837 }, { "start": 1324.26, "end": 1325.1, "probability": 0.9861 }, { "start": 1325.22, "end": 1325.96, "probability": 0.9907 }, { "start": 1326.0, "end": 1327.06, "probability": 0.9698 }, { "start": 1327.42, "end": 1328.12, "probability": 0.9008 }, { "start": 1328.9, "end": 1329.94, "probability": 0.2751 }, { "start": 1329.94, "end": 1330.22, "probability": 0.683 }, { "start": 1330.4, "end": 1332.76, "probability": 0.9767 }, { "start": 1333.06, "end": 1335.78, "probability": 0.9706 }, { "start": 1336.3, "end": 1337.08, "probability": 0.8363 }, { "start": 1337.46, "end": 1338.6, "probability": 0.9189 }, { "start": 1339.0, "end": 1342.38, "probability": 0.9628 }, { "start": 1342.54, "end": 1344.9, "probability": 0.9209 }, { "start": 1345.16, "end": 1346.62, "probability": 0.9937 }, { "start": 1346.9, "end": 1347.12, "probability": 0.782 }, { "start": 1347.74, "end": 1348.7, "probability": 0.5646 }, { "start": 1349.6, "end": 1351.82, "probability": 0.9716 }, { "start": 1362.6, "end": 1366.7, "probability": 0.8285 }, { "start": 1367.32, "end": 1369.53, "probability": 0.934 }, { "start": 1370.62, "end": 1371.75, "probability": 0.0425 }, { "start": 1371.78, "end": 1374.22, "probability": 0.2288 }, { "start": 1374.42, "end": 1375.54, "probability": 0.974 }, { "start": 1375.6, "end": 1377.54, "probability": 0.9099 }, { "start": 1378.66, "end": 1380.26, "probability": 0.5354 }, { "start": 1380.54, "end": 1383.04, "probability": 0.8146 }, { "start": 1383.18, "end": 1383.32, "probability": 0.1833 }, { "start": 1383.36, "end": 1384.76, "probability": 0.7345 }, { "start": 1384.82, "end": 1389.56, "probability": 0.991 }, { "start": 1390.08, "end": 1391.4, "probability": 0.8381 }, { "start": 1391.8, "end": 1393.26, "probability": 0.8632 }, { "start": 1394.14, "end": 1394.48, "probability": 0.4931 }, { "start": 1394.56, "end": 1398.24, "probability": 0.978 }, { "start": 1399.36, "end": 1402.34, "probability": 0.7646 }, { "start": 1403.28, "end": 1405.68, "probability": 0.9465 }, { "start": 1406.12, "end": 1412.08, "probability": 0.9897 }, { "start": 1412.66, "end": 1413.34, "probability": 0.5965 }, { "start": 1413.84, "end": 1414.2, "probability": 0.6298 }, { "start": 1414.26, "end": 1415.3, "probability": 0.9854 }, { "start": 1415.36, "end": 1416.16, "probability": 0.908 }, { "start": 1416.64, "end": 1419.22, "probability": 0.7557 }, { "start": 1419.34, "end": 1420.14, "probability": 0.7227 }, { "start": 1420.26, "end": 1424.7, "probability": 0.9819 }, { "start": 1425.66, "end": 1427.48, "probability": 0.9967 }, { "start": 1428.32, "end": 1432.52, "probability": 0.9863 }, { "start": 1433.38, "end": 1435.58, "probability": 0.9976 }, { "start": 1436.3, "end": 1438.0, "probability": 0.9377 }, { "start": 1438.6, "end": 1440.94, "probability": 0.9977 }, { "start": 1441.68, "end": 1445.72, "probability": 0.9736 }, { "start": 1446.22, "end": 1449.34, "probability": 0.986 }, { "start": 1449.86, "end": 1454.88, "probability": 0.991 }, { "start": 1455.32, "end": 1456.36, "probability": 0.96 }, { "start": 1456.84, "end": 1457.32, "probability": 0.6798 }, { "start": 1459.1, "end": 1460.66, "probability": 0.6715 }, { "start": 1461.36, "end": 1462.46, "probability": 0.9734 }, { "start": 1467.34, "end": 1469.16, "probability": 0.4728 }, { "start": 1470.48, "end": 1470.7, "probability": 0.2428 }, { "start": 1481.12, "end": 1486.58, "probability": 0.7893 }, { "start": 1487.68, "end": 1492.3, "probability": 0.847 }, { "start": 1492.3, "end": 1498.82, "probability": 0.8665 }, { "start": 1500.62, "end": 1501.3, "probability": 0.2461 }, { "start": 1501.86, "end": 1505.88, "probability": 0.8684 }, { "start": 1506.44, "end": 1507.4, "probability": 0.9737 }, { "start": 1508.08, "end": 1515.77, "probability": 0.9985 }, { "start": 1516.42, "end": 1523.64, "probability": 0.9985 }, { "start": 1524.44, "end": 1525.58, "probability": 0.9987 }, { "start": 1526.18, "end": 1527.3, "probability": 0.9798 }, { "start": 1528.38, "end": 1529.12, "probability": 0.3294 }, { "start": 1530.24, "end": 1534.62, "probability": 0.9895 }, { "start": 1535.82, "end": 1543.36, "probability": 0.6506 }, { "start": 1544.48, "end": 1547.94, "probability": 0.6555 }, { "start": 1548.68, "end": 1549.8, "probability": 0.6346 }, { "start": 1551.16, "end": 1553.3, "probability": 0.9951 }, { "start": 1554.0, "end": 1556.32, "probability": 0.6418 }, { "start": 1557.4, "end": 1559.84, "probability": 0.8859 }, { "start": 1560.66, "end": 1561.16, "probability": 0.835 }, { "start": 1561.98, "end": 1566.66, "probability": 0.8795 }, { "start": 1566.86, "end": 1575.06, "probability": 0.797 }, { "start": 1576.06, "end": 1581.54, "probability": 0.9365 }, { "start": 1582.38, "end": 1591.16, "probability": 0.977 }, { "start": 1591.44, "end": 1593.52, "probability": 0.8114 }, { "start": 1593.96, "end": 1594.4, "probability": 0.8147 }, { "start": 1596.1, "end": 1596.86, "probability": 0.6239 }, { "start": 1596.88, "end": 1598.32, "probability": 0.9033 }, { "start": 1599.14, "end": 1600.12, "probability": 0.669 }, { "start": 1601.4, "end": 1604.9, "probability": 0.9943 }, { "start": 1605.0, "end": 1606.12, "probability": 0.9736 }, { "start": 1606.34, "end": 1607.42, "probability": 0.9636 }, { "start": 1608.04, "end": 1609.54, "probability": 0.9946 }, { "start": 1610.36, "end": 1611.06, "probability": 0.9016 }, { "start": 1611.1, "end": 1612.32, "probability": 0.8487 }, { "start": 1612.42, "end": 1614.28, "probability": 0.9401 }, { "start": 1617.1, "end": 1618.54, "probability": 0.1301 }, { "start": 1619.1, "end": 1619.25, "probability": 0.1048 }, { "start": 1619.82, "end": 1621.38, "probability": 0.9563 }, { "start": 1621.9, "end": 1622.0, "probability": 0.1004 }, { "start": 1622.0, "end": 1625.86, "probability": 0.8962 }, { "start": 1626.26, "end": 1627.14, "probability": 0.2567 }, { "start": 1627.14, "end": 1627.84, "probability": 0.6785 }, { "start": 1627.92, "end": 1629.1, "probability": 0.2143 }, { "start": 1629.8, "end": 1631.42, "probability": 0.2522 }, { "start": 1631.5, "end": 1631.72, "probability": 0.1414 }, { "start": 1631.72, "end": 1632.68, "probability": 0.8059 }, { "start": 1633.0, "end": 1633.18, "probability": 0.1939 }, { "start": 1633.18, "end": 1634.1, "probability": 0.5692 }, { "start": 1636.22, "end": 1637.04, "probability": 0.4743 }, { "start": 1637.34, "end": 1638.46, "probability": 0.0263 }, { "start": 1638.76, "end": 1640.04, "probability": 0.5777 }, { "start": 1641.1, "end": 1641.48, "probability": 0.1793 }, { "start": 1641.48, "end": 1642.94, "probability": 0.6036 }, { "start": 1643.8, "end": 1645.92, "probability": 0.3195 }, { "start": 1647.04, "end": 1647.74, "probability": 0.1232 }, { "start": 1647.76, "end": 1648.0, "probability": 0.0607 }, { "start": 1648.0, "end": 1648.94, "probability": 0.3433 }, { "start": 1649.14, "end": 1649.9, "probability": 0.702 }, { "start": 1650.56, "end": 1652.56, "probability": 0.8681 }, { "start": 1659.1, "end": 1659.4, "probability": 0.57 }, { "start": 1659.6, "end": 1660.04, "probability": 0.8598 }, { "start": 1660.44, "end": 1663.3, "probability": 0.8643 }, { "start": 1663.3, "end": 1666.2, "probability": 0.9917 }, { "start": 1666.76, "end": 1667.3, "probability": 0.7682 }, { "start": 1667.42, "end": 1670.1, "probability": 0.9899 }, { "start": 1670.66, "end": 1671.6, "probability": 0.9437 }, { "start": 1671.82, "end": 1675.18, "probability": 0.8763 }, { "start": 1675.98, "end": 1678.5, "probability": 0.242 }, { "start": 1678.94, "end": 1681.88, "probability": 0.2202 }, { "start": 1681.88, "end": 1683.34, "probability": 0.9596 }, { "start": 1684.08, "end": 1687.86, "probability": 0.9731 }, { "start": 1688.08, "end": 1690.76, "probability": 0.8826 }, { "start": 1691.4, "end": 1693.54, "probability": 0.3047 }, { "start": 1694.18, "end": 1695.2, "probability": 0.058 }, { "start": 1695.7, "end": 1700.92, "probability": 0.805 }, { "start": 1702.22, "end": 1704.14, "probability": 0.925 }, { "start": 1704.78, "end": 1708.62, "probability": 0.9435 }, { "start": 1709.32, "end": 1712.28, "probability": 0.9976 }, { "start": 1712.28, "end": 1717.52, "probability": 0.9836 }, { "start": 1718.78, "end": 1719.04, "probability": 0.7044 }, { "start": 1719.32, "end": 1720.34, "probability": 0.7032 }, { "start": 1721.16, "end": 1723.52, "probability": 0.9718 }, { "start": 1723.9, "end": 1725.82, "probability": 0.5257 }, { "start": 1726.4, "end": 1731.22, "probability": 0.7199 }, { "start": 1733.74, "end": 1737.2, "probability": 0.4752 }, { "start": 1737.7, "end": 1741.88, "probability": 0.9353 }, { "start": 1745.12, "end": 1746.42, "probability": 0.1217 }, { "start": 1747.32, "end": 1747.46, "probability": 0.2319 }, { "start": 1758.4, "end": 1764.17, "probability": 0.1169 }, { "start": 1814.01, "end": 1816.26, "probability": 0.128 }, { "start": 1821.24, "end": 1821.58, "probability": 0.0214 }, { "start": 1822.54, "end": 1822.68, "probability": 0.0033 }, { "start": 1822.68, "end": 1823.82, "probability": 0.026 }, { "start": 1826.18, "end": 1827.3, "probability": 0.0002 }, { "start": 1829.12, "end": 1832.0, "probability": 0.0524 }, { "start": 1833.34, "end": 1834.46, "probability": 0.0521 }, { "start": 1834.46, "end": 1838.03, "probability": 0.0997 }, { "start": 1936.0, "end": 1936.0, "probability": 0.0 }, { "start": 1936.0, "end": 1936.0, "probability": 0.0 }, { "start": 1936.0, "end": 1936.0, "probability": 0.0 }, { "start": 1936.0, "end": 1936.0, "probability": 0.0 }, { "start": 1936.0, "end": 1936.0, "probability": 0.0 }, { "start": 1936.0, "end": 1936.0, "probability": 0.0 }, { "start": 1936.0, "end": 1936.0, "probability": 0.0 }, { "start": 1936.0, "end": 1936.0, "probability": 0.0 }, { "start": 1936.0, "end": 1936.0, "probability": 0.0 }, { "start": 1936.0, "end": 1936.0, "probability": 0.0 }, { "start": 1936.0, "end": 1936.0, "probability": 0.0 }, { "start": 1936.0, "end": 1936.0, "probability": 0.0 }, { "start": 1936.0, "end": 1936.0, "probability": 0.0 }, { "start": 1936.0, "end": 1936.0, "probability": 0.0 }, { "start": 1936.0, "end": 1936.0, "probability": 0.0 }, { "start": 1936.0, "end": 1936.0, "probability": 0.0 }, { "start": 1936.0, "end": 1936.0, "probability": 0.0 }, { "start": 1936.0, "end": 1936.0, "probability": 0.0 }, { "start": 1936.22, "end": 1937.02, "probability": 0.0415 }, { "start": 1938.36, "end": 1940.08, "probability": 0.6733 }, { "start": 1940.6, "end": 1942.1, "probability": 0.9562 }, { "start": 1943.08, "end": 1947.9, "probability": 0.9983 }, { "start": 1947.9, "end": 1950.78, "probability": 0.9977 }, { "start": 1951.84, "end": 1952.66, "probability": 0.9985 }, { "start": 1953.5, "end": 1956.04, "probability": 0.8046 }, { "start": 1958.04, "end": 1958.78, "probability": 0.8295 }, { "start": 1959.78, "end": 1967.76, "probability": 0.9966 }, { "start": 1968.9, "end": 1970.28, "probability": 0.9906 }, { "start": 1972.16, "end": 1976.88, "probability": 0.8817 }, { "start": 1978.26, "end": 1982.72, "probability": 0.9891 }, { "start": 1984.74, "end": 1988.82, "probability": 0.9849 }, { "start": 1990.4, "end": 1991.54, "probability": 0.667 }, { "start": 1991.7, "end": 1995.38, "probability": 0.8824 }, { "start": 1995.38, "end": 1996.22, "probability": 0.9387 }, { "start": 1998.14, "end": 2002.48, "probability": 0.9966 }, { "start": 2004.64, "end": 2005.82, "probability": 0.9979 }, { "start": 2006.88, "end": 2009.88, "probability": 0.9576 }, { "start": 2012.58, "end": 2015.8, "probability": 0.9972 }, { "start": 2016.96, "end": 2018.83, "probability": 0.8236 }, { "start": 2020.18, "end": 2024.8, "probability": 0.8885 }, { "start": 2027.12, "end": 2029.24, "probability": 0.9683 }, { "start": 2030.46, "end": 2034.14, "probability": 0.9682 }, { "start": 2034.4, "end": 2036.1, "probability": 0.9185 }, { "start": 2038.84, "end": 2039.38, "probability": 0.8272 }, { "start": 2040.54, "end": 2043.26, "probability": 0.9926 }, { "start": 2043.26, "end": 2046.56, "probability": 0.9683 }, { "start": 2048.64, "end": 2049.22, "probability": 0.9662 }, { "start": 2050.22, "end": 2054.8, "probability": 0.8698 }, { "start": 2056.14, "end": 2058.6, "probability": 0.9365 }, { "start": 2059.44, "end": 2061.5, "probability": 0.9832 }, { "start": 2063.3, "end": 2066.32, "probability": 0.9611 }, { "start": 2067.34, "end": 2072.7, "probability": 0.9652 }, { "start": 2074.26, "end": 2075.06, "probability": 0.857 }, { "start": 2075.84, "end": 2079.98, "probability": 0.9761 }, { "start": 2081.06, "end": 2082.44, "probability": 0.7979 }, { "start": 2083.28, "end": 2084.6, "probability": 0.9963 }, { "start": 2085.34, "end": 2092.4, "probability": 0.9977 }, { "start": 2094.18, "end": 2095.08, "probability": 0.8529 }, { "start": 2096.12, "end": 2102.04, "probability": 0.8883 }, { "start": 2103.14, "end": 2104.76, "probability": 0.7488 }, { "start": 2105.48, "end": 2106.26, "probability": 0.9906 }, { "start": 2108.38, "end": 2111.88, "probability": 0.9854 }, { "start": 2111.88, "end": 2114.38, "probability": 0.8946 }, { "start": 2115.5, "end": 2117.96, "probability": 0.998 }, { "start": 2118.98, "end": 2120.48, "probability": 0.8454 }, { "start": 2121.58, "end": 2123.48, "probability": 0.8498 }, { "start": 2124.36, "end": 2125.05, "probability": 0.987 }, { "start": 2126.52, "end": 2128.88, "probability": 0.9908 }, { "start": 2128.88, "end": 2131.4, "probability": 0.9979 }, { "start": 2131.46, "end": 2132.2, "probability": 0.7623 }, { "start": 2133.0, "end": 2134.2, "probability": 0.9653 }, { "start": 2135.02, "end": 2137.7, "probability": 0.8504 }, { "start": 2138.66, "end": 2141.76, "probability": 0.98 }, { "start": 2142.68, "end": 2142.88, "probability": 0.7682 }, { "start": 2144.7, "end": 2147.22, "probability": 0.7769 }, { "start": 2147.76, "end": 2152.12, "probability": 0.9792 }, { "start": 2152.24, "end": 2152.44, "probability": 0.9368 }, { "start": 2174.44, "end": 2175.14, "probability": 0.5338 }, { "start": 2176.36, "end": 2177.08, "probability": 0.0768 }, { "start": 2177.54, "end": 2181.16, "probability": 0.939 }, { "start": 2183.76, "end": 2184.02, "probability": 0.7646 }, { "start": 2187.68, "end": 2188.94, "probability": 0.8311 }, { "start": 2190.2, "end": 2191.6, "probability": 0.8196 }, { "start": 2192.96, "end": 2194.87, "probability": 0.9966 }, { "start": 2195.4, "end": 2196.44, "probability": 0.9563 }, { "start": 2197.32, "end": 2197.86, "probability": 0.9447 }, { "start": 2198.06, "end": 2200.5, "probability": 0.9643 }, { "start": 2200.92, "end": 2201.62, "probability": 0.96 }, { "start": 2202.0, "end": 2204.14, "probability": 0.9432 }, { "start": 2205.34, "end": 2210.05, "probability": 0.9945 }, { "start": 2210.32, "end": 2211.58, "probability": 0.5315 }, { "start": 2211.88, "end": 2213.2, "probability": 0.9819 }, { "start": 2214.42, "end": 2214.78, "probability": 0.9456 }, { "start": 2215.42, "end": 2218.34, "probability": 0.9087 }, { "start": 2219.1, "end": 2223.02, "probability": 0.9993 }, { "start": 2223.54, "end": 2224.62, "probability": 0.9978 }, { "start": 2225.98, "end": 2227.76, "probability": 0.9507 }, { "start": 2228.36, "end": 2231.5, "probability": 0.9927 }, { "start": 2232.32, "end": 2234.96, "probability": 0.9975 }, { "start": 2234.96, "end": 2240.36, "probability": 0.9861 }, { "start": 2241.28, "end": 2242.9, "probability": 0.9023 }, { "start": 2243.32, "end": 2245.72, "probability": 0.8887 }, { "start": 2246.34, "end": 2249.04, "probability": 0.9971 }, { "start": 2250.46, "end": 2253.62, "probability": 0.9899 }, { "start": 2253.62, "end": 2257.5, "probability": 0.978 }, { "start": 2258.14, "end": 2258.72, "probability": 0.9505 }, { "start": 2260.18, "end": 2260.94, "probability": 0.9474 }, { "start": 2261.08, "end": 2262.14, "probability": 0.9741 }, { "start": 2262.5, "end": 2266.34, "probability": 0.9977 }, { "start": 2266.74, "end": 2269.3, "probability": 0.9952 }, { "start": 2269.74, "end": 2272.62, "probability": 0.802 }, { "start": 2273.32, "end": 2274.54, "probability": 0.955 }, { "start": 2277.04, "end": 2278.82, "probability": 0.981 }, { "start": 2279.08, "end": 2283.22, "probability": 0.981 }, { "start": 2284.5, "end": 2287.42, "probability": 0.9974 }, { "start": 2287.42, "end": 2290.6, "probability": 0.9956 }, { "start": 2292.42, "end": 2294.88, "probability": 0.9966 }, { "start": 2295.58, "end": 2297.96, "probability": 0.9907 }, { "start": 2298.8, "end": 2300.68, "probability": 0.9977 }, { "start": 2300.78, "end": 2303.16, "probability": 0.9985 }, { "start": 2303.98, "end": 2304.22, "probability": 0.9413 }, { "start": 2306.34, "end": 2307.42, "probability": 0.8669 }, { "start": 2308.28, "end": 2309.6, "probability": 0.858 }, { "start": 2310.68, "end": 2315.5, "probability": 0.9916 }, { "start": 2316.3, "end": 2322.0, "probability": 0.9987 }, { "start": 2322.92, "end": 2326.0, "probability": 0.9865 }, { "start": 2326.42, "end": 2326.62, "probability": 0.8309 }, { "start": 2327.68, "end": 2329.0, "probability": 0.6646 }, { "start": 2329.12, "end": 2334.34, "probability": 0.9661 }, { "start": 2334.84, "end": 2335.68, "probability": 0.8855 }, { "start": 2336.22, "end": 2337.86, "probability": 0.9412 }, { "start": 2345.32, "end": 2347.48, "probability": 0.7185 }, { "start": 2348.36, "end": 2353.2, "probability": 0.9891 }, { "start": 2366.8, "end": 2367.88, "probability": 0.6207 }, { "start": 2369.28, "end": 2370.62, "probability": 0.725 }, { "start": 2372.26, "end": 2375.98, "probability": 0.9631 }, { "start": 2376.56, "end": 2377.0, "probability": 0.51 }, { "start": 2377.76, "end": 2382.7, "probability": 0.9744 }, { "start": 2383.68, "end": 2385.12, "probability": 0.9795 }, { "start": 2385.46, "end": 2386.28, "probability": 0.9064 }, { "start": 2387.22, "end": 2387.92, "probability": 0.7344 }, { "start": 2389.36, "end": 2395.2, "probability": 0.9862 }, { "start": 2395.24, "end": 2398.02, "probability": 0.9083 }, { "start": 2398.7, "end": 2399.86, "probability": 0.8542 }, { "start": 2401.04, "end": 2401.68, "probability": 0.7949 }, { "start": 2402.98, "end": 2405.88, "probability": 0.9681 }, { "start": 2405.88, "end": 2409.14, "probability": 0.9451 }, { "start": 2409.24, "end": 2410.72, "probability": 0.6595 }, { "start": 2411.82, "end": 2413.14, "probability": 0.8762 }, { "start": 2413.7, "end": 2414.36, "probability": 0.9762 }, { "start": 2415.52, "end": 2418.4, "probability": 0.6544 }, { "start": 2419.54, "end": 2420.9, "probability": 0.9805 }, { "start": 2421.96, "end": 2427.42, "probability": 0.9957 }, { "start": 2428.22, "end": 2428.91, "probability": 0.9983 }, { "start": 2429.9, "end": 2435.14, "probability": 0.9917 }, { "start": 2435.96, "end": 2439.24, "probability": 0.9441 }, { "start": 2439.24, "end": 2441.86, "probability": 0.8341 }, { "start": 2442.92, "end": 2444.38, "probability": 0.6581 }, { "start": 2444.42, "end": 2448.64, "probability": 0.9025 }, { "start": 2449.58, "end": 2452.02, "probability": 0.8942 }, { "start": 2453.04, "end": 2456.34, "probability": 0.754 }, { "start": 2458.1, "end": 2461.16, "probability": 0.9535 }, { "start": 2461.2, "end": 2463.7, "probability": 0.8135 }, { "start": 2464.8, "end": 2466.66, "probability": 0.6993 }, { "start": 2468.3, "end": 2472.58, "probability": 0.9808 }, { "start": 2474.26, "end": 2476.9, "probability": 0.8682 }, { "start": 2476.94, "end": 2479.12, "probability": 0.4766 }, { "start": 2479.84, "end": 2485.3, "probability": 0.7677 }, { "start": 2485.86, "end": 2487.08, "probability": 0.9983 }, { "start": 2488.16, "end": 2491.56, "probability": 0.8867 }, { "start": 2491.56, "end": 2495.02, "probability": 0.9322 }, { "start": 2496.12, "end": 2498.8, "probability": 0.8859 }, { "start": 2498.88, "end": 2501.06, "probability": 0.9548 }, { "start": 2501.84, "end": 2502.42, "probability": 0.7327 }, { "start": 2503.12, "end": 2507.06, "probability": 0.8421 }, { "start": 2507.94, "end": 2508.74, "probability": 0.8701 }, { "start": 2509.52, "end": 2510.62, "probability": 0.946 }, { "start": 2511.26, "end": 2514.72, "probability": 0.9538 }, { "start": 2514.76, "end": 2516.54, "probability": 0.8768 }, { "start": 2516.84, "end": 2518.32, "probability": 0.9019 }, { "start": 2518.7, "end": 2519.94, "probability": 0.9745 }, { "start": 2520.96, "end": 2522.8, "probability": 0.9845 }, { "start": 2522.8, "end": 2525.24, "probability": 0.9083 }, { "start": 2525.36, "end": 2527.1, "probability": 0.9854 }, { "start": 2528.1, "end": 2529.94, "probability": 0.6483 }, { "start": 2530.86, "end": 2531.24, "probability": 0.5348 }, { "start": 2531.98, "end": 2535.16, "probability": 0.7339 }, { "start": 2535.18, "end": 2537.82, "probability": 0.8191 }, { "start": 2539.61, "end": 2542.2, "probability": 0.8362 }, { "start": 2542.48, "end": 2544.98, "probability": 0.927 }, { "start": 2545.86, "end": 2548.58, "probability": 0.9076 }, { "start": 2549.06, "end": 2549.48, "probability": 0.704 }, { "start": 2550.04, "end": 2550.68, "probability": 0.5909 }, { "start": 2551.06, "end": 2552.62, "probability": 0.9891 }, { "start": 2552.68, "end": 2553.68, "probability": 0.907 }, { "start": 2554.26, "end": 2556.12, "probability": 0.8167 }, { "start": 2556.9, "end": 2558.86, "probability": 0.8096 }, { "start": 2559.2, "end": 2560.07, "probability": 0.9224 }, { "start": 2560.82, "end": 2563.64, "probability": 0.9628 }, { "start": 2564.78, "end": 2567.2, "probability": 0.8911 }, { "start": 2568.28, "end": 2570.42, "probability": 0.8751 }, { "start": 2571.04, "end": 2572.32, "probability": 0.9278 }, { "start": 2572.44, "end": 2572.64, "probability": 0.8337 }, { "start": 2575.24, "end": 2575.68, "probability": 0.6139 }, { "start": 2575.72, "end": 2576.64, "probability": 0.6846 }, { "start": 2587.14, "end": 2587.46, "probability": 0.467 }, { "start": 2588.96, "end": 2589.18, "probability": 0.1564 }, { "start": 2589.18, "end": 2589.18, "probability": 0.1531 }, { "start": 2589.18, "end": 2589.18, "probability": 0.3275 }, { "start": 2589.18, "end": 2589.18, "probability": 0.1729 }, { "start": 2589.18, "end": 2589.2, "probability": 0.042 }, { "start": 2589.2, "end": 2589.2, "probability": 0.1169 }, { "start": 2589.2, "end": 2589.2, "probability": 0.0954 }, { "start": 2610.76, "end": 2612.28, "probability": 0.0254 }, { "start": 2615.7, "end": 2621.12, "probability": 0.9857 }, { "start": 2621.12, "end": 2624.32, "probability": 0.9691 }, { "start": 2624.46, "end": 2630.76, "probability": 0.992 }, { "start": 2630.86, "end": 2634.36, "probability": 0.9957 }, { "start": 2634.58, "end": 2636.36, "probability": 0.9857 }, { "start": 2637.32, "end": 2640.18, "probability": 0.9868 }, { "start": 2641.62, "end": 2643.1, "probability": 0.7932 }, { "start": 2643.88, "end": 2648.24, "probability": 0.9883 }, { "start": 2649.74, "end": 2651.94, "probability": 0.8279 }, { "start": 2652.02, "end": 2653.22, "probability": 0.9756 }, { "start": 2653.8, "end": 2656.18, "probability": 0.991 }, { "start": 2657.26, "end": 2658.9, "probability": 0.9548 }, { "start": 2659.22, "end": 2660.73, "probability": 0.9771 }, { "start": 2661.92, "end": 2665.08, "probability": 0.7598 }, { "start": 2665.32, "end": 2666.5, "probability": 0.9703 }, { "start": 2666.66, "end": 2669.26, "probability": 0.8994 }, { "start": 2669.48, "end": 2670.18, "probability": 0.878 }, { "start": 2671.98, "end": 2672.78, "probability": 0.8627 }, { "start": 2673.92, "end": 2676.44, "probability": 0.5601 }, { "start": 2677.08, "end": 2678.0, "probability": 0.9452 }, { "start": 2679.06, "end": 2679.61, "probability": 0.9229 }, { "start": 2679.66, "end": 2680.56, "probability": 0.7899 }, { "start": 2680.7, "end": 2682.82, "probability": 0.8167 }, { "start": 2685.1, "end": 2686.14, "probability": 0.6776 }, { "start": 2687.04, "end": 2688.24, "probability": 0.9376 }, { "start": 2689.48, "end": 2690.72, "probability": 0.9844 }, { "start": 2691.4, "end": 2695.68, "probability": 0.9907 }, { "start": 2696.0, "end": 2696.76, "probability": 0.9603 }, { "start": 2698.72, "end": 2699.64, "probability": 0.8982 }, { "start": 2700.58, "end": 2701.0, "probability": 0.9776 }, { "start": 2701.52, "end": 2702.24, "probability": 0.8194 }, { "start": 2703.22, "end": 2708.66, "probability": 0.9442 }, { "start": 2709.32, "end": 2709.73, "probability": 0.7905 }, { "start": 2709.86, "end": 2712.02, "probability": 0.9357 }, { "start": 2712.36, "end": 2712.78, "probability": 0.7443 }, { "start": 2714.42, "end": 2719.8, "probability": 0.976 }, { "start": 2720.9, "end": 2723.44, "probability": 0.6716 }, { "start": 2724.24, "end": 2724.46, "probability": 0.6962 }, { "start": 2724.9, "end": 2726.98, "probability": 0.9007 }, { "start": 2727.1, "end": 2729.68, "probability": 0.8803 }, { "start": 2729.86, "end": 2730.52, "probability": 0.7122 }, { "start": 2731.1, "end": 2732.38, "probability": 0.7388 }, { "start": 2733.82, "end": 2734.34, "probability": 0.9638 }, { "start": 2735.3, "end": 2738.52, "probability": 0.7974 }, { "start": 2739.22, "end": 2744.5, "probability": 0.7809 }, { "start": 2744.6, "end": 2746.48, "probability": 0.9518 }, { "start": 2746.96, "end": 2747.62, "probability": 0.8511 }, { "start": 2748.94, "end": 2751.92, "probability": 0.9839 }, { "start": 2752.06, "end": 2753.92, "probability": 0.8516 }, { "start": 2755.22, "end": 2756.72, "probability": 0.9426 }, { "start": 2757.08, "end": 2757.64, "probability": 0.9745 }, { "start": 2757.8, "end": 2759.02, "probability": 0.9805 }, { "start": 2760.88, "end": 2762.8, "probability": 0.9566 }, { "start": 2763.04, "end": 2764.66, "probability": 0.9678 }, { "start": 2764.74, "end": 2765.48, "probability": 0.4968 }, { "start": 2766.12, "end": 2766.4, "probability": 0.6353 }, { "start": 2766.74, "end": 2767.66, "probability": 0.7118 }, { "start": 2767.8, "end": 2767.9, "probability": 0.4671 }, { "start": 2768.0, "end": 2769.61, "probability": 0.567 }, { "start": 2769.82, "end": 2770.3, "probability": 0.4436 }, { "start": 2770.3, "end": 2772.02, "probability": 0.5716 }, { "start": 2772.74, "end": 2773.62, "probability": 0.1367 }, { "start": 2774.4, "end": 2775.62, "probability": 0.8813 }, { "start": 2776.72, "end": 2777.56, "probability": 0.9729 }, { "start": 2778.38, "end": 2779.24, "probability": 0.9455 }, { "start": 2779.64, "end": 2782.24, "probability": 0.9875 }, { "start": 2782.48, "end": 2783.1, "probability": 0.6046 }, { "start": 2783.18, "end": 2783.7, "probability": 0.8996 }, { "start": 2784.08, "end": 2784.34, "probability": 0.0793 }, { "start": 2784.34, "end": 2784.86, "probability": 0.5571 }, { "start": 2785.32, "end": 2786.78, "probability": 0.6254 }, { "start": 2786.88, "end": 2789.54, "probability": 0.9784 }, { "start": 2789.72, "end": 2791.1, "probability": 0.9844 }, { "start": 2791.1, "end": 2791.2, "probability": 0.4657 }, { "start": 2791.2, "end": 2791.44, "probability": 0.4731 }, { "start": 2791.68, "end": 2792.7, "probability": 0.5449 }, { "start": 2793.48, "end": 2795.9, "probability": 0.9713 }, { "start": 2796.06, "end": 2799.24, "probability": 0.9542 }, { "start": 2800.14, "end": 2801.72, "probability": 0.7999 }, { "start": 2802.3, "end": 2805.04, "probability": 0.5 }, { "start": 2805.8, "end": 2806.7, "probability": 0.998 }, { "start": 2807.9, "end": 2808.74, "probability": 0.3497 }, { "start": 2809.78, "end": 2810.52, "probability": 0.7454 }, { "start": 2811.9, "end": 2814.02, "probability": 0.0615 }, { "start": 2814.02, "end": 2817.64, "probability": 0.8425 }, { "start": 2817.76, "end": 2818.82, "probability": 0.8155 }, { "start": 2819.54, "end": 2821.08, "probability": 0.8956 }, { "start": 2823.04, "end": 2825.86, "probability": 0.4044 }, { "start": 2826.72, "end": 2828.34, "probability": 0.7809 }, { "start": 2829.72, "end": 2833.2, "probability": 0.9132 }, { "start": 2833.68, "end": 2836.66, "probability": 0.8357 }, { "start": 2837.12, "end": 2837.84, "probability": 0.5846 }, { "start": 2839.18, "end": 2841.64, "probability": 0.8488 }, { "start": 2842.18, "end": 2844.0, "probability": 0.9659 }, { "start": 2844.64, "end": 2847.98, "probability": 0.9169 }, { "start": 2848.3, "end": 2848.96, "probability": 0.718 }, { "start": 2849.08, "end": 2849.99, "probability": 0.9493 }, { "start": 2850.14, "end": 2851.08, "probability": 0.9692 }, { "start": 2851.22, "end": 2852.32, "probability": 0.9594 }, { "start": 2852.8, "end": 2854.4, "probability": 0.9121 }, { "start": 2855.02, "end": 2856.06, "probability": 0.4361 }, { "start": 2856.44, "end": 2857.18, "probability": 0.892 }, { "start": 2857.6, "end": 2858.38, "probability": 0.6204 }, { "start": 2859.12, "end": 2861.04, "probability": 0.5758 }, { "start": 2861.04, "end": 2862.8, "probability": 0.97 }, { "start": 2864.48, "end": 2869.9, "probability": 0.9624 }, { "start": 2870.04, "end": 2870.8, "probability": 0.5605 }, { "start": 2871.7, "end": 2873.4, "probability": 0.6642 }, { "start": 2873.7, "end": 2874.6, "probability": 0.6986 }, { "start": 2875.68, "end": 2876.58, "probability": 0.97 }, { "start": 2876.84, "end": 2878.64, "probability": 0.836 }, { "start": 2878.76, "end": 2880.52, "probability": 0.9983 }, { "start": 2880.74, "end": 2882.32, "probability": 0.976 }, { "start": 2883.02, "end": 2885.12, "probability": 0.8896 }, { "start": 2885.86, "end": 2888.34, "probability": 0.874 }, { "start": 2888.56, "end": 2888.98, "probability": 0.8759 }, { "start": 2889.16, "end": 2889.6, "probability": 0.6134 }, { "start": 2889.6, "end": 2891.32, "probability": 0.9034 }, { "start": 2899.04, "end": 2899.04, "probability": 0.0424 }, { "start": 2899.04, "end": 2899.86, "probability": 