{ "source_type": "knesset", "source_id": "plenum", "source_entry_id": "103956", "quality_score": 0.4246, "per_segment_quality_scores": [ { "start": 43.78, "end": 44.98, "probability": 0.8816 }, { "start": 45.18, "end": 47.22, "probability": 0.9159 }, { "start": 47.98, "end": 48.24, "probability": 0.7724 }, { "start": 48.44, "end": 49.42, "probability": 0.7706 }, { "start": 49.8, "end": 51.16, "probability": 0.8566 }, { "start": 51.26, "end": 52.88, "probability": 0.9142 }, { "start": 53.56, "end": 55.76, "probability": 0.6555 }, { "start": 56.42, "end": 61.34, "probability": 0.9678 }, { "start": 61.92, "end": 64.58, "probability": 0.3538 }, { "start": 65.2, "end": 66.44, "probability": 0.9987 }, { "start": 66.96, "end": 67.4, "probability": 0.591 }, { "start": 68.3, "end": 68.4, "probability": 0.5746 }, { "start": 69.08, "end": 72.28, "probability": 0.9431 }, { "start": 73.66, "end": 74.24, "probability": 0.7588 }, { "start": 74.34, "end": 77.66, "probability": 0.8062 }, { "start": 78.22, "end": 79.76, "probability": 0.7738 }, { "start": 99.82, "end": 101.28, "probability": 0.7221 }, { "start": 107.98, "end": 108.65, "probability": 0.526 }, { "start": 109.8, "end": 111.72, "probability": 0.7641 }, { "start": 111.86, "end": 112.5, "probability": 0.5729 }, { "start": 112.62, "end": 115.4, "probability": 0.825 }, { "start": 115.44, "end": 117.84, "probability": 0.9755 }, { "start": 118.76, "end": 119.42, "probability": 0.8487 }, { "start": 119.66, "end": 120.86, "probability": 0.2996 }, { "start": 121.22, "end": 122.34, "probability": 0.7871 }, { "start": 122.8, "end": 123.5, "probability": 0.639 }, { "start": 124.0, "end": 124.86, "probability": 0.9852 }, { "start": 125.24, "end": 126.9, "probability": 0.9358 }, { "start": 127.78, "end": 128.26, "probability": 0.5771 }, { "start": 128.42, "end": 129.26, "probability": 0.7208 }, { "start": 129.28, "end": 132.48, "probability": 0.9819 }, { "start": 133.22, "end": 137.4, "probability": 0.9384 }, { "start": 138.5, "end": 139.04, "probability": 0.6163 }, { "start": 139.2, "end": 139.82, "probability": 0.5562 }, { "start": 139.94, "end": 143.78, "probability": 0.868 }, { "start": 144.76, "end": 145.94, "probability": 0.6011 }, { "start": 147.18, "end": 147.82, "probability": 0.4054 }, { "start": 148.4, "end": 149.2, "probability": 0.9626 }, { "start": 150.04, "end": 154.48, "probability": 0.8394 }, { "start": 156.6, "end": 157.04, "probability": 0.7452 }, { "start": 157.14, "end": 161.4, "probability": 0.9372 }, { "start": 161.4, "end": 164.54, "probability": 0.992 }, { "start": 165.54, "end": 168.14, "probability": 0.9351 }, { "start": 168.88, "end": 171.92, "probability": 0.909 }, { "start": 171.98, "end": 174.42, "probability": 0.9645 }, { "start": 175.1, "end": 176.94, "probability": 0.7581 }, { "start": 177.34, "end": 181.32, "probability": 0.9884 }, { "start": 181.4, "end": 182.88, "probability": 0.7129 }, { "start": 183.44, "end": 185.0, "probability": 0.8518 }, { "start": 185.86, "end": 189.36, "probability": 0.9077 }, { "start": 189.54, "end": 191.32, "probability": 0.9919 }, { "start": 191.86, "end": 194.98, "probability": 0.9908 }, { "start": 195.98, "end": 197.78, "probability": 0.9135 }, { "start": 198.4, "end": 199.38, "probability": 0.9362 }, { "start": 199.54, "end": 203.26, "probability": 0.877 }, { "start": 204.04, "end": 209.16, "probability": 0.9741 }, { "start": 210.4, "end": 210.84, "probability": 0.7389 }, { "start": 211.68, "end": 212.9, "probability": 0.9894 }, { "start": 213.74, "end": 213.94, "probability": 0.7057 }, { "start": 215.42, "end": 215.92, "probability": 0.6268 }, { "start": 216.02, "end": 218.36, "probability": 0.7693 }, { "start": 220.18, "end": 220.86, "probability": 0.6194 }, { "start": 231.86, "end": 233.96, "probability": 0.5288 }, { "start": 235.16, "end": 239.9, "probability": 0.9919 }, { "start": 239.9, "end": 244.54, "probability": 0.9968 }, { "start": 245.06, "end": 248.14, "probability": 0.9817 }, { "start": 248.68, "end": 254.3, "probability": 0.9944 }, { "start": 254.8, "end": 259.9, "probability": 0.9173 }, { "start": 260.06, "end": 262.72, "probability": 0.9834 }, { "start": 263.28, "end": 264.28, "probability": 0.7291 }, { "start": 264.48, "end": 267.18, "probability": 0.9007 }, { "start": 267.32, "end": 271.86, "probability": 0.9712 }, { "start": 271.86, "end": 275.04, "probability": 0.978 }, { "start": 276.7, "end": 278.18, "probability": 0.7263 }, { "start": 278.82, "end": 284.52, "probability": 0.9904 }, { "start": 284.76, "end": 287.94, "probability": 0.9745 }, { "start": 288.86, "end": 294.56, "probability": 0.9285 }, { "start": 294.96, "end": 298.86, "probability": 0.9343 }, { "start": 299.48, "end": 304.02, "probability": 0.9945 }, { "start": 304.52, "end": 305.96, "probability": 0.811 }, { "start": 306.5, "end": 310.26, "probability": 0.9941 }, { "start": 310.68, "end": 317.0, "probability": 0.9966 }, { "start": 317.16, "end": 323.02, "probability": 0.9889 }, { "start": 323.84, "end": 325.18, "probability": 0.4591 }, { "start": 325.52, "end": 327.82, "probability": 0.835 }, { "start": 328.3, "end": 331.2, "probability": 0.9606 }, { "start": 332.86, "end": 333.66, "probability": 0.6384 }, { "start": 335.38, "end": 336.24, "probability": 0.9656 }, { "start": 343.82, "end": 344.1, "probability": 0.4963 }, { "start": 345.12, "end": 346.42, "probability": 0.1852 }, { "start": 346.66, "end": 346.98, "probability": 0.009 }, { "start": 356.48, "end": 358.5, "probability": 0.3075 }, { "start": 358.66, "end": 360.46, "probability": 0.9758 }, { "start": 362.36, "end": 364.9, "probability": 0.9966 }, { "start": 365.56, "end": 368.54, "probability": 0.9161 }, { "start": 369.16, "end": 371.84, "probability": 0.9907 }, { "start": 374.52, "end": 375.12, "probability": 0.1514 }, { "start": 375.12, "end": 376.54, "probability": 0.8037 }, { "start": 377.36, "end": 380.76, "probability": 0.9821 }, { "start": 381.32, "end": 383.26, "probability": 0.9908 }, { "start": 383.44, "end": 385.34, "probability": 0.8304 }, { "start": 386.0, "end": 389.56, "probability": 0.9588 }, { "start": 390.3, "end": 393.14, "probability": 0.9229 }, { "start": 393.86, "end": 396.65, "probability": 0.9766 }, { "start": 397.54, "end": 401.18, "probability": 0.9803 }, { "start": 401.9, "end": 406.34, "probability": 0.9957 }, { "start": 406.34, "end": 411.52, "probability": 0.9975 }, { "start": 412.24, "end": 414.96, "probability": 0.8001 }, { "start": 415.58, "end": 418.1, "probability": 0.9919 }, { "start": 418.6, "end": 422.14, "probability": 0.9836 }, { "start": 425.62, "end": 426.94, "probability": 0.6571 }, { "start": 427.26, "end": 429.46, "probability": 0.4719 }, { "start": 430.36, "end": 432.06, "probability": 0.8684 }, { "start": 437.7, "end": 438.85, "probability": 0.7747 }, { "start": 447.98, "end": 450.62, "probability": 0.7642 }, { "start": 453.42, "end": 455.9, "probability": 0.8798 }, { "start": 457.3, "end": 458.66, "probability": 0.0505 }, { "start": 459.5, "end": 462.16, "probability": 0.0933 }, { "start": 462.2, "end": 463.04, "probability": 0.4347 }, { "start": 466.54, "end": 468.14, "probability": 0.9237 }, { "start": 469.14, "end": 470.06, "probability": 0.6933 }, { "start": 470.78, "end": 472.58, "probability": 0.8291 }, { "start": 473.32, "end": 474.04, "probability": 0.6897 }, { "start": 475.86, "end": 481.32, "probability": 0.9986 }, { "start": 482.34, "end": 484.22, "probability": 0.9974 }, { "start": 484.94, "end": 487.06, "probability": 0.9994 }, { "start": 487.6, "end": 492.8, "probability": 0.9924 }, { "start": 493.66, "end": 494.42, "probability": 0.4587 }, { "start": 495.0, "end": 499.52, "probability": 0.9979 }, { "start": 500.66, "end": 504.58, "probability": 0.7028 }, { "start": 505.28, "end": 509.7, "probability": 0.9768 }, { "start": 510.34, "end": 510.58, "probability": 0.7026 }, { "start": 513.98, "end": 517.03, "probability": 0.8879 }, { "start": 518.54, "end": 519.84, "probability": 0.7292 }, { "start": 521.24, "end": 526.28, "probability": 0.9781 }, { "start": 527.08, "end": 530.54, "probability": 0.9957 }, { "start": 531.9, "end": 532.52, "probability": 0.6492 }, { "start": 532.6, "end": 536.14, "probability": 0.9565 }, { "start": 537.02, "end": 539.1, "probability": 0.9797 }, { "start": 539.22, "end": 540.14, "probability": 0.8912 }, { "start": 540.3, "end": 540.9, "probability": 0.8455 }, { "start": 540.98, "end": 541.52, "probability": 0.9743 }, { "start": 541.56, "end": 542.34, "probability": 0.9901 }, { "start": 542.44, "end": 543.54, "probability": 0.9573 }, { "start": 544.04, "end": 545.3, "probability": 0.9842 }, { "start": 545.42, "end": 545.78, "probability": 0.9838 }, { "start": 546.14, "end": 548.2, "probability": 0.9886 }, { "start": 548.34, "end": 551.06, "probability": 0.6051 }, { "start": 551.88, "end": 552.34, "probability": 0.7129 }, { "start": 552.68, "end": 556.2, "probability": 0.991 }, { "start": 556.58, "end": 559.1, "probability": 0.9878 }, { "start": 560.2, "end": 567.04, "probability": 0.8775 }, { "start": 567.68, "end": 571.0, "probability": 0.8741 }, { "start": 572.4, "end": 577.3, "probability": 0.7047 }, { "start": 578.64, "end": 580.18, "probability": 0.8133 }, { "start": 580.38, "end": 583.52, "probability": 0.9961 }, { "start": 583.82, "end": 587.18, "probability": 0.9973 }, { "start": 588.56, "end": 592.52, "probability": 0.9934 }, { "start": 595.57, "end": 599.0, "probability": 0.9848 }, { "start": 599.76, "end": 605.88, "probability": 0.8939 }, { "start": 606.0, "end": 607.62, "probability": 0.8492 }, { "start": 607.84, "end": 608.74, "probability": 0.9585 }, { "start": 608.84, "end": 609.4, "probability": 0.9712 }, { "start": 609.54, "end": 609.88, "probability": 0.8965 }, { "start": 609.92, "end": 610.86, "probability": 0.8664 }, { "start": 610.96, "end": 611.34, "probability": 0.236 }, { "start": 612.4, "end": 617.38, "probability": 0.9832 }, { "start": 617.68, "end": 621.08, "probability": 0.9978 }, { "start": 621.76, "end": 624.96, "probability": 0.9851 }, { "start": 626.78, "end": 626.94, "probability": 0.3512 }, { "start": 626.94, "end": 630.34, "probability": 0.8351 }, { "start": 631.34, "end": 636.84, "probability": 0.8746 }, { "start": 637.38, "end": 641.4, "probability": 0.9933 }, { "start": 642.18, "end": 644.36, "probability": 0.9996 }, { "start": 645.56, "end": 648.38, "probability": 0.9983 }, { "start": 648.38, "end": 651.54, "probability": 0.9954 }, { "start": 652.44, "end": 657.76, "probability": 0.9927 }, { "start": 657.8, "end": 658.3, "probability": 0.7753 }, { "start": 658.88, "end": 662.18, "probability": 0.949 }, { "start": 662.78, "end": 664.44, "probability": 0.6862 }, { "start": 666.78, "end": 671.16, "probability": 0.7403 }, { "start": 671.46, "end": 674.4, "probability": 0.4038 }, { "start": 674.42, "end": 674.9, "probability": 0.8545 }, { "start": 675.2, "end": 676.28, "probability": 0.8584 }, { "start": 676.78, "end": 679.23, "probability": 0.9871 }, { "start": 679.7, "end": 685.26, "probability": 0.9318 }, { "start": 687.04, "end": 688.32, "probability": 0.9961 }, { "start": 688.48, "end": 691.62, "probability": 0.937 }, { "start": 692.16, "end": 693.66, "probability": 0.9265 }, { "start": 694.2, "end": 695.88, "probability": 0.9456 }, { "start": 696.42, "end": 700.52, "probability": 0.8111 }, { "start": 701.14, "end": 702.74, "probability": 0.2178 }, { "start": 702.76, "end": 704.94, "probability": 0.6657 }, { "start": 705.32, "end": 706.16, "probability": 0.9211 }, { "start": 706.44, "end": 707.54, "probability": 0.7724 }, { "start": 707.76, "end": 708.96, "probability": 0.9738 }, { "start": 709.18, "end": 710.74, "probability": 0.9199 }, { "start": 711.16, "end": 712.44, "probability": 0.8569 }, { "start": 712.92, "end": 714.22, "probability": 0.5522 }, { "start": 714.64, "end": 716.48, "probability": 0.7363 }, { "start": 717.28, "end": 718.74, "probability": 0.7478 }, { "start": 719.57, "end": 722.9, "probability": 0.9904 }, { "start": 723.36, "end": 725.42, "probability": 0.887 }, { "start": 725.42, "end": 728.2, "probability": 0.9535 }, { "start": 728.26, "end": 728.36, "probability": 0.5045 }, { "start": 729.08, "end": 730.72, "probability": 0.9719 }, { "start": 731.22, "end": 734.52, "probability": 0.8987 }, { "start": 735.52, "end": 736.04, "probability": 0.458 }, { "start": 736.12, "end": 739.16, "probability": 0.9663 }, { "start": 739.52, "end": 741.64, "probability": 0.9954 }, { "start": 742.14, "end": 742.73, "probability": 0.6716 }, { "start": 743.0, "end": 745.5, "probability": 0.9725 }, { "start": 746.0, "end": 748.48, "probability": 0.9769 }, { "start": 748.82, "end": 750.32, "probability": 0.9106 }, { "start": 750.44, "end": 751.22, "probability": 0.994 }, { "start": 751.62, "end": 753.14, "probability": 0.9967 }, { "start": 753.84, "end": 756.16, "probability": 0.6744 }, { "start": 756.28, "end": 758.64, "probability": 0.9854 }, { "start": 758.74, "end": 759.76, "probability": 0.5693 }, { "start": 760.46, "end": 761.76, "probability": 0.9961 }, { "start": 762.54, "end": 765.98, "probability": 0.9858 }, { "start": 766.68, "end": 768.64, "probability": 0.9932 }, { "start": 769.64, "end": 772.18, "probability": 0.9985 }, { "start": 772.52, "end": 774.48, "probability": 0.5863 }, { "start": 775.56, "end": 777.38, "probability": 0.9928 }, { "start": 778.0, "end": 784.52, "probability": 0.7301 }, { "start": 784.74, "end": 784.84, "probability": 0.2999 }, { "start": 785.16, "end": 785.92, "probability": 0.2061 }, { "start": 786.26, "end": 786.58, "probability": 0.3521 }, { "start": 786.69, "end": 787.06, "probability": 0.6484 }, { "start": 787.12, "end": 787.4, "probability": 0.7389 }, { "start": 787.42, "end": 790.73, "probability": 0.9569 }, { "start": 791.74, "end": 794.16, "probability": 0.8069 }, { "start": 794.28, "end": 795.06, "probability": 0.9292 }, { "start": 796.2, "end": 796.3, "probability": 0.7291 }, { "start": 797.96, "end": 800.14, "probability": 0.6853 }, { "start": 801.02, "end": 806.52, "probability": 0.9992 }, { "start": 807.5, "end": 808.32, "probability": 0.597 }, { "start": 808.42, "end": 808.84, "probability": 0.6817 }, { "start": 810.13, "end": 812.43, "probability": 0.908 }, { "start": 812.7, "end": 813.16, "probability": 0.5266 }, { "start": 813.62, "end": 817.04, "probability": 0.9698 }, { "start": 817.16, "end": 817.6, "probability": 0.0182 }, { "start": 818.54, "end": 820.48, "probability": 0.5883 }, { "start": 820.82, "end": 822.34, "probability": 0.8562 }, { "start": 822.68, "end": 824.4, "probability": 0.9425 }, { "start": 824.6, "end": 824.8, "probability": 0.84 }, { "start": 826.64, "end": 826.82, "probability": 0.3799 }, { "start": 826.82, "end": 827.22, "probability": 0.6016 }, { "start": 827.36, "end": 828.1, "probability": 0.3939 }, { "start": 832.98, "end": 835.92, "probability": 0.9668 }, { "start": 838.7, "end": 841.46, "probability": 0.6428 }, { "start": 842.42, "end": 847.26, "probability": 0.9937 }, { "start": 848.36, "end": 849.28, "probability": 0.915 }, { "start": 849.8, "end": 851.9, "probability": 0.8445 }, { "start": 853.0, "end": 853.68, "probability": 0.5254 }, { "start": 854.38, "end": 855.5, "probability": 0.7022 }, { "start": 856.06, "end": 857.48, "probability": 0.9775 }, { "start": 858.18, "end": 862.88, "probability": 0.9955 }, { "start": 863.62, "end": 866.0, "probability": 0.8076 }, { "start": 868.02, "end": 868.54, "probability": 0.9156 }, { "start": 869.34, "end": 875.26, "probability": 0.9871 }, { "start": 877.1, "end": 878.2, "probability": 0.9222 }, { "start": 878.5, "end": 880.98, "probability": 0.9897 }, { "start": 881.06, "end": 884.4, "probability": 0.9976 }, { "start": 885.22, "end": 889.38, "probability": 0.7967 }, { "start": 890.56, "end": 891.56, "probability": 0.4794 }, { "start": 892.1, "end": 895.82, "probability": 0.9941 }, { "start": 896.42, "end": 900.46, "probability": 0.8551 }, { "start": 901.12, "end": 901.48, "probability": 0.3173 }, { "start": 901.76, "end": 905.26, "probability": 0.9587 }, { "start": 905.94, "end": 911.16, "probability": 0.9868 }, { "start": 911.22, "end": 915.28, "probability": 0.9944 }, { "start": 917.14, "end": 919.62, "probability": 0.845 }, { "start": 920.9, "end": 924.56, "probability": 0.9745 }, { "start": 925.54, "end": 929.8, "probability": 0.9977 }, { "start": 931.08, "end": 934.36, "probability": 0.9663 }, { "start": 934.36, "end": 937.42, "probability": 0.9998 }, { "start": 938.08, "end": 940.6, "probability": 0.9955 }, { "start": 941.12, "end": 945.34, "probability": 0.9854 }, { "start": 946.38, "end": 948.6, "probability": 0.995 }, { "start": 948.6, "end": 953.38, "probability": 0.9683 }, { "start": 953.66, "end": 956.36, "probability": 0.9768 }, { "start": 957.68, "end": 961.4, "probability": 0.8833 }, { "start": 961.92, "end": 965.54, "probability": 0.9905 }, { "start": 965.54, "end": 967.58, "probability": 0.8638 }, { "start": 969.02, "end": 972.24, "probability": 0.9514 }, { "start": 972.24, "end": 975.78, "probability": 0.9988 }, { "start": 976.46, "end": 977.8, "probability": 0.9957 }, { "start": 979.23, "end": 982.74, "probability": 0.9431 }, { "start": 983.5, "end": 990.5, "probability": 0.9828 }, { "start": 992.62, "end": 994.58, "probability": 0.9956 }, { "start": 995.18, "end": 999.36, "probability": 0.9853 }, { "start": 999.36, "end": 1003.22, "probability": 0.9978 }, { "start": 1005.55, "end": 1008.7, "probability": 0.8942 }, { "start": 1008.82, "end": 1012.88, "probability": 0.9983 }, { "start": 1013.44, "end": 1016.06, "probability": 0.9891 }, { "start": 1016.84, "end": 1022.12, "probability": 0.9003 }, { "start": 1023.2, "end": 1027.64, "probability": 0.9667 }, { "start": 1028.16, "end": 1032.88, "probability": 0.9478 }, { "start": 1033.64, "end": 1035.1, "probability": 0.9172 }, { "start": 1035.76, "end": 1038.2, "probability": 0.9872 }, { "start": 1038.72, "end": 1041.6, "probability": 0.998 }, { "start": 1042.04, "end": 1044.46, "probability": 0.979 }, { "start": 1045.42, "end": 1048.14, "probability": 0.9941 }, { "start": 1048.96, "end": 1053.34, "probability": 0.9941 }, { "start": 1053.9, "end": 1055.5, "probability": 0.7198 }, { "start": 1056.24, "end": 1058.24, "probability": 0.9994 }, { "start": 1059.08, "end": 1061.84, "probability": 0.9683 }, { "start": 1063.22, "end": 1066.0, "probability": 0.9607 }, { "start": 1066.78, "end": 1072.86, "probability": 0.9763 }, { "start": 1073.6, "end": 1079.86, "probability": 0.9959 }, { "start": 1080.66, "end": 1082.06, "probability": 0.8121 }, { "start": 1083.06, "end": 1090.66, "probability": 0.9843 }, { "start": 1091.24, "end": 1092.2, "probability": 0.9783 }, { "start": 1092.84, "end": 1095.1, "probability": 0.8756 }, { "start": 1095.16, "end": 1097.9, "probability": 0.3869 }, { "start": 1097.9, "end": 1100.0, "probability": 0.8457 }, { "start": 1100.96, "end": 1103.44, "probability": 0.9969 }, { "start": 1104.16, "end": 1109.56, "probability": 0.9984 }, { "start": 1110.18, "end": 1113.08, "probability": 0.9966 }, { "start": 1113.28, "end": 1115.1, "probability": 0.772 }, { "start": 1116.36, "end": 1116.86, "probability": 0.6819 }, { "start": 1117.5, "end": 1122.06, "probability": 0.98 }, { "start": 1122.06, "end": 1126.68, "probability": 0.9951 }, { "start": 1127.86, "end": 1130.3, "probability": 0.5415 }, { "start": 1130.84, "end": 1134.44, "probability": 0.9873 }, { "start": 1135.26, "end": 1139.48, "probability": 0.9908 }, { "start": 1139.48, "end": 1144.2, "probability": 0.9927 }, { "start": 1145.5, "end": 1146.7, "probability": 0.9215 }, { "start": 1147.18, "end": 1151.02, "probability": 0.9816 }, { "start": 1153.06, "end": 1154.62, "probability": 0.6862 }, { "start": 1155.4, "end": 1159.08, "probability": 0.8757 }, { "start": 1159.18, "end": 1161.02, "probability": 0.7788 }, { "start": 1161.16, "end": 1162.75, "probability": 0.9849 }, { "start": 1163.0, "end": 1164.58, "probability": 0.7493 }, { "start": 1164.82, "end": 1167.56, "probability": 0.9747 }, { "start": 1168.6, "end": 1170.3, "probability": 0.9979 }, { "start": 1171.0, "end": 1174.42, "probability": 0.9574 }, { "start": 1174.68, "end": 1175.12, "probability": 0.3766 }, { "start": 1175.22, "end": 1176.92, "probability": 0.8738 }, { "start": 1177.62, "end": 1180.36, "probability": 0.9913 }, { "start": 1181.68, "end": 1182.3, "probability": 0.7515 }, { "start": 1183.36, "end": 1188.82, "probability": 0.9857 }, { "start": 1188.82, "end": 1193.72, "probability": 0.9097 }, { "start": 1195.56, "end": 1200.28, "probability": 0.985 }, { "start": 1201.84, "end": 1204.6, "probability": 0.9844 }, { "start": 1204.64, "end": 1206.54, "probability": 0.9971 }, { "start": 1208.92, "end": 1212.7, "probability": 0.5012 }, { "start": 1213.5, "end": 1217.04, "probability": 0.9634 }, { "start": 1217.22, "end": 1217.82, "probability": 0.7888 }, { "start": 1218.38, "end": 1219.52, "probability": 0.9996 }, { "start": 1220.28, "end": 1220.72, "probability": 0.9783 }, { "start": 1221.38, "end": 1222.0, "probability": 0.8052 }, { "start": 1222.74, "end": 1223.68, "probability": 0.9482 }, { "start": 1223.82, "end": 1230.42, "probability": 0.9912 }, { "start": 1230.55, "end": 1234.62, "probability": 0.7347 }, { "start": 1235.88, "end": 1238.4, "probability": 0.9435 }, { "start": 1239.95, "end": 1244.95, "probability": 0.9033 }, { "start": 1245.7, "end": 1248.74, "probability": 0.9976 }, { "start": 1249.16, "end": 1251.14, "probability": 0.9487 }, { "start": 1252.08, "end": 1253.44, "probability": 0.7531 }, { "start": 1253.58, "end": 1256.98, "probability": 0.9923 }, { "start": 1257.62, "end": 1259.56, "probability": 0.9857 }, { "start": 1260.4, "end": 1263.04, "probability": 0.9373 }, { "start": 1264.14, "end": 1267.16, "probability": 0.8936 }, { "start": 1267.32, "end": 1269.58, "probability": 0.995 }, { "start": 1270.36, "end": 1274.8, "probability": 0.9468 }, { "start": 1274.8, "end": 1277.57, "probability": 0.993 }, { "start": 1281.9, "end": 1286.9, "probability": 0.9971 }, { "start": 1287.64, "end": 1289.63, "probability": 0.9623 }, { "start": 1290.66, "end": 1292.96, "probability": 0.9891 }, { "start": 1292.96, "end": 1297.44, "probability": 0.9948 }, { "start": 1298.0, "end": 1300.44, "probability": 0.9833 }, { "start": 1301.22, "end": 1302.88, "probability": 0.7465 }, { "start": 1303.56, "end": 1305.0, "probability": 0.9877 }, { "start": 1305.48, "end": 1308.78, "probability": 0.993 }, { "start": 1308.78, "end": 1312.36, "probability": 0.9639 }, { "start": 1312.48, "end": 1314.58, "probability": 0.9989 }, { "start": 1314.58, "end": 1318.3, "probability": 0.9991 }, { "start": 1318.92, "end": 1319.14, "probability": 0.7134 }, { "start": 1332.98, "end": 1334.9, "probability": 0.5952 }, { "start": 1335.8, "end": 1338.66, "probability": 0.9956 }, { "start": 1338.82, "end": 1342.22, "probability": 0.9922 }, { "start": 1342.38, "end": 1345.32, "probability": 0.9653 }, { "start": 1345.82, "end": 1347.74, "probability": 0.9929 }, { "start": 1347.86, "end": 1348.94, "probability": 0.4863 }, { "start": 1349.54, "end": 1351.05, "probability": 0.9946 }, { "start": 1357.22, "end": 1361.26, "probability": 0.821 }, { "start": 1362.35, "end": 1366.74, "probability": 0.978 }, { "start": 1367.38, "end": 1368.02, "probability": 0.834 }, { "start": 1368.94, "end": 1371.62, "probability": 0.9943 }, { "start": 1372.34, "end": 1374.0, "probability": 0.7952 }, { "start": 1374.52, "end": 1378.82, "probability": 0.9813 }, { "start": 1379.74, "end": 1386.18, "probability": 0.8821 }, { "start": 1386.22, "end": 1387.8, "probability": 0.5521 }, { "start": 1388.24, "end": 1393.7, "probability": 0.9816 }, { "start": 1394.2, "end": 1395.12, "probability": 0.9124 }, { "start": 1395.72, "end": 1396.26, "probability": 0.7573 }, { "start": 1396.66, "end": 1399.3, "probability": 0.9718 }, { "start": 1399.8, "end": 1400.92, "probability": 0.9009 }, { "start": 1401.0, "end": 1401.54, "probability": 0.9142 }, { "start": 1401.82, "end": 1402.4, "probability": 0.9372 }, { "start": 1402.8, "end": 1403.08, "probability": 0.9282 }, { "start": 1403.38, "end": 1406.14, "probability": 0.8791 }, { "start": 1406.28, "end": 1414.54, "probability": 0.8293 }, { "start": 1415.24, "end": 1415.36, "probability": 0.709 }, { "start": 1415.58, "end": 1415.82, "probability": 0.6766 }, { "start": 1416.0, "end": 1419.42, "probability": 0.85 }, { "start": 1420.3, "end": 1422.28, "probability": 0.7506 }, { "start": 1423.04, "end": 1423.04, "probability": 0.3308 }, { "start": 1423.04, "end": 1423.47, "probability": 0.7223 }, { "start": 1424.0, "end": 1425.86, "probability": 0.3463 }, { "start": 1425.9, "end": 1427.44, "probability": 0.9877 }, { "start": 1427.9, "end": 1434.48, "probability": 0.8934 }, { "start": 1435.18, "end": 1437.2, "probability": 0.998 }, { "start": 1438.56, "end": 1441.26, "probability": 0.6553 }, { "start": 1442.82, "end": 1443.52, "probability": 0.5918 }, { "start": 1443.52, "end": 1445.3, "probability": 0.6533 }, { "start": 1447.51, "end": 1452.1, "probability": 0.9455 }, { "start": 1452.82, "end": 1456.08, "probability": 0.8062 }, { "start": 1456.14, "end": 1457.46, "probability": 0.5802 }, { "start": 1457.46, "end": 1458.8, "probability": 0.6681 }, { "start": 1459.18, "end": 1461.04, "probability": 0.9718 }, { "start": 1461.24, "end": 1462.34, "probability": 0.9588 }, { "start": 1462.88, "end": 1463.98, "probability": 0.9476 }, { "start": 1464.08, "end": 1466.16, "probability": 0.989 }, { "start": 1467.02, "end": 1468.04, "probability": 0.9854 }, { "start": 1468.26, "end": 1469.68, "probability": 0.9621 }, { "start": 1470.22, "end": 1472.1, "probability": 0.9782 }, { "start": 1473.59, "end": 1475.16, "probability": 0.5233 }, { "start": 1475.16, "end": 1475.76, "probability": 0.6557 }, { "start": 1476.18, "end": 1477.26, "probability": 0.827 }, { "start": 1477.9, "end": 1479.22, "probability": 0.9272 }, { "start": 1479.98, "end": 1481.18, "probability": 0.9497 }, { "start": 1481.4, "end": 1481.9, "probability": 0.9403 }, { "start": 1481.98, "end": 1482.9, "probability": 0.9213 }, { "start": 1483.1, "end": 1484.16, "probability": 0.9691 }, { "start": 1484.22, "end": 1484.9, "probability": 0.9884 }, { "start": 1485.08, "end": 1486.06, "probability": 0.6685 }, { "start": 1486.74, "end": 1489.02, "probability": 0.9844 }, { "start": 1490.37, "end": 1491.76, "probability": 0.6577 }, { "start": 1492.48, "end": 1498.4, "probability": 0.8983 }, { "start": 1498.4, "end": 1503.09, "probability": 0.98 }, { "start": 1503.52, "end": 1503.86, "probability": 0.3473 }, { "start": 1503.94, "end": 1504.78, "probability": 0.8541 }, { "start": 1505.4, "end": 1508.06, "probability": 0.6876 }, { "start": 1508.38, "end": 1509.72, "probability": 0.7183 }, { "start": 1510.66, "end": 1513.96, "probability": 0.9038 }, { "start": 1514.48, "end": 1516.76, "probability": 0.8071 }, { "start": 1517.48, "end": 1520.24, "probability": 0.9878 }, { "start": 1520.94, "end": 1524.9, "probability": 0.8376 }, { "start": 1525.34, "end": 1527.38, "probability": 0.999 }, { "start": 1527.44, "end": 1528.61, "probability": 0.6544 }, { "start": 1528.78, "end": 1529.96, "probability": 0.9826 }, { "start": 1530.08, "end": 1533.32, "probability": 0.6574 }, { "start": 1534.04, "end": 1536.68, "probability": 0.9939 }, { "start": 1538.0, "end": 1539.82, "probability": 0.9824 }, { "start": 1540.59, "end": 1542.78, "probability": 0.7979 }, { "start": 1543.08, "end": 1545.52, "probability": 0.9286 }, { "start": 1546.36, "end": 1546.96, "probability": 0.8821 }, { "start": 1547.76, "end": 1548.02, "probability": 0.7266 }, { "start": 1548.04, "end": 1548.68, "probability": 0.8354 }, { "start": 1548.74, "end": 1550.16, "probability": 0.6816 }, { "start": 1550.6, "end": 1551.16, "probability": 0.44 }, { "start": 1551.38, "end": 1556.28, "probability": 0.4852 }, { "start": 1556.36, "end": 1556.36, "probability": 0.2403 }, { "start": 1556.36, "end": 1556.74, "probability": 0.6066 }, { "start": 1557.3, "end": 1557.68, "probability": 0.9169 }, { "start": 1558.46, "end": 1561.22, "probability": 0.9292 }, { "start": 1562.22, "end": 1562.52, "probability": 0.7918 }, { "start": 1562.62, "end": 1562.64, "probability": 0.3149 }, { "start": 1562.64, "end": 1564.06, "probability": 0.7064 }, { "start": 1564.18, "end": 1565.8, "probability": 0.9305 }, { "start": 1565.9, "end": 1567.42, "probability": 0.9009 }, { "start": 1567.76, "end": 1567.86, "probability": 0.4008 }, { "start": 1568.26, "end": 1572.3, "probability": 0.9722 }, { "start": 1572.78, "end": 1573.58, "probability": 0.9479 }, { "start": 1574.42, "end": 1580.02, "probability": 0.9078 }, { "start": 1580.02, "end": 1583.32, "probability": 0.716 }, { "start": 1583.46, "end": 1585.2, "probability": 0.9985 }, { "start": 1585.92, "end": 1588.02, "probability": 0.7464 }, { "start": 1589.42, "end": 1590.24, "probability": 0.8911 }, { "start": 1590.3, "end": 1591.16, "probability": 0.9634 }, { "start": 1591.3, "end": 1593.44, "probability": 0.7942 }, { "start": 1594.28, "end": 1596.01, "probability": 0.9807 }, { "start": 1596.6, "end": 1596.72, "probability": 0.1994 }, { "start": 1596.84, "end": 1598.12, "probability": 0.8462 }, { "start": 1598.76, "end": 1601.58, "probability": 0.9963 }, { "start": 1601.68, "end": 1602.34, "probability": 0.8425 }, { "start": 1602.76, "end": 1606.35, "probability": 0.9851 }, { "start": 1606.88, "end": 1608.68, "probability": 0.8627 }, { "start": 1609.36, "end": 1611.44, "probability": 0.9998 }, { "start": 1612.84, "end": 1612.94, "probability": 0.6117 }, { "start": 1613.52, "end": 1616.08, "probability": 0.9935 }, { "start": 1616.72, "end": 1617.7, "probability": 0.8513 }, { "start": 1618.08, "end": 1620.24, "probability": 0.9316 }, { "start": 1621.46, "end": 1625.4, "probability": 0.684 }, { "start": 1626.08, "end": 1630.18, "probability": 0.9109 }, { "start": 1630.22, "end": 1630.64, "probability": 0.9891 }, { "start": 1630.74, "end": 1632.54, "probability": 0.9255 }, { "start": 1632.72, "end": 1634.76, "probability": 0.9847 }, { "start": 1635.6, "end": 1638.26, "probability": 0.8028 }, { "start": 1639.54, "end": 1639.61, "probability": 0.7543 }, { "start": 1640.34, "end": 1641.62, "probability": 0.9977 }, { "start": 1641.62, "end": 1645.52, "probability": 0.9941 }, { "start": 1645.56, "end": 1646.76, "probability": 0.8586 }, { "start": 1647.56, "end": 1648.22, "probability": 0.6987 }, { "start": 1648.62, "end": 1652.96, "probability": 0.9818 }, { "start": 1654.69, "end": 1658.8, "probability": 0.9833 }, { "start": 1659.66, "end": 1663.78, "probability": 0.9972 }, { "start": 1663.94, "end": 1666.86, "probability": 0.7807 }, { "start": 1668.33, "end": 1670.82, "probability": 0.8787 }, { "start": 1670.88, "end": 1672.26, "probability": 0.9854 }, { "start": 1672.96, "end": 1674.64, "probability": 0.9895 }, { "start": 1676.12, "end": 1677.52, "probability": 0.7009 }, { "start": 1677.76, "end": 1678.16, "probability": 0.9004 }, { "start": 1678.16, "end": 1680.6, "probability": 0.8844 }, { "start": 1680.6, "end": 1681.8, "probability": 0.6594 }, { "start": 1682.88, "end": 1687.48, "probability": 0.8368 }, { "start": 1687.62, "end": 1689.76, "probability": 0.9805 }, { "start": 1690.4, "end": 1691.88, "probability": 0.8061 }, { "start": 1693.0, "end": 1694.24, "probability": 0.9971 }, { "start": 1694.86, "end": 1697.78, "probability": 0.9727 }, { "start": 1697.84, "end": 1699.14, "probability": 0.9831 }, { "start": 1699.68, "end": 1700.97, "probability": 0.6398 }, { "start": 1701.44, "end": 1704.7, "probability": 0.237 }, { "start": 1704.86, "end": 1705.56, "probability": 0.7688 }, { "start": 1706.18, "end": 1706.66, "probability": 0.0906 }, { "start": 1707.9, "end": 1708.78, "probability": 0.1608 }, { "start": 1708.78, "end": 1709.62, "probability": 0.4812 }, { "start": 1710.52, "end": 1710.56, "probability": 0.5566 }, { "start": 1710.56, "end": 1714.68, "probability": 0.9697 }, { "start": 1720.02, "end": 1722.9, "probability": 0.5244 }, { "start": 1722.9, "end": 1723.0, "probability": 0.5796 }, { "start": 1723.78, "end": 1724.26, "probability": 0.7307 }, { "start": 1724.94, "end": 1727.33, "probability": 0.8564 }, { "start": 1728.2, "end": 1730.22, "probability": 0.9067 }, { "start": 1731.42, "end": 1732.13, "probability": 0.796 }, { "start": 1732.84, "end": 1733.7, "probability": 0.3916 }, { "start": 1735.14, "end": 1735.32, "probability": 0.5289 }, { "start": 1736.9, "end": 1738.72, "probability": 0.6663 }, { "start": 1742.8, "end": 1743.48, "probability": 0.5932 }, { "start": 1745.43, "end": 1746.86, "probability": 0.896 }, { "start": 1746.98, "end": 1748.3, "probability": 0.2062 }, { "start": 1748.38, "end": 1748.9, "probability": 0.4551 }, { "start": 1749.84, "end": 1750.16, "probability": 0.3553 }, { "start": 1751.08, "end": 1751.6, "probability": 0.8012 }, { "start": 1753.48, "end": 1756.66, "probability": 0.9315 }, { "start": 1757.22, "end": 1757.92, "probability": 0.9841 }, { "start": 1758.52, "end": 1760.04, "probability": 0.9216 }, { "start": 1760.22, "end": 1763.18, "probability": 0.8838 }, { "start": 1763.58, "end": 1765.36, "probability": 0.9937 }, { "start": 1766.64, "end": 1770.1, "probability": 0.9756 }, { "start": 1771.34, "end": 1772.86, "probability": 0.9578 }, { "start": 1774.04, "end": 1774.94, "probability": 0.755 }, { "start": 1775.8, "end": 1778.18, "probability": 0.9712 }, { "start": 1778.96, "end": 1781.28, "probability": 0.9974 }, { "start": 1782.48, "end": 1785.02, "probability": 0.9779 }, { "start": 1785.78, "end": 1789.95, "probability": 0.9668 }, { "start": 1791.37, "end": 1794.96, "probability": 0.5146 }, { "start": 1795.02, "end": 1798.26, "probability": 0.9803 }, { "start": 1799.3, "end": 1800.72, "probability": 0.9135 }, { "start": 1801.04, "end": 1801.8, "probability": 0.4396 }, { "start": 1803.12, "end": 1805.58, "probability": 0.3473 }, { "start": 1805.58, "end": 1806.44, "probability": 0.4777 }, { "start": 1806.46, "end": 1808.06, "probability": 0.9878 }, { "start": 1808.32, "end": 1811.28, "probability": 0.7637 }, { "start": 1811.76, "end": 1813.02, "probability": 0.7896 }, { "start": 1813.18, "end": 1814.82, "probability": 0.9691 }, { "start": 1815.7, "end": 1817.88, "probability": 0.9481 }, { "start": 1818.58, "end": 1821.2, "probability": 0.9905 }, { "start": 1822.62, "end": 1824.9, "probability": 0.9589 }, { "start": 1825.18, "end": 1825.46, "probability": 0.8525 }, { "start": 1826.18, "end": 1830.14, "probability": 0.9754 }, { "start": 1831.54, "end": 1834.6, "probability": 0.9956 }, { "start": 1834.96, "end": 1835.82, "probability": 0.6507 }, { "start": 1835.84, "end": 1836.62, "probability": 0.8154 }, { "start": 1836.84, "end": 1837.04, "probability": 0.8203 }, { "start": 1837.1, "end": 1839.06, "probability": 0.9694 }, { "start": 1839.72, "end": 1840.96, "probability": 0.9637 }, { "start": 1841.18, "end": 1844.66, "probability": 0.9018 }, { "start": 1845.44, "end": 1849.5, "probability": 0.9894 }, { "start": 1850.22, "end": 1850.56, "probability": 0.5347 }, { "start": 1851.02, "end": 1854.94, "probability": 0.9944 }, { "start": 1856.0, "end": 1862.82, "probability": 0.9662 }, { "start": 1862.82, "end": 1867.08, "probability": 0.9989 }, { "start": 1867.18, "end": 1868.79, "probability": 0.9135 }, { "start": 1869.92, "end": 1872.58, "probability": 0.9978 }, { "start": 1872.58, "end": 1875.68, "probability": 0.9871 }, { "start": 1877.48, "end": 1882.3, "probability": 0.9294 }, { "start": 1882.88, "end": 1885.32, "probability": 0.9564 }, { "start": 1886.58, "end": 1888.43, "probability": 0.7867 }, { "start": 1889.22, "end": 1891.1, "probability": 0.8691 }, { "start": 1892.86, "end": 1897.16, "probability": 0.9872 }, { "start": 1897.66, "end": 1900.58, "probability": 0.9465 }, { "start": 1900.9, "end": 1902.72, "probability": 0.9961 }, { "start": 1903.6, "end": 1904.08, "probability": 0.3933 }, { "start": 1904.72, "end": 1907.4, "probability": 0.9652 }, { "start": 1907.48, "end": 1910.2, "probability": 0.9622 }, { "start": 1910.76, "end": 1912.76, "probability": 0.9961 }, { "start": 1913.06, "end": 1914.44, "probability": 0.8629 }, { "start": 1914.74, "end": 1916.92, "probability": 0.8536 }, { "start": 1917.34, "end": 1918.4, "probability": 0.8242 }, { "start": 1918.8, "end": 1922.66, "probability": 0.9872 }, { "start": 1923.14, "end": 1927.28, "probability": 0.9978 }, { "start": 1927.5, "end": 1930.2, "probability": 0.929 }, { "start": 1930.34, "end": 1932.06, "probability": 0.9959 }, { "start": 1932.88, "end": 1933.18, "probability": 0.6449 }, { "start": 1933.72, "end": 1934.36, "probability": 0.8324 }, { "start": 1934.9, "end": 1937.36, "probability": 0.9044 }, { "start": 1937.82, "end": 1937.98, "probability": 0.7945 }, { "start": 1938.34, "end": 1942.86, "probability": 0.9854 }, { "start": 1943.58, "end": 1946.91, "probability": 0.9696 }, { "start": 1947.76, "end": 1953.02, "probability": 0.9476 }, { "start": 1954.09, "end": 1961.24, "probability": 0.8665 }, { "start": 1961.54, "end": 1962.08, "probability": 0.6266 }, { "start": 1962.28, "end": 1962.73, "probability": 0.5495 }, { "start": 1963.68, "end": 1965.12, "probability": 0.8965 }, { "start": 1965.76, "end": 1968.8, "probability": 0.9971 }, { "start": 1969.6, "end": 1973.28, "probability": 0.9258 }, { "start": 1974.42, "end": 1978.86, "probability": 0.9928 }, { "start": 1978.9, "end": 1981.82, "probability": 0.9971 }, { "start": 1982.36, "end": 1985.66, "probability": 0.9904 }, { "start": 1985.66, "end": 1990.98, "probability": 0.8549 }, { "start": 1991.02, "end": 1992.46, "probability": 0.8179 }, { "start": 1993.42, "end": 1998.9, "probability": 0.9531 }, { "start": 2000.12, "end": 2001.18, "probability": 0.8972 }, { "start": 2001.86, "end": 2003.02, "probability": 0.9829 }, { "start": 2003.72, "end": 2006.36, "probability": 0.9907 }, { "start": 2007.18, "end": 2012.04, "probability": 0.9937 }, { "start": 2012.48, "end": 2014.72, "probability": 0.9983 }, { "start": 2015.28, "end": 2018.1, "probability": 0.9755 }, { "start": 2018.1, "end": 2022.54, "probability": 0.9851 }, { "start": 2022.98, "end": 2025.44, "probability": 0.9181 }, { "start": 2026.14, "end": 2027.06, "probability": 0.5811 }, { "start": 2027.66, "end": 2029.04, "probability": 0.9281 }, { "start": 2029.26, "end": 2030.16, "probability": 0.9592 }, { "start": 2030.44, "end": 2032.68, "probability": 0.9135 }, { "start": 2033.22, "end": 2035.8, "probability": 0.9858 }, { "start": 2037.42, "end": 2037.94, "probability": 0.4338 }, { "start": 2040.2, "end": 2046.5, "probability": 0.9339 }, { "start": 2047.84, "end": 2048.5, "probability": 0.6893 }, { "start": 2049.26, "end": 2052.56, "probability": 0.985 }, { "start": 2053.12, "end": 2053.48, "probability": 0.6212 }, { "start": 2053.52, "end": 2056.18, "probability": 0.709 }, { "start": 2057.04, "end": 2057.94, "probability": 0.9033 }, { "start": 2058.98, "end": 2061.44, "probability": 0.9824 }, { "start": 2061.54, "end": 2061.9, "probability": 0.9316 }, { "start": 2062.0, "end": 2062.52, "probability": 0.8525 }, { "start": 2063.54, "end": 2065.8, "probability": 0.9917 }, { "start": 2066.0, "end": 2068.04, "probability": 0.9907 }, { "start": 2068.48, "end": 2068.64, "probability": 0.3605 }, { "start": 2069.98, "end": 2075.02, "probability": 0.9584 }, { "start": 2075.74, "end": 2077.9, "probability": 0.9397 }, { "start": 2078.78, "end": 2080.63, "probability": 0.7903 }, { "start": 2081.48, "end": 2084.04, "probability": 0.8486 }, { "start": 2084.1, "end": 2084.42, "probability": 0.9276 }, { "start": 2084.5, "end": 2085.14, "probability": 0.9407 }, { "start": 2085.2, "end": 2085.46, "probability": 0.8552 }, { "start": 2085.54, "end": 2087.6, "probability": 0.9661 }, { "start": 2087.76, "end": 2088.76, "probability": 0.973 }, { "start": 2089.26, "end": 2091.4, "probability": 0.9838 }, { "start": 2092.04, "end": 2094.38, "probability": 0.9919 }, { "start": 2094.44, "end": 2096.0, "probability": 0.9574 }, { "start": 2096.08, "end": 2098.72, "probability": 0.9798 }, { "start": 2099.76, "end": 2105.04, "probability": 0.9757 }, { "start": 2105.92, "end": 2108.88, "probability": 0.8043 }, { "start": 2109.04, "end": 2110.22, "probability": 0.9201 }, { "start": 2110.34, "end": 2111.4, "probability": 0.9455 }, { "start": 2111.96, "end": 2112.7, "probability": 0.3458 }, { "start": 2112.86, "end": 2114.92, "probability": 0.9826 }, { "start": 2115.84, "end": 2115.84, "probability": 0.5733 }, { "start": 2116.22, "end": 2121.16, "probability": 0.7871 }, { "start": 2121.76, "end": 2123.04, "probability": 0.6967 }, { "start": 2123.7, "end": 2126.6, "probability": 0.9727 }, { "start": 2126.6, "end": 2131.24, "probability": 0.911 }, { "start": 2131.32, "end": 2133.16, "probability": 0.7555 }, { "start": 2133.2, "end": 2134.78, "probability": 0.9538 }, { "start": 2134.96, "end": 2135.5, "probability": 0.8146 }, { "start": 2135.88, "end": 2137.5, "probability": 0.8754 }, { "start": 2137.66, "end": 2139.2, "probability": 0.977 }, { "start": 2139.2, "end": 2139.32, "probability": 0.8518 }, { "start": 2139.7, "end": 2141.22, "probability": 0.7424 }, { "start": 2141.82, "end": 2142.78, "probability": 0.9265 }, { "start": 2142.94, "end": 2144.72, "probability": 0.9713 }, { "start": 2144.96, "end": 2145.0, "probability": 0.177 }, { "start": 2145.08, "end": 2145.08, "probability": 0.4975 }, { "start": 2145.08, "end": 2146.48, "probability": 0.7034 }, { "start": 2146.56, "end": 2147.66, "probability": 0.5253 }, { "start": 2147.86, "end": 2150.08, "probability": 0.8312 }, { "start": 2150.82, "end": 2153.04, "probability": 0.9338 }, { "start": 2154.08, "end": 2156.3, "probability": 0.8199 }, { "start": 2156.86, "end": 2157.7, "probability": 0.9572 }, { "start": 2158.76, "end": 2159.78, "probability": 0.9968 }, { "start": 2160.84, "end": 2161.3, "probability": 0.9989 }, { "start": 2161.38, "end": 2162.58, "probability": 0.8873 }, { "start": 2162.76, "end": 2164.06, "probability": 0.9976 }, { "start": 2164.66, "end": 2165.5, "probability": 0.9413 }, { "start": 2166.18, "end": 2167.86, "probability": 0.9308 }, { "start": 2168.02, "end": 2169.0, "probability": 0.9951 }, { "start": 2169.28, "end": 2170.92, "probability": 0.8248 }, { "start": 2171.22, "end": 2173.58, "probability": 0.8552 }, { "start": 2174.52, "end": 2177.76, "probability": 0.8633 }, { "start": 2178.34, "end": 2180.58, "probability": 0.9442 }, { "start": 2180.66, "end": 2181.76, "probability": 0.9356 }, { "start": 2182.4, "end": 2184.1, "probability": 0.9819 }, { "start": 2185.26, "end": 2189.28, "probability": 0.9898 }, { "start": 2189.44, "end": 2190.42, "probability": 0.8972 }, { "start": 2191.06, "end": 2192.48, "probability": 0.4229 }, { "start": 2192.62, "end": 2194.1, "probability": 0.7916 }, { "start": 2194.24, "end": 2196.36, "probability": 0.9948 }, { "start": 2197.28, "end": 2197.6, "probability": 0.7522 }, { "start": 2197.9, "end": 2198.06, "probability": 0.9887 }, { "start": 2198.14, "end": 2200.7, "probability": 0.9005 }, { "start": 2200.94, "end": 2203.2, "probability": 0.9165 }, { "start": 2203.48, "end": 2205.2, "probability": 0.9834 }, { "start": 2206.16, "end": 2207.28, "probability": 0.7171 }, { "start": 2208.06, "end": 2211.34, "probability": 0.1228 }, { "start": 2212.18, "end": 2212.46, "probability": 0.6144 }, { "start": 2213.04, "end": 2213.74, "probability": 0.5163 }, { "start": 2213.74, "end": 2214.23, "probability": 0.9412 }, { "start": 2215.52, "end": 2216.78, "probability": 0.9654 }, { "start": 2217.76, "end": 2219.82, "probability": 0.9364 }, { "start": 2220.0, "end": 2221.16, "probability": 0.6417 }, { "start": 2221.16, "end": 2221.82, "probability": 0.3026 }, { "start": 2224.07, "end": 2225.62, "probability": 0.991 }, { "start": 2226.16, "end": 2230.16, "probability": 0.9519 }, { "start": 2230.68, "end": 2232.96, "probability": 0.9751 }, { "start": 2233.46, "end": 2234.54, "probability": 0.9382 }, { "start": 2235.44, "end": 2236.02, "probability": 0.8923 }, { "start": 2237.08, "end": 2241.18, "probability": 0.9435 }, { "start": 2241.7, "end": 2243.84, "probability": 0.7185 }, { "start": 2243.9, "end": 2247.05, "probability": 0.7876 }, { "start": 2247.78, "end": 2248.5, "probability": 0.6245 }, { "start": 2249.12, "end": 2251.04, "probability": 0.9741 }, { "start": 2251.22, "end": 2252.26, "probability": 0.9812 }, { "start": 2252.32, "end": 2253.13, "probability": 0.8541 }, { "start": 2253.3, "end": 2255.8, "probability": 0.5863 }, { "start": 2255.8, "end": 2258.36, "probability": 0.9008 }, { "start": 2259.6, "end": 2262.33, "probability": 0.6094 }, { "start": 2262.4, "end": 2262.5, "probability": 0.9286 }, { "start": 2263.58, "end": 2265.42, "probability": 0.928 }, { "start": 2266.14, "end": 2268.94, "probability": 0.8285 }, { "start": 2270.64, "end": 2271.92, "probability": 0.9025 }, { "start": 2272.5, "end": 2274.6, "probability": 0.9562 }, { "start": 2275.48, "end": 2276.56, "probability": 0.67 }, { "start": 2277.68, "end": 2279.46, "probability": 0.9155 }, { "start": 2280.12, "end": 2283.98, "probability": 0.9166 }, { "start": 2284.24, "end": 2284.94, "probability": 0.816 }, { "start": 2286.16, "end": 2287.2, "probability": 0.9702 }, { "start": 2287.84, "end": 2289.78, "probability": 0.7386 }, { "start": 2292.4, "end": 2292.52, "probability": 0.0356 }, { "start": 2292.52, "end": 2292.52, "probability": 0.5263 }, { "start": 2292.52, "end": 2293.58, "probability": 0.4924 }, { "start": 2293.74, "end": 2294.4, "probability": 0.6476 }, { "start": 2294.5, "end": 2295.14, "probability": 0.5637 }, { "start": 2307.14, "end": 2307.49, "probability": 0.2232 }, { "start": 2307.78, "end": 2311.66, "probability": 0.9502 }, { "start": 2312.58, "end": 2317.58, "probability": 0.6056 }, { "start": 2319.96, "end": 2324.34, "probability": 0.9911 }, { "start": 2325.22, "end": 2327.32, "probability": 0.959 }, { "start": 2328.44, "end": 2329.22, "probability": 0.7365 }, { "start": 2329.94, "end": 2331.02, "probability": 0.9784 }, { "start": 2331.64, "end": 2332.78, "probability": 0.9653 }, { "start": 2333.52, "end": 2338.28, "probability": 0.9806 }, { "start": 2339.02, "end": 2341.38, "probability": 0.6035 }, { "start": 2342.3, "end": 2344.32, "probability": 0.8271 }, { "start": 2345.44, "end": 2348.4, "probability": 0.6725 }, { "start": 2350.2, "end": 2351.52, "probability": 0.9736 }, { "start": 2351.68, "end": 2352.78, "probability": 0.8521 }, { "start": 2353.22, "end": 2354.76, "probability": 0.9873 }, { "start": 2355.1, "end": 2355.56, "probability": 0.5007 }, { "start": 2355.68, "end": 2355.68, "probability": 0.2453 }, { "start": 2355.68, "end": 2356.74, "probability": 0.9757 }, { "start": 2357.02, "end": 2357.54, "probability": 0.8983 }, { "start": 2357.68, "end": 2358.3, "probability": 0.9059 }, { "start": 2358.32, "end": 2358.66, "probability": 0.9812 }, { "start": 2358.98, "end": 2363.6, "probability": 0.8739 }, { "start": 2364.1, "end": 2365.96, "probability": 0.9561 }, { "start": 2366.22, "end": 2366.88, "probability": 0.7314 }, { "start": 2367.16, "end": 2368.52, "probability": 0.5107 }, { "start": 2368.82, "end": 2369.96, "probability": 0.8445 }, { "start": 2370.26, "end": 2370.48, "probability": 0.7312 }, { "start": 2370.72, "end": 2372.1, "probability": 0.9561 }, { "start": 2372.48, "end": 2373.64, "probability": 0.8987 }, { "start": 2373.84, "end": 2373.84, "probability": 0.0391 }, { "start": 2375.0, "end": 2377.02, "probability": 0.938 }, { "start": 2377.1, "end": 2379.34, "probability": 0.9817 }, { "start": 2380.92, "end": 2382.98, "probability": 0.941 }, { "start": 2383.18, "end": 2386.34, "probability": 0.999 }, { "start": 2386.34, "end": 2388.22, "probability": 0.7616 }, { "start": 2388.98, "end": 2392.2, "probability": 0.6092 }, { "start": 2392.54, "end": 2394.52, "probability": 0.9125 }, { "start": 2395.04, "end": 2397.94, "probability": 0.9875 }, { "start": 2398.86, "end": 2402.26, "probability": 0.9912 }, { "start": 2402.26, "end": 2405.66, "probability": 0.9987 }, { "start": 2406.28, "end": 2407.2, "probability": 0.8991 }, { "start": 2407.28, "end": 2409.34, "probability": 0.9491 }, { "start": 2411.18, "end": 2411.86, "probability": 0.8715 }, { "start": 2411.98, "end": 2415.72, "probability": 0.9829 }, { "start": 2416.4, "end": 2417.62, "probability": 0.8273 }, { "start": 2418.2, "end": 2423.8, "probability": 0.902 }, { "start": 2424.76, "end": 2429.16, "probability": 0.6512 }, { "start": 2429.34, "end": 2430.64, "probability": 0.8192 }, { "start": 2431.36, "end": 2433.76, "probability": 0.9045 }, { "start": 2433.86, "end": 2434.32, "probability": 0.714 }, { "start": 2434.42, "end": 2436.52, "probability": 0.9347 }, { "start": 2437.64, "end": 2442.4, "probability": 0.9699 }, { "start": 2443.32, "end": 2450.62, "probability": 0.9312 }, { "start": 2450.8, "end": 2453.26, "probability": 0.9901 }, { "start": 2453.58, "end": 2454.08, "probability": 0.6345 }, { "start": 2454.68, "end": 2459.0, "probability": 0.5335 }, { "start": 2459.52, "end": 2463.26, "probability": 0.994 }, { "start": 2463.4, "end": 2465.32, "probability": 0.6227 }, { "start": 2465.42, "end": 2467.52, "probability": 0.9232 }, { "start": 2467.7, "end": 2467.7, "probability": 0.5288 }, { "start": 2468.46, "end": 2472.14, "probability": 0.92 }, { "start": 2473.26, "end": 2477.58, "probability": 0.9833 }, { "start": 2478.4, "end": 2482.3, "probability": 0.9874 }, { "start": 2483.12, "end": 2483.12, "probability": 0.5094 }, { "start": 2483.12, "end": 2484.84, "probability": 0.7782 }, { "start": 2485.54, "end": 2489.78, "probability": 0.8818 }, { "start": 2494.86, "end": 2495.66, "probability": 0.2798 }, { "start": 2496.48, "end": 2500.56, "probability": 0.6567 }, { "start": 2500.56, "end": 2504.22, "probability": 0.9909 }, { "start": 2504.86, "end": 2506.23, "probability": 0.9973 }, { "start": 2507.0, "end": 2508.98, "probability": 0.8614 }, { "start": 2510.78, "end": 2512.84, "probability": 0.4454 }, { "start": 2516.97, "end": 2519.53, "probability": 0.9919 }, { "start": 2521.54, "end": 2523.05, "probability": 0.992 }, { "start": 2524.16, "end": 2526.8, "probability": 0.9502 }, { "start": 2528.56, "end": 2530.6, "probability": 0.9482 }, { "start": 2531.62, "end": 2536.08, "probability": 0.9751 }, { "start": 2536.82, "end": 2539.56, "probability": 0.6621 }, { "start": 2539.72, "end": 2542.1, "probability": 0.973 }, { "start": 2542.1, "end": 2545.26, "probability": 0.991 }, { "start": 2545.9, "end": 2546.97, "probability": 0.9888 }, { "start": 2548.04, "end": 2551.74, "probability": 0.9977 }, { "start": 2552.88, "end": 2556.92, "probability": 0.7712 }, { "start": 2556.98, "end": 2559.52, "probability": 0.9924 }, { "start": 2560.52, "end": 2563.62, "probability": 0.9686 }, { "start": 2564.22, "end": 2566.76, "probability": 0.9868 }, { "start": 2567.64, "end": 2570.08, "probability": 0.7607 }, { "start": 2570.28, "end": 2571.1, "probability": 0.6094 }, { "start": 2571.24, "end": 2575.08, "probability": 0.967 }, { "start": 2576.0, "end": 2579.22, "probability": 0.9187 }, { "start": 2579.44, "end": 2579.76, "probability": 0.8899 }, { "start": 2580.14, "end": 2581.0, "probability": 0.5103 }, { "start": 2581.68, "end": 2584.78, "probability": 0.9912 }, { "start": 2584.78, "end": 2589.02, "probability": 0.9979 }, { "start": 2589.5, "end": 2589.6, "probability": 0.6042 }, { "start": 2590.14, "end": 2592.52, "probability": 0.9895 }, { "start": 2592.52, "end": 2594.78, "probability": 0.8931 }, { "start": 2594.9, "end": 2595.2, "probability": 0.6355 }, { "start": 2595.68, "end": 2598.48, "probability": 0.986 }, { "start": 2598.62, "end": 2599.06, "probability": 0.8227 }, { "start": 2599.16, "end": 2599.66, "probability": 0.7663 }, { "start": 2600.26, "end": 2600.94, "probability": 0.6933 }, { "start": 2601.68, "end": 2606.08, "probability": 0.9956 }, { "start": 2606.24, "end": 2607.3, "probability": 0.8539 }, { "start": 2607.8, "end": 2608.56, "probability": 0.7339 }, { "start": 2621.85, "end": 2625.56, "probability": 0.3586 }, { "start": 2625.56, "end": 2625.56, "probability": 0.177 }, { "start": 2625.56, "end": 2625.56, "probability": 0.3479 }, { "start": 2625.56, "end": 2626.86, "probability": 0.0329 }, { "start": 2628.4, "end": 2631.8, "probability": 0.7889 }, { "start": 2632.82, "end": 2635.36, "probability": 0.9813 }, { "start": 2635.36, "end": 2641.18, "probability": 0.9928 }, { "start": 2641.44, "end": 2642.82, "probability": 0.9578 }, { "start": 2643.64, "end": 2644.5, "probability": 0.7949 }, { "start": 2646.39, "end": 2650.39, "probability": 0.9866 }, { "start": 2650.82, "end": 2651.99, "probability": 0.8994 }, { "start": 2652.08, "end": 2653.98, "probability": 0.9351 }, { "start": 2654.26, "end": 2654.92, "probability": 0.753 }, { "start": 2656.46, "end": 2659.42, "probability": 0.9484 }, { "start": 2660.32, "end": 2665.32, "probability": 0.9832 }, { "start": 2665.58, "end": 2666.85, "probability": 0.8706 }, { "start": 2667.0, "end": 2668.02, "probability": 0.9985 }, { "start": 2669.0, "end": 2671.58, "probability": 0.9927 }, { "start": 2672.3, "end": 2673.44, "probability": 0.4986 }, { "start": 2675.28, "end": 2675.54, "probability": 0.7863 }, { "start": 2678.4, "end": 2679.48, "probability": 0.5586 }, { "start": 2679.6, "end": 2679.7, "probability": 0.1713 }, { "start": 2679.78, "end": 2680.78, "probability": 0.6783 }, { "start": 2681.44, "end": 2683.28, "probability": 0.4752 }, { "start": 2684.0, "end": 2685.32, "probability": 0.8602 }, { "start": 2686.24, "end": 2690.76, "probability": 0.8817 }, { "start": 2691.18, "end": 2692.66, "probability": 0.7105 }, { "start": 2692.74, "end": 2693.76, "probability": 0.5436 }, { "start": 2693.84, "end": 2696.4, "probability": 0.6173 }, { "start": 2697.08, "end": 2698.56, "probability": 0.6947 }, { "start": 2699.32, "end": 2705.34, "probability": 0.9771 }, { "start": 2706.22, "end": 2709.86, "probability": 0.876 }, { "start": 2710.22, "end": 2711.78, "probability": 0.7266 }, { "start": 2713.14, "end": 2713.24, "probability": 0.1628 }, { "start": 2713.6, "end": 2714.6, "probability": 0.6785 }, { "start": 2714.62, "end": 2716.28, "probability": 0.8157 }, { "start": 2716.92, "end": 2717.46, "probability": 0.6011 }, { "start": 2718.62, "end": 2720.22, "probability": 0.9644 }, { "start": 2720.9, "end": 2725.64, "probability": 0.8594 }, { "start": 2725.8, "end": 2725.98, "probability": 0.3472 }, { "start": 2726.1, "end": 2726.66, "probability": 0.7979 }, { "start": 2727.1, "end": 2728.46, "probability": 0.7379 }, { "start": 2728.5, "end": 2729.66, "probability": 0.9749 }, { "start": 2730.46, "end": 2731.0, "probability": 0.9054 }, { "start": 2731.6, "end": 2733.5, "probability": 0.9922 }, { "start": 2734.34, "end": 2738.34, "probability": 0.8997 }, { "start": 2738.68, "end": 2739.27, "probability": 0.9854 }, { "start": 2739.72, "end": 2741.5, "probability": 0.7352 }, { "start": 2742.0, "end": 2744.0, "probability": 0.9734 }, { "start": 2744.12, "end": 2744.87, "probability": 0.944 }, { "start": 2745.7, "end": 2747.36, "probability": 0.9247 }, { "start": 2748.0, "end": 2751.22, "probability": 0.9001 }, { "start": 2752.16, "end": 2755.32, "probability": 0.8009 }, { "start": 2755.44, "end": 2756.98, "probability": 0.8474 }, { "start": 2757.7, "end": 2759.54, "probability": 0.9722 }, { "start": 2760.26, "end": 2765.42, "probability": 0.9125 }, { "start": 2765.98, "end": 2771.38, "probability": 0.8458 }, { "start": 2771.62, "end": 2772.88, "probability": 0.9724 }, { "start": 2773.4, "end": 2775.32, "probability": 0.9873 }, { "start": 2776.02, "end": 2777.68, "probability": 0.9976 }, { "start": 2778.28, "end": 2779.68, "probability": 0.9881 }, { "start": 2780.44, "end": 2782.76, "probability": 0.9456 }, { "start": 2783.36, "end": 2784.68, "probability": 0.9543 }, { "start": 2785.14, "end": 2787.26, "probability": 0.9827 }, { "start": 2787.56, "end": 2788.36, "probability": 0.9757 }, { "start": 2789.38, "end": 2789.78, "probability": 0.4751 }, { "start": 2790.0, "end": 2794.28, "probability": 0.9142 }, { "start": 2794.54, "end": 2795.52, "probability": 0.9992 }, { "start": 2796.12, "end": 2798.84, "probability": 0.9913 }, { "start": 2800.44, "end": 2801.73, "probability": 0.5021 }, { "start": 2804.78, "end": 2808.36, "probability": 0.8564 }, { "start": 2808.94, "end": 2813.64, "probability": 0.8518 }, { "start": 2814.62, "end": 2815.74, "probability": 0.7822 }, { "start": 2816.02, "end": 2818.6, "probability": 0.767 }, { "start": 2818.84, "end": 2819.22, "probability": 0.2995 }, { "start": 2819.32, "end": 2820.84, "probability": 0.9714 }, { "start": 2820.94, "end": 2823.86, "probability": 0.9868 }, { "start": 2824.5, "end": 2828.24, "probability": 0.9385 }, { "start": 2828.24, "end": 2829.3, "probability": 0.6465 }, { "start": 2829.34, "end": 2830.04, "probability": 0.897 }, { "start": 2830.44, "end": 2831.2, "probability": 0.3229 }, { "start": 2831.38, "end": 2834.22, "probability": 0.9416 }, { "start": 2834.32, "end": 2836.4, "probability": 0.8582 }, { "start": 2836.66, "end": 2837.2, "probability": 0.8504 }, { "start": 2837.32, "end": 2838.1, "probability": 0.8798 }, { "start": 2838.34, "end": 2839.94, "probability": 0.9937 }, { "start": 2840.0, "end": 2844.8, "probability": 0.8257 }, { "start": 2845.7, "end": 2846.08, "probability": 0.2994 }, { "start": 2846.22, "end": 2846.58, "probability": 0.7244 }, { "start": 2846.66, "end": 2847.2, "probability": 0.5625 }, { "start": 2847.52, "end": 2852.89, "probability": 0.8223 }, { "start": 2852.92, "end": 2855.48, "probability": 0.9878 }, { "start": 2856.52, "end": 2862.78, "probability": 0.9197 }, { "start": 2863.96, "end": 2869.39, "probability": 0.9973 }, { "start": 2869.62, "end": 2870.46, "probability": 0.4039 }, { "start": 2870.6, "end": 2871.06, "probability": 0.7662 }, { "start": 2871.14, "end": 2871.16, "probability": 0.0133 }, { "start": 2871.16, "end": 2871.66, "probability": 0.6791 }, { "start": 2871.66, "end": 2873.52, "probability": 0.9203 }, { "start": 2873.78, "end": 2874.36, "probability": 0.5103 }, { "start": 2874.44, "end": 2875.66, "probability": 0.9486 }, { "start": 2875.8, "end": 2878.74, "probability": 0.8647 }, { "start": 2878.74, "end": 2878.74, "probability": 0.1076 }, { "start": 2878.74, "end": 2878.74, "probability": 0.0194 }, { "start": 2878.74, "end": 2883.58, "probability": 0.4866 }, { "start": 2884.48, "end": 2886.42, "probability": 0.595 }, { "start": 2886.48, "end": 2888.12, "probability": 0.9908 }, { "start": 2888.32, "end": 2889.8, "probability": 0.5686 }, { "start": 2889.9, "end": 2892.44, "probability": 0.6603 }, { "start": 2892.72, "end": 2892.8, "probability": 0.467 }, { "start": 2892.92, "end": 2893.16, "probability": 0.4262 }, { "start": 2893.22, "end": 2895.56, "probability": 0.9291 }, { "start": 2896.62, "end": 2898.8, "probability": 0.9502 }, { "start": 2898.82, "end": 2900.41, "probability": 0.9827 }, { "start": 2900.98, "end": 2904.2, "probability": 0.9428 }, { "start": 2904.58, "end": 2907.96, "probability": 0.9924 }, { "start": 2908.1, "end": 2910.08, "probability": 0.6346 }, { "start": 2910.2, "end": 2911.52, "probability": 0.9941 }, { "start": 2911.54, "end": 2912.76, "probability": 0.7859 }, { "start": 2913.06, "end": 2914.04, "probability": 0.0085 }, { "start": 2914.04, "end": 2916.54, "probability": 0.5301 }, { "start": 2917.36, "end": 2918.78, "probability": 0.1606 }, { "start": 2918.78, "end": 2921.1, "probability": 0.8057 }, { "start": 2921.54, "end": 2925.54, "probability": 0.9657 }, { "start": 2925.94, "end": 2930.34, "probability": 0.9469 }, { "start": 2931.5, "end": 2934.16, "probability": 0.43 }, { "start": 2934.16, "end": 2940.52, "probability": 0.9946 }, { "start": 2941.08, "end": 2943.66, "probability": 0.9911 }, { "start": 2943.84, "end": 2944.3, "probability": 0.7471 }, { "start": 2944.48, "end": 2944.88, "probability": 0.6231 }, { "start": 2944.98, "end": 2945.18, "probability": 0.5361 }, { "start": 2946.3, "end": 2947.38, "probability": 0.8654 }, { "start": 2948.06, "end": 2948.4, "probability": 0.8501 }, { "start": 2949.98, "end": 2951.86, "probability": 0.9772 }, { "start": 2952.56, "end": 2953.4, "probability": 0.7731 }, { "start": 2954.1, "end": 2956.86, "probability": 0.9706 }, { "start": 2956.98, "end": 2959.3, "probability": 0.9518 }, { "start": 2959.7, "end": 2961.56, "probability": 0.999 }, { "start": 2962.26, "end": 2964.6, "probability": 0.9804 }, { "start": 2965.28, "end": 2966.92, "probability": 0.9338 }, { "start": 2967.2, "end": 2968.48, "probability": 0.9561 }, { "start": 2968.6, "end": 2969.1, "probability": 0.775 }, { "start": 2969.28, "end": 2974.12, "probability": 0.9805 }, { "start": 2974.96, "end": 2975.52, "probability": 0.9379 }, { "start": 2975.68, "end": 2981.24, "probability": 0.929 }, { "start": 2981.84, "end": 2986.44, "probability": 0.836 }, { "start": 2986.94, "end": 2988.78, "probability": 0.9945 }, { "start": 2989.34, "end": 2993.72, "probability": 0.665 }, { "start": 2994.4, "end": 2997.14, "probability": 0.501 }, { "start": 2997.26, "end": 3002.86, "probability": 0.9598 }, { "start": 3002.94, "end": 3003.98, "probability": 0.9928 }, { "start": 3004.14, "end": 3009.08, "probability": 0.7956 }, { "start": 3009.22, "end": 3010.7, "probability": 0.9965 }, { "start": 3011.7, "end": 3012.88, "probability": 0.4168 }, { "start": 3013.42, "end": 3015.72, "probability": 0.4778 }, { "start": 3016.26, "end": 3018.2, "probability": 0.7897 }, { "start": 3018.88, "end": 3021.0, "probability": 0.925 }, { "start": 3021.82, "end": 3024.86, "probability": 0.8631 }, { "start": 3025.98, "end": 3030.54, "probability": 0.9915 }, { "start": 3031.22, "end": 3031.68, "probability": 0.5676 }, { "start": 3031.96, "end": 3032.32, "probability": 0.7867 }, { "start": 3032.44, "end": 3032.68, "probability": 0.567 }, { "start": 3033.52, "end": 3033.7, "probability": 0.3951 }, { "start": 3033.7, "end": 3034.28, "probability": 0.5048 }, { "start": 3034.34, "end": 3037.38, "probability": 0.9614 }, { "start": 3043.42, "end": 3043.86, "probability": 0.2485 }, { "start": 3043.86, "end": 3043.96, "probability": 0.5597 }, { "start": 3044.54, "end": 3045.9, "probability": 0.7357 }, { "start": 3046.96, "end": 3047.04, "probability": 0.4043 }, { "start": 3047.04, "end": 3047.82, "probability": 0.9559 }, { "start": 3053.54, "end": 3055.42, "probability": 0.8445 }, { "start": 3057.01, "end": 3060.22, "probability": 0.9439 }, { "start": 3060.22, "end": 3064.76, "probability": 0.8907 }, { "start": 3065.92, "end": 3069.38, "probability": 0.6218 }, { "start": 3070.84, "end": 3071.32, "probability": 0.6345 }, { "start": 3071.4, "end": 3078.12, "probability": 0.9933 }, { "start": 3078.7, "end": 3081.32, "probability": 0.9224 }, { "start": 3082.54, "end": 3083.06, "probability": 0.731 }, { "start": 3083.3, "end": 3086.02, "probability": 0.7676 }, { "start": 3086.32, "end": 3087.76, "probability": 0.6961 }, { "start": 3088.36, "end": 3092.54, "probability": 0.9753 }, { "start": 3097.36, "end": 3098.32, "probability": 0.575 }, { "start": 3099.64, "end": 3100.68, "probability": 0.9507 }, { "start": 3102.49, "end": 3107.86, "probability": 0.9977 }, { "start": 3109.1, "end": 3112.18, "probability": 0.9923 }, { "start": 3112.7, "end": 3114.48, "probability": 0.9977 }, { "start": 3115.32, "end": 3118.56, "probability": 0.9954 }, { "start": 3120.06, "end": 3121.62, "probability": 0.9986 }, { "start": 3122.26, "end": 3125.84, "probability": 0.9986 }, { "start": 3127.12, "end": 3127.96, "probability": 0.7798 }, { "start": 3128.56, "end": 3130.18, "probability": 0.9982 }, { "start": 3130.92, "end": 3134.4, "probability": 0.9878 }, { "start": 3136.38, "end": 3139.24, "probability": 0.8569 }, { "start": 3140.08, "end": 3143.74, "probability": 0.9992 }, { "start": 3143.74, "end": 3147.08, "probability": 0.998 }, { "start": 3147.76, "end": 3148.68, "probability": 0.9155 }, { "start": 3149.46, "end": 3152.24, "probability": 0.991 }, { "start": 3153.04, "end": 3154.44, "probability": 0.9828 }, { "start": 3155.32, "end": 3158.4, "probability": 0.9978 }, { "start": 3159.36, "end": 3160.4, "probability": 0.9159 }, { "start": 3160.98, "end": 3164.86, "probability": 0.9978 }, { "start": 3164.86, "end": 3167.84, "probability": 0.994 }, { "start": 3168.38, "end": 3169.58, "probability": 0.7441 }, { "start": 3170.16, "end": 3175.92, "probability": 0.948 }, { "start": 3177.22, "end": 3178.0, "probability": 0.74 }, { "start": 3178.56, "end": 3183.81, "probability": 0.9918 }, { "start": 3184.64, "end": 3185.62, "probability": 0.802 }, { "start": 3189.24, "end": 3192.72, "probability": 0.9853 }, { "start": 3194.02, "end": 3196.37, "probability": 0.9993 }, { "start": 3197.36, "end": 3202.72, "probability": 0.9683 }, { "start": 3205.56, "end": 3206.04, "probability": 0.87 }, { "start": 3206.7, "end": 3210.38, "probability": 0.9139 }, { "start": 3210.54, "end": 3213.5, "probability": 0.6835 }, { "start": 3215.22, "end": 3216.94, "probability": 0.9898 }, { "start": 3217.46, "end": 3218.38, "probability": 0.7397 }, { "start": 3218.52, "end": 3231.96, "probability": 0.9409 }, { "start": 3235.14, "end": 3237.16, "probability": 0.7113 }, { "start": 3239.14, "end": 3242.34, "probability": 0.9834 }, { "start": 3243.14, "end": 3244.06, "probability": 0.4766 }, { "start": 3244.78, "end": 3248.92, "probability": 0.806 }, { "start": 3249.66, "end": 3252.72, "probability": 0.9795 }, { "start": 3253.26, "end": 3254.04, "probability": 0.9717 }, { "start": 3255.92, "end": 3260.12, "probability": 0.9379 }, { "start": 3264.34, "end": 3268.32, "probability": 0.983 }, { "start": 3268.34, "end": 3269.92, "probability": 0.9949 }, { "start": 3271.14, "end": 3272.86, "probability": 0.9956 }, { "start": 3273.82, "end": 3278.56, "probability": 0.9962 }, { "start": 3278.72, "end": 3283.88, "probability": 0.9975 }, { "start": 3284.74, "end": 3287.84, "probability": 0.9976 }, { "start": 3288.68, "end": 3289.04, "probability": 0.688 }, { "start": 3289.74, "end": 3292.74, "probability": 0.9746 }, { "start": 3293.26, "end": 3295.04, "probability": 0.9975 }, { "start": 3295.46, "end": 3299.96, "probability": 0.9744 }, { "start": 3299.96, "end": 3304.4, "probability": 0.9896 }, { "start": 3306.24, "end": 3307.24, "probability": 0.8078 }, { "start": 3307.4, "end": 3308.42, "probability": 0.9954 }, { "start": 3308.52, "end": 3309.76, "probability": 0.9011 }, { "start": 3310.38, "end": 3313.3, "probability": 0.9979 }, { "start": 3313.98, "end": 3316.98, "probability": 0.9951 }, { "start": 3317.54, "end": 3320.44, "probability": 0.9902 }, { "start": 3321.28, "end": 3324.14, "probability": 0.9959 }, { "start": 3324.14, "end": 3327.88, "probability": 0.9938 }, { "start": 3329.96, "end": 3333.82, "probability": 0.998 }, { "start": 3333.82, "end": 3337.38, "probability": 0.9956 }, { "start": 3337.66, "end": 3347.36, "probability": 0.9857 }, { "start": 3348.72, "end": 3350.28, "probability": 0.999 }, { "start": 3351.3, "end": 3352.78, "probability": 0.7551 }, { "start": 3353.32, "end": 3357.5, "probability": 0.9044 }, { "start": 3357.5, "end": 3361.64, "probability": 0.9891 }, { "start": 3362.66, "end": 3363.36, "probability": 0.619 }, { "start": 3363.64, "end": 3366.56, "probability": 0.9978 }, { "start": 3366.66, "end": 3367.8, "probability": 0.9939 }, { "start": 3369.06, "end": 3372.04, "probability": 0.9434 }, { "start": 3372.98, "end": 3373.04, "probability": 0.5352 }, { "start": 3373.62, "end": 3374.34, "probability": 0.8789 }, { "start": 3375.44, "end": 3378.5, "probability": 0.9878 }, { "start": 3379.02, "end": 3380.84, "probability": 0.9955 }, { "start": 3381.38, "end": 3383.98, "probability": 0.9937 }, { "start": 3383.98, "end": 3387.6, "probability": 0.9966 }, { "start": 3389.3, "end": 3392.8, "probability": 0.7923 }, { "start": 3393.64, "end": 3394.78, "probability": 0.9589 }, { "start": 3394.98, "end": 3396.76, "probability": 0.8653 }, { "start": 3396.98, "end": 3399.36, "probability": 0.8544 }, { "start": 3400.42, "end": 3403.98, "probability": 0.9954 }, { "start": 3404.56, "end": 3407.16, "probability": 0.9839 }, { "start": 3407.16, "end": 3409.98, "probability": 0.9947 }, { "start": 3410.82, "end": 3416.04, "probability": 0.9958 }, { "start": 3417.54, "end": 3419.5, "probability": 0.9937 }, { "start": 3420.12, "end": 3424.32, "probability": 0.9962 }, { "start": 3425.02, "end": 3429.94, "probability": 0.7795 }, { "start": 3430.06, "end": 3433.64, "probability": 0.9141 }, { "start": 3434.58, "end": 3435.88, "probability": 0.9629 }, { "start": 3436.0, "end": 3437.46, "probability": 0.952 }, { "start": 3437.6, "end": 3442.63, "probability": 0.9935 }, { "start": 3444.69, "end": 3450.44, "probability": 0.6942 }, { "start": 3450.6, "end": 3454.71, "probability": 0.858 }, { "start": 3455.6, "end": 3460.66, "probability": 0.995 }, { "start": 3460.66, "end": 3463.8, "probability": 0.9923 }, { "start": 3464.6, "end": 3465.98, "probability": 0.8317 }, { "start": 3466.56, "end": 3470.66, "probability": 0.9672 }, { "start": 3470.8, "end": 3475.68, "probability": 0.9736 }, { "start": 3476.36, "end": 3479.1, "probability": 0.5167 }, { "start": 3479.18, "end": 3480.16, "probability": 0.6472 }, { "start": 3480.6, "end": 3485.88, "probability": 0.8803 }, { "start": 3485.96, "end": 3488.14, "probability": 0.7407 }, { "start": 3488.26, "end": 3488.54, "probability": 0.4467 }, { "start": 3488.62, "end": 3491.92, "probability": 0.9985 }, { "start": 3492.58, "end": 3497.56, "probability": 0.9947 }, { "start": 3497.68, "end": 3499.49, "probability": 0.9956 }, { "start": 3500.28, "end": 3503.2, "probability": 0.998 }, { "start": 3503.44, "end": 3504.6, "probability": 0.96 }, { "start": 3504.64, "end": 3507.06, "probability": 0.795 }, { "start": 3507.06, "end": 3511.08, "probability": 0.9828 }, { "start": 3511.74, "end": 3516.0, "probability": 0.9682 }, { "start": 3516.48, "end": 3519.9, "probability": 0.8492 }, { "start": 3520.12, "end": 3520.92, "probability": 0.8142 }, { "start": 3521.48, "end": 3525.36, "probability": 0.9675 }, { "start": 3526.1, "end": 3527.74, "probability": 0.7399 }, { "start": 3527.98, "end": 3531.22, "probability": 0.6628 }, { "start": 3531.6, "end": 3534.7, "probability": 0.9856 }, { "start": 3535.32, "end": 3535.81, "probability": 0.7815 }, { "start": 3537.78, "end": 3539.14, "probability": 0.9807 }, { "start": 3539.34, "end": 3541.36, "probability": 0.9182 }, { "start": 3542.66, "end": 3544.0, "probability": 0.9558 }, { "start": 3544.12, "end": 3545.0, "probability": 0.7033 }, { "start": 3545.2, "end": 3545.4, "probability": 0.8743 }, { "start": 3545.5, "end": 3546.22, "probability": 0.7936 }, { "start": 3546.56, "end": 3548.98, "probability": 0.9984 }, { "start": 3549.76, "end": 3551.78, "probability": 0.894 }, { "start": 3551.94, "end": 3555.28, "probability": 0.9587 }, { "start": 3556.42, "end": 3559.98, "probability": 0.8451 }, { "start": 3560.54, "end": 3562.66, "probability": 0.9949 }, { "start": 3563.08, "end": 3563.6, "probability": 0.9958 }, { "start": 3564.12, "end": 3565.54, "probability": 0.9702 }, { "start": 3566.3, "end": 3569.0, "probability": 0.6892 }, { "start": 3570.06, "end": 3571.58, "probability": 0.9937 }, { "start": 3572.52, "end": 3575.2, "probability": 0.6349 }, { "start": 3578.49, "end": 3580.32, "probability": 0.8817 }, { "start": 3580.58, "end": 3581.63, "probability": 0.7712 }, { "start": 3582.6, "end": 3586.4, "probability": 0.9707 }, { "start": 3587.6, "end": 3594.4, "probability": 0.9907 }, { "start": 3594.66, "end": 3598.44, "probability": 0.9985 }, { "start": 3599.12, "end": 3601.45, "probability": 0.7046 }, { "start": 3602.74, "end": 3606.76, "probability": 0.9753 }, { "start": 3607.22, "end": 3608.58, "probability": 0.9591 }, { "start": 3608.78, "end": 3613.81, "probability": 0.9824 }, { "start": 3614.38, "end": 3617.48, "probability": 0.9939 }, { "start": 3618.38, "end": 3620.78, "probability": 0.9766 }, { "start": 3621.78, "end": 3623.8, "probability": 0.8187 }, { "start": 3624.78, "end": 3625.46, "probability": 0.8328 }, { "start": 3625.58, "end": 3629.69, "probability": 0.9932 }, { "start": 3629.82, "end": 3635.72, "probability": 0.9205 }, { "start": 3636.9, "end": 3639.22, "probability": 0.726 }, { "start": 3639.28, "end": 3644.54, "probability": 0.9956 }, { "start": 3644.76, "end": 3649.48, "probability": 0.9988 }, { "start": 3650.32, "end": 3652.26, "probability": 0.9972 }, { "start": 3654.0, "end": 3655.0, "probability": 0.6732 }, { "start": 3656.84, "end": 3658.3, "probability": 0.6438 }, { "start": 3658.46, "end": 3662.18, "probability": 0.9727 }, { "start": 3663.66, "end": 3668.6, "probability": 0.9337 }, { "start": 3668.94, "end": 3669.28, "probability": 0.7425 }, { "start": 3670.76, "end": 3674.58, "probability": 0.8844 }, { "start": 3684.3, "end": 3685.44, "probability": 0.758 }, { "start": 3699.56, "end": 3700.48, "probability": 0.6109 }, { "start": 3700.58, "end": 3701.28, "probability": 0.7863 }, { "start": 3701.56, "end": 3702.44, "probability": 0.8481 }, { "start": 3702.56, "end": 3703.74, "probability": 0.5197 }, { "start": 3704.62, "end": 3708.52, "probability": 0.8939 }, { "start": 3708.9, "end": 3711.24, "probability": 0.9869 }, { "start": 3711.34, "end": 3712.08, "probability": 0.796 }, { "start": 3712.22, "end": 3718.96, "probability": 0.9292 }, { "start": 3720.2, "end": 3722.48, "probability": 0.9934 }, { "start": 3725.37, "end": 3730.5, "probability": 0.4417 }, { "start": 3730.68, "end": 3733.18, "probability": 0.836 }, { "start": 3736.32, "end": 3738.82, "probability": 0.8934 }, { "start": 3739.16, "end": 3742.7, "probability": 0.9355 }, { "start": 3743.72, "end": 3748.98, "probability": 0.9335 }, { "start": 3750.74, "end": 3758.32, "probability": 0.9751 }, { "start": 3758.88, "end": 3763.08, "probability": 0.9851 }, { "start": 3763.08, "end": 3763.15, "probability": 0.8038 }, { "start": 3763.48, "end": 3765.5, "probability": 0.3888 }, { "start": 3765.56, "end": 3767.78, "probability": 0.9497 }, { "start": 3768.0, "end": 3770.7, "probability": 0.9578 }, { "start": 3771.44, "end": 3772.1, "probability": 0.7198 }, { "start": 3772.66, "end": 3772.86, "probability": 0.7465 }, { "start": 3773.1, "end": 3773.22, "probability": 0.4077 }, { "start": 3773.36, "end": 3774.72, "probability": 0.9865 }, { "start": 3774.84, "end": 3777.26, "probability": 0.8367 }, { "start": 3777.26, "end": 3777.26, "probability": 0.4677 }, { "start": 3777.26, "end": 3780.14, "probability": 0.9812 }, { "start": 3780.3, "end": 3783.08, "probability": 0.9454 }, { "start": 3783.24, "end": 3786.44, "probability": 0.983 }, { "start": 3786.56, "end": 3791.22, "probability": 0.6779 }, { "start": 3791.46, "end": 3794.5, "probability": 0.7056 }, { "start": 3794.52, "end": 3796.1, "probability": 0.7826 }, { "start": 3796.28, "end": 3796.56, "probability": 0.9162 }, { "start": 3798.02, "end": 3799.96, "probability": 0.6572 }, { "start": 3801.42, "end": 3804.66, "probability": 0.6685 }, { "start": 3804.74, "end": 3808.06, "probability": 0.9603 }, { "start": 3808.76, "end": 3811.12, "probability": 0.811 }, { "start": 3811.12, "end": 3813.8, "probability": 0.9756 }, { "start": 3814.38, "end": 3819.52, "probability": 0.9806 }, { "start": 3819.52, "end": 3821.64, "probability": 0.9236 }, { "start": 3824.14, "end": 3826.96, "probability": 0.7922 }, { "start": 3828.62, "end": 3830.26, "probability": 0.8902 }, { "start": 3830.56, "end": 3833.12, "probability": 0.9826 }, { "start": 3833.12, "end": 3839.56, "probability": 0.8388 }, { "start": 3840.8, "end": 3846.48, "probability": 0.951 }, { "start": 3846.66, "end": 3847.72, "probability": 0.7617 }, { "start": 3848.6, "end": 3850.66, "probability": 0.8248 }, { "start": 3852.32, "end": 3854.78, "probability": 0.8794 }, { "start": 3855.72, "end": 3859.5, "probability": 0.9955 }, { "start": 3861.22, "end": 3865.54, "probability": 0.9806 }, { "start": 3867.44, "end": 3868.52, "probability": 0.7214 }, { "start": 3868.64, "end": 3872.56, "probability": 0.9948 }, { "start": 3874.08, "end": 3875.08, "probability": 0.9637 }, { "start": 3876.2, "end": 3879.96, "probability": 0.9456 }, { "start": 3880.08, "end": 3884.3, "probability": 0.9878 }, { "start": 3885.2, "end": 3886.2, "probability": 0.9716 }, { "start": 3887.56, "end": 3893.08, "probability": 0.9933 }, { "start": 3893.08, "end": 3898.24, "probability": 0.9822 }, { "start": 3899.8, "end": 3903.64, "probability": 0.989 }, { "start": 3903.8, "end": 3904.38, "probability": 0.7781 }, { "start": 3904.68, "end": 3906.46, "probability": 0.8787 }, { "start": 3907.68, "end": 3908.94, "probability": 0.976 }, { "start": 3911.3, "end": 3914.16, "probability": 0.8694 }, { "start": 3916.28, "end": 3921.26, "probability": 0.993 }, { "start": 3921.8, "end": 3923.94, "probability": 0.9677 }, { "start": 3924.92, "end": 3929.34, "probability": 0.9255 }, { "start": 3930.62, "end": 3934.2, "probability": 0.9919 }, { "start": 3935.14, "end": 3940.02, "probability": 0.7967 }, { "start": 3943.1, "end": 3945.44, "probability": 0.6881 }, { "start": 3946.58, "end": 3953.0, "probability": 0.9945 }, { "start": 3953.36, "end": 3957.3, "probability": 0.9891 }, { "start": 3957.92, "end": 3962.46, "probability": 0.7576 }, { "start": 3962.46, "end": 3964.98, "probability": 0.992 }, { "start": 3966.25, "end": 3969.46, "probability": 0.9983 }, { "start": 3970.54, "end": 3971.38, "probability": 0.8693 }, { "start": 3971.9, "end": 3974.14, "probability": 0.9968 }, { "start": 3975.08, "end": 3977.08, "probability": 0.984 }, { "start": 3978.18, "end": 3980.14, "probability": 0.6212 }, { "start": 3980.72, "end": 3984.14, "probability": 0.9956 }, { "start": 3985.12, "end": 3988.32, "probability": 0.9512 }, { "start": 3989.3, "end": 3991.84, "probability": 0.5818 }, { "start": 3992.54, "end": 3996.96, "probability": 0.9931 }, { "start": 3998.0, "end": 3999.4, "probability": 0.8901 }, { "start": 4000.14, "end": 4000.86, "probability": 0.9709 }, { "start": 4002.18, "end": 4005.78, "probability": 0.9137 }, { "start": 4007.26, "end": 4009.34, "probability": 0.8944 }, { "start": 4009.84, "end": 4010.53, "probability": 0.9773 }, { "start": 4010.74, "end": 4012.76, "probability": 0.99 }, { "start": 4013.74, "end": 4018.32, "probability": 0.9645 }, { "start": 4019.62, "end": 4023.1, "probability": 0.9787 }, { "start": 4024.4, "end": 4027.98, "probability": 0.9784 }, { "start": 4029.64, "end": 4033.16, "probability": 0.9615 }, { "start": 4033.9, "end": 4038.28, "probability": 0.9456 }, { "start": 4039.4, "end": 4046.46, "probability": 0.9779 }, { "start": 4047.96, "end": 4048.54, "probability": 0.5929 }, { "start": 4049.14, "end": 4051.29, "probability": 0.9526 }, { "start": 4052.36, "end": 4054.28, "probability": 0.8865 }, { "start": 4055.36, "end": 4056.74, "probability": 0.5476 }, { "start": 4056.82, "end": 4059.94, "probability": 0.9852 }, { "start": 4061.46, "end": 4062.34, "probability": 0.8201 }, { "start": 4063.44, "end": 4064.54, "probability": 0.6728 }, { "start": 4065.78, "end": 4073.68, "probability": 0.9658 }, { "start": 4074.68, "end": 4077.48, "probability": 0.7927 }, { "start": 4078.32, "end": 4080.16, "probability": 0.9936 }, { "start": 4081.3, "end": 4083.2, "probability": 0.9555 }, { "start": 4084.98, "end": 4088.66, "probability": 0.8135 }, { "start": 4089.7, "end": 4093.44, "probability": 0.982 }, { "start": 4095.22, "end": 4096.96, "probability": 0.75 }, { "start": 4097.08, "end": 4099.82, "probability": 0.9969 }, { "start": 4102.38, "end": 4104.26, "probability": 0.9622 }, { "start": 4105.76, "end": 4109.64, "probability": 0.9689 }, { "start": 4111.44, "end": 4117.14, "probability": 0.9978 }, { "start": 4118.2, "end": 4119.78, "probability": 0.999 }, { "start": 4120.0, "end": 4121.8, "probability": 0.9401 }, { "start": 4123.92, "end": 4125.89, "probability": 0.9973 }, { "start": 4127.92, "end": 4130.48, "probability": 0.9639 }, { "start": 4131.06, "end": 4137.54, "probability": 0.9718 }, { "start": 4139.51, "end": 4145.22, "probability": 0.9408 }, { "start": 4146.22, "end": 4151.44, "probability": 0.9991 }, { "start": 4152.66, "end": 4153.26, "probability": 0.6496 }, { "start": 4153.56, "end": 4158.96, "probability": 0.9793 }, { "start": 4159.04, "end": 4162.18, "probability": 0.9358 }, { "start": 4162.3, "end": 4163.64, "probability": 0.76 }, { "start": 4163.8, "end": 4167.58, "probability": 0.7862 }, { "start": 4168.74, "end": 4173.3, "probability": 0.8296 }, { "start": 4174.32, "end": 4179.94, "probability": 0.9936 }, { "start": 4180.06, "end": 4181.1, "probability": 0.8859 }, { "start": 4181.44, "end": 4183.98, "probability": 0.9984 }, { "start": 4184.92, "end": 4190.54, "probability": 0.683 }, { "start": 4190.68, "end": 4194.52, "probability": 0.9864 }, { "start": 4195.36, "end": 4195.74, "probability": 0.0362 }, { "start": 4196.0, "end": 4200.16, "probability": 0.9988 }, { "start": 4200.22, "end": 4201.96, "probability": 0.3064 }, { "start": 4202.18, "end": 4208.44, "probability": 0.997 }, { "start": 4209.26, "end": 4209.92, "probability": 0.3683 }, { "start": 4210.6, "end": 4212.02, "probability": 0.946 }, { "start": 4212.16, "end": 4214.64, "probability": 0.904 }, { "start": 4216.0, "end": 4218.96, "probability": 0.9603 }, { "start": 4219.74, "end": 4223.66, "probability": 0.9908 }, { "start": 4225.08, "end": 4227.28, "probability": 0.9954 }, { "start": 4229.04, "end": 4232.1, "probability": 0.9233 }, { "start": 4232.94, "end": 4234.48, "probability": 0.9284 }, { "start": 4234.62, "end": 4236.64, "probability": 0.976 }, { "start": 4236.72, "end": 4238.12, "probability": 0.8374 }, { "start": 4238.4, "end": 4239.36, "probability": 0.9992 }, { "start": 4240.12, "end": 4243.26, "probability": 0.9961 }, { "start": 4243.62, "end": 4245.74, "probability": 0.9946 }, { "start": 4246.24, "end": 4249.78, "probability": 0.9886 }, { "start": 4249.94, "end": 4253.66, "probability": 0.5105 }, { "start": 4254.72, "end": 4258.08, "probability": 0.9533 }, { "start": 4259.08, "end": 4260.54, "probability": 0.8868 }, { "start": 4262.44, "end": 4265.9, "probability": 0.9979 }, { "start": 4267.02, "end": 4269.26, "probability": 0.9963 }, { "start": 4270.36, "end": 4272.06, "probability": 0.8006 }, { "start": 4272.96, "end": 4275.74, "probability": 0.9354 }, { "start": 4276.36, "end": 4280.36, "probability": 0.9513 }, { "start": 4280.36, "end": 4283.44, "probability": 0.998 }, { "start": 4283.44, "end": 4289.76, "probability": 0.9979 }, { "start": 4291.06, "end": 4292.76, "probability": 0.8793 }, { "start": 4294.24, "end": 4299.16, "probability": 0.957 }, { "start": 4302.58, "end": 4307.08, "probability": 0.9973 }, { "start": 4311.14, "end": 4312.2, "probability": 0.5319 }, { "start": 4313.62, "end": 4316.72, "probability": 0.9502 }, { "start": 4318.14, "end": 4320.84, "probability": 0.9887 }, { "start": 4321.1, "end": 4324.06, "probability": 0.9601 }, { "start": 4324.66, "end": 4328.56, "probability": 0.9478 }, { "start": 4330.68, "end": 4335.08, "probability": 0.9199 }, { "start": 4335.08, "end": 4339.04, "probability": 0.9992 }, { "start": 4339.1, "end": 4342.42, "probability": 0.9977 }, { "start": 4345.32, "end": 4347.96, "probability": 0.9222 }, { "start": 4348.34, "end": 4350.24, "probability": 0.9824 }, { "start": 4350.6, "end": 4352.5, "probability": 0.9388 }, { "start": 4353.86, "end": 4358.24, "probability": 0.8505 }, { "start": 4358.96, "end": 4360.7, "probability": 0.6948 }, { "start": 4361.92, "end": 4364.74, "probability": 0.9316 }, { "start": 4364.74, "end": 4367.0, "probability": 0.8755 }, { "start": 4368.02, "end": 4370.54, "probability": 0.7498 }, { "start": 4371.78, "end": 4375.58, "probability": 0.9041 }, { "start": 4375.66, "end": 4377.24, "probability": 0.532 }, { "start": 4378.26, "end": 4378.62, "probability": 0.4486 }, { "start": 4378.84, "end": 4380.34, "probability": 0.9581 }, { "start": 4380.68, "end": 4381.38, "probability": 0.5883 }, { "start": 4381.38, "end": 4381.8, "probability": 0.166 }, { "start": 4382.0, "end": 4383.62, "probability": 0.9648 }, { "start": 4383.78, "end": 4387.34, "probability": 0.9966 }, { "start": 4387.34, "end": 4390.7, "probability": 0.9985 }, { "start": 4391.68, "end": 4394.36, "probability": 0.9982 }, { "start": 4394.36, "end": 4397.86, "probability": 0.9995 }, { "start": 4400.9, "end": 4404.78, "probability": 0.8552 }, { "start": 4406.04, "end": 4409.66, "probability": 0.9989 }, { "start": 4409.66, "end": 4412.48, "probability": 0.9995 }, { "start": 4413.34, "end": 4414.0, "probability": 0.8481 }, { "start": 4414.4, "end": 4415.14, "probability": 0.7749 }, { "start": 4415.32, "end": 4417.9, "probability": 0.9988 }, { "start": 4419.34, "end": 4421.02, "probability": 0.9524 }, { "start": 4421.54, "end": 4424.52, "probability": 0.9561 }, { "start": 4424.74, "end": 4425.68, "probability": 0.8987 }, { "start": 4425.72, "end": 4426.62, "probability": 0.5674 }, { "start": 4427.16, "end": 4428.9, "probability": 0.9944 }, { "start": 4429.08, "end": 4431.88, "probability": 0.998 }, { "start": 4432.48, "end": 4434.98, "probability": 0.9954 }, { "start": 4435.1, "end": 4435.63, "probability": 0.9703 }, { "start": 4439.58, "end": 4440.5, "probability": 0.7158 }, { "start": 4441.9, "end": 4445.46, "probability": 0.9632 }, { "start": 4446.66, "end": 4450.6, "probability": 0.9668 }, { "start": 4451.22, "end": 4452.82, "probability": 0.9299 }, { "start": 4454.32, "end": 4456.1, "probability": 0.7185 }, { "start": 4456.74, "end": 4459.28, "probability": 0.7745 }, { "start": 4460.59, "end": 4466.56, "probability": 0.9574 }, { "start": 4467.46, "end": 4470.82, "probability": 0.9875 }, { "start": 4472.52, "end": 4476.02, "probability": 0.9898 }, { "start": 4477.82, "end": 4480.48, "probability": 0.9922 }, { "start": 4481.1, "end": 4483.1, "probability": 0.7623 }, { "start": 4483.48, "end": 4487.58, "probability": 0.9968 }, { "start": 4487.8, "end": 4490.7, "probability": 0.9917 }, { "start": 4492.04, "end": 4493.18, "probability": 0.9343 }, { "start": 4493.26, "end": 4496.22, "probability": 0.9879 }, { "start": 4496.94, "end": 4497.78, "probability": 0.8246 }, { "start": 4499.54, "end": 4506.7, "probability": 0.9804 }, { "start": 4506.98, "end": 4509.66, "probability": 0.9977 }, { "start": 4510.36, "end": 4512.4, "probability": 0.9849 }, { "start": 4512.7, "end": 4514.62, "probability": 0.9468 }, { "start": 4515.0, "end": 4515.54, "probability": 0.9576 }, { "start": 4519.54, "end": 4520.74, "probability": 0.5133 }, { "start": 4520.9, "end": 4521.98, "probability": 0.9008 }, { "start": 4522.2, "end": 4528.94, "probability": 0.5463 }, { "start": 4529.54, "end": 4530.66, "probability": 0.7207 }, { "start": 4533.98, "end": 4538.24, "probability": 0.9336 }, { "start": 4539.62, "end": 4543.0, "probability": 0.7782 }, { "start": 4543.58, "end": 4550.2, "probability": 0.967 }, { "start": 4550.48, "end": 4551.96, "probability": 0.8718 }, { "start": 4552.12, "end": 4552.9, "probability": 0.4797 }, { "start": 4554.64, "end": 4557.7, "probability": 0.9976 }, { "start": 4558.16, "end": 4559.18, "probability": 0.8021 }, { "start": 4559.44, "end": 4561.26, "probability": 0.9849 }, { "start": 4569.14, "end": 4574.42, "probability": 0.9082 }, { "start": 4575.22, "end": 4577.54, "probability": 0.9932 }, { "start": 4578.52, "end": 4579.76, "probability": 0.9517 }, { "start": 4580.52, "end": 4584.76, "probability": 0.9547 }, { "start": 4585.86, "end": 4591.72, "probability": 0.9498 }, { "start": 4593.54, "end": 4595.72, "probability": 0.9695 }, { "start": 4596.38, "end": 4597.12, "probability": 0.8015 }, { "start": 4597.22, "end": 4606.42, "probability": 0.9384 }, { "start": 4608.2, "end": 4612.7, "probability": 0.6469 }, { "start": 4614.04, "end": 4618.44, "probability": 0.9795 }, { "start": 4618.68, "end": 4620.9, "probability": 0.9078 }, { "start": 4621.4, "end": 4624.2, "probability": 0.9634 }, { "start": 4626.52, "end": 4630.7, "probability": 0.9749 }, { "start": 4631.7, "end": 4636.64, "probability": 0.9987 }, { "start": 4637.94, "end": 4641.96, "probability": 0.9875 }, { "start": 4642.06, "end": 4643.32, "probability": 0.7984 }, { "start": 4644.26, "end": 4649.08, "probability": 0.9791 }, { "start": 4651.42, "end": 4652.33, "probability": 0.8269 }, { "start": 4654.38, "end": 4657.88, "probability": 0.9971 }, { "start": 4659.56, "end": 4660.82, "probability": 0.7429 }, { "start": 4661.6, "end": 4666.54, "probability": 0.9672 }, { "start": 4668.48, "end": 4671.32, "probability": 0.991 }, { "start": 4672.36, "end": 4673.44, "probability": 0.9108 }, { "start": 4674.2, "end": 4683.62, "probability": 0.6419 }, { "start": 4684.38, "end": 4684.96, "probability": 0.7227 }, { "start": 4689.8, "end": 4694.3, "probability": 0.926 }, { "start": 4697.21, "end": 4698.08, "probability": 0.8839 }, { "start": 4698.3, "end": 4699.14, "probability": 0.608 }, { "start": 4699.2, "end": 4700.68, "probability": 0.8511 }, { "start": 4701.76, "end": 4703.83, "probability": 0.974 }, { "start": 4704.62, "end": 4706.06, "probability": 0.4963 }, { "start": 4706.34, "end": 4707.76, "probability": 0.814 }, { "start": 4709.22, "end": 4712.76, "probability": 0.5737 }, { "start": 4715.56, "end": 4720.46, "probability": 0.909 }, { "start": 4721.24, "end": 4727.1, "probability": 0.7288 }, { "start": 4727.1, "end": 4732.56, "probability": 0.9973 }, { "start": 4733.34, "end": 4738.14, "probability": 0.9885 }, { "start": 4741.12, "end": 4741.48, "probability": 0.9218 }, { "start": 4743.08, "end": 4747.8, "probability": 0.9984 }, { "start": 4747.88, "end": 4750.46, "probability": 0.9983 }, { "start": 4752.28, "end": 4759.9, "probability": 0.8306 }, { "start": 4760.1, "end": 4762.16, "probability": 0.8164 }, { "start": 4763.02, "end": 4763.94, "probability": 0.7213 }, { "start": 4764.04, "end": 4767.22, "probability": 0.7633 }, { "start": 4767.38, "end": 4773.74, "probability": 0.9496 }, { "start": 4774.12, "end": 4781.11, "probability": 0.9476 }, { "start": 4782.66, "end": 4783.42, "probability": 0.6964 }, { "start": 4784.02, "end": 4787.06, "probability": 0.5294 }, { "start": 4787.7, "end": 4795.08, "probability": 0.941 }, { "start": 4796.46, "end": 4800.11, "probability": 0.8434 }, { "start": 4802.4, "end": 4807.34, "probability": 0.9862 }, { "start": 4808.92, "end": 4812.6, "probability": 0.8911 }, { "start": 4813.7, "end": 4819.24, "probability": 0.9644 }, { "start": 4819.78, "end": 4820.92, "probability": 0.8748 }, { "start": 4823.14, "end": 4827.5, "probability": 0.7018 }, { "start": 4828.44, "end": 4831.5, "probability": 0.9939 }, { "start": 4833.06, "end": 4835.08, "probability": 0.9248 }, { "start": 4836.36, "end": 4838.52, "probability": 0.6851 }, { "start": 4838.8, "end": 4843.36, "probability": 0.9497 }, { "start": 4844.4, "end": 4845.92, "probability": 0.9761 }, { "start": 4847.6, "end": 4852.28, "probability": 0.9989 }, { "start": 4854.9, "end": 4856.06, "probability": 0.723 }, { "start": 4856.2, "end": 4861.01, "probability": 0.9893 }, { "start": 4861.3, "end": 4864.26, "probability": 0.9927 }, { "start": 4865.8, "end": 4866.74, "probability": 0.7188 }, { "start": 4866.96, "end": 4868.29, "probability": 0.7537 }, { "start": 4868.78, "end": 4875.22, "probability": 0.9894 }, { "start": 4875.82, "end": 4877.04, "probability": 0.9988 }, { "start": 4878.4, "end": 4883.06, "probability": 0.9738 }, { "start": 4884.04, "end": 4886.05, "probability": 0.9584 }, { "start": 4887.54, "end": 4890.08, "probability": 0.9451 }, { "start": 4891.14, "end": 4893.16, "probability": 0.8661 }, { "start": 4894.58, "end": 4897.28, "probability": 0.9128 }, { "start": 4898.44, "end": 4900.26, "probability": 0.9685 }, { "start": 4900.98, "end": 4903.54, "probability": 0.9816 }, { "start": 4904.68, "end": 4912.26, "probability": 0.9935 }, { "start": 4912.96, "end": 4915.78, "probability": 0.8818 }, { "start": 4916.1, "end": 4918.64, "probability": 0.8743 }, { "start": 4920.64, "end": 4922.42, "probability": 0.9793 }, { "start": 4923.44, "end": 4926.54, "probability": 0.9951 }, { "start": 4927.58, "end": 4929.35, "probability": 0.988 }, { "start": 4930.1, "end": 4935.48, "probability": 0.9748 }, { "start": 4936.48, "end": 4940.06, "probability": 0.8496 }, { "start": 4940.98, "end": 4942.59, "probability": 0.9004 }, { "start": 4942.84, "end": 4945.56, "probability": 0.9411 }, { "start": 4946.06, "end": 4949.24, "probability": 0.9929 }, { "start": 4949.34, "end": 4949.82, "probability": 0.9067 }, { "start": 4949.86, "end": 4950.78, "probability": 0.7988 }, { "start": 4951.68, "end": 4951.82, "probability": 0.4882 }, { "start": 4951.94, "end": 4958.32, "probability": 0.9979 }, { "start": 4959.2, "end": 4967.14, "probability": 0.9995 }, { "start": 4968.52, "end": 4973.82, "probability": 0.862 }, { "start": 4974.9, "end": 4978.46, "probability": 0.8022 }, { "start": 4980.16, "end": 4981.6, "probability": 0.998 }, { "start": 4982.22, "end": 4984.6, "probability": 0.8825 }, { "start": 4985.58, "end": 4989.38, "probability": 0.959 }, { "start": 4990.5, "end": 4992.92, "probability": 0.9976 }, { "start": 4993.74, "end": 4995.18, "probability": 0.9053 }, { "start": 4995.76, "end": 4998.78, "probability": 0.8605 }, { "start": 4999.86, "end": 5001.9, "probability": 0.9878 }, { "start": 5002.04, "end": 5004.18, "probability": 0.9492 }, { "start": 5005.12, "end": 5007.2, "probability": 0.8638 }, { "start": 5008.38, "end": 5010.34, "probability": 0.8622 }, { "start": 5011.04, "end": 5015.64, "probability": 0.8841 }, { "start": 5016.94, "end": 5020.84, "probability": 0.9933 }, { "start": 5021.08, "end": 5022.34, "probability": 0.9926 }, { "start": 5022.48, "end": 5023.32, "probability": 0.9612 }, { "start": 5023.94, "end": 5026.92, "probability": 0.9868 }, { "start": 5027.5, "end": 5030.24, "probability": 0.9836 }, { "start": 5030.82, "end": 5033.4, "probability": 0.7816 }, { "start": 5033.98, "end": 5035.94, "probability": 0.702 }, { "start": 5037.22, "end": 5039.46, "probability": 0.9615 }, { "start": 5040.04, "end": 5043.08, "probability": 0.9875 }, { "start": 5043.86, "end": 5045.08, "probability": 0.9966 }, { "start": 5046.36, "end": 5048.82, "probability": 0.9014 }, { "start": 5050.74, "end": 5053.73, "probability": 0.9995 }, { "start": 5054.3, "end": 5058.12, "probability": 0.9987 }, { "start": 5059.5, "end": 5061.26, "probability": 0.7483 }, { "start": 5061.82, "end": 5064.26, "probability": 0.9487 }, { "start": 5064.88, "end": 5069.2, "probability": 0.9965 }, { "start": 5070.78, "end": 5071.3, "probability": 0.6787 }, { "start": 5071.7, "end": 5074.48, "probability": 0.9585 }, { "start": 5074.72, "end": 5076.48, "probability": 0.9686 }, { "start": 5077.34, "end": 5079.26, "probability": 0.959 }, { "start": 5080.66, "end": 5088.28, "probability": 0.9918 }, { "start": 5089.62, "end": 5090.66, "probability": 0.8797 }, { "start": 5091.34, "end": 5096.74, "probability": 0.995 }, { "start": 5097.54, "end": 5099.28, "probability": 0.7565 }, { "start": 5099.82, "end": 5103.42, "probability": 0.9987 }, { "start": 5103.5, "end": 5104.58, "probability": 0.8771 }, { "start": 5105.0, "end": 5105.64, "probability": 0.5239 }, { "start": 5105.7, "end": 5109.48, "probability": 0.9963 }, { "start": 5109.48, "end": 5113.18, "probability": 0.9981 }, { "start": 5114.24, "end": 5114.7, "probability": 0.7407 }, { "start": 5116.78, "end": 5118.66, "probability": 0.6628 }, { "start": 5119.24, "end": 5121.1, "probability": 0.6198 }, { "start": 5122.82, "end": 5127.16, "probability": 0.9932 }, { "start": 5127.4, "end": 5129.7, "probability": 0.9923 }, { "start": 5130.7, "end": 5133.82, "probability": 0.8102 }, { "start": 5134.04, "end": 5143.16, "probability": 0.9911 }, { "start": 5143.96, "end": 5145.86, "probability": 0.8281 }, { "start": 5146.28, "end": 5147.22, "probability": 0.6939 }, { "start": 5147.84, "end": 5150.5, "probability": 0.8994 }, { "start": 5151.1, "end": 5154.21, "probability": 0.9907 }, { "start": 5157.18, "end": 5161.95, "probability": 0.9413 }, { "start": 5162.54, "end": 5167.18, "probability": 0.9717 }, { "start": 5168.93, "end": 5174.28, "probability": 0.9976 }, { "start": 5175.02, "end": 5182.08, "probability": 0.9242 }, { "start": 5182.08, "end": 5190.22, "probability": 0.7997 }, { "start": 5190.65, "end": 5195.92, "probability": 0.9775 }, { "start": 5199.58, "end": 5202.1, "probability": 0.9058 }, { "start": 5203.76, "end": 5205.1, "probability": 0.819 }, { "start": 5205.7, "end": 5206.58, "probability": 0.6794 }, { "start": 5208.22, "end": 5212.58, "probability": 0.9794 }, { "start": 5212.58, "end": 5216.44, "probability": 0.9771 }, { "start": 5217.7, "end": 5220.24, "probability": 0.995 }, { "start": 5221.46, "end": 5227.06, "probability": 0.97 }, { "start": 5229.62, "end": 5234.62, "probability": 0.994 }, { "start": 5235.28, "end": 5237.46, "probability": 0.9628 }, { "start": 5238.46, "end": 5238.74, "probability": 0.2599 }, { "start": 5238.9, "end": 5246.84, "probability": 0.979 }, { "start": 5247.0, "end": 5247.98, "probability": 0.6162 }, { "start": 5248.78, "end": 5252.64, "probability": 0.9722 }, { "start": 5253.64, "end": 5254.36, "probability": 0.6371 }, { "start": 5255.02, "end": 5256.63, "probability": 0.8888 }, { "start": 5257.48, "end": 5258.94, "probability": 0.9497 }, { "start": 5259.8, "end": 5263.5, "probability": 0.978 }, { "start": 5263.72, "end": 5269.0, "probability": 0.9831 }, { "start": 5269.38, "end": 5271.76, "probability": 0.9958 }, { "start": 5273.24, "end": 5276.49, "probability": 0.9914 }, { "start": 5278.0, "end": 5283.44, "probability": 0.9582 }, { "start": 5285.32, "end": 5291.18, "probability": 0.9829 }, { "start": 5292.86, "end": 5293.94, "probability": 0.8563 }, { "start": 5295.54, "end": 5301.92, "probability": 0.9945 }, { "start": 5302.52, "end": 5304.88, "probability": 0.9033 }, { "start": 5306.18, "end": 5307.66, "probability": 0.778 }, { "start": 5307.88, "end": 5309.9, "probability": 0.7361 }, { "start": 5310.76, "end": 5314.66, "probability": 0.9181 }, { "start": 5316.06, "end": 5318.78, "probability": 0.9486 }, { "start": 5318.94, "end": 5321.38, "probability": 0.9943 }, { "start": 5326.18, "end": 5329.82, "probability": 0.7382 }, { "start": 5330.04, "end": 5331.5, "probability": 0.6049 }, { "start": 5331.84, "end": 5332.66, "probability": 0.2909 }, { "start": 5333.2, "end": 5334.58, "probability": 0.7606 }, { "start": 5334.66, "end": 5335.36, "probability": 0.8077 }, { "start": 5335.74, "end": 5336.14, "probability": 0.7856 }, { "start": 5337.24, "end": 5338.44, "probability": 0.8389 }, { "start": 5338.52, "end": 5341.1, "probability": 0.8237 }, { "start": 5341.18, "end": 5343.56, "probability": 0.9137 }, { "start": 5343.78, "end": 5346.86, "probability": 0.9884 }, { "start": 5352.0, "end": 5354.04, "probability": 0.543 }, { "start": 5354.36, "end": 5354.8, "probability": 0.6975 }, { "start": 5355.7, "end": 5358.58, "probability": 0.6819 }, { "start": 5359.4, "end": 5362.32, "probability": 0.9201 }, { "start": 5363.04, "end": 5365.14, "probability": 0.7779 }, { "start": 5366.32, "end": 5366.32, "probability": 0.1081 }, { "start": 5366.32, "end": 5366.32, "probability": 0.1315 }, { "start": 5366.32, "end": 5366.32, "probability": 0.0553 }, { "start": 5366.32, "end": 5371.28, "probability": 0.3954 }, { "start": 5372.36, "end": 5374.18, "probability": 0.5077 }, { "start": 5375.02, "end": 5377.08, "probability": 0.8881 }, { "start": 5377.62, "end": 5379.24, "probability": 0.5823 }, { "start": 5380.56, "end": 5384.22, "probability": 0.9123 }, { "start": 5384.22, "end": 5388.2, "probability": 0.7189 }, { "start": 5389.78, "end": 5391.12, "probability": 0.4148 }, { "start": 5395.18, "end": 5395.66, "probability": 0.2892 }, { "start": 5421.15, "end": 5423.08, "probability": 0.6737 }, { "start": 5425.24, "end": 5426.7, "probability": 0.9972 }, { "start": 5427.08, "end": 5428.77, "probability": 0.9825 }, { "start": 5429.86, "end": 5433.14, "probability": 0.9904 }, { "start": 5434.5, "end": 5438.92, "probability": 0.8337 }, { "start": 5440.7, "end": 5444.14, "probability": 0.9396 }, { "start": 5445.26, "end": 5445.58, "probability": 0.3036 }, { "start": 5446.78, "end": 5447.04, "probability": 0.7279 }, { "start": 5447.79, "end": 5448.88, "probability": 0.043 }, { "start": 5448.92, "end": 5449.82, "probability": 0.9746 }, { "start": 5449.94, "end": 5451.2, "probability": 0.9495 }, { "start": 5451.54, "end": 5456.12, "probability": 0.928 }, { "start": 5456.88, "end": 5457.88, "probability": 0.9495 }, { "start": 5458.22, "end": 5462.54, "probability": 0.9507 }, { "start": 5465.4, "end": 5469.42, "probability": 0.8148 }, { "start": 5470.5, "end": 5471.94, "probability": 0.9926 }, { "start": 5473.73, "end": 5477.94, "probability": 0.9083 }, { "start": 5479.7, "end": 5480.97, "probability": 0.3451 }, { "start": 5481.98, "end": 5481.98, "probability": 0.5485 }, { "start": 5482.0, "end": 5492.64, "probability": 0.7659 }, { "start": 5493.46, "end": 5495.64, "probability": 0.969 }, { "start": 5496.64, "end": 5499.4, "probability": 0.8908 }, { "start": 5500.48, "end": 5505.36, "probability": 0.7458 }, { "start": 5505.44, "end": 5507.14, "probability": 0.9084 }, { "start": 5508.18, "end": 5513.44, "probability": 0.9718 }, { "start": 5514.72, "end": 5517.7, "probability": 0.6892 }, { "start": 5519.0, "end": 5524.6, "probability": 0.8921 }, { "start": 5525.76, "end": 5530.8, "probability": 0.9902 }, { "start": 5531.9, "end": 5533.12, "probability": 0.6651 }, { "start": 5533.76, "end": 5535.52, "probability": 0.9971 }, { "start": 5536.57, "end": 5544.74, "probability": 0.7287 }, { "start": 5545.82, "end": 5553.56, "probability": 0.9451 }, { "start": 5555.12, "end": 5559.62, "probability": 0.9755 }, { "start": 5561.02, "end": 5564.34, "probability": 0.8699 }, { "start": 5565.9, "end": 5575.68, "probability": 0.989 }, { "start": 5576.2, "end": 5577.6, "probability": 0.9905 }, { "start": 5581.36, "end": 5582.18, "probability": 0.6021 }, { "start": 5583.13, "end": 5586.88, "probability": 0.9382 }, { "start": 5587.84, "end": 5591.1, "probability": 0.8075 }, { "start": 5592.16, "end": 5594.02, "probability": 0.9821 }, { "start": 5595.02, "end": 5596.34, "probability": 0.9446 }, { "start": 5597.26, "end": 5601.04, "probability": 0.8091 }, { "start": 5601.12, "end": 5602.68, "probability": 0.3958 }, { "start": 5602.78, "end": 5604.36, "probability": 0.9769 }, { "start": 5604.82, "end": 5606.5, "probability": 0.8862 }, { "start": 5608.1, "end": 5612.18, "probability": 0.9574 }, { "start": 5613.18, "end": 5613.56, "probability": 0.605 }, { "start": 5615.68, "end": 5617.9, "probability": 0.6145 }, { "start": 5618.54, "end": 5621.16, "probability": 0.8279 }, { "start": 5621.42, "end": 5624.22, "probability": 0.4442 }, { "start": 5625.04, "end": 5626.42, "probability": 0.7753 }, { "start": 5629.04, "end": 5629.88, "probability": 0.0189 }, { "start": 5629.96, "end": 5634.28, "probability": 0.9153 }, { "start": 5636.28, "end": 5640.68, "probability": 0.6713 }, { "start": 5641.46, "end": 5642.8, "probability": 0.7432 }, { "start": 5643.36, "end": 5646.56, "probability": 0.8651 }, { "start": 5647.18, "end": 5651.68, "probability": 0.7558 }, { "start": 5652.52, "end": 5655.0, "probability": 0.9248 }, { "start": 5655.12, "end": 5655.64, "probability": 0.8591 }, { "start": 5655.74, "end": 5656.3, "probability": 0.5049 }, { "start": 5656.78, "end": 5658.26, "probability": 0.6696 }, { "start": 5658.76, "end": 5661.1, "probability": 0.7486 }, { "start": 5661.98, "end": 5663.24, "probability": 0.9237 }, { "start": 5663.56, "end": 5666.6, "probability": 0.9003 }, { "start": 5667.54, "end": 5671.86, "probability": 0.6743 }, { "start": 5672.6, "end": 5674.46, "probability": 0.7037 }, { "start": 5675.38, "end": 5675.91, "probability": 0.9852 }, { "start": 5676.72, "end": 5677.7, "probability": 0.5323 }, { "start": 5678.42, "end": 5679.54, "probability": 0.4174 }, { "start": 5680.16, "end": 5681.22, "probability": 0.8635 }, { "start": 5682.4, "end": 5685.52, "probability": 0.9951 }, { "start": 5686.18, "end": 5689.38, "probability": 0.9927 }, { "start": 5690.18, "end": 5691.72, "probability": 0.9948 }, { "start": 5693.04, "end": 5694.56, "probability": 0.9976 }, { "start": 5695.66, "end": 5698.8, "probability": 0.9937 }, { "start": 5700.16, "end": 5704.28, "probability": 0.8497 }, { "start": 5705.5, "end": 5706.06, "probability": 0.9653 }, { "start": 5707.18, "end": 5709.96, "probability": 0.9182 }, { "start": 5711.16, "end": 5713.82, "probability": 0.967 }, { "start": 5715.1, "end": 5716.32, "probability": 0.9795 }, { "start": 5716.84, "end": 5717.62, "probability": 0.9719 }, { "start": 5721.24, "end": 5722.74, "probability": 0.9453 }, { "start": 5723.98, "end": 5725.22, "probability": 0.9923 }, { "start": 5726.38, "end": 5727.9, "probability": 0.9636 }, { "start": 5729.62, "end": 5730.76, "probability": 0.687 }, { "start": 5732.32, "end": 5736.44, "probability": 0.9889 }, { "start": 5737.06, "end": 5738.16, "probability": 0.8358 }, { "start": 5740.28, "end": 5741.46, "probability": 0.9473 }, { "start": 5743.54, "end": 5745.0, "probability": 0.7193 }, { "start": 5746.68, "end": 5751.22, "probability": 0.9797 }, { "start": 5751.84, "end": 5753.94, "probability": 0.9868 }, { "start": 5755.68, "end": 5760.78, "probability": 0.6743 }, { "start": 5763.04, "end": 5763.34, "probability": 0.5847 }, { "start": 5763.42, "end": 5764.42, "probability": 0.9507 }, { "start": 5765.26, "end": 5765.94, "probability": 0.9899 }, { "start": 5768.4, "end": 5771.62, "probability": 0.9209 }, { "start": 5773.5, "end": 5775.48, "probability": 0.9984 }, { "start": 5776.68, "end": 5781.56, "probability": 0.6376 }, { "start": 5783.22, "end": 5788.2, "probability": 0.8252 }, { "start": 5790.4, "end": 5791.64, "probability": 0.9991 }, { "start": 5792.96, "end": 5794.68, "probability": 0.9966 }, { "start": 5795.72, "end": 5801.6, "probability": 0.9969 }, { "start": 5803.92, "end": 5805.25, "probability": 0.9976 }, { "start": 5807.1, "end": 5811.8, "probability": 0.9873 }, { "start": 5812.9, "end": 5814.34, "probability": 0.8078 }, { "start": 5815.22, "end": 5816.63, "probability": 0.9675 }, { "start": 5817.96, "end": 5821.21, "probability": 0.9609 }, { "start": 5822.66, "end": 5824.46, "probability": 0.9714 }, { "start": 5825.38, "end": 5827.54, "probability": 0.8233 }, { "start": 5828.2, "end": 5829.24, "probability": 0.7238 }, { "start": 5830.22, "end": 5833.98, "probability": 0.9069 }, { "start": 5835.56, "end": 5837.96, "probability": 0.6917 }, { "start": 5838.54, "end": 5838.9, "probability": 0.1774 }, { "start": 5839.44, "end": 5842.72, "probability": 0.8878 }, { "start": 5842.96, "end": 5843.75, "probability": 0.9607 }, { "start": 5844.98, "end": 5846.22, "probability": 0.6375 }, { "start": 5846.76, "end": 5849.68, "probability": 0.8344 }, { "start": 5851.16, "end": 5855.08, "probability": 0.9954 }, { "start": 5855.96, "end": 5857.06, "probability": 0.9666 }, { "start": 5857.86, "end": 5862.2, "probability": 0.979 }, { "start": 5863.88, "end": 5864.68, "probability": 0.8411 }, { "start": 5864.78, "end": 5866.4, "probability": 0.7109 }, { "start": 5868.14, "end": 5868.74, "probability": 0.8164 }, { "start": 5870.16, "end": 5874.22, "probability": 0.9976 }, { "start": 5874.92, "end": 5875.66, "probability": 0.5509 }, { "start": 5876.8, "end": 5878.2, "probability": 0.6816 }, { "start": 5879.08, "end": 5881.36, "probability": 0.5621 }, { "start": 5883.72, "end": 5888.82, "probability": 0.9621 }, { "start": 5890.52, "end": 5892.36, "probability": 0.9513 }, { "start": 5893.38, "end": 5895.46, "probability": 0.9919 }, { "start": 5897.42, "end": 5899.14, "probability": 0.9814 }, { "start": 5900.96, "end": 5901.84, "probability": 0.2921 }, { "start": 5903.04, "end": 5904.92, "probability": 0.9734 }, { "start": 5907.66, "end": 5909.3, "probability": 0.8979 }, { "start": 5910.42, "end": 5918.96, "probability": 0.9908 }, { "start": 5920.46, "end": 5921.54, "probability": 0.9748 }, { "start": 5922.5, "end": 5925.62, "probability": 0.9709 }, { "start": 5927.14, "end": 5934.16, "probability": 0.9854 }, { "start": 5936.54, "end": 5938.6, "probability": 0.8724 }, { "start": 5939.96, "end": 5942.62, "probability": 0.9727 }, { "start": 5943.46, "end": 5947.3, "probability": 0.9368 }, { "start": 5947.94, "end": 5948.46, "probability": 0.5983 }, { "start": 5949.14, "end": 5950.7, "probability": 0.8179 }, { "start": 5952.14, "end": 5953.0, "probability": 0.7282 }, { "start": 5954.88, "end": 5956.98, "probability": 0.6744 }, { "start": 5956.98, "end": 5959.7, "probability": 0.8965 }, { "start": 5960.42, "end": 5962.17, "probability": 0.8988 }, { "start": 5964.36, "end": 5967.08, "probability": 0.9851 }, { "start": 5969.92, "end": 5974.18, "probability": 0.9804 }, { "start": 5976.06, "end": 5977.6, "probability": 0.9153 }, { "start": 5978.86, "end": 5979.96, "probability": 0.9772 }, { "start": 5980.74, "end": 5982.14, "probability": 0.8119 }, { "start": 5983.58, "end": 5985.16, "probability": 0.942 }, { "start": 5985.32, "end": 5986.4, "probability": 0.9962 }, { "start": 5987.24, "end": 5992.66, "probability": 0.9971 }, { "start": 5993.82, "end": 5995.0, "probability": 0.9872 }, { "start": 5996.46, "end": 5997.82, "probability": 0.7625 }, { "start": 5998.52, "end": 6000.65, "probability": 0.9976 }, { "start": 6001.28, "end": 6003.04, "probability": 0.9718 }, { "start": 6003.56, "end": 6003.88, "probability": 0.5383 }, { "start": 6006.52, "end": 6010.48, "probability": 0.8204 }, { "start": 6012.08, "end": 6012.87, "probability": 0.9927 }, { "start": 6014.3, "end": 6015.48, "probability": 0.8795 }, { "start": 6017.42, "end": 6021.28, "probability": 0.6949 }, { "start": 6022.42, "end": 6024.58, "probability": 0.9902 }, { "start": 6025.94, "end": 6028.28, "probability": 0.9224 }, { "start": 6030.34, "end": 6032.28, "probability": 0.9945 }, { "start": 6034.1, "end": 6035.8, "probability": 0.8934 }, { "start": 6036.92, "end": 6038.3, "probability": 0.6097 }, { "start": 6039.06, "end": 6041.04, "probability": 0.9832 }, { "start": 6042.18, "end": 6046.76, "probability": 0.9955 }, { "start": 6047.48, "end": 6048.6, "probability": 0.9937 }, { "start": 6049.32, "end": 6050.42, "probability": 0.8458 }, { "start": 6053.82, "end": 6054.6, "probability": 0.999 }, { "start": 6055.56, "end": 6056.12, "probability": 0.9782 }, { "start": 6056.68, "end": 6059.22, "probability": 0.9971 }, { "start": 6059.8, "end": 6061.9, "probability": 0.9515 }, { "start": 6061.98, "end": 6062.42, "probability": 0.6879 }, { "start": 6063.92, "end": 6064.4, "probability": 0.5594 }, { "start": 6065.62, "end": 6068.82, "probability": 0.9617 }, { "start": 6069.3, "end": 6071.28, "probability": 0.9651 }, { "start": 6072.24, "end": 6077.0, "probability": 0.9563 }, { "start": 6079.26, "end": 6081.76, "probability": 0.8698 }, { "start": 6082.28, "end": 6084.6, "probability": 0.981 }, { "start": 6086.18, "end": 6091.5, "probability": 0.9628 }, { "start": 6091.72, "end": 6092.76, "probability": 0.6217 }, { "start": 6094.3, "end": 6095.82, "probability": 0.9961 }, { "start": 6096.38, "end": 6098.22, "probability": 0.9961 }, { "start": 6099.28, "end": 6102.0, "probability": 0.998 }, { "start": 6103.22, "end": 6105.62, "probability": 0.9849 }, { "start": 6106.84, "end": 6111.14, "probability": 0.9176 }, { "start": 6112.66, "end": 6115.58, "probability": 0.9504 }, { "start": 6116.74, "end": 6118.18, "probability": 0.9629 }, { "start": 6119.1, "end": 6121.34, "probability": 0.9518 }, { "start": 6124.0, "end": 6127.52, "probability": 0.9938 }, { "start": 6128.3, "end": 6129.26, "probability": 0.8882 }, { "start": 6130.94, "end": 6133.7, "probability": 0.9709 }, { "start": 6134.64, "end": 6135.22, "probability": 0.9875 }, { "start": 6136.08, "end": 6136.88, "probability": 0.838 }, { "start": 6138.74, "end": 6140.3, "probability": 0.9455 }, { "start": 6142.04, "end": 6143.94, "probability": 0.8184 }, { "start": 6146.28, "end": 6149.74, "probability": 0.9976 }, { "start": 6150.72, "end": 6153.0, "probability": 0.9736 }, { "start": 6154.88, "end": 6158.01, "probability": 0.5139 }, { "start": 6159.48, "end": 6160.98, "probability": 0.2211 }, { "start": 6161.98, "end": 6162.32, "probability": 0.4909 }, { "start": 6163.46, "end": 6164.62, "probability": 0.9111 }, { "start": 6167.06, "end": 6171.22, "probability": 0.9841 }, { "start": 6173.82, "end": 6174.94, "probability": 0.7313 }, { "start": 6177.3, "end": 6179.92, "probability": 0.999 }, { "start": 6181.18, "end": 6181.94, "probability": 0.9988 }, { "start": 6183.42, "end": 6184.86, "probability": 0.9285 }, { "start": 6185.9, "end": 6189.04, "probability": 0.979 }, { "start": 6190.7, "end": 6192.82, "probability": 0.9858 }, { "start": 6193.98, "end": 6196.84, "probability": 0.9797 }, { "start": 6197.28, "end": 6200.06, "probability": 0.9799 }, { "start": 6201.94, "end": 6207.16, "probability": 0.9888 }, { "start": 6208.4, "end": 6209.34, "probability": 0.922 }, { "start": 6210.1, "end": 6211.2, "probability": 0.6649 }, { "start": 6212.28, "end": 6214.78, "probability": 0.9473 }, { "start": 6215.74, "end": 6216.38, "probability": 0.8867 }, { "start": 6217.4, "end": 6218.9, "probability": 0.9874 }, { "start": 6219.92, "end": 6221.05, "probability": 0.9961 }, { "start": 6222.18, "end": 6223.16, "probability": 0.4972 }, { "start": 6225.1, "end": 6226.3, "probability": 0.7778 }, { "start": 6228.14, "end": 6229.36, "probability": 0.8848 }, { "start": 6230.2, "end": 6233.54, "probability": 0.0329 }, { "start": 6236.6, "end": 6237.48, "probability": 0.0681 }, { "start": 6237.48, "end": 6240.12, "probability": 0.0665 }, { "start": 6241.48, "end": 6242.08, "probability": 0.109 }, { "start": 6243.62, "end": 6243.84, "probability": 0.0101 }, { "start": 6245.04, "end": 6245.48, "probability": 0.0032 }, { "start": 6246.0, "end": 6248.08, "probability": 0.0567 }, { "start": 6248.46, "end": 6253.98, "probability": 0.2535 }, { "start": 6256.6, "end": 6260.18, "probability": 0.1796 }, { "start": 6262.06, "end": 6266.2, "probability": 0.2155 }, { "start": 6267.38, "end": 6271.74, "probability": 0.445 }, { "start": 6273.86, "end": 6275.46, "probability": 0.0626 }, { "start": 6277.36, "end": 6283.6, "probability": 0.0825 }, { "start": 6284.34, "end": 6284.38, "probability": 0.0889 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6596.94, "end": 6599.76, "probability": 0.9954 }, { "start": 6600.22, "end": 6602.68, "probability": 0.9941 }, { "start": 6603.36, "end": 6603.8, "probability": 0.5439 }, { "start": 6605.66, "end": 6607.42, "probability": 0.632 }, { "start": 6607.6, "end": 6608.3, "probability": 0.9772 }, { "start": 6609.22, "end": 6612.62, "probability": 0.9175 }, { "start": 6613.72, "end": 6616.46, "probability": 0.8498 }, { "start": 6617.7, "end": 6622.8, "probability": 0.8156 }, { "start": 6622.8, "end": 6625.56, "probability": 0.8652 }, { "start": 6626.5, "end": 6628.6, "probability": 0.7259 }, { "start": 6629.56, "end": 6630.01, "probability": 0.8633 }, { "start": 6630.36, "end": 6631.96, "probability": 0.7672 }, { "start": 6633.26, "end": 6635.36, "probability": 0.857 }, { "start": 6637.24, "end": 6639.46, "probability": 0.7157 }, { "start": 6641.74, "end": 6642.08, "probability": 0.0884 }, { "start": 6642.08, "end": 6642.42, "probability": 0.0118 }, { "start": 6642.74, "end": 6643.43, "probability": 0.3473 }, { "start": 6644.42, "end": 6646.94, "probability": 0.158 }, { "start": 6647.52, "end": 6647.66, "probability": 0.1268 }, { "start": 6647.66, "end": 6654.52, "probability": 0.13 }, { "start": 6654.9, "end": 6658.9, "probability": 0.0999 }, { "start": 6660.42, "end": 6662.18, "probability": 0.476 }, { "start": 6662.94, "end": 6665.6, "probability": 0.0345 }, { "start": 6665.62, "end": 6666.68, "probability": 0.1535 }, { "start": 6668.06, "end": 6672.06, "probability": 0.0919 }, { "start": 6746.0, "end": 6746.0, "probability": 0.0 }, { "start": 6746.0, "end": 6746.0, "probability": 0.0 }, { "start": 6746.0, "end": 6746.0, "probability": 0.0 }, { "start": 6746.0, "end": 6746.0, "probability": 0.0 }, { "start": 6746.0, "end": 6746.0, "probability": 0.0 }, { "start": 6746.0, "end": 6746.0, "probability": 0.0 }, { "start": 6746.0, "end": 6746.0, "probability": 0.0 }, { "start": 6746.0, "end": 6746.0, "probability": 0.0 }, { "start": 6746.0, "end": 6746.0, "probability": 0.0 }, { "start": 6746.0, "end": 6746.0, "probability": 0.0 }, { "start": 6746.0, "end": 6746.0, "probability": 0.0 }, { "start": 6746.0, "end": 6746.0, "probability": 0.0 }, { "start": 6746.0, "end": 6746.0, "probability": 0.0 }, { "start": 6746.0, "end": 6746.0, "probability": 0.0 }, { "start": 6746.0, "end": 6746.0, "probability": 0.0 }, { "start": 6746.88, "end": 6748.52, "probability": 0.4888 }, { "start": 6755.7, "end": 6758.56, "probability": 0.0294 }, { "start": 6759.32, "end": 6760.57, "probability": 0.037 }, { "start": 6762.02, "end": 6763.82, "probability": 0.0489 }, { "start": 6787.71, "end": 6788.2, "probability": 0.0167 }, { "start": 6788.2, "end": 6790.26, "probability": 0.0939 }, { "start": 6790.56, "end": 6792.82, "probability": 0.0776 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.0, "end": 6870.0, "probability": 0.0 }, { "start": 6870.82, "end": 6871.72, "probability": 0.1699 }, { "start": 6871.72, "end": 6872.76, "probability": 0.3669 }, { "start": 6872.88, "end": 6873.56, "probability": 0.5754 }, { "start": 6873.96, "end": 6875.84, "probability": 0.4494 }, { "start": 6876.64, "end": 6877.42, "probability": 0.5877 }, { "start": 6879.5, "end": 6880.92, "probability": 0.6631 }, { "start": 6881.96, "end": 6882.9, "probability": 0.868 }, { "start": 6884.8, "end": 6891.38, "probability": 0.5282 }, { "start": 6892.12, "end": 6893.46, "probability": 0.8423 }, { "start": 6894.68, "end": 6894.68, "probability": 0.1855 }, { "start": 6894.68, "end": 6895.24, "probability": 0.5296 }, { "start": 6896.8, "end": 6900.1, "probability": 0.0212 }, { "start": 6900.78, "end": 6901.04, "probability": 0.0421 }, { "start": 6901.24, "end": 6905.24, "probability": 0.0874 }, { "start": 6905.24, "end": 6905.32, "probability": 0.1029 }, { "start": 6905.32, "end": 6905.32, "probability": 0.1355 }, { "start": 6905.32, "end": 6907.02, "probability": 0.1413 }, { "start": 6907.9, "end": 6908.94, "probability": 0.4119 }, { "start": 6909.08, "end": 6909.76, "probability": 0.462 }, { "start": 6915.76, "end": 6918.02, "probability": 0.7754 }, { "start": 6923.44, "end": 6927.14, "probability": 0.7035 }, { "start": 6929.34, "end": 6933.54, "probability": 0.8923 }, { "start": 6934.46, "end": 6936.64, "probability": 0.9185 }, { "start": 6938.86, "end": 6944.12, "probability": 0.9763 }, { "start": 6944.28, "end": 6945.6, "probability": 0.8482 }, { "start": 6947.2, "end": 6949.92, "probability": 0.9625 }, { "start": 6951.08, "end": 6954.16, "probability": 0.7208 }, { "start": 6954.96, "end": 6956.7, "probability": 0.9867 }, { "start": 6958.08, "end": 6959.26, "probability": 0.7739 }, { "start": 6960.34, "end": 6961.98, "probability": 0.9393 }, { "start": 6962.86, "end": 6965.66, "probability": 0.6699 }, { "start": 6966.48, "end": 6969.28, "probability": 0.9347 }, { "start": 6970.36, "end": 6974.44, "probability": 0.9991 }, { "start": 6974.48, "end": 6977.98, "probability": 0.9954 }, { "start": 6979.6, "end": 6980.3, "probability": 0.5337 }, { "start": 6981.14, "end": 6982.06, "probability": 0.9949 }, { "start": 6982.94, "end": 6987.24, "probability": 0.9982 }, { "start": 6988.22, "end": 6989.26, "probability": 0.841 }, { "start": 6990.42, "end": 6991.38, "probability": 0.7769 }, { "start": 6993.26, "end": 6993.84, "probability": 0.6115 }, { "start": 6994.34, "end": 7001.16, "probability": 0.8043 }, { "start": 7001.3, "end": 7004.44, "probability": 0.6084 }, { "start": 7005.0, "end": 7011.14, "probability": 0.9735 }, { "start": 7012.44, "end": 7013.5, "probability": 0.9971 }, { "start": 7015.7, "end": 7016.4, "probability": 0.5015 }, { "start": 7018.36, "end": 7022.92, "probability": 0.9805 }, { "start": 7023.3, "end": 7026.36, "probability": 0.7939 }, { "start": 7028.34, "end": 7031.68, "probability": 0.9646 }, { "start": 7033.14, "end": 7033.56, "probability": 0.5641 }, { "start": 7034.22, "end": 7035.62, "probability": 0.9717 }, { "start": 7036.96, "end": 7041.62, "probability": 0.9233 }, { "start": 7043.3, "end": 7045.32, "probability": 0.986 }, { "start": 7046.06, "end": 7048.1, "probability": 0.9618 }, { "start": 7048.98, "end": 7052.1, "probability": 0.9587 }, { "start": 7053.92, "end": 7055.0, "probability": 0.7866 }, { "start": 7055.02, "end": 7058.68, "probability": 0.8845 }, { "start": 7059.4, "end": 7062.14, "probability": 0.9951 }, { "start": 7074.72, "end": 7075.8, "probability": 0.4715 }, { "start": 7076.96, "end": 7077.58, "probability": 0.8358 }, { "start": 7077.66, "end": 7081.21, "probability": 0.9857 }, { "start": 7083.12, "end": 7086.02, "probability": 0.6209 }, { "start": 7086.68, "end": 7087.81, "probability": 0.9914 }, { "start": 7089.04, "end": 7092.26, "probability": 0.7031 }, { "start": 7094.76, "end": 7096.56, "probability": 0.987 }, { "start": 7097.3, "end": 7099.46, "probability": 0.8418 }, { "start": 7101.96, "end": 7103.1, "probability": 0.4885 }, { "start": 7103.88, "end": 7110.72, "probability": 0.8281 }, { "start": 7112.28, "end": 7116.32, "probability": 0.96 }, { "start": 7116.54, "end": 7116.84, "probability": 0.5852 }, { "start": 7117.64, "end": 7118.64, "probability": 0.9906 }, { "start": 7119.82, "end": 7121.74, "probability": 0.9973 }, { "start": 7122.6, "end": 7123.62, "probability": 0.526 }, { "start": 7128.14, "end": 7131.24, "probability": 0.0408 }, { "start": 7133.67, "end": 7138.02, "probability": 0.0297 }, { "start": 7138.02, "end": 7139.26, "probability": 0.0217 }, { "start": 7139.9, "end": 7139.9, "probability": 0.0438 }, { "start": 7139.9, "end": 7143.34, "probability": 0.0702 }, { "start": 7148.14, "end": 7149.04, "probability": 0.0017 }, { "start": 7149.04, "end": 7150.61, "probability": 0.0085 }, { "start": 7152.24, "end": 7158.1, "probability": 0.1782 }, { "start": 7162.8, "end": 7164.42, "probability": 0.5272 }, { "start": 7166.72, "end": 7169.16, "probability": 0.3363 }, { "start": 7169.64, "end": 7170.18, "probability": 0.189 }, { "start": 7170.32, "end": 7172.14, "probability": 0.0506 }, { "start": 7173.74, "end": 7177.64, "probability": 0.1992 }, { "start": 7179.0, "end": 7179.0, "probability": 0.0737 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.0, "end": 7733.0, "probability": 0.0 }, { "start": 7733.56, "end": 7735.3, "probability": 0.3492 }, { "start": 7736.38, "end": 7736.9, "probability": 0.7386 }, { "start": 7738.56, "end": 7743.62, "probability": 0.7626 }, { "start": 7746.36, "end": 7749.42, "probability": 0.0277 }, { "start": 7750.44, "end": 7753.2, "probability": 0.5406 }, { "start": 7753.2, "end": 7756.58, "probability": 0.9739 }, { "start": 7757.18, "end": 7761.12, "probability": 0.1441 }, { "start": 7762.82, "end": 7763.34, "probability": 0.655 }, { "start": 7763.98, "end": 7764.33, "probability": 0.4443 }, { "start": 7765.14, "end": 7770.18, "probability": 0.7723 }, { "start": 7771.06, "end": 7772.18, "probability": 0.7894 }, { "start": 7773.3, "end": 7773.38, "probability": 0.0934 }, { "start": 7773.46, "end": 7773.7, "probability": 0.6103 }, { "start": 7773.76, "end": 7773.88, "probability": 0.5512 }, { "start": 7774.32, "end": 7776.2, "probability": 0.9213 }, { "start": 7776.44, "end": 7778.56, "probability": 0.9825 }, { "start": 7779.3, "end": 7780.0, "probability": 0.3683 }, { "start": 7781.12, "end": 7781.64, "probability": 0.4286 }, { "start": 7782.34, "end": 7785.38, "probability": 0.6925 }, { "start": 7786.76, "end": 7787.36, "probability": 0.5499 }, { "start": 7788.36, "end": 7789.14, "probability": 0.7487 }, { "start": 7790.54, "end": 7791.14, "probability": 0.5696 }, { "start": 7791.98, "end": 7792.19, "probability": 0.0405 }, { "start": 7794.0, "end": 7794.98, "probability": 0.2099 }, { "start": 7797.44, "end": 7800.14, "probability": 0.9 }, { "start": 7800.94, "end": 7804.2, "probability": 0.9384 }, { "start": 7805.18, "end": 7805.62, "probability": 0.887 }, { "start": 7807.68, "end": 7810.02, "probability": 0.7465 }, { "start": 7811.14, "end": 7812.26, "probability": 0.6424 }, { "start": 7812.9, "end": 7813.6, "probability": 0.7333 }, { "start": 7815.22, "end": 7819.82, "probability": 0.9451 }, { "start": 7819.82, "end": 7826.88, "probability": 0.9679 }, { "start": 7828.81, "end": 7830.0, "probability": 0.0158 }, { "start": 7830.12, "end": 7830.12, "probability": 0.0505 }, { "start": 7830.16, "end": 7830.9, "probability": 0.4346 }, { "start": 7832.36, "end": 7833.7, "probability": 0.6854 }, { "start": 7835.72, "end": 7836.56, "probability": 0.1921 }, { "start": 7839.4, "end": 7844.34, "probability": 0.0615 }, { "start": 7845.6, "end": 7852.42, "probability": 0.0154 }, { "start": 7852.42, "end": 7858.0, "probability": 0.052 }, { "start": 7859.24, "end": 7861.72, "probability": 0.3477 }, { "start": 7862.3, "end": 7863.04, "probability": 0.3583 }, { "start": 7863.74, "end": 7864.48, "probability": 0.0613 }, { "start": 7866.0, "end": 7867.02, "probability": 0.4314 }, { "start": 7869.42, "end": 7870.22, "probability": 0.5255 }, { "start": 7870.36, "end": 7876.4, "probability": 0.3945 }, { "start": 7877.44, "end": 7878.16, "probability": 0.0449 }, { "start": 7880.04, "end": 7886.54, "probability": 0.1561 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.0, "end": 8199.0, "probability": 0.0 }, { "start": 8199.46, "end": 8200.5, "probability": 0.1718 }, { "start": 8201.7, "end": 8205.58, "probability": 0.2519 }, { "start": 8210.62, "end": 8211.5, "probability": 0.2613 }, { "start": 8213.1, "end": 8215.92, "probability": 0.1574 }, { "start": 8217.2, "end": 8217.88, "probability": 0.0664 }, { "start": 8218.64, "end": 8221.94, "probability": 0.0709 }, { "start": 8222.94, "end": 8223.82, "probability": 0.0521 }, { "start": 8223.84, "end": 8224.42, "probability": 0.0614 }, { "start": 8227.34, "end": 8228.08, "probability": 0.0063 }, { "start": 8383.0, "end": 8383.0, "probability": 0.0 }, { "start": 8383.0, "end": 8383.0, "probability": 0.0 }, { "start": 8383.0, "end": 8383.0, "probability": 0.0 }, { "start": 8383.0, "end": 8383.0, "probability": 0.0 }, { "start": 8383.0, "end": 8383.0, "probability": 0.0 }, { "start": 8383.0, "end": 8383.0, "probability": 0.0 }, { "start": 8383.0, "end": 8383.0, "probability": 0.0 }, { "start": 8383.0, "end": 8383.0, "probability": 0.0 }, { "start": 8383.0, "end": 8383.0, "probability": 0.0 }, { "start": 8383.0, "end": 8383.0, "probability": 0.0 }, { "start": 8383.0, "end": 8383.0, "probability": 0.0 }, { "start": 8383.0, "end": 8383.0, "probability": 0.0 }, { "start": 8383.0, "end": 8383.0, "probability": 0.0 }, { "start": 8383.0, "end": 8383.0, "probability": 0.0 }, { "start": 8383.0, "end": 8383.0, "probability": 0.0 }, { "start": 8383.0, "end": 8383.0, "probability": 0.0 }, { "start": 8383.0, "end": 8383.0, "probability": 0.0 }, { "start": 8383.0, "end": 8383.0, "probability": 0.0 }, { "start": 8383.0, "end": 8383.0, "probability": 0.0 }, { "start": 8383.0, "end": 8383.0, "probability": 0.0 }, { "start": 8383.0, "end": 8383.0, "probability": 0.0 }, { "start": 8383.0, "end": 8383.0, "probability": 0.0 }, { "start": 8383.0, "end": 8383.0, "probability": 0.0 }, { "start": 8383.0, "end": 8383.0, "probability": 0.0 }, { "start": 8383.0, "end": 8383.0, "probability": 0.0 }, { "start": 8383.0, "end": 8383.0, "probability": 0.0 }, { "start": 8383.0, "end": 8383.0, "probability": 0.0 }, { "start": 8383.0, "end": 8383.0, "probability": 0.0 }, { "start": 8383.0, "end": 8383.0, "probability": 0.0 }, { "start": 8383.0, "end": 8383.0, "probability": 0.0 }, { "start": 8383.0, "end": 8383.0, "probability": 0.0 }, { "start": 8383.0, "end": 8383.0, "probability": 0.0 }, { "start": 8383.0, "end": 8383.0, "probability": 0.0 }, { "start": 8383.0, "end": 8383.0, "probability": 0.0 }, { "start": 8383.0, "end": 8383.0, "probability": 0.0 }, { "start": 8383.0, "end": 8383.0, "probability": 0.0 }, { "start": 8383.0, "end": 8383.0, "probability": 0.0 }, { "start": 8383.0, "end": 8383.0, "probability": 0.0 }, { "start": 8383.0, "end": 8383.0, "probability": 0.0 }, { "start": 8383.0, "end": 8383.0, "probability": 0.0 }, { "start": 8383.0, "end": 8383.0, "probability": 0.0 }, { "start": 8383.0, "end": 8383.0, "probability": 0.0 }, { "start": 8383.0, "end": 8383.0, "probability": 0.0 }, { "start": 8383.0, "end": 8383.0, "probability": 0.0 }, { "start": 8383.0, "end": 8383.0, "probability": 0.0 }, { "start": 8383.0, "end": 8383.0, "probability": 0.0 }, { "start": 8383.0, "end": 8383.0, "probability": 0.0 }, { "start": 8383.0, "end": 8383.0, "probability": 0.0 }, { "start": 8383.0, "end": 8383.0, "probability": 0.0 }, { "start": 8383.24, "end": 8388.36, "probability": 0.0471 }, { "start": 8389.37, "end": 8389.5, "probability": 0.0485 }, { "start": 8389.5, "end": 8389.5, "probability": 0.1217 }, { "start": 8389.5, "end": 8391.24, "probability": 0.18 }, { "start": 8391.24, "end": 8392.71, "probability": 0.0552 }, { "start": 8394.6, "end": 8395.78, "probability": 0.1037 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8632.0, "end": 8632.0, "probability": 0.0 }, { "start": 8635.19, "end": 8638.42, "probability": 0.4583 }, { "start": 8638.43, "end": 8639.4, "probability": 0.0534 }, { "start": 8640.14, "end": 8640.68, "probability": 0.0008 }, { "start": 8642.8, "end": 8643.92, "probability": 0.0111 }, { "start": 8649.96, "end": 8651.28, "probability": 0.3074 }, { "start": 8652.32, "end": 8653.56, "probability": 0.403 }, { "start": 8654.24, "end": 8656.68, "probability": 0.7683 }, { "start": 8657.24, "end": 8660.52, "probability": 0.1544 }, { "start": 8661.14, "end": 8662.91, "probability": 0.1223 }, { "start": 8663.16, "end": 8664.3, "probability": 0.288 }, { "start": 8665.46, "end": 8665.77, "probability": 0.058 }, { "start": 8812.0, "end": 8812.0, "probability": 0.0 }, { "start": 8812.0, "end": 8812.0, "probability": 0.0 }, { "start": 8812.0, "end": 8812.0, "probability": 0.0 }, { "start": 8812.0, "end": 8812.0, "probability": 0.0 }, { "start": 8812.0, "end": 8812.0, "probability": 0.0 }, { "start": 8812.0, "end": 8812.0, "probability": 0.0 }, { "start": 8812.0, "end": 8812.0, "probability": 0.0 }, { "start": 8812.0, "end": 8812.0, "probability": 0.0 }, { "start": 8812.0, "end": 8812.0, "probability": 0.0 }, { "start": 8812.0, "end": 8812.0, "probability": 0.0 }, { "start": 8812.0, "end": 8812.0, "probability": 0.0 }, { "start": 8812.0, "end": 8812.0, "probability": 0.0 }, { "start": 8812.0, "end": 8812.0, "probability": 0.0 }, { "start": 8812.0, "end": 8812.0, "probability": 0.0 }, { "start": 8812.0, "end": 8812.0, "probability": 0.0 }, { "start": 8812.0, "end": 8812.0, "probability": 0.0 }, { "start": 8812.0, "end": 8812.0, "probability": 0.0 }, { "start": 8812.0, "end": 8812.0, "probability": 0.0 }, { "start": 8812.0, "end": 8812.0, "probability": 0.0 }, { "start": 8812.0, "end": 8812.0, "probability": 0.0 }, { "start": 8812.0, "end": 8812.0, "probability": 0.0 }, { "start": 8812.0, "end": 8812.0, "probability": 0.0 }, { "start": 8812.0, "end": 8812.0, "probability": 0.0 }, { "start": 8812.0, "end": 8812.0, "probability": 0.0 }, { "start": 8812.0, "end": 8812.0, "probability": 0.0 }, { "start": 8812.0, "end": 8812.0, "probability": 0.0 }, { "start": 8812.0, "end": 8812.0, "probability": 0.0 }, { "start": 8812.0, "end": 8812.0, "probability": 0.0 }, { "start": 8812.0, "end": 8812.0, "probability": 0.0 }, { "start": 8812.0, "end": 8812.0, "probability": 0.0 }, { "start": 8812.0, "end": 8812.0, "probability": 0.0 }, { "start": 8812.0, "end": 8812.0, "probability": 0.0 }, { "start": 8812.0, "end": 8812.0, "probability": 0.0 }, { "start": 8812.64, "end": 8814.12, "probability": 0.4316 }, { "start": 8818.9, "end": 8821.96, "probability": 0.8913 }, { "start": 8822.5, "end": 8823.02, "probability": 0.8288 }, { "start": 8824.02, "end": 8826.08, "probability": 0.982 }, { "start": 8828.06, "end": 8828.66, "probability": 0.7013 }, { "start": 8830.62, "end": 8831.78, "probability": 0.9985 }, { "start": 8832.92, "end": 8838.6, "probability": 0.9764 }, { "start": 8842.3, "end": 8843.64, "probability": 0.4051 }, { "start": 8844.58, "end": 8845.64, "probability": 0.6412 }, { "start": 8847.14, "end": 8847.38, "probability": 0.1731 }, { "start": 8847.38, "end": 8849.52, "probability": 0.8682 }, { "start": 8850.76, "end": 8851.25, "probability": 0.7274 }, { "start": 8854.26, "end": 8854.98, "probability": 0.7305 }, { "start": 8855.1, "end": 8856.58, "probability": 0.9797 }, { "start": 8856.82, "end": 8857.98, "probability": 0.799 }, { "start": 8858.08, "end": 8862.44, "probability": 0.8931 }, { "start": 8863.08, "end": 8868.58, "probability": 0.9741 }, { "start": 8871.5, "end": 8873.84, "probability": 0.9857 }, { "start": 8874.8, "end": 8875.54, "probability": 0.8684 }, { "start": 8876.88, "end": 8877.7, "probability": 0.9564 }, { "start": 8880.86, "end": 8883.8, "probability": 0.9744 }, { "start": 8884.52, "end": 8886.32, "probability": 0.8086 }, { "start": 8887.12, "end": 8889.4, "probability": 0.7021 }, { "start": 8891.14, "end": 8892.7, "probability": 0.4769 }, { "start": 8895.38, "end": 8899.36, "probability": 0.5368 }, { "start": 8906.32, "end": 8906.42, "probability": 0.1131 }, { "start": 8906.42, "end": 8906.9, "probability": 0.7863 }, { "start": 8908.52, "end": 8909.08, "probability": 0.9795 }, { "start": 8911.28, "end": 8911.78, "probability": 0.9701 }, { "start": 8912.46, "end": 8913.14, "probability": 0.9935 }, { "start": 8916.66, "end": 8917.18, "probability": 0.9542 }, { "start": 8917.9, "end": 8919.96, "probability": 0.8558 }, { "start": 8920.6, "end": 8920.84, "probability": 0.8719 }, { "start": 8922.0, "end": 8923.36, "probability": 0.9961 }, { "start": 8925.3, "end": 8926.21, "probability": 0.2706 }, { "start": 8927.66, "end": 8930.46, "probability": 0.0523 }, { "start": 8930.52, "end": 8934.04, "probability": 0.0427 }, { "start": 8934.8, "end": 8937.64, "probability": 0.1242 }, { "start": 8938.66, "end": 8939.52, "probability": 0.127 }, { "start": 8940.76, "end": 8944.06, "probability": 0.0851 }, { "start": 8944.16, "end": 8945.32, "probability": 0.0191 }, { "start": 8948.4, "end": 8949.44, "probability": 0.0506 }, { "start": 8951.08, "end": 8953.64, "probability": 0.028 }, { "start": 8953.64, "end": 8953.88, "probability": 0.0129 }, { "start": 8954.58, "end": 8957.18, "probability": 0.0652 }, { "start": 8959.96, "end": 8960.5, "probability": 0.0794 }, { "start": 8960.5, "end": 8960.8, "probability": 0.2386 }, { "start": 8961.86, "end": 8963.34, "probability": 0.0478 }, { "start": 8963.52, "end": 8963.9, "probability": 0.139 }, { "start": 8969.16, "end": 8972.58, "probability": 0.0456 }, { "start": 8973.79, "end": 8975.2, "probability": 0.0539 }, { "start": 8975.98, "end": 8976.66, "probability": 0.0316 }, { "start": 8977.2, "end": 8977.88, "probability": 0.0554 }, { "start": 8980.58, "end": 8980.74, "probability": 0.0085 }, { "start": 9094.0, "end": 9094.0, "probability": 0.0 }, { "start": 9094.0, "end": 9094.0, "probability": 0.0 }, { "start": 9094.0, "end": 9094.0, "probability": 0.0 }, { "start": 9094.0, "end": 9094.0, "probability": 0.0 }, { "start": 9094.0, "end": 9094.0, "probability": 0.0 }, { "start": 9094.0, "end": 9094.0, "probability": 0.0 }, { "start": 9094.0, "end": 9094.0, "probability": 0.0 }, { "start": 9094.0, "end": 9094.0, "probability": 0.0 }, { "start": 9094.0, "end": 9094.0, "probability": 0.0 }, { "start": 9094.0, "end": 9094.0, "probability": 0.0 }, { "start": 9094.0, "end": 9094.0, "probability": 0.0 }, { "start": 9094.0, "end": 9094.0, "probability": 0.0 }, { "start": 9094.0, "end": 9094.0, "probability": 0.0 }, { "start": 9094.0, "end": 9094.0, "probability": 0.0 }, { "start": 9094.0, "end": 9094.0, "probability": 0.0 }, { "start": 9094.0, "end": 9094.0, "probability": 0.0 }, { "start": 9094.0, "end": 9094.0, "probability": 0.0 }, { "start": 9094.0, "end": 9094.0, "probability": 0.0 }, { "start": 9094.0, "end": 9094.0, "probability": 0.0 }, { "start": 9094.0, "end": 9094.0, "probability": 0.0 }, { "start": 9094.0, "end": 9094.0, "probability": 0.0 }, { "start": 9094.0, "end": 9094.0, "probability": 0.0 }, { "start": 9094.0, "end": 9094.0, "probability": 0.0 }, { "start": 9094.0, "end": 9094.0, "probability": 0.0 }, { "start": 9094.0, "end": 9094.0, "probability": 0.0 }, { "start": 9094.0, "end": 9094.0, "probability": 0.0 }, { "start": 9094.0, "end": 9094.0, "probability": 0.0 }, { "start": 9094.0, "end": 9094.0, "probability": 0.0 }, { "start": 9094.0, "end": 9094.0, "probability": 0.0 }, { "start": 9094.0, "end": 9094.0, "probability": 0.0 }, { "start": 9094.0, "end": 9094.0, "probability": 0.0 }, { "start": 9094.0, "end": 9094.0, "probability": 0.0 }, { "start": 9094.0, "end": 9094.0, "probability": 0.0 }, { "start": 9094.0, "end": 9094.0, "probability": 0.0 }, { "start": 9094.0, "end": 9094.0, "probability": 0.0 }, { "start": 9094.0, "end": 9094.0, "probability": 0.0 }, { "start": 9094.0, "end": 9094.0, "probability": 0.0 }, { "start": 9094.0, "end": 9094.0, "probability": 0.0 }, { "start": 9094.0, "end": 9094.0, "probability": 0.0 }, { "start": 9094.0, "end": 9094.0, "probability": 0.0 }, { "start": 9094.0, "end": 9094.0, "probability": 0.0 }, { "start": 9094.0, "end": 9094.0, "probability": 0.0 }, { "start": 9094.0, "end": 9094.0, "probability": 0.0 }, { "start": 9094.0, "end": 9094.0, "probability": 0.0 }, { "start": 9094.0, "end": 9094.0, "probability": 0.0 }, { "start": 9094.0, "end": 9094.0, "probability": 0.0 }, { "start": 9094.0, "end": 9094.0, "probability": 0.0 }, { "start": 9094.0, "end": 9094.0, "probability": 0.0 }, { "start": 9094.0, "end": 9094.0, "probability": 0.0 }, { "start": 9094.0, "end": 9094.0, "probability": 0.0 }, { "start": 9094.0, "end": 9094.0, "probability": 0.0 }, { "start": 9094.28, "end": 9096.56, "probability": 0.6279 }, { "start": 9098.16, "end": 9098.62, "probability": 0.0119 }, { "start": 9105.08, "end": 9105.7, "probability": 0.204 }, { "start": 9107.88, "end": 9108.16, "probability": 0.0768 }, { "start": 9108.16, "end": 9109.16, "probability": 0.2109 }, { "start": 9110.36, "end": 9111.5, "probability": 0.057 }, { "start": 9116.02, "end": 9117.24, "probability": 0.0194 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9556.0, "end": 9556.0, "probability": 0.0 }, { "start": 9559.36, "end": 9560.16, "probability": 0.5397 }, { "start": 9560.98, "end": 9562.02, "probability": 0.4332 }, { "start": 9562.26, "end": 9563.2, "probability": 0.046 }, { "start": 9563.2, "end": 9564.76, "probability": 0.0406 }, { "start": 9565.7, "end": 9569.9, "probability": 0.13 }, { "start": 9571.12, "end": 9572.24, "probability": 0.2065 }, { "start": 9684.0, "end": 9684.0, "probability": 0.0 }, { "start": 9684.0, "end": 9684.0, "probability": 0.0 }, { "start": 9684.0, "end": 9684.0, "probability": 0.0 }, { "start": 9684.0, "end": 9684.0, "probability": 0.0 }, { "start": 9684.0, "end": 9684.0, "probability": 0.0 }, { "start": 9684.0, "end": 9684.0, "probability": 0.0 }, { "start": 9684.0, "end": 9684.0, "probability": 0.0 }, { "start": 9684.0, "end": 9684.0, "probability": 0.0 }, { "start": 9684.0, "end": 9684.0, "probability": 0.0 }, { "start": 9684.0, "end": 9684.0, "probability": 0.0 }, { "start": 9684.0, "end": 9684.0, "probability": 0.0 }, { "start": 9684.0, "end": 9684.0, "probability": 0.0 }, { "start": 9684.0, "end": 9684.0, "probability": 0.0 }, { "start": 9684.0, "end": 9684.0, "probability": 0.0 }, { "start": 9684.0, "end": 9684.0, "probability": 0.0 }, { "start": 9684.0, "end": 9684.0, "probability": 0.0 }, { "start": 9684.0, "end": 9684.0, "probability": 0.0 }, { "start": 9684.0, "end": 9684.0, "probability": 0.0 }, { "start": 9684.0, "end": 9684.0, "probability": 0.0 }, { "start": 9684.0, "end": 9684.0, "probability": 0.0 }, { "start": 9684.0, "end": 9684.0, "probability": 0.0 }, { "start": 9684.0, "end": 9684.0, "probability": 0.0 }, { "start": 9684.0, "end": 9684.0, "probability": 0.0 }, { "start": 9684.0, "end": 9684.0, "probability": 0.0 }, { "start": 9684.0, "end": 9684.0, "probability": 0.0 }, { "start": 9684.0, "end": 9684.0, "probability": 0.0 }, { "start": 9684.0, "end": 9684.0, "probability": 0.0 }, { "start": 9684.0, "end": 9684.0, "probability": 0.0 }, { "start": 9684.0, "end": 9684.0, "probability": 0.0 }, { "start": 9684.0, "end": 9684.0, "probability": 0.0 }, { "start": 9684.0, "end": 9684.0, "probability": 0.0 }, { "start": 9684.0, "end": 9684.0, "probability": 0.0 }, { "start": 9684.0, "end": 9684.0, "probability": 0.0 }, { "start": 9684.0, "end": 9684.0, "probability": 0.0 }, { "start": 9684.0, "end": 9684.0, "probability": 0.0 }, { "start": 9684.0, "end": 9684.0, "probability": 0.0 }, { "start": 9684.0, "end": 9684.0, "probability": 0.0 }, { "start": 9684.0, "end": 9684.0, "probability": 0.0 }, { "start": 9684.0, "end": 9684.0, "probability": 0.0 }, { "start": 9684.22, "end": 9684.72, "probability": 0.446 }, { "start": 9685.26, "end": 9689.52, "probability": 0.0831 }, { "start": 9689.86, "end": 9694.68, "probability": 0.1415 }, { "start": 9694.68, "end": 9697.56, "probability": 0.1365 }, { "start": 9697.78, "end": 9697.78, "probability": 0.0364 }, { "start": 9697.98, "end": 9699.16, "probability": 0.0932 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.0, "end": 9867.0, "probability": 0.0 }, { "start": 9867.24, "end": 9868.38, "probability": 0.0162 }, { "start": 9868.44, "end": 9870.7, "probability": 0.0609 }, { "start": 9870.7, "end": 9873.13, "probability": 0.0315 }, { "start": 9874.16, "end": 9876.28, "probability": 0.0782 }, { "start": 9877.57, "end": 9878.16, "probability": 0.0094 }, { "start": 9878.16, "end": 9878.26, "probability": 0.0581 }, { "start": 9989.0, "end": 9989.0, "probability": 0.0 }, { "start": 9989.0, "end": 9989.0, "probability": 0.0 }, { "start": 9989.0, "end": 9989.0, "probability": 0.0 }, { "start": 9989.0, "end": 9989.0, "probability": 0.0 }, { "start": 9989.0, "end": 9989.0, "probability": 0.0 }, { "start": 9989.0, "end": 9989.0, "probability": 0.0 }, { "start": 9989.0, "end": 9989.0, "probability": 0.0 }, { "start": 9989.0, "end": 9989.0, "probability": 0.0 }, { "start": 9989.0, "end": 9989.0, "probability": 0.0 }, { "start": 9989.0, "end": 9989.0, "probability": 0.0 }, { "start": 9989.0, "end": 9989.0, "probability": 0.0 }, { "start": 9989.0, "end": 9989.0, "probability": 0.0 }, { "start": 9989.0, "end": 9989.0, "probability": 0.0 }, { "start": 9989.0, "end": 9989.0, "probability": 0.0 }, { "start": 9989.0, "end": 9989.0, "probability": 0.0 }, { "start": 9989.0, "end": 9989.0, "probability": 0.0 }, { "start": 9989.0, "end": 9989.0, "probability": 0.0 }, { "start": 9989.0, "end": 9989.0, "probability": 0.0 }, { "start": 9989.0, "end": 9989.0, "probability": 0.0 }, { "start": 9989.0, "end": 9989.0, "probability": 0.0 }, { "start": 9989.0, "end": 9989.0, "probability": 0.0 }, { "start": 9989.0, "end": 9989.0, "probability": 0.0 }, { "start": 9989.0, "end": 9989.0, "probability": 0.0 }, { "start": 9989.0, "end": 9989.0, "probability": 0.0 }, { "start": 9989.0, "end": 9989.0, "probability": 0.0 }, { "start": 9989.0, "end": 9989.0, "probability": 0.0 }, { "start": 9989.0, "end": 9989.0, "probability": 0.0 }, { "start": 9989.0, "end": 9989.0, "probability": 0.0 }, { "start": 9989.0, "end": 9989.0, "probability": 0.0 }, { "start": 9989.0, "end": 9989.0, "probability": 0.0 }, { "start": 9989.0, "end": 9989.0, "probability": 0.0 }, { "start": 9989.0, "end": 9989.0, "probability": 0.0 }, { "start": 9989.0, "end": 9989.0, "probability": 0.0 }, { "start": 9989.0, "end": 9989.0, "probability": 0.0 }, { "start": 9989.0, "end": 9989.0, "probability": 0.0 }, { "start": 9989.0, "end": 9989.0, "probability": 0.0 }, { "start": 9989.0, "end": 9989.0, "probability": 0.0 }, { "start": 9989.0, "end": 9989.0, "probability": 0.0 }, { "start": 9989.0, "end": 9989.0, "probability": 0.0 }, { "start": 9989.0, "end": 9989.0, "probability": 0.0 }, { "start": 9989.0, "end": 9989.0, "probability": 0.0 }, { "start": 9989.0, "end": 9989.0, "probability": 0.0 }, { "start": 9989.0, "end": 9989.0, "probability": 0.0 }, { "start": 9989.12, "end": 9989.96, "probability": 0.0123 }, { "start": 9989.96, "end": 9991.98, "probability": 0.3258 }, { "start": 9992.02, "end": 9992.44, "probability": 0.3516 }, { "start": 9993.24, "end": 9995.56, "probability": 0.1602 }, { "start": 9995.74, "end": 9999.54, "probability": 0.1057 }, { "start": 10000.14, "end": 10003.58, "probability": 0.1179 }, { "start": 10004.46, "end": 10008.51, "probability": 0.1048 }, { "start": 10009.48, "end": 10010.22, "probability": 0.0338 }, { "start": 10112.0, "end": 10112.0, "probability": 0.0 }, { "start": 10112.0, "end": 10112.0, "probability": 0.0 }, { "start": 10112.0, "end": 10112.0, "probability": 0.0 }, { "start": 10112.0, "end": 10112.0, "probability": 0.0 }, { "start": 10112.0, "end": 10112.0, "probability": 0.0 }, { "start": 10112.0, "end": 10112.0, "probability": 0.0 }, { "start": 10112.0, "end": 10112.0, "probability": 0.0 }, { "start": 10112.0, "end": 10112.0, "probability": 0.0 }, { "start": 10112.0, "end": 10112.0, "probability": 0.0 }, { "start": 10112.0, "end": 10112.0, "probability": 0.0 }, { "start": 10112.0, "end": 10112.0, "probability": 0.0 }, { "start": 10112.0, "end": 10112.0, "probability": 0.0 }, { "start": 10112.0, "end": 10112.0, "probability": 0.0 }, { "start": 10112.0, "end": 10112.0, "probability": 0.0 }, { "start": 10112.0, "end": 10112.0, "probability": 0.0 }, { "start": 10112.0, "end": 10112.0, "probability": 0.0 }, { "start": 10112.0, "end": 10112.0, "probability": 0.0 }, { "start": 10112.0, "end": 10112.0, "probability": 0.0 }, { "start": 10112.12, "end": 10112.82, "probability": 0.0303 }, { "start": 10113.3, "end": 10118.52, "probability": 0.0242 }, { "start": 10118.52, "end": 10120.24, "probability": 0.0422 }, { "start": 10120.58, "end": 10124.22, "probability": 0.046 }, { "start": 10126.78, "end": 10129.26, "probability": 0.0496 }, { "start": 10236.0, "end": 10236.0, "probability": 0.0 }, { "start": 10236.0, "end": 10236.0, "probability": 0.0 }, { "start": 10236.0, "end": 10236.0, "probability": 0.0 }, { "start": 10236.0, "end": 10236.0, "probability": 0.0 }, { "start": 10236.0, "end": 10236.0, "probability": 0.0 }, { "start": 10236.0, "end": 10236.0, "probability": 0.0 }, { "start": 10236.0, "end": 10236.0, "probability": 0.0 }, { "start": 10236.0, "end": 10236.0, "probability": 0.0 }, { "start": 10236.0, "end": 10236.0, "probability": 0.0 }, { "start": 10236.0, "end": 10236.0, "probability": 0.0 }, { "start": 10236.0, "end": 10236.0, "probability": 0.0 }, { "start": 10236.0, "end": 10236.0, "probability": 0.0 }, { "start": 10236.0, "end": 10236.0, "probability": 0.0 }, { "start": 10236.0, "end": 10236.0, "probability": 0.0 }, { "start": 10236.0, "end": 10236.0, "probability": 0.0 }, { "start": 10236.0, "end": 10236.0, "probability": 0.0 }, { "start": 10236.0, "end": 10236.0, "probability": 0.0 }, { "start": 10236.0, "end": 10236.0, "probability": 0.0 }, { "start": 10236.0, "end": 10236.0, "probability": 0.0 }, { "start": 10236.0, "end": 10236.0, "probability": 0.0 }, { "start": 10236.0, "end": 10236.0, "probability": 0.0 }, { "start": 10236.0, "end": 10236.0, "probability": 0.0 }, { "start": 10236.0, "end": 10236.0, "probability": 0.0 }, { "start": 10236.0, "end": 10236.0, "probability": 0.0 }, { "start": 10236.0, "end": 10236.0, "probability": 0.0 }, { "start": 10236.0, "end": 10236.0, "probability": 0.0 }, { "start": 10236.0, "end": 10236.0, "probability": 0.0 }, { "start": 10236.0, "end": 10236.0, "probability": 0.0 }, { "start": 10236.0, "end": 10236.0, "probability": 0.0 }, { "start": 10236.0, "end": 10236.0, "probability": 0.0 }, { "start": 10236.0, "end": 10236.0, "probability": 0.0 }, { "start": 10236.0, "end": 10236.0, "probability": 0.0 }, { "start": 10236.0, "end": 10236.0, "probability": 0.0 }, { "start": 10236.0, "end": 10236.0, "probability": 0.0 }, { "start": 10236.0, "end": 10236.0, "probability": 0.0 }, { "start": 10236.0, "end": 10236.0, "probability": 0.0 }, { "start": 10236.0, "end": 10236.0, "probability": 0.0 }, { "start": 10236.0, "end": 10236.0, "probability": 0.0 }, { "start": 10236.28, "end": 10237.26, "probability": 0.0739 }, { "start": 10237.7, "end": 10238.28, "probability": 0.0322 }, { "start": 10242.25, "end": 10245.67, "probability": 0.0848 }, { "start": 10247.02, "end": 10253.18, "probability": 0.0358 }, { "start": 10364.0, "end": 10364.0, "probability": 0.0 }, { "start": 10364.0, "end": 10364.0, "probability": 0.0 }, { "start": 10364.0, "end": 10364.0, "probability": 0.0 }, { "start": 10364.0, "end": 10364.0, "probability": 0.0 }, { "start": 10364.0, "end": 10364.0, "probability": 0.0 }, { "start": 10364.0, "end": 10364.0, "probability": 0.0 }, { "start": 10364.0, "end": 10364.0, "probability": 0.0 }, { "start": 10364.0, "end": 10364.0, "probability": 0.0 }, { "start": 10364.0, "end": 10364.0, "probability": 0.0 }, { "start": 10364.0, "end": 10364.0, "probability": 0.0 }, { "start": 10364.0, "end": 10364.0, "probability": 0.0 }, { "start": 10364.0, "end": 10364.0, "probability": 0.0 }, { "start": 10364.0, "end": 10364.0, "probability": 0.0 }, { "start": 10364.0, "end": 10364.0, "probability": 0.0 }, { "start": 10364.0, "end": 10364.0, "probability": 0.0 }, { "start": 10364.0, "end": 10364.0, "probability": 0.0 }, { "start": 10364.0, "end": 10364.0, "probability": 0.0 }, { "start": 10364.0, "end": 10364.0, "probability": 0.0 }, { "start": 10364.0, "end": 10364.0, "probability": 0.0 }, { "start": 10364.0, "end": 10364.0, "probability": 0.0 }, { "start": 10364.0, "end": 10364.0, "probability": 0.0 }, { "start": 10364.0, "end": 10364.0, "probability": 0.0 }, { "start": 10364.0, "end": 10364.0, "probability": 0.0 }, { "start": 10364.0, "end": 10364.0, "probability": 0.0 }, { "start": 10364.0, "end": 10364.0, "probability": 0.0 }, { "start": 10364.0, "end": 10364.0, "probability": 0.0 }, { "start": 10364.0, "end": 10364.0, "probability": 0.0 }, { "start": 10364.0, "end": 10364.0, "probability": 0.0 }, { "start": 10364.0, "end": 10364.0, "probability": 0.0 }, { "start": 10364.22, "end": 10364.22, "probability": 0.0372 }, { "start": 10364.22, "end": 10365.12, "probability": 0.0742 }, { "start": 10366.64, "end": 10372.04, "probability": 0.9832 }, { "start": 10373.02, "end": 10377.62, "probability": 0.9885 }, { "start": 10377.68, "end": 10382.52, "probability": 0.8568 }, { "start": 10383.2, "end": 10384.0, "probability": 0.9414 }, { "start": 10385.22, "end": 10386.14, "probability": 0.1618 }, { "start": 10386.78, "end": 10387.12, "probability": 0.1281 }, { "start": 10387.2, "end": 10387.68, "probability": 0.045 }, { "start": 10389.1, "end": 10393.4, "probability": 0.2069 }, { "start": 10394.44, "end": 10394.44, "probability": 0.003 }, { "start": 10399.24, "end": 10401.48, "probability": 0.3232 }, { "start": 10402.32, "end": 10404.36, "probability": 0.3793 }, { "start": 10404.36, "end": 10406.66, "probability": 0.158 }, { "start": 10408.38, "end": 10411.06, "probability": 0.1406 }, { "start": 10411.3, "end": 10415.84, "probability": 0.0778 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10512.0, "end": 10512.0, "probability": 0.0 }, { "start": 10513.38, "end": 10513.88, "probability": 0.0098 }, { "start": 10516.73, "end": 10518.24, "probability": 0.0632 }, { "start": 10518.52, "end": 10519.92, "probability": 0.0678 }, { "start": 10521.48, "end": 10524.72, "probability": 0.0304 }, { "start": 10526.82, "end": 10526.86, "probability": 0.0123 }, { "start": 10646.16, "end": 10647.02, "probability": 0.0444 }, { "start": 10647.62, "end": 10649.62, "probability": 0.0124 }, { "start": 10650.36, "end": 10652.34, "probability": 0.0044 }, { "start": 10654.46, "end": 10655.06, "probability": 0.011 }, { "start": 10657.66, "end": 10660.14, "probability": 0.3056 }, { "start": 10661.31, "end": 10665.36, "probability": 0.1048 }, { "start": 10666.0, "end": 10669.9, "probability": 0.0535 }, { "start": 10670.66, "end": 10671.38, "probability": 0.2453 }, { "start": 10672.02, "end": 10675.86, "probability": 0.0203 }, { "start": 10785.0, "end": 10785.0, "probability": 0.0 }, { "start": 10785.0, "end": 10785.0, "probability": 0.0 }, { "start": 10785.0, "end": 10785.0, "probability": 0.0 }, { "start": 10785.0, "end": 10785.0, "probability": 0.0 }, { "start": 10785.0, "end": 10785.0, "probability": 0.0 }, { "start": 10785.0, "end": 10785.0, "probability": 0.0 }, { "start": 10785.0, "end": 10785.0, "probability": 0.0 }, { "start": 10785.0, "end": 10785.0, "probability": 0.0 }, { "start": 10785.0, "end": 10785.0, "probability": 0.0 }, { "start": 10785.0, "end": 10785.0, "probability": 0.0 }, { "start": 10785.0, "end": 10785.0, "probability": 0.0 }, { "start": 10785.0, "end": 10785.0, "probability": 0.0 }, { "start": 10785.0, "end": 10785.0, "probability": 0.0 }, { "start": 10785.0, "end": 10785.0, "probability": 0.0 }, { "start": 10785.0, "end": 10785.0, "probability": 0.0 }, { "start": 10785.0, "end": 10785.0, "probability": 0.0 }, { "start": 10785.0, "end": 10785.0, "probability": 0.0 }, { "start": 10785.0, "end": 10785.0, "probability": 0.0 }, { "start": 10785.0, "end": 10785.0, "probability": 0.0 }, { "start": 10785.0, "end": 10785.0, "probability": 0.0 }, { "start": 10785.0, "end": 10785.0, "probability": 0.0 }, { "start": 10785.0, "end": 10785.0, "probability": 0.0 }, { "start": 10785.0, "end": 10785.0, "probability": 0.0 }, { "start": 10785.0, "end": 10785.0, "probability": 0.0 }, { "start": 10785.0, "end": 10785.0, "probability": 0.0 }, { "start": 10785.0, "end": 10785.0, "probability": 0.0 }, { "start": 10785.0, "end": 10785.0, "probability": 0.0 }, { "start": 10785.0, "end": 10785.0, "probability": 0.0 }, { "start": 10785.0, "end": 10785.0, "probability": 0.0 }, { "start": 10785.0, "end": 10785.0, "probability": 0.0 }, { "start": 10785.0, "end": 10785.0, "probability": 0.0 }, { "start": 10785.0, "end": 10785.0, "probability": 0.0 }, { "start": 10785.0, "end": 10785.0, "probability": 0.0 }, { "start": 10785.0, "end": 10785.0, "probability": 0.0 }, { "start": 10785.0, "end": 10785.0, "probability": 0.0 }, { "start": 10785.0, "end": 10785.0, "probability": 0.0 }, { "start": 10785.0, "end": 10785.0, "probability": 0.0 }, { "start": 10785.0, "end": 10785.0, "probability": 0.0 }, { "start": 10785.14, "end": 10786.9, "probability": 0.0623 }, { "start": 10788.55, "end": 10791.22, "probability": 0.0672 }, { "start": 10791.22, "end": 10793.5, "probability": 0.0712 }, { "start": 10793.78, "end": 10798.06, "probability": 0.0704 }, { "start": 10798.06, "end": 10802.44, "probability": 0.1256 }, { "start": 10953.0, "end": 10953.0, "probability": 0.0 }, { "start": 10953.0, "end": 10953.0, "probability": 0.0 }, { "start": 10953.0, "end": 10953.0, "probability": 0.0 }, { "start": 10953.0, "end": 10953.0, "probability": 0.0 }, { "start": 10953.0, "end": 10953.0, "probability": 0.0 }, { "start": 10953.0, "end": 10953.0, "probability": 0.0 }, { "start": 10953.0, "end": 10953.0, "probability": 0.0 }, { "start": 10953.0, "end": 10953.0, "probability": 0.0 }, { "start": 10953.0, "end": 10953.0, "probability": 0.0 }, { "start": 10953.0, "end": 10953.0, "probability": 0.0 }, { "start": 10953.0, "end": 10953.0, "probability": 0.0 }, { "start": 10953.0, "end": 10953.0, "probability": 0.0 }, { "start": 10953.0, "end": 10953.0, "probability": 0.0 }, { "start": 10953.0, "end": 10953.0, "probability": 0.0 }, { "start": 10953.0, "end": 10953.0, "probability": 0.0 }, { "start": 10953.0, "end": 10953.0, "probability": 0.0 }, { "start": 10953.0, "end": 10953.0, "probability": 0.0 }, { "start": 10953.0, "end": 10953.0, "probability": 0.0 }, { "start": 10953.0, "end": 10953.0, "probability": 0.0 }, { "start": 10953.0, "end": 10953.0, "probability": 0.0 }, { "start": 10953.0, "end": 10953.0, "probability": 0.0 }, { "start": 10953.0, "end": 10953.0, "probability": 0.0 }, { "start": 10953.0, "end": 10953.0, "probability": 0.0 }, { "start": 10953.0, "end": 10953.0, "probability": 0.0 }, { "start": 10953.0, "end": 10953.0, "probability": 0.0 }, { "start": 10953.0, "end": 10953.0, "probability": 0.0 }, { "start": 10953.0, "end": 10953.0, "probability": 0.0 }, { "start": 10953.0, "end": 10953.0, "probability": 0.0 }, { "start": 10953.0, "end": 10953.0, "probability": 0.0 }, { "start": 10953.0, "end": 10953.0, "probability": 0.0 }, { "start": 10953.0, "end": 10953.0, "probability": 0.0 }, { "start": 10953.0, "end": 10953.0, "probability": 0.0 }, { "start": 10953.0, "end": 10953.0, "probability": 0.0 }, { "start": 10953.0, "end": 10953.0, "probability": 0.0 }, { "start": 10953.0, "end": 10953.0, "probability": 0.0 }, { "start": 10953.0, "end": 10953.0, "probability": 0.0 }, { "start": 10953.0, "end": 10953.0, "probability": 0.0 }, { "start": 10953.0, "end": 10953.0, "probability": 0.0 }, { "start": 10953.0, "end": 10953.0, "probability": 0.0 }, { "start": 10953.0, "end": 10953.0, "probability": 0.0 }, { "start": 10953.0, "end": 10953.0, "probability": 0.0 }, { "start": 10953.0, "end": 10953.0, "probability": 0.0 }, { "start": 10953.0, "end": 10953.0, "probability": 0.0 }, { "start": 10953.0, "end": 10953.0, "probability": 0.0 }, { "start": 10953.0, "end": 10953.0, "probability": 0.0 }, { "start": 10953.26, "end": 10954.12, "probability": 0.2878 }, { "start": 10954.84, "end": 10955.7, "probability": 0.604 }, { "start": 10955.7, "end": 10956.6, "probability": 0.7095 }, { "start": 10956.66, "end": 10957.42, "probability": 0.411 }, { "start": 10957.42, "end": 10957.92, "probability": 0.6677 }, { "start": 10958.04, "end": 10959.5, "probability": 0.9629 }, { "start": 10959.56, "end": 10962.84, "probability": 0.8833 }, { "start": 10963.48, "end": 10963.86, "probability": 0.8965 }, { "start": 10964.84, "end": 10970.44, "probability": 0.9424 }, { "start": 10971.66, "end": 10972.08, "probability": 0.7485 }, { "start": 10973.02, "end": 10977.6, "probability": 0.9776 }, { "start": 10979.88, "end": 10983.56, "probability": 0.7872 }, { "start": 10984.74, "end": 10987.1, "probability": 0.9907 }, { "start": 10987.28, "end": 10991.2, "probability": 0.9969 }, { "start": 10992.14, "end": 10994.66, "probability": 0.9808 }, { "start": 10995.34, "end": 10999.26, "probability": 0.9975 }, { "start": 10999.94, "end": 11004.5, "probability": 0.9444 }, { "start": 11005.2, "end": 11008.28, "probability": 0.9982 }, { "start": 11008.9, "end": 11018.64, "probability": 0.9351 }, { "start": 11018.68, "end": 11021.79, "probability": 0.9857 }, { "start": 11022.58, "end": 11023.08, "probability": 0.5324 }, { "start": 11024.1, "end": 11029.98, "probability": 0.7787 }, { "start": 11030.7, "end": 11031.28, "probability": 0.8758 }, { "start": 11031.42, "end": 11033.62, "probability": 0.8447 }, { "start": 11034.4, "end": 11036.28, "probability": 0.3763 }, { "start": 11036.54, "end": 11036.54, "probability": 0.3093 }, { "start": 11036.54, "end": 11038.04, "probability": 0.2612 }, { "start": 11038.56, "end": 11040.28, "probability": 0.7084 }, { "start": 11040.38, "end": 11040.72, "probability": 0.3167 }, { "start": 11040.72, "end": 11045.12, "probability": 0.9609 }, { "start": 11045.28, "end": 11047.38, "probability": 0.9718 }, { "start": 11047.7, "end": 11052.94, "probability": 0.9907 }, { "start": 11053.28, "end": 11057.46, "probability": 0.9781 }, { "start": 11058.04, "end": 11059.82, "probability": 0.8538 }, { "start": 11060.28, "end": 11066.56, "probability": 0.9896 }, { "start": 11067.1, "end": 11068.06, "probability": 0.8813 }, { "start": 11068.46, "end": 11069.22, "probability": 0.7098 }, { "start": 11069.8, "end": 11076.78, "probability": 0.9281 }, { "start": 11077.34, "end": 11080.2, "probability": 0.9592 }, { "start": 11080.98, "end": 11085.54, "probability": 0.9901 }, { "start": 11086.06, "end": 11089.08, "probability": 0.8585 }, { "start": 11089.56, "end": 11091.34, "probability": 0.8249 }, { "start": 11091.46, "end": 11092.12, "probability": 0.4427 }, { "start": 11093.1, "end": 11099.16, "probability": 0.9728 }, { "start": 11099.58, "end": 11101.7, "probability": 0.9446 }, { "start": 11101.74, "end": 11104.46, "probability": 0.9116 }, { "start": 11104.58, "end": 11105.5, "probability": 0.4702 }, { "start": 11106.1, "end": 11108.28, "probability": 0.5369 }, { "start": 11108.44, "end": 11108.78, "probability": 0.7019 }, { "start": 11108.96, "end": 11114.48, "probability": 0.9843 }, { "start": 11114.48, "end": 11121.86, "probability": 0.9326 }, { "start": 11123.2, "end": 11125.44, "probability": 0.8897 }, { "start": 11125.92, "end": 11130.7, "probability": 0.9875 }, { "start": 11130.7, "end": 11134.64, "probability": 0.9951 }, { "start": 11135.28, "end": 11139.8, "probability": 0.9871 }, { "start": 11139.94, "end": 11143.82, "probability": 0.9502 }, { "start": 11144.56, "end": 11145.6, "probability": 0.825 }, { "start": 11146.04, "end": 11148.9, "probability": 0.6795 }, { "start": 11149.66, "end": 11154.08, "probability": 0.936 }, { "start": 11154.44, "end": 11155.44, "probability": 0.826 }, { "start": 11155.84, "end": 11157.78, "probability": 0.4504 }, { "start": 11158.16, "end": 11159.82, "probability": 0.9011 }, { "start": 11159.88, "end": 11160.9, "probability": 0.9062 }, { "start": 11161.28, "end": 11167.54, "probability": 0.9727 }, { "start": 11168.44, "end": 11169.42, "probability": 0.3761 }, { "start": 11169.42, "end": 11170.78, "probability": 0.2637 }, { "start": 11171.4, "end": 11175.7, "probability": 0.7057 }, { "start": 11176.22, "end": 11178.54, "probability": 0.9537 }, { "start": 11178.94, "end": 11181.66, "probability": 0.965 }, { "start": 11181.66, "end": 11182.42, "probability": 0.7313 }, { "start": 11182.42, "end": 11184.08, "probability": 0.6041 }, { "start": 11184.54, "end": 11186.94, "probability": 0.6364 }, { "start": 11187.66, "end": 11189.7, "probability": 0.6096 }, { "start": 11189.8, "end": 11190.62, "probability": 0.7603 }, { "start": 11190.64, "end": 11191.27, "probability": 0.8955 }, { "start": 11191.78, "end": 11193.46, "probability": 0.8884 }, { "start": 11193.46, "end": 11194.68, "probability": 0.9355 }, { "start": 11195.16, "end": 11196.44, "probability": 0.5869 }, { "start": 11197.5, "end": 11198.38, "probability": 0.7909 }, { "start": 11198.42, "end": 11198.54, "probability": 0.6143 }, { "start": 11198.56, "end": 11201.24, "probability": 0.98 }, { "start": 11201.24, "end": 11201.34, "probability": 0.5718 }, { "start": 11201.36, "end": 11202.95, "probability": 0.7438 }, { "start": 11203.22, "end": 11203.46, "probability": 0.3632 }, { "start": 11203.46, "end": 11204.7, "probability": 0.5192 }, { "start": 11204.7, "end": 11206.97, "probability": 0.9342 }, { "start": 11207.0, "end": 11208.86, "probability": 0.5001 }, { "start": 11208.86, "end": 11208.98, "probability": 0.6908 }, { "start": 11209.72, "end": 11210.22, "probability": 0.6461 }, { "start": 11210.22, "end": 11210.98, "probability": 0.8456 }, { "start": 11211.1, "end": 11213.66, "probability": 0.6584 }, { "start": 11214.16, "end": 11217.36, "probability": 0.7437 }, { "start": 11217.54, "end": 11219.26, "probability": 0.7051 }, { "start": 11219.9, "end": 11220.88, "probability": 0.9709 }, { "start": 11240.98, "end": 11242.16, "probability": 0.6207 }, { "start": 11242.26, "end": 11245.08, "probability": 0.684 }, { "start": 11245.42, "end": 11245.72, "probability": 0.299 }, { "start": 11246.06, "end": 11246.44, "probability": 0.2754 }, { "start": 11247.24, "end": 11253.38, "probability": 0.242 }, { "start": 11254.5, "end": 11257.14, "probability": 0.7181 }, { "start": 11262.26, "end": 11262.26, "probability": 0.1333 }, { "start": 11262.26, "end": 11263.56, "probability": 0.4901 }, { "start": 11264.04, "end": 11264.3, "probability": 0.1126 }, { "start": 11264.32, "end": 11265.12, "probability": 0.2851 }, { "start": 11265.42, "end": 11265.9, "probability": 0.3229 }, { "start": 11266.18, "end": 11267.68, "probability": 0.1016 }, { "start": 11268.64, "end": 11272.46, "probability": 0.5713 }, { "start": 11273.02, "end": 11274.64, "probability": 0.4124 }, { "start": 11275.23, "end": 11275.3, "probability": 0.9337 }, { "start": 11275.3, "end": 11275.42, "probability": 0.6802 }, { "start": 11275.86, "end": 11277.68, "probability": 0.8699 }, { "start": 11277.78, "end": 11280.98, "probability": 0.9929 }, { "start": 11281.5, "end": 11286.16, "probability": 0.7293 }, { "start": 11286.94, "end": 11290.12, "probability": 0.5092 }, { "start": 11292.84, "end": 11294.26, "probability": 0.1127 }, { "start": 11295.66, "end": 11298.14, "probability": 0.8011 }, { "start": 11299.26, "end": 11302.46, "probability": 0.5741 }, { "start": 11303.54, "end": 11307.54, "probability": 0.9352 }, { "start": 11307.98, "end": 11308.72, "probability": 0.6127 }, { "start": 11309.34, "end": 11311.14, "probability": 0.7246 }, { "start": 11313.03, "end": 11315.24, "probability": 0.7764 }, { "start": 11315.36, "end": 11316.14, "probability": 0.0251 }, { "start": 11316.26, "end": 11316.98, "probability": 0.4569 }, { "start": 11317.42, "end": 11321.47, "probability": 0.7061 }, { "start": 11322.56, "end": 11325.28, "probability": 0.7508 }, { "start": 11327.56, "end": 11328.94, "probability": 0.7438 }, { "start": 11329.06, "end": 11330.4, "probability": 0.6887 }, { "start": 11330.86, "end": 11333.72, "probability": 0.9889 }, { "start": 11333.76, "end": 11337.06, "probability": 0.9206 }, { "start": 11337.44, "end": 11338.8, "probability": 0.7876 }, { "start": 11338.92, "end": 11349.54, "probability": 0.828 }, { "start": 11349.72, "end": 11352.04, "probability": 0.9624 }, { "start": 11353.38, "end": 11356.04, "probability": 0.2613 }, { "start": 11356.36, "end": 11357.16, "probability": 0.7146 }, { "start": 11357.7, "end": 11359.18, "probability": 0.7287 }, { "start": 11359.8, "end": 11361.92, "probability": 0.1107 }, { "start": 11362.46, "end": 11363.26, "probability": 0.2564 }, { "start": 11364.1, "end": 11365.88, "probability": 0.6321 }, { "start": 11367.68, "end": 11368.8, "probability": 0.6029 }, { "start": 11369.58, "end": 11371.18, "probability": 0.6178 }, { "start": 11373.2, "end": 11380.92, "probability": 0.6664 }, { "start": 11382.0, "end": 11382.1, "probability": 0.0699 }, { "start": 11382.1, "end": 11382.38, "probability": 0.3948 }, { "start": 11383.68, "end": 11385.94, "probability": 0.8652 }, { "start": 11386.94, "end": 11389.38, "probability": 0.9259 }, { "start": 11390.08, "end": 11391.98, "probability": 0.9567 }, { "start": 11392.74, "end": 11395.08, "probability": 0.6559 }, { "start": 11396.04, "end": 11398.52, "probability": 0.8551 }, { "start": 11398.68, "end": 11402.46, "probability": 0.9425 }, { "start": 11402.54, "end": 11403.78, "probability": 0.9926 }, { "start": 11404.3, "end": 11406.12, "probability": 0.96 }, { "start": 11406.5, "end": 11414.6, "probability": 0.972 }, { "start": 11417.14, "end": 11419.64, "probability": 0.1193 }, { "start": 11425.3, "end": 11425.79, "probability": 0.0767 }, { "start": 11429.76, "end": 11430.82, "probability": 0.0201 }, { "start": 11432.6, "end": 11440.46, "probability": 0.1751 }, { "start": 11441.14, "end": 11443.82, "probability": 0.1181 }, { "start": 57962.0, "end": 57962.0, "probability": 0.0 }, { "start": 57962.0, "end": 57962.0, "probability": 0.0 }, { "start": 57962.0, "end": 57962.0, "probability": 0.0 }, { "start": 57962.0, "end": 57962.0, "probability": 0.0 }, { "start": 57962.0, "end": 57962.0, "probability": 0.0 }, { "start": 57962.0, "end": 57962.0, "probability": 0.0 }, { "start": 57962.0, "end": 57962.0, "probability": 0.0 }, { "start": 57982.44, "end": 57983.15, "probability": 0.7459 }, { "start": 57983.85, "end": 57985.77, "probability": 0.7877 }, { "start": 57987.03, "end": 57988.97, "probability": 0.9557 }, { "start": 57990.05, "end": 57996.51, "probability": 0.9728 }, { "start": 57996.51, "end": 57999.73, "probability": 0.9965 }, { "start": 57999.95, "end": 58000.69, "probability": 0.7105 }, { "start": 58001.97, "end": 58003.49, "probability": 0.9353 }, { "start": 58003.77, "end": 58006.29, "probability": 0.7739 }, { "start": 58008.27, "end": 58011.33, "probability": 0.9881 }, { "start": 58012.23, "end": 58014.85, "probability": 0.1465 }, { "start": 58018.83, "end": 58020.39, "probability": 0.1726 }, { "start": 58020.39, "end": 58020.73, "probability": 0.0831 }, { "start": 58023.17, "end": 58026.53, "probability": 0.0831 }, { "start": 58027.07, "end": 58028.41, "probability": 0.0918 }, { "start": 58031.6, "end": 58031.67, "probability": 0.0579 }, { "start": 58032.47, "end": 58033.55, "probability": 0.289 }, { "start": 58054.73, "end": 58055.77, "probability": 0.1396 }, { "start": 58057.07, "end": 58058.57, "probability": 0.907 }, { "start": 58059.18, "end": 58059.25, "probability": 0.0439 }, { "start": 58059.41, "end": 58061.69, "probability": 0.9291 }, { "start": 58062.77, "end": 58065.51, "probability": 0.2481 }, { "start": 58066.01, "end": 58066.01, "probability": 0.3508 }, { "start": 58066.37, "end": 58066.91, "probability": 0.5067 }, { "start": 58066.91, "end": 58070.23, "probability": 0.8647 }, { "start": 58070.61, "end": 58072.77, "probability": 0.2048 }, { "start": 58073.87, "end": 58076.11, "probability": 0.0275 }, { "start": 58076.97, "end": 58078.55, "probability": 0.1276 }, { "start": 58080.42, "end": 58080.69, "probability": 0.1994 }, { "start": 58080.71, "end": 58083.57, "probability": 0.8306 }, { "start": 58088.49, "end": 58088.91, "probability": 0.0059 }, { "start": 58089.67, "end": 58092.19, "probability": 0.1669 }, { "start": 58094.66, "end": 58095.21, "probability": 0.007 }, { "start": 58095.93, "end": 58096.35, "probability": 0.0086 }, { "start": 58096.99, "end": 58097.61, "probability": 0.1838 }, { "start": 58098.43, "end": 58099.81, "probability": 0.0418 }, { "start": 58100.27, "end": 58103.71, "probability": 0.3169 }, { "start": 58104.81, "end": 58106.41, "probability": 0.4638 }, { "start": 58116.0, "end": 58116.0, "probability": 0.0 }, { "start": 58116.0, "end": 58116.0, "probability": 0.0 }, { "start": 58116.0, "end": 58116.0, "probability": 0.0 }, { "start": 58116.0, "end": 58116.0, "probability": 0.0 }, { "start": 58116.0, "end": 58116.0, "probability": 0.0 }, { "start": 58116.0, "end": 58116.0, "probability": 0.0 }, { "start": 58116.0, "end": 58116.0, "probability": 0.0 }, { "start": 58116.0, "end": 58116.0, "probability": 0.0 }, { "start": 58116.0, "end": 58116.2, "probability": 0.0208 }, { "start": 58116.2, "end": 58116.6, "probability": 0.0444 }, { "start": 58117.32, "end": 58120.74, "probability": 0.7095 }, { "start": 58120.9, "end": 58121.36, "probability": 0.2872 }, { "start": 58121.44, "end": 58121.68, "probability": 0.5558 }, { "start": 58122.14, "end": 58124.34, "probability": 0.124 }, { "start": 58125.48, "end": 58126.98, "probability": 0.1342 }, { "start": 58126.98, "end": 58128.0, "probability": 0.0476 }, { "start": 58128.0, "end": 58128.34, "probability": 0.0993 }, { "start": 58128.34, "end": 58128.38, "probability": 0.0484 }, { "start": 58128.38, "end": 58128.38, "probability": 0.0688 }, { "start": 58128.38, "end": 58129.27, "probability": 0.3858 }, { "start": 58130.02, "end": 58133.78, "probability": 0.2253 }, { "start": 58241.0, "end": 58241.0, "probability": 0.0 }, { "start": 58241.0, "end": 58241.0, "probability": 0.0 }, { "start": 58241.0, "end": 58241.0, "probability": 0.0 }, { "start": 58241.0, "end": 58241.0, "probability": 0.0 }, { "start": 58241.0, "end": 58241.0, "probability": 0.0 }, { "start": 58241.0, "end": 58241.0, "probability": 0.0 }, { "start": 58241.0, "end": 58241.0, "probability": 0.0 }, { "start": 58241.0, "end": 58241.0, "probability": 0.0 }, { "start": 58241.0, "end": 58241.0, "probability": 0.0 }, { "start": 58241.0, "end": 58241.0, "probability": 0.0 }, { "start": 58241.0, "end": 58241.0, "probability": 0.0 }, { "start": 58241.0, "end": 58241.0, "probability": 0.0 }, { "start": 58241.0, "end": 58241.0, "probability": 0.0 }, { "start": 58241.0, "end": 58241.0, "probability": 0.0 }, { "start": 58241.0, "end": 58241.0, "probability": 0.0 }, { "start": 58241.0, "end": 58241.0, "probability": 0.0 }, { "start": 58241.0, "end": 58241.0, "probability": 0.0 }, { "start": 58241.0, "end": 58241.0, "probability": 0.0 }, { "start": 58241.0, "end": 58241.0, "probability": 0.0 }, { "start": 58241.0, "end": 58241.0, "probability": 0.0 }, { "start": 58241.0, "end": 58241.0, "probability": 0.0 }, { "start": 58241.0, "end": 58241.0, "probability": 0.0 }, { "start": 58241.0, "end": 58241.0, "probability": 0.0 }, { "start": 58241.0, "end": 58241.0, "probability": 0.0 }, { "start": 58241.0, "end": 58241.0, "probability": 0.0 }, { "start": 58241.0, "end": 58241.0, "probability": 0.0 }, { "start": 58241.0, "end": 58241.0, "probability": 0.0 }, { "start": 58241.0, "end": 58241.0, "probability": 0.0 }, { "start": 58241.16, "end": 58241.68, "probability": 0.61 }, { "start": 58242.02, "end": 58242.02, "probability": 0.0396 }, { "start": 58242.02, "end": 58246.18, "probability": 0.8201 }, { "start": 58247.06, "end": 58252.16, "probability": 0.8358 }, { "start": 58252.3, "end": 58252.46, "probability": 0.007 }, { "start": 58252.86, "end": 58253.36, "probability": 0.4903 }, { "start": 58253.36, "end": 58256.32, "probability": 0.7579 }, { "start": 58256.96, "end": 58261.56, "probability": 0.8457 }, { "start": 58262.2, "end": 58264.3, "probability": 0.9727 }, { "start": 58265.5, "end": 58269.84, "probability": 0.9028 }, { "start": 58270.56, "end": 58274.06, "probability": 0.9915 }, { "start": 58275.32, "end": 58278.4, "probability": 0.9951 }, { "start": 58278.52, "end": 58278.62, "probability": 0.1299 }, { "start": 58278.86, "end": 58282.56, "probability": 0.8564 }, { "start": 58283.12, "end": 58283.98, "probability": 0.8532 }, { "start": 58284.1, "end": 58284.66, "probability": 0.3536 }, { "start": 58284.66, "end": 58289.26, "probability": 0.9969 }, { "start": 58290.08, "end": 58294.5, "probability": 0.998 }, { "start": 58295.18, "end": 58298.58, "probability": 0.936 }, { "start": 58299.62, "end": 58303.52, "probability": 0.896 }, { "start": 58304.24, "end": 58308.08, "probability": 0.8845 }, { "start": 58309.18, "end": 58310.1, "probability": 0.6969 }, { "start": 58311.1, "end": 58314.02, "probability": 0.6846 }, { "start": 58314.86, "end": 58317.04, "probability": 0.9962 }, { "start": 58318.2, "end": 58322.74, "probability": 0.8741 }, { "start": 58324.18, "end": 58328.78, "probability": 0.957 }, { "start": 58329.0, "end": 58330.24, "probability": 0.9732 }, { "start": 58330.26, "end": 58331.54, "probability": 0.8501 }, { "start": 58332.56, "end": 58334.1, "probability": 0.9493 }, { "start": 58336.26, "end": 58337.98, "probability": 0.9499 }, { "start": 58338.2, "end": 58339.42, "probability": 0.4152 }, { "start": 58340.42, "end": 58345.2, "probability": 0.2791 }, { "start": 58346.56, "end": 58347.06, "probability": 0.1004 }, { "start": 58347.06, "end": 58347.06, "probability": 0.6802 }, { "start": 58347.1, "end": 58351.92, "probability": 0.9163 }, { "start": 58352.42, "end": 58353.1, "probability": 0.1413 }, { "start": 58353.86, "end": 58354.68, "probability": 0.7554 }, { "start": 58354.86, "end": 58360.46, "probability": 0.985 }, { "start": 58360.7, "end": 58363.52, "probability": 0.9435 }, { "start": 58365.1, "end": 58366.02, "probability": 0.9346 }, { "start": 58367.1, "end": 58368.1, "probability": 0.7341 }, { "start": 58368.94, "end": 58371.48, "probability": 0.4982 }, { "start": 58372.28, "end": 58375.46, "probability": 0.203 }, { "start": 58375.6, "end": 58377.74, "probability": 0.9709 }, { "start": 58377.92, "end": 58380.74, "probability": 0.2049 }, { "start": 58380.74, "end": 58383.98, "probability": 0.8376 }, { "start": 58384.26, "end": 58389.92, "probability": 0.9053 }, { "start": 58390.32, "end": 58391.08, "probability": 0.9074 }, { "start": 58391.74, "end": 58394.22, "probability": 0.9587 }, { "start": 58394.42, "end": 58395.96, "probability": 0.9495 }, { "start": 58396.74, "end": 58399.72, "probability": 0.9924 }, { "start": 58400.7, "end": 58403.36, "probability": 0.9767 }, { "start": 58404.3, "end": 58408.6, "probability": 0.9994 }, { "start": 58409.38, "end": 58414.12, "probability": 0.9973 }, { "start": 58415.3, "end": 58419.66, "probability": 0.9972 }, { "start": 58419.84, "end": 58421.82, "probability": 0.722 }, { "start": 58422.44, "end": 58426.58, "probability": 0.052 }, { "start": 58426.58, "end": 58426.58, "probability": 0.0883 }, { "start": 58426.58, "end": 58429.16, "probability": 0.3381 }, { "start": 58430.12, "end": 58430.12, "probability": 0.3898 }, { "start": 58430.12, "end": 58430.12, "probability": 0.4858 }, { "start": 58430.12, "end": 58433.86, "probability": 0.6455 }, { "start": 58434.54, "end": 58437.58, "probability": 0.9987 }, { "start": 58439.72, "end": 58446.08, "probability": 0.9769 }, { "start": 58446.14, "end": 58446.42, "probability": 0.9514 }, { "start": 58447.24, "end": 58448.7, "probability": 0.9941 }, { "start": 58449.36, "end": 58450.35, "probability": 0.9877 }, { "start": 58451.5, "end": 58453.76, "probability": 0.915 }, { "start": 58455.4, "end": 58458.76, "probability": 0.9521 }, { "start": 58459.48, "end": 58462.64, "probability": 0.9724 }, { "start": 58462.72, "end": 58465.42, "probability": 0.8854 }, { "start": 58465.88, "end": 58467.12, "probability": 0.7953 }, { "start": 58467.34, "end": 58468.76, "probability": 0.2771 }, { "start": 58468.76, "end": 58468.76, "probability": 0.4121 }, { "start": 58468.76, "end": 58469.89, "probability": 0.936 }, { "start": 58470.51, "end": 58472.67, "probability": 0.9591 }, { "start": 58473.02, "end": 58474.1, "probability": 0.7932 }, { "start": 58474.96, "end": 58475.7, "probability": 0.5003 }, { "start": 58476.54, "end": 58478.28, "probability": 0.9603 }, { "start": 58478.68, "end": 58480.82, "probability": 0.9794 }, { "start": 58481.38, "end": 58483.48, "probability": 0.9723 }, { "start": 58484.46, "end": 58486.82, "probability": 0.8966 }, { "start": 58487.56, "end": 58489.38, "probability": 0.8983 }, { "start": 58489.96, "end": 58491.98, "probability": 0.7636 }, { "start": 58492.16, "end": 58496.68, "probability": 0.9993 }, { "start": 58497.18, "end": 58500.68, "probability": 0.9933 }, { "start": 58501.3, "end": 58503.02, "probability": 0.9686 }, { "start": 58503.56, "end": 58508.36, "probability": 0.9937 }, { "start": 58509.0, "end": 58510.0, "probability": 0.7303 }, { "start": 58510.54, "end": 58512.1, "probability": 0.596 }, { "start": 58512.56, "end": 58514.92, "probability": 0.8783 }, { "start": 58515.04, "end": 58515.62, "probability": 0.8245 }, { "start": 58515.84, "end": 58522.94, "probability": 0.9503 }, { "start": 58523.56, "end": 58525.78, "probability": 0.8411 }, { "start": 58527.26, "end": 58527.86, "probability": 0.4532 }, { "start": 58528.64, "end": 58530.28, "probability": 0.9952 }, { "start": 58530.96, "end": 58532.22, "probability": 0.8896 }, { "start": 58532.36, "end": 58534.06, "probability": 0.902 }, { "start": 58534.92, "end": 58536.08, "probability": 0.8162 }, { "start": 58536.82, "end": 58538.88, "probability": 0.9976 }, { "start": 58539.58, "end": 58540.6, "probability": 0.9442 }, { "start": 58541.32, "end": 58541.9, "probability": 0.9575 }, { "start": 58542.46, "end": 58543.16, "probability": 0.9081 }, { "start": 58543.76, "end": 58546.56, "probability": 0.984 }, { "start": 58547.3, "end": 58552.82, "probability": 0.9448 }, { "start": 58553.38, "end": 58555.66, "probability": 0.9441 }, { "start": 58556.44, "end": 58558.78, "probability": 0.8946 }, { "start": 58558.8, "end": 58559.9, "probability": 0.2622 }, { "start": 58560.4, "end": 58561.14, "probability": 0.8287 }, { "start": 58561.36, "end": 58563.04, "probability": 0.8501 }, { "start": 58563.04, "end": 58566.69, "probability": 0.9199 }, { "start": 58567.24, "end": 58573.96, "probability": 0.9923 }, { "start": 58574.68, "end": 58577.88, "probability": 0.7405 }, { "start": 58578.72, "end": 58582.54, "probability": 0.7654 }, { "start": 58583.24, "end": 58585.06, "probability": 0.9949 }, { "start": 58585.76, "end": 58586.98, "probability": 0.8457 }, { "start": 58587.86, "end": 58590.26, "probability": 0.9492 }, { "start": 58591.2, "end": 58593.84, "probability": 0.9982 }, { "start": 58594.76, "end": 58599.2, "probability": 0.9874 }, { "start": 58600.24, "end": 58606.68, "probability": 0.9741 }, { "start": 58607.32, "end": 58609.28, "probability": 0.7417 }, { "start": 58609.94, "end": 58613.5, "probability": 0.9683 }, { "start": 58614.08, "end": 58616.7, "probability": 0.9331 }, { "start": 58617.46, "end": 58619.7, "probability": 0.8037 }, { "start": 58620.46, "end": 58624.16, "probability": 0.9761 }, { "start": 58625.92, "end": 58629.64, "probability": 0.9118 }, { "start": 58629.68, "end": 58634.2, "probability": 0.8549 }, { "start": 58635.24, "end": 58640.98, "probability": 0.9467 }, { "start": 58641.7, "end": 58643.76, "probability": 0.9834 }, { "start": 58644.74, "end": 58650.06, "probability": 0.9863 }, { "start": 58650.6, "end": 58654.32, "probability": 0.9972 }, { "start": 58693.72, "end": 58696.64, "probability": 0.9951 }, { "start": 58696.64, "end": 58700.64, "probability": 0.9938 }, { "start": 58702.02, "end": 58706.62, "probability": 0.9688 }, { "start": 58706.62, "end": 58713.06, "probability": 0.9876 }, { "start": 58713.86, "end": 58717.0, "probability": 0.9955 }, { "start": 58717.88, "end": 58724.24, "probability": 0.9818 }, { "start": 58725.0, "end": 58729.26, "probability": 0.9951 }, { "start": 58730.12, "end": 58733.58, "probability": 0.9983 }, { "start": 58734.62, "end": 58738.76, "probability": 0.6636 }, { "start": 58739.76, "end": 58741.28, "probability": 0.9382 }, { "start": 58743.06, "end": 58746.4, "probability": 0.8643 }, { "start": 58748.42, "end": 58751.86, "probability": 0.985 }, { "start": 58753.22, "end": 58756.48, "probability": 0.9968 }, { "start": 58757.88, "end": 58759.46, "probability": 0.9955 }, { "start": 58760.2, "end": 58765.2, "probability": 0.9478 }, { "start": 58766.74, "end": 58767.88, "probability": 0.8522 }, { "start": 58768.82, "end": 58769.58, "probability": 0.7631 }, { "start": 58770.46, "end": 58771.32, "probability": 0.9818 }, { "start": 58772.34, "end": 58778.06, "probability": 0.9956 }, { "start": 58778.68, "end": 58781.6, "probability": 0.8458 }, { "start": 58782.44, "end": 58783.86, "probability": 0.998 }, { "start": 58784.84, "end": 58786.26, "probability": 0.9604 }, { "start": 58788.4, "end": 58793.48, "probability": 0.9849 }, { "start": 58795.94, "end": 58796.92, "probability": 0.8124 }, { "start": 58798.36, "end": 58801.8, "probability": 0.9352 }, { "start": 58803.1, "end": 58805.18, "probability": 0.9957 }, { "start": 58805.78, "end": 58807.46, "probability": 0.9937 }, { "start": 58808.72, "end": 58811.32, "probability": 0.9963 }, { "start": 58811.96, "end": 58814.58, "probability": 0.9609 }, { "start": 58816.12, "end": 58818.83, "probability": 0.9586 }, { "start": 58821.46, "end": 58824.88, "probability": 0.9982 }, { "start": 58826.24, "end": 58828.8, "probability": 0.7277 }, { "start": 58829.32, "end": 58830.56, "probability": 0.7313 }, { "start": 58832.22, "end": 58835.84, "probability": 0.9949 }, { "start": 58837.28, "end": 58838.44, "probability": 0.7778 }, { "start": 58839.62, "end": 58842.98, "probability": 0.9969 }, { "start": 58844.02, "end": 58846.6, "probability": 0.9965 }, { "start": 58848.42, "end": 58851.44, "probability": 0.9265 }, { "start": 58877.84, "end": 58878.2, "probability": 0.7038 }, { "start": 58880.98, "end": 58884.24, "probability": 0.9922 }, { "start": 58887.64, "end": 58889.26, "probability": 0.9971 }, { "start": 58889.94, "end": 58890.96, "probability": 0.6902 }, { "start": 58893.52, "end": 58894.82, "probability": 0.8998 }, { "start": 58896.1, "end": 58901.48, "probability": 0.9554 }, { "start": 58903.04, "end": 58904.32, "probability": 0.9886 }, { "start": 58905.64, "end": 58907.6, "probability": 0.9436 }, { "start": 58908.86, "end": 58911.12, "probability": 0.9727 }, { "start": 58912.18, "end": 58913.68, "probability": 0.9909 }, { "start": 58915.04, "end": 58922.78, "probability": 0.8147 }, { "start": 58923.78, "end": 58929.46, "probability": 0.9266 }, { "start": 58930.46, "end": 58932.06, "probability": 0.999 }, { "start": 58934.04, "end": 58936.02, "probability": 0.7936 }, { "start": 58937.28, "end": 58938.68, "probability": 0.7393 }, { "start": 58939.76, "end": 58944.38, "probability": 0.9468 }, { "start": 58946.76, "end": 58947.62, "probability": 0.5823 }, { "start": 58949.42, "end": 58953.86, "probability": 0.6126 }, { "start": 58955.0, "end": 58957.74, "probability": 0.7586 }, { "start": 58958.7, "end": 58961.62, "probability": 0.9697 }, { "start": 58962.92, "end": 58965.64, "probability": 0.9989 }, { "start": 58966.8, "end": 58968.16, "probability": 0.9814 }, { "start": 58969.1, "end": 58970.32, "probability": 0.813 }, { "start": 58971.44, "end": 58972.02, "probability": 0.9655 }, { "start": 58972.58, "end": 58975.78, "probability": 0.9885 }, { "start": 58976.42, "end": 58984.36, "probability": 0.9341 }, { "start": 58985.78, "end": 58992.88, "probability": 0.9956 }, { "start": 58993.4, "end": 58995.66, "probability": 0.9976 }, { "start": 58996.64, "end": 58999.64, "probability": 0.8204 }, { "start": 59000.78, "end": 59002.9, "probability": 0.7829 }, { "start": 59003.88, "end": 59004.32, "probability": 0.95 }, { "start": 59005.0, "end": 59006.74, "probability": 0.989 }, { "start": 59008.06, "end": 59013.88, "probability": 0.9008 }, { "start": 59014.62, "end": 59016.6, "probability": 0.7748 }, { "start": 59017.54, "end": 59022.54, "probability": 0.9776 }, { "start": 59023.24, "end": 59023.96, "probability": 0.8514 }, { "start": 59024.7, "end": 59028.74, "probability": 0.996 }, { "start": 59029.7, "end": 59031.82, "probability": 0.9846 }, { "start": 59032.34, "end": 59035.34, "probability": 0.967 }, { "start": 59036.0, "end": 59037.24, "probability": 0.9972 }, { "start": 59038.24, "end": 59040.06, "probability": 0.9953 }, { "start": 59040.86, "end": 59047.02, "probability": 0.988 }, { "start": 59048.44, "end": 59049.32, "probability": 0.2556 }, { "start": 59049.52, "end": 59051.38, "probability": 0.6714 }, { "start": 59051.62, "end": 59052.92, "probability": 0.6753 }, { "start": 59053.0, "end": 59053.52, "probability": 0.0035 }, { "start": 59053.62, "end": 59054.2, "probability": 0.0262 }, { "start": 59054.2, "end": 59055.36, "probability": 0.5503 }, { "start": 59055.46, "end": 59056.26, "probability": 0.344 }, { "start": 59058.19, "end": 59059.24, "probability": 0.0762 }, { "start": 59060.2, "end": 59060.48, "probability": 0.1316 }, { "start": 59060.48, "end": 59062.06, "probability": 0.706 }, { "start": 59062.18, "end": 59062.68, "probability": 0.2538 }, { "start": 59062.68, "end": 59066.14, "probability": 0.1331 }, { "start": 59066.14, "end": 59067.85, "probability": 0.7559 }, { "start": 59068.82, "end": 59070.84, "probability": 0.6918 }, { "start": 59072.28, "end": 59077.52, "probability": 0.7576 }, { "start": 59077.82, "end": 59079.84, "probability": 0.8151 }, { "start": 59080.16, "end": 59081.48, "probability": 0.88 }, { "start": 59082.18, "end": 59085.42, "probability": 0.8147 }, { "start": 59085.5, "end": 59087.48, "probability": 0.6646 }, { "start": 59088.18, "end": 59088.18, "probability": 0.2654 }, { "start": 59088.18, "end": 59088.18, "probability": 0.1976 }, { "start": 59088.18, "end": 59090.0, "probability": 0.7789 }, { "start": 59090.16, "end": 59090.76, "probability": 0.7125 }, { "start": 59090.76, "end": 59094.0, "probability": 0.9248 }, { "start": 59094.26, "end": 59094.26, "probability": 0.3909 }, { "start": 59094.44, "end": 59094.44, "probability": 0.4234 }, { "start": 59094.44, "end": 59095.48, "probability": 0.5411 }, { "start": 59096.24, "end": 59097.52, "probability": 0.6983 }, { "start": 59098.04, "end": 59100.14, "probability": 0.6016 }, { "start": 59100.24, "end": 59101.56, "probability": 0.817 }, { "start": 59102.94, "end": 59103.67, "probability": 0.8809 }, { "start": 59103.88, "end": 59104.64, "probability": 0.7657 }, { "start": 59104.74, "end": 59105.88, "probability": 0.9266 }, { "start": 59106.02, "end": 59110.68, "probability": 0.975 }, { "start": 59113.16, "end": 59116.66, "probability": 0.766 }, { "start": 59117.18, "end": 59117.64, "probability": 0.4589 }, { "start": 59118.66, "end": 59118.9, "probability": 0.8773 }, { "start": 59119.84, "end": 59125.52, "probability": 0.9233 }, { "start": 59126.5, "end": 59130.08, "probability": 0.7495 }, { "start": 59131.12, "end": 59135.14, "probability": 0.9466 }, { "start": 59135.4, "end": 59137.84, "probability": 0.8291 }, { "start": 59138.78, "end": 59143.6, "probability": 0.8892 }, { "start": 59144.76, "end": 59147.98, "probability": 0.9247 }, { "start": 59148.92, "end": 59150.47, "probability": 0.9771 }, { "start": 59151.5, "end": 59154.84, "probability": 0.9862 }, { "start": 59155.8, "end": 59157.9, "probability": 0.8286 }, { "start": 59159.44, "end": 59161.42, "probability": 0.8573 }, { "start": 59161.5, "end": 59163.92, "probability": 0.9113 }, { "start": 59164.64, "end": 59166.46, "probability": 0.9856 }, { "start": 59167.1, "end": 59168.68, "probability": 0.9301 }, { "start": 59169.44, "end": 59171.91, "probability": 0.9931 }, { "start": 59172.88, "end": 59174.92, "probability": 0.9856 }, { "start": 59175.14, "end": 59178.16, "probability": 0.954 }, { "start": 59179.84, "end": 59181.6, "probability": 0.8788 }, { "start": 59181.9, "end": 59183.7, "probability": 0.6036 }, { "start": 59183.82, "end": 59184.46, "probability": 0.4062 }, { "start": 59185.5, "end": 59186.3, "probability": 0.7311 }, { "start": 59186.5, "end": 59188.88, "probability": 0.8141 }, { "start": 59190.36, "end": 59194.36, "probability": 0.979 }, { "start": 59195.76, "end": 59198.3, "probability": 0.8965 }, { "start": 59198.54, "end": 59202.12, "probability": 0.6903 }, { "start": 59203.66, "end": 59203.76, "probability": 0.0447 }, { "start": 59203.76, "end": 59206.87, "probability": 0.0573 }, { "start": 59209.08, "end": 59210.46, "probability": 0.0494 }, { "start": 59215.4, "end": 59217.9, "probability": 0.2626 }, { "start": 59219.4, "end": 59224.88, "probability": 0.184 }, { "start": 59226.06, "end": 59230.1, "probability": 0.1857 }, { "start": 59231.22, "end": 59232.46, "probability": 0.4817 }, { "start": 59233.9, "end": 59234.6, "probability": 0.3481 }, { "start": 59235.54, "end": 59239.1, "probability": 0.0792 }, { "start": 59244.56, "end": 59251.18, "probability": 0.1325 }, { "start": 59252.52, "end": 59253.1, "probability": 0.0003 }, { "start": 59256.34, "end": 59262.02, "probability": 0.0831 }, { "start": 59264.52, "end": 59266.86, "probability": 0.2686 }, { "start": 59495.0, "end": 59495.0, "probability": 0.0 }, { "start": 59495.0, "end": 59495.0, "probability": 0.0 }, { "start": 59495.0, "end": 59495.0, "probability": 0.0 }, { "start": 59495.0, "end": 59495.0, "probability": 0.0 }, { "start": 59495.0, "end": 59495.0, "probability": 0.0 }, { "start": 59495.0, "end": 59495.0, "probability": 0.0 }, { "start": 59495.0, "end": 59495.0, "probability": 0.0 }, { "start": 59495.0, "end": 59495.0, "probability": 0.0 }, { "start": 59495.0, "end": 59495.0, "probability": 0.0 }, { "start": 59495.0, "end": 59495.0, "probability": 0.0 }, { "start": 59495.0, "end": 59495.0, "probability": 0.0 }, { "start": 59495.0, "end": 59495.0, "probability": 0.0 }, { "start": 59495.0, "end": 59495.0, "probability": 0.0 }, { "start": 59495.0, "end": 59495.0, "probability": 0.0 }, { "start": 59495.0, "end": 59495.0, "probability": 0.0 }, { "start": 59495.0, "end": 59495.0, "probability": 0.0 }, { "start": 59495.0, "end": 59495.0, "probability": 0.0 }, { "start": 59495.0, "end": 59495.0, "probability": 0.0 }, { "start": 59495.0, "end": 59495.0, "probability": 0.0 }, { "start": 59495.0, "end": 59495.0, "probability": 0.0 }, { "start": 59495.0, "end": 59495.0, "probability": 0.0 }, { "start": 59495.0, "end": 59495.0, "probability": 0.0 }, { "start": 59495.0, "end": 59495.0, "probability": 0.0 }, { "start": 59495.0, "end": 59495.0, "probability": 0.0 }, { "start": 59495.0, "end": 59495.0, "probability": 0.0 }, { "start": 59495.0, "end": 59495.0, "probability": 0.0 }, { "start": 59495.0, "end": 59495.0, "probability": 0.0 }, { "start": 59495.0, "end": 59495.0, "probability": 0.0 }, { "start": 59495.0, "end": 59495.0, "probability": 0.0 }, { "start": 59495.0, "end": 59495.0, "probability": 0.0 }, { "start": 59495.0, "end": 59495.0, "probability": 0.0 }, { "start": 59495.0, "end": 59495.0, "probability": 0.0 }, { "start": 59495.0, "end": 59495.0, "probability": 0.0 }, { "start": 59495.0, "end": 59495.0, "probability": 0.0 }, { "start": 59495.0, "end": 59495.0, "probability": 0.0 }, { "start": 59495.0, "end": 59495.0, "probability": 0.0 }, { "start": 59495.0, "end": 59495.0, "probability": 0.0 }, { "start": 59495.0, "end": 59495.0, "probability": 0.0 }, { "start": 59495.0, "end": 59495.0, "probability": 0.0 }, { "start": 59495.0, "end": 59495.0, "probability": 0.0 }, { "start": 59495.0, "end": 59495.0, "probability": 0.0 }, { "start": 59495.0, "end": 59495.0, "probability": 0.0 }, { "start": 59495.0, "end": 59495.0, "probability": 0.0 }, { "start": 59495.0, "end": 59495.0, "probability": 0.0 }, { "start": 59495.0, "end": 59495.0, "probability": 0.0 }, { "start": 59495.0, "end": 59495.0, "probability": 0.0 }, { "start": 59495.0, "end": 59495.0, "probability": 0.0 }, { "start": 59495.0, "end": 59495.0, "probability": 0.0 }, { "start": 59495.0, "end": 59495.0, "probability": 0.0 }, { "start": 59495.14, "end": 59496.86, "probability": 0.4634 }, { "start": 59497.24, "end": 59498.14, "probability": 0.3516 }, { "start": 59499.32, "end": 59499.92, "probability": 0.0508 }, { "start": 59499.92, "end": 59505.4, "probability": 0.9075 }, { "start": 59505.46, "end": 59506.74, "probability": 0.6475 }, { "start": 59506.86, "end": 59509.38, "probability": 0.9849 }, { "start": 59509.7, "end": 59511.86, "probability": 0.0087 }, { "start": 59512.9, "end": 59518.22, "probability": 0.1234 }, { "start": 59518.24, "end": 59520.06, "probability": 0.0944 }, { "start": 59520.72, "end": 59523.68, "probability": 0.1796 }, { "start": 59524.06, "end": 59528.1, "probability": 0.0738 }, { "start": 59529.66, "end": 59531.3, "probability": 0.0236 }, { "start": 59536.18, "end": 59536.18, "probability": 0.0713 }, { "start": 59536.18, "end": 59537.36, "probability": 0.0084 }, { "start": 59537.44, "end": 59538.54, "probability": 0.1247 }, { "start": 59631.0, "end": 59631.0, "probability": 0.0 }, { "start": 59631.0, "end": 59631.0, "probability": 0.0 }, { "start": 59631.0, "end": 59631.0, "probability": 0.0 }, { "start": 59631.0, "end": 59631.0, "probability": 0.0 }, { "start": 59631.0, "end": 59631.0, "probability": 0.0 }, { "start": 59631.0, "end": 59631.0, "probability": 0.0 }, { "start": 59631.0, "end": 59631.0, "probability": 0.0 }, { "start": 59631.0, "end": 59631.0, "probability": 0.0 }, { "start": 59631.0, "end": 59631.0, "probability": 0.0 }, { "start": 59631.0, "end": 59631.0, "probability": 0.0 }, { "start": 59631.0, "end": 59631.0, "probability": 0.0 }, { "start": 59631.0, "end": 59631.0, "probability": 0.0 }, { "start": 59631.0, "end": 59631.0, "probability": 0.0 }, { "start": 59631.0, "end": 59631.0, "probability": 0.0 }, { "start": 59631.0, "end": 59631.0, "probability": 0.0 }, { "start": 59631.0, "end": 59631.0, "probability": 0.0 }, { "start": 59631.0, "end": 59631.0, "probability": 0.0 }, { "start": 59631.0, "end": 59631.0, "probability": 0.0 }, { "start": 59631.0, "end": 59631.0, "probability": 0.0 }, { "start": 59631.0, "end": 59631.0, "probability": 0.0 }, { "start": 59631.0, "end": 59631.0, "probability": 0.0 }, { "start": 59631.0, "end": 59631.0, "probability": 0.0 }, { "start": 59631.0, "end": 59631.0, "probability": 0.0 }, { "start": 59631.0, "end": 59631.0, "probability": 0.0 }, { "start": 59632.8, "end": 59633.12, "probability": 0.0234 }, { "start": 59633.12, "end": 59634.68, "probability": 0.2208 }, { "start": 59636.84, "end": 59640.04, "probability": 0.3655 }, { "start": 59640.62, "end": 59641.68, "probability": 0.1618 }, { "start": 59641.78, "end": 59643.32, "probability": 0.0276 }, { "start": 59646.38, "end": 59647.42, "probability": 0.2096 }, { "start": 59648.58, "end": 59649.67, "probability": 0.3312 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59940.0, "end": 59940.0, "probability": 0.0 }, { "start": 59941.22, "end": 59942.42, "probability": 0.2373 }, { "start": 59944.26, "end": 59944.96, "probability": 0.165 }, { "start": 59947.72, "end": 59948.7, "probability": 0.0589 }, { "start": 59956.1, "end": 59961.12, "probability": 0.035 }, { "start": 59961.18, "end": 59963.86, "probability": 0.0222 }, { "start": 59968.64, "end": 59969.84, "probability": 0.0287 }, { "start": 59970.86, "end": 59972.44, "probability": 0.034 }, { "start": 59974.26, "end": 59975.63, "probability": 0.0148 }, { "start": 60123.46, "end": 60125.82, "probability": 0.0695 }, { "start": 60126.38, "end": 60131.14, "probability": 0.0527 }, { "start": 60131.62, "end": 60132.22, "probability": 0.0341 }, { "start": 60132.7, "end": 60134.4, "probability": 0.091 }, { "start": 60135.2, "end": 60136.74, "probability": 0.0296 }, { "start": 60137.12, "end": 60139.52, "probability": 0.0089 }, { "start": 60141.88, "end": 60143.56, "probability": 0.0497 }, { "start": 60250.0, "end": 60250.0, "probability": 0.0 }, { "start": 60250.0, "end": 60250.0, "probability": 0.0 }, { "start": 60250.0, "end": 60250.0, "probability": 0.0 }, { "start": 60250.0, "end": 60250.0, "probability": 0.0 }, { "start": 60250.0, "end": 60250.0, "probability": 0.0 }, { "start": 60250.0, "end": 60250.0, "probability": 0.0 }, { "start": 60250.0, "end": 60250.0, "probability": 0.0 }, { "start": 60250.0, "end": 60250.0, "probability": 0.0 }, { "start": 60250.0, "end": 60250.0, "probability": 0.0 }, { "start": 60250.0, "end": 60250.0, "probability": 0.0 }, { "start": 60250.0, "end": 60250.0, "probability": 0.0 }, { "start": 60250.0, "end": 60250.0, "probability": 0.0 }, { "start": 60250.0, "end": 60250.0, "probability": 0.0 }, { "start": 60250.0, "end": 60250.0, "probability": 0.0 }, { "start": 60250.0, "end": 60250.0, "probability": 0.0 }, { "start": 60250.0, "end": 60250.0, "probability": 0.0 }, { "start": 60250.0, "end": 60250.0, "probability": 0.0 }, { "start": 60250.0, "end": 60250.0, "probability": 0.0 }, { "start": 60250.0, "end": 60250.0, "probability": 0.0 }, { "start": 60250.0, "end": 60250.0, "probability": 0.0 }, { "start": 60250.0, "end": 60250.0, "probability": 0.0 }, { "start": 60250.0, "end": 60250.0, "probability": 0.0 }, { "start": 60250.0, "end": 60250.0, "probability": 0.0 }, { "start": 60250.0, "end": 60250.0, "probability": 0.0 }, { "start": 60250.0, "end": 60250.0, "probability": 0.0 }, { "start": 60250.0, "end": 60250.0, "probability": 0.0 }, { "start": 60250.0, "end": 60250.0, "probability": 0.0 }, { "start": 60250.0, "end": 60250.0, "probability": 0.0 }, { "start": 60250.0, "end": 60250.0, "probability": 0.0 }, { "start": 60250.0, "end": 60250.0, "probability": 0.0 }, { "start": 60250.0, "end": 60250.0, "probability": 0.0 }, { "start": 60250.0, "end": 60250.0, "probability": 0.0 }, { "start": 60250.0, "end": 60250.0, "probability": 0.0 }, { "start": 60250.0, "end": 60250.0, "probability": 0.0 }, { "start": 60250.0, "end": 60250.0, "probability": 0.0 }, { "start": 60250.0, "end": 60250.0, "probability": 0.0 }, { "start": 60250.0, "end": 60250.0, "probability": 0.0 }, { "start": 60250.0, "end": 60250.0, "probability": 0.0 }, { "start": 60250.0, "end": 60250.0, "probability": 0.0 }, { "start": 60250.0, "end": 60250.0, "probability": 0.0 }, { "start": 60250.0, "end": 60250.0, "probability": 0.0 }, { "start": 60250.0, "end": 60250.0, "probability": 0.0 }, { "start": 60250.0, "end": 60250.0, "probability": 0.0 }, { "start": 60250.0, "end": 60250.0, "probability": 0.0 }, { "start": 60250.0, "end": 60250.0, "probability": 0.0 }, { "start": 60250.0, "end": 60250.0, "probability": 0.0 }, { "start": 60250.0, "end": 60250.0, "probability": 0.0 }, { "start": 60250.0, "end": 60250.0, "probability": 0.0 }, { "start": 60250.52, "end": 60251.76, "probability": 0.0996 }, { "start": 60252.86, "end": 60254.88, "probability": 0.0982 }, { "start": 60258.71, "end": 60260.18, "probability": 0.0779 }, { "start": 60261.02, "end": 60261.58, "probability": 0.0645 }, { "start": 60261.58, "end": 60262.48, "probability": 0.0483 }, { "start": 60263.16, "end": 60265.5, "probability": 0.1011 }, { "start": 60266.28, "end": 60269.22, "probability": 0.0286 }, { "start": 60270.64, "end": 60271.84, "probability": 0.0587 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60582.0, "end": 60582.0, "probability": 0.0 }, { "start": 60588.32, "end": 60589.86, "probability": 0.5988 }, { "start": 60590.38, "end": 60591.06, "probability": 0.7062 }, { "start": 60591.46, "end": 60594.28, "probability": 0.9478 }, { "start": 60594.28, "end": 60595.38, "probability": 0.9234 }, { "start": 60595.72, "end": 60599.58, "probability": 0.8949 }, { "start": 60599.78, "end": 60603.6, "probability": 0.0156 }, { "start": 60605.04, "end": 60608.98, "probability": 0.0572 }, { "start": 60609.3, "end": 60609.68, "probability": 0.351 }, { "start": 60609.78, "end": 60609.88, "probability": 0.1626 }, { "start": 60609.88, "end": 60610.28, "probability": 0.0399 }, { "start": 60610.58, "end": 60611.22, "probability": 0.3184 }, { "start": 60611.34, "end": 60612.3, "probability": 0.6882 }, { "start": 60612.92, "end": 60614.3, "probability": 0.2755 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.0, "end": 60702.0, "probability": 0.0 }, { "start": 60702.12, "end": 60704.28, "probability": 0.6623 }, { "start": 60704.38, "end": 60705.78, "probability": 0.4295 }, { "start": 60705.78, "end": 60705.86, "probability": 0.4022 }, { "start": 60705.86, "end": 60707.01, "probability": 0.6009 }, { "start": 60707.98, "end": 60710.22, "probability": 0.7841 }, { "start": 60710.32, "end": 60710.32, "probability": 0.4022 }, { "start": 60710.42, "end": 60710.88, "probability": 0.5664 }, { "start": 60711.04, "end": 60714.36, "probability": 0.3974 }, { "start": 60714.54, "end": 60716.68, "probability": 0.4544 }, { "start": 60717.02, "end": 60717.81, "probability": 0.5068 }, { "start": 60717.84, "end": 60718.86, "probability": 0.7123 }, { "start": 60719.3, "end": 60719.37, "probability": 0.1129 }, { "start": 60719.66, "end": 60721.66, "probability": 0.7836 }, { "start": 60721.66, "end": 60721.66, "probability": 0.005 }, { "start": 60722.38, "end": 60722.38, "probability": 0.1812 }, { "start": 60722.38, "end": 60723.64, "probability": 0.7997 }, { "start": 60724.1, "end": 60724.54, "probability": 0.4757 }, { "start": 60724.56, "end": 60726.7, "probability": 0.1155 }, { "start": 60726.7, "end": 60727.36, "probability": 0.3003 }, { "start": 60728.32, "end": 60728.92, "probability": 0.2802 }, { "start": 60730.0, "end": 60730.8, "probability": 0.0906 }, { "start": 60730.9, "end": 60731.65, "probability": 0.6258 }, { "start": 60731.94, "end": 60733.9, "probability": 0.6848 }, { "start": 60733.9, "end": 60734.9, "probability": 0.3515 }, { "start": 60734.9, "end": 60736.9, "probability": 0.8181 }, { "start": 60736.9, "end": 60738.94, "probability": 0.8414 }, { "start": 60739.16, "end": 60739.16, "probability": 0.011 }, { "start": 60739.22, "end": 60742.14, "probability": 0.9187 }, { "start": 60742.74, "end": 60744.02, "probability": 0.6055 }, { "start": 60744.04, "end": 60744.89, "probability": 0.3515 }, { "start": 60745.32, "end": 60745.74, "probability": 0.3286 }, { "start": 60745.74, "end": 60746.88, "probability": 0.752 }, { "start": 60747.12, "end": 60747.12, "probability": 0.5758 }, { "start": 60747.12, "end": 60752.42, "probability": 0.8711 }, { "start": 60752.42, "end": 60752.62, "probability": 0.3278 }, { "start": 60752.62, "end": 60753.42, "probability": 0.1495 }, { "start": 60753.42, "end": 60755.56, "probability": 0.3994 }, { "start": 60756.34, "end": 60757.34, "probability": 0.5326 }, { "start": 60758.28, "end": 60760.44, "probability": 0.9282 }, { "start": 60760.64, "end": 60762.01, "probability": 0.4531 }, { "start": 60762.36, "end": 60762.88, "probability": 0.2585 }, { "start": 60763.54, "end": 60764.46, "probability": 0.0264 }, { "start": 60764.46, "end": 60764.46, "probability": 0.1694 }, { "start": 60764.46, "end": 60764.46, "probability": 0.0843 }, { "start": 60764.46, "end": 60768.06, "probability": 0.7023 }, { "start": 60768.82, "end": 60768.92, "probability": 0.088 }, { "start": 60768.92, "end": 60770.7, "probability": 0.8407 }, { "start": 60770.84, "end": 60771.92, "probability": 0.3047 }, { "start": 60772.76, "end": 60772.78, "probability": 0.0285 }, { "start": 60772.78, "end": 60772.78, "probability": 0.6414 }, { "start": 60772.94, "end": 60774.18, "probability": 0.9435 }, { "start": 60774.48, "end": 60779.02, "probability": 0.9935 }, { "start": 60779.02, "end": 60784.74, "probability": 0.9635 }, { "start": 60784.74, "end": 60785.46, "probability": 0.5387 }, { "start": 60785.86, "end": 60785.88, "probability": 0.2714 }, { "start": 60785.88, "end": 60785.88, "probability": 0.1022 }, { "start": 60785.88, "end": 60788.84, "probability": 0.7604 }, { "start": 60789.02, "end": 60794.8, "probability": 0.7524 }, { "start": 60795.52, "end": 60795.6, "probability": 0.0611 }, { "start": 60795.6, "end": 60796.38, "probability": 0.5886 }, { "start": 60796.86, "end": 60797.36, "probability": 0.7196 }, { "start": 60797.42, "end": 60802.66, "probability": 0.7775 }, { "start": 60802.66, "end": 60806.56, "probability": 0.9858 }, { "start": 60808.12, "end": 60811.2, "probability": 0.8911 }, { "start": 60812.84, "end": 60814.02, "probability": 0.2836 }, { "start": 60814.66, "end": 60816.2, "probability": 0.0203 }, { "start": 60816.9, "end": 60817.86, "probability": 0.1969 }, { "start": 60818.64, "end": 60819.13, "probability": 0.0228 }, { "start": 60820.52, "end": 60822.04, "probability": 0.2277 }, { "start": 60822.9, "end": 60826.7, "probability": 0.0718 }, { "start": 60831.74, "end": 60832.96, "probability": 0.3702 }, { "start": 60834.64, "end": 60835.08, "probability": 0.0158 }, { "start": 60835.99, "end": 60838.52, "probability": 0.0496 }, { "start": 60839.42, "end": 60840.02, "probability": 0.1733 }, { "start": 60840.8, "end": 60841.44, "probability": 0.0575 }, { "start": 60841.84, "end": 60843.7, "probability": 0.089 }, { "start": 60843.7, "end": 60847.24, "probability": 0.3067 }, { "start": 60847.6, "end": 60848.98, "probability": 0.0271 }, { "start": 60850.09, "end": 60851.18, "probability": 0.1216 }, { "start": 60851.18, "end": 60851.62, "probability": 0.062 }, { "start": 60852.41, "end": 60856.82, "probability": 0.0406 }, { "start": 60856.82, "end": 60857.1, "probability": 0.1598 }, { "start": 60857.46, "end": 60857.58, "probability": 0.0192 }, { "start": 60858.88, "end": 60858.88, "probability": 0.2279 }, { "start": 60891.0, "end": 60891.0, "probability": 0.0 }, { "start": 60891.0, "end": 60891.0, "probability": 0.0 }, { "start": 60891.0, "end": 60891.0, "probability": 0.0 }, { "start": 60891.0, "end": 60891.0, "probability": 0.0 }, { "start": 60891.0, "end": 60891.0, "probability": 0.0 }, { "start": 60891.0, "end": 60891.0, "probability": 0.0 }, { "start": 60891.0, "end": 60891.0, "probability": 0.0 }, { "start": 