{ "source_type": "knesset", "source_id": "plenum", "source_entry_id": "104349", "quality_score": 0.8585, "per_segment_quality_scores": [ { "start": 61.16, "end": 64.67, "probability": 0.9414 }, { "start": 64.74, "end": 68.9, "probability": 0.9905 }, { "start": 69.0, "end": 70.52, "probability": 0.6144 }, { "start": 70.74, "end": 71.78, "probability": 0.7092 }, { "start": 72.38, "end": 75.74, "probability": 0.8737 }, { "start": 76.0, "end": 76.28, "probability": 0.5025 }, { "start": 77.66, "end": 80.34, "probability": 0.7922 }, { "start": 80.98, "end": 83.46, "probability": 0.8839 }, { "start": 84.04, "end": 88.42, "probability": 0.8896 }, { "start": 88.74, "end": 89.2, "probability": 0.6363 }, { "start": 89.3, "end": 90.84, "probability": 0.848 }, { "start": 96.5, "end": 97.9, "probability": 0.689 }, { "start": 98.58, "end": 99.86, "probability": 0.7539 }, { "start": 99.98, "end": 104.36, "probability": 0.9863 }, { "start": 104.88, "end": 105.12, "probability": 0.8262 }, { "start": 108.26, "end": 108.9, "probability": 0.7705 }, { "start": 109.7, "end": 111.26, "probability": 0.3041 }, { "start": 117.4, "end": 117.76, "probability": 0.2876 }, { "start": 117.76, "end": 119.96, "probability": 0.4418 }, { "start": 120.04, "end": 121.62, "probability": 0.7336 }, { "start": 121.9, "end": 124.78, "probability": 0.9401 }, { "start": 125.8, "end": 126.54, "probability": 0.7007 }, { "start": 160.06, "end": 160.52, "probability": 0.7579 }, { "start": 161.06, "end": 163.58, "probability": 0.8458 }, { "start": 164.26, "end": 166.56, "probability": 0.9647 }, { "start": 167.44, "end": 169.64, "probability": 0.9496 }, { "start": 169.74, "end": 171.64, "probability": 0.9861 }, { "start": 172.66, "end": 174.14, "probability": 0.8657 }, { "start": 175.66, "end": 179.04, "probability": 0.7751 }, { "start": 179.7, "end": 180.8, "probability": 0.7607 }, { "start": 182.04, "end": 183.26, "probability": 0.9438 }, { "start": 183.58, "end": 187.2, "probability": 0.8721 }, { "start": 188.18, "end": 189.38, "probability": 0.7817 }, { "start": 189.48, "end": 190.28, "probability": 0.7284 }, { "start": 190.9, "end": 191.84, "probability": 0.6264 }, { "start": 192.88, "end": 194.14, "probability": 0.8869 }, { "start": 195.18, "end": 197.32, "probability": 0.9836 }, { "start": 198.34, "end": 201.04, "probability": 0.9885 }, { "start": 201.9, "end": 204.06, "probability": 0.9907 }, { "start": 205.08, "end": 205.5, "probability": 0.9972 }, { "start": 206.12, "end": 208.34, "probability": 0.8504 }, { "start": 211.32, "end": 212.94, "probability": 0.9597 }, { "start": 214.4, "end": 215.2, "probability": 0.8182 }, { "start": 216.78, "end": 223.5, "probability": 0.8438 }, { "start": 224.62, "end": 225.54, "probability": 0.5054 }, { "start": 226.39, "end": 230.28, "probability": 0.8511 }, { "start": 231.52, "end": 235.96, "probability": 0.7812 }, { "start": 237.04, "end": 237.44, "probability": 0.5579 }, { "start": 238.42, "end": 241.1, "probability": 0.7866 }, { "start": 242.06, "end": 247.16, "probability": 0.9822 }, { "start": 247.68, "end": 250.22, "probability": 0.994 }, { "start": 253.14, "end": 254.52, "probability": 0.7848 }, { "start": 255.56, "end": 256.46, "probability": 0.7665 }, { "start": 256.52, "end": 260.06, "probability": 0.966 }, { "start": 260.28, "end": 262.82, "probability": 0.9913 }, { "start": 262.92, "end": 266.04, "probability": 0.9927 }, { "start": 267.5, "end": 267.9, "probability": 0.778 }, { "start": 267.94, "end": 269.66, "probability": 0.992 }, { "start": 270.42, "end": 274.2, "probability": 0.97 }, { "start": 274.52, "end": 275.8, "probability": 0.8857 }, { "start": 276.04, "end": 278.14, "probability": 0.941 }, { "start": 278.24, "end": 280.2, "probability": 0.8815 }, { "start": 281.16, "end": 282.32, "probability": 0.867 }, { "start": 283.12, "end": 286.04, "probability": 0.5048 }, { "start": 288.32, "end": 289.54, "probability": 0.2551 }, { "start": 289.68, "end": 290.32, "probability": 0.6807 }, { "start": 290.86, "end": 293.44, "probability": 0.9785 }, { "start": 293.88, "end": 297.93, "probability": 0.8397 }, { "start": 298.76, "end": 303.26, "probability": 0.8544 }, { "start": 303.56, "end": 305.32, "probability": 0.8807 }, { "start": 306.2, "end": 307.4, "probability": 0.8691 }, { "start": 307.92, "end": 314.12, "probability": 0.8648 }, { "start": 314.46, "end": 315.92, "probability": 0.8109 }, { "start": 316.52, "end": 321.2, "probability": 0.9951 }, { "start": 322.1, "end": 329.56, "probability": 0.9767 }, { "start": 330.08, "end": 333.8, "probability": 0.8081 }, { "start": 334.1, "end": 335.14, "probability": 0.6906 }, { "start": 335.52, "end": 337.12, "probability": 0.9845 }, { "start": 337.52, "end": 338.2, "probability": 0.8122 }, { "start": 338.48, "end": 340.51, "probability": 0.6497 }, { "start": 342.38, "end": 344.18, "probability": 0.9963 }, { "start": 346.38, "end": 348.74, "probability": 0.9172 }, { "start": 348.74, "end": 350.1, "probability": 0.6836 }, { "start": 350.48, "end": 355.26, "probability": 0.8699 }, { "start": 355.72, "end": 355.88, "probability": 0.3277 }, { "start": 355.96, "end": 360.42, "probability": 0.7021 }, { "start": 360.42, "end": 361.12, "probability": 0.8814 }, { "start": 381.96, "end": 383.76, "probability": 0.7263 }, { "start": 384.74, "end": 385.76, "probability": 0.8879 }, { "start": 386.54, "end": 389.86, "probability": 0.7269 }, { "start": 391.16, "end": 396.64, "probability": 0.8907 }, { "start": 396.72, "end": 398.1, "probability": 0.6551 }, { "start": 399.1, "end": 402.1, "probability": 0.5644 }, { "start": 402.22, "end": 405.3, "probability": 0.8031 }, { "start": 405.78, "end": 409.72, "probability": 0.9979 }, { "start": 409.72, "end": 413.52, "probability": 0.9994 }, { "start": 414.04, "end": 414.38, "probability": 0.7063 }, { "start": 415.56, "end": 417.94, "probability": 0.9083 }, { "start": 418.98, "end": 422.08, "probability": 0.7397 }, { "start": 422.74, "end": 422.94, "probability": 0.8305 }, { "start": 423.76, "end": 427.14, "probability": 0.995 }, { "start": 427.14, "end": 431.0, "probability": 0.8377 }, { "start": 431.7, "end": 432.42, "probability": 0.9655 }, { "start": 433.56, "end": 437.44, "probability": 0.9384 }, { "start": 437.64, "end": 440.3, "probability": 0.9938 }, { "start": 441.04, "end": 444.52, "probability": 0.9766 }, { "start": 445.42, "end": 447.74, "probability": 0.924 }, { "start": 447.92, "end": 448.28, "probability": 0.803 }, { "start": 448.52, "end": 449.02, "probability": 0.9514 }, { "start": 449.16, "end": 450.36, "probability": 0.7148 }, { "start": 452.98, "end": 457.68, "probability": 0.7764 }, { "start": 460.3, "end": 461.28, "probability": 0.6138 }, { "start": 461.78, "end": 464.86, "probability": 0.9976 }, { "start": 464.98, "end": 468.88, "probability": 0.9991 }, { "start": 469.46, "end": 470.98, "probability": 0.9417 }, { "start": 472.64, "end": 476.7, "probability": 0.9967 }, { "start": 476.98, "end": 480.62, "probability": 0.8701 }, { "start": 481.7, "end": 484.1, "probability": 0.9448 }, { "start": 484.36, "end": 486.2, "probability": 0.9937 }, { "start": 487.6, "end": 490.44, "probability": 0.8943 }, { "start": 491.32, "end": 492.0, "probability": 0.4888 }, { "start": 492.12, "end": 494.92, "probability": 0.8718 }, { "start": 494.92, "end": 498.0, "probability": 0.9979 }, { "start": 499.38, "end": 502.44, "probability": 0.7842 }, { "start": 502.52, "end": 504.7, "probability": 0.8218 }, { "start": 505.4, "end": 508.66, "probability": 0.7919 }, { "start": 509.68, "end": 512.38, "probability": 0.7805 }, { "start": 513.2, "end": 513.24, "probability": 0.4764 }, { "start": 513.24, "end": 514.0, "probability": 0.799 }, { "start": 514.08, "end": 515.22, "probability": 0.4545 }, { "start": 515.28, "end": 516.64, "probability": 0.9897 }, { "start": 517.32, "end": 520.32, "probability": 0.9762 }, { "start": 521.1, "end": 526.18, "probability": 0.8362 }, { "start": 526.18, "end": 529.02, "probability": 0.9985 }, { "start": 530.0, "end": 535.02, "probability": 0.9971 }, { "start": 535.62, "end": 537.4, "probability": 0.7565 }, { "start": 538.18, "end": 542.12, "probability": 0.9926 }, { "start": 542.8, "end": 546.46, "probability": 0.9985 }, { "start": 546.74, "end": 551.33, "probability": 0.9318 }, { "start": 552.68, "end": 554.8, "probability": 0.9957 }, { "start": 554.92, "end": 556.32, "probability": 0.8278 }, { "start": 557.16, "end": 557.54, "probability": 0.8579 }, { "start": 559.68, "end": 560.18, "probability": 0.6402 }, { "start": 561.54, "end": 562.74, "probability": 0.8496 }, { "start": 566.9, "end": 568.14, "probability": 0.8972 }, { "start": 568.98, "end": 572.16, "probability": 0.8341 }, { "start": 573.5, "end": 575.86, "probability": 0.78 }, { "start": 577.22, "end": 579.1, "probability": 0.9466 }, { "start": 580.46, "end": 582.2, "probability": 0.998 }, { "start": 582.62, "end": 585.48, "probability": 0.7717 }, { "start": 585.6, "end": 586.52, "probability": 0.7515 }, { "start": 587.3, "end": 590.28, "probability": 0.9784 }, { "start": 590.38, "end": 592.54, "probability": 0.9985 }, { "start": 593.16, "end": 596.7, "probability": 0.8626 }, { "start": 596.86, "end": 598.3, "probability": 0.4965 }, { "start": 598.3, "end": 600.46, "probability": 0.9035 }, { "start": 600.52, "end": 602.26, "probability": 0.845 }, { "start": 602.36, "end": 603.66, "probability": 0.7448 }, { "start": 606.79, "end": 610.04, "probability": 0.998 }, { "start": 610.2, "end": 611.56, "probability": 0.8215 }, { "start": 612.62, "end": 616.16, "probability": 0.8724 }, { "start": 616.88, "end": 618.58, "probability": 0.9878 }, { "start": 618.66, "end": 622.12, "probability": 0.994 }, { "start": 622.34, "end": 623.34, "probability": 0.6577 }, { "start": 624.53, "end": 628.26, "probability": 0.995 }, { "start": 629.88, "end": 633.66, "probability": 0.8313 }, { "start": 634.68, "end": 638.0, "probability": 0.7353 }, { "start": 638.1, "end": 639.21, "probability": 0.9849 }, { "start": 640.08, "end": 641.92, "probability": 0.8454 }, { "start": 642.56, "end": 648.64, "probability": 0.9978 }, { "start": 650.18, "end": 654.62, "probability": 0.604 }, { "start": 654.8, "end": 660.22, "probability": 0.9653 }, { "start": 660.3, "end": 661.9, "probability": 0.9185 }, { "start": 662.66, "end": 663.6, "probability": 0.6832 }, { "start": 664.24, "end": 665.76, "probability": 0.7108 }, { "start": 666.88, "end": 669.68, "probability": 0.9183 }, { "start": 669.74, "end": 672.3, "probability": 0.9938 }, { "start": 672.3, "end": 673.16, "probability": 0.9006 }, { "start": 675.34, "end": 676.72, "probability": 0.9846 }, { "start": 677.26, "end": 682.08, "probability": 0.9928 }, { "start": 682.64, "end": 684.28, "probability": 0.9706 }, { "start": 684.72, "end": 686.3, "probability": 0.9279 }, { "start": 686.76, "end": 692.8, "probability": 0.9637 }, { "start": 693.36, "end": 696.88, "probability": 0.9796 }, { "start": 697.54, "end": 699.24, "probability": 0.9855 }, { "start": 699.5, "end": 700.5, "probability": 0.7437 }, { "start": 700.72, "end": 701.6, "probability": 0.9507 }, { "start": 701.78, "end": 702.54, "probability": 0.9344 }, { "start": 702.68, "end": 702.96, "probability": 0.2152 }, { "start": 703.14, "end": 703.24, "probability": 0.551 }, { "start": 703.58, "end": 705.0, "probability": 0.9873 }, { "start": 706.26, "end": 707.52, "probability": 0.8622 }, { "start": 707.78, "end": 714.24, "probability": 0.9879 }, { "start": 714.9, "end": 716.12, "probability": 0.9365 }, { "start": 716.36, "end": 717.86, "probability": 0.9883 }, { "start": 718.82, "end": 725.66, "probability": 0.9958 }, { "start": 726.66, "end": 731.2, "probability": 0.9968 }, { "start": 731.92, "end": 732.28, "probability": 0.9502 }, { "start": 732.46, "end": 732.86, "probability": 0.6704 }, { "start": 732.88, "end": 733.97, "probability": 0.6658 }, { "start": 734.66, "end": 736.5, "probability": 0.5842 }, { "start": 736.64, "end": 737.82, "probability": 0.9902 }, { "start": 738.94, "end": 740.82, "probability": 0.8508 }, { "start": 740.9, "end": 741.68, "probability": 0.8542 }, { "start": 741.9, "end": 749.48, "probability": 0.9881 }, { "start": 749.58, "end": 750.2, "probability": 0.9881 }, { "start": 751.02, "end": 751.96, "probability": 0.8998 }, { "start": 754.72, "end": 757.98, "probability": 0.7952 }, { "start": 758.54, "end": 760.66, "probability": 0.9398 }, { "start": 761.26, "end": 761.62, "probability": 0.7492 }, { "start": 761.76, "end": 765.8, "probability": 0.9985 }, { "start": 765.96, "end": 767.72, "probability": 0.9971 }, { "start": 768.0, "end": 772.18, "probability": 0.9956 }, { "start": 773.1, "end": 773.48, "probability": 0.5524 }, { "start": 773.54, "end": 776.72, "probability": 0.8569 }, { "start": 777.58, "end": 782.26, "probability": 0.9656 }, { "start": 783.1, "end": 784.08, "probability": 0.8914 }, { "start": 784.26, "end": 787.32, "probability": 0.5303 }, { "start": 787.72, "end": 791.08, "probability": 0.685 }, { "start": 791.68, "end": 796.32, "probability": 0.9597 }, { "start": 796.96, "end": 800.16, "probability": 0.9959 }, { "start": 801.62, "end": 802.87, "probability": 0.9527 }, { "start": 803.7, "end": 805.92, "probability": 0.9976 }, { "start": 805.92, "end": 807.9, "probability": 0.9945 }, { "start": 808.38, "end": 808.9, "probability": 0.6139 }, { "start": 809.12, "end": 810.5, "probability": 0.9702 }, { "start": 811.26, "end": 813.88, "probability": 0.9919 }, { "start": 814.5, "end": 819.0, "probability": 0.8538 }, { "start": 820.1, "end": 822.78, "probability": 0.7547 }, { "start": 823.6, "end": 825.68, "probability": 0.959 }, { "start": 826.64, "end": 828.36, "probability": 0.7754 }, { "start": 828.5, "end": 829.68, "probability": 0.8675 }, { "start": 830.42, "end": 831.98, "probability": 0.9427 }, { "start": 832.16, "end": 836.5, "probability": 0.9634 }, { "start": 836.98, "end": 838.8, "probability": 0.6528 }, { "start": 838.84, "end": 839.22, "probability": 0.609 }, { "start": 839.42, "end": 841.88, "probability": 0.9946 }, { "start": 841.88, "end": 844.28, "probability": 0.9947 }, { "start": 844.92, "end": 847.26, "probability": 0.9987 }, { "start": 848.58, "end": 850.18, "probability": 0.8148 }, { "start": 850.26, "end": 853.28, "probability": 0.9929 }, { "start": 854.02, "end": 855.2, "probability": 0.9958 }, { "start": 856.96, "end": 858.5, "probability": 0.8848 }, { "start": 858.74, "end": 860.96, "probability": 0.8574 }, { "start": 861.02, "end": 861.65, "probability": 0.5454 }, { "start": 861.78, "end": 863.92, "probability": 0.9976 }, { "start": 864.6, "end": 867.5, "probability": 0.972 }, { "start": 868.18, "end": 872.38, "probability": 0.9976 }, { "start": 872.38, "end": 878.06, "probability": 0.8879 }, { "start": 878.12, "end": 880.28, "probability": 0.9568 }, { "start": 881.68, "end": 885.42, "probability": 0.995 }, { "start": 885.42, "end": 888.7, "probability": 0.9899 }, { "start": 889.46, "end": 891.85, "probability": 0.9883 }, { "start": 893.78, "end": 896.8, "probability": 0.9926 }, { "start": 897.52, "end": 900.56, "probability": 0.7992 }, { "start": 901.04, "end": 907.14, "probability": 0.9925 }, { "start": 907.14, "end": 911.04, "probability": 0.9846 }, { "start": 911.78, "end": 912.98, "probability": 0.5795 }, { "start": 913.6, "end": 917.94, "probability": 0.9702 }, { "start": 918.48, "end": 920.9, "probability": 0.9429 }, { "start": 921.44, "end": 922.57, "probability": 0.9778 }, { "start": 922.98, "end": 923.82, "probability": 0.9932 }, { "start": 924.14, "end": 924.24, "probability": 0.8889 }, { "start": 925.04, "end": 926.26, "probability": 0.9219 }, { "start": 926.42, "end": 926.9, "probability": 0.5232 }, { "start": 926.92, "end": 928.62, "probability": 0.7786 }, { "start": 934.32, "end": 935.82, "probability": 0.6153 }, { "start": 936.3, "end": 936.9, "probability": 0.7204 }, { "start": 938.0, "end": 944.6, "probability": 0.8807 }, { "start": 944.78, "end": 946.08, "probability": 0.839 }, { "start": 946.22, "end": 946.84, "probability": 0.588 }, { "start": 947.62, "end": 948.56, "probability": 0.906 }, { "start": 949.04, "end": 950.4, "probability": 0.928 }, { "start": 950.78, "end": 952.1, "probability": 0.8352 }, { "start": 952.76, "end": 953.65, "probability": 0.6982 }, { "start": 953.98, "end": 955.96, "probability": 0.9797 }, { "start": 956.88, "end": 963.74, "probability": 0.8615 }, { "start": 963.84, "end": 967.2, "probability": 0.5552 }, { "start": 968.12, "end": 971.44, "probability": 0.7473 }, { "start": 972.22, "end": 972.5, "probability": 0.654 }, { "start": 973.02, "end": 976.76, "probability": 0.7596 }, { "start": 977.7, "end": 979.48, "probability": 0.7989 }, { "start": 980.28, "end": 981.09, "probability": 0.9272 }, { "start": 981.64, "end": 987.06, "probability": 0.7848 }, { "start": 987.38, "end": 989.52, "probability": 0.9274 }, { "start": 990.7, "end": 992.96, "probability": 0.7863 }, { "start": 993.88, "end": 995.72, "probability": 0.772 }, { "start": 996.02, "end": 996.16, "probability": 0.4846 }, { "start": 996.3, "end": 999.68, "probability": 0.8757 }, { "start": 1000.32, "end": 1001.24, "probability": 0.6088 }, { "start": 1001.36, "end": 1004.34, "probability": 0.9951 }, { "start": 1004.42, "end": 1005.14, "probability": 0.8582 }, { "start": 1005.24, "end": 1006.06, "probability": 0.9711 }, { "start": 1006.18, "end": 1010.3, "probability": 0.9126 }, { "start": 1010.78, "end": 1013.26, "probability": 0.6343 }, { "start": 1014.04, "end": 1014.5, "probability": 0.746 }, { "start": 1014.54, "end": 1016.89, "probability": 0.8849 }, { "start": 1016.9, "end": 1018.62, "probability": 0.7432 }, { "start": 1018.78, "end": 1020.9, "probability": 0.7483 }, { "start": 1021.4, "end": 1021.4, "probability": 0.3989 }, { "start": 1021.4, "end": 1023.75, "probability": 0.7639 }, { "start": 1024.14, "end": 1026.72, "probability": 0.975 }, { "start": 1026.92, "end": 1027.34, "probability": 0.8545 }, { "start": 1027.44, "end": 1030.04, "probability": 0.9202 }, { "start": 1030.5, "end": 1032.06, "probability": 0.9739 }, { "start": 1032.8, "end": 1033.22, "probability": 0.7334 }, { "start": 1034.58, "end": 1035.44, "probability": 0.813 }, { "start": 1036.46, "end": 1037.8, "probability": 0.8815 }, { "start": 1037.92, "end": 1038.48, "probability": 0.9052 }, { "start": 1039.2, "end": 1042.5, "probability": 0.8159 }, { "start": 1042.62, "end": 1046.56, "probability": 0.987 }, { "start": 1046.88, "end": 1047.04, "probability": 0.6497 }, { "start": 1047.4, "end": 1049.66, "probability": 0.7227 }, { "start": 1049.92, "end": 1051.13, "probability": 0.9268 }, { "start": 1052.25, "end": 1053.94, "probability": 0.8273 }, { "start": 1055.24, "end": 1056.22, "probability": 0.939 }, { "start": 1056.82, "end": 1057.38, "probability": 0.9504 }, { "start": 1057.9, "end": 1059.62, "probability": 0.9483 }, { "start": 1061.04, "end": 1064.58, "probability": 0.8809 }, { "start": 1065.44, "end": 1067.56, "probability": 0.8458 }, { "start": 1068.28, "end": 1069.86, "probability": 0.8202 }, { "start": 1070.8, "end": 1072.94, "probability": 0.9951 }, { "start": 1073.26, "end": 1074.68, "probability": 0.7762 }, { "start": 1075.24, "end": 1078.84, "probability": 0.9683 }, { "start": 1079.62, "end": 1080.86, "probability": 0.9595 }, { "start": 1080.96, "end": 1083.32, "probability": 0.8599 }, { "start": 1083.78, "end": 1084.7, "probability": 0.8342 }, { "start": 1085.68, "end": 1087.14, "probability": 0.8289 }, { "start": 1087.74, "end": 1089.0, "probability": 0.9608 }, { "start": 1089.86, "end": 1090.18, "probability": 0.9635 }, { "start": 1090.22, "end": 1093.46, "probability": 0.9799 }, { "start": 1093.96, "end": 1098.52, "probability": 0.9467 }, { "start": 1098.86, "end": 1101.06, "probability": 0.9941 }, { "start": 1102.3, "end": 1104.46, "probability": 0.9596 }, { "start": 1104.78, "end": 1110.68, "probability": 0.9891 }, { "start": 1111.44, "end": 1113.82, "probability": 0.9931 }, { "start": 1114.14, "end": 1116.02, "probability": 0.5143 }, { "start": 1116.52, "end": 1120.52, "probability": 0.9581 }, { "start": 1120.68, "end": 1122.02, "probability": 0.9966 }, { "start": 1122.5, "end": 1123.82, "probability": 0.9708 }, { "start": 1125.06, "end": 1125.52, "probability": 0.6182 }, { "start": 1125.6, "end": 1127.08, "probability": 0.6803 }, { "start": 1132.5, "end": 1132.98, "probability": 0.7116 }, { "start": 1133.24, "end": 1133.86, "probability": 0.7089 }, { "start": 1134.02, "end": 1134.86, "probability": 0.5348 }, { "start": 1135.18, "end": 1137.46, "probability": 0.9256 }, { "start": 1138.22, "end": 1142.28, "probability": 0.9829 }, { "start": 1142.28, "end": 1145.88, "probability": 0.9958 }, { "start": 1146.58, "end": 1149.0, "probability": 0.9928 }, { "start": 1149.1, "end": 1150.38, "probability": 0.5653 }, { "start": 1150.48, "end": 1154.48, "probability": 0.8853 }, { "start": 1155.0, "end": 1157.94, "probability": 0.9395 }, { "start": 1157.94, "end": 1162.64, "probability": 0.9871 }, { "start": 1163.44, "end": 1165.26, "probability": 0.7429 }, { "start": 1165.9, "end": 1166.0, "probability": 0.3113 }, { "start": 1166.12, "end": 1166.96, "probability": 0.7998 }, { "start": 1167.46, "end": 1168.66, "probability": 0.8935 }, { "start": 1169.06, "end": 1171.7, "probability": 0.8153 }, { "start": 1173.7, "end": 1175.62, "probability": 0.9486 }, { "start": 1176.0, "end": 1179.14, "probability": 0.9893 }, { "start": 1179.14, "end": 1181.68, "probability": 0.9868 }, { "start": 1182.32, "end": 1188.14, "probability": 0.9909 }, { "start": 1188.68, "end": 1190.56, "probability": 0.7799 }, { "start": 1190.92, "end": 1191.27, "probability": 0.9865 }, { "start": 1191.5, "end": 1194.98, "probability": 0.7743 }, { "start": 1195.36, "end": 1196.34, "probability": 0.939 }, { "start": 1196.82, "end": 1197.42, "probability": 0.7011 }, { "start": 1198.22, "end": 1200.54, "probability": 0.9874 }, { "start": 1201.38, "end": 1204.98, "probability": 0.9854 }, { "start": 1206.86, "end": 1208.78, "probability": 0.8692 }, { "start": 1209.0, "end": 1210.06, "probability": 0.9668 }, { "start": 1210.14, "end": 1214.68, "probability": 0.9979 }, { "start": 1214.68, "end": 1220.0, "probability": 0.9897 }, { "start": 1220.2, "end": 1226.6, "probability": 0.9772 }, { "start": 1227.08, "end": 1229.11, "probability": 0.9746 }, { "start": 1230.54, "end": 1236.48, "probability": 0.8664 }, { "start": 1236.54, "end": 1237.54, "probability": 0.9448 }, { "start": 1237.98, "end": 1238.16, "probability": 0.8612 }, { "start": 1238.26, "end": 1242.22, "probability": 0.9828 }, { "start": 1242.9, "end": 1245.16, "probability": 0.9518 }, { "start": 1245.64, "end": 1246.16, "probability": 0.3021 }, { "start": 1246.16, "end": 1246.32, "probability": 0.9424 }, { "start": 1246.5, "end": 1249.28, "probability": 0.9962 }, { "start": 1250.08, "end": 1252.66, "probability": 0.7281 }, { "start": 1253.56, "end": 1255.36, "probability": 0.8978 }, { "start": 1255.56, "end": 1255.56, "probability": 0.1672 }, { "start": 1255.56, "end": 1256.74, "probability": 0.8133 }, { "start": 1256.76, "end": 1257.66, "probability": 0.0555 }, { "start": 1257.74, "end": 1258.0, "probability": 0.5663 }, { "start": 1258.0, "end": 1258.7, "probability": 0.3298 }, { "start": 1258.74, "end": 1259.56, "probability": 0.7291 }, { "start": 1259.62, "end": 1260.34, "probability": 0.9562 }, { "start": 1261.22, "end": 1263.72, "probability": 0.9038 }, { "start": 1264.2, "end": 1265.47, "probability": 0.9844 }, { "start": 1266.22, "end": 1267.32, "probability": 0.9609 }, { "start": 1268.28, "end": 1271.4, "probability": 0.9951 }, { "start": 1271.58, "end": 1275.76, "probability": 0.996 }, { "start": 1278.2, "end": 1278.84, "probability": 0.7994 }, { "start": 1279.68, "end": 1282.3, "probability": 0.4891 }, { "start": 1282.64, "end": 1287.64, "probability": 0.7523 }, { "start": 1288.2, "end": 1289.24, "probability": 0.8154 }, { "start": 1290.09, "end": 1292.84, "probability": 0.6967 }, { "start": 1307.76, "end": 1308.72, "probability": 0.7322 }, { "start": 1309.28, "end": 1309.92, "probability": 0.7625 }, { "start": 1311.54, "end": 1314.96, "probability": 0.5633 }, { "start": 1316.2, "end": 1319.32, "probability": 0.8716 }, { "start": 1319.42, "end": 1321.84, "probability": 0.8784 }, { "start": 1322.72, "end": 1327.56, "probability": 0.8422 }, { "start": 1329.16, "end": 1331.32, "probability": 0.6747 }, { "start": 1332.5, "end": 1334.46, "probability": 0.5923 }, { "start": 1335.54, "end": 1336.3, "probability": 0.8908 }, { "start": 1337.12, "end": 1337.76, "probability": 0.644 }, { "start": 1338.22, "end": 1339.13, "probability": 0.1611 }, { "start": 1339.49, "end": 1341.6, "probability": 0.6647 }, { "start": 1341.92, "end": 1343.64, "probability": 0.9801 }, { "start": 1343.76, "end": 1344.88, "probability": 0.7907 }, { "start": 1345.42, "end": 1348.42, "probability": 0.7932 }, { "start": 1348.46, "end": 1349.02, "probability": 0.7462 }, { "start": 1349.08, "end": 1349.69, "probability": 0.9084 }, { "start": 1350.36, "end": 1351.16, "probability": 0.9683 }, { "start": 1353.24, "end": 1354.82, "probability": 0.8065 }, { "start": 1356.28, "end": 1357.66, "probability": 0.8745 }, { "start": 1357.74, "end": 1358.0, "probability": 0.962 }, { "start": 1358.83, "end": 1366.16, "probability": 0.9079 }, { "start": 1367.66, "end": 1369.5, "probability": 0.9591 }, { "start": 1369.94, "end": 1373.0, "probability": 0.995 }, { "start": 1373.9, "end": 1374.5, "probability": 0.4615 }, { "start": 1375.46, "end": 1379.38, "probability": 0.8081 }, { "start": 1379.88, "end": 1380.19, "probability": 0.1268 }, { "start": 1380.77, "end": 1382.62, "probability": 0.8058 }, { "start": 1383.36, "end": 1383.98, "probability": 0.2535 }, { "start": 1384.26, "end": 1388.28, "probability": 0.9823 }, { "start": 1388.58, "end": 1389.44, "probability": 0.3366 }, { "start": 1390.02, "end": 1391.12, "probability": 0.9094 }, { "start": 1391.22, "end": 1392.24, "probability": 0.5433 }, { "start": 1393.02, "end": 1399.4, "probability": 0.7784 }, { "start": 1400.1, "end": 1403.08, "probability": 0.9977 }, { "start": 1403.08, "end": 1406.6, "probability": 0.9235 }, { "start": 1407.3, "end": 1407.88, "probability": 0.8176 }, { "start": 1408.18, "end": 1410.89, "probability": 0.8732 }, { "start": 1412.56, "end": 1413.96, "probability": 0.5743 }, { "start": 1415.16, "end": 1419.42, "probability": 0.5938 }, { "start": 1419.56, "end": 1419.56, "probability": 0.3773 }, { "start": 1419.66, "end": 1426.06, "probability": 0.8741 }, { "start": 1426.06, "end": 1426.52, "probability": 0.3772 }, { "start": 1426.72, "end": 1427.98, "probability": 0.9607 }, { "start": 1429.12, "end": 1429.56, "probability": 0.8409 }, { "start": 1429.86, "end": 1431.3, "probability": 0.8866 }, { "start": 1431.38, "end": 1432.3, "probability": 0.0298 }, { "start": 1432.84, "end": 1434.2, "probability": 0.3183 }, { "start": 1434.22, "end": 1434.64, "probability": 0.9376 }, { "start": 1435.22, "end": 1439.34, "probability": 0.8465 }, { "start": 1439.36, "end": 1441.72, "probability": 0.8205 }, { "start": 1441.78, "end": 1442.46, "probability": 0.9115 }, { "start": 1443.0, "end": 1443.2, "probability": 0.8567 }, { "start": 1445.24, "end": 1448.12, "probability": 0.9252 }, { "start": 1449.44, "end": 1456.18, "probability": 0.993 }, { "start": 1457.2, "end": 1459.1, "probability": 0.868 }, { "start": 1459.66, "end": 1461.52, "probability": 0.9644 }, { "start": 1462.62, "end": 1463.64, "probability": 0.8531 }, { "start": 1466.53, "end": 1468.16, "probability": 0.3549 }, { "start": 1468.8, "end": 1469.32, "probability": 0.8418 }, { "start": 1469.38, "end": 1470.88, "probability": 0.9723 }, { "start": 1471.18, "end": 1471.78, "probability": 0.6441 }, { "start": 1471.98, "end": 1473.7, "probability": 0.98 }, { "start": 1474.22, "end": 1475.76, "probability": 0.9856 }, { "start": 1477.24, "end": 1477.98, "probability": 0.5731 }, { "start": 1479.08, "end": 1479.42, "probability": 0.0641 }, { "start": 1479.42, "end": 1482.32, "probability": 0.1814 }, { "start": 1482.42, "end": 1484.78, "probability": 0.6602 }, { "start": 1484.78, "end": 1489.76, "probability": 0.0615 }, { "start": 1489.76, "end": 1489.76, "probability": 0.4394 }, { "start": 1489.76, "end": 1489.76, "probability": 0.3257 }, { "start": 1489.76, "end": 1489.86, "probability": 0.1783 }, { "start": 1491.58, "end": 1492.44, "probability": 0.7293 }, { "start": 1493.22, "end": 1495.02, "probability": 0.9628 }, { "start": 1495.78, "end": 1499.66, "probability": 0.9922 }, { "start": 1500.32, "end": 1504.36, "probability": 0.9929 }, { "start": 1504.72, "end": 1508.34, "probability": 0.9997 }, { "start": 1509.14, "end": 1513.54, "probability": 0.7005 }, { "start": 1514.12, "end": 1516.32, "probability": 0.993 }, { "start": 1516.32, "end": 1519.54, "probability": 0.9449 }, { "start": 1519.86, "end": 1520.68, "probability": 0.6094 }, { "start": 1521.7, "end": 1524.82, "probability": 0.9821 }, { "start": 1525.52, "end": 1528.36, "probability": 0.9896 }, { "start": 1529.06, "end": 1529.92, "probability": 0.5403 }, { "start": 1530.16, "end": 1534.98, "probability": 0.9937 }, { "start": 1535.68, "end": 1536.4, "probability": 0.9517 }, { "start": 1537.12, "end": 1537.88, "probability": 0.989 }, { "start": 1538.4, "end": 1543.0, "probability": 0.7574 }, { "start": 1543.16, "end": 1548.44, "probability": 0.9872 }, { "start": 1549.84, "end": 1552.46, "probability": 0.9937 }, { "start": 1552.46, "end": 1555.4, "probability": 0.9407 }, { "start": 1556.24, "end": 1558.36, "probability": 0.994 }, { "start": 1558.96, "end": 1561.96, "probability": 0.9931 }, { "start": 1562.24, "end": 1563.66, "probability": 0.7512 }, { "start": 1564.76, "end": 1565.56, "probability": 0.6989 }, { "start": 1566.02, "end": 1571.66, "probability": 0.9904 }, { "start": 1572.02, "end": 1572.7, "probability": 0.9089 }, { "start": 1572.9, "end": 1573.68, "probability": 0.856 }, { "start": 1573.94, "end": 1580.62, "probability": 0.9891 }, { "start": 1581.8, "end": 1583.0, "probability": 0.8251 }, { "start": 1584.14, "end": 1584.94, "probability": 0.6215 }, { "start": 1585.52, "end": 1586.6, "probability": 0.6061 }, { "start": 1586.8, "end": 1587.64, "probability": 0.7249 }, { "start": 1587.74, "end": 1588.5, "probability": 0.8519 }, { "start": 1588.64, "end": 1589.8, "probability": 0.7211 }, { "start": 1590.14, "end": 1591.64, "probability": 0.8207 }, { "start": 1594.38, "end": 1597.24, "probability": 0.9558 }, { "start": 1597.5, "end": 1598.26, "probability": 0.7873 }, { "start": 1600.0, "end": 1601.02, "probability": 0.0058 }, { "start": 1601.02, "end": 1601.28, "probability": 0.1102 }, { "start": 1601.28, "end": 1601.28, "probability": 0.2619 }, { "start": 1601.28, "end": 1601.28, "probability": 0.4849 }, { "start": 1601.28, "end": 1603.01, "probability": 0.2987 }, { "start": 1603.62, "end": 1603.9, "probability": 0.7515 }, { "start": 1604.94, "end": 1608.0, "probability": 0.9554 }, { "start": 1608.9, "end": 1612.0, "probability": 0.9792 }, { "start": 1612.08, "end": 1616.78, "probability": 0.9995 }, { "start": 1617.3, "end": 1619.18, "probability": 0.993 }, { "start": 1619.24, "end": 1622.72, "probability": 0.9983 }, { "start": 1623.28, "end": 1624.9, "probability": 0.6674 }, { "start": 1625.18, "end": 1627.44, "probability": 0.8062 }, { "start": 1627.94, "end": 1632.22, "probability": 0.9574 }, { "start": 1632.56, "end": 1633.36, "probability": 0.7076 }, { "start": 1633.98, "end": 1638.54, "probability": 0.9346 }, { "start": 1639.24, "end": 1639.9, "probability": 0.758 }, { "start": 1640.18, "end": 1646.4, "probability": 0.9893 }, { "start": 1646.44, "end": 1647.94, "probability": 0.8999 }, { "start": 1648.76, "end": 1650.78, "probability": 0.8108 }, { "start": 1651.42, "end": 1655.58, "probability": 0.9907 }, { "start": 1656.26, "end": 1659.04, "probability": 0.9287 }, { "start": 1659.16, "end": 1660.0, "probability": 0.8708 }, { "start": 1661.09, "end": 1665.84, "probability": 0.9634 }, { "start": 1666.54, "end": 1669.28, "probability": 0.9881 }, { "start": 1670.06, "end": 1671.92, "probability": 0.7412 }, { "start": 1672.14, "end": 1676.9, "probability": 0.9948 }, { "start": 1677.46, "end": 1678.28, "probability": 0.9512 }, { "start": 1678.5, "end": 1679.94, "probability": 0.5958 }, { "start": 1680.22, "end": 1683.6, "probability": 0.927 }, { "start": 1684.2, "end": 1688.48, "probability": 0.9833 }, { "start": 1689.08, "end": 1690.0, "probability": 0.6138 }, { "start": 1690.1, "end": 1691.88, "probability": 0.9858 }, { "start": 1692.58, "end": 1695.7, "probability": 0.831 }, { "start": 1695.76, "end": 1698.94, "probability": 0.9779 }, { "start": 1700.14, "end": 1700.42, "probability": 0.7544 }, { "start": 1701.76, "end": 1705.06, "probability": 0.9946 }, { "start": 1705.16, "end": 1708.56, "probability": 0.9424 }, { "start": 1709.4, "end": 1712.84, "probability": 0.5908 }, { "start": 1713.06, "end": 1713.91, "probability": 0.8416 }, { "start": 1714.44, "end": 1717.68, "probability": 0.969 }, { "start": 1718.3, "end": 1722.22, "probability": 0.9852 }, { "start": 1722.76, "end": 1724.26, "probability": 0.8246 }, { "start": 1724.4, "end": 1724.8, "probability": 0.8209 }, { "start": 1725.36, "end": 1726.8, "probability": 0.9811 }, { "start": 1727.64, "end": 1728.12, "probability": 0.8855 }, { "start": 1728.16, "end": 1729.28, "probability": 0.759 }, { "start": 1729.7, "end": 1732.2, "probability": 0.6127 }, { "start": 1732.28, "end": 1732.7, "probability": 0.8115 }, { "start": 1732.78, "end": 1733.73, "probability": 0.8538 }, { "start": 1734.66, "end": 1735.36, "probability": 0.0523 }, { "start": 1735.36, "end": 1735.62, "probability": 0.2541 }, { "start": 1736.48, "end": 1737.6, "probability": 0.8677 }, { "start": 1737.94, "end": 1740.34, "probability": 0.9549 }, { "start": 1740.56, "end": 1741.5, "probability": 0.825 }, { "start": 1742.24, "end": 1743.12, "probability": 0.7959 }, { "start": 1743.2, "end": 1744.42, "probability": 0.9417 }, { "start": 1744.56, "end": 1745.21, "probability": 0.7699 }, { "start": 1745.8, "end": 1747.88, "probability": 0.9097 }, { "start": 1748.2, "end": 1749.08, "probability": 0.0516 }, { "start": 1749.38, "end": 1749.68, "probability": 0.4349 }, { "start": 1749.68, "end": 1750.18, "probability": 0.418 }, { "start": 1750.34, "end": 1751.56, "probability": 0.8549 }, { "start": 1751.72, "end": 1752.68, "probability": 0.5049 }, { "start": 1752.94, "end": 1753.18, "probability": 0.7789 }, { "start": 1754.26, "end": 1757.14, "probability": 0.2263 }, { "start": 1757.16, "end": 1763.22, "probability": 0.6158 }, { "start": 1763.72, "end": 1763.94, "probability": 0.825 }, { "start": 1764.48, "end": 1765.92, "probability": 0.6396 }, { "start": 1769.21, "end": 1771.96, "probability": 0.0382 }, { "start": 1772.04, "end": 1772.46, "probability": 0.1709 }, { "start": 1772.46, "end": 1774.64, "probability": 0.1789 }, { "start": 1775.12, "end": 1775.96, "probability": 0.4607 }, { "start": 1777.1, "end": 1777.86, "probability": 0.4298 }, { "start": 1778.54, "end": 1781.77, "probability": 0.4837 }, { "start": 1782.02, "end": 1782.48, "probability": 0.2597 }, { "start": 1782.48, "end": 1782.48, "probability": 0.1068 }, { "start": 1782.48, "end": 1782.48, "probability": 0.032 }, { "start": 1782.48, "end": 1782.48, "probability": 0.2126 }, { "start": 1782.48, "end": 1782.88, "probability": 0.6762 }, { "start": 1783.06, "end": 1786.46, "probability": 0.4102 }, { "start": 1787.04, "end": 1790.8, "probability": 0.5613 }, { "start": 1791.8, "end": 1794.6, "probability": 0.9422 }, { "start": 1795.94, "end": 1798.3, "probability": 0.2817 }, { "start": 1798.42, "end": 1800.09, "probability": 0.8817 }, { "start": 1801.26, "end": 1808.42, "probability": 0.9817 }, { "start": 1808.78, "end": 1810.88, "probability": 0.9919 }, { "start": 1811.54, "end": 1813.7, "probability": 0.2655 }, { "start": 1813.8, "end": 1817.04, "probability": 0.6042 }, { "start": 1817.34, "end": 1818.32, "probability": 0.3334 }, { "start": 1818.32, "end": 1819.1, "probability": 0.6804 }, { "start": 1820.3, "end": 1820.75, "probability": 0.4641 }, { "start": 1821.24, "end": 1822.66, "probability": 0.5178 }, { "start": 1822.76, "end": 1825.38, "probability": 0.6355 }, { "start": 1826.1, "end": 1827.04, "probability": 0.7954 }, { "start": 1827.74, "end": 1829.3, "probability": 0.1282 }, { "start": 1831.68, "end": 1832.04, "probability": 0.5586 }, { "start": 1832.66, "end": 1835.11, "probability": 0.889 }, { "start": 1836.0, "end": 1837.9, "probability": 0.3552 }, { "start": 1838.26, "end": 1839.34, "probability": 0.828 }, { "start": 1839.38, "end": 1841.08, "probability": 0.9771 }, { "start": 1841.12, "end": 1842.26, "probability": 0.974 }, { "start": 1842.34, "end": 1843.36, "probability": 0.9481 }, { "start": 1843.7, "end": 1844.66, "probability": 0.8417 }, { "start": 1844.74, "end": 1846.06, "probability": 0.8313 }, { "start": 1846.54, "end": 1846.66, "probability": 0.0469 }, { "start": 1846.66, "end": 1849.42, "probability": 0.9852 }, { "start": 1849.58, "end": 1850.16, "probability": 0.2033 }, { "start": 1850.16, "end": 1850.65, "probability": 0.3393 }, { "start": 1851.62, "end": 1852.14, "probability": 0.5778 }, { "start": 1852.14, "end": 1855.84, "probability": 0.2242 }, { "start": 1857.06, "end": 1857.3, "probability": 0.0259 }, { "start": 1857.3, "end": 1857.3, "probability": 0.0592 }, { "start": 1857.3, "end": 1858.2, "probability": 0.1216 }, { "start": 1858.48, "end": 1859.32, "probability": 0.8793 }, { "start": 1861.28, "end": 1861.72, "probability": 0.4346 }, { "start": 1861.72, "end": 1862.6, "probability": 0.47 }, { "start": 1863.78, "end": 1864.06, "probability": 0.1804 }, { "start": 1864.32, "end": 1865.02, "probability": 0.5279 }, { "start": 1865.02, "end": 1865.08, "probability": 0.4983 }, { "start": 1865.08, "end": 1866.9, "probability": 0.4548 }, { "start": 1866.92, "end": 1868.42, "probability": 0.6585 }, { "start": 1868.96, "end": 1869.86, "probability": 0.0524 }, { "start": 1870.76, "end": 1870.94, "probability": 0.2775 }, { "start": 1872.02, "end": 1872.58, "probability": 0.6525 }, { "start": 1873.04, "end": 1874.26, "probability": 0.8996 }, { "start": 1874.74, "end": 1875.6, "probability": 0.8349 }, { "start": 1875.76, "end": 1878.82, "probability": 0.9416 }, { "start": 1878.94, "end": 1882.3, "probability": 0.5308 }, { "start": 1883.14, "end": 1883.46, "probability": 0.7802 }, { "start": 1885.02, "end": 1888.22, "probability": 0.5883 }, { "start": 1888.82, "end": 1889.92, "probability": 0.5333 }, { "start": 1890.32, "end": 1890.96, "probability": 0.8072 }, { "start": 1892.04, "end": 1893.56, "probability": 0.7559 }, { "start": 1894.48, "end": 1896.28, "probability": 0.7667 }, { "start": 1896.84, "end": 1899.72, "probability": 0.9749 }, { "start": 1900.3, "end": 1901.14, "probability": 0.8636 }, { "start": 1902.1, "end": 1902.86, "probability": 0.9066 }, { "start": 1904.62, "end": 1906.88, "probability": 0.6852 }, { "start": 1907.42, "end": 1909.62, "probability": 0.5313 }, { "start": 1910.28, "end": 1915.8, "probability": 0.9409 }, { "start": 1916.52, "end": 1917.82, "probability": 0.7161 }, { "start": 1918.58, "end": 1920.28, "probability": 0.7076 }, { "start": 1920.44, "end": 1921.8, "probability": 0.8206 }, { "start": 1921.8, "end": 1923.7, "probability": 0.3528 }, { "start": 1924.48, "end": 1925.58, "probability": 0.9485 }, { "start": 1926.52, "end": 1930.4, "probability": 0.8887 }, { "start": 1930.7, "end": 1934.18, "probability": 0.9797 }, { "start": 1934.82, "end": 1937.54, "probability": 0.886 }, { "start": 1938.44, "end": 1940.7, "probability": 0.7817 }, { "start": 1940.82, "end": 1941.49, "probability": 0.3682 }, { "start": 1942.0, "end": 1944.58, "probability": 0.6646 }, { "start": 1945.46, "end": 1950.22, "probability": 0.9792 }, { "start": 1950.56, "end": 1951.26, "probability": 0.4917 }, { "start": 1953.14, "end": 1954.62, "probability": 0.8019 }, { "start": 1956.02, "end": 1959.04, "probability": 0.867 }, { "start": 1959.12, "end": 1963.62, "probability": 0.9443 }, { "start": 1964.18, "end": 1967.14, "probability": 0.9863 }, { "start": 1967.18, "end": 1969.64, "probability": 0.9043 }, { "start": 1970.58, "end": 1972.48, "probability": 0.9545 }, { "start": 1973.62, "end": 1973.64, "probability": 0.0676 }, { "start": 1973.64, "end": 1977.1, "probability": 0.7437 }, { "start": 1977.92, "end": 1978.94, "probability": 0.9186 }, { "start": 1979.46, "end": 1980.46, "probability": 0.9954 }, { "start": 1983.14, "end": 1983.74, "probability": 0.7344 }, { "start": 1984.36, "end": 1988.96, "probability": 0.9853 }, { "start": 1989.34, "end": 1991.48, "probability": 0.9927 }, { "start": 1991.56, "end": 1992.35, "probability": 0.9482 }, { "start": 1993.6, "end": 1994.32, "probability": 0.2794 }, { "start": 1995.72, "end": 1997.5, "probability": 0.3619 }, { "start": 1997.76, "end": 1998.57, "probability": 0.0751 }, { "start": 1999.62, "end": 2000.86, "probability": 0.796 }, { "start": 2000.92, "end": 2002.66, "probability": 0.6582 }, { "start": 2003.58, "end": 2006.02, "probability": 0.2724 }, { "start": 2009.0, "end": 2010.82, "probability": 0.2371 }, { "start": 2010.82, "end": 2013.62, "probability": 0.1147 }, { "start": 2013.62, "end": 2017.24, "probability": 0.0211 }, { "start": 2017.52, "end": 2017.92, "probability": 0.1653 }, { "start": 2020.78, "end": 2020.88, "probability": 0.0745 }, { "start": 2022.28, "end": 2024.26, "probability": 0.1291 }, { "start": 2025.56, "end": 2026.12, "probability": 0.0719 }, { "start": 2026.74, "end": 2029.24, "probability": 0.0 }, { "start": 2039.22, "end": 2041.14, "probability": 0.029 }, { "start": 2041.14, "end": 2041.9, "probability": 0.1269 }, { "start": 2042.62, "end": 2042.8, "probability": 0.1147 }, { "start": 2043.42, "end": 2043.76, "probability": 0.1833 }, { "start": 2045.12, "end": 2046.6, "probability": 0.1267 }, { "start": 2048.98, "end": 2049.28, "probability": 0.1018 }, { "start": 2049.28, "end": 2049.28, "probability": 0.2999 }, { "start": 2049.28, "end": 2049.7, "probability": 0.0166 }, { "start": 2051.6, "end": 2055.7, "probability": 0.0537 }, { "start": 2056.16, "end": 2060.56, "probability": 0.0645 }, { "start": 2060.68, "end": 2064.45, "probability": 0.0098 }, { "start": 2077.0, "end": 2077.0, "probability": 0.0 }, { "start": 2077.0, "end": 2077.0, "probability": 0.0 }, { "start": 2077.0, "end": 2077.0, "probability": 0.0 }, { "start": 2077.0, "end": 2077.0, "probability": 0.0 }, { "start": 2077.0, "end": 2077.0, "probability": 0.0 }, { "start": 2077.0, "end": 2077.0, "probability": 0.0 }, { "start": 2077.0, "end": 2077.0, "probability": 0.0 }, { "start": 2077.0, "end": 2077.0, "probability": 0.0 }, { "start": 2077.0, "end": 2077.0, "probability": 0.0 }, { "start": 2077.0, "end": 2077.0, "probability": 0.0 }, { "start": 2077.0, "end": 2077.0, "probability": 0.0 }, { "start": 2077.0, "end": 2077.0, "probability": 0.0 }, { "start": 2077.0, "end": 2077.0, "probability": 0.0 }, { "start": 2077.0, "end": 2077.0, "probability": 0.0 }, { "start": 2077.0, "end": 2077.0, "probability": 0.0 }, { "start": 2077.0, "end": 2077.0, "probability": 0.0 }, { "start": 2077.0, "end": 2077.0, "probability": 0.0 }, { "start": 2077.0, "end": 2077.0, "probability": 0.0 }, { "start": 2077.0, "end": 2077.0, "probability": 0.0 }, { "start": 2077.0, "end": 2077.0, "probability": 0.0 }, { "start": 2077.0, "end": 2077.0, "probability": 0.0 }, { "start": 2077.0, "end": 2077.0, "probability": 0.0 }, { "start": 2077.0, "end": 2077.0, "probability": 0.0 }, { "start": 2077.0, "end": 2077.0, "probability": 0.0 }, { "start": 2077.0, "end": 2077.0, "probability": 0.0 }, { "start": 2077.0, "end": 2077.0, "probability": 0.0 }, { "start": 2077.0, "end": 2077.0, "probability": 0.0 }, { "start": 2077.0, "end": 2077.0, "probability": 0.0 }, { "start": 2082.12, "end": 2084.02, "probability": 0.5315 }, { "start": 2084.02, "end": 2085.46, "probability": 0.8285 }, { "start": 2085.46, "end": 2088.18, "probability": 0.9029 }, { "start": 2088.26, "end": 2088.54, "probability": 0.3446 }, { "start": 2089.18, "end": 2089.44, "probability": 0.5916 }, { "start": 2089.64, "end": 2090.78, "probability": 0.1003 }, { "start": 2091.06, "end": 2092.32, "probability": 0.22 }, { "start": 2092.32, "end": 2092.7, "probability": 0.1133 }, { "start": 2093.52, "end": 2093.94, "probability": 0.5731 }, { "start": 2094.1, "end": 2097.16, "probability": 0.0615 }, { "start": 2097.16, "end": 2097.18, "probability": 0.1083 }, { "start": 2097.72, "end": 2102.4, "probability": 0.64 }, { "start": 2102.56, "end": 2105.06, "probability": 0.8424 }, { "start": 2105.7, "end": 2108.3, "probability": 0.0462 }, { "start": 2108.3, "end": 2108.3, "probability": 0.0185 }, { "start": 2108.3, "end": 2108.3, "probability": 0.2718 }, { "start": 2108.3, "end": 2108.94, "probability": 0.4419 }, { "start": 2109.22, "end": 2111.08, "probability": 0.9621 }, { "start": 2111.16, "end": 2112.14, "probability": 0.0564 }, { "start": 2210.0, "end": 2210.0, "probability": 0.0 }, { "start": 2210.0, "end": 2210.0, "probability": 0.0 }, { "start": 2210.0, "end": 2210.0, "probability": 0.0 }, { "start": 2210.0, "end": 2210.0, "probability": 0.0 }, { "start": 2210.0, "end": 2210.0, "probability": 0.0 }, { "start": 2210.0, "end": 2210.0, "probability": 0.0 }, { "start": 2210.0, "end": 2210.0, "probability": 0.0 }, { "start": 2210.0, "end": 2210.0, "probability": 0.0 }, { "start": 2210.0, "end": 2210.0, "probability": 0.0 }, { "start": 2210.0, "end": 2210.0, "probability": 0.0 }, { "start": 2210.0, "end": 2210.0, "probability": 0.0 }, { "start": 2210.0, "end": 2210.0, "probability": 0.0 }, { "start": 2210.0, "end": 2210.0, "probability": 0.0 }, { "start": 2210.0, "end": 2210.0, "probability": 0.0 }, { "start": 2210.0, "end": 2210.0, "probability": 0.0 }, { "start": 2210.0, "end": 2210.0, "probability": 0.0 }, { "start": 2210.0, "end": 2210.0, "probability": 0.0 }, { "start": 2210.0, "end": 2210.0, "probability": 0.0 }, { "start": 2210.0, "end": 2210.0, "probability": 0.0 }, { "start": 2210.0, "end": 2210.0, "probability": 0.0 }, { "start": 2210.0, "end": 2210.0, "probability": 0.0 }, { "start": 2210.0, "end": 2210.0, "probability": 0.0 }, { "start": 2210.0, "end": 2210.0, "probability": 0.0 }, { "start": 2210.0, "end": 2210.0, "probability": 0.0 }, { "start": 2210.0, "end": 2210.0, "probability": 0.0 }, { "start": 2210.0, "end": 2210.0, "probability": 0.0 }, { "start": 2210.0, "end": 2210.0, "probability": 0.0 }, { "start": 2210.0, "end": 2210.0, "probability": 0.0 }, { "start": 2210.0, "end": 2210.0, "probability": 0.0 }, { "start": 2210.0, "end": 2210.0, "probability": 0.0 }, { "start": 2210.0, "end": 2210.0, "probability": 0.0 }, { "start": 