{ "source_type": "knesset", "source_id": "plenum", "source_entry_id": "100123", "quality_score": 0.9351, "per_segment_quality_scores": [ { "start": 86.7, "end": 91.73, "probability": 0.6762 }, { "start": 92.76, "end": 101.18, "probability": 0.9517 }, { "start": 101.64, "end": 104.78, "probability": 0.9077 }, { "start": 106.7, "end": 108.68, "probability": 0.7398 }, { "start": 108.8, "end": 110.26, "probability": 0.8288 }, { "start": 110.68, "end": 112.07, "probability": 0.9558 }, { "start": 112.32, "end": 113.1, "probability": 0.6912 }, { "start": 113.12, "end": 114.2, "probability": 0.6562 }, { "start": 114.78, "end": 118.6, "probability": 0.7765 }, { "start": 119.58, "end": 123.56, "probability": 0.9873 }, { "start": 123.76, "end": 126.89, "probability": 0.999 }, { "start": 128.1, "end": 128.82, "probability": 0.8145 }, { "start": 129.04, "end": 129.3, "probability": 0.8123 }, { "start": 129.86, "end": 129.98, "probability": 0.2039 }, { "start": 130.64, "end": 133.18, "probability": 0.7303 }, { "start": 133.4, "end": 134.7, "probability": 0.8013 }, { "start": 134.82, "end": 136.64, "probability": 0.7388 }, { "start": 177.3, "end": 177.9, "probability": 0.671 }, { "start": 178.88, "end": 179.06, "probability": 0.3903 }, { "start": 179.06, "end": 181.92, "probability": 0.7452 }, { "start": 181.98, "end": 184.42, "probability": 0.9431 }, { "start": 185.36, "end": 187.34, "probability": 0.9126 }, { "start": 188.88, "end": 190.18, "probability": 0.8727 }, { "start": 190.46, "end": 197.56, "probability": 0.9822 }, { "start": 198.08, "end": 199.42, "probability": 0.7448 }, { "start": 200.08, "end": 202.02, "probability": 0.7405 }, { "start": 202.86, "end": 205.62, "probability": 0.9771 }, { "start": 206.8, "end": 207.68, "probability": 0.5537 }, { "start": 208.46, "end": 209.36, "probability": 0.8251 }, { "start": 210.02, "end": 212.46, "probability": 0.8928 }, { "start": 213.14, "end": 215.52, "probability": 0.9762 }, { "start": 216.46, "end": 217.98, "probability": 0.9609 }, { "start": 218.14, "end": 220.94, "probability": 0.9214 }, { "start": 221.72, "end": 225.18, "probability": 0.9526 }, { "start": 225.18, "end": 228.71, "probability": 0.9707 }, { "start": 229.66, "end": 230.38, "probability": 0.7107 }, { "start": 231.56, "end": 234.0, "probability": 0.954 }, { "start": 235.04, "end": 238.1, "probability": 0.9282 }, { "start": 239.38, "end": 243.92, "probability": 0.8385 }, { "start": 244.54, "end": 246.76, "probability": 0.8825 }, { "start": 247.58, "end": 249.42, "probability": 0.9456 }, { "start": 250.12, "end": 253.68, "probability": 0.9098 }, { "start": 254.32, "end": 259.26, "probability": 0.944 }, { "start": 259.72, "end": 264.66, "probability": 0.9979 }, { "start": 265.26, "end": 266.9, "probability": 0.7273 }, { "start": 267.38, "end": 271.05, "probability": 0.5343 }, { "start": 272.48, "end": 274.64, "probability": 0.918 }, { "start": 275.22, "end": 279.28, "probability": 0.6681 }, { "start": 279.9, "end": 284.16, "probability": 0.9979 }, { "start": 284.62, "end": 289.86, "probability": 0.9974 }, { "start": 290.32, "end": 292.8, "probability": 0.9958 }, { "start": 293.46, "end": 295.08, "probability": 0.9652 }, { "start": 295.8, "end": 296.24, "probability": 0.8415 }, { "start": 300.3, "end": 301.94, "probability": 0.8541 }, { "start": 302.5, "end": 304.1, "probability": 0.836 }, { "start": 312.76, "end": 314.66, "probability": 0.628 }, { "start": 315.6, "end": 318.56, "probability": 0.9639 }, { "start": 319.44, "end": 321.1, "probability": 0.7694 }, { "start": 321.8, "end": 325.23, "probability": 0.9958 }, { "start": 326.4, "end": 327.14, "probability": 0.8364 }, { "start": 327.4, "end": 328.46, "probability": 0.6565 }, { "start": 329.24, "end": 330.01, "probability": 0.9671 }, { "start": 331.18, "end": 332.28, "probability": 0.8044 }, { "start": 332.38, "end": 333.26, "probability": 0.7427 }, { "start": 333.54, "end": 334.0, "probability": 0.9152 }, { "start": 334.06, "end": 337.1, "probability": 0.9493 }, { "start": 338.58, "end": 341.5, "probability": 0.9497 }, { "start": 341.52, "end": 342.98, "probability": 0.9661 }, { "start": 343.98, "end": 344.38, "probability": 0.4314 }, { "start": 345.7, "end": 346.86, "probability": 0.9531 }, { "start": 346.98, "end": 349.26, "probability": 0.6623 }, { "start": 349.92, "end": 352.7, "probability": 0.9063 }, { "start": 355.48, "end": 357.36, "probability": 0.9927 }, { "start": 358.06, "end": 359.3, "probability": 0.8463 }, { "start": 360.06, "end": 363.56, "probability": 0.9928 }, { "start": 363.64, "end": 365.54, "probability": 0.837 }, { "start": 366.06, "end": 366.5, "probability": 0.9351 }, { "start": 367.54, "end": 369.38, "probability": 0.797 }, { "start": 370.04, "end": 371.72, "probability": 0.8597 }, { "start": 372.44, "end": 374.2, "probability": 0.8531 }, { "start": 375.54, "end": 378.08, "probability": 0.7354 }, { "start": 378.86, "end": 380.96, "probability": 0.8682 }, { "start": 381.9, "end": 382.6, "probability": 0.9365 }, { "start": 382.64, "end": 389.9, "probability": 0.9596 }, { "start": 390.14, "end": 393.88, "probability": 0.757 }, { "start": 393.88, "end": 395.14, "probability": 0.7837 }, { "start": 395.38, "end": 395.86, "probability": 0.8212 }, { "start": 396.6, "end": 398.06, "probability": 0.9939 }, { "start": 398.88, "end": 399.8, "probability": 0.8661 }, { "start": 401.32, "end": 402.54, "probability": 0.7754 }, { "start": 402.78, "end": 406.26, "probability": 0.9694 }, { "start": 407.72, "end": 409.04, "probability": 0.5526 }, { "start": 409.38, "end": 410.52, "probability": 0.9404 }, { "start": 421.84, "end": 422.36, "probability": 0.5036 }, { "start": 422.78, "end": 426.94, "probability": 0.8182 }, { "start": 427.62, "end": 431.38, "probability": 0.991 }, { "start": 431.38, "end": 435.24, "probability": 0.9925 }, { "start": 436.3, "end": 437.54, "probability": 0.9297 }, { "start": 438.34, "end": 441.4, "probability": 0.9987 }, { "start": 441.94, "end": 448.04, "probability": 0.9625 }, { "start": 448.98, "end": 452.9, "probability": 0.998 }, { "start": 453.88, "end": 454.56, "probability": 0.5999 }, { "start": 454.62, "end": 457.84, "probability": 0.9966 }, { "start": 458.92, "end": 463.4, "probability": 0.989 }, { "start": 463.5, "end": 464.42, "probability": 0.7005 }, { "start": 464.46, "end": 464.9, "probability": 0.4488 }, { "start": 465.72, "end": 472.86, "probability": 0.8939 }, { "start": 474.32, "end": 477.04, "probability": 0.9858 }, { "start": 477.86, "end": 482.32, "probability": 0.87 }, { "start": 482.32, "end": 485.88, "probability": 0.958 }, { "start": 486.44, "end": 489.5, "probability": 0.9976 }, { "start": 489.5, "end": 492.82, "probability": 0.9795 }, { "start": 493.36, "end": 496.66, "probability": 0.9961 }, { "start": 496.76, "end": 498.34, "probability": 0.9858 }, { "start": 499.68, "end": 500.76, "probability": 0.7479 }, { "start": 501.04, "end": 503.76, "probability": 0.979 }, { "start": 504.2, "end": 505.66, "probability": 0.9763 }, { "start": 506.38, "end": 507.88, "probability": 0.7591 }, { "start": 508.08, "end": 509.7, "probability": 0.8572 }, { "start": 509.8, "end": 511.56, "probability": 0.9839 }, { "start": 512.98, "end": 515.65, "probability": 0.9432 }, { "start": 515.68, "end": 517.54, "probability": 0.9967 }, { "start": 517.6, "end": 518.32, "probability": 0.9614 }, { "start": 518.72, "end": 520.94, "probability": 0.9995 }, { "start": 522.24, "end": 523.38, "probability": 0.942 }, { "start": 524.44, "end": 525.46, "probability": 0.9331 }, { "start": 527.26, "end": 530.02, "probability": 0.9023 }, { "start": 530.66, "end": 533.3, "probability": 0.9204 }, { "start": 533.3, "end": 536.22, "probability": 0.7263 }, { "start": 536.36, "end": 537.28, "probability": 0.8979 }, { "start": 537.92, "end": 538.28, "probability": 0.5076 }, { "start": 538.3, "end": 538.64, "probability": 0.7818 }, { "start": 539.1, "end": 541.12, "probability": 0.9847 }, { "start": 541.22, "end": 543.22, "probability": 0.9617 }, { "start": 544.4, "end": 545.36, "probability": 0.96 }, { "start": 545.9, "end": 548.48, "probability": 0.9946 }, { "start": 549.56, "end": 550.13, "probability": 0.154 }, { "start": 550.42, "end": 550.98, "probability": 0.2826 }, { "start": 551.08, "end": 551.26, "probability": 0.7718 }, { "start": 551.72, "end": 553.12, "probability": 0.6266 }, { "start": 553.7, "end": 556.32, "probability": 0.9297 }, { "start": 556.84, "end": 557.48, "probability": 0.9853 }, { "start": 558.09, "end": 562.16, "probability": 0.7727 }, { "start": 562.28, "end": 562.62, "probability": 0.4814 }, { "start": 562.7, "end": 563.02, "probability": 0.337 }, { "start": 563.48, "end": 565.72, "probability": 0.9496 }, { "start": 565.8, "end": 568.58, "probability": 0.9668 }, { "start": 568.74, "end": 570.48, "probability": 0.9594 }, { "start": 571.24, "end": 572.08, "probability": 0.9604 }, { "start": 572.18, "end": 572.52, "probability": 0.8585 }, { "start": 572.62, "end": 577.3, "probability": 0.8262 }, { "start": 577.3, "end": 584.04, "probability": 0.9976 }, { "start": 584.18, "end": 585.54, "probability": 0.6603 }, { "start": 585.62, "end": 588.36, "probability": 0.9964 }, { "start": 588.36, "end": 592.86, "probability": 0.9923 }, { "start": 593.76, "end": 596.04, "probability": 0.6096 }, { "start": 596.72, "end": 597.46, "probability": 0.9416 }, { "start": 597.56, "end": 600.38, "probability": 0.9928 }, { "start": 600.58, "end": 602.36, "probability": 0.8314 }, { "start": 602.94, "end": 605.56, "probability": 0.9896 }, { "start": 605.9, "end": 608.48, "probability": 0.989 }, { "start": 609.22, "end": 613.14, "probability": 0.9111 }, { "start": 613.96, "end": 616.0, "probability": 0.8652 }, { "start": 616.66, "end": 617.74, "probability": 0.9421 }, { "start": 618.98, "end": 623.48, "probability": 0.9927 }, { "start": 623.52, "end": 624.9, "probability": 0.8582 }, { "start": 625.12, "end": 628.7, "probability": 0.7461 }, { "start": 629.4, "end": 633.96, "probability": 0.9966 }, { "start": 634.7, "end": 638.24, "probability": 0.9675 }, { "start": 638.96, "end": 641.38, "probability": 0.9685 }, { "start": 642.38, "end": 644.88, "probability": 0.9882 }, { "start": 644.88, "end": 647.82, "probability": 0.9948 }, { "start": 648.52, "end": 650.32, "probability": 0.998 }, { "start": 650.72, "end": 651.86, "probability": 0.9883 }, { "start": 652.58, "end": 652.84, "probability": 0.3962 }, { "start": 652.96, "end": 657.7, "probability": 0.9762 }, { "start": 658.08, "end": 665.4, "probability": 0.9635 }, { "start": 665.4, "end": 670.18, "probability": 0.9849 }, { "start": 670.2, "end": 672.88, "probability": 0.8001 }, { "start": 673.12, "end": 674.34, "probability": 0.6888 }, { "start": 674.76, "end": 675.56, "probability": 0.7001 }, { "start": 675.66, "end": 675.92, "probability": 0.833 }, { "start": 676.14, "end": 678.74, "probability": 0.9797 }, { "start": 678.84, "end": 679.54, "probability": 0.8933 }, { "start": 680.1, "end": 685.4, "probability": 0.9976 }, { "start": 685.4, "end": 688.1, "probability": 0.9932 }, { "start": 689.0, "end": 689.64, "probability": 0.79 }, { "start": 690.4, "end": 691.26, "probability": 0.9553 }, { "start": 691.74, "end": 695.4, "probability": 0.9906 }, { "start": 695.64, "end": 695.9, "probability": 0.7529 }, { "start": 696.24, "end": 698.01, "probability": 0.7603 }, { "start": 698.5, "end": 701.84, "probability": 0.9958 }, { "start": 701.84, "end": 705.82, "probability": 0.8748 }, { "start": 705.98, "end": 708.7, "probability": 0.9709 }, { "start": 709.38, "end": 710.9, "probability": 0.6519 }, { "start": 711.84, "end": 713.0, "probability": 0.5792 }, { "start": 713.06, "end": 713.32, "probability": 0.5238 }, { "start": 714.08, "end": 718.3, "probability": 0.9438 }, { "start": 719.6, "end": 720.84, "probability": 0.9622 }, { "start": 722.24, "end": 722.94, "probability": 0.7441 }, { "start": 723.68, "end": 724.58, "probability": 0.6874 }, { "start": 725.4, "end": 728.54, "probability": 0.9895 }, { "start": 729.55, "end": 732.1, "probability": 0.9187 }, { "start": 744.24, "end": 746.38, "probability": 0.744 }, { "start": 747.68, "end": 750.42, "probability": 0.9845 }, { "start": 751.36, "end": 755.06, "probability": 0.9436 }, { "start": 755.54, "end": 757.56, "probability": 0.9517 }, { "start": 758.46, "end": 763.5, "probability": 0.9908 }, { "start": 764.28, "end": 765.94, "probability": 0.9998 }, { "start": 766.64, "end": 767.56, "probability": 0.9912 }, { "start": 768.14, "end": 769.18, "probability": 0.7814 }, { "start": 769.72, "end": 772.94, "probability": 0.7657 }, { "start": 773.46, "end": 774.56, "probability": 0.9731 }, { "start": 774.98, "end": 778.48, "probability": 0.9872 }, { "start": 778.64, "end": 781.3, "probability": 0.9884 }, { "start": 781.76, "end": 783.67, "probability": 0.8805 }, { "start": 784.24, "end": 788.82, "probability": 0.8047 }, { "start": 789.44, "end": 793.24, "probability": 0.168 }, { "start": 793.24, "end": 795.96, "probability": 0.6113 }, { "start": 796.72, "end": 797.72, "probability": 0.7018 }, { "start": 798.24, "end": 801.54, "probability": 0.9952 }, { "start": 802.16, "end": 803.96, "probability": 0.9946 }, { "start": 804.54, "end": 806.02, "probability": 0.9814 }, { "start": 806.48, "end": 809.38, "probability": 0.9946 }, { "start": 809.58, "end": 815.24, "probability": 0.8621 }, { "start": 815.78, "end": 816.8, "probability": 0.6368 }, { "start": 817.3, "end": 819.64, "probability": 0.6943 }, { "start": 819.74, "end": 822.6, "probability": 0.9863 }, { "start": 823.0, "end": 824.14, "probability": 0.1209 }, { "start": 824.14, "end": 825.46, "probability": 0.7231 }, { "start": 825.58, "end": 827.0, "probability": 0.9494 }, { "start": 827.58, "end": 832.92, "probability": 0.9587 }, { "start": 833.04, "end": 835.24, "probability": 0.9351 }, { "start": 835.68, "end": 836.66, "probability": 0.9906 }, { "start": 836.74, "end": 840.44, "probability": 0.9324 }, { "start": 840.5, "end": 841.36, "probability": 0.907 }, { "start": 842.0, "end": 842.0, "probability": 0.88 }, { "start": 842.0, "end": 844.12, "probability": 0.977 }, { "start": 844.84, "end": 847.78, "probability": 0.9946 }, { "start": 848.4, "end": 849.94, "probability": 0.8907 }, { "start": 850.06, "end": 854.12, "probability": 0.9663 }, { "start": 854.7, "end": 856.2, "probability": 0.9412 }, { "start": 856.74, "end": 858.94, "probability": 0.9808 }, { "start": 858.94, "end": 862.16, "probability": 0.9938 }, { "start": 862.22, "end": 862.86, "probability": 0.9105 }, { "start": 863.48, "end": 867.68, "probability": 0.992 }, { "start": 867.98, "end": 869.66, "probability": 0.9674 }, { "start": 871.42, "end": 874.31, "probability": 0.0087 }, { "start": 874.36, "end": 877.0, "probability": 0.0523 }, { "start": 877.66, "end": 879.48, "probability": 0.2689 }, { "start": 879.7, "end": 881.8, "probability": 0.0974 }, { "start": 882.32, "end": 882.54, "probability": 0.3543 }, { "start": 885.24, "end": 888.66, "probability": 0.0008 }, { "start": 888.98, "end": 893.04, "probability": 0.1479 }, { "start": 893.38, "end": 896.94, "probability": 0.4737 }, { "start": 897.74, "end": 900.74, "probability": 0.267 }, { "start": 900.78, "end": 907.2, "probability": 0.2949 }, { "start": 907.6, "end": 910.53, "probability": 0.0611 }, { "start": 911.6, "end": 914.36, "probability": 0.5124 }, { "start": 914.36, "end": 918.44, "probability": 0.7554 }, { "start": 918.56, "end": 922.22, "probability": 0.3365 }, { "start": 922.46, "end": 925.88, "probability": 0.3791 }, { "start": 926.06, "end": 926.9, "probability": 0.5853 }, { "start": 927.34, "end": 929.94, "probability": 0.8175 }, { "start": 929.96, "end": 932.5, "probability": 0.7408 }, { "start": 932.66, "end": 934.02, "probability": 0.2295 }, { "start": 934.02, "end": 934.66, "probability": 0.2669 }, { "start": 935.2, "end": 936.06, "probability": 0.6645 }, { "start": 936.12, "end": 941.96, "probability": 0.4549 }, { "start": 942.38, "end": 946.24, "probability": 0.5927 }, { "start": 946.5, "end": 948.18, "probability": 0.3231 }, { "start": 948.84, "end": 950.28, "probability": 0.5921 }, { "start": 950.28, "end": 951.22, "probability": 0.6038 }, { "start": 954.84, "end": 954.94, "probability": 0.8303 }, { "start": 956.89, "end": 960.04, "probability": 0.6867 }, { "start": 969.2, "end": 969.2, "probability": 0.287 }, { "start": 969.2, "end": 969.2, "probability": 0.1566 }, { "start": 969.2, "end": 969.82, "probability": 0.7218 }, { "start": 971.4, "end": 975.9, "probability": 0.99 }, { "start": 978.7, "end": 981.82, "probability": 0.9006 }, { "start": 982.86, "end": 983.38, "probability": 0.9733 }, { "start": 984.76, "end": 986.5, "probability": 0.9777 }, { "start": 987.78, "end": 991.64, "probability": 0.9067 }, { "start": 992.54, "end": 997.1, "probability": 0.999 }, { "start": 997.74, "end": 998.7, "probability": 0.9501 }, { "start": 999.54, "end": 1000.64, "probability": 0.6063 }, { "start": 1001.78, "end": 1004.08, "probability": 0.7822 }, { "start": 1004.4, "end": 1004.9, "probability": 0.7979 }, { "start": 1005.56, "end": 1007.06, "probability": 0.8194 }, { "start": 1007.76, "end": 1009.92, "probability": 0.9949 }, { "start": 1010.12, "end": 1011.78, "probability": 0.7648 }, { "start": 1012.24, "end": 1013.8, "probability": 0.9787 }, { "start": 1014.84, "end": 1015.12, "probability": 0.9218 }, { "start": 1015.7, "end": 1017.62, "probability": 0.5797 }, { "start": 1018.18, "end": 1021.38, "probability": 0.9871 }, { "start": 1021.8, "end": 1022.28, "probability": 0.7187 }, { "start": 1023.64, "end": 1025.39, "probability": 0.5206 }, { "start": 1026.34, "end": 1027.04, "probability": 0.2222 }, { "start": 1027.7, "end": 1030.18, "probability": 0.0935 }, { "start": 1030.3, "end": 1030.6, "probability": 0.1275 }, { "start": 1030.88, "end": 1035.82, "probability": 0.9916 }, { "start": 1036.4, "end": 1038.28, "probability": 0.9775 }, { "start": 1038.96, "end": 1042.82, "probability": 0.9976 }, { "start": 1043.9, "end": 1044.12, "probability": 0.183 }, { "start": 1044.18, "end": 1044.56, "probability": 0.8924 }, { "start": 1044.62, "end": 1045.1, "probability": 0.7651 }, { "start": 1045.46, "end": 1048.6, "probability": 0.9896 }, { "start": 1049.2, "end": 1050.64, "probability": 0.7776 }, { "start": 1051.44, "end": 1053.76, "probability": 0.9799 }, { "start": 1054.52, "end": 1057.78, "probability": 0.9859 }, { "start": 1059.06, "end": 1061.58, "probability": 0.9741 }, { "start": 1061.58, "end": 1064.42, "probability": 0.9991 }, { "start": 1064.98, "end": 1067.02, "probability": 0.9869 }, { "start": 1067.86, "end": 1071.54, "probability": 0.9906 }, { "start": 1071.54, "end": 1074.8, "probability": 0.9994 }, { "start": 1074.98, "end": 1075.44, "probability": 0.7469 }, { "start": 1076.08, "end": 1076.56, "probability": 0.7917 }, { "start": 1077.64, "end": 1077.84, "probability": 0.9067 }, { "start": 1077.88, "end": 1079.4, "probability": 0.9315 }, { "start": 1079.42, "end": 1080.42, "probability": 0.9431 }, { "start": 1080.56, "end": 1081.49, "probability": 0.7192 }, { "start": 1082.16, "end": 1082.76, "probability": 0.896 }, { "start": 1083.04, "end": 1086.74, "probability": 0.8743 }, { "start": 1087.44, "end": 1089.26, "probability": 0.9853 }, { "start": 1089.66, "end": 1091.68, "probability": 0.1595 }, { "start": 1092.64, "end": 1095.86, "probability": 0.9349 }, { "start": 1096.04, "end": 1096.4, "probability": 0.8129 }, { "start": 1097.48, "end": 1103.26, "probability": 0.4506 }, { "start": 1104.22, "end": 1109.34, "probability": 0.9859 }, { "start": 1110.0, "end": 1113.78, "probability": 0.6537 }, { "start": 1114.72, "end": 1115.64, "probability": 0.702 }, { "start": 1116.06, "end": 1117.22, "probability": 0.512 }, { "start": 1117.62, "end": 1118.18, "probability": 0.733 }, { "start": 1125.26, "end": 1125.84, "probability": 0.4833 }, { "start": 1128.56, "end": 1132.52, "probability": 0.8385 }, { "start": 1133.34, "end": 1133.82, "probability": 0.7763 }, { "start": 1134.78, "end": 1135.14, "probability": 0.8439 }, { "start": 1135.5, "end": 1136.84, "probability": 0.7681 }, { "start": 1138.34, "end": 1141.94, "probability": 0.7766 }, { "start": 1143.0, "end": 1146.74, "probability": 0.9196 }, { "start": 1147.78, "end": 1149.48, "probability": 0.9966 }, { "start": 1150.44, "end": 1153.78, "probability": 0.9614 }, { "start": 1155.2, "end": 1158.69, "probability": 0.8047 }, { "start": 1159.44, "end": 1160.14, "probability": 0.6524 }, { "start": 1160.18, "end": 1162.7, "probability": 0.9559 }, { "start": 1163.94, "end": 1164.28, "probability": 0.7449 }, { "start": 1164.64, "end": 1165.66, "probability": 0.9944 }, { "start": 1165.84, "end": 1168.8, "probability": 0.9805 }, { "start": 1169.68, "end": 1171.08, "probability": 0.9466 }, { "start": 1171.92, "end": 1174.68, "probability": 0.9964 }, { "start": 1174.68, "end": 1179.0, "probability": 0.9761 }, { "start": 1179.38, "end": 1183.06, "probability": 0.9966 }, { "start": 1183.9, "end": 1186.86, "probability": 0.9766 }, { "start": 1187.78, "end": 1190.7, "probability": 0.9868 }, { "start": 1191.28, "end": 1195.28, "probability": 0.9904 }, { "start": 1195.28, "end": 1199.06, "probability": 0.9989 }, { "start": 1199.66, "end": 1202.86, "probability": 0.9729 }, { "start": 1203.56, "end": 1204.14, "probability": 0.7864 }, { "start": 1204.98, "end": 1206.52, "probability": 0.8884 }, { "start": 1206.98, "end": 1209.96, "probability": 0.9946 }, { "start": 1210.42, "end": 1211.96, "probability": 0.9456 }, { "start": 1212.78, "end": 1216.78, "probability": 0.9923 }, { "start": 1217.42, "end": 1221.48, "probability": 0.9968 }, { "start": 1221.62, "end": 1222.32, "probability": 0.5364 }, { "start": 1222.44, "end": 1222.84, "probability": 0.718 }, { "start": 1222.92, "end": 1223.34, "probability": 0.6802 }, { "start": 1223.78, "end": 1225.98, "probability": 0.859 }, { "start": 1226.74, "end": 1229.34, "probability": 0.9801 }, { "start": 1229.84, "end": 1231.58, "probability": 0.9933 }, { "start": 1232.24, "end": 1234.34, "probability": 0.8629 }, { "start": 1235.16, "end": 1237.92, "probability": 0.9966 }, { "start": 1238.48, "end": 1240.66, "probability": 0.9954 }, { "start": 1240.98, "end": 1242.44, "probability": 0.9277 }, { "start": 1242.86, "end": 1243.12, "probability": 0.7737 }, { "start": 1244.0, "end": 1244.4, "probability": 0.602 }, { "start": 1244.54, "end": 1247.96, "probability": 0.9057 }, { "start": 1255.32, "end": 1256.12, "probability": 0.6048 }, { "start": 1256.9, "end": 1258.0, "probability": 0.6398 }, { "start": 1258.96, "end": 1261.68, "probability": 0.9961 }, { "start": 1263.34, "end": 1266.5, "probability": 0.9956 }, { "start": 1267.02, "end": 1268.92, "probability": 0.9613 }, { "start": 1269.5, "end": 1271.76, "probability": 0.9772 }, { "start": 1272.34, "end": 1275.44, "probability": 0.9729 }, { "start": 1276.72, "end": 1279.38, "probability": 0.9933 }, { "start": 1280.8, "end": 1287.58, "probability": 0.9232 }, { "start": 1288.28, "end": 1289.82, "probability": 0.994 }, { "start": 1291.04, "end": 1293.48, "probability": 0.8757 }, { "start": 1294.48, "end": 1298.06, "probability": 0.9956 }, { "start": 1298.06, "end": 1302.56, "probability": 0.9884 }, { "start": 1303.9, "end": 1308.08, "probability": 0.9984 }, { "start": 1308.08, "end": 1313.68, "probability": 0.9979 }, { "start": 1315.04, "end": 1321.06, "probability": 0.9977 }, { "start": 1322.08, "end": 1325.38, "probability": 0.9875 }, { "start": 1325.7, "end": 1326.88, "probability": 0.7499 }, { "start": 1327.98, "end": 1328.98, "probability": 0.9261 }, { "start": 1329.5, "end": 1332.28, "probability": 0.9626 }, { "start": 1332.76, "end": 1335.48, "probability": 0.9402 }, { "start": 1336.38, "end": 1337.68, "probability": 0.8371 }, { "start": 1338.26, "end": 1341.36, "probability": 0.9779 }, { "start": 1342.0, "end": 1346.38, "probability": 0.9908 }, { "start": 1347.24, "end": 1349.72, "probability": 0.97 }, { "start": 1350.34, "end": 1355.98, "probability": 0.8824 }, { "start": 1356.42, "end": 1358.52, "probability": 0.9368 }, { "start": 1359.38, "end": 1363.4, "probability": 0.986 }, { "start": 1363.4, "end": 1367.14, "probability": 0.9978 }, { "start": 1367.2, "end": 1367.86, "probability": 0.9501 }, { "start": 1367.94, "end": 1368.34, "probability": 0.5813 }, { "start": 1368.6, "end": 1370.88, "probability": 0.8626 }, { "start": 1377.54, "end": 1379.9, "probability": 0.7408 }, { "start": 1380.06, "end": 1384.66, "probability": 0.9288 }, { "start": 1385.1, "end": 1387.58, "probability": 0.9971 }, { "start": 1388.34, "end": 1389.58, "probability": 0.9632 }, { "start": 1390.62, "end": 1391.98, "probability": 0.5081 }, { "start": 1392.46, "end": 1394.14, "probability": 0.8375 }, { "start": 1394.6, "end": 1395.58, "probability": 0.8361 }, { "start": 1396.28, "end": 1399.89, "probability": 0.9922 }, { "start": 1400.44, "end": 1403.74, "probability": 0.9841 }, { "start": 1404.52, "end": 1405.14, "probability": 0.4523 }, { "start": 1405.2, "end": 1407.64, "probability": 0.2054 }, { "start": 1407.64, "end": 1408.38, "probability": 0.1978 }, { "start": 1408.66, "end": 1411.78, "probability": 0.9736 }, { "start": 1412.1, "end": 1413.86, "probability": 0.9951 }, { "start": 1414.32, "end": 1418.52, "probability": 0.9568 }, { "start": 1419.0, "end": 1419.86, "probability": 0.5273 }, { "start": 1420.62, "end": 1421.7, "probability": 0.8952 }, { "start": 1422.26, "end": 1427.2, "probability": 0.9502 }, { "start": 1427.84, "end": 1430.72, "probability": 0.9602 }, { "start": 1431.0, "end": 1432.94, "probability": 0.9992 }, { "start": 1433.74, "end": 1435.2, "probability": 0.8313 }, { "start": 1435.82, "end": 1436.64, "probability": 0.89 }, { "start": 1437.16, "end": 1438.72, "probability": 0.9393 }, { "start": 1439.28, "end": 1439.7, "probability": 0.6898 }, { "start": 1439.72, "end": 1440.84, "probability": 0.6501 }, { "start": 1440.88, "end": 1444.42, "probability": 0.9453 }, { "start": 1444.84, "end": 1447.1, "probability": 0.986 }, { "start": 1448.0, "end": 1451.42, "probability": 0.7148 }, { "start": 1451.94, "end": 1454.08, "probability": 0.8312 }, { "start": 1454.78, "end": 1456.96, "probability": 0.985 }, { "start": 1457.11, "end": 1459.94, "probability": 0.9932 }, { "start": 1462.08, "end": 1467.84, "probability": 0.9766 }, { "start": 1469.04, "end": 1475.72, "probability": 0.9863 }, { "start": 1476.6, "end": 1481.16, "probability": 0.9856 }, { "start": 1482.18, "end": 1482.56, "probability": 0.3858 }, { "start": 1482.78, "end": 1483.84, "probability": 0.5872 }, { "start": 1483.94, "end": 1488.4, "probability": 0.8276 }, { "start": 1489.12, "end": 1491.3, "probability": 0.9445 }, { "start": 1491.96, "end": 1492.58, "probability": 0.8647 }, { "start": 1493.24, "end": 1495.08, "probability": 0.946 }, { "start": 1495.98, "end": 1498.28, "probability": 0.7568 }, { "start": 1499.08, "end": 1499.96, "probability": 0.9734 }, { "start": 1501.5, "end": 1501.86, "probability": 0.6685 }, { "start": 1502.06, "end": 1503.94, "probability": 0.8949 }, { "start": 1504.1, "end": 1504.78, "probability": 0.7922 }, { "start": 1505.12, "end": 1505.32, "probability": 0.8755 }, { "start": 1505.44, "end": 1505.86, "probability": 0.4905 }, { "start": 1506.3, "end": 1507.4, "probability": 0.9763 }, { "start": 1508.42, "end": 1511.2, "probability": 0.9131 }, { "start": 1511.2, "end": 1511.74, "probability": 0.971 }, { "start": 1511.84, "end": 1513.24, "probability": 0.9559 }, { "start": 1513.76, "end": 1514.72, "probability": 0.8604 }, { "start": 1515.3, "end": 1518.48, "probability": 0.9568 }, { "start": 1519.18, "end": 