{ "source_type": "knesset", "source_id": "plenum", "source_entry_id": "10031", "quality_score": 0.8822, "per_segment_quality_scores": [ { "start": 41.06, "end": 42.46, "probability": 0.7478 }, { "start": 43.6, "end": 45.48, "probability": 0.9102 }, { "start": 46.76, "end": 48.72, "probability": 0.6846 }, { "start": 50.38, "end": 53.14, "probability": 0.4436 }, { "start": 54.36, "end": 56.54, "probability": 0.6805 }, { "start": 56.74, "end": 59.16, "probability": 0.9914 }, { "start": 60.22, "end": 62.76, "probability": 0.7254 }, { "start": 63.66, "end": 64.92, "probability": 0.7432 }, { "start": 65.02, "end": 66.38, "probability": 0.8219 }, { "start": 66.48, "end": 70.58, "probability": 0.9797 }, { "start": 70.58, "end": 75.72, "probability": 0.8481 }, { "start": 76.52, "end": 78.54, "probability": 0.1384 }, { "start": 79.16, "end": 81.26, "probability": 0.7478 }, { "start": 81.78, "end": 84.42, "probability": 0.8353 }, { "start": 84.8, "end": 86.4, "probability": 0.684 }, { "start": 86.5, "end": 87.84, "probability": 0.8754 }, { "start": 88.42, "end": 92.68, "probability": 0.7137 }, { "start": 93.22, "end": 94.02, "probability": 0.9006 }, { "start": 94.82, "end": 96.65, "probability": 0.5281 }, { "start": 97.48, "end": 99.62, "probability": 0.9542 }, { "start": 100.14, "end": 103.04, "probability": 0.7836 }, { "start": 103.62, "end": 104.38, "probability": 0.7358 }, { "start": 104.74, "end": 108.32, "probability": 0.9901 }, { "start": 109.06, "end": 112.82, "probability": 0.8616 }, { "start": 113.5, "end": 115.94, "probability": 0.502 }, { "start": 119.13, "end": 123.98, "probability": 0.8015 }, { "start": 124.36, "end": 124.88, "probability": 0.718 }, { "start": 125.44, "end": 125.9, "probability": 0.6114 }, { "start": 126.02, "end": 126.86, "probability": 0.7484 }, { "start": 127.88, "end": 130.22, "probability": 0.8359 }, { "start": 130.66, "end": 133.6, "probability": 0.9362 }, { "start": 133.84, "end": 134.58, "probability": 0.7384 }, { "start": 135.24, "end": 142.24, "probability": 0.928 }, { "start": 143.08, "end": 147.4, "probability": 0.993 }, { "start": 147.8, "end": 153.8, "probability": 0.9863 }, { "start": 153.8, "end": 160.78, "probability": 0.9915 }, { "start": 160.9, "end": 162.16, "probability": 0.7645 }, { "start": 163.58, "end": 170.92, "probability": 0.8843 }, { "start": 171.88, "end": 175.0, "probability": 0.9001 }, { "start": 175.0, "end": 179.04, "probability": 0.9941 }, { "start": 179.74, "end": 184.08, "probability": 0.8381 }, { "start": 185.28, "end": 185.88, "probability": 0.7297 }, { "start": 186.24, "end": 192.32, "probability": 0.9717 }, { "start": 192.42, "end": 195.4, "probability": 0.9417 }, { "start": 195.74, "end": 198.94, "probability": 0.7387 }, { "start": 199.5, "end": 204.74, "probability": 0.4352 }, { "start": 205.78, "end": 211.78, "probability": 0.975 }, { "start": 212.22, "end": 214.63, "probability": 0.8911 }, { "start": 215.66, "end": 219.78, "probability": 0.9248 }, { "start": 220.56, "end": 221.44, "probability": 0.9905 }, { "start": 222.34, "end": 223.44, "probability": 0.9707 }, { "start": 223.52, "end": 228.66, "probability": 0.9007 }, { "start": 228.74, "end": 229.9, "probability": 0.9238 }, { "start": 234.76, "end": 236.18, "probability": 0.7121 }, { "start": 238.98, "end": 240.26, "probability": 0.4175 }, { "start": 240.34, "end": 240.34, "probability": 0.3359 }, { "start": 240.34, "end": 240.76, "probability": 0.7778 }, { "start": 240.86, "end": 242.16, "probability": 0.7878 }, { "start": 243.16, "end": 245.26, "probability": 0.6938 }, { "start": 245.3, "end": 247.02, "probability": 0.5751 }, { "start": 247.06, "end": 250.08, "probability": 0.5515 }, { "start": 250.08, "end": 251.4, "probability": 0.7378 }, { "start": 251.86, "end": 252.76, "probability": 0.5194 }, { "start": 252.86, "end": 256.2, "probability": 0.8888 }, { "start": 256.66, "end": 258.14, "probability": 0.6963 }, { "start": 258.24, "end": 259.94, "probability": 0.816 }, { "start": 260.06, "end": 263.6, "probability": 0.9842 }, { "start": 263.98, "end": 265.7, "probability": 0.9705 }, { "start": 265.74, "end": 266.58, "probability": 0.8408 }, { "start": 266.68, "end": 270.58, "probability": 0.8255 }, { "start": 270.74, "end": 270.96, "probability": 0.7029 }, { "start": 271.4, "end": 273.14, "probability": 0.7569 }, { "start": 274.39, "end": 278.14, "probability": 0.7076 }, { "start": 278.58, "end": 280.2, "probability": 0.6553 }, { "start": 280.82, "end": 282.78, "probability": 0.7128 }, { "start": 283.16, "end": 283.94, "probability": 0.6788 }, { "start": 284.18, "end": 286.62, "probability": 0.7204 }, { "start": 287.0, "end": 289.92, "probability": 0.6877 }, { "start": 290.4, "end": 298.16, "probability": 0.8844 }, { "start": 298.36, "end": 299.94, "probability": 0.5766 }, { "start": 300.42, "end": 302.0, "probability": 0.8796 }, { "start": 302.12, "end": 302.62, "probability": 0.621 }, { "start": 302.68, "end": 305.46, "probability": 0.9058 }, { "start": 306.02, "end": 308.88, "probability": 0.8417 }, { "start": 310.0, "end": 313.24, "probability": 0.9497 }, { "start": 313.54, "end": 314.48, "probability": 0.7561 }, { "start": 314.6, "end": 315.26, "probability": 0.9561 }, { "start": 315.42, "end": 316.84, "probability": 0.9066 }, { "start": 317.26, "end": 319.86, "probability": 0.6742 }, { "start": 319.86, "end": 324.36, "probability": 0.9722 }, { "start": 325.1, "end": 329.78, "probability": 0.9027 }, { "start": 330.36, "end": 333.66, "probability": 0.9572 }, { "start": 334.26, "end": 334.98, "probability": 0.599 }, { "start": 335.56, "end": 337.78, "probability": 0.6959 }, { "start": 338.3, "end": 340.44, "probability": 0.9778 }, { "start": 340.86, "end": 341.52, "probability": 0.63 }, { "start": 341.72, "end": 343.18, "probability": 0.9303 }, { "start": 346.58, "end": 349.04, "probability": 0.916 }, { "start": 349.84, "end": 352.02, "probability": 0.5351 }, { "start": 353.44, "end": 354.8, "probability": 0.8156 }, { "start": 355.32, "end": 356.6, "probability": 0.8977 }, { "start": 356.98, "end": 358.94, "probability": 0.904 }, { "start": 359.16, "end": 360.76, "probability": 0.9912 }, { "start": 361.48, "end": 365.34, "probability": 0.9334 }, { "start": 365.88, "end": 366.68, "probability": 0.6516 }, { "start": 367.66, "end": 368.27, "probability": 0.4514 }, { "start": 369.04, "end": 370.38, "probability": 0.7943 }, { "start": 372.54, "end": 375.78, "probability": 0.9442 }, { "start": 377.52, "end": 379.78, "probability": 0.8542 }, { "start": 380.12, "end": 381.74, "probability": 0.9456 }, { "start": 382.42, "end": 384.94, "probability": 0.8595 }, { "start": 385.1, "end": 386.98, "probability": 0.9878 }, { "start": 387.1, "end": 389.52, "probability": 0.9055 }, { "start": 390.24, "end": 390.54, "probability": 0.8132 }, { "start": 390.82, "end": 393.36, "probability": 0.9492 }, { "start": 393.36, "end": 395.76, "probability": 0.9314 }, { "start": 396.08, "end": 396.84, "probability": 0.6678 }, { "start": 397.26, "end": 399.22, "probability": 0.5903 }, { "start": 399.22, "end": 400.64, "probability": 0.6892 }, { "start": 401.22, "end": 403.7, "probability": 0.7627 }, { "start": 404.56, "end": 407.86, "probability": 0.8193 }, { "start": 408.28, "end": 408.4, "probability": 0.8016 }, { "start": 408.42, "end": 409.26, "probability": 0.9771 }, { "start": 409.52, "end": 412.46, "probability": 0.4136 }, { "start": 412.96, "end": 416.14, "probability": 0.7143 }, { "start": 416.28, "end": 419.04, "probability": 0.6195 }, { "start": 419.68, "end": 422.64, "probability": 0.8467 }, { "start": 423.24, "end": 424.2, "probability": 0.9051 }, { "start": 424.92, "end": 426.76, "probability": 0.6011 }, { "start": 429.93, "end": 430.54, "probability": 0.009 }, { "start": 430.54, "end": 431.28, "probability": 0.1935 }, { "start": 431.7, "end": 432.34, "probability": 0.9133 }, { "start": 433.3, "end": 435.06, "probability": 0.8633 }, { "start": 435.62, "end": 437.22, "probability": 0.7535 }, { "start": 437.4, "end": 440.78, "probability": 0.8451 }, { "start": 441.22, "end": 441.58, "probability": 0.4978 }, { "start": 441.94, "end": 443.8, "probability": 0.9473 }, { "start": 444.08, "end": 444.18, "probability": 0.9033 }, { "start": 444.34, "end": 445.4, "probability": 0.9833 }, { "start": 445.48, "end": 448.74, "probability": 0.6904 }, { "start": 448.84, "end": 453.38, "probability": 0.9491 }, { "start": 454.58, "end": 456.26, "probability": 0.6416 }, { "start": 456.5, "end": 459.72, "probability": 0.7928 }, { "start": 460.34, "end": 460.78, "probability": 0.3264 }, { "start": 460.9, "end": 464.1, "probability": 0.916 }, { "start": 465.08, "end": 468.72, "probability": 0.622 }, { "start": 468.82, "end": 469.73, "probability": 0.809 }, { "start": 470.2, "end": 470.96, "probability": 0.5313 }, { "start": 471.86, "end": 474.4, "probability": 0.5868 }, { "start": 477.58, "end": 481.02, "probability": 0.9928 }, { "start": 481.18, "end": 482.32, "probability": 0.8769 }, { "start": 482.86, "end": 484.2, "probability": 0.9652 }, { "start": 484.3, "end": 484.52, "probability": 0.7179 }, { "start": 484.6, "end": 484.82, "probability": 0.9075 }, { "start": 484.9, "end": 485.1, "probability": 0.8025 }, { "start": 485.18, "end": 485.62, "probability": 0.8151 }, { "start": 485.92, "end": 489.56, "probability": 0.9946 }, { "start": 490.94, "end": 491.26, "probability": 0.3176 }, { "start": 491.28, "end": 491.28, "probability": 0.0339 }, { "start": 491.28, "end": 493.6, "probability": 0.7955 }, { "start": 493.64, "end": 494.74, "probability": 0.9603 }, { "start": 495.98, "end": 499.44, "probability": 0.6447 }, { "start": 499.64, "end": 500.02, "probability": 0.459 }, { "start": 500.5, "end": 501.82, "probability": 0.9358 }, { "start": 502.04, "end": 502.44, "probability": 0.4097 }, { "start": 502.48, "end": 503.2, "probability": 0.2666 }, { "start": 503.36, "end": 503.74, "probability": 0.5845 }, { "start": 503.88, "end": 504.84, "probability": 0.6394 }, { "start": 504.84, "end": 506.2, "probability": 0.7369 }, { "start": 506.22, "end": 510.82, "probability": 0.9697 }, { "start": 510.9, "end": 512.68, "probability": 0.9102 }, { "start": 513.14, "end": 515.07, "probability": 0.9183 }, { "start": 515.58, "end": 516.04, "probability": 0.9008 }, { "start": 516.16, "end": 519.24, "probability": 0.9533 }, { "start": 519.68, "end": 521.31, "probability": 0.9795 }, { "start": 521.98, "end": 524.76, "probability": 0.9769 }, { "start": 524.96, "end": 526.36, "probability": 0.3511 }, { "start": 526.36, "end": 527.41, "probability": 0.9841 }, { "start": 527.42, "end": 528.95, "probability": 0.866 }, { "start": 529.82, "end": 533.96, "probability": 0.8761 }, { "start": 534.02, "end": 536.62, "probability": 0.9874 }, { "start": 536.68, "end": 538.14, "probability": 0.9972 }, { "start": 538.92, "end": 540.68, "probability": 0.6741 }, { "start": 540.74, "end": 543.38, "probability": 0.9484 }, { "start": 543.7, "end": 544.54, "probability": 0.9558 }, { "start": 544.6, "end": 545.7, "probability": 0.8246 }, { "start": 546.02, "end": 550.04, "probability": 0.9951 }, { "start": 550.38, "end": 551.28, "probability": 0.7918 }, { "start": 551.78, "end": 553.06, "probability": 0.9844 }, { "start": 553.54, "end": 554.52, "probability": 0.6906 }, { "start": 554.56, "end": 556.64, "probability": 0.9316 }, { "start": 556.64, "end": 558.49, "probability": 0.8435 }, { "start": 558.56, "end": 561.98, "probability": 0.4814 }, { "start": 562.06, "end": 562.46, "probability": 0.4365 }, { "start": 563.09, "end": 565.72, "probability": 0.8466 }, { "start": 566.4, "end": 568.64, "probability": 0.6205 }, { "start": 568.64, "end": 568.7, "probability": 0.1807 }, { "start": 568.7, "end": 570.86, "probability": 0.8551 }, { "start": 570.88, "end": 571.46, "probability": 0.4376 }, { "start": 572.24, "end": 576.9, "probability": 0.9697 }, { "start": 577.24, "end": 581.56, "probability": 0.9949 }, { "start": 581.86, "end": 582.8, "probability": 0.7713 }, { "start": 582.82, "end": 583.08, "probability": 0.6338 }, { "start": 583.08, "end": 583.92, "probability": 0.4816 }, { "start": 584.18, "end": 584.94, "probability": 0.658 }, { "start": 584.96, "end": 586.52, "probability": 0.9194 }, { "start": 586.54, "end": 588.26, "probability": 0.9551 }, { "start": 588.96, "end": 590.36, "probability": 0.5286 }, { "start": 590.56, "end": 590.56, "probability": 0.2562 }, { "start": 590.96, "end": 591.96, "probability": 0.9264 }, { "start": 592.3, "end": 593.32, "probability": 0.9031 }, { "start": 593.44, "end": 594.32, "probability": 0.8379 }, { "start": 594.46, "end": 597.24, "probability": 0.9945 }, { "start": 597.58, "end": 599.14, "probability": 0.9948 }, { "start": 600.04, "end": 601.06, "probability": 0.7666 }, { "start": 601.14, "end": 602.14, "probability": 0.5081 }, { "start": 602.36, "end": 604.06, "probability": 0.8799 }, { "start": 604.38, "end": 605.04, "probability": 0.9688 }, { "start": 605.22, "end": 607.58, "probability": 0.9844 }, { "start": 607.7, "end": 608.06, "probability": 0.9703 }, { "start": 609.08, "end": 611.81, "probability": 0.9969 }, { "start": 612.52, "end": 613.38, "probability": 0.8004 }, { "start": 613.46, "end": 614.94, "probability": 0.8918 }, { "start": 615.48, "end": 616.6, "probability": 0.9985 }, { "start": 617.0, "end": 620.02, "probability": 0.9983 }, { "start": 620.08, "end": 620.7, "probability": 0.1156 }, { "start": 620.86, "end": 624.3, "probability": 0.9951 }, { "start": 625.02, "end": 625.57, "probability": 0.9072 }, { "start": 625.84, "end": 626.56, "probability": 0.6018 }, { "start": 626.68, "end": 628.06, "probability": 0.9202 }, { "start": 628.14, "end": 630.52, "probability": 0.9893 }, { "start": 630.8, "end": 631.96, "probability": 0.9741 }, { "start": 632.02, "end": 633.36, "probability": 0.5745 }, { "start": 633.36, "end": 635.84, "probability": 0.6473 }, { "start": 637.72, "end": 642.98, "probability": 0.3436 }, { "start": 643.06, "end": 645.72, "probability": 0.7281 }, { "start": 646.54, "end": 649.48, "probability": 0.7853 }, { "start": 650.84, "end": 652.32, "probability": 0.4429 }, { "start": 652.86, "end": 653.94, "probability": 0.1668 }, { "start": 654.34, "end": 660.44, "probability": 0.9949 }, { "start": 660.6, "end": 661.02, "probability": 0.7015 }, { "start": 661.48, "end": 663.66, "probability": 0.9583 }, { "start": 664.0, "end": 667.34, "probability": 0.998 }, { "start": 667.74, "end": 670.98, "probability": 0.9971 }, { "start": 671.41, "end": 672.38, "probability": 0.5518 }, { "start": 672.62, "end": 673.6, "probability": 0.8747 }, { "start": 673.86, "end": 674.64, "probability": 0.5126 }, { "start": 674.74, "end": 676.52, "probability": 0.9536 }, { "start": 676.98, "end": 677.4, "probability": 0.5228 }, { "start": 678.0, "end": 679.48, "probability": 0.3641 }, { "start": 679.56, "end": 680.0, "probability": 0.9285 }, { "start": 681.5, "end": 682.66, "probability": 0.922 }, { "start": 682.7, "end": 685.54, "probability": 0.988 }, { "start": 685.54, "end": 690.12, "probability": 0.8071 }, { "start": 690.86, "end": 694.98, "probability": 0.9971 }, { "start": 695.16, "end": 697.28, "probability": 0.8978 }, { "start": 697.94, "end": 702.66, "probability": 0.7757 }, { "start": 703.24, "end": 704.6, "probability": 0.9971 }, { "start": 705.02, "end": 705.98, "probability": 0.9373 }, { "start": 706.7, "end": 710.26, "probability": 0.8677 }, { "start": 710.36, "end": 710.48, "probability": 0.6746 }, { "start": 710.58, "end": 711.72, "probability": 0.9638 }, { "start": 712.46, "end": 715.12, "probability": 0.7583 }, { "start": 715.16, "end": 717.48, "probability": 0.9857 }, { "start": 717.58, "end": 718.9, "probability": 0.9287 }, { "start": 719.56, "end": 722.78, "probability": 0.7886 }, { "start": 723.42, "end": 726.2, "probability": 0.988 }, { "start": 726.3, "end": 729.26, "probability": 0.891 }, { "start": 730.24, "end": 735.7, "probability": 0.9868 }, { "start": 736.04, "end": 737.22, "probability": 0.9985 }, { "start": 737.38, "end": 738.78, "probability": 0.897 }, { "start": 739.3, "end": 740.18, "probability": 0.9788 }, { "start": 740.26, "end": 742.46, "probability": 0.9587 }, { "start": 742.58, "end": 743.36, "probability": 0.7975 }, { "start": 744.04, "end": 747.48, "probability": 0.9431 }, { "start": 747.56, "end": 747.92, "probability": 0.7461 }, { "start": 747.98, "end": 749.1, "probability": 0.5658 }, { "start": 749.82, "end": 751.54, "probability": 0.8811 }, { "start": 753.24, "end": 753.98, "probability": 0.5037 }, { "start": 758.6, "end": 760.98, "probability": 0.7741 }, { "start": 761.78, "end": 765.02, "probability": 0.8208 }, { "start": 766.04, "end": 766.9, "probability": 0.9176 }, { "start": 767.32, "end": 769.14, "probability": 0.9924 }, { "start": 770.16, "end": 772.66, "probability": 0.9655 }, { "start": 773.42, "end": 774.65, "probability": 0.4855 }, { "start": 775.38, "end": 776.5, "probability": 0.9572 }, { "start": 777.46, "end": 778.88, "probability": 0.9922 }, { "start": 779.68, "end": 781.04, "probability": 0.9873 }, { "start": 781.64, "end": 787.24, "probability": 0.9881 }, { "start": 787.96, "end": 788.78, "probability": 0.8683 }, { "start": 788.88, "end": 789.9, "probability": 0.824 }, { "start": 790.16, "end": 792.96, "probability": 0.9683 }, { "start": 792.96, "end": 796.96, "probability": 0.916 }, { "start": 797.56, "end": 801.06, "probability": 0.946 }, { "start": 801.18, "end": 802.98, "probability": 0.7794 }, { "start": 803.54, "end": 811.04, "probability": 0.9868 }, { "start": 811.76, "end": 813.6, "probability": 0.8413 }, { "start": 814.34, "end": 815.76, "probability": 0.7119 }, { "start": 817.41, "end": 820.64, "probability": 0.8489 }, { "start": 821.2, "end": 821.8, "probability": 0.9701 }, { "start": 821.88, "end": 826.46, "probability": 0.9209 }, { "start": 827.16, "end": 827.58, "probability": 0.8853 }, { "start": 827.92, "end": 830.64, "probability": 0.9854 }, { "start": 831.08, "end": 831.36, "probability": 0.2907 }, { "start": 831.74, "end": 833.58, "probability": 0.9968 }, { "start": 834.4, "end": 835.44, "probability": 0.6912 }, { "start": 836.12, "end": 838.1, "probability": 0.8003 }, { "start": 838.52, "end": 839.88, "probability": 0.7125 }, { "start": 839.98, "end": 840.71, "probability": 0.9395 }, { "start": 841.42, "end": 842.5, "probability": 0.9766 }, { "start": 844.1, "end": 845.3, "probability": 0.2061 }, { "start": 845.3, "end": 846.63, "probability": 0.5678 }, { "start": 847.54, "end": 848.68, "probability": 0.757 }, { "start": 849.2, "end": 850.74, "probability": 0.9296 }, { "start": 851.12, "end": 853.6, "probability": 0.9661 }, { "start": 853.64, "end": 854.12, "probability": 0.9597 }, { "start": 854.54, "end": 857.98, "probability": 0.8606 }, { "start": 858.1, "end": 859.04, "probability": 0.6711 }, { "start": 859.75, "end": 862.28, "probability": 0.9944 }, { "start": 862.86, "end": 865.36, "probability": 0.9912 }, { "start": 865.78, "end": 866.9, "probability": 0.9965 }, { "start": 867.72, "end": 869.18, "probability": 0.8712 }, { "start": 869.6, "end": 872.14, "probability": 0.896 }, { "start": 872.68, "end": 874.38, "probability": 0.6084 }, { "start": 874.66, "end": 877.86, "probability": 0.9827 }, { "start": 877.86, "end": 880.54, "probability": 0.9327 }, { "start": 881.06, "end": 881.9, "probability": 0.6252 }, { "start": 882.06, "end": 882.48, "probability": 0.5079 }, { "start": 882.52, "end": 884.28, "probability": 0.9246 }, { "start": 884.42, "end": 886.62, "probability": 0.741 }, { "start": 886.66, "end": 893.18, "probability": 0.9959 }, { "start": 895.36, "end": 898.4, "probability": 0.5312 }, { "start": 898.5, "end": 899.32, "probability": 0.7272 }, { "start": 899.9, "end": 901.34, "probability": 0.858 }, { "start": 902.0, "end": 903.96, "probability": 0.9824 }, { "start": 904.2, "end": 905.56, "probability": 0.9388 }, { "start": 906.74, "end": 907.94, "probability": 0.7602 }, { "start": 909.2, "end": 911.74, "probability": 0.0221 }, { "start": 911.74, "end": 912.3, "probability": 0.3021 }, { "start": 912.85, "end": 916.5, "probability": 0.8347 }, { "start": 917.02, "end": 917.48, "probability": 0.9759 }, { "start": 918.0, "end": 919.78, "probability": 0.8312 }, { "start": 919.9, "end": 920.63, "probability": 0.8101 }, { "start": 921.02, "end": 922.94, "probability": 0.6258 }, { "start": 923.56, "end": 925.3, "probability": 0.9664 }, { "start": 925.4, "end": 925.78, "probability": 0.5123 }, { "start": 925.82, "end": 928.14, "probability": 0.8152 }, { "start": 928.34, "end": 929.3, "probability": 0.5971 }, { "start": 929.3, "end": 929.7, "probability": 0.5175 }, { "start": 929.72, "end": 929.95, "probability": 0.7017 }, { "start": 931.04, "end": 932.11, "probability": 0.9708 }, { "start": 932.86, "end": 933.09, "probability": 0.656 }, { "start": 933.62, "end": 936.96, "probability": 0.9349 }, { "start": 937.68, "end": 942.02, "probability": 0.9609 }, { "start": 942.94, "end": 945.5, "probability": 0.8193 }, { "start": 945.56, "end": 946.5, "probability": 0.8136 }, { "start": 946.58, "end": 947.14, "probability": 0.5075 }, { "start": 947.9, "end": 950.02, "probability": 0.9279 }, { "start": 950.5, "end": 950.92, "probability": 0.5595 }, { "start": 951.0, "end": 952.04, "probability": 0.9499 }, { "start": 952.24, "end": 954.06, "probability": 0.9953 }, { "start": 954.98, "end": 957.42, "probability": 0.6512 }, { "start": 957.58, "end": 958.96, "probability": 0.7898 }, { "start": 959.0, "end": 960.02, "probability": 0.9803 }, { "start": 960.58, "end": 961.88, "probability": 0.8924 }, { "start": 963.22, "end": 970.34, "probability": 0.9075 }, { "start": 970.42, "end": 972.8, "probability": 0.9866 }, { "start": 973.41, "end": 974.84, "probability": 0.805 }, { "start": 975.52, "end": 977.07, "probability": 0.9753 }, { "start": 977.8, "end": 978.58, "probability": 0.8886 }, { "start": 979.78, "end": 980.55, "probability": 0.4101 }, { "start": 980.88, "end": 981.18, "probability": 0.8272 }, { "start": 981.74, "end": 988.44, "probability": 0.4649 }, { "start": 988.76, "end": 991.1, "probability": 0.9447 }, { "start": 992.18, "end": 993.08, "probability": 0.7172 }, { "start": 993.86, "end": 995.88, "probability": 0.7524 }, { "start": 997.16, "end": 998.18, "probability": 0.9453 }, { "start": 998.62, "end": 1003.54, "probability": 0.7832 }, { "start": 1003.6, "end": 1004.52, "probability": 0.7473 }, { "start": 1004.6, "end": 1005.18, "probability": 0.913 }, { "start": 1005.56, "end": 1011.56, "probability": 0.7631 }, { "start": 1012.76, "end": 1015.4, "probability": 0.6351 }, { "start": 1015.48, "end": 1016.35, "probability": 0.7728 }, { "start": 1016.8, "end": 1020.06, "probability": 0.9572 }, { "start": 1020.3, "end": 1021.4, "probability": 0.7523 }, { "start": 1022.12, "end": 1024.16, "probability": 0.9682 }, { "start": 1024.2, "end": 1026.5, "probability": 0.9827 }, { "start": 1026.66, "end": 1027.78, "probability": 0.6273 }, { "start": 1028.1, "end": 1033.4, "probability": 0.9965 }, { "start": 1033.72, "end": 1034.44, "probability": 0.6664 }, { "start": 1034.48, "end": 1035.54, "probability": 0.6639 }, { "start": 1035.54, "end": 1039.09, "probability": 0.6923 }, { "start": 1039.44, "end": 1040.2, "probability": 0.5581 }, { "start": 1040.56, "end": 1042.31, "probability": 0.6368 }, { "start": 1042.78, "end": 1044.56, "probability": 0.9961 }, { "start": 1044.68, "end": 1046.46, "probability": 0.5617 }, { "start": 1046.6, "end": 1047.5, "probability": 0.4994 }, { "start": 1048.12, "end": 1049.94, "probability": 0.6742 }, { "start": 1050.66, "end": 1051.58, "probability": 0.9643 }, { "start": 1051.7, "end": 1051.94, "probability": 0.6661 }, { "start": 1051.94, "end": 1052.74, "probability": 0.9917 }, { "start": 1053.82, "end": 1055.36, "probability": 0.9544 }, { "start": 1055.78, "end": 1058.52, "probability": 0.9155 }, { "start": 1059.12, "end": 1059.22, "probability": 0.5043 }, { "start": 1059.32, "end": 1060.24, "probability": 0.9606 }, { "start": 1060.3, "end": 1063.6, "probability": 0.9318 }, { "start": 1063.92, "end": 1064.34, "probability": 0.5947 }, { "start": 1064.52, "end": 1065.86, "probability": 0.9644 }, { "start": 1066.68, "end": 1067.98, "probability": 0.8912 }, { "start": 1068.42, "end": 1069.77, "probability": 0.7084 }, { "start": 1070.7, "end": 1072.54, "probability": 0.9926 }, { "start": 1072.68, "end": 1073.42, "probability": 0.7725 }, { "start": 1073.42, "end": 1075.16, "probability": 0.874 }, { "start": 1075.24, "end": 1075.79, "probability": 0.7798 }, { "start": 1076.48, "end": 1079.73, "probability": 0.9554 }, { "start": 1080.6, "end": 1082.44, "probability": 0.9888 }, { "start": 1082.48, "end": 1085.58, "probability": 0.9918 }, { "start": 1086.52, "end": 1087.02, "probability": 0.6449 }, { "start": 1087.28, "end": 1090.24, "probability": 0.7271 }, { "start": 1090.66, "end": 1093.54, "probability": 0.8533 }, { "start": 1094.1, "end": 1095.9, "probability": 0.4823 }, { "start": 1096.34, "end": 1098.36, "probability": 0.6804 }, { "start": 1098.86, "end": 1102.78, "probability": 0.9016 }, { "start": 1102.9, "end": 1103.94, "probability": 0.9811 }, { "start": 1104.52, "end": 1105.48, "probability": 0.5035 }, { "start": 1106.12, "end": 1106.34, "probability": 0.0323 }, { "start": 1106.34, "end": 1106.34, "probability": 0.2308 }, { "start": 1106.34, "end": 1107.1, "probability": 0.4565 }, { "start": 1107.18, "end": 1108.15, "probability": 0.9036 }, { "start": 1108.56, "end": 1109.74, "probability": 0.816 }, { "start": 1110.45, "end": 1115.28, "probability": 0.8081 }, { "start": 1115.56, "end": 1118.05, "probability": 0.0734 }, { "start": 1122.4, "end": 1124.7, "probability": 0.9815 }, { "start": 1124.86, "end": 1125.44, "probability": 0.6513 }, { "start": 1125.8, "end": 1127.06, "probability": 0.7826 }, { "start": 1127.22, "end": 1133.42, "probability": 0.9398 }, { "start": 1133.92, "end": 1137.12, "probability": 0.9647 }, { "start": 1137.12, "end": 1138.62, "probability": 0.7478 }, { "start": 1138.68, "end": 1139.0, "probability": 0.428 }, { "start": 1139.76, "end": 1142.64, "probability": 0.7204 }, { "start": 1142.78, "end": 1144.76, "probability": 0.6298 }, { "start": 1144.98, "end": 1146.94, "probability": 0.8094 }, { "start": 1147.18, "end": 1152.12, "probability": 0.3554 }, { "start": 1152.12, "end": 1153.47, "probability": 0.1792 }, { "start": 1156.76, "end": 1160.9, "probability": 0.9512 }, { "start": 1162.18, "end": 1162.98, "probability": 0.457 }, { "start": 1163.16, "end": 1166.44, "probability": 0.9356 }, { "start": 1166.6, "end": 1169.46, "probability": 0.993 }, { "start": 1169.46, "end": 1172.18, "probability": 0.9728 }, { "start": 1172.62, "end": 1173.7, "probability": 0.997 }, { "start": 1174.32, "end": 1174.86, "probability": 0.742 }, { "start": 1174.94, "end": 1177.24, "probability": 0.9893 }, { "start": 1177.72, "end": 1180.08, "probability": 0.9535 }, { "start": 1180.66, "end": 1184.28, "probability": 0.8911 }, { "start": 1185.78, "end": 1186.48, "probability": 0.6828 }, { "start": 1187.06, "end": 1189.64, "probability": 0.9781 }, { "start": 1191.56, "end": 1193.16, "probability": 0.4485 }, { "start": 1193.22, "end": 1195.46, "probability": 0.5691 }, { "start": 1195.88, "end": 1197.68, "probability": 0.8698 }, { "start": 1197.74, "end": 1199.12, "probability": 0.9335 }, { "start": 1199.56, "end": 1201.4, "probability": 0.9753 }, { "start": 1203.02, "end": 1204.94, "probability": 0.4977 }, { "start": 1205.24, "end": 1207.6, "probability": 0.9572 }, { "start": 1208.54, "end": 1209.1, "probability": 0.5176 }, { "start": 1210.42, "end": 1212.1, "probability": 0.7744 }, { "start": 1213.1, "end": 1216.66, "probability": 0.9326 }, { "start": 1217.22, "end": 1217.72, "probability": 0.7746 }, { "start": 1219.17, "end": 1219.77, "probability": 0.0822 }, { "start": 1219.86, "end": 1222.62, "probability": 0.932 }, { "start": 1223.46, "end": 1225.34, "probability": 0.9545 }, { "start": 1226.52, "end": 1231.18, "probability": 0.9651 }, { "start": 1232.3, "end": 1238.08, "probability": 0.9979 }, { "start": 1238.62, "end": 1239.84, "probability": 0.8148 }, { "start": 1240.47, "end": 1242.22, "probability": 0.7759 }, { "start": 1242.99, "end": 1245.53, "probability": 0.9482 }, { "start": 1246.04, "end": 1246.73, "probability": 0.3686 }, { "start": 1248.32, "end": 1248.75, "probability": 0.6545 }, { "start": 1249.86, "end": 1254.16, "probability": 0.8236 }, { "start": 1254.22, "end": 1255.16, "probability": 0.5317 }, { "start": 1256.24, "end": 1257.7, "probability": 0.7536 }, { "start": 1258.56, "end": 1260.46, "probability": 0.8955 }, { "start": 1262.04, "end": 1267.12, "probability": 0.9323 }, { "start": 1268.7, "end": 1269.54, "probability": 0.4606 }, { "start": 1271.28, "end": 1272.3, "probability": 0.551 }, { "start": 1272.84, "end": 1273.42, "probability": 0.5217 }, { "start": 1274.76, "end": 1278.46, "probability": 0.9935 }, { "start": 1279.68, "end": 1281.86, "probability": 0.9668 }, { "start": 1282.92, "end": 1288.8, "probability": 0.9933 }, { "start": 1289.94, "end": 1290.34, "probability": 0.9334 }, { "start": 1290.54, "end": 1294.28, "probability": 0.9928 }, { "start": 1294.66, "end": 1296.52, "probability": 0.9789 }, { "start": 1297.24, "end": 1299.8, "probability": 0.9709 }, { "start": 1300.6, "end": 1303.38, "probability": 0.9756 }, { "start": 1304.16, "end": 1307.12, "probability": 0.9837 }, { "start": 1307.12, "end": 1312.66, "probability": 0.9884 }, { "start": 1312.92, "end": 1314.0, "probability": 0.9915 }, { "start": 1314.1, "end": 1315.62, "probability": 0.9419 }, { "start": 1316.92, "end": 1319.18, "probability": 0.929 }, { "start": 1320.88, "end": 1322.28, "probability": 0.985 }, { "start": 1322.98, "end": 1324.08, "probability": 0.7893 }, { "start": 1324.18, "end": 1327.58, "probability": 0.9846 }, { "start": 1327.66, "end": 1330.34, "probability": 0.9634 }, { "start": 1330.5, "end": 1331.18, "probability": 0.9465 }, { "start": 1331.32, "end": 1332.08, "probability": 0.9659 }, { "start": 1332.16, "end": 1333.04, "probability": 0.4974 }, { "start": 1333.14, "end": 1336.14, "probability": 0.6474 }, { "start": 1336.4, "end": 1336.9, "probability": 0.2572 }, { "start": 1337.6, "end": 1341.92, "probability": 0.829 }, { "start": 1342.58, "end": 1347.86, "probability": 0.9873 }, { "start": 1348.62, "end": 1350.14, "probability": 0.9939 }, { "start": 1350.42, "end": 1351.38, "probability": 0.7352 }, { "start": 1352.4, "end": 1353.66, "probability": 0.9262 }, { "start": 1354.32, "end": 1357.4, "probability": 0.989 }, { "start": 1360.68, "end": 1364.0, "probability": 0.9783 }, { "start": 1365.1, "end": 1365.73, "probability": 0.9067 }, { "start": 1366.16, "end": 1367.0, "probability": 0.0605 }, { "start": 1367.12, "end": 1371.32, "probability": 0.5304 }, { "start": 1372.62, "end": 1385.12, "probability": 0.9628 }, { "start": 1386.64, "end": 1387.88, "probability": 0.5408 }, { "start": 1388.42, "end": 1391.56, "probability": 0.9566 }, { "start": 1391.96, "end": 1394.28, "probability": 0.9779 }, { "start": 1394.84, "end": 1395.14, "probability": 0.2649 }, { "start": 1395.14, "end": 1395.9, "probability": 0.6769 }, { "start": 1396.28, "end": 1397.93, "probability": 0.9091 }, { "start": 1398.42, "end": 1399.18, "probability": 0.7072 }, { "start": 1399.64, "end": 1401.4, "probability": 0.8985 }, { "start": 1401.6, "end": 1403.4, "probability": 0.9485 }, { "start": 1403.46, "end": 1404.56, "probability": 0.9658 }, { "start": 1404.6, "end": 1406.82, "probability": 0.795 }, { "start": 1408.98, "end": 1409.72, "probability": 0.7658 }, { "start": 1409.9, "end": 1410.68, "probability": 0.7502 }, { "start": 1410.96, "end": 1413.9, "probability": 0.9885 }, { "start": 1414.42, "end": 1415.43, "probability": 0.6128 }, { "start": 1416.7, "end": 1416.8, "probability": 0.5669 }, { "start": 1417.9, "end": 1419.44, "probability": 0.7305 }, { "start": 1419.5, "end": 1421.2, "probability": 0.8022 }, { "start": 1422.96, "end": 1425.54, "probability": 0.7643 }, { "start": 1426.1, "end": 1427.2, "probability": 0.7621 }, { "start": 1428.6, "end": 1429.74, "probability": 0.5281 }, { "start": 1430.68, "end": 1436.62, "probability": 0.9443 }, { "start": 1437.82, "end": 1439.84, "probability": 0.9971 }, { "start": 1440.36, "end": 1441.38, "probability": 0.5824 }, { "start": 1442.08, "end": 1443.23, "probability": 0.9805 }, { "start": 1444.08, "end": 1445.72, "probability": 0.9492 }, { "start": 1446.78, "end": 1451.68, "probability": 0.9857 }, { "start": 1452.8, "end": 1454.08, "probability": 0.9753 }, { "start": 1454.36, "end": 1456.67, "probability": 0.9893 }, { "start": 1457.64, "end": 1459.84, "probability": 0.9225 }, { "start": 1460.26, "end": 1462.16, "probability": 0.7178 }, { "start": 1463.02, "end": 1464.28, "probability": 0.9661 }, { "start": 1464.72, "end": 1468.2, "probability": 0.7842 }, { "start": 1468.98, "end": 1469.88, "probability": 0.3223 }, { "start": 1469.96, "end": 1471.04, "probability": 0.6895 }, { "start": 1471.06, "end": 1471.56, "probability": 0.6049 }, { "start": 1471.9, "end": 1474.26, "probability": 0.9946 }, { "start": 1474.66, "end": 1476.3, "probability": 0.9658 }, { "start": 1477.08, "end": 1478.22, "probability": 0.2879 }, { "start": 1479.04, "end": 1480.7, "probability": 0.8438 }, { "start": 1481.24, "end": 1484.68, "probability": 0.8496 }, { "start": 1486.06, "end": 1490.64, "probability": 0.8705 }, { "start": 1490.9, "end": 1492.01, "probability": 0.9868 }, { "start": 1493.2, "end": 1495.0, "probability": 0.9852 }, { "start": 1495.42, "end": 1496.02, "probability": 0.4798 }, { "start": 1496.44, "end": 1498.92, "probability": 0.411 }, { "start": 1500.16, "end": 1501.65, "probability": 0.939 }, { "start": 1502.54, "end": 1504.76, "probability": 0.9971 }, { "start": 1505.28, "end": 1507.25, "probability": 0.999 }, { "start": 1507.96, "end": 1509.64, "probability": 0.7272 }, { "start": 1510.42, "end": 1514.06, "probability": 0.9942 }, { "start": 1514.36, "end": 1518.42, "probability": 0.9958 }, { "start": 1518.86, "end": 1521.22, "probability": 0.7259 }, { "start": 1521.7, "end": 1525.12, "probability": 0.4822 }, { "start": 1525.56, "end": 1526.5, "probability": 0.3502 }, { "start": 1526.52, "end": 1528.34, "probability": 0.3605 }, { "start": 1528.76, "end": 1532.62, "probability": 0.9937 }, { "start": 1532.98, "end": 1535.76, "probability": 0.5211 }, { "start": 1536.78, "end": 1538.78, "probability": 0.695 }, { "start": 1539.12, "end": 1539.74, "probability": 0.9702 }, { "start": 1540.74, "end": 1541.35, "probability": 0.7144 }, { "start": 1542.0, "end": 1544.24, "probability": 0.8484 }, { "start": 1544.32, "end": 1545.34, "probability": 0.9543 }, { "start": 1545.84, "end": 1549.56, "probability": 0.9425 }, { "start": 1549.6, "end": 1550.26, "probability": 0.8813 }, { "start": 1551.6, "end": 1552.72, "probability": 0.7407 }, { "start": 1553.2, "end": 1554.41, "probability": 0.5385 }, { "start": 1555.3, "end": 1555.72, "probability": 0.5099 }, { "start": 1555.92, "end": 1556.94, "probability": 0.5525 }, { "start": 1557.02, "end": 1557.82, "probability": 0.7688 }, { "start": 1558.12, "end": 1560.02, "probability": 0.9668 }, { "start": 1560.22, "end": 1562.44, "probability": 0.8665 }, { "start": 1562.44, "end": 1566.06, "probability": 0.7188 }, { "start": 1566.22, "end": 1567.88, "probability": 0.7675 }, { "start": 1569.32, "end": 1574.2, "probability": 0.7602 }, { "start": 1574.7, "end": 1576.1, "probability": 0.9493 }, { "start": 1576.54, "end": 1579.48, "probability": 0.8879 }, { "start": 1580.76, "end": 1582.96, "probability": 0.5569 }, { "start": 1583.12, "end": 1587.16, "probability": 0.8557 }, { "start": 1587.82, "end": 1589.64, "probability": 0.8369 }, { "start": 1590.1, "end": 1596.1, "probability": 0.8878 }, { "start": 1596.58, "end": 1598.24, "probability": 0.9631 }, { "start": 1598.66, "end": 1602.7, "probability": 0.9902 }, { "start": 1603.48, "end": 1607.54, "probability": 0.6705 }, { "start": 1608.1, "end": 1610.1, "probability": 0.9329 }, { "start": 1610.2, "end": 1611.15, "probability": 0.9006 }, { "start": 1611.34, "end": 1612.54, "probability": 0.9777 }, { "start": 1612.74, "end": 1617.14, "probability": 0.7394 }, { "start": 1617.72, "end": 1620.06, "probability": 0.8526 }, { "start": 1620.7, "end": 1624.86, "probability": 0.9181 }, { "start": 1624.86, "end": 1627.96, "probability": 0.9847 }, { "start": 1628.26, "end": 1628.54, "probability": 0.9492 }, { "start": 1629.26, "end": 1632.42, "probability": 0.9696 }, { "start": 1632.42, "end": 1636.36, "probability": 0.9643 }, { "start": 1636.76, "end": 1639.1, "probability": 0.5683 }, { "start": 1639.12, "end": 1639.3, "probability": 0.3449 }, { "start": 1639.3, "end": 1640.38, "probability": 0.7372 }, { "start": 1642.48, "end": 1644.36, "probability": 0.9528 }, { "start": 1644.56, "end": 1645.24, "probability": 0.3698 }, { "start": 1645.56, "end": 1646.68, "probability": 0.7174 }, { "start": 1646.86, "end": 1647.79, "probability": 0.662 }, { "start": 1651.39, "end": 1654.34, "probability": 0.5638 }, { "start": 1654.48, "end": 1655.98, "probability": 0.8667 }, { "start": 1656.22, "end": 1657.76, "probability": 0.8984 }, { "start": 1658.62, "end": 1660.36, "probability": 0.6781 }, { "start": 1660.36, "end": 1664.42, "probability": 0.8122 }, { "start": 1664.84, "end": 1667.42, "probability": 0.7432 }, { "start": 1667.54, "end": 1668.5, "probability": 0.7177 }, { "start": 1669.28, "end": 1673.02, "probability": 0.9941 }, { "start": 1673.98, "end": 1674.78, "probability": 0.8345 }, { "start": 1674.9, "end": 1675.48, "probability": 0.6633 }, { "start": 1675.58, "end": 1678.12, "probability": 0.9878 }, { "start": 1678.58, "end": 1679.14, "probability": 0.6733 }, { "start": 1679.64, "end": 1682.76, "probability": 0.9971 }, { "start": 1683.4, "end": 1684.38, "probability": 0.6834 }, { "start": 1684.46, "end": 1684.48, "probability": 0.3307 }, { "start": 1684.48, "end": 1685.28, "probability": 0.41 }, { "start": 1685.76, "end": 1687.76, "probability": 0.8137 }, { "start": 1687.84, "end": 1693.02, "probability": 0.7838 }, { "start": 1693.02, "end": 1693.28, "probability": 0.0346 }, { "start": 1693.28, "end": 1696.69, "probability": 0.9744 }, { "start": 1697.3, "end": 1701.58, "probability": 0.7242 }, { "start": 1701.64, "end": 1704.34, "probability": 0.9592 }, { "start": 1704.42, "end": 1706.14, "probability": 0.58 }, { "start": 1707.12, "end": 1709.64, "probability": 0.9937 }, { "start": 1709.66, "end": 1712.54, "probability": 0.9517 }, { "start": 1713.4, "end": 1715.68, "probability": 0.201 }, { "start": 1715.74, "end": 1719.98, "probability": 0.9865 }, { "start": 1720.18, "end": 1721.32, "probability": 0.8749 }, { "start": 1721.68, "end": 1722.62, "probability": 0.9951 }, { "start": 1722.76, "end": 1725.52, "probability": 0.9888 }, { "start": 1725.52, "end": 1728.86, "probability": 0.9845 }, { "start": 1729.4, "end": 1730.24, "probability": 0.946 }, { "start": 1730.3, "end": 1730.88, "probability": 0.5952 }, { "start": 1730.98, "end": 1731.36, "probability": 0.8617 }, { "start": 1731.46, "end": 1736.52, "probability": 0.9953 }, { "start": 1736.62, "end": 1738.96, "probability": 0.9974 }, { "start": 1739.12, "end": 1739.56, "probability": 0.5312 }, { "start": 1739.66, "end": 1742.24, "probability": 0.777 }, { "start": 1742.66, "end": 1747.78, "probability": 0.8989 }, { "start": 1748.02, "end": 1750.44, "probability": 0.6279 }, { "start": 1750.76, "end": 1752.68, "probability": 0.9556 }, { "start": 1754.32, "end": 1755.24, "probability": 0.7044 }, { "start": 1755.32, "end": 1755.92, "probability": 0.6777 }, { "start": 1756.12, "end": 1756.48, "probability": 0.561 }, { "start": 1756.66, "end": 1760.42, "probability": 0.6603 }, { "start": 1760.56, "end": 1762.94, "probability": 0.8566 }, { "start": 1763.5, "end": 1765.31, "probability": 0.9844 }, { "start": 1766.44, "end": 1766.54, "probability": 0.1381 }, { "start": 1766.92, "end": 1768.7, "probability": 0.97 }, { "start": 1768.76, "end": 1769.24, "probability": 0.8298 }, { "start": 1769.9, "end": 1771.52, "probability": 0.8169 }, { "start": 1771.6, "end": 1772.28, "probability": 0.8863 }, { "start": 1772.42, "end": 1776.98, "probability": 0.989 }, { "start": 1777.1, "end": 1779.84, "probability": 0.8628 }, { "start": 1779.84, "end": 1783.32, "probability": 0.9772 }, { "start": 1783.44, "end": 1785.01, "probability": 0.6869 }, { "start": 1785.24, "end": 1785.28, "probability": 0.9121 }, { "start": 1785.9, "end": 1787.36, "probability": 0.6719 }, { "start": 1787.84, "end": 1792.32, "probability": 0.9854 }, { "start": 1792.68, "end": 1793.52, "probability": 0.9938 }, { "start": 1794.72, "end": 1795.92, "probability": 0.7493 }, { "start": 1797.64, "end": 1798.69, "probability": 0.7818 }, { "start": 1803.7, "end": 1805.06, "probability": 0.7485 }, { "start": 1806.76, "end": 1807.66, "probability": 0.6317 }, { "start": 1809.22, "end": 1810.2, "probability": 0.9956 }, { "start": 1813.46, "end": 1818.24, "probability": 0.9747 }, { "start": 1820.34, "end": 1823.54, "probability": 0.9917 }, { "start": 1824.7, "end": 1825.3, "probability": 0.951 }, { "start": 1825.84, "end": 1828.12, "probability": 0.9754 }, { "start": 1829.58, "end": 1831.4, "probability": 0.8601 }, { "start": 1836.7, "end": 1837.52, "probability": 0.7334 }, { "start": 1838.3, "end": 1838.92, "probability": 0.9993 }, { "start": 1839.96, "end": 1841.16, "probability": 0.9976 }, { "start": 1841.36, "end": 1844.32, "probability": 0.8017 }, { "start": 1844.7, "end": 1846.4, "probability": 0.9824 }, { "start": 1846.46, "end": 1847.6, "probability": 0.8824 }, { "start": 1848.14, "end": 1852.78, "probability": 0.9939 }, { "start": 1853.46, "end": 1855.66, "probability": 0.9052 }, { "start": 1856.38, "end": 1857.2, "probability": 0.5766 }, { "start": 1857.32, "end": 1858.71, "probability": 0.5577 }, { "start": 1859.16, "end": 1863.86, "probability": 0.8579 }, { "start": 1864.24, "end": 1867.46, "probability": 0.9889 }, { "start": 1867.84, "end": 1869.14, "probability": 0.7539 }, { "start": 1869.8, "end": 1873.0, "probability": 0.9978 }, { "start": 1873.04, "end": 1877.34, "probability": 0.9512 }, { "start": 1877.78, "end": 1881.28, "probability": 0.988 }, { "start": 1881.92, "end": 1883.62, "probability": 0.9941 }, { "start": 1884.64, "end": 1887.24, "probability": 0.9973 }, { "start": 1888.02, "end": 1891.8, "probability": 0.9927 }, { "start": 1892.16, "end": 1894.38, "probability": 0.899 }, { "start": 1897.42, "end": 1897.84, "probability": 0.4687 }, { "start": 1897.86, "end": 1899.97, "probability": 0.6712 }, { "start": 1901.88, "end": 1903.42, "probability": 0.6044 }, { "start": 1903.64, "end": 1905.94, "probability": 0.349 }, { "start": 1906.28, "end": 1907.18, "probability": 0.1987 }, { "start": 1907.38, "end": 1909.64, "probability": 0.4241 }, { "start": 1909.68, "end": 1909.94, "probability": 0.0298 }, { "start": 1910.06, "end": 1910.94, "probability": 0.3892 }, { "start": 1911.24, "end": 1911.84, "probability": 0.674 }, { "start": 1911.84, "end": 1914.2, "probability": 0.8368 }, { "start": 1914.34, "end": 1914.96, "probability": 0.758 }, { "start": 1915.1, "end": 1915.78, "probability": 0.5446 }, { "start": 1916.04, "end": 1920.1, "probability": 0.9153 }, { "start": 1920.38, "end": 1921.18, "probability": 0.3776 }, { "start": 1921.2, "end": 1925.4, "probability": 0.9705 }, { "start": 1927.14, "end": 1928.42, "probability": 0.0731 }, { "start": 1929.14, "end": 1929.66, "probability": 0.5813 }, { "start": 1929.76, "end": 1930.34, "probability": 0.4957 }, { "start": 1930.34, "end": 1930.74, "probability": 0.3831 }, { "start": 1930.94, "end": 1934.74, "probability": 0.241 }, { "start": 1934.92, "end": 1934.92, "probability": 0.1236 }, { "start": 1934.92, "end": 1935.8, "probability": 0.8937 }, { "start": 1935.88, "end": 1938.4, "probability": 0.9945 }, { "start": 1938.46, "end": 1941.02, "probability": 0.741 }, { "start": 1941.22, "end": 1941.98, "probability": 0.4397 }, { "start": 1941.98, "end": 1946.03, "probability": 0.9548 }, { "start": 1946.28, "end": 1947.5, "probability": 0.9498 }, { "start": 1947.62, "end": 1949.76, "probability": 0.838 }, { "start": 1949.84, "end": 1950.86, "probability": 0.9107 }, { "start": 1951.92, "end": 1953.94, "probability": 0.9016 }, { "start": 1954.06, "end": 1955.28, "probability": 0.8324 }, { "start": 1955.62, "end": 1960.96, "probability": 0.9427 }, { "start": 1961.34, "end": 1962.0, "probability": 0.9696 }, { "start": 1962.38, "end": 1963.18, "probability": 0.1561 }, { "start": 1963.7, "end": 1964.48, "probability": 0.5168 }, { "start": 1965.68, "end": 1967.56, "probability": 0.0166 }, { "start": 1967.56, "end": 1967.56, "probability": 0.1199 }, { "start": 1967.56, "end": 1968.16, "probability": 0.3871 }, { "start": 1968.34, "end": 1971.74, "probability": 0.5524 }, { "start": 1972.0, "end": 1973.58, "probability": 0.82 }, { "start": 1974.46, "end": 1974.76, "probability": 0.013 }, { "start": 1975.04, "end": 1975.48, "probability": 0.2425 }, { "start": 1975.48, "end": 1976.34, "probability": 0.4115 }, { "start": 1977.62, "end": 1978.34, "probability": 0.5249 }, { "start": 1978.34, "end": 1979.22, "probability": 0.123 }, { "start": 1979.34, "end": 1980.0, "probability": 0.3984 }, { "start": 1980.14, "end": 1982.32, "probability": 0.4972 }, { "start": 1985.02, "end": 1987.4, "probability": 0.9014 }, { "start": 1987.4, "end": 1991.58, "probability": 0.6777 }, { "start": 1995.08, "end": 1995.4, "probability": 0.1917 }, { "start": 1995.54, "end": 1997.6, "probability": 0.7694 }, { "start": 1998.7, "end": 2002.08, "probability": 0.8808 }, { "start": 2002.08, "end": 2008.3, "probability": 0.2149 }, { "start": 2009.22, "end": 2009.34, "probability": 0.0907 }, { "start": 2009.34, "end": 2009.34, "probability": 0.0182 }, { "start": 2009.34, "end": 2009.34, "probability": 0.0245 }, { "start": 2009.34, "end": 2010.76, "probability": 0.1131 }, { "start": 2011.7, "end": 2016.39, "probability": 0.9377 }, { "start": 2016.68, "end": 2022.36, "probability": 0.8168 }, { "start": 2022.62, "end": 2024.72, "probability": 0.8575 }, { "start": 2025.24, "end": 2031.36, "probability": 0.9846 }, { "start": 2031.94, "end": 2034.44, "probability": 0.9724 }, { "start": 2034.82, "end": 2036.67, "probability": 0.9221 }, { "start": 2036.96, "end": 2038.5, "probability": 0.5961 }, { "start": 2038.58, "end": 2039.58, "probability": 0.9056 }, { "start": 2039.88, "end": 2040.32, "probability": 0.666 }, { "start": 2042.78, "end": 2045.0, "probability": 0.2235 }, { "start": 2046.24, "end": 2048.82, "probability": 0.2316 }, { "start": 2049.96, "end": 2050.2, "probability": 0.148 }, { "start": 2050.2, "end": 2050.55, "probability": 0.348 }, { "start": 2051.54, "end": 2052.94, "probability": 0.9932 }, { "start": 2053.26, "end": 2056.34, "probability": 0.9058 }, { "start": 2057.2, "end": 2059.4, "probability": 0.7821 }, { "start": 2061.74, "end": 2061.74, "probability": 0.1707 }, { "start": 2061.74, "end": 2062.16, "probability": 0.3053 }, { "start": 2062.28, "end": 2063.36, "probability": 0.8165 }, { "start": 2063.84, "end": 2067.18, "probability": 0.7868 }, { "start": 2067.66, "end": 2072.08, "probability": 0.9922 }, { "start": 2072.08, "end": 2077.68, "probability": 0.9959 }, { "start": 2078.26, "end": 2079.32, "probability": 0.999 }, { "start": 2080.36, "end": 2081.23, "probability": 0.8992 }, { "start": 2082.06, "end": 2084.18, "probability": 0.9772 }, { "start": 2084.84, "end": 2086.02, "probability": 0.9954 }, { "start": 2086.38, "end": 2086.6, "probability": 0.6012 }, { "start": 2086.86, "end": 2087.52, "probability": 0.8835 }, { "start": 2087.6, "end": 2092.14, "probability": 0.987 }, { "start": 2092.5, "end": 2094.92, "probability": 0.998 }, { "start": 2095.56, "end": 2096.43, "probability": 0.7336 }, { "start": 2096.56, "end": 2098.24, "probability": 0.9825 }, { "start": 2098.82, "end": 2099.42, "probability": 0.9917 }, { "start": 2099.94, "end": 2103.06, "probability": 0.9513 }, { "start": 2103.14, "end": 2103.96, "probability": 0.7968 }, { "start": 2104.68, "end": 2105.42, "probability": 0.6906 }, { "start": 2105.88, "end": 2107.46, "probability": 0.0879 }, { "start": 2107.46, "end": 2108.96, "probability": 0.2211 }, { "start": 2109.08, "end": 2110.68, "probability": 0.6624 }, { "start": 2110.82, "end": 2112.66, "probability": 0.7155 }, { "start": 2112.9, "end": 2118.04, "probability": 0.5108 }, { "start": 2118.16, "end": 2118.8, "probability": 0.2496 }, { "start": 2119.08, "end": 2123.1, "probability": 0.0308 }, { "start": 2123.28, "end": 2124.08, "probability": 0.4827 }, { "start": 2124.14, "end": 2124.83, "probability": 0.0079 }, { "start": 2125.3, "end": 2127.46, "probability": 0.2327 }, { "start": 2127.54, "end": 2127.95, "probability": 0.5491 }, { "start": 2128.8, "end": 2131.7, "probability": 0.7234 }, { "start": 2131.78, "end": 2133.6, "probability": 0.5123 }, { "start": 2133.78, "end": 2135.24, "probability": 0.0905 }, { "start": 2136.81, "end": 2136.88, "probability": 0.0119 }, { "start": 2136.88, "end": 2137.2, "probability": 0.1309 }, { "start": 2137.28, "end": 2139.24, "probability": 0.5912 }, { "start": 2139.36, "end": 2141.44, "probability": 0.9375 }, { "start": 2141.5, "end": 2142.7, "probability": 0.9717 }, { "start": 2142.88, "end": 2144.26, "probability": 0.7449 }, { "start": 2144.28, "end": 2146.0, "probability": 0.8335 }, { "start": 2146.22, "end": 2147.8, "probability": 0.9468 }, { "start": 2148.06, "end": 2149.62, "probability": 0.5582 }, { "start": 2149.94, "end": 2151.72, "probability": 0.8413 }, { "start": 2152.34, "end": 2152.98, "probability": 0.4638 }, { "start": 2153.18, "end": 2154.85, "probability": 0.9429 }, { "start": 2155.24, "end": 2155.24, "probability": 0.3831 }, { "start": 2155.3, "end": 2159.38, "probability": 0.9661 }, { "start": 2159.38, "end": 2163.04, "probability": 0.7782 }, { "start": 2163.62, "end": 2165.85, "probability": 0.3593 }, { "start": 2166.44, "end": 2166.52, "probability": 0.1564 }, { "start": 2171.16, "end": 2171.66, "probability": 0.4796 }, { "start": 2171.66, "end": 2174.04, "probability": 0.5662 }, { "start": 2174.12, "end": 2175.28, "probability": 0.7577 }, { "start": 2175.66, "end": 2177.42, "probability": 0.9854 }, { "start": 2177.72, "end": 2178.42, "probability": 0.8627 }, { "start": 2178.54, "end": 2181.96, "probability": 0.9804 }, { "start": 2182.2, "end": 2183.2, "probability": 0.748 }, { "start": 2183.32, "end": 2185.5, "probability": 0.9893 }, { "start": 2185.64, "end": 2186.98, "probability": 0.9294 }, { "start": 2187.14, "end": 2188.46, "probability": 0.811 }, { "start": 2188.46, "end": 2189.22, "probability": 0.0584 }, { "start": 2189.5, "end": 2190.66, "probability": 0.2169 }, { "start": 2190.68, "end": 2195.12, "probability": 0.9881 }, { "start": 2195.26, "end": 2196.46, "probability": 0.5885 }, { "start": 2197.24, "end": 2198.42, "probability": 0.6218 }, { "start": 2199.28, "end": 2202.46, "probability": 0.9684 }, { "start": 2202.56, "end": 2203.12, "probability": 0.6416 }, { "start": 2203.12, "end": 2203.86, "probability": 0.9702 }, { "start": 2204.2, "end": 2207.16, "probability": 0.7798 }, { "start": 2208.3, "end": 2209.34, "probability": 0.6126 }, { "start": 2210.0, "end": 2210.66, "probability": 0.8876 }, { "start": 2210.92, "end": 2213.62, "probability": 0.9912 }, { "start": 2215.0, "end": 2220.08, "probability": 0.9938 }, { "start": 2221.02, "end": 2221.84, "probability": 0.7943 }, { "start": 2222.72, "end": 2225.33, "probability": 0.9799 }, { "start": 2225.98, "end": 2228.96, "probability": 0.6435 }, { "start": 2229.88, "end": 2231.02, "probability": 0.9251 }, { "start": 2231.96, "end": 2233.3, "probability": 0.9542 }, { "start": 2234.14, "end": 2237.94, "probability": 0.8726 }, { "start": 2238.42, "end": 2239.26, "probability": 0.9637 }, { "start": 2239.5, "end": 2240.12, "probability": 0.7445 }, { "start": 2240.32, "end": 2242.0, "probability": 0.9953 }, { "start": 2243.08, "end": 2247.18, "probability": 0.9771 }, { "start": 2247.86, "end": 2250.28, "probability": 0.8062 }, { "start": 2250.84, "end": 2251.98, "probability": 0.915 }, { "start": 2252.74, "end": 2254.06, "probability": 0.9989 }, { "start": 2254.86, "end": 2256.7, "probability": 0.9285 }, { "start": 2257.38, "end": 2260.37, "probability": 0.9616 }, { "start": 2261.2, "end": 2264.62, "probability": 0.9827 }, { "start": 2265.44, "end": 2267.76, "probability": 0.9063 }, { "start": 2267.98, "end": 2269.96, "probability": 0.9307 }, { "start": 2270.06, "end": 2270.48, "probability": 0.9227 }, { "start": 2271.4, "end": 2275.48, "probability": 0.9916 }, { "start": 2275.58, "end": 2276.52, "probability": 0.7726 }, { "start": 2276.7, "end": 2279.58, "probability": 0.8653 }, { "start": 2280.0, "end": 2282.54, "probability": 0.9961 }, { "start": 2282.54, "end": 2285.74, "probability": 0.9362 }, { "start": 2285.94, "end": 2286.77, "probability": 0.9932 }, { "start": 2287.56, "end": 2291.2, "probability": 0.9976 }, { "start": 2292.46, "end": 2295.24, "probability": 0.8146 }, { "start": 2295.69, "end": 2297.64, "probability": 0.8877 }, { "start": 2298.26, "end": 2299.04, "probability": 0.5792 }, { "start": 2299.12, "end": 2300.9, "probability": 0.8961 }, { "start": 2301.18, "end": 2302.86, "probability": 0.9918 }, { "start": 2303.26, "end": 2305.2, "probability": 0.8915 }, { "start": 2305.36, "end": 2307.24, "probability": 0.737 }, { "start": 2307.4, "end": 2309.42, "probability": 0.5621 }, { "start": 2310.1, "end": 2312.34, "probability": 0.8306 }, { "start": 2312.46, "end": 2313.36, "probability": 0.8551 }, { "start": 2313.56, "end": 2316.84, "probability": 0.9927 }, { "start": 2317.04, "end": 2318.3, "probability": 0.9667 }, { "start": 2318.5, "end": 2319.1, "probability": 0.7218 }, { "start": 2319.22, "end": 2321.74, "probability": 0.9385 }, { "start": 2322.08, "end": 2322.42, "probability": 0.7743 }, { "start": 2322.72, "end": 2324.86, "probability": 0.9814 }, { "start": 2325.6, "end": 2326.46, "probability": 0.9812 }, { "start": 2326.54, "end": 2327.24, "probability": 0.9876 }, { "start": 2327.32, "end": 2327.94, "probability": 0.5975 }, { "start": 2328.22, "end": 2329.4, "probability": 0.9222 }, { "start": 2330.4, "end": 2332.69, "probability": 0.9889 }, { "start": 2333.0, "end": 2334.54, "probability": 0.7688 }, { "start": 2335.08, "end": 2336.92, "probability": 0.2758 }, { "start": 2336.94, "end": 2336.94, "probability": 0.2645 }, { "start": 2337.2, "end": 2339.68, "probability": 0.7098 }, { "start": 2339.68, "end": 2339.84, "probability": 0.2527 }, { "start": 2339.98, "end": 2340.58, "probability": 0.3162 }, { "start": 2340.76, "end": 2341.44, "probability": 0.4411 }, { "start": 2341.52, "end": 2343.18, "probability": 0.9976 }, { "start": 2343.3, "end": 2343.48, "probability": 0.3826 }, { "start": 2343.52, "end": 2343.76, "probability": 0.5653 }, { "start": 2343.8, "end": 2344.62, "probability": 0.9539 }, { "start": 2344.92, "end": 2346.34, "probability": 0.9064 }, { "start": 2347.5, "end": 2352.58, "probability": 0.8658 }, { "start": 2353.2, "end": 2354.12, "probability": 0.6639 }, { "start": 2354.26, "end": 2358.94, "probability": 0.9106 }, { "start": 2359.66, "end": 2361.32, "probability": 0.9366 }, { "start": 2361.42, "end": 2363.08, "probability": 0.9966 }, { "start": 2363.28, "end": 2365.23, "probability": 0.9575 }, { "start": 2365.84, "end": 2366.8, "probability": 0.9976 }, { "start": 2366.94, "end": 2367.54, "probability": 0.2536 }, { "start": 2367.62, "end": 2368.28, "probability": 0.9337 }, { "start": 2368.36, "end": 2369.21, "probability": 0.7897 }, { "start": 2369.92, "end": 2371.56, "probability": 0.9766 }, { "start": 2371.62, "end": 2373.19, "probability": 0.9612 }, { "start": 2373.34, "end": 2375.58, "probability": 0.9986 }, { "start": 2376.28, "end": 2376.8, "probability": 0.7564 }, { "start": 2377.9, "end": 2380.36, "probability": 0.8337 }, { "start": 2380.44, "end": 2381.38, "probability": 0.9377 }, { "start": 2381.44, "end": 2383.12, "probability": 0.6395 }, { "start": 2383.9, "end": 2387.22, "probability": 0.9816 }, { "start": 2387.22, "end": 2389.58, "probability": 0.7697 }, { "start": 2390.54, "end": 2392.42, "probability": 0.9351 }, { "start": 2392.56, "end": 2393.88, "probability": 0.9937 }, { "start": 2394.32, "end": 2396.38, "probability": 0.4922 }, { "start": 2396.94, "end": 2398.08, "probability": 0.6815 }, { "start": 2398.68, "end": 2398.68, "probability": 0.1022 }, { "start": 2400.24, "end": 2401.68, "probability": 0.5306 }, { "start": 2402.16, "end": 2405.8, "probability": 0.8824 }, { "start": 2405.9, "end": 2407.0, "probability": 0.6419 }, { "start": 2407.42, "end": 2409.18, "probability": 0.99 }, { "start": 2409.9, "end": 2413.62, "probability": 0.9216 }, { "start": 2414.16, "end": 2418.31, "probability": 0.7441 }, { "start": 2419.38, "end": 2421.52, "probability": 0.5665 }, { "start": 2423.0, "end": 2425.08, "probability": 0.9932 }, { "start": 2425.9, "end": 2427.0, "probability": 0.7438 }, { "start": 2427.0, "end": 2428.62, "probability": 0.4413 }, { "start": 2428.62, "end": 2430.04, "probability": 0.3384 }, { "start": 2431.86, "end": 2434.04, "probability": 0.6469 }, { "start": 2434.38, "end": 2438.02, "probability": 0.6637 }, { "start": 2438.16, "end": 2444.62, "probability": 0.9859 }, { "start": 2444.62, "end": 2448.28, "probability": 0.9937 }, { "start": 2449.14, "end": 2449.6, "probability": 0.5832 }, { "start": 2449.98, "end": 2450.64, "probability": 0.8022 }, { "start": 2450.66, "end": 2451.14, "probability": 0.933 }, { "start": 2451.38, "end": 2453.82, "probability": 0.9465 }, { "start": 2454.18, "end": 2454.24, "probability": 0.0097 }, { "start": 2454.82, "end": 2455.6, "probability": 0.7132 }, { "start": 2455.72, "end": 2457.12, "probability": 0.7366 }, { "start": 2457.12, "end": 2458.28, "probability": 0.776 }, { "start": 2459.18, "end": 2461.4, "probability": 0.4661 }, { "start": 2461.4, "end": 2462.52, "probability": 0.8857 }, { "start": 2462.78, "end": 2462.92, "probability": 0.6943 }, { "start": 2462.92, "end": 2463.94, "probability": 0.7782 }, { "start": 2463.96, "end": 2464.54, "probability": 0.7013 }, { "start": 2464.54, "end": 2465.44, "probability": 0.5204 }, { "start": 2465.6, "end": 2468.18, "probability": 0.611 }, { "start": 2469.27, "end": 2471.66, "probability": 0.5464 }, { "start": 2471.76, "end": 2472.08, "probability": 0.3439 }, { "start": 2472.1, "end": 2476.26, "probability": 0.9294 }, { "start": 2476.96, "end": 2477.42, "probability": 0.3829 }, { "start": 2477.68, "end": 2478.65, "probability": 0.9617 }, { "start": 2479.08, "end": 2480.6, "probability": 0.8745 }, { "start": 2480.64, "end": 2482.16, "probability": 0.9108 }, { "start": 2482.64, "end": 2483.12, "probability": 0.5956 }, { "start": 2483.3, "end": 2484.32, "probability": 0.5156 }, { "start": 2484.32, "end": 2485.76, "probability": 0.9396 }, { "start": 2486.84, "end": 2487.84, "probability": 0.7338 }, { "start": 2487.94, "end": 2488.42, "probability": 0.5591 }, { "start": 2488.68, "end": 2491.22, "probability": 0.6421 }, { "start": 2491.22, "end": 2495.56, "probability": 0.8641 }, { "start": 2495.86, "end": 2497.12, "probability": 0.4355 }, { "start": 2498.04, "end": 2498.88, "probability": 0.6292 }, { "start": 2499.04, "end": 2499.32, "probability": 0.5006 }, { "start": 2500.24, "end": 2503.16, "probability": 0.5665 }, { "start": 2503.4, "end": 2508.2, "probability": 0.988 }, { "start": 2508.7, "end": 2510.48, "probability": 0.9626 }, { "start": 2513.0, "end": 2513.64, "probability": 0.594 }, { "start": 2513.8, "end": 2515.34, "probability": 0.9954 }, { "start": 2515.4, "end": 2516.26, "probability": 0.6505 }, { "start": 2516.52, "end": 2517.78, "probability": 0.8 }, { "start": 2518.54, "end": 2519.18, "probability": 0.8862 }, { "start": 2521.06, "end": 2526.66, "probability": 0.952 }, { "start": 2527.48, "end": 2529.6, "probability": 0.9714 }, { "start": 2530.68, "end": 2532.14, "probability": 0.9951 }, { "start": 2532.82, "end": 2535.46, "probability": 0.9157 }, { "start": 2536.14, "end": 2538.04, "probability": 0.9639 }, { "start": 2539.5, "end": 2541.54, "probability": 0.9574 }, { "start": 2542.16, "end": 2545.38, "probability": 0.974 }, { "start": 2546.84, "end": 2552.48, "probability": 0.9111 }, { "start": 2553.0, "end": 2558.46, "probability": 0.7454 }, { "start": 2559.16, "end": 2565.1, "probability": 0.9269 }, { "start": 2566.34, "end": 2567.88, "probability": 0.8936 }, { "start": 2568.6, "end": 2573.08, "probability": 0.9868 }, { "start": 2573.68, "end": 2575.66, "probability": 0.6924 }, { "start": 2577.86, "end": 2580.7, "probability": 0.8284 }, { "start": 2581.4, "end": 2585.2, "probability": 0.9578 }, { "start": 2586.42, "end": 2590.06, "probability": 0.8312 }, { "start": 2590.56, "end": 2593.22, "probability": 0.815 }, { "start": 2594.22, "end": 2596.82, "probability": 0.8678 }, { "start": 2597.4, "end": 2599.54, "probability": 0.916 }, { "start": 2600.76, "end": 2605.46, "probability": 0.896 }, { "start": 2606.66, "end": 2606.76, "probability": 0.1666 }, { "start": 2608.8, "end": 2609.9, "probability": 0.109 }, { "start": 2609.92, "end": 2611.39, "probability": 0.4361 }, { "start": 2612.02, "end": 2613.14, "probability": 0.2972 }, { "start": 2613.26, "end": 2614.32, "probability": 0.7641 }, { "start": 2615.89, "end": 2623.12, "probability": 0.9892 }, { "start": 2623.88, "end": 2627.9, "probability": 0.7748 }, { "start": 2628.96, "end": 2629.68, "probability": 0.9877 }, { "start": 2630.36, "end": 2632.76, "probability": 0.9792 }, { "start": 2633.34, "end": 2636.76, "probability": 0.7662 }, { "start": 2637.7, "end": 2640.86, "probability": 0.5593 }, { "start": 2641.76, "end": 2643.5, "probability": 0.9333 }, { "start": 2644.06, "end": 2646.88, "probability": 0.5709 }, { "start": 2647.18, "end": 2647.48, "probability": 0.923 }, { "start": 2648.14, "end": 2649.12, "probability": 0.7627 }, { "start": 2649.92, "end": 2654.06, "probability": 0.6936 }, { "start": 2654.34, "end": 2657.04, "probability": 0.6656 }, { "start": 2657.24, "end": 2659.58, "probability": 0.9409 }, { "start": 2660.1, "end": 2665.24, "probability": 0.9802 }, { "start": 2665.62, "end": 2667.06, "probability": 0.6916 }, { "start": 2667.58, "end": 2668.46, "probability": 0.975 }, { "start": 2669.12, "end": 2670.5, "probability": 0.7198 }, { "start": 2671.42, "end": 2678.32, "probability": 0.9543 }, { "start": 2678.76, "end": 2682.06, "probability": 0.8208 }, { "start": 2682.38, "end": 2683.54, "probability": 0.8987 }, { "start": 2684.08, "end": 2685.42, "probability": 0.7896 }, { "start": 2685.68, "end": 2686.92, "probability": 0.8846 }, { "start": 2687.38, "end": 2688.8, "probability": 0.9114 }, { "start": 2689.44, "end": 2689.88, "probability": 0.7793 }, { "start": 2689.96, "end": 2695.8, "probability": 0.727 }, { "start": 2696.74, "end": 2699.78, "probability": 0.8184 }, { "start": 2699.88, "end": 2701.66, "probability": 0.8387 }, { "start": 2701.98, "end": 2704.42, "probability": 0.9578 }, { "start": 2705.04, "end": 2706.52, "probability": 0.8532 }, { "start": 2706.58, "end": 2707.08, "probability": 0.9203 }, { "start": 2707.14, "end": 2707.9, "probability": 0.7181 }, { "start": 2708.14, "end": 2716.86, "probability": 0.8556 }, { "start": 2717.34, "end": 2721.62, "probability": 0.929 }, { "start": 2721.96, "end": 2723.12, "probability": 0.8048 }, { "start": 2723.22, "end": 2723.84, "probability": 0.6466 }, { "start": 2724.24, "end": 2724.54, "probability": 0.4824 }, { "start": 2724.66, "end": 2727.56, "probability": 0.944 }, { "start": 2727.96, "end": 2730.6, "probability": 0.3975 }, { "start": 2730.84, "end": 2731.56, "probability": 0.8017 }, { "start": 2731.88, "end": 2737.1, "probability": 0.9789 }, { "start": 2737.8, "end": 2737.86, "probability": 0.2572 }, { "start": 2737.86, "end": 2738.48, "probability": 0.5743 }, { "start": 2743.14, "end": 2744.08, "probability": 0.5833 }, { "start": 2744.64, "end": 2744.82, "probability": 0.7222 }, { "start": 2749.7, "end": 2751.06, "probability": 0.4649 }, { "start": 2751.16, "end": 2751.86, "probability": 0.868 }, { "start": 2752.0, "end": 2755.3, "probability": 0.916 }, { "start": 2756.04, "end": 2760.12, "probability": 0.9846 }, { "start": 2761.24, "end": 2764.14, "probability": 0.7396 }, { "start": 2764.36, "end": 2766.68, "probability": 0.7573 }, { "start": 2766.9, "end": 2767.54, "probability": 0.5535 }, { "start": 2767.62, "end": 2768.74, "probability": 0.9133 }, { "start": 2769.64, "end": 2770.88, "probability": 0.9406 }, { "start": 2771.56, "end": 2774.56, "probability": 0.9857 }, { "start": 2775.42, "end": 2775.48, "probability": 0.5792 }, { "start": 2775.48, "end": 2776.93, "probability": 0.981 }, { "start": 2777.44, "end": 2779.76, "probability": 0.9109 }, { "start": 2779.9, "end": 2780.82, "probability": 0.3788 }, { "start": 2781.02, "end": 2784.0, "probability": 0.7201 }, { "start": 2784.36, "end": 2785.02, "probability": 0.8104 }, { "start": 2785.48, "end": 2786.18, "probability": 0.6933 }, { "start": 2786.36, "end": 2787.7, "probability": 0.9194 }, { "start": 2787.74, "end": 2792.18, "probability": 0.9492 }, { "start": 2792.24, "end": 2795.62, "probability": 0.9965 }, { "start": 2795.62, "end": 2799.6, "probability": 0.9987 }, { "start": 2799.96, "end": 2805.88, "probability": 0.9722 }, { "start": 2805.88, "end": 2809.76, "probability": 0.9819 }, { "start": 2809.86, "end": 2810.08, "probability": 0.1626 }, { "start": 2810.08, "end": 2810.4, "probability": 0.3641 }, { "start": 2811.16, "end": 2817.68, "probability": 0.7274 }, { "start": 2817.78, "end": 2819.1, "probability": 0.6921 }, { "start": 2819.46, "end": 2821.68, "probability": 0.9727 }, { "start": 2822.0, "end": 2824.64, "probability": 0.9906 }, { "start": 2825.2, "end": 2828.2, "probability": 0.7904 }, { "start": 2828.76, "end": 2829.1, "probability": 0.2022 }, { "start": 2830.1, "end": 2832.3, "probability": 0.233 }, { "start": 2833.16, "end": 2834.18, "probability": 0.3214 }, { "start": 2834.18, "end": 2836.88, "probability": 0.2997 }, { "start": 2839.04, "end": 2843.78, "probability": 0.7432 }, { "start": 2844.0, "end": 2844.24, "probability": 0.5493 }, { "start": 2844.64, "end": 2847.7, "probability": 0.7007 }, { "start": 2848.18, "end": 2852.02, "probability": 0.723 }, { "start": 2852.64, "end": 2854.52, "probability": 0.9121 }, { "start": 2855.08, "end": 2860.62, "probability": 0.9971 }, { "start": 2861.04, "end": 2866.46, "probability": 0.9482 }, { "start": 2866.7, "end": 2867.92, "probability": 0.6663 }, { "start": 2867.94, "end": 2869.5, "probability": 0.5237 }, { "start": 2869.84, "end": 2872.96, "probability": 0.9722 }, { "start": 2873.46, "end": 2874.78, "probability": 0.6294 }, { "start": 2875.18, "end": 2878.08, "probability": 0.8684 }, { "start": 2878.44, "end": 2878.92, "probability": 0.7534 }, { "start": 2879.0, "end": 2879.42, "probability": 0.7085 }, { "start": 2879.94, "end": 2881.28, "probability": 0.8446 }, { "start": 2881.62, "end": 2882.96, "probability": 0.9529 }, { "start": 2883.04, "end": 2885.58, "probability": 0.8818 }, { "start": 2885.64, "end": 2887.35, "probability": 0.2145 }, { "start": 2887.54, "end": 2887.94, "probability": 0.284 }, { "start": 2888.76, "end": 2892.34, "probability": 0.5971 }, { "start": 2892.38, "end": 2893.16, "probability": 0.6502 }, { "start": 2893.82, "end": 2894.56, "probability": 0.6792 }, { "start": 2894.64, "end": 2895.36, "probability": 0.8273 }, { "start": 2895.46, "end": 2895.7, "probability": 0.7247 }, { "start": 2895.8, "end": 2898.54, "probability": 0.9841 }, { "start": 2898.58, "end": 2900.5, "probability": 0.9521 }, { "start": 2901.54, "end": 2905.46, "probability": 0.9402 }, { "start": 2905.98, "end": 2909.2, "probability": 0.9613 }, { "start": 2909.2, "end": 2911.16, "probability": 0.9821 }, { "start": 2911.16, "end": 2913.22, "probability": 0.9648 }, { "start": 2913.86, "end": 2914.56, "probability": 0.1316 }, { "start": 2915.22, "end": 2917.6, "probability": 0.9781 }, { "start": 2918.12, "end": 2920.32, "probability": 0.9777 }, { "start": 2921.0, "end": 2925.64, "probability": 0.93 }, { "start": 2926.26, "end": 2926.86, "probability": 0.8989 }, { "start": 2926.96, "end": 2927.72, "probability": 0.567 }, { "start": 2927.74, "end": 2929.12, "probability": 0.7401 }, { "start": 2929.74, "end": 2935.72, "probability": 0.98 }, { "start": 2935.72, "end": 2940.06, "probability": 0.8777 }, { "start": 2940.32, "end": 2944.02, "probability": 0.913 }, { "start": 2944.5, "end": 2947.98, "probability": 0.9935 }, { "start": 2948.64, "end": 2950.74, "probability": 0.9938 }, { "start": 2950.84, "end": 2952.02, "probability": 0.9753 }, { "start": 2952.36, "end": 2954.74, "probability": 0.7684 }, { "start": 2955.38, "end": 2958.06, "probability": 0.9474 }, { "start": 2958.2, "end": 2958.52, "probability": 0.5324 }, { "start": 2958.54, "end": 2959.46, "probability": 0.5686 }, { "start": 2959.46, "end": 2960.46, "probability": 0.5305 }, { "start": 2961.06, "end": 2963.8, "probability": 0.9572 }, { "start": 2964.36, "end": 2970.8, "probability": 0.9404 }, { "start": 2971.02, "end": 2971.51, "probability": 0.1224 }, { "start": 2971.76, "end": 2974.14, "probability": 0.8093 }, { "start": 2974.24, "end": 2974.48, "probability": 0.0117 }, { "start": 2974.48, "end": 2975.4, "probability": 0.4657 }, { "start": 2975.52, "end": 2978.36, "probability": 0.7965 }, { "start": 2978.5, "end": 2979.56, "probability": 0.9594 }, { "start": 2979.96, "end": 2982.42, "probability": 0.7592 }, { "start": 2982.84, "end": 2984.12, "probability": 0.7461 }, { "start": 2984.22, "end": 2986.12, "probability": 0.9133 }, { "start": 2986.2, "end": 2987.8, "probability": 0.8563 }, { "start": 2988.66, "end": 2992.76, "probability": 0.9895 }, { "start": 2993.7, "end": 2996.36, "probability": 0.986 }, { "start": 2996.48, "end": 2997.76, "probability": 0.9165 }, { "start": 2998.38, "end": 2998.7, "probability": 0.6614 }, { "start": 2999.28, "end": 3004.72, "probability": 0.9819 }, { "start": 3004.82, "end": 3007.66, "probability": 0.9789 }, { "start": 3007.66, "end": 3010.46, "probability": 0.9806 }, { "start": 3010.58, "end": 3015.42, "probability": 0.7858 }, { "start": 3015.5, "end": 3018.58, "probability": 0.9863 }, { "start": 3018.94, "end": 3019.57, "probability": 0.6442 }, { "start": 3019.84, "end": 3020.64, "probability": 0.9294 }, { "start": 3020.88, "end": 3022.1, "probability": 0.8557 }, { "start": 3022.22, "end": 3025.76, "probability": 0.8984 }, { "start": 3026.04, "end": 3026.57, "probability": 0.8652 }, { "start": 3026.72, "end": 3027.5, "probability": 0.7922 }, { "start": 3027.7, "end": 3028.34, "probability": 0.5078 }, { "start": 3028.5, "end": 3030.06, "probability": 0.8626 }, { "start": 3030.64, "end": 3031.58, "probability": 0.1586 }, { "start": 3031.58, "end": 3033.56, "probability": 0.7414 }, { "start": 3033.8, "end": 3036.48, "probability": 0.9419 }, { "start": 3036.62, "end": 3038.06, "probability": 0.5932 }, { "start": 3040.24, "end": 3042.32, "probability": 0.9794 }, { "start": 3042.96, "end": 3044.42, "probability": 0.9564 }, { "start": 3044.84, "end": 3047.78, "probability": 0.9797 }, { "start": 3048.26, "end": 3050.68, "probability": 0.9872 }, { "start": 3051.38, "end": 3056.88, "probability": 0.9826 }, { "start": 3057.52, "end": 3063.44, "probability": 0.9934 }, { "start": 3065.02, "end": 3066.18, "probability": 0.5239 }, { "start": 3068.38, "end": 3074.68, "probability": 0.9629 }, { "start": 3076.02, "end": 3077.88, "probability": 0.9088 }, { "start": 3079.52, "end": 3080.94, "probability": 0.7462 }, { "start": 3081.64, "end": 3083.82, "probability": 0.9976 }, { "start": 3084.22, "end": 3087.88, "probability": 0.8252 }, { "start": 3088.1, "end": 3090.42, "probability": 0.536 }, { "start": 3090.7, "end": 3092.2, "probability": 0.6973 }, { "start": 3092.32, "end": 3095.54, "probability": 0.8024 }, { "start": 3096.08, "end": 3097.34, "probability": 0.9033 }, { "start": 3098.74, "end": 3103.4, "probability": 0.988 }, { "start": 3104.52, "end": 3108.62, "probability": 0.7609 }, { "start": 3108.84, "end": 3110.3, "probability": 0.9641 }, { "start": 3110.36, "end": 3111.2, "probability": 0.6552 }, { "start": 3112.28, "end": 3116.14, "probability": 0.9858 }, { "start": 3116.78, "end": 3117.98, "probability": 0.9969 }, { "start": 3119.36, "end": 3121.96, "probability": 0.9919 }, { "start": 3122.56, "end": 3124.08, "probability": 0.845 }, { "start": 3124.96, "end": 3127.16, "probability": 0.7861 }, { "start": 3127.9, "end": 3129.4, "probability": 0.9386 }, { "start": 3129.94, "end": 3130.48, "probability": 0.8499 }, { "start": 3130.92, "end": 3131.64, "probability": 0.6732 }, { "start": 3131.76, "end": 3134.34, "probability": 0.9824 }, { "start": 3135.1, "end": 3137.68, "probability": 0.8956 }, { "start": 3137.83, "end": 3140.34, "probability": 0.6765 }, { "start": 3142.5, "end": 3144.66, "probability": 0.2846 }, { "start": 3145.06, "end": 3148.04, "probability": 0.9257 }, { "start": 3151.4, "end": 3157.06, "probability": 0.8245 }, { "start": 3157.66, "end": 3159.16, "probability": 0.9444 }, { "start": 3160.08, "end": 3166.3, "probability": 0.8026 }, { "start": 3168.2, "end": 3170.8, "probability": 0.9275 }, { "start": 3171.16, "end": 3175.46, "probability": 0.9692 }, { "start": 3175.5, "end": 3176.03, "probability": 0.6338 }, { "start": 3176.44, "end": 3177.7, "probability": 0.6828 }, { "start": 3177.9, "end": 3178.3, "probability": 0.6085 }, { "start": 3178.34, "end": 3180.56, "probability": 0.848 }, { "start": 3181.02, "end": 3186.08, "probability": 0.9069 }, { "start": 3186.26, "end": 3187.78, "probability": 0.7081 }, { "start": 3188.3, "end": 3188.82, "probability": 0.3862 }, { "start": 3188.91, "end": 3193.62, "probability": 0.8611 }, { "start": 3193.96, "end": 3195.04, "probability": 0.9604 }, { "start": 3195.6, "end": 3196.8, "probability": 0.6295 }, { "start": 3196.94, "end": 3197.92, "probability": 0.9122 }, { "start": 3197.98, "end": 3198.26, "probability": 0.7102 }, { "start": 3198.3, "end": 3199.32, "probability": 0.7525 }, { "start": 