2210.0, "end": 2210.0, "probability": 0.0 }, { "start": 2210.0, "end": 2210.0, "probability": 0.0 }, { "start": 2210.0, "end": 2210.0, "probability": 0.0 }, { "start": 2210.0, "end": 2210.0, "probability": 0.0 }, { "start": 2210.0, "end": 2210.0, "probability": 0.0 }, { "start": 2210.0, "end": 2210.0, "probability": 0.0 }, { "start": 2210.0, "end": 2210.0, "probability": 0.0 }, { "start": 2210.0, "end": 2210.0, "probability": 0.0 }, { "start": 2210.0, "end": 2210.0, "probability": 0.0 }, { "start": 2210.0, "end": 2210.0, "probability": 0.0 }, { "start": 2210.0, "end": 2210.0, "probability": 0.0 }, { "start": 2210.0, "end": 2210.0, "probability": 0.0 }, { "start": 2210.16, "end": 2211.28, "probability": 0.5853 }, { "start": 2212.44, "end": 2214.82, "probability": 0.9956 }, { "start": 2215.02, "end": 2218.64, "probability": 0.9774 }, { "start": 2219.44, "end": 2220.2, "probability": 0.9116 }, { "start": 2220.66, "end": 2224.24, "probability": 0.9961 }, { "start": 2224.28, "end": 2226.14, "probability": 0.9402 }, { "start": 2226.62, "end": 2227.8, "probability": 0.7701 }, { "start": 2228.46, "end": 2231.88, "probability": 0.9915 }, { "start": 2233.7, "end": 2233.8, "probability": 0.0658 }, { "start": 2233.8, "end": 2233.8, "probability": 0.1084 }, { "start": 2233.8, "end": 2234.44, "probability": 0.4148 }, { "start": 2234.84, "end": 2239.2, "probability": 0.998 }, { "start": 2239.28, "end": 2240.86, "probability": 0.8872 }, { "start": 2241.34, "end": 2243.84, "probability": 0.9591 }, { "start": 2244.62, "end": 2245.1, "probability": 0.7284 }, { "start": 2245.46, "end": 2248.32, "probability": 0.168 }, { "start": 2249.66, "end": 2252.16, "probability": 0.3637 }, { "start": 2252.8, "end": 2255.08, "probability": 0.9683 }, { "start": 2255.86, "end": 2260.68, "probability": 0.9954 }, { "start": 2260.74, "end": 2262.02, "probability": 0.9647 }, { "start": 2262.54, "end": 2265.2, "probability": 0.9661 }, { "start": 2265.82, "end": 2268.92, "probability": 0.6311 }, { "start": 2269.74, "end": 2269.76, "probability": 0.0663 }, { "start": 2269.76, "end": 2272.24, "probability": 0.8497 }, { "start": 2272.46, "end": 2275.62, "probability": 0.9964 }, { "start": 2276.48, "end": 2278.36, "probability": 0.9849 }, { "start": 2279.36, "end": 2280.38, "probability": 0.8767 }, { "start": 2281.04, "end": 2281.22, "probability": 0.1964 }, { "start": 2281.22, "end": 2283.72, "probability": 0.4633 }, { "start": 2283.86, "end": 2285.42, "probability": 0.9751 }, { "start": 2286.72, "end": 2289.22, "probability": 0.4056 }, { "start": 2290.5, "end": 2290.8, "probability": 0.1944 }, { "start": 2290.8, "end": 2290.8, "probability": 0.2169 }, { "start": 2290.8, "end": 2290.8, "probability": 0.0747 }, { "start": 2290.8, "end": 2296.16, "probability": 0.77 }, { "start": 2296.72, "end": 2298.54, "probability": 0.9988 }, { "start": 2299.1, "end": 2303.72, "probability": 0.9922 }, { "start": 2304.26, "end": 2305.88, "probability": 0.8428 }, { "start": 2306.82, "end": 2308.22, "probability": 0.8047 }, { "start": 2308.56, "end": 2308.62, "probability": 0.0703 }, { "start": 2308.62, "end": 2313.12, "probability": 0.9451 }, { "start": 2313.24, "end": 2314.66, "probability": 0.7005 }, { "start": 2315.26, "end": 2316.16, "probability": 0.8605 }, { "start": 2316.83, "end": 2320.64, "probability": 0.8288 }, { "start": 2320.64, "end": 2321.14, "probability": 0.1337 }, { "start": 2321.96, "end": 2322.22, "probability": 0.2989 }, { "start": 2322.22, "end": 2323.36, "probability": 0.2963 }, { "start": 2323.82, "end": 2324.82, "probability": 0.3648 }, { "start": 2324.96, "end": 2325.66, "probability": 0.1024 }, { "start": 2325.66, "end": 2327.44, "probability": 0.1814 }, { "start": 2327.44, "end": 2328.82, "probability": 0.9485 }, { "start": 2328.9, "end": 2332.42, "probability": 0.9956 }, { "start": 2332.78, "end": 2333.02, "probability": 0.6366 }, { "start": 2333.02, "end": 2336.52, "probability": 0.9748 }, { "start": 2336.9, "end": 2338.7, "probability": 0.3451 }, { "start": 2339.24, "end": 2340.32, "probability": 0.1271 }, { "start": 2340.36, "end": 2344.32, "probability": 0.8369 }, { "start": 2344.48, "end": 2344.62, "probability": 0.8018 }, { "start": 2344.72, "end": 2346.87, "probability": 0.9895 }, { "start": 2347.56, "end": 2348.68, "probability": 0.5839 }, { "start": 2348.86, "end": 2349.6, "probability": 0.8219 }, { "start": 2350.2, "end": 2352.44, "probability": 0.5446 }, { "start": 2352.44, "end": 2352.44, "probability": 0.1539 }, { "start": 2352.44, "end": 2352.79, "probability": 0.5178 }, { "start": 2352.88, "end": 2354.02, "probability": 0.9927 }, { "start": 2354.08, "end": 2356.36, "probability": 0.9072 }, { "start": 2357.6, "end": 2361.66, "probability": 0.9303 }, { "start": 2362.2, "end": 2365.96, "probability": 0.6519 }, { "start": 2366.3, "end": 2368.98, "probability": 0.7644 }, { "start": 2369.06, "end": 2371.8, "probability": 0.8826 }, { "start": 2371.96, "end": 2372.92, "probability": 0.916 }, { "start": 2373.06, "end": 2375.28, "probability": 0.9885 }, { "start": 2375.68, "end": 2379.44, "probability": 0.9189 }, { "start": 2379.54, "end": 2379.58, "probability": 0.2607 }, { "start": 2379.58, "end": 2380.28, "probability": 0.5268 }, { "start": 2380.52, "end": 2382.6, "probability": 0.8527 }, { "start": 2382.88, "end": 2384.84, "probability": 0.8704 }, { "start": 2385.42, "end": 2387.64, "probability": 0.0472 }, { "start": 2387.64, "end": 2389.24, "probability": 0.4736 }, { "start": 2389.24, "end": 2390.92, "probability": 0.1527 }, { "start": 2392.96, "end": 2392.96, "probability": 0.0989 }, { "start": 2392.98, "end": 2397.0, "probability": 0.8838 }, { "start": 2397.0, "end": 2402.26, "probability": 0.9966 }, { "start": 2402.92, "end": 2404.58, "probability": 0.8127 }, { "start": 2405.22, "end": 2407.04, "probability": 0.8277 }, { "start": 2407.2, "end": 2408.72, "probability": 0.9714 }, { "start": 2409.22, "end": 2410.51, "probability": 0.8966 }, { "start": 2410.82, "end": 2414.32, "probability": 0.9934 }, { "start": 2414.66, "end": 2414.66, "probability": 0.0305 }, { "start": 2414.66, "end": 2420.98, "probability": 0.9765 }, { "start": 2421.12, "end": 2421.8, "probability": 0.0917 }, { "start": 2422.58, "end": 2425.98, "probability": 0.0337 }, { "start": 2425.98, "end": 2425.98, "probability": 0.1753 }, { "start": 2425.98, "end": 2426.2, "probability": 0.4825 }, { "start": 2426.24, "end": 2429.54, "probability": 0.5644 }, { "start": 2429.54, "end": 2430.65, "probability": 0.114 }, { "start": 2430.96, "end": 2431.39, "probability": 0.2977 }, { "start": 2432.02, "end": 2433.54, "probability": 0.6745 }, { "start": 2433.7, "end": 2435.24, "probability": 0.9484 }, { "start": 2435.38, "end": 2436.12, "probability": 0.0359 }, { "start": 2436.12, "end": 2437.0, "probability": 0.7964 }, { "start": 2437.18, "end": 2439.06, "probability": 0.4986 }, { "start": 2439.28, "end": 2443.26, "probability": 0.092 }, { "start": 2443.78, "end": 2445.46, "probability": 0.2603 }, { "start": 2447.94, "end": 2449.74, "probability": 0.2389 }, { "start": 2450.1, "end": 2450.92, "probability": 0.0663 }, { "start": 2450.98, "end": 2451.38, "probability": 0.1885 }, { "start": 2451.38, "end": 2451.38, "probability": 0.0834 }, { "start": 2451.4, "end": 2451.64, "probability": 0.1678 }, { "start": 2451.64, "end": 2452.04, "probability": 0.0548 }, { "start": 2452.04, "end": 2453.26, "probability": 0.1726 }, { "start": 2453.26, "end": 2455.9, "probability": 0.2778 }, { "start": 2457.02, "end": 2458.24, "probability": 0.3043 }, { "start": 2459.0, "end": 2459.38, "probability": 0.0292 }, { "start": 2459.38, "end": 2459.38, "probability": 0.1888 }, { "start": 2459.38, "end": 2459.38, "probability": 0.0614 }, { "start": 2459.38, "end": 2459.38, "probability": 0.0073 }, { "start": 2459.38, "end": 2462.9, "probability": 0.4094 }, { "start": 2476.4, "end": 2476.9, "probability": 0.048 }, { "start": 2476.9, "end": 2479.58, "probability": 0.0688 }, { "start": 2480.68, "end": 2480.68, "probability": 0.0722 }, { "start": 2480.68, "end": 2480.68, "probability": 0.0724 }, { "start": 2480.68, "end": 2480.68, "probability": 0.0477 }, { "start": 2480.68, "end": 2480.68, "probability": 0.2343 }, { "start": 2480.68, "end": 2482.05, "probability": 0.18 }, { "start": 2484.28, "end": 2486.72, "probability": 0.6427 }, { "start": 2487.38, "end": 2488.01, "probability": 0.729 }, { "start": 2488.48, "end": 2488.84, "probability": 0.5477 }, { "start": 2488.96, "end": 2492.4, "probability": 0.9729 }, { "start": 2492.76, "end": 2493.74, "probability": 0.5246 }, { "start": 2494.42, "end": 2495.25, "probability": 0.7503 }, { "start": 2495.54, "end": 2498.68, "probability": 0.7476 }, { "start": 2499.14, "end": 2499.86, "probability": 0.8003 }, { "start": 2500.4, "end": 2502.52, "probability": 0.7498 }, { "start": 2503.02, "end": 2505.02, "probability": 0.8354 }, { "start": 2505.36, "end": 2506.28, "probability": 0.9468 }, { "start": 2506.78, "end": 2508.68, "probability": 0.9927 }, { "start": 2509.34, "end": 2512.38, "probability": 0.5468 }, { "start": 2512.5, "end": 2515.36, "probability": 0.658 }, { "start": 2515.8, "end": 2516.7, "probability": 0.8099 }, { "start": 2517.02, "end": 2518.18, "probability": 0.695 }, { "start": 2519.41, "end": 2523.88, "probability": 0.76 }, { "start": 2524.0, "end": 2525.58, "probability": 0.934 }, { "start": 2526.34, "end": 2527.46, "probability": 0.7123 }, { "start": 2527.48, "end": 2532.06, "probability": 0.3006 }, { "start": 2532.06, "end": 2532.06, "probability": 0.02 }, { "start": 2532.06, "end": 2535.58, "probability": 0.8617 }, { "start": 2535.88, "end": 2536.49, "probability": 0.9672 }, { "start": 2536.6, "end": 2537.68, "probability": 0.9468 }, { "start": 2537.76, "end": 2538.3, "probability": 0.7249 }, { "start": 2538.34, "end": 2539.12, "probability": 0.8667 }, { "start": 2539.54, "end": 2541.08, "probability": 0.8975 }, { "start": 2542.43, "end": 2546.82, "probability": 0.425 }, { "start": 2547.58, "end": 2547.86, "probability": 0.0384 }, { "start": 2547.86, "end": 2547.86, "probability": 0.0269 }, { "start": 2547.86, "end": 2549.06, "probability": 0.5747 }, { "start": 2549.12, "end": 2549.7, "probability": 0.1415 }, { "start": 2549.7, "end": 2550.4, "probability": 0.436 }, { "start": 2550.52, "end": 2550.62, "probability": 0.4882 }, { "start": 2550.62, "end": 2551.33, "probability": 0.6973 }, { "start": 2551.44, "end": 2551.84, "probability": 0.3477 }, { "start": 2551.94, "end": 2553.4, "probability": 0.6708 }, { "start": 2553.64, "end": 2555.64, "probability": 0.8297 }, { "start": 2555.66, "end": 2559.76, "probability": 0.7818 }, { "start": 2559.8, "end": 2560.58, "probability": 0.4292 }, { "start": 2561.02, "end": 2562.76, "probability": 0.37 }, { "start": 2563.02, "end": 2564.96, "probability": 0.759 }, { "start": 2575.4, "end": 2577.68, "probability": 0.7369 }, { "start": 2578.48, "end": 2580.3, "probability": 0.1552 }, { "start": 2580.3, "end": 2580.3, "probability": 0.045 }, { "start": 2580.3, "end": 2580.3, "probability": 0.0539 }, { "start": 2580.3, "end": 2580.3, "probability": 0.0775 }, { "start": 2580.3, "end": 2580.48, "probability": 0.0475 }, { "start": 2580.76, "end": 2580.96, "probability": 0.5714 }, { "start": 2582.12, "end": 2583.12, "probability": 0.7984 }, { "start": 2583.18, "end": 2584.22, "probability": 0.5475 }, { "start": 2584.32, "end": 2586.21, "probability": 0.9399 }, { "start": 2586.42, "end": 2589.72, "probability": 0.8796 }, { "start": 2590.24, "end": 2591.82, "probability": 0.9579 }, { "start": 2591.96, "end": 2593.18, "probability": 0.9756 }, { "start": 2593.7, "end": 2596.32, "probability": 0.9427 }, { "start": 2596.88, "end": 2599.78, "probability": 0.8888 }, { "start": 2600.38, "end": 2601.56, "probability": 0.9882 }, { "start": 2601.58, "end": 2604.78, "probability": 0.9801 }, { "start": 2605.2, "end": 2606.78, "probability": 0.9909 }, { "start": 2606.92, "end": 2607.16, "probability": 0.7847 }, { "start": 2607.38, "end": 2608.42, "probability": 0.8948 }, { "start": 2609.2, "end": 2611.6, "probability": 0.8246 }, { "start": 2611.6, "end": 2614.12, "probability": 0.8646 }, { "start": 2614.52, "end": 2615.02, "probability": 0.1039 }, { "start": 2615.52, "end": 2616.84, "probability": 0.7221 }, { "start": 2616.96, "end": 2621.68, "probability": 0.9786 }, { "start": 2622.22, "end": 2624.32, "probability": 0.6652 }, { "start": 2624.88, "end": 2627.46, "probability": 0.0458 }, { "start": 2627.48, "end": 2631.86, "probability": 0.8949 }, { "start": 2632.02, "end": 2632.94, "probability": 0.8389 }, { "start": 2633.06, "end": 2634.4, "probability": 0.6129 }, { "start": 2634.92, "end": 2636.48, "probability": 0.7968 }, { "start": 2637.08, "end": 2640.68, "probability": 0.5053 }, { "start": 2641.16, "end": 2641.96, "probability": 0.9314 }, { "start": 2642.42, "end": 2643.06, "probability": 0.8275 }, { "start": 2643.18, "end": 2643.52, "probability": 0.695 }, { "start": 2644.16, "end": 2645.6, "probability": 0.9935 }, { "start": 2646.02, "end": 2647.94, "probability": 0.917 }, { "start": 2648.78, "end": 2650.12, "probability": 0.9757 }, { "start": 2650.84, "end": 2653.22, "probability": 0.9364 }, { "start": 2654.06, "end": 2655.38, "probability": 0.6137 }, { "start": 2655.72, "end": 2656.48, "probability": 0.8745 }, { "start": 2656.86, "end": 2662.0, "probability": 0.5386 }, { "start": 2662.56, "end": 2666.6, "probability": 0.9964 }, { "start": 2667.28, "end": 2670.12, "probability": 0.9354 }, { "start": 2670.18, "end": 2670.86, "probability": 0.8522 }, { "start": 2671.66, "end": 2672.2, "probability": 0.3073 }, { "start": 2672.32, "end": 2675.02, "probability": 0.9908 }, { "start": 2675.86, "end": 2677.02, "probability": 0.8188 }, { "start": 2677.18, "end": 2677.34, "probability": 0.8228 }, { "start": 2677.44, "end": 2677.68, "probability": 0.9031 }, { "start": 2677.74, "end": 2679.11, "probability": 0.9947 }, { "start": 2679.62, "end": 2680.9, "probability": 0.8545 }, { "start": 2681.4, "end": 2682.89, "probability": 0.7703 }, { "start": 2683.1, "end": 2684.54, "probability": 0.9718 }, { "start": 2684.8, "end": 2686.06, "probability": 0.6504 }, { "start": 2686.58, "end": 2688.6, "probability": 0.8806 }, { "start": 2689.4, "end": 2690.48, "probability": 0.941 }, { "start": 2690.88, "end": 2692.34, "probability": 0.8045 }, { "start": 2692.8, "end": 2698.14, "probability": 0.4798 }, { "start": 2698.98, "end": 2703.0, "probability": 0.6965 }, { "start": 2703.72, "end": 2705.72, "probability": 0.9367 }, { "start": 2705.8, "end": 2707.1, "probability": 0.9735 }, { "start": 2707.24, "end": 2710.16, "probability": 0.7514 }, { "start": 2710.8, "end": 2713.08, "probability": 0.9806 }, { "start": 2713.6, "end": 2716.02, "probability": 0.8489 }, { "start": 2716.3, "end": 2717.82, "probability": 0.9965 }, { "start": 2719.47, "end": 2721.24, "probability": 0.9952 }, { "start": 2721.96, "end": 2723.3, "probability": 0.684 }, { "start": 2723.66, "end": 2724.32, "probability": 0.9648 }, { "start": 2724.4, "end": 2726.31, "probability": 0.972 }, { "start": 2727.02, "end": 2729.74, "probability": 0.9567 }, { "start": 2730.4, "end": 2731.36, "probability": 0.9092 }, { "start": 2731.86, "end": 2733.12, "probability": 0.9306 }, { "start": 2733.4, "end": 2734.08, "probability": 0.8652 }, { "start": 2734.22, "end": 2738.48, "probability": 0.9887 }, { "start": 2738.9, "end": 2741.04, "probability": 0.9932 }, { "start": 2741.8, "end": 2742.48, "probability": 0.4347 }, { "start": 2742.68, "end": 2743.06, "probability": 0.9538 }, { "start": 2743.16, "end": 2744.56, "probability": 0.9609 }, { "start": 2744.7, "end": 2745.58, "probability": 0.9205 }, { "start": 2745.66, "end": 2747.4, "probability": 0.9814 }, { "start": 2747.94, "end": 2750.54, "probability": 0.9023 }, { "start": 2750.64, "end": 2754.38, "probability": 0.9969 }, { "start": 2754.74, "end": 2757.72, "probability": 0.9326 }, { "start": 2758.28, "end": 2761.58, "probability": 0.911 }, { "start": 2762.6, "end": 2765.34, "probability": 0.9159 }, { "start": 2766.48, "end": 2768.34, "probability": 0.9703 }, { "start": 2769.42, "end": 2770.56, "probability": 0.1137 }, { "start": 2771.06, "end": 2771.84, "probability": 0.5706 }, { "start": 2772.18, "end": 2773.68, "probability": 0.7731 }, { "start": 2774.86, "end": 2775.06, "probability": 0.8221 }, { "start": 2781.1, "end": 2782.32, "probability": 0.6338 }, { "start": 2782.42, "end": 2783.04, "probability": 0.5992 }, { "start": 2783.16, "end": 2783.7, "probability": 0.7745 }, { "start": 2784.55, "end": 2786.41, "probability": 0.9766 }, { "start": 2787.36, "end": 2788.86, "probability": 0.5105 }, { "start": 2788.9, "end": 2789.74, "probability": 0.9365 }, { "start": 2790.5, "end": 2795.24, "probability": 0.9628 }, { "start": 2795.24, "end": 2799.2, "probability": 0.9857 }, { "start": 2799.26, "end": 2802.56, "probability": 0.8654 }, { "start": 2803.24, "end": 2804.22, "probability": 0.5457 }, { "start": 2804.38, "end": 2805.36, "probability": 0.5796 }, { "start": 2805.44, "end": 2806.14, "probability": 0.3338 }, { "start": 2806.34, "end": 2807.22, "probability": 0.8513 }, { "start": 2807.54, "end": 2808.18, "probability": 0.7252 }, { "start": 2808.24, "end": 2808.94, "probability": 0.8199 }, { "start": 2809.16, "end": 2810.84, "probability": 0.9629 }, { "start": 2811.54, "end": 2812.22, "probability": 0.6595 }, { "start": 2812.94, "end": 2815.08, "probability": 0.4248 }, { "start": 2815.9, "end": 2817.72, "probability": 0.8391 }, { "start": 2818.3, "end": 2820.58, "probability": 0.9943 }, { "start": 2820.7, "end": 2823.54, "probability": 0.9688 }, { "start": 2824.02, "end": 2825.56, "probability": 0.9869 }, { "start": 2826.88, "end": 2828.74, "probability": 0.9762 }, { "start": 2829.4, "end": 2831.46, "probability": 0.7153 }, { "start": 2832.46, "end": 2833.52, "probability": 0.8074 }, { "start": 2833.56, "end": 2834.14, "probability": 0.5234 }, { "start": 2834.34, "end": 2834.96, "probability": 0.8012 }, { "start": 2835.12, "end": 2835.56, "probability": 0.6166 }, { "start": 2835.6, "end": 2836.52, "probability": 0.8913 }, { "start": 2836.94, "end": 2838.08, "probability": 0.8879 }, { "start": 2838.86, "end": 2842.18, "probability": 0.9608 }, { "start": 2842.18, "end": 2845.42, "probability": 0.9711 }, { "start": 2846.08, "end": 2848.06, "probability": 0.6154 }, { "start": 2848.2, "end": 2848.78, "probability": 0.6557 }, { "start": 2849.32, "end": 2851.3, "probability": 0.9266 }, { "start": 2851.3, "end": 2854.21, "probability": 0.9855 }, { "start": 2854.8, "end": 2856.96, "probability": 0.9969 }, { "start": 2857.16, "end": 2857.78, "probability": 0.7159 }, { "start": 2859.13, "end": 2861.32, "probability": 0.9727 }, { "start": 2861.54, "end": 2863.98, "probability": 0.6541 }, { "start": 2864.85, "end": 2865.1, "probability": 0.4999 }, { "start": 2865.1, "end": 2866.76, "probability": 0.7949 }, { "start": 2866.82, "end": 2867.7, "probability": 0.4685 }, { "start": 2867.92, "end": 2869.82, "probability": 0.9813 }, { "start": 2869.88, "end": 2871.2, "probability": 0.9521 }, { "start": 2871.88, "end": 2875.68, "probability": 0.77 }, { "start": 2876.56, "end": 2880.1, "probability": 0.9363 }, { "start": 2880.52, "end": 2883.62, "probability": 0.8333 }, { "start": 2884.14, "end": 2888.68, "probability": 0.9112 }, { "start": 2889.26, "end": 2892.72, "probability": 0.9892 }, { "start": 2892.84, "end": 2893.56, "probability": 0.9238 }, { "start": 2893.78, "end": 2894.68, "probability": 0.8379 }, { "start": 2894.74, "end": 2895.8, "probability": 0.9253 }, { "start": 2895.86, "end": 2896.76, "probability": 0.8381 }, { "start": 2897.38, "end": 2898.44, "probability": 0.9861 }, { "start": 2898.64, "end": 2899.1, "probability": 0.808 }, { "start": 2899.16, "end": 2899.42, "probability": 0.787 }, { "start": 2899.82, "end": 2900.6, "probability": 0.9614 }, { "start": 2901.56, "end": 2902.64, "probability": 0.7928 }, { "start": 2902.76, "end": 2903.16, "probability": 0.8703 }, { "start": 2903.34, "end": 2909.32, "probability": 0.9973 }, { "start": 2910.14, "end": 2911.58, "probability": 0.974 }, { "start": 2911.82, "end": 2914.44, "probability": 0.725 }, { "start": 2915.18, "end": 2916.9, "probability": 0.5909 }, { "start": 2917.12, "end": 2920.06, "probability": 0.6427 }, { "start": 2921.06, "end": 2924.5, "probability": 0.5461 }, { "start": 2925.68, "end": 2928.53, "probability": 0.9968 }, { "start": 2928.58, "end": 2933.18, "probability": 0.8977 }, { "start": 2933.72, "end": 2936.9, "probability": 0.8336 }, { "start": 2937.94, "end": 2941.5, "probability": 0.8765 }, { "start": 2942.36, "end": 2945.14, "probability": 0.9786 }, { "start": 2945.92, "end": 2952.9, "probability": 0.9876 }, { "start": 2953.78, "end": 2954.56, "probability": 0.9879 }, { "start": 2955.14, "end": 2960.34, "probability": 0.9949 }, { "start": 2961.08, "end": 2963.5, "probability": 0.6842 }, { "start": 2964.2, "end": 2967.52, "probability": 0.9939 }, { "start": 2967.7, "end": 2972.96, "probability": 0.8718 }, { "start": 2973.1, "end": 2974.74, "probability": 0.9219 }, { "start": 2975.56, "end": 2976.36, "probability": 0.9069 }, { "start": 2977.8, "end": 2979.06, "probability": 0.5817 }, { "start": 2979.55, "end": 2982.02, "probability": 0.8965 }, { "start": 2982.08, "end": 2985.0, "probability": 0.8101 }, { "start": 2987.64, "end": 2991.3, "probability": 0.9853 }, { "start": 2991.54, "end": 2993.94, "probability": 0.0892 }, { "start": 2994.12, "end": 2997.8, "probability": 0.0083 }, { "start": 2998.1, "end": 2999.6, "probability": 0.895 }, { "start": 3000.42, "end": 3002.84, "probability": 0.0828 }, { "start": 3002.84, "end": 3003.93, "probability": 0.5588 }, { "start": 3004.16, "end": 3005.75, "probability": 0.8823 }, { "start": 3006.58, "end": 3011.52, "probability": 0.9245 }, { "start": 3011.62, "end": 3013.42, "probability": 0.9719 }, { "start": 3013.84, "end": 3017.76, "probability": 0.7236 }, { "start": 3017.98, "end": 3022.54, "probability": 0.7838 }, { "start": 3022.8, "end": 3023.5, "probability": 0.5408 }, { "start": 3024.8, "end": 3025.3, "probability": 0.7173 }, { "start": 3025.42, "end": 3026.86, "probability": 0.9315 }, { "start": 3026.96, "end": 3029.32, "probability": 0.9808 }, { "start": 3029.48, "end": 3034.3, "probability": 0.8318 }, { "start": 3034.84, "end": 3036.26, "probability": 0.8343 }, { "start": 3036.52, "end": 3038.68, "probability": 0.9438 }, { "start": 3039.6, "end": 3041.84, "probability": 0.8612 }, { "start": 3042.16, "end": 3042.58, "probability": 0.731 }, { "start": 3042.68, "end": 3049.74, "probability": 0.9908 }, { "start": 3050.0, "end": 3051.36, "probability": 0.8387 }, { "start": 3052.28, "end": 3053.06, "probability": 0.859 }, { "start": 3053.76, "end": 3055.48, "probability": 0.8158 }, { "start": 3056.08, "end": 3056.4, "probability": 0.9746 }, { "start": 3056.42, "end": 3059.73, "probability": 0.6911 }, { "start": 3061.54, "end": 3065.74, "probability": 0.9994 }, { "start": 3066.88, "end": 3069.66, "probability": 0.8885 }, { "start": 3070.5, "end": 3071.74, "probability": 0.5202 }, { "start": 3072.38, "end": 3076.9, "probability": 0.939 }, { "start": 3077.5, "end": 3080.37, "probability": 0.9937 }, { "start": 3081.6, "end": 3085.22, "probability": 0.4071 }, { "start": 3086.24, "end": 3087.9, "probability": 0.7579 }, { "start": 3087.94, "end": 3089.93, "probability": 0.9696 }, { "start": 3091.1, "end": 3094.48, "probability": 0.7713 }, { "start": 3094.48, "end": 3096.76, "probability": 0.985 }, { "start": 3097.86, "end": 3099.36, "probability": 0.9916 }, { "start": 3100.3, "end": 3102.22, "probability": 0.6967 }, { "start": 3102.28, "end": 3107.88, "probability": 0.8245 }, { "start": 3109.02, "end": 3117.18, "probability": 0.9688 }, { "start": 3117.44, "end": 3120.16, "probability": 0.473 }, { "start": 3120.34, "end": 3121.64, "probability": 0.8036 }, { "start": 3122.06, "end": 3125.42, "probability": 0.9686 }, { "start": 3126.0, "end": 3131.3, "probability": 0.9487 }, { "start": 3131.84, "end": 3135.46, "probability": 0.337 }, { "start": 3136.02, "end": 3136.58, "probability": 0.3104 }, { "start": 3137.2, "end": 3137.96, "probability": 0.8581 }, { "start": 3138.1, "end": 3139.13, "probability": 0.9824 }, { "start": 3139.34, "end": 3140.84, "probability": 0.9817 }, { "start": 3141.18, "end": 3143.33, "probability": 0.6668 }, { "start": 3143.8, "end": 3143.8, "probability": 0.4671 }, { "start": 3144.5, "end": 3145.16, "probability": 0.7135 }, { "start": 3145.4, "end": 3145.76, "probability": 0.9179 }, { "start": 3147.38, "end": 3147.7, "probability": 0.861 }, { "start": 3147.74, "end": 3148.12, "probability": 0.9032 }, { "start": 3148.26, "end": 3148.5, "probability": 0.8155 }, { "start": 3148.56, "end": 3151.3, "probability": 0.9802 }, { "start": 3151.3, "end": 3152.8, "probability": 0.8271 }, { "start": 3153.16, "end": 3153.28, "probability": 0.6953 }, { "start": 3154.8, "end": 3156.16, "probability": 0.8739 }, { "start": 3157.48, "end": 3160.17, "probability": 0.8301 }, { "start": 3161.08, "end": 3161.9, "probability": 0.5191 }, { "start": 3161.94, "end": 3163.66, "probability": 0.7637 }, { "start": 3163.72, "end": 3167.38, "probability": 0.2121 }, { "start": 3167.4, "end": 3168.21, "probability": 0.8088 }, { "start": 3168.56, "end": 3169.12, "probability": 0.3594 }, { "start": 3169.28, "end": 3170.66, "probability": 0.7188 }, { "start": 3171.04, "end": 3171.55, "probability": 0.5202 }, { "start": 3171.72, "end": 3172.46, "probability": 0.6622 }, { "start": 3172.5, "end": 3172.98, "probability": 0.8634 }, { "start": 3173.7, "end": 3176.06, "probability": 0.968 }, { "start": 3176.18, "end": 3177.34, "probability": 0.8611 }, { "start": 3177.36, "end": 3180.98, "probability": 0.9377 }, { "start": 3181.53, "end": 3183.7, "probability": 0.6541 }, { "start": 3184.4, "end": 3186.42, "probability": 0.8184 }, { "start": 3186.5, "end": 3190.56, "probability": 0.6983 }, { "start": 3190.72, "end": 3190.72, "probability": 0.5854 }, { "start": 3190.72, "end": 3190.72, "probability": 0.3263 }, { "start": 3190.72, "end": 3191.12, "probability": 0.8272 }, { "start": 3191.2, "end": 3196.46, "probability": 0.0423 }, { "start": 3196.48, "end": 3198.0, "probability": 0.9686 }, { "start": 3198.16, "end": 3199.18, "probability": 0.9329 }, { "start": 3199.4, "end": 3200.46, "probability": 0.978 }, { "start": 3201.18, "end": 3204.12, "probability": 0.9448 }, { "start": 3204.54, "end": 3205.87, "probability": 0.7661 }, { "start": 3205.96, "end": 3208.8, "probability": 0.862 }, { "start": 3208.8, "end": 3210.28, "probability": 0.9708 }, { "start": 3211.1, "end": 3212.22, "probability": 0.9775 }, { "start": 3212.56, "end": 3212.68, "probability": 0.7979 }, { "start": 3213.0, "end": 3213.79, "probability": 0.8699 }, { "start": 3214.04, "end": 3216.44, "probability": 0.98 }, { "start": 3217.18, "end": 3218.96, "probability": 0.9662 }, { "start": 3219.46, "end": 3222.12, "probability": 0.5635 }, { "start": 3222.44, "end": 3223.2, "probability": 0.5916 }, { "start": 3223.28, "end": 3223.66, "probability": 0.7018 }, { "start": 3223.88, "end": 3226.34, "probability": 0.8121 }, { "start": 3227.1, "end": 3229.46, "probability": 0.8903 }, { "start": 3229.46, "end": 3233.64, "probability": 0.9889 }, { "start": 3234.16, "end": 3235.36, "probability": 0.8716 }, { "start": 3235.48, "end": 3237.92, "probability": 0.9921 }, { "start": 3237.92, "end": 3239.9, "probability": 0.9894 }, { "start": 3240.98, "end": 3241.96, "probability": 0.769 }, { "start": 3242.14, "end": 3243.96, "probability": 0.8048 }, { "start": 3243.98, "end": 3245.85, "probability": 0.9976 }, { "start": 3245.94, "end": 3246.24, "probability": 0.7782 }, { "start": 3246.3, "end": 3248.36, "probability": 0.8686 }, { "start": 3249.48, "end": 3250.72, "probability": 0.7587 }, { "start": 3251.02, "end": 3251.24, "probability": 0.7163 }, { "start": 3253.44, "end": 3254.34, "probability": 0.989 }, { "start": 3257.92, "end": 3258.52, "probability": 0.9214 }, { "start": 3259.46, "end": 3261.6, "probability": 0.8568 }, { "start": 3262.46, "end": 3266.1, "probability": 0.8523 }, { "start": 3273.98, "end": 3275.78, "probability": 0.7593 }, { "start": 3278.42, "end": 3284.44, "probability": 0.8983 }, { "start": 3284.54, "end": 3287.66, "probability": 0.998 }, { "start": 3288.38, "end": 3289.04, "probability": 0.9874 }, { "start": 3290.24, "end": 3291.7, "probability": 0.9048 }, { "start": 3292.44, "end": 3297.46, "probability": 0.9405 }, { "start": 3298.48, "end": 3300.94, "probability": 0.8666 }, { "start": 3301.06, "end": 3301.4, "probability": 0.8754 }, { "start": 3301.82, "end": 3303.44, "probability": 0.9926 }, { "start": 3304.56, "end": 3306.04, "probability": 0.9805 }, { "start": 3306.62, "end": 3307.74, "probability": 0.7672 }, { "start": 3309.76, "end": 3309.86, "probability": 0.47 }, { "start": 3310.64, "end": 3312.01, "probability": 0.9902 }, { "start": 3313.38, "end": 3314.5, "probability": 0.876 }, { "start": 3315.16, "end": 3315.83, "probability": 0.9678 }, { "start": 3316.98, "end": 3322.38, "probability": 0.9152 }, { "start": 3322.58, "end": 3322.72, "probability": 0.3923 }, { "start": 3322.84, "end": 3324.14, "probability": 0.9624 }, { "start": 3324.18, "end": 3324.28, "probability": 0.465 }, { "start": 3325.22, "end": 3326.92, "probability": 0.9681 }, { "start": 3327.64, "end": 3328.98, "probability": 0.7383 }, { "start": 3329.38, "end": 3329.82, "probability": 0.3413 }, { "start": 3329.96, "end": 3335.18, "probability": 0.7504 }, { "start": 3335.28, "end": 3335.98, "probability": 0.6669 }, { "start": 3336.16, "end": 3337.74, "probability": 0.9605 }, { "start": 3338.64, "end": 3342.68, "probability": 0.9558 }, { "start": 3343.5, "end": 3347.54, "probability": 0.9531 }, { "start": 3348.08, "end": 3353.38, "probability": 0.9849 }, { "start": 3353.8, "end": 3356.32, "probability": 0.8021 }, { "start": 3356.88, "end": 3357.64, "probability": 0.7952 }, { "start": 3358.66, "end": 3360.92, "probability": 0.9971 }, { "start": 3361.0, "end": 3363.58, "probability": 0.9973 }, { "start": 3363.62, "end": 3366.16, "probability": 0.658 }, { "start": 3366.16, "end": 3367.72, "probability": 0.4851 }, { "start": 3367.76, "end": 3368.86, "probability": 0.8525 }, { "start": 3369.04, "end": 3369.28, "probability": 0.1608 }, { "start": 3369.48, "end": 3371.74, "probability": 0.6528 }, { "start": 3372.24, "end": 3375.98, "probability": 0.9804 }, { "start": 3376.68, "end": 3378.6, "probability": 0.6273 }, { "start": 3380.42, "end": 3383.06, "probability": 0.2266 }, { "start": 3389.64, "end": 3390.96, "probability": 0.3843 }, { "start": 3390.96, "end": 3392.04, "probability": 0.0561 }, { "start": 3392.04, "end": 3392.04, "probability": 0.0272 }, { "start": 3392.04, "end": 3392.04, "probability": 0.0626 }, { "start": 3392.04, "end": 3392.04, "probability": 0.1068 }, { "start": 3392.04, "end": 3392.04, "probability": 0.1364 }, { "start": 3392.04, "end": 3395.87, "probability": 0.4039 }, { "start": 3396.38, "end": 3399.06, "probability": 0.6494 }, { "start": 3399.28, "end": 3400.52, "probability": 0.9471 }, { "start": 3400.58, "end": 3401.54, "probability": 0.9988 }, { "start": 3402.62, "end": 3406.42, "probability": 0.9311 }, { "start": 3406.98, "end": 3407.8, "probability": 0.9326 }, { "start": 3407.9, "end": 3408.92, "probability": 0.9902 }, { "start": 3408.96, "end": 3410.26, "probability": 0.9453 }, { "start": 3410.8, "end": 3413.22, "probability": 0.9098 }, { "start": 3413.78, "end": 3416.9, "probability": 0.9989 }, { "start": 3416.9, "end": 3420.46, "probability": 0.7608 }, { "start": 3421.06, "end": 3422.16, "probability": 0.8611 }, { "start": 3422.92, "end": 3426.08, "probability": 0.9958 }, { "start": 3426.08, "end": 3431.12, "probability": 0.9988 }, { "start": 3431.64, "end": 3434.44, "probability": 0.9937 }, { "start": 3435.18, "end": 3435.66, "probability": 0.5051 }, { "start": 3436.22, "end": 3440.62, "probability": 0.9844 }, { "start": 3441.34, "end": 3443.8, "probability": 0.8652 }, { "start": 3444.36, "end": 3445.86, "probability": 0.8817 }, { "start": 3446.14, "end": 3446.72, "probability": 0.782 }, { "start": 3446.96, "end": 3449.76, "probability": 0.9181 }, { "start": 3449.9, "end": 3450.8, "probability": 0.8242 }, { "start": 3450.96, "end": 3452.72, "probability": 0.9775 }, { "start": 3454.2, "end": 3458.14, "probability": 0.303 }, { "start": 3458.14, "end": 3458.72, "probability": 0.3916 }, { "start": 3458.84, "end": 3460.28, "probability": 0.88 }, { "start": 3460.4, "end": 3461.17, "probability": 0.9958 }, { "start": 3462.37, "end": 3467.74, "probability": 0.9991 }, { "start": 3467.92, "end": 3468.45, "probability": 0.8652 }, { "start": 3469.44, "end": 3470.34, "probability": 0.4702 }, { "start": 3470.44, "end": 3472.9, "probability": 0.7249 }, { "start": 3472.96, "end": 3473.52, "probability": 0.5451 }, { "start": 3473.88, "end": 3475.82, "probability": 0.9565 }, { "start": 3475.82, "end": 3475.92, "probability": 0.5972 }, { "start": 3476.06, "end": 3476.44, "probability": 0.8307 }, { "start": 3476.78, "end": 3476.92, "probability": 0.8573 }, { "start": 3476.98, "end": 3478.54, "probability": 0.79 }, { "start": 3479.28, "end": 3481.98, "probability": 0.9858 }, { "start": 3482.78, "end": 3485.74, "probability": 0.8767 }, { "start": 3486.3, "end": 3486.4, "probability": 0.2618 }, { "start": 3487.02, "end": 3488.66, "probability": 0.2761 }, { "start": 3490.0, "end": 3494.4, "probability": 0.0562 }, { "start": 3494.94, "end": 3495.06, "probability": 0.4338 }, { "start": 3495.33, "end": 3497.44, "probability": 0.0985 }, { "start": 3498.32, "end": 3499.32, "probability": 0.5167 }, { "start": 3499.52, "end": 3502.38, "probability": 0.9944 }, { "start": 3502.68, "end": 3505.46, "probability": 0.6448 }, { "start": 3506.06, "end": 3506.92, "probability": 0.8647 }, { "start": 3507.56, "end": 3508.24, "probability": 0.3243 }, { "start": 3508.68, "end": 3509.34, "probability": 0.7136 }, { "start": 3509.82, "end": 3513.66, "probability": 0.8728 }, { "start": 3514.02, "end": 3515.62, "probability": 0.4957 }, { "start": 3516.75, "end": 3520.8, "probability": 0.9895 }, { "start": 3520.8, "end": 3526.0, "probability": 0.9424 }, { "start": 3526.4, "end": 3528.46, "probability": 0.9082 }, { "start": 3528.86, "end": 3530.92, "probability": 0.7145 }, { "start": 3531.84, "end": 3534.56, "probability": 0.9584 }, { "start": 3534.74, "end": 3537.64, "probability": 0.9783 }, { "start": 3538.7, "end": 3539.16, "probability": 0.6665 }, { "start": 3539.26, "end": 3539.78, "probability": 0.8091 }, { "start": 3539.84, "end": 3541.12, "probability": 0.9919 }, { "start": 3541.32, "end": 3545.12, "probability": 0.8598 }, { "start": 3545.72, "end": 3551.44, "probability": 0.9949 }, { "start": 3552.04, "end": 3554.04, "probability": 0.9971 }, { "start": 3555.1, "end": 3558.76, "probability": 0.9973 }, { "start": 3558.9, "end": 3560.06, "probability": 0.8037 }, { "start": 3560.2, "end": 3565.88, "probability": 0.9661 }, { "start": 3566.3, "end": 3569.38, "probability": 0.9749 }, { "start": 3570.02, "end": 3570.6, "probability": 0.9175 }, { "start": 3571.58, "end": 3574.24, "probability": 0.9278 }, { "start": 3575.0, "end": 3579.46, "probability": 0.9889 }, { "start": 3580.52, "end": 3584.44, "probability": 0.9732 }, { "start": 3584.96, "end": 3587.06, "probability": 0.9039 }, { "start": 3588.05, "end": 3590.36, "probability": 0.8398 }, { "start": 3590.78, "end": 3594.1, "probability": 0.9722 }, { "start": 3594.78, "end": 3598.04, "probability": 0.9991 }, { "start": 3598.5, "end": 3599.4, "probability": 0.8005 }, { "start": 3599.8, "end": 3601.36, "probability": 0.6426 }, { "start": 3601.96, "end": 3602.5, "probability": 0.7812 }, { "start": 3602.74, "end": 3604.82, "probability": 0.9473 }, { "start": 3605.64, "end": 3613.32, "probability": 0.9928 }, { "start": 3615.05, "end": 3619.58, "probability": 0.9912 }, { "start": 3619.68, "end": 3620.64, "probability": 0.9822 }, { "start": 3621.12, "end": 3622.56, "probability": 0.6479 }, { "start": 3623.12, "end": 3626.18, "probability": 0.8416 }, { "start": 3626.56, "end": 3628.67, "probability": 0.9478 }, { "start": 3629.96, "end": 3631.54, "probability": 0.9303 }, { "start": 3631.56, "end": 3632.54, "probability": 0.7001 }, { "start": 3633.1, "end": 3639.14, "probability": 0.5541 }, { "start": 3639.56, "end": 3644.06, "probability": 0.9944 }, { "start": 3644.66, "end": 3645.86, "probability": 0.8799 }, { "start": 3646.98, "end": 3650.6, "probability": 0.9445 }, { "start": 3651.56, "end": 3654.8, "probability": 0.8018 }, { "start": 3655.38, "end": 3660.86, "probability": 0.9427 }, { "start": 3661.2, "end": 3663.94, "probability": 0.9883 }, { "start": 3664.58, "end": 3669.82, "probability": 0.8675 }, { "start": 3670.3, "end": 3671.62, "probability": 0.998 }, { "start": 3671.9, "end": 3675.25, "probability": 0.9946 }, { "start": 3675.86, "end": 3678.96, "probability": 0.9998 }, { "start": 3679.42, "end": 3679.8, "probability": 0.6226 }, { "start": 3680.14, "end": 3682.18, "probability": 0.6795 }, { "start": 3682.38, "end": 3683.5, "probability": 0.8585 }, { "start": 3683.6, "end": 3685.06, "probability": 0.9421 }, { "start": 3685.8, "end": 3687.14, "probability": 0.9964 }, { "start": 3688.76, "end": 3690.98, "probability": 0.9849 }, { "start": 3691.08, "end": 3692.5, "probability": 0.9671 }, { "start": 3692.94, "end": 3694.1, "probability": 0.9802 }, { "start": 3694.3, "end": 3696.26, "probability": 0.7764 }, { "start": 3696.74, "end": 3699.12, "probability": 0.9669 }, { "start": 3699.26, "end": 3701.08, "probability": 0.9932 }, { "start": 3701.7, "end": 3705.72, "probability": 0.9956 }, { "start": 3706.24, "end": 3706.68, "probability": 0.6852 }, { "start": 3706.9, "end": 3710.44, "probability": 0.9875 }, { "start": 3711.06, "end": 3714.36, "probability": 0.8917 }, { "start": 3714.78, "end": 3717.86, "probability": 0.9938 }, { "start": 3718.1, "end": 3720.28, "probability": 0.9591 }, { "start": 3720.9, "end": 3722.78, "probability": 0.9796 }, { "start": 3723.26, "end": 3728.76, "probability": 0.9013 }, { "start": 3729.12, "end": 3729.78, "probability": 0.8969 }, { "start": 3730.08, "end": 3730.66, "probability": 0.9807 }, { "start": 3731.12, "end": 3732.0, "probability": 0.9719 }, { "start": 3732.48, "end": 3733.44, "probability": 0.9301 }, { "start": 3733.7, "end": 3734.2, "probability": 0.885 }, { "start": 3734.28, "end": 3734.9, "probability": 0.8212 }, { "start": 3735.16, "end": 3738.3, "probability": 0.9893 }, { "start": 3738.88, "end": 3744.22, "probability": 0.9625 }, { "start": 3745.28, "end": 3748.76, "probability": 0.5928 }, { "start": 3749.59, "end": 3752.04, "probability": 0.4623 }, { "start": 3752.14, "end": 3752.14, "probability": 0.559 }, { "start": 3752.28, "end": 3757.88, "probability": 0.8347 }, { "start": 3757.96, "end": 3758.56, "probability": 0.5679 }, { "start": 3759.3, "end": 3762.94, "probability": 0.9918 }, { "start": 3763.4, "end": 3764.62, "probability": 0.7703 }, { "start": 3765.44, "end": 3767.4, "probability": 0.0725 }, { "start": 3767.7, "end": 3767.92, "probability": 0.0087 }, { "start": 3767.92, "end": 3769.1, "probability": 0.6311 }, { "start": 3769.18, "end": 3769.18, "probability": 0.3789 }, { "start": 3769.18, "end": 3773.08, "probability": 0.8486 }, { "start": 3774.31, "end": 3779.66, "probability": 0.9224 }, { "start": 3780.18, "end": 3781.95, "probability": 0.5283 }, { "start": 3782.83, "end": 3786.78, "probability": 0.9917 }, { "start": 3787.48, "end": 3790.38, "probability": 0.9159 }, { "start": 3790.4, "end": 3791.26, "probability": 0.9958 }, { "start": 3792.54, "end": 3793.12, "probability": 0.9823 }, { "start": 3793.7, "end": 3798.08, "probability": 0.5916 }, { "start": 3799.76, "end": 3803.64, "probability": 0.8394 }, { "start": 3804.18, "end": 3804.18, "probability": 0.1797 }, { "start": 3804.18, "end": 3804.49, "probability": 0.4537 }, { "start": 3804.84, "end": 3805.74, "probability": 0.8383 }, { "start": 3805.74, "end": 3805.91, "probability": 0.4175 }, { "start": 3806.7, "end": 3808.56, "probability": 0.0685 }, { "start": 3808.58, "end": 3808.58, "probability": 0.2 }, { "start": 3808.76, "end": 3810.51, "probability": 0.9438 }, { "start": 3810.68, "end": 3811.71, "probability": 0.6858 }, { "start": 3811.82, "end": 3812.95, "probability": 0.73 }, { "start": 3814.04, "end": 3817.32, "probability": 0.9196 }, { "start": 3817.96, "end": 3830.04, "probability": 0.9188 }, { "start": 3830.16, "end": 3830.16, "probability": 0.1344 }, { "start": 3830.18, "end": 3832.66, "probability": 0.9873 }, { "start": 3833.96, "end": 3834.6, "probability": 0.665 }, { "start": 3835.08, "end": 3836.34, "probability": 0.5421 }, { "start": 3836.42, "end": 3840.36, "probability": 0.7618 }, { "start": 3841.24, "end": 3841.38, "probability": 0.4355 }, { "start": 3842.26, "end": 3844.38, "probability": 0.7366 }, { "start": 3844.58, "end": 3845.77, "probability": 0.7754 }, { "start": 3846.7, "end": 3847.58, "probability": 0.7548 }, { "start": 3848.2, "end": 3849.4, "probability": 0.9753 }, { "start": 3849.8, "end": 3852.58, "probability": 0.9948 }, { "start": 3852.58, "end": 3854.4, "probability": 0.901 }, { "start": 3854.42, "end": 3857.34, "probability": 0.9762 }, { "start": 3857.88, "end": 3861.54, "probability": 0.5306 }, { "start": 3861.9, "end": 3864.32, "probability": 0.7052 }, { "start": 3865.12, "end": 3865.82, "probability": 0.5867 }, { "start": 3867.1, "end": 3870.0, "probability": 0.9019 }, { "start": 3871.8, "end": 3874.56, "probability": 0.9369 }, { "start": 3875.16, "end": 3875.42, "probability": 0.4848 }, { "start": 3876.56, "end": 3878.34, "probability": 0.4287 }, { "start": 3879.34, "end": 3881.78, "probability": 0.7677 }, { "start": 3881.78, "end": 3886.54, "probability": 0.9614 }, { "start": 3886.62, "end": 3888.39, "probability": 0.6064 }, { "start": 3889.08, "end": 3894.06, "probability": 0.8656 }, { "start": 3894.62, "end": 3897.1, "probability": 0.8413 }, { "start": 3897.42, "end": 3898.4, "probability": 0.8866 }, { "start": 3899.18, "end": 3905.68, "probability": 0.6974 }, { "start": 3905.76, "end": 3906.62, "probability": 0.927 }, { "start": 3906.86, "end": 3908.34, "probability": 0.7616 }, { "start": 3908.36, "end": 3909.04, "probability": 0.8695 }, { "start": 3909.12, "end": 3912.0, "probability": 0.9943 }, { "start": 3912.66, "end": 3916.2, "probability": 0.967 }, { "start": 3916.84, "end": 3918.58, "probability": 0.9963 }, { "start": 3918.88, "end": 3920.56, "probability": 0.9816 }, { "start": 3920.88, "end": 3924.22, "probability": 0.7468 }, { "start": 3924.9, "end": 3928.84, "probability": 0.9172 }, { "start": 3930.72, "end": 3931.96, "probability": 0.8443 }, { "start": 3932.82, "end": 3934.72, "probability": 0.7664 }, { "start": 3934.78, "end": 3936.7, "probability": 0.9469 }, { "start": 3937.5, "end": 3939.52, "probability": 0.9041 }, { "start": 3939.8, "end": 3942.64, "probability": 0.6083 }, { "start": 3943.22, "end": 3944.94, "probability": 0.7617 }, { "start": 3945.04, "end": 3945.98, "probability": 0.6395 }, { "start": 3946.1, "end": 3948.19, "probability": 0.4442 }, { "start": 3949.16, "end": 3951.42, "probability": 0.5816 }, { "start": 3952.5, "end": 3957.82, "probability": 0.9956 }, { "start": 3958.48, "end": 3959.7, "probability": 0.8052 }, { "start": 3959.7, "end": 3962.75, "probability": 0.1867 }, { "start": 3965.0, "end": 3965.46, "probability": 0.0079 }, { "start": 3965.46, "end": 3965.88, "probability": 0.0215 }, { "start": 3965.88, "end": 3966.09, "probability": 0.5292 }, { "start": 3966.58, "end": 3969.76, "probability": 0.6702 }, { "start": 3969.84, "end": 3970.04, "probability": 0.6571 }, { "start": 3970.1, "end": 3971.1, "probability": 0.9263 }, { "start": 3971.18, "end": 3972.06, "probability": 0.8047 }, { "start": 3972.06, "end": 3972.36, "probability": 0.2603 }, { "start": 3972.38, "end": 3973.9, "probability": 0.5199 }, { "start": 3973.9, "end": 3976.7, "probability": 0.7242 }, { "start": 3976.8, "end": 3977.94, "probability": 0.6587 }, { "start": 3977.94, "end": 3979.98, "probability": 0.7762 }, { "start": 3983.36, "end": 3984.2, "probability": 0.7057 }, { "start": 3987.48, "end": 3989.76, "probability": 0.3539 }, { "start": 3995.76, "end": 3997.56, "probability": 0.793 }, { "start": 3998.38, "end": 4004.32, "probability": 0.9922 }, { "start": 4005.36, "end": 4007.2, "probability": 0.9638 }, { "start": 4007.28, "end": 4009.9, "probability": 0.9902 }, { "start": 4010.46, "end": 4011.2, "probability": 0.8152 }, { "start": 4011.84, "end": 4015.54, "probability": 0.9404 }, { "start": 4016.2, "end": 4017.14, "probability": 0.7455 }, { "start": 4017.8, "end": 4019.96, "probability": 0.9723 }, { "start": 4020.2, "end": 4020.48, "probability": 0.7932 }, { "start": 4020.6, "end": 4020.84, "probability": 0.7576 }, { "start": 4021.68, "end": 4022.38, "probability": 0.7377 }, { "start": 4022.5, "end": 4024.2, "probability": 0.8137 }, { "start": 4027.16, "end": 4030.76, "probability": 0.8796 }, { "start": 4031.78, "end": 4032.7, "probability": 0.9844 }, { "start": 4035.98, "end": 4039.18, "probability": 0.9974 }, { "start": 4039.42, "end": 4042.74, "probability": 0.985 }, { "start": 4043.8, "end": 4046.62, "probability": 0.996 }, { "start": 4047.06, "end": 4052.12, "probability": 0.8979 }, { "start": 4052.7, "end": 4057.6, "probability": 0.8076 }, { "start": 4057.74, "end": 4061.72, "probability": 0.6906 }, { "start": 4061.92, "end": 4063.48, "probability": 0.732 }, { "start": 4063.58, "end": 4063.58, "probability": 0.5984 }, { "start": 4064.24, "end": 4065.8, "probability": 0.4565 }, { "start": 4066.54, "end": 4069.04, "probability": 0.8528 }, { "start": 4069.68, "end": 4073.18, "probability": 0.9172 }, { "start": 4074.14, "end": 4077.66, "probability": 0.8926 }, { "start": 4078.0, "end": 4078.48, "probability": 0.8988 }, { "start": 4078.8, "end": 4079.68, "probability": 0.9635 }, { "start": 4079.76, "end": 4080.16, "probability": 0.7957 }, { "start": 4080.34, "end": 4080.74, "probability": 0.9705 }, { "start": 4081.24, "end": 4087.48, "probability": 0.8814 }, { "start": 4088.12, "end": 4092.62, "probability": 0.9768 }, { "start": 4093.24, "end": 4097.02, "probability": 0.7573 }, { "start": 4097.72, "end": 4101.02, "probability": 0.9833 }, { "start": 4101.42, "end": 4108.46, "probability": 0.9081 }, { "start": 4108.84, "end": 4111.44, "probability": 0.859 }, { "start": 4111.8, "end": 4116.38, "probability": 0.9482 }, { "start": 4116.44, "end": 4116.6, "probability": 0.3974 }, { "start": 4116.66, "end": 4117.68, "probability": 0.953 }, { "start": 4118.14, "end": 4119.7, "probability": 0.9922 }, { "start": 4119.84, "end": 4120.58, "probability": 0.855 }, { "start": 