1519.98, "probability": 0.923 }, { "start": 1520.5, "end": 1522.02, "probability": 0.9084 }, { "start": 1523.18, "end": 1523.3, "probability": 0.8113 }, { "start": 1523.86, "end": 1525.24, "probability": 0.7184 }, { "start": 1525.62, "end": 1526.66, "probability": 0.8085 }, { "start": 1528.16, "end": 1528.36, "probability": 0.4683 }, { "start": 1536.64, "end": 1538.4, "probability": 0.6343 }, { "start": 1539.08, "end": 1542.06, "probability": 0.9392 }, { "start": 1542.2, "end": 1549.1, "probability": 0.9862 }, { "start": 1549.72, "end": 1553.38, "probability": 0.9822 }, { "start": 1554.26, "end": 1557.9, "probability": 0.9583 }, { "start": 1558.34, "end": 1562.54, "probability": 0.9821 }, { "start": 1563.06, "end": 1564.08, "probability": 0.7975 }, { "start": 1565.26, "end": 1568.12, "probability": 0.8445 }, { "start": 1568.12, "end": 1571.06, "probability": 0.9988 }, { "start": 1571.66, "end": 1574.9, "probability": 0.9897 }, { "start": 1575.48, "end": 1577.56, "probability": 0.8087 }, { "start": 1577.7, "end": 1580.48, "probability": 0.9867 }, { "start": 1580.48, "end": 1583.76, "probability": 0.9956 }, { "start": 1584.7, "end": 1588.42, "probability": 0.9816 }, { "start": 1588.42, "end": 1591.64, "probability": 0.9973 }, { "start": 1592.12, "end": 1593.48, "probability": 0.9446 }, { "start": 1593.94, "end": 1598.36, "probability": 0.9971 }, { "start": 1598.82, "end": 1602.74, "probability": 0.9645 }, { "start": 1602.74, "end": 1606.46, "probability": 0.9216 }, { "start": 1606.92, "end": 1608.82, "probability": 0.8237 }, { "start": 1609.46, "end": 1612.52, "probability": 0.9729 }, { "start": 1612.98, "end": 1614.78, "probability": 0.988 }, { "start": 1615.14, "end": 1618.76, "probability": 0.9964 }, { "start": 1618.76, "end": 1622.96, "probability": 0.9995 }, { "start": 1623.66, "end": 1627.28, "probability": 0.9958 }, { "start": 1627.74, "end": 1632.14, "probability": 0.9842 }, { "start": 1632.26, "end": 1633.36, "probability": 0.6765 }, { "start": 1633.64, "end": 1634.6, "probability": 0.9177 }, { "start": 1635.14, "end": 1640.64, "probability": 0.9875 }, { "start": 1641.2, "end": 1644.32, "probability": 0.9486 }, { "start": 1644.82, "end": 1650.28, "probability": 0.9324 }, { "start": 1650.48, "end": 1653.26, "probability": 0.8018 }, { "start": 1653.28, "end": 1654.38, "probability": 0.8666 }, { "start": 1654.78, "end": 1656.68, "probability": 0.977 }, { "start": 1656.8, "end": 1660.74, "probability": 0.9814 }, { "start": 1661.08, "end": 1662.56, "probability": 0.9666 }, { "start": 1662.82, "end": 1663.9, "probability": 0.9316 }, { "start": 1664.24, "end": 1668.66, "probability": 0.9504 }, { "start": 1669.26, "end": 1672.16, "probability": 0.9749 }, { "start": 1672.58, "end": 1675.38, "probability": 0.9944 }, { "start": 1675.5, "end": 1676.0, "probability": 0.537 }, { "start": 1678.28, "end": 1681.28, "probability": 0.9915 }, { "start": 1681.58, "end": 1683.6, "probability": 0.9419 }, { "start": 1684.86, "end": 1687.78, "probability": 0.7317 }, { "start": 1689.76, "end": 1692.92, "probability": 0.299 }, { "start": 1693.16, "end": 1696.26, "probability": 0.8361 }, { "start": 1700.4, "end": 1701.24, "probability": 0.572 }, { "start": 1702.3, "end": 1702.84, "probability": 0.6981 }, { "start": 1703.12, "end": 1706.2, "probability": 0.9547 }, { "start": 1706.34, "end": 1708.12, "probability": 0.8671 }, { "start": 1708.14, "end": 1710.38, "probability": 0.7691 }, { "start": 1711.74, "end": 1715.12, "probability": 0.9302 }, { "start": 1716.06, "end": 1720.12, "probability": 0.8496 }, { "start": 1720.58, "end": 1722.0, "probability": 0.6078 }, { "start": 1722.72, "end": 1724.26, "probability": 0.9111 }, { "start": 1724.74, "end": 1727.76, "probability": 0.9292 }, { "start": 1728.64, "end": 1728.94, "probability": 0.8468 }, { "start": 1729.42, "end": 1730.24, "probability": 0.9379 }, { "start": 1731.28, "end": 1732.0, "probability": 0.9626 }, { "start": 1732.14, "end": 1733.15, "probability": 0.6583 }, { "start": 1733.66, "end": 1734.6, "probability": 0.9438 }, { "start": 1734.98, "end": 1736.58, "probability": 0.5662 }, { "start": 1736.64, "end": 1737.84, "probability": 0.5952 }, { "start": 1738.7, "end": 1739.96, "probability": 0.8344 }, { "start": 1740.64, "end": 1742.79, "probability": 0.9949 }, { "start": 1744.08, "end": 1745.4, "probability": 0.9781 }, { "start": 1748.46, "end": 1750.33, "probability": 0.4996 }, { "start": 1751.88, "end": 1754.48, "probability": 0.6701 }, { "start": 1755.52, "end": 1757.79, "probability": 0.4685 }, { "start": 1758.58, "end": 1762.9, "probability": 0.9222 }, { "start": 1763.82, "end": 1766.2, "probability": 0.9536 }, { "start": 1766.84, "end": 1768.58, "probability": 0.8789 }, { "start": 1768.78, "end": 1769.86, "probability": 0.9878 }, { "start": 1770.68, "end": 1773.64, "probability": 0.9748 }, { "start": 1774.34, "end": 1776.6, "probability": 0.9762 }, { "start": 1777.0, "end": 1778.11, "probability": 0.9907 }, { "start": 1778.62, "end": 1780.88, "probability": 0.9712 }, { "start": 1781.12, "end": 1784.44, "probability": 0.763 }, { "start": 1784.58, "end": 1785.18, "probability": 0.739 }, { "start": 1785.34, "end": 1788.7, "probability": 0.8958 }, { "start": 1789.06, "end": 1790.0, "probability": 0.9067 }, { "start": 1790.54, "end": 1790.92, "probability": 0.1498 }, { "start": 1791.64, "end": 1792.52, "probability": 0.6643 }, { "start": 1792.96, "end": 1793.16, "probability": 0.8183 }, { "start": 1794.12, "end": 1794.6, "probability": 0.7594 }, { "start": 1795.76, "end": 1798.64, "probability": 0.9835 }, { "start": 1799.86, "end": 1800.8, "probability": 0.7285 }, { "start": 1802.24, "end": 1804.44, "probability": 0.8104 }, { "start": 1804.8, "end": 1805.16, "probability": 0.8331 }, { "start": 1805.83, "end": 1807.86, "probability": 0.9402 }, { "start": 1807.96, "end": 1809.08, "probability": 0.8929 }, { "start": 1810.34, "end": 1811.0, "probability": 0.9349 }, { "start": 1811.2, "end": 1814.32, "probability": 0.967 }, { "start": 1814.86, "end": 1816.8, "probability": 0.9748 }, { "start": 1817.08, "end": 1819.16, "probability": 0.6595 }, { "start": 1819.82, "end": 1820.06, "probability": 0.0941 }, { "start": 1820.06, "end": 1820.06, "probability": 0.4125 }, { "start": 1820.06, "end": 1820.06, "probability": 0.3242 }, { "start": 1820.06, "end": 1820.06, "probability": 0.412 }, { "start": 1820.06, "end": 1820.06, "probability": 0.4746 }, { "start": 1820.06, "end": 1820.06, "probability": 0.5006 }, { "start": 1820.06, "end": 1820.06, "probability": 0.517 }, { "start": 1820.06, "end": 1820.06, "probability": 0.522 }, { "start": 1820.06, "end": 1820.06, "probability": 0.4585 }, { "start": 1820.06, "end": 1820.06, "probability": 0.4989 }, { "start": 1820.06, "end": 1820.06, "probability": 0.5587 }, { "start": 1820.06, "end": 1820.06, "probability": 0.0752 }, { "start": 1820.06, "end": 1820.16, "probability": 0.0273 }, { "start": 1820.88, "end": 1823.74, "probability": 0.1571 }, { "start": 1824.39, "end": 1826.4, "probability": 0.0474 }, { "start": 1826.4, "end": 1826.4, "probability": 0.0405 }, { "start": 1826.4, "end": 1827.1, "probability": 0.5854 }, { "start": 1831.15, "end": 1835.18, "probability": 0.8337 }, { "start": 1836.74, "end": 1837.78, "probability": 0.7887 }, { "start": 1852.2, "end": 1853.26, "probability": 0.5341 }, { "start": 1854.96, "end": 1855.82, "probability": 0.8654 }, { "start": 1856.56, "end": 1858.98, "probability": 0.8299 }, { "start": 1859.62, "end": 1861.22, "probability": 0.7709 }, { "start": 1862.74, "end": 1870.96, "probability": 0.9115 }, { "start": 1872.28, "end": 1873.74, "probability": 0.9765 }, { "start": 1873.86, "end": 1878.12, "probability": 0.9766 }, { "start": 1879.6, "end": 1883.84, "probability": 0.9639 }, { "start": 1884.08, "end": 1887.82, "probability": 0.9684 }, { "start": 1888.74, "end": 1892.22, "probability": 0.904 }, { "start": 1893.86, "end": 1895.33, "probability": 0.9572 }, { "start": 1896.1, "end": 1897.04, "probability": 0.7115 }, { "start": 1897.18, "end": 1902.36, "probability": 0.9813 }, { "start": 1903.38, "end": 1910.1, "probability": 0.9966 }, { "start": 1911.22, "end": 1918.5, "probability": 0.9911 }, { "start": 1919.74, "end": 1923.14, "probability": 0.9989 }, { "start": 1925.22, "end": 1929.86, "probability": 0.9924 }, { "start": 1930.9, "end": 1936.98, "probability": 0.9832 }, { "start": 1937.22, "end": 1939.44, "probability": 0.7453 }, { "start": 1939.54, "end": 1941.12, "probability": 0.746 }, { "start": 1942.0, "end": 1944.64, "probability": 0.9384 }, { "start": 1945.08, "end": 1946.04, "probability": 0.6591 }, { "start": 1946.6, "end": 1947.76, "probability": 0.9812 }, { "start": 1947.86, "end": 1949.08, "probability": 0.9891 }, { "start": 1949.2, "end": 1950.31, "probability": 0.9895 }, { "start": 1950.52, "end": 1951.67, "probability": 0.9934 }, { "start": 1952.16, "end": 1953.34, "probability": 0.9961 }, { "start": 1953.52, "end": 1954.54, "probability": 0.7823 }, { "start": 1955.12, "end": 1956.38, "probability": 0.9121 }, { "start": 1957.14, "end": 1958.32, "probability": 0.8685 }, { "start": 1958.42, "end": 1959.8, "probability": 0.936 }, { "start": 1960.34, "end": 1962.5, "probability": 0.9854 }, { "start": 1962.72, "end": 1964.22, "probability": 0.795 }, { "start": 1965.04, "end": 1968.2, "probability": 0.9897 }, { "start": 1969.5, "end": 1971.32, "probability": 0.9539 }, { "start": 1972.38, "end": 1976.46, "probability": 0.9024 }, { "start": 1977.78, "end": 1982.28, "probability": 0.9321 }, { "start": 1983.16, "end": 1983.94, "probability": 0.873 }, { "start": 1984.0, "end": 1987.74, "probability": 0.9436 }, { "start": 1989.44, "end": 1990.7, "probability": 0.8699 }, { "start": 1991.7, "end": 1996.14, "probability": 0.8923 }, { "start": 1997.04, "end": 1998.9, "probability": 0.872 }, { "start": 1999.08, "end": 1999.66, "probability": 0.811 }, { "start": 2000.16, "end": 2000.92, "probability": 0.7559 }, { "start": 2001.96, "end": 2002.64, "probability": 0.981 }, { "start": 2003.06, "end": 2004.0, "probability": 0.7351 }, { "start": 2004.64, "end": 2007.82, "probability": 0.9802 }, { "start": 2008.74, "end": 2014.26, "probability": 0.9706 }, { "start": 2014.72, "end": 2017.66, "probability": 0.9963 }, { "start": 2017.66, "end": 2020.52, "probability": 0.939 }, { "start": 2021.32, "end": 2023.14, "probability": 0.9988 }, { "start": 2023.26, "end": 2023.6, "probability": 0.8855 }, { "start": 2023.72, "end": 2024.16, "probability": 0.8457 }, { "start": 2024.58, "end": 2025.53, "probability": 0.9507 }, { "start": 2025.66, "end": 2028.2, "probability": 0.9875 }, { "start": 2028.9, "end": 2030.16, "probability": 0.9953 }, { "start": 2031.0, "end": 2031.56, "probability": 0.9384 }, { "start": 2031.6, "end": 2031.88, "probability": 0.8178 }, { "start": 2032.08, "end": 2032.66, "probability": 0.8308 }, { "start": 2033.26, "end": 2034.52, "probability": 0.9976 }, { "start": 2034.54, "end": 2035.9, "probability": 0.9543 }, { "start": 2037.36, "end": 2043.32, "probability": 0.8801 }, { "start": 2044.06, "end": 2049.36, "probability": 0.9788 }, { "start": 2050.08, "end": 2056.14, "probability": 0.8907 }, { "start": 2056.76, "end": 2058.15, "probability": 0.8748 }, { "start": 2058.5, "end": 2060.88, "probability": 0.9978 }, { "start": 2061.4, "end": 2063.04, "probability": 0.9742 }, { "start": 2063.58, "end": 2065.62, "probability": 0.8691 }, { "start": 2066.51, "end": 2070.42, "probability": 0.9893 }, { "start": 2070.48, "end": 2071.36, "probability": 0.914 }, { "start": 2071.74, "end": 2072.66, "probability": 0.9492 }, { "start": 2073.2, "end": 2074.56, "probability": 0.9927 }, { "start": 2074.94, "end": 2076.8, "probability": 0.9551 }, { "start": 2077.26, "end": 2080.18, "probability": 0.9847 }, { "start": 2080.82, "end": 2083.0, "probability": 0.9967 }, { "start": 2083.16, "end": 2084.74, "probability": 0.9897 }, { "start": 2085.24, "end": 2087.98, "probability": 0.9947 }, { "start": 2088.02, "end": 2090.04, "probability": 0.9983 }, { "start": 2090.5, "end": 2091.3, "probability": 0.4805 }, { "start": 2091.68, "end": 2094.06, "probability": 0.8508 }, { "start": 2094.34, "end": 2095.7, "probability": 0.9403 }, { "start": 2096.48, "end": 2098.92, "probability": 0.9971 }, { "start": 2099.5, "end": 2100.06, "probability": 0.6724 }, { "start": 2100.48, "end": 2102.48, "probability": 0.9675 }, { "start": 2102.72, "end": 2105.5, "probability": 0.9585 }, { "start": 2105.54, "end": 2106.52, "probability": 0.9575 }, { "start": 2106.64, "end": 2108.08, "probability": 0.9876 }, { "start": 2108.22, "end": 2109.12, "probability": 0.9683 }, { "start": 2110.04, "end": 2111.94, "probability": 0.9945 }, { "start": 2112.54, "end": 2113.24, "probability": 0.9259 }, { "start": 2114.12, "end": 2117.34, "probability": 0.9576 }, { "start": 2118.34, "end": 2118.86, "probability": 0.3498 }, { "start": 2119.46, "end": 2122.38, "probability": 0.9785 }, { "start": 2123.3, "end": 2126.32, "probability": 0.7681 }, { "start": 2126.38, "end": 2130.8, "probability": 0.9717 }, { "start": 2130.8, "end": 2136.8, "probability": 0.9707 }, { "start": 2137.02, "end": 2138.86, "probability": 0.8823 }, { "start": 2139.26, "end": 2140.12, "probability": 0.9653 }, { "start": 2140.6, "end": 2142.42, "probability": 0.9953 }, { "start": 2142.78, "end": 2144.66, "probability": 0.9891 }, { "start": 2145.18, "end": 2145.69, "probability": 0.9307 }, { "start": 2146.0, "end": 2146.96, "probability": 0.7977 }, { "start": 2147.28, "end": 2148.64, "probability": 0.9927 }, { "start": 2149.1, "end": 2151.72, "probability": 0.7152 }, { "start": 2151.86, "end": 2156.32, "probability": 0.9846 }, { "start": 2156.5, "end": 2159.66, "probability": 0.9853 }, { "start": 2160.98, "end": 2161.54, "probability": 0.7248 }, { "start": 2163.34, "end": 2165.1, "probability": 0.8342 }, { "start": 2172.8, "end": 2172.84, "probability": 0.0623 }, { "start": 2173.36, "end": 2173.46, "probability": 0.4219 }, { "start": 2197.18, "end": 2198.14, "probability": 0.6715 }, { "start": 2201.26, "end": 2201.64, "probability": 0.9043 }, { "start": 2203.16, "end": 2204.08, "probability": 0.6499 }, { "start": 2207.4, "end": 2209.14, "probability": 0.7755 }, { "start": 2211.3, "end": 2211.89, "probability": 0.9313 }, { "start": 2213.9, "end": 2217.88, "probability": 0.9719 }, { "start": 2219.14, "end": 2222.04, "probability": 0.9927 }, { "start": 2222.74, "end": 2228.68, "probability": 0.8987 }, { "start": 2229.46, "end": 2230.21, "probability": 0.8878 }, { "start": 2231.58, "end": 2233.5, "probability": 0.9849 }, { "start": 2235.1, "end": 2238.64, "probability": 0.9889 }, { "start": 2239.88, "end": 2240.34, "probability": 0.8559 }, { "start": 2241.6, "end": 2244.16, "probability": 0.9941 }, { "start": 2244.7, "end": 2245.74, "probability": 0.5095 }, { "start": 2246.66, "end": 2250.48, "probability": 0.9779 }, { "start": 2252.38, "end": 2252.68, "probability": 0.9279 }, { "start": 2253.9, "end": 2255.6, "probability": 0.9906 }, { "start": 2257.2, "end": 2258.78, "probability": 0.9932 }, { "start": 2259.98, "end": 2261.0, "probability": 0.9898 }, { "start": 2262.9, "end": 2265.26, "probability": 0.9968 }, { "start": 2266.3, "end": 2269.7, "probability": 0.9675 }, { "start": 2271.24, "end": 2272.8, "probability": 0.9956 }, { "start": 2275.16, "end": 2275.62, "probability": 0.8435 }, { "start": 2276.84, "end": 2280.98, "probability": 0.9944 }, { "start": 2283.38, "end": 2283.84, "probability": 0.8462 }, { "start": 2285.22, "end": 2285.76, "probability": 0.7777 }, { "start": 2286.52, "end": 2288.0, "probability": 0.9291 }, { "start": 2288.74, "end": 2291.24, "probability": 0.9942 }, { "start": 2292.08, "end": 2293.72, "probability": 0.7761 }, { "start": 2294.88, "end": 2295.22, "probability": 0.807 }, { "start": 2296.96, "end": 2298.82, "probability": 0.997 }, { "start": 2299.82, "end": 2304.0, "probability": 0.9694 }, { "start": 2304.3, "end": 2304.92, "probability": 0.4985 }, { "start": 2306.36, "end": 2308.96, "probability": 0.9983 }, { "start": 2309.84, "end": 2310.87, "probability": 0.9893 }, { "start": 2313.96, "end": 2317.02, "probability": 0.9975 }, { "start": 2318.48, "end": 2319.06, "probability": 0.8868 }, { "start": 2320.9, "end": 2321.86, "probability": 0.8755 }, { "start": 2322.92, "end": 2326.98, "probability": 0.9769 }, { "start": 2326.98, "end": 2331.78, "probability": 0.996 }, { "start": 2334.6, "end": 2336.94, "probability": 0.9957 }, { "start": 2340.06, "end": 2343.1, "probability": 0.9985 }, { "start": 2344.84, "end": 2347.56, "probability": 0.963 }, { "start": 2347.78, "end": 2350.36, "probability": 0.6262 }, { "start": 2351.06, "end": 2357.6, "probability": 0.995 }, { "start": 2358.68, "end": 2359.54, "probability": 0.7657 }, { "start": 2360.5, "end": 2361.7, "probability": 0.8899 }, { "start": 2364.7, "end": 2367.0, "probability": 0.9922 }, { "start": 2368.36, "end": 2370.68, "probability": 0.9114 }, { "start": 2373.02, "end": 2374.42, "probability": 0.8732 }, { "start": 2375.54, "end": 2379.78, "probability": 0.9995 }, { "start": 2380.92, "end": 2382.5, "probability": 0.9421 }, { "start": 2383.48, "end": 2383.6, "probability": 0.5868 }, { "start": 2384.52, "end": 2386.46, "probability": 0.9644 }, { "start": 2387.72, "end": 2391.06, "probability": 0.9897 }, { "start": 2393.38, "end": 2395.34, "probability": 0.9805 }, { "start": 2396.0, "end": 2398.32, "probability": 0.9376 }, { "start": 2398.88, "end": 2403.34, "probability": 0.9821 }, { "start": 2404.04, "end": 2406.66, "probability": 0.9802 }, { "start": 2406.96, "end": 2408.78, "probability": 0.9954 }, { "start": 2409.56, "end": 2412.74, "probability": 0.9933 }, { "start": 2412.74, "end": 2415.86, "probability": 0.9989 }, { "start": 2416.88, "end": 2418.86, "probability": 0.8864 }, { "start": 2419.44, "end": 2421.58, "probability": 0.9851 }, { "start": 2423.04, "end": 2427.48, "probability": 0.9723 }, { "start": 2427.7, "end": 2430.04, "probability": 0.9937 }, { "start": 2430.56, "end": 2434.78, "probability": 0.778 }, { "start": 2435.36, "end": 2439.38, "probability": 0.9582 }, { "start": 2442.26, "end": 2445.2, "probability": 0.9863 }, { "start": 2446.66, "end": 2451.48, "probability": 0.9348 }, { "start": 2451.56, "end": 2460.02, "probability": 0.996 }, { "start": 2460.64, "end": 2461.56, "probability": 0.9705 }, { "start": 2463.28, "end": 2464.02, "probability": 0.8963 }, { "start": 2466.52, "end": 2468.32, "probability": 0.9978 }, { "start": 2470.0, "end": 2470.49, "probability": 0.5933 }, { "start": 2473.2, "end": 2474.08, "probability": 0.9392 }, { "start": 2475.48, "end": 2476.98, "probability": 0.9893 }, { "start": 2477.66, "end": 2480.38, "probability": 0.9741 }, { "start": 2480.46, "end": 2484.78, "probability": 0.6498 }, { "start": 2484.84, "end": 2487.2, "probability": 0.9761 }, { "start": 2488.72, "end": 2492.4, "probability": 0.9733 }, { "start": 2492.58, "end": 2494.0, "probability": 0.8443 }, { "start": 2494.16, "end": 2499.04, "probability": 0.9958 }, { "start": 2501.02, "end": 2505.6, "probability": 0.9854 }, { "start": 2507.04, "end": 2507.6, "probability": 0.4097 }, { "start": 2510.18, "end": 2510.72, "probability": 0.7268 }, { "start": 2510.88, "end": 2511.88, "probability": 0.9763 }, { "start": 2511.92, "end": 2512.74, "probability": 0.9467 }, { "start": 2512.8, "end": 2513.68, "probability": 0.9805 }, { "start": 2513.78, "end": 2514.68, "probability": 0.874 }, { "start": 2515.78, "end": 2520.04, "probability": 0.9903 }, { "start": 2520.56, "end": 2521.34, "probability": 0.6858 }, { "start": 2521.46, "end": 2523.2, "probability": 0.8576 }, { "start": 2523.34, "end": 2523.68, "probability": 0.6606 }, { "start": 2524.9, "end": 2526.4, "probability": 0.8988 }, { "start": 2526.52, "end": 2526.88, "probability": 0.3759 }, { "start": 2527.6, "end": 2528.1, "probability": 0.9847 }, { "start": 2529.22, "end": 2530.1, "probability": 0.7944 }, { "start": 2530.86, "end": 2532.3, "probability": 0.9633 }, { "start": 2534.82, "end": 2537.8, "probability": 0.9775 }, { "start": 2538.08, "end": 2538.84, "probability": 0.8382 }, { "start": 2538.98, "end": 2540.5, "probability": 0.903 }, { "start": 2541.4, "end": 2541.66, "probability": 0.3547 }, { "start": 2541.76, "end": 2542.82, "probability": 0.9673 }, { "start": 2543.02, "end": 2545.82, "probability": 0.9959 }, { "start": 2545.82, "end": 2549.46, "probability": 0.9787 }, { "start": 2550.54, "end": 2554.82, "probability": 0.9951 }, { "start": 2555.64, "end": 2560.9, "probability": 0.9961 }, { "start": 2562.28, "end": 2565.18, "probability": 0.9937 }, { "start": 2565.66, "end": 2566.36, "probability": 0.9572 }, { "start": 2567.2, "end": 2571.34, "probability": 0.9849 }, { "start": 2572.8, "end": 2574.55, "probability": 0.6984 }, { "start": 2575.32, "end": 2575.98, "probability": 0.8382 }, { "start": 2576.5, "end": 2577.22, "probability": 0.7019 }, { "start": 2578.36, "end": 2581.39, "probability": 0.9476 }, { "start": 2581.64, "end": 2581.64, "probability": 0.8176 }, { "start": 2582.06, "end": 2582.12, "probability": 0.9163 }, { "start": 2582.44, "end": 2583.04, "probability": 0.9609 }, { "start": 2583.34, "end": 2583.5, "probability": 0.9558 }, { "start": 2583.92, "end": 2584.14, "probability": 0.9451 }, { "start": 2584.16, "end": 2584.66, "probability": 0.9841 }, { "start": 2584.68, "end": 2589.2, "probability": 0.9334 }, { "start": 2590.08, "end": 2594.28, "probability": 0.982 }, { "start": 2594.88, "end": 2597.74, "probability": 0.9788 }, { "start": 2598.42, "end": 2601.7, "probability": 0.9969 }, { "start": 2601.7, "end": 2606.0, "probability": 0.9956 }, { "start": 2608.3, "end": 2609.5, "probability": 0.9182 }, { "start": 2611.2, "end": 2612.5, "probability": 0.9889 }, { "start": 2613.84, "end": 2614.7, "probability": 0.9019 }, { "start": 2615.54, "end": 2616.2, "probability": 0.9028 }, { "start": 2617.42, "end": 2618.28, "probability": 0.9979 }, { "start": 2619.24, "end": 2619.68, "probability": 0.9732 }, { "start": 2622.52, "end": 2622.9, "probability": 0.9517 }, { "start": 2623.8, "end": 2624.9, "probability": 0.9758 }, { "start": 2626.36, "end": 2628.84, "probability": 0.9937 }, { "start": 2630.04, "end": 2630.56, "probability": 0.9422 }, { "start": 2632.12, "end": 2633.56, "probability": 0.8937 }, { "start": 2634.96, "end": 2636.84, "probability": 0.7964 }, { "start": 2638.18, "end": 2639.5, "probability": 0.9865 }, { "start": 2640.62, "end": 2641.18, "probability": 0.9976 }, { "start": 2641.94, "end": 2642.57, "probability": 0.928 }, { "start": 2644.9, "end": 2649.06, "probability": 0.9782 }, { "start": 2649.84, "end": 2651.86, "probability": 0.993 }, { "start": 2653.04, "end": 2656.24, "probability": 0.9558 }, { "start": 2657.64, "end": 2662.34, "probability": 0.9821 }, { "start": 2664.5, "end": 2667.62, "probability": 0.7942 }, { "start": 2668.5, "end": 2674.64, "probability": 0.9902 }, { "start": 2675.94, "end": 2676.48, "probability": 0.9148 }, { "start": 2678.14, "end": 2678.9, "probability": 0.7787 }, { "start": 2680.1, "end": 2681.12, "probability": 0.9835 }, { "start": 2681.76, "end": 2683.8, "probability": 0.8496 }, { "start": 2684.8, "end": 2687.76, "probability": 0.9893 }, { "start": 2689.06, "end": 2691.72, "probability": 0.9983 }, { "start": 2692.68, "end": 2694.94, "probability": 0.9978 }, { "start": 2696.24, "end": 2697.64, "probability": 0.9217 }, { "start": 2698.1, "end": 2700.96, "probability": 0.9591 }, { "start": 2704.06, "end": 2705.36, "probability": 0.9782 }, { "start": 2706.42, "end": 2706.88, "probability": 0.9601 }, { "start": 2707.02, "end": 2711.18, "probability": 0.9801 }, { "start": 2711.18, "end": 2714.36, "probability": 0.9917 }, { "start": 2714.36, "end": 2718.76, "probability": 0.9978 }, { "start": 2719.28, "end": 2723.42, "probability": 0.9566 }, { "start": 2723.94, "end": 2727.36, "probability": 0.9871 }, { "start": 2727.52, "end": 2728.14, "probability": 0.9041 }, { "start": 2728.32, "end": 2730.54, "probability": 0.9551 }, { "start": 2731.2, "end": 2736.62, "probability": 0.9968 }, { "start": 2736.8, "end": 2737.28, "probability": 0.7421 }, { "start": 2737.52, "end": 2739.38, "probability": 0.9341 }, { "start": 2739.48, "end": 2741.0, "probability": 0.8715 }, { "start": 2741.26, "end": 2742.32, "probability": 0.9628 }, { "start": 2742.44, "end": 2742.94, "probability": 0.702 }, { "start": 2743.66, "end": 2744.5, "probability": 0.9875 }, { "start": 2745.36, "end": 2746.15, "probability": 0.9951 }, { "start": 2747.2, "end": 2748.74, "probability": 0.9973 }, { "start": 2750.38, "end": 2752.86, "probability": 0.9981 }, { "start": 2753.14, "end": 2753.7, "probability": 0.5949 }, { "start": 2753.78, "end": 2755.1, "probability": 0.9794 }, { "start": 2755.2, "end": 2756.2, "probability": 0.9742 }, { "start": 2756.54, "end": 2758.86, "probability": 0.9651 }, { "start": 2759.96, "end": 2759.98, "probability": 0.9561 }, { "start": 2760.64, "end": 2762.78, "probability": 0.8323 }, { "start": 2764.34, "end": 2765.7, "probability": 0.9842 }, { "start": 2768.58, "end": 2769.28, "probability": 0.9922 }, { "start": 2770.1, "end": 2771.16, "probability": 0.9357 }, { "start": 2771.34, "end": 2771.44, "probability": 0.4256 }, { "start": 2773.94, "end": 2775.3, "probability": 0.9275 }, { "start": 2797.9, "end": 2800.74, "probability": 0.7573 }, { "start": 2802.3, "end": 2803.88, "probability": 0.9073 }, { "start": 2805.78, "end": 2810.48, "probability": 0.7638 }, { "start": 2811.4, "end": 2812.4, "probability": 0.8966 }, { "start": 2813.32, "end": 2816.9, "probability": 0.9899 }, { "start": 2817.7, "end": 2820.52, "probability": 0.8286 }, { "start": 2821.16, "end": 2822.74, "probability": 0.9875 }, { "start": 2823.76, "end": 2827.84, "probability": 0.9835 }, { "start": 2829.2, "end": 2830.7, "probability": 0.9963 }, { "start": 2831.84, "end": 2832.76, "probability": 0.9058 }, { "start": 2833.9, "end": 2838.72, "probability": 0.9979 }, { "start": 2841.64, "end": 2845.36, "probability": 0.9962 }, { "start": 2846.14, "end": 2849.04, "probability": 0.6435 }, { "start": 2850.24, "end": 2853.84, "probability": 0.9985 }, { "start": 2854.6, "end": 2856.22, "probability": 0.9988 }, { "start": 2856.98, "end": 2857.66, "probability": 0.7471 }, { "start": 2858.62, "end": 2862.92, "probability": 0.9732 }, { "start": 2862.92, "end": 2869.86, "probability": 0.998 }, { "start": 2870.28, "end": 2870.72, "probability": 0.4002 }, { "start": 2871.4, "end": 2873.6, "probability": 0.9002 }, { "start": 2877.9, "end": 2885.84, "probability": 0.998 }, { "start": 2886.48, "end": 2887.64, "probability": 0.9993 }, { "start": 2889.02, "end": 2890.52, "probability": 0.9661 }, { "start": 2892.36, "end": 2893.94, "probability": 0.9988 }, { "start": 2894.02, "end": 2894.64, "probability": 0.984 }, { "start": 2894.68, "end": 2896.06, "probability": 0.9099 }, { "start": 2897.12, "end": 2897.88, "probability": 0.7102 }, { "start": 2901.74, "end": 2905.38, "probability": 0.7649 }, { "start": 2906.2, "end": 2907.22, "probability": 0.5785 }, { "start": 2907.32, "end": 2907.96, "probability": 0.8913 }, { "start": 2908.62, "end": 2910.86, "probability": 0.993 }, { "start": 2911.07, "end": 2913.46, "probability": 0.9976 }, { "start": 2914.44, "end": 2914.72, "probability": 0.5565 }, { "start": 2914.76, "end": 2916.36, "probability": 0.666 }, { "start": 2916.48, "end": 2918.02, "probability": 0.9175 }, { "start": 2919.32, "end": 2920.12, "probability": 0.9774 }, { "start": 2921.28, "end": 2923.06, "probability": 0.9889 }, { "start": 2923.14, "end": 2925.59, "probability": 0.9143 }, { "start": 2926.18, "end": 