{ "source_type": "knesset", "source_id": "plenum", "source_entry_id": "101519", "quality_score": 0.896, "per_segment_quality_scores": [ { "start": 40.66, "end": 41.5, "probability": 0.1608 }, { "start": 42.26, "end": 49.04, "probability": 0.9347 }, { "start": 49.22, "end": 51.24, "probability": 0.9451 }, { "start": 53.04, "end": 53.7, "probability": 0.8945 }, { "start": 54.82, "end": 55.88, "probability": 0.9153 }, { "start": 56.08, "end": 57.52, "probability": 0.8155 }, { "start": 57.6, "end": 59.64, "probability": 0.876 }, { "start": 59.74, "end": 62.44, "probability": 0.7441 }, { "start": 63.04, "end": 65.68, "probability": 0.2741 }, { "start": 66.64, "end": 68.24, "probability": 0.9904 }, { "start": 68.24, "end": 72.14, "probability": 0.7552 }, { "start": 72.3, "end": 74.22, "probability": 0.3616 }, { "start": 74.88, "end": 76.6, "probability": 0.9927 }, { "start": 77.66, "end": 85.24, "probability": 0.0602 }, { "start": 87.16, "end": 91.16, "probability": 0.5122 }, { "start": 91.9, "end": 92.88, "probability": 0.6664 }, { "start": 107.24, "end": 108.24, "probability": 0.0259 }, { "start": 109.31, "end": 109.4, "probability": 0.0582 }, { "start": 109.88, "end": 111.38, "probability": 0.1791 }, { "start": 111.38, "end": 112.14, "probability": 0.0816 }, { "start": 112.38, "end": 112.38, "probability": 0.0286 }, { "start": 112.38, "end": 113.2, "probability": 0.0585 }, { "start": 113.2, "end": 113.62, "probability": 0.0296 }, { "start": 115.88, "end": 116.5, "probability": 0.0216 }, { "start": 116.5, "end": 119.58, "probability": 0.0334 }, { "start": 119.58, "end": 126.94, "probability": 0.0143 }, { "start": 127.08, "end": 128.84, "probability": 0.4439 }, { "start": 128.84, "end": 132.36, "probability": 0.0793 }, { "start": 133.26, "end": 135.35, "probability": 0.0568 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 136.0, "end": 136.0, "probability": 0.0 }, { "start": 139.58, "end": 141.0, "probability": 0.3787 }, { "start": 151.24, "end": 154.38, "probability": 0.559 }, { "start": 154.98, "end": 158.4, "probability": 0.0352 }, { "start": 160.6, "end": 161.84, "probability": 0.0346 }, { "start": 161.84, "end": 162.24, "probability": 0.0094 }, { "start": 259.0, "end": 259.0, "probability": 0.0 }, { "start": 259.0, "end": 259.0, "probability": 0.0 }, { "start": 259.0, "end": 259.0, "probability": 0.0 }, { "start": 259.0, "end": 259.0, "probability": 0.0 }, { "start": 259.0, "end": 259.0, "probability": 0.0 }, { "start": 259.0, "end": 259.0, "probability": 0.0 }, { "start": 259.0, "end": 259.0, "probability": 0.0 }, { "start": 259.0, "end": 259.0, "probability": 0.0 }, { "start": 259.0, "end": 259.0, "probability": 0.0 }, { "start": 259.0, "end": 259.0, "probability": 0.0 }, { "start": 259.0, "end": 259.0, "probability": 0.0 }, { "start": 259.0, "end": 259.0, "probability": 0.0 }, { "start": 259.0, "end": 259.0, "probability": 0.0 }, { "start": 259.0, "end": 259.0, "probability": 0.0 }, { "start": 259.0, "end": 259.0, "probability": 0.0 }, { "start": 259.0, "end": 259.0, "probability": 0.0 }, { "start": 259.0, "end": 259.0, "probability": 0.0 }, { "start": 259.0, "end": 259.0, "probability": 0.0 }, { "start": 259.0, "end": 259.0, "probability": 0.0 }, { "start": 259.0, "end": 259.0, "probability": 0.0 }, { "start": 259.0, "end": 259.0, "probability": 0.0 }, { "start": 259.0, "end": 259.0, "probability": 0.0 }, { "start": 259.0, "end": 259.0, "probability": 0.0 }, { "start": 259.0, "end": 259.0, "probability": 0.0 }, { "start": 259.0, "end": 259.0, "probability": 0.0 }, { "start": 259.0, "end": 259.0, "probability": 0.0 }, { "start": 259.0, "end": 259.0, "probability": 0.0 }, { "start": 259.0, "end": 259.0, "probability": 0.0 }, { "start": 259.0, "end": 259.0, "probability": 0.0 }, { "start": 259.0, "end": 259.0, "probability": 0.0 }, { "start": 278.3, "end": 285.18, "probability": 0.1481 }, { "start": 285.18, "end": 285.18, "probability": 0.0252 }, { "start": 285.56, "end": 286.38, "probability": 0.1119 }, { "start": 286.52, "end": 289.18, "probability": 0.0057 }, { "start": 291.02, "end": 294.02, "probability": 0.1446 }, { "start": 294.02, "end": 297.02, "probability": 0.0451 }, { "start": 383.0, "end": 383.0, "probability": 0.0 }, { "start": 383.0, "end": 383.0, "probability": 0.0 }, { "start": 383.0, "end": 383.0, "probability": 0.0 }, { "start": 383.0, "end": 383.0, "probability": 0.0 }, { "start": 383.0, "end": 383.0, "probability": 0.0 }, { "start": 383.0, "end": 383.0, "probability": 0.0 }, { "start": 383.0, "end": 383.0, "probability": 0.0 }, { "start": 383.0, "end": 383.0, "probability": 0.0 }, { "start": 383.0, "end": 383.0, "probability": 0.0 }, { "start": 383.0, "end": 383.0, "probability": 0.0 }, { "start": 383.0, "end": 383.0, "probability": 0.0 }, { "start": 383.0, "end": 383.0, "probability": 0.0 }, { "start": 383.0, "end": 383.0, "probability": 0.0 }, { "start": 383.0, "end": 383.0, "probability": 0.0 }, { "start": 383.0, "end": 383.0, "probability": 0.0 }, { "start": 383.0, "end": 383.0, "probability": 0.0 }, { "start": 383.0, "end": 383.0, "probability": 0.0 }, { "start": 383.0, "end": 383.0, "probability": 0.0 }, { "start": 383.0, "end": 383.0, "probability": 0.0 }, { "start": 383.0, "end": 383.0, "probability": 0.0 }, { "start": 383.0, "end": 383.0, "probability": 0.0 }, { "start": 383.0, "end": 383.0, "probability": 0.0 }, { "start": 383.0, "end": 383.0, "probability": 0.0 }, { "start": 383.0, "end": 383.0, "probability": 0.0 }, { "start": 383.0, "end": 383.0, "probability": 0.0 }, { "start": 383.0, "end": 383.0, "probability": 0.0 }, { "start": 383.0, "end": 383.0, "probability": 0.0 }, { "start": 383.0, "end": 383.0, "probability": 0.0 }, { "start": 383.0, "end": 383.0, "probability": 0.0 }, { "start": 383.0, "end": 383.0, "probability": 0.0 }, { "start": 383.0, "end": 383.0, "probability": 0.0 }, { "start": 383.0, "end": 383.0, "probability": 0.0 }, { "start": 383.0, "end": 383.0, "probability": 0.0 }, { "start": 383.0, "end": 383.0, "probability": 0.0 }, { "start": 383.0, "end": 383.0, "probability": 0.0 }, { "start": 383.0, "end": 383.0, "probability": 0.0 }, { "start": 383.0, "end": 383.0, "probability": 0.0 }, { "start": 383.0, "end": 383.0, "probability": 0.0 }, { "start": 383.0, "end": 383.0, "probability": 0.0 }, { "start": 383.0, "end": 383.0, "probability": 0.0 }, { "start": 383.16, "end": 383.3, "probability": 0.1915 }, { "start": 383.3, "end": 383.3, "probability": 0.0513 }, { "start": 383.3, "end": 383.86, "probability": 0.0181 }, { "start": 384.32, "end": 386.66, "probability": 0.6853 }, { "start": 386.88, "end": 387.86, "probability": 0.7158 }, { "start": 388.06, "end": 390.32, "probability": 0.8823 }, { "start": 390.92, "end": 392.54, "probability": 0.8772 }, { "start": 393.16, "end": 395.88, "probability": 0.9972 }, { "start": 395.94, "end": 398.26, "probability": 0.9634 }, { "start": 399.44, "end": 401.3, "probability": 0.9319 }, { "start": 402.26, "end": 406.82, "probability": 0.9366 }, { "start": 407.56, "end": 409.56, "probability": 0.9587 }, { "start": 410.1, "end": 412.44, "probability": 0.9979 }, { "start": 413.18, "end": 413.98, "probability": 0.8232 }, { "start": 414.52, "end": 415.18, "probability": 0.9752 }, { "start": 415.92, "end": 416.98, "probability": 0.9264 }, { "start": 418.08, "end": 421.78, "probability": 0.9907 }, { "start": 421.86, "end": 422.42, "probability": 0.2621 }, { "start": 422.42, "end": 422.98, "probability": 0.8451 }, { "start": 423.76, "end": 426.6, "probability": 0.9688 }, { "start": 427.48, "end": 428.68, "probability": 0.7849 }, { "start": 429.58, "end": 432.0, "probability": 0.944 }, { "start": 432.72, "end": 434.0, "probability": 0.911 }, { "start": 435.46, "end": 437.6, "probability": 0.9983 }, { "start": 438.22, "end": 439.98, "probability": 0.999 }, { "start": 440.74, "end": 441.3, "probability": 0.9975 }, { "start": 441.82, "end": 443.6, "probability": 0.9632 }, { "start": 444.38, "end": 445.38, "probability": 0.6044 }, { "start": 446.18, "end": 447.27, "probability": 0.9929 }, { "start": 448.2, "end": 449.46, "probability": 0.9646 }, { "start": 450.16, "end": 452.94, "probability": 0.8902 }, { "start": 453.58, "end": 456.94, "probability": 0.9641 }, { "start": 457.7, "end": 460.5, "probability": 0.7217 }, { "start": 