0.228 }, { "start": 2900.68, "end": 2901.06, "probability": 0.3206 }, { "start": 2901.18, "end": 2904.04, "probability": 0.8561 }, { "start": 2904.24, "end": 2905.4, "probability": 0.7304 }, { "start": 2905.58, "end": 2907.06, "probability": 0.4566 }, { "start": 2908.08, "end": 2908.92, "probability": 0.2973 }, { "start": 2909.36, "end": 2909.92, "probability": 0.2062 }, { "start": 2909.92, "end": 2910.41, "probability": 0.9288 }, { "start": 2910.8, "end": 2913.18, "probability": 0.646 }, { "start": 2913.76, "end": 2915.42, "probability": 0.9484 }, { "start": 2918.94, "end": 2921.76, "probability": 0.7001 }, { "start": 2922.86, "end": 2924.38, "probability": 0.8594 }, { "start": 2925.44, "end": 2928.37, "probability": 0.9774 }, { "start": 2929.02, "end": 2931.12, "probability": 0.7196 }, { "start": 2931.42, "end": 2933.27, "probability": 0.8971 }, { "start": 2934.9, "end": 2936.26, "probability": 0.9761 }, { "start": 2936.84, "end": 2938.02, "probability": 0.9868 }, { "start": 2938.06, "end": 2939.04, "probability": 0.8835 }, { "start": 2940.18, "end": 2940.95, "probability": 0.9714 }, { "start": 2942.0, "end": 2943.58, "probability": 0.9967 }, { "start": 2944.8, "end": 2946.34, "probability": 0.7896 }, { "start": 2947.14, "end": 2948.86, "probability": 0.791 }, { "start": 2950.0, "end": 2952.08, "probability": 0.7653 }, { "start": 2952.68, "end": 2953.44, "probability": 0.7803 }, { "start": 2954.4, "end": 2956.36, "probability": 0.9514 }, { "start": 2957.46, "end": 2961.24, "probability": 0.9437 }, { "start": 2962.36, "end": 2963.14, "probability": 0.7454 }, { "start": 2964.44, "end": 2965.7, "probability": 0.907 }, { "start": 2967.08, "end": 2968.36, "probability": 0.888 }, { "start": 2969.26, "end": 2970.88, "probability": 0.9878 }, { "start": 2971.18, "end": 2972.54, "probability": 0.9702 }, { "start": 2973.52, "end": 2976.26, "probability": 0.933 }, { "start": 2977.02, "end": 2978.1, "probability": 0.9917 }, { "start": 2978.96, "end": 2982.5, "probability": 0.7547 }, { "start": 2983.48, "end": 2984.92, "probability": 0.6585 }, { "start": 2985.08, "end": 2988.46, "probability": 0.9465 }, { "start": 2989.26, "end": 2991.76, "probability": 0.9949 }, { "start": 2992.46, "end": 2994.78, "probability": 0.9658 }, { "start": 2995.26, "end": 3001.58, "probability": 0.9843 }, { "start": 3001.62, "end": 3002.08, "probability": 0.7996 }, { "start": 3003.06, "end": 3005.26, "probability": 0.9839 }, { "start": 3006.7, "end": 3010.8, "probability": 0.9651 }, { "start": 3010.8, "end": 3014.3, "probability": 0.8833 }, { "start": 3015.12, "end": 3015.76, "probability": 0.8727 }, { "start": 3015.94, "end": 3016.36, "probability": 0.6665 }, { "start": 3016.4, "end": 3017.04, "probability": 0.5187 }, { "start": 3017.06, "end": 3017.93, "probability": 0.4942 }, { "start": 3018.8, "end": 3021.34, "probability": 0.9772 }, { "start": 3021.98, "end": 3025.26, "probability": 0.8779 }, { "start": 3025.82, "end": 3026.38, "probability": 0.7133 }, { "start": 3026.52, "end": 3027.86, "probability": 0.9453 }, { "start": 3028.58, "end": 3029.12, "probability": 0.8434 }, { "start": 3029.56, "end": 3031.4, "probability": 0.9736 }, { "start": 3032.02, "end": 3032.54, "probability": 0.7288 }, { "start": 3033.76, "end": 3038.14, "probability": 0.981 }, { "start": 3038.14, "end": 3040.08, "probability": 0.9905 }, { "start": 3041.04, "end": 3044.0, "probability": 0.9873 }, { "start": 3044.5, "end": 3045.86, "probability": 0.9475 }, { "start": 3046.42, "end": 3049.26, "probability": 0.8773 }, { "start": 3049.84, "end": 3050.92, "probability": 0.8406 }, { "start": 3052.14, "end": 3052.82, "probability": 0.9792 }, { "start": 3053.0, "end": 3054.06, "probability": 0.7559 }, { "start": 3054.24, "end": 3055.26, "probability": 0.4371 }, { "start": 3056.0, "end": 3057.74, "probability": 0.8882 }, { "start": 3058.64, "end": 3060.8, "probability": 0.5696 }, { "start": 3060.84, "end": 3061.74, "probability": 0.993 }, { "start": 3062.92, "end": 3063.3, "probability": 0.5256 }, { "start": 3063.98, "end": 3068.28, "probability": 0.8012 }, { "start": 3068.42, "end": 3070.26, "probability": 0.8694 }, { "start": 3070.98, "end": 3071.32, "probability": 0.2705 }, { "start": 3071.44, "end": 3073.28, "probability": 0.9817 }, { "start": 3073.92, "end": 3076.0, "probability": 0.8671 }, { "start": 3076.54, "end": 3076.96, "probability": 0.9767 }, { "start": 3077.66, "end": 3078.48, "probability": 0.7686 }, { "start": 3078.76, "end": 3079.3, "probability": 0.8915 }, { "start": 3079.88, "end": 3080.46, "probability": 0.9306 }, { "start": 3081.3, "end": 3082.42, "probability": 0.9902 }, { "start": 3083.9, "end": 3085.26, "probability": 0.9818 }, { "start": 3086.32, "end": 3087.14, "probability": 0.9113 }, { "start": 3088.26, "end": 3090.74, "probability": 0.9214 }, { "start": 3090.82, "end": 3091.66, "probability": 0.8562 }, { "start": 3092.4, "end": 3095.48, "probability": 0.7962 }, { "start": 3096.66, "end": 3096.68, "probability": 0.3538 }, { "start": 3097.28, "end": 3099.6, "probability": 0.7252 }, { "start": 3099.6, "end": 3102.78, "probability": 0.6765 }, { "start": 3102.82, "end": 3104.56, "probability": 0.7604 }, { "start": 3105.48, "end": 3106.6, "probability": 0.5256 }, { "start": 3106.72, "end": 3110.02, "probability": 0.7412 }, { "start": 3113.5, "end": 3114.72, "probability": 0.7391 }, { "start": 3115.78, "end": 3118.6, "probability": 0.9166 }, { "start": 3121.0, "end": 3123.52, "probability": 0.6364 }, { "start": 3124.86, "end": 3126.1, "probability": 0.9899 }, { "start": 3127.04, "end": 3129.48, "probability": 0.7661 }, { "start": 3130.06, "end": 3131.76, "probability": 0.9651 }, { "start": 3132.66, "end": 3133.4, "probability": 0.8014 }, { "start": 3135.02, "end": 3136.98, "probability": 0.8877 }, { "start": 3137.42, "end": 3140.08, "probability": 0.8198 }, { "start": 3140.58, "end": 3142.24, "probability": 0.73 }, { "start": 3142.46, "end": 3143.48, "probability": 0.7508 }, { "start": 3144.72, "end": 3147.32, "probability": 0.9769 }, { "start": 3147.32, "end": 3150.16, "probability": 0.9943 }, { "start": 3150.8, "end": 3152.12, "probability": 0.6904 }, { "start": 3152.88, "end": 3153.84, "probability": 0.6354 }, { "start": 3153.98, "end": 3157.22, "probability": 0.8236 }, { "start": 3157.74, "end": 3157.96, "probability": 0.7429 }, { "start": 3158.32, "end": 3158.88, "probability": 0.7675 }, { "start": 3159.32, "end": 3160.86, "probability": 0.9825 }, { "start": 3161.14, "end": 3161.56, "probability": 0.3358 }, { "start": 3162.06, "end": 3162.3, "probability": 0.5181 }, { "start": 3163.22, "end": 3163.86, "probability": 0.9191 }, { "start": 3164.36, "end": 3168.52, "probability": 0.9719 }, { "start": 3169.46, "end": 3173.94, "probability": 0.8843 }, { "start": 3175.0, "end": 3177.98, "probability": 0.9728 }, { "start": 3178.1, "end": 3181.34, "probability": 0.9873 }, { "start": 3182.12, "end": 3184.6, "probability": 0.7512 }, { "start": 3184.92, "end": 3186.13, "probability": 0.9134 }, { "start": 3187.24, "end": 3189.32, "probability": 0.996 }, { "start": 3190.72, "end": 3191.56, "probability": 0.8348 }, { "start": 3201.48, "end": 3202.58, "probability": 0.7995 }, { "start": 3208.82, "end": 3208.92, "probability": 0.5153 }, { "start": 3208.96, "end": 3209.1, "probability": 0.1642 }, { "start": 3215.62, "end": 3217.36, "probability": 0.6271 }, { "start": 3219.42, "end": 3222.68, "probability": 0.8826 }, { "start": 3222.9, "end": 3226.74, "probability": 0.8278 }, { "start": 3227.64, "end": 3230.38, "probability": 0.9609 }, { "start": 3231.26, "end": 3234.02, "probability": 0.9849 }, { "start": 3234.1, "end": 3235.4, "probability": 0.9583 }, { "start": 3235.54, "end": 3236.94, "probability": 0.8908 }, { "start": 3237.08, "end": 3238.32, "probability": 0.6693 }, { "start": 3238.98, "end": 3239.9, "probability": 0.9708 }, { "start": 3240.96, "end": 3242.58, "probability": 0.6987 }, { "start": 3242.76, "end": 3245.54, "probability": 0.9814 }, { "start": 3245.74, "end": 3246.8, "probability": 0.75 }, { "start": 3247.52, "end": 3249.26, "probability": 0.6322 }, { "start": 3249.48, "end": 3251.64, "probability": 0.7251 }, { "start": 3252.4, "end": 3255.34, "probability": 0.8441 }, { "start": 3256.08, "end": 3257.46, "probability": 0.837 }, { "start": 3257.82, "end": 3258.26, "probability": 0.9191 }, { "start": 3258.78, "end": 3259.32, "probability": 0.5088 }, { "start": 3259.34, "end": 3261.3, "probability": 0.9845 }, { "start": 3261.34, "end": 3263.24, "probability": 0.9492 }, { "start": 3264.18, "end": 3268.34, "probability": 0.9413 }, { "start": 3268.34, "end": 3271.04, "probability": 0.9749 }, { "start": 3272.32, "end": 3272.92, "probability": 0.6594 }, { "start": 3273.06, "end": 3273.6, "probability": 0.3962 }, { "start": 3273.7, "end": 3273.86, "probability": 0.3838 }, { "start": 3273.94, "end": 3277.8, "probability": 0.9744 }, { "start": 3278.42, "end": 3281.64, "probability": 0.8486 }, { "start": 3282.78, "end": 3286.94, "probability": 0.9644 }, { "start": 3287.38, "end": 3290.4, "probability": 0.7303 }, { "start": 3290.6, "end": 3291.52, "probability": 0.7389 }, { "start": 3292.8, "end": 3296.42, "probability": 0.9332 }, { "start": 3296.62, "end": 3299.06, "probability": 0.9355 }, { "start": 3299.74, "end": 3300.31, "probability": 0.9329 }, { "start": 3301.18, "end": 3302.34, "probability": 0.8423 }, { "start": 3303.14, "end": 3304.84, "probability": 0.981 }, { "start": 3306.03, "end": 3308.72, "probability": 0.9574 }, { "start": 3309.24, "end": 3310.04, "probability": 0.9889 }, { "start": 3311.96, "end": 3312.56, "probability": 0.7532 }, { "start": 3312.74, "end": 3316.14, "probability": 0.9505 }, { "start": 3317.06, "end": 3317.72, "probability": 0.769 }, { "start": 3318.46, "end": 3320.76, "probability": 0.9979 }, { "start": 3321.8, "end": 3326.22, "probability": 0.9886 }, { "start": 3328.34, "end": 3329.26, "probability": 0.9268 }, { "start": 3330.42, "end": 3331.54, "probability": 0.8521 }, { "start": 3332.41, "end": 3332.88, "probability": 0.6056 }, { "start": 3333.56, "end": 3333.76, "probability": 0.8922 }, { "start": 3334.9, "end": 3336.42, "probability": 0.8317 }, { "start": 3336.94, "end": 3339.22, "probability": 0.6205 }, { "start": 3340.02, "end": 3340.62, "probability": 0.8849 }, { "start": 3341.7, "end": 3343.34, "probability": 0.9017 }, { "start": 3343.94, "end": 3344.28, "probability": 0.7949 }, { "start": 3344.42, "end": 3345.46, "probability": 0.7555 }, { "start": 3345.98, "end": 3346.36, "probability": 0.9507 }, { "start": 3346.56, "end": 3347.36, "probability": 0.7844 }, { "start": 3348.6, "end": 3350.38, "probability": 0.5221 }, { "start": 3351.38, "end": 3352.29, "probability": 0.685 }, { "start": 3353.16, "end": 3356.25, "probability": 0.7694 }, { "start": 3356.64, "end": 3357.54, "probability": 0.8579 }, { "start": 3358.48, "end": 3359.04, "probability": 0.6887 }, { "start": 3359.18, "end": 3361.12, "probability": 0.9603 }, { "start": 3363.32, "end": 3366.1, "probability": 0.8452 }, { "start": 3369.22, "end": 3369.68, "probability": 0.8085 }, { "start": 3373.84, "end": 3375.28, "probability": 0.8983 }, { "start": 3381.18, "end": 3381.56, "probability": 0.4852 }, { "start": 3382.8, "end": 3383.42, "probability": 0.8648 }, { "start": 3388.92, "end": 3389.54, "probability": 0.6379 }, { "start": 3390.26, "end": 3391.7, "probability": 0.7628 }, { "start": 3392.26, "end": 3393.04, "probability": 0.1449 }, { "start": 3393.38, "end": 3394.52, "probability": 0.9636 }, { "start": 3414.98, "end": 3415.54, "probability": 0.5253 }, { "start": 3416.22, "end": 3417.22, "probability": 0.7651 }, { "start": 3418.64, "end": 3419.33, "probability": 0.7296 }, { "start": 3422.62, "end": 3423.6, "probability": 0.9727 }, { "start": 3423.76, "end": 3426.28, "probability": 0.9969 }, { "start": 3426.54, "end": 3429.78, "probability": 0.9971 }, { "start": 3431.6, "end": 3434.08, "probability": 0.9653 }, { "start": 3434.16, "end": 3435.68, "probability": 0.9923 }, { "start": 3436.58, "end": 3437.74, "probability": 0.9447 }, { "start": 3438.84, "end": 3441.8, "probability": 0.9974 }, { "start": 3442.02, "end": 3444.26, "probability": 0.9985 }, { "start": 3446.7, "end": 3447.84, "probability": 0.9338 }, { "start": 3448.84, "end": 3451.92, "probability": 0.989 }, { "start": 3454.06, "end": 3458.32, "probability": 0.9543 }, { "start": 3458.78, "end": 3460.04, "probability": 0.9169 }, { "start": 3461.02, "end": 3462.32, "probability": 0.9993 }, { "start": 3463.38, "end": 3466.9, "probability": 0.7637 }, { "start": 3468.0, "end": 3470.96, "probability": 0.9983 }, { "start": 3471.98, "end": 3472.96, "probability": 0.8049 }, { "start": 3473.3, "end": 3474.79, "probability": 0.9944 }, { "start": 3474.98, "end": 3475.44, "probability": 0.7351 }, { "start": 3476.46, "end": 3477.18, "probability": 0.9685 }, { "start": 3477.8, "end": 3479.02, "probability": 0.833 }, { "start": 3479.54, "end": 3481.92, "probability": 0.9963 }, { "start": 3483.24, "end": 3487.94, "probability": 0.9976 }, { "start": 3488.0, "end": 3488.76, "probability": 0.7755 }, { "start": 3491.56, "end": 3493.12, "probability": 0.8949 }, { "start": 3493.96, "end": 3494.93, "probability": 0.8261 }, { "start": 3495.06, "end": 3497.22, "probability": 0.9946 }, { "start": 3497.86, "end": 3500.12, "probability": 0.9851 }, { "start": 3502.58, "end": 3504.0, "probability": 0.5371 }, { "start": 3504.2, "end": 3505.84, "probability": 0.8258 }, { "start": 3505.92, "end": 3508.86, "probability": 0.993 }, { "start": 3508.86, "end": 3513.26, "probability": 0.9807 }, { "start": 3514.16, "end": 3516.04, "probability": 0.9504 }, { "start": 3517.28, "end": 3519.66, "probability": 0.9815 }, { "start": 3520.24, "end": 3523.24, "probability": 0.9979 }, { "start": 3524.34, "end": 3527.74, "probability": 0.9954 }, { "start": 3528.44, "end": 3530.35, "probability": 0.9521 }, { "start": 3531.78, "end": 3534.22, "probability": 0.9885 }, { "start": 3534.96, "end": 3535.48, "probability": 0.9645 }, { "start": 3536.0, "end": 3536.64, "probability": 0.506 }, { "start": 3537.7, "end": 3540.7, "probability": 0.9738 }, { "start": 3541.78, "end": 3542.42, "probability": 0.8636 }, { "start": 3543.0, "end": 3547.36, "probability": 0.9646 }, { "start": 3548.18, "end": 3548.94, "probability": 0.7281 }, { "start": 3549.7, "end": 3550.76, "probability": 0.9982 }, { "start": 3551.62, "end": 3554.66, "probability": 0.9732 }, { "start": 3555.22, "end": 3555.98, "probability": 0.8667 }, { "start": 3557.08, "end": 3560.06, "probability": 0.9987 }, { "start": 3560.68, "end": 3564.2, "probability": 0.9883 }, { "start": 3564.8, "end": 3567.44, "probability": 0.9246 }, { "start": 3568.58, "end": 3570.28, "probability": 0.9965 }, { "start": 3570.68, "end": 3571.1, "probability": 0.6851 }, { "start": 3571.26, "end": 3571.76, "probability": 0.6608 }, { "start": 3572.22, "end": 3574.42, "probability": 0.7987 }, { "start": 3576.14, "end": 3577.66, "probability": 0.9512 }, { "start": 3578.24, "end": 3579.86, "probability": 0.8218 }, { "start": 3580.25, "end": 3582.84, "probability": 0.8735 }, { "start": 3583.74, "end": 3585.8, "probability": 0.9769 }, { "start": 3586.1, "end": 3586.5, "probability": 0.4531 }, { "start": 3586.52, "end": 3588.12, "probability": 0.9946 }, { "start": 3588.86, "end": 3590.58, "probability": 0.722 }, { "start": 3591.34, "end": 3595.24, "probability": 0.9823 }, { "start": 3596.18, "end": 3597.64, "probability": 0.9031 }, { "start": 3599.16, "end": 3601.28, "probability": 0.9552 }, { "start": 3601.44, "end": 3603.17, "probability": 0.9922 }, { "start": 3604.06, "end": 3605.42, "probability": 0.9631 }, { "start": 3605.5, "end": 3607.32, "probability": 0.9848 }, { "start": 3607.42, "end": 3609.54, "probability": 0.9967 }, { "start": 3610.4, "end": 3612.64, "probability": 0.9818 }, { "start": 3614.4, "end": 3616.2, "probability": 0.7681 }, { "start": 3617.04, "end": 3619.7, "probability": 0.9672 }, { "start": 3620.8, "end": 3623.4, "probability": 0.9793 }, { "start": 3623.48, "end": 3624.58, "probability": 0.9368 }, { "start": 3625.32, "end": 3627.12, "probability": 0.9678 }, { "start": 3627.76, "end": 3628.34, "probability": 0.6462 }, { "start": 3629.18, "end": 3631.94, "probability": 0.9979 }, { "start": 3632.82, "end": 3634.82, "probability": 0.9016 }, { "start": 3635.72, "end": 3638.55, "probability": 0.7445 }, { "start": 3641.9, "end": 3643.84, "probability": 0.9893 }, { "start": 3644.44, "end": 3646.28, "probability": 0.9913 }, { "start": 3646.48, "end": 3648.72, "probability": 0.9971 }, { "start": 3649.54, "end": 3652.24, "probability": 0.9312 }, { "start": 3652.86, "end": 3654.04, "probability": 0.8739 }, { "start": 3654.76, "end": 3659.72, "probability": 0.9429 }, { "start": 3660.34, "end": 3660.66, "probability": 0.7559 }, { "start": 3660.86, "end": 3664.24, "probability": 0.9825 }, { "start": 3665.52, "end": 3668.04, "probability": 0.6818 }, { "start": 3668.62, "end": 3670.7, "probability": 0.9093 }, { "start": 3670.78, "end": 3671.0, "probability": 0.8138 }, { "start": 3672.86, "end": 3673.34, "probability": 0.7715 }, { "start": 3673.42, "end": 3675.08, "probability": 0.9851 }, { "start": 3675.18, "end": 3676.96, "probability": 0.9897 }, { "start": 3682.74, "end": 3684.61, "probability": 0.8779 }, { "start": 3684.88, "end": 3685.84, "probability": 0.9834 }, { "start": 3686.54, "end": 3688.44, "probability": 0.6065 }, { "start": 3689.2, "end": 3691.1, "probability": 0.9381 }, { "start": 3693.98, "end": 3695.74, "probability": 0.5141 }, { "start": 3696.5, "end": 3699.28, "probability": 0.9688 }, { "start": 3699.96, "end": 3700.32, "probability": 0.8703 }, { "start": 3700.42, "end": 3701.7, "probability": 0.9956 }, { "start": 3701.74, "end": 3702.08, "probability": 0.974 }, { "start": 3702.16, "end": 3703.2, "probability": 0.8695 }, { "start": 3703.3, "end": 3703.66, "probability": 0.9688 }, { "start": 3704.3, "end": 3705.9, "probability": 0.8191 }, { "start": 3706.1, "end": 3708.43, "probability": 0.8865 }, { "start": 3709.94, "end": 3712.18, "probability": 0.1027 }, { "start": 3714.96, "end": 3717.56, "probability": 0.0915 }, { "start": 3740.48, "end": 3743.96, "probability": 0.9727 }, { "start": 3744.32, "end": 3744.44, "probability": 0.5889 }, { "start": 3744.5, "end": 3744.84, "probability": 0.8153 }, { "start": 3744.9, "end": 3746.2, "probability": 0.8737 }, { "start": 3746.42, "end": 3746.78, "probability": 0.8935 }, { "start": 3746.96, "end": 3747.58, "probability": 0.9542 }, { "start": 3747.94, "end": 3748.5, "probability": 0.9328 }, { "start": 3748.62, "end": 3749.18, "probability": 0.9864 }, { "start": 3749.8, "end": 3750.5, "probability": 0.9597 }, { "start": 3751.48, "end": 3752.46, "probability": 0.9816 }, { "start": 3753.98, "end": 3755.48, "probability": 0.835 }, { "start": 3756.02, "end": 3757.22, "probability": 0.8945 }, { "start": 3757.78, "end": 3759.92, "probability": 0.9722 }, { "start": 3759.92, "end": 3760.2, "probability": 0.6574 }, { "start": 3760.4, "end": 3760.64, "probability": 0.8691 }, { "start": 3760.9, "end": 3761.34, "probability": 0.8515 }, { "start": 3762.0, "end": 3766.16, "probability": 0.9399 }, { "start": 3766.84, "end": 3768.5, "probability": 0.9434 }, { "start": 3769.48, "end": 3771.12, "probability": 0.8858 }, { "start": 3771.72, "end": 3773.94, "probability": 0.9863 }, { "start": 3774.52, "end": 3775.48, "probability": 0.8987 }, { "start": 3776.08, "end": 3780.34, "probability": 0.98 }, { "start": 3781.04, "end": 3782.96, "probability": 0.7999 }, { "start": 3783.74, "end": 3784.44, "probability": 0.5705 }, { "start": 3784.98, "end": 3786.52, "probability": 0.9192 }, { "start": 3787.0, "end": 3791.36, "probability": 0.9766 }, { "start": 3792.32, "end": 3795.08, "probability": 0.9835 }, { "start": 3795.88, "end": 3797.14, "probability": 0.7181 }, { "start": 3797.44, "end": 3800.37, "probability": 0.9928 }, { "start": 3800.5, "end": 3802.28, "probability": 0.9259 }, { "start": 3802.98, "end": 3808.82, "probability": 0.8724 }, { "start": 3809.38, "end": 3810.92, "probability": 0.9317 }, { "start": 3811.34, "end": 3812.51, "probability": 0.9716 }, { "start": 3813.04, "end": 3814.07, "probability": 0.9922 }, { "start": 3815.22, "end": 3817.76, "probability": 0.7391 }, { "start": 3818.56, "end": 3820.08, "probability": 0.8555 }, { "start": 3820.08, "end": 3822.64, "probability": 0.9601 }, { "start": 3823.34, "end": 3824.34, "probability": 0.9065 }, { "start": 3824.64, "end": 3826.39, "probability": 0.8311 }, { "start": 3827.32, "end": 3827.96, "probability": 0.9036 }, { "start": 3828.64, "end": 3830.28, "probability": 0.9213 }, { "start": 3830.72, "end": 3832.54, "probability": 0.9457 }, { "start": 3833.52, "end": 3833.68, "probability": 0.699 }, { "start": 3834.18, "end": 3835.78, "probability": 0.8245 }, { "start": 3835.9, "end": 3838.36, "probability": 0.8174 }, { "start": 3838.42, "end": 3841.78, "probability": 0.7513 }, { "start": 3842.32, "end": 3844.86, "probability": 0.9562 }, { "start": 3845.2, "end": 3848.84, "probability": 0.9814 }, { "start": 3851.98, "end": 3855.14, "probability": 0.9963 }, { "start": 3856.72, "end": 3860.44, "probability": 0.9076 }, { "start": 3861.28, "end": 3861.74, "probability": 0.8867 }, { "start": 3862.66, "end": 3863.98, "probability": 0.7237 }, { "start": 3864.26, "end": 3865.42, "probability": 0.952 }, { "start": 3865.76, "end": 3866.86, "probability": 0.9727 }, { "start": 3867.26, "end": 3868.06, "probability": 0.9891 }, { "start": 3868.14, "end": 3868.8, "probability": 0.9518 }, { "start": 3869.8, "end": 3870.28, "probability": 0.8977 }, { "start": 3871.1, "end": 3872.82, "probability": 0.9881 }, { "start": 3874.2, "end": 3876.9, "probability": 0.9555 }, { "start": 3877.62, "end": 3878.18, "probability": 0.9073 }, { "start": 3879.08, "end": 3879.92, "probability": 0.9558 }, { "start": 3880.0, "end": 3885.18, "probability": 0.9491 }, { "start": 3885.46, "end": 3889.48, "probability": 0.9376 }, { "start": 3889.84, "end": 3893.54, "probability": 0.9056 }, { "start": 3893.54, "end": 3896.32, "probability": 0.9959 }, { "start": 3896.4, "end": 3897.08, "probability": 0.6846 }, { "start": 3897.1, "end": 3898.48, "probability": 0.5452 }, { "start": 3899.08, "end": 3902.14, "probability": 0.9891 }, { "start": 3902.14, "end": 3905.04, "probability": 0.8354 }, { "start": 3905.46, "end": 3908.0, "probability": 0.9161 }, { "start": 3908.24, "end": 3909.72, "probability": 0.963 }, { "start": 3910.04, "end": 3913.48, "probability": 0.9644 }, { "start": 3913.84, "end": 3914.5, "probability": 0.9793 }, { "start": 3914.66, "end": 3915.1, "probability": 0.968 }, { "start": 3915.64, "end": 3916.34, "probability": 0.9502 }, { "start": 3917.12, "end": 3918.02, "probability": 0.9946 }, { "start": 3918.2, "end": 3919.2, "probability": 0.9216 }, { "start": 3919.38, "end": 3920.44, "probability": 0.9951 }, { "start": 3921.04, "end": 3925.24, "probability": 0.9888 }, { "start": 3925.5, "end": 3926.86, "probability": 0.9713 }, { "start": 3926.98, "end": 3928.02, "probability": 0.7389 }, { "start": 3928.44, "end": 3929.76, "probability": 0.9838 }, { "start": 3929.86, "end": 3930.42, "probability": 0.7717 }, { "start": 3930.78, "end": 3932.32, "probability": 0.9858 }, { "start": 3932.64, "end": 3934.2, "probability": 0.9032 }, { "start": 3934.34, "end": 3935.34, "probability": 0.9819 }, { "start": 3935.38, "end": 3936.5, "probability": 0.7593 }, { "start": 3936.5, "end": 3937.94, "probability": 0.9751 }, { "start": 3938.32, "end": 3938.7, "probability": 0.9891 }, { "start": 3939.12, "end": 3941.06, "probability": 0.8747 }, { "start": 3941.44, "end": 3942.12, "probability": 0.5413 }, { "start": 3942.46, "end": 3943.12, "probability": 0.6131 }, { "start": 3943.48, "end": 3944.3, "probability": 0.9539 }, { "start": 3944.6, "end": 3945.74, "probability": 0.9951 }, { "start": 3945.84, "end": 3946.68, "probability": 0.8984 }, { "start": 3946.88, "end": 3948.04, "probability": 0.8256 }, { "start": 3948.1, "end": 3949.3, "probability": 0.8695 }, { "start": 3950.0, "end": 3951.66, "probability": 0.9688 }, { "start": 3952.02, "end": 3952.54, "probability": 0.9941 }, { "start": 3952.74, "end": 3953.72, "probability": 0.8552 }, { "start": 3953.98, "end": 3955.92, "probability": 0.7891 }, { "start": 3956.6, "end": 3956.84, "probability": 0.7444 }, { "start": 3956.86, "end": 3957.3, "probability": 0.7048 }, { "start": 3959.18, "end": 3961.44, "probability": 0.9634 }, { "start": 3962.08, "end": 3962.54, "probability": 0.702 }, { "start": 3963.5, "end": 3964.7, "probability": 0.979 }, { "start": 3964.88, "end": 3965.12, "probability": 0.8924 }, { "start": 3965.46, "end": 3966.6, "probability": 0.9766 }, { "start": 3967.0, "end": 3967.3, "probability": 0.3973 }, { "start": 3967.62, "end": 3968.62, "probability": 0.8254 }, { "start": 3969.48, "end": 3969.98, "probability": 0.3891 }, { "start": 3970.22, "end": 3971.34, "probability": 0.9768 }, { "start": 3971.88, "end": 3974.52, "probability": 0.7842 }, { "start": 3975.7, "end": 3976.28, "probability": 0.7168 }, { "start": 3977.58, "end": 3978.36, "probability": 0.9905 }, { "start": 3994.62, "end": 3995.32, "probability": 0.6071 }, { "start": 3995.86, "end": 3997.52, "probability": 0.7694 }, { "start": 4000.42, "end": 4003.58, "probability": 0.9957 }, { "start": 4005.34, "end": 4010.04, "probability": 0.9971 }, { "start": 4011.34, "end": 4015.08, "probability": 0.9569 }, { "start": 4015.32, "end": 4016.0, "probability": 0.9745 }, { "start": 4016.54, "end": 4020.22, "probability": 0.6457 }, { "start": 4020.36, "end": 4022.86, "probability": 0.9813 }, { "start": 4023.0, "end": 4025.44, "probability": 0.8202 }, { "start": 4026.9, "end": 4028.9, "probability": 0.606 }, { "start": 4030.48, "end": 4030.48, "probability": 0.0984 }, { "start": 4030.48, "end": 4033.54, "probability": 0.9885 }, { "start": 4034.42, "end": 4035.02, "probability": 0.9879 }, { "start": 4036.72, "end": 4043.42, "probability": 0.8564 }, { "start": 4044.24, "end": 4046.06, "probability": 0.6993 }, { "start": 4046.82, "end": 4049.6, "probability": 0.9877 }, { "start": 4050.06, "end": 4052.16, "probability": 0.9722 }, { "start": 4053.18, "end": 4055.48, "probability": 0.9149 }, { "start": 4056.2, "end": 4056.65, "probability": 0.5714 }, { "start": 4058.28, "end": 4061.44, "probability": 0.9792 }, { "start": 4061.98, "end": 4066.88, "probability": 0.998 }, { "start": 4067.9, "end": 4072.42, "probability": 0.9961 }, { "start": 4074.64, "end": 4077.41, "probability": 0.7868 }, { "start": 4079.0, "end": 4081.6, "probability": 0.9191 }, { "start": 4081.74, "end": 4084.87, "probability": 0.9294 }, { "start": 4086.0, "end": 4088.02, "probability": 0.8734 }, { "start": 4089.28, "end": 4090.24, "probability": 0.7016 }, { "start": 4091.26, "end": 4096.1, "probability": 0.7407 }, { "start": 4096.9, "end": 4100.54, "probability": 0.962 }, { "start": 4101.26, "end": 4101.62, "probability": 0.9398 }, { "start": 4104.64, "end": 4106.9, "probability": 0.8125 }, { "start": 4106.9, "end": 4109.88, "probability": 0.6444 }, { "start": 4111.28, "end": 4113.06, "probability": 0.2669 }, { "start": 4113.08, "end": 4114.75, "probability": 0.9951 }, { "start": 4114.94, "end": 4115.44, "probability": 0.8258 }, { "start": 4116.32, "end": 4119.52, "probability": 0.8313 }, { "start": 4119.9, "end": 4121.42, "probability": 0.7794 }, { "start": 4122.26, "end": 4124.8, "probability": 0.924 }, { "start": 4125.52, "end": 4126.14, "probability": 0.8797 }, { "start": 4126.74, "end": 4128.76, "probability": 0.8601 }, { "start": 4129.22, "end": 4129.94, "probability": 0.8452 }, { "start": 4130.52, "end": 4132.2, "probability": 0.9846 }, { "start": 4132.3, "end": 4132.82, "probability": 0.78 }, { "start": 4133.52, "end": 4137.28, "probability": 0.7272 }, { "start": 4138.32, "end": 4141.02, "probability": 0.9002 }, { "start": 4141.7, "end": 4144.5, "probability": 0.9817 }, { "start": 4145.08, "end": 4147.94, "probability": 0.9869 }, { "start": 4148.38, "end": 4152.36, "probability": 0.671 }, { "start": 4153.58, "end": 4156.98, "probability": 0.9964 }, { "start": 4158.02, "end": 4160.28, "probability": 0.889 }, { "start": 4160.92, "end": 4164.63, "probability": 0.8098 }, { "start": 4165.5, "end": 4166.3, "probability": 0.7632 }, { "start": 4166.64, "end": 4169.24, "probability": 0.9937 }, { "start": 4170.1, "end": 4173.46, "probability": 0.9536 }, { "start": 4173.74, "end": 4174.96, "probability": 0.9927 }, { "start": 4175.56, "end": 4176.42, "probability": 0.7919 }, { "start": 4177.08, "end": 4178.42, "probability": 0.9915 }, { "start": 4179.88, "end": 4181.48, "probability": 0.4299 }, { "start": 4182.64, "end": 4183.34, "probability": 0.7333 }, { "start": 4184.12, "end": 4186.52, "probability": 0.9775 }, { "start": 4186.98, "end": 4187.92, "probability": 0.9447 }, { "start": 4188.72, "end": 4189.8, "probability": 0.8934 }, { "start": 4190.38, "end": 4192.16, "probability": 0.9046 }, { "start": 4193.14, "end": 4194.7, "probability": 0.9657 }, { "start": 4195.82, "end": 4199.06, "probability": 0.6865 }, { "start": 4199.54, "end": 4200.8, "probability": 0.9985 }, { "start": 4201.32, "end": 4202.32, "probability": 0.9788 }, { "start": 4203.3, "end": 4204.68, "probability": 0.9616 }, { "start": 4205.32, "end": 4205.9, "probability": 0.9736 }, { "start": 4207.18, "end": 4209.3, "probability": 0.9894 }, { "start": 4209.86, "end": 