2927.7, "probability": 0.9722 }, { "start": 2928.98, "end": 2931.62, "probability": 0.9921 }, { "start": 2932.62, "end": 2935.5, "probability": 0.8286 }, { "start": 2936.54, "end": 2938.9, "probability": 0.9004 }, { "start": 2940.46, "end": 2941.28, "probability": 0.8677 }, { "start": 2941.96, "end": 2943.34, "probability": 0.7855 }, { "start": 2944.74, "end": 2944.84, "probability": 0.6557 }, { "start": 2944.84, "end": 2946.44, "probability": 0.9871 }, { "start": 2946.62, "end": 2948.0, "probability": 0.8815 }, { "start": 2948.2, "end": 2949.37, "probability": 0.7989 }, { "start": 2949.48, "end": 2951.44, "probability": 0.8641 }, { "start": 2952.74, "end": 2957.86, "probability": 0.8711 }, { "start": 2957.86, "end": 2958.98, "probability": 0.5123 }, { "start": 2959.02, "end": 2961.88, "probability": 0.8887 }, { "start": 2962.88, "end": 2963.9, "probability": 0.6766 }, { "start": 2965.08, "end": 2971.24, "probability": 0.9799 }, { "start": 2971.54, "end": 2972.78, "probability": 0.6938 }, { "start": 2973.32, "end": 2976.88, "probability": 0.9621 }, { "start": 2978.5, "end": 2978.96, "probability": 0.8956 }, { "start": 2979.28, "end": 2981.0, "probability": 0.6295 }, { "start": 2981.34, "end": 2982.84, "probability": 0.4877 }, { "start": 2983.3, "end": 2984.32, "probability": 0.9649 }, { "start": 2984.78, "end": 2988.13, "probability": 0.9316 }, { "start": 2988.96, "end": 2992.46, "probability": 0.9854 }, { "start": 2993.26, "end": 2993.78, "probability": 0.4394 }, { "start": 2993.82, "end": 2995.72, "probability": 0.9338 }, { "start": 2995.78, "end": 2996.76, "probability": 0.7522 }, { "start": 2997.62, "end": 3000.42, "probability": 0.629 }, { "start": 3000.5, "end": 3001.54, "probability": 0.9207 }, { "start": 3001.92, "end": 3004.02, "probability": 0.9744 }, { "start": 3004.38, "end": 3006.68, "probability": 0.7339 }, { "start": 3006.98, "end": 3008.88, "probability": 0.5087 }, { "start": 3009.58, "end": 3012.1, "probability": 0.9325 }, { "start": 3012.6, "end": 3014.6, "probability": 0.9186 }, { "start": 3015.1, "end": 3015.52, "probability": 0.2159 }, { "start": 3015.68, "end": 3016.38, "probability": 0.6019 }, { "start": 3016.9, "end": 3018.72, "probability": 0.7637 }, { "start": 3022.08, "end": 3023.62, "probability": 0.743 }, { "start": 3023.7, "end": 3026.14, "probability": 0.2662 }, { "start": 3027.0, "end": 3029.06, "probability": 0.5144 }, { "start": 3029.66, "end": 3031.4, "probability": 0.6311 }, { "start": 3032.71, "end": 3037.08, "probability": 0.7513 }, { "start": 3037.18, "end": 3039.3, "probability": 0.389 }, { "start": 3039.34, "end": 3040.58, "probability": 0.8445 }, { "start": 3040.62, "end": 3043.44, "probability": 0.9435 }, { "start": 3044.22, "end": 3045.96, "probability": 0.8226 }, { "start": 3046.1, "end": 3050.3, "probability": 0.992 }, { "start": 3051.0, "end": 3051.56, "probability": 0.2821 }, { "start": 3051.64, "end": 3051.74, "probability": 0.0672 }, { "start": 3051.74, "end": 3051.74, "probability": 0.3992 }, { "start": 3051.74, "end": 3055.28, "probability": 0.9883 }, { "start": 3055.28, "end": 3058.24, "probability": 0.8887 }, { "start": 3058.24, "end": 3061.94, "probability": 0.9797 }, { "start": 3062.04, "end": 3062.7, "probability": 0.8796 }, { "start": 3063.64, "end": 3065.56, "probability": 0.996 }, { "start": 3066.26, "end": 3070.1, "probability": 0.8892 }, { "start": 3070.16, "end": 3071.64, "probability": 0.9888 }, { "start": 3072.48, "end": 3073.98, "probability": 0.8473 }, { "start": 3075.02, "end": 3077.08, "probability": 0.6566 }, { "start": 3077.32, "end": 3078.52, "probability": 0.6936 }, { "start": 3079.16, "end": 3081.24, "probability": 0.732 }, { "start": 3081.56, "end": 3084.16, "probability": 0.4863 }, { "start": 3084.88, "end": 3085.34, "probability": 0.3234 }, { "start": 3085.54, "end": 3086.56, "probability": 0.8185 }, { "start": 3086.58, "end": 3087.64, "probability": 0.8453 }, { "start": 3087.76, "end": 3091.94, "probability": 0.738 }, { "start": 3092.0, "end": 3095.3, "probability": 0.8334 }, { "start": 3095.84, "end": 3097.12, "probability": 0.9976 }, { "start": 3097.82, "end": 3098.94, "probability": 0.7837 }, { "start": 3099.12, "end": 3101.78, "probability": 0.9763 }, { "start": 3102.56, "end": 3105.38, "probability": 0.9596 }, { "start": 3106.12, "end": 3112.42, "probability": 0.8947 }, { "start": 3112.6, "end": 3116.06, "probability": 0.9901 }, { "start": 3116.14, "end": 3116.7, "probability": 0.9368 }, { "start": 3117.38, "end": 3118.54, "probability": 0.868 }, { "start": 3119.44, "end": 3122.9, "probability": 0.8044 }, { "start": 3123.42, "end": 3126.12, "probability": 0.9167 }, { "start": 3126.74, "end": 3128.6, "probability": 0.659 }, { "start": 3129.4, "end": 3130.04, "probability": 0.9466 }, { "start": 3130.62, "end": 3133.42, "probability": 0.9561 }, { "start": 3134.56, "end": 3136.26, "probability": 0.9263 }, { "start": 3136.74, "end": 3137.58, "probability": 0.6651 }, { "start": 3137.66, "end": 3138.56, "probability": 0.4344 }, { "start": 3139.1, "end": 3142.94, "probability": 0.78 }, { "start": 3144.1, "end": 3145.36, "probability": 0.8113 }, { "start": 3145.72, "end": 3148.48, "probability": 0.9449 }, { "start": 3148.62, "end": 3150.26, "probability": 0.9521 }, { "start": 3150.44, "end": 3154.64, "probability": 0.8316 }, { "start": 3154.92, "end": 3157.9, "probability": 0.9624 }, { "start": 3158.28, "end": 3158.98, "probability": 0.6397 }, { "start": 3159.28, "end": 3160.74, "probability": 0.7255 }, { "start": 3161.02, "end": 3161.34, "probability": 0.9548 }, { "start": 3162.16, "end": 3163.98, "probability": 0.9873 }, { "start": 3165.34, "end": 3166.26, "probability": 0.7897 }, { "start": 3166.78, "end": 3171.02, "probability": 0.936 }, { "start": 3171.44, "end": 3173.2, "probability": 0.9903 }, { "start": 3173.34, "end": 3174.92, "probability": 0.9893 }, { "start": 3175.76, "end": 3179.78, "probability": 0.9335 }, { "start": 3180.42, "end": 3184.48, "probability": 0.9963 }, { "start": 3185.76, "end": 3191.3, "probability": 0.998 }, { "start": 3192.36, "end": 3195.52, "probability": 0.7896 }, { "start": 3195.74, "end": 3196.92, "probability": 0.7761 }, { "start": 3197.14, "end": 3197.92, "probability": 0.7819 }, { "start": 3198.62, "end": 3200.26, "probability": 0.9971 }, { "start": 3200.7, "end": 3201.99, "probability": 0.9688 }, { "start": 3202.46, "end": 3203.76, "probability": 0.7506 }, { "start": 3204.4, "end": 3207.74, "probability": 0.9929 }, { "start": 3208.22, "end": 3209.26, "probability": 0.9903 }, { "start": 3209.68, "end": 3210.72, "probability": 0.8176 }, { "start": 3210.84, "end": 3211.46, "probability": 0.9017 }, { "start": 3212.16, "end": 3213.26, "probability": 0.9529 }, { "start": 3213.72, "end": 3216.16, "probability": 0.9924 }, { "start": 3216.52, "end": 3216.52, "probability": 0.5638 }, { "start": 3216.74, "end": 3218.0, "probability": 0.8389 }, { "start": 3219.5, "end": 3221.66, "probability": 0.8928 }, { "start": 3222.26, "end": 3227.42, "probability": 0.9766 }, { "start": 3227.52, "end": 3229.76, "probability": 0.7992 }, { "start": 3230.22, "end": 3230.92, "probability": 0.9827 }, { "start": 3231.68, "end": 3233.28, "probability": 0.9474 }, { "start": 3233.62, "end": 3234.84, "probability": 0.7724 }, { "start": 3235.18, "end": 3235.8, "probability": 0.7952 }, { "start": 3236.58, "end": 3237.2, "probability": 0.4725 }, { "start": 3237.24, "end": 3240.7, "probability": 0.8589 }, { "start": 3241.32, "end": 3244.37, "probability": 0.9923 }, { "start": 3245.32, "end": 3247.64, "probability": 0.9928 }, { "start": 3247.73, "end": 3248.54, "probability": 0.4019 }, { "start": 3249.06, "end": 3251.52, "probability": 0.9864 }, { "start": 3251.62, "end": 3252.98, "probability": 0.9954 }, { "start": 3254.94, "end": 3257.5, "probability": 0.9858 }, { "start": 3258.64, "end": 3262.36, "probability": 0.9899 }, { "start": 3262.8, "end": 3268.12, "probability": 0.9537 }, { "start": 3268.26, "end": 3268.86, "probability": 0.6721 }, { "start": 3269.96, "end": 3270.84, "probability": 0.9706 }, { "start": 3271.86, "end": 3275.62, "probability": 0.9833 }, { "start": 3276.66, "end": 3279.88, "probability": 0.8352 }, { "start": 3280.44, "end": 3283.86, "probability": 0.9805 }, { "start": 3284.36, "end": 3285.68, "probability": 0.8265 }, { "start": 3286.5, "end": 3288.1, "probability": 0.967 }, { "start": 3289.6, "end": 3293.7, "probability": 0.9853 }, { "start": 3293.7, "end": 3296.64, "probability": 0.9895 }, { "start": 3297.12, "end": 3299.92, "probability": 0.8985 }, { "start": 3300.68, "end": 3303.18, "probability": 0.9958 }, { "start": 3303.34, "end": 3306.66, "probability": 0.5098 }, { "start": 3307.06, "end": 3308.18, "probability": 0.9922 }, { "start": 3308.92, "end": 3308.92, "probability": 0.5091 }, { "start": 3308.94, "end": 3311.25, "probability": 0.9947 }, { "start": 3311.74, "end": 3313.82, "probability": 0.9804 }, { "start": 3313.92, "end": 3317.08, "probability": 0.9958 }, { "start": 3317.54, "end": 3317.62, "probability": 0.0904 }, { "start": 3317.62, "end": 3320.72, "probability": 0.6843 }, { "start": 3327.04, "end": 3327.78, "probability": 0.3698 }, { "start": 3331.52, "end": 3337.62, "probability": 0.7428 }, { "start": 3339.38, "end": 3341.48, "probability": 0.8114 }, { "start": 3342.4, "end": 3346.18, "probability": 0.0353 }, { "start": 3346.9, "end": 3347.26, "probability": 0.2989 }, { "start": 3347.26, "end": 3347.74, "probability": 0.2271 }, { "start": 3384.46, "end": 3385.6, "probability": 0.3463 }, { "start": 3390.08, "end": 3390.74, "probability": 0.7511 }, { "start": 3392.76, "end": 3395.0, "probability": 0.9936 }, { "start": 3396.04, "end": 3397.42, "probability": 0.9883 }, { "start": 3398.84, "end": 3403.01, "probability": 0.9663 }, { "start": 3404.1, "end": 3404.12, "probability": 0.6504 }, { "start": 3404.12, "end": 3404.6, "probability": 0.8536 }, { "start": 3404.66, "end": 3405.92, "probability": 0.9716 }, { "start": 3405.98, "end": 3406.88, "probability": 0.9883 }, { "start": 3408.52, "end": 3410.44, "probability": 0.8333 }, { "start": 3410.78, "end": 3413.16, "probability": 0.9895 }, { "start": 3414.12, "end": 3416.78, "probability": 0.9878 }, { "start": 3418.16, "end": 3418.88, "probability": 0.9755 }, { "start": 3419.44, "end": 3420.42, "probability": 0.9202 }, { "start": 3421.54, "end": 3423.06, "probability": 0.8352 }, { "start": 3423.6, "end": 3426.2, "probability": 0.9811 }, { "start": 3427.08, "end": 3429.88, "probability": 0.9937 }, { "start": 3430.9, "end": 3431.72, "probability": 0.9927 }, { "start": 3432.4, "end": 3433.88, "probability": 0.9954 }, { "start": 3435.28, "end": 3436.44, "probability": 0.9862 }, { "start": 3437.06, "end": 3439.14, "probability": 0.9938 }, { "start": 3439.3, "end": 3440.1, "probability": 0.731 }, { "start": 3440.22, "end": 3440.94, "probability": 0.3589 }, { "start": 3441.4, "end": 3443.02, "probability": 0.9775 }, { "start": 3443.18, "end": 3444.26, "probability": 0.9071 }, { "start": 3445.44, "end": 3448.36, "probability": 0.9946 }, { "start": 3448.78, "end": 3450.56, "probability": 0.9912 }, { "start": 3450.64, "end": 3452.06, "probability": 0.9846 }, { "start": 3452.42, "end": 3452.56, "probability": 0.9956 }, { "start": 3453.12, "end": 3454.88, "probability": 0.9993 }, { "start": 3457.02, "end": 3458.34, "probability": 0.9247 }, { "start": 3459.42, "end": 3461.51, "probability": 0.9969 }, { "start": 3462.54, "end": 3463.64, "probability": 0.9973 }, { "start": 3463.76, "end": 3464.94, "probability": 0.9889 }, { "start": 3465.2, "end": 3467.34, "probability": 0.9973 }, { "start": 3467.86, "end": 3468.66, "probability": 0.9226 }, { "start": 3470.14, "end": 3470.68, "probability": 0.9959 }, { "start": 3472.1, "end": 3472.52, "probability": 0.8539 }, { "start": 3473.06, "end": 3473.38, "probability": 0.972 }, { "start": 3475.76, "end": 3479.32, "probability": 0.9957 }, { "start": 3479.92, "end": 3483.1, "probability": 0.9658 }, { "start": 3484.3, "end": 3485.76, "probability": 0.4998 }, { "start": 3486.9, "end": 3489.14, "probability": 0.7833 }, { "start": 3489.5, "end": 3492.24, "probability": 0.9604 }, { "start": 3492.84, "end": 3495.12, "probability": 0.9783 }, { "start": 3496.42, "end": 3498.14, "probability": 0.9084 }, { "start": 3498.8, "end": 3502.58, "probability": 0.8439 }, { "start": 3503.4, "end": 3504.6, "probability": 0.9338 }, { "start": 3505.58, "end": 3506.82, "probability": 0.9979 }, { "start": 3508.44, "end": 3510.5, "probability": 0.9972 }, { "start": 3511.8, "end": 3515.66, "probability": 0.9968 }, { "start": 3515.86, "end": 3516.74, "probability": 0.9215 }, { "start": 3517.98, "end": 3518.98, "probability": 0.9409 }, { "start": 3519.54, "end": 3525.21, "probability": 0.9762 }, { "start": 3525.76, "end": 3527.68, "probability": 0.8182 }, { "start": 3528.62, "end": 3531.54, "probability": 0.9935 }, { "start": 3532.08, "end": 3536.26, "probability": 0.9856 }, { "start": 3537.12, "end": 3539.18, "probability": 0.9982 }, { "start": 3540.4, "end": 3542.66, "probability": 0.9194 }, { "start": 3543.14, "end": 3545.2, "probability": 0.998 }, { "start": 3545.76, "end": 3546.46, "probability": 0.8804 }, { "start": 3547.94, "end": 3550.92, "probability": 0.8787 }, { "start": 3551.52, "end": 3553.48, "probability": 0.8893 }, { "start": 3554.4, "end": 3554.96, "probability": 0.6833 }, { "start": 3555.9, "end": 3558.88, "probability": 0.9941 }, { "start": 3560.36, "end": 3563.48, "probability": 0.9978 }, { "start": 3564.62, "end": 3565.1, "probability": 0.6983 }, { "start": 3565.16, "end": 3568.76, "probability": 0.9961 }, { "start": 3569.16, "end": 3573.9, "probability": 0.98 }, { "start": 3574.46, "end": 3578.24, "probability": 0.9868 }, { "start": 3579.48, "end": 3580.92, "probability": 0.9799 }, { "start": 3581.12, "end": 3582.1, "probability": 0.8294 }, { "start": 3582.52, "end": 3585.32, "probability": 0.9046 }, { "start": 3586.62, "end": 3590.56, "probability": 0.9971 }, { "start": 3590.56, "end": 3595.68, "probability": 0.9967 }, { "start": 3596.08, "end": 3602.16, "probability": 0.9966 }, { "start": 3603.62, "end": 3605.32, "probability": 0.927 }, { "start": 3606.38, "end": 3608.5, "probability": 0.9435 }, { "start": 3609.86, "end": 3611.76, "probability": 0.9948 }, { "start": 3612.28, "end": 3615.84, "probability": 0.995 }, { "start": 3617.34, "end": 3619.42, "probability": 0.998 }, { "start": 3620.36, "end": 3621.66, "probability": 0.9723 }, { "start": 3622.0, "end": 3624.82, "probability": 0.9976 }, { "start": 3624.96, "end": 3626.86, "probability": 0.9943 }, { "start": 3627.82, "end": 3631.7, "probability": 0.9966 }, { "start": 3632.56, "end": 3633.64, "probability": 0.958 }, { "start": 3634.16, "end": 3636.5, "probability": 0.9975 }, { "start": 3636.5, "end": 3640.16, "probability": 0.9802 }, { "start": 3640.68, "end": 3643.12, "probability": 0.9968 }, { "start": 3643.12, "end": 3646.44, "probability": 0.8732 }, { "start": 3646.9, "end": 3648.12, "probability": 0.981 }, { "start": 3648.72, "end": 3649.96, "probability": 0.989 }, { "start": 3651.5, "end": 3655.16, "probability": 0.9961 }, { "start": 3655.88, "end": 3658.8, "probability": 0.9954 }, { "start": 3660.26, "end": 3664.42, "probability": 0.9844 }, { "start": 3664.42, "end": 3667.9, "probability": 0.9963 }, { "start": 3669.58, "end": 3670.34, "probability": 0.6673 }, { "start": 3670.5, "end": 3674.14, "probability": 0.7712 }, { "start": 3674.62, "end": 3677.52, "probability": 0.981 }, { "start": 3677.8, "end": 3680.98, "probability": 0.9746 }, { "start": 3683.38, "end": 3685.32, "probability": 0.9917 }, { "start": 3686.06, "end": 3689.24, "probability": 0.9593 }, { "start": 3689.86, "end": 3690.42, "probability": 0.9906 }, { "start": 3690.94, "end": 3695.78, "probability": 0.9655 }, { "start": 3696.32, "end": 3697.54, "probability": 0.9829 }, { "start": 3698.88, "end": 3702.46, "probability": 0.9985 }, { "start": 3703.6, "end": 3707.84, "probability": 0.9825 }, { "start": 3707.98, "end": 3710.72, "probability": 0.9846 }, { "start": 3711.16, "end": 3711.6, "probability": 0.8303 }, { "start": 3711.6, "end": 3711.86, "probability": 0.7741 }, { "start": 3713.68, "end": 3715.02, "probability": 0.4952 }, { "start": 3743.92, "end": 3744.2, "probability": 0.7741 }, { "start": 3750.74, "end": 3752.8, "probability": 0.6699 }, { "start": 3753.88, "end": 3757.16, "probability": 0.9943 }, { "start": 3757.98, "end": 3759.62, "probability": 0.9985 }, { "start": 3760.42, "end": 3762.02, "probability": 0.8407 }, { "start": 3762.7, "end": 3767.78, "probability": 0.968 }, { "start": 3767.84, "end": 3772.74, "probability": 0.9958 }, { "start": 3773.22, "end": 3775.84, "probability": 0.8716 }, { "start": 3776.5, "end": 3781.58, "probability": 0.9929 }, { "start": 3782.32, "end": 3787.4, "probability": 0.9854 }, { "start": 3787.64, "end": 3790.66, "probability": 0.7148 }, { "start": 3791.1, "end": 3792.2, "probability": 0.9956 }, { "start": 3792.92, "end": 3797.18, "probability": 0.8143 }, { "start": 3798.2, "end": 3799.1, "probability": 0.709 }, { "start": 3799.26, "end": 3801.38, "probability": 0.9581 }, { "start": 3801.5, "end": 3804.78, "probability": 0.7736 }, { "start": 3805.4, "end": 3807.72, "probability": 0.9929 }, { "start": 3808.16, "end": 3810.54, "probability": 0.7371 }, { "start": 3811.02, "end": 3814.1, "probability": 0.8471 }, { "start": 3814.48, "end": 3818.88, "probability": 0.9915 }, { "start": 3819.38, "end": 3819.96, "probability": 0.649 }, { "start": 3820.72, "end": 3821.34, "probability": 0.9353 }, { "start": 3822.0, "end": 3822.64, "probability": 0.913 }, { "start": 3823.16, "end": 3826.52, "probability": 0.9857 }, { "start": 3827.3, "end": 3827.72, "probability": 0.7564 }, { "start": 3828.42, "end": 3828.84, "probability": 0.5006 }, { "start": 3828.88, "end": 3829.42, "probability": 0.9709 }, { "start": 3829.44, "end": 3834.84, "probability": 0.9717 }, { "start": 3834.96, "end": 3837.4, "probability": 0.8619 }, { "start": 3837.48, "end": 3838.08, "probability": 0.6097 }, { "start": 3838.96, "end": 3839.4, "probability": 0.8704 }, { "start": 3839.46, "end": 3844.08, "probability": 0.9889 }, { "start": 3844.78, "end": 3845.4, "probability": 0.9622 }, { "start": 3845.94, "end": 3847.34, "probability": 0.9306 }, { "start": 3847.86, "end": 3854.64, "probability": 0.8706 }, { "start": 3855.42, "end": 3856.58, "probability": 0.7077 }, { "start": 3857.56, "end": 3859.04, "probability": 0.9573 }, { "start": 3859.72, "end": 3865.76, "probability": 0.9934 }, { "start": 3866.16, "end": 3867.4, "probability": 0.9839 }, { "start": 3867.82, "end": 3869.06, "probability": 0.9785 }, { "start": 3869.82, "end": 3872.66, "probability": 0.9795 }, { "start": 3873.36, "end": 3877.28, "probability": 0.9815 }, { "start": 3877.28, "end": 3881.12, "probability": 0.9807 }, { "start": 3881.64, "end": 3884.96, "probability": 0.9869 }, { "start": 3885.5, "end": 3888.58, "probability": 0.9922 }, { "start": 3889.0, "end": 3890.5, "probability": 0.9366 }, { "start": 3891.12, "end": 3893.0, "probability": 0.8953 }, { "start": 3893.46, "end": 3896.04, "probability": 0.9349 }, { "start": 3896.58, "end": 3901.36, "probability": 0.9197 }, { "start": 3902.02, "end": 3902.32, "probability": 0.7729 }, { "start": 3902.42, "end": 3905.58, "probability": 0.7026 }, { "start": 3905.78, "end": 3908.36, "probability": 0.9482 }, { "start": 3908.36, "end": 3912.86, "probability": 0.9922 }, { "start": 3913.1, "end": 3916.88, "probability": 0.9514 }, { "start": 3917.68, "end": 3922.24, "probability": 0.9851 }, { "start": 3922.92, "end": 3926.94, "probability": 0.895 }, { "start": 3927.52, "end": 3930.28, "probability": 0.9901 }, { "start": 3930.74, "end": 3934.14, "probability": 0.9963 }, { "start": 3934.58, "end": 3937.3, "probability": 0.9956 }, { "start": 3938.16, "end": 3941.98, "probability": 0.9979 }, { "start": 3941.98, "end": 3945.9, "probability": 0.9989 }, { "start": 3946.36, "end": 3948.14, "probability": 0.7788 }, { "start": 3949.46, "end": 3955.48, "probability": 0.9906 }, { "start": 3955.98, "end": 3960.3, "probability": 0.9697 }, { "start": 3960.84, "end": 3963.44, "probability": 0.9966 }, { "start": 3963.9, "end": 3967.16, "probability": 0.9971 }, { "start": 3967.24, "end": 3967.92, "probability": 0.3685 }, { "start": 3968.56, "end": 3973.38, "probability": 0.9419 }, { "start": 3973.44, "end": 3974.04, "probability": 0.8604 }, { "start": 3974.6, "end": 3975.42, "probability": 0.7578 }, { "start": 3976.0, "end": 3980.24, "probability": 0.9024 }, { "start": 3980.86, "end": 3983.64, "probability": 0.9912 }, { "start": 3984.1, "end": 3987.38, "probability": 0.9927 }, { "start": 3988.04, "end": 3991.7, "probability": 0.9305 }, { "start": 3992.4, "end": 3992.64, "probability": 0.3482 }, { "start": 3992.72, "end": 3994.88, "probability": 0.8971 }, { "start": 3995.3, "end": 4002.2, "probability": 0.9254 }, { "start": 4002.84, "end": 4003.8, "probability": 0.4049 }, { "start": 4004.4, "end": 4005.58, "probability": 0.9462 }, { "start": 4005.74, "end": 4013.12, "probability": 0.8552 }, { "start": 4013.7, "end": 4014.12, "probability": 0.4627 }, { "start": 4014.58, "end": 4018.68, "probability": 0.994 }, { "start": 4019.0, "end": 4022.24, "probability": 0.9959 }, { "start": 4022.46, "end": 4023.06, "probability": 0.7517 }, { "start": 4023.42, "end": 4024.2, "probability": 0.6773 }, { "start": 4024.36, "end": 4028.54, "probability": 0.9934 }, { "start": 4028.92, "end": 4030.96, "probability": 0.8337 }, { "start": 4031.4, "end": 4032.72, "probability": 0.8614 }, { "start": 4033.32, "end": 4033.58, "probability": 0.7469 }, { "start": 4033.68, "end": 4037.7, "probability": 0.9899 }, { "start": 4038.12, "end": 4039.58, "probability": 0.9878 }, { "start": 4040.08, "end": 4042.28, "probability": 0.9927 }, { "start": 4042.7, "end": 4044.86, "probability": 0.5988 }, { "start": 4045.06, "end": 4045.5, "probability": 0.8237 }, { "start": 4045.88, "end": 4046.56, "probability": 0.7095 }, { "start": 4047.38, "end": 4049.58, "probability": 0.9786 }, { "start": 4051.22, "end": 4052.46, "probability": 0.8445 }, { "start": 4052.88, "end": 4053.74, "probability": 0.9821 }, { "start": 4054.28, "end": 4055.3, "probability": 0.5271 }, { "start": 4056.0, "end": 4059.04, "probability": 0.0686 }, { "start": 4060.72, "end": 4062.32, "probability": 0.0184 }, { "start": 4075.18, "end": 4077.24, "probability": 0.6306 }, { "start": 4077.84, "end": 4079.66, "probability": 0.9131 }, { "start": 4080.94, "end": 4085.24, "probability": 0.998 }, { "start": 4086.04, "end": 4087.72, "probability": 0.9939 }, { "start": 4089.32, "end": 4091.14, "probability": 0.9972 }, { "start": 4092.46, "end": 4095.48, "probability": 0.9384 }, { "start": 4095.48, "end": 4099.18, "probability": 0.9543 }, { "start": 4101.04, "end": 4107.38, "probability": 0.9312 }, { "start": 4107.66, "end": 4110.3, "probability": 0.9975 }, { "start": 4111.36, "end": 4115.84, "probability": 0.9921 }, { "start": 4117.38, "end": 4120.84, "probability": 0.9971 }, { "start": 4121.28, "end": 4124.64, "probability": 0.9834 }, { "start": 4125.8, "end": 4128.36, "probability": 0.9944 }, { "start": 4129.06, "end": 4131.38, "probability": 0.8714 }, { "start": 4132.02, "end": 4136.84, "probability": 0.9651 }, { "start": 4137.52, "end": 4140.92, "probability": 0.9961 }, { "start": 4140.92, "end": 4144.74, "probability": 0.994 }, { "start": 4146.44, "end": 4151.66, "probability": 0.9935 }, { "start": 4152.46, "end": 4154.3, "probability": 0.999 }, { "start": 4155.18, "end": 4156.3, "probability": 0.9385 }, { "start": 4156.4, "end": 4157.26, "probability": 0.799 }, { "start": 4157.66, "end": 4160.3, "probability": 0.8764 }, { "start": 4161.36, "end": 4165.1, "probability": 0.988 }, { "start": 4165.94, "end": 4167.22, "probability": 0.999 }, { "start": 4167.84, "end": 4169.3, "probability": 0.9482 }, { "start": 4170.96, "end": 4171.48, "probability": 0.9142 }, { "start": 4172.28, "end": 4174.7, "probability": 0.999 }, { "start": 4174.94, "end": 4176.72, "probability": 0.999 }, { "start": 4177.32, "end": 4180.16, "probability": 0.9515 }, { "start": 4181.08, "end": 4183.96, "probability": 0.9555 }, { "start": 4185.12, "end": 4186.66, "probability": 0.9473 }, { "start": 4187.84, "end": 4191.48, "probability": 0.9029 }, { "start": 4192.16, "end": 4195.56, "probability": 0.9941 }, { "start": 4196.82, "end": 4202.8, "probability": 0.9602 }, { "start": 4203.72, "end": 4204.1, "probability": 0.9129 }, { "start": 4204.64, "end": 4205.64, "probability": 0.8358 }, { "start": 4206.66, "end": 4209.16, "probability": 0.9953 }, { "start": 4210.84, "end": 4215.9, "probability": 0.9836 }, { "start": 4216.74, "end": 4220.28, "probability": 0.9873 }, { "start": 4220.98, "end": 4221.5, "probability": 0.9637 }, { "start": 4222.22, "end": 4224.62, "probability": 0.9688 }, { "start": 4225.28, "end": 4226.16, "probability": 0.9807 }, { "start": 4226.94, "end": 4228.94, "probability": 0.987 }, { "start": 4230.16, "end": 4231.9, "probability": 0.9751 }, { "start": 4232.24, "end": 4235.62, "probability": 0.9006 }, { "start": 4236.64, "end": 4240.92, "probability": 0.9944 }, { "start": 4241.58, "end": 4244.16, "probability": 0.9646 }, { "start": 4244.72, "end": 4245.12, "probability": 0.981 }, { "start": 4247.14, "end": 4249.96, "probability": 0.9966 }, { "start": 4250.54, "end": 4253.9, "probability": 0.998 }, { "start": 4254.82, "end": 4256.83, "probability": 0.9877 }, { "start": 4257.62, "end": 4258.52, "probability": 0.7976 }, { "start": 4259.44, "end": 4262.34, "probability": 0.998 }, { "start": 4262.42, "end": 4265.78, "probability": 0.9924 }, { "start": 4266.7, "end": 4269.48, "probability": 0.998 }, { "start": 4269.48, "end": 4272.82, "probability": 0.8566 }, { "start": 4273.66, "end": 4277.92, "probability": 0.9843 }, { "start": 4278.8, "end": 4279.38, "probability": 0.5312 }, { "start": 4279.96, "end": 4283.04, "probability": 0.9956 }, { "start": 4285.16, "end": 4286.38, "probability": 0.9186 }, { "start": 4287.18, "end": 4288.56, "probability": 0.7868 }, { "start": 4289.58, "end": 4292.24, "probability": 0.9935 }, { "start": 4293.02, "end": 4297.14, "probability": 0.9977 }, { "start": 4297.88, "end": 4302.8, "probability": 0.9897 }, { "start": 4303.6, "end": 4306.26, "probability": 0.9917 }, { "start": 4307.74, "end": 4310.02, "probability": 0.8416 }, { "start": 4310.92, "end": 4314.92, "probability": 0.9719 }, { "start": 4315.42, "end": 4318.3, "probability": 0.9739 }, { "start": 4319.14, "end": 4323.42, "probability": 0.9932 }, { "start": 4324.66, "end": 4327.08, "probability": 0.7636 }, { "start": 4327.76, "end": 4330.52, "probability": 0.9961 }, { "start": 4330.52, "end": 4333.18, "probability": 0.9836 }, { "start": 4333.88, "end": 4335.38, "probability": 0.7818 }, { "start": 4336.3, "end": 4339.56, "probability": 0.8183 }, { "start": 4340.26, "end": 4345.06, "probability": 0.9974 }, { "start": 4345.56, "end": 4350.46, "probability": 0.9985 }, { "start": 4351.5, "end": 4354.96, "probability": 0.9856 }, { "start": 4355.74, "end": 4358.46, "probability": 0.9971 }, { "start": 4358.46, "end": 4361.68, "probability": 0.9977 }, { "start": 4362.02, "end": 4366.28, "probability": 0.9895 }, { "start": 4366.28, "end": 4370.02, "probability": 0.9775 }, { "start": 4371.0, "end": 4375.07, "probability": 0.9067 }, { "start": 4376.2, "end": 4376.8, "probability": 0.769 }, { "start": 4377.34, "end": 4379.16, "probability": 0.9937 }, { "start": 4379.92, "end": 4382.64, "probability": 0.9717 }, { "start": 4383.2, "end": 4385.24, "probability": 0.918 }, { "start": 