460.62, "end": 462.5, "probability": 0.9753 }, { "start": 462.98, "end": 464.86, "probability": 0.9882 }, { "start": 466.2, "end": 468.72, "probability": 0.9842 }, { "start": 469.4, "end": 471.74, "probability": 0.9927 }, { "start": 472.64, "end": 473.16, "probability": 0.7493 }, { "start": 473.68, "end": 474.66, "probability": 0.9246 }, { "start": 475.2, "end": 478.42, "probability": 0.9961 }, { "start": 478.42, "end": 481.88, "probability": 0.9567 }, { "start": 482.7, "end": 486.22, "probability": 0.9987 }, { "start": 486.76, "end": 489.84, "probability": 0.853 }, { "start": 490.4, "end": 495.2, "probability": 0.8152 }, { "start": 496.04, "end": 497.96, "probability": 0.8424 }, { "start": 498.92, "end": 499.44, "probability": 0.9285 }, { "start": 500.2, "end": 503.74, "probability": 0.9975 }, { "start": 503.74, "end": 505.72, "probability": 0.9912 }, { "start": 506.94, "end": 510.1, "probability": 0.9965 }, { "start": 510.7, "end": 514.88, "probability": 0.9169 }, { "start": 515.76, "end": 521.82, "probability": 0.9834 }, { "start": 522.82, "end": 524.1, "probability": 0.5726 }, { "start": 524.64, "end": 528.1, "probability": 0.8764 }, { "start": 528.66, "end": 532.68, "probability": 0.9406 }, { "start": 533.26, "end": 535.12, "probability": 0.9955 }, { "start": 535.72, "end": 536.94, "probability": 0.9041 }, { "start": 537.26, "end": 539.14, "probability": 0.9735 }, { "start": 539.82, "end": 540.88, "probability": 0.5308 }, { "start": 541.5, "end": 542.7, "probability": 0.531 }, { "start": 543.2, "end": 545.84, "probability": 0.9917 }, { "start": 546.38, "end": 546.4, "probability": 0.277 }, { "start": 546.4, "end": 548.14, "probability": 0.9642 }, { "start": 548.64, "end": 551.18, "probability": 0.9435 }, { "start": 551.18, "end": 555.28, "probability": 0.9895 }, { "start": 555.3, "end": 559.81, "probability": 0.9745 }, { "start": 560.49, "end": 562.21, "probability": 0.9971 }, { "start": 562.86, "end": 564.04, "probability": 0.9374 }, { "start": 564.8, "end": 567.94, "probability": 0.986 }, { "start": 567.94, "end": 571.22, "probability": 0.8734 }, { "start": 571.84, "end": 574.7, "probability": 0.9314 }, { "start": 576.12, "end": 576.74, "probability": 0.7175 }, { "start": 577.4, "end": 578.26, "probability": 0.978 }, { "start": 579.1, "end": 583.01, "probability": 0.9806 }, { "start": 583.66, "end": 589.18, "probability": 0.9738 }, { "start": 589.76, "end": 591.67, "probability": 0.8366 }, { "start": 592.0, "end": 592.84, "probability": 0.8955 }, { "start": 593.0, "end": 594.06, "probability": 0.7842 }, { "start": 594.9, "end": 599.11, "probability": 0.9689 }, { "start": 599.54, "end": 602.26, "probability": 0.9459 }, { "start": 602.76, "end": 607.16, "probability": 0.9932 }, { "start": 608.06, "end": 609.04, "probability": 0.9893 }, { "start": 609.76, "end": 610.4, "probability": 0.874 }, { "start": 610.96, "end": 612.62, "probability": 0.9941 }, { "start": 613.42, "end": 615.72, "probability": 0.8578 }, { "start": 616.28, "end": 619.14, "probability": 0.9987 }, { "start": 620.3, "end": 622.29, "probability": 0.8579 }, { "start": 623.62, "end": 624.84, "probability": 0.9955 }, { "start": 625.32, "end": 630.84, "probability": 0.9931 }, { "start": 631.12, "end": 631.56, "probability": 0.7594 }, { "start": 631.96, "end": 632.9, "probability": 0.7954 }, { "start": 633.96, "end": 634.5, "probability": 0.5554 }, { "start": 635.46, "end": 636.78, "probability": 0.9856 }, { "start": 637.2, "end": 639.68, "probability": 0.9958 }, { "start": 639.68, "end": 641.86, "probability": 0.9198 }, { "start": 642.7, "end": 644.9, "probability": 0.9976 }, { "start": 645.6, "end": 647.84, "probability": 0.9868 }, { "start": 647.92, "end": 650.74, "probability": 0.9805 }, { "start": 650.8, "end": 653.7, "probability": 0.9971 }, { "start": 654.26, "end": 656.9, "probability": 0.7861 }, { "start": 657.46, "end": 660.32, "probability": 0.8569 }, { "start": 660.9, "end": 661.5, "probability": 0.5682 }, { "start": 661.56, "end": 662.62, "probability": 0.969 }, { "start": 662.68, "end": 665.38, "probability": 0.9961 }, { "start": 665.72, "end": 666.56, "probability": 0.9416 }, { "start": 666.68, "end": 667.22, "probability": 0.5802 }, { "start": 667.58, "end": 668.36, "probability": 0.9902 }, { "start": 668.52, "end": 670.04, "probability": 0.9818 }, { "start": 671.3, "end": 678.5, "probability": 0.9266 }, { "start": 678.7, "end": 679.92, "probability": 0.7308 }, { "start": 680.46, "end": 681.5, "probability": 0.9744 }, { "start": 682.32, "end": 683.86, "probability": 0.8685 }, { "start": 684.52, "end": 686.12, "probability": 0.9957 }, { "start": 686.76, "end": 688.34, "probability": 0.9883 }, { "start": 688.86, "end": 693.5, "probability": 0.9963 }, { "start": 694.5, "end": 697.64, "probability": 0.4498 }, { "start": 698.6, "end": 701.51, "probability": 0.978 }, { "start": 702.08, "end": 705.88, "probability": 0.6538 }, { "start": 706.4, "end": 707.62, "probability": 0.8797 }, { "start": 708.18, "end": 713.64, "probability": 0.9988 }, { "start": 713.74, "end": 714.28, "probability": 0.9291 }, { "start": 715.06, "end": 716.82, "probability": 0.9302 }, { "start": 718.84, "end": 722.74, "probability": 0.9855 }, { "start": 723.56, "end": 725.02, "probability": 0.9285 }, { "start": 725.62, "end": 728.26, "probability": 0.9953 }, { "start": 728.92, "end": 729.6, "probability": 0.8958 }, { "start": 730.38, "end": 734.9, "probability": 0.9826 }, { "start": 735.7, "end": 738.68, "probability": 0.7876 }, { "start": 739.22, "end": 743.42, "probability": 0.9814 }, { "start": 743.42, "end": 747.18, "probability": 0.8925 }, { "start": 747.7, "end": 748.6, "probability": 0.9976 }, { "start": 749.2, "end": 754.42, "probability": 0.8683 }, { "start": 754.96, "end": 755.62, "probability": 0.7663 }, { "start": 756.3, "end": 759.98, "probability": 0.9945 }, { "start": 759.98, "end": 764.44, "probability": 0.9932 }, { "start": 764.5, "end": 765.28, "probability": 0.8953 }, { "start": 765.84, "end": 768.24, "probability": 0.7133 }, { "start": 768.8, "end": 770.78, "probability": 0.9634 }, { "start": 771.44, "end": 772.46, "probability": 0.8596 }, { "start": 773.08, "end": 778.2, "probability": 0.9979 }, { "start": 778.2, "end": 779.92, "probability": 0.9985 }, { "start": 780.52, "end": 784.26, "probability": 0.9901 }, { "start": 784.78, "end": 789.4, "probability": 0.9989 }, { "start": 789.46, "end": 791.6, "probability": 0.9897 }, { "start": 792.6, "end": 793.26, "probability": 0.9414 }, { "start": 794.02, "end": 794.46, "probability": 0.9037 }, { "start": 794.92, "end": 797.78, "probability": 0.9902 }, { "start": 797.84, "end": 799.2, "probability": 0.8845 }, { "start": 799.62, "end": 805.0, "probability": 0.9929 }, { "start": 805.84, "end": 806.32, "probability": 0.6282 }, { "start": 807.1, "end": 809.42, "probability": 0.9988 }, { "start": 810.14, "end": 811.64, "probability": 0.9639 }, { "start": 812.42, "end": 817.04, "probability": 0.9902 }, { "start": 817.38, "end": 817.62, "probability": 0.982 }, { "start": 817.66, "end": 822.24, "probability": 0.9954 }, { "start": 822.38, "end": 824.54, "probability": 0.8906 }, { "start": 824.56, "end": 825.56, "probability": 0.8228 }, { "start": 826.34, "end": 827.46, "probability": 0.9868 }, { "start": 828.26, "end": 832.34, "probability": 0.9127 }, { "start": 833.24, "end": 834.46, "probability": 0.8647 }, { "start": 835.18, "end": 837.45, "probability": 0.9624 }, { "start": 838.2, "end": 840.78, "probability": 0.994 }, { "start": 841.92, "end": 844.02, "probability": 0.9902 }, { "start": 844.02, "end": 846.34, "probability": 0.9926 }, { "start": 846.76, "end": 847.8, "probability": 0.7815 }, { "start": 847.92, "end": 848.9, "probability": 0.8887 }, { "start": 849.12, "end": 849.82, "probability": 0.1458 }, { "start": 850.34, "end": 851.94, "probability": 0.9533 }, { "start": 852.04, "end": 855.58, "probability": 0.9061 }, { "start": 856.12, "end": 857.48, "probability": 0.8684 }, { "start": 858.12, "end": 858.75, "probability": 0.9294 }, { "start": 859.92, "end": 861.92, "probability": 0.5091 }, { "start": 862.34, "end": 862.68, "probability": 0.5169 }, { "start": 862.74, "end": 863.37, "probability": 0.9799 }, { "start": 863.86, "end": 864.32, "probability": 0.7871 }, { "start": 864.38, "end": 