{ "source_type": "knesset", "source_id": "plenum", "source_entry_id": "10092", "quality_score": 0.9374, "per_segment_quality_scores": [ { "start": 61.23, "end": 64.32, "probability": 0.8004 }, { "start": 64.94, "end": 65.34, "probability": 0.7965 }, { "start": 65.56, "end": 66.56, "probability": 0.6853 }, { "start": 66.78, "end": 67.82, "probability": 0.7126 }, { "start": 67.94, "end": 70.12, "probability": 0.8459 }, { "start": 70.74, "end": 71.26, "probability": 0.6865 }, { "start": 71.26, "end": 74.84, "probability": 0.6154 }, { "start": 75.48, "end": 76.86, "probability": 0.7451 }, { "start": 76.98, "end": 78.76, "probability": 0.3317 }, { "start": 79.18, "end": 81.68, "probability": 0.8221 }, { "start": 82.41, "end": 86.8, "probability": 0.9963 }, { "start": 86.8, "end": 90.56, "probability": 0.927 }, { "start": 90.68, "end": 90.84, "probability": 0.6631 }, { "start": 91.88, "end": 94.6, "probability": 0.8707 }, { "start": 95.38, "end": 96.3, "probability": 0.7634 }, { "start": 96.34, "end": 96.94, "probability": 0.6969 }, { "start": 97.06, "end": 99.0, "probability": 0.9922 }, { "start": 99.82, "end": 103.86, "probability": 0.889 }, { "start": 104.26, "end": 105.64, "probability": 0.5497 }, { "start": 106.22, "end": 110.06, "probability": 0.9919 }, { "start": 110.06, "end": 112.56, "probability": 0.9979 }, { "start": 114.02, "end": 115.7, "probability": 0.7884 }, { "start": 116.12, "end": 120.27, "probability": 0.9185 }, { "start": 120.5, "end": 124.04, "probability": 0.7042 }, { "start": 124.68, "end": 124.98, "probability": 0.5059 }, { "start": 125.0, "end": 125.0, "probability": 0.0 }, { "start": 125.0, "end": 125.0, "probability": 0.0 }, { "start": 138.84, "end": 141.88, "probability": 0.6036 }, { "start": 143.02, "end": 146.9, "probability": 0.9442 }, { "start": 146.98, "end": 149.74, "probability": 0.8519 }, { "start": 150.94, "end": 152.96, "probability": 0.9973 }, { "start": 153.14, "end": 157.98, "probability": 0.8895 }, { "start": 158.34, "end": 160.04, "probability": 0.8915 }, { "start": 160.36, "end": 161.34, "probability": 0.7044 }, { "start": 161.44, "end": 162.56, "probability": 0.998 }, { "start": 163.7, "end": 168.04, "probability": 0.9941 }, { "start": 168.18, "end": 170.16, "probability": 0.9942 }, { "start": 170.82, "end": 171.46, "probability": 0.4864 }, { "start": 172.38, "end": 173.88, "probability": 0.7781 }, { "start": 173.96, "end": 174.44, "probability": 0.6535 }, { "start": 174.56, "end": 179.84, "probability": 0.9972 }, { "start": 179.94, "end": 184.36, "probability": 0.9834 }, { "start": 185.5, "end": 189.74, "probability": 0.7987 }, { "start": 190.74, "end": 194.64, "probability": 0.9431 }, { "start": 195.06, "end": 196.5, "probability": 0.9356 }, { "start": 197.14, "end": 200.9, "probability": 0.9841 }, { "start": 201.32, "end": 202.38, "probability": 0.9766 }, { "start": 202.58, "end": 203.03, "probability": 0.6716 }, { "start": 203.66, "end": 208.1, "probability": 0.9883 }, { "start": 208.52, "end": 210.17, "probability": 0.913 }, { "start": 211.58, "end": 212.94, "probability": 0.8091 }, { "start": 213.52, "end": 213.88, "probability": 0.6797 }, { "start": 214.82, "end": 216.64, "probability": 0.9857 }, { "start": 217.6, "end": 218.04, "probability": 0.7114 }, { "start": 218.42, "end": 218.86, "probability": 0.6653 }, { "start": 218.98, "end": 220.37, "probability": 0.9219 }, { "start": 221.38, "end": 222.2, "probability": 0.9779 }, { "start": 223.54, "end": 223.86, "probability": 0.3804 }, { "start": 223.9, "end": 225.2, "probability": 0.8608 }, { "start": 225.3, "end": 226.34, "probability": 0.7141 }, { "start": 226.52, "end": 227.48, "probability": 0.8644 }, { "start": 227.6, "end": 228.52, "probability": 0.6541 }, { "start": 228.9, "end": 229.4, "probability": 0.8242 }, { "start": 229.76, "end": 230.48, "probability": 0.7638 }, { "start": 230.64, "end": 234.54, "probability": 0.9741 }, { "start": 235.16, "end": 238.16, "probability": 0.9967 }, { "start": 238.2, "end": 239.56, "probability": 0.9178 }, { "start": 240.22, "end": 242.52, "probability": 0.9806 }, { "start": 243.46, "end": 248.56, "probability": 0.99 }, { "start": 249.22, "end": 250.32, "probability": 0.7539 }, { "start": 250.62, "end": 253.58, "probability": 0.9938 }, { "start": 254.12, "end": 257.0, "probability": 0.9937 }, { "start": 257.0, "end": 260.14, "probability": 0.9856 }, { "start": 261.12, "end": 264.36, "probability": 0.9454 }, { "start": 264.5, "end": 271.26, "probability": 0.9498 }, { "start": 271.38, "end": 274.72, "probability": 0.9974 }, { "start": 275.32, "end": 278.18, "probability": 0.9978 }, { "start": 278.38, "end": 281.43, "probability": 0.9941 }, { "start": 282.6, "end": 286.2, "probability": 0.913 }, { "start": 286.66, "end": 290.04, "probability": 0.7887 }, { "start": 290.7, "end": 292.88, "probability": 0.9626 }, { "start": 293.6, "end": 295.06, "probability": 0.9421 }, { "start": 297.16, "end": 299.68, "probability": 0.6966 }, { "start": 300.3, "end": 302.96, "probability": 0.4793 }, { "start": 303.14, "end": 304.24, "probability": 0.9904 }, { "start": 304.4, "end": 305.7, "probability": 0.9514 }, { "start": 307.66, "end": 310.84, "probability": 0.8801 }, { "start": 317.44, "end": 319.33, "probability": 0.7899 }, { "start": 320.96, "end": 321.38, "probability": 0.7306 }, { "start": 322.0, "end": 325.88, "probability": 0.9797 }, { "start": 325.88, "end": 329.16, "probability": 0.9394 }, { "start": 329.86, "end": 333.14, "probability": 0.9968 }, { "start": 334.2, "end": 336.82, "probability": 0.7994 }, { "start": 336.82, "end": 339.8, "probability": 0.9986 }, { "start": 341.24, "end": 343.4, "probability": 0.9061 }, { "start": 343.86, "end": 350.52, "probability": 0.9926 }, { "start": 350.86, "end": 351.26, "probability": 0.9845 }, { "start": 352.24, "end": 352.96, "probability": 0.9235 }, { "start": 354.14, "end": 357.82, "probability": 0.9616 }, { "start": 359.0, "end": 363.4, "probability": 0.9315 }, { "start": 364.54, "end": 366.62, "probability": 0.8422 }, { "start": 367.68, "end": 370.78, "probability": 0.9962 }, { "start": 371.76, "end": 375.5, "probability": 0.9952 }, { "start": 376.78, "end": 381.14, "probability": 0.997 }, { "start": 382.42, "end": 384.18, "probability": 0.6822 }, { "start": 384.76, "end": 385.82, "probability": 0.586 }, { "start": 386.4, "end": 389.43, "probability": 0.9688 }, { "start": 390.3, "end": 391.72, "probability": 0.7568 }, { "start": 392.42, "end": 393.78, "probability": 0.9503 }, { "start": 394.3, "end": 395.82, "probability": 0.7495 }, { "start": 396.92, "end": 399.44, "probability": 0.7986 }, { "start": 399.5, "end": 399.82, "probability": 0.7266 }, { "start": 400.02, "end": 400.4, "probability": 0.4576 }, { "start": 400.46, "end": 402.88, "probability": 0.83 }, { "start": 403.32, "end": 404.58, "probability": 0.5522 }, { "start": 404.58, "end": 407.18, "probability": 0.8291 }, { "start": 408.3, "end": 410.86, "probability": 0.7794 }, { "start": 411.4, "end": 413.04, "probability": 0.944 }, { "start": 414.9, "end": 417.55, "probability": 0.9634 }, { "start": 418.54, "end": 420.84, "probability": 0.9912 }, { "start": 421.82, "end": 422.42, "probability": 0.7071 }, { "start": 423.08, "end": 423.56, "probability": 0.8246 }, { "start": 424.62, "end": 426.82, "probability": 0.9927 }, { "start": 428.12, "end": 429.88, "probability": 0.9891 }, { "start": 431.12, "end": 431.92, "probability": 0.9529 }, { "start": 432.62, "end": 436.4, "probability": 0.9958 }, { "start": 437.4, "end": 439.38, "probability": 0.9929 }, { "start": 440.56, "end": 445.08, "probability": 0.9951 }, { "start": 445.84, "end": 446.76, "probability": 0.8844 }, { "start": 447.38, "end": 448.62, "probability": 0.9932 }, { "start": 449.08, "end": 452.74, "probability": 0.9961 }, { "start": 453.34, "end": 456.4, "probability": 0.9949 }, { "start": 456.8, "end": 458.25, "probability": 0.9621 }, { "start": 458.58, "end": 459.32, "probability": 0.7011 }, { "start": 460.52, "end": 464.32, "probability": 0.9627 }, { "start": 464.44, "end": 470.16, "probability": 0.9482 }, { "start": 470.72, "end": 473.54, "probability": 0.9631 }, { "start": 474.06, "end": 474.96, "probability": 0.7439 }, { "start": 475.9, "end": 477.52, "probability": 0.9838 }, { "start": 477.92, "end": 480.2, "probability": 0.9951 }, { "start": 481.08, "end": 483.64, "probability": 0.9753 }, { "start": 483.92, "end": 484.48, "probability": 0.9728 }, { "start": 484.66, "end": 486.04, "probability": 0.925 }, { "start": 487.49, "end": 491.5, "probability": 0.9776 }, { "start": 492.3, "end": 492.64, "probability": 0.9702 }, { "start": 493.16, "end": 494.32, "probability": 0.8048 }, { "start": 495.01, "end": 496.94, "probability": 0.9197 }, { "start": 498.94, "end": 500.74, "probability": 0.8741 }, { "start": 501.5, "end": 505.9, "probability": 0.9953 }, { "start": 506.72, "end": 509.02, "probability": 0.9828 }, { "start": 509.62, "end": 514.32, "probability": 0.9857 }, { "start": 514.94, "end": 516.86, "probability": 0.9785 }, { "start": 517.46, "end": 518.3, "probability": 0.908 }, { "start": 518.74, "end": 519.24, "probability": 0.899 }, { "start": 519.38, "end": 520.76, "probability": 0.9752 }, { "start": 520.86, "end": 522.32, "probability": 0.9658 }, { "start": 522.82, "end": 525.46, "probability": 0.9991 }, { "start": 526.06, "end": 527.34, "probability": 0.9983 }, { "start": 527.66, "end": 528.2, "probability": 0.9158 }, { "start": 528.34, "end": 528.78, "probability": 0.8672 }, { "start": 529.1, "end": 529.6, "probability": 0.7113 }, { "start": 529.86, "end": 531.02, "probability": 0.968 }, { "start": 531.52, "end": 534.5, "probability": 0.9498 }, { "start": 535.2, "end": 536.38, "probability": 0.8593 }, { "start": 536.5, "end": 537.86, "probability": 0.9634 }, { "start": 538.34, "end": 541.26, "probability": 0.9787 }, { "start": 541.74, "end": 545.26, "probability": 0.9943 }, { "start": 545.32, "end": 546.4, "probability": 0.6287 }, { "start": 546.88, "end": 547.4, "probability": 0.9868 }, { "start": 547.7, "end": 548.92, "probability": 0.9912 }, { "start": 549.42, "end": 554.06, "probability": 0.9655 }, { "start": 554.06, "end": 557.7, "probability": 0.999 }, { "start": 558.08, "end": 558.5, "probability": 0.9646 }, { "start": 558.92, "end": 560.52, "probability": 0.9497 }, { "start": 560.6, "end": 561.48, "probability": 0.9428 }, { "start": 562.5, "end": 565.74, "probability": 0.687 }, { "start": 567.64, "end": 569.95, "probability": 0.7394 }, { "start": 570.98, "end": 572.54, "probability": 0.7769 }, { "start": 572.72, "end": 573.28, "probability": 0.9325 }, { "start": 573.42, "end": 577.9, "probability": 0.592 }, { "start": 578.42, "end": 578.84, "probability": 0.7298 }, { "start": 579.58, "end": 581.58, "probability": 0.2061 }, { "start": 581.7, "end": 581.78, "probability": 0.2406 }, { "start": 581.78, "end": 582.32, "probability": 0.5895 }, { "start": 582.78, "end": 583.44, "probability": 0.8215 }, { "start": 585.12, "end": 585.84, "probability": 0.3934 }, { "start": 586.08, "end": 587.56, "probability": 0.7318 }, { "start": 587.72, "end": 588.48, "probability": 0.9387 }, { "start": 588.72, "end": 589.1, "probability": 0.859 }, { "start": 589.3, "end": 590.04, "probability": 0.8207 }, { "start": 590.64, "end": 592.12, "probability": 0.8047 }, { "start": 594.02, "end": 594.98, "probability": 0.1514 }, { "start": 595.28, "end": 595.82, "probability": 0.725 }, { "start": 595.95, "end": 601.24, "probability": 0.9585 }, { "start": 601.34, "end": 603.92, "probability": 0.9829 }, { "start": 604.44, "end": 607.66, "probability": 0.9956 }, { "start": 608.38, "end": 609.58, "probability": 0.9376 }, { "start": 609.8, "end": 610.32, "probability": 0.9798 }, { "start": 611.0, "end": 612.3, "probability": 0.2283 }, { "start": 612.32, "end": 613.02, "probability": 0.8425 }, { "start": 613.36, "end": 614.5, "probability": 0.828 }, { "start": 615.08, "end": 616.34, "probability": 0.9513 }, { "start": 617.06, "end": 621.02, "probability": 0.9562 }, { "start": 621.78, "end": 625.86, "probability": 0.9883 }, { "start": 626.28, "end": 627.5, "probability": 0.9773 }, { "start": 627.98, "end": 629.44, "probability": 0.9101 }, { "start": 630.22, "end": 632.94, "probability": 0.9919 }, { "start": 633.64, "end": 635.4, "probability": 0.8716 }, { "start": 636.0, "end": 637.0, "probability": 0.8737 }, { "start": 637.62, "end": 642.64, "probability": 0.9785 }, { "start": 643.78, "end": 648.54, "probability": 0.9857 }, { "start": 649.54, "end": 651.46, "probability": 0.9872 }, { "start": 652.04, "end": 654.04, "probability": 0.7369 }, { "start": 654.6, "end": 655.98, "probability": 0.7705 }, { "start": 662.16, "end": 662.8, "probability": 0.5902 }, { "start": 662.98, "end": 663.94, "probability": 0.3701 }, { "start": 664.0, "end": 664.5, "probability": 0.9321 }, { "start": 664.86, "end": 667.46, "probability": 0.9618 }, { "start": 668.44, "end": 672.86, "probability": 0.8904 }, { "start": 674.95, "end": 681.72, "probability": 0.951 }, { "start": 681.98, "end": 682.08, "probability": 0.1187 }, { "start": 682.08, "end": 685.26, "probability": 0.6677 }, { "start": 685.76, "end": 690.34, "probability": 0.9187 }, { "start": 691.32, "end": 693.7, "probability": 0.7191 }, { "start": 693.9, "end": 696.7, "probability": 0.9954 }, { "start": 697.26, "end": 698.78, "probability": 0.6082 }, { "start": 699.02, "end": 700.06, "probability": 0.9204 }, { "start": 700.28, "end": 703.62, "probability": 0.8631 }, { "start": 705.33, "end": 706.92, "probability": 0.2221 }, { "start": 706.92, "end": 708.38, "probability": 0.8937 }, { "start": 708.42, "end": 710.8, "probability": 0.9569 }, { "start": 711.38, "end": 714.6, "probability": 0.7341 }, { "start": 715.34, "end": 718.82, "probability": 0.8517 }, { "start": 718.96, "end": 721.88, "probability": 0.9501 }, { "start": 722.38, "end": 728.66, "probability": 0.8922 }, { "start": 728.66, "end": 737.12, "probability": 0.9821 }, { "start": 737.64, "end": 739.48, "probability": 0.8861 }, { "start": 739.6, "end": 742.66, "probability": 0.993 }, { "start": 743.08, "end": 746.82, "probability": 0.9336 }, { "start": 747.4, "end": 752.12, "probability": 0.8731 }, { "start": 752.72, "end": 756.38, "probability": 0.8709 }, { "start": 756.9, "end": 762.22, "probability": 0.9828 }, { "start": 762.5, "end": 763.16, "probability": 0.4386 }, { "start": 763.4, "end": 764.5, "probability": 0.4333 }, { "start": 765.28, "end": 766.72, "probability": 0.9176 }, { "start": 766.82, "end": 767.44, "probability": 0.7239 }, { "start": 767.58, "end": 769.5, "probability": 0.7695 }, { "start": 769.66, "end": 771.42, "probability": 0.9681 }, { "start": 771.5, "end": 774.2, "probability": 0.9445 }, { "start": 774.82, "end": 776.2, "probability": 0.7247 }, { "start": 776.3, "end": 776.66, "probability": 0.9237 }, { "start": 776.7, "end": 777.68, "probability": 0.9968 }, { "start": 777.84, "end": 781.18, "probability": 0.9834 }, { "start": 782.4, "end": 785.9, "probability": 0.9849 }, { "start": 786.06, "end": 789.96, "probability": 0.9171 }, { "start": 789.96, "end": 793.8, "probability": 0.999 }, { "start": 794.02, "end": 794.48, "probability": 0.7491 }, { "start": 794.98, "end": 797.62, "probability": 0.807 }, { "start": 798.5, "end": 799.68, "probability": 0.881 }, { "start": 799.72, "end": 800.14, "probability": 0.7723 }, { "start": 800.52, "end": 801.18, "probability": 0.4612 }, { "start": 801.58, "end": 802.66, "probability": 0.8978 }, { "start": 803.62, "end": 804.86, "probability": 0.6633 }, { "start": 805.02, "end": 805.1, "probability": 0.5246 }, { "start": 805.1, "end": 807.1, "probability": 0.9508 }, { "start": 808.92, "end": 813.82, "probability": 0.9264 }, { "start": 814.72, "end": 819.68, "probability": 0.9352 }, { "start": 820.06, "end": 820.94, "probability": 0.5066 }, { "start": 821.3, "end": 822.34, "probability": 0.8944 }, { "start": 823.12, "end": 825.07, "probability": 0.9837 }, { "start": 825.52, "end": 829.6, "probability": 0.6785 }, { "start": 830.2, "end": 831.98, "probability": 0.7715 }, { "start": 832.7, "end": 833.66, "probability": 0.6371 }, { "start": 834.42, "end": 836.24, "probability": 0.8846 }, { "start": 837.88, "end": 838.9, "probability": 0.8498 }, { "start": 839.12, "end": 843.02, "probability": 0.9817 }, { "start": 843.14, "end": 844.35, "probability": 0.7668 }, { "start": 845.36, "end": 849.9, "probability": 0.9662 }, { "start": 850.78, "end": 851.6, "probability": 0.5413 }, { "start": 852.76, "end": 855.62, "probability": 0.9971 }, { "start": 856.36, "end": 857.4, "probability": 0.9058 }, { "start": 858.14, "end": 858.63, "probability": 0.9757 }, { "start": 859.26, "end": 860.44, "probability": 0.9874 }, { "start": 860.78, "end": 861.72, "probability": 0.9956 }, { "start": 862.16, "end": 864.34, "probability": 0.9974 }, { "start": 865.16, "end": 866.98, "probability": 0.9292 }, { "start": 868.1, "end": 870.7, "probability": 0.9974 }, { "start": 871.54, "end": 874.6, "probability": 0.9878 }, { "start": 874.76, "end": 876.9, "probability": 0.9961 }, { "start": 877.76, "end": 880.06, "probability": 0.9934 }, { "start": 880.06, "end": 882.8, "probability": 0.8205 }, { "start": 883.82, "end": 884.94, "probability": 0.775 }, { "start": 885.98, "end": 886.56, "probability": 0.9477 }, { "start": 887.32, "end": 888.34, "probability": 0.9809 }, { "start": 888.92, "end": 890.86, "probability": 0.6567 }, { "start": 892.16, "end": 893.22, "probability": 0.8882 }, { "start": 894.52, "end": 895.02, "probability": 0.8215 }, { "start": 896.2, "end": 898.55, "probability": 0.9134 }, { "start": 899.14, "end": 901.28, "probability": 0.9092 }, { "start": 901.7, "end": 902.46, "probability": 0.892 }, { "start": 902.82, "end": 903.82, "probability": 0.9709 }, { "start": 904.08, "end": 905.94, "probability": 0.8869 }, { "start": 907.46, "end": 909.86, "probability": 0.986 }, { "start": 910.02, "end": 910.8, "probability": 0.7721 }, { "start": 915.16, "end": 918.22, "probability": 0.747 }, { "start": 918.84, "end": 923.32, "probability": 0.9639 }, { "start": 923.76, "end": 928.96, "probability": 0.9902 }, { "start": 930.0, "end": 931.58, "probability": 0.9969 }, { "start": 931.92, "end": 933.12, "probability": 0.9839 }, { "start": 933.46, "end": 933.96, "probability": 0.5749 }, { "start": 934.16, "end": 935.26, "probability": 0.5066 }, { "start": 935.38, "end": 936.12, "probability": 0.952 }, { "start": 936.62, "end": 938.96, "probability": 0.9881 }, { "start": 939.56, "end": 943.1, "probability": 0.9612 }, { "start": 943.8, "end": 945.7, "probability": 0.954 }, { "start": 945.92, "end": 950.04, "probability": 0.9294 }, { "start": 950.16, "end": 953.52, "probability": 0.8878 }, { "start": 953.66, "end": 957.92, "probability": 0.9759 }, { "start": 958.52, "end": 960.16, "probability": 0.9245 }, { "start": 961.0, "end": 964.64, "probability": 0.9855 }, { "start": 964.82, "end": 967.98, "probability": 0.9954 }, { "start": 967.98, "end": 970.44, "probability": 0.8376 }, { "start": 970.84, "end": 972.02, "probability": 0.9804 }, { "start": 972.1, "end": 974.82, "probability": 0.9574 }, { "start": 974.88, "end": 979.5, "probability": 0.9963 }, { "start": 980.06, "end": 980.66, "probability": 0.7637 }, { "start": 980.7, "end": 985.92, "probability": 0.9655 }, { "start": 986.04, "end": 987.9, "probability": 0.9866 }, { "start": 988.48, "end": 992.62, "probability": 0.9372 }, { "start": 992.92, "end": 995.92, "probability": 0.9778 }, { "start": 996.4, "end": 999.36, "probability": 0.9391 }, { "start": 999.36, "end": 1001.72, "probability": 0.9911 }, { "start": 1002.8, "end": 1004.76, "probability": 0.9954 }, { "start": 1005.2, "end": 1008.3, "probability": 0.8079 }, { "start": 1010.94, "end": 1011.26, "probability": 0.6639 }, { "start": 1013.4, "end": 1016.82, "probability": 0.8796 }, { "start": 1019.4, "end": 1020.34, "probability": 0.638 }, { "start": 1020.64, "end": 1021.06, "probability": 0.799 }, { "start": 1021.16, "end": 1023.2, "probability": 0.8946 }, { "start": 1025.02, "end": 1027.64, "probability": 0.9985 }, { "start": 1028.32, "end": 1033.14, "probability": 0.9808 }, { "start": 1033.2, "end": 1036.16, "probability": 0.9982 }, { "start": 1037.44, "end": 1039.86, "probability": 0.9849 }, { "start": 1041.08, "end": 1044.02, "probability": 0.9204 }, { "start": 1044.72, "end": 1045.84, "probability": 0.9673 }, { "start": 1046.04, "end": 1046.68, "probability": 0.9914 }, { "start": 1047.02, "end": 1049.66, "probability": 0.951 }, { "start": 1050.06, "end": 1051.86, "probability": 0.9927 }, { "start": 1053.2, "end": 1054.56, "probability": 0.971 }, { "start": 1054.98, "end": 1061.56, "probability": 0.9958 }, { "start": 1062.58, "end": 1063.62, "probability": 0.6256 }, { "start": 1064.3, "end": 1065.52, "probability": 0.7756 }, { "start": 1067.52, "end": 1069.28, "probability": 0.9988 }, { "start": 1070.02, "end": 1073.68, "probability": 0.9979 }, { "start": 1073.98, "end": 1075.3, "probability": 0.8827 }, { "start": 1076.22, "end": 1080.42, "probability": 0.8095 }, { "start": 1081.54, "end": 1084.32, "probability": 0.9987 }, { "start": 1085.3, "end": 1086.4, "probability": 0.9719 }, { "start": 1087.14, "end": 1087.92, "probability": 0.9743 }, { "start": 1088.94, "end": 1091.94, "probability": 0.9978 }, { "start": 1092.54, "end": 1094.0, "probability": 0.8431 }, { "start": 1094.14, "end": 1095.44, "probability": 0.949 }, { "start": 1095.56, "end": 1098.18, "probability": 0.9863 }, { "start": 1098.74, "end": 1102.38, "probability": 0.9743 }, { "start": 1103.58, "end": 1104.92, "probability": 0.9379 }, { "start": 1105.04, "end": 1106.28, "probability": 0.993 }, { "start": 1106.46, "end": 1107.8, "probability": 0.9969 }, { "start": 1108.32, "end": 1109.46, "probability": 0.9863 }, { "start": 1110.14, "end": 1112.02, "probability": 0.9971 }, { "start": 1112.68, "end": 1116.42, "probability": 0.9969 }, { "start": 1117.02, "end": 1118.44, "probability": 0.9998 }, { "start": 1119.48, "end": 1121.58, "probability": 0.9938 }, { "start": 1122.2, "end": 1124.22, "probability": 0.9906 }, { "start": 1124.94, "end": 1126.26, "probability": 0.79 }, { "start": 1127.16, "end": 1129.98, "probability": 0.7842 }, { "start": 1130.56, "end": 1133.62, "probability": 0.9937 }, { "start": 1134.22, "end": 1139.22, "probability": 0.9978 }, { "start": 1140.54, "end": 1142.36, "probability": 0.9875 }, { "start": 1142.96, "end": 1145.04, "probability": 0.6897 }, { "start": 1145.42, "end": 1146.02, "probability": 0.7022 }, { "start": 1146.82, "end": 1147.27, "probability": 0.6473 }, { "start": 1153.66, "end": 1154.44, "probability": 0.5913 }, { "start": 1155.4, "end": 1156.12, "probability": 0.7567 }, { "start": 1157.28, "end": 1159.28, "probability": 0.9606 }, { "start": 1160.62, "end": 1161.56, "probability": 0.9109 }, { "start": 1163.14, "end": 1164.64, "probability": 0.9414 }, { "start": 1165.6, "end": 1167.74, "probability": 0.7912 }, { "start": 1169.18, "end": 1172.24, "probability": 0.96 }, { "start": 1173.0, "end": 1176.1, "probability": 0.985 }, { "start": 1177.06, "end": 1179.28, "probability": 0.989 }, { "start": 1180.26, "end": 1181.36, "probability": 0.6169 }, { "start": 1182.62, "end": 1184.8, "probability": 0.9896 }, { "start": 1185.62, "end": 1185.94, "probability": 0.952 }, { "start": 1188.1, "end": 1189.28, "probability": 0.9971 }, { "start": 1190.4, "end": 1192.04, "probability": 0.9246 }, { "start": 1193.88, "end": 1196.08, "probability": 0.9933 }, { "start": 1197.0, "end": 1200.22, "probability": 0.9563 }, { "start": 1201.0, "end": 1204.92, "probability": 0.9714 }, { "start": 1205.58, "end": 