4216.26, "probability": 0.9824 }, { "start": 4216.66, "end": 4217.04, "probability": 0.7728 }, { "start": 4218.8, "end": 4219.44, "probability": 0.7353 }, { "start": 4219.66, "end": 4221.54, "probability": 0.672 }, { "start": 4222.14, "end": 4223.46, "probability": 0.8442 }, { "start": 4223.58, "end": 4224.96, "probability": 0.9839 }, { "start": 4232.76, "end": 4234.26, "probability": 0.1473 }, { "start": 4248.06, "end": 4248.06, "probability": 0.0451 }, { "start": 4248.06, "end": 4248.1, "probability": 0.0517 }, { "start": 4274.68, "end": 4279.52, "probability": 0.8107 }, { "start": 4280.26, "end": 4281.94, "probability": 0.9495 }, { "start": 4282.18, "end": 4285.88, "probability": 0.7693 }, { "start": 4285.92, "end": 4290.78, "probability": 0.9675 }, { "start": 4290.82, "end": 4295.24, "probability": 0.9559 }, { "start": 4295.38, "end": 4297.52, "probability": 0.9317 }, { "start": 4297.64, "end": 4298.74, "probability": 0.7904 }, { "start": 4298.9, "end": 4300.06, "probability": 0.9432 }, { "start": 4300.24, "end": 4301.2, "probability": 0.957 }, { "start": 4301.24, "end": 4305.14, "probability": 0.932 }, { "start": 4305.3, "end": 4305.8, "probability": 0.8482 }, { "start": 4306.22, "end": 4308.24, "probability": 0.9939 }, { "start": 4308.4, "end": 4308.9, "probability": 0.5084 }, { "start": 4308.96, "end": 4309.58, "probability": 0.7154 }, { "start": 4309.64, "end": 4310.78, "probability": 0.9895 }, { "start": 4311.42, "end": 4315.18, "probability": 0.9785 }, { "start": 4315.74, "end": 4319.48, "probability": 0.9983 }, { "start": 4319.6, "end": 4323.98, "probability": 0.9878 }, { "start": 4323.98, "end": 4327.5, "probability": 0.9982 }, { "start": 4327.76, "end": 4329.34, "probability": 0.9749 }, { "start": 4329.84, "end": 4331.48, "probability": 0.9854 }, { "start": 4332.44, "end": 4336.34, "probability": 0.9808 }, { "start": 4336.34, "end": 4339.62, "probability": 0.9972 }, { "start": 4340.26, "end": 4344.32, "probability": 0.9832 }, { "start": 4344.58, "end": 4345.66, "probability": 0.7284 }, { "start": 4346.26, "end": 4348.82, "probability": 0.9844 }, { "start": 4349.62, "end": 4352.78, "probability": 0.8551 }, { "start": 4353.98, "end": 4357.48, "probability": 0.6793 }, { "start": 4357.48, "end": 4363.34, "probability": 0.8547 }, { "start": 4363.74, "end": 4369.1, "probability": 0.8744 }, { "start": 4369.18, "end": 4370.42, "probability": 0.8706 }, { "start": 4370.92, "end": 4375.98, "probability": 0.9866 }, { "start": 4376.54, "end": 4378.48, "probability": 0.9601 }, { "start": 4378.68, "end": 4381.3, "probability": 0.9892 }, { "start": 4381.74, "end": 4384.28, "probability": 0.7901 }, { "start": 4384.62, "end": 4389.04, "probability": 0.9941 }, { "start": 4389.68, "end": 4395.92, "probability": 0.9816 }, { "start": 4396.34, "end": 4397.48, "probability": 0.7643 }, { "start": 4397.9, "end": 4400.16, "probability": 0.9254 }, { "start": 4400.76, "end": 4402.9, "probability": 0.9723 }, { "start": 4403.14, "end": 4407.6, "probability": 0.8376 }, { "start": 4407.78, "end": 4409.06, "probability": 0.8755 }, { "start": 4409.14, "end": 4414.32, "probability": 0.8862 }, { "start": 4414.42, "end": 4417.98, "probability": 0.9846 }, { "start": 4418.02, "end": 4420.38, "probability": 0.7048 }, { "start": 4420.84, "end": 4421.7, "probability": 0.9304 }, { "start": 4422.04, "end": 4423.34, "probability": 0.9054 }, { "start": 4423.5, "end": 4424.16, "probability": 0.8098 }, { "start": 4424.26, "end": 4424.94, "probability": 0.7797 }, { "start": 4425.34, "end": 4429.0, "probability": 0.9746 }, { "start": 4429.46, "end": 4432.7, "probability": 0.8957 }, { "start": 4432.98, "end": 4433.75, "probability": 0.7034 }, { "start": 4434.6, "end": 4441.74, "probability": 0.9268 }, { "start": 4442.5, "end": 4445.2, "probability": 0.929 }, { "start": 4445.4, "end": 4446.32, "probability": 0.8068 }, { "start": 4446.42, "end": 4449.22, "probability": 0.7937 }, { "start": 4449.24, "end": 4452.68, "probability": 0.932 }, { "start": 4453.02, "end": 4455.04, "probability": 0.8665 }, { "start": 4455.44, "end": 4456.88, "probability": 0.9031 }, { "start": 4457.36, "end": 4459.7, "probability": 0.9944 }, { "start": 4459.8, "end": 4460.06, "probability": 0.8565 }, { "start": 4460.56, "end": 4461.38, "probability": 0.3813 }, { "start": 4462.42, "end": 4463.9, "probability": 0.4667 }, { "start": 4464.02, "end": 4464.12, "probability": 0.5501 }, { "start": 4464.3, "end": 4465.26, "probability": 0.927 }, { "start": 4465.38, "end": 4465.56, "probability": 0.844 }, { "start": 4465.68, "end": 4467.0, "probability": 0.6436 }, { "start": 4467.04, "end": 4467.26, "probability": 0.8446 }, { "start": 4467.38, "end": 4468.2, "probability": 0.8002 }, { "start": 4468.3, "end": 4468.54, "probability": 0.7768 }, { "start": 4469.24, "end": 4470.16, "probability": 0.926 }, { "start": 4470.92, "end": 4471.72, "probability": 0.3494 }, { "start": 4472.04, "end": 4474.5, "probability": 0.7813 }, { "start": 4489.7, "end": 4490.6, "probability": 0.7838 }, { "start": 4491.14, "end": 4492.98, "probability": 0.7186 }, { "start": 4494.48, "end": 4502.48, "probability": 0.9927 }, { "start": 4503.4, "end": 4503.68, "probability": 0.8683 }, { "start": 4505.42, "end": 4510.96, "probability": 0.9852 }, { "start": 4511.04, "end": 4513.68, "probability": 0.9427 }, { "start": 4515.6, "end": 4516.46, "probability": 0.8999 }, { "start": 4516.52, "end": 4519.3, "probability": 0.9283 }, { "start": 4519.94, "end": 4524.18, "probability": 0.9796 }, { "start": 4524.26, "end": 4525.8, "probability": 0.8672 }, { "start": 4526.62, "end": 4529.06, "probability": 0.9784 }, { "start": 4529.84, "end": 4530.6, "probability": 0.9833 }, { "start": 4530.72, "end": 4532.14, "probability": 0.9773 }, { "start": 4532.24, "end": 4535.78, "probability": 0.9554 }, { "start": 4536.76, "end": 4545.58, "probability": 0.9619 }, { "start": 4546.74, "end": 4548.02, "probability": 0.9887 }, { "start": 4548.94, "end": 4550.18, "probability": 0.7427 }, { "start": 4551.46, "end": 4553.28, "probability": 0.6665 }, { "start": 4554.34, "end": 4556.0, "probability": 0.8881 }, { "start": 4556.88, "end": 4560.2, "probability": 0.9794 }, { "start": 4560.36, "end": 4563.55, "probability": 0.999 }, { "start": 4564.24, "end": 4567.26, "probability": 0.9784 }, { "start": 4567.92, "end": 4569.78, "probability": 0.9978 }, { "start": 4570.38, "end": 4572.74, "probability": 0.9885 }, { "start": 4573.53, "end": 4577.18, "probability": 0.9919 }, { "start": 4578.06, "end": 4578.5, "probability": 0.6966 }, { "start": 4578.58, "end": 4580.06, "probability": 0.9913 }, { "start": 4580.48, "end": 4582.24, "probability": 0.8528 }, { "start": 4583.1, "end": 4583.58, "probability": 0.9616 }, { "start": 4584.42, "end": 4585.14, "probability": 0.7598 }, { "start": 4585.9, "end": 4586.88, "probability": 0.832 }, { "start": 4587.22, "end": 4590.3, "probability": 0.9771 }, { "start": 4590.38, "end": 4591.04, "probability": 0.7458 }, { "start": 4591.16, "end": 4591.28, "probability": 0.7334 }, { "start": 4591.86, "end": 4592.84, "probability": 0.8315 }, { "start": 4593.74, "end": 4595.52, "probability": 0.8448 }, { "start": 4595.82, "end": 4599.26, "probability": 0.9586 }, { "start": 4599.44, "end": 4600.76, "probability": 0.8665 }, { "start": 4601.42, "end": 4604.52, "probability": 0.9871 }, { "start": 4605.0, "end": 4606.62, "probability": 0.8478 }, { "start": 4606.7, "end": 4606.96, "probability": 0.4067 }, { "start": 4607.64, "end": 4609.12, "probability": 0.3674 }, { "start": 4609.3, "end": 4609.92, "probability": 0.8218 }, { "start": 4610.48, "end": 4613.2, "probability": 0.9703 }, { "start": 4614.26, "end": 4615.38, "probability": 0.9326 }, { "start": 4616.76, "end": 4618.87, "probability": 0.4945 }, { "start": 4619.46, "end": 4620.54, "probability": 0.7249 }, { "start": 4622.46, "end": 4624.1, "probability": 0.6683 }, { "start": 4624.36, "end": 4627.38, "probability": 0.4291 }, { "start": 4627.38, "end": 4627.78, "probability": 0.7085 }, { "start": 4627.86, "end": 4628.18, "probability": 0.835 }, { "start": 4628.24, "end": 4629.44, "probability": 0.8601 }, { "start": 4629.88, "end": 4631.0, "probability": 0.9824 }, { "start": 4631.08, "end": 4635.04, "probability": 0.8491 }, { "start": 4635.9, "end": 4638.22, "probability": 0.9671 }, { "start": 4638.22, "end": 4641.46, "probability": 0.988 }, { "start": 4641.82, "end": 4644.66, "probability": 0.9666 }, { "start": 4644.7, "end": 4646.56, "probability": 0.9924 }, { "start": 4648.44, "end": 4649.34, "probability": 0.7099 }, { "start": 4650.1, "end": 4651.44, "probability": 0.7077 }, { "start": 4652.22, "end": 4654.48, "probability": 0.86 }, { "start": 4655.06, "end": 4657.48, "probability": 0.978 }, { "start": 4658.24, "end": 4660.24, "probability": 0.9063 }, { "start": 4660.76, "end": 4663.9, "probability": 0.8068 }, { "start": 4664.02, "end": 4665.28, "probability": 0.9642 }, { "start": 4665.78, "end": 4667.12, "probability": 0.988 }, { "start": 4667.82, "end": 4668.16, "probability": 0.9279 }, { "start": 4668.54, "end": 4669.2, "probability": 0.8384 }, { "start": 4669.26, "end": 4670.12, "probability": 0.8953 }, { "start": 4670.28, "end": 4671.9, "probability": 0.9838 }, { "start": 4672.38, "end": 4675.3, "probability": 0.9842 }, { "start": 4676.2, "end": 4676.98, "probability": 0.947 }, { "start": 4677.76, "end": 4680.92, "probability": 0.9976 }, { "start": 4681.04, "end": 4683.22, "probability": 0.9555 }, { "start": 4683.38, "end": 4684.86, "probability": 0.9741 }, { "start": 4685.34, "end": 4688.9, "probability": 0.983 }, { "start": 4688.9, "end": 4691.88, "probability": 0.9771 }, { "start": 4693.76, "end": 4696.4, "probability": 0.7065 }, { "start": 4698.46, "end": 4699.32, "probability": 0.43 }, { "start": 4700.72, "end": 4702.4, "probability": 0.1309 }, { "start": 4702.4, "end": 4702.4, "probability": 0.0237 }, { "start": 4702.4, "end": 4702.4, "probability": 0.0762 }, { "start": 4702.4, "end": 4704.16, "probability": 0.709 }, { "start": 4704.26, "end": 4705.02, "probability": 0.9103 }, { "start": 4705.04, "end": 4707.84, "probability": 0.9868 }, { "start": 4709.3, "end": 4711.46, "probability": 0.9479 }, { "start": 4711.8, "end": 4712.82, "probability": 0.9928 }, { "start": 4712.98, "end": 4713.28, "probability": 0.2336 }, { "start": 4713.42, "end": 4714.04, "probability": 0.734 }, { "start": 4714.28, "end": 4715.47, "probability": 0.7565 }, { "start": 4715.86, "end": 4716.36, "probability": 0.7442 }, { "start": 4716.96, "end": 4721.36, "probability": 0.9938 }, { "start": 4722.34, "end": 4722.34, "probability": 0.0725 }, { "start": 4722.34, "end": 4724.44, "probability": 0.8615 }, { "start": 4724.56, "end": 4728.12, "probability": 0.9538 }, { "start": 4728.12, "end": 4730.32, "probability": 0.9993 }, { "start": 4730.36, "end": 4731.56, "probability": 0.9256 }, { "start": 4731.62, "end": 4732.16, "probability": 0.9558 }, { "start": 4733.24, "end": 4733.68, "probability": 0.4436 }, { "start": 4733.76, "end": 4734.44, "probability": 0.6885 }, { "start": 4735.4, "end": 4736.14, "probability": 0.8865 }, { "start": 4736.34, "end": 4737.06, "probability": 0.9742 }, { "start": 4737.26, "end": 4739.36, "probability": 0.0288 }, { "start": 4739.4, "end": 4742.38, "probability": 0.6455 }, { "start": 4742.44, "end": 4743.71, "probability": 0.8994 }, { "start": 4743.92, "end": 4744.84, "probability": 0.4987 }, { "start": 4746.5, "end": 4747.9, "probability": 0.6744 }, { "start": 4748.62, "end": 4748.62, "probability": 0.6865 }, { "start": 4749.44, "end": 4752.5, "probability": 0.5871 }, { "start": 4753.06, "end": 4758.26, "probability": 0.9966 }, { "start": 4758.68, "end": 4761.68, "probability": 0.9317 }, { "start": 4762.02, "end": 4766.17, "probability": 0.8406 }, { "start": 4766.54, "end": 4768.1, "probability": 0.9933 }, { "start": 4768.26, "end": 4768.4, "probability": 0.4244 }, { "start": 4768.4, "end": 4771.38, "probability": 0.9447 }, { "start": 4771.42, "end": 4776.06, "probability": 0.9601 }, { "start": 4776.58, "end": 4777.84, "probability": 0.7194 }, { "start": 4778.04, "end": 4778.46, "probability": 0.6924 }, { "start": 4778.76, "end": 4780.12, "probability": 0.9545 }, { "start": 4780.64, "end": 4782.42, "probability": 0.8372 }, { "start": 4783.1, "end": 4783.44, "probability": 0.2112 }, { "start": 4783.6, "end": 4784.32, "probability": 0.1126 }, { "start": 4785.18, "end": 4786.09, "probability": 0.3055 }, { "start": 4786.58, "end": 4788.14, "probability": 0.3023 }, { "start": 4788.3, "end": 4788.6, "probability": 0.0459 }, { "start": 4788.6, "end": 4788.7, "probability": 0.1269 }, { "start": 4788.7, "end": 4789.2, "probability": 0.4657 }, { "start": 4789.32, "end": 4791.42, "probability": 0.8639 }, { "start": 4791.46, "end": 4791.9, "probability": 0.3461 }, { "start": 4791.92, "end": 4793.7, "probability": 0.5886 }, { "start": 4794.6, "end": 4795.88, "probability": 0.6086 }, { "start": 4796.42, "end": 4800.88, "probability": 0.8265 }, { "start": 4801.48, "end": 4804.18, "probability": 0.8868 }, { "start": 4804.78, "end": 4805.32, "probability": 0.9111 }, { "start": 4806.02, "end": 4808.76, "probability": 0.8911 }, { "start": 4808.88, "end": 4810.1, "probability": 0.7916 }, { "start": 4822.14, "end": 4822.14, "probability": 0.199 }, { "start": 4823.2, "end": 4824.6, "probability": 0.2236 }, { "start": 4825.24, "end": 4826.02, "probability": 0.8499 }, { "start": 4826.2, "end": 4827.41, "probability": 0.0678 }, { "start": 4828.1, "end": 4828.24, "probability": 0.1248 }, { "start": 4830.12, "end": 4830.3, "probability": 0.0684 }, { "start": 4836.68, "end": 4837.18, "probability": 0.0115 }, { "start": 4837.22, "end": 4840.2, "probability": 0.5906 }, { "start": 4843.98, "end": 4844.5, "probability": 0.4827 }, { "start": 4846.61, "end": 4849.4, "probability": 0.9727 }, { "start": 4850.14, "end": 4850.6, "probability": 0.9752 }, { "start": 4851.66, "end": 4852.9, "probability": 0.7741 }, { "start": 4854.92, "end": 4858.32, "probability": 0.9971 }, { "start": 4859.88, "end": 4860.44, "probability": 0.5085 }, { "start": 4860.56, "end": 4861.1, "probability": 0.7601 }, { "start": 4861.44, "end": 4863.04, "probability": 0.9868 }, { "start": 4864.8, "end": 4869.52, "probability": 0.9871 }, { "start": 4870.36, "end": 4873.1, "probability": 0.7419 }, { "start": 4874.2, "end": 4875.92, "probability": 0.8717 }, { "start": 4876.98, "end": 4877.66, "probability": 0.8949 }, { "start": 4878.44, "end": 4880.64, "probability": 0.8795 }, { "start": 4881.16, "end": 4882.56, "probability": 0.9772 }, { "start": 4882.78, "end": 4883.58, "probability": 0.9264 }, { "start": 4883.72, "end": 4884.23, "probability": 0.7551 }, { "start": 4884.38, "end": 4885.24, "probability": 0.8572 }, { "start": 4886.08, "end": 4889.1, "probability": 0.9385 }, { "start": 4890.74, "end": 4891.28, "probability": 0.8842 }, { "start": 4892.26, "end": 4895.2, "probability": 0.9818 }, { "start": 4896.38, "end": 4897.64, "probability": 0.9163 }, { "start": 4898.22, "end": 4900.2, "probability": 0.9413 }, { "start": 4901.22, "end": 4902.28, "probability": 0.9332 }, { "start": 4903.34, "end": 4906.48, "probability": 0.7685 }, { "start": 4906.54, "end": 4910.56, "probability": 0.9727 }, { "start": 4910.68, "end": 4910.68, "probability": 0.3222 }, { "start": 4910.68, "end": 4911.02, "probability": 0.8844 }, { "start": 4913.1, "end": 4913.22, "probability": 0.1429 }, { "start": 4913.22, "end": 4913.22, "probability": 0.3821 }, { "start": 4913.22, "end": 4913.22, "probability": 0.1512 }, { "start": 4913.22, "end": 4915.52, "probability": 0.7754 }, { "start": 4915.8, "end": 4918.48, "probability": 0.9373 }, { "start": 4918.52, "end": 4920.1, "probability": 0.9528 }, { "start": 4921.76, "end": 4925.4, "probability": 0.8983 }, { "start": 4925.4, "end": 4925.56, "probability": 0.0853 }, { "start": 4926.96, "end": 4927.56, "probability": 0.776 }, { "start": 4927.56, "end": 4928.36, "probability": 0.8631 }, { "start": 4928.54, "end": 4929.7, "probability": 0.8121 }, { "start": 4929.72, "end": 4931.34, "probability": 0.7265 }, { "start": 4931.42, "end": 4932.4, "probability": 0.9619 }, { "start": 4933.44, "end": 4937.54, "probability": 0.9764 }, { "start": 4937.6, "end": 4939.12, "probability": 0.871 }, { "start": 4939.14, "end": 4939.3, "probability": 0.7654 }, { "start": 4939.32, "end": 4939.52, "probability": 0.8963 }, { "start": 4939.58, "end": 4942.32, "probability": 0.9338 }, { "start": 4942.46, "end": 4942.76, "probability": 0.6006 }, { "start": 4944.28, "end": 4948.9, "probability": 0.9825 }, { "start": 4949.92, "end": 4951.88, "probability": 0.917 }, { "start": 4953.63, "end": 4955.9, "probability": 0.8281 }, { "start": 4956.64, "end": 4958.4, "probability": 0.897 }, { "start": 4959.2, "end": 4960.4, "probability": 0.9604 }, { "start": 4961.62, "end": 4961.62, "probability": 0.5218 }, { "start": 4961.78, "end": 4962.56, "probability": 0.9421 }, { "start": 4962.66, "end": 4963.9, "probability": 0.9612 }, { "start": 4963.96, "end": 4964.74, "probability": 0.9659 }, { "start": 4964.78, "end": 4965.58, "probability": 0.9861 }, { "start": 4966.28, "end": 4968.46, "probability": 0.8197 }, { "start": 4969.36, "end": 4970.82, "probability": 0.9438 }, { "start": 4971.34, "end": 4972.82, "probability": 0.7542 }, { "start": 4972.86, "end": 4975.22, "probability": 0.9648 }, { "start": 4975.52, "end": 4977.44, "probability": 0.9924 }, { "start": 4978.04, "end": 4978.91, "probability": 0.4271 }, { "start": 4979.08, "end": 4979.32, "probability": 0.7253 }, { "start": 4982.68, "end": 4983.9, "probability": 0.7296 }, { "start": 4984.12, "end": 4985.18, "probability": 0.677 }, { "start": 4987.84, "end": 4993.08, "probability": 0.8799 }, { "start": 4993.88, "end": 4995.0, "probability": 0.7103 }, { "start": 4995.0, "end": 4996.74, "probability": 0.9951 }, { "start": 5013.28, "end": 5014.68, "probability": 0.7654 }, { "start": 5016.96, "end": 5018.46, "probability": 0.9608 }, { "start": 5019.08, "end": 5019.99, "probability": 0.8628 }, { "start": 5021.6, "end": 5021.96, "probability": 0.9341 }, { "start": 5022.94, "end": 5023.28, "probability": 0.5407 }, { "start": 5024.04, "end": 5024.54, "probability": 0.9558 }, { "start": 5025.84, "end": 5029.56, "probability": 0.9953 }, { "start": 5030.16, "end": 5031.12, "probability": 0.9368 }, { "start": 5031.28, "end": 5032.38, "probability": 0.6825 }, { "start": 5032.56, "end": 5035.18, "probability": 0.7906 }, { "start": 5036.56, "end": 5039.37, "probability": 0.8447 }, { "start": 5040.74, "end": 5042.22, "probability": 0.9606 }, { "start": 5042.92, "end": 5044.22, "probability": 0.777 }, { "start": 5045.02, "end": 5046.74, "probability": 0.9979 }, { "start": 5047.8, "end": 5048.9, "probability": 0.945 }, { "start": 5050.46, "end": 5051.06, "probability": 0.6235 }, { "start": 5051.18, "end": 5054.84, "probability": 0.9961 }, { "start": 5055.58, "end": 5057.46, "probability": 0.9607 }, { "start": 5058.76, "end": 5059.56, "probability": 0.9386 }, { "start": 5060.46, "end": 5061.44, "probability": 0.7513 }, { "start": 5062.14, "end": 5064.36, "probability": 0.8226 }, { "start": 5065.82, "end": 5066.62, "probability": 0.9807 }, { "start": 5067.04, "end": 5068.62, "probability": 0.8777 }, { "start": 5068.94, "end": 5071.34, "probability": 0.9852 }, { "start": 5071.94, "end": 5074.96, "probability": 0.9307 }, { "start": 5076.02, "end": 5077.6, "probability": 0.875 }, { "start": 5078.98, "end": 5083.82, "probability": 0.9922 }, { "start": 5084.28, "end": 5085.06, "probability": 0.7887 }, { "start": 5085.82, "end": 5086.48, "probability": 0.8315 }, { "start": 5087.18, "end": 5089.56, "probability": 0.966 }, { "start": 5090.2, "end": 5090.9, "probability": 0.8072 }, { "start": 5092.14, "end": 5095.36, "probability": 0.9613 }, { "start": 5095.94, "end": 5100.9, "probability": 0.7875 }, { "start": 5101.48, "end": 5104.1, "probability": 0.851 }, { "start": 5105.06, "end": 5105.6, "probability": 0.9471 }, { "start": 5107.02, "end": 5108.38, "probability": 0.8248 }, { "start": 5109.32, "end": 5110.3, "probability": 0.884 }, { "start": 5111.06, "end": 5111.68, "probability": 0.9685 }, { "start": 5112.72, "end": 5115.34, "probability": 0.9897 }, { "start": 5116.38, "end": 5117.5, "probability": 0.7463 }, { "start": 5119.42, "end": 5120.86, "probability": 0.9747 }, { "start": 5121.02, "end": 5121.8, "probability": 0.7821 }, { "start": 5122.24, "end": 5124.82, "probability": 0.8086 }, { "start": 5125.18, "end": 5127.58, "probability": 0.9971 }, { "start": 5127.76, "end": 5129.68, "probability": 0.9667 }, { "start": 5130.2, "end": 5132.64, "probability": 0.9033 }, { "start": 5132.92, "end": 5134.6, "probability": 0.9961 }, { "start": 5134.92, "end": 5139.6, "probability": 0.7801 }, { "start": 5140.0, "end": 5140.06, "probability": 0.6221 }, { "start": 5140.18, "end": 5144.2, "probability": 0.9966 }, { "start": 5144.52, "end": 5144.72, "probability": 0.8931 }, { "start": 5145.34, "end": 5146.3, "probability": 0.8317 }, { "start": 5147.22, "end": 5147.42, "probability": 0.8372 }, { "start": 5148.04, "end": 5150.68, "probability": 0.9846 }, { "start": 5151.38, "end": 5152.6, "probability": 0.932 }, { "start": 5153.12, "end": 5154.22, "probability": 0.9386 }, { "start": 5156.76, "end": 5156.94, "probability": 0.2542 }, { "start": 5157.44, "end": 5158.1, "probability": 0.8568 }, { "start": 5159.26, "end": 5159.88, "probability": 0.967 }, { "start": 5161.72, "end": 5164.0, "probability": 0.9835 }, { "start": 5165.16, "end": 5165.84, "probability": 0.9934 }, { "start": 5167.34, "end": 5168.56, "probability": 0.9872 }, { "start": 5169.32, "end": 5169.98, "probability": 0.3941 }, { "start": 5170.78, "end": 5172.4, "probability": 0.9573 }, { "start": 5173.16, "end": 5175.66, "probability": 0.9264 }, { "start": 5175.8, "end": 5176.78, "probability": 0.9753 }, { "start": 5177.56, "end": 5178.5, "probability": 0.9556 }, { "start": 5180.18, "end": 5180.9, "probability": 0.9213 }, { "start": 5182.58, "end": 5183.0, "probability": 0.9609 }, { "start": 5183.08, "end": 5183.8, "probability": 0.8354 }, { "start": 5184.02, "end": 5184.65, "probability": 0.9727 }, { "start": 5185.34, "end": 5186.38, "probability": 0.3291 }, { "start": 5186.96, "end": 5191.66, "probability": 0.9934 }, { "start": 5192.88, "end": 5193.58, "probability": 0.958 }, { "start": 5194.34, "end": 5194.64, "probability": 0.895 }, { "start": 5195.64, "end": 5198.06, "probability": 0.972 }, { "start": 5199.02, "end": 5203.28, "probability": 0.9752 }, { "start": 5204.02, "end": 5205.34, "probability": 0.991 }, { "start": 5205.94, "end": 5207.56, "probability": 0.9764 }, { "start": 5208.04, "end": 5208.99, "probability": 0.4524 }, { "start": 5209.26, "end": 5209.96, "probability": 0.6129 }, { "start": 5210.06, "end": 5212.82, "probability": 0.958 }, { "start": 5212.9, "end": 5215.94, "probability": 0.3684 }, { "start": 5223.96, "end": 5225.5, "probability": 0.0681 }, { "start": 5230.84, "end": 5230.86, "probability": 0.0362 }, { "start": 5230.86, "end": 5230.86, "probability": 0.1161 }, { "start": 5230.86, "end": 5230.88, "probability": 0.1997 }, { "start": 5230.88, "end": 5230.88, "probability": 0.067 }, { "start": 5230.88, "end": 5230.9, "probability": 0.2157 }, { "start": 5230.9, "end": 5230.9, "probability": 0.0247 }, { "start": 5239.84, "end": 5240.08, "probability": 0.0844 }, { "start": 5247.02, "end": 5247.55, "probability": 0.171 }, { "start": 5258.64, "end": 5262.82, "probability": 0.613 }, { "start": 5264.64, "end": 5268.72, "probability": 0.9955 }, { "start": 5269.9, "end": 5270.88, "probability": 0.9805 }, { "start": 5274.5, "end": 5275.54, "probability": 0.6495 }, { "start": 5276.14, "end": 5278.16, "probability": 0.9976 }, { "start": 5278.28, "end": 5282.06, "probability": 0.991 }, { "start": 5283.82, "end": 5288.84, "probability": 0.9946 }, { "start": 5290.04, "end": 5291.64, "probability": 0.9959 }, { "start": 5292.28, "end": 5294.26, "probability": 0.7131 }, { "start": 5294.42, "end": 5295.5, "probability": 0.9873 }, { "start": 5296.88, "end": 5298.84, "probability": 0.9741 }, { "start": 5299.48, "end": 5300.84, "probability": 0.8438 }, { "start": 5302.02, "end": 5304.08, "probability": 0.9922 }, { "start": 5305.24, "end": 5306.86, "probability": 0.9956 }, { "start": 5308.12, "end": 5308.74, "probability": 0.4997 }, { "start": 5310.52, "end": 5311.56, "probability": 0.8855 }, { "start": 5311.64, "end": 5313.82, "probability": 0.9285 }, { "start": 5314.22, "end": 5314.74, "probability": 0.9496 }, { "start": 5314.84, "end": 5315.58, "probability": 0.6143 }, { "start": 5315.6, "end": 5316.5, "probability": 0.9932 }, { "start": 5318.14, "end": 5320.84, "probability": 0.9955 }, { "start": 5320.84, "end": 5324.56, "probability": 0.7626 }, { "start": 5326.14, "end": 5327.4, "probability": 0.9963 }, { "start": 5328.36, "end": 5329.18, "probability": 0.7285 }, { "start": 5329.58, "end": 5330.66, "probability": 0.8768 }, { "start": 5332.22, "end": 5336.9, "probability": 0.9655 }, { "start": 5338.1, "end": 5339.3, "probability": 0.9998 }, { "start": 5339.9, "end": 5342.34, "probability": 0.9991 }, { "start": 5343.36, "end": 5344.78, "probability": 0.9509 }, { "start": 5345.66, "end": 5347.32, "probability": 0.9528 }, { "start": 5348.54, "end": 5351.4, "probability": 0.9969 }, { "start": 5351.6, "end": 5356.78, "probability": 0.9343 }, { "start": 5356.86, "end": 5356.96, "probability": 0.7386 }, { "start": 5358.62, "end": 5360.15, "probability": 0.9918 }, { "start": 5361.5, "end": 5364.08, "probability": 0.9701 }, { "start": 5365.5, "end": 5372.6, "probability": 0.9963 }, { "start": 5372.72, "end": 5373.3, "probability": 0.2632 }, { "start": 5373.34, "end": 5373.88, "probability": 0.8432 }, { "start": 5373.96, "end": 5374.7, "probability": 0.8258 }, { "start": 5375.42, "end": 5376.14, "probability": 0.9757 }, { "start": 5377.5, "end": 5379.54, "probability": 0.9019 }, { "start": 5380.7, "end": 5382.02, "probability": 0.9902 }, { "start": 5383.18, "end": 5387.44, "probability": 0.9939 }, { "start": 5388.9, "end": 5391.62, "probability": 0.9899 }, { "start": 5392.2, "end": 5396.24, "probability": 0.9774 }, { "start": 5397.04, "end": 5398.21, "probability": 0.9972 }, { "start": 5399.14, "end": 5400.96, "probability": 0.9206 }, { "start": 5401.8, "end": 5405.54, "probability": 0.9726 }, { "start": 5407.06, "end": 5409.66, "probability": 0.9967 }, { "start": 5410.3, "end": 5411.16, "probability": 0.7541 }, { "start": 5411.86, "end": 5412.56, "probability": 0.7337 }, { "start": 5413.08, "end": 5414.22, "probability": 0.9269 }, { "start": 5414.88, "end": 5416.34, "probability": 0.9601 }, { "start": 5417.0, "end": 5420.29, "probability": 0.9685 }, { "start": 5421.13, "end": 5423.4, "probability": 0.9004 }, { "start": 5423.74, "end": 5424.12, "probability": 0.0142 }, { "start": 5424.6, "end": 5425.82, "probability": 0.2984 }, { "start": 5426.72, "end": 5426.76, "probability": 0.4369 }, { "start": 5427.02, "end": 5429.2, "probability": 0.9495 }, { "start": 5429.82, "end": 5431.32, "probability": 0.9458 }, { "start": 5432.34, "end": 5433.96, "probability": 0.874 }, { "start": 5434.94, "end": 5435.04, "probability": 0.2036 }, { "start": 5435.04, "end": 5436.26, "probability": 0.9014 }, { "start": 5438.06, "end": 5439.74, "probability": 0.5247 }, { "start": 5441.0, "end": 5441.94, "probability": 0.9174 }, { "start": 5442.6, "end": 5443.38, "probability": 0.3565 }, { "start": 5444.08, "end": 5446.86, "probability": 0.9827 }, { "start": 5447.74, "end": 5449.32, "probability": 0.6557 }, { "start": 5449.52, "end": 5452.6, "probability": 0.9487 }, { "start": 5453.26, "end": 5455.64, "probability": 0.9125 }, { "start": 5456.68, "end": 5457.75, "probability": 0.6595 }, { "start": 5458.6, "end": 5460.9, "probability": 0.9897 }, { "start": 5461.54, "end": 5462.72, "probability": 0.9217 }, { "start": 5463.86, "end": 5467.58, "probability": 0.829 }, { "start": 5468.26, "end": 5471.72, "probability": 0.9639 }, { "start": 5471.78, "end": 5472.64, "probability": 0.843 }, { "start": 5473.02, "end": 5473.82, "probability": 0.9715 }, { "start": 5474.9, "end": 5476.39, "probability": 0.628 }, { "start": 5477.36, "end": 5478.72, "probability": 0.4978 }, { "start": 5479.82, "end": 5482.04, "probability": 0.9686 }, { "start": 5483.08, "end": 5484.34, "probability": 0.7658 }, { "start": 5484.68, "end": 5485.84, "probability": 0.9482 }, { "start": 5486.66, "end": 5491.04, "probability": 0.9891 }, { "start": 5491.54, "end": 5492.81, "probability": 0.9795 }, { "start": 5493.94, "end": 5495.64, "probability": 0.58 }, { "start": 5496.4, "end": 5497.64, "probability": 0.9613 }, { "start": 5498.26, "end": 5502.82, "probability": 0.9883 }, { "start": 5502.82, "end": 5506.88, "probability": 0.9928 }, { "start": 5507.38, "end": 5507.9, "probability": 0.3543 }, { "start": 5509.08, "end": 5509.82, "probability": 0.8062 }, { "start": 5511.5, "end": 5513.5, "probability": 0.9189 }, { "start": 5514.3, "end": 5516.4, "probability": 0.856 }, { "start": 5516.88, "end": 5517.24, "probability": 0.9757 }, { "start": 5517.8, "end": 5518.94, "probability": 0.9543 }, { "start": 5519.58, "end": 5521.08, "probability": 0.953 }, { "start": 5521.22, "end": 5526.06, "probability": 0.8602 }, { "start": 5526.56, "end": 5527.6, "probability": 0.8369 }, { "start": 5527.74, "end": 5528.34, "probability": 0.7015 }, { "start": 5529.62, "end": 