60891.0, "end": 60891.0, "probability": 0.0 }, { "start": 60891.0, "end": 60891.0, "probability": 0.0 }, { "start": 60891.0, "end": 60891.0, "probability": 0.0 }, { "start": 60891.0, "end": 60891.0, "probability": 0.0 }, { "start": 60891.0, "end": 60891.0, "probability": 0.0 }, { "start": 60891.0, "end": 60891.0, "probability": 0.0 }, { "start": 60891.0, "end": 60891.0, "probability": 0.0 }, { "start": 60891.0, "end": 60891.0, "probability": 0.0 }, { "start": 60891.0, "end": 60891.0, "probability": 0.0 }, { "start": 60891.0, "end": 60891.0, "probability": 0.0 }, { "start": 60891.0, "end": 60891.0, "probability": 0.0 }, { "start": 60891.0, "end": 60891.0, "probability": 0.0 }, { "start": 60891.0, "end": 60891.0, "probability": 0.0 }, { "start": 60891.0, "end": 60891.0, "probability": 0.0 }, { "start": 60891.0, "end": 60891.0, "probability": 0.0 }, { "start": 60891.0, "end": 60891.0, "probability": 0.0 }, { "start": 60891.0, "end": 60891.0, "probability": 0.0 }, { "start": 60891.0, "end": 60891.0, "probability": 0.0 }, { "start": 60891.0, "end": 60891.0, "probability": 0.0 }, { "start": 60891.0, "end": 60891.0, "probability": 0.0 }, { "start": 60891.0, "end": 60891.0, "probability": 0.0 }, { "start": 60891.0, "end": 60891.0, "probability": 0.0 }, { "start": 60891.0, "end": 60891.0, "probability": 0.0 }, { "start": 60894.48, "end": 60895.44, "probability": 0.5552 }, { "start": 60896.08, "end": 60897.56, "probability": 0.5409 }, { "start": 60897.74, "end": 60899.2, "probability": 0.4572 }, { "start": 60900.48, "end": 60903.24, "probability": 0.9089 }, { "start": 60904.18, "end": 60905.56, "probability": 0.9317 }, { "start": 60905.86, "end": 60907.92, "probability": 0.8423 }, { "start": 60908.14, "end": 60908.82, "probability": 0.5391 }, { "start": 60908.84, "end": 60911.84, "probability": 0.6196 }, { "start": 60911.96, "end": 60913.95, "probability": 0.9378 }, { "start": 60914.7, "end": 60914.92, "probability": 0.5896 }, { "start": 60915.1, "end": 60915.1, "probability": 0.6188 }, { "start": 60915.28, "end": 60917.76, "probability": 0.748 }, { "start": 60917.86, "end": 60918.48, "probability": 0.8099 }, { "start": 60919.36, "end": 60920.0, "probability": 0.3806 }, { "start": 60920.06, "end": 60922.74, "probability": 0.692 }, { "start": 60923.48, "end": 60923.76, "probability": 0.4827 }, { "start": 60923.94, "end": 60924.26, "probability": 0.666 }, { "start": 60924.82, "end": 60924.82, "probability": 0.7816 }, { "start": 60925.06, "end": 60926.67, "probability": 0.9062 }, { "start": 60927.08, "end": 60927.24, "probability": 0.1418 }, { "start": 60927.58, "end": 60927.86, "probability": 0.652 }, { "start": 60927.88, "end": 60929.1, "probability": 0.771 }, { "start": 60929.5, "end": 60930.94, "probability": 0.8304 }, { "start": 60931.6, "end": 60933.92, "probability": 0.7026 }, { "start": 60934.2, "end": 60935.9, "probability": 0.5615 }, { "start": 60936.38, "end": 60936.66, "probability": 0.362 }, { "start": 60936.96, "end": 60939.08, "probability": 0.624 }, { "start": 60939.18, "end": 60942.56, "probability": 0.9738 }, { "start": 60943.56, "end": 60943.92, "probability": 0.4625 }, { "start": 60944.4, "end": 60949.52, "probability": 0.8245 }, { "start": 60949.66, "end": 60950.04, "probability": 0.0687 }, { "start": 60950.12, "end": 60950.12, "probability": 0.4733 }, { "start": 60950.12, "end": 60951.08, "probability": 0.299 }, { "start": 60952.56, "end": 60953.74, "probability": 0.6532 }, { "start": 60955.12, "end": 60961.3, "probability": 0.6788 }, { "start": 60962.46, "end": 60963.3, "probability": 0.3225 }, { "start": 60963.6, "end": 60964.88, "probability": 0.1072 }, { "start": 60965.96, "end": 60967.12, "probability": 0.1171 }, { "start": 60967.36, "end": 60968.84, "probability": 0.3864 }, { "start": 60969.26, "end": 60971.5, "probability": 0.02 }, { "start": 60972.8, "end": 60973.62, "probability": 0.0655 }, { "start": 60974.0, "end": 60975.46, "probability": 0.2116 }, { "start": 60975.53, "end": 60977.46, "probability": 0.042 }, { "start": 60977.48, "end": 60978.72, "probability": 0.0833 }, { "start": 60979.34, "end": 60979.36, "probability": 0.2718 }, { "start": 60979.56, "end": 60982.6, "probability": 0.0936 }, { "start": 60989.56, "end": 60992.08, "probability": 0.175 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61065.0, "end": 61065.0, "probability": 0.0 }, { "start": 61066.17, "end": 61070.5, "probability": 0.8593 }, { "start": 61070.86, "end": 61072.5, "probability": 0.7915 }, { "start": 61072.62, "end": 61072.62, "probability": 0.0776 }, { "start": 61072.62, "end": 61073.22, "probability": 0.1709 }, { "start": 61073.22, "end": 61073.64, "probability": 0.1033 }, { "start": 61073.64, "end": 61073.66, "probability": 0.0137 }, { "start": 61073.66, "end": 61077.16, "probability": 0.7853 }, { "start": 61077.84, "end": 61079.24, "probability": 0.9976 }, { "start": 61079.92, "end": 61081.44, "probability": 0.8744 }, { "start": 61082.18, "end": 61083.02, "probability": 0.814 }, { "start": 61083.64, "end": 61084.98, "probability": 0.9537 }, { "start": 61085.06, "end": 61085.06, "probability": 0.1083 }, { "start": 61085.06, "end": 61085.24, "probability": 0.1159 }, { "start": 61085.3, "end": 61088.62, "probability": 0.9568 }, { "start": 61089.2, "end": 61090.68, "probability": 0.7258 }, { "start": 61090.74, "end": 61091.64, "probability": 0.5261 }, { "start": 61091.9, "end": 61092.92, "probability": 0.7887 }, { "start": 61093.18, "end": 61093.18, "probability": 0.0506 }, { "start": 61093.18, "end": 61093.18, "probability": 0.3913 }, { "start": 61093.18, "end": 61093.62, "probability": 0.908 }, { "start": 61093.74, "end": 61095.8, "probability": 0.9912 }, { "start": 61095.86, "end": 61096.34, "probability": 0.1339 }, { "start": 61096.68, "end": 61100.18, "probability": 0.9694 }, { "start": 61100.82, "end": 61101.82, "probability": 0.8794 }, { "start": 61101.96, "end": 61108.8, "probability": 0.9911 }, { "start": 61109.16, "end": 61112.52, "probability": 0.9685 }, { "start": 61113.24, "end": 61114.92, "probability": 0.7287 }, { "start": 61116.56, "end": 61120.84, "probability": 0.4681 }, { "start": 61120.94, "end": 61122.08, "probability": 0.7774 }, { "start": 61122.52, "end": 61122.64, "probability": 0.2659 }, { "start": 61122.64, "end": 61123.96, "probability": 0.5396 }, { "start": 61124.72, "end": 61124.9, "probability": 0.7023 }, { "start": 61124.9, "end": 61126.86, "probability": 0.6859 }, { "start": 61127.34, "end": 61127.44, "probability": 0.5863 }, { "start": 61127.46, "end": 61129.63, "probability": 0.9115 }, { "start": 61130.32, "end": 61136.14, "probability": 0.3579 }, { "start": 61136.48, "end": 61136.48, "probability": 0.2142 }, { "start": 61136.48, "end": 61136.48, "probability": 0.1733 }, { "start": 61136.62, "end": 61139.06, "probability": 0.6255 }, { "start": 61139.34, "end": 61140.2, "probability": 0.8481 }, { "start": 61140.64, "end": 61142.42, "probability": 0.9944 }, { "start": 61142.42, "end": 61144.0, "probability": 0.1628 }, { "start": 61144.0, "end": 61144.08, "probability": 0.3392 }, { "start": 61144.08, "end": 61144.08, "probability": 0.1536 }, { "start": 61144.08, "end": 61144.92, "probability": 0.9545 }, { "start": 61145.34, "end": 61145.98, "probability": 0.0773 }, { "start": 61146.1, "end": 61148.72, "probability": 0.9796 }, { "start": 61148.8, "end": 61149.68, "probability": 0.3354 }, { "start": 61150.52, "end": 61150.98, "probability": 0.385 }, { "start": 61151.7, "end": 61153.18, "probability": 0.7506 }, { "start": 61153.4, "end": 61153.94, "probability": 0.6244 }, { "start": 61154.37, "end": 61158.96, "probability": 0.881 }, { "start": 61159.9, "end": 61163.36, "probability": 0.7247 }, { "start": 61163.38, "end": 61164.96, "probability": 0.8245 }, { "start": 61165.3, "end": 61166.98, "probability": 0.9907 }, { "start": 61166.98, "end": 61166.98, "probability": 0.6334 }, { "start": 61166.98, "end": 61166.98, "probability": 0.5918 }, { "start": 61166.98, "end": 61168.12, "probability": 0.4204 }, { "start": 61169.06, "end": 61169.8, "probability": 0.1378 }, { "start": 61169.8, "end": 61174.52, "probability": 0.9707 }, { "start": 61175.44, "end": 61180.08, "probability": 0.8757 }, { "start": 61180.22, "end": 61183.96, "probability": 0.0172 }, { "start": 61183.96, "end": 61184.94, "probability": 0.3409 }, { "start": 61184.94, "end": 61185.56, "probability": 0.2889 }, { "start": 61185.96, "end": 61189.88, "probability": 0.9439 }, { "start": 61190.08, "end": 61190.44, "probability": 0.2131 }, { "start": 61190.44, "end": 61191.02, "probability": 0.5049 }, { "start": 61191.32, "end": 61193.0, "probability": 0.9749 }, { "start": 61193.0, "end": 61195.85, "probability": 0.3955 }, { "start": 61197.12, "end": 61199.08, "probability": 0.8526 }, { "start": 61199.42, "end": 61200.12, "probability": 0.1295 }, { "start": 61200.34, "end": 61200.44, "probability": 0.8247 }, { "start": 61200.5, "end": 61200.5, "probability": 0.2999 }, { "start": 61200.5, "end": 61202.32, "probability": 0.9932 }, { "start": 61202.4, "end": 61202.58, "probability": 0.6039 }, { "start": 61202.7, "end": 61203.94, "probability": 0.9011 }, { "start": 61204.24, "end": 61205.84, "probability": 0.0441 }, { "start": 61209.78, "end": 61211.08, "probability": 0.2226 }, { "start": 61212.12, "end": 61212.14, "probability": 0.5351 }, { "start": 61212.14, "end": 61213.74, "probability": 0.2538 }, { "start": 61213.74, "end": 61215.16, "probability": 0.3948 }, { "start": 61215.46, "end": 61219.7, "probability": 0.5399 }, { "start": 61219.98, "end": 61220.08, "probability": 0.1028 }, { "start": 61221.14, "end": 61222.88, "probability": 0.9022 }, { "start": 61223.26, "end": 61223.92, "probability": 0.0245 }, { "start": 61223.92, "end": 61223.92, "probability": 0.0484 }, { "start": 61223.92, "end": 61224.46, "probability": 0.0695 }, { "start": 61225.66, "end": 61226.66, "probability": 0.7497 }, { "start": 61227.36, "end": 61233.78, "probability": 0.7244 }, { "start": 61234.34, "end": 61235.08, "probability": 0.629 }, { "start": 61235.68, "end": 61238.74, "probability": 0.9255 }, { "start": 61239.36, "end": 61240.7, "probability": 0.7188 }, { "start": 61240.76, "end": 61242.38, "probability": 0.9701 }, { "start": 61242.84, "end": 61243.98, "probability": 0.6268 }, { "start": 61244.5, "end": 61246.96, "probability": 0.8969 }, { "start": 61247.06, "end": 61248.4, "probability": 0.833 }, { "start": 61248.54, "end": 61248.54, "probability": 0.1787 }, { "start": 61248.54, "end": 61250.0, "probability": 0.3803 }, { "start": 61250.88, "end": 61251.18, "probability": 0.0299 }, { "start": 61251.18, "end": 61252.35, "probability": 0.5618 }, { "start": 61253.08, "end": 61255.12, "probability": 0.3356 }, { "start": 61255.38, "end": 61258.04, "probability": 0.0513 }, { "start": 61258.06, "end": 61258.96, "probability": 0.8149 }, { "start": 61259.1, "end": 61259.94, "probability": 0.4697 }, { "start": 61260.66, "end": 61262.14, "probability": 0.3092 }, { "start": 61263.54, "end": 61264.9, "probability": 0.3062 }, { "start": 61265.92, "end": 61266.76, "probability": 0.2907 }, { "start": 61267.14, "end": 61268.02, "probability": 0.3338 }, { "start": 61268.02, "end": 61269.16, "probability": 0.8883 }, { "start": 61269.16, "end": 61269.22, "probability": 0.6155 }, { "start": 61269.22, "end": 61269.78, "probability": 0.3235 }, { "start": 61270.28, "end": 61271.06, "probability": 0.3806 }, { "start": 61271.08, "end": 61273.36, "probability": 0.9093 }, { "start": 61273.64, "end": 61274.94, "probability": 0.5566 }, { "start": 61275.08, "end": 61275.32, "probability": 0.7521 }, { "start": 61275.44, "end": 61276.02, "probability": 0.7845 }, { "start": 61276.1, "end": 61277.46, "probability": 0.7755 }, { "start": 61277.46, "end": 61278.98, "probability": 0.6929 }, { "start": 61279.54, "end": 61283.26, "probability": 0.9302 }, { "start": 61283.58, "end": 61284.66, "probability": 0.2124 }, { "start": 61285.43, "end": 61286.82, "probability": 0.0404 }, { "start": 61286.82, "end": 61286.82, "probability": 0.1313 }, { "start": 61286.82, "end": 61286.82, "probability": 0.0836 }, { "start": 61286.82, "end": 61286.82, "probability": 0.0774 }, { "start": 61286.82, "end": 61288.54, "probability": 0.6373 }, { "start": 61288.54, "end": 61289.42, "probability": 0.4018 }, { "start": 61290.2, "end": 61290.8, "probability": 0.3932 }, { "start": 61291.83, "end": 61294.72, "probability": 0.6364 }, { "start": 61295.5, "end": 61296.18, "probability": 0.1943 }, { "start": 61296.46, "end": 61297.32, "probability": 0.3676 }, { "start": 61297.8, "end": 61299.94, "probability": 0.6991 }, { "start": 61300.26, "end": 61303.24, "probability": 0.4546 }, { "start": 61303.42, "end": 61303.66, "probability": 0.3737 }, { "start": 61303.74, "end": 61305.12, "probability": 0.7347 }, { "start": 61305.44, "end": 61305.58, "probability": 0.1166 }, { "start": 61305.58, "end": 61308.04, "probability": 0.8924 }, { "start": 61308.64, "end": 61311.5, "probability": 0.8829 }, { "start": 61311.92, "end": 61314.42, "probability": 0.7869 }, { "start": 61314.42, "end": 61318.42, "probability": 0.5367 }, { "start": 61319.2, "end": 61321.38, "probability": 0.2772 }, { "start": 61321.68, "end": 61321.82, "probability": 0.0731 }, { "start": 61321.82, "end": 61322.3, "probability": 0.3676 }, { "start": 61323.02, "end": 61324.44, "probability": 0.7314 }, { "start": 61324.62, "end": 61325.06, "probability": 0.0148 }, { "start": 61325.06, "end": 61327.16, "probability": 0.1129 }, { "start": 61327.16, "end": 61327.16, "probability": 0.0759 }, { "start": 61327.18, "end": 61329.0, "probability": 0.8861 }, { "start": 61329.02, "end": 61329.14, "probability": 0.0867 }, { "start": 61331.28, "end": 61338.3, "probability": 0.9001 }, { "start": 61339.86, "end": 61342.56, "probability": 0.6454 }, { "start": 61343.22, "end": 61343.88, "probability": 0.2565 }, { "start": 61343.94, "end": 61344.6, "probability": 0.2399 }, { "start": 61344.82, "end": 61345.24, "probability": 0.799 }, { "start": 61346.46, "end": 61349.52, "probability": 0.9634 }, { "start": 61349.94, "end": 61352.82, "probability": 0.9522 }, { "start": 61353.7, "end": 61356.12, "probability": 0.6486 }, { "start": 61356.9, "end": 61359.98, "probability": 0.9844 }, { "start": 61360.64, "end": 61361.74, "probability": 0.9208 }, { "start": 61364.59, "end": 61365.57, "probability": 0.1168 }, { "start": 61366.38, "end": 61369.12, "probability": 0.4383 }, { "start": 61369.64, "end": 61370.52, "probability": 0.6965 }, { "start": 61370.76, "end": 61371.52, "probability": 0.0885 }, { "start": 61372.46, "end": 61374.48, "probability": 0.9512 }, { "start": 61374.72, "end": 61375.08, "probability": 0.0819 }, { "start": 61375.08, "end": 61375.54, "probability": 0.3337 }, { "start": 61375.64, "end": 61377.98, "probability": 0.9651 }, { "start": 61377.98, "end": 61377.98, "probability": 0.2193 }, { "start": 61378.02, "end": 61379.64, "probability": 0.9624 }, { "start": 61380.04, "end": 61381.24, "probability": 0.381 }, { "start": 61381.24, "end": 61383.22, "probability": 0.4555 }, { "start": 61383.86, "end": 61384.16, "probability": 0.0999 }, { "start": 61384.2, "end": 61386.26, "probability": 0.9932 }, { "start": 61386.26, "end": 61386.36, "probability": 0.0363 }, { "start": 61386.36, "end": 61386.36, "probability": 0.2119 }, { "start": 61386.36, "end": 61387.3, "probability": 0.0972 }, { "start": 61387.3, "end": 61387.36, "probability": 0.1219 }, { "start": 61387.36, "end": 61389.08, "probability": 0.906 }, { "start": 61389.3, "end": 61389.34, "probability": 0.2209 }, { "start": 61389.34, "end": 61392.88, "probability": 0.4874 }, { "start": 61392.88, "end": 61393.08, "probability": 0.1902 }, { "start": 61393.08, "end": 61393.48, "probability": 0.1156 }, { "start": 61393.82, "end": 61393.92, "probability": 0.0029 }, { "start": 61396.85, "end": 61398.06, "probability": 0.1169 }, { "start": 61398.06, "end": 61399.1, "probability": 0.4059 }, { "start": 61400.68, "end": 61401.36, "probability": 0.6713 }, { "start": 61401.36, "end": 61402.66, "probability": 0.5806 }, { "start": 61402.98, "end": 61403.16, "probability": 0.0309 }, { "start": 61403.16, "end": 61403.16, "probability": 0.0603 }, { "start": 61403.16, "end": 61403.16, "probability": 0.4163 }, { "start": 61403.16, "end": 61405.02, "probability": 0.9014 }, { "start": 61405.24, "end": 61408.13, "probability": 0.1932 }, { "start": 61409.44, "end": 61410.72, "probability": 0.1825 }, { "start": 61411.44, "end": 61411.58, "probability": 0.2181 }, { "start": 61413.02, "end": 61416.68, "probability": 0.9443 }, { "start": 61417.16, "end": 61418.22, "probability": 0.9836 }, { "start": 61418.34, "end": 61420.54, "probability": 0.2935 }, { "start": 61421.0, "end": 61422.54, "probability": 0.8613 }, { "start": 61423.22, "end": 61425.0, "probability": 0.1188 }, { "start": 61425.62, "end": 61430.68, "probability": 0.2149 }, { "start": 61430.74, "end": 61431.12, "probability": 0.6672 }, { "start": 61431.42, "end": 61431.76, "probability": 0.1347 }, { "start": 61431.76, "end": 61431.76, "probability": 0.2595 }, { "start": 61431.76, "end": 61431.76, "probability": 0.0812 }, { "start": 61431.76, "end": 61431.76, "probability": 0.0796 }, { "start": 61431.76, "end": 61433.2, "probability": 0.356 }, { "start": 61433.46, "end": 61435.51, "probability": 0.763 }, { "start": 61435.76, "end": 61437.06, "probability": 0.7037 }, { "start": 61438.18, "end": 61439.4, "probability": 0.1425 }, { "start": 61439.66, "end": 61440.34, "probability": 0.4451 }, { "start": 61440.94, "end": 61442.02, "probability": 0.7798 }, { "start": 61442.04, "end": 61444.64, "probability": 0.4615 }, { "start": 61445.36, "end": 61445.54, "probability": 0.6672 }, { "start": 61445.7, "end": 61445.7, "probability": 0.5706 }, { "start": 61445.74, "end": 61448.32, "probability": 0.7432 }, { "start": 61448.38, "end": 61448.94, "probability": 0.9301 }, { "start": 61451.68, "end": 61453.0, "probability": 0.1477 }, { "start": 61454.13, "end": 61455.4, "probability": 0.2365 }, { "start": 61455.46, "end": 61455.9, "probability": 0.57 }, { "start": 61456.0, "end": 61457.06, "probability": 0.9781 }, { "start": 61457.28, "end": 61457.72, "probability": 0.7875 }, { "start": 61457.8, "end": 61458.26, "probability": 0.7837 }, { "start": 61458.28, "end": 61460.72, "probability": 0.9934 }, { "start": 61460.9, "end": 61463.24, "probability": 0.9325 }, { "start": 61463.34, "end": 61464.42, "probability": 0.0939 }, { "start": 61464.42, "end": 61467.96, "probability": 0.5075 }, { "start": 61468.14, "end": 61469.08, "probability": 0.0763 }, { "start": 61469.32, "end": 61471.58, "probability": 0.2472 }, { "start": 61471.84, "end": 61472.38, "probability": 0.0425 }, { "start": 61472.7, "end": 61473.8, "probability": 0.4988 }, { "start": 61474.52, "end": 61475.43, "probability": 0.5439 }, { "start": 61475.8, "end": 61476.5, "probability": 0.0945 }, { "start": 61476.5, "end": 61478.52, "probability": 0.7557 }, { "start": 61479.0, "end": 61480.16, "probability": 0.0589 }, { "start": 61480.4, "end": 61481.14, "probability": 0.677 }, { "start": 61482.88, "end": 61488.68, "probability": 0.8527 }, { "start": 61489.64, "end": 61492.18, "probability": 0.9966 }, { "start": 61494.84, "end": 61497.4, "probability": 0.9771 }, { "start": 61498.18, "end": 61501.48, "probability": 0.8495 }, { "start": 61501.98, "end": 61502.0, "probability": 0.0656 }, { "start": 61502.0, "end": 61502.0, "probability": 0.0478 }, { "start": 61502.0, "end": 61502.0, "probability": 0.3146 }, { "start": 61502.0, "end": 61502.0, "probability": 0.0913 }, { "start": 61502.0, "end": 61502.0, "probability": 0.3217 }, { "start": 61502.0, "end": 61504.06, "probability": 0.7311 }, { "start": 61504.26, "end": 61506.96, "probability": 0.9243 }, { "start": 61507.3, "end": 61510.22, "probability": 0.4772 }, { "start": 61511.06, "end": 61513.06, "probability": 0.8313 }, { "start": 61513.7, "end": 61514.04, "probability": 0.4677 }, { "start": 61514.14, "end": 61514.8, "probability": 0.9285 }, { "start": 61515.26, "end": 61518.6, "probability": 0.8552 }, { "start": 61519.52, "end": 61523.48, "probability": 0.3607 }, { "start": 61523.54, "end": 61525.18, "probability": 0.7772 }, { "start": 61525.24, "end": 61525.84, "probability": 0.365 }, { "start": 61525.88, "end": 61527.62, "probability": 0.949 }, { "start": 61528.7, "end": 61532.98, "probability": 0.9441 }, { "start": 61533.5, "end": 61534.24, "probability": 0.8456 }, { "start": 61535.12, "end": 61539.22, "probability": 0.6295 }, { "start": 61539.3, "end": 61539.74, "probability": 0.9018 }, { "start": 61539.94, "end": 61540.64, "probability": 0.8086 }, { "start": 61542.2, "end": 61544.06, "probability": 0.1182 }, { "start": 61544.82, "end": 61550.96, "probability": 0.5738 }, { "start": 61551.26, "end": 61552.48, "probability": 0.2867 }, { "start": 61552.7, "end": 61556.38, "probability": 0.4519 }, { "start": 61556.56, "end": 61556.9, "probability": 0.0338 }, { "start": 61557.64, "end": 61559.06, "probability": 0.0742 }, { "start": 61559.06, "end": 61561.18, "probability": 0.5486 }, { "start": 61561.26, "end": 61562.8, "probability": 0.7385 }, { "start": 61563.36, "end": 61566.18, "probability": 0.9412 }, { "start": 61566.18, "end": 61567.34, "probability": 0.5392 }, { "start": 61567.98, "end": 61568.1, "probability": 0.0281 }, { "start": 61568.1, "end": 61568.1, "probability": 0.1026 }, { "start": 61568.64, "end": 61569.8, "probability": 0.4671 }, { "start": 61570.44, "end": 61571.16, "probability": 0.0542 }, { "start": 61571.16, "end": 61571.16, "probability": 0.0272 }, { "start": 61571.16, "end": 61571.16, "probability": 0.3839 }, { "start": 61571.16, "end": 61571.82, "probability": 0.3645 }, { "start": 61571.94, "end": 61572.76, "probability": 0.5122 }, { "start": 61573.96, "end": 61578.5, "probability": 0.9559 }, { "start": 61578.58, "end": 61579.62, "probability": 0.6581 }, { "start": 61580.14, "end": 61580.64, "probability": 0.1472 }, { "start": 61580.74, "end": 61580.74, "probability": 0.0683 }, { "start": 61580.74, "end": 61581.52, "probability": 0.3189 }, { "start": 61581.52, "end": 61582.23, "probability": 0.8196 }, { "start": 61582.84, "end": 61583.82, "probability": 0.9395 }, { "start": 61584.0, "end": 61584.72, "probability": 0.0569 }, { "start": 61584.72, "end": 61584.76, "probability": 0.2297 }, { "start": 61584.76, "end": 61585.76, "probability": 0.7705 }, { "start": 61585.84, "end": 61590.32, "probability": 0.8176 }, { "start": 61590.32, "end": 61592.06, "probability": 0.3717 }, { "start": 61592.22, "end": 61592.56, "probability": 0.4037 }, { "start": 61592.6, "end": 61593.26, "probability": 0.3829 }, { "start": 61593.8, "end": 61595.14, "probability": 0.9064 }, { "start": 61595.7, "end": 61597.3, "probability": 0.3559 }, { "start": 61597.48, "end": 61597.8, "probability": 0.6759 }, { "start": 61597.84, "end": 61598.82, "probability": 0.4194 }, { "start": 61598.94, "end": 61601.82, "probability": 0.9204 }, { "start": 61603.62, "end": 61603.94, "probability": 0.0568 }, { "start": 61603.94, "end": 61603.94, "probability": 0.2751 }, { "start": 61604.04, "end": 61605.76, "probability": 0.4052 }, { "start": 61605.76, "end": 61608.46, "probability": 0.6617 }, { "start": 61608.96, "end": 61612.14, "probability": 0.8536 }, { "start": 61613.2, "end": 61613.42, "probability": 0.2808 }, { "start": 61613.42, "end": 61613.42, "probability": 0.1945 }, { "start": 61613.42, "end": 61614.95, "probability": 0.2955 }, { "start": 61615.82, "end": 61617.26, "probability": 0.9759 }, { "start": 61618.36, "end": 61619.92, "probability": 0.9893 }, { "start": 61620.46, "end": 61623.29, "probability": 0.8347 }, { "start": 61623.58, "end": 61624.1, "probability": 0.8383 }, { "start": 61624.46, "end": 61625.6, "probability": 0.6092 }, { "start": 61627.56, "end": 61627.72, "probability": 0.0288 }, { "start": 61627.72, "end": 61628.62, "probability": 0.0504 }, { "start": 61628.62, "end": 61629.44, "probability": 0.0272 }, { "start": 61629.92, "end": 61631.2, "probability": 0.4155 }, { "start": 61631.36, "end": 61631.36, "probability": 0.059 }, { "start": 61631.36, "end": 61631.36, "probability": 0.1048 }, { "start": 61631.36, "end": 61631.36, "probability": 0.2437 }, { "start": 61631.36, "end": 61631.36, "probability": 0.3677 }, { "start": 61631.36, "end": 61632.32, "probability": 0.3965 }, { "start": 61634.82, "end": 61634.94, "probability": 0.11 }, { "start": 61634.94, "end": 61635.76, "probability": 0.1154 }, { "start": 61636.46, "end": 61636.46, "probability": 0.0356 }, { "start": 61636.46, "end": 61637.92, "probability": 0.4287 }, { "start": 61638.22, "end": 61638.56, "probability": 0.4425 }, { "start": 61638.98, "end": 61641.66, "probability": 0.1577 }, { "start": 61641.72, "end": 61642.6, "probability": 0.2684 }, { "start": 61642.8, "end": 61643.08, "probability": 0.273 }, { "start": 61643.18, "end": 61644.0, "probability": 0.6486 }, { "start": 61644.9, "end": 61647.88, "probability": 0.1312 }, { "start": 61649.78, "end": 61655.01, "probability": 0.3505 }, { "start": 61655.68, "end": 61656.38, "probability": 0.0843 }, { "start": 61657.56, "end": 61658.58, "probability": 0.2485 }, { "start": 61659.66, "end": 61661.86, "probability": 0.924 }, { "start": 61661.98, "end": 61662.38, "probability": 0.853 }, { "start": 61662.66, "end": 61663.92, "probability": 0.3025 }, { "start": 61663.94, "end": 61665.36, "probability": 0.067 }, { "start": 61666.0, "end": 61666.32, "probability": 0.1381 }, { "start": 61666.32, "end": 61666.32, "probability": 0.1563 }, { "start": 61666.32, "end": 61667.32, "probability": 0.1134 }, { "start": 61667.56, "end": 61668.3, "probability": 0.3052 }, { "start": 61668.43, "end": 61671.1, "probability": 0.7236 }, { "start": 61671.52, "end": 61672.98, "probability": 0.0906 }, { "start": 61673.02, "end": 61673.14, "probability": 0.2383 }, { "start": 61673.34, "end": 61676.42, "probability": 0.9927 }, { "start": 61677.08, "end": 61677.18, "probability": 0.0379 }, { "start": 61677.66, "end": 61679.64, "probability": 0.7393 }, { "start": 61679.92, "end": 61681.4, "probability": 0.9572 }, { "start": 61681.62, "end": 61682.22, "probability": 0.2697 }, { "start": 61682.38, "end": 61684.38, "probability": 0.8589 }, { "start": 61685.4, "end": 61685.88, "probability": 0.2016 }, { "start": 61685.88, "end": 61686.5, "probability": 0.2769 }, { "start": 61686.9, "end": 61689.9, "probability": 0.8123 }, { "start": 61690.42, "end": 61692.44, "probability": 0.8792 }, { "start": 61692.5, "end": 61692.96, "probability": 0.0218 }, { "start": 61692.96, "end": 61695.9, "probability": 0.8299 }, { "start": 61696.72, "end": 61698.56, "probability": 0.9079 }, { "start": 61698.94, "end": 61699.78, "probability": 0.4121 }, { "start": 61700.35, "end": 61700.86, "probability": 0.0957 }, { "start": 61700.94, "end": 61702.7, "probability": 0.8586 }, { "start": 61704.68, "end": 61705.26, "probability": 0.0672 }, { "start": 61705.26, "end": 61708.29, "probability": 0.8072 }, { "start": 61708.6, "end": 61711.56, "probability": 0.7279 }, { "start": 61711.62, "end": 61713.24, "probability": 0.3179 }, { "start": 61713.24, "end": 61715.54, "probability": 0.6823 }, { "start": 61715.74, "end": 61715.81, "probability": 0.0377 }, { "start": 61715.9, "end": 61715.9, "probability": 0.3248 }, { "start": 61715.9, "end": 61718.72, "probability": 0.3821 }, { "start": 61719.0, "end": 61719.72, "probability": 0.8586 }, { "start": 61720.8, "end": 61721.74, "probability": 0.0382 }, { "start": 61721.76, "end": 61723.32, "probability": 0.6219 }, { "start": 61723.44, "end": 61723.98, "probability": 0.9228 }, { "start": 61724.28, "end": 61727.24, "probability": 0.5923 }, { "start": 61727.62, "end": 61728.26, "probability": 0.4653 }, { "start": 61728.3, "end": 61729.54, "probability": 0.9329 }, { "start": 61729.86, "end": 61730.88, "probability": 0.3415 }, { "start": 61731.1, "end": 61732.34, "probability": 0.3108 }, { "start": 61732.36, "end": 61733.42, "probability": 0.4952 }, { "start": 61733.78, "end": 61734.98, "probability": 0.4694 }, { "start": 61735.36, "end": 61737.7, "probability": 0.1183 }, { "start": 61740.63, "end": 61746.77, "probability": 0.8678 }, { "start": 61748.16, "end": 61750.78, "probability": 0.4744 }, { "start": 61751.3, "end": 61752.74, "probability": 0.0806 }, { "start": 61752.74, "end": 61752.74, "probability": 0.0349 }, { "start": 61752.98, "end": 61752.98, "probability": 0.0319 }, { "start": 61753.8, "end": 61755.1, "probability": 0.3446 }, { "start": 61756.46, "end": 61756.84, "probability": 0.3257 }, { "start": 61759.1, "end": 61761.82, "probability": 0.4114 }, { "start": 61763.1, "end": 61768.18, "probability": 0.9263 }, { "start": 61768.18, "end": 61768.62, "probability": 0.1952 }, { "start": 61768.62, "end": 61769.52, "probability": 0.1378 }, { "start": 61769.58, "end": 61771.78, "probability": 0.5654 }, { "start": 61772.24, "end": 61775.08, "probability": 0.6544 }, { "start": 61775.36, "end": 61775.36, "probability": 0.2922 }, { "start": 61775.36, "end": 61778.54, "probability": 0.6092 }, { "start": 61778.66, "end": 61780.4, "probability": 0.783 }, { "start": 61780.4, "end": 61781.5, "probability": 0.3227 }, { "start": 61781.66, "end": 61782.43, "probability": 0.8013 }, { "start": 61784.08, "end": 61787.12, "probability": 0.7238 }, { "start": 61787.74, "end": 61791.52, "probability": 0.6052 }, { "start": 61792.6, "end": 61792.66, "probability": 0.1123 }, { "start": 61792.66, "end": 61792.68, "probability": 0.2098 }, { "start": 61792.68, "end": 61793.76, "probability": 0.3983 }, { "start": 61793.92, "end": 61794.97, "probability": 0.0339 }, { "start": 61795.72, "end": 61797.54, "probability": 0.4369 }, { "start": 61797.54, "end": 61798.32, "probability": 0.3561 }, { "start": 61798.36, "end": 61799.82, "probability": 0.5667 }, { "start": 61800.52, "end": 61801.7, "probability": 0.5551 }, { "start": 61802.0, "end": 61802.4, "probability": 0.0659 }, { "start": 61802.44, "end": 61805.66, "probability": 0.6441 }, { "start": 61806.7, "end": 61810.92, "probability": 0.2973 }, { "start": 61811.64, "end": 61814.44, "probability": 0.6125 }, { "start": 61814.44, "end": 61816.02, "probability": 0.6227 }, { "start": 61816.08, "end": 61816.16, "probability": 0.0835 }, { "start": 61816.16, "end": 61816.16, "probability": 0.0527 }, { "start": 61816.16, "end": 61816.16, "probability": 0.1458 }, { "start": 61816.16, "end": 61817.72, "probability": 0.3046 }, { "start": 61818.58, "end": 61822.08, "probability": 0.8649 }, { "start": 61822.88, "end": 61831.16, "probability": 0.9331 }, { "start": 61831.3, "end": 61832.02, "probability": 0.539 }, { "start": 61832.2, "end": 61833.88, "probability": 0.6244 }, { "start": 61834.0, "end": 61834.41, "probability": 0.3058 }, { "start": 61834.96, "end": 61835.92, "probability": 0.5575 }, { "start": 61836.44, "end": 61837.94, "probability": 0.6384 }, { "start": 61838.04, "end": 61838.68, "probability": 0.0385 }, { "start": 61839.18, "end": 61840.48, "probability": 0.3307 }, { "start": 61840.52, "end": 61841.56, "probability": 0.3876 }, { "start": 61841.56, "end": 61841.66, "probability": 0.442 }, { "start": 61841.92, "end": 61842.74, "probability": 0.0132 }, { "start": 61842.96, "end": 61843.2, "probability": 0.0206 }, { "start": 61843.2, "end": 61843.2, "probability": 0.0958 }, { "start": 61843.2, "end": 61843.2, "probability": 0.0786 }, { "start": 61843.2, "end": 61844.0, "probability": 0.2905 }, { "start": 61844.94, "end": 61845.38, "probability": 0.0256 }, { "start": 61845.7, "end": 61845.7, "probability": 0.201 }, { "start": 61845.7, "end": 61849.08, "probability": 0.7316 }, { "start": 61849.6, "end": 61849.76, "probability": 0.794 }, { "start": 61849.76, "end": 61849.98, "probability": 0.0079 }, { "start": 61849.98, "end": 61852.12, "probability": 0.8651 }, { "start": 61852.2, "end": 61853.58, "probability": 0.9729 }, { "start": 61853.7, "end": 61858.84, "probability": 0.3348 }, { "start": 61859.16, "end": 61861.79, "probability": 0.5021 }, { "start": 61862.62, "end": 61864.48, "probability": 0.2502 }, { "start": 61865.14, "end": 61869.16, "probability": 0.4474 }, { "start": 61869.16, "end": 61871.12, "probability": 0.8779 }, { "start": 61871.24, "end": 61871.5, "probability": 0.0239 }, { "start": 61872.87, "end": 61874.06, "probability": 0.0324 }, { "start": 61874.08, "end": 61874.38, "probability": 0.0868 }, { "start": 61874.38, "end": 61875.62, "probability": 0.9771 }, { "start": 61876.48, "end": 61879.46, "probability": 0.9556 }, { "start": 61880.26, "end": 61885.64, "probability": 0.8309 }, { "start": 61885.82, "end": 61886.66, "probability": 0.5048 }, { "start": 61888.02, "end": 61891.48, "probability": 0.7463 }, { "start": 61892.9, "end": 61896.58, "probability": 0.959 }, { "start": 61897.86, "end": 61900.36, "probability": 0.9944 }, { "start": 61900.36, "end": 61900.38, "probability": 0.1927 }, { "start": 61900.38, "end": 61903.78, "probability": 0.7202 }, { "start": 61904.1, "end": 61904.96, "probability": 0.5509 }, { "start": 61906.46, "end": 61907.32, "probability": 0.2816 }, { "start": 61907.48, "end": 61907.48, "probability": 0.1871 }, { "start": 61907.48, "end": 61908.48, "probability": 0.3413 }, { "start": 61908.54, "end": 61909.46, "probability": 0.5939 }, { "start": 61909.66, "end": 61912.02, "probability": 0.686 }, { "start": 61912.24, "end": 61914.08, "probability": 0.7501 }, { "start": 61914.32, "end": 61914.62, "probability": 0.5102 }, { "start": 61914.66, "end": 61917.3, "probability": 0.8432 }, { "start": 61917.3, "end": 61917.39, "probability": 0.3203 }, { "start": 61917.9, "end": 61918.6, "probability": 0.9197 }, { "start": 61918.76, "end": 61919.12, "probability": 0.416 }, { "start": 61919.5, "end": 61919.78, "probability": 0.2261 }, { "start": 61919.94, "end": 61921.06, "probability": 0.5047 }, { "start": 61921.68, "end": 61923.4, "probability": 0.9407 }, { "start": 61923.4, "end": 61923.48, "probability": 0.0218 }, { "start": 61923.48, "end": 61925.1, "probability": 0.5788 }, { "start": 61925.18, "end": 61925.64, "probability": 0.6558 }, { "start": 61925.64, "end": 61927.46, "probability": 0.2213 }, { "start": 61927.48, "end": 61927.9, "probability": 0.4855 }, { "start": 61927.92, "end": 61928.2, "probability": 0.7139 }, { "start": 61928.3, "end": 61931.32, "probability": 0.3186 }, { "start": 61931.38, "end": 61933.26, "probability": 0.5864 }, { "start": 61936.52, "end": 61937.76, "probability": 0.2831 }, { "start": 61937.76, "end": 61938.64, "probability": 0.1173 }, { "start": 61938.64, "end": 61938.96, "probability": 0.2769 }, { "start": 61940.96, "end": 61940.96, "probability": 0.0724 }, { "start": 61940.96, "end": 61940.96, "probability": 0.1852 }, { "start": 61940.96, "end": 61940.96, "probability": 0.05 }, { "start": 61940.96, "end": 61940.96, "probability": 0.3221 }, { "start": 61940.96, "end": 61943.68, "probability": 0.7815 }, { "start": 61944.34, "end": 61944.86, "probability": 0.5232 }, { "start": 61945.96, "end": 61948.9, "probability": 0.1616 }, { "start": 61948.92, "end": 61949.74, "probability": 0.4739 }, { "start": 61950.66, "end": 61953.68, "probability": 0.9603 }, { "start": 61954.0, "end": 61956.42, "probability": 0.8584 }, { "start": 61956.52, "end": 61958.32, "probability": 0.7938 }, { "start": 61958.82, "end": 61960.02, "probability": 0.9689 }, { "start": 61960.58, "end": 61963.61, "probability": 0.6747 }, { "start": 61964.62, "end": 61965.15, "probability": 0.8267 }, { "start": 61965.9, "end": 61966.2, "probability": 0.5984 }, { "start": 61966.2, "end": 61966.96, "probability": 0.8468 }, { "start": 61967.06, "end": 61968.66, "probability": 0.7725 }, { "start": 61968.68, "end": 61969.92, "probability": 0.174 }, { "start": 61969.92, "end": 61971.08, "probability": 0.7034 }, { "start": 61971.4, "end": 61973.08, "probability": 0.6498 }, { "start": 61974.28, "end": 61978.12, "probability": 0.4268 }, { "start": 61978.12, "end": 61978.12, "probability": 0.01 }, { "start": 61978.12, "end": 61980.7, "probability": 0.7884 }, { "start": 61981.56, "end": 61981.92, "probability": 0.1023 }, { "start": 61982.66, "end": 61984.1, "probability": 0.5227 }, { "start": 61984.38, "end": 61985.1, "probability": 0.2245 }, { "start": 61985.2, "end": 61987.26, "probability": 0.8855 }, { "start": 61987.44, "end": 61988.4, "probability": 0.3099 }, { "start": 61988.88, "end": 61989.78, "probability": 0.7264 }, { "start": 61989.88, "end": 61989.88, "probability": 0.1829 }, { "start": 61989.96, "end": 61992.22, "probability": 0.6558 }, { "start": 61992.24, "end": 61994.72, "probability": 0.2438 }, { "start": 61994.72, "end": 61997.84, "probability": 0.5484 }, { "start": 61998.0, "end": 62000.4, "probability": 0.5326 }, { "start": 62001.48, "end": 62005.1, "probability": 0.2588 }, { "start": 62005.1, "end": 62005.1, "probability": 0.3977 }, { "start": 62005.1, "end": 62010.68, "probability": 0.434 }, { "start": 62011.42, "end": 62014.1, "probability": 0.5498 }, { "start": 62014.16, "end": 62015.74, "probability": 0.7542 }, { "start": 62015.8, "end": 62017.68, "probability": 0.9697 }, { "start": 62017.68, "end": 62017.72, "probability": 0.1803 }, { "start": 62017.8, "end": 62018.76, "probability": 0.6392 }, { "start": 62019.66, "end": 62021.3, "probability": 0.7315 }, { "start": 62021.3, "end": 62024.88, "probability": 0.6684 }, { "start": 62025.44, "end": 62026.1, "probability": 0.8333 }, { "start": 62026.48, "end": 62028.2, "probability": 0.5148 }, { "start": 62028.22, "end": 62029.16, "probability": 0.5825 }, { "start": 62029.52, "end": 62031.42, "probability": 0.4373 }, { "start": 62033.1, "end": 62034.06, "probability": 0.056 }, { "start": 62034.62, "end": 62036.96, "probability": 0.4043 }, { "start": 62037.2, "end": 62038.38, "probability": 0.5721 }, { "start": 62041.2, "end": 62046.14, "probability": 0.126 }, { "start": 62048.14, "end": 62048.2, "probability": 0.3318 }, { "start": 62048.2, "end": 62048.2, "probability": 0.3158 }, { "start": 62048.2, "end": 62048.2, "probability": 0.0389 }, { "start": 62048.2, "end": 62048.84, "probability": 0.3739 }, { "start": 62049.64, "end": 62053.1, "probability": 0.3593 }, { "start": 62053.1, "end": 62053.94, "probability": 0.0209 }, { "start": 62054.16, "end": 62055.0, "probability": 0.3827 }, { "start": 62055.58, "end": 62058.3, "probability": 0.4096 }, { "start": 62059.12, "end": 62060.74, "probability": 0.0211 }, { "start": 62061.64, "end": 62061.64, "probability": 0.0016 }, { "start": 62061.64, "end": 62063.46, "probability": 0.071 }, { "start": 62063.58, "end": 62065.84, "probability": 0.1327 }, { "start": 62065.98, "end": 62068.14, "probability": 0.5619 }, { "start": 62074.58, "end": 62075.58, "probability": 0.1881 }, { "start": 62077.44, "end": 62080.34, "probability": 0.0399 }, { "start": 62113.0, "end": 62113.0, "probability": 0.0 }, { "start": 62113.0, "end": 62113.0, "probability": 0.0 }, { "start": 62113.0, "end": 62113.0, "probability": 0.0 }, { "start": 62113.0, "end": 62113.0, "probability": 0.0 }, { "start": 62113.0, "end": 62113.0, "probability": 0.0 }, { "start": 62113.0, "end": 62113.0, "probability": 0.0 }, { "start": 62113.0, "end": 62113.0, "probability": 0.0 }, { "start": 62113.0, "end": 62113.0, "probability": 0.0 }, { "start": 62113.0, "end": 62113.0, "probability": 0.0 }, { "start": 62113.0, "end": 62113.0, "probability": 0.0 }, { "start": 62113.0, "end": 62113.0, "probability": 0.0 }, { "start": 62113.0, "end": 62113.0, "probability": 0.0 }, { "start": 62113.0, "end": 62113.0, "probability": 0.0 }, { "start": 62113.0, "end": 62113.0, "probability": 0.0 }, { "start": 62113.0, "end": 62113.0, "probability": 0.0 }, { "start": 62113.0, "end": 62113.0, "probability": 0.0 }, { "start": 62113.0, "end": 62113.0, "probability": 0.0 }, { "start": 62113.0, "end": 62113.0, "probability": 0.0 }, { "start": 62113.0, "end": 62113.0, "probability": 0.0 }, { "start": 62113.0, "end": 62113.0, "probability": 0.0 }, { "start": 62113.0, "end": 62113.0, "probability": 0.0 }, { "start": 62113.0, "end": 62113.0, "probability": 0.0 }, { "start": 62113.0, "end": 62113.0, "probability": 0.0 }, { "start": 62113.0, "end": 62113.0, "probability": 0.0 }, { "start": 62113.0, "end": 62113.0, "probability": 0.0 }, { "start": 62113.0, "end": 62113.0, "probability": 0.0 }, { "start": 62113.0, "end": 62113.0, "probability": 0.0 }, { "start": 62113.0, "end": 62113.0, "probability": 0.0 }, { "start": 62113.0, "end": 62113.0, "probability": 0.0 }, { "start": 62113.0, "end": 62113.0, "probability": 0.0 }, { "start": 62113.0, "end": 62113.0, "probability": 0.0 }, { "start": 62113.0, "end": 62113.0, "probability": 0.0 }, { "start": 62113.0, "end": 62113.0, "probability": 0.0 }, { "start": 62113.0, "end": 62113.0, "probability": 0.0 }, { "start": 62113.0, "end": 62113.0, "probability": 0.0 }, { "start": 62113.0, "end": 62113.0, "probability": 0.0 }, { "start": 62113.0, "end": 62113.0, "probability": 0.0 }, { "start": 62113.0, "end": 62113.0, "probability": 0.0 }, { "start": 62113.58, "end": 62114.34, "probability": 0.3302 }, { "start": 62114.36, "end": 62116.48, "probability": 0.0129 }, { "start": 62116.78, "end": 62118.6, "probability": 0.0921 }, { "start": 62119.22, "end": 62120.7, "probability": 0.3985 }, { "start": 62121.72, "end": 62122.02, "probability": 0.0325 }, { "start": 62123.74, "end": 62124.3, "probability": 0.1251 }, { "start": 62124.95, "end": 62131.58, "probability": 0.4322 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.0, "end": 62234.0, "probability": 0.0 }, { "start": 62234.1, "end": 62237.44, "probability": 0.724 }, { "start": 62237.44, "end": 62237.51, "probability": 0.0905 }, { "start": 62237.96, "end": 62237.96, "probability": 0.0857 }, { "start": 62238.0, "end": 62238.32, "probability": 0.2982 }, { "start": 62238.32, "end": 62241.8, "probability": 0.9443 }, { "start": 62242.42, "end": 62242.9, "probability": 0.3391 }, { "start": 62243.58, "end": 62244.24, "probability": 0.0441 }, { "start": 62244.66, "end": 62245.46, "probability": 0.2914 }, { "start": 62246.8, "end": 62246.8, "probability": 0.0647 }, { "start": 62246.88, "end": 62247.33, "probability": 0.1097 }, { "start": 62247.48, "end": 62247.9, "probability": 0.1472 }, { "start": 62247.9, "end": 62252.7, "probability": 0.7496 }, { "start": 62252.82, "end": 62253.5, "probability": 0.2943 }, { "start": 62253.6, "end": 62258.3, "probability": 0.6062 }, { "start": 62259.64, "end": 62263.18, "probability": 0.4736 }, { "start": 62264.82, "end": 62265.24, "probability": 0.1176 }, { "start": 62265.7, "end": 62267.11, "probability": 0.4223 }, { "start": 62268.34, "end": 62272.18, "probability": 0.9481 }, { "start": 62273.0, "end": 62278.6, "probability": 0.929 }, { "start": 62278.68, "end": 62279.86, "probability": 0.0549 }, { "start": 62279.92, "end": 62279.92, "probability": 0.4091 }, { "start": 62280.12, "end": 62286.36, "probability": 0.9691 }, { "start": 62286.9, "end": 62290.02, "probability": 0.3792 }, { "start": 62290.44, "end": 62293.14, "probability": 0.8329 }, { "start": 62293.36, "end": 62295.28, "probability": 0.3431 }, { "start": 62295.28, "end": 62296.94, "probability": 0.5322 }, { "start": 62296.96, "end": 62298.42, "probability": 0.804 }, { "start": 62298.76, "end": 62303.42, "probability": 0.9579 }, { "start": 62303.5, "end": 62307.2, "probability": 0.86 }, { "start": 62307.76, "end": 62308.94, "probability": 0.0652 }, { "start": 62309.02, "end": 62309.44, "probability": 0.4418 }, { "start": 62309.54, "end": 62312.0, "probability": 0.4941 }, { "start": 62314.02, "end": 62315.04, "probability": 0.0813 }, { "start": 62316.48, "end": 62317.18, "probability": 0.0109 }, { "start": 62317.44, "end": 62317.64, "probability": 0.0157 }, { "start": 62317.64, "end": 62318.42, "probability": 0.6102 }, { "start": 62319.42, "end": 62321.28, "probability": 0.4272 }, { "start": 62321.28, "end": 62322.76, "probability": 0.0404 }, { "start": 62322.92, "end": 62325.44, "probability": 0.0589 }, { "start": 62326.64, "end": 62327.28, "probability": 0.1806 }, { "start": 62328.18, "end": 62328.66, "probability": 0.0208 }, { "start": 62328.8, "end": 62331.64, "probability": 0.144 }, { "start": 62332.44, "end": 62332.8, "probability": 0.2288 }, { "start": 62332.8, "end": 62332.8, "probability": 0.1031 }, { "start": 62332.8, "end": 62334.72, "probability": 0.3057 }, { "start": 62335.38, "end": 62338.82, "probability": 0.3336 }, { "start": 62338.96, "end": 62340.06, "probability": 0.6491 }, { "start": 62340.34, "end": 62342.46, "probability": 0.7827 }, { "start": 62342.92, "end": 62343.44, "probability": 0.6252 }, { "start": 62343.66, "end": 62343.92, "probability": 0.2937 }, { "start": 62343.92, "end": 62343.96, "probability": 0.336 }, { "start": 62344.18, "end": 62344.42, "probability": 0.1092 }, { "start": 62344.42, "end": 62346.03, "probability": 0.8674 }, { "start": 62346.32, "end": 62348.0, "probability": 0.7727 }, { "start": 62348.3, "end": 62350.2, "probability": 0.6546 }, { "start": 62350.3, "end": 62353.62, "probability": 0.8722 }, { "start": 62354.18, "end": 62355.96, "probability": 0.814 }, { "start": 62356.28, "end": 62357.98, "probability": 0.3963 }, { "start": 62358.06, "end": 62358.4, "probability": 0.8496 }, { "start": 62358.72, "end": 62360.6, "probability": 0.4551 }, { "start": 62360.92, "end": 62363.96, "probability": 0.3738 }, { "start": 62364.0, "end": 62364.12, "probability": 0.5651 }, { "start": 62364.12, "end": 62364.12, "probability": 0.3086 }, { "start": 62364.12, "end": 62366.6, "probability": 0.8332 }, { "start": 62366.78, "end": 62369.8, "probability": 0.9061 }, { "start": 62369.84, "end": 62371.2, "probability": 0.5445 }, { "start": 62371.2, "end": 62371.98, "probability": 0.0272 }, { "start": 62371.98, "end": 62372.14, "probability": 0.177 }, { "start": 62372.14, "end": 62372.5, "probability": 0.2288 }, { "start": 62372.92, "end": 62373.82, "probability": 0.6322 }, { "start": 62373.82, "end": 62375.26, "probability": 0.4247 }, { "start": 62376.52, "end": 62377.2, "probability": 0.6689 }, { "start": 62377.52, "end": 62380.7, "probability": 0.3421 }, { "start": 62381.64, "end": 62381.72, "probability": 0.0981 }, { "start": 62381.72, "end": 62381.72, "probability": 0.3271 }, { "start": 62381.72, "end": 62383.68, "probability": 0.3758 }, { "start": 62383.92, "end": 62384.24, "probability": 0.4126 }, { "start": 62384.28, "end": 62386.44, "probability": 0.5563 }, { "start": 62386.76, "end": 62389.36, "probability": 0.7986 }, { "start": 62389.74, "end": 62390.8, "probability": 0.8661 }, { "start": 62391.0, "end": 62391.74, "probability": 0.9836 }, { "start": 62392.7, "end": 62395.04, "probability": 0.3517 }, { "start": 62400.34, "end": 62402.42, "probability": 0.1641 }, { "start": 62402.72, "end": 62404.28, "probability": 0.8727 }, { "start": 62404.8, "end": 62407.6, "probability": 0.6948 }, { "start": 62407.72, "end": 62407.92, "probability": 0.4907 }, { "start": 62408.42, "end": 62410.6, "probability": 0.9409 }, { "start": 62410.96, "end": 62411.7, "probability": 0.8172 }, { "start": 62412.54, "end": 62412.86, "probability": 0.3011 }, { "start": 62412.98, "end": 62414.9, "probability": 0.1755 }, { "start": 62415.12, "end": 62415.98, "probability": 0.4515 }, { "start": 62416.52, "end": 62417.6, "probability": 0.8035 }, { "start": 62418.54, "end": 62419.2, "probability": 0.1869 }, { "start": 62419.78, "end": 62423.92, "probability": 0.8402 }, { "start": 62424.96, "end": 62429.42, "probability": 0.9563 }, { "start": 62429.76, "end": 62431.92, "probability": 0.8561 }, { "start": 62432.66, "end": 62435.2, "probability": 0.9819 }, { "start": 62435.86, "end": 62437.21, "probability": 0.7961 }, { "start": 62437.94, "end": 62440.76, "probability": 0.9919 }, { "start": 62442.38, "end": 62445.66, "probability": 0.9988 }, { "start": 62446.78, "end": 62446.78, "probability": 0.0301 }, { "start": 62446.78, "end": 62446.78, "probability": 0.1118 }, { "start": 62446.78, "end": 62446.78, "probability": 0.153 }, { "start": 62446.78, "end": 62448.88, "probability": 0.1171 }, { "start": 62449.08, "end": 62450.72, "probability": 0.6599 }, { "start": 62451.22, "end": 62454.9, "probability": 0.9548 }, { "start": 62454.92, "end": 62455.58, "probability": 0.5291 }, { "start": 62455.98, "end": 62459.12, "probability": 0.7781 }, { "start": 62459.28, "end": 62461.18, "probability": 0.2051 }, { "start": 62461.42, "end": 62463.04, "probability": 0.5072 }, { "start": 62463.12, "end": 62464.26, "probability": 0.0042 }, { "start": 62464.52, "end": 62464.52, "probability": 0.2309 }, { "start": 62464.52, "end": 62466.58, "probability": 0.2067 }, { "start": 62467.08, "end": 62468.48, "probability": 0.8218 }, { "start": 62469.3, "end": 62470.73, "probability": 0.4862 }, { "start": 62471.16, "end": 62478.96, "probability": 0.8999 }, { "start": 62480.02, "end": 62481.62, "probability": 0.8837 }, { "start": 62481.62, "end": 62482.4, "probability": 0.3819 }, { "start": 62482.52, "end": 62485.32, "probability": 0.8296 }, { "start": 62485.84, "end": 62490.12, "probability": 0.9789 }, { "start": 62490.14, "end": 62491.76, "probability": 0.6944 }, { "start": 62492.9, "end": 62495.54, "probability": 0.201 }, { "start": 62495.58, "end": 62495.86, "probability": 0.1865 }, { "start": 62495.86, "end": 62495.86, "probability": 0.0388 }, { "start": 62495.86, "end": 62502.84, "probability": 0.749 }, { "start": 62503.5, "end": 62506.16, "probability": 0.9778 }, { "start": 62506.46, "end": 62507.3, "probability": 0.8475 }, { "start": 62507.62, "end": 62509.14, "probability": 0.2565 }, { "start": 62509.26, "end": 62510.58, "probability": 0.74 }, { "start": 62510.74, "end": 62511.26, "probability": 0.2075 }, { "start": 62511.4, "end": 62511.44, "probability": 0.1299 }, { "start": 62512.34, "end": 62512.4, "probability": 0.1959 }, { "start": 62512.71, "end": 62513.48, "probability": 0.7757 }, { "start": 62513.56, "end": 62514.28, "probability": 0.7254 }, { "start": 62514.32, "end": 62516.42, "probability": 0.8492 }, { "start": 62516.44, "end": 62518.66, "probability": 0.9531 }, { "start": 62519.44, "end": 62521.76, "probability": 0.2925 }, { "start": 62521.9, "end": 62522.36, "probability": 0.5993 }, { "start": 62522.36, "end": 62522.36, "probability": 0.796 }, { "start": 62522.36, "end": 62526.08, "probability": 0.8187 }, { "start": 62526.96, "end": 62527.82, "probability": 0.3589 }, { "start": 62528.8, "end": 62529.78, "probability": 0.4233 }, { "start": 62531.32, "end": 62532.6, "probability": 0.4605 }, { "start": 62533.22, "end": 62534.48, "probability": 0.9592 }, { "start": 62534.88, "end": 62535.63, "probability": 0.2064 }, { "start": 62536.58, "end": 62541.56, "probability": 0.9955 }, { "start": 62541.92, "end": 62543.38, "probability": 0.5873 }, { "start": 62543.62, "end": 62545.0, "probability": 0.5597 }, { "start": 62545.66, "end": 62546.56, "probability": 0.3835 }, { "start": 62546.68, "end": 62546.9, "probability": 0.0532 }, { "start": 62546.9, "end": 62548.44, "probability": 0.5063 }, { "start": 62550.02, "end": 62552.6, "probability": 0.5582 }, { "start": 62552.76, "end": 62553.22, "probability": 0.5144 }, { "start": 62553.3, "end": 62554.5, "probability": 0.5185 }, { "start": 62554.5, "end": 62554.52, "probability": 0.5555 }, { "start": 62554.52, "end": 62556.64, "probability": 0.5063 }, { "start": 62558.1, "end": 62559.38, "probability": 0.7921 }, { "start": 62559.76, "end": 62564.2, "probability": 0.5655 }, { "start": 62564.48, "end": 62564.74, "probability": 0.0804 }, { "start": 62564.74, "end": 62566.1, "probability": 0.4855 }, { "start": 62566.8, "end": 62567.44, "probability": 0.9307 }, { "start": 62569.08, "end": 62570.24, "probability": 0.3218 }, { "start": 62571.22, "end": 62573.77, "probability": 0.5861 }, { "start": 62574.8, "end": 62576.74, "probability": 0.8462 }, { "start": 