1206.34, "probability": 0.9409 }, { "start": 1208.16, "end": 1209.16, "probability": 0.9065 }, { "start": 1209.68, "end": 1210.22, "probability": 0.9184 }, { "start": 1211.0, "end": 1212.42, "probability": 0.9473 }, { "start": 1213.52, "end": 1216.02, "probability": 0.9937 }, { "start": 1217.26, "end": 1219.36, "probability": 0.9818 }, { "start": 1220.28, "end": 1222.56, "probability": 0.998 }, { "start": 1223.3, "end": 1223.92, "probability": 0.9978 }, { "start": 1225.42, "end": 1228.18, "probability": 0.9961 }, { "start": 1229.78, "end": 1230.04, "probability": 0.9443 }, { "start": 1230.84, "end": 1232.68, "probability": 0.9976 }, { "start": 1233.38, "end": 1235.02, "probability": 0.9972 }, { "start": 1236.1, "end": 1239.2, "probability": 0.8586 }, { "start": 1239.92, "end": 1243.66, "probability": 0.9925 }, { "start": 1244.3, "end": 1247.22, "probability": 0.9016 }, { "start": 1248.18, "end": 1249.84, "probability": 0.9783 }, { "start": 1250.94, "end": 1252.22, "probability": 0.8428 }, { "start": 1252.82, "end": 1253.68, "probability": 0.9816 }, { "start": 1254.38, "end": 1254.8, "probability": 0.9793 }, { "start": 1256.24, "end": 1256.65, "probability": 0.9985 }, { "start": 1257.84, "end": 1260.68, "probability": 0.7256 }, { "start": 1261.4, "end": 1265.72, "probability": 0.995 }, { "start": 1266.38, "end": 1267.72, "probability": 0.9651 }, { "start": 1268.4, "end": 1268.94, "probability": 0.7047 }, { "start": 1269.54, "end": 1272.32, "probability": 0.9272 }, { "start": 1272.98, "end": 1276.14, "probability": 0.9045 }, { "start": 1277.66, "end": 1279.58, "probability": 0.7364 }, { "start": 1280.54, "end": 1282.8, "probability": 0.7827 }, { "start": 1283.22, "end": 1284.44, "probability": 0.6777 }, { "start": 1284.56, "end": 1286.5, "probability": 0.948 }, { "start": 1291.4, "end": 1296.38, "probability": 0.8792 }, { "start": 1297.94, "end": 1298.64, "probability": 0.8082 }, { "start": 1298.84, "end": 1302.5, "probability": 0.9722 }, { "start": 1303.14, "end": 1305.96, "probability": 0.843 }, { "start": 1306.84, "end": 1309.24, "probability": 0.9724 }, { "start": 1310.2, "end": 1312.26, "probability": 0.9901 }, { "start": 1315.4, "end": 1318.38, "probability": 0.7721 }, { "start": 1319.04, "end": 1326.62, "probability": 0.9951 }, { "start": 1327.36, "end": 1330.3, "probability": 0.937 }, { "start": 1331.62, "end": 1334.9, "probability": 0.9041 }, { "start": 1336.64, "end": 1339.82, "probability": 0.9968 }, { "start": 1340.94, "end": 1343.44, "probability": 0.9966 }, { "start": 1344.2, "end": 1345.32, "probability": 0.99 }, { "start": 1346.26, "end": 1347.26, "probability": 0.7474 }, { "start": 1347.42, "end": 1348.8, "probability": 0.9948 }, { "start": 1349.18, "end": 1351.76, "probability": 0.9968 }, { "start": 1355.74, "end": 1356.82, "probability": 0.889 }, { "start": 1358.82, "end": 1361.06, "probability": 0.9282 }, { "start": 1362.6, "end": 1364.26, "probability": 0.9917 }, { "start": 1365.74, "end": 1368.24, "probability": 0.9706 }, { "start": 1369.16, "end": 1369.98, "probability": 0.9837 }, { "start": 1371.62, "end": 1372.68, "probability": 0.9907 }, { "start": 1373.78, "end": 1374.8, "probability": 0.9989 }, { "start": 1375.96, "end": 1377.64, "probability": 0.9684 }, { "start": 1378.84, "end": 1382.6, "probability": 0.9932 }, { "start": 1386.14, "end": 1386.96, "probability": 0.9165 }, { "start": 1389.88, "end": 1390.9, "probability": 0.8669 }, { "start": 1392.3, "end": 1394.7, "probability": 0.9249 }, { "start": 1395.6, "end": 1396.8, "probability": 0.9719 }, { "start": 1397.5, "end": 1398.9, "probability": 0.9926 }, { "start": 1403.92, "end": 1406.22, "probability": 0.9794 }, { "start": 1407.58, "end": 1408.68, "probability": 0.9443 }, { "start": 1409.66, "end": 1411.76, "probability": 0.9929 }, { "start": 1413.96, "end": 1420.74, "probability": 0.9977 }, { "start": 1422.82, "end": 1427.5, "probability": 0.8918 }, { "start": 1429.48, "end": 1431.35, "probability": 0.9333 }, { "start": 1434.7, "end": 1440.1, "probability": 0.9706 }, { "start": 1440.5, "end": 1441.76, "probability": 0.5815 }, { "start": 1442.86, "end": 1444.62, "probability": 0.9731 }, { "start": 1445.14, "end": 1445.94, "probability": 0.9209 }, { "start": 1446.58, "end": 1449.74, "probability": 0.9817 }, { "start": 1452.18, "end": 1454.16, "probability": 0.7578 }, { "start": 1456.26, "end": 1457.24, "probability": 0.9475 }, { "start": 1457.64, "end": 1461.78, "probability": 0.983 }, { "start": 1461.78, "end": 1465.84, "probability": 0.7619 }, { "start": 1466.34, "end": 1471.12, "probability": 0.9691 }, { "start": 1472.86, "end": 1475.62, "probability": 0.8987 }, { "start": 1476.34, "end": 1479.56, "probability": 0.9902 }, { "start": 1479.98, "end": 1482.44, "probability": 0.7893 }, { "start": 1483.52, "end": 1484.78, "probability": 0.8451 }, { "start": 1485.78, "end": 1487.7, "probability": 0.9297 }, { "start": 1488.08, "end": 1489.52, "probability": 0.9626 }, { "start": 1489.84, "end": 1491.56, "probability": 0.9909 }, { "start": 1491.94, "end": 1492.24, "probability": 0.7216 }, { "start": 1492.28, "end": 1492.74, "probability": 0.5983 }, { "start": 1493.02, "end": 1494.42, "probability": 0.8494 }, { "start": 1495.6, "end": 1496.32, "probability": 0.7124 }, { "start": 1496.42, "end": 1498.12, "probability": 0.856 }, { "start": 1498.58, "end": 1498.72, "probability": 0.2204 }, { "start": 1498.72, "end": 1499.28, "probability": 0.8859 }, { "start": 1499.82, "end": 1503.84, "probability": 0.959 }, { "start": 1504.82, "end": 1505.8, "probability": 0.7087 }, { "start": 1506.96, "end": 1508.58, "probability": 0.6012 }, { "start": 1508.94, "end": 1513.1, "probability": 0.9943 }, { "start": 1513.2, "end": 1515.26, "probability": 0.8481 }, { "start": 1515.88, "end": 1519.94, "probability": 0.9852 }, { "start": 1520.0, "end": 1524.14, "probability": 0.748 }, { "start": 1525.0, "end": 1530.18, "probability": 0.9932 }, { "start": 1530.62, "end": 1532.98, "probability": 0.9402 }, { "start": 1533.46, "end": 1537.08, "probability": 0.9346 }, { "start": 1537.58, "end": 1538.92, "probability": 0.916 }, { "start": 1539.06, "end": 1542.34, "probability": 0.9971 }, { "start": 1542.34, "end": 1546.33, "probability": 0.9898 }, { "start": 1547.58, "end": 1549.58, "probability": 0.9854 }, { "start": 1549.72, "end": 1555.86, "probability": 0.8366 }, { "start": 1556.2, "end": 1557.5, "probability": 0.9438 }, { "start": 1557.84, "end": 1558.92, "probability": 0.9666 }, { "start": 1559.0, "end": 1560.6, "probability": 0.9788 }, { "start": 1560.66, "end": 1562.53, "probability": 0.8864 }, { "start": 1563.04, "end": 1567.09, "probability": 0.8451 }, { "start": 1567.54, "end": 1569.32, "probability": 0.9596 }, { "start": 1569.86, "end": 1573.26, "probability": 0.9948 }, { "start": 1573.92, "end": 1578.12, "probability": 0.8415 }, { "start": 1578.66, "end": 1580.6, "probability": 0.9113 }, { "start": 1580.66, "end": 1585.38, "probability": 0.9845 }, { "start": 1585.8, "end": 1588.7, "probability": 0.9684 }, { "start": 1589.06, "end": 1593.74, "probability": 0.9938 }, { "start": 1594.36, "end": 1596.36, "probability": 0.9863 }, { "start": 1596.48, "end": 1596.7, "probability": 0.288 }, { "start": 1597.0, "end": 1598.76, "probability": 0.8549 }, { "start": 1598.92, "end": 1600.36, "probability": 0.8064 }, { "start": 1601.42, "end": 1603.1, "probability": 0.9544 }, { "start": 1605.18, "end": 1606.88, "probability": 0.844 }, { "start": 1607.08, "end": 1608.14, "probability": 0.8455 }, { "start": 1608.46, "end": 1611.12, "probability": 0.9956 }, { "start": 1613.3, "end": 1617.72, "probability": 0.9932 }, { "start": 1619.1, "end": 1622.1, "probability": 0.9935 }, { "start": 1623.1, "end": 1624.17, "probability": 0.9714 }, { "start": 1625.1, "end": 1625.94, "probability": 0.9617 }, { "start": 1626.94, "end": 1627.74, "probability": 0.9559 }, { "start": 1629.84, "end": 1630.3, "probability": 0.9619 }, { "start": 1630.4, "end": 1632.96, "probability": 0.9801 }, { "start": 1633.08, "end": 1633.56, "probability": 0.6626 }, { "start": 1634.62, "end": 1636.52, "probability": 0.8969 }, { "start": 1637.44, "end": 1638.44, "probability": 0.8517 }, { "start": 1639.4, "end": 1644.96, "probability": 0.9944 }, { "start": 1646.3, "end": 1653.02, "probability": 0.9665 }, { "start": 1653.72, "end": 1655.08, "probability": 0.8339 }, { "start": 1655.64, "end": 1658.18, "probability": 0.992 }, { "start": 1659.24, "end": 1659.34, "probability": 0.5044 }, { "start": 1659.94, "end": 1660.64, "probability": 0.5907 }, { "start": 1661.28, "end": 1663.36, "probability": 0.9799 }, { "start": 1663.7, "end": 1663.96, "probability": 0.854 }, { "start": 1664.64, "end": 1666.52, "probability": 0.8263 }, { "start": 1666.66, "end": 1669.0, "probability": 0.9958 }, { "start": 1669.25, "end": 1675.12, "probability": 0.9284 }, { "start": 1675.76, "end": 1678.6, "probability": 0.9681 }, { "start": 1681.26, "end": 1683.82, "probability": 0.967 }, { "start": 1684.14, "end": 1685.64, "probability": 0.9949 }, { "start": 1687.3, "end": 1689.66, "probability": 0.9958 }, { "start": 1689.76, "end": 1691.54, "probability": 0.9982 }, { "start": 1692.2, "end": 1694.46, "probability": 0.9902 }, { "start": 1698.12, "end": 1698.68, "probability": 0.8292 }, { "start": 1699.6, "end": 1700.66, "probability": 0.6893 }, { "start": 1700.82, "end": 1702.18, "probability": 0.7062 }, { "start": 1704.66, "end": 1705.8, "probability": 0.9652 }, { "start": 1707.2, "end": 1709.66, "probability": 0.9688 }, { "start": 1710.5, "end": 1711.06, "probability": 0.9815 }, { "start": 1713.16, "end": 1716.52, "probability": 0.8346 }, { "start": 1717.64, "end": 1721.2, "probability": 0.8933 }, { "start": 1722.26, "end": 1728.94, "probability": 0.9763 }, { "start": 1729.82, "end": 1731.22, "probability": 0.7681 }, { "start": 1732.0, "end": 1732.1, "probability": 0.1819 }, { "start": 1732.66, "end": 1735.38, "probability": 0.752 }, { "start": 1735.38, "end": 1737.16, "probability": 0.6726 }, { "start": 1737.78, "end": 1738.1, "probability": 0.6292 }, { "start": 1739.74, "end": 1743.28, "probability": 0.919 }, { "start": 1744.12, "end": 1745.56, "probability": 0.8469 }, { "start": 1746.42, "end": 1747.76, "probability": 0.8809 }, { "start": 1748.56, "end": 1752.94, "probability": 0.9789 }, { "start": 1753.3, "end": 1753.76, "probability": 0.5984 }, { "start": 1753.84, "end": 1756.44, "probability": 0.8144 }, { "start": 1757.78, "end": 1759.0, "probability": 0.6852 }, { "start": 1759.46, "end": 1764.25, "probability": 0.7912 }, { "start": 1764.36, "end": 1765.38, "probability": 0.6695 }, { "start": 1765.88, "end": 1768.16, "probability": 0.8025 }, { "start": 1768.76, "end": 1769.72, "probability": 0.929 }, { "start": 1770.94, "end": 1772.12, "probability": 0.9512 }, { "start": 1772.4, "end": 1772.5, "probability": 0.462 }, { "start": 1772.64, "end": 1773.52, "probability": 0.7072 }, { "start": 1773.66, "end": 1774.47, "probability": 0.9644 }, { "start": 1774.78, "end": 1775.22, "probability": 0.9841 }, { "start": 1775.38, "end": 1775.82, "probability": 0.9737 }, { "start": 1775.92, "end": 1776.58, "probability": 0.6772 }, { "start": 1777.62, "end": 1780.78, "probability": 0.8466 }, { "start": 1781.72, "end": 1782.52, "probability": 0.9279 }, { "start": 1782.64, "end": 1783.56, "probability": 0.8619 }, { "start": 1783.78, "end": 1784.41, "probability": 0.6269 }, { "start": 1786.44, "end": 1790.02, "probability": 0.6916 }, { "start": 1791.54, "end": 1792.48, "probability": 0.9362 }, { "start": 1792.66, "end": 1794.94, "probability": 0.975 }, { "start": 1795.1, "end": 1797.9, "probability": 0.7501 }, { "start": 1799.44, "end": 1805.22, "probability": 0.8959 }, { "start": 1807.06, "end": 1809.76, "probability": 0.8397 }, { "start": 1810.52, "end": 1812.3, "probability": 0.9941 }, { "start": 1813.18, "end": 1813.78, "probability": 0.9843 }, { "start": 1814.68, "end": 1817.27, "probability": 0.6722 }, { "start": 1818.6, "end": 1823.9, "probability": 0.8678 }, { "start": 1824.62, "end": 1826.12, "probability": 0.9771 }, { "start": 1826.2, "end": 1828.91, "probability": 0.9432 }, { "start": 1831.22, "end": 1833.22, "probability": 0.9902 }, { "start": 1833.56, "end": 1835.4, "probability": 0.6371 }, { "start": 1835.8, "end": 1836.86, "probability": 0.7634 }, { "start": 1837.44, "end": 1839.32, "probability": 0.9136 }, { "start": 1840.8, "end": 1842.84, "probability": 0.9897 }, { "start": 1843.12, "end": 1845.72, "probability": 0.9498 }, { "start": 1846.68, "end": 1847.74, "probability": 0.7769 }, { "start": 1848.1, "end": 1848.66, "probability": 0.7988 }, { "start": 1848.76, "end": 1852.2, "probability": 0.9959 }, { "start": 1852.72, "end": 1853.67, "probability": 0.6483 }, { "start": 1854.38, "end": 1857.5, "probability": 0.9961 }, { "start": 1858.22, "end": 1859.29, "probability": 0.9917 }, { "start": 1859.62, "end": 1861.76, "probability": 0.9781 }, { "start": 1862.3, "end": 1866.58, "probability": 0.9578 }, { "start": 1867.46, "end": 1868.16, "probability": 0.9028 }, { "start": 1868.76, "end": 1871.42, "probability": 0.9962 }, { "start": 1871.6, "end": 1872.18, "probability": 0.9718 }, { "start": 1872.62, "end": 1873.44, "probability": 0.7426 }, { "start": 1874.04, "end": 1876.94, "probability": 0.7203 }, { "start": 1876.94, "end": 1877.7, "probability": 0.7467 }, { "start": 1878.2, "end": 1882.32, "probability": 0.9526 }, { "start": 1883.28, "end": 1884.28, "probability": 0.9867 }, { "start": 1886.63, "end": 1890.96, "probability": 0.5392 }, { "start": 1891.7, "end": 1897.16, "probability": 0.787 }, { "start": 1898.0, "end": 1902.18, "probability": 0.9412 }, { "start": 1903.62, "end": 1906.46, "probability": 0.809 }, { "start": 1907.38, "end": 1908.28, "probability": 0.9391 }, { "start": 1909.02, "end": 1912.96, "probability": 0.6525 }, { "start": 1913.74, "end": 1917.36, "probability": 0.9646 }, { "start": 1918.0, "end": 1918.96, "probability": 0.9298 }, { "start": 1919.82, "end": 1920.82, "probability": 0.9912 }, { "start": 1922.08, "end": 1922.98, "probability": 0.9628 }, { "start": 1923.68, "end": 1927.28, "probability": 0.9429 }, { "start": 1928.86, "end": 1930.22, "probability": 0.9985 }, { "start": 1930.94, "end": 1932.64, "probability": 0.8186 }, { "start": 1933.4, "end": 1936.04, "probability": 0.9445 }, { "start": 1937.08, "end": 1939.08, "probability": 0.8753 }, { "start": 1939.82, "end": 1942.78, "probability": 0.9781 }, { "start": 1943.54, "end": 1946.92, "probability": 0.9779 }, { "start": 1947.5, "end": 1948.94, "probability": 0.9575 }, { "start": 1950.6, "end": 1951.92, "probability": 0.9823 }, { "start": 1953.66, "end": 1955.2, "probability": 0.9808 }, { "start": 1957.0, "end": 1957.58, "probability": 0.9684 }, { "start": 1958.32, "end": 1960.2, "probability": 0.9925 }, { "start": 1961.8, "end": 1964.16, "probability": 0.8043 }, { "start": 1964.96, "end": 1966.28, "probability": 0.9928 }, { "start": 1967.04, "end": 1970.28, "probability": 0.9614 }, { "start": 1972.32, "end": 1973.2, "probability": 0.9735 }, { "start": 1974.14, "end": 1977.02, "probability": 0.9564 }, { "start": 1977.9, "end": 1980.74, "probability": 0.9834 }, { "start": 1982.1, "end": 1983.46, "probability": 0.9774 }, { "start": 1984.48, "end": 1986.48, "probability": 0.9902 }, { "start": 1987.2, "end": 1989.78, "probability": 0.7204 }, { "start": 1990.26, "end": 1993.98, "probability": 0.9688 }, { "start": 1994.66, "end": 1998.02, "probability": 0.9501 }, { "start": 1998.46, "end": 2000.76, "probability": 0.8255 }, { "start": 2000.86, "end": 2003.0, "probability": 0.9585 }, { "start": 2004.26, "end": 2009.04, "probability": 0.9972 }, { "start": 2009.86, "end": 2014.4, "probability": 0.9902 }, { "start": 2015.02, "end": 2017.68, "probability": 0.8865 }, { "start": 2018.44, "end": 2021.16, "probability": 0.7844 }, { "start": 2021.62, "end": 2022.24, "probability": 0.911 }, { "start": 2022.72, "end": 2024.08, "probability": 0.9842 }, { "start": 2025.6, "end": 2028.94, "probability": 0.8546 }, { "start": 2029.58, "end": 2029.92, "probability": 0.7882 }, { "start": 2030.98, "end": 2031.72, "probability": 0.9421 }, { "start": 2033.1, "end": 2034.96, "probability": 0.8394 }, { "start": 2036.24, "end": 2040.7, "probability": 0.9808 }, { "start": 2041.88, "end": 2045.08, "probability": 0.9932 }, { "start": 2045.7, "end": 2047.5, "probability": 0.9276 }, { "start": 2048.06, "end": 2048.68, "probability": 0.8219 }, { "start": 2049.54, "end": 2049.86, "probability": 0.9673 }, { "start": 2050.48, "end": 2052.16, "probability": 0.9964 }, { "start": 2053.52, "end": 2057.18, "probability": 0.9935 }, { "start": 2057.18, "end": 2062.0, "probability": 0.9965 }, { "start": 2063.12, "end": 2069.54, "probability": 0.9899 }, { "start": 2070.84, "end": 2072.76, "probability": 0.9979 }, { "start": 2073.48, "end": 2075.28, "probability": 0.9485 }, { "start": 2076.16, "end": 2079.68, "probability": 0.9983 }, { "start": 2080.3, "end": 2087.22, "probability": 0.9731 }, { "start": 2088.44, "end": 2088.78, "probability": 0.6879 }, { "start": 2089.4, "end": 2091.66, "probability": 0.9753 }, { "start": 2092.34, "end": 2093.52, "probability": 0.9519 }, { "start": 2094.22, "end": 2098.12, "probability": 0.9818 }, { "start": 2098.92, "end": 2102.5, "probability": 0.9976 }, { "start": 2103.22, "end": 2109.02, "probability": 0.9304 }, { "start": 2109.94, "end": 2115.74, "probability": 0.9954 }, { "start": 2116.62, "end": 2117.3, "probability": 0.8574 }, { "start": 2117.94, "end": 2123.74, "probability": 0.994 }, { "start": 2124.82, "end": 2125.86, "probability": 0.5339 }, { "start": 2126.66, "end": 2129.38, "probability": 0.5556 }, { "start": 2129.52, "end": 2133.22, "probability": 0.9804 }, { "start": 2134.3, "end": 2136.62, "probability": 0.9952 }, { "start": 2137.84, "end": 2140.72, "probability": 0.9935 }, { "start": 2141.92, "end": 2142.98, "probability": 0.9113 }, { "start": 2143.5, "end": 2146.34, "probability": 0.9932 }, { "start": 2146.86, "end": 2147.56, "probability": 0.999 }, { "start": 2148.9, "end": 2149.44, "probability": 0.5294 }, { "start": 2150.16, "end": 2154.26, "probability": 0.9879 }, { "start": 2154.78, "end": 2156.98, "probability": 0.9423 }, { "start": 2157.64, "end": 2161.56, "probability": 0.9656 }, { "start": 2164.08, "end": 2167.16, "probability": 0.9622 }, { "start": 2167.84, "end": 2167.84, "probability": 0.0343 }, { "start": 2167.84, "end": 2171.52, "probability": 0.9805 }, { "start": 2171.52, "end": 2176.36, "probability": 0.9624 }, { "start": 2177.62, "end": 2177.86, "probability": 0.8911 }, { "start": 2178.7, "end": 2181.27, "probability": 0.8818 }, { "start": 2182.98, "end": 2185.2, "probability": 0.92 }, { "start": 2185.92, "end": 2188.54, "probability": 0.9048 }, { "start": 2189.14, "end": 2191.4, "probability": 0.9824 }, { "start": 2192.34, "end": 2194.16, "probability": 0.8147 }, { "start": 2194.8, "end": 2196.64, "probability": 0.9565 }, { "start": 2197.58, "end": 2199.5, "probability": 0.8957 }, { "start": 2200.16, "end": 2201.9, "probability": 0.9865 }, { "start": 2203.26, "end": 2204.44, "probability": 0.824 }, { "start": 2205.14, "end": 2205.94, "probability": 0.8901 }, { "start": 2206.86, "end": 2207.82, "probability": 0.7872 }, { "start": 2208.38, "end": 2209.04, "probability": 0.8762 }, { "start": 2210.2, "end": 2211.12, "probability": 0.8555 }, { "start": 2211.88, "end": 2214.54, "probability": 0.8745 }, { "start": 2232.98, "end": 2233.92, "probability": 0.7679 }, { "start": 2235.24, "end": 2236.16, "probability": 0.7936 }, { "start": 2236.86, "end": 2238.0, "probability": 0.9823 }, { "start": 2240.02, "end": 2240.72, "probability": 0.9301 }, { "start": 2241.72, "end": 2242.5, "probability": 0.7412 }, { "start": 2242.5, "end": 2243.54, "probability": 0.8572 }, { "start": 2246.38, "end": 2249.98, "probability": 0.9958 }, { "start": 2251.28, "end": 2254.26, "probability": 0.8745 }, { "start": 2255.14, "end": 2256.9, "probability": 0.9971 }, { "start": 2258.76, "end": 2261.9, "probability": 0.9935 }, { "start": 2262.84, "end": 2263.4, "probability": 0.4907 }, { "start": 2263.56, "end": 2267.46, "probability": 0.988 }, { "start": 2268.14, "end": 2269.48, "probability": 0.6983 }, { "start": 2270.34, "end": 2271.04, "probability": 0.7708 }, { "start": 2272.8, "end": 2273.7, "probability": 0.9585 }, { "start": 2275.18, "end": 2276.62, "probability": 0.973 }, { "start": 2277.6, "end": 2282.2, "probability": 0.9958 }, { "start": 2283.16, "end": 2285.66, "probability": 0.9663 }, { "start": 2285.96, "end": 2286.3, "probability": 0.8288 }, { "start": 2286.5, "end": 2287.54, "probability": 0.9034 }, { "start": 2289.06, "end": 2289.38, "probability": 0.802 }, { "start": 2289.56, "end": 2292.56, "probability": 0.7908 }, { "start": 2293.72, "end": 2299.2, "probability": 0.9536 }, { "start": 2300.36, "end": 2302.06, "probability": 0.8684 }, { "start": 2302.16, "end": 2304.22, "probability": 0.6888 }, { "start": 2304.96, "end": 2308.2, "probability": 0.9846 }, { "start": 2309.16, "end": 2310.96, "probability": 0.9786 }, { "start": 2311.84, "end": 2313.68, "probability": 0.8525 }, { "start": 2314.86, "end": 2317.32, "probability": 0.6555 }, { "start": 2318.44, "end": 2322.04, "probability": 0.9814 }, { "start": 2322.22, "end": 2324.0, "probability": 0.9961 }, { "start": 2324.84, "end": 2326.28, "probability": 0.9841 }, { "start": 2327.62, "end": 2328.42, "probability": 0.9697 }, { "start": 2329.24, "end": 2330.6, "probability": 0.8698 }, { "start": 2331.24, "end": 2333.3, "probability": 0.9125 }, { "start": 2334.2, "end": 2336.72, "probability": 0.9747 }, { "start": 2337.62, "end": 2340.7, "probability": 0.9935 }, { "start": 2342.24, "end": 2347.84, "probability": 0.9939 }, { "start": 2348.68, "end": 2350.48, "probability": 0.9916 }, { "start": 2351.24, "end": 2352.22, "probability": 0.8547 }, { "start": 2353.46, "end": 2354.96, "probability": 0.9988 }, { "start": 2355.1, "end": 2355.6, "probability": 0.9154 }, { "start": 2355.66, "end": 2359.12, "probability": 0.965 }, { "start": 2360.38, "end": 2362.32, "probability": 0.6398 }, { "start": 2363.04, "end": 2365.28, "probability": 0.6639 }, { "start": 2365.28, "end": 2367.64, "probability": 0.8641 }, { "start": 2368.62, "end": 2371.72, "probability": 0.9797 }, { "start": 2372.42, "end": 2373.34, "probability": 0.9427 }, { "start": 2375.2, "end": 2376.68, "probability": 0.9963 }, { "start": 2377.46, "end": 2380.34, "probability": 0.9675 }, { "start": 2381.1, "end": 2382.02, "probability": 0.8867 }, { "start": 2382.76, "end": 2385.14, "probability": 0.9577 }, { "start": 2385.76, "end": 2388.06, "probability": 0.8529 }, { "start": 2388.92, "end": 2390.88, "probability": 0.9789 }, { "start": 2392.36, "end": 2396.42, "probability": 0.8021 }, { "start": 2397.98, "end": 2399.58, "probability": 0.9789 }, { "start": 2400.24, "end": 2402.24, "probability": 0.8286 }, { "start": 2402.94, "end": 2403.58, "probability": 0.8666 }, { "start": 2404.88, "end": 2407.3, "probability": 0.8252 }, { "start": 2407.3, "end": 2411.7, "probability": 0.9053 }, { "start": 2412.5, "end": 2415.92, "probability": 0.9968 }, { "start": 2417.16, "end": 2421.92, "probability": 0.9989 }, { "start": 2422.46, "end": 2425.68, "probability": 0.9982 }, { "start": 2427.3, "end": 2427.68, "probability": 0.3971 }, { "start": 2427.74, "end": 2430.34, "probability": 0.9963 }, { "start": 2430.42, "end": 2433.4, "probability": 0.6652 }, { "start": 2433.54, "end": 2433.82, "probability": 0.6418 }, { "start": 2434.6, "end": 2436.22, "probability": 0.9062 }, { "start": 2437.32, "end": 2441.18, "probability": 0.9949 }, { "start": 2442.12, "end": 