3199.88, "end": 3200.54, "probability": 0.6116 }, { "start": 3202.16, "end": 3205.74, "probability": 0.7925 }, { "start": 3205.92, "end": 3206.36, "probability": 0.8067 }, { "start": 3207.1, "end": 3208.74, "probability": 0.7461 }, { "start": 3209.44, "end": 3212.86, "probability": 0.8049 }, { "start": 3213.4, "end": 3215.56, "probability": 0.9912 }, { "start": 3215.56, "end": 3218.5, "probability": 0.9904 }, { "start": 3219.14, "end": 3220.1, "probability": 0.6626 }, { "start": 3220.66, "end": 3222.16, "probability": 0.7878 }, { "start": 3222.56, "end": 3225.32, "probability": 0.9507 }, { "start": 3225.62, "end": 3226.1, "probability": 0.5469 }, { "start": 3226.24, "end": 3227.52, "probability": 0.8685 }, { "start": 3228.3, "end": 3229.14, "probability": 0.9374 }, { "start": 3229.32, "end": 3230.66, "probability": 0.82 }, { "start": 3231.64, "end": 3236.67, "probability": 0.9405 }, { "start": 3240.28, "end": 3243.38, "probability": 0.6797 }, { "start": 3244.52, "end": 3245.24, "probability": 0.3507 }, { "start": 3245.3, "end": 3246.46, "probability": 0.9812 }, { "start": 3246.62, "end": 3252.76, "probability": 0.8102 }, { "start": 3253.48, "end": 3255.42, "probability": 0.6474 }, { "start": 3256.34, "end": 3259.76, "probability": 0.952 }, { "start": 3259.76, "end": 3263.6, "probability": 0.7422 }, { "start": 3264.5, "end": 3269.34, "probability": 0.8927 }, { "start": 3270.18, "end": 3272.06, "probability": 0.5355 }, { "start": 3272.16, "end": 3273.61, "probability": 0.7426 }, { "start": 3274.08, "end": 3275.44, "probability": 0.9846 }, { "start": 3276.3, "end": 3279.24, "probability": 0.9951 }, { "start": 3280.04, "end": 3281.52, "probability": 0.8906 }, { "start": 3282.38, "end": 3288.78, "probability": 0.9843 }, { "start": 3289.44, "end": 3291.14, "probability": 0.9604 }, { "start": 3291.9, "end": 3295.0, "probability": 0.9945 }, { "start": 3295.94, "end": 3298.62, "probability": 0.9777 }, { "start": 3299.44, "end": 3302.6, "probability": 0.9759 }, { "start": 3303.26, "end": 3305.72, "probability": 0.998 }, { "start": 3307.2, "end": 3308.7, "probability": 0.9792 }, { "start": 3309.74, "end": 3310.65, "probability": 0.8296 }, { "start": 3311.48, "end": 3312.92, "probability": 0.6742 }, { "start": 3313.44, "end": 3319.52, "probability": 0.9932 }, { "start": 3320.3, "end": 3323.66, "probability": 0.9827 }, { "start": 3323.66, "end": 3326.58, "probability": 0.7599 }, { "start": 3327.42, "end": 3330.24, "probability": 0.9072 }, { "start": 3330.76, "end": 3332.84, "probability": 0.9126 }, { "start": 3333.22, "end": 3335.4, "probability": 0.9917 }, { "start": 3335.98, "end": 3340.44, "probability": 0.9954 }, { "start": 3341.06, "end": 3343.4, "probability": 0.9922 }, { "start": 3344.2, "end": 3345.06, "probability": 0.8325 }, { "start": 3350.46, "end": 3351.52, "probability": 0.7215 }, { "start": 3351.62, "end": 3357.12, "probability": 0.8799 }, { "start": 3358.42, "end": 3363.66, "probability": 0.9261 }, { "start": 3363.96, "end": 3368.7, "probability": 0.9951 }, { "start": 3369.96, "end": 3370.2, "probability": 0.3808 }, { "start": 3370.28, "end": 3370.72, "probability": 0.8105 }, { "start": 3371.06, "end": 3373.04, "probability": 0.5434 }, { "start": 3374.48, "end": 3376.02, "probability": 0.9198 }, { "start": 3391.66, "end": 3392.44, "probability": 0.7104 }, { "start": 3392.58, "end": 3393.06, "probability": 0.6641 }, { "start": 3393.5, "end": 3393.68, "probability": 0.4375 }, { "start": 3393.78, "end": 3398.52, "probability": 0.9825 }, { "start": 3399.91, "end": 3403.8, "probability": 0.7032 }, { "start": 3404.06, "end": 3406.2, "probability": 0.4518 }, { "start": 3406.8, "end": 3407.48, "probability": 0.7582 }, { "start": 3408.3, "end": 3414.62, "probability": 0.9974 }, { "start": 3415.52, "end": 3416.3, "probability": 0.3955 }, { "start": 3416.62, "end": 3422.24, "probability": 0.9925 }, { "start": 3422.32, "end": 3423.76, "probability": 0.7997 }, { "start": 3423.76, "end": 3424.55, "probability": 0.6651 }, { "start": 3424.8, "end": 3425.6, "probability": 0.5444 }, { "start": 3425.98, "end": 3426.44, "probability": 0.7614 }, { "start": 3426.68, "end": 3432.23, "probability": 0.9762 }, { "start": 3432.9, "end": 3436.02, "probability": 0.8901 }, { "start": 3436.36, "end": 3439.58, "probability": 0.9967 }, { "start": 3439.76, "end": 3442.76, "probability": 0.7826 }, { "start": 3443.16, "end": 3445.14, "probability": 0.8685 }, { "start": 3445.5, "end": 3447.98, "probability": 0.9429 }, { "start": 3448.34, "end": 3449.58, "probability": 0.4683 }, { "start": 3449.8, "end": 3451.18, "probability": 0.6801 }, { "start": 3451.46, "end": 3455.8, "probability": 0.7894 }, { "start": 3456.02, "end": 3457.28, "probability": 0.9854 }, { "start": 3458.6, "end": 3463.66, "probability": 0.6536 }, { "start": 3463.74, "end": 3465.36, "probability": 0.9782 }, { "start": 3465.64, "end": 3470.2, "probability": 0.9801 }, { "start": 3470.2, "end": 3474.56, "probability": 0.9698 }, { "start": 3474.58, "end": 3475.12, "probability": 0.3074 }, { "start": 3475.66, "end": 3475.9, "probability": 0.2321 }, { "start": 3476.64, "end": 3478.3, "probability": 0.8321 }, { "start": 3478.68, "end": 3478.94, "probability": 0.2973 }, { "start": 3478.94, "end": 3479.18, "probability": 0.5061 }, { "start": 3479.26, "end": 3481.0, "probability": 0.581 }, { "start": 3482.62, "end": 3484.48, "probability": 0.9698 }, { "start": 3485.5, "end": 3486.34, "probability": 0.8591 }, { "start": 3486.38, "end": 3487.56, "probability": 0.8577 }, { "start": 3488.68, "end": 3488.96, "probability": 0.8367 }, { "start": 3490.08, "end": 3490.94, "probability": 0.649 }, { "start": 3492.02, "end": 3495.24, "probability": 0.8864 }, { "start": 3495.52, "end": 3495.94, "probability": 0.7581 }, { "start": 3496.24, "end": 3502.16, "probability": 0.9497 }, { "start": 3502.78, "end": 3503.98, "probability": 0.7363 }, { "start": 3505.42, "end": 3506.58, "probability": 0.6068 }, { "start": 3507.44, "end": 3508.1, "probability": 0.8586 }, { "start": 3509.28, "end": 3510.72, "probability": 0.8483 }, { "start": 3511.5, "end": 3514.08, "probability": 0.9352 }, { "start": 3515.14, "end": 3518.32, "probability": 0.9946 }, { "start": 3519.08, "end": 3521.8, "probability": 0.9922 }, { "start": 3522.14, "end": 3523.94, "probability": 0.96 }, { "start": 3524.5, "end": 3528.62, "probability": 0.949 }, { "start": 3529.2, "end": 3532.18, "probability": 0.8873 }, { "start": 3532.7, "end": 3537.08, "probability": 0.9722 }, { "start": 3537.78, "end": 3539.38, "probability": 0.9209 }, { "start": 3539.9, "end": 3543.24, "probability": 0.9761 }, { "start": 3543.4, "end": 3543.92, "probability": 0.6402 }, { "start": 3544.02, "end": 3546.0, "probability": 0.9857 }, { "start": 3546.5, "end": 3547.84, "probability": 0.5306 }, { "start": 3548.26, "end": 3548.88, "probability": 0.5193 }, { "start": 3548.98, "end": 3552.96, "probability": 0.8303 }, { "start": 3553.84, "end": 3556.26, "probability": 0.7874 }, { "start": 3556.46, "end": 3559.58, "probability": 0.8745 }, { "start": 3559.6, "end": 3560.04, "probability": 0.4893 }, { "start": 3560.48, "end": 3561.64, "probability": 0.7117 }, { "start": 3562.3, "end": 3565.76, "probability": 0.9644 }, { "start": 3567.96, "end": 3570.16, "probability": 0.1123 }, { "start": 3570.7, "end": 3571.6, "probability": 0.9946 }, { "start": 3572.54, "end": 3576.52, "probability": 0.8416 }, { "start": 3576.72, "end": 3577.48, "probability": 0.8633 }, { "start": 3577.56, "end": 3579.16, "probability": 0.9653 }, { "start": 3579.32, "end": 3580.2, "probability": 0.455 }, { "start": 3581.04, "end": 3582.26, "probability": 0.6468 }, { "start": 3584.87, "end": 3587.24, "probability": 0.6694 }, { "start": 3587.98, "end": 3588.53, "probability": 0.8676 }, { "start": 3590.32, "end": 3596.22, "probability": 0.7517 }, { "start": 3597.24, "end": 3598.55, "probability": 0.9174 }, { "start": 3598.8, "end": 3600.92, "probability": 0.824 }, { "start": 3602.04, "end": 3603.72, "probability": 0.9491 }, { "start": 3603.9, "end": 3604.7, "probability": 0.7053 }, { "start": 3604.82, "end": 3605.66, "probability": 0.8141 }, { "start": 3605.88, "end": 3607.31, "probability": 0.8224 }, { "start": 3607.66, "end": 3608.32, "probability": 0.8962 }, { "start": 3608.44, "end": 3610.48, "probability": 0.9715 }, { "start": 3611.2, "end": 3612.17, "probability": 0.998 }, { "start": 3612.76, "end": 3614.1, "probability": 0.9678 }, { "start": 3614.66, "end": 3618.04, "probability": 0.9761 }, { "start": 3618.42, "end": 3619.22, "probability": 0.6595 }, { "start": 3619.9, "end": 3620.86, "probability": 0.5073 }, { "start": 3620.94, "end": 3622.66, "probability": 0.9562 }, { "start": 3623.6, "end": 3626.12, "probability": 0.6425 }, { "start": 3626.38, "end": 3626.8, "probability": 0.864 }, { "start": 3627.18, "end": 3629.23, "probability": 0.8213 }, { "start": 3629.5, "end": 3631.0, "probability": 0.9969 }, { "start": 3631.66, "end": 3633.5, "probability": 0.5395 }, { "start": 3634.28, "end": 3640.4, "probability": 0.678 }, { "start": 3640.62, "end": 3641.52, "probability": 0.9032 }, { "start": 3642.24, "end": 3643.12, "probability": 0.982 }, { "start": 3643.44, "end": 3645.38, "probability": 0.8662 }, { "start": 3645.46, "end": 3645.98, "probability": 0.9183 }, { "start": 3646.3, "end": 3647.55, "probability": 0.9061 }, { "start": 3648.12, "end": 3653.34, "probability": 0.9491 }, { "start": 3653.34, "end": 3658.54, "probability": 0.8635 }, { "start": 3658.82, "end": 3659.38, "probability": 0.8757 }, { "start": 3659.46, "end": 3663.36, "probability": 0.8226 }, { "start": 3663.72, "end": 3664.4, "probability": 0.8478 }, { "start": 3664.58, "end": 3666.88, "probability": 0.6872 }, { "start": 3666.98, "end": 3668.72, "probability": 0.8461 }, { "start": 3669.08, "end": 3672.34, "probability": 0.9555 }, { "start": 3672.74, "end": 3673.46, "probability": 0.8891 }, { "start": 3674.24, "end": 3674.96, "probability": 0.6646 }, { "start": 3675.8, "end": 3678.06, "probability": 0.8448 }, { "start": 3678.8, "end": 3679.7, "probability": 0.48 }, { "start": 3681.04, "end": 3683.16, "probability": 0.981 }, { "start": 3683.2, "end": 3684.5, "probability": 0.701 }, { "start": 3684.94, "end": 3686.78, "probability": 0.9958 }, { "start": 3687.58, "end": 3689.2, "probability": 0.8922 }, { "start": 3689.56, "end": 3690.66, "probability": 0.9902 }, { "start": 3691.0, "end": 3692.28, "probability": 0.9631 }, { "start": 3694.08, "end": 3698.8, "probability": 0.7155 }, { "start": 3699.34, "end": 3701.34, "probability": 0.8492 }, { "start": 3701.74, "end": 3702.98, "probability": 0.8674 }, { "start": 3703.44, "end": 3705.24, "probability": 0.9875 }, { "start": 3705.32, "end": 3707.28, "probability": 0.9824 }, { "start": 3707.92, "end": 3708.6, "probability": 0.932 }, { "start": 3708.7, "end": 3714.56, "probability": 0.8401 }, { "start": 3714.66, "end": 3716.38, "probability": 0.8792 }, { "start": 3716.8, "end": 3722.3, "probability": 0.9919 }, { "start": 3723.08, "end": 3724.74, "probability": 0.938 }, { "start": 3724.96, "end": 3725.84, "probability": 0.6884 }, { "start": 3725.88, "end": 3728.29, "probability": 0.8054 }, { "start": 3728.88, "end": 3730.0, "probability": 0.7896 }, { "start": 3730.28, "end": 3733.96, "probability": 0.9954 }, { "start": 3734.34, "end": 3735.14, "probability": 0.9539 }, { "start": 3735.32, "end": 3737.84, "probability": 0.8723 }, { "start": 3740.08, "end": 3746.14, "probability": 0.9688 }, { "start": 3746.4, "end": 3747.2, "probability": 0.6312 }, { "start": 3747.32, "end": 3750.16, "probability": 0.9919 }, { "start": 3751.04, "end": 3751.92, "probability": 0.6552 }, { "start": 3752.88, "end": 3754.16, "probability": 0.7638 }, { "start": 3754.38, "end": 3757.94, "probability": 0.6678 }, { "start": 3758.8, "end": 3764.84, "probability": 0.9522 }, { "start": 3765.46, "end": 3771.06, "probability": 0.8667 }, { "start": 3771.06, "end": 3775.54, "probability": 0.7197 }, { "start": 3775.9, "end": 3776.52, "probability": 0.4063 }, { "start": 3777.32, "end": 3779.52, "probability": 0.7406 }, { "start": 3780.06, "end": 3780.46, "probability": 0.9663 }, { "start": 3783.0, "end": 3785.08, "probability": 0.8197 }, { "start": 3785.78, "end": 3789.12, "probability": 0.9535 }, { "start": 3789.34, "end": 3791.83, "probability": 0.9158 }, { "start": 3792.94, "end": 3793.54, "probability": 0.4897 }, { "start": 3793.64, "end": 3794.6, "probability": 0.8865 }, { "start": 3794.68, "end": 3795.66, "probability": 0.854 }, { "start": 3795.74, "end": 3796.68, "probability": 0.9766 }, { "start": 3796.88, "end": 3797.52, "probability": 0.9676 }, { "start": 3797.68, "end": 3798.42, "probability": 0.9018 }, { "start": 3798.62, "end": 3798.82, "probability": 0.8457 }, { "start": 3799.24, "end": 3799.84, "probability": 0.7046 }, { "start": 3800.76, "end": 3802.28, "probability": 0.7062 }, { "start": 3802.44, "end": 3807.34, "probability": 0.8096 }, { "start": 3808.81, "end": 3815.16, "probability": 0.9928 }, { "start": 3815.8, "end": 3820.02, "probability": 0.8803 }, { "start": 3820.78, "end": 3823.14, "probability": 0.6393 }, { "start": 3823.8, "end": 3829.48, "probability": 0.9476 }, { "start": 3829.96, "end": 3831.24, "probability": 0.8285 }, { "start": 3831.42, "end": 3834.0, "probability": 0.9492 }, { "start": 3834.52, "end": 3837.38, "probability": 0.9797 }, { "start": 3837.94, "end": 3842.58, "probability": 0.9951 }, { "start": 3843.68, "end": 3845.16, "probability": 0.9338 }, { "start": 3845.4, "end": 3849.16, "probability": 0.9917 }, { "start": 3849.6, "end": 3851.82, "probability": 0.9591 }, { "start": 3852.08, "end": 3854.5, "probability": 0.8926 }, { "start": 3854.6, "end": 3859.56, "probability": 0.9484 }, { "start": 3860.78, "end": 3863.34, "probability": 0.991 }, { "start": 3864.54, "end": 3868.32, "probability": 0.8618 }, { "start": 3868.74, "end": 3869.34, "probability": 0.5017 }, { "start": 3870.08, "end": 3871.52, "probability": 0.9198 }, { "start": 3871.98, "end": 3875.4, "probability": 0.8805 }, { "start": 3875.5, "end": 3876.5, "probability": 0.9255 }, { "start": 3888.12, "end": 3889.08, "probability": 0.7633 }, { "start": 3889.24, "end": 3890.04, "probability": 0.8717 }, { "start": 3890.16, "end": 3891.08, "probability": 0.756 }, { "start": 3891.92, "end": 3894.52, "probability": 0.8597 }, { "start": 3894.52, "end": 3898.1, "probability": 0.6567 }, { "start": 3898.32, "end": 3900.76, "probability": 0.74 }, { "start": 3901.6, "end": 3904.14, "probability": 0.9336 }, { "start": 3904.14, "end": 3907.56, "probability": 0.8938 }, { "start": 3908.44, "end": 3912.22, "probability": 0.856 }, { "start": 3913.18, "end": 3915.8, "probability": 0.8404 }, { "start": 3915.88, "end": 3918.28, "probability": 0.6502 }, { "start": 3918.46, "end": 3919.28, "probability": 0.7025 }, { "start": 3919.8, "end": 3920.42, "probability": 0.6517 }, { "start": 3920.62, "end": 3922.92, "probability": 0.9336 }, { "start": 3923.06, "end": 3924.06, "probability": 0.6369 }, { "start": 3924.08, "end": 3924.6, "probability": 0.3491 }, { "start": 3928.68, "end": 3930.42, "probability": 0.6484 }, { "start": 3931.26, "end": 3931.92, "probability": 0.4532 }, { "start": 3931.92, "end": 3932.26, "probability": 0.4109 }, { "start": 3932.3, "end": 3932.94, "probability": 0.7776 }, { "start": 3933.26, "end": 3937.98, "probability": 0.7416 }, { "start": 3938.0, "end": 3938.86, "probability": 0.7324 }, { "start": 3938.96, "end": 3939.3, "probability": 0.6735 }, { "start": 3940.28, "end": 3940.62, "probability": 0.3276 }, { "start": 3940.94, "end": 3940.94, "probability": 0.4929 }, { "start": 3940.94, "end": 3941.32, "probability": 0.6665 }, { "start": 3941.4, "end": 3944.46, "probability": 0.9424 }, { "start": 3944.66, "end": 3953.72, "probability": 0.9739 }, { "start": 3954.54, "end": 3955.0, "probability": 0.4089 }, { "start": 3955.14, "end": 3959.27, "probability": 0.9948 }, { "start": 3960.04, "end": 3962.62, "probability": 0.7326 }, { "start": 3963.38, "end": 3963.48, "probability": 0.3949 }, { "start": 3963.82, "end": 3967.72, "probability": 0.9902 }, { "start": 3968.16, "end": 3968.78, "probability": 0.565 }, { "start": 3968.8, "end": 3971.38, "probability": 0.5633 }, { "start": 3971.68, "end": 3972.84, "probability": 0.7695 }, { "start": 3973.66, "end": 3976.54, "probability": 0.0377 }, { "start": 3977.46, "end": 3978.24, "probability": 0.0128 }, { "start": 3998.54, "end": 4001.72, "probability": 0.5682 }, { "start": 4002.16, "end": 4004.39, "probability": 0.3641 }, { "start": 4004.6, "end": 4005.7, "probability": 0.0202 }, { "start": 4005.7, "end": 4007.58, "probability": 0.2501 }, { "start": 4008.34, "end": 4008.6, "probability": 0.0196 }, { "start": 4008.6, "end": 4011.9, "probability": 0.1673 }, { "start": 4013.62, "end": 4013.96, "probability": 0.0581 }, { "start": 4014.54, "end": 4014.98, "probability": 0.0918 }, { "start": 4015.22, "end": 4020.06, "probability": 0.0212 }, { "start": 4020.06, "end": 4025.24, "probability": 0.0329 }, { "start": 4075.0, "end": 4075.0, "probability": 0.0 }, { "start": 4075.0, "end": 4075.0, "probability": 0.0 }, { "start": 4075.0, "end": 4075.0, "probability": 0.0 }, { "start": 4075.0, "end": 4075.0, "probability": 0.0 }, { "start": 4075.0, "end": 4075.0, "probability": 0.0 }, { "start": 4075.0, "end": 4075.0, "probability": 0.0 }, { "start": 4075.0, "end": 4075.0, "probability": 0.0 }, { "start": 4075.0, "end": 4075.0, "probability": 0.0 }, { "start": 4075.0, "end": 4075.0, "probability": 0.0 }, { "start": 4075.0, "end": 4075.0, "probability": 0.0 }, { "start": 4075.0, "end": 4075.0, "probability": 0.0 }, { "start": 4075.0, "end": 4075.0, "probability": 0.0 }, { "start": 4075.0, "end": 4075.0, "probability": 0.0 }, { "start": 4075.0, "end": 4075.0, "probability": 0.0 }, { "start": 4075.0, "end": 4075.0, "probability": 0.0 }, { "start": 4075.0, "end": 4075.0, "probability": 0.0 }, { "start": 4075.0, "end": 4075.0, "probability": 0.0 }, { "start": 4075.0, "end": 4075.0, "probability": 0.0 }, { "start": 4075.0, "end": 4075.0, "probability": 0.0 }, { "start": 4075.18, "end": 4075.46, "probability": 0.0192 }, { "start": 4075.46, "end": 4075.78, "probability": 0.1619 }, { "start": 4075.78, "end": 4077.22, "probability": 0.1732 }, { "start": 4077.28, "end": 4077.86, "probability": 0.3265 }, { "start": 4078.22, "end": 4082.02, "probability": 0.03 }, { "start": 4087.04, "end": 4087.06, "probability": 0.093 }, { "start": 4087.58, "end": 4091.4, "probability": 0.0268 }, { "start": 4091.4, "end": 4093.36, "probability": 0.0247 }, { "start": 4093.85, "end": 4096.4, "probability": 0.088 }, { "start": 4202.0, "end": 4202.0, "probability": 0.0 }, { "start": 4202.0, "end": 4202.0, "probability": 0.0 }, { "start": 4202.0, "end": 4202.0, "probability": 0.0 }, { "start": 4202.0, "end": 4202.0, "probability": 0.0 }, { "start": 4202.0, "end": 4202.0, "probability": 0.0 }, { "start": 4202.0, "end": 4202.0, "probability": 0.0 }, { "start": 4202.0, "end": 4202.0, "probability": 0.0 }, { "start": 4202.0, "end": 4202.0, "probability": 0.0 }, { "start": 4202.0, "end": 4202.0, "probability": 0.0 }, { "start": 4202.0, "end": 4202.0, "probability": 0.0 }, { "start": 4202.0, "end": 4202.0, "probability": 0.0 }, { "start": 4202.0, "end": 4202.0, "probability": 0.0 }, { "start": 4202.0, "end": 4202.0, "probability": 0.0 }, { "start": 4202.0, "end": 4202.0, "probability": 0.0 }, { "start": 4202.0, "end": 4202.0, "probability": 0.0 }, { "start": 4202.0, "end": 4202.0, "probability": 0.0 }, { "start": 4202.0, "end": 4202.0, "probability": 0.0 }, { "start": 4202.0, "end": 4202.0, "probability": 0.0 }, { "start": 4202.0, "end": 4202.0, "probability": 0.0 }, { "start": 4202.0, "end": 4202.0, "probability": 0.0 }, { "start": 4202.0, "end": 4202.0, "probability": 0.0 }, { "start": 4202.0, "end": 4202.0, "probability": 0.0 }, { "start": 4202.0, "end": 4202.0, "probability": 0.0 }, { "start": 4202.0, "end": 4202.0, "probability": 0.0 }, { "start": 4202.0, "end": 4202.0, "probability": 0.0 }, { "start": 4202.0, "end": 4202.0, "probability": 0.0 }, { "start": 4202.0, "end": 4202.0, "probability": 0.0 }, { "start": 4202.0, "end": 4202.0, "probability": 0.0 }, { "start": 4202.0, "end": 4202.0, "probability": 0.0 }, { "start": 4202.0, "end": 4202.0, "probability": 0.0 }, { "start": 4202.0, "end": 4202.0, "probability": 0.0 }, { "start": 4202.0, "end": 4202.0, "probability": 0.0 }, { "start": 4202.0, "end": 4202.0, "probability": 0.0 }, { "start": 4202.0, "end": 4202.0, "probability": 0.0 }, { "start": 4202.0, "end": 4202.0, "probability": 0.0 }, { "start": 4202.0, "end": 4202.0, "probability": 0.0 }, { "start": 4202.0, "end": 4202.0, "probability": 0.0 }, { "start": 4202.0, "end": 4202.0, "probability": 0.0 }, { "start": 4202.0, "end": 4202.0, "probability": 0.0 }, { "start": 4202.0, "end": 4202.0, "probability": 0.0 }, { "start": 4202.0, "end": 4202.0, "probability": 0.0 }, { "start": 4202.0, "end": 4202.0, "probability": 0.0 }, { "start": 4204.2, "end": 4204.2, "probability": 0.3726 }, { "start": 4204.2, "end": 4207.7, "probability": 0.7959 }, { "start": 4207.84, "end": 4209.44, "probability": 0.7801 }, { "start": 4210.32, "end": 4211.58, "probability": 0.7632 }, { "start": 4211.66, "end": 4214.68, "probability": 0.9436 }, { "start": 4214.68, "end": 4217.48, "probability": 0.7187 }, { "start": 4217.9, "end": 4218.64, "probability": 0.6041 }, { "start": 4218.7, "end": 4221.1, "probability": 0.818 }, { "start": 4221.74, "end": 4222.6, "probability": 0.5919 }, { "start": 4222.68, "end": 4225.7, "probability": 0.9735 }, { "start": 4226.16, "end": 4226.66, "probability": 0.4951 }, { "start": 4227.12, "end": 4230.18, "probability": 0.7417 }, { "start": 4230.18, "end": 4231.28, "probability": 0.9522 }, { "start": 4231.66, "end": 4232.06, "probability": 0.2748 }, { "start": 4232.18, "end": 4232.9, "probability": 0.7201 }, { "start": 4232.94, "end": 4233.3, "probability": 0.8713 }, { "start": 4233.42, "end": 4234.14, "probability": 0.6105 }, { "start": 4234.16, "end": 4234.58, "probability": 0.6162 }, { "start": 4235.2, "end": 4238.72, "probability": 0.9061 }, { "start": 4239.1, "end": 4240.48, "probability": 0.8855 }, { "start": 4240.52, "end": 4243.61, "probability": 0.8236 }, { "start": 4244.98, "end": 4246.74, "probability": 0.649 }, { "start": 4247.12, "end": 4249.4, "probability": 0.9673 }, { "start": 4254.28, "end": 4256.22, "probability": 0.6032 }, { "start": 4259.82, "end": 4261.76, "probability": 0.4431 }, { "start": 4262.0, "end": 4262.94, "probability": 0.5888 }, { "start": 4263.88, "end": 4264.8, "probability": 0.9095 }, { "start": 4264.84, "end": 4265.66, "probability": 0.9459 }, { "start": 4265.72, "end": 4268.24, "probability": 0.9775 }, { "start": 4269.18, "end": 4274.6, "probability": 0.8923 }, { "start": 4275.78, "end": 4283.34, "probability": 0.9546 }, { "start": 4284.16, "end": 4286.02, "probability": 0.9761 }, { "start": 4287.02, "end": 4289.1, "probability": 0.9844 }, { "start": 4289.14, "end": 4296.08, "probability": 0.9352 }, { "start": 4296.16, "end": 4297.0, "probability": 0.7589 }, { "start": 4297.02, "end": 4298.04, "probability": 0.8623 }, { "start": 4298.14, "end": 4299.18, "probability": 0.7558 }, { "start": 4299.96, "end": 4301.88, "probability": 0.9565 }, { "start": 4302.54, "end": 4304.92, "probability": 0.994 }, { "start": 4304.94, "end": 4308.88, "probability": 0.9512 }, { "start": 4309.74, "end": 4311.26, "probability": 0.6592 }, { "start": 4311.34, "end": 4311.96, "probability": 0.7194 }, { "start": 4312.1, "end": 4312.68, "probability": 0.8997 }, { "start": 4312.76, "end": 4313.24, "probability": 0.8059 }, { "start": 4313.28, "end": 4314.24, "probability": 0.8243 }, { "start": 4314.3, "end": 4314.68, "probability": 0.5229 }, { "start": 4316.12, "end": 4320.0, "probability": 0.9503 }, { "start": 4320.66, "end": 4322.74, "probability": 0.9924 }, { "start": 4323.28, "end": 4326.2, "probability": 0.9935 }, { "start": 4327.0, "end": 4329.24, "probability": 0.7332 }, { "start": 4329.54, "end": 4330.88, "probability": 0.8707 }, { "start": 4330.9, "end": 4331.56, "probability": 0.7552 }, { "start": 4332.34, "end": 4333.78, "probability": 0.9189 }, { "start": 4334.42, "end": 4336.14, "probability": 0.8583 }, { "start": 4336.26, "end": 4337.3, "probability": 0.8604 }, { "start": 4337.5, "end": 4340.22, "probability": 0.905 }, { "start": 4340.39, "end": 4344.82, "probability": 0.9775 }, { "start": 4344.86, "end": 4345.96, "probability": 0.7041 }, { "start": 4346.72, "end": 4347.68, "probability": 0.7412 }, { "start": 4347.78, "end": 4348.73, "probability": 0.9761 }, { "start": 4349.54, "end": 4353.96, "probability": 0.9393 }, { "start": 4354.82, "end": 4356.64, "probability": 0.9153 }, { "start": 4356.7, "end": 4358.0, "probability": 0.8132 }, { "start": 4358.12, "end": 4359.48, "probability": 0.5163 }, { "start": 4359.64, "end": 4360.72, "probability": 0.9032 }, { "start": 4361.92, "end": 4362.78, "probability": 0.9549 }, { "start": 4363.0, "end": 4368.14, "probability": 0.9839 }, { "start": 4368.68, "end": 4371.02, "probability": 0.8607 }, { "start": 4371.68, "end": 4374.91, "probability": 0.7767 }, { "start": 4377.1, "end": 4378.78, "probability": 0.863 }, { "start": 4379.84, "end": 4382.54, "probability": 0.9894 }, { "start": 4383.84, "end": 4384.76, "probability": 0.877 }, { "start": 4384.8, "end": 4385.6, "probability": 0.9809 }, { "start": 4385.68, "end": 4387.42, "probability": 0.7371 }, { "start": 4388.14, "end": 4390.3, "probability": 0.9959 }, { "start": 4390.92, "end": 4392.02, "probability": 0.0387 }, { "start": 4393.24, "end": 4396.74, "probability": 0.742 }, { "start": 4397.16, "end": 4398.16, "probability": 0.7906 }, { "start": 4398.58, "end": 4399.66, "probability": 0.9766 }, { "start": 4400.0, "end": 4401.02, "probability": 0.9723 }, { "start": 4401.14, "end": 4402.92, "probability": 0.9607 }, { "start": 4403.74, "end": 4405.1, "probability": 0.9145 }, { "start": 4405.26, "end": 4408.2, "probability": 0.9404 }, { "start": 4408.26, "end": 4409.18, "probability": 0.8643 }, { "start": 4409.3, "end": 4410.58, "probability": 0.8535 }, { "start": 4411.0, "end": 4411.82, "probability": 0.7894 }, { "start": 4411.88, "end": 4412.98, "probability": 0.9569 }, { "start": 4413.04, "end": 4414.26, "probability": 0.7822 }, { "start": 4414.62, "end": 4415.3, "probability": 0.9554 }, { "start": 4415.4, "end": 4417.78, "probability": 0.2893 }, { "start": 4419.14, "end": 4419.32, "probability": 0.2402 }, { "start": 4419.32, "end": 4419.32, "probability": 0.0524 }, { "start": 4419.32, "end": 4421.46, "probability": 0.6707 }, { "start": 4422.2, "end": 4423.37, "probability": 0.9309 }, { "start": 4424.18, "end": 4424.76, "probability": 0.8317 }, { "start": 4425.48, "end": 4426.06, "probability": 0.9424 }, { "start": 4426.84, "end": 4428.04, "probability": 0.8386 }, { "start": 4429.34, "end": 4430.68, "probability": 0.9352 }, { "start": 4430.8, "end": 4431.99, "probability": 0.9781 }, { "start": 4432.52, "end": 4434.64, "probability": 0.9649 }, { "start": 4435.2, "end": 4437.32, "probability": 0.9579 }, { "start": 4438.36, "end": 4440.5, "probability": 0.9089 }, { "start": 4440.62, "end": 4441.03, "probability": 0.6162 }, { "start": 4441.58, "end": 4442.1, "probability": 0.9503 }, { "start": 4442.44, "end": 4447.06, "probability": 0.9606 }, { "start": 4447.74, "end": 4449.36, "probability": 0.8087 }, { "start": 4455.9, "end": 4461.18, "probability": 0.9109 }, { "start": 4462.22, "end": 4463.08, "probability": 0.6431 }, { "start": 4463.2, "end": 4464.12, "probability": 0.8037 }, { "start": 4464.72, "end": 4466.0, "probability": 0.6684 }, { "start": 4466.86, "end": 4468.0, "probability": 0.5469 }, { "start": 4468.88, "end": 4470.1, "probability": 0.9893 }, { "start": 4471.08, "end": 4477.62, "probability": 0.9469 }, { "start": 4478.62, "end": 4479.52, "probability": 0.8896 }, { "start": 4480.1, "end": 4480.9, "probability": 0.7632 }, { "start": 4481.32, "end": 4483.96, "probability": 0.9036 }, { "start": 4484.06, "end": 4486.78, "probability": 0.9668 }, { "start": 4486.88, "end": 4487.72, "probability": 0.9166 }, { "start": 4488.16, "end": 4489.2, "probability": 0.7472 }, { "start": 4490.32, "end": 4491.22, "probability": 0.8879 }, { "start": 4491.22, "end": 4493.18, "probability": 0.6033 }, { "start": 4496.66, "end": 4499.78, "probability": 0.0252 }, { "start": 4500.88, "end": 4505.78, "probability": 0.1331 }, { "start": 4507.72, "end": 4510.5, "probability": 0.5649 }, { "start": 4511.24, "end": 4512.44, "probability": 0.778 }, { "start": 4513.12, "end": 4513.12, "probability": 0.1046 }, { "start": 4513.12, "end": 4515.01, "probability": 0.9902 }, { "start": 4515.8, "end": 4517.42, "probability": 0.8641 }, { "start": 4517.56, "end": 4518.72, "probability": 0.6438 }, { "start": 4518.82, "end": 4519.0, "probability": 0.0215 }, { "start": 4519.02, "end": 4522.18, "probability": 0.542 }, { "start": 4522.88, "end": 4525.72, "probability": 0.8745 }, { "start": 4526.26, "end": 4528.86, "probability": 0.9803 }, { "start": 4529.62, "end": 4531.08, "probability": 0.9928 }, { "start": 4531.78, "end": 4533.88, "probability": 0.9917 }, { "start": 4534.68, "end": 4536.5, "probability": 0.7504 }, { "start": 4536.54, "end": 4537.85, "probability": 0.5897 }, { "start": 4538.72, "end": 4541.88, "probability": 0.9425 }, { "start": 4542.44, "end": 4543.48, "probability": 0.7432 }, { "start": 4543.56, "end": 4544.04, "probability": 0.8902 }, { "start": 4544.3, "end": 4546.34, "probability": 0.9648 }, { "start": 4547.4, "end": 4549.3, "probability": 0.8678 }, { "start": 4549.48, "end": 4550.88, "probability": 0.9851 }, { "start": 4551.5, "end": 4554.06, "probability": 0.9026 }, { "start": 4554.44, "end": 4555.58, "probability": 0.8503 }, { "start": 4555.98, "end": 4558.16, "probability": 0.9487 }, { "start": 4558.8, "end": 4560.6, "probability": 0.9709 }, { "start": 4560.84, "end": 4561.02, "probability": 0.147 }, { "start": 4561.12, "end": 4561.52, "probability": 0.7388 }, { "start": 4561.94, "end": 4566.88, "probability": 0.7892 }, { "start": 4566.88, "end": 4570.9, "probability": 0.9299 }, { "start": 4571.18, "end": 4573.12, "probability": 0.7076 }, { "start": 4573.46, "end": 4574.04, "probability": 0.4112 }, { "start": 4574.08, "end": 4574.6, "probability": 0.5463 }, { "start": 4574.76, "end": 4575.1, "probability": 0.3215 }, { "start": 4575.18, "end": 4575.88, "probability": 0.5197 }, { "start": 4575.88, "end": 4576.3, "probability": 0.6134 }, { "start": 4579.34, "end": 4584.53, "probability": 0.0337 }, { "start": 4587.7, "end": 4592.7, "probability": 0.0269 }, { "start": 4593.3, "end": 4593.74, "probability": 0.0268 }, { "start": 4593.74, "end": 4593.74, "probability": 0.1102 }, { "start": 4593.74, "end": 4593.74, "probability": 0.0871 }, { "start": 4593.74, "end": 4595.72, "probability": 0.3034 }, { "start": 4595.94, "end": 4595.94, "probability": 0.042 }, { "start": 4595.94, "end": 4595.94, "probability": 0.065 }, { "start": 4595.94, "end": 4600.94, "probability": 0.8238 }, { "start": 4600.94, "end": 4606.22, "probability": 0.9838 }, { "start": 4606.7, "end": 4608.88, "probability": 0.9976 }, { "start": 4609.24, "end": 4610.06, "probability": 0.8995 }, { "start": 4610.3, "end": 4613.46, "probability": 0.9868 }, { "start": 4613.5, "end": 4613.92, "probability": 0.976 }, { "start": 4614.7, "end": 4620.88, "probability": 0.7205 }, { "start": 4622.39, "end": 4626.38, "probability": 0.7324 }, { "start": 4627.5, "end": 4627.66, "probability": 0.463 }, { "start": 4627.97, "end": 4629.48, "probability": 0.191 }, { "start": 4629.48, "end": 4629.66, "probability": 0.0918 }, { "start": 4629.66, "end": 4629.7, "probability": 0.6553 }, { "start": 4629.9, "end": 4630.54, "probability": 0.9491 }, { "start": 4630.86, "end": 4636.32, "probability": 0.5921 }, { "start": 4636.32, "end": 4638.32, "probability": 0.3647 }, { "start": 4638.96, "end": 4640.46, "probability": 0.9889 }, { "start": 4642.48, "end": 4646.0, "probability": 0.6764 }, { "start": 4646.9, "end": 4650.5, "probability": 0.5578 }, { "start": 4650.82, "end": 4651.84, "probability": 0.0857 }, { "start": 4652.06, "end": 4654.78, "probability": 0.1596 }, { "start": 4655.38, "end": 4660.36, "probability": 0.7201 }, { "start": 4660.78, "end": 4663.28, "probability": 0.9268 }, { "start": 4663.28, "end": 4666.34, "probability": 0.8531 }, { "start": 4666.46, "end": 4667.36, "probability": 0.3653 }, { "start": 4667.76, "end": 4671.04, "probability": 0.9963 }, { "start": 4671.44, "end": 4674.3, "probability": 0.6388 }, { "start": 4676.44, "end": 4676.72, "probability": 0.016 }, { "start": 4679.76, "end": 4680.68, "probability": 0.2849 }, { "start": 4680.68, "end": 4681.12, "probability": 0.2874 }, { "start": 4681.12, "end": 4682.64, "probability": 0.6029 }, { "start": 4683.48, "end": 4687.06, "probability": 0.7368 }, { "start": 4687.26, "end": 4688.82, "probability": 0.7698 }, { "start": 4689.1, "end": 4690.3, "probability": 0.7221 }, { "start": 4690.8, "end": 4691.7, "probability": 0.9958 }, { "start": 4694.36, "end": 4696.22, "probability": 0.7497 }, { "start": 4696.74, "end": 4698.16, "probability": 0.5229 }, { "start": 4699.12, "end": 4701.48, "probability": 0.8702 }, { "start": 4701.98, "end": 4702.3, "probability": 0.2482 }, { "start": 4702.44, "end": 4703.02, "probability": 0.582 }, { "start": 4703.22, "end": 4706.6, "probability": 0.9878 }, { "start": 4706.66, "end": 4709.04, "probability": 0.5009 }, { "start": 4709.46, "end": 4710.36, "probability": 0.8252 }, { "start": 4712.52, "end": 4714.28, "probability": 0.8874 }, { "start": 4714.86, "end": 4716.58, "probability": 0.3045 }, { "start": 4716.58, "end": 4717.42, "probability": 0.3496 }, { "start": 4717.42, "end": 4717.84, "probability": 0.444 }, { "start": 4718.0, "end": 4722.26, "probability": 0.9382 }, { "start": 4723.14, "end": 4726.48, "probability": 0.9972 }, { "start": 4727.46, "end": 4729.88, "probability": 0.8144 }, { "start": 4730.52, "end": 4732.52, "probability": 0.567 }, { "start": 4733.4, "end": 4733.88, "probability": 0.6366 }, { "start": 4733.96, "end": 4734.5, "probability": 0.9362 }, { "start": 4735.68, "end": 4737.34, "probability": 0.0849 }, { "start": 4737.68, "end": 4739.2, "probability": 0.9005 }, { "start": 4739.26, "end": 4746.26, "probability": 0.7671 }, { "start": 4746.62, "end": 4748.88, "probability": 0.8471 }, { "start": 4750.34, "end": 4753.14, "probability": 0.8872 }, { "start": 4756.1, "end": 4760.56, "probability": 0.884 }, { "start": 4762.2, "end": 4763.24, "probability": 0.4694 }, { "start": 4764.52, "end": 4765.88, "probability": 0.9269 }, { "start": 4767.12, "end": 4767.56, "probability": 0.7445 }, { "start": 4767.56, "end": 4773.62, "probability": 0.9577 }, { "start": 4774.06, "end": 4776.62, "probability": 0.7473 }, { "start": 4776.8, "end": 4778.96, "probability": 0.0798 }, { "start": 4778.96, "end": 4782.24, "probability": 0.6832 }, { "start": 4782.72, "end": 4783.18, "probability": 0.4324 }, { "start": 4783.18, "end": 4784.42, "probability": 0.7141 }, { "start": 4784.56, "end": 4786.8, "probability": 0.87 }, { "start": 4787.52, "end": 4793.51, "probability": 0.9588 }, { "start": 4794.52, "end": 4795.54, "probability": 0.4231 }, { "start": 4795.54, "end": 4795.98, "probability": 0.5379 }, { "start": 4796.2, "end": 4796.48, "probability": 0.1159 }, { "start": 4796.56, "end": 4797.18, "probability": 0.6481 }, { "start": 4797.88, "end": 4798.6, "probability": 0.915 }, { "start": 4798.7, "end": 4801.1, "probability": 0.9739 }, { "start": 4802.94, "end": 4804.6, "probability": 0.9053 }, { "start": 4804.7, "end": 4805.38, "probability": 0.8111 }, { "start": 4805.54, "end": 4806.7, "probability": 0.9117 }, { "start": 4807.54, "end": 4808.58, "probability": 0.9386 }, { "start": 4809.44, "end": 4812.58, "probability": 0.6859 }, { "start": 4813.16, "end": 4814.04, "probability": 0.8144 }, { "start": 4814.48, "end": 4819.2, "probability": 0.9627 }, { "start": 4819.5, "end": 4824.56, "probability": 0.9175 }, { "start": 4824.72, "end": 4826.28, "probability": 0.6431 }, { "start": 4826.64, "end": 4827.7, "probability": 0.628 }, { "start": 4828.26, "end": 4834.06, "probability": 0.8807 }, { "start": 4834.24, "end": 4835.46, "probability": 0.8203 }, { "start": 4835.9, "end": 4838.56, "probability": 0.9731 }, { "start": 4838.86, "end": 4839.74, "probability": 0.6313 }, { "start": 4839.92, "end": 4844.1, "probability": 0.8619 }, { "start": 4844.18, "end": 4846.3, "probability": 0.9566 }, { "start": 4846.4, "end": 4848.58, "probability": 0.6707 }, { "start": 4848.62, "end": 4851.38, "probability": 0.9121 }, { "start": 4851.46, "end": 4855.84, "probability": 0.8903 }, { "start": 4856.0, "end": 4856.34, "probability": 0.6615 }, { "start": 4856.74, "end": 4859.9, "probability": 0.8582 }, { "start": 4860.28, "end": 4860.94, "probability": 0.501 }, { "start": 4861.4, "end": 4864.96, "probability": 0.9062 }, { "start": 4867.5, "end": 4868.32, "probability": 0.9058 }, { "start": 4868.58, "end": 4870.66, "probability": 0.9699 }, { "start": 4872.01, "end": 4874.72, "probability": 0.5803 }, { "start": 4875.18, "end": 4877.98, "probability": 0.3717 }, { "start": 4878.16, "end": 4879.5, "probability": 0.7762 }, { "start": 4879.72, "end": 4881.2, "probability": 0.8705 }, { "start": 4881.46, "end": 4884.76, "probability": 0.9837 }, { "start": 4885.16, "end": 4885.68, "probability": 0.8838 }, { "start": 4886.06, "end": 4886.62, "probability": 0.6219 }, { "start": 4886.82, "end": 4888.32, "probability": 0.7575 }, { "start": 4889.54, "end": 4890.38, "probability": 0.8206 }, { "start": 4891.8, "end": 4896.0, "probability": 0.8774 }, { "start": 4896.0, "end": 4899.94, "probability": 0.993 }, { "start": 4905.82, "end": 4906.56, "probability": 0.7964 }, { "start": 4907.24, "end": 4907.48, "probability": 0.5808 }, { "start": 4908.78, "end": 4913.36, "probability": 0.702 }, { "start": 4914.1, "end": 4915.08, "probability": 0.6812 }, { "start": 4917.44, "end": 4919.9, "probability": 0.9488 }, { "start": 4920.3, "end": 4923.86, "probability": 0.7867 }, { "start": 4925.74, "end": 4930.76, "probability": 0.6971 }, { "start": 4932.46, "end": 4936.08, "probability": 0.2412 }, { "start": 4936.42, "end": 4940.58, "probability": 0.8878 }, { "start": 4941.36, "end": 4942.26, "probability": 0.8915 }, { "start": 4943.3, "end": 4945.08, "probability": 0.5911 }, { "start": 4945.22, "end": 4949.52, "probability": 0.7308 }, { "start": 4949.68, "end": 4950.56, "probability": 0.2022 }, { "start": 4950.92, "end": 4955.42, "probability": 0.7747 }, { "start": 4955.84, "end": 4956.96, "probability": 0.917 }, { "start": 4957.76, "end": 4961.22, "probability": 0.7998 }, { "start": 4961.42, "end": 4964.64, "probability": 0.8906 }, { "start": 4965.2, "end": 4970.64, "probability": 0.8878 }, { "start": 4970.92, "end": 4973.86, "probability": 0.7223 }, { "start": 4974.0, "end": 4974.76, "probability": 0.6501 }, { "start": 4976.74, "end": 4978.7, "probability": 0.6751 }, { "start": 4978.74, "end": 4981.02, "probability": 0.6646 }, { "start": 4982.28, "end": 4983.94, "probability": 0.5163 }, { "start": 4984.1, "end": 4985.7, "probability": 0.5437 }, { "start": 4985.78, "end": 4990.24, "probability": 0.5606 }, { "start": 4990.24, "end": 4994.14, "probability": 0.7248 }, { "start": 4994.26, "end": 4995.64, "probability": 0.5873 }, { "start": 4996.44, "end": 4997.34, "probability": 0.6634 }, { "start": 4997.44, "end": 5001.16, "probability": 0.7621 }, { "start": 5001.16, "end": 5007.94, "probability": 0.7821 }, { "start": 5008.7, "end": 5008.8, "probability": 0.1217 }, { "start": 5008.84, "end": 5009.1, "probability": 0.379 }, { "start": 5009.16, "end": 5011.55, "probability": 0.7866 }, { "start": 5012.5, "end": 5018.02, "probability": 0.6831 }, { "start": 5018.26, "end": 5022.62, "probability": 0.8174 }, { "start": 5022.84, "end": 5025.1, "probability": 0.9448 }, { "start": 5025.1, "end": 5028.28, "probability": 0.8648 }, { "start": 5029.14, "end": 5031.44, "probability": 0.9773 }, { "start": 5031.44, "end": 5033.66, "probability": 0.5914 }, { "start": 5033.84, "end": 5035.26, "probability": 0.929 }, { "start": 5035.86, "end": 5037.96, "probability": 0.9237 }, { "start": 5038.06, "end": 5040.86, "probability": 0.9131 }, { "start": 5041.06, "end": 5044.04, "probability": 0.8308 }, { "start": 5044.26, "end": 5048.7, "probability": 0.6609 }, { "start": 5048.7, "end": 5052.88, "probability": 0.9263 }, { "start": 5053.28, "end": 5055.46, "probability": 0.4457 }, { "start": 5055.56, "end": 5057.66, "probability": 0.3428 }, { "start": 5057.78, "end": 5059.72, "probability": 0.7687 }, { "start": 5059.72, "end": 5062.62, "probability": 0.8721 }, { "start": 5063.64, "end": 5064.4, "probability": 0.6205 }, { "start": 5064.54, "end": 5065.42, "probability": 0.6951 }, { "start": 5065.52, "end": 5067.72, "probability": 0.8188 }, { "start": 5067.72, "end": 5071.42, "probability": 0.6363 }, { "start": 5071.56, "end": 5071.88, "probability": 0.757 }, { "start": 5072.64, "end": 5074.92, "probability": 0.7649 }, { "start": 5075.52, "end": 5079.14, "probability": 0.654 }, { "start": 5079.14, "end": 5082.62, "probability": 0.7623 }, { "start": 5083.32, "end": 5086.04, "probability": 0.9744 }, { "start": 5086.58, "end": 5087.12, "probability": 0.4209 }, { "start": 5087.32, "end": 5088.34, "probability": 0.853 }, { "start": 5088.46, "end": 5090.7, "probability": 0.7416 }, { "start": 5090.7, "end": 5093.86, "probability": 0.8738 }, { "start": 5093.98, "end": 5098.94, "probability": 0.8937 }, { "start": 5099.0, "end": 5101.34, "probability": 0.6774 }, { "start": 5101.34, "end": 5104.32, "probability": 0.8707 }, { "start": 5104.48, "end": 5107.36, "probability": 0.6875 }, { "start": 5108.44, "end": 5111.66, "probability": 0.9055 }, { "start": 5112.7, "end": 5115.62, "probability": 0.839 }, { "start": 5115.62, "end": 5119.04, "probability": 0.7904 }, { "start": 5119.54, "end": 5123.82, "probability": 0.6771 }, { "start": 5124.6, "end": 5124.98, "probability": 0.5701 }, { "start": 5125.04, "end": 5128.56, "probability": 0.6391 }, { "start": 5129.2, "end": 5137.02, "probability": 0.8521 }, { "start": 5137.1, "end": 5137.3, "probability": 0.6396 }, { "start": 5137.44, "end": 5139.84, "probability": 0.9082 }, { "start": 5140.04, "end": 5142.34, "probability": 0.7983 }, { "start": 5142.52, "end": 5143.52, "probability": 0.6827 }, { "start": 5144.16, "end": 5147.06, "probability": 0.8453 }, { "start": 5147.06, "end": 5151.78, "probability": 0.5275 }, { "start": 5151.78, "end": 5154.04, "probability": 0.2025 }, { "start": 5154.87, "end": 5159.36, "probability": 0.7517 }, { "start": 5159.44, "end": 5160.24, "probability": 0.7705 }, { "start": 5160.64, "end": 5163.84, "probability": 0.951 }, { "start": 5164.32, "end": 5164.68, "probability": 0.7165 }, { "start": 5164.86, "end": 5168.04, "probability": 0.5865 }, { "start": 5168.04, "end": 5171.12, "probability": 0.4494 }, { "start": 5171.52, "end": 5176.72, "probability": 0.906 }, { "start": 5177.16, "end": 5177.66, "probability": 0.3132 }, { "start": 5177.72, "end": 5178.8, "probability": 0.6089 }, { "start": 5178.8, "end": 5179.8, "probability": 0.4197 }, { "start": 5179.8, "end": 5180.96, "probability": 0.6552 }, { "start": 5181.0, "end": 5182.44, "probability": 0.8396 }, { "start": 5182.96, "end": 5185.76, "probability": 0.9863 }, { "start": 5185.76, "end": 5186.2, "probability": 0.2798 }, { "start": 5186.28, "end": 5190.5, "probability": 0.9944 }, { "start": 5190.58, "end": 5191.04, "probability": 0.8466 }, { "start": 5191.32, "end": 5193.97, "probability": 0.9893 }, { "start": 5194.36, "end": 5195.48, "probability": 0.8889 }, { "start": 5195.54, "end": 5199.02, "probability": 0.9806 }, { "start": 5199.66, "end": 5199.98, "probability": 0.8549 }, { "start": 5200.06, "end": 5202.16, "probability": 0.7524 }, { "start": 5202.8, "end": 5204.66, "probability": 0.9799 }, { "start": 5205.88, "end": 5207.9, "probability": 0.7247 }, { "start": 5209.9, "end": 5211.64, "probability": 0.9036 }, { "start": 5212.96, "end": 5216.68, "probability": 0.9744 }, { "start": 5217.18, "end": 5218.12, "probability": 0.3621 }, { "start": 5218.32, "end": 5220.62, "probability": 0.8423 }, { "start": 5220.94, "end": 5223.34, "probability": 0.3729 }, { "start": 5223.76, "end": 5224.26, "probability": 0.5607 }, { "start": 5224.3, "end": 5224.96, "probability": 0.6867 }, { "start": 5225.02, "end": 5225.72, "probability": 0.5089 }, { "start": 5225.72, "end": 5226.36, "probability": 0.2513 }, { "start": 5242.92, "end": 5246.6, "probability": 0.0531 }, { "start": 5246.6, "end": 5246.6, "probability": 0.051 }, { "start": 5246.6, "end": 5246.6, "probability": 0.04 }, { "start": 5246.6, "end": 5247.68, "probability": 0.1603 }, { "start": 5247.68, "end": 5248.72, "probability": 0.6796 }, { "start": 5263.36, "end": 5263.92, "probability": 0.0345 }, { "start": 5264.79, "end": 5268.54, "probability": 0.0681 }, { "start": 5270.69, "end": 5272.94, "probability": 0.0324 }, { "start": 5272.94, "end": 5273.22, "probability": 0.216 }, { "start": 5274.22, "end": 5274.86, "probability": 0.0117 }, { "start": 5275.0, "end": 5275.84, "probability": 0.0338 }, { "start": 5275.84, "end": 5281.54, "probability": 0.0521 }, { "start": 5283.76, "end": 5287.78, "probability": 0.0211 }, { "start": 5287.78, "end": 5288.78, "probability": 0.331 }, { "start": 5290.54, "end": 5292.28, "probability": 0.0523 }, { "start": 5294.4, "end": 5297.46, "probability": 0.0245 }, { "start": 5297.46, "end": 5298.68, "probability": 0.0142 }, { "start": 5299.0, "end": 5299.0, "probability": 0.0 }, { "start": 5299.0, "end": 5299.0, "probability": 0.0 }, { "start": 5299.0, "end": 5299.0, "probability": 0.0 }, { "start": 5299.0, "end": 5299.0, "probability": 0.0 }, { "start": 5299.0, "end": 5299.0, "probability": 0.0 }, { "start": 5299.0, "end": 5299.0, "probability": 0.0 }, { "start": 5299.08, "end": 5304.1, "probability": 0.0027 }, { "start": 5304.1, "end": 5304.5, "probability": 0.1269 }, { "start": 5307.68, "end": 5309.22, "probability": 0.0196 }, { "start": 5311.94, "end": 5312.94, "probability": 0.5488 }, { "start": 5312.94, "end": 5314.92, "probability": 0.1588 }, { "start": 5314.92, "end": 5314.92, "probability": 0.0277 }, { "start": 5314.92, "end": 5314.92, "probability": 0.0144 }, { "start": 5314.92, "end": 5314.92, "probability": 0.1692 }, { "start": 5314.92, "end": 5317.02, "probability": 0.6746 }, { "start": 5322.1, "end": 5325.0, "probability": 0.5626 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5434.0, "end": 5434.0, "probability": 0.0 }, { "start": 5435.48, "end": 5439.36, "probability": 0.2654 }, { "start": 5442.74, "end": 5444.32, "probability": 0.0891 }, { "start": 5450.6, "end": 5453.36, "probability": 0.1361 }, { "start": 5460.1, "end": 5461.82, "probability": 0.0034 }, { "start": 5463.06, "end": 5464.64, "probability": 0.5112 }, { "start": 5464.96, "end": 5465.52, "probability": 0.1097 }, { "start": 5465.52, "end": 5467.96, "probability": 0.2738 }, { "start": 5468.4, "end": 5468.92, "probability": 0.078 }, { "start": 5471.68, "end": 5473.18, "probability": 0.0849 }, { "start": 5567.0, "end": 5567.0, "probability": 0.0 }, { "start": 5567.0, "end": 5567.0, "probability": 0.0 }, { "start": 5567.0, "end": 5567.0, "probability": 0.0 }, { "start": 5567.0, "end": 5567.0, "probability": 0.0 }, { "start": 5567.0, "end": 5567.0, "probability": 0.0 }, { "start": 5567.0, "end": 5567.0, "probability": 0.0 }, { "start": 5567.0, "end": 5567.0, "probability": 0.0 }, { "start": 5567.0, "end": 5567.0, "probability": 0.0 }, { "start": 5567.0, "end": 5567.0, "probability": 0.0 }, { "start": 5567.0, "end": 5567.0, "probability": 0.0 }, { "start": 5567.0, "end": 5567.0, "probability": 0.0 }, { "start": 5567.0, "end": 5567.0, "probability": 0.0 }, { "start": 5567.0, "end": 5567.0, "probability": 0.0 }, { "start": 5567.0, "end": 5567.0, "probability": 0.0 }, { "start": 5567.0, "end": 5567.0, "probability": 0.0 }, { "start": 5567.0, "end": 5567.0, "probability": 0.0 }, { "start": 5567.0, "end": 5567.0, "probability": 0.0 }, { "start": 5567.0, "end": 5567.0, "probability": 0.0 }, { "start": 5567.0, "end": 5567.0, "probability": 0.0 }, { "start": 5567.0, "end": 5567.0, "probability": 0.0 }, { "start": 5567.0, "end": 5567.0, "probability": 0.0 }, { "start": 5567.0, "end": 5567.0, "probability": 0.0 }, { "start": 5567.0, "end": 5567.0, "probability": 0.0 }, { "start": 5567.0, "end": 5567.0, "probability": 0.0 }, { "start": 5567.0, "end": 5567.0, "probability": 0.0 }, { "start": 5567.0, "end": 5567.0, "probability": 0.0 }, { "start": 5567.0, "end": 5567.0, "probability": 0.0 }, { "start": 5567.0, "end": 5567.0, "probability": 0.0 }, { "start": 5567.0, "end": 5567.0, "probability": 0.0 }, { "start": 5567.0, "end": 5567.0, "probability": 0.0 }, { "start": 5567.0, "end": 5567.0, "probability": 0.0 }, { "start": 5567.0, "end": 5567.0, "probability": 0.0 }, { "start": 5567.0, "end": 5567.0, "probability": 0.0 }, { "start": 5567.0, "end": 5567.0, "probability": 0.0 }, { "start": 5567.0, "end": 5567.0, "probability": 0.0 }, { "start": 5567.0, "end": 5567.0, "probability": 0.0 }, { "start": 5567.0, "end": 5567.0, "probability": 0.0 }, { "start": 5567.0, "end": 5567.0, "probability": 0.0 }, { "start": 5567.0, "end": 5567.0, "probability": 0.0 }, { "start": 5567.0, "end": 5567.0, "probability": 0.0 }, { "start": 5567.0, "end": 5567.0, "probability": 0.0 }, { "start": 5567.0, "end": 5567.0, "probability": 0.0 }, { "start": 5572.6, "end": 5575.04, "probability": 0.0715 }, { "start": 5577.06, "end": 5579.86, "probability": 0.0494 }, { "start": 5584.76, "end": 5586.68, "probability": 0.0789 }, { "start": 5588.72, "end": 5591.6, "probability": 0.1394 }, { "start": 5695.0, "end": 5695.0, "probability": 0.0 }, { "start": 5695.0, "end": 5695.0, "probability": 0.0 }, { "start": 5695.0, "end": 5695.0, "probability": 0.0 }, { "start": 5695.0, "end": 5695.0, "probability": 0.0 }, { "start": 5695.0, "end": 5695.0, "probability": 0.0 }, { "start": 5695.0, "end": 5695.0, "probability": 0.0 }, { "start": 5695.0, "end": 5695.0, "probability": 0.0 }, { "start": 5695.0, "end": 5695.0, "probability": 0.0 }, { "start": 5695.0, "end": 5695.0, "probability": 0.0 }, { "start": 5695.0, "end": 5695.0, "probability": 0.0 }, { "start": 5695.0, "end": 5695.0, "probability": 0.0 }, { "start": 5695.0, "end": 5695.0, "probability": 0.0 }, { "start": 5695.0, "end": 5695.0, "probability": 0.0 }, { "start": 5695.0, "end": 5695.0, "probability": 0.0 }, { "start": 5695.0, "end": 5695.0, "probability": 0.0 }, { "start": 5695.0, "end": 5695.0, "probability": 0.0 }, { "start": 5695.0, "end": 5695.0, "probability": 0.0 }, { "start": 5695.0, "end": 5695.0, "probability": 0.0 }, { "start": 5695.0, "end": 5695.0, "probability": 0.0 }, { "start": 5695.0, "end": 5695.0, "probability": 0.0 }, { "start": 5695.0, "end": 5695.0, "probability": 0.0 }, { "start": 5695.0, "end": 5695.0, "probability": 0.0 }, { "start": 5695.0, "end": 5695.0, "probability": 0.0 }, { "start": 5695.0, "end": 5695.0, "probability": 0.0 }, { "start": 5695.0, "end": 5695.0, "probability": 0.0 }, { "start": 5695.0, "end": 5695.0, "probability": 0.0 }, { "start": 5695.0, "end": 5695.0, "probability": 0.0 }, { "start": 5695.0, "end": 5695.0, "probability": 0.0 }, { "start": 5695.0, "end": 5695.0, "probability": 0.0 }, { "start": 5695.0, "end": 5695.0, "probability": 0.0 }, { "start": 5695.0, "end": 5695.0, "probability": 0.0 }, { "start": 5695.0, "end": 5695.0, "probability": 0.0 }, { "start": 5695.0, "end": 5695.0, "probability": 0.0 }, { "start": 5695.0, "end": 5695.0, "probability": 0.0 }, { "start": 5695.0, "end": 5695.0, "probability": 0.0 }, { "start": 5695.0, "end": 5695.0, "probability": 0.0 }, { "start": 5695.0, "end": 5695.0, "probability": 0.0 }, { "start": 5695.0, "end": 5695.0, "probability": 0.0 }, { "start": 5695.0, "end": 5695.0, "probability": 0.0 }, { "start": 5695.0, "end": 5695.0, "probability": 0.0 }, { "start": 5695.0, "end": 5695.0, "probability": 0.0 }, { "start": 5695.0, "end": 5695.0, "probability": 0.0 }, { "start": 5695.0, "end": 5695.0, "probability": 0.0 }, { "start": 5695.0, "end": 5695.0, "probability": 0.0 }, { "start": 5695.0, "end": 5695.0, "probability": 0.0 }, { "start": 5695.28, "end": 5695.56, "probability": 0.0602 }, { "start": 5695.56, "end": 5695.56, "probability": 0.0377 }, { "start": 5695.56, "end": 5697.36, "probability": 0.6386 }, { "start": 5697.8, "end": 5699.98, "probability": 0.7474 }, { "start": 5700.44, "end": 5702.14, "probability": 0.8887 }, { "start": 5705.06, "end": 5705.06, "probability": 0.0408 }, { "start": 5705.06, "end": 5707.21, "probability": 0.7148 }, { "start": 5707.34, "end": 5708.9, "probability": 0.9715 }, { "start": 5709.92, "end": 5711.98, "probability": 0.9214 }, { "start": 5712.82, "end": 5719.46, "probability": 0.9798 }, { "start": 5720.18, "end": 5722.32, "probability": 0.9771 }, { "start": 5722.48, "end": 5724.62, "probability": 0.8972 }, { "start": 5724.84, "end": 5725.24, "probability": 0.6888 }, { "start": 5725.4, "end": 5727.78, "probability": 0.8635 }, { "start": 5727.82, "end": 5730.28, "probability": 0.9101 }, { "start": 5730.34, "end": 5731.82, "probability": 0.8178 }, { "start": 5731.9, "end": 5732.6, "probability": 0.9548 }, { "start": 5732.86, "end": 5738.38, "probability": 0.9874 }, { "start": 5740.62, "end": 5742.5, "probability": 0.8622 }, { "start": 5743.1, "end": 5744.98, "probability": 0.8538 }, { "start": 5745.06, "end": 5749.56, "probability": 0.9708 }, { "start": 5749.78, "end": 5753.98, "probability": 0.9401 }, { "start": 5754.16, "end": 5754.44, "probability": 0.7316 }, { "start": 5754.44, "end": 5758.98, "probability": 0.9628 }, { "start": 5758.98, "end": 5763.46, "probability": 0.9949 }, { "start": 5764.58, "end": 5769.32, "probability": 0.992 }, { "start": 5769.86, "end": 5776.5, "probability": 0.9857 }, { "start": 5776.86, "end": 5779.84, "probability": 0.991 }, { "start": 5780.49, "end": 5785.3, "probability": 0.8953 }, { "start": 5785.66, "end": 5790.74, "probability": 0.9816 }, { "start": 5790.74, "end": 5795.0, "probability": 0.9732 }, { "start": 5795.1, "end": 5796.8, "probability": 0.9091 }, { "start": 5796.9, "end": 5798.07, "probability": 0.9834 }, { "start": 5798.74, "end": 5801.28, "probability": 0.9812 }, { "start": 5801.34, "end": 5803.48, "probability": 0.9833 }, { "start": 5804.28, "end": 5805.14, "probability": 0.6722 }, { "start": 5805.18, "end": 5805.42, "probability": 0.8225 }, { "start": 5805.84, "end": 5810.08, "probability": 0.83 }, { "start": 5810.8, "end": 5810.84, "probability": 0.7678 }, { "start": 5810.98, "end": 5811.26, "probability": 0.9767 }, { "start": 5811.5, "end": 5815.5, "probability": 0.9159 }, { "start": 5815.86, "end": 5817.18, "probability": 0.8199 }, { "start": 5817.92, "end": 5818.66, "probability": 0.1523 }, { "start": 5819.66, "end": 5819.74, "probability": 0.6312 }, { "start": 5821.34, "end": 5822.08, "probability": 0.1574 }, { "start": 5822.58, "end": 5826.5, "probability": 0.9494 }, { "start": 5826.62, "end": 5827.48, "probability": 0.6187 }, { "start": 5827.86, "end": 5829.78, "probability": 0.9678 }, { "start": 5829.98, "end": 5831.42, "probability": 0.8588 }, { "start": 5831.62, "end": 5832.9, "probability": 0.3476 }, { "start": 5832.94, "end": 5836.24, "probability": 0.2177 }, { "start": 5836.36, "end": 5839.36, "probability": 0.7944 }, { "start": 5840.38, "end": 5842.94, "probability": 0.6048 }, { "start": 5842.96, "end": 5843.22, "probability": 0.1526 }, { "start": 5843.22, "end": 5844.02, "probability": 0.9398 }, { "start": 5844.38, "end": 5847.5, "probability": 0.9131 }, { "start": 5847.5, "end": 5850.62, "probability": 0.7079 }, { "start": 5851.24, "end": 5855.76, "probability": 0.9702 }, { "start": 5855.86, "end": 5861.16, "probability": 0.973 }, { "start": 5862.16, "end": 5863.98, "probability": 0.8018 }, { "start": 5864.42, "end": 5865.52, "probability": 0.9333 }, { "start": 5865.66, "end": 5867.94, "probability": 0.7889 }, { "start": 5868.46, "end": 5873.7, "probability": 0.7509 }, { "start": 5874.2, "end": 5875.58, "probability": 0.804 }, { "start": 5875.64, "end": 5876.76, "probability": 0.5626 }, { "start": 5878.42, "end": 5883.06, "probability": 0.3309 }, { "start": 5885.7, "end": 5887.16, "probability": 0.3206 }, { "start": 5887.74, "end": 5888.37, "probability": 0.3647 }, { "start": 5888.88, "end": 5894.88, "probability": 0.9746 }, { "start": 5894.88, "end": 5900.5, "probability": 0.9965 }, { "start": 5901.3, "end": 5901.74, "probability": 0.6284 }, { "start": 5902.0, "end": 5904.34, "probability": 0.9312 }, { "start": 5906.54, "end": 5907.36, "probability": 0.744 }, { "start": 5907.5, "end": 5910.38, "probability": 0.9922 }, { "start": 5911.0, "end": 5912.56, "probability": 0.9568 }, { "start": 5913.04, "end": 5913.44, "probability": 0.6885 }, { "start": 5913.44, "end": 5917.96, "probability": 0.8618 }, { "start": 5924.1, "end": 5926.18, "probability": 0.6055 }, { "start": 5926.88, "end": 5928.4, "probability": 0.6593 }, { "start": 5929.16, "end": 5933.82, "probability": 0.9709 }, { "start": 5933.84, "end": 5938.02, "probability": 0.8599 }, { "start": 5946.06, "end": 5947.48, "probability": 0.2512 }, { "start": 5954.52, "end": 5956.14, "probability": 0.6866 }, { "start": 5957.0, "end": 5962.78, "probability": 0.833 }, { "start": 5962.78, "end": 5967.4, "probability": 0.9038 }, { "start": 5967.44, "end": 5969.31, "probability": 0.9008 }, { "start": 5970.48, "end": 5973.46, "probability": 0.9312 }, { "start": 5973.62, "end": 5977.38, "probability": 0.9239 }, { "start": 5978.08, "end": 5979.24, "probability": 0.4465 }, { "start": 5979.98, "end": 5982.4, "probability": 0.866 }, { "start": 5983.06, "end": 5985.56, "probability": 0.9464 }, { "start": 5986.1, "end": 5992.58, "probability": 0.9624 }, { "start": 5993.22, "end": 5995.58, "probability": 0.9553 }, { "start": 5998.46, "end": 6000.2, "probability": 0.9001 }, { "start": 6000.88, "end": 6002.7, "probability": 0.9877 }, { "start": 6003.7, "end": 6004.9, "probability": 0.3988 }, { "start": 6005.0, "end": 6005.74, "probability": 0.5457 }, { "start": 6005.84, "end": 6006.18, "probability": 0.8941 }, { "start": 6006.68, "end": 6012.08, "probability": 0.9976 }, { "start": 6012.72, "end": 6014.38, "probability": 0.9569 }, { "start": 6014.48, "end": 6015.6, "probability": 0.8974 }, { "start": 6016.1, "end": 6018.2, "probability": 0.7334 }, { "start": 6018.74, "end": 6023.38, "probability": 0.6525 }, { "start": 6023.46, "end": 6024.9, "probability": 0.9257 }, { "start": 6025.12, "end": 6028.36, "probability": 0.8314 }, { "start": 6028.46, "end": 6029.34, "probability": 0.7056 }, { "start": 6029.52, "end": 6030.16, "probability": 0.8362 }, { "start": 6031.56, "end": 6038.2, "probability": 0.9598 }, { "start": 6038.24, "end": 6047.28, "probability": 0.9486 }, { "start": 6047.82, "end": 6052.4, "probability": 0.9783 }, { "start": 6052.92, "end": 6052.92, "probability": 0.0012 }, { "start": 6056.2, "end": 6057.32, "probability": 0.2083 }, { "start": 6057.95, "end": 6066.0, "probability": 0.8678 }, { "start": 6066.82, "end": 6073.42, "probability": 0.9431 }, { "start": 6073.52, "end": 6078.2, "probability": 0.9613 }, { "start": 6078.6, "end": 6082.48, "probability": 0.7346 }, { "start": 6082.58, "end": 6084.72, "probability": 0.998 }, { "start": 6085.31, "end": 6088.08, "probability": 0.9128 }, { "start": 6088.58, "end": 6093.16, "probability": 0.9701 }, { "start": 6093.72, "end": 6099.86, "probability": 0.9884 }, { "start": 6100.06, "end": 6101.28, "probability": 0.6781 }, { "start": 6101.96, "end": 6105.96, "probability": 0.5301 }, { "start": 6107.24, "end": 6112.56, "probability": 0.9855 }, { "start": 6113.04, "end": 6115.08, "probability": 0.9992 }, { "start": 6115.6, "end": 6121.98, "probability": 0.825 }, { "start": 6122.5, "end": 6124.58, "probability": 0.7578 }, { "start": 6125.22, "end": 6131.4, "probability": 0.8936 }, { "start": 6131.46, "end": 6136.82, "probability": 0.6648 }, { "start": 6137.84, "end": 6146.54, "probability": 0.8557 }, { "start": 6146.88, "end": 6148.3, "probability": 0.9638 }, { "start": 6151.44, "end": 6152.2, "probability": 0.8895 }, { "start": 6152.82, "end": 6155.89, "probability": 0.573 }, { "start": 6156.1, "end": 6160.6, "probability": 0.9844 }, { "start": 6160.96, "end": 6166.54, "probability": 0.9648 }, { "start": 6167.12, "end": 6171.2, "probability": 0.9925 }, { "start": 6171.58, "end": 6173.12, "probability": 0.7435 }, { "start": 6175.41, "end": 6179.8, "probability": 0.8973 }, { "start": 6180.36, "end": 6180.6, "probability": 0.633 }, { "start": 6181.06, "end": 6181.5, "probability": 0.6166 }, { "start": 6181.72, "end": 6185.54, "probability": 0.8213 }, { "start": 6186.38, "end": 6188.58, "probability": 0.7343 }, { "start": 6190.58, "end": 6196.62, "probability": 0.9828 }, { "start": 6205.98, "end": 6205.98, "probability": 0.0583 }, { "start": 6205.98, "end": 6207.74, "probability": 0.3683 }, { "start": 6209.15, "end": 6212.38, "probability": 0.9844 }, { "start": 6213.3, "end": 6214.44, "probability": 0.5576 }, { "start": 6215.14, "end": 6216.81, "probability": 0.778 }, { "start": 6217.54, "end": 6219.88, "probability": 0.6598 }, { "start": 6220.04, "end": 6220.74, "probability": 0.5675 }, { "start": 6223.42, "end": 6224.98, "probability": 0.7741 }, { "start": 6225.1, "end": 6229.1, "probability": 0.849 }, { "start": 6231.32, "end": 6236.56, "probability": 0.9909 }, { "start": 6237.1, "end": 6242.96, "probability": 0.9809 }, { "start": 6242.96, "end": 6248.18, "probability": 0.9788 }, { "start": 6248.2, "end": 6251.76, "probability": 0.9749 }, { "start": 6252.34, "end": 6255.56, "probability": 0.9929 }, { "start": 6255.56, "end": 6256.99, "probability": 0.9946 }, { "start": 6258.4, "end": 6260.92, "probability": 0.8226 }, { "start": 6261.12, "end": 6261.62, "probability": 0.6577 }, { "start": 6262.06, "end": 6264.88, "probability": 0.9163 }, { "start": 6265.0, "end": 6266.64, "probability": 0.9576 }, { "start": 6268.16, "end": 6269.63, "probability": 0.9504 }, { "start": 6269.88, "end": 6270.02, "probability": 0.2287 }, { "start": 6270.5, "end": 6276.8, "probability": 0.9091 }, { "start": 6281.62, "end": 6282.32, "probability": 0.6559 }, { "start": 6282.42, "end": 6283.9, "probability": 0.4276 }, { "start": 6284.94, "end": 6287.28, "probability": 0.5081 }, { "start": 6287.34, "end": 6290.7, "probability": 0.9841 }, { "start": 6290.92, "end": 6291.46, "probability": 0.3124 }, { "start": 6292.2, "end": 6293.1, "probability": 0.5775 }, { "start": 6293.1, "end": 6294.4, "probability": 0.6879 }, { "start": 6294.44, "end": 6294.48, "probability": 0.1984 }, { "start": 6295.37, "end": 6298.76, "probability": 0.9795 }, { "start": 6298.88, "end": 6299.92, "probability": 0.8008 }, { "start": 6301.36, "end": 6304.16, "probability": 0.5401 }, { "start": 6305.04, "end": 6307.18, "probability": 0.8458 }, { "start": 6307.92, "end": 6312.5, "probability": 0.6277 }, { "start": 6313.52, "end": 6319.94, "probability": 0.9731 }, { "start": 6320.0, "end": 6321.1, "probability": 0.8955 }, { "start": 6321.22, "end": 6323.34, "probability": 0.8142 }, { "start": 6323.5, "end": 6325.0, "probability": 0.9901 }, { "start": 6325.36, "end": 6327.98, "probability": 0.907 }, { "start": 6331.4, "end": 6331.98, "probability": 0.502 }, { "start": 6331.98, "end": 6331.98, "probability": 0.7621 }, { "start": 6331.98, "end": 6333.18, "probability": 0.8029 }, { "start": 6333.44, "end": 6333.96, "probability": 0.8563 }, { "start": 6334.34, "end": 6335.26, "probability": 0.8006 }, { "start": 6335.3, "end": 6340.58, "probability": 0.6503 }, { "start": 6340.58, "end": 6345.44, "probability": 0.8748 }, { "start": 6345.94, "end": 6348.78, "probability": 0.562 }, { "start": 6351.24, "end": 6351.6, "probability": 0.2232 }, { "start": 6363.02, "end": 6366.54, "probability": 0.5006 }, { "start": 6367.0, "end": 6368.76, "probability": 0.1799 }, { "start": 6369.28, "end": 6371.26, "probability": 0.987 }, { "start": 6371.38, "end": 6375.16, "probability": 0.8925 }, { "start": 6375.36, "end": 6376.24, "probability": 0.5577 }, { "start": 6376.66, "end": 6378.24, "probability": 0.7906 }, { "start": 6378.56, "end": 6380.76, "probability": 0.9661 }, { "start": 6381.28, "end": 6381.92, "probability": 0.6315 }, { "start": 6382.06, "end": 6382.32, "probability": 0.8264 }, { "start": 6382.46, "end": 6385.16, "probability": 0.9383 }, { "start": 6385.18, "end": 6386.66, "probability": 0.4603 }, { "start": 6387.64, "end": 6394.3, "probability": 0.9685 }, { "start": 6394.92, "end": 6396.94, "probability": 0.6272 }, { "start": 6397.38, "end": 6398.12, "probability": 0.6585 }, { "start": 6411.92, "end": 6413.16, "probability": 0.588 }, { "start": 6416.56, "end": 6417.5, "probability": 0.2063 }, { "start": 6417.87, "end": 6419.44, "probability": 0.0946 }, { "start": 6419.6, "end": 6420.44, "probability": 0.5349 }, { "start": 6420.5, "end": 6424.62, "probability": 0.9199 }, { "start": 6425.72, "end": 6427.34, "probability": 0.9343 }, { "start": 6428.7, "end": 6430.74, "probability": 0.9958 }, { "start": 6431.94, "end": 6433.5, "probability": 0.7538 }, { "start": 6435.4, "end": 6436.88, "probability": 0.7957 }, { "start": 6438.06, "end": 6439.4, "probability": 0.8841 }, { "start": 6440.38, "end": 6442.4, "probability": 0.939 }, { "start": 6442.78, "end": 6446.02, "probability": 0.9752 }, { "start": 6446.48, "end": 6447.9, "probability": 0.5984 }, { "start": 6447.92, "end": 6448.22, "probability": 0.5844 }, { "start": 6448.52, "end": 6448.8, "probability": 0.6659 }, { "start": 6449.04, "end": 6452.56, "probability": 0.7514 }, { "start": 6454.06, "end": 6460.52, "probability": 0.9282 }, { "start": 6461.6, "end": 6464.34, "probability": 0.995 }, { "start": 6465.54, "end": 6466.46, "probability": 0.7047 }, { "start": 6467.94, "end": 6472.86, "probability": 0.9318 }, { "start": 6472.86, "end": 6477.0, "probability": 0.9869 }, { "start": 6477.26, "end": 6488.6, "probability": 0.9727 }, { "start": 6490.02, "end": 6495.14, "probability": 0.9486 }, { "start": 6497.0, "end": 6498.98, "probability": 0.9634 }, { "start": 6499.76, "end": 6502.16, "probability": 0.9098 }, { "start": 6505.52, "end": 6510.86, "probability": 0.9549 }, { "start": 6512.66, "end": 6516.58, "probability": 0.9922 }, { "start": 6517.78, "end": 6519.3, "probability": 0.9819 }, { "start": 6520.2, "end": 6523.86, "probability": 0.9473 }, { "start": 6525.5, "end": 6529.92, "probability": 0.8 }, { "start": 6533.12, "end": 6535.72, "probability": 0.7427 }, { "start": 6535.78, "end": 6536.78, "probability": 0.7613 }, { "start": 6537.72, "end": 6543.06, "probability": 0.7278 }, { "start": 6543.06, "end": 6543.06, "probability": 0.9619 }, { "start": 6544.38, "end": 6547.34, "probability": 0.9188 }, { "start": 6549.3, "end": 6550.94, "probability": 0.6122 }, { "start": 6552.0, "end": 6553.44, "probability": 0.9088 }, { "start": 6553.62, "end": 6556.64, "probability": 0.9326 }, { "start": 6557.58, "end": 6557.96, "probability": 0.4708 }, { "start": 6558.26, "end": 6561.7, "probability": 0.9638 }, { "start": 6562.74, "end": 6569.18, "probability": 0.9653 }, { "start": 6570.46, "end": 6572.02, "probability": 0.9987 }, { "start": 6572.88, "end": 6574.96, "probability": 0.9362 }, { "start": 6575.58, "end": 6579.82, "probability": 0.9878 }, { "start": 6580.34, "end": 6582.88, "probability": 0.7968 }, { "start": 6583.14, "end": 6583.62, "probability": 0.4896 }, { "start": 6584.1, "end": 6587.12, "probability": 0.9474 }, { "start": 6587.28, "end": 6588.78, "probability": 0.9877 }, { "start": 6589.28, "end": 6590.74, "probability": 0.9907 }, { "start": 6591.08, "end": 6592.46, "probability": 0.6483 }, { "start": 6593.52, "end": 6594.58, "probability": 0.9275 }, { "start": 6595.54, "end": 6598.66, "probability": 0.7969 }, { "start": 6598.96, "end": 6599.06, "probability": 0.5148 }, { "start": 6599.62, "end": 6599.62, "probability": 0.4293 }, { "start": 6599.62, "end": 6600.36, "probability": 0.7302 }, { "start": 6601.34, "end": 6603.1, "probability": 0.512 }, { "start": 6604.44, "end": 6608.6, "probability": 0.6872 }, { "start": 6608.62, "end": 6609.66, "probability": 0.8027 }, { "start": 6610.92, "end": 6611.12, "probability": 0.3892 }, { "start": 6611.28, "end": 6611.93, "probability": 0.8989 }, { "start": 6612.04, "end": 6615.98, "probability": 0.9449 }, { "start": 6616.06, "end": 6616.76, "probability": 0.8806 }, { "start": 6617.14, "end": 6620.84, "probability": 0.8792 }, { "start": 6620.94, "end": 6623.28, "probability": 0.8267 }, { "start": 6623.62, "end": 6625.8, "probability": 0.9735 }, { "start": 6625.88, "end": 6628.56, "probability": 0.8732 }, { "start": 6628.88, "end": 6633.28, "probability": 0.98 }, { "start": 6634.44, "end": 6636.06, "probability": 0.9659 }, { "start": 6637.04, "end": 6639.56, "probability": 0.9573 }, { "start": 6639.72, "end": 6642.12, "probability": 0.9814 }, { "start": 6642.22, "end": 6642.6, "probability": 0.8954 }, { "start": 6642.96, "end": 6643.4, "probability": 0.655 }, { "start": 6643.44, "end": 6643.88, "probability": 0.8927 }, { "start": 6646.0, "end": 6646.96, "probability": 0.3538 }, { "start": 6650.54, "end": 6652.74, "probability": 0.9611 }, { "start": 6652.74, "end": 6655.58, "probability": 0.6465 }, { "start": 6662.07, "end": 6666.64, "probability": 0.9856 }, { "start": 6668.08, "end": 6669.1, "probability": 0.5719 }, { "start": 6669.48, "end": 6671.46, "probability": 0.0282 }, { "start": 6671.56, "end": 6672.94, "probability": 0.5416 }, { "start": 6674.44, "end": 6675.7, "probability": 0.6505 }, { "start": 6677.22, "end": 6678.8, "probability": 0.7866 }, { "start": 6681.48, "end": 6684.04, "probability": 0.8462 }, { "start": 6684.7, "end": 6686.68, "probability": 0.981 }, { "start": 6687.5, "end": 6688.44, "probability": 0.8199 }, { "start": 6689.3, "end": 6690.04, "probability": 0.2735 }, { "start": 6690.04, "end": 6691.4, "probability": 0.3886 }, { "start": 6691.48, "end": 6692.76, "probability": 0.871 }, { "start": 6692.86, "end": 6695.16, "probability": 0.1113 }, { "start": 6695.6, "end": 6696.32, "probability": 0.0426 }, { "start": 6696.32, "end": 6696.6, "probability": 0.658 }, { "start": 6697.12, "end": 6701.26, "probability": 0.5439 }, { "start": 6701.32, "end": 6701.7, "probability": 0.9282 }, { "start": 6702.44, "end": 6704.16, "probability": 0.9339 }, { "start": 6704.62, "end": 6706.3, "probability": 0.1571 }, { "start": 6706.46, "end": 6707.4, "probability": 0.1838 }, { "start": 6707.4, "end": 6708.92, "probability": 0.3296 }, { "start": 6709.06, "end": 6711.06, "probability": 0.2069 }, { "start": 6711.06, "end": 6712.74, "probability": 0.1613 }, { "start": 6712.74, "end": 6713.32, "probability": 0.1609 }, { "start": 6713.66, "end": 6714.32, "probability": 0.0044 }, { "start": 6714.32, "end": 6718.1, "probability": 0.3293 }, { "start": 6718.36, "end": 6719.48, "probability": 0.6368 }, { "start": 6719.6, "end": 6720.06, "probability": 0.3319 }, { "start": 6721.04, "end": 6721.84, "probability": 0.857 }, { "start": 6722.4, "end": 6725.08, "probability": 0.329 }, { "start": 6725.68, "end": 6727.52, "probability": 0.9294 }, { "start": 6727.64, "end": 6729.99, "probability": 0.9933 }, { "start": 6731.16, "end": 6735.22, "probability": 0.8143 }, { "start": 6735.22, "end": 6739.12, "probability": 0.8714 }, { "start": 6739.98, "end": 6740.24, "probability": 0.5887 }, { "start": 6740.24, "end": 6743.62, "probability": 0.9788 }, { "start": 6744.74, "end": 6748.42, "probability": 0.6427 }, { "start": 6749.12, "end": 6750.38, "probability": 0.8709 }, { "start": 6750.84, "end": 6758.68, "probability": 0.984 }, { "start": 6758.68, "end": 6766.5, "probability": 0.9684 }, { "start": 6767.06, "end": 6770.2, "probability": 0.9856 }, { "start": 6771.24, "end": 6774.36, "probability": 0.7384 }, { "start": 6775.54, "end": 6778.44, "probability": 0.9772 }, { "start": 6778.48, "end": 6779.64, "probability": 0.662 }, { "start": 6779.72, "end": 6782.72, "probability": 0.8543 }, { "start": 6783.08, "end": 6785.0, "probability": 0.7817 }, { "start": 6786.42, "end": 6788.04, "probability": 0.0355 }, { "start": 6788.06, "end": 6789.96, "probability": 0.7159 }, { "start": 6790.5, "end": 6792.3, "probability": 0.9251 }, { "start": 6792.4, "end": 6792.94, "probability": 0.6387 }, { "start": 6793.48, "end": 6794.58, "probability": 0.9158 }, { "start": 6796.08, "end": 6799.78, "probability": 0.6006 }, { "start": 6799.9, "end": 6801.22, "probability": 0.9395 }, { "start": 6801.28, "end": 6801.94, "probability": 0.8558 }, { "start": 6803.32, "end": 6808.06, "probability": 0.9139 }, { "start": 6809.48, "end": 6815.58, "probability": 0.8924 }, { "start": 6816.28, "end": 6820.2, "probability": 0.9732 }, { "start": 6820.2, "end": 6824.7, "probability": 0.9985 }, { "start": 6824.88, "end": 6827.62, "probability": 0.7996 }, { "start": 6828.02, "end": 6829.4, "probability": 0.6583 }, { "start": 6829.74, "end": 6830.44, "probability": 0.4952 }, { "start": 6830.44, "end": 6831.14, "probability": 0.396 }, { "start": 6831.22, "end": 6836.4, "probability": 0.8688 }, { "start": 6836.7, "end": 6837.4, "probability": 0.7731 }, { "start": 6842.08, "end": 6844.12, "probability": 0.3705 }, { "start": 6844.32, "end": 6846.06, "probability": 0.7398 }, { "start": 6847.86, "end": 6849.92, "probability": 0.5032 }, { "start": 6850.38, "end": 6853.7, "probability": 0.9885 }, { "start": 6854.22, "end": 6856.05, "probability": 0.4763 }, { "start": 6860.76, "end": 6861.14, "probability": 0.4314 }, { "start": 6861.22, "end": 6862.36, "probability": 0.574 }, { "start": 6863.62, "end": 6864.64, "probability": 0.7856 }, { "start": 6865.02, "end": 6865.32, "probability": 0.7938 }, { "start": 6865.66, "end": 6867.58, "probability": 0.5007 }, { "start": 6867.62, "end": 6867.62, "probability": 0.1816 }, { "start": 6867.62, "end": 6867.84, "probability": 0.2853 }, { "start": 6868.28, "end": 6869.92, "probability": 0.0522 }, { "start": 6870.08, "end": 