62577.3, "end": 62579.19, "probability": 0.9961 }, { "start": 62581.2, "end": 62583.56, "probability": 0.8324 }, { "start": 62583.84, "end": 62584.62, "probability": 0.6862 }, { "start": 62584.82, "end": 62586.18, "probability": 0.7549 }, { "start": 62586.3, "end": 62587.66, "probability": 0.5905 }, { "start": 62588.1, "end": 62588.68, "probability": 0.8917 }, { "start": 62589.28, "end": 62589.88, "probability": 0.8903 }, { "start": 62589.96, "end": 62598.4, "probability": 0.9656 }, { "start": 62599.64, "end": 62608.56, "probability": 0.9946 }, { "start": 62610.04, "end": 62618.12, "probability": 0.9634 }, { "start": 62619.14, "end": 62625.4, "probability": 0.9829 }, { "start": 62626.2, "end": 62629.14, "probability": 0.8695 }, { "start": 62629.64, "end": 62631.1, "probability": 0.9028 }, { "start": 62632.06, "end": 62634.1, "probability": 0.9869 }, { "start": 62634.86, "end": 62641.38, "probability": 0.9647 }, { "start": 62642.26, "end": 62646.94, "probability": 0.9634 }, { "start": 62647.68, "end": 62649.88, "probability": 0.9487 }, { "start": 62650.94, "end": 62652.46, "probability": 0.7343 }, { "start": 62653.38, "end": 62656.32, "probability": 0.9927 }, { "start": 62657.46, "end": 62663.82, "probability": 0.9447 }, { "start": 62664.6, "end": 62665.98, "probability": 0.9786 }, { "start": 62666.68, "end": 62668.8, "probability": 0.99 }, { "start": 62669.5, "end": 62670.68, "probability": 0.9791 }, { "start": 62671.26, "end": 62678.26, "probability": 0.9933 }, { "start": 62679.24, "end": 62683.62, "probability": 0.9984 }, { "start": 62684.38, "end": 62686.24, "probability": 0.9557 }, { "start": 62686.94, "end": 62688.44, "probability": 0.9827 }, { "start": 62689.34, "end": 62692.64, "probability": 0.8778 }, { "start": 62693.4, "end": 62694.84, "probability": 0.964 }, { "start": 62695.64, "end": 62700.72, "probability": 0.9507 }, { "start": 62701.82, "end": 62705.78, "probability": 0.9673 }, { "start": 62706.7, "end": 62708.82, "probability": 0.9369 }, { "start": 62709.46, "end": 62713.92, "probability": 0.9573 }, { "start": 62714.5, "end": 62716.66, "probability": 0.8954 }, { "start": 62717.64, "end": 62719.56, "probability": 0.5597 }, { "start": 62720.32, "end": 62721.68, "probability": 0.6761 }, { "start": 62722.64, "end": 62724.88, "probability": 0.9483 }, { "start": 62725.12, "end": 62730.48, "probability": 0.9774 }, { "start": 62731.04, "end": 62732.39, "probability": 0.9772 }, { "start": 62733.1, "end": 62734.4, "probability": 0.9639 }, { "start": 62735.04, "end": 62736.62, "probability": 0.9438 }, { "start": 62737.32, "end": 62742.7, "probability": 0.6914 }, { "start": 62743.6, "end": 62745.64, "probability": 0.998 }, { "start": 62746.48, "end": 62750.7, "probability": 0.9199 }, { "start": 62751.46, "end": 62752.56, "probability": 0.6852 }, { "start": 62753.26, "end": 62755.3, "probability": 0.8867 }, { "start": 62755.34, "end": 62756.26, "probability": 0.9588 }, { "start": 62757.78, "end": 62759.36, "probability": 0.9591 }, { "start": 62760.7, "end": 62762.15, "probability": 0.9968 }, { "start": 62763.62, "end": 62765.26, "probability": 0.9176 }, { "start": 62766.64, "end": 62769.44, "probability": 0.9877 }, { "start": 62770.66, "end": 62776.44, "probability": 0.9988 }, { "start": 62777.76, "end": 62779.34, "probability": 0.885 }, { "start": 62780.26, "end": 62784.1, "probability": 0.9886 }, { "start": 62785.72, "end": 62789.6, "probability": 0.9672 }, { "start": 62790.54, "end": 62792.74, "probability": 0.8965 }, { "start": 62795.72, "end": 62798.74, "probability": 0.1787 }, { "start": 62809.42, "end": 62810.74, "probability": 0.017 }, { "start": 62811.76, "end": 62812.52, "probability": 0.5663 }, { "start": 62813.58, "end": 62815.06, "probability": 0.8732 }, { "start": 62816.3, "end": 62820.0, "probability": 0.9854 }, { "start": 62821.08, "end": 62822.85, "probability": 0.9617 }, { "start": 62824.34, "end": 62826.66, "probability": 0.9862 }, { "start": 62827.82, "end": 62829.62, "probability": 0.993 }, { "start": 62831.16, "end": 62833.22, "probability": 0.9575 }, { "start": 62833.9, "end": 62835.76, "probability": 0.6133 }, { "start": 62836.78, "end": 62837.91, "probability": 0.9341 }, { "start": 62839.58, "end": 62840.82, "probability": 0.5151 }, { "start": 62842.38, "end": 62848.22, "probability": 0.9958 }, { "start": 62849.88, "end": 62852.56, "probability": 0.7662 }, { "start": 62853.4, "end": 62859.34, "probability": 0.9673 }, { "start": 62859.92, "end": 62862.82, "probability": 0.9914 }, { "start": 62864.02, "end": 62868.16, "probability": 0.9141 }, { "start": 62869.72, "end": 62875.62, "probability": 0.9295 }, { "start": 62877.1, "end": 62879.54, "probability": 0.9749 }, { "start": 62881.18, "end": 62882.2, "probability": 0.9949 }, { "start": 62883.76, "end": 62885.18, "probability": 0.9902 }, { "start": 62887.66, "end": 62888.96, "probability": 0.6644 }, { "start": 62892.92, "end": 62894.96, "probability": 0.9987 }, { "start": 62896.18, "end": 62899.46, "probability": 0.9915 }, { "start": 62902.1, "end": 62904.6, "probability": 0.7323 }, { "start": 62906.44, "end": 62909.76, "probability": 0.9868 }, { "start": 62910.66, "end": 62911.96, "probability": 0.9157 }, { "start": 62912.84, "end": 62914.0, "probability": 0.704 }, { "start": 62914.84, "end": 62916.36, "probability": 0.9944 }, { "start": 62917.68, "end": 62919.16, "probability": 0.9649 }, { "start": 62920.08, "end": 62923.8, "probability": 0.9449 }, { "start": 62924.62, "end": 62926.9, "probability": 0.9329 }, { "start": 62927.78, "end": 62929.4, "probability": 0.9482 }, { "start": 62930.18, "end": 62931.58, "probability": 0.9895 }, { "start": 62932.14, "end": 62935.2, "probability": 0.9777 }, { "start": 62935.9, "end": 62939.32, "probability": 0.998 }, { "start": 62939.5, "end": 62944.6, "probability": 0.9606 }, { "start": 62945.38, "end": 62948.04, "probability": 0.9978 }, { "start": 62949.46, "end": 62953.08, "probability": 0.9971 }, { "start": 62954.96, "end": 62958.78, "probability": 0.6982 }, { "start": 62961.7, "end": 62963.1, "probability": 0.6984 }, { "start": 62965.02, "end": 62966.68, "probability": 0.9409 }, { "start": 62968.22, "end": 62971.54, "probability": 0.8989 }, { "start": 62973.18, "end": 62974.58, "probability": 0.6297 }, { "start": 62975.62, "end": 62977.68, "probability": 0.8239 }, { "start": 62978.98, "end": 62981.58, "probability": 0.8796 }, { "start": 62982.28, "end": 62983.66, "probability": 0.8987 }, { "start": 62984.4, "end": 62987.1, "probability": 0.9979 }, { "start": 62987.64, "end": 62989.78, "probability": 0.7458 }, { "start": 62991.18, "end": 62992.76, "probability": 0.886 }, { "start": 62993.62, "end": 62995.25, "probability": 0.8957 }, { "start": 62996.16, "end": 62997.82, "probability": 0.9557 }, { "start": 62998.66, "end": 62999.86, "probability": 0.9164 }, { "start": 63001.08, "end": 63006.88, "probability": 0.9399 }, { "start": 63007.52, "end": 63010.69, "probability": 0.8588 }, { "start": 63012.68, "end": 63015.08, "probability": 0.6741 }, { "start": 63016.26, "end": 63017.66, "probability": 0.9587 }, { "start": 63018.7, "end": 63021.52, "probability": 0.7462 }, { "start": 63022.4, "end": 63023.64, "probability": 0.934 }, { "start": 63024.2, "end": 63025.94, "probability": 0.9871 }, { "start": 63027.22, "end": 63028.94, "probability": 0.916 }, { "start": 63029.68, "end": 63033.54, "probability": 0.9876 }, { "start": 63034.1, "end": 63035.1, "probability": 0.9961 }, { "start": 63035.84, "end": 63036.58, "probability": 0.9818 }, { "start": 63039.8, "end": 63041.12, "probability": 0.9459 }, { "start": 63041.64, "end": 63045.88, "probability": 0.9472 }, { "start": 63046.48, "end": 63053.04, "probability": 0.7124 }, { "start": 63053.72, "end": 63054.86, "probability": 0.7965 }, { "start": 63056.08, "end": 63056.92, "probability": 0.9336 }, { "start": 63060.78, "end": 63061.84, "probability": 0.5815 }, { "start": 63063.72, "end": 63067.98, "probability": 0.3127 }, { "start": 63070.64, "end": 63072.06, "probability": 0.5802 }, { "start": 63078.34, "end": 63079.12, "probability": 0.646 }, { "start": 63079.82, "end": 63081.24, "probability": 0.9634 }, { "start": 63083.02, "end": 63086.44, "probability": 0.9532 }, { "start": 63086.94, "end": 63090.58, "probability": 0.8633 }, { "start": 63091.9, "end": 63094.82, "probability": 0.9974 }, { "start": 63095.54, "end": 63096.9, "probability": 0.9643 }, { "start": 63097.56, "end": 63099.46, "probability": 0.4982 }, { "start": 63100.08, "end": 63104.62, "probability": 0.7606 }, { "start": 63105.12, "end": 63109.16, "probability": 0.981 }, { "start": 63109.86, "end": 63111.1, "probability": 0.6719 }, { "start": 63112.3, "end": 63116.18, "probability": 0.9478 }, { "start": 63116.6, "end": 63120.28, "probability": 0.826 }, { "start": 63120.78, "end": 63123.16, "probability": 0.9095 }, { "start": 63123.76, "end": 63126.47, "probability": 0.9709 }, { "start": 63127.62, "end": 63128.28, "probability": 0.9794 }, { "start": 63128.82, "end": 63131.7, "probability": 0.9732 }, { "start": 63132.52, "end": 63133.98, "probability": 0.9878 }, { "start": 63134.98, "end": 63138.78, "probability": 0.9955 }, { "start": 63139.62, "end": 63144.9, "probability": 0.7188 }, { "start": 63145.58, "end": 63147.96, "probability": 0.9912 }, { "start": 63148.64, "end": 63150.38, "probability": 0.9518 }, { "start": 63150.94, "end": 63152.9, "probability": 0.8453 }, { "start": 63153.98, "end": 63156.4, "probability": 0.8069 }, { "start": 63156.52, "end": 63157.52, "probability": 0.8891 }, { "start": 63157.88, "end": 63159.12, "probability": 0.939 }, { "start": 63159.22, "end": 63159.88, "probability": 0.6129 }, { "start": 63161.02, "end": 63163.84, "probability": 0.9958 }, { "start": 63164.08, "end": 63164.14, "probability": 0.0103 }, { "start": 63165.16, "end": 63169.3, "probability": 0.4272 }, { "start": 63170.08, "end": 63171.16, "probability": 0.8981 }, { "start": 63172.02, "end": 63175.74, "probability": 0.9616 }, { "start": 63176.42, "end": 63177.28, "probability": 0.7144 }, { "start": 63178.59, "end": 63179.36, "probability": 0.7085 }, { "start": 63181.26, "end": 63182.08, "probability": 0.7412 }, { "start": 63182.42, "end": 63182.86, "probability": 0.7216 }, { "start": 63183.24, "end": 63185.56, "probability": 0.7739 }, { "start": 63185.78, "end": 63186.4, "probability": 0.9319 }, { "start": 63186.52, "end": 63191.64, "probability": 0.9725 }, { "start": 63192.34, "end": 63196.68, "probability": 0.8507 }, { "start": 63196.78, "end": 63198.92, "probability": 0.9894 }, { "start": 63200.08, "end": 63200.66, "probability": 0.952 }, { "start": 63201.69, "end": 63204.45, "probability": 0.9854 }, { "start": 63205.44, "end": 63206.62, "probability": 0.7894 }, { "start": 63208.1, "end": 63208.3, "probability": 0.8615 }, { "start": 63211.06, "end": 63213.56, "probability": 0.8972 }, { "start": 63214.12, "end": 63215.2, "probability": 0.927 }, { "start": 63215.88, "end": 63218.0, "probability": 0.7732 }, { "start": 63218.12, "end": 63218.61, "probability": 0.5806 }, { "start": 63218.7, "end": 63218.92, "probability": 0.0029 }, { "start": 63218.92, "end": 63219.04, "probability": 0.7969 }, { "start": 63219.16, "end": 63219.65, "probability": 0.96 }, { "start": 63219.84, "end": 63220.2, "probability": 0.4634 }, { "start": 63220.74, "end": 63221.16, "probability": 0.5302 }, { "start": 63221.3, "end": 63222.84, "probability": 0.8125 }, { "start": 63222.94, "end": 63225.54, "probability": 0.2497 }, { "start": 63225.58, "end": 63225.62, "probability": 0.2664 }, { "start": 63225.62, "end": 63226.56, "probability": 0.3628 }, { "start": 63226.64, "end": 63232.74, "probability": 0.7532 }, { "start": 63233.44, "end": 63237.18, "probability": 0.9441 }, { "start": 63238.44, "end": 63239.76, "probability": 0.748 }, { "start": 63240.91, "end": 63244.98, "probability": 0.9974 }, { "start": 63245.5, "end": 63247.2, "probability": 0.8628 }, { "start": 63247.96, "end": 63248.86, "probability": 0.3967 }, { "start": 63249.66, "end": 63250.16, "probability": 0.3439 }, { "start": 63250.4, "end": 63252.34, "probability": 0.9863 }, { "start": 63252.48, "end": 63253.12, "probability": 0.1736 }, { "start": 63253.32, "end": 63255.78, "probability": 0.8407 }, { "start": 63255.8, "end": 63261.34, "probability": 0.9976 }, { "start": 63261.46, "end": 63262.23, "probability": 0.9773 }, { "start": 63262.66, "end": 63264.24, "probability": 0.0677 }, { "start": 63264.92, "end": 63268.08, "probability": 0.1436 }, { "start": 63268.84, "end": 63269.14, "probability": 0.018 }, { "start": 63269.16, "end": 63269.16, "probability": 0.3451 }, { "start": 63269.16, "end": 63269.16, "probability": 0.1979 }, { "start": 63269.16, "end": 63270.06, "probability": 0.7588 }, { "start": 63270.2, "end": 63270.69, "probability": 0.6019 }, { "start": 63270.92, "end": 63271.92, "probability": 0.8547 }, { "start": 63272.2, "end": 63272.72, "probability": 0.4631 }, { "start": 63273.7, "end": 63274.04, "probability": 0.9007 }, { "start": 63274.14, "end": 63275.2, "probability": 0.842 }, { "start": 63275.9, "end": 63276.08, "probability": 0.0909 }, { "start": 63276.08, "end": 63276.88, "probability": 0.1144 }, { "start": 63277.2, "end": 63279.74, "probability": 0.0584 }, { "start": 63279.74, "end": 63279.74, "probability": 0.0486 }, { "start": 63279.74, "end": 63280.2, "probability": 0.4456 }, { "start": 63281.06, "end": 63281.9, "probability": 0.8521 }, { "start": 63282.58, "end": 63283.5, "probability": 0.606 }, { "start": 63284.16, "end": 63286.62, "probability": 0.9812 }, { "start": 63288.14, "end": 63289.8, "probability": 0.6614 }, { "start": 63289.96, "end": 63291.2, "probability": 0.5915 }, { "start": 63291.26, "end": 63295.2, "probability": 0.9713 }, { "start": 63295.62, "end": 63297.76, "probability": 0.9946 }, { "start": 63298.44, "end": 63299.38, "probability": 0.6636 }, { "start": 63299.48, "end": 63299.9, "probability": 0.864 }, { "start": 63300.16, "end": 63300.8, "probability": 0.8564 }, { "start": 63301.08, "end": 63304.96, "probability": 0.9148 }, { "start": 63305.08, "end": 63305.95, "probability": 0.9121 }, { "start": 63306.74, "end": 63311.16, "probability": 0.9306 }, { "start": 63312.48, "end": 63312.66, "probability": 0.0173 }, { "start": 63313.62, "end": 63313.62, "probability": 0.1072 }, { "start": 63313.62, "end": 63315.08, "probability": 0.4823 }, { "start": 63315.08, "end": 63317.42, "probability": 0.488 }, { "start": 63317.77, "end": 63321.78, "probability": 0.8426 }, { "start": 63323.39, "end": 63326.88, "probability": 0.9761 }, { "start": 63327.68, "end": 63328.14, "probability": 0.0477 }, { "start": 63328.2, "end": 63329.56, "probability": 0.1095 }, { "start": 63329.56, "end": 63329.56, "probability": 0.2504 }, { "start": 63329.56, "end": 63332.34, "probability": 0.8887 }, { "start": 63332.9, "end": 63334.36, "probability": 0.7 }, { "start": 63334.7, "end": 63337.9, "probability": 0.6459 }, { "start": 63338.94, "end": 63341.88, "probability": 0.96 }, { "start": 63344.61, "end": 63345.38, "probability": 0.0517 }, { "start": 63345.38, "end": 63346.48, "probability": 0.1763 }, { "start": 63347.26, "end": 63349.5, "probability": 0.4956 }, { "start": 63351.06, "end": 63351.72, "probability": 0.3062 }, { "start": 63351.72, "end": 63353.48, "probability": 0.5053 }, { "start": 63354.1, "end": 63354.24, "probability": 0.2235 }, { "start": 63354.24, "end": 63354.8, "probability": 0.333 }, { "start": 63355.32, "end": 63355.32, "probability": 0.4912 }, { "start": 63355.38, "end": 63357.92, "probability": 0.8465 }, { "start": 63357.94, "end": 63358.0, "probability": 0.0077 }, { "start": 63358.52, "end": 63359.3, "probability": 0.1325 }, { "start": 63359.9, "end": 63361.3, "probability": 0.0484 }, { "start": 63361.58, "end": 63363.72, "probability": 0.4996 }, { "start": 63363.72, "end": 63364.04, "probability": 0.0434 }, { "start": 63364.82, "end": 63364.82, "probability": 0.3209 }, { "start": 63364.9, "end": 63366.62, "probability": 0.7648 }, { "start": 63366.74, "end": 63366.74, "probability": 0.7864 }, { "start": 63366.74, "end": 63369.96, "probability": 0.7801 }, { "start": 63370.46, "end": 63372.39, "probability": 0.9958 }, { "start": 63372.84, "end": 63372.84, "probability": 0.05 }, { "start": 63372.84, "end": 63372.84, "probability": 0.1143 }, { "start": 63372.84, "end": 63372.84, "probability": 0.0417 }, { "start": 63372.84, "end": 63379.54, "probability": 0.9492 }, { "start": 63379.54, "end": 63386.46, "probability": 0.9435 }, { "start": 63386.74, "end": 63387.16, "probability": 0.1385 }, { "start": 63388.54, "end": 63389.5, "probability": 0.1303 }, { "start": 63389.5, "end": 63389.5, "probability": 0.5752 }, { "start": 63389.5, "end": 63389.5, "probability": 0.6939 }, { "start": 63389.5, "end": 63389.5, "probability": 0.5562 }, { "start": 63389.5, "end": 63392.08, "probability": 0.794 }, { "start": 63392.84, "end": 63392.84, "probability": 0.5588 }, { "start": 63392.84, "end": 63398.32, "probability": 0.8223 }, { "start": 63398.32, "end": 63402.76, "probability": 0.3772 }, { "start": 63403.52, "end": 63403.64, "probability": 0.0907 }, { "start": 63403.64, "end": 63403.64, "probability": 0.4548 }, { "start": 63404.94, "end": 63404.94, "probability": 0.1137 }, { "start": 63404.94, "end": 63404.94, "probability": 0.0837 }, { "start": 63404.94, "end": 63405.5, "probability": 0.1366 }, { "start": 63406.56, "end": 63413.26, "probability": 0.9722 }, { "start": 63413.92, "end": 63416.72, "probability": 0.968 }, { "start": 63416.78, "end": 63417.59, "probability": 0.6923 }, { "start": 63418.4, "end": 63420.16, "probability": 0.742 }, { "start": 63421.44, "end": 63425.78, "probability": 0.8566 }, { "start": 63426.86, "end": 63428.42, "probability": 0.8378 }, { "start": 63428.9, "end": 63434.22, "probability": 0.9187 }, { "start": 63434.44, "end": 63436.18, "probability": 0.6348 }, { "start": 63436.88, "end": 63437.34, "probability": 0.5005 }, { "start": 63437.42, "end": 63442.14, "probability": 0.9302 }, { "start": 63442.14, "end": 63447.7, "probability": 0.9608 }, { "start": 63447.78, "end": 63451.48, "probability": 0.7257 }, { "start": 63451.95, "end": 63452.66, "probability": 0.0599 }, { "start": 63452.7, "end": 63455.76, "probability": 0.2668 }, { "start": 63456.08, "end": 63456.38, "probability": 0.3718 }, { "start": 63456.38, "end": 63459.16, "probability": 0.5516 }, { "start": 63460.24, "end": 63461.66, "probability": 0.7839 }, { "start": 63463.2, "end": 63463.54, "probability": 0.5397 }, { "start": 63465.88, "end": 63468.44, "probability": 0.6022 }, { "start": 63468.82, "end": 63470.22, "probability": 0.3447 }, { "start": 63470.58, "end": 63471.46, "probability": 0.5015 }, { "start": 63472.48, "end": 63473.52, "probability": 0.9236 }, { "start": 63474.44, "end": 63474.74, "probability": 0.5472 }, { "start": 63475.7, "end": 63479.91, "probability": 0.8066 }, { "start": 63481.14, "end": 63488.14, "probability": 0.9871 }, { "start": 63488.34, "end": 63491.16, "probability": 0.723 }, { "start": 63491.66, "end": 63496.3, "probability": 0.9963 }, { "start": 63496.34, "end": 63498.06, "probability": 0.8764 }, { "start": 63499.44, "end": 63500.94, "probability": 0.9865 }, { "start": 63501.06, "end": 63507.16, "probability": 0.9951 }, { "start": 63507.26, "end": 63508.22, "probability": 0.9785 }, { "start": 63508.3, "end": 63510.24, "probability": 0.9915 }, { "start": 63511.08, "end": 63514.6, "probability": 0.2121 }, { "start": 63517.34, "end": 63521.14, "probability": 0.0321 }, { "start": 63522.46, "end": 63522.68, "probability": 0.0535 }, { "start": 63522.68, "end": 63522.75, "probability": 0.402 }, { "start": 63524.92, "end": 63526.36, "probability": 0.0251 }, { "start": 63527.76, "end": 63528.0, "probability": 0.2065 }, { "start": 63528.18, "end": 63528.76, "probability": 0.2498 }, { "start": 63528.82, "end": 63532.24, "probability": 0.0276 }, { "start": 63540.6, "end": 63541.74, "probability": 0.2899 }, { "start": 63541.8, "end": 63542.38, "probability": 0.3065 }, { "start": 63543.0, "end": 63543.52, "probability": 0.0121 }, { "start": 63543.52, "end": 63544.18, "probability": 0.1121 }, { "start": 63544.32, "end": 63545.9, "probability": 0.0784 }, { "start": 63547.44, "end": 63547.54, "probability": 0.3276 }, { "start": 63547.54, "end": 63548.03, "probability": 0.117 }, { "start": 63548.48, "end": 63548.64, "probability": 0.1926 }, { "start": 63548.64, "end": 63550.18, "probability": 0.7122 }, { "start": 63550.98, "end": 63555.44, "probability": 0.2788 }, { "start": 63555.44, "end": 63556.46, "probability": 0.1065 }, { "start": 63556.58, "end": 63556.58, "probability": 0.03 }, { "start": 63556.58, "end": 63560.1, "probability": 0.237 }, { "start": 63563.4, "end": 63563.4, "probability": 0.0485 }, { "start": 63566.32, "end": 63568.03, "probability": 0.0111 }, { "start": 63569.02, "end": 63570.52, "probability": 0.0349 }, { "start": 63571.44, "end": 63575.37, "probability": 0.0167 }, { "start": 63575.56, "end": 63578.23, "probability": 0.1309 }, { "start": 63579.74, "end": 63579.94, "probability": 0.0226 }, { "start": 63580.64, "end": 63582.22, "probability": 0.0308 }, { "start": 63596.0, "end": 63596.0, "probability": 0.0 }, { "start": 63596.0, "end": 63596.0, "probability": 0.0 }, { "start": 63596.0, "end": 63596.0, "probability": 0.0 }, { "start": 63596.0, "end": 63596.0, "probability": 0.0 }, { "start": 63596.0, "end": 63596.0, "probability": 0.0 }, { "start": 63596.0, "end": 63596.0, "probability": 0.0 }, { "start": 63596.0, "end": 63596.0, "probability": 0.0 }, { "start": 63596.0, "end": 63596.0, "probability": 0.0 }, { "start": 63596.0, "end": 63596.0, "probability": 0.0 }, { "start": 63596.0, "end": 63596.0, "probability": 0.0 }, { "start": 63596.0, "end": 63596.0, "probability": 0.0 }, { "start": 63596.0, "end": 63596.0, "probability": 0.0 }, { "start": 63596.0, "end": 63596.0, "probability": 0.0 }, { "start": 63596.0, "end": 63596.0, "probability": 0.0 }, { "start": 63596.0, "end": 63596.0, "probability": 0.0 }, { "start": 63596.0, "end": 63596.0, "probability": 0.0 }, { "start": 63596.24, "end": 63597.6, "probability": 0.6607 }, { "start": 63598.36, "end": 63599.4, "probability": 0.9215 }, { "start": 63599.64, "end": 63603.4, "probability": 0.8811 }, { "start": 63604.06, "end": 63606.66, "probability": 0.9918 }, { "start": 63608.08, "end": 63614.26, "probability": 0.8052 }, { "start": 63614.44, "end": 63616.34, "probability": 0.9346 }, { "start": 63616.88, "end": 63619.33, "probability": 0.2611 }, { "start": 63621.76, "end": 63623.24, "probability": 0.4662 }, { "start": 63623.4, "end": 63624.92, "probability": 0.581 }, { "start": 63625.04, "end": 63629.32, "probability": 0.9609 }, { "start": 63629.4, "end": 63629.89, "probability": 0.9381 }, { "start": 63630.96, "end": 63632.58, "probability": 0.6104 }, { "start": 63633.92, "end": 63634.62, "probability": 0.7465 }, { "start": 63635.34, "end": 63636.0, "probability": 0.1889 }, { "start": 63637.14, "end": 63640.14, "probability": 0.9961 }, { "start": 63641.1, "end": 63644.44, "probability": 0.9447 }, { "start": 63645.74, "end": 63647.26, "probability": 0.9489 }, { "start": 63648.94, "end": 63653.94, "probability": 0.9192 }, { "start": 63656.86, "end": 63658.86, "probability": 0.6566 }, { "start": 63659.94, "end": 63663.38, "probability": 0.9941 }, { "start": 63664.76, "end": 63666.52, "probability": 0.8802 }, { "start": 63667.72, "end": 63676.68, "probability": 0.9019 }, { "start": 63678.34, "end": 63681.14, "probability": 0.9971 }, { "start": 63683.04, "end": 63686.09, "probability": 0.9745 }, { "start": 63687.38, "end": 63691.08, "probability": 0.7949 }, { "start": 63692.58, "end": 63695.82, "probability": 0.9599 }, { "start": 63696.66, "end": 63700.12, "probability": 0.9963 }, { "start": 63700.12, "end": 63704.84, "probability": 0.9978 }, { "start": 63705.66, "end": 63707.11, "probability": 0.7686 }, { "start": 63708.52, "end": 63709.43, "probability": 0.7236 }, { "start": 63710.38, "end": 63711.8, "probability": 0.983 }, { "start": 63712.92, "end": 63714.84, "probability": 0.7401 }, { "start": 63716.38, "end": 63717.18, "probability": 0.8848 }, { "start": 63717.92, "end": 63718.48, "probability": 0.9551 }, { "start": 63719.38, "end": 63722.52, "probability": 0.9946 }, { "start": 63724.0, "end": 63725.4, "probability": 0.8907 }, { "start": 63726.18, "end": 63728.36, "probability": 0.876 }, { "start": 63730.96, "end": 63733.04, "probability": 0.572 }, { "start": 63733.66, "end": 63735.36, "probability": 0.8684 }, { "start": 63736.28, "end": 63744.98, "probability": 0.7347 }, { "start": 63746.04, "end": 63746.93, "probability": 0.9948 }, { "start": 63748.58, "end": 63753.36, "probability": 0.9901 }, { "start": 63754.64, "end": 63755.62, "probability": 0.7414 }, { "start": 63758.6, "end": 63761.68, "probability": 0.9952 }, { "start": 63762.2, "end": 63762.82, "probability": 0.7605 }, { "start": 63766.21, "end": 63766.84, "probability": 0.2803 }, { "start": 63767.96, "end": 63769.3, "probability": 0.2532 }, { "start": 63769.9, "end": 63771.42, "probability": 0.0269 }, { "start": 63771.72, "end": 63773.66, "probability": 0.1288 }, { "start": 63773.66, "end": 63773.84, "probability": 0.8384 }, { "start": 63773.94, "end": 63775.12, "probability": 0.842 }, { "start": 63775.32, "end": 63777.04, "probability": 0.6437 }, { "start": 63777.98, "end": 63781.36, "probability": 0.9515 }, { "start": 63782.24, "end": 63784.72, "probability": 0.801 }, { "start": 63784.88, "end": 63785.76, "probability": 0.9476 }, { "start": 63787.14, "end": 63789.23, "probability": 0.8439 }, { "start": 63789.58, "end": 63790.18, "probability": 0.9469 }, { "start": 63790.4, "end": 63790.76, "probability": 0.6748 }, { "start": 63790.84, "end": 63793.66, "probability": 0.8994 }, { "start": 63793.76, "end": 63799.5, "probability": 0.9657 }, { "start": 63799.68, "end": 63800.44, "probability": 0.5312 }, { "start": 63800.44, "end": 63802.17, "probability": 0.4575 }, { "start": 63802.44, "end": 63803.92, "probability": 0.0502 }, { "start": 63804.26, "end": 63807.3, "probability": 0.7664 }, { "start": 63808.14, "end": 63811.96, "probability": 0.9875 }, { "start": 63812.84, "end": 63814.97, "probability": 0.9995 }, { "start": 63816.6, "end": 63817.24, "probability": 0.0354 }, { "start": 63817.24, "end": 63817.24, "probability": 0.0251 }, { "start": 63817.24, "end": 63817.24, "probability": 0.059 }, { "start": 63817.24, "end": 63817.94, "probability": 0.3094 }, { "start": 63818.68, "end": 63819.58, "probability": 0.719 }, { "start": 63821.3, "end": 63823.0, "probability": 0.7282 }, { "start": 63824.0, "end": 63825.48, "probability": 0.9909 }, { "start": 63826.44, "end": 63827.7, "probability": 0.6294 }, { "start": 63829.58, "end": 63829.82, "probability": 0.0192 }, { "start": 63829.82, "end": 63831.38, "probability": 0.8458 }, { "start": 63831.52, "end": 63832.88, "probability": 0.3272 }, { "start": 63834.24, "end": 63838.16, "probability": 0.5313 }, { "start": 63838.26, "end": 63838.72, "probability": 0.0692 }, { "start": 63839.38, "end": 63839.96, "probability": 0.0558 }, { "start": 63842.68, "end": 63842.9, "probability": 0.7438 }, { "start": 63845.52, "end": 63846.06, "probability": 0.0498 }, { "start": 63846.06, "end": 63846.76, "probability": 0.1596 }, { "start": 63847.34, "end": 63848.24, "probability": 0.2015 }, { "start": 63849.52, "end": 63850.52, "probability": 0.1028 }, { "start": 63850.82, "end": 63852.54, "probability": 0.9689 }, { "start": 63853.35, "end": 63856.74, "probability": 0.5055 }, { "start": 63856.74, "end": 63857.38, "probability": 0.1005 }, { "start": 63858.16, "end": 63858.3, "probability": 0.0476 }, { "start": 63858.3, "end": 63858.3, "probability": 0.0218 }, { "start": 63858.3, "end": 63858.3, "probability": 0.0152 }, { "start": 63858.3, "end": 63859.68, "probability": 0.8643 }, { "start": 63860.58, "end": 63863.12, "probability": 0.2946 }, { "start": 63863.78, "end": 63866.01, "probability": 0.8311 }, { "start": 63866.48, "end": 63868.9, "probability": 0.6915 }, { "start": 63869.74, "end": 63872.22, "probability": 0.8577 }, { "start": 63872.5, "end": 63872.73, "probability": 0.0492 }, { "start": 63873.36, "end": 63873.46, "probability": 0.1064 }, { "start": 63873.46, "end": 63874.4, "probability": 0.4795 }, { "start": 63874.88, "end": 63877.02, "probability": 0.9229 }, { "start": 63877.62, "end": 63880.66, "probability": 0.9325 }, { "start": 63880.78, "end": 63882.26, "probability": 0.5083 }, { "start": 63884.18, "end": 63886.18, "probability": 0.8419 }, { "start": 63886.72, "end": 63894.98, "probability": 0.8743 }, { "start": 63894.98, "end": 63897.96, "probability": 0.9866 }, { "start": 63898.64, "end": 63900.08, "probability": 0.6383 }, { "start": 63900.96, "end": 63900.96, "probability": 0.1187 }, { "start": 63900.96, "end": 63904.7, "probability": 0.7206 }, { "start": 63905.0, "end": 63909.06, "probability": 0.4383 }, { "start": 63910.42, "end": 63912.08, "probability": 0.3266 }, { "start": 63913.12, "end": 63913.76, "probability": 0.024 }, { "start": 63913.86, "end": 63914.08, "probability": 0.0312 }, { "start": 63914.08, "end": 63914.08, "probability": 0.1452 }, { "start": 63914.08, "end": 63914.08, "probability": 0.0094 }, { "start": 63914.08, "end": 63916.9, "probability": 0.958 }, { "start": 63917.56, "end": 63919.22, "probability": 0.9072 }, { "start": 63919.86, "end": 63923.3, "probability": 0.986 }, { "start": 63923.86, "end": 63926.0, "probability": 0.9692 }, { "start": 63926.76, "end": 63929.28, "probability": 0.6652 }, { "start": 63929.82, "end": 63931.1, "probability": 0.0036 }, { "start": 63931.2, "end": 63932.85, "probability": 0.5797 }, { "start": 63934.16, "end": 63936.18, "probability": 0.8607 }, { "start": 63937.04, "end": 63937.92, "probability": 0.0404 }, { "start": 63938.18, "end": 63939.24, "probability": 0.7803 }, { "start": 63939.38, "end": 63942.84, "probability": 0.87 }, { "start": 63942.92, "end": 63945.58, "probability": 0.711 }, { "start": 63945.94, "end": 63946.49, "probability": 0.7133 }, { "start": 63946.72, "end": 63947.92, "probability": 0.9962 }, { "start": 63948.9, "end": 63953.98, "probability": 0.8387 }, { "start": 63954.1, "end": 63955.8, "probability": 0.0507 }, { "start": 63956.54, "end": 63956.92, "probability": 0.0154 }, { "start": 63958.7, "end": 63958.94, "probability": 0.0524 }, { "start": 63958.94, "end": 63960.48, "probability": 0.3542 }, { "start": 63961.12, "end": 63963.1, "probability": 0.803 }, { "start": 63963.77, "end": 63966.9, "probability": 0.7629 }, { "start": 63967.46, "end": 63968.59, "probability": 0.9167 }, { "start": 63969.14, "end": 63972.69, "probability": 0.8958 }, { "start": 63973.4, "end": 63975.1, "probability": 0.9429 }, { "start": 63975.82, "end": 63975.84, "probability": 0.1396 }, { "start": 63975.84, "end": 63979.0, "probability": 0.5669 }, { "start": 63979.44, "end": 63979.96, "probability": 0.6983 }, { "start": 63980.06, "end": 63980.82, "probability": 0.8802 }, { "start": 63981.76, "end": 63988.0, "probability": 0.7588 }, { "start": 63989.88, "end": 63994.5, "probability": 0.9551 }, { "start": 63995.82, "end": 63999.52, "probability": 0.8613 }, { "start": 64017.92, "end": 64019.38, "probability": 0.0253 }, { "start": 64019.38, "end": 64019.38, "probability": 0.2372 }, { "start": 64019.46, "end": 64020.86, "probability": 0.8359 }, { "start": 64023.48, "end": 64026.22, "probability": 0.556 }, { "start": 64027.16, "end": 64032.02, "probability": 0.7511 }, { "start": 64032.42, "end": 64035.04, "probability": 0.0492 }, { "start": 64035.04, "end": 64035.04, "probability": 0.1476 }, { "start": 64035.04, "end": 64035.04, "probability": 0.031 }, { "start": 64035.04, "end": 64035.04, "probability": 0.2028 }, { "start": 64035.04, "end": 64038.02, "probability": 0.7634 }, { "start": 64039.2, "end": 64042.72, "probability": 0.9185 }, { "start": 64043.82, "end": 64044.46, "probability": 0.1007 }, { "start": 64045.14, "end": 64049.86, "probability": 0.8396 }, { "start": 64050.02, "end": 64052.14, "probability": 0.3772 }, { "start": 64052.54, "end": 64053.44, "probability": 0.5101 }, { "start": 64053.76, "end": 64055.88, "probability": 0.7705 }, { "start": 64056.62, "end": 64060.8, "probability": 0.6401 }, { "start": 64062.44, "end": 64066.52, "probability": 0.9253 }, { "start": 64067.06, "end": 64068.44, "probability": 0.5891 }, { "start": 64068.46, "end": 64072.54, "probability": 0.1154 }, { "start": 64072.76, "end": 64074.57, "probability": 0.8668 }, { "start": 64076.3, "end": 64076.3, "probability": 0.411 }, { "start": 64076.3, "end": 64079.96, "probability": 0.8246 }, { "start": 64080.62, "end": 64082.99, "probability": 0.3286 }, { "start": 64083.98, "end": 64084.76, "probability": 0.1158 }, { "start": 64085.6, "end": 64085.96, "probability": 0.0964 }, { "start": 64086.3, "end": 64090.84, "probability": 0.9653 }, { "start": 64091.04, "end": 64093.0, "probability": 0.9468 }, { "start": 64093.44, "end": 64093.78, "probability": 0.561 }, { "start": 64093.78, "end": 64093.78, "probability": 0.3293 }, { "start": 64093.78, "end": 64094.88, "probability": 0.343 }, { "start": 64096.26, "end": 64098.2, "probability": 0.8563 }, { "start": 64098.96, "end": 64100.51, "probability": 0.2174 }, { "start": 64101.1, "end": 64103.06, "probability": 0.9768 }, { "start": 64103.4, "end": 64104.62, "probability": 0.717 }, { "start": 64104.7, "end": 64105.87, "probability": 0.9937 }, { "start": 64106.52, "end": 64108.5, "probability": 0.3701 }, { "start": 64109.08, "end": 64109.3, "probability": 0.1196 }, { "start": 64109.3, "end": 64109.3, "probability": 0.0378 }, { "start": 64109.3, "end": 64111.72, "probability": 0.176 }, { "start": 64112.52, "end": 64114.56, "probability": 0.704 }, { "start": 64115.1, "end": 64115.76, "probability": 0.2399 }, { "start": 64115.98, "end": 64117.72, "probability": 0.9906 }, { "start": 64118.1, "end": 64119.84, "probability": 0.5005 }, { "start": 64119.9, "end": 64121.34, "probability": 0.9966 }, { "start": 64121.38, "end": 64121.44, "probability": 0.0879 }, { "start": 64121.44, "end": 64122.54, "probability": 0.6367 }, { "start": 64122.76, "end": 64123.63, "probability": 0.8307 }, { "start": 64124.46, "end": 64126.38, "probability": 0.0614 }, { "start": 64126.86, "end": 64127.3, "probability": 0.4998 }, { "start": 64128.1, "end": 64128.4, "probability": 0.0859 }, { "start": 64128.4, "end": 64129.88, "probability": 0.1099 }, { "start": 64130.18, "end": 64130.18, "probability": 0.0007 }, { "start": 64130.18, "end": 64131.9, "probability": 0.992 }, { "start": 64132.38, "end": 64133.34, "probability": 0.5167 }, { "start": 64133.7, "end": 64136.34, "probability": 0.9681 }, { "start": 64136.9, "end": 64139.92, "probability": 0.9157 }, { "start": 64140.2, "end": 64142.52, "probability": 0.9987 }, { "start": 64143.14, "end": 64144.58, "probability": 0.7847 }, { "start": 64145.24, "end": 64148.46, "probability": 0.9177 }, { "start": 64149.02, "end": 64150.64, "probability": 0.9853 }, { "start": 64151.18, "end": 64151.92, "probability": 0.6369 }, { "start": 64152.24, "end": 64153.04, "probability": 0.3973 }, { "start": 64153.24, "end": 64153.38, "probability": 0.1508 }, { "start": 64153.38, "end": 64153.5, "probability": 0.2992 }, { "start": 64153.5, "end": 64153.78, "probability": 0.3752 }, { "start": 64154.04, "end": 64154.92, "probability": 0.8616 }, { "start": 64154.96, "end": 64158.78, "probability": 0.9818 }, { "start": 64159.32, "end": 64164.22, "probability": 0.7013 }, { "start": 64164.36, "end": 64165.08, "probability": 0.023 }, { "start": 64165.24, "end": 64167.66, "probability": 0.7951 }, { "start": 64167.82, "end": 64167.82, "probability": 0.1176 }, { "start": 64168.32, "end": 64168.96, "probability": 0.5172 }, { "start": 64169.24, "end": 64169.84, "probability": 0.3663 }, { "start": 64170.08, "end": 64170.82, "probability": 0.6953 }, { "start": 64171.02, "end": 64174.56, "probability": 0.9331 }, { "start": 64174.86, "end": 64176.56, "probability": 0.9285 }, { "start": 64177.16, "end": 64180.04, "probability": 0.896 }, { "start": 64180.36, "end": 64182.7, "probability": 0.6758 }, { "start": 64182.8, "end": 64183.84, "probability": 0.7526 }, { "start": 64183.9, "end": 64183.98, "probability": 0.0084 }, { "start": 64184.02, "end": 64184.92, "probability": 0.5596 }, { "start": 64184.98, "end": 64185.28, "probability": 0.2363 }, { "start": 64185.28, "end": 64186.16, "probability": 0.6439 }, { "start": 64186.24, "end": 64187.04, "probability": 0.3289 }, { "start": 64187.16, "end": 64190.42, "probability": 0.5264 }, { "start": 64190.56, "end": 64193.32, "probability": 0.5 }, { "start": 64194.64, "end": 64195.83, "probability": 0.5268 }, { "start": 64197.06, "end": 64197.78, "probability": 0.033 }, { "start": 64197.78, "end": 64197.86, "probability": 0.0768 }, { "start": 64197.86, "end": 64200.72, "probability": 0.5151 }, { "start": 64205.18, "end": 64205.5, "probability": 0.0025 }, { "start": 64205.5, "end": 64205.5, "probability": 0.1335 }, { "start": 64205.5, "end": 64212.06, "probability": 0.8557 }, { "start": 64212.9, "end": 64216.44, "probability": 0.6183 }, { "start": 64218.22, "end": 64220.08, "probability": 0.6205 }, { "start": 64220.62, "end": 64224.5, "probability": 0.8631 }, { "start": 64224.78, "end": 64226.93, "probability": 0.0534 }, { "start": 64228.14, "end": 64229.22, "probability": 0.0323 }, { "start": 64229.68, "end": 64235.14, "probability": 0.2917 }, { "start": 64236.02, "end": 64237.66, "probability": 0.0588 }, { "start": 64237.66, "end": 64237.66, "probability": 0.0662 }, { "start": 64237.66, "end": 64237.66, "probability": 0.2479 }, { "start": 64237.66, "end": 64237.66, "probability": 0.0568 }, { "start": 64237.66, "end": 64241.54, "probability": 0.5339 }, { "start": 64241.6, "end": 64242.42, "probability": 0.7025 }, { "start": 64243.42, "end": 64243.42, "probability": 0.1063 }, { "start": 64243.42, "end": 64244.72, "probability": 0.7666 }, { "start": 64245.3, "end": 64247.52, "probability": 0.832 }, { "start": 64248.16, "end": 64253.36, "probability": 0.9777 }, { "start": 64253.92, "end": 64257.0, "probability": 0.9766 }, { "start": 64257.62, "end": 64262.3, "probability": 0.9889 }, { "start": 64262.94, "end": 64265.95, "probability": 0.8036 }, { "start": 64266.14, "end": 64268.69, "probability": 0.8696 }, { "start": 64269.1, "end": 64270.28, "probability": 0.0325 }, { "start": 64270.28, "end": 64272.6, "probability": 0.3155 }, { "start": 64274.46, "end": 64275.58, "probability": 0.0275 }, { "start": 64275.58, "end": 64276.38, "probability": 0.1043 }, { "start": 64276.38, "end": 64276.5, "probability": 0.0717 }, { "start": 64276.64, "end": 64278.04, "probability": 0.5798 }, { "start": 64279.04, "end": 64283.12, "probability": 0.9937 }, { "start": 64284.12, "end": 64285.5, "probability": 0.8496 }, { "start": 64285.52, "end": 64286.32, "probability": 0.1544 }, { "start": 64286.57, "end": 64286.92, "probability": 0.2728 }, { "start": 64286.92, "end": 64288.9, "probability": 0.4993 }, { "start": 64289.46, "end": 64291.44, "probability": 0.6166 }, { "start": 64293.32, "end": 64294.92, "probability": 0.2449 }, { "start": 64294.96, "end": 64296.74, "probability": 0.4802 }, { "start": 64297.72, "end": 64297.94, "probability": 0.3622 }, { "start": 64298.7, "end": 64301.48, "probability": 0.3241 }, { "start": 64301.48, "end": 64301.56, "probability": 0.0318 }, { "start": 64301.56, "end": 64301.56, "probability": 0.0997 }, { "start": 64301.56, "end": 64301.56, "probability": 0.0267 }, { "start": 64301.56, "end": 64304.74, "probability": 0.7903 }, { "start": 64305.08, "end": 64306.9, "probability": 0.9052 }, { "start": 64307.5, "end": 64308.12, "probability": 0.3825 }, { "start": 64310.6, "end": 64312.86, "probability": 0.6861 }, { "start": 64313.48, "end": 64313.74, "probability": 0.3572 }, { "start": 64314.59, "end": 64314.94, "probability": 0.0342 }, { "start": 64314.94, "end": 64314.94, "probability": 0.2862 }, { "start": 64314.94, "end": 64314.94, "probability": 0.1756 }, { "start": 64314.94, "end": 64315.22, "probability": 0.075 }, { "start": 64315.7, "end": 64317.4, "probability": 0.7375 }, { "start": 64317.62, "end": 64319.18, "probability": 0.7717 }, { "start": 64320.32, "end": 64321.66, "probability": 0.3571 }, { "start": 64321.84, "end": 64323.18, "probability": 0.2652 }, { "start": 64324.32, "end": 64324.38, "probability": 0.0586 }, { "start": 64324.38, "end": 64326.06, "probability": 0.2056 }, { "start": 64326.6, "end": 64327.48, "probability": 0.0701 }, { "start": 64328.68, "end": 64330.66, "probability": 0.0188 }, { "start": 64330.68, "end": 64331.42, "probability": 0.7277 }, { "start": 64331.46, "end": 64332.3, "probability": 0.2827 }, { "start": 64332.62, "end": 64332.98, "probability": 0.1634 }, { "start": 64333.02, "end": 64334.98, "probability": 0.7656 }, { "start": 64334.98, "end": 64337.26, "probability": 0.9589 }, { "start": 64337.46, "end": 64339.94, "probability": 0.1786 }, { "start": 64340.24, "end": 64342.76, "probability": 0.9936 }, { "start": 64343.3, "end": 64347.97, "probability": 0.9893 }, { "start": 64348.96, "end": 64351.11, "probability": 0.999 }, { "start": 64352.32, "end": 64354.4, "probability": 0.6748 }, { "start": 64355.04, "end": 64355.64, "probability": 0.0212 }, { "start": 64355.64, "end": 64356.8, "probability": 0.0306 }, { "start": 64356.8, "end": 64357.54, "probability": 0.2084 }, { "start": 64357.94, "end": 64358.52, "probability": 0.0881 }, { "start": 64358.64, "end": 64362.02, "probability": 0.9774 }, { "start": 64362.42, "end": 64364.6, "probability": 0.0457 }, { "start": 64365.12, "end": 64365.64, "probability": 0.1544 }, { "start": 64366.26, "end": 64372.04, "probability": 0.0367 }, { "start": 64372.28, "end": 64372.62, "probability": 0.465 }, { "start": 64372.62, "end": 64372.62, "probability": 0.1249 }, { "start": 64372.62, "end": 64372.62, "probability": 0.2627 }, { "start": 64372.62, "end": 64375.86, "probability": 0.0745 }, { "start": 64379.26, "end": 64380.72, "probability": 0.2088 }, { "start": 64381.3, "end": 64381.62, "probability": 0.0798 }, { "start": 64381.96, "end": 64382.64, "probability": 0.0511 }, { "start": 64383.3, "end": 64386.5, "probability": 0.7632 }, { "start": 64386.62, "end": 64387.3, "probability": 0.0208 }, { "start": 64387.3, "end": 64387.3, "probability": 0.2144 }, { "start": 64387.3, "end": 64387.3, "probability": 0.1645 }, { "start": 64387.3, "end": 64395.18, "probability": 0.9674 }, { "start": 64395.34, "end": 64395.94, "probability": 0.5314 }, { "start": 64396.22, "end": 64397.84, "probability": 0.9449 }, { "start": 64398.14, "end": 64398.3, "probability": 0.2122 }, { "start": 64398.3, "end": 64399.08, "probability": 0.7542 }, { "start": 64399.16, "end": 64400.0, "probability": 0.9601 }, { "start": 64400.0, "end": 64401.84, "probability": 0.1287 }, { "start": 64402.88, "end": 64403.7, "probability": 0.5902 }, { "start": 64404.46, "end": 64404.66, "probability": 0.1425 }, { "start": 64404.66, "end": 64406.66, "probability": 0.56 }, { "start": 64407.97, "end": 64408.8, "probability": 0.0552 }, { "start": 64408.8, "end": 64409.4, "probability": 0.1606 }, { "start": 64410.7, "end": 64411.4, "probability": 0.6029 }, { "start": 64411.58, "end": 64413.72, "probability": 0.7035 }, { "start": 64413.86, "end": 64414.65, "probability": 0.0663 }, { "start": 64414.7, "end": 64416.12, "probability": 0.139 }, { "start": 64416.32, "end": 64417.26, "probability": 0.5729 }, { "start": 64417.7, "end": 64419.2, "probability": 0.7424 }, { "start": 64419.28, "end": 64420.1, "probability": 0.3674 }, { "start": 64421.49, "end": 64422.38, "probability": 0.1175 }, { "start": 64422.48, "end": 64424.14, "probability": 0.7049 }, { "start": 64424.86, "end": 64427.6, "probability": 0.4345 }, { "start": 64427.84, "end": 64428.0, "probability": 0.2404 }, { "start": 64428.16, "end": 64432.76, "probability": 0.9135 }, { "start": 64432.76, "end": 64436.06, "probability": 0.9897 }, { "start": 64436.5, "end": 64436.56, "probability": 0.294 }, { "start": 64436.56, "end": 64440.32, "probability": 0.6168 }, { "start": 64440.82, "end": 64441.88, "probability": 0.8499 }, { "start": 64442.51, "end": 64444.8, "probability": 0.0371 }, { "start": 64444.8, "end": 64447.72, "probability": 0.2467 }, { "start": 64448.64, "end": 64448.82, "probability": 0.6211 }, { "start": 64448.82, "end": 64450.1, "probability": 0.704 }, { "start": 64450.1, "end": 64451.34, "probability": 0.8101 }, { "start": 64451.78, "end": 64454.32, "probability": 0.7828 }, { "start": 64454.74, "end": 64459.6, "probability": 0.9721 }, { "start": 64459.94, "end": 64461.06, "probability": 0.2553 }, { "start": 64461.06, "end": 64462.0, "probability": 0.1136 }, { "start": 64462.0, "end": 64463.98, "probability": 0.8762 }, { "start": 64464.38, "end": 64465.44, "probability": 0.389 }, { "start": 64465.56, "end": 64465.56, "probability": 0.5015 }, { "start": 64465.56, "end": 64465.56, "probability": 0.0156 }, { "start": 64465.56, "end": 64470.68, "probability": 0.6757 }, { "start": 64471.46, "end": 64473.64, "probability": 0.4875 }, { "start": 64474.61, "end": 64477.66, "probability": 0.0214 }, { "start": 64477.66, "end": 64478.64, "probability": 0.3648 }, { "start": 64478.64, "end": 64479.74, "probability": 0.4995 }, { "start": 64480.12, "end": 64480.42, "probability": 0.4586 }, { "start": 64480.42, "end": 64480.42, "probability": 0.3704 }, { "start": 64480.42, "end": 64482.03, "probability": 0.1649 }, { "start": 64482.16, "end": 64483.72, "probability": 0.4022 }, { "start": 64483.82, "end": 64485.7, "probability": 0.5071 }, { "start": 64486.36, "end": 64486.36, "probability": 0.0594 }, { "start": 64486.36, "end": 64486.36, "probability": 0.0389 }, { "start": 64486.36, "end": 64487.92, "probability": 0.3797 }, { "start": 64488.04, "end": 64488.74, "probability": 0.7882 }, { "start": 64489.38, "end": 64490.85, "probability": 0.9907 }, { "start": 64491.06, "end": 64492.14, "probability": 0.2617 }, { "start": 64492.56, "end": 64494.38, "probability": 0.2451 }, { "start": 64494.38, "end": 64495.76, "probability": 0.9458 }, { "start": 64496.4, "end": 64501.74, "probability": 0.0033 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.0, "end": 64581.0, "probability": 0.0 }, { "start": 64581.1, "end": 64582.96, "probability": 0.7128 }, { "start": 64583.62, "end": 64584.26, "probability": 0.1123 }, { "start": 64584.26, "end": 64584.26, "probability": 0.0772 }, { "start": 64584.26, "end": 64588.88, "probability": 0.9629 }, { "start": 64589.42, "end": 64589.46, "probability": 0.0374 }, { "start": 64589.46, "end": 64591.4, "probability": 0.6797 }, { "start": 64592.44, "end": 64594.76, "probability": 0.0759 }, { "start": 64594.76, "end": 64595.64, "probability": 0.1054 }, { "start": 64596.46, "end": 64598.08, "probability": 0.2147 }, { "start": 64598.82, "end": 64602.04, "probability": 0.3527 }, { "start": 64602.24, "end": 64608.08, "probability": 0.9303 }, { "start": 64608.94, "end": 64611.96, "probability": 0.8215 }, { "start": 64612.5, "end": 64616.08, "probability": 0.9128 }, { "start": 64616.62, "end": 64620.68, "probability": 0.9679 }, { "start": 64621.88, "end": 64626.02, "probability": 0.9517 }, { "start": 64626.72, "end": 64631.5, "probability": 0.9927 }, { "start": 64631.96, "end": 64635.49, "probability": 0.6654 }, { "start": 64636.54, "end": 64637.76, "probability": 0.9992 }, { "start": 64638.1, "end": 64639.28, "probability": 0.0036 }, { "start": 64639.28, "end": 64641.36, "probability": 0.0183 }, { "start": 64642.42, "end": 64644.84, "probability": 0.4644 }, { "start": 64646.94, "end": 64648.36, "probability": 0.1835 }, { "start": 64650.16, "end": 64652.44, "probability": 0.4533 }, { "start": 64652.54, "end": 64652.9, "probability": 0.7325 }, { "start": 64652.98, "end": 64659.36, "probability": 0.7892 }, { "start": 64660.76, "end": 64664.18, "probability": 0.6872 }, { "start": 64664.34, "end": 64668.32, "probability": 0.4714 }, { "start": 64668.9, "end": 64674.52, "probability": 0.0961 }, { "start": 64674.52, "end": 64674.52, "probability": 0.0759 }, { "start": 64674.52, "end": 64675.9, "probability": 0.104 }, { "start": 64676.2, "end": 64677.9, "probability": 0.5252 }, { "start": 64679.74, "end": 64684.92, "probability": 0.2203 }, { "start": 64688.58, "end": 64690.52, "probability": 0.3922 }, { "start": 64690.88, "end": 64691.28, "probability": 0.5172 }, { "start": 64708.4, "end": 64708.74, "probability": 0.0018 }, { "start": 64710.08, "end": 64714.0, "probability": 0.979 }, { "start": 64716.87, "end": 64723.82, "probability": 0.7451 }, { "start": 64724.76, "end": 64729.24, "probability": 0.9675 }, { "start": 64729.94, "end": 64733.72, "probability": 0.9985 }, { "start": 64733.72, "end": 64737.62, "probability": 0.957 }, { "start": 64737.7, "end": 64738.28, "probability": 0.7466 }, { "start": 64738.76, "end": 64739.84, "probability": 0.6112 }, { "start": 64740.38, "end": 64741.4, "probability": 0.3779 }, { "start": 64741.48, "end": 64743.64, "probability": 0.5961 }, { "start": 64743.9, "end": 64745.82, "probability": 0.9736 }, { "start": 64745.94, "end": 64746.42, "probability": 0.5587 }, { "start": 64753.12, "end": 64755.12, "probability": 0.4495 }, { "start": 64755.28, "end": 64757.0, "probability": 0.2291 }, { "start": 64757.62, "end": 64759.96, "probability": 0.921 }, { "start": 64760.08, "end": 64762.42, "probability": 0.95 }, { "start": 64763.76, "end": 64764.8, "probability": 0.8975 }, { "start": 64765.84, "end": 64767.9, "probability": 0.9883 }, { "start": 64773.49, "end": 64774.24, "probability": 0.0739 }, { "start": 64775.32, "end": 64778.34, "probability": 0.7432 }, { "start": 64779.0, "end": 64782.86, "probability": 0.8532 }, { "start": 64783.26, "end": 64784.22, "probability": 0.163 }, { "start": 64784.98, "end": 64789.8, "probability": 0.744 }, { "start": 64790.4, "end": 64796.22, "probability": 0.57 }, { "start": 64796.93, "end": 64800.52, "probability": 0.957 }, { "start": 64800.52, "end": 64801.72, "probability": 0.2481 }, { "start": 64801.82, "end": 64803.72, "probability": 0.9866 }, { "start": 64804.38, "end": 64805.64, "probability": 0.9932 }, { "start": 64805.74, "end": 64806.58, "probability": 0.9818 }, { "start": 64807.46, "end": 64809.6, "probability": 0.4003 }, { "start": 64810.38, "end": 64810.74, "probability": 0.5521 }, { "start": 64810.94, "end": 64811.28, "probability": 0.5749 }, { "start": 64811.56, "end": 64812.26, "probability": 0.5329 }, { "start": 64812.36, "end": 64815.52, "probability": 0.8557 }, { "start": 64816.7, "end": 64817.72, "probability": 0.3395 }, { "start": 64817.92, "end": 64818.68, "probability": 0.678 }, { "start": 64818.72, "end": 64819.61, "probability": 0.7065 }, { "start": 64819.76, "end": 64820.42, "probability": 0.8882 }, { "start": 64820.52, "end": 64821.38, "probability": 0.7626 }, { "start": 64821.4, "end": 64822.02, "probability": 0.6113 }, { "start": 64822.16, "end": 64823.58, "probability": 0.5833 }, { "start": 64823.72, "end": 64824.5, "probability": 0.779 }, { "start": 64824.56, "end": 64826.22, "probability": 0.7542 }, { "start": 64827.16, "end": 64827.92, "probability": 0.8253 }, { "start": 64828.04, "end": 64828.52, "probability": 0.5602 }, { "start": 64828.6, "end": 64829.32, "probability": 0.5693 }, { "start": 64829.34, "end": 64830.06, "probability": 0.7222 }, { "start": 64830.1, "end": 64831.14, "probability": 0.893 }, { "start": 64831.56, "end": 64832.64, "probability": 0.8198 }, { "start": 64832.8, "end": 64834.3, "probability": 0.4753 }, { "start": 64834.5, "end": 64835.02, "probability": 0.1783 }, { "start": 64835.1, "end": 64835.92, "probability": 0.6216 }, { "start": 64836.36, "end": 64837.36, "probability": 0.0915 }, { "start": 64837.44, "end": 64838.08, "probability": 0.9285 }, { "start": 64838.16, "end": 64839.18, "probability": 