4385.86, "end": 4386.62, "probability": 0.9947 }, { "start": 4387.44, "end": 4388.92, "probability": 0.9198 }, { "start": 4389.66, "end": 4389.66, "probability": 0.6827 }, { "start": 4389.72, "end": 4389.94, "probability": 0.1746 }, { "start": 4389.94, "end": 4389.94, "probability": 0.6821 }, { "start": 4389.94, "end": 4392.94, "probability": 0.8828 }, { "start": 4393.1, "end": 4395.66, "probability": 0.7589 }, { "start": 4395.68, "end": 4398.24, "probability": 0.9907 }, { "start": 4399.1, "end": 4402.46, "probability": 0.9666 }, { "start": 4402.5, "end": 4402.92, "probability": 0.7476 }, { "start": 4403.3, "end": 4404.14, "probability": 0.3276 }, { "start": 4405.4, "end": 4409.94, "probability": 0.6984 }, { "start": 4411.28, "end": 4412.68, "probability": 0.1325 }, { "start": 4412.68, "end": 4413.8, "probability": 0.8375 }, { "start": 4420.38, "end": 4420.96, "probability": 0.2155 }, { "start": 4421.32, "end": 4421.98, "probability": 0.0307 }, { "start": 4446.38, "end": 4449.86, "probability": 0.7857 }, { "start": 4450.62, "end": 4452.72, "probability": 0.9895 }, { "start": 4453.78, "end": 4456.54, "probability": 0.9961 }, { "start": 4457.1, "end": 4458.82, "probability": 0.9818 }, { "start": 4459.98, "end": 4461.16, "probability": 0.7525 }, { "start": 4461.32, "end": 4465.72, "probability": 0.9564 }, { "start": 4465.72, "end": 4471.98, "probability": 0.9965 }, { "start": 4472.82, "end": 4475.02, "probability": 0.9232 }, { "start": 4475.92, "end": 4477.7, "probability": 0.6982 }, { "start": 4478.4, "end": 4481.06, "probability": 0.994 }, { "start": 4482.44, "end": 4484.66, "probability": 0.8398 }, { "start": 4484.7, "end": 4486.92, "probability": 0.9945 }, { "start": 4487.58, "end": 4491.48, "probability": 0.9905 }, { "start": 4492.76, "end": 4493.26, "probability": 0.7823 }, { "start": 4493.4, "end": 4495.4, "probability": 0.9839 }, { "start": 4495.5, "end": 4498.38, "probability": 0.8858 }, { "start": 4500.02, "end": 4502.72, "probability": 0.8959 }, { "start": 4503.88, "end": 4504.68, "probability": 0.942 }, { "start": 4505.64, "end": 4508.2, "probability": 0.9761 }, { "start": 4509.28, "end": 4511.14, "probability": 0.9731 }, { "start": 4512.46, "end": 4516.56, "probability": 0.9811 }, { "start": 4516.6, "end": 4517.22, "probability": 0.7769 }, { "start": 4517.9, "end": 4520.04, "probability": 0.9181 }, { "start": 4520.78, "end": 4521.3, "probability": 0.5673 }, { "start": 4522.02, "end": 4523.08, "probability": 0.6894 }, { "start": 4523.92, "end": 4527.16, "probability": 0.9964 }, { "start": 4527.16, "end": 4530.44, "probability": 0.9934 }, { "start": 4531.56, "end": 4535.32, "probability": 0.9994 }, { "start": 4535.32, "end": 4539.76, "probability": 0.9941 }, { "start": 4539.86, "end": 4542.28, "probability": 0.8737 }, { "start": 4543.6, "end": 4544.24, "probability": 0.5399 }, { "start": 4544.78, "end": 4546.18, "probability": 0.9655 }, { "start": 4547.5, "end": 4550.34, "probability": 0.9371 }, { "start": 4550.54, "end": 4554.78, "probability": 0.9952 }, { "start": 4554.78, "end": 4558.0, "probability": 0.991 }, { "start": 4559.02, "end": 4562.32, "probability": 0.9774 }, { "start": 4563.06, "end": 4568.06, "probability": 0.9492 }, { "start": 4568.66, "end": 4573.62, "probability": 0.9962 }, { "start": 4574.02, "end": 4580.74, "probability": 0.9954 }, { "start": 4581.88, "end": 4584.54, "probability": 0.9938 }, { "start": 4584.54, "end": 4587.88, "probability": 0.9926 }, { "start": 4588.64, "end": 4590.58, "probability": 0.991 }, { "start": 4591.56, "end": 4595.46, "probability": 0.9896 }, { "start": 4595.46, "end": 4599.9, "probability": 0.8748 }, { "start": 4600.94, "end": 4605.12, "probability": 0.9813 }, { "start": 4605.94, "end": 4609.14, "probability": 0.9783 }, { "start": 4609.68, "end": 4614.58, "probability": 0.8399 }, { "start": 4615.3, "end": 4619.22, "probability": 0.9642 }, { "start": 4620.56, "end": 4623.86, "probability": 0.806 }, { "start": 4623.86, "end": 4628.76, "probability": 0.9963 }, { "start": 4629.36, "end": 4632.3, "probability": 0.9882 }, { "start": 4632.88, "end": 4635.38, "probability": 0.9946 }, { "start": 4636.58, "end": 4640.9, "probability": 0.9938 }, { "start": 4642.28, "end": 4645.5, "probability": 0.9487 }, { "start": 4646.64, "end": 4648.86, "probability": 0.937 }, { "start": 4649.62, "end": 4650.14, "probability": 0.9556 }, { "start": 4650.7, "end": 4652.0, "probability": 0.9329 }, { "start": 4653.22, "end": 4653.86, "probability": 0.9067 }, { "start": 4653.94, "end": 4657.64, "probability": 0.99 }, { "start": 4657.64, "end": 4660.04, "probability": 0.9951 }, { "start": 4660.92, "end": 4662.42, "probability": 0.8945 }, { "start": 4664.02, "end": 4666.9, "probability": 0.9871 }, { "start": 4667.8, "end": 4669.8, "probability": 0.9932 }, { "start": 4670.42, "end": 4670.52, "probability": 0.8162 }, { "start": 4672.06, "end": 4676.78, "probability": 0.9595 }, { "start": 4677.82, "end": 4678.26, "probability": 0.7234 }, { "start": 4679.36, "end": 4683.56, "probability": 0.9854 }, { "start": 4684.58, "end": 4688.86, "probability": 0.9984 }, { "start": 4690.5, "end": 4693.66, "probability": 0.8148 }, { "start": 4694.3, "end": 4695.58, "probability": 0.9979 }, { "start": 4696.34, "end": 4697.94, "probability": 0.9483 }, { "start": 4698.58, "end": 4699.92, "probability": 0.6981 }, { "start": 4701.2, "end": 4703.59, "probability": 0.9873 }, { "start": 4705.04, "end": 4708.18, "probability": 0.7604 }, { "start": 4709.46, "end": 4712.17, "probability": 0.9736 }, { "start": 4712.38, "end": 4715.64, "probability": 0.9864 }, { "start": 4717.22, "end": 4719.68, "probability": 0.9824 }, { "start": 4720.56, "end": 4725.34, "probability": 0.7812 }, { "start": 4726.2, "end": 4729.98, "probability": 0.7604 }, { "start": 4729.98, "end": 4732.88, "probability": 0.9718 }, { "start": 4735.54, "end": 4736.4, "probability": 0.0054 }, { "start": 4738.28, "end": 4740.32, "probability": 0.7258 }, { "start": 4740.68, "end": 4741.8, "probability": 0.5175 }, { "start": 4742.82, "end": 4744.4, "probability": 0.9557 }, { "start": 4744.46, "end": 4746.34, "probability": 0.6929 }, { "start": 4746.46, "end": 4748.16, "probability": 0.6974 }, { "start": 4748.24, "end": 4750.12, "probability": 0.6952 }, { "start": 4751.24, "end": 4753.28, "probability": 0.8207 }, { "start": 4754.36, "end": 4757.76, "probability": 0.9531 }, { "start": 4758.64, "end": 4761.82, "probability": 0.9231 }, { "start": 4762.32, "end": 4765.0, "probability": 0.9309 }, { "start": 4766.44, "end": 4766.66, "probability": 0.2606 }, { "start": 4766.66, "end": 4767.04, "probability": 0.266 }, { "start": 4770.4, "end": 4771.08, "probability": 0.6627 }, { "start": 4771.66, "end": 4771.9, "probability": 0.8918 }, { "start": 4780.6, "end": 4781.84, "probability": 0.9115 }, { "start": 4782.32, "end": 4782.82, "probability": 0.7446 }, { "start": 4793.7, "end": 4795.32, "probability": 0.455 }, { "start": 4796.04, "end": 4797.18, "probability": 0.6715 }, { "start": 4798.28, "end": 4799.66, "probability": 0.9968 }, { "start": 4800.18, "end": 4804.28, "probability": 0.8151 }, { "start": 4804.8, "end": 4805.56, "probability": 0.7693 }, { "start": 4806.3, "end": 4811.14, "probability": 0.9253 }, { "start": 4812.36, "end": 4815.78, "probability": 0.9154 }, { "start": 4816.56, "end": 4817.3, "probability": 0.6184 }, { "start": 4818.72, "end": 4819.76, "probability": 0.9409 }, { "start": 4820.56, "end": 4823.96, "probability": 0.9782 }, { "start": 4824.42, "end": 4825.8, "probability": 0.998 }, { "start": 4826.36, "end": 4826.84, "probability": 0.7503 }, { "start": 4828.0, "end": 4830.76, "probability": 0.9812 }, { "start": 4832.92, "end": 4835.3, "probability": 0.6192 }, { "start": 4835.84, "end": 4839.9, "probability": 0.9863 }, { "start": 4841.54, "end": 4845.62, "probability": 0.9575 }, { "start": 4846.56, "end": 4851.98, "probability": 0.9899 }, { "start": 4852.7, "end": 4855.46, "probability": 0.9741 }, { "start": 4856.6, "end": 4857.08, "probability": 0.8046 }, { "start": 4857.72, "end": 4861.66, "probability": 0.9976 }, { "start": 4861.66, "end": 4866.32, "probability": 0.9984 }, { "start": 4867.52, "end": 4873.2, "probability": 0.9076 }, { "start": 4873.38, "end": 4874.02, "probability": 0.667 }, { "start": 4874.5, "end": 4875.3, "probability": 0.9394 }, { "start": 4875.64, "end": 4876.62, "probability": 0.8428 }, { "start": 4877.22, "end": 4878.08, "probability": 0.9937 }, { "start": 4879.42, "end": 4880.26, "probability": 0.9298 }, { "start": 4881.52, "end": 4882.13, "probability": 0.817 }, { "start": 4883.08, "end": 4885.36, "probability": 0.9894 }, { "start": 4886.96, "end": 4888.4, "probability": 0.941 }, { "start": 4889.26, "end": 4891.98, "probability": 0.8277 }, { "start": 4892.94, "end": 4894.96, "probability": 0.9641 }, { "start": 4895.56, "end": 4895.7, "probability": 0.7524 }, { "start": 4895.86, "end": 4899.12, "probability": 0.9748 }, { "start": 4899.3, "end": 4901.94, "probability": 0.897 }, { "start": 4903.12, "end": 4905.3, "probability": 0.9969 }, { "start": 4906.14, "end": 4909.38, "probability": 0.861 }, { "start": 4910.04, "end": 4910.86, "probability": 0.5602 }, { "start": 4911.72, "end": 4913.4, "probability": 0.7251 }, { "start": 4914.18, "end": 4916.62, "probability": 0.9712 }, { "start": 4917.22, "end": 4918.18, "probability": 0.5133 }, { "start": 4919.44, "end": 4923.34, "probability": 0.9668 }, { "start": 4924.54, "end": 4924.84, "probability": 0.832 }, { "start": 4925.5, "end": 4928.22, "probability": 0.8747 }, { "start": 4928.22, "end": 4931.14, "probability": 0.9244 }, { "start": 4931.9, "end": 4932.76, "probability": 0.9338 }, { "start": 4933.2, "end": 4937.28, "probability": 0.8651 }, { "start": 4937.82, "end": 4939.84, "probability": 0.958 }, { "start": 4940.46, "end": 4942.36, "probability": 0.8991 }, { "start": 4943.0, "end": 4943.84, "probability": 0.8853 }, { "start": 4944.42, "end": 4947.5, "probability": 0.9473 }, { "start": 4949.04, "end": 4950.26, "probability": 0.1071 }, { "start": 4950.26, "end": 4953.1, "probability": 0.9922 }, { "start": 4954.66, "end": 4957.02, "probability": 0.9974 }, { "start": 4957.56, "end": 4959.0, "probability": 0.9754 }, { "start": 4959.6, "end": 4961.78, "probability": 0.9591 }, { "start": 4962.76, "end": 4965.36, "probability": 0.8412 }, { "start": 4965.98, "end": 4966.49, "probability": 0.2913 }, { "start": 4967.22, "end": 4967.66, "probability": 0.8706 }, { "start": 4968.5, "end": 4969.26, "probability": 0.9768 }, { "start": 4969.94, "end": 4971.36, "probability": 0.9441 }, { "start": 4972.32, "end": 4974.04, "probability": 0.9641 }, { "start": 4974.68, "end": 4978.14, "probability": 0.9646 }, { "start": 4978.68, "end": 4980.86, "probability": 0.9899 }, { "start": 4981.72, "end": 4983.9, "probability": 0.9884 }, { "start": 4985.4, "end": 4988.52, "probability": 0.7732 }, { "start": 4989.16, "end": 4989.7, "probability": 0.9768 }, { "start": 4991.08, "end": 4992.5, "probability": 0.9586 }, { "start": 4993.26, "end": 4997.76, "probability": 0.99 }, { "start": 4998.32, "end": 4999.8, "probability": 0.661 }, { "start": 5000.08, "end": 5003.78, "probability": 0.9292 }, { "start": 5004.5, "end": 5005.1, "probability": 0.8076 }, { "start": 5005.68, "end": 5007.0, "probability": 0.896 }, { "start": 5007.62, "end": 5011.2, "probability": 0.9206 }, { "start": 5012.18, "end": 5014.54, "probability": 0.9955 }, { "start": 5015.04, "end": 5017.18, "probability": 0.9514 }, { "start": 5018.26, "end": 5019.68, "probability": 0.9712 }, { "start": 5020.34, "end": 5021.84, "probability": 0.989 }, { "start": 5022.86, "end": 5025.86, "probability": 0.8327 }, { "start": 5025.96, "end": 5028.22, "probability": 0.9806 }, { "start": 5028.42, "end": 5029.8, "probability": 0.9769 }, { "start": 5030.16, "end": 5034.74, "probability": 0.994 }, { "start": 5036.8, "end": 5039.47, "probability": 0.9706 }, { "start": 5040.88, "end": 5044.08, "probability": 0.9609 }, { "start": 5044.08, "end": 5045.48, "probability": 0.8023 }, { "start": 5046.2, "end": 5046.38, "probability": 0.5479 }, { "start": 5046.92, "end": 5047.48, "probability": 0.9468 }, { "start": 5049.56, "end": 5054.84, "probability": 0.8877 }, { "start": 5055.42, "end": 5056.04, "probability": 0.9434 }, { "start": 5057.4, "end": 5060.68, "probability": 0.9951 }, { "start": 5062.1, "end": 5063.58, "probability": 0.9838 }, { "start": 5063.64, "end": 5065.8, "probability": 0.939 }, { "start": 5066.32, "end": 5067.46, "probability": 0.9306 }, { "start": 5068.52, "end": 5069.82, "probability": 0.9503 }, { "start": 5070.7, "end": 5072.92, "probability": 0.6654 }, { "start": 5073.36, "end": 5073.95, "probability": 0.9142 }, { "start": 5076.02, "end": 5079.08, "probability": 0.8152 }, { "start": 5079.08, "end": 5081.84, "probability": 0.9642 }, { "start": 5082.34, "end": 5082.62, "probability": 0.7363 }, { "start": 5083.58, "end": 5084.44, "probability": 0.9876 }, { "start": 5085.42, "end": 5086.6, "probability": 0.9813 }, { "start": 5087.66, "end": 5089.0, "probability": 0.874 }, { "start": 5089.02, "end": 5089.22, "probability": 0.7517 }, { "start": 5089.28, "end": 5091.3, "probability": 0.9546 }, { "start": 5091.94, "end": 5093.78, "probability": 0.9953 }, { "start": 5094.48, "end": 5098.26, "probability": 0.9287 }, { "start": 5098.88, "end": 5101.36, "probability": 0.9885 }, { "start": 5101.88, "end": 5104.96, "probability": 0.9963 }, { "start": 5105.42, "end": 5106.76, "probability": 0.9971 }, { "start": 5107.52, "end": 5110.84, "probability": 0.994 }, { "start": 5111.46, "end": 5112.48, "probability": 0.849 }, { "start": 5112.82, "end": 5113.78, "probability": 0.5702 }, { "start": 5114.3, "end": 5116.7, "probability": 0.9741 }, { "start": 5117.08, "end": 5122.28, "probability": 0.8371 }, { "start": 5123.14, "end": 5124.6, "probability": 0.8975 }, { "start": 5124.98, "end": 5127.96, "probability": 0.9891 }, { "start": 5128.74, "end": 5129.32, "probability": 0.726 }, { "start": 5130.42, "end": 5130.42, "probability": 0.4033 }, { "start": 5131.04, "end": 5132.22, "probability": 0.549 }, { "start": 5152.62, "end": 5153.02, "probability": 0.689 }, { "start": 5154.3, "end": 5155.02, "probability": 0.7512 }, { "start": 5155.78, "end": 5156.36, "probability": 0.658 }, { "start": 5157.56, "end": 5160.42, "probability": 0.9843 }, { "start": 5161.28, "end": 5162.54, "probability": 0.9951 }, { "start": 5162.76, "end": 5164.49, "probability": 0.9992 }, { "start": 5165.0, "end": 5165.76, "probability": 0.9267 }, { "start": 5166.34, "end": 5168.76, "probability": 0.9392 }, { "start": 5169.76, "end": 5172.62, "probability": 0.9944 }, { "start": 5173.56, "end": 5177.4, "probability": 0.995 }, { "start": 5178.16, "end": 5180.32, "probability": 0.9863 }, { "start": 5181.34, "end": 5182.9, "probability": 0.6272 }, { "start": 5185.86, "end": 5189.2, "probability": 0.984 }, { "start": 5190.34, "end": 5194.94, "probability": 0.9846 }, { "start": 5195.54, "end": 5198.0, "probability": 0.9941 }, { "start": 5198.02, "end": 5200.04, "probability": 0.9581 }, { "start": 5200.62, "end": 5203.22, "probability": 0.9506 }, { "start": 5203.78, "end": 5204.12, "probability": 0.7983 }, { "start": 5204.22, "end": 5204.8, "probability": 0.926 }, { "start": 5204.86, "end": 5206.94, "probability": 0.9792 }, { "start": 5207.98, "end": 5211.22, "probability": 0.8016 }, { "start": 5212.52, "end": 5214.78, "probability": 0.9741 }, { "start": 5215.04, "end": 5217.2, "probability": 0.9932 }, { "start": 5217.72, "end": 5218.46, "probability": 0.8802 }, { "start": 5219.44, "end": 5220.04, "probability": 0.742 }, { "start": 5220.72, "end": 5223.94, "probability": 0.9941 }, { "start": 5224.44, "end": 5227.38, "probability": 0.9789 }, { "start": 5229.18, "end": 5232.58, "probability": 0.9526 }, { "start": 5233.4, "end": 5238.16, "probability": 0.9139 }, { "start": 5238.76, "end": 5239.8, "probability": 0.9322 }, { "start": 5240.56, "end": 5241.66, "probability": 0.8861 }, { "start": 5242.6, "end": 5244.08, "probability": 0.8112 }, { "start": 5245.68, "end": 5246.7, "probability": 0.9744 }, { "start": 5247.5, "end": 5249.72, "probability": 0.9191 }, { "start": 5250.36, "end": 5253.5, "probability": 0.9924 }, { "start": 5254.36, "end": 5255.6, "probability": 0.9873 }, { "start": 5256.44, "end": 5259.24, "probability": 0.9854 }, { "start": 5260.3, "end": 5264.82, "probability": 0.9639 }, { "start": 5265.72, "end": 5266.48, "probability": 0.6294 }, { "start": 5269.35, "end": 5271.1, "probability": 0.9932 }, { "start": 5272.28, "end": 5272.54, "probability": 0.1351 }, { "start": 5272.54, "end": 5272.54, "probability": 0.0986 }, { "start": 5272.54, "end": 5275.54, "probability": 0.8823 }, { "start": 5275.54, "end": 5278.86, "probability": 0.9941 }, { "start": 5279.88, "end": 5282.66, "probability": 0.9832 }, { "start": 5283.42, "end": 5284.1, "probability": 0.9885 }, { "start": 5285.28, "end": 5287.66, "probability": 0.9983 }, { "start": 5288.56, "end": 5290.46, "probability": 0.9388 }, { "start": 5290.76, "end": 5291.92, "probability": 0.9944 }, { "start": 5292.1, "end": 5293.38, "probability": 0.7894 }, { "start": 5293.94, "end": 5298.04, "probability": 0.9978 }, { "start": 5299.28, "end": 5300.74, "probability": 0.7523 }, { "start": 5300.98, "end": 5303.4, "probability": 0.8753 }, { "start": 5304.28, "end": 5306.68, "probability": 0.9891 }, { "start": 5307.22, "end": 5312.46, "probability": 0.9552 }, { "start": 5314.0, "end": 5316.42, "probability": 0.8864 }, { "start": 5317.34, "end": 5321.74, "probability": 0.99 }, { "start": 5321.74, "end": 5325.5, "probability": 0.9918 }, { "start": 5326.14, "end": 5327.44, "probability": 0.921 }, { "start": 5327.6, "end": 5328.68, "probability": 0.9163 }, { "start": 5328.78, "end": 5330.96, "probability": 0.9946 }, { "start": 5332.7, "end": 5335.54, "probability": 0.9779 }, { "start": 5336.06, "end": 5336.88, "probability": 0.8309 }, { "start": 5337.62, "end": 5340.16, "probability": 0.9836 }, { "start": 5340.86, "end": 5341.44, "probability": 0.7263 }, { "start": 5342.04, "end": 5343.8, "probability": 0.9985 }, { "start": 5344.48, "end": 5345.99, "probability": 0.9717 }, { "start": 5347.2, "end": 5348.92, "probability": 0.9906 }, { "start": 5349.24, "end": 5351.1, "probability": 0.9508 }, { "start": 5351.6, "end": 5352.02, "probability": 0.7468 }, { "start": 5352.42, "end": 5352.98, "probability": 0.7265 }, { "start": 5354.54, "end": 5358.46, "probability": 0.9766 }, { "start": 5359.44, "end": 5360.08, "probability": 0.679 }, { "start": 5361.66, "end": 5362.24, "probability": 0.5589 }, { "start": 5362.84, "end": 5363.98, "probability": 0.8423 }, { "start": 5365.22, "end": 5365.66, "probability": 0.8157 }, { "start": 5366.3, "end": 5367.12, "probability": 0.745 }, { "start": 5367.68, "end": 5368.82, "probability": 0.8822 }, { "start": 5370.28, "end": 5370.82, "probability": 0.5148 }, { "start": 5371.2, "end": 5372.28, "probability": 0.6312 }, { "start": 5375.96, "end": 5378.34, "probability": 0.6765 }, { "start": 5379.76, "end": 5380.92, "probability": 0.7073 }, { "start": 5389.5, "end": 5392.14, "probability": 0.8744 }, { "start": 5393.52, "end": 5396.44, "probability": 0.7935 }, { "start": 5397.12, "end": 5397.46, "probability": 0.9511 }, { "start": 5397.54, "end": 5399.37, "probability": 0.7192 }, { "start": 5399.72, "end": 5400.58, "probability": 0.858 }, { "start": 5401.02, "end": 5403.12, "probability": 0.6154 }, { "start": 5403.22, "end": 5406.06, "probability": 0.6523 }, { "start": 5411.0, "end": 5413.22, "probability": 0.9876 }, { "start": 5413.88, "end": 5417.6, "probability": 0.9459 }, { "start": 5419.47, "end": 5423.98, "probability": 0.9839 }, { "start": 5425.58, "end": 5427.42, "probability": 0.9622 }, { "start": 5428.12, "end": 5429.74, "probability": 0.9435 }, { "start": 5430.78, "end": 5432.44, "probability": 0.711 }, { "start": 5433.04, "end": 5433.46, "probability": 0.9389 }, { "start": 5435.76, "end": 5437.22, "probability": 0.7405 }, { "start": 5438.62, "end": 5440.2, "probability": 0.7973 }, { "start": 5441.12, "end": 5443.26, "probability": 0.993 }, { "start": 5444.18, "end": 5445.98, "probability": 0.9976 }, { "start": 5447.14, "end": 5449.9, "probability": 0.9741 }, { "start": 5450.68, "end": 5454.84, "probability": 0.9927 }, { "start": 5456.22, "end": 5456.9, "probability": 0.8023 }, { "start": 5457.78, "end": 5458.48, "probability": 0.8909 }, { "start": 5459.8, "end": 5463.34, "probability": 0.9945 }, { "start": 5463.94, "end": 5464.7, "probability": 0.8572 }, { "start": 5465.4, "end": 5466.4, "probability": 0.9211 }, { "start": 5466.98, "end": 5469.0, "probability": 0.9695 }, { "start": 5469.76, "end": 5470.36, "probability": 0.9866 }, { "start": 5471.44, "end": 5474.84, "probability": 0.9587 }, { "start": 5475.36, "end": 5476.28, "probability": 0.964 }, { "start": 5477.3, "end": 5482.86, "probability": 0.9928 }, { "start": 5483.58, "end": 5485.94, "probability": 0.8066 }, { "start": 5486.5, "end": 5488.1, "probability": 0.9893 }, { "start": 5490.22, "end": 5493.02, "probability": 0.8557 }, { "start": 5494.06, "end": 5496.46, "probability": 0.8971 }, { "start": 5497.04, "end": 5500.08, "probability": 0.982 }, { "start": 5501.02, "end": 5501.82, "probability": 0.8911 }, { "start": 5502.58, "end": 5505.0, "probability": 0.997 }, { "start": 5505.8, "end": 5508.82, "probability": 0.9973 }, { "start": 5509.36, "end": 5510.82, "probability": 0.9728 }, { "start": 5511.28, "end": 5513.96, "probability": 0.9701 }, { "start": 5514.72, "end": 5517.52, "probability": 0.9896 }, { "start": 5517.92, "end": 5519.98, "probability": 0.9729 }, { "start": 5520.26, "end": 5521.0, "probability": 0.8283 }, { "start": 5521.12, "end": 5521.5, "probability": 0.9561 }, { "start": 5522.24, "end": 5522.84, "probability": 0.6662 }, { "start": 5523.6, "end": 5525.46, "probability": 0.9528 }, { "start": 5526.8, "end": 5530.12, "probability": 0.9274 }, { "start": 5531.06, "end": 5532.21, "probability": 0.863 }, { "start": 5533.24, "end": 5535.24, "probability": 0.8438 }, { "start": 5536.08, "end": 5539.12, "probability": 0.9915 }, { "start": 5539.76, "end": 5541.58, "probability": 0.7839 }, { "start": 5542.48, "end": 5546.12, "probability": 0.9694 }, { "start": 5547.18, "end": 5550.76, "probability": 0.9326 }, { "start": 5551.3, "end": 5556.2, "probability": 0.9926 }, { "start": 5557.26, "end": 5559.34, "probability": 0.9991 }, { "start": 5560.06, "end": 5560.82, "probability": 0.8374 }, { "start": 5561.58, "end": 5568.02, "probability": 0.957 }, { "start": 5569.2, "end": 5570.0, "probability": 0.5128 }, { "start": 5571.18, "end": 5572.04, "probability": 0.7204 }, { "start": 5575.14, "end": 5576.4, "probability": 0.8395 }, { "start": 5577.3, "end": 5580.14, "probability": 0.896 }, { "start": 5581.28, "end": 5581.66, "probability": 0.8691 }, { "start": 5583.56, "end": 5586.08, "probability": 0.9973 }, { "start": 5587.48, "end": 5589.58, "probability": 0.9963 }, { "start": 5590.56, "end": 5591.28, "probability": 0.9248 }, { "start": 5592.0, "end": 5597.28, "probability": 0.9955 }, { "start": 5597.28, "end": 5601.24, "probability": 0.9902 }, { "start": 5602.5, "end": 5604.42, "probability": 0.9966 }, { "start": 5605.42, "end": 5609.12, "probability": 0.9482 }, { "start": 5609.98, "end": 5612.22, "probability": 0.8921 }, { "start": 5613.12, "end": 5615.8, "probability": 0.9313 }, { "start": 5616.44, "end": 5618.58, "probability": 0.9868 }, { "start": 5618.58, "end": 5622.46, "probability": 0.9897 }, { "start": 5624.38, "end": 5624.62, "probability": 0.2971 }, { "start": 5624.74, "end": 5625.22, "probability": 0.8704 }, { "start": 5625.28, "end": 5628.18, "probability": 0.8799 }, { "start": 5628.66, "end": 5631.26, "probability": 0.9617 }, { "start": 5632.86, "end": 5633.38, "probability": 0.8513 }, { "start": 5634.44, "end": 5635.76, "probability": 0.9596 }, { "start": 5636.78, "end": 5639.92, "probability": 0.9552 }, { "start": 5640.44, "end": 5642.8, "probability": 0.9216 }, { "start": 5643.42, "end": 5644.02, "probability": 0.9878 }, { "start": 5644.6, "end": 5646.58, "probability": 0.9914 }, { "start": 5647.44, "end": 5648.0, "probability": 0.8445 }, { "start": 5648.64, "end": 5648.96, "probability": 0.8061 }, { "start": 5649.84, "end": 5652.7, "probability": 0.9948 }, { "start": 5654.12, "end": 5655.88, "probability": 0.7179 }, { "start": 5657.06, "end": 5660.58, "probability": 0.9743 }, { "start": 5661.54, "end": 5663.12, "probability": 0.9822 }, { "start": 5663.24, "end": 5664.54, "probability": 0.9155 }, { "start": 5665.32, "end": 5667.4, "probability": 0.9326 }, { "start": 5669.12, "end": 5669.74, "probability": 0.8965 }, { "start": 5670.8, "end": 5674.88, "probability": 0.972 }, { "start": 5675.82, "end": 5680.74, "probability": 0.974 }, { "start": 5681.46, "end": 5684.64, "probability": 0.9773 }, { "start": 5685.28, "end": 5686.0, "probability": 0.9715 }, { "start": 5686.62, "end": 5687.44, "probability": 0.9009 }, { "start": 5688.58, "end": 5690.66, "probability": 0.9889 }, { "start": 5691.18, "end": 5692.36, "probability": 0.9951 }, { "start": 5693.58, "end": 5696.81, "probability": 0.9963 }, { "start": 5697.0, "end": 5700.4, "probability": 0.9844 }, { "start": 5700.4, "end": 5704.22, "probability": 0.9587 }, { "start": 5705.06, "end": 5706.74, "probability": 0.9367 }, { "start": 5707.74, "end": 5708.88, "probability": 0.9839 }, { "start": 5709.24, "end": 5711.82, "probability": 0.9926 }, { "start": 5712.72, "end": 5714.1, "probability": 0.9634 }, { "start": 5714.62, "end": 5716.5, "probability": 0.9591 }, { "start": 5717.96, "end": 5719.82, "probability": 0.5629 }, { "start": 5722.18, "end": 5723.5, "probability": 0.9332 }, { "start": 5723.64, "end": 5725.54, "probability": 0.9019 }, { "start": 5725.54, "end": 5727.9, "probability": 0.9528 }, { "start": 5728.88, "end": 5731.01, "probability": 0.9893 }, { "start": 5731.62, "end": 5732.26, "probability": 0.7119 }, { "start": 5732.64, "end": 5733.42, "probability": 0.9647 }, { "start": 5733.58, "end": 5734.06, "probability": 0.9572 }, { "start": 5734.12, "end": 5735.56, "probability": 0.9459 }, { "start": 5735.96, "end": 5737.48, "probability": 0.9639 }, { "start": 5737.54, "end": 5738.74, "probability": 0.8822 }, { "start": 5739.12, "end": 5740.44, "probability": 0.9883 }, { "start": 5741.44, "end": 5742.82, "probability": 0.9535 }, { "start": 5743.36, "end": 5747.52, "probability": 0.9927 }, { "start": 5747.88, "end": 5752.66, "probability": 0.9609 }, { "start": 5753.16, "end": 5754.28, "probability": 0.9122 }, { "start": 5754.64, "end": 5758.32, "probability": 0.9759 }, { "start": 5761.14, "end": 5763.18, "probability": 0.0811 }, { "start": 5763.18, "end": 5764.97, "probability": 0.6391 }, { "start": 5765.78, "end": 5766.12, "probability": 0.8657 }, { "start": 5767.08, "end": 5771.42, "probability": 0.989 }, { "start": 5771.58, "end": 5772.06, "probability": 0.8927 }, { "start": 5772.14, "end": 5772.8, "probability": 0.8235 }, { "start": 5773.36, "end": 5774.04, "probability": 0.8513 }, { "start": 5775.24, "end": 5776.06, "probability": 0.7318 }, { "start": 5777.16, "end": 5778.47, "probability": 0.9602 }, { "start": 5778.74, "end": 5779.58, "probability": 0.7822 }, { "start": 5779.64, "end": 5780.26, "probability": 0.8423 }, { "start": 5781.36, "end": 5785.74, "probability": 0.8731 }, { "start": 5786.18, "end": 5787.36, "probability": 0.766 }, { "start": 5788.2, "end": 5789.36, "probability": 0.9905 }, { "start": 5790.96, "end": 5792.14, "probability": 0.9924 }, { "start": 5792.72, "end": 5797.56, "probability": 0.991 }, { "start": 