6870.8, "probability": 0.2643 }, { "start": 6870.82, "end": 6871.76, "probability": 0.5053 }, { "start": 6872.66, "end": 6880.18, "probability": 0.9906 }, { "start": 6880.68, "end": 6889.68, "probability": 0.9729 }, { "start": 6890.7, "end": 6890.96, "probability": 0.7469 }, { "start": 6891.54, "end": 6894.28, "probability": 0.5473 }, { "start": 6894.28, "end": 6895.86, "probability": 0.5483 }, { "start": 6895.88, "end": 6896.9, "probability": 0.7111 }, { "start": 6897.52, "end": 6898.9, "probability": 0.9597 }, { "start": 6899.0, "end": 6901.02, "probability": 0.8546 }, { "start": 6902.0, "end": 6905.38, "probability": 0.9969 }, { "start": 6905.38, "end": 6910.56, "probability": 0.9491 }, { "start": 6911.54, "end": 6912.82, "probability": 0.2407 }, { "start": 6913.64, "end": 6915.42, "probability": 0.6715 }, { "start": 6916.12, "end": 6924.7, "probability": 0.8265 }, { "start": 6924.94, "end": 6925.76, "probability": 0.6625 }, { "start": 6926.18, "end": 6928.54, "probability": 0.9846 }, { "start": 6928.62, "end": 6931.8, "probability": 0.9924 }, { "start": 6932.46, "end": 6935.7, "probability": 0.8992 }, { "start": 6936.32, "end": 6936.8, "probability": 0.0838 }, { "start": 6937.58, "end": 6939.0, "probability": 0.0712 }, { "start": 6940.26, "end": 6942.82, "probability": 0.8374 }, { "start": 6943.2, "end": 6943.68, "probability": 0.3555 }, { "start": 6943.8, "end": 6947.74, "probability": 0.989 }, { "start": 6947.74, "end": 6951.84, "probability": 0.9987 }, { "start": 6952.26, "end": 6955.2, "probability": 0.745 }, { "start": 6955.34, "end": 6957.44, "probability": 0.7007 }, { "start": 6958.4, "end": 6961.5, "probability": 0.9303 }, { "start": 6961.72, "end": 6964.92, "probability": 0.9004 }, { "start": 6965.44, "end": 6966.34, "probability": 0.7878 }, { "start": 6967.52, "end": 6969.96, "probability": 0.9704 }, { "start": 6971.46, "end": 6974.22, "probability": 0.7603 }, { "start": 6977.92, "end": 6979.98, "probability": 0.6437 }, { "start": 6980.14, "end": 6980.88, "probability": 0.8433 }, { "start": 6981.0, "end": 6982.36, "probability": 0.8947 }, { "start": 6983.74, "end": 6987.76, "probability": 0.7868 }, { "start": 6989.07, "end": 6991.64, "probability": 0.9538 }, { "start": 6991.84, "end": 6993.28, "probability": 0.6771 }, { "start": 6993.58, "end": 6994.32, "probability": 0.6691 }, { "start": 6994.5, "end": 6995.26, "probability": 0.7965 }, { "start": 6995.26, "end": 6995.36, "probability": 0.7382 }, { "start": 6996.16, "end": 6998.02, "probability": 0.8246 }, { "start": 6999.32, "end": 7002.48, "probability": 0.9454 }, { "start": 7004.18, "end": 7004.68, "probability": 0.6429 }, { "start": 7005.78, "end": 7010.52, "probability": 0.8752 }, { "start": 7011.08, "end": 7013.88, "probability": 0.8992 }, { "start": 7014.54, "end": 7017.72, "probability": 0.9922 }, { "start": 7017.72, "end": 7020.88, "probability": 0.7668 }, { "start": 7021.06, "end": 7023.0, "probability": 0.7475 }, { "start": 7023.52, "end": 7026.44, "probability": 0.9937 }, { "start": 7027.76, "end": 7028.04, "probability": 0.5208 }, { "start": 7028.7, "end": 7029.56, "probability": 0.6246 }, { "start": 7030.36, "end": 7032.78, "probability": 0.8645 }, { "start": 7033.86, "end": 7040.7, "probability": 0.9846 }, { "start": 7040.7, "end": 7048.56, "probability": 0.9594 }, { "start": 7049.62, "end": 7053.96, "probability": 0.9663 }, { "start": 7055.2, "end": 7057.56, "probability": 0.6173 }, { "start": 7059.3, "end": 7065.46, "probability": 0.9549 }, { "start": 7066.88, "end": 7067.76, "probability": 0.3463 }, { "start": 7067.82, "end": 7069.06, "probability": 0.9667 }, { "start": 7069.14, "end": 7069.54, "probability": 0.7105 }, { "start": 7069.6, "end": 7070.7, "probability": 0.7896 }, { "start": 7070.78, "end": 7072.32, "probability": 0.9752 }, { "start": 7072.92, "end": 7074.16, "probability": 0.7993 }, { "start": 7074.68, "end": 7079.7, "probability": 0.9816 }, { "start": 7079.7, "end": 7084.74, "probability": 0.9854 }, { "start": 7085.28, "end": 7087.3, "probability": 0.8242 }, { "start": 7087.38, "end": 7088.06, "probability": 0.9781 }, { "start": 7088.72, "end": 7091.58, "probability": 0.8516 }, { "start": 7092.48, "end": 7095.26, "probability": 0.885 }, { "start": 7096.2, "end": 7098.96, "probability": 0.9934 }, { "start": 7100.08, "end": 7102.44, "probability": 0.8451 }, { "start": 7103.3, "end": 7106.32, "probability": 0.929 }, { "start": 7107.04, "end": 7112.4, "probability": 0.5795 }, { "start": 7113.2, "end": 7115.44, "probability": 0.9951 }, { "start": 7116.62, "end": 7118.14, "probability": 0.5682 }, { "start": 7119.28, "end": 7123.54, "probability": 0.9858 }, { "start": 7124.1, "end": 7127.88, "probability": 0.983 }, { "start": 7129.86, "end": 7138.3, "probability": 0.897 }, { "start": 7138.68, "end": 7139.64, "probability": 0.3466 }, { "start": 7139.64, "end": 7140.44, "probability": 0.5305 }, { "start": 7140.44, "end": 7142.52, "probability": 0.9966 }, { "start": 7142.8, "end": 7143.4, "probability": 0.2757 }, { "start": 7143.74, "end": 7145.14, "probability": 0.9245 }, { "start": 7145.36, "end": 7145.64, "probability": 0.4845 }, { "start": 7146.3, "end": 7147.58, "probability": 0.9858 }, { "start": 7147.74, "end": 7148.82, "probability": 0.4708 }, { "start": 7148.82, "end": 7149.52, "probability": 0.4078 }, { "start": 7149.7, "end": 7150.06, "probability": 0.2009 }, { "start": 7150.2, "end": 7150.3, "probability": 0.2003 }, { "start": 7150.46, "end": 7152.42, "probability": 0.5062 }, { "start": 7152.56, "end": 7153.7, "probability": 0.8865 }, { "start": 7154.76, "end": 7160.4, "probability": 0.7765 }, { "start": 7160.66, "end": 7160.98, "probability": 0.4972 }, { "start": 7161.06, "end": 7162.22, "probability": 0.4917 }, { "start": 7163.12, "end": 7168.02, "probability": 0.7611 }, { "start": 7169.26, "end": 7171.36, "probability": 0.8315 }, { "start": 7172.2, "end": 7174.14, "probability": 0.9426 }, { "start": 7175.42, "end": 7177.5, "probability": 0.8413 }, { "start": 7178.22, "end": 7186.74, "probability": 0.9467 }, { "start": 7186.78, "end": 7189.66, "probability": 0.6296 }, { "start": 7190.78, "end": 7191.84, "probability": 0.8906 }, { "start": 7193.2, "end": 7193.94, "probability": 0.7556 }, { "start": 7194.32, "end": 7196.22, "probability": 0.8345 }, { "start": 7196.3, "end": 7198.2, "probability": 0.5425 }, { "start": 7198.5, "end": 7199.74, "probability": 0.8967 }, { "start": 7199.82, "end": 7201.06, "probability": 0.4569 }, { "start": 7201.4, "end": 7202.34, "probability": 0.5371 }, { "start": 7202.74, "end": 7202.98, "probability": 0.2036 }, { "start": 7203.02, "end": 7204.44, "probability": 0.9207 }, { "start": 7204.72, "end": 7207.02, "probability": 0.9854 }, { "start": 7207.66, "end": 7208.68, "probability": 0.9937 }, { "start": 7208.7, "end": 7212.54, "probability": 0.7641 }, { "start": 7213.26, "end": 7214.46, "probability": 0.7961 }, { "start": 7214.86, "end": 7217.22, "probability": 0.7759 }, { "start": 7218.02, "end": 7219.68, "probability": 0.9932 }, { "start": 7220.18, "end": 7222.86, "probability": 0.6898 }, { "start": 7223.64, "end": 7224.32, "probability": 0.8721 }, { "start": 7224.34, "end": 7225.8, "probability": 0.9692 }, { "start": 7225.88, "end": 7228.48, "probability": 0.9775 }, { "start": 7228.6, "end": 7229.1, "probability": 0.8999 }, { "start": 7230.36, "end": 7233.32, "probability": 0.5896 }, { "start": 7233.46, "end": 7234.49, "probability": 0.9409 }, { "start": 7235.26, "end": 7237.11, "probability": 0.9711 }, { "start": 7237.68, "end": 7240.02, "probability": 0.983 }, { "start": 7241.16, "end": 7244.2, "probability": 0.7635 }, { "start": 7244.96, "end": 7246.44, "probability": 0.9401 }, { "start": 7247.94, "end": 7250.2, "probability": 0.9048 }, { "start": 7250.92, "end": 7254.32, "probability": 0.9687 }, { "start": 7255.24, "end": 7258.12, "probability": 0.9988 }, { "start": 7258.96, "end": 7261.98, "probability": 0.9476 }, { "start": 7262.06, "end": 7263.16, "probability": 0.6577 }, { "start": 7263.48, "end": 7263.96, "probability": 0.6889 }, { "start": 7264.06, "end": 7266.08, "probability": 0.9071 }, { "start": 7266.48, "end": 7267.46, "probability": 0.797 }, { "start": 7268.08, "end": 7269.76, "probability": 0.6958 }, { "start": 7270.36, "end": 7272.68, "probability": 0.789 }, { "start": 7272.7, "end": 7273.33, "probability": 0.2411 }, { "start": 7273.44, "end": 7273.92, "probability": 0.1064 }, { "start": 7274.14, "end": 7276.82, "probability": 0.5057 }, { "start": 7277.26, "end": 7278.96, "probability": 0.7431 }, { "start": 7279.24, "end": 7281.58, "probability": 0.9111 }, { "start": 7282.16, "end": 7284.5, "probability": 0.5944 }, { "start": 7284.88, "end": 7286.2, "probability": 0.6573 }, { "start": 7287.02, "end": 7289.36, "probability": 0.9768 }, { "start": 7290.1, "end": 7293.08, "probability": 0.888 }, { "start": 7293.86, "end": 7294.79, "probability": 0.5036 }, { "start": 7295.06, "end": 7299.54, "probability": 0.9451 }, { "start": 7300.1, "end": 7302.34, "probability": 0.9243 }, { "start": 7302.86, "end": 7304.88, "probability": 0.9865 }, { "start": 7305.82, "end": 7309.88, "probability": 0.857 }, { "start": 7310.22, "end": 7312.92, "probability": 0.9843 }, { "start": 7313.62, "end": 7318.44, "probability": 0.8384 }, { "start": 7318.7, "end": 7322.2, "probability": 0.992 }, { "start": 7322.32, "end": 7323.5, "probability": 0.7398 }, { "start": 7323.9, "end": 7326.68, "probability": 0.7789 }, { "start": 7327.64, "end": 7331.02, "probability": 0.7733 }, { "start": 7331.76, "end": 7332.52, "probability": 0.9866 }, { "start": 7332.64, "end": 7333.06, "probability": 0.6812 }, { "start": 7333.14, "end": 7334.74, "probability": 0.9089 }, { "start": 7335.14, "end": 7339.88, "probability": 0.6779 }, { "start": 7340.22, "end": 7341.33, "probability": 0.6437 }, { "start": 7341.46, "end": 7342.06, "probability": 0.7265 }, { "start": 7342.56, "end": 7344.42, "probability": 0.8945 }, { "start": 7344.96, "end": 7345.88, "probability": 0.7946 }, { "start": 7346.6, "end": 7348.01, "probability": 0.8079 }, { "start": 7349.58, "end": 7356.46, "probability": 0.9294 }, { "start": 7356.46, "end": 7359.46, "probability": 0.9888 }, { "start": 7359.56, "end": 7359.94, "probability": 0.6518 }, { "start": 7360.24, "end": 7364.22, "probability": 0.9688 }, { "start": 7364.74, "end": 7366.56, "probability": 0.9104 }, { "start": 7367.36, "end": 7371.04, "probability": 0.8843 }, { "start": 7371.38, "end": 7372.0, "probability": 0.4338 }, { "start": 7372.54, "end": 7373.6, "probability": 0.6955 }, { "start": 7374.32, "end": 7375.58, "probability": 0.9849 }, { "start": 7376.38, "end": 7377.7, "probability": 0.9993 }, { "start": 7378.14, "end": 7380.06, "probability": 0.9097 }, { "start": 7380.96, "end": 7382.12, "probability": 0.9414 }, { "start": 7382.3, "end": 7383.34, "probability": 0.7449 }, { "start": 7383.72, "end": 7386.14, "probability": 0.964 }, { "start": 7387.26, "end": 7388.36, "probability": 0.7532 }, { "start": 7388.72, "end": 7390.58, "probability": 0.8818 }, { "start": 7390.98, "end": 7392.46, "probability": 0.9495 }, { "start": 7392.72, "end": 7393.4, "probability": 0.9519 }, { "start": 7393.7, "end": 7397.06, "probability": 0.8269 }, { "start": 7397.32, "end": 7398.12, "probability": 0.6159 }, { "start": 7398.32, "end": 7398.94, "probability": 0.5419 }, { "start": 7399.24, "end": 7402.16, "probability": 0.9923 }, { "start": 7403.18, "end": 7406.0, "probability": 0.8702 }, { "start": 7413.93, "end": 7415.68, "probability": 0.3569 }, { "start": 7418.02, "end": 7421.74, "probability": 0.5635 }, { "start": 7422.2, "end": 7425.21, "probability": 0.3189 }, { "start": 7425.84, "end": 7427.48, "probability": 0.509 }, { "start": 7428.45, "end": 7433.28, "probability": 0.7722 }, { "start": 7434.04, "end": 7435.9, "probability": 0.7001 }, { "start": 7437.42, "end": 7439.72, "probability": 0.6607 }, { "start": 7440.64, "end": 7444.72, "probability": 0.5215 }, { "start": 7447.24, "end": 7450.62, "probability": 0.8219 }, { "start": 7451.14, "end": 7452.62, "probability": 0.7144 }, { "start": 7456.28, "end": 7458.24, "probability": 0.2657 }, { "start": 7458.88, "end": 7462.26, "probability": 0.5611 }, { "start": 7462.84, "end": 7463.9, "probability": 0.6863 }, { "start": 7464.32, "end": 7465.67, "probability": 0.5884 }, { "start": 7469.64, "end": 7470.58, "probability": 0.3891 }, { "start": 7470.66, "end": 7478.5, "probability": 0.8796 }, { "start": 7478.6, "end": 7479.08, "probability": 0.6841 }, { "start": 7479.8, "end": 7481.36, "probability": 0.8995 }, { "start": 7482.08, "end": 7483.02, "probability": 0.7338 }, { "start": 7483.84, "end": 7485.7, "probability": 0.9938 }, { "start": 7486.52, "end": 7487.66, "probability": 0.9673 }, { "start": 7487.8, "end": 7488.64, "probability": 0.8983 }, { "start": 7489.14, "end": 7489.5, "probability": 0.8557 }, { "start": 7489.6, "end": 7491.8, "probability": 0.6686 }, { "start": 7492.82, "end": 7494.42, "probability": 0.8572 }, { "start": 7494.46, "end": 7496.6, "probability": 0.9394 }, { "start": 7496.78, "end": 7499.42, "probability": 0.845 }, { "start": 7501.48, "end": 7502.41, "probability": 0.8756 }, { "start": 7503.24, "end": 7503.98, "probability": 0.9403 }, { "start": 7504.26, "end": 7505.7, "probability": 0.9091 }, { "start": 7505.94, "end": 7507.68, "probability": 0.6935 }, { "start": 7507.88, "end": 7512.48, "probability": 0.9856 }, { "start": 7512.92, "end": 7516.28, "probability": 0.9119 }, { "start": 7516.72, "end": 7517.8, "probability": 0.8792 }, { "start": 7518.22, "end": 7519.4, "probability": 0.7625 }, { "start": 7519.46, "end": 7520.08, "probability": 0.7316 }, { "start": 7520.14, "end": 7520.9, "probability": 0.678 }, { "start": 7521.24, "end": 7521.94, "probability": 0.7957 }, { "start": 7522.06, "end": 7522.16, "probability": 0.598 }, { "start": 7522.38, "end": 7523.52, "probability": 0.8462 }, { "start": 7523.98, "end": 7525.42, "probability": 0.8667 }, { "start": 7525.76, "end": 7527.8, "probability": 0.7739 }, { "start": 7528.14, "end": 7529.59, "probability": 0.8246 }, { "start": 7530.3, "end": 7531.04, "probability": 0.9585 }, { "start": 7531.6, "end": 7533.9, "probability": 0.9966 }, { "start": 7534.6, "end": 7536.46, "probability": 0.6681 }, { "start": 7536.88, "end": 7537.54, "probability": 0.6756 }, { "start": 7538.24, "end": 7542.54, "probability": 0.9294 }, { "start": 7542.8, "end": 7544.68, "probability": 0.9916 }, { "start": 7545.1, "end": 7548.84, "probability": 0.9707 }, { "start": 7549.2, "end": 7550.5, "probability": 0.6776 }, { "start": 7550.96, "end": 7554.5, "probability": 0.8639 }, { "start": 7554.5, "end": 7555.14, "probability": 0.8843 }, { "start": 7555.54, "end": 7559.04, "probability": 0.9363 }, { "start": 7559.42, "end": 7560.56, "probability": 0.4872 }, { "start": 7560.94, "end": 7562.12, "probability": 0.8228 }, { "start": 7562.34, "end": 7563.68, "probability": 0.4999 }, { "start": 7564.04, "end": 7565.48, "probability": 0.7487 }, { "start": 7565.54, "end": 7567.98, "probability": 0.6139 }, { "start": 7569.34, "end": 7570.68, "probability": 0.2016 }, { "start": 7571.54, "end": 7574.34, "probability": 0.5939 }, { "start": 7574.68, "end": 7578.28, "probability": 0.7656 }, { "start": 7578.64, "end": 7580.7, "probability": 0.8875 }, { "start": 7580.78, "end": 7581.36, "probability": 0.7789 }, { "start": 7581.64, "end": 7582.96, "probability": 0.9383 }, { "start": 7583.0, "end": 7583.88, "probability": 0.6386 }, { "start": 7584.32, "end": 7585.9, "probability": 0.7922 }, { "start": 7586.1, "end": 7588.4, "probability": 0.874 }, { "start": 7588.94, "end": 7590.78, "probability": 0.5754 }, { "start": 7590.82, "end": 7591.56, "probability": 0.7697 }, { "start": 7595.66, "end": 7596.68, "probability": 0.7789 }, { "start": 7597.7, "end": 7602.76, "probability": 0.9987 }, { "start": 7603.6, "end": 7607.66, "probability": 0.8887 }, { "start": 7607.88, "end": 7611.1, "probability": 0.8734 }, { "start": 7611.38, "end": 7613.46, "probability": 0.9932 }, { "start": 7615.7, "end": 7616.46, "probability": 0.538 }, { "start": 7616.78, "end": 7617.44, "probability": 0.2736 }, { "start": 7618.47, "end": 7621.5, "probability": 0.6613 }, { "start": 7621.74, "end": 7623.78, "probability": 0.6133 }, { "start": 7623.9, "end": 7624.48, "probability": 0.4249 }, { "start": 7624.6, "end": 7629.94, "probability": 0.937 }, { "start": 7629.94, "end": 7634.2, "probability": 0.9206 }, { "start": 7634.6, "end": 7636.64, "probability": 0.6464 }, { "start": 7637.1, "end": 7638.18, "probability": 0.7893 }, { "start": 7638.82, "end": 7641.9, "probability": 0.6413 }, { "start": 7642.78, "end": 7646.89, "probability": 0.997 }, { "start": 7649.64, "end": 7650.86, "probability": 0.5224 }, { "start": 7653.48, "end": 7655.68, "probability": 0.9832 }, { "start": 7656.7, "end": 7658.78, "probability": 0.5895 }, { "start": 7658.84, "end": 7661.06, "probability": 0.9593 }, { "start": 7661.16, "end": 7665.4, "probability": 0.9932 }, { "start": 7665.5, "end": 7667.62, "probability": 0.4519 }, { "start": 7668.08, "end": 7670.64, "probability": 0.9922 }, { "start": 7671.2, "end": 7673.68, "probability": 0.9329 }, { "start": 7674.22, "end": 7675.2, "probability": 0.5415 }, { "start": 7675.26, "end": 7675.86, "probability": 0.9163 }, { "start": 7679.28, "end": 7681.56, "probability": 0.9316 }, { "start": 7683.48, "end": 7687.16, "probability": 0.9982 }, { "start": 7687.16, "end": 7691.44, "probability": 0.8894 }, { "start": 7691.62, "end": 7692.78, "probability": 0.8699 }, { "start": 7693.68, "end": 7694.54, "probability": 0.9824 }, { "start": 7695.88, "end": 7700.05, "probability": 0.3901 }, { "start": 7700.94, "end": 7702.18, "probability": 0.968 }, { "start": 7702.3, "end": 7703.64, "probability": 0.9792 }, { "start": 7703.82, "end": 7705.24, "probability": 0.9872 }, { "start": 7705.6, "end": 7706.94, "probability": 0.8938 }, { "start": 7708.18, "end": 7711.42, "probability": 0.7803 }, { "start": 7713.1, "end": 7713.94, "probability": 0.5135 }, { "start": 7715.24, "end": 7716.72, "probability": 0.9224 }, { "start": 7717.96, "end": 7720.24, "probability": 0.7714 }, { "start": 7720.56, "end": 7723.74, "probability": 0.6865 }, { "start": 7724.28, "end": 7729.32, "probability": 0.9926 }, { "start": 7729.32, "end": 7732.86, "probability": 0.9932 }, { "start": 7733.4, "end": 7735.06, "probability": 0.9341 }, { "start": 7735.7, "end": 7739.78, "probability": 0.9644 }, { "start": 7740.6, "end": 7741.12, "probability": 0.6716 }, { "start": 7741.3, "end": 7744.08, "probability": 0.9971 }, { "start": 7744.52, "end": 7745.68, "probability": 0.74 }, { "start": 7745.82, "end": 7747.24, "probability": 0.9773 }, { "start": 7747.3, "end": 7748.22, "probability": 0.9424 }, { "start": 7748.6, "end": 7749.46, "probability": 0.6771 }, { "start": 7749.76, "end": 7754.04, "probability": 0.9351 }, { "start": 7754.18, "end": 7755.34, "probability": 0.7341 }, { "start": 7755.9, "end": 7757.94, "probability": 0.7094 }, { "start": 7758.1, "end": 7758.24, "probability": 0.5287 }, { "start": 7758.36, "end": 7759.6, "probability": 0.9188 }, { "start": 7759.76, "end": 7761.16, "probability": 0.9118 }, { "start": 7761.3, "end": 7762.76, "probability": 0.8281 }, { "start": 7762.86, "end": 7763.66, "probability": 0.8994 }, { "start": 7763.8, "end": 7764.04, "probability": 0.4053 }, { "start": 7764.44, "end": 7767.34, "probability": 0.9868 }, { "start": 7767.98, "end": 7769.28, "probability": 0.8947 }, { "start": 7770.0, "end": 7770.98, "probability": 0.811 }, { "start": 7771.04, "end": 7773.24, "probability": 0.9823 }, { "start": 7773.4, "end": 7773.85, "probability": 0.9857 }, { "start": 7775.3, "end": 7777.5, "probability": 0.9617 }, { "start": 7779.42, "end": 7781.7, "probability": 0.8915 }, { "start": 7782.72, "end": 7788.34, "probability": 0.9714 }, { "start": 7789.14, "end": 7790.8, "probability": 0.7808 }, { "start": 7791.48, "end": 7795.16, "probability": 0.8794 }, { "start": 7795.7, "end": 7802.64, "probability": 0.9639 }, { "start": 7803.2, "end": 7804.38, "probability": 0.732 }, { "start": 7804.76, "end": 7807.98, "probability": 0.9932 }, { "start": 7808.12, "end": 7808.68, "probability": 0.7136 }, { "start": 7810.12, "end": 7813.3, "probability": 0.9969 }, { "start": 7814.06, "end": 7814.7, "probability": 0.1945 }, { "start": 7814.7, "end": 7815.05, "probability": 0.8594 }, { "start": 7816.54, "end": 7817.18, "probability": 0.5323 }, { "start": 7817.64, "end": 7819.54, "probability": 0.7469 }, { "start": 7819.7, "end": 7824.64, "probability": 0.8124 }, { "start": 7825.98, "end": 7830.56, "probability": 0.471 }, { "start": 7830.58, "end": 7836.54, "probability": 0.964 }, { "start": 7836.72, "end": 7838.16, "probability": 0.8812 }, { "start": 7839.38, "end": 7840.7, "probability": 0.4635 }, { "start": 7842.0, "end": 7849.68, "probability": 0.5577 }, { "start": 7850.22, "end": 7851.36, "probability": 0.9528 }, { "start": 7852.6, "end": 7856.98, "probability": 0.0262 }, { "start": 7856.98, "end": 7862.42, "probability": 0.1267 }, { "start": 7964.0, "end": 7964.0, "probability": 0.0 }, { "start": 7964.0, "end": 7964.0, "probability": 0.0 }, { "start": 7964.0, "end": 7964.0, "probability": 0.0 }, { "start": 7964.0, "end": 7964.0, "probability": 0.0 }, { "start": 7964.0, "end": 7964.0, "probability": 0.0 }, { "start": 7964.0, "end": 7964.0, "probability": 0.0 }, { "start": 7964.0, "end": 7964.0, "probability": 0.0 }, { "start": 7964.0, "end": 7964.0, "probability": 0.0 }, { "start": 7964.0, "end": 7964.0, "probability": 0.0 }, { "start": 7964.0, "end": 7964.0, "probability": 0.0 }, { "start": 7964.0, "end": 7964.0, "probability": 0.0 }, { "start": 7964.0, "end": 7964.0, "probability": 0.0 }, { "start": 7964.0, "end": 7964.0, "probability": 0.0 }, { "start": 7964.0, "end": 7964.0, "probability": 0.0 }, { "start": 7964.0, "end": 7964.0, "probability": 0.0 }, { "start": 7964.0, "end": 7964.0, "probability": 0.0 }, { "start": 7964.0, "end": 7964.0, "probability": 0.0 }, { "start": 7964.0, "end": 7964.0, "probability": 0.0 }, { "start": 7964.0, "end": 7964.0, "probability": 0.0 }, { "start": 7964.0, "end": 7964.0, "probability": 0.0 }, { "start": 7964.0, "end": 7964.0, "probability": 0.0 }, { "start": 7964.0, "end": 7964.0, "probability": 0.0 }, { "start": 7964.0, "end": 7964.0, "probability": 0.0 }, { "start": 7964.0, "end": 7964.0, "probability": 0.0 }, { "start": 7964.0, "end": 7964.0, "probability": 0.0 }, { "start": 7964.0, "end": 7964.0, "probability": 0.0 }, { "start": 7964.0, "end": 7964.0, "probability": 0.0 }, { "start": 7964.0, "end": 7964.0, "probability": 0.0 }, { "start": 7964.0, "end": 7964.0, "probability": 0.0 }, { "start": 7964.0, "end": 7964.0, "probability": 0.0 }, { "start": 7964.0, "end": 7964.0, "probability": 0.0 }, { "start": 7964.0, "end": 7964.0, "probability": 0.0 }, { "start": 7964.0, "end": 7964.0, "probability": 0.0 }, { "start": 7964.0, "end": 7964.0, "probability": 0.0 }, { "start": 7964.0, "end": 7964.0, "probability": 0.0 }, { "start": 7964.0, "end": 7964.0, "probability": 0.0 }, { "start": 7964.0, "end": 7964.0, "probability": 0.0 }, { "start": 7964.0, "end": 7964.0, "probability": 0.0 }, { "start": 7964.0, "end": 7964.0, "probability": 0.0 }, { "start": 7964.4, "end": 7965.8, "probability": 0.0418 }, { "start": 7965.8, "end": 7965.8, "probability": 0.0042 }, { "start": 7965.8, "end": 7965.8, "probability": 0.0844 }, { "start": 7965.8, "end": 7968.0, "probability": 0.7583 }, { "start": 7968.26, "end": 7969.32, "probability": 0.5934 }, { "start": 7971.25, "end": 7975.4, "probability": 0.963 }, { "start": 7975.52, "end": 7976.4, "probability": 0.6593 }, { "start": 7976.91, "end": 7977.22, "probability": 0.5186 }, { "start": 7977.37, "end": 7979.78, "probability": 0.8122 }, { "start": 7979.88, "end": 7981.88, "probability": 0.9883 }, { "start": 7982.32, "end": 7983.16, "probability": 0.9568 }, { "start": 7983.9, "end": 7984.84, "probability": 0.9807 }, { "start": 7984.9, "end": 7985.7, "probability": 0.7539 }, { "start": 7985.76, "end": 7992.4, "probability": 0.9827 }, { "start": 7992.94, "end": 7996.52, "probability": 0.7563 }, { "start": 7997.12, "end": 7998.1, "probability": 0.7923 }, { "start": 7998.3, "end": 8000.94, "probability": 0.9925 }, { "start": 8000.94, "end": 8004.52, "probability": 0.9885 }, { "start": 8004.76, "end": 8005.04, "probability": 0.7728 }, { "start": 8005.94, "end": 8006.22, "probability": 0.5389 }, { "start": 8006.46, "end": 8008.52, "probability": 0.5612 }, { "start": 8009.3, "end": 8009.56, "probability": 0.35 }, { "start": 8020.12, "end": 8021.28, "probability": 0.5727 }, { "start": 8021.8, "end": 8024.06, "probability": 0.9156 }, { "start": 8024.74, "end": 8025.58, "probability": 0.9021 }, { "start": 8025.68, "end": 8028.12, "probability": 0.7727 }, { "start": 8028.76, "end": 8031.68, "probability": 0.8403 }, { "start": 8032.62, "end": 8035.58, "probability": 0.7559 }, { "start": 8036.28, "end": 8037.56, "probability": 0.3591 }, { "start": 8038.56, "end": 8039.8, "probability": 0.6547 }, { "start": 8039.98, "end": 8040.44, "probability": 0.887 }, { "start": 8040.54, "end": 8043.36, "probability": 0.8999 }, { "start": 8043.92, "end": 8045.16, "probability": 0.5495 }, { "start": 8045.64, "end": 8048.29, "probability": 0.6668 }, { "start": 8048.66, "end": 8050.46, "probability": 0.8101 }, { "start": 8050.66, "end": 8051.04, "probability": 0.7691 }, { "start": 8051.24, "end": 8055.22, "probability": 0.8385 }, { "start": 8055.94, "end": 8057.55, "probability": 0.9967 }, { "start": 8057.92, "end": 8059.4, "probability": 0.7697 }, { "start": 8059.7, "end": 8066.5, "probability": 0.9769 }, { "start": 8066.76, "end": 8069.64, "probability": 0.7941 }, { "start": 8070.2, "end": 8073.2, "probability": 0.5358 }, { "start": 8073.4, "end": 8073.84, "probability": 0.6708 }, { "start": 8074.1, "end": 8074.42, "probability": 0.6767 }, { "start": 8074.48, "end": 8075.32, "probability": 0.7891 }, { "start": 8076.16, "end": 8077.5, "probability": 0.4485 }, { "start": 8077.9, "end": 8078.76, "probability": 0.3023 }, { "start": 8079.62, "end": 8080.12, "probability": 0.7344 }, { "start": 8080.4, "end": 8080.76, "probability": 0.1734 }, { "start": 8080.84, "end": 8083.82, "probability": 0.7705 }, { "start": 8084.1, "end": 8085.3, "probability": 0.7617 }, { "start": 8085.48, "end": 8086.48, "probability": 0.7626 }, { "start": 8086.82, "end": 8088.37, "probability": 0.6389 }, { "start": 8089.42, "end": 8091.3, "probability": 0.7427 }, { "start": 8091.94, "end": 8092.62, "probability": 0.5826 }, { "start": 8092.68, "end": 8095.1, "probability": 0.8289 }, { "start": 8095.32, "end": 8096.16, "probability": 0.9453 }, { "start": 8096.52, "end": 8097.37, "probability": 0.8809 }, { "start": 8097.64, "end": 8099.11, "probability": 0.9648 }, { "start": 8099.74, "end": 8100.56, "probability": 0.8459 }, { "start": 8100.94, "end": 8102.36, "probability": 0.7929 }, { "start": 8103.26, "end": 8104.27, "probability": 0.9257 }, { "start": 8105.06, "end": 8107.64, "probability": 0.963 }, { "start": 8108.26, "end": 8109.82, "probability": 0.8237 }, { "start": 8109.82, "end": 8111.02, "probability": 0.6756 }, { "start": 8111.24, "end": 8117.98, "probability": 0.9346 }, { "start": 8118.3, "end": 8118.94, "probability": 0.3695 }, { "start": 8119.32, "end": 8120.74, "probability": 0.5971 }, { "start": 8120.84, "end": 8122.93, "probability": 0.3611 }, { "start": 8123.72, "end": 8126.58, "probability": 0.423 }, { "start": 8126.8, "end": 8127.34, "probability": 0.5512 }, { "start": 8127.5, "end": 8128.32, "probability": 0.673 }, { "start": 8128.76, "end": 8130.44, "probability": 0.8517 }, { "start": 8130.52, "end": 8131.26, "probability": 0.6111 }, { "start": 8131.58, "end": 8132.76, "probability": 0.7922 }, { "start": 8132.88, "end": 8134.52, "probability": 0.8213 }, { "start": 8134.74, "end": 8135.32, "probability": 0.8233 }, { "start": 8135.34, "end": 8138.28, "probability": 0.5418 }, { "start": 8138.64, "end": 8140.06, "probability": 0.6705 }, { "start": 8140.06, "end": 8142.86, "probability": 0.7024 }, { "start": 8144.42, "end": 8149.62, "probability": 0.9271 }, { "start": 8149.62, "end": 8151.8, "probability": 0.7196 }, { "start": 8152.14, "end": 8153.68, "probability": 0.4869 }, { "start": 8153.98, "end": 8155.56, "probability": 0.9304 }, { "start": 8155.7, "end": 8156.64, "probability": 0.2518 }, { "start": 8156.82, "end": 8157.46, "probability": 0.6188 }, { "start": 8157.58, "end": 8158.28, "probability": 0.7098 }, { "start": 8158.3, "end": 8159.12, "probability": 0.7336 }, { "start": 8168.36, "end": 8175.72, "probability": 0.0239 }, { "start": 8175.72, "end": 8176.7, "probability": 0.0319 }, { "start": 8177.1, "end": 8178.98, "probability": 0.0377 }, { "start": 8178.98, "end": 8180.74, "probability": 0.5793 }, { "start": 8185.08, "end": 8185.92, "probability": 0.6925 }, { "start": 8186.02, "end": 8188.66, "probability": 0.9893 }, { "start": 8189.32, "end": 8193.58, "probability": 0.9941 }, { "start": 8194.16, "end": 8197.74, "probability": 0.7273 }, { "start": 8198.3, "end": 8201.1, "probability": 0.9861 }, { "start": 8201.6, "end": 8202.6, "probability": 0.7352 }, { "start": 8203.08, "end": 8207.96, "probability": 0.8487 }, { "start": 8208.7, "end": 8208.72, "probability": 0.0007 }, { "start": 8209.7, "end": 8210.28, "probability": 0.8489 }, { "start": 8213.42, "end": 8217.22, "probability": 0.8377 }, { "start": 8217.56, "end": 8221.2, "probability": 0.8114 }, { "start": 8221.32, "end": 8221.9, "probability": 0.8034 }, { "start": 8222.6, "end": 8223.86, "probability": 0.6821 }, { "start": 8224.02, "end": 8224.02, "probability": 0.1633 }, { "start": 8224.06, "end": 8224.54, "probability": 0.4493 }, { "start": 8224.7, "end": 8225.8, "probability": 0.8711 }, { "start": 8226.04, "end": 8228.82, "probability": 0.9941 }, { "start": 8229.24, "end": 8231.98, "probability": 0.9973 }, { "start": 8232.06, "end": 8232.12, "probability": 0.4 }, { "start": 8232.28, "end": 8232.28, "probability": 0.5659 }, { "start": 8232.36, "end": 8232.72, "probability": 0.0541 }, { "start": 8232.98, "end": 8236.8, "probability": 0.9866 }, { "start": 8238.94, "end": 8245.38, "probability": 0.7747 }, { "start": 8245.48, "end": 8246.62, "probability": 0.2468 }, { "start": 8246.62, "end": 8248.08, "probability": 0.7744 }, { "start": 8248.7, "end": 8250.02, "probability": 0.7637 }, { "start": 8256.72, "end": 8258.08, "probability": 0.7185 }, { "start": 8258.3, "end": 8258.74, "probability": 0.461 }, { "start": 8258.76, "end": 8259.82, "probability": 0.9386 }, { "start": 8259.98, "end": 8264.26, "probability": 0.992 }, { "start": 8264.26, "end": 8269.68, "probability": 0.9883 }, { "start": 8269.8, "end": 8276.94, "probability": 0.9696 }, { "start": 8276.94, "end": 8281.66, "probability": 0.9927 }, { "start": 8281.84, "end": 8284.0, "probability": 0.4846 }, { "start": 8284.46, "end": 8290.4, "probability": 0.851 }, { "start": 8290.68, "end": 8290.96, "probability": 0.6728 }, { "start": 8291.08, "end": 8292.38, "probability": 0.4549 }, { "start": 8292.7, "end": 8294.24, "probability": 0.9696 }, { "start": 8294.36, "end": 8295.22, "probability": 0.9164 }, { "start": 8295.38, "end": 8295.7, "probability": 0.9043 }, { "start": 8295.92, "end": 8297.46, "probability": 0.7201 }, { "start": 8297.94, "end": 8300.16, "probability": 0.9624 }, { "start": 8300.28, "end": 8303.38, "probability": 0.8102 }, { "start": 8303.52, "end": 8306.0, "probability": 0.9147 }, { "start": 8306.08, "end": 8308.56, "probability": 0.9824 }, { "start": 8309.14, "end": 8310.48, "probability": 0.9439 }, { "start": 8311.16, "end": 8311.24, "probability": 0.4749 }, { "start": 8311.36, "end": 8314.02, "probability": 0.8893 }, { "start": 8314.52, "end": 8315.22, "probability": 0.7992 }, { "start": 8315.34, "end": 8316.02, "probability": 0.9662 }, { "start": 8316.16, "end": 8316.86, "probability": 0.9752 }, { "start": 8317.56, "end": 8321.32, "probability": 0.9568 }, { "start": 8323.78, "end": 8325.46, "probability": 0.7994 }, { "start": 8325.5, "end": 8327.23, "probability": 0.6231 }, { "start": 8327.98, "end": 8329.72, "probability": 0.92 }, { "start": 8330.12, "end": 8330.64, "probability": 0.9005 }, { "start": 8330.94, "end": 8331.08, "probability": 0.2923 }, { "start": 8331.24, "end": 8331.74, "probability": 0.4784 }, { "start": 8331.8, "end": 8332.44, "probability": 0.931 }, { "start": 8332.5, "end": 8332.72, "probability": 0.5687 }, { "start": 8332.8, "end": 8333.64, "probability": 0.8743 }, { "start": 8333.64, "end": 8335.46, "probability": 0.9512 }, { "start": 8336.38, "end": 8339.85, "probability": 0.7988 }, { "start": 8341.08, "end": 8341.42, "probability": 0.8354 }, { "start": 8342.12, "end": 8342.98, "probability": 0.8645 }, { "start": 8343.08, "end": 8343.98, "probability": 0.8653 }, { "start": 8344.06, "end": 8344.74, "probability": 0.9914 }, { "start": 8344.74, "end": 8346.74, "probability": 0.9713 }, { "start": 8347.12, "end": 8347.78, "probability": 0.993 }, { "start": 8347.92, "end": 8349.52, "probability": 0.8326 }, { "start": 8349.66, "end": 8350.32, "probability": 0.7057 }, { "start": 8350.36, "end": 8351.98, "probability": 0.8878 }, { "start": 8352.06, "end": 8352.66, "probability": 0.7124 }, { "start": 8352.8, "end": 8353.6, "probability": 0.7088 }, { "start": 8353.7, "end": 8354.62, "probability": 0.9149 }, { "start": 8355.02, "end": 8355.94, "probability": 0.8561 }, { "start": 8356.1, "end": 8357.12, "probability": 0.9828 }, { "start": 8357.2, "end": 8357.64, "probability": 0.9295 }, { "start": 8359.04, "end": 8364.02, "probability": 0.9392 }, { "start": 8364.04, "end": 8365.2, "probability": 0.7789 }, { "start": 8365.42, "end": 8366.6, "probability": 0.6624 }, { "start": 8367.5, "end": 8369.42, "probability": 0.88 }, { "start": 8369.88, "end": 8370.56, "probability": 0.8486 }, { "start": 8370.82, "end": 8371.66, "probability": 0.9577 }, { "start": 8371.76, "end": 8372.9, "probability": 0.9329 }, { "start": 8373.18, "end": 8374.08, "probability": 0.9429 }, { "start": 8374.22, "end": 8375.06, "probability": 0.966 }, { "start": 8375.16, "end": 8376.52, "probability": 0.9948 }, { "start": 8376.6, "end": 8377.3, "probability": 0.9966 }, { "start": 8377.58, "end": 8378.7, "probability": 0.5404 }, { "start": 8379.0, "end": 8379.9, "probability": 0.6879 }, { "start": 8380.58, "end": 8385.24, "probability": 0.9461 }, { "start": 8385.3, "end": 8386.44, "probability": 0.9453 }, { "start": 8386.6, "end": 8387.78, "probability": 0.77 }, { "start": 8388.2, "end": 8389.58, "probability": 0.9239 }, { "start": 8389.58, "end": 8391.18, "probability": 0.9861 }, { "start": 8391.26, "end": 8392.68, "probability": 0.7999 }, { "start": 8393.2, "end": 8396.9, "probability": 0.8525 }, { "start": 8397.94, "end": 8398.84, "probability": 0.6969 }, { "start": 8399.0, "end": 8402.98, "probability": 0.7738 }, { "start": 8403.58, "end": 8407.21, "probability": 0.7026 }, { "start": 8407.86, "end": 8409.08, "probability": 0.9022 }, { "start": 8409.24, "end": 8411.4, "probability": 0.847 }, { "start": 8411.7, "end": 8412.52, "probability": 0.7932 }, { "start": 8412.62, "end": 8413.91, "probability": 0.9741 }, { "start": 8414.18, "end": 8415.82, "probability": 0.9866 }, { "start": 8416.02, "end": 8417.58, "probability": 0.7617 }, { "start": 8418.02, "end": 8419.04, "probability": 0.6946 }, { "start": 8419.14, "end": 8420.52, "probability": 0.9729 }, { "start": 8420.6, "end": 8422.1, "probability": 0.8601 }, { "start": 8422.96, "end": 8423.98, "probability": 0.9072 }, { "start": 8424.04, "end": 8424.5, "probability": 0.9363 }, { "start": 8424.64, "end": 8427.96, "probability": 0.9411 }, { "start": 8428.04, "end": 8430.72, "probability": 0.9857 }, { "start": 8431.24, "end": 8431.78, "probability": 0.6815 }, { "start": 8432.1, "end": 8432.3, "probability": 0.3566 }, { "start": 8432.44, "end": 8433.78, "probability": 0.932 }, { "start": 8434.24, "end": 8434.8, "probability": 0.5778 }, { "start": 8435.24, "end": 8435.76, "probability": 0.9497 }, { "start": 8435.86, "end": 8436.7, "probability": 0.9886 }, { "start": 8436.7, "end": 8438.66, "probability": 0.9697 }, { "start": 8438.74, "end": 8439.6, "probability": 0.9154 }, { "start": 8440.38, "end": 8440.98, "probability": 0.7426 }, { "start": 8441.16, "end": 8444.92, "probability": 0.8987 }, { "start": 8445.06, "end": 8445.56, "probability": 0.8157 }, { "start": 8445.6, "end": 8446.52, "probability": 0.897 }, { "start": 8446.62, "end": 8447.16, "probability": 0.9822 }, { "start": 8447.24, "end": 8448.14, "probability": 0.9795 }, { "start": 8448.26, "end": 8450.24, "probability": 0.9526 }, { "start": 8450.62, "end": 8451.16, "probability": 0.833 }, { "start": 8451.54, "end": 8452.72, "probability": 0.9841 }, { "start": 8453.06, "end": 8454.74, "probability": 0.9883 }, { "start": 8454.76, "end": 8456.84, "probability": 0.9701 }, { "start": 8457.36, "end": 8461.56, "probability": 0.9398 }, { "start": 8461.7, "end": 8465.0, "probability": 0.9359 }, { "start": 8465.18, "end": 8467.6, "probability": 0.9854 }, { "start": 8469.44, "end": 8469.6, "probability": 0.4205 }, { "start": 8469.68, "end": 8470.66, "probability": 0.7318 }, { "start": 8471.14, "end": 8474.66, "probability": 0.9823 }, { "start": 8475.22, "end": 8479.72, "probability": 0.9975 }, { "start": 8480.22, "end": 8482.54, "probability": 0.9883 }, { "start": 8482.74, "end": 8484.1, "probability": 0.8756 }, { "start": 8484.2, "end": 8485.24, "probability": 0.9792 }, { "start": 8485.68, "end": 8488.74, "probability": 0.9895 }, { "start": 8488.74, "end": 8492.94, "probability": 0.8765 }, { "start": 8493.1, "end": 8494.8, "probability": 0.1435 }, { "start": 8494.92, "end": 8495.88, "probability": 0.6563 }, { "start": 8496.44, "end": 8501.24, "probability": 0.9521 }, { "start": 8501.34, "end": 8502.3, "probability": 0.7086 }, { "start": 8502.5, "end": 8503.6, "probability": 0.7632 }, { "start": 8504.1, "end": 8505.02, "probability": 0.7349 }, { "start": 8505.16, "end": 8506.38, "probability": 0.939 }, { "start": 8506.44, "end": 8509.94, "probability": 0.5254 }, { "start": 8510.08, "end": 8510.94, "probability": 0.7218 }, { "start": 8511.06, "end": 8514.88, "probability": 0.985 }, { "start": 8515.92, "end": 8516.68, "probability": 0.719 }, { "start": 8516.76, "end": 8517.7, "probability": 0.958 }, { "start": 8517.76, "end": 8518.6, "probability": 0.9445 }, { "start": 8518.92, "end": 8521.48, "probability": 0.9961 }, { "start": 8522.0, "end": 8526.4, "probability": 0.9248 }, { "start": 8526.54, "end": 8528.02, "probability": 0.9128 }, { "start": 8528.12, "end": 8529.04, "probability": 0.9049 }, { "start": 8529.12, "end": 8530.56, "probability": 0.8477 }, { "start": 8530.66, "end": 8535.24, "probability": 0.9252 }, { "start": 8535.38, "end": 8537.22, "probability": 0.5384 }, { "start": 8537.78, "end": 8538.34, "probability": 0.5801 }, { "start": 8538.38, "end": 8540.84, "probability": 0.4861 }, { "start": 8545.06, "end": 8546.5, "probability": 0.7628 }, { "start": 8546.5, "end": 8548.68, "probability": 0.5148 }, { "start": 8548.8, "end": 8551.01, "probability": 0.6089 }, { "start": 8553.4, "end": 8555.94, "probability": 0.6859 }, { "start": 8556.08, "end": 8557.86, "probability": 0.7522 }, { "start": 8558.52, "end": 8562.34, "probability": 0.9355 }, { "start": 8562.6, "end": 8563.04, "probability": 0.8251 }, { "start": 8563.22, "end": 8564.44, "probability": 0.7817 }, { "start": 8564.44, "end": 8569.42, "probability": 0.9536 }, { "start": 8569.42, "end": 8572.02, "probability": 0.5695 }, { "start": 8574.25, "end": 8576.22, "probability": 0.5442 }, { "start": 8576.28, "end": 8578.28, "probability": 0.6725 }, { "start": 8578.54, "end": 8579.66, "probability": 0.6699 }, { "start": 8580.14, "end": 8585.6, "probability": 0.051 }, { "start": 8585.6, "end": 8593.44, "probability": 0.0364 }, { "start": 8596.9, "end": 8596.9, "probability": 0.0503 }, { "start": 8596.9, "end": 8598.26, "probability": 0.0601 }, { "start": 8598.38, "end": 8600.3, "probability": 0.7542 }, { "start": 8600.42, "end": 8601.9, "probability": 0.6044 }, { "start": 8602.16, "end": 8604.82, "probability": 0.9635 }, { "start": 8604.82, "end": 8609.08, "probability": 0.6697 }, { "start": 8609.22, "end": 8610.48, "probability": 0.4033 }, { "start": 8611.97, "end": 8614.68, "probability": 0.7565 }, { "start": 8615.46, "end": 8617.64, "probability": 0.9792 }, { "start": 8618.26, "end": 8621.16, "probability": 0.7684 }, { "start": 8621.48, "end": 8623.86, "probability": 0.7715 }, { "start": 8625.48, "end": 8626.82, "probability": 0.9473 }, { "start": 8627.16, "end": 8632.08, "probability": 0.9604 }, { "start": 8632.08, "end": 8636.76, "probability": 0.9725 }, { "start": 8637.3, "end": 8637.86, "probability": 0.299 }, { "start": 8638.6, "end": 8641.33, "probability": 0.4388 }, { "start": 8641.78, "end": 8643.1, "probability": 0.6324 }, { "start": 8643.66, "end": 8647.82, "probability": 0.947 }, { "start": 8648.24, "end": 8648.56, "probability": 0.9268 }, { "start": 8648.98, "end": 8651.66, "probability": 0.7288 }, { "start": 8652.86, "end": 8657.48, "probability": 0.9896 }, { "start": 8657.48, "end": 8660.86, "probability": 0.9943 }, { "start": 8661.06, "end": 8662.48, "probability": 0.2103 }, { "start": 8663.04, "end": 8663.24, "probability": 0.4814 }, { "start": 8663.24, "end": 8665.01, "probability": 0.9157 }, { "start": 8665.64, "end": 8670.1, "probability": 0.9336 }, { "start": 8671.6, "end": 8672.3, "probability": 0.4623 }, { "start": 8673.44, "end": 8677.5, "probability": 0.9847 }, { "start": 8677.56, "end": 8678.56, "probability": 0.9992 }, { "start": 8679.08, "end": 8683.34, "probability": 0.9969 }, { "start": 8683.46, "end": 8689.02, "probability": 0.9743 }, { "start": 8689.94, "end": 8693.02, "probability": 0.8217 }, { "start": 8693.76, "end": 8699.62, "probability": 0.9566 }, { "start": 8700.14, "end": 8702.12, "probability": 0.8595 }, { "start": 8703.2, "end": 8707.08, "probability": 0.9882 }, { "start": 8707.8, "end": 8711.54, "probability": 0.9896 }, { "start": 8711.54, "end": 8716.2, "probability": 0.9909 }, { "start": 8716.56, "end": 8718.08, "probability": 0.998 }, { "start": 8718.64, "end": 8719.24, "probability": 0.4212 }, { "start": 8719.32, "end": 8719.32, "probability": 0.3596 }, { "start": 8719.32, "end": 8722.6, "probability": 0.7281 }, { "start": 8723.22, "end": 8726.02, "probability": 0.823 }, { "start": 8726.82, "end": 8728.12, "probability": 0.7253 }, { "start": 8728.5, "end": 8729.1, "probability": 0.8407 }, { "start": 8730.02, "end": 8731.96, "probability": 0.8924 }, { "start": 8732.7, "end": 8733.66, "probability": 0.9512 }, { "start": 8733.94, "end": 8737.66, "probability": 0.7504 }, { "start": 8737.66, "end": 8741.72, "probability": 0.9888 }, { "start": 8741.72, "end": 8745.56, "probability": 0.458 }, { "start": 8745.94, "end": 8747.28, "probability": 0.4497 }, { "start": 8747.5, "end": 8748.22, "probability": 0.6107 }, { "start": 8748.66, "end": 8749.2, "probability": 0.6616 }, { "start": 8749.3, "end": 8749.86, "probability": 0.7126 }, { "start": 8749.88, "end": 8750.28, "probability": 0.9012 }, { "start": 8750.36, "end": 8751.22, "probability": 0.7117 }, { "start": 8767.6, "end": 8769.64, "probability": 0.5574 }, { "start": 8775.58, "end": 8782.34, "probability": 0.1633 }, { "start": 8782.34, "end": 8784.4, "probability": 0.0262 }, { "start": 8786.47, "end": 8788.64, "probability": 0.036 }, { "start": 8792.7, "end": 8792.82, "probability": 0.0 }, { "start": 8798.92, "end": 8803.4, "probability": 0.0077 }, { "start": 8804.08, "end": 8805.56, "probability": 0.0622 }, { "start": 8806.68, "end": 8809.68, "probability": 0.1151 }, { "start": 8809.96, "end": 8811.1, "probability": 0.0242 }, { "start": 8811.76, "end": 8813.92, "probability": 0.0345 }, { "start": 8816.04, "end": 8816.14, "probability": 0.1352 }, { "start": 8817.18, "end": 8820.9, "probability": 0.0868 }, { "start": 8820.9, "end": 8821.0, "probability": 0.0671 }, { "start": 8821.0, "end": 8823.4, "probability": 0.0672 }, { "start": 8825.16, "end": 8827.76, "probability": 0.0713 }, { "start": 8828.34, "end": 8828.74, "probability": 0.0204 }, { "start": 8829.0, "end": 8829.0, "probability": 0.0 }, { "start": 8829.0, "end": 8829.0, "probability": 0.0 }, { "start": 8829.0, "end": 8829.0, "probability": 0.0 }, { "start": 8829.0, "end": 8829.0, "probability": 0.0 }, { "start": 8829.0, "end": 8829.0, "probability": 0.0 }, { "start": 8829.0, "end": 8829.0, "probability": 0.0 }, { "start": 8829.0, "end": 8829.0, "probability": 0.0 }, { "start": 8829.0, "end": 8829.0, "probability": 0.0 }, { "start": 8829.0, "end": 8829.0, "probability": 0.0 }, { "start": 8829.0, "end": 8829.0, "probability": 0.0 }, { "start": 8829.0, "end": 8829.0, "probability": 0.0 }, { "start": 8830.49, "end": 8834.16, "probability": 0.6669 }, { "start": 8834.68, "end": 8835.56, "probability": 0.786 }, { "start": 8854.2, "end": 8855.58, "probability": 0.2681 }, { "start": 8855.58, "end": 8857.18, "probability": 0.7202 }, { "start": 8859.06, "end": 8862.74, "probability": 0.9401 }, { "start": 8862.74, "end": 8866.24, "probability": 0.9969 }, { "start": 8867.34, "end": 8867.34, "probability": 0.4646 }, { "start": 8867.36, "end": 8868.12, "probability": 0.4392 }, { "start": 8868.96, "end": 8870.78, "probability": 0.704 }, { "start": 8870.82, "end": 8870.98, "probability": 0.3622 }, { "start": 8871.04, "end": 8871.78, "probability": 0.0374 }, { "start": 8871.78, "end": 8873.51, "probability": 0.2902 }, { "start": 8874.2, "end": 8875.74, "probability": 0.542 }, { "start": 8875.88, "end": 8880.7, "probability": 0.7844 }, { "start": 8881.64, "end": 8885.0, "probability": 0.8506 }, { "start": 8886.28, "end": 8887.3, "probability": 0.9533 }, { "start": 8888.76, "end": 8890.3, "probability": 0.9773 }, { "start": 8891.18, "end": 8896.5, "probability": 0.9629 }, { "start": 8896.72, "end": 8897.44, "probability": 0.7327 }, { "start": 8897.6, "end": 8898.14, "probability": 0.7946 }, { "start": 8898.14, "end": 8899.14, "probability": 0.637 }, { "start": 8901.42, "end": 8907.26, "probability": 0.936 }, { "start": 8909.06, "end": 8909.73, "probability": 0.5778 }, { "start": 8911.04, "end": 8912.28, "probability": 0.8146 }, { "start": 8912.86, "end": 8914.28, "probability": 0.7801 }, { "start": 8914.74, "end": 8922.86, "probability": 0.9491 }, { "start": 8923.98, "end": 8925.94, "probability": 0.9876 }, { "start": 8926.96, "end": 8930.48, "probability": 0.9414 }, { "start": 8931.2, "end": 8936.8, "probability": 0.9484 }, { "start": 8937.88, "end": 8940.0, "probability": 0.9493 }, { "start": 8941.12, "end": 8942.42, "probability": 0.7751 }, { "start": 8943.68, "end": 8948.08, "probability": 0.9326 }, { "start": 8949.1, "end": 8949.68, "probability": 0.8326 }, { "start": 8950.42, "end": 8952.92, "probability": 0.5502 }, { "start": 8953.24, "end": 8953.9, "probability": 0.4948 }, { "start": 8954.94, "end": 8958.56, "probability": 0.9385 }, { "start": 8959.78, "end": 8961.04, "probability": 0.8708 }, { "start": 8962.74, "end": 8965.06, "probability": 0.9319 }, { "start": 8966.02, "end": 8968.73, "probability": 0.9895 }, { "start": 8969.84, "end": 8971.24, "probability": 0.9914 }, { "start": 8973.06, "end": 8975.08, "probability": 0.7523 }, { "start": 8975.76, "end": 8977.8, "probability": 0.3811 }, { "start": 8979.06, "end": 8979.88, "probability": 0.8334 }, { "start": 8982.12, "end": 8984.06, "probability": 0.6668 }, { "start": 8985.7, "end": 8987.72, "probability": 0.9215 }, { "start": 8991.92, "end": 8995.52, "probability": 0.5574 }, { "start": 8996.88, "end": 9000.72, "probability": 0.9645 }, { "start": 9003.71, "end": 9004.58, "probability": 0.6765 }, { "start": 9004.72, "end": 9005.9, "probability": 0.2778 }, { "start": 9006.58, "end": 9007.14, "probability": 0.8955 }, { "start": 9011.0, "end": 9011.8, "probability": 0.8717 }, { "start": 9012.12, "end": 9015.1, "probability": 0.7945 }, { "start": 9015.56, "end": 9018.12, "probability": 0.9959 }, { "start": 9018.66, "end": 9019.28, "probability": 0.9172 }, { "start": 9019.58, "end": 9020.84, "probability": 0.2595 }, { "start": 9021.38, "end": 9024.2, "probability": 0.9097 }, { "start": 9025.06, "end": 9025.38, "probability": 0.9249 }, { "start": 9026.16, "end": 9026.28, "probability": 0.3227 }, { "start": 9026.9, "end": 9027.76, "probability": 0.9971 }, { "start": 9029.26, "end": 9030.16, "probability": 0.9808 }, { "start": 9032.36, "end": 9037.46, "probability": 0.8994 }, { "start": 9038.1, "end": 9039.98, "probability": 0.4753 }, { "start": 9041.5, "end": 9043.96, "probability": 0.9636 }, { "start": 9044.0, "end": 9044.4, "probability": 0.2229 }, { "start": 9044.64, "end": 9050.68, "probability": 0.8188 }, { "start": 9050.82, "end": 9051.94, "probability": 0.9973 }, { "start": 9052.62, "end": 9053.06, "probability": 0.7578 }, { "start": 9056.52, "end": 9060.52, "probability": 0.9298 }, { "start": 9062.12, "end": 9066.92, "probability": 0.9969 }, { "start": 9068.26, "end": 9070.83, "probability": 0.7322 }, { "start": 9072.4, "end": 9075.52, "probability": 0.8801 }, { "start": 9077.62, "end": 9079.9, "probability": 0.9972 }, { "start": 9080.98, "end": 9082.36, "probability": 0.9096 }, { "start": 9083.48, "end": 9085.3, "probability": 0.9075 }, { "start": 9086.3, "end": 9087.64, "probability": 0.7453 }, { "start": 9088.46, "end": 9090.94, "probability": 0.6682 }, { "start": 9095.14, "end": 9096.74, "probability": 0.5757 }, { "start": 9097.8, "end": 9104.78, "probability": 0.947 }, { "start": 9106.32, "end": 9108.36, "probability": 0.9382 }, { "start": 9109.12, "end": 9110.26, "probability": 0.9809 }, { "start": 9111.46, "end": 9111.92, "probability": 0.6876 }, { "start": 9112.16, "end": 9112.82, "probability": 0.6804 }, { "start": 9113.14, "end": 9113.9, "probability": 0.1627 }, { "start": 9114.0, "end": 9115.22, "probability": 0.3177 }, { "start": 9115.34, "end": 9117.46, "probability": 0.9646 }, { "start": 9119.0, "end": 9119.46, "probability": 0.7775 }, { "start": 9122.02, "end": 9126.44, "probability": 0.595 }, { "start": 9127.36, "end": 9129.76, "probability": 0.9854 }, { "start": 9130.76, "end": 9132.7, "probability": 0.8649 }, { "start": 9133.48, "end": 9136.54, "probability": 0.9625 }, { "start": 9137.04, "end": 9140.86, "probability": 0.8447 }, { "start": 9140.86, "end": 9144.42, "probability": 0.9941 }, { "start": 9145.74, "end": 9148.68, "probability": 0.8084 }, { "start": 9149.8, "end": 9152.12, "probability": 0.9868 }, { "start": 9153.06, "end": 9157.42, "probability": 0.7986 }, { "start": 9157.74, "end": 9157.78, "probability": 0.1189 }, { "start": 9158.62, "end": 9160.6, "probability": 0.7655 }, { "start": 9161.68, "end": 9165.74, "probability": 0.8965 }, { "start": 9166.48, "end": 9170.24, "probability": 0.972 }, { "start": 9171.16, "end": 9173.62, "probability": 0.8604 }, { "start": 9174.46, "end": 9175.34, "probability": 0.9543 }, { "start": 9175.5, "end": 9176.72, "probability": 0.7228 }, { "start": 9177.18, "end": 9179.0, "probability": 0.8541 }, { "start": 9179.04, "end": 9179.66, "probability": 0.5149 }, { "start": 9179.78, "end": 9180.32, "probability": 0.864 }, { "start": 9180.82, "end": 9182.94, "probability": 0.9573 }, { "start": 9183.42, "end": 9185.41, "probability": 0.9878 }, { "start": 9186.18, "end": 9188.1, "probability": 0.864 }, { "start": 9188.6, "end": 9190.18, "probability": 0.7476 }, { "start": 9191.22, "end": 9198.32, "probability": 0.9889 }, { "start": 9198.56, "end": 9199.82, "probability": 0.466 }, { "start": 9199.84, "end": 9201.5, "probability": 0.9847 }, { "start": 9202.16, "end": 9203.34, "probability": 0.94 }, { "start": 9203.82, "end": 9205.32, "probability": 0.6317 }, { "start": 9205.7, "end": 9206.32, "probability": 0.8162 }, { "start": 9207.22, "end": 9208.72, "probability": 0.81 }, { "start": 9212.02, "end": 9214.86, "probability": 0.7285 }, { "start": 9214.88, "end": 9216.02, "probability": 0.8738 }, { "start": 9217.08, "end": 9219.32, "probability": 0.9797 }, { "start": 9220.3, "end": 9221.84, "probability": 0.9457 }, { "start": 9222.44, "end": 9225.96, "probability": 0.999 }, { "start": 9227.02, "end": 9232.72, "probability": 0.9863 }, { "start": 9233.56, "end": 9234.18, "probability": 0.7257 }, { "start": 9234.76, "end": 9239.96, "probability": 0.9915 }, { "start": 9240.48, "end": 9242.14, "probability": 0.9862 }, { "start": 9242.74, "end": 9243.58, "probability": 0.9792 }, { "start": 9244.24, "end": 9245.6, "probability": 0.6798 }, { "start": 9246.04, "end": 9249.84, "probability": 0.9304 }, { "start": 9250.02, "end": 9252.3, "probability": 0.7784 }, { "start": 9252.84, "end": 9257.78, "probability": 0.9085 }, { "start": 9258.54, "end": 9260.2, "probability": 0.9375 }, { "start": 9262.12, "end": 9263.88, "probability": 0.8746 }, { "start": 9265.64, "end": 9270.74, "probability": 0.6925 }, { "start": 9273.42, "end": 9277.12, "probability": 0.9784 }, { "start": 9277.72, "end": 9278.67, "probability": 0.9954 }, { "start": 9279.74, "end": 9280.65, "probability": 0.9647 }, { "start": 9281.02, "end": 9282.86, "probability": 0.9966 }, { "start": 9283.52, "end": 9290.46, "probability": 0.8998 }, { "start": 9291.74, "end": 9294.08, "probability": 0.994 }, { "start": 9294.22, "end": 9294.74, "probability": 0.8848 }, { "start": 9294.96, "end": 9296.14, "probability": 0.6515 }, { "start": 9297.8, "end": 9300.75, "probability": 0.9163 }, { "start": 9301.72, "end": 9303.14, "probability": 0.9799 }, { "start": 9303.24, "end": 9304.72, "probability": 0.8212 }, { "start": 9304.94, "end": 9306.92, "probability": 0.5568 }, { "start": 9307.94, "end": 9308.82, "probability": 0.7595 }, { "start": 9308.9, "end": 9310.02, "probability": 0.7482 }, { "start": 9311.32, "end": 9316.86, "probability": 0.9891 }, { "start": 9317.66, "end": 9319.82, "probability": 0.9065 }, { "start": 9320.4, "end": 9322.92, "probability": 0.7427 }, { "start": 9324.18, "end": 9327.38, "probability": 0.8422 }, { "start": 9328.68, "end": 9331.66, "probability": 0.9304 }, { "start": 9335.66, "end": 9336.9, "probability": 0.6218 }, { "start": 9338.02, "end": 9339.76, "probability": 0.96 }, { "start": 9341.62, "end": 9342.38, "probability": 0.5515 }, { "start": 9344.6, "end": 9348.38, "probability": 0.9729 }, { "start": 9349.74, "end": 9350.58, "probability": 0.9814 }, { "start": 9352.44, "end": 9354.88, "probability": 0.8325 }, { "start": 9356.26, "end": 9359.38, "probability": 0.9907 }, { "start": 9361.15, "end": 9363.92, "probability": 0.8333 }, { "start": 9364.64, "end": 9365.18, "probability": 0.7653 }, { "start": 9366.04, "end": 9372.18, "probability": 0.963 }, { "start": 9372.32, "end": 9373.26, "probability": 0.7944 }, { "start": 9373.44, "end": 9374.28, "probability": 0.9641 }, { "start": 9375.0, "end": 9376.52, "probability": 0.9246 }, { "start": 9376.86, "end": 9377.72, "probability": 0.9319 }, { "start": 9377.8, "end": 9378.62, "probability": 0.8587 }, { "start": 9378.76, "end": 9379.58, "probability": 0.4863 }, { "start": 9380.38, "end": 9382.1, "probability": 0.892 }, { "start": 9383.32, "end": 9386.0, "probability": 0.8442 }, { "start": 9386.54, "end": 9389.58, "probability": 0.943 }, { "start": 9390.88, "end": 9393.6, "probability": 0.9619 }, { "start": 9394.16, "end": 9398.52, "probability": 0.9741 }, { "start": 9399.42, "end": 9403.66, "probability": 0.6766 }, { "start": 9404.3, "end": 9405.68, "probability": 0.9866 }, { "start": 9406.32, "end": 9407.56, "probability": 0.9795 }, { "start": 9408.8, "end": 9413.94, "probability": 0.9641 }, { "start": 9414.88, "end": 9419.84, "probability": 0.8739 }, { "start": 9419.84, "end": 9421.37, "probability": 0.6212 }, { "start": 9422.62, "end": 9426.3, "probability": 0.7141 }, { "start": 9427.0, "end": 9428.64, "probability": 0.8145 }, { "start": 9428.86, "end": 9431.1, "probability": 0.4752 }, { "start": 9436.48, "end": 9441.82, "probability": 0.4747 }, { "start": 9442.64, "end": 9442.82, "probability": 0.3574 }, { "start": 9442.82, "end": 9443.7, "probability": 0.7418 }, { "start": 9443.82, "end": 9450.32, "probability": 0.9275 }, { "start": 9450.62, "end": 9451.4, "probability": 0.7365 }, { "start": 9451.48, "end": 9452.14, "probability": 0.5108 }, { "start": 9452.18, "end": 9461.24, "probability": 0.9909 }, { "start": 9461.28, "end": 9463.0, "probability": 0.5965 }, { "start": 9464.22, "end": 9465.94, "probability": 0.2705 }, { "start": 9467.02, "end": 9468.96, "probability": 0.1395 }, { "start": 9468.96, "end": 9468.98, "probability": 0.618 }, { "start": 9469.08, "end": 9469.94, "probability": 0.8701 }, { "start": 9470.0, "end": 9471.0, "probability": 0.8069 }, { "start": 9471.06, "end": 9471.14, "probability": 0.749 }, { "start": 9471.34, "end": 9473.0, "probability": 0.8736 }, { "start": 9473.3, "end": 9475.68, "probability": 0.6587 }, { "start": 9475.78, "end": 9477.1, "probability": 0.5769 }, { "start": 9477.48, "end": 9478.48, "probability": 0.8307 }, { "start": 9478.56, "end": 9479.18, "probability": 0.8774 }, { "start": 9479.22, "end": 9480.08, "probability": 0.9917 }, { "start": 9480.3, "end": 9481.06, "probability": 0.7196 }, { "start": 9481.26, "end": 9481.82, "probability": 0.8169 }, { "start": 9481.88, "end": 9484.24, "probability": 0.9536 }, { "start": 9484.52, "end": 9486.12, "probability": 0.9846 }, { "start": 9486.66, "end": 9489.11, "probability": 0.8766 }, { "start": 9489.72, "end": 9490.88, "probability": 0.8504 }, { "start": 9490.92, "end": 9493.22, "probability": 0.4862 }, { "start": 9493.4, "end": 9494.99, "probability": 0.9703 }, { "start": 9495.04, "end": 9495.2, "probability": 0.025 }, { "start": 9495.3, "end": 9499.06, "probability": 0.8885 }, { "start": 9499.84, "end": 9501.96, "probability": 0.9238 }, { "start": 9502.34, "end": 9504.06, "probability": 0.8341 }, { "start": 9504.22, "end": 9505.94, "probability": 0.748 }, { "start": 9505.98, "end": 9508.74, "probability": 0.8453 }, { "start": 9508.76, "end": 9508.98, "probability": 0.319 }, { "start": 9509.18, "end": 9511.54, "probability": 0.9644 }, { "start": 9511.98, "end": 9514.68, "probability": 0.9894 }, { "start": 9514.96, "end": 9516.56, "probability": 0.863 }, { "start": 9516.7, "end": 9519.02, "probability": 0.7105 }, { "start": 9519.62, "end": 9521.02, "probability": 0.7447 }, { "start": 9521.02, "end": 9526.76, "probability": 0.9893 }, { "start": 9527.14, "end": 9530.1, "probability": 0.8056 }, { "start": 9530.84, "end": 9531.44, "probability": 0.8675 }, { "start": 9531.98, "end": 9532.7, "probability": 0.4701 }, { "start": 9533.3, "end": 9534.6, "probability": 0.4216 }, { "start": 9534.74, "end": 9535.24, "probability": 0.4281 }, { "start": 9535.5, "end": 9538.58, "probability": 0.8533 }, { "start": 9539.68, "end": 9548.68, "probability": 0.9799 }, { "start": 9549.4, "end": 9550.02, "probability": 0.0532 }, { "start": 9550.02, "end": 9550.16, "probability": 0.2052 }, { "start": 9550.16, "end": 9551.78, "probability": 0.1677 }, { "start": 9552.34, "end": 9557.5, "probability": 0.2335 }, { "start": 9557.74, "end": 9559.62, "probability": 0.1594 }, { "start": 9560.04, "end": 9563.22, "probability": 0.8978 }, { "start": 9563.7, "end": 9563.9, "probability": 0.177 }, { "start": 9564.12, "end": 9568.04, "probability": 0.98 }, { "start": 9568.28, "end": 9569.24, "probability": 0.7454 }, { "start": 9569.52, "end": 9572.42, "probability": 0.9139 }, { "start": 9572.66, "end": 9573.88, "probability": 0.8345 }, { "start": 9573.94, "end": 9579.12, "probability": 0.9399 }, { "start": 9579.6, "end": 9581.0, "probability": 0.6141 }, { "start": 9581.2, "end": 9581.84, "probability": 0.7189 }, { "start": 9581.94, "end": 9582.52, "probability": 0.5907 }, { "start": 9582.54, "end": 9582.96, "probability": 0.7218 }, { "start": 9583.18, "end": 9583.9, "probability": 0.8236 }, { "start": 9584.06, "end": 9584.72, "probability": 0.6088 }, { "start": 9584.78, "end": 9585.88, "probability": 0.5134 }, { "start": 9586.16, "end": 9587.48, "probability": 0.6448 }, { "start": 9589.58, "end": 9591.14, "probability": 0.8333 }, { "start": 9596.36, "end": 9597.1, "probability": 0.5783 }, { "start": 9597.16, "end": 9598.22, "probability": 0.7537 }, { "start": 9598.22, "end": 9600.46, "probability": 0.9822 }, { "start": 9600.46, "end": 9602.9, "probability": 0.9969 }, { "start": 9603.66, "end": 9604.74, "probability": 0.7974 }, { "start": 9604.8, "end": 9605.38, "probability": 0.6867 }, { "start": 9605.52, "end": 9605.94, "probability": 0.7992 }, { "start": 9606.1, "end": 9606.3, "probability": 0.3183 }, { "start": 9606.36, "end": 9606.98, "probability": 0.8125 }, { "start": 9607.08, "end": 9607.6, "probability": 0.5819 }, { "start": 9607.64, "end": 9608.78, "probability": 0.4439 }, { "start": 9609.34, "end": 9615.78, "probability": 0.9784 }, { "start": 9615.78, "end": 9620.86, "probability": 0.9937 }, { "start": 9621.9, "end": 9625.64, "probability": 0.9974 }, { "start": 9626.32, "end": 9628.32, "probability": 0.9976 }, { "start": 9629.0, "end": 9634.58, "probability": 0.9972 }, { "start": 9635.6, "end": 9642.28, "probability": 0.9762 }, { "start": 9642.5, "end": 9643.14, "probability": 0.7344 }, { "start": 9643.44, "end": 9644.58, "probability": 0.5153 }, { "start": 9648.12, "end": 9651.84, "probability": 0.8218 }, { "start": 9658.84, "end": 9662.62, "probability": 0.5372 }, { "start": 9662.76, "end": 9664.22, "probability": 0.6054 }, { "start": 9664.48, "end": 9666.98, "probability": 0.7717 }, { "start": 9667.24, "end": 9668.4, "probability": 0.723 }, { "start": 9669.62, "end": 9673.88, "probability": 0.9913 }, { "start": 9674.02, "end": 9675.14, "probability": 0.668 }, { "start": 9676.0, "end": 9681.36, "probability": 0.9956 }, { "start": 9681.88, "end": 9686.04, "probability": 0.9887 }, { "start": 9686.84, "end": 9690.72, "probability": 0.9512 }, { "start": 9690.72, "end": 9694.0, "probability": 0.9971 }, { "start": 9694.0, "end": 9697.62, "probability": 0.9971 }, { "start": 9698.1, "end": 9701.52, "probability": 0.9907 }, { "start": 9702.1, "end": 9706.28, "probability": 0.9895 }, { "start": 9707.3, "end": 9713.26, "probability": 0.972 }, { "start": 9713.78, "end": 9717.42, "probability": 0.9909 }, { "start": 9717.42, "end": 9720.68, "probability": 0.9888 }, { "start": 9721.14, "end": 9722.76, "probability": 0.9733 }, { "start": 9722.86, "end": 9724.2, "probability": 0.919 }, { "start": 9724.58, "end": 9729.08, "probability": 0.9944 }, { "start": 9729.46, "end": 9731.08, "probability": 0.981 }, { "start": 9731.24, "end": 9732.86, "probability": 0.9648 }, { "start": 9733.36, "end": 9736.7, "probability": 0.6887 }, { "start": 9738.5, "end": 9741.38, "probability": 0.5774 }, { "start": 9751.5, "end": 9752.26, "probability": 0.4498 }, { "start": 9752.4, "end": 9756.94, "probability": 0.9398 }, { "start": 9756.98, "end": 9759.74, "probability": 0.9982 }, { "start": 9761.24, "end": 9764.08, "probability": 0.9901 }, { "start": 9764.08, "end": 9767.26, "probability": 0.8977 }, { "start": 9767.88, "end": 9769.54, "probability": 0.6204 }, { "start": 9769.78, "end": 9770.86, "probability": 0.4853 }, { "start": 9770.98, "end": 9774.28, "probability": 0.9491 }, { "start": 9775.24, "end": 9777.78, "probability": 0.7578 }, { "start": 9777.78, "end": 9780.86, "probability": 0.9946 }, { "start": 9781.38, "end": 9786.9, "probability": 0.8506 }, { "start": 9787.76, "end": 9788.54, "probability": 0.5717 }, { "start": 9788.74, "end": 9792.36, "probability": 0.9616 }, { "start": 9792.46, "end": 9793.74, "probability": 0.9177 }, { "start": 9794.32, "end": 9796.54, "probability": 0.9035 }, { "start": 9796.54, "end": 9799.92, "probability": 0.923 }, { "start": 9800.4, "end": 9801.24, "probability": 0.651 }, { "start": 9801.32, "end": 9804.66, "probability": 0.8408 }, { "start": 9805.32, "end": 9809.32, "probability": 0.8877 }, { "start": 9809.32, "end": 9813.58, "probability": 0.9873 }, { "start": 9814.06, "end": 9817.02, "probability": 0.9363 }, { "start": 9817.08, "end": 9817.34, "probability": 0.6913 }, { "start": 9817.48, "end": 9820.16, "probability": 0.7472 }, { "start": 9820.56, "end": 9822.78, "probability": 0.9765 }, { "start": 9823.79, "end": 9826.4, "probability": 0.8531 }, { "start": 9826.78, "end": 9831.16, "probability": 0.874 }, { "start": 9842.18, "end": 9842.18, "probability": 0.7472 }, { "start": 9842.18, "end": 9843.26, "probability": 0.522 }, { "start": 9843.86, "end": 9845.42, "probability": 0.6362 }, { "start": 9846.26, "end": 9847.2, "probability": 0.7034 }, { "start": 9847.24, "end": 9849.8, "probability": 0.9904 }, { "start": 9849.8, "end": 9852.26, "probability": 0.9979 }, { "start": 9853.2, "end": 9857.02, "probability": 0.7977 }, { "start": 9857.18, "end": 9862.5, "probability": 0.963 }, { "start": 9863.16, "end": 9865.14, "probability": 0.8252 }, { "start": 9865.3, "end": 9870.8, "probability": 0.986 }, { "start": 9870.8, "end": 9875.44, "probability": 0.9988 }, { "start": 9875.54, "end": 9876.24, "probability": 0.8228 }, { "start": 9876.7, "end": 9882.88, "probability": 0.9792 }, { "start": 9882.9, "end": 9883.88, "probability": 0.8262 }, { "start": 9884.34, "end": 9889.24, "probability": 0.9976 }, { "start": 9889.66, "end": 9894.42, "probability": 0.9977 }, { "start": 9894.9, "end": 9898.68, "probability": 0.9491 }, { "start": 9898.68, "end": 9901.0, "probability": 0.975 }, { "start": 9901.38, "end": 9903.78, "probability": 0.855 }, { "start": 9904.36, "end": 9904.7, "probability": 0.3336 }, { "start": 9905.32, "end": 9908.16, "probability": 0.6822 }, { "start": 9908.64, "end": 9910.34, "probability": 0.8981 }, { "start": 9926.12, "end": 9926.68, "probability": 0.6433 }, { "start": 9926.84, "end": 9926.84, "probability": 0.4482 }, { "start": 9926.84, "end": 9927.7, "probability": 0.7422 }, { "start": 9927.76, "end": 9929.1, "probability": 0.771 }, { "start": 9929.16, "end": 9932.2, "probability": 0.9657 }, { "start": 9932.2, "end": 9936.42, "probability": 0.9951 }, { "start": 9937.22, "end": 9942.58, "probability": 0.9988 }, { "start": 9942.58, "end": 9947.76, "probability": 0.9192 }, { "start": 9948.44, "end": 9950.92, "probability": 0.9181 }, { "start": 9952.06, "end": 9956.42, "probability": 0.9697 }, { "start": 9957.34, "end": 9961.3, "probability": 0.9965 }, { "start": 9961.3, "end": 9965.28, "probability": 0.9917 }, { "start": 9965.94, "end": 9970.82, "probability": 0.9973 }, { "start": 9971.26, "end": 9974.9, "probability": 0.9968 }, { "start": 9975.44, "end": 9978.6, "probability": 0.9977 }, { "start": 9979.62, "end": 9984.1, "probability": 0.8583 }, { "start": 9984.1, "end": 9988.04, "probability": 0.9885 }, { "start": 9988.22, "end": 9989.54, "probability": 0.907 }, { "start": 9990.28, "end": 9994.34, "probability": 0.9927 }, { "start": 9995.3, "end": 9999.22, "probability": 0.8501 }, { "start": 9999.28, "end": 10001.7, "probability": 0.9861 }, { "start": 10002.3, "end": 10004.7, "probability": 0.9318 }, { "start": 10005.14, "end": 10006.52, "probability": 0.7549 }, { "start": 10006.64, "end": 10008.62, "probability": 0.978 }, { "start": 10009.7, "end": 10014.08, "probability": 0.9935 }, { "start": 10014.08, "end": 10018.34, "probability": 0.9999 }, { "start": 10018.44, "end": 10020.14, "probability": 0.7703 }, { "start": 10020.58, "end": 10023.1, "probability": 0.9233 }, { "start": 10023.54, "end": 10026.08, "probability": 0.0098 }, { "start": 10026.34, "end": 10028.32, "probability": 0.7918 }, { "start": 10029.48, "end": 10031.14, "probability": 0.9624 }, { "start": 10034.16, "end": 10036.36, "probability": 0.9524 }, { "start": 10037.34, "end": 10037.68, "probability": 0.0237 }, { "start": 10039.58, "end": 10040.28, "probability": 0.0922 }, { "start": 10041.7, "end": 10043.14, "probability": 0.8566 }, { "start": 10049.74, "end": 10053.34, "probability": 0.6905 }, { "start": 10053.36, "end": 10054.07, "probability": 0.9025 }, { "start": 10054.18, "end": 10054.48, "probability": 0.6888 }, { "start": 10055.26, "end": 10059.32, "probability": 0.9187 }, { "start": 10060.04, "end": 10061.98, "probability": 0.9941 }, { "start": 10062.76, "end": 10066.6, "probability": 0.9624 }, { "start": 10066.6, "end": 10070.34, "probability": 0.9532 }, { "start": 10071.2, "end": 10075.88, "probability": 0.985 }, { "start": 10076.06, "end": 10083.1, "probability": 0.9713 }, { "start": 10084.3, "end": 10086.82, "probability": 0.982 }, { "start": 10086.82, "end": 10090.14, "probability": 0.9873 }, { "start": 10091.14, "end": 10094.86, "probability": 0.9259 }, { "start": 10095.54, "end": 10099.46, "probability": 0.9574 }, { "start": 10099.46, "end": 10103.42, "probability": 0.9878 }, { "start": 10104.3, "end": 10109.14, "probability": 0.7535 }, { "start": 10109.56, "end": 10112.84, "probability": 0.9971 }, { "start": 10114.4, "end": 10115.96, "probability": 0.6633 }, { "start": 10116.26, "end": 10119.64, "probability": 0.5825 }, { "start": 10132.34, "end": 10136.44, "probability": 0.9361 }, { "start": 10137.44, "end": 10137.9, "probability": 0.4829 }, { "start": 10139.62, "end": 10140.12, "probability": 0.3789 }, { "start": 10141.48, "end": 10142.88, "probability": 0.8602 }, { "start": 10143.46, "end": 10149.8, "probability": 0.9993 }, { "start": 10150.64, "end": 10154.64, "probability": 0.9604 }, { "start": 10154.64, "end": 10161.78, "probability": 0.9979 }, { "start": 10162.36, "end": 10164.14, "probability": 0.8797 }, { "start": 10165.76, "end": 10169.42, "probability": 0.9834 }, { "start": 10169.42, "end": 10172.22, "probability": 0.9994 }, { "start": 10172.78, "end": 10174.52, "probability": 0.9688 }, { "start": 10174.98, "end": 10178.4, "probability": 0.966 }, { "start": 10178.98, "end": 10181.68, "probability": 0.978 }, { "start": 10181.68, "end": 10187.36, "probability": 0.9922 }, { "start": 10187.54, "end": 10189.72, "probability": 0.1323 }, { "start": 10191.16, "end": 10192.02, "probability": 0.9111 }, { "start": 10193.12, "end": 10193.84, "probability": 0.7972 }, { "start": 10197.98, "end": 10200.22, "probability": 0.8505 }, { "start": 10203.47, "end": 10207.56, "probability": 0.7634 }, { "start": 10209.0, "end": 10210.54, "probability": 0.5694 }, { "start": 10210.54, "end": 10212.06, "probability": 0.6682 }, { "start": 10219.16, "end": 10219.42, "probability": 0.6859 }, { "start": 10219.52, "end": 10221.3, "probability": 0.9938 }, { "start": 10221.52, "end": 10225.14, "probability": 0.9829 }, { "start": 10225.28, "end": 10227.34, "probability": 0.9263 }, { "start": 10227.44, "end": 10230.34, "probability": 0.7712 }, { "start": 10231.0, "end": 10234.46, "probability": 0.9696 }, { "start": 10234.62, "end": 10236.72, "probability": 0.9836 }, { "start": 10237.26, "end": 10240.3, "probability": 0.7308 }, { "start": 10240.58, "end": 10241.2, "probability": 0.6633 }, { "start": 10241.28, "end": 10241.82, "probability": 0.5861 }, { "start": 10241.9, "end": 10242.48, "probability": 0.6779 }, { "start": 10242.5, "end": 10243.36, "probability": 0.8973 }, { "start": 10243.38, "end": 10243.72, "probability": 0.8621 }, { "start": 10255.38, "end": 10256.32, "probability": 0.3452 }, { "start": 10257.19, "end": 10259.84, "probability": 0.9486 }, { "start": 10260.64, "end": 10262.2, "probability": 0.0216 }, { "start": 10262.2, "end": 10263.77, "probability": 0.1557 }, { "start": 10264.5, "end": 10265.98, "probability": 0.9637 }, { "start": 10266.7, "end": 10270.29, "probability": 0.6656 }, { "start": 10271.8, "end": 10274.54, "probability": 0.5289 }, { "start": 10274.56, "end": 10275.08, "probability": 0.3646 }, { "start": 10275.22, "end": 10275.82, "probability": 0.6316 }, { "start": 10275.84, "end": 10276.3, "probability": 0.8154 }, { "start": 10276.38, "end": 10277.16, "probability": 0.866 }, { "start": 10280.16, "end": 10285.9, "probability": 0.0613 }, { "start": 10294.0, "end": 10294.36, "probability": 0.1189 }, { "start": 10294.36, "end": 10296.48, "probability": 0.5363 }, { "start": 10296.6, "end": 10301.44, "probability": 0.8975 }, { "start": 10302.44, "end": 10306.78, "probability": 0.9313 }, { "start": 10307.48, "end": 10308.12, "probability": 0.5954 }, { "start": 10308.22, "end": 10309.18, "probability": 0.4155 }, { "start": 10309.18, "end": 10309.38, "probability": 0.1994 }, { "start": 10309.48, "end": 10310.52, "probability": 0.4039 }, { "start": 10318.78, "end": 10324.2, "probability": 0.121 }, { "start": 10324.98, "end": 10328.48, "probability": 0.5373 }, { "start": 10328.58, "end": 10330.14, "probability": 0.9588 }, { "start": 10330.94, "end": 10335.94, "probability": 0.8848 }, { "start": 10336.3, "end": 10336.94, "probability": 0.546 }, { "start": 10337.04, "end": 10337.5, "probability": 0.2033 }, { "start": 10337.62, "end": 10338.16, "probability": 0.4864 }, { "start": 10338.16, "end": 10339.18, "probability": 0.6005 }, { "start": 10346.44, "end": 10350.39, "probability": 0.0972 }, { "start": 10351.34, "end": 10356.58, "probability": 0.613 }, { "start": 10356.68, "end": 10359.28, "probability": 0.8711 }, { "start": 10360.04, "end": 10362.46, "probability": 0.9361 }, { "start": 10363.18, "end": 10364.72, "probability": 0.5114 }, { "start": 10364.8, "end": 10365.32, "probability": 0.4306 }, { "start": 10365.34, "end": 10365.84, "probability": 0.5686 }, { "start": 10366.02, "end": 10366.62, "probability": 0.3227 }, { "start": 10371.7, "end": 10372.16, "probability": 0.6037 }, { "start": 10373.7, "end": 10374.05, "probability": 0.0262 }, { "start": 10377.64, "end": 10378.32, "probability": 0.4849 }, { "start": 10379.52, "end": 10380.94, "probability": 0.0198 }, { "start": 10381.04, "end": 10384.04, "probability": 0.6671 }, { "start": 10384.32, "end": 10387.64, "probability": 0.6765 }, { "start": 10388.14, "end": 10391.36, "probability": 0.8086 }, { "start": 10391.84, "end": 10396.66, "probability": 0.6447 }, { "start": 10396.66, "end": 10397.1, "probability": 0.3788 }, { "start": 10399.1, "end": 10400.38, "probability": 0.1689 }, { "start": 10400.66, "end": 10401.26, "probability": 0.088 }, { "start": 10401.26, "end": 10402.36, "probability": 0.0762 }, { "start": 10405.92, "end": 10409.86, "probability": 