0.8701 }, { "start": 64839.64, "end": 64840.28, "probability": 0.8952 }, { "start": 64840.38, "end": 64841.0, "probability": 0.6171 }, { "start": 64841.14, "end": 64842.14, "probability": 0.8045 }, { "start": 64842.2, "end": 64843.26, "probability": 0.4887 }, { "start": 64843.4, "end": 64844.52, "probability": 0.75 }, { "start": 64844.86, "end": 64847.08, "probability": 0.6159 }, { "start": 64847.58, "end": 64848.96, "probability": 0.4176 }, { "start": 64849.2, "end": 64851.12, "probability": 0.8806 }, { "start": 64851.18, "end": 64851.96, "probability": 0.5987 }, { "start": 64852.06, "end": 64852.62, "probability": 0.4971 }, { "start": 64852.7, "end": 64853.84, "probability": 0.9259 }, { "start": 64854.38, "end": 64854.96, "probability": 0.5416 }, { "start": 64855.12, "end": 64855.62, "probability": 0.7085 }, { "start": 64855.72, "end": 64856.44, "probability": 0.6168 }, { "start": 64856.62, "end": 64858.14, "probability": 0.5925 }, { "start": 64858.88, "end": 64860.1, "probability": 0.74 }, { "start": 64860.24, "end": 64862.02, "probability": 0.9721 }, { "start": 64862.54, "end": 64863.36, "probability": 0.8431 }, { "start": 64863.48, "end": 64864.24, "probability": 0.6051 }, { "start": 64864.34, "end": 64864.8, "probability": 0.266 }, { "start": 64865.0, "end": 64865.68, "probability": 0.7776 }, { "start": 64865.82, "end": 64868.48, "probability": 0.7997 }, { "start": 64869.92, "end": 64871.56, "probability": 0.8024 }, { "start": 64871.68, "end": 64873.38, "probability": 0.8528 }, { "start": 64873.58, "end": 64874.2, "probability": 0.8684 }, { "start": 64874.26, "end": 64875.26, "probability": 0.5419 }, { "start": 64875.34, "end": 64876.4, "probability": 0.5162 }, { "start": 64876.58, "end": 64877.94, "probability": 0.5739 }, { "start": 64878.74, "end": 64880.52, "probability": 0.7187 }, { "start": 64880.58, "end": 64883.08, "probability": 0.8978 }, { "start": 64883.16, "end": 64884.06, "probability": 0.675 }, { "start": 64884.14, "end": 64884.94, "probability": 0.9842 }, { "start": 64885.06, "end": 64886.04, "probability": 0.7808 }, { "start": 64886.66, "end": 64890.02, "probability": 0.8036 }, { "start": 64891.14, "end": 64891.84, "probability": 0.769 }, { "start": 64894.24, "end": 64897.8, "probability": 0.9311 }, { "start": 64897.86, "end": 64898.62, "probability": 0.3201 }, { "start": 64899.14, "end": 64900.36, "probability": 0.8243 }, { "start": 64900.52, "end": 64901.36, "probability": 0.8728 }, { "start": 64901.46, "end": 64902.84, "probability": 0.851 }, { "start": 64904.58, "end": 64907.24, "probability": 0.9832 }, { "start": 64908.02, "end": 64909.49, "probability": 0.4828 }, { "start": 64921.92, "end": 64923.2, "probability": 0.3901 }, { "start": 64925.7, "end": 64930.07, "probability": 0.0276 }, { "start": 64931.36, "end": 64932.02, "probability": 0.0475 }, { "start": 64932.02, "end": 64932.04, "probability": 0.1641 }, { "start": 64932.19, "end": 64933.33, "probability": 0.0128 }, { "start": 64935.56, "end": 64935.66, "probability": 0.1315 }, { "start": 64935.66, "end": 64936.52, "probability": 0.5019 }, { "start": 64936.86, "end": 64939.18, "probability": 0.7723 }, { "start": 64939.78, "end": 64942.04, "probability": 0.4803 }, { "start": 64944.32, "end": 64946.64, "probability": 0.0733 }, { "start": 64947.18, "end": 64950.35, "probability": 0.0376 }, { "start": 64953.36, "end": 64953.64, "probability": 0.092 }, { "start": 64958.98, "end": 64963.54, "probability": 0.0254 }, { "start": 64963.7, "end": 64966.64, "probability": 0.1324 }, { "start": 64971.32, "end": 64971.44, "probability": 0.0435 }, { "start": 64971.44, "end": 64976.62, "probability": 0.0217 }, { "start": 64976.74, "end": 64976.88, "probability": 0.0336 }, { "start": 64977.94, "end": 64980.01, "probability": 0.252 }, { "start": 64980.58, "end": 64982.58, "probability": 0.0005 }, { "start": 64990.0, "end": 64990.0, "probability": 0.0 }, { "start": 64990.0, "end": 64990.0, "probability": 0.0 }, { "start": 64990.0, "end": 64990.0, "probability": 0.0 }, { "start": 64990.0, "end": 64990.0, "probability": 0.0 }, { "start": 64990.0, "end": 64990.0, "probability": 0.0 }, { "start": 64990.0, "end": 64990.0, "probability": 0.0 }, { "start": 64990.0, "end": 64990.0, "probability": 0.0 }, { "start": 64990.0, "end": 64990.0, "probability": 0.0 }, { "start": 64990.0, "end": 64990.0, "probability": 0.0 }, { "start": 64990.0, "end": 64990.0, "probability": 0.0 }, { "start": 64990.0, "end": 64990.0, "probability": 0.0 }, { "start": 64990.0, "end": 64990.0, "probability": 0.0 }, { "start": 64990.0, "end": 64990.0, "probability": 0.0 }, { "start": 64990.0, "end": 64990.0, "probability": 0.0 }, { "start": 64990.0, "end": 64990.0, "probability": 0.0 }, { "start": 64990.0, "end": 64990.0, "probability": 0.0 }, { "start": 64990.0, "end": 64990.0, "probability": 0.0 }, { "start": 64990.12, "end": 64997.8, "probability": 0.1115 }, { "start": 64997.92, "end": 64998.38, "probability": 0.0303 }, { "start": 64998.6, "end": 65000.1, "probability": 0.0416 }, { "start": 65000.1, "end": 65000.74, "probability": 0.2137 }, { "start": 65000.74, "end": 65003.02, "probability": 0.0301 }, { "start": 65003.78, "end": 65004.76, "probability": 0.1038 }, { "start": 65113.0, "end": 65113.0, "probability": 0.0 }, { "start": 65113.0, "end": 65113.0, "probability": 0.0 }, { "start": 65113.0, "end": 65113.0, "probability": 0.0 }, { "start": 65113.0, "end": 65113.0, "probability": 0.0 }, { "start": 65113.0, "end": 65113.0, "probability": 0.0 }, { "start": 65113.0, "end": 65113.0, "probability": 0.0 }, { "start": 65113.0, "end": 65113.0, "probability": 0.0 }, { "start": 65113.0, "end": 65113.0, "probability": 0.0 }, { "start": 65113.0, "end": 65113.0, "probability": 0.0 }, { "start": 65113.0, "end": 65113.0, "probability": 0.0 }, { "start": 65113.0, "end": 65113.0, "probability": 0.0 }, { "start": 65113.0, "end": 65113.0, "probability": 0.0 }, { "start": 65113.0, "end": 65113.0, "probability": 0.0 }, { "start": 65113.0, "end": 65113.0, "probability": 0.0 }, { "start": 65113.0, "end": 65113.0, "probability": 0.0 }, { "start": 65113.0, "end": 65113.0, "probability": 0.0 }, { "start": 65113.0, "end": 65113.0, "probability": 0.0 }, { "start": 65113.0, "end": 65113.0, "probability": 0.0 }, { "start": 65113.0, "end": 65113.0, "probability": 0.0 }, { "start": 65113.0, "end": 65113.0, "probability": 0.0 }, { "start": 65113.0, "end": 65113.0, "probability": 0.0 }, { "start": 65113.0, "end": 65113.0, "probability": 0.0 }, { "start": 65113.0, "end": 65113.0, "probability": 0.0 }, { "start": 65113.0, "end": 65113.0, "probability": 0.0 }, { "start": 65113.0, "end": 65113.0, "probability": 0.0 }, { "start": 65113.0, "end": 65113.0, "probability": 0.0 }, { "start": 65113.0, "end": 65113.0, "probability": 0.0 }, { "start": 65113.0, "end": 65113.0, "probability": 0.0 }, { "start": 65113.0, "end": 65113.0, "probability": 0.0 }, { "start": 65113.0, "end": 65113.0, "probability": 0.0 }, { "start": 65113.0, "end": 65113.0, "probability": 0.0 }, { "start": 65113.0, "end": 65113.0, "probability": 0.0 }, { "start": 65113.0, "end": 65113.0, "probability": 0.0 }, { "start": 65113.0, "end": 65113.0, "probability": 0.0 }, { "start": 65113.0, "end": 65113.0, "probability": 0.0 }, { "start": 65113.0, "end": 65113.0, "probability": 0.0 }, { "start": 65113.22, "end": 65119.24, "probability": 0.006 }, { "start": 65130.08, "end": 65131.9, "probability": 0.0218 }, { "start": 65133.94, "end": 65135.86, "probability": 0.7014 }, { "start": 65137.02, "end": 65137.47, "probability": 0.7519 }, { "start": 65137.68, "end": 65143.2, "probability": 0.5565 }, { "start": 65143.28, "end": 65143.58, "probability": 0.069 }, { "start": 65143.84, "end": 65146.1, "probability": 0.1219 }, { "start": 65239.0, "end": 65239.0, "probability": 0.0 }, { "start": 65239.0, "end": 65239.0, "probability": 0.0 }, { "start": 65239.0, "end": 65239.0, "probability": 0.0 }, { "start": 65239.0, "end": 65239.0, "probability": 0.0 }, { "start": 65239.0, "end": 65239.0, "probability": 0.0 }, { "start": 65239.0, "end": 65239.0, "probability": 0.0 }, { "start": 65239.0, "end": 65239.0, "probability": 0.0 }, { "start": 65239.0, "end": 65239.0, "probability": 0.0 }, { "start": 65239.0, "end": 65239.0, "probability": 0.0 }, { "start": 65239.0, "end": 65239.0, "probability": 0.0 }, { "start": 65239.0, "end": 65239.0, "probability": 0.0 }, { "start": 65239.0, "end": 65239.0, "probability": 0.0 }, { "start": 65239.0, "end": 65239.0, "probability": 0.0 }, { "start": 65239.0, "end": 65239.0, "probability": 0.0 }, { "start": 65239.0, "end": 65239.0, "probability": 0.0 }, { "start": 65239.0, "end": 65239.0, "probability": 0.0 }, { "start": 65239.0, "end": 65239.0, "probability": 0.0 }, { "start": 65239.0, "end": 65239.0, "probability": 0.0 }, { "start": 65239.0, "end": 65239.0, "probability": 0.0 }, { "start": 65239.0, "end": 65239.0, "probability": 0.0 }, { "start": 65239.0, "end": 65239.0, "probability": 0.0 }, { "start": 65239.0, "end": 65239.0, "probability": 0.0 }, { "start": 65239.0, "end": 65239.0, "probability": 0.0 }, { "start": 65239.0, "end": 65239.0, "probability": 0.0 }, { "start": 65239.0, "end": 65239.0, "probability": 0.0 }, { "start": 65239.0, "end": 65239.0, "probability": 0.0 }, { "start": 65239.0, "end": 65239.0, "probability": 0.0 }, { "start": 65239.0, "end": 65239.0, "probability": 0.0 }, { "start": 65239.0, "end": 65239.0, "probability": 0.0 }, { "start": 65239.0, "end": 65239.0, "probability": 0.0 }, { "start": 65239.0, "end": 65239.0, "probability": 0.0 }, { "start": 65239.0, "end": 65239.0, "probability": 0.0 }, { "start": 65239.0, "end": 65239.0, "probability": 0.0 }, { "start": 65256.12, "end": 65257.44, "probability": 0.2979 }, { "start": 65257.54, "end": 65258.5, "probability": 0.6434 }, { "start": 65258.68, "end": 65262.3, "probability": 0.7316 }, { "start": 65262.64, "end": 65267.56, "probability": 0.3179 }, { "start": 65268.28, "end": 65270.96, "probability": 0.7483 }, { "start": 65271.72, "end": 65272.02, "probability": 0.011 }, { "start": 65275.46, "end": 65279.32, "probability": 0.0112 }, { "start": 65279.84, "end": 65281.76, "probability": 0.2892 }, { "start": 65281.78, "end": 65282.78, "probability": 0.5149 }, { "start": 65282.94, "end": 65285.48, "probability": 0.5704 }, { "start": 65286.98, "end": 65286.98, "probability": 0.0607 }, { "start": 65288.48, "end": 65289.68, "probability": 0.3036 }, { "start": 65293.02, "end": 65294.8, "probability": 0.1012 }, { "start": 65295.9, "end": 65298.92, "probability": 0.0306 }, { "start": 65299.94, "end": 65301.6, "probability": 0.2139 }, { "start": 65304.84, "end": 65307.5, "probability": 0.1187 }, { "start": 65309.0, "end": 65311.46, "probability": 0.0103 }, { "start": 65360.0, "end": 65360.0, "probability": 0.0 }, { "start": 65360.0, "end": 65360.0, "probability": 0.0 }, { "start": 65360.0, "end": 65360.0, "probability": 0.0 }, { "start": 65360.0, "end": 65360.0, "probability": 0.0 }, { "start": 65360.0, "end": 65360.0, "probability": 0.0 }, { "start": 65360.0, "end": 65360.0, "probability": 0.0 }, { "start": 65360.0, "end": 65360.0, "probability": 0.0 }, { "start": 65360.0, "end": 65360.0, "probability": 0.0 }, { "start": 65360.0, "end": 65360.0, "probability": 0.0 }, { "start": 65360.0, "end": 65360.0, "probability": 0.0 }, { "start": 65360.0, "end": 65360.0, "probability": 0.0 }, { "start": 65360.0, "end": 65360.0, "probability": 0.0 }, { "start": 65360.0, "end": 65360.0, "probability": 0.0 }, { "start": 65360.0, "end": 65360.0, "probability": 0.0 }, { "start": 65360.0, "end": 65360.0, "probability": 0.0 }, { "start": 65360.0, "end": 65360.0, "probability": 0.0 }, { "start": 65360.0, "end": 65360.0, "probability": 0.0 }, { "start": 65360.0, "end": 65360.0, "probability": 0.0 }, { "start": 65360.0, "end": 65360.0, "probability": 0.0 }, { "start": 65360.0, "end": 65360.0, "probability": 0.0 }, { "start": 65360.0, "end": 65360.0, "probability": 0.0 }, { "start": 65360.0, "end": 65360.0, "probability": 0.0 }, { "start": 65360.18, "end": 65362.9, "probability": 0.2796 }, { "start": 65363.0, "end": 65364.1, "probability": 0.9631 }, { "start": 65364.36, "end": 65366.18, "probability": 0.4961 }, { "start": 65366.54, "end": 65368.2, "probability": 0.7029 }, { "start": 65368.2, "end": 65373.88, "probability": 0.2286 }, { "start": 65374.72, "end": 65379.35, "probability": 0.0132 }, { "start": 65383.38, "end": 65389.02, "probability": 0.7856 }, { "start": 65481.0, "end": 65481.0, "probability": 0.0 }, { "start": 65481.0, "end": 65481.0, "probability": 0.0 }, { "start": 65481.0, "end": 65481.0, "probability": 0.0 }, { "start": 65481.0, "end": 65481.0, "probability": 0.0 }, { "start": 65481.0, "end": 65481.0, "probability": 0.0 }, { "start": 65481.0, "end": 65481.0, "probability": 0.0 }, { "start": 65481.0, "end": 65481.0, "probability": 0.0 }, { "start": 65481.0, "end": 65481.0, "probability": 0.0 }, { "start": 65481.0, "end": 65481.0, "probability": 0.0 }, { "start": 65481.0, "end": 65481.0, "probability": 0.0 }, { "start": 65481.0, "end": 65481.0, "probability": 0.0 }, { "start": 65481.0, "end": 65481.0, "probability": 0.0 }, { "start": 65481.0, "end": 65481.0, "probability": 0.0 }, { "start": 65481.0, "end": 65481.0, "probability": 0.0 }, { "start": 65481.0, "end": 65481.0, "probability": 0.0 }, { "start": 65481.0, "end": 65481.0, "probability": 0.0 }, { "start": 65481.0, "end": 65481.0, "probability": 0.0 }, { "start": 65481.0, "end": 65481.0, "probability": 0.0 }, { "start": 65481.0, "end": 65481.0, "probability": 0.0 }, { "start": 65481.0, "end": 65481.0, "probability": 0.0 }, { "start": 65481.0, "end": 65481.0, "probability": 0.0 }, { "start": 65481.0, "end": 65481.0, "probability": 0.0 }, { "start": 65481.0, "end": 65481.0, "probability": 0.0 }, { "start": 65481.0, "end": 65481.0, "probability": 0.0 }, { "start": 65481.0, "end": 65481.0, "probability": 0.0 }, { "start": 65481.0, "end": 65481.0, "probability": 0.0 }, { "start": 65481.0, "end": 65481.0, "probability": 0.0 }, { "start": 65481.0, "end": 65481.0, "probability": 0.0 }, { "start": 65481.0, "end": 65481.0, "probability": 0.0 }, { "start": 65481.0, "end": 65481.0, "probability": 0.0 }, { "start": 65481.0, "end": 65481.0, "probability": 0.0 }, { "start": 65481.0, "end": 65481.0, "probability": 0.0 }, { "start": 65481.0, "end": 65481.0, "probability": 0.0 }, { "start": 65481.0, "end": 65481.0, "probability": 0.0 }, { "start": 65481.0, "end": 65481.0, "probability": 0.0 }, { "start": 65481.0, "end": 65481.0, "probability": 0.0 }, { "start": 65481.0, "end": 65481.0, "probability": 0.0 }, { "start": 65481.0, "end": 65481.0, "probability": 0.0 }, { "start": 65482.16, "end": 65484.12, "probability": 0.013 }, { "start": 65485.84, "end": 65486.36, "probability": 0.0012 }, { "start": 65492.44, "end": 65492.64, "probability": 0.5573 }, { "start": 65492.64, "end": 65494.04, "probability": 0.2521 }, { "start": 65494.06, "end": 65496.82, "probability": 0.9717 }, { "start": 65497.16, "end": 65499.94, "probability": 0.9708 }, { "start": 65500.22, "end": 65501.16, "probability": 0.7029 }, { "start": 65502.48, "end": 65505.26, "probability": 0.2805 }, { "start": 65506.4, "end": 65506.4, "probability": 0.0094 }, { "start": 65507.48, "end": 65507.82, "probability": 0.194 }, { "start": 65510.26, "end": 65510.6, "probability": 0.2124 }, { "start": 65518.02, "end": 65518.62, "probability": 0.037 }, { "start": 65519.04, "end": 65519.08, "probability": 0.1499 }, { "start": 65519.08, "end": 65523.74, "probability": 0.0222 }, { "start": 65523.74, "end": 65528.17, "probability": 0.0046 }, { "start": 65529.46, "end": 65531.5, "probability": 0.5005 }, { "start": 65531.52, "end": 65532.0, "probability": 0.8999 }, { "start": 65604.0, "end": 65604.0, "probability": 0.0 }, { "start": 65604.0, "end": 65604.0, "probability": 0.0 }, { "start": 65604.0, "end": 65604.0, "probability": 0.0 }, { "start": 65604.0, "end": 65604.0, "probability": 0.0 }, { "start": 65604.0, "end": 65604.0, "probability": 0.0 }, { "start": 65604.0, "end": 65604.0, "probability": 0.0 }, { "start": 65604.0, "end": 65604.0, "probability": 0.0 }, { "start": 65604.0, "end": 65604.0, "probability": 0.0 }, { "start": 65604.0, "end": 65604.0, "probability": 0.0 }, { "start": 65604.0, "end": 65604.0, "probability": 0.0 }, { "start": 65604.0, "end": 65604.0, "probability": 0.0 }, { "start": 65604.0, "end": 65604.0, "probability": 0.0 }, { "start": 65604.0, "end": 65604.0, "probability": 0.0 }, { "start": 65604.0, "end": 65604.0, "probability": 0.0 }, { "start": 65604.0, "end": 65604.0, "probability": 0.0 }, { "start": 65604.0, "end": 65604.0, "probability": 0.0 }, { "start": 65604.0, "end": 65604.0, "probability": 0.0 }, { "start": 65604.0, "end": 65604.0, "probability": 0.0 }, { "start": 65604.0, "end": 65604.0, "probability": 0.0 }, { "start": 65604.0, "end": 65604.0, "probability": 0.0 }, { "start": 65604.0, "end": 65604.0, "probability": 0.0 }, { "start": 65604.0, "end": 65604.0, "probability": 0.0 }, { "start": 65604.0, "end": 65604.0, "probability": 0.0 }, { "start": 65604.0, "end": 65604.0, "probability": 0.0 }, { "start": 65604.0, "end": 65604.0, "probability": 0.0 }, { "start": 65604.0, "end": 65604.0, "probability": 0.0 }, { "start": 65604.0, "end": 65604.0, "probability": 0.0 }, { "start": 65604.0, "end": 65604.0, "probability": 0.0 }, { "start": 65604.0, "end": 65604.0, "probability": 0.0 }, { "start": 65604.0, "end": 65604.0, "probability": 0.0 }, { "start": 65604.0, "end": 65613.6, "probability": 0.7931 }, { "start": 65614.02, "end": 65616.84, "probability": 0.9417 }, { "start": 65616.86, "end": 65618.06, "probability": 0.8462 }, { "start": 65618.6, "end": 65620.68, "probability": 0.6766 }, { "start": 65620.68, "end": 65622.34, "probability": 0.7644 }, { "start": 65622.52, "end": 65625.48, "probability": 0.0161 }, { "start": 65627.52, "end": 65630.48, "probability": 0.2777 }, { "start": 65630.86, "end": 65631.81, "probability": 0.6873 }, { "start": 65632.54, "end": 65633.54, "probability": 0.0475 }, { "start": 65634.32, "end": 65635.78, "probability": 0.0658 }, { "start": 65636.42, "end": 65636.42, "probability": 0.0881 }, { "start": 65636.42, "end": 65639.04, "probability": 0.1051 }, { "start": 65639.28, "end": 65640.6, "probability": 0.0941 }, { "start": 65642.23, "end": 65650.77, "probability": 0.056 }, { "start": 65738.0, "end": 65738.0, "probability": 0.0 }, { "start": 65738.0, "end": 65738.0, "probability": 0.0 }, { "start": 65738.0, "end": 65738.0, "probability": 0.0 }, { "start": 65738.0, "end": 65738.0, "probability": 0.0 }, { "start": 65738.0, "end": 65738.0, "probability": 0.0 }, { "start": 65738.0, "end": 65738.0, "probability": 0.0 }, { "start": 65738.0, "end": 65738.0, "probability": 0.0 }, { "start": 65738.0, "end": 65738.0, "probability": 0.0 }, { "start": 65738.0, "end": 65738.0, "probability": 0.0 }, { "start": 65738.0, "end": 65738.0, "probability": 0.0 }, { "start": 65738.0, "end": 65738.0, "probability": 0.0 }, { "start": 65738.0, "end": 65738.0, "probability": 0.0 }, { "start": 65738.0, "end": 65738.0, "probability": 0.0 }, { "start": 65738.0, "end": 65738.0, "probability": 0.0 }, { "start": 65738.0, "end": 65738.0, "probability": 0.0 }, { "start": 65738.0, "end": 65738.0, "probability": 0.0 }, { "start": 65738.0, "end": 65738.0, "probability": 0.0 }, { "start": 65738.0, "end": 65738.0, "probability": 0.0 }, { "start": 65738.0, "end": 65738.0, "probability": 0.0 }, { "start": 65738.2, "end": 65739.08, "probability": 0.0972 }, { "start": 65739.08, "end": 65739.22, "probability": 0.8411 }, { "start": 65739.22, "end": 65739.22, "probability": 0.5287 }, { "start": 65739.22, "end": 65739.86, "probability": 0.1414 }, { "start": 65741.0, "end": 65742.22, "probability": 0.5145 }, { "start": 65743.12, "end": 65746.84, "probability": 0.6346 }, { "start": 65751.92, "end": 65757.56, "probability": 0.7513 }, { "start": 65758.34, "end": 65762.2, "probability": 0.9418 }, { "start": 65762.56, "end": 65764.38, "probability": 0.1192 }, { "start": 65764.64, "end": 65769.38, "probability": 0.3016 }, { "start": 65769.38, "end": 65770.46, "probability": 0.0656 }, { "start": 65772.54, "end": 65774.48, "probability": 0.2807 }, { "start": 65777.34, "end": 65778.98, "probability": 0.3728 }, { "start": 65778.98, "end": 65781.66, "probability": 0.0503 }, { "start": 65782.98, "end": 65783.52, "probability": 0.1388 }, { "start": 65792.83, "end": 65799.72, "probability": 0.1856 }, { "start": 65800.32, "end": 65802.6, "probability": 0.3265 }, { "start": 65802.86, "end": 65805.1, "probability": 0.5814 }, { "start": 65805.28, "end": 65807.78, "probability": 0.6891 }, { "start": 65807.98, "end": 65810.94, "probability": 0.0651 }, { "start": 65810.94, "end": 65810.94, "probability": 0.6648 }, { "start": 65863.0, "end": 65863.0, "probability": 0.0 }, { "start": 65863.0, "end": 65863.0, "probability": 0.0 }, { "start": 65863.0, "end": 65863.0, "probability": 0.0 }, { "start": 65863.0, "end": 65863.0, "probability": 0.0 }, { "start": 65863.0, "end": 65863.0, "probability": 0.0 }, { "start": 65863.0, "end": 65863.0, "probability": 0.0 }, { "start": 65863.22, "end": 65863.5, "probability": 0.0514 }, { "start": 65874.0, "end": 65879.16, "probability": 0.1438 }, { "start": 65879.54, "end": 65880.32, "probability": 0.1522 }, { "start": 65881.76, "end": 65884.26, "probability": 0.4536 }, { "start": 65884.26, "end": 65884.8, "probability": 0.5352 }, { "start": 65884.8, "end": 65887.84, "probability": 0.027 }, { "start": 65887.9, "end": 65889.68, "probability": 0.3055 }, { "start": 65890.14, "end": 65890.86, "probability": 0.0566 }, { "start": 65892.26, "end": 65892.98, "probability": 0.1298 }, { "start": 65987.0, "end": 65987.0, "probability": 0.0 }, { "start": 65987.0, "end": 65987.0, "probability": 0.0 }, { "start": 65987.0, "end": 65987.0, "probability": 0.0 }, { "start": 65987.0, "end": 65987.0, "probability": 0.0 }, { "start": 65987.0, "end": 65987.0, "probability": 0.0 }, { "start": 65987.0, "end": 65987.0, "probability": 0.0 }, { "start": 65987.0, "end": 65987.0, "probability": 0.0 }, { "start": 65987.0, "end": 65987.0, "probability": 0.0 }, { "start": 65987.0, "end": 65987.0, "probability": 0.0 }, { "start": 65987.0, "end": 65987.0, "probability": 0.0 }, { "start": 65987.0, "end": 65987.0, "probability": 0.0 }, { "start": 65987.0, "end": 65987.0, "probability": 0.0 }, { "start": 65987.0, "end": 65987.0, "probability": 0.0 }, { "start": 65987.0, "end": 65987.0, "probability": 0.0 }, { "start": 65987.0, "end": 65987.0, "probability": 0.0 }, { "start": 65987.0, "end": 65987.0, "probability": 0.0 }, { "start": 65987.0, "end": 65987.0, "probability": 0.0 }, { "start": 65987.0, "end": 65987.0, "probability": 0.0 }, { "start": 65987.0, "end": 65987.0, "probability": 0.0 }, { "start": 65987.0, "end": 65987.0, "probability": 0.0 }, { "start": 65987.0, "end": 65987.0, "probability": 0.0 }, { "start": 65987.0, "end": 65987.0, "probability": 0.0 }, { "start": 65987.0, "end": 65987.0, "probability": 0.0 }, { "start": 65987.0, "end": 65987.0, "probability": 0.0 }, { "start": 65987.0, "end": 65987.0, "probability": 0.0 }, { "start": 65987.0, "end": 65987.0, "probability": 0.0 }, { "start": 65987.0, "end": 65987.0, "probability": 0.0 }, { "start": 65987.0, "end": 65987.0, "probability": 0.0 }, { "start": 65987.0, "end": 65987.0, "probability": 0.0 }, { "start": 65987.0, "end": 65987.0, "probability": 0.0 }, { "start": 65987.0, "end": 65987.0, "probability": 0.0 }, { "start": 65987.26, "end": 65987.26, "probability": 0.1192 }, { "start": 65988.06, "end": 65991.46, "probability": 0.4318 }, { "start": 65999.36, "end": 65999.94, "probability": 0.4687 }, { "start": 65999.94, "end": 66001.66, "probability": 0.5926 }, { "start": 66001.68, "end": 66003.06, "probability": 0.9763 }, { "start": 66003.66, "end": 66004.72, "probability": 0.7659 }, { "start": 66004.78, "end": 66009.3, "probability": 0.9099 }, { "start": 66009.5, "end": 66010.59, "probability": 0.1479 }, { "start": 66012.96, "end": 66013.36, "probability": 0.1187 }, { "start": 66013.44, "end": 66015.64, "probability": 0.3919 }, { "start": 66017.02, "end": 66018.28, "probability": 0.538 }, { "start": 66019.4, "end": 66020.1, "probability": 0.4711 }, { "start": 66020.14, "end": 66022.06, "probability": 0.192 }, { "start": 66022.56, "end": 66022.56, "probability": 0.2192 }, { "start": 66022.56, "end": 66027.3, "probability": 0.6961 }, { "start": 66028.3, "end": 66029.2, "probability": 0.8516 }, { "start": 66029.38, "end": 66030.3, "probability": 0.7787 }, { "start": 66030.42, "end": 66031.7, "probability": 0.8223 }, { "start": 66032.0, "end": 66032.1, "probability": 0.2037 }, { "start": 66033.2, "end": 66033.32, "probability": 0.4215 }, { "start": 66033.32, "end": 66033.32, "probability": 0.4455 }, { "start": 66033.32, "end": 66035.5, "probability": 0.812 }, { "start": 66035.56, "end": 66039.32, "probability": 0.7517 }, { "start": 66040.2, "end": 66041.14, "probability": 0.6093 }, { "start": 66043.83, "end": 66044.82, "probability": 0.2965 }, { "start": 66048.26, "end": 66052.0, "probability": 0.0495 }, { "start": 66053.54, "end": 66054.04, "probability": 0.0082 }, { "start": 66056.94, "end": 66060.29, "probability": 0.0025 }, { "start": 66061.36, "end": 66063.04, "probability": 0.6236 }, { "start": 66063.08, "end": 66064.27, "probability": 0.8342 }, { "start": 66065.16, "end": 66065.8, "probability": 0.8785 }, { "start": 66066.0, "end": 66069.64, "probability": 0.9612 }, { "start": 66070.34, "end": 66076.36, "probability": 0.8172 }, { "start": 66077.1, "end": 66083.28, "probability": 0.7004 }, { "start": 66083.3, "end": 66085.1, "probability": 0.6443 }, { "start": 66085.3, "end": 66090.0, "probability": 0.6268 }, { "start": 66090.26, "end": 66090.46, "probability": 0.3228 }, { "start": 66090.54, "end": 66092.3, "probability": 0.6722 }, { "start": 66092.8, "end": 66097.54, "probability": 0.9963 }, { "start": 66097.78, "end": 66098.66, "probability": 0.6418 }, { "start": 66099.46, "end": 66101.58, "probability": 0.5283 }, { "start": 66101.66, "end": 66101.8, "probability": 0.0881 }, { "start": 66101.8, "end": 66102.84, "probability": 0.1814 }, { "start": 66102.84, "end": 66104.06, "probability": 0.3565 }, { "start": 66112.44, "end": 66115.34, "probability": 0.8259 }, { "start": 66115.64, "end": 66116.02, "probability": 0.89 }, { "start": 66116.18, "end": 66117.46, "probability": 0.7927 }, { "start": 66118.0, "end": 66120.22, "probability": 0.9212 }, { "start": 66120.3, "end": 66121.0, "probability": 0.934 }, { "start": 66121.2, "end": 66121.88, "probability": 0.7062 }, { "start": 66121.88, "end": 66123.68, "probability": 0.8723 }, { "start": 66124.02, "end": 66125.06, "probability": 0.6575 }, { "start": 66126.4, "end": 66131.6, "probability": 0.8672 }, { "start": 66131.7, "end": 66132.96, "probability": 0.9547 }, { "start": 66134.44, "end": 66136.06, "probability": 0.939 }, { "start": 66136.62, "end": 66138.3, "probability": 0.6384 }, { "start": 66139.76, "end": 66142.58, "probability": 0.0571 }, { "start": 66143.58, "end": 66148.64, "probability": 0.1747 }, { "start": 66149.28, "end": 66149.36, "probability": 0.0 }, { "start": 66150.02, "end": 66151.22, "probability": 0.0264 }, { "start": 66152.32, "end": 66158.2, "probability": 0.0442 }, { "start": 66158.2, "end": 66158.26, "probability": 0.1913 }, { "start": 66158.29, "end": 66158.52, "probability": 0.0076 }, { "start": 66158.52, "end": 66161.12, "probability": 0.9029 }, { "start": 66161.46, "end": 66162.64, "probability": 0.9639 }, { "start": 66162.9, "end": 66164.38, "probability": 0.7216 }, { "start": 66165.36, "end": 66166.48, "probability": 0.7121 }, { "start": 66167.52, "end": 66170.3, "probability": 0.4714 }, { "start": 66177.68, "end": 66180.02, "probability": 0.2376 }, { "start": 66181.92, "end": 66184.52, "probability": 0.0212 }, { "start": 66184.9, "end": 66188.44, "probability": 0.9747 }, { "start": 66188.44, "end": 66189.5, "probability": 0.9582 }, { "start": 66190.04, "end": 66191.94, "probability": 0.8921 }, { "start": 66192.56, "end": 66193.6, "probability": 0.3543 }, { "start": 66200.52, "end": 66201.38, "probability": 0.4456 }, { "start": 66201.56, "end": 66202.72, "probability": 0.1063 }, { "start": 66210.38, "end": 66212.06, "probability": 0.0332 }, { "start": 66213.24, "end": 66213.54, "probability": 0.0467 }, { "start": 66214.04, "end": 66214.48, "probability": 0.2163 }, { "start": 66214.6, "end": 66217.14, "probability": 0.9337 }, { "start": 66217.3, "end": 66218.44, "probability": 0.8407 }, { "start": 66218.54, "end": 66219.56, "probability": 0.7928 }, { "start": 66220.04, "end": 66221.64, "probability": 0.9572 }, { "start": 66222.66, "end": 66224.12, "probability": 0.7395 }, { "start": 66238.42, "end": 66238.92, "probability": 0.7307 }, { "start": 66243.96, "end": 66245.08, "probability": 0.3489 }, { "start": 66249.76, "end": 66250.06, "probability": 0.0593 }, { "start": 66250.06, "end": 66252.5, "probability": 0.7997 }, { "start": 66252.5, "end": 66253.82, "probability": 0.9736 }, { "start": 66253.94, "end": 66257.58, "probability": 0.4988 }, { "start": 66264.16, "end": 66270.26, "probability": 0.9071 }, { "start": 66270.26, "end": 66276.98, "probability": 0.8777 }, { "start": 66277.38, "end": 66278.16, "probability": 0.0025 }, { "start": 66278.42, "end": 66278.94, "probability": 0.9966 }, { "start": 66279.66, "end": 66280.38, "probability": 0.0474 }, { "start": 66280.76, "end": 66284.12, "probability": 0.9921 }, { "start": 66284.78, "end": 66286.18, "probability": 0.5589 }, { "start": 66286.84, "end": 66288.34, "probability": 0.6573 }, { "start": 66288.5, "end": 66290.14, "probability": 0.9885 }, { "start": 66290.32, "end": 66290.96, "probability": 0.4122 }, { "start": 66291.0, "end": 66292.26, "probability": 0.917 }, { "start": 66292.46, "end": 66292.46, "probability": 0.301 }, { "start": 66292.46, "end": 66292.9, "probability": 0.5866 }, { "start": 66292.98, "end": 66293.26, "probability": 0.3312 }, { "start": 66293.28, "end": 66296.78, "probability": 0.3924 }, { "start": 66296.86, "end": 66297.1, "probability": 0.0389 }, { "start": 66297.1, "end": 66298.74, "probability": 0.6659 }, { "start": 66299.14, "end": 66306.64, "probability": 0.8618 }, { "start": 66307.42, "end": 66310.78, "probability": 0.6677 }, { "start": 66312.07, "end": 66315.44, "probability": 0.6418 }, { "start": 66316.12, "end": 66318.32, "probability": 0.0085 }, { "start": 66320.0, "end": 66320.68, "probability": 0.0952 }, { "start": 66321.92, "end": 66322.64, "probability": 0.0183 }, { "start": 66323.48, "end": 66324.78, "probability": 0.2867 }, { "start": 66326.0, "end": 66327.16, "probability": 0.3649 }, { "start": 66327.62, "end": 66328.48, "probability": 0.3348 }, { "start": 66328.9, "end": 66329.06, "probability": 0.3292 }, { "start": 66329.78, "end": 66333.38, "probability": 0.3662 }, { "start": 66334.72, "end": 66337.7, "probability": 0.0405 }, { "start": 66339.4, "end": 66340.62, "probability": 0.5776 }, { "start": 66342.96, "end": 66347.68, "probability": 0.6615 }, { "start": 66351.82, "end": 66354.58, "probability": 0.2885 }, { "start": 66354.58, "end": 66356.52, "probability": 0.0486 }, { "start": 66356.86, "end": 66357.68, "probability": 0.1968 }, { "start": 66359.44, "end": 66360.46, "probability": 0.4515 }, { "start": 66361.12, "end": 66362.24, "probability": 0.3294 }, { "start": 66368.98, "end": 66371.7, "probability": 0.1929 }, { "start": 66372.28, "end": 66372.84, "probability": 0.3641 }, { "start": 66372.84, "end": 66372.9, "probability": 0.5269 }, { "start": 66372.9, "end": 66373.62, "probability": 0.6181 }, { "start": 66373.62, "end": 66373.72, "probability": 0.7114 }, { "start": 66374.64, "end": 66379.48, "probability": 0.7976 }, { "start": 66379.9, "end": 66380.12, "probability": 0.0811 }, { "start": 66380.24, "end": 66380.56, "probability": 0.6094 }, { "start": 66380.56, "end": 66380.56, "probability": 0.6806 }, { "start": 66380.56, "end": 66380.56, "probability": 0.7482 }, { "start": 66380.56, "end": 66381.66, "probability": 0.7786 }, { "start": 66381.66, "end": 66382.36, "probability": 0.4597 }, { "start": 66382.88, "end": 66384.26, "probability": 0.939 }, { "start": 66384.36, "end": 66386.0, "probability": 0.9831 }, { "start": 66386.48, "end": 66387.92, "probability": 0.8626 }, { "start": 66388.02, "end": 66388.52, "probability": 0.1344 }, { "start": 66389.82, "end": 66394.42, "probability": 0.6116 }, { "start": 66394.42, "end": 66395.26, "probability": 0.9492 }, { "start": 66395.44, "end": 66396.46, "probability": 0.149 }, { "start": 66396.52, "end": 66397.14, "probability": 0.0827 }, { "start": 66397.52, "end": 66399.9, "probability": 0.1256 }, { "start": 66403.52, "end": 66404.34, "probability": 0.8586 }, { "start": 66405.16, "end": 66405.9, "probability": 0.4122 }, { "start": 66406.6, "end": 66406.76, "probability": 0.1151 }, { "start": 66412.06, "end": 66414.62, "probability": 0.221 }, { "start": 66416.56, "end": 66419.58, "probability": 0.7687 }, { "start": 66419.68, "end": 66420.1, "probability": 0.1649 }, { "start": 66420.62, "end": 66421.18, "probability": 0.4737 }, { "start": 66421.84, "end": 66421.86, "probability": 0.0522 }, { "start": 66421.86, "end": 66423.46, "probability": 0.9249 }, { "start": 66427.66, "end": 66428.3, "probability": 0.5849 }, { "start": 66428.84, "end": 66428.94, "probability": 0.0732 }, { "start": 66429.58, "end": 66430.34, "probability": 0.5893 }, { "start": 66430.34, "end": 66431.83, "probability": 0.5521 }, { "start": 66431.98, "end": 66432.94, "probability": 0.6301 }, { "start": 66433.26, "end": 66434.14, "probability": 0.6686 }, { "start": 66434.72, "end": 66435.88, "probability": 0.4477 }, { "start": 66436.38, "end": 66438.62, "probability": 0.5305 }, { "start": 66439.94, "end": 66440.9, "probability": 0.3313 }, { "start": 66441.24, "end": 66441.9, "probability": 0.7992 }, { "start": 66442.06, "end": 66445.12, "probability": 0.0114 }, { "start": 66445.18, "end": 66446.48, "probability": 0.0814 }, { "start": 66446.74, "end": 66446.92, "probability": 0.0826 }, { "start": 66447.74, "end": 66450.94, "probability": 0.1608 }, { "start": 66453.2, "end": 66454.26, "probability": 0.1505 }, { "start": 66455.0, "end": 66456.42, "probability": 0.0836 }, { "start": 66456.48, "end": 66457.15, "probability": 0.0802 }, { "start": 66458.76, "end": 66459.54, "probability": 0.2603 }, { "start": 66460.2, "end": 66460.89, "probability": 0.0037 }, { "start": 66462.04, "end": 66462.46, "probability": 0.2567 }, { "start": 66463.74, "end": 66466.8, "probability": 0.8701 }, { "start": 66466.94, "end": 66467.92, "probability": 0.0898 }, { "start": 66468.8, "end": 66472.74, "probability": 0.2262 }, { "start": 66477.36, "end": 66478.94, "probability": 0.2581 }, { "start": 66479.56, "end": 66483.88, "probability": 0.8098 }, { "start": 66484.1, "end": 66485.2, "probability": 0.9288 }, { "start": 66485.72, "end": 66488.26, "probability": 0.7891 }, { "start": 66489.32, "end": 66492.06, "probability": 0.8722 }, { "start": 66498.1, "end": 66498.3, "probability": 0.5116 }, { "start": 66498.34, "end": 66501.3, "probability": 0.9465 }, { "start": 66501.3, "end": 66504.22, "probability": 0.5608 }, { "start": 66504.22, "end": 66505.46, "probability": 0.607 }, { "start": 66508.23, "end": 66509.82, "probability": 0.2403 }, { "start": 66509.82, "end": 66510.66, "probability": 0.6004 }, { "start": 66511.8, "end": 66515.02, "probability": 0.4747 }, { "start": 66515.76, "end": 66516.6, "probability": 0.6258 }, { "start": 66517.94, "end": 66521.52, "probability": 0.7335 }, { "start": 66527.76, "end": 66531.08, "probability": 0.9075 }, { "start": 66531.24, "end": 66532.28, "probability": 0.3933 }, { "start": 66532.78, "end": 66533.9, "probability": 0.6292 }, { "start": 66536.72, "end": 66537.52, "probability": 0.013 }, { "start": 66538.1, "end": 66538.7, "probability": 0.0386 }, { "start": 66551.26, "end": 66556.58, "probability": 0.5072 }, { "start": 66560.54, "end": 66566.06, "probability": 0.9302 }, { "start": 66566.54, "end": 66569.62, "probability": 0.0094 }, { "start": 66570.48, "end": 66572.28, "probability": 0.4437 }, { "start": 66573.4, "end": 66573.8, "probability": 0.2654 }, { "start": 66575.88, "end": 66580.46, "probability": 0.2906 }, { "start": 66587.3, "end": 66588.56, "probability": 0.2288 }, { "start": 66589.28, "end": 66589.56, "probability": 0.5094 }, { "start": 66591.9, "end": 66592.76, "probability": 0.536 }, { "start": 66598.14, "end": 66600.16, "probability": 0.5081 }, { "start": 66605.88, "end": 66606.56, "probability": 0.5308 }, { "start": 66608.03, "end": 66610.24, "probability": 0.8943 }, { "start": 66612.69, "end": 66616.48, "probability": 0.6911 }, { "start": 66618.56, "end": 66619.5, "probability": 0.325 }, { "start": 66619.6, "end": 66620.5, "probability": 0.5486 }, { "start": 66620.54, "end": 66620.78, "probability": 0.8621 }, { "start": 66621.46, "end": 66626.36, "probability": 0.5135 }, { "start": 66627.54, "end": 66629.32, "probability": 0.7775 }, { "start": 66630.6, "end": 66635.36, "probability": 0.4667 }, { "start": 66635.96, "end": 66637.84, "probability": 0.7041 }, { "start": 66638.94, "end": 66642.82, "probability": 0.5072 }, { "start": 66644.22, "end": 66647.1, "probability": 0.6583 }, { "start": 66647.88, "end": 66649.52, "probability": 0.1056 }, { "start": 66650.06, "end": 66650.18, "probability": 0.045 }, { "start": 66650.18, "end": 66651.02, "probability": 0.6747 }, { "start": 66651.58, "end": 66651.74, "probability": 0.2432 }, { "start": 66652.52, "end": 66652.76, "probability": 0.0504 }, { "start": 66652.76, "end": 66653.82, "probability": 0.2612 }, { "start": 66654.36, "end": 66654.5, "probability": 0.0055 }, { "start": 66655.42, "end": 66658.06, "probability": 0.621 }, { "start": 66658.96, "end": 66659.86, "probability": 0.44 }, { "start": 66661.09, "end": 66662.74, "probability": 0.0273 }, { "start": 66663.92, "end": 66664.89, "probability": 0.4443 }, { "start": 66667.32, "end": 66668.34, "probability": 0.5438 }, { "start": 66669.4, "end": 66672.66, "probability": 0.7001 }, { "start": 66673.68, "end": 66676.1, "probability": 0.0291 }, { "start": 66676.52, "end": 66677.05, "probability": 0.5832 }, { "start": 66678.86, "end": 66681.56, "probability": 0.4779 }, { "start": 66682.44, "end": 66682.8, "probability": 0.7791 }, { "start": 66683.84, "end": 66684.44, "probability": 0.9014 }, { "start": 66685.44, "end": 66685.78, "probability": 0.7225 }, { "start": 66686.48, "end": 66687.26, "probability": 0.7671 }, { "start": 66689.8, "end": 66693.9, "probability": 0.7514 }, { "start": 66694.7, "end": 66695.06, "probability": 0.9551 }, { "start": 66695.8, "end": 66696.66, "probability": 0.7705 }, { "start": 66700.18, "end": 66701.54, "probability": 0.3868 }, { "start": 66703.32, "end": 66704.5, "probability": 0.3122 }, { "start": 66704.76, "end": 66707.8, "probability": 0.5958 }, { "start": 66707.8, "end": 66708.24, "probability": 0.3478 }, { "start": 66708.5, "end": 66709.62, "probability": 0.4969 }, { "start": 66709.64, "end": 66711.7, "probability": 0.3055 }, { "start": 66713.54, "end": 66714.92, "probability": 0.8253 }, { "start": 66720.1, "end": 66720.86, "probability": 0.5564 }, { "start": 66722.94, "end": 66725.58, "probability": 0.4991 }, { "start": 66726.8, "end": 66729.52, "probability": 0.2059 }, { "start": 66730.76, "end": 66731.8, "probability": 0.9353 }, { "start": 66733.04, "end": 66733.88, "probability": 0.6783 }, { "start": 66735.5, "end": 66738.5, "probability": 0.631 }, { "start": 66740.14, "end": 66740.48, "probability": 0.8181 }, { "start": 66741.52, "end": 66742.74, "probability": 0.6505 }, { "start": 66743.68, "end": 66744.34, "probability": 0.425 }, { "start": 66745.94, "end": 66747.24, "probability": 0.3921 }, { "start": 66748.34, "end": 66748.6, "probability": 0.6412 }, { "start": 66749.8, "end": 66750.54, "probability": 0.722 }, { "start": 66751.38, "end": 66751.78, "probability": 0.9287 }, { "start": 66752.72, "end": 66753.34, "probability": 0.5378 }, { "start": 66754.2, "end": 66757.56, "probability": 0.5238 }, { "start": 66759.02, "end": 66761.22, "probability": 0.8631 }, { "start": 66763.58, "end": 66765.34, "probability": 0.6053 }, { "start": 66765.34, "end": 66765.34, "probability": 0.0211 }, { "start": 66765.34, "end": 66766.78, "probability": 0.2223 }, { "start": 66768.88, "end": 66770.06, "probability": 0.7601 }, { "start": 66775.26, "end": 66778.44, "probability": 0.4703 }, { "start": 66779.78, "end": 66780.08, "probability": 0.5048 }, { "start": 66781.16, "end": 66782.2, "probability": 0.5176 }, { "start": 66784.28, "end": 66784.88, "probability": 0.5567 }, { "start": 66786.62, "end": 66788.0, "probability": 0.2686 }, { "start": 66791.5, "end": 66793.5, "probability": 0.9907 }, { "start": 66795.36, "end": 66795.58, "probability": 0.0096 }, { "start": 66795.58, "end": 66796.42, "probability": 0.2345 }, { "start": 66797.68, "end": 66799.6, "probability": 0.5104 }, { "start": 66803.1, "end": 66804.26, "probability": 0.5388 }, { "start": 66805.26, "end": 66806.02, "probability": 0.7116 }, { "start": 66806.88, "end": 66807.16, "probability": 0.5143 }, { "start": 66808.06, "end": 66810.83, "probability": 0.6438 }, { "start": 66812.16, "end": 66812.96, "probability": 0.262 }, { "start": 66813.76, "end": 66814.14, "probability": 0.3328 }, { "start": 66815.56, "end": 66815.74, "probability": 0.0398 }, { "start": 66816.9, "end": 66817.24, "probability": 0.5749 }, { "start": 66820.44, "end": 66823.36, "probability": 0.4887 }, { "start": 66824.06, "end": 66825.76, "probability": 0.0149 }, { "start": 66826.42, "end": 66827.06, "probability": 0.4656 }, { "start": 66827.76, "end": 66828.84, "probability": 0.5229 }, { "start": 66835.88, "end": 66837.56, "probability": 0.0783 }, { "start": 66838.6, "end": 66840.34, "probability": 0.2521 }, { "start": 66840.54, "end": 66842.06, "probability": 0.2541 }, { "start": 66842.06, "end": 66842.9, "probability": 0.3267 }, { "start": 66845.34, "end": 66845.34, "probability": 0.0016 }, { "start": 66916.0, "end": 66916.0, "probability": 0.0 }, { "start": 66916.0, "end": 66916.0, "probability": 0.0 }, { "start": 66916.0, "end": 66916.0, "probability": 0.0 }, { "start": 66916.0, "end": 66916.0, "probability": 0.0 }, { "start": 66916.0, "end": 66916.0, "probability": 0.0 }, { "start": 66916.0, "end": 66916.0, "probability": 0.0 }, { "start": 66916.0, "end": 66916.0, "probability": 0.0 }, { "start": 66916.0, "end": 66916.0, "probability": 0.0 }, { "start": 66916.0, "end": 66916.0, "probability": 0.0 }, { "start": 66916.0, "end": 66916.0, "probability": 0.0 }, { "start": 66916.0, "end": 66916.0, "probability": 0.0 }, { "start": 66916.0, "end": 66916.0, "probability": 0.0 }, { "start": 66916.0, "end": 66916.0, "probability": 0.0 }, { "start": 66916.0, "end": 66916.0, "probability": 0.0 }, { "start": 66916.0, "end": 66916.0, "probability": 0.0 }, { "start": 66916.0, "end": 66916.0, "probability": 0.0 }, { "start": 66916.0, "end": 66916.0, "probability": 0.0 }, { "start": 66916.0, "end": 66916.0, "probability": 0.0 }, { "start": 66916.0, "end": 66916.0, "probability": 0.0 }, { "start": 66916.0, "end": 66916.0, "probability": 0.0 }, { "start": 66916.0, "end": 66916.0, "probability": 0.0 }, { "start": 66916.0, "end": 66916.0, "probability": 0.0 }, { "start": 66916.0, "end": 66916.0, "probability": 0.0 }, { "start": 66916.0, "end": 66916.0, "probability": 0.0 }, { "start": 66916.0, "end": 66916.0, "probability": 0.0 }, { "start": 66916.0, "end": 66916.0, "probability": 0.0 }, { "start": 66916.0, "end": 66916.0, "probability": 0.0 }, { "start": 66916.0, "end": 66916.0, "probability": 0.0 }, { "start": 66916.0, "end": 66916.0, "probability": 0.0 }, { "start": 66916.0, "end": 66916.0, "probability": 0.0 }, { "start": 66916.0, "end": 66916.0, "probability": 0.0 }, { "start": 66916.0, "end": 66916.0, "probability": 0.0 }, { "start": 66916.0, "end": 66916.0, "probability": 0.0 }, { "start": 66916.0, "end": 66916.0, "probability": 0.0 }, { "start": 66916.0, "end": 66916.0, "probability": 0.0 }, { "start": 66916.0, "end": 66916.0, "probability": 0.0 }, { "start": 66916.0, "end": 66916.0, "probability": 0.0 }, { "start": 66916.0, "end": 66916.0, "probability": 0.0 }, { "start": 66916.14, "end": 66916.84, "probability": 0.0935 }, { "start": 66916.84, "end": 66917.62, "probability": 0.5893 }, { "start": 66919.02, "end": 66921.66, "probability": 0.5376 }, { "start": 66922.6, "end": 66924.38, "probability": 0.4347 }, { "start": 66925.04, "end": 66928.4, "probability": 0.5295 }, { "start": 66928.96, "end": 66931.3, "probability": 0.1799 }, { "start": 66931.3, "end": 66934.02, "probability": 0.0656 }, { "start": 67080.0, "end": 67080.0, "probability": 0.0 }, { "start": 67080.0, "end": 67080.0, "probability": 0.0 }, { "start": 67080.0, "end": 67080.0, "probability": 0.0 }, { "start": 67080.0, "end": 67080.0, "probability": 0.0 }, { "start": 67080.0, "end": 67080.0, "probability": 0.0 }, { "start": 67080.0, "end": 67080.0, "probability": 0.0 }, { "start": 67080.0, "end": 67080.0, "probability": 0.0 }, { "start": 67080.0, "end": 67080.0, "probability": 0.0 }, { "start": 67080.0, "end": 67080.0, "probability": 0.0 }, { "start": 67080.0, "end": 67080.0, "probability": 0.0 }, { "start": 67080.0, "end": 67080.0, "probability": 0.0 }, { "start": 67080.0, "end": 67080.0, "probability": 0.0 }, { "start": 67080.0, "end": 67080.0, "probability": 0.0 }, { "start": 67080.0, "end": 67080.0, "probability": 0.0 }, { "start": 67080.0, "end": 67080.0, "probability": 0.0 }, { "start": 67080.0, "end": 67080.0, "probability": 0.0 }, { "start": 67080.0, "end": 67080.0, "probability": 0.0 }, { "start": 67080.0, "end": 67080.0, "probability": 0.0 }, { "start": 67080.0, "end": 67080.0, "probability": 0.0 }, { "start": 67080.0, "end": 67080.0, "probability": 0.0 }, { "start": 67080.0, "end": 67080.0, "probability": 0.0 }, { "start": 67080.0, "end": 67080.0, "probability": 0.0 }, { "start": 67080.0, "end": 67080.0, "probability": 0.0 }, { "start": 67080.0, "end": 67080.0, "probability": 0.0 }, { "start": 67080.0, "end": 67080.0, "probability": 0.0 }, { "start": 67080.0, "end": 67080.0, "probability": 0.0 }, { "start": 67080.0, "end": 67080.0, "probability": 0.0 }, { "start": 67080.0, "end": 67080.0, "probability": 0.0 }, { "start": 67080.0, "end": 67080.0, "probability": 0.0 }, { "start": 67080.0, "end": 67080.0, "probability": 0.0 }, { "start": 67080.0, "end": 67080.0, "probability": 0.0 }, { "start": 67080.0, "end": 67080.0, "probability": 0.0 }, { "start": 67080.0, "end": 67080.0, "probability": 0.0 }, { "start": 67080.0, "end": 67080.0, "probability": 0.0 }, { "start": 67080.0, "end": 67080.0, "probability": 0.0 }, { "start": 67080.0, "end": 67080.0, "probability": 0.0 }, { "start": 67080.0, "end": 67080.0, "probability": 0.0 }, { "start": 67080.0, "end": 67080.0, "probability": 0.0 }, { "start": 67080.0, "end": 67080.0, "probability": 0.0 }, { "start": 67080.0, "end": 67080.0, "probability": 0.0 }, { "start": 67080.0, "end": 67080.0, "probability": 0.0 }, { "start": 67080.0, "end": 67080.0, "probability": 0.0 }, { "start": 67080.0, "end": 67080.0, "probability": 0.0 }, { "start": 67080.0, "end": 67080.0, "probability": 0.0 }, { "start": 67080.0, "end": 67080.0, "probability": 0.0 }, { "start": 67080.0, "end": 67080.0, "probability": 0.0 }, { "start": 67080.0, "end": 67080.0, "probability": 0.0 }, { "start": 67080.0, "end": 67080.0, "probability": 0.0 }, { "start": 67083.86, "end": 67085.72, "probability": 0.7504 }, { "start": 67085.72, "end": 67088.0, "probability": 0.8718 }, { "start": 67088.06, "end": 67089.26, "probability": 0.932 }, { "start": 67089.3, "end": 67090.48, "probability": 0.7635 }, { "start": 67090.76, "end": 67093.12, "probability": 0.9039 }, { "start": 67093.88, "end": 67094.65, "probability": 0.2837 }, { "start": 67096.12, "end": 67096.2, "probability": 0.0012 }, { "start": 67097.22, "end": 67097.98, "probability": 0.1884 }, { "start": 67098.16, "end": 67098.62, "probability": 0.7533 }, { "start": 67099.04, "end": 67101.08, "probability": 0.9719 }, { "start": 67101.22, "end": 67101.22, "probability": 0.0168 }, { "start": 67101.22, "end": 67105.82, "probability": 0.6629 }, { "start": 67108.42, "end": 67111.3, "probability": 0.5943 }, { "start": 67112.26, "end": 67116.26, "probability": 0.1024 }, { "start": 67116.26, "end": 67119.72, "probability": 0.2102 }, { "start": 67120.66, "end": 67121.62, "probability": 0.8171 }, { "start": 67122.68, "end": 67123.74, "probability": 0.7588 }, { "start": 67124.74, "end": 67125.48, "probability": 0.4728 }, { "start": 67126.21, "end": 67128.96, "probability": 0.5022 }, { "start": 67134.0, "end": 67138.26, "probability": 0.8162 }, { "start": 67139.98, "end": 67142.76, "probability": 0.399 }, { "start": 67144.16, "end": 67144.96, "probability": 0.7123 }, { "start": 67146.52, "end": 67146.52, "probability": 0.0191 }, { "start": 67146.52, "end": 67146.73, "probability": 0.3323 }, { "start": 67150.54, "end": 67152.7, "probability": 0.3059 }, { "start": 67153.28, "end": 67155.68, "probability": 0.4719 }, { "start": 67156.28, "end": 67156.28, "probability": 0.4198 }, { "start": 67156.66, "end": 67158.13, "probability": 0.5603 }, { "start": 67159.98, "end": 67161.64, "probability": 0.9531 }, { "start": 67161.86, "end": 67162.93, "probability": 0.9004 }, { "start": 67164.08, "end": 67164.8, "probability": 0.7759 }, { "start": 67165.28, "end": 67166.38, "probability": 0.6071 }, { "start": 67168.72, "end": 67169.28, "probability": 0.0838 }, { "start": 67170.6, "end": 67170.82, "probability": 0.6743 }, { "start": 67172.34, "end": 67173.06, "probability": 0.6659 }, { "start": 67175.94, "end": 67176.62, "probability": 0.4089 }, { "start": 67177.6, "end": 67178.3, "probability": 0.2116 }, { "start": 67179.54, "end": 67180.34, "probability": 0.1417 }, { "start": 67187.54, "end": 67189.74, "probability": 0.3812 }, { "start": 67190.68, "end": 67190.94, "probability": 0.3172 }, { "start": 67190.94, "end": 67191.7, "probability": 0.5361 }, { "start": 67194.38, "end": 67198.26, "probability": 0.423 }, { "start": 67199.58, "end": 67202.28, "probability": 0.7991 }, { "start": 67206.12, "end": 67215.12, "probability": 0.5814 }, { "start": 67216.36, "end": 67217.08, "probability": 0.6547 }, { "start": 67219.28, "end": 67219.88, "probability": 0.6707 }, { "start": 67220.6, "end": 67223.04, "probability": 0.2416 }, { "start": 67223.46, "end": 67224.08, "probability": 0.1867 }, { "start": 67225.32, "end": 67228.54, "probability": 0.5157 }, { "start": 67229.06, "end": 67229.98, "probability": 0.967 }, { "start": 67234.34, "end": 67235.64, "probability": 0.6971 }, { "start": 67237.32, "end": 67239.92, "probability": 0.6832 }, { "start": 67241.14, "end": 67242.44, "probability": 0.6708 }, { "start": 67243.44, "end": 67243.72, "probability": 0.4014 }, { "start": 67245.38, "end": 67246.18, "probability": 0.6508 }, { "start": 67247.5, "end": 67248.98, "probability": 0.9774 }, { "start": 67249.6, "end": 67259.04, "probability": 0.4432 }, { "start": 67260.7, "end": 67261.14, "probability": 0.5242 }, { "start": 67262.74, "end": 67263.46, "probability": 0.7446 }, { "start": 67265.88, "end": 67268.22, "probability": 0.8379 }, { "start": 67268.94, "end": 67271.36, "probability": 0.7961 }, { "start": 67274.12, "end": 67276.28, "probability": 0.9618 }, { "start": 67276.34, "end": 67276.68, "probability": 0.1417 }, { "start": 67276.68, "end": 67278.46, "probability": 0.2625 }, { "start": 67282.34, "end": 67283.28, "probability": 0.4929 }, { "start": 67284.52, "end": 67285.48, "probability": 0.5313 }, { "start": 67287.42, "end": 67289.28, "probability": 0.0015 }, { "start": 67291.8, "end": 67292.8, "probability": 0.7477 }, { "start": 