4121.1, "end": 4122.84, "probability": 0.9891 }, { "start": 4122.96, "end": 4124.98, "probability": 0.8219 }, { "start": 4125.26, "end": 4128.68, "probability": 0.991 }, { "start": 4129.12, "end": 4132.5, "probability": 0.9989 }, { "start": 4132.86, "end": 4134.44, "probability": 0.9995 }, { "start": 4134.62, "end": 4140.46, "probability": 0.9954 }, { "start": 4140.54, "end": 4141.88, "probability": 0.9384 }, { "start": 4142.38, "end": 4143.14, "probability": 0.9595 }, { "start": 4143.2, "end": 4147.68, "probability": 0.9561 }, { "start": 4147.68, "end": 4150.48, "probability": 0.9973 }, { "start": 4151.1, "end": 4155.96, "probability": 0.9854 }, { "start": 4156.36, "end": 4157.34, "probability": 0.6166 }, { "start": 4157.64, "end": 4159.04, "probability": 0.9961 }, { "start": 4159.36, "end": 4161.22, "probability": 0.726 }, { "start": 4161.84, "end": 4162.94, "probability": 0.9941 }, { "start": 4163.08, "end": 4164.9, "probability": 0.8672 }, { "start": 4165.48, "end": 4170.1, "probability": 0.9603 }, { "start": 4170.48, "end": 4173.3, "probability": 0.8909 }, { "start": 4174.48, "end": 4175.84, "probability": 0.3527 }, { "start": 4176.4, "end": 4177.36, "probability": 0.9097 }, { "start": 4177.9, "end": 4179.16, "probability": 0.9705 }, { "start": 4179.4, "end": 4183.48, "probability": 0.974 }, { "start": 4183.54, "end": 4184.76, "probability": 0.7513 }, { "start": 4185.66, "end": 4188.64, "probability": 0.9908 }, { "start": 4188.76, "end": 4191.88, "probability": 0.9849 }, { "start": 4191.96, "end": 4195.7, "probability": 0.9902 }, { "start": 4195.94, "end": 4196.92, "probability": 0.5352 }, { "start": 4197.72, "end": 4200.04, "probability": 0.8083 }, { "start": 4200.12, "end": 4202.3, "probability": 0.9379 }, { "start": 4202.74, "end": 4203.36, "probability": 0.9766 }, { "start": 4203.96, "end": 4204.71, "probability": 0.5185 }, { "start": 4205.14, "end": 4207.48, "probability": 0.723 }, { "start": 4208.06, "end": 4208.68, "probability": 0.9041 }, { "start": 4208.78, "end": 4209.72, "probability": 0.9038 }, { "start": 4210.18, "end": 4212.46, "probability": 0.6009 }, { "start": 4212.78, "end": 4214.2, "probability": 0.8195 }, { "start": 4214.88, "end": 4218.68, "probability": 0.8241 }, { "start": 4218.96, "end": 4224.1, "probability": 0.993 }, { "start": 4224.1, "end": 4229.44, "probability": 0.9926 }, { "start": 4229.84, "end": 4230.48, "probability": 0.6442 }, { "start": 4231.85, "end": 4239.86, "probability": 0.9956 }, { "start": 4240.28, "end": 4241.33, "probability": 0.563 }, { "start": 4242.28, "end": 4244.34, "probability": 0.714 }, { "start": 4244.88, "end": 4245.7, "probability": 0.9925 }, { "start": 4246.7, "end": 4249.06, "probability": 0.8999 }, { "start": 4249.12, "end": 4250.88, "probability": 0.9681 }, { "start": 4250.98, "end": 4252.38, "probability": 0.8569 }, { "start": 4253.82, "end": 4255.08, "probability": 0.9741 }, { "start": 4255.22, "end": 4256.13, "probability": 0.9779 }, { "start": 4256.36, "end": 4256.98, "probability": 0.7472 }, { "start": 4257.48, "end": 4260.82, "probability": 0.6278 }, { "start": 4262.09, "end": 4269.94, "probability": 0.8022 }, { "start": 4270.52, "end": 4272.64, "probability": 0.9973 }, { "start": 4273.32, "end": 4276.01, "probability": 0.6439 }, { "start": 4276.5, "end": 4279.74, "probability": 0.9966 }, { "start": 4280.18, "end": 4284.7, "probability": 0.9735 }, { "start": 4284.78, "end": 4289.54, "probability": 0.9853 }, { "start": 4289.54, "end": 4292.68, "probability": 0.9855 }, { "start": 4293.16, "end": 4296.08, "probability": 0.9966 }, { "start": 4297.0, "end": 4297.94, "probability": 0.9895 }, { "start": 4298.18, "end": 4299.12, "probability": 0.8501 }, { "start": 4299.16, "end": 4299.92, "probability": 0.8692 }, { "start": 4300.06, "end": 4301.02, "probability": 0.8062 }, { "start": 4301.84, "end": 4303.62, "probability": 0.9347 }, { "start": 4304.77, "end": 4308.92, "probability": 0.938 }, { "start": 4310.72, "end": 4313.46, "probability": 0.9951 }, { "start": 4314.44, "end": 4315.6, "probability": 0.963 }, { "start": 4316.28, "end": 4319.8, "probability": 0.6503 }, { "start": 4321.06, "end": 4324.76, "probability": 0.269 }, { "start": 4325.14, "end": 4329.06, "probability": 0.9878 }, { "start": 4329.06, "end": 4332.8, "probability": 0.9945 }, { "start": 4332.86, "end": 4338.0, "probability": 0.9817 }, { "start": 4338.48, "end": 4343.56, "probability": 0.9966 }, { "start": 4343.7, "end": 4345.1, "probability": 0.9228 }, { "start": 4345.98, "end": 4349.74, "probability": 0.5957 }, { "start": 4352.6, "end": 4352.64, "probability": 0.1949 }, { "start": 4352.64, "end": 4354.96, "probability": 0.5638 }, { "start": 4355.32, "end": 4357.18, "probability": 0.2624 }, { "start": 4357.96, "end": 4358.16, "probability": 0.1992 }, { "start": 4358.9, "end": 4359.22, "probability": 0.3879 }, { "start": 4359.68, "end": 4360.61, "probability": 0.9513 }, { "start": 4360.88, "end": 4362.21, "probability": 0.5464 }, { "start": 4363.48, "end": 4364.86, "probability": 0.7849 }, { "start": 4367.08, "end": 4368.24, "probability": 0.8679 }, { "start": 4368.28, "end": 4372.54, "probability": 0.9581 }, { "start": 4373.48, "end": 4376.76, "probability": 0.9403 }, { "start": 4377.22, "end": 4380.48, "probability": 0.9245 }, { "start": 4381.12, "end": 4381.66, "probability": 0.972 }, { "start": 4382.76, "end": 4386.36, "probability": 0.972 }, { "start": 4386.5, "end": 4386.9, "probability": 0.4598 }, { "start": 4387.41, "end": 4388.92, "probability": 0.9839 }, { "start": 4389.28, "end": 4396.38, "probability": 0.9798 }, { "start": 4396.84, "end": 4397.54, "probability": 0.6331 }, { "start": 4398.14, "end": 4399.96, "probability": 0.8705 }, { "start": 4402.02, "end": 4402.88, "probability": 0.902 }, { "start": 4403.72, "end": 4407.3, "probability": 0.5751 }, { "start": 4407.48, "end": 4408.34, "probability": 0.7282 }, { "start": 4409.68, "end": 4413.16, "probability": 0.9814 }, { "start": 4413.42, "end": 4414.86, "probability": 0.8704 }, { "start": 4415.56, "end": 4417.98, "probability": 0.717 }, { "start": 4418.06, "end": 4419.72, "probability": 0.7155 }, { "start": 4419.98, "end": 4420.14, "probability": 0.4457 }, { "start": 4420.16, "end": 4420.75, "probability": 0.7629 }, { "start": 4420.94, "end": 4422.38, "probability": 0.6365 }, { "start": 4422.7, "end": 4425.2, "probability": 0.0547 }, { "start": 4425.36, "end": 4425.36, "probability": 0.2011 }, { "start": 4425.36, "end": 4426.84, "probability": 0.5682 }, { "start": 4427.44, "end": 4428.58, "probability": 0.9187 }, { "start": 4428.84, "end": 4430.66, "probability": 0.6006 }, { "start": 4431.0, "end": 4437.26, "probability": 0.9844 }, { "start": 4437.64, "end": 4438.9, "probability": 0.9316 }, { "start": 4439.42, "end": 4439.74, "probability": 0.0134 }, { "start": 4439.96, "end": 4440.28, "probability": 0.4868 }, { "start": 4441.02, "end": 4447.56, "probability": 0.983 }, { "start": 4448.1, "end": 4449.87, "probability": 0.7645 }, { "start": 4453.3, "end": 4453.72, "probability": 0.1346 }, { "start": 4453.72, "end": 4453.72, "probability": 0.2098 }, { "start": 4453.72, "end": 4454.22, "probability": 0.5282 }, { "start": 4454.28, "end": 4454.63, "probability": 0.9083 }, { "start": 4455.06, "end": 4458.94, "probability": 0.9808 }, { "start": 4459.46, "end": 4463.02, "probability": 0.9937 }, { "start": 4463.24, "end": 4465.9, "probability": 0.6113 }, { "start": 4466.36, "end": 4469.1, "probability": 0.9124 }, { "start": 4469.1, "end": 4469.1, "probability": 0.5198 }, { "start": 4469.1, "end": 4469.34, "probability": 0.3561 }, { "start": 4469.52, "end": 4469.9, "probability": 0.7292 }, { "start": 4470.18, "end": 4471.44, "probability": 0.5379 }, { "start": 4472.0, "end": 4472.9, "probability": 0.3917 }, { "start": 4473.43, "end": 4475.18, "probability": 0.7524 }, { "start": 4476.66, "end": 4479.42, "probability": 0.8763 }, { "start": 4481.08, "end": 4484.28, "probability": 0.9956 }, { "start": 4484.92, "end": 4487.89, "probability": 0.8845 }, { "start": 4488.64, "end": 4489.8, "probability": 0.6236 }, { "start": 4490.1, "end": 4492.08, "probability": 0.6888 }, { "start": 4492.16, "end": 4492.92, "probability": 0.4691 }, { "start": 4492.98, "end": 4497.9, "probability": 0.8082 }, { "start": 4498.6, "end": 4500.38, "probability": 0.9263 }, { "start": 4500.88, "end": 4502.69, "probability": 0.6762 }, { "start": 4502.88, "end": 4504.0, "probability": 0.9314 }, { "start": 4504.04, "end": 4507.38, "probability": 0.9897 }, { "start": 4507.48, "end": 4509.26, "probability": 0.9518 }, { "start": 4509.46, "end": 4509.68, "probability": 0.8821 }, { "start": 4510.08, "end": 4510.73, "probability": 0.9724 }, { "start": 4510.92, "end": 4511.64, "probability": 0.9744 }, { "start": 4512.6, "end": 4513.4, "probability": 0.9189 }, { "start": 4513.58, "end": 4514.38, "probability": 0.9604 }, { "start": 4514.46, "end": 4515.28, "probability": 0.976 }, { "start": 4515.74, "end": 4516.44, "probability": 0.635 }, { "start": 4516.68, "end": 4517.58, "probability": 0.7521 }, { "start": 4519.18, "end": 4520.56, "probability": 0.9834 }, { "start": 4521.22, "end": 4523.66, "probability": 0.8319 }, { "start": 4523.8, "end": 4525.34, "probability": 0.7287 }, { "start": 4525.44, "end": 4526.92, "probability": 0.6182 }, { "start": 4528.3, "end": 4529.4, "probability": 0.8403 }, { "start": 4531.54, "end": 4534.22, "probability": 0.9505 }, { "start": 4535.04, "end": 4539.18, "probability": 0.987 }, { "start": 4540.64, "end": 4543.68, "probability": 0.9973 }, { "start": 4544.24, "end": 4544.46, "probability": 0.0204 }, { "start": 4544.46, "end": 4544.67, "probability": 0.5408 }, { "start": 4545.66, "end": 4546.8, "probability": 0.4722 }, { "start": 4547.44, "end": 4548.86, "probability": 0.7524 }, { "start": 4548.9, "end": 4550.54, "probability": 0.8587 }, { "start": 4550.76, "end": 4554.1, "probability": 0.5783 }, { "start": 4554.1, "end": 4556.54, "probability": 0.9541 }, { "start": 4557.26, "end": 4559.56, "probability": 0.9156 }, { "start": 4560.22, "end": 4562.72, "probability": 0.9971 }, { "start": 4564.14, "end": 4568.5, "probability": 0.9949 }, { "start": 4568.9, "end": 4570.66, "probability": 0.9868 }, { "start": 4571.54, "end": 4572.44, "probability": 0.5196 }, { "start": 4573.46, "end": 4575.05, "probability": 0.9985 }, { "start": 4575.34, "end": 4576.72, "probability": 0.9032 }, { "start": 4577.08, "end": 4579.24, "probability": 0.9953 }, { "start": 4579.74, "end": 4582.16, "probability": 0.8789 }, { "start": 4582.16, "end": 4582.48, "probability": 0.4652 }, { "start": 4582.78, "end": 4584.01, "probability": 0.9985 }, { "start": 4584.68, "end": 4585.72, "probability": 0.5436 }, { "start": 4586.18, "end": 4588.7, "probability": 0.7647 }, { "start": 4588.78, "end": 4589.0, "probability": 0.5062 }, { "start": 4589.12, "end": 4591.2, "probability": 0.6733 }, { "start": 4592.26, "end": 4592.46, "probability": 0.628 }, { "start": 4592.94, "end": 4593.9, "probability": 0.7428 }, { "start": 4594.12, "end": 4594.5, "probability": 0.5997 }, { "start": 4595.4, "end": 4601.06, "probability": 0.994 }, { "start": 4601.86, "end": 4603.54, "probability": 0.8816 }, { "start": 4603.8, "end": 4607.26, "probability": 0.6798 }, { "start": 4607.94, "end": 4609.16, "probability": 0.969 }, { "start": 4609.22, "end": 4611.14, "probability": 0.7547 }, { "start": 4611.64, "end": 4613.04, "probability": 0.887 }, { "start": 4613.68, "end": 4616.44, "probability": 0.9761 }, { "start": 4616.9, "end": 4617.9, "probability": 0.7699 }, { "start": 4618.72, "end": 4623.04, "probability": 0.9867 }, { "start": 4623.42, "end": 4624.62, "probability": 0.9956 }, { "start": 4624.76, "end": 4626.3, "probability": 0.658 }, { "start": 4626.94, "end": 4631.7, "probability": 0.9955 }, { "start": 4631.7, "end": 4635.06, "probability": 0.8222 }, { "start": 4635.06, "end": 4635.06, "probability": 0.0926 }, { "start": 4635.06, "end": 4636.7, "probability": 0.925 }, { "start": 4637.28, "end": 4638.24, "probability": 0.9495 }, { "start": 4638.32, "end": 4639.07, "probability": 0.9932 }, { "start": 4639.84, "end": 4643.22, "probability": 0.9756 }, { "start": 4643.22, "end": 4644.36, "probability": 0.8511 }, { "start": 4644.88, "end": 4645.6, "probability": 0.6798 }, { "start": 4645.66, "end": 4645.78, "probability": 0.7083 }, { "start": 4646.42, "end": 4646.8, "probability": 0.9345 }, { "start": 4647.1, "end": 4647.54, "probability": 0.6473 }, { "start": 4648.02, "end": 4648.36, "probability": 0.7849 }, { "start": 4648.62, "end": 4650.6, "probability": 0.7515 }, { "start": 4651.16, "end": 4654.34, "probability": 0.923 }, { "start": 4654.5, "end": 4656.32, "probability": 0.7639 }, { "start": 4656.44, "end": 4657.3, "probability": 0.4789 }, { "start": 4658.52, "end": 4661.12, "probability": 0.596 }, { "start": 4661.38, "end": 4667.1, "probability": 0.8534 }, { "start": 4668.96, "end": 4673.74, "probability": 0.8082 }, { "start": 4675.66, "end": 4675.9, "probability": 0.7211 }, { "start": 4676.86, "end": 4677.7, "probability": 0.8677 }, { "start": 4677.78, "end": 4678.51, "probability": 0.9189 }, { "start": 4680.08, "end": 4681.34, "probability": 0.8989 }, { "start": 4682.64, "end": 4686.04, "probability": 0.7693 }, { "start": 4686.88, "end": 4689.62, "probability": 0.9988 }, { "start": 4689.84, "end": 4691.5, "probability": 0.7679 }, { "start": 4691.66, "end": 4691.66, "probability": 0.4915 }, { "start": 4691.66, "end": 4692.24, "probability": 0.8438 }, { "start": 4694.52, "end": 4696.62, "probability": 0.4852 }, { "start": 4696.62, "end": 4698.44, "probability": 0.3574 }, { "start": 4698.44, "end": 4698.54, "probability": 0.0676 }, { "start": 4699.06, "end": 4699.54, "probability": 0.1866 }, { "start": 4699.68, "end": 4700.48, "probability": 0.3334 }, { "start": 4700.98, "end": 4701.02, "probability": 0.4102 }, { "start": 4701.02, "end": 4701.38, "probability": 0.5608 }, { "start": 4701.4, "end": 4702.46, "probability": 0.6516 }, { "start": 4702.46, "end": 4702.8, "probability": 0.5878 }, { "start": 4702.8, "end": 4704.29, "probability": 0.8647 }, { "start": 4704.44, "end": 4704.82, "probability": 0.8852 }, { "start": 4705.34, "end": 4706.48, "probability": 0.629 }, { "start": 4707.02, "end": 4707.02, "probability": 0.2174 }, { "start": 4707.02, "end": 4708.8, "probability": 0.9202 }, { "start": 4709.0, "end": 4712.6, "probability": 0.9941 }, { "start": 4712.92, "end": 4713.66, "probability": 0.7802 }, { "start": 4714.2, "end": 4715.28, "probability": 0.9554 }, { "start": 4715.42, "end": 4718.9, "probability": 0.9041 }, { "start": 4719.54, "end": 4723.48, "probability": 0.989 }, { "start": 4724.08, "end": 4724.68, "probability": 0.9424 }, { "start": 4725.36, "end": 4728.98, "probability": 0.9348 }, { "start": 4729.14, "end": 4729.48, "probability": 0.7334 }, { "start": 4730.92, "end": 4733.46, "probability": 0.6011 }, { "start": 4733.5, "end": 4734.0, "probability": 0.2137 }, { "start": 4734.84, "end": 4738.39, "probability": 0.6698 }, { "start": 4739.88, "end": 4740.68, "probability": 0.682 }, { "start": 4741.94, "end": 4746.56, "probability": 0.9976 }, { "start": 4747.72, "end": 4747.98, "probability": 0.8181 }, { "start": 4748.94, "end": 4754.68, "probability": 0.9721 }, { "start": 4755.48, "end": 4757.84, "probability": 0.8889 }, { "start": 4757.84, "end": 4759.82, "probability": 0.9692 }, { "start": 4761.34, "end": 4762.58, "probability": 0.7456 }, { "start": 4763.14, "end": 4764.24, "probability": 0.9775 }, { "start": 4764.64, "end": 4765.76, "probability": 0.8333 }, { "start": 4766.44, "end": 4768.52, "probability": 0.9627 }, { "start": 4769.28, "end": 4770.48, "probability": 0.9039 }, { "start": 4771.08, "end": 4775.16, "probability": 0.9604 }, { "start": 4775.3, "end": 4777.16, "probability": 0.9818 }, { "start": 4777.86, "end": 4781.8, "probability": 0.9509 }, { "start": 4782.4, "end": 4784.52, "probability": 0.9867 }, { "start": 4785.34, "end": 4787.46, "probability": 0.7649 }, { "start": 4788.86, "end": 4791.28, "probability": 0.4685 }, { "start": 4791.8, "end": 4792.68, "probability": 0.6455 }, { "start": 4793.46, "end": 4797.08, "probability": 0.976 }, { "start": 4797.78, "end": 4798.22, "probability": 0.7745 }, { "start": 4798.64, "end": 4799.3, "probability": 0.8503 }, { "start": 4800.12, "end": 4802.2, "probability": 0.9755 }, { "start": 4802.4, "end": 4803.4, "probability": 0.7012 }, { "start": 4804.02, "end": 4805.68, "probability": 0.8324 }, { "start": 4806.22, "end": 4807.3, "probability": 0.8541 }, { "start": 4807.92, "end": 4814.02, "probability": 0.9387 }, { "start": 4814.48, "end": 4817.7, "probability": 0.7586 }, { "start": 4818.44, "end": 4819.26, "probability": 0.8919 }, { "start": 4820.0, "end": 4823.98, "probability": 0.9761 }, { "start": 4824.66, "end": 4825.16, "probability": 0.7454 }, { "start": 4825.32, "end": 4826.5, "probability": 0.6342 }, { "start": 4827.12, "end": 4828.36, "probability": 0.9108 }, { "start": 4828.6, "end": 4831.38, "probability": 0.979 }, { "start": 4831.38, "end": 4831.64, "probability": 0.2423 }, { "start": 4831.66, "end": 4833.0, "probability": 0.4113 }, { "start": 4833.12, "end": 4835.62, "probability": 0.701 }, { "start": 4836.28, "end": 4837.48, "probability": 0.3742 }, { "start": 4837.48, "end": 4837.48, "probability": 0.0831 }, { "start": 4837.48, "end": 4842.7, "probability": 0.994 }, { "start": 4843.9, "end": 4846.76, "probability": 0.9033 }, { "start": 4847.5, "end": 4851.78, "probability": 0.9992 }, { "start": 4852.3, "end": 4857.1, "probability": 0.9981 }, { "start": 4857.68, "end": 4860.06, "probability": 0.8228 }, { "start": 4860.74, "end": 4862.0, "probability": 0.9629 }, { "start": 4862.9, "end": 4865.7, "probability": 0.9958 }, { "start": 4866.32, "end": 4871.14, "probability": 0.8424 }, { "start": 4871.8, "end": 4874.96, "probability": 0.9431 }, { "start": 4875.64, "end": 4877.76, "probability": 0.9954 }, { "start": 4878.28, "end": 4879.3, "probability": 0.8496 }, { "start": 4879.72, "end": 4884.52, "probability": 0.9048 }, { "start": 4884.54, "end": 4885.74, "probability": 0.8872 }, { "start": 4886.84, "end": 4889.9, "probability": 0.9775 }, { "start": 4890.52, "end": 4892.24, "probability": 0.9855 }, { "start": 4892.86, "end": 4897.13, "probability": 0.9678 }, { "start": 4897.9, "end": 4899.3, "probability": 0.8137 }, { "start": 4900.48, "end": 4905.04, "probability": 0.7428 }, { "start": 4906.28, "end": 4908.66, "probability": 0.9469 }, { "start": 4908.8, "end": 4910.98, "probability": 0.936 }, { "start": 4911.18, "end": 4912.98, "probability": 0.4592 }, { "start": 4914.58, "end": 4915.04, "probability": 0.188 }, { "start": 4915.06, "end": 4915.32, "probability": 0.5024 }, { "start": 4915.72, "end": 4916.84, "probability": 0.4855 }, { "start": 4917.82, "end": 4921.62, "probability": 0.6629 }, { "start": 4921.66, "end": 4921.88, "probability": 0.3832 }, { "start": 4922.52, "end": 4927.12, "probability": 0.8979 }, { "start": 4927.92, "end": 4930.66, "probability": 0.8956 }, { "start": 4931.42, "end": 4935.04, "probability": 0.6302 }, { "start": 4935.8, "end": 4937.28, "probability": 0.9955 }, { "start": 4937.88, "end": 4943.04, "probability": 0.9937 }, { "start": 4943.7, "end": 4944.18, "probability": 0.5193 }, { "start": 4945.24, "end": 4948.12, "probability": 0.9928 }, { "start": 4948.12, "end": 4953.58, "probability": 0.9833 }, { "start": 4954.06, "end": 4958.83, "probability": 0.9573 }, { "start": 4958.88, "end": 4962.66, "probability": 0.9943 }, { "start": 4963.04, "end": 4963.04, "probability": 0.3378 }, { "start": 4963.04, "end": 4963.18, "probability": 0.6136 }, { "start": 4964.0, "end": 4964.42, "probability": 0.6299 }, { "start": 4964.58, "end": 4967.1, "probability": 0.7979 }, { "start": 4967.22, "end": 4968.06, "probability": 0.7332 }, { "start": 4968.94, "end": 4970.06, "probability": 0.0698 }, { "start": 4970.14, "end": 4972.46, "probability": 0.9601 }, { "start": 4973.22, "end": 4980.28, "probability": 0.9978 }, { "start": 4980.7, "end": 4981.38, "probability": 0.8945 }, { "start": 4981.58, "end": 4981.92, "probability": 0.8194 }, { "start": 4982.06, "end": 4982.86, "probability": 0.836 }, { "start": 4983.2, "end": 4984.95, "probability": 0.9951 }, { "start": 4985.76, "end": 4990.44, "probability": 0.9598 }, { "start": 4991.0, "end": 4992.04, "probability": 0.8261 }, { "start": 4992.38, "end": 4993.04, "probability": 0.8549 }, { "start": 4993.18, "end": 4996.38, "probability": 0.944 }, { "start": 4996.82, "end": 4998.2, "probability": 0.9407 }, { "start": 4998.62, "end": 5000.08, "probability": 0.8838 }, { "start": 5000.12, "end": 5001.66, "probability": 0.9774 }, { "start": 5001.72, "end": 5003.92, "probability": 0.916 }, { "start": 5004.16, "end": 5004.69, "probability": 0.546 }, { "start": 5004.94, "end": 5005.06, "probability": 0.7036 }, { "start": 5005.44, "end": 5008.14, "probability": 0.9487 }, { "start": 5008.52, "end": 5009.42, "probability": 0.9849 }, { "start": 5009.5, "end": 5009.78, "probability": 0.8036 }, { "start": 5009.94, "end": 5012.88, "probability": 0.965 }, { "start": 5014.51, "end": 5018.3, "probability": 0.9868 }, { "start": 5018.48, "end": 5023.14, "probability": 0.8486 }, { "start": 5023.36, "end": 5024.38, "probability": 0.7629 }, { "start": 5024.8, "end": 5028.62, "probability": 0.9048 }, { "start": 5028.66, "end": 5030.48, "probability": 0.9768 }, { "start": 5030.5, "end": 5031.88, "probability": 0.5734 }, { "start": 5031.94, "end": 5032.6, "probability": 0.9261 }, { "start": 5032.68, "end": 5034.36, "probability": 0.9828 }, { "start": 5034.72, "end": 5036.78, "probability": 0.9951 }, { "start": 5037.24, "end": 5040.98, "probability": 0.9123 }, { "start": 5040.98, "end": 5042.06, "probability": 0.9788 }, { "start": 5042.18, "end": 5042.94, "probability": 0.4409 }, { "start": 5044.36, "end": 5044.5, "probability": 0.0374 }, { "start": 5044.5, "end": 5044.5, "probability": 0.0554 }, { "start": 5044.5, "end": 5044.5, "probability": 0.1421 }, { "start": 5044.5, "end": 5044.86, "probability": 0.5738 }, { "start": 5045.16, "end": 5045.3, "probability": 0.9154 }, { "start": 5045.46, "end": 5048.44, "probability": 0.8733 }, { "start": 5048.74, "end": 5052.26, "probability": 0.9182 }, { "start": 5053.92, "end": 5056.82, "probability": 0.9734 }, { "start": 5056.88, "end": 5059.3, "probability": 0.9971 }, { "start": 5059.86, "end": 5060.26, "probability": 0.6379 }, { "start": 5060.4, "end": 5061.12, "probability": 0.8297 }, { "start": 5061.74, "end": 5062.3, "probability": 0.554 }, { "start": 5062.4, "end": 5065.68, "probability": 0.5576 }, { "start": 5067.44, "end": 5067.54, "probability": 0.0202 }, { "start": 5067.54, "end": 5070.16, "probability": 0.6716 }, { "start": 5070.94, "end": 5072.16, "probability": 0.6646 }, { "start": 5072.34, "end": 5076.58, "probability": 0.7802 }, { "start": 5076.78, "end": 5077.02, "probability": 0.3124 }, { "start": 5077.34, "end": 5078.48, "probability": 0.4146 }, { "start": 5079.42, "end": 5082.38, "probability": 0.2364 }, { "start": 5083.06, "end": 5085.36, "probability": 0.4356 }, { "start": 5085.52, "end": 5086.5, "probability": 0.3515 }, { "start": 5086.72, "end": 5088.46, "probability": 0.8677 }, { "start": 5088.52, "end": 5088.54, "probability": 0.685 }, { "start": 5088.86, "end": 5090.76, "probability": 0.9927 }, { "start": 5090.8, "end": 5092.28, "probability": 0.2863 }, { "start": 5092.38, "end": 5093.21, "probability": 0.7481 }, { "start": 5093.84, "end": 5094.18, "probability": 0.3035 }, { "start": 5094.63, "end": 5095.93, "probability": 0.0925 }, { "start": 5097.3, "end": 5103.56, "probability": 0.7089 }, { "start": 5103.56, "end": 5103.9, "probability": 0.5658 }, { "start": 5105.34, "end": 5106.46, "probability": 0.0 }, { "start": 5107.18, "end": 5108.12, "probability": 0.4443 }, { "start": 5108.12, "end": 5108.22, "probability": 0.7295 }, { "start": 5108.8, "end": 5110.37, "probability": 0.018 }, { "start": 5112.24, "end": 5112.96, "probability": 0.0659 }, { "start": 5113.1, "end": 5114.34, "probability": 0.2945 }, { "start": 5114.5, "end": 5115.28, "probability": 0.6668 }, { "start": 5116.18, "end": 5117.84, "probability": 0.6905 }, { "start": 5117.98, "end": 5121.28, "probability": 0.8538 }, { "start": 5121.6, "end": 5123.52, "probability": 0.3429 }, { "start": 5123.9, "end": 5129.02, "probability": 0.9609 }, { "start": 5130.12, "end": 5131.7, "probability": 0.8284 }, { "start": 5131.84, "end": 5137.62, "probability": 0.9602 }, { "start": 5137.62, "end": 5141.84, "probability": 0.9686 }, { "start": 5142.52, "end": 5145.98, "probability": 0.9896 }, { "start": 5146.26, "end": 5146.48, "probability": 0.6279 }, { "start": 5146.66, "end": 5147.12, "probability": 0.8727 }, { "start": 5147.34, "end": 5150.14, "probability": 0.7021 }, { "start": 5150.32, "end": 5154.18, "probability": 0.8692 }, { "start": 5155.04, "end": 5160.66, "probability": 0.9679 }, { "start": 5161.52, "end": 5162.46, "probability": 0.9572 }, { "start": 5162.7, "end": 5164.08, "probability": 0.5348 }, { "start": 5164.18, "end": 5164.68, "probability": 0.7093 }, { "start": 5164.9, "end": 5168.74, "probability": 0.8643 }, { "start": 5169.02, "end": 5171.6, "probability": 0.6031 }, { "start": 5172.36, "end": 5173.64, "probability": 0.645 }, { "start": 5174.72, "end": 5175.98, "probability": 0.985 }, { "start": 5176.14, "end": 5176.58, "probability": 0.7957 }, { "start": 5177.04, "end": 5179.43, "probability": 0.9758 }, { "start": 5180.2, "end": 5182.54, "probability": 0.8364 }, { "start": 5182.8, "end": 5184.86, "probability": 0.9344 }, { "start": 5186.1, "end": 5190.12, "probability": 0.6973 }, { "start": 5190.8, "end": 5194.34, "probability": 0.9976 }, { "start": 5194.48, "end": 5194.98, "probability": 0.6803 }, { "start": 5195.96, "end": 5199.36, "probability": 0.9928 }, { "start": 5201.4, "end": 5201.72, "probability": 0.9785 }, { "start": 5202.28, "end": 5205.14, "probability": 0.9473 }, { "start": 5205.3, "end": 5209.28, "probability": 0.9637 }, { "start": 5210.0, "end": 5210.52, "probability": 0.9961 }, { "start": 5211.28, "end": 5213.8, "probability": 0.9968 }, { "start": 5214.58, "end": 5216.56, "probability": 0.9464 }, { "start": 5216.6, "end": 5218.88, "probability": 0.9868 }, { "start": 5219.7, "end": 5222.66, "probability": 0.9434 }, { "start": 5223.92, "end": 5226.96, "probability": 0.9394 }, { "start": 5227.16, "end": 5229.17, "probability": 0.9899 }, { "start": 5230.12, "end": 5230.9, "probability": 0.7001 }, { "start": 5230.92, "end": 5234.02, "probability": 0.7529 }, { "start": 5234.64, "end": 5238.34, "probability": 0.964 }, { "start": 5238.48, "end": 5239.12, "probability": 0.7194 }, { "start": 5239.68, "end": 5240.58, "probability": 0.9666 }, { "start": 5240.68, "end": 5242.9, "probability": 0.9933 }, { "start": 5243.54, "end": 5246.4, "probability": 0.9884 }, { "start": 5247.06, "end": 5247.96, "probability": 0.8223 }, { "start": 5248.0, "end": 5249.94, "probability": 0.9915 }, { "start": 5250.56, "end": 5252.64, "probability": 0.928 }, { "start": 5253.22, "end": 5255.38, "probability": 0.9925 }, { "start": 5255.58, "end": 5257.72, "probability": 0.6348 }, { "start": 5258.64, "end": 5258.78, "probability": 0.2391 }, { "start": 5258.8, "end": 5259.5, "probability": 0.8323 }, { "start": 5259.82, "end": 5263.24, "probability": 0.9407 }, { "start": 5263.38, "end": 5264.36, "probability": 0.6619 }, { "start": 5264.72, "end": 5264.94, "probability": 0.7516 }, { "start": 5265.7, "end": 5266.42, "probability": 0.8884 }, { "start": 5266.68, "end": 5267.46, "probability": 0.9231 }, { "start": 5273.78, "end": 5274.98, "probability": 0.8867 }, { "start": 5275.18, "end": 5279.18, "probability": 0.9917 }, { "start": 5279.9, "end": 5283.28, "probability": 0.9976 }, { "start": 5283.92, "end": 5288.96, "probability": 0.9945 }, { "start": 5288.98, "end": 5290.72, "probability": 0.7342 }, { "start": 5291.24, "end": 5295.42, "probability": 0.9844 }, { "start": 5296.34, "end": 5298.16, "probability": 0.9926 }, { "start": 5298.26, "end": 5298.64, "probability": 0.8273 }, { "start": 5298.74, "end": 5299.14, "probability": 0.6496 }, { "start": 5299.26, "end": 5299.62, "probability": 0.7683 }, { "start": 5299.7, "end": 5301.96, "probability": 0.9934 }, { "start": 5302.8, "end": 5305.5, "probability": 0.9976 }, { "start": 5306.3, "end": 5308.0, "probability": 0.946 }, { "start": 5308.16, "end": 5308.54, "probability": 0.6904 }, { "start": 5308.86, "end": 5311.4, "probability": 0.9281 }, { "start": 5312.5, "end": 5314.08, "probability": 0.8315 }, { "start": 5314.6, "end": 5314.9, "probability": 0.6761 }, { "start": 5315.06, "end": 5316.24, "probability": 0.7351 }, { "start": 5316.3, "end": 5317.52, "probability": 0.7298 }, { "start": 5317.58, "end": 5318.84, "probability": 0.7594 }, { "start": 5319.66, "end": 5321.66, "probability": 0.9782 }, { "start": 5321.9, "end": 5323.74, "probability": 0.8317 }, { "start": 5324.36, "end": 5324.78, "probability": 0.1992 }, { "start": 5325.72, "end": 5327.86, "probability": 0.4439 }, { "start": 5328.64, "end": 5330.62, "probability": 0.9865 }, { "start": 5330.74, "end": 5331.12, "probability": 0.7189 }, { "start": 5331.6, "end": 5332.22, "probability": 0.5806 }, { "start": 5332.58, "end": 5333.48, "probability": 0.9555 }, { "start": 5333.56, "end": 5334.88, "probability": 0.8 }, { "start": 5335.28, "end": 5336.36, "probability": 0.6986 }, { "start": 5336.82, "end": 5340.0, "probability": 0.789 }, { "start": 5341.93, "end": 5342.0, "probability": 0.5504 }, { "start": 18098.0, "end": 18098.0, "probability": 0.0 }, { "start": 18098.0, "end": 18098.0, "probability": 0.0 }, { "start": 18098.0, "end": 18098.0, "probability": 0.0 }, { "start": 18098.0, "end": 18098.0, "probability": 0.0 }, { "start": 18098.24, "end": 18099.44, "probability": 0.6458 }, { "start": 18100.1, "end": 18101.14, "probability": 0.7903 }, { "start": 18101.4, "end": 18102.7, "probability": 0.6466 }, { "start": 18102.82, "end": 18104.0, "probability": 0.9462 }, { "start": 18105.16, "end": 18106.96, "probability": 0.8646 }, { "start": 18107.54, "end": 18109.21, "probability": 0.9626 }, { "start": 18110.16, "end": 18112.2, "probability": 0.937 }, { "start": 18112.84, "end": 18113.06, "probability": 0.198 }, { "start": 18113.68, "end": 18113.98, "probability": 0.0934 }, { "start": 18114.94, "end": 18117.08, "probability": 0.5682 }, { "start": 18117.56, "end": 18118.16, "probability": 0.7304 }, { "start": 18118.66, "end": 18119.88, "probability": 0.9349 }, { "start": 18120.62, "end": 18122.56, "probability": 0.9803 }, { "start": 18122.56, "end": 18125.54, "probability": 0.7381 }, { "start": 18125.54, "end": 18125.9, "probability": 0.6648 }, { "start": 18126.42, "end": 18127.34, "probability": 0.6783 }, { "start": 18127.88, "end": 18130.84, "probability": 0.9171 }, { "start": 18130.98, "end": 18132.6, "probability": 0.9944 }, { "start": 18133.38, "end": 18135.34, "probability": 0.9823 }, { "start": 18135.38, "end": 18136.26, "probability": 0.5054 }, { "start": 18153.55, "end": 18155.1, "probability": 0.8215 }, { "start": 18156.86, "end": 18157.74, "probability": 0.9375 }, { "start": 18158.96, "end": 18160.02, "probability": 0.813 }, { "start": 18166.79, "end": 18167.2, "probability": 0.0199 }, { "start": 18168.48, "end": 18171.16, "probability": 0.7963 }, { "start": 18172.18, "end": 18175.76, "probability": 0.7491 }, { "start": 18176.54, "end": 18178.16, "probability": 0.5163 }, { "start": 18179.73, "end": 18183.7, "probability": 0.7944 }, { "start": 18184.22, "end": 18185.7, "probability": 0.9018 }, { "start": 18186.1, "end": 18189.48, "probability": 0.9219 }, { "start": 18189.88, "end": 18193.72, "probability": 0.9632 }, { "start": 18193.72, "end": 18196.14, "probability": 0.9879 }, { "start": 18202.8, "end": 18208.24, "probability": 0.963 }, { "start": 18210.32, "end": 18212.26, "probability": 0.8473 }, { "start": 18212.9, "end": 18215.42, "probability": 0.9868 }, { "start": 18215.46, "end": 18218.88, "probability": 0.9974 }, { "start": 18219.32, "end": 18220.22, "probability": 0.8977 }, { "start": 18220.36, "end": 18222.52, "probability": 0.8999 }, { "start": 18223.74, "end": 18227.46, "probability": 0.9344 }, { "start": 18228.0, "end": 18230.3, "probability": 0.9295 }, { "start": 18231.14, "end": 18236.86, "probability": 0.7769 }, { "start": 18237.32, "end": 18239.22, "probability": 0.9905 }, { "start": 18239.94, "end": 18242.76, "probability": 0.9118 }, { "start": 18242.76, "end": 18247.06, "probability": 0.9971 }, { "start": 18247.94, "end": 18254.06, "probability": 0.984 }, { "start": 18254.6, "end": 18257.76, "probability": 0.9722 }, { "start": 18258.78, "end": 18261.88, "probability": 0.9966 }, { "start": 18261.88, "end": 18265.14, "probability": 0.9769 }, { "start": 18270.96, "end": 18272.38, "probability": 0.8264 }, { "start": 18273.12, "end": 18276.18, "probability": 0.8302 }, { "start": 18276.7, "end": 18278.44, "probability": 0.7689 }, { "start": 18278.96, "end": 18283.24, "probability": 0.9553 }, { "start": 18283.24, "end": 18287.16, "probability": 0.9351 }, { "start": 18288.38, "end": 18291.26, "probability": 0.9903 }, { "start": 18291.82, "end": 18294.68, "probability": 0.9707 }, { "start": 18296.3, "end": 18298.56, "probability": 0.9509 }, { "start": 18299.04, "end": 18304.24, "probability": 0.998 }, { "start": 18312.12, "end": 18314.28, "probability": 0.6882 }, { "start": 18317.7, "end": 18319.88, "probability": 0.9559 }, { "start": 18319.94, "end": 18321.48, "probability": 0.8866 }, { "start": 18321.86, "end": 18324.28, "probability": 0.6294 }, { "start": 18324.38, "end": 18325.82, "probability": 0.7087 }, { "start": 18326.48, "end": 18329.1, "probability": 0.9941 }, { "start": 18329.82, "end": 18333.04, "probability": 0.9918 }, { "start": 18333.74, "end": 18335.66, "probability": 0.8601 }, { "start": 18335.9, "end": 18337.38, "probability": 0.7631 }, { "start": 18338.24, "end": 18341.82, "probability": 0.7602 }, { "start": 18342.18, "end": 18342.92, "probability": 0.8601 }, { "start": 18344.62, "end": 18347.48, "probability": 0.895 }, { "start": 18347.82, "end": 18350.8, "probability": 0.9962 }, { "start": 18351.26, "end": 18351.68, "probability": 0.9015 }, { "start": 18351.88, "end": 18352.58, "probability": 0.9318 }, { "start": 18352.96, "end": 18353.6, "probability": 0.9777 }, { "start": 18353.96, "end": 18356.06, "probability": 0.8042 }, { "start": 18357.28, "end": 18360.42, "probability": 0.9909 }, { "start": 18360.56, "end": 18361.94, "probability": 0.4923 }, { "start": 18361.96, "end": 18368.38, "probability": 0.9829 }, { "start": 18369.74, "end": 18373.16, "probability": 0.9866 }, { "start": 18373.16, "end": 18378.12, "probability": 0.9953 }, { "start": 18378.96, "end": 18382.24, "probability": 0.887 }, { "start": 18382.74, "end": 18383.22, "probability": 0.911 }, { "start": 18383.88, "end": 18387.28, "probability": 0.9814 }, { "start": 18387.28, "end": 18391.0, "probability": 0.9945 }, { "start": 18391.94, "end": 18395.28, "probability": 0.9969 }, { "start": 18395.9, "end": 18399.08, "probability": 0.9712 }, { "start": 18399.96, "end": 18400.3, "probability": 0.7214 }, { "start": 18400.44, "end": 18402.54, "probability": 0.8918 }, { "start": 18402.88, "end": 18405.08, "probability": 0.8835 }, { "start": 18405.2, "end": 18406.36, "probability": 0.6474 }, { "start": 18406.94, "end": 18408.28, "probability": 0.8003 }, { "start": 18408.84, "end": 18411.8, "probability": 0.9395 }, { "start": 18411.92, "end": 18413.56, "probability": 0.9827 }, { "start": 18414.56, "end": 18417.94, "probability": 0.7929 }, { "start": 18421.54, "end": 18427.32, "probability": 0.9941 }, { "start": 18427.96, "end": 18430.08, "probability": 0.9759 }, { "start": 18430.92, "end": 18433.68, "probability": 0.9868 }, { "start": 18437.64, "end": 18440.56, "probability": 0.9751 }, { "start": 18442.0, "end": 18445.12, "probability": 0.9966 }, { "start": 18445.78, "end": 18450.88, "probability": 0.9969 }, { "start": 18451.68, "end": 18454.06, "probability": 0.941 }, { "start": 18454.94, "end": 18457.28, "probability": 0.7756 }, { "start": 18458.18, "end": 18462.06, "probability": 0.8731 }, { "start": 18462.4, "end": 18464.18, "probability": 0.9869 }, { "start": 18466.44, "end": 18468.14, "probability": 0.2449 }, { "start": 18469.68, "end": 18469.68, "probability": 0.0 }, { "start": 18473.32, "end": 18475.8, "probability": 0.5042 }, { "start": 18476.59, "end": 18479.27, "probability": 0.9417 }, { "start": 18480.02, "end": 18480.7, "probability": 0.9698 }, { "start": 18481.44, "end": 18483.82, "probability": 0.9934 }, { "start": 18485.68, "end": 18486.26, "probability": 0.9711 }, { "start": 18487.04, "end": 18487.2, "probability": 0.9532 }, { "start": 18488.74, "end": 18490.86, "probability": 0.8066 }, { "start": 18491.9, "end": 18492.74, "probability": 0.8015 }, { "start": 18492.98, "end": 18493.76, "probability": 0.7305 }, { "start": 18494.02, "end": 18497.78, "probability": 0.9843 }, { "start": 18499.62, "end": 18504.74, "probability": 0.8097 }, { "start": 18505.5, "end": 18508.48, "probability": 0.8659 }, { "start": 18509.1, "end": 18514.9, "probability": 0.891 }, { "start": 18515.54, "end": 18519.72, "probability": 0.9845 }, { "start": 18520.16, "end": 18524.04, "probability": 0.9577 }, { "start": 18527.04, "end": 18528.6, "probability": 0.9907 }, { "start": 18529.18, "end": 18531.4, "probability": 0.6898 }, { "start": 18532.04, "end": 18532.48, "probability": 0.4575 }, { "start": 18532.9, "end": 18536.94, "probability": 0.9583 }, { "start": 18536.94, "end": 18540.8, "probability": 0.9961 }, { "start": 18540.8, "end": 18544.12, "probability": 0.997 }, { "start": 18545.26, "end": 18545.94, "probability": 0.6299 }, { "start": 18547.86, "end": 18548.62, "probability": 0.6074 }, { "start": 18549.38, "end": 18551.92, "probability": 0.7585 }, { "start": 18552.76, "end": 18553.06, "probability": 0.2791 }, { "start": 18553.08, "end": 18558.12, "probability": 0.8496 }, { "start": 18558.12, "end": 18563.34, "probability": 0.9806 }, { "start": 18564.62, "end": 18567.66, "probability": 0.8793 }, { "start": 18568.18, "end": 18571.14, "probability": 0.8272 }, { "start": 18571.18, "end": 18576.54, "probability": 0.7168 }, { "start": 18577.7, "end": 18578.18, "probability": 0.5934 }, { "start": 18579.84, "end": 18581.18, "probability": 0.0172 }, { "start": 18581.18, "end": 18584.4, "probability": 0.4006 }, { "start": 18584.58, "end": 18587.9, "probability": 0.6375 }, { "start": 18588.24, "end": 18592.02, "probability": 0.6903 }, { "start": 18592.54, "end": 18594.36, "probability": 0.9028 }, { "start": 18594.98, "end": 18599.76, "probability": 0.9972 }, { "start": 18600.82, "end": 18602.74, "probability": 0.9659 }, { "start": 18603.14, "end": 18603.58, "probability": 0.2869 }, { "start": 18603.66, "end": 18609.32, "probability": 0.9819 }, { "start": 18611.24, "end": 18615.15, "probability": 0.953 }, { "start": 18616.34, "end": 18622.5, "probability": 0.9189 }, { "start": 18623.76, "end": 18626.16, "probability": 0.7609 }, { "start": 18626.16, "end": 18629.22, "probability": 0.8667 }, { "start": 18629.78, "end": 18634.42, "probability": 0.9518 }, { "start": 18635.14, "end": 18635.76, "probability": 0.5518 }, { "start": 18635.84, "end": 18636.96, "probability": 0.8528 }, { "start": 18637.08, "end": 18640.54, "probability": 0.9751 }, { "start": 18640.98, "end": 18644.26, "probability": 0.7681 }, { "start": 18645.36, "end": 18647.96, "probability": 0.8331 }, { "start": 18648.09, "end": 18650.52, "probability": 0.8799 }, { "start": 18651.64, "end": 18655.6, "probability": 0.9951 }, { "start": 18656.58, "end": 18659.16, "probability": 0.9373 }, { "start": 18660.02, "end": 18664.64, "probability": 0.9739 }, { "start": 18665.16, "end": 18668.86, "probability": 0.9795 }, { "start": 18669.84, "end": 18674.44, "probability": 0.9973 }, { "start": 18676.14, "end": 18677.88, "probability": 0.7061 }, { "start": 18681.1, "end": 18684.2, "probability": 0.6686 }, { "start": 18684.86, "end": 18689.44, "probability": 0.9919 }, { "start": 18689.44, "end": 18693.9, "probability": 0.9955 }, { "start": 18694.3, "end": 18698.34, "probability": 0.8818 }, { "start": 18699.16, "end": 18701.54, "probability": 0.9368 }, { "start": 18702.04, "end": 18704.96, "probability": 0.9955 }, { "start": 18705.66, "end": 18706.08, "probability": 0.5908 }, { "start": 18713.52, "end": 18717.38, "probability": 0.9543 }, { "start": 18718.22, "end": 18724.52, "probability": 0.6993 }, { "start": 18725.68, "end": 18727.88, "probability": 0.6558 }, { "start": 18728.64, "end": 18729.92, "probability": 0.7986 }, { "start": 18730.88, "end": 18731.52, "probability": 0.9976 }, { "start": 18732.92, "end": 18734.04, "probability": 0.9587 }, { "start": 18734.52, "end": 18735.66, "probability": 0.5023 }, { "start": 18736.12, "end": 18737.92, "probability": 0.9505 }, { "start": 18743.72, "end": 18743.72, "probability": 0.2074 }, { "start": 18743.72, "end": 18743.72, "probability": 0.0703 }, { "start": 18743.72, "end": 18743.72, "probability": 0.0864 }, { "start": 18743.72, "end": 18743.72, "probability": 0.0967 }, { "start": 18760.28, "end": 18762.04, "probability": 0.0514 }, { "start": 18762.04, "end": 18762.88, "probability": 0.2084 }, { "start": 18762.88, "end": 18762.88, "probability": 0.1498 }, { "start": 18762.88, "end": 18762.94, "probability": 0.4315 }, { "start": 18762.94, "end": 18763.4, "probability": 0.1002 }, { "start": 18764.34, "end": 18766.06, "probability": 0.0223 }, { "start": 18766.54, "end": 18770.48, "probability": 0.1787 }, { "start": 18780.0, "end": 18781.88, "probability": 0.3936 }, { "start": 18797.18, "end": 18800.3, "probability": 0.7738 }, { "start": 18801.52, "end": 18802.24, "probability": 0.594 }, { "start": 18803.02, "end": 18803.52, "probability": 0.5329 }, { "start": 18804.66, "end": 18805.36, "probability": 0.7681 }, { "start": 18808.62, "end": 18812.84, "probability": 0.9863 }, { "start": 18814.2, "end": 18815.52, "probability": 0.7212 }, { "start": 18816.92, "end": 18822.88, "probability": 0.9862 }, { "start": 18828.24, "end": 18829.12, "probability": 0.5267 }, { "start": 18831.34, "end": 18833.4, "probability": 0.9977 }, { "start": 18834.74, "end": 18836.92, "probability": 0.9431 }, { "start": 18838.64, "end": 18840.08, "probability": 0.9688 }, { "start": 18840.82, "end": 18841.5, "probability": 0.8654 }, { "start": 18842.68, "end": 18844.04, "probability": 0.9832 }, { "start": 18844.86, "end": 18846.32, "probability": 0.8459 }, { "start": 18846.52, "end": 18847.98, "probability": 0.9136 }, { "start": 18848.52, "end": 18848.88, "probability": 0.758 }, { "start": 18849.06, "end": 18849.1, "probability": 0.1021 }, { "start": 18849.22, "end": 18849.92, "probability": 0.8031 }, { "start": 18849.92, "end": 18850.76, "probability": 0.6824 }, { "start": 18852.2, "end": 18852.84, "probability": 0.7783 }, { "start": 18855.02, "end": 18855.04, "probability": 0.1609 }, { "start": 18855.04, "end": 18855.91, "probability": 0.8288 }, { "start": 18856.08, "end": 18857.96, "probability": 0.9958 }, { "start": 18859.24, "end": 18861.99, "probability": 0.9817 }, { "start": 18862.7, "end": 18866.44, "probability": 0.5903 }, { "start": 18866.44, "end": 18868.7, "probability": 0.6617 }, { "start": 18870.46, "end": 18872.38, "probability": 0.9236 }, { "start": 18872.52, "end": 18873.18, "probability": 0.8312 }, { "start": 18873.32, "end": 18874.24, "probability": 0.833 }, { "start": 18874.4, "end": 18875.42, "probability": 0.9551 }, { "start": 18876.02, "end": 18879.12, "probability": 0.9547 }, { "start": 18879.86, "end": 18879.94, "probability": 0.1722 }, { "start": 18879.94, "end": 18881.19, "probability": 0.5083 }, { "start": 18881.72, "end": 18886.82, "probability": 0.9323 }, { "start": 18886.96, "end": 18890.34, "probability": 0.9656 }, { "start": 18891.12, "end": 18896.7, "probability": 0.9972 }, { "start": 18896.74, "end": 18898.28, "probability": 0.9477 }, { "start": 18899.62, "end": 18900.78, "probability": 0.8232 }, { "start": 18900.96, "end": 18903.98, "probability": 0.9896 }, { "start": 18904.04, "end": 18905.8, "probability": 0.9919 }, { "start": 18911.66, "end": 18914.08, "probability": 0.0681 }, { "start": 18914.08, "end": 18914.08, "probability": 0.0909 }, { "start": 18914.08, "end": 18914.62, "probability": 0.014 }, { "start": 18914.86, "end": 18915.38, "probability": 0.3129 }, { "start": 18915.64, "end": 18918.38, "probability": 0.8964 }, { "start": 18918.4, "end": 18921.5, "probability": 0.8946 }, { "start": 18924.68, "end": 18925.88, "probability": 0.8982 }, { "start": 18926.28, "end": 18927.62, "probability": 0.9756 }, { "start": 18927.66, "end": 18928.94, "probability": 0.994 }, { "start": 18928.98, "end": 18930.6, "probability": 0.9912 }, { "start": 18930.7, "end": 18931.16, "probability": 0.3817 }, { "start": 18933.72, "end": 18935.5, "probability": 0.8309 }, { "start": 18935.58, "end": 18940.62, "probability": 0.9714 }, { "start": 18940.74, "end": 18944.66, "probability": 0.7445 }, { "start": 18948.34, "end": 18953.42, "probability": 0.9766 }, { "start": 18954.36, "end": 18955.52, "probability": 0.769 }, { "start": 18956.24, "end": 18957.06, "probability": 0.8783 }, { "start": 18957.64, "end": 18958.56, "probability": 0.9111 }, { "start": 18960.0, "end": 18962.74, "probability": 0.989 }, { "start": 18963.08, "end": 18963.2, "probability": 0.7507 }, { "start": 18963.26, "end": 18967.16, "probability": 0.9802 }, { "start": 18967.36, "end": 18968.94, "probability": 0.6814 }, { "start": 18969.56, "end": 18970.24, "probability": 0.8523 }, { "start": 18971.16, "end": 18975.32, "probability": 0.9992 }, { "start": 18975.38, "end": 18980.88, "probability": 0.957 }, { "start": 18981.42, "end": 18982.18, "probability": 0.9079 }, { "start": 18982.6, "end": 18983.12, "probability": 0.7751 }, { "start": 18984.2, "end": 18985.14, "probability": 0.8796 }, { "start": 18985.74, "end": 18989.18, "probability": 0.8873 }, { "start": 18991.16, "end": 18995.16, "probability": 0.958 }, { "start": 18995.86, "end": 18996.02, "probability": 0.0028 }, { "start": 18996.02, "end": 18996.02, "probability": 0.0139 }, { "start": 18996.02, "end": 18996.02, "probability": 0.0256 }, { "start": 18996.02, "end": 18997.96, "probability": 0.8248 }, { "start": 18998.16, "end": 18998.64, "probability": 0.4797 }, { "start": 18998.84, "end": 18999.1, "probability": 0.4343 }, { "start": 18999.46, "end": 18999.9, "probability": 0.6411 }, { "start": 19004.92, "end": 19004.92, "probability": 0.0584 }, { "start": 19004.92, "end": 19004.92, "probability": 0.0551 }, { "start": 19004.92, "end": 19004.92, "probability": 0.0159 }, { "start": 19004.92, "end": 19004.94, "probability": 