0.1271 }, { "start": 10409.86, "end": 10414.38, "probability": 0.5471 }, { "start": 10414.66, "end": 10417.22, "probability": 0.7734 }, { "start": 10417.76, "end": 10420.48, "probability": 0.6947 }, { "start": 10420.76, "end": 10421.54, "probability": 0.7441 }, { "start": 10421.6, "end": 10422.1, "probability": 0.4697 }, { "start": 10422.14, "end": 10422.4, "probability": 0.6678 }, { "start": 10422.46, "end": 10423.38, "probability": 0.9175 }, { "start": 10423.68, "end": 10424.54, "probability": 0.5869 }, { "start": 10424.64, "end": 10426.58, "probability": 0.5258 }, { "start": 10426.64, "end": 10427.2, "probability": 0.5816 }, { "start": 10427.26, "end": 10427.88, "probability": 0.5945 }, { "start": 10427.94, "end": 10428.48, "probability": 0.2967 }, { "start": 10429.02, "end": 10438.32, "probability": 0.0351 }, { "start": 10443.04, "end": 10446.24, "probability": 0.7202 }, { "start": 10446.36, "end": 10449.94, "probability": 0.7288 }, { "start": 10450.06, "end": 10450.66, "probability": 0.6671 }, { "start": 10450.8, "end": 10451.3, "probability": 0.487 }, { "start": 10451.3, "end": 10451.86, "probability": 0.6502 }, { "start": 10451.86, "end": 10452.68, "probability": 0.8613 }, { "start": 10452.84, "end": 10453.48, "probability": 0.5943 }, { "start": 10453.54, "end": 10454.5, "probability": 0.642 }, { "start": 10454.72, "end": 10456.42, "probability": 0.8074 }, { "start": 10457.78, "end": 10460.38, "probability": 0.9778 }, { "start": 10460.8, "end": 10461.36, "probability": 0.55 }, { "start": 10461.48, "end": 10465.46, "probability": 0.9857 }, { "start": 10465.46, "end": 10469.9, "probability": 0.8741 }, { "start": 10470.36, "end": 10477.26, "probability": 0.9554 }, { "start": 10477.26, "end": 10480.18, "probability": 0.3366 }, { "start": 10480.48, "end": 10481.5, "probability": 0.4991 }, { "start": 10481.88, "end": 10484.3, "probability": 0.2401 }, { "start": 10487.88, "end": 10489.36, "probability": 0.1461 }, { "start": 10491.12, "end": 10491.82, "probability": 0.0357 }, { "start": 10495.08, "end": 10496.58, "probability": 0.0422 }, { "start": 10496.58, "end": 10499.3, "probability": 0.6403 }, { "start": 10502.9, "end": 10503.76, "probability": 0.6248 }, { "start": 10514.86, "end": 10516.18, "probability": 0.6675 }, { "start": 10517.08, "end": 10519.62, "probability": 0.9795 }, { "start": 10521.9, "end": 10525.16, "probability": 0.8273 }, { "start": 10526.36, "end": 10529.66, "probability": 0.9945 }, { "start": 10530.52, "end": 10534.9, "probability": 0.9887 }, { "start": 10535.14, "end": 10537.65, "probability": 0.7223 }, { "start": 10538.66, "end": 10542.42, "probability": 0.8552 }, { "start": 10543.72, "end": 10548.4, "probability": 0.9823 }, { "start": 10549.66, "end": 10557.48, "probability": 0.9839 }, { "start": 10557.78, "end": 10560.96, "probability": 0.8886 }, { "start": 10561.9, "end": 10562.9, "probability": 0.7952 }, { "start": 10563.12, "end": 10568.9, "probability": 0.9603 }, { "start": 10570.02, "end": 10574.62, "probability": 0.7409 }, { "start": 10575.36, "end": 10576.06, "probability": 0.4407 }, { "start": 10577.34, "end": 10581.62, "probability": 0.9925 }, { "start": 10581.82, "end": 10584.54, "probability": 0.9342 }, { "start": 10585.32, "end": 10586.54, "probability": 0.7247 }, { "start": 10586.78, "end": 10592.74, "probability": 0.9667 }, { "start": 10593.18, "end": 10597.28, "probability": 0.9933 }, { "start": 10597.28, "end": 10602.48, "probability": 0.9983 }, { "start": 10603.12, "end": 10604.4, "probability": 0.5426 }, { "start": 10605.12, "end": 10608.44, "probability": 0.7097 }, { "start": 10608.96, "end": 10616.44, "probability": 0.908 }, { "start": 10616.78, "end": 10619.66, "probability": 0.9834 }, { "start": 10619.84, "end": 10621.0, "probability": 0.6479 }, { "start": 10621.62, "end": 10623.76, "probability": 0.9715 }, { "start": 10624.2, "end": 10627.5, "probability": 0.9825 }, { "start": 10628.64, "end": 10637.24, "probability": 0.9803 }, { "start": 10637.96, "end": 10641.48, "probability": 0.6229 }, { "start": 10642.28, "end": 10643.26, "probability": 0.8029 }, { "start": 10643.34, "end": 10650.82, "probability": 0.9697 }, { "start": 10651.52, "end": 10653.4, "probability": 0.8768 }, { "start": 10653.58, "end": 10654.98, "probability": 0.9589 }, { "start": 10655.14, "end": 10658.48, "probability": 0.9853 }, { "start": 10658.76, "end": 10664.96, "probability": 0.9766 }, { "start": 10665.6, "end": 10668.1, "probability": 0.7253 }, { "start": 10668.66, "end": 10670.94, "probability": 0.6766 }, { "start": 10671.04, "end": 10671.98, "probability": 0.7534 }, { "start": 10672.14, "end": 10673.26, "probability": 0.9838 }, { "start": 10673.72, "end": 10676.78, "probability": 0.9295 }, { "start": 10677.06, "end": 10681.62, "probability": 0.7147 }, { "start": 10681.68, "end": 10687.74, "probability": 0.9791 }, { "start": 10687.74, "end": 10691.72, "probability": 0.9979 }, { "start": 10692.16, "end": 10695.28, "probability": 0.9913 }, { "start": 10695.44, "end": 10701.16, "probability": 0.981 }, { "start": 10701.32, "end": 10703.5, "probability": 0.6684 }, { "start": 10704.3, "end": 10706.78, "probability": 0.9772 }, { "start": 10707.5, "end": 10708.91, "probability": 0.9878 }, { "start": 10710.66, "end": 10716.52, "probability": 0.9681 }, { "start": 10717.2, "end": 10720.92, "probability": 0.9978 }, { "start": 10721.56, "end": 10725.0, "probability": 0.9597 }, { "start": 10725.66, "end": 10729.54, "probability": 0.7186 }, { "start": 10729.54, "end": 10733.2, "probability": 0.9455 }, { "start": 10733.74, "end": 10739.46, "probability": 0.95 }, { "start": 10739.7, "end": 10746.52, "probability": 0.9735 }, { "start": 10746.86, "end": 10747.32, "probability": 0.6782 }, { "start": 10747.36, "end": 10748.1, "probability": 0.8332 }, { "start": 10748.24, "end": 10751.28, "probability": 0.8611 }, { "start": 10751.28, "end": 10751.96, "probability": 0.8746 }, { "start": 10752.12, "end": 10758.0, "probability": 0.9911 }, { "start": 10758.52, "end": 10758.88, "probability": 0.269 }, { "start": 10758.88, "end": 10760.32, "probability": 0.5741 }, { "start": 10760.4, "end": 10762.8, "probability": 0.8269 }, { "start": 10763.5, "end": 10764.98, "probability": 0.9629 }, { "start": 10779.66, "end": 10782.94, "probability": 0.8095 }, { "start": 10784.16, "end": 10789.06, "probability": 0.9502 }, { "start": 10789.64, "end": 10793.72, "probability": 0.814 }, { "start": 10794.86, "end": 10797.1, "probability": 0.9844 }, { "start": 10798.32, "end": 10801.74, "probability": 0.9093 }, { "start": 10802.94, "end": 10805.72, "probability": 0.9751 }, { "start": 10806.66, "end": 10807.8, "probability": 0.628 }, { "start": 10809.16, "end": 10810.24, "probability": 0.7853 }, { "start": 10811.26, "end": 10814.92, "probability": 0.9141 }, { "start": 10815.88, "end": 10818.3, "probability": 0.8565 }, { "start": 10819.28, "end": 10820.58, "probability": 0.7941 }, { "start": 10822.02, "end": 10824.92, "probability": 0.3577 }, { "start": 10827.88, "end": 10832.92, "probability": 0.9621 }, { "start": 10834.44, "end": 10834.62, "probability": 0.0242 }, { "start": 10834.68, "end": 10838.38, "probability": 0.9545 }, { "start": 10839.08, "end": 10842.38, "probability": 0.9996 }, { "start": 10843.12, "end": 10844.56, "probability": 0.7234 }, { "start": 10845.8, "end": 10847.5, "probability": 0.9904 }, { "start": 10847.54, "end": 10852.06, "probability": 0.9961 }, { "start": 10852.96, "end": 10855.6, "probability": 0.987 }, { "start": 10856.76, "end": 10858.94, "probability": 0.9573 }, { "start": 10859.92, "end": 10862.42, "probability": 0.8185 }, { "start": 10863.08, "end": 10865.6, "probability": 0.6598 }, { "start": 10868.42, "end": 10868.9, "probability": 0.1928 }, { "start": 10869.6, "end": 10873.24, "probability": 0.8297 }, { "start": 10874.3, "end": 10878.26, "probability": 0.9028 }, { "start": 10880.1, "end": 10880.98, "probability": 0.6143 }, { "start": 10881.32, "end": 10885.18, "probability": 0.7363 }, { "start": 10885.92, "end": 10893.24, "probability": 0.9974 }, { "start": 10893.88, "end": 10898.4, "probability": 0.9916 }, { "start": 10902.38, "end": 10905.34, "probability": 0.587 }, { "start": 10906.16, "end": 10908.24, "probability": 0.9666 }, { "start": 10909.48, "end": 10914.87, "probability": 0.9838 }, { "start": 10916.58, "end": 10917.46, "probability": 0.8591 }, { "start": 10918.46, "end": 10923.14, "probability": 0.9878 }, { "start": 10924.12, "end": 10924.84, "probability": 0.4836 }, { "start": 10926.44, "end": 10929.32, "probability": 0.9164 }, { "start": 10930.38, "end": 10933.2, "probability": 0.9328 }, { "start": 10934.34, "end": 10937.7, "probability": 0.6626 }, { "start": 10938.5, "end": 10940.46, "probability": 0.808 }, { "start": 10941.4, "end": 10943.78, "probability": 0.8629 }, { "start": 10944.32, "end": 10949.84, "probability": 0.7808 }, { "start": 10950.62, "end": 10952.52, "probability": 0.8016 }, { "start": 10952.6, "end": 10954.34, "probability": 0.8848 }, { "start": 10954.62, "end": 10955.86, "probability": 0.9336 }, { "start": 10956.72, "end": 10957.18, "probability": 0.4137 }, { "start": 10957.36, "end": 10963.6, "probability": 0.7969 }, { "start": 10964.56, "end": 10966.22, "probability": 0.9827 }, { "start": 10967.38, "end": 10968.72, "probability": 0.7162 }, { "start": 10969.48, "end": 10971.02, "probability": 0.9475 }, { "start": 10971.54, "end": 10977.52, "probability": 0.9971 }, { "start": 10978.24, "end": 10983.38, "probability": 0.9368 }, { "start": 10985.22, "end": 10988.08, "probability": 0.6719 }, { "start": 10989.64, "end": 10991.38, "probability": 0.5006 }, { "start": 10991.56, "end": 10996.0, "probability": 0.9886 }, { "start": 10996.4, "end": 10997.56, "probability": 0.9677 }, { "start": 10998.22, "end": 11005.68, "probability": 0.9663 }, { "start": 11005.82, "end": 11006.88, "probability": 0.5687 }, { "start": 11007.42, "end": 11011.24, "probability": 0.9785 }, { "start": 11012.58, "end": 11018.16, "probability": 0.6251 }, { "start": 11018.26, "end": 11019.18, "probability": 0.3665 }, { "start": 11019.96, "end": 11022.29, "probability": 0.9463 }, { "start": 11023.18, "end": 11025.1, "probability": 0.8988 }, { "start": 11025.88, "end": 11028.74, "probability": 0.9509 }, { "start": 11029.28, "end": 11031.08, "probability": 0.982 }, { "start": 11031.74, "end": 11040.56, "probability": 0.9986 }, { "start": 11040.9, "end": 11042.62, "probability": 0.2534 }, { "start": 11044.57, "end": 11046.04, "probability": 0.6858 }, { "start": 11046.6, "end": 11051.2, "probability": 0.9833 }, { "start": 11051.2, "end": 11056.22, "probability": 0.9841 }, { "start": 11057.06, "end": 11058.08, "probability": 0.6478 }, { "start": 11058.7, "end": 11063.96, "probability": 0.9749 }, { "start": 11064.48, "end": 11066.18, "probability": 0.9265 }, { "start": 11066.54, "end": 11069.92, "probability": 0.9906 }, { "start": 11070.0, "end": 11070.34, "probability": 0.5433 }, { "start": 11070.88, "end": 11072.58, "probability": 0.8776 }, { "start": 11072.58, "end": 11075.8, "probability": 0.6003 }, { "start": 11076.41, "end": 11078.82, "probability": 0.7643 }, { "start": 11081.02, "end": 11081.6, "probability": 0.6644 }, { "start": 11082.48, "end": 11082.66, "probability": 0.6213 }, { "start": 11083.34, "end": 11083.34, "probability": 0.1995 }, { "start": 11083.34, "end": 11084.32, "probability": 0.9784 }, { "start": 11086.8, "end": 11088.58, "probability": 0.2031 }, { "start": 11089.08, "end": 11089.99, "probability": 0.7174 }, { "start": 11090.52, "end": 11091.34, "probability": 0.2108 }, { "start": 11093.08, "end": 11093.88, "probability": 0.5652 }, { "start": 11094.02, "end": 11095.28, "probability": 0.2692 }, { "start": 11095.68, "end": 11098.86, "probability": 0.6728 }, { "start": 11099.98, "end": 11101.68, "probability": 0.8956 }, { "start": 11102.98, "end": 11104.34, "probability": 0.9924 }, { "start": 11105.02, "end": 11105.46, "probability": 0.978 }, { "start": 11106.4, "end": 11108.92, "probability": 0.9863 }, { "start": 11109.68, "end": 11112.1, "probability": 0.999 }, { "start": 11112.46, "end": 11113.26, "probability": 0.6359 }, { "start": 11113.8, "end": 11115.9, "probability": 0.7187 }, { "start": 11117.4, "end": 11119.28, "probability": 0.806 }, { "start": 11119.36, "end": 11120.54, "probability": 0.8173 }, { "start": 11121.12, "end": 11121.86, "probability": 0.846 }, { "start": 11122.58, "end": 11126.2, "probability": 0.9106 }, { "start": 11126.72, "end": 11131.44, "probability": 0.9807 }, { "start": 11132.62, "end": 11133.82, "probability": 0.5016 }, { "start": 11134.92, "end": 11139.06, "probability": 0.9711 }, { "start": 11140.28, "end": 11142.64, "probability": 0.6643 }, { "start": 11142.74, "end": 11144.42, "probability": 0.9061 }, { "start": 11144.8, "end": 11146.58, "probability": 0.8555 }, { "start": 11147.28, "end": 11149.66, "probability": 0.8717 }, { "start": 11151.2, "end": 11153.33, "probability": 0.9222 }, { "start": 11154.32, "end": 11157.34, "probability": 0.978 }, { "start": 11157.34, "end": 11160.14, "probability": 0.9884 }, { "start": 11160.54, "end": 11163.32, "probability": 0.6771 }, { "start": 11164.02, "end": 11164.74, "probability": 0.6935 }, { "start": 11165.78, "end": 11169.24, "probability": 0.9591 }, { "start": 11169.3, "end": 11170.26, "probability": 0.9468 }, { "start": 11170.28, "end": 11170.93, "probability": 0.9517 }, { "start": 11171.62, "end": 11173.94, "probability": 0.7772 }, { "start": 11175.06, "end": 11177.2, "probability": 0.8243 }, { "start": 11177.72, "end": 11180.06, "probability": 0.8908 }, { "start": 11180.4, "end": 11183.38, "probability": 0.6414 }, { "start": 11183.5, "end": 11184.85, "probability": 0.9736 }, { "start": 11185.7, "end": 11185.8, "probability": 0.6613 }, { "start": 11187.34, "end": 11191.52, "probability": 0.7234 }, { "start": 11193.48, "end": 11194.36, "probability": 0.7118 }, { "start": 11194.4, "end": 11195.54, "probability": 0.7563 }, { "start": 11197.08, "end": 11198.38, "probability": 0.9932 }, { "start": 11199.34, "end": 11203.73, "probability": 0.9854 }, { "start": 11203.74, "end": 11207.62, "probability": 0.9841 }, { "start": 11208.3, "end": 11211.26, "probability": 0.9848 }, { "start": 11211.26, "end": 11215.88, "probability": 0.9955 }, { "start": 11216.44, "end": 11218.92, "probability": 0.8477 }, { "start": 11218.94, "end": 11220.02, "probability": 0.6525 }, { "start": 11220.44, "end": 11222.04, "probability": 0.9803 }, { "start": 11222.26, "end": 11224.38, "probability": 0.7249 }, { "start": 11224.42, "end": 11226.24, "probability": 0.6707 }, { "start": 11227.98, "end": 11228.44, "probability": 0.5078 }, { "start": 11228.58, "end": 11232.72, "probability": 0.9058 }, { "start": 11233.18, "end": 11235.41, "probability": 0.8813 }, { "start": 11235.58, "end": 11240.54, "probability": 0.9837 }, { "start": 11241.16, "end": 11243.56, "probability": 0.8919 }, { "start": 11243.56, "end": 11248.48, "probability": 0.9841 }, { "start": 11248.88, "end": 11251.62, "probability": 0.9952 }, { "start": 11252.28, "end": 11253.3, "probability": 0.7398 }, { "start": 11253.92, "end": 11258.14, "probability": 0.9745 }, { "start": 11259.18, "end": 11260.88, "probability": 0.7708 }, { "start": 11261.52, "end": 11263.6, "probability": 0.9478 }, { "start": 11264.22, "end": 11265.4, "probability": 0.6757 }, { "start": 11265.62, "end": 11266.86, "probability": 0.9842 }, { "start": 11266.98, "end": 11267.92, "probability": 0.6391 }, { "start": 11268.38, "end": 11270.12, "probability": 0.812 }, { "start": 11271.06, "end": 11273.12, "probability": 0.5009 }, { "start": 11274.24, "end": 11274.94, "probability": 0.7612 }, { "start": 11275.12, "end": 11277.4, "probability": 0.6812 }, { "start": 11277.84, "end": 11281.56, "probability": 0.9698 }, { "start": 11281.64, "end": 11284.2, "probability": 0.9658 }, { "start": 11284.9, "end": 11287.64, "probability": 0.9471 }, { "start": 11288.12, "end": 11290.24, "probability": 0.583 }, { "start": 11290.44, "end": 11292.32, "probability": 0.8418 }, { "start": 11292.7, "end": 11295.2, "probability": 0.9756 }, { "start": 11295.6, "end": 11296.58, "probability": 0.7636 }, { "start": 11296.7, "end": 11299.66, "probability": 0.7374 }, { "start": 11299.72, "end": 11301.16, "probability": 0.9461 }, { "start": 11302.38, "end": 11306.78, "probability": 0.6953 }, { "start": 11307.46, "end": 11308.88, "probability": 0.9195 }, { "start": 11310.42, "end": 11314.36, "probability": 0.5825 }, { "start": 11314.9, "end": 11317.76, "probability": 0.9937 }, { "start": 11318.34, "end": 11321.96, "probability": 0.7703 }, { "start": 11322.08, "end": 11324.72, "probability": 0.8094 }, { "start": 11324.88, "end": 11326.66, "probability": 0.8054 }, { "start": 11327.28, "end": 11328.14, "probability": 0.8621 }, { "start": 11328.64, "end": 11330.02, "probability": 0.859 }, { "start": 11330.72, "end": 11333.86, "probability": 0.9629 }, { "start": 11334.28, "end": 11335.78, "probability": 0.9916 }, { "start": 11336.38, "end": 11338.46, "probability": 0.7033 }, { "start": 11338.78, "end": 11340.8, "probability": 0.7518 }, { "start": 11341.08, "end": 11342.72, "probability": 0.9895 }, { "start": 11342.8, "end": 11343.77, "probability": 0.8131 }, { "start": 11344.4, "end": 11345.56, "probability": 0.7455 }, { "start": 11345.66, "end": 11347.36, "probability": 0.9885 }, { "start": 11347.92, "end": 11350.14, "probability": 0.5992 }, { "start": 11351.16, "end": 11351.46, "probability": 0.3254 }, { "start": 11352.7, "end": 11358.72, "probability": 0.8422 }, { "start": 11358.8, "end": 11364.4, "probability": 0.9867 }, { "start": 11364.84, "end": 11365.68, "probability": 0.504 }, { "start": 11366.08, "end": 11366.95, "probability": 0.568 }, { "start": 11367.48, "end": 11369.58, "probability": 0.9553 }, { "start": 11369.76, "end": 11370.9, "probability": 0.5595 }, { "start": 11370.98, "end": 11371.82, "probability": 0.7158 }, { "start": 11372.2, "end": 11376.88, "probability": 0.9261 }, { "start": 11377.32, "end": 11381.38, "probability": 0.8496 }, { "start": 11381.86, "end": 11383.44, "probability": 0.9897 }, { "start": 11383.52, "end": 11384.38, "probability": 0.775 }, { "start": 11384.5, "end": 11386.03, "probability": 0.942 }, { "start": 11386.2, "end": 11386.54, "probability": 0.4713 }, { "start": 11386.7, "end": 11387.76, "probability": 0.7348 }, { "start": 11387.82, "end": 11388.3, "probability": 0.937 }, { "start": 11388.5, "end": 11389.04, "probability": 0.8785 }, { "start": 11389.4, "end": 11390.8, "probability": 0.6363 }, { "start": 11391.28, "end": 11393.38, "probability": 0.9349 }, { "start": 11393.7, "end": 11394.08, "probability": 0.8097 }, { "start": 11394.96, "end": 11396.6, "probability": 0.8532 }, { "start": 11396.74, "end": 11398.86, "probability": 0.7343 }, { "start": 11399.54, "end": 11403.72, "probability": 0.7304 }, { "start": 11409.28, "end": 11410.02, "probability": 0.4804 }, { "start": 11410.12, "end": 11410.12, "probability": 0.5436 }, { "start": 11410.12, "end": 11410.76, "probability": 0.6523 }, { "start": 11410.94, "end": 11413.08, "probability": 0.8813 }, { "start": 11413.94, "end": 11416.6, "probability": 0.9149 }, { "start": 11417.36, "end": 11420.16, "probability": 0.9897 }, { "start": 11420.8, "end": 11422.82, "probability": 0.9756 }, { "start": 11422.96, "end": 11424.08, "probability": 0.9819 }, { "start": 11424.62, "end": 11426.9, "probability": 0.9974 }, { "start": 11426.98, "end": 11435.96, "probability": 0.9531 }, { "start": 11436.34, "end": 11439.2, "probability": 0.9352 }, { "start": 11439.32, "end": 11441.06, "probability": 0.9861 }, { "start": 11441.8, "end": 11443.4, "probability": 0.5879 }, { "start": 11443.8, "end": 11444.3, "probability": 0.4534 }, { "start": 11444.92, "end": 11448.42, "probability": 0.998 }, { "start": 11448.98, "end": 11451.82, "probability": 0.9136 }, { "start": 11452.08, "end": 11454.06, "probability": 0.9398 }, { "start": 11454.18, "end": 11454.78, "probability": 0.7122 }, { "start": 11455.54, "end": 11457.58, "probability": 0.9838 }, { "start": 11457.7, "end": 11460.32, "probability": 0.9961 }, { "start": 11460.86, "end": 11462.28, "probability": 0.9976 }, { "start": 11462.44, "end": 11465.66, "probability": 0.6661 }, { "start": 11466.56, "end": 11470.02, "probability": 0.9847 }, { "start": 11470.44, "end": 11471.68, "probability": 0.9831 }, { "start": 11471.82, "end": 11473.2, "probability": 0.9976 }, { "start": 11474.32, "end": 11479.82, "probability": 0.9953 }, { "start": 11479.98, "end": 11480.48, "probability": 0.6892 }, { "start": 11481.04, "end": 11482.38, "probability": 0.892 }, { "start": 11483.39, "end": 11489.25, "probability": 0.7848 }, { "start": 11489.7, "end": 11491.62, "probability": 0.9814 }, { "start": 11491.68, "end": 11493.76, "probability": 0.7693 }, { "start": 11494.36, "end": 11498.32, "probability": 0.9337 }, { "start": 11500.1, "end": 11506.64, "probability": 0.9858 }, { "start": 11506.68, "end": 11506.78, "probability": 0.4064 }, { "start": 11506.9, "end": 11507.14, "probability": 0.7042 }, { "start": 11507.28, "end": 11509.62, "probability": 0.9931 }, { "start": 11510.12, "end": 11513.28, "probability": 0.9604 }, { "start": 11513.94, "end": 11518.12, "probability": 0.7709 }, { "start": 11519.22, "end": 11522.8, "probability": 0.9309 }, { "start": 11522.96, "end": 11524.42, "probability": 0.9798 }, { "start": 11524.62, "end": 11525.32, "probability": 0.7748 }, { "start": 11526.08, "end": 11527.66, "probability": 0.9474 }, { "start": 11527.74, "end": 11530.4, "probability": 0.9094 }, { "start": 11530.78, "end": 11536.82, "probability": 0.9353 }, { "start": 11537.24, "end": 11538.36, "probability": 0.8447 }, { "start": 11538.96, "end": 11542.88, "probability": 0.9939 }, { "start": 11543.0, "end": 11543.62, "probability": 0.8984 }, { "start": 11543.74, "end": 11544.22, "probability": 0.9316 }, { "start": 11544.26, "end": 11546.08, "probability": 0.9943 }, { "start": 11546.46, "end": 11547.7, "probability": 0.6946 }, { "start": 11548.4, "end": 11550.86, "probability": 0.7773 }, { "start": 11551.38, "end": 11552.62, "probability": 0.9827 }, { "start": 11552.86, "end": 11555.26, "probability": 0.9929 }, { "start": 11555.44, "end": 11556.24, "probability": 0.6847 }, { "start": 11556.6, "end": 11557.92, "probability": 0.8916 }, { "start": 11558.42, "end": 11559.34, "probability": 0.7172 }, { "start": 11559.94, "end": 11561.38, "probability": 0.8351 }, { "start": 11561.62, "end": 11562.2, "probability": 0.6375 }, { "start": 11562.54, "end": 11564.78, "probability": 0.8511 }, { "start": 11566.67, "end": 11572.32, "probability": 0.7717 }, { "start": 11572.54, "end": 11575.3, "probability": 0.9902 }, { "start": 11575.36, "end": 11578.34, "probability": 0.4273 }, { "start": 11578.34, "end": 11579.18, "probability": 0.3101 }, { "start": 11580.0, "end": 11582.04, "probability": 0.9932 }, { "start": 11582.48, "end": 11586.2, "probability": 0.9542 }, { "start": 11586.54, "end": 11588.38, "probability": 0.7293 }, { "start": 11589.0, "end": 11589.5, "probability": 0.6509 }, { "start": 11590.16, "end": 11592.68, "probability": 0.9844 }, { "start": 11592.74, "end": 11593.66, "probability": 0.7607 }, { "start": 11593.74, "end": 11594.48, "probability": 0.9009 }, { "start": 11595.02, "end": 11598.58, "probability": 0.9858 }, { "start": 11599.06, "end": 11602.8, "probability": 0.9203 }, { "start": 11603.16, "end": 11604.04, "probability": 0.9575 }, { "start": 11604.24, "end": 11609.8, "probability": 0.9937 }, { "start": 11610.22, "end": 11613.72, "probability": 0.9947 }, { "start": 11613.86, "end": 11614.16, "probability": 0.8134 }, { "start": 11614.28, "end": 11615.42, "probability": 0.9736 }, { "start": 11616.14, "end": 11617.28, "probability": 0.6154 }, { "start": 11617.46, "end": 11617.74, "probability": 0.5583 }, { "start": 11618.72, "end": 11621.94, "probability": 0.6267 }, { "start": 11636.8, "end": 11637.56, "probability": 0.6294 }, { "start": 11639.02, "end": 11640.76, "probability": 0.7973 }, { "start": 11644.12, "end": 11647.68, "probability": 0.9068 }, { "start": 11649.62, "end": 11651.92, "probability": 0.9977 }, { "start": 11652.74, "end": 11654.48, "probability": 0.981 }, { "start": 11654.54, "end": 11655.58, "probability": 0.6843 }, { "start": 11655.92, "end": 11658.92, "probability": 0.5687 }, { "start": 11661.04, "end": 11661.98, "probability": 0.742 }, { "start": 11662.88, "end": 11663.66, "probability": 0.7952 }, { "start": 11665.52, "end": 11668.92, "probability": 0.7559 }, { "start": 11668.92, "end": 11670.92, "probability": 0.9836 }, { "start": 11673.52, "end": 11675.72, "probability": 0.9409 }, { "start": 11677.52, "end": 11682.3, "probability": 0.9948 }, { "start": 11682.36, "end": 11683.5, "probability": 0.9932 }, { "start": 11685.0, "end": 11688.58, "probability": 0.9919 }, { "start": 11688.9, "end": 11690.56, "probability": 0.9038 }, { "start": 11691.84, "end": 11693.22, "probability": 0.9683 }, { "start": 11693.42, "end": 11694.74, "probability": 0.9715 }, { "start": 11695.08, "end": 11697.73, "probability": 0.9883 }, { "start": 11698.84, "end": 11700.8, "probability": 0.8462 }, { "start": 11703.8, "end": 11710.58, "probability": 0.9615 }, { "start": 11712.92, "end": 11716.04, "probability": 0.9003 }, { "start": 11716.46, "end": 11719.84, "probability": 0.9774 }, { "start": 11720.04, "end": 11721.16, "probability": 0.9738 }, { "start": 11721.8, "end": 11722.2, "probability": 0.9952 }, { "start": 11723.24, "end": 11725.88, "probability": 0.9147 }, { "start": 11727.44, "end": 11729.58, "probability": 0.986 }, { "start": 11730.86, "end": 11733.2, "probability": 0.8706 }, { "start": 11734.32, "end": 11739.78, "probability": 0.8512 }, { "start": 11739.82, "end": 11740.52, "probability": 0.8103 }, { "start": 11742.78, "end": 11748.04, "probability": 0.9952 }, { "start": 11748.52, "end": 11749.76, "probability": 0.9473 }, { "start": 11749.88, "end": 11751.81, "probability": 0.9081 }, { "start": 11753.42, "end": 11756.12, "probability": 0.9947 }, { "start": 11757.72, "end": 11758.58, "probability": 0.8052 }, { "start": 11759.8, "end": 11763.82, "probability": 0.9694 }, { "start": 11764.88, "end": 11765.44, "probability": 0.9886 }, { "start": 11766.54, "end": 11767.94, "probability": 0.8102 }, { "start": 11769.26, "end": 11775.14, "probability": 0.9635 }, { "start": 11776.4, "end": 11777.22, "probability": 0.8859 }, { "start": 11777.34, "end": 11778.27, "probability": 0.8768 }, { "start": 11778.44, "end": 11781.26, "probability": 0.9336 }, { "start": 11782.38, "end": 11783.53, "probability": 0.9465 }, { "start": 11783.82, "end": 11788.26, "probability": 0.9945 }, { "start": 11788.26, "end": 11791.58, "probability": 0.9948 }, { "start": 11793.32, "end": 11796.0, "probability": 0.9263 }, { "start": 11797.22, "end": 11804.36, "probability": 0.8773 }, { "start": 11806.04, "end": 11809.46, "probability": 0.4356 }, { "start": 11809.66, "end": 11813.32, "probability": 0.5519 }, { "start": 11813.62, "end": 11814.82, "probability": 0.5867 }, { "start": 11816.34, "end": 11820.48, "probability": 0.75 }, { "start": 11821.34, "end": 11825.18, "probability": 0.964 }, { "start": 11825.44, "end": 11827.66, "probability": 0.9847 }, { "start": 11828.4, "end": 11830.58, "probability": 0.9863 }, { "start": 11830.82, "end": 11831.84, "probability": 0.6245 }, { "start": 11831.96, "end": 11832.74, "probability": 0.8724 }, { "start": 11832.88, "end": 11833.94, "probability": 0.9734 }, { "start": 11835.3, "end": 11840.28, "probability": 0.852 }, { "start": 11841.3, "end": 11845.4, "probability": 0.8893 }, { "start": 11845.4, "end": 11848.26, "probability": 0.9993 }, { "start": 11848.96, "end": 11849.9, "probability": 0.8255 }, { "start": 11850.0, "end": 11852.32, "probability": 0.4249 }, { "start": 11852.58, "end": 11852.84, "probability": 0.5092 }, { "start": 11853.24, "end": 11854.77, "probability": 0.5115 }, { "start": 11855.34, "end": 11855.76, "probability": 0.455 }, { "start": 11856.44, "end": 11859.44, "probability": 0.9983 }, { "start": 11860.24, "end": 11861.4, "probability": 0.8626 }, { "start": 11861.6, "end": 11863.1, "probability": 0.9675 }, { "start": 11863.2, "end": 11864.7, "probability": 0.9268 }, { "start": 11864.84, "end": 11865.26, "probability": 0.5776 }, { "start": 11865.42, "end": 11866.66, "probability": 0.6303 }, { "start": 11866.82, "end": 11866.82, "probability": 0.597 }, { "start": 11866.82, "end": 11869.58, "probability": 0.6278 }, { "start": 11870.78, "end": 11871.88, "probability": 0.5095 }, { "start": 11872.4, "end": 11878.3, "probability": 0.9919 }, { "start": 11878.3, "end": 11882.22, "probability": 0.9658 }, { "start": 11883.32, "end": 11884.44, "probability": 0.9313 }, { "start": 11884.96, "end": 11885.8, "probability": 0.5821 }, { "start": 11886.54, "end": 11887.74, "probability": 0.75 }, { "start": 11887.96, "end": 11889.26, "probability": 0.9323 }, { "start": 11889.4, "end": 11891.5, "probability": 0.8721 }, { "start": 11892.48, "end": 11895.64, "probability": 0.8431 }, { "start": 11895.78, "end": 11897.96, "probability": 0.7691 }, { "start": 11898.06, "end": 11900.9, "probability": 0.9764 }, { "start": 11901.28, "end": 11902.2, "probability": 0.9949 }, { "start": 11902.28, "end": 11904.12, "probability": 0.9642 }, { "start": 11904.26, "end": 11905.02, "probability": 0.8931 }, { "start": 11906.08, "end": 11907.84, "probability": 0.8311 }, { "start": 11907.98, "end": 11909.86, "probability": 0.9971 }, { "start": 11910.06, "end": 11913.52, "probability": 0.9971 }, { "start": 11913.52, "end": 11917.18, "probability": 0.95 }, { "start": 11917.82, "end": 11920.16, "probability": 0.9466 }, { "start": 11920.88, "end": 11924.14, "probability": 0.7661 }, { "start": 11925.06, "end": 11928.64, "probability": 0.9603 }, { "start": 11928.64, "end": 11933.18, "probability": 0.9967 }, { "start": 11933.82, "end": 11935.28, "probability": 0.9621 }, { "start": 11936.0, "end": 11938.6, "probability": 0.9689 }, { "start": 11938.74, "end": 11940.52, "probability": 0.8081 }, { "start": 11941.2, "end": 11945.66, "probability": 0.998 }, { "start": 11945.78, "end": 11947.38, "probability": 0.882 }, { "start": 11947.44, "end": 11952.5, "probability": 0.9874 }, { "start": 11954.35, "end": 11957.78, "probability": 0.9798 }, { "start": 11957.78, "end": 11960.64, "probability": 0.9922 }, { "start": 11960.84, "end": 11962.0, "probability": 0.9062 }, { "start": 11962.9, "end": 11963.76, "probability": 0.6951 }, { "start": 11965.06, "end": 11966.32, "probability": 0.9412 }, { "start": 11966.54, "end": 11968.44, "probability": 0.8025 }, { "start": 11968.6, "end": 11970.36, "probability": 0.9498 }, { "start": 11971.58, "end": 11972.12, "probability": 0.8344 }, { "start": 11972.32, "end": 11974.36, "probability": 0.9869 }, { "start": 11974.48, "end": 11976.8, "probability": 0.7662 }, { "start": 11976.86, "end": 11981.38, "probability": 0.9924 }, { "start": 11981.48, "end": 11982.04, "probability": 0.5562 }, { "start": 11982.78, "end": 11984.96, "probability": 0.9004 }, { "start": 11986.4, "end": 11988.36, "probability": 0.9775 }, { "start": 11988.44, "end": 11991.16, "probability": 0.9951 }, { "start": 11991.24, "end": 11992.78, "probability": 0.9494 }, { "start": 11993.22, "end": 11994.04, "probability": 0.9268 }, { "start": 11994.08, "end": 11996.8, "probability": 0.978 }, { "start": 11997.86, "end": 11999.94, "probability": 0.9921 }, { "start": 12001.45, "end": 12008.06, "probability": 0.8958 }, { "start": 12008.74, "end": 12010.14, "probability": 0.7239 }, { "start": 12010.4, "end": 12012.64, "probability": 0.9833 }, { "start": 12013.26, "end": 12014.3, "probability": 0.8907 }, { "start": 12015.02, "end": 12019.32, "probability": 0.8631 }, { "start": 12020.44, "end": 12023.46, "probability": 0.9905 }, { "start": 12024.2, "end": 12026.42, "probability": 0.9947 }, { "start": 12026.42, "end": 12030.46, "probability": 0.6628 }, { "start": 12031.36, "end": 12033.04, "probability": 0.7975 }, { "start": 12033.86, "end": 12036.42, "probability": 0.9927 }, { "start": 12036.66, "end": 12038.22, "probability": 0.576 }, { "start": 12038.36, "end": 12040.34, "probability": 0.9297 }, { "start": 12040.98, "end": 12042.12, "probability": 0.7373 }, { "start": 12042.9, "end": 12047.4, "probability": 0.9516 }, { "start": 12047.42, "end": 12049.19, "probability": 0.9487 }, { "start": 12049.82, "end": 12052.58, "probability": 0.9679 }, { "start": 12053.5, "end": 12056.58, "probability": 0.9476 }, { "start": 12056.58, "end": 12058.88, "probability": 0.9903 }, { "start": 12058.98, "end": 12059.42, "probability": 0.7849 }, { "start": 12059.64, "end": 12060.1, "probability": 0.7715 }, { "start": 12061.04, "end": 12064.56, "probability": 0.9652 }, { "start": 12065.32, "end": 12067.52, "probability": 0.9266 }, { "start": 12067.82, "end": 12070.86, "probability": 0.9821 }, { "start": 12072.3, "end": 12074.02, "probability": 0.8392 }, { "start": 12074.18, "end": 12075.9, "probability": 0.9744 }, { "start": 12076.64, "end": 12077.62, "probability": 0.967 }, { "start": 12077.8, "end": 12084.22, "probability": 0.9824 }, { "start": 12085.5, "end": 12089.54, "probability": 0.9678 }, { "start": 12090.94, "end": 12092.04, "probability": 0.5747 }, { "start": 12092.72, "end": 12093.0, "probability": 0.4465 }, { "start": 12093.08, "end": 12094.54, "probability": 0.8171 }, { "start": 12094.66, "end": 12096.52, "probability": 0.951 }, { "start": 12097.68, "end": 12103.59, "probability": 0.9795 }, { "start": 12103.94, "end": 12105.06, "probability": 0.9398 }, { "start": 12106.26, "end": 12109.2, "probability": 0.9795 }, { "start": 12109.32, "end": 12110.5, "probability": 0.7681 }, { "start": 12110.82, "end": 12111.18, "probability": 0.1444 }, { "start": 12111.74, "end": 12112.46, "probability": 0.6675 }, { "start": 12113.76, "end": 12116.5, "probability": 0.9097 }, { "start": 12116.66, "end": 12119.54, "probability": 0.8437 }, { "start": 12119.84, "end": 12122.01, "probability": 0.8931 }, { "start": 12122.34, "end": 12123.68, "probability": 0.8181 }, { "start": 12124.44, "end": 12126.44, "probability": 0.9304 }, { "start": 12127.04, "end": 12127.86, "probability": 0.998 }, { "start": 12129.4, "end": 12133.76, "probability": 0.8774 }, { "start": 12133.78, "end": 12135.38, "probability": 0.9697 }, { "start": 12136.02, "end": 12138.88, "probability": 0.9788 }, { "start": 12138.88, "end": 12142.2, "probability": 0.9883 }, { "start": 12142.88, "end": 12147.7, "probability": 0.9681 }, { "start": 12148.72, "end": 12149.4, "probability": 0.6014 }, { "start": 12149.48, "end": 12149.68, "probability": 0.3412 }, { "start": 12149.74, "end": 12153.3, "probability": 0.9671 }, { "start": 12153.3, "end": 12156.9, "probability": 0.994 }, { "start": 12156.92, "end": 12158.2, "probability": 0.8077 }, { "start": 12158.36, "end": 12160.06, "probability": 0.9985 }, { "start": 12160.66, "end": 12162.72, "probability": 0.9842 }, { "start": 12163.54, "end": 12164.28, "probability": 0.8711 }, { "start": 12164.5, "end": 12165.09, "probability": 0.8254 }, { "start": 12165.28, "end": 12169.44, "probability": 0.656 }, { "start": 12169.78, "end": 12170.44, "probability": 0.9473 }, { "start": 12170.56, "end": 12171.24, "probability": 0.6587 }, { "start": 12171.52, "end": 12172.1, "probability": 0.5338 }, { "start": 12172.96, "end": 12173.24, "probability": 0.6717 }, { "start": 12173.36, "end": 12173.46, "probability": 0.8183 }, { "start": 12173.54, "end": 12174.32, "probability": 0.8165 }, { "start": 12174.46, "end": 12177.14, "probability": 0.9709 }, { "start": 12177.82, "end": 12183.46, "probability": 0.8678 }, { "start": 12184.0, "end": 12186.56, "probability": 0.9552 }, { "start": 12188.76, "end": 12191.56, "probability": 0.9905 }, { "start": 12191.56, "end": 12195.44, "probability": 0.9082 }, { "start": 12196.54, "end": 12200.78, "probability": 0.9855 }, { "start": 12200.92, "end": 12201.82, "probability": 0.7305 }, { "start": 12201.9, "end": 12205.5, "probability": 0.9585 }, { "start": 12205.68, "end": 12208.5, "probability": 0.9685 }, { "start": 12208.66, "end": 12212.16, "probability": 0.9861 }, { "start": 12212.68, "end": 12215.52, "probability": 0.9864 }, { "start": 12216.16, "end": 12217.1, "probability": 0.777 }, { "start": 12217.44, "end": 12221.6, "probability": 0.9674 }, { "start": 12222.36, "end": 12227.42, "probability": 0.7645 }, { "start": 12227.98, "end": 12230.68, "probability": 0.9983 }, { "start": 12230.82, "end": 12235.84, "probability": 0.7841 }, { "start": 12235.9, "end": 12238.12, "probability": 0.4341 }, { "start": 12238.94, "end": 12243.1, "probability": 0.9568 }, { "start": 12244.32, "end": 12248.22, "probability": 0.983 }, { "start": 12248.36, "end": 12255.62, "probability": 0.9475 }, { "start": 12255.66, "end": 12257.1, "probability": 0.3362 }, { "start": 12257.6, "end": 12264.3, "probability": 0.8079 }, { "start": 12264.94, "end": 12265.88, "probability": 0.7246 }, { "start": 12266.04, "end": 12266.88, "probability": 0.9287 }, { "start": 12267.0, "end": 12267.26, "probability": 0.478 }, { "start": 12267.34, "end": 12268.08, "probability": 0.855 }, { "start": 12269.38, "end": 12271.76, "probability": 0.7314 }, { "start": 12273.0, "end": 12273.2, "probability": 0.9017 }, { "start": 12273.26, "end": 12276.14, "probability": 0.9754 }, { "start": 12277.12, "end": 12278.58, "probability": 0.6997 }, { "start": 12279.34, "end": 12281.14, "probability": 0.7829 }, { "start": 12281.38, "end": 12285.9, "probability": 0.9875 }, { "start": 12286.34, "end": 12288.36, "probability": 0.9956 }, { "start": 12288.96, "end": 12289.9, "probability": 0.759 }, { "start": 12290.02, "end": 12290.54, "probability": 0.4159 }, { "start": 12290.56, "end": 12291.02, "probability": 0.439 }, { "start": 12291.14, "end": 12292.54, "probability": 0.8582 }, { "start": 12292.92, "end": 12294.04, "probability": 0.5022 }, { "start": 12294.64, "end": 12296.6, "probability": 0.671 }, { "start": 12297.08, "end": 12298.7, "probability": 0.9034 }, { "start": 12299.58, "end": 12304.76, "probability": 0.9102 }, { "start": 12305.62, "end": 12309.44, "probability": 0.9915 }, { "start": 12310.54, "end": 12311.56, "probability": 0.9672 }, { "start": 12311.56, "end": 12313.32, "probability": 0.7757 }, { "start": 12313.44, "end": 12315.52, "probability": 0.9762 }, { "start": 12323.42, "end": 12326.98, "probability": 0.9783 }, { "start": 12329.48, "end": 12333.14, "probability": 0.9648 }, { "start": 12334.58, "end": 12335.62, "probability": 0.9347 }, { "start": 12336.66, "end": 12337.82, "probability": 0.9901 }, { "start": 12338.62, "end": 12340.3, "probability": 0.9933 }, { "start": 12341.04, "end": 12342.9, "probability": 0.8342 }, { "start": 12343.56, "end": 12346.92, "probability": 0.8586 }, { "start": 12348.26, "end": 12348.26, "probability": 0.7012 }, { "start": 12349.36, "end": 12351.22, "probability": 0.8841 }, { "start": 12351.7, "end": 12352.58, "probability": 0.8036 }, { "start": 12352.96, "end": 12356.34, "probability": 0.9034 }, { "start": 12357.32, "end": 12361.2, "probability": 0.9702 }, { "start": 12361.68, "end": 12362.12, "probability": 0.5091 }, { "start": 12363.16, "end": 12366.52, "probability": 0.979 }, { "start": 12366.52, "end": 12369.78, "probability": 0.9204 }, { "start": 12370.6, "end": 12372.9, "probability": 0.9058 }, { "start": 12373.16, "end": 12374.68, "probability": 0.7025 }, { "start": 12375.38, "end": 12377.12, "probability": 0.9717 }, { "start": 12377.84, "end": 12379.46, "probability": 0.9993 }, { "start": 12380.24, "end": 12382.5, "probability": 0.7495 }, { "start": 12383.54, "end": 12387.46, "probability": 0.9928 }, { "start": 12388.78, "end": 12390.52, "probability": 0.8943 }, { "start": 12390.62, "end": 12391.71, "probability": 0.9966 }, { "start": 12392.66, "end": 12395.52, "probability": 0.5258 }, { "start": 12396.28, "end": 12400.14, "probability": 0.9217 }, { "start": 12401.08, "end": 12402.82, "probability": 0.9954 }, { "start": 12403.6, "end": 12406.38, "probability": 0.8743 }, { "start": 12407.44, "end": 12409.96, "probability": 0.957 }, { "start": 12410.26, "end": 12411.58, "probability": 0.9434 }, { "start": 12411.68, "end": 12415.4, "probability": 0.9941 }, { "start": 12416.66, "end": 12417.5, "probability": 0.8875 }, { "start": 12417.62, "end": 12418.62, "probability": 0.8901 }, { "start": 12418.72, "end": 12419.98, "probability": 0.9937 }, { "start": 12420.12, "end": 12425.6, "probability": 0.9694 }, { "start": 12425.84, "end": 12431.36, "probability": 0.9956 }, { "start": 12431.46, "end": 12433.2, "probability": 0.8509 }, { "start": 12433.26, "end": 12436.47, "probability": 0.949 }, { "start": 12437.62, "end": 12440.33, "probability": 0.9491 }, { "start": 12441.1, "end": 12442.68, "probability": 0.9697 }, { "start": 12442.86, "end": 12444.4, "probability": 0.8738 }, { "start": 12445.38, "end": 12447.06, "probability": 0.9506 }, { "start": 12447.08, "end": 12448.5, "probability": 0.8792 }, { "start": 12448.5, "end": 12450.1, "probability": 0.6363 }, { "start": 12451.04, "end": 12453.34, "probability": 0.9133 }, { "start": 12454.12, "end": 12457.28, "probability": 0.9618 }, { "start": 12457.98, "end": 12458.98, "probability": 0.683 }, { "start": 12459.68, "end": 12460.26, "probability": 0.8612 }, { "start": 12460.4, "end": 12460.85, "probability": 0.8554 }, { "start": 12461.08, "end": 12463.54, "probability": 0.947 }, { "start": 12463.64, "end": 12465.4, "probability": 0.8773 }, { "start": 12466.26, "end": 12467.36, "probability": 0.9409 }, { "start": 12468.24, "end": 12470.36, "probability": 0.9825 }, { "start": 12470.38, "end": 12474.16, "probability": 0.9713 }, { "start": 12474.92, "end": 12476.38, "probability": 0.9425 }, { "start": 12476.5, "end": 12477.62, "probability": 0.9873 }, { "start": 12478.22, "end": 12481.94, "probability": 0.9968 }, { "start": 12482.7, "end": 12483.48, "probability": 0.9498 }, { "start": 12483.82, "end": 12488.68, "probability": 0.821 }, { "start": 12488.8, "end": 12490.52, "probability": 0.9038 }, { "start": 12490.52, "end": 12492.28, "probability": 0.9468 }, { "start": 12492.56, "end": 12492.94, "probability": 0.4705 }, { "start": 12493.36, "end": 12498.6, "probability": 0.9351 }, { "start": 12499.4, "end": 12502.38, "probability": 0.7333 }, { "start": 12502.7, "end": 12506.2, "probability": 0.8363 }, { "start": 12506.66, "end": 12509.12, "probability": 0.6783 }, { "start": 12509.98, "end": 12510.48, "probability": 0.776 }, { "start": 12510.74, "end": 12513.68, "probability": 0.9374 }, { "start": 12513.88, "end": 12518.2, "probability": 0.9956 }, { "start": 12518.58, "end": 12518.92, "probability": 0.7266 }, { "start": 12519.84, "end": 12521.7, "probability": 0.814 }, { "start": 12522.32, "end": 12525.38, "probability": 0.7487 }, { "start": 12526.08, "end": 12526.62, "probability": 0.9265 }, { "start": 12527.44, "end": 12529.54, "probability": 0.9828 }, { "start": 12529.72, "end": 12530.42, "probability": 0.7905 }, { "start": 12530.78, "end": 12532.04, "probability": 0.9456 }, { "start": 12532.22, "end": 12536.62, "probability": 0.7234 }, { "start": 12537.76, "end": 12539.42, "probability": 0.8531 }, { "start": 12539.88, "end": 12541.06, "probability": 0.7847 }, { "start": 12541.94, "end": 12542.36, "probability": 0.7544 }, { "start": 12542.98, "end": 12546.08, "probability": 0.9771 }, { "start": 12546.3, "end": 12547.38, "probability": 0.8467 }, { "start": 12548.66, "end": 12548.98, "probability": 0.2466 }, { "start": 12549.06, "end": 12550.98, "probability": 0.5382 }, { "start": 12551.1, "end": 12552.96, "probability": 0.9956 }, { "start": 12553.54, "end": 12558.76, "probability": 0.9871 }, { "start": 12559.48, "end": 12560.4, "probability": 0.7242 }, { "start": 12560.56, "end": 12561.54, "probability": 0.8446 }, { "start": 12561.86, "end": 12564.22, "probability": 0.978 }, { "start": 12565.08, "end": 12566.28, "probability": 0.6859 }, { "start": 12567.58, "end": 12571.73, "probability": 0.9938 }, { "start": 12571.96, "end": 12573.42, "probability": 0.8439 }, { "start": 12574.42, "end": 12577.2, "probability": 0.7327 }, { "start": 12577.76, "end": 12578.8, "probability": 0.7225 }, { "start": 12579.56, "end": 12581.44, "probability": 0.9912 }, { "start": 12581.62, "end": 12583.7, "probability": 0.9906 }, { "start": 12584.6, "end": 12591.98, "probability": 0.9972 }, { "start": 12592.68, "end": 12595.3, "probability": 0.9918 }, { "start": 12595.38, "end": 12598.92, "probability": 0.9969 }, { "start": 12600.06, "end": 12603.56, "probability": 0.9986 }, { "start": 12603.76, "end": 12606.52, "probability": 0.9411 }, { "start": 12607.32, "end": 12609.36, "probability": 0.8732 }, { "start": 12609.94, "end": 12611.42, "probability": 0.9888 }, { "start": 12611.98, "end": 12616.76, "probability": 0.9229 }, { "start": 12616.76, "end": 12617.94, "probability": 0.9176 }, { "start": 12618.16, "end": 12620.8, "probability": 0.968 }, { "start": 12621.22, "end": 12622.22, "probability": 0.9878 }, { "start": 12622.32, "end": 12623.9, "probability": 0.7126 }, { "start": 12624.1, "end": 12626.04, "probability": 0.9727 }, { "start": 12626.94, "end": 12629.56, "probability": 0.9496 }, { "start": 12630.36, "end": 12631.22, "probability": 0.7631 }, { "start": 12631.3, "end": 12632.52, "probability": 0.8247 }, { "start": 12632.8, "end": 12633.82, "probability": 0.9366 }, { "start": 12634.06, "end": 12634.88, "probability": 0.7757 }, { "start": 12635.32, "end": 12636.02, "probability": 0.604 }, { "start": 12636.9, "end": 12638.62, "probability": 0.7409 }, { "start": 12638.7, "end": 12638.88, "probability": 0.6835 }, { "start": 12638.9, "end": 12639.18, "probability": 0.7261 }, { "start": 12639.26, "end": 12640.0, "probability": 0.8752 }, { "start": 12640.06, "end": 12640.88, "probability": 0.7671 }, { "start": 12640.94, "end": 12642.18, "probability": 0.51 }, { "start": 12642.32, "end": 12645.02, "probability": 0.8876 }, { "start": 12645.04, "end": 12646.26, "probability": 0.7078 }, { "start": 12646.84, "end": 12648.3, "probability": 0.7084 }, { "start": 12648.34, "end": 12649.28, "probability": 0.493 }, { "start": 12649.46, "end": 12649.88, "probability": 0.8404 }, { "start": 12655.34, "end": 12656.78, "probability": 0.0348 }, { "start": 12668.82, "end": 12669.42, "probability": 0.4235 }, { "start": 12669.42, "end": 12671.38, "probability": 0.5596 }, { "start": 12671.38, "end": 12671.68, "probability": 0.3761 }, { "start": 12671.68, "end": 12672.1, "probability": 0.6699 }, { "start": 12672.18, "end": 12676.06, "probability": 0.6824 }, { "start": 12676.2, "end": 12678.76, "probability": 0.729 }, { "start": 12679.86, "end": 12682.44, "probability": 0.9264 }, { "start": 12683.04, "end": 12687.22, "probability": 0.7548 }, { "start": 12688.26, "end": 12689.4, "probability": 0.7185 }, { "start": 12689.54, "end": 12690.52, "probability": 0.6063 }, { "start": 12690.64, "end": 12692.71, "probability": 0.8546 }, { "start": 12693.54, "end": 12695.56, "probability": 0.8797 }, { "start": 12695.56, "end": 12699.58, "probability": 0.7802 }, { "start": 12700.06, "end": 12703.14, "probability": 0.4279 }, { "start": 12703.74, "end": 12705.2, "probability": 0.1635 }, { "start": 12705.88, "end": 12707.48, "probability": 0.6143 }, { "start": 12708.1, "end": 12709.66, "probability": 0.7386 }, { "start": 12709.66, "end": 12713.12, "probability": 0.7402 }, { "start": 12714.18, "end": 12717.0, "probability": 0.9576 }, { "start": 12717.04, "end": 12717.26, "probability": 0.7376 }, { "start": 12718.4, "end": 12720.34, "probability": 0.8057 }, { "start": 12720.7, "end": 12724.04, "probability": 0.6683 }, { "start": 12724.58, "end": 12728.7, "probability": 0.8315 }, { "start": 12731.15, "end": 12735.16, "probability": 0.1165 }, { "start": 12737.56, "end": 12738.4, "probability": 0.0573 }, { "start": 12738.4, "end": 12738.4, "probability": 0.0856 }, { "start": 12738.4, "end": 12738.46, "probability": 0.0578 }, { "start": 12738.46, "end": 12738.46, "probability": 0.2235 }, { "start": 12738.46, "end": 12738.64, "probability": 0.0916 }, { "start": 12745.34, "end": 12746.6, "probability": 0.0501 }, { "start": 12749.16, "end": 12750.18, "probability": 0.5595 }, { "start": 12750.38, "end": 12751.4, "probability": 0.6236 }, { "start": 12751.58, "end": 12754.78, "probability": 0.8673 }, { "start": 12755.68, "end": 12757.22, "probability": 0.7989 }, { "start": 12757.98, "end": 12761.78, "probability": 0.8982 }, { "start": 12762.78, "end": 12763.62, "probability": 0.7751 }, { "start": 12763.8, "end": 12768.26, "probability": 0.9755 }, { "start": 12768.52, "end": 12772.84, "probability": 0.8239 }, { "start": 12773.76, "end": 12774.72, "probability": 0.631 }, { "start": 12774.94, "end": 12777.0, "probability": 0.9848 }, { "start": 12777.66, "end": 12779.8, "probability": 0.9058 }, { "start": 12779.8, "end": 12784.6, "probability": 0.9888 }, { "start": 12785.24, "end": 12791.54, "probability": 0.8327 }, { "start": 12792.08, "end": 12796.44, "probability": 0.9771 }, { "start": 12796.98, "end": 12799.38, "probability": 0.9972 }, { "start": 12799.92, "end": 12801.28, "probability": 0.9714 }, { "start": 12802.18, "end": 12802.92, "probability": 0.621 }, { "start": 12803.06, "end": 12805.64, "probability": 0.9977 }, { "start": 12806.84, "end": 12807.2, "probability": 0.322 }, { "start": 12807.52, "end": 12810.42, "probability": 0.81 }, { "start": 12811.42, "end": 12811.74, "probability": 0.5959 }, { "start": 12811.82, "end": 12815.26, "probability": 0.9507 }, { "start": 12815.54, "end": 12816.36, "probability": 0.752 }, { "start": 12816.92, "end": 12820.02, "probability": 0.9548 }, { "start": 12820.96, "end": 12824.4, "probability": 0.7069 }, { "start": 12825.14, "end": 12830.72, "probability": 0.9181 }, { "start": 12830.96, "end": 12831.38, "probability": 0.3944 }, { "start": 12832.14, "end": 12835.68, "probability": 0.8307 }, { "start": 12836.22, "end": 12837.42, "probability": 0.9551 }, { "start": 12838.14, "end": 12844.3, "probability": 0.9824 }, { "start": 12845.1, "end": 12847.52, "probability": 0.9608 }, { "start": 12847.86, "end": 12851.84, "probability": 0.9646 }, { "start": 12852.36, "end": 12856.9, "probability": 0.9962 }, { "start": 12857.5, "end": 12861.38, "probability": 0.9759 }, { "start": 12862.08, "end": 12865.68, "probability": 0.9907 }, { "start": 12865.68, "end": 12870.54, "probability": 0.995 }, { "start": 12871.18, "end": 12872.14, "probability": 0.5534 }, { "start": 12872.98, "end": 12874.58, "probability": 0.9939 }, { "start": 12874.9, "end": 12877.8, "probability": 0.9722 }, { "start": 12878.4, "end": 12880.92, "probability": 0.9615 }, { "start": 12881.54, "end": 12881.96, "probability": 0.8123 }, { "start": 12882.04, "end": 12883.1, "probability": 0.9088 }, { "start": 12883.58, "end": 12886.06, "probability": 0.6841 }, { "start": 12886.58, "end": 12888.06, "probability": 0.7725 }, { "start": 12888.46, "end": 12893.96, "probability": 0.915 }, { "start": 12894.92, "end": 12895.44, "probability": 0.839 }, { "start": 12897.0, "end": 12898.84, "probability": 0.9498 }, { "start": 12899.0, "end": 12900.32, "probability": 0.8591 }, { "start": 12900.98, "end": 12903.24, "probability": 0.4812 }, { "start": 12903.85, "end": 12907.82, "probability": 0.9948 }, { "start": 12908.3, "end": 12910.34, "probability": 0.913 }, { "start": 12910.94, "end": 12912.0, "probability": 0.641 }, { "start": 12912.74, "end": 12917.13, "probability": 0.9539 }, { "start": 12918.8, "end": 12925.0, "probability": 0.7622 }, { "start": 12925.08, "end": 12925.7, "probability": 0.7772 }, { "start": 12925.84, "end": 12926.48, "probability": 0.8504 }, { "start": 12926.56, "end": 12927.2, "probability": 0.6033 }, { "start": 12927.96, "end": 12928.5, "probability": 0.7212 }, { "start": 12929.2, "end": 12930.22, "probability": 0.6582 }, { "start": 12930.76, "end": 12934.88, "probability": 0.8047 }, { "start": 12935.3, "end": 12938.12, "probability": 0.9503 }, { "start": 12938.82, "end": 12941.6, "probability": 0.9532 }, { "start": 12942.18, "end": 12944.42, "probability": 0.9831 }, { "start": 12944.54, "end": 12946.14, "probability": 0.9907 }, { "start": 12946.86, "end": 12949.12, "probability": 0.9882 }, { "start": 12951.22, "end": 12951.72, "probability": 0.9575 }, { "start": 12951.84, "end": 12956.64, "probability": 0.8526 }, { "start": 12956.76, "end": 12961.3, "probability": 0.8965 }, { "start": 12961.8, "end": 12963.15, "probability": 0.9611 }, { "start": 12963.86, "end": 12965.66, "probability": 0.9157 }, { "start": 12965.74, "end": 12966.52, "probability": 0.7084 }, { "start": 12966.52, "end": 12968.73, "probability": 0.8806 }, { "start": 12969.58, "end": 12973.78, "probability": 0.8845 }, { "start": 12974.96, "end": 12977.97, "probability": 0.9419 }, { "start": 12978.46, "end": 12984.16, "probability": 0.9922 }, { "start": 12984.28, "end": 12984.66, "probability": 0.7036 }, { "start": 12984.88, "end": 12985.8, "probability": 0.8564 }, { "start": 12985.98, "end": 12987.64, "probability": 0.9578 }, { "start": 12987.78, "end": 12991.16, "probability": 0.9895 }, { "start": 12991.7, "end": 12993.22, "probability": 0.9908 }, { "start": 12993.24, "end": 12994.65, "probability": 0.9919 }, { "start": 12994.84, "end": 12995.63, "probability": 0.7289 }, { "start": 12996.16, "end": 13000.64, "probability": 0.915 }, { "start": 13000.96, "end": 13001.92, "probability": 0.1575 }, { "start": 13002.62, "end": 13003.76, "probability": 0.9753 }, { "start": 13004.96, "end": 13005.6, "probability": 0.6262 }, { "start": 13005.64, "end": 13008.06, "probability": 0.4959 }, { "start": 13008.12, "end": 13010.22, "probability": 0.5707 }, { "start": 13010.46, "end": 13015.08, "probability": 0.7165 }, { "start": 13015.78, "end": 13016.54, "probability": 0.8149 }, { "start": 13016.72, "end": 13019.0, "probability": 0.8283 }, { "start": 13019.2, "end": 13022.46, "probability": 0.9628 }, { "start": 13023.4, "end": 13025.28, "probability": 0.8453 }, { "start": 13025.84, "end": 13030.9, "probability": 0.9911 }, { "start": 13031.52, "end": 13033.72, "probability": 0.4494 }, { "start": 13033.72, "end": 13035.38, "probability": 0.7855 }, { "start": 13036.06, "end": 13037.61, "probability": 0.9949 }, { "start": 13038.46, "end": 13043.66, "probability": 0.985 }, { "start": 13043.8, "end": 13044.94, "probability": 0.7733 }, { "start": 13045.06, "end": 13046.98, "probability": 0.9617 }, { "start": 13047.1, "end": 13050.74, "probability": 0.9917 }, { "start": 13051.26, "end": 13052.04, "probability": 0.7825 }, { "start": 13052.16, "end": 13054.94, "probability": 0.9964 }, { "start": 13055.46, "end": 13058.64, "probability": 0.9966 }, { "start": 13059.22, "end": 13063.46, "probability": 0.6342 }, { "start": 13064.36, "end": 13066.92, "probability": 0.968 }, { "start": 13067.12, "end": 13071.52, "probability": 0.9806 }, { "start": 13072.06, "end": 13072.69, "probability": 0.9829 }, { "start": 13072.88, "end": 13076.26, "probability": 0.9025 }, { "start": 13076.86, "end": 13079.08, "probability": 0.9064 }, { "start": 13079.3, "end": 13083.34, "probability": 0.978 }, { "start": 13083.78, "end": 13087.36, "probability": 0.9941 }, { "start": 13087.36, "end": 13087.62, "probability": 0.2635 }, { "start": 13087.66, "end": 13089.58, "probability": 0.4447 }, { "start": 13089.66, "end": 13091.28, "probability": 0.3763 }, { "start": 13091.36, "end": 13091.9, "probability": 0.2728 }, { "start": 13091.92, "end": 13092.84, "probability": 0.5277 }, { "start": 13093.12, "end": 13094.62, "probability": 0.6216 }, { "start": 13095.2, "end": 13096.7, "probability": 0.9016 }, { "start": 13096.94, "end": 13098.18, "probability": 0.7496 }, { "start": 13098.28, "end": 13099.64, "probability": 0.9039 }, { "start": 13099.92, "end": 13101.04, "probability": 0.819 }, { "start": 13101.34, "end": 13102.3, "probability": 0.8658 }, { "start": 13102.32, "end": 13103.36, "probability": 0.9339 }, { "start": 13103.38, "end": 13105.38, "probability": 0.8469 }, { "start": 13105.5, "end": 13107.14, "probability": 0.7479 }, { "start": 13107.48, "end": 13109.96, "probability": 0.8689 }, { "start": 13110.34, "end": 13110.96, "probability": 0.8882 }, { "start": 13111.12, "end": 13112.2, "probability": 0.8344 }, { "start": 13112.38, "end": 13113.34, "probability": 0.8289 }, { "start": 13113.4, "end": 13114.28, "probability": 0.5634 }, { "start": 13114.28, "end": 13114.62, "probability": 0.3725 }, { "start": 13114.64, "end": 13117.2, "probability": 0.9093 }, { "start": 13117.3, "end": 13117.52, "probability": 0.7156 }, { "start": 13117.52, "end": 13119.8, "probability": 0.8257 }, { "start": 13120.22, "end": 13122.86, "probability": 0.648 }, { "start": 13123.72, "end": 13125.56, "probability": 0.8972 }, { "start": 13134.9, "end": 13136.28, "probability": 0.9653 }, { "start": 13138.44, "end": 13141.14, "probability": 0.7968 }, { "start": 13142.96, "end": 13146.72, "probability": 0.9278 }, { "start": 13147.72, "end": 13149.24, "probability": 0.9819 }, { "start": 13150.34, "end": 13153.4, "probability": 0.9421 }, { "start": 13155.24, "end": 13157.44, "probability": 0.9963 }, { "start": 13158.2, "end": 13161.08, "probability": 0.9946 }, { "start": 13162.24, "end": 13170.54, "probability": 0.9779 }, { "start": 13171.4, "end": 13173.48, "probability": 0.9268 }, { "start": 13174.16, "end": 13175.6, "probability": 0.8015 }, { "start": 13175.9, "end": 13181.86, "probability": 0.9661 }, { "start": 13182.46, "end": 13184.8, "probability": 0.9841 }, { "start": 13185.12, "end": 13189.16, "probability": 0.6856 }, { "start": 13190.0, "end": 13192.7, "probability": 0.2101 }, { "start": 13192.86, "end": 13195.14, "probability": 0.967 }, { "start": 13195.32, "end": 13199.2, "probability": 0.981 }, { "start": 13200.14, "end": 13201.02, "probability": 0.7163 }, { "start": 13201.54, "end": 13202.72, "probability": 0.903 }, { "start": 13202.76, "end": 13205.38, "probability": 0.9556 }, { "start": 13205.54, "end": 13206.24, "probability": 0.8865 }, { "start": 13206.44, "end": 13208.88, "probability": 0.7707 }, { "start": 13209.14, "end": 13211.08, "probability": 0.9106 }, { "start": 13211.48, "end": 13215.86, "probability": 0.9919 }, { "start": 13216.96, "end": 13221.8, "probability": 0.9985 }, { "start": 13222.14, "end": 13229.7, "probability": 0.9967 }, { "start": 13230.28, "end": 13233.76, "probability": 0.998 }, { "start": 13234.38, "end": 13239.74, "probability": 0.9502 }, { "start": 13240.14, "end": 13246.5, "probability": 0.9937 }, { "start": 13247.0, "end": 13253.48, "probability": 0.9814 }, { "start": 13253.48, "end": 13258.78, "probability": 0.9136 }, { "start": 13258.9, "end": 13260.68, "probability": 0.7904 }, { "start": 13261.16, "end": 13264.44, "probability": 0.9898 }, { "start": 13264.98, "end": 13267.8, "probability": 0.9954 }, { "start": 13268.4, "end": 13269.47, "probability": 0.9883 }, { "start": 13269.9, "end": 13273.08, "probability": 0.9968 }, { "start": 13273.2, "end": 13275.58, "probability": 0.669 }, { "start": 13275.98, "end": 13280.48, "probability": 0.9419 }, { "start": 13280.66, "end": 13283.92, "probability": 0.9953 }, { "start": 13283.92, "end": 13290.48, "probability": 0.9197 }, { "start": 13290.58, "end": 13290.68, "probability": 0.9641 }, { "start": 13291.36, "end": 13292.12, "probability": 0.4806 }, { "start": 13292.72, "end": 13297.82, "probability": 0.9799 }, { "start": 13298.36, "end": 13299.48, "probability": 0.6439 }, { "start": 13299.54, "end": 13300.3, "probability": 0.9199 }, { "start": 13300.76, "end": 13305.92, "probability": 0.995 }, { "start": 13306.1, "end": 13306.66, "probability": 0.9134 }, { "start": 13307.22, "end": 13307.4, "probability": 0.2247 }, { "start": 13307.46, "end": 13310.16, "probability": 0.9688 }, { "start": 13310.32, "end": 13311.84, "probability": 0.8206 }, { "start": 13311.84, "end": 13312.8, "probability": 0.8657 }, { "start": 13313.42, "end": 13319.02, "probability": 0.9531 }, { "start": 13319.56, "end": 13322.9, "probability": 0.9949 }, { "start": 13323.2, "end": 13326.22, "probability": 0.8235 }, { "start": 13326.78, "end": 13326.96, "probability": 0.6977 }, { "start": 13327.18, "end": 13328.94, "probability": 0.5142 }, { "start": 13329.02, "end": 13330.48, "probability": 0.7717 }, { "start": 13330.54, "end": 13331.06, "probability": 0.4484 }, { "start": 13331.1, "end": 13332.68, "probability": 0.9048 }, { "start": 13335.26, "end": 13337.52, "probability": 0.5049 }, { "start": 13338.54, "end": 13340.9, "probability": 0.3396 }, { "start": 13340.9, "end": 13341.28, "probability": 0.3549 }, { "start": 13341.38, "end": 13342.64, "probability": 0.0952 }, { "start": 13345.08, "end": 13345.92, "probability": 0.1765 }, { "start": 13347.36, "end": 13347.76, "probability": 0.1738 }, { "start": 13351.8, "end": 13353.66, "probability": 0.299 }, { "start": 13356.58, "end": 13357.32, "probability": 0.5202 }, { "start": 13357.42, "end": 13358.42, "probability": 0.8994 }, { "start": 13358.54, "end": 13359.4, "probability": 0.8279 }, { "start": 13361.06, "end": 13361.08, "probability": 0.7817 }, { "start": 13362.8, "end": 13363.86, "probability": 0.9238 }, { "start": 13365.74, "end": 13367.5, "probability": 0.9364 }, { "start": 13367.62, "end": 13370.18, "probability": 0.971 }, { "start": 13372.36, "end": 13373.92, "probability": 0.9939 }, { "start": 13375.24, "end": 13378.02, "probability": 0.9135 }, { "start": 13379.0, "end": 13379.74, "probability": 0.787 }, { "start": 13380.44, "end": 13383.72, "probability": 0.9399 }, { "start": 13384.9, "end": 13386.76, "probability": 0.998 }, { "start": 13388.4, "end": 13389.42, "probability": 0.5689 }, { "start": 13390.08, "end": 13393.12, "probability": 0.9839 }, { "start": 13393.18, "end": 13394.96, "probability": 0.7194 }, { "start": 13396.28, "end": 13399.0, "probability": 0.6014 }, { "start": 13399.68, "end": 13400.8, "probability": 0.8646 }, { "start": 13402.24, "end": 13404.98, "probability": 0.882 }, { "start": 13406.08, "end": 13409.28, "probability": 0.9503 }, { "start": 13409.76, "end": 13410.94, "probability": 0.9874 }, { "start": 13411.18, "end": 13412.56, "probability": 0.9939 }, { "start": 13412.68, "end": 13413.24, "probability": 0.9684 }, { "start": 13414.08, "end": 13416.3, "probability": 0.8519 }, { "start": 13417.4, "end": 13418.22, "probability": 0.9237 }, { "start": 13418.3, "end": 13421.26, "probability": 0.9941 }, { "start": 13422.36, "end": 13423.72, "probability": 0.9841 }, { "start": 13425.02, "end": 13427.26, "probability": 0.9964 }, { "start": 13427.3, "end": 13428.0, "probability": 0.9908 }, { "start": 13430.58, "end": 13432.52, "probability": 0.9503 }, { "start": 13433.5, "end": 13437.22, "probability": 0.9978 }, { "start": 13438.0, "end": 13439.42, "probability": 0.9107 }, { "start": 13441.04, "end": 13441.85, "probability": 0.9636 }, { "start": 13443.92, "end": 13443.96, "probability": 0.0292 }, { "start": 13443.96, "end": 13448.8, "probability": 0.9609 }, { "start": 13448.9, "end": 13449.5, "probability": 0.7258 }, { "start": 13449.74, "end": 13450.7, "probability": 0.7284 }, { "start": 13451.52, "end": 13456.77, "probability": 0.8944 }, { "start": 13457.28, "end": 13461.26, "probability": 0.9803 }, { "start": 13462.46, "end": 13464.92, "probability": 0.7605 }, { "start": 13465.82, "end": 13467.18, "probability": 0.9443 }, { "start": 13467.34, "end": 13468.92, "probability": 0.9963 }, { "start": 13469.54, "end": 13470.02, "probability": 0.784 }, { "start": 13470.76, "end": 13474.84, "probability": 0.9771 }, { "start": 13474.84, "end": 13477.1, "probability": 0.9956 }, { "start": 13478.64, "end": 13483.96, "probability": 0.9814 }, { "start": 13484.68, "end": 13485.4, "probability": 0.9352 }, { "start": 13486.96, "end": 13489.86, "probability": 0.998 }, { "start": 13491.14, "end": 13494.97, "probability": 0.9888 }, { "start": 13496.0, "end": 13499.28, "probability": 0.9809 }, { "start": 13500.08, "end": 13501.74, "probability": 0.891 }, { "start": 13502.24, "end": 13504.16, "probability": 0.9933 }, { "start": 13504.9, "end": 13507.6, "probability": 0.9512 }, { "start": 13508.54, "end": 13511.26, "probability": 0.9885 }, { "start": 13512.34, "end": 13512.64, "probability": 0.9043 }, { "start": 13513.1, "end": 13513.98, "probability": 0.6886 }, { "start": 13515.08, "end": 13515.92, "probability": 0.3356 }, { "start": 13516.46, "end": 13516.98, "probability": 0.1108 }, { "start": 13516.98, "end": 13517.24, "probability": 0.2544 }, { "start": 13518.42, "end": 13522.1, "probability": 0.9279 }, { "start": 13523.44, "end": 13526.08, "probability": 0.5755 }, { "start": 13526.28, "end": 13526.68, "probability": 0.1825 }, { "start": 13526.84, "end": 13528.2, "probability": 0.499 }, { "start": 13530.7, "end": 13531.74, "probability": 0.5914 }, { "start": 13531.78, "end": 13533.98, "probability": 0.9502 }, { "start": 13534.04, "end": 13535.69, "probability": 0.9991 }, { "start": 13536.36, "end": 13539.5, "probability": 0.9989 }, { "start": 13540.68, "end": 13548.56, "probability": 0.9925 }, { "start": 13548.98, "end": 13549.8, "probability": 0.9182 }, { "start": 13550.58, "end": 13556.8, "probability": 0.938 }, { "start": 13556.92, "end": 13558.3, "probability": 0.9907 }, { "start": 13559.04, "end": 13559.53, "probability": 0.9241 }, { "start": 13560.28, "end": 13561.04, "probability": 0.7676 }, { "start": 13562.26, "end": 13563.64, "probability": 0.9079 }, { "start": 13563.88, "end": 13564.4, "probability": 0.7981 }, { "start": 13564.5, "end": 13566.7, "probability": 0.9504 }, { "start": 13568.32, "end": 13570.44, "probability": 0.8929 }, { "start": 13570.58, "end": 13572.04, "probability": 0.9722 }, { "start": 13573.1, "end": 13577.4, "probability": 0.8608 }, { "start": 13577.4, "end": 13581.24, "probability": 0.9948 }, { "start": 13581.9, "end": 13583.1, "probability": 0.8603 }, { "start": 13584.32, "end": 13587.58, "probability": 0.9845 }, { "start": 13587.72, "end": 13588.24, "probability": 0.9912 }, { "start": 13588.44, "end": 13589.37, "probability": 0.9698 }, { "start": 13589.64, "end": 13591.06, "probability": 0.9906 }, { "start": 13591.18, "end": 13592.09, "probability": 0.9912 }, { "start": 13593.68, "end": 13595.88, "probability": 0.5349 }, { "start": 13595.98, "end": 13596.9, "probability": 0.215 }, { "start": 13597.8, "end": 13601.98, "probability": 0.9918 }, { "start": 13602.2, "end": 13604.48, "probability": 0.9625 }, { "start": 13604.56, "end": 13606.3, "probability": 0.9976 }, { "start": 13606.96, "end": 13607.5, "probability": 0.335 }, { "start": 13607.5, "end": 13609.18, "probability": 0.4751 }, { "start": 13609.4, "end": 13611.82, "probability": 0.7383 }, { "start": 13612.2, "end": 13612.22, "probability": 0.009 }, { "start": 13612.22, "end": 13616.44, "probability": 0.9205 }, { "start": 13617.22, "end": 13617.82, "probability": 0.4244 }, { "start": 13618.06, "end": 13618.82, "probability": 0.1051 }, { "start": 13619.9, "end": 13621.88, "probability": 0.7127 }, { "start": 13621.88, "end": 13622.78, "probability": 0.518 }, { "start": 13622.86, "end": 13625.1, "probability": 0.6847 }, { "start": 13625.18, "end": 13627.98, "probability": 0.9028 }, { "start": 13628.32, "end": 13634.14, "probability": 0.9756 }, { "start": 13635.7, "end": 13638.76, "probability": 0.9899 }, { "start": 13638.86, "end": 13640.7, "probability": 0.7515 }, { "start": 13640.98, "end": 13641.44, "probability": 0.953 }, { "start": 13641.92, "end": 13645.72, "probability": 0.8664 }, { "start": 13645.8, "end": 13647.6, "probability": 0.9429 }, { "start": 13648.3, "end": 13649.9, "probability": 0.8896 }, { "start": 13650.54, "end": 13651.42, "probability": 0.9227 }, { "start": 13657.66, "end": 13659.58, "probability": 0.4181 }, { "start": 13667.84, "end": 13669.29, "probability": 0.6662 }, { "start": 13670.22, "end": 13673.86, "probability": 0.9716 }, { "start": 13675.5, "end": 13678.6, "probability": 0.9623 }, { "start": 13679.28, "end": 13682.44, "probability": 0.9728 }, { "start": 13684.72, "end": 13685.1, "probability": 0.5582 }, { "start": 13685.62, "end": 13688.54, "probability": 0.8508 }, { "start": 13689.76, "end": 13692.82, "probability": 0.9938 }, { "start": 13693.58, "end": 13694.26, "probability": 0.0626 }, { "start": 13694.26, "end": 13698.52, "probability": 0.4264 }, { "start": 13698.52, "end": 13699.88, "probability": 0.685 }, { "start": 13700.14, "end": 13704.33, "probability": 0.9219 }, { "start": 13704.76, "end": 13705.66, "probability": 0.9873 }, { "start": 13706.48, "end": 13710.42, "probability": 0.7408 }, { "start": 13710.6, "end": 13713.44, "probability": 0.8462 }, { "start": 13714.74, "end": 13716.46, "probability": 0.9883 }, { "start": 13717.36, "end": 13720.46, "probability": 0.9465 }, { "start": 13722.0, "end": 13730.04, "probability": 0.9727 }, { "start": 13731.08, "end": 13732.2, "probability": 0.9643 }, { "start": 13732.3, "end": 13734.6, "probability": 0.9552 }, { "start": 13734.86, "end": 13736.28, "probability": 0.8171 }, { "start": 13737.36, "end": 13744.91, "probability": 0.9442 }, { "start": 13746.36, "end": 13750.74, "probability": 0.8717 }, { "start": 13751.86, "end": 13755.44, "probability": 0.5343 }, { "start": 13755.68, "end": 13758.5, "probability": 0.9752 }, { "start": 13759.32, "end": 13767.16, "probability": 0.8955 }, { "start": 13767.9, "end": 13774.52, "probability": 0.743 }, { "start": 13775.94, "end": 13776.74, "probability": 0.8492 }, { "start": 13778.52, "end": 13779.4, "probability": 0.3679 }, { "start": 13781.6, "end": 13782.92, "probability": 0.8689 }, { "start": 13784.7, "end": 13785.82, "probability": 0.834 }, { "start": 13786.62, "end": 13790.6, "probability": 0.9777 }, { "start": 13792.2, "end": 13795.74, "probability": 0.846 }, { "start": 13796.3, "end": 13799.78, "probability": 0.9721 }, { "start": 13800.7, "end": 13810.37, "probability": 0.8876 }, { "start": 13811.68, "end": 13812.54, "probability": 0.7664 }, { "start": 13813.8, "end": 13816.16, "probability": 0.9658 }, { "start": 13816.76, "end": 13821.48, "probability": 0.9963 }, { "start": 13822.08, "end": 13823.88, "probability": 0.7672 }, { "start": 13824.24, "end": 13825.12, "probability": 0.6423 }, { "start": 13826.62, "end": 13830.86, "probability": 0.9893 }, { "start": 13831.76, "end": 13834.7, "probability": 0.9064 }, { "start": 13836.22, "end": 13840.04, "probability": 0.9676 }, { "start": 13840.98, "end": 13843.88, "probability": 0.8192 }, { "start": 13844.32, "end": 13845.46, "probability": 0.8495 }, { "start": 13846.26, "end": 13848.8, "probability": 0.994 }, { "start": 13849.5, "end": 13852.96, "probability": 0.9902 }, { "start": 13853.56, "end": 13857.56, "probability": 0.7392 }, { "start": 13857.72, "end": 13861.82, "probability": 0.9061 }, { "start": 13862.08, "end": 13863.2, "probability": 0.9673 }, { "start": 13863.38, "end": 13871.4, "probability": 0.9484 }, { "start": 13871.4, "end": 13878.54, "probability": 0.986 }, { "start": 13879.1, "end": 13883.66, "probability": 0.9342 }, { "start": 13884.3, "end": 13886.34, "probability": 0.8846 }, { "start": 13886.48, "end": 13886.84, "probability": 0.7964 }, { "start": 13887.0, "end": 13889.5, "probability": 0.9085 }, { "start": 13889.64, "end": 13892.14, "probability": 0.8547 }, { "start": 13892.18, "end": 13892.76, "probability": 0.7285 }, { "start": 13892.82, "end": 13894.2, "probability": 0.8462 }, { "start": 13904.82, "end": 13906.08, "probability": 0.9031 }, { "start": 13910.02, "end": 13911.08, "probability": 0.7231 }, { "start": 13911.82, "end": 13914.02, "probability": 0.7591 }, { "start": 13915.62, "end": 13920.04, "probability": 0.8399 }, { "start": 13921.45, "end": 13924.28, "probability": 0.7664 }, { "start": 13924.4, "end": 13926.28, "probability": 0.9201 }, { "start": 13927.28, "end": 13932.44, "probability": 0.9144 }, { "start": 13932.6, "end": 13933.02, "probability": 0.3011 }, { "start": 13933.88, "end": 13934.5, "probability": 0.6866 }, { "start": 13935.06, "end": 13935.6, "probability": 0.8427 }, { "start": 13936.5, "end": 13938.48, "probability": 0.9763 }, { "start": 13938.58, "end": 13938.84, "probability": 0.2162 }, { "start": 13938.9, "end": 13939.52, "probability": 0.6561 }, { "start": 13939.74, "end": 13944.26, "probability": 0.9444 }, { "start": 13944.5, "end": 13946.52, "probability": 0.7822 }, { "start": 13947.2, "end": 13950.66, "probability": 0.6846 }, { "start": 13950.74, "end": 13952.68, "probability": 0.7038 }, { "start": 13953.18, "end": 13956.68, "probability": 0.5743 }, { "start": 13957.6, "end": 13961.48, "probability": 0.9843 }, { "start": 13961.54, "end": 13962.14, "probability": 0.8915 }, { "start": 13962.96, "end": 13963.86, "probability": 0.7712 }, { "start": 13963.96, "end": 13964.74, "probability": 0.9319 }, { "start": 13964.78, "end": 13967.06, "probability": 0.9937 }, { "start": 13968.5, "end": 13970.38, "probability": 0.9762 }, { "start": 13970.5, "end": 13974.42, "probability": 0.9736 }, { "start": 13974.56, "end": 13974.96, "probability": 0.9451 }, { "start": 13975.58, "end": 13976.4, "probability": 0.9078 }, { "start": 13976.92, "end": 13980.64, "probability": 0.9141 }, { "start": 13981.14, "end": 13983.84, "probability": 0.9848 }, { "start": 13984.44, "end": 13985.42, "probability": 0.3334 }, { "start": 13987.76, "end": 13988.08, "probability": 0.0184 }, { "start": 13988.08, "end": 13989.0, "probability": 0.931 }, { "start": 13989.26, "end": 13996.5, "probability": 0.9241 }, { "start": 13996.66, "end": 13997.8, "probability": 0.9805 }, { "start": 13998.56, "end": 14000.56, "probability": 0.9106 }, { "start": 14001.32, "end": 14004.92, "probability": 0.8813 }, { "start": 14005.22, "end": 14007.54, "probability": 0.89 }, { "start": 14007.68, "end": 14007.96, "probability": 0.7779 }, { "start": 14008.5, "end": 14009.98, "probability": 0.729 }, { "start": 14010.6, "end": 14014.48, "probability": 0.9356 }, { "start": 14014.98, "end": 14018.21, "probability": 0.9924 }, { "start": 14019.04, "end": 14021.7, "probability": 0.9035 }, { "start": 14022.9, "end": 14024.68, "probability": 0.6698 }, { "start": 14025.28, "end": 14027.92, "probability": 