67293.7, "end": 67296.68, "probability": 0.3707 }, { "start": 67298.16, "end": 67299.88, "probability": 0.9733 }, { "start": 67301.36, "end": 67302.14, "probability": 0.6961 }, { "start": 67303.8, "end": 67304.24, "probability": 0.7062 }, { "start": 67305.76, "end": 67306.64, "probability": 0.7314 }, { "start": 67314.35, "end": 67315.7, "probability": 0.3055 }, { "start": 67315.7, "end": 67316.67, "probability": 0.1597 }, { "start": 67317.31, "end": 67318.5, "probability": 0.1031 }, { "start": 67329.12, "end": 67332.36, "probability": 0.5338 }, { "start": 67333.4, "end": 67333.88, "probability": 0.9741 }, { "start": 67335.1, "end": 67338.04, "probability": 0.9086 }, { "start": 67339.3, "end": 67340.84, "probability": 0.9298 }, { "start": 67342.14, "end": 67344.44, "probability": 0.9846 }, { "start": 67345.14, "end": 67347.66, "probability": 0.937 }, { "start": 67348.96, "end": 67350.7, "probability": 0.6943 }, { "start": 67351.24, "end": 67353.04, "probability": 0.9521 }, { "start": 67353.58, "end": 67354.3, "probability": 0.4588 }, { "start": 67355.18, "end": 67356.04, "probability": 0.7523 }, { "start": 67357.18, "end": 67359.76, "probability": 0.0272 }, { "start": 67360.26, "end": 67360.96, "probability": 0.1255 }, { "start": 67360.96, "end": 67363.82, "probability": 0.3187 }, { "start": 67364.56, "end": 67367.94, "probability": 0.2042 }, { "start": 67368.06, "end": 67368.58, "probability": 0.4366 }, { "start": 67368.8, "end": 67369.24, "probability": 0.7373 }, { "start": 67370.62, "end": 67371.26, "probability": 0.4013 }, { "start": 67371.32, "end": 67373.28, "probability": 0.6596 }, { "start": 67373.5, "end": 67375.38, "probability": 0.2186 }, { "start": 67375.44, "end": 67375.56, "probability": 0.0214 }, { "start": 67375.56, "end": 67376.62, "probability": 0.4525 }, { "start": 67377.9, "end": 67381.74, "probability": 0.3148 }, { "start": 67382.56, "end": 67382.82, "probability": 0.5533 }, { "start": 67384.16, "end": 67387.08, "probability": 0.5347 }, { "start": 67388.1, "end": 67393.06, "probability": 0.746 }, { "start": 67395.58, "end": 67395.96, "probability": 0.9548 }, { "start": 67397.44, "end": 67398.46, "probability": 0.5093 }, { "start": 67399.0, "end": 67399.84, "probability": 0.5409 }, { "start": 67400.76, "end": 67401.72, "probability": 0.5274 }, { "start": 67402.88, "end": 67404.88, "probability": 0.9409 }, { "start": 67406.26, "end": 67407.66, "probability": 0.4347 }, { "start": 67410.06, "end": 67410.62, "probability": 0.8042 }, { "start": 67417.38, "end": 67422.22, "probability": 0.8602 }, { "start": 67422.81, "end": 67424.46, "probability": 0.1621 }, { "start": 67425.12, "end": 67431.7, "probability": 0.2958 }, { "start": 67432.39, "end": 67435.2, "probability": 0.8314 }, { "start": 67436.78, "end": 67442.98, "probability": 0.7063 }, { "start": 67445.62, "end": 67447.18, "probability": 0.664 }, { "start": 67448.58, "end": 67451.96, "probability": 0.3064 }, { "start": 67455.5, "end": 67456.02, "probability": 0.242 }, { "start": 67459.82, "end": 67460.68, "probability": 0.6911 }, { "start": 67462.48, "end": 67465.1, "probability": 0.7619 }, { "start": 67465.9, "end": 67466.7, "probability": 0.7159 }, { "start": 67469.56, "end": 67471.02, "probability": 0.9854 }, { "start": 67473.4, "end": 67474.54, "probability": 0.8428 }, { "start": 67476.06, "end": 67478.46, "probability": 0.9539 }, { "start": 67479.64, "end": 67479.82, "probability": 0.1085 }, { "start": 67479.82, "end": 67483.34, "probability": 0.2026 }, { "start": 67484.18, "end": 67486.08, "probability": 0.2083 }, { "start": 67486.12, "end": 67486.16, "probability": 0.2089 }, { "start": 67486.16, "end": 67489.62, "probability": 0.4864 }, { "start": 67489.62, "end": 67490.86, "probability": 0.1892 }, { "start": 67491.7, "end": 67494.26, "probability": 0.6166 }, { "start": 67494.72, "end": 67497.32, "probability": 0.1334 }, { "start": 67497.46, "end": 67498.12, "probability": 0.2224 }, { "start": 67498.24, "end": 67499.08, "probability": 0.0627 }, { "start": 67499.1, "end": 67499.54, "probability": 0.3091 }, { "start": 67501.24, "end": 67503.12, "probability": 0.5883 }, { "start": 67505.94, "end": 67506.72, "probability": 0.1408 }, { "start": 67506.72, "end": 67506.74, "probability": 0.1368 }, { "start": 67506.74, "end": 67508.58, "probability": 0.2404 }, { "start": 67508.98, "end": 67511.46, "probability": 0.3436 }, { "start": 67512.22, "end": 67514.72, "probability": 0.0312 }, { "start": 67515.84, "end": 67515.84, "probability": 0.0694 }, { "start": 67515.84, "end": 67515.84, "probability": 0.0215 }, { "start": 67515.84, "end": 67516.42, "probability": 0.0567 }, { "start": 67516.46, "end": 67517.56, "probability": 0.0866 }, { "start": 67518.36, "end": 67518.36, "probability": 0.443 }, { "start": 67521.58, "end": 67526.3, "probability": 0.4722 }, { "start": 67526.9, "end": 67529.4, "probability": 0.2207 }, { "start": 67531.69, "end": 67531.98, "probability": 0.05 }, { "start": 67532.0, "end": 67532.0, "probability": 0.0 }, { "start": 67532.0, "end": 67532.0, "probability": 0.0 }, { "start": 67533.3, "end": 67538.46, "probability": 0.0112 }, { "start": 67540.16, "end": 67542.44, "probability": 0.6309 }, { "start": 67544.0, "end": 67545.44, "probability": 0.3769 }, { "start": 67655.0, "end": 67655.0, "probability": 0.0 }, { "start": 67655.0, "end": 67655.0, "probability": 0.0 }, { "start": 67655.0, "end": 67655.0, "probability": 0.0 }, { "start": 67655.0, "end": 67655.0, "probability": 0.0 }, { "start": 67655.0, "end": 67655.0, "probability": 0.0 }, { "start": 67655.0, "end": 67655.0, "probability": 0.0 }, { "start": 67655.0, "end": 67655.0, "probability": 0.0 }, { "start": 67655.0, "end": 67655.0, "probability": 0.0 }, { "start": 67655.0, "end": 67655.0, "probability": 0.0 }, { "start": 67655.0, "end": 67655.0, "probability": 0.0 }, { "start": 67655.0, "end": 67655.0, "probability": 0.0 }, { "start": 67655.0, "end": 67655.0, "probability": 0.0 }, { "start": 67655.0, "end": 67655.0, "probability": 0.0 }, { "start": 67655.0, "end": 67655.0, "probability": 0.0 }, { "start": 67655.88, "end": 67656.42, "probability": 0.0052 }, { "start": 67663.62, "end": 67667.52, "probability": 0.1936 }, { "start": 67668.26, "end": 67670.33, "probability": 0.0631 }, { "start": 67785.0, "end": 67785.0, "probability": 0.0 }, { "start": 67785.0, "end": 67785.0, "probability": 0.0 }, { "start": 67785.0, "end": 67785.0, "probability": 0.0 }, { "start": 67785.0, "end": 67785.0, "probability": 0.0 }, { "start": 67785.0, "end": 67785.0, "probability": 0.0 }, { "start": 67785.0, "end": 67785.0, "probability": 0.0 }, { "start": 67785.0, "end": 67785.0, "probability": 0.0 }, { "start": 67785.0, "end": 67785.0, "probability": 0.0 }, { "start": 67785.0, "end": 67785.0, "probability": 0.0 }, { "start": 67785.0, "end": 67785.0, "probability": 0.0 }, { "start": 67785.0, "end": 67785.0, "probability": 0.0 }, { "start": 67785.0, "end": 67785.0, "probability": 0.0 }, { "start": 67785.0, "end": 67785.0, "probability": 0.0 }, { "start": 67785.0, "end": 67785.0, "probability": 0.0 }, { "start": 67785.0, "end": 67785.0, "probability": 0.0 }, { "start": 67785.0, "end": 67785.0, "probability": 0.0 }, { "start": 67785.0, "end": 67785.0, "probability": 0.0 }, { "start": 67785.0, "end": 67785.0, "probability": 0.0 }, { "start": 67785.0, "end": 67785.0, "probability": 0.0 }, { "start": 67785.0, "end": 67785.0, "probability": 0.0 }, { "start": 67785.0, "end": 67785.0, "probability": 0.0 }, { "start": 67785.0, "end": 67785.0, "probability": 0.0 }, { "start": 67785.0, "end": 67785.0, "probability": 0.0 }, { "start": 67785.0, "end": 67785.0, "probability": 0.0 }, { "start": 67785.0, "end": 67785.0, "probability": 0.0 }, { "start": 67785.0, "end": 67785.0, "probability": 0.0 }, { "start": 67785.0, "end": 67785.0, "probability": 0.0 }, { "start": 67785.0, "end": 67785.0, "probability": 0.0 }, { "start": 67785.0, "end": 67785.0, "probability": 0.0 }, { "start": 67788.06, "end": 67791.34, "probability": 0.0256 }, { "start": 67794.74, "end": 67796.52, "probability": 0.0782 }, { "start": 67797.12, "end": 67797.8, "probability": 0.0163 }, { "start": 67798.96, "end": 67799.14, "probability": 0.0961 }, { "start": 67799.26, "end": 67802.86, "probability": 0.1686 }, { "start": 67802.86, "end": 67802.86, "probability": 0.0158 }, { "start": 67806.1, "end": 67807.02, "probability": 0.0272 }, { "start": 67807.64, "end": 67811.06, "probability": 0.1967 }, { "start": 67915.0, "end": 67915.0, "probability": 0.0 }, { "start": 67915.0, "end": 67915.0, "probability": 0.0 }, { "start": 67915.0, "end": 67915.0, "probability": 0.0 }, { "start": 67915.0, "end": 67915.0, "probability": 0.0 }, { "start": 67915.0, "end": 67915.0, "probability": 0.0 }, { "start": 67915.0, "end": 67915.0, "probability": 0.0 }, { "start": 67915.0, "end": 67915.0, "probability": 0.0 }, { "start": 67915.0, "end": 67915.0, "probability": 0.0 }, { "start": 67915.0, "end": 67915.0, "probability": 0.0 }, { "start": 67915.0, "end": 67915.0, "probability": 0.0 }, { "start": 67915.0, "end": 67915.0, "probability": 0.0 }, { "start": 67915.12, "end": 67917.88, "probability": 0.9941 }, { "start": 67918.14, "end": 67924.14, "probability": 0.7467 }, { "start": 67924.9, "end": 67929.04, "probability": 0.9639 }, { "start": 67929.7, "end": 67930.74, "probability": 0.5996 }, { "start": 67930.76, "end": 67932.68, "probability": 0.7619 }, { "start": 67933.08, "end": 67935.0, "probability": 0.898 }, { "start": 67935.44, "end": 67940.84, "probability": 0.5165 }, { "start": 67941.4, "end": 67943.6, "probability": 0.2005 }, { "start": 67945.76, "end": 67946.58, "probability": 0.1863 }, { "start": 67947.28, "end": 67949.96, "probability": 0.7234 }, { "start": 67950.78, "end": 67954.86, "probability": 0.7001 }, { "start": 67955.24, "end": 67957.98, "probability": 0.8853 }, { "start": 67958.34, "end": 67960.04, "probability": 0.3588 }, { "start": 67960.14, "end": 67960.72, "probability": 0.1989 }, { "start": 67961.96, "end": 67962.84, "probability": 0.2859 }, { "start": 67967.98, "end": 67970.72, "probability": 0.1742 }, { "start": 67977.52, "end": 67981.7, "probability": 0.0654 }, { "start": 67983.67, "end": 67984.34, "probability": 0.4074 }, { "start": 67984.74, "end": 67989.92, "probability": 0.0562 }, { "start": 67991.04, "end": 67991.5, "probability": 0.0605 }, { "start": 67992.44, "end": 67992.86, "probability": 0.0858 }, { "start": 67992.98, "end": 67994.66, "probability": 0.5081 }, { "start": 67995.68, "end": 67996.62, "probability": 0.6275 }, { "start": 67996.62, "end": 67996.82, "probability": 0.7096 }, { "start": 67997.56, "end": 67998.96, "probability": 0.7667 }, { "start": 68000.54, "end": 68000.54, "probability": 0.804 }, { "start": 68000.54, "end": 68001.14, "probability": 0.8215 }, { "start": 68002.94, "end": 68005.78, "probability": 0.8358 }, { "start": 68005.92, "end": 68006.98, "probability": 0.8411 }, { "start": 68007.34, "end": 68008.56, "probability": 0.0875 }, { "start": 68008.82, "end": 68009.96, "probability": 0.6392 }, { "start": 68009.96, "end": 68011.44, "probability": 0.6832 }, { "start": 68012.02, "end": 68012.68, "probability": 0.7551 }, { "start": 68013.02, "end": 68013.42, "probability": 0.8234 }, { "start": 68014.26, "end": 68014.26, "probability": 0.8774 }, { "start": 68014.26, "end": 68016.98, "probability": 0.2704 }, { "start": 68017.64, "end": 68018.1, "probability": 0.291 }, { "start": 68018.1, "end": 68018.96, "probability": 0.2426 }, { "start": 68024.28, "end": 68028.0, "probability": 0.4944 }, { "start": 68029.64, "end": 68030.08, "probability": 0.1051 }, { "start": 68031.62, "end": 68032.0, "probability": 0.6243 }, { "start": 68032.0, "end": 68032.38, "probability": 0.7066 }, { "start": 68032.38, "end": 68032.64, "probability": 0.7242 }, { "start": 68034.64, "end": 68035.72, "probability": 0.5927 }, { "start": 68036.66, "end": 68037.2, "probability": 0.2211 }, { "start": 68037.38, "end": 68037.92, "probability": 0.5859 }, { "start": 68037.94, "end": 68037.94, "probability": 0.7438 }, { "start": 68038.28, "end": 68038.28, "probability": 0.7816 }, { "start": 68038.28, "end": 68038.28, "probability": 0.854 }, { "start": 68038.28, "end": 68038.28, "probability": 0.8872 }, { "start": 68038.28, "end": 68038.28, "probability": 0.9047 }, { "start": 68038.28, "end": 68039.24, "probability": 0.4262 }, { "start": 68040.42, "end": 68042.36, "probability": 0.1506 }, { "start": 68043.6, "end": 68045.26, "probability": 0.3944 }, { "start": 68045.56, "end": 68046.54, "probability": 0.6754 }, { "start": 68046.62, "end": 68047.22, "probability": 0.0956 }, { "start": 68052.54, "end": 68053.02, "probability": 0.0191 }, { "start": 68054.12, "end": 68055.58, "probability": 0.5059 }, { "start": 68056.34, "end": 68057.36, "probability": 0.6577 }, { "start": 68059.9, "end": 68061.14, "probability": 0.1691 }, { "start": 68061.14, "end": 68062.76, "probability": 0.5239 }, { "start": 68062.76, "end": 68063.6, "probability": 0.6096 }, { "start": 68063.6, "end": 68063.94, "probability": 0.6298 }, { "start": 68064.02, "end": 68064.84, "probability": 0.6779 }, { "start": 68064.84, "end": 68065.48, "probability": 0.7101 }, { "start": 68065.52, "end": 68066.26, "probability": 0.753 }, { "start": 68066.26, "end": 68066.94, "probability": 0.7609 }, { "start": 68066.94, "end": 68066.94, "probability": 0.8037 }, { "start": 68067.82, "end": 68068.36, "probability": 0.0562 }, { "start": 68070.02, "end": 68071.3, "probability": 0.5498 }, { "start": 68073.12, "end": 68074.6, "probability": 0.5751 }, { "start": 68076.4, "end": 68076.96, "probability": 0.6598 }, { "start": 68076.96, "end": 68076.96, "probability": 0.691 }, { "start": 68076.96, "end": 68077.94, "probability": 0.7406 }, { "start": 68079.62, "end": 68081.38, "probability": 0.7617 }, { "start": 68087.68, "end": 68089.4, "probability": 0.5467 }, { "start": 68089.4, "end": 68090.92, "probability": 0.654 }, { "start": 68093.1, "end": 68095.84, "probability": 0.931 }, { "start": 68095.94, "end": 68095.94, "probability": 0.3459 }, { "start": 68095.94, "end": 68098.7, "probability": 0.731 }, { "start": 68103.04, "end": 68104.24, "probability": 0.8236 }, { "start": 68105.12, "end": 68105.72, "probability": 0.0376 }, { "start": 68105.72, "end": 68106.82, "probability": 0.5837 }, { "start": 68107.92, "end": 68108.1, "probability": 0.6846 }, { "start": 68108.1, "end": 68109.5, "probability": 0.7054 }, { "start": 68110.18, "end": 68110.64, "probability": 0.1245 }, { "start": 68111.16, "end": 68112.78, "probability": 0.3778 }, { "start": 68112.94, "end": 68113.48, "probability": 0.1766 }, { "start": 68116.26, "end": 68117.32, "probability": 0.0773 }, { "start": 68118.94, "end": 68120.68, "probability": 0.503 }, { "start": 68122.2, "end": 68123.52, "probability": 0.2835 }, { "start": 68130.4, "end": 68131.34, "probability": 0.1217 }, { "start": 68131.92, "end": 68134.96, "probability": 0.2367 }, { "start": 68135.3, "end": 68143.2, "probability": 0.1875 }, { "start": 68144.2, "end": 68145.78, "probability": 0.3685 }, { "start": 68146.28, "end": 68149.5, "probability": 0.4419 }, { "start": 68149.5, "end": 68150.34, "probability": 0.4898 }, { "start": 68150.34, "end": 68152.4, "probability": 0.1108 }, { "start": 68152.64, "end": 68152.64, "probability": 0.3729 }, { "start": 68153.48, "end": 68154.6, "probability": 0.507 }, { "start": 68188.0, "end": 68188.0, "probability": 0.0 }, { "start": 68188.0, "end": 68188.0, "probability": 0.0 }, { "start": 68188.0, "end": 68188.0, "probability": 0.0 }, { "start": 68188.0, "end": 68188.0, "probability": 0.0 }, { "start": 68188.0, "end": 68188.0, "probability": 0.0 }, { "start": 68188.0, "end": 68188.0, "probability": 0.0 }, { "start": 68188.0, "end": 68188.0, "probability": 0.0 }, { "start": 68188.0, "end": 68188.0, "probability": 0.0 }, { "start": 68188.0, "end": 68188.0, "probability": 0.0 }, { "start": 68188.0, "end": 68188.0, "probability": 0.0 }, { "start": 68188.0, "end": 68188.0, "probability": 0.0 }, { "start": 68188.0, "end": 68188.0, "probability": 0.0 }, { "start": 68188.0, "end": 68188.0, "probability": 0.0 }, { "start": 68188.0, "end": 68188.0, "probability": 0.0 }, { "start": 68188.0, "end": 68188.0, "probability": 0.0 }, { "start": 68188.0, "end": 68188.0, "probability": 0.0 }, { "start": 68188.0, "end": 68188.0, "probability": 0.0 }, { "start": 68188.0, "end": 68188.0, "probability": 0.0 }, { "start": 68188.0, "end": 68188.0, "probability": 0.0 }, { "start": 68188.0, "end": 68188.0, "probability": 0.0 }, { "start": 68188.0, "end": 68188.0, "probability": 0.0 }, { "start": 68188.56, "end": 68189.0, "probability": 0.0871 }, { "start": 68189.32, "end": 68189.98, "probability": 0.5345 }, { "start": 68191.9, "end": 68192.8, "probability": 0.6068 }, { "start": 68192.86, "end": 68196.18, "probability": 0.6586 }, { "start": 68197.0, "end": 68197.72, "probability": 0.0562 }, { "start": 68200.52, "end": 68206.32, "probability": 0.1908 }, { "start": 68207.96, "end": 68207.96, "probability": 0.0863 }, { "start": 68207.96, "end": 68208.8, "probability": 0.6691 }, { "start": 68208.8, "end": 68210.12, "probability": 0.2201 }, { "start": 68210.16, "end": 68211.97, "probability": 0.8303 }, { "start": 68213.86, "end": 68216.72, "probability": 0.6921 }, { "start": 68216.82, "end": 68217.61, "probability": 0.6123 }, { "start": 68218.96, "end": 68220.02, "probability": 0.382 }, { "start": 68220.02, "end": 68221.2, "probability": 0.0257 }, { "start": 68221.36, "end": 68222.96, "probability": 0.6024 }, { "start": 68223.48, "end": 68223.9, "probability": 0.5953 }, { "start": 68223.9, "end": 68223.94, "probability": 0.0165 }, { "start": 68223.94, "end": 68224.98, "probability": 0.1486 }, { "start": 68226.1, "end": 68229.42, "probability": 0.5374 }, { "start": 68230.62, "end": 68237.1, "probability": 0.7504 }, { "start": 68238.9, "end": 68241.4, "probability": 0.076 }, { "start": 68242.48, "end": 68244.56, "probability": 0.2492 }, { "start": 68245.36, "end": 68254.36, "probability": 0.1018 }, { "start": 68254.54, "end": 68257.02, "probability": 0.0234 }, { "start": 68257.58, "end": 68261.77, "probability": 0.2244 }, { "start": 68321.0, "end": 68321.0, "probability": 0.0 }, { "start": 68321.0, "end": 68321.0, "probability": 0.0 }, { "start": 68321.0, "end": 68321.0, "probability": 0.0 }, { "start": 68321.0, "end": 68321.0, "probability": 0.0 }, { "start": 68321.0, "end": 68321.0, "probability": 0.0 }, { "start": 68321.0, "end": 68321.0, "probability": 0.0 }, { "start": 68321.0, "end": 68321.0, "probability": 0.0 }, { "start": 68321.0, "end": 68321.0, "probability": 0.0 }, { "start": 68321.0, "end": 68321.0, "probability": 0.0 }, { "start": 68321.0, "end": 68321.0, "probability": 0.0 }, { "start": 68321.0, "end": 68321.0, "probability": 0.0 }, { "start": 68321.0, "end": 68321.0, "probability": 0.0 }, { "start": 68321.0, "end": 68321.0, "probability": 0.0 }, { "start": 68321.0, "end": 68321.0, "probability": 0.0 }, { "start": 68321.0, "end": 68321.0, "probability": 0.0 }, { "start": 68321.0, "end": 68321.0, "probability": 0.0 }, { "start": 68321.0, "end": 68321.0, "probability": 0.0 }, { "start": 68321.0, "end": 68321.0, "probability": 0.0 }, { "start": 68321.0, "end": 68321.0, "probability": 0.0 }, { "start": 68321.0, "end": 68321.0, "probability": 0.0 }, { "start": 68321.0, "end": 68321.0, "probability": 0.0 }, { "start": 68321.0, "end": 68321.0, "probability": 0.0 }, { "start": 68321.0, "end": 68321.0, "probability": 0.0 }, { "start": 68321.0, "end": 68321.0, "probability": 0.0 }, { "start": 68321.0, "end": 68321.0, "probability": 0.0 }, { "start": 68321.0, "end": 68321.0, "probability": 0.0 }, { "start": 68321.0, "end": 68321.0, "probability": 0.0 }, { "start": 68321.0, "end": 68321.0, "probability": 0.0 }, { "start": 68321.0, "end": 68321.0, "probability": 0.0 }, { "start": 68321.0, "end": 68321.34, "probability": 0.3014 }, { "start": 68321.34, "end": 68321.89, "probability": 0.8225 }, { "start": 68322.68, "end": 68323.32, "probability": 0.1383 }, { "start": 68323.32, "end": 68324.92, "probability": 0.6829 }, { "start": 68325.48, "end": 68327.26, "probability": 0.746 }, { "start": 68327.4, "end": 68327.4, "probability": 0.8603 }, { "start": 68327.66, "end": 68328.92, "probability": 0.8985 }, { "start": 68329.2, "end": 68329.26, "probability": 0.9127 }, { "start": 68329.26, "end": 68331.12, "probability": 0.93 }, { "start": 68331.48, "end": 68333.72, "probability": 0.9194 }, { "start": 68333.74, "end": 68333.74, "probability": 0.9414 }, { "start": 68334.64, "end": 68334.64, "probability": 0.952 }, { "start": 68334.64, "end": 68334.94, "probability": 0.9515 }, { "start": 68335.52, "end": 68336.36, "probability": 0.9387 }, { "start": 68336.36, "end": 68336.42, "probability": 0.9533 }, { "start": 68336.52, "end": 68337.38, "probability": 0.9483 }, { "start": 68339.16, "end": 68339.62, "probability": 0.9377 }, { "start": 68342.78, "end": 68344.04, "probability": 0.585 }, { "start": 68345.18, "end": 68345.44, "probability": 0.6731 }, { "start": 68345.92, "end": 68346.4, "probability": 0.7375 }, { "start": 68346.76, "end": 68347.92, "probability": 0.8063 }, { "start": 68349.22, "end": 68350.88, "probability": 0.8288 }, { "start": 68350.88, "end": 68354.14, "probability": 0.1487 }, { "start": 68356.36, "end": 68357.48, "probability": 0.1788 }, { "start": 68358.96, "end": 68360.12, "probability": 0.2785 }, { "start": 68361.16, "end": 68361.56, "probability": 0.4458 }, { "start": 68361.56, "end": 68363.88, "probability": 0.3721 }, { "start": 68364.74, "end": 68364.84, "probability": 0.3595 }, { "start": 68364.84, "end": 68365.7, "probability": 0.3389 }, { "start": 68367.02, "end": 68368.26, "probability": 0.0189 }, { "start": 68369.26, "end": 68374.96, "probability": 0.1842 }, { "start": 68376.34, "end": 68378.64, "probability": 0.4375 }, { "start": 68379.6, "end": 68382.98, "probability": 0.2582 }, { "start": 68384.1, "end": 68390.8, "probability": 0.6305 }, { "start": 68391.9, "end": 68392.02, "probability": 0.0553 }, { "start": 68392.02, "end": 68392.02, "probability": 0.0692 }, { "start": 68392.02, "end": 68392.02, "probability": 0.1939 }, { "start": 68392.02, "end": 68392.51, "probability": 0.6785 }, { "start": 68393.44, "end": 68393.8, "probability": 0.9141 }, { "start": 68394.92, "end": 68396.02, "probability": 0.6337 }, { "start": 68396.98, "end": 68397.42, "probability": 0.9692 }, { "start": 68398.1, "end": 68398.84, "probability": 0.9329 }, { "start": 68399.84, "end": 68400.06, "probability": 0.9656 }, { "start": 68401.04, "end": 68401.74, "probability": 0.8783 }, { "start": 68403.8, "end": 68406.14, "probability": 0.8264 }, { "start": 68409.26, "end": 68409.46, "probability": 0.4772 }, { "start": 68413.52, "end": 68414.62, "probability": 0.4817 }, { "start": 68419.46, "end": 68424.9, "probability": 0.6221 }, { "start": 68429.64, "end": 68433.74, "probability": 0.604 }, { "start": 68435.18, "end": 68439.4, "probability": 0.7663 }, { "start": 68440.52, "end": 68440.92, "probability": 0.9736 }, { "start": 68441.84, "end": 68442.54, "probability": 0.5328 }, { "start": 68443.64, "end": 68444.08, "probability": 0.9907 }, { "start": 68444.78, "end": 68445.66, "probability": 0.666 }, { "start": 68446.22, "end": 68446.6, "probability": 0.9287 }, { "start": 68447.32, "end": 68448.16, "probability": 0.8088 }, { "start": 68448.84, "end": 68450.72, "probability": 0.9683 }, { "start": 68451.96, "end": 68453.74, "probability": 0.9291 }, { "start": 68456.24, "end": 68456.66, "probability": 0.8092 }, { "start": 68457.82, "end": 68459.02, "probability": 0.3668 }, { "start": 68460.66, "end": 68464.46, "probability": 0.699 }, { "start": 68465.3, "end": 68468.14, "probability": 0.9075 }, { "start": 68469.3, "end": 68471.88, "probability": 0.973 }, { "start": 68472.76, "end": 68473.16, "probability": 0.9331 }, { "start": 68474.04, "end": 68475.16, "probability": 0.9478 }, { "start": 68479.76, "end": 68481.22, "probability": 0.6553 }, { "start": 68483.06, "end": 68485.96, "probability": 0.3639 }, { "start": 68486.94, "end": 68487.26, "probability": 0.7357 }, { "start": 68490.3, "end": 68491.2, "probability": 0.6736 }, { "start": 68497.34, "end": 68505.66, "probability": 0.5104 }, { "start": 68506.64, "end": 68508.24, "probability": 0.6301 }, { "start": 68510.4, "end": 68511.34, "probability": 0.9152 }, { "start": 68512.94, "end": 68513.92, "probability": 0.4182 }, { "start": 68514.98, "end": 68515.34, "probability": 0.9217 }, { "start": 68516.42, "end": 68517.1, "probability": 0.6014 }, { "start": 68518.34, "end": 68523.04, "probability": 0.8813 }, { "start": 68523.12, "end": 68527.7, "probability": 0.5923 }, { "start": 68529.43, "end": 68531.68, "probability": 0.7821 }, { "start": 68533.48, "end": 68536.06, "probability": 0.8391 }, { "start": 68537.12, "end": 68537.96, "probability": 0.9116 }, { "start": 68538.74, "end": 68539.84, "probability": 0.9045 }, { "start": 68540.36, "end": 68542.74, "probability": 0.9717 }, { "start": 68543.54, "end": 68544.16, "probability": 0.9922 }, { "start": 68544.74, "end": 68546.28, "probability": 0.8354 }, { "start": 68547.46, "end": 68550.14, "probability": 0.8694 }, { "start": 68551.66, "end": 68552.04, "probability": 0.9886 }, { "start": 68552.9, "end": 68557.5, "probability": 0.1352 }, { "start": 68560.56, "end": 68565.74, "probability": 0.5167 }, { "start": 68566.26, "end": 68566.8, "probability": 0.016 }, { "start": 68566.8, "end": 68567.2, "probability": 0.1154 }, { "start": 68568.0, "end": 68572.14, "probability": 0.0375 }, { "start": 68572.48, "end": 68572.62, "probability": 0.451 }, { "start": 68575.32, "end": 68576.56, "probability": 0.1578 }, { "start": 68577.24, "end": 68579.0, "probability": 0.0225 }, { "start": 68579.78, "end": 68579.82, "probability": 0.0003 }, { "start": 68582.14, "end": 68584.82, "probability": 0.0768 }, { "start": 68587.26, "end": 68587.44, "probability": 0.0448 }, { "start": 68589.84, "end": 68590.98, "probability": 0.3359 }, { "start": 68592.38, "end": 68592.62, "probability": 0.6772 }, { "start": 68593.54, "end": 68594.4, "probability": 0.03 }, { "start": 68594.6, "end": 68596.84, "probability": 0.1398 }, { "start": 68597.94, "end": 68599.38, "probability": 0.0189 }, { "start": 68691.0, "end": 68691.0, "probability": 0.0 }, { "start": 68691.0, "end": 68691.0, "probability": 0.0 }, { "start": 68691.0, "end": 68691.0, "probability": 0.0 }, { "start": 68691.0, "end": 68691.0, "probability": 0.0 }, { "start": 68691.0, "end": 68691.0, "probability": 0.0 }, { "start": 68691.0, "end": 68691.0, "probability": 0.0 }, { "start": 68691.0, "end": 68691.0, "probability": 0.0 }, { "start": 68691.0, "end": 68691.0, "probability": 0.0 }, { "start": 68691.0, "end": 68691.0, "probability": 0.0 }, { "start": 68691.0, "end": 68691.0, "probability": 0.0 }, { "start": 68691.0, "end": 68691.0, "probability": 0.0 }, { "start": 68691.0, "end": 68691.0, "probability": 0.0 }, { "start": 68691.0, "end": 68691.0, "probability": 0.0 }, { "start": 68691.0, "end": 68691.0, "probability": 0.0 }, { "start": 68691.0, "end": 68691.0, "probability": 0.0 }, { "start": 68691.0, "end": 68691.0, "probability": 0.0 }, { "start": 68691.0, "end": 68691.0, "probability": 0.0 }, { "start": 68691.0, "end": 68691.0, "probability": 0.0 }, { "start": 68691.0, "end": 68691.0, "probability": 0.0 }, { "start": 68691.0, "end": 68691.0, "probability": 0.0 }, { "start": 68691.0, "end": 68691.0, "probability": 0.0 }, { "start": 68691.0, "end": 68691.0, "probability": 0.0 }, { "start": 68691.0, "end": 68691.0, "probability": 0.0 }, { "start": 68691.0, "end": 68691.0, "probability": 0.0 }, { "start": 68696.1, "end": 68696.78, "probability": 0.563 }, { "start": 68702.74, "end": 68703.08, "probability": 0.7239 }, { "start": 68705.94, "end": 68706.84, "probability": 0.5436 }, { "start": 68709.06, "end": 68709.42, "probability": 0.8714 }, { "start": 68710.32, "end": 68711.0, "probability": 0.8148 }, { "start": 68714.42, "end": 68714.8, "probability": 0.7712 }, { "start": 68716.02, "end": 68716.62, "probability": 0.7974 }, { "start": 68719.38, "end": 68719.82, "probability": 0.9941 }, { "start": 68720.96, "end": 68721.6, "probability": 0.8883 }, { "start": 68722.98, "end": 68723.42, "probability": 0.9465 }, { "start": 68724.32, "end": 68725.18, "probability": 0.8752 }, { "start": 68727.64, "end": 68728.0, "probability": 0.9348 }, { "start": 68729.22, "end": 68729.88, "probability": 0.906 }, { "start": 68732.34, "end": 68732.8, "probability": 0.9953 }, { "start": 68733.62, "end": 68734.58, "probability": 0.7349 }, { "start": 68735.9, "end": 68736.38, "probability": 0.6266 }, { "start": 68737.54, "end": 68738.66, "probability": 0.9654 }, { "start": 68739.68, "end": 68740.0, "probability": 0.9751 }, { "start": 68741.1, "end": 68742.32, "probability": 0.9845 }, { "start": 68743.5, "end": 68745.24, "probability": 0.985 }, { "start": 68746.49, "end": 68748.66, "probability": 0.8516 }, { "start": 68749.48, "end": 68749.84, "probability": 0.9186 }, { "start": 68750.92, "end": 68752.36, "probability": 0.8167 }, { "start": 68753.04, "end": 68753.5, "probability": 0.9897 }, { "start": 68754.48, "end": 68755.45, "probability": 0.8078 }, { "start": 68759.7, "end": 68760.04, "probability": 0.6766 }, { "start": 68761.88, "end": 68762.82, "probability": 0.4939 }, { "start": 68764.22, "end": 68764.66, "probability": 0.9069 }, { "start": 68765.58, "end": 68766.06, "probability": 0.7961 }, { "start": 68769.72, "end": 68771.58, "probability": 0.5251 }, { "start": 68773.04, "end": 68776.24, "probability": 0.5688 }, { "start": 68777.91, "end": 68780.3, "probability": 0.8934 }, { "start": 68781.28, "end": 68781.62, "probability": 0.8784 }, { "start": 68782.74, "end": 68783.44, "probability": 0.6778 }, { "start": 68784.28, "end": 68784.7, "probability": 0.8256 }, { "start": 68786.0, "end": 68786.76, "probability": 0.9636 }, { "start": 68787.68, "end": 68788.08, "probability": 0.9614 }, { "start": 68789.48, "end": 68790.7, "probability": 0.8597 }, { "start": 68791.74, "end": 68792.18, "probability": 0.9473 }, { "start": 68793.32, "end": 68794.2, "probability": 0.8329 }, { "start": 68796.04, "end": 68796.64, "probability": 0.6752 }, { "start": 68804.62, "end": 68806.18, "probability": 0.3257 }, { "start": 68807.4, "end": 68807.7, "probability": 0.7619 }, { "start": 68809.14, "end": 68810.4, "probability": 0.6366 }, { "start": 68818.6, "end": 68822.74, "probability": 0.8795 }, { "start": 68823.46, "end": 68824.42, "probability": 0.2037 }, { "start": 68825.84, "end": 68826.22, "probability": 0.5315 }, { "start": 68829.02, "end": 68829.82, "probability": 0.5529 }, { "start": 68830.66, "end": 68831.28, "probability": 0.8742 }, { "start": 68832.34, "end": 68833.0, "probability": 0.5525 }, { "start": 68834.12, "end": 68834.96, "probability": 0.9413 }, { "start": 68836.7, "end": 68838.12, "probability": 0.7533 }, { "start": 68845.62, "end": 68846.02, "probability": 0.7831 }, { "start": 68850.16, "end": 68851.04, "probability": 0.3666 }, { "start": 68852.42, "end": 68856.5, "probability": 0.722 }, { "start": 68857.54, "end": 68858.66, "probability": 0.9826 }, { "start": 68860.4, "end": 68866.56, "probability": 0.6817 }, { "start": 68867.78, "end": 68868.62, "probability": 0.7246 }, { "start": 68869.06, "end": 68869.34, "probability": 0.6605 }, { "start": 68869.88, "end": 68870.7, "probability": 0.6533 }, { "start": 68878.96, "end": 68886.52, "probability": 0.0959 }, { "start": 68886.76, "end": 68886.76, "probability": 0.2814 }, { "start": 68886.76, "end": 68887.94, "probability": 0.2386 }, { "start": 68890.96, "end": 68893.38, "probability": 0.4901 }, { "start": 68893.92, "end": 68894.88, "probability": 0.2888 }, { "start": 68895.24, "end": 68896.38, "probability": 0.4984 }, { "start": 68896.7, "end": 68897.88, "probability": 0.0765 }, { "start": 68898.04, "end": 68899.26, "probability": 0.5456 }, { "start": 68899.78, "end": 68900.76, "probability": 0.5114 }, { "start": 68901.13, "end": 68904.38, "probability": 0.27 }, { "start": 68904.38, "end": 68905.38, "probability": 0.1758 }, { "start": 68905.64, "end": 68905.64, "probability": 0.1189 }, { "start": 68905.64, "end": 68906.74, "probability": 0.005 }, { "start": 68907.18, "end": 68908.84, "probability": 0.1296 }, { "start": 68909.24, "end": 68912.99, "probability": 0.0949 }, { "start": 68914.42, "end": 68916.92, "probability": 0.5081 }, { "start": 68974.0, "end": 68974.0, "probability": 0.0 }, { "start": 68974.0, "end": 68974.0, "probability": 0.0 }, { "start": 68974.0, "end": 68974.0, "probability": 0.0 }, { "start": 68974.0, "end": 68974.0, "probability": 0.0 }, { "start": 68974.0, "end": 68974.0, "probability": 0.0 }, { "start": 68974.0, "end": 68974.0, "probability": 0.0 }, { "start": 68974.0, "end": 68974.0, "probability": 0.0 }, { "start": 68974.0, "end": 68974.0, "probability": 0.0 }, { "start": 68974.0, "end": 68974.0, "probability": 0.0 }, { "start": 68974.94, "end": 68976.34, "probability": 0.153 }, { "start": 68977.04, "end": 68978.2, "probability": 0.0862 }, { "start": 68979.76, "end": 68981.38, "probability": 0.6082 }, { "start": 68985.12, "end": 68986.76, "probability": 0.7394 }, { "start": 68987.44, "end": 68989.54, "probability": 0.8413 }, { "start": 68990.44, "end": 68990.44, "probability": 0.0303 }, { "start": 68990.7, "end": 68990.82, "probability": 0.4349 }, { "start": 68991.0, "end": 68991.62, "probability": 0.5991 }, { "start": 68991.96, "end": 68993.06, "probability": 0.6541 }, { "start": 68993.2, "end": 68997.38, "probability": 0.7378 }, { "start": 68997.92, "end": 69005.0, "probability": 0.9652 }, { "start": 69005.3, "end": 69007.52, "probability": 0.9824 }, { "start": 69008.74, "end": 69013.3, "probability": 0.8035 }, { "start": 69013.42, "end": 69022.76, "probability": 0.6882 }, { "start": 69023.34, "end": 69025.74, "probability": 0.6757 }, { "start": 69025.94, "end": 69026.64, "probability": 0.6165 }, { "start": 69027.1, "end": 69027.82, "probability": 0.6227 }, { "start": 69029.12, "end": 69030.98, "probability": 0.1683 }, { "start": 69031.6, "end": 69035.66, "probability": 0.0101 }, { "start": 69037.06, "end": 69038.9, "probability": 0.0476 }, { "start": 69046.94, "end": 69047.58, "probability": 0.5218 }, { "start": 69047.61, "end": 69049.46, "probability": 0.2259 }, { "start": 69049.72, "end": 69050.52, "probability": 0.2644 }, { "start": 69050.94, "end": 69052.14, "probability": 0.9744 }, { "start": 69052.36, "end": 69053.42, "probability": 0.6524 }, { "start": 69055.42, "end": 69055.86, "probability": 0.0726 }, { "start": 69056.46, "end": 69057.32, "probability": 0.1968 }, { "start": 69057.82, "end": 69059.36, "probability": 0.5403 }, { "start": 69060.12, "end": 69063.8, "probability": 0.98 }, { "start": 69064.36, "end": 69070.2, "probability": 0.0403 }, { "start": 69071.24, "end": 69074.44, "probability": 0.0454 }, { "start": 69074.78, "end": 69078.36, "probability": 0.0384 }, { "start": 69079.82, "end": 69080.86, "probability": 0.1954 }, { "start": 69082.64, "end": 69083.6, "probability": 0.1153 }, { "start": 69085.41, "end": 69090.42, "probability": 0.0371 }, { "start": 69090.66, "end": 69093.86, "probability": 0.0247 }, { "start": 69095.19, "end": 69097.48, "probability": 0.3098 }, { "start": 69110.0, "end": 69110.0, "probability": 0.0 }, { "start": 69110.0, "end": 69110.0, "probability": 0.0 }, { "start": 69113.48, "end": 69116.62, "probability": 0.0277 }, { "start": 69117.58, "end": 69119.52, "probability": 0.0266 }, { "start": 69120.76, "end": 69121.92, "probability": 0.1702 }, { "start": 69122.16, "end": 69124.7, "probability": 0.0287 }, { "start": 69124.7, "end": 69124.7, "probability": 0.1501 }, { "start": 69124.7, "end": 69124.7, "probability": 0.5938 }, { "start": 69124.7, "end": 69124.7, "probability": 0.6588 }, { "start": 69124.7, "end": 69124.7, "probability": 0.6885 }, { "start": 69124.7, "end": 69126.59, "probability": 0.3139 }, { "start": 69127.26, "end": 69130.8, "probability": 0.7317 }, { "start": 69256.0, "end": 69256.0, "probability": 0.0 }, { "start": 69256.0, "end": 69256.0, "probability": 0.0 }, { "start": 69256.0, "end": 69256.0, "probability": 0.0 }, { "start": 69256.0, "end": 69256.0, "probability": 0.0 }, { "start": 69256.0, "end": 69256.0, "probability": 0.0 }, { "start": 69256.0, "end": 69256.0, "probability": 0.0 }, { "start": 69256.0, "end": 69256.0, "probability": 0.0 }, { "start": 69256.0, "end": 69256.0, "probability": 0.0 }, { "start": 69256.0, "end": 69256.0, "probability": 0.0 }, { "start": 69256.0, "end": 69256.0, "probability": 0.0 }, { "start": 69256.0, "end": 69256.0, "probability": 0.0 }, { "start": 69256.0, "end": 69256.0, "probability": 0.0 }, { "start": 69256.0, "end": 69256.0, "probability": 0.0 }, { "start": 69256.0, "end": 69256.0, "probability": 0.0 }, { "start": 69256.0, "end": 69256.0, "probability": 0.0 }, { "start": 69256.0, "end": 69256.0, "probability": 0.0 }, { "start": 69256.0, "end": 69256.0, "probability": 0.0 }, { "start": 69256.0, "end": 69256.0, "probability": 0.0 }, { "start": 69256.0, "end": 69256.0, "probability": 0.0 }, { "start": 69256.64, "end": 69258.84, "probability": 0.0204 }, { "start": 69258.84, "end": 69260.82, "probability": 0.729 }, { "start": 69261.52, "end": 69262.16, "probability": 0.7936 }, { "start": 69262.16, "end": 69262.16, "probability": 0.1139 }, { "start": 69262.16, "end": 69262.42, "probability": 0.7374 }, { "start": 69262.42, "end": 69264.1, "probability": 0.0399 }, { "start": 69265.48, "end": 69270.02, "probability": 0.0366 }, { "start": 69270.4, "end": 69271.42, "probability": 0.0748 }, { "start": 69272.52, "end": 69273.98, "probability": 0.0595 }, { "start": 69274.04, "end": 69276.94, "probability": 0.121 }, { "start": 69277.34, "end": 69282.74, "probability": 0.4087 }, { "start": 69386.0, "end": 69386.0, "probability": 0.0 }, { "start": 69386.0, "end": 69386.0, "probability": 0.0 }, { "start": 69386.0, "end": 69386.0, "probability": 0.0 }, { "start": 69386.0, "end": 69386.0, "probability": 0.0 }, { "start": 69386.0, "end": 69386.0, "probability": 0.0 }, { "start": 69386.0, "end": 69386.0, "probability": 0.0 }, { "start": 69386.0, "end": 69386.0, "probability": 0.0 }, { "start": 69386.0, "end": 69386.0, "probability": 0.0 }, { "start": 69386.0, "end": 69386.0, "probability": 0.0 }, { "start": 69386.0, "end": 69386.0, "probability": 0.0 }, { "start": 69387.02, "end": 69388.48, "probability": 0.0898 }, { "start": 69388.48, "end": 69391.98, "probability": 0.6308 }, { "start": 69392.54, "end": 69397.42, "probability": 0.7634 }, { "start": 69398.02, "end": 69398.9, "probability": 0.0393 }, { "start": 69401.05, "end": 69404.18, "probability": 0.0382 }, { "start": 69404.5, "end": 69404.94, "probability": 0.02 }, { "start": 69405.64, "end": 69407.94, "probability": 0.1639 }, { "start": 69412.12, "end": 69414.88, "probability": 0.018 }, { "start": 69506.0, "end": 69506.0, "probability": 0.0 }, { "start": 69506.0, "end": 69506.0, "probability": 0.0 }, { "start": 69506.0, "end": 69506.0, "probability": 0.0 }, { "start": 69506.0, "end": 69506.0, "probability": 0.0 }, { "start": 69506.0, "end": 69506.0, "probability": 0.0 }, { "start": 69506.0, "end": 69506.0, "probability": 0.0 }, { "start": 69506.0, "end": 69506.0, "probability": 0.0 }, { "start": 69506.0, "end": 69506.0, "probability": 0.0 }, { "start": 69506.0, "end": 69506.0, "probability": 0.0 }, { "start": 69506.0, "end": 69506.0, "probability": 0.0 }, { "start": 69506.0, "end": 69506.0, "probability": 0.0 }, { "start": 69506.0, "end": 69506.0, "probability": 0.0 }, { "start": 69506.0, "end": 69506.0, "probability": 0.0 }, { "start": 69506.0, "end": 69506.0, "probability": 0.0 }, { "start": 69506.0, "end": 69506.0, "probability": 0.0 }, { "start": 69506.0, "end": 69506.0, "probability": 0.0 }, { "start": 69506.0, "end": 69506.0, "probability": 0.0 }, { "start": 69506.0, "end": 69506.0, "probability": 0.0 }, { "start": 69506.0, "end": 69506.0, "probability": 0.0 }, { "start": 69506.0, "end": 69506.0, "probability": 0.0 }, { "start": 69506.0, "end": 69506.0, "probability": 0.0 }, { "start": 69506.0, "end": 69506.0, "probability": 0.0 }, { "start": 69506.0, "end": 69506.0, "probability": 0.0 }, { "start": 69506.0, "end": 69506.0, "probability": 0.0 }, { "start": 69506.0, "end": 69506.0, "probability": 0.0 }, { "start": 69506.0, "end": 69506.0, "probability": 0.0 }, { "start": 69507.04, "end": 69508.32, "probability": 0.2989 }, { "start": 69508.6, "end": 69509.0, "probability": 0.4496 }, { "start": 69509.22, "end": 69511.7, "probability": 0.117 }, { "start": 69511.9, "end": 69512.72, "probability": 0.0298 }, { "start": 69512.72, "end": 69514.04, "probability": 0.7292 }, { "start": 69514.46, "end": 69515.48, "probability": 0.2781 }, { "start": 69516.2, "end": 69517.04, "probability": 0.1182 }, { "start": 69517.04, "end": 69521.4, "probability": 0.2337 }, { "start": 69521.68, "end": 69522.94, "probability": 0.108 }, { "start": 69524.52, "end": 69524.98, "probability": 0.7269 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69940.0, "end": 69940.0, "probability": 0.0 }, { "start": 69941.96, "end": 69942.46, "probability": 0.4104 }, { "start": 69942.46, "end": 69943.12, "probability": 0.4059 }, { "start": 69943.26, "end": 69944.0, "probability": 0.0122 }, { "start": 69944.64, "end": 69945.72, "probability": 0.1259 }, { "start": 69946.24, "end": 69946.62, "probability": 0.8483 }, { "start": 69949.06, "end": 69949.88, "probability": 0.2935 }, { "start": 69951.3, "end": 69952.1, "probability": 0.8192 }, { "start": 69956.84, "end": 69957.68, "probability": 0.7099 }, { "start": 69959.36, "end": 69960.06, "probability": 0.7663 }, { "start": 69960.76, "end": 69961.7, "probability": 0.7753 }, { "start": 69963.0, "end": 69963.36, "probability": 0.8811 }, { "start": 69965.04, "end": 69965.68, "probability": 0.7095 }, { "start": 69967.14, "end": 69970.08, "probability": 0.933 }, { "start": 69970.94, "end": 69971.3, "probability": 0.9817 }, { "start": 69972.08, "end": 69972.8, "probability": 0.9201 }, { "start": 69974.42, "end": 69974.82, "probability": 0.9919 }, { "start": 69975.74, "end": 69976.58, "probability": 0.9385 }, { "start": 69977.26, "end": 69977.5, "probability": 0.929 }, { "start": 69978.36, "end": 69979.12, "probability": 0.9756 }, { "start": 69979.92, "end": 69980.08, "probability": 0.0185 }, { "start": 69980.92, "end": 69981.54, "probability": 0.8545 }, { "start": 69986.36, "end": 69987.04, "probability": 0.5457 }, { "start": 69992.02, "end": 69992.32, "probability": 0.5497 }, { "start": 69993.28, "end": 69994.02, "probability": 0.6161 }, { "start": 69995.14, "end": 69995.7, "probability": 0.8838 }, { "start": 69996.68, "end": 69997.4, "probability": 0.738 }, { "start": 69998.68, "end": 69999.4, "probability": 0.9797 }, { "start": 69999.96, "end": 70000.6, "probability": 0.8678 }, { "start": 70002.26, "end": 70002.6, "probability": 0.9663 }, { "start": 70003.9, "end": 70004.64, "probability": 0.9776 }, { "start": 70005.86, "end": 70006.46, "probability": 0.8913 }, { "start": 70007.64, "end": 70008.94, "probability": 0.9573 }, { "start": 70009.68, "end": 70010.06, "probability": 0.9614 }, { "start": 70010.9, "end": 70011.88, "probability": 0.9256 }, { "start": 70012.84, "end": 70013.18, "probability": 0.9409 }, { "start": 70014.0, "end": 70014.54, "probability": 0.9449 }, { "start": 70016.64, "end": 70016.96, "probability": 0.9873 }, { "start": 70018.1, "end": 70019.04, "probability": 0.5585 }, { "start": 70020.88, "end": 70023.34, "probability": 0.7822 }, { "start": 70027.58, "end": 70028.78, "probability": 0.821 }, { "start": 70029.58, "end": 70032.0, "probability": 0.857 }, { "start": 70032.92, "end": 70034.24, "probability": 0.968 }, { "start": 70035.46, "end": 70037.52, "probability": 0.9549 }, { "start": 70038.76, "end": 70041.76, "probability": 0.7393 }, { "start": 70042.34, "end": 70043.1, "probability": 0.9271 }, { "start": 70043.84, "end": 70044.74, "probability": 0.9431 }, { "start": 70048.66, "end": 70048.84, "probability": 0.5529 }, { "start": 70050.72, "end": 70052.12, "probability": 0.3467 }, { "start": 70052.9, "end": 70053.26, "probability": 0.8274 }, { "start": 70054.06, "end": 70054.96, "probability": 0.8335 }, { "start": 70055.98, "end": 70057.71, "probability": 0.7065 }, { "start": 70061.74, "end": 70062.02, "probability": 0.9446 }, { "start": 70063.24, "end": 70063.64, "probability": 0.8378 }, { "start": 70065.5, "end": 70067.02, "probability": 0.9063 }, { "start": 70068.16, "end": 70068.5, "probability": 0.9868 }, { "start": 70069.28, "end": 70070.28, "probability": 0.6975 }, { "start": 70071.76, "end": 70072.5, "probability": 0.9918 }, { "start": 70077.68, "end": 70081.5, "probability": 0.6628 }, { "start": 70082.08, "end": 70082.36, "probability": 0.7188 }, { "start": 70090.3, "end": 70090.9, "probability": 0.1334 }, { "start": 70091.72, "end": 70093.32, "probability": 0.7273 }, { "start": 70093.58, "end": 70094.82, "probability": 0.8917 }, { "start": 70095.42, "end": 70097.04, "probability": 0.8037 }, { "start": 70098.94, "end": 70100.66, "probability": 0.883 }, { "start": 70101.28, "end": 70102.66, "probability": 0.6562 }, { "start": 70102.86, "end": 70104.12, "probability": 0.8369 }, { "start": 70104.38, "end": 70105.68, "probability": 0.9266 }, { "start": 70106.3, "end": 70107.18, "probability": 0.9798 }, { "start": 70108.9, "end": 70109.8, "probability": 0.9179 }, { "start": 70110.68, "end": 70112.8, "probability": 0.9745 }, { "start": 70113.72, "end": 70115.36, "probability": 0.9701 }, { "start": 70115.4, "end": 70117.44, "probability": 0.7797 }, { "start": 70118.78, "end": 70121.16, "probability": 0.6555 }, { "start": 70122.76, "end": 70123.42, "probability": 0.979 }, { "start": 70124.0, "end": 70124.78, "probability": 0.8041 }, { "start": 70125.3, "end": 70127.4, "probability": 0.9279 }, { "start": 70128.28, "end": 70131.24, "probability": 0.7632 }, { "start": 70131.86, "end": 70132.7, "probability": 0.9395 }, { "start": 70133.64, "end": 70134.38, "probability": 0.9178 }, { "start": 70134.72, "end": 70135.92, "probability": 0.609 }, { "start": 70136.08, "end": 70137.26, "probability": 0.8371 }, { "start": 70138.28, "end": 70139.58, "probability": 0.9622 }, { "start": 70140.72, "end": 70141.56, "probability": 0.8388 }, { "start": 70142.68, "end": 70144.72, "probability": 0.9113 }, { "start": 70144.94, "end": 70146.7, "probability": 0.8179 }, { "start": 70146.8, "end": 70148.36, "probability": 0.9416 }, { "start": 70149.1, "end": 70150.5, "probability": 0.6059 }, { "start": 70150.6, "end": 70152.0, "probability": 0.7981 }, { "start": 70152.06, "end": 70154.7, "probability": 0.8955 }, { "start": 70155.3, "end": 70156.02, "probability": 0.9823 }, { "start": 70156.72, "end": 70158.5, "probability": 0.8074 }, { "start": 70159.34, "end": 70159.9, "probability": 0.7455 }, { "start": 70160.42, "end": 70160.9, "probability": 0.9328 }, { "start": 70161.3, "end": 70162.22, "probability": 0.898 }, { "start": 70162.54, "end": 70163.84, "probability": 0.4852 }, { "start": 70164.12, "end": 70164.76, "probability": 0.981 }, { "start": 70165.76, "end": 70166.78, "probability": 0.8154 }, { "start": 70166.92, "end": 70168.08, "probability": 0.8696 }, { "start": 70168.24, "end": 70169.58, "probability": 0.7836 }, { "start": 70170.52, "end": 70172.92, "probability": 0.8366 }, { "start": 70173.7, "end": 70174.7, "probability": 0.9413 }, { "start": 70175.36, "end": 70176.1, "probability": 0.9587 }, { "start": 70176.96, "end": 70177.46, "probability": 0.7059 }, { "start": 70178.08, "end": 70180.86, "probability": 0.9587 }, { "start": 70181.94, "end": 70182.58, "probability": 0.5953 }, { "start": 70183.32, "end": 70185.58, "probability": 0.8667 }, { "start": 70186.76, "end": 70187.52, "probability": 0.8107 }, { "start": 70187.64, "end": 70191.12, "probability": 0.7979 }, { "start": 70191.76, "end": 70192.52, "probability": 0.9885 }, { "start": 70193.24, "end": 70193.92, "probability": 0.4099 }, { "start": 70194.72, "end": 70198.24, "probability": 0.526 }, { "start": 70198.44, "end": 70199.38, "probability": 0.9724 }, { "start": 70200.26, "end": 70200.96, "probability": 0.8768 }, { "start": 70201.66, "end": 70203.74, "probability": 0.915 }, { "start": 70205.04, "end": 70206.28, "probability": 0.8195 }, { "start": 70207.7, "end": 70210.18, "probability": 0.8883 }, { "start": 70210.24, "end": 70211.24, "probability": 0.4792 }, { "start": 70211.3, "end": 70212.54, "probability": 0.7661 }, { "start": 70213.44, "end": 70214.26, "probability": 0.9837 }, { "start": 70215.0, "end": 70217.84, "probability": 0.6201 }, { "start": 70218.38, "end": 70221.88, "probability": 0.9052 }, { "start": 70222.96, "end": 70227.28, "probability": 0.9217 }, { "start": 70228.66, "end": 70229.16, "probability": 0.8251 }, { "start": 70230.4, "end": 70230.6, "probability": 0.3939 }, { "start": 70230.66, "end": 70231.64, "probability": 0.6506 }, { "start": 70231.68, "end": 70232.12, "probability": 0.8254 }, { "start": 70249.9, "end": 70249.94, "probability": 0.0009 }, { "start": 70270.26, "end": 70273.24, "probability": 0.1873 }, { "start": 70275.52, "end": 70275.62, "probability": 0.0447 }, { "start": 70278.62, "end": 70279.2, "probability": 0.1248 }, { "start": 70281.38, "end": 70281.9, "probability": 0.0198 }, { "start": 70298.32, "end": 70298.5, "probability": 0.0001 }, { "start": 70328.94, "end": 70329.54, "probability": 0.2493 }, { "start": 70330.62, "end": 70334.3, "probability": 0.8264 }, { "start": 70334.88, "end": 70337.84, "probability": 0.9983 }, { "start": 70338.3, "end": 70338.44, "probability": 0.0009 }, { "start": 70345.56, "end": 70345.66, "probability": 0.0705 }, { "start": 70345.66, "end": 70347.54, "probability": 0.5914 }, { "start": 70348.6, "end": 70350.08, "probability": 0.9322 }, { "start": 70350.46, "end": 70351.6, "probability": 0.8918 }, { "start": 70351.66, "end": 70352.64, "probability": 0.841 }, { "start": 70365.05, "end": 70365.66, "probability": 0.7372 }, { "start": 70370.18, "end": 70372.1, "probability": 0.7103 }, { "start": 70372.3, "end": 70377.38, "probability": 0.8918 }, { "start": 70378.84, "end": 70379.7, "probability": 0.8129 }, { "start": 70380.32, "end": 70383.92, "probability": 0.9798 }, { "start": 70384.64, "end": 70386.36, "probability": 0.9544 }, { "start": 70387.26, "end": 70389.75, "probability": 0.0678 }, { "start": 70390.36, "end": 70396.76, "probability": 0.0331 }, { "start": 70396.76, "end": 70396.76, "probability": 0.1292 }, { "start": 70396.76, "end": 70397.36, "probability": 0.0108 }, { "start": 70398.9, "end": 70402.7, "probability": 0.0484 }, { "start": 70402.7, "end": 70405.64, "probability": 0.0983 }, { "start": 70406.3, "end": 70409.92, "probability": 0.1827 }, { "start": 70410.36, "end": 70413.34, "probability": 0.0846 }, { "start": 70413.78, "end": 70414.74, "probability": 0.1009 }, { "start": 70418.88, "end": 70418.98, "probability": 0.3146 }, { "start": 70509.55, "end": 70509.55, "probability": 0.0 }, { "start": 70509.55, "end": 70509.55, "probability": 0.0 }, { "start": 70509.55, "end": 70509.55, "probability": 0.0 }, { "start": 70509.55, "end": 70509.55, "probability": 0.0 }, { "start": 70509.55, "end": 70509.55, "probability": 0.0 }, { "start": 70509.55, "end": 70509.55, "probability": 0.0 }, { "start": 70509.55, "end": 70509.55, "probability": 0.0 }, { "start": 70509.55, "end": 70509.55, "probability": 0.0 }, { "start": 70509.55, "end": 70509.55, "probability": 0.0 }, { "start": 70509.55, "end": 70509.55, "probability": 0.0 } ], "segments_count": 7957, "words_count": 35815, "avg_words_per_segment": 4.5011, "avg_segment_duration": 1.4153, "avg_words_per_minute": 30.4767, "plenum_id": "103956", "duration": 70509.55, "title": null, "plenum_date": "2022-01-04" }