0.049 }, { "start": 19004.94, "end": 19004.98, "probability": 0.0862 }, { "start": 19017.08, "end": 19020.32, "probability": 0.6719 }, { "start": 19020.74, "end": 19024.62, "probability": 0.9792 }, { "start": 19024.62, "end": 19028.46, "probability": 0.972 }, { "start": 19029.06, "end": 19030.14, "probability": 0.9638 }, { "start": 19030.3, "end": 19032.88, "probability": 0.7229 }, { "start": 19033.2, "end": 19035.74, "probability": 0.9749 }, { "start": 19036.58, "end": 19036.68, "probability": 0.0293 }, { "start": 19036.68, "end": 19039.9, "probability": 0.5951 }, { "start": 19040.46, "end": 19043.34, "probability": 0.8164 }, { "start": 19058.12, "end": 19060.06, "probability": 0.8255 }, { "start": 19066.54, "end": 19067.18, "probability": 0.718 }, { "start": 19071.68, "end": 19072.62, "probability": 0.9385 }, { "start": 19073.36, "end": 19079.26, "probability": 0.9619 }, { "start": 19079.36, "end": 19081.89, "probability": 0.9976 }, { "start": 19082.06, "end": 19084.88, "probability": 0.999 }, { "start": 19087.33, "end": 19089.18, "probability": 0.9866 }, { "start": 19090.12, "end": 19093.84, "probability": 0.8846 }, { "start": 19094.02, "end": 19099.14, "probability": 0.9971 }, { "start": 19099.15, "end": 19102.96, "probability": 0.9939 }, { "start": 19103.62, "end": 19106.19, "probability": 0.9963 }, { "start": 19106.7, "end": 19110.0, "probability": 0.998 }, { "start": 19110.5, "end": 19111.24, "probability": 0.5767 }, { "start": 19112.08, "end": 19113.7, "probability": 0.9277 }, { "start": 19114.24, "end": 19115.18, "probability": 0.9941 }, { "start": 19115.2, "end": 19121.22, "probability": 0.97 }, { "start": 19122.26, "end": 19122.48, "probability": 0.0591 }, { "start": 19122.48, "end": 19122.48, "probability": 0.3817 }, { "start": 19122.48, "end": 19123.08, "probability": 0.5048 }, { "start": 19123.64, "end": 19126.6, "probability": 0.969 }, { "start": 19127.36, "end": 19127.64, "probability": 0.1275 }, { "start": 19127.64, "end": 19130.16, "probability": 0.9901 }, { "start": 19131.6, "end": 19132.14, "probability": 0.7768 }, { "start": 19132.48, "end": 19135.84, "probability": 0.9929 }, { "start": 19136.38, "end": 19136.88, "probability": 0.0249 }, { "start": 19136.88, "end": 19137.08, "probability": 0.0325 }, { "start": 19137.08, "end": 19137.08, "probability": 0.0308 }, { "start": 19137.08, "end": 19137.91, "probability": 0.3899 }, { "start": 19138.54, "end": 19139.38, "probability": 0.9299 }, { "start": 19139.66, "end": 19142.94, "probability": 0.9253 }, { "start": 19143.6, "end": 19145.96, "probability": 0.7433 }, { "start": 19146.12, "end": 19147.44, "probability": 0.8116 }, { "start": 19149.34, "end": 19149.34, "probability": 0.0053 }, { "start": 19149.34, "end": 19149.34, "probability": 0.0685 }, { "start": 19149.34, "end": 19151.9, "probability": 0.7143 }, { "start": 19153.38, "end": 19156.38, "probability": 0.9585 }, { "start": 19157.12, "end": 19159.48, "probability": 0.7919 }, { "start": 19160.06, "end": 19160.96, "probability": 0.7679 }, { "start": 19162.12, "end": 19165.98, "probability": 0.7551 }, { "start": 19166.76, "end": 19172.44, "probability": 0.941 }, { "start": 19173.04, "end": 19175.2, "probability": 0.7114 }, { "start": 19176.18, "end": 19179.18, "probability": 0.829 }, { "start": 19179.82, "end": 19183.26, "probability": 0.9741 }, { "start": 19183.78, "end": 19189.94, "probability": 0.9952 }, { "start": 19190.86, "end": 19193.48, "probability": 0.8618 }, { "start": 19193.84, "end": 19195.12, "probability": 0.8972 }, { "start": 19195.16, "end": 19196.76, "probability": 0.8207 }, { "start": 19196.88, "end": 19197.16, "probability": 0.7696 }, { "start": 19197.66, "end": 19199.36, "probability": 0.9774 }, { "start": 19199.4, "end": 19201.16, "probability": 0.9677 }, { "start": 19201.84, "end": 19205.42, "probability": 0.9365 }, { "start": 19206.1, "end": 19210.26, "probability": 0.9309 }, { "start": 19210.36, "end": 19212.34, "probability": 0.7763 }, { "start": 19212.46, "end": 19212.76, "probability": 0.8757 }, { "start": 19212.84, "end": 19213.22, "probability": 0.9183 }, { "start": 19213.32, "end": 19214.98, "probability": 0.9616 }, { "start": 19215.4, "end": 19216.3, "probability": 0.9763 }, { "start": 19216.66, "end": 19218.54, "probability": 0.9723 }, { "start": 19219.5, "end": 19220.84, "probability": 0.8737 }, { "start": 19221.36, "end": 19224.78, "probability": 0.8163 }, { "start": 19225.5, "end": 19229.3, "probability": 0.925 }, { "start": 19229.78, "end": 19230.22, "probability": 0.5377 }, { "start": 19230.74, "end": 19236.48, "probability": 0.7058 }, { "start": 19236.48, "end": 19236.54, "probability": 0.4254 }, { "start": 19236.54, "end": 19237.0, "probability": 0.3776 }, { "start": 19237.0, "end": 19237.7, "probability": 0.6031 }, { "start": 19238.18, "end": 19243.32, "probability": 0.8987 }, { "start": 19244.04, "end": 19244.47, "probability": 0.9019 }, { "start": 19245.74, "end": 19248.7, "probability": 0.7969 }, { "start": 19249.48, "end": 19249.7, "probability": 0.6445 }, { "start": 19249.8, "end": 19250.44, "probability": 0.5881 }, { "start": 19250.5, "end": 19250.92, "probability": 0.7038 }, { "start": 19251.14, "end": 19253.48, "probability": 0.8617 }, { "start": 19253.48, "end": 19258.42, "probability": 0.8513 }, { "start": 19258.5, "end": 19262.92, "probability": 0.9761 }, { "start": 19263.78, "end": 19269.3, "probability": 0.9379 }, { "start": 19269.94, "end": 19271.84, "probability": 0.7682 }, { "start": 19272.29, "end": 19275.86, "probability": 0.996 }, { "start": 19275.94, "end": 19280.3, "probability": 0.9944 }, { "start": 19281.66, "end": 19284.32, "probability": 0.7302 }, { "start": 19284.76, "end": 19291.32, "probability": 0.8048 }, { "start": 19291.84, "end": 19295.64, "probability": 0.9555 }, { "start": 19296.3, "end": 19302.48, "probability": 0.8408 }, { "start": 19302.6, "end": 19304.94, "probability": 0.7533 }, { "start": 19305.36, "end": 19308.88, "probability": 0.9441 }, { "start": 19309.1, "end": 19309.44, "probability": 0.5217 }, { "start": 19309.66, "end": 19309.94, "probability": 0.791 }, { "start": 19310.0, "end": 19311.98, "probability": 0.9668 }, { "start": 19312.4, "end": 19314.58, "probability": 0.9266 }, { "start": 19315.14, "end": 19318.16, "probability": 0.9964 }, { "start": 19318.16, "end": 19321.6, "probability": 0.8388 }, { "start": 19322.04, "end": 19328.06, "probability": 0.9149 }, { "start": 19328.06, "end": 19335.66, "probability": 0.8622 }, { "start": 19336.28, "end": 19337.4, "probability": 0.7884 }, { "start": 19338.0, "end": 19341.82, "probability": 0.9841 }, { "start": 19343.45, "end": 19345.14, "probability": 0.6949 }, { "start": 19345.24, "end": 19345.9, "probability": 0.8038 }, { "start": 19347.32, "end": 19347.54, "probability": 0.3282 }, { "start": 19348.08, "end": 19353.02, "probability": 0.4856 }, { "start": 19354.32, "end": 19356.32, "probability": 0.9472 }, { "start": 19356.86, "end": 19358.04, "probability": 0.9827 }, { "start": 19358.5, "end": 19360.72, "probability": 0.9938 }, { "start": 19360.82, "end": 19365.82, "probability": 0.9858 }, { "start": 19366.0, "end": 19366.66, "probability": 0.6302 }, { "start": 19366.78, "end": 19367.5, "probability": 0.9762 }, { "start": 19367.68, "end": 19369.14, "probability": 0.756 }, { "start": 19369.22, "end": 19370.4, "probability": 0.8375 }, { "start": 19370.52, "end": 19372.52, "probability": 0.8767 }, { "start": 19372.62, "end": 19372.86, "probability": 0.8525 }, { "start": 19373.2, "end": 19375.24, "probability": 0.7817 }, { "start": 19376.44, "end": 19377.78, "probability": 0.4703 }, { "start": 19378.7, "end": 19379.96, "probability": 0.4727 }, { "start": 19379.98, "end": 19380.98, "probability": 0.6093 }, { "start": 19406.08, "end": 19406.9, "probability": 0.4905 }, { "start": 19407.04, "end": 19408.1, "probability": 0.7731 }, { "start": 19408.28, "end": 19413.88, "probability": 0.9373 }, { "start": 19414.04, "end": 19416.4, "probability": 0.9859 }, { "start": 19416.4, "end": 19419.54, "probability": 0.9292 }, { "start": 19420.76, "end": 19424.24, "probability": 0.9942 }, { "start": 19424.44, "end": 19428.32, "probability": 0.8951 }, { "start": 19429.42, "end": 19432.46, "probability": 0.7484 }, { "start": 19433.16, "end": 19435.56, "probability": 0.0564 }, { "start": 19436.64, "end": 19436.74, "probability": 0.0908 }, { "start": 19439.12, "end": 19439.28, "probability": 0.3437 }, { "start": 19439.28, "end": 19439.28, "probability": 0.0515 }, { "start": 19439.28, "end": 19439.52, "probability": 0.0557 }, { "start": 19439.52, "end": 19440.92, "probability": 0.7644 }, { "start": 19441.06, "end": 19443.46, "probability": 0.639 }, { "start": 19447.68, "end": 19448.46, "probability": 0.0763 }, { "start": 19455.68, "end": 19456.1, "probability": 0.6264 }, { "start": 19458.34, "end": 19458.82, "probability": 0.0662 }, { "start": 19458.82, "end": 19458.82, "probability": 0.0643 }, { "start": 19458.82, "end": 19458.82, "probability": 0.0517 }, { "start": 19458.82, "end": 19458.92, "probability": 0.2011 }, { "start": 19460.88, "end": 19462.04, "probability": 0.5569 }, { "start": 19467.72, "end": 19472.22, "probability": 0.9476 }, { "start": 19473.48, "end": 19477.88, "probability": 0.8082 }, { "start": 19478.4, "end": 19481.2, "probability": 0.998 }, { "start": 19481.94, "end": 19484.38, "probability": 0.824 }, { "start": 19486.6, "end": 19489.88, "probability": 0.7886 }, { "start": 19490.06, "end": 19493.96, "probability": 0.8306 }, { "start": 19494.56, "end": 19497.42, "probability": 0.9513 }, { "start": 19499.72, "end": 19501.88, "probability": 0.9585 }, { "start": 19502.5, "end": 19504.72, "probability": 0.9243 }, { "start": 19504.9, "end": 19506.54, "probability": 0.9906 }, { "start": 19506.64, "end": 19506.88, "probability": 0.1746 }, { "start": 19506.88, "end": 19507.14, "probability": 0.3521 }, { "start": 19507.54, "end": 19509.1, "probability": 0.9938 }, { "start": 19510.08, "end": 19512.46, "probability": 0.9916 }, { "start": 19513.6, "end": 19514.2, "probability": 0.9523 }, { "start": 19514.3, "end": 19515.76, "probability": 0.9946 }, { "start": 19516.94, "end": 19518.92, "probability": 0.9194 }, { "start": 19519.04, "end": 19522.2, "probability": 0.9313 }, { "start": 19524.12, "end": 19530.2, "probability": 0.998 }, { "start": 19530.24, "end": 19534.14, "probability": 0.9613 }, { "start": 19534.94, "end": 19535.48, "probability": 0.6428 }, { "start": 19535.58, "end": 19537.96, "probability": 0.6121 }, { "start": 19538.78, "end": 19541.04, "probability": 0.8018 }, { "start": 19545.6, "end": 19547.0, "probability": 0.8918 }, { "start": 19549.04, "end": 19549.8, "probability": 0.756 }, { "start": 19550.4, "end": 19551.56, "probability": 0.7471 }, { "start": 19552.54, "end": 19553.6, "probability": 0.8697 }, { "start": 19553.6, "end": 19555.12, "probability": 0.9003 }, { "start": 19556.6, "end": 19560.42, "probability": 0.6871 }, { "start": 19561.46, "end": 19564.84, "probability": 0.7466 }, { "start": 19564.84, "end": 19568.46, "probability": 0.7685 }, { "start": 19569.12, "end": 19571.08, "probability": 0.9673 }, { "start": 19571.94, "end": 19572.88, "probability": 0.4538 }, { "start": 19574.18, "end": 19578.78, "probability": 0.9861 }, { "start": 19579.6, "end": 19581.42, "probability": 0.9308 }, { "start": 19582.22, "end": 19583.24, "probability": 0.7542 }, { "start": 19583.4, "end": 19584.44, "probability": 0.8735 }, { "start": 19584.56, "end": 19586.82, "probability": 0.5003 }, { "start": 19587.64, "end": 19590.02, "probability": 0.9873 }, { "start": 19590.98, "end": 19593.46, "probability": 0.8503 }, { "start": 19594.22, "end": 19597.46, "probability": 0.6633 }, { "start": 19597.46, "end": 19602.16, "probability": 0.7255 }, { "start": 19602.76, "end": 19606.22, "probability": 0.9832 }, { "start": 19606.76, "end": 19607.62, "probability": 0.704 }, { "start": 19607.86, "end": 19608.44, "probability": 0.8387 }, { "start": 19608.94, "end": 19610.78, "probability": 0.8272 }, { "start": 19611.8, "end": 19613.98, "probability": 0.9249 }, { "start": 19615.18, "end": 19616.92, "probability": 0.7779 }, { "start": 19616.96, "end": 19617.85, "probability": 0.6285 }, { "start": 19619.44, "end": 19621.72, "probability": 0.3461 }, { "start": 19621.8, "end": 19625.78, "probability": 0.5744 }, { "start": 19625.98, "end": 19625.98, "probability": 0.0166 }, { "start": 19625.98, "end": 19626.5, "probability": 0.5602 }, { "start": 19626.58, "end": 19627.1, "probability": 0.5993 }, { "start": 19627.14, "end": 19627.14, "probability": 0.2397 }, { "start": 19645.06, "end": 19645.82, "probability": 0.1832 }, { "start": 19647.52, "end": 19651.28, "probability": 0.2824 }, { "start": 19657.62, "end": 19660.94, "probability": 0.0403 }, { "start": 19661.11, "end": 19661.86, "probability": 0.0214 }, { "start": 19661.86, "end": 19661.98, "probability": 0.0276 }, { "start": 19662.24, "end": 19663.58, "probability": 0.1141 }, { "start": 19664.5, "end": 19664.72, "probability": 0.0139 }, { "start": 19665.3, "end": 19665.36, "probability": 0.1003 }, { "start": 19679.96, "end": 19682.41, "probability": 0.0299 }, { "start": 19683.85, "end": 19684.94, "probability": 0.0182 }, { "start": 19685.34, "end": 19687.04, "probability": 0.2288 }, { "start": 19688.31, "end": 19689.08, "probability": 0.0373 }, { "start": 19689.8, "end": 19693.5, "probability": 0.0687 }, { "start": 19713.0, "end": 19713.0, "probability": 0.0 }, { "start": 19713.0, "end": 19713.0, "probability": 0.0 }, { "start": 19713.0, "end": 19713.0, "probability": 0.0 }, { "start": 19713.0, "end": 19713.0, "probability": 0.0 }, { "start": 19713.0, "end": 19713.0, "probability": 0.0 }, { "start": 19713.0, "end": 19713.0, "probability": 0.0 }, { "start": 19713.0, "end": 19713.0, "probability": 0.0 }, { "start": 19713.0, "end": 19713.0, "probability": 0.0 }, { "start": 19713.0, "end": 19713.0, "probability": 0.0 }, { "start": 19713.0, "end": 19713.0, "probability": 0.0 }, { "start": 19713.0, "end": 19713.0, "probability": 0.0 }, { "start": 19713.0, "end": 19713.0, "probability": 0.0 }, { "start": 19713.0, "end": 19713.0, "probability": 0.0 }, { "start": 19713.0, "end": 19713.0, "probability": 0.0 }, { "start": 19713.0, "end": 19713.0, "probability": 0.0 }, { "start": 19713.0, "end": 19713.0, "probability": 0.0 }, { "start": 19713.0, "end": 19713.0, "probability": 0.0 }, { "start": 19713.0, "end": 19713.0, "probability": 0.0 }, { "start": 19713.0, "end": 19713.0, "probability": 0.0 }, { "start": 19713.0, "end": 19713.0, "probability": 0.0 }, { "start": 19713.0, "end": 19713.0, "probability": 0.0 }, { "start": 19713.0, "end": 19713.0, "probability": 0.0 }, { "start": 19713.0, "end": 19713.0, "probability": 0.0 }, { "start": 19713.0, "end": 19713.0, "probability": 0.0 }, { "start": 19713.0, "end": 19713.0, "probability": 0.0 }, { "start": 19713.0, "end": 19713.0, "probability": 0.0 }, { "start": 19713.0, "end": 19713.0, "probability": 0.0 }, { "start": 19713.0, "end": 19713.0, "probability": 0.0 }, { "start": 19713.0, "end": 19713.0, "probability": 0.0 }, { "start": 19713.22, "end": 19714.18, "probability": 0.7303 }, { "start": 19715.04, "end": 19720.1, "probability": 0.9433 }, { "start": 19721.18, "end": 19721.64, "probability": 0.4881 }, { "start": 19723.44, "end": 19725.96, "probability": 0.827 }, { "start": 19727.22, "end": 19731.62, "probability": 0.891 }, { "start": 19732.57, "end": 19738.38, "probability": 0.9962 }, { "start": 19739.06, "end": 19739.84, "probability": 0.6841 }, { "start": 19740.58, "end": 19743.34, "probability": 0.8486 }, { "start": 19744.7, "end": 19751.52, "probability": 0.9979 }, { "start": 19752.58, "end": 19755.1, "probability": 0.9199 }, { "start": 19755.42, "end": 19757.58, "probability": 0.682 }, { "start": 19758.82, "end": 19760.54, "probability": 0.7791 }, { "start": 19761.44, "end": 19765.56, "probability": 0.9016 }, { "start": 19767.42, "end": 19768.18, "probability": 0.7694 }, { "start": 19769.12, "end": 19771.52, "probability": 0.9073 }, { "start": 19772.16, "end": 19772.9, "probability": 0.8933 }, { "start": 19777.74, "end": 19777.74, "probability": 0.6584 }, { "start": 19777.74, "end": 19777.74, "probability": 0.0606 }, { "start": 19777.74, "end": 19778.16, "probability": 0.5285 }, { "start": 19779.6, "end": 19780.4, "probability": 0.6384 }, { "start": 19780.56, "end": 19780.94, "probability": 0.9309 }, { "start": 19782.76, "end": 19783.86, "probability": 0.7475 }, { "start": 19784.42, "end": 19785.38, "probability": 0.9695 }, { "start": 19785.96, "end": 19792.52, "probability": 0.9928 }, { "start": 19793.36, "end": 19794.34, "probability": 0.9888 }, { "start": 19795.58, "end": 19795.78, "probability": 0.8817 }, { "start": 19796.5, "end": 19799.38, "probability": 0.9655 }, { "start": 19799.5, "end": 19802.8, "probability": 0.9746 }, { "start": 19803.6, "end": 19804.82, "probability": 0.9764 }, { "start": 19806.43, "end": 19808.12, "probability": 0.9093 }, { "start": 19808.24, "end": 19810.94, "probability": 0.8269 }, { "start": 19812.78, "end": 19816.76, "probability": 0.7098 }, { "start": 19817.64, "end": 19820.36, "probability": 0.9395 }, { "start": 19821.96, "end": 19822.02, "probability": 0.9116 }, { "start": 19822.62, "end": 19826.6, "probability": 0.9851 }, { "start": 19827.9, "end": 19829.26, "probability": 0.9683 }, { "start": 19829.9, "end": 19832.28, "probability": 0.96 }, { "start": 19833.14, "end": 19834.22, "probability": 0.9758 }, { "start": 19835.02, "end": 19835.98, "probability": 0.9886 }, { "start": 19836.78, "end": 19837.5, "probability": 0.8221 }, { "start": 19838.34, "end": 19839.46, "probability": 0.9282 }, { "start": 19840.04, "end": 19841.94, "probability": 0.9929 }, { "start": 19842.02, "end": 19843.88, "probability": 0.9927 }, { "start": 19844.02, "end": 19846.36, "probability": 0.8751 }, { "start": 19848.16, "end": 19850.16, "probability": 0.9985 }, { "start": 19851.16, "end": 19853.6, "probability": 0.9844 }, { "start": 19855.12, "end": 19857.6, "probability": 0.7754 }, { "start": 19857.8, "end": 19859.3, "probability": 0.1173 }, { "start": 19859.48, "end": 19859.7, "probability": 0.5069 }, { "start": 19859.7, "end": 19860.26, "probability": 0.1606 }, { "start": 19860.3, "end": 19860.84, "probability": 0.064 }, { "start": 19860.84, "end": 19862.38, "probability": 0.5984 }, { "start": 19862.68, "end": 19864.42, "probability": 0.949 }, { "start": 19864.5, "end": 19865.41, "probability": 0.9849 }, { "start": 19865.48, "end": 19866.86, "probability": 0.9431 }, { "start": 19867.46, "end": 19868.68, "probability": 0.9673 }, { "start": 19868.78, "end": 19870.76, "probability": 0.9328 }, { "start": 19870.88, "end": 19871.79, "probability": 0.9861 }, { "start": 19872.02, "end": 19872.56, "probability": 0.8346 }, { "start": 19872.74, "end": 19874.48, "probability": 0.6892 }, { "start": 19874.94, "end": 19877.62, "probability": 0.8636 }, { "start": 19877.62, "end": 19881.1, "probability": 0.9266 }, { "start": 19881.18, "end": 19882.26, "probability": 0.4092 }, { "start": 19882.36, "end": 19883.02, "probability": 0.9471 }, { "start": 19883.1, "end": 19886.66, "probability": 0.9959 }, { "start": 19887.22, "end": 19887.62, "probability": 0.5285 }, { "start": 19887.68, "end": 19888.76, "probability": 0.9727 }, { "start": 19888.88, "end": 19893.02, "probability": 0.9837 }, { "start": 19893.02, "end": 19893.3, "probability": 0.0988 }, { "start": 19893.44, "end": 19894.52, "probability": 0.8622 }, { "start": 19894.96, "end": 19895.58, "probability": 0.7818 }, { "start": 19895.64, "end": 19899.08, "probability": 0.978 }, { "start": 19899.08, "end": 19904.68, "probability": 0.9769 }, { "start": 19905.22, "end": 19906.9, "probability": 0.7577 }, { "start": 19907.62, "end": 19907.64, "probability": 0.4061 }, { "start": 19907.96, "end": 19909.48, "probability": 0.9718 }, { "start": 19910.14, "end": 19913.9, "probability": 0.9873 }, { "start": 19914.12, "end": 19915.64, "probability": 0.9453 }, { "start": 19916.32, "end": 19917.62, "probability": 0.0167 }, { "start": 19917.66, "end": 19918.96, "probability": 0.6059 }, { "start": 19919.54, "end": 19921.12, "probability": 0.8889 }, { "start": 19921.3, "end": 19922.08, "probability": 0.9623 }, { "start": 19922.7, "end": 19924.58, "probability": 0.0019 }, { "start": 19927.3, "end": 19931.0, "probability": 0.3031 }, { "start": 19931.4, "end": 19932.7, "probability": 0.7832 }, { "start": 19933.16, "end": 19933.36, "probability": 0.1 }, { "start": 19933.36, "end": 19933.86, "probability": 0.5909 }, { "start": 19934.04, "end": 19934.76, "probability": 0.6286 }, { "start": 19934.94, "end": 19935.16, "probability": 0.6004 }, { "start": 19936.18, "end": 19937.12, "probability": 0.6545 }, { "start": 19937.94, "end": 19937.94, "probability": 0.0536 }, { "start": 19938.26, "end": 19939.3, "probability": 0.333 }, { "start": 19941.82, "end": 19942.36, "probability": 0.2585 }, { "start": 19942.36, "end": 19942.78, "probability": 0.034 }, { "start": 19954.14, "end": 19955.38, "probability": 0.0757 }, { "start": 19955.38, "end": 19956.52, "probability": 0.0454 }, { "start": 19956.52, "end": 19956.68, "probability": 0.0535 }, { "start": 19958.0, "end": 19959.08, "probability": 0.5096 }, { "start": 19966.92, "end": 19967.52, "probability": 0.0471 }, { "start": 19967.52, "end": 19967.86, "probability": 0.2209 }, { "start": 19967.86, "end": 19968.44, "probability": 0.2941 }, { "start": 19968.82, "end": 19969.04, "probability": 0.5128 }, { "start": 19970.16, "end": 19971.08, "probability": 0.2978 }, { "start": 19971.08, "end": 19971.42, "probability": 0.2989 }, { "start": 19979.93, "end": 19981.4, "probability": 0.0942 }, { "start": 19981.8, "end": 19982.68, "probability": 0.0098 }, { "start": 19994.84, "end": 19995.6, "probability": 0.1527 }, { "start": 19996.68, "end": 19997.26, "probability": 0.0015 }, { "start": 19998.9, "end": 19999.62, "probability": 0.092 }, { "start": 20000.56, "end": 20004.2, "probability": 0.0456 }, { "start": 20025.0, "end": 20025.0, "probability": 0.0 }, { "start": 20025.0, "end": 20025.0, "probability": 0.0 }, { "start": 20025.0, "end": 20025.0, "probability": 0.0 }, { "start": 20025.0, "end": 20025.0, "probability": 0.0 }, { "start": 20025.0, "end": 20025.0, "probability": 0.0 }, { "start": 20025.0, "end": 20025.0, "probability": 0.0 }, { "start": 20025.0, "end": 20025.0, "probability": 0.0 }, { "start": 20025.0, "end": 20025.0, "probability": 0.0 }, { "start": 20025.0, "end": 20025.0, "probability": 0.0 }, { "start": 20025.0, "end": 20025.0, "probability": 0.0 }, { "start": 20025.0, "end": 20025.0, "probability": 0.0 }, { "start": 20025.0, "end": 20025.0, "probability": 0.0 }, { "start": 20025.0, "end": 20025.0, "probability": 0.0 }, { "start": 20025.0, "end": 20025.0, "probability": 0.0 }, { "start": 20025.0, "end": 20025.0, "probability": 0.0 }, { "start": 20025.0, "end": 20025.0, "probability": 0.0 }, { "start": 20025.0, "end": 20025.0, "probability": 0.0 }, { "start": 20025.0, "end": 20025.0, "probability": 0.0 }, { "start": 20025.0, "end": 20025.0, "probability": 0.0 }, { "start": 20025.0, "end": 20025.0, "probability": 0.0 }, { "start": 20025.26, "end": 20026.48, "probability": 0.6207 }, { "start": 20027.42, "end": 20028.98, "probability": 0.3249 }, { "start": 20028.98, "end": 20029.14, "probability": 0.5837 }, { "start": 20029.42, "end": 20030.16, "probability": 0.7618 }, { "start": 20031.04, "end": 20031.48, "probability": 0.4004 }, { "start": 20031.66, "end": 20032.08, "probability": 0.397 }, { "start": 20033.04, "end": 20033.76, "probability": 0.9774 }, { "start": 20033.96, "end": 20035.94, "probability": 0.985 }, { "start": 20036.8, "end": 20037.54, "probability": 0.8894 }, { "start": 20037.98, "end": 20039.83, "probability": 0.9929 }, { "start": 20040.98, "end": 20042.72, "probability": 0.7751 }, { "start": 20044.74, "end": 20046.34, "probability": 0.3585 }, { "start": 20048.24, "end": 20049.96, "probability": 0.2978 }, { "start": 20053.44, "end": 20053.72, "probability": 0.4502 }, { "start": 20055.06, "end": 20055.78, "probability": 0.5799 }, { "start": 20058.44, "end": 20059.12, "probability": 0.4028 }, { "start": 20059.9, "end": 20060.88, "probability": 0.9863 }, { "start": 20061.56, "end": 20063.8, "probability": 0.9404 }, { "start": 20064.38, "end": 20067.02, "probability": 0.7173 }, { "start": 20067.24, "end": 20068.1, "probability": 0.0914 }, { "start": 20068.62, "end": 20072.24, "probability": 0.5185 }, { "start": 20072.94, "end": 20074.58, "probability": 0.0746 }, { "start": 20074.58, "end": 20074.58, "probability": 0.0244 }, { "start": 20074.58, "end": 20075.92, "probability": 0.2806 }, { "start": 20075.92, "end": 20075.92, "probability": 0.2026 }, { "start": 20075.92, "end": 20076.64, "probability": 0.304 }, { "start": 20076.82, "end": 20077.38, "probability": 0.4987 }, { "start": 20077.78, "end": 20079.14, "probability": 0.0604 }, { "start": 20081.66, "end": 20081.82, "probability": 0.0044 }, { "start": 20085.4, "end": 20085.84, "probability": 0.5542 }, { "start": 20092.96, "end": 20096.2, "probability": 0.1762 }, { "start": 20096.8, "end": 20097.84, "probability": 0.0181 }, { "start": 20116.1, "end": 20117.0, "probability": 0.0752 }, { "start": 20117.92, "end": 20118.0, "probability": 0.0154 }, { "start": 20122.16, "end": 20124.12, "probability": 0.102 }, { "start": 20124.12, "end": 20125.54, "probability": 0.131 }, { "start": 20125.62, "end": 20127.46, "probability": 0.202 }, { "start": 20150.0, "end": 20150.0, "probability": 0.0 }, { "start": 20150.0, "end": 20150.0, "probability": 0.0 }, { "start": 20150.0, "end": 20150.0, "probability": 0.0 }, { "start": 20150.0, "end": 20150.0, "probability": 0.0 }, { "start": 20150.0, "end": 20150.0, "probability": 0.0 }, { "start": 20150.0, "end": 20150.0, "probability": 0.0 }, { "start": 20150.0, "end": 20150.0, "probability": 0.0 }, { "start": 20150.0, "end": 20150.0, "probability": 0.0 }, { "start": 20150.0, "end": 20150.0, "probability": 0.0 }, { "start": 20150.0, "end": 20150.0, "probability": 0.0 }, { "start": 20150.0, "end": 20150.0, "probability": 0.0 }, { "start": 20150.0, "end": 20150.0, "probability": 0.0 }, { "start": 20150.0, "end": 20150.0, "probability": 0.0 }, { "start": 20150.0, "end": 20150.0, "probability": 0.0 }, { "start": 20150.0, "end": 20150.0, "probability": 0.0 }, { "start": 20150.0, "end": 20150.0, "probability": 0.0 }, { "start": 20150.0, "end": 20150.0, "probability": 0.0 }, { "start": 20150.0, "end": 20150.0, "probability": 0.0 }, { "start": 20150.0, "end": 20150.0, "probability": 0.0 }, { "start": 20150.0, "end": 20150.0, "probability": 0.0 }, { "start": 20150.0, "end": 20150.0, "probability": 0.0 }, { "start": 20150.0, "end": 20150.0, "probability": 0.0 }, { "start": 20150.0, "end": 20150.0, "probability": 0.0 }, { "start": 20150.0, "end": 20150.0, "probability": 0.0 }, { "start": 20150.0, "end": 20150.0, "probability": 0.0 }, { "start": 20150.16, "end": 20151.04, "probability": 0.0822 }, { "start": 20151.7, "end": 20155.98, "probability": 0.9816 }, { "start": 20156.92, "end": 20162.54, "probability": 0.9978 }, { "start": 20162.54, "end": 20168.18, "probability": 0.9967 }, { "start": 20168.18, "end": 20175.26, "probability": 0.9972 }, { "start": 20176.2, "end": 20179.16, "probability": 0.9968 }, { "start": 20179.86, "end": 20181.96, "probability": 0.9568 }, { "start": 20182.94, "end": 20185.16, "probability": 0.9867 }, { "start": 20186.04, "end": 20191.12, "probability": 0.9526 }, { "start": 20191.12, "end": 20196.3, "probability": 0.9716 }, { "start": 20196.88, "end": 20198.96, "probability": 0.9445 }, { "start": 20199.88, "end": 20202.92, "probability": 0.993 }, { "start": 20202.92, "end": 20207.06, "probability": 0.9943 }, { "start": 20207.72, "end": 20210.3, "probability": 0.9844 }, { "start": 20210.82, "end": 20214.23, "probability": 0.6726 }, { "start": 20216.12, "end": 20216.12, "probability": 0.0388 }, { "start": 20216.12, "end": 20216.12, "probability": 0.1813 }, { "start": 20216.12, "end": 20216.12, "probability": 0.0345 }, { "start": 20216.12, "end": 20219.04, "probability": 0.63 }, { "start": 20220.54, "end": 20227.62, "probability": 0.9702 }, { "start": 20227.62, "end": 20234.78, "probability": 0.9733 }, { "start": 20235.36, "end": 20237.48, "probability": 0.9588 }, { "start": 20238.2, "end": 20240.92, "probability": 0.9326 }, { "start": 20242.04, "end": 20247.62, "probability": 0.9956 }, { "start": 20247.62, "end": 20252.74, "probability": 0.9968 }, { "start": 20253.26, "end": 20254.56, "probability": 0.7295 }, { "start": 20255.14, "end": 20260.98, "probability": 0.9968 }, { "start": 20261.92, "end": 20262.04, "probability": 0.1559 }, { "start": 20262.04, "end": 20267.48, "probability": 0.9363 }, { "start": 20268.34, "end": 20273.36, "probability": 0.9926 }, { "start": 20273.94, "end": 20275.64, "probability": 0.9907 }, { "start": 20276.26, "end": 20278.76, "probability": 0.9164 }, { "start": 20279.24, "end": 20284.16, "probability": 0.0167 }, { "start": 20288.9, "end": 20289.8, "probability": 0.1826 }, { "start": 20291.42, "end": 20294.56, "probability": 0.0173 }, { "start": 20294.56, "end": 20294.56, "probability": 0.0166 }, { "start": 20294.56, "end": 20294.56, "probability": 0.1122 }, { "start": 20294.56, "end": 20294.56, "probability": 0.1489 }, { "start": 20294.56, "end": 20298.28, "probability": 0.3171 }, { "start": 20298.28, "end": 20303.2, "probability": 0.9764 }, { "start": 20303.7, "end": 20307.48, "probability": 0.9957 }, { "start": 20308.24, "end": 20308.84, "probability": 0.7639 }, { "start": 20309.8, "end": 20315.04, "probability": 0.142 }, { "start": 20315.04, "end": 20315.04, "probability": 0.6003 }, { "start": 20315.04, "end": 20317.4, "probability": 0.2152 }, { "start": 20318.68, "end": 20319.3, "probability": 0.2467 }, { "start": 20323.0, "end": 20325.76, "probability": 0.0683 }, { "start": 20325.87, "end": 20325.96, "probability": 0.0334 }, { "start": 20326.0, "end": 20326.12, "probability": 0.0625 }, { "start": 20326.12, "end": 20326.69, "probability": 0.4974 }, { "start": 20327.1, "end": 20329.29, "probability": 0.8356 }, { "start": 20330.2, "end": 20332.02, "probability": 0.5157 }, { "start": 20332.52, "end": 20334.7, "probability": 0.8515 }, { "start": 20334.76, "end": 20336.34, "probability": 0.8297 }, { "start": 20336.88, "end": 20337.54, "probability": 0.4932 }, { "start": 20337.64, "end": 20337.86, "probability": 0.5118 }, { "start": 20337.92, "end": 20339.48, "probability": 0.9588 }, { "start": 20340.62, "end": 20341.26, "probability": 0.925 }, { "start": 20341.88, "end": 20342.66, "probability": 0.9932 }, { "start": 20345.12, "end": 20347.48, "probability": 0.8632 }, { "start": 20348.44, "end": 20351.98, "probability": 0.976 }, { "start": 20351.98, "end": 20356.24, "probability": 0.9992 }, { "start": 20356.42, "end": 20357.46, "probability": 0.8507 }, { "start": 20357.76, "end": 20359.76, "probability": 0.8989 }, { "start": 20360.4, "end": 20362.34, "probability": 0.8114 }, { "start": 20362.96, "end": 20363.8, "probability": 0.107 }, { "start": 20363.98, "end": 20364.1, "probability": 0.1529 }, { "start": 20364.1, "end": 20365.22, "probability": 0.8089 }, { "start": 20365.98, "end": 20367.34, "probability": 0.6484 }, { "start": 20367.74, "end": 20369.66, "probability": 0.6079 }, { "start": 20370.16, "end": 20371.82, "probability": 0.9453 }, { "start": 20372.38, "end": 20372.58, "probability": 0.4824 }, { "start": 20372.58, "end": 20374.26, "probability": 0.9312 }, { "start": 20375.0, "end": 20376.0, "probability": 0.7169 }, { "start": 20376.0, "end": 20376.7, "probability": 0.8086 }, { "start": 20377.16, "end": 20380.6, "probability": 0.9932 }, { "start": 20381.02, "end": 20384.54, "probability": 0.9922 }, { "start": 20384.84, "end": 20385.34, "probability": 0.8015 }, { "start": 20385.5, "end": 20386.46, "probability": 0.9295 }, { "start": 20386.56, "end": 20386.98, "probability": 0.8569 }, { "start": 20387.08, "end": 20387.92, "probability": 0.8891 }, { "start": 20388.48, "end": 20389.22, "probability": 0.9052 }, { "start": 20390.44, "end": 20392.12, "probability": 0.9019 }, { "start": 20392.24, "end": 20395.1, "probability": 0.9669 }, { "start": 20395.52, "end": 20395.92, "probability": 0.8082 }, { "start": 20396.48, "end": 20397.66, "probability": 0.908 }, { "start": 20398.66, "end": 20401.18, "probability": 0.9816 }, { "start": 20401.34, "end": 20403.22, "probability": 0.905 }, { "start": 20403.96, "end": 20406.24, "probability": 0.8352 }, { "start": 20406.66, "end": 20407.68, "probability": 0.7839 }, { "start": 20408.36, "end": 20409.12, "probability": 0.7149 }, { "start": 20409.14, "end": 20410.32, "probability": 0.996 }, { "start": 20410.4, "end": 20410.68, "probability": 0.647 }, { "start": 20411.16, "end": 20413.22, "probability": 0.9663 }, { "start": 20413.94, "end": 20417.62, "probability": 0.5495 }, { "start": 20418.32, "end": 20419.28, "probability": 0.768 }, { "start": 20425.43, "end": 20427.0, "probability": 0.0368 }, { "start": 20427.72, "end": 20428.98, "probability": 0.4529 }, { "start": 20429.02, "end": 20429.5, "probability": 0.7997 }, { "start": 20430.36, "end": 20431.62, "probability": 0.7668 }, { "start": 20431.66, "end": 20437.02, "probability": 0.9827 }, { "start": 20437.6, "end": 20438.7, "probability": 0.9194 }, { "start": 20439.18, "end": 20443.26, "probability": 0.9954 }, { "start": 20443.28, "end": 20444.5, "probability": 0.9785 }, { "start": 20446.1, "end": 20448.84, "probability": 0.9972 }, { "start": 20448.98, "end": 20450.85, "probability": 0.835 }, { "start": 20451.36, "end": 20453.16, "probability": 0.9367 }, { "start": 20453.6, "end": 20455.94, "probability": 0.7557 }, { "start": 20456.5, "end": 20456.82, "probability": 0.3045 }, { "start": 20456.88, "end": 20458.02, "probability": 0.881 }, { "start": 20458.08, "end": 20459.32, "probability": 0.7681 }, { "start": 20459.62, "end": 20463.14, "probability": 0.8739 }, { "start": 20463.36, "end": 20464.2, "probability": 0.6028 }, { "start": 20464.62, "end": 20467.92, "probability": 0.9712 }, { "start": 20468.88, "end": 20473.96, "probability": 0.9737 }, { "start": 20474.94, "end": 20479.42, "probability": 0.9966 }, { "start": 20479.78, "end": 20480.56, "probability": 0.6578 }, { "start": 20480.92, "end": 20481.88, "probability": 0.6754 }, { "start": 20482.46, "end": 20484.78, "probability": 0.9248 }, { "start": 20485.1, "end": 20486.52, "probability": 0.9695 }, { "start": 20486.8, "end": 20488.42, "probability": 0.7819 }, { "start": 20488.76, "end": 20492.2, "probability": 0.9609 }, { "start": 20492.2, "end": 20494.24, "probability": 0.9974 }, { "start": 20494.86, "end": 20498.5, "probability": 0.8185 }, { "start": 20498.54, "end": 20498.98, "probability": 0.7064 }, { "start": 20499.5, "end": 20503.3, "probability": 0.9404 }, { "start": 20503.4, "end": 20504.14, "probability": 0.0725 }, { "start": 20504.58, "end": 20507.86, "probability": 0.5266 }, { "start": 20507.86, "end": 20509.46, "probability": 0.3336 }, { "start": 20509.6, "end": 20510.66, "probability": 0.4917 }, { "start": 20512.38, "end": 20514.06, "probability": 0.593 }, { "start": 20514.1, "end": 20514.76, "probability": 0.8583 }, { "start": 20514.96, "end": 20515.82, "probability": 0.7607 }, { "start": 20523.26, "end": 20523.58, "probability": 0.4567 }, { "start": 20524.84, "end": 20525.26, "probability": 0.1818 }, { "start": 20526.95, "end": 20531.06, "probability": 0.0712 }, { "start": 20531.06, "end": 20532.26, "probability": 0.0364 }, { "start": 20532.86, "end": 20537.52, "probability": 0.0418 }, { "start": 20537.52, "end": 20538.4, "probability": 0.2231 }, { "start": 20539.4, "end": 20539.4, "probability": 0.1021 }, { "start": 20539.4, "end": 20539.4, "probability": 0.0793 }, { "start": 20539.4, "end": 20541.08, "probability": 0.6479 }, { "start": 20541.5, "end": 20545.9, "probability": 0.687 }, { "start": 20546.08, "end": 20550.22, "probability": 0.8098 }, { "start": 20550.26, "end": 20551.54, "probability": 0.9219 }, { "start": 20551.9, "end": 20554.96, "probability": 0.9874 }, { "start": 20554.98, "end": 20555.14, "probability": 0.9143 }, { "start": 20560.22, "end": 20560.96, "probability": 0.7027 }, { "start": 20562.48, "end": 20565.78, "probability": 0.6492 }, { "start": 20566.92, "end": 20567.48, "probability": 0.5514 }, { "start": 20568.2, "end": 20569.16, "probability": 0.9125 }, { "start": 20569.18, "end": 20570.24, "probability": 0.9482 }, { "start": 20570.26, "end": 20570.54, "probability": 0.9394 }, { "start": 20570.6, "end": 20571.74, "probability": 0.8922 }, { "start": 20572.32, "end": 20572.8, "probability": 0.5684 }, { "start": 20573.82, "end": 20575.22, "probability": 0.9377 }, { "start": 20575.3, "end": 20576.38, "probability": 0.4181 }, { "start": 20576.7, "end": 20578.36, "probability": 0.7179 }, { "start": 20582.08, "end": 20586.38, "probability": 0.2825 }, { "start": 20586.42, "end": 20587.42, "probability": 0.7497 }, { "start": 20587.52, "end": 20588.52, "probability": 0.528 }, { "start": 20588.68, "end": 20589.06, "probability": 0.4705 }, { "start": 20589.14, "end": 20589.98, "probability": 0.8638 }, { "start": 20590.04, "end": 20593.42, "probability": 0.7004 }, { "start": 20593.6, "end": 20594.58, "probability": 0.9691 }, { "start": 20595.81, "end": 20597.74, "probability": 0.9603 }, { "start": 20599.44, "end": 20605.12, "probability": 0.963 }, { "start": 20606.4, "end": 20608.16, "probability": 0.7717 }, { "start": 20609.2, "end": 20611.86, "probability": 0.9211 }, { "start": 20612.88, "end": 20614.66, "probability": 0.9714 }, { "start": 20615.3, "end": 20618.96, "probability": 0.9171 }, { "start": 20618.96, "end": 20621.9, "probability": 0.9966 }, { "start": 20622.92, "end": 20627.22, "probability": 0.981 }, { "start": 20628.06, "end": 20634.64, "probability": 0.9972 }, { "start": 20634.64, "end": 20639.62, "probability": 0.9482 }, { "start": 20640.2, "end": 20642.14, "probability": 0.9834 }, { "start": 20642.72, "end": 20643.92, "probability": 0.955 }, { "start": 20644.68, "end": 20650.12, "probability": 0.9966 }, { "start": 20650.12, "end": 20655.96, "probability": 0.9958 }, { "start": 20655.96, "end": 20660.56, "probability": 0.9998 }, { "start": 20661.08, "end": 20662.94, "probability": 0.6703 }, { "start": 20663.82, "end": 20666.2, "probability": 0.9987 }, { "start": 20666.2, "end": 20669.9, "probability": 0.9865 }, { "start": 20670.88, "end": 20671.92, "probability": 0.7741 }, { "start": 20673.34, "end": 20674.4, "probability": 0.9326 }, { "start": 20675.08, "end": 20678.36, "probability": 0.9868 }, { "start": 20678.88, "end": 20680.52, "probability": 0.9909 }, { "start": 20681.0, "end": 20683.2, "probability": 0.9935 }, { "start": 20683.8, "end": 20685.72, "probability": 0.9971 }, { "start": 20686.26, "end": 20690.98, "probability": 0.9966 }, { "start": 20691.66, "end": 20696.18, "probability": 0.9984 }, { "start": 20696.84, "end": 20701.16, "probability": 0.9988 }, { "start": 20701.38, "end": 20705.16, "probability": 0.9729 }, { "start": 20705.64, "end": 20709.02, "probability": 0.9782 }, { "start": 20709.62, "end": 20714.34, "probability": 0.9961 }, { "start": 20715.36, "end": 20720.94, "probability": 0.9985 }, { "start": 20720.94, "end": 20726.22, "probability": 0.9985 }, { "start": 20726.98, "end": 20729.02, "probability": 0.729 }, { "start": 20729.6, "end": 20730.28, "probability": 0.8273 }, { "start": 20730.42, "end": 20731.4, "probability": 0.8792 }, { "start": 20731.86, "end": 20735.34, "probability": 0.9326 }, { "start": 20736.2, "end": 20741.88, "probability": 0.9266 }, { "start": 20742.28, "end": 20744.26, "probability": 0.9979 }, { "start": 20744.92, "end": 20745.7, "probability": 0.629 }, { "start": 20745.88, "end": 20750.7, "probability": 0.888 }, { "start": 20751.06, "end": 20755.1, "probability": 0.9871 }, { "start": 20755.1, "end": 20760.38, "probability": 0.9941 }, { "start": 20760.78, "end": 20761.96, "probability": 0.7242 }, { "start": 20762.72, "end": 20766.74, "probability": 0.9875 }, { "start": 20767.46, "end": 20768.46, "probability": 0.8737 }, { "start": 20769.16, "end": 20770.04, "probability": 0.9891 }, { "start": 20770.26, "end": 20771.4, "probability": 0.7586 }, { "start": 20771.84, "end": 20774.86, "probability": 0.9985 }, { "start": 20776.74, "end": 20779.24, "probability": 0.9984 }, { "start": 20779.26, "end": 20779.52, "probability": 0.5862 }, { "start": 20780.56, "end": 20782.14, "probability": 0.6684 }, { "start": 20782.22, "end": 20785.72, "probability": 0.929 }, { "start": 20793.62, "end": 20795.74, "probability": 0.8208 }, { "start": 20801.5, "end": 20802.5, "probability": 0.6353 }, { "start": 20803.4, "end": 20804.68, "probability": 0.7786 }, { "start": 20805.82, "end": 20807.3, "probability": 0.9073 }, { "start": 20807.66, "end": 20809.59, "probability": 0.9442 }, { "start": 20811.4, "end": 20818.8, "probability": 0.9705 }, { "start": 20819.5, "end": 20824.3, "probability": 0.7887 }, { "start": 20825.14, "end": 20826.86, "probability": 0.7999 }, { "start": 20827.74, "end": 20829.88, "probability": 0.9908 }, { "start": 20831.26, "end": 20834.22, "probability": 0.9336 }, { "start": 20835.08, "end": 20836.44, "probability": 0.9976 }, { "start": 20838.04, "end": 20839.52, "probability": 0.7141 }, { "start": 20840.2, "end": 20840.56, "probability": 0.7141 }, { "start": 20841.1, "end": 20847.38, "probability": 0.8875 }, { "start": 20847.94, "end": 20850.32, "probability": 0.9941 }, { "start": 20850.86, "end": 20851.24, "probability": 0.9259 }, { "start": 20851.8, "end": 20854.6, "probability": 0.9512 }, { "start": 20855.24, "end": 20856.7, "probability": 0.8623 }, { "start": 20857.3, "end": 20858.4, "probability": 0.632 }, { "start": 20860.18, "end": 20863.96, "probability": 0.9901 }, { "start": 20864.5, "end": 20865.58, "probability": 0.9087 }, { "start": 20865.76, "end": 20866.4, "probability": 0.8511 }, { "start": 20866.44, "end": 20867.34, "probability": 0.928 }, { "start": 20867.76, "end": 20870.2, "probability": 0.6596 }, { "start": 20870.53, "end": 20873.62, "probability": 0.767 }, { "start": 20874.2, "end": 20876.34, "probability": 0.9824 }, { "start": 20876.5, "end": 20876.76, "probability": 0.4571 }, { "start": 20877.6, "end": 20880.14, "probability": 0.9962 }, { "start": 20881.8, "end": 20883.08, "probability": 0.2657 }, { "start": 20883.58, "end": 20886.36, "probability": 0.5624 }, { "start": 20886.56, "end": 20890.1, "probability": 0.9727 }, { "start": 20890.1, "end": 20893.22, "probability": 0.9945 }, { "start": 20894.12, "end": 20897.18, "probability": 0.7804 }, { "start": 20897.74, "end": 20899.22, "probability": 0.655 }, { "start": 20899.64, "end": 20902.98, "probability": 0.9419 }, { "start": 20903.34, "end": 20907.68, "probability": 0.9834 }, { "start": 20907.96, "end": 20909.7, "probability": 0.5557 }, { "start": 20910.34, "end": 20913.5, "probability": 0.9854 }, { "start": 20915.72, "end": 20917.14, "probability": 0.9662 }, { "start": 20917.58, "end": 20918.48, "probability": 0.7944 }, { "start": 20918.92, "end": 20922.18, "probability": 0.9696 }, { "start": 20922.7, "end": 20924.94, "probability": 0.8879 }, { "start": 20926.02, "end": 20928.62, "probability": 0.9774 }, { "start": 20929.68, "end": 20933.22, "probability": 0.9308 }, { "start": 20933.44, "end": 20937.66, "probability": 0.98 }, { "start": 20941.04, "end": 20941.5, "probability": 0.7063 }, { "start": 20941.66, "end": 20942.16, "probability": 0.7439 }, { "start": 20942.26, "end": 20945.08, "probability": 0.9907 }, { "start": 20945.32, "end": 20948.4, "probability": 0.8132 }, { "start": 20949.2, "end": 20952.18, "probability": 0.7757 }, { "start": 20952.82, "end": 20956.06, "probability": 0.6911 }, { "start": 20958.08, "end": 20961.0, "probability": 0.9256 }, { "start": 20961.02, "end": 20964.52, "probability": 0.5425 }, { "start": 20964.78, "end": 20968.48, "probability": 0.882 }, { "start": 20969.42, "end": 20973.82, "probability": 0.9541 }, { "start": 20975.08, "end": 20978.82, "probability": 0.9932 }, { "start": 20981.08, "end": 20987.28, "probability": 0.9422 }, { "start": 20987.86, "end": 20989.04, "probability": 0.7205 }, { "start": 20989.92, "end": 20991.94, "probability": 0.9922 }, { "start": 20991.94, "end": 20996.6, "probability": 0.9833 }, { "start": 20997.36, "end": 20999.2, "probability": 0.8886 }, { "start": 21000.12, "end": 21005.36, "probability": 0.8833 }, { "start": 21006.36, "end": 21009.58, "probability": 0.9952 }, { "start": 21010.04, "end": 21012.68, "probability": 0.6933 }, { "start": 21013.14, "end": 21014.26, "probability": 0.9561 }, { "start": 21014.64, "end": 21016.76, "probability": 0.9984 }, { "start": 21017.48, "end": 21019.32, "probability": 0.728 }, { "start": 21022.44, "end": 21024.06, "probability": 0.9338 }, { "start": 21024.18, "end": 21025.32, "probability": 0.9552 }, { "start": 21025.48, "end": 21026.2, "probability": 0.865 }, { "start": 21026.66, "end": 21032.96, "probability": 0.9806 }, { "start": 21033.08, "end": 21034.28, "probability": 0.8092 }, { "start": 21034.78, "end": 21035.38, "probability": 0.4832 }, { "start": 21035.8, "end": 21038.38, "probability": 0.9243 }, { "start": 21038.9, "end": 21043.42, "probability": 0.8903 }, { "start": 21045.42, "end": 21049.94, "probability": 0.9563 }, { "start": 21049.94, "end": 21054.3, "probability": 0.8993 }, { "start": 21054.78, "end": 21055.97, "probability": 0.9741 }, { "start": 21056.4, "end": 21057.72, "probability": 0.8969 }, { "start": 21058.12, "end": 21060.46, "probability": 0.9867 }, { "start": 21060.88, "end": 21063.2, "probability": 0.9246 }, { "start": 21063.74, "end": 21066.3, "probability": 0.8638 }, { "start": 21067.14, "end": 21070.32, "probability": 0.8601 }, { "start": 21070.32, "end": 21074.3, "probability": 0.9978 }, { "start": 21074.78, "end": 21077.56, "probability": 0.8142 }, { "start": 21078.6, "end": 21081.54, "probability": 0.9248 }, { "start": 21082.18, "end": 21083.34, "probability": 0.9032 }, { "start": 21084.28, "end": 21085.48, "probability": 0.7145 }, { "start": 21086.68, "end": 21090.0, "probability": 0.9829 }, { "start": 21090.54, "end": 21091.86, "probability": 0.9578 }, { "start": 21092.34, "end": 21092.58, "probability": 0.8003 }, { "start": 21092.98, "end": 21093.24, "probability": 0.8126 }, { "start": 21094.36, "end": 21095.88, "probability": 0.7926 }, { "start": 21096.26, "end": 21096.84, "probability": 0.7001 }, { "start": 21096.98, "end": 21097.64, "probability": 0.9351 }, { "start": 21107.0, "end": 21108.08, "probability": 0.6749 }, { "start": 21108.22, "end": 21109.6, "probability": 0.6881 }, { "start": 21109.82, "end": 21112.44, "probability": 0.7988 }, { "start": 21113.06, "end": 