0.5706 }, { "start": 14028.0, "end": 14031.66, "probability": 0.907 }, { "start": 14032.12, "end": 14035.44, "probability": 0.635 }, { "start": 14035.7, "end": 14036.5, "probability": 0.9252 }, { "start": 14037.14, "end": 14040.14, "probability": 0.9939 }, { "start": 14041.38, "end": 14041.78, "probability": 0.8546 }, { "start": 14041.84, "end": 14043.84, "probability": 0.9771 }, { "start": 14044.1, "end": 14045.06, "probability": 0.3854 }, { "start": 14045.2, "end": 14046.3, "probability": 0.613 }, { "start": 14046.52, "end": 14047.5, "probability": 0.9037 }, { "start": 14048.14, "end": 14051.12, "probability": 0.9679 }, { "start": 14051.84, "end": 14054.44, "probability": 0.9756 }, { "start": 14055.36, "end": 14057.36, "probability": 0.9976 }, { "start": 14057.46, "end": 14058.3, "probability": 0.9814 }, { "start": 14058.68, "end": 14059.26, "probability": 0.7119 }, { "start": 14059.82, "end": 14061.1, "probability": 0.8477 }, { "start": 14061.74, "end": 14062.69, "probability": 0.9611 }, { "start": 14063.32, "end": 14064.92, "probability": 0.9578 }, { "start": 14065.74, "end": 14068.06, "probability": 0.9066 }, { "start": 14068.82, "end": 14070.98, "probability": 0.8172 }, { "start": 14071.4, "end": 14073.14, "probability": 0.9948 }, { "start": 14073.58, "end": 14076.32, "probability": 0.809 }, { "start": 14076.32, "end": 14079.8, "probability": 0.9768 }, { "start": 14080.3, "end": 14081.82, "probability": 0.9964 }, { "start": 14081.92, "end": 14082.3, "probability": 0.4974 }, { "start": 14082.54, "end": 14084.59, "probability": 0.9638 }, { "start": 14085.44, "end": 14088.66, "probability": 0.7082 }, { "start": 14089.54, "end": 14091.7, "probability": 0.9448 }, { "start": 14091.82, "end": 14095.94, "probability": 0.886 }, { "start": 14096.87, "end": 14103.66, "probability": 0.7437 }, { "start": 14104.08, "end": 14104.8, "probability": 0.6144 }, { "start": 14104.86, "end": 14105.98, "probability": 0.7383 }, { "start": 14106.66, "end": 14106.92, "probability": 0.2879 }, { "start": 14106.92, "end": 14108.88, "probability": 0.969 }, { "start": 14109.14, "end": 14113.4, "probability": 0.8584 }, { "start": 14114.52, "end": 14115.46, "probability": 0.8759 }, { "start": 14126.8, "end": 14129.14, "probability": 0.8884 }, { "start": 14135.68, "end": 14136.84, "probability": 0.7246 }, { "start": 14137.5, "end": 14138.46, "probability": 0.9016 }, { "start": 14140.16, "end": 14141.44, "probability": 0.7863 }, { "start": 14143.96, "end": 14146.84, "probability": 0.7259 }, { "start": 14147.4, "end": 14151.78, "probability": 0.9926 }, { "start": 14153.1, "end": 14153.72, "probability": 0.6143 }, { "start": 14154.24, "end": 14156.48, "probability": 0.9297 }, { "start": 14157.84, "end": 14159.6, "probability": 0.9744 }, { "start": 14159.9, "end": 14162.26, "probability": 0.6961 }, { "start": 14163.52, "end": 14166.01, "probability": 0.9244 }, { "start": 14166.56, "end": 14167.72, "probability": 0.7135 }, { "start": 14167.88, "end": 14168.64, "probability": 0.4881 }, { "start": 14168.84, "end": 14168.86, "probability": 0.9014 }, { "start": 14170.26, "end": 14171.82, "probability": 0.9832 }, { "start": 14173.14, "end": 14176.52, "probability": 0.8769 }, { "start": 14176.52, "end": 14181.12, "probability": 0.791 }, { "start": 14181.48, "end": 14182.72, "probability": 0.7474 }, { "start": 14185.24, "end": 14186.28, "probability": 0.4797 }, { "start": 14187.84, "end": 14189.78, "probability": 0.7616 }, { "start": 14189.88, "end": 14190.92, "probability": 0.4566 }, { "start": 14190.98, "end": 14191.48, "probability": 0.6033 }, { "start": 14191.76, "end": 14192.69, "probability": 0.5801 }, { "start": 14192.9, "end": 14194.98, "probability": 0.3992 }, { "start": 14195.02, "end": 14196.7, "probability": 0.7975 }, { "start": 14196.72, "end": 14199.32, "probability": 0.5156 }, { "start": 14201.08, "end": 14204.16, "probability": 0.619 }, { "start": 14205.88, "end": 14207.68, "probability": 0.9232 }, { "start": 14207.9, "end": 14211.4, "probability": 0.8975 }, { "start": 14211.66, "end": 14211.84, "probability": 0.5505 }, { "start": 14212.02, "end": 14212.8, "probability": 0.4574 }, { "start": 14212.8, "end": 14217.24, "probability": 0.8613 }, { "start": 14217.46, "end": 14220.88, "probability": 0.6586 }, { "start": 14221.06, "end": 14223.42, "probability": 0.4992 }, { "start": 14223.5, "end": 14224.46, "probability": 0.2775 }, { "start": 14224.58, "end": 14227.16, "probability": 0.6039 }, { "start": 14227.24, "end": 14228.96, "probability": 0.7194 }, { "start": 14229.0, "end": 14229.43, "probability": 0.7595 }, { "start": 14229.8, "end": 14230.1, "probability": 0.2915 }, { "start": 14230.2, "end": 14230.68, "probability": 0.8205 }, { "start": 14231.0, "end": 14231.6, "probability": 0.5984 }, { "start": 14231.7, "end": 14236.6, "probability": 0.9797 }, { "start": 14236.66, "end": 14237.56, "probability": 0.9998 }, { "start": 14238.58, "end": 14243.22, "probability": 0.8917 }, { "start": 14244.62, "end": 14246.08, "probability": 0.7702 }, { "start": 14247.22, "end": 14248.92, "probability": 0.9806 }, { "start": 14249.48, "end": 14251.12, "probability": 0.9881 }, { "start": 14251.22, "end": 14253.18, "probability": 0.9023 }, { "start": 14253.36, "end": 14254.06, "probability": 0.9963 }, { "start": 14254.88, "end": 14255.48, "probability": 0.9793 }, { "start": 14256.8, "end": 14258.44, "probability": 0.9945 }, { "start": 14259.5, "end": 14263.52, "probability": 0.674 }, { "start": 14263.56, "end": 14265.36, "probability": 0.9857 }, { "start": 14265.7, "end": 14268.34, "probability": 0.9824 }, { "start": 14268.48, "end": 14269.29, "probability": 0.761 }, { "start": 14270.74, "end": 14272.78, "probability": 0.998 }, { "start": 14273.68, "end": 14278.2, "probability": 0.9212 }, { "start": 14278.34, "end": 14278.74, "probability": 0.7523 }, { "start": 14279.46, "end": 14280.3, "probability": 0.9554 }, { "start": 14281.02, "end": 14282.26, "probability": 0.984 }, { "start": 14283.72, "end": 14286.92, "probability": 0.9677 }, { "start": 14286.96, "end": 14288.2, "probability": 0.7355 }, { "start": 14288.98, "end": 14291.98, "probability": 0.9922 }, { "start": 14292.58, "end": 14296.98, "probability": 0.7785 }, { "start": 14297.42, "end": 14300.64, "probability": 0.9966 }, { "start": 14301.46, "end": 14302.64, "probability": 0.9448 }, { "start": 14302.7, "end": 14305.88, "probability": 0.8378 }, { "start": 14305.88, "end": 14308.54, "probability": 0.9805 }, { "start": 14309.7, "end": 14310.0, "probability": 0.8956 }, { "start": 14310.16, "end": 14315.18, "probability": 0.9922 }, { "start": 14315.72, "end": 14317.24, "probability": 0.7212 }, { "start": 14318.16, "end": 14321.0, "probability": 0.8572 }, { "start": 14321.16, "end": 14324.34, "probability": 0.9636 }, { "start": 14324.5, "end": 14325.88, "probability": 0.6355 }, { "start": 14326.04, "end": 14327.22, "probability": 0.9656 }, { "start": 14328.6, "end": 14330.98, "probability": 0.9932 }, { "start": 14330.99, "end": 14333.56, "probability": 0.9703 }, { "start": 14334.0, "end": 14335.68, "probability": 0.9552 }, { "start": 14335.7, "end": 14338.62, "probability": 0.8809 }, { "start": 14340.0, "end": 14342.08, "probability": 0.9279 }, { "start": 14342.26, "end": 14342.72, "probability": 0.8007 }, { "start": 14342.8, "end": 14343.58, "probability": 0.8175 }, { "start": 14343.66, "end": 14344.2, "probability": 0.973 }, { "start": 14344.82, "end": 14346.46, "probability": 0.6628 }, { "start": 14348.32, "end": 14352.32, "probability": 0.9849 }, { "start": 14352.58, "end": 14357.3, "probability": 0.9914 }, { "start": 14358.52, "end": 14360.98, "probability": 0.9289 }, { "start": 14361.14, "end": 14361.36, "probability": 0.6265 }, { "start": 14361.36, "end": 14365.02, "probability": 0.9849 }, { "start": 14366.5, "end": 14368.88, "probability": 0.9829 }, { "start": 14370.3, "end": 14372.98, "probability": 0.9685 }, { "start": 14373.24, "end": 14376.52, "probability": 0.9972 }, { "start": 14376.52, "end": 14379.13, "probability": 0.9979 }, { "start": 14380.12, "end": 14385.86, "probability": 0.9957 }, { "start": 14386.02, "end": 14386.4, "probability": 0.7132 }, { "start": 14386.92, "end": 14390.96, "probability": 0.8037 }, { "start": 14392.96, "end": 14393.18, "probability": 0.008 }, { "start": 14393.18, "end": 14394.38, "probability": 0.5127 }, { "start": 14394.5, "end": 14397.62, "probability": 0.6322 }, { "start": 14398.68, "end": 14401.18, "probability": 0.9777 }, { "start": 14401.66, "end": 14402.9, "probability": 0.8921 }, { "start": 14403.42, "end": 14404.24, "probability": 0.7929 }, { "start": 14406.24, "end": 14408.8, "probability": 0.9885 }, { "start": 14408.92, "end": 14414.6, "probability": 0.9957 }, { "start": 14414.76, "end": 14416.12, "probability": 0.9106 }, { "start": 14416.78, "end": 14418.24, "probability": 0.8227 }, { "start": 14419.32, "end": 14420.52, "probability": 0.7007 }, { "start": 14420.54, "end": 14425.58, "probability": 0.9712 }, { "start": 14425.62, "end": 14426.9, "probability": 0.6478 }, { "start": 14427.44, "end": 14428.16, "probability": 0.9261 }, { "start": 14429.02, "end": 14429.36, "probability": 0.5553 }, { "start": 14429.44, "end": 14430.52, "probability": 0.7398 }, { "start": 14430.6, "end": 14431.28, "probability": 0.2467 }, { "start": 14431.28, "end": 14432.2, "probability": 0.63 }, { "start": 14432.3, "end": 14433.34, "probability": 0.8634 }, { "start": 14433.54, "end": 14433.98, "probability": 0.7104 }, { "start": 14435.73, "end": 14437.56, "probability": 0.811 }, { "start": 14437.64, "end": 14438.26, "probability": 0.9372 }, { "start": 14438.34, "end": 14438.64, "probability": 0.8008 }, { "start": 14438.88, "end": 14439.04, "probability": 0.8687 }, { "start": 14440.14, "end": 14442.28, "probability": 0.9499 }, { "start": 14442.32, "end": 14446.56, "probability": 0.825 }, { "start": 14447.14, "end": 14449.88, "probability": 0.6738 }, { "start": 14456.54, "end": 14458.3, "probability": 0.7236 }, { "start": 14459.66, "end": 14460.36, "probability": 0.7631 }, { "start": 14460.9, "end": 14464.0, "probability": 0.8586 }, { "start": 14464.04, "end": 14466.24, "probability": 0.9902 }, { "start": 14467.1, "end": 14468.4, "probability": 0.4991 }, { "start": 14468.72, "end": 14468.72, "probability": 0.319 }, { "start": 14468.72, "end": 14469.94, "probability": 0.4756 }, { "start": 14470.02, "end": 14470.64, "probability": 0.7688 }, { "start": 14472.18, "end": 14475.42, "probability": 0.8912 }, { "start": 14475.58, "end": 14478.68, "probability": 0.9545 }, { "start": 14479.66, "end": 14483.66, "probability": 0.8091 }, { "start": 14484.7, "end": 14487.62, "probability": 0.9985 }, { "start": 14487.92, "end": 14489.94, "probability": 0.9722 }, { "start": 14490.1, "end": 14494.04, "probability": 0.9963 }, { "start": 14494.9, "end": 14496.78, "probability": 0.8701 }, { "start": 14497.52, "end": 14502.84, "probability": 0.9017 }, { "start": 14503.06, "end": 14504.84, "probability": 0.9844 }, { "start": 14505.7, "end": 14508.96, "probability": 0.8569 }, { "start": 14510.24, "end": 14510.56, "probability": 0.5029 }, { "start": 14510.68, "end": 14513.34, "probability": 0.9813 }, { "start": 14513.84, "end": 14515.32, "probability": 0.8149 }, { "start": 14515.44, "end": 14521.66, "probability": 0.9457 }, { "start": 14522.56, "end": 14528.64, "probability": 0.7962 }, { "start": 14529.64, "end": 14533.8, "probability": 0.9911 }, { "start": 14533.8, "end": 14540.0, "probability": 0.9789 }, { "start": 14540.2, "end": 14543.0, "probability": 0.9846 }, { "start": 14543.52, "end": 14545.68, "probability": 0.999 }, { "start": 14546.54, "end": 14552.86, "probability": 0.9924 }, { "start": 14553.78, "end": 14556.82, "probability": 0.9712 }, { "start": 14557.42, "end": 14559.12, "probability": 0.8678 }, { "start": 14559.78, "end": 14566.14, "probability": 0.9822 }, { "start": 14566.78, "end": 14567.58, "probability": 0.9412 }, { "start": 14567.92, "end": 14568.86, "probability": 0.6283 }, { "start": 14568.92, "end": 14571.24, "probability": 0.9897 }, { "start": 14571.4, "end": 14571.74, "probability": 0.6978 }, { "start": 14572.0, "end": 14572.7, "probability": 0.9739 }, { "start": 14573.34, "end": 14574.52, "probability": 0.9536 }, { "start": 14574.66, "end": 14576.44, "probability": 0.9857 }, { "start": 14576.9, "end": 14579.16, "probability": 0.8716 }, { "start": 14579.46, "end": 14580.42, "probability": 0.8153 }, { "start": 14581.32, "end": 14586.42, "probability": 0.9602 }, { "start": 14587.14, "end": 14590.16, "probability": 0.9963 }, { "start": 14590.16, "end": 14593.94, "probability": 0.9922 }, { "start": 14595.18, "end": 14598.3, "probability": 0.9904 }, { "start": 14598.96, "end": 14600.52, "probability": 0.9791 }, { "start": 14600.64, "end": 14606.0, "probability": 0.9719 }, { "start": 14606.18, "end": 14607.54, "probability": 0.9714 }, { "start": 14607.86, "end": 14609.98, "probability": 0.9109 }, { "start": 14611.12, "end": 14611.38, "probability": 0.4555 }, { "start": 14611.6, "end": 14611.98, "probability": 0.8419 }, { "start": 14612.08, "end": 14614.6, "probability": 0.9626 }, { "start": 14615.52, "end": 14618.22, "probability": 0.8074 }, { "start": 14618.32, "end": 14620.7, "probability": 0.6664 }, { "start": 14621.0, "end": 14623.14, "probability": 0.9646 }, { "start": 14623.8, "end": 14624.52, "probability": 0.7857 }, { "start": 14624.88, "end": 14626.02, "probability": 0.9838 }, { "start": 14626.66, "end": 14633.04, "probability": 0.9941 }, { "start": 14633.04, "end": 14639.2, "probability": 0.9307 }, { "start": 14639.26, "end": 14641.88, "probability": 0.9978 }, { "start": 14642.76, "end": 14649.58, "probability": 0.8857 }, { "start": 14650.56, "end": 14653.58, "probability": 0.957 }, { "start": 14654.46, "end": 14656.36, "probability": 0.98 }, { "start": 14656.82, "end": 14662.5, "probability": 0.9702 }, { "start": 14663.14, "end": 14664.76, "probability": 0.6043 }, { "start": 14665.88, "end": 14669.04, "probability": 0.9962 }, { "start": 14670.3, "end": 14671.44, "probability": 0.9941 }, { "start": 14671.98, "end": 14673.02, "probability": 0.7134 }, { "start": 14673.42, "end": 14675.74, "probability": 0.9924 }, { "start": 14676.02, "end": 14677.12, "probability": 0.8105 }, { "start": 14678.76, "end": 14680.56, "probability": 0.8212 }, { "start": 14681.54, "end": 14685.48, "probability": 0.9863 }, { "start": 14688.5, "end": 14694.38, "probability": 0.9951 }, { "start": 14695.14, "end": 14697.74, "probability": 0.8807 }, { "start": 14698.12, "end": 14699.22, "probability": 0.8877 }, { "start": 14699.84, "end": 14703.76, "probability": 0.9985 }, { "start": 14704.64, "end": 14705.84, "probability": 0.8162 }, { "start": 14706.5, "end": 14707.24, "probability": 0.8816 }, { "start": 14707.64, "end": 14712.1, "probability": 0.9935 }, { "start": 14712.26, "end": 14715.82, "probability": 0.9499 }, { "start": 14716.34, "end": 14719.28, "probability": 0.7013 }, { "start": 14719.66, "end": 14722.46, "probability": 0.9757 }, { "start": 14723.8, "end": 14724.94, "probability": 0.7935 }, { "start": 14725.32, "end": 14726.18, "probability": 0.7354 }, { "start": 14726.56, "end": 14729.38, "probability": 0.96 }, { "start": 14729.86, "end": 14730.42, "probability": 0.2957 }, { "start": 14730.44, "end": 14732.52, "probability": 0.4937 }, { "start": 14733.56, "end": 14735.64, "probability": 0.9321 }, { "start": 14735.9, "end": 14738.76, "probability": 0.8778 }, { "start": 14738.94, "end": 14743.18, "probability": 0.6884 }, { "start": 14763.72, "end": 14765.72, "probability": 0.7179 }, { "start": 14766.92, "end": 14770.82, "probability": 0.9235 }, { "start": 14771.66, "end": 14775.2, "probability": 0.9938 }, { "start": 14775.2, "end": 14776.98, "probability": 0.9854 }, { "start": 14778.78, "end": 14779.56, "probability": 0.5639 }, { "start": 14779.72, "end": 14784.42, "probability": 0.9725 }, { "start": 14784.58, "end": 14786.52, "probability": 0.9237 }, { "start": 14786.6, "end": 14788.9, "probability": 0.9822 }, { "start": 14790.34, "end": 14795.24, "probability": 0.9083 }, { "start": 14795.38, "end": 14795.54, "probability": 0.6771 }, { "start": 14796.42, "end": 14798.2, "probability": 0.9844 }, { "start": 14799.32, "end": 14799.72, "probability": 0.5546 }, { "start": 14799.72, "end": 14803.1, "probability": 0.9968 }, { "start": 14803.1, "end": 14807.74, "probability": 0.9583 }, { "start": 14808.22, "end": 14809.18, "probability": 0.8127 }, { "start": 14809.79, "end": 14811.36, "probability": 0.9976 }, { "start": 14812.36, "end": 14814.56, "probability": 0.524 }, { "start": 14814.88, "end": 14815.7, "probability": 0.825 }, { "start": 14816.42, "end": 14816.96, "probability": 0.9166 }, { "start": 14817.12, "end": 14818.2, "probability": 0.9395 }, { "start": 14818.38, "end": 14821.32, "probability": 0.9268 }, { "start": 14821.4, "end": 14822.06, "probability": 0.9634 }, { "start": 14822.84, "end": 14823.32, "probability": 0.9495 }, { "start": 14824.36, "end": 14827.64, "probability": 0.9798 }, { "start": 14828.16, "end": 14830.0, "probability": 0.8619 }, { "start": 14830.56, "end": 14832.26, "probability": 0.9772 }, { "start": 14833.12, "end": 14834.3, "probability": 0.9882 }, { "start": 14834.94, "end": 14836.28, "probability": 0.9634 }, { "start": 14840.78, "end": 14844.64, "probability": 0.9971 }, { "start": 14845.18, "end": 14848.7, "probability": 0.9979 }, { "start": 14850.5, "end": 14855.08, "probability": 0.9945 }, { "start": 14855.82, "end": 14858.84, "probability": 0.7909 }, { "start": 14859.46, "end": 14861.12, "probability": 0.9185 }, { "start": 14861.82, "end": 14864.06, "probability": 0.7495 }, { "start": 14865.72, "end": 14867.1, "probability": 0.7587 }, { "start": 14867.62, "end": 14869.38, "probability": 0.6657 }, { "start": 14869.68, "end": 14871.26, "probability": 0.838 }, { "start": 14872.08, "end": 14876.56, "probability": 0.9859 }, { "start": 14876.68, "end": 14877.14, "probability": 0.9126 }, { "start": 14878.42, "end": 14879.58, "probability": 0.9697 }, { "start": 14880.36, "end": 14886.04, "probability": 0.9485 }, { "start": 14886.26, "end": 14889.06, "probability": 0.9634 }, { "start": 14889.58, "end": 14889.84, "probability": 0.8698 }, { "start": 14889.9, "end": 14894.56, "probability": 0.835 }, { "start": 14897.8, "end": 14899.72, "probability": 0.9685 }, { "start": 14899.92, "end": 14900.46, "probability": 0.7167 }, { "start": 14901.46, "end": 14906.02, "probability": 0.978 }, { "start": 14906.1, "end": 14906.98, "probability": 0.9167 }, { "start": 14907.26, "end": 14910.92, "probability": 0.9593 }, { "start": 14912.7, "end": 14915.55, "probability": 0.987 }, { "start": 14917.58, "end": 14919.02, "probability": 0.9525 }, { "start": 14921.14, "end": 14925.98, "probability": 0.9997 }, { "start": 14928.22, "end": 14930.12, "probability": 0.9996 }, { "start": 14931.08, "end": 14934.02, "probability": 0.9682 }, { "start": 14936.56, "end": 14941.68, "probability": 0.996 }, { "start": 14942.34, "end": 14943.8, "probability": 0.8844 }, { "start": 14944.04, "end": 14944.62, "probability": 0.9854 }, { "start": 14945.38, "end": 14946.88, "probability": 0.7607 }, { "start": 14947.8, "end": 14949.52, "probability": 0.8937 }, { "start": 14949.72, "end": 14950.4, "probability": 0.9478 }, { "start": 14951.44, "end": 14952.54, "probability": 0.9635 }, { "start": 14952.62, "end": 14955.22, "probability": 0.9734 }, { "start": 14955.88, "end": 14959.98, "probability": 0.9427 }, { "start": 14961.04, "end": 14966.5, "probability": 0.9309 }, { "start": 14967.46, "end": 14972.5, "probability": 0.9355 }, { "start": 14973.61, "end": 14976.88, "probability": 0.8998 }, { "start": 14977.32, "end": 14979.12, "probability": 0.9893 }, { "start": 14979.12, "end": 14981.5, "probability": 0.9976 }, { "start": 14982.5, "end": 14983.1, "probability": 0.9342 }, { "start": 14983.88, "end": 14984.88, "probability": 0.5902 }, { "start": 14985.92, "end": 14990.14, "probability": 0.9863 }, { "start": 14992.06, "end": 14997.62, "probability": 0.9968 }, { "start": 14998.28, "end": 15000.56, "probability": 0.9987 }, { "start": 15002.22, "end": 15004.52, "probability": 0.985 }, { "start": 15005.42, "end": 15007.58, "probability": 0.9937 }, { "start": 15007.7, "end": 15008.7, "probability": 0.8472 }, { "start": 15009.18, "end": 15009.48, "probability": 0.8661 }, { "start": 15010.46, "end": 15013.9, "probability": 0.9125 }, { "start": 15014.6, "end": 15015.8, "probability": 0.7228 }, { "start": 15015.92, "end": 15017.14, "probability": 0.8478 }, { "start": 15017.24, "end": 15018.28, "probability": 0.7654 }, { "start": 15019.92, "end": 15023.58, "probability": 0.9919 }, { "start": 15024.2, "end": 15027.08, "probability": 0.9917 }, { "start": 15027.3, "end": 15029.94, "probability": 0.6665 }, { "start": 15030.14, "end": 15031.7, "probability": 0.9222 }, { "start": 15032.2, "end": 15034.62, "probability": 0.9937 }, { "start": 15035.0, "end": 15036.54, "probability": 0.372 }, { "start": 15036.62, "end": 15038.38, "probability": 0.6637 }, { "start": 15038.52, "end": 15041.4, "probability": 0.9971 }, { "start": 15041.74, "end": 15042.24, "probability": 0.3657 }, { "start": 15043.54, "end": 15046.16, "probability": 0.9979 }, { "start": 15047.72, "end": 15049.3, "probability": 0.6362 }, { "start": 15049.42, "end": 15051.96, "probability": 0.9985 }, { "start": 15052.72, "end": 15053.42, "probability": 0.9961 }, { "start": 15054.0, "end": 15055.58, "probability": 0.936 }, { "start": 15056.54, "end": 15057.62, "probability": 0.7924 }, { "start": 15058.8, "end": 15061.01, "probability": 0.9961 }, { "start": 15062.46, "end": 15063.18, "probability": 0.8252 }, { "start": 15063.71, "end": 15066.34, "probability": 0.6641 }, { "start": 15066.4, "end": 15068.24, "probability": 0.9591 }, { "start": 15069.0, "end": 15070.66, "probability": 0.995 }, { "start": 15073.04, "end": 15076.5, "probability": 0.978 }, { "start": 15078.66, "end": 15080.76, "probability": 0.9194 }, { "start": 15082.84, "end": 15083.43, "probability": 0.9303 }, { "start": 15084.76, "end": 15086.7, "probability": 0.9178 }, { "start": 15087.04, "end": 15091.28, "probability": 0.9197 }, { "start": 15094.56, "end": 15097.76, "probability": 0.9132 }, { "start": 15099.24, "end": 15100.92, "probability": 0.996 }, { "start": 15100.96, "end": 15103.32, "probability": 0.9383 }, { "start": 15104.6, "end": 15105.34, "probability": 0.9359 }, { "start": 15105.76, "end": 15108.62, "probability": 0.9971 }, { "start": 15109.42, "end": 15111.91, "probability": 0.9574 }, { "start": 15112.16, "end": 15113.76, "probability": 0.9451 }, { "start": 15113.78, "end": 15116.08, "probability": 0.9882 }, { "start": 15116.62, "end": 15121.86, "probability": 0.9824 }, { "start": 15121.92, "end": 15122.82, "probability": 0.9075 }, { "start": 15124.12, "end": 15125.52, "probability": 0.976 }, { "start": 15126.46, "end": 15127.12, "probability": 0.7715 }, { "start": 15130.12, "end": 15131.24, "probability": 0.5157 }, { "start": 15133.12, "end": 15137.91, "probability": 0.979 }, { "start": 15139.2, "end": 15139.83, "probability": 0.9379 }, { "start": 15141.22, "end": 15143.56, "probability": 0.929 }, { "start": 15143.68, "end": 15145.92, "probability": 0.8329 }, { "start": 15146.5, "end": 15147.46, "probability": 0.6733 }, { "start": 15150.02, "end": 15150.76, "probability": 0.2158 }, { "start": 15151.46, "end": 15153.14, "probability": 0.6128 }, { "start": 15156.42, "end": 15159.62, "probability": 0.9989 }, { "start": 15160.66, "end": 15162.48, "probability": 0.9854 }, { "start": 15163.06, "end": 15163.22, "probability": 0.8755 }, { "start": 15164.72, "end": 15169.3, "probability": 0.9937 }, { "start": 15169.58, "end": 15173.38, "probability": 0.9967 }, { "start": 15173.48, "end": 15178.36, "probability": 0.9981 }, { "start": 15178.74, "end": 15181.48, "probability": 0.9146 }, { "start": 15182.26, "end": 15183.52, "probability": 0.7037 }, { "start": 15183.72, "end": 15185.46, "probability": 0.9764 }, { "start": 15185.9, "end": 15187.22, "probability": 0.7698 }, { "start": 15187.64, "end": 15188.59, "probability": 0.7806 }, { "start": 15188.78, "end": 15190.33, "probability": 0.854 }, { "start": 15191.12, "end": 15194.3, "probability": 0.9751 }, { "start": 15195.24, "end": 15196.6, "probability": 0.9798 }, { "start": 15197.88, "end": 15200.5, "probability": 0.9906 }, { "start": 15203.76, "end": 15206.56, "probability": 0.9014 }, { "start": 15207.12, "end": 15209.3, "probability": 0.8572 }, { "start": 15210.02, "end": 15214.08, "probability": 0.9473 }, { "start": 15214.32, "end": 15214.82, "probability": 0.4915 }, { "start": 15215.04, "end": 15215.46, "probability": 0.543 }, { "start": 15216.58, "end": 15219.52, "probability": 0.6015 }, { "start": 15220.62, "end": 15221.32, "probability": 0.8269 }, { "start": 15221.6, "end": 15226.2, "probability": 0.9641 }, { "start": 15226.34, "end": 15226.92, "probability": 0.8735 }, { "start": 15228.28, "end": 15230.52, "probability": 0.5592 }, { "start": 15231.38, "end": 15233.04, "probability": 0.6647 }, { "start": 15235.1, "end": 15239.36, "probability": 0.9937 }, { "start": 15239.68, "end": 15241.16, "probability": 0.998 }, { "start": 15242.3, "end": 15244.74, "probability": 0.9485 }, { "start": 15244.8, "end": 15246.2, "probability": 0.9868 }, { "start": 15247.26, "end": 15250.4, "probability": 0.9746 }, { "start": 15252.42, "end": 15253.26, "probability": 0.6658 }, { "start": 15256.1, "end": 15258.26, "probability": 0.9673 }, { "start": 15259.48, "end": 15264.44, "probability": 0.7901 }, { "start": 15265.48, "end": 15267.84, "probability": 0.9964 }, { "start": 15270.0, "end": 15273.4, "probability": 0.9979 }, { "start": 15273.48, "end": 15273.98, "probability": 0.9597 }, { "start": 15274.42, "end": 15275.12, "probability": 0.8125 }, { "start": 15276.1, "end": 15278.72, "probability": 0.9109 }, { "start": 15279.56, "end": 15281.54, "probability": 0.9589 }, { "start": 15282.22, "end": 15286.08, "probability": 0.9705 }, { "start": 15286.88, "end": 15287.32, "probability": 0.96 }, { "start": 15288.6, "end": 15290.56, "probability": 0.9729 }, { "start": 15291.68, "end": 15292.38, "probability": 0.5845 }, { "start": 15292.82, "end": 15294.2, "probability": 0.8835 }, { "start": 15295.56, "end": 15296.06, "probability": 0.498 }, { "start": 15299.4, "end": 15302.13, "probability": 0.9895 }, { "start": 15302.32, "end": 15302.64, "probability": 0.7715 }, { "start": 15302.74, "end": 15305.38, "probability": 0.9985 }, { "start": 15306.82, "end": 15307.8, "probability": 0.583 }, { "start": 15308.76, "end": 15310.3, "probability": 0.9344 }, { "start": 15311.7, "end": 15316.16, "probability": 0.9936 }, { "start": 15318.08, "end": 15319.3, "probability": 0.5953 }, { "start": 15319.88, "end": 15321.26, "probability": 0.9412 }, { "start": 15321.56, "end": 15323.98, "probability": 0.9909 }, { "start": 15327.3, "end": 15328.86, "probability": 0.796 }, { "start": 15328.94, "end": 15331.44, "probability": 0.9557 }, { "start": 15332.4, "end": 15332.58, "probability": 0.5533 }, { "start": 15332.64, "end": 15335.4, "probability": 0.8937 }, { "start": 15335.52, "end": 15335.88, "probability": 0.4993 }, { "start": 15335.92, "end": 15337.56, "probability": 0.9858 }, { "start": 15340.11, "end": 15341.14, "probability": 0.9333 }, { "start": 15341.74, "end": 15341.82, "probability": 0.1819 }, { "start": 15341.82, "end": 15342.36, "probability": 0.7475 }, { "start": 15342.94, "end": 15344.2, "probability": 0.9998 }, { "start": 15344.72, "end": 15346.56, "probability": 0.9576 }, { "start": 15347.92, "end": 15352.2, "probability": 0.914 }, { "start": 15352.2, "end": 15354.66, "probability": 0.9581 }, { "start": 15355.26, "end": 15357.48, "probability": 0.9995 }, { "start": 15357.6, "end": 15360.56, "probability": 0.9816 }, { "start": 15361.66, "end": 15365.12, "probability": 0.9745 }, { "start": 15365.82, "end": 15369.18, "probability": 0.8965 }, { "start": 15370.8, "end": 15374.76, "probability": 0.8709 }, { "start": 15375.4, "end": 15376.5, "probability": 0.877 }, { "start": 15377.84, "end": 15380.96, "probability": 0.9565 }, { "start": 15383.26, "end": 15384.88, "probability": 0.8474 }, { "start": 15384.96, "end": 15385.7, "probability": 0.7573 }, { "start": 15385.78, "end": 15388.7, "probability": 0.947 }, { "start": 15391.78, "end": 15392.2, "probability": 0.2631 }, { "start": 15392.68, "end": 15400.34, "probability": 0.6673 }, { "start": 15400.34, "end": 15402.96, "probability": 0.9988 }, { "start": 15407.92, "end": 15410.02, "probability": 0.9839 }, { "start": 15412.28, "end": 15413.46, "probability": 0.8943 }, { "start": 15415.52, "end": 15418.92, "probability": 0.96 }, { "start": 15418.92, "end": 15421.44, "probability": 0.9989 }, { "start": 15423.44, "end": 15424.04, "probability": 0.7487 }, { "start": 15424.36, "end": 15427.34, "probability": 0.8798 }, { "start": 15429.12, "end": 15429.82, "probability": 0.6763 }, { "start": 15429.94, "end": 15431.86, "probability": 0.6601 }, { "start": 15432.0, "end": 15435.8, "probability": 0.7344 }, { "start": 15436.06, "end": 15437.26, "probability": 0.7766 }, { "start": 15437.74, "end": 15439.58, "probability": 0.8706 }, { "start": 15441.18, "end": 15442.5, "probability": 0.8542 }, { "start": 15443.3, "end": 15444.4, "probability": 0.9829 }, { "start": 15444.46, "end": 15445.08, "probability": 0.7062 }, { "start": 15445.14, "end": 15448.76, "probability": 0.6871 }, { "start": 15451.7, "end": 15453.0, "probability": 0.9855 }, { "start": 15453.12, "end": 15455.6, "probability": 0.7109 }, { "start": 15456.82, "end": 15459.36, "probability": 0.8463 }, { "start": 15459.9, "end": 15462.8, "probability": 0.963 }, { "start": 15464.08, "end": 15465.38, "probability": 0.9121 }, { "start": 15467.24, "end": 15468.46, "probability": 0.9968 }, { "start": 15470.38, "end": 15471.36, "probability": 0.9518 }, { "start": 15472.62, "end": 15474.02, "probability": 0.9927 }, { "start": 15474.3, "end": 15474.93, "probability": 0.8763 }, { "start": 15476.66, "end": 15479.34, "probability": 0.9478 }, { "start": 15480.44, "end": 15481.91, "probability": 0.9985 }, { "start": 15483.52, "end": 15484.34, "probability": 0.7519 }, { "start": 15485.84, "end": 15487.0, "probability": 0.9006 }, { "start": 15488.26, "end": 15489.84, "probability": 0.7031 }, { "start": 15489.92, "end": 15496.24, "probability": 0.9937 }, { "start": 15497.6, "end": 15500.8, "probability": 0.9979 }, { "start": 15501.74, "end": 15504.26, "probability": 0.7436 }, { "start": 15504.46, "end": 15504.98, "probability": 0.9235 }, { "start": 15507.2, "end": 15508.73, "probability": 0.8732 }, { "start": 15509.78, "end": 15511.94, "probability": 0.8894 }, { "start": 15513.2, "end": 15516.2, "probability": 0.9826 }, { "start": 15516.88, "end": 15517.48, "probability": 0.8828 }, { "start": 15517.56, "end": 15520.44, "probability": 0.9902 }, { "start": 15520.96, "end": 15522.48, "probability": 0.9917 }, { "start": 15525.44, "end": 15528.6, "probability": 0.9817 }, { "start": 15530.14, "end": 15532.78, "probability": 0.9968 }, { "start": 15533.72, "end": 15534.4, "probability": 0.9142 }, { "start": 15535.9, "end": 15538.92, "probability": 0.9698 }, { "start": 15539.24, "end": 15541.28, "probability": 0.9593 }, { "start": 15542.36, "end": 15545.13, "probability": 0.9928 }, { "start": 15546.16, "end": 15547.6, "probability": 0.7682 }, { "start": 15548.76, "end": 15552.86, "probability": 0.998 }, { "start": 15554.76, "end": 15555.3, "probability": 0.9226 }, { "start": 15555.78, "end": 15558.47, "probability": 0.7007 }, { "start": 15559.74, "end": 15562.36, "probability": 0.9775 }, { "start": 15566.67, "end": 15568.58, "probability": 0.2187 }, { "start": 15569.64, "end": 15570.94, "probability": 0.5943 }, { "start": 15572.82, "end": 15573.62, "probability": 0.7406 }, { "start": 15573.84, "end": 15574.86, "probability": 0.7187 }, { "start": 15575.06, "end": 15576.74, "probability": 0.9006 }, { "start": 15577.88, "end": 15582.4, "probability": 0.9473 }, { "start": 15582.54, "end": 15585.18, "probability": 0.9803 }, { "start": 15586.22, "end": 15587.88, "probability": 0.9375 }, { "start": 15588.46, "end": 15590.28, "probability": 0.99 }, { "start": 15590.78, "end": 15592.78, "probability": 0.9814 }, { "start": 15593.36, "end": 15598.1, "probability": 0.9888 }, { "start": 15598.44, "end": 15599.68, "probability": 0.9966 }, { "start": 15599.92, "end": 15600.14, "probability": 0.8314 }, { "start": 15600.7, "end": 15604.4, "probability": 0.9587 }, { "start": 15604.58, "end": 15605.34, "probability": 0.9866 }, { "start": 15605.48, "end": 15606.84, "probability": 0.9725 }, { "start": 15608.18, "end": 15613.28, "probability": 0.9701 }, { "start": 15613.82, "end": 15619.1, "probability": 0.9073 }, { "start": 15623.33, "end": 15626.87, "probability": 0.5426 }, { "start": 15627.04, "end": 15629.22, "probability": 0.9186 }, { "start": 15631.66, "end": 15633.32, "probability": 0.7379 }, { "start": 15633.76, "end": 15637.68, "probability": 0.9151 }, { "start": 15639.64, "end": 15640.54, "probability": 0.7203 }, { "start": 15641.4, "end": 15643.42, "probability": 0.9084 }, { "start": 15644.64, "end": 15645.26, "probability": 0.9816 }, { "start": 15645.44, "end": 15648.32, "probability": 0.9971 }, { "start": 15648.78, "end": 15651.56, "probability": 0.9594 }, { "start": 15651.66, "end": 15653.08, "probability": 0.9971 }, { "start": 15654.36, "end": 15655.06, "probability": 0.5805 }, { "start": 15655.2, "end": 15655.5, "probability": 0.8951 }, { "start": 15655.62, "end": 15656.42, "probability": 0.7156 }, { "start": 15656.72, "end": 15657.41, "probability": 0.8999 }, { "start": 15657.66, "end": 15658.05, "probability": 0.8681 }, { "start": 15658.7, "end": 15659.04, "probability": 0.1395 }, { "start": 15659.5, "end": 15662.64, "probability": 0.8921 }, { "start": 15662.78, "end": 15663.52, "probability": 0.1868 }, { "start": 15663.72, "end": 15664.46, "probability": 0.6339 }, { "start": 15665.08, "end": 15667.7, "probability": 0.974 }, { "start": 15669.42, "end": 15671.28, "probability": 0.6724 }, { "start": 15672.12, "end": 15673.62, "probability": 0.8145 }, { "start": 15673.66, "end": 15674.62, "probability": 0.9692 }, { "start": 15675.0, "end": 15676.96, "probability": 0.9751 }, { "start": 15678.48, "end": 15681.12, "probability": 0.983 }, { "start": 15684.8, "end": 15686.26, "probability": 0.8647 }, { "start": 15686.48, "end": 15689.96, "probability": 0.663 }, { "start": 15690.82, "end": 15693.58, "probability": 0.9855 }, { "start": 15694.1, "end": 15695.22, "probability": 0.9402 }, { "start": 15695.8, "end": 15697.22, "probability": 0.9247 }, { "start": 15702.8, "end": 15705.42, "probability": 0.9997 }, { "start": 15706.5, "end": 15708.2, "probability": 0.9993 }, { "start": 15710.18, "end": 15711.0, "probability": 0.9065 }, { "start": 15711.16, "end": 15712.92, "probability": 0.9917 }, { "start": 15713.62, "end": 15714.42, "probability": 0.8833 }, { "start": 15716.18, "end": 15719.44, "probability": 0.9919 }, { "start": 15720.52, "end": 15721.82, "probability": 0.7871 }, { "start": 15723.62, "end": 15727.04, "probability": 0.7885 }, { "start": 15727.68, "end": 15727.82, "probability": 0.4275 }, { "start": 15729.36, "end": 15729.82, "probability": 0.9645 }, { "start": 15731.38, "end": 15732.5, "probability": 0.759 }, { "start": 15733.28, "end": 15733.64, "probability": 0.5569 }, { "start": 15736.14, "end": 15736.56, "probability": 0.0782 }, { "start": 15737.1, "end": 15743.7, "probability": 0.8619 }, { "start": 15743.74, "end": 15747.16, "probability": 0.9902 }, { "start": 15747.64, "end": 15749.74, "probability": 0.8075 }, { "start": 15749.9, "end": 15751.08, "probability": 0.7879 }, { "start": 15751.68, "end": 15754.26, "probability": 0.9749 }, { "start": 15754.36, "end": 15755.54, "probability": 0.9643 }, { "start": 15755.66, "end": 15757.32, "probability": 0.8851 }, { "start": 15761.18, "end": 15762.44, "probability": 0.1362 }, { "start": 15762.7, "end": 15765.88, "probability": 0.8841 }, { "start": 15766.66, "end": 15769.62, "probability": 0.9552 }, { "start": 15770.94, "end": 15774.46, "probability": 0.996 }, { "start": 15774.52, "end": 15777.3, "probability": 0.6962 }, { "start": 15779.86, "end": 15781.84, "probability": 0.9744 }, { "start": 15782.48, "end": 15784.12, "probability": 0.9291 }, { "start": 15785.66, "end": 15791.02, "probability": 0.9582 }, { "start": 15791.98, "end": 15792.52, "probability": 0.5564 }, { "start": 15792.6, "end": 15795.46, "probability": 0.9941 }, { "start": 15795.92, "end": 15799.7, "probability": 0.9509 }, { "start": 15800.16, "end": 15802.06, "probability": 0.9679 }, { "start": 15802.6, "end": 15803.1, "probability": 0.727 }, { "start": 15806.5, "end": 15808.64, "probability": 0.8738 }, { "start": 15809.36, "end": 15811.5, "probability": 0.8276 }, { "start": 15811.6, "end": 15812.2, "probability": 0.9716 }, { "start": 15813.38, "end": 15816.92, "probability": 0.7876 }, { "start": 15817.48, "end": 15818.5, "probability": 0.8882 }, { "start": 15819.24, "end": 15824.34, "probability": 0.8986 }, { "start": 15824.88, "end": 15825.44, "probability": 0.8752 }, { "start": 15825.98, "end": 15830.44, "probability": 0.9713 }, { "start": 15833.94, "end": 15834.64, "probability": 0.5043 }, { "start": 15838.0, "end": 15839.72, "probability": 0.9268 }, { "start": 15840.1, "end": 15843.24, "probability": 0.772 }, { "start": 15843.24, "end": 15846.32, "probability": 0.9603 }, { "start": 15846.36, "end": 15847.84, "probability": 0.8706 }, { "start": 15847.92, "end": 15848.26, "probability": 0.1783 }, { "start": 15848.5, "end": 15849.04, "probability": 0.5762 }, { "start": 15849.32, "end": 15853.72, "probability": 0.4662 }, { "start": 15853.98, "end": 15857.6, "probability": 0.8818 }, { "start": 15858.52, "end": 15858.54, "probability": 0.5962 }, { "start": 15860.5, "end": 15862.04, "probability": 0.8618 }, { "start": 15862.5, "end": 15866.52, "probability": 0.9924 }, { "start": 15866.52, "end": 15869.28, "probability": 0.962 }, { "start": 15869.72, "end": 15872.84, "probability": 0.9226 }, { "start": 15873.9, "end": 15875.86, "probability": 0.8913 }, { "start": 15876.56, "end": 15878.22, "probability": 0.9785 }, { "start": 15878.36, "end": 15879.68, "probability": 0.9985 }, { "start": 15880.6, "end": 15881.08, "probability": 0.4267 }, { "start": 15881.16, "end": 15882.9, "probability": 0.9897 }, { "start": 15883.04, "end": 15885.24, "probability": 0.9951 }, { "start": 15886.08, "end": 15890.12, "probability": 0.9819 }, { "start": 15891.48, "end": 15892.42, "probability": 0.9315 }, { "start": 15892.86, "end": 15895.62, "probability": 0.9922 }, { "start": 15897.34, "end": 15899.52, "probability": 0.994 }, { "start": 15899.52, "end": 15901.6, "probability": 0.9576 }, { "start": 15902.3, "end": 15906.92, "probability": 0.9894 }, { "start": 15907.56, "end": 15908.14, "probability": 0.7867 }, { "start": 15909.36, "end": 15912.72, "probability": 0.9863 }, { "start": 15913.26, "end": 15914.46, "probability": 0.905 }, { "start": 15914.58, "end": 15922.18, "probability": 0.9755 }, { "start": 15922.8, "end": 15924.94, "probability": 0.9803 }, { "start": 15926.18, "end": 15929.06, "probability": 0.9806 }, { "start": 15929.7, "end": 15932.12, "probability": 0.9768 }, { "start": 15933.98, "end": 15936.92, "probability": 0.9329 }, { "start": 15936.92, "end": 15940.1, "probability": 0.9952 }, { "start": 15940.66, "end": 15940.78, "probability": 0.606 }, { "start": 15940.94, "end": 15942.3, "probability": 0.9974 }, { "start": 15942.78, "end": 15943.66, "probability": 0.9287 }, { "start": 15944.44, "end": 15946.2, "probability": 0.9902 }, { "start": 15947.26, "end": 15947.64, "probability": 0.6366 }, { "start": 15949.66, "end": 15952.32, "probability": 0.9662 }, { "start": 15952.54, "end": 15953.18, "probability": 0.7728 }, { "start": 15954.28, "end": 15956.66, "probability": 0.9988 }, { "start": 15957.24, "end": 15959.16, "probability": 0.9968 }, { "start": 15959.16, "end": 15961.84, "probability": 0.9754 }, { "start": 15962.24, "end": 15963.18, "probability": 0.8906 }, { "start": 15963.64, "end": 15966.3, "probability": 0.8869 }, { "start": 15967.5, "end": 15968.9, "probability": 0.5119 }, { "start": 15969.02, "end": 15969.9, "probability": 0.8787 }, { "start": 15970.06, "end": 15972.64, "probability": 0.9919 }, { "start": 15973.76, "end": 15979.3, "probability": 0.9951 }, { "start": 15979.92, "end": 15980.86, "probability": 0.9625 }, { "start": 15981.58, "end": 15984.32, "probability": 0.7561 }, { "start": 15985.7, "end": 15992.44, "probability": 0.9885 }, { "start": 15993.24, "end": 15994.28, "probability": 0.9936 }, { "start": 15995.12, "end": 15998.34, "probability": 0.8319 }, { "start": 15999.16, "end": 16001.38, "probability": 0.9657 }, { "start": 16002.62, "end": 16004.06, "probability": 0.9905 }, { "start": 16004.62, "end": 16006.48, "probability": 0.6651 }, { "start": 16007.18, "end": 16008.62, "probability": 0.7749 }, { "start": 16008.76, "end": 16012.88, "probability": 0.928 }, { "start": 16013.0, "end": 16015.04, "probability": 0.9951 }, { "start": 16018.24, "end": 16020.34, "probability": 0.6505 }, { "start": 16020.76, "end": 16025.52, "probability": 0.7548 }, { "start": 16025.52, "end": 16029.26, "probability": 0.6903 }, { "start": 16029.48, "end": 16031.66, "probability": 0.225 }, { "start": 16031.66, "end": 16033.34, "probability": 0.6561 }, { "start": 16033.78, "end": 16033.86, "probability": 0.0148 }, { "start": 16033.86, "end": 16035.1, "probability": 0.8369 }, { "start": 16035.16, "end": 16035.96, "probability": 0.9922 }, { "start": 16035.96, "end": 16036.58, "probability": 0.4311 }, { "start": 16036.66, "end": 16038.08, "probability": 0.9336 }, { "start": 16038.2, "end": 16040.32, "probability": 0.9984 }, { "start": 16040.4, "end": 16042.0, "probability": 0.6937 }, { "start": 16042.14, "end": 16043.48, "probability": 0.948 }, { "start": 16044.1, "end": 16046.46, "probability": 0.9719 }, { "start": 16047.16, "end": 16048.8, "probability": 0.9973 }, { "start": 16049.92, "end": 16052.96, "probability": 0.9327 }, { "start": 16053.32, "end": 16055.74, "probability": 0.9768 }, { "start": 16056.16, "end": 16057.54, "probability": 0.9969 }, { "start": 16057.68, "end": 16058.76, "probability": 0.7638 }, { "start": 16059.14, "end": 16061.12, "probability": 0.9976 }, { "start": 16061.62, "end": 16063.24, "probability": 0.9875 }, { "start": 16064.9, "end": 16065.1, "probability": 0.7426 }, { "start": 16065.76, "end": 16065.94, "probability": 0.2672 }, { "start": 16066.08, "end": 16072.32, "probability": 0.9093 }, { "start": 16072.8, "end": 16074.96, "probability": 0.9277 }, { "start": 16075.06, "end": 16080.26, "probability": 0.8608 }, { "start": 16080.56, "end": 16081.78, "probability": 0.5587 }, { "start": 16081.86, "end": 16083.32, "probability": 0.3248 }, { "start": 16083.62, "end": 16086.19, "probability": 0.9109 }, { "start": 16086.52, "end": 16090.94, "probability": 0.9316 }, { "start": 16091.44, "end": 16095.32, "probability": 0.9963 }, { "start": 16095.48, "end": 16098.26, "probability": 0.6082 }, { "start": 16099.36, "end": 16106.86, "probability": 0.9365 }, { "start": 16106.9, "end": 16107.88, "probability": 0.9909 }, { "start": 16110.58, "end": 16115.28, "probability": 0.9558 }, { "start": 16115.28, "end": 16118.08, "probability": 0.9878 }, { "start": 16119.18, "end": 16121.18, "probability": 0.984 }, { "start": 16121.82, "end": 16123.37, "probability": 0.9768 }, { "start": 16123.64, "end": 16125.9, "probability": 0.9567 }, { "start": 16125.94, "end": 16127.22, "probability": 0.9985 }, { "start": 16128.06, "end": 16128.22, "probability": 0.2347 }, { "start": 16129.34, "end": 16134.16, "probability": 0.9135 }, { "start": 16134.44, "end": 16135.78, "probability": 0.6173 }, { "start": 16135.9, "end": 16139.98, "probability": 0.944 }, { "start": 16140.84, "end": 16142.2, "probability": 0.7457 }, { "start": 16143.0, "end": 16145.52, "probability": 0.8825 }, { "start": 16145.72, "end": 16147.21, "probability": 0.9412 }, { "start": 16148.0, "end": 16150.5, "probability": 0.8901 }, { "start": 16151.26, "end": 16151.94, "probability": 0.6834 }, { "start": 16152.02, "end": 16153.84, "probability": 0.9725 }, { "start": 16154.0, "end": 16155.74, "probability": 0.9003 }, { "start": 16156.68, "end": 16157.82, "probability": 0.9147 }, { "start": 16157.92, "end": 16159.82, "probability": 0.9712 }, { "start": 16159.96, "end": 16160.54, "probability": 0.6593 }, { "start": 16161.02, "end": 16162.48, "probability": 0.9896 }, { "start": 16163.04, "end": 16164.07, "probability": 0.5437 }, { "start": 16165.26, "end": 16169.18, "probability": 0.8998 }, { "start": 16169.72, "end": 16170.98, "probability": 0.9932 }, { "start": 16171.2, "end": 16172.28, "probability": 0.7372 }, { "start": 16172.68, "end": 16173.18, "probability": 0.7742 }, { "start": 16173.4, "end": 16174.42, "probability": 0.9878 }, { "start": 16177.42, "end": 16178.26, "probability": 0.9072 }, { "start": 16178.44, "end": 16183.18, "probability": 0.7191 }, { "start": 16184.5, "end": 16185.2, "probability": 0.9579 }, { "start": 16186.32, "end": 16189.2, "probability": 0.9633 }, { "start": 16189.28, "end": 16190.53, "probability": 0.9961 }, { "start": 16191.18, "end": 16192.92, "probability": 0.9282 }, { "start": 16193.44, "end": 16195.0, "probability": 0.9536 }, { "start": 16195.0, "end": 16196.26, "probability": 0.9403 }, { "start": 16197.04, "end": 16198.5, "probability": 0.9729 }, { "start": 16199.38, "end": 16201.84, "probability": 0.9854 }, { "start": 16201.88, "end": 16202.5, "probability": 0.9123 }, { "start": 16203.78, "end": 16207.88, "probability": 0.9562 }, { "start": 16208.76, "end": 16213.78, "probability": 0.9968 }, { "start": 16214.38, "end": 16215.98, "probability": 0.9136 }, { "start": 16217.08, "end": 16220.52, "probability": 0.876 }, { "start": 16220.52, "end": 16224.16, "probability": 0.9959 }, { "start": 16225.16, "end": 16228.76, "probability": 0.9967 }, { "start": 16228.94, "end": 16230.12, "probability": 0.988 }, { "start": 16230.44, "end": 16231.42, "probability": 0.8285 }, { "start": 16231.62, "end": 16232.38, "probability": 0.6912 }, { "start": 16233.86, "end": 16235.42, "probability": 0.6934 }, { "start": 16237.44, "end": 16238.74, "probability": 0.9966 }, { "start": 16240.2, "end": 16242.64, "probability": 0.9103 }, { "start": 16243.02, "end": 16244.27, "probability": 0.7931 }, { "start": 16244.5, "end": 16245.5, "probability": 0.9944 }, { "start": 16247.3, "end": 16251.42, "probability": 0.8038 }, { "start": 16252.7, "end": 16254.94, "probability": 0.8148 }, { "start": 16257.66, "end": 16258.84, "probability": 0.4895 }, { "start": 16259.22, "end": 16259.82, "probability": 0.915 }, { "start": 16260.16, "end": 16264.14, "probability": 0.9692 }, { "start": 16264.14, "end": 16267.58, "probability": 0.9877 }, { "start": 16268.44, "end": 16272.5, "probability": 0.991 }, { "start": 16274.44, "end": 16275.14, "probability": 0.9799 }, { "start": 16275.68, "end": 16277.02, "probability": 0.7206 }, { "start": 16277.74, "end": 16279.24, "probability": 0.8464 }, { "start": 16279.66, "end": 16280.86, "probability": 0.9385 }, { "start": 16281.24, "end": 16281.89, "probability": 0.9956 }, { "start": 16282.28, "end": 16282.86, "probability": 0.6366 }, { "start": 16283.34, "end": 16284.38, "probability": 0.8726 }, { "start": 16284.96, "end": 16291.61, "probability": 0.9373 }, { "start": 16291.72, "end": 16295.0, "probability": 0.9862 }, { "start": 16295.2, "end": 16298.86, "probability": 0.9962 }, { "start": 16299.7, "end": 16304.32, "probability": 0.9983 }, { "start": 16304.38, "end": 16305.22, "probability": 0.9181 }, { "start": 16305.38, "end": 16307.1, "probability": 0.8984 }, { "start": 16307.92, "end": 16315.57, "probability": 0.9819 }, { "start": 16315.98, "end": 16319.24, "probability": 0.9993 }, { "start": 16319.36, "end": 16320.42, "probability": 0.9316 }, { "start": 16321.14, "end": 16321.58, "probability": 0.5153 }, { "start": 16321.76, "end": 16327.1, "probability": 0.8232 }, { "start": 16327.1, "end": 16329.46, "probability": 0.9752 }, { "start": 16330.06, "end": 16335.42, "probability": 0.9619 }, { "start": 16335.46, "end": 16336.86, "probability": 0.9956 }, { "start": 16339.08, "end": 16339.87, "probability": 0.9919 }, { "start": 16343.8, "end": 16347.24, "probability": 0.9385 }, { "start": 16347.32, "end": 16350.38, "probability": 0.9935 }, { "start": 16351.08, "end": 16353.72, "probability": 0.8342 }, { "start": 16354.34, "end": 16358.04, "probability": 0.801 }, { "start": 16358.94, "end": 16360.96, "probability": 0.8671 }, { "start": 16361.76, "end": 16362.94, "probability": 0.9748 }, { "start": 16363.54, "end": 16365.54, "probability": 0.9262 }, { "start": 16366.56, "end": 16368.28, "probability": 0.9404 }, { "start": 16368.82, "end": 16370.3, "probability": 0.9883 }, { "start": 16370.84, "end": 16374.34, "probability": 0.985 }, { "start": 16374.9, "end": 16376.6, "probability": 0.7422 }, { "start": 16377.2, "end": 16379.56, "probability": 0.9995 }, { "start": 16379.74, "end": 16384.14, "probability": 0.8961 }, { "start": 16384.22, "end": 16384.62, "probability": 0.8257 }, { "start": 16385.24, "end": 16386.26, "probability": 0.6748 }, { "start": 16386.36, "end": 16389.02, "probability": 0.9702 }, { "start": 16390.48, "end": 16391.66, "probability": 0.7004 }, { "start": 16392.73, "end": 16395.66, "probability": 0.817 }, { "start": 16398.04, "end": 16399.37, "probability": 0.4167 }, { "start": 16403.14, "end": 16403.44, "probability": 0.3548 }, { "start": 16403.5, "end": 16404.24, "probability": 0.5841 }, { "start": 16406.96, "end": 16409.42, "probability": 0.2867 }, { "start": 16411.14, "end": 16411.72, "probability": 0.4689 }, { "start": 16416.62, "end": 16418.54, "probability": 0.5621 }, { "start": 16419.04, "end": 16420.02, "probability": 0.1614 }, { "start": 16420.54, "end": 16422.68, "probability": 0.3588 }, { "start": 16423.26, "end": 16424.96, "probability": 0.6477 }, { "start": 16425.66, "end": 16426.94, "probability": 0.5913 }, { "start": 16427.46, "end": 16429.48, "probability": 0.9013 }, { "start": 16432.88, "end": 16436.37, "probability": 0.9838 }, { "start": 16436.56, "end": 16437.06, "probability": 0.7612 }, { "start": 16438.38, "end": 16439.8, "probability": 0.4961 }, { "start": 16440.44, "end": 16441.88, "probability": 0.7175 }, { "start": 16442.78, "end": 16447.08, "probability": 0.961 }, { "start": 16447.8, "end": 16451.4, "probability": 0.8549 }, { "start": 16451.96, "end": 16454.68, "probability": 0.74 }, { "start": 16455.26, "end": 16456.06, "probability": 0.7013 }, { "start": 16456.36, "end": 16458.46, "probability": 0.9288 }, { "start": 16459.2, "end": 16459.78, "probability": 0.8626 }, { "start": 16460.38, "end": 16463.18, "probability": 0.9404 }, { "start": 16464.22, "end": 16465.66, "probability": 0.904 }, { "start": 16465.96, "end": 16468.48, "probability": 0.9558 }, { "start": 16468.6, "end": 16472.6, "probability": 0.9246 }, { "start": 16473.18, "end": 16475.76, "probability": 0.9089 }, { "start": 16475.84, "end": 16477.7, "probability": 0.9674 }, { "start": 16477.96, "end": 16481.66, "probability": 0.5691 }, { "start": 16482.2, "end": 16484.58, "probability": 0.5007 }, { "start": 16484.9, "end": 16488.57, "probability": 0.6548 }, { "start": 16489.3, "end": 16491.26, "probability": 0.4699 }, { "start": 16492.43, "end": 16496.7, "probability": 0.8845 }, { "start": 16497.34, "end": 16501.3, "probability": 0.957 }, { "start": 16502.02, "end": 16503.58, "probability": 0.7354 }, { "start": 16503.64, "end": 16507.16, "probability": 0.9824 }, { "start": 16507.68, "end": 16509.72, "probability": 0.9524 }, { "start": 16509.74, "end": 16512.66, "probability": 0.9298 }, { "start": 16513.58, "end": 16513.7, "probability": 0.8998 }, { "start": 16514.5, "end": 16515.0, "probability": 0.7316 }, { "start": 16515.0, "end": 16515.14, "probability": 0.0763 }, { "start": 16515.32, "end": 16518.38, "probability": 0.766 }, { "start": 16526.36, "end": 16526.58, "probability": 0.1548 }, { "start": 16531.28, "end": 16534.54, "probability": 0.0859 }, { "start": 16539.42, "end": 16540.92, "probability": 0.4475 }, { "start": 16541.04, "end": 16542.42, "probability": 0.9332 }, { "start": 16543.02, "end": 16543.74, "probability": 0.4114 }, { "start": 16543.82, "end": 16547.58, "probability": 0.8479 }, { "start": 16547.68, "end": 16549.54, "probability": 0.3352 }, { "start": 16550.26, "end": 16550.64, "probability": 0.7597 }, { "start": 16551.16, "end": 16553.9, "probability": 0.1372 }, { "start": 16554.08, "end": 16555.35, "probability": 0.8911 }, { "start": 16555.52, "end": 16557.02, "probability": 0.8239 }, { "start": 16557.08, "end": 16558.44, "probability": 0.9521 }, { "start": 16558.44, "end": 16558.78, "probability": 0.857 }, { "start": 16559.87, "end": 16561.48, "probability": 0.5327 }, { "start": 16561.72, "end": 16563.64, "probability": 0.8352 }, { "start": 16564.14, "end": 16565.07, "probability": 0.9746 }, { "start": 16565.22, "end": 16565.82, "probability": 0.68 }, { "start": 16566.2, "end": 16568.92, "probability": 0.8527 }, { "start": 16569.74, "end": 16570.9, "probability": 0.8252 }, { "start": 16571.42, "end": 16574.24, "probability": 0.7118 }, { "start": 16575.0, "end": 16576.5, "probability": 0.766 }, { "start": 16576.86, "end": 16579.24, "probability": 0.9429 }, { "start": 16579.92, "end": 16582.06, "probability": 0.9546 }, { "start": 16582.74, "end": 16584.22, "probability": 0.4619 }, { "start": 16584.86, "end": 16585.88, "probability": 0.4566 }, { "start": 16585.94, "end": 16587.04, "probability": 0.1337 }, { "start": 16588.04, "end": 16588.6, "probability": 0.4576 }, { "start": 16588.78, "end": 16591.34, "probability": 0.8149 }, { "start": 16591.74, "end": 16595.6, "probability": 0.9879 }, { "start": 16596.62, "end": 16597.06, "probability": 0.508 }, { "start": 16597.06, "end": 16599.76, "probability": 0.6823 }, { "start": 16599.9, "end": 16600.12, "probability": 0.1207 }, { "start": 16600.12, "end": 16600.12, "probability": 0.1955 }, { "start": 16600.12, "end": 16600.12, "probability": 0.312 }, { "start": 16600.12, "end": 16600.12, "probability": 0.0975 }, { "start": 16600.12, "end": 16602.48, "probability": 0.6033 }, { "start": 16603.12, "end": 16605.59, "probability": 0.9204 }, { "start": 16606.42, "end": 16610.72, "probability": 0.614 }, { "start": 16611.3, "end": 16612.18, "probability": 0.3853 }, { "start": 16612.78, "end": 16615.54, "probability": 0.7335 }, { "start": 16616.22, "end": 16618.86, "probability": 0.8202 }, { "start": 16625.8, "end": 16626.1, "probability": 0.3169 }, { "start": 16626.16, "end": 16627.9, "probability": 0.9819 }, { "start": 16627.96, "end": 16631.54, "probability": 0.9932 }, { "start": 16631.8, "end": 16634.86, "probability": 0.2284 }, { "start": 16636.5, "end": 16637.96, "probability": 0.6367 }, { "start": 16638.26, "end": 16640.46, "probability": 0.5276 }, { "start": 16653.06, "end": 16654.12, "probability": 0.7569 }, { "start": 16654.8, "end": 16655.97, "probability": 0.9072 }, { "start": 16656.34, "end": 16660.44, "probability": 0.8971 }, { "start": 16661.4, "end": 16664.24, "probability": 0.9588 }, { "start": 16665.1, "end": 16668.98, "probability": 0.9878 }, { "start": 16669.64, "end": 16670.68, "probability": 0.8754 }, { "start": 16670.78, "end": 16671.2, "probability": 0.8503 }, { "start": 16671.26, "end": 16674.92, "probability": 0.7295 }, { "start": 16675.28, "end": 16679.52, "probability": 0.9836 }, { "start": 16679.52, "end": 16683.94, "probability": 0.9944 }, { "start": 16685.34, "end": 16691.82, "probability": 0.9572 }, { "start": 16692.54, "end": 16694.48, "probability": 0.9917 }, { "start": 16695.8, "end": 16697.04, "probability": 0.9155 }, { "start": 16697.22, "end": 16700.92, "probability": 0.9931 }, { "start": 16701.56, "end": 16702.79, "probability": 0.9014 }, { "start": 16703.44, "end": 16706.51, "probability": 0.9961 }, { "start": 16707.02, "end": 16712.82, "probability": 0.9269 }, { "start": 16713.19, "end": 16720.48, "probability": 0.9473 }, { "start": 16721.02, "end": 16721.68, "probability": 0.7108 }, { "start": 16722.52, "end": 16724.1, "probability": 0.9939 }, { "start": 16725.2, "end": 16728.24, "probability": 0.8566 }, { "start": 16728.28, "end": 16728.64, "probability": 0.7713 }, { "start": 16728.74, "end": 16729.78, "probability": 0.9502 }, { "start": 16730.09, "end": 16732.22, "probability": 0.9226 }, { "start": 16732.92, "end": 16734.9, "probability": 0.9441 }, { "start": 16735.52, "end": 16741.6, "probability": 0.8854 }, { "start": 16741.64, "end": 16742.14, "probability": 0.8275 }, { "start": 16742.18, "end": 16745.97, "probability": 0.9582 }, { "start": 16746.7, "end": 16751.38, "probability": 0.9785 }, { "start": 16751.52, "end": 16752.22, "probability": 0.5108 }, { "start": 16752.3, "end": 16754.15, "probability": 0.9944 }, { "start": 16755.0, "end": 16759.32, "probability": 0.9644 }, { "start": 16759.32, "end": 16761.56, "probability": 0.9901 }, { "start": 16761.7, "end": 16762.76, "probability": 0.8326 }, { "start": 16763.12, "end": 16764.02, "probability": 0.7063 }, { "start": 16764.06, "end": 16764.82, "probability": 0.3161 }, { "start": 16765.86, "end": 16770.18, "probability": 0.9837 }, { "start": 16770.6, "end": 16771.04, "probability": 0.2851 }, { "start": 16771.16, "end": 16774.44, "probability": 0.9308 }, { "start": 16774.62, "end": 16776.1, "probability": 0.9895 }, { "start": 16776.28, "end": 16778.86, "probability": 0.9787 }, { "start": 16778.86, "end": 16781.88, "probability": 0.9915 }, { "start": 16782.82, "end": 16784.24, "probability": 0.5018 }, { "start": 16784.92, "end": 16787.16, "probability": 0.9299 }, { "start": 16787.68, "end": 16788.34, "probability": 0.8841 }, { "start": 16789.1, "end": 16791.94, "probability": 0.9894 }, { "start": 16793.14, "end": 16795.48, "probability": 0.9686 }, { "start": 16795.52, "end": 16800.44, "probability": 0.9603 }, { "start": 16801.02, "end": 16802.9, "probability": 0.9441 }, { "start": 16803.88, "end": 16808.94, "probability": 0.979 }, { "start": 16808.94, "end": 16812.54, "probability": 0.9983 }, { "start": 16812.96, "end": 16814.62, "probability": 0.8707 }, { "start": 16815.44, "end": 16820.0, "probability": 0.9992 }, { "start": 16820.54, "end": 16822.97, "probability": 0.9819 }, { "start": 16823.28, "end": 16825.02, "probability": 0.9978 }, { "start": 16825.9, "end": 16828.54, "probability": 0.9775 }, { "start": 16829.62, "end": 16832.78, "probability": 0.9275 }, { "start": 16833.08, "end": 16835.94, "probability": 0.8106 }, { "start": 16836.52, "end": 16841.78, "probability": 0.9912 }, { "start": 16842.26, "end": 16848.14, "probability": 0.9983 }, { "start": 16848.14, "end": 16854.26, "probability": 0.998 }, { "start": 16854.32, "end": 16856.26, "probability": 0.997 }, { "start": 16856.38, "end": 16858.98, "probability": 0.989 }, { "start": 16859.1, "end": 16859.88, "probability": 0.8857 }, { "start": 16861.3, "end": 16864.48, "probability": 0.957 }, { "start": 16864.56, "end": 16867.8, "probability": 0.7079 }, { "start": 16868.24, "end": 16873.54, "probability": 0.9365 }, { "start": 16873.74, "end": 16874.32, "probability": 0.5609 }, { "start": 16874.62, "end": 16877.06, "probability": 0.8445 }, { "start": 16877.56, "end": 16882.46, "probability": 0.9901 }, { "start": 16882.6, "end": 16886.42, "probability": 0.9494 }, { "start": 16886.94, "end": 16892.64, "probability": 0.9702 }, { "start": 16893.16, "end": 16895.26, "probability": 0.759 }, { "start": 16896.06, "end": 16901.04, "probability": 0.9962 }, { "start": 16901.54, "end": 16903.16, "probability": 0.997 }, { "start": 16903.86, "end": 16905.78, "probability": 0.9907 }, { "start": 16906.76, "end": 16907.66, "probability": 0.9492 }, { "start": 16907.82, "end": 16912.66, "probability": 0.8733 }, { "start": 16913.32, "end": 16916.38, "probability": 0.8672 }, { "start": 16916.88, "end": 16920.36, "probability": 0.9801 }, { "start": 16920.48, "end": 16922.04, "probability": 0.9589 }, { "start": 16922.4, "end": 16923.84, "probability": 0.9855 }, { "start": 16924.4, "end": 16927.04, "probability": 0.9855 }, { "start": 16927.58, "end": 16928.94, "probability": 0.9932 }, { "start": 16929.06, "end": 16930.94, "probability": 0.9892 }, { "start": 16931.02, "end": 16931.7, "probability": 0.96 }, { "start": 16931.78, "end": 16933.0, "probability": 0.8921 }, { "start": 16933.66, "end": 16935.64, "probability": 0.9809 }, { "start": 16936.02, "end": 16938.92, "probability": 0.9611 }, { "start": 16939.28, "end": 16940.5, "probability": 0.9979 }, { "start": 16941.34, "end": 16941.54, "probability": 0.9913 }, { "start": 16942.14, "end": 16945.36, "probability": 0.9983 }, { "start": 16946.0, "end": 16947.48, "probability": 0.9987 }, { "start": 16948.02, "end": 16950.54, "probability": 0.9988 }, { "start": 16951.24, "end": 16956.24, "probability": 0.9946 }, { "start": 16956.66, "end": 16959.24, "probability": 0.9971 }, { "start": 16959.24, "end": 16961.92, "probability": 0.9957 }, { "start": 16962.32, "end": 16968.08, "probability": 0.9649 }, { "start": 16968.08, "end": 16968.56, "probability": 0.5089 }, { "start": 16969.28, "end": 16974.82, "probability": 0.9023 }, { "start": 16975.08, "end": 16978.24, "probability": 0.9866 }, { "start": 16978.24, "end": 16980.58, "probability": 0.996 }, { "start": 16981.6, "end": 16981.7, "probability": 0.601 }, { "start": 16981.7, "end": 16982.06, "probability": 0.6018 }, { "start": 16984.92, "end": 16984.92, "probability": 0.2567 }, { "start": 16984.92, "end": 16985.56, "probability": 0.4775 }, { "start": 16985.56, "end": 16987.7, "probability": 0.9972 }, { "start": 16988.62, "end": 16990.38, "probability": 0.9746 }, { "start": 16990.56, "end": 16991.52, "probability": 0.9947 }, { "start": 16992.06, "end": 16993.58, "probability": 0.7053 }, { "start": 16994.1, "end": 16994.5, "probability": 0.684 }, { "start": 16994.56, "end": 16995.5, "probability": 0.9228 }, { "start": 16995.6, "end": 16997.12, "probability": 0.6529 }, { "start": 16997.24, "end": 16997.98, "probability": 0.7449 }, { "start": 17013.36, "end": 17014.3, "probability": 0.6827 }, { "start": 17014.4, "end": 17014.4, "probability": 0.164 }, { "start": 17014.54, "end": 17015.16, "probability": 0.6331 }, { "start": 17015.26, "end": 17016.4, "probability": 0.652 }, { "start": 17017.98, "end": 17020.96, "probability": 0.9564 }, { "start": 17021.88, "end": 17028.04, "probability": 0.9578 }, { "start": 17028.78, "end": 17033.02, "probability": 0.9824 }, { "start": 17034.28, "end": 17038.0, "probability": 0.9966 }, { "start": 17039.12, "end": 17045.88, "probability": 0.9956 }, { "start": 17045.88, "end": 17051.92, "probability": 0.9892 }, { "start": 17052.54, "end": 17054.33, "probability": 0.9146 }, { "start": 17055.06, "end": 17056.08, "probability": 0.6577 }, { "start": 17056.1, "end": 17059.82, "probability": 0.9678 }, { "start": 17060.02, "end": 17060.9, "probability": 0.9902 }, { "start": 17061.44, "end": 17065.78, "probability": 0.9752 }, { "start": 17065.78, "end": 17069.68, "probability": 0.8847 }, { "start": 17070.4, "end": 17075.6, "probability": 0.9985 }, { "start": 17076.88, "end": 17079.26, "probability": 0.9784 }, { "start": 17081.1, "end": 17088.44, "probability": 0.9909 }, { "start": 17089.0, "end": 17092.62, "probability": 0.9537 }, { "start": 17092.88, "end": 17092.88, "probability": 0.0251 }, { "start": 17093.42, "end": 17095.22, "probability": 0.6633 }, { "start": 17095.54, "end": 17096.16, "probability": 0.4332 }, { "start": 17096.46, "end": 17097.0, "probability": 0.5499 }, { "start": 17097.06, "end": 17098.98, "probability": 0.938 }, { "start": 17100.68, "end": 17102.88, "probability": 0.5059 }, { "start": 17102.94, "end": 17103.38, "probability": 0.8945 }, { "start": 17104.21, "end": 17108.64, "probability": 0.9919 }, { "start": 17108.82, "end": 17111.62, "probability": 0.9727 }, { "start": 17112.48, "end": 17117.92, "probability": 0.948 }, { "start": 17119.32, "end": 17121.2, "probability": 0.9549 }, { "start": 17122.36, "end": 17125.6, "probability": 0.8005 }, { "start": 17126.06, "end": 17129.32, "probability": 0.9843 }, { "start": 17129.58, "end": 17135.58, "probability": 0.9384 }, { "start": 17136.6, "end": 17139.86, "probability": 0.6295 }, { "start": 17140.3, "end": 17141.08, "probability": 0.9827 }, { "start": 17141.72, "end": 17145.0, "probability": 0.8473 }, { "start": 17145.04, "end": 17145.64, "probability": 0.6944 }, { "start": 17146.16, "end": 17151.58, "probability": 0.9757 }, { "start": 17153.52, "end": 17162.08, "probability": 0.9937 }, { "start": 17162.8, "end": 17167.46, "probability": 0.8472 }, { "start": 17167.94, "end": 17169.62, "probability": 0.9696 }, { "start": 17170.14, "end": 17171.96, "probability": 0.9222 }, { "start": 17171.98, "end": 17175.34, "probability": 0.9379 }, { "start": 17177.48, "end": 17183.76, "probability": 0.9974 }, { "start": 17184.36, "end": 17187.44, "probability": 0.9946 }, { "start": 17187.44, "end": 17191.32, "probability": 0.9988 }, { "start": 17192.04, "end": 17195.48, "probability": 0.9263 }, { "start": 17195.54, "end": 17200.22, "probability": 0.9862 }, { "start": 17200.62, "end": 17201.96, "probability": 0.9661 }, { "start": 17202.22, "end": 17204.88, "probability": 0.8986 }, { "start": 17205.0, "end": 17205.9, "probability": 0.9862 }, { "start": 17206.3, "end": 17208.44, "probability": 0.9333 }, { "start": 17210.0, "end": 17213.12, "probability": 0.5801 }, { "start": 17213.94, "end": 17217.18, "probability": 0.967 }, { "start": 17217.64, "end": 17220.14, "probability": 0.8413 }, { "start": 17220.5, "end": 17224.9, "probability": 0.9844 }, { "start": 17225.38, "end": 17227.48, "probability": 0.9919 }, { "start": 17227.66, "end": 17230.68, "probability": 0.8846 }, { "start": 17231.42, "end": 17234.42, "probability": 0.9887 }, { "start": 17235.1, "end": 17235.2, "probability": 0.8182 }, { "start": 17236.22, "end": 17237.36, "probability": 0.6082 }, { "start": 17237.62, "end": 17239.28, "probability": 0.7856 }, { "start": 17241.02, "end": 17241.26, "probability": 0.2619 }, { "start": 17256.96, "end": 17258.16, "probability": 0.3855 }, { "start": 17258.96, "end": 17260.7, "probability": 0.6222 }, { "start": 17261.94, "end": 17262.8, "probability": 0.553 }, { "start": 17263.04, "end": 17264.08, "probability": 0.9814 }, { "start": 17264.22, "end": 17265.31, "probability": 0.9595 }, { "start": 17265.4, "end": 17266.54, "probability": 0.9686 }, { "start": 17266.62, "end": 17267.48, "probability": 0.6913 }, { "start": 17268.1, "end": 17270.4, "probability": 0.9907 }, { "start": 17270.4, "end": 17273.5, "probability": 0.9903 }, { "start": 17273.58, "end": 17274.32, "probability": 0.7392 }, { "start": 17274.92, "end": 17276.5, "probability": 0.9972 }, { "start": 17277.14, "end": 17279.4, "probability": 0.9979 }, { "start": 17279.4, "end": 17281.72, "probability": 0.9778 }, { "start": 17281.88, "end": 17283.86, "probability": 0.9961 }, { "start": 17285.58, "end": 17288.86, "probability": 0.9984 }, { "start": 17289.8, "end": 17290.62, "probability": 0.554 }, { "start": 17291.48, "end": 17293.4, "probability": 0.7569 }, { "start": 17294.4, "end": 17295.76, "probability": 0.9907 }, { "start": 17296.48, "end": 17298.86, "probability": 0.9531 }, { "start": 17300.22, "end": 17303.76, "probability": 0.9951 }, { "start": 17304.48, "end": 17307.0, "probability": 0.9922 }, { "start": 17308.24, "end": 17309.4, "probability": 0.8047 }, { "start": 17310.02, "end": 17311.4, "probability": 0.9431 }, { "start": 17312.34, "end": 17314.38, "probability": 0.7865 }, { "start": 17314.9, "end": 17316.14, "probability": 0.879 }, { "start": 17316.76, "end": 17319.94, "probability": 0.9752 }, { "start": 17320.68, "end": 17322.08, "probability": 0.8497 }, { "start": 17322.2, "end": 17323.04, "probability": 0.9121 }, { "start": 17323.1, "end": 17324.34, "probability": 0.9767 }, { "start": 17325.36, "end": 17327.96, "probability": 0.9858 }, { "start": 17328.66, "end": 17331.28, "probability": 0.9503 }, { "start": 17331.86, "end": 17335.04, "probability": 0.9673 }, { "start": 17336.68, "end": 17337.88, "probability": 0.8524 }, { "start": 17338.78, "end": 17340.5, "probability": 0.964 }, { "start": 17341.04, "end": 17342.7, "probability": 0.9541 }, { "start": 17343.46, "end": 17349.2, "probability": 0.9513 }, { "start": 17349.22, "end": 17350.3, "probability": 0.6686 }, { "start": 17351.5, "end": 17354.62, "probability": 0.9871 }, { "start": 17354.94, "end": 17356.56, "probability": 0.8986 }, { "start": 17357.06, "end": 17362.22, "probability": 0.9946 }, { "start": 17362.36, "end": 17363.08, "probability": 0.949 }, { "start": 17363.2, "end": 17364.18, "probability": 0.899 }, { "start": 17365.7, "end": 17371.94, "probability": 0.9455 }, { "start": 17372.42, "end": 17374.46, "probability": 0.1543 }, { "start": 17374.46, "end": 17376.36, "probability": 0.7672 }, { "start": 17376.98, "end": 17380.24, "probability": 0.5395 }, { "start": 17381.42, "end": 17382.4, "probability": 0.5555 }, { "start": 17382.68, "end": 17383.92, "probability": 0.8668 }, { "start": 17383.96, "end": 17391.6, "probability": 0.9811 }, { "start": 17391.72, "end": 17392.4, "probability": 0.594 }, { "start": 17394.46, "end": 17397.22, "probability": 0.7834 }, { "start": 17397.96, "end": 17398.86, "probability": 0.929 }, { "start": 17399.58, "end": 17400.42, "probability": 0.9175 }, { "start": 17400.94, "end": 17403.5, "probability": 0.8129 }, { "start": 17404.18, "end": 17405.56, "probability": 0.7584 }, { "start": 17406.22, "end": 17407.38, "probability": 0.874 }, { "start": 17409.28, "end": 17409.62, "probability": 0.2189 }, { "start": 17410.82, "end": 17411.52, "probability": 0.282 }, { "start": 17412.1, "end": 17413.94, "probability": 0.6148 }, { "start": 17414.62, "end": 17420.14, "probability": 0.7518 }, { "start": 17420.78, "end": 17423.05, "probability": 0.9653 }, { "start": 17424.14, "end": 17427.3, "probability": 0.5747 }, { "start": 17428.16, "end": 17429.76, "probability": 0.2698 }, { "start": 17430.88, "end": 17431.68, "probability": 0.9106 }, { "start": 17432.44, "end": 17433.22, "probability": 0.7175 }, { "start": 17434.32, "end": 17436.1, "probability": 0.8573 }, { "start": 17438.15, "end": 17440.84, "probability": 0.7088 }, { "start": 17441.6, "end": 17442.34, "probability": 0.9665 }, { "start": 17442.94, "end": 17443.5, "probability": 0.9221 }, { "start": 17444.04, "end": 17444.66, "probability": 0.8825 }, { "start": 17445.52, "end": 17446.7, "probability": 0.8503 }, { "start": 17447.3, "end": 17447.94, "probability": 0.8274 }, { "start": 17449.46, "end": 17451.46, "probability": 0.3223 }, { "start": 17451.46, "end": 17451.78, "probability": 0.7393 }, { "start": 17452.68, "end": 17452.88, "probability": 0.9851 }, { "start": 17453.42, "end": 17454.16, "probability": 0.6714 }, { "start": 17454.88, "end": 17455.86, "probability": 0.6762 }, { "start": 17455.9, "end": 17456.78, "probability": 0.9504 }, { "start": 17459.88, "end": 17460.76, "probability": 0.159 }, { "start": 17462.86, "end": 17463.48, "probability": 0.2092 }, { "start": 17488.12, "end": 17491.58, "probability": 0.9959 }, { "start": 17493.14, "end": 17496.96, "probability": 0.9565 }, { "start": 17498.28, "end": 17499.82, "probability": 0.9497 }, { "start": 17500.76, "end": 17503.52, "probability": 0.9824 }, { "start": 17504.5, "end": 17508.68, "probability": 0.9941 }, { "start": 17510.12, "end": 17511.68, "probability": 0.9519 }, { "start": 17513.22, "end": 17516.9, "probability": 0.9917 }, { "start": 17517.8, "end": 17518.64, "probability": 0.9836 }, { "start": 17519.84, "end": 17525.46, "probability": 0.9907 }, { "start": 17526.72, "end": 17533.62, "probability": 0.9898 }, { "start": 17535.68, "end": 17537.0, "probability": 0.7411 }, { "start": 17537.86, "end": 17540.16, "probability": 0.9951 }, { "start": 17541.28, "end": 17544.16, "probability": 0.9969 }, { "start": 17545.0, "end": 17547.86, "probability": 0.7734 }, { "start": 17548.12, "end": 17549.7, "probability": 0.877 }, { "start": 17550.12, "end": 17551.72, "probability": 0.951 }, { "start": 17553.02, "end": 17558.68, "probability": 0.9982 }, { "start": 17559.68, "end": 17562.8, "probability": 0.9768 }, { "start": 17563.94, "end": 17565.5, "probability": 0.8741 }, { "start": 17566.52, "end": 17574.24, "probability": 0.9845 }, { "start": 17576.08, "end": 17577.58, "probability": 0.9199 }, { "start": 17578.38, "end": 17579.34, "probability": 0.8892 }, { "start": 17580.48, "end": 17583.2, "probability": 0.9263 }, { "start": 17584.42, "end": 17585.11, "probability": 0.7473 }, { "start": 17586.48, "end": 17587.26, "probability": 0.9317 }, { "start": 17588.74, "end": 17591.46, "probability": 0.9636 }, { "start": 17593.14, "end": 17594.82, "probability": 0.9611 }, { "start": 17596.04, "end": 17599.32, "probability": 0.5982 }, { "start": 17599.96, "end": 17600.54, "probability": 0.8286 }, { "start": 17601.66, "end": 17605.06, "probability": 0.7891 }, { "start": 17605.76, "end": 17607.4, "probability": 0.8872 }, { "start": 17608.34, "end": 17615.72, "probability": 0.9764 }, { "start": 17616.8, "end": 17618.42, "probability": 0.868 }, { "start": 17619.02, "end": 17620.3, "probability": 0.8761 }, { "start": 17621.56, "end": 17624.24, "probability": 0.9871 }, { "start": 17625.42, "end": 17628.46, "probability": 0.9597 }, { "start": 17629.38, "end": 17633.94, "probability": 0.9949 }, { "start": 17633.94, "end": 17638.86, "probability": 0.9861 }, { "start": 17639.7, "end": 17642.52, "probability": 0.5721 }, { "start": 17643.4, "end": 17644.44, "probability": 0.1652 }, { "start": 17645.42, "end": 17645.54, "probability": 0.2526 }, { "start": 17645.54, "end": 17645.86, "probability": 0.6141 }, { "start": 17646.7, "end": 17648.06, "probability": 0.9713 }, { "start": 17648.08, "end": 17650.0, "probability": 0.792 }, { "start": 17650.56, "end": 17651.64, "probability": 0.908 }, { "start": 17651.74, "end": 17654.01, "probability": 