2443.34, "probability": 0.9873 }, { "start": 2444.04, "end": 2446.32, "probability": 0.9536 }, { "start": 2447.2, "end": 2448.66, "probability": 0.9951 }, { "start": 2449.0, "end": 2449.92, "probability": 0.8864 }, { "start": 2450.24, "end": 2450.88, "probability": 0.9802 }, { "start": 2450.98, "end": 2452.58, "probability": 0.8434 }, { "start": 2453.3, "end": 2453.74, "probability": 0.9838 }, { "start": 2455.18, "end": 2456.02, "probability": 0.9195 }, { "start": 2456.54, "end": 2459.5, "probability": 0.9962 }, { "start": 2460.82, "end": 2464.08, "probability": 0.9946 }, { "start": 2464.12, "end": 2466.6, "probability": 0.8593 }, { "start": 2467.7, "end": 2469.7, "probability": 0.9918 }, { "start": 2470.52, "end": 2472.58, "probability": 0.9964 }, { "start": 2472.58, "end": 2475.3, "probability": 0.9315 }, { "start": 2476.32, "end": 2480.66, "probability": 0.9795 }, { "start": 2482.18, "end": 2484.56, "probability": 0.9921 }, { "start": 2484.68, "end": 2487.72, "probability": 0.9827 }, { "start": 2488.22, "end": 2490.94, "probability": 0.9846 }, { "start": 2491.82, "end": 2495.08, "probability": 0.9298 }, { "start": 2495.08, "end": 2498.48, "probability": 0.9601 }, { "start": 2499.28, "end": 2500.52, "probability": 0.6657 }, { "start": 2502.22, "end": 2502.84, "probability": 0.66 }, { "start": 2502.92, "end": 2503.72, "probability": 0.8345 }, { "start": 2503.82, "end": 2506.7, "probability": 0.9918 }, { "start": 2508.08, "end": 2512.58, "probability": 0.9865 }, { "start": 2513.16, "end": 2518.68, "probability": 0.9952 }, { "start": 2519.28, "end": 2520.04, "probability": 0.9951 }, { "start": 2521.1, "end": 2522.06, "probability": 0.7175 }, { "start": 2522.14, "end": 2523.02, "probability": 0.7952 }, { "start": 2523.1, "end": 2526.66, "probability": 0.8647 }, { "start": 2526.72, "end": 2527.4, "probability": 0.8588 }, { "start": 2528.56, "end": 2531.52, "probability": 0.9904 }, { "start": 2532.24, "end": 2535.66, "probability": 0.9128 }, { "start": 2536.66, "end": 2537.4, "probability": 0.7656 }, { "start": 2537.5, "end": 2539.64, "probability": 0.9895 }, { "start": 2541.16, "end": 2543.54, "probability": 0.7424 }, { "start": 2544.26, "end": 2545.86, "probability": 0.731 }, { "start": 2546.78, "end": 2548.36, "probability": 0.9253 }, { "start": 2550.8, "end": 2551.9, "probability": 0.9752 }, { "start": 2552.58, "end": 2555.16, "probability": 0.6608 }, { "start": 2555.42, "end": 2557.66, "probability": 0.9913 }, { "start": 2558.52, "end": 2560.16, "probability": 0.6617 }, { "start": 2561.6, "end": 2564.64, "probability": 0.8691 }, { "start": 2565.82, "end": 2568.0, "probability": 0.9509 }, { "start": 2569.48, "end": 2569.74, "probability": 0.7903 }, { "start": 2569.86, "end": 2573.36, "probability": 0.9909 }, { "start": 2574.1, "end": 2575.98, "probability": 0.9967 }, { "start": 2576.82, "end": 2578.6, "probability": 0.9526 }, { "start": 2579.58, "end": 2580.3, "probability": 0.9855 }, { "start": 2580.88, "end": 2582.42, "probability": 0.9722 }, { "start": 2583.0, "end": 2584.54, "probability": 0.7367 }, { "start": 2585.44, "end": 2587.26, "probability": 0.6831 }, { "start": 2588.52, "end": 2590.46, "probability": 0.9962 }, { "start": 2591.14, "end": 2592.7, "probability": 0.9963 }, { "start": 2593.52, "end": 2597.56, "probability": 0.9969 }, { "start": 2598.32, "end": 2599.66, "probability": 0.7147 }, { "start": 2601.24, "end": 2601.62, "probability": 0.6442 }, { "start": 2601.66, "end": 2602.22, "probability": 0.9501 }, { "start": 2602.4, "end": 2605.48, "probability": 0.9714 }, { "start": 2607.06, "end": 2609.32, "probability": 0.9469 }, { "start": 2610.0, "end": 2612.7, "probability": 0.9871 }, { "start": 2614.18, "end": 2616.46, "probability": 0.9932 }, { "start": 2617.2, "end": 2618.02, "probability": 0.9471 }, { "start": 2619.86, "end": 2622.86, "probability": 0.9774 }, { "start": 2622.86, "end": 2626.4, "probability": 0.9151 }, { "start": 2628.18, "end": 2631.02, "probability": 0.9966 }, { "start": 2631.64, "end": 2633.32, "probability": 0.9954 }, { "start": 2634.1, "end": 2638.02, "probability": 0.9665 }, { "start": 2638.82, "end": 2641.76, "probability": 0.8361 }, { "start": 2643.32, "end": 2644.4, "probability": 0.9143 }, { "start": 2644.82, "end": 2645.36, "probability": 0.7108 }, { "start": 2645.42, "end": 2648.44, "probability": 0.994 }, { "start": 2649.52, "end": 2652.96, "probability": 0.9668 }, { "start": 2653.8, "end": 2656.72, "probability": 0.9914 }, { "start": 2657.7, "end": 2658.8, "probability": 0.8108 }, { "start": 2659.84, "end": 2663.62, "probability": 0.9937 }, { "start": 2664.2, "end": 2667.8, "probability": 0.9479 }, { "start": 2668.42, "end": 2669.14, "probability": 0.9737 }, { "start": 2670.46, "end": 2672.36, "probability": 0.9697 }, { "start": 2672.44, "end": 2672.92, "probability": 0.8898 }, { "start": 2673.08, "end": 2675.46, "probability": 0.9966 }, { "start": 2676.08, "end": 2678.06, "probability": 0.8577 }, { "start": 2678.82, "end": 2681.56, "probability": 0.9069 }, { "start": 2683.02, "end": 2687.28, "probability": 0.9899 }, { "start": 2688.26, "end": 2690.16, "probability": 0.9967 }, { "start": 2690.28, "end": 2690.96, "probability": 0.86 }, { "start": 2691.02, "end": 2691.88, "probability": 0.9676 }, { "start": 2692.88, "end": 2694.76, "probability": 0.9705 }, { "start": 2695.4, "end": 2698.7, "probability": 0.9866 }, { "start": 2699.34, "end": 2703.44, "probability": 0.9922 }, { "start": 2703.54, "end": 2707.5, "probability": 0.9899 }, { "start": 2709.16, "end": 2713.42, "probability": 0.953 }, { "start": 2714.18, "end": 2714.78, "probability": 0.7362 }, { "start": 2714.88, "end": 2715.38, "probability": 0.5108 }, { "start": 2715.44, "end": 2719.04, "probability": 0.9204 }, { "start": 2720.48, "end": 2721.56, "probability": 0.8212 }, { "start": 2723.4, "end": 2724.48, "probability": 0.807 }, { "start": 2725.4, "end": 2728.12, "probability": 0.9927 }, { "start": 2728.12, "end": 2730.6, "probability": 0.9629 }, { "start": 2731.78, "end": 2734.7, "probability": 0.9966 }, { "start": 2735.32, "end": 2737.28, "probability": 0.9481 }, { "start": 2738.1, "end": 2739.42, "probability": 0.9807 }, { "start": 2741.1, "end": 2743.7, "probability": 0.983 }, { "start": 2744.36, "end": 2748.5, "probability": 0.9879 }, { "start": 2749.88, "end": 2751.5, "probability": 0.9217 }, { "start": 2752.46, "end": 2755.44, "probability": 0.7668 }, { "start": 2756.54, "end": 2758.72, "probability": 0.995 }, { "start": 2758.72, "end": 2762.2, "probability": 0.9977 }, { "start": 2763.06, "end": 2767.48, "probability": 0.84 }, { "start": 2768.02, "end": 2771.44, "probability": 0.9932 }, { "start": 2771.44, "end": 2776.06, "probability": 0.9974 }, { "start": 2777.24, "end": 2779.96, "probability": 0.9663 }, { "start": 2780.84, "end": 2783.98, "probability": 0.9696 }, { "start": 2784.84, "end": 2787.4, "probability": 0.9814 }, { "start": 2788.28, "end": 2789.06, "probability": 0.999 }, { "start": 2789.58, "end": 2791.04, "probability": 0.9544 }, { "start": 2792.22, "end": 2792.84, "probability": 0.8721 }, { "start": 2793.36, "end": 2795.36, "probability": 0.9663 }, { "start": 2797.04, "end": 2802.2, "probability": 0.9975 }, { "start": 2803.26, "end": 2806.24, "probability": 0.9067 }, { "start": 2807.02, "end": 2809.24, "probability": 0.9613 }, { "start": 2810.66, "end": 2810.87, "probability": 0.9322 }, { "start": 2811.98, "end": 2814.28, "probability": 0.9915 }, { "start": 2814.28, "end": 2816.32, "probability": 0.947 }, { "start": 2817.76, "end": 2820.04, "probability": 0.6484 }, { "start": 2821.18, "end": 2823.44, "probability": 0.9892 }, { "start": 2824.68, "end": 2828.78, "probability": 0.9972 }, { "start": 2829.56, "end": 2830.14, "probability": 0.6334 }, { "start": 2830.98, "end": 2833.4, "probability": 0.8507 }, { "start": 2834.26, "end": 2836.24, "probability": 0.9521 }, { "start": 2837.02, "end": 2838.16, "probability": 0.9786 }, { "start": 2838.6, "end": 2839.62, "probability": 0.6941 }, { "start": 2840.8, "end": 2842.64, "probability": 0.8385 }, { "start": 2842.82, "end": 2845.92, "probability": 0.9098 }, { "start": 2846.86, "end": 2849.6, "probability": 0.991 }, { "start": 2850.82, "end": 2853.5, "probability": 0.9473 }, { "start": 2864.28, "end": 2864.76, "probability": 0.5121 }, { "start": 2864.84, "end": 2865.8, "probability": 0.7042 }, { "start": 2866.38, "end": 2867.36, "probability": 0.7914 }, { "start": 2867.98, "end": 2868.74, "probability": 0.8613 }, { "start": 2870.26, "end": 2871.04, "probability": 0.8553 }, { "start": 2872.24, "end": 2873.74, "probability": 0.9898 }, { "start": 2875.52, "end": 2878.44, "probability": 0.9893 }, { "start": 2879.78, "end": 2882.6, "probability": 0.978 }, { "start": 2884.34, "end": 2884.76, "probability": 0.5471 }, { "start": 2886.04, "end": 2887.46, "probability": 0.7939 }, { "start": 2888.72, "end": 2892.12, "probability": 0.9895 }, { "start": 2893.7, "end": 2897.6, "probability": 0.9921 }, { "start": 2899.44, "end": 2901.6, "probability": 0.996 }, { "start": 2902.86, "end": 2905.48, "probability": 0.9863 }, { "start": 2907.22, "end": 2910.3, "probability": 0.8162 }, { "start": 2910.86, "end": 2912.44, "probability": 0.981 }, { "start": 2914.4, "end": 2915.4, "probability": 0.6503 }, { "start": 2916.74, "end": 2921.82, "probability": 0.9916 }, { "start": 2921.86, "end": 2922.22, "probability": 0.5964 }, { "start": 2922.36, "end": 2923.2, "probability": 0.8591 }, { "start": 2923.64, "end": 2926.62, "probability": 0.7179 }, { "start": 2926.72, "end": 2927.74, "probability": 0.5628 }, { "start": 2927.82, "end": 2928.96, "probability": 0.8564 }, { "start": 2929.24, "end": 2930.22, "probability": 0.6524 }, { "start": 2930.64, "end": 2931.52, "probability": 0.7785 }, { "start": 2932.32, "end": 2934.9, "probability": 0.9889 }, { "start": 2935.04, "end": 2939.5, "probability": 0.9601 }, { "start": 2940.12, "end": 2942.02, "probability": 0.6095 }, { "start": 2943.56, "end": 2949.2, "probability": 0.9871 }, { "start": 2949.34, "end": 2950.44, "probability": 0.3347 }, { "start": 2951.34, "end": 2953.24, "probability": 0.7516 }, { "start": 2954.06, "end": 2954.62, "probability": 0.7992 }, { "start": 2954.68, "end": 2959.32, "probability": 0.9956 }, { "start": 2959.38, "end": 2961.1, "probability": 0.9924 }, { "start": 2961.94, "end": 2963.12, "probability": 0.5464 }, { "start": 2963.3, "end": 2964.92, "probability": 0.5723 }, { "start": 2965.38, "end": 2965.8, "probability": 0.7126 }, { "start": 2965.9, "end": 2966.66, "probability": 0.9777 }, { "start": 2966.72, "end": 2972.94, "probability": 0.7938 }, { "start": 2973.36, "end": 2973.52, "probability": 0.0762 }, { "start": 2973.52, "end": 2974.32, "probability": 0.8668 }, { "start": 2974.92, "end": 2976.46, "probability": 0.9756 }, { "start": 2977.36, "end": 2978.26, "probability": 0.6696 }, { "start": 2978.36, "end": 2986.76, "probability": 0.9561 }, { "start": 2987.28, "end": 2990.08, "probability": 0.9021 }, { "start": 2990.84, "end": 2994.06, "probability": 0.9956 }, { "start": 2994.48, "end": 2998.74, "probability": 0.9378 }, { "start": 2999.28, "end": 2999.6, "probability": 0.9194 }, { "start": 2999.74, "end": 3001.7, "probability": 0.9113 }, { "start": 3001.76, "end": 3004.46, "probability": 0.9962 }, { "start": 3005.14, "end": 3007.14, "probability": 0.9869 }, { "start": 3007.66, "end": 3008.78, "probability": 0.979 }, { "start": 3009.16, "end": 3014.62, "probability": 0.9904 }, { "start": 3015.46, "end": 3018.06, "probability": 0.9885 }, { "start": 3018.4, "end": 3022.04, "probability": 0.9987 }, { "start": 3022.2, "end": 3025.82, "probability": 0.9648 }, { "start": 3026.2, "end": 3028.66, "probability": 0.999 }, { "start": 3029.12, "end": 3032.3, "probability": 0.8953 }, { "start": 3032.54, "end": 3035.24, "probability": 0.9885 }, { "start": 3035.7, "end": 3036.36, "probability": 0.949 }, { "start": 3036.84, "end": 3041.56, "probability": 0.9961 }, { "start": 3042.14, "end": 3052.56, "probability": 0.9736 }, { "start": 3054.04, "end": 3054.36, "probability": 0.6738 }, { "start": 3054.42, "end": 3056.26, "probability": 0.9844 }, { "start": 3056.38, "end": 3057.6, "probability": 0.8351 }, { "start": 3057.72, "end": 3063.3, "probability": 0.9928 }, { "start": 3064.02, "end": 3066.18, "probability": 0.9668 }, { "start": 3066.34, "end": 3066.68, "probability": 0.9613 }, { "start": 3066.86, "end": 3067.44, "probability": 0.4382 }, { "start": 3067.54, "end": 3072.6, "probability": 0.9839 }, { "start": 3073.28, "end": 3078.34, "probability": 0.9928 }, { "start": 3078.4, "end": 3079.06, "probability": 0.8454 }, { "start": 3079.8, "end": 3085.9, "probability": 0.9806 }, { "start": 3086.5, "end": 3089.54, "probability": 0.9953 }, { "start": 3089.54, "end": 3092.94, "probability": 0.9937 }, { "start": 3093.46, "end": 3098.02, "probability": 0.9856 }, { "start": 3098.46, "end": 3099.52, "probability": 0.8988 }, { "start": 3100.0, "end": 3101.04, "probability": 0.8216 }, { "start": 3101.18, "end": 3104.76, "probability": 0.8294 }, { "start": 3105.74, "end": 3107.24, "probability": 0.385 }, { "start": 3107.28, "end": 3108.72, "probability": 0.7867 }, { "start": 3108.8, "end": 3111.7, "probability": 0.8889 }, { "start": 3112.32, "end": 3114.82, "probability": 0.8377 }, { "start": 3114.9, "end": 3116.38, "probability": 0.9878 }, { "start": 3116.64, "end": 3119.5, "probability": 0.989 }, { "start": 3120.0, "end": 3123.18, "probability": 0.9438 }, { "start": 3124.16, "end": 3129.36, "probability": 0.9979 }, { "start": 3129.42, "end": 3131.04, "probability": 0.9877 }, { "start": 3131.9, "end": 3131.9, "probability": 0.7456 }, { "start": 3133.46, "end": 3133.68, "probability": 0.2344 }, { "start": 3133.68, "end": 3135.8, "probability": 0.6576 }, { "start": 3136.28, "end": 3140.78, "probability": 0.9925 }, { "start": 3141.38, "end": 3143.04, "probability": 0.8784 }, { "start": 3143.54, "end": 3145.82, "probability": 0.9104 }, { "start": 3146.38, "end": 3147.6, "probability": 0.7717 }, { "start": 3148.04, "end": 3149.9, "probability": 0.7132 }, { "start": 3150.3, "end": 3150.92, "probability": 0.8985 }, { "start": 3151.3, "end": 3152.8, "probability": 0.8857 }, { "start": 3153.2, "end": 3156.86, "probability": 0.9592 }, { "start": 3157.66, "end": 3160.48, "probability": 0.9719 }, { "start": 3161.04, "end": 3162.3, "probability": 0.6639 }, { "start": 3163.44, "end": 3167.5, "probability": 0.6089 }, { "start": 3168.2, "end": 3169.98, "probability": 0.8066 }, { "start": 3170.74, "end": 3173.26, "probability": 0.9967 }, { "start": 3174.06, "end": 3174.6, "probability": 0.9177 }, { "start": 3175.6, "end": 3177.54, "probability": 0.9224 }, { "start": 3178.08, "end": 3180.86, "probability": 0.9531 }, { "start": 3180.98, "end": 3183.96, "probability": 0.9957 }, { "start": 3184.5, "end": 3187.46, "probability": 0.9937 }, { "start": 3188.54, "end": 3191.04, "probability": 0.9984 }, { "start": 3191.06, "end": 3193.22, "probability": 0.998 }, { "start": 3194.48, "end": 3195.98, "probability": 0.7326 }, { "start": 3196.0, "end": 3196.32, "probability": 0.8642 }, { "start": 3196.36, "end": 3198.14, "probability": 0.9985 }, { "start": 3198.62, "end": 3199.98, "probability": 0.9292 }, { "start": 3200.06, "end": 3200.26, "probability": 0.4172 }, { "start": 3200.38, "end": 3203.12, "probability": 0.9172 }, { "start": 3203.82, "end": 3205.9, "probability": 0.9735 }, { "start": 3206.02, "end": 3207.22, "probability": 0.9995 }, { "start": 3207.74, "end": 3209.26, "probability": 0.6773 }, { "start": 3209.66, "end": 3210.78, "probability": 0.6107 }, { "start": 3210.96, "end": 3212.56, "probability": 0.9754 }, { "start": 3212.94, "end": 3215.88, "probability": 0.818 }, { "start": 3216.06, "end": 3217.33, "probability": 0.9279 }, { "start": 3217.74, "end": 3218.78, "probability": 0.9019 }, { "start": 3218.94, "end": 3219.3, "probability": 0.8461 }, { "start": 3219.66, "end": 3222.78, "probability": 0.7435 }, { "start": 3223.44, "end": 3225.88, "probability": 0.9912 }, { "start": 3226.54, "end": 3229.18, "probability": 0.8596 }, { "start": 3230.2, "end": 3232.88, "probability": 0.7598 }, { "start": 3233.14, "end": 3235.02, "probability": 0.9814 }, { "start": 3235.6, "end": 3236.09, "probability": 0.94 }, { "start": 3237.0, "end": 3239.84, "probability": 0.9977 }, { "start": 3240.2, "end": 3241.8, "probability": 0.9245 }, { "start": 3242.16, "end": 3245.13, "probability": 0.9799 }, { "start": 3245.92, "end": 3247.42, "probability": 0.7417 }, { "start": 3248.42, "end": 3252.34, "probability": 0.9921 }, { "start": 3252.96, "end": 3254.44, "probability": 0.897 }, { "start": 3255.1, "end": 3256.68, "probability": 0.9631 }, { "start": 3257.3, "end": 3258.98, "probability": 0.9415 }, { "start": 3259.66, "end": 3260.3, "probability": 0.9359 }, { "start": 3260.84, "end": 3262.92, "probability": 0.8112 }, { "start": 3263.62, "end": 3265.64, "probability": 0.998 }, { "start": 3265.9, "end": 3269.58, "probability": 0.9958 }, { "start": 3270.14, "end": 3273.98, "probability": 0.9835 }, { "start": 3274.12, "end": 3274.4, "probability": 0.7538 }, { "start": 3275.0, "end": 3277.26, "probability": 0.9695 }, { "start": 3277.38, "end": 3279.44, "probability": 0.9907 }, { "start": 3280.22, "end": 3282.18, "probability": 0.8096 }, { "start": 3282.52, "end": 3286.62, "probability": 0.9395 }, { "start": 3302.78, "end": 3302.78, "probability": 0.0551 }, { "start": 3302.78, "end": 3303.56, "probability": 0.5102 }, { "start": 3304.94, "end": 3305.82, "probability": 0.8359 }, { "start": 3306.68, "end": 3308.18, "probability": 0.9393 }, { "start": 3309.64, "end": 3312.6, "probability": 0.9747 }, { "start": 3313.46, "end": 3318.68, "probability": 0.9369 }, { "start": 3319.22, "end": 3322.02, "probability": 0.9967 }, { "start": 3322.6, "end": 3323.56, "probability": 0.8903 }, { "start": 3324.24, "end": 3325.22, "probability": 0.796 }, { "start": 3326.38, "end": 3330.02, "probability": 0.874 }, { "start": 3330.78, "end": 3333.18, "probability": 0.9816 }, { "start": 3334.12, "end": 3337.56, "probability": 0.9921 }, { "start": 3338.44, "end": 3340.8, "probability": 0.9528 }, { "start": 3341.32, "end": 3343.82, "probability": 0.9967 }, { "start": 3345.26, "end": 3348.64, "probability": 0.8462 }, { "start": 3349.2, "end": 3352.86, "probability": 0.967 }, { "start": 3353.72, "end": 3356.24, "probability": 0.9958 }, { "start": 3357.34, "end": 3360.12, "probability": 0.998 }, { "start": 3360.17, "end": 3363.54, "probability": 0.9578 }, { "start": 3364.1, "end": 3364.74, "probability": 0.7398 }, { "start": 3366.4, "end": 3370.32, "probability": 0.9917 }, { "start": 3370.68, "end": 3371.78, "probability": 0.9848 }, { "start": 3372.4, "end": 3375.08, "probability": 0.9958 }, { "start": 3375.66, "end": 3377.98, "probability": 0.7032 }, { "start": 3378.72, "end": 3379.63, "probability": 0.9376 }, { "start": 3380.52, "end": 3381.46, "probability": 0.7909 }, { "start": 3381.92, "end": 3385.32, "probability": 0.9604 }, { "start": 3386.14, "end": 3388.72, "probability": 0.9897 }, { "start": 3390.12, "end": 3394.38, "probability": 0.9916 }, { "start": 3395.37, "end": 3396.72, "probability": 0.9049 }, { "start": 3397.7, "end": 3398.0, "probability": 0.6329 }, { "start": 3398.82, "end": 3404.42, "probability": 0.9521 }, { "start": 3405.06, "end": 3407.84, "probability": 0.8968 }, { "start": 3408.34, "end": 3411.74, "probability": 0.9941 }, { "start": 3412.68, "end": 3415.64, "probability": 0.9852 }, { "start": 3416.82, "end": 3420.04, "probability": 0.9909 }, { "start": 3420.82, "end": 3425.78, "probability": 0.9949 }, { "start": 3426.28, "end": 3429.28, "probability": 0.9324 }, { "start": 3429.28, "end": 3432.8, "probability": 0.9967 }, { "start": 3433.66, "end": 3435.48, "probability": 0.9874 }, { "start": 3435.59, "end": 3438.8, "probability": 0.948 }, { "start": 3439.4, "end": 3440.42, "probability": 0.8173 }, { "start": 3441.38, "end": 3442.08, "probability": 0.7333 }, { "start": 3442.86, "end": 3447.06, "probability": 0.9836 }, { "start": 3447.74, "end": 3448.86, "probability": 0.8721 }, { "start": 3449.7, "end": 3451.5, "probability": 0.9906 }, { "start": 3452.26, "end": 3453.94, "probability": 0.9981 }, { "start": 3454.48, "end": 3456.46, "probability": 0.9977 }, { "start": 3457.44, "end": 3459.64, "probability": 0.9771 }, { "start": 3460.18, "end": 3463.2, "probability": 0.9982 }, { "start": 3463.82, "end": 3464.74, "probability": 0.6929 }, { "start": 3465.42, "end": 3467.88, "probability": 0.9572 }, { "start": 3468.5, "end": 3470.44, "probability": 0.9922 }, { "start": 3471.54, "end": 3472.98, "probability": 0.9951 }, { "start": 3473.88, "end": 3474.12, "probability": 0.8551 }, { "start": 3475.12, "end": 3475.82, "probability": 0.794 }, { "start": 3477.16, "end": 3478.68, "probability": 0.7602 }, { "start": 3479.36, "end": 3480.8, "probability": 0.9648 }, { "start": 3481.36, "end": 3482.2, "probability": 0.6357 }, { "start": 3482.8, "end": 3483.74, "probability": 0.9844 }, { "start": 3484.52, "end": 3487.57, "probability": 0.773 }, { "start": 3488.12, "end": 3489.2, "probability": 0.9861 }, { "start": 3491.12, "end": 3492.56, "probability": 0.9966 }, { "start": 3492.76, "end": 3494.26, "probability": 0.9874 }, { "start": 3495.1, "end": 3499.66, "probability": 0.9864 }, { "start": 3500.24, "end": 3503.52, "probability": 0.9989 }, { "start": 3504.08, "end": 3504.58, "probability": 0.9698 }, { "start": 3505.46, "end": 3506.86, "probability": 0.734 }, { "start": 3507.38, "end": 3508.56, "probability": 0.9024 }, { "start": 3509.08, "end": 3510.56, "probability": 0.5709 }, { "start": 3512.0, "end": 3513.06, "probability": 0.7501 }, { "start": 3514.4, "end": 3515.24, "probability": 0.8463 }, { "start": 3515.72, "end": 3518.3, "probability": 0.9857 }, { "start": 3518.84, "end": 3520.44, "probability": 0.9622 }, { "start": 3521.24, "end": 3524.98, "probability": 0.9956 }, { "start": 3525.56, "end": 3527.6, "probability": 0.9872 }, { "start": 3528.48, "end": 3530.38, "probability": 0.9978 }, { "start": 3530.38, "end": 3532.94, "probability": 0.9991 }, { "start": 3533.66, "end": 3535.6, "probability": 0.908 }, { "start": 3536.12, "end": 3537.78, "probability": 0.9726 }, { "start": 3539.02, "end": 3540.7, "probability": 0.8669 }, { "start": 3542.18, "end": 3545.46, "probability": 0.9569 }, { "start": 3546.04, "end": 3549.76, "probability": 0.9525 }, { "start": 3550.32, "end": 3553.36, "probability": 0.9556 }, { "start": 3554.18, "end": 3554.52, "probability": 0.9315 }, { "start": 3555.04, "end": 3555.48, "probability": 0.8337 }, { "start": 3556.76, "end": 3557.44, "probability": 0.7889 }, { "start": 3558.46, "end": 3558.86, "probability": 0.6636 }, { "start": 3560.1, "end": 3560.94, "probability": 0.9729 }, { "start": 3562.2, "end": 3564.78, "probability": 0.9757 }, { "start": 3567.88, "end": 3570.4, "probability": 0.6635 }, { "start": 3570.78, "end": 3575.84, "probability": 0.9624 }, { "start": 3576.48, "end": 3577.3, "probability": 0.8721 }, { "start": 3578.38, "end": 3579.98, "probability": 0.9329 }, { "start": 3580.2, "end": 3580.84, "probability": 0.7995 }, { "start": 3581.72, "end": 3583.6, "probability": 0.8856 }, { "start": 3585.6, "end": 3586.34, "probability": 0.9412 }, { "start": 3586.46, "end": 3588.28, "probability": 0.9522 }, { "start": 3588.66, "end": 3589.88, "probability": 0.9212 }, { "start": 3590.0, "end": 3590.7, "probability": 0.6066 }, { "start": 3592.2, "end": 3594.44, "probability": 0.751 }, { "start": 3613.72, "end": 3614.94, "probability": 0.724 }, { "start": 3617.62, "end": 3619.52, "probability": 0.9693 }, { "start": 3621.18, "end": 3621.92, "probability": 