21117.22, "probability": 0.8481 }, { "start": 21118.14, "end": 21121.94, "probability": 0.9899 }, { "start": 21122.04, "end": 21122.87, "probability": 0.7482 }, { "start": 21123.72, "end": 21129.8, "probability": 0.994 }, { "start": 21130.2, "end": 21133.74, "probability": 0.9951 }, { "start": 21133.92, "end": 21138.02, "probability": 0.9791 }, { "start": 21138.54, "end": 21139.6, "probability": 0.8574 }, { "start": 21139.68, "end": 21140.41, "probability": 0.4523 }, { "start": 21141.12, "end": 21142.64, "probability": 0.9758 }, { "start": 21142.72, "end": 21143.2, "probability": 0.6277 }, { "start": 21143.5, "end": 21145.98, "probability": 0.9731 }, { "start": 21147.06, "end": 21153.22, "probability": 0.9696 }, { "start": 21153.22, "end": 21157.94, "probability": 0.9952 }, { "start": 21158.06, "end": 21159.74, "probability": 0.876 }, { "start": 21160.42, "end": 21163.6, "probability": 0.9507 }, { "start": 21163.6, "end": 21166.56, "probability": 0.9981 }, { "start": 21167.58, "end": 21168.08, "probability": 0.5787 }, { "start": 21168.2, "end": 21170.4, "probability": 0.9821 }, { "start": 21170.4, "end": 21174.48, "probability": 0.9995 }, { "start": 21175.08, "end": 21176.64, "probability": 0.8252 }, { "start": 21176.74, "end": 21181.0, "probability": 0.9813 }, { "start": 21181.0, "end": 21185.04, "probability": 0.9957 }, { "start": 21185.86, "end": 21187.94, "probability": 0.7572 }, { "start": 21188.6, "end": 21189.72, "probability": 0.9922 }, { "start": 21190.4, "end": 21191.3, "probability": 0.9852 }, { "start": 21192.12, "end": 21193.12, "probability": 0.7922 }, { "start": 21194.34, "end": 21196.24, "probability": 0.9911 }, { "start": 21196.82, "end": 21198.16, "probability": 0.8184 }, { "start": 21198.92, "end": 21200.3, "probability": 0.9502 }, { "start": 21201.18, "end": 21201.8, "probability": 0.9143 }, { "start": 21202.44, "end": 21202.98, "probability": 0.8236 }, { "start": 21203.44, "end": 21205.48, "probability": 0.7106 }, { "start": 21206.02, "end": 21210.76, "probability": 0.9027 }, { "start": 21212.08, "end": 21213.62, "probability": 0.975 }, { "start": 21213.72, "end": 21216.18, "probability": 0.999 }, { "start": 21216.18, "end": 21219.74, "probability": 0.8643 }, { "start": 21220.26, "end": 21221.5, "probability": 0.9365 }, { "start": 21222.36, "end": 21224.18, "probability": 0.9968 }, { "start": 21225.18, "end": 21227.36, "probability": 0.9526 }, { "start": 21227.38, "end": 21229.3, "probability": 0.9555 }, { "start": 21229.84, "end": 21230.18, "probability": 0.8256 }, { "start": 21232.58, "end": 21235.28, "probability": 0.969 }, { "start": 21235.8, "end": 21237.12, "probability": 0.5963 }, { "start": 21237.84, "end": 21240.66, "probability": 0.8374 }, { "start": 21241.02, "end": 21242.44, "probability": 0.96 }, { "start": 21242.94, "end": 21244.46, "probability": 0.3325 }, { "start": 21246.86, "end": 21249.38, "probability": 0.7281 }, { "start": 21250.18, "end": 21250.8, "probability": 0.8459 }, { "start": 21251.98, "end": 21253.12, "probability": 0.7626 }, { "start": 21254.22, "end": 21254.78, "probability": 0.9536 }, { "start": 21255.52, "end": 21256.7, "probability": 0.7194 }, { "start": 21257.7, "end": 21257.94, "probability": 0.9844 }, { "start": 21258.68, "end": 21259.56, "probability": 0.9167 }, { "start": 21260.32, "end": 21262.06, "probability": 0.9543 }, { "start": 21263.14, "end": 21265.38, "probability": 0.6814 }, { "start": 21269.28, "end": 21269.7, "probability": 0.6094 }, { "start": 21272.26, "end": 21273.1, "probability": 0.4798 }, { "start": 21274.48, "end": 21275.12, "probability": 0.8256 }, { "start": 21275.78, "end": 21276.66, "probability": 0.8007 }, { "start": 21277.36, "end": 21279.48, "probability": 0.9562 }, { "start": 21280.48, "end": 21280.88, "probability": 0.979 }, { "start": 21281.54, "end": 21282.38, "probability": 0.9838 }, { "start": 21283.36, "end": 21285.14, "probability": 0.9855 }, { "start": 21285.66, "end": 21287.82, "probability": 0.983 }, { "start": 21288.78, "end": 21289.2, "probability": 0.973 }, { "start": 21290.06, "end": 21292.34, "probability": 0.9939 }, { "start": 21292.92, "end": 21293.64, "probability": 0.9229 }, { "start": 21299.04, "end": 21300.36, "probability": 0.4135 }, { "start": 21304.58, "end": 21305.46, "probability": 0.5323 }, { "start": 21306.32, "end": 21306.68, "probability": 0.7216 }, { "start": 21307.66, "end": 21308.56, "probability": 0.7379 }, { "start": 21309.34, "end": 21311.3, "probability": 0.863 }, { "start": 21312.18, "end": 21313.02, "probability": 0.9717 }, { "start": 21313.72, "end": 21314.64, "probability": 0.8873 }, { "start": 21315.5, "end": 21315.98, "probability": 0.9881 }, { "start": 21316.64, "end": 21317.42, "probability": 0.978 }, { "start": 21319.02, "end": 21319.46, "probability": 0.9818 }, { "start": 21320.4, "end": 21321.12, "probability": 0.9866 }, { "start": 21321.98, "end": 21322.42, "probability": 0.9832 }, { "start": 21323.2, "end": 21324.3, "probability": 0.9894 }, { "start": 21324.98, "end": 21325.38, "probability": 0.9565 }, { "start": 21326.16, "end": 21327.06, "probability": 0.9832 }, { "start": 21328.08, "end": 21328.9, "probability": 0.803 }, { "start": 21329.66, "end": 21330.42, "probability": 0.6491 }, { "start": 21331.08, "end": 21333.26, "probability": 0.7761 }, { "start": 21334.14, "end": 21334.52, "probability": 0.979 }, { "start": 21336.44, "end": 21337.16, "probability": 0.8726 }, { "start": 21338.08, "end": 21338.46, "probability": 0.8142 }, { "start": 21339.48, "end": 21340.28, "probability": 0.8828 }, { "start": 21342.92, "end": 21349.14, "probability": 0.92 }, { "start": 21349.84, "end": 21351.24, "probability": 0.8357 }, { "start": 21352.36, "end": 21353.36, "probability": 0.9022 }, { "start": 21353.9, "end": 21355.58, "probability": 0.9751 }, { "start": 21357.74, "end": 21358.37, "probability": 0.5211 }, { "start": 21359.28, "end": 21359.68, "probability": 0.9373 }, { "start": 21360.48, "end": 21361.42, "probability": 0.6008 }, { "start": 21362.5, "end": 21363.26, "probability": 0.8374 }, { "start": 21364.42, "end": 21365.16, "probability": 0.8433 }, { "start": 21367.14, "end": 21367.86, "probability": 0.9592 }, { "start": 21368.88, "end": 21369.68, "probability": 0.9303 }, { "start": 21370.98, "end": 21371.4, "probability": 0.9861 }, { "start": 21372.5, "end": 21373.36, "probability": 0.8996 }, { "start": 21374.0, "end": 21374.48, "probability": 0.9593 }, { "start": 21375.16, "end": 21376.0, "probability": 0.9513 }, { "start": 21376.76, "end": 21377.16, "probability": 0.9746 }, { "start": 21377.94, "end": 21379.28, "probability": 0.7865 }, { "start": 21380.96, "end": 21381.36, "probability": 0.9919 }, { "start": 21382.38, "end": 21383.08, "probability": 0.9704 }, { "start": 21386.48, "end": 21387.14, "probability": 0.1924 }, { "start": 21388.5, "end": 21391.24, "probability": 0.4859 }, { "start": 21392.86, "end": 21393.62, "probability": 0.7092 }, { "start": 21394.56, "end": 21394.96, "probability": 0.7479 }, { "start": 21395.7, "end": 21396.56, "probability": 0.7178 }, { "start": 21401.02, "end": 21401.42, "probability": 0.7932 }, { "start": 21403.36, "end": 21404.06, "probability": 0.347 }, { "start": 21405.5, "end": 21405.84, "probability": 0.9219 }, { "start": 21406.6, "end": 21407.62, "probability": 0.8066 }, { "start": 21408.6, "end": 21411.26, "probability": 0.8372 }, { "start": 21413.56, "end": 21416.38, "probability": 0.7607 }, { "start": 21418.0, "end": 21419.22, "probability": 0.7792 }, { "start": 21419.8, "end": 21420.22, "probability": 0.8933 }, { "start": 21421.0, "end": 21422.26, "probability": 0.7285 }, { "start": 21423.78, "end": 21425.94, "probability": 0.6937 }, { "start": 21427.06, "end": 21427.76, "probability": 0.9057 }, { "start": 21428.56, "end": 21429.6, "probability": 0.8087 }, { "start": 21430.3, "end": 21430.74, "probability": 0.9907 }, { "start": 21431.84, "end": 21432.64, "probability": 0.8042 }, { "start": 21433.3, "end": 21433.8, "probability": 0.9948 }, { "start": 21434.68, "end": 21435.5, "probability": 0.9832 }, { "start": 21436.84, "end": 21437.22, "probability": 0.9906 }, { "start": 21438.46, "end": 21439.3, "probability": 0.9634 }, { "start": 21440.88, "end": 21441.34, "probability": 0.7078 }, { "start": 21442.42, "end": 21443.72, "probability": 0.5814 }, { "start": 21444.44, "end": 21444.84, "probability": 0.8831 }, { "start": 21445.86, "end": 21447.08, "probability": 0.8784 }, { "start": 21447.82, "end": 21448.34, "probability": 0.9761 }, { "start": 21449.62, "end": 21450.32, "probability": 0.9521 }, { "start": 21451.2, "end": 21452.28, "probability": 0.9768 }, { "start": 21453.12, "end": 21453.98, "probability": 0.9869 }, { "start": 21454.86, "end": 21455.28, "probability": 0.9897 }, { "start": 21456.2, "end": 21457.48, "probability": 0.9667 }, { "start": 21458.36, "end": 21459.04, "probability": 0.9715 }, { "start": 21459.74, "end": 21460.62, "probability": 0.8963 }, { "start": 21461.92, "end": 21462.4, "probability": 0.9915 }, { "start": 21463.5, "end": 21464.18, "probability": 0.9637 }, { "start": 21465.82, "end": 21466.52, "probability": 0.9853 }, { "start": 21467.26, "end": 21467.92, "probability": 0.9931 }, { "start": 21468.94, "end": 21469.64, "probability": 0.5907 }, { "start": 21470.28, "end": 21470.86, "probability": 0.7267 }, { "start": 21471.66, "end": 21471.94, "probability": 0.5729 }, { "start": 21473.34, "end": 21474.06, "probability": 0.8925 }, { "start": 21475.1, "end": 21475.5, "probability": 0.9683 }, { "start": 21476.92, "end": 21478.28, "probability": 0.7405 }, { "start": 21478.9, "end": 21479.42, "probability": 0.9884 }, { "start": 21480.4, "end": 21481.28, "probability": 0.7765 }, { "start": 21484.06, "end": 21485.7, "probability": 0.9484 }, { "start": 21487.22, "end": 21489.2, "probability": 0.9555 }, { "start": 21490.88, "end": 21491.3, "probability": 0.9241 }, { "start": 21492.1, "end": 21492.9, "probability": 0.935 }, { "start": 21494.06, "end": 21496.34, "probability": 0.8751 }, { "start": 21497.8, "end": 21499.96, "probability": 0.2704 }, { "start": 21501.1, "end": 21502.1, "probability": 0.6308 }, { "start": 21503.24, "end": 21503.74, "probability": 0.6746 }, { "start": 21505.3, "end": 21506.18, "probability": 0.868 }, { "start": 21507.58, "end": 21507.98, "probability": 0.9347 }, { "start": 21509.12, "end": 21509.9, "probability": 0.9382 }, { "start": 21510.68, "end": 21512.98, "probability": 0.9779 }, { "start": 21514.16, "end": 21514.66, "probability": 0.9784 }, { "start": 21516.62, "end": 21520.08, "probability": 0.8008 }, { "start": 21521.16, "end": 21522.9, "probability": 0.9863 }, { "start": 21523.78, "end": 21525.0, "probability": 0.8871 }, { "start": 21526.04, "end": 21526.46, "probability": 0.9839 }, { "start": 21527.6, "end": 21528.52, "probability": 0.6341 }, { "start": 21530.1, "end": 21535.66, "probability": 0.4167 }, { "start": 21536.38, "end": 21536.7, "probability": 0.8748 }, { "start": 21537.42, "end": 21539.98, "probability": 0.8132 }, { "start": 21541.46, "end": 21541.86, "probability": 0.7267 }, { "start": 21543.16, "end": 21543.96, "probability": 0.8989 }, { "start": 21545.42, "end": 21545.84, "probability": 0.9756 }, { "start": 21546.82, "end": 21547.68, "probability": 0.8969 }, { "start": 21548.82, "end": 21551.24, "probability": 0.7508 }, { "start": 21552.46, "end": 21552.94, "probability": 0.9823 }, { "start": 21554.76, "end": 21555.76, "probability": 0.957 }, { "start": 21556.96, "end": 21557.6, "probability": 0.9749 }, { "start": 21558.68, "end": 21559.7, "probability": 0.547 }, { "start": 21564.16, "end": 21568.88, "probability": 0.7495 }, { "start": 21581.78, "end": 21582.77, "probability": 0.662 }, { "start": 21583.76, "end": 21584.18, "probability": 0.8657 }, { "start": 21586.02, "end": 21586.92, "probability": 0.6591 }, { "start": 21588.26, "end": 21588.72, "probability": 0.9814 }, { "start": 21589.86, "end": 21590.8, "probability": 0.8849 }, { "start": 21591.36, "end": 21592.04, "probability": 0.9708 }, { "start": 21592.62, "end": 21593.38, "probability": 0.6525 }, { "start": 21594.68, "end": 21595.12, "probability": 0.9863 }, { "start": 21596.92, "end": 21597.78, "probability": 0.9042 }, { "start": 21599.84, "end": 21600.34, "probability": 0.9782 }, { "start": 21601.66, "end": 21602.76, "probability": 0.4984 }, { "start": 21604.58, "end": 21605.04, "probability": 0.9891 }, { "start": 21606.5, "end": 21607.42, "probability": 0.8175 }, { "start": 21609.96, "end": 21610.98, "probability": 0.4908 }, { "start": 21613.48, "end": 21616.26, "probability": 0.7412 }, { "start": 21617.56, "end": 21619.64, "probability": 0.9531 }, { "start": 21621.78, "end": 21622.22, "probability": 0.9652 }, { "start": 21623.34, "end": 21624.02, "probability": 0.4757 }, { "start": 21624.78, "end": 21625.62, "probability": 0.986 }, { "start": 21626.9, "end": 21627.88, "probability": 0.9539 }, { "start": 21628.66, "end": 21629.36, "probability": 0.8912 }, { "start": 21630.02, "end": 21631.48, "probability": 0.9442 }, { "start": 21632.66, "end": 21636.62, "probability": 0.4971 }, { "start": 21639.36, "end": 21639.76, "probability": 0.7432 }, { "start": 21640.8, "end": 21641.9, "probability": 0.8254 }, { "start": 21643.06, "end": 21643.44, "probability": 0.889 }, { "start": 21644.3, "end": 21645.22, "probability": 0.8623 }, { "start": 21646.88, "end": 21647.34, "probability": 0.9642 }, { "start": 21648.36, "end": 21649.34, "probability": 0.872 }, { "start": 21650.58, "end": 21651.0, "probability": 0.9565 }, { "start": 21651.8, "end": 21652.68, "probability": 0.8865 }, { "start": 21655.44, "end": 21656.42, "probability": 0.4917 }, { "start": 21657.66, "end": 21658.4, "probability": 0.5872 }, { "start": 21664.06, "end": 21664.52, "probability": 0.7456 }, { "start": 21666.3, "end": 21667.2, "probability": 0.7191 }, { "start": 21667.98, "end": 21668.38, "probability": 0.9568 }, { "start": 21669.52, "end": 21670.22, "probability": 0.8062 }, { "start": 21674.08, "end": 21677.52, "probability": 0.8776 }, { "start": 21680.7, "end": 21681.22, "probability": 0.9714 }, { "start": 21682.68, "end": 21683.64, "probability": 0.9084 }, { "start": 21685.66, "end": 21687.06, "probability": 0.7489 }, { "start": 21687.6, "end": 21688.76, "probability": 0.8929 }, { "start": 21689.64, "end": 21690.02, "probability": 0.887 }, { "start": 21691.22, "end": 21692.52, "probability": 0.915 }, { "start": 21694.58, "end": 21696.86, "probability": 0.9597 }, { "start": 21698.34, "end": 21698.78, "probability": 0.9946 }, { "start": 21699.46, "end": 21700.74, "probability": 0.9085 }, { "start": 21702.14, "end": 21703.06, "probability": 0.9951 }, { "start": 21704.36, "end": 21705.8, "probability": 0.8359 }, { "start": 21706.44, "end": 21707.28, "probability": 0.9584 }, { "start": 21707.94, "end": 21709.22, "probability": 0.9028 }, { "start": 21710.18, "end": 21710.66, "probability": 0.7123 }, { "start": 21712.04, "end": 21712.96, "probability": 0.5172 }, { "start": 21715.22, "end": 21715.7, "probability": 0.9578 }, { "start": 21716.72, "end": 21717.68, "probability": 0.7898 }, { "start": 21719.22, "end": 21724.02, "probability": 0.6885 }, { "start": 21725.08, "end": 21726.06, "probability": 0.957 }, { "start": 21727.22, "end": 21728.18, "probability": 0.9209 }, { "start": 21729.02, "end": 21730.4, "probability": 0.9899 }, { "start": 21732.1, "end": 21732.88, "probability": 0.7349 }, { "start": 21734.38, "end": 21735.36, "probability": 0.993 }, { "start": 21735.9, "end": 21736.98, "probability": 0.948 }, { "start": 21737.6, "end": 21737.88, "probability": 0.9902 }, { "start": 21742.12, "end": 21743.42, "probability": 0.554 }, { "start": 21744.68, "end": 21745.54, "probability": 0.8614 }, { "start": 21746.5, "end": 21747.06, "probability": 0.6411 }, { "start": 21748.6, "end": 21749.14, "probability": 0.8649 }, { "start": 21750.5, "end": 21751.3, "probability": 0.631 }, { "start": 21752.1, "end": 21754.6, "probability": 0.7507 }, { "start": 21756.2, "end": 21761.58, "probability": 0.8148 }, { "start": 21763.74, "end": 21764.23, "probability": 0.6265 }, { "start": 21765.54, "end": 21766.2, "probability": 0.786 }, { "start": 21766.88, "end": 21767.96, "probability": 0.5012 }, { "start": 21768.86, "end": 21769.56, "probability": 0.9812 }, { "start": 21770.74, "end": 21771.6, "probability": 0.8088 }, { "start": 21772.16, "end": 21772.88, "probability": 0.9801 }, { "start": 21773.48, "end": 21774.56, "probability": 0.9591 }, { "start": 21775.08, "end": 21777.88, "probability": 0.9696 }, { "start": 21779.02, "end": 21780.02, "probability": 0.7192 }, { "start": 21780.88, "end": 21781.6, "probability": 0.9373 }, { "start": 21782.4, "end": 21783.3, "probability": 0.9689 }, { "start": 21784.74, "end": 21785.5, "probability": 0.9926 }, { "start": 21787.4, "end": 21788.56, "probability": 0.5065 }, { "start": 21789.38, "end": 21790.3, "probability": 0.8478 }, { "start": 21791.16, "end": 21791.62, "probability": 0.384 }, { "start": 21793.34, "end": 21794.1, "probability": 0.8579 }, { "start": 21794.86, "end": 21796.38, "probability": 0.9154 }, { "start": 21797.28, "end": 21798.08, "probability": 0.9714 }, { "start": 21799.82, "end": 21800.74, "probability": 0.9778 }, { "start": 21801.62, "end": 21802.36, "probability": 0.6597 }, { "start": 21804.5, "end": 21805.3, "probability": 0.5122 }, { "start": 21806.4, "end": 21807.16, "probability": 0.988 }, { "start": 21809.8, "end": 21810.68, "probability": 0.5559 }, { "start": 21811.7, "end": 21813.74, "probability": 0.9476 }, { "start": 21813.94, "end": 21816.54, "probability": 0.7108 }, { "start": 21817.12, "end": 21818.2, "probability": 0.9496 }, { "start": 21818.96, "end": 21822.58, "probability": 0.8899 }, { "start": 21823.22, "end": 21824.68, "probability": 0.9764 }, { "start": 21824.86, "end": 21827.58, "probability": 0.6296 }, { "start": 21827.94, "end": 21828.88, "probability": 0.9965 }, { "start": 21830.32, "end": 21830.58, "probability": 0.7671 }, { "start": 21831.3, "end": 21832.06, "probability": 0.7387 }, { "start": 21832.96, "end": 21833.78, "probability": 0.7852 }, { "start": 21835.38, "end": 21836.08, "probability": 0.9696 }, { "start": 21836.86, "end": 21838.16, "probability": 0.9261 }, { "start": 21839.06, "end": 21839.96, "probability": 0.994 }, { "start": 21840.72, "end": 21843.24, "probability": 0.9177 }, { "start": 21843.92, "end": 21846.32, "probability": 0.7059 }, { "start": 21847.52, "end": 21848.54, "probability": 0.9888 }, { "start": 21849.38, "end": 21850.62, "probability": 0.7214 }, { "start": 21851.94, "end": 21856.4, "probability": 0.8522 }, { "start": 21858.16, "end": 21860.24, "probability": 0.3925 }, { "start": 21860.72, "end": 21861.94, "probability": 0.377 }, { "start": 21862.42, "end": 21863.28, "probability": 0.9181 }, { "start": 21865.7, "end": 21870.52, "probability": 0.1259 }, { "start": 21873.18, "end": 21874.66, "probability": 0.1792 }, { "start": 21875.7, "end": 21876.24, "probability": 0.1567 }, { "start": 21881.5, "end": 21882.68, "probability": 0.0778 }, { "start": 21883.82, "end": 21886.34, "probability": 0.0987 }, { "start": 21887.12, "end": 21889.16, "probability": 0.003 }, { "start": 21947.1, "end": 21948.84, "probability": 0.9661 }, { "start": 21952.84, "end": 21954.65, "probability": 0.6431 }, { "start": 21955.68, "end": 21957.96, "probability": 0.8745 }, { "start": 21957.98, "end": 21959.1, "probability": 0.7384 }, { "start": 21959.42, "end": 21961.32, "probability": 0.8185 }, { "start": 21964.22, "end": 21964.76, "probability": 0.1212 }, { "start": 21964.76, "end": 21964.82, "probability": 0.1188 }, { "start": 21964.82, "end": 21965.5, "probability": 0.6111 }, { "start": 21967.02, "end": 21969.52, "probability": 0.71 }, { "start": 21970.22, "end": 21972.64, "probability": 0.9629 }, { "start": 21972.64, "end": 21973.76, "probability": 0.7151 }, { "start": 21974.26, "end": 21975.5, "probability": 0.9704 }, { "start": 21976.54, "end": 21976.9, "probability": 0.8936 }, { "start": 21978.94, "end": 21979.36, "probability": 0.5726 }, { "start": 21982.65, "end": 21984.76, "probability": 0.4925 }, { "start": 21985.46, "end": 21989.3, "probability": 0.8901 }, { "start": 21990.3, "end": 21991.74, "probability": 0.7755 }, { "start": 21992.64, "end": 21993.42, "probability": 0.7251 }, { "start": 21994.68, "end": 21996.74, "probability": 0.0034 }, { "start": 22003.26, "end": 22003.66, "probability": 0.0407 }, { "start": 22003.66, "end": 22003.66, "probability": 0.1583 }, { "start": 22003.66, "end": 22003.66, "probability": 0.1979 }, { "start": 22003.66, "end": 22003.66, "probability": 0.0246 }, { "start": 22003.66, "end": 22003.8, "probability": 0.2703 }, { "start": 22003.92, "end": 22004.4, "probability": 0.3562 }, { "start": 22029.28, "end": 22033.12, "probability": 0.7258 }, { "start": 22034.48, "end": 22037.26, "probability": 0.9451 }, { "start": 22038.8, "end": 22044.9, "probability": 0.9913 }, { "start": 22045.62, "end": 22046.38, "probability": 0.783 }, { "start": 22046.98, "end": 22049.16, "probability": 0.9896 }, { "start": 22050.22, "end": 22052.44, "probability": 0.7233 }, { "start": 22052.54, "end": 22055.5, "probability": 0.9902 }, { "start": 22057.7, "end": 22060.96, "probability": 0.9871 }, { "start": 22062.7, "end": 22064.26, "probability": 0.9124 }, { "start": 22065.48, "end": 22066.22, "probability": 0.4075 }, { "start": 22067.22, "end": 22069.02, "probability": 0.7838 }, { "start": 22070.0, "end": 22076.24, "probability": 0.943 }, { "start": 22076.9, "end": 22082.2, "probability": 0.9919 }, { "start": 22082.2, "end": 22086.4, "probability": 0.8883 }, { "start": 22087.72, "end": 22090.26, "probability": 0.972 }, { "start": 22091.22, "end": 22093.98, "probability": 0.9854 }, { "start": 22094.76, "end": 22096.72, "probability": 0.9967 }, { "start": 22097.7, "end": 22099.22, "probability": 0.9724 }, { "start": 22100.18, "end": 22101.42, "probability": 0.9666 }, { "start": 22102.92, "end": 22104.06, "probability": 0.7764 }, { "start": 22105.0, "end": 22108.16, "probability": 0.9493 }, { "start": 22109.88, "end": 22114.88, "probability": 0.9208 }, { "start": 22115.78, "end": 22121.56, "probability": 0.9992 }, { "start": 22126.08, "end": 22127.1, "probability": 0.0708 }, { "start": 22128.12, "end": 22128.62, "probability": 0.5738 }, { "start": 22129.42, "end": 22130.64, "probability": 0.8384 }, { "start": 22131.52, "end": 22132.68, "probability": 0.9402 }, { "start": 22133.52, "end": 22136.96, "probability": 0.9752 }, { "start": 22137.86, "end": 22141.9, "probability": 0.9046 }, { "start": 22142.8, "end": 22144.24, "probability": 0.6226 }, { "start": 22145.38, "end": 22149.88, "probability": 0.9966 }, { "start": 22150.76, "end": 22151.9, "probability": 0.9824 }, { "start": 22152.46, "end": 22155.36, "probability": 0.9776 }, { "start": 22156.08, "end": 22157.42, "probability": 0.9795 }, { "start": 22157.96, "end": 22163.34, "probability": 0.9957 }, { "start": 22165.34, "end": 22171.46, "probability": 0.963 }, { "start": 22172.4, "end": 22173.84, "probability": 0.9976 }, { "start": 22175.26, "end": 22175.3, "probability": 0.0441 }, { "start": 22175.3, "end": 22177.09, "probability": 0.7294 }, { "start": 22177.94, "end": 22179.42, "probability": 0.8009 }, { "start": 22180.16, "end": 22181.5, "probability": 0.8945 }, { "start": 22182.1, "end": 22183.08, "probability": 0.8542 }, { "start": 22183.16, "end": 22184.84, "probability": 0.9152 }, { "start": 22185.68, "end": 22187.96, "probability": 0.8213 }, { "start": 22188.2, "end": 22191.7, "probability": 0.8649 }, { "start": 22192.16, "end": 22192.58, "probability": 0.764 }, { "start": 22195.9, "end": 22199.48, "probability": 0.9014 }, { "start": 22200.04, "end": 22200.06, "probability": 0.0969 }, { "start": 22200.06, "end": 22203.58, "probability": 0.9644 }, { "start": 22203.88, "end": 22204.96, "probability": 0.0133 }, { "start": 22205.32, "end": 22209.22, "probability": 0.6311 }, { "start": 22210.66, "end": 22211.1, "probability": 0.1 }, { "start": 22211.1, "end": 22211.1, "probability": 0.0434 }, { "start": 22211.1, "end": 22211.1, "probability": 0.3479 }, { "start": 22211.1, "end": 22211.1, "probability": 0.0504 }, { "start": 22211.1, "end": 22211.1, "probability": 0.0506 }, { "start": 22211.1, "end": 22213.62, "probability": 0.6961 }, { "start": 22214.22, "end": 22217.6, "probability": 0.9298 }, { "start": 22218.22, "end": 22219.12, "probability": 0.7239 }, { "start": 22219.74, "end": 22221.42, "probability": 0.8024 }, { "start": 22223.88, "end": 22224.62, "probability": 0.2367 }, { "start": 22224.72, "end": 22226.58, "probability": 0.6936 }, { "start": 22227.1, "end": 22232.02, "probability": 0.9921 }, { "start": 22232.74, "end": 22237.5, "probability": 0.9935 }, { "start": 22238.42, "end": 22240.44, "probability": 0.8892 }, { "start": 22241.38, "end": 22244.26, "probability": 0.7446 }, { "start": 22245.3, "end": 22248.14, "probability": 0.9901 }, { "start": 22249.0, "end": 22250.33, "probability": 0.9468 }, { "start": 22250.92, "end": 22252.56, "probability": 0.9265 }, { "start": 22253.36, "end": 22254.14, "probability": 0.4014 }, { "start": 22255.04, "end": 22258.58, "probability": 0.9641 }, { "start": 22259.46, "end": 22260.88, "probability": 0.8332 }, { "start": 22261.34, "end": 22261.68, "probability": 0.7673 }, { "start": 22262.48, "end": 22263.76, "probability": 0.9067 }, { "start": 22264.82, "end": 22265.98, "probability": 0.9961 }, { "start": 22266.74, "end": 22269.28, "probability": 0.998 }, { "start": 22270.08, "end": 22272.52, "probability": 0.9962 }, { "start": 22273.36, "end": 22274.48, "probability": 0.7571 }, { "start": 22275.04, "end": 22276.68, "probability": 0.9701 }, { "start": 22277.26, "end": 22278.78, "probability": 0.9587 }, { "start": 22279.88, "end": 22281.22, "probability": 0.999 }, { "start": 22281.62, "end": 22283.1, "probability": 0.9844 }, { "start": 22283.92, "end": 22285.1, "probability": 0.9865 }, { "start": 22285.32, "end": 22286.7, "probability": 0.9931 }, { "start": 22287.56, "end": 22289.88, "probability": 0.9868 }, { "start": 22290.1, "end": 22290.8, "probability": 0.7407 }, { "start": 22293.18, "end": 22295.86, "probability": 0.7871 }, { "start": 22296.56, "end": 22298.88, "probability": 0.9121 }, { "start": 22299.74, "end": 22303.88, "probability": 0.2635 }, { "start": 22303.88, "end": 22303.95, "probability": 0.1758 }, { "start": 22305.08, "end": 22306.58, "probability": 0.0817 }, { "start": 22307.3, "end": 22307.3, "probability": 0.0825 }, { "start": 22307.3, "end": 22308.02, "probability": 0.0308 }, { "start": 22308.5, "end": 22312.36, "probability": 0.66 }, { "start": 22326.24, "end": 22326.75, "probability": 0.6059 }, { "start": 22329.8, "end": 22330.5, "probability": 0.1584 }, { "start": 22330.5, "end": 22330.5, "probability": 0.1031 }, { "start": 22330.5, "end": 22330.5, "probability": 0.1057 }, { "start": 22330.5, "end": 22330.5, "probability": 0.0375 }, { "start": 22330.5, "end": 22335.78, "probability": 0.8887 }, { "start": 22336.74, "end": 22338.56, "probability": 0.8549 }, { "start": 22341.12, "end": 22343.16, "probability": 0.8344 }, { "start": 22344.58, "end": 22345.28, "probability": 0.8852 }, { "start": 22346.86, "end": 22350.04, "probability": 0.8713 }, { "start": 22351.54, "end": 22352.3, "probability": 0.8081 }, { "start": 22354.1, "end": 22354.68, "probability": 0.5125 }, { "start": 22357.68, "end": 22358.18, "probability": 0.7239 }, { "start": 22359.6, "end": 22360.28, "probability": 0.714 }, { "start": 22361.1, "end": 22363.76, "probability": 0.7307 }, { "start": 22365.04, "end": 22369.62, "probability": 0.9919 }, { "start": 22369.86, "end": 22370.96, "probability": 0.9834 }, { "start": 22371.16, "end": 22372.18, "probability": 0.0211 }, { "start": 22373.46, "end": 22375.6, "probability": 0.9537 }, { "start": 22377.0, "end": 22378.36, "probability": 0.7321 }, { "start": 22379.42, "end": 22381.2, "probability": 0.8758 }, { "start": 22382.5, "end": 22383.64, "probability": 0.8644 }, { "start": 22385.02, "end": 22387.88, "probability": 0.8427 }, { "start": 22389.18, "end": 22391.54, "probability": 0.9952 }, { "start": 22391.54, "end": 22395.96, "probability": 0.9733 }, { "start": 22396.0, "end": 22396.44, "probability": 0.4836 }, { "start": 22396.62, "end": 22397.37, "probability": 0.7136 }, { "start": 22398.12, "end": 22399.38, "probability": 0.8054 }, { "start": 22400.42, "end": 22400.52, "probability": 0.3056 }, { "start": 22400.52, "end": 22401.22, "probability": 0.5927 }, { "start": 22401.32, "end": 22401.64, "probability": 0.4332 }, { "start": 22401.7, "end": 22402.4, "probability": 0.8403 }, { "start": 22403.2, "end": 22406.18, "probability": 0.991 }, { "start": 22406.78, "end": 22408.84, "probability": 0.7585 }, { "start": 22409.58, "end": 22410.18, "probability": 0.7261 }, { "start": 22410.92, "end": 22411.2, "probability": 0.752 }, { "start": 22411.26, "end": 22411.66, "probability": 0.9161 }, { "start": 22411.84, "end": 22412.88, "probability": 0.7501 }, { "start": 22413.2, "end": 22414.06, "probability": 0.7794 }, { "start": 22414.52, "end": 22415.3, "probability": 0.7303 }, { "start": 22416.28, "end": 22418.7, "probability": 0.9819 }, { "start": 22421.24, "end": 22423.28, "probability": 0.7697 }, { "start": 22423.7, "end": 22428.22, "probability": 0.9541 }, { "start": 22428.76, "end": 22431.28, "probability": 0.9653 }, { "start": 22432.58, "end": 22433.99, "probability": 0.9438 }, { "start": 22434.08, "end": 22435.98, "probability": 0.9844 }, { "start": 22436.9, "end": 22441.48, "probability": 0.9473 }, { "start": 22442.9, "end": 22444.88, "probability": 0.708 }, { "start": 22445.96, "end": 22447.92, "probability": 0.9982 }, { "start": 22449.54, "end": 22450.9, "probability": 0.976 }, { "start": 22451.62, "end": 22453.62, "probability": 0.9963 }, { "start": 22454.44, "end": 22456.09, "probability": 0.9372 }, { "start": 22456.98, "end": 22459.44, "probability": 0.9771 }, { "start": 22461.7, "end": 22465.44, "probability": 0.8511 }, { "start": 22467.04, "end": 22468.36, "probability": 0.9819 }, { "start": 22469.44, "end": 22471.76, "probability": 0.9985 }, { "start": 22472.56, "end": 22476.9, "probability": 0.9807 }, { "start": 22478.04, "end": 22480.08, "probability": 0.8432 }, { "start": 22481.02, "end": 22482.24, "probability": 0.8286 }, { "start": 22483.88, "end": 22484.64, "probability": 0.8893 }, { "start": 22485.86, "end": 22486.12, "probability": 0.6109 }, { "start": 22488.56, "end": 22492.24, "probability": 0.899 }, { "start": 22492.86, "end": 22497.02, "probability": 0.9644 }, { "start": 22499.6, "end": 22501.76, "probability": 0.855 }, { "start": 22503.44, "end": 22505.06, "probability": 0.937 }, { "start": 22505.64, "end": 22508.6, "probability": 0.9979 }, { "start": 22509.1, "end": 22510.36, "probability": 0.9121 }, { "start": 22511.6, "end": 22517.98, "probability": 0.9934 }, { "start": 22517.98, "end": 22522.7, "probability": 0.9846 }, { "start": 22522.78, "end": 22523.56, "probability": 0.8811 }, { "start": 22523.64, "end": 22525.8, "probability": 0.9474 }, { "start": 22526.26, "end": 22527.26, "probability": 0.7331 }, { "start": 22528.44, "end": 22529.94, "probability": 0.6889 }, { "start": 22530.86, "end": 22531.16, "probability": 0.5474 }, { "start": 22531.78, "end": 22534.16, "probability": 0.9059 }, { "start": 22535.16, "end": 22542.6, "probability": 0.1065 }, { "start": 22553.92, "end": 22553.92, "probability": 0.1143 }, { "start": 22553.92, "end": 22553.94, "probability": 0.0484 }, { "start": 22553.94, "end": 22553.98, "probability": 0.07 }, { "start": 22562.28, "end": 22562.3, "probability": 0.1412 }, { "start": 22562.3, "end": 22562.3, "probability": 0.1227 }, { "start": 22562.3, "end": 22562.3, "probability": 0.0541 }, { "start": 22562.3, "end": 22562.3, "probability": 0.0987 }, { "start": 22562.3, "end": 22562.3, "probability": 0.2877 }, { "start": 22562.3, "end": 22563.22, "probability": 0.1017 }, { "start": 22576.66, "end": 22577.38, "probability": 0.2883 }, { "start": 22581.06, "end": 22581.62, "probability": 0.0605 }, { "start": 22583.68, "end": 22584.94, "probability": 0.1369 }, { "start": 22585.04, "end": 22586.5, "probability": 0.0563 }, { "start": 22586.5, "end": 22586.92, "probability": 0.1934 }, { "start": 22586.92, "end": 22587.26, "probability": 0.0408 }, { "start": 22588.68, "end": 22590.76, "probability": 0.2422 }, { "start": 22607.7, "end": 22610.14, "probability": 0.7316 }, { "start": 22610.18, "end": 22611.64, "probability": 0.9036 }, { "start": 22611.76, "end": 22612.54, "probability": 0.7324 }, { "start": 22612.66, "end": 22615.64, "probability": 0.9468 }, { "start": 22615.64, "end": 22620.24, "probability": 0.9927 }, { "start": 22622.64, "end": 22626.02, "probability": 0.9842 }, { "start": 22627.58, "end": 22629.16, "probability": 0.9387 }, { "start": 22631.28, "end": 22631.92, "probability": 0.6659 }, { "start": 22632.56, "end": 22637.12, "probability": 0.9536 }, { "start": 22637.22, "end": 22638.98, "probability": 0.9509 }, { "start": 22640.28, "end": 22642.52, "probability": 0.9968 }, { "start": 22642.58, "end": 22643.02, "probability": 0.8694 }, { "start": 22643.1, "end": 22643.74, "probability": 0.9125 }, { "start": 22643.9, "end": 22644.98, "probability": 0.9968 }, { "start": 22646.5, "end": 22649.26, "probability": 0.9326 }, { "start": 22650.1, "end": 22651.54, "probability": 0.8671 }, { "start": 22651.9, "end": 22652.96, "probability": 0.9294 }, { "start": 22653.1, "end": 22654.56, "probability": 0.637 }, { "start": 22656.08, "end": 22657.86, "probability": 0.9551 }, { "start": 22657.92, "end": 22658.6, "probability": 0.7305 }, { "start": 22658.7, "end": 22659.68, "probability": 0.9432 }, { "start": 22659.82, "end": 22664.42, "probability": 0.7912 }, { "start": 22664.6, "end": 22667.76, "probability": 0.9374 }, { "start": 22668.4, "end": 22669.54, "probability": 0.6298 }, { "start": 22670.46, "end": 22675.54, "probability": 0.9901 }, { "start": 22675.54, "end": 22678.44, "probability": 0.9946 }, { "start": 22680.32, "end": 22680.42, "probability": 0.0014 }, { "start": 22680.42, "end": 22683.3, "probability": 0.8677 }, { "start": 22683.34, "end": 22683.91, "probability": 0.9985 }, { "start": 22684.72, "end": 22687.66, "probability": 0.9019 }, { "start": 22687.7, "end": 22689.62, "probability": 0.7347 }, { "start": 22690.02, "end": 22691.56, "probability": 0.8976 }, { "start": 22691.64, "end": 22692.32, "probability": 0.8982 }, { "start": 22693.2, "end": 22694.92, "probability": 0.8197 }, { "start": 22696.58, "end": 22700.56, "probability": 0.8335 }, { "start": 22701.88, "end": 22703.36, "probability": 0.9929 }, { "start": 22705.7, "end": 22707.42, "probability": 0.7759 }, { "start": 22707.42, "end": 22709.12, "probability": 0.8917 }, { "start": 22709.74, "end": 22710.97, "probability": 0.8882 }, { "start": 22711.54, "end": 22712.98, "probability": 0.9675 }, { "start": 22713.4, "end": 22714.62, "probability": 0.6138 }, { "start": 22716.5, "end": 22717.98, "probability": 0.1354 }, { "start": 22717.98, "end": 22718.3, "probability": 0.2131 }, { "start": 22718.38, "end": 22722.52, "probability": 0.9203 }, { "start": 22724.44, "end": 22725.36, "probability": 0.5573 }, { "start": 22725.6, "end": 22729.3, "probability": 0.9952 }, { "start": 22730.08, "end": 22733.14, "probability": 0.9935 }, { "start": 22733.68, "end": 22735.12, "probability": 0.5546 }, { "start": 22735.44, "end": 22740.82, "probability": 0.976 }, { "start": 22741.0, "end": 22741.44, "probability": 0.5359 }, { "start": 22741.7, "end": 22743.26, "probability": 0.9966 }, { "start": 22744.14, "end": 22745.92, "probability": 0.9976 }, { "start": 22746.98, "end": 22748.28, "probability": 0.7816 }, { "start": 22749.8, "end": 22750.5, "probability": 0.7422 }, { "start": 22752.08, "end": 22754.94, "probability": 0.0978 }, { "start": 22755.78, "end": 22756.52, "probability": 0.314 }, { "start": 22756.54, "end": 22758.24, "probability": 0.2249 }, { "start": 22765.9, "end": 22766.58, "probability": 0.5048 }, { "start": 22768.93, "end": 22772.1, "probability": 0.7897 }, { "start": 22773.1, "end": 22773.14, "probability": 0.0196 }, { "start": 22773.14, "end": 22775.46, "probability": 0.9856 }, { "start": 22775.46, "end": 22778.06, "probability": 0.9977 }, { "start": 22778.36, "end": 22779.66, "probability": 0.8634 }, { "start": 22780.16, "end": 22781.18, "probability": 0.8135 }, { "start": 22781.42, "end": 22783.4, "probability": 0.9259 }, { "start": 22783.42, "end": 22784.66, "probability": 0.9222 }, { "start": 22784.84, "end": 22787.64, "probability": 0.9689 }, { "start": 22787.94, "end": 22788.06, "probability": 0.6697 }, { "start": 22788.5, "end": 22790.02, "probability": 0.9912 }, { "start": 22790.14, "end": 22792.12, "probability": 0.9555 }, { "start": 22793.4, "end": 22794.56, "probability": 0.5982 }, { "start": 22795.32, "end": 22796.25, "probability": 0.4967 }, { "start": 22796.5, "end": 22797.86, "probability": 0.0418 }, { "start": 22798.36, "end": 22800.74, "probability": 0.9538 }, { "start": 22800.96, "end": 22802.3, "probability": 0.6844 }, { "start": 22802.52, "end": 22803.85, "probability": 0.4213 }, { "start": 22804.2, "end": 22804.9, "probability": 0.508 }, { "start": 22806.42, "end": 22809.28, "probability": 0.9573 }, { "start": 22809.34, "end": 22810.82, "probability": 0.7781 }, { "start": 22811.5, "end": 22814.4, "probability": 0.9595 }, { "start": 22814.84, "end": 22815.78, "probability": 0.991 }, { "start": 22821.28, "end": 22823.98, "probability": 0.9709 }, { "start": 22824.82, "end": 22826.02, "probability": 0.9526 }, { "start": 22827.0, "end": 22830.52, "probability": 0.8163 }, { "start": 22830.52, "end": 22831.14, "probability": 0.6058 }, { "start": 22831.9, "end": 22834.48, "probability": 0.9944 }, { "start": 22835.26, "end": 22839.46, "probability": 0.9941 }, { "start": 22839.94, "end": 22841.72, "probability": 0.8669 }, { "start": 22842.62, "end": 22847.36, "probability": 0.976 }, { "start": 22848.24, "end": 22851.84, "probability": 0.9985 }, { "start": 22852.4, "end": 22853.2, "probability": 0.9828 }, { "start": 22853.3, "end": 22858.7, "probability": 0.8138 }, { "start": 22859.02, "end": 22859.82, "probability": 0.6825 }, { "start": 22860.28, "end": 22861.22, "probability": 0.9766 }, { "start": 22861.32, "end": 22862.6, "probability": 0.9284 }, { "start": 22863.02, "end": 22864.22, "probability": 0.8584 }, { "start": 22864.4, "end": 22865.02, "probability": 0.794 }, { "start": 22865.74, "end": 22866.64, "probability": 0.9497 }, { "start": 22868.12, "end": 22871.32, "probability": 0.9046 }, { "start": 22871.9, "end": 22874.22, "probability": 0.8433 }, { "start": 22875.24, "end": 22877.44, "probability": 0.998 }, { "start": 22877.6, "end": 22880.42, "probability": 0.9509 }, { "start": 22880.42, "end": 22880.52, "probability": 0.0099 }, { "start": 22881.66, "end": 22881.92, "probability": 0.3981 }, { "start": 22882.0, "end": 22882.72, "probability": 0.9517 }, { "start": 22882.8, "end": 22882.94, "probability": 0.6226 }, { "start": 22883.02, "end": 22885.54, "probability": 0.9604 }, { "start": 22885.62, "end": 22887.26, "probability": 0.9104 }, { "start": 22888.48, "end": 22889.4, "probability": 0.6585 }, { "start": 22889.56, "end": 22891.4, "probability": 0.8046 }, { "start": 22891.98, "end": 22893.36, "probability": 0.7979 }, { "start": 22894.08, "end": 22894.62, "probability": 0.5249 }, { "start": 22894.86, "end": 22896.72, "probability": 0.0244 }, { "start": 22896.86, "end": 22897.56, "probability": 0.2456 }, { "start": 22897.84, "end": 22900.52, "probability": 0.4277 }, { "start": 22900.78, "end": 22902.4, "probability": 0.2531 }, { "start": 22902.62, "end": 22904.26, "probability": 0.2157 }, { "start": 22904.66, "end": 22905.38, "probability": 0.6654 }, { "start": 22906.08, "end": 22907.04, "probability": 0.2456 }, { "start": 22907.28, "end": 22907.42, "probability": 0.4208 }, { "start": 22907.42, "end": 22908.96, "probability": 0.5372 }, { "start": 22908.98, "end": 22910.14, "probability": 0.2379 }, { "start": 22910.54, "end": 22911.74, "probability": 0.7536 }, { "start": 22911.82, "end": 22913.62, "probability": 0.69 }, { "start": 22913.62, "end": 22916.32, "probability": 0.996 }, { "start": 22916.42, "end": 22917.82, "probability": 0.9992 }, { "start": 22917.82, "end": 22921.26, "probability": 0.9048 }, { "start": 22921.36, "end": 22922.13, "probability": 0.433 }, { "start": 22922.28, "end": 22922.82, "probability": 0.6843 }, { "start": 22923.22, "end": 22924.32, "probability": 0.9688 }, { "start": 22924.78, "end": 22926.06, "probability": 0.9773 }, { "start": 22926.4, "end": 22927.6, "probability": 0.6102 }, { "start": 22927.78, "end": 22932.58, "probability": 0.8867 }, { "start": 22932.6, "end": 22933.64, "probability": 0.8875 }, { "start": 22933.72, "end": 22935.2, "probability": 0.9942 }, { "start": 22936.7, "end": 22938.02, "probability": 0.68 }, { "start": 22938.12, "end": 22942.4, "probability": 0.9901 }, { "start": 22942.56, "end": 22943.6, "probability": 0.9792 }, { "start": 22944.36, "end": 22948.7, "probability": 0.9655 }, { "start": 22949.32, "end": 22953.0, "probability": 0.9993 }, { "start": 22953.64, "end": 22954.7, "probability": 0.8567 }, { "start": 22956.7, "end": 22957.46, "probability": 0.7005 }, { "start": 22959.18, "end": 22962.38, "probability": 0.9932 }, { "start": 22962.54, "end": 22963.42, "probability": 0.9346 }, { "start": 22963.54, "end": 22964.31, "probability": 0.8819 }, { "start": 22964.6, "end": 22965.12, "probability": 0.7958 }, { "start": 22966.32, "end": 22966.42, "probability": 0.9143 }, { "start": 22968.35, "end": 22969.12, "probability": 0.7598 }, { "start": 22969.12, "end": 22969.12, "probability": 0.0061 }, { "start": 22969.12, "end": 22969.66, "probability": 0.3232 }, { "start": 22969.76, "end": 22971.18, "probability": 0.5899 }, { "start": 22971.22, "end": 22973.72, "probability": 0.9049 }, { "start": 22974.72, "end": 22977.22, "probability": 0.9736 }, { "start": 22977.3, "end": 22978.18, "probability": 0.792 }, { "start": 22978.38, "end": 22979.68, "probability": 0.9604 }, { "start": 22980.28, "end": 22981.55, "probability": 0.9712 }, { "start": 22982.16, "end": 22984.3, "probability": 0.8181 }, { "start": 22984.84, "end": 22987.04, "probability": 0.9781 }, { "start": 22987.12, "end": 22988.24, "probability": 0.9829 }, { "start": 22989.22, "end": 22992.32, "probability": 0.9831 }, { "start": 22993.22, "end": 22995.88, "probability": 0.9912 }, { "start": 22996.06, "end": 22996.94, "probability": 0.7049 }, { "start": 22997.42, "end": 22999.3, "probability": 0.7883 }, { "start": 22999.42, "end": 23000.1, "probability": 0.9122 }, { "start": 23000.14, "end": 23001.02, "probability": 0.9614 }, { "start": 23001.54, "end": 23004.38, "probability": 0.9651 }, { "start": 23004.8, "end": 23006.1, "probability": 0.9499 }, { "start": 23006.48, "end": 23007.82, "probability": 0.9672 }, { "start": 23008.96, "end": 23011.36, "probability": 0.9989 }, { "start": 23011.38, "end": 23011.8, "probability": 0.8797 }, { "start": 23012.28, "end": 23015.52, "probability": 0.9635 }, { "start": 23016.0, "end": 23016.76, "probability": 0.8051 }, { "start": 23016.88, "end": 23017.36, "probability": 0.9304 }, { "start": 23018.22, "end": 23019.48, "probability": 0.9543 }, { "start": 23020.02, "end": 23020.96, "probability": 0.8242 }, { "start": 23021.06, "end": 23022.58, "probability": 0.9347 }, { "start": 23023.14, "end": 23025.88, "probability": 0.5674 }, { "start": 23025.88, "end": 23029.3, "probability": 0.9776 }, { "start": 23036.16, "end": 23037.14, "probability": 0.0558 }, { "start": 23037.14, "end": 23037.14, "probability": 0.0302 }, { "start": 23037.14, "end": 23037.36, "probability": 0.1462 }, { "start": 23037.8, "end": 23038.9, "probability": 0.7857 }, { "start": 23038.98, "end": 23039.22, "probability": 0.6073 }, { "start": 23039.62, "end": 23040.61, "probability": 0.7267 }, { "start": 23044.82, "end": 23046.14, "probability": 0.5543 }, { "start": 23046.44, "end": 23048.98, "probability": 0.1972 }, { "start": 23049.2, "end": 23051.4, "probability": 0.4992 }, { "start": 23051.4, "end": 23053.06, "probability": 0.9621 }, { "start": 23053.52, "end": 23054.46, "probability": 0.9761 }, { "start": 23055.12, "end": 23056.58, "probability": 0.8298 }, { "start": 23057.12, "end": 23058.58, "probability": 0.9033 }, { "start": 23058.76, "end": 23059.44, "probability": 0.9016 }, { "start": 23059.56, "end": 23061.01, "probability": 0.9961 }, { "start": 23061.6, "end": 23062.76, "probability": 0.9582 }, { "start": 23062.86, "end": 23064.12, "probability": 0.9781 }, { "start": 23064.14, "end": 23066.04, "probability": 0.9591 }, { "start": 23066.34, "end": 23067.54, "probability": 0.9576 }, { "start": 23068.42, "end": 23070.5, "probability": 0.7338 }, { "start": 23071.02, "end": 23073.0, "probability": 0.9827 }, { "start": 23073.04, "end": 23073.8, "probability": 0.7964 }, { "start": 23073.8, "end": 23074.62, "probability": 0.9302 }, { "start": 23075.16, "end": 23076.44, "probability": 0.9873 }, { "start": 23076.8, "end": 23078.07, "probability": 0.979 }, { "start": 23079.8, "end": 23081.76, "probability": 0.8794 }, { "start": 23083.44, "end": 23085.72, "probability": 0.9945 }, { "start": 23086.64, "end": 23087.3, "probability": 0.9849 }, { "start": 23087.3, "end": 23092.62, "probability": 0.9095 }, { "start": 23093.32, "end": 23095.84, "probability": 0.9791 }, { "start": 23096.96, "end": 23097.83, "probability": 0.895 }, { "start": 23098.7, "end": 23102.08, "probability": 0.9813 }, { "start": 23102.18, "end": 23104.94, "probability": 0.985 }, { "start": 23105.3, "end": 23105.74, "probability": 0.8318 }, { "start": 23106.5, "end": 23108.86, "probability": 0.9902 }, { "start": 23108.86, "end": 23111.9, "probability": 0.9985 }, { "start": 23112.73, "end": 23115.8, "probability": 0.9563 }, { "start": 23115.96, "end": 23117.4, "probability": 0.6943 }, { "start": 23117.68, "end": 23120.8, "probability": 0.8179 }, { "start": 23121.12, "end": 23121.14, "probability": 0.5339 }, { "start": 23121.22, "end": 23122.18, "probability": 0.8439 }, { "start": 23122.42, "end": 23123.88, "probability": 0.5656 }, { "start": 23123.94, "end": 23124.5, "probability": 0.9743 }, { "start": 23124.8, "end": 23125.7, "probability": 0.9603 }, { "start": 23126.22, "end": 23127.0, "probability": 0.9203 }, { "start": 23127.28, "end": 23127.9, "probability": 0.9399 }, { "start": 23128.1, "end": 23128.64, "probability": 0.958 }, { "start": 23128.7, "end": 23130.28, "probability": 0.9783 }, { "start": 23130.52, "end": 23133.52, "probability": 0.9486 }, { "start": 23134.84, "end": 23136.13, "probability": 0.021 }, { "start": 23136.7, "end": 