5798.12, "end": 5798.88, "probability": 0.849 }, { "start": 5799.58, "end": 5799.92, "probability": 0.9892 }, { "start": 5800.8, "end": 5801.14, "probability": 0.7968 }, { "start": 5801.22, "end": 5802.39, "probability": 0.6592 }, { "start": 5802.96, "end": 5803.66, "probability": 0.7655 }, { "start": 5805.28, "end": 5806.0, "probability": 0.6689 }, { "start": 5829.3, "end": 5830.14, "probability": 0.6163 }, { "start": 5831.16, "end": 5833.46, "probability": 0.7357 }, { "start": 5834.74, "end": 5839.54, "probability": 0.9586 }, { "start": 5840.42, "end": 5840.92, "probability": 0.9177 }, { "start": 5841.26, "end": 5845.64, "probability": 0.986 }, { "start": 5846.66, "end": 5850.16, "probability": 0.9932 }, { "start": 5851.76, "end": 5851.98, "probability": 0.5607 }, { "start": 5852.16, "end": 5858.14, "probability": 0.8457 }, { "start": 5858.5, "end": 5861.42, "probability": 0.9788 }, { "start": 5862.94, "end": 5864.2, "probability": 0.7909 }, { "start": 5865.16, "end": 5866.46, "probability": 0.988 }, { "start": 5869.78, "end": 5870.96, "probability": 0.8857 }, { "start": 5872.98, "end": 5875.74, "probability": 0.9922 }, { "start": 5876.56, "end": 5877.36, "probability": 0.2557 }, { "start": 5877.46, "end": 5878.94, "probability": 0.5054 }, { "start": 5879.1, "end": 5885.34, "probability": 0.9871 }, { "start": 5885.52, "end": 5889.16, "probability": 0.9517 }, { "start": 5890.14, "end": 5891.06, "probability": 0.7471 }, { "start": 5892.22, "end": 5895.38, "probability": 0.965 }, { "start": 5896.7, "end": 5896.8, "probability": 0.7279 }, { "start": 5898.62, "end": 5902.77, "probability": 0.926 }, { "start": 5905.24, "end": 5909.94, "probability": 0.9598 }, { "start": 5910.22, "end": 5913.22, "probability": 0.8168 }, { "start": 5914.04, "end": 5916.1, "probability": 0.9425 }, { "start": 5916.14, "end": 5921.72, "probability": 0.9825 }, { "start": 5923.24, "end": 5926.6, "probability": 0.079 }, { "start": 5928.84, "end": 5930.76, "probability": 0.9189 }, { "start": 5932.18, "end": 5933.5, "probability": 0.923 }, { "start": 5935.48, "end": 5940.12, "probability": 0.9833 }, { "start": 5940.34, "end": 5942.76, "probability": 0.8013 }, { "start": 5943.0, "end": 5944.24, "probability": 0.9901 }, { "start": 5944.86, "end": 5945.68, "probability": 0.9971 }, { "start": 5947.2, "end": 5950.76, "probability": 0.9905 }, { "start": 5951.88, "end": 5953.3, "probability": 0.9922 }, { "start": 5953.82, "end": 5955.06, "probability": 0.7682 }, { "start": 5956.8, "end": 5962.58, "probability": 0.9753 }, { "start": 5964.22, "end": 5967.5, "probability": 0.9445 }, { "start": 5968.38, "end": 5971.58, "probability": 0.98 }, { "start": 5972.5, "end": 5972.92, "probability": 0.1753 }, { "start": 5974.2, "end": 5975.52, "probability": 0.1464 }, { "start": 5976.18, "end": 5978.96, "probability": 0.1676 }, { "start": 5979.66, "end": 5981.2, "probability": 0.3689 }, { "start": 5982.42, "end": 5982.87, "probability": 0.0766 }, { "start": 5983.36, "end": 5985.02, "probability": 0.759 }, { "start": 5985.76, "end": 5987.92, "probability": 0.9396 }, { "start": 5990.38, "end": 6000.42, "probability": 0.9022 }, { "start": 6001.0, "end": 6002.08, "probability": 0.983 }, { "start": 6003.64, "end": 6005.08, "probability": 0.7924 }, { "start": 6006.86, "end": 6012.6, "probability": 0.9432 }, { "start": 6013.3, "end": 6016.44, "probability": 0.9953 }, { "start": 6018.44, "end": 6019.06, "probability": 0.9505 }, { "start": 6019.78, "end": 6022.7, "probability": 0.9238 }, { "start": 6023.38, "end": 6026.98, "probability": 0.9967 }, { "start": 6029.1, "end": 6033.42, "probability": 0.9935 }, { "start": 6036.0, "end": 6036.72, "probability": 0.7918 }, { "start": 6037.0, "end": 6038.26, "probability": 0.8717 }, { "start": 6038.34, "end": 6040.62, "probability": 0.8363 }, { "start": 6041.42, "end": 6041.98, "probability": 0.3867 }, { "start": 6042.9, "end": 6043.7, "probability": 0.4492 }, { "start": 6043.76, "end": 6048.58, "probability": 0.9963 }, { "start": 6048.88, "end": 6049.53, "probability": 0.5435 }, { "start": 6049.9, "end": 6052.66, "probability": 0.1677 }, { "start": 6052.66, "end": 6052.66, "probability": 0.3008 }, { "start": 6053.0, "end": 6054.04, "probability": 0.8311 }, { "start": 6054.72, "end": 6055.82, "probability": 0.9055 }, { "start": 6056.08, "end": 6061.22, "probability": 0.5945 }, { "start": 6061.74, "end": 6062.24, "probability": 0.6786 }, { "start": 6062.46, "end": 6064.4, "probability": 0.5618 }, { "start": 6064.8, "end": 6068.26, "probability": 0.9521 }, { "start": 6068.38, "end": 6071.1, "probability": 0.6913 }, { "start": 6071.98, "end": 6074.25, "probability": 0.8932 }, { "start": 6074.98, "end": 6075.5, "probability": 0.8771 }, { "start": 6075.7, "end": 6082.8, "probability": 0.8772 }, { "start": 6083.8, "end": 6086.0, "probability": 0.8278 }, { "start": 6087.58, "end": 6088.7, "probability": 0.9341 }, { "start": 6089.3, "end": 6090.62, "probability": 0.9949 }, { "start": 6090.9, "end": 6094.2, "probability": 0.7721 }, { "start": 6095.66, "end": 6100.8, "probability": 0.8745 }, { "start": 6101.04, "end": 6102.28, "probability": 0.9633 }, { "start": 6102.6, "end": 6103.78, "probability": 0.8157 }, { "start": 6104.8, "end": 6107.14, "probability": 0.9826 }, { "start": 6108.58, "end": 6112.58, "probability": 0.9961 }, { "start": 6114.7, "end": 6117.16, "probability": 0.9414 }, { "start": 6118.0, "end": 6123.08, "probability": 0.9742 }, { "start": 6124.26, "end": 6132.46, "probability": 0.9802 }, { "start": 6133.43, "end": 6135.38, "probability": 0.9849 }, { "start": 6136.58, "end": 6140.62, "probability": 0.9888 }, { "start": 6140.62, "end": 6143.7, "probability": 0.9988 }, { "start": 6144.98, "end": 6148.9, "probability": 0.8944 }, { "start": 6148.94, "end": 6149.68, "probability": 0.7369 }, { "start": 6150.28, "end": 6154.48, "probability": 0.9486 }, { "start": 6155.24, "end": 6155.74, "probability": 0.991 }, { "start": 6157.18, "end": 6159.9, "probability": 0.9612 }, { "start": 6159.9, "end": 6164.22, "probability": 0.9345 }, { "start": 6165.92, "end": 6166.36, "probability": 0.5923 }, { "start": 6166.44, "end": 6172.22, "probability": 0.9673 }, { "start": 6172.82, "end": 6176.66, "probability": 0.9702 }, { "start": 6177.48, "end": 6179.72, "probability": 0.9858 }, { "start": 6179.72, "end": 6181.52, "probability": 0.7388 }, { "start": 6181.88, "end": 6184.78, "probability": 0.9718 }, { "start": 6184.78, "end": 6188.16, "probability": 0.9943 }, { "start": 6188.76, "end": 6192.34, "probability": 0.9078 }, { "start": 6193.44, "end": 6195.56, "probability": 0.974 }, { "start": 6196.42, "end": 6196.98, "probability": 0.6106 }, { "start": 6197.16, "end": 6200.48, "probability": 0.9037 }, { "start": 6201.9, "end": 6204.32, "probability": 0.9884 }, { "start": 6204.34, "end": 6204.94, "probability": 0.6351 }, { "start": 6205.14, "end": 6206.46, "probability": 0.7065 }, { "start": 6209.18, "end": 6213.14, "probability": 0.8386 }, { "start": 6213.74, "end": 6214.74, "probability": 0.8702 }, { "start": 6216.5, "end": 6218.28, "probability": 0.9497 }, { "start": 6219.52, "end": 6220.6, "probability": 0.8875 }, { "start": 6220.68, "end": 6222.94, "probability": 0.9786 }, { "start": 6224.38, "end": 6225.54, "probability": 0.9117 }, { "start": 6227.02, "end": 6228.0, "probability": 0.8714 }, { "start": 6229.88, "end": 6231.98, "probability": 0.9918 }, { "start": 6232.22, "end": 6236.02, "probability": 0.9055 }, { "start": 6236.94, "end": 6241.18, "probability": 0.9899 }, { "start": 6241.84, "end": 6245.2, "probability": 0.9531 }, { "start": 6245.2, "end": 6248.98, "probability": 0.9973 }, { "start": 6249.36, "end": 6249.98, "probability": 0.825 }, { "start": 6250.46, "end": 6250.98, "probability": 0.9589 }, { "start": 6251.4, "end": 6252.24, "probability": 0.9402 }, { "start": 6253.58, "end": 6258.6, "probability": 0.9624 }, { "start": 6259.68, "end": 6261.05, "probability": 0.9108 }, { "start": 6261.74, "end": 6263.14, "probability": 0.9778 }, { "start": 6263.24, "end": 6264.86, "probability": 0.9927 }, { "start": 6265.6, "end": 6268.2, "probability": 0.9691 }, { "start": 6269.16, "end": 6269.9, "probability": 0.9988 }, { "start": 6272.54, "end": 6275.29, "probability": 0.9357 }, { "start": 6276.5, "end": 6280.42, "probability": 0.7489 }, { "start": 6281.06, "end": 6283.02, "probability": 0.9725 }, { "start": 6283.9, "end": 6289.98, "probability": 0.9731 }, { "start": 6290.36, "end": 6291.64, "probability": 0.8049 }, { "start": 6292.3, "end": 6293.96, "probability": 0.3153 }, { "start": 6294.42, "end": 6295.14, "probability": 0.6736 }, { "start": 6296.22, "end": 6297.18, "probability": 0.9956 }, { "start": 6297.38, "end": 6300.48, "probability": 0.994 }, { "start": 6301.9, "end": 6304.24, "probability": 0.9543 }, { "start": 6304.38, "end": 6306.64, "probability": 0.8337 }, { "start": 6306.74, "end": 6307.22, "probability": 0.9123 }, { "start": 6307.42, "end": 6307.9, "probability": 0.8241 }, { "start": 6308.22, "end": 6309.72, "probability": 0.7238 }, { "start": 6312.16, "end": 6313.14, "probability": 0.027 }, { "start": 6313.14, "end": 6316.88, "probability": 0.7103 }, { "start": 6318.02, "end": 6320.26, "probability": 0.9758 }, { "start": 6320.26, "end": 6324.44, "probability": 0.695 }, { "start": 6324.72, "end": 6325.08, "probability": 0.7079 }, { "start": 6326.12, "end": 6331.18, "probability": 0.6875 }, { "start": 6332.64, "end": 6335.56, "probability": 0.9668 }, { "start": 6336.46, "end": 6342.78, "probability": 0.9833 }, { "start": 6344.5, "end": 6344.98, "probability": 0.9143 }, { "start": 6345.14, "end": 6349.46, "probability": 0.9909 }, { "start": 6349.46, "end": 6354.06, "probability": 0.9856 }, { "start": 6354.96, "end": 6356.8, "probability": 0.991 }, { "start": 6357.16, "end": 6359.98, "probability": 0.9675 }, { "start": 6360.6, "end": 6362.42, "probability": 0.9534 }, { "start": 6364.48, "end": 6365.54, "probability": 0.5878 }, { "start": 6366.72, "end": 6367.9, "probability": 0.8295 }, { "start": 6369.86, "end": 6374.38, "probability": 0.946 }, { "start": 6376.54, "end": 6377.36, "probability": 0.7924 }, { "start": 6377.46, "end": 6380.78, "probability": 0.7856 }, { "start": 6381.46, "end": 6382.46, "probability": 0.9214 }, { "start": 6383.0, "end": 6384.94, "probability": 0.9964 }, { "start": 6385.48, "end": 6386.94, "probability": 0.953 }, { "start": 6387.76, "end": 6390.24, "probability": 0.5274 }, { "start": 6390.88, "end": 6393.86, "probability": 0.9188 }, { "start": 6394.02, "end": 6394.66, "probability": 0.9642 }, { "start": 6395.34, "end": 6396.82, "probability": 0.9387 }, { "start": 6398.01, "end": 6398.8, "probability": 0.9707 }, { "start": 6400.04, "end": 6402.12, "probability": 0.9136 }, { "start": 6403.32, "end": 6404.74, "probability": 0.9223 }, { "start": 6405.62, "end": 6407.06, "probability": 0.4999 }, { "start": 6407.24, "end": 6408.7, "probability": 0.928 }, { "start": 6409.98, "end": 6412.78, "probability": 0.9778 }, { "start": 6413.1, "end": 6414.64, "probability": 0.6255 }, { "start": 6415.3, "end": 6416.78, "probability": 0.9342 }, { "start": 6417.74, "end": 6419.66, "probability": 0.6852 }, { "start": 6420.24, "end": 6422.14, "probability": 0.9117 }, { "start": 6423.12, "end": 6424.14, "probability": 0.7077 }, { "start": 6425.3, "end": 6425.76, "probability": 0.5901 }, { "start": 6425.8, "end": 6427.22, "probability": 0.9905 }, { "start": 6427.58, "end": 6430.45, "probability": 0.9956 }, { "start": 6431.36, "end": 6432.44, "probability": 0.8032 }, { "start": 6433.3, "end": 6434.62, "probability": 0.9922 }, { "start": 6435.16, "end": 6438.6, "probability": 0.9113 }, { "start": 6439.28, "end": 6441.1, "probability": 0.7664 }, { "start": 6441.48, "end": 6444.06, "probability": 0.8813 }, { "start": 6445.4, "end": 6449.2, "probability": 0.9876 }, { "start": 6450.06, "end": 6451.92, "probability": 0.99 }, { "start": 6452.06, "end": 6452.72, "probability": 0.5154 }, { "start": 6453.32, "end": 6454.46, "probability": 0.8109 }, { "start": 6455.04, "end": 6457.7, "probability": 0.9766 }, { "start": 6458.86, "end": 6459.96, "probability": 0.0192 }, { "start": 6459.98, "end": 6460.72, "probability": 0.4254 }, { "start": 6464.7, "end": 6468.0, "probability": 0.5566 }, { "start": 6468.02, "end": 6468.16, "probability": 0.1578 }, { "start": 6468.16, "end": 6472.44, "probability": 0.0123 }, { "start": 6473.0, "end": 6474.8, "probability": 0.4371 }, { "start": 6477.98, "end": 6478.88, "probability": 0.0875 }, { "start": 6478.88, "end": 6478.88, "probability": 0.3074 }, { "start": 6478.9, "end": 6478.9, "probability": 0.3692 }, { "start": 6481.9, "end": 6484.84, "probability": 0.5184 }, { "start": 6489.54, "end": 6491.7, "probability": 0.1636 }, { "start": 6493.16, "end": 6496.48, "probability": 0.3072 }, { "start": 6497.88, "end": 6502.32, "probability": 0.0457 }, { "start": 6502.9, "end": 6505.52, "probability": 0.4164 }, { "start": 6507.64, "end": 6510.66, "probability": 0.4184 }, { "start": 6511.28, "end": 6513.2, "probability": 0.0288 }, { "start": 6514.32, "end": 6519.52, "probability": 0.0881 }, { "start": 6519.78, "end": 6520.93, "probability": 0.1397 }, { "start": 6523.0, "end": 6524.2, "probability": 0.4203 }, { "start": 6530.13, "end": 6532.38, "probability": 0.0723 }, { "start": 6533.38, "end": 6534.52, "probability": 0.0897 }, { "start": 6541.82, "end": 6541.82, "probability": 0.0003 }, { "start": 6542.46, "end": 6542.88, "probability": 0.0007 }, { "start": 6554.06, "end": 6554.28, "probability": 0.1227 }, { "start": 6554.36, "end": 6554.46, "probability": 0.0549 }, { "start": 6554.46, "end": 6554.46, "probability": 0.081 }, { "start": 6554.46, "end": 6556.2, "probability": 0.7174 }, { "start": 6557.5, "end": 6558.18, "probability": 0.6024 }, { "start": 6559.64, "end": 6563.24, "probability": 0.9075 }, { "start": 6563.9, "end": 6564.22, "probability": 0.1764 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.0, "end": 6592.0, "probability": 0.0 }, { "start": 6592.36, "end": 6592.96, "probability": 0.7174 }, { "start": 6594.5, "end": 6596.8, "probability": 0.9731 }, { "start": 6598.28, "end": 6603.5, "probability": 0.978 }, { "start": 6603.84, "end": 6607.08, "probability": 0.9952 }, { "start": 6607.78, "end": 6611.5, "probability": 0.9963 }, { "start": 6611.94, "end": 6616.64, "probability": 0.9788 }, { "start": 6617.88, "end": 6620.48, "probability": 0.9376 }, { "start": 6620.58, "end": 6622.14, "probability": 0.804 }, { "start": 6623.12, "end": 6625.82, "probability": 0.9814 }, { "start": 6627.6, "end": 6628.66, "probability": 0.8118 }, { "start": 6629.6, "end": 6631.48, "probability": 0.7298 }, { "start": 6631.48, "end": 6634.16, "probability": 0.7588 }, { "start": 6634.28, "end": 6634.64, "probability": 0.272 }, { "start": 6634.92, "end": 6635.4, "probability": 0.8812 }, { "start": 6637.1, "end": 6642.78, "probability": 0.9634 }, { "start": 6643.66, "end": 6646.66, "probability": 0.9873 }, { "start": 6647.04, "end": 6648.74, "probability": 0.9352 }, { "start": 6649.82, "end": 6652.66, "probability": 0.9937 }, { "start": 6653.56, "end": 6657.58, "probability": 0.9974 }, { "start": 6657.58, "end": 6661.06, "probability": 0.9878 }, { "start": 6661.86, "end": 6664.94, "probability": 0.9985 }, { "start": 6665.42, "end": 6668.48, "probability": 0.979 }, { "start": 6669.14, "end": 6672.56, "probability": 0.9917 }, { "start": 6672.96, "end": 6676.34, "probability": 0.9841 }, { "start": 6677.84, "end": 6680.66, "probability": 0.9215 }, { "start": 6680.66, "end": 6684.28, "probability": 0.9938 }, { "start": 6685.54, "end": 6685.92, "probability": 0.8092 }, { "start": 6686.1, "end": 6690.96, "probability": 0.9941 }, { "start": 6691.52, "end": 6692.12, "probability": 0.9018 }, { "start": 6693.1, "end": 6693.86, "probability": 0.7128 }, { "start": 6694.44, "end": 6696.04, "probability": 0.8704 }, { "start": 6697.18, "end": 6701.84, "probability": 0.9855 }, { "start": 6702.22, "end": 6706.24, "probability": 0.9503 }, { "start": 6707.22, "end": 6709.14, "probability": 0.9611 }, { "start": 6710.66, "end": 6713.98, "probability": 0.981 }, { "start": 6714.52, "end": 6716.02, "probability": 0.897 }, { "start": 6716.54, "end": 6719.6, "probability": 0.9603 }, { "start": 6719.66, "end": 6722.38, "probability": 0.9695 }, { "start": 6724.28, "end": 6725.6, "probability": 0.9336 }, { "start": 6726.96, "end": 6729.26, "probability": 0.8542 }, { "start": 6729.88, "end": 6732.44, "probability": 0.9477 }, { "start": 6732.78, "end": 6734.98, "probability": 0.8386 }, { "start": 6735.56, "end": 6739.24, "probability": 0.8121 }, { "start": 6740.45, "end": 6741.98, "probability": 0.5998 }, { "start": 6742.9, "end": 6745.88, "probability": 0.9773 }, { "start": 6746.62, "end": 6749.64, "probability": 0.9815 }, { "start": 6751.14, "end": 6751.84, "probability": 0.7026 }, { "start": 6751.88, "end": 6754.66, "probability": 0.9868 }, { "start": 6755.94, "end": 6758.38, "probability": 0.9785 }, { "start": 6758.94, "end": 6761.28, "probability": 0.971 }, { "start": 6761.86, "end": 6763.6, "probability": 0.8483 }, { "start": 6764.44, "end": 6766.0, "probability": 0.9232 }, { "start": 6766.66, "end": 6769.36, "probability": 0.9662 }, { "start": 6769.74, "end": 6774.04, "probability": 0.9497 }, { "start": 6774.72, "end": 6777.16, "probability": 0.8671 }, { "start": 6777.72, "end": 6778.86, "probability": 0.7978 }, { "start": 6779.42, "end": 6779.84, "probability": 0.834 }, { "start": 6780.66, "end": 6781.0, "probability": 0.7098 }, { "start": 6781.96, "end": 6782.76, "probability": 0.6322 }, { "start": 6783.46, "end": 6785.5, "probability": 0.4304 }, { "start": 6802.12, "end": 6802.73, "probability": 0.516 }, { "start": 6804.34, "end": 6806.22, "probability": 0.5696 }, { "start": 6807.98, "end": 6809.4, "probability": 0.8141 }, { "start": 6809.98, "end": 6814.98, "probability": 0.9151 }, { "start": 6815.54, "end": 6817.58, "probability": 0.9186 }, { "start": 6818.3, "end": 6819.5, "probability": 0.9862 }, { "start": 6820.42, "end": 6823.14, "probability": 0.9613 }, { "start": 6823.88, "end": 6825.66, "probability": 0.8033 }, { "start": 6827.04, "end": 6830.36, "probability": 0.9553 }, { "start": 6832.22, "end": 6835.44, "probability": 0.9966 }, { "start": 6835.44, "end": 6838.74, "probability": 0.9759 }, { "start": 6840.46, "end": 6841.24, "probability": 0.8618 }, { "start": 6841.28, "end": 6842.24, "probability": 0.8826 }, { "start": 6842.44, "end": 6844.84, "probability": 0.9868 }, { "start": 6846.6, "end": 6848.06, "probability": 0.9016 }, { "start": 6849.58, "end": 6850.7, "probability": 0.9469 }, { "start": 6851.36, "end": 6852.62, "probability": 0.7041 }, { "start": 6853.64, "end": 6856.08, "probability": 0.9493 }, { "start": 6856.22, "end": 6858.24, "probability": 0.9909 }, { "start": 6862.24, "end": 6867.62, "probability": 0.7987 }, { "start": 6868.86, "end": 6869.58, "probability": 0.9846 }, { "start": 6870.72, "end": 6873.16, "probability": 0.9984 }, { "start": 6873.82, "end": 6875.08, "probability": 0.9359 }, { "start": 6876.32, "end": 6877.8, "probability": 0.926 }, { "start": 6878.48, "end": 6880.94, "probability": 0.9894 }, { "start": 6881.9, "end": 6882.84, "probability": 0.992 }, { "start": 6883.72, "end": 6886.76, "probability": 0.4974 }, { "start": 6887.28, "end": 6889.34, "probability": 0.9152 }, { "start": 6890.98, "end": 6891.84, "probability": 0.9292 }, { "start": 6892.64, "end": 6897.18, "probability": 0.9624 }, { "start": 6897.26, "end": 6898.62, "probability": 0.9784 }, { "start": 6899.38, "end": 6902.08, "probability": 0.9527 }, { "start": 6903.06, "end": 6906.04, "probability": 0.9819 }, { "start": 6906.64, "end": 6912.06, "probability": 0.9562 }, { "start": 6916.14, "end": 6917.0, "probability": 0.7329 }, { "start": 6917.66, "end": 6919.84, "probability": 0.9412 }, { "start": 6920.84, "end": 6921.56, "probability": 0.9822 }, { "start": 6922.12, "end": 6925.68, "probability": 0.9229 }, { "start": 6927.06, "end": 6928.06, "probability": 0.9956 }, { "start": 6928.8, "end": 6931.08, "probability": 0.9927 }, { "start": 6932.04, "end": 6934.48, "probability": 0.8436 }, { "start": 6935.24, "end": 6937.32, "probability": 0.9901 }, { "start": 6938.35, "end": 6940.22, "probability": 0.8108 }, { "start": 6941.28, "end": 6942.16, "probability": 0.6719 }, { "start": 6942.82, "end": 6946.44, "probability": 0.8388 }, { "start": 6947.6, "end": 6948.04, "probability": 0.4673 }, { "start": 6949.14, "end": 6950.34, "probability": 0.8273 }, { "start": 6951.44, "end": 6955.1, "probability": 0.9676 }, { "start": 6956.22, "end": 6956.6, "probability": 0.9834 }, { "start": 6956.72, "end": 6957.96, "probability": 0.9096 }, { "start": 6958.0, "end": 6959.02, "probability": 0.709 }, { "start": 6959.14, "end": 6960.98, "probability": 0.8008 }, { "start": 6961.5, "end": 6962.14, "probability": 0.8716 }, { "start": 6962.8, "end": 6964.36, "probability": 0.6674 }, { "start": 6965.72, "end": 6968.04, "probability": 0.9636 }, { "start": 6968.86, "end": 6969.26, "probability": 0.983 }, { "start": 6969.7, "end": 6971.9, "probability": 0.9836 }, { "start": 6972.5, "end": 6973.26, "probability": 0.7113 }, { "start": 6974.06, "end": 6978.24, "probability": 0.9234 }, { "start": 6978.54, "end": 6978.64, "probability": 0.9025 }, { "start": 6979.62, "end": 6981.2, "probability": 0.9616 }, { "start": 6981.32, "end": 6981.81, "probability": 0.9937 }, { "start": 6982.64, "end": 6983.39, "probability": 0.9361 }, { "start": 6983.58, "end": 6987.34, "probability": 0.8503 }, { "start": 6987.94, "end": 6988.96, "probability": 0.2994 }, { "start": 6989.12, "end": 6989.86, "probability": 0.712 }, { "start": 6990.46, "end": 6994.56, "probability": 0.7233 }, { "start": 6994.86, "end": 6998.04, "probability": 0.9928 }, { "start": 6998.14, "end": 6998.56, "probability": 0.68 }, { "start": 6998.7, "end": 6999.22, "probability": 0.8531 }, { "start": 6999.84, "end": 7001.86, "probability": 0.8915 }, { "start": 7002.78, "end": 7003.98, "probability": 0.6669 }, { "start": 7004.4, "end": 7005.76, "probability": 0.9552 }, { "start": 7005.82, "end": 7006.82, "probability": 0.8583 }, { "start": 7007.5, "end": 7012.7, "probability": 0.9836 }, { "start": 7013.26, "end": 7014.06, "probability": 0.946 }, { "start": 7014.76, "end": 7018.06, "probability": 0.9609 }, { "start": 7018.36, "end": 7020.18, "probability": 0.4215 }, { "start": 7020.22, "end": 7020.74, "probability": 0.0222 }, { "start": 7050.5, "end": 7050.6, "probability": 0.4851 }, { "start": 7052.48, "end": 7053.98, "probability": 0.0675 }, { "start": 7055.24, "end": 7057.16, "probability": 0.72 }, { "start": 7059.22, "end": 7061.0, "probability": 0.8088 }, { "start": 7061.66, "end": 7062.38, "probability": 0.5652 }, { "start": 7063.6, "end": 7066.6, "probability": 0.9338 }, { "start": 7067.26, "end": 7068.98, "probability": 0.7136 }, { "start": 7068.98, "end": 7071.92, "probability": 0.6256 }, { "start": 7073.62, "end": 7073.62, "probability": 0.0006 }, { "start": 7073.62, "end": 7074.28, "probability": 0.6251 }, { "start": 7074.74, "end": 7076.9, "probability": 0.8257 }, { "start": 7079.24, "end": 7081.2, "probability": 0.2055 }, { "start": 7081.46, "end": 7082.04, "probability": 0.486 }, { "start": 7082.96, "end": 7083.98, "probability": 0.6541 }, { "start": 7085.36, "end": 7090.34, "probability": 0.7916 }, { "start": 7091.44, "end": 7091.54, "probability": 0.8453 }, { "start": 7092.54, "end": 7092.54, "probability": 0.0737 }, { "start": 7092.54, "end": 7093.3, "probability": 0.4835 }, { "start": 7093.76, "end": 7094.62, "probability": 0.7299 }, { "start": 7094.74, "end": 7095.75, "probability": 0.8091 }, { "start": 7096.82, "end": 7101.96, "probability": 0.5374 }, { "start": 7102.18, "end": 7105.9, "probability": 0.9921 }, { "start": 7106.94, "end": 7108.76, "probability": 0.835 }, { "start": 7109.46, "end": 7110.52, "probability": 0.5274 }, { "start": 7111.62, "end": 7112.84, "probability": 0.9675 }, { "start": 7113.78, "end": 7114.6, "probability": 0.816 }, { "start": 7115.12, "end": 7117.36, "probability": 0.6997 }, { "start": 7119.1, "end": 7119.12, "probability": 0.8281 }, { "start": 7119.72, "end": 7121.86, "probability": 0.8993 }, { "start": 7122.18, "end": 7124.12, "probability": 0.9867 }, { "start": 7124.62, "end": 7125.98, "probability": 0.9934 }, { "start": 7127.04, "end": 7128.68, "probability": 0.675 }, { "start": 7129.64, "end": 7131.58, "probability": 0.0722 }, { "start": 7131.64, "end": 7131.9, "probability": 0.0514 }, { "start": 7132.52, "end": 7133.8, "probability": 0.563 }, { "start": 7133.84, "end": 7136.42, "probability": 0.7381 }, { "start": 7136.96, "end": 7137.51, "probability": 0.6364 }, { "start": 7137.74, "end": 7138.62, "probability": 0.9443 }, { "start": 7139.68, "end": 7143.12, "probability": 0.9246 }, { "start": 7146.34, "end": 7147.36, "probability": 0.9972 }, { "start": 7148.5, "end": 7149.58, "probability": 0.993 }, { "start": 7151.7, "end": 7153.66, "probability": 0.8745 }, { "start": 7153.82, "end": 7157.38, "probability": 0.9852 }, { "start": 7158.06, "end": 7160.24, "probability": 0.9185 }, { "start": 7160.9, "end": 7162.1, "probability": 0.8408 }, { "start": 7163.14, "end": 7163.84, "probability": 0.8374 }, { "start": 7165.32, "end": 7166.84, "probability": 0.8145 }, { "start": 7166.98, "end": 7167.62, "probability": 0.5098 }, { "start": 7168.18, "end": 7168.6, "probability": 0.6222 }, { "start": 7169.26, "end": 7170.64, "probability": 0.5005 }, { "start": 7171.18, "end": 7174.4, "probability": 0.9976 }, { "start": 7174.4, "end": 7177.32, "probability": 0.9541 }, { "start": 7177.44, "end": 7179.14, "probability": 0.9814 }, { "start": 7180.1, "end": 7182.31, "probability": 0.9478 }, { "start": 7183.3, "end": 7186.56, "probability": 0.9948 }, { "start": 7187.48, "end": 7190.74, "probability": 0.8577 }, { "start": 7191.54, "end": 7195.42, "probability": 0.5995 }, { "start": 7195.94, "end": 7196.42, "probability": 0.7762 }, { "start": 7197.08, "end": 7199.62, "probability": 0.9482 }, { "start": 7201.7, "end": 7202.4, "probability": 0.8133 }, { "start": 7203.18, "end": 7204.12, "probability": 0.9494 }, { "start": 7204.22, "end": 7205.46, "probability": 0.983 }, { "start": 7206.08, "end": 7210.88, "probability": 0.9539 }, { "start": 7212.14, "end": 7214.58, "probability": 0.9591 }, { "start": 7216.12, "end": 7218.06, "probability": 0.8723 }, { "start": 7219.26, "end": 7220.36, "probability": 0.9565 }, { "start": 7221.9, "end": 7223.5, "probability": 0.9957 }, { "start": 7223.62, "end": 7226.56, "probability": 0.9977 }, { "start": 7227.7, "end": 7229.0, "probability": 0.8245 }, { "start": 7229.9, "end": 7231.18, "probability": 0.5493 }, { "start": 7231.74, "end": 7232.54, "probability": 0.746 }, { "start": 7234.14, "end": 7235.62, "probability": 0.7282 }, { "start": 7236.2, "end": 7242.08, "probability": 0.9883 }, { "start": 7242.58, "end": 7244.22, "probability": 0.9823 }, { "start": 7244.3, "end": 7244.9, "probability": 0.6411 }, { "start": 7244.94, "end": 7246.0, "probability": 0.887 }, { "start": 7246.4, "end": 7249.44, "probability": 0.8854 }, { "start": 7250.7, "end": 7256.44, "probability": 0.9429 }, { "start": 7256.5, "end": 7259.7, "probability": 0.9125 }, { "start": 7259.86, "end": 7261.2, "probability": 0.504 }, { "start": 7261.46, "end": 7262.0, "probability": 0.103 }, { "start": 7263.76, "end": 7266.16, "probability": 0.7734 }, { "start": 7266.58, "end": 7269.5, "probability": 0.998 }, { "start": 7269.6, "end": 7270.67, "probability": 0.9988 }, { "start": 7271.7, "end": 7276.02, "probability": 