0.9368 }, { "start": 17654.48, "end": 17655.84, "probability": 0.9124 }, { "start": 17656.04, "end": 17657.04, "probability": 0.8438 }, { "start": 17657.78, "end": 17658.32, "probability": 0.8617 }, { "start": 17658.88, "end": 17659.26, "probability": 0.9424 }, { "start": 17660.42, "end": 17661.26, "probability": 0.9758 }, { "start": 17661.26, "end": 17662.82, "probability": 0.9949 }, { "start": 17665.12, "end": 17669.22, "probability": 0.9752 }, { "start": 17670.02, "end": 17675.32, "probability": 0.2507 }, { "start": 17676.26, "end": 17677.22, "probability": 0.7428 }, { "start": 17677.9, "end": 17681.26, "probability": 0.9749 }, { "start": 17682.98, "end": 17685.78, "probability": 0.9779 }, { "start": 17685.84, "end": 17688.22, "probability": 0.9702 }, { "start": 17688.58, "end": 17693.26, "probability": 0.9905 }, { "start": 17694.34, "end": 17695.34, "probability": 0.879 }, { "start": 17696.1, "end": 17697.66, "probability": 0.8604 }, { "start": 17699.16, "end": 17701.04, "probability": 0.9985 }, { "start": 17701.92, "end": 17703.42, "probability": 0.986 }, { "start": 17704.02, "end": 17707.21, "probability": 0.9973 }, { "start": 17709.38, "end": 17711.52, "probability": 0.7003 }, { "start": 17712.16, "end": 17714.76, "probability": 0.901 }, { "start": 17717.82, "end": 17718.34, "probability": 0.9407 }, { "start": 17719.83, "end": 17722.06, "probability": 0.5218 }, { "start": 17723.28, "end": 17724.26, "probability": 0.9121 }, { "start": 17724.86, "end": 17727.12, "probability": 0.9462 }, { "start": 17728.52, "end": 17729.94, "probability": 0.7944 }, { "start": 17731.3, "end": 17734.74, "probability": 0.9649 }, { "start": 17737.2, "end": 17739.36, "probability": 0.8982 }, { "start": 17739.48, "end": 17741.28, "probability": 0.748 }, { "start": 17743.86, "end": 17744.24, "probability": 0.2677 }, { "start": 17744.24, "end": 17744.8, "probability": 0.8205 }, { "start": 17746.08, "end": 17749.32, "probability": 0.9909 }, { "start": 17749.58, "end": 17750.14, "probability": 0.7648 }, { "start": 17750.3, "end": 17750.84, "probability": 0.7075 }, { "start": 17750.86, "end": 17754.32, "probability": 0.989 }, { "start": 17758.52, "end": 17759.62, "probability": 0.9289 }, { "start": 17762.52, "end": 17764.04, "probability": 0.8796 }, { "start": 17764.86, "end": 17766.66, "probability": 0.9689 }, { "start": 17767.28, "end": 17768.06, "probability": 0.9282 }, { "start": 17768.1, "end": 17771.32, "probability": 0.9886 }, { "start": 17771.44, "end": 17771.94, "probability": 0.8012 }, { "start": 17772.06, "end": 17772.82, "probability": 0.9056 }, { "start": 17773.86, "end": 17775.04, "probability": 0.7981 }, { "start": 17776.66, "end": 17778.24, "probability": 0.738 }, { "start": 17778.36, "end": 17779.56, "probability": 0.4981 }, { "start": 17779.56, "end": 17781.76, "probability": 0.956 }, { "start": 17782.4, "end": 17784.24, "probability": 0.8872 }, { "start": 17786.26, "end": 17788.6, "probability": 0.5945 }, { "start": 17788.9, "end": 17789.8, "probability": 0.7113 }, { "start": 17790.62, "end": 17793.84, "probability": 0.9893 }, { "start": 17794.58, "end": 17799.44, "probability": 0.9303 }, { "start": 17801.12, "end": 17805.48, "probability": 0.9757 }, { "start": 17806.72, "end": 17811.58, "probability": 0.9332 }, { "start": 17811.66, "end": 17813.68, "probability": 0.9945 }, { "start": 17814.32, "end": 17816.94, "probability": 0.9987 }, { "start": 17817.96, "end": 17822.74, "probability": 0.9207 }, { "start": 17824.14, "end": 17826.3, "probability": 0.9657 }, { "start": 17827.7, "end": 17828.7, "probability": 0.9988 }, { "start": 17830.58, "end": 17835.34, "probability": 0.7844 }, { "start": 17836.6, "end": 17837.42, "probability": 0.6257 }, { "start": 17838.26, "end": 17841.48, "probability": 0.7021 }, { "start": 17841.74, "end": 17844.22, "probability": 0.8955 }, { "start": 17845.34, "end": 17847.14, "probability": 0.9245 }, { "start": 17848.04, "end": 17850.8, "probability": 0.9932 }, { "start": 17850.88, "end": 17851.72, "probability": 0.6078 }, { "start": 17852.5, "end": 17853.72, "probability": 0.8012 }, { "start": 17855.38, "end": 17858.04, "probability": 0.9985 }, { "start": 17859.24, "end": 17860.61, "probability": 0.9188 }, { "start": 17861.96, "end": 17865.88, "probability": 0.8972 }, { "start": 17867.9, "end": 17873.22, "probability": 0.9518 }, { "start": 17874.18, "end": 17874.5, "probability": 0.453 }, { "start": 17875.02, "end": 17876.64, "probability": 0.858 }, { "start": 17878.74, "end": 17883.44, "probability": 0.9062 }, { "start": 17884.44, "end": 17885.66, "probability": 0.9754 }, { "start": 17886.58, "end": 17889.9, "probability": 0.7847 }, { "start": 17890.58, "end": 17892.8, "probability": 0.912 }, { "start": 17893.78, "end": 17895.68, "probability": 0.9845 }, { "start": 17896.04, "end": 17896.9, "probability": 0.5532 }, { "start": 17897.16, "end": 17899.76, "probability": 0.6933 }, { "start": 17900.14, "end": 17901.62, "probability": 0.8865 }, { "start": 17903.84, "end": 17906.91, "probability": 0.6982 }, { "start": 17907.64, "end": 17912.78, "probability": 0.981 }, { "start": 17913.52, "end": 17914.58, "probability": 0.9385 }, { "start": 17914.64, "end": 17918.3, "probability": 0.986 }, { "start": 17919.42, "end": 17925.04, "probability": 0.9829 }, { "start": 17926.1, "end": 17927.64, "probability": 0.9884 }, { "start": 17927.76, "end": 17928.2, "probability": 0.7829 }, { "start": 17928.24, "end": 17928.72, "probability": 0.7789 }, { "start": 17928.8, "end": 17929.2, "probability": 0.776 }, { "start": 17929.24, "end": 17929.88, "probability": 0.892 }, { "start": 17930.18, "end": 17931.64, "probability": 0.8854 }, { "start": 17931.64, "end": 17934.7, "probability": 0.9707 }, { "start": 17935.1, "end": 17937.94, "probability": 0.9921 }, { "start": 17939.48, "end": 17942.02, "probability": 0.9857 }, { "start": 17942.06, "end": 17942.32, "probability": 0.6526 }, { "start": 17942.34, "end": 17942.62, "probability": 0.7356 }, { "start": 17944.02, "end": 17946.4, "probability": 0.7579 }, { "start": 17949.1, "end": 17949.64, "probability": 0.9261 }, { "start": 17952.46, "end": 17955.94, "probability": 0.9559 }, { "start": 17956.16, "end": 17958.14, "probability": 0.69 }, { "start": 17958.28, "end": 17958.54, "probability": 0.0512 }, { "start": 17959.76, "end": 17962.34, "probability": 0.9303 }, { "start": 17964.46, "end": 17967.24, "probability": 0.9504 }, { "start": 17968.78, "end": 17969.52, "probability": 0.8694 }, { "start": 17971.42, "end": 17972.54, "probability": 0.8573 }, { "start": 17972.84, "end": 17975.42, "probability": 0.9801 }, { "start": 17976.72, "end": 17978.7, "probability": 0.9186 }, { "start": 17979.7, "end": 17982.02, "probability": 0.6004 }, { "start": 17983.16, "end": 17990.5, "probability": 0.9648 }, { "start": 17991.64, "end": 17994.2, "probability": 0.9468 }, { "start": 17994.86, "end": 17995.8, "probability": 0.9617 }, { "start": 17996.42, "end": 18000.78, "probability": 0.9562 }, { "start": 18002.52, "end": 18002.86, "probability": 0.9233 }, { "start": 18003.94, "end": 18005.76, "probability": 0.6204 }, { "start": 18006.44, "end": 18008.08, "probability": 0.8088 }, { "start": 18009.58, "end": 18013.62, "probability": 0.7718 }, { "start": 18015.24, "end": 18016.26, "probability": 0.8806 }, { "start": 18017.86, "end": 18019.7, "probability": 0.9987 }, { "start": 18020.92, "end": 18026.84, "probability": 0.9915 }, { "start": 18029.08, "end": 18030.32, "probability": 0.9886 }, { "start": 18031.24, "end": 18033.38, "probability": 0.9883 }, { "start": 18035.16, "end": 18036.94, "probability": 0.9933 }, { "start": 18039.96, "end": 18044.54, "probability": 0.9424 }, { "start": 18045.52, "end": 18048.24, "probability": 0.9229 }, { "start": 18049.9, "end": 18052.9, "probability": 0.7406 }, { "start": 18053.06, "end": 18058.06, "probability": 0.8506 }, { "start": 18058.08, "end": 18060.22, "probability": 0.6057 }, { "start": 18061.66, "end": 18065.22, "probability": 0.7268 }, { "start": 18066.42, "end": 18069.34, "probability": 0.9611 }, { "start": 18070.78, "end": 18072.52, "probability": 0.8848 }, { "start": 18074.8, "end": 18077.04, "probability": 0.9839 }, { "start": 18078.2, "end": 18078.88, "probability": 0.7957 }, { "start": 18079.54, "end": 18080.24, "probability": 0.8687 }, { "start": 18081.84, "end": 18088.56, "probability": 0.9854 }, { "start": 18088.64, "end": 18090.46, "probability": 0.9381 }, { "start": 18091.86, "end": 18094.54, "probability": 0.9716 }, { "start": 18095.26, "end": 18096.75, "probability": 0.9828 }, { "start": 18098.94, "end": 18100.3, "probability": 0.7154 }, { "start": 18101.64, "end": 18104.3, "probability": 0.9832 }, { "start": 18104.88, "end": 18105.76, "probability": 0.9641 }, { "start": 18105.9, "end": 18106.32, "probability": 0.9835 }, { "start": 18107.0, "end": 18107.51, "probability": 0.9916 }, { "start": 18108.3, "end": 18110.16, "probability": 0.8924 }, { "start": 18110.26, "end": 18111.46, "probability": 0.9699 }, { "start": 18112.7, "end": 18115.84, "probability": 0.9954 }, { "start": 18115.96, "end": 18116.72, "probability": 0.668 }, { "start": 18116.8, "end": 18118.64, "probability": 0.9114 }, { "start": 18119.4, "end": 18122.1, "probability": 0.9652 }, { "start": 18122.78, "end": 18128.04, "probability": 0.9916 }, { "start": 18128.3, "end": 18129.82, "probability": 0.9975 }, { "start": 18130.18, "end": 18134.98, "probability": 0.9987 }, { "start": 18135.28, "end": 18137.4, "probability": 0.87 }, { "start": 18137.84, "end": 18138.32, "probability": 0.9899 }, { "start": 18140.28, "end": 18140.88, "probability": 0.838 }, { "start": 18142.26, "end": 18144.72, "probability": 0.6272 }, { "start": 18144.78, "end": 18146.2, "probability": 0.9306 }, { "start": 18146.3, "end": 18146.86, "probability": 0.6934 }, { "start": 18147.88, "end": 18149.84, "probability": 0.5889 }, { "start": 18151.32, "end": 18154.62, "probability": 0.8848 }, { "start": 18156.08, "end": 18160.24, "probability": 0.9796 }, { "start": 18161.36, "end": 18163.1, "probability": 0.9642 }, { "start": 18164.0, "end": 18164.3, "probability": 0.7592 }, { "start": 18165.72, "end": 18166.88, "probability": 0.686 }, { "start": 18167.82, "end": 18171.12, "probability": 0.9297 }, { "start": 18171.98, "end": 18174.44, "probability": 0.9774 }, { "start": 18175.6, "end": 18176.88, "probability": 0.9945 }, { "start": 18177.66, "end": 18178.96, "probability": 0.9957 }, { "start": 18179.3, "end": 18181.24, "probability": 0.8868 }, { "start": 18181.98, "end": 18183.44, "probability": 0.787 }, { "start": 18183.48, "end": 18185.5, "probability": 0.8435 }, { "start": 18188.33, "end": 18189.1, "probability": 0.5336 }, { "start": 18189.1, "end": 18189.68, "probability": 0.0461 }, { "start": 18189.7, "end": 18190.44, "probability": 0.2585 }, { "start": 18190.44, "end": 18193.52, "probability": 0.8806 }, { "start": 18194.02, "end": 18195.26, "probability": 0.9929 }, { "start": 18196.04, "end": 18199.09, "probability": 0.9636 }, { "start": 18199.64, "end": 18201.68, "probability": 0.9697 }, { "start": 18201.84, "end": 18203.62, "probability": 0.9334 }, { "start": 18204.1, "end": 18207.9, "probability": 0.9249 }, { "start": 18208.34, "end": 18210.88, "probability": 0.4914 }, { "start": 18212.16, "end": 18212.16, "probability": 0.2745 }, { "start": 18212.16, "end": 18212.82, "probability": 0.7662 }, { "start": 18213.0, "end": 18213.82, "probability": 0.9829 }, { "start": 18213.86, "end": 18215.5, "probability": 0.8363 }, { "start": 18215.54, "end": 18216.06, "probability": 0.8859 }, { "start": 18216.42, "end": 18216.72, "probability": 0.0003 }, { "start": 18217.6, "end": 18217.6, "probability": 0.0312 }, { "start": 18217.6, "end": 18218.34, "probability": 0.3564 }, { "start": 18218.34, "end": 18219.32, "probability": 0.4075 }, { "start": 18219.32, "end": 18220.2, "probability": 0.6712 }, { "start": 18220.2, "end": 18220.32, "probability": 0.6904 }, { "start": 18220.32, "end": 18221.12, "probability": 0.7085 }, { "start": 18221.36, "end": 18224.32, "probability": 0.5771 }, { "start": 18224.64, "end": 18224.64, "probability": 0.3418 }, { "start": 18224.64, "end": 18226.53, "probability": 0.5437 }, { "start": 18227.12, "end": 18227.7, "probability": 0.5493 }, { "start": 18228.22, "end": 18231.08, "probability": 0.9888 }, { "start": 18231.08, "end": 18231.78, "probability": 0.6134 }, { "start": 18231.78, "end": 18235.88, "probability": 0.9473 }, { "start": 18236.46, "end": 18237.74, "probability": 0.3139 }, { "start": 18237.74, "end": 18241.36, "probability": 0.9639 }, { "start": 18241.48, "end": 18242.56, "probability": 0.8914 }, { "start": 18242.76, "end": 18244.48, "probability": 0.9901 }, { "start": 18244.62, "end": 18245.74, "probability": 0.9883 }, { "start": 18245.76, "end": 18247.26, "probability": 0.9768 }, { "start": 18247.8, "end": 18249.1, "probability": 0.9927 }, { "start": 18250.54, "end": 18253.86, "probability": 0.9922 }, { "start": 18254.04, "end": 18256.34, "probability": 0.9929 }, { "start": 18257.04, "end": 18258.0, "probability": 0.514 }, { "start": 18258.1, "end": 18258.82, "probability": 0.8861 }, { "start": 18258.96, "end": 18259.14, "probability": 0.4904 }, { "start": 18259.46, "end": 18260.68, "probability": 0.9738 }, { "start": 18260.78, "end": 18262.04, "probability": 0.9935 }, { "start": 18262.34, "end": 18263.46, "probability": 0.9951 }, { "start": 18264.5, "end": 18267.32, "probability": 0.989 }, { "start": 18267.74, "end": 18269.94, "probability": 0.9396 }, { "start": 18270.46, "end": 18271.32, "probability": 0.9587 }, { "start": 18272.46, "end": 18274.36, "probability": 0.993 }, { "start": 18274.98, "end": 18275.78, "probability": 0.7585 }, { "start": 18276.42, "end": 18276.95, "probability": 0.9858 }, { "start": 18277.68, "end": 18278.14, "probability": 0.5122 }, { "start": 18278.66, "end": 18281.54, "probability": 0.7786 }, { "start": 18282.3, "end": 18283.54, "probability": 0.9458 }, { "start": 18284.56, "end": 18285.62, "probability": 0.7496 }, { "start": 18286.62, "end": 18287.56, "probability": 0.925 }, { "start": 18288.16, "end": 18288.32, "probability": 0.8649 }, { "start": 18288.4, "end": 18289.12, "probability": 0.1644 }, { "start": 18289.18, "end": 18291.14, "probability": 0.8724 }, { "start": 18292.32, "end": 18294.6, "probability": 0.998 }, { "start": 18294.88, "end": 18296.18, "probability": 0.9185 }, { "start": 18296.22, "end": 18297.7, "probability": 0.5762 }, { "start": 18297.7, "end": 18297.98, "probability": 0.5812 }, { "start": 18298.28, "end": 18298.64, "probability": 0.8606 }, { "start": 18298.94, "end": 18300.72, "probability": 0.9091 }, { "start": 18300.82, "end": 18301.78, "probability": 0.8813 }, { "start": 18302.72, "end": 18304.38, "probability": 0.6329 }, { "start": 18306.1, "end": 18307.0, "probability": 0.0919 }, { "start": 18307.12, "end": 18309.28, "probability": 0.4845 }, { "start": 18310.62, "end": 18313.14, "probability": 0.999 }, { "start": 18314.58, "end": 18317.24, "probability": 0.4612 }, { "start": 18317.88, "end": 18318.52, "probability": 0.3503 }, { "start": 18318.54, "end": 18320.18, "probability": 0.5697 }, { "start": 18320.9, "end": 18323.52, "probability": 0.9375 }, { "start": 18323.98, "end": 18325.1, "probability": 0.9692 }, { "start": 18326.9, "end": 18328.02, "probability": 0.9515 }, { "start": 18328.1, "end": 18333.28, "probability": 0.7874 }, { "start": 18333.44, "end": 18337.94, "probability": 0.9985 }, { "start": 18338.48, "end": 18339.9, "probability": 0.9977 }, { "start": 18340.0, "end": 18340.78, "probability": 0.8939 }, { "start": 18341.66, "end": 18343.2, "probability": 0.441 }, { "start": 18343.74, "end": 18346.6, "probability": 0.9883 }, { "start": 18346.74, "end": 18347.08, "probability": 0.5837 }, { "start": 18347.16, "end": 18347.46, "probability": 0.9569 }, { "start": 18348.0, "end": 18348.9, "probability": 0.9892 }, { "start": 18349.3, "end": 18351.42, "probability": 0.9941 }, { "start": 18352.32, "end": 18354.18, "probability": 0.9038 }, { "start": 18354.9, "end": 18355.76, "probability": 0.8992 }, { "start": 18355.84, "end": 18357.02, "probability": 0.9971 }, { "start": 18358.22, "end": 18359.9, "probability": 0.9718 }, { "start": 18360.04, "end": 18361.04, "probability": 0.9186 }, { "start": 18361.12, "end": 18362.7, "probability": 0.9832 }, { "start": 18362.8, "end": 18362.94, "probability": 0.9173 }, { "start": 18363.44, "end": 18365.42, "probability": 0.8859 }, { "start": 18365.64, "end": 18367.44, "probability": 0.926 }, { "start": 18367.6, "end": 18367.86, "probability": 0.8151 }, { "start": 18368.98, "end": 18371.58, "probability": 0.9413 }, { "start": 18372.08, "end": 18373.16, "probability": 0.8309 }, { "start": 18373.3, "end": 18374.6, "probability": 0.9492 }, { "start": 18374.74, "end": 18375.78, "probability": 0.4029 }, { "start": 18377.58, "end": 18379.14, "probability": 0.9526 }, { "start": 18379.3, "end": 18381.84, "probability": 0.9951 }, { "start": 18381.9, "end": 18382.64, "probability": 0.9235 }, { "start": 18382.76, "end": 18383.68, "probability": 0.9789 }, { "start": 18384.02, "end": 18384.86, "probability": 0.8925 }, { "start": 18384.96, "end": 18385.37, "probability": 0.9064 }, { "start": 18386.16, "end": 18387.47, "probability": 0.963 }, { "start": 18388.18, "end": 18389.42, "probability": 0.8179 }, { "start": 18392.04, "end": 18393.28, "probability": 0.7011 }, { "start": 18394.1, "end": 18395.22, "probability": 0.9019 }, { "start": 18395.3, "end": 18396.22, "probability": 0.9315 }, { "start": 18396.34, "end": 18397.14, "probability": 0.4877 }, { "start": 18397.44, "end": 18399.69, "probability": 0.5385 }, { "start": 18400.24, "end": 18401.54, "probability": 0.9795 }, { "start": 18402.56, "end": 18404.18, "probability": 0.9971 }, { "start": 18404.26, "end": 18405.62, "probability": 0.9072 }, { "start": 18406.5, "end": 18407.5, "probability": 0.952 }, { "start": 18407.58, "end": 18408.26, "probability": 0.633 }, { "start": 18408.26, "end": 18408.78, "probability": 0.4295 }, { "start": 18409.34, "end": 18410.1, "probability": 0.826 }, { "start": 18410.34, "end": 18411.48, "probability": 0.9024 }, { "start": 18411.88, "end": 18413.6, "probability": 0.8603 }, { "start": 18413.7, "end": 18414.12, "probability": 0.8716 }, { "start": 18414.88, "end": 18415.42, "probability": 0.703 }, { "start": 18415.54, "end": 18415.96, "probability": 0.792 }, { "start": 18416.02, "end": 18416.3, "probability": 0.8468 }, { "start": 18416.66, "end": 18418.12, "probability": 0.9976 }, { "start": 18418.86, "end": 18421.74, "probability": 0.824 }, { "start": 18421.82, "end": 18421.92, "probability": 0.8517 }, { "start": 18422.8, "end": 18423.32, "probability": 0.871 }, { "start": 18423.54, "end": 18424.42, "probability": 0.9936 }, { "start": 18424.56, "end": 18425.46, "probability": 0.8641 }, { "start": 18425.9, "end": 18427.1, "probability": 0.9683 }, { "start": 18427.46, "end": 18427.72, "probability": 0.7763 }, { "start": 18428.1, "end": 18428.26, "probability": 0.4514 }, { "start": 18428.36, "end": 18430.04, "probability": 0.9952 }, { "start": 18430.14, "end": 18432.76, "probability": 0.9652 }, { "start": 18433.34, "end": 18434.58, "probability": 0.8597 }, { "start": 18435.4, "end": 18436.52, "probability": 0.3633 }, { "start": 18436.64, "end": 18437.0, "probability": 0.536 }, { "start": 18437.0, "end": 18437.4, "probability": 0.4112 }, { "start": 18437.59, "end": 18440.08, "probability": 0.6277 }, { "start": 18440.48, "end": 18441.42, "probability": 0.9485 }, { "start": 18441.58, "end": 18443.34, "probability": 0.7713 }, { "start": 18445.88, "end": 18446.66, "probability": 0.6995 }, { "start": 18446.78, "end": 18448.64, "probability": 0.6828 }, { "start": 18456.78, "end": 18457.38, "probability": 0.4634 }, { "start": 18457.66, "end": 18458.16, "probability": 0.8362 }, { "start": 18458.96, "end": 18459.28, "probability": 0.0861 }, { "start": 18465.22, "end": 18467.54, "probability": 0.3137 }, { "start": 18467.6, "end": 18471.14, "probability": 0.9863 }, { "start": 18471.98, "end": 18473.21, "probability": 0.8726 }, { "start": 18474.38, "end": 18477.0, "probability": 0.8998 }, { "start": 18477.8, "end": 18477.94, "probability": 0.1063 }, { "start": 18477.94, "end": 18480.58, "probability": 0.7822 }, { "start": 18481.34, "end": 18483.14, "probability": 0.5877 }, { "start": 18484.52, "end": 18485.32, "probability": 0.7579 }, { "start": 18485.42, "end": 18487.22, "probability": 0.8884 }, { "start": 18487.24, "end": 18488.79, "probability": 0.9963 }, { "start": 18489.96, "end": 18494.9, "probability": 0.5092 }, { "start": 18495.18, "end": 18496.98, "probability": 0.3898 }, { "start": 18497.28, "end": 18500.82, "probability": 0.7063 }, { "start": 18501.0, "end": 18503.18, "probability": 0.2595 }, { "start": 18503.6, "end": 18504.0, "probability": 0.0117 }, { "start": 18504.0, "end": 18509.42, "probability": 0.9642 }, { "start": 18510.56, "end": 18511.48, "probability": 0.2585 }, { "start": 18511.64, "end": 18514.76, "probability": 0.9951 }, { "start": 18515.46, "end": 18519.18, "probability": 0.0117 }, { "start": 18520.26, "end": 18523.02, "probability": 0.2215 }, { "start": 18523.02, "end": 18528.88, "probability": 0.0891 }, { "start": 18529.58, "end": 18529.62, "probability": 0.1213 }, { "start": 18529.62, "end": 18532.56, "probability": 0.2724 }, { "start": 18534.92, "end": 18535.62, "probability": 0.0309 }, { "start": 18535.62, "end": 18535.62, "probability": 0.1557 }, { "start": 18535.62, "end": 18535.62, "probability": 0.2152 }, { "start": 18535.62, "end": 18535.62, "probability": 0.0566 }, { "start": 18535.62, "end": 18535.62, "probability": 0.0494 }, { "start": 18535.62, "end": 18536.98, "probability": 0.0416 }, { "start": 18537.26, "end": 18540.04, "probability": 0.7603 }, { "start": 18541.22, "end": 18542.5, "probability": 0.9096 }, { "start": 18543.62, "end": 18546.2, "probability": 0.6581 }, { "start": 18547.18, "end": 18550.32, "probability": 0.9946 }, { "start": 18550.32, "end": 18553.42, "probability": 0.9832 }, { "start": 18554.2, "end": 18555.72, "probability": 0.9733 }, { "start": 18556.4, "end": 18557.46, "probability": 0.7539 }, { "start": 18557.9, "end": 18558.56, "probability": 0.3238 }, { "start": 18558.64, "end": 18559.3, "probability": 0.8777 }, { "start": 18559.56, "end": 18562.86, "probability": 0.9206 }, { "start": 18563.5, "end": 18564.46, "probability": 0.9168 }, { "start": 18565.06, "end": 18567.14, "probability": 0.903 }, { "start": 18567.94, "end": 18568.42, "probability": 0.9302 }, { "start": 18569.3, "end": 18572.24, "probability": 0.9949 }, { "start": 18573.28, "end": 18574.28, "probability": 0.7923 }, { "start": 18575.0, "end": 18576.64, "probability": 0.9833 }, { "start": 18577.98, "end": 18579.28, "probability": 0.988 }, { "start": 18580.78, "end": 18584.66, "probability": 0.9578 }, { "start": 18585.14, "end": 18586.48, "probability": 0.7773 }, { "start": 18587.26, "end": 18590.92, "probability": 0.9968 }, { "start": 18591.62, "end": 18594.18, "probability": 0.9967 }, { "start": 18594.18, "end": 18596.88, "probability": 0.9966 }, { "start": 18597.86, "end": 18601.44, "probability": 0.9905 }, { "start": 18602.08, "end": 18605.08, "probability": 0.8945 }, { "start": 18605.6, "end": 18605.92, "probability": 0.6294 }, { "start": 18606.96, "end": 18608.32, "probability": 0.9828 }, { "start": 18609.18, "end": 18610.37, "probability": 0.7542 }, { "start": 18611.46, "end": 18611.98, "probability": 0.6864 }, { "start": 18612.16, "end": 18614.76, "probability": 0.9809 }, { "start": 18614.76, "end": 18617.62, "probability": 0.9921 }, { "start": 18618.0, "end": 18618.84, "probability": 0.6537 }, { "start": 18619.64, "end": 18619.78, "probability": 0.8625 }, { "start": 18620.74, "end": 18623.42, "probability": 0.9655 }, { "start": 18624.1, "end": 18624.78, "probability": 0.9499 }, { "start": 18625.64, "end": 18629.98, "probability": 0.9678 }, { "start": 18630.1, "end": 18632.48, "probability": 0.9222 }, { "start": 18634.5, "end": 18634.9, "probability": 0.8841 }, { "start": 18635.86, "end": 18636.7, "probability": 0.9067 }, { "start": 18637.34, "end": 18639.5, "probability": 0.7924 }, { "start": 18640.18, "end": 18642.4, "probability": 0.9927 }, { "start": 18643.1, "end": 18645.56, "probability": 0.8704 }, { "start": 18646.62, "end": 18649.9, "probability": 0.9976 }, { "start": 18650.02, "end": 18652.55, "probability": 0.9989 }, { "start": 18653.48, "end": 18655.72, "probability": 0.9971 }, { "start": 18656.92, "end": 18660.84, "probability": 0.9925 }, { "start": 18660.84, "end": 18663.76, "probability": 0.9892 }, { "start": 18665.04, "end": 18665.56, "probability": 0.9797 }, { "start": 18666.84, "end": 18668.56, "probability": 0.9937 }, { "start": 18669.52, "end": 18671.9, "probability": 0.9143 }, { "start": 18672.84, "end": 18674.88, "probability": 0.9853 }, { "start": 18674.96, "end": 18677.14, "probability": 0.8908 }, { "start": 18677.62, "end": 18679.54, "probability": 0.9678 }, { "start": 18680.0, "end": 18681.26, "probability": 0.9622 }, { "start": 18681.36, "end": 18682.26, "probability": 0.9795 }, { "start": 18684.26, "end": 18684.82, "probability": 0.1801 }, { "start": 18686.02, "end": 18691.98, "probability": 0.9967 }, { "start": 18692.94, "end": 18694.18, "probability": 0.8411 }, { "start": 18694.9, "end": 18698.0, "probability": 0.9797 }, { "start": 18698.54, "end": 18701.6, "probability": 0.9951 }, { "start": 18701.6, "end": 18704.78, "probability": 0.9819 }, { "start": 18705.16, "end": 18709.86, "probability": 0.9865 }, { "start": 18710.78, "end": 18712.3, "probability": 0.9952 }, { "start": 18713.48, "end": 18714.24, "probability": 0.6344 }, { "start": 18714.8, "end": 18716.92, "probability": 0.8491 }, { "start": 18717.86, "end": 18719.26, "probability": 0.9917 }, { "start": 18719.52, "end": 18722.0, "probability": 0.9917 }, { "start": 18722.0, "end": 18725.38, "probability": 0.9762 }, { "start": 18726.58, "end": 18727.4, "probability": 0.9974 }, { "start": 18728.08, "end": 18729.4, "probability": 0.9375 }, { "start": 18732.08, "end": 18733.16, "probability": 0.449 }, { "start": 18734.16, "end": 18734.95, "probability": 0.9939 }, { "start": 18735.64, "end": 18736.54, "probability": 0.9627 }, { "start": 18736.74, "end": 18738.48, "probability": 0.9189 }, { "start": 18738.58, "end": 18741.14, "probability": 0.9948 }, { "start": 18741.86, "end": 18742.9, "probability": 0.9919 }, { "start": 18743.74, "end": 18744.98, "probability": 0.9402 }, { "start": 18746.34, "end": 18747.48, "probability": 0.9946 }, { "start": 18748.56, "end": 18748.8, "probability": 0.3466 }, { "start": 18749.2, "end": 18750.42, "probability": 0.6394 }, { "start": 18751.16, "end": 18753.16, "probability": 0.9284 }, { "start": 18770.98, "end": 18772.56, "probability": 0.6182 }, { "start": 18774.46, "end": 18775.58, "probability": 0.7119 }, { "start": 18776.26, "end": 18780.82, "probability": 0.4601 }, { "start": 18781.58, "end": 18785.08, "probability": 0.4286 }, { "start": 18786.98, "end": 18790.26, "probability": 0.7252 }, { "start": 18790.76, "end": 18795.74, "probability": 0.9961 }, { "start": 18795.74, "end": 18800.44, "probability": 0.9535 }, { "start": 18801.6, "end": 18803.7, "probability": 0.9945 }, { "start": 18804.34, "end": 18805.02, "probability": 0.6585 }, { "start": 18806.4, "end": 18808.81, "probability": 0.9814 }, { "start": 18809.7, "end": 18811.76, "probability": 0.8288 }, { "start": 18812.32, "end": 18818.38, "probability": 0.9711 }, { "start": 18819.72, "end": 18821.32, "probability": 0.9988 }, { "start": 18822.84, "end": 18825.56, "probability": 0.9703 }, { "start": 18825.66, "end": 18826.62, "probability": 0.9922 }, { "start": 18826.68, "end": 18828.0, "probability": 0.8767 }, { "start": 18829.74, "end": 18830.9, "probability": 0.9779 }, { "start": 18832.18, "end": 18833.9, "probability": 0.8138 }, { "start": 18835.12, "end": 18836.32, "probability": 0.9458 }, { "start": 18837.2, "end": 18838.64, "probability": 0.9404 }, { "start": 18838.78, "end": 18841.52, "probability": 0.7166 }, { "start": 18842.98, "end": 18844.44, "probability": 0.7211 }, { "start": 18845.38, "end": 18847.24, "probability": 0.8282 }, { "start": 18848.74, "end": 18849.19, "probability": 0.8546 }, { "start": 18850.58, "end": 18851.7, "probability": 0.921 }, { "start": 18851.94, "end": 18854.48, "probability": 0.6187 }, { "start": 18855.78, "end": 18856.4, "probability": 0.784 }, { "start": 18857.06, "end": 18859.48, "probability": 0.9204 }, { "start": 18859.66, "end": 18860.9, "probability": 0.9971 }, { "start": 18862.5, "end": 18864.48, "probability": 0.8784 }, { "start": 18865.28, "end": 18866.28, "probability": 0.8954 }, { "start": 18867.74, "end": 18870.08, "probability": 0.6923 }, { "start": 18870.96, "end": 18872.4, "probability": 0.7837 }, { "start": 18872.5, "end": 18874.24, "probability": 0.913 }, { "start": 18875.96, "end": 18877.38, "probability": 0.8456 }, { "start": 18879.84, "end": 18882.38, "probability": 0.9382 }, { "start": 18884.6, "end": 18886.02, "probability": 0.9348 }, { "start": 18887.24, "end": 18887.83, "probability": 0.9758 }, { "start": 18890.04, "end": 18891.22, "probability": 0.9839 }, { "start": 18891.98, "end": 18893.44, "probability": 0.9801 }, { "start": 18895.08, "end": 18896.38, "probability": 0.9888 }, { "start": 18899.42, "end": 18905.26, "probability": 0.9973 }, { "start": 18906.56, "end": 18909.44, "probability": 0.9431 }, { "start": 18910.92, "end": 18911.78, "probability": 0.8813 }, { "start": 18912.8, "end": 18913.88, "probability": 0.9741 }, { "start": 18915.06, "end": 18917.04, "probability": 0.5806 }, { "start": 18917.6, "end": 18920.0, "probability": 0.8542 }, { "start": 18921.32, "end": 18924.74, "probability": 0.7573 }, { "start": 18925.68, "end": 18926.52, "probability": 0.9672 }, { "start": 18928.44, "end": 18930.18, "probability": 0.995 }, { "start": 18931.42, "end": 18933.54, "probability": 0.9764 }, { "start": 18934.98, "end": 18936.0, "probability": 0.9644 }, { "start": 18936.96, "end": 18940.32, "probability": 0.5381 }, { "start": 18940.98, "end": 18941.62, "probability": 0.745 }, { "start": 18944.36, "end": 18946.3, "probability": 0.9544 }, { "start": 18947.42, "end": 18950.4, "probability": 0.9924 }, { "start": 18952.18, "end": 18954.44, "probability": 0.9321 }, { "start": 18955.06, "end": 18956.56, "probability": 0.9647 }, { "start": 18958.5, "end": 18960.52, "probability": 0.8174 }, { "start": 18960.66, "end": 18961.38, "probability": 0.7263 }, { "start": 18961.54, "end": 18963.16, "probability": 0.9414 }, { "start": 18964.04, "end": 18965.48, "probability": 0.9968 }, { "start": 18965.84, "end": 18970.06, "probability": 0.9582 }, { "start": 18971.54, "end": 18973.22, "probability": 0.9595 }, { "start": 18973.52, "end": 18974.56, "probability": 0.4024 }, { "start": 18976.4, "end": 18979.7, "probability": 0.9669 }, { "start": 18980.42, "end": 18983.63, "probability": 0.999 }, { "start": 18983.64, "end": 18987.14, "probability": 0.7664 }, { "start": 18988.62, "end": 18991.82, "probability": 0.9761 }, { "start": 18993.04, "end": 18995.62, "probability": 0.7591 }, { "start": 18997.14, "end": 18998.3, "probability": 0.981 }, { "start": 18998.92, "end": 18999.72, "probability": 0.9076 }, { "start": 18999.84, "end": 19001.18, "probability": 0.8046 }, { "start": 19001.32, "end": 19002.52, "probability": 0.9847 }, { "start": 19004.3, "end": 19006.7, "probability": 0.9453 }, { "start": 19007.72, "end": 19009.46, "probability": 0.9648 }, { "start": 19010.2, "end": 19010.84, "probability": 0.9243 }, { "start": 19011.78, "end": 19014.08, "probability": 0.9785 }, { "start": 19015.22, "end": 19015.96, "probability": 0.9126 }, { "start": 19016.22, "end": 19017.5, "probability": 0.9236 }, { "start": 19017.9, "end": 19019.66, "probability": 0.9856 }, { "start": 19020.72, "end": 19024.6, "probability": 0.9844 }, { "start": 19024.92, "end": 19025.98, "probability": 0.9917 }, { "start": 19026.86, "end": 19029.72, "probability": 0.9899 }, { "start": 19030.18, "end": 19031.34, "probability": 0.9194 }, { "start": 19032.48, "end": 19033.94, "probability": 0.9595 }, { "start": 19034.84, "end": 19035.9, "probability": 0.9717 }, { "start": 19036.0, "end": 19040.36, "probability": 0.9268 }, { "start": 19040.36, "end": 19044.54, "probability": 0.9768 }, { "start": 19046.08, "end": 19047.1, "probability": 0.4973 }, { "start": 19047.44, "end": 19049.47, "probability": 0.8398 }, { "start": 19078.44, "end": 19081.16, "probability": 0.7023 }, { "start": 19083.2, "end": 19090.14, "probability": 0.9718 }, { "start": 19091.46, "end": 19092.72, "probability": 0.8824 }, { "start": 19094.1, "end": 19099.52, "probability": 0.9768 }, { "start": 19101.36, "end": 19101.9, "probability": 0.821 }, { "start": 19102.72, "end": 19107.5, "probability": 0.9532 }, { "start": 19108.88, "end": 19114.94, "probability": 0.9864 }, { "start": 19115.06, "end": 19115.9, "probability": 0.7232 }, { "start": 19116.96, "end": 19119.16, "probability": 0.9755 }, { "start": 19120.54, "end": 19122.84, "probability": 0.9934 }, { "start": 19124.02, "end": 19124.44, "probability": 0.6981 }, { "start": 19125.44, "end": 19126.48, "probability": 0.8651 }, { "start": 19127.96, "end": 19128.9, "probability": 0.8722 }, { "start": 19130.26, "end": 19132.16, "probability": 0.8065 }, { "start": 19132.4, "end": 19134.46, "probability": 0.9975 }, { "start": 19135.58, "end": 19139.74, "probability": 0.9968 }, { "start": 19140.12, "end": 19142.58, "probability": 0.9937 }, { "start": 19142.74, "end": 19144.96, "probability": 0.6913 }, { "start": 19146.04, "end": 19149.48, "probability": 0.8252 }, { "start": 19151.42, "end": 19155.58, "probability": 0.9674 }, { "start": 19157.32, "end": 19160.8, "probability": 0.767 }, { "start": 19161.86, "end": 19169.1, "probability": 0.9919 }, { "start": 19170.46, "end": 19171.34, "probability": 0.9548 }, { "start": 19172.02, "end": 19176.2, "probability": 0.9045 }, { "start": 19176.4, "end": 19179.11, "probability": 0.9897 }, { "start": 19180.12, "end": 19181.02, "probability": 0.8921 }, { "start": 19181.12, "end": 19182.1, "probability": 0.9277 }, { "start": 19182.12, "end": 19183.1, "probability": 0.9927 }, { "start": 19183.72, "end": 19186.4, "probability": 0.9782 }, { "start": 19187.96, "end": 19192.62, "probability": 0.9847 }, { "start": 19193.49, "end": 19198.86, "probability": 0.9776 }, { "start": 19199.94, "end": 19203.24, "probability": 0.9545 }, { "start": 19203.24, "end": 19208.32, "probability": 0.7459 }, { "start": 19210.58, "end": 19215.48, "probability": 0.9966 }, { "start": 19216.12, "end": 19216.78, "probability": 0.9754 }, { "start": 19217.5, "end": 19219.3, "probability": 0.9979 }, { "start": 19219.96, "end": 19220.92, "probability": 0.6429 }, { "start": 19221.94, "end": 19227.22, "probability": 0.9973 }, { "start": 19228.68, "end": 19234.72, "probability": 0.6116 }, { "start": 19234.72, "end": 19237.88, "probability": 0.9976 }, { "start": 19238.38, "end": 19240.86, "probability": 0.7999 }, { "start": 19241.46, "end": 19242.47, "probability": 0.9536 }, { "start": 19243.9, "end": 19245.22, "probability": 0.7413 }, { "start": 19246.1, "end": 19249.64, "probability": 0.6676 }, { "start": 19250.84, "end": 19253.44, "probability": 0.9785 }, { "start": 19254.56, "end": 19256.76, "probability": 0.8112 }, { "start": 19257.14, "end": 19257.62, "probability": 0.8742 }, { "start": 19257.78, "end": 19259.8, "probability": 0.8323 }, { "start": 19260.16, "end": 19260.98, "probability": 0.4889 }, { "start": 19261.0, "end": 19263.48, "probability": 0.9812 }, { "start": 19263.48, "end": 19265.94, "probability": 0.9058 }, { "start": 19266.72, "end": 19268.68, "probability": 0.7921 }, { "start": 19269.38, "end": 19273.32, "probability": 0.9952 }, { "start": 19273.82, "end": 19276.43, "probability": 0.9663 }, { "start": 19276.9, "end": 19278.02, "probability": 0.8757 }, { "start": 19278.32, "end": 19279.36, "probability": 0.9912 }, { "start": 19279.64, "end": 19280.34, "probability": 0.9366 }, { "start": 19280.5, "end": 19280.56, "probability": 0.1158 }, { "start": 19280.7, "end": 19280.94, "probability": 0.89 }, { "start": 19281.1, "end": 19282.1, "probability": 0.9305 }, { "start": 19282.44, "end": 19283.88, "probability": 0.9004 }, { "start": 19284.84, "end": 19286.38, "probability": 0.9652 }, { "start": 19289.82, "end": 19291.44, "probability": 0.7209 }, { "start": 19298.14, "end": 19299.24, "probability": 0.6322 }, { "start": 19305.3, "end": 19306.94, "probability": 0.6456 }, { "start": 19308.04, "end": 19311.12, "probability": 0.8504 }, { "start": 19312.0, "end": 19313.94, "probability": 0.8823 }, { "start": 19314.14, "end": 19317.98, "probability": 0.9545 }, { "start": 19319.4, "end": 19325.26, "probability": 0.978 }, { "start": 19325.48, "end": 19327.1, "probability": 0.5661 }, { "start": 19328.08, "end": 19333.9, "probability": 0.9771 }, { "start": 19334.18, "end": 19335.5, "probability": 0.5226 }, { "start": 19335.66, "end": 19336.98, "probability": 0.85 }, { "start": 19337.16, "end": 19338.02, "probability": 0.9615 }, { "start": 19339.14, "end": 19345.04, "probability": 0.9988 }, { "start": 19345.86, "end": 19349.26, "probability": 0.9703 }, { "start": 19349.92, "end": 19353.8, "probability": 0.9393 }, { "start": 19354.04, "end": 19355.02, "probability": 0.2544 }, { "start": 19355.7, "end": 19357.7, "probability": 0.8277 }, { "start": 19360.3, "end": 19360.4, "probability": 0.0461 }, { "start": 19361.22, "end": 19361.32, "probability": 0.5208 }, { "start": 19362.22, "end": 19363.78, "probability": 0.7901 }, { "start": 19363.84, "end": 19364.8, "probability": 0.941 }, { "start": 19365.46, "end": 19373.18, "probability": 0.9856 }, { "start": 19374.76, "end": 19377.64, "probability": 0.8954 }, { "start": 19377.8, "end": 19379.36, "probability": 0.7103 }, { "start": 19380.28, "end": 19382.2, "probability": 0.9758 }, { "start": 19383.88, "end": 19386.6, "probability": 0.9369 }, { "start": 19386.76, "end": 19387.12, "probability": 0.4716 }, { "start": 19387.46, "end": 19388.52, "probability": 0.9595 }, { "start": 19388.68, "end": 19389.3, "probability": 0.5286 }, { "start": 19390.1, "end": 19392.84, "probability": 0.5506 }, { "start": 19393.5, "end": 19394.66, "probability": 0.9834 }, { "start": 19395.56, "end": 19397.02, "probability": 0.6036 }, { "start": 19398.28, "end": 19399.38, "probability": 0.9495 }, { "start": 19401.18, "end": 19401.74, "probability": 0.7209 }, { "start": 19403.58, "end": 19409.42, "probability": 0.9829 }, { "start": 19409.94, "end": 19411.06, "probability": 0.9717 }, { "start": 19412.38, "end": 19413.66, "probability": 0.0422 }, { "start": 19413.66, "end": 19414.46, "probability": 0.32 }, { "start": 19414.88, "end": 19415.38, "probability": 0.6615 }, { "start": 19416.12, "end": 19417.26, "probability": 0.9438 }, { "start": 19417.88, "end": 19418.92, "probability": 0.7251 }, { "start": 19419.06, "end": 19422.16, "probability": 0.8821 }, { "start": 19423.2, "end": 19425.52, "probability": 0.8605 }, { "start": 19425.58, "end": 19428.37, "probability": 0.9971 }, { "start": 19429.12, "end": 19430.6, "probability": 0.9596 }, { "start": 19430.68, "end": 19432.82, "probability": 0.8802 }, { "start": 19433.92, "end": 19434.24, "probability": 0.4727 }, { "start": 19434.38, "end": 19435.64, "probability": 0.9566 }, { "start": 19435.88, "end": 19437.26, "probability": 0.8926 }, { "start": 19437.38, "end": 19439.36, "probability": 0.8723 }, { "start": 19440.02, "end": 19440.65, "probability": 0.7905 }, { "start": 19440.76, "end": 19443.47, "probability": 0.8382 }, { "start": 19444.76, "end": 19445.76, "probability": 0.9727 }, { "start": 19445.86, "end": 19446.8, "probability": 0.9268 }, { "start": 19446.88, "end": 19449.12, "probability": 0.9431 }, { "start": 19449.62, "end": 19450.76, "probability": 0.9844 }, { "start": 19452.14, "end": 19453.6, "probability": 0.9803 }, { "start": 19454.56, "end": 19458.74, "probability": 0.9143 }, { "start": 19460.12, "end": 19462.07, "probability": 0.9852 }, { "start": 19462.64, "end": 19464.14, "probability": 0.7353 }, { "start": 19465.12, "end": 19468.52, "probability": 0.9958 }, { "start": 19469.76, "end": 19476.54, "probability": 0.9819 }, { "start": 19476.8, "end": 19478.14, "probability": 0.882 }, { "start": 19479.16, "end": 19480.06, "probability": 0.8812 }, { "start": 19480.3, "end": 19483.07, "probability": 0.98 }, { "start": 19483.7, "end": 19484.54, "probability": 0.9352 }, { "start": 19485.06, "end": 19487.84, "probability": 0.7017 }, { "start": 19488.26, "end": 19490.24, "probability": 0.9075 }, { "start": 19491.4, "end": 19493.3, "probability": 0.9725 }, { "start": 19494.58, "end": 19499.29, "probability": 0.86 }, { "start": 19500.96, "end": 19502.64, "probability": 0.9874 }, { "start": 19502.98, "end": 19504.64, "probability": 0.8571 }, { "start": 19505.06, "end": 19506.28, "probability": 0.9854 }, { "start": 19506.38, "end": 19509.68, "probability": 0.9796 }, { "start": 19510.1, "end": 19512.24, "probability": 0.8109 }, { "start": 19513.28, "end": 19514.9, "probability": 0.7366 }, { "start": 19515.68, "end": 19517.2, "probability": 0.2507 }, { "start": 19517.3, "end": 19518.28, "probability": 0.5252 }, { "start": 19518.78, "end": 19519.28, "probability": 0.8069 }, { "start": 19519.28, "end": 19520.5, "probability": 0.9875 }, { "start": 19521.08, "end": 19523.12, "probability": 0.9689 }, { "start": 19523.62, "end": 19525.23, "probability": 0.9902 }, { "start": 19526.4, "end": 19526.52, "probability": 0.1294 }, { "start": 19526.52, "end": 19527.7, "probability": 0.6312 }, { "start": 19529.24, "end": 19530.62, "probability": 0.9417 }, { "start": 19531.12, "end": 19531.54, "probability": 0.2069 }, { "start": 19531.58, "end": 19532.54, "probability": 0.9616 }, { "start": 19534.08, "end": 19537.7, "probability": 0.8472 }, { "start": 19539.06, "end": 19541.98, "probability": 0.7959 }, { "start": 19542.36, "end": 19545.36, "probability": 0.9647 }, { "start": 19546.24, "end": 19547.7, "probability": 0.8113 }, { "start": 19547.74, "end": 19548.86, "probability": 0.7684 }, { "start": 19549.18, "end": 19550.92, "probability": 0.7409 }, { "start": 19551.62, "end": 19553.5, "probability": 0.9409 }, { "start": 19554.68, "end": 19555.52, "probability": 0.9971 }, { "start": 19557.08, "end": 19559.12, "probability": 0.9492 }, { "start": 19559.86, "end": 19562.53, "probability": 0.4236 }, { "start": 19563.46, "end": 19566.04, "probability": 0.2811 }, { "start": 19566.38, "end": 19566.4, "probability": 0.1767 }, { "start": 19566.4, "end": 19568.92, "probability": 0.1841 }, { "start": 19569.26, "end": 19571.12, "probability": 0.5773 }, { "start": 19571.58, "end": 19574.48, "probability": 0.676 }, { "start": 19574.82, "end": 19576.76, "probability": 0.4176 }, { "start": 19576.76, "end": 19579.54, "probability": 0.2333 }, { "start": 19579.9, "end": 19583.52, "probability": 0.6437 }, { "start": 19584.2, "end": 19586.9, "probability": 0.9444 }, { "start": 19587.64, "end": 19591.06, "probability": 0.9019 }, { "start": 19592.04, "end": 19596.62, "probability": 0.9943 }, { "start": 19596.62, "end": 19599.8, "probability": 0.9566 }, { "start": 19599.86, "end": 19604.58, "probability": 0.9967 }, { "start": 19605.72, "end": 19606.42, "probability": 0.8721 }, { "start": 19606.78, "end": 19608.06, "probability": 0.9386 }, { "start": 19608.5, "end": 19609.62, "probability": 0.6014 }, { "start": 19610.26, "end": 19611.0, "probability": 0.7162 }, { "start": 19611.58, "end": 19612.4, "probability": 0.7361 }, { "start": 19613.14, "end": 19615.2, "probability": 0.9746 }, { "start": 19616.38, "end": 19617.84, "probability": 0.857 }, { "start": 19620.54, "end": 19621.88, "probability": 0.8416 }, { "start": 19622.02, "end": 19623.34, "probability": 0.9272 }, { "start": 19624.2, "end": 19625.24, "probability": 0.5964 }, { "start": 19648.48, "end": 19648.66, "probability": 0.2744 }, { "start": 19648.66, "end": 19651.18, "probability": 0.7103 }, { "start": 19651.88, "end": 19653.26, "probability": 0.8464 }, { "start": 19653.26, "end": 19653.44, "probability": 0.5988 }, { "start": 19653.64, "end": 19654.94, "probability": 0.9883 }, { "start": 19656.3, "end": 19657.14, "probability": 0.5573 }, { "start": 19659.42, "end": 19661.62, "probability": 0.7223 }, { "start": 19662.22, "end": 19665.8, "probability": 0.9955 }, { "start": 19666.0, "end": 19666.64, "probability": 0.6752 }, { "start": 19666.74, "end": 19667.69, "probability": 0.926 }, { "start": 19668.12, "end": 19672.52, "probability": 0.9722 }, { "start": 19673.24, "end": 19674.58, "probability": 0.7986 }, { "start": 19675.26, "end": 19676.14, "probability": 0.774 }, { "start": 19676.34, "end": 19677.98, "probability": 0.9917 }, { "start": 19678.48, "end": 19678.88, "probability": 0.8182 }, { "start": 19679.9, "end": 19683.54, "probability": 0.9771 }, { "start": 19683.88, "end": 19685.28, "probability": 0.9177 }, { "start": 19685.44, "end": 19686.0, "probability": 0.4873 }, { "start": 19686.24, "end": 19688.92, "probability": 0.7584 }, { "start": 19689.38, "end": 19690.78, "probability": 0.9492 }, { "start": 19691.38, "end": 19692.76, "probability": 0.9636 }, { "start": 19693.2, "end": 19694.42, "probability": 0.9867 }, { "start": 19694.82, "end": 19695.71, "probability": 0.9712 }, { "start": 19696.1, "end": 19698.64, "probability": 0.9502 }, { "start": 19698.94, "end": 19700.43, "probability": 0.8511 }, { "start": 19701.4, "end": 19703.74, "probability": 0.851 }, { "start": 19703.92, "end": 19704.38, "probability": 0.5499 }, { "start": 19704.38, "end": 19704.58, "probability": 0.3331 }, { "start": 19704.66, "end": 19709.18, "probability": 0.952 }, { "start": 19710.0, "end": 19712.68, "probability": 0.7347 }, { "start": 19713.86, "end": 19718.64, "probability": 0.9774 }, { "start": 19718.64, "end": 19725.02, "probability": 0.9924 }, { "start": 19725.24, "end": 19726.86, "probability": 0.7959 }, { "start": 19727.66, "end": 19733.8, "probability": 0.1288 }, { "start": 19734.48, "end": 19737.44, "probability": 0.8673 }, { "start": 19737.52, "end": 19738.56, "probability": 0.9893 }, { "start": 19738.66, "end": 19741.94, "probability": 0.3057 }, { "start": 19742.4, "end": 19745.87, "probability": 0.5225 }, { "start": 19746.1, "end": 19747.37, "probability": 0.9834 }, { "start": 19747.92, "end": 19750.48, "probability": 0.9937 }, { "start": 19751.2, "end": 19755.98, "probability": 0.8745 }, { "start": 19756.24, "end": 19758.14, "probability": 0.9841 }, { "start": 19759.24, "end": 19760.28, "probability": 0.8707 }, { "start": 19760.4, "end": 19761.92, "probability": 0.9637 }, { "start": 19762.22, "end": 19762.84, "probability": 0.5034 }, { "start": 19762.94, "end": 19766.2, "probability": 0.9934 }, { "start": 19766.47, "end": 19771.12, "probability": 0.71 }, { "start": 19771.62, "end": 19773.96, "probability": 0.9934 }, { "start": 19775.61, "end": 19778.76, "probability": 0.8368 }, { "start": 19779.24, "end": 19780.76, "probability": 0.5365 }, { "start": 19780.88, "end": 19782.72, "probability": 0.8401 }, { "start": 19782.76, "end": 19783.78, "probability": 0.7598 }, { "start": 19783.9, "end": 19788.84, "probability": 0.9693 }, { "start": 19788.94, "end": 19789.86, "probability": 0.8538 }, { "start": 19790.26, "end": 19790.82, "probability": 0.7577 }, { "start": 19791.14, "end": 19792.56, "probability": 0.9297 }, { "start": 19792.6, "end": 19793.98, "probability": 0.9924 }, { "start": 19794.36, "end": 19796.0, "probability": 0.8075 }, { "start": 19796.0, "end": 19798.38, "probability": 0.6748 }, { "start": 19798.8, "end": 19801.34, "probability": 0.9045 }, { "start": 19801.34, "end": 19803.1, "probability": 0.8623 }, { "start": 19803.44, "end": 19803.66, "probability": 0.266 }, { "start": 19803.76, "end": 19804.84, "probability": 0.9194 }, { "start": 19804.98, "end": 19808.84, "probability": 0.9241 }, { "start": 19809.44, "end": 19810.39, "probability": 0.981 }, { "start": 19811.12, "end": 19813.08, "probability": 0.8093 }, { "start": 19813.62, "end": 19815.04, "probability": 0.9805 }, { "start": 19815.38, "end": 19816.46, "probability": 0.9552 }, { "start": 19816.7, "end": 19818.14, "probability": 0.9927 }, { "start": 19818.76, "end": 19821.3, "probability": 0.9923 }, { "start": 19821.48, "end": 19824.06, "probability": 0.9355 }, { "start": 19824.66, "end": 19825.72, "probability": 0.5126 }, { "start": 19826.02, "end": 19828.15, "probability": 0.9091 }, { "start": 19829.24, "end": 19833.46, "probability": 0.9923 }, { "start": 19833.72, "end": 19836.48, "probability": 0.9819 }, { "start": 19836.94, "end": 19838.44, "probability": 0.9839 }, { "start": 19838.7, "end": 19842.24, "probability": 0.8811 }, { "start": 19842.66, "end": 19844.02, "probability": 0.965 }, { "start": 19844.58, "end": 19846.68, "probability": 0.985 }, { "start": 19847.1, "end": 19849.44, "probability": 0.9816 }, { "start": 19850.3, "end": 19850.75, "probability": 0.7918 }, { "start": 19851.22, "end": 19851.56, "probability": 0.8048 }, { "start": 19851.9, "end": 19853.7, "probability": 0.8618 }, { "start": 19854.1, "end": 19854.74, "probability": 0.7354 }, { "start": 19855.04, "end": 19857.08, "probability": 0.9308 }, { "start": 19857.38, "end": 19859.44, "probability": 0.9693 }, { "start": 19859.9, "end": 19862.58, "probability": 0.9885 }, { "start": 19862.96, "end": 19865.1, "probability": 0.9863 }, { "start": 19865.14, "end": 19865.84, "probability": 0.9363 }, { "start": 19865.92, "end": 19866.62, "probability": 0.8805 }, { "start": 19866.98, "end": 19868.44, "probability": 0.5454 }, { "start": 19868.78, "end": 19872.44, "probability": 0.9069 }, { "start": 19873.82, "end": 19875.37, "probability": 0.7465 }, { "start": 19876.64, "end": 19877.54, "probability": 0.8611 }, { "start": 19878.78, "end": 19880.08, "probability": 0.5074 }, { "start": 19904.3, "end": 19906.74, "probability": 0.5494 }, { "start": 19908.86, "end": 19911.94, "probability": 0.9921 }, { "start": 19911.94, "end": 19915.28, "probability": 0.9964 }, { "start": 19916.52, "end": 19918.08, "probability": 0.9845 }, { "start": 19919.16, "end": 19923.5, "probability": 0.9688 }, { "start": 19926.02, "end": 19926.7, "probability": 0.7443 }, { "start": 19927.94, "end": 19928.92, "probability": 0.622 }, { "start": 19928.92, "end": 19932.18, "probability": 0.96 }, { "start": 19933.58, "end": 19937.32, "probability": 0.9939 }, { "start": 19938.04, "end": 19939.62, "probability": 0.9906 }, { "start": 19940.46, "end": 19942.5, "probability": 0.9937 }, { "start": 19943.74, "end": 19944.48, "probability": 0.6069 }, { "start": 19944.76, "end": 19946.52, "probability": 0.979 }, { "start": 19946.66, "end": 19947.16, "probability": 0.7812 }, { "start": 19948.78, "end": 19950.68, "probability": 0.9924 }, { "start": 19951.92, "end": 19954.5, "probability": 0.9812 }, { "start": 19954.64, "end": 19956.64, "probability": 0.9957 }, { "start": 19958.26, "end": 19963.98, "probability": 0.8973 }, { "start": 19965.04, "end": 19967.54, "probability": 0.9034 }, { "start": 19969.78, "end": 19970.46, "probability": 0.9687 }, { "start": 19972.26, "end": 19973.6, "probability": 0.975 }, { "start": 19973.66, "end": 19976.15, "probability": 0.779 }, { "start": 19976.74, "end": 19978.0, "probability": 0.7754 }, { "start": 19978.12, "end": 19978.92, "probability": 0.7936 }, { "start": 19979.5, "end": 19980.04, "probability": 0.9572 }, { "start": 19980.5, "end": 19982.0, "probability": 0.926 }, { "start": 19982.16, "end": 19982.98, "probability": 0.8581 }, { "start": 19983.7, "end": 19986.0, "probability": 0.8053 }, { "start": 19986.88, "end": 19992.08, "probability": 0.876 }, { "start": 19995.54, "end": 19995.64, "probability": 0.0354 }, { "start": 19998.78, "end": 20000.5, "probability": 0.9963 }, { "start": 20000.74, "end": 20004.72, "probability": 0.9718 }, { "start": 20006.46, "end": 20010.04, "probability": 0.9944 }, { "start": 20012.38, "end": 20015.54, "probability": 0.9833 }, { "start": 20021.08, "end": 20022.8, "probability": 0.9439 }, { "start": 20024.28, "end": 20028.86, "probability": 0.9901 }, { "start": 20030.12, "end": 20032.34, "probability": 0.8464 }, { "start": 20034.32, "end": 20036.82, "probability": 0.9956 }, { "start": 20036.82, "end": 20041.06, "probability": 0.9977 }, { "start": 20044.72, "end": 20048.24, "probability": 0.6966 }, { "start": 20049.52, "end": 20055.9, "probability": 0.8602 }, { "start": 20055.98, "end": 20058.94, "probability": 0.9409 }, { "start": 20059.82, "end": 20065.58, "probability": 0.9883 }, { "start": 20066.3, "end": 20070.5, "probability": 0.8771 }, { "start": 20070.66, "end": 20072.66, "probability": 0.9975 }, { "start": 20073.44, "end": 20073.96, "probability": 0.83 }, { "start": 20074.1, "end": 20079.74, "probability": 0.9943 }, { "start": 20080.16, "end": 20081.38, "probability": 0.7299 }, { "start": 20082.02, "end": 20085.24, "probability": 0.9805 }, { "start": 20085.38, "end": 20086.05, "probability": 0.5455 }, { "start": 20086.6, "end": 20087.86, "probability": 0.9749 }, { "start": 20087.98, "end": 20091.34, "probability": 0.9896 }, { "start": 20092.66, "end": 20098.82, "probability": 0.9706 }, { "start": 20099.74, "end": 20100.12, "probability": 0.9807 }, { "start": 20102.7, "end": 20106.71, "probability": 0.9941 }, { "start": 20107.42, "end": 20111.9, "probability": 0.9954 }, { "start": 20112.56, "end": 20116.58, "probability": 0.7503 }, { "start": 20117.58, "end": 20120.88, "probability": 0.8757 }, { "start": 20121.76, "end": 20125.16, "probability": 0.9863 }, { "start": 20125.52, "end": 20127.07, "probability": 0.998 }, { "start": 20127.88, "end": 20130.18, "probability": 0.9334 }, { "start": 20130.4, "end": 20132.88, "probability": 0.9962 }, { "start": 20133.04, "end": 20133.56, "probability": 0.6005 }, { "start": 20134.04, "end": 20135.84, "probability": 0.6058 }, { "start": 20135.88, "end": 20138.54, "probability": 0.9934 }, { "start": 20139.64, "end": 20142.5, "probability": 0.98 }, { "start": 20142.62, "end": 20144.77, "probability": 0.9801 }, { "start": 20145.14, "end": 20147.28, "probability": 0.9692 }, { "start": 20147.9, "end": 20149.92, "probability": 0.9316 }, { "start": 20152.27, "end": 20157.52, "probability": 0.991 }, { "start": 20158.72, "end": 20160.54, "probability": 0.8548 }, { "start": 20160.66, "end": 20161.4, "probability": 0.9656 }, { "start": 20163.0, "end": 20163.78, "probability": 0.7634 }, { "start": 20164.74, "end": 20167.52, "probability": 0.9353 }, { "start": 20168.76, "end": 20175.38, "probability": 0.9783 }, { "start": 20175.38, "end": 20179.34, "probability": 0.998 }, { "start": 20179.44, "end": 20181.46, "probability": 0.998 }, { "start": 20182.4, "end": 20185.53, "probability": 0.8934 }, { "start": 20187.46, "end": 20192.72, "probability": 0.9983 }, { "start": 20192.88, "end": 20194.11, "probability": 0.7634 }, { "start": 20196.13, "end": 20200.02, "probability": 0.9913 }, { "start": 20200.24, "end": 20201.38, "probability": 0.9514 }, { "start": 20201.52, "end": 20201.97, "probability": 0.6939 }, { "start": 20202.6, "end": 20204.76, "probability": 0.989 }, { "start": 20206.0, "end": 20211.06, "probability": 0.9926 }, { "start": 20211.56, "end": 20213.18, "probability": 0.9959 }, { "start": 20213.3, "end": 20214.84, "probability": 0.9628 }, { "start": 20214.96, "end": 20216.22, "probability": 0.5936 }, { "start": 20216.3, "end": 20218.8, "probability": 0.7928 }, { "start": 20219.4, "end": 20221.44, "probability": 0.9826 }, { "start": 20224.66, "end": 20225.4, "probability": 0.7395 }, { "start": 20226.64, "end": 20227.76, "probability": 0.8115 }, { "start": 20229.44, "end": 20231.66, "probability": 0.8241 }, { "start": 20231.8, "end": 20235.21, "probability": 0.3761 }, { "start": 20235.52, "end": 20235.62, "probability": 0.3483 }, { "start": 20236.26, "end": 20237.2, "probability": 0.1213 }, { "start": 20237.78, "end": 20239.26, "probability": 0.2859 }, { "start": 20240.48, "end": 20242.72, "probability": 0.6652 }, { "start": 20242.9, "end": 20245.32, "probability": 0.5126 }, { "start": 20245.56, "end": 20245.98, "probability": 0.1456 }, { "start": 20246.16, "end": 20246.34, "probability": 0.7616 }, { "start": 20246.64, "end": 20247.5, "probability": 0.4805 }, { "start": 20247.5, "end": 20249.78, "probability": 0.4533 }, { "start": 20249.9, "end": 20251.12, "probability": 0.407 }, { "start": 20251.94, "end": 20253.8, "probability": 0.2693 }, { "start": 20254.3, "end": 20255.62, "probability": 0.3478 }, { "start": 20256.42, "end": 20259.94, "probability": 0.2404 }, { "start": 20259.94, "end": 20260.46, "probability": 0.0751 }, { "start": 20260.66, "end": 20261.43, "probability": 0.2101 }, { "start": 20263.54, "end": 20263.56, "probability": 0.3579 }, { "start": 20263.56, "end": 20266.78, "probability": 0.3139 }, { "start": 20266.88, "end": 20267.24, "probability": 0.3054 }, { "start": 20267.36, "end": 20267.64, "probability": 0.7248 }, { "start": 20267.8, "end": 20269.25, "probability": 0.4036 }, { "start": 20270.5, "end": 20272.24, "probability": 0.6072 }, { "start": 20273.06, "end": 20273.06, "probability": 0.2305 }, { "start": 20273.06, "end": 20274.09, "probability": 0.228 }, { "start": 20274.36, "end": 20276.52, "probability": 0.73 }, { "start": 20276.52, "end": 20279.48, "probability": 0.2933 }, { "start": 20279.72, "end": 20280.56, "probability": 0.2072 }, { "start": 20280.56, "end": 20280.56, "probability": 0.3523 }, { "start": 20280.56, "end": 20281.54, "probability": 0.1096 }, { "start": 20283.56, "end": 20284.12, "probability": 0.2963 }, { "start": 20284.24, "end": 20287.16, "probability": 0.9478 }, { "start": 20287.68, "end": 20288.4, "probability": 0.6415 }, { "start": 20289.26, "end": 20290.37, "probability": 0.323 }, { "start": 20296.43, "end": 20298.5, "probability": 0.7339 }, { "start": 20298.68, "end": 20300.29, "probability": 0.6538 }, { "start": 20300.92, "end": 20302.92, "probability": 0.3104 }, { "start": 20303.78, "end": 20305.14, "probability": 0.8939 }, { "start": 20306.92, "end": 20307.92, "probability": 0.7861 }, { "start": 20308.1, "end": 20308.53, "probability": 0.8228 }, { "start": 20308.84, "end": 20309.89, "probability": 0.616 }, { "start": 20313.5, "end": 20318.94, "probability": 0.3832 }, { "start": 20321.18, "end": 20322.78, "probability": 0.5767 }, { "start": 20323.66, "end": 20324.66, "probability": 0.4788 }, { "start": 20324.66, "end": 20328.0, "probability": 0.8456 }, { "start": 20328.66, "end": 20330.1, "probability": 0.9963 }, { "start": 20330.68, "end": 20331.48, "probability": 0.6632 }, { "start": 20332.35, "end": 20335.02, "probability": 0.6802 }, { "start": 20337.48, "end": 20338.1, "probability": 0.5937 }, { "start": 20338.26, "end": 20340.6, "probability": 0.4839 }, { "start": 20341.9, "end": 20343.8, "probability": 0.792 }, { "start": 20344.54, "end": 20346.48, "probability": 0.7848 }, { "start": 20347.28, "end": 20349.04, "probability": 0.0773 }, { "start": 20354.05, "end": 20355.34, "probability": 0.0212 }, { "start": 20355.34, "end": 20355.34, "probability": 0.1444 }, { "start": 20355.34, "end": 20357.04, "probability": 0.184 }, { "start": 20357.16, "end": 20357.16, "probability": 0.1522 }, { "start": 20357.32, "end": 20357.91, "probability": 0.0437 }, { "start": 20362.16, "end": 20362.38, "probability": 0.0807 }, { "start": 20362.38, "end": 20362.38, "probability": 0.1067 }, { "start": 20362.38, "end": 20363.1, "probability": 0.7105 }, { "start": 20364.44, "end": 20366.42, "probability": 0.6811 }, { "start": 20366.7, "end": 20367.3, "probability": 0.6751 }, { "start": 20367.38, "end": 20368.42, "probability": 0.6991 }, { "start": 20368.52, "end": 20369.6, "probability": 0.9287 }, { "start": 20370.1, "end": 20370.92, "probability": 0.9163 }, { "start": 20371.58, "end": 20377.74, "probability": 0.9583 }, { "start": 20377.74, "end": 20382.82, "probability": 0.9996 }, { "start": 20385.38, "end": 20388.62, "probability": 0.9945 }, { "start": 20388.7, "end": 20390.28, "probability": 0.9703 }, { "start": 20390.98, "end": 20391.77, "probability": 0.7974 }, { "start": 20392.62, "end": 20393.0, "probability": 0.4921 }, { "start": 20393.04, "end": 20397.12, "probability": 0.9441 }, { "start": 20397.52, "end": 20398.48, "probability": 0.8328 }, { "start": 20399.02, "end": 20403.8, "probability": 0.9797 }, { "start": 20403.8, "end": 20408.48, "probability": 0.9766 }, { "start": 20408.68, "end": 20408.78, "probability": 0.8777 }, { "start": 20409.24, "end": 20409.82, "probability": 0.4635 }, { "start": 20410.26, "end": 20410.8, "probability": 0.8406 }, { "start": 20411.98, "end": 20415.13, "probability": 0.8661 }, { "start": 20415.76, "end": 20417.2, "probability": 0.9764 }, { "start": 20417.82, "end": 20420.6, "probability": 0.9775 }, { "start": 20421.4, "end": 20426.88, "probability": 0.7085 }, { "start": 20427.12, "end": 20427.84, "probability": 0.7624 }, { "start": 20428.74, "end": 20432.1, "probability": 0.9754 }, { "start": 20433.06, "end": 20438.86, "probability": 0.9859 }, { "start": 20441.04, "end": 20444.22, "probability": 0.929 }, { "start": 20444.36, "end": 20450.18, "probability": 0.9937 }, { "start": 20451.34, "end": 20452.64, "probability": 0.9072 }, { "start": 20452.68, "end": 20454.04, "probability": 0.9977 }, { "start": 20455.27, "end": 20459.86, "probability": 0.8508 }, { "start": 20460.78, "end": 20465.72, "probability": 0.9929 }, { "start": 20465.72, "end": 20470.96, "probability": 0.9954 }, { "start": 20471.4, "end": 20473.32, "probability": 0.9814 }, { "start": 20473.62, "end": 20475.0, "probability": 0.6445 }, { "start": 20476.56, "end": 20479.68, "probability": 0.8701 }, { "start": 20479.76, "end": 20480.9, "probability": 0.9162 }, { "start": 20480.98, "end": 20481.84, "probability": 0.9712 }, { "start": 20483.38, "end": 20486.38, "probability": 0.9911 }, { "start": 20487.26, "end": 20488.98, "probability": 0.9879 }, { "start": 20489.96, "end": 20492.44, "probability": 0.6566 }, { "start": 20493.76, "end": 20497.44, "probability": 0.987 }, { "start": 20497.44, "end": 20499.8, "probability": 0.985 }, { "start": 20500.32, "end": 20501.88, "probability": 0.8236 }, { "start": 20503.1, "end": 20504.02, "probability": 0.9185 }, { "start": 20505.42, "end": 20507.24, "probability": 0.997 }, { "start": 20507.36, "end": 20509.54, "probability": 0.7178 }, { "start": 20510.64, "end": 20513.64, "probability": 0.8522 }, { "start": 20515.54, "end": 20519.28, "probability": 0.894 }, { "start": 20520.64, "end": 20523.86, "probability": 0.9882 }, { "start": 20524.74, "end": 20526.78, "probability": 0.7925 }, { "start": 20528.0, "end": 20534.14, "probability": 0.7891 }, { "start": 20534.92, "end": 20537.34, "probability": 0.8394 }, { "start": 20538.76, "end": 20539.0, "probability": 0.5413 }, { "start": 20539.04, "end": 20540.24, "probability": 0.9556 }, { "start": 20540.46, "end": 20541.32, "probability": 0.8856 }, { "start": 20541.44, "end": 20542.48, "probability": 0.9446 }, { "start": 20542.88, "end": 20545.04, "probability": 0.9806 }, { "start": 20545.2, "end": 20546.68, "probability": 0.9891 }, { "start": 20547.98, "end": 20554.0, "probability": 0.9846 }, { "start": 20554.0, "end": 20556.54, "probability": 0.9652 }, { "start": 20556.66, "end": 20557.98, "probability": 0.9389 }, { "start": 20558.8, "end": 20565.62, "probability": 0.9985 }, { "start": 20566.04, "end": 20566.64, "probability": 0.6461 }, { "start": 20566.66, "end": 20567.28, "probability": 0.7723 }, { "start": 20567.36, "end": 20568.78, "probability": 0.9851 }, { "start": 20569.96, "end": 20573.6, "probability": 0.9951 }, { "start": 20573.6, "end": 20577.98, "probability": 0.9592 }, { "start": 20580.12, "end": 20587.24, "probability": 0.8909 }, { "start": 20587.82, "end": 20589.12, "probability": 0.7579 }, { "start": 20589.14, "end": 20589.84, "probability": 0.578 }, { "start": 20589.88, "end": 20596.72, "probability": 0.6667 }, { "start": 20596.72, "end": 20598.14, "probability": 0.5967 }, { "start": 20598.2, "end": 20599.44, "probability": 0.8884 }, { "start": 20600.48, "end": 20601.92, "probability": 0.8739 }, { "start": 20602.0, "end": 20603.22, "probability": 0.8195 }, { "start": 20603.42, "end": 20606.02, "probability": 0.9674 }, { "start": 20607.16, "end": 20610.38, "probability": 0.9966 }, { "start": 20610.94, "end": 20616.3, "probability": 0.9996 }, { "start": 20616.56, "end": 20618.02, "probability": 0.9814 }, { "start": 20618.3, "end": 20619.66, "probability": 0.9319 }, { "start": 20619.82, "end": 20620.84, "probability": 0.9392 }, { "start": 20621.02, "end": 20621.66, "probability": 0.6534 }, { "start": 20621.74, "end": 20622.7, "probability": 0.5069 }, { "start": 20623.52, "end": 20626.26, "probability": 0.8998 }, { "start": 20626.42, "end": 20628.7, "probability": 0.3817 }, { "start": 20628.7, "end": 20629.92, "probability": 0.7075 }, { "start": 20631.52, "end": 20632.7, "probability": 0.8392 }, { "start": 20632.96, "end": 20633.24, "probability": 0.8249 }, { "start": 20633.38, "end": 20634.06, "probability": 0.9507 }, { "start": 20634.4, "end": 20635.48, "probability": 0.9122 }, { "start": 20635.52, "end": 20637.5, "probability": 0.9756 }, { "start": 20638.0, "end": 20642.42, "probability": 0.9639 }, { "start": 20643.04, "end": 20647.3, "probability": 0.9727 }, { "start": 20648.54, "end": 20651.6, "probability": 0.8031 }, { "start": 20651.68, "end": 20651.82, "probability": 0.6699 }, { "start": 20651.86, "end": 20655.02, "probability": 0.4185 }, { "start": 20655.02, "end": 20655.94, "probability": 0.645 }, { "start": 20656.06, "end": 20657.6, "probability": 0.925 }, { "start": 20660.04, "end": 20661.38, "probability": 0.9241 }, { "start": 20661.78, "end": 20666.28, "probability": 0.5571 }, { "start": 20666.28, "end": 20667.8, "probability": 0.8841 }, { "start": 20667.88, "end": 20668.7, "probability": 0.5781 }, { "start": 20669.26, "end": 20670.33, "probability": 0.6891 }, { "start": 20671.28, "end": 20672.71, "probability": 0.9497 }, { "start": 20673.3, "end": 20678.84, "probability": 0.1564 }, { "start": 20679.16, "end": 20679.28, "probability": 0.021 }, { "start": 20679.48, "end": 20682.12, "probability": 0.14 }, { "start": 20683.18, "end": 20685.9, "probability": 0.6743 }, { "start": 20686.1, "end": 20686.52, "probability": 0.1795 }, { "start": 20686.7, "end": 20689.88, "probability": 0.4279 }, { "start": 20689.88, "end": 20692.4, "probability": 0.7433 }, { "start": 20692.58, "end": 20694.26, "probability": 0.8647 }, { "start": 20694.64, "end": 20695.96, "probability": 0.9446 }, { "start": 20696.58, "end": 20698.4, "probability": 0.9268 }, { "start": 20699.16, "end": 20699.16, "probability": 0.3469 }, { "start": 20699.16, "end": 20701.64, "probability": 0.835 }, { "start": 20701.64, "end": 20702.42, "probability": 0.6693 }, { "start": 20702.7, "end": 20705.2, "probability": 0.8469 }, { "start": 20705.42, "end": 20706.49, "probability": 0.6653 }, { "start": 20706.72, "end": 20707.26, "probability": 0.8561 }, { "start": 20707.56, "end": 20711.52, "probability": 0.9858 }, { "start": 20711.74, "end": 20714.5, "probability": 0.9876 }, { "start": 20714.56, "end": 20715.88, "probability": 0.916 }, { "start": 20716.18, "end": 20717.46, "probability": 0.9365 }, { "start": 20717.74, "end": 20718.68, "probability": 0.887 }, { "start": 20718.86, "end": 20719.38, "probability": 0.6785 }, { "start": 20719.72, "end": 20723.9, "probability": 0.8943 }, { "start": 20723.96, "end": 20725.22, "probability": 0.9517 }, { "start": 20725.26, "end": 20726.2, "probability": 0.8842 }, { "start": 20726.2, "end": 20726.66, "probability": 0.5876 }, { "start": 20728.32, "end": 20730.88, "probability": 0.9932 }, { "start": 20730.88, "end": 20736.32, "probability": 0.8834 }, { "start": 20737.04, "end": 20738.5, "probability": 0.3478 }, { "start": 20738.74, "end": 20739.76, "probability": 0.9906 }, { "start": 20739.84, "end": 20740.64, "probability": 0.9353 }, { "start": 20740.68, "end": 20741.5, "probability": 0.6267 }, { "start": 20741.84, "end": 20743.66, "probability": 0.9948 }, { "start": 20743.94, "end": 20746.94, "probability": 0.7762 }, { "start": 20747.24, "end": 20748.58, "probability": 0.8909 }, { "start": 20748.66, "end": 20750.04, "probability": 0.8608 }, { "start": 20750.12, "end": 20752.06, "probability": 0.7682 }, { "start": 20752.1, "end": 20753.17, "probability": 0.972 }, { "start": 20753.3, "end": 20755.14, "probability": 0.9479 }, { "start": 20755.48, "end": 20756.64, "probability": 0.8928 }, { "start": 20756.76, "end": 20757.18, "probability": 0.988 }, { "start": 20757.26, "end": 20758.28, "probability": 0.635 }, { "start": 20758.62, "end": 20760.78, "probability": 0.9415 }, { "start": 20761.0, "end": 20762.3, "probability": 0.8241 }, { "start": 20762.84, "end": 20767.06, "probability": 0.9888 }, { "start": 20767.24, "end": 20768.48, "probability": 0.7003 }, { "start": 20769.38, "end": 20773.25, "probability": 0.9277 }, { "start": 20774.64, "end": 20776.26, "probability": 0.5393 }, { "start": 20776.88, "end": 20780.77, "probability": 0.5619 }, { "start": 20782.52, "end": 20784.7, "probability": 0.7948 }, { "start": 20786.08, "end": 20788.58, "probability": 0.7471 }, { "start": 20788.66, "end": 20790.56, "probability": 0.9963 }, { "start": 20791.18, "end": 20792.34, "probability": 0.8664 }, { "start": 20793.26, "end": 20795.06, "probability": 0.8913 }, { "start": 20795.9, "end": 20796.54, "probability": 0.7209 }, { "start": 20797.36, "end": 20798.22, "probability": 0.8836 }, { "start": 20799.14, "end": 20799.9, "probability": 0.9924 }, { "start": 20800.8, "end": 20801.38, "probability": 0.5698 }, { "start": 20801.96, "end": 20803.32, "probability": 0.9757 }, { "start": 20804.68, "end": 20806.99, "probability": 0.9991 }, { "start": 20807.54, "end": 20811.46, "probability": 0.8639 }, { "start": 20811.56, "end": 20812.52, "probability": 0.8833 }, { "start": 20814.18, "end": 20815.97, "probability": 0.8089 }, { "start": 20816.72, "end": 20819.72, "probability": 0.9674 }, { "start": 20820.6, "end": 20822.98, "probability": 0.9761 }, { "start": 20823.06, "end": 20824.26, "probability": 0.9948 }, { "start": 20825.02, "end": 20830.38, "probability": 0.9814 }, { "start": 20830.98, "end": 20831.74, "probability": 0.8158 }, { "start": 20833.08, "end": 20834.9, "probability": 0.8872 }, { "start": 20835.62, "end": 20839.56, "probability": 0.9876 }, { "start": 20840.32, "end": 20841.68, "probability": 0.8938 }, { "start": 20842.32, "end": 20844.9, "probability": 0.9712 }, { "start": 20845.94, "end": 20846.48, "probability": 0.6936 }, { "start": 20847.64, "end": 20848.76, "probability": 0.8136 }, { "start": 20848.86, "end": 20849.64, "probability": 0.7974 }, { "start": 20850.3, "end": 20851.74, "probability": 0.8325 }, { "start": 20851.86, "end": 20853.44, "probability": 0.6768 }, { "start": 20853.76, "end": 20856.92, "probability": 0.9896 }, { "start": 20857.38, "end": 20859.34, "probability": 0.8659 }, { "start": 20859.34, "end": 20862.28, "probability": 0.9886 }, { "start": 20863.56, "end": 20865.22, "probability": 0.8747 }, { "start": 20866.2, "end": 20869.04, "probability": 0.9091 }, { "start": 20870.24, "end": 20871.24, "probability": 0.9359 }, { "start": 20872.06, "end": 20874.06, "probability": 0.8748 }, { "start": 20874.2, "end": 20875.14, "probability": 0.7715 }, { "start": 20876.8, "end": 20877.9, "probability": 0.3213 }, { "start": 20877.94, "end": 20880.02, "probability": 0.2714 }, { "start": 20880.08, "end": 20881.04, "probability": 0.8523 }, { "start": 20882.48, "end": 20884.58, "probability": 0.4493 }, { "start": 20885.48, "end": 20888.08, "probability": 0.3613 }, { "start": 20890.16, "end": 20893.04, "probability": 0.1553 }, { "start": 20893.42, "end": 20893.72, "probability": 0.343 }, { "start": 20893.72, "end": 20897.74, "probability": 0.835 }, { "start": 20898.26, "end": 20899.32, "probability": 0.9949 }, { "start": 20899.54, "end": 20900.04, "probability": 0.7017 }, { "start": 20900.36, "end": 20901.06, "probability": 0.6863 }, { "start": 20901.36, "end": 20902.2, "probability": 0.9521 }, { "start": 20902.44, "end": 20904.94, "probability": 0.9905 }, { "start": 20905.96, "end": 20907.02, "probability": 0.9883 }, { "start": 20907.52, "end": 20908.74, "probability": 0.9312 }, { "start": 20908.78, "end": 20911.18, "probability": 0.9829 }, { "start": 20911.44, "end": 20912.31, "probability": 0.6797 }, { "start": 20912.96, "end": 20916.32, "probability": 0.668 }, { "start": 20916.36, "end": 20917.81, "probability": 0.9987 }, { "start": 20917.9, "end": 20918.94, "probability": 0.8097 }, { "start": 20919.26, "end": 20922.2, "probability": 0.9929 }, { "start": 20922.26, "end": 20923.84, "probability": 0.8668 }, { "start": 20926.32, "end": 20927.29, "probability": 0.9757 }, { "start": 20929.4, "end": 20931.38, "probability": 0.7241 }, { "start": 20932.08, "end": 20933.32, "probability": 0.718 }, { "start": 20934.04, "end": 20937.86, "probability": 0.9783 }, { "start": 20938.64, "end": 20941.84, "probability": 0.9766 }, { "start": 20942.88, "end": 20943.4, "probability": 0.8613 }, { "start": 20943.44, "end": 20946.08, "probability": 0.9402 }, { "start": 20946.22, "end": 20948.44, "probability": 0.8572 }, { "start": 20951.26, "end": 20953.27, "probability": 0.6636 }, { "start": 20953.66, "end": 20956.88, "probability": 0.9757 }, { "start": 20957.2, "end": 20958.18, "probability": 0.9258 }, { "start": 20958.28, "end": 20959.2, "probability": 0.895 }, { "start": 20962.18, "end": 20963.56, "probability": 0.9945 }, { "start": 20963.64, "end": 20966.9, "probability": 0.9981 }, { "start": 20966.9, "end": 20968.85, "probability": 0.6671 }, { "start": 20969.76, "end": 20970.71, "probability": 0.6624 }, { "start": 20973.54, "end": 20975.04, "probability": 0.8334 }, { "start": 20976.48, "end": 20978.4, "probability": 0.6128 }, { "start": 20978.92, "end": 20984.18, "probability": 0.9927 }, { "start": 20984.3, "end": 20985.5, "probability": 0.9893 }, { "start": 20985.54, "end": 20987.34, "probability": 0.998 }, { "start": 20987.68, "end": 