23137.36, "probability": 0.7364 }, { "start": 23137.5, "end": 23137.96, "probability": 0.8616 }, { "start": 23137.96, "end": 23138.64, "probability": 0.7827 }, { "start": 23138.7, "end": 23139.8, "probability": 0.8995 }, { "start": 23140.92, "end": 23141.34, "probability": 0.1005 }, { "start": 23141.34, "end": 23142.5, "probability": 0.2627 }, { "start": 23143.06, "end": 23143.66, "probability": 0.6823 }, { "start": 23143.74, "end": 23144.36, "probability": 0.7339 }, { "start": 23144.38, "end": 23147.22, "probability": 0.4916 }, { "start": 23147.28, "end": 23148.6, "probability": 0.4459 }, { "start": 23148.6, "end": 23149.68, "probability": 0.1795 }, { "start": 23150.34, "end": 23151.2, "probability": 0.2312 }, { "start": 23151.2, "end": 23152.22, "probability": 0.0472 }, { "start": 23152.22, "end": 23153.74, "probability": 0.0078 }, { "start": 23153.86, "end": 23154.0, "probability": 0.0083 }, { "start": 23154.44, "end": 23158.9, "probability": 0.9517 }, { "start": 23159.1, "end": 23162.5, "probability": 0.805 }, { "start": 23163.3, "end": 23163.3, "probability": 0.0096 }, { "start": 23163.3, "end": 23163.98, "probability": 0.3711 }, { "start": 23164.14, "end": 23165.35, "probability": 0.8376 }, { "start": 23166.68, "end": 23170.06, "probability": 0.7867 }, { "start": 23170.18, "end": 23172.0, "probability": 0.8481 }, { "start": 23172.42, "end": 23175.48, "probability": 0.9546 }, { "start": 23175.48, "end": 23177.54, "probability": 0.5918 }, { "start": 23178.61, "end": 23182.86, "probability": 0.9619 }, { "start": 23182.94, "end": 23186.84, "probability": 0.9973 }, { "start": 23187.8, "end": 23189.76, "probability": 0.9602 }, { "start": 23189.76, "end": 23191.82, "probability": 0.778 }, { "start": 23192.12, "end": 23192.46, "probability": 0.8271 }, { "start": 23193.32, "end": 23195.4, "probability": 0.6215 }, { "start": 23195.52, "end": 23196.26, "probability": 0.7687 }, { "start": 23196.56, "end": 23197.06, "probability": 0.7217 }, { "start": 23197.66, "end": 23199.74, "probability": 0.7678 }, { "start": 23200.06, "end": 23201.94, "probability": 0.4521 }, { "start": 23202.06, "end": 23203.02, "probability": 0.5876 }, { "start": 23203.02, "end": 23203.83, "probability": 0.702 }, { "start": 23204.64, "end": 23206.32, "probability": 0.9852 }, { "start": 23208.76, "end": 23209.82, "probability": 0.4679 }, { "start": 23215.4, "end": 23216.82, "probability": 0.5367 }, { "start": 23217.88, "end": 23218.24, "probability": 0.9324 }, { "start": 23219.22, "end": 23220.2, "probability": 0.8178 }, { "start": 23221.14, "end": 23221.54, "probability": 0.9778 }, { "start": 23222.28, "end": 23223.32, "probability": 0.7418 }, { "start": 23224.6, "end": 23225.0, "probability": 0.9907 }, { "start": 23225.78, "end": 23226.52, "probability": 0.9013 }, { "start": 23227.32, "end": 23229.08, "probability": 0.9602 }, { "start": 23230.38, "end": 23231.04, "probability": 0.9406 }, { "start": 23232.26, "end": 23234.02, "probability": 0.6172 }, { "start": 23234.88, "end": 23235.84, "probability": 0.9814 }, { "start": 23236.68, "end": 23237.5, "probability": 0.9356 }, { "start": 23239.34, "end": 23240.06, "probability": 0.941 }, { "start": 23241.14, "end": 23241.98, "probability": 0.6816 }, { "start": 23243.0, "end": 23243.26, "probability": 0.5245 }, { "start": 23244.4, "end": 23245.3, "probability": 0.8218 }, { "start": 23246.1, "end": 23246.52, "probability": 0.856 }, { "start": 23247.24, "end": 23248.0, "probability": 0.9069 }, { "start": 23249.14, "end": 23251.18, "probability": 0.962 }, { "start": 23252.16, "end": 23254.44, "probability": 0.956 }, { "start": 23255.78, "end": 23256.36, "probability": 0.8353 }, { "start": 23257.3, "end": 23258.22, "probability": 0.9835 }, { "start": 23259.1, "end": 23260.62, "probability": 0.9805 }, { "start": 23261.3, "end": 23262.16, "probability": 0.972 }, { "start": 23263.7, "end": 23264.56, "probability": 0.9786 }, { "start": 23265.44, "end": 23266.32, "probability": 0.8838 }, { "start": 23272.0, "end": 23276.32, "probability": 0.4409 }, { "start": 23277.16, "end": 23278.22, "probability": 0.6692 }, { "start": 23280.96, "end": 23282.36, "probability": 0.8022 }, { "start": 23283.3, "end": 23284.22, "probability": 0.8331 }, { "start": 23285.78, "end": 23286.5, "probability": 0.8069 }, { "start": 23287.1, "end": 23287.94, "probability": 0.8431 }, { "start": 23289.14, "end": 23292.88, "probability": 0.8817 }, { "start": 23294.42, "end": 23295.14, "probability": 0.9847 }, { "start": 23295.94, "end": 23296.78, "probability": 0.9475 }, { "start": 23298.48, "end": 23299.16, "probability": 0.9473 }, { "start": 23299.76, "end": 23300.68, "probability": 0.6856 }, { "start": 23301.24, "end": 23301.9, "probability": 0.816 }, { "start": 23302.58, "end": 23303.38, "probability": 0.8617 }, { "start": 23304.14, "end": 23304.86, "probability": 0.9793 }, { "start": 23305.46, "end": 23306.8, "probability": 0.7177 }, { "start": 23308.28, "end": 23309.18, "probability": 0.9888 }, { "start": 23310.44, "end": 23311.32, "probability": 0.9505 }, { "start": 23311.88, "end": 23312.8, "probability": 0.7463 }, { "start": 23314.64, "end": 23315.46, "probability": 0.802 }, { "start": 23316.72, "end": 23317.04, "probability": 0.7869 }, { "start": 23318.26, "end": 23319.04, "probability": 0.9509 }, { "start": 23320.16, "end": 23323.2, "probability": 0.9724 }, { "start": 23324.04, "end": 23324.42, "probability": 0.9409 }, { "start": 23329.78, "end": 23330.6, "probability": 0.616 }, { "start": 23331.52, "end": 23331.88, "probability": 0.8799 }, { "start": 23332.52, "end": 23333.1, "probability": 0.7832 }, { "start": 23334.12, "end": 23334.54, "probability": 0.9753 }, { "start": 23335.32, "end": 23336.1, "probability": 0.8181 }, { "start": 23337.11, "end": 23339.28, "probability": 0.8405 }, { "start": 23340.22, "end": 23342.08, "probability": 0.2348 }, { "start": 23345.3, "end": 23347.24, "probability": 0.1302 }, { "start": 23355.42, "end": 23357.28, "probability": 0.5383 }, { "start": 23371.56, "end": 23373.56, "probability": 0.3355 }, { "start": 23374.64, "end": 23377.32, "probability": 0.6282 }, { "start": 23378.12, "end": 23378.8, "probability": 0.9465 }, { "start": 23379.36, "end": 23380.38, "probability": 0.8913 }, { "start": 23381.34, "end": 23383.36, "probability": 0.6648 }, { "start": 23385.32, "end": 23385.77, "probability": 0.1129 }, { "start": 23390.28, "end": 23391.52, "probability": 0.5647 }, { "start": 23392.66, "end": 23393.54, "probability": 0.068 }, { "start": 23394.88, "end": 23395.72, "probability": 0.8129 }, { "start": 23396.64, "end": 23399.06, "probability": 0.838 }, { "start": 23400.22, "end": 23401.74, "probability": 0.8345 }, { "start": 23402.98, "end": 23403.76, "probability": 0.9114 }, { "start": 23404.7, "end": 23405.84, "probability": 0.9782 }, { "start": 23406.78, "end": 23407.54, "probability": 0.9658 }, { "start": 23408.58, "end": 23409.68, "probability": 0.7611 }, { "start": 23410.28, "end": 23411.1, "probability": 0.9856 }, { "start": 23411.64, "end": 23412.48, "probability": 0.5131 }, { "start": 23413.36, "end": 23414.06, "probability": 0.8877 }, { "start": 23414.92, "end": 23415.96, "probability": 0.5409 }, { "start": 23419.18, "end": 23423.23, "probability": 0.2041 }, { "start": 23426.18, "end": 23427.0, "probability": 0.3041 }, { "start": 23427.82, "end": 23428.48, "probability": 0.7641 }, { "start": 23429.44, "end": 23429.98, "probability": 0.8232 }, { "start": 23432.66, "end": 23434.02, "probability": 0.532 }, { "start": 23435.24, "end": 23436.02, "probability": 0.7292 }, { "start": 23436.98, "end": 23437.72, "probability": 0.8946 }, { "start": 23438.76, "end": 23441.0, "probability": 0.7388 }, { "start": 23441.9, "end": 23442.96, "probability": 0.9186 }, { "start": 23444.2, "end": 23444.96, "probability": 0.9934 }, { "start": 23446.04, "end": 23446.86, "probability": 0.9535 }, { "start": 23447.76, "end": 23449.9, "probability": 0.8325 }, { "start": 23451.94, "end": 23456.68, "probability": 0.8235 }, { "start": 23457.74, "end": 23459.74, "probability": 0.882 }, { "start": 23460.56, "end": 23464.2, "probability": 0.9925 }, { "start": 23464.92, "end": 23465.74, "probability": 0.9711 }, { "start": 23466.54, "end": 23467.24, "probability": 0.9729 }, { "start": 23468.24, "end": 23469.12, "probability": 0.9505 }, { "start": 23469.98, "end": 23470.68, "probability": 0.9938 }, { "start": 23473.72, "end": 23474.86, "probability": 0.5813 }, { "start": 23475.4, "end": 23478.74, "probability": 0.6784 }, { "start": 23479.4, "end": 23485.52, "probability": 0.6796 }, { "start": 23487.48, "end": 23490.22, "probability": 0.7212 }, { "start": 23491.82, "end": 23494.14, "probability": 0.8109 }, { "start": 23495.02, "end": 23495.84, "probability": 0.8935 }, { "start": 23496.76, "end": 23497.4, "probability": 0.909 }, { "start": 23500.7, "end": 23501.2, "probability": 0.9253 }, { "start": 23502.18, "end": 23503.02, "probability": 0.9345 }, { "start": 23503.94, "end": 23505.86, "probability": 0.9601 }, { "start": 23506.48, "end": 23508.5, "probability": 0.9666 }, { "start": 23509.18, "end": 23510.98, "probability": 0.726 }, { "start": 23511.54, "end": 23513.2, "probability": 0.6759 }, { "start": 23514.24, "end": 23517.76, "probability": 0.9155 }, { "start": 23518.5, "end": 23520.12, "probability": 0.8444 }, { "start": 23520.96, "end": 23521.76, "probability": 0.9561 }, { "start": 23522.34, "end": 23525.78, "probability": 0.8756 }, { "start": 23528.0, "end": 23528.42, "probability": 0.9854 }, { "start": 23530.36, "end": 23531.06, "probability": 0.8668 }, { "start": 23532.84, "end": 23535.18, "probability": 0.8708 }, { "start": 23536.32, "end": 23537.08, "probability": 0.7353 }, { "start": 23538.68, "end": 23539.04, "probability": 0.646 }, { "start": 23540.5, "end": 23541.4, "probability": 0.3624 }, { "start": 23542.42, "end": 23544.54, "probability": 0.9338 }, { "start": 23545.32, "end": 23547.3, "probability": 0.9229 }, { "start": 23548.14, "end": 23550.42, "probability": 0.9779 }, { "start": 23555.92, "end": 23556.4, "probability": 0.5281 }, { "start": 23557.8, "end": 23558.72, "probability": 0.7239 }, { "start": 23559.86, "end": 23560.5, "probability": 0.8704 }, { "start": 23561.3, "end": 23562.18, "probability": 0.672 }, { "start": 23563.1, "end": 23563.88, "probability": 0.9921 }, { "start": 23564.96, "end": 23567.06, "probability": 0.7532 }, { "start": 23568.5, "end": 23569.88, "probability": 0.9373 }, { "start": 23570.74, "end": 23571.74, "probability": 0.4543 }, { "start": 23573.36, "end": 23575.36, "probability": 0.9632 }, { "start": 23576.34, "end": 23577.32, "probability": 0.4318 }, { "start": 23578.56, "end": 23580.34, "probability": 0.8959 }, { "start": 23584.62, "end": 23584.84, "probability": 0.5541 }, { "start": 23586.74, "end": 23589.34, "probability": 0.7973 }, { "start": 23590.2, "end": 23590.94, "probability": 0.9878 }, { "start": 23592.0, "end": 23592.7, "probability": 0.9029 }, { "start": 23593.44, "end": 23593.72, "probability": 0.793 }, { "start": 23594.3, "end": 23595.14, "probability": 0.3753 }, { "start": 23595.76, "end": 23596.58, "probability": 0.9741 }, { "start": 23598.38, "end": 23599.82, "probability": 0.9127 }, { "start": 23600.68, "end": 23602.14, "probability": 0.9574 }, { "start": 23603.38, "end": 23604.14, "probability": 0.4131 }, { "start": 23605.93, "end": 23608.26, "probability": 0.365 }, { "start": 23610.1, "end": 23611.3, "probability": 0.5047 }, { "start": 23612.82, "end": 23613.8, "probability": 0.7074 }, { "start": 23614.64, "end": 23615.92, "probability": 0.7163 }, { "start": 23616.84, "end": 23618.64, "probability": 0.8699 }, { "start": 23619.56, "end": 23621.6, "probability": 0.9112 }, { "start": 23625.16, "end": 23630.66, "probability": 0.7394 }, { "start": 23635.04, "end": 23637.56, "probability": 0.2094 }, { "start": 23638.86, "end": 23639.22, "probability": 0.4263 }, { "start": 23639.84, "end": 23640.94, "probability": 0.7261 }, { "start": 23643.18, "end": 23646.68, "probability": 0.6022 }, { "start": 23647.34, "end": 23648.02, "probability": 0.7655 }, { "start": 23649.0, "end": 23649.98, "probability": 0.9008 }, { "start": 23651.06, "end": 23652.1, "probability": 0.7211 }, { "start": 23653.1, "end": 23653.82, "probability": 0.834 }, { "start": 23654.62, "end": 23655.94, "probability": 0.9522 }, { "start": 23658.08, "end": 23660.4, "probability": 0.9551 }, { "start": 23662.06, "end": 23662.98, "probability": 0.9849 }, { "start": 23663.8, "end": 23664.46, "probability": 0.901 }, { "start": 23665.04, "end": 23667.2, "probability": 0.9425 }, { "start": 23667.98, "end": 23668.76, "probability": 0.9938 }, { "start": 23669.32, "end": 23672.96, "probability": 0.584 }, { "start": 23674.18, "end": 23676.54, "probability": 0.2075 }, { "start": 23677.06, "end": 23682.26, "probability": 0.5078 }, { "start": 23683.04, "end": 23685.24, "probability": 0.678 }, { "start": 23686.8, "end": 23688.02, "probability": 0.51 }, { "start": 23689.98, "end": 23690.88, "probability": 0.5083 }, { "start": 23692.32, "end": 23693.82, "probability": 0.9734 }, { "start": 23694.56, "end": 23695.62, "probability": 0.8679 }, { "start": 23696.72, "end": 23700.78, "probability": 0.6806 }, { "start": 23701.82, "end": 23702.84, "probability": 0.9075 }, { "start": 23703.76, "end": 23704.26, "probability": 0.8933 }, { "start": 23705.84, "end": 23707.04, "probability": 0.7465 }, { "start": 23707.94, "end": 23709.84, "probability": 0.7969 }, { "start": 23710.66, "end": 23712.38, "probability": 0.9162 }, { "start": 23713.34, "end": 23715.64, "probability": 0.8862 }, { "start": 23716.42, "end": 23721.06, "probability": 0.5993 }, { "start": 23721.48, "end": 23725.82, "probability": 0.011 }, { "start": 23726.4, "end": 23729.6, "probability": 0.6893 }, { "start": 23730.48, "end": 23731.14, "probability": 0.9617 }, { "start": 23731.7, "end": 23735.21, "probability": 0.7581 }, { "start": 23741.08, "end": 23741.98, "probability": 0.4069 }, { "start": 23743.92, "end": 23745.08, "probability": 0.278 }, { "start": 23746.36, "end": 23748.9, "probability": 0.6725 }, { "start": 23754.76, "end": 23758.2, "probability": 0.5079 }, { "start": 23758.92, "end": 23761.2, "probability": 0.9536 }, { "start": 23761.9, "end": 23762.94, "probability": 0.9596 }, { "start": 23764.34, "end": 23765.12, "probability": 0.976 }, { "start": 23766.0, "end": 23767.04, "probability": 0.9866 }, { "start": 23767.06, "end": 23768.58, "probability": 0.8682 }, { "start": 23768.6, "end": 23770.06, "probability": 0.786 }, { "start": 23770.2, "end": 23770.86, "probability": 0.9591 }, { "start": 23771.4, "end": 23773.12, "probability": 0.733 }, { "start": 23774.7, "end": 23775.5, "probability": 0.514 }, { "start": 23775.52, "end": 23776.88, "probability": 0.9172 }, { "start": 23777.16, "end": 23778.66, "probability": 0.88 }, { "start": 23779.54, "end": 23781.3, "probability": 0.9689 }, { "start": 23781.96, "end": 23784.56, "probability": 0.776 }, { "start": 23785.5, "end": 23786.98, "probability": 0.8432 }, { "start": 23787.0, "end": 23789.44, "probability": 0.6937 }, { "start": 23789.56, "end": 23790.66, "probability": 0.148 }, { "start": 23790.74, "end": 23792.2, "probability": 0.5632 }, { "start": 23793.04, "end": 23794.58, "probability": 0.8873 }, { "start": 23794.62, "end": 23796.12, "probability": 0.8785 }, { "start": 23796.18, "end": 23797.12, "probability": 0.9253 }, { "start": 23798.38, "end": 23800.1, "probability": 0.8515 }, { "start": 23800.26, "end": 23801.44, "probability": 0.5057 }, { "start": 23801.48, "end": 23802.56, "probability": 0.7206 }, { "start": 23802.78, "end": 23803.58, "probability": 0.9639 }, { "start": 23804.94, "end": 23805.56, "probability": 0.8635 }, { "start": 23806.44, "end": 23807.54, "probability": 0.9734 }, { "start": 23809.82, "end": 23810.78, "probability": 0.6648 }, { "start": 23811.48, "end": 23812.5, "probability": 0.9348 }, { "start": 23813.3, "end": 23814.18, "probability": 0.9071 }, { "start": 23815.0, "end": 23817.92, "probability": 0.9035 }, { "start": 23818.48, "end": 23819.46, "probability": 0.9539 }, { "start": 23820.24, "end": 23822.66, "probability": 0.614 }, { "start": 23827.7, "end": 23832.32, "probability": 0.7108 }, { "start": 23833.02, "end": 23834.08, "probability": 0.8617 }, { "start": 23834.76, "end": 23835.98, "probability": 0.7758 }, { "start": 23836.56, "end": 23838.6, "probability": 0.8776 }, { "start": 23839.76, "end": 23841.94, "probability": 0.665 }, { "start": 23842.48, "end": 23846.1, "probability": 0.6525 }, { "start": 23846.64, "end": 23848.52, "probability": 0.9273 }, { "start": 23850.42, "end": 23853.94, "probability": 0.8615 }, { "start": 23854.04, "end": 23854.92, "probability": 0.939 }, { "start": 23855.36, "end": 23855.88, "probability": 0.9831 }, { "start": 23856.48, "end": 23857.4, "probability": 0.8091 }, { "start": 23858.18, "end": 23859.18, "probability": 0.91 }, { "start": 23859.98, "end": 23860.62, "probability": 0.3109 }, { "start": 23861.82, "end": 23862.52, "probability": 0.9143 }, { "start": 23863.06, "end": 23863.36, "probability": 0.3415 }, { "start": 23863.68, "end": 23864.82, "probability": 0.8559 }, { "start": 23865.22, "end": 23867.8, "probability": 0.427 }, { "start": 23867.82, "end": 23868.78, "probability": 0.9481 }, { "start": 23870.22, "end": 23872.36, "probability": 0.8731 }, { "start": 23873.3, "end": 23876.26, "probability": 0.7257 }, { "start": 23877.58, "end": 23880.12, "probability": 0.7099 }, { "start": 23882.0, "end": 23883.72, "probability": 0.8589 }, { "start": 23884.6, "end": 23885.52, "probability": 0.7994 }, { "start": 23886.84, "end": 23887.14, "probability": 0.9038 }, { "start": 23887.86, "end": 23890.12, "probability": 0.9897 }, { "start": 23891.18, "end": 23893.16, "probability": 0.9484 }, { "start": 23894.28, "end": 23895.56, "probability": 0.9893 }, { "start": 23896.66, "end": 23897.08, "probability": 0.6559 }, { "start": 23898.22, "end": 23899.0, "probability": 0.7633 }, { "start": 23899.68, "end": 23900.5, "probability": 0.4976 }, { "start": 23900.62, "end": 23902.28, "probability": 0.6613 }, { "start": 23902.4, "end": 23903.26, "probability": 0.8128 }, { "start": 23904.6, "end": 23906.9, "probability": 0.722 }, { "start": 23907.68, "end": 23911.46, "probability": 0.7123 }, { "start": 23913.46, "end": 23916.66, "probability": 0.5574 }, { "start": 23917.24, "end": 23922.78, "probability": 0.556 }, { "start": 23924.44, "end": 23924.74, "probability": 0.349 }, { "start": 23926.0, "end": 23929.19, "probability": 0.4966 }, { "start": 23929.74, "end": 23931.0, "probability": 0.425 }, { "start": 23931.4, "end": 23932.14, "probability": 0.3233 }, { "start": 23932.22, "end": 23932.72, "probability": 0.4416 }, { "start": 23933.92, "end": 23934.35, "probability": 0.1998 }, { "start": 23935.08, "end": 23939.34, "probability": 0.0245 }, { "start": 23939.8, "end": 23939.8, "probability": 0.0767 }, { "start": 23940.04, "end": 23940.04, "probability": 0.146 }, { "start": 23940.3, "end": 23940.68, "probability": 0.0982 }, { "start": 23942.54, "end": 23942.54, "probability": 0.084 }, { "start": 23945.32, "end": 23946.58, "probability": 0.0133 }, { "start": 23950.38, "end": 23951.98, "probability": 0.0483 }, { "start": 23954.26, "end": 23955.94, "probability": 0.0064 }, { "start": 23993.4, "end": 23997.7, "probability": 0.6151 }, { "start": 23998.1, "end": 24001.62, "probability": 0.8452 }, { "start": 24003.54, "end": 24004.24, "probability": 0.6281 }, { "start": 24004.6, "end": 24004.7, "probability": 0.0003 }, { "start": 24005.3, "end": 24008.92, "probability": 0.9757 }, { "start": 24010.16, "end": 24011.52, "probability": 0.8682 }, { "start": 24012.24, "end": 24015.5, "probability": 0.5574 }, { "start": 24016.28, "end": 24018.1, "probability": 0.9358 }, { "start": 24018.56, "end": 24020.12, "probability": 0.7302 }, { "start": 24020.18, "end": 24020.48, "probability": 0.4337 }, { "start": 24043.78, "end": 24044.9, "probability": 0.7818 }, { "start": 24052.96, "end": 24056.44, "probability": 0.8126 }, { "start": 24057.38, "end": 24059.32, "probability": 0.7245 }, { "start": 24059.74, "end": 24066.8, "probability": 0.8722 }, { "start": 24066.84, "end": 24067.9, "probability": 0.8063 }, { "start": 24068.88, "end": 24074.76, "probability": 0.9209 }, { "start": 24075.44, "end": 24077.92, "probability": 0.7356 }, { "start": 24078.52, "end": 24079.38, "probability": 0.8115 }, { "start": 24079.5, "end": 24084.48, "probability": 0.6585 }, { "start": 24084.48, "end": 24089.36, "probability": 0.8995 }, { "start": 24089.5, "end": 24093.44, "probability": 0.9648 }, { "start": 24093.56, "end": 24094.82, "probability": 0.7656 }, { "start": 24095.14, "end": 24095.86, "probability": 0.7323 }, { "start": 24096.2, "end": 24099.54, "probability": 0.9458 }, { "start": 24100.14, "end": 24103.66, "probability": 0.9821 }, { "start": 24104.28, "end": 24109.54, "probability": 0.9768 }, { "start": 24110.06, "end": 24112.02, "probability": 0.7294 }, { "start": 24112.32, "end": 24116.56, "probability": 0.892 }, { "start": 24116.72, "end": 24117.22, "probability": 0.8061 }, { "start": 24117.64, "end": 24118.9, "probability": 0.8725 }, { "start": 24119.18, "end": 24120.72, "probability": 0.9864 }, { "start": 24123.34, "end": 24125.72, "probability": 0.4061 }, { "start": 24126.06, "end": 24133.06, "probability": 0.9744 }, { "start": 24134.34, "end": 24139.6, "probability": 0.9749 }, { "start": 24139.78, "end": 24141.44, "probability": 0.9191 }, { "start": 24142.4, "end": 24142.8, "probability": 0.446 }, { "start": 24143.0, "end": 24145.76, "probability": 0.9491 }, { "start": 24145.94, "end": 24147.0, "probability": 0.9661 }, { "start": 24147.22, "end": 24147.9, "probability": 0.9525 }, { "start": 24148.08, "end": 24149.72, "probability": 0.9464 }, { "start": 24149.88, "end": 24152.46, "probability": 0.7369 }, { "start": 24152.54, "end": 24153.22, "probability": 0.7457 }, { "start": 24153.28, "end": 24154.24, "probability": 0.7801 }, { "start": 24154.8, "end": 24160.56, "probability": 0.9316 }, { "start": 24161.02, "end": 24162.44, "probability": 0.7389 }, { "start": 24162.82, "end": 24168.62, "probability": 0.9741 }, { "start": 24172.42, "end": 24178.62, "probability": 0.9775 }, { "start": 24179.0, "end": 24183.08, "probability": 0.97 }, { "start": 24183.52, "end": 24188.5, "probability": 0.9629 }, { "start": 24188.5, "end": 24191.12, "probability": 0.9965 }, { "start": 24192.54, "end": 24197.7, "probability": 0.9752 }, { "start": 24198.6, "end": 24203.6, "probability": 0.9875 }, { "start": 24203.6, "end": 24209.54, "probability": 0.9956 }, { "start": 24210.98, "end": 24214.52, "probability": 0.995 }, { "start": 24215.06, "end": 24219.12, "probability": 0.9978 }, { "start": 24219.68, "end": 24225.08, "probability": 0.9873 }, { "start": 24225.68, "end": 24228.32, "probability": 0.978 }, { "start": 24228.5, "end": 24233.48, "probability": 0.9639 }, { "start": 24234.24, "end": 24234.58, "probability": 0.5247 }, { "start": 24234.92, "end": 24238.06, "probability": 0.9957 }, { "start": 24238.42, "end": 24238.76, "probability": 0.2994 }, { "start": 24238.9, "end": 24242.1, "probability": 0.966 }, { "start": 24242.48, "end": 24247.26, "probability": 0.9844 }, { "start": 24248.62, "end": 24252.36, "probability": 0.9745 }, { "start": 24252.36, "end": 24255.84, "probability": 0.9324 }, { "start": 24256.46, "end": 24261.68, "probability": 0.8412 }, { "start": 24262.16, "end": 24262.88, "probability": 0.5534 }, { "start": 24262.94, "end": 24266.46, "probability": 0.965 }, { "start": 24266.46, "end": 24269.76, "probability": 0.9898 }, { "start": 24270.18, "end": 24274.64, "probability": 0.8076 }, { "start": 24274.86, "end": 24275.92, "probability": 0.9108 }, { "start": 24276.02, "end": 24277.52, "probability": 0.981 }, { "start": 24278.2, "end": 24283.8, "probability": 0.8133 }, { "start": 24284.32, "end": 24288.04, "probability": 0.9985 }, { "start": 24288.68, "end": 24293.74, "probability": 0.9591 }, { "start": 24293.74, "end": 24297.64, "probability": 0.9925 }, { "start": 24298.04, "end": 24301.54, "probability": 0.9992 }, { "start": 24301.84, "end": 24302.4, "probability": 0.4629 }, { "start": 24302.48, "end": 24303.92, "probability": 0.3969 }, { "start": 24304.74, "end": 24309.52, "probability": 0.9581 }, { "start": 24310.26, "end": 24311.02, "probability": 0.4901 }, { "start": 24311.02, "end": 24311.96, "probability": 0.5073 }, { "start": 24312.04, "end": 24317.02, "probability": 0.6647 }, { "start": 24317.72, "end": 24319.96, "probability": 0.9596 }, { "start": 24320.46, "end": 24325.06, "probability": 0.9944 }, { "start": 24325.06, "end": 24330.08, "probability": 0.9888 }, { "start": 24330.68, "end": 24331.1, "probability": 0.558 }, { "start": 24331.56, "end": 24332.24, "probability": 0.4936 }, { "start": 24332.38, "end": 24337.38, "probability": 0.989 }, { "start": 24337.76, "end": 24343.28, "probability": 0.9802 }, { "start": 24343.64, "end": 24346.96, "probability": 0.885 }, { "start": 24347.7, "end": 24354.0, "probability": 0.8073 }, { "start": 24354.06, "end": 24356.06, "probability": 0.9976 }, { "start": 24356.32, "end": 24357.36, "probability": 0.4425 }, { "start": 24357.78, "end": 24358.98, "probability": 0.7941 }, { "start": 24359.32, "end": 24362.82, "probability": 0.9983 }, { "start": 24363.14, "end": 24366.92, "probability": 0.9867 }, { "start": 24367.06, "end": 24367.62, "probability": 0.8444 }, { "start": 24368.98, "end": 24372.16, "probability": 0.7693 }, { "start": 24372.64, "end": 24375.06, "probability": 0.9732 }, { "start": 24375.96, "end": 24377.16, "probability": 0.6401 }, { "start": 24391.88, "end": 24394.22, "probability": 0.6714 }, { "start": 24396.84, "end": 24398.24, "probability": 0.6226 }, { "start": 24398.38, "end": 24399.8, "probability": 0.7804 }, { "start": 24400.8, "end": 24405.0, "probability": 0.9324 }, { "start": 24405.18, "end": 24406.4, "probability": 0.6066 }, { "start": 24407.14, "end": 24410.12, "probability": 0.9944 }, { "start": 24410.32, "end": 24411.72, "probability": 0.5002 }, { "start": 24412.3, "end": 24415.2, "probability": 0.9714 }, { "start": 24415.2, "end": 24417.64, "probability": 0.9972 }, { "start": 24418.62, "end": 24420.98, "probability": 0.9961 }, { "start": 24420.98, "end": 24423.92, "probability": 0.8581 }, { "start": 24424.4, "end": 24427.46, "probability": 0.9913 }, { "start": 24427.46, "end": 24431.92, "probability": 0.9956 }, { "start": 24432.6, "end": 24435.3, "probability": 0.9739 }, { "start": 24436.04, "end": 24436.42, "probability": 0.4436 }, { "start": 24436.54, "end": 24438.64, "probability": 0.9912 }, { "start": 24438.78, "end": 24440.82, "probability": 0.9972 }, { "start": 24441.28, "end": 24445.46, "probability": 0.9477 }, { "start": 24446.46, "end": 24446.92, "probability": 0.6818 }, { "start": 24446.96, "end": 24450.62, "probability": 0.9927 }, { "start": 24450.66, "end": 24453.06, "probability": 0.9953 }, { "start": 24453.5, "end": 24457.0, "probability": 0.9758 }, { "start": 24457.46, "end": 24459.04, "probability": 0.9083 }, { "start": 24459.7, "end": 24462.72, "probability": 0.9525 }, { "start": 24462.94, "end": 24463.68, "probability": 0.85 }, { "start": 24463.96, "end": 24466.72, "probability": 0.982 }, { "start": 24467.56, "end": 24470.9, "probability": 0.9937 }, { "start": 24471.42, "end": 24473.82, "probability": 0.9756 }, { "start": 24474.26, "end": 24477.66, "probability": 0.9895 }, { "start": 24478.28, "end": 24478.94, "probability": 0.7354 }, { "start": 24479.04, "end": 24482.58, "probability": 0.9893 }, { "start": 24482.76, "end": 24486.08, "probability": 0.9741 }, { "start": 24486.08, "end": 24489.62, "probability": 0.9785 }, { "start": 24490.42, "end": 24490.7, "probability": 0.4801 }, { "start": 24491.3, "end": 24494.08, "probability": 0.7552 }, { "start": 24494.08, "end": 24498.2, "probability": 0.9793 }, { "start": 24498.68, "end": 24501.02, "probability": 0.9796 }, { "start": 24501.16, "end": 24501.94, "probability": 0.6462 }, { "start": 24502.4, "end": 24505.76, "probability": 0.9884 }, { "start": 24506.06, "end": 24506.64, "probability": 0.5052 }, { "start": 24507.26, "end": 24507.58, "probability": 0.3663 }, { "start": 24507.6, "end": 24512.02, "probability": 0.9902 }, { "start": 24512.4, "end": 24515.52, "probability": 0.9717 }, { "start": 24515.98, "end": 24518.76, "probability": 0.9951 }, { "start": 24520.1, "end": 24522.46, "probability": 0.9836 }, { "start": 24522.46, "end": 24524.88, "probability": 0.8827 }, { "start": 24525.44, "end": 24528.6, "probability": 0.9935 }, { "start": 24529.36, "end": 24530.12, "probability": 0.6568 }, { "start": 24530.2, "end": 24534.24, "probability": 0.7125 }, { "start": 24534.24, "end": 24537.4, "probability": 0.9894 }, { "start": 24537.74, "end": 24539.68, "probability": 0.1922 }, { "start": 24540.4, "end": 24542.0, "probability": 0.0935 }, { "start": 24542.76, "end": 24546.2, "probability": 0.9493 }, { "start": 24546.3, "end": 24546.52, "probability": 0.7375 }, { "start": 24547.22, "end": 24549.84, "probability": 0.659 }, { "start": 24550.96, "end": 24552.4, "probability": 0.5214 }, { "start": 24553.74, "end": 24555.9, "probability": 0.1339 }, { "start": 24557.8, "end": 24559.32, "probability": 0.009 }, { "start": 24560.76, "end": 24560.98, "probability": 0.0624 }, { "start": 24560.98, "end": 24561.0, "probability": 0.1444 }, { "start": 24561.0, "end": 24561.21, "probability": 0.437 }, { "start": 24562.6, "end": 24564.32, "probability": 0.5277 }, { "start": 24564.46, "end": 24565.12, "probability": 0.5945 }, { "start": 24584.24, "end": 24587.04, "probability": 0.0504 }, { "start": 24587.04, "end": 24588.85, "probability": 0.157 }, { "start": 24589.0, "end": 24589.38, "probability": 0.0618 }, { "start": 24589.44, "end": 24590.82, "probability": 0.0426 }, { "start": 24590.82, "end": 24591.52, "probability": 0.4494 }, { "start": 24591.72, "end": 24592.62, "probability": 0.853 }, { "start": 24598.36, "end": 24599.32, "probability": 0.0379 }, { "start": 24599.32, "end": 24599.58, "probability": 0.0239 }, { "start": 24600.48, "end": 24600.5, "probability": 0.0951 }, { "start": 24600.5, "end": 24602.04, "probability": 0.1476 }, { "start": 24602.04, "end": 24606.34, "probability": 0.0695 }, { "start": 24606.34, "end": 24607.26, "probability": 0.1085 }, { "start": 24608.78, "end": 24612.74, "probability": 0.0462 }, { "start": 24612.74, "end": 24612.74, "probability": 0.0754 }, { "start": 24612.74, "end": 24612.74, "probability": 0.0238 }, { "start": 24612.74, "end": 24613.9, "probability": 0.1842 }, { "start": 24642.0, "end": 24642.0, "probability": 0.0 }, { "start": 24642.0, "end": 24642.0, "probability": 0.0 }, { "start": 24642.0, "end": 24642.0, "probability": 0.0 }, { "start": 24642.0, "end": 24642.0, "probability": 0.0 }, { "start": 24642.0, "end": 24642.0, "probability": 0.0 }, { "start": 24642.0, "end": 24642.0, "probability": 0.0 }, { "start": 24642.0, "end": 24642.0, "probability": 0.0 }, { "start": 24642.0, "end": 24642.0, "probability": 0.0 }, { "start": 24642.0, "end": 24642.0, "probability": 0.0 }, { "start": 24642.52, "end": 24644.74, "probability": 0.1002 }, { "start": 24644.8, "end": 24646.02, "probability": 0.0495 }, { "start": 24660.8, "end": 24661.16, "probability": 0.0996 }, { "start": 24664.17, "end": 24666.82, "probability": 0.2479 }, { "start": 24667.48, "end": 24673.28, "probability": 0.0978 }, { "start": 24673.28, "end": 24673.28, "probability": 0.0224 }, { "start": 24801.0, "end": 24801.0, "probability": 0.0 }, { "start": 24801.0, "end": 24801.0, "probability": 0.0 }, { "start": 24801.0, "end": 24801.0, "probability": 0.0 }, { "start": 24801.0, "end": 24801.0, "probability": 0.0 }, { "start": 24801.0, "end": 24801.0, "probability": 0.0 }, { "start": 24801.0, "end": 24801.0, "probability": 0.0 }, { "start": 24801.0, "end": 24801.0, "probability": 0.0 }, { "start": 24801.0, "end": 24801.0, "probability": 0.0 }, { "start": 24801.0, "end": 24801.0, "probability": 0.0 }, { "start": 24801.0, "end": 24801.0, "probability": 0.0 }, { "start": 24801.0, "end": 24801.0, "probability": 0.0 }, { "start": 24801.0, "end": 24801.0, "probability": 0.0 }, { "start": 24801.0, "end": 24801.0, "probability": 0.0 }, { "start": 24801.0, "end": 24801.0, "probability": 0.0 }, { "start": 24801.0, "end": 24801.0, "probability": 0.0 }, { "start": 24801.0, "end": 24801.0, "probability": 0.0 }, { "start": 24801.0, "end": 24801.0, "probability": 0.0 }, { "start": 24801.0, "end": 24801.0, "probability": 0.0 }, { "start": 24801.0, "end": 24801.0, "probability": 0.0 }, { "start": 24801.0, "end": 24801.0, "probability": 0.0 }, { "start": 24801.0, "end": 24801.0, "probability": 0.0 }, { "start": 24801.0, "end": 24801.0, "probability": 0.0 }, { "start": 24801.0, "end": 24801.0, "probability": 0.0 }, { "start": 24801.0, "end": 24801.0, "probability": 0.0 }, { "start": 24801.0, "end": 24801.0, "probability": 0.0 }, { "start": 24801.0, "end": 24801.0, "probability": 0.0 }, { "start": 24801.0, "end": 24801.0, "probability": 0.0 }, { "start": 24801.0, "end": 24801.0, "probability": 0.0 }, { "start": 24801.0, "end": 24801.0, "probability": 0.0 }, { "start": 24801.0, "end": 24801.0, "probability": 0.0 }, { "start": 24801.0, "end": 24801.0, "probability": 0.0 }, { "start": 24801.0, "end": 24801.0, "probability": 0.0 }, { "start": 24801.0, "end": 24801.0, "probability": 0.0 }, { "start": 24801.0, "end": 24801.0, "probability": 0.0 }, { "start": 24801.0, "end": 24801.0, "probability": 0.0 }, { "start": 24801.0, "end": 24801.0, "probability": 0.0 }, { "start": 24801.0, "end": 24801.0, "probability": 0.0 }, { "start": 24801.0, "end": 24801.0, "probability": 0.0 }, { "start": 24801.0, "end": 24801.0, "probability": 0.0 }, { "start": 24801.0, "end": 24801.0, "probability": 0.0 }, { "start": 24801.0, "end": 24801.0, "probability": 0.0 }, { "start": 24801.0, "end": 24801.0, "probability": 0.0 }, { "start": 24801.0, "end": 24801.0, "probability": 0.0 }, { "start": 24801.66, "end": 24802.62, "probability": 0.0147 }, { "start": 24802.72, "end": 24802.72, "probability": 0.0775 }, { "start": 24802.72, "end": 24802.72, "probability": 0.0351 }, { "start": 24802.72, "end": 24802.72, "probability": 0.096 }, { "start": 24802.86, "end": 24803.88, "probability": 0.0086 }, { "start": 24804.44, "end": 24806.2, "probability": 0.5346 }, { "start": 24811.78, "end": 24814.02, "probability": 0.8342 }, { "start": 24814.58, "end": 24817.23, "probability": 0.9453 }, { "start": 24818.4, "end": 24821.38, "probability": 0.9337 }, { "start": 24823.2, "end": 24826.66, "probability": 0.8191 }, { "start": 24826.8, "end": 24831.64, "probability": 0.867 }, { "start": 24832.68, "end": 24834.78, "probability": 0.9223 }, { "start": 24834.78, "end": 24838.66, "probability": 0.9919 }, { "start": 24846.9, "end": 24849.26, "probability": 0.9861 }, { "start": 24849.48, "end": 24853.38, "probability": 0.961 }, { "start": 24854.84, "end": 24859.04, "probability": 0.9026 }, { "start": 24859.32, "end": 24860.48, "probability": 0.6102 }, { "start": 24861.22, "end": 24864.82, "probability": 0.9885 }, { "start": 24868.53, "end": 24869.49, "probability": 0.3224 }, { "start": 24870.61, "end": 24883.43, "probability": 0.8355 }, { "start": 24883.43, "end": 24889.48, "probability": 0.9333 }, { "start": 24891.17, "end": 24894.27, "probability": 0.483 }, { "start": 24894.49, "end": 24900.79, "probability": 0.759 }, { "start": 24901.03, "end": 24902.88, "probability": 0.9839 }, { "start": 24903.81, "end": 24905.67, "probability": 0.8425 }, { "start": 24906.53, "end": 24907.37, "probability": 0.9478 }, { "start": 24908.19, "end": 24910.13, "probability": 0.7691 }, { "start": 24910.87, "end": 24914.83, "probability": 0.8829 }, { "start": 24915.55, "end": 24916.97, "probability": 0.0543 }, { "start": 24917.01, "end": 24918.01, "probability": 0.0232 }, { "start": 24918.53, "end": 24920.29, "probability": 0.9106 }, { "start": 24920.59, "end": 24922.41, "probability": 0.4121 }, { "start": 24922.85, "end": 24925.19, "probability": 0.9248 }, { "start": 24925.21, "end": 24926.27, "probability": 0.3095 }, { "start": 24926.27, "end": 24929.69, "probability": 0.5527 }, { "start": 24930.39, "end": 24931.43, "probability": 0.3509 }, { "start": 24933.35, "end": 24936.09, "probability": 0.3072 }, { "start": 24936.55, "end": 24936.59, "probability": 0.6731 }, { "start": 24936.59, "end": 24938.09, "probability": 0.8001 }, { "start": 24938.45, "end": 24939.56, "probability": 0.3792 }, { "start": 24940.41, "end": 24941.47, "probability": 0.5893 }, { "start": 24941.51, "end": 24942.31, "probability": 0.5225 }, { "start": 24942.49, "end": 24943.05, "probability": 0.5867 }, { "start": 24947.87, "end": 24948.85, "probability": 0.6926 }, { "start": 24950.07, "end": 24953.29, "probability": 0.0294 }, { "start": 24953.53, "end": 24953.89, "probability": 0.0081 }, { "start": 24956.58, "end": 24959.01, "probability": 0.0933 }, { "start": 24959.07, "end": 24960.27, "probability": 0.0332 }, { "start": 24960.61, "end": 24961.93, "probability": 0.1972 }, { "start": 24962.57, "end": 24962.81, "probability": 0.0802 }, { "start": 24963.11, "end": 24963.27, "probability": 0.1218 }, { "start": 24963.77, "end": 24964.25, "probability": 0.7309 }, { "start": 24964.41, "end": 24966.45, "probability": 0.9523 }, { "start": 24966.67, "end": 24967.61, "probability": 0.7249 }, { "start": 24968.53, "end": 24969.93, "probability": 0.4046 }, { "start": 24970.31, "end": 24971.84, "probability": 0.7726 }, { "start": 24972.43, "end": 24975.19, "probability": 0.9559 }, { "start": 24975.39, "end": 24975.77, "probability": 0.792 }, { "start": 24976.21, "end": 24976.21, "probability": 0.6113 }, { "start": 24976.21, "end": 24978.93, "probability": 0.9558 }, { "start": 24980.91, "end": 24983.71, "probability": 0.6065 }, { "start": 24985.11, "end": 24986.75, "probability": 0.709 }, { "start": 24988.73, "end": 24990.21, "probability": 0.8909 }, { "start": 24990.71, "end": 24992.49, "probability": 0.9304 }, { "start": 24993.81, "end": 24996.23, "probability": 0.9593 }, { "start": 24996.59, "end": 24997.89, "probability": 0.1595 }, { "start": 24998.95, "end": 24999.23, "probability": 0.1235 }, { "start": 25000.25, "end": 25003.07, "probability": 0.5553 }, { "start": 25003.69, "end": 25005.43, "probability": 0.888 }, { "start": 25005.53, "end": 25005.65, "probability": 0.6626 }, { "start": 25006.41, "end": 25007.55, "probability": 0.3698 }, { "start": 25008.05, "end": 25009.03, "probability": 0.9682 }, { "start": 25009.51, "end": 25009.73, "probability": 0.5257 }, { "start": 25009.77, "end": 25010.59, "probability": 0.8892 }, { "start": 25011.35, "end": 25013.53, "probability": 0.6309 }, { "start": 25013.63, "end": 25018.91, "probability": 0.6581 }, { "start": 25019.05, "end": 25020.79, "probability": 0.9346 }, { "start": 25020.79, "end": 25021.41, "probability": 0.6054 }, { "start": 25021.41, "end": 25024.21, "probability": 0.515 }, { "start": 25026.01, "end": 25026.67, "probability": 0.2642 }, { "start": 25026.67, "end": 25028.59, "probability": 0.646 }, { "start": 25029.47, "end": 25030.59, "probability": 0.9236 }, { "start": 25031.05, "end": 25033.97, "probability": 0.3458 }, { "start": 25036.34, "end": 25037.73, "probability": 0.5255 }, { "start": 25037.81, "end": 25038.47, "probability": 0.9445 }, { "start": 25038.97, "end": 25039.79, "probability": 0.8147 }, { "start": 25040.99, "end": 25045.59, "probability": 0.1244 }, { "start": 25046.71, "end": 25055.09, "probability": 0.3391 }, { "start": 25061.67, "end": 25062.25, "probability": 0.0426 }, { "start": 25063.68, "end": 25065.31, "probability": 0.4301 }, { "start": 25083.93, "end": 25086.59, "probability": 0.2203 }, { "start": 25087.03, "end": 25091.13, "probability": 0.5858 }, { "start": 25092.03, "end": 25092.63, "probability": 0.6814 }, { "start": 25094.97, "end": 25095.85, "probability": 0.3041 }, { "start": 25099.64, "end": 25101.2, "probability": 0.4808 }, { "start": 25103.03, "end": 25110.49, "probability": 0.0522 }, { "start": 25110.59, "end": 25110.69, "probability": 0.0152 }, { "start": 25110.69, "end": 25110.69, "probability": 0.2645 }, { "start": 25110.69, "end": 25110.81, "probability": 0.1115 }, { "start": 25110.81, "end": 25111.66, "probability": 0.0386 }, { "start": 25111.69, "end": 25111.69, "probability": 0.0875 }, { "start": 25111.69, "end": 25111.83, "probability": 0.0537 }, { "start": 25112.0, "end": 25112.0, "probability": 0.0 }, { "start": 25112.0, "end": 25112.0, "probability": 0.0 }, { "start": 25112.0, "end": 25112.0, "probability": 0.0 }, { "start": 25112.0, "end": 25112.0, "probability": 0.0 }, { "start": 25112.0, "end": 25112.0, "probability": 0.0 }, { "start": 25112.0, "end": 25112.0, "probability": 0.0 }, { "start": 25123.96, "end": 25124.08, "probability": 0.4511 }, { "start": 25124.62, "end": 25125.54, "probability": 0.0968 }, { "start": 25125.54, "end": 25129.24, "probability": 0.368 }, { "start": 25132.2, "end": 25132.22, "probability": 0.0018 }, { "start": 25134.04, "end": 25135.66, "probability": 0.0666 }, { "start": 25139.14, "end": 25147.54, "probability": 0.1179 }, { "start": 25147.78, "end": 25152.42, "probability": 0.0365 }, { "start": 25237.0, "end": 25237.0, "probability": 0.0 }, { "start": 25237.0, "end": 25237.0, "probability": 0.0 }, { "start": 25237.0, "end": 25237.0, "probability": 0.0 }, { "start": 25237.0, "end": 25237.0, "probability": 0.0 }, { "start": 25237.0, "end": 25237.0, "probability": 0.0 }, { "start": 25237.0, "end": 25237.0, "probability": 0.0 }, { "start": 25237.0, "end": 25237.0, "probability": 0.0 }, { "start": 25237.0, "end": 25237.0, "probability": 0.0 }, { "start": 25237.0, "end": 25237.0, "probability": 0.0 }, { "start": 25237.0, "end": 25237.0, "probability": 0.0 }, { "start": 25237.0, "end": 25237.0, "probability": 0.0 }, { "start": 25237.0, "end": 25237.0, "probability": 0.0 }, { "start": 25237.0, "end": 25237.0, "probability": 0.0 }, { "start": 25237.0, "end": 25237.0, "probability": 0.0 }, { "start": 25237.0, "end": 25237.0, "probability": 0.0 }, { "start": 25237.0, "end": 25237.0, "probability": 0.0 }, { "start": 25237.0, "end": 25237.0, "probability": 0.0 }, { "start": 25237.0, "end": 25237.0, "probability": 0.0 }, { "start": 25237.0, "end": 25237.0, "probability": 0.0 }, { "start": 25237.0, "end": 25237.0, "probability": 0.0 }, { "start": 25237.0, "end": 25237.0, "probability": 0.0 }, { "start": 25237.0, "end": 25237.0, "probability": 0.0 }, { "start": 25237.0, "end": 25237.0, "probability": 0.0 }, { "start": 25237.0, "end": 25237.0, "probability": 0.0 }, { "start": 25237.0, "end": 25237.0, "probability": 0.0 }, { "start": 25237.0, "end": 25237.0, "probability": 0.0 }, { "start": 25237.0, "end": 25237.0, "probability": 0.0 }, { "start": 25237.0, "end": 25237.0, "probability": 0.0 }, { "start": 25237.0, "end": 25237.0, "probability": 0.0 }, { "start": 25237.0, "end": 25237.0, "probability": 0.0 }, { "start": 25237.0, "end": 25237.0, "probability": 0.0 }, { "start": 25237.0, "end": 25237.0, "probability": 0.0 }, { "start": 25237.0, "end": 25237.0, "probability": 0.0 }, { "start": 25237.0, "end": 25237.0, "probability": 0.0 }, { "start": 25237.0, "end": 25237.0, "probability": 0.0 }, { "start": 25237.0, "end": 25237.0, "probability": 0.0 }, { "start": 25237.14, "end": 25240.84, "probability": 0.584 }, { "start": 25243.34, "end": 25246.26, "probability": 0.957 }, { "start": 25246.68, "end": 25250.14, "probability": 0.9764 }, { "start": 25251.1, "end": 25252.84, "probability": 0.3677 }, { "start": 25253.78, "end": 25254.32, "probability": 0.8129 }, { "start": 25255.9, "end": 25261.46, "probability": 0.9302 }, { "start": 25262.1, "end": 25262.98, "probability": 0.7629 }, { "start": 25265.12, "end": 25265.76, "probability": 0.9962 }, { "start": 25266.72, "end": 25267.8, "probability": 0.997 }, { "start": 25269.18, "end": 25270.42, "probability": 0.7455 }, { "start": 25271.74, "end": 25274.46, "probability": 0.9563 }, { "start": 25276.36, "end": 25279.2, "probability": 0.9919 }, { "start": 25280.34, "end": 25285.38, "probability": 0.9849 }, { "start": 25286.18, "end": 25288.38, "probability": 0.9703 }, { "start": 25289.66, "end": 25296.0, "probability": 0.986 }, { "start": 25296.5, "end": 25300.58, "probability": 0.9286 }, { "start": 25301.7, "end": 25305.8, "probability": 0.823 }, { "start": 25308.08, "end": 25311.58, "probability": 0.9769 }, { "start": 25312.32, "end": 25316.1, "probability": 0.8362 }, { "start": 25316.54, "end": 25316.76, "probability": 0.4728 }, { "start": 25317.02, "end": 25318.46, "probability": 0.5581 }, { "start": 25318.94, "end": 25320.6, "probability": 0.6175 }, { "start": 25321.18, "end": 25325.28, "probability": 0.8019 }, { "start": 25325.64, "end": 25328.44, "probability": 0.9798 }, { "start": 25328.9, "end": 25332.8, "probability": 0.8059 }, { "start": 25333.34, "end": 25339.3, "probability": 0.9902 }, { "start": 25339.82, "end": 25345.62, "probability": 0.9971 }, { "start": 25345.82, "end": 25346.28, "probability": 0.7468 }, { "start": 25347.62, "end": 25349.66, "probability": 0.6625 }, { "start": 25351.47, "end": 25356.7, "probability": 0.9032 }, { "start": 25356.78, "end": 25359.54, "probability": 0.9826 }, { "start": 25360.08, "end": 25361.52, "probability": 0.9147 }, { "start": 25361.92, "end": 25365.92, "probability": 0.1495 }, { "start": 25366.06, "end": 25366.28, "probability": 0.208 }, { "start": 25366.32, "end": 25367.36, "probability": 0.998 }, { "start": 25378.62, "end": 25378.68, "probability": 0.3767 }, { "start": 25378.68, "end": 25379.96, "probability": 0.3896 }, { "start": 25379.96, "end": 25380.66, "probability": 0.8089 }, { "start": 25380.76, "end": 25381.64, "probability": 0.866 }, { "start": 25381.78, "end": 25382.76, "probability": 0.8278 }, { "start": 25382.84, "end": 25383.49, "probability": 0.9347 }, { "start": 25384.42, "end": 25387.82, "probability": 0.902 }, { "start": 25388.62, "end": 25390.12, "probability": 0.9972 }, { "start": 25390.22, "end": 25394.82, "probability": 0.9976 }, { "start": 25394.94, "end": 25395.48, "probability": 0.7237 }, { "start": 25395.54, "end": 25400.0, "probability": 0.822 }, { "start": 25400.1, "end": 25403.2, "probability": 0.9935 }, { "start": 25403.96, "end": 25405.16, "probability": 0.9409 }, { "start": 25405.22, "end": 25409.18, "probability": 0.991 }, { "start": 25409.26, "end": 25410.81, "probability": 0.9979 }, { "start": 25411.24, "end": 25413.3, "probability": 0.9989 }, { "start": 25413.4, "end": 25414.94, "probability": 0.9949 }, { "start": 25415.5, "end": 25417.4, "probability": 0.8699 }, { "start": 25417.56, "end": 25419.04, "probability": 0.8059 }, { "start": 25419.04, "end": 