0.9946 }, { "start": 7277.88, "end": 7278.74, "probability": 0.5564 }, { "start": 7279.94, "end": 7284.31, "probability": 0.987 }, { "start": 7284.6, "end": 7284.92, "probability": 0.4865 }, { "start": 7285.0, "end": 7286.24, "probability": 0.9836 }, { "start": 7286.36, "end": 7289.5, "probability": 0.9653 }, { "start": 7289.5, "end": 7294.14, "probability": 0.9906 }, { "start": 7295.54, "end": 7301.34, "probability": 0.9943 }, { "start": 7302.66, "end": 7306.32, "probability": 0.8643 }, { "start": 7306.48, "end": 7307.7, "probability": 0.9666 }, { "start": 7308.88, "end": 7311.48, "probability": 0.9735 }, { "start": 7311.48, "end": 7314.58, "probability": 0.9976 }, { "start": 7315.18, "end": 7317.64, "probability": 0.8133 }, { "start": 7319.04, "end": 7322.94, "probability": 0.9854 }, { "start": 7323.16, "end": 7325.22, "probability": 0.8151 }, { "start": 7326.06, "end": 7326.62, "probability": 0.8931 }, { "start": 7326.68, "end": 7330.9, "probability": 0.6561 }, { "start": 7331.0, "end": 7333.68, "probability": 0.8621 }, { "start": 7334.18, "end": 7337.12, "probability": 0.9901 }, { "start": 7337.9, "end": 7340.76, "probability": 0.8964 }, { "start": 7341.72, "end": 7342.9, "probability": 0.9149 }, { "start": 7344.08, "end": 7345.58, "probability": 0.9653 }, { "start": 7345.7, "end": 7349.68, "probability": 0.9503 }, { "start": 7350.9, "end": 7353.64, "probability": 0.9963 }, { "start": 7354.7, "end": 7355.66, "probability": 0.9678 }, { "start": 7356.34, "end": 7357.22, "probability": 0.9971 }, { "start": 7357.88, "end": 7358.9, "probability": 0.6878 }, { "start": 7360.08, "end": 7362.1, "probability": 0.6845 }, { "start": 7362.98, "end": 7367.3, "probability": 0.9149 }, { "start": 7369.26, "end": 7370.2, "probability": 0.6683 }, { "start": 7370.74, "end": 7373.4, "probability": 0.7571 }, { "start": 7373.66, "end": 7374.31, "probability": 0.9265 }, { "start": 7376.28, "end": 7377.2, "probability": 0.3551 }, { "start": 7378.81, "end": 7384.96, "probability": 0.7379 }, { "start": 7385.1, "end": 7385.58, "probability": 0.5706 }, { "start": 7385.64, "end": 7386.08, "probability": 0.6958 }, { "start": 7386.34, "end": 7386.44, "probability": 0.6833 }, { "start": 7388.5, "end": 7394.76, "probability": 0.9915 }, { "start": 7397.14, "end": 7397.8, "probability": 0.8366 }, { "start": 7399.12, "end": 7401.36, "probability": 0.8878 }, { "start": 7401.94, "end": 7402.2, "probability": 0.5589 }, { "start": 7404.54, "end": 7404.74, "probability": 0.7915 }, { "start": 7406.06, "end": 7408.58, "probability": 0.8794 }, { "start": 7409.14, "end": 7411.36, "probability": 0.9563 }, { "start": 7412.58, "end": 7414.48, "probability": 0.9628 }, { "start": 7415.22, "end": 7416.33, "probability": 0.8884 }, { "start": 7417.4, "end": 7422.06, "probability": 0.9792 }, { "start": 7422.72, "end": 7423.8, "probability": 0.4921 }, { "start": 7424.92, "end": 7425.37, "probability": 0.6354 }, { "start": 7426.98, "end": 7432.68, "probability": 0.9217 }, { "start": 7432.68, "end": 7436.04, "probability": 0.9778 }, { "start": 7436.8, "end": 7438.06, "probability": 0.9801 }, { "start": 7439.24, "end": 7439.56, "probability": 0.6635 }, { "start": 7440.56, "end": 7441.7, "probability": 0.9609 }, { "start": 7442.7, "end": 7444.2, "probability": 0.5544 }, { "start": 7445.42, "end": 7448.08, "probability": 0.9646 }, { "start": 7448.8, "end": 7451.2, "probability": 0.8109 }, { "start": 7451.72, "end": 7453.36, "probability": 0.9564 }, { "start": 7454.12, "end": 7457.46, "probability": 0.9399 }, { "start": 7458.8, "end": 7459.14, "probability": 0.9541 }, { "start": 7459.8, "end": 7461.88, "probability": 0.555 }, { "start": 7462.9, "end": 7462.9, "probability": 0.1036 }, { "start": 7463.74, "end": 7464.96, "probability": 0.995 }, { "start": 7465.3, "end": 7469.26, "probability": 0.9902 }, { "start": 7469.56, "end": 7470.56, "probability": 0.6644 }, { "start": 7471.24, "end": 7474.98, "probability": 0.6667 }, { "start": 7475.92, "end": 7478.14, "probability": 0.9673 }, { "start": 7478.66, "end": 7485.2, "probability": 0.9924 }, { "start": 7485.62, "end": 7490.28, "probability": 0.7335 }, { "start": 7492.01, "end": 7495.0, "probability": 0.9951 }, { "start": 7496.88, "end": 7497.38, "probability": 0.1411 }, { "start": 7500.22, "end": 7501.6, "probability": 0.0984 }, { "start": 7504.22, "end": 7504.32, "probability": 0.1193 }, { "start": 7504.32, "end": 7509.08, "probability": 0.8255 }, { "start": 7509.1, "end": 7509.46, "probability": 0.741 }, { "start": 7509.88, "end": 7511.56, "probability": 0.6865 }, { "start": 7511.8, "end": 7513.72, "probability": 0.8529 }, { "start": 7514.3, "end": 7516.68, "probability": 0.1201 }, { "start": 7529.3, "end": 7529.56, "probability": 0.7794 }, { "start": 7531.18, "end": 7531.18, "probability": 0.1525 }, { "start": 7531.18, "end": 7531.18, "probability": 0.0328 }, { "start": 7531.18, "end": 7531.18, "probability": 0.024 }, { "start": 7531.18, "end": 7531.18, "probability": 0.0723 }, { "start": 7531.18, "end": 7531.18, "probability": 0.067 }, { "start": 7531.18, "end": 7532.08, "probability": 0.2718 }, { "start": 7533.48, "end": 7534.36, "probability": 0.9404 }, { "start": 7535.2, "end": 7537.24, "probability": 0.7614 }, { "start": 7537.44, "end": 7538.54, "probability": 0.6955 }, { "start": 7539.82, "end": 7542.48, "probability": 0.9918 }, { "start": 7544.2, "end": 7548.7, "probability": 0.9969 }, { "start": 7549.28, "end": 7551.86, "probability": 0.9963 }, { "start": 7552.6, "end": 7553.5, "probability": 0.9894 }, { "start": 7555.0, "end": 7558.5, "probability": 0.9712 }, { "start": 7558.54, "end": 7560.38, "probability": 0.9326 }, { "start": 7561.42, "end": 7565.2, "probability": 0.7708 }, { "start": 7566.58, "end": 7568.2, "probability": 0.9872 }, { "start": 7568.9, "end": 7569.98, "probability": 0.7359 }, { "start": 7570.48, "end": 7572.3, "probability": 0.8347 }, { "start": 7572.76, "end": 7574.14, "probability": 0.7799 }, { "start": 7575.36, "end": 7578.7, "probability": 0.9659 }, { "start": 7579.28, "end": 7583.16, "probability": 0.7504 }, { "start": 7584.94, "end": 7586.81, "probability": 0.7483 }, { "start": 7587.98, "end": 7590.32, "probability": 0.874 }, { "start": 7590.34, "end": 7591.02, "probability": 0.5559 }, { "start": 7592.94, "end": 7595.4, "probability": 0.7773 }, { "start": 7595.48, "end": 7597.24, "probability": 0.3561 }, { "start": 7597.64, "end": 7600.28, "probability": 0.4073 }, { "start": 7600.56, "end": 7604.22, "probability": 0.5062 }, { "start": 7604.42, "end": 7604.84, "probability": 0.7212 }, { "start": 7605.02, "end": 7605.27, "probability": 0.4277 }, { "start": 7606.22, "end": 7610.0, "probability": 0.9376 }, { "start": 7610.84, "end": 7611.12, "probability": 0.1263 }, { "start": 7611.36, "end": 7615.1, "probability": 0.6676 }, { "start": 7615.9, "end": 7617.5, "probability": 0.9526 }, { "start": 7618.76, "end": 7619.88, "probability": 0.9749 }, { "start": 7620.22, "end": 7622.18, "probability": 0.9939 }, { "start": 7622.96, "end": 7624.68, "probability": 0.9966 }, { "start": 7625.32, "end": 7628.84, "probability": 0.7837 }, { "start": 7628.98, "end": 7630.16, "probability": 0.0755 }, { "start": 7630.16, "end": 7631.5, "probability": 0.8147 }, { "start": 7631.58, "end": 7633.02, "probability": 0.9161 }, { "start": 7633.56, "end": 7637.02, "probability": 0.9216 }, { "start": 7641.38, "end": 7645.38, "probability": 0.9759 }, { "start": 7645.8, "end": 7646.68, "probability": 0.7767 }, { "start": 7647.82, "end": 7649.16, "probability": 0.9533 }, { "start": 7649.96, "end": 7651.9, "probability": 0.8853 }, { "start": 7652.44, "end": 7654.34, "probability": 0.9168 }, { "start": 7655.3, "end": 7658.24, "probability": 0.9952 }, { "start": 7659.38, "end": 7661.16, "probability": 0.9937 }, { "start": 7661.8, "end": 7664.6, "probability": 0.613 }, { "start": 7664.76, "end": 7667.08, "probability": 0.7481 }, { "start": 7667.4, "end": 7669.34, "probability": 0.9867 }, { "start": 7671.06, "end": 7677.1, "probability": 0.9663 }, { "start": 7677.12, "end": 7679.82, "probability": 0.7742 }, { "start": 7679.9, "end": 7680.66, "probability": 0.9443 }, { "start": 7681.66, "end": 7682.3, "probability": 0.906 }, { "start": 7683.38, "end": 7686.9, "probability": 0.8402 }, { "start": 7687.18, "end": 7688.1, "probability": 0.9495 }, { "start": 7690.0, "end": 7692.22, "probability": 0.8113 }, { "start": 7692.34, "end": 7694.64, "probability": 0.8505 }, { "start": 7696.42, "end": 7697.4, "probability": 0.9553 }, { "start": 7698.14, "end": 7700.62, "probability": 0.9961 }, { "start": 7702.15, "end": 7703.48, "probability": 0.2661 }, { "start": 7703.48, "end": 7703.9, "probability": 0.6245 }, { "start": 7706.7, "end": 7710.46, "probability": 0.9511 }, { "start": 7710.78, "end": 7711.0, "probability": 0.7932 }, { "start": 7713.8, "end": 7715.72, "probability": 0.9969 }, { "start": 7717.52, "end": 7718.04, "probability": 0.8317 }, { "start": 7718.78, "end": 7722.46, "probability": 0.9272 }, { "start": 7722.74, "end": 7723.64, "probability": 0.7237 }, { "start": 7723.7, "end": 7724.72, "probability": 0.9922 }, { "start": 7726.5, "end": 7729.08, "probability": 0.6751 }, { "start": 7729.2, "end": 7733.82, "probability": 0.9952 }, { "start": 7734.38, "end": 7736.64, "probability": 0.8881 }, { "start": 7738.48, "end": 7739.38, "probability": 0.952 }, { "start": 7741.84, "end": 7742.8, "probability": 0.7442 }, { "start": 7743.7, "end": 7746.44, "probability": 0.974 }, { "start": 7746.58, "end": 7747.44, "probability": 0.8738 }, { "start": 7748.26, "end": 7751.7, "probability": 0.9639 }, { "start": 7752.12, "end": 7754.28, "probability": 0.7848 }, { "start": 7754.46, "end": 7754.89, "probability": 0.98 }, { "start": 7755.38, "end": 7756.01, "probability": 0.9923 }, { "start": 7756.16, "end": 7759.36, "probability": 0.9912 }, { "start": 7760.4, "end": 7763.74, "probability": 0.8643 }, { "start": 7763.74, "end": 7763.96, "probability": 0.7805 }, { "start": 7765.44, "end": 7767.16, "probability": 0.5418 }, { "start": 7768.62, "end": 7769.82, "probability": 0.9336 }, { "start": 7771.06, "end": 7772.18, "probability": 0.9529 }, { "start": 7774.14, "end": 7776.0, "probability": 0.9891 }, { "start": 7776.22, "end": 7777.62, "probability": 0.9808 }, { "start": 7778.42, "end": 7779.64, "probability": 0.6994 }, { "start": 7779.7, "end": 7782.3, "probability": 0.9786 }, { "start": 7783.24, "end": 7784.24, "probability": 0.5739 }, { "start": 7785.6, "end": 7787.68, "probability": 0.7241 }, { "start": 7788.88, "end": 7793.2, "probability": 0.9604 }, { "start": 7793.34, "end": 7794.02, "probability": 0.9801 }, { "start": 7795.02, "end": 7795.74, "probability": 0.9552 }, { "start": 7798.08, "end": 7798.99, "probability": 0.967 }, { "start": 7799.96, "end": 7800.24, "probability": 0.749 }, { "start": 7802.36, "end": 7804.04, "probability": 0.8386 }, { "start": 7805.02, "end": 7805.84, "probability": 0.8481 }, { "start": 7806.86, "end": 7809.42, "probability": 0.9756 }, { "start": 7810.32, "end": 7812.2, "probability": 0.9989 }, { "start": 7812.34, "end": 7812.78, "probability": 0.6801 }, { "start": 7813.44, "end": 7817.16, "probability": 0.7142 }, { "start": 7817.68, "end": 7819.02, "probability": 0.995 }, { "start": 7819.8, "end": 7821.98, "probability": 0.0326 }, { "start": 7822.76, "end": 7822.76, "probability": 0.0564 }, { "start": 7822.76, "end": 7824.25, "probability": 0.321 }, { "start": 7824.74, "end": 7827.28, "probability": 0.9933 }, { "start": 7827.96, "end": 7828.9, "probability": 0.938 }, { "start": 7829.58, "end": 7830.22, "probability": 0.8254 }, { "start": 7831.06, "end": 7832.64, "probability": 0.8949 }, { "start": 7833.3, "end": 7835.26, "probability": 0.488 }, { "start": 7847.88, "end": 7848.74, "probability": 0.3767 }, { "start": 7848.74, "end": 7848.74, "probability": 0.1217 }, { "start": 7848.74, "end": 7849.16, "probability": 0.2179 }, { "start": 7850.54, "end": 7850.86, "probability": 0.0433 }, { "start": 7850.86, "end": 7850.86, "probability": 0.1861 }, { "start": 7850.86, "end": 7851.56, "probability": 0.4453 }, { "start": 7851.58, "end": 7855.06, "probability": 0.9709 }, { "start": 7856.08, "end": 7857.6, "probability": 0.7524 }, { "start": 7858.42, "end": 7861.8, "probability": 0.9954 }, { "start": 7861.86, "end": 7864.26, "probability": 0.6937 }, { "start": 7864.82, "end": 7865.48, "probability": 0.6131 }, { "start": 7866.5, "end": 7871.96, "probability": 0.9273 }, { "start": 7872.46, "end": 7873.6, "probability": 0.7859 }, { "start": 7873.62, "end": 7878.84, "probability": 0.8901 }, { "start": 7879.98, "end": 7883.18, "probability": 0.9897 }, { "start": 7885.22, "end": 7888.1, "probability": 0.0164 }, { "start": 7889.81, "end": 7892.9, "probability": 0.6186 }, { "start": 7894.2, "end": 7895.82, "probability": 0.9105 }, { "start": 7895.96, "end": 7898.02, "probability": 0.0628 }, { "start": 7898.16, "end": 7898.92, "probability": 0.1917 }, { "start": 7898.92, "end": 7899.3, "probability": 0.0135 }, { "start": 7899.34, "end": 7902.34, "probability": 0.861 }, { "start": 7902.92, "end": 7904.5, "probability": 0.9922 }, { "start": 7905.82, "end": 7907.18, "probability": 0.9443 }, { "start": 7907.4, "end": 7911.48, "probability": 0.9811 }, { "start": 7913.1, "end": 7916.86, "probability": 0.9956 }, { "start": 7918.96, "end": 7919.34, "probability": 0.5355 }, { "start": 7919.42, "end": 7920.7, "probability": 0.8806 }, { "start": 7921.1, "end": 7922.76, "probability": 0.5478 }, { "start": 7923.0, "end": 7924.3, "probability": 0.9552 }, { "start": 7925.12, "end": 7927.3, "probability": 0.804 }, { "start": 7928.08, "end": 7931.0, "probability": 0.8745 }, { "start": 7931.08, "end": 7937.14, "probability": 0.9409 }, { "start": 7939.2, "end": 7941.42, "probability": 0.7496 }, { "start": 7942.36, "end": 7943.04, "probability": 0.986 }, { "start": 7943.78, "end": 7944.56, "probability": 0.779 }, { "start": 7944.64, "end": 7945.8, "probability": 0.5214 }, { "start": 7945.98, "end": 7947.64, "probability": 0.797 }, { "start": 7948.64, "end": 7949.36, "probability": 0.9343 }, { "start": 7950.7, "end": 7951.24, "probability": 0.7495 }, { "start": 7951.98, "end": 7952.44, "probability": 0.3089 }, { "start": 7953.99, "end": 7957.26, "probability": 0.9443 }, { "start": 7957.5, "end": 7958.67, "probability": 0.9785 }, { "start": 7959.16, "end": 7963.12, "probability": 0.0185 }, { "start": 7963.26, "end": 7964.22, "probability": 0.9651 }, { "start": 7964.6, "end": 7970.14, "probability": 0.9432 }, { "start": 7970.4, "end": 7970.62, "probability": 0.4956 }, { "start": 7971.7, "end": 7973.04, "probability": 0.6213 }, { "start": 7973.42, "end": 7975.01, "probability": 0.7002 }, { "start": 7976.74, "end": 7980.02, "probability": 0.9402 }, { "start": 7980.92, "end": 7982.66, "probability": 0.9834 }, { "start": 7984.06, "end": 7988.56, "probability": 0.8092 }, { "start": 7993.72, "end": 7994.6, "probability": 0.5983 }, { "start": 8019.06, "end": 8019.06, "probability": 0.1655 }, { "start": 8019.06, "end": 8019.06, "probability": 0.7007 }, { "start": 8019.06, "end": 8021.38, "probability": 0.6552 }, { "start": 8021.46, "end": 8022.82, "probability": 0.9941 }, { "start": 8023.52, "end": 8026.54, "probability": 0.33 }, { "start": 8026.72, "end": 8026.9, "probability": 0.215 }, { "start": 8026.9, "end": 8032.86, "probability": 0.6631 }, { "start": 8033.04, "end": 8038.14, "probability": 0.8998 }, { "start": 8039.62, "end": 8040.98, "probability": 0.8755 }, { "start": 8041.58, "end": 8043.28, "probability": 0.9377 }, { "start": 8043.9, "end": 8044.1, "probability": 0.8658 }, { "start": 8044.74, "end": 8047.94, "probability": 0.9919 }, { "start": 8050.18, "end": 8051.54, "probability": 0.7501 }, { "start": 8053.94, "end": 8054.74, "probability": 0.8623 }, { "start": 8064.76, "end": 8065.32, "probability": 0.3327 }, { "start": 8070.46, "end": 8073.26, "probability": 0.7179 }, { "start": 8074.3, "end": 8079.72, "probability": 0.6793 }, { "start": 8081.7, "end": 8083.4, "probability": 0.9661 }, { "start": 8085.0, "end": 8085.88, "probability": 0.7777 }, { "start": 8086.52, "end": 8086.72, "probability": 0.9575 }, { "start": 8087.42, "end": 8087.56, "probability": 0.1875 }, { "start": 8087.56, "end": 8088.48, "probability": 0.7987 }, { "start": 8089.12, "end": 8094.06, "probability": 0.9592 }, { "start": 8094.16, "end": 8096.7, "probability": 0.9388 }, { "start": 8097.38, "end": 8101.92, "probability": 0.9518 }, { "start": 8102.74, "end": 8105.52, "probability": 0.6887 }, { "start": 8106.26, "end": 8108.8, "probability": 0.9968 }, { "start": 8108.8, "end": 8112.38, "probability": 0.9941 }, { "start": 8112.86, "end": 8113.12, "probability": 0.7005 }, { "start": 8113.56, "end": 8113.98, "probability": 0.7724 }, { "start": 8114.96, "end": 8117.52, "probability": 0.8083 }, { "start": 8118.04, "end": 8120.22, "probability": 0.7476 }, { "start": 8120.78, "end": 8121.26, "probability": 0.783 }, { "start": 8122.15, "end": 8125.78, "probability": 0.9036 }, { "start": 8125.78, "end": 8128.12, "probability": 0.9917 }, { "start": 8129.52, "end": 8130.18, "probability": 0.9253 }, { "start": 8130.9, "end": 8134.38, "probability": 0.9008 }, { "start": 8135.94, "end": 8141.0, "probability": 0.8203 }, { "start": 8141.42, "end": 8146.22, "probability": 0.7486 }, { "start": 8146.8, "end": 8149.64, "probability": 0.9889 }, { "start": 8149.94, "end": 8153.46, "probability": 0.917 }, { "start": 8153.6, "end": 8157.36, "probability": 0.9911 }, { "start": 8158.74, "end": 8159.74, "probability": 0.9946 }, { "start": 8160.06, "end": 8161.4, "probability": 0.3567 }, { "start": 8161.84, "end": 8166.14, "probability": 0.9292 }, { "start": 8166.64, "end": 8172.02, "probability": 0.9688 }, { "start": 8172.22, "end": 8174.74, "probability": 0.959 }, { "start": 8175.24, "end": 8175.82, "probability": 0.596 }, { "start": 8175.84, "end": 8178.54, "probability": 0.9491 }, { "start": 8178.54, "end": 8181.2, "probability": 0.9906 }, { "start": 8182.1, "end": 8188.7, "probability": 0.4653 }, { "start": 8189.38, "end": 8192.32, "probability": 0.9984 }, { "start": 8192.36, "end": 8193.86, "probability": 0.8452 }, { "start": 8194.58, "end": 8195.22, "probability": 0.8621 }, { "start": 8195.68, "end": 8201.04, "probability": 0.9297 }, { "start": 8202.08, "end": 8202.74, "probability": 0.8861 }, { "start": 8203.66, "end": 8206.7, "probability": 0.973 }, { "start": 8207.14, "end": 8208.9, "probability": 0.9963 }, { "start": 8209.54, "end": 8212.54, "probability": 0.9947 }, { "start": 8212.6, "end": 8213.66, "probability": 0.9166 }, { "start": 8215.1, "end": 8218.14, "probability": 0.9897 }, { "start": 8218.14, "end": 8221.12, "probability": 0.9851 }, { "start": 8221.96, "end": 8227.26, "probability": 0.9873 }, { "start": 8228.62, "end": 8229.22, "probability": 0.5916 }, { "start": 8230.0, "end": 8230.62, "probability": 0.8682 }, { "start": 8231.74, "end": 8232.52, "probability": 0.8007 }, { "start": 8232.64, "end": 8235.32, "probability": 0.8477 }, { "start": 8235.32, "end": 8238.92, "probability": 0.995 }, { "start": 8239.4, "end": 8240.52, "probability": 0.9966 }, { "start": 8241.18, "end": 8241.7, "probability": 0.9727 }, { "start": 8242.76, "end": 8245.68, "probability": 0.8866 }, { "start": 8245.68, "end": 8249.72, "probability": 0.7364 }, { "start": 8250.16, "end": 8256.88, "probability": 0.7367 }, { "start": 8259.1, "end": 8260.18, "probability": 0.8271 }, { "start": 8260.54, "end": 8262.92, "probability": 0.9373 }, { "start": 8263.02, "end": 8263.48, "probability": 0.4277 }, { "start": 8264.14, "end": 8267.28, "probability": 0.9695 }, { "start": 8268.2, "end": 8272.84, "probability": 0.9914 }, { "start": 8272.98, "end": 8274.72, "probability": 0.9714 }, { "start": 8275.06, "end": 8276.32, "probability": 0.5581 }, { "start": 8277.0, "end": 8278.56, "probability": 0.6782 }, { "start": 8278.76, "end": 8282.5, "probability": 0.9134 }, { "start": 8283.2, "end": 8286.76, "probability": 0.9231 }, { "start": 8287.36, "end": 8289.82, "probability": 0.9824 }, { "start": 8291.58, "end": 8293.7, "probability": 0.8787 }, { "start": 8294.24, "end": 8295.76, "probability": 0.8734 }, { "start": 8296.34, "end": 8300.06, "probability": 0.9571 }, { "start": 8300.08, "end": 8301.06, "probability": 0.8672 }, { "start": 8301.18, "end": 8301.86, "probability": 0.938 }, { "start": 8301.92, "end": 8303.06, "probability": 0.9937 }, { "start": 8303.64, "end": 8305.84, "probability": 0.8938 }, { "start": 8306.42, "end": 8307.32, "probability": 0.989 }, { "start": 8308.74, "end": 8310.98, "probability": 0.9967 }, { "start": 8311.06, "end": 8313.02, "probability": 0.9985 }, { "start": 8314.14, "end": 8316.54, "probability": 0.9416 }, { "start": 8318.56, "end": 8320.88, "probability": 0.7514 }, { "start": 8322.64, "end": 8325.0, "probability": 0.958 }, { "start": 8326.36, "end": 8327.48, "probability": 0.8617 }, { "start": 8328.76, "end": 8332.7, "probability": 0.9894 }, { "start": 8332.94, "end": 8334.12, "probability": 0.9941 }, { "start": 8335.06, "end": 8336.06, "probability": 0.6869 }, { "start": 8336.76, "end": 8337.94, "probability": 0.9406 }, { "start": 8337.94, "end": 8340.62, "probability": 0.9512 }, { "start": 8340.8, "end": 8344.06, "probability": 0.9923 }, { "start": 8345.24, "end": 8346.06, "probability": 0.6675 }, { "start": 8346.9, "end": 8348.12, "probability": 0.8915 }, { "start": 8349.58, "end": 8353.5, "probability": 0.9968 }, { "start": 8354.26, "end": 8354.86, "probability": 0.9661 }, { "start": 8356.2, "end": 8359.74, "probability": 0.9969 }, { "start": 8361.38, "end": 8362.54, "probability": 0.5667 }, { "start": 8363.64, "end": 8366.46, "probability": 0.1152 }, { "start": 8366.46, "end": 8367.32, "probability": 0.7762 }, { "start": 8367.42, "end": 8371.28, "probability": 0.7368 }, { "start": 8371.46, "end": 8372.7, "probability": 0.9875 }, { "start": 8373.66, "end": 8374.04, "probability": 0.8188 }, { "start": 8374.12, "end": 8374.7, "probability": 0.8296 }, { "start": 8374.76, "end": 8375.3, "probability": 0.9084 }, { "start": 8375.38, "end": 8376.71, "probability": 0.5333 }, { "start": 8377.04, "end": 8378.08, "probability": 0.9508 }, { "start": 8378.16, "end": 8378.92, "probability": 0.8853 }, { "start": 8379.06, "end": 8380.16, "probability": 0.9377 }, { "start": 8380.98, "end": 8385.48, "probability": 0.938 }, { "start": 8385.48, "end": 8389.58, "probability": 0.9941 }, { "start": 8389.74, "end": 8391.6, "probability": 0.8334 }, { "start": 8391.68, "end": 8392.18, "probability": 0.9204 }, { "start": 8392.74, "end": 8394.99, "probability": 0.6948 }, { "start": 8396.16, "end": 8397.48, "probability": 0.3821 }, { "start": 8397.6, "end": 8399.64, "probability": 0.9559 }, { "start": 8399.78, "end": 8400.92, "probability": 0.9849 }, { "start": 8402.78, "end": 8407.48, "probability": 0.9512 }, { "start": 8407.48, "end": 8409.82, "probability": 0.9404 }, { "start": 8410.5, "end": 8412.6, "probability": 0.9949 }, { "start": 8413.14, "end": 8414.46, "probability": 0.9993 }, { "start": 8415.34, "end": 8416.38, "probability": 0.5953 }, { "start": 8417.72, "end": 8419.78, "probability": 0.9154 }, { "start": 8421.07, "end": 8424.2, "probability": 0.918 }, { "start": 8425.68, "end": 8426.3, "probability": 0.7981 }, { "start": 8427.0, "end": 8427.48, "probability": 0.3946 }, { "start": 8427.62, "end": 8432.18, "probability": 0.96 }, { "start": 8432.28, "end": 8434.08, "probability": 0.9175 }, { "start": 8434.2, "end": 8436.58, "probability": 0.9177 }, { "start": 8436.66, "end": 8441.14, "probability": 0.9619 }, { "start": 8441.96, "end": 8443.39, "probability": 0.9404 }, { "start": 8443.86, "end": 8450.48, "probability": 0.7939 }, { "start": 8451.36, "end": 8453.06, "probability": 0.9841 }, { "start": 8453.76, "end": 8457.42, "probability": 0.9937 }, { "start": 8457.74, "end": 8458.24, "probability": 0.8159 }, { "start": 8458.44, "end": 8459.04, "probability": 0.9041 }, { "start": 8459.62, "end": 8462.24, "probability": 0.8875 }, { "start": 8463.3, "end": 8465.3, "probability": 0.4215 }, { "start": 8468.02, "end": 8468.48, "probability": 0.4138 }, { "start": 8468.58, "end": 8471.12, "probability": 0.996 }, { "start": 8472.64, "end": 8475.44, "probability": 0.9941 }, { "start": 8475.94, "end": 8477.8, "probability": 0.9812 }, { "start": 8478.32, "end": 8481.36, "probability": 0.692 }, { "start": 8481.6, "end": 8482.18, "probability": 0.717 }, { "start": 8482.34, "end": 8484.76, "probability": 0.9878 }, { "start": 8485.22, "end": 8487.28, "probability": 0.9878 }, { "start": 8487.8, "end": 8490.28, "probability": 0.786 }, { "start": 8492.06, "end": 8494.4, "probability": 0.8186 }, { "start": 8495.5, "end": 8496.92, "probability": 0.9888 }, { "start": 8496.92, "end": 8497.32, "probability": 0.753 }, { "start": 8504.48, "end": 8504.62, "probability": 0.0136 }, { "start": 8504.62, "end": 8508.12, "probability": 0.615 }, { "start": 8510.64, "end": 8512.6, "probability": 0.6267 }, { "start": 8513.34, "end": 8514.56, "probability": 0.7204 }, { "start": 8515.66, "end": 8517.98, "probability": 0.8952 }, { "start": 8517.98, "end": 8521.22, "probability": 0.9802 }, { "start": 8522.04, "end": 8524.38, "probability": 0.991 }, { "start": 8525.02, "end": 8526.36, "probability": 0.9924 }, { "start": 8526.96, "end": 8527.84, "probability": 0.7053 }, { "start": 8528.58, "end": 8532.3, "probability": 0.9816 }, { "start": 8533.08, "end": 8535.56, "probability": 0.8737 }, { "start": 8536.5, "end": 8539.7, "probability": 0.8818 }, { "start": 8541.12, "end": 8542.5, "probability": 0.7663 }, { "start": 8542.72, "end": 8547.46, "probability": 0.9814 }, { "start": 8547.46, "end": 8550.58, "probability": 0.9824 }, { "start": 8551.5, "end": 8553.12, "probability": 0.9806 }, { "start": 8556.72, "end": 8557.8, "probability": 0.6165 }, { "start": 8558.68, "end": 8558.9, "probability": 0.8202 }, { "start": 8559.78, "end": 8561.74, "probability": 0.7884 }, { "start": 8563.12, "end": 8565.86, "probability": 0.8544 }, { "start": 8566.02, "end": 8566.74, "probability": 0.6693 }, { "start": 8567.2, "end": 8568.56, "probability": 0.9822 }, { "start": 8569.28, "end": 8572.16, "probability": 0.9587 }, { "start": 8574.3, "end": 8574.6, "probability": 0.6268 }, { "start": 8575.94, "end": 8579.68, "probability": 0.9553 }, { "start": 8580.9, "end": 8581.14, "probability": 0.9478 }, { "start": 8582.6, "end": 8585.12, "probability": 0.9564 }, { "start": 8585.12, "end": 8589.22, "probability": 0.9943 }, { "start": 8589.58, "end": 8590.26, "probability": 0.8729 }, { "start": 8591.14, "end": 8594.66, "probability": 0.9526 }, { "start": 8595.32, "end": 8595.98, "probability": 0.4324 }, { "start": 8596.74, "end": 8599.74, "probability": 0.9768 }, { "start": 8600.32, "end": 8601.06, "probability": 0.897 }, { "start": 8601.42, "end": 8604.58, "probability": 0.9758 }, { "start": 8605.56, "end": 8608.01, "probability": 0.9739 }, { "start": 8608.48, "end": 8609.14, "probability": 0.6301 }, { "start": 8609.4, "end": 8611.04, "probability": 0.9646 }, { "start": 8611.16, "end": 8612.49, "probability": 0.9668 }, { "start": 8613.82, "end": 8616.68, "probability": 0.9025 }, { "start": 8617.32, "end": 8619.18, "probability": 0.9897 }, { "start": 8619.98, "end": 8621.2, "probability": 0.8415 }, { "start": 8621.56, "end": 8624.22, "probability": 0.979 }, { "start": 8624.36, "end": 8624.7, "probability": 0.9486 }, { "start": 8625.62, "end": 8629.68, "probability": 0.9771 }, { "start": 8630.74, "end": 8632.96, "probability": 0.9888 }, { "start": 8634.32, "end": 8638.04, "probability": 0.9263 }, { "start": 8639.06, "end": 8642.6, "probability": 0.994 }, { "start": 8643.14, "end": 8647.68, "probability": 0.9034 }, { "start": 8648.34, "end": 8649.1, "probability": 0.9603 }, { "start": 8649.22, "end": 8649.42, "probability": 0.7091 }, { "start": 8649.88, "end": 8650.56, "probability": 0.9821 }, { "start": 8650.7, "end": 8651.36, "probability": 0.9695 }, { "start": 8651.44, "end": 8653.42, "probability": 0.9835 }, { "start": 8654.76, "end": 8655.34, "probability": 0.7207 }, { "start": 8655.42, "end": 8661.36, "probability": 0.9658 }, { "start": 8662.52, "end": 8663.12, "probability": 0.5964 }, { "start": 8663.48, "end": 8664.92, "probability": 0.8033 }, { "start": 8665.06, "end": 8672.2, "probability": 0.9253 }, { "start": 8673.14, "end": 8674.08, "probability": 0.9731 }, { "start": 8675.3, "end": 8677.32, "probability": 0.9098 }, { "start": 8677.56, "end": 8678.49, "probability": 0.8708 }, { "start": 8679.44, "end": 8682.36, "probability": 0.7459 }, { "start": 8682.42, "end": 8683.46, "probability": 0.7894 }, { "start": 8683.8, "end": 8685.96, "probability": 0.9268 }, { "start": 8686.0, "end": 8686.94, "probability": 0.9681 }, { "start": 8687.1, "end": 8687.94, "probability": 0.9863 }, { "start": 8688.06, "end": 8688.9, "probability": 0.771 }, { "start": 8689.76, "end": 8690.82, "probability": 0.6067 }, { "start": 8691.84, "end": 8693.64, "probability": 0.9966 }, { "start": 8694.76, "end": 8695.38, "probability": 0.9382 }, { "start": 8695.72, "end": 8697.26, "probability": 0.9642 }, { "start": 8697.58, "end": 8701.0, "probability": 0.9662 }, { "start": 8701.72, "end": 8704.42, "probability": 0.9665 }, { "start": 8705.04, "end": 8705.94, "probability": 0.8274 }, { "start": 8706.58, "end": 8709.98, "probability": 0.9707 }, { "start": 8710.96, "end": 8712.52, "probability": 0.9161 }, { "start": 8712.88, "end": 8717.94, "probability": 0.9953 }, { "start": 8718.74, "end": 8719.92, "probability": 0.944 }, { "start": 8721.08, "end": 8721.82, "probability": 0.8479 }, { "start": 8721.88, "end": 8723.08, "probability": 0.8723 }, { "start": 8723.2, "end": 8724.84, "probability": 0.9622 }, { "start": 8725.4, "end": 8728.35, "probability": 0.9194 }, { "start": 8728.66, "end": 8732.08, "probability": 0.7821 }, { "start": 8732.09, "end": 8738.3, "probability": 0.9478 }, { "start": 8739.44, "end": 8741.28, "probability": 0.6908 }, { "start": 8741.84, "end": 8744.88, "probability": 0.8461 }, { "start": 8746.06, "end": 8749.32, "probability": 0.992 }, { "start": 8749.34, "end": 8750.01, "probability": 0.731 }, { "start": 8750.16, "end": 8750.66, "probability": 0.3921 }, { "start": 8750.76, "end": 8751.6, "probability": 0.8447 }, { "start": 8752.16, "end": 8752.72, "probability": 0.0083 }, { "start": 8754.06, "end": 8756.72, "probability": 0.979 }, { "start": 8756.78, "end": 8759.44, "probability": 0.7344 }, { "start": 8760.18, "end": 8760.18, "probability": 0.2726 }, { "start": 8760.18, "end": 8761.79, "probability": 0.5061 }, { "start": 8762.72, "end": 8765.12, "probability": 0.782 }, { "start": 8765.9, "end": 8767.38, "probability": 0.7341 }, { "start": 8767.74, "end": 8769.5, "probability": 0.8523 }, { "start": 8770.68, "end": 8771.84, "probability": 0.9703 }, { "start": 8772.74, "end": 8773.66, "probability": 0.8378 }, { "start": 8775.64, "end": 8776.28, "probability": 0.7829 }, { "start": 8777.76, "end": 8779.4, "probability": 0.8667 }, { "start": 8780.56, "end": 8782.8, "probability": 0.9853 }, { "start": 8783.2, "end": 8783.82, "probability": 0.9082 }, { "start": 8784.3, "end": 8785.18, "probability": 0.9534 }, { "start": 8785.46, "end": 8787.9, "probability": 0.9868 }, { "start": 8788.02, "end": 8788.5, "probability": 0.9302 }, { "start": 8788.58, "end": 8792.86, "probability": 0.9849 }, { "start": 8793.04, "end": 8796.2, "probability": 0.9878 }, { "start": 8796.46, "end": 8798.36, "probability": 0.9902 }, { "start": 8798.9, "end": 8802.7, "probability": 0.9333 }, { "start": 8803.08, "end": 8803.71, "probability": 0.5613 }, { "start": 8804.14, "end": 8805.2, "probability": 0.7173 }, { "start": 8805.42, "end": 8807.32, "probability": 0.9915 }, { "start": 8807.58, "end": 8807.98, "probability": 0.5345 }, { "start": 8808.64, "end": 8810.42, "probability": 0.9941 }, { "start": 8811.24, "end": 8812.24, "probability": 0.9722 }, { "start": 8812.54, "end": 8814.44, "probability": 0.7786 }, { "start": 8814.54, "end": 8817.54, "probability": 0.9919 }, { "start": 8818.38, "end": 8818.88, "probability": 0.7793 }, { "start": 8819.3, "end": 8819.98, "probability": 0.8877 }, { "start": 8820.08, "end": 8820.78, "probability": 0.8531 }, { "start": 8821.26, "end": 8822.84, "probability": 0.9563 }, { "start": 8823.38, "end": 8827.62, "probability": 0.9961 }, { "start": 8828.0, "end": 8830.24, "probability": 0.8789 }, { "start": 8830.28, "end": 8831.9, "probability": 0.8544 }, { "start": 8832.04, "end": 8834.5, "probability": 0.985 }, { "start": 8834.94, "end": 8837.96, "probability": 0.9282 }, { "start": 8838.02, "end": 8840.16, "probability": 0.6189 }, { "start": 8840.28, "end": 8840.9, "probability": 0.5845 }, { "start": 8840.92, "end": 8841.66, "probability": 0.8889 }, { "start": 8841.88, "end": 8842.2, "probability": 0.528 }, { "start": 8842.58, "end": 8842.76, "probability": 0.8588 }, { "start": 8842.88, "end": 8843.78, "probability": 0.8225 }, { "start": 8844.68, "end": 8845.42, "probability": 0.6944 }, { "start": 8846.64, "end": 8849.96, "probability": 0.7932 }, { "start": 8852.0, "end": 8853.24, "probability": 0.8053 }, { "start": 8854.24, "end": 8856.54, "probability": 0.6396 }, { "start": 8857.1, "end": 8860.0, "probability": 0.8357 }, { "start": 8868.84, "end": 8869.82, "probability": 0.6478 }, { "start": 8870.68, "end": 8872.0, "probability": 0.4658 }, { "start": 8874.66, "end": 8878.66, "probability": 0.9816 }, { "start": 8879.48, "end": 8882.1, "probability": 0.8566 }, { "start": 8882.98, "end": 8887.34, "probability": 0.9915 }, { "start": 8888.38, "end": 8889.76, "probability": 0.5637 }, { "start": 8890.04, "end": 8891.46, "probability": 0.9846 }, { "start": 8891.8, "end": 8894.16, "probability": 0.964 }, { "start": 8894.66, "end": 8898.9, "probability": 0.9461 }, { "start": 8899.5, "end": 8900.84, "probability": 0.8265 }, { "start": 8901.42, "end": 8901.6, "probability": 0.7148 }, { "start": 8902.74, "end": 8903.72, "probability": 0.813 }, { "start": 8905.02, "end": 8905.78, "probability": 0.8421 }, { "start": 8905.86, "end": 8910.92, "probability": 0.8594 }, { "start": 8913.68, "end": 8914.34, "probability": 0.0002 }, { "start": 8914.9, "end": 8918.28, "probability": 0.7324 }, { "start": 8920.66, "end": 8925.28, "probability": 0.5598 }, { "start": 8926.06, "end": 8927.04, "probability": 0.7517 }, { "start": 8927.08, "end": 8931.36, "probability": 0.9611 }, { "start": 8932.32, "end": 8937.64, "probability": 0.9924 }, { "start": 8938.38, "end": 8943.16, "probability": 0.6394 }, { "start": 8943.46, "end": 8945.96, "probability": 0.7295 }, { "start": 8946.48, "end": 8947.92, "probability": 0.6948 }, { "start": 8948.96, "end": 8952.7, "probability": 0.9868 }, { "start": 8953.1, "end": 8953.82, "probability": 0.9702 }, { "start": 8954.52, "end": 8958.64, "probability": 0.9842 }, { "start": 8959.78, "end": 8964.1, "probability": 0.9961 }, { "start": 8964.76, "end": 8965.6, "probability": 0.77 }, { "start": 8966.22, "end": 8967.14, "probability": 0.5824 }, { "start": 8967.34, "end": 8970.98, "probability": 0.9087 }, { "start": 8971.56, "end": 8976.6, "probability": 0.994 }, { "start": 8977.74, "end": 8978.04, "probability": 0.6082 }, { "start": 8978.16, "end": 8984.14, "probability": 0.9863 }, { "start": 8984.36, "end": 8988.1, "probability": 0.9364 }, { "start": 8988.68, "end": 8989.36, "probability": 0.9844 }, { "start": 8990.08, "end": 8991.66, "probability": 0.8966 }, { "start": 8992.78, "end": 8994.38, "probability": 0.9946 }, { "start": 8994.54, "end": 8996.5, "probability": 0.8938 }, { "start": 8997.16, "end": 8999.83, "probability": 0.7822 }, { "start": 9000.88, "end": 9007.68, "probability": 0.9199 }, { "start": 9007.68, "end": 9013.12, "probability": 0.8966 }, { "start": 9013.42, "end": 9014.08, "probability": 0.8016 }, { "start": 9014.76, "end": 9018.02, "probability": 0.9609 }, { "start": 9019.16, "end": 9019.8, "probability": 0.5612 }, { "start": 9020.48, "end": 9021.62, "probability": 0.7597 }, { "start": 9021.8, "end": 9022.32, "probability": 0.3721 }, { "start": 9022.62, "end": 9023.04, "probability": 0.6298 }, { "start": 9030.8, "end": 9031.5, "probability": 0.5446 }, { "start": 9031.92, "end": 9032.61, "probability": 0.6543 }, { "start": 9032.74, "end": 9033.08, "probability": 0.4814 }, { "start": 9033.36, "end": 9038.3, "probability": 0.8077 }, { "start": 9039.06, "end": 9040.12, "probability": 0.9907 }, { "start": 9041.32, "end": 9044.28, "probability": 0.9829 }, { "start": 9045.18, "end": 9046.88, "probability": 0.5018 }, { "start": 9047.02, "end": 9047.7, "probability": 0.9971 }, { "start": 9048.08, "end": 9048.22, "probability": 0.3484 }, { "start": 9048.36, "end": 9050.0, "probability": 0.8788 }, { "start": 9051.18, "end": 9052.92, "probability": 0.9834 }, { "start": 9053.04, "end": 9054.51, "probability": 0.8105 }, { "start": 9055.14, "end": 9056.96, "probability": 0.6592 }, { "start": 9057.5, "end": 9057.92, "probability": 0.7702 }, { "start": 9058.08, "end": 9058.54, "probability": 0.5 }, { "start": 9059.42, "end": 9060.12, "probability": 0.5831 }, { "start": 9060.46, "end": 9063.14, "probability": 0.9814 }, { "start": 9063.54, "end": 9064.6, "probability": 0.9736 }, { "start": 9064.74, "end": 9065.62, "probability": 0.4415 }, { "start": 9065.7, "end": 9067.38, "probability": 0.5345 }, { "start": 9067.52, "end": 9069.02, "probability": 0.6997 }, { "start": 9070.44, "end": 9071.02, "probability": 0.8121 }, { "start": 9073.8, "end": 9076.56, "probability": 0.8684 }, { "start": 9077.22, "end": 9079.62, "probability": 0.6892 }, { "start": 9079.96, "end": 9082.04, "probability": 0.7653 }, { "start": 9084.04, "end": 9087.56, "probability": 0.9483 }, { "start": 9087.62, "end": 9089.73, "probability": 0.8484 }, { "start": 9090.06, "end": 9090.22, "probability": 0.6528 }, { "start": 9090.28, "end": 9091.95, "probability": 0.9917 }, { "start": 9092.64, "end": 9098.06, "probability": 0.6664 }, { "start": 9099.15, "end": 9099.58, "probability": 0.8875 }, { "start": 9100.56, "end": 9100.98, "probability": 0.6473 }, { "start": 9101.86, "end": 9103.16, "probability": 0.8203 }, { "start": 9103.94, "end": 9104.75, "probability": 0.6058 }, { "start": 9105.0, "end": 9109.34, "probability": 0.9812 }, { "start": 9110.26, "end": 9111.46, "probability": 0.8744 }, { "start": 9112.62, "end": 9116.74, "probability": 0.7899 }, { "start": 9117.26, "end": 9118.1, "probability": 0.9224 }, { "start": 9118.98, "end": 9122.66, "probability": 0.9982 }, { "start": 9122.66, "end": 9125.96, "probability": 0.9944 }, { "start": 9126.48, "end": 9128.18, "probability": 0.9785 }, { "start": 9128.54, "end": 9129.9, "probability": 0.985 }, { "start": 9130.66, "end": 9132.12, "probability": 0.7016 }, { "start": 9132.3, "end": 9135.12, "probability": 0.9893 }, { "start": 9135.12, "end": 9136.55, "probability": 0.988 }, { "start": 9137.18, "end": 9138.06, "probability": 0.8702 }, { "start": 9138.66, "end": 9140.18, "probability": 0.9577 }, { "start": 9140.28, "end": 9142.52, "probability": 0.9048 }, { "start": 9143.1, "end": 9144.84, "probability": 0.9845 }, { "start": 9145.4, "end": 9147.7, "probability": 0.976 }, { "start": 9149.12, "end": 9151.06, "probability": 0.4969 }, { "start": 9151.53, "end": 9153.19, "probability": 0.7471 }, { "start": 9153.4, "end": 9154.87, "probability": 0.9971 }, { "start": 9155.26, "end": 9158.04, "probability": 0.9497 }, { "start": 9158.44, "end": 9160.28, "probability": 0.6514 }, { "start": 9160.4, "end": 9161.12, "probability": 0.4884 }, { "start": 9161.14, "end": 9161.64, "probability": 0.5555 }, { "start": 9162.44, "end": 9166.2, "probability": 0.896 }, { "start": 9167.84, "end": 9168.78, "probability": 0.5336 }, { "start": 9169.28, "end": 9171.38, "probability": 0.78 }, { "start": 9171.66, "end": 9171.86, "probability": 0.2461 }, { "start": 9171.86, "end": 9172.64, "probability": 0.84 }, { "start": 9172.74, "end": 9176.34, "probability": 0.9916 }, { "start": 9176.82, "end": 9177.44, "probability": 0.8929 }, { "start": 9177.66, "end": 9180.36, "probability": 0.9324 }, { "start": 9181.34, "end": 9182.18, "probability": 0.9207 }, { "start": 9182.74, "end": 9184.08, "probability": 0.7874 }, { "start": 9188.54, "end": 9190.06, "probability": 0.0271 }, { "start": 9190.06, "end": 9190.78, "probability": 0.7329 }, { "start": 9190.94, "end": 9191.4, "probability": 0.7252 }, { "start": 9191.5, "end": 9193.24, "probability": 0.8787 }, { "start": 9195.68, "end": 9197.48, "probability": 0.7186 }, { "start": 9205.24, "end": 9205.94, "probability": 0.5283 }, { "start": 9206.06, "end": 9206.32, "probability": 0.4219 }, { "start": 9206.48, "end": 9207.84, "probability": 0.6545 }, { "start": 9208.22, "end": 9210.44, "probability": 0.9567 }, { "start": 9210.58, "end": 9211.5, "probability": 0.8848 }, { "start": 9211.58, "end": 9212.36, "probability": 0.8901 }, { "start": 9213.16, "end": 9217.52, "probability": 0.9817 }, { "start": 9218.42, "end": 9221.04, "probability": 0.6164 }, { "start": 9221.8, "end": 9221.98, "probability": 0.503 }, { "start": 9222.0, "end": 9225.82, "probability": 0.9507 }, { "start": 9226.08, "end": 9231.7, "probability": 0.983 }, { "start": 9231.72, "end": 9237.88, "probability": 0.9797 }, { "start": 9239.52, "end": 9240.47, "probability": 0.9357 }, { "start": 9242.76, "end": 9243.32, "probability": 0.7037 }, { "start": 9246.18, "end": 9250.88, "probability": 0.9966 }, { "start": 9252.08, "end": 9255.12, "probability": 0.9246 }, { "start": 9256.32, "end": 9259.32, "probability": 0.8224 }, { "start": 9259.88, "end": 9263.42, "probability": 0.7845 }, { "start": 9264.48, "end": 9267.34, "probability": 0.7615 }, { "start": 9267.54, "end": 9269.02, "probability": 0.9723 }, { "start": 9269.58, "end": 9272.98, "probability": 0.9902 }, { "start": 9274.74, "end": 9275.84, "probability": 0.6817 }, { "start": 9277.46, "end": 9282.44, "probability": 0.9844 }, { "start": 9283.2, "end": 9285.64, "probability": 0.8992 }, { "start": 9287.4, "end": 9291.84, "probability": 0.8905 }, { "start": 9291.98, "end": 9292.95, "probability": 0.9635 }, { "start": 9294.64, "end": 9296.96, "probability": 0.988 }, { "start": 9298.22, "end": 9302.74, "probability": 0.9876 }, { "start": 9303.58, "end": 9306.78, "probability": 0.9883 }, { "start": 9307.6, "end": 9309.3, "probability": 0.9691 }, { "start": 9310.02, "end": 9316.4, "probability": 0.8004 }, { "start": 9316.56, "end": 9316.98, "probability": 0.6483 }, { "start": 9317.12, "end": 9322.62, "probability": 0.9687 }, { "start": 9322.62, "end": 9326.46, "probability": 0.7477 }, { "start": 9329.24, "end": 9329.52, "probability": 0.2867 }, { "start": 9329.52, "end": 9330.22, "probability": 0.486 }, { "start": 9330.28, "end": 9330.94, "probability": 0.6585 }, { "start": 9332.9, "end": 9334.9, "probability": 0.831 }, { "start": 9337.22, "end": 9338.04, "probability": 0.0393 }, { "start": 9338.26, "end": 9338.68, "probability": 0.0138 }, { "start": 9340.12, "end": 9341.76, "probability": 0.5229 }, { "start": 9342.86, "end": 9344.46, "probability": 0.8079 }, { "start": 9345.84, "end": 9347.28, "probability": 0.9775 }, { "start": 9347.72, "end": 9348.14, "probability": 0.658 }, { "start": 9348.24, "end": 9348.3, "probability": 0.5525 }, { "start": 9348.3, "end": 9348.51, "probability": 0.4372 }, { "start": 9349.74, "end": 9350.02, "probability": 0.7904 }, { "start": 9350.72, "end": 9354.32, "probability": 0.3841 }, { "start": 9355.0, "end": 9356.28, "probability": 0.7461 }, { "start": 9356.4, "end": 9357.8, "probability": 0.1092 }, { "start": 9358.96, "end": 9359.92, "probability": 0.5944 }, { "start": 9360.12, "end": 9363.68, "probability": 0.8724 }, { "start": 9363.68, "end": 9367.68, "probability": 0.983 }, { "start": 9368.22, "end": 9369.84, "probability": 0.9443 }, { "start": 9370.98, "end": 9375.54, "probability": 0.995 }, { "start": 9376.06, "end": 9379.66, "probability": 0.9843 }, { "start": 9380.24, "end": 9383.8, "probability": 0.9799 }, { "start": 9384.8, "end": 9386.18, "probability": 0.7289 }, { "start": 9387.36, "end": 9389.66, "probability": 0.9886 }, { "start": 9390.7, "end": 9396.39, "probability": 0.8856 }, { "start": 9397.18, "end": 9400.32, "probability": 0.8787 }, { "start": 9402.0, "end": 9402.62, "probability": 0.2606 }, { "start": 9403.22, "end": 9404.38, "probability": 0.8087 }, { "start": 9405.6, "end": 9406.62, "probability": 0.9832 }, { "start": 9407.22, "end": 9409.52, "probability": 0.9349 }, { "start": 9410.18, "end": 9411.82, "probability": 0.9994 }, { "start": 9412.56, "end": 9414.12, "probability": 0.9773 }, { "start": 9414.98, "end": 9417.52, "probability": 0.9191 }, { "start": 9418.18, "end": 9422.1, "probability": 0.9297 }, { "start": 9424.2, "end": 9424.86, "probability": 0.6533 }, { "start": 9426.14, "end": 9428.98, "probability": 0.8284 }, { "start": 9429.88, "end": 9431.28, "probability": 0.9321 }, { "start": 9431.34, "end": 9432.32, "probability": 0.9586 }, { "start": 9432.4, "end": 9432.97, "probability": 0.9056 }, { "start": 9433.82, "end": 9434.42, "probability": 0.846 }, { "start": 9434.78, "end": 9436.12, "probability": 0.9088 }, { "start": 9436.22, "end": 9438.44, "probability": 0.9728 }, { "start": 9438.54, "end": 9439.46, "probability": 0.667 }, { "start": 9439.52, "end": 9440.58, "probability": 0.5183 }, { "start": 9441.18, "end": 9442.14, "probability": 0.826 }, { "start": 9442.72, "end": 9443.88, "probability": 0.8678 }, { "start": 9444.42, "end": 9445.74, "probability": 0.6253 }, { "start": 9446.58, "end": 9446.86, "probability": 0.6373 }, { "start": 9446.94, "end": 9448.54, "probability": 0.8244 }, { "start": 9449.0, "end": 9451.64, "probability": 0.8911 }, { "start": 9452.34, "end": 9452.4, "probability": 0.1057 }, { "start": 9452.4, "end": 9456.58, "probability": 0.8866 }, { "start": 9456.68, "end": 9457.96, "probability": 0.5857 }, { "start": 9457.96, "end": 9458.3, "probability": 0.5823 }, { "start": 9458.52, "end": 9459.06, "probability": 0.6283 }, { "start": 9459.32, "end": 9461.14, "probability": 0.7944 }, { "start": 9462.16, "end": 9465.6, "probability": 0.8983 }, { "start": 9468.88, "end": 9470.34, "probability": 0.8654 }, { "start": 9470.34, "end": 9473.0, "probability": 0.944 }, { "start": 9474.62, "end": 9475.52, "probability": 0.9221 }, { "start": 9476.12, "end": 9478.82, "probability": 0.9956 }, { "start": 9479.62, "end": 9483.54, "probability": 0.7092 }, { "start": 9484.08, "end": 9485.18, "probability": 0.7652 }, { "start": 9486.82, "end": 9488.94, "probability": 0.8038 }, { "start": 9490.2, "end": 9491.08, "probability": 0.8225 }, { "start": 9491.84, "end": 9491.86, "probability": 0.033 }, { "start": 9491.86, "end": 9491.86, "probability": 0.1314 }, { "start": 9491.86, "end": 9494.32, "probability": 0.8977 }, { "start": 9496.28, "end": 9499.9, "probability": 0.9036 }, { "start": 9500.94, "end": 9503.74, "probability": 0.1655 }, { "start": 9503.74, "end": 9504.17, "probability": 0.0405 }, { "start": 9505.0, "end": 9506.52, "probability": 0.257 }, { "start": 9506.52, "end": 9508.14, "probability": 0.7206 }, { "start": 9508.2, "end": 9509.1, "probability": 0.939 }, { "start": 9509.2, "end": 9510.38, "probability": 0.7287 }, { "start": 9510.74, "end": 9511.53, "probability": 0.8809 }, { "start": 9511.66, "end": 9512.76, "probability": 0.9917 }, { "start": 9513.44, "end": 9513.86, "probability": 0.5283 }, { "start": 9514.64, "end": 9515.86, "probability": 0.9958 }, { "start": 9516.14, "end": 9520.4, "probability": 0.9844 }, { "start": 9521.62, "end": 9521.62, "probability": 0.27 }, { "start": 9521.62, "end": 9521.62, "probability": 0.1911 }, { "start": 9522.06, "end": 9524.7, "probability": 0.7236 }, { "start": 9526.02, "end": 9527.3, "probability": 0.1189 }, { "start": 9527.92, "end": 9530.44, "probability": 0.9799 }, { "start": 9530.86, "end": 9531.1, "probability": 0.538 }, { "start": 9531.2, "end": 9532.9, "probability": 0.9448 }, { "start": 9535.76, "end": 9538.48, "probability": 0.9824 }, { "start": 9538.48, "end": 9541.42, "probability": 0.9969 }, { "start": 9542.0, "end": 9546.14, "probability": 0.9141 }, { "start": 9546.48, "end": 9546.84, "probability": 0.4926 }, { "start": 9547.66, "end": 9549.74, "probability": 0.9741 }, { "start": 9549.86, "end": 9551.62, "probability": 0.9141 }, { "start": 9552.32, "end": 9552.66, "probability": 0.8433 }, { "start": 9554.52, "end": 9556.28, "probability": 0.9806 }, { "start": 9557.68, "end": 9562.36, "probability": 0.9974 }, { "start": 9563.96, "end": 9566.82, "probability": 0.9877 }, { "start": 9567.72, "end": 9570.78, "probability": 0.9934 }, { "start": 9571.44, "end": 9572.44, "probability": 0.7489 }, { "start": 9573.5, "end": 9580.7, "probability": 0.9528 }, { "start": 9581.5, "end": 9582.26, "probability": 0.7646 }, { "start": 9583.26, "end": 9586.18, "probability": 0.9114 }, { "start": 9586.72, "end": 9587.24, "probability": 0.9909 }, { "start": 9588.08, "end": 9590.9, "probability": 0.998 }, { "start": 9591.66, "end": 9598.06, "probability": 0.9941 }, { "start": 9599.04, "end": 9603.86, "probability": 0.9377 }, { "start": 9603.86, "end": 9607.9, "probability": 0.9975 }, { "start": 9608.62, "end": 9612.72, "probability": 0.9765 }, { "start": 9614.72, "end": 9618.18, "probability": 0.9392 }, { "start": 9618.36, "end": 9623.86, "probability": 0.989 }, { "start": 9624.5, "end": 9630.1, "probability": 0.9636 }, { "start": 9630.92, "end": 9631.5, "probability": 0.6602 }, { "start": 9632.18, "end": 9635.8, "probability": 0.987 }, { "start": 9636.4, "end": 9639.82, "probability": 0.9928 }, { "start": 9639.82, "end": 9643.74, "probability": 0.9605 }, { "start": 9644.3, "end": 9647.52, "probability": 0.9421 }, { "start": 9647.56, "end": 9649.74, "probability": 0.8314 }, { "start": 9650.32, "end": 9654.12, "probability": 0.9277 }, { "start": 9655.34, "end": 9655.96, "probability": 0.9351 }, { "start": 9659.3, "end": 9659.96, "probability": 0.5896 }, { "start": 9663.08, "end": 9667.26, "probability": 0.966 }, { "start": 9668.08, "end": 9669.76, "probability": 0.9882 }, { "start": 9670.62, "end": 9673.76, "probability": 0.7131 }, { "start": 9674.34, "end": 9675.84, "probability": 0.7456 }, { "start": 9676.7, "end": 9680.8, "probability": 0.9873 }, { "start": 9681.3, "end": 9684.42, "probability": 0.9938 }, { "start": 9685.66, "end": 9688.26, "probability": 0.9849 }, { "start": 9688.56, "end": 9688.68, "probability": 0.4863 }, { "start": 9688.82, "end": 9691.5, "probability": 0.7905 }, { "start": 9692.0, "end": 9696.16, "probability": 0.9565 }, { "start": 9696.56, "end": 9701.16, "probability": 0.9709 }, { "start": 9702.44, "end": 9702.96, "probability": 0.659 }, { "start": 9704.05, "end": 9706.86, "probability": 0.9492 }, { "start": 9706.88, "end": 9707.06, "probability": 0.7065 }, { "start": 9707.54, "end": 9708.82, "probability": 0.8987 }, { "start": 9708.98, "end": 9710.06, "probability": 0.8497 }, { "start": 9710.44, "end": 9713.06, "probability": 0.9839 }, { "start": 9713.74, "end": 9714.62, "probability": 0.8151 }, { "start": 9715.24, "end": 9716.24, "probability": 0.4984 }, { "start": 9718.88, "end": 9721.0, "probability": 0.9673 }, { "start": 9721.18, "end": 9722.02, "probability": 0.7318 }, { "start": 9722.14, "end": 9726.0, "probability": 0.8885 }, { "start": 9726.39, "end": 9731.6, "probability": 0.9812 }, { "start": 9731.98, "end": 9733.94, "probability": 0.8477 }, { "start": 9734.68, "end": 9738.5, "probability": 0.9717 }, { "start": 9738.94, "end": 9740.18, "probability": 0.999 }, { "start": 9740.96, "end": 9745.04, "probability": 0.9491 }, { "start": 9745.84, "end": 9750.1, "probability": 0.9637 }, { "start": 9750.2, "end": 9750.84, "probability": 0.7265 }, { "start": 9751.26, "end": 9752.28, "probability": 0.8125 }, { "start": 9752.58, "end": 9754.34, "probability": 0.9815 }, { "start": 9754.7, "end": 9756.18, "probability": 0.6669 }, { "start": 9756.74, "end": 9758.0, "probability": 0.9167 }, { "start": 9758.76, "end": 9759.06, "probability": 0.4016 }, { "start": 9759.12, "end": 9760.46, "probability": 0.7359 }, { "start": 9760.58, "end": 9761.5, "probability": 0.5069 }, { "start": 9761.86, "end": 9762.08, "probability": 0.6859 }, { "start": 9762.3, "end": 9763.46, "probability": 0.4738 }, { "start": 9763.78, "end": 9764.12, "probability": 0.5381 }, { "start": 9764.32, "end": 9767.92, "probability": 0.6984 }, { "start": 9767.98, "end": 9768.62, "probability": 0.7653 }, { "start": 9768.62, "end": 9768.8, "probability": 0.1552 }, { "start": 9768.8, "end": 9771.82, "probability": 0.9957 }, { "start": 9771.88, "end": 9771.9, "probability": 0.029 }, { "start": 9771.9, "end": 9772.08, "probability": 0.9704 }, { "start": 9772.16, "end": 9772.38, "probability": 0.9244 }, { "start": 9779.92, "end": 9783.72, "probability": 0.8628 }, { "start": 9784.68, "end": 9784.84, "probability": 0.8946 }, { "start": 9788.5, "end": 9789.28, "probability": 0.6376 }, { "start": 9789.36, "end": 9789.94, "probability": 0.6828 }, { "start": 9790.24, "end": 9790.4, "probability": 0.4241 }, { "start": 9790.46, "end": 9792.76, "probability": 0.9054 }, { "start": 9793.92, "end": 9794.5, "probability": 0.1974 }, { "start": 9795.92, "end": 9796.34, "probability": 0.7261 }, { "start": 9797.52, "end": 9799.0, "probability": 0.6858 }, { "start": 9801.66, "end": 9803.0, "probability": 0.7593 }, { "start": 9803.36, "end": 9804.24, "probability": 0.8809 }, { "start": 9804.38, "end": 9805.04, "probability": 0.7701 }, { "start": 9805.14, "end": 9805.54, "probability": 0.5698 }, { "start": 9807.26, "end": 9808.14, "probability": 0.6965 }, { "start": 9808.72, "end": 9810.64, "probability": 0.8451 }, { "start": 9810.64, "end": 9813.8, "probability": 0.9658 }, { "start": 9814.12, "end": 9815.74, "probability": 0.953 }, { "start": 9815.78, "end": 9816.74, "probability": 0.6782 }, { "start": 9816.82, "end": 9817.3, "probability": 0.8973 }, { "start": 9817.9, "end": 9818.42, "probability": 0.9844 }, { "start": 9818.54, "end": 9819.74, "probability": 0.8854 }, { "start": 9819.84, "end": 9822.96, "probability": 0.9409 }, { "start": 9823.72, "end": 9823.84, "probability": 0.9548 }, { "start": 9824.4, "end": 9827.44, "probability": 0.7231 }, { "start": 9828.02, "end": 9829.96, "probability": 0.7497 }, { "start": 9830.04, "end": 9831.0, "probability": 0.5559 }, { "start": 9831.62, "end": 9833.87, "probability": 0.9885 }, { "start": 9833.9, "end": 9835.88, "probability": 0.8983 }, { "start": 9836.0, "end": 9838.36, "probability": 0.8135 }, { "start": 9838.6, "end": 9845.06, "probability": 0.9893 }, { "start": 9846.32, "end": 9848.88, "probability": 0.892 }, { "start": 9849.64, "end": 9855.54, "probability": 0.9954 }, { "start": 9855.96, "end": 9861.28, "probability": 0.9972 }, { "start": 9861.78, "end": 9864.08, "probability": 0.6915 }, { "start": 9864.2, "end": 9866.19, "probability": 0.691 }, { "start": 9866.7, "end": 9869.32, "probability": 0.7899 }, { "start": 9872.73, "end": 9876.36, "probability": 0.9919 }, { "start": 9877.38, "end": 9878.66, "probability": 0.935 }, { "start": 9879.76, "end": 9881.42, "probability": 0.763 }, { "start": 9882.14, "end": 9885.2, "probability": 0.6518 }, { "start": 9886.3, "end": 9887.84, "probability": 