865.22, "probability": 0.9586 }, { "start": 865.7, "end": 866.42, "probability": 0.9021 }, { "start": 866.9, "end": 869.02, "probability": 0.8303 }, { "start": 869.24, "end": 870.32, "probability": 0.9767 }, { "start": 870.6, "end": 870.78, "probability": 0.5667 }, { "start": 870.78, "end": 871.5, "probability": 0.9146 }, { "start": 871.52, "end": 873.38, "probability": 0.9865 }, { "start": 873.94, "end": 874.58, "probability": 0.1691 }, { "start": 874.82, "end": 874.9, "probability": 0.0174 }, { "start": 875.02, "end": 876.66, "probability": 0.7819 }, { "start": 876.72, "end": 879.94, "probability": 0.7631 }, { "start": 880.66, "end": 884.64, "probability": 0.9965 }, { "start": 885.24, "end": 886.78, "probability": 0.8232 }, { "start": 886.96, "end": 886.98, "probability": 0.4146 }, { "start": 887.54, "end": 887.92, "probability": 0.5328 }, { "start": 887.94, "end": 888.7, "probability": 0.8464 }, { "start": 888.84, "end": 891.02, "probability": 0.5326 }, { "start": 891.32, "end": 892.34, "probability": 0.9026 }, { "start": 892.72, "end": 894.78, "probability": 0.7737 }, { "start": 894.9, "end": 895.56, "probability": 0.8735 }, { "start": 895.94, "end": 897.4, "probability": 0.901 }, { "start": 897.84, "end": 902.66, "probability": 0.9841 }, { "start": 903.1, "end": 904.44, "probability": 0.9894 }, { "start": 904.92, "end": 905.64, "probability": 0.9775 }, { "start": 905.7, "end": 906.58, "probability": 0.9746 }, { "start": 907.12, "end": 908.02, "probability": 0.8924 }, { "start": 908.62, "end": 911.34, "probability": 0.4555 }, { "start": 911.52, "end": 911.52, "probability": 0.0932 }, { "start": 911.52, "end": 912.94, "probability": 0.7623 }, { "start": 913.5, "end": 916.62, "probability": 0.9738 }, { "start": 916.64, "end": 917.78, "probability": 0.7004 }, { "start": 918.1, "end": 919.16, "probability": 0.1965 }, { "start": 919.5, "end": 920.12, "probability": 0.6647 }, { "start": 920.12, "end": 921.12, "probability": 0.8148 }, { "start": 921.18, "end": 921.86, "probability": 0.8739 }, { "start": 922.38, "end": 923.84, "probability": 0.7942 }, { "start": 923.86, "end": 923.86, "probability": 0.3026 }, { "start": 924.0, "end": 924.88, "probability": 0.9851 }, { "start": 924.9, "end": 925.72, "probability": 0.9715 }, { "start": 925.96, "end": 926.76, "probability": 0.9743 }, { "start": 926.8, "end": 928.54, "probability": 0.4489 }, { "start": 928.54, "end": 929.72, "probability": 0.3426 }, { "start": 929.72, "end": 930.1, "probability": 0.618 }, { "start": 930.15, "end": 931.85, "probability": 0.7181 }, { "start": 932.08, "end": 933.96, "probability": 0.9241 }, { "start": 933.98, "end": 934.58, "probability": 0.0677 }, { "start": 934.7, "end": 936.06, "probability": 0.7482 }, { "start": 936.2, "end": 937.45, "probability": 0.7291 }, { "start": 937.8, "end": 939.98, "probability": 0.9697 }, { "start": 940.12, "end": 940.78, "probability": 0.3915 }, { "start": 941.12, "end": 941.22, "probability": 0.0118 }, { "start": 941.22, "end": 941.8, "probability": 0.5228 }, { "start": 941.84, "end": 942.73, "probability": 0.4887 }, { "start": 942.86, "end": 943.04, "probability": 0.7419 }, { "start": 943.04, "end": 943.28, "probability": 0.5442 }, { "start": 943.3, "end": 944.74, "probability": 0.2643 }, { "start": 944.74, "end": 945.0, "probability": 0.8188 }, { "start": 945.08, "end": 945.2, "probability": 0.5091 }, { "start": 945.2, "end": 945.2, "probability": 0.1358 }, { "start": 945.3, "end": 946.18, "probability": 0.8215 }, { "start": 946.18, "end": 946.46, "probability": 0.6948 }, { "start": 947.0, "end": 949.04, "probability": 0.9621 }, { "start": 949.18, "end": 949.8, "probability": 0.6096 }, { "start": 949.82, "end": 950.36, "probability": 0.4154 }, { "start": 950.46, "end": 951.12, "probability": 0.6724 }, { "start": 951.3, "end": 952.2, "probability": 0.9327 }, { "start": 952.32, "end": 952.5, "probability": 0.8621 }, { "start": 953.56, "end": 958.06, "probability": 0.9655 }, { "start": 958.14, "end": 958.92, "probability": 0.9062 }, { "start": 958.96, "end": 959.28, "probability": 0.4873 }, { "start": 959.3, "end": 959.64, "probability": 0.7866 }, { "start": 959.88, "end": 960.76, "probability": 0.3681 }, { "start": 961.06, "end": 961.28, "probability": 0.6607 }, { "start": 961.36, "end": 962.26, "probability": 0.1471 }, { "start": 962.36, "end": 962.96, "probability": 0.5975 }, { "start": 963.06, "end": 964.28, "probability": 0.5018 }, { "start": 964.32, "end": 965.46, "probability": 0.5502 }, { "start": 965.72, "end": 967.0, "probability": 0.2788 }, { "start": 967.0, "end": 973.34, "probability": 0.809 }, { "start": 973.44, "end": 973.44, "probability": 0.053 }, { "start": 973.44, "end": 973.76, "probability": 0.4353 }, { "start": 973.84, "end": 973.84, "probability": 0.2089 }, { "start": 973.9, "end": 975.44, "probability": 0.9853 }, { "start": 975.94, "end": 977.86, "probability": 0.9976 }, { "start": 978.04, "end": 978.48, "probability": 0.9553 }, { "start": 979.32, "end": 979.57, "probability": 0.3843 }, { "start": 980.66, "end": 981.66, "probability": 0.8336 }, { "start": 981.72, "end": 983.4, "probability": 0.9395 }, { "start": 983.5, "end": 984.62, "probability": 0.4599 }, { "start": 985.32, "end": 985.32, "probability": 0.0001 }, { "start": 986.2, "end": 986.32, "probability": 0.0894 }, { "start": 986.32, "end": 986.42, "probability": 0.0411 }, { "start": 986.42, "end": 986.42, "probability": 0.274 }, { "start": 986.42, "end": 987.76, "probability": 0.4404 }, { "start": 987.78, "end": 988.62, "probability": 0.6516 }, { "start": 988.74, "end": 989.77, "probability": 0.7392 }, { "start": 989.96, "end": 991.32, "probability": 0.5215 }, { "start": 991.72, "end": 993.68, "probability": 0.9604 }, { "start": 994.06, "end": 994.88, "probability": 0.9963 }, { "start": 994.94, "end": 995.96, "probability": 0.9688 }, { "start": 996.62, "end": 997.36, "probability": 0.5195 }, { "start": 997.36, "end": 999.62, "probability": 0.8118 }, { "start": 999.88, "end": 1002.64, "probability": 0.8068 }, { "start": 1002.64, "end": 1003.98, "probability": 0.9375 }, { "start": 1004.46, "end": 1005.4, "probability": 0.9644 }, { "start": 1005.75, "end": 1007.08, "probability": 0.1441 }, { "start": 1007.1, "end": 1008.58, "probability": 0.3799 }, { "start": 1008.62, "end": 1009.5, "probability": 0.8768 }, { "start": 1009.56, "end": 1010.64, "probability": 0.4282 }, { "start": 1010.64, "end": 1010.96, "probability": 0.1967 }, { "start": 1010.96, "end": 1011.14, "probability": 0.1547 }, { "start": 1011.14, "end": 1012.62, "probability": 0.0839 }, { "start": 1012.86, "end": 1013.62, "probability": 0.1733 }, { "start": 1013.66, "end": 1018.4, "probability": 0.751 }, { "start": 1018.48, "end": 1019.64, "probability": 0.09 }, { "start": 1019.64, "end": 1020.62, "probability": 0.4008 }, { "start": 1020.62, "end": 1021.48, "probability": 0.3283 }, { "start": 1021.56, "end": 1024.36, "probability": 0.8943 }, { "start": 1024.54, "end": 1026.34, "probability": 0.8634 }, { "start": 1026.42, "end": 1027.52, "probability": 0.5971 }, { "start": 1027.64, "end": 1028.5, "probability": 0.1769 }, { "start": 1028.94, "end": 1029.08, "probability": 0.2518 }, { "start": 1029.08, "end": 1029.08, "probability": 0.0078 }, { "start": 1029.08, "end": 1029.08, "probability": 0.02 }, { "start": 1029.08, "end": 1029.18, "probability": 0.1876 }, { "start": 1030.04, "end": 1030.89, "probability": 0.7983 }, { "start": 1031.54, "end": 1032.59, "probability": 0.8478 }, { "start": 1033.22, "end": 1034.9, "probability": 0.6161 }, { "start": 1035.1, "end": 1036.46, "probability": 0.2013 }, { "start": 1036.74, "end": 1039.3, "probability": 0.1049 }, { "start": 1039.3, "end": 1041.14, "probability": 0.8545 }, { "start": 1041.24, "end": 1043.1, "probability": 0.9041 }, { "start": 1043.2, "end": 1044.1, "probability": 0.9333 }, { "start": 1044.1, "end": 1044.26, "probability": 0.6069 }, { "start": 1045.57, "end": 1045.94, "probability": 0.174 }, { "start": 1046.06, "end": 1047.36, "probability": 0.5239 }, { "start": 1047.62, "end": 1047.76, "probability": 0.4781 }, { "start": 1048.0, "end": 1051.64, "probability": 0.7871 }, { "start": 1052.28, "end": 1053.4, "probability": 0.9551 }, { "start": 1053.56, "end": 1056.18, "probability": 0.669 }, { "start": 1056.56, "end": 