20993.16, "probability": 0.9717 }, { "start": 20993.46, "end": 20994.6, "probability": 0.7531 }, { "start": 20994.98, "end": 21000.86, "probability": 0.8228 }, { "start": 21001.12, "end": 21004.74, "probability": 0.9977 }, { "start": 21005.38, "end": 21008.75, "probability": 0.1454 }, { "start": 21009.62, "end": 21012.58, "probability": 0.6053 }, { "start": 21012.8, "end": 21013.48, "probability": 0.8663 }, { "start": 21013.58, "end": 21018.0, "probability": 0.3172 }, { "start": 21018.52, "end": 21021.7, "probability": 0.9285 }, { "start": 21022.61, "end": 21024.75, "probability": 0.1743 }, { "start": 21025.0, "end": 21025.92, "probability": 0.3586 }, { "start": 21026.02, "end": 21027.1, "probability": 0.9159 }, { "start": 21027.46, "end": 21035.1, "probability": 0.7084 }, { "start": 21035.76, "end": 21039.47, "probability": 0.3584 }, { "start": 21041.46, "end": 21043.14, "probability": 0.7235 }, { "start": 21043.18, "end": 21043.96, "probability": 0.717 }, { "start": 21044.08, "end": 21045.97, "probability": 0.2062 }, { "start": 21046.92, "end": 21047.94, "probability": 0.069 }, { "start": 21047.94, "end": 21047.94, "probability": 0.042 }, { "start": 21047.94, "end": 21047.94, "probability": 0.1844 }, { "start": 21047.94, "end": 21053.86, "probability": 0.6548 }, { "start": 21054.28, "end": 21055.56, "probability": 0.1312 }, { "start": 21055.76, "end": 21056.26, "probability": 0.8586 }, { "start": 21056.38, "end": 21059.14, "probability": 0.7782 }, { "start": 21059.52, "end": 21061.22, "probability": 0.8537 }, { "start": 21061.34, "end": 21062.94, "probability": 0.9424 }, { "start": 21062.96, "end": 21064.34, "probability": 0.95 }, { "start": 21065.12, "end": 21066.5, "probability": 0.9235 }, { "start": 21066.56, "end": 21069.44, "probability": 0.9907 }, { "start": 21069.56, "end": 21069.86, "probability": 0.627 }, { "start": 21070.04, "end": 21071.34, "probability": 0.8169 }, { "start": 21071.54, "end": 21074.28, "probability": 0.918 }, { "start": 21074.64, "end": 21077.1, "probability": 0.9852 }, { "start": 21077.46, "end": 21079.24, "probability": 0.5921 }, { "start": 21079.72, "end": 21080.4, "probability": 0.8556 }, { "start": 21080.5, "end": 21080.92, "probability": 0.5755 }, { "start": 21080.98, "end": 21081.72, "probability": 0.6351 }, { "start": 21081.72, "end": 21082.3, "probability": 0.3927 }, { "start": 21082.8, "end": 21083.62, "probability": 0.8627 }, { "start": 21084.6, "end": 21088.58, "probability": 0.994 }, { "start": 21088.74, "end": 21089.7, "probability": 0.9248 }, { "start": 21089.72, "end": 21091.16, "probability": 0.8249 }, { "start": 21091.86, "end": 21094.62, "probability": 0.9926 }, { "start": 21095.28, "end": 21100.56, "probability": 0.4992 }, { "start": 21101.14, "end": 21105.52, "probability": 0.9941 }, { "start": 21105.52, "end": 21111.28, "probability": 0.9921 }, { "start": 21111.5, "end": 21115.04, "probability": 0.9808 }, { "start": 21115.1, "end": 21116.3, "probability": 0.9008 }, { "start": 21116.7, "end": 21119.44, "probability": 0.9712 }, { "start": 21119.48, "end": 21120.06, "probability": 0.7778 }, { "start": 21120.34, "end": 21122.5, "probability": 0.2838 }, { "start": 21123.3, "end": 21126.0, "probability": 0.1833 }, { "start": 21141.92, "end": 21142.54, "probability": 0.1033 }, { "start": 21142.54, "end": 21145.54, "probability": 0.3927 }, { "start": 21146.06, "end": 21148.42, "probability": 0.7645 }, { "start": 21150.76, "end": 21154.08, "probability": 0.862 }, { "start": 21155.38, "end": 21160.94, "probability": 0.6109 }, { "start": 21161.88, "end": 21164.36, "probability": 0.3588 }, { "start": 21164.42, "end": 21164.74, "probability": 0.3365 }, { "start": 21164.82, "end": 21165.52, "probability": 0.647 }, { "start": 21166.39, "end": 21167.68, "probability": 0.0305 }, { "start": 21167.72, "end": 21168.68, "probability": 0.4272 }, { "start": 21170.82, "end": 21171.38, "probability": 0.2276 }, { "start": 21172.02, "end": 21175.36, "probability": 0.7099 }, { "start": 21175.36, "end": 21178.82, "probability": 0.8978 }, { "start": 21179.06, "end": 21179.13, "probability": 0.0061 }, { "start": 21181.06, "end": 21182.02, "probability": 0.4982 }, { "start": 21182.02, "end": 21185.04, "probability": 0.6834 }, { "start": 21185.26, "end": 21187.52, "probability": 0.8605 }, { "start": 21189.18, "end": 21189.58, "probability": 0.8447 }, { "start": 21189.72, "end": 21194.16, "probability": 0.9664 }, { "start": 21194.74, "end": 21198.24, "probability": 0.4533 }, { "start": 21198.44, "end": 21199.06, "probability": 0.6487 }, { "start": 21199.16, "end": 21199.92, "probability": 0.8635 }, { "start": 21200.58, "end": 21203.46, "probability": 0.9807 }, { "start": 21204.44, "end": 21207.84, "probability": 0.9578 }, { "start": 21208.38, "end": 21212.35, "probability": 0.7932 }, { "start": 21213.1, "end": 21214.5, "probability": 0.7637 }, { "start": 21215.82, "end": 21216.76, "probability": 0.9445 }, { "start": 21216.84, "end": 21218.06, "probability": 0.9137 }, { "start": 21218.44, "end": 21221.38, "probability": 0.7079 }, { "start": 21221.46, "end": 21222.28, "probability": 0.526 }, { "start": 21222.58, "end": 21223.03, "probability": 0.3867 }, { "start": 21223.64, "end": 21225.45, "probability": 0.1974 }, { "start": 21227.28, "end": 21227.52, "probability": 0.1237 }, { "start": 21228.18, "end": 21229.12, "probability": 0.2155 }, { "start": 21230.54, "end": 21232.7, "probability": 0.1089 }, { "start": 21232.82, "end": 21239.66, "probability": 0.1795 }, { "start": 21239.66, "end": 21239.66, "probability": 0.1398 }, { "start": 21239.66, "end": 21239.68, "probability": 0.2658 }, { "start": 21239.84, "end": 21239.96, "probability": 0.2069 }, { "start": 21240.52, "end": 21241.32, "probability": 0.3032 }, { "start": 21241.88, "end": 21245.25, "probability": 0.0294 }, { "start": 21247.58, "end": 21248.8, "probability": 0.0918 }, { "start": 21249.14, "end": 21249.96, "probability": 0.3141 }, { "start": 21257.24, "end": 21258.88, "probability": 0.1947 }, { "start": 21259.04, "end": 21259.66, "probability": 0.3291 }, { "start": 21261.12, "end": 21261.84, "probability": 0.0774 }, { "start": 21261.84, "end": 21263.28, "probability": 0.2084 }, { "start": 21263.74, "end": 21267.8, "probability": 0.0362 }, { "start": 21267.8, "end": 21269.96, "probability": 0.1836 }, { "start": 21270.84, "end": 21273.3, "probability": 0.1985 }, { "start": 21274.78, "end": 21277.16, "probability": 0.0994 }, { "start": 21278.94, "end": 21279.64, "probability": 0.046 }, { "start": 21303.0, "end": 21303.0, "probability": 0.0 }, { "start": 21303.0, "end": 21303.0, "probability": 0.0 }, { "start": 21303.0, "end": 21303.0, "probability": 0.0 }, { "start": 21303.0, "end": 21303.0, "probability": 0.0 }, { "start": 21303.0, "end": 21303.0, "probability": 0.0 }, { "start": 21303.0, "end": 21303.0, "probability": 0.0 }, { "start": 21303.0, "end": 21303.0, "probability": 0.0 }, { "start": 21303.0, "end": 21303.0, "probability": 0.0 }, { "start": 21303.0, "end": 21303.0, "probability": 0.0 }, { "start": 21303.0, "end": 21303.0, "probability": 0.0 }, { "start": 21303.0, "end": 21303.0, "probability": 0.0 }, { "start": 21303.0, "end": 21303.0, "probability": 0.0 }, { "start": 21303.0, "end": 21303.0, "probability": 0.0 }, { "start": 21303.0, "end": 21303.0, "probability": 0.0 }, { "start": 21303.0, "end": 21303.0, "probability": 0.0 }, { "start": 21303.0, "end": 21303.0, "probability": 0.0 }, { "start": 21303.0, "end": 21303.0, "probability": 0.0 }, { "start": 21303.0, "end": 21303.0, "probability": 0.0 }, { "start": 21303.0, "end": 21303.0, "probability": 0.0 }, { "start": 21303.0, "end": 21303.0, "probability": 0.0 }, { "start": 21303.0, "end": 21303.0, "probability": 0.0 }, { "start": 21303.0, "end": 21303.0, "probability": 0.0 }, { "start": 21303.0, "end": 21303.0, "probability": 0.0 }, { "start": 21303.0, "end": 21303.0, "probability": 0.0 }, { "start": 21303.0, "end": 21303.0, "probability": 0.0 }, { "start": 21303.1, "end": 21303.64, "probability": 0.2087 }, { "start": 21303.64, "end": 21306.78, "probability": 0.8916 }, { "start": 21306.78, "end": 21310.14, "probability": 0.9834 }, { "start": 21310.78, "end": 21313.66, "probability": 0.8595 }, { "start": 21315.2, "end": 21320.42, "probability": 0.777 }, { "start": 21320.54, "end": 21322.92, "probability": 0.6154 }, { "start": 21324.5, "end": 21325.8, "probability": 0.8919 }, { "start": 21325.84, "end": 21328.26, "probability": 0.7816 }, { "start": 21328.46, "end": 21329.24, "probability": 0.4126 }, { "start": 21329.76, "end": 21333.42, "probability": 0.8692 }, { "start": 21334.26, "end": 21337.46, "probability": 0.7254 }, { "start": 21337.86, "end": 21342.38, "probability": 0.8787 }, { "start": 21342.5, "end": 21343.1, "probability": 0.3883 }, { "start": 21343.44, "end": 21347.04, "probability": 0.635 }, { "start": 21347.52, "end": 21348.4, "probability": 0.511 }, { "start": 21348.62, "end": 21352.6, "probability": 0.8955 }, { "start": 21352.8, "end": 21356.12, "probability": 0.6674 }, { "start": 21358.34, "end": 21360.16, "probability": 0.3714 }, { "start": 21360.26, "end": 21364.26, "probability": 0.7774 }, { "start": 21364.4, "end": 21369.04, "probability": 0.5357 }, { "start": 21369.22, "end": 21369.44, "probability": 0.8137 }, { "start": 21370.16, "end": 21372.54, "probability": 0.6635 }, { "start": 21372.74, "end": 21375.58, "probability": 0.6602 }, { "start": 21376.16, "end": 21376.36, "probability": 0.003 }, { "start": 21376.38, "end": 21380.28, "probability": 0.2365 }, { "start": 21380.96, "end": 21381.18, "probability": 0.297 }, { "start": 21381.18, "end": 21381.18, "probability": 0.0126 }, { "start": 21381.78, "end": 21384.6, "probability": 0.0792 }, { "start": 21392.1, "end": 21393.05, "probability": 0.1436 }, { "start": 21393.56, "end": 21395.8, "probability": 0.0913 }, { "start": 21396.02, "end": 21396.69, "probability": 0.2338 }, { "start": 21397.94, "end": 21400.0, "probability": 0.2093 }, { "start": 21403.12, "end": 21404.04, "probability": 0.5042 }, { "start": 21406.11, "end": 21408.84, "probability": 0.253 }, { "start": 21409.52, "end": 21411.72, "probability": 0.2982 }, { "start": 21411.9, "end": 21413.09, "probability": 0.0568 }, { "start": 21413.78, "end": 21417.8, "probability": 0.8209 }, { "start": 21417.8, "end": 21422.08, "probability": 0.9723 }, { "start": 21435.04, "end": 21438.38, "probability": 0.6268 }, { "start": 21439.46, "end": 21441.31, "probability": 0.688 }, { "start": 21445.08, "end": 21451.08, "probability": 0.9529 }, { "start": 21452.16, "end": 21456.56, "probability": 0.9866 }, { "start": 21457.98, "end": 21463.48, "probability": 0.809 }, { "start": 21464.58, "end": 21467.24, "probability": 0.5908 }, { "start": 21468.1, "end": 21472.18, "probability": 0.8928 }, { "start": 21472.9, "end": 21476.12, "probability": 0.6823 }, { "start": 21477.4, "end": 21478.86, "probability": 0.4267 }, { "start": 21479.02, "end": 21480.16, "probability": 0.6906 }, { "start": 21480.44, "end": 21486.6, "probability": 0.9048 }, { "start": 21488.0, "end": 21490.41, "probability": 0.7083 }, { "start": 21492.5, "end": 21495.22, "probability": 0.7638 }, { "start": 21495.8, "end": 21497.88, "probability": 0.9463 }, { "start": 21498.46, "end": 21501.4, "probability": 0.8514 }, { "start": 21501.92, "end": 21505.82, "probability": 0.9629 }, { "start": 21506.14, "end": 21513.7, "probability": 0.8486 }, { "start": 21515.46, "end": 21517.7, "probability": 0.9908 }, { "start": 21518.9, "end": 21524.37, "probability": 0.9625 }, { "start": 21524.7, "end": 21528.88, "probability": 0.9981 }, { "start": 21530.14, "end": 21534.96, "probability": 0.9102 }, { "start": 21534.96, "end": 21539.34, "probability": 0.9669 }, { "start": 21540.06, "end": 21543.89, "probability": 0.9978 }, { "start": 21543.98, "end": 21550.2, "probability": 0.9489 }, { "start": 21550.3, "end": 21555.22, "probability": 0.6613 }, { "start": 21555.4, "end": 21561.16, "probability": 0.9836 }, { "start": 21561.56, "end": 21568.48, "probability": 0.9849 }, { "start": 21568.48, "end": 21573.46, "probability": 0.9247 }, { "start": 21574.02, "end": 21576.44, "probability": 0.9812 }, { "start": 21577.08, "end": 21577.48, "probability": 0.892 }, { "start": 21577.58, "end": 21578.36, "probability": 0.8968 }, { "start": 21578.44, "end": 21582.3, "probability": 0.9132 }, { "start": 21582.84, "end": 21586.62, "probability": 0.9834 }, { "start": 21587.24, "end": 21588.34, "probability": 0.9421 }, { "start": 21589.16, "end": 21594.46, "probability": 0.9962 }, { "start": 21594.46, "end": 21600.06, "probability": 0.9955 }, { "start": 21600.62, "end": 21603.66, "probability": 0.9951 }, { "start": 21603.66, "end": 21608.38, "probability": 0.895 }, { "start": 21608.6, "end": 21611.32, "probability": 0.8398 }, { "start": 21612.02, "end": 21612.8, "probability": 0.5388 }, { "start": 21613.7, "end": 21615.8, "probability": 0.7393 }, { "start": 21616.16, "end": 21620.16, "probability": 0.981 }, { "start": 21620.28, "end": 21622.52, "probability": 0.9285 }, { "start": 21622.7, "end": 21623.8, "probability": 0.8489 }, { "start": 21623.84, "end": 21624.94, "probability": 0.8637 }, { "start": 21625.6, "end": 21628.62, "probability": 0.9067 }, { "start": 21629.66, "end": 21633.68, "probability": 0.9951 }, { "start": 21633.68, "end": 21637.86, "probability": 0.999 }, { "start": 21638.98, "end": 21644.35, "probability": 0.9855 }, { "start": 21645.64, "end": 21659.78, "probability": 0.8272 }, { "start": 21660.18, "end": 21665.48, "probability": 0.8545 }, { "start": 21666.06, "end": 21669.4, "probability": 0.7896 }, { "start": 21669.8, "end": 21672.04, "probability": 0.194 }, { "start": 21673.76, "end": 21677.24, "probability": 0.3208 }, { "start": 21677.24, "end": 21677.24, "probability": 0.0005 }, { "start": 21678.78, "end": 21679.94, "probability": 0.0147 }, { "start": 21679.94, "end": 21681.77, "probability": 0.3412 }, { "start": 21683.1, "end": 21684.14, "probability": 0.2806 }, { "start": 21684.72, "end": 21685.8, "probability": 0.4726 }, { "start": 21686.22, "end": 21687.59, "probability": 0.1403 }, { "start": 21688.46, "end": 21691.1, "probability": 0.0799 }, { "start": 21691.54, "end": 21694.49, "probability": 0.8901 }, { "start": 21695.16, "end": 21696.36, "probability": 0.382 }, { "start": 21696.86, "end": 21700.16, "probability": 0.8239 }, { "start": 21701.0, "end": 21706.7, "probability": 0.7666 }, { "start": 21707.64, "end": 21710.74, "probability": 0.9984 }, { "start": 21710.78, "end": 21713.38, "probability": 0.9702 }, { "start": 21713.64, "end": 21714.66, "probability": 0.8566 }, { "start": 21715.38, "end": 21719.7, "probability": 0.7168 }, { "start": 21720.24, "end": 21723.9, "probability": 0.9748 }, { "start": 21724.48, "end": 21731.54, "probability": 0.9727 }, { "start": 21732.7, "end": 21734.3, "probability": 0.762 }, { "start": 21735.44, "end": 21736.84, "probability": 0.6665 }, { "start": 21737.0, "end": 21738.24, "probability": 0.7033 }, { "start": 21738.86, "end": 21740.16, "probability": 0.5622 }, { "start": 21740.82, "end": 21743.38, "probability": 0.8335 }, { "start": 21746.74, "end": 21751.74, "probability": 0.9856 }, { "start": 21752.46, "end": 21757.26, "probability": 0.9825 }, { "start": 21757.9, "end": 21762.52, "probability": 0.9404 }, { "start": 21765.12, "end": 21769.02, "probability": 0.5209 }, { "start": 21769.76, "end": 21771.66, "probability": 0.6673 }, { "start": 21771.78, "end": 21772.94, "probability": 0.8311 }, { "start": 21773.44, "end": 21778.3, "probability": 0.7887 }, { "start": 21778.7, "end": 21780.1, "probability": 0.7838 }, { "start": 21780.44, "end": 21781.08, "probability": 0.5931 }, { "start": 21781.28, "end": 21784.16, "probability": 0.9199 }, { "start": 21785.82, "end": 21790.48, "probability": 0.9258 }, { "start": 21791.26, "end": 21792.48, "probability": 0.939 }, { "start": 21793.3, "end": 21799.96, "probability": 0.9937 }, { "start": 21800.66, "end": 21802.08, "probability": 0.9768 }, { "start": 21802.74, "end": 21807.24, "probability": 0.5561 }, { "start": 21807.8, "end": 21810.14, "probability": 0.7531 }, { "start": 21810.9, "end": 21814.04, "probability": 0.2655 }, { "start": 21814.14, "end": 21815.26, "probability": 0.289 }, { "start": 21815.34, "end": 21817.33, "probability": 0.5044 }, { "start": 21818.12, "end": 21821.94, "probability": 0.8431 }, { "start": 21822.12, "end": 21822.6, "probability": 0.2902 }, { "start": 21823.26, "end": 21823.78, "probability": 0.2505 }, { "start": 21823.96, "end": 21826.26, "probability": 0.4705 }, { "start": 21826.52, "end": 21827.99, "probability": 0.6416 }, { "start": 21828.16, "end": 21832.96, "probability": 0.6671 }, { "start": 21832.96, "end": 21835.84, "probability": 0.8532 }, { "start": 21836.42, "end": 21838.56, "probability": 0.9521 }, { "start": 21838.6, "end": 21839.56, "probability": 0.8331 }, { "start": 21840.06, "end": 21841.44, "probability": 0.7134 }, { "start": 21842.0, "end": 21846.54, "probability": 0.9475 }, { "start": 21846.64, "end": 21849.2, "probability": 0.9583 }, { "start": 21849.76, "end": 21854.02, "probability": 0.6995 }, { "start": 21854.84, "end": 21857.92, "probability": 0.9806 }, { "start": 21858.08, "end": 21858.76, "probability": 0.8685 }, { "start": 21859.26, "end": 21860.4, "probability": 0.8506 }, { "start": 21861.0, "end": 21863.34, "probability": 0.8018 }, { "start": 21863.96, "end": 21867.26, "probability": 0.7304 }, { "start": 21867.94, "end": 21870.78, "probability": 0.7766 }, { "start": 21871.3, "end": 21877.16, "probability": 0.9634 }, { "start": 21877.72, "end": 21882.26, "probability": 0.9893 }, { "start": 21885.73, "end": 21888.14, "probability": 0.7821 }, { "start": 21888.74, "end": 21893.2, "probability": 0.9099 }, { "start": 21893.3, "end": 21897.16, "probability": 0.8658 }, { "start": 21897.16, "end": 21901.8, "probability": 0.9883 }, { "start": 21902.5, "end": 21905.04, "probability": 0.864 }, { "start": 21905.04, "end": 21910.1, "probability": 0.9692 }, { "start": 21910.58, "end": 21911.5, "probability": 0.7938 }, { "start": 21911.6, "end": 21912.34, "probability": 0.921 }, { "start": 21912.62, "end": 21913.76, "probability": 0.9404 }, { "start": 21914.0, "end": 21919.42, "probability": 0.7062 }, { "start": 21919.86, "end": 21923.86, "probability": 0.9802 }, { "start": 21924.3, "end": 21924.7, "probability": 0.3443 }, { "start": 21924.82, "end": 21925.14, "probability": 0.905 }, { "start": 21925.26, "end": 21928.46, "probability": 0.5735 }, { "start": 21928.78, "end": 21930.3, "probability": 0.8231 }, { "start": 21930.68, "end": 21931.73, "probability": 0.9219 }, { "start": 21932.32, "end": 21936.54, "probability": 0.9643 }, { "start": 21936.94, "end": 21940.62, "probability": 0.913 }, { "start": 21941.08, "end": 21945.32, "probability": 0.9761 }, { "start": 21945.96, "end": 21948.7, "probability": 0.8735 }, { "start": 21949.1, "end": 21951.44, "probability": 0.99 }, { "start": 21951.64, "end": 21953.9, "probability": 0.9507 }, { "start": 21954.98, "end": 21956.8, "probability": 0.761 }, { "start": 21956.84, "end": 21959.94, "probability": 0.8917 }, { "start": 21959.98, "end": 21960.76, "probability": 0.4989 }, { "start": 21961.5, "end": 21963.4, "probability": 0.7549 }, { "start": 21964.06, "end": 21965.38, "probability": 0.9655 }, { "start": 21966.0, "end": 21970.47, "probability": 0.9347 }, { "start": 21971.12, "end": 21978.12, "probability": 0.9479 }, { "start": 21978.28, "end": 21979.64, "probability": 0.872 }, { "start": 21980.58, "end": 21984.46, "probability": 0.9717 }, { "start": 21984.7, "end": 21985.62, "probability": 0.7461 }, { "start": 21985.88, "end": 21990.92, "probability": 0.6997 }, { "start": 21991.86, "end": 21995.06, "probability": 0.8867 }, { "start": 21995.06, "end": 21999.56, "probability": 0.8983 }, { "start": 22000.3, "end": 22003.72, "probability": 0.9673 }, { "start": 22003.78, "end": 22005.94, "probability": 0.7738 }, { "start": 22006.58, "end": 22011.02, "probability": 0.9841 }, { "start": 22011.02, "end": 22017.22, "probability": 0.8361 }, { "start": 22017.82, "end": 22021.18, "probability": 0.9614 }, { "start": 22021.18, "end": 22027.74, "probability": 0.7444 }, { "start": 22028.14, "end": 22029.78, "probability": 0.8215 }, { "start": 22030.66, "end": 22032.52, "probability": 0.579 }, { "start": 22033.12, "end": 22037.9, "probability": 0.9519 }, { "start": 22038.22, "end": 22042.08, "probability": 0.8231 }, { "start": 22042.74, "end": 22046.7, "probability": 0.8165 }, { "start": 22047.08, "end": 22049.46, "probability": 0.5209 }, { "start": 22049.9, "end": 22050.96, "probability": 0.7224 }, { "start": 22051.7, "end": 22057.24, "probability": 0.9816 }, { "start": 22058.12, "end": 22062.42, "probability": 0.9879 }, { "start": 22062.98, "end": 22065.7, "probability": 0.9189 }, { "start": 22066.76, "end": 22070.38, "probability": 0.9384 }, { "start": 22070.56, "end": 22071.3, "probability": 0.7789 }, { "start": 22071.76, "end": 22072.7, "probability": 0.9022 }, { "start": 22073.16, "end": 22075.56, "probability": 0.9582 }, { "start": 22075.86, "end": 22077.72, "probability": 0.9857 }, { "start": 22077.96, "end": 22079.92, "probability": 0.926 }, { "start": 22080.06, "end": 22081.38, "probability": 0.9137 }, { "start": 22081.58, "end": 22085.01, "probability": 0.9695 }, { "start": 22085.24, "end": 22088.06, "probability": 0.9851 }, { "start": 22088.1, "end": 22088.5, "probability": 0.8313 }, { "start": 22088.66, "end": 22089.03, "probability": 0.7893 }, { "start": 22089.36, "end": 22090.86, "probability": 0.7328 }, { "start": 22091.38, "end": 22097.86, "probability": 0.9858 }, { "start": 22099.26, "end": 22100.83, "probability": 0.5096 }, { "start": 22101.14, "end": 22102.76, "probability": 0.8087 }, { "start": 22103.82, "end": 22106.1, "probability": 0.943 }, { "start": 22106.22, "end": 22107.52, "probability": 0.0416 }, { "start": 22109.26, "end": 22109.96, "probability": 0.5852 }, { "start": 22110.22, "end": 22114.74, "probability": 0.7434 }, { "start": 22114.74, "end": 22121.52, "probability": 0.3276 }, { "start": 22129.52, "end": 22131.98, "probability": 0.6165 }, { "start": 22133.02, "end": 22136.78, "probability": 0.7855 }, { "start": 22136.78, "end": 22142.04, "probability": 0.9663 }, { "start": 22144.02, "end": 22149.36, "probability": 0.9644 }, { "start": 22149.36, "end": 22154.8, "probability": 0.9905 }, { "start": 22156.14, "end": 22161.9, "probability": 0.9728 }, { "start": 22163.5, "end": 22166.2, "probability": 0.939 }, { "start": 22167.32, "end": 22170.87, "probability": 0.8985 }, { "start": 22172.3, "end": 22174.7, "probability": 0.9493 }, { "start": 22175.04, "end": 22181.78, "probability": 0.9463 }, { "start": 22181.78, "end": 22186.18, "probability": 0.8487 }, { "start": 22187.6, "end": 22188.54, "probability": 0.7775 }, { "start": 22188.64, "end": 22190.22, "probability": 0.879 }, { "start": 22190.24, "end": 22193.72, "probability": 0.9974 }, { "start": 22194.48, "end": 22198.6, "probability": 0.8975 }, { "start": 22199.96, "end": 22201.5, "probability": 0.7268 }, { "start": 22201.58, "end": 22203.84, "probability": 0.974 }, { "start": 22204.94, "end": 22208.92, "probability": 0.9677 }, { "start": 22210.36, "end": 22212.2, "probability": 0.9026 }, { "start": 22212.48, "end": 22217.66, "probability": 0.9971 }, { "start": 22217.66, "end": 22224.16, "probability": 0.9902 }, { "start": 22225.7, "end": 22233.46, "probability": 0.9795 }, { "start": 22233.51, "end": 22242.84, "probability": 0.9939 }, { "start": 22242.84, "end": 22250.44, "probability": 0.9947 }, { "start": 22252.2, "end": 22253.66, "probability": 0.9042 }, { "start": 22254.6, "end": 22259.32, "probability": 0.9453 }, { "start": 22259.92, "end": 22260.48, "probability": 0.5052 }, { "start": 22261.66, "end": 22267.26, "probability": 0.6497 }, { "start": 22267.98, "end": 22273.3, "probability": 0.9874 }, { "start": 22273.3, "end": 22278.68, "probability": 0.98 }, { "start": 22279.9, "end": 22281.0, "probability": 0.6643 }, { "start": 22281.84, "end": 22287.24, "probability": 0.9206 }, { "start": 22287.24, "end": 22291.54, "probability": 0.9717 }, { "start": 22292.4, "end": 22295.98, "probability": 0.9859 }, { "start": 22297.5, "end": 22300.94, "probability": 0.9319 }, { "start": 22302.56, "end": 22303.26, "probability": 0.7398 }, { "start": 22304.28, "end": 22308.98, "probability": 0.8905 }, { "start": 22310.4, "end": 22313.74, "probability": 0.9962 }, { "start": 22313.86, "end": 22319.44, "probability": 0.7941 }, { "start": 22320.34, "end": 22324.88, "probability": 0.9936 }, { "start": 22325.98, "end": 22328.56, "probability": 0.9597 }, { "start": 22328.56, "end": 22331.46, "probability": 0.9913 }, { "start": 22332.54, "end": 22338.16, "probability": 0.9944 }, { "start": 22338.16, "end": 22346.0, "probability": 0.9961 }, { "start": 22346.84, "end": 22349.3, "probability": 0.922 }, { "start": 22349.82, "end": 22351.1, "probability": 0.9538 }, { "start": 22352.34, "end": 22358.08, "probability": 0.9812 }, { "start": 22358.2, "end": 22359.6, "probability": 0.9117 }, { "start": 22360.28, "end": 22362.68, "probability": 0.9014 }, { "start": 22363.48, "end": 22368.67, "probability": 0.8825 }, { "start": 22369.34, "end": 22370.7, "probability": 0.9675 }, { "start": 22371.1, "end": 22373.56, "probability": 0.9689 }, { "start": 22373.56, "end": 22376.8, "probability": 0.9917 }, { "start": 22378.4, "end": 22382.62, "probability": 0.9146 }, { "start": 22383.32, "end": 22385.1, "probability": 0.8391 }, { "start": 22385.96, "end": 22389.72, "probability": 0.7425 }, { "start": 22389.94, "end": 22394.06, "probability": 0.9657 }, { "start": 22396.28, "end": 22398.04, "probability": 0.3778 }, { "start": 22398.08, "end": 22401.2, "probability": 0.5284 }, { "start": 22401.62, "end": 22403.56, "probability": 0.2215 }, { "start": 22403.9, "end": 22404.44, "probability": 0.3022 }, { "start": 22405.05, "end": 22406.92, "probability": 0.658 }, { "start": 22410.4, "end": 22414.44, "probability": 0.6783 }, { "start": 22416.39, "end": 22420.16, "probability": 0.6709 }, { "start": 22420.48, "end": 22422.92, "probability": 0.7017 }, { "start": 22423.06, "end": 22424.82, "probability": 0.7304 }, { "start": 22427.58, "end": 22428.34, "probability": 0.2468 }, { "start": 22428.36, "end": 22428.36, "probability": 0.1718 }, { "start": 22428.36, "end": 22428.82, "probability": 0.0211 }, { "start": 22429.72, "end": 22430.38, "probability": 0.4519 }, { "start": 22431.08, "end": 22431.56, "probability": 0.4349 }, { "start": 22431.56, "end": 22434.58, "probability": 0.2075 }, { "start": 22435.24, "end": 22436.6, "probability": 0.5969 }, { "start": 22436.6, "end": 22437.54, "probability": 0.6081 }, { "start": 22437.88, "end": 22439.26, "probability": 0.3733 }, { "start": 22439.7, "end": 22443.3, "probability": 0.1375 }, { "start": 22443.9, "end": 22444.98, "probability": 0.6256 }, { "start": 22444.98, "end": 22448.52, "probability": 0.4248 }, { "start": 22448.6, "end": 22450.52, "probability": 0.8494 }, { "start": 22451.08, "end": 22453.42, "probability": 0.6797 }, { "start": 22453.84, "end": 22456.7, "probability": 0.0473 }, { "start": 22457.22, "end": 22457.6, "probability": 0.0244 }, { "start": 22457.6, "end": 22460.06, "probability": 0.5995 }, { "start": 22460.3, "end": 22461.3, "probability": 0.6483 }, { "start": 22461.86, "end": 22463.66, "probability": 0.577 }, { "start": 22464.02, "end": 22465.4, "probability": 0.2579 }, { "start": 22465.78, "end": 22468.72, "probability": 0.2551 }, { "start": 22483.0, "end": 22485.66, "probability": 0.7274 }, { "start": 22486.2, "end": 22488.94, "probability": 0.8333 }, { "start": 22489.52, "end": 22491.61, "probability": 0.799 }, { "start": 22493.04, "end": 22494.32, "probability": 0.2553 }, { "start": 22495.02, "end": 22496.88, "probability": 0.4836 }, { "start": 22497.32, "end": 22497.7, "probability": 0.035 }, { "start": 22497.7, "end": 22498.52, "probability": 0.3125 }, { "start": 22498.78, "end": 22499.34, "probability": 0.7057 }, { "start": 22515.72, "end": 22516.8, "probability": 0.4247 }, { "start": 22517.06, "end": 22517.78, "probability": 0.496 }, { "start": 22517.9, "end": 22522.85, "probability": 0.1726 }, { "start": 22523.68, "end": 22524.8, "probability": 0.1276 }, { "start": 22525.72, "end": 22527.78, "probability": 0.803 }, { "start": 22530.64, "end": 22531.3, "probability": 0.9951 }, { "start": 22534.02, "end": 22538.04, "probability": 0.8059 }, { "start": 22538.74, "end": 22542.34, "probability": 0.9639 }, { "start": 22542.46, "end": 22544.94, "probability": 0.9189 }, { "start": 22545.64, "end": 22551.2, "probability": 0.9888 }, { "start": 22551.72, "end": 22552.74, "probability": 0.4719 }, { "start": 22553.92, "end": 22556.48, "probability": 0.8857 }, { "start": 22557.58, "end": 22563.24, "probability": 0.9589 }, { "start": 22563.34, "end": 22563.86, "probability": 0.5416 }, { "start": 22563.92, "end": 22564.38, "probability": 0.5111 }, { "start": 22564.6, "end": 22565.56, "probability": 0.6208 }, { "start": 22568.32, "end": 22569.82, "probability": 0.4623 }, { "start": 22570.34, "end": 22573.56, "probability": 0.7544 }, { "start": 22573.94, "end": 22574.78, "probability": 0.9012 }, { "start": 22574.9, "end": 22575.36, "probability": 0.9439 }, { "start": 22575.5, "end": 22578.7, "probability": 0.9561 }, { "start": 22578.96, "end": 22579.94, "probability": 0.9573 }, { "start": 22580.78, "end": 22583.4, "probability": 0.9346 }, { "start": 22583.94, "end": 22586.66, "probability": 0.963 }, { "start": 22586.92, "end": 22587.52, "probability": 0.6024 }, { "start": 22587.58, "end": 22588.12, "probability": 0.6016 }, { "start": 22589.08, "end": 22593.32, "probability": 0.8821 }, { "start": 22594.56, "end": 22598.84, "probability": 0.9956 }, { "start": 22599.86, "end": 22603.44, "probability": 0.9032 }, { "start": 22604.36, "end": 22607.34, "probability": 0.6113 }, { "start": 22607.94, "end": 22608.5, "probability": 0.6701 }, { "start": 22608.86, "end": 22611.02, "probability": 0.897 }, { "start": 22611.38, "end": 22614.2, "probability": 0.9852 }, { "start": 22614.86, "end": 22617.1, "probability": 0.9615 }, { "start": 22617.24, "end": 22618.92, "probability": 0.9647 }, { "start": 22619.4, "end": 22620.86, "probability": 0.9987 }, { "start": 22620.98, "end": 22621.58, "probability": 0.5647 }, { "start": 22622.08, "end": 22626.1, "probability": 0.9291 }, { "start": 22626.22, "end": 22627.84, "probability": 0.7739 }, { "start": 22628.2, "end": 22630.48, "probability": 0.9211 }, { "start": 22630.54, "end": 22633.18, "probability": 0.6589 }, { "start": 22633.36, "end": 22634.82, "probability": 0.8865 }, { "start": 22635.28, "end": 22636.22, "probability": 0.8375 }, { "start": 22636.34, "end": 22638.18, "probability": 0.6202 }, { "start": 22638.36, "end": 22639.12, "probability": 0.792 }, { "start": 22639.54, "end": 22640.7, "probability": 0.9771 }, { "start": 22640.84, "end": 22643.46, "probability": 0.677 }, { "start": 22643.64, "end": 22644.72, "probability": 0.9905 }, { "start": 22645.38, "end": 22647.23, "probability": 0.9591 }, { "start": 22648.48, "end": 22651.08, "probability": 0.9515 }, { "start": 22651.16, "end": 22652.94, "probability": 0.9924 }, { "start": 22653.56, "end": 22658.04, "probability": 0.8902 }, { "start": 22658.74, "end": 22661.06, "probability": 0.9105 }, { "start": 22661.2, "end": 22662.64, "probability": 0.6202 }, { "start": 22662.94, "end": 22663.57, "probability": 0.9386 }, { "start": 22663.78, "end": 22664.0, "probability": 0.9597 }, { "start": 22664.12, "end": 22665.82, "probability": 0.7769 }, { "start": 22666.42, "end": 22673.56, "probability": 0.9661 }, { "start": 22674.7, "end": 22676.54, "probability": 0.9465 }, { "start": 22676.64, "end": 22678.92, "probability": 0.9082 }, { "start": 22679.72, "end": 22682.74, "probability": 0.9578 }, { "start": 22683.1, "end": 22683.98, "probability": 0.7603 }, { "start": 22684.06, "end": 22686.34, "probability": 0.9921 }, { "start": 22686.5, "end": 22688.4, "probability": 0.575 }, { "start": 22688.86, "end": 22689.3, "probability": 0.7392 }, { "start": 22689.36, "end": 22692.22, "probability": 0.7049 }, { "start": 22693.56, "end": 22694.2, "probability": 0.871 }, { "start": 22694.6, "end": 22695.88, "probability": 0.8684 }, { "start": 22696.0, "end": 22698.8, "probability": 0.8963 }, { "start": 22699.3, "end": 22702.08, "probability": 0.9008 }, { "start": 22702.3, "end": 22708.7, "probability": 0.9655 }, { "start": 22709.14, "end": 22710.39, "probability": 0.9902 }, { "start": 22710.7, "end": 22712.92, "probability": 0.9099 }, { "start": 22713.38, "end": 22716.1, "probability": 0.9821 }, { "start": 22717.32, "end": 22718.16, "probability": 0.9166 }, { "start": 22719.6, "end": 22723.48, "probability": 0.9715 }, { "start": 22723.76, "end": 22726.0, "probability": 0.8204 }, { "start": 22726.0, "end": 22730.42, "probability": 0.9568 }, { "start": 22730.62, "end": 22733.16, "probability": 0.6419 }, { "start": 22733.38, "end": 22733.9, "probability": 0.66 }, { "start": 22733.98, "end": 22734.82, "probability": 0.9482 }, { "start": 22735.58, "end": 22736.58, "probability": 0.9778 }, { "start": 22737.3, "end": 22740.51, "probability": 0.8369 }, { "start": 22740.98, "end": 22743.5, "probability": 0.8636 }, { "start": 22743.64, "end": 22744.88, "probability": 0.8371 }, { "start": 22746.4, "end": 22751.46, "probability": 0.7481 }, { "start": 22751.6, "end": 22754.58, "probability": 0.9953 }, { "start": 22755.48, "end": 22759.48, "probability": 0.9984 }, { "start": 22759.48, "end": 22762.66, "probability": 0.9619 }, { "start": 22763.22, "end": 22765.1, "probability": 0.998 }, { "start": 22765.34, "end": 22767.64, "probability": 0.9691 }, { "start": 22767.76, "end": 22770.08, "probability": 0.9521 }, { "start": 22770.36, "end": 22773.11, "probability": 0.9849 }, { "start": 22773.6, "end": 22779.44, "probability": 0.9335 }, { "start": 22779.44, "end": 22782.4, "probability": 0.9518 }, { "start": 22783.16, "end": 22784.19, "probability": 0.8456 }, { "start": 22784.8, "end": 22785.44, "probability": 0.7738 }, { "start": 22785.5, "end": 22787.56, "probability": 0.999 }, { "start": 22787.74, "end": 22790.64, "probability": 0.9477 }, { "start": 22791.0, "end": 22791.8, "probability": 0.678 }, { "start": 22792.18, "end": 22794.04, "probability": 0.9888 }, { "start": 22794.78, "end": 22797.04, "probability": 0.9898 }, { "start": 22797.26, "end": 22802.04, "probability": 0.9941 }, { "start": 22802.58, "end": 22806.38, "probability": 0.9954 }, { "start": 22806.84, "end": 22811.94, "probability": 0.9784 }, { "start": 22811.94, "end": 22817.66, "probability": 0.9988 }, { "start": 22819.89, "end": 22822.64, "probability": 0.9985 }, { "start": 22823.14, "end": 22825.74, "probability": 0.8759 }, { "start": 22826.24, "end": 22827.66, "probability": 0.9868 }, { "start": 22827.74, "end": 22829.39, "probability": 0.99 }, { "start": 22829.74, "end": 22834.44, "probability": 0.9072 }, { "start": 22835.82, "end": 22835.96, "probability": 0.0597 }, { "start": 22838.23, "end": 22845.42, "probability": 0.8735 }, { "start": 22845.9, "end": 22846.84, "probability": 0.9022 }, { "start": 22847.04, "end": 22851.18, "probability": 0.9485 }, { "start": 22851.18, "end": 22855.98, "probability": 0.938 }, { "start": 22856.28, "end": 22857.58, "probability": 0.7994 }, { "start": 22857.76, "end": 22860.18, "probability": 0.993 }, { "start": 22860.41, "end": 22864.0, "probability": 0.9917 }, { "start": 22864.5, "end": 22864.84, "probability": 0.6991 }, { "start": 22865.18, "end": 22866.36, "probability": 0.575 }, { "start": 22866.78, "end": 22868.46, "probability": 0.6034 }, { "start": 22888.38, "end": 22890.72, "probability": 0.7323 }, { "start": 22892.02, "end": 22895.5, "probability": 0.8301 }, { "start": 22895.5, "end": 22899.18, "probability": 0.9188 }, { "start": 22901.32, "end": 22905.84, "probability": 0.9521 }, { "start": 22905.84, "end": 22909.3, "probability": 0.9513 }, { "start": 22910.6, "end": 22912.64, "probability": 0.6825 }, { "start": 22914.31, "end": 22918.24, "probability": 0.9485 }, { "start": 22919.08, "end": 22921.9, "probability": 0.3803 }, { "start": 22922.02, "end": 22925.3, "probability": 0.84 }, { "start": 22925.3, "end": 22931.26, "probability": 0.827 }, { "start": 22931.48, "end": 22933.38, "probability": 0.8703 }, { "start": 22933.44, "end": 22935.28, "probability": 0.8951 }, { "start": 22936.06, "end": 22941.24, "probability": 0.649 }, { "start": 22942.48, "end": 22944.86, "probability": 0.9922 }, { "start": 22945.2, "end": 22948.1, "probability": 0.9583 }, { "start": 22948.16, "end": 22949.3, "probability": 0.4091 }, { "start": 22949.32, "end": 22955.14, "probability": 0.978 }, { "start": 22955.28, "end": 22956.4, "probability": 0.952 }, { "start": 22956.52, "end": 22957.88, "probability": 0.8803 }, { "start": 22958.28, "end": 22960.34, "probability": 0.9615 }, { "start": 22960.94, "end": 22962.38, "probability": 0.9725 }, { "start": 22962.94, "end": 22967.0, "probability": 0.891 }, { "start": 22967.62, "end": 22969.92, "probability": 0.8156 }, { "start": 22970.7, "end": 22972.64, "probability": 0.7152 }, { "start": 22973.28, "end": 22974.78, "probability": 0.8037 }, { "start": 22975.98, "end": 22978.46, "probability": 0.8007 }, { "start": 22979.5, "end": 22982.18, "probability": 0.8849 }, { "start": 22983.18, "end": 22986.18, "probability": 0.8576 }, { "start": 22986.3, "end": 22988.36, "probability": 0.6445 }, { "start": 22988.9, "end": 22992.37, "probability": 0.6938 }, { "start": 22993.04, "end": 22994.96, "probability": 0.9909 }, { "start": 22996.34, "end": 23004.74, "probability": 0.9561 }, { "start": 23005.96, "end": 23012.28, "probability": 0.7737 }, { "start": 23012.88, "end": 23015.18, "probability": 0.881 }, { "start": 23015.66, "end": 23018.88, "probability": 0.9655 }, { "start": 23019.06, "end": 23023.04, "probability": 0.9478 }, { "start": 23023.6, "end": 23026.5, "probability": 0.932 }, { "start": 23027.44, "end": 23030.3, "probability": 0.751 }, { "start": 23032.02, "end": 23040.54, "probability": 0.9062 }, { "start": 23040.82, "end": 23042.64, "probability": 0.6872 }, { "start": 23043.56, "end": 23047.56, "probability": 0.9846 }, { "start": 23048.82, "end": 23049.48, "probability": 0.79 }, { "start": 23049.62, "end": 23054.34, "probability": 0.7957 }, { "start": 23054.34, "end": 23059.09, "probability": 0.9977 }, { "start": 23060.36, "end": 23064.74, "probability": 0.5969 }, { "start": 23064.8, "end": 23065.68, "probability": 0.3789 }, { "start": 23066.2, "end": 23068.2, "probability": 0.7822 }, { "start": 23069.14, "end": 23072.24, "probability": 0.8548 }, { "start": 23072.5, "end": 23074.84, "probability": 0.7094 }, { "start": 23076.39, "end": 23078.64, "probability": 0.7262 }, { "start": 23078.72, "end": 23078.8, "probability": 0.1009 }, { "start": 23079.0, "end": 23079.28, "probability": 0.4576 }, { "start": 23079.44, "end": 23080.28, "probability": 0.7675 }, { "start": 23080.42, "end": 23080.88, "probability": 0.5122 }, { "start": 23081.84, "end": 23083.22, "probability": 0.2185 }, { "start": 23083.36, "end": 23085.04, "probability": 0.5319 }, { "start": 23085.24, "end": 23086.04, "probability": 0.4683 }, { "start": 23087.06, "end": 23087.7, "probability": 0.7304 }, { "start": 23088.48, "end": 23089.96, "probability": 0.4568 }, { "start": 23090.3, "end": 23090.84, "probability": 0.632 }, { "start": 23091.38, "end": 23092.34, "probability": 0.5209 }, { "start": 23092.46, "end": 23095.72, "probability": 0.7694 }, { "start": 23096.12, "end": 23104.82, "probability": 0.854 }, { "start": 23105.34, "end": 23111.16, "probability": 0.8489 }, { "start": 23111.6, "end": 23115.44, "probability": 0.8886 }, { "start": 23116.08, "end": 23120.42, "probability": 0.9734 }, { "start": 23122.96, "end": 23125.36, "probability": 0.762 }, { "start": 23125.76, "end": 23125.94, "probability": 0.2799 }, { "start": 23126.06, "end": 23131.06, "probability": 0.9646 }, { "start": 23131.3, "end": 23135.52, "probability": 0.914 }, { "start": 23136.02, "end": 23141.0, "probability": 0.5371 }, { "start": 23141.34, "end": 23144.32, "probability": 0.7236 }, { "start": 23144.5, "end": 23148.16, "probability": 0.8379 }, { "start": 23148.26, "end": 23149.18, "probability": 0.7831 }, { "start": 23149.26, "end": 23149.82, "probability": 0.5473 }, { "start": 23150.26, "end": 23154.52, "probability": 0.6276 }, { "start": 23154.52, "end": 23158.6, "probability": 0.7783 }, { "start": 23158.74, "end": 23161.5, "probability": 0.7648 }, { "start": 23161.58, "end": 23162.28, "probability": 0.6211 }, { "start": 23163.08, "end": 23164.0, "probability": 0.688 }, { "start": 23164.16, "end": 23164.97, "probability": 0.8116 }, { "start": 23165.19, "end": 23167.01, "probability": 0.8013 }, { "start": 23167.11, "end": 23168.21, "probability": 0.2749 }, { "start": 23168.25, "end": 23170.27, "probability": 0.9524 }, { "start": 23171.65, "end": 23173.07, "probability": 0.6467 }, { "start": 23173.69, "end": 23174.8, "probability": 0.6753 }, { "start": 23175.67, "end": 23177.93, "probability": 0.8951 }, { "start": 23178.27, "end": 23179.85, "probability": 0.5489 }, { "start": 23179.93, "end": 23180.39, "probability": 0.8125 }, { "start": 23180.93, "end": 23181.94, "probability": 0.9138 }, { "start": 23183.27, "end": 23184.03, "probability": 0.8438 }, { "start": 23184.09, "end": 23184.79, "probability": 0.8812 }, { "start": 23184.95, "end": 23187.77, "probability": 0.4666 }, { "start": 23188.51, "end": 23190.89, "probability": 0.1002 }, { "start": 23194.09, "end": 23197.69, "probability": 0.3687 }, { "start": 23197.91, "end": 23199.11, "probability": 0.4438 }, { "start": 23199.59, "end": 23203.67, "probability": 0.1365 }, { "start": 23203.77, "end": 23208.51, "probability": 0.2004 }, { "start": 23208.61, "end": 23209.71, "probability": 0.5479 }, { "start": 23292.0, "end": 23292.0, "probability": 0.0 }, { "start": 23292.0, "end": 23292.0, "probability": 0.0 }, { "start": 23292.0, "end": 23292.0, "probability": 0.0 }, { "start": 23292.0, "end": 23292.0, "probability": 0.0 }, { "start": 23292.0, "end": 23292.0, "probability": 0.0 }, { "start": 23292.0, "end": 23292.0, "probability": 0.0 }, { "start": 23292.0, "end": 23292.0, "probability": 0.0 }, { "start": 23292.0, "end": 23292.0, "probability": 0.0 }, { "start": 23292.0, "end": 23292.0, "probability": 0.0 }, { "start": 23292.0, "end": 23292.0, "probability": 0.0 }, { "start": 23292.0, "end": 23292.0, "probability": 0.0 }, { "start": 23292.0, "end": 23292.0, "probability": 0.0 }, { "start": 23302.12, "end": 23302.12, "probability": 0.238 }, { "start": 23302.12, "end": 23303.7, "probability": 0.1372 }, { "start": 23305.84, "end": 23306.58, "probability": 0.2004 }, { "start": 23307.62, "end": 23310.42, "probability": 0.0208 }, { "start": 23311.0, "end": 23311.26, "probability": 0.2081 }, { "start": 23312.24, "end": 23312.34, "probability": 0.0325 }, { "start": 23315.42, "end": 23316.48, "probability": 0.0173 }, { "start": 23316.48, "end": 23318.68, "probability": 0.1441 }, { "start": 23319.68, "end": 23322.5, "probability": 0.2182 }, { "start": 23327.6, "end": 23330.2, "probability": 0.0863 }, { "start": 23331.94, "end": 23334.36, "probability": 0.1497 }, { "start": 23416.0, "end": 23416.0, "probability": 0.0 }, { "start": 23416.0, "end": 23416.0, "probability": 0.0 }, { "start": 23416.0, "end": 23416.0, "probability": 0.0 }, { "start": 23416.0, "end": 23416.0, "probability": 0.0 }, { "start": 23416.0, "end": 23416.0, "probability": 0.0 }, { "start": 23416.0, "end": 23416.0, "probability": 0.0 }, { "start": 23416.0, "end": 23416.0, "probability": 0.0 }, { "start": 23416.0, "end": 23416.0, "probability": 0.0 }, { "start": 23416.0, "end": 23416.0, "probability": 0.0 }, { "start": 23416.0, "end": 23416.0, "probability": 0.0 }, { "start": 23416.0, "end": 23416.0, "probability": 0.0 }, { "start": 23416.0, "end": 23416.0, "probability": 0.0 }, { "start": 23416.0, "end": 23416.0, "probability": 0.0 }, { "start": 23416.0, "end": 23416.0, "probability": 0.0 }, { "start": 23416.0, "end": 23416.0, "probability": 0.0 }, { "start": 23416.0, "end": 23416.0, "probability": 0.0 }, { "start": 23416.0, "end": 23416.0, "probability": 0.0 }, { "start": 23416.0, "end": 23416.0, "probability": 0.0 }, { "start": 23416.0, "end": 23416.0, "probability": 0.0 }, { "start": 23416.0, "end": 23416.0, "probability": 0.0 }, { "start": 23416.0, "end": 23416.0, "probability": 0.0 }, { "start": 23416.0, "end": 23416.0, "probability": 0.0 }, { "start": 23416.0, "end": 23416.0, "probability": 0.0 }, { "start": 23416.0, "end": 23416.0, "probability": 0.0 }, { "start": 23416.0, "end": 23416.0, "probability": 0.0 }, { "start": 23416.0, "end": 23416.0, "probability": 0.0 }, { "start": 23416.0, "end": 23416.0, "probability": 0.0 }, { "start": 23416.0, "end": 23416.0, "probability": 0.0 }, { "start": 23416.0, "end": 23416.0, "probability": 0.0 }, { "start": 23416.0, "end": 23416.0, "probability": 0.0 }, { "start": 23416.0, "end": 23416.0, "probability": 0.0 }, { "start": 23416.0, "end": 23416.0, "probability": 0.0 }, { "start": 23416.0, "end": 23416.0, "probability": 0.0 }, { "start": 23416.0, "end": 23416.0, "probability": 0.0 }, { "start": 23416.0, "end": 23416.0, "probability": 0.0 }, { "start": 23416.0, "end": 23416.0, "probability": 0.0 }, { "start": 23416.0, "end": 23416.0, "probability": 0.0 }, { "start": 23416.0, "end": 23416.0, "probability": 0.0 }, { "start": 23416.0, "end": 23416.0, "probability": 0.0 }, { "start": 23416.0, "end": 23416.0, "probability": 0.0 }, { "start": 23416.2, "end": 23417.36, "probability": 0.1132 }, { "start": 23418.32, "end": 23422.82, "probability": 0.7075 }, { "start": 23423.78, "end": 23428.26, "probability": 0.8402 }, { "start": 23428.26, "end": 23433.9, "probability": 0.9984 }, { "start": 23434.42, "end": 23434.54, "probability": 0.3233 }, { "start": 23434.74, "end": 23439.24, "probability": 0.9753 }, { "start": 23441.83, "end": 23452.74, "probability": 0.9859 }, { "start": 23453.64, "end": 23456.8, "probability": 0.9515 }, { "start": 23457.44, "end": 23459.26, "probability": 0.6312 }, { "start": 23459.36, "end": 23460.06, "probability": 0.6288 }, { "start": 23460.22, "end": 23465.96, "probability": 0.9401 }, { "start": 23466.24, "end": 23466.92, "probability": 0.6046 }, { "start": 23467.46, "end": 23471.34, "probability": 0.8029 }, { "start": 23472.72, "end": 23472.92, "probability": 0.792 }, { "start": 23474.44, "end": 23476.15, "probability": 0.3824 }, { "start": 23476.16, "end": 23476.3, "probability": 0.4543 }, { "start": 23477.72, "end": 23480.88, "probability": 0.7502 }, { "start": 23484.16, "end": 23491.08, "probability": 0.4355 }, { "start": 23491.88, "end": 23495.17, "probability": 0.261 }, { "start": 23495.38, "end": 23499.76, "probability": 0.3648 }, { "start": 23499.84, "end": 23503.36, "probability": 0.4918 }, { "start": 23503.82, "end": 23505.28, "probability": 0.6918 }, { "start": 23505.9, "end": 23508.9, "probability": 0.7029 }, { "start": 23508.9, "end": 23511.78, "probability": 0.4684 }, { "start": 23514.21, "end": 23521.54, "probability": 0.8501 }, { "start": 23522.18, "end": 23524.14, "probability": 0.9841 }, { "start": 23525.26, "end": 23530.3, "probability": 0.8146 }, { "start": 23532.54, "end": 23534.86, "probability": 0.5336 }, { "start": 23534.96, "end": 23536.1, "probability": 0.9192 }, { "start": 23536.26, "end": 23537.74, "probability": 0.9845 }, { "start": 23538.5, "end": 23541.32, "probability": 0.7356 }, { "start": 23542.8, "end": 23543.34, "probability": 0.4071 }, { "start": 23543.66, "end": 23544.62, "probability": 0.7743 }, { "start": 23544.7, "end": 23546.12, "probability": 0.9849 }, { "start": 23546.86, "end": 23551.17, "probability": 0.9193 }, { "start": 23552.08, "end": 23556.52, "probability": 0.271 }, { "start": 23557.16, "end": 23560.1, "probability": 0.8571 }, { "start": 23560.1, "end": 23563.32, "probability": 0.9331 }, { "start": 23564.46, "end": 23567.32, "probability": 0.8543 }, { "start": 23568.66, "end": 23571.28, "probability": 0.9138 }, { "start": 23572.24, "end": 23574.08, "probability": 0.6317 }, { "start": 23574.22, "end": 23576.48, "probability": 0.7533 }, { "start": 23577.46, "end": 23580.42, "probability": 0.9016 }, { "start": 23581.02, "end": 23583.7, "probability": 0.9144 }, { "start": 23584.52, "end": 23587.46, "probability": 0.9328 }, { "start": 23587.54, "end": 23588.52, "probability": 0.7986 }, { "start": 23588.7, "end": 23593.02, "probability": 0.9314 }, { "start": 23593.08, "end": 23599.36, "probability": 0.8524 }, { "start": 23599.76, "end": 23603.32, "probability": 0.9898 }, { "start": 23604.74, "end": 23609.2, "probability": 0.9082 }, { "start": 23609.2, "end": 23614.86, "probability": 0.7142 }, { "start": 23614.98, "end": 23615.78, "probability": 0.638 }, { "start": 23615.96, "end": 23616.64, "probability": 0.6014 }, { "start": 23616.7, "end": 23617.4, "probability": 0.6335 }, { "start": 23617.52, "end": 23618.02, "probability": 0.8978 }, { "start": 23618.4, "end": 23619.02, "probability": 0.962 }, { "start": 23619.12, "end": 23619.86, "probability": 0.5012 }, { "start": 23621.2, "end": 23621.2, "probability": 0.4937 }, { "start": 23621.76, "end": 23622.66, "probability": 0.976 }, { "start": 23623.4, "end": 23625.16, "probability": 0.7268 }, { "start": 23626.56, "end": 23628.76, "probability": 0.8318 }, { "start": 23629.36, "end": 23631.2, "probability": 0.9705 }, { "start": 23631.82, "end": 23635.94, "probability": 0.9842 }, { "start": 23635.94, "end": 23643.6, "probability": 0.9401 }, { "start": 23644.38, "end": 23648.56, "probability": 0.9968 }, { "start": 23649.08, "end": 23649.76, "probability": 0.7522 }, { "start": 23649.92, "end": 23650.36, "probability": 0.9001 }, { "start": 23650.46, "end": 23654.9, "probability": 0.9907 }, { "start": 23655.36, "end": 23661.48, "probability": 0.8541 }, { "start": 23662.32, "end": 23664.9, "probability": 0.9607 }, { "start": 23665.78, "end": 23671.0, "probability": 0.9079 }, { "start": 23672.22, "end": 23675.14, "probability": 0.9985 }, { "start": 23675.82, "end": 23679.4, "probability": 0.992 }, { "start": 23679.94, "end": 23682.7, "probability": 0.7585 }, { "start": 23682.7, "end": 23685.46, "probability": 0.8308 }, { "start": 23685.66, "end": 23686.68, "probability": 0.8495 }, { "start": 23687.5, "end": 23688.96, "probability": 0.9226 }, { "start": 23689.34, "end": 23694.8, "probability": 0.9985 }, { "start": 23695.68, "end": 23696.26, "probability": 0.6248 }, { "start": 23696.46, "end": 23697.36, "probability": 0.7366 }, { "start": 23697.48, "end": 23698.04, "probability": 0.8405 }, { "start": 23698.2, "end": 23698.88, "probability": 0.4776 }, { "start": 23698.9, "end": 23699.8, "probability": 0.6316 }, { "start": 23699.82, "end": 23701.02, "probability": 0.011 }, { "start": 23701.72, "end": 23703.3, "probability": 0.8392 }, { "start": 23703.9, "end": 23705.28, "probability": 0.53 }, { "start": 23705.84, "end": 23708.66, "probability": 0.3064 }, { "start": 23709.62, "end": 23711.02, "probability": 0.9128 }, { "start": 23714.02, "end": 23714.82, "probability": 0.3872 }, { "start": 23714.82, "end": 23717.0, "probability": 0.3133 }, { "start": 23717.08, "end": 23720.93, "probability": 0.0691 }, { "start": 23723.86, "end": 23726.68, "probability": 0.0999 }, { "start": 23728.4, "end": 23730.46, "probability": 0.2914 }, { "start": 23730.62, "end": 23734.38, "probability": 0.2742 }, { "start": 23734.76, "end": 23736.16, "probability": 0.5247 }, { "start": 23736.38, "end": 23737.96, "probability": 0.7343 }, { "start": 23737.98, "end": 23740.14, "probability": 0.4198 }, { "start": 23740.44, "end": 23740.78, "probability": 0.8094 }, { "start": 23741.36, "end": 23742.7, "probability": 0.1065 }, { "start": 23744.0, "end": 23744.7, "probability": 0.3871 }, { "start": 23744.7, "end": 23746.2, "probability": 0.4693 }, { "start": 23746.28, "end": 23748.42, "probability": 0.5369 }, { "start": 23748.5, "end": 23750.18, "probability": 0.9578 }, { "start": 23750.82, "end": 23751.22, "probability": 0.9563 }, { "start": 23752.16, "end": 23756.2, "probability": 0.9449 }, { "start": 23756.62, "end": 23757.78, "probability": 0.8218 }, { "start": 23758.1, "end": 23760.22, "probability": 0.9162 }, { "start": 23761.12, "end": 23761.92, "probability": 0.8209 }, { "start": 23762.86, "end": 23765.22, "probability": 0.7375 }, { "start": 23765.32, "end": 23768.18, "probability": 0.7928 }, { "start": 23768.32, "end": 23768.48, "probability": 0.4567 }, { "start": 23769.1, "end": 23771.34, "probability": 0.7153 }, { "start": 23771.9, "end": 23773.5, "probability": 0.478 }, { "start": 23773.88, "end": 23782.5, "probability": 0.8733 }, { "start": 23782.5, "end": 23785.56, "probability": 0.9833 }, { "start": 23786.88, "end": 23788.38, "probability": 0.673 }, { "start": 23789.72, "end": 23791.16, "probability": 0.8707 }, { "start": 23792.08, "end": 23793.44, "probability": 0.9899 }, { "start": 23794.28, "end": 23795.38, "probability": 0.8002 }, { "start": 23795.54, "end": 23795.68, "probability": 0.2187 }, { "start": 23795.98, "end": 23796.42, "probability": 0.5232 }, { "start": 23796.54, "end": 23797.78, "probability": 0.9027 }, { "start": 23797.82, "end": 23799.2, "probability": 0.8923 }, { "start": 23799.74, "end": 23803.0, "probability": 0.9971 }, { "start": 23804.28, "end": 23806.44, "probability": 0.1039 }, { "start": 23806.44, "end": 23807.18, "probability": 0.14 }, { "start": 23809.44, "end": 23810.3, "probability": 0.4061 }, { "start": 23810.44, "end": 23811.12, "probability": 0.1213 }, { "start": 23811.12, "end": 23814.6, "probability": 0.9937 }, { "start": 23814.98, "end": 23818.2, "probability": 0.747 }, { "start": 23818.86, "end": 23821.18, "probability": 0.6465 }, { "start": 23821.44, "end": 23823.62, "probability": 0.9951 }, { "start": 23823.7, "end": 23825.26, "probability": 0.7377 }, { "start": 23825.74, "end": 23827.48, "probability": 0.9156 }, { "start": 23828.5, "end": 23829.22, "probability": 0.7114 }, { "start": 23829.32, "end": 23831.06, "probability": 0.9787 }, { "start": 23831.22, "end": 23833.54, "probability": 0.957 }, { "start": 23834.82, "end": 23838.28, "probability": 0.8888 }, { "start": 23838.56, "end": 23844.64, "probability": 0.5776 }, { "start": 23845.2, "end": 23846.58, "probability": 0.9838 }, { "start": 23847.1, "end": 23851.18, "probability": 0.9508 }, { "start": 23851.34, "end": 23853.24, "probability": 0.9227 }, { "start": 23853.42, "end": 23854.6, "probability": 0.9858 }, { "start": 23855.42, "end": 23857.33, "probability": 0.8511 }, { "start": 23857.5, "end": 23859.08, "probability": 0.7898 }, { "start": 23859.64, "end": 23860.38, "probability": 0.72 }, { "start": 23860.56, "end": 23863.22, "probability": 0.704 }, { "start": 23867.2, "end": 23868.44, "probability": 0.6971 }, { "start": 23869.42, "end": 23870.94, "probability": 0.9323 }, { "start": 23871.24, "end": 23871.84, "probability": 0.8529 }, { "start": 23872.34, "end": 23872.7, "probability": 0.8841 }, { "start": 23873.0, "end": 23873.48, "probability": 0.8531 }, { "start": 23873.86, "end": 23876.7, "probability": 0.7607 }, { "start": 23877.06, "end": 23879.02, "probability": 0.9813 }, { "start": 23881.66, "end": 23887.26, "probability": 0.9992 }, { "start": 23889.4, "end": 23890.66, "probability": 0.5021 }, { "start": 23891.42, "end": 23892.14, "probability": 0.429 }, { "start": 23892.14, "end": 23893.34, "probability": 0.7423 }, { "start": 23893.46, "end": 23895.72, "probability": 0.7284 }, { "start": 23895.72, "end": 23897.8, "probability": 0.8161 }, { "start": 23897.84, "end": 23899.68, "probability": 0.6873 }, { "start": 23903.0, "end": 23908.84, "probability": 0.995 }, { "start": 23909.18, "end": 23909.38, "probability": 0.343 }, { "start": 23909.48, "end": 23909.92, "probability": 0.7941 }, { "start": 23910.64, "end": 23913.42, "probability": 0.9755 }, { "start": 23913.6, "end": 23917.25, "probability": 0.9736 }, { "start": 23918.66, "end": 23920.3, "probability": 0.7539 }, { "start": 23920.84, "end": 23925.22, "probability": 0.6214 }, { "start": 23926.18, "end": 23927.26, "probability": 0.744 }, { "start": 23928.0, "end": 23929.5, "probability": 0.7579 }, { "start": 23929.88, "end": 23931.76, "probability": 0.8506 }, { "start": 23932.1, "end": 23933.46, "probability": 0.458 }, { "start": 23933.98, "end": 23934.98, "probability": 0.8393 }, { "start": 23935.36, "end": 23936.52, "probability": 0.9065 }, { "start": 23937.22, "end": 23938.32, "probability": 0.8413 }, { "start": 23938.7, "end": 23940.72, "probability": 0.8992 }, { "start": 23940.84, "end": 23942.9, "probability": 0.8373 }, { "start": 23943.58, "end": 23945.86, "probability": 0.8752 }, { "start": 23946.4, "end": 23949.72, "probability": 0.5287 }, { "start": 23949.74, "end": 23950.5, "probability": 0.4811 }, { "start": 23950.54, "end": 23952.26, "probability": 0.6774 }, { "start": 23952.96, "end": 23954.74, "probability": 0.779 }, { "start": 23954.96, "end": 23956.18, "probability": 0.5124 }, { "start": 23956.18, "end": 23956.9, "probability": 0.0421 }, { "start": 23957.12, "end": 23960.52, "probability": 0.705 }, { "start": 23961.36, "end": 23965.54, "probability": 0.9354 }, { "start": 23965.7, "end": 23968.07, "probability": 0.6889 }, { "start": 23968.5, "end": 23968.64, "probability": 0.0302 }, { "start": 23968.64, "end": 23969.56, "probability": 0.7056 }, { "start": 23969.64, "end": 23969.99, "probability": 0.7835 }, { "start": 23970.3, "end": 23971.64, "probability": 0.5285 }, { "start": 23971.7, "end": 23972.44, "probability": 0.8923 }, { "start": 23972.56, "end": 23973.02, "probability": 0.4402 }, { "start": 23973.02, "end": 23977.78, "probability": 0.6386 }, { "start": 23977.8, "end": 23978.18, "probability": 0.5346 }, { "start": 23978.28, "end": 23981.82, "probability": 0.5067 }, { "start": 23982.66, "end": 23984.6, "probability": 0.8845 }, { "start": 23984.66, "end": 23985.18, "probability": 0.7626 }, { "start": 23985.3, "end": 23986.04, "probability": 0.736 }, { "start": 23986.1, "end": 23986.7, "probability": 0.8893 }, { "start": 23987.16, "end": 23989.8, "probability": 0.8672 }, { "start": 23990.54, "end": 23992.92, "probability": 0.6991 }, { "start": 23993.54, "end": 23995.54, "probability": 0.8753 }, { "start": 23996.1, "end": 23997.74, "probability": 0.3409 }, { "start": 23997.96, "end": 24001.42, "probability": 0.4807 }, { "start": 24001.94, "end": 24001.94, "probability": 0.1 }, { "start": 24001.94, "end": 24001.94, "probability": 0.1255 }, { "start": 24001.94, "end": 24002.1, "probability": 0.2616 }, { "start": 24002.36, "end": 24006.92, "probability": 0.8462 }, { "start": 24007.38, "end": 24012.66, "probability": 0.9143 }, { "start": 24013.5, "end": 24018.7, "probability": 0.9674 }, { "start": 24019.46, "end": 24020.32, "probability": 0.604 }, { "start": 24021.08, "end": 24025.0, "probability": 0.9584 }, { "start": 24025.78, "end": 24026.68, "probability": 0.5659 }, { "start": 24027.68, "end": 24030.3, "probability": 0.6662 }, { "start": 24030.58, "end": 24035.6, "probability": 0.7362 }, { "start": 24040.7, "end": 24042.66, "probability": 0.9633 }, { "start": 24042.74, "end": 24046.7, "probability": 0.9987 }, { "start": 24047.56, "end": 24049.68, "probability": 0.9976 }, { "start": 24049.68, "end": 24052.44, "probability": 0.9578 }, { "start": 24052.48, "end": 24054.34, "probability": 0.8076 }, { "start": 24054.42, "end": 24055.86, "probability": 0.9871 }, { "start": 24056.38, "end": 24058.36, "probability": 0.9517 }, { "start": 24059.0, "end": 24059.12, "probability": 0.5282 }, { "start": 24059.2, "end": 24063.3, "probability": 0.7777 }, { "start": 24063.3, "end": 24065.72, "probability": 0.963 }, { "start": 24067.72, "end": 24069.98, "probability": 0.9907 }, { "start": 24069.98, "end": 24072.16, "probability": 0.9043 }, { "start": 24075.02, "end": 24076.28, "probability": 0.7257 }, { "start": 24076.44, "end": 24079.06, "probability": 0.9577 }, { "start": 24079.06, "end": 24082.12, "probability": 0.9809 }, { "start": 24082.2, "end": 24083.56, "probability": 0.605 }, { "start": 24084.16, "end": 24084.46, "probability": 0.1898 }, { "start": 24084.58, "end": 24084.92, "probability": 0.4275 }, { "start": 24085.0, "end": 24087.54, "probability": 0.928 }, { "start": 24087.76, "end": 24088.8, "probability": 0.9092 }, { "start": 24089.82, "end": 24092.68, "probability": 0.8021 }, { "start": 24092.78, "end": 24094.98, "probability": 0.9865 }, { "start": 24095.1, "end": 24095.74, "probability": 0.5294 }, { "start": 24097.12, "end": 24098.38, "probability": 0.4835 }, { "start": 24098.48, "end": 24099.54, "probability": 0.8836 }, { "start": 24099.62, "end": 24102.76, "probability": 0.9828 }, { "start": 24102.76, "end": 24106.82, "probability": 0.9955 }, { "start": 24107.56, "end": 24110.78, "probability": 0.807 }, { "start": 24111.32, "end": 24116.12, "probability": 0.832 }, { "start": 24116.12, "end": 24119.84, "probability": 0.9758 }, { "start": 24120.26, "end": 24123.32, "probability": 0.9965 }, { "start": 24124.58, "end": 24125.16, "probability": 0.7182 }, { "start": 24126.22, "end": 24129.34, "probability": 0.358 }, { "start": 24130.38, "end": 24132.3, "probability": 0.9825 }, { "start": 24152.38, "end": 24154.42, "probability": 0.6301 }, { "start": 24155.35, "end": 24160.74, "probability": 0.9823 }, { "start": 24160.86, "end": 24168.22, "probability": 0.9884 }, { "start": 24169.24, "end": 24175.56, "probability": 0.844 }, { "start": 24175.98, "end": 24178.92, "probability": 0.9928 }, { "start": 24179.52, "end": 24180.5, "probability": 0.7242 }, { "start": 24181.92, "end": 24186.24, "probability": 0.9882 }, { "start": 24187.02, "end": 24188.68, "probability": 0.7519 }, { "start": 24189.2, "end": 24189.72, "probability": 0.9405 }, { "start": 24189.8, "end": 24191.36, "probability": 0.6724 }, { "start": 24191.44, "end": 24197.3, "probability": 0.9239 }, { "start": 24197.3, "end": 24200.64, "probability": 0.9888 }, { "start": 24201.36, "end": 24203.62, "probability": 0.9937 }, { "start": 24203.62, "end": 24206.98, "probability": 0.9907 }, { "start": 24207.52, "end": 24208.82, "probability": 0.8928 }, { "start": 24208.9, "end": 24210.24, "probability": 0.9337 }, { "start": 24210.64, "end": 24211.96, "probability": 0.8597 }, { "start": 24212.26, "end": 24214.9, "probability": 0.9956 }, { "start": 24215.5, "end": 24219.92, "probability": 0.9934 }, { "start": 24220.88, "end": 24221.78, "probability": 0.873 }, { "start": 24222.42, "end": 24223.48, "probability": 0.962 }, { "start": 24223.88, "end": 24225.88, "probability": 0.9963 }, { "start": 24225.88, "end": 24229.18, "probability": 0.8614 }, { "start": 24229.88, "end": 24230.56, "probability": 0.665 }, { "start": 24230.86, "end": 24232.3, "probability": 0.832 }, { "start": 24232.42, "end": 24233.2, "probability": 0.8102 }, { "start": 24233.32, "end": 24237.36, "probability": 0.9667 }, { "start": 24243.36, "end": 24245.68, "probability": 0.8505 }, { "start": 24246.32, "end": 24248.62, "probability": 0.6842 }, { "start": 24252.44, "end": 24257.76, "probability": 0.7743 }, { "start": 24259.1, "end": 24261.32, "probability": 0.8014 }, { "start": 24262.0, "end": 24262.7, "probability": 0.9226 }, { "start": 24262.84, "end": 24266.08, "probability": 0.9767 }, { "start": 24266.6, "end": 24269.26, "probability": 0.858 }, { "start": 24269.88, "end": 24272.16, "probability": 0.9529 }, { "start": 24272.92, "end": 24274.2, "probability": 0.9984 }, { "start": 24274.8, "end": 24276.58, "probability": 0.8088 }, { "start": 24277.22, "end": 24281.26, "probability": 0.9157 }, { "start": 24281.8, "end": 24284.9, "probability": 0.9741 }, { "start": 24285.44, "end": 24286.22, "probability": 0.7666 }, { "start": 24286.3, "end": 24287.18, "probability": 0.8504 }, { "start": 24287.64, "end": 24288.48, "probability": 0.6023 }, { "start": 24288.64, "end": 24289.28, "probability": 0.7397 }, { "start": 24289.88, "end": 24290.24, "probability": 0.8464 }, { "start": 24290.26, "end": 24291.06, "probability": 0.9683 }, { "start": 24291.14, "end": 24291.54, "probability": 0.6984 }, { "start": 24291.54, "end": 24292.24, "probability": 0.9881 }, { "start": 24292.32, "end": 24293.48, "probability": 0.9668 }, { "start": 24293.92, "end": 24294.72, "probability": 0.5147 }, { "start": 24296.48, "end": 24297.53, "probability": 0.6185 }, { "start": 24300.06, "end": 24300.22, "probability": 0.1427 }, { "start": 24300.36, "end": 24303.18, "probability": 0.9491 }, { "start": 24303.68, "end": 24304.72, "probability": 0.9681 }, { "start": 24304.84, "end": 24306.96, "probability": 0.9586 }, { "start": 24307.78, "end": 24309.54, "probability": 0.9172 }, { "start": 24310.44, "end": 24313.58, "probability": 0.9585 }, { "start": 24314.46, "end": 24318.1, "probability": 0.8953 }, { "start": 24318.1, "end": 24321.36, "probability": 0.9149 }, { "start": 24321.98, "end": 24322.44, "probability": 0.7212 }, { "start": 24322.54, "end": 24323.04, "probability": 0.9355 }, { "start": 24323.12, "end": 24324.3, "probability": 0.9874 }, { "start": 24324.32, "end": 24325.1, "probability": 0.8949 }, { "start": 24325.32, "end": 24326.36, "probability": 0.7029 }, { "start": 24326.92, "end": 24327.38, "probability": 0.8909 }, { "start": 24327.44, "end": 24329.14, "probability": 0.7688 }, { "start": 24329.2, "end": 24330.34, "probability": 0.942 }, { "start": 24330.86, "end": 24334.56, "probability": 0.9788 }, { "start": 24335.26, "end": 24338.84, "probability": 0.974 }, { "start": 24338.98, "end": 24339.72, "probability": 0.7245 }, { "start": 24339.78, "end": 24340.42, "probability": 0.5472 }, { "start": 24340.44, "end": 24340.66, "probability": 0.9727 }, { "start": 24340.68, "end": 24341.46, "probability": 0.7416 }, { "start": 24341.56, "end": 24341.84, "probability": 0.6801 }, { "start": 24341.86, "end": 24342.44, "probability": 0.9977 }, { "start": 24342.48, "end": 24343.34, "probability": 0.8986 }, { "start": 24343.38, "end": 24344.66, "probability": 0.9296 }, { "start": 24344.82, "end": 24345.22, "probability": 0.3059 }, { "start": 24345.88, "end": 24346.7, "probability": 0.8163 }, { "start": 24347.66, "end": 24353.24, "probability": 0.9782 }, { "start": 24353.44, "end": 24356.04, "probability": 0.8584 }, { "start": 24357.38, "end": 24358.96, "probability": 0.6623 }, { "start": 24359.04, "end": 24362.48, "probability": 0.9774 }, { "start": 24363.14, "end": 24365.76, "probability": 0.7626 }, { "start": 24365.9, "end": 24367.54, "probability": 0.9589 }, { "start": 24367.96, "end": 24372.08, "probability": 0.985 }, { "start": 24372.7, "end": 24373.22, "probability": 0.6364 }, { "start": 24373.28, "end": 24377.7, "probability": 0.9398 }, { "start": 24377.7, "end": 24384.02, "probability": 0.9279 }, { "start": 24385.48, "end": 24385.56, "probability": 0.2473 }, { "start": 24385.58, "end": 24386.14, "probability": 0.628 }, { "start": 24388.38, "end": 24389.58, "probability": 0.6763 }, { "start": 24389.72, "end": 24390.18, "probability": 0.537 }, { "start": 24390.26, "end": 24390.38, "probability": 0.232 }, { "start": 24390.46, "end": 24391.98, "probability": 0.8944 }, { "start": 24392.0, "end": 24393.48, "probability": 0.9838 }, { "start": 24394.0, "end": 24396.46, "probability": 0.5528 }, { "start": 24397.0, "end": 24398.28, "probability": 0.5592 }, { "start": 24398.28, "end": 24398.91, "probability": 0.7595 }, { "start": 24399.42, "end": 24401.18, "probability": 0.7648 }, { "start": 24401.28, "end": 24404.2, "probability": 0.7107 }, { "start": 24404.28, "end": 24405.86, "probability": 0.6245 }, { "start": 24406.48, "end": 24407.5, "probability": 0.1285 }, { "start": 24407.5, "end": 24408.66, "probability": 0.7289 }, { "start": 24408.74, "end": 24412.08, "probability": 0.9229 }, { "start": 24412.2, "end": 24414.34, "probability": 0.7443 }, { "start": 24414.46, "end": 24415.84, "probability": 0.9209 }, { "start": 24416.14, "end": 24418.12, "probability": 0.6486 }, { "start": 24419.34, "end": 24420.34, "probability": 0.8957 }, { "start": 24421.64, "end": 24425.9, "probability": 0.952 }, { "start": 24425.9, "end": 24426.66, "probability": 0.7535 }, { "start": 24427.56, "end": 24432.4, "probability": 0.6975 }, { "start": 24432.7, "end": 24433.66, "probability": 0.9316 }, { "start": 24434.98, "end": 24435.98, "probability": 0.9433 }, { "start": 24437.78, "end": 24439.66, "probability": 0.8748 }, { "start": 24441.44, "end": 24444.76, "probability": 0.6955 }, { "start": 24444.76, "end": 24445.48, "probability": 0.4465 }, { "start": 24447.16, "end": 24450.22, "probability": 0.8612 }, { "start": 24451.08, "end": 24455.06, "probability": 0.9954 }, { "start": 24455.48, "end": 24456.38, "probability": 0.8316 }, { "start": 24457.08, "end": 24460.36, "probability": 0.9741 }, { "start": 24460.44, "end": 24462.42, "probability": 0.947 }, { "start": 24463.9, "end": 24467.64, "probability": 0.9605 }, { "start": 24469.7, "end": 24474.4, "probability": 0.8569 }, { "start": 24474.52, "end": 24478.76, "probability": 0.8891 }, { "start": 24478.82, "end": 24481.7, "probability": 0.9177 }, { "start": 24481.76, "end": 24484.34, "probability": 0.9987 }, { "start": 24485.08, "end": 24489.16, "probability": 0.9776 }, { "start": 24489.88, "end": 24493.68, "probability": 0.9066 }, { "start": 24494.56, "end": 24497.16, "probability": 0.9924 }, { "start": 24497.16, "end": 24500.28, "probability": 0.9976 }, { "start": 24500.28, "end": 24503.82, "probability": 0.9858 }, { "start": 24504.7, "end": 24508.2, "probability": 0.9716 }, { "start": 24508.86, "end": 24510.08, "probability": 0.8147 }, { "start": 24511.26, "end": 24516.26, "probability": 0.9945 }, { "start": 24516.9, "end": 24521.52, "probability": 0.9823 }, { "start": 24521.52, "end": 24525.04, "probability": 0.999 }, { "start": 24525.98, "end": 24527.8, "probability": 0.9074 }, { "start": 24529.33, "end": 24532.64, "probability": 0.984 }, { "start": 24536.68, "end": 24541.82, "probability": 0.9668 }, { "start": 24543.12, "end": 24544.94, "probability": 0.7846 }, { "start": 24545.0, "end": 24546.46, "probability": 0.8592 }, { "start": 24547.4, "end": 24549.7, "probability": 0.9952 }, { "start": 24550.46, "end": 24553.24, "probability": 0.9819 }, { "start": 24555.8, "end": 24556.1, "probability": 0.0023 }, { "start": 24557.32, "end": 24558.14, "probability": 0.0137 }, { "start": 24558.14, "end": 24558.22, "probability": 0.0907 }, { "start": 24558.22, "end": 24561.53, "probability": 0.7958 }, { "start": 24562.44, "end": 24564.9, "probability": 0.6698 }, { "start": 24567.88, "end": 24572.5, "probability": 0.8795 }, { "start": 24572.56, "end": 24573.96, "probability": 0.9883 }, { "start": 24574.02, "end": 24578.74, "probability": 0.975 }, { "start": 24578.82, "end": 24580.44, "probability": 0.9869 }, { "start": 24581.08, "end": 24582.58, "probability": 0.8476 }, { "start": 24582.98, "end": 24584.84, "probability": 0.9956 }, { "start": 24586.19, "end": 24588.62, "probability": 0.9541 }, { "start": 24590.14, "end": 24593.14, "probability": 0.8573 }, { "start": 24593.14, "end": 24594.42, "probability": 0.284 }, { "start": 24594.54, "end": 24595.38, "probability": 0.2184 }, { "start": 24595.76, "end": 24596.51, "probability": 0.4043 }, { "start": 24596.88, "end": 24600.22, "probability": 0.3006 }, { "start": 24600.36, "end": 24602.06, "probability": 0.9445 }, { "start": 24603.38, "end": 24604.06, "probability": 0.8934 }, { "start": 24605.06, "end": 24606.28, "probability": 0.9884 }, { "start": 24606.34, "end": 24611.18, "probability": 0.9008 }, { "start": 24611.94, "end": 24613.68, "probability": 0.73 }, { "start": 24613.94, "end": 24617.52, "probability": 0.9062 }, { "start": 24618.02, "end": 24621.04, "probability": 0.9897 }, { "start": 24621.56, "end": 24626.34, "probability": 0.9774 }, { "start": 24626.44, "end": 24627.76, "probability": 0.9302 }, { "start": 24627.86, "end": 24629.36, "probability": 0.4973 }, { "start": 24629.6, "end": 24631.06, "probability": 0.8065 }, { "start": 24631.88, "end": 24637.84, "probability": 0.9626 }, { "start": 24637.84, "end": 24643.12, "probability": 0.9833 }, { "start": 24643.58, "end": 24643.78, "probability": 0.3299 }, { "start": 24644.3, "end": 24644.96, "probability": 0.6041 }, { "start": 24645.04, "end": 24645.54, "probability": 0.8914 }, { "start": 24645.74, "end": 24645.84, "probability": 0.1563 }, { "start": 24645.88, "end": 24646.18, "probability": 0.7842 }, { "start": 24646.28, "end": 24646.91, "probability": 0.8494 }, { "start": 24647.46, "end": 24650.45, "probability": 0.8557 }, { "start": 24650.88, "end": 24652.84, "probability": 0.3627 }, { "start": 24652.96, "end": 24657.74, "probability": 0.4343 }, { "start": 24658.52, "end": 24660.6, "probability": 0.7171 }, { "start": 24660.68, "end": 24663.26, "probability": 0.2467 }, { "start": 24664.14, "end": 24664.14, "probability": 0.3359 }, { "start": 24668.8, "end": 24670.56, "probability": 0.4408 }, { "start": 24670.58, "end": 24671.51, "probability": 0.5157 }, { "start": 24672.22, "end": 24676.11, "probability": 0.5243 }, { "start": 24685.2, "end": 24686.42, "probability": 0.311 }, { "start": 24686.42, "end": 24689.54, "probability": 0.8936 }, { "start": 24689.84, "end": 24697.16, "probability": 0.8486 }, { "start": 24697.32, "end": 24699.32, "probability": 0.8385 }, { "start": 24699.7, "end": 24702.4, "probability": 0.8293 }, { "start": 24702.76, "end": 24704.56, "probability": 0.8864 }, { "start": 24704.66, "end": 24708.68, "probability": 0.8629 }, { "start": 24709.12, "end": 24712.7, "probability": 0.99 }, { "start": 24713.06, "end": 24717.06, "probability": 0.9611 }, { "start": 24722.72, "end": 24723.44, "probability": 0.5933 }, { "start": 24723.56, "end": 24727.04, "probability": 0.9269 }, { "start": 24727.06, "end": 24728.04, "probability": 0.7091 }, { "start": 24728.18, "end": 24730.06, "probability": 0.9953 }, { "start": 24730.82, "end": 24735.18, "probability": 0.9963 }, { "start": 24737.32, "end": 24738.0, "probability": 0.561 }, { "start": 24738.64, "end": 