25420.06, "probability": 0.8665 }, { "start": 25420.14, "end": 25420.76, "probability": 0.897 }, { "start": 25421.52, "end": 25423.5, "probability": 0.6924 }, { "start": 25424.52, "end": 25426.52, "probability": 0.712 }, { "start": 25426.52, "end": 25428.52, "probability": 0.8553 }, { "start": 25428.94, "end": 25431.84, "probability": 0.945 }, { "start": 25432.58, "end": 25433.44, "probability": 0.6947 }, { "start": 25433.56, "end": 25434.14, "probability": 0.735 }, { "start": 25448.3, "end": 25451.14, "probability": 0.7332 }, { "start": 25451.96, "end": 25456.24, "probability": 0.9539 }, { "start": 25457.1, "end": 25459.43, "probability": 0.9824 }, { "start": 25460.46, "end": 25462.76, "probability": 0.995 }, { "start": 25464.24, "end": 25467.6, "probability": 0.6826 }, { "start": 25467.74, "end": 25472.1, "probability": 0.7375 }, { "start": 25472.16, "end": 25472.88, "probability": 0.6806 }, { "start": 25473.0, "end": 25475.22, "probability": 0.8272 }, { "start": 25475.4, "end": 25476.8, "probability": 0.9626 }, { "start": 25477.38, "end": 25478.2, "probability": 0.5224 }, { "start": 25478.2, "end": 25479.14, "probability": 0.0254 }, { "start": 25479.92, "end": 25481.7, "probability": 0.0028 }, { "start": 25483.62, "end": 25488.02, "probability": 0.0716 }, { "start": 25488.02, "end": 25493.44, "probability": 0.1907 }, { "start": 25494.32, "end": 25495.88, "probability": 0.0493 }, { "start": 25496.62, "end": 25500.84, "probability": 0.2565 }, { "start": 25502.94, "end": 25508.78, "probability": 0.1857 }, { "start": 25509.44, "end": 25515.9, "probability": 0.0485 }, { "start": 25517.64, "end": 25518.02, "probability": 0.1764 }, { "start": 25518.6, "end": 25521.6, "probability": 0.138 }, { "start": 25522.5, "end": 25525.79, "probability": 0.0957 }, { "start": 25529.21, "end": 25529.57, "probability": 0.2836 }, { "start": 25533.92, "end": 25537.6, "probability": 0.0308 }, { "start": 25541.14, "end": 25544.6, "probability": 0.3457 }, { "start": 25544.66, "end": 25547.62, "probability": 0.5576 }, { "start": 25548.0, "end": 25548.0, "probability": 0.0 }, { "start": 25551.88, "end": 25555.22, "probability": 0.823 }, { "start": 25556.5, "end": 25558.88, "probability": 0.9792 }, { "start": 25559.22, "end": 25561.7, "probability": 0.2053 }, { "start": 25562.76, "end": 25564.5, "probability": 0.3655 }, { "start": 25565.3, "end": 25567.44, "probability": 0.6007 }, { "start": 25567.5, "end": 25573.26, "probability": 0.9191 }, { "start": 25574.74, "end": 25576.42, "probability": 0.0268 }, { "start": 25578.72, "end": 25581.96, "probability": 0.0556 }, { "start": 25582.3, "end": 25585.76, "probability": 0.0536 }, { "start": 25585.76, "end": 25590.14, "probability": 0.1831 }, { "start": 25590.2, "end": 25596.0, "probability": 0.3308 }, { "start": 25682.0, "end": 25682.0, "probability": 0.0 }, { "start": 25682.0, "end": 25682.0, "probability": 0.0 }, { "start": 25682.0, "end": 25682.0, "probability": 0.0 }, { "start": 25682.0, "end": 25682.0, "probability": 0.0 }, { "start": 25682.0, "end": 25682.0, "probability": 0.0 }, { "start": 25682.0, "end": 25682.0, "probability": 0.0 }, { "start": 25682.0, "end": 25682.0, "probability": 0.0 }, { "start": 25682.0, "end": 25682.0, "probability": 0.0 }, { "start": 25682.0, "end": 25682.0, "probability": 0.0 }, { "start": 25682.0, "end": 25682.0, "probability": 0.0 }, { "start": 25682.0, "end": 25682.0, "probability": 0.0 }, { "start": 25682.0, "end": 25682.0, "probability": 0.0 }, { "start": 25682.0, "end": 25682.0, "probability": 0.0 }, { "start": 25682.0, "end": 25682.0, "probability": 0.0 }, { "start": 25682.0, "end": 25682.0, "probability": 0.0 }, { "start": 25682.0, "end": 25682.0, "probability": 0.0 }, { "start": 25682.0, "end": 25682.0, "probability": 0.0 }, { "start": 25682.0, "end": 25682.0, "probability": 0.0 }, { "start": 25682.0, "end": 25682.0, "probability": 0.0 }, { "start": 25682.0, "end": 25682.0, "probability": 0.0 }, { "start": 25682.0, "end": 25682.0, "probability": 0.0 }, { "start": 25682.0, "end": 25682.0, "probability": 0.0 }, { "start": 25682.0, "end": 25682.0, "probability": 0.0 }, { "start": 25682.0, "end": 25682.0, "probability": 0.0 }, { "start": 25682.0, "end": 25682.0, "probability": 0.0 }, { "start": 25682.0, "end": 25682.0, "probability": 0.0 }, { "start": 25682.0, "end": 25682.0, "probability": 0.0 }, { "start": 25682.0, "end": 25682.0, "probability": 0.0 }, { "start": 25682.0, "end": 25682.0, "probability": 0.0 }, { "start": 25682.0, "end": 25682.0, "probability": 0.0 }, { "start": 25682.1, "end": 25683.95, "probability": 0.6826 }, { "start": 25685.18, "end": 25685.5, "probability": 0.4224 }, { "start": 25685.5, "end": 25686.54, "probability": 0.4845 }, { "start": 25686.62, "end": 25688.52, "probability": 0.9181 }, { "start": 25689.22, "end": 25691.08, "probability": 0.8164 }, { "start": 25691.18, "end": 25692.52, "probability": 0.5822 }, { "start": 25693.0, "end": 25694.92, "probability": 0.8584 }, { "start": 25695.8, "end": 25696.62, "probability": 0.5218 }, { "start": 25696.66, "end": 25697.24, "probability": 0.3459 }, { "start": 25697.28, "end": 25697.88, "probability": 0.6622 }, { "start": 25698.62, "end": 25699.8, "probability": 0.6948 }, { "start": 25700.92, "end": 25704.26, "probability": 0.2367 }, { "start": 25706.04, "end": 25711.26, "probability": 0.1184 }, { "start": 25711.28, "end": 25713.86, "probability": 0.068 }, { "start": 25715.42, "end": 25723.32, "probability": 0.0834 }, { "start": 25723.62, "end": 25723.72, "probability": 0.0404 }, { "start": 25728.2, "end": 25730.88, "probability": 0.5532 }, { "start": 25731.78, "end": 25733.48, "probability": 0.3301 }, { "start": 25808.0, "end": 25808.0, "probability": 0.0 }, { "start": 25808.0, "end": 25808.0, "probability": 0.0 }, { "start": 25808.0, "end": 25808.0, "probability": 0.0 }, { "start": 25808.0, "end": 25808.0, "probability": 0.0 }, { "start": 25808.0, "end": 25808.0, "probability": 0.0 }, { "start": 25808.0, "end": 25808.0, "probability": 0.0 }, { "start": 25808.0, "end": 25808.0, "probability": 0.0 }, { "start": 25808.0, "end": 25808.0, "probability": 0.0 }, { "start": 25808.0, "end": 25808.0, "probability": 0.0 }, { "start": 25808.0, "end": 25808.0, "probability": 0.0 }, { "start": 25808.0, "end": 25808.0, "probability": 0.0 }, { "start": 25808.0, "end": 25808.0, "probability": 0.0 }, { "start": 25808.0, "end": 25808.0, "probability": 0.0 }, { "start": 25808.0, "end": 25808.0, "probability": 0.0 }, { "start": 25808.0, "end": 25808.0, "probability": 0.0 }, { "start": 25808.0, "end": 25808.0, "probability": 0.0 }, { "start": 25808.0, "end": 25808.0, "probability": 0.0 }, { "start": 25808.0, "end": 25808.0, "probability": 0.0 }, { "start": 25808.0, "end": 25808.0, "probability": 0.0 }, { "start": 25808.0, "end": 25808.0, "probability": 0.0 }, { "start": 25808.0, "end": 25808.0, "probability": 0.0 }, { "start": 25808.0, "end": 25808.0, "probability": 0.0 }, { "start": 25808.0, "end": 25808.0, "probability": 0.0 }, { "start": 25808.0, "end": 25808.0, "probability": 0.0 }, { "start": 25808.0, "end": 25808.0, "probability": 0.0 }, { "start": 25808.0, "end": 25808.0, "probability": 0.0 }, { "start": 25808.0, "end": 25808.0, "probability": 0.0 }, { "start": 25808.0, "end": 25808.0, "probability": 0.0 }, { "start": 25808.0, "end": 25808.0, "probability": 0.0 }, { "start": 25808.38, "end": 25809.62, "probability": 0.1755 }, { "start": 25810.72, "end": 25811.1, "probability": 0.0217 }, { "start": 25826.1, "end": 25827.94, "probability": 0.0841 }, { "start": 25827.98, "end": 25829.34, "probability": 0.1778 }, { "start": 25829.52, "end": 25830.22, "probability": 0.2097 }, { "start": 25830.34, "end": 25830.88, "probability": 0.0879 }, { "start": 25832.26, "end": 25834.82, "probability": 0.0676 }, { "start": 25834.82, "end": 25834.92, "probability": 0.0725 }, { "start": 25834.92, "end": 25835.24, "probability": 0.0473 }, { "start": 25835.24, "end": 25835.9, "probability": 0.3253 }, { "start": 25935.0, "end": 25935.0, "probability": 0.0 }, { "start": 25935.0, "end": 25935.0, "probability": 0.0 }, { "start": 25935.0, "end": 25935.0, "probability": 0.0 }, { "start": 25935.0, "end": 25935.0, "probability": 0.0 }, { "start": 25935.0, "end": 25935.0, "probability": 0.0 }, { "start": 25935.0, "end": 25935.0, "probability": 0.0 }, { "start": 25935.0, "end": 25935.0, "probability": 0.0 }, { "start": 25935.0, "end": 25935.0, "probability": 0.0 }, { "start": 25935.0, "end": 25935.0, "probability": 0.0 }, { "start": 25935.0, "end": 25935.0, "probability": 0.0 }, { "start": 25935.0, "end": 25935.0, "probability": 0.0 }, { "start": 25935.0, "end": 25935.0, "probability": 0.0 }, { "start": 25935.0, "end": 25935.0, "probability": 0.0 }, { "start": 25935.0, "end": 25935.0, "probability": 0.0 }, { "start": 25935.0, "end": 25935.0, "probability": 0.0 }, { "start": 25935.0, "end": 25935.0, "probability": 0.0 }, { "start": 25935.0, "end": 25935.0, "probability": 0.0 }, { "start": 25935.0, "end": 25935.0, "probability": 0.0 }, { "start": 25935.0, "end": 25935.0, "probability": 0.0 }, { "start": 25935.0, "end": 25935.0, "probability": 0.0 }, { "start": 25935.0, "end": 25935.0, "probability": 0.0 }, { "start": 25935.0, "end": 25935.0, "probability": 0.0 }, { "start": 25935.0, "end": 25935.0, "probability": 0.0 }, { "start": 25935.0, "end": 25935.0, "probability": 0.0 }, { "start": 25935.0, "end": 25935.0, "probability": 0.0 }, { "start": 25935.0, "end": 25935.0, "probability": 0.0 }, { "start": 25935.0, "end": 25935.0, "probability": 0.0 }, { "start": 25935.0, "end": 25935.0, "probability": 0.0 }, { "start": 25935.0, "end": 25935.0, "probability": 0.0 }, { "start": 25935.0, "end": 25935.0, "probability": 0.0 }, { "start": 25935.0, "end": 25935.0, "probability": 0.0 }, { "start": 25935.0, "end": 25935.0, "probability": 0.0 }, { "start": 25935.0, "end": 25935.0, "probability": 0.0 }, { "start": 25935.0, "end": 25935.0, "probability": 0.0 }, { "start": 25935.0, "end": 25935.0, "probability": 0.0 }, { "start": 25935.0, "end": 25935.0, "probability": 0.0 }, { "start": 25935.0, "end": 25935.0, "probability": 0.0 }, { "start": 25935.0, "end": 25935.0, "probability": 0.0 }, { "start": 25935.0, "end": 25935.0, "probability": 0.0 }, { "start": 25935.0, "end": 25935.0, "probability": 0.0 }, { "start": 25935.0, "end": 25935.0, "probability": 0.0 }, { "start": 25935.0, "end": 25935.0, "probability": 0.0 }, { "start": 25935.0, "end": 25935.0, "probability": 0.0 }, { "start": 25935.0, "end": 25935.0, "probability": 0.0 }, { "start": 25935.28, "end": 25935.6, "probability": 0.0916 }, { "start": 25935.6, "end": 25935.6, "probability": 0.013 }, { "start": 25935.6, "end": 25935.6, "probability": 0.0536 }, { "start": 25935.6, "end": 25936.17, "probability": 0.2956 }, { "start": 25937.04, "end": 25937.58, "probability": 0.3074 }, { "start": 25937.66, "end": 25938.94, "probability": 0.8191 }, { "start": 25939.0, "end": 25939.86, "probability": 0.761 }, { "start": 25939.96, "end": 25940.64, "probability": 0.8382 }, { "start": 25941.8, "end": 25944.92, "probability": 0.9513 }, { "start": 25945.04, "end": 25946.22, "probability": 0.999 }, { "start": 25947.36, "end": 25949.36, "probability": 0.9658 }, { "start": 25949.74, "end": 25952.58, "probability": 0.9592 }, { "start": 25953.2, "end": 25954.2, "probability": 0.6868 }, { "start": 25955.06, "end": 25955.56, "probability": 0.9937 }, { "start": 25956.56, "end": 25957.48, "probability": 0.6206 }, { "start": 25957.72, "end": 25960.64, "probability": 0.7496 }, { "start": 25960.74, "end": 25961.98, "probability": 0.8589 }, { "start": 25962.02, "end": 25963.62, "probability": 0.8787 }, { "start": 25963.88, "end": 25965.76, "probability": 0.7803 }, { "start": 25965.84, "end": 25966.12, "probability": 0.6703 }, { "start": 25966.52, "end": 25971.14, "probability": 0.9734 }, { "start": 25971.5, "end": 25971.92, "probability": 0.1793 }, { "start": 25971.94, "end": 25973.98, "probability": 0.7498 }, { "start": 25974.14, "end": 25974.46, "probability": 0.4398 }, { "start": 25975.3, "end": 25977.96, "probability": 0.9377 }, { "start": 25978.1, "end": 25979.9, "probability": 0.885 }, { "start": 25980.68, "end": 25981.49, "probability": 0.3831 }, { "start": 25982.86, "end": 25984.42, "probability": 0.7576 }, { "start": 25984.52, "end": 25985.48, "probability": 0.9725 }, { "start": 25986.1, "end": 25986.46, "probability": 0.3538 }, { "start": 25986.46, "end": 25990.08, "probability": 0.9914 }, { "start": 25990.3, "end": 25991.74, "probability": 0.7897 }, { "start": 25992.2, "end": 25994.74, "probability": 0.6971 }, { "start": 25994.96, "end": 25996.17, "probability": 0.7303 }, { "start": 25996.74, "end": 26004.32, "probability": 0.4734 }, { "start": 26004.58, "end": 26010.56, "probability": 0.7864 }, { "start": 26010.58, "end": 26011.92, "probability": 0.776 }, { "start": 26012.28, "end": 26014.18, "probability": 0.7664 }, { "start": 26014.3, "end": 26015.86, "probability": 0.9906 }, { "start": 26016.62, "end": 26017.22, "probability": 0.1216 }, { "start": 26017.76, "end": 26019.24, "probability": 0.6746 }, { "start": 26019.6, "end": 26023.24, "probability": 0.7591 }, { "start": 26023.36, "end": 26026.12, "probability": 0.9889 }, { "start": 26026.22, "end": 26027.96, "probability": 0.9926 }, { "start": 26028.66, "end": 26033.44, "probability": 0.9803 }, { "start": 26033.54, "end": 26034.58, "probability": 0.8257 }, { "start": 26034.66, "end": 26035.36, "probability": 0.8466 }, { "start": 26038.32, "end": 26039.02, "probability": 0.2479 }, { "start": 26039.38, "end": 26040.92, "probability": 0.9201 }, { "start": 26042.64, "end": 26043.22, "probability": 0.5572 }, { "start": 26043.26, "end": 26044.12, "probability": 0.9684 }, { "start": 26044.14, "end": 26045.74, "probability": 0.7415 }, { "start": 26046.72, "end": 26049.96, "probability": 0.0655 }, { "start": 26050.02, "end": 26052.46, "probability": 0.7335 }, { "start": 26052.72, "end": 26053.3, "probability": 0.6944 }, { "start": 26054.04, "end": 26054.82, "probability": 0.5979 }, { "start": 26054.98, "end": 26055.35, "probability": 0.515 }, { "start": 26056.7, "end": 26057.14, "probability": 0.3343 }, { "start": 26057.14, "end": 26057.14, "probability": 0.0089 }, { "start": 26057.14, "end": 26057.6, "probability": 0.1609 }, { "start": 26057.68, "end": 26060.14, "probability": 0.4509 }, { "start": 26060.24, "end": 26060.62, "probability": 0.5302 }, { "start": 26060.72, "end": 26062.16, "probability": 0.3262 }, { "start": 26062.16, "end": 26062.28, "probability": 0.4834 }, { "start": 26062.36, "end": 26062.46, "probability": 0.2746 }, { "start": 26062.46, "end": 26063.0, "probability": 0.9563 }, { "start": 26063.1, "end": 26063.76, "probability": 0.7856 }, { "start": 26063.88, "end": 26066.6, "probability": 0.7759 }, { "start": 26066.6, "end": 26068.1, "probability": 0.5793 }, { "start": 26068.24, "end": 26069.42, "probability": 0.8552 }, { "start": 26070.02, "end": 26072.06, "probability": 0.9859 }, { "start": 26072.08, "end": 26073.64, "probability": 0.9293 }, { "start": 26073.84, "end": 26076.44, "probability": 0.6921 }, { "start": 26076.44, "end": 26079.77, "probability": 0.6553 }, { "start": 26080.24, "end": 26081.5, "probability": 0.8655 }, { "start": 26082.32, "end": 26084.74, "probability": 0.9834 }, { "start": 26085.14, "end": 26087.0, "probability": 0.6672 }, { "start": 26087.1, "end": 26089.66, "probability": 0.9518 }, { "start": 26090.06, "end": 26091.0, "probability": 0.5544 }, { "start": 26091.06, "end": 26094.78, "probability": 0.9039 }, { "start": 26095.18, "end": 26096.28, "probability": 0.8686 }, { "start": 26096.56, "end": 26097.32, "probability": 0.6116 }, { "start": 26097.46, "end": 26098.0, "probability": 0.2614 }, { "start": 26098.04, "end": 26100.3, "probability": 0.8994 }, { "start": 26100.8, "end": 26101.66, "probability": 0.9168 }, { "start": 26102.82, "end": 26107.92, "probability": 0.9493 }, { "start": 26108.46, "end": 26113.38, "probability": 0.99 }, { "start": 26113.8, "end": 26115.38, "probability": 0.9176 }, { "start": 26116.06, "end": 26117.92, "probability": 0.8516 }, { "start": 26118.3, "end": 26120.08, "probability": 0.9181 }, { "start": 26120.22, "end": 26121.96, "probability": 0.9753 }, { "start": 26122.16, "end": 26124.06, "probability": 0.9946 }, { "start": 26124.22, "end": 26125.52, "probability": 0.7234 }, { "start": 26125.64, "end": 26130.34, "probability": 0.9497 }, { "start": 26130.48, "end": 26135.86, "probability": 0.939 }, { "start": 26136.08, "end": 26138.4, "probability": 0.7993 }, { "start": 26139.18, "end": 26140.38, "probability": 0.7825 }, { "start": 26141.0, "end": 26143.34, "probability": 0.8884 }, { "start": 26146.23, "end": 26147.24, "probability": 0.0416 }, { "start": 26147.24, "end": 26147.24, "probability": 0.2226 }, { "start": 26147.3, "end": 26148.27, "probability": 0.4975 }, { "start": 26148.36, "end": 26148.36, "probability": 0.2403 }, { "start": 26148.36, "end": 26148.36, "probability": 0.1156 }, { "start": 26148.36, "end": 26148.6, "probability": 0.6786 }, { "start": 26149.2, "end": 26151.13, "probability": 0.8576 }, { "start": 26152.84, "end": 26152.94, "probability": 0.1402 }, { "start": 26152.94, "end": 26153.5, "probability": 0.5651 }, { "start": 26153.7, "end": 26154.12, "probability": 0.7423 }, { "start": 26154.26, "end": 26155.38, "probability": 0.6869 }, { "start": 26155.48, "end": 26157.68, "probability": 0.9573 }, { "start": 26158.76, "end": 26162.27, "probability": 0.9359 }, { "start": 26162.52, "end": 26163.58, "probability": 0.9951 }, { "start": 26163.9, "end": 26163.94, "probability": 0.2316 }, { "start": 26163.94, "end": 26164.98, "probability": 0.6367 }, { "start": 26165.64, "end": 26167.42, "probability": 0.7162 }, { "start": 26167.5, "end": 26168.38, "probability": 0.9924 }, { "start": 26168.38, "end": 26168.6, "probability": 0.6693 }, { "start": 26169.0, "end": 26170.74, "probability": 0.7524 }, { "start": 26170.92, "end": 26174.72, "probability": 0.8981 }, { "start": 26174.98, "end": 26176.08, "probability": 0.9884 }, { "start": 26176.34, "end": 26178.64, "probability": 0.3286 }, { "start": 26178.7, "end": 26179.94, "probability": 0.6227 }, { "start": 26179.94, "end": 26180.3, "probability": 0.4056 }, { "start": 26180.3, "end": 26180.3, "probability": 0.3921 }, { "start": 26180.3, "end": 26180.95, "probability": 0.3936 }, { "start": 26181.74, "end": 26182.58, "probability": 0.2891 }, { "start": 26183.2, "end": 26184.66, "probability": 0.4611 }, { "start": 26190.28, "end": 26192.92, "probability": 0.608 }, { "start": 26200.62, "end": 26201.9, "probability": 0.8041 }, { "start": 26202.78, "end": 26203.86, "probability": 0.6973 }, { "start": 26205.36, "end": 26206.64, "probability": 0.7004 }, { "start": 26207.5, "end": 26208.92, "probability": 0.6475 }, { "start": 26208.98, "end": 26214.7, "probability": 0.7817 }, { "start": 26214.84, "end": 26217.28, "probability": 0.9665 }, { "start": 26217.32, "end": 26221.2, "probability": 0.8695 }, { "start": 26221.7, "end": 26222.88, "probability": 0.6949 }, { "start": 26223.0, "end": 26225.88, "probability": 0.9719 }, { "start": 26226.22, "end": 26228.14, "probability": 0.8864 }, { "start": 26228.36, "end": 26230.06, "probability": 0.7697 }, { "start": 26230.22, "end": 26231.6, "probability": 0.9845 }, { "start": 26232.4, "end": 26233.22, "probability": 0.9615 }, { "start": 26234.3, "end": 26240.02, "probability": 0.972 }, { "start": 26240.94, "end": 26242.0, "probability": 0.9224 }, { "start": 26242.34, "end": 26245.38, "probability": 0.9706 }, { "start": 26247.26, "end": 26248.02, "probability": 0.7387 }, { "start": 26248.54, "end": 26248.9, "probability": 0.3371 }, { "start": 26249.14, "end": 26249.7, "probability": 0.86 }, { "start": 26250.18, "end": 26250.74, "probability": 0.6852 }, { "start": 26251.48, "end": 26252.82, "probability": 0.9673 }, { "start": 26253.94, "end": 26254.16, "probability": 0.707 }, { "start": 26255.1, "end": 26255.98, "probability": 0.8729 }, { "start": 26255.98, "end": 26256.16, "probability": 0.8943 }, { "start": 26257.46, "end": 26259.76, "probability": 0.4991 }, { "start": 26260.36, "end": 26264.26, "probability": 0.6421 }, { "start": 26265.02, "end": 26267.2, "probability": 0.8613 }, { "start": 26268.5, "end": 26269.3, "probability": 0.6499 }, { "start": 26269.82, "end": 26270.42, "probability": 0.6856 }, { "start": 26270.94, "end": 26272.28, "probability": 0.2561 }, { "start": 26272.28, "end": 26273.26, "probability": 0.1685 }, { "start": 26274.58, "end": 26275.42, "probability": 0.2939 }, { "start": 26275.82, "end": 26278.48, "probability": 0.8424 }, { "start": 26279.18, "end": 26280.04, "probability": 0.7729 }, { "start": 26280.16, "end": 26284.96, "probability": 0.8261 }, { "start": 26284.98, "end": 26285.08, "probability": 0.4425 }, { "start": 26286.02, "end": 26286.34, "probability": 0.7677 }, { "start": 26286.44, "end": 26287.54, "probability": 0.8101 }, { "start": 26287.62, "end": 26288.08, "probability": 0.649 }, { "start": 26288.14, "end": 26289.46, "probability": 0.8989 }, { "start": 26289.52, "end": 26290.6, "probability": 0.6549 }, { "start": 26290.74, "end": 26291.4, "probability": 0.9814 }, { "start": 26292.52, "end": 26296.32, "probability": 0.6742 }, { "start": 26297.3, "end": 26297.86, "probability": 0.5562 }, { "start": 26297.96, "end": 26298.46, "probability": 0.8963 }, { "start": 26298.7, "end": 26300.7, "probability": 0.8657 }, { "start": 26300.98, "end": 26301.52, "probability": 0.4627 }, { "start": 26301.62, "end": 26305.02, "probability": 0.4955 }, { "start": 26305.04, "end": 26305.58, "probability": 0.6335 }, { "start": 26305.66, "end": 26307.22, "probability": 0.958 }, { "start": 26308.46, "end": 26309.56, "probability": 0.8192 }, { "start": 26309.66, "end": 26310.78, "probability": 0.5162 }, { "start": 26310.94, "end": 26313.62, "probability": 0.6312 }, { "start": 26314.2, "end": 26314.8, "probability": 0.9696 }, { "start": 26315.5, "end": 26316.26, "probability": 0.7359 }, { "start": 26316.32, "end": 26317.32, "probability": 0.7029 }, { "start": 26317.46, "end": 26318.84, "probability": 0.7691 }, { "start": 26318.84, "end": 26319.44, "probability": 0.8063 }, { "start": 26319.44, "end": 26321.22, "probability": 0.8356 }, { "start": 26322.1, "end": 26325.41, "probability": 0.9819 }, { "start": 26326.16, "end": 26331.12, "probability": 0.9721 }, { "start": 26331.62, "end": 26334.24, "probability": 0.9481 }, { "start": 26334.88, "end": 26337.46, "probability": 0.9842 }, { "start": 26338.48, "end": 26341.52, "probability": 0.7168 }, { "start": 26342.72, "end": 26346.72, "probability": 0.9154 }, { "start": 26347.6, "end": 26349.04, "probability": 0.0785 }, { "start": 26349.06, "end": 26350.04, "probability": 0.8896 }, { "start": 26350.12, "end": 26351.56, "probability": 0.9663 }, { "start": 26352.5, "end": 26354.64, "probability": 0.9558 }, { "start": 26355.3, "end": 26357.46, "probability": 0.8506 }, { "start": 26358.12, "end": 26360.9, "probability": 0.7455 }, { "start": 26361.22, "end": 26361.98, "probability": 0.7446 }, { "start": 26362.0, "end": 26362.18, "probability": 0.7626 }, { "start": 26362.3, "end": 26364.44, "probability": 0.897 }, { "start": 26365.18, "end": 26368.18, "probability": 0.9868 }, { "start": 26368.5, "end": 26368.94, "probability": 0.4576 }, { "start": 26369.0, "end": 26371.2, "probability": 0.9877 }, { "start": 26371.24, "end": 26372.2, "probability": 0.8252 }, { "start": 26373.38, "end": 26374.78, "probability": 0.733 }, { "start": 26374.88, "end": 26376.6, "probability": 0.6263 }, { "start": 26376.66, "end": 26377.4, "probability": 0.992 }, { "start": 26378.08, "end": 26380.08, "probability": 0.7114 }, { "start": 26380.14, "end": 26383.2, "probability": 0.8454 }, { "start": 26383.72, "end": 26386.32, "probability": 0.7248 }, { "start": 26386.96, "end": 26388.1, "probability": 0.9625 }, { "start": 26388.12, "end": 26390.02, "probability": 0.8708 }, { "start": 26390.6, "end": 26392.92, "probability": 0.7881 }, { "start": 26393.42, "end": 26394.42, "probability": 0.9297 }, { "start": 26395.08, "end": 26396.36, "probability": 0.9314 }, { "start": 26396.44, "end": 26397.9, "probability": 0.9504 }, { "start": 26398.24, "end": 26398.9, "probability": 0.8264 }, { "start": 26399.38, "end": 26400.5, "probability": 0.9647 }, { "start": 26400.84, "end": 26401.82, "probability": 0.7393 }, { "start": 26402.08, "end": 26402.77, "probability": 0.7167 }, { "start": 26403.64, "end": 26403.64, "probability": 0.3803 }, { "start": 26403.64, "end": 26404.97, "probability": 0.9333 }, { "start": 26405.84, "end": 26406.54, "probability": 0.8102 }, { "start": 26406.64, "end": 26409.22, "probability": 0.9932 }, { "start": 26409.86, "end": 26413.72, "probability": 0.9515 }, { "start": 26414.18, "end": 26416.18, "probability": 0.9922 }, { "start": 26416.26, "end": 26419.01, "probability": 0.9956 }, { "start": 26419.12, "end": 26420.04, "probability": 0.4544 }, { "start": 26420.16, "end": 26420.72, "probability": 0.6656 }, { "start": 26420.8, "end": 26421.5, "probability": 0.9197 }, { "start": 26422.02, "end": 26425.5, "probability": 0.8931 }, { "start": 26425.5, "end": 26428.74, "probability": 0.9868 }, { "start": 26428.76, "end": 26429.12, "probability": 0.7342 }, { "start": 26429.36, "end": 26430.8, "probability": 0.5282 }, { "start": 26430.92, "end": 26433.24, "probability": 0.8732 }, { "start": 26433.8, "end": 26435.32, "probability": 0.9836 }, { "start": 26436.1, "end": 26438.74, "probability": 0.4718 }, { "start": 26443.06, "end": 26443.44, "probability": 0.7659 }, { "start": 26448.6, "end": 26448.62, "probability": 0.1796 }, { "start": 26448.62, "end": 26448.62, "probability": 0.1838 }, { "start": 26448.62, "end": 26449.58, "probability": 0.3803 }, { "start": 26450.3, "end": 26450.92, "probability": 0.3344 }, { "start": 26451.52, "end": 26451.7, "probability": 0.4268 }, { "start": 26454.0, "end": 26457.06, "probability": 0.2416 }, { "start": 26457.4, "end": 26458.16, "probability": 0.038 }, { "start": 26458.46, "end": 26461.88, "probability": 0.771 }, { "start": 26462.76, "end": 26465.14, "probability": 0.732 }, { "start": 26465.74, "end": 26465.96, "probability": 0.6177 }, { "start": 26466.02, "end": 26468.88, "probability": 0.9987 }, { "start": 26470.73, "end": 26474.82, "probability": 0.9985 }, { "start": 26474.98, "end": 26476.08, "probability": 0.9314 }, { "start": 26476.2, "end": 26477.8, "probability": 0.9737 }, { "start": 26478.34, "end": 26482.14, "probability": 0.9973 }, { "start": 26484.33, "end": 26485.44, "probability": 0.0331 }, { "start": 26485.54, "end": 26488.82, "probability": 0.9126 }, { "start": 26489.38, "end": 26492.24, "probability": 0.9788 }, { "start": 26492.8, "end": 26495.16, "probability": 0.7726 }, { "start": 26495.32, "end": 26498.1, "probability": 0.95 }, { "start": 26498.46, "end": 26500.12, "probability": 0.7245 }, { "start": 26500.8, "end": 26502.88, "probability": 0.9305 }, { "start": 26503.04, "end": 26503.28, "probability": 0.9886 }, { "start": 26503.34, "end": 26507.76, "probability": 0.9948 }, { "start": 26508.06, "end": 26511.0, "probability": 0.9946 }, { "start": 26511.2, "end": 26513.16, "probability": 0.7315 }, { "start": 26514.0, "end": 26516.36, "probability": 0.9741 }, { "start": 26516.48, "end": 26519.38, "probability": 0.972 }, { "start": 26519.46, "end": 26520.52, "probability": 0.7479 }, { "start": 26520.66, "end": 26521.66, "probability": 0.9548 }, { "start": 26522.06, "end": 26522.4, "probability": 0.5676 }, { "start": 26523.1, "end": 26525.02, "probability": 0.6209 }, { "start": 26525.86, "end": 26528.3, "probability": 0.821 }, { "start": 26528.46, "end": 26528.92, "probability": 0.5306 }, { "start": 26529.12, "end": 26531.6, "probability": 0.9743 }, { "start": 26531.8, "end": 26535.83, "probability": 0.9871 }, { "start": 26536.74, "end": 26539.61, "probability": 0.7533 }, { "start": 26539.9, "end": 26545.97, "probability": 0.9797 }, { "start": 26546.66, "end": 26551.14, "probability": 0.9175 }, { "start": 26551.36, "end": 26551.7, "probability": 0.8169 }, { "start": 26551.84, "end": 26553.18, "probability": 0.9915 }, { "start": 26553.3, "end": 26553.5, "probability": 0.8987 }, { "start": 26554.0, "end": 26554.96, "probability": 0.906 }, { "start": 26555.44, "end": 26557.82, "probability": 0.9944 }, { "start": 26557.82, "end": 26561.58, "probability": 0.9947 }, { "start": 26562.18, "end": 26565.9, "probability": 0.9922 }, { "start": 26566.18, "end": 26567.2, "probability": 0.9126 }, { "start": 26567.68, "end": 26569.84, "probability": 0.9954 }, { "start": 26572.04, "end": 26574.26, "probability": 0.9749 }, { "start": 26574.36, "end": 26576.6, "probability": 0.8457 }, { "start": 26576.78, "end": 26579.42, "probability": 0.9923 }, { "start": 26579.42, "end": 26582.2, "probability": 0.9961 }, { "start": 26582.94, "end": 26585.12, "probability": 0.9977 }, { "start": 26585.12, "end": 26587.74, "probability": 0.9991 }, { "start": 26588.56, "end": 26590.26, "probability": 0.9971 }, { "start": 26590.7, "end": 26592.58, "probability": 0.8614 }, { "start": 26592.66, "end": 26594.22, "probability": 0.9512 }, { "start": 26594.58, "end": 26596.96, "probability": 0.908 }, { "start": 26597.0, "end": 26599.34, "probability": 0.7784 }, { "start": 26599.36, "end": 26601.42, "probability": 0.7264 }, { "start": 26601.6, "end": 26602.5, "probability": 0.7439 }, { "start": 26602.86, "end": 26605.48, "probability": 0.6413 }, { "start": 26606.22, "end": 26610.44, "probability": 0.9764 }, { "start": 26611.36, "end": 26614.26, "probability": 0.9545 }, { "start": 26614.76, "end": 26616.38, "probability": 0.8383 }, { "start": 26616.42, "end": 26620.94, "probability": 0.963 }, { "start": 26621.3, "end": 26624.68, "probability": 0.9835 }, { "start": 26624.7, "end": 26627.7, "probability": 0.9923 }, { "start": 26628.68, "end": 26629.88, "probability": 0.9272 }, { "start": 26629.96, "end": 26632.36, "probability": 0.988 }, { "start": 26633.28, "end": 26633.74, "probability": 0.6964 }, { "start": 26633.84, "end": 26636.78, "probability": 0.9905 }, { "start": 26637.06, "end": 26638.54, "probability": 0.7668 }, { "start": 26638.92, "end": 26641.58, "probability": 0.9782 }, { "start": 26641.58, "end": 26643.44, "probability": 0.9725 }, { "start": 26644.46, "end": 26648.74, "probability": 0.9945 }, { "start": 26649.14, "end": 26650.95, "probability": 0.8949 }, { "start": 26652.24, "end": 26654.0, "probability": 0.9951 }, { "start": 26654.62, "end": 26656.58, "probability": 0.9822 }, { "start": 26656.58, "end": 26658.9, "probability": 0.9917 }, { "start": 26659.0, "end": 26660.3, "probability": 0.6139 }, { "start": 26660.78, "end": 26660.78, "probability": 0.2959 }, { "start": 26660.8, "end": 26663.97, "probability": 0.9834 }, { "start": 26664.45, "end": 26668.32, "probability": 0.9886 }, { "start": 26669.06, "end": 26671.58, "probability": 0.9873 }, { "start": 26671.58, "end": 26676.17, "probability": 0.9951 }, { "start": 26677.64, "end": 26678.22, "probability": 0.6908 }, { "start": 26681.2, "end": 26682.92, "probability": 0.9886 }, { "start": 26683.78, "end": 26686.14, "probability": 0.9978 }, { "start": 26686.14, "end": 26688.96, "probability": 0.9907 }, { "start": 26689.7, "end": 26692.92, "probability": 0.9305 }, { "start": 26693.2, "end": 26693.52, "probability": 0.513 }, { "start": 26694.12, "end": 26696.84, "probability": 0.9513 }, { "start": 26697.72, "end": 26700.32, "probability": 0.9888 }, { "start": 26700.4, "end": 26703.64, "probability": 0.9889 }, { "start": 26703.72, "end": 26705.34, "probability": 0.9868 }, { "start": 26705.78, "end": 26706.6, "probability": 0.8571 }, { "start": 26706.7, "end": 26708.6, "probability": 0.9374 }, { "start": 26708.72, "end": 26709.46, "probability": 0.8056 }, { "start": 26709.94, "end": 26710.7, "probability": 0.9884 }, { "start": 26711.36, "end": 26714.22, "probability": 0.9437 }, { "start": 26714.22, "end": 26717.22, "probability": 0.9954 }, { "start": 26717.34, "end": 26718.8, "probability": 0.9463 }, { "start": 26719.4, "end": 26719.6, "probability": 0.7362 }, { "start": 26720.34, "end": 26723.1, "probability": 0.9937 }, { "start": 26723.1, "end": 26725.4, "probability": 0.9983 }, { "start": 26726.02, "end": 26728.6, "probability": 0.9924 }, { "start": 26728.6, "end": 26733.1, "probability": 0.9859 }, { "start": 26733.1, "end": 26737.34, "probability": 0.9444 }, { "start": 26737.86, "end": 26741.48, "probability": 0.8636 }, { "start": 26741.56, "end": 26742.88, "probability": 0.9341 }, { "start": 26743.02, "end": 26743.4, "probability": 0.8452 }, { "start": 26743.78, "end": 26745.7, "probability": 0.9321 }, { "start": 26746.36, "end": 26746.64, "probability": 0.8442 }, { "start": 26747.46, "end": 26748.1, "probability": 0.5545 }, { "start": 26748.34, "end": 26749.92, "probability": 0.6714 }, { "start": 26749.92, "end": 26754.76, "probability": 0.9653 }, { "start": 26755.62, "end": 26758.0, "probability": 0.993 }, { "start": 26758.0, "end": 26761.08, "probability": 0.9986 }, { "start": 26761.62, "end": 26764.18, "probability": 0.9673 }, { "start": 26764.58, "end": 26767.14, "probability": 0.9908 }, { "start": 26767.72, "end": 26769.88, "probability": 0.9967 }, { "start": 26769.88, "end": 26773.26, "probability": 0.7738 }, { "start": 26773.52, "end": 26777.2, "probability": 0.9877 }, { "start": 26778.56, "end": 26781.96, "probability": 0.8088 }, { "start": 26782.0, "end": 26784.82, "probability": 0.98 }, { "start": 26785.38, "end": 26785.92, "probability": 0.7572 }, { "start": 26786.02, "end": 26787.88, "probability": 0.7183 }, { "start": 26788.22, "end": 26790.68, "probability": 0.6835 }, { "start": 26791.04, "end": 26791.64, "probability": 0.8535 }, { "start": 26791.78, "end": 26794.32, "probability": 0.888 }, { "start": 26794.46, "end": 26797.64, "probability": 0.9837 }, { "start": 26797.8, "end": 26801.5, "probability": 0.7906 }, { "start": 26801.94, "end": 26804.74, "probability": 0.9337 }, { "start": 26805.64, "end": 26807.94, "probability": 0.973 }, { "start": 26809.84, "end": 26813.1, "probability": 0.8842 }, { "start": 26813.1, "end": 26816.22, "probability": 0.9667 }, { "start": 26816.34, "end": 26819.66, "probability": 0.9424 }, { "start": 26819.66, "end": 26823.88, "probability": 0.995 }, { "start": 26824.32, "end": 26825.82, "probability": 0.9693 }, { "start": 26825.94, "end": 26827.08, "probability": 0.9042 }, { "start": 26827.12, "end": 26828.24, "probability": 0.8212 }, { "start": 26828.32, "end": 26830.4, "probability": 0.984 }, { "start": 26831.2, "end": 26833.0, "probability": 0.96 }, { "start": 26833.0, "end": 26837.06, "probability": 0.9843 }, { "start": 26837.14, "end": 26840.82, "probability": 0.9248 }, { "start": 26841.2, "end": 26845.04, "probability": 0.8693 }, { "start": 26846.48, "end": 26847.56, "probability": 0.6687 }, { "start": 26848.5, "end": 26848.8, "probability": 0.8665 }, { "start": 26848.94, "end": 26849.9, "probability": 0.8459 }, { "start": 26850.4, "end": 26851.84, "probability": 0.9882 }, { "start": 26852.62, "end": 26852.88, "probability": 0.9167 }, { "start": 26854.58, "end": 26858.52, "probability": 0.7659 }, { "start": 26859.9, "end": 26860.46, "probability": 0.5201 }, { "start": 26861.2, "end": 26862.76, "probability": 0.6513 }, { "start": 26867.34, "end": 26868.16, "probability": 0.7155 }, { "start": 26868.94, "end": 26869.98, "probability": 0.603 }, { "start": 26870.24, "end": 26871.04, "probability": 0.5625 }, { "start": 26871.32, "end": 26872.16, "probability": 0.5257 }, { "start": 26872.64, "end": 26873.56, "probability": 0.677 }, { "start": 26875.5, "end": 26876.01, "probability": 0.2869 }, { "start": 26890.12, "end": 26890.38, "probability": 0.3441 }, { "start": 26890.38, "end": 26890.74, "probability": 0.4994 }, { "start": 26891.82, "end": 26893.19, "probability": 0.8601 }, { "start": 26893.64, "end": 26896.3, "probability": 0.7213 }, { "start": 26897.22, "end": 26898.72, "probability": 0.492 }, { "start": 26899.4, "end": 26900.6, "probability": 0.5581 }, { "start": 26901.64, "end": 26904.0, "probability": 0.669 }, { "start": 26908.48, "end": 26908.84, "probability": 0.5631 }, { "start": 26910.3, "end": 26911.38, "probability": 0.419 }, { "start": 26911.52, "end": 26913.54, "probability": 0.5734 }, { "start": 26913.66, "end": 26915.7, "probability": 0.7934 }, { "start": 26919.98, "end": 26920.3, "probability": 0.6474 }, { "start": 26920.6, "end": 26920.98, "probability": 0.7458 }, { "start": 26921.76, "end": 26926.0, "probability": 0.9944 }, { "start": 26927.3, "end": 26928.36, "probability": 0.2433 }, { "start": 26930.42, "end": 26937.86, "probability": 0.303 }, { "start": 26938.5, "end": 26938.5, "probability": 0.0089 }, { "start": 26938.5, "end": 26940.5, "probability": 0.8271 }, { "start": 26960.91, "end": 26962.73, "probability": 0.7542 }, { "start": 26964.32, "end": 26966.14, "probability": 0.7694 }, { "start": 26967.42, "end": 26972.28, "probability": 0.9346 }, { "start": 26972.98, "end": 26976.46, "probability": 0.9677 }, { "start": 26977.54, "end": 26979.58, "probability": 0.8137 }, { "start": 26979.6, "end": 26982.58, "probability": 0.9694 }, { "start": 26983.28, "end": 26985.08, "probability": 0.9899 }, { "start": 26985.84, "end": 26989.48, "probability": 0.992 }, { "start": 26990.08, "end": 26991.68, "probability": 0.7964 }, { "start": 26992.7, "end": 26994.6, "probability": 0.899 }, { "start": 26995.36, "end": 26996.71, "probability": 0.9988 }, { "start": 26997.78, "end": 26998.98, "probability": 0.9845 }, { "start": 26999.2, "end": 27003.3, "probability": 0.9569 }, { "start": 27003.3, "end": 27006.56, "probability": 0.9966 }, { "start": 27007.1, "end": 27010.4, "probability": 0.8579 }, { "start": 27010.52, "end": 27013.6, "probability": 0.9066 }, { "start": 27013.7, "end": 27017.62, "probability": 0.794 }, { "start": 27018.4, "end": 27022.68, "probability": 0.9324 }, { "start": 27023.26, "end": 27025.0, "probability": 0.8807 }, { "start": 27025.98, "end": 27029.04, "probability": 0.9634 }, { "start": 27029.04, "end": 27032.74, "probability": 0.9841 }, { "start": 27033.14, "end": 27037.46, "probability": 0.9959 }, { "start": 27037.46, "end": 27041.78, "probability": 0.9992 }, { "start": 27042.3, "end": 27045.08, "probability": 0.7706 }, { "start": 27046.02, "end": 27051.78, "probability": 0.9964 }, { "start": 27052.74, "end": 27055.3, "probability": 0.9955 }, { "start": 27055.3, "end": 27058.14, "probability": 0.9935 }, { "start": 27058.9, "end": 27060.02, "probability": 0.7505 }, { "start": 27060.64, "end": 27063.56, "probability": 0.9378 }, { "start": 27063.56, "end": 27066.18, "probability": 0.9957 }, { "start": 27067.66, "end": 27068.29, "probability": 0.8596 }, { "start": 27068.54, "end": 27072.5, "probability": 0.9945 }, { "start": 27072.78, "end": 27074.16, "probability": 0.1341 }, { "start": 27074.82, "end": 27075.32, "probability": 0.2588 }, { "start": 27075.42, "end": 27077.54, "probability": 0.9421 }, { "start": 27079.08, "end": 27082.24, "probability": 0.895 }, { "start": 27083.76, "end": 27085.2, "probability": 0.9652 }, { "start": 27085.3, "end": 27085.38, "probability": 0.9712 }, { "start": 27085.38, "end": 27086.9, "probability": 0.1285 }, { "start": 27087.6, "end": 27089.8, "probability": 0.9616 }, { "start": 27089.86, "end": 27091.16, "probability": 0.6978 }, { "start": 27091.32, "end": 27095.02, "probability": 0.9915 }, { "start": 27095.6, "end": 27098.38, "probability": 0.9903 }, { "start": 27098.52, "end": 27099.88, "probability": 0.8595 }, { "start": 27100.42, "end": 27103.34, "probability": 0.8365 }, { "start": 27103.34, "end": 27107.32, "probability": 0.991 }, { "start": 27107.92, "end": 27111.66, "probability": 0.9757 }, { "start": 27112.34, "end": 27115.8, "probability": 0.986 }, { "start": 27115.8, "end": 27119.86, "probability": 0.9991 }, { "start": 27119.86, "end": 27124.0, "probability": 0.9945 }, { "start": 27124.7, "end": 27128.98, "probability": 0.8038 }, { "start": 27129.9, "end": 27132.06, "probability": 0.9917 }, { "start": 27132.92, "end": 27134.58, "probability": 0.9939 }, { "start": 27135.24, "end": 27136.92, "probability": 0.9893 }, { "start": 27137.46, "end": 27139.58, "probability": 0.9907 }, { "start": 27140.1, "end": 27144.02, "probability": 0.9536 }, { "start": 27144.74, "end": 27148.84, "probability": 0.9663 }, { "start": 27149.66, "end": 27153.46, "probability": 0.8727 }, { "start": 27154.24, "end": 27156.1, "probability": 0.8949 }, { "start": 27156.16, "end": 27161.69, "probability": 0.8918 }, { "start": 27162.18, "end": 27162.44, "probability": 0.6646 }, { "start": 27162.58, "end": 27163.68, "probability": 0.9773 }, { "start": 27166.52, "end": 27166.72, "probability": 0.0217 }, { "start": 27166.8, "end": 27169.78, "probability": 0.1967 }, { "start": 27198.72, "end": 27200.64, "probability": 0.6745 }, { "start": 27201.88, "end": 27204.5, "probability": 0.803 }, { "start": 27205.8, "end": 27207.62, "probability": 0.9961 }, { "start": 27208.0, "end": 27209.96, "probability": 0.714 }, { "start": 27211.2, "end": 27214.06, "probability": 0.9976 }, { "start": 27214.12, "end": 27215.18, "probability": 0.9382 }, { "start": 27215.64, "end": 27215.74, "probability": 0.6636 }, { "start": 27216.52, "end": 27219.12, "probability": 0.9812 }, { "start": 27220.54, "end": 27221.54, "probability": 0.9281 }, { "start": 27222.54, "end": 27225.34, "probability": 0.9861 }, { "start": 27226.52, "end": 27229.78, "probability": 0.999 }, { "start": 27230.48, "end": 27232.16, "probability": 0.9521 }, { "start": 27233.54, "end": 27234.5, "probability": 0.9177 }, { "start": 27236.04, "end": 27239.12, "probability": 0.9873 }, { "start": 27240.22, "end": 27242.86, "probability": 0.9569 }, { "start": 27243.8, "end": 27245.36, "probability": 0.963 }, { "start": 27245.96, "end": 27247.64, "probability": 0.6062 }, { "start": 27248.42, "end": 27250.78, "probability": 0.9911 }, { "start": 27251.62, "end": 27253.12, "probability": 0.9769 }, { "start": 27254.16, "end": 27256.04, "probability": 0.9902 }, { "start": 27256.84, "end": 27262.22, "probability": 0.8057 }, { "start": 27263.1, "end": 27264.7, "probability": 0.8909 }, { "start": 27265.54, "end": 27266.98, "probability": 0.9611 }, { "start": 27268.64, "end": 27268.66, "probability": 0.0744 }, { "start": 27268.66, "end": 27269.98, "probability": 0.9472 }, { "start": 27270.2, "end": 27270.22, "probability": 0.8406 }, { "start": 27270.22, "end": 27272.12, "probability": 0.1196 }, { "start": 27272.12, "end": 27273.14, "probability": 0.0644 }, { "start": 27273.5, "end": 27274.82, "probability": 0.4925 }, { "start": 27275.76, "end": 27276.28, "probability": 0.1273 }, { "start": 27282.58, "end": 27283.4, "probability": 0.1225 }, { "start": 27283.4, "end": 27283.4, "probability": 0.0269 }, { "start": 27283.46, "end": 27283.7, "probability": 0.2097 }, { "start": 27283.7, "end": 27283.7, "probability": 0.0571 }, { "start": 27283.7, "end": 27283.7, "probability": 0.565 }, { "start": 27283.7, "end": 27283.7, "probability": 0.2189 }, { "start": 27283.7, "end": 27283.7, "probability": 0.0247 }, { "start": 27283.7, "end": 27283.7, "probability": 0.1474 }, { "start": 27283.7, "end": 27284.82, "probability": 0.4903 }, { "start": 27284.96, "end": 27288.15, "probability": 0.1328 }, { "start": 27292.8, "end": 27293.32, "probability": 0.1268 }, { "start": 27293.32, "end": 27293.92, "probability": 0.6571 }, { "start": 27294.06, "end": 27294.92, "probability": 0.9182 }, { "start": 27295.26, "end": 27297.4, "probability": 0.7178 }, { "start": 27297.76, "end": 27298.78, "probability": 0.1468 }, { "start": 27300.2, "end": 27300.58, "probability": 0.4648 }, { "start": 27300.82, "end": 27302.72, "probability": 0.1713 }, { "start": 27305.06, "end": 27305.5, "probability": 0.5934 }, { "start": 27305.5, "end": 27305.56, "probability": 0.1124 }, { "start": 27305.56, "end": 27305.62, "probability": 0.3121 }, { "start": 27305.62, "end": 27305.68, "probability": 0.3049 }, { "start": 27305.68, "end": 27305.68, "probability": 0.2554 }, { "start": 27305.68, "end": 27306.8, "probability": 0.0661 }, { "start": 27306.92, "end": 27313.56, "probability": 0.6483 }, { "start": 27313.66, "end": 27314.3, "probability": 0.4534 }, { "start": 27314.64, "end": 27316.84, "probability": 0.6392 }, { "start": 27317.14, "end": 27318.26, "probability": 0.4786 }, { "start": 27318.5, "end": 27320.62, "probability": 0.4374 }, { "start": 27320.94, "end": 27323.38, "probability": 0.2563 }, { "start": 27323.4, "end": 27324.52, "probability": 0.3751 }, { "start": 27324.52, "end": 27324.56, "probability": 0.7402 }, { "start": 27324.64, "end": 27325.66, "probability": 0.4825 }, { "start": 27325.76, "end": 27328.97, "probability": 0.075 }, { "start": 27330.39, "end": 27330.72, "probability": 0.1159 }, { "start": 27330.88, "end": 27330.88, "probability": 0.0992 }, { "start": 27330.88, "end": 27331.44, "probability": 0.5026 }, { "start": 27331.64, "end": 27333.4, "probability": 0.446 }, { "start": 27333.46, "end": 27333.74, "probability": 0.6511 }, { "start": 27333.76, "end": 27335.62, "probability": 0.1202 }, { "start": 27335.9, "end": 27336.94, "probability": 0.2592 }, { "start": 27337.18, "end": 27340.1, "probability": 0.2617 }, { "start": 27340.24, "end": 27340.34, "probability": 0.0854 }, { "start": 27340.42, "end": 27340.46, "probability": 0.1491 }, { "start": 27340.6, "end": 27340.84, "probability": 0.1018 }, { "start": 27340.96, "end": 27341.58, "probability": 0.457 }, { "start": 27341.78, "end": 27342.99, "probability": 0.9668 }, { "start": 27343.1, "end": 27345.06, "probability": 0.3847 }, { "start": 27345.22, "end": 27345.78, "probability": 0.7279 }, { "start": 27345.94, "end": 27350.46, "probability": 0.8949 }, { "start": 27351.32, "end": 27352.6, "probability": 0.9832 }, { "start": 27352.72, "end": 27355.38, "probability": 0.9963 }, { "start": 27355.92, "end": 27359.96, "probability": 0.4215 }, { "start": 27360.58, "end": 27361.68, "probability": 0.1316 }, { "start": 27362.18, "end": 27362.98, "probability": 0.8729 }, { "start": 27364.26, "end": 27367.72, "probability": 0.8683 }, { "start": 27368.48, "end": 27369.08, "probability": 0.9448 }, { "start": 27369.62, "end": 27371.88, "probability": 0.9978 }, { "start": 27372.98, "end": 27374.4, "probability": 0.8235 }, { "start": 27375.5, "end": 27378.46, "probability": 0.9585 }, { "start": 27379.48, "end": 27382.08, "probability": 0.9977 }, { "start": 27382.84, "end": 27387.28, "probability": 0.8771 }, { "start": 27388.28, "end": 27389.3, "probability": 0.8843 }, { "start": 27390.0, "end": 27391.24, "probability": 0.5313 }, { "start": 27392.06, "end": 27394.48, "probability": 0.9137 }, { "start": 