1057.28, "probability": 0.1646 }, { "start": 1057.28, "end": 1059.18, "probability": 0.6853 }, { "start": 1059.86, "end": 1061.86, "probability": 0.1338 }, { "start": 1062.08, "end": 1064.14, "probability": 0.9907 }, { "start": 1064.3, "end": 1065.0, "probability": 0.9631 }, { "start": 1065.4, "end": 1065.7, "probability": 0.0804 }, { "start": 1065.86, "end": 1068.28, "probability": 0.4929 }, { "start": 1068.72, "end": 1069.04, "probability": 0.5974 }, { "start": 1069.5, "end": 1070.2, "probability": 0.0452 }, { "start": 1070.36, "end": 1070.88, "probability": 0.534 }, { "start": 1070.88, "end": 1072.58, "probability": 0.1549 }, { "start": 1072.74, "end": 1073.26, "probability": 0.0916 }, { "start": 1074.24, "end": 1075.46, "probability": 0.3117 }, { "start": 1075.5, "end": 1075.79, "probability": 0.6643 }, { "start": 1076.2, "end": 1076.34, "probability": 0.7159 }, { "start": 1076.46, "end": 1077.16, "probability": 0.8689 }, { "start": 1077.56, "end": 1080.3, "probability": 0.9883 }, { "start": 1080.76, "end": 1080.76, "probability": 0.5589 }, { "start": 1080.76, "end": 1081.28, "probability": 0.5284 }, { "start": 1081.3, "end": 1081.78, "probability": 0.2879 }, { "start": 1081.86, "end": 1083.9, "probability": 0.7287 }, { "start": 1083.92, "end": 1084.24, "probability": 0.6915 }, { "start": 1084.34, "end": 1084.7, "probability": 0.351 }, { "start": 1084.7, "end": 1084.8, "probability": 0.6848 }, { "start": 1085.12, "end": 1087.56, "probability": 0.9948 }, { "start": 1088.1, "end": 1090.02, "probability": 0.6579 }, { "start": 1090.08, "end": 1090.74, "probability": 0.971 }, { "start": 1091.86, "end": 1092.16, "probability": 0.3492 }, { "start": 1092.88, "end": 1093.49, "probability": 0.804 }, { "start": 1093.82, "end": 1096.33, "probability": 0.1257 }, { "start": 1097.36, "end": 1098.64, "probability": 0.6349 }, { "start": 1098.88, "end": 1100.46, "probability": 0.6578 }, { "start": 1100.88, "end": 1101.84, "probability": 0.5891 }, { "start": 1102.14, "end": 1102.28, "probability": 0.4065 }, { "start": 1102.28, "end": 1103.58, "probability": 0.8226 }, { "start": 1103.58, "end": 1104.42, "probability": 0.773 }, { "start": 1104.52, "end": 1105.06, "probability": 0.8845 }, { "start": 1105.12, "end": 1110.28, "probability": 0.9797 }, { "start": 1110.8, "end": 1112.52, "probability": 0.9963 }, { "start": 1112.58, "end": 1112.97, "probability": 0.6898 }, { "start": 1113.38, "end": 1114.14, "probability": 0.0772 }, { "start": 1114.14, "end": 1114.14, "probability": 0.0533 }, { "start": 1114.14, "end": 1115.14, "probability": 0.8452 }, { "start": 1115.4, "end": 1115.58, "probability": 0.3123 }, { "start": 1115.82, "end": 1115.82, "probability": 0.029 }, { "start": 1115.82, "end": 1115.82, "probability": 0.2357 }, { "start": 1115.82, "end": 1117.2, "probability": 0.3673 }, { "start": 1117.28, "end": 1118.32, "probability": 0.6585 }, { "start": 1118.46, "end": 1119.74, "probability": 0.3901 }, { "start": 1119.82, "end": 1120.48, "probability": 0.4608 }, { "start": 1120.8, "end": 1122.7, "probability": 0.5913 }, { "start": 1122.76, "end": 1123.66, "probability": 0.3749 }, { "start": 1123.68, "end": 1126.32, "probability": 0.7175 }, { "start": 1126.62, "end": 1127.76, "probability": 0.8563 }, { "start": 1128.1, "end": 1129.02, "probability": 0.9537 }, { "start": 1129.16, "end": 1130.2, "probability": 0.9962 }, { "start": 1130.4, "end": 1131.18, "probability": 0.6153 }, { "start": 1131.44, "end": 1134.32, "probability": 0.7332 }, { "start": 1137.12, "end": 1137.64, "probability": 0.0634 }, { "start": 1138.4, "end": 1139.06, "probability": 0.4558 }, { "start": 1140.32, "end": 1141.08, "probability": 0.1001 }, { "start": 1143.7, "end": 1143.88, "probability": 0.1378 }, { "start": 1146.68, "end": 1151.7, "probability": 0.0376 }, { "start": 1152.36, "end": 1153.16, "probability": 0.1529 }, { "start": 1153.22, "end": 1153.66, "probability": 0.3125 }, { "start": 1153.66, "end": 1154.6, "probability": 0.0997 }, { "start": 1154.66, "end": 1158.16, "probability": 0.0816 }, { "start": 1158.46, "end": 1158.56, "probability": 0.0025 }, { "start": 1158.6, "end": 1160.82, "probability": 0.3359 }, { "start": 1160.94, "end": 1161.98, "probability": 0.8148 }, { "start": 1162.12, "end": 1163.88, "probability": 0.8631 }, { "start": 1163.96, "end": 1168.22, "probability": 0.9153 }, { "start": 1169.02, "end": 1172.42, "probability": 0.9899 }, { "start": 1173.0, "end": 1175.0, "probability": 0.9985 }, { "start": 1175.52, "end": 1177.8, "probability": 0.9171 }, { "start": 1178.64, "end": 1180.24, "probability": 0.9967 }, { "start": 1180.24, "end": 1183.32, "probability": 0.9941 }, { "start": 1184.04, "end": 1185.05, "probability": 0.9932 }, { "start": 1185.86, "end": 1187.08, "probability": 0.6867 }, { "start": 1187.42, "end": 1188.54, "probability": 0.9534 }, { "start": 1188.58, "end": 1189.64, "probability": 0.9105 }, { "start": 1190.1, "end": 1192.54, "probability": 0.9823 }, { "start": 1193.28, "end": 1194.3, "probability": 0.8804 }, { "start": 1195.34, "end": 1199.9, "probability": 0.9821 }, { "start": 1199.9, "end": 1203.6, "probability": 0.9973 }, { "start": 1204.46, "end": 1208.48, "probability": 0.9917 }, { "start": 1209.32, "end": 1213.5, "probability": 0.9849 }, { "start": 1213.78, "end": 1213.88, "probability": 0.8236 }, { "start": 1215.42, "end": 1217.94, "probability": 0.4732 }, { "start": 1218.52, "end": 1218.74, "probability": 0.0227 }, { "start": 1218.74, "end": 1220.48, "probability": 0.5018 }, { "start": 1221.04, "end": 1225.68, "probability": 0.8757 }, { "start": 1226.26, "end": 1229.48, "probability": 0.993 }, { "start": 1229.94, "end": 1234.9, "probability": 0.8025 }, { "start": 1235.1, "end": 1237.22, "probability": 0.7302 }, { "start": 1238.14, "end": 1238.22, "probability": 0.3058 }, { "start": 1238.22, "end": 1238.22, "probability": 0.2919 }, { "start": 1238.22, "end": 1242.94, "probability": 0.9252 }, { "start": 1243.74, "end": 1247.12, "probability": 0.794 }, { "start": 1247.6, "end": 1249.22, "probability": 0.7783 }, { "start": 1249.56, "end": 1249.74, "probability": 0.6557 }, { "start": 1250.58, "end": 1251.7, "probability": 0.0684 }, { "start": 1251.96, "end": 1253.56, "probability": 0.1552 }, { "start": 1253.58, "end": 1253.92, "probability": 0.537 }, { "start": 1253.92, "end": 1254.42, "probability": 0.3269 }, { "start": 1254.42, "end": 1255.76, "probability": 0.1126 }, { "start": 1257.0, "end": 1259.76, "probability": 0.7814 }, { "start": 1259.9, "end": 1260.86, "probability": 0.0318 }, { "start": 1260.9, "end": 1264.6, "probability": 0.7476 }, { "start": 1265.62, "end": 1266.5, "probability": 0.633 }, { "start": 1279.68, "end": 1281.38, "probability": 0.1574 }, { "start": 1281.56, "end": 1282.7, "probability": 0.9258 }, { "start": 1282.84, "end": 1283.4, "probability": 0.8784 }, { "start": 1284.44, "end": 1286.16, "probability": 0.8982 }, { "start": 1286.54, "end": 1288.26, "probability": 0.5972 }, { "start": 1288.32, "end": 1290.7, "probability": 0.526 }, { "start": 1291.6, "end": 1296.08, "probability": 0.9144 }, { "start": 1296.14, "end": 1298.5, "probability": 0.1936 }, { "start": 1298.68, "end": 1299.66, "probability": 0.3705 }, { "start": 1299.7, "end": 1300.18, "probability": 0.0824 }, { "start": 1300.36, "end": 1301.0, "probability": 0.7563 }, { "start": 1301.2, "end": 1301.83, "probability": 0.8057 }, { "start": 1302.74, "end": 1305.84, "probability": 0.3605 }, { "start": 1306.62, "end": 1308.84, "probability": 0.7791 }, { "start": 1308.9, "end": 1311.36, "probability": 0.9282 }, { "start": 1312.34, "end": 1312.7, "probability": 0.5969 }, { "start": 1312.76, "end": 1317.38, "probability": 0.8695 }, { "start": 1317.42, "end": 1318.12, "probability": 0.9536 }, { "start": 1318.18, "end": 1322.08, "probability": 0.9946 }, { "start": 1323.08, "end": 1323.76, "probability": 0.9972 }, { "start": 1325.46, "end": 1326.48, "probability": 0.7452 }, { "start": 1328.22, "end": 1329.46, "probability": 0.6675 }, { "start": 1331.36, "end": 1334.86, "probability": 0.9014 }, { "start": 1336.5, "end": 1338.46, "probability": 0.9843 }, { "start": 1339.86, "end": 1341.5, "probability": 0.8478 }, { "start": 1342.94, "end": 1343.58, "probability": 0.8378 }, { "start": 1344.4, "end": 1346.96, "probability": 0.9895 }, { "start": 1347.0, "end": 1348.08, "probability": 0.98 }, { "start": 1348.7, "end": 1349.56, "probability": 0.3261 }, { "start": 1349.88, "end": 1350.16, "probability": 0.231 }, { "start": 1350.64, "end": 1351.5, "probability": 0.2234 }, { "start": 1351.72, "end": 1354.06, "probability": 0.9767 }, { "start": 1354.84, "end": 1355.64, "probability": 0.3068 }, { "start": 1355.98, "end": 1356.38, "probability": 0.3925 }, { "start": 1356.46, "end": 1357.98, "probability": 0.3499 }, { "start": 1357.98, "end": 1358.91, "probability": 0.6734 }, { "start": 1359.58, "end": 1361.78, "probability": 0.7993 }, { "start": 1362.78, "end": 1366.3, "probability": 0.9257 }, { "start": 1366.36, "end": 1368.42, "probability": 0.6542 }, { "start": 1368.44, "end": 1369.1, "probability": 0.1784 }, { "start": 1369.54, "end": 1370.52, "probability": 0.7044 }, { "start": 1370.7, "end": 1374.98, "probability": 0.8605 }, { "start": 1375.14, "end": 1377.25, "probability": 0.4156 }, { "start": 1377.44, "end": 1378.34, "probability": 0.9419 }, { "start": 1378.4, "end": 1379.5, "probability": 0.7214 }, { "start": 1380.48, "end": 1384.92, "probability": 0.7917 }, { "start": 1386.12, "end": 1387.72, "probability": 0.9673 }, { "start": 1389.88, "end": 1392.2, "probability": 0.8932 }, { "start": 1392.72, "end": 1395.94, "probability": 0.9903 }, { "start": 1397.36, "end": 1401.24, "probability": 0.9796 }, { "start": 1401.32, "end": 1403.54, "probability": 0.9586 }, { "start": 1404.32, "end": 1406.96, "probability": 0.9974 }, { "start": 1408.1, "end": 1409.38, "probability": 0.9926 }, { "start": 1409.98, "end": 1411.44, "probability": 0.849 }, { "start": 1412.42, "end": 1413.58, "probability": 0.8657 }, { "start": 1415.04, "end": 1416.54, "probability": 0.2785 }, { "start": 1417.96, "end": 1418.7, "probability": 0.4706 }, { "start": 1418.92, "end": 1420.1, "probability": 0.7691 }, { "start": 1420.22, "end": 1423.1, "probability": 0.9217 }, { "start": 1423.94, "end": 1426.0, "probability": 0.8179 }, { "start": 1426.92, "end": 1428.39, "probability": 0.8652 }, { "start": 1429.56, "end": 1431.54, "probability": 0.9875 }, { "start": 1432.18, "end": 1432.76, "probability": 0.7733 }, { "start": 1434.22, "end": 1434.68, "probability": 0.749 }, { "start": 1435.3, "end": 1435.86, "probability": 0.6882 }, { "start": 1435.92, "end": 1436.82, "probability": 0.8164 }, { "start": 1436.88, "end": 1439.82, "probability": 0.8721 }, { "start": 1440.04, "end": 1441.86, "probability": 0.9177 }, { "start": 1442.42, "end": 1445.0, "probability": 0.9758 }, { "start": 1446.38, "end": 1448.16, "probability": 0.8804 }, { "start": 1448.34, "end": 1448.72, "probability": 0.8229 }, { "start": 1448.88, "end": 1449.7, "probability": 0.7411 }, { "start": 1450.54, "end": 1452.36, "probability": 0.8497 }, { "start": 1452.56, "end": 1454.68, "probability": 0.9413 }, { "start": 1454.76, "end": 1455.74, "probability": 0.7819 }, { "start": 1456.14, "end": 1456.54, "probability": 0.6698 }, { "start": 1456.56, "end": 1457.78, "probability": 0.9857 }, { "start": 1457.84, "end": 1458.54, "probability": 0.9809 }, { "start": 1459.18, "end": 1461.64, "probability": 0.5962 }, { "start": 1462.44, "end": 1464.38, "probability": 0.9926 }, { "start": 1464.46, "end": 1465.28, "probability": 0.8882 }, { "start": 1465.32, "end": 1466.6, "probability": 0.9878 }, { "start": 1468.6, "end": 1468.66, "probability": 0.4789 }, { "start": 1468.66, "end": 1473.14, "probability": 0.9663 }, { "start": 1474.2, "end": 1479.26, "probability": 0.9968 }, { "start": 1479.84, "end": 1481.92, "probability": 0.8136 }, { "start": 1482.6, "end": 1484.6, "probability": 0.6519 }, { "start": 1485.2, "end": 1486.36, "probability": 0.9351 }, { "start": 1487.26, "end": 1490.0, "probability": 0.9739 }, { "start": 1490.14, "end": 1490.5, "probability": 0.7121 }, { "start": 1490.6, "end": 1491.64, "probability": 0.5833 }, { "start": 1492.72, "end": 1494.0, "probability": 0.764 }, { "start": 1494.06, "end": 1496.92, "probability": 0.7944 }, { "start": 1496.98, "end": 1498.32, "probability": 0.9212 }, { "start": 1498.48, "end": 1499.5, "probability": 0.9233 }, { "start": 1500.84, "end": 1502.24, "probability": 0.9985 }, { "start": 1502.98, "end": 1503.96, "probability": 0.9263 }, { "start": 1504.24, "end": 1507.8, "probability": 0.929 }, { "start": 1508.42, "end": 1510.48, "probability": 0.9725 }, { "start": 1511.16, "end": 1511.76, "probability": 0.4985 }, { "start": 1513.14, "end": 1513.48, "probability": 0.6658 }, { "start": 1514.18, "end": 1515.8, "probability": 0.7872 }, { "start": 1516.82, "end": 1518.12, "probability": 0.675 }, { "start": 1518.52, "end": 1520.08, "probability": 0.5435 }, { "start": 1520.24, "end": 1520.5, "probability": 0.42 }, { "start": 1521.14, "end": 1523.44, "probability": 0.9935 }, { "start": 1524.12, "end": 1525.74, "probability": 0.957 }, { "start": 1526.56, "end": 1527.28, "probability": 0.6305 }, { "start": 1528.0, "end": 1528.9, "probability": 0.502 }, { "start": 1529.84, "end": 1530.8, "probability": 0.9099 }, { "start": 1532.26, "end": 1536.08, "probability": 0.9683 }, { "start": 1537.1, "end": 1543.42, "probability": 0.9922 }, { "start": 1544.88, "end": 1547.26, "probability": 0.8745 }, { "start": 1548.16, "end": 1551.3, "probability": 0.9869 }, { "start": 1552.0, "end": 1554.68, "probability": 0.8608 }, { "start": 1555.78, "end": 1556.46, "probability": 0.7128 }, { "start": 1557.36, "end": 1559.9, "probability": 0.7308 }, { "start": 1561.0, "end": 1562.86, "probability": 0.8383 }, { "start": 1564.24, "end": 1570.32, "probability": 0.9378 }, { "start": 1570.9, "end": 1571.68, "probability": 0.6736 }, { "start": 1572.42, "end": 1574.66, "probability": 0.9028 }, { "start": 1576.22, "end": 1579.96, "probability": 0.9715 }, { "start": 1580.84, "end": 1581.96, "probability": 0.611 }, { "start": 1583.68, "end": 1588.06, "probability": 0.997 }, { "start": 1590.78, "end": 1594.68, "probability": 0.9972 }, { "start": 1595.66, "end": 1597.9, "probability": 0.9545 }, { "start": 1598.66, "end": 1602.08, "probability": 0.999 }, { "start": 1602.08, "end": 1606.24, "probability": 0.9951 }, { "start": 1606.6, "end": 1607.36, "probability": 0.9087 }, { "start": 1607.48, "end": 1607.98, "probability": 0.6289 }, { "start": 1608.16, "end": 1608.48, "probability": 0.7258 }, { "start": 1608.52, "end": 1608.94, "probability": 0.9845 }, { "start": 1610.82, "end": 1614.94, "probability": 0.9939 }, { "start": 1615.78, "end": 1615.86, "probability": 0.9399 }, { "start": 1615.92, "end": 1616.16, "probability": 0.7729 }, { "start": 1616.18, "end": 1617.06, "probability": 0.9725 }, { "start": 1617.16, "end": 1617.7, "probability": 0.9312 }, { "start": 1617.74, "end": 1618.64, "probability": 0.925 }, { "start": 1619.22, "end": 1620.8, "probability": 0.9497 }, { "start": 1621.48, "end": 1622.28, "probability": 0.5571 }, { "start": 1623.02, "end": 1624.76, "probability": 0.8115 }, { "start": 1625.1, "end": 1626.22, "probability": 0.8526 }, { "start": 1626.66, "end": 1628.12, "probability": 0.978 }, { "start": 1628.72, "end": 1635.96, "probability": 0.887 }, { "start": 1637.26, "end": 1639.5, "probability": 0.9949 }, { "start": 1639.54, "end": 1640.76, "probability": 0.9869 }, { "start": 1641.94, "end": 1643.46, "probability": 0.9863 }, { "start": 1644.06, "end": 1645.22, "probability": 0.9457 }, { "start": 1645.78, "end": 1648.14, "probability": 0.9893 }, { "start": 1648.24, "end": 1652.06, "probability": 0.951 }, { "start": 1653.62, "end": 1654.66, "probability": 0.9503 }, { "start": 1654.92, "end": 1655.16, "probability": 0.593 }, { "start": 1655.4, "end": 1656.16, "probability": 0.5065 }, { "start": 1656.62, "end": 1657.19, "probability": 0.6046 }, { "start": 1657.62, "end": 1658.34, "probability": 0.769 }, { "start": 1659.0, "end": 1665.92, "probability": 0.9673 }, { "start": 1666.52, "end": 1670.74, "probability": 0.9563 }, { "start": 1672.3, "end": 1674.26, "probability": 0.8266 }, { "start": 1675.74, "end": 1678.28, "probability": 0.8186 }, { "start": 1680.22, "end": 1682.42, "probability": 0.9009 }, { "start": 1683.08, "end": 1689.1, "probability": 0.9692 }, { "start": 1690.28, "end": 1690.86, "probability": 0.8855 }, { "start": 1691.86, "end": 1694.84, "probability": 0.9865 }, { "start": 1694.94, "end": 