0.9514 }, { "start": 3624.3, "end": 3628.38, "probability": 0.9761 }, { "start": 3628.38, "end": 3636.82, "probability": 0.9762 }, { "start": 3637.9, "end": 3642.44, "probability": 0.8351 }, { "start": 3642.44, "end": 3642.74, "probability": 0.5982 }, { "start": 3644.32, "end": 3649.48, "probability": 0.9014 }, { "start": 3651.4, "end": 3653.98, "probability": 0.6031 }, { "start": 3654.44, "end": 3657.5, "probability": 0.5096 }, { "start": 3658.38, "end": 3659.38, "probability": 0.4401 }, { "start": 3661.34, "end": 3662.16, "probability": 0.5257 }, { "start": 3663.16, "end": 3663.74, "probability": 0.9621 }, { "start": 3665.52, "end": 3668.38, "probability": 0.7891 }, { "start": 3668.82, "end": 3668.92, "probability": 0.1275 }, { "start": 3668.94, "end": 3670.52, "probability": 0.7806 }, { "start": 3671.4, "end": 3671.6, "probability": 0.4665 }, { "start": 3671.64, "end": 3673.56, "probability": 0.346 }, { "start": 3674.42, "end": 3675.6, "probability": 0.9446 }, { "start": 3676.64, "end": 3679.93, "probability": 0.9969 }, { "start": 3680.78, "end": 3682.08, "probability": 0.8403 }, { "start": 3682.78, "end": 3685.18, "probability": 0.9937 }, { "start": 3685.34, "end": 3688.52, "probability": 0.9917 }, { "start": 3689.68, "end": 3690.82, "probability": 0.3333 }, { "start": 3691.6, "end": 3696.1, "probability": 0.9373 }, { "start": 3696.22, "end": 3696.98, "probability": 0.6607 }, { "start": 3699.66, "end": 3701.78, "probability": 0.8853 }, { "start": 3702.78, "end": 3706.06, "probability": 0.99 }, { "start": 3707.38, "end": 3710.62, "probability": 0.9852 }, { "start": 3711.38, "end": 3712.38, "probability": 0.8784 }, { "start": 3713.62, "end": 3715.6, "probability": 0.288 }, { "start": 3717.0, "end": 3719.9, "probability": 0.992 }, { "start": 3720.12, "end": 3723.18, "probability": 0.9955 }, { "start": 3724.1, "end": 3725.12, "probability": 0.9874 }, { "start": 3725.94, "end": 3727.14, "probability": 0.954 }, { "start": 3727.88, "end": 3728.96, "probability": 0.9165 }, { "start": 3729.92, "end": 3732.62, "probability": 0.9951 }, { "start": 3733.46, "end": 3733.8, "probability": 0.9795 }, { "start": 3735.02, "end": 3737.42, "probability": 0.9029 }, { "start": 3738.7, "end": 3740.08, "probability": 0.8462 }, { "start": 3741.76, "end": 3742.54, "probability": 0.7264 }, { "start": 3742.84, "end": 3744.96, "probability": 0.9851 }, { "start": 3744.98, "end": 3745.96, "probability": 0.9004 }, { "start": 3747.04, "end": 3748.02, "probability": 0.9409 }, { "start": 3748.96, "end": 3749.44, "probability": 0.7831 }, { "start": 3750.88, "end": 3751.48, "probability": 0.87 }, { "start": 3752.34, "end": 3753.18, "probability": 0.968 }, { "start": 3753.44, "end": 3755.08, "probability": 0.2983 }, { "start": 3755.28, "end": 3755.28, "probability": 0.6131 }, { "start": 3755.28, "end": 3756.5, "probability": 0.0269 }, { "start": 3759.48, "end": 3759.96, "probability": 0.0354 }, { "start": 3761.48, "end": 3767.42, "probability": 0.9206 }, { "start": 3769.68, "end": 3770.22, "probability": 0.2571 }, { "start": 3771.28, "end": 3772.58, "probability": 0.733 }, { "start": 3773.52, "end": 3777.72, "probability": 0.9756 }, { "start": 3778.5, "end": 3779.28, "probability": 0.4203 }, { "start": 3779.98, "end": 3780.52, "probability": 0.986 }, { "start": 3781.2, "end": 3781.78, "probability": 0.9585 }, { "start": 3782.98, "end": 3783.9, "probability": 0.7529 }, { "start": 3784.58, "end": 3785.18, "probability": 0.7457 }, { "start": 3786.14, "end": 3789.18, "probability": 0.9661 }, { "start": 3789.34, "end": 3789.72, "probability": 0.9596 }, { "start": 3789.88, "end": 3790.7, "probability": 0.7859 }, { "start": 3792.34, "end": 3796.82, "probability": 0.9648 }, { "start": 3797.64, "end": 3799.1, "probability": 0.9616 }, { "start": 3800.38, "end": 3802.14, "probability": 0.9557 }, { "start": 3802.82, "end": 3804.62, "probability": 0.9833 }, { "start": 3805.48, "end": 3808.18, "probability": 0.9242 }, { "start": 3808.84, "end": 3811.68, "probability": 0.861 }, { "start": 3811.94, "end": 3813.6, "probability": 0.9275 }, { "start": 3813.82, "end": 3815.7, "probability": 0.9086 }, { "start": 3816.14, "end": 3817.9, "probability": 0.9976 }, { "start": 3818.38, "end": 3821.9, "probability": 0.9985 }, { "start": 3823.04, "end": 3825.48, "probability": 0.6105 }, { "start": 3826.52, "end": 3829.66, "probability": 0.8787 }, { "start": 3830.3, "end": 3830.76, "probability": 0.8983 }, { "start": 3832.1, "end": 3834.28, "probability": 0.9831 }, { "start": 3834.44, "end": 3835.6, "probability": 0.9297 }, { "start": 3835.9, "end": 3838.72, "probability": 0.9825 }, { "start": 3839.26, "end": 3840.88, "probability": 0.713 }, { "start": 3841.68, "end": 3843.64, "probability": 0.8178 }, { "start": 3844.66, "end": 3845.54, "probability": 0.918 }, { "start": 3847.3, "end": 3850.92, "probability": 0.6619 }, { "start": 3851.52, "end": 3854.68, "probability": 0.914 }, { "start": 3855.46, "end": 3855.88, "probability": 0.819 }, { "start": 3857.66, "end": 3858.32, "probability": 0.771 }, { "start": 3858.46, "end": 3859.1, "probability": 0.8767 }, { "start": 3859.26, "end": 3860.52, "probability": 0.876 }, { "start": 3860.64, "end": 3862.89, "probability": 0.8872 }, { "start": 3863.78, "end": 3864.58, "probability": 0.9863 }, { "start": 3864.78, "end": 3865.42, "probability": 0.6895 }, { "start": 3865.56, "end": 3865.84, "probability": 0.8171 }, { "start": 3866.18, "end": 3866.84, "probability": 0.6197 }, { "start": 3868.44, "end": 3871.5, "probability": 0.9312 }, { "start": 3872.14, "end": 3873.84, "probability": 0.9877 }, { "start": 3874.66, "end": 3876.74, "probability": 0.9087 }, { "start": 3878.36, "end": 3878.42, "probability": 0.0178 }, { "start": 3878.42, "end": 3879.9, "probability": 0.573 }, { "start": 3880.92, "end": 3881.5, "probability": 0.4934 }, { "start": 3882.42, "end": 3885.76, "probability": 0.8525 }, { "start": 3887.48, "end": 3887.8, "probability": 0.4937 }, { "start": 3887.88, "end": 3888.68, "probability": 0.9689 }, { "start": 3889.98, "end": 3890.54, "probability": 0.937 }, { "start": 3890.62, "end": 3892.3, "probability": 0.991 }, { "start": 3893.78, "end": 3895.84, "probability": 0.9771 }, { "start": 3896.06, "end": 3897.68, "probability": 0.6909 }, { "start": 3898.1, "end": 3900.0, "probability": 0.7446 }, { "start": 3900.74, "end": 3904.0, "probability": 0.9775 }, { "start": 3904.76, "end": 3905.14, "probability": 0.7184 }, { "start": 3905.8, "end": 3906.08, "probability": 0.7054 }, { "start": 3907.04, "end": 3908.66, "probability": 0.9839 }, { "start": 3909.56, "end": 3909.98, "probability": 0.4547 }, { "start": 3910.52, "end": 3912.5, "probability": 0.895 }, { "start": 3913.48, "end": 3916.0, "probability": 0.9611 }, { "start": 3917.26, "end": 3918.72, "probability": 0.9849 }, { "start": 3920.42, "end": 3922.42, "probability": 0.9762 }, { "start": 3923.22, "end": 3924.48, "probability": 0.3564 }, { "start": 3925.32, "end": 3927.32, "probability": 0.7303 }, { "start": 3928.28, "end": 3931.2, "probability": 0.824 }, { "start": 3934.34, "end": 3937.9, "probability": 0.6986 }, { "start": 3939.88, "end": 3939.88, "probability": 0.0125 }, { "start": 3939.88, "end": 3940.16, "probability": 0.068 }, { "start": 3940.2, "end": 3940.56, "probability": 0.5272 }, { "start": 3940.66, "end": 3941.9, "probability": 0.6229 }, { "start": 3942.78, "end": 3943.57, "probability": 0.4949 }, { "start": 3944.56, "end": 3944.92, "probability": 0.4394 }, { "start": 3946.02, "end": 3948.02, "probability": 0.9492 }, { "start": 3948.68, "end": 3953.1, "probability": 0.9845 }, { "start": 3953.86, "end": 3954.02, "probability": 0.7378 }, { "start": 3955.44, "end": 3956.16, "probability": 0.579 }, { "start": 3956.16, "end": 3958.26, "probability": 0.7089 }, { "start": 3960.26, "end": 3962.84, "probability": 0.7909 }, { "start": 3964.96, "end": 3969.14, "probability": 0.9048 }, { "start": 3969.24, "end": 3970.26, "probability": 0.9809 }, { "start": 3970.44, "end": 3972.7, "probability": 0.8724 }, { "start": 3972.96, "end": 3975.54, "probability": 0.8471 }, { "start": 3976.36, "end": 3977.02, "probability": 0.9225 }, { "start": 3978.06, "end": 3978.5, "probability": 0.7293 }, { "start": 3978.76, "end": 3979.58, "probability": 0.9176 }, { "start": 3979.82, "end": 3981.0, "probability": 0.8859 }, { "start": 3981.58, "end": 3982.36, "probability": 0.8374 }, { "start": 3983.18, "end": 3987.82, "probability": 0.8081 }, { "start": 3988.08, "end": 3990.3, "probability": 0.7239 }, { "start": 3990.38, "end": 3991.13, "probability": 0.9316 }, { "start": 3993.71, "end": 3996.76, "probability": 0.9849 }, { "start": 3996.92, "end": 3997.58, "probability": 0.8759 }, { "start": 3998.78, "end": 4000.34, "probability": 0.7502 }, { "start": 4000.96, "end": 4001.73, "probability": 0.0515 }, { "start": 4003.8, "end": 4004.72, "probability": 0.564 }, { "start": 4004.8, "end": 4006.14, "probability": 0.7476 }, { "start": 4007.08, "end": 4007.52, "probability": 0.9859 }, { "start": 4008.84, "end": 4010.46, "probability": 0.9695 }, { "start": 4011.52, "end": 4014.58, "probability": 0.3838 }, { "start": 4015.14, "end": 4015.48, "probability": 0.32 }, { "start": 4015.84, "end": 4016.56, "probability": 0.9479 }, { "start": 4016.82, "end": 4018.04, "probability": 0.9839 }, { "start": 4019.24, "end": 4022.46, "probability": 0.9814 }, { "start": 4023.22, "end": 4025.08, "probability": 0.9128 }, { "start": 4026.0, "end": 4028.42, "probability": 0.8853 }, { "start": 4029.08, "end": 4031.08, "probability": 0.855 }, { "start": 4031.14, "end": 4032.81, "probability": 0.9548 }, { "start": 4033.38, "end": 4033.64, "probability": 0.8723 }, { "start": 4034.8, "end": 4036.56, "probability": 0.9359 }, { "start": 4036.66, "end": 4038.02, "probability": 0.8544 }, { "start": 4038.4, "end": 4040.42, "probability": 0.9395 }, { "start": 4040.5, "end": 4041.1, "probability": 0.4633 }, { "start": 4041.56, "end": 4043.26, "probability": 0.8311 }, { "start": 4047.58, "end": 4049.3, "probability": 0.7285 }, { "start": 4066.24, "end": 4068.4, "probability": 0.7773 }, { "start": 4069.24, "end": 4071.24, "probability": 0.9929 }, { "start": 4072.1, "end": 4075.08, "probability": 0.9791 }, { "start": 4075.28, "end": 4076.7, "probability": 0.9963 }, { "start": 4077.66, "end": 4079.28, "probability": 0.9547 }, { "start": 4080.34, "end": 4085.12, "probability": 0.9838 }, { "start": 4086.22, "end": 4093.34, "probability": 0.9975 }, { "start": 4094.02, "end": 4098.1, "probability": 0.295 }, { "start": 4098.7, "end": 4100.68, "probability": 0.5572 }, { "start": 4101.74, "end": 4102.88, "probability": 0.6661 }, { "start": 4103.18, "end": 4105.02, "probability": 0.9136 }, { "start": 4105.04, "end": 4108.64, "probability": 0.9845 }, { "start": 4109.64, "end": 4113.4, "probability": 0.9684 }, { "start": 4114.44, "end": 4118.46, "probability": 0.8607 }, { "start": 4119.04, "end": 4122.0, "probability": 0.9183 }, { "start": 4122.82, "end": 4128.72, "probability": 0.996 }, { "start": 4129.38, "end": 4131.46, "probability": 0.8673 }, { "start": 4132.18, "end": 4134.72, "probability": 0.9696 }, { "start": 4134.72, "end": 4139.8, "probability": 0.9977 }, { "start": 4140.36, "end": 4141.8, "probability": 0.9703 }, { "start": 4142.36, "end": 4145.22, "probability": 0.9976 }, { "start": 4145.4, "end": 4146.26, "probability": 0.6589 }, { "start": 4146.44, "end": 4147.66, "probability": 0.3309 }, { "start": 4148.24, "end": 4150.04, "probability": 0.573 }, { "start": 4150.14, "end": 4153.04, "probability": 0.9966 }, { "start": 4153.26, "end": 4154.86, "probability": 0.9297 }, { "start": 4155.4, "end": 4156.42, "probability": 0.9422 }, { "start": 4156.66, "end": 4160.42, "probability": 0.9946 }, { "start": 4161.42, "end": 4165.88, "probability": 0.8719 }, { "start": 4166.64, "end": 4173.52, "probability": 0.8712 }, { "start": 4174.2, "end": 4179.36, "probability": 0.994 }, { "start": 4181.14, "end": 4187.24, "probability": 0.8772 }, { "start": 4188.04, "end": 4188.94, "probability": 0.8876 }, { "start": 4189.98, "end": 4190.4, "probability": 0.6636 }, { "start": 4191.6, "end": 4196.68, "probability": 0.9812 }, { "start": 4197.44, "end": 4201.02, "probability": 0.9564 }, { "start": 4201.84, "end": 4206.08, "probability": 0.9855 }, { "start": 4207.24, "end": 4210.72, "probability": 0.9881 }, { "start": 4211.7, "end": 4221.32, "probability": 0.9969 }, { "start": 4221.48, "end": 4226.6, "probability": 0.998 }, { "start": 4227.96, "end": 4230.42, "probability": 0.845 }, { "start": 4230.56, "end": 4232.04, "probability": 0.9408 }, { "start": 4232.46, "end": 4233.42, "probability": 0.9408 }, { "start": 4234.64, "end": 4235.2, "probability": 0.8036 }, { "start": 4236.12, "end": 4237.24, "probability": 0.9747 }, { "start": 4238.52, "end": 4240.96, "probability": 0.8909 }, { "start": 4242.48, "end": 4243.4, "probability": 0.9901 }, { "start": 4243.96, "end": 4244.24, "probability": 0.9575 }, { "start": 4246.2, "end": 4247.24, "probability": 0.8977 }, { "start": 4247.7, "end": 4251.26, "probability": 0.9977 }, { "start": 4251.62, "end": 4255.6, "probability": 0.9769 }, { "start": 4256.5, "end": 4258.76, "probability": 0.9919 }, { "start": 4259.46, "end": 4260.48, "probability": 0.9315 }, { "start": 4261.92, "end": 4266.06, "probability": 0.9722 }, { "start": 4266.5, "end": 4268.14, "probability": 0.8042 }, { "start": 4268.7, "end": 4269.5, "probability": 0.939 }, { "start": 4270.52, "end": 4272.66, "probability": 0.9271 }, { "start": 4272.76, "end": 4273.28, "probability": 0.9566 }, { "start": 4273.68, "end": 4276.08, "probability": 0.992 }, { "start": 4276.5, "end": 4280.27, "probability": 0.8896 }, { "start": 4280.63, "end": 4283.78, "probability": 0.7213 }, { "start": 4284.4, "end": 4286.74, "probability": 0.8108 }, { "start": 4287.8, "end": 4295.32, "probability": 0.9709 }, { "start": 4295.38, "end": 4298.94, "probability": 0.9865 }, { "start": 4299.76, "end": 4301.54, "probability": 0.9638 }, { "start": 4301.74, "end": 4302.74, "probability": 0.9703 }, { "start": 4303.52, "end": 4308.1, "probability": 0.4985 }, { "start": 4308.68, "end": 4312.94, "probability": 0.8501 }, { "start": 4313.64, "end": 4316.24, "probability": 0.9921 }, { "start": 4316.98, "end": 4320.68, "probability": 0.9895 }, { "start": 4321.4, "end": 4322.38, "probability": 0.7023 }, { "start": 4323.1, "end": 4325.04, "probability": 0.1388 }, { "start": 4325.66, "end": 4326.96, "probability": 0.9042 }, { "start": 4327.5, "end": 4328.68, "probability": 0.9807 }, { "start": 4328.84, "end": 4329.16, "probability": 0.8196 }, { "start": 4329.76, "end": 4331.74, "probability": 0.7783 }, { "start": 4332.48, "end": 4332.88, "probability": 0.8585 }, { "start": 4333.82, "end": 4334.18, "probability": 0.8293 }, { "start": 4336.22, "end": 4339.56, "probability": 0.7921 }, { "start": 4340.4, "end": 4342.92, "probability": 0.4979 }, { "start": 4343.6, "end": 4348.08, "probability": 0.9236 }, { "start": 4348.44, "end": 4349.08, "probability": 0.5695 }, { "start": 4349.2, "end": 4349.88, "probability": 0.6881 }, { "start": 4349.96, "end": 4351.04, "probability": 0.8376 }, { "start": 4351.16, "end": 4355.24, "probability": 0.8904 }, { "start": 4355.78, "end": 4358.52, "probability": 0.941 }, { "start": 4358.72, "end": 4359.14, "probability": 0.9469 }, { "start": 4359.16, "end": 4364.31, "probability": 0.9241 }, { "start": 4364.54, "end": 4366.84, "probability": 0.7067 }, { "start": 4367.48, "end": 4369.12, "probability": 0.9666 }, { "start": 4369.58, "end": 4372.38, "probability": 0.9482 }, { "start": 4373.44, "end": 4374.28, "probability": 0.7623 }, { "start": 4374.52, "end": 4376.76, "probability": 0.7835 }, { "start": 4378.08, "end": 4380.99, "probability": 0.6802 }, { "start": 4382.02, "end": 4385.76, "probability": 0.9888 }, { "start": 4386.5, "end": 4389.6, "probability": 0.9575 }, { "start": 4390.38, "end": 4391.9, "probability": 0.8204 }, { "start": 4392.98, "end": 4394.74, "probability": 0.8689 }, { "start": 4396.2, "end": 4398.0, "probability": 0.9177 }, { "start": 4398.5, "end": 4401.06, "probability": 0.8023 }, { "start": 4401.3, "end": 4403.98, "probability": 0.9358 }, { "start": 4404.68, "end": 4408.9, "probability": 0.8493 }, { "start": 4409.56, "end": 4413.0, "probability": 0.803 }, { "start": 4413.86, "end": 4414.04, "probability": 0.9084 }, { "start": 4414.88, "end": 4416.38, "probability": 0.9904 }, { "start": 4418.12, "end": 4418.66, "probability": 0.5348 }, { "start": 4419.25, "end": 4422.44, "probability": 0.9696 }, { "start": 4422.8, "end": 4425.6, "probability": 0.8111 }, { "start": 4425.74, "end": 4426.22, "probability": 0.8954 }, { "start": 4427.46, "end": 4434.2, "probability": 0.8818 }, { "start": 4435.34, "end": 4437.4, "probability": 0.986 }, { "start": 4437.46, "end": 4440.02, "probability": 0.9166 }, { "start": 4440.28, "end": 4440.96, "probability": 0.7465 }, { "start": 4441.12, "end": 4443.24, "probability": 0.6128 }, { "start": 4443.72, "end": 4444.14, "probability": 0.9385 }, { "start": 4445.46, "end": 4447.8, "probability": 0.9834 }, { "start": 4448.34, "end": 4451.5, "probability": 0.7762 }, { "start": 4452.16, "end": 4455.16, "probability": 0.3744 }, { "start": 4456.98, "end": 4458.76, "probability": 0.6302 }, { "start": 4459.74, "end": 4465.08, "probability": 0.9027 }, { "start": 4465.76, "end": 4471.22, "probability": 0.9959 }, { "start": 4472.32, "end": 4474.84, "probability": 0.9511 }, { "start": 4475.04, "end": 4477.04, "probability": 0.9104 }, { "start": 4477.7, "end": 4478.46, "probability": 0.9971 }, { "start": 4479.16, "end": 4480.16, "probability": 0.9803 }, { "start": 4481.06, "end": 4483.16, "probability": 0.993 }, { "start": 4483.92, "end": 4489.86, "probability": 0.9489 }, { "start": 4490.54, "end": 4494.12, "probability": 0.9965 }, { "start": 4495.46, "end": 4496.9, "probability": 0.9372 }, { "start": 4497.18, "end": 4497.92, "probability": 0.4897 }, { "start": 4498.14, "end": 4498.8, "probability": 0.5168 }, { "start": 4499.16, "end": 4499.36, "probability": 0.809 }, { "start": 4499.88, "end": 4501.7, "probability": 0.9656 }, { "start": 4503.04, "end": 4507.52, "probability": 0.9738 }, { "start": 4507.6, "end": 4508.84, "probability": 0.9792 }, { "start": 4509.32, "end": 4510.18, "probability": 0.6468 }, { "start": 4510.98, "end": 4514.02, "probability": 0.9771 }, { "start": 4514.08, "end": 4516.84, "probability": 0.9764 }, { "start": 4517.8, "end": 4518.92, "probability": 0.976 }, { "start": 4519.04, "end": 4522.06, "probability": 0.9609 }, { "start": 4523.3, "end": 4526.14, "probability": 0.7557 }, { "start": 4527.26, "end": 4530.92, "probability": 0.625 }, { "start": 4532.24, "end": 4534.94, "probability": 0.9385 }, { "start": 4535.44, "end": 4538.96, "probability": 0.8743 }, { "start": 4540.4, "end": 4543.2, "probability": 0.9021 }, { "start": 4544.44, "end": 4546.14, "probability": 0.9971 }, { "start": 4546.66, "end": 4549.06, "probability": 0.9976 }, { "start": 4549.3, "end": 4551.62, "probability": 0.8421 }, { "start": 4551.8, "end": 4552.18, "probability": 0.8584 }, { "start": 4552.9, "end": 4553.62, "probability": 0.9033 }, { "start": 4554.32, "end": 4556.08, "probability": 0.7327 }, { "start": 4556.56, "end": 4559.08, "probability": 0.9932 }, { "start": 4559.26, "end": 4560.38, "probability": 0.8519 }, { "start": 4560.86, "end": 4562.74, "probability": 0.8695 }, { "start": 4563.62, "end": 4566.82, "probability": 0.9846 }, { "start": 4567.22, "end": 4569.06, "probability": 0.9892 }, { "start": 4569.68, "end": 4572.24, "probability": 0.764 }, { "start": 4572.4, "end": 4574.94, "probability": 0.9155 }, { "start": 4575.84, "end": 4577.98, "probability": 0.7258 }, { "start": 4578.62, "end": 4579.92, "probability": 0.9852 }, { "start": 4580.04, "end": 4581.42, "probability": 0.9504 }, { "start": 4581.56, "end": 4590.36, "probability": 0.9829 }, { "start": 4590.94, "end": 4595.58, "probability": 0.9834 }, { "start": 4596.66, "end": 4596.72, "probability": 0.018 }, { "start": 4596.72, "end": 4599.0, "probability": 0.99 }, { "start": 4599.22, "end": 4601.44, "probability": 0.8745 }, { "start": 4602.8, "end": 4604.2, "probability": 0.7754 }, { "start": 4606.1, "end": 4607.66, "probability": 0.8906 }, { "start": 4608.12, "end": 4609.96, "probability": 0.7216 }, { "start": 4610.1, "end": 4610.66, "probability": 0.5806 }, { "start": 4610.82, "end": 4611.96, "probability": 0.9932 }, { "start": 4612.4, "end": 4613.1, "probability": 0.953 }, { "start": 4614.2, "end": 4614.56, "probability": 0.4971 }, { "start": 4614.68, "end": 4616.2, "probability": 0.6681 }, { "start": 4616.67, "end": 4621.08, "probability": 0.9766 }, { "start": 4621.78, "end": 4622.2, "probability": 0.646 }, { "start": 4622.93, "end": 4624.82, "probability": 0.9878 }, { "start": 4625.54, "end": 4627.29, "probability": 0.9875 }, { "start": 4627.66, "end": 4629.76, "probability": 0.7514 }, { "start": 4630.26, "end": 4632.52, "probability": 0.9017 }, { "start": 4632.94, "end": 4635.15, "probability": 0.8911 }, { "start": 4636.26, "end": 4639.2, "probability": 0.9406 }, { "start": 4639.52, "end": 4642.76, "probability": 0.8449 }, { "start": 4644.14, "end": 4649.02, "probability": 0.9659 }, { "start": 4649.16, "end": 4650.24, "probability": 0.8251 }, { "start": 4650.32, "end": 4653.2, "probability": 0.8719 }, { "start": 4653.44, "end": 4654.06, "probability": 0.9295 }, { "start": 4654.14, "end": 4655.88, "probability": 0.985 }, { "start": 4656.74, "end": 4660.8, "probability": 0.9775 }, { "start": 4661.64, "end": 4664.46, "probability": 0.9939 }, { "start": 4665.92, "end": 4671.6, "probability": 0.991 }, { "start": 4672.66, "end": 4676.48, "probability": 0.978 }, { "start": 4677.1, "end": 4677.62, "probability": 0.9434 }, { "start": 4677.8, "end": 4678.76, "probability": 0.9107 }, { "start": 4678.86, "end": 4681.66, "probability": 0.9901 }, { "start": 4681.88, "end": 4683.84, "probability": 0.9968 }, { "start": 4684.52, "end": 4687.52, "probability": 0.8885 }, { "start": 4688.82, "end": 4690.2, "probability": 0.8109 }, { "start": 4690.58, "end": 4694.6, "probability": 0.9883 }, { "start": 4694.64, "end": 4697.26, "probability": 0.9698 }, { "start": 4698.06, "end": 4701.12, "probability": 0.889 }, { "start": 4701.84, "end": 4706.7, "probability": 0.9954 }, { "start": 4707.08, "end": 4708.34, "probability": 0.8345 }, { "start": 4708.98, "end": 4713.92, "probability": 0.9938 }, { "start": 4714.28, "end": 4717.6, "probability": 0.9712 }, { "start": 4718.02, "end": 4720.9, "probability": 0.9659 }, { "start": 4721.52, "end": 4722.58, "probability": 0.7998 }, { "start": 4723.72, "end": 4727.08, "probability": 0.9437 }, { "start": 4727.12, "end": 4730.31, "probability": 0.9881 }, { "start": 4731.64, "end": 4736.02, "probability": 0.9954 }, { "start": 4736.28, "end": 4736.83, "probability": 0.9604 }, { "start": 4738.14, "end": 4738.92, "probability": 0.9956 }, { "start": 4739.82, "end": 4741.34, "probability": 0.9059 }, { "start": 4742.0, "end": 4743.6, "probability": 0.8706 }, { "start": 4744.22, "end": 4747.8, "probability": 0.8123 }, { "start": 4748.6, "end": 4750.96, "probability": 0.8221 }, { "start": 4751.2, "end": 4751.8, "probability": 0.5687 }, { "start": 4752.44, "end": 4752.56, "probability": 0.9737 }, { "start": 4753.86, "end": 4755.1, "probability": 0.8814 }, { "start": 4758.1, "end": 4759.84, "probability": 0.4053 }, { "start": 4760.4, "end": 4762.94, "probability": 0.627 }, { "start": 4763.06, "end": 4765.74, "probability": 0.9928 }, { "start": 4766.78, "end": 4769.16, "probability": 0.6941 }, { "start": 4770.2, "end": 4773.76, "probability": 0.9871 }, { "start": 4773.96, "end": 4774.78, "probability": 0.8207 }, { "start": 4775.02, "end": 4776.3, "probability": 0.9409 }, { "start": 4777.04, "end": 4782.74, "probability": 0.9938 }, { "start": 4782.88, "end": 4786.84, "probability": 0.9963 }, { "start": 4787.72, "end": 4791.82, "probability": 0.9573 }, { "start": 4792.72, "end": 4792.92, "probability": 0.6527 }, { "start": 4793.2, "end": 4795.94, "probability": 0.8027 }, { "start": 4796.06, "end": 4799.26, "probability": 0.9832 }, { "start": 4799.56, "end": 4801.24, "probability": 0.8663 }, { "start": 4801.76, "end": 4806.04, "probability": 0.8911 }, { "start": 4806.98, "end": 4808.86, "probability": 0.8929 }, { "start": 4811.66, "end": 4813.38, "probability": 0.9697 }, { "start": 4816.0, "end": 4819.74, "probability": 0.9868 }, { "start": 4820.38, "end": 4822.76, "probability": 0.992 }, { "start": 4823.52, "end": 4828.91, "probability": 0.796 }, { "start": 4830.48, "end": 4832.36, "probability": 0.4134 }, { "start": 4833.08, "end": 4833.76, "probability": 0.7304 }, { "start": 4836.15, "end": 4841.24, "probability": 0.9776 }, { "start": 4842.88, "end": 4845.26, "probability": 0.6484 }, { "start": 4846.62, "end": 4849.2, "probability": 0.8701 }, { "start": 4850.36, "end": 4851.56, "probability": 0.8425 }, { "start": 4852.82, "end": 4853.36, "probability": 0.6376 }, { "start": 4854.46, "end": 4855.6, "probability": 0.9404 }, { "start": 4856.2, "end": 4857.42, "probability": 0.996 }, { "start": 4858.22, "end": 4858.52, "probability": 0.9349 }, { "start": 4859.26, "end": 4860.28, "probability": 0.9994 }, { "start": 4861.22, "end": 4862.64, "probability": 0.9734 }, { "start": 4863.72, "end": 4866.96, "probability": 0.9993 }, { "start": 4867.68, "end": 4868.6, "probability": 0.6896 }, { "start": 4869.78, "end": 4873.3, "probability": 0.8324 }, { "start": 4874.34, "end": 4878.14, "probability": 0.8537 }, { "start": 4879.04, "end": 4882.62, "probability": 0.9877 }, { "start": 4883.6, "end": 4885.88, "probability": 0.9933 }, { "start": 4887.18, "end": 4888.54, "probability": 0.9753 }, { "start": 4889.38, "end": 4894.56, "probability": 0.9727 }, { "start": 4896.34, "end": 4898.8, "probability": 0.8309 }, { "start": 4899.72, "end": 4901.44, "probability": 0.968 }, { "start": 4902.16, "end": 4905.9, "probability": 0.9727 }, { "start": 4906.98, "end": 4907.78, "probability": 0.6929 }, { "start": 4909.58, "end": 4911.92, "probability": 0.9666 }, { "start": 4912.52, "end": 4913.56, "probability": 0.9747 }, { "start": 4915.5, "end": 4916.02, "probability": 0.9837 }, { "start": 4917.06, "end": 4918.6, "probability": 0.9456 }, { "start": 4919.7, "end": 4921.66, "probability": 0.9988 }, { "start": 4922.86, "end": 4923.68, "probability": 0.9755 }, { "start": 4925.0, "end": 4927.14, "probability": 0.9692 }, { "start": 4927.86, "end": 4930.72, "probability": 0.9893 }, { "start": 4932.02, "end": 4932.62, "probability": 0.5518 }, { "start": 4933.78, "end": 4934.32, "probability": 0.9944 }, { "start": 4934.88, "end": 4938.6, "probability": 0.9933 }, { "start": 4939.92, "end": 4942.38, "probability": 0.9452 }, { "start": 4944.84, "end": 4949.46, "probability": 0.9861 }, { "start": 4952.8, "end": 4957.8, "probability": 0.9811 }, { "start": 4959.26, "end": 4960.32, "probability": 0.8474 }, { "start": 4961.88, "end": 4962.96, "probability": 0.9821 }, { "start": 4964.64, "end": 4967.16, "probability": 0.9976 }, { "start": 4968.0, "end": 4968.9, "probability": 0.995 }, { "start": 4969.46, "end": 4970.34, "probability": 0.3495 }, { "start": 4972.28, "end": 4976.17, "probability": 0.926 }, { "start": 4977.1, "end": 4978.58, "probability": 0.998 }, { "start": 4980.26, "end": 4980.96, "probability": 0.6261 }, { "start": 4982.54, "end": 4983.32, "probability": 0.8579 }, { "start": 4984.12, "end": 4984.84, "probability": 0.8242 }, { "start": 4986.64, "end": 4987.08, "probability": 0.9635 }, { "start": 4988.34, "end": 4989.58, "probability": 0.9705 }, { "start": 4990.78, "end": 4992.42, "probability": 0.9882 }, { "start": 4993.68, "end": 4994.44, "probability": 0.9522 }, { "start": 4994.96, "end": 4996.08, "probability": 0.9985 }, { "start": 4996.86, "end": 4999.6, "probability": 0.8318 }, { "start": 5001.04, "end": 5003.06, "probability": 0.956 }, { "start": 5004.4, "end": 5005.08, "probability": 0.6759 }, { "start": 5005.9, "end": 5008.88, "probability": 0.9979 }, { "start": 5010.08, "end": 5010.28, "probability": 0.9942 }, { "start": 5015.36, "end": 5016.66, "probability": 0.9994 }, { "start": 5017.94, "end": 5018.32, "probability": 0.2239 }, { "start": 5018.94, "end": 5019.96, "probability": 0.9962 }, { "start": 5021.48, "end": 5023.77, "probability": 0.9373 }, { "start": 5025.22, "end": 5025.88, "probability": 0.9834 }, { "start": 5028.62, "end": 5029.16, "probability": 0.902 }, { "start": 5029.94, "end": 5036.34, "probability": 0.9937 }, { "start": 5038.08, "end": 5044.46, "probability": 0.936 }, { "start": 5046.36, "end": 5046.74, "probability": 0.9757 }, { "start": 5047.66, "end": 5049.12, "probability": 0.9876 }, { "start": 5051.6, "end": 5052.42, "probability": 0.8109 }, { "start": 5053.84, "end": 5057.76, "probability": 0.9972 }, { "start": 5059.38, "end": 5060.38, "probability": 0.8208 }, { "start": 5061.78, "end": 5063.78, "probability": 0.9893 }, { "start": 5064.36, "end": 5066.3, "probability": 0.8203 }, { "start": 5067.48, "end": 5068.14, "probability": 0.8169 }, { "start": 5069.5, "end": 5070.1, "probability": 0.974 }, { "start": 5071.9, "end": 5073.12, "probability": 0.9952 }, { "start": 5075.2, "end": 5076.48, "probability": 0.9966 }, { "start": 5079.88, "end": 5080.78, "probability": 0.9077 }, { "start": 5081.92, "end": 5082.74, "probability": 0.8951 }, { "start": 5083.62, "end": 5087.36, "probability": 0.9709 }, { "start": 5088.1, "end": 5091.28, "probability": 0.9321 }, { "start": 5091.92, "end": 5093.44, "probability": 0.9938 }, { "start": 5097.52, "end": 5105.02, "probability": 0.9934 }, { "start": 5105.74, "end": 5106.14, "probability": 0.9209 }, { "start": 5107.24, "end": 5108.4, "probability": 0.999 }, { "start": 5109.82, "end": 5112.34, "probability": 0.9503 }, { "start": 5113.92, "end": 5116.44, "probability": 0.9701 }, { "start": 5116.98, "end": 5118.89, "probability": 0.7729 }, { "start": 5120.72, "end": 5121.64, "probability": 0.8576 }, { "start": 5122.22, "end": 5122.68, "probability": 0.9407 }, { "start": 5124.5, "end": 5125.66, "probability": 0.6647 }, { "start": 5126.7, "end": 5133.42, "probability": 0.7847 }, { "start": 5134.28, "end": 5134.94, "probability": 0.7393 }, { "start": 5139.2, "end": 5140.88, "probability": 0.5121 }, { "start": 5142.32, "end": 5146.46, "probability": 0.9725 }, { "start": 5147.62, "end": 5149.5, "probability": 0.9979 }, { "start": 5150.68, "end": 5151.18, "probability": 0.9036 }, { "start": 5152.14, "end": 5152.7, "probability": 0.9424 }, { "start": 5153.78, "end": 5157.8, "probability": 0.9434 }, { "start": 5159.22, "end": 5160.54, "probability": 0.9857 }, { "start": 5161.3, "end": 5162.18, "probability": 0.9934 }, { "start": 5162.96, "end": 5163.56, "probability": 0.8461 }, { "start": 5165.28, "end": 5169.48, "probability": 0.9808 }, { "start": 5170.76, "end": 5174.46, "probability": 0.8 }, { "start": 5175.04, "end": 5176.54, "probability": 0.9366 }, { "start": 5177.6, "end": 5178.54, "probability": 0.778 }, { "start": 5179.46, "end": 5184.33, "probability": 0.8283 }, { "start": 5186.44, "end": 5188.46, "probability": 0.9803 }, { "start": 5189.48, "end": 5190.12, "probability": 0.9896 }, { "start": 5191.08, "end": 5193.1, "probability": 0.9893 }, { "start": 5195.3, "end": 5196.18, "probability": 0.6234 }, { "start": 5197.3, "end": 5197.72, "probability": 0.9062 }, { "start": 5198.26, "end": 5202.14, "probability": 0.8691 }, { "start": 5205.4, "end": 5207.1, "probability": 0.9657 }, { "start": 5209.16, "end": 5209.82, "probability": 0.7782 }, { "start": 5212.04, "end": 5214.4, "probability": 0.9897 }, { "start": 5218.42, "end": 5220.72, "probability": 0.9323 }, { "start": 5222.76, "end": 5229.02, "probability": 0.9927 }, { "start": 5230.08, "end": 5230.94, "probability": 0.726 }, { "start": 5231.64, "end": 5233.9, "probability": 0.9897 }, { "start": 5235.34, "end": 5236.32, "probability": 0.8248 }, { "start": 5237.64, "end": 5240.42, "probability": 0.7502 }, { "start": 5241.36, "end": 5242.86, "probability": 0.9711 }, { "start": 5245.48, "end": 5251.98, "probability": 0.7747 }, { "start": 5253.16, "end": 5254.6, "probability": 0.8526 }, { "start": 5254.8, "end": 5255.98, "probability": 0.7111 }, { "start": 5256.46, "end": 5258.74, "probability": 0.9589 }, { "start": 5260.04, "end": 5261.6, "probability": 0.9325 }, { "start": 5263.68, "end": 5267.38, "probability": 0.974 }, { "start": 5268.12, "end": 5269.72, "probability": 0.683 }, { "start": 5271.58, "end": 5275.06, "probability": 0.4521 }, { "start": 5276.6, "end": 5279.76, "probability": 0.861 }, { "start": 5280.36, "end": 5282.3, "probability": 0.9183 }, { "start": 5283.26, "end": 5283.96, "probability": 0.9983 }, { "start": 5284.84, "end": 5286.12, "probability": 0.9996 }, { "start": 5286.86, "end": 5287.86, "probability": 0.8923 }, { "start": 5288.86, "end": 5289.4, "probability": 0.9198 }, { "start": 5291.36, "end": 5292.34, "probability": 0.974 }, { "start": 5293.34, "end": 5298.66, "probability": 0.9091 }, { "start": 5299.44, "end": 5303.42, "probability": 0.8207 }, { "start": 5304.88, "end": 5306.48, "probability": 0.8155 }, { "start": 5307.66, "end": 5309.0, "probability": 0.8627 }, { "start": 5310.36, "end": 5312.3, "probability": 0.9666 }, { "start": 5312.9, "end": 5316.3, "probability": 0.9557 }, { "start": 5317.2, "end": 5320.06, "probability": 0.7938 }, { "start": 5320.86, "end": 5325.98, "probability": 0.9932 }, { "start": 5326.74, "end": 5330.7, "probability": 0.9854 }, { "start": 5331.5, "end": 5331.9, "probability": 0.8035 }, { "start": 5332.68, "end": 5334.28, "probability": 0.8576 }, { "start": 5334.92, "end": 5337.4, "probability": 0.8322 }, { "start": 5338.48, "end": 5340.66, "probability": 0.5954 }, { "start": 5340.96, "end": 5342.6, "probability": 0.8871 }, { "start": 5343.22, "end": 5344.0, "probability": 0.8316 }, { "start": 5345.0, "end": 5345.92, "probability": 0.6984 }, { "start": 5346.58, "end": 5351.08, "probability": 0.9281 }, { "start": 5364.32, "end": 5365.18, "probability": 0.8128 }, { "start": 5366.84, "end": 5371.54, "probability": 0.9861 }, { "start": 5372.82, "end": 5373.42, "probability": 0.8549 }, { "start": 5374.7, "end": 5375.56, "probability": 0.9609 }, { "start": 5375.62, "end": 5377.44, "probability": 0.9923 }, { "start": 5377.44, "end": 5379.84, "probability": 0.9878 }, { "start": 5381.82, "end": 5384.46, "probability": 0.7417 }, { "start": 5385.94, "end": 5387.56, "probability": 0.9811 }, { "start": 5388.56, "end": 5390.12, "probability": 0.9663 }, { "start": 5391.88, "end": 5396.96, "probability": 0.9187 }, { "start": 5398.32, "end": 5400.38, "probability": 0.9959 }, { "start": 5400.94, "end": 5401.74, "probability": 0.7979 }, { "start": 5402.4, "end": 5406.26, "probability": 0.9232 }, { "start": 5406.78, "end": 5410.02, "probability": 0.6654 }, { "start": 5410.64, "end": 5416.42, "probability": 0.9954 }, { "start": 5419.44, "end": 5421.74, "probability": 0.918 }, { "start": 5422.68, "end": 5426.86, "probability": 0.9978 }, { "start": 5427.56, "end": 5433.2, "probability": 0.9992 }, { "start": 5434.5, "end": 5435.8, "probability": 0.9755 }, { "start": 5436.44, "end": 5438.14, "probability": 0.9746 }, { "start": 5438.74, "end": 5439.76, "probability": 0.9776 }, { "start": 5440.3, "end": 5442.32, "probability": 0.8655 }, { "start": 5443.56, "end": 5449.58, "probability": 0.9984 }, { "start": 5450.12, "end": 5450.7, "probability": 0.7632 }, { "start": 5451.62, "end": 5452.28, "probability": 0.9637 }, { "start": 5453.94, "end": 5454.32, "probability": 0.8645 }, { "start": 5455.06, "end": 5456.16, "probability": 0.9312 }, { "start": 5456.7, "end": 5460.68, "probability": 0.9964 }, { "start": 5461.34, "end": 5465.88, "probability": 0.9979 }, { "start": 5467.64, "end": 5470.74, "probability": 0.9844 }, { "start": 5471.88, "end": 5472.68, "probability": 0.9968 }, { "start": 5473.72, "end": 5476.0, "probability": 0.9882 }, { "start": 5477.18, "end": 5479.58, "probability": 0.9979 }, { "start": 5479.58, "end": 5483.3, "probability": 0.9976 }, { "start": 5483.96, "end": 5487.1, "probability": 0.9946 }, { "start": 5487.1, "end": 5489.6, "probability": 0.9997 }, { "start": 5491.24, "end": 5493.88, "probability": 0.9608 }, { "start": 5494.14, "end": 5496.36, "probability": 0.9969 }, { "start": 5497.28, "end": 5503.88, "probability": 0.9861 }, { "start": 5504.26, "end": 5507.68, "probability": 0.9496 }, { "start": 5508.8, "end": 5511.82, "probability": 0.9922 }, { "start": 5511.84, "end": 5516.48, "probability": 0.8595 }, { "start": 5516.72, "end": 5517.68, "probability": 0.9487 }, { "start": 5518.38, "end": 5519.48, "probability": 0.9977 }, { "start": 5520.9, "end": 5522.46, "probability": 0.9836 }, { "start": 5522.98, "end": 5526.34, "probability": 0.9958 }, { "start": 5527.04, "end": 5530.68, "probability": 0.9587 }, { "start": 5530.68, "end": 5532.78, "probability": 0.9975 }, { "start": 5534.68, "end": 5539.28, "probability": 0.9927 }, { "start": 5539.3, "end": 5544.48, "probability": 0.9982 }, { "start": 5544.6, "end": 5547.28, "probability": 0.9935 }, { "start": 5548.24, "end": 5553.54, "probability": 0.993 }, { "start": 5554.5, "end": 5558.1, "probability": 0.9969 }, { "start": 5559.26, "end": 5563.6, "probability": 0.9151 }, { "start": 5563.6, "end": 5568.9, "probability": 0.9937 }, { "start": 5569.48, "end": 5570.14, "probability": 0.9625 }, { "start": 5570.66, "end": 5571.46, "probability": 0.9881 }, { "start": 5571.98, "end": 5572.5, "probability": 0.7648 }, { "start": 5573.56, "end": 5575.22, "probability": 0.9409 }, { "start": 5575.84, "end": 5576.34, "probability": 0.8006 }, { "start": 5576.98, "end": 5578.08, "probability": 0.9443 }, { "start": 5580.16, "end": 5580.64, "probability": 0.9217 }, { "start": 5581.32, "end": 5582.32, "probability": 0.8578 }, { "start": 5583.48, "end": 5585.54, "probability": 0.986 }, { "start": 5586.34, "end": 5586.86, "probability": 0.9836 }, { "start": 5587.54, "end": 5592.32, "probability": 0.999 }, { "start": 5593.3, "end": 5595.5, "probability": 0.98 }, { "start": 5596.02, "end": 5600.36, "probability": 0.9952 }, { "start": 5601.28, "end": 5604.02, "probability": 0.9929 }, { "start": 5604.02, "end": 5607.34, "probability": 0.8274 }, { "start": 5608.44, "end": 5612.7, "probability": 0.9834 }, { "start": 5613.2, "end": 5614.38, "probability": 0.8202 }, { "start": 5614.88, "end": 5617.2, "probability": 0.969 }, { "start": 5618.42, "end": 5620.18, "probability": 0.9509 }, { "start": 5620.78, "end": 5623.52, "probability": 0.9953 }, { "start": 5623.67, "end": 5626.16, "probability": 0.9984 }, { "start": 5626.66, "end": 5627.56, "probability": 0.9064 }, { "start": 5628.12, "end": 5629.9, "probability": 0.943 }, { "start": 5630.82, "end": 5631.42, "probability": 0.7559 }, { "start": 5632.02, "end": 5633.02, "probability": 0.5139 }, { "start": 5633.94, "end": 5637.36, "probability": 0.8774 }, { "start": 5637.66, "end": 5641.14, "probability": 0.9325 }, { "start": 5642.08, "end": 5645.06, "probability": 0.9946 }, { "start": 5645.06, "end": 5648.16, "probability": 0.9697 }, { "start": 5650.52, "end": 5654.18, "probability": 0.9897 }, { "start": 5654.34, "end": 5655.9, "probability": 0.8343 }, { "start": 5656.02, "end": 5660.09, "probability": 0.9948 }, { "start": 5660.6, "end": 5664.8, "probability": 0.9925 }, { "start": 5664.8, "end": 5668.8, "probability": 0.9932 }, { "start": 5669.9, "end": 5673.74, "probability": 0.9961 }, { "start": 5674.54, "end": 5678.92, "probability": 0.9813 }, { "start": 5678.92, "end": 5682.5, "probability": 0.9768 }, { "start": 5683.04, "end": 5687.56, "probability": 0.949 }, { "start": 5688.02, "end": 5689.94, "probability": 0.685 }, { "start": 5690.66, "end": 5693.62, "probability": 0.9737 }, { "start": 5694.32, "end": 5696.8, "probability": 0.7572 }, { "start": 5696.8, "end": 5699.23, "probability": 0.9975 }, { "start": 5699.98, "end": 5703.4, "probability": 0.9956 }, { "start": 5703.4, "end": 5707.12, "probability": 0.9863 }, { "start": 5707.8, "end": 5708.26, "probability": 0.7936 }, { "start": 5708.38, "end": 5709.22, "probability": 0.902 }, { "start": 5709.66, "end": 5713.88, "probability": 0.995 }, { "start": 5714.04, "end": 5714.64, "probability": 0.9068 }, { "start": 5715.0, "end": 5716.12, "probability": 0.953 }, { "start": 5716.96, "end": 5722.44, "probability": 0.9188 }, { "start": 5722.44, "end": 5728.4, "probability": 0.9867 }, { "start": 5729.88, "end": 5730.6, "probability": 0.8131 }, { "start": 5731.26, "end": 5735.74, "probability": 0.9973 }, { "start": 5736.26, "end": 5739.62, "probability": 0.998 }, { "start": 5740.98, "end": 5745.9, "probability": 0.9512 }, { "start": 5746.08, "end": 5746.78, "probability": 0.8475 }, { "start": 5747.18, "end": 5749.52, "probability": 0.7495 }, { "start": 5750.54, "end": 5750.78, "probability": 0.6498 }, { "start": 5751.04, "end": 5752.12, "probability": 0.9078 }, { "start": 5752.52, "end": 5755.0, "probability": 0.9718 }, { "start": 5755.5, "end": 5756.8, "probability": 0.7799 }, { "start": 5758.94, "end": 5759.56, "probability": 0.9619 }, { "start": 5760.3, "end": 5763.74, "probability": 0.9746 }, { "start": 5764.54, "end": 5767.42, "probability": 0.9971 }, { "start": 5767.86, "end": 5768.42, "probability": 0.4565 }, { "start": 5768.52, "end": 5769.4, "probability": 0.9311 }, { "start": 5769.54, "end": 5770.62, "probability": 0.9502 }, { "start": 5770.88, "end": 5774.74, "probability": 0.949 }, { "start": 5775.76, "end": 5779.34, "probability": 0.923 }, { "start": 5779.94, "end": 5784.1, "probability": 0.7861 }, { "start": 5784.5, "end": 5788.64, "probability": 0.9528 }, { "start": 5788.64, "end": 5791.6, "probability": 0.9919 }, { "start": 5792.3, "end": 5797.24, "probability": 0.9865 }, { "start": 5797.24, "end": 5801.7, "probability": 0.9994 }, { "start": 5803.68, "end": 5806.68, "probability": 0.9824 }, { "start": 5807.06, "end": 5808.64, "probability": 0.7857 }, { "start": 5809.2, "end": 5811.14, "probability": 0.9985 }, { "start": 5811.68, "end": 5815.08, "probability": 0.9985 }, { "start": 5815.08, "end": 5817.92, "probability": 0.9989 }, { "start": 5818.54, "end": 5822.56, "probability": 0.9943 }, { "start": 5823.6, "end": 5826.24, "probability": 0.9538 }, { "start": 5826.84, "end": 5833.0, "probability": 0.9946 }, { "start": 5834.08, "end": 5838.68, "probability": 0.9906 }, { "start": 5841.08, "end": 5841.56, "probability": 0.925 }, { "start": 5842.22, "end": 5844.78, "probability": 0.8855 }, { "start": 5845.36, "end": 5848.46, "probability": 0.901 }, { "start": 5848.96, "end": 5849.18, "probability": 0.7308 }, { "start": 5849.7, "end": 5850.48, "probability": 0.785 }, { "start": 5851.5, "end": 5853.58, "probability": 0.689 }, { "start": 5854.18, "end": 5855.52, "probability": 0.9321 }, { "start": 5856.28, "end": 5856.78, "probability": 0.692 }, { "start": 5858.08, "end": 5858.78, "probability": 0.9795 }, { "start": 5859.06, "end": 5859.6, "probability": 0.8843 }, { "start": 5860.04, "end": 5864.24, "probability": 0.8004 }, { "start": 5864.76, "end": 5866.52, "probability": 0.7691 }, { "start": 5867.42, "end": 5871.6, "probability": 0.9699 }, { "start": 5873.04, "end": 5876.94, "probability": 0.8604 }, { "start": 5877.82, "end": 5881.82, "probability": 0.9924 }, { "start": 5882.44, "end": 5886.7, "probability": 0.9964 }, { "start": 5887.18, "end": 5888.94, "probability": 0.8323 }, { "start": 5889.2, "end": 5890.94, "probability": 0.5363 }, { "start": 5891.06, "end": 5891.9, "probability": 0.8317 }, { "start": 5892.32, "end": 5892.52, "probability": 0.4975 }, { "start": 5892.7, "end": 5894.04, "probability": 0.9823 }, { "start": 5894.06, "end": 5895.44, "probability": 0.9684 }, { "start": 5896.48, "end": 5899.96, "probability": 0.97 }, { "start": 5901.63, "end": 5904.94, "probability": 0.8818 }, { "start": 5905.8, "end": 5910.54, "probability": 0.7776 }, { "start": 5911.16, "end": 5912.6, "probability": 0.7626 }, { "start": 5913.32, "end": 5917.48, "probability": 0.9903 }, { "start": 5918.24, "end": 5919.92, "probability": 0.588 }, { "start": 5920.6, "end": 5922.06, "probability": 0.9785 }, { "start": 5922.18, "end": 5923.34, "probability": 0.6727 }, { "start": 5923.96, "end": 5925.92, "probability": 0.7943 }, { "start": 5926.7, "end": 5928.58, "probability": 0.5036 }, { "start": 5929.0, "end": 5932.54, "probability": 0.8154 }, { "start": 5933.86, "end": 5936.15, "probability": 0.8704 }, { "start": 5937.96, "end": 5939.58, "probability": 0.3027 }, { "start": 5941.02, "end": 5944.96, "probability": 0.9656 }, { "start": 5946.04, "end": 5947.58, "probability": 0.9263 }, { "start": 5947.68, "end": 5948.3, "probability": 0.9255 }, { "start": 5950.94, "end": 5954.54, "probability": 0.5045 }, { "start": 5955.04, "end": 5956.28, "probability": 0.9381 }, { "start": 5956.42, "end": 5958.82, "probability": 0.9699 }, { "start": 5958.98, "end": 5962.04, "probability": 0.9493 }, { "start": 5962.22, "end": 5963.28, "probability": 0.7314 }, { "start": 5964.94, "end": 5966.99, "probability": 0.9665 }, { "start": 5968.96, "end": 5972.44, "probability": 0.8212 }, { "start": 5975.16, "end": 5977.18, "probability": 0.9928 }, { "start": 5977.8, "end": 5978.48, "probability": 0.9845 }, { "start": 5979.62, "end": 5980.36, "probability": 0.926 }, { "start": 5981.56, "end": 5982.2, "probability": 0.6267 }, { "start": 5983.64, "end": 5984.38, "probability": 0.9151 }, { "start": 5985.66, "end": 5986.48, "probability": 0.8846 }, { "start": 5988.26, "end": 5989.08, "probability": 0.6322 }, { "start": 5989.52, "end": 5994.18, "probability": 0.9751 }, { "start": 5994.88, "end": 5996.56, "probability": 0.529 }, { "start": 5999.62, "end": 6000.38, "probability": 0.953 }, { "start": 6002.12, "end": 6002.92, "probability": 0.9924 }, { "start": 6004.8, "end": 6006.58, "probability": 0.9972 }, { "start": 6007.16, "end": 6009.94, "probability": 0.8971 }, { "start": 6011.28, "end": 6015.18, "probability": 0.9845 }, { "start": 6015.96, "end": 6017.28, "probability": 0.9937 }, { "start": 6018.28, "end": 6019.08, "probability": 0.9308 }, { "start": 6020.48, "end": 6020.82, "probability": 0.5383 }, { "start": 6020.84, "end": 6024.04, "probability": 0.9113 }, { "start": 6025.6, "end": 6027.13, "probability": 0.5445 }, { "start": 6028.28, "end": 6030.16, "probability": 0.9867 }, { "start": 6031.34, "end": 6034.14, "probability": 0.9976 }, { "start": 6034.44, "end": 6035.24, "probability": 0.9717 }, { "start": 6035.92, "end": 6036.6, "probability": 0.9948 }, { "start": 6037.3, "end": 6037.58, "probability": 0.9951 }, { "start": 6038.52, "end": 6040.72, "probability": 0.982 }, { "start": 6041.8, "end": 6043.22, "probability": 0.835 }, { "start": 6045.3, "end": 6045.84, "probability": 0.8684 }, { "start": 6046.92, "end": 6049.7, "probability": 0.9582 }, { "start": 6050.88, "end": 6054.22, "probability": 0.9896 }, { "start": 6057.22, "end": 6059.04, "probability": 0.725 }, { "start": 6059.18, "end": 6061.06, "probability": 0.9746 }, { "start": 6063.78, "end": 6064.9, "probability": 0.8883 }, { "start": 6065.02, "end": 6065.94, "probability": 0.915 }, { "start": 6066.1, "end": 6068.6, "probability": 0.9961 }, { "start": 6069.34, "end": 6070.52, "probability": 0.7516 }, { "start": 6072.06, "end": 6074.22, "probability": 0.4989 }, { "start": 