5530.82, "probability": 0.8953 }, { "start": 5531.38, "end": 5537.1, "probability": 0.9604 }, { "start": 5537.52, "end": 5538.46, "probability": 0.8853 }, { "start": 5539.4, "end": 5541.28, "probability": 0.8093 }, { "start": 5541.38, "end": 5541.98, "probability": 0.8298 }, { "start": 5542.88, "end": 5544.3, "probability": 0.9006 }, { "start": 5544.56, "end": 5546.92, "probability": 0.9733 }, { "start": 5546.96, "end": 5548.44, "probability": 0.752 }, { "start": 5548.52, "end": 5549.22, "probability": 0.0195 }, { "start": 5550.5, "end": 5550.96, "probability": 0.2731 }, { "start": 5551.14, "end": 5551.82, "probability": 0.6271 }, { "start": 5551.86, "end": 5556.56, "probability": 0.9437 }, { "start": 5557.28, "end": 5560.98, "probability": 0.97 }, { "start": 5568.32, "end": 5569.22, "probability": 0.4462 }, { "start": 5570.18, "end": 5570.66, "probability": 0.6548 }, { "start": 5571.68, "end": 5572.66, "probability": 0.7622 }, { "start": 5572.7, "end": 5572.98, "probability": 0.9287 }, { "start": 5573.08, "end": 5574.08, "probability": 0.7879 }, { "start": 5574.08, "end": 5574.42, "probability": 0.7577 }, { "start": 5574.48, "end": 5575.4, "probability": 0.9749 }, { "start": 5575.46, "end": 5575.56, "probability": 0.8798 }, { "start": 5575.82, "end": 5577.92, "probability": 0.9604 }, { "start": 5579.26, "end": 5580.0, "probability": 0.6246 }, { "start": 5580.72, "end": 5581.32, "probability": 0.9022 }, { "start": 5582.3, "end": 5586.04, "probability": 0.9845 }, { "start": 5590.7, "end": 5591.28, "probability": 0.5156 }, { "start": 5591.8, "end": 5597.78, "probability": 0.7075 }, { "start": 5598.48, "end": 5600.9, "probability": 0.8658 }, { "start": 5601.6, "end": 5604.58, "probability": 0.9619 }, { "start": 5605.14, "end": 5606.98, "probability": 0.9396 }, { "start": 5607.68, "end": 5610.42, "probability": 0.7927 }, { "start": 5610.78, "end": 5610.96, "probability": 0.945 }, { "start": 5629.45, "end": 5632.86, "probability": 0.039 }, { "start": 5634.44, "end": 5639.37, "probability": 0.0071 }, { "start": 5641.63, "end": 5644.22, "probability": 0.6344 }, { "start": 5661.5, "end": 5662.4, "probability": 0.0717 }, { "start": 5663.44, "end": 5666.86, "probability": 0.2525 }, { "start": 5667.0, "end": 5670.1, "probability": 0.1649 }, { "start": 5670.74, "end": 5672.98, "probability": 0.1821 }, { "start": 5679.22, "end": 5679.54, "probability": 0.0 }, { "start": 5680.36, "end": 5682.04, "probability": 0.1767 }, { "start": 5682.64, "end": 5685.28, "probability": 0.1153 }, { "start": 5687.37, "end": 5689.36, "probability": 0.07 }, { "start": 5693.66, "end": 5694.98, "probability": 0.1634 }, { "start": 5696.26, "end": 5700.12, "probability": 0.0689 }, { "start": 5700.7, "end": 5701.96, "probability": 0.076 }, { "start": 5703.72, "end": 5704.78, "probability": 0.0 }, { "start": 5705.0, "end": 5705.0, "probability": 0.0 }, { "start": 5705.0, "end": 5705.0, "probability": 0.0 }, { "start": 5705.0, "end": 5705.0, "probability": 0.0 }, { "start": 5705.0, "end": 5705.0, "probability": 0.0 }, { "start": 5705.0, "end": 5705.0, "probability": 0.0 }, { "start": 5705.0, "end": 5705.0, "probability": 0.0 }, { "start": 5705.0, "end": 5705.0, "probability": 0.0 }, { "start": 5705.0, "end": 5705.0, "probability": 0.0 }, { "start": 5705.0, "end": 5705.0, "probability": 0.0 }, { "start": 5705.0, "end": 5705.0, "probability": 0.0 }, { "start": 5705.0, "end": 5705.0, "probability": 0.0 }, { "start": 5705.12, "end": 5705.26, "probability": 0.1144 }, { "start": 5705.26, "end": 5707.56, "probability": 0.0622 }, { "start": 5707.56, "end": 5708.76, "probability": 0.694 }, { "start": 5718.82, "end": 5719.5, "probability": 0.722 }, { "start": 5719.68, "end": 5722.22, "probability": 0.9756 }, { "start": 5722.6, "end": 5724.04, "probability": 0.9912 }, { "start": 5724.2, "end": 5725.72, "probability": 0.9765 }, { "start": 5725.94, "end": 5726.84, "probability": 0.8833 }, { "start": 5727.82, "end": 5729.36, "probability": 0.9989 }, { "start": 5729.62, "end": 5729.78, "probability": 0.3726 }, { "start": 5730.88, "end": 5735.1, "probability": 0.8422 }, { "start": 5735.8, "end": 5738.38, "probability": 0.9168 }, { "start": 5739.4, "end": 5741.58, "probability": 0.891 }, { "start": 5742.22, "end": 5743.32, "probability": 0.8564 }, { "start": 5743.44, "end": 5746.54, "probability": 0.8554 }, { "start": 5747.24, "end": 5750.28, "probability": 0.9925 }, { "start": 5750.66, "end": 5752.74, "probability": 0.9571 }, { "start": 5753.24, "end": 5754.52, "probability": 0.9744 }, { "start": 5755.32, "end": 5757.44, "probability": 0.9214 }, { "start": 5758.0, "end": 5760.4, "probability": 0.9922 }, { "start": 5760.94, "end": 5763.86, "probability": 0.4595 }, { "start": 5765.02, "end": 5766.76, "probability": 0.7906 }, { "start": 5766.88, "end": 5768.66, "probability": 0.9898 }, { "start": 5768.66, "end": 5771.12, "probability": 0.9974 }, { "start": 5771.8, "end": 5773.16, "probability": 0.5703 }, { "start": 5774.64, "end": 5776.78, "probability": 0.601 }, { "start": 5777.2, "end": 5780.62, "probability": 0.9369 }, { "start": 5780.62, "end": 5783.44, "probability": 0.9969 }, { "start": 5784.2, "end": 5785.1, "probability": 0.5708 }, { "start": 5787.3, "end": 5789.94, "probability": 0.9774 }, { "start": 5790.9, "end": 5794.26, "probability": 0.9988 }, { "start": 5794.26, "end": 5798.7, "probability": 0.9915 }, { "start": 5798.88, "end": 5804.19, "probability": 0.9742 }, { "start": 5804.9, "end": 5805.5, "probability": 0.9065 }, { "start": 5806.82, "end": 5809.9, "probability": 0.894 }, { "start": 5810.8, "end": 5814.28, "probability": 0.9631 }, { "start": 5814.78, "end": 5818.12, "probability": 0.9983 }, { "start": 5818.7, "end": 5821.84, "probability": 0.9854 }, { "start": 5822.06, "end": 5828.56, "probability": 0.7627 }, { "start": 5828.6, "end": 5834.24, "probability": 0.9795 }, { "start": 5834.76, "end": 5837.18, "probability": 0.9975 }, { "start": 5837.18, "end": 5839.52, "probability": 0.9813 }, { "start": 5840.04, "end": 5843.14, "probability": 0.9941 }, { "start": 5843.14, "end": 5847.26, "probability": 0.991 }, { "start": 5847.78, "end": 5849.34, "probability": 0.9479 }, { "start": 5850.1, "end": 5850.68, "probability": 0.4719 }, { "start": 5850.98, "end": 5852.06, "probability": 0.9148 }, { "start": 5852.16, "end": 5855.32, "probability": 0.9769 }, { "start": 5855.78, "end": 5859.64, "probability": 0.8107 }, { "start": 5860.52, "end": 5862.84, "probability": 0.745 }, { "start": 5863.24, "end": 5864.9, "probability": 0.614 }, { "start": 5866.52, "end": 5867.98, "probability": 0.8782 }, { "start": 5868.68, "end": 5871.98, "probability": 0.8258 }, { "start": 5872.18, "end": 5872.66, "probability": 0.6908 }, { "start": 5873.32, "end": 5873.9, "probability": 0.8768 }, { "start": 5875.86, "end": 5877.98, "probability": 0.9943 }, { "start": 5908.96, "end": 5910.58, "probability": 0.6606 }, { "start": 5911.44, "end": 5912.42, "probability": 0.7332 }, { "start": 5913.32, "end": 5913.76, "probability": 0.6581 }, { "start": 5915.08, "end": 5918.48, "probability": 0.9249 }, { "start": 5918.52, "end": 5922.08, "probability": 0.8752 }, { "start": 5922.08, "end": 5924.22, "probability": 0.8463 }, { "start": 5924.82, "end": 5930.58, "probability": 0.9795 }, { "start": 5930.84, "end": 5931.88, "probability": 0.6444 }, { "start": 5932.0, "end": 5937.6, "probability": 0.9417 }, { "start": 5937.76, "end": 5939.16, "probability": 0.7905 }, { "start": 5939.88, "end": 5941.08, "probability": 0.8658 }, { "start": 5941.32, "end": 5942.23, "probability": 0.8055 }, { "start": 5942.44, "end": 5942.92, "probability": 0.468 }, { "start": 5942.98, "end": 5943.76, "probability": 0.5872 }, { "start": 5944.22, "end": 5945.32, "probability": 0.8729 }, { "start": 5945.94, "end": 5947.36, "probability": 0.8752 }, { "start": 5947.6, "end": 5948.44, "probability": 0.8516 }, { "start": 5948.58, "end": 5949.42, "probability": 0.8804 }, { "start": 5949.94, "end": 5954.96, "probability": 0.8887 }, { "start": 5955.66, "end": 5957.54, "probability": 0.8505 }, { "start": 5958.62, "end": 5959.82, "probability": 0.8672 }, { "start": 5960.16, "end": 5961.8, "probability": 0.9331 }, { "start": 5962.1, "end": 5964.48, "probability": 0.9713 }, { "start": 5964.6, "end": 5967.5, "probability": 0.9207 }, { "start": 5967.94, "end": 5970.34, "probability": 0.9409 }, { "start": 5970.44, "end": 5972.96, "probability": 0.6487 }, { "start": 5973.78, "end": 5977.2, "probability": 0.9908 }, { "start": 5977.78, "end": 5979.58, "probability": 0.736 }, { "start": 5980.32, "end": 5981.96, "probability": 0.8537 }, { "start": 5982.46, "end": 5985.84, "probability": 0.9265 }, { "start": 5985.88, "end": 5986.62, "probability": 0.4756 }, { "start": 5987.18, "end": 5989.0, "probability": 0.8372 }, { "start": 5989.14, "end": 5990.76, "probability": 0.8177 }, { "start": 5990.84, "end": 5992.86, "probability": 0.9951 }, { "start": 5992.94, "end": 5993.82, "probability": 0.679 }, { "start": 5993.92, "end": 5994.96, "probability": 0.8119 }, { "start": 5995.3, "end": 5996.26, "probability": 0.8754 }, { "start": 5996.62, "end": 5998.8, "probability": 0.8862 }, { "start": 5999.1, "end": 6002.66, "probability": 0.972 }, { "start": 6002.84, "end": 6003.64, "probability": 0.9452 }, { "start": 6003.78, "end": 6004.46, "probability": 0.9872 }, { "start": 6004.54, "end": 6005.72, "probability": 0.9657 }, { "start": 6005.8, "end": 6007.64, "probability": 0.8538 }, { "start": 6008.0, "end": 6010.36, "probability": 0.992 }, { "start": 6010.74, "end": 6011.35, "probability": 0.7192 }, { "start": 6012.04, "end": 6018.16, "probability": 0.9767 }, { "start": 6018.54, "end": 6022.9, "probability": 0.9909 }, { "start": 6023.44, "end": 6024.82, "probability": 0.9854 }, { "start": 6025.36, "end": 6028.02, "probability": 0.9868 }, { "start": 6028.46, "end": 6031.54, "probability": 0.9985 }, { "start": 6031.64, "end": 6034.48, "probability": 0.9686 }, { "start": 6034.98, "end": 6035.62, "probability": 0.4214 }, { "start": 6036.08, "end": 6038.0, "probability": 0.9575 }, { "start": 6038.3, "end": 6039.6, "probability": 0.8203 }, { "start": 6040.08, "end": 6044.44, "probability": 0.9973 }, { "start": 6044.54, "end": 6045.15, "probability": 0.5396 }, { "start": 6045.86, "end": 6046.18, "probability": 0.948 }, { "start": 6046.72, "end": 6048.22, "probability": 0.9863 }, { "start": 6048.88, "end": 6050.2, "probability": 0.9965 }, { "start": 6050.46, "end": 6052.14, "probability": 0.5845 }, { "start": 6053.1, "end": 6054.12, "probability": 0.6019 }, { "start": 6054.86, "end": 6058.3, "probability": 0.9923 }, { "start": 6058.52, "end": 6060.46, "probability": 0.9752 }, { "start": 6060.58, "end": 6061.02, "probability": 0.9302 }, { "start": 6061.18, "end": 6061.98, "probability": 0.8544 }, { "start": 6062.0, "end": 6065.1, "probability": 0.9046 }, { "start": 6065.62, "end": 6067.38, "probability": 0.6817 }, { "start": 6067.88, "end": 6071.28, "probability": 0.6546 }, { "start": 6072.08, "end": 6073.38, "probability": 0.9824 }, { "start": 6073.92, "end": 6074.4, "probability": 0.9824 }, { "start": 6074.76, "end": 6078.42, "probability": 0.9481 }, { "start": 6078.88, "end": 6081.26, "probability": 0.1 }, { "start": 6081.26, "end": 6081.26, "probability": 0.1307 }, { "start": 6081.26, "end": 6082.22, "probability": 0.7422 }, { "start": 6082.38, "end": 6082.62, "probability": 0.5829 }, { "start": 6082.86, "end": 6083.94, "probability": 0.5041 }, { "start": 6084.14, "end": 6087.75, "probability": 0.7775 }, { "start": 6088.92, "end": 6090.06, "probability": 0.9802 }, { "start": 6090.52, "end": 6092.72, "probability": 0.9485 }, { "start": 6093.38, "end": 6096.76, "probability": 0.9673 }, { "start": 6097.06, "end": 6098.04, "probability": 0.9338 }, { "start": 6098.48, "end": 6099.33, "probability": 0.9761 }, { "start": 6099.62, "end": 6100.4, "probability": 0.8667 }, { "start": 6100.86, "end": 6102.32, "probability": 0.9852 }, { "start": 6103.16, "end": 6106.7, "probability": 0.9861 }, { "start": 6106.86, "end": 6109.7, "probability": 0.9911 }, { "start": 6110.6, "end": 6112.88, "probability": 0.5571 }, { "start": 6112.98, "end": 6114.3, "probability": 0.6096 }, { "start": 6114.62, "end": 6115.2, "probability": 0.3341 }, { "start": 6115.24, "end": 6115.32, "probability": 0.328 }, { "start": 6115.32, "end": 6115.62, "probability": 0.6091 }, { "start": 6116.33, "end": 6117.6, "probability": 0.9943 }, { "start": 6117.92, "end": 6119.82, "probability": 0.8576 }, { "start": 6120.78, "end": 6121.36, "probability": 0.9684 }, { "start": 6122.08, "end": 6123.26, "probability": 0.9562 }, { "start": 6123.54, "end": 6126.82, "probability": 0.6308 }, { "start": 6127.38, "end": 6128.12, "probability": 0.2959 }, { "start": 6128.78, "end": 6130.86, "probability": 0.7814 }, { "start": 6131.28, "end": 6133.4, "probability": 0.5458 }, { "start": 6133.78, "end": 6134.58, "probability": 0.7786 }, { "start": 6135.4, "end": 6135.88, "probability": 0.9927 }, { "start": 6136.88, "end": 6139.34, "probability": 0.4949 }, { "start": 6139.62, "end": 6142.82, "probability": 0.7537 }, { "start": 6143.7, "end": 6144.52, "probability": 0.7609 }, { "start": 6144.6, "end": 6146.58, "probability": 0.7893 }, { "start": 6147.0, "end": 6148.32, "probability": 0.5317 }, { "start": 6148.48, "end": 6149.67, "probability": 0.939 }, { "start": 6150.36, "end": 6154.14, "probability": 0.8612 }, { "start": 6154.2, "end": 6155.06, "probability": 0.6209 }, { "start": 6155.76, "end": 6157.9, "probability": 0.9543 }, { "start": 6158.02, "end": 6159.34, "probability": 0.9427 }, { "start": 6160.2, "end": 6162.3, "probability": 0.7585 }, { "start": 6162.82, "end": 6163.8, "probability": 0.8201 }, { "start": 6164.32, "end": 6166.12, "probability": 0.6197 }, { "start": 6166.46, "end": 6167.64, "probability": 0.9583 }, { "start": 6168.0, "end": 6169.06, "probability": 0.6767 }, { "start": 6169.26, "end": 6171.46, "probability": 0.997 }, { "start": 6171.82, "end": 6173.18, "probability": 0.672 }, { "start": 6173.24, "end": 6176.36, "probability": 0.6784 }, { "start": 6176.78, "end": 6180.06, "probability": 0.9715 }, { "start": 6180.88, "end": 6183.06, "probability": 0.9534 }, { "start": 6183.4, "end": 6187.52, "probability": 0.8057 }, { "start": 6187.62, "end": 6188.04, "probability": 0.686 }, { "start": 6188.88, "end": 6191.24, "probability": 0.8375 }, { "start": 6191.36, "end": 6192.86, "probability": 0.9764 }, { "start": 6193.56, "end": 6194.68, "probability": 0.769 }, { "start": 6195.94, "end": 6197.26, "probability": 0.6714 }, { "start": 6197.84, "end": 6198.44, "probability": 0.6567 }, { "start": 6198.96, "end": 6200.4, "probability": 0.9448 }, { "start": 6200.6, "end": 6201.14, "probability": 0.6565 }, { "start": 6201.26, "end": 6201.4, "probability": 0.6522 }, { "start": 6201.64, "end": 6203.3, "probability": 0.6121 }, { "start": 6203.38, "end": 6204.0, "probability": 0.7754 }, { "start": 6204.56, "end": 6206.76, "probability": 0.9705 }, { "start": 6207.3, "end": 6209.1, "probability": 0.8694 }, { "start": 6209.44, "end": 6210.12, "probability": 0.7552 }, { "start": 6210.2, "end": 6212.5, "probability": 0.8285 }, { "start": 6212.94, "end": 6215.0, "probability": 0.9604 }, { "start": 6215.38, "end": 6215.76, "probability": 0.7313 }, { "start": 6216.06, "end": 6216.64, "probability": 0.7831 }, { "start": 6217.46, "end": 6218.44, "probability": 0.9572 }, { "start": 6218.52, "end": 6218.86, "probability": 0.6202 }, { "start": 6218.96, "end": 6219.36, "probability": 0.4861 }, { "start": 6219.4, "end": 6219.76, "probability": 0.8002 }, { "start": 6219.9, "end": 6220.22, "probability": 0.5636 }, { "start": 6220.28, "end": 6220.5, "probability": 0.717 }, { "start": 6220.52, "end": 6221.22, "probability": 0.7468 }, { "start": 6221.3, "end": 6221.56, "probability": 0.7202 }, { "start": 6222.72, "end": 6224.28, "probability": 0.6277 }, { "start": 6225.68, "end": 6226.2, "probability": 0.7413 }, { "start": 6226.84, "end": 6228.56, "probability": 0.9662 }, { "start": 6245.02, "end": 6248.2, "probability": 0.6905 }, { "start": 6249.1, "end": 6250.72, "probability": 0.9994 }, { "start": 6251.46, "end": 6255.44, "probability": 0.8997 }, { "start": 6256.66, "end": 6260.8, "probability": 0.992 }, { "start": 6261.58, "end": 6264.94, "probability": 0.9932 }, { "start": 6265.04, "end": 6267.86, "probability": 0.7446 }, { "start": 6268.58, "end": 6270.16, "probability": 0.8119 }, { "start": 6271.52, "end": 6274.22, "probability": 0.9814 }, { "start": 6275.08, "end": 6276.2, "probability": 0.5623 }, { "start": 6276.34, "end": 6277.08, "probability": 0.93 }, { "start": 6277.44, "end": 6277.58, "probability": 0.4183 }, { "start": 6277.8, "end": 6279.14, "probability": 0.9468 }, { "start": 6280.12, "end": 6282.96, "probability": 0.9921 }, { "start": 6283.1, "end": 6285.72, "probability": 0.9922 }, { "start": 6285.72, "end": 6288.27, "probability": 0.997 }, { "start": 6289.46, "end": 6290.42, "probability": 0.9519 }, { "start": 6291.16, "end": 6293.02, "probability": 0.7662 }, { "start": 6293.98, "end": 6295.88, "probability": 0.9857 }, { "start": 6296.9, "end": 6299.3, "probability": 0.9826 }, { "start": 6299.44, "end": 6301.34, "probability": 0.5897 }, { "start": 6302.52, "end": 6303.6, "probability": 0.6731 }, { "start": 6304.64, "end": 6307.8, "probability": 0.9852 }, { "start": 6307.96, "end": 6308.5, "probability": 0.6928 }, { "start": 6309.0, "end": 6312.88, "probability": 0.8792 }, { "start": 6313.21, "end": 6317.76, "probability": 0.8507 }, { "start": 6318.04, "end": 6320.14, "probability": 0.9082 }, { "start": 6320.78, "end": 6322.9, "probability": 0.9976 }, { "start": 6325.02, "end": 6330.12, "probability": 0.9971 }, { "start": 6330.12, "end": 6334.22, "probability": 0.9997 }, { "start": 6334.38, "end": 6335.66, "probability": 0.9966 }, { "start": 6335.82, "end": 6336.66, "probability": 0.7983 }, { "start": 6336.74, "end": 6337.68, "probability": 0.8744 }, { "start": 6337.84, "end": 6339.02, "probability": 0.8832 }, { "start": 6339.12, "end": 6342.08, "probability": 0.9673 }, { "start": 6343.78, "end": 6344.58, "probability": 0.8293 }, { "start": 6345.4, "end": 6348.42, "probability": 0.9862 }, { "start": 6348.42, "end": 6351.62, "probability": 0.986 }, { "start": 6351.68, "end": 6351.92, "probability": 0.2557 }, { "start": 6352.08, "end": 6352.83, "probability": 0.8667 }, { "start": 6353.68, "end": 6358.01, "probability": 0.8642 }, { "start": 6359.5, "end": 6361.36, "probability": 0.7412 }, { "start": 6361.42, "end": 6363.0, "probability": 0.6853 }, { "start": 6363.06, "end": 6363.32, "probability": 0.7312 }, { "start": 6363.42, "end": 6364.33, "probability": 0.9575 }, { "start": 6365.82, "end": 6369.56, "probability": 0.9906 }, { "start": 6369.66, "end": 6371.98, "probability": 0.9261 }, { "start": 6372.12, "end": 6372.92, "probability": 0.8452 }, { "start": 6373.04, "end": 6373.46, "probability": 0.9421 }, { "start": 6374.02, "end": 6375.01, "probability": 0.9268 }, { "start": 6377.06, "end": 6378.65, "probability": 0.9956 }, { "start": 6379.56, "end": 6381.6, "probability": 0.9644 }, { "start": 6381.82, "end": 6385.08, "probability": 0.9978 }, { "start": 6386.62, "end": 6387.94, "probability": 0.9983 }, { "start": 6388.56, "end": 6389.44, "probability": 0.9341 }, { "start": 6389.62, "end": 6390.52, "probability": 0.7788 }, { "start": 6390.86, "end": 6391.96, "probability": 0.8472 }, { "start": 6392.14, "end": 6394.8, "probability": 0.9906 }, { "start": 6395.04, "end": 6398.02, "probability": 0.9639 }, { "start": 6398.14, "end": 6401.68, "probability": 0.9927 }, { "start": 6401.72, "end": 6401.98, "probability": 0.5575 }, { "start": 6401.98, "end": 6403.08, "probability": 0.8926 }, { "start": 6403.38, "end": 6403.9, "probability": 0.6601 }, { "start": 6404.08, "end": 6405.2, "probability": 0.8496 }, { "start": 6405.8, "end": 6407.57, "probability": 0.9444 }, { "start": 6408.12, "end": 6409.8, "probability": 0.887 }, { "start": 6409.84, "end": 6412.88, "probability": 0.9644 }, { "start": 6412.92, "end": 6413.64, "probability": 0.9202 }, { "start": 6413.76, "end": 6415.48, "probability": 0.9873 }, { "start": 6415.56, "end": 6416.33, "probability": 0.9126 }, { "start": 6416.7, "end": 6418.76, "probability": 0.9804 }, { "start": 6419.98, "end": 6422.28, "probability": 0.9758 }, { "start": 6422.36, "end": 6423.26, "probability": 0.746 }, { "start": 6423.28, "end": 6425.2, "probability": 0.9502 }, { "start": 6425.28, "end": 6425.94, "probability": 0.6886 }, { "start": 6426.26, "end": 6428.28, "probability": 0.9914 }, { "start": 6429.04, "end": 6429.8, "probability": 0.9202 }, { "start": 6429.86, "end": 6433.28, "probability": 0.9924 }, { "start": 6434.51, "end": 6434.7, "probability": 0.1047 }, { "start": 6434.7, "end": 6434.7, "probability": 0.0245 }, { "start": 6434.78, "end": 6435.65, "probability": 0.9425 }, { "start": 6435.86, "end": 6437.2, "probability": 0.9715 }, { "start": 6437.42, "end": 6437.84, "probability": 0.8111 }, { "start": 6438.2, "end": 6438.8, "probability": 0.9507 }, { "start": 6438.86, "end": 6439.58, "probability": 0.8854 }, { "start": 6439.7, "end": 6440.84, "probability": 0.8794 }, { "start": 6441.6, "end": 6442.04, "probability": 0.7441 }, { "start": 6442.26, "end": 6445.18, "probability": 0.9983 }, { "start": 6445.46, "end": 6446.52, "probability": 0.6612 }, { "start": 6446.62, "end": 6447.24, "probability": 0.9221 }, { "start": 6447.32, "end": 6447.34, "probability": 0.5225 }, { "start": 6447.34, "end": 6447.86, "probability": 0.7105 }, { "start": 6448.52, "end": 6449.86, "probability": 0.9691 }, { "start": 6449.96, "end": 6451.92, "probability": 0.9575 }, { "start": 6452.02, "end": 6453.4, "probability": 0.8178 }, { "start": 6453.68, "end": 6454.32, "probability": 0.9488 }, { "start": 6454.42, "end": 6455.54, "probability": 0.9861 }, { "start": 6455.9, "end": 6456.96, "probability": 0.9909 }, { "start": 6457.06, "end": 6457.92, "probability": 0.9362 }, { "start": 6457.94, "end": 6458.66, "probability": 0.9717 }, { "start": 6458.74, "end": 6459.82, "probability": 0.8523 }, { "start": 6460.14, "end": 6461.98, "probability": 0.9724 }, { "start": 6462.32, "end": 6462.74, "probability": 0.4802 }, { "start": 6462.86, "end": 6463.65, "probability": 0.6127 }, { "start": 6463.86, "end": 6465.44, "probability": 0.8715 }, { "start": 6465.82, "end": 6466.32, "probability": 0.8504 }, { "start": 6466.42, "end": 6466.98, "probability": 0.6607 }, { "start": 6467.06, "end": 6468.18, "probability": 0.9532 }, { "start": 6468.28, "end": 6468.88, "probability": 0.9858 }, { "start": 6469.32, "end": 6469.88, "probability": 0.9624 }, { "start": 6470.28, "end": 6470.85, "probability": 0.9581 }, { "start": 6471.48, "end": 6472.54, "probability": 0.9171 }, { "start": 6472.98, "end": 6475.54, "probability": 0.9667 }, { "start": 6476.0, "end": 6476.74, "probability": 0.9617 }, { "start": 6477.16, "end": 6480.96, "probability": 0.8765 }, { "start": 6480.98, "end": 6482.08, "probability": 0.9108 }, { "start": 6482.1, "end": 6483.0, "probability": 0.8335 }, { "start": 6483.06, "end": 6485.18, "probability": 0.9667 }, { "start": 6485.72, "end": 6488.24, "probability": 0.9888 }, { "start": 6489.04, "end": 6489.04, "probability": 0.295 }, { "start": 6489.04, "end": 6489.5, "probability": 0.7953 }, { "start": 6489.6, "end": 6492.16, "probability": 0.9771 }, { "start": 6492.2, "end": 6492.68, "probability": 0.7741 }, { "start": 6492.92, "end": 6493.74, "probability": 0.7572 }, { "start": 6493.86, "end": 6494.54, "probability": 0.8029 }, { "start": 6494.68, "end": 6494.84, "probability": 0.855 }, { "start": 6495.08, "end": 6496.36, "probability": 0.8775 }, { "start": 6496.7, "end": 6497.96, "probability": 0.8436 }, { "start": 6498.34, "end": 6499.34, "probability": 0.9677 }, { "start": 6499.5, "end": 6500.08, "probability": 0.6416 }, { "start": 6500.2, "end": 6502.94, "probability": 0.9873 }, { "start": 6503.5, "end": 6506.04, "probability": 0.9289 }, { "start": 6506.12, "end": 6507.52, "probability": 0.9941 }, { "start": 6507.98, "end": 6509.68, "probability": 0.9519 }, { "start": 6509.72, "end": 6510.36, "probability": 0.9238 }, { "start": 6510.38, "end": 6513.02, "probability": 0.9931 }, { "start": 6513.46, "end": 6514.42, "probability": 0.9126 }, { "start": 6514.48, "end": 6517.04, "probability": 0.9346 }, { "start": 6517.38, "end": 6517.38, "probability": 0.2623 }, { "start": 6517.38, "end": 6519.3, "probability": 0.979 }, { "start": 6519.58, "end": 6520.72, "probability": 0.9136 }, { "start": 6520.76, "end": 6524.18, "probability": 0.9896 }, { "start": 6524.22, "end": 6524.4, "probability": 0.7251 }, { "start": 6525.22, "end": 6527.64, "probability": 0.9209 }, { "start": 6528.52, "end": 6529.46, "probability": 0.4665 }, { "start": 6530.44, "end": 6531.98, "probability": 0.7684 }, { "start": 6532.14, "end": 6534.54, "probability": 0.9467 }, { "start": 6551.42, "end": 6552.14, "probability": 0.7056 }, { "start": 6552.28, "end": 6553.0, "probability": 0.6682 }, { "start": 6553.1, "end": 6553.92, "probability": 0.7751 }, { "start": 6555.0, "end": 6555.94, "probability": 0.9188 }, { "start": 6557.06, "end": 6561.68, "probability": 0.9305 }, { "start": 6563.72, "end": 6563.72, "probability": 0.2938 }, { "start": 6563.72, "end": 6567.4, "probability": 0.8273 }, { "start": 6567.56, "end": 6569.88, "probability": 0.7781 }, { "start": 6569.98, "end": 6570.32, "probability": 0.7504 }, { "start": 6571.46, "end": 6573.3, "probability": 0.9695 }, { "start": 6573.74, "end": 6574.34, "probability": 0.2962 }, { "start": 6575.32, "end": 6575.42, "probability": 0.6855 }, { "start": 6575.42, "end": 6576.22, "probability": 0.9117 }, { "start": 6576.44, "end": 6577.94, "probability": 0.24 }, { "start": 6578.1, "end": 6578.9, "probability": 0.7606 }, { "start": 6579.26, "end": 6579.56, "probability": 0.5875 }, { "start": 6580.8, "end": 6582.46, "probability": 0.31 }, { "start": 6582.64, "end": 6583.06, "probability": 0.4672 }, { "start": 6583.78, "end": 6584.76, "probability": 0.936 }, { "start": 6585.9, "end": 6586.54, "probability": 0.6996 }, { "start": 6587.16, "end": 6588.78, "probability": 0.9974 }, { "start": 6589.58, "end": 6592.16, "probability": 0.8037 }, { "start": 6592.96, "end": 6595.82, "probability": 0.9373 }, { "start": 6596.88, "end": 6602.16, "probability": 0.9972 }, { "start": 6603.5, "end": 6604.49, "probability": 0.7924 }, { "start": 6605.58, "end": 6605.98, "probability": 0.912 }, { "start": 6606.1, "end": 6609.34, "probability": 0.9871 }, { "start": 6609.34, "end": 6612.44, "probability": 0.933 }, { "start": 6612.6, "end": 6613.18, "probability": 0.8086 }, { "start": 6613.56, "end": 6614.78, "probability": 0.9194 }, { "start": 6615.5, "end": 6617.06, "probability": 0.9653 }, { "start": 6617.56, "end": 6618.8, "probability": 0.9366 }, { "start": 6618.9, "end": 6619.24, "probability": 0.8287 }, { "start": 6619.78, "end": 6621.82, "probability": 0.929 }, { "start": 6622.36, "end": 6625.04, "probability": 0.8882 }, { "start": 6625.46, "end": 6627.22, "probability": 0.9953 }, { "start": 6628.1, "end": 6630.0, "probability": 0.7555 }, { "start": 6630.94, "end": 6633.0, "probability": 0.9586 }, { "start": 6633.3, "end": 6633.74, "probability": 0.8078 }, { "start": 6633.82, "end": 6634.52, "probability": 0.9426 }, { "start": 6634.58, "end": 6635.39, "probability": 0.9761 }, { "start": 6636.18, "end": 6637.78, "probability": 0.936 }, { "start": 6638.3, "end": 6638.66, "probability": 0.4168 }, { "start": 6639.36, "end": 6643.94, "probability": 0.9912 }, { "start": 6644.38, "end": 6644.82, "probability": 0.5201 }, { "start": 6645.0, "end": 6645.82, "probability": 0.8359 }, { "start": 6646.22, "end": 6647.34, "probability": 0.9172 }, { "start": 6648.48, "end": 6649.97, "probability": 0.834 }, { "start": 6650.36, "end": 6652.0, "probability": 0.9073 }, { "start": 6652.9, "end": 6653.22, "probability": 0.8492 }, { "start": 6653.66, "end": 6654.56, "probability": 0.6689 }, { "start": 6655.1, "end": 6657.34, "probability": 0.9642 }, { "start": 6657.52, "end": 6658.93, "probability": 0.623 }, { "start": 6659.44, "end": 6660.26, "probability": 0.9486 }, { "start": 6660.36, "end": 6663.44, "probability": 0.9858 }, { "start": 6663.76, "end": 6664.75, "probability": 0.5343 }, { "start": 6665.22, "end": 6665.82, "probability": 0.8707 }, { "start": 6666.28, "end": 6667.04, "probability": 0.9716 }, { "start": 6667.36, "end": 6671.14, "probability": 0.9453 }, { "start": 6671.5, "end": 6672.79, "probability": 0.9831 }, { "start": 6673.0, "end": 6673.46, "probability": 0.9156 }, { "start": 6674.04, "end": 6674.94, "probability": 0.8526 }, { "start": 6675.94, "end": 6677.68, "probability": 0.937 }, { "start": 6677.8, "end": 6679.72, "probability": 0.996 }, { "start": 6681.46, "end": 6681.76, "probability": 0.4006 }, { "start": 6682.8, "end": 6685.58, "probability": 0.9058 }, { "start": 6685.78, "end": 6687.12, "probability": 0.9167 }, { "start": 6687.24, "end": 6688.22, "probability": 0.936 }, { "start": 6688.32, "end": 6690.24, "probability": 0.8174 }, { "start": 6691.16, "end": 6692.88, "probability": 0.9866 }, { "start": 6693.42, "end": 6694.52, "probability": 0.9644 }, { "start": 6694.92, "end": 6696.46, "probability": 0.9786 }, { "start": 6697.18, "end": 6698.24, "probability": 0.8973 }, { "start": 6698.56, "end": 6698.96, "probability": 0.8463 }, { "start": 