1696.66, "probability": 0.8449 }, { "start": 1698.16, "end": 1699.52, "probability": 0.9482 }, { "start": 1700.64, "end": 1702.06, "probability": 0.715 }, { "start": 1702.6, "end": 1705.64, "probability": 0.7705 }, { "start": 1709.62, "end": 1711.02, "probability": 0.6218 }, { "start": 1712.84, "end": 1715.44, "probability": 0.971 }, { "start": 1717.22, "end": 1720.4, "probability": 0.9598 }, { "start": 1721.66, "end": 1723.24, "probability": 0.9846 }, { "start": 1724.22, "end": 1725.68, "probability": 0.9956 }, { "start": 1726.26, "end": 1729.78, "probability": 0.8026 }, { "start": 1730.34, "end": 1731.2, "probability": 0.4917 }, { "start": 1732.36, "end": 1737.76, "probability": 0.9586 }, { "start": 1737.9, "end": 1738.3, "probability": 0.7827 }, { "start": 1738.38, "end": 1740.94, "probability": 0.9763 }, { "start": 1742.16, "end": 1744.18, "probability": 0.9919 }, { "start": 1744.8, "end": 1748.34, "probability": 0.9779 }, { "start": 1749.5, "end": 1752.82, "probability": 0.9911 }, { "start": 1753.26, "end": 1756.96, "probability": 0.7758 }, { "start": 1758.34, "end": 1759.84, "probability": 0.7039 }, { "start": 1760.44, "end": 1761.58, "probability": 0.9658 }, { "start": 1762.7, "end": 1763.42, "probability": 0.499 }, { "start": 1763.58, "end": 1764.38, "probability": 0.7547 }, { "start": 1764.6, "end": 1765.4, "probability": 0.6514 }, { "start": 1765.86, "end": 1767.04, "probability": 0.9739 }, { "start": 1767.58, "end": 1768.62, "probability": 0.7855 }, { "start": 1769.82, "end": 1775.74, "probability": 0.9241 }, { "start": 1778.2, "end": 1780.6, "probability": 0.8105 }, { "start": 1781.78, "end": 1782.86, "probability": 0.9604 }, { "start": 1783.72, "end": 1786.24, "probability": 0.999 }, { "start": 1786.92, "end": 1788.56, "probability": 0.9176 }, { "start": 1789.9, "end": 1794.52, "probability": 0.912 }, { "start": 1795.36, "end": 1799.4, "probability": 0.9763 }, { "start": 1800.32, "end": 1801.6, "probability": 0.757 }, { "start": 1802.72, "end": 1805.9, "probability": 0.5876 }, { "start": 1806.06, "end": 1806.83, "probability": 0.8124 }, { "start": 1807.7, "end": 1809.74, "probability": 0.9754 }, { "start": 1810.96, "end": 1812.54, "probability": 0.8779 }, { "start": 1814.18, "end": 1815.38, "probability": 0.7601 }, { "start": 1816.62, "end": 1820.08, "probability": 0.9806 }, { "start": 1820.72, "end": 1821.88, "probability": 0.7477 }, { "start": 1822.94, "end": 1824.12, "probability": 0.8672 }, { "start": 1824.12, "end": 1825.16, "probability": 0.8495 }, { "start": 1825.46, "end": 1825.76, "probability": 0.6533 }, { "start": 1826.04, "end": 1826.77, "probability": 0.7524 }, { "start": 1826.96, "end": 1829.6, "probability": 0.4845 }, { "start": 1830.18, "end": 1830.8, "probability": 0.4933 }, { "start": 1830.96, "end": 1832.04, "probability": 0.6728 }, { "start": 1832.52, "end": 1833.43, "probability": 0.873 }, { "start": 1834.7, "end": 1838.2, "probability": 0.9222 }, { "start": 1838.28, "end": 1839.62, "probability": 0.9938 }, { "start": 1840.44, "end": 1842.18, "probability": 0.9705 }, { "start": 1842.94, "end": 1844.0, "probability": 0.8739 }, { "start": 1844.56, "end": 1847.56, "probability": 0.9954 }, { "start": 1847.98, "end": 1852.78, "probability": 0.9977 }, { "start": 1855.1, "end": 1855.88, "probability": 0.98 }, { "start": 1856.18, "end": 1856.88, "probability": 0.7241 }, { "start": 1857.02, "end": 1859.26, "probability": 0.9956 }, { "start": 1860.36, "end": 1861.92, "probability": 0.9858 }, { "start": 1862.94, "end": 1864.94, "probability": 0.9964 }, { "start": 1865.92, "end": 1869.58, "probability": 0.9963 }, { "start": 1869.58, "end": 1873.26, "probability": 0.791 }, { "start": 1873.46, "end": 1874.02, "probability": 0.7302 }, { "start": 1875.06, "end": 1876.62, "probability": 0.8387 }, { "start": 1876.76, "end": 1880.94, "probability": 0.9403 }, { "start": 1882.7, "end": 1883.1, "probability": 0.6468 }, { "start": 1883.66, "end": 1885.32, "probability": 0.9026 }, { "start": 1886.86, "end": 1889.32, "probability": 0.9669 }, { "start": 1890.04, "end": 1891.76, "probability": 0.9948 }, { "start": 1891.86, "end": 1892.5, "probability": 0.9866 }, { "start": 1896.38, "end": 1898.56, "probability": 0.9922 }, { "start": 1899.12, "end": 1900.7, "probability": 0.9984 }, { "start": 1901.54, "end": 1904.2, "probability": 0.9939 }, { "start": 1904.92, "end": 1907.14, "probability": 0.9926 }, { "start": 1908.2, "end": 1911.66, "probability": 0.998 }, { "start": 1912.18, "end": 1913.2, "probability": 0.9971 }, { "start": 1913.24, "end": 1915.44, "probability": 0.814 }, { "start": 1916.02, "end": 1918.4, "probability": 0.8736 }, { "start": 1918.92, "end": 1924.1, "probability": 0.8959 }, { "start": 1924.52, "end": 1927.1, "probability": 0.8267 }, { "start": 1927.92, "end": 1933.76, "probability": 0.9936 }, { "start": 1933.88, "end": 1935.06, "probability": 0.8697 }, { "start": 1935.74, "end": 1936.8, "probability": 0.924 }, { "start": 1937.38, "end": 1939.7, "probability": 0.9756 }, { "start": 1940.34, "end": 1944.76, "probability": 0.9727 }, { "start": 1945.28, "end": 1946.76, "probability": 0.9445 }, { "start": 1947.46, "end": 1948.22, "probability": 0.7687 }, { "start": 1948.74, "end": 1950.88, "probability": 0.9967 }, { "start": 1951.52, "end": 1953.34, "probability": 0.9879 }, { "start": 1954.96, "end": 1960.06, "probability": 0.9763 }, { "start": 1960.06, "end": 1963.12, "probability": 0.9961 }, { "start": 1963.4, "end": 1964.14, "probability": 0.5762 }, { "start": 1964.48, "end": 1966.44, "probability": 0.8198 }, { "start": 1997.42, "end": 1998.28, "probability": 0.7389 }, { "start": 2000.44, "end": 2001.1, "probability": 0.8028 }, { "start": 2001.84, "end": 2002.76, "probability": 0.7802 }, { "start": 2004.48, "end": 2005.62, "probability": 0.8474 }, { "start": 2006.72, "end": 2010.38, "probability": 0.7141 }, { "start": 2012.16, "end": 2013.82, "probability": 0.5787 }, { "start": 2016.42, "end": 2017.12, "probability": 0.8461 }, { "start": 2020.58, "end": 2021.0, "probability": 0.7842 }, { "start": 2022.5, "end": 2027.76, "probability": 0.9934 }, { "start": 2028.86, "end": 2032.24, "probability": 0.7599 }, { "start": 2032.74, "end": 2033.42, "probability": 0.0677 }, { "start": 2034.04, "end": 2034.24, "probability": 0.0185 }, { "start": 2034.24, "end": 2034.24, "probability": 0.2877 }, { "start": 2034.24, "end": 2034.46, "probability": 0.0602 }, { "start": 2034.72, "end": 2035.92, "probability": 0.8643 }, { "start": 2036.14, "end": 2037.16, "probability": 0.6188 }, { "start": 2037.3, "end": 2040.06, "probability": 0.8904 }, { "start": 2040.54, "end": 2043.07, "probability": 0.7725 }, { "start": 2045.14, "end": 2049.88, "probability": 0.6589 }, { "start": 2051.4, "end": 2054.74, "probability": 0.9707 }, { "start": 2056.52, "end": 2057.2, "probability": 0.9877 }, { "start": 2058.1, "end": 2059.44, "probability": 0.6666 }, { "start": 2060.78, "end": 2062.38, "probability": 0.9597 }, { "start": 2063.18, "end": 2063.9, "probability": 0.9937 }, { "start": 2065.48, "end": 2066.72, "probability": 0.9785 }, { "start": 2067.84, "end": 2070.38, "probability": 0.5999 }, { "start": 2070.38, "end": 2073.74, "probability": 0.7679 }, { "start": 2074.48, "end": 2075.74, "probability": 0.8363 }, { "start": 2076.92, "end": 2082.82, "probability": 0.9918 }, { "start": 2083.86, "end": 2085.26, "probability": 0.8962 }, { "start": 2086.62, "end": 2088.4, "probability": 0.8208 }, { "start": 2089.5, "end": 2090.62, "probability": 0.9686 }, { "start": 2091.36, "end": 2092.5, "probability": 0.9486 }, { "start": 2093.32, "end": 2093.88, "probability": 0.9672 }, { "start": 2094.78, "end": 2100.04, "probability": 0.9728 }, { "start": 2101.4, "end": 2105.06, "probability": 0.8146 }, { "start": 2106.12, "end": 2108.82, "probability": 0.783 }, { "start": 2109.58, "end": 2111.28, "probability": 0.9863 }, { "start": 2113.36, "end": 2115.84, "probability": 0.8652 }, { "start": 2117.42, "end": 2118.58, "probability": 0.7575 }, { "start": 2119.76, "end": 2124.42, "probability": 0.8311 }, { "start": 2124.72, "end": 2125.3, "probability": 0.7096 }, { "start": 2125.36, "end": 2129.04, "probability": 0.7708 }, { "start": 2129.08, "end": 2129.08, "probability": 0.0215 }, { "start": 2129.08, "end": 2129.08, "probability": 0.3369 }, { "start": 2129.08, "end": 2129.78, "probability": 0.3593 }, { "start": 2129.78, "end": 2132.56, "probability": 0.6737 }, { "start": 2133.3, "end": 2134.66, "probability": 0.4517 }, { "start": 2134.94, "end": 2135.24, "probability": 0.3057 }, { "start": 2135.86, "end": 2136.64, "probability": 0.4069 }, { "start": 2137.06, "end": 2137.12, "probability": 0.9219 }, { "start": 2137.84, "end": 2140.1, "probability": 0.9896 }, { "start": 2140.4, "end": 2141.75, "probability": 0.8169 }, { "start": 2142.04, "end": 2146.56, "probability": 0.9308 }, { "start": 2147.04, "end": 2148.02, "probability": 0.9631 }, { "start": 2149.38, "end": 2152.24, "probability": 0.9968 }, { "start": 2152.24, "end": 2155.32, "probability": 0.9862 }, { "start": 2155.74, "end": 2157.98, "probability": 0.6632 }, { "start": 2158.8, "end": 2163.12, "probability": 0.8866 }, { "start": 2164.75, "end": 2168.3, "probability": 0.6186 }, { "start": 2168.62, "end": 2172.16, "probability": 0.9916 }, { "start": 2172.6, "end": 2176.98, "probability": 0.9943 }, { "start": 2176.98, "end": 2180.68, "probability": 0.9167 }, { "start": 2180.74, "end": 2182.56, "probability": 0.0279 }, { "start": 2183.64, "end": 2184.88, "probability": 0.8069 }, { "start": 2185.46, "end": 2187.28, "probability": 0.9888 }, { "start": 2187.7, "end": 2191.18, "probability": 0.9316 }, { "start": 2191.58, "end": 2191.86, "probability": 0.4812 }, { "start": 2192.15, "end": 2195.48, "probability": 0.8075 }, { "start": 2196.2, "end": 2197.28, "probability": 0.8479 }, { "start": 2198.4, "end": 2200.94, "probability": 0.9229 }, { "start": 2201.32, "end": 2204.04, "probability": 0.9912 }, { "start": 2205.08, "end": 2206.22, "probability": 0.7808 }, { "start": 2206.78, "end": 2210.56, "probability": 0.9812 }, { "start": 2210.74, "end": 2211.56, "probability": 0.4451 }, { "start": 2212.3, "end": 2213.8, "probability": 0.6426 }, { "start": 2214.16, "end": 2216.42, "probability": 0.9445 }, { "start": 2217.78, "end": 2218.86, "probability": 0.6593 }, { "start": 2219.02, "end": 2220.12, "probability": 0.8472 }, { "start": 2221.14, "end": 2224.4, "probability": 0.9957 }, { "start": 2225.4, "end": 2229.05, "probability": 0.9733 }, { "start": 2229.44, "end": 2231.7, "probability": 0.8521 }, { "start": 2232.02, "end": 2233.16, "probability": 0.9809 }, { "start": 2234.08, "end": 2236.04, "probability": 0.9758 }, { "start": 2236.94, "end": 2238.06, "probability": 0.7049 }, { "start": 2239.8, "end": 2241.16, "probability": 0.9094 }, { "start": 2243.46, "end": 2246.36, "probability": 0.7913 }, { "start": 2246.46, "end": 2248.28, "probability": 0.8572 }, { "start": 2249.32, "end": 2251.6, "probability": 0.8914 }, { "start": 2253.3, "end": 2254.86, "probability": 0.949 }, { "start": 2256.7, "end": 2257.66, "probability": 0.8511 }, { "start": 2259.66, "end": 2260.78, "probability": 0.6691 }, { "start": 2262.22, "end": 2264.7, "probability": 0.8895 }, { "start": 2265.68, "end": 2266.76, "probability": 0.7406 }, { "start": 2268.6, "end": 2270.9, "probability": 0.852 }, { "start": 2271.64, "end": 2274.56, "probability": 0.9639 }, { "start": 2275.7, "end": 2276.64, "probability": 0.9956 }, { "start": 2276.76, "end": 2277.84, "probability": 0.9971 }, { "start": 2278.28, "end": 2280.09, "probability": 0.9979 }, { "start": 2280.62, "end": 2281.06, "probability": 0.831 }, { "start": 2282.68, "end": 2284.5, "probability": 0.8401 }, { "start": 2286.2, "end": 2288.58, "probability": 0.8506 }, { "start": 2289.4, "end": 2290.56, "probability": 0.9709 }, { "start": 2302.4, "end": 2303.7, "probability": 0.6504 }, { "start": 2320.46, "end": 2320.46, "probability": 0.4353 }, { "start": 2320.46, "end": 2320.98, "probability": 0.4883 }, { "start": 2321.74, "end": 2323.04, "probability": 0.7037 }, { "start": 2323.36, "end": 2324.56, "probability": 0.9493 }, { "start": 2327.54, "end": 2328.72, "probability": 0.6743 }, { "start": 2330.44, "end": 2331.08, "probability": 0.1677 }, { "start": 2331.24, "end": 2332.96, "probability": 0.884 }, { "start": 2332.96, "end": 2333.37, "probability": 0.7749 }, { "start": 2333.9, "end": 2334.18, "probability": 0.9154 }, { "start": 2335.3, "end": 2336.2, "probability": 0.8937 }, { "start": 2339.4, "end": 2344.5, "probability": 0.9988 }, { "start": 2345.16, "end": 2346.78, "probability": 0.7521 }, { "start": 2348.02, "end": 2349.28, "probability": 0.9517 }, { "start": 2349.88, "end": 2352.06, "probability": 0.8804 }, { "start": 2353.22, "end": 2356.1, "probability": 0.9889 }, { "start": 2356.8, "end": 2357.3, "probability": 0.4536 }, { "start": 2358.26, "end": 2359.08, "probability": 0.7993 }, { "start": 2359.82, "end": 2361.82, "probability": 0.9968 }, { "start": 2362.74, "end": 2364.52, "probability": 0.8071 }, { "start": 2365.58, "end": 2370.1, "probability": 0.9844 }, { "start": 2370.44, "end": 2371.22, "probability": 0.9213 }, { "start": 2373.38, "end": 2375.68, "probability": 0.9855 }, { "start": 2376.06, "end": 2376.62, "probability": 0.8579 }, { "start": 2376.96, "end": 2377.84, "probability": 0.8669 }, { "start": 2378.5, "end": 2381.76, "probability": 0.9748 }, { "start": 2382.86, "end": 2387.18, "probability": 0.9841 }, { "start": 2388.08, "end": 2390.6, "probability": 0.7352 }, { "start": 2390.7, "end": 2392.69, "probability": 0.9618 }, { "start": 2393.5, "end": 2397.7, "probability": 0.8708 }, { "start": 2400.88, "end": 2401.98, "probability": 0.9883 }, { "start": 2403.54, "end": 2405.9, "probability": 0.836 }, { "start": 2407.66, "end": 2409.84, "probability": 0.9566 }, { "start": 2410.6, "end": 2412.78, "probability": 0.967 }, { "start": 2412.86, "end": 2413.45, "probability": 0.6154 }, { "start": 2414.12, "end": 2414.76, "probability": 0.9683 }, { "start": 2415.02, "end": 2415.54, "probability": 0.5735 }, { "start": 2416.44, "end": 2417.24, "probability": 0.8668 }, { "start": 2417.72, "end": 2418.58, "probability": 0.8628 }, { "start": 2418.6, "end": 2419.28, "probability": 0.9316 }, { "start": 2419.4, "end": 2420.24, "probability": 0.8485 }, { "start": 2420.64, "end": 2421.72, "probability": 0.9917 }, { "start": 2422.8, "end": 2423.8, "probability": 0.9585 }, { "start": 2423.92, "end": 2424.52, "probability": 0.9688 }, { "start": 2424.98, "end": 2425.74, "probability": 0.9858 }, { "start": 2426.38, "end": 2426.86, "probability": 0.7651 }, { "start": 2426.96, "end": 2427.74, "probability": 0.4935 }, { "start": 2428.56, "end": 2430.84, "probability": 0.9822 }, { "start": 2438.76, "end": 2439.39, "probability": 0.9734 }, { "start": 2441.3, "end": 2441.96, "probability": 0.9924 }, { "start": 2442.56, "end": 2445.12, "probability": 0.9004 }, { "start": 2447.1, "end": 2447.7, "probability": 0.7496 }, { "start": 2447.98, "end": 2448.55, "probability": 0.9014 }, { "start": 2449.04, "end": 2450.82, "probability": 0.9424 }, { "start": 2451.56, "end": 2452.18, "probability": 0.9836 }, { "start": 2454.18, "end": 2455.32, "probability": 0.6682 }, { "start": 2456.9, "end": 2459.84, "probability": 0.9468 }, { "start": 2460.94, "end": 2461.8, "probability": 0.8487 }, { "start": 2463.3, "end": 2463.7, "probability": 0.28 }, { "start": 2464.16, "end": 2465.18, "probability": 0.9147 }, { "start": 2465.52, "end": 2466.26, "probability": 0.6161 }, { "start": 2466.36, "end": 2467.52, "probability": 0.7216 }, { "start": 2467.54, "end": 2468.52, "probability": 0.9966 }, { "start": 2468.56, "end": 2469.27, "probability": 0.7368 }, { "start": 2469.6, "end": 2469.98, "probability": 0.5791 }, { "start": 2470.56, "end": 2472.0, "probability": 0.6655 }, { "start": 2473.42, "end": 2475.94, "probability": 0.6198 }, { "start": 2479.82, "end": 2480.98, "probability": 0.9888 }, { "start": 2482.14, "end": 2482.26, "probability": 0.8831 }, { "start": 2482.28, "end": 2485.93, "probability": 0.9354 }, { "start": 2486.06, "end": 2487.76, "probability": 0.9782 }, { "start": 2488.2, "end": 2489.4, "probability": 0.859 }, { "start": 2489.42, "end": 2490.22, "probability": 0.9495 }, { "start": 2490.26, "end": 2490.94, "probability": 0.7662 }, { "start": 2491.42, "end": 2493.68, "probability": 0.5916 }, { "start": 2494.74, "end": 2496.08, "probability": 0.6085 }, { "start": 2496.62, "end": 2498.56, "probability": 0.7698 }, { "start": 2499.28, "end": 2503.38, "probability": 0.9164 }, { "start": 2503.9, "end": 