24740.41, "probability": 0.9954 }, { "start": 24741.52, "end": 24742.22, "probability": 0.9014 }, { "start": 24743.08, "end": 24747.0, "probability": 0.9643 }, { "start": 24747.6, "end": 24750.02, "probability": 0.9841 }, { "start": 24750.72, "end": 24752.7, "probability": 0.8452 }, { "start": 24753.94, "end": 24757.84, "probability": 0.9506 }, { "start": 24758.14, "end": 24759.3, "probability": 0.9644 }, { "start": 24759.4, "end": 24762.1, "probability": 0.6992 }, { "start": 24762.2, "end": 24764.94, "probability": 0.9836 }, { "start": 24765.02, "end": 24766.16, "probability": 0.5683 }, { "start": 24767.0, "end": 24769.32, "probability": 0.9688 }, { "start": 24769.84, "end": 24770.1, "probability": 0.9301 }, { "start": 24771.54, "end": 24772.46, "probability": 0.918 }, { "start": 24773.6, "end": 24782.4, "probability": 0.8516 }, { "start": 24782.76, "end": 24786.44, "probability": 0.9986 }, { "start": 24787.2, "end": 24790.1, "probability": 0.9716 }, { "start": 24790.1, "end": 24795.64, "probability": 0.9884 }, { "start": 24796.18, "end": 24798.15, "probability": 0.9159 }, { "start": 24799.96, "end": 24800.78, "probability": 0.8362 }, { "start": 24802.02, "end": 24805.5, "probability": 0.9329 }, { "start": 24805.56, "end": 24810.04, "probability": 0.9723 }, { "start": 24810.6, "end": 24810.9, "probability": 0.6638 }, { "start": 24811.04, "end": 24811.6, "probability": 0.4314 }, { "start": 24811.98, "end": 24814.78, "probability": 0.9453 }, { "start": 24815.12, "end": 24816.08, "probability": 0.9584 }, { "start": 24816.44, "end": 24817.3, "probability": 0.6689 }, { "start": 24817.42, "end": 24817.84, "probability": 0.4772 }, { "start": 24817.92, "end": 24819.24, "probability": 0.9243 }, { "start": 24819.64, "end": 24823.12, "probability": 0.9389 }, { "start": 24823.18, "end": 24823.82, "probability": 0.8641 }, { "start": 24824.14, "end": 24826.68, "probability": 0.9645 }, { "start": 24827.24, "end": 24834.16, "probability": 0.9711 }, { "start": 24836.08, "end": 24838.76, "probability": 0.6862 }, { "start": 24838.78, "end": 24842.58, "probability": 0.8628 }, { "start": 24842.74, "end": 24844.62, "probability": 0.8134 }, { "start": 24844.7, "end": 24847.56, "probability": 0.9882 }, { "start": 24848.34, "end": 24849.02, "probability": 0.7991 }, { "start": 24849.24, "end": 24849.84, "probability": 0.2673 }, { "start": 24850.04, "end": 24853.6, "probability": 0.7972 }, { "start": 24853.6, "end": 24857.64, "probability": 0.9591 }, { "start": 24858.54, "end": 24862.42, "probability": 0.9803 }, { "start": 24862.44, "end": 24865.28, "probability": 0.9961 }, { "start": 24865.28, "end": 24868.36, "probability": 0.9763 }, { "start": 24869.06, "end": 24870.73, "probability": 0.9371 }, { "start": 24872.16, "end": 24875.66, "probability": 0.9915 }, { "start": 24875.66, "end": 24879.32, "probability": 0.9914 }, { "start": 24879.36, "end": 24881.48, "probability": 0.5539 }, { "start": 24881.64, "end": 24884.48, "probability": 0.9522 }, { "start": 24884.98, "end": 24888.92, "probability": 0.9591 }, { "start": 24889.34, "end": 24892.32, "probability": 0.9843 }, { "start": 24894.34, "end": 24897.4, "probability": 0.8835 }, { "start": 24897.4, "end": 24901.7, "probability": 0.9652 }, { "start": 24902.06, "end": 24905.12, "probability": 0.9956 }, { "start": 24905.26, "end": 24906.08, "probability": 0.8401 }, { "start": 24906.2, "end": 24909.24, "probability": 0.8158 }, { "start": 24910.04, "end": 24911.94, "probability": 0.8656 }, { "start": 24912.12, "end": 24916.92, "probability": 0.9644 }, { "start": 24917.0, "end": 24920.96, "probability": 0.9902 }, { "start": 24921.85, "end": 24923.2, "probability": 0.0349 }, { "start": 24923.62, "end": 24924.34, "probability": 0.595 }, { "start": 24927.56, "end": 24930.24, "probability": 0.2927 }, { "start": 24930.66, "end": 24933.62, "probability": 0.9637 }, { "start": 24934.48, "end": 24940.0, "probability": 0.8094 }, { "start": 24940.18, "end": 24943.56, "probability": 0.904 }, { "start": 24945.56, "end": 24948.33, "probability": 0.5716 }, { "start": 24949.78, "end": 24950.26, "probability": 0.4233 }, { "start": 24950.32, "end": 24952.9, "probability": 0.7577 }, { "start": 24952.94, "end": 24957.68, "probability": 0.9948 }, { "start": 24957.88, "end": 24960.06, "probability": 0.9514 }, { "start": 24961.06, "end": 24964.26, "probability": 0.45 }, { "start": 24965.64, "end": 24972.8, "probability": 0.8514 }, { "start": 24972.88, "end": 24974.82, "probability": 0.7599 }, { "start": 24976.86, "end": 24981.28, "probability": 0.9448 }, { "start": 24981.6, "end": 24985.0, "probability": 0.7383 }, { "start": 24985.08, "end": 24987.88, "probability": 0.654 }, { "start": 24987.96, "end": 24990.32, "probability": 0.8508 }, { "start": 24991.28, "end": 24993.68, "probability": 0.6592 }, { "start": 24993.86, "end": 24994.72, "probability": 0.9163 }, { "start": 24994.92, "end": 24996.54, "probability": 0.9785 }, { "start": 24997.52, "end": 25000.56, "probability": 0.8908 }, { "start": 25000.76, "end": 25002.46, "probability": 0.9915 }, { "start": 25005.38, "end": 25007.72, "probability": 0.879 }, { "start": 25008.0, "end": 25010.64, "probability": 0.923 }, { "start": 25011.6, "end": 25013.88, "probability": 0.9927 }, { "start": 25014.2, "end": 25018.64, "probability": 0.9328 }, { "start": 25019.1, "end": 25022.4, "probability": 0.9958 }, { "start": 25022.4, "end": 25027.8, "probability": 0.8222 }, { "start": 25028.72, "end": 25029.78, "probability": 0.8422 }, { "start": 25029.98, "end": 25038.5, "probability": 0.9278 }, { "start": 25038.64, "end": 25040.16, "probability": 0.7972 }, { "start": 25040.84, "end": 25041.48, "probability": 0.6122 }, { "start": 25041.6, "end": 25043.12, "probability": 0.9498 }, { "start": 25043.26, "end": 25044.78, "probability": 0.9603 }, { "start": 25045.94, "end": 25050.64, "probability": 0.9648 }, { "start": 25050.72, "end": 25051.6, "probability": 0.681 }, { "start": 25051.64, "end": 25058.54, "probability": 0.793 }, { "start": 25058.74, "end": 25059.96, "probability": 0.9995 }, { "start": 25060.84, "end": 25066.74, "probability": 0.9957 }, { "start": 25066.78, "end": 25069.82, "probability": 0.9683 }, { "start": 25069.88, "end": 25072.62, "probability": 0.9807 }, { "start": 25073.1, "end": 25075.0, "probability": 0.9904 }, { "start": 25075.58, "end": 25076.64, "probability": 0.9452 }, { "start": 25079.58, "end": 25080.3, "probability": 0.5394 }, { "start": 25081.34, "end": 25086.56, "probability": 0.9491 }, { "start": 25086.72, "end": 25088.22, "probability": 0.7799 }, { "start": 25089.08, "end": 25089.96, "probability": 0.4803 }, { "start": 25090.02, "end": 25090.72, "probability": 0.6997 }, { "start": 25091.5, "end": 25093.42, "probability": 0.828 }, { "start": 25095.8, "end": 25098.1, "probability": 0.1498 }, { "start": 25113.24, "end": 25114.86, "probability": 0.7127 }, { "start": 25116.12, "end": 25120.48, "probability": 0.7869 }, { "start": 25120.48, "end": 25122.92, "probability": 0.8467 }, { "start": 25124.28, "end": 25129.42, "probability": 0.4328 }, { "start": 25130.1, "end": 25134.5, "probability": 0.9366 }, { "start": 25135.4, "end": 25136.67, "probability": 0.7026 }, { "start": 25137.42, "end": 25140.04, "probability": 0.3181 }, { "start": 25142.48, "end": 25143.78, "probability": 0.6077 }, { "start": 25144.3, "end": 25145.28, "probability": 0.6683 }, { "start": 25146.84, "end": 25149.8, "probability": 0.9832 }, { "start": 25149.8, "end": 25152.48, "probability": 0.986 }, { "start": 25154.98, "end": 25161.58, "probability": 0.9064 }, { "start": 25162.96, "end": 25168.24, "probability": 0.8736 }, { "start": 25168.84, "end": 25174.3, "probability": 0.9912 }, { "start": 25175.3, "end": 25177.54, "probability": 0.8953 }, { "start": 25178.32, "end": 25181.74, "probability": 0.9893 }, { "start": 25182.78, "end": 25185.92, "probability": 0.9338 }, { "start": 25187.34, "end": 25191.4, "probability": 0.8396 }, { "start": 25192.66, "end": 25193.96, "probability": 0.5367 }, { "start": 25194.8, "end": 25196.98, "probability": 0.998 }, { "start": 25198.74, "end": 25204.6, "probability": 0.9449 }, { "start": 25204.98, "end": 25209.4, "probability": 0.6986 }, { "start": 25209.4, "end": 25214.0, "probability": 0.7888 }, { "start": 25214.6, "end": 25216.86, "probability": 0.6999 }, { "start": 25217.52, "end": 25219.64, "probability": 0.8733 }, { "start": 25220.16, "end": 25222.7, "probability": 0.8157 }, { "start": 25223.36, "end": 25228.78, "probability": 0.9673 }, { "start": 25229.42, "end": 25232.92, "probability": 0.8568 }, { "start": 25233.96, "end": 25236.84, "probability": 0.8932 }, { "start": 25237.7, "end": 25241.68, "probability": 0.973 }, { "start": 25241.68, "end": 25245.86, "probability": 0.9944 }, { "start": 25246.76, "end": 25247.58, "probability": 0.6066 }, { "start": 25248.28, "end": 25251.82, "probability": 0.582 }, { "start": 25252.34, "end": 25253.98, "probability": 0.524 }, { "start": 25254.48, "end": 25255.88, "probability": 0.7506 }, { "start": 25256.5, "end": 25258.16, "probability": 0.979 }, { "start": 25258.8, "end": 25261.55, "probability": 0.9734 }, { "start": 25263.8, "end": 25265.16, "probability": 0.6821 }, { "start": 25266.52, "end": 25270.52, "probability": 0.9766 }, { "start": 25271.04, "end": 25277.32, "probability": 0.9758 }, { "start": 25277.32, "end": 25281.98, "probability": 0.9902 }, { "start": 25282.38, "end": 25287.7, "probability": 0.9953 }, { "start": 25288.34, "end": 25289.24, "probability": 0.9766 }, { "start": 25290.28, "end": 25294.08, "probability": 0.9951 }, { "start": 25294.66, "end": 25300.36, "probability": 0.6873 }, { "start": 25300.92, "end": 25302.92, "probability": 0.9622 }, { "start": 25304.34, "end": 25304.96, "probability": 0.6415 }, { "start": 25305.28, "end": 25306.82, "probability": 0.7566 }, { "start": 25308.12, "end": 25310.58, "probability": 0.6101 }, { "start": 25311.22, "end": 25313.5, "probability": 0.7957 }, { "start": 25316.0, "end": 25318.08, "probability": 0.5068 }, { "start": 25318.26, "end": 25319.54, "probability": 0.631 }, { "start": 25321.98, "end": 25323.46, "probability": 0.4993 }, { "start": 25324.62, "end": 25325.16, "probability": 0.1505 }, { "start": 25325.76, "end": 25326.46, "probability": 0.1418 }, { "start": 25327.08, "end": 25329.72, "probability": 0.8688 }, { "start": 25330.14, "end": 25332.36, "probability": 0.3146 }, { "start": 25332.36, "end": 25335.02, "probability": 0.3648 }, { "start": 25335.22, "end": 25337.6, "probability": 0.4013 }, { "start": 25338.16, "end": 25340.42, "probability": 0.5292 }, { "start": 25340.82, "end": 25344.26, "probability": 0.5874 }, { "start": 25345.22, "end": 25347.88, "probability": 0.3423 }, { "start": 25348.56, "end": 25352.06, "probability": 0.4136 }, { "start": 25352.06, "end": 25354.42, "probability": 0.5935 }, { "start": 25354.7, "end": 25356.66, "probability": 0.6825 }, { "start": 25357.54, "end": 25364.9, "probability": 0.9897 }, { "start": 25366.06, "end": 25366.96, "probability": 0.5477 }, { "start": 25368.9, "end": 25373.2, "probability": 0.7398 }, { "start": 25374.14, "end": 25374.8, "probability": 0.4422 }, { "start": 25375.92, "end": 25377.2, "probability": 0.4927 }, { "start": 25378.12, "end": 25379.38, "probability": 0.8628 }, { "start": 25380.78, "end": 25382.5, "probability": 0.7254 }, { "start": 25383.1, "end": 25384.28, "probability": 0.5658 }, { "start": 25385.46, "end": 25386.9, "probability": 0.8088 }, { "start": 25387.8, "end": 25388.6, "probability": 0.8882 }, { "start": 25388.64, "end": 25389.3, "probability": 0.9879 }, { "start": 25389.8, "end": 25390.54, "probability": 0.772 }, { "start": 25390.68, "end": 25391.54, "probability": 0.9969 }, { "start": 25391.8, "end": 25392.44, "probability": 0.907 }, { "start": 25392.44, "end": 25392.98, "probability": 0.9709 }, { "start": 25393.8, "end": 25396.18, "probability": 0.9761 }, { "start": 25396.86, "end": 25397.96, "probability": 0.5011 }, { "start": 25398.06, "end": 25400.36, "probability": 0.7819 }, { "start": 25401.02, "end": 25405.52, "probability": 0.9683 }, { "start": 25405.52, "end": 25418.12, "probability": 0.9883 }, { "start": 25419.48, "end": 25422.32, "probability": 0.8179 }, { "start": 25423.18, "end": 25430.28, "probability": 0.9964 }, { "start": 25431.04, "end": 25435.38, "probability": 0.9671 }, { "start": 25436.26, "end": 25441.66, "probability": 0.9202 }, { "start": 25441.66, "end": 25449.0, "probability": 0.9233 }, { "start": 25450.04, "end": 25455.14, "probability": 0.9829 }, { "start": 25456.1, "end": 25457.12, "probability": 0.8569 }, { "start": 25457.18, "end": 25461.8, "probability": 0.9277 }, { "start": 25462.02, "end": 25465.52, "probability": 0.9913 }, { "start": 25466.2, "end": 25468.82, "probability": 0.988 }, { "start": 25468.9, "end": 25469.04, "probability": 0.0859 }, { "start": 25469.14, "end": 25471.22, "probability": 0.8613 }, { "start": 25471.3, "end": 25471.86, "probability": 0.7241 }, { "start": 25472.44, "end": 25472.8, "probability": 0.5639 }, { "start": 25472.8, "end": 25476.08, "probability": 0.6272 }, { "start": 25476.18, "end": 25477.26, "probability": 0.9595 }, { "start": 25477.78, "end": 25478.18, "probability": 0.7045 }, { "start": 25478.4, "end": 25478.52, "probability": 0.472 }, { "start": 25478.6, "end": 25482.0, "probability": 0.8111 }, { "start": 25483.12, "end": 25484.12, "probability": 0.8538 }, { "start": 25484.66, "end": 25487.62, "probability": 0.9023 }, { "start": 25488.78, "end": 25490.41, "probability": 0.5808 }, { "start": 25492.02, "end": 25493.3, "probability": 0.9884 }, { "start": 25494.6, "end": 25498.2, "probability": 0.9536 }, { "start": 25499.34, "end": 25502.9, "probability": 0.9106 }, { "start": 25504.0, "end": 25504.76, "probability": 0.7396 }, { "start": 25505.6, "end": 25506.52, "probability": 0.6477 }, { "start": 25507.12, "end": 25508.62, "probability": 0.948 }, { "start": 25510.86, "end": 25512.82, "probability": 0.991 }, { "start": 25513.44, "end": 25517.14, "probability": 0.9816 }, { "start": 25517.3, "end": 25517.86, "probability": 0.8323 }, { "start": 25518.76, "end": 25520.02, "probability": 0.9653 }, { "start": 25521.28, "end": 25524.42, "probability": 0.9646 }, { "start": 25525.1, "end": 25528.46, "probability": 0.9004 }, { "start": 25529.62, "end": 25536.32, "probability": 0.9146 }, { "start": 25536.48, "end": 25537.12, "probability": 0.7797 }, { "start": 25537.88, "end": 25540.7, "probability": 0.9959 }, { "start": 25542.26, "end": 25546.18, "probability": 0.738 }, { "start": 25546.28, "end": 25549.08, "probability": 0.9507 }, { "start": 25550.0, "end": 25556.62, "probability": 0.986 }, { "start": 25557.28, "end": 25563.56, "probability": 0.8034 }, { "start": 25563.9, "end": 25565.76, "probability": 0.9023 }, { "start": 25566.5, "end": 25568.52, "probability": 0.524 }, { "start": 25569.2, "end": 25570.02, "probability": 0.0595 }, { "start": 25570.02, "end": 25572.62, "probability": 0.3928 }, { "start": 25573.18, "end": 25576.02, "probability": 0.461 }, { "start": 25576.02, "end": 25577.92, "probability": 0.0994 }, { "start": 25578.24, "end": 25581.7, "probability": 0.0954 }, { "start": 25581.96, "end": 25583.84, "probability": 0.2246 }, { "start": 25585.08, "end": 25587.56, "probability": 0.7791 }, { "start": 25589.56, "end": 25595.08, "probability": 0.7712 }, { "start": 25595.78, "end": 25596.74, "probability": 0.8217 }, { "start": 25597.62, "end": 25600.56, "probability": 0.8965 }, { "start": 25602.54, "end": 25605.38, "probability": 0.9562 }, { "start": 25606.24, "end": 25607.56, "probability": 0.4826 }, { "start": 25607.64, "end": 25608.2, "probability": 0.7275 }, { "start": 25608.82, "end": 25611.2, "probability": 0.8368 }, { "start": 25612.28, "end": 25615.04, "probability": 0.9315 }, { "start": 25616.0, "end": 25617.81, "probability": 0.8224 }, { "start": 25620.5, "end": 25622.39, "probability": 0.5393 }, { "start": 25622.66, "end": 25625.1, "probability": 0.6064 }, { "start": 25625.28, "end": 25625.35, "probability": 0.5415 }, { "start": 25626.44, "end": 25628.32, "probability": 0.7742 }, { "start": 25628.64, "end": 25633.78, "probability": 0.959 }, { "start": 25634.82, "end": 25635.66, "probability": 0.6133 }, { "start": 25635.74, "end": 25636.46, "probability": 0.7729 }, { "start": 25636.96, "end": 25639.52, "probability": 0.9941 }, { "start": 25639.52, "end": 25642.34, "probability": 0.9596 }, { "start": 25642.44, "end": 25644.12, "probability": 0.8645 }, { "start": 25644.86, "end": 25647.48, "probability": 0.9956 }, { "start": 25647.48, "end": 25649.56, "probability": 0.9859 }, { "start": 25650.2, "end": 25652.48, "probability": 0.9395 }, { "start": 25652.98, "end": 25655.54, "probability": 0.7581 }, { "start": 25656.48, "end": 25658.92, "probability": 0.7407 }, { "start": 25659.92, "end": 25664.48, "probability": 0.7161 }, { "start": 25665.26, "end": 25672.1, "probability": 0.9796 }, { "start": 25672.1, "end": 25677.79, "probability": 0.9883 }, { "start": 25678.36, "end": 25679.92, "probability": 0.9766 }, { "start": 25680.98, "end": 25684.34, "probability": 0.9856 }, { "start": 25684.34, "end": 25687.92, "probability": 0.9875 }, { "start": 25689.58, "end": 25695.92, "probability": 0.9717 }, { "start": 25695.92, "end": 25701.18, "probability": 0.9979 }, { "start": 25701.94, "end": 25704.96, "probability": 0.9844 }, { "start": 25706.2, "end": 25707.34, "probability": 0.8134 }, { "start": 25708.18, "end": 25711.88, "probability": 0.9326 }, { "start": 25712.6, "end": 25718.52, "probability": 0.9508 }, { "start": 25719.12, "end": 25722.68, "probability": 0.9738 }, { "start": 25724.29, "end": 25727.44, "probability": 0.7864 }, { "start": 25728.46, "end": 25729.6, "probability": 0.9621 }, { "start": 25730.12, "end": 25732.18, "probability": 0.7042 }, { "start": 25733.62, "end": 25734.96, "probability": 0.9014 }, { "start": 25735.74, "end": 25742.12, "probability": 0.994 }, { "start": 25742.12, "end": 25747.06, "probability": 0.9607 }, { "start": 25747.74, "end": 25750.7, "probability": 0.8983 }, { "start": 25750.7, "end": 25754.62, "probability": 0.9953 }, { "start": 25755.36, "end": 25759.26, "probability": 0.9644 }, { "start": 25759.9, "end": 25764.5, "probability": 0.8327 }, { "start": 25766.82, "end": 25767.86, "probability": 0.7356 }, { "start": 25768.52, "end": 25772.2, "probability": 0.9916 }, { "start": 25772.2, "end": 25777.78, "probability": 0.9913 }, { "start": 25778.42, "end": 25779.18, "probability": 0.6068 }, { "start": 25779.9, "end": 25784.2, "probability": 0.9907 }, { "start": 25784.74, "end": 25786.86, "probability": 0.9277 }, { "start": 25799.12, "end": 25802.72, "probability": 0.9617 }, { "start": 25802.72, "end": 25807.78, "probability": 0.9803 }, { "start": 25808.36, "end": 25808.72, "probability": 0.3951 }, { "start": 25809.14, "end": 25814.64, "probability": 0.8947 }, { "start": 25815.06, "end": 25816.69, "probability": 0.9698 }, { "start": 25817.42, "end": 25818.12, "probability": 0.8262 }, { "start": 25819.16, "end": 25821.22, "probability": 0.9531 }, { "start": 25821.98, "end": 25824.98, "probability": 0.9629 }, { "start": 25824.98, "end": 25828.68, "probability": 0.9214 }, { "start": 25829.32, "end": 25834.94, "probability": 0.9915 }, { "start": 25835.6, "end": 25836.34, "probability": 0.8051 }, { "start": 25837.18, "end": 25843.12, "probability": 0.9506 }, { "start": 25843.12, "end": 25848.26, "probability": 0.9401 }, { "start": 25849.16, "end": 25850.36, "probability": 0.9948 }, { "start": 25850.92, "end": 25854.66, "probability": 0.7786 }, { "start": 25854.66, "end": 25859.56, "probability": 0.9312 }, { "start": 25862.02, "end": 25862.72, "probability": 0.406 }, { "start": 25863.0, "end": 25869.0, "probability": 0.9798 }, { "start": 25870.22, "end": 25871.02, "probability": 0.5847 }, { "start": 25871.96, "end": 25872.34, "probability": 0.1614 }, { "start": 25872.96, "end": 25873.62, "probability": 0.803 }, { "start": 25874.44, "end": 25879.74, "probability": 0.6076 }, { "start": 25879.96, "end": 25882.7, "probability": 0.2663 }, { "start": 25883.2, "end": 25887.72, "probability": 0.9561 }, { "start": 25888.2, "end": 25890.78, "probability": 0.993 }, { "start": 25891.34, "end": 25898.08, "probability": 0.9613 }, { "start": 25898.08, "end": 25903.42, "probability": 0.974 }, { "start": 25904.22, "end": 25908.36, "probability": 0.8804 }, { "start": 25908.36, "end": 25912.38, "probability": 0.9989 }, { "start": 25912.8, "end": 25916.68, "probability": 0.9863 }, { "start": 25918.38, "end": 25918.98, "probability": 0.5639 }, { "start": 25919.54, "end": 25920.3, "probability": 0.4905 }, { "start": 25921.0, "end": 25922.42, "probability": 0.4895 }, { "start": 25923.04, "end": 25923.54, "probability": 0.131 }, { "start": 25923.94, "end": 25926.2, "probability": 0.1132 }, { "start": 25926.2, "end": 25926.96, "probability": 0.372 }, { "start": 25927.1, "end": 25928.28, "probability": 0.308 }, { "start": 25928.86, "end": 25930.19, "probability": 0.6456 }, { "start": 25931.28, "end": 25935.52, "probability": 0.5711 }, { "start": 25936.24, "end": 25938.48, "probability": 0.9132 }, { "start": 25941.38, "end": 25942.96, "probability": 0.5293 }, { "start": 25944.46, "end": 25945.72, "probability": 0.4733 }, { "start": 25947.48, "end": 25950.76, "probability": 0.968 }, { "start": 25952.26, "end": 25958.32, "probability": 0.8129 }, { "start": 25959.0, "end": 25962.28, "probability": 0.9433 }, { "start": 25963.28, "end": 25963.92, "probability": 0.6236 }, { "start": 25963.98, "end": 25966.06, "probability": 0.7004 }, { "start": 25966.7, "end": 25967.64, "probability": 0.6289 }, { "start": 25970.46, "end": 25972.58, "probability": 0.7031 }, { "start": 25974.72, "end": 25977.44, "probability": 0.5361 }, { "start": 25978.24, "end": 25980.48, "probability": 0.8939 }, { "start": 25980.64, "end": 25982.62, "probability": 0.8628 }, { "start": 25983.22, "end": 25986.14, "probability": 0.9782 }, { "start": 25987.18, "end": 25991.78, "probability": 0.9871 }, { "start": 25992.7, "end": 25995.4, "probability": 0.8053 }, { "start": 25996.12, "end": 25998.1, "probability": 0.9069 }, { "start": 25998.5, "end": 26000.92, "probability": 0.9115 }, { "start": 26002.34, "end": 26003.28, "probability": 0.9602 }, { "start": 26004.08, "end": 26007.08, "probability": 0.9876 }, { "start": 26007.8, "end": 26008.72, "probability": 0.6832 }, { "start": 26009.28, "end": 26010.52, "probability": 0.899 }, { "start": 26010.7, "end": 26011.9, "probability": 0.8247 }, { "start": 26012.22, "end": 26015.28, "probability": 0.8447 }, { "start": 26016.92, "end": 26022.84, "probability": 0.7216 }, { "start": 26022.84, "end": 26025.92, "probability": 0.965 }, { "start": 26026.46, "end": 26032.14, "probability": 0.9885 }, { "start": 26033.0, "end": 26035.12, "probability": 0.9018 }, { "start": 26036.42, "end": 26042.32, "probability": 0.9908 }, { "start": 26043.78, "end": 26049.32, "probability": 0.9156 }, { "start": 26050.14, "end": 26052.82, "probability": 0.9228 }, { "start": 26053.98, "end": 26056.52, "probability": 0.9944 }, { "start": 26057.14, "end": 26059.38, "probability": 0.981 }, { "start": 26060.14, "end": 26064.54, "probability": 0.7799 }, { "start": 26064.68, "end": 26066.62, "probability": 0.7352 }, { "start": 26067.2, "end": 26072.06, "probability": 0.845 }, { "start": 26072.7, "end": 26074.76, "probability": 0.9862 }, { "start": 26075.72, "end": 26079.92, "probability": 0.5101 }, { "start": 26080.44, "end": 26082.84, "probability": 0.9663 }, { "start": 26083.4, "end": 26085.02, "probability": 0.9099 }, { "start": 26085.66, "end": 26089.36, "probability": 0.931 }, { "start": 26091.32, "end": 26092.7, "probability": 0.6436 }, { "start": 26093.78, "end": 26096.58, "probability": 0.8843 }, { "start": 26097.12, "end": 26098.32, "probability": 0.5791 }, { "start": 26099.82, "end": 26099.82, "probability": 0.0716 }, { "start": 26099.82, "end": 26100.04, "probability": 0.4938 }, { "start": 26100.18, "end": 26102.28, "probability": 0.0863 }, { "start": 26110.98, "end": 26111.3, "probability": 0.2586 }, { "start": 26111.5, "end": 26112.86, "probability": 0.6109 }, { "start": 26114.34, "end": 26118.84, "probability": 0.9598 }, { "start": 26119.1, "end": 26120.07, "probability": 0.9054 }, { "start": 26120.68, "end": 26123.7, "probability": 0.9492 }, { "start": 26124.28, "end": 26127.24, "probability": 0.8774 }, { "start": 26127.24, "end": 26130.26, "probability": 0.9587 }, { "start": 26131.0, "end": 26131.7, "probability": 0.6637 }, { "start": 26132.46, "end": 26137.16, "probability": 0.9406 }, { "start": 26138.29, "end": 26139.96, "probability": 0.0202 }, { "start": 26139.96, "end": 26140.92, "probability": 0.535 }, { "start": 26141.9, "end": 26146.94, "probability": 0.978 }, { "start": 26147.62, "end": 26147.84, "probability": 0.8038 }, { "start": 26148.68, "end": 26150.86, "probability": 0.7335 }, { "start": 26152.2, "end": 26153.94, "probability": 0.9243 }, { "start": 26155.02, "end": 26158.04, "probability": 0.935 }, { "start": 26158.82, "end": 26164.88, "probability": 0.939 }, { "start": 26164.96, "end": 26167.86, "probability": 0.9985 }, { "start": 26167.86, "end": 26172.5, "probability": 0.9967 }, { "start": 26173.7, "end": 26175.4, "probability": 0.8194 }, { "start": 26176.12, "end": 26179.78, "probability": 0.829 }, { "start": 26180.5, "end": 26181.06, "probability": 0.7117 }, { "start": 26181.14, "end": 26183.3, "probability": 0.8368 }, { "start": 26183.74, "end": 26187.7, "probability": 0.995 }, { "start": 26188.04, "end": 26191.56, "probability": 0.967 }, { "start": 26192.64, "end": 26197.82, "probability": 0.5028 }, { "start": 26198.78, "end": 26204.02, "probability": 0.971 }, { "start": 26205.34, "end": 26208.48, "probability": 0.9402 }, { "start": 26209.58, "end": 26214.14, "probability": 0.8339 }, { "start": 26214.8, "end": 26219.39, "probability": 0.8728 }, { "start": 26220.1, "end": 26226.94, "probability": 0.9237 }, { "start": 26228.0, "end": 26232.44, "probability": 0.9519 }, { "start": 26233.5, "end": 26235.42, "probability": 0.8735 }, { "start": 26236.04, "end": 26239.2, "probability": 0.9944 }, { "start": 26240.6, "end": 26241.56, "probability": 0.7875 }, { "start": 26242.1, "end": 26244.32, "probability": 0.8826 }, { "start": 26246.88, "end": 26248.14, "probability": 0.5376 }, { "start": 26248.86, "end": 26251.8, "probability": 0.8191 }, { "start": 26254.06, "end": 26257.08, "probability": 0.9252 }, { "start": 26258.16, "end": 26263.48, "probability": 0.9819 }, { "start": 26263.48, "end": 26267.26, "probability": 0.9751 }, { "start": 26268.54, "end": 26275.56, "probability": 0.918 }, { "start": 26275.82, "end": 26278.58, "probability": 0.8159 }, { "start": 26279.56, "end": 26282.82, "probability": 0.9761 }, { "start": 26282.82, "end": 26286.18, "probability": 0.9979 }, { "start": 26287.68, "end": 26292.08, "probability": 0.9749 }, { "start": 26292.5, "end": 26297.84, "probability": 0.7864 }, { "start": 26299.1, "end": 26305.46, "probability": 0.7876 }, { "start": 26307.4, "end": 26310.66, "probability": 0.8727 }, { "start": 26311.74, "end": 26314.1, "probability": 0.989 }, { "start": 26314.78, "end": 26321.2, "probability": 0.726 }, { "start": 26322.34, "end": 26323.62, "probability": 0.7405 }, { "start": 26324.42, "end": 26329.66, "probability": 0.9753 }, { "start": 26330.58, "end": 26333.46, "probability": 0.9869 }, { "start": 26334.06, "end": 26334.88, "probability": 0.9607 }, { "start": 26336.0, "end": 26338.56, "probability": 0.9851 }, { "start": 26339.08, "end": 26339.68, "probability": 0.3235 }, { "start": 26339.8, "end": 26343.7, "probability": 0.9708 }, { "start": 26344.66, "end": 26345.14, "probability": 0.6369 }, { "start": 26345.86, "end": 26349.9, "probability": 0.9873 }, { "start": 26349.9, "end": 26354.1, "probability": 0.9941 }, { "start": 26354.2, "end": 26355.04, "probability": 0.8325 }, { "start": 26355.18, "end": 26355.62, "probability": 0.8577 }, { "start": 26356.32, "end": 26360.14, "probability": 0.9464 }, { "start": 26360.14, "end": 26366.12, "probability": 0.9931 }, { "start": 26371.84, "end": 26372.4, "probability": 0.7498 }, { "start": 26372.72, "end": 26373.06, "probability": 0.5516 }, { "start": 26373.1, "end": 26374.0, "probability": 0.6278 }, { "start": 26374.58, "end": 26377.42, "probability": 0.9616 }, { "start": 26378.2, "end": 26381.54, "probability": 0.929 }, { "start": 26382.16, "end": 26384.92, "probability": 0.9921 }, { "start": 26385.36, "end": 26390.66, "probability": 0.9672 }, { "start": 26391.64, "end": 26396.04, "probability": 0.99 }, { "start": 26396.76, "end": 26399.73, "probability": 0.8403 }, { "start": 26400.6, "end": 26403.66, "probability": 0.9821 }, { "start": 26404.1, "end": 26406.88, "probability": 0.9865 }, { "start": 26407.9, "end": 26408.56, "probability": 0.74 }, { "start": 26409.12, "end": 26413.24, "probability": 0.9844 }, { "start": 26413.92, "end": 26418.12, "probability": 0.9573 }, { "start": 26418.96, "end": 26422.58, "probability": 0.8953 }, { "start": 26423.38, "end": 26423.92, "probability": 0.6667 }, { "start": 26424.08, "end": 26427.46, "probability": 0.9891 }, { "start": 26427.46, "end": 26430.84, "probability": 0.9975 }, { "start": 26431.48, "end": 26433.82, "probability": 0.9788 }, { "start": 26434.54, "end": 26435.44, "probability": 0.6643 }, { "start": 26435.56, "end": 26440.2, "probability": 0.9538 }, { "start": 26441.0, "end": 26442.78, "probability": 0.9526 }, { "start": 26443.58, "end": 26446.64, "probability": 0.8178 }, { "start": 26447.24, "end": 26449.82, "probability": 0.6754 }, { "start": 26449.82, "end": 26452.9, "probability": 0.8513 }, { "start": 26454.22, "end": 26454.84, "probability": 0.9939 }, { "start": 26455.46, "end": 26455.56, "probability": 0.2133 }, { "start": 26455.58, "end": 26456.42, "probability": 0.6716 }, { "start": 26457.07, "end": 26458.56, "probability": 0.7965 }, { "start": 26458.62, "end": 26459.3, "probability": 0.6059 }, { "start": 26459.3, "end": 26459.58, "probability": 0.9006 }, { "start": 26459.9, "end": 26464.14, "probability": 0.9766 }, { "start": 26464.56, "end": 26465.82, "probability": 0.7478 }, { "start": 26466.84, "end": 26468.94, "probability": 0.8751 }, { "start": 26469.64, "end": 26472.48, "probability": 0.6777 }, { "start": 26473.0, "end": 26479.3, "probability": 0.9725 }, { "start": 26479.82, "end": 26481.84, "probability": 0.9856 }, { "start": 26481.84, "end": 26483.88, "probability": 0.9388 }, { "start": 26484.04, "end": 26484.54, "probability": 0.9535 }, { "start": 26484.76, "end": 26486.42, "probability": 0.8811 }, { "start": 26487.38, "end": 26490.3, "probability": 0.9907 }, { "start": 26491.52, "end": 26492.4, "probability": 0.7869 }, { "start": 26492.58, "end": 26496.24, "probability": 0.9827 }, { "start": 26497.04, "end": 26502.0, "probability": 0.9768 }, { "start": 26502.64, "end": 26504.44, "probability": 0.9688 }, { "start": 26504.56, "end": 26505.56, "probability": 0.6664 }, { "start": 26505.88, "end": 26506.86, "probability": 0.7661 }, { "start": 26507.16, "end": 26511.34, "probability": 0.9902 }, { "start": 26511.6, "end": 26512.76, "probability": 0.8481 }, { "start": 26513.56, "end": 26519.88, "probability": 0.9414 }, { "start": 26520.12, "end": 26524.48, "probability": 0.9813 }, { "start": 26525.12, "end": 26526.1, "probability": 0.8083 }, { "start": 26526.38, "end": 26532.42, "probability": 0.9544 }, { "start": 26532.56, "end": 26534.97, "probability": 0.9897 }, { "start": 26535.42, "end": 26539.48, "probability": 0.9863 }, { "start": 26539.48, "end": 26543.26, "probability": 0.998 }, { "start": 26543.46, "end": 26544.2, "probability": 0.7943 }, { "start": 26544.84, "end": 26545.1, "probability": 0.2596 }, { "start": 26545.16, "end": 26549.84, "probability": 0.9846 }, { "start": 26550.36, "end": 26554.48, "probability": 0.9036 }, { "start": 26554.8, "end": 26558.92, "probability": 0.9827 }, { "start": 26561.44, "end": 26563.42, "probability": 0.7224 }, { "start": 26564.32, "end": 26565.54, "probability": 0.781 }, { "start": 26565.82, "end": 26568.16, "probability": 0.8701 }, { "start": 26568.64, "end": 26569.58, "probability": 0.506 }, { "start": 26570.64, "end": 26575.88, "probability": 0.9683 }, { "start": 26576.36, "end": 26579.36, "probability": 0.9805 }, { "start": 26579.48, "end": 26581.25, "probability": 0.6528 }, { "start": 26582.48, "end": 26584.34, "probability": 0.4533 }, { "start": 26584.44, "end": 26589.4, "probability": 0.7153 }, { "start": 26589.48, "end": 26590.56, "probability": 0.8831 }, { "start": 26590.74, "end": 26591.82, "probability": 0.7157 }, { "start": 26592.14, "end": 26593.58, "probability": 0.6861 }, { "start": 26593.72, "end": 26595.96, "probability": 0.5038 }, { "start": 26596.12, "end": 26597.99, "probability": 0.7712 }, { "start": 26599.9, "end": 26602.52, "probability": 0.4031 }, { "start": 26604.14, "end": 26607.06, "probability": 0.4573 }, { "start": 26608.75, "end": 26611.02, "probability": 0.7749 }, { "start": 26611.1, "end": 26611.64, "probability": 0.5364 }, { "start": 26612.18, "end": 26612.78, "probability": 0.6236 }, { "start": 26613.44, "end": 26616.18, "probability": 0.9494 }, { "start": 26617.78, "end": 26619.04, "probability": 0.3849 }, { "start": 26620.22, "end": 26622.64, "probability": 0.6509 }, { "start": 26623.0, "end": 26626.6, "probability": 0.9491 }, { "start": 26626.6, "end": 26630.76, "probability": 0.9904 }, { "start": 26631.4, "end": 26632.8, "probability": 0.8646 }, { "start": 26633.1, "end": 26636.6, "probability": 0.9878 }, { "start": 26636.6, "end": 26639.4, "probability": 0.9972 }, { "start": 26640.0, "end": 26640.96, "probability": 0.7114 }, { "start": 26641.52, "end": 26644.24, "probability": 0.991 }, { "start": 26644.24, "end": 26648.26, "probability": 0.9697 }, { "start": 26649.42, "end": 26652.4, "probability": 0.9969 }, { "start": 26652.4, "end": 26656.3, "probability": 0.9871 }, { "start": 26657.08, "end": 26658.56, "probability": 0.6433 }, { "start": 26658.98, "end": 26661.58, "probability": 0.6673 }, { "start": 26663.32, "end": 26667.6, "probability": 0.9637 }, { "start": 26668.54, "end": 26673.66, "probability": 0.9926 }, { "start": 26674.18, "end": 26677.14, "probability": 0.5293 }, { "start": 26677.14, "end": 26679.46, "probability": 0.9963 }, { "start": 26680.02, "end": 26681.66, "probability": 0.9897 }, { "start": 26682.28, "end": 26685.8, "probability": 0.8188 }, { "start": 26687.88, "end": 26695.56, "probability": 0.8952 }, { "start": 26696.74, "end": 26698.92, "probability": 0.6491 }, { "start": 26701.14, "end": 26704.12, "probability": 0.4776 }, { "start": 26704.74, "end": 26706.78, "probability": 0.5776 }, { "start": 26707.62, "end": 26710.14, "probability": 0.8034 }, { "start": 26710.2, "end": 26710.56, "probability": 0.4462 }, { "start": 26710.64, "end": 26713.64, "probability": 0.7618 }, { "start": 26713.64, "end": 26716.2, "probability": 0.7668 }, { "start": 26716.74, "end": 26717.12, "probability": 0.6481 }, { "start": 26717.18, "end": 26722.62, "probability": 0.976 }, { "start": 26724.56, "end": 26725.28, "probability": 0.797 }, { "start": 26726.14, "end": 26726.58, "probability": 0.2571 }, { "start": 26726.58, "end": 26727.96, "probability": 0.9518 }, { "start": 26728.28, "end": 26731.36, "probability": 0.7628 }, { "start": 26731.48, "end": 26737.78, "probability": 0.2957 }, { "start": 26738.88, "end": 26745.04, "probability": 0.8766 }, { "start": 26746.84, "end": 26747.94, "probability": 0.6208 }, { "start": 26747.96, "end": 26750.62, "probability": 0.9976 }, { "start": 26750.62, "end": 26752.34, "probability": 0.4341 }, { "start": 26753.56, "end": 26757.66, "probability": 0.9893 }, { "start": 26758.2, "end": 26762.8, "probability": 0.8358 }, { "start": 26763.18, "end": 26765.94, "probability": 0.8519 }, { "start": 26765.94, "end": 26768.86, "probability": 0.9917 }, { "start": 26769.36, "end": 26772.9, "probability": 0.4647 }, { "start": 26772.9, "end": 26775.84, "probability": 0.9608 }, { "start": 26777.26, "end": 26777.82, "probability": 0.5247 }, { "start": 26777.82, "end": 26779.73, "probability": 0.854 }, { "start": 26780.34, "end": 26780.97, "probability": 0.3197 }, { "start": 26781.26, "end": 26782.75, "probability": 0.6535 }, { "start": 26783.92, "end": 26787.2, "probability": 0.8926 }, { "start": 26787.2, "end": 26790.74, "probability": 0.694 }, { "start": 26792.26, "end": 26793.44, "probability": 0.9834 }, { "start": 26794.01, "end": 26797.96, "probability": 0.3839 }, { "start": 26798.62, "end": 26801.96, "probability": 0.5357 }, { "start": 26802.36, "end": 26802.5, "probability": 0.0173 }, { "start": 26802.5, "end": 26803.62, "probability": 0.1082 }, { "start": 26803.88, "end": 26805.14, "probability": 0.5677 }, { "start": 26805.7, "end": 26806.74, "probability": 0.4805 }, { "start": 26806.74, "end": 26809.8, "probability": 0.3283 }, { "start": 26810.0, "end": 26811.38, "probability": 0.4678 }, { "start": 26811.9, "end": 26815.98, "probability": 0.2905 }, { "start": 26816.74, "end": 26818.1, "probability": 0.8682 }, { "start": 26819.11, "end": 26824.67, "probability": 0.5887 }, { "start": 26825.5, "end": 26826.88, "probability": 0.3506 }, { "start": 26827.24, "end": 26828.82, "probability": 0.7835 }, { "start": 26829.54, "end": 26832.36, "probability": 0.9829 }, { "start": 26832.82, "end": 26834.35, "probability": 0.8434 }, { "start": 26834.98, "end": 26835.74, "probability": 0.9792 }, { "start": 26835.88, "end": 26837.46, "probability": 0.6655 }, { "start": 26838.2, "end": 26838.94, "probability": 0.7457 }, { "start": 26838.98, "end": 26839.33, "probability": 0.3076 }, { "start": 26839.56, "end": 26841.24, "probability": 0.8428 }, { "start": 26842.0, "end": 26845.78, "probability": 0.8115 }, { "start": 26845.82, "end": 26847.06, "probability": 0.6155 }, { "start": 26847.7, "end": 26848.82, "probability": 0.7587 }, { "start": 26849.98, "end": 26851.84, "probability": 0.9547 }, { "start": 26851.94, "end": 26852.62, "probability": 0.8557 }, { "start": 26852.68, "end": 26853.94, "probability": 0.8474 }, { "start": 26854.14, "end": 26855.4, "probability": 0.8261 }, { "start": 26856.06, "end": 26857.34, "probability": 0.958 }, { "start": 26858.04, "end": 26860.4, "probability": 0.8967 }, { "start": 26861.0, "end": 26861.78, "probability": 0.6675 }, { "start": 26862.66, "end": 26864.3, "probability": 0.8658 }, { "start": 26865.28, "end": 26867.64, "probability": 0.5329 }, { "start": 26868.08, "end": 26868.3, "probability": 0.7551 }, { "start": 26868.42, "end": 26868.94, "probability": 0.7088 }, { "start": 26869.4, "end": 26870.47, "probability": 0.6 }, { "start": 26870.86, "end": 26871.0, "probability": 0.4462 }, { "start": 26871.08, "end": 26871.32, "probability": 0.8901 }, { "start": 26871.4, "end": 26873.64, "probability": 0.8604 }, { "start": 26873.64, "end": 26875.76, "probability": 0.9198 }, { "start": 26876.32, "end": 26876.98, "probability": 0.5944 }, { "start": 26877.62, "end": 26878.86, "probability": 0.8467 }, { "start": 26879.28, "end": 26880.64, "probability": 0.7049 }, { "start": 26880.72, "end": 26881.5, "probability": 0.591 }, { "start": 26881.62, "end": 26882.46, "probability": 0.517 }, { "start": 26882.56, "end": 26883.14, "probability": 0.6907 }, { "start": 26883.98, "end": 26886.42, "probability": 0.8454 }, { "start": 26886.66, "end": 26889.96, "probability": 0.9441 }, { "start": 26890.6, "end": 26891.4, "probability": 0.9836 }, { "start": 26892.02, "end": 26893.42, "probability": 0.9508 }, { "start": 26894.58, "end": 26898.14, "probability": 0.6194 }, { "start": 26899.1, "end": 26905.94, "probability": 0.8783 }, { "start": 26906.7, "end": 26909.3, "probability": 0.5254 }, { "start": 26909.92, "end": 26911.86, "probability": 0.9705 }, { "start": 26911.86, "end": 26913.64, "probability": 0.1124 }, { "start": 26913.96, "end": 26917.86, "probability": 0.9465 }, { "start": 26918.44, "end": 26922.1, "probability": 0.8661 }, { "start": 26922.12, "end": 26922.42, "probability": 0.9667 }, { "start": 26923.3, "end": 26924.56, "probability": 0.8704 }, { "start": 26924.66, "end": 26924.96, "probability": 0.3789 }, { "start": 26925.02, "end": 26926.68, "probability": 0.8241 }, { "start": 26926.96, "end": 26928.12, "probability": 0.7495 }, { "start": 26928.74, "end": 26929.7, "probability": 0.8809 }, { "start": 26930.02, "end": 26932.24, "probability": 0.6826 }, { "start": 26932.46, "end": 26934.58, "probability": 0.6358 }, { "start": 26934.62, "end": 26934.92, "probability": 0.7353 }, { "start": 26935.0, "end": 26935.28, "probability": 0.9473 }, { "start": 26935.38, "end": 26936.28, "probability": 0.7834 }, { "start": 26936.92, "end": 26938.12, "probability": 0.6279 }, { "start": 26938.44, "end": 26940.1, "probability": 0.8528 }, { "start": 26942.96, "end": 26943.18, "probability": 0.7458 }, { "start": 26943.26, "end": 26943.88, "probability": 0.6361 }, { "start": 26944.66, "end": 26946.09, "probability": 0.5966 }, { "start": 26946.66, "end": 26950.26, "probability": 0.8185 }, { "start": 26951.34, "end": 26960.44, "probability": 0.1595 }, { "start": 26961.66, "end": 26965.74, "probability": 0.1043 }, { "start": 26966.1, "end": 26972.78, "probability": 0.8305 }, { "start": 26973.02, "end": 26976.94, "probability": 0.4885 }, { "start": 26977.06, "end": 26978.88, "probability": 0.726 }, { "start": 26978.98, "end": 26979.2, "probability": 0.1993 }, { "start": 26979.26, "end": 26981.33, "probability": 0.9824 }, { "start": 26981.34, "end": 26982.26, "probability": 0.707 }, { "start": 26982.66, "end": 26985.7, "probability": 0.9565 }, { "start": 26985.94, "end": 26987.18, "probability": 0.5083 }, { "start": 26987.5, "end": 26988.64, "probability": 0.959 }, { "start": 26988.98, "end": 26990.18, "probability": 0.7887 }, { "start": 26990.32, "end": 26993.32, "probability": 0.5726 }, { "start": 26993.32, "end": 26993.96, "probability": 0.2486 }, { "start": 26993.96, "end": 26995.48, "probability": 0.1278 }, { "start": 26995.7, "end": 26996.78, "probability": 0.4135 }, { "start": 26997.0, "end": 26998.14, "probability": 0.9762 }, { "start": 26998.44, "end": 26999.28, "probability": 0.9106 }, { "start": 26999.44, "end": 27000.2, "probability": 0.6569 }, { "start": 27000.44, "end": 27001.87, "probability": 0.76 }, { "start": 27002.34, "end": 27004.64, "probability": 0.7641 }, { "start": 27005.3, "end": 27008.0, "probability": 0.6789 }, { "start": 27008.68, "end": 27012.36, "probability": 0.9227 }, { "start": 27013.08, "end": 27014.3, "probability": 0.5468 }, { "start": 27014.72, "end": 27016.58, "probability": 0.7461 }, { "start": 27018.58, "end": 27020.62, "probability": 0.7571 }, { "start": 27021.16, "end": 27023.17, "probability": 0.9128 }, { "start": 27023.44, "end": 27025.46, "probability": 0.7333 }, { "start": 27026.77, "end": 27030.04, "probability": 0.724 }, { "start": 27030.86, "end": 27035.7, "probability": 0.9954 }, { "start": 27036.73, "end": 27038.66, "probability": 0.2678 }, { "start": 27038.66, "end": 27041.56, "probability": 0.9977 }, { "start": 27042.04, "end": 27045.94, "probability": 0.9315 }, { "start": 27047.28, "end": 27049.3, "probability": 0.8828 }, { "start": 27049.3, "end": 27051.78, "probability": 0.8787 }, { "start": 27052.64, "end": 27054.28, "probability": 0.577 }, { "start": 27054.36, "end": 27056.34, "probability": 0.9752 }, { "start": 27056.34, "end": 27059.38, "probability": 0.8387 }, { "start": 27060.1, "end": 27061.38, "probability": 0.9731 }, { "start": 27062.64, "end": 27064.42, "probability": 0.9224 }, { "start": 27064.88, "end": 27066.98, "probability": 0.9524 }, { "start": 27067.54, "end": 27072.04, "probability": 0.7474 }, { "start": 27072.14, "end": 27072.72, "probability": 0.7794 }, { "start": 27072.88, "end": 27074.36, "probability": 0.8234 }, { "start": 27074.4, "end": 27076.42, "probability": 0.9083 }, { "start": 27077.3, "end": 27079.62, "probability": 0.8934 }, { "start": 27079.62, "end": 27081.36, "probability": 0.7313 }, { "start": 27082.06, "end": 27085.34, "probability": 0.8957 }, { "start": 27085.76, "end": 27089.12, "probability": 0.8132 }, { "start": 27089.26, "end": 27096.48, "probability": 0.8053 }, { "start": 27097.46, "end": 27099.64, "probability": 0.5853 }, { "start": 27100.22, "end": 27102.08, "probability": 0.9376 }, { "start": 27103.52, "end": 27103.92, "probability": 0.7962 }, { "start": 27105.16, "end": 27107.88, "probability": 0.4815 }, { "start": 27108.46, "end": 27110.34, "probability": 0.9698 }, { "start": 27113.98, "end": 27114.44, "probability": 0.3722 }, { "start": 27114.48, "end": 27116.64, "probability": 0.6141 }, { "start": 27117.92, "end": 27122.36, "probability": 0.9687 }, { "start": 27123.54, "end": 27129.7, "probability": 0.946 }, { "start": 27130.58, "end": 27135.62, "probability": 0.9798 }, { "start": 27135.86, "end": 27141.56, "probability": 0.9791 }, { "start": 27142.56, "end": 27145.5, "probability": 0.5796 }, { "start": 27146.06, "end": 27148.14, "probability": 0.8916 }, { "start": 27149.36, "end": 27154.72, "probability": 0.8403 }, { "start": 27155.2, "end": 27160.84, "probability": 0.9929 }, { "start": 27161.58, "end": 27161.65, "probability": 0.8633 }, { "start": 27162.88, "end": 27164.28, "probability": 0.9029 }, { "start": 27166.06, "end": 27168.46, "probability": 0.9144 }, { "start": 27168.46, "end": 27172.72, "probability": 0.939 }, { "start": 27173.56, "end": 27174.2, "probability": 0.8107 }, { "start": 27174.98, "end": 27175.7, "probability": 0.7808 }, { "start": 27176.72, "end": 27180.06, "probability": 0.5725 }, { "start": 27180.14, "end": 27181.04, "probability": 0.286 }, { "start": 27181.18, "end": 27181.58, "probability": 0.8182 }, { "start": 27182.4, "end": 27183.24, "probability": 0.6274 }, { "start": 27183.78, "end": 27184.08, "probability": 0.9935 }, { "start": 27186.1, "end": 27191.82, "probability": 0.652 }, { "start": 27193.48, "end": 27197.1, "probability": 0.8666 }, { "start": 27197.96, "end": 27202.44, "probability": 0.977 }, { "start": 27202.44, "end": 27206.14, "probability": 0.4005 }, { "start": 27206.24, "end": 27206.52, "probability": 0.5938 }, { "start": 27207.08, "end": 27208.24, "probability": 0.8279 }, { "start": 27210.54, "end": 27213.12, "probability": 0.7216 }, { "start": 27213.3, "end": 27216.7, "probability": 0.4122 }, { "start": 27218.86, "end": 27222.24, "probability": 0.9907 }, { "start": 27222.36, "end": 27223.64, "probability": 0.9048 }, { "start": 27224.22, "end": 27229.6, "probability": 0.9868 }, { "start": 27229.6, "end": 27232.76, "probability": 0.9976 }, { "start": 27233.58, "end": 27237.2, "probability": 0.9652 }, { "start": 27237.92, "end": 27238.62, "probability": 0.4572 }, { "start": 27238.78, "end": 27242.66, "probability": 0.9764 }, { "start": 27243.18, "end": 27243.9, "probability": 0.9172 }, { "start": 27244.06, "end": 27244.38, "probability": 0.8632 }, { "start": 27244.44, "end": 27247.12, "probability": 0.9958 }, { "start": 27247.46, "end": 27249.38, "probability": 0.9915 }, { "start": 27249.72, "end": 27253.24, "probability": 0.996 }, { "start": 27254.22, "end": 27257.8, "probability": 0.9932 }, { "start": 27257.92, "end": 27261.38, "probability": 0.9868 }, { "start": 27261.54, "end": 27267.04, "probability": 0.9729 }, { "start": 27267.5, "end": 27271.04, "probability": 0.9971 }, { "start": 27271.9, "end": 27274.84, "probability": 0.9773 }, { "start": 27275.74, "end": 27278.06, "probability": 0.7478 }, { "start": 27278.8, "end": 27280.08, "probability": 0.7396 }, { "start": 27280.14, "end": 27282.56, "probability": 0.9951 }, { "start": 27282.56, "end": 27285.48, "probability": 0.9923 }, { "start": 27286.6, "end": 27287.62, "probability": 0.8499 }, { "start": 27288.3, "end": 27289.58, "probability": 0.8035 }, { "start": 27290.26, "end": 27291.58, "probability": 0.6739 }, { "start": 27292.44, "end": 27293.6, "probability": 0.8111 }, { "start": 27293.72, "end": 27294.3, "probability": 0.689 }, { "start": 27294.72, "end": 27296.12, "probability": 0.8984 }, { "start": 27297.02, "end": 27298.86, "probability": 0.8339 }, { "start": 27299.12, "end": 27302.24, "probability": 0.9673 }, { "start": 27302.3, "end": 27303.04, "probability": 0.21 }, { "start": 27303.04, "end": 27304.42, "probability": 0.7507 }, { "start": 27304.62, "end": 27308.52, "probability": 0.9971 }, { "start": 27308.74, "end": 27309.42, "probability": 0.3445 }, { "start": 27309.66, "end": 27311.32, "probability": 0.9303 }, { "start": 27311.48, "end": 27314.66, "probability": 0.9751 }, { "start": 27315.1, "end": 27316.76, "probability": 0.7381 }, { "start": 27318.84, "end": 27321.26, "probability": 0.6889 }, { "start": 27321.3, "end": 27322.0, "probability": 0.4401 }, { "start": 27322.48, "end": 27324.52, "probability": 0.2701 }, { "start": 27324.52, "end": 27325.6, "probability": 0.7349 }, { "start": 27325.88, "end": 27329.4, "probability": 0.9197 }, { "start": 27330.28, "end": 27332.82, "probability": 0.9106 }, { "start": 27333.3, "end": 27335.1, "probability": 0.9301 }, { "start": 27335.38, "end": 27335.74, "probability": 0.78 }, { "start": 27336.0, "end": 27336.78, "probability": 0.9982 }, { "start": 27336.84, "end": 27338.14, "probability": 0.9878 }, { "start": 27338.76, "end": 27341.72, "probability": 0.9394 }, { "start": 27342.28, "end": 27344.4, "probability": 0.9934 }, { "start": 27344.44, "end": 27345.49, "probability": 0.9327 }, { "start": 27346.06, "end": 27346.56, "probability": 0.9218 }, { "start": 27346.72, "end": 27347.42, "probability": 0.9689 }, { "start": 27347.78, "end": 27348.91, "probability": 0.9927 }, { "start": 27349.38, "end": 27351.74, "probability": 0.9855 }, { "start": 27352.8, "end": 27353.76, "probability": 0.8332 }, { "start": 27354.0, "end": 27355.38, "probability": 0.9138 }, { "start": 27355.54, "end": 27357.71, "probability": 0.9951 }, { "start": 27358.26, "end": 27359.46, "probability": 0.9332 }, { "start": 27359.58, "end": 27361.34, "probability": 0.9981 }, { "start": 27361.98, "end": 27362.74, "probability": 0.9756 }, { "start": 27363.02, "end": 27363.46, "probability": 0.6185 }, { "start": 27363.94, "end": 27365.56, "probability": 0.9883 }, { "start": 27366.92, "end": 27368.24, "probability": 0.541 }, { "start": 27368.64, "end": 27374.23, "probability": 0.9128 }, { "start": 27374.38, "end": 27375.24, "probability": 0.9861 }, { "start": 27375.3, "end": 27376.36, "probability": 0.99 }, { "start": 27376.92, "end": 27378.48, "probability": 0.9956 }, { "start": 27379.22, "end": 27380.78, "probability": 0.9746 }, { "start": 27381.34, "end": 27382.46, "probability": 0.9598 }, { "start": 27382.72, "end": 27385.8, "probability": 0.988 }, { "start": 27385.8, "end": 27388.52, "probability": 0.9976 }, { "start": 27388.56, "end": 27392.66, "probability": 0.9955 }, { "start": 27393.06, "end": 27395.58, "probability": 0.723 }, { "start": 27395.58, "end": 27399.56, "probability": 0.9033 }, { "start": 27400.39, "end": 27402.62, "probability": 0.9152 }, { "start": 27402.7, "end": 27403.84, "probability": 0.7129 }, { "start": 27403.92, "end": 27404.89, "probability": 0.7508 }, { "start": 27405.22, "end": 27405.52, "probability": 0.4656 }, { "start": 27405.56, "end": 27406.22, "probability": 0.8776 }, { "start": 27406.28, "end": 27406.96, "probability": 0.6933 }, { "start": 27407.38, "end": 27411.96, "probability": 0.9453 }, { "start": 27412.04, "end": 27412.8, "probability": 0.8502 }, { "start": 27413.22, "end": 27417.94, "probability": 0.8411 }, { "start": 27418.6, "end": 27420.86, "probability": 0.5865 }, { "start": 27421.26, "end": 27421.88, "probability": 0.6049 }, { "start": 27421.98, "end": 27422.72, "probability": 0.2413 }, { "start": 27422.76, "end": 27423.46, "probability": 0.686 }, { "start": 27423.92, "end": 27424.54, "probability": 0.2319 }, { "start": 27424.54, "end": 27425.04, "probability": 0.4371 }, { "start": 27425.12, "end": 27425.84, "probability": 0.1961 }, { "start": 27425.84, "end": 27426.38, "probability": 0.3092 }, { "start": 27426.96, "end": 27429.32, "probability": 0.5511 }, { "start": 27430.44, "end": 27433.18, "probability": 0.931 }, { "start": 27434.72, "end": 27438.04, "probability": 0.4131 }, { "start": 27439.86, "end": 27439.86, "probability": 0.4261 }, { "start": 27439.86, "end": 27439.86, "probability": 0.5451 }, { "start": 27439.86, "end": 27448.82, "probability": 0.7829 }, { "start": 27448.82, "end": 27454.84, "probability": 0.797 }, { "start": 27455.72, "end": 27460.8, "probability": 0.9543 }, { "start": 27461.54, "end": 27462.4, "probability": 0.7499 }, { "start": 27462.52, "end": 27465.98, "probability": 0.6987 }, { "start": 27465.98, "end": 27469.4, "probability": 0.9662 }, { "start": 27470.06, "end": 27471.68, "probability": 0.5036 }, { "start": 27472.36, "end": 27477.4, "probability": 0.9352 }, { "start": 27477.5, "end": 27478.52, "probability": 0.1912 }, { "start": 27479.02, "end": 27482.3, "probability": 0.9062 }, { "start": 27482.64, "end": 27486.9, "probability": 0.7491 }, { "start": 27486.9, "end": 27489.52, "probability": 0.8723 }, { "start": 27491.28, "end": 27492.06, "probability": 0.7098 }, { "start": 27494.76, "end": 27496.34, "probability": 0.4858 }, { "start": 27496.58, "end": 27499.78, "probability": 0.9065 }, { "start": 27499.94, "end": 27504.13, "probability": 0.5044 }, { "start": 27504.34, "end": 27506.81, "probability": 0.834 }, { "start": 27507.34, "end": 27509.18, "probability": 0.7427 }, { "start": 27509.8, "end": 27510.6, "probability": 0.5474 }, { "start": 27510.74, "end": 27511.32, "probability": 0.708 }, { "start": 27511.56, "end": 27514.4, "probability": 0.8719 }, { "start": 27514.5, "end": 27515.07, "probability": 0.5855 }, { "start": 27515.32, "end": 27515.78, "probability": 0.9272 }, { "start": 27516.02, "end": 27516.5, "probability": 0.6353 }, { "start": 27517.54, "end": 27520.32, "probability": 0.031 }, { "start": 27522.02, "end": 27522.34, "probability": 0.6999 }, { "start": 27523.04, "end": 27523.62, "probability": 0.811 }, { "start": 27524.28, "end": 27529.24, "probability": 0.53 }, { "start": 27529.4, "end": 27530.34, "probability": 0.2499 }, { "start": 27530.58, "end": 27533.78, "probability": 0.669 }, { "start": 27533.92, "end": 27538.56, "probability": 0.6735 }, { "start": 27540.36, "end": 27542.62, "probability": 0.6153 }, { "start": 27543.24, "end": 27546.0, "probability": 0.5522 }, { "start": 27546.14, "end": 27547.56, "probability": 0.925 }, { "start": 27547.64, "end": 27548.02, "probability": 0.766 }, { "start": 27548.08, "end": 27549.78, "probability": 0.9015 }, { "start": 27549.88, "end": 27550.0, "probability": 0.5624 }, { "start": 27550.88, "end": 27551.38, "probability": 0.8723 }, { "start": 27551.44, "end": 27553.98, "probability": 0.7038 }, { "start": 27553.98, "end": 27557.4, "probability": 0.8274 }, { "start": 27557.49, "end": 27560.76, "probability": 0.822 }, { "start": 27561.12, "end": 27563.49, "probability": 0.8416 }, { "start": 27564.04, "end": 27567.78, "probability": 0.9811 }, { "start": 27567.78, "end": 27571.86, "probability": 0.9699 }, { "start": 27574.68, "end": 27575.94, "probability": 0.0252 }, { "start": 27575.94, "end": 27575.94, "probability": 0.322 }, { "start": 27575.94, "end": 27576.72, "probability": 0.2267 }, { "start": 27579.64, "end": 27584.38, "probability": 0.7488 }, { "start": 27585.3, "end": 27589.5, "probability": 0.9941 }, { "start": 27590.2, "end": 27591.04, "probability": 0.6267 }, { "start": 27592.16, "end": 27599.58, "probability": 0.9841 }, { "start": 27600.86, "end": 27605.58, "probability": 0.9673 }, { "start": 27608.6, "end": 27608.6, "probability": 0.6631 }, { "start": 27608.6, "end": 27610.88, "probability": 0.9745 }, { "start": 27611.36, "end": 27613.86, "probability": 0.8145 }, { "start": 27615.7, "end": 27615.9, "probability": 0.1075 }, { "start": 27615.96, "end": 27619.58, "probability": 0.7915 }, { "start": 27620.1, "end": 27621.26, "probability": 0.812 }, { "start": 27622.52, "end": 27624.43, "probability": 0.5785 }, { "start": 27625.64, "end": 27626.92, "probability": 0.3027 }, { "start": 27626.96, "end": 27630.36, "probability": 0.8214 }, { "start": 27631.18, "end": 27631.4, "probability": 0.7093 }, { "start": 27632.9, "end": 27635.74, "probability": 0.8788 }, { "start": 27635.74, "end": 27637.86, "probability": 0.8526 }, { "start": 27638.3, "end": 27642.16, "probability": 0.7754 }, { "start": 27643.02, "end": 27645.76, "probability": 0.4861 }, { "start": 27645.86, "end": 27646.78, "probability": 0.8149 }, { "start": 27646.86, "end": 27651.32, "probability": 0.8567 }, { "start": 27652.12, "end": 27654.34, "probability": 0.7928 }, { "start": 27654.62, "end": 27656.58, "probability": 0.7619 }, { "start": 27657.42, "end": 27661.35, "probability": 0.7592 }, { "start": 27661.7, "end": 27664.86, "probability": 0.9958 }, { "start": 27666.22, "end": 27670.67, "probability": 0.9484 }, { "start": 27671.2, "end": 27675.66, "probability": 0.6694 }, { "start": 27675.72, "end": 27676.0, "probability": 0.8254 }, { "start": 27676.06, "end": 27676.64, "probability": 0.7345 }, { "start": 27676.84, "end": 27679.28, "probability": 0.9693 }, { "start": 27679.72, "end": 27682.48, "probability": 0.9818 }, { "start": 27682.58, "end": 27683.54, "probability": 0.7564 }, { "start": 27683.92, "end": 27686.1, "probability": 0.8317 }, { "start": 27686.22, "end": 27687.63, "probability": 0.9692 }, { "start": 27688.26, "end": 27689.42, "probability": 0.6712 }, { "start": 27690.22, "end": 27690.98, "probability": 0.9503 }, { "start": 27691.1, "end": 27691.7, "probability": 0.5356 }, { "start": 27691.86, "end": 27692.79, "probability": 0.8806 }, { "start": 27693.22, "end": 27695.32, "probability": 0.7169 }, { "start": 27695.74, "end": 27696.18, "probability": 0.7358 }, { "start": 27696.26, "end": 27696.98, "probability": 0.48 }, { "start": 27697.08, "end": 27697.98, "probability": 0.5447 }, { "start": 27698.12, "end": 27703.28, "probability": 0.9475 }, { "start": 27703.28, "end": 27706.9, "probability": 0.6235 }, { "start": 27708.56, "end": 27709.12, "probability": 0.7245 }, { "start": 27709.44, "end": 27710.18, "probability": 0.0368 }, { "start": 27710.5, "end": 27711.06, "probability": 0.7248 }, { "start": 27712.66, "end": 27713.46, "probability": 0.3399 }, { "start": 27713.5, "end": 27716.18, "probability": 0.9946 }, { "start": 27716.26, "end": 27721.24, "probability": 0.9251 }, { "start": 27721.24, "end": 27721.56, "probability": 0.3345 }, { "start": 27721.6, "end": 27722.34, "probability": 0.6255 }, { "start": 27722.34, "end": 27723.54, "probability": 0.5926 }, { "start": 27723.64, "end": 27724.02, "probability": 0.4541 }, { "start": 27724.08, "end": 27724.82, "probability": 0.7129 }, { "start": 27725.16, "end": 27728.62, "probability": 0.6744 }, { "start": 27729.02, "end": 27729.76, "probability": 0.9531 }, { "start": 27729.86, "end": 27730.44, "probability": 0.6637 }, { "start": 27730.46, "end": 27730.98, "probability": 0.8839 }, { "start": 27731.06, "end": 27733.42, "probability": 0.8599 }, { "start": 27733.42, "end": 27737.74, "probability": 0.7384 }, { "start": 27738.38, "end": 27739.52, "probability": 0.2975 }, { "start": 27739.64, "end": 27740.48, "probability": 0.7286 }, { "start": 27740.54, "end": 27741.52, "probability": 0.827 }, { "start": 27741.96, "end": 27744.52, "probability": 0.9086 }, { "start": 27746.0, "end": 27746.48, "probability": 0.7375 }, { "start": 27746.8, "end": 27749.8, "probability": 0.5244 }, { "start": 27750.48, "end": 27751.92, "probability": 0.9831 }, { "start": 27759.5, "end": 27764.02, "probability": 0.4295 }, { "start": 27764.78, "end": 27769.04, "probability": 0.9933 }, { "start": 27769.66, "end": 27772.9, "probability": 0.957 }, { "start": 27773.5, "end": 27777.9, "probability": 0.9942 }, { "start": 27778.54, "end": 27780.97, "probability": 0.6768 }, { "start": 27781.66, "end": 27784.72, "probability": 0.9941 }, { "start": 27785.52, "end": 27790.18, "probability": 0.9963 }, { "start": 27790.93, "end": 27792.66, "probability": 0.754 }, { "start": 27792.66, "end": 27795.78, "probability": 0.9958 }, { "start": 27797.66, "end": 27800.88, "probability": 0.8238 }, { "start": 27800.88, "end": 27804.08, "probability": 0.7315 }, { "start": 27804.3, "end": 27806.18, "probability": 0.7983 }, { "start": 27806.3, "end": 27807.02, "probability": 0.8595 }, { "start": 27807.4, "end": 27808.64, "probability": 0.7657 }, { "start": 27808.72, "end": 27810.5, "probability": 0.8095 }, { "start": 27810.6, "end": 27811.64, "probability": 0.8781 }, { "start": 27812.54, "end": 27813.72, "probability": 0.7837 }, { "start": 27813.72, "end": 27817.32, "probability": 0.8076 }, { "start": 27817.32, "end": 27817.86, "probability": 0.804 }, { "start": 27818.48, "end": 27818.62, "probability": 0.6332 }, { "start": 27818.78, "end": 27819.48, "probability": 0.4709 }, { "start": 27820.42, "end": 27824.42, "probability": 0.8218 }, { "start": 27824.86, "end": 27830.78, "probability": 0.8324 }, { "start": 27831.62, "end": 27835.74, "probability": 0.9946 }, { "start": 27836.22, "end": 27839.0, "probability": 0.3801 }, { "start": 27839.02, "end": 27840.21, "probability": 0.3663 }, { "start": 27840.94, "end": 27845.34, "probability": 0.8382 }, { "start": 27845.5, "end": 27851.24, "probability": 0.8384 }, { "start": 27851.3, "end": 27852.34, "probability": 0.2293 }, { "start": 27852.34, "end": 27854.1, "probability": 0.7958 }, { "start": 27854.88, "end": 27857.04, "probability": 0.5237 }, { "start": 27857.24, "end": 27858.01, "probability": 0.5106 }, { "start": 27858.16, "end": 27859.68, "probability": 0.405 }, { "start": 27859.78, "end": 27860.34, "probability": 0.4162 }, { "start": 27860.4, "end": 27861.1, "probability": 0.4993 }, { "start": 27861.16, "end": 27863.18, "probability": 0.6443 }, { "start": 27863.4, "end": 27864.18, "probability": 0.6247 }, { "start": 27864.76, "end": 27865.04, "probability": 0.7612 }, { "start": 27865.22, "end": 27866.68, "probability": 0.4378 }, { "start": 27866.7, "end": 27867.02, "probability": 0.4528 }, { "start": 27867.16, "end": 27867.66, "probability": 0.1518 }, { "start": 27867.68, "end": 27868.3, "probability": 0.5293 }, { "start": 27868.84, "end": 27871.54, "probability": 0.8997 }, { "start": 27871.54, "end": 27875.72, "probability": 0.8005 }, { "start": 27876.1, "end": 27878.48, "probability": 0.6812 }, { "start": 27879.0, "end": 27880.94, "probability": 0.9597 }, { "start": 27881.08, "end": 27881.74, "probability": 0.6166 }, { "start": 27881.84, "end": 27882.4, "probability": 0.6615 }, { "start": 27882.48, "end": 27884.2, "probability": 0.7754 }, { "start": 27884.32, "end": 27886.86, "probability": 0.8921 }, { "start": 27887.0, "end": 27887.46, "probability": 0.5673 }, { "start": 27887.46, "end": 27890.35, "probability": 0.9485 }, { "start": 27890.82, "end": 27894.18, "probability": 0.9336 }, { "start": 27894.24, "end": 27895.24, "probability": 0.9102 }, { "start": 27895.34, "end": 27898.06, "probability": 0.7769 }, { "start": 27898.2, "end": 27900.58, "probability": 0.9039 }, { "start": 27901.06, "end": 27901.86, "probability": 0.8776 }, { "start": 27903.02, "end": 27905.7, "probability": 0.9493 }, { "start": 27906.06, "end": 27908.46, "probability": 0.7765 }, { "start": 27908.92, "end": 27909.4, "probability": 0.9044 }, { "start": 27909.52, "end": 27912.22, "probability": 0.7948 }, { "start": 27912.66, "end": 27913.26, "probability": 0.4233 }, { "start": 27913.48, "end": 27915.76, "probability": 0.6992 }, { "start": 27917.18, "end": 27921.32, "probability": 0.8001 }, { "start": 27921.32, "end": 27922.88, "probability": 0.8396 }, { "start": 27923.02, "end": 27924.91, "probability": 0.8605 }, { "start": 27926.14, "end": 27927.28, "probability": 0.9948 }, { "start": 27927.76, "end": 27929.26, "probability": 0.5897 }, { "start": 27929.38, "end": 27931.4, "probability": 0.4241 }, { "start": 27931.5, "end": 27933.34, "probability": 0.8643 }, { "start": 27933.4, "end": 27934.5, "probability": 0.9774 }, { "start": 27934.56, "end": 27935.78, "probability": 0.9185 }, { "start": 27935.82, "end": 27938.12, "probability": 0.6656 }, { "start": 27938.36, "end": 27938.6, "probability": 0.7444 }, { "start": 27938.71, "end": 27941.54, "probability": 0.9731 }, { "start": 27941.92, "end": 27942.2, "probability": 0.6433 }, { "start": 27942.24, "end": 27945.34, "probability": 0.9574 }, { "start": 27945.78, "end": 27946.98, "probability": 0.8485 }, { "start": 27947.36, "end": 27949.12, "probability": 0.9199 }, { "start": 27949.3, "end": 27950.18, "probability": 0.4998 }, { "start": 27950.18, "end": 27950.53, "probability": 0.3108 }, { "start": 27950.92, "end": 27952.3, "probability": 0.8522 }, { "start": 27952.36, "end": 27953.46, "probability": 0.2632 }, { "start": 27953.7, "end": 27954.74, "probability": 0.9421 }, { "start": 27954.88, "end": 27955.42, "probability": 0.7296 }, { "start": 27955.46, "end": 27957.62, "probability": 0.9371 }, { "start": 27957.88, "end": 27961.66, "probability": 0.7957 }, { "start": 27962.12, "end": 27966.5, "probability": 0.9966 }, { "start": 27966.58, "end": 27967.9, "probability": 0.843 }, { "start": 27968.06, "end": 27971.16, "probability": 0.5187 }, { "start": 27971.98, "end": 27975.22, "probability": 0.8408 }, { "start": 27976.0, "end": 27976.2, "probability": 0.0635 }, { "start": 27976.3, "end": 27976.32, "probability": 0.4364 }, { "start": 27976.32, "end": 27977.1, "probability": 0.6305 }, { "start": 27977.16, "end": 27977.34, "probability": 0.8917 }, { "start": 27977.42, "end": 27979.84, "probability": 0.9232 }, { "start": 27980.28, "end": 27981.98, "probability": 0.8301 }, { "start": 27982.48, "end": 27982.98, "probability": 0.7596 }, { "start": 27983.24, "end": 27984.02, "probability": 0.8643 }, { "start": 27984.06, "end": 27985.34, "probability": 0.7644 }, { "start": 27985.4, "end": 27986.02, "probability": 0.9002 }, { "start": 27987.44, "end": 27988.56, "probability": 0.3762 }, { "start": 27988.64, "end": 27990.14, "probability": 0.7067 }, { "start": 27990.3, "end": 27990.86, "probability": 0.7626 }, { "start": 27991.04, "end": 27992.41, "probability": 0.9484 }, { "start": 27992.86, "end": 27995.1, "probability": 0.9233 }, { "start": 27995.44, "end": 27998.18, "probability": 0.8728 }, { "start": 27999.1, "end": 28000.38, "probability": 0.7973 }, { "start": 28000.56, "end": 28002.24, "probability": 0.9738 }, { "start": 28002.7, "end": 28004.22, "probability": 0.7334 }, { "start": 28004.38, "end": 28005.72, "probability": 0.7485 }, { "start": 28006.68, "end": 28009.78, "probability": 0.4279 }, { "start": 28009.84, "end": 28011.24, "probability": 0.7378 }, { "start": 28012.54, "end": 28018.14, "probability": 0.6237 }, { "start": 28018.46, "end": 28019.24, "probability": 0.7101 }, { "start": 28019.46, "end": 28020.94, "probability": 0.5453 }, { "start": 28020.98, "end": 28023.38, "probability": 0.9273 }, { "start": 28024.34, "end": 28025.0, "probability": 0.2364 }, { "start": 28025.56, "end": 28028.1, "probability": 0.4391 }, { "start": 28028.22, "end": 28031.54, "probability": 0.5621 }, { "start": 28031.74, "end": 28035.24, "probability": 0.8487 }, { "start": 28035.84, "end": 28037.94, "probability": 0.2441 }, { "start": 28038.44, "end": 28040.86, "probability": 0.5463 }, { "start": 28043.14, "end": 28045.94, "probability": 0.2581 }, { "start": 28046.5, "end": 28050.51, "probability": 0.4639 }, { "start": 28050.9, "end": 28052.46, "probability": 0.5029 }, { "start": 28052.58, "end": 28053.34, "probability": 0.2982 }, { "start": 28053.58, "end": 28056.4, "probability": 0.542 }, { "start": 28056.82, "end": 28060.34, "probability": 0.7509 }, { "start": 28061.04, "end": 28062.68, "probability": 0.6051 }, { "start": 28064.48, "end": 28065.36, "probability": 0.704 }, { "start": 28067.04, "end": 28069.54, "probability": 0.7768 }, { "start": 28069.56, "end": 28069.78, "probability": 0.4676 }, { "start": 28069.88, "end": 28072.53, "probability": 0.7515 }, { "start": 28072.9, "end": 28073.97, "probability": 0.5084 }, { "start": 28088.13, "end": 28090.98, "probability": 0.987 }, { "start": 28090.98, "end": 28093.82, "probability": 0.9868 }, { "start": 28094.36, "end": 28096.42, "probability": 0.8279 }, { "start": 28096.46, "end": 28097.28, "probability": 0.9559 }, { "start": 28098.14, "end": 28098.7, "probability": 0.6688 }, { "start": 28100.1, "end": 28101.48, "probability": 0.3965 }, { "start": 28101.48, "end": 28103.22, "probability": 0.9731 }, { "start": 28103.86, "end": 28106.6, "probability": 0.991 }, { "start": 28107.06, "end": 28109.46, "probability": 0.9845 }, { "start": 28109.98, "end": 28111.24, "probability": 0.658 }, { "start": 28111.24, "end": 28114.78, "probability": 0.705 }, { "start": 28115.32, "end": 28117.5, "probability": 0.9962 }, { "start": 28117.86, "end": 28119.16, "probability": 0.7207 }, { "start": 28119.68, "end": 28122.36, "probability": 0.9212 }, { "start": 28122.6, "end": 28125.98, "probability": 0.986 }, { "start": 28125.98, "end": 28129.98, "probability": 0.9849 }, { "start": 28130.66, "end": 28132.58, "probability": 0.6191 }, { "start": 28132.62, "end": 28134.58, "probability": 0.4049 }, { "start": 28135.22, "end": 28135.92, "probability": 0.8536 }, { "start": 28136.76, "end": 28138.12, "probability": 0.4051 }, { "start": 28138.52, "end": 28139.51, "probability": 0.7876 }, { "start": 28140.0, "end": 28142.78, "probability": 0.6958 }, { "start": 28143.44, "end": 28145.32, "probability": 0.9442 }, { "start": 28146.32, "end": 28147.32, "probability": 0.7401 }, { "start": 28147.4, "end": 28149.28, "probability": 0.5735 }, { "start": 28151.77, "end": 28153.68, "probability": 0.7331 }, { "start": 28159.68, "end": 28163.64, "probability": 0.8682 }, { "start": 28163.76, "end": 28165.8, "probability": 0.9436 }, { "start": 28165.98, "end": 28166.76, "probability": 0.7491 }, { "start": 28167.26, "end": 28170.01, "probability": 0.9954 }, { "start": 28170.84, "end": 28173.9, "probability": 0.5878 }, { "start": 28174.38, "end": 28177.86, "probability": 0.965 }, { "start": 28178.14, "end": 28183.14, "probability": 0.9512 }, { "start": 28183.8, "end": 28183.9, "probability": 0.5878 }, { "start": 28184.0, "end": 28185.5, "probability": 0.995 }, { "start": 28185.68, "end": 28188.66, "probability": 0.9953 }, { "start": 28189.32, "end": 28190.44, "probability": 0.739 }, { "start": 28190.62, "end": 28193.46, "probability": 0.9753 }, { "start": 28193.82, "end": 28195.18, "probability": 0.9504 }, { "start": 28195.46, "end": 28197.04, "probability": 0.7037 }, { "start": 28198.0, "end": 28201.7, "probability": 0.7962 }, { "start": 28202.12, "end": 28205.38, "probability": 0.9259 }, { "start": 28205.38, "end": 28207.58, "probability": 0.4976 }, { "start": 28208.44, "end": 28208.98, "probability": 0.7439 }, { "start": 28209.1, "end": 28213.12, "probability": 0.7671 }, { "start": 28213.22, "end": 28215.48, "probability": 0.7725 }, { "start": 28215.6, "end": 28218.3, "probability": 0.6282 }, { "start": 28218.48, "end": 28219.9, "probability": 0.1782 }, { "start": 28219.94, "end": 28221.9, "probability": 0.2161 }, { "start": 28222.3, "end": 28225.24, "probability": 0.4103 }, { "start": 28225.8, "end": 28228.48, "probability": 0.6693 }, { "start": 28228.86, "end": 28230.82, "probability": 0.5344 }, { "start": 28232.24, "end": 28234.78, "probability": 0.0569 }, { "start": 28235.54, "end": 28236.72, "probability": 0.3462 }, { "start": 28237.88, "end": 28239.16, "probability": 0.35 }, { "start": 28239.4, "end": 28240.92, "probability": 0.201 }, { "start": 28241.12, "end": 28241.4, "probability": 0.4753 }, { "start": 28241.6, "end": 28242.58, "probability": 0.8288 }, { "start": 28243.5, "end": 28244.13, "probability": 0.4688 }, { "start": 28244.72, "end": 28250.34, "probability": 0.3452 }, { "start": 28250.96, "end": 28251.92, "probability": 0.599 }, { "start": 28253.3, "end": 28259.22, "probability": 0.978 }, { "start": 28259.52, "end": 28260.16, "probability": 0.6825 }, { "start": 28261.52, "end": 28263.7, "probability": 0.9913 }, { "start": 28263.7, "end": 28267.04, "probability": 0.9672 }, { "start": 28267.72, "end": 28271.4, "probability": 0.9897 }, { "start": 28271.52, "end": 28273.17, "probability": 0.9111 }, { "start": 28275.1, "end": 28277.5, "probability": 0.6954 }, { "start": 28278.18, "end": 28284.08, "probability": 0.8679 }, { "start": 28285.36, "end": 28287.76, "probability": 0.3896 }, { "start": 28287.83, "end": 28292.12, "probability": 0.2824 }, { "start": 28292.24, "end": 28293.14, "probability": 0.1537 }, { "start": 28293.66, "end": 28294.82, "probability": 0.5187 }, { "start": 28295.14, "end": 28296.32, "probability": 0.2787 }, { "start": 28296.32, "end": 28298.14, "probability": 0.7004 }, { "start": 28298.22, "end": 28299.17, "probability": 0.7075 }, { "start": 28299.44, "end": 28300.8, "probability": 0.863 }, { "start": 28301.18, "end": 28301.88, "probability": 0.8801 }, { "start": 28302.54, "end": 28302.86, "probability": 0.4231 }, { "start": 28302.94, "end": 28304.08, "probability": 0.7422 }, { "start": 28304.46, "end": 28306.56, "probability": 0.7466 }, { "start": 28308.66, "end": 28310.06, "probability": 0.8916 }, { "start": 28310.22, "end": 28311.44, "probability": 0.8295 }, { "start": 28311.52, "end": 28314.6, "probability": 0.9346 }, { "start": 28314.74, "end": 28315.82, "probability": 0.8806 }, { "start": 28316.56, "end": 28318.87, "probability": 0.7335 }, { "start": 28319.1, "end": 28320.66, "probability": 0.0203 }, { "start": 28320.7, "end": 28320.96, "probability": 0.2754 }, { "start": 28321.94, "end": 28322.78, "probability": 0.7462 }, { "start": 28323.46, "end": 28324.83, "probability": 0.7903 }, { "start": 28325.36, "end": 28327.48, "probability": 0.9767 }, { "start": 28328.48, "end": 28329.74, "probability": 0.3298 }, { "start": 28330.44, "end": 28335.46, "probability": 0.9266 }, { "start": 28336.16, "end": 28337.11, "probability": 0.187 } ], "segments_count": 9612, "words_count": 48898, "avg_words_per_segment": 5.0872, "avg_segment_duration": 2.1716, "avg_words_per_minute": 103.3683, "plenum_id": "10031", "duration": 28382.77, "title": null, "plenum_date": "2010-11-10" }