6699.18, "end": 6700.46, "probability": 0.9241 }, { "start": 6702.14, "end": 6705.18, "probability": 0.9974 }, { "start": 6705.18, "end": 6707.52, "probability": 0.986 }, { "start": 6707.66, "end": 6708.15, "probability": 0.799 }, { "start": 6708.96, "end": 6709.82, "probability": 0.6841 }, { "start": 6709.98, "end": 6710.98, "probability": 0.9554 }, { "start": 6711.44, "end": 6712.04, "probability": 0.7586 }, { "start": 6712.28, "end": 6712.72, "probability": 0.8449 }, { "start": 6713.18, "end": 6716.56, "probability": 0.9686 }, { "start": 6716.9, "end": 6717.02, "probability": 0.9438 }, { "start": 6717.58, "end": 6719.16, "probability": 0.9742 }, { "start": 6719.8, "end": 6720.38, "probability": 0.9014 }, { "start": 6721.0, "end": 6725.28, "probability": 0.9971 }, { "start": 6726.2, "end": 6727.8, "probability": 0.0361 }, { "start": 6728.8, "end": 6729.22, "probability": 0.0776 }, { "start": 6729.22, "end": 6729.22, "probability": 0.0234 }, { "start": 6729.22, "end": 6729.22, "probability": 0.0304 }, { "start": 6729.22, "end": 6731.02, "probability": 0.8997 }, { "start": 6731.24, "end": 6734.11, "probability": 0.8739 }, { "start": 6734.82, "end": 6736.56, "probability": 0.7981 }, { "start": 6736.8, "end": 6741.24, "probability": 0.9765 }, { "start": 6741.9, "end": 6742.96, "probability": 0.9853 }, { "start": 6743.0, "end": 6744.84, "probability": 0.9924 }, { "start": 6744.96, "end": 6745.9, "probability": 0.6591 }, { "start": 6746.4, "end": 6748.7, "probability": 0.9447 }, { "start": 6750.72, "end": 6753.68, "probability": 0.9911 }, { "start": 6754.28, "end": 6758.02, "probability": 0.8971 }, { "start": 6758.6, "end": 6759.5, "probability": 0.813 }, { "start": 6759.96, "end": 6761.7, "probability": 0.8713 }, { "start": 6762.4, "end": 6765.96, "probability": 0.9829 }, { "start": 6766.52, "end": 6769.62, "probability": 0.9194 }, { "start": 6770.28, "end": 6771.06, "probability": 0.6961 }, { "start": 6771.98, "end": 6772.8, "probability": 0.69 }, { "start": 6773.08, "end": 6774.26, "probability": 0.9453 }, { "start": 6774.32, "end": 6774.66, "probability": 0.3985 }, { "start": 6774.72, "end": 6775.06, "probability": 0.7418 }, { "start": 6775.18, "end": 6775.32, "probability": 0.7258 }, { "start": 6775.42, "end": 6776.42, "probability": 0.8892 }, { "start": 6776.56, "end": 6776.96, "probability": 0.7638 }, { "start": 6777.22, "end": 6777.66, "probability": 0.8918 }, { "start": 6778.56, "end": 6779.0, "probability": 0.4963 }, { "start": 6779.84, "end": 6782.22, "probability": 0.6197 }, { "start": 6784.3, "end": 6784.54, "probability": 0.8078 }, { "start": 6785.74, "end": 6786.3, "probability": 0.5607 }, { "start": 6786.46, "end": 6787.5, "probability": 0.9657 }, { "start": 6795.7, "end": 6795.7, "probability": 0.1547 }, { "start": 6795.7, "end": 6795.7, "probability": 0.3475 }, { "start": 6795.7, "end": 6795.72, "probability": 0.1201 }, { "start": 6795.72, "end": 6795.8, "probability": 0.0322 }, { "start": 6795.82, "end": 6795.88, "probability": 0.0288 }, { "start": 6819.88, "end": 6820.82, "probability": 0.7457 }, { "start": 6822.46, "end": 6826.62, "probability": 0.8828 }, { "start": 6826.66, "end": 6831.56, "probability": 0.9712 }, { "start": 6833.0, "end": 6835.16, "probability": 0.727 }, { "start": 6835.96, "end": 6838.24, "probability": 0.9824 }, { "start": 6839.12, "end": 6840.66, "probability": 0.6214 }, { "start": 6840.82, "end": 6843.84, "probability": 0.9971 }, { "start": 6844.72, "end": 6847.48, "probability": 0.9897 }, { "start": 6849.34, "end": 6852.7, "probability": 0.993 }, { "start": 6852.7, "end": 6855.74, "probability": 0.9983 }, { "start": 6856.28, "end": 6858.18, "probability": 0.8352 }, { "start": 6858.18, "end": 6861.08, "probability": 0.9872 }, { "start": 6861.68, "end": 6863.24, "probability": 0.8143 }, { "start": 6864.78, "end": 6865.82, "probability": 0.9468 }, { "start": 6866.54, "end": 6867.66, "probability": 0.7276 }, { "start": 6868.24, "end": 6870.56, "probability": 0.8232 }, { "start": 6871.1, "end": 6871.8, "probability": 0.9243 }, { "start": 6871.92, "end": 6872.76, "probability": 0.8901 }, { "start": 6873.12, "end": 6873.74, "probability": 0.9201 }, { "start": 6873.84, "end": 6874.4, "probability": 0.9643 }, { "start": 6874.48, "end": 6874.96, "probability": 0.9828 }, { "start": 6874.98, "end": 6875.46, "probability": 0.9323 }, { "start": 6875.92, "end": 6876.98, "probability": 0.9689 }, { "start": 6878.36, "end": 6878.76, "probability": 0.7196 }, { "start": 6878.9, "end": 6881.58, "probability": 0.9714 }, { "start": 6881.72, "end": 6883.36, "probability": 0.9883 }, { "start": 6884.34, "end": 6885.94, "probability": 0.9546 }, { "start": 6886.0, "end": 6886.34, "probability": 0.4866 }, { "start": 6886.44, "end": 6889.52, "probability": 0.9259 }, { "start": 6889.62, "end": 6891.66, "probability": 0.9957 }, { "start": 6892.1, "end": 6893.32, "probability": 0.46 }, { "start": 6894.76, "end": 6895.46, "probability": 0.8848 }, { "start": 6895.6, "end": 6898.59, "probability": 0.9893 }, { "start": 6899.06, "end": 6899.82, "probability": 0.9709 }, { "start": 6899.82, "end": 6900.66, "probability": 0.9788 }, { "start": 6900.76, "end": 6901.48, "probability": 0.9523 }, { "start": 6902.24, "end": 6906.66, "probability": 0.9536 }, { "start": 6907.22, "end": 6909.84, "probability": 0.9351 }, { "start": 6910.4, "end": 6912.2, "probability": 0.9683 }, { "start": 6918.78, "end": 6920.3, "probability": 0.9923 }, { "start": 6921.82, "end": 6926.38, "probability": 0.9967 }, { "start": 6926.66, "end": 6927.56, "probability": 0.903 }, { "start": 6927.62, "end": 6928.28, "probability": 0.9449 }, { "start": 6928.34, "end": 6928.76, "probability": 0.9974 }, { "start": 6929.04, "end": 6929.54, "probability": 0.9744 }, { "start": 6929.94, "end": 6930.26, "probability": 0.8083 }, { "start": 6930.36, "end": 6930.7, "probability": 0.873 }, { "start": 6930.8, "end": 6931.12, "probability": 0.8576 }, { "start": 6931.3, "end": 6932.04, "probability": 0.8843 }, { "start": 6932.46, "end": 6933.56, "probability": 0.9451 }, { "start": 6934.78, "end": 6937.98, "probability": 0.9924 }, { "start": 6939.12, "end": 6940.16, "probability": 0.9615 }, { "start": 6940.64, "end": 6941.06, "probability": 0.8476 }, { "start": 6941.78, "end": 6943.22, "probability": 0.6671 }, { "start": 6943.84, "end": 6947.06, "probability": 0.9865 }, { "start": 6948.32, "end": 6949.98, "probability": 0.9354 }, { "start": 6950.96, "end": 6951.32, "probability": 0.943 }, { "start": 6951.44, "end": 6952.52, "probability": 0.9946 }, { "start": 6953.44, "end": 6954.86, "probability": 0.9844 }, { "start": 6956.0, "end": 6957.04, "probability": 0.9197 }, { "start": 6957.32, "end": 6958.46, "probability": 0.9387 }, { "start": 6958.74, "end": 6960.56, "probability": 0.9915 }, { "start": 6961.6, "end": 6966.62, "probability": 0.993 }, { "start": 6967.84, "end": 6968.54, "probability": 0.7562 }, { "start": 6969.56, "end": 6970.4, "probability": 0.3854 }, { "start": 6971.52, "end": 6974.4, "probability": 0.8948 }, { "start": 6975.86, "end": 6980.5, "probability": 0.9349 }, { "start": 6980.58, "end": 6980.9, "probability": 0.7996 }, { "start": 6981.84, "end": 6984.36, "probability": 0.9961 }, { "start": 6984.46, "end": 6985.17, "probability": 0.9912 }, { "start": 6985.3, "end": 6986.0, "probability": 0.981 }, { "start": 6987.04, "end": 6988.52, "probability": 0.8761 }, { "start": 6988.6, "end": 6990.46, "probability": 0.9617 }, { "start": 6990.66, "end": 6991.12, "probability": 0.8477 }, { "start": 6991.3, "end": 6992.47, "probability": 0.8649 }, { "start": 6993.54, "end": 6995.32, "probability": 0.9896 }, { "start": 6995.9, "end": 6999.36, "probability": 0.9229 }, { "start": 7000.14, "end": 7001.68, "probability": 0.9756 }, { "start": 7003.16, "end": 7005.14, "probability": 0.959 }, { "start": 7006.16, "end": 7009.1, "probability": 0.9507 }, { "start": 7009.68, "end": 7010.84, "probability": 0.8009 }, { "start": 7011.16, "end": 7013.04, "probability": 0.9819 }, { "start": 7013.66, "end": 7014.42, "probability": 0.9592 }, { "start": 7015.18, "end": 7015.8, "probability": 0.8187 }, { "start": 7016.8, "end": 7017.74, "probability": 0.6133 }, { "start": 7019.82, "end": 7021.82, "probability": 0.626 }, { "start": 7022.0, "end": 7023.82, "probability": 0.9036 }, { "start": 7054.9, "end": 7055.74, "probability": 0.6173 }, { "start": 7056.58, "end": 7057.34, "probability": 0.8033 }, { "start": 7058.92, "end": 7065.48, "probability": 0.9958 }, { "start": 7066.96, "end": 7068.86, "probability": 0.8125 }, { "start": 7070.36, "end": 7078.32, "probability": 0.9849 }, { "start": 7078.94, "end": 7080.52, "probability": 0.933 }, { "start": 7081.58, "end": 7083.18, "probability": 0.975 }, { "start": 7084.64, "end": 7088.12, "probability": 0.9984 }, { "start": 7088.12, "end": 7092.16, "probability": 0.9935 }, { "start": 7092.28, "end": 7092.5, "probability": 0.3161 }, { "start": 7092.54, "end": 7095.34, "probability": 0.0211 }, { "start": 7095.34, "end": 7097.46, "probability": 0.4933 }, { "start": 7097.66, "end": 7099.8, "probability": 0.7645 }, { "start": 7099.88, "end": 7100.6, "probability": 0.9722 }, { "start": 7102.34, "end": 7102.54, "probability": 0.9046 }, { "start": 7105.21, "end": 7108.3, "probability": 0.9324 }, { "start": 7108.48, "end": 7109.42, "probability": 0.8409 }, { "start": 7109.8, "end": 7112.54, "probability": 0.9937 }, { "start": 7112.54, "end": 7115.96, "probability": 0.9944 }, { "start": 7117.44, "end": 7120.52, "probability": 0.7725 }, { "start": 7121.68, "end": 7123.98, "probability": 0.8396 }, { "start": 7125.76, "end": 7126.78, "probability": 0.897 }, { "start": 7127.0, "end": 7135.72, "probability": 0.9469 }, { "start": 7136.46, "end": 7136.72, "probability": 0.9054 }, { "start": 7138.6, "end": 7140.12, "probability": 0.9127 }, { "start": 7140.78, "end": 7142.1, "probability": 0.9875 }, { "start": 7142.86, "end": 7145.64, "probability": 0.9924 }, { "start": 7147.02, "end": 7148.6, "probability": 0.8542 }, { "start": 7149.44, "end": 7153.22, "probability": 0.9973 }, { "start": 7153.22, "end": 7159.04, "probability": 0.9944 }, { "start": 7159.98, "end": 7162.66, "probability": 0.9781 }, { "start": 7163.22, "end": 7168.42, "probability": 0.9943 }, { "start": 7168.82, "end": 7169.42, "probability": 0.8101 }, { "start": 7169.72, "end": 7170.12, "probability": 0.7488 }, { "start": 7170.36, "end": 7170.88, "probability": 0.8562 }, { "start": 7171.3, "end": 7171.96, "probability": 0.6074 }, { "start": 7172.62, "end": 7177.46, "probability": 0.9887 }, { "start": 7178.78, "end": 7184.0, "probability": 0.9983 }, { "start": 7184.82, "end": 7186.22, "probability": 0.9997 }, { "start": 7187.12, "end": 7190.22, "probability": 0.9917 }, { "start": 7190.86, "end": 7191.88, "probability": 0.9066 }, { "start": 7192.42, "end": 7196.68, "probability": 0.9661 }, { "start": 7197.38, "end": 7198.84, "probability": 0.9927 }, { "start": 7199.58, "end": 7199.98, "probability": 0.9387 }, { "start": 7200.76, "end": 7201.14, "probability": 0.9293 }, { "start": 7201.78, "end": 7203.8, "probability": 0.9224 }, { "start": 7204.68, "end": 7210.28, "probability": 0.9983 }, { "start": 7212.18, "end": 7217.0, "probability": 0.9961 }, { "start": 7217.74, "end": 7223.0, "probability": 0.9956 }, { "start": 7223.44, "end": 7224.88, "probability": 0.9987 }, { "start": 7225.48, "end": 7229.44, "probability": 0.9944 }, { "start": 7230.74, "end": 7233.42, "probability": 0.9814 }, { "start": 7234.24, "end": 7235.16, "probability": 0.5515 }, { "start": 7235.88, "end": 7237.3, "probability": 0.6309 }, { "start": 7238.06, "end": 7242.36, "probability": 0.9912 }, { "start": 7243.08, "end": 7246.78, "probability": 0.9614 }, { "start": 7247.64, "end": 7250.16, "probability": 0.8835 }, { "start": 7250.72, "end": 7255.6, "probability": 0.94 }, { "start": 7256.26, "end": 7256.8, "probability": 0.5255 }, { "start": 7257.98, "end": 7261.34, "probability": 0.9939 }, { "start": 7262.04, "end": 7265.78, "probability": 0.9843 }, { "start": 7265.78, "end": 7269.78, "probability": 0.9973 }, { "start": 7270.24, "end": 7274.74, "probability": 0.9992 }, { "start": 7275.62, "end": 7277.22, "probability": 0.4535 }, { "start": 7278.28, "end": 7278.92, "probability": 0.9008 }, { "start": 7279.44, "end": 7280.26, "probability": 0.8067 }, { "start": 7280.84, "end": 7282.46, "probability": 0.9697 }, { "start": 7283.08, "end": 7286.3, "probability": 0.9771 }, { "start": 7287.32, "end": 7290.1, "probability": 0.9747 }, { "start": 7290.66, "end": 7294.54, "probability": 0.9951 }, { "start": 7294.98, "end": 7300.36, "probability": 0.9978 }, { "start": 7301.98, "end": 7302.5, "probability": 0.8168 }, { "start": 7303.16, "end": 7304.22, "probability": 0.7717 }, { "start": 7304.88, "end": 7308.36, "probability": 0.7359 }, { "start": 7309.56, "end": 7310.42, "probability": 0.971 }, { "start": 7311.28, "end": 7311.7, "probability": 0.9862 }, { "start": 7313.48, "end": 7314.06, "probability": 0.8387 }, { "start": 7315.38, "end": 7320.22, "probability": 0.9843 }, { "start": 7320.98, "end": 7321.54, "probability": 0.5609 }, { "start": 7322.26, "end": 7326.14, "probability": 0.9731 }, { "start": 7327.32, "end": 7334.3, "probability": 0.8992 }, { "start": 7335.38, "end": 7337.01, "probability": 0.9875 }, { "start": 7337.9, "end": 7339.16, "probability": 0.9967 }, { "start": 7339.82, "end": 7342.52, "probability": 0.9769 }, { "start": 7344.52, "end": 7347.26, "probability": 0.8643 }, { "start": 7348.32, "end": 7348.54, "probability": 0.0217 }, { "start": 7349.34, "end": 7349.76, "probability": 0.9744 }, { "start": 7352.52, "end": 7358.36, "probability": 0.9864 }, { "start": 7359.34, "end": 7360.16, "probability": 0.9901 }, { "start": 7361.26, "end": 7361.8, "probability": 0.8817 }, { "start": 7362.86, "end": 7364.07, "probability": 0.6553 }, { "start": 7364.36, "end": 7366.93, "probability": 0.9778 }, { "start": 7367.92, "end": 7368.98, "probability": 0.9482 }, { "start": 7370.08, "end": 7370.86, "probability": 0.7208 }, { "start": 7371.3, "end": 7374.4, "probability": 0.8557 }, { "start": 7374.44, "end": 7379.1, "probability": 0.4796 }, { "start": 7379.18, "end": 7379.74, "probability": 0.6926 }, { "start": 7384.52, "end": 7386.16, "probability": 0.6753 }, { "start": 7387.1, "end": 7389.12, "probability": 0.9184 }, { "start": 7391.88, "end": 7392.68, "probability": 0.7505 }, { "start": 7392.84, "end": 7393.62, "probability": 0.9036 }, { "start": 7393.86, "end": 7394.36, "probability": 0.7987 }, { "start": 7394.84, "end": 7396.22, "probability": 0.9802 }, { "start": 7397.1, "end": 7399.56, "probability": 0.9901 }, { "start": 7399.64, "end": 7401.92, "probability": 0.6839 }, { "start": 7402.02, "end": 7402.5, "probability": 0.9249 }, { "start": 7402.64, "end": 7405.52, "probability": 0.9937 }, { "start": 7405.88, "end": 7406.84, "probability": 0.1228 }, { "start": 7406.9, "end": 7407.9, "probability": 0.448 }, { "start": 7410.92, "end": 7414.8, "probability": 0.9162 }, { "start": 7414.86, "end": 7417.08, "probability": 0.9907 }, { "start": 7422.18, "end": 7423.12, "probability": 0.6729 }, { "start": 7423.3, "end": 7426.86, "probability": 0.9849 }, { "start": 7427.1, "end": 7431.24, "probability": 0.9883 }, { "start": 7431.24, "end": 7434.8, "probability": 0.9954 }, { "start": 7434.84, "end": 7437.56, "probability": 0.9939 }, { "start": 7438.24, "end": 7439.18, "probability": 0.8442 }, { "start": 7439.94, "end": 7441.5, "probability": 0.774 }, { "start": 7441.56, "end": 7443.24, "probability": 0.511 }, { "start": 7444.31, "end": 7449.62, "probability": 0.7695 }, { "start": 7449.62, "end": 7453.92, "probability": 0.9947 }, { "start": 7454.46, "end": 7455.96, "probability": 0.8636 }, { "start": 7456.84, "end": 7457.56, "probability": 0.5302 }, { "start": 7458.58, "end": 7461.72, "probability": 0.895 }, { "start": 7462.78, "end": 7464.38, "probability": 0.6769 }, { "start": 7464.38, "end": 7466.74, "probability": 0.8045 }, { "start": 7466.9, "end": 7469.14, "probability": 0.9576 }, { "start": 7469.14, "end": 7469.96, "probability": 0.8068 }, { "start": 7470.46, "end": 7470.82, "probability": 0.4102 }, { "start": 7470.84, "end": 7472.28, "probability": 0.9895 }, { "start": 7472.52, "end": 7472.94, "probability": 0.5667 }, { "start": 7473.12, "end": 7473.72, "probability": 0.1732 }, { "start": 7474.02, "end": 7477.5, "probability": 0.5748 }, { "start": 7477.76, "end": 7480.58, "probability": 0.0124 }, { "start": 7480.62, "end": 7482.84, "probability": 0.2341 }, { "start": 7483.02, "end": 7487.02, "probability": 0.968 }, { "start": 7487.56, "end": 7488.62, "probability": 0.7655 }, { "start": 7489.55, "end": 7492.6, "probability": 0.0372 }, { "start": 7492.6, "end": 7498.12, "probability": 0.9238 }, { "start": 7498.76, "end": 7502.1, "probability": 0.996 }, { "start": 7503.22, "end": 7505.74, "probability": 0.8947 }, { "start": 7506.68, "end": 7510.36, "probability": 0.9941 }, { "start": 7510.36, "end": 7514.34, "probability": 0.968 }, { "start": 7514.52, "end": 7515.98, "probability": 0.9041 }, { "start": 7516.6, "end": 7517.98, "probability": 0.9965 }, { "start": 7519.0, "end": 7524.12, "probability": 0.9188 }, { "start": 7525.16, "end": 7529.12, "probability": 0.9948 }, { "start": 7529.84, "end": 7534.94, "probability": 0.9893 }, { "start": 7534.94, "end": 7539.8, "probability": 0.9985 }, { "start": 7539.8, "end": 7544.54, "probability": 0.9995 }, { "start": 7545.02, "end": 7545.51, "probability": 0.8433 }, { "start": 7545.62, "end": 7548.4, "probability": 0.8629 }, { "start": 7548.4, "end": 7551.02, "probability": 0.9989 }, { "start": 7551.56, "end": 7553.1, "probability": 0.9894 }, { "start": 7554.02, "end": 7555.6, "probability": 0.9633 }, { "start": 7556.52, "end": 7557.0, "probability": 0.1928 }, { "start": 7557.04, "end": 7558.28, "probability": 0.5815 }, { "start": 7559.2, "end": 7559.8, "probability": 0.55 }, { "start": 7560.04, "end": 7560.62, "probability": 0.4676 }, { "start": 7561.16, "end": 7562.7, "probability": 0.7827 }, { "start": 7563.32, "end": 7563.5, "probability": 0.6122 }, { "start": 7563.92, "end": 7567.54, "probability": 0.9795 }, { "start": 7568.7, "end": 7571.67, "probability": 0.8573 }, { "start": 7572.66, "end": 7575.1, "probability": 0.7437 }, { "start": 7575.14, "end": 7577.92, "probability": 0.9118 }, { "start": 7578.32, "end": 7579.62, "probability": 0.9241 }, { "start": 7580.08, "end": 7584.48, "probability": 0.8637 }, { "start": 7584.7, "end": 7585.2, "probability": 0.562 }, { "start": 7585.72, "end": 7588.36, "probability": 0.9762 }, { "start": 7588.94, "end": 7589.22, "probability": 0.7672 }, { "start": 7589.58, "end": 7591.48, "probability": 0.9938 }, { "start": 7591.82, "end": 7594.4, "probability": 0.9928 }, { "start": 7594.74, "end": 7597.02, "probability": 0.9862 }, { "start": 7597.26, "end": 7599.8, "probability": 0.5136 }, { "start": 7599.9, "end": 7600.94, "probability": 0.7661 }, { "start": 7600.94, "end": 7604.18, "probability": 0.9986 }, { "start": 7605.1, "end": 7608.25, "probability": 0.9939 }, { "start": 7609.05, "end": 7613.71, "probability": 0.9797 }, { "start": 7613.79, "end": 7615.17, "probability": 0.9283 }, { "start": 7615.65, "end": 7619.87, "probability": 0.9604 }, { "start": 7620.23, "end": 7621.49, "probability": 0.9541 }, { "start": 7622.25, "end": 7623.67, "probability": 0.8654 }, { "start": 7624.13, "end": 7627.59, "probability": 0.9119 }, { "start": 7628.37, "end": 7629.07, "probability": 0.7449 }, { "start": 7629.65, "end": 7630.47, "probability": 0.6647 }, { "start": 7631.69, "end": 7635.17, "probability": 0.6159 }, { "start": 7636.45, "end": 7637.37, "probability": 0.6411 }, { "start": 7638.15, "end": 7639.23, "probability": 0.6235 }, { "start": 7639.79, "end": 7642.67, "probability": 0.8752 }, { "start": 7644.31, "end": 7651.73, "probability": 0.9339 }, { "start": 7653.83, "end": 7656.43, "probability": 0.6598 }, { "start": 7660.47, "end": 7660.79, "probability": 0.6246 }, { "start": 7684.61, "end": 7686.25, "probability": 0.2322 }, { "start": 7687.37, "end": 7688.53, "probability": 0.0187 }, { "start": 7689.89, "end": 7691.21, "probability": 0.0383 }, { "start": 7692.81, "end": 7693.09, "probability": 0.0063 }, { "start": 7695.45, "end": 7695.59, "probability": 0.0434 }, { "start": 7695.59, "end": 7695.81, "probability": 0.0276 }, { "start": 7695.81, "end": 7697.19, "probability": 0.1129 }, { "start": 7698.27, "end": 7699.71, "probability": 0.2795 }, { "start": 7702.37, "end": 7704.41, "probability": 0.0844 }, { "start": 7704.63, "end": 7706.69, "probability": 0.064 }, { "start": 7714.27, "end": 7715.25, "probability": 0.0058 }, { "start": 7715.25, "end": 7716.31, "probability": 0.3636 }, { "start": 7716.57, "end": 7717.77, "probability": 0.4666 }, { "start": 7717.77, "end": 7720.66, "probability": 0.116 }, { "start": 7721.21, "end": 7721.67, "probability": 0.1429 }, { "start": 7721.67, "end": 7721.81, "probability": 0.0478 }, { "start": 7722.71, "end": 7723.28, "probability": 0.1309 }, { "start": 7723.73, "end": 7724.01, "probability": 0.1014 }, { "start": 7724.21, "end": 7725.19, "probability": 0.2169 }, { "start": 7725.81, "end": 7727.73, "probability": 0.3703 }, { "start": 7728.15, "end": 7730.41, "probability": 0.0206 }, { "start": 7730.41, "end": 7730.47, "probability": 0.0048 }, { "start": 7730.59, "end": 7730.69, "probability": 0.036 }, { "start": 7731.0, "end": 7731.0, "probability": 0.0 }, { "start": 7731.0, "end": 7731.0, "probability": 0.0 }, { "start": 7731.0, "end": 7731.0, "probability": 0.0 }, { "start": 7744.24, "end": 7749.82, "probability": 0.2814 }, { "start": 7749.86, "end": 7756.57, "probability": 0.0379 }, { "start": 7763.36, "end": 7766.38, "probability": 0.0083 }, { "start": 7766.44, "end": 7766.44, "probability": 0.2138 }, { "start": 7766.44, "end": 7768.02, "probability": 0.0051 }, { "start": 7768.48, "end": 7769.92, "probability": 0.1402 }, { "start": 7769.92, "end": 7770.2, "probability": 0.0517 }, { "start": 7876.0, "end": 7876.0, "probability": 0.0 }, { "start": 7876.0, "end": 7876.0, "probability": 0.0 }, { "start": 7876.0, "end": 7876.0, "probability": 0.0 }, { "start": 7876.0, "end": 7876.0, "probability": 0.0 }, { "start": 7876.0, "end": 7876.0, "probability": 0.0 }, { "start": 7876.0, "end": 7876.0, "probability": 0.0 }, { "start": 7876.0, "end": 7876.0, "probability": 0.0 }, { "start": 7876.0, "end": 7876.0, "probability": 0.0 }, { "start": 7876.0, "end": 7876.0, "probability": 0.0 }, { "start": 7876.0, "end": 7876.0, "probability": 0.0 }, { "start": 7876.0, "end": 7876.0, "probability": 0.0 }, { "start": 7876.0, "end": 7876.0, "probability": 0.0 }, { "start": 7876.0, "end": 7876.0, "probability": 0.0 }, { "start": 7876.0, "end": 7876.0, "probability": 0.0 }, { "start": 7876.0, "end": 7876.0, "probability": 0.0 }, { "start": 7876.0, "end": 7876.0, "probability": 0.0 }, { "start": 7876.0, "end": 7876.0, "probability": 0.0 }, { "start": 7876.0, "end": 7876.0, "probability": 0.0 }, { "start": 7876.0, "end": 7876.0, "probability": 0.0 }, { "start": 7876.0, "end": 7876.0, "probability": 0.0 }, { "start": 7876.0, "end": 7876.0, "probability": 0.0 }, { "start": 7876.0, "end": 7876.0, "probability": 0.0 }, { "start": 7876.0, "end": 7876.0, "probability": 0.0 }, { "start": 7876.0, "end": 7876.0, "probability": 0.0 }, { "start": 7876.0, "end": 7876.0, "probability": 0.0 }, { "start": 7876.0, "end": 7876.0, "probability": 0.0 }, { "start": 7876.0, "end": 7876.0, "probability": 0.0 }, { "start": 7876.0, "end": 7876.0, "probability": 0.0 }, { "start": 7876.0, "end": 7876.0, "probability": 0.0 }, { "start": 7876.47, "end": 7880.94, "probability": 0.9753 }, { "start": 7882.16, "end": 7886.54, "probability": 0.9181 }, { "start": 7888.0, "end": 7888.36, "probability": 0.5884 }, { "start": 7888.94, "end": 7889.92, "probability": 0.9949 }, { "start": 7890.5, "end": 7895.74, "probability": 0.9794 }, { "start": 7896.7, "end": 7897.8, "probability": 0.99 }, { "start": 7899.3, "end": 7904.6, "probability": 0.9681 }, { "start": 7905.4, "end": 7906.54, "probability": 0.853 }, { "start": 7907.14, "end": 7909.12, "probability": 0.999 }, { "start": 7909.98, "end": 7913.6, "probability": 0.9953 }, { "start": 7914.76, "end": 7917.6, "probability": 0.97 }, { "start": 7917.6, "end": 7920.72, "probability": 0.979 }, { "start": 7921.64, "end": 7924.0, "probability": 0.9486 }, { "start": 7925.3, "end": 7928.22, "probability": 0.9826 }, { "start": 7928.22, "end": 7929.94, "probability": 0.9822 }, { "start": 7931.34, "end": 7932.96, "probability": 0.7375 }, { "start": 7933.26, "end": 7935.24, "probability": 0.9956 }, { "start": 7936.62, "end": 7940.24, "probability": 0.9224 }, { "start": 7940.72, "end": 7942.54, "probability": 0.9332 }, { "start": 7943.38, "end": 7944.5, "probability": 0.9692 }, { "start": 7945.22, "end": 7947.04, "probability": 0.8844 }, { "start": 7947.84, "end": 7952.48, "probability": 0.9525 }, { "start": 7952.48, "end": 7957.54, "probability": 0.981 }, { "start": 7957.54, "end": 7961.18, "probability": 0.9997 }, { "start": 7962.48, "end": 7965.52, "probability": 0.9848 }, { "start": 7965.52, "end": 7969.2, "probability": 0.9974 }, { "start": 7970.1, "end": 7971.54, "probability": 0.8063 }, { "start": 7971.82, "end": 7975.56, "probability": 0.8776 }, { "start": 7976.02, "end": 7977.7, "probability": 0.8852 }, { "start": 7978.7, "end": 7981.04, "probability": 0.9945 }, { "start": 7981.56, "end": 7984.44, "probability": 0.9204 }, { "start": 7987.14, "end": 7990.76, "probability": 0.9967 }, { "start": 7991.24, "end": 7992.12, "probability": 0.8588 }, { "start": 7992.6, "end": 7995.76, "probability": 0.9251 }, { "start": 7996.12, "end": 8000.34, "probability": 0.9891 }, { "start": 8000.98, "end": 8002.42, "probability": 0.8604 }, { "start": 8003.04, "end": 8005.5, "probability": 0.8806 }, { "start": 8006.66, "end": 8012.1, "probability": 0.9656 }, { "start": 8013.4, "end": 8014.54, "probability": 0.999 }, { "start": 8015.5, "end": 8016.64, "probability": 0.6392 }, { "start": 8017.18, "end": 8021.18, "probability": 0.888 }, { "start": 8021.34, "end": 8025.52, "probability": 0.9773 }, { "start": 8026.06, "end": 8027.62, "probability": 0.9718 }, { "start": 8028.54, "end": 8030.96, "probability": 0.9886 }, { "start": 8031.48, "end": 8033.34, "probability": 0.9882 }, { "start": 8033.82, "end": 8037.94, "probability": 0.9867 }, { "start": 8038.5, "end": 8040.42, "probability": 0.9485 }, { "start": 8041.44, "end": 8043.46, "probability": 0.8666 }, { "start": 8044.3, "end": 8044.78, "probability": 0.6247 }, { "start": 8045.76, "end": 8047.44, "probability": 0.9918 }, { "start": 8048.36, "end": 8049.86, "probability": 0.5671 }, { "start": 8050.94, "end": 8052.66, "probability": 0.9842 }, { "start": 8053.34, "end": 8053.66, "probability": 0.9557 }, { "start": 8054.18, "end": 8058.42, "probability": 0.9457 }, { "start": 8058.8, "end": 8061.38, "probability": 0.9925 }, { "start": 8062.24, "end": 8065.1, "probability": 0.616 }, { "start": 8066.6, "end": 8066.62, "probability": 0.3693 }, { "start": 8066.62, "end": 8067.84, "probability": 0.7909 }, { "start": 8068.48, "end": 8070.24, "probability": 0.9819 }, { "start": 8070.3, "end": 8076.22, "probability": 0.9813 }, { "start": 8076.38, "end": 8079.06, "probability": 0.8885 }, { "start": 8079.38, "end": 8079.96, "probability": 0.7359 }, { "start": 8080.26, "end": 8080.9, "probability": 0.4545 }, { "start": 8081.86, "end": 8085.92, "probability": 0.9362 }, { "start": 8086.86, "end": 8091.44, "probability": 0.9976 }, { "start": 8092.1, "end": 8092.62, "probability": 0.8194 }, { "start": 8094.7, "end": 8095.02, "probability": 0.8275 }, { "start": 8095.62, "end": 8099.22, "probability": 0.9746 }, { "start": 8099.7, "end": 8100.99, "probability": 0.9559 }, { "start": 8101.94, "end": 8104.3, "probability": 0.9399 }, { "start": 8105.58, "end": 8107.06, "probability": 0.9977 }, { "start": 8107.78, "end": 8110.94, "probability": 0.9476 }, { "start": 8111.4, "end": 8112.78, "probability": 0.9683 }, { "start": 8113.44, "end": 8116.18, "probability": 0.9961 }, { "start": 8118.02, "end": 8122.78, "probability": 0.9561 }, { "start": 8123.56, "end": 8126.44, "probability": 0.9948 }, { "start": 8127.44, "end": 8128.08, "probability": 0.7051 }, { "start": 8128.76, "end": 8130.06, "probability": 0.9463 }, { "start": 8131.02, "end": 8132.82, "probability": 0.987 }, { "start": 8134.52, "end": 8139.22, "probability": 0.9712 }, { "start": 8139.86, "end": 8141.7, "probability": 0.9567 }, { "start": 8141.8, "end": 8147.28, "probability": 0.9966 }, { "start": 8148.06, "end": 8148.56, "probability": 0.8354 }, { "start": 8148.6, "end": 8150.9, "probability": 0.7107 }, { "start": 8151.12, "end": 8152.24, "probability": 0.9692 }, { "start": 8152.86, "end": 8157.26, "probability": 0.9967 }, { "start": 8157.92, "end": 8159.7, "probability": 0.9606 }, { "start": 8160.74, "end": 8161.86, "probability": 0.9157 }, { "start": 8162.42, "end": 8165.88, "probability": 0.9858 }, { "start": 8166.48, "end": 8167.4, "probability": 0.9031 }, { "start": 8167.88, "end": 8168.64, "probability": 0.9574 }, { "start": 8168.74, "end": 8169.26, "probability": 0.8103 }, { "start": 8169.82, "end": 8171.02, "probability": 0.9742 }, { "start": 8171.12, "end": 8174.83, "probability": 0.9915 }, { "start": 8175.96, "end": 8178.14, "probability": 0.9946 }, { "start": 