0.7339 }, { "start": 9888.54, "end": 9891.06, "probability": 0.8557 }, { "start": 9891.98, "end": 9892.7, "probability": 0.406 }, { "start": 9894.88, "end": 9895.58, "probability": 0.7154 }, { "start": 9898.34, "end": 9900.14, "probability": 0.2606 }, { "start": 9902.14, "end": 9904.22, "probability": 0.4145 }, { "start": 9904.66, "end": 9907.68, "probability": 0.5369 }, { "start": 9908.34, "end": 9908.97, "probability": 0.6281 }, { "start": 9909.77, "end": 9913.24, "probability": 0.6326 }, { "start": 9913.36, "end": 9914.94, "probability": 0.8232 }, { "start": 9915.06, "end": 9915.72, "probability": 0.5006 }, { "start": 9916.0, "end": 9917.78, "probability": 0.138 }, { "start": 9917.78, "end": 9918.44, "probability": 0.1566 }, { "start": 9918.98, "end": 9920.54, "probability": 0.1781 }, { "start": 9920.84, "end": 9921.18, "probability": 0.3109 }, { "start": 9922.22, "end": 9925.84, "probability": 0.9299 }, { "start": 9925.9, "end": 9926.58, "probability": 0.8251 }, { "start": 9926.7, "end": 9930.1, "probability": 0.9946 }, { "start": 9931.32, "end": 9936.62, "probability": 0.8112 }, { "start": 9936.78, "end": 9939.12, "probability": 0.9805 }, { "start": 9939.22, "end": 9941.6, "probability": 0.8871 }, { "start": 9941.88, "end": 9944.12, "probability": 0.9584 }, { "start": 9944.46, "end": 9945.32, "probability": 0.4411 }, { "start": 9946.06, "end": 9949.56, "probability": 0.9821 }, { "start": 9949.7, "end": 9950.38, "probability": 0.7342 }, { "start": 9950.42, "end": 9955.12, "probability": 0.8376 }, { "start": 9955.16, "end": 9957.48, "probability": 0.9875 }, { "start": 9957.94, "end": 9959.17, "probability": 0.8623 }, { "start": 9959.26, "end": 9960.79, "probability": 0.9157 }, { "start": 9961.22, "end": 9962.14, "probability": 0.886 }, { "start": 9962.56, "end": 9962.68, "probability": 0.6496 }, { "start": 9962.9, "end": 9965.8, "probability": 0.9531 }, { "start": 9965.9, "end": 9967.76, "probability": 0.9976 }, { "start": 9968.22, "end": 9972.38, "probability": 0.7991 }, { "start": 9972.72, "end": 9975.86, "probability": 0.9079 }, { "start": 9976.28, "end": 9979.22, "probability": 0.9623 }, { "start": 9980.1, "end": 9981.96, "probability": 0.8561 }, { "start": 9982.08, "end": 9983.82, "probability": 0.9891 }, { "start": 9983.98, "end": 9986.02, "probability": 0.9258 }, { "start": 9986.34, "end": 9987.54, "probability": 0.8802 }, { "start": 9987.78, "end": 9988.92, "probability": 0.9688 }, { "start": 9989.28, "end": 9990.94, "probability": 0.8677 }, { "start": 9991.38, "end": 9993.26, "probability": 0.762 }, { "start": 9993.82, "end": 9996.02, "probability": 0.9907 }, { "start": 9996.02, "end": 9998.76, "probability": 0.9493 }, { "start": 9999.1, "end": 10002.7, "probability": 0.9835 }, { "start": 10002.9, "end": 10007.7, "probability": 0.9755 }, { "start": 10008.28, "end": 10014.18, "probability": 0.8489 }, { "start": 10014.87, "end": 10018.03, "probability": 0.6471 }, { "start": 10019.1, "end": 10022.16, "probability": 0.9489 }, { "start": 10022.26, "end": 10022.44, "probability": 0.3902 }, { "start": 10022.44, "end": 10023.06, "probability": 0.3397 }, { "start": 10023.14, "end": 10024.9, "probability": 0.6077 }, { "start": 10025.2, "end": 10028.48, "probability": 0.7427 }, { "start": 10028.84, "end": 10029.62, "probability": 0.2672 }, { "start": 10029.86, "end": 10032.48, "probability": 0.3161 }, { "start": 10032.68, "end": 10034.3, "probability": 0.731 }, { "start": 10034.32, "end": 10035.1, "probability": 0.3781 }, { "start": 10035.1, "end": 10035.1, "probability": 0.0629 }, { "start": 10035.1, "end": 10035.44, "probability": 0.4487 }, { "start": 10035.66, "end": 10036.66, "probability": 0.5569 }, { "start": 10036.78, "end": 10037.76, "probability": 0.658 }, { "start": 10037.94, "end": 10038.92, "probability": 0.3642 }, { "start": 10039.18, "end": 10039.8, "probability": 0.1208 }, { "start": 10039.82, "end": 10042.16, "probability": 0.6979 }, { "start": 10042.38, "end": 10043.36, "probability": 0.6977 }, { "start": 10043.62, "end": 10043.9, "probability": 0.0563 }, { "start": 10043.9, "end": 10045.52, "probability": 0.5514 }, { "start": 10045.6, "end": 10046.68, "probability": 0.4604 }, { "start": 10046.68, "end": 10046.7, "probability": 0.8992 }, { "start": 10046.7, "end": 10048.98, "probability": 0.5963 }, { "start": 10049.56, "end": 10050.66, "probability": 0.9292 }, { "start": 10051.06, "end": 10051.88, "probability": 0.9548 }, { "start": 10052.98, "end": 10054.58, "probability": 0.9115 }, { "start": 10054.88, "end": 10057.38, "probability": 0.8263 }, { "start": 10057.48, "end": 10058.02, "probability": 0.6069 }, { "start": 10058.1, "end": 10058.3, "probability": 0.8176 }, { "start": 10058.96, "end": 10059.64, "probability": 0.5422 }, { "start": 10059.64, "end": 10060.6, "probability": 0.958 }, { "start": 10060.68, "end": 10065.8, "probability": 0.786 }, { "start": 10066.0, "end": 10066.36, "probability": 0.0021 }, { "start": 10067.26, "end": 10070.34, "probability": 0.7597 }, { "start": 10070.86, "end": 10071.78, "probability": 0.9704 }, { "start": 10072.86, "end": 10074.12, "probability": 0.8354 }, { "start": 10074.44, "end": 10075.26, "probability": 0.3615 }, { "start": 10075.26, "end": 10080.72, "probability": 0.4169 }, { "start": 10089.02, "end": 10090.58, "probability": 0.0765 }, { "start": 10096.54, "end": 10097.68, "probability": 0.4125 }, { "start": 10097.7, "end": 10097.79, "probability": 0.9937 }, { "start": 10098.86, "end": 10101.2, "probability": 0.3944 }, { "start": 10101.42, "end": 10102.83, "probability": 0.1369 }, { "start": 10110.32, "end": 10110.74, "probability": 0.0674 }, { "start": 10110.86, "end": 10111.0, "probability": 0.0556 }, { "start": 10111.5, "end": 10114.18, "probability": 0.0586 }, { "start": 10128.32, "end": 10130.32, "probability": 0.0531 }, { "start": 10131.08, "end": 10131.54, "probability": 0.1184 }, { "start": 10131.79, "end": 10137.82, "probability": 0.1149 }, { "start": 10137.82, "end": 10141.1, "probability": 0.0958 }, { "start": 10141.1, "end": 10141.18, "probability": 0.3652 }, { "start": 10172.0, "end": 10172.0, "probability": 0.0 }, { "start": 10172.0, "end": 10172.0, "probability": 0.0 }, { "start": 10172.0, "end": 10172.0, "probability": 0.0 }, { "start": 10172.0, "end": 10172.0, "probability": 0.0 }, { "start": 10172.0, "end": 10172.0, "probability": 0.0 }, { "start": 10172.0, "end": 10172.0, "probability": 0.0 }, { "start": 10172.0, "end": 10172.0, "probability": 0.0 }, { "start": 10172.0, "end": 10172.0, "probability": 0.0 }, { "start": 10172.0, "end": 10172.0, "probability": 0.0 }, { "start": 10172.0, "end": 10172.0, "probability": 0.0 }, { "start": 10172.0, "end": 10172.0, "probability": 0.0 }, { "start": 10172.0, "end": 10172.0, "probability": 0.0 }, { "start": 10172.0, "end": 10172.0, "probability": 0.0 }, { "start": 10172.16, "end": 10173.08, "probability": 0.0353 }, { "start": 10173.26, "end": 10176.02, "probability": 0.1087 }, { "start": 10176.02, "end": 10181.96, "probability": 0.0856 }, { "start": 10182.6, "end": 10182.66, "probability": 0.0393 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10305.0, "end": 10305.0, "probability": 0.0 }, { "start": 10307.28, "end": 10308.42, "probability": 0.0283 }, { "start": 10308.42, "end": 10309.82, "probability": 0.0438 }, { "start": 10310.96, "end": 10315.94, "probability": 0.1191 }, { "start": 10316.64, "end": 10316.64, "probability": 0.3133 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.0, "end": 10427.0, "probability": 0.0 }, { "start": 10427.4, "end": 10427.5, "probability": 0.0513 }, { "start": 10427.5, "end": 10427.71, "probability": 0.2033 }, { "start": 10428.08, "end": 10431.24, "probability": 0.9886 }, { "start": 10431.8, "end": 10433.03, "probability": 0.6307 }, { "start": 10437.86, "end": 10440.46, "probability": 0.5553 }, { "start": 10440.56, "end": 10440.78, "probability": 0.6545 }, { "start": 10440.8, "end": 10442.08, "probability": 0.9952 }, { "start": 10442.1, "end": 10442.66, "probability": 0.8464 }, { "start": 10443.02, "end": 10443.5, "probability": 0.6368 }, { "start": 10443.68, "end": 10443.96, "probability": 0.5305 }, { "start": 10444.14, "end": 10447.28, "probability": 0.979 }, { "start": 10447.4, "end": 10451.44, "probability": 0.958 }, { "start": 10452.58, "end": 10455.08, "probability": 0.979 }, { "start": 10455.16, "end": 10455.4, "probability": 0.8798 }, { "start": 10455.6, "end": 10456.3, "probability": 0.0455 }, { "start": 10456.34, "end": 10456.7, "probability": 0.3885 }, { "start": 10456.7, "end": 10461.38, "probability": 0.8979 }, { "start": 10461.86, "end": 10463.12, "probability": 0.9512 }, { "start": 10463.38, "end": 10463.82, "probability": 0.8966 }, { "start": 10464.65, "end": 10465.52, "probability": 0.9756 }, { "start": 10465.62, "end": 10466.88, "probability": 0.9631 }, { "start": 10466.94, "end": 10468.2, "probability": 0.9653 }, { "start": 10468.28, "end": 10469.02, "probability": 0.7269 }, { "start": 10469.38, "end": 10472.48, "probability": 0.8036 }, { "start": 10472.54, "end": 10473.36, "probability": 0.9893 }, { "start": 10473.44, "end": 10474.96, "probability": 0.6564 }, { "start": 10475.18, "end": 10477.9, "probability": 0.9841 }, { "start": 10478.4, "end": 10481.46, "probability": 0.9661 }, { "start": 10482.9, "end": 10488.6, "probability": 0.993 }, { "start": 10488.72, "end": 10490.58, "probability": 0.9875 }, { "start": 10490.7, "end": 10492.14, "probability": 0.5883 }, { "start": 10492.18, "end": 10494.72, "probability": 0.9459 }, { "start": 10495.14, "end": 10496.02, "probability": 0.9146 }, { "start": 10496.72, "end": 10498.08, "probability": 0.8713 }, { "start": 10498.7, "end": 10499.34, "probability": 0.5766 }, { "start": 10500.02, "end": 10503.12, "probability": 0.9858 }, { "start": 10503.5, "end": 10507.8, "probability": 0.9894 }, { "start": 10509.3, "end": 10511.3, "probability": 0.7562 }, { "start": 10513.12, "end": 10517.22, "probability": 0.9796 }, { "start": 10517.84, "end": 10518.66, "probability": 0.9869 }, { "start": 10519.22, "end": 10520.26, "probability": 0.829 }, { "start": 10520.88, "end": 10522.28, "probability": 0.2664 }, { "start": 10522.94, "end": 10523.08, "probability": 0.0153 }, { "start": 10523.08, "end": 10524.44, "probability": 0.8195 }, { "start": 10524.78, "end": 10526.04, "probability": 0.7568 }, { "start": 10526.08, "end": 10526.94, "probability": 0.7916 }, { "start": 10526.94, "end": 10527.76, "probability": 0.6683 }, { "start": 10528.66, "end": 10528.66, "probability": 0.0415 }, { "start": 10528.66, "end": 10532.84, "probability": 0.5793 }, { "start": 10532.9, "end": 10533.98, "probability": 0.8746 }, { "start": 10534.9, "end": 10536.14, "probability": 0.7294 }, { "start": 10540.44, "end": 10543.82, "probability": 0.6952 }, { "start": 10545.54, "end": 10546.98, "probability": 0.6087 }, { "start": 10547.2, "end": 10548.04, "probability": 0.7463 }, { "start": 10549.88, "end": 10552.14, "probability": 0.7588 }, { "start": 10553.08, "end": 10558.94, "probability": 0.9824 }, { "start": 10559.62, "end": 10563.18, "probability": 0.9375 }, { "start": 10563.28, "end": 10565.04, "probability": 0.9045 }, { "start": 10565.68, "end": 10569.52, "probability": 0.9551 }, { "start": 10570.1, "end": 10574.2, "probability": 0.9476 }, { "start": 10575.49, "end": 10578.62, "probability": 0.9205 }, { "start": 10579.68, "end": 10586.0, "probability": 0.9875 }, { "start": 10586.54, "end": 10587.76, "probability": 0.8761 }, { "start": 10588.84, "end": 10590.26, "probability": 0.9951 }, { "start": 10591.3, "end": 10594.36, "probability": 0.9713 }, { "start": 10594.54, "end": 10594.86, "probability": 0.8308 }, { "start": 10595.6, "end": 10596.18, "probability": 0.631 }, { "start": 10596.38, "end": 10597.74, "probability": 0.9352 }, { "start": 10598.18, "end": 10599.08, "probability": 0.9288 }, { "start": 10600.28, "end": 10604.34, "probability": 0.9314 }, { "start": 10605.58, "end": 10607.78, "probability": 0.867 }, { "start": 10609.28, "end": 10609.74, "probability": 0.9783 }, { "start": 10610.32, "end": 10610.7, "probability": 0.9301 }, { "start": 10611.26, "end": 10613.98, "probability": 0.9841 }, { "start": 10614.84, "end": 10616.26, "probability": 0.9105 }, { "start": 10616.28, "end": 10618.28, "probability": 0.9894 }, { "start": 10618.94, "end": 10619.84, "probability": 0.9834 }, { "start": 10622.85, "end": 10634.3, "probability": 0.8177 }, { "start": 10636.74, "end": 10637.9, "probability": 0.7271 }, { "start": 10638.4, "end": 10647.46, "probability": 0.9634 }, { "start": 10647.7, "end": 10648.44, "probability": 0.8175 }, { "start": 10650.38, "end": 10657.4, "probability": 0.788 }, { "start": 10657.68, "end": 10659.66, "probability": 0.6922 }, { "start": 10661.22, "end": 10663.72, "probability": 0.9855 }, { "start": 10664.46, "end": 10674.38, "probability": 0.9622 }, { "start": 10675.4, "end": 10681.0, "probability": 0.9746 }, { "start": 10683.4, "end": 10684.86, "probability": 0.8279 }, { "start": 10685.46, "end": 10688.38, "probability": 0.8554 }, { "start": 10689.98, "end": 10697.36, "probability": 0.9648 }, { "start": 10698.58, "end": 10708.3, "probability": 0.8867 }, { "start": 10708.3, "end": 10712.98, "probability": 0.981 }, { "start": 10714.1, "end": 10720.66, "probability": 0.8462 }, { "start": 10720.88, "end": 10722.06, "probability": 0.9691 }, { "start": 10724.64, "end": 10730.72, "probability": 0.8823 }, { "start": 10730.72, "end": 10736.44, "probability": 0.9968 }, { "start": 10736.66, "end": 10738.24, "probability": 0.901 }, { "start": 10739.4, "end": 10745.75, "probability": 0.9814 }, { "start": 10745.96, "end": 10752.56, "probability": 0.9964 }, { "start": 10753.2, "end": 10754.8, "probability": 0.8867 }, { "start": 10756.6, "end": 10758.28, "probability": 0.6769 }, { "start": 10758.36, "end": 10758.86, "probability": 0.8947 }, { "start": 10759.06, "end": 10760.36, "probability": 0.5545 }, { "start": 10760.68, "end": 10761.14, "probability": 0.7345 }, { "start": 10761.4, "end": 10764.84, "probability": 0.8916 }, { "start": 10765.74, "end": 10766.86, "probability": 0.6735 }, { "start": 10767.3, "end": 10769.8, "probability": 0.9934 }, { "start": 10769.8, "end": 10774.52, "probability": 0.8868 }, { "start": 10776.02, "end": 10778.62, "probability": 0.3419 }, { "start": 10779.58, "end": 10783.04, "probability": 0.9568 }, { "start": 10783.3, "end": 10784.16, "probability": 0.7266 }, { "start": 10784.6, "end": 10787.9, "probability": 0.9871 }, { "start": 10787.9, "end": 10791.32, "probability": 0.8802 }, { "start": 10792.02, "end": 10795.22, "probability": 0.2748 }, { "start": 10795.66, "end": 10796.78, "probability": 0.8142 }, { "start": 10797.66, "end": 10797.78, "probability": 0.0278 }, { "start": 10797.78, "end": 10798.94, "probability": 0.5998 }, { "start": 10801.3, "end": 10804.04, "probability": 0.6082 }, { "start": 10804.62, "end": 10806.16, "probability": 0.9722 }, { "start": 10807.48, "end": 10810.86, "probability": 0.5412 }, { "start": 10810.94, "end": 10811.24, "probability": 0.9771 }, { "start": 10813.82, "end": 10816.34, "probability": 0.6214 }, { "start": 10816.4, "end": 10820.93, "probability": 0.7569 }, { "start": 10822.48, "end": 10826.18, "probability": 0.6927 }, { "start": 10827.46, "end": 10828.34, "probability": 0.8101 }, { "start": 10828.7, "end": 10831.24, "probability": 0.7563 }, { "start": 10831.24, "end": 10834.72, "probability": 0.9927 }, { "start": 10835.26, "end": 10835.72, "probability": 0.9545 }, { "start": 10835.84, "end": 10836.54, "probability": 0.2894 }, { "start": 10836.66, "end": 10837.5, "probability": 0.9478 }, { "start": 10837.8, "end": 10841.22, "probability": 0.9331 }, { "start": 10841.32, "end": 10844.14, "probability": 0.7249 }, { "start": 10844.78, "end": 10846.08, "probability": 0.5723 }, { "start": 10846.74, "end": 10847.3, "probability": 0.9849 }, { "start": 10848.64, "end": 10849.5, "probability": 0.7579 }, { "start": 10849.74, "end": 10852.36, "probability": 0.9849 }, { "start": 10852.36, "end": 10856.66, "probability": 0.9829 }, { "start": 10856.98, "end": 10861.02, "probability": 0.9933 }, { "start": 10861.1, "end": 10861.58, "probability": 0.863 }, { "start": 10862.35, "end": 10863.53, "probability": 0.2426 }, { "start": 10863.98, "end": 10865.02, "probability": 0.9408 }, { "start": 10865.38, "end": 10869.94, "probability": 0.8813 }, { "start": 10870.0, "end": 10873.26, "probability": 0.9976 }, { "start": 10873.26, "end": 10875.92, "probability": 0.953 }, { "start": 10877.92, "end": 10878.38, "probability": 0.2587 }, { "start": 10878.52, "end": 10878.94, "probability": 0.4403 }, { "start": 10883.33, "end": 10885.64, "probability": 0.8521 }, { "start": 10886.18, "end": 10888.68, "probability": 0.9662 }, { "start": 10889.3, "end": 10892.49, "probability": 0.9774 }, { "start": 10892.64, "end": 10896.3, "probability": 0.9517 }, { "start": 10896.36, "end": 10897.06, "probability": 0.9579 }, { "start": 10898.36, "end": 10899.4, "probability": 0.925 }, { "start": 10900.88, "end": 10902.8, "probability": 0.666 }, { "start": 10903.74, "end": 10905.76, "probability": 0.6768 }, { "start": 10906.3, "end": 10906.86, "probability": 0.6688 }, { "start": 10907.38, "end": 10908.96, "probability": 0.9852 }, { "start": 10909.04, "end": 10913.8, "probability": 0.9771 }, { "start": 10914.56, "end": 10916.3, "probability": 0.9766 }, { "start": 10916.82, "end": 10919.4, "probability": 0.9825 }, { "start": 10920.42, "end": 10924.26, "probability": 0.9929 }, { "start": 10926.52, "end": 10928.62, "probability": 0.9982 }, { "start": 10929.58, "end": 10932.4, "probability": 0.9569 }, { "start": 10933.52, "end": 10935.21, "probability": 0.9952 }, { "start": 10936.02, "end": 10937.48, "probability": 0.8966 }, { "start": 10938.8, "end": 10945.46, "probability": 0.9706 }, { "start": 10946.6, "end": 10947.69, "probability": 0.8904 }, { "start": 10948.12, "end": 10951.3, "probability": 0.9849 }, { "start": 10952.3, "end": 10952.56, "probability": 0.5906 }, { "start": 10952.76, "end": 10953.1, "probability": 0.9159 }, { "start": 10953.3, "end": 10959.04, "probability": 0.937 }, { "start": 10959.04, "end": 10964.22, "probability": 0.9073 }, { "start": 10964.46, "end": 10965.78, "probability": 0.9954 }, { "start": 10965.9, "end": 10966.98, "probability": 0.7916 }, { "start": 10967.08, "end": 10967.86, "probability": 0.7842 }, { "start": 10968.74, "end": 10973.3, "probability": 0.9717 }, { "start": 10973.92, "end": 10976.56, "probability": 0.9296 }, { "start": 10976.72, "end": 10981.04, "probability": 0.9245 }, { "start": 10981.4, "end": 10984.68, "probability": 0.9884 }, { "start": 10984.78, "end": 10987.59, "probability": 0.991 }, { "start": 10988.4, "end": 10989.14, "probability": 0.532 }, { "start": 10989.2, "end": 10994.86, "probability": 0.8804 }, { "start": 10995.08, "end": 10997.54, "probability": 0.8454 }, { "start": 10998.0, "end": 11001.22, "probability": 0.9419 }, { "start": 11001.22, "end": 11005.34, "probability": 0.9797 }, { "start": 11005.42, "end": 11006.42, "probability": 0.9844 }, { "start": 11006.5, "end": 11007.33, "probability": 0.9916 }, { "start": 11007.6, "end": 11008.54, "probability": 0.9806 }, { "start": 11008.98, "end": 11009.58, "probability": 0.9394 }, { "start": 11010.08, "end": 11010.92, "probability": 0.9204 }, { "start": 11011.08, "end": 11012.78, "probability": 0.9046 }, { "start": 11013.62, "end": 11013.64, "probability": 0.1017 }, { "start": 11013.64, "end": 11013.64, "probability": 0.4497 }, { "start": 11013.64, "end": 11015.22, "probability": 0.8271 }, { "start": 11015.28, "end": 11015.9, "probability": 0.4569 }, { "start": 11015.92, "end": 11016.0, "probability": 0.0592 }, { "start": 11016.1, "end": 11018.1, "probability": 0.6865 }, { "start": 11018.1, "end": 11018.98, "probability": 0.4395 }, { "start": 11019.08, "end": 11019.7, "probability": 0.9087 }, { "start": 11019.76, "end": 11020.38, "probability": 0.9492 }, { "start": 11020.42, "end": 11021.19, "probability": 0.9301 }, { "start": 11021.3, "end": 11021.9, "probability": 0.729 }, { "start": 11021.94, "end": 11022.14, "probability": 0.742 }, { "start": 11022.26, "end": 11023.74, "probability": 0.9707 }, { "start": 11023.74, "end": 11024.18, "probability": 0.5248 }, { "start": 11024.5, "end": 11026.06, "probability": 0.966 }, { "start": 11027.0, "end": 11031.72, "probability": 0.8683 }, { "start": 11032.14, "end": 11036.5, "probability": 0.9897 }, { "start": 11037.14, "end": 11039.7, "probability": 0.994 }, { "start": 11040.32, "end": 11042.56, "probability": 0.999 }, { "start": 11043.82, "end": 11045.64, "probability": 0.9954 }, { "start": 11046.6, "end": 11047.3, "probability": 0.6277 }, { "start": 11047.44, "end": 11048.08, "probability": 0.8121 }, { "start": 11048.16, "end": 11048.96, "probability": 0.9554 }, { "start": 11049.52, "end": 11052.4, "probability": 0.9562 }, { "start": 11052.48, "end": 11056.12, "probability": 0.9944 }, { "start": 11056.32, "end": 11056.58, "probability": 0.8828 }, { "start": 11057.1, "end": 11057.38, "probability": 0.6175 }, { "start": 11057.48, "end": 11058.66, "probability": 0.9938 }, { "start": 11058.8, "end": 11060.36, "probability": 0.6726 }, { "start": 11060.42, "end": 11065.26, "probability": 0.9648 }, { "start": 11065.64, "end": 11067.2, "probability": 0.8674 }, { "start": 11067.8, "end": 11069.78, "probability": 0.9507 }, { "start": 11069.86, "end": 11072.08, "probability": 0.7721 }, { "start": 11072.94, "end": 11075.92, "probability": 0.954 }, { "start": 11076.02, "end": 11077.08, "probability": 0.7702 }, { "start": 11077.2, "end": 11078.34, "probability": 0.7065 }, { "start": 11079.02, "end": 11081.04, "probability": 0.9956 }, { "start": 11082.02, "end": 11083.1, "probability": 0.0477 }, { "start": 11083.22, "end": 11083.82, "probability": 0.6232 }, { "start": 11084.88, "end": 11086.72, "probability": 0.9027 }, { "start": 11087.56, "end": 11088.2, "probability": 0.5143 }, { "start": 11088.64, "end": 11092.72, "probability": 0.8821 }, { "start": 11092.84, "end": 11093.76, "probability": 0.9937 }, { "start": 11094.66, "end": 11095.38, "probability": 0.8848 }, { "start": 11096.34, "end": 11098.2, "probability": 0.9966 }, { "start": 11099.06, "end": 11101.52, "probability": 0.9927 }, { "start": 11102.04, "end": 11103.66, "probability": 0.8624 }, { "start": 11104.64, "end": 11105.3, "probability": 0.9398 }, { "start": 11106.44, "end": 11107.08, "probability": 0.9601 }, { "start": 11107.16, "end": 11108.08, "probability": 0.8276 }, { "start": 11108.12, "end": 11109.64, "probability": 0.9878 }, { "start": 11110.16, "end": 11112.58, "probability": 0.9762 }, { "start": 11112.96, "end": 11114.6, "probability": 0.9375 }, { "start": 11114.8, "end": 11117.16, "probability": 0.9468 }, { "start": 11117.58, "end": 11119.86, "probability": 0.9946 }, { "start": 11120.24, "end": 11121.1, "probability": 0.6788 }, { "start": 11121.8, "end": 11126.1, "probability": 0.9486 }, { "start": 11126.22, "end": 11127.3, "probability": 0.8858 }, { "start": 11127.92, "end": 11129.36, "probability": 0.9057 }, { "start": 11129.96, "end": 11131.78, "probability": 0.981 }, { "start": 11132.28, "end": 11134.8, "probability": 0.9675 }, { "start": 11135.5, "end": 11135.76, "probability": 0.8488 }, { "start": 11136.34, "end": 11140.78, "probability": 0.9743 }, { "start": 11140.86, "end": 11140.98, "probability": 0.1711 }, { "start": 11140.98, "end": 11141.76, "probability": 0.4911 }, { "start": 11141.78, "end": 11145.32, "probability": 0.7588 }, { "start": 11146.02, "end": 11146.1, "probability": 0.2579 }, { "start": 11146.1, "end": 11146.1, "probability": 0.1333 }, { "start": 11146.1, "end": 11149.64, "probability": 0.5023 }, { "start": 11153.66, "end": 11158.98, "probability": 0.8195 }, { "start": 11160.2, "end": 11160.46, "probability": 0.8237 }, { "start": 11165.18, "end": 11168.02, "probability": 0.432 }, { "start": 11168.9, "end": 11172.42, "probability": 0.9703 }, { "start": 11172.56, "end": 11177.2, "probability": 0.8422 }, { "start": 11177.76, "end": 11180.2, "probability": 0.9764 }, { "start": 11181.3, "end": 11186.56, "probability": 0.7791 }, { "start": 11187.36, "end": 11191.32, "probability": 0.9508 }, { "start": 11191.88, "end": 11192.42, "probability": 0.6796 }, { "start": 11192.52, "end": 11193.7, "probability": 0.7202 }, { "start": 11194.98, "end": 11197.09, "probability": 0.9307 }, { "start": 11198.14, "end": 11198.54, "probability": 0.2467 }, { "start": 11199.32, "end": 11205.12, "probability": 0.9886 }, { "start": 11207.68, "end": 11210.22, "probability": 0.9505 }, { "start": 11210.74, "end": 11213.96, "probability": 0.9889 }, { "start": 11214.52, "end": 11215.7, "probability": 0.9684 }, { "start": 11216.72, "end": 11220.76, "probability": 0.986 }, { "start": 11222.38, "end": 11224.74, "probability": 0.9692 }, { "start": 11225.56, "end": 11230.36, "probability": 0.9805 }, { "start": 11230.96, "end": 11231.6, "probability": 0.828 }, { "start": 11232.24, "end": 11234.54, "probability": 0.8432 }, { "start": 11238.9, "end": 11240.64, "probability": 0.7148 }, { "start": 11241.2, "end": 11241.74, "probability": 0.4929 }, { "start": 11242.58, "end": 11246.36, "probability": 0.9838 }, { "start": 11247.18, "end": 11249.52, "probability": 0.9903 }, { "start": 11250.12, "end": 11253.54, "probability": 0.9025 }, { "start": 11254.82, "end": 11255.76, "probability": 0.495 }, { "start": 11257.04, "end": 11262.89, "probability": 0.9726 }, { "start": 11264.54, "end": 11266.64, "probability": 0.9362 }, { "start": 11267.36, "end": 11270.66, "probability": 0.8326 }, { "start": 11271.42, "end": 11273.8, "probability": 0.949 }, { "start": 11275.34, "end": 11279.82, "probability": 0.9753 }, { "start": 11280.52, "end": 11282.22, "probability": 0.9871 }, { "start": 11282.82, "end": 11286.66, "probability": 0.9284 }, { "start": 11288.02, "end": 11290.95, "probability": 0.8994 }, { "start": 11293.3, "end": 11300.1, "probability": 0.9736 }, { "start": 11302.04, "end": 11308.26, "probability": 0.9522 }, { "start": 11308.7, "end": 11311.04, "probability": 0.9658 }, { "start": 11311.58, "end": 11312.08, "probability": 0.8138 }, { "start": 11312.7, "end": 11313.58, "probability": 0.8665 }, { "start": 11313.76, "end": 11318.52, "probability": 0.9923 }, { "start": 11320.48, "end": 11324.74, "probability": 0.7655 }, { "start": 11326.26, "end": 11330.3, "probability": 0.6649 }, { "start": 11330.94, "end": 11331.24, "probability": 0.6099 }, { "start": 11332.22, "end": 11337.32, "probability": 0.8154 }, { "start": 11339.08, "end": 11339.76, "probability": 0.4885 }, { "start": 11340.22, "end": 11340.7, "probability": 0.9432 }, { "start": 11341.86, "end": 11347.64, "probability": 0.8665 }, { "start": 11347.88, "end": 11349.22, "probability": 0.6776 }, { "start": 11349.48, "end": 11350.6, "probability": 0.8916 }, { "start": 11352.16, "end": 11352.62, "probability": 0.8933 }, { "start": 11354.14, "end": 11354.76, "probability": 0.9542 }, { "start": 11355.54, "end": 11356.32, "probability": 0.361 }, { "start": 11356.96, "end": 11358.58, "probability": 0.9749 }, { "start": 11358.66, "end": 11359.92, "probability": 0.2877 }, { "start": 11359.92, "end": 11361.25, "probability": 0.2062 }, { "start": 11361.98, "end": 11366.58, "probability": 0.7704 }, { "start": 11367.38, "end": 11368.08, "probability": 0.1753 } ], "segments_count": 3748, "words_count": 19263, "avg_words_per_segment": 5.1395, "avg_segment_duration": 2.0837, "avg_words_per_minute": 101.1833, "plenum_id": "100123", "duration": 11422.64, "title": null, "plenum_date": "2021-10-19" }