6075.52, "end": 6078.32, "probability": 0.687 }, { "start": 6080.58, "end": 6082.32, "probability": 0.6816 }, { "start": 6082.42, "end": 6083.6, "probability": 0.9707 }, { "start": 6083.74, "end": 6084.58, "probability": 0.9837 }, { "start": 6085.38, "end": 6086.46, "probability": 0.9575 }, { "start": 6087.28, "end": 6089.82, "probability": 0.6746 }, { "start": 6090.74, "end": 6092.62, "probability": 0.999 }, { "start": 6093.5, "end": 6094.22, "probability": 0.9364 }, { "start": 6096.6, "end": 6097.54, "probability": 0.9963 }, { "start": 6097.62, "end": 6098.34, "probability": 0.9941 }, { "start": 6098.48, "end": 6098.9, "probability": 0.8533 }, { "start": 6099.94, "end": 6101.74, "probability": 0.9953 }, { "start": 6102.12, "end": 6102.82, "probability": 0.9422 }, { "start": 6104.58, "end": 6105.38, "probability": 0.7212 }, { "start": 6105.94, "end": 6106.64, "probability": 0.8059 }, { "start": 6108.04, "end": 6109.66, "probability": 0.8645 }, { "start": 6110.04, "end": 6111.96, "probability": 0.9979 }, { "start": 6113.64, "end": 6115.6, "probability": 0.9595 }, { "start": 6117.7, "end": 6121.62, "probability": 0.9961 }, { "start": 6122.98, "end": 6123.52, "probability": 0.9883 }, { "start": 6124.36, "end": 6126.92, "probability": 0.961 }, { "start": 6126.98, "end": 6127.76, "probability": 0.751 }, { "start": 6129.72, "end": 6130.36, "probability": 0.868 }, { "start": 6131.28, "end": 6131.58, "probability": 0.9988 }, { "start": 6133.08, "end": 6134.22, "probability": 0.9959 }, { "start": 6136.18, "end": 6140.54, "probability": 0.9902 }, { "start": 6142.18, "end": 6144.22, "probability": 0.9993 }, { "start": 6144.98, "end": 6147.58, "probability": 0.9893 }, { "start": 6148.8, "end": 6150.56, "probability": 0.9973 }, { "start": 6151.64, "end": 6154.5, "probability": 0.9885 }, { "start": 6154.94, "end": 6157.27, "probability": 0.7199 }, { "start": 6157.92, "end": 6159.68, "probability": 0.8672 }, { "start": 6160.62, "end": 6162.44, "probability": 0.7898 }, { "start": 6164.7, "end": 6167.46, "probability": 0.8707 }, { "start": 6168.38, "end": 6169.14, "probability": 0.9514 }, { "start": 6170.24, "end": 6172.58, "probability": 0.9883 }, { "start": 6173.92, "end": 6179.14, "probability": 0.9885 }, { "start": 6179.22, "end": 6179.72, "probability": 0.8304 }, { "start": 6180.8, "end": 6183.34, "probability": 0.8472 }, { "start": 6186.12, "end": 6186.82, "probability": 0.983 }, { "start": 6187.84, "end": 6189.78, "probability": 0.9219 }, { "start": 6191.68, "end": 6193.5, "probability": 0.9381 }, { "start": 6194.34, "end": 6195.88, "probability": 0.9744 }, { "start": 6197.24, "end": 6199.02, "probability": 0.9844 }, { "start": 6200.22, "end": 6200.74, "probability": 0.5649 }, { "start": 6202.1, "end": 6205.12, "probability": 0.8936 }, { "start": 6205.3, "end": 6207.96, "probability": 0.7731 }, { "start": 6209.14, "end": 6210.68, "probability": 0.9734 }, { "start": 6213.12, "end": 6215.38, "probability": 0.9142 }, { "start": 6216.24, "end": 6220.7, "probability": 0.9589 }, { "start": 6223.37, "end": 6225.74, "probability": 0.6496 }, { "start": 6225.82, "end": 6227.78, "probability": 0.6481 }, { "start": 6228.38, "end": 6231.5, "probability": 0.7168 }, { "start": 6231.74, "end": 6233.16, "probability": 0.2003 }, { "start": 6233.16, "end": 6233.56, "probability": 0.8826 }, { "start": 6233.66, "end": 6236.58, "probability": 0.9399 }, { "start": 6238.34, "end": 6242.58, "probability": 0.7363 }, { "start": 6242.94, "end": 6245.7, "probability": 0.7156 }, { "start": 6246.74, "end": 6249.04, "probability": 0.9761 }, { "start": 6250.22, "end": 6250.58, "probability": 0.7952 }, { "start": 6251.64, "end": 6253.59, "probability": 0.583 }, { "start": 6255.34, "end": 6257.1, "probability": 0.781 }, { "start": 6258.12, "end": 6261.12, "probability": 0.7929 }, { "start": 6261.96, "end": 6263.08, "probability": 0.7349 }, { "start": 6264.86, "end": 6266.26, "probability": 0.9413 }, { "start": 6266.58, "end": 6267.1, "probability": 0.2341 }, { "start": 6267.16, "end": 6270.04, "probability": 0.9899 }, { "start": 6270.26, "end": 6271.62, "probability": 0.8896 }, { "start": 6271.83, "end": 6274.54, "probability": 0.843 }, { "start": 6275.08, "end": 6279.68, "probability": 0.9959 }, { "start": 6279.68, "end": 6284.1, "probability": 0.9956 }, { "start": 6286.54, "end": 6290.22, "probability": 0.8236 }, { "start": 6291.14, "end": 6292.88, "probability": 0.8486 }, { "start": 6293.44, "end": 6294.76, "probability": 0.9954 }, { "start": 6295.46, "end": 6297.04, "probability": 0.9972 }, { "start": 6297.62, "end": 6298.8, "probability": 0.9688 }, { "start": 6300.02, "end": 6301.72, "probability": 0.9957 }, { "start": 6302.68, "end": 6304.6, "probability": 0.8783 }, { "start": 6306.7, "end": 6308.52, "probability": 0.8224 }, { "start": 6310.2, "end": 6311.8, "probability": 0.9014 }, { "start": 6312.38, "end": 6313.86, "probability": 0.9346 }, { "start": 6314.62, "end": 6315.56, "probability": 0.9618 }, { "start": 6315.74, "end": 6318.56, "probability": 0.9663 }, { "start": 6319.6, "end": 6320.52, "probability": 0.7751 }, { "start": 6321.48, "end": 6323.24, "probability": 0.9955 }, { "start": 6324.34, "end": 6325.14, "probability": 0.5432 }, { "start": 6325.9, "end": 6329.18, "probability": 0.9928 }, { "start": 6329.26, "end": 6330.7, "probability": 0.561 }, { "start": 6331.92, "end": 6334.2, "probability": 0.8805 }, { "start": 6335.88, "end": 6337.37, "probability": 0.9794 }, { "start": 6337.88, "end": 6340.38, "probability": 0.9834 }, { "start": 6342.76, "end": 6343.14, "probability": 0.7709 }, { "start": 6345.36, "end": 6346.22, "probability": 0.8977 }, { "start": 6348.24, "end": 6349.7, "probability": 0.8428 }, { "start": 6353.4, "end": 6356.64, "probability": 0.7712 }, { "start": 6357.4, "end": 6358.68, "probability": 0.9723 }, { "start": 6361.6, "end": 6362.78, "probability": 0.9097 }, { "start": 6362.8, "end": 6366.82, "probability": 0.922 }, { "start": 6368.62, "end": 6369.16, "probability": 0.8538 }, { "start": 6371.7, "end": 6374.5, "probability": 0.9922 }, { "start": 6376.58, "end": 6377.78, "probability": 0.9977 }, { "start": 6379.42, "end": 6381.65, "probability": 0.9976 }, { "start": 6383.56, "end": 6385.16, "probability": 0.97 }, { "start": 6386.04, "end": 6390.56, "probability": 0.9979 }, { "start": 6392.48, "end": 6394.44, "probability": 0.8515 }, { "start": 6395.42, "end": 6396.9, "probability": 0.9614 }, { "start": 6398.36, "end": 6399.3, "probability": 0.8263 }, { "start": 6400.06, "end": 6402.84, "probability": 0.9924 }, { "start": 6404.22, "end": 6405.38, "probability": 0.9888 }, { "start": 6406.92, "end": 6409.92, "probability": 0.746 }, { "start": 6411.08, "end": 6415.44, "probability": 0.9637 }, { "start": 6417.02, "end": 6420.0, "probability": 0.9911 }, { "start": 6421.42, "end": 6423.7, "probability": 0.8889 }, { "start": 6425.88, "end": 6428.64, "probability": 0.9834 }, { "start": 6429.0, "end": 6429.6, "probability": 0.98 }, { "start": 6430.46, "end": 6432.98, "probability": 0.9966 }, { "start": 6433.46, "end": 6436.24, "probability": 0.9951 }, { "start": 6437.12, "end": 6442.62, "probability": 0.9739 }, { "start": 6443.86, "end": 6446.22, "probability": 0.9377 }, { "start": 6446.22, "end": 6449.32, "probability": 0.9954 }, { "start": 6450.56, "end": 6456.1, "probability": 0.9954 }, { "start": 6457.24, "end": 6457.26, "probability": 0.4873 }, { "start": 6458.72, "end": 6460.46, "probability": 0.9494 }, { "start": 6461.16, "end": 6466.02, "probability": 0.9974 }, { "start": 6466.18, "end": 6466.7, "probability": 0.0503 }, { "start": 6467.34, "end": 6468.59, "probability": 0.9651 }, { "start": 6469.5, "end": 6470.38, "probability": 0.9237 }, { "start": 6471.52, "end": 6474.54, "probability": 0.9984 }, { "start": 6475.24, "end": 6477.22, "probability": 0.9555 }, { "start": 6477.3, "end": 6478.36, "probability": 0.9925 }, { "start": 6479.32, "end": 6481.1, "probability": 0.8743 }, { "start": 6481.64, "end": 6483.08, "probability": 0.9278 }, { "start": 6483.14, "end": 6485.56, "probability": 0.9446 }, { "start": 6486.22, "end": 6487.44, "probability": 0.8375 }, { "start": 6488.86, "end": 6491.82, "probability": 0.9987 }, { "start": 6493.08, "end": 6493.76, "probability": 0.9491 }, { "start": 6494.36, "end": 6495.8, "probability": 0.9973 }, { "start": 6496.98, "end": 6497.16, "probability": 0.7168 }, { "start": 6497.98, "end": 6500.76, "probability": 0.7846 }, { "start": 6501.3, "end": 6502.18, "probability": 0.8194 }, { "start": 6502.34, "end": 6503.64, "probability": 0.6218 }, { "start": 6504.92, "end": 6505.86, "probability": 0.872 }, { "start": 6507.5, "end": 6509.2, "probability": 0.8757 }, { "start": 6509.82, "end": 6512.34, "probability": 0.875 }, { "start": 6513.5, "end": 6514.8, "probability": 0.9808 }, { "start": 6515.78, "end": 6519.68, "probability": 0.9979 }, { "start": 6520.66, "end": 6523.2, "probability": 0.9313 }, { "start": 6524.16, "end": 6525.44, "probability": 0.9948 }, { "start": 6527.28, "end": 6528.68, "probability": 0.9578 }, { "start": 6529.28, "end": 6532.14, "probability": 0.9601 }, { "start": 6532.88, "end": 6534.5, "probability": 0.9033 }, { "start": 6535.26, "end": 6536.1, "probability": 0.908 }, { "start": 6536.54, "end": 6537.4, "probability": 0.7047 }, { "start": 6539.22, "end": 6541.14, "probability": 0.6411 }, { "start": 6542.06, "end": 6544.4, "probability": 0.877 }, { "start": 6544.48, "end": 6545.39, "probability": 0.6677 }, { "start": 6546.16, "end": 6548.38, "probability": 0.7464 }, { "start": 6549.1, "end": 6553.62, "probability": 0.9563 }, { "start": 6554.42, "end": 6558.54, "probability": 0.9682 }, { "start": 6559.34, "end": 6562.1, "probability": 0.9612 }, { "start": 6562.54, "end": 6565.18, "probability": 0.9102 }, { "start": 6565.94, "end": 6566.6, "probability": 0.5981 }, { "start": 6567.38, "end": 6569.42, "probability": 0.647 }, { "start": 6577.24, "end": 6579.76, "probability": 0.8435 }, { "start": 6581.36, "end": 6581.68, "probability": 0.8936 }, { "start": 6582.26, "end": 6583.16, "probability": 0.7814 }, { "start": 6583.72, "end": 6585.16, "probability": 0.8264 }, { "start": 6585.72, "end": 6587.52, "probability": 0.9588 }, { "start": 6587.96, "end": 6589.6, "probability": 0.9809 }, { "start": 6590.28, "end": 6594.62, "probability": 0.9775 }, { "start": 6594.72, "end": 6595.5, "probability": 0.4122 }, { "start": 6597.18, "end": 6598.9, "probability": 0.6154 }, { "start": 6600.49, "end": 6607.94, "probability": 0.9894 }, { "start": 6608.54, "end": 6610.88, "probability": 0.8474 }, { "start": 6611.74, "end": 6612.26, "probability": 0.6889 }, { "start": 6612.34, "end": 6614.86, "probability": 0.9734 }, { "start": 6615.42, "end": 6618.74, "probability": 0.9896 }, { "start": 6619.28, "end": 6620.26, "probability": 0.9228 }, { "start": 6620.84, "end": 6625.12, "probability": 0.9987 }, { "start": 6625.16, "end": 6628.38, "probability": 0.998 }, { "start": 6629.12, "end": 6630.18, "probability": 0.9243 }, { "start": 6631.3, "end": 6632.38, "probability": 0.1016 }, { "start": 6632.38, "end": 6635.38, "probability": 0.9215 }, { "start": 6636.14, "end": 6638.8, "probability": 0.7002 }, { "start": 6640.06, "end": 6641.56, "probability": 0.8351 }, { "start": 6647.6, "end": 6648.3, "probability": 0.3599 }, { "start": 6648.48, "end": 6648.98, "probability": 0.8296 }, { "start": 6649.2, "end": 6650.14, "probability": 0.8414 }, { "start": 6650.92, "end": 6654.26, "probability": 0.8385 }, { "start": 6655.24, "end": 6656.76, "probability": 0.9981 }, { "start": 6657.42, "end": 6660.98, "probability": 0.991 }, { "start": 6661.16, "end": 6661.9, "probability": 0.7986 }, { "start": 6663.4, "end": 6664.4, "probability": 0.9338 }, { "start": 6664.54, "end": 6666.58, "probability": 0.9159 }, { "start": 6667.12, "end": 6672.44, "probability": 0.75 }, { "start": 6672.7, "end": 6674.62, "probability": 0.9052 }, { "start": 6674.9, "end": 6675.3, "probability": 0.4978 }, { "start": 6675.44, "end": 6680.16, "probability": 0.9961 }, { "start": 6680.76, "end": 6683.46, "probability": 0.9992 }, { "start": 6684.12, "end": 6686.48, "probability": 0.8781 }, { "start": 6686.48, "end": 6687.52, "probability": 0.1828 }, { "start": 6687.52, "end": 6688.02, "probability": 0.8436 }, { "start": 6688.1, "end": 6689.1, "probability": 0.877 }, { "start": 6689.64, "end": 6691.58, "probability": 0.9676 }, { "start": 6691.64, "end": 6694.22, "probability": 0.9878 }, { "start": 6694.46, "end": 6694.74, "probability": 0.704 }, { "start": 6696.68, "end": 6696.8, "probability": 0.6582 }, { "start": 6696.98, "end": 6698.5, "probability": 0.9814 }, { "start": 6699.16, "end": 6701.63, "probability": 0.8572 }, { "start": 6702.28, "end": 6705.08, "probability": 0.9448 }, { "start": 6705.26, "end": 6707.72, "probability": 0.836 }, { "start": 6708.88, "end": 6710.58, "probability": 0.8088 }, { "start": 6710.64, "end": 6711.23, "probability": 0.777 }, { "start": 6711.68, "end": 6715.24, "probability": 0.8782 }, { "start": 6715.44, "end": 6715.62, "probability": 0.3482 }, { "start": 6715.74, "end": 6716.14, "probability": 0.7132 }, { "start": 6718.46, "end": 6718.94, "probability": 0.5769 }, { "start": 6719.08, "end": 6719.88, "probability": 0.4789 }, { "start": 6719.88, "end": 6720.58, "probability": 0.7797 }, { "start": 6720.66, "end": 6722.28, "probability": 0.5875 }, { "start": 6722.36, "end": 6727.94, "probability": 0.9724 }, { "start": 6728.52, "end": 6730.4, "probability": 0.9843 }, { "start": 6730.62, "end": 6733.32, "probability": 0.9829 }, { "start": 6734.18, "end": 6736.7, "probability": 0.9971 }, { "start": 6736.7, "end": 6740.36, "probability": 0.9757 }, { "start": 6741.24, "end": 6743.25, "probability": 0.7554 }, { "start": 6743.26, "end": 6745.8, "probability": 0.9983 }, { "start": 6746.24, "end": 6749.58, "probability": 0.984 }, { "start": 6749.86, "end": 6753.06, "probability": 0.978 }, { "start": 6753.06, "end": 6756.52, "probability": 0.9986 }, { "start": 6757.34, "end": 6760.3, "probability": 0.9743 }, { "start": 6762.62, "end": 6764.84, "probability": 0.7833 }, { "start": 6765.88, "end": 6768.14, "probability": 0.9433 }, { "start": 6768.92, "end": 6773.36, "probability": 0.998 }, { "start": 6774.16, "end": 6779.0, "probability": 0.9958 }, { "start": 6779.0, "end": 6783.64, "probability": 0.9929 }, { "start": 6784.84, "end": 6785.58, "probability": 0.9317 }, { "start": 6786.72, "end": 6792.08, "probability": 0.9628 }, { "start": 6792.72, "end": 6795.28, "probability": 0.8709 }, { "start": 6795.94, "end": 6799.3, "probability": 0.9287 }, { "start": 6800.04, "end": 6806.92, "probability": 0.9883 }, { "start": 6808.12, "end": 6813.96, "probability": 0.9948 }, { "start": 6813.96, "end": 6819.72, "probability": 0.9364 }, { "start": 6820.34, "end": 6823.66, "probability": 0.9618 }, { "start": 6824.64, "end": 6825.62, "probability": 0.5545 }, { "start": 6826.42, "end": 6830.66, "probability": 0.8798 }, { "start": 6830.66, "end": 6835.4, "probability": 0.8414 }, { "start": 6836.5, "end": 6839.54, "probability": 0.9946 }, { "start": 6840.14, "end": 6843.14, "probability": 0.9514 }, { "start": 6843.74, "end": 6846.0, "probability": 0.767 }, { "start": 6846.58, "end": 6850.0, "probability": 0.9867 }, { "start": 6851.02, "end": 6851.42, "probability": 0.7676 }, { "start": 6852.52, "end": 6853.1, "probability": 0.9163 }, { "start": 6853.68, "end": 6857.9, "probability": 0.9231 }, { "start": 6858.08, "end": 6858.64, "probability": 0.795 }, { "start": 6859.16, "end": 6862.6, "probability": 0.9945 }, { "start": 6863.18, "end": 6864.02, "probability": 0.9079 }, { "start": 6865.0, "end": 6868.08, "probability": 0.7641 }, { "start": 6868.62, "end": 6871.82, "probability": 0.9771 }, { "start": 6872.36, "end": 6876.02, "probability": 0.8846 }, { "start": 6876.64, "end": 6881.54, "probability": 0.9891 }, { "start": 6883.16, "end": 6891.58, "probability": 0.8726 }, { "start": 6892.1, "end": 6896.9, "probability": 0.9592 }, { "start": 6897.36, "end": 6902.02, "probability": 0.9644 }, { "start": 6902.52, "end": 6905.74, "probability": 0.9578 }, { "start": 6906.2, "end": 6907.98, "probability": 0.9406 }, { "start": 6908.22, "end": 6911.06, "probability": 0.8945 }, { "start": 6911.62, "end": 6917.14, "probability": 0.9709 }, { "start": 6917.94, "end": 6923.84, "probability": 0.9868 }, { "start": 6923.84, "end": 6931.34, "probability": 0.9933 }, { "start": 6931.86, "end": 6937.58, "probability": 0.9913 }, { "start": 6938.25, "end": 6941.88, "probability": 0.7238 }, { "start": 6941.88, "end": 6945.16, "probability": 0.9918 }, { "start": 6945.68, "end": 6946.7, "probability": 0.7961 }, { "start": 6947.44, "end": 6951.22, "probability": 0.9671 }, { "start": 6951.74, "end": 6953.6, "probability": 0.9749 }, { "start": 6954.32, "end": 6954.92, "probability": 0.6493 }, { "start": 6955.71, "end": 6956.54, "probability": 0.7058 }, { "start": 6957.48, "end": 6958.92, "probability": 0.8855 }, { "start": 6960.32, "end": 6963.25, "probability": 0.8661 }, { "start": 6963.9, "end": 6967.66, "probability": 0.9709 }, { "start": 6967.94, "end": 6968.94, "probability": 0.9315 }, { "start": 6970.02, "end": 6972.88, "probability": 0.9912 }, { "start": 6972.96, "end": 6975.08, "probability": 0.9983 }, { "start": 6975.1, "end": 6978.74, "probability": 0.9922 }, { "start": 6979.34, "end": 6980.92, "probability": 0.7417 }, { "start": 6981.12, "end": 6983.56, "probability": 0.9954 }, { "start": 6984.84, "end": 6990.62, "probability": 0.9849 }, { "start": 6991.44, "end": 6992.92, "probability": 0.9441 }, { "start": 6993.57, "end": 6995.94, "probability": 0.9987 }, { "start": 6995.94, "end": 6999.4, "probability": 0.9084 }, { "start": 7000.0, "end": 7003.56, "probability": 0.9917 }, { "start": 7003.56, "end": 7008.52, "probability": 0.9507 }, { "start": 7009.14, "end": 7009.62, "probability": 0.4382 }, { "start": 7009.66, "end": 7012.92, "probability": 0.9852 }, { "start": 7013.9, "end": 7016.18, "probability": 0.9806 }, { "start": 7016.34, "end": 7017.54, "probability": 0.8699 }, { "start": 7017.6, "end": 7019.8, "probability": 0.9893 }, { "start": 7021.5, "end": 7023.62, "probability": 0.5999 }, { "start": 7025.94, "end": 7026.26, "probability": 0.9446 }, { "start": 7027.84, "end": 7032.14, "probability": 0.981 }, { "start": 7032.68, "end": 7035.42, "probability": 0.978 }, { "start": 7035.72, "end": 7037.52, "probability": 0.6817 }, { "start": 7038.02, "end": 7039.46, "probability": 0.9662 }, { "start": 7041.48, "end": 7044.42, "probability": 0.7692 }, { "start": 7045.3, "end": 7048.34, "probability": 0.8177 }, { "start": 7049.02, "end": 7050.14, "probability": 0.9661 }, { "start": 7050.68, "end": 7053.72, "probability": 0.9967 }, { "start": 7054.72, "end": 7055.32, "probability": 0.3617 }, { "start": 7056.0, "end": 7063.88, "probability": 0.9817 }, { "start": 7064.48, "end": 7066.68, "probability": 0.9972 }, { "start": 7067.26, "end": 7069.7, "probability": 0.9937 }, { "start": 7070.82, "end": 7072.76, "probability": 0.9051 }, { "start": 7073.82, "end": 7074.68, "probability": 0.8225 }, { "start": 7076.06, "end": 7080.28, "probability": 0.9966 }, { "start": 7080.28, "end": 7083.82, "probability": 0.9915 }, { "start": 7084.56, "end": 7085.56, "probability": 0.7749 }, { "start": 7085.86, "end": 7088.28, "probability": 0.9751 }, { "start": 7088.46, "end": 7090.58, "probability": 0.95 }, { "start": 7091.2, "end": 7094.7, "probability": 0.9565 }, { "start": 7094.82, "end": 7096.34, "probability": 0.8995 }, { "start": 7097.88, "end": 7099.24, "probability": 0.8587 }, { "start": 7099.4, "end": 7102.02, "probability": 0.8926 }, { "start": 7103.04, "end": 7106.2, "probability": 0.9723 }, { "start": 7107.04, "end": 7110.22, "probability": 0.6598 }, { "start": 7111.5, "end": 7112.82, "probability": 0.8446 }, { "start": 7113.32, "end": 7115.68, "probability": 0.7349 }, { "start": 7116.18, "end": 7117.34, "probability": 0.9914 }, { "start": 7118.28, "end": 7120.12, "probability": 0.9639 }, { "start": 7120.94, "end": 7124.2, "probability": 0.971 }, { "start": 7124.92, "end": 7133.04, "probability": 0.9814 }, { "start": 7133.6, "end": 7137.44, "probability": 0.9329 }, { "start": 7138.02, "end": 7141.06, "probability": 0.9896 }, { "start": 7142.28, "end": 7142.72, "probability": 0.7578 }, { "start": 7142.86, "end": 7144.2, "probability": 0.5504 }, { "start": 7144.34, "end": 7145.3, "probability": 0.9722 }, { "start": 7146.8, "end": 7148.98, "probability": 0.1121 }, { "start": 7149.94, "end": 7154.78, "probability": 0.653 }, { "start": 7155.3, "end": 7159.48, "probability": 0.7763 }, { "start": 7167.52, "end": 7167.62, "probability": 0.0169 }, { "start": 7167.8, "end": 7167.8, "probability": 0.1137 }, { "start": 7167.8, "end": 7167.8, "probability": 0.1076 }, { "start": 7167.8, "end": 7169.84, "probability": 0.4802 }, { "start": 7171.04, "end": 7171.54, "probability": 0.556 }, { "start": 7177.26, "end": 7179.0, "probability": 0.4438 }, { "start": 7179.94, "end": 7180.16, "probability": 0.1267 }, { "start": 7180.38, "end": 7180.38, "probability": 0.0505 }, { "start": 7180.38, "end": 7180.38, "probability": 0.1142 }, { "start": 7180.38, "end": 7181.48, "probability": 0.9253 }, { "start": 7182.54, "end": 7186.28, "probability": 0.9896 }, { "start": 7187.16, "end": 7189.32, "probability": 0.9656 }, { "start": 7189.82, "end": 7193.28, "probability": 0.8058 }, { "start": 7193.58, "end": 7197.26, "probability": 0.9941 }, { "start": 7198.2, "end": 7199.06, "probability": 0.7785 }, { "start": 7199.94, "end": 7203.1, "probability": 0.8409 }, { "start": 7212.18, "end": 7213.32, "probability": 0.6653 }, { "start": 7213.84, "end": 7214.83, "probability": 0.8988 }, { "start": 7216.38, "end": 7221.06, "probability": 0.8536 }, { "start": 7221.6, "end": 7223.14, "probability": 0.8716 }, { "start": 7224.24, "end": 7227.26, "probability": 0.7923 }, { "start": 7227.92, "end": 7233.61, "probability": 0.9259 }, { "start": 7235.64, "end": 7236.76, "probability": 0.3739 }, { "start": 7237.92, "end": 7243.4, "probability": 0.9185 }, { "start": 7244.12, "end": 7246.36, "probability": 0.5821 }, { "start": 7246.82, "end": 7250.14, "probability": 0.9947 }, { "start": 7250.14, "end": 7254.74, "probability": 0.9707 }, { "start": 7255.6, "end": 7259.68, "probability": 0.8483 }, { "start": 7260.4, "end": 7265.44, "probability": 0.9697 }, { "start": 7265.74, "end": 7273.7, "probability": 0.7588 }, { "start": 7274.22, "end": 7274.88, "probability": 0.8138 }, { "start": 7275.54, "end": 7277.72, "probability": 0.9898 }, { "start": 7278.24, "end": 7280.62, "probability": 0.9512 }, { "start": 7281.68, "end": 7283.46, "probability": 0.8893 }, { "start": 7284.34, "end": 7289.74, "probability": 0.938 }, { "start": 7290.34, "end": 7292.7, "probability": 0.9446 }, { "start": 7293.32, "end": 7299.08, "probability": 0.8522 }, { "start": 7299.16, "end": 7302.74, "probability": 0.5934 }, { "start": 7303.74, "end": 7304.66, "probability": 0.6839 }, { "start": 7305.66, "end": 7307.98, "probability": 0.5712 }, { "start": 7308.5, "end": 7311.74, "probability": 0.9422 }, { "start": 7312.26, "end": 7315.0, "probability": 0.6672 }, { "start": 7318.0, "end": 7320.68, "probability": 0.4926 }, { "start": 7321.92, "end": 7324.58, "probability": 0.8088 }, { "start": 7324.78, "end": 7325.28, "probability": 0.8326 }, { "start": 7327.22, "end": 7328.86, "probability": 0.6109 }, { "start": 7330.04, "end": 7332.66, "probability": 0.8224 }, { "start": 7333.4, "end": 7337.72, "probability": 0.999 }, { "start": 7338.94, "end": 7339.14, "probability": 0.6574 }, { "start": 7339.5, "end": 7345.22, "probability": 0.959 }, { "start": 7346.74, "end": 7351.46, "probability": 0.9927 }, { "start": 7352.36, "end": 7354.66, "probability": 0.8774 }, { "start": 7355.0, "end": 7357.76, "probability": 0.7521 }, { "start": 7358.52, "end": 7363.94, "probability": 0.9119 }, { "start": 7364.74, "end": 7365.04, "probability": 0.9359 }, { "start": 7372.78, "end": 7374.08, "probability": 0.2187 }, { "start": 7375.35, "end": 7375.8, "probability": 0.195 }, { "start": 7383.51, "end": 7384.59, "probability": 0.1386 }, { "start": 7385.36, "end": 7386.92, "probability": 0.9882 }, { "start": 7387.6, "end": 7389.05, "probability": 0.8184 }, { "start": 7390.22, "end": 7391.44, "probability": 0.8218 }, { "start": 7391.8, "end": 7394.54, "probability": 0.4824 }, { "start": 7395.24, "end": 7397.52, "probability": 0.7035 }, { "start": 7398.42, "end": 7400.72, "probability": 0.5758 }, { "start": 7400.92, "end": 7410.22, "probability": 0.7061 }, { "start": 7411.02, "end": 7411.58, "probability": 0.9126 }, { "start": 7413.5, "end": 7414.8, "probability": 0.8161 }, { "start": 7415.32, "end": 7415.96, "probability": 0.7035 }, { "start": 7427.76, "end": 7431.56, "probability": 0.6321 }, { "start": 7432.52, "end": 7437.32, "probability": 0.7037 }, { "start": 7437.96, "end": 7443.38, "probability": 0.9854 }, { "start": 7444.44, "end": 7447.36, "probability": 0.9962 }, { "start": 7447.96, "end": 7451.44, "probability": 0.9682 }, { "start": 7454.46, "end": 7457.32, "probability": 0.7557 }, { "start": 7458.14, "end": 7460.88, "probability": 0.9613 }, { "start": 7461.64, "end": 7465.8, "probability": 0.9099 }, { "start": 7466.56, "end": 7467.96, "probability": 0.6664 }, { "start": 7468.54, "end": 7470.1, "probability": 0.9487 }, { "start": 7470.76, "end": 7472.68, "probability": 0.8997 }, { "start": 7475.36, "end": 7476.58, "probability": 0.7336 }, { "start": 7477.22, "end": 7478.82, "probability": 0.6085 }, { "start": 7488.03, "end": 7491.98, "probability": 0.9152 }, { "start": 7492.98, "end": 7496.38, "probability": 0.9971 }, { "start": 7497.68, "end": 7500.06, "probability": 0.9837 }, { "start": 7501.42, "end": 7506.14, "probability": 0.9644 }, { "start": 7507.52, "end": 7508.36, "probability": 0.7449 }, { "start": 7508.78, "end": 7510.54, "probability": 0.8042 }, { "start": 7510.56, "end": 7513.12, "probability": 0.9856 }, { "start": 7514.16, "end": 7516.56, "probability": 0.7881 }, { "start": 7517.48, "end": 7519.76, "probability": 0.9065 }, { "start": 7520.44, "end": 7521.12, "probability": 0.5538 }, { "start": 7521.28, "end": 7524.28, "probability": 0.9958 }, { "start": 7525.8, "end": 7526.0, "probability": 0.6775 }, { "start": 7526.12, "end": 7528.82, "probability": 0.9927 }, { "start": 7528.82, "end": 7531.94, "probability": 0.9384 }, { "start": 7532.98, "end": 7533.9, "probability": 0.9727 }, { "start": 7534.14, "end": 7536.36, "probability": 0.9815 }, { "start": 7537.0, "end": 7539.32, "probability": 0.6854 }, { "start": 7540.62, "end": 7541.66, "probability": 0.8677 }, { "start": 7541.8, "end": 7542.46, "probability": 0.5702 }, { "start": 7542.54, "end": 7543.22, "probability": 0.7217 }, { "start": 7543.4, "end": 7545.8, "probability": 0.995 }, { "start": 7545.84, "end": 7548.42, "probability": 0.708 }, { "start": 7549.04, "end": 7550.44, "probability": 0.7019 }, { "start": 7552.46, "end": 7555.44, "probability": 0.9526 }, { "start": 7556.92, "end": 7559.54, "probability": 0.989 }, { "start": 7561.42, "end": 7562.58, "probability": 0.9902 }, { "start": 7563.56, "end": 7566.28, "probability": 0.9939 }, { "start": 7567.34, "end": 7567.86, "probability": 0.6888 }, { "start": 7568.4, "end": 7570.44, "probability": 0.9913 }, { "start": 7571.9, "end": 7575.04, "probability": 0.9827 }, { "start": 7598.28, "end": 7600.52, "probability": 0.6313 }, { "start": 7604.88, "end": 7604.98, "probability": 0.3754 }, { "start": 7605.78, "end": 7606.58, "probability": 0.087 }, { "start": 7608.4, "end": 7612.96, "probability": 0.9089 }, { "start": 7616.36, "end": 7622.62, "probability": 0.9917 }, { "start": 7623.66, "end": 7625.54, "probability": 0.7784 }, { "start": 7625.92, "end": 7626.54, "probability": 0.5405 }, { "start": 7626.62, "end": 7629.78, "probability": 0.9824 }, { "start": 7629.88, "end": 7631.62, "probability": 0.9643 }, { "start": 7632.4, "end": 7633.86, "probability": 0.9857 }, { "start": 7634.28, "end": 7637.62, "probability": 0.7309 }, { "start": 7640.36, "end": 7641.48, "probability": 0.5266 }, { "start": 7643.82, "end": 7644.26, "probability": 0.6251 }, { "start": 7647.54, "end": 7651.38, "probability": 0.6591 }, { "start": 7651.5, "end": 7654.0, "probability": 0.999 }, { "start": 7656.12, "end": 7660.86, "probability": 0.988 }, { "start": 7662.68, "end": 7664.82, "probability": 0.9986 }, { "start": 7665.36, "end": 7666.36, "probability": 0.9926 }, { "start": 7667.14, "end": 7669.42, "probability": 0.9989 }, { "start": 7671.02, "end": 7674.42, "probability": 0.8871 }, { "start": 7675.04, "end": 7679.46, "probability": 0.9952 }, { "start": 7680.16, "end": 7681.96, "probability": 0.9735 }, { "start": 7682.96, "end": 7685.96, "probability": 0.9937 }, { "start": 7686.74, "end": 7688.9, "probability": 0.9626 }, { "start": 7689.54, "end": 7695.1, "probability": 0.9976 }, { "start": 7695.6, "end": 7696.62, "probability": 0.9855 }, { "start": 7697.62, "end": 7700.9, "probability": 0.8685 }, { "start": 7700.9, "end": 7704.42, "probability": 0.9866 }, { "start": 7705.58, "end": 7713.08, "probability": 0.99 }, { "start": 7713.7, "end": 7715.98, "probability": 0.9729 }, { "start": 7716.76, "end": 7720.46, "probability": 0.9954 }, { "start": 7721.14, "end": 7725.06, "probability": 0.9962 }, { "start": 7725.52, "end": 7735.14, "probability": 0.9512 }, { "start": 7735.82, "end": 7738.94, "probability": 0.9973 }, { "start": 7739.9, "end": 7743.76, "probability": 0.9981 }, { "start": 7745.02, "end": 7749.08, "probability": 0.922 }, { "start": 7749.08, "end": 7753.26, "probability": 0.9976 }, { "start": 7754.32, "end": 7756.06, "probability": 0.764 }, { "start": 7756.9, "end": 7758.88, "probability": 0.994 }, { "start": 7759.46, "end": 7762.36, "probability": 0.971 }, { "start": 7762.86, "end": 7763.42, "probability": 0.7767 }, { "start": 7763.54, "end": 7764.88, "probability": 0.8564 }, { "start": 7765.42, "end": 7770.26, "probability": 0.9981 }, { "start": 7770.26, "end": 7775.42, "probability": 0.9985 }, { "start": 7776.28, "end": 7777.18, "probability": 0.8 }, { "start": 7777.44, "end": 7780.04, "probability": 0.9897 }, { "start": 7780.64, "end": 7782.56, "probability": 0.4225 }, { "start": 7783.18, "end": 7786.16, "probability": 0.7471 }, { "start": 7786.94, "end": 7789.46, "probability": 0.8982 }, { "start": 7790.32, "end": 7794.86, "probability": 0.9922 }, { "start": 7795.66, "end": 7798.3, "probability": 0.8921 }, { "start": 7799.82, "end": 7802.36, "probability": 0.95 }, { "start": 7803.52, "end": 7807.08, "probability": 0.9886 }, { "start": 7807.08, "end": 7810.76, "probability": 0.9977 }, { "start": 7811.5, "end": 7813.46, "probability": 0.8782 }, { "start": 7813.9, "end": 7816.94, "probability": 0.7135 }, { "start": 7817.64, "end": 7820.08, "probability": 0.9161 }, { "start": 7821.0, "end": 7823.92, "probability": 0.9703 }, { "start": 7824.82, "end": 7829.08, "probability": 0.9945 }, { "start": 7829.52, "end": 7830.94, "probability": 0.8632 }, { "start": 7831.5, "end": 7834.64, "probability": 0.9488 }, { "start": 7835.28, "end": 7837.58, "probability": 0.9665 }, { "start": 7838.2, "end": 7843.42, "probability": 0.9287 }, { "start": 7844.9, "end": 7846.32, "probability": 0.9915 }, { "start": 7847.04, "end": 7850.0, "probability": 0.9964 }, { "start": 7850.0, "end": 7854.36, "probability": 0.9513 }, { "start": 7854.84, "end": 7856.88, "probability": 0.9277 }, { "start": 7857.9, "end": 7860.58, "probability": 0.8037 }, { "start": 7861.22, "end": 7863.46, "probability": 0.6495 }, { "start": 7864.1, "end": 7868.22, "probability": 0.9395 }, { "start": 7869.26, "end": 7870.22, "probability": 0.8719 }, { "start": 7870.72, "end": 7873.4, "probability": 0.9974 }, { "start": 7873.84, "end": 7875.98, "probability": 0.9483 }, { "start": 7876.84, "end": 7880.68, "probability": 0.9931 }, { "start": 7880.76, "end": 7886.2, "probability": 0.9956 }, { "start": 7886.76, "end": 7889.9, "probability": 0.9781 }, { "start": 7890.06, "end": 7892.26, "probability": 0.3484 }, { "start": 7892.78, "end": 7894.92, "probability": 0.9321 }, { "start": 7896.04, "end": 7899.88, "probability": 0.9697 }, { "start": 7901.22, "end": 7904.74, "probability": 0.857 }, { "start": 7904.74, "end": 7908.64, "probability": 0.9922 }, { "start": 7909.32, "end": 7911.6, "probability": 0.8026 }, { "start": 7912.86, "end": 7916.02, "probability": 0.9084 }, { "start": 7916.02, "end": 7919.4, "probability": 0.9881 }, { "start": 7920.06, "end": 7923.0, "probability": 0.99 }, { "start": 7923.58, "end": 7927.14, "probability": 0.927 }, { "start": 7927.94, "end": 7930.04, "probability": 0.9031 }, { "start": 7930.5, "end": 7931.32, "probability": 0.7641 }, { "start": 7931.52, "end": 7937.14, "probability": 0.9603 }, { "start": 7937.66, "end": 7940.62, "probability": 0.9967 }, { "start": 7941.36, "end": 7944.38, "probability": 0.9883 }, { "start": 7944.54, "end": 7948.04, "probability": 0.997 }, { "start": 7948.86, "end": 7950.18, "probability": 0.9365 }, { "start": 7950.78, "end": 7954.72, "probability": 0.9371 }, { "start": 7955.68, "end": 7960.02, "probability": 0.9969 }, { "start": 7960.02, "end": 7965.52, "probability": 0.9994 }, { "start": 7967.48, "end": 7968.83, "probability": 0.8254 }, { "start": 7969.96, "end": 7974.38, "probability": 0.9869 }, { "start": 7975.0, "end": 7977.84, "probability": 0.6865 }, { "start": 7978.44, "end": 7978.96, "probability": 0.5835 }, { "start": 7980.08, "end": 7980.36, "probability": 0.7408 }, { "start": 7981.38, "end": 7983.98, "probability": 0.9561 }, { "start": 7985.3, "end": 7985.4, "probability": 0.7786 }, { "start": 7986.2, "end": 7987.04, "probability": 0.4729 }, { "start": 7988.91, "end": 7991.36, "probability": 0.6681 }, { "start": 7991.7, "end": 7993.38, "probability": 0.9248 }, { "start": 7993.94, "end": 7996.8, "probability": 0.9421 }, { "start": 7997.22, "end": 8001.62, "probability": 0.9631 }, { "start": 8001.74, "end": 8006.24, "probability": 0.9855 }, { "start": 8006.24, "end": 8008.78, "probability": 0.9984 }, { "start": 8008.86, "end": 8013.38, "probability": 0.9662 }, { "start": 8013.63, "end": 8017.16, "probability": 0.9935 }, { "start": 8021.2, "end": 8023.7, "probability": 0.8919 }, { "start": 8024.62, "end": 8026.02, "probability": 0.9823 }, { "start": 8026.72, "end": 8029.76, "probability": 0.952 }, { "start": 8030.56, "end": 8032.22, "probability": 0.8444 }, { "start": 8032.34, "end": 8034.28, "probability": 0.9443 }, { "start": 8034.54, "end": 8036.48, "probability": 0.9172 }, { "start": 8037.14, "end": 8038.34, "probability": 0.9891 }, { "start": 8039.1, "end": 8041.74, "probability": 0.9791 }, { "start": 8041.9, "end": 8045.38, "probability": 0.9937 }, { "start": 8045.52, "end": 8047.42, "probability": 0.981 }, { "start": 8048.42, "end": 8051.16, "probability": 0.9611 }, { "start": 8051.7, "end": 8053.92, "probability": 0.9601 }, { "start": 8062.92, "end": 8062.92, "probability": 0.0833 }, { "start": 8062.92, "end": 8062.92, "probability": 0.0974 }, { "start": 8062.92, "end": 8065.0, "probability": 0.6211 }, { "start": 8065.1, "end": 8065.78, "probability": 0.7723 }, { "start": 8066.26, "end": 8069.3, "probability": 0.8287 }, { "start": 8070.58, "end": 8071.2, "probability": 0.4956 }, { "start": 8072.0, "end": 8073.54, "probability": 0.9832 }, { "start": 8073.7, "end": 8074.66, "probability": 0.8171 }, { "start": 8075.06, "end": 8076.3, "probability": 0.966 }, { "start": 8077.37, "end": 8078.88, "probability": 0.9959 }, { "start": 8080.42, "end": 8081.04, "probability": 0.7272 }, { "start": 8081.3, "end": 8083.36, "probability": 0.8007 }, { "start": 8089.28, "end": 8089.88, "probability": 0.7949 }, { "start": 8089.96, "end": 8091.06, "probability": 0.724 }, { "start": 8091.2, "end": 8091.56, "probability": 0.5424 }, { "start": 8091.64, "end": 8093.52, "probability": 0.9499 }, { "start": 8093.58, "end": 8096.26, "probability": 0.9598 }, { "start": 8097.08, "end": 8101.38, "probability": 0.9922 }, { "start": 8101.6, "end": 8105.22, "probability": 0.9979 }, { "start": 8105.5, "end": 8106.36, "probability": 0.9277 }, { "start": 8106.82, "end": 8111.52, "probability": 0.8612 }, { "start": 8111.58, "end": 8111.94, "probability": 0.5757 }, { "start": 8112.56, "end": 8115.79, "probability": 0.9951 }, { "start": 8116.02, "end": 8119.12, "probability": 0.9991 }, { "start": 8119.66, "end": 8120.94, "probability": 0.6677 }, { "start": 8121.26, "end": 8123.02, "probability": 0.9589 }, { "start": 8123.58, "end": 8126.98, "probability": 0.986 }, { "start": 8127.68, "end": 8128.82, "probability": 0.9352 }, { "start": 8128.9, "end": 8133.78, "probability": 0.9886 }, { "start": 8133.78, "end": 8136.0, "probability": 0.9995 }, { "start": 8136.22, "end": 8138.56, "probability": 0.992 }, { "start": 8138.92, "end": 8140.4, "probability": 0.9993 }, { "start": 8141.14, "end": 8143.76, "probability": 0.9683 }, { "start": 8144.12, "end": 8146.22, "probability": 0.7934 }, { "start": 8146.38, "end": 8147.98, "probability": 0.9125 }, { "start": 8148.32, "end": 8149.78, "probability": 0.9591 }, { "start": 8150.38, "end": 8152.48, "probability": 0.9966 }, { "start": 8153.22, "end": 8154.6, "probability": 0.9924 }, { "start": 8156.04, "end": 8156.74, "probability": 0.9535 }, { "start": 8157.78, "end": 8160.18, "probability": 0.9043 }, { "start": 8161.64, "end": 8166.1, "probability": 0.9941 }, { "start": 8166.1, "end": 8169.18, "probability": 0.9877 }, { "start": 8170.06, "end": 8172.18, "probability": 0.9983 }, { "start": 8172.74, "end": 8173.16, "probability": 0.8676 }, { "start": 8173.28, "end": 8178.41, "probability": 0.9909 }, { "start": 8179.88, "end": 8185.44, "probability": 0.0429 }, { "start": 8186.44, "end": 8189.2, "probability": 0.9094 }, { "start": 8193.96, "end": 8195.8, "probability": 0.5109 }, { "start": 8195.88, "end": 8195.92, "probability": 0.4147 }, { "start": 8196.1, "end": 8197.76, "probability": 0.6603 }, { "start": 8197.82, "end": 8200.68, "probability": 0.9365 }, { "start": 8201.04, "end": 8202.53, "probability": 0.1014 }, { "start": 8206.2, "end": 8209.78, "probability": 0.7319 }, { "start": 8210.9, "end": 8212.8, "probability": 0.9279 }, { "start": 8213.32, "end": 8214.9, "probability": 0.9449 }, { "start": 8215.5, "end": 8218.44, "probability": 0.9653 }, { "start": 8219.12, "end": 8220.1, "probability": 0.7621 }, { "start": 8221.08, "end": 8221.82, "probability": 0.9034 }, { "start": 8222.82, "end": 8223.46, "probability": 0.7245 }, { "start": 8224.46, "end": 8227.76, "probability": 0.8875 }, { "start": 8228.6, "end": 8231.42, "probability": 0.9684 }, { "start": 8233.78, "end": 8235.52, "probability": 0.6004 }, { "start": 8236.7, "end": 8241.02, "probability": 0.981 }, { "start": 8241.92, "end": 8245.18, "probability": 0.9711 }, { "start": 8246.5, "end": 8249.06, "probability": 0.312 }, { "start": 8249.78, "end": 8256.18, "probability": 0.957 }, { "start": 8256.18, "end": 8264.24, "probability": 0.9927 }, { "start": 8265.02, "end": 8265.82, "probability": 0.6739 }, { "start": 8266.4, "end": 8268.78, "probability": 0.9755 }, { "start": 8269.66, "end": 8271.24, "probability": 0.6879 }, { "start": 8271.82, "end": 8276.27, "probability": 0.995 }, { "start": 8277.04, "end": 8280.18, "probability": 0.9756 }, { "start": 8280.66, "end": 8285.18, "probability": 0.9721 }, { "start": 8286.36, "end": 8292.3, "probability": 0.9072 }, { "start": 8292.62, "end": 8293.44, "probability": 0.5651 }, { "start": 8294.4, "end": 8299.6, "probability": 0.8392 }, { "start": 8299.7, "end": 8301.88, "probability": 0.9962 }, { "start": 8302.24, "end": 8306.58, "probability": 0.9889 }, { "start": 8307.1, "end": 8308.28, "probability": 0.8062 }, { "start": 8308.98, "end": 8315.52, "probability": 0.9886 }, { "start": 8316.0, "end": 8317.58, "probability": 0.9951 }, { "start": 8318.14, "end": 8322.64, "probability": 0.9849 }, { "start": 8323.28, "end": 8327.0, "probability": 0.9929 }, { "start": 8327.52, "end": 8327.72, "probability": 0.9999 }, { "start": 8328.54, "end": 8329.82, "probability": 0.8212 }, { "start": 8330.72, "end": 8331.94, "probability": 0.9976 }, { "start": 8332.3, "end": 8332.3, "probability": 0.1494 }, { "start": 8333.14, "end": 8335.5, "probability": 0.8997 }, { "start": 8335.7, "end": 8336.9, "probability": 0.998 }, { "start": 8337.06, "end": 8338.18, "probability": 0.9736 }, { "start": 8338.76, "end": 8338.98, "probability": 0.3427 }, { "start": 8339.08, "end": 8339.68, "probability": 0.6802 }, { "start": 8340.18, "end": 8341.0, "probability": 0.7397 }, { "start": 8341.08, "end": 8341.72, "probability": 0.8542 }, { "start": 8341.78, "end": 8346.28, "probability": 0.9675 }, { "start": 8346.4, "end": 8349.9, "probability": 0.9709 }, { "start": 8350.68, "end": 8352.73, "probability": 0.9922 }, { "start": 8353.7, "end": 8354.34, "probability": 0.7579 }, { "start": 8354.62, "end": 8355.72, "probability": 0.9938 }, { "start": 8355.86, "end": 8358.98, "probability": 0.9569 }, { "start": 8359.38, "end": 8362.14, "probability": 0.9951 }, { "start": 8362.9, "end": 8363.24, "probability": 0.4118 }, { "start": 8363.44, "end": 8366.38, "probability": 0.9498 }, { "start": 8368.2, "end": 8369.9, "probability": 0.7927 }, { "start": 8370.6, "end": 8373.48, "probability": 0.9882 }, { "start": 8373.5, "end": 8378.46, "probability": 0.9941 }, { "start": 8378.46, "end": 8382.06, "probability": 0.9981 }, { "start": 8382.22, "end": 8383.5, "probability": 0.8201 }, { "start": 8383.7, "end": 8384.08, "probability": 0.3917 }, { "start": 8384.16, "end": 8385.09, "probability": 0.8201 }, { "start": 8385.82, "end": 8387.36, "probability": 0.8685 }, { "start": 8387.42, "end": 8387.98, "probability": 0.747 }, { "start": 8388.1, "end": 8389.1, "probability": 0.7831 }, { "start": 8389.26, "end": 8390.76, "probability": 0.9767 }, { "start": 8391.38, "end": 8393.54, "probability": 0.9909 }, { "start": 8394.62, "end": 8398.12, "probability": 0.9663 }, { "start": 8398.96, "end": 8401.12, "probability": 0.9978 }, { "start": 8401.54, "end": 8405.2, "probability": 0.7269 }, { "start": 8405.68, "end": 8407.74, "probability": 0.9865 }, { "start": 8408.22, "end": 8410.66, "probability": 0.9371 }, { "start": 8411.48, "end": 8413.1, "probability": 0.9788 }, { "start": 8413.64, "end": 8414.34, "probability": 0.8804 }, { "start": 8414.68, "end": 8415.06, "probability": 0.8921 }, { "start": 8416.64, "end": 8417.64, "probability": 0.0029 }, { "start": 8444.46, "end": 8450.46, "probability": 0.064 }, { "start": 8450.46, "end": 8450.46, "probability": 0.1019 }, { "start": 8450.46, "end": 8450.46, "probability": 0.05 }, { "start": 8450.46, "end": 8450.46, "probability": 0.0401 }, { "start": 8455.94, "end": 8456.84, "probability": 0.5766 }, { "start": 8457.02, "end": 8458.22, "probability": 0.0344 }, { "start": 8458.3, "end": 8458.88, "probability": 0.0909 }, { "start": 8458.98, "end": 8459.32, "probability": 0.0679 }, { "start": 8459.32, "end": 8459.32, "probability": 0.0435 }, { "start": 8459.32, "end": 8459.48, "probability": 0.538 }, { "start": 8470.32, "end": 8476.04, "probability": 0.1987 }, { "start": 8479.0, "end": 8479.68, "probability": 0.2766 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.0, "end": 8616.0, "probability": 0.0 }, { "start": 8616.2, "end": 8618.06, "probability": 0.0856 }, { "start": 8619.42, "end": 8621.36, "probability": 0.8274 }, { "start": 8621.88, "end": 8625.74, "probability": 0.9684 }, { "start": 8626.18, "end": 8628.04, "probability": 0.8432 }, { "start": 8628.56, "end": 8629.06, "probability": 0.4099 }, { "start": 8629.86, "end": 8631.06, "probability": 0.6201 }, { "start": 8631.96, "end": 8635.24, "probability": 0.9863 }, { "start": 8636.52, "end": 8641.12, "probability": 0.7502 }, { "start": 8641.38, "end": 8643.64, "probability": 0.3404 }, { "start": 8644.36, "end": 8647.72, "probability": 0.9648 }, { "start": 8648.28, "end": 8650.96, "probability": 0.4327 }, { "start": 8651.56, "end": 8656.5, "probability": 0.9033 }, { "start": 8656.5, "end": 8660.26, "probability": 0.9951 }, { "start": 8661.16, "end": 8668.16, "probability": 0.9875 }, { "start": 8669.06, "end": 8670.64, "probability": 0.8834 }, { "start": 8672.1, "end": 8673.08, "probability": 0.7539 }, { "start": 8674.04, "end": 8676.96, "probability": 0.9954 }, { "start": 8677.78, "end": 8680.52, "probability": 0.828 }, { "start": 8681.42, "end": 8683.34, "probability": 0.958 }, { "start": 8684.06, "end": 8686.92, "probability": 0.9948 }, { "start": 8688.12, "end": 8691.46, "probability": 0.9647 }, { "start": 8692.02, "end": 8697.32, "probability": 0.9862 }, { "start": 8698.1, "end": 8702.14, "probability": 0.953 }, { "start": 8702.84, "end": 8706.2, "probability": 0.9926 }, { "start": 8706.2, "end": 8708.7, "probability": 0.8887 }, { "start": 8709.76, "end": 8713.6, "probability": 0.7038 }, { "start": 8713.6, "end": 8717.42, "probability": 0.8793 }, { "start": 8717.92, "end": 8723.46, "probability": 0.8523 }, { "start": 8724.6, "end": 8724.8, "probability": 0.6668 }, { "start": 8725.64, "end": 8727.4, "probability": 0.6068 }, { "start": 8728.06, "end": 8728.64, "probability": 0.0828 }, { "start": 8729.36, "end": 8729.94, "probability": 0.8698 }, { "start": 8730.22, "end": 8730.94, "probability": 0.7934 }, { "start": 8731.0, "end": 8733.72, "probability": 0.991 }, { "start": 8734.12, "end": 8734.64, "probability": 0.0096 }, { "start": 8734.64, "end": 8734.9, "probability": 0.374 }, { "start": 8746.58, "end": 8747.04, "probability": 0.0405 }, { "start": 8749.26, "end": 8749.88, "probability": 0.0317 }, { "start": 8751.86, "end": 8753.0, "probability": 0.0646 }, { "start": 8753.06, "end": 8753.72, "probability": 0.1185 }, { "start": 8755.12, "end": 8755.9, "probability": 0.3865 }, { "start": 8756.6, "end": 8759.02, "probability": 0.2553 }, { "start": 8759.06, "end": 8759.38, "probability": 0.191 }, { "start": 8761.06, "end": 8761.66, "probability": 0.0493 }, { "start": 8761.9, "end": 8763.42, "probability": 0.268 }, { "start": 8763.42, "end": 8764.4, "probability": 0.1237 }, { "start": 8764.4, "end": 8767.6, "probability": 0.3125 }, { "start": 8767.88, "end": 8771.94, "probability": 0.8331 }, { "start": 8775.2, "end": 8780.74, "probability": 0.0393 }, { "start": 8781.26, "end": 8781.26, "probability": 0.0699 }, { "start": 8781.26, "end": 8781.26, "probability": 0.0344 }, { "start": 8781.26, "end": 8785.44, "probability": 0.1056 }, { "start": 8785.44, "end": 8785.44, "probability": 0.4572 }, { "start": 8785.44, "end": 8785.44, "probability": 0.0614 }, { "start": 8785.44, "end": 8785.88, "probability": 0.0611 }, { "start": 8785.88, "end": 8790.52, "probability": 0.8584 }, { "start": 8791.32, "end": 8792.2, "probability": 0.691 }, { "start": 8792.46, "end": 8796.54, "probability": 0.9755 }, { "start": 8798.17, "end": 8802.34, "probability": 0.9753 }, { "start": 8802.82, "end": 8807.48, "probability": 0.7782 }, { "start": 8807.56, "end": 8812.32, "probability": 0.9504 }, { "start": 8813.78, "end": 8815.62, "probability": 0.7623 }, { "start": 8816.08, "end": 8817.44, "probability": 0.9653 }, { "start": 8818.84, "end": 8820.04, "probability": 0.8611 }, { "start": 8821.16, "end": 8824.14, "probability": 0.9862 }, { "start": 8824.66, "end": 8825.88, "probability": 0.9682 }, { "start": 8826.92, "end": 