8179.4, "end": 8179.8, "probability": 0.4246 }, { "start": 8179.86, "end": 8182.22, "probability": 0.7993 }, { "start": 8182.38, "end": 8184.4, "probability": 0.8823 }, { "start": 8184.9, "end": 8187.8, "probability": 0.988 }, { "start": 8188.54, "end": 8188.9, "probability": 0.9295 }, { "start": 8189.14, "end": 8189.8, "probability": 0.8737 }, { "start": 8190.3, "end": 8193.68, "probability": 0.8164 }, { "start": 8194.02, "end": 8195.46, "probability": 0.9758 }, { "start": 8196.1, "end": 8197.22, "probability": 0.998 }, { "start": 8197.68, "end": 8203.12, "probability": 0.9612 }, { "start": 8204.18, "end": 8207.98, "probability": 0.9667 }, { "start": 8208.14, "end": 8209.14, "probability": 0.9819 }, { "start": 8210.04, "end": 8214.14, "probability": 0.7925 }, { "start": 8214.52, "end": 8219.66, "probability": 0.9199 }, { "start": 8220.04, "end": 8224.38, "probability": 0.9978 }, { "start": 8224.94, "end": 8226.46, "probability": 0.9717 }, { "start": 8226.72, "end": 8227.36, "probability": 0.837 }, { "start": 8227.72, "end": 8228.4, "probability": 0.5944 }, { "start": 8228.52, "end": 8230.9, "probability": 0.9912 }, { "start": 8230.94, "end": 8231.28, "probability": 0.7953 }, { "start": 8231.56, "end": 8233.64, "probability": 0.8025 }, { "start": 8233.84, "end": 8236.36, "probability": 0.8921 }, { "start": 8237.06, "end": 8239.04, "probability": 0.5013 }, { "start": 8239.1, "end": 8240.48, "probability": 0.4568 }, { "start": 8240.98, "end": 8242.24, "probability": 0.7048 }, { "start": 8242.34, "end": 8243.62, "probability": 0.9506 }, { "start": 8244.44, "end": 8247.62, "probability": 0.7451 }, { "start": 8247.96, "end": 8248.84, "probability": 0.4222 }, { "start": 8249.72, "end": 8251.36, "probability": 0.9785 }, { "start": 8251.98, "end": 8253.82, "probability": 0.7423 }, { "start": 8254.68, "end": 8255.88, "probability": 0.7209 }, { "start": 8256.88, "end": 8258.5, "probability": 0.9956 }, { "start": 8259.46, "end": 8262.84, "probability": 0.9473 }, { "start": 8263.52, "end": 8267.58, "probability": 0.932 }, { "start": 8268.1, "end": 8269.68, "probability": 0.8928 }, { "start": 8270.76, "end": 8272.58, "probability": 0.9572 }, { "start": 8272.58, "end": 8275.22, "probability": 0.9867 }, { "start": 8277.34, "end": 8279.48, "probability": 0.509 }, { "start": 8279.6, "end": 8281.04, "probability": 0.646 }, { "start": 8284.89, "end": 8286.76, "probability": 0.4516 }, { "start": 8287.3, "end": 8290.22, "probability": 0.7788 }, { "start": 8290.88, "end": 8295.2, "probability": 0.5985 }, { "start": 8296.92, "end": 8298.34, "probability": 0.7439 }, { "start": 8298.42, "end": 8299.56, "probability": 0.8837 }, { "start": 8300.0, "end": 8302.88, "probability": 0.9067 }, { "start": 8303.0, "end": 8303.2, "probability": 0.753 }, { "start": 8305.02, "end": 8306.5, "probability": 0.7362 }, { "start": 8306.84, "end": 8309.38, "probability": 0.9468 }, { "start": 8309.54, "end": 8310.12, "probability": 0.8198 }, { "start": 8310.86, "end": 8312.88, "probability": 0.8904 }, { "start": 8315.71, "end": 8319.04, "probability": 0.5088 }, { "start": 8319.56, "end": 8319.78, "probability": 0.0235 }, { "start": 8320.5, "end": 8324.6, "probability": 0.1505 }, { "start": 8324.86, "end": 8327.36, "probability": 0.5252 }, { "start": 8330.07, "end": 8332.82, "probability": 0.7165 }, { "start": 8333.52, "end": 8336.82, "probability": 0.5789 }, { "start": 8339.94, "end": 8340.0, "probability": 0.874 }, { "start": 8340.08, "end": 8340.16, "probability": 0.4598 }, { "start": 8340.22, "end": 8342.84, "probability": 0.7834 }, { "start": 8342.98, "end": 8343.78, "probability": 0.7168 }, { "start": 8343.84, "end": 8343.94, "probability": 0.87 }, { "start": 8343.94, "end": 8344.2, "probability": 0.7725 }, { "start": 8344.98, "end": 8345.16, "probability": 0.3224 }, { "start": 8345.66, "end": 8345.94, "probability": 0.579 }, { "start": 8349.04, "end": 8352.4, "probability": 0.7591 }, { "start": 8352.79, "end": 8353.0, "probability": 0.175 }, { "start": 8353.3, "end": 8353.86, "probability": 0.4288 }, { "start": 8353.88, "end": 8357.26, "probability": 0.427 }, { "start": 8357.3, "end": 8357.6, "probability": 0.7289 }, { "start": 8357.66, "end": 8358.46, "probability": 0.1452 }, { "start": 8358.52, "end": 8360.38, "probability": 0.5995 }, { "start": 8361.54, "end": 8364.12, "probability": 0.5021 }, { "start": 8364.36, "end": 8368.14, "probability": 0.4946 }, { "start": 8368.14, "end": 8368.64, "probability": 0.1459 }, { "start": 8371.5, "end": 8372.18, "probability": 0.7168 }, { "start": 8373.04, "end": 8374.66, "probability": 0.737 }, { "start": 8377.3, "end": 8381.8, "probability": 0.9839 }, { "start": 8382.42, "end": 8383.26, "probability": 0.3291 }, { "start": 8384.14, "end": 8385.06, "probability": 0.7999 }, { "start": 8386.06, "end": 8388.92, "probability": 0.7647 }, { "start": 8391.64, "end": 8394.98, "probability": 0.7033 }, { "start": 8395.72, "end": 8399.84, "probability": 0.9316 }, { "start": 8401.32, "end": 8402.88, "probability": 0.9011 }, { "start": 8404.06, "end": 8406.22, "probability": 0.8623 }, { "start": 8406.4, "end": 8407.95, "probability": 0.998 }, { "start": 8409.26, "end": 8411.56, "probability": 0.9995 }, { "start": 8412.74, "end": 8415.84, "probability": 0.9467 }, { "start": 8416.5, "end": 8423.32, "probability": 0.9843 }, { "start": 8423.4, "end": 8424.9, "probability": 0.9065 }, { "start": 8425.7, "end": 8427.04, "probability": 0.9956 }, { "start": 8431.4, "end": 8432.42, "probability": 0.5947 }, { "start": 8433.04, "end": 8434.56, "probability": 0.9719 }, { "start": 8434.64, "end": 8439.12, "probability": 0.9961 }, { "start": 8440.56, "end": 8446.22, "probability": 0.9962 }, { "start": 8446.84, "end": 8449.54, "probability": 0.9985 }, { "start": 8449.54, "end": 8451.78, "probability": 0.9987 }, { "start": 8453.88, "end": 8456.44, "probability": 0.9233 }, { "start": 8456.62, "end": 8458.04, "probability": 0.8433 }, { "start": 8459.14, "end": 8462.38, "probability": 0.9785 }, { "start": 8462.48, "end": 8463.0, "probability": 0.6477 }, { "start": 8463.04, "end": 8463.52, "probability": 0.8021 }, { "start": 8464.26, "end": 8468.38, "probability": 0.8369 }, { "start": 8469.26, "end": 8471.12, "probability": 0.9969 }, { "start": 8471.48, "end": 8473.96, "probability": 0.9984 }, { "start": 8474.96, "end": 8479.48, "probability": 0.999 }, { "start": 8481.34, "end": 8484.4, "probability": 0.9835 }, { "start": 8484.52, "end": 8484.94, "probability": 0.5873 }, { "start": 8485.18, "end": 8490.0, "probability": 0.8792 }, { "start": 8491.34, "end": 8492.76, "probability": 0.6079 }, { "start": 8494.0, "end": 8495.46, "probability": 0.95 }, { "start": 8495.64, "end": 8496.82, "probability": 0.9676 }, { "start": 8496.9, "end": 8497.85, "probability": 0.9125 }, { "start": 8500.21, "end": 8505.46, "probability": 0.7452 }, { "start": 8506.3, "end": 8506.76, "probability": 0.8811 }, { "start": 8506.8, "end": 8509.1, "probability": 0.848 }, { "start": 8509.3, "end": 8510.82, "probability": 0.911 }, { "start": 8511.44, "end": 8512.42, "probability": 0.9057 }, { "start": 8513.14, "end": 8521.78, "probability": 0.9661 }, { "start": 8521.78, "end": 8526.5, "probability": 0.992 }, { "start": 8526.58, "end": 8527.62, "probability": 0.5836 }, { "start": 8527.76, "end": 8529.02, "probability": 0.8056 }, { "start": 8529.84, "end": 8532.44, "probability": 0.9893 }, { "start": 8533.64, "end": 8534.12, "probability": 0.2887 }, { "start": 8534.12, "end": 8537.08, "probability": 0.6113 }, { "start": 8537.3, "end": 8541.1, "probability": 0.868 }, { "start": 8541.66, "end": 8542.26, "probability": 0.6278 }, { "start": 8542.68, "end": 8544.26, "probability": 0.9748 }, { "start": 8545.54, "end": 8546.48, "probability": 0.9386 }, { "start": 8546.72, "end": 8546.72, "probability": 0.3945 }, { "start": 8546.72, "end": 8547.04, "probability": 0.0465 }, { "start": 8547.1, "end": 8550.6, "probability": 0.9546 }, { "start": 8551.0, "end": 8553.39, "probability": 0.9971 }, { "start": 8554.28, "end": 8555.62, "probability": 0.9874 }, { "start": 8556.62, "end": 8560.34, "probability": 0.9551 }, { "start": 8560.92, "end": 8561.32, "probability": 0.567 }, { "start": 8563.62, "end": 8566.84, "probability": 0.6844 }, { "start": 8566.84, "end": 8569.88, "probability": 0.931 }, { "start": 8570.72, "end": 8574.04, "probability": 0.9869 }, { "start": 8575.32, "end": 8576.58, "probability": 0.9224 }, { "start": 8577.24, "end": 8577.92, "probability": 0.8247 }, { "start": 8578.0, "end": 8578.48, "probability": 0.6082 }, { "start": 8578.48, "end": 8582.1, "probability": 0.474 }, { "start": 8582.12, "end": 8584.9, "probability": 0.9397 }, { "start": 8585.86, "end": 8589.98, "probability": 0.9956 }, { "start": 8590.1, "end": 8590.86, "probability": 0.8969 }, { "start": 8591.14, "end": 8591.4, "probability": 0.0254 }, { "start": 8591.4, "end": 8591.48, "probability": 0.0269 }, { "start": 8591.48, "end": 8593.54, "probability": 0.6108 }, { "start": 8593.64, "end": 8594.02, "probability": 0.5413 }, { "start": 8594.02, "end": 8594.98, "probability": 0.9131 }, { "start": 8595.64, "end": 8601.54, "probability": 0.9871 }, { "start": 8601.76, "end": 8604.54, "probability": 0.9701 }, { "start": 8605.14, "end": 8605.86, "probability": 0.2126 }, { "start": 8607.3, "end": 8609.82, "probability": 0.174 }, { "start": 8609.82, "end": 8609.82, "probability": 0.1153 }, { "start": 8609.82, "end": 8610.26, "probability": 0.3629 }, { "start": 8611.8, "end": 8612.58, "probability": 0.3909 }, { "start": 8612.62, "end": 8612.94, "probability": 0.2164 }, { "start": 8612.94, "end": 8614.27, "probability": 0.0858 }, { "start": 8615.74, "end": 8615.88, "probability": 0.4812 }, { "start": 8615.98, "end": 8617.68, "probability": 0.8818 }, { "start": 8617.68, "end": 8618.09, "probability": 0.6888 }, { "start": 8618.38, "end": 8618.82, "probability": 0.8858 }, { "start": 8618.92, "end": 8619.64, "probability": 0.9253 }, { "start": 8620.52, "end": 8622.6, "probability": 0.0124 }, { "start": 8622.6, "end": 8624.28, "probability": 0.6722 }, { "start": 8624.28, "end": 8625.5, "probability": 0.3359 }, { "start": 8625.68, "end": 8626.06, "probability": 0.9476 }, { "start": 8627.0, "end": 8628.34, "probability": 0.9008 }, { "start": 8628.52, "end": 8629.12, "probability": 0.873 }, { "start": 8629.18, "end": 8629.6, "probability": 0.7813 }, { "start": 8629.76, "end": 8632.62, "probability": 0.7281 }, { "start": 8632.68, "end": 8634.58, "probability": 0.9486 }, { "start": 8634.64, "end": 8635.54, "probability": 0.7197 }, { "start": 8636.02, "end": 8636.94, "probability": 0.9819 }, { "start": 8637.84, "end": 8638.56, "probability": 0.0133 }, { "start": 8638.56, "end": 8642.52, "probability": 0.5068 }, { "start": 8643.26, "end": 8644.82, "probability": 0.3401 }, { "start": 8644.82, "end": 8644.82, "probability": 0.1114 }, { "start": 8644.82, "end": 8645.2, "probability": 0.5384 }, { "start": 8645.74, "end": 8648.3, "probability": 0.7122 }, { "start": 8648.3, "end": 8648.64, "probability": 0.2036 }, { "start": 8649.18, "end": 8649.9, "probability": 0.9138 }, { "start": 8650.16, "end": 8650.26, "probability": 0.2908 }, { "start": 8650.26, "end": 8651.02, "probability": 0.8141 }, { "start": 8651.12, "end": 8652.42, "probability": 0.7278 }, { "start": 8652.48, "end": 8652.9, "probability": 0.5796 }, { "start": 8653.58, "end": 8654.24, "probability": 0.6382 }, { "start": 8655.74, "end": 8656.68, "probability": 0.8368 }, { "start": 8656.76, "end": 8659.08, "probability": 0.9781 }, { "start": 8659.36, "end": 8660.94, "probability": 0.9368 }, { "start": 8661.98, "end": 8662.4, "probability": 0.8362 }, { "start": 8663.28, "end": 8668.36, "probability": 0.9735 }, { "start": 8668.94, "end": 8669.84, "probability": 0.6607 }, { "start": 8670.58, "end": 8672.7, "probability": 0.9878 }, { "start": 8672.7, "end": 8676.41, "probability": 0.9524 }, { "start": 8677.3, "end": 8680.46, "probability": 0.999 }, { "start": 8680.46, "end": 8682.4, "probability": 0.9992 }, { "start": 8684.24, "end": 8687.92, "probability": 0.972 }, { "start": 8687.92, "end": 8690.24, "probability": 0.9995 }, { "start": 8690.82, "end": 8696.0, "probability": 0.9927 }, { "start": 8696.52, "end": 8697.4, "probability": 0.687 }, { "start": 8697.78, "end": 8698.28, "probability": 0.59 }, { "start": 8698.42, "end": 8698.98, "probability": 0.9958 }, { "start": 8699.3, "end": 8702.52, "probability": 0.9699 }, { "start": 8702.52, "end": 8704.76, "probability": 0.6657 }, { "start": 8704.82, "end": 8705.04, "probability": 0.1175 }, { "start": 8705.04, "end": 8707.86, "probability": 0.9929 }, { "start": 8707.98, "end": 8709.94, "probability": 0.9939 }, { "start": 8710.58, "end": 8711.16, "probability": 0.8152 }, { "start": 8712.46, "end": 8714.58, "probability": 0.3574 }, { "start": 8714.86, "end": 8714.88, "probability": 0.1805 }, { "start": 8714.88, "end": 8715.0, "probability": 0.014 }, { "start": 8715.14, "end": 8716.06, "probability": 0.6928 }, { "start": 8716.64, "end": 8718.14, "probability": 0.9075 }, { "start": 8718.14, "end": 8718.96, "probability": 0.5205 }, { "start": 8719.06, "end": 8720.26, "probability": 0.6324 }, { "start": 8721.46, "end": 8721.74, "probability": 0.849 }, { "start": 8722.22, "end": 8725.6, "probability": 0.991 }, { "start": 8726.36, "end": 8727.6, "probability": 0.2297 }, { "start": 8728.56, "end": 8732.08, "probability": 0.8975 }, { "start": 8732.46, "end": 8734.6, "probability": 0.9969 }, { "start": 8735.98, "end": 8738.16, "probability": 0.9971 }, { "start": 8738.86, "end": 8739.16, "probability": 0.957 }, { "start": 8741.76, "end": 8744.52, "probability": 0.6493 }, { "start": 8745.14, "end": 8746.94, "probability": 0.9259 }, { "start": 8747.56, "end": 8754.68, "probability": 0.9825 }, { "start": 8754.86, "end": 8755.1, "probability": 0.3715 }, { "start": 8755.1, "end": 8758.02, "probability": 0.8384 }, { "start": 8758.34, "end": 8758.94, "probability": 0.6532 }, { "start": 8759.02, "end": 8760.26, "probability": 0.7528 }, { "start": 8760.3, "end": 8760.32, "probability": 0.0867 }, { "start": 8760.32, "end": 8760.38, "probability": 0.5992 }, { "start": 8760.38, "end": 8761.54, "probability": 0.5659 }, { "start": 8761.64, "end": 8762.2, "probability": 0.6777 }, { "start": 8762.5, "end": 8764.24, "probability": 0.9912 }, { "start": 8764.24, "end": 8766.77, "probability": 0.8926 }, { "start": 8767.7, "end": 8769.46, "probability": 0.9902 }, { "start": 8769.46, "end": 8770.87, "probability": 0.5416 }, { "start": 8771.2, "end": 8773.4, "probability": 0.7079 }, { "start": 8773.44, "end": 8776.82, "probability": 0.9941 }, { "start": 8776.82, "end": 8778.08, "probability": 0.0061 }, { "start": 8778.08, "end": 8779.44, "probability": 0.4233 }, { "start": 8779.54, "end": 8781.38, "probability": 0.985 }, { "start": 8781.48, "end": 8781.7, "probability": 0.5981 }, { "start": 8781.8, "end": 8782.16, "probability": 0.4878 }, { "start": 8782.94, "end": 8786.0, "probability": 0.9965 }, { "start": 8786.0, "end": 8790.96, "probability": 0.9683 }, { "start": 8791.56, "end": 8793.4, "probability": 0.9931 }, { "start": 8793.56, "end": 8794.76, "probability": 0.9928 }, { "start": 8795.32, "end": 8797.52, "probability": 0.991 }, { "start": 8797.82, "end": 8803.1, "probability": 0.9878 }, { "start": 8803.44, "end": 8805.52, "probability": 0.7389 }, { "start": 8805.64, "end": 8809.78, "probability": 0.9964 }, { "start": 8810.06, "end": 8815.16, "probability": 0.9971 }, { "start": 8816.24, "end": 8816.34, "probability": 0.4226 }, { "start": 8816.34, "end": 8816.87, "probability": 0.262 }, { "start": 8817.02, "end": 8817.96, "probability": 0.5128 }, { "start": 8818.1, "end": 8818.8, "probability": 0.9551 }, { "start": 8818.8, "end": 8818.94, "probability": 0.4026 }, { "start": 8818.94, "end": 8819.58, "probability": 0.4875 }, { "start": 8819.9, "end": 8820.88, "probability": 0.929 }, { "start": 8820.88, "end": 8822.52, "probability": 0.9554 }, { "start": 8823.24, "end": 8823.74, "probability": 0.0001 }, { "start": 8823.74, "end": 8825.74, "probability": 0.818 }, { "start": 8825.94, "end": 8828.14, "probability": 0.9554 }, { "start": 8829.08, "end": 8829.87, "probability": 0.5025 }, { "start": 8830.4, "end": 8831.48, "probability": 0.5628 }, { "start": 8832.62, "end": 8835.44, "probability": 0.9088 }, { "start": 8836.08, "end": 8836.9, "probability": 0.3958 }, { "start": 8838.3, "end": 8838.42, "probability": 0.1663 }, { "start": 8839.2, "end": 8839.64, "probability": 0.1266 }, { "start": 8839.72, "end": 8840.52, "probability": 0.2747 }, { "start": 8840.52, "end": 8840.52, "probability": 0.0549 }, { "start": 8840.61, "end": 8840.96, "probability": 0.6962 }, { "start": 8841.94, "end": 8844.48, "probability": 0.5588 }, { "start": 8844.48, "end": 8848.34, "probability": 0.4945 }, { "start": 8849.0, "end": 8851.77, "probability": 0.947 }, { "start": 8852.92, "end": 8853.8, "probability": 0.792 }, { "start": 8854.8, "end": 8856.92, "probability": 0.8206 }, { "start": 8858.46, "end": 8859.06, "probability": 0.9897 }, { "start": 8859.86, "end": 8861.4, "probability": 0.9883 }, { "start": 8862.06, "end": 8864.36, "probability": 0.9929 }, { "start": 8864.56, "end": 8868.04, "probability": 0.9961 }, { "start": 8868.42, "end": 8869.2, "probability": 0.9919 }, { "start": 8869.74, "end": 8873.84, "probability": 0.9849 }, { "start": 8875.1, "end": 8876.28, "probability": 0.8008 }, { "start": 8877.02, "end": 8878.5, "probability": 0.9766 }, { "start": 8878.88, "end": 8882.58, "probability": 0.9929 }, { "start": 8883.14, "end": 8884.78, "probability": 0.9624 }, { "start": 8885.32, "end": 8887.76, "probability": 0.8271 }, { "start": 8888.46, "end": 8889.68, "probability": 0.5711 }, { "start": 8891.06, "end": 8891.64, "probability": 0.5907 }, { "start": 8892.32, "end": 8893.36, "probability": 0.9984 }, { "start": 8893.88, "end": 8897.3, "probability": 0.9972 }, { "start": 8898.36, "end": 8900.94, "probability": 0.9915 }, { "start": 8901.54, "end": 8903.68, "probability": 0.8696 }, { "start": 8904.82, "end": 8909.98, "probability": 0.858 }, { "start": 8910.86, "end": 8915.68, "probability": 0.8604 }, { "start": 8916.44, "end": 8917.78, "probability": 0.857 }, { "start": 8918.2, "end": 8919.92, "probability": 0.9784 }, { "start": 8920.44, "end": 8924.02, "probability": 0.9454 }, { "start": 8924.62, "end": 8925.56, "probability": 0.7798 }, { "start": 8925.62, "end": 8928.2, "probability": 0.2432 }, { "start": 8928.71, "end": 8929.9, "probability": 0.2441 }, { "start": 8929.9, "end": 8930.06, "probability": 0.1631 }, { "start": 8930.18, "end": 8934.42, "probability": 0.7606 }, { "start": 8934.8, "end": 8935.82, "probability": 0.6204 }, { "start": 8936.68, "end": 8939.12, "probability": 0.8727 }, { "start": 8940.3, "end": 8941.04, "probability": 0.9082 }, { "start": 8941.84, "end": 8943.56, "probability": 0.7015 }, { "start": 8944.1, "end": 8945.76, "probability": 0.9764 }, { "start": 8946.7, "end": 8947.8, "probability": 0.9714 }, { "start": 8948.3, "end": 8950.2, "probability": 0.8463 }, { "start": 8950.84, "end": 8951.32, "probability": 0.5552 }, { "start": 8951.68, "end": 8952.5, "probability": 0.5293 }, { "start": 8952.6, "end": 8954.56, "probability": 0.8824 }, { "start": 8955.89, "end": 8959.54, "probability": 0.9958 }, { "start": 8959.54, "end": 8966.52, "probability": 0.9486 }, { "start": 8967.6, "end": 8968.36, "probability": 0.7098 }, { "start": 8969.02, "end": 8970.4, "probability": 0.6839 }, { "start": 8970.82, "end": 8973.56, "probability": 0.9916 }, { "start": 8973.7, "end": 8973.9, "probability": 0.9128 }, { "start": 8974.12, "end": 8976.24, "probability": 0.9678 }, { "start": 8977.22, "end": 8981.24, "probability": 0.9896 }, { "start": 8981.82, "end": 8983.76, "probability": 0.924 }, { "start": 8984.56, "end": 8985.42, "probability": 0.6837 }, { "start": 8987.36, "end": 8988.14, "probability": 0.7224 }, { "start": 8988.38, "end": 8992.24, "probability": 0.5863 }, { "start": 8992.88, "end": 8996.86, "probability": 0.3842 }, { "start": 8997.76, "end": 8999.26, "probability": 0.0224 }, { "start": 8999.28, "end": 9001.94, "probability": 0.7179 }, { "start": 9001.94, "end": 9002.68, "probability": 0.3431 }, { "start": 9003.54, "end": 9006.56, "probability": 0.228 }, { "start": 9009.76, "end": 9010.72, "probability": 0.0511 }, { "start": 9010.72, "end": 9011.18, "probability": 0.0702 }, { "start": 9011.2, "end": 9012.24, "probability": 0.7947 }, { "start": 9012.66, "end": 9017.6, "probability": 0.9868 }, { "start": 9017.7, "end": 9018.48, "probability": 0.8354 }, { "start": 9019.12, "end": 9023.88, "probability": 0.983 }, { "start": 9024.74, "end": 9028.18, "probability": 0.9939 }, { "start": 9028.34, "end": 9030.32, "probability": 0.979 }, { "start": 9030.72, "end": 9033.06, "probability": 0.9856 }, { "start": 9033.52, "end": 9034.88, "probability": 0.7107 }, { "start": 9035.44, "end": 9041.46, "probability": 0.9842 }, { "start": 9041.98, "end": 9045.34, "probability": 0.9779 }, { "start": 9045.52, "end": 9045.96, "probability": 0.8227 }, { "start": 9046.06, "end": 9046.72, "probability": 0.1002 }, { "start": 9046.88, "end": 9049.48, "probability": 0.9478 }, { "start": 9050.08, "end": 9051.58, "probability": 0.7692 }, { "start": 9052.1, "end": 9054.02, "probability": 0.8102 }, { "start": 9054.08, "end": 9057.08, "probability": 0.9727 }, { "start": 9057.14, "end": 9061.1, "probability": 0.9734 }, { "start": 9061.58, "end": 9066.13, "probability": 0.9886 }, { "start": 9066.38, "end": 9067.72, "probability": 0.7576 }, { "start": 9067.72, "end": 9068.08, "probability": 0.0463 }, { "start": 9068.1, "end": 9069.84, "probability": 0.5347 }, { "start": 9070.46, "end": 9071.9, "probability": 0.6968 }, { "start": 9072.28, "end": 9073.28, "probability": 0.5872 }, { "start": 9073.74, "end": 9078.34, "probability": 0.6468 }, { "start": 9078.4, "end": 9079.5, "probability": 0.9751 }, { "start": 9080.18, "end": 9081.88, "probability": 0.8626 }, { "start": 9082.64, "end": 9083.4, "probability": 0.946 }, { "start": 9083.6, "end": 9085.72, "probability": 0.5258 }, { "start": 9085.84, "end": 9088.24, "probability": 0.6399 }, { "start": 9089.14, "end": 9090.52, "probability": 0.9819 }, { "start": 9090.58, "end": 9091.56, "probability": 0.999 }, { "start": 9092.7, "end": 9098.22, "probability": 0.9917 }, { "start": 9099.34, "end": 9103.68, "probability": 0.994 }, { "start": 9104.12, "end": 9106.56, "probability": 0.8945 }, { "start": 9107.76, "end": 9109.76, "probability": 0.9175 }, { "start": 9110.22, "end": 9112.76, "probability": 0.9944 }, { "start": 9114.54, "end": 9115.26, "probability": 0.4488 }, { "start": 9115.66, "end": 9119.75, "probability": 0.8326 }, { "start": 9120.08, "end": 9122.27, "probability": 0.5795 }, { "start": 9122.74, "end": 9123.48, "probability": 0.8198 }, { "start": 9123.5, "end": 9125.36, "probability": 0.9782 }, { "start": 9125.46, "end": 9125.7, "probability": 0.6722 }, { "start": 9125.78, "end": 9129.8, "probability": 0.2991 }, { "start": 9129.92, "end": 9132.0, "probability": 0.915 }, { "start": 9132.64, "end": 9134.24, "probability": 0.9785 }, { "start": 9134.3, "end": 9136.68, "probability": 0.9935 }, { "start": 9136.78, "end": 9138.84, "probability": 0.9873 }, { "start": 9139.88, "end": 9143.5, "probability": 0.9887 }, { "start": 9143.98, "end": 9148.0, "probability": 0.9893 }, { "start": 9148.48, "end": 9152.28, "probability": 0.9693 }, { "start": 9152.62, "end": 9154.23, "probability": 0.9976 }, { "start": 9154.66, "end": 9156.86, "probability": 0.9676 }, { "start": 9157.66, "end": 9159.56, "probability": 0.9935 }, { "start": 9159.62, "end": 9161.42, "probability": 0.9849 }, { "start": 9162.0, "end": 9164.58, "probability": 0.5125 }, { "start": 9165.47, "end": 9166.24, "probability": 0.783 }, { "start": 9166.24, "end": 9167.56, "probability": 0.8231 }, { "start": 9167.94, "end": 9169.68, "probability": 0.1066 }, { "start": 9170.72, "end": 9171.72, "probability": 0.0746 }, { "start": 9172.08, "end": 9172.16, "probability": 0.0224 }, { "start": 9172.18, "end": 9173.86, "probability": 0.6491 }, { "start": 9174.58, "end": 9181.58, "probability": 0.994 }, { "start": 9182.18, "end": 9185.66, "probability": 0.8239 }, { "start": 9187.3, "end": 9188.93, "probability": 0.6379 }, { "start": 9189.12, "end": 9189.22, "probability": 0.9017 }, { "start": 9189.68, "end": 9193.2, "probability": 0.9397 }, { "start": 9193.96, "end": 9195.42, "probability": 0.9789 }, { "start": 9195.5, "end": 9196.78, "probability": 0.9612 }, { "start": 9197.28, "end": 9197.78, "probability": 0.5423 }, { "start": 9198.26, "end": 9202.2, "probability": 0.7439 }, { "start": 9202.46, "end": 9203.42, "probability": 0.8885 }, { "start": 9203.94, "end": 9205.35, "probability": 0.8777 }, { "start": 9205.88, "end": 9208.04, "probability": 0.9326 }, { "start": 9208.65, "end": 9208.72, "probability": 0.0085 }, { "start": 9208.72, "end": 9210.44, "probability": 0.8908 }, { "start": 9210.92, "end": 9214.08, "probability": 0.9744 }, { "start": 9214.56, "end": 9215.46, "probability": 0.7452 }, { "start": 9216.12, "end": 9218.98, "probability": 0.8962 }, { "start": 9219.5, "end": 9224.78, "probability": 0.9882 }, { "start": 9224.94, "end": 9225.18, "probability": 0.4606 }, { "start": 9225.66, "end": 9226.62, "probability": 0.0024 }, { "start": 9227.76, "end": 9229.16, "probability": 0.7778 }, { "start": 9229.7, "end": 9230.14, "probability": 0.2478 }, { "start": 9230.14, "end": 9231.44, "probability": 0.1076 }, { "start": 9231.92, "end": 9235.72, "probability": 0.9748 }, { "start": 9235.76, "end": 9238.44, "probability": 0.9849 }, { "start": 9239.0, "end": 9240.48, "probability": 0.967 }, { "start": 9240.88, "end": 9241.82, "probability": 0.6819 }, { "start": 9241.9, "end": 9242.74, "probability": 0.7307 }, { "start": 9245.68, "end": 9247.96, "probability": 0.8172 }, { "start": 9248.5, "end": 9251.94, "probability": 0.9616 }, { "start": 9252.9, "end": 9254.21, "probability": 0.8433 }, { "start": 9255.46, "end": 9259.14, "probability": 0.9862 }, { "start": 9259.82, "end": 9260.28, "probability": 0.5688 }, { "start": 9260.7, "end": 9264.1, "probability": 0.9882 }, { "start": 9265.08, "end": 9269.12, "probability": 0.988 }, { "start": 9269.12, "end": 9273.16, "probability": 0.9897 }, { "start": 9273.76, "end": 9275.64, "probability": 0.7931 }, { "start": 9275.78, "end": 9277.32, "probability": 0.9729 }, { "start": 9277.96, "end": 9281.42, "probability": 0.9878 }, { "start": 9281.82, "end": 9284.3, "probability": 0.8853 }, { "start": 9284.48, "end": 9285.16, "probability": 0.9713 }, { "start": 9286.0, "end": 9287.7, "probability": 0.9595 }, { "start": 9288.86, "end": 9292.32, "probability": 0.9283 }, { "start": 9292.78, "end": 9297.52, "probability": 0.9961 }, { "start": 9297.66, "end": 9301.92, "probability": 0.9902 }, { "start": 9302.52, "end": 9304.14, "probability": 0.998 }, { "start": 9305.2, "end": 9307.34, "probability": 0.8987 }, { "start": 9307.86, "end": 9308.88, "probability": 0.9972 }, { "start": 9309.7, "end": 9309.96, "probability": 0.9927 }, { "start": 9311.24, "end": 9315.72, "probability": 0.9531 }, { "start": 9316.14, "end": 9318.06, "probability": 0.488 }, { "start": 9318.32, "end": 9318.82, "probability": 0.0691 }, { "start": 9319.12, "end": 9320.08, "probability": 0.5396 }, { "start": 9320.08, "end": 9322.34, "probability": 0.7613 }, { "start": 9323.0, "end": 9325.84, "probability": 0.914 }, { "start": 9326.1, "end": 9328.28, "probability": 0.9786 }, { "start": 9328.5, "end": 9328.84, "probability": 0.7675 }, { "start": 9329.46, "end": 9330.33, "probability": 0.8532 }, { "start": 9330.7, "end": 9332.3, "probability": 0.9575 }, { "start": 9333.18, "end": 9334.74, "probability": 0.9793 }, { "start": 9335.4, "end": 9337.26, "probability": 0.9417 }, { "start": 9337.42, "end": 9337.54, "probability": 0.5188 }, { "start": 9337.64, "end": 9338.96, "probability": 0.785 }, { "start": 9339.08, "end": 9339.92, "probability": 0.8094 }, { "start": 9339.92, "end": 9340.74, "probability": 0.4039 }, { "start": 9340.92, "end": 9342.3, "probability": 0.9686 }, { "start": 9342.52, "end": 9344.12, "probability": 0.9507 }, { "start": 9344.22, "end": 9344.88, "probability": 0.9222 }, { "start": 9345.0, "end": 9349.44, "probability": 0.994 }, { "start": 9350.22, "end": 9350.62, "probability": 0.4086 }, { "start": 9351.12, "end": 9351.54, "probability": 0.619 }, { "start": 9351.54, "end": 9354.3, "probability": 0.6974 }, { "start": 9354.3, "end": 9358.28, "probability": 0.997 }, { "start": 9358.72, "end": 9359.3, "probability": 0.1477 }, { "start": 9359.64, "end": 9360.56, "probability": 0.9274 }, { "start": 9360.84, "end": 9364.06, "probability": 0.9109 }, { "start": 9364.08, "end": 9364.08, "probability": 0.3358 }, { "start": 9364.24, "end": 9364.6, "probability": 0.0365 }, { "start": 9365.06, "end": 9366.4, "probability": 0.9569 }, { "start": 9367.04, "end": 9372.13, "probability": 0.6395 }, { "start": 9372.7, "end": 9372.86, "probability": 0.5327 }, { "start": 9373.58, "end": 9373.68, "probability": 0.6526 }, { "start": 9374.74, "end": 9374.86, "probability": 0.423 }, { "start": 9375.52, "end": 9376.72, "probability": 0.9963 }, { "start": 9377.52, "end": 9381.52, "probability": 0.9913 }, { "start": 9382.1, "end": 9384.96, "probability": 0.8258 }, { "start": 9385.14, "end": 9387.8, "probability": 0.9893 }, { "start": 