27395.1, "end": 27396.28, "probability": 0.2387 }, { "start": 27396.28, "end": 27397.44, "probability": 0.3865 }, { "start": 27397.54, "end": 27398.7, "probability": 0.1553 }, { "start": 27398.98, "end": 27399.1, "probability": 0.0199 }, { "start": 27399.78, "end": 27401.04, "probability": 0.0356 }, { "start": 27401.04, "end": 27402.18, "probability": 0.2544 }, { "start": 27402.74, "end": 27404.62, "probability": 0.4982 }, { "start": 27404.9, "end": 27406.54, "probability": 0.3082 }, { "start": 27406.64, "end": 27407.14, "probability": 0.8081 }, { "start": 27407.26, "end": 27408.74, "probability": 0.047 }, { "start": 27409.5, "end": 27410.38, "probability": 0.201 }, { "start": 27410.38, "end": 27410.42, "probability": 0.1763 }, { "start": 27410.42, "end": 27411.02, "probability": 0.4441 }, { "start": 27412.54, "end": 27416.32, "probability": 0.1331 }, { "start": 27416.32, "end": 27416.46, "probability": 0.2493 }, { "start": 27416.88, "end": 27417.86, "probability": 0.6269 }, { "start": 27417.94, "end": 27422.68, "probability": 0.9832 }, { "start": 27423.42, "end": 27425.44, "probability": 0.7279 }, { "start": 27426.36, "end": 27427.04, "probability": 0.6162 }, { "start": 27427.72, "end": 27428.7, "probability": 0.9803 }, { "start": 27429.08, "end": 27432.84, "probability": 0.8654 }, { "start": 27433.18, "end": 27434.72, "probability": 0.9971 }, { "start": 27435.32, "end": 27436.34, "probability": 0.9261 }, { "start": 27438.36, "end": 27439.52, "probability": 0.7039 }, { "start": 27440.9, "end": 27443.36, "probability": 0.958 }, { "start": 27444.42, "end": 27445.16, "probability": 0.8982 }, { "start": 27446.86, "end": 27447.96, "probability": 0.9471 }, { "start": 27448.58, "end": 27451.32, "probability": 0.9402 }, { "start": 27452.26, "end": 27454.7, "probability": 0.8867 }, { "start": 27455.42, "end": 27457.26, "probability": 0.9086 }, { "start": 27457.95, "end": 27460.71, "probability": 0.7607 }, { "start": 27461.32, "end": 27463.06, "probability": 0.7957 }, { "start": 27463.8, "end": 27466.48, "probability": 0.9507 }, { "start": 27467.56, "end": 27468.76, "probability": 0.9815 }, { "start": 27469.08, "end": 27471.78, "probability": 0.9463 }, { "start": 27473.22, "end": 27478.5, "probability": 0.9983 }, { "start": 27479.1, "end": 27484.14, "probability": 0.9943 }, { "start": 27484.44, "end": 27489.0, "probability": 0.8623 }, { "start": 27490.54, "end": 27491.12, "probability": 0.6917 }, { "start": 27492.4, "end": 27499.14, "probability": 0.9724 }, { "start": 27500.2, "end": 27501.8, "probability": 0.8479 }, { "start": 27502.6, "end": 27504.36, "probability": 0.9954 }, { "start": 27504.76, "end": 27507.04, "probability": 0.9944 }, { "start": 27507.34, "end": 27508.52, "probability": 0.8326 }, { "start": 27508.98, "end": 27510.36, "probability": 0.6946 }, { "start": 27510.38, "end": 27511.5, "probability": 0.7122 }, { "start": 27512.04, "end": 27514.17, "probability": 0.8962 }, { "start": 27514.86, "end": 27516.68, "probability": 0.6036 }, { "start": 27531.86, "end": 27534.66, "probability": 0.0532 }, { "start": 27535.74, "end": 27535.88, "probability": 0.0285 }, { "start": 27535.88, "end": 27535.88, "probability": 0.0463 }, { "start": 27535.88, "end": 27535.88, "probability": 0.0307 }, { "start": 27535.88, "end": 27537.2, "probability": 0.293 }, { "start": 27539.02, "end": 27541.14, "probability": 0.0526 }, { "start": 27541.14, "end": 27542.36, "probability": 0.5329 }, { "start": 27542.36, "end": 27544.38, "probability": 0.7545 }, { "start": 27545.92, "end": 27549.5, "probability": 0.9902 }, { "start": 27550.96, "end": 27554.86, "probability": 0.9372 }, { "start": 27555.34, "end": 27556.64, "probability": 0.9627 }, { "start": 27557.72, "end": 27559.96, "probability": 0.9563 }, { "start": 27560.2, "end": 27561.5, "probability": 0.9941 }, { "start": 27562.7, "end": 27565.3, "probability": 0.7458 }, { "start": 27566.42, "end": 27569.66, "probability": 0.9207 }, { "start": 27570.26, "end": 27570.9, "probability": 0.3924 }, { "start": 27570.98, "end": 27574.35, "probability": 0.9854 }, { "start": 27575.4, "end": 27577.06, "probability": 0.6583 }, { "start": 27577.22, "end": 27577.88, "probability": 0.4455 }, { "start": 27578.16, "end": 27579.91, "probability": 0.9577 }, { "start": 27580.34, "end": 27581.18, "probability": 0.6613 }, { "start": 27581.56, "end": 27582.8, "probability": 0.9406 }, { "start": 27583.86, "end": 27586.52, "probability": 0.9539 }, { "start": 27587.04, "end": 27588.38, "probability": 0.9636 }, { "start": 27589.22, "end": 27591.8, "probability": 0.8729 }, { "start": 27591.98, "end": 27592.36, "probability": 0.6126 }, { "start": 27592.56, "end": 27593.54, "probability": 0.5344 }, { "start": 27594.6, "end": 27595.62, "probability": 0.9429 }, { "start": 27595.7, "end": 27597.7, "probability": 0.9922 }, { "start": 27598.48, "end": 27599.1, "probability": 0.8196 }, { "start": 27600.8, "end": 27601.14, "probability": 0.6652 }, { "start": 27601.28, "end": 27602.84, "probability": 0.9663 }, { "start": 27603.1, "end": 27604.02, "probability": 0.7304 }, { "start": 27604.1, "end": 27605.08, "probability": 0.936 }, { "start": 27606.12, "end": 27606.14, "probability": 0.8291 }, { "start": 27606.96, "end": 27608.43, "probability": 0.927 }, { "start": 27609.12, "end": 27611.22, "probability": 0.87 }, { "start": 27612.14, "end": 27614.2, "probability": 0.8883 }, { "start": 27614.76, "end": 27617.92, "probability": 0.9585 }, { "start": 27618.36, "end": 27622.22, "probability": 0.9555 }, { "start": 27622.8, "end": 27625.6, "probability": 0.9758 }, { "start": 27626.26, "end": 27628.18, "probability": 0.9172 }, { "start": 27628.72, "end": 27630.84, "probability": 0.4938 }, { "start": 27631.74, "end": 27633.68, "probability": 0.9915 }, { "start": 27633.84, "end": 27635.94, "probability": 0.8442 }, { "start": 27636.5, "end": 27639.14, "probability": 0.9648 }, { "start": 27639.42, "end": 27640.58, "probability": 0.9656 }, { "start": 27640.62, "end": 27641.18, "probability": 0.93 }, { "start": 27641.66, "end": 27643.46, "probability": 0.7354 }, { "start": 27644.76, "end": 27645.72, "probability": 0.991 }, { "start": 27646.6, "end": 27648.04, "probability": 0.9236 }, { "start": 27648.72, "end": 27652.08, "probability": 0.5498 }, { "start": 27652.12, "end": 27654.22, "probability": 0.9845 }, { "start": 27655.62, "end": 27656.46, "probability": 0.8325 }, { "start": 27656.6, "end": 27660.72, "probability": 0.9735 }, { "start": 27660.9, "end": 27661.48, "probability": 0.7814 }, { "start": 27661.58, "end": 27662.24, "probability": 0.8647 }, { "start": 27662.62, "end": 27666.53, "probability": 0.8921 }, { "start": 27666.58, "end": 27670.58, "probability": 0.9128 }, { "start": 27670.96, "end": 27673.7, "probability": 0.9493 }, { "start": 27674.32, "end": 27678.12, "probability": 0.9321 }, { "start": 27678.66, "end": 27679.56, "probability": 0.7153 }, { "start": 27679.7, "end": 27681.46, "probability": 0.9814 }, { "start": 27681.72, "end": 27682.7, "probability": 0.7673 }, { "start": 27682.9, "end": 27683.86, "probability": 0.944 }, { "start": 27684.14, "end": 27685.61, "probability": 0.7701 }, { "start": 27686.44, "end": 27688.02, "probability": 0.4291 }, { "start": 27688.82, "end": 27690.66, "probability": 0.9185 }, { "start": 27691.68, "end": 27692.12, "probability": 0.9143 }, { "start": 27692.9, "end": 27694.18, "probability": 0.9575 }, { "start": 27694.3, "end": 27695.48, "probability": 0.8844 }, { "start": 27696.2, "end": 27697.4, "probability": 0.6426 }, { "start": 27698.14, "end": 27700.2, "probability": 0.8632 }, { "start": 27700.49, "end": 27700.84, "probability": 0.4265 }, { "start": 27700.9, "end": 27703.38, "probability": 0.9907 }, { "start": 27704.4, "end": 27705.96, "probability": 0.9789 }, { "start": 27706.02, "end": 27706.56, "probability": 0.9533 }, { "start": 27706.88, "end": 27707.74, "probability": 0.6122 }, { "start": 27708.42, "end": 27711.64, "probability": 0.9751 }, { "start": 27711.82, "end": 27714.36, "probability": 0.5216 }, { "start": 27714.92, "end": 27717.56, "probability": 0.9286 }, { "start": 27717.6, "end": 27720.54, "probability": 0.8278 }, { "start": 27720.6, "end": 27721.02, "probability": 0.8032 }, { "start": 27722.4, "end": 27723.7, "probability": 0.9415 }, { "start": 27724.44, "end": 27726.5, "probability": 0.957 }, { "start": 27727.42, "end": 27728.26, "probability": 0.7818 }, { "start": 27728.82, "end": 27729.36, "probability": 0.5533 }, { "start": 27729.84, "end": 27731.34, "probability": 0.1744 }, { "start": 27731.48, "end": 27732.44, "probability": 0.1109 }, { "start": 27733.0, "end": 27733.34, "probability": 0.1777 }, { "start": 27733.48, "end": 27734.56, "probability": 0.1184 }, { "start": 27734.56, "end": 27734.68, "probability": 0.0189 }, { "start": 27734.68, "end": 27734.68, "probability": 0.0892 }, { "start": 27734.68, "end": 27736.28, "probability": 0.5014 }, { "start": 27736.48, "end": 27737.96, "probability": 0.6525 }, { "start": 27738.78, "end": 27741.86, "probability": 0.6829 }, { "start": 27742.64, "end": 27743.24, "probability": 0.8198 }, { "start": 27743.44, "end": 27744.0, "probability": 0.8637 }, { "start": 27744.06, "end": 27744.37, "probability": 0.0378 }, { "start": 27748.36, "end": 27748.66, "probability": 0.2191 }, { "start": 27748.98, "end": 27749.86, "probability": 0.1392 }, { "start": 27751.98, "end": 27754.74, "probability": 0.0458 }, { "start": 27757.1, "end": 27758.32, "probability": 0.0548 }, { "start": 27758.8, "end": 27762.76, "probability": 0.1763 }, { "start": 27763.46, "end": 27763.56, "probability": 0.0099 }, { "start": 27763.56, "end": 27765.4, "probability": 0.5318 }, { "start": 27769.02, "end": 27771.4, "probability": 0.2937 }, { "start": 27771.42, "end": 27771.42, "probability": 0.0136 }, { "start": 27782.02, "end": 27782.3, "probability": 0.0946 }, { "start": 27782.74, "end": 27787.08, "probability": 0.4961 }, { "start": 27787.64, "end": 27789.8, "probability": 0.2742 }, { "start": 27790.52, "end": 27792.66, "probability": 0.4053 }, { "start": 27794.82, "end": 27800.64, "probability": 0.0279 }, { "start": 27802.96, "end": 27806.7, "probability": 0.1426 }, { "start": 27806.7, "end": 27807.84, "probability": 0.0389 }, { "start": 27807.84, "end": 27814.14, "probability": 0.0928 }, { "start": 27815.03, "end": 27816.11, "probability": 0.0199 }, { "start": 27817.5, "end": 27818.4, "probability": 0.0138 }, { "start": 27822.0, "end": 27822.0, "probability": 0.0 }, { "start": 27822.0, "end": 27822.0, "probability": 0.0 }, { "start": 27822.0, "end": 27822.0, "probability": 0.0 }, { "start": 27822.0, "end": 27822.0, "probability": 0.0 }, { "start": 27822.0, "end": 27822.0, "probability": 0.0 }, { "start": 27822.0, "end": 27822.0, "probability": 0.0 }, { "start": 27822.0, "end": 27822.0, "probability": 0.0 }, { "start": 27822.0, "end": 27822.0, "probability": 0.0 }, { "start": 27822.0, "end": 27822.0, "probability": 0.0 }, { "start": 27822.0, "end": 27822.0, "probability": 0.0 }, { "start": 27822.0, "end": 27822.0, "probability": 0.0 }, { "start": 27822.0, "end": 27822.0, "probability": 0.0 }, { "start": 27822.0, "end": 27822.0, "probability": 0.0 }, { "start": 27822.0, "end": 27822.0, "probability": 0.0 }, { "start": 27822.0, "end": 27822.0, "probability": 0.0 }, { "start": 27822.0, "end": 27822.0, "probability": 0.0 }, { "start": 27822.0, "end": 27822.0, "probability": 0.0 }, { "start": 27824.72, "end": 27825.2, "probability": 0.1775 }, { "start": 27825.2, "end": 27826.62, "probability": 0.4276 }, { "start": 27827.38, "end": 27828.02, "probability": 0.5102 }, { "start": 27828.16, "end": 27829.76, "probability": 0.7949 }, { "start": 27830.42, "end": 27831.84, "probability": 0.7742 }, { "start": 27832.4, "end": 27833.22, "probability": 0.9164 }, { "start": 27835.02, "end": 27835.92, "probability": 0.5033 }, { "start": 27837.14, "end": 27838.38, "probability": 0.261 }, { "start": 27838.38, "end": 27839.0, "probability": 0.618 }, { "start": 27839.14, "end": 27839.36, "probability": 0.2924 }, { "start": 27839.88, "end": 27839.92, "probability": 0.6204 }, { "start": 27839.92, "end": 27842.22, "probability": 0.9777 }, { "start": 27843.04, "end": 27844.6, "probability": 0.7668 }, { "start": 27844.94, "end": 27848.32, "probability": 0.835 }, { "start": 27848.6, "end": 27851.38, "probability": 0.6037 }, { "start": 27851.38, "end": 27854.54, "probability": 0.7671 }, { "start": 27854.62, "end": 27854.68, "probability": 0.0443 }, { "start": 27854.68, "end": 27856.26, "probability": 0.5887 }, { "start": 27856.3, "end": 27856.94, "probability": 0.6064 }, { "start": 27862.26, "end": 27863.26, "probability": 0.9551 }, { "start": 27877.74, "end": 27879.26, "probability": 0.3813 }, { "start": 27880.22, "end": 27880.46, "probability": 0.8776 }, { "start": 27881.34, "end": 27884.3, "probability": 0.9714 }, { "start": 27884.44, "end": 27886.08, "probability": 0.9912 }, { "start": 27886.48, "end": 27886.74, "probability": 0.801 }, { "start": 27886.86, "end": 27888.22, "probability": 0.7472 }, { "start": 27888.78, "end": 27891.99, "probability": 0.9531 }, { "start": 27892.44, "end": 27893.93, "probability": 0.4156 }, { "start": 27894.48, "end": 27894.88, "probability": 0.358 }, { "start": 27894.9, "end": 27895.34, "probability": 0.7145 }, { "start": 27895.74, "end": 27897.16, "probability": 0.9728 }, { "start": 27897.64, "end": 27898.56, "probability": 0.5509 }, { "start": 27900.1, "end": 27902.96, "probability": 0.7439 }, { "start": 27903.28, "end": 27903.56, "probability": 0.6674 }, { "start": 27904.32, "end": 27905.02, "probability": 0.4923 }, { "start": 27905.24, "end": 27906.14, "probability": 0.9399 }, { "start": 27906.58, "end": 27906.92, "probability": 0.387 }, { "start": 27907.16, "end": 27909.02, "probability": 0.9895 }, { "start": 27909.82, "end": 27910.64, "probability": 0.6952 }, { "start": 27911.06, "end": 27911.28, "probability": 0.9176 }, { "start": 27911.74, "end": 27913.78, "probability": 0.8558 }, { "start": 27914.0, "end": 27915.61, "probability": 0.7482 }, { "start": 27916.02, "end": 27920.58, "probability": 0.8401 }, { "start": 27921.16, "end": 27925.62, "probability": 0.9268 }, { "start": 27925.62, "end": 27929.92, "probability": 0.9139 }, { "start": 27931.2, "end": 27934.24, "probability": 0.9884 }, { "start": 27934.66, "end": 27939.34, "probability": 0.9907 }, { "start": 27939.46, "end": 27941.18, "probability": 0.8148 }, { "start": 27942.58, "end": 27948.98, "probability": 0.9899 }, { "start": 27949.56, "end": 27952.52, "probability": 0.9046 }, { "start": 27953.0, "end": 27954.4, "probability": 0.9167 }, { "start": 27954.56, "end": 27955.06, "probability": 0.8041 }, { "start": 27955.68, "end": 27956.58, "probability": 0.7817 }, { "start": 27956.84, "end": 27960.02, "probability": 0.6539 }, { "start": 27960.66, "end": 27962.64, "probability": 0.7469 }, { "start": 27963.22, "end": 27967.18, "probability": 0.9521 }, { "start": 27967.76, "end": 27968.48, "probability": 0.5116 }, { "start": 27969.18, "end": 27971.73, "probability": 0.9596 }, { "start": 27972.04, "end": 27976.38, "probability": 0.9769 }, { "start": 27977.22, "end": 27982.24, "probability": 0.9741 }, { "start": 27982.28, "end": 27983.26, "probability": 0.6322 }, { "start": 27983.3, "end": 27987.08, "probability": 0.9611 }, { "start": 27988.3, "end": 27991.76, "probability": 0.8109 }, { "start": 27992.54, "end": 27997.16, "probability": 0.967 }, { "start": 27997.16, "end": 28001.3, "probability": 0.9954 }, { "start": 28002.04, "end": 28004.06, "probability": 0.9831 }, { "start": 28004.72, "end": 28005.08, "probability": 0.5549 }, { "start": 28005.22, "end": 28011.28, "probability": 0.9894 }, { "start": 28011.96, "end": 28014.82, "probability": 0.9961 }, { "start": 28014.82, "end": 28017.04, "probability": 0.9985 }, { "start": 28017.58, "end": 28021.56, "probability": 0.7933 }, { "start": 28022.16, "end": 28023.62, "probability": 0.9935 }, { "start": 28023.78, "end": 28025.38, "probability": 0.8833 }, { "start": 28025.42, "end": 28027.96, "probability": 0.9987 }, { "start": 28028.52, "end": 28029.98, "probability": 0.9551 }, { "start": 28030.12, "end": 28031.09, "probability": 0.9717 }, { "start": 28031.98, "end": 28034.76, "probability": 0.989 }, { "start": 28035.66, "end": 28040.96, "probability": 0.9152 }, { "start": 28041.32, "end": 28045.34, "probability": 0.9967 }, { "start": 28045.86, "end": 28048.2, "probability": 0.8371 }, { "start": 28048.52, "end": 28050.0, "probability": 0.9725 }, { "start": 28050.36, "end": 28053.34, "probability": 0.9749 }, { "start": 28054.02, "end": 28056.32, "probability": 0.9976 }, { "start": 28056.98, "end": 28059.5, "probability": 0.976 }, { "start": 28060.12, "end": 28061.64, "probability": 0.9895 }, { "start": 28062.2, "end": 28064.42, "probability": 0.7732 }, { "start": 28065.2, "end": 28067.58, "probability": 0.9896 }, { "start": 28068.36, "end": 28070.22, "probability": 0.6839 }, { "start": 28070.9, "end": 28074.64, "probability": 0.9866 }, { "start": 28075.18, "end": 28078.58, "probability": 0.9926 }, { "start": 28079.14, "end": 28083.54, "probability": 0.9968 }, { "start": 28084.44, "end": 28088.54, "probability": 0.7506 }, { "start": 28088.58, "end": 28090.98, "probability": 0.9966 }, { "start": 28091.52, "end": 28092.26, "probability": 0.9172 }, { "start": 28092.38, "end": 28093.5, "probability": 0.9725 }, { "start": 28093.58, "end": 28095.66, "probability": 0.9579 }, { "start": 28096.22, "end": 28097.52, "probability": 0.9927 }, { "start": 28097.64, "end": 28099.54, "probability": 0.9905 }, { "start": 28100.2, "end": 28103.28, "probability": 0.9773 }, { "start": 28103.36, "end": 28108.82, "probability": 0.9889 }, { "start": 28108.88, "end": 28110.98, "probability": 0.98 }, { "start": 28111.66, "end": 28114.82, "probability": 0.9222 }, { "start": 28114.96, "end": 28118.08, "probability": 0.9397 }, { "start": 28119.28, "end": 28125.48, "probability": 0.9878 }, { "start": 28125.74, "end": 28127.58, "probability": 0.9164 }, { "start": 28127.92, "end": 28128.82, "probability": 0.8943 }, { "start": 28129.34, "end": 28130.42, "probability": 0.6945 }, { "start": 28131.02, "end": 28134.3, "probability": 0.8698 }, { "start": 28134.92, "end": 28134.94, "probability": 0.0271 }, { "start": 28134.96, "end": 28139.9, "probability": 0.9832 }, { "start": 28140.36, "end": 28144.78, "probability": 0.9586 }, { "start": 28145.56, "end": 28145.64, "probability": 0.5622 }, { "start": 28145.64, "end": 28146.1, "probability": 0.7448 }, { "start": 28146.24, "end": 28147.46, "probability": 0.9414 }, { "start": 28147.74, "end": 28149.78, "probability": 0.979 }, { "start": 28150.06, "end": 28152.12, "probability": 0.9526 }, { "start": 28152.7, "end": 28154.46, "probability": 0.9936 }, { "start": 28154.76, "end": 28155.16, "probability": 0.7114 }, { "start": 28155.28, "end": 28156.02, "probability": 0.6075 }, { "start": 28156.02, "end": 28160.42, "probability": 0.7945 }, { "start": 28160.88, "end": 28161.32, "probability": 0.7349 }, { "start": 28161.4, "end": 28161.64, "probability": 0.6085 }, { "start": 28161.7, "end": 28161.98, "probability": 0.675 }, { "start": 28162.08, "end": 28163.7, "probability": 0.5798 }, { "start": 28164.32, "end": 28167.3, "probability": 0.3675 }, { "start": 28167.7, "end": 28168.3, "probability": 0.7753 }, { "start": 28190.82, "end": 28192.0, "probability": 0.7101 }, { "start": 28192.84, "end": 28193.62, "probability": 0.7251 }, { "start": 28194.16, "end": 28195.48, "probability": 0.7029 }, { "start": 28195.94, "end": 28196.18, "probability": 0.4538 }, { "start": 28196.36, "end": 28201.88, "probability": 0.9623 }, { "start": 28202.38, "end": 28203.48, "probability": 0.8795 }, { "start": 28203.68, "end": 28205.92, "probability": 0.9744 }, { "start": 28206.5, "end": 28207.56, "probability": 0.9009 }, { "start": 28207.9, "end": 28211.62, "probability": 0.9936 }, { "start": 28214.8, "end": 28217.6, "probability": 0.8579 }, { "start": 28218.8, "end": 28222.78, "probability": 0.9972 }, { "start": 28223.8, "end": 28226.9, "probability": 0.9393 }, { "start": 28227.64, "end": 28228.9, "probability": 0.9866 }, { "start": 28230.46, "end": 28232.82, "probability": 0.9956 }, { "start": 28233.02, "end": 28233.9, "probability": 0.9112 }, { "start": 28234.46, "end": 28238.86, "probability": 0.991 }, { "start": 28239.86, "end": 28242.66, "probability": 0.9975 }, { "start": 28242.66, "end": 28246.9, "probability": 0.9938 }, { "start": 28247.86, "end": 28248.3, "probability": 0.3935 }, { "start": 28249.16, "end": 28253.44, "probability": 0.9928 }, { "start": 28254.08, "end": 28258.88, "probability": 0.9873 }, { "start": 28259.92, "end": 28260.34, "probability": 0.8049 }, { "start": 28260.96, "end": 28266.62, "probability": 0.9953 }, { "start": 28267.56, "end": 28268.9, "probability": 0.6852 }, { "start": 28269.42, "end": 28272.72, "probability": 0.9937 }, { "start": 28273.62, "end": 28279.28, "probability": 0.998 }, { "start": 28279.98, "end": 28282.74, "probability": 0.9768 }, { "start": 28283.38, "end": 28287.82, "probability": 0.9805 }, { "start": 28287.82, "end": 28292.9, "probability": 0.9676 }, { "start": 28293.26, "end": 28300.84, "probability": 0.9205 }, { "start": 28302.04, "end": 28304.28, "probability": 0.9129 }, { "start": 28304.68, "end": 28308.4, "probability": 0.9983 }, { "start": 28308.4, "end": 28312.48, "probability": 0.9988 }, { "start": 28313.14, "end": 28315.12, "probability": 0.9841 }, { "start": 28315.72, "end": 28316.16, "probability": 0.7896 }, { "start": 28316.22, "end": 28318.7, "probability": 0.9522 }, { "start": 28319.12, "end": 28324.04, "probability": 0.983 }, { "start": 28324.46, "end": 28328.34, "probability": 0.966 }, { "start": 28328.34, "end": 28331.82, "probability": 0.9958 }, { "start": 28332.84, "end": 28334.94, "probability": 0.6268 }, { "start": 28335.28, "end": 28335.62, "probability": 0.6418 }, { "start": 28335.72, "end": 28337.48, "probability": 0.9624 }, { "start": 28338.76, "end": 28341.22, "probability": 0.9752 }, { "start": 28341.34, "end": 28344.62, "probability": 0.9372 }, { "start": 28344.62, "end": 28348.7, "probability": 0.9717 }, { "start": 28349.3, "end": 28351.5, "probability": 0.8958 }, { "start": 28352.34, "end": 28352.9, "probability": 0.7765 }, { "start": 28353.4, "end": 28355.78, "probability": 0.9599 }, { "start": 28356.16, "end": 28358.22, "probability": 0.9961 }, { "start": 28359.96, "end": 28361.06, "probability": 0.8997 }, { "start": 28361.56, "end": 28364.66, "probability": 0.9934 }, { "start": 28364.82, "end": 28369.0, "probability": 0.9902 }, { "start": 28369.32, "end": 28370.56, "probability": 0.9498 }, { "start": 28371.36, "end": 28375.8, "probability": 0.995 }, { "start": 28376.76, "end": 28378.52, "probability": 0.8738 }, { "start": 28378.66, "end": 28382.62, "probability": 0.9765 }, { "start": 28382.66, "end": 28387.14, "probability": 0.9949 }, { "start": 28387.96, "end": 28389.32, "probability": 0.9421 }, { "start": 28389.96, "end": 28390.86, "probability": 0.8485 }, { "start": 28391.16, "end": 28394.76, "probability": 0.9813 }, { "start": 28394.76, "end": 28397.1, "probability": 0.994 }, { "start": 28397.68, "end": 28397.86, "probability": 0.0263 }, { "start": 28397.88, "end": 28402.12, "probability": 0.9969 }, { "start": 28403.24, "end": 28406.54, "probability": 0.9961 }, { "start": 28407.14, "end": 28408.62, "probability": 0.9814 }, { "start": 28409.12, "end": 28412.94, "probability": 0.9974 }, { "start": 28412.94, "end": 28416.88, "probability": 0.998 }, { "start": 28417.8, "end": 28420.42, "probability": 0.9857 }, { "start": 28421.16, "end": 28423.3, "probability": 0.8068 }, { "start": 28424.4, "end": 28426.78, "probability": 0.9154 }, { "start": 28427.2, "end": 28430.58, "probability": 0.9888 }, { "start": 28431.5, "end": 28434.04, "probability": 0.9669 }, { "start": 28435.24, "end": 28439.3, "probability": 0.9484 }, { "start": 28439.46, "end": 28441.8, "probability": 0.9882 }, { "start": 28441.8, "end": 28444.84, "probability": 0.8888 }, { "start": 28445.24, "end": 28447.02, "probability": 0.9873 }, { "start": 28447.6, "end": 28448.94, "probability": 0.8019 }, { "start": 28449.74, "end": 28452.44, "probability": 0.9303 }, { "start": 28452.98, "end": 28456.0, "probability": 0.9978 }, { "start": 28456.44, "end": 28459.12, "probability": 0.9978 }, { "start": 28459.56, "end": 28460.52, "probability": 0.9889 }, { "start": 28461.16, "end": 28462.86, "probability": 0.9476 }, { "start": 28463.72, "end": 28465.8, "probability": 0.9417 }, { "start": 28465.8, "end": 28469.14, "probability": 0.9864 }, { "start": 28469.6, "end": 28474.04, "probability": 0.994 }, { "start": 28475.4, "end": 28478.16, "probability": 0.957 }, { "start": 28478.16, "end": 28481.6, "probability": 0.9798 }, { "start": 28482.02, "end": 28483.34, "probability": 0.7372 }, { "start": 28483.86, "end": 28487.88, "probability": 0.9942 }, { "start": 28488.78, "end": 28491.96, "probability": 0.797 }, { "start": 28492.48, "end": 28494.56, "probability": 0.9753 }, { "start": 28494.94, "end": 28495.86, "probability": 0.8475 }, { "start": 28495.98, "end": 28497.4, "probability": 0.9785 }, { "start": 28497.98, "end": 28499.08, "probability": 0.9562 }, { "start": 28499.52, "end": 28501.54, "probability": 0.9948 }, { "start": 28502.1, "end": 28502.64, "probability": 0.621 }, { "start": 28502.66, "end": 28503.9, "probability": 0.8368 }, { "start": 28503.98, "end": 28505.18, "probability": 0.8456 }, { "start": 28505.6, "end": 28506.86, "probability": 0.5944 }, { "start": 28506.92, "end": 28511.62, "probability": 0.9768 }, { "start": 28511.62, "end": 28518.0, "probability": 0.9952 }, { "start": 28518.32, "end": 28520.11, "probability": 0.8044 }, { "start": 28520.94, "end": 28521.3, "probability": 0.5819 }, { "start": 28521.86, "end": 28524.36, "probability": 0.8849 }, { "start": 28526.08, "end": 28526.58, "probability": 0.6656 }, { "start": 28527.22, "end": 28529.94, "probability": 0.6784 }, { "start": 28530.64, "end": 28531.74, "probability": 0.9895 }, { "start": 28536.72, "end": 28539.7, "probability": 0.8184 }, { "start": 28539.78, "end": 28541.4, "probability": 0.6603 }, { "start": 28541.86, "end": 28543.0, "probability": 0.5767 }, { "start": 28544.28, "end": 28545.56, "probability": 0.577 }, { "start": 28546.82, "end": 28547.44, "probability": 0.6734 }, { "start": 28547.66, "end": 28548.04, "probability": 0.6821 }, { "start": 28566.62, "end": 28566.8, "probability": 0.2244 }, { "start": 28566.8, "end": 28568.66, "probability": 0.5776 }, { "start": 28569.24, "end": 28570.85, "probability": 0.7355 }, { "start": 28571.12, "end": 28572.18, "probability": 0.7225 }, { "start": 28572.36, "end": 28572.92, "probability": 0.0801 }, { "start": 28573.9, "end": 28578.16, "probability": 0.5322 }, { "start": 28578.58, "end": 28584.0, "probability": 0.4679 }, { "start": 28584.0, "end": 28587.9, "probability": 0.6714 }, { "start": 28588.2, "end": 28588.44, "probability": 0.0008 }, { "start": 28588.44, "end": 28590.46, "probability": 0.4356 }, { "start": 28591.24, "end": 28591.4, "probability": 0.7118 }, { "start": 28591.98, "end": 28595.33, "probability": 0.78 }, { "start": 28609.67, "end": 28611.98, "probability": 0.638 }, { "start": 28612.2, "end": 28613.34, "probability": 0.7873 }, { "start": 28614.82, "end": 28615.36, "probability": 0.8979 }, { "start": 28616.94, "end": 28619.0, "probability": 0.996 }, { "start": 28619.0, "end": 28622.44, "probability": 0.9983 }, { "start": 28623.88, "end": 28625.78, "probability": 0.9941 }, { "start": 28625.98, "end": 28627.94, "probability": 0.9624 }, { "start": 28628.8, "end": 28631.54, "probability": 0.9926 }, { "start": 28632.14, "end": 28637.6, "probability": 0.9954 }, { "start": 28638.24, "end": 28639.68, "probability": 0.9664 }, { "start": 28639.8, "end": 28642.28, "probability": 0.9928 }, { "start": 28643.56, "end": 28649.14, "probability": 0.988 }, { "start": 28650.0, "end": 28650.54, "probability": 0.5913 }, { "start": 28650.6, "end": 28654.44, "probability": 0.9934 }, { "start": 28655.88, "end": 28657.11, "probability": 0.8696 }, { "start": 28657.18, "end": 28660.92, "probability": 0.9829 }, { "start": 28662.4, "end": 28663.6, "probability": 0.8361 }, { "start": 28663.7, "end": 28664.38, "probability": 0.875 }, { "start": 28664.7, "end": 28668.96, "probability": 0.8492 }, { "start": 28669.72, "end": 28673.3, "probability": 0.9511 }, { "start": 28674.32, "end": 28679.7, "probability": 0.9845 }, { "start": 28679.94, "end": 28681.2, "probability": 0.4364 }, { "start": 28682.6, "end": 28685.14, "probability": 0.9976 }, { "start": 28685.14, "end": 28688.18, "probability": 0.986 }, { "start": 28689.06, "end": 28694.18, "probability": 0.9589 }, { "start": 28694.84, "end": 28699.06, "probability": 0.9038 }, { "start": 28699.66, "end": 28700.78, "probability": 0.8154 }, { "start": 28701.84, "end": 28703.56, "probability": 0.9891 }, { "start": 28703.76, "end": 28709.84, "probability": 0.9414 }, { "start": 28710.56, "end": 28716.22, "probability": 0.9946 }, { "start": 28717.2, "end": 28720.34, "probability": 0.999 }, { "start": 28720.96, "end": 28721.44, "probability": 0.3868 }, { "start": 28721.7, "end": 28727.58, "probability": 0.9844 }, { "start": 28727.8, "end": 28730.08, "probability": 0.975 }, { "start": 28730.88, "end": 28736.28, "probability": 0.99 }, { "start": 28736.92, "end": 28741.72, "probability": 0.9856 }, { "start": 28742.3, "end": 28746.08, "probability": 0.9097 }, { "start": 28747.34, "end": 28754.5, "probability": 0.991 }, { "start": 28754.5, "end": 28760.26, "probability": 0.9941 }, { "start": 28760.82, "end": 28764.88, "probability": 0.7736 }, { "start": 28765.16, "end": 28768.2, "probability": 0.8921 }, { "start": 28769.16, "end": 28769.56, "probability": 0.8832 }, { "start": 28770.06, "end": 28775.34, "probability": 0.9255 }, { "start": 28776.42, "end": 28777.22, "probability": 0.7922 }, { "start": 28777.26, "end": 28778.14, "probability": 0.9536 }, { "start": 28778.24, "end": 28783.16, "probability": 0.98 }, { "start": 28783.26, "end": 28784.06, "probability": 0.794 }, { "start": 28784.62, "end": 28791.14, "probability": 0.8837 }, { "start": 28792.24, "end": 28795.94, "probability": 0.9711 }, { "start": 28795.94, "end": 28800.62, "probability": 0.9937 }, { "start": 28800.66, "end": 28800.7, "probability": 0.3086 }, { "start": 28800.86, "end": 28801.5, "probability": 0.7951 }, { "start": 28802.16, "end": 28804.68, "probability": 0.5569 }, { "start": 28805.24, "end": 28806.76, "probability": 0.9878 }, { "start": 28808.52, "end": 28809.72, "probability": 0.9202 }, { "start": 28816.34, "end": 28816.44, "probability": 0.1609 }, { "start": 28817.42, "end": 28817.72, "probability": 0.0676 }, { "start": 28817.72, "end": 28817.72, "probability": 0.2667 }, { "start": 28831.08, "end": 28831.08, "probability": 0.1664 }, { "start": 28831.08, "end": 28833.72, "probability": 0.7366 }, { "start": 28835.2, "end": 28836.26, "probability": 0.7901 }, { "start": 28837.36, "end": 28839.94, "probability": 0.9438 }, { "start": 28840.76, "end": 28843.4, "probability": 0.9492 }, { "start": 28844.26, "end": 28848.02, "probability": 0.9202 }, { "start": 28848.74, "end": 28850.84, "probability": 0.9755 }, { "start": 28852.95, "end": 28858.96, "probability": 0.9944 }, { "start": 28859.72, "end": 28862.95, "probability": 0.9863 }, { "start": 28864.1, "end": 28867.72, "probability": 0.9496 }, { "start": 28870.5, "end": 28872.34, "probability": 0.7612 }, { "start": 28873.12, "end": 28874.28, "probability": 0.7446 }, { "start": 28875.68, "end": 28878.18, "probability": 0.902 }, { "start": 28878.94, "end": 28883.46, "probability": 0.9849 }, { "start": 28884.3, "end": 28887.6, "probability": 0.9341 }, { "start": 28888.24, "end": 28889.38, "probability": 0.7332 }, { "start": 28889.64, "end": 28892.58, "probability": 0.9741 }, { "start": 28893.24, "end": 28894.66, "probability": 0.9567 }, { "start": 28894.78, "end": 28896.0, "probability": 0.9798 }, { "start": 28896.84, "end": 28899.2, "probability": 0.8314 }, { "start": 28899.3, "end": 28900.86, "probability": 0.958 }, { "start": 28900.94, "end": 28901.94, "probability": 0.9627 }, { "start": 28901.98, "end": 28902.72, "probability": 0.4764 }, { "start": 28903.14, "end": 28903.52, "probability": 0.9806 }, { "start": 28904.14, "end": 28904.78, "probability": 0.9833 }, { "start": 28905.28, "end": 28906.82, "probability": 0.9521 }, { "start": 28906.92, "end": 28909.42, "probability": 0.98 }, { "start": 28909.98, "end": 28910.42, "probability": 0.9558 }, { "start": 28910.96, "end": 28913.2, "probability": 0.8231 }, { "start": 28913.88, "end": 28915.88, "probability": 0.6651 }, { "start": 28915.96, "end": 28916.42, "probability": 0.3818 }, { "start": 28916.54, "end": 28917.24, "probability": 0.6882 }, { "start": 28917.8, "end": 28918.56, "probability": 0.8819 }, { "start": 28919.28, "end": 28920.44, "probability": 0.8895 }, { "start": 28922.5, "end": 28924.7, "probability": 0.9582 }, { "start": 28924.7, "end": 28926.8, "probability": 0.9926 }, { "start": 28927.42, "end": 28929.16, "probability": 0.8534 }, { "start": 28929.16, "end": 28931.44, "probability": 0.9969 }, { "start": 28932.26, "end": 28933.0, "probability": 0.7402 }, { "start": 28933.56, "end": 28936.3, "probability": 0.8381 }, { "start": 28936.86, "end": 28938.66, "probability": 0.952 }, { "start": 28939.46, "end": 28940.68, "probability": 0.9229 }, { "start": 28941.5, "end": 28943.74, "probability": 0.8684 }, { "start": 28943.9, "end": 28944.3, "probability": 0.7543 }, { "start": 28944.94, "end": 28946.73, "probability": 0.8683 }, { "start": 28947.52, "end": 28951.44, "probability": 0.9557 }, { "start": 28952.14, "end": 28955.86, "probability": 0.9899 }, { "start": 28956.34, "end": 28959.58, "probability": 0.9909 }, { "start": 28960.66, "end": 28961.76, "probability": 0.9816 }, { "start": 28962.86, "end": 28965.88, "probability": 0.9946 }, { "start": 28966.86, "end": 28968.1, "probability": 0.8825 }, { "start": 28968.98, "end": 28970.54, "probability": 0.999 }, { "start": 28971.18, "end": 28973.1, "probability": 0.991 }, { "start": 28973.72, "end": 28975.82, "probability": 0.9917 }, { "start": 28976.58, "end": 28977.72, "probability": 0.9279 }, { "start": 28978.26, "end": 28980.47, "probability": 0.9082 }, { "start": 28981.14, "end": 28982.1, "probability": 0.7647 }, { "start": 28982.82, "end": 28984.34, "probability": 0.9033 }, { "start": 28984.92, "end": 28986.1, "probability": 0.9185 }, { "start": 28986.76, "end": 28989.46, "probability": 0.9958 }, { "start": 28989.96, "end": 28991.28, "probability": 0.9845 }, { "start": 28991.62, "end": 28994.3, "probability": 0.996 }, { "start": 28995.2, "end": 28998.98, "probability": 0.9947 }, { "start": 28999.64, "end": 29000.24, "probability": 0.3456 }, { "start": 29000.44, "end": 29002.94, "probability": 0.9938 }, { "start": 29003.42, "end": 29006.22, "probability": 0.9394 }, { "start": 29006.38, "end": 29007.06, "probability": 0.7416 }, { "start": 29007.78, "end": 29009.14, "probability": 0.9847 }, { "start": 29010.22, "end": 29012.78, "probability": 0.9897 }, { "start": 29013.4, "end": 29014.44, "probability": 0.8157 }, { "start": 29014.56, "end": 29015.96, "probability": 0.6561 }, { "start": 29016.2, "end": 29017.72, "probability": 0.8068 }, { "start": 29018.7, "end": 29019.36, "probability": 0.8235 }, { "start": 29020.04, "end": 29023.84, "probability": 0.9801 }, { "start": 29024.66, "end": 29026.88, "probability": 0.9467 }, { "start": 29027.66, "end": 29030.32, "probability": 0.9969 }, { "start": 29030.52, "end": 29032.52, "probability": 0.9872 }, { "start": 29032.52, "end": 29034.9, "probability": 0.9979 }, { "start": 29035.62, "end": 29038.4, "probability": 0.9685 }, { "start": 29039.42, "end": 29041.04, "probability": 0.9875 }, { "start": 29041.16, "end": 29042.92, "probability": 0.8455 }, { "start": 29043.98, "end": 29046.37, "probability": 0.8826 }, { "start": 29047.58, "end": 29052.78, "probability": 0.969 }, { "start": 29053.54, "end": 29056.14, "probability": 0.7947 }, { "start": 29056.56, "end": 29059.82, "probability": 0.9304 }, { "start": 29060.4, "end": 29063.9, "probability": 0.9674 }, { "start": 29064.42, "end": 29064.93, "probability": 0.7075 }, { "start": 29065.36, "end": 29065.72, "probability": 0.9878 }, { "start": 29066.0, "end": 29066.28, "probability": 0.9459 }, { "start": 29067.18, "end": 29067.54, "probability": 0.263 }, { "start": 29067.72, "end": 29069.44, "probability": 0.8719 }, { "start": 29069.94, "end": 29073.26, "probability": 0.5057 }, { "start": 29078.46, "end": 29082.08, "probability": 0.698 }, { "start": 29082.88, "end": 29084.36, "probability": 0.9673 }, { "start": 29085.5, "end": 29086.74, "probability": 0.7722 }, { "start": 29086.84, "end": 29087.5, "probability": 0.8059 }, { "start": 29087.64, "end": 29089.74, "probability": 0.0349 }, { "start": 29094.06, "end": 29094.54, "probability": 0.0365 }, { "start": 29095.06, "end": 29095.82, "probability": 0.2927 }, { "start": 29096.76, "end": 29098.27, "probability": 0.0579 }, { "start": 29099.1, "end": 29100.32, "probability": 0.2153 }, { "start": 29100.52, "end": 29101.72, "probability": 0.4364 }, { "start": 29103.48, "end": 29103.8, "probability": 0.5143 }, { "start": 29104.02, "end": 29104.78, "probability": 0.8006 }, { "start": 29105.12, "end": 29106.54, "probability": 0.8214 }, { "start": 29106.92, "end": 29111.38, "probability": 0.9131 }, { "start": 29112.4, "end": 29118.12, "probability": 0.9088 }, { "start": 29119.0, "end": 29122.34, "probability": 0.9857 }, { "start": 29122.54, "end": 29123.0, "probability": 0.8227 }, { "start": 29123.26, "end": 29123.9, "probability": 0.9599 }, { "start": 29124.12, "end": 29124.76, "probability": 0.9932 }, { "start": 29124.86, "end": 29125.48, "probability": 0.8929 }, { "start": 29126.04, "end": 29127.92, "probability": 0.9946 }, { "start": 29128.5, "end": 29131.84, "probability": 0.7587 }, { "start": 29131.96, "end": 29134.1, "probability": 0.882 }, { "start": 29135.54, "end": 29139.34, "probability": 0.9853 }, { "start": 29139.4, "end": 29141.04, "probability": 0.9803 }, { "start": 29142.12, "end": 29145.54, "probability": 0.7865 }, { "start": 29145.54, "end": 29150.04, "probability": 0.9976 }, { "start": 29150.72, "end": 29153.84, "probability": 0.992 }, { "start": 29155.76, "end": 29158.06, "probability": 0.9987 }, { "start": 29158.22, "end": 29159.58, "probability": 0.9049 }, { "start": 29160.02, "end": 29160.86, "probability": 0.9635 }, { "start": 29161.96, "end": 29163.6, "probability": 0.9467 }, { "start": 29163.64, "end": 29165.36, "probability": 0.998 }, { "start": 29165.6, "end": 29169.9, "probability": 0.9641 }, { "start": 29170.62, "end": 29172.72, "probability": 0.9948 }, { "start": 29172.72, "end": 29176.6, "probability": 0.9968 }, { "start": 29177.44, "end": 29179.98, "probability": 0.9857 }, { "start": 29179.98, "end": 29181.92, "probability": 0.998 }, { "start": 29183.82, "end": 29184.26, "probability": 0.644 }, { "start": 29184.3, "end": 29186.66, "probability": 0.9724 }, { "start": 29186.78, "end": 29187.14, "probability": 0.4158 }, { "start": 29187.34, "end": 29187.9, "probability": 0.9769 }, { "start": 29188.0, "end": 29188.62, "probability": 0.9783 }, { "start": 29189.44, "end": 29192.18, "probability": 0.9889 }, { "start": 29192.38, "end": 29194.8, "probability": 0.956 }, { "start": 29196.08, "end": 29199.16, "probability": 0.6923 }, { "start": 29199.98, "end": 29201.88, "probability": 0.7836 }, { "start": 29202.56, "end": 29205.26, "probability": 0.9945 }, { "start": 29205.58, "end": 29207.58, "probability": 0.9941 }, { "start": 29207.66, "end": 29209.4, "probability": 0.9795 }, { "start": 29209.9, "end": 29214.2, "probability": 0.7528 }, { "start": 29214.26, "end": 29215.82, "probability": 0.9103 }, { "start": 29216.22, "end": 29216.58, "probability": 0.4965 }, { "start": 29216.6, "end": 29219.58, "probability": 0.9508 }, { "start": 29220.08, "end": 29221.92, "probability": 0.9513 }, { "start": 29222.24, "end": 29226.56, "probability": 0.9979 }, { "start": 29226.56, "end": 29228.94, "probability": 0.8672 }, { "start": 29229.54, "end": 29230.46, "probability": 0.6041 }, { "start": 29230.58, "end": 29232.44, "probability": 0.7557 }, { "start": 29232.5, "end": 29232.94, "probability": 0.4991 }, { "start": 29233.32, "end": 29236.4, "probability": 0.7992 }, { "start": 29236.96, "end": 29240.36, "probability": 0.998 }, { "start": 29240.5, "end": 29241.62, "probability": 0.8902 }, { "start": 29242.18, "end": 29244.48, "probability": 0.8972 }, { "start": 29244.48, "end": 29246.76, "probability": 0.994 }, { "start": 29247.98, "end": 29251.54, "probability": 0.9789 }, { "start": 29252.52, "end": 29254.63, "probability": 0.8831 }, { "start": 29256.48, "end": 29260.72, "probability": 0.9956 }, { "start": 29260.72, "end": 29264.28, "probability": 0.9973 }, { "start": 29265.78, "end": 29267.92, "probability": 0.7084 }, { "start": 29268.16, "end": 29271.38, "probability": 0.9937 }, { "start": 29271.48, "end": 29272.66, "probability": 0.7732 }, { "start": 29273.16, "end": 29275.1, "probability": 0.8032 }, { "start": 29275.28, "end": 29278.56, "probability": 0.8283 }, { "start": 29279.1, "end": 29281.48, "probability": 0.9977 }, { "start": 29281.66, "end": 29282.26, "probability": 0.6718 }, { "start": 29282.44, "end": 29282.6, "probability": 0.4764 }, { "start": 29282.8, "end": 29283.52, "probability": 0.8485 }, { "start": 29284.08, "end": 29287.4, "probability": 0.9948 }, { "start": 29287.6, "end": 29288.96, "probability": 0.6045 }, { "start": 29289.2, "end": 29290.08, "probability": 0.8343 }, { "start": 29290.66, "end": 29291.52, "probability": 0.9609 }, { "start": 29292.64, "end": 29295.14, "probability": 0.982 }, { "start": 29295.14, "end": 29297.92, "probability": 0.9868 }, { "start": 29298.32, "end": 29300.92, "probability": 0.8837 }, { "start": 29301.98, "end": 29303.58, "probability": 0.9832 }, { "start": 29304.26, "end": 29306.2, "probability": 0.9766 }, { "start": 29306.88, "end": 29311.0, "probability": 0.9982 }, { "start": 29311.3, "end": 29313.18, "probability": 0.9616 }, { "start": 29313.96, "end": 29316.34, "probability": 0.7485 }, { "start": 29316.84, "end": 29319.9, "probability": 0.9987 }, { "start": 29320.26, "end": 29321.98, "probability": 0.989 }, { "start": 29322.84, "end": 29327.16, "probability": 0.9331 }, { "start": 29328.58, "end": 29331.7, "probability": 0.9814 }, { "start": 29332.04, "end": 29334.5, "probability": 0.9582 }, { "start": 29335.16, "end": 29339.72, "probability": 0.9243 }, { "start": 29340.66, "end": 29343.34, "probability": 0.9684 }, { "start": 29343.58, "end": 29346.1, "probability": 0.9376 }, { "start": 29347.04, "end": 29349.06, "probability": 0.9767 }, { "start": 29349.42, "end": 29351.64, "probability": 0.8931 }, { "start": 29351.84, "end": 29356.5, "probability": 0.9898 }, { "start": 29357.26, "end": 29359.2, "probability": 0.691 }, { "start": 29359.66, "end": 29361.74, "probability": 0.999 }, { "start": 29361.98, "end": 29367.3, "probability": 0.9885 }, { "start": 29367.98, "end": 29370.34, "probability": 0.8373 }, { "start": 29370.46, "end": 29372.96, "probability": 0.9871 }, { "start": 29373.5, "end": 29374.82, "probability": 0.9819 }, { "start": 29375.0, "end": 29378.7, "probability": 0.9938 }, { "start": 29379.28, "end": 29381.62, "probability": 0.9012 }, { "start": 29381.94, "end": 29384.24, "probability": 0.8701 }, { "start": 29385.06, "end": 29386.2, "probability": 0.9909 }, { "start": 29386.3, "end": 29387.19, "probability": 0.8809 }, { "start": 29388.96, "end": 29392.12, "probability": 0.8887 }, { "start": 29393.0, "end": 29394.44, "probability": 0.8492 }, { "start": 29394.76, "end": 29398.8, "probability": 0.9917 }, { "start": 29399.28, "end": 29399.44, "probability": 0.9013 }, { "start": 29399.56, "end": 29400.4, "probability": 0.9473 }, { "start": 29400.96, "end": 29402.1, "probability": 0.7657 }, { "start": 29402.24, "end": 29403.88, "probability": 0.998 }, { "start": 29404.22, "end": 29407.3, "probability": 0.9976 }, { "start": 29407.48, "end": 29407.98, "probability": 0.8021 }, { "start": 29408.5, "end": 29410.58, "probability": 0.9993 }, { "start": 29410.84, "end": 29412.98, "probability": 0.6166 }, { "start": 29413.72, "end": 29416.27, "probability": 0.9875 }, { "start": 29417.08, "end": 29420.9, "probability": 0.994 }, { "start": 29421.48, "end": 29428.24, "probability": 0.7545 }, { "start": 29428.84, "end": 29428.94, "probability": 0.4128 }, { "start": 29428.94, "end": 29431.36, "probability": 0.7241 }, { "start": 29431.84, "end": 29434.28, "probability": 0.9879 }, { "start": 29434.38, "end": 29435.9, "probability": 0.8557 }, { "start": 29436.74, "end": 29442.42, "probability": 0.9958 }, { "start": 29442.48, "end": 29448.4, "probability": 0.9993 }, { "start": 29449.7, "end": 29453.16, "probability": 0.9995 }, { "start": 29453.82, "end": 29456.5, "probability": 0.996 }, { "start": 29457.08, "end": 29460.24, "probability": 0.9916 }, { "start": 29461.24, "end": 29462.02, "probability": 0.4051 }, { "start": 29462.16, "end": 29462.4, "probability": 0.8192 }, { "start": 29466.6, "end": 29467.8, "probability": 0.2338 }, { "start": 29468.34, "end": 29469.68, "probability": 0.5758 }, { "start": 29472.78, "end": 29473.72, "probability": 0.4556 }, { "start": 29473.98, "end": 29475.14, "probability": 0.543 }, { "start": 29481.2, "end": 29481.62, "probability": 0.1813 }, { "start": 29492.22, "end": 29492.34, "probability": 0.2872 }, { "start": 29492.34, "end": 29494.58, "probability": 0.433 }, { "start": 29495.32, "end": 29497.6, "probability": 0.7232 }, { "start": 29498.66, "end": 29500.11, "probability": 0.9643 }, { "start": 29503.52, "end": 29504.12, "probability": 0.1046 }, { "start": 29506.72, "end": 29510.72, "probability": 0.3082 }, { "start": 29511.34, "end": 29511.72, "probability": 0.4968 }, { "start": 29511.72, "end": 29511.72, "probability": 0.1061 }, { "start": 29511.78, "end": 29511.78, "probability": 0.4671 }, { "start": 29511.9, "end": 29512.22, "probability": 0.5893 }, { "start": 29514.76, "end": 29515.34, "probability": 0.5259 }, { "start": 29517.18, "end": 29518.74, "probability": 0.9471 }, { "start": 29520.88, "end": 29524.08, "probability": 0.6145 }, { "start": 29525.04, "end": 29527.02, "probability": 0.9143 }, { "start": 29528.5, "end": 29533.82, "probability": 0.7864 }, { "start": 29534.32, "end": 29534.42, "probability": 0.1884 } ], "segments_count": 6051, "words_count": 28975, "avg_words_per_segment": 4.7885, "avg_segment_duration": 1.8639, "avg_words_per_minute": 58.7681, "plenum_id": "104349", "duration": 29582.37, "title": null, "plenum_date": "2022-01-12" }