8827.54, "probability": 0.9724 }, { "start": 8829.08, "end": 8835.28, "probability": 0.7613 }, { "start": 8835.52, "end": 8836.64, "probability": 0.9641 }, { "start": 8836.82, "end": 8837.52, "probability": 0.7166 }, { "start": 8838.44, "end": 8838.92, "probability": 0.8048 }, { "start": 8839.72, "end": 8840.86, "probability": 0.8818 }, { "start": 8841.44, "end": 8843.32, "probability": 0.6365 }, { "start": 8843.54, "end": 8845.08, "probability": 0.7014 }, { "start": 8845.16, "end": 8846.9, "probability": 0.9507 }, { "start": 8847.76, "end": 8854.12, "probability": 0.9613 }, { "start": 8855.24, "end": 8857.72, "probability": 0.973 }, { "start": 8858.46, "end": 8861.44, "probability": 0.8626 }, { "start": 8862.08, "end": 8864.56, "probability": 0.9912 }, { "start": 8865.38, "end": 8867.68, "probability": 0.9401 }, { "start": 8868.36, "end": 8871.96, "probability": 0.8994 }, { "start": 8872.72, "end": 8874.38, "probability": 0.9939 }, { "start": 8875.12, "end": 8878.48, "probability": 0.9963 }, { "start": 8879.06, "end": 8880.59, "probability": 0.9564 }, { "start": 8881.26, "end": 8882.66, "probability": 0.9905 }, { "start": 8883.9, "end": 8887.92, "probability": 0.9868 }, { "start": 8887.92, "end": 8891.58, "probability": 0.9938 }, { "start": 8892.08, "end": 8892.74, "probability": 0.2668 }, { "start": 8893.12, "end": 8895.46, "probability": 0.8937 }, { "start": 8896.38, "end": 8900.16, "probability": 0.77 }, { "start": 8901.26, "end": 8903.66, "probability": 0.8676 }, { "start": 8904.78, "end": 8907.12, "probability": 0.8821 }, { "start": 8907.7, "end": 8916.06, "probability": 0.9233 }, { "start": 8916.8, "end": 8919.72, "probability": 0.6533 }, { "start": 8919.9, "end": 8923.68, "probability": 0.9574 }, { "start": 8925.54, "end": 8926.66, "probability": 0.8285 }, { "start": 8936.02, "end": 8936.78, "probability": 0.4112 }, { "start": 8937.56, "end": 8940.06, "probability": 0.6586 }, { "start": 8941.3, "end": 8943.18, "probability": 0.2394 }, { "start": 8944.84, "end": 8946.26, "probability": 0.613 }, { "start": 8946.96, "end": 8947.72, "probability": 0.3489 }, { "start": 8948.02, "end": 8948.02, "probability": 0.5509 }, { "start": 8948.02, "end": 8948.1, "probability": 0.3269 }, { "start": 8957.62, "end": 8959.1, "probability": 0.4565 }, { "start": 8959.54, "end": 8960.04, "probability": 0.6014 }, { "start": 8960.1, "end": 8961.15, "probability": 0.7168 }, { "start": 8961.34, "end": 8961.92, "probability": 0.6991 }, { "start": 8962.26, "end": 8967.24, "probability": 0.9513 }, { "start": 8968.56, "end": 8970.8, "probability": 0.9775 }, { "start": 8970.8, "end": 8973.7, "probability": 0.9712 }, { "start": 8973.78, "end": 8975.2, "probability": 0.7476 }, { "start": 8975.28, "end": 8976.06, "probability": 0.908 }, { "start": 8977.02, "end": 8978.8, "probability": 0.6809 }, { "start": 8978.8, "end": 8979.74, "probability": 0.8807 }, { "start": 8979.94, "end": 8981.16, "probability": 0.187 }, { "start": 8981.46, "end": 8984.08, "probability": 0.4875 }, { "start": 8984.4, "end": 8986.3, "probability": 0.8955 }, { "start": 8986.44, "end": 8988.22, "probability": 0.7564 }, { "start": 8988.78, "end": 8992.8, "probability": 0.8284 }, { "start": 8993.08, "end": 8994.84, "probability": 0.8922 }, { "start": 8995.94, "end": 8998.76, "probability": 0.8454 }, { "start": 9000.74, "end": 9001.52, "probability": 0.5779 }, { "start": 9001.52, "end": 9002.74, "probability": 0.9269 }, { "start": 9002.82, "end": 9003.99, "probability": 0.3699 }, { "start": 9004.4, "end": 9005.92, "probability": 0.4485 }, { "start": 9006.06, "end": 9006.98, "probability": 0.9679 }, { "start": 9007.08, "end": 9011.48, "probability": 0.9036 }, { "start": 9012.04, "end": 9012.3, "probability": 0.1307 }, { "start": 9012.56, "end": 9014.3, "probability": 0.9941 }, { "start": 9014.54, "end": 9015.86, "probability": 0.208 }, { "start": 9016.02, "end": 9018.3, "probability": 0.3218 }, { "start": 9018.48, "end": 9020.06, "probability": 0.9033 }, { "start": 9020.74, "end": 9024.24, "probability": 0.9976 }, { "start": 9024.38, "end": 9029.12, "probability": 0.9806 }, { "start": 9029.84, "end": 9032.22, "probability": 0.9952 }, { "start": 9032.42, "end": 9032.68, "probability": 0.8403 }, { "start": 9032.8, "end": 9036.56, "probability": 0.897 }, { "start": 9036.8, "end": 9041.98, "probability": 0.8925 }, { "start": 9042.12, "end": 9045.78, "probability": 0.8912 }, { "start": 9046.5, "end": 9050.74, "probability": 0.9614 }, { "start": 9051.82, "end": 9055.82, "probability": 0.9518 }, { "start": 9055.84, "end": 9057.74, "probability": 0.9593 }, { "start": 9057.86, "end": 9059.4, "probability": 0.9991 }, { "start": 9060.32, "end": 9062.48, "probability": 0.9991 }, { "start": 9063.0, "end": 9064.18, "probability": 0.7297 }, { "start": 9064.24, "end": 9064.96, "probability": 0.7123 }, { "start": 9065.3, "end": 9066.0, "probability": 0.3525 }, { "start": 9066.58, "end": 9070.7, "probability": 0.6007 }, { "start": 9070.8, "end": 9071.52, "probability": 0.3781 }, { "start": 9071.58, "end": 9072.78, "probability": 0.6747 }, { "start": 9076.55, "end": 9077.48, "probability": 0.8605 }, { "start": 9079.08, "end": 9079.74, "probability": 0.4227 }, { "start": 9080.0, "end": 9080.9, "probability": 0.3257 }, { "start": 9084.58, "end": 9084.76, "probability": 0.3148 }, { "start": 9084.76, "end": 9086.94, "probability": 0.529 }, { "start": 9088.18, "end": 9088.98, "probability": 0.513 }, { "start": 9089.18, "end": 9092.46, "probability": 0.3579 }, { "start": 9096.2, "end": 9100.1, "probability": 0.2664 }, { "start": 9104.87, "end": 9108.74, "probability": 0.0834 }, { "start": 9109.46, "end": 9112.04, "probability": 0.0245 }, { "start": 9114.04, "end": 9115.96, "probability": 0.0769 }, { "start": 9116.8, "end": 9118.44, "probability": 0.0292 }, { "start": 9126.82, "end": 9129.1, "probability": 0.033 }, { "start": 9130.45, "end": 9132.5, "probability": 0.2768 }, { "start": 9132.5, "end": 9134.74, "probability": 0.3824 }, { "start": 9134.76, "end": 9138.62, "probability": 0.0502 }, { "start": 9139.64, "end": 9140.2, "probability": 0.0209 }, { "start": 9140.2, "end": 9142.56, "probability": 0.0644 }, { "start": 9142.98, "end": 9144.52, "probability": 0.1031 }, { "start": 9144.52, "end": 9145.7, "probability": 0.5691 }, { "start": 9146.46, "end": 9147.52, "probability": 0.2133 }, { "start": 9150.6, "end": 9152.08, "probability": 0.1468 }, { "start": 9152.57, "end": 9154.9, "probability": 0.1534 }, { "start": 9155.2, "end": 9155.6, "probability": 0.0728 }, { "start": 9160.0, "end": 9160.0, "probability": 0.0 }, { "start": 9160.0, "end": 9160.0, "probability": 0.0 }, { "start": 9160.0, "end": 9160.0, "probability": 0.0 }, { "start": 9160.0, "end": 9160.0, "probability": 0.0 }, { "start": 9160.0, "end": 9160.0, "probability": 0.0 }, { "start": 9160.6, "end": 9161.52, "probability": 0.0443 }, { "start": 9161.52, "end": 9161.52, "probability": 0.1682 }, { "start": 9161.52, "end": 9162.38, "probability": 0.3919 }, { "start": 9163.68, "end": 9164.74, "probability": 0.429 }, { "start": 9165.46, "end": 9167.04, "probability": 0.8065 }, { "start": 9168.0, "end": 9169.58, "probability": 0.592 }, { "start": 9169.78, "end": 9170.5, "probability": 0.64 }, { "start": 9170.98, "end": 9171.46, "probability": 0.8628 }, { "start": 9172.28, "end": 9177.28, "probability": 0.977 }, { "start": 9177.54, "end": 9178.28, "probability": 0.2698 }, { "start": 9180.55, "end": 9192.66, "probability": 0.9879 }, { "start": 9192.91, "end": 9198.06, "probability": 0.9962 }, { "start": 9198.6, "end": 9199.78, "probability": 0.6941 }, { "start": 9200.9, "end": 9203.6, "probability": 0.8863 }, { "start": 9204.48, "end": 9207.38, "probability": 0.9644 }, { "start": 9207.9, "end": 9208.56, "probability": 0.8037 }, { "start": 9209.36, "end": 9212.34, "probability": 0.9476 }, { "start": 9212.98, "end": 9218.72, "probability": 0.9766 }, { "start": 9219.26, "end": 9222.2, "probability": 0.8254 }, { "start": 9222.22, "end": 9224.66, "probability": 0.9578 }, { "start": 9225.3, "end": 9225.8, "probability": 0.6058 }, { "start": 9226.08, "end": 9232.0, "probability": 0.7463 }, { "start": 9232.12, "end": 9235.36, "probability": 0.9794 }, { "start": 9236.38, "end": 9240.62, "probability": 0.9906 }, { "start": 9241.76, "end": 9242.5, "probability": 0.9608 }, { "start": 9242.6, "end": 9243.2, "probability": 0.7603 }, { "start": 9243.38, "end": 9246.68, "probability": 0.9775 }, { "start": 9246.76, "end": 9249.38, "probability": 0.7181 }, { "start": 9249.72, "end": 9250.06, "probability": 0.8515 }, { "start": 9250.2, "end": 9255.7, "probability": 0.9823 }, { "start": 9255.76, "end": 9257.36, "probability": 0.967 }, { "start": 9257.52, "end": 9258.08, "probability": 0.686 }, { "start": 9258.12, "end": 9262.84, "probability": 0.9834 }, { "start": 9263.52, "end": 9264.2, "probability": 0.7756 }, { "start": 9264.32, "end": 9264.98, "probability": 0.9285 }, { "start": 9265.18, "end": 9271.34, "probability": 0.9826 }, { "start": 9271.42, "end": 9272.16, "probability": 0.8169 }, { "start": 9272.86, "end": 9275.02, "probability": 0.8389 }, { "start": 9275.4, "end": 9281.46, "probability": 0.9347 }, { "start": 9282.88, "end": 9286.52, "probability": 0.849 }, { "start": 9286.7, "end": 9288.06, "probability": 0.7806 }, { "start": 9288.18, "end": 9289.4, "probability": 0.925 }, { "start": 9290.0, "end": 9290.72, "probability": 0.9414 }, { "start": 9290.84, "end": 9293.02, "probability": 0.9679 }, { "start": 9293.12, "end": 9294.84, "probability": 0.7981 }, { "start": 9295.14, "end": 9295.2, "probability": 0.938 }, { "start": 9295.8, "end": 9297.16, "probability": 0.803 }, { "start": 9297.24, "end": 9297.74, "probability": 0.8786 }, { "start": 9297.82, "end": 9301.42, "probability": 0.9812 }, { "start": 9301.42, "end": 9304.54, "probability": 0.9934 }, { "start": 9305.36, "end": 9308.68, "probability": 0.7947 }, { "start": 9308.74, "end": 9309.72, "probability": 0.954 }, { "start": 9309.84, "end": 9310.28, "probability": 0.8971 }, { "start": 9310.34, "end": 9311.2, "probability": 0.7776 }, { "start": 9312.0, "end": 9314.5, "probability": 0.8454 }, { "start": 9314.56, "end": 9318.63, "probability": 0.8793 }, { "start": 9319.62, "end": 9321.28, "probability": 0.0669 }, { "start": 9322.24, "end": 9322.94, "probability": 0.4592 }, { "start": 9323.02, "end": 9323.32, "probability": 0.3406 }, { "start": 9323.32, "end": 9324.07, "probability": 0.8525 }, { "start": 9324.48, "end": 9326.82, "probability": 0.9653 }, { "start": 9326.92, "end": 9330.18, "probability": 0.4465 }, { "start": 9330.9, "end": 9331.2, "probability": 0.8672 }, { "start": 9331.42, "end": 9334.24, "probability": 0.981 }, { "start": 9334.54, "end": 9336.38, "probability": 0.8901 }, { "start": 9336.74, "end": 9340.02, "probability": 0.9847 }, { "start": 9340.98, "end": 9341.66, "probability": 0.6636 }, { "start": 9342.0, "end": 9342.38, "probability": 0.8245 }, { "start": 9342.52, "end": 9343.84, "probability": 0.5689 }, { "start": 9344.38, "end": 9348.44, "probability": 0.3781 }, { "start": 9348.44, "end": 9348.44, "probability": 0.0066 }, { "start": 9348.44, "end": 9348.52, "probability": 0.4454 }, { "start": 9348.76, "end": 9348.9, "probability": 0.67 }, { "start": 9348.96, "end": 9349.12, "probability": 0.702 }, { "start": 9349.26, "end": 9349.34, "probability": 0.1038 }, { "start": 9349.56, "end": 9351.76, "probability": 0.6812 }, { "start": 9351.76, "end": 9352.74, "probability": 0.7956 }, { "start": 9352.94, "end": 9357.34, "probability": 0.9395 }, { "start": 9357.34, "end": 9364.12, "probability": 0.8306 }, { "start": 9364.84, "end": 9366.9, "probability": 0.6913 }, { "start": 9367.3, "end": 9367.76, "probability": 0.7319 }, { "start": 9367.98, "end": 9368.76, "probability": 0.0375 }, { "start": 9369.02, "end": 9371.79, "probability": 0.7881 }, { "start": 9372.42, "end": 9373.1, "probability": 0.7347 }, { "start": 9373.2, "end": 9376.2, "probability": 0.9295 }, { "start": 9376.74, "end": 9377.38, "probability": 0.7314 }, { "start": 9378.46, "end": 9378.7, "probability": 0.8326 }, { "start": 9378.78, "end": 9380.1, "probability": 0.4652 }, { "start": 9380.74, "end": 9384.04, "probability": 0.9849 }, { "start": 9384.82, "end": 9387.84, "probability": 0.9585 }, { "start": 9388.3, "end": 9390.02, "probability": 0.9314 }, { "start": 9390.58, "end": 9391.8, "probability": 0.8824 }, { "start": 9391.9, "end": 9394.08, "probability": 0.9844 }, { "start": 9394.42, "end": 9395.61, "probability": 0.9844 }, { "start": 9395.78, "end": 9396.72, "probability": 0.9684 }, { "start": 9397.5, "end": 9401.25, "probability": 0.8889 }, { "start": 9401.84, "end": 9403.18, "probability": 0.5001 }, { "start": 9403.92, "end": 9404.5, "probability": 0.596 }, { "start": 9404.7, "end": 9409.38, "probability": 0.8503 }, { "start": 9409.38, "end": 9411.94, "probability": 0.9985 }, { "start": 9412.16, "end": 9416.22, "probability": 0.9782 }, { "start": 9416.22, "end": 9419.18, "probability": 0.9099 }, { "start": 9419.52, "end": 9420.78, "probability": 0.9219 }, { "start": 9420.94, "end": 9422.74, "probability": 0.9562 }, { "start": 9422.88, "end": 9425.02, "probability": 0.6764 }, { "start": 9425.08, "end": 9425.08, "probability": 0.3694 }, { "start": 9425.18, "end": 9425.76, "probability": 0.4895 }, { "start": 9425.76, "end": 9426.86, "probability": 0.9484 }, { "start": 9427.26, "end": 9427.8, "probability": 0.8577 }, { "start": 9427.86, "end": 9429.6, "probability": 0.9725 }, { "start": 9429.7, "end": 9430.12, "probability": 0.5052 }, { "start": 9430.24, "end": 9430.84, "probability": 0.8965 }, { "start": 9431.28, "end": 9432.14, "probability": 0.6261 }, { "start": 9432.28, "end": 9432.78, "probability": 0.4085 }, { "start": 9432.8, "end": 9433.38, "probability": 0.1479 }, { "start": 9434.04, "end": 9436.4, "probability": 0.5361 }, { "start": 9436.82, "end": 9437.86, "probability": 0.8555 }, { "start": 9438.0, "end": 9438.66, "probability": 0.0313 }, { "start": 9439.14, "end": 9439.42, "probability": 0.2026 }, { "start": 9439.48, "end": 9440.74, "probability": 0.7451 }, { "start": 9442.2, "end": 9444.0, "probability": 0.1688 }, { "start": 9444.0, "end": 9446.04, "probability": 0.6375 }, { "start": 9446.38, "end": 9448.05, "probability": 0.9902 }, { "start": 9448.18, "end": 9452.24, "probability": 0.9921 }, { "start": 9452.3, "end": 9456.18, "probability": 0.998 }, { "start": 9456.82, "end": 9461.83, "probability": 0.9793 }, { "start": 9462.44, "end": 9462.84, "probability": 0.2686 }, { "start": 9462.86, "end": 9464.34, "probability": 0.9839 }, { "start": 9464.78, "end": 9465.54, "probability": 0.9495 }, { "start": 9466.0, "end": 9466.6, "probability": 0.8823 }, { "start": 9467.06, "end": 9467.88, "probability": 0.6135 }, { "start": 9468.06, "end": 9469.0, "probability": 0.8934 }, { "start": 9469.52, "end": 9471.12, "probability": 0.978 }, { "start": 9471.84, "end": 9476.8, "probability": 0.963 }, { "start": 9477.52, "end": 9480.61, "probability": 0.9768 }, { "start": 9481.48, "end": 9486.24, "probability": 0.9986 }, { "start": 9487.0, "end": 9488.3, "probability": 0.9506 }, { "start": 9488.74, "end": 9493.56, "probability": 0.9843 }, { "start": 9493.8, "end": 9494.38, "probability": 0.3606 }, { "start": 9494.86, "end": 9496.14, "probability": 0.8277 }, { "start": 9496.26, "end": 9501.02, "probability": 0.9448 }, { "start": 9501.2, "end": 9502.24, "probability": 0.9812 }, { "start": 9502.52, "end": 9505.96, "probability": 0.9797 }, { "start": 9506.28, "end": 9509.42, "probability": 0.9655 }, { "start": 9510.0, "end": 9516.33, "probability": 0.9896 }, { "start": 9516.76, "end": 9518.36, "probability": 0.6733 }, { "start": 9519.02, "end": 9522.9, "probability": 0.9849 }, { "start": 9524.2, "end": 9527.56, "probability": 0.8948 }, { "start": 9528.14, "end": 9528.54, "probability": 0.837 }, { "start": 9529.48, "end": 9530.6, "probability": 0.9083 }, { "start": 9531.24, "end": 9532.38, "probability": 0.814 }, { "start": 9532.5, "end": 9532.8, "probability": 0.6241 }, { "start": 9532.84, "end": 9533.4, "probability": 0.7587 }, { "start": 9533.46, "end": 9535.56, "probability": 0.998 }, { "start": 9536.24, "end": 9539.16, "probability": 0.9567 }, { "start": 9539.16, "end": 9539.38, "probability": 0.9603 }, { "start": 9540.18, "end": 9541.54, "probability": 0.7609 }, { "start": 9541.6, "end": 9541.98, "probability": 0.8497 }, { "start": 9542.04, "end": 9543.79, "probability": 0.9856 }, { "start": 9544.74, "end": 9545.86, "probability": 0.9521 }, { "start": 9546.64, "end": 9548.74, "probability": 0.9971 }, { "start": 9549.52, "end": 9551.84, "probability": 0.7878 }, { "start": 9552.36, "end": 9554.5, "probability": 0.9952 }, { "start": 9555.42, "end": 9558.74, "probability": 0.9202 }, { "start": 9558.94, "end": 9561.36, "probability": 0.9703 }, { "start": 9562.48, "end": 9566.18, "probability": 0.9956 }, { "start": 9566.18, "end": 9570.34, "probability": 0.9995 }, { "start": 9571.44, "end": 9575.28, "probability": 0.8384 }, { "start": 9576.36, "end": 9578.04, "probability": 0.9417 }, { "start": 9578.86, "end": 9580.58, "probability": 0.9926 }, { "start": 9581.16, "end": 9584.8, "probability": 0.8264 }, { "start": 9585.46, "end": 9588.32, "probability": 0.7761 }, { "start": 9589.0, "end": 9592.0, "probability": 0.9482 }, { "start": 9592.76, "end": 9594.04, "probability": 0.7831 }, { "start": 9594.2, "end": 9595.92, "probability": 0.973 }, { "start": 9595.98, "end": 9597.82, "probability": 0.9904 }, { "start": 9598.64, "end": 9599.22, "probability": 0.9772 }, { "start": 9599.82, "end": 9604.74, "probability": 0.8467 }, { "start": 9604.96, "end": 9605.52, "probability": 0.8345 }, { "start": 9605.64, "end": 9606.42, "probability": 0.9115 }, { "start": 9607.08, "end": 9608.96, "probability": 0.979 }, { "start": 9609.26, "end": 9610.9, "probability": 0.9948 }, { "start": 9611.32, "end": 9614.74, "probability": 0.9944 }, { "start": 9615.16, "end": 9616.44, "probability": 0.9025 }, { "start": 9616.98, "end": 9622.92, "probability": 0.6667 }, { "start": 9623.52, "end": 9626.02, "probability": 0.9425 }, { "start": 9626.78, "end": 9628.24, "probability": 0.8918 }, { "start": 9628.62, "end": 9633.52, "probability": 0.9907 }, { "start": 9633.52, "end": 9636.46, "probability": 0.9866 }, { "start": 9636.86, "end": 9639.46, "probability": 0.9334 }, { "start": 9639.76, "end": 9640.04, "probability": 0.7358 }, { "start": 9641.1, "end": 9642.62, "probability": 0.4812 }, { "start": 9642.82, "end": 9645.56, "probability": 0.5946 }, { "start": 9645.7, "end": 9646.43, "probability": 0.7663 }, { "start": 9647.52, "end": 9650.2, "probability": 0.631 }, { "start": 9650.48, "end": 9652.5, "probability": 0.8635 }, { "start": 9653.42, "end": 9655.34, "probability": 0.4828 }, { "start": 9656.64, "end": 9657.22, "probability": 0.8806 }, { "start": 9659.02, "end": 9661.94, "probability": 0.5845 }, { "start": 9661.94, "end": 9662.16, "probability": 0.2097 }, { "start": 9663.38, "end": 9663.84, "probability": 0.0415 }, { "start": 9687.48, "end": 9689.77, "probability": 0.4621 }, { "start": 9691.56, "end": 9699.14, "probability": 0.9055 }, { "start": 9699.14, "end": 9702.15, "probability": 0.8916 }, { "start": 9703.52, "end": 9703.74, "probability": 0.8025 }, { "start": 9703.74, "end": 9706.22, "probability": 0.441 }, { "start": 9706.5, "end": 9714.26, "probability": 0.9023 }, { "start": 9714.26, "end": 9717.43, "probability": 0.8944 }, { "start": 9718.02, "end": 9720.58, "probability": 0.3722 }, { "start": 9721.28, "end": 9724.1, "probability": 0.6523 }, { "start": 9726.61, "end": 9729.01, "probability": 0.6772 }, { "start": 9729.1, "end": 9737.22, "probability": 0.9517 }, { "start": 9737.24, "end": 9738.65, "probability": 0.8958 }, { "start": 9739.34, "end": 9742.86, "probability": 0.9911 }, { "start": 9743.52, "end": 9745.06, "probability": 0.979 }, { "start": 9745.26, "end": 9745.76, "probability": 0.7062 }, { "start": 9746.34, "end": 9751.2, "probability": 0.9062 }, { "start": 9751.48, "end": 9752.7, "probability": 0.8772 }, { "start": 9753.62, "end": 9754.94, "probability": 0.9729 }, { "start": 9755.12, "end": 9761.52, "probability": 0.7466 }, { "start": 9762.14, "end": 9766.3, "probability": 0.7818 }, { "start": 9766.36, "end": 9769.44, "probability": 0.9905 }, { "start": 9769.5, "end": 9769.9, "probability": 0.1683 }, { "start": 9770.82, "end": 9773.79, "probability": 0.611 }, { "start": 9776.64, "end": 9779.32, "probability": 0.8931 }, { "start": 9780.46, "end": 9789.8, "probability": 0.7497 }, { "start": 9790.84, "end": 9793.25, "probability": 0.6113 }, { "start": 9794.2, "end": 9800.14, "probability": 0.957 }, { "start": 9800.76, "end": 9805.76, "probability": 0.9829 }, { "start": 9805.76, "end": 9809.4, "probability": 0.9966 }, { "start": 9810.5, "end": 9814.58, "probability": 0.4995 }, { "start": 9814.7, "end": 9816.94, "probability": 0.0482 }, { "start": 9816.94, "end": 9818.66, "probability": 0.5134 }, { "start": 9819.56, "end": 9821.42, "probability": 0.7903 }, { "start": 9821.48, "end": 9827.14, "probability": 0.5418 }, { "start": 9827.69, "end": 9831.98, "probability": 0.9863 }, { "start": 9832.42, "end": 9833.66, "probability": 0.7211 }, { "start": 9833.76, "end": 9835.26, "probability": 0.6271 }, { "start": 9835.96, "end": 9837.24, "probability": 0.9397 }, { "start": 9837.44, "end": 9841.5, "probability": 0.8565 }, { "start": 9842.1, "end": 9847.96, "probability": 0.9573 }, { "start": 9848.54, "end": 9851.56, "probability": 0.7895 }, { "start": 9851.62, "end": 9853.08, "probability": 0.3371 }, { "start": 9853.62, "end": 9855.68, "probability": 0.7715 }, { "start": 9855.92, "end": 9856.44, "probability": 0.6792 }, { "start": 9856.86, "end": 9857.26, "probability": 0.8075 }, { "start": 9858.4, "end": 9859.16, "probability": 0.7495 }, { "start": 9861.0, "end": 9861.74, "probability": 0.4238 }, { "start": 9863.35, "end": 9866.2, "probability": 0.045 }, { "start": 9871.3, "end": 9874.06, "probability": 0.0078 }, { "start": 9875.3, "end": 9878.66, "probability": 0.0144 }, { "start": 9879.5, "end": 9881.68, "probability": 0.2672 }, { "start": 9884.28, "end": 9884.96, "probability": 0.2229 }, { "start": 9887.1, "end": 9887.54, "probability": 0.2932 }, { "start": 9888.94, "end": 9892.24, "probability": 0.5653 }, { "start": 9892.42, "end": 9896.22, "probability": 0.108 }, { "start": 9896.22, "end": 9897.38, "probability": 0.0579 }, { "start": 9897.99, "end": 9902.16, "probability": 0.0108 }, { "start": 9902.16, "end": 9903.9, "probability": 0.1664 }, { "start": 9903.9, "end": 9905.3, "probability": 0.0436 }, { "start": 9908.92, "end": 9913.56, "probability": 0.1303 }, { "start": 9914.12, "end": 9914.61, "probability": 0.0946 }, { "start": 9914.84, "end": 9916.38, "probability": 0.0419 }, { "start": 9916.86, "end": 9917.64, "probability": 0.0081 }, { "start": 9920.56, "end": 9922.06, "probability": 0.0425 }, { "start": 9922.24, "end": 9922.64, "probability": 0.1183 }, { "start": 9922.64, "end": 9922.66, "probability": 0.0612 }, { "start": 9922.66, "end": 9922.73, "probability": 0.0356 }, { "start": 9922.74, "end": 9922.74, "probability": 0.0953 }, { "start": 9922.74, "end": 9922.815, "probability": 0.0092 }, { "start": 9922.815, "end": 9922.815, "probability": 0.0 }, { "start": 9922.815, "end": 9922.815, "probability": 0.0 }, { "start": 9922.815, "end": 9922.815, "probability": 0.0 } ], "segments_count": 3298, "words_count": 16384, "avg_words_per_segment": 4.9679, "avg_segment_duration": 2.1242, "avg_words_per_minute": 99.0687, "plenum_id": "10092", "duration": 9922.81, "title": null, "plenum_date": "2010-11-16" }