9388.18, "end": 9389.17, "probability": 0.9827 }, { "start": 9389.88, "end": 9391.06, "probability": 0.9706 }, { "start": 9391.42, "end": 9393.56, "probability": 0.8135 }, { "start": 9394.3, "end": 9402.62, "probability": 0.7983 }, { "start": 9403.24, "end": 9406.84, "probability": 0.7202 }, { "start": 9406.84, "end": 9409.62, "probability": 0.9898 }, { "start": 9410.14, "end": 9413.46, "probability": 0.993 }, { "start": 9413.46, "end": 9416.52, "probability": 0.9953 }, { "start": 9417.69, "end": 9423.04, "probability": 0.9739 }, { "start": 9423.66, "end": 9428.06, "probability": 0.9824 }, { "start": 9428.54, "end": 9429.22, "probability": 0.7595 }, { "start": 9429.4, "end": 9429.83, "probability": 0.8159 }, { "start": 9430.52, "end": 9432.16, "probability": 0.8838 }, { "start": 9432.56, "end": 9433.06, "probability": 0.9607 }, { "start": 9433.16, "end": 9434.56, "probability": 0.9946 }, { "start": 9434.9, "end": 9436.48, "probability": 0.9854 }, { "start": 9437.13, "end": 9439.2, "probability": 0.9895 }, { "start": 9439.66, "end": 9440.4, "probability": 0.9297 }, { "start": 9440.6, "end": 9442.42, "probability": 0.9928 }, { "start": 9442.76, "end": 9444.56, "probability": 0.9932 }, { "start": 9445.08, "end": 9445.7, "probability": 0.9824 }, { "start": 9446.48, "end": 9448.85, "probability": 0.8157 }, { "start": 9449.42, "end": 9456.32, "probability": 0.9822 }, { "start": 9456.72, "end": 9461.24, "probability": 0.9973 }, { "start": 9461.68, "end": 9462.54, "probability": 0.9314 }, { "start": 9462.96, "end": 9465.56, "probability": 0.9897 }, { "start": 9465.94, "end": 9467.68, "probability": 0.99 }, { "start": 9468.2, "end": 9470.56, "probability": 0.9919 }, { "start": 9471.04, "end": 9473.3, "probability": 0.999 }, { "start": 9473.82, "end": 9477.66, "probability": 0.8655 }, { "start": 9477.84, "end": 9480.68, "probability": 0.9432 }, { "start": 9481.99, "end": 9483.68, "probability": 0.8289 }, { "start": 9484.54, "end": 9486.2, "probability": 0.7342 }, { "start": 9486.98, "end": 9489.02, "probability": 0.9836 }, { "start": 9489.14, "end": 9490.78, "probability": 0.9564 }, { "start": 9491.04, "end": 9494.66, "probability": 0.7356 }, { "start": 9495.46, "end": 9497.62, "probability": 0.6885 }, { "start": 9497.62, "end": 9499.22, "probability": 0.7291 }, { "start": 9499.92, "end": 9504.53, "probability": 0.9849 }, { "start": 9505.64, "end": 9506.8, "probability": 0.5598 }, { "start": 9507.28, "end": 9507.88, "probability": 0.9141 }, { "start": 9508.26, "end": 9508.94, "probability": 0.8893 }, { "start": 9509.76, "end": 9512.02, "probability": 0.9706 }, { "start": 9512.44, "end": 9512.78, "probability": 0.8002 }, { "start": 9512.82, "end": 9515.9, "probability": 0.9772 }, { "start": 9515.92, "end": 9518.32, "probability": 0.9967 }, { "start": 9518.64, "end": 9523.12, "probability": 0.906 }, { "start": 9524.47, "end": 9526.28, "probability": 0.6675 }, { "start": 9527.0, "end": 9528.46, "probability": 0.9824 }, { "start": 9528.8, "end": 9530.02, "probability": 0.9519 }, { "start": 9530.4, "end": 9532.02, "probability": 0.902 }, { "start": 9532.48, "end": 9536.06, "probability": 0.9885 }, { "start": 9536.82, "end": 9538.56, "probability": 0.9907 }, { "start": 9538.98, "end": 9540.74, "probability": 0.9917 }, { "start": 9541.04, "end": 9541.52, "probability": 0.7974 }, { "start": 9542.28, "end": 9544.38, "probability": 0.9731 }, { "start": 9544.76, "end": 9546.46, "probability": 0.9043 }, { "start": 9546.92, "end": 9549.16, "probability": 0.9791 }, { "start": 9549.74, "end": 9551.46, "probability": 0.795 }, { "start": 9551.56, "end": 9554.24, "probability": 0.9874 }, { "start": 9554.72, "end": 9556.76, "probability": 0.8677 }, { "start": 9557.18, "end": 9560.54, "probability": 0.9912 }, { "start": 9560.54, "end": 9564.74, "probability": 0.9615 }, { "start": 9565.22, "end": 9571.06, "probability": 0.9972 }, { "start": 9571.5, "end": 9573.88, "probability": 0.9993 }, { "start": 9575.84, "end": 9578.12, "probability": 0.7703 }, { "start": 9578.18, "end": 9578.78, "probability": 0.6729 }, { "start": 9578.84, "end": 9579.62, "probability": 0.7687 }, { "start": 9579.7, "end": 9583.18, "probability": 0.9949 }, { "start": 9584.14, "end": 9585.56, "probability": 0.4289 }, { "start": 9585.96, "end": 9586.46, "probability": 0.7463 }, { "start": 9591.34, "end": 9592.58, "probability": 0.6047 }, { "start": 9593.58, "end": 9594.72, "probability": 0.8103 }, { "start": 9595.38, "end": 9596.26, "probability": 0.5588 }, { "start": 9596.34, "end": 9601.82, "probability": 0.9945 }, { "start": 9603.0, "end": 9607.87, "probability": 0.9561 }, { "start": 9608.58, "end": 9609.2, "probability": 0.8564 }, { "start": 9609.82, "end": 9612.9, "probability": 0.992 }, { "start": 9613.86, "end": 9617.58, "probability": 0.7619 }, { "start": 9618.4, "end": 9623.36, "probability": 0.9628 }, { "start": 9623.78, "end": 9629.2, "probability": 0.9738 }, { "start": 9629.26, "end": 9631.04, "probability": 0.9496 }, { "start": 9631.1, "end": 9633.2, "probability": 0.998 }, { "start": 9633.8, "end": 9634.3, "probability": 0.9681 }, { "start": 9634.9, "end": 9635.72, "probability": 0.736 }, { "start": 9636.76, "end": 9640.63, "probability": 0.9894 }, { "start": 9641.54, "end": 9644.16, "probability": 0.9991 }, { "start": 9645.16, "end": 9645.56, "probability": 0.9596 }, { "start": 9646.38, "end": 9647.16, "probability": 0.8938 }, { "start": 9647.78, "end": 9648.22, "probability": 0.8162 }, { "start": 9649.26, "end": 9650.3, "probability": 0.9014 }, { "start": 9651.04, "end": 9651.78, "probability": 0.7615 }, { "start": 9652.32, "end": 9655.8, "probability": 0.9716 }, { "start": 9657.14, "end": 9658.34, "probability": 0.9878 }, { "start": 9659.84, "end": 9663.14, "probability": 0.89 }, { "start": 9663.84, "end": 9667.02, "probability": 0.9541 }, { "start": 9668.0, "end": 9669.24, "probability": 0.9897 }, { "start": 9670.28, "end": 9671.0, "probability": 0.9917 }, { "start": 9671.54, "end": 9675.0, "probability": 0.9951 }, { "start": 9676.9, "end": 9678.08, "probability": 0.2381 }, { "start": 9678.08, "end": 9678.08, "probability": 0.0206 }, { "start": 9678.08, "end": 9678.38, "probability": 0.3334 }, { "start": 9678.96, "end": 9680.14, "probability": 0.8878 }, { "start": 9681.02, "end": 9683.96, "probability": 0.4539 }, { "start": 9684.76, "end": 9687.88, "probability": 0.8354 }, { "start": 9688.66, "end": 9689.15, "probability": 0.8186 }, { "start": 9690.2, "end": 9693.9, "probability": 0.9885 }, { "start": 9694.64, "end": 9697.38, "probability": 0.9077 }, { "start": 9697.78, "end": 9699.0, "probability": 0.8553 }, { "start": 9699.46, "end": 9700.74, "probability": 0.8442 }, { "start": 9701.82, "end": 9702.66, "probability": 0.9756 }, { "start": 9703.26, "end": 9705.3, "probability": 0.9931 }, { "start": 9705.96, "end": 9706.78, "probability": 0.9041 }, { "start": 9707.62, "end": 9709.56, "probability": 0.9464 }, { "start": 9711.16, "end": 9712.94, "probability": 0.9242 }, { "start": 9713.04, "end": 9713.94, "probability": 0.9259 }, { "start": 9714.08, "end": 9715.37, "probability": 0.9823 }, { "start": 9717.04, "end": 9720.02, "probability": 0.7178 }, { "start": 9720.24, "end": 9720.32, "probability": 0.748 }, { "start": 9720.42, "end": 9721.72, "probability": 0.9769 }, { "start": 9722.12, "end": 9722.56, "probability": 0.8157 }, { "start": 9724.58, "end": 9727.18, "probability": 0.7599 }, { "start": 9728.24, "end": 9731.8, "probability": 0.9958 }, { "start": 9732.3, "end": 9733.04, "probability": 0.9292 }, { "start": 9734.28, "end": 9741.9, "probability": 0.9918 }, { "start": 9742.1, "end": 9743.0, "probability": 0.9893 }, { "start": 9743.72, "end": 9744.68, "probability": 0.994 }, { "start": 9745.48, "end": 9748.24, "probability": 0.9952 }, { "start": 9748.24, "end": 9750.05, "probability": 0.9976 }, { "start": 9751.08, "end": 9758.14, "probability": 0.9355 }, { "start": 9758.76, "end": 9760.16, "probability": 0.8838 }, { "start": 9760.7, "end": 9761.92, "probability": 0.9717 }, { "start": 9762.72, "end": 9766.74, "probability": 0.9978 }, { "start": 9767.28, "end": 9767.76, "probability": 0.7553 }, { "start": 9767.94, "end": 9768.82, "probability": 0.7775 }, { "start": 9769.3, "end": 9772.58, "probability": 0.9507 }, { "start": 9773.66, "end": 9775.78, "probability": 0.9512 }, { "start": 9776.58, "end": 9777.32, "probability": 0.4376 }, { "start": 9777.84, "end": 9778.92, "probability": 0.8174 }, { "start": 9780.0, "end": 9783.3, "probability": 0.7516 }, { "start": 9783.48, "end": 9787.32, "probability": 0.9451 }, { "start": 9787.98, "end": 9789.66, "probability": 0.8589 }, { "start": 9790.4, "end": 9795.1, "probability": 0.833 }, { "start": 9795.24, "end": 9797.6, "probability": 0.9971 }, { "start": 9798.22, "end": 9801.12, "probability": 0.7724 }, { "start": 9801.68, "end": 9805.98, "probability": 0.9868 }, { "start": 9806.54, "end": 9807.86, "probability": 0.7281 }, { "start": 9811.04, "end": 9812.72, "probability": 0.7697 }, { "start": 9821.9, "end": 9822.04, "probability": 0.4683 }, { "start": 9822.22, "end": 9822.72, "probability": 0.1522 }, { "start": 9822.94, "end": 9823.12, "probability": 0.1618 }, { "start": 9823.12, "end": 9823.12, "probability": 0.1894 }, { "start": 9823.12, "end": 9823.14, "probability": 0.0218 }, { "start": 9823.14, "end": 9823.14, "probability": 0.0103 }, { "start": 9830.16, "end": 9830.26, "probability": 0.4077 }, { "start": 9835.74, "end": 9836.16, "probability": 0.2409 }, { "start": 9838.46, "end": 9839.63, "probability": 0.9858 }, { "start": 9840.68, "end": 9841.9, "probability": 0.5283 }, { "start": 9843.02, "end": 9846.94, "probability": 0.9941 }, { "start": 9848.04, "end": 9850.48, "probability": 0.5441 }, { "start": 9850.54, "end": 9851.31, "probability": 0.3694 }, { "start": 9851.48, "end": 9851.86, "probability": 0.4212 }, { "start": 9851.88, "end": 9853.04, "probability": 0.9563 }, { "start": 9853.54, "end": 9854.72, "probability": 0.6586 }, { "start": 9855.06, "end": 9857.8, "probability": 0.6193 }, { "start": 9858.92, "end": 9861.76, "probability": 0.9292 }, { "start": 9862.7, "end": 9864.78, "probability": 0.845 }, { "start": 9865.58, "end": 9866.8, "probability": 0.4977 }, { "start": 9867.88, "end": 9871.26, "probability": 0.9858 }, { "start": 9872.34, "end": 9874.98, "probability": 0.8153 }, { "start": 9875.14, "end": 9875.6, "probability": 0.7965 }, { "start": 9876.04, "end": 9880.18, "probability": 0.9481 }, { "start": 9880.92, "end": 9886.9, "probability": 0.9585 }, { "start": 9887.56, "end": 9889.48, "probability": 0.8073 }, { "start": 9890.5, "end": 9894.14, "probability": 0.8964 }, { "start": 9895.32, "end": 9895.68, "probability": 0.9142 }, { "start": 9895.76, "end": 9899.18, "probability": 0.9552 }, { "start": 9900.0, "end": 9901.94, "probability": 0.3497 }, { "start": 9902.58, "end": 9904.24, "probability": 0.5032 }, { "start": 9905.3, "end": 9913.0, "probability": 0.7433 }, { "start": 9913.04, "end": 9914.34, "probability": 0.9553 }, { "start": 9914.9, "end": 9917.34, "probability": 0.8127 }, { "start": 9918.58, "end": 9922.4, "probability": 0.9386 }, { "start": 9923.56, "end": 9925.82, "probability": 0.6154 }, { "start": 9926.46, "end": 9927.32, "probability": 0.7866 }, { "start": 9927.98, "end": 9928.96, "probability": 0.8619 }, { "start": 9929.42, "end": 9930.3, "probability": 0.8632 }, { "start": 9930.64, "end": 9931.78, "probability": 0.9691 }, { "start": 9932.7, "end": 9934.36, "probability": 0.9123 }, { "start": 9935.1, "end": 9938.24, "probability": 0.949 }, { "start": 9938.88, "end": 9941.76, "probability": 0.7822 }, { "start": 9942.7, "end": 9948.14, "probability": 0.9971 }, { "start": 9948.2, "end": 9949.06, "probability": 0.9535 }, { "start": 9950.2, "end": 9950.3, "probability": 0.3022 }, { "start": 9950.48, "end": 9950.48, "probability": 0.4642 }, { "start": 9951.0, "end": 9955.42, "probability": 0.8549 }, { "start": 9956.06, "end": 9956.68, "probability": 0.8631 }, { "start": 9956.9, "end": 9957.42, "probability": 0.8168 }, { "start": 9957.5, "end": 9958.74, "probability": 0.8141 }, { "start": 9959.62, "end": 9961.78, "probability": 0.9902 }, { "start": 9962.52, "end": 9963.2, "probability": 0.7382 }, { "start": 9963.28, "end": 9963.98, "probability": 0.9709 }, { "start": 9964.58, "end": 9965.7, "probability": 0.772 }, { "start": 9965.96, "end": 9968.56, "probability": 0.9688 }, { "start": 9969.78, "end": 9970.72, "probability": 0.9289 }, { "start": 9971.0, "end": 9972.28, "probability": 0.8589 }, { "start": 9972.38, "end": 9974.84, "probability": 0.9916 }, { "start": 9975.64, "end": 9977.12, "probability": 0.9103 }, { "start": 9977.86, "end": 9982.24, "probability": 0.9096 }, { "start": 9982.66, "end": 9984.42, "probability": 0.8962 }, { "start": 9985.56, "end": 9988.46, "probability": 0.4947 }, { "start": 9988.86, "end": 9992.4, "probability": 0.9834 }, { "start": 9993.52, "end": 9994.04, "probability": 0.6439 }, { "start": 9994.42, "end": 9995.82, "probability": 0.9265 }, { "start": 9996.5, "end": 9998.18, "probability": 0.9598 }, { "start": 9998.72, "end": 10002.84, "probability": 0.946 }, { "start": 10003.9, "end": 10004.98, "probability": 0.9243 }, { "start": 10011.0, "end": 10012.22, "probability": 0.8684 }, { "start": 10012.9, "end": 10016.68, "probability": 0.9805 }, { "start": 10017.36, "end": 10018.86, "probability": 0.702 }, { "start": 10020.04, "end": 10021.1, "probability": 0.7336 }, { "start": 10022.0, "end": 10025.74, "probability": 0.9834 }, { "start": 10026.44, "end": 10026.66, "probability": 0.9021 }, { "start": 10027.1, "end": 10028.54, "probability": 0.9899 }, { "start": 10028.98, "end": 10030.21, "probability": 0.9678 }, { "start": 10031.8, "end": 10038.0, "probability": 0.9327 }, { "start": 10038.18, "end": 10038.56, "probability": 0.8022 }, { "start": 10039.8, "end": 10042.82, "probability": 0.8977 }, { "start": 10043.26, "end": 10045.72, "probability": 0.9559 }, { "start": 10046.64, "end": 10049.36, "probability": 0.9175 }, { "start": 10049.84, "end": 10051.06, "probability": 0.8375 }, { "start": 10051.86, "end": 10054.63, "probability": 0.9957 }, { "start": 10054.76, "end": 10057.98, "probability": 0.9911 }, { "start": 10059.94, "end": 10063.94, "probability": 0.9685 }, { "start": 10064.3, "end": 10069.18, "probability": 0.9926 }, { "start": 10070.5, "end": 10074.72, "probability": 0.9333 }, { "start": 10075.72, "end": 10076.14, "probability": 0.7463 }, { "start": 10076.22, "end": 10077.22, "probability": 0.5659 }, { "start": 10077.3, "end": 10079.34, "probability": 0.9937 }, { "start": 10079.78, "end": 10080.56, "probability": 0.9883 }, { "start": 10081.1, "end": 10082.16, "probability": 0.9792 }, { "start": 10082.98, "end": 10083.48, "probability": 0.7771 }, { "start": 10084.6, "end": 10085.12, "probability": 0.9437 }, { "start": 10085.76, "end": 10087.76, "probability": 0.9901 }, { "start": 10088.32, "end": 10089.04, "probability": 0.8088 }, { "start": 10089.62, "end": 10090.36, "probability": 0.948 }, { "start": 10091.18, "end": 10091.36, "probability": 0.8066 }, { "start": 10091.88, "end": 10092.96, "probability": 0.8919 }, { "start": 10093.5, "end": 10094.96, "probability": 0.8765 }, { "start": 10095.52, "end": 10097.5, "probability": 0.9806 }, { "start": 10097.68, "end": 10099.54, "probability": 0.9199 }, { "start": 10100.12, "end": 10102.4, "probability": 0.9492 }, { "start": 10103.34, "end": 10106.06, "probability": 0.984 }, { "start": 10106.38, "end": 10107.1, "probability": 0.8429 }, { "start": 10107.62, "end": 10109.68, "probability": 0.8595 }, { "start": 10110.14, "end": 10110.46, "probability": 0.975 }, { "start": 10111.76, "end": 10114.79, "probability": 0.9795 }, { "start": 10115.84, "end": 10118.78, "probability": 0.8097 }, { "start": 10118.94, "end": 10124.18, "probability": 0.9858 }, { "start": 10124.84, "end": 10126.1, "probability": 0.8491 }, { "start": 10126.16, "end": 10128.2, "probability": 0.9414 }, { "start": 10128.82, "end": 10133.44, "probability": 0.6077 }, { "start": 10133.52, "end": 10136.24, "probability": 0.8741 }, { "start": 10136.48, "end": 10137.64, "probability": 0.7495 }, { "start": 10138.3, "end": 10138.86, "probability": 0.7728 }, { "start": 10139.02, "end": 10140.43, "probability": 0.0165 }, { "start": 10140.66, "end": 10142.28, "probability": 0.4196 }, { "start": 10142.28, "end": 10143.42, "probability": 0.2673 }, { "start": 10143.88, "end": 10144.8, "probability": 0.3645 }, { "start": 10145.06, "end": 10146.44, "probability": 0.9058 }, { "start": 10146.64, "end": 10147.4, "probability": 0.9328 }, { "start": 10147.44, "end": 10149.56, "probability": 0.9626 }, { "start": 10150.18, "end": 10152.72, "probability": 0.9912 }, { "start": 10153.3, "end": 10154.14, "probability": 0.5533 }, { "start": 10154.88, "end": 10155.4, "probability": 0.7767 }, { "start": 10157.34, "end": 10160.54, "probability": 0.9507 }, { "start": 10162.64, "end": 10164.6, "probability": 0.981 }, { "start": 10164.72, "end": 10166.2, "probability": 0.9626 }, { "start": 10166.52, "end": 10167.2, "probability": 0.8929 }, { "start": 10167.7, "end": 10169.3, "probability": 0.988 }, { "start": 10170.12, "end": 10171.78, "probability": 0.8972 }, { "start": 10172.16, "end": 10176.04, "probability": 0.9856 }, { "start": 10176.66, "end": 10179.32, "probability": 0.9896 }, { "start": 10179.8, "end": 10182.54, "probability": 0.9412 }, { "start": 10182.6, "end": 10183.64, "probability": 0.973 }, { "start": 10185.16, "end": 10186.38, "probability": 0.9167 }, { "start": 10186.44, "end": 10189.14, "probability": 0.9203 }, { "start": 10189.24, "end": 10191.62, "probability": 0.9917 }, { "start": 10192.28, "end": 10196.14, "probability": 0.9977 }, { "start": 10197.46, "end": 10198.7, "probability": 0.5903 }, { "start": 10199.38, "end": 10202.9, "probability": 0.9531 }, { "start": 10204.16, "end": 10205.42, "probability": 0.9963 }, { "start": 10206.64, "end": 10212.64, "probability": 0.9346 }, { "start": 10213.58, "end": 10215.86, "probability": 0.8156 }, { "start": 10216.2, "end": 10217.26, "probability": 0.5465 }, { "start": 10217.28, "end": 10218.94, "probability": 0.9282 }, { "start": 10219.6, "end": 10220.86, "probability": 0.939 }, { "start": 10221.54, "end": 10222.44, "probability": 0.7687 }, { "start": 10222.72, "end": 10225.14, "probability": 0.9438 }, { "start": 10225.34, "end": 10226.18, "probability": 0.884 }, { "start": 10226.7, "end": 10231.0, "probability": 0.9966 }, { "start": 10231.46, "end": 10232.46, "probability": 0.7217 }, { "start": 10232.72, "end": 10232.92, "probability": 0.8424 }, { "start": 10233.74, "end": 10237.76, "probability": 0.9941 }, { "start": 10238.28, "end": 10241.8, "probability": 0.9937 }, { "start": 10242.2, "end": 10243.12, "probability": 0.9977 }, { "start": 10243.66, "end": 10243.96, "probability": 0.8794 }, { "start": 10245.24, "end": 10246.48, "probability": 0.9839 }, { "start": 10247.24, "end": 10248.88, "probability": 0.984 }, { "start": 10249.6, "end": 10251.74, "probability": 0.9506 }, { "start": 10252.18, "end": 10253.36, "probability": 0.9052 }, { "start": 10253.94, "end": 10256.7, "probability": 0.6854 }, { "start": 10257.65, "end": 10259.88, "probability": 0.9282 }, { "start": 10260.66, "end": 10261.42, "probability": 0.9351 }, { "start": 10261.56, "end": 10264.66, "probability": 0.9691 }, { "start": 10264.9, "end": 10265.48, "probability": 0.8601 }, { "start": 10265.78, "end": 10266.32, "probability": 0.7511 }, { "start": 10266.86, "end": 10268.42, "probability": 0.6206 }, { "start": 10269.08, "end": 10270.56, "probability": 0.9294 }, { "start": 10271.32, "end": 10275.94, "probability": 0.8338 }, { "start": 10276.28, "end": 10277.12, "probability": 0.9659 }, { "start": 10277.66, "end": 10279.24, "probability": 0.9526 }, { "start": 10279.38, "end": 10281.2, "probability": 0.9802 }, { "start": 10282.08, "end": 10285.22, "probability": 0.9683 }, { "start": 10285.64, "end": 10285.88, "probability": 0.5819 }, { "start": 10285.92, "end": 10288.76, "probability": 0.9922 }, { "start": 10289.7, "end": 10293.5, "probability": 0.9352 }, { "start": 10294.66, "end": 10295.4, "probability": 0.0081 }, { "start": 10296.36, "end": 10299.64, "probability": 0.9152 }, { "start": 10299.82, "end": 10299.98, "probability": 0.2673 }, { "start": 10302.18, "end": 10303.98, "probability": 0.6617 }, { "start": 10304.8, "end": 10306.55, "probability": 0.9038 }, { "start": 10306.88, "end": 10307.18, "probability": 0.7983 }, { "start": 10307.96, "end": 10308.39, "probability": 0.9575 }, { "start": 10309.66, "end": 10310.52, "probability": 0.9945 }, { "start": 10311.56, "end": 10312.94, "probability": 0.9919 }, { "start": 10325.96, "end": 10326.86, "probability": 0.6013 }, { "start": 10326.86, "end": 10327.34, "probability": 0.0072 }, { "start": 10336.7, "end": 10340.4, "probability": 0.1542 }, { "start": 10340.4, "end": 10342.3, "probability": 0.097 }, { "start": 10342.3, "end": 10342.3, "probability": 0.1436 }, { "start": 10342.3, "end": 10342.79, "probability": 0.2888 }, { "start": 10346.19, "end": 10349.7, "probability": 0.6582 }, { "start": 10350.08, "end": 10350.88, "probability": 0.4174 }, { "start": 10351.66, "end": 10354.46, "probability": 0.8058 }, { "start": 10356.48, "end": 10357.14, "probability": 0.8291 }, { "start": 10357.44, "end": 10359.34, "probability": 0.5862 }, { "start": 10360.8, "end": 10364.26, "probability": 0.9396 }, { "start": 10365.44, "end": 10369.44, "probability": 0.9808 }, { "start": 10370.86, "end": 10373.42, "probability": 0.9873 }, { "start": 10374.22, "end": 10376.68, "probability": 0.9512 }, { "start": 10377.24, "end": 10378.48, "probability": 0.9246 }, { "start": 10379.14, "end": 10381.66, "probability": 0.821 }, { "start": 10382.04, "end": 10382.46, "probability": 0.9584 }, { "start": 10382.58, "end": 10384.27, "probability": 0.5601 }, { "start": 10386.1, "end": 10386.82, "probability": 0.8614 }, { "start": 10387.2, "end": 10390.08, "probability": 0.1075 }, { "start": 10390.08, "end": 10390.46, "probability": 0.0985 }, { "start": 10390.88, "end": 10394.94, "probability": 0.9683 }, { "start": 10396.68, "end": 10397.96, "probability": 0.7472 }, { "start": 10398.58, "end": 10402.24, "probability": 0.9614 }, { "start": 10402.92, "end": 10404.52, "probability": 0.99 }, { "start": 10405.04, "end": 10405.8, "probability": 0.999 }, { "start": 10406.36, "end": 10408.64, "probability": 0.5446 }, { "start": 10408.88, "end": 10410.66, "probability": 0.969 }, { "start": 10411.62, "end": 10413.24, "probability": 0.9189 }, { "start": 10414.18, "end": 10414.42, "probability": 0.2319 }, { "start": 10414.9, "end": 10418.5, "probability": 0.9933 }, { "start": 10419.78, "end": 10420.8, "probability": 0.6635 }, { "start": 10421.12, "end": 10423.5, "probability": 0.9237 }, { "start": 10423.5, "end": 10427.38, "probability": 0.9617 }, { "start": 10427.46, "end": 10428.94, "probability": 0.8318 }, { "start": 10429.42, "end": 10430.4, "probability": 0.79 }, { "start": 10431.2, "end": 10431.22, "probability": 0.7358 }, { "start": 10436.36, "end": 10439.1, "probability": 0.9927 }, { "start": 10439.4, "end": 10441.18, "probability": 0.9005 }, { "start": 10441.6, "end": 10442.0, "probability": 0.7077 }, { "start": 10442.5, "end": 10443.59, "probability": 0.7009 }, { "start": 10444.52, "end": 10445.38, "probability": 0.5718 }, { "start": 10445.48, "end": 10445.74, "probability": 0.7007 }, { "start": 10447.4, "end": 10447.9, "probability": 0.7796 }, { "start": 10448.52, "end": 10449.72, "probability": 0.696 }, { "start": 10452.0, "end": 10453.66, "probability": 0.6221 }, { "start": 10461.54, "end": 10463.56, "probability": 0.8068 }, { "start": 10463.86, "end": 10464.58, "probability": 0.3805 }, { "start": 10465.08, "end": 10466.5, "probability": 0.9303 }, { "start": 10467.08, "end": 10468.18, "probability": 0.4984 }, { "start": 10483.56, "end": 10485.94, "probability": 0.9985 }, { "start": 10487.08, "end": 10487.96, "probability": 0.601 }, { "start": 10487.96, "end": 10487.96, "probability": 0.8972 }, { "start": 10488.2, "end": 10488.2, "probability": 0.863 }, { "start": 10488.44, "end": 10488.54, "probability": 0.7046 }, { "start": 10488.58, "end": 10489.24, "probability": 0.7612 }, { "start": 10489.44, "end": 10490.54, "probability": 0.8879 }, { "start": 10490.84, "end": 10492.22, "probability": 0.9791 }, { "start": 10493.4, "end": 10494.24, "probability": 0.9597 }, { "start": 10494.54, "end": 10495.42, "probability": 0.8647 }, { "start": 10497.1, "end": 10498.96, "probability": 0.9735 }, { "start": 10500.36, "end": 10500.86, "probability": 0.7897 }, { "start": 10502.78, "end": 10503.44, "probability": 0.7249 }, { "start": 10505.74, "end": 10507.6, "probability": 0.5119 }, { "start": 10508.38, "end": 10510.38, "probability": 0.9154 }, { "start": 10511.8, "end": 10514.2, "probability": 0.8398 }, { "start": 10515.26, "end": 10515.96, "probability": 0.8278 }, { "start": 10517.1, "end": 10519.58, "probability": 0.9746 }, { "start": 10521.06, "end": 10521.42, "probability": 0.8831 }, { "start": 10522.66, "end": 10523.52, "probability": 0.841 }, { "start": 10524.78, "end": 10526.8, "probability": 0.9762 }, { "start": 10529.68, "end": 10537.28, "probability": 0.7243 }, { "start": 10537.42, "end": 10539.14, "probability": 0.6162 }, { "start": 10539.36, "end": 10540.4, "probability": 0.5312 }, { "start": 10542.48, "end": 10543.02, "probability": 0.6942 }, { "start": 10544.4, "end": 10546.74, "probability": 0.9698 }, { "start": 10549.88, "end": 10551.78, "probability": 0.8473 }, { "start": 10552.4, "end": 10555.06, "probability": 0.9901 }, { "start": 10556.16, "end": 10557.52, "probability": 0.9985 }, { "start": 10560.36, "end": 10562.84, "probability": 0.9596 }, { "start": 10564.98, "end": 10566.08, "probability": 0.931 }, { "start": 10567.06, "end": 10567.78, "probability": 0.6768 }, { "start": 10569.18, "end": 10569.78, "probability": 0.6343 }, { "start": 10570.88, "end": 10571.27, "probability": 0.8955 }, { "start": 10573.04, "end": 10574.23, "probability": 0.8726 }, { "start": 10575.02, "end": 10579.86, "probability": 0.9137 }, { "start": 10580.48, "end": 10583.48, "probability": 0.5563 }, { "start": 10585.7, "end": 10587.2, "probability": 0.995 }, { "start": 10588.2, "end": 10589.36, "probability": 0.9968 }, { "start": 10590.16, "end": 10590.6, "probability": 0.8928 }, { "start": 10592.72, "end": 10594.32, "probability": 0.9763 }, { "start": 10596.12, "end": 10597.86, "probability": 0.9575 }, { "start": 10598.96, "end": 10600.94, "probability": 0.6755 }, { "start": 10600.98, "end": 10601.88, "probability": 0.7473 }, { "start": 10602.16, "end": 10605.44, "probability": 0.9938 }, { "start": 10607.22, "end": 10608.46, "probability": 0.954 }, { "start": 10609.9, "end": 10611.8, "probability": 0.7672 }, { "start": 10613.64, "end": 10615.78, "probability": 0.9634 }, { "start": 10617.48, "end": 10618.08, "probability": 0.5832 }, { "start": 10618.74, "end": 10619.7, "probability": 0.5142 }, { "start": 10620.56, "end": 10621.38, "probability": 0.8681 }, { "start": 10623.2, "end": 10627.28, "probability": 0.9507 }, { "start": 10628.52, "end": 10629.98, "probability": 0.9368 }, { "start": 10631.46, "end": 10631.95, "probability": 0.6646 }, { "start": 10632.66, "end": 10636.72, "probability": 0.8016 }, { "start": 10637.38, "end": 10638.04, "probability": 0.5905 }, { "start": 10638.9, "end": 10639.84, "probability": 0.9701 }, { "start": 10640.36, "end": 10643.69, "probability": 0.9405 }, { "start": 10646.02, "end": 10653.74, "probability": 0.9843 }, { "start": 10655.5, "end": 10657.8, "probability": 0.8611 }, { "start": 10659.0, "end": 10659.7, "probability": 0.4009 }, { "start": 10660.78, "end": 10664.24, "probability": 0.9945 }, { "start": 10665.96, "end": 10666.88, "probability": 0.9712 }, { "start": 10668.12, "end": 10671.26, "probability": 0.9739 }, { "start": 10673.44, "end": 10674.7, "probability": 0.7821 }, { "start": 10675.6, "end": 10677.8, "probability": 0.7935 }, { "start": 10679.76, "end": 10683.82, "probability": 0.8323 }, { "start": 10685.78, "end": 10686.68, "probability": 0.5684 }, { "start": 10687.94, "end": 10691.96, "probability": 0.401 }, { "start": 10693.52, "end": 10698.32, "probability": 0.9265 }, { "start": 10699.54, "end": 10700.3, "probability": 0.5715 }, { "start": 10701.82, "end": 10703.14, "probability": 0.5774 }, { "start": 10704.24, "end": 10705.44, "probability": 0.6056 }, { "start": 10706.62, "end": 10709.22, "probability": 0.8455 }, { "start": 10710.58, "end": 10711.96, "probability": 0.8743 }, { "start": 10713.36, "end": 10715.94, "probability": 0.9791 }, { "start": 10718.08, "end": 10718.8, "probability": 0.8014 }, { "start": 10721.3, "end": 10721.88, "probability": 0.766 }, { "start": 10722.98, "end": 10724.34, "probability": 0.9201 }, { "start": 10725.28, "end": 10726.1, "probability": 0.8444 }, { "start": 10727.52, "end": 10729.54, "probability": 0.899 }, { "start": 10730.38, "end": 10733.48, "probability": 0.9485 }, { "start": 10733.56, "end": 10736.52, "probability": 0.9068 }, { "start": 10737.54, "end": 10739.16, "probability": 0.9165 }, { "start": 10739.94, "end": 10742.12, "probability": 0.9531 }, { "start": 10742.64, "end": 10743.62, "probability": 0.8022 }, { "start": 10744.66, "end": 10745.78, "probability": 0.9949 }, { "start": 10746.9, "end": 10749.68, "probability": 0.988 }, { "start": 10751.96, "end": 10755.1, "probability": 0.9421 }, { "start": 10755.22, "end": 10755.6, "probability": 0.7646 }, { "start": 10756.02, "end": 10758.4, "probability": 0.7123 }, { "start": 10759.46, "end": 10760.24, "probability": 0.8765 }, { "start": 10761.24, "end": 10763.52, "probability": 0.8111 }, { "start": 10764.58, "end": 10765.68, "probability": 0.9597 }, { "start": 10766.88, "end": 10772.14, "probability": 0.9871 }, { "start": 10773.46, "end": 10775.82, "probability": 0.9686 }, { "start": 10776.6, "end": 10779.56, "probability": 0.8027 }, { "start": 10780.52, "end": 10781.38, "probability": 0.6714 }, { "start": 10782.24, "end": 10783.44, "probability": 0.9822 }, { "start": 10784.88, "end": 10785.92, "probability": 0.9617 }, { "start": 10786.96, "end": 10787.44, "probability": 0.5394 }, { "start": 10788.92, "end": 10790.4, "probability": 0.9859 }, { "start": 10791.86, "end": 10792.02, "probability": 0.9856 }, { "start": 10793.34, "end": 10794.44, "probability": 0.333 }, { "start": 10794.44, "end": 10797.26, "probability": 0.7517 }, { "start": 10798.12, "end": 10799.03, "probability": 0.6708 }, { "start": 10800.46, "end": 10800.84, "probability": 0.6416 }, { "start": 10801.8, "end": 10805.52, "probability": 0.988 }, { "start": 10806.2, "end": 10810.52, "probability": 0.9844 }, { "start": 10811.08, "end": 10813.18, "probability": 0.9642 }, { "start": 10813.9, "end": 10814.38, "probability": 0.8997 }, { "start": 10815.24, "end": 10817.18, "probability": 0.9753 }, { "start": 10817.38, "end": 10817.6, "probability": 0.7659 }, { "start": 10819.14, "end": 10820.66, "probability": 0.8538 }, { "start": 10821.18, "end": 10822.7, "probability": 0.8111 }, { "start": 10824.5, "end": 10827.16, "probability": 0.6482 }, { "start": 10829.32, "end": 10830.24, "probability": 0.9915 }, { "start": 10831.18, "end": 10832.98, "probability": 0.9685 }, { "start": 10834.24, "end": 10835.59, "probability": 0.7201 }, { "start": 10837.3, "end": 10841.42, "probability": 0.8243 }, { "start": 10841.42, "end": 10843.2, "probability": 0.8764 }, { "start": 10845.58, "end": 10847.4, "probability": 0.915 }, { "start": 10847.98, "end": 10849.02, "probability": 0.5348 }, { "start": 10849.9, "end": 10852.52, "probability": 0.8475 }, { "start": 10853.78, "end": 10854.38, "probability": 0.2947 }, { "start": 10857.46, "end": 10860.34, "probability": 0.4257 }, { "start": 10860.94, "end": 10864.14, "probability": 0.7301 }, { "start": 10865.66, "end": 10868.96, "probability": 0.9463 }, { "start": 10869.56, "end": 10870.74, "probability": 0.9612 }, { "start": 10874.26, "end": 10874.98, "probability": 0.2854 }, { "start": 10875.76, "end": 10879.0, "probability": 0.8569 }, { "start": 10882.76, "end": 10883.92, "probability": 0.9108 }, { "start": 10884.9, "end": 10885.6, "probability": 0.7686 }, { "start": 10886.12, "end": 10889.38, "probability": 0.9231 }, { "start": 10889.68, "end": 10890.6, "probability": 0.8123 }, { "start": 10890.72, "end": 10891.48, "probability": 0.48 }, { "start": 10892.84, "end": 10893.5, "probability": 0.5165 }, { "start": 10895.0, "end": 10896.5, "probability": 0.5899 }, { "start": 10897.54, "end": 10898.08, "probability": 0.9294 }, { "start": 10898.82, "end": 10903.16, "probability": 0.8154 }, { "start": 10906.24, "end": 10906.72, "probability": 0.9896 }, { "start": 10907.72, "end": 10909.84, "probability": 0.9935 }, { "start": 10910.76, "end": 10912.18, "probability": 0.9899 }, { "start": 10913.3, "end": 10914.34, "probability": 0.9729 }, { "start": 10915.54, "end": 10916.54, "probability": 0.902 }, { "start": 10916.96, "end": 10917.37, "probability": 0.9626 }, { "start": 10917.64, "end": 10918.18, "probability": 0.4562 }, { "start": 10918.64, "end": 10919.58, "probability": 0.4012 }, { "start": 10920.84, "end": 10921.38, "probability": 0.7513 }, { "start": 10921.84, "end": 10922.62, "probability": 0.474 }, { "start": 10922.98, "end": 10927.12, "probability": 0.7827 }, { "start": 10927.24, "end": 10928.14, "probability": 0.3097 }, { "start": 10928.42, "end": 10928.64, "probability": 0.8882 }, { "start": 10930.28, "end": 10933.16, "probability": 0.8451 }, { "start": 10934.98, "end": 10938.46, "probability": 0.9793 }, { "start": 10941.1, "end": 10942.06, "probability": 0.988 }, { "start": 10944.24, "end": 10945.18, "probability": 0.9767 }, { "start": 10945.66, "end": 10946.36, "probability": 0.7581 }, { "start": 10946.42, "end": 10947.8, "probability": 0.9109 }, { "start": 10949.0, "end": 10951.12, "probability": 0.9614 }, { "start": 10951.8, "end": 10952.86, "probability": 0.7759 }, { "start": 10955.38, "end": 10955.94, "probability": 0.9659 }, { "start": 10956.74, "end": 10957.32, "probability": 0.9389 }, { "start": 10958.28, "end": 10959.94, "probability": 0.9569 }, { "start": 10961.32, "end": 10961.72, "probability": 0.5558 }, { "start": 10963.04, "end": 10965.48, "probability": 0.9395 }, { "start": 10967.92, "end": 10969.04, "probability": 0.9946 }, { "start": 10971.24, "end": 10973.68, "probability": 0.8494 }, { "start": 10975.08, "end": 10977.66, "probability": 0.9913 }, { "start": 10978.86, "end": 10981.02, "probability": 0.9371 }, { "start": 10982.84, "end": 10985.02, "probability": 0.994 }, { "start": 10986.12, "end": 10988.42, "probability": 0.5652 }, { "start": 10990.14, "end": 10993.32, "probability": 0.6735 }, { "start": 10994.44, "end": 10995.82, "probability": 0.4962 }, { "start": 10997.84, "end": 10999.16, "probability": 0.9883 }, { "start": 10999.96, "end": 11002.26, "probability": 0.9785 }, { "start": 11002.94, "end": 11006.92, "probability": 0.6784 }, { "start": 11007.64, "end": 11011.76, "probability": 0.9746 }, { "start": 11014.28, "end": 11016.38, "probability": 0.9989 }, { "start": 11017.88, "end": 11018.46, "probability": 0.4358 }, { "start": 11019.48, "end": 11023.26, "probability": 0.9741 }, { "start": 11023.84, "end": 11024.62, "probability": 0.8951 }, { "start": 11026.34, "end": 11028.14, "probability": 0.999 }, { "start": 11029.12, "end": 11034.84, "probability": 0.9841 }, { "start": 11035.9, "end": 11036.56, "probability": 0.9837 }, { "start": 11037.14, "end": 11039.16, "probability": 0.9037 }, { "start": 11040.4, "end": 11041.36, "probability": 0.6788 }, { "start": 11042.44, "end": 11043.04, "probability": 0.6964 }, { "start": 11043.78, "end": 11045.73, "probability": 0.474 }, { "start": 11047.56, "end": 11049.76, "probability": 0.6548 }, { "start": 11050.62, "end": 11052.37, "probability": 0.6011 }, { "start": 11054.18, "end": 11058.55, "probability": 0.9971 }, { "start": 11061.26, "end": 11061.54, "probability": 0.5005 }, { "start": 11062.08, "end": 11064.8, "probability": 0.8331 }, { "start": 11064.86, "end": 11065.62, "probability": 0.6723 }, { "start": 11066.12, "end": 11069.12, "probability": 0.9818 }, { "start": 11069.86, "end": 11071.02, "probability": 0.778 }, { "start": 11071.2, "end": 11071.64, "probability": 0.365 }, { "start": 11072.5, "end": 11078.14, "probability": 0.9085 }, { "start": 11079.22, "end": 11084.38, "probability": 0.9959 }, { "start": 11085.1, "end": 11089.82, "probability": 0.9861 }, { "start": 11090.26, "end": 11091.7, "probability": 0.8609 }, { "start": 11092.16, "end": 11093.08, "probability": 0.9849 }, { "start": 11093.18, "end": 11093.66, "probability": 0.9827 }, { "start": 11094.78, "end": 11095.46, "probability": 0.9586 }, { "start": 11096.24, "end": 11098.36, "probability": 0.7951 }, { "start": 11098.92, "end": 11099.54, "probability": 0.8928 }, { "start": 11100.24, "end": 11101.5, "probability": 0.9912 }, { "start": 11101.96, "end": 11106.3, "probability": 0.9857 }, { "start": 11107.64, "end": 11108.14, "probability": 0.7943 }, { "start": 11109.32, "end": 11111.5, "probability": 0.9284 }, { "start": 11112.46, "end": 11113.22, "probability": 0.7378 }, { "start": 11114.34, "end": 11116.72, "probability": 0.9774 }, { "start": 11117.2, "end": 11120.18, "probability": 0.9466 }, { "start": 11122.74, "end": 11124.96, "probability": 0.6569 }, { "start": 11128.1, "end": 11128.66, "probability": 0.5961 }, { "start": 11129.32, "end": 11131.08, "probability": 0.6769 }, { "start": 11133.26, "end": 11134.86, "probability": 0.7537 }, { "start": 11136.86, "end": 11139.02, "probability": 0.6172 }, { "start": 11142.7, "end": 11147.02, "probability": 0.9014 }, { "start": 11147.9, "end": 11148.72, "probability": 0.9084 }, { "start": 11151.24, "end": 11152.96, "probability": 0.7091 }, { "start": 11155.26, "end": 11156.8, "probability": 0.8254 }, { "start": 11157.76, "end": 11159.71, "probability": 0.7884 }, { "start": 11161.14, "end": 11164.74, "probability": 0.8898 }, { "start": 11165.28, "end": 11165.48, "probability": 0.6592 }, { "start": 11166.26, "end": 11166.89, "probability": 0.6983 }, { "start": 11167.32, "end": 11167.98, "probability": 0.6262 }, { "start": 11168.02, "end": 11173.16, "probability": 0.8227 }, { "start": 11173.96, "end": 11174.52, "probability": 0.7979 }, { "start": 11175.26, "end": 11177.8, "probability": 0.9915 }, { "start": 11178.5, "end": 11179.18, "probability": 0.9808 }, { "start": 11180.6, "end": 11182.28, "probability": 0.7664 }, { "start": 11183.24, "end": 11185.04, "probability": 0.7061 }, { "start": 11185.98, "end": 11189.86, "probability": 0.6961 }, { "start": 11190.92, "end": 11191.88, "probability": 0.9099 }, { "start": 11193.48, "end": 11196.5, "probability": 0.2231 }, { "start": 11197.74, "end": 11199.15, "probability": 0.9058 }, { "start": 11201.38, "end": 11203.82, "probability": 0.8867 }, { "start": 11204.84, "end": 11207.72, "probability": 0.7081 }, { "start": 11209.12, "end": 11209.84, "probability": 0.6107 }, { "start": 11210.86, "end": 11211.58, "probability": 0.9424 }, { "start": 11212.34, "end": 11215.04, "probability": 0.8878 }, { "start": 11218.76, "end": 11223.28, "probability": 0.7867 }, { "start": 11224.6, "end": 11225.92, "probability": 0.9592 }, { "start": 11227.82, "end": 11234.1, "probability": 0.5777 }, { "start": 11234.22, "end": 11235.46, "probability": 0.8704 }, { "start": 11236.26, "end": 11237.54, "probability": 0.8558 }, { "start": 11240.5, "end": 11243.08, "probability": 0.9852 }, { "start": 11244.24, "end": 11244.66, "probability": 0.6345 }, { "start": 11246.06, "end": 11247.58, "probability": 0.7239 }, { "start": 11251.2, "end": 11252.44, "probability": 0.6464 }, { "start": 11253.94, "end": 11255.18, "probability": 0.8465 }, { "start": 11256.32, "end": 11257.3, "probability": 0.8059 }, { "start": 11258.56, "end": 11265.24, "probability": 0.9236 }, { "start": 11265.86, "end": 11268.9, "probability": 0.981 }, { "start": 11269.8, "end": 11270.8, "probability": 0.5144 }, { "start": 11271.78, "end": 11273.04, "probability": 0.5522 }, { "start": 11273.68, "end": 11275.6, "probability": 0.8657 }, { "start": 11276.08, "end": 11277.2, "probability": 0.8905 }, { "start": 11277.64, "end": 11278.42, "probability": 0.8162 }, { "start": 11279.06, "end": 11282.96, "probability": 0.9681 }, { "start": 11283.42, "end": 11284.72, "probability": 0.6037 }, { "start": 11285.26, "end": 11285.26, "probability": 0.2793 }, { "start": 11285.26, "end": 11286.96, "probability": 0.7109 }, { "start": 11287.42, "end": 11287.98, "probability": 0.9878 }, { "start": 11288.1, "end": 11294.02, "probability": 0.9618 }, { "start": 11294.54, "end": 11295.84, "probability": 0.9661 }, { "start": 11297.02, "end": 11298.34, "probability": 0.7999 }, { "start": 11300.02, "end": 11305.2, "probability": 0.8138 }, { "start": 11306.94, "end": 11308.1, "probability": 0.9486 }, { "start": 11309.32, "end": 11310.44, "probability": 0.1641 }, { "start": 11312.14, "end": 11313.08, "probability": 0.776 }, { "start": 11313.66, "end": 11314.38, "probability": 0.9819 }, { "start": 11315.68, "end": 11317.18, "probability": 0.8684 }, { "start": 11317.3, "end": 11317.62, "probability": 0.8708 }, { "start": 11317.7, "end": 11318.04, "probability": 0.968 }, { "start": 11318.16, "end": 11318.28, "probability": 0.5092 }, { "start": 11318.5, "end": 11318.9, "probability": 0.793 }, { "start": 11320.1, "end": 11322.3, "probability": 0.9535 }, { "start": 11322.38, "end": 11323.52, "probability": 0.6807 }, { "start": 11323.84, "end": 11324.86, "probability": 0.7569 }, { "start": 11325.8, "end": 11326.98, "probability": 0.9778 }, { "start": 11327.64, "end": 11329.06, "probability": 0.9917 }, { "start": 11329.4, "end": 11330.12, "probability": 0.8773 }, { "start": 11332.1, "end": 11334.74, "probability": 0.9844 }, { "start": 11335.58, "end": 11336.76, "probability": 0.9243 }, { "start": 11339.6, "end": 11344.34, "probability": 0.9518 }, { "start": 11346.46, "end": 11347.74, "probability": 0.5896 }, { "start": 11349.36, "end": 11350.72, "probability": 0.899 }, { "start": 11352.04, "end": 11353.0, "probability": 0.95 }, { "start": 11355.0, "end": 11358.48, "probability": 0.9375 }, { "start": 11358.94, "end": 11359.74, "probability": 0.7731 }, { "start": 11359.88, "end": 11364.38, "probability": 0.9822 }, { "start": 11365.58, "end": 11367.16, "probability": 0.8633 }, { "start": 11367.86, "end": 11368.2, "probability": 0.638 }, { "start": 11369.38, "end": 11369.94, "probability": 0.864 }, { "start": 11371.16, "end": 11372.42, "probability": 0.9341 }, { "start": 11373.16, "end": 11375.46, "probability": 0.9602 }, { "start": 11377.52, "end": 11378.98, "probability": 0.9692 }, { "start": 11380.12, "end": 11381.8, "probability": 0.8799 }, { "start": 11382.34, "end": 11382.72, "probability": 0.7945 }, { "start": 11384.38, "end": 11385.8, "probability": 0.9333 }, { "start": 11386.82, "end": 11387.62, "probability": 0.3879 }, { "start": 11388.92, "end": 11389.58, "probability": 0.9274 }, { "start": 11390.32, "end": 11390.78, "probability": 0.9521 }, { "start": 11391.36, "end": 11392.42, "probability": 0.9956 }, { "start": 11393.4, "end": 11395.98, "probability": 0.9353 }, { "start": 11396.62, "end": 11398.78, "probability": 0.9941 }, { "start": 11399.92, "end": 11402.48, "probability": 0.8624 }, { "start": 11403.46, "end": 11405.46, "probability": 0.9308 }, { "start": 11406.1, "end": 11407.82, "probability": 0.9929 }, { "start": 11409.86, "end": 11411.72, "probability": 0.7148 }, { "start": 11412.12, "end": 11414.68, "probability": 0.828 }, { "start": 11422.9, "end": 11423.22, "probability": 0.1329 }, { "start": 11435.47, "end": 11439.04, "probability": 0.333 }, { "start": 11439.22, "end": 11441.24, "probability": 0.167 }, { "start": 11441.68, "end": 11442.8, "probability": 0.7343 }, { "start": 11443.12, "end": 11445.15, "probability": 0.7441 }, { "start": 11447.94, "end": 11451.04, "probability": 0.7443 }, { "start": 11452.24, "end": 11456.46, "probability": 0.8755 }, { "start": 11456.72, "end": 11461.1, "probability": 0.8763 }, { "start": 11461.3, "end": 11462.2, "probability": 0.6973 }, { "start": 11462.76, "end": 11470.49, "probability": 0.9773 }, { "start": 11471.06, "end": 11474.98, "probability": 0.925 }, { "start": 11475.5, "end": 11480.88, "probability": 0.9976 }, { "start": 11481.52, "end": 11484.08, "probability": 0.9722 }, { "start": 11484.8, "end": 11491.48, "probability": 0.9933 }, { "start": 11491.84, "end": 11493.66, "probability": 0.9925 }, { "start": 11494.2, "end": 11498.14, "probability": 0.9937 }, { "start": 11498.84, "end": 11500.06, "probability": 0.6478 }, { "start": 11500.1, "end": 11500.85, "probability": 0.9026 }, { "start": 11501.22, "end": 11505.86, "probability": 0.9707 }, { "start": 11506.82, "end": 11511.76, "probability": 0.9028 }, { "start": 11512.0, "end": 11516.66, "probability": 0.9954 }, { "start": 11517.4, "end": 11526.38, "probability": 0.9871 }, { "start": 11526.38, "end": 11533.1, "probability": 0.9984 }, { "start": 11533.98, "end": 11536.6, "probability": 0.8967 }, { "start": 11537.28, "end": 11539.58, "probability": 0.9662 }, { "start": 11540.12, "end": 11544.62, "probability": 0.986 }, { "start": 11545.8, "end": 11554.66, "probability": 0.971 }, { "start": 11555.68, "end": 11562.16, "probability": 0.8136 }, { "start": 11566.52, "end": 11568.08, "probability": 0.7899 }, { "start": 11568.96, "end": 11571.14, "probability": 0.9536 }, { "start": 11572.66, "end": 11575.5, "probability": 0.9312 }, { "start": 11576.22, "end": 11578.2, "probability": 0.7998 }, { "start": 11578.2, "end": 11579.72, "probability": 0.9701 }, { "start": 11580.06, "end": 11581.56, "probability": 0.4997 }, { "start": 11581.68, "end": 11581.78, "probability": 0.1891 }, { "start": 11582.66, "end": 11583.08, "probability": 0.4832 }, { "start": 11584.5, "end": 11584.5, "probability": 0.1374 }, { "start": 11584.5, "end": 11585.26, "probability": 0.0854 }, { "start": 11585.54, "end": 11585.6, "probability": 0.055 }, { "start": 11585.6, "end": 11585.72, "probability": 0.5391 }, { "start": 11586.5, "end": 11587.22, "probability": 0.9495 }, { "start": 11589.2, "end": 11590.18, "probability": 0.897 }, { "start": 11591.18, "end": 11591.8, "probability": 0.4527 }, { "start": 11593.76, "end": 11597.8, "probability": 0.9932 }, { "start": 11597.8, "end": 11601.72, "probability": 0.9682 }, { "start": 11601.78, "end": 11608.66, "probability": 0.9844 }, { "start": 11609.18, "end": 11613.96, "probability": 0.9015 }, { "start": 11613.96, "end": 11618.76, "probability": 0.9603 }, { "start": 11619.52, "end": 11619.98, "probability": 0.3199 }, { "start": 11621.94, "end": 11623.42, "probability": 0.4544 }, { "start": 11624.08, "end": 11627.58, "probability": 0.8876 }, { "start": 11628.32, "end": 11632.4, "probability": 0.9734 }, { "start": 11632.94, "end": 11637.6, "probability": 0.9932 }, { "start": 11637.84, "end": 11641.78, "probability": 0.9922 }, { "start": 11643.08, "end": 11645.52, "probability": 0.8602 }, { "start": 11646.1, "end": 11649.74, "probability": 0.9278 }, { "start": 11650.7, "end": 11655.54, "probability": 0.718 }, { "start": 11656.1, "end": 11658.74, "probability": 0.7582 }, { "start": 11659.2, "end": 11659.88, "probability": 0.5782 }, { "start": 11661.4, "end": 11666.3, "probability": 0.918 }, { "start": 11666.84, "end": 11670.1, "probability": 0.9412 }, { "start": 11671.18, "end": 11672.38, "probability": 0.9939 }, { "start": 11672.9, "end": 11677.56, "probability": 0.9967 }, { "start": 11678.48, "end": 11678.9, "probability": 0.9971 }, { "start": 11683.68, "end": 11689.24, "probability": 0.9966 }, { "start": 11689.76, "end": 11695.8, "probability": 0.9689 }, { "start": 11698.66, "end": 11701.88, "probability": 0.9979 }, { "start": 11701.94, "end": 11709.02, "probability": 0.9707 }, { "start": 11710.42, "end": 11713.06, "probability": 0.9001 }, { "start": 11713.2, "end": 11719.02, "probability": 0.8108 }, { "start": 11719.94, "end": 11724.74, "probability": 0.9194 }, { "start": 11730.6, "end": 11732.02, "probability": 0.7687 }, { "start": 11732.64, "end": 11735.1, "probability": 0.9847 }, { "start": 11735.66, "end": 11739.1, "probability": 0.924 }, { "start": 11740.34, "end": 11743.66, "probability": 0.8618 }, { "start": 11744.16, "end": 11748.22, "probability": 0.9966 }, { "start": 11751.4, "end": 11753.32, "probability": 0.7856 }, { "start": 11753.48, "end": 11755.58, "probability": 0.4987 }, { "start": 11755.88, "end": 11757.66, "probability": 0.8637 }, { "start": 11758.36, "end": 11761.64, "probability": 0.9291 }, { "start": 11762.4, "end": 11768.14, "probability": 0.9563 }, { "start": 11769.24, "end": 11773.22, "probability": 0.9593 }, { "start": 11773.26, "end": 11777.42, "probability": 0.9909 }, { "start": 11778.32, "end": 11783.26, "probability": 0.884 }, { "start": 11784.0, "end": 11790.71, "probability": 0.9797 }, { "start": 11792.18, "end": 11794.72, "probability": 0.99 }, { "start": 11795.52, "end": 11797.34, "probability": 0.9903 }, { "start": 11797.66, "end": 11801.1, "probability": 0.7689 }, { "start": 11801.58, "end": 11804.1, "probability": 0.7746 }, { "start": 11805.02, "end": 11809.3, "probability": 0.9841 }, { "start": 11809.3, "end": 11814.38, "probability": 0.9917 }, { "start": 11815.26, "end": 11817.8, "probability": 0.963 }, { "start": 11817.86, "end": 11820.52, "probability": 0.9958 }, { "start": 11821.28, "end": 11828.64, "probability": 0.717 }, { "start": 11829.16, "end": 11831.06, "probability": 0.9919 }, { "start": 11831.66, "end": 11832.46, "probability": 0.8455 }, { "start": 11833.52, "end": 11835.36, "probability": 0.9957 }, { "start": 11843.96, "end": 11845.38, "probability": 0.1642 }, { "start": 11845.38, "end": 11845.7, "probability": 0.1176 }, { "start": 11845.7, "end": 11845.7, "probability": 0.0074 }, { "start": 11845.7, "end": 11848.16, "probability": 0.5175 }, { "start": 11848.86, "end": 11852.39, "probability": 0.5632 }, { "start": 11853.07, "end": 11857.13, "probability": 0.5632 }, { "start": 11857.88, "end": 11862.34, "probability": 0.9959 }, { "start": 11862.9, "end": 11864.82, "probability": 0.9934 }, { "start": 11865.14, "end": 11870.74, "probability": 0.9724 }, { "start": 11871.44, "end": 11873.34, "probability": 0.9941 }, { "start": 11874.56, "end": 11876.9, "probability": 0.9896 }, { "start": 11879.84, "end": 11886.14, "probability": 0.9122 }, { "start": 11886.2, "end": 11890.3, "probability": 0.9929 }, { "start": 11890.72, "end": 11892.66, "probability": 0.9727 }, { "start": 11893.1, "end": 11895.62, "probability": 0.9907 }, { "start": 11895.84, "end": 11897.66, "probability": 0.7954 }, { "start": 11898.54, "end": 11899.36, "probability": 0.8094 }, { "start": 11899.58, "end": 11904.14, "probability": 0.8726 }, { "start": 11904.5, "end": 11906.8, "probability": 0.735 }, { "start": 11907.34, "end": 11910.74, "probability": 0.8619 }, { "start": 11911.28, "end": 11914.06, "probability": 0.9883 }, { "start": 11914.54, "end": 11920.6, "probability": 0.9704 }, { "start": 11921.1, "end": 11924.64, "probability": 0.9953 }, { "start": 11925.08, "end": 11928.98, "probability": 0.7888 }, { "start": 11929.64, "end": 11931.06, "probability": 0.9676 }, { "start": 11932.7, "end": 11935.22, "probability": 0.7275 }, { "start": 11936.22, "end": 11938.56, "probability": 0.9202 }, { "start": 11939.14, "end": 11940.44, "probability": 0.519 }, { "start": 11943.68, "end": 11944.44, "probability": 0.2456 }, { "start": 11945.43, "end": 11948.5, "probability": 0.8173 }, { "start": 11953.24, "end": 11954.34, "probability": 0.3485 }, { "start": 11954.9, "end": 11955.54, "probability": 0.6689 }, { "start": 11959.0, "end": 11959.16, "probability": 0.5612 }, { "start": 11961.3, "end": 11963.44, "probability": 0.9466 }, { "start": 11964.39, "end": 11966.54, "probability": 0.8053 }, { "start": 11967.42, "end": 11968.1, "probability": 0.2623 }, { "start": 11968.6, "end": 11969.8, "probability": 0.9821 }, { "start": 11970.08, "end": 11970.66, "probability": 0.2326 }, { "start": 11970.92, "end": 11973.14, "probability": 0.834 }, { "start": 11974.04, "end": 11974.7, "probability": 0.8715 }, { "start": 11974.72, "end": 11975.84, "probability": 0.6425 }, { "start": 11975.98, "end": 11976.6, "probability": 0.4704 }, { "start": 11977.48, "end": 11980.12, "probability": 0.0727 }, { "start": 11980.66, "end": 11983.12, "probability": 0.0278 }, { "start": 11989.58, "end": 11989.58, "probability": 0.444 }, { "start": 11989.58, "end": 11990.04, "probability": 0.3842 }, { "start": 11991.22, "end": 11994.0, "probability": 0.8245 }, { "start": 11994.92, "end": 11996.06, "probability": 0.9326 }, { "start": 12003.42, "end": 12008.46, "probability": 0.7765 }, { "start": 12009.48, "end": 12010.46, "probability": 0.9062 }, { "start": 12012.0, "end": 12016.34, "probability": 0.9532 }, { "start": 12016.88, "end": 12017.82, "probability": 0.7351 }, { "start": 12018.7, "end": 12018.72, "probability": 0.9204 }, { "start": 12019.34, "end": 12021.26, "probability": 0.9967 }, { "start": 12021.9, "end": 12023.62, "probability": 0.9951 }, { "start": 12026.5, "end": 12029.1, "probability": 0.7398 }, { "start": 12029.22, "end": 12029.43, "probability": 0.0261 }, { "start": 12029.98, "end": 12030.1, "probability": 0.1884 }, { "start": 12031.68, "end": 12032.16, "probability": 0.1745 }, { "start": 12032.56, "end": 12033.24, "probability": 0.6798 }, { "start": 12033.32, "end": 12034.02, "probability": 0.7833 }, { "start": 12034.16, "end": 12034.78, "probability": 0.8206 }, { "start": 12034.82, "end": 12035.58, "probability": 0.6921 }, { "start": 12035.82, "end": 12036.3, "probability": 0.305 }, { "start": 12036.38, "end": 12036.7, "probability": 0.307 }, { "start": 12037.52, "end": 12038.64, "probability": 0.6606 }, { "start": 12038.78, "end": 12039.3, "probability": 0.8876 }, { "start": 12039.56, "end": 12039.98, "probability": 0.7322 }, { "start": 12040.1, "end": 12040.72, "probability": 0.5897 }, { "start": 12040.94, "end": 12041.5, "probability": 0.8729 }, { "start": 12042.2, "end": 12043.12, "probability": 0.7892 }, { "start": 12043.16, "end": 12043.98, "probability": 0.9583 }, { "start": 12044.04, "end": 12045.08, "probability": 0.5908 }, { "start": 12045.28, "end": 12045.8, "probability": 0.5979 }, { "start": 12045.92, "end": 12046.32, "probability": 0.6852 }, { "start": 12046.5, "end": 12048.24, "probability": 0.1691 }, { "start": 12049.08, "end": 12049.48, "probability": 0.9362 }, { "start": 12049.94, "end": 12050.6, "probability": 0.9322 }, { "start": 12050.78, "end": 12051.22, "probability": 0.9295 }, { "start": 12051.34, "end": 12051.98, "probability": 0.6401 }, { "start": 12052.06, "end": 12053.0, "probability": 0.6683 }, { "start": 12053.04, "end": 12053.64, "probability": 0.6213 }, { "start": 12054.14, "end": 12055.09, "probability": 0.5964 }, { "start": 12056.08, "end": 12057.56, "probability": 0.6698 }, { "start": 12057.68, "end": 12058.36, "probability": 0.2049 }, { "start": 12059.22, "end": 12061.1, "probability": 0.8748 }, { "start": 12061.18, "end": 12062.02, "probability": 0.8145 }, { "start": 12062.12, "end": 12062.68, "probability": 0.7644 }, { "start": 12062.74, "end": 12063.78, "probability": 0.9402 }, { "start": 12064.02, "end": 12064.68, "probability": 0.9815 }, { "start": 12065.38, "end": 12068.08, "probability": 0.7622 }, { "start": 12068.62, "end": 12069.35, "probability": 0.5664 }, { "start": 12070.74, "end": 12072.28, "probability": 0.8808 }, { "start": 12072.44, "end": 12073.04, "probability": 0.9521 }, { "start": 12073.14, "end": 12073.5, "probability": 0.8927 }, { "start": 12073.96, "end": 12074.66, "probability": 0.3756 }, { "start": 12074.76, "end": 12075.38, "probability": 0.4042 }, { "start": 12075.48, "end": 12076.18, "probability": 0.8934 }, { "start": 12076.48, "end": 12077.08, "probability": 0.713 }, { "start": 12078.04, "end": 12080.66, "probability": 0.656 }, { "start": 12080.78, "end": 12081.3, "probability": 0.7274 }, { "start": 12081.38, "end": 12082.06, "probability": 0.2138 }, { "start": 12082.18, "end": 12082.92, "probability": 0.6158 }, { "start": 12083.24, "end": 12085.42, "probability": 0.7647 }, { "start": 12085.54, "end": 12085.86, "probability": 0.9854 }, { "start": 12086.48, "end": 12088.86, "probability": 0.6705 }, { "start": 12089.04, "end": 12089.78, "probability": 0.5602 }, { "start": 12090.5, "end": 12091.3, "probability": 0.9482 }, { "start": 12091.4, "end": 12092.02, "probability": 0.7029 }, { "start": 12092.08, "end": 12093.12, "probability": 0.8989 }, { "start": 12093.24, "end": 12094.58, "probability": 0.848 }, { "start": 12096.82, "end": 12098.96, "probability": 0.744 }, { "start": 12098.96, "end": 12103.32, "probability": 0.7944 }, { "start": 12125.92, "end": 12126.3, "probability": 0.3531 }, { "start": 12126.3, "end": 12127.16, "probability": 0.7511 }, { "start": 12127.24, "end": 12129.12, "probability": 0.7183 }, { "start": 12129.22, "end": 12129.9, "probability": 0.8292 }, { "start": 12130.75, "end": 12134.72, "probability": 0.976 }, { "start": 12135.54, "end": 12136.08, "probability": 0.69 }, { "start": 12137.38, "end": 12138.3, "probability": 0.7593 }, { "start": 12138.82, "end": 12139.58, "probability": 0.672 }, { "start": 12158.74, "end": 12159.04, "probability": 0.0025 }, { "start": 12159.04, "end": 12161.94, "probability": 0.7745 }, { "start": 12162.7, "end": 12165.3, "probability": 0.9717 }, { "start": 12165.48, "end": 12169.7, "probability": 0.9798 }, { "start": 12169.7, "end": 12172.86, "probability": 0.9754 }, { "start": 12173.52, "end": 12179.22, "probability": 0.4256 }, { "start": 12205.18, "end": 12208.44, "probability": 0.7981 }, { "start": 12208.96, "end": 12210.12, "probability": 0.4087 }, { "start": 12210.98, "end": 12212.44, "probability": 0.3885 }, { "start": 12213.12, "end": 12215.5, "probability": 0.1629 }, { "start": 12218.2, "end": 12222.84, "probability": 0.1514 }, { "start": 12294.0, "end": 12294.0, "probability": 0.0 }, { "start": 12294.0, "end": 12294.0, "probability": 0.0 }, { "start": 12294.0, "end": 12294.0, "probability": 0.0 }, { "start": 12294.0, "end": 12294.0, "probability": 0.0 }, { "start": 12294.0, "end": 12294.0, "probability": 0.0 }, { "start": 12294.0, "end": 12294.0, "probability": 0.0 }, { "start": 12294.0, "end": 12294.0, "probability": 0.0 }, { "start": 12294.0, "end": 12294.0, "probability": 0.0 }, { "start": 12294.0, "end": 12294.0, "probability": 0.0 }, { "start": 12294.0, "end": 12294.0, "probability": 0.0 }, { "start": 12294.0, "end": 12294.0, "probability": 0.0 } ], "segments_count": 4688, "words_count": 22695, "avg_words_per_segment": 4.8411, "avg_segment_duration": 1.7228, "avg_words_per_minute": 110.7613, "plenum_id": "102769", "duration": 12294.0, "title": null, "plenum_date": "2021-12-20" }