2505.32, "probability": 0.9894 }, { "start": 2505.66, "end": 2506.22, "probability": 0.9793 }, { "start": 2506.68, "end": 2507.06, "probability": 0.9937 }, { "start": 2507.94, "end": 2513.74, "probability": 0.9778 }, { "start": 2517.48, "end": 2520.12, "probability": 0.8603 }, { "start": 2520.22, "end": 2521.34, "probability": 0.7337 }, { "start": 2521.44, "end": 2522.54, "probability": 0.5772 }, { "start": 2522.62, "end": 2523.04, "probability": 0.7095 }, { "start": 2523.12, "end": 2523.12, "probability": 0.4271 }, { "start": 2523.46, "end": 2525.5, "probability": 0.9965 }, { "start": 2526.42, "end": 2527.06, "probability": 0.7998 }, { "start": 2527.14, "end": 2527.84, "probability": 0.9223 }, { "start": 2527.9, "end": 2530.06, "probability": 0.9941 }, { "start": 2530.4, "end": 2530.75, "probability": 0.8503 }, { "start": 2531.98, "end": 2533.44, "probability": 0.8502 }, { "start": 2534.78, "end": 2535.38, "probability": 0.7849 }, { "start": 2536.12, "end": 2538.7, "probability": 0.9917 }, { "start": 2538.88, "end": 2541.14, "probability": 0.9475 }, { "start": 2542.5, "end": 2543.14, "probability": 0.8009 }, { "start": 2543.66, "end": 2544.38, "probability": 0.8862 }, { "start": 2544.4, "end": 2547.64, "probability": 0.9698 }, { "start": 2548.1, "end": 2548.98, "probability": 0.8117 }, { "start": 2549.06, "end": 2549.8, "probability": 0.8044 }, { "start": 2550.16, "end": 2550.96, "probability": 0.9762 }, { "start": 2551.04, "end": 2551.7, "probability": 0.5976 }, { "start": 2551.9, "end": 2553.86, "probability": 0.9107 }, { "start": 2561.36, "end": 2561.54, "probability": 0.44 }, { "start": 2575.52, "end": 2576.16, "probability": 0.5538 }, { "start": 2577.5, "end": 2579.56, "probability": 0.7821 }, { "start": 2580.18, "end": 2583.0, "probability": 0.778 }, { "start": 2583.64, "end": 2584.7, "probability": 0.679 }, { "start": 2585.66, "end": 2589.86, "probability": 0.9569 }, { "start": 2591.76, "end": 2593.18, "probability": 0.6446 }, { "start": 2593.3, "end": 2595.48, "probability": 0.9148 }, { "start": 2596.2, "end": 2600.52, "probability": 0.8521 }, { "start": 2601.8, "end": 2604.86, "probability": 0.8682 }, { "start": 2605.46, "end": 2608.08, "probability": 0.894 }, { "start": 2608.26, "end": 2609.68, "probability": 0.981 }, { "start": 2610.72, "end": 2611.38, "probability": 0.4967 }, { "start": 2613.52, "end": 2617.7, "probability": 0.486 }, { "start": 2618.1, "end": 2619.2, "probability": 0.8217 }, { "start": 2620.62, "end": 2622.2, "probability": 0.9685 }, { "start": 2622.36, "end": 2623.86, "probability": 0.8402 }, { "start": 2624.58, "end": 2626.6, "probability": 0.5403 }, { "start": 2627.38, "end": 2630.86, "probability": 0.8448 }, { "start": 2631.34, "end": 2632.34, "probability": 0.7665 }, { "start": 2633.16, "end": 2636.0, "probability": 0.8712 }, { "start": 2636.6, "end": 2638.64, "probability": 0.757 }, { "start": 2639.76, "end": 2639.88, "probability": 0.0618 }, { "start": 2639.88, "end": 2640.68, "probability": 0.3482 }, { "start": 2640.82, "end": 2641.72, "probability": 0.8177 }, { "start": 2641.9, "end": 2642.74, "probability": 0.982 }, { "start": 2643.06, "end": 2646.52, "probability": 0.6014 }, { "start": 2647.02, "end": 2648.11, "probability": 0.9927 }, { "start": 2648.24, "end": 2650.0, "probability": 0.8619 }, { "start": 2650.14, "end": 2651.46, "probability": 0.9698 }, { "start": 2652.14, "end": 2654.84, "probability": 0.9964 }, { "start": 2655.12, "end": 2657.06, "probability": 0.7643 }, { "start": 2657.06, "end": 2658.11, "probability": 0.8168 }, { "start": 2658.66, "end": 2661.74, "probability": 0.956 }, { "start": 2661.84, "end": 2662.52, "probability": 0.8452 }, { "start": 2662.6, "end": 2663.06, "probability": 0.7137 }, { "start": 2663.46, "end": 2664.64, "probability": 0.9867 }, { "start": 2665.0, "end": 2665.68, "probability": 0.5295 }, { "start": 2665.7, "end": 2666.56, "probability": 0.7972 }, { "start": 2667.08, "end": 2667.84, "probability": 0.8677 }, { "start": 2667.94, "end": 2670.26, "probability": 0.9921 }, { "start": 2670.58, "end": 2671.4, "probability": 0.9009 }, { "start": 2672.3, "end": 2675.3, "probability": 0.9643 }, { "start": 2675.52, "end": 2678.4, "probability": 0.9705 }, { "start": 2678.94, "end": 2680.68, "probability": 0.7898 }, { "start": 2681.34, "end": 2685.76, "probability": 0.9975 }, { "start": 2686.14, "end": 2688.72, "probability": 0.9788 }, { "start": 2688.86, "end": 2689.42, "probability": 0.9628 }, { "start": 2690.24, "end": 2693.08, "probability": 0.9733 }, { "start": 2693.18, "end": 2694.08, "probability": 0.5597 }, { "start": 2694.52, "end": 2697.24, "probability": 0.9843 }, { "start": 2698.2, "end": 2699.18, "probability": 0.5688 }, { "start": 2699.28, "end": 2700.5, "probability": 0.7688 }, { "start": 2700.92, "end": 2702.32, "probability": 0.9354 }, { "start": 2702.66, "end": 2703.18, "probability": 0.4513 }, { "start": 2703.46, "end": 2708.58, "probability": 0.969 }, { "start": 2709.68, "end": 2709.68, "probability": 0.2469 }, { "start": 2709.68, "end": 2710.26, "probability": 0.6439 }, { "start": 2710.42, "end": 2712.4, "probability": 0.8958 }, { "start": 2713.22, "end": 2716.26, "probability": 0.9944 }, { "start": 2717.0, "end": 2717.98, "probability": 0.9766 }, { "start": 2718.12, "end": 2719.39, "probability": 0.9404 }, { "start": 2719.92, "end": 2720.22, "probability": 0.4165 }, { "start": 2720.28, "end": 2721.0, "probability": 0.6232 }, { "start": 2721.72, "end": 2723.12, "probability": 0.9951 }, { "start": 2723.28, "end": 2727.36, "probability": 0.9265 }, { "start": 2728.02, "end": 2729.56, "probability": 0.7876 }, { "start": 2730.2, "end": 2733.88, "probability": 0.7666 }, { "start": 2734.3, "end": 2735.84, "probability": 0.9111 }, { "start": 2738.3, "end": 2738.68, "probability": 0.143 }, { "start": 2738.68, "end": 2740.88, "probability": 0.9126 }, { "start": 2741.4, "end": 2744.74, "probability": 0.9941 }, { "start": 2744.98, "end": 2746.28, "probability": 0.569 }, { "start": 2748.14, "end": 2750.26, "probability": 0.4984 }, { "start": 2751.16, "end": 2753.32, "probability": 0.2575 }, { "start": 2753.58, "end": 2756.36, "probability": 0.9996 }, { "start": 2756.72, "end": 2757.32, "probability": 0.7361 }, { "start": 2758.12, "end": 2764.08, "probability": 0.8742 }, { "start": 2765.78, "end": 2767.22, "probability": 0.9878 }, { "start": 2767.36, "end": 2768.58, "probability": 0.7703 }, { "start": 2768.98, "end": 2771.38, "probability": 0.9925 }, { "start": 2771.94, "end": 2775.56, "probability": 0.9756 }, { "start": 2776.08, "end": 2779.96, "probability": 0.9909 }, { "start": 2780.06, "end": 2780.43, "probability": 0.8869 }, { "start": 2780.6, "end": 2780.92, "probability": 0.4088 }, { "start": 2781.65, "end": 2783.34, "probability": 0.9829 }, { "start": 2783.8, "end": 2787.62, "probability": 0.9834 }, { "start": 2787.96, "end": 2788.64, "probability": 0.8477 }, { "start": 2788.66, "end": 2789.48, "probability": 0.9276 }, { "start": 2789.8, "end": 2794.86, "probability": 0.989 }, { "start": 2794.96, "end": 2795.3, "probability": 0.7189 }, { "start": 2795.76, "end": 2796.3, "probability": 0.6162 }, { "start": 2796.92, "end": 2798.86, "probability": 0.8791 }, { "start": 2821.4, "end": 2821.79, "probability": 0.5892 }, { "start": 2829.22, "end": 2829.92, "probability": 0.6517 }, { "start": 2831.28, "end": 2833.82, "probability": 0.7337 }, { "start": 2834.98, "end": 2835.86, "probability": 0.9863 }, { "start": 2837.06, "end": 2839.04, "probability": 0.8792 }, { "start": 2839.78, "end": 2841.38, "probability": 0.9912 }, { "start": 2841.44, "end": 2845.38, "probability": 0.9676 }, { "start": 2845.94, "end": 2849.49, "probability": 0.9843 }, { "start": 2849.94, "end": 2854.06, "probability": 0.998 }, { "start": 2854.6, "end": 2857.44, "probability": 0.9751 }, { "start": 2858.56, "end": 2860.98, "probability": 0.9858 }, { "start": 2861.04, "end": 2862.72, "probability": 0.9946 }, { "start": 2863.3, "end": 2865.16, "probability": 0.95 }, { "start": 2865.68, "end": 2866.64, "probability": 0.898 }, { "start": 2866.9, "end": 2869.92, "probability": 0.9702 }, { "start": 2870.06, "end": 2871.58, "probability": 0.9762 }, { "start": 2872.44, "end": 2875.03, "probability": 0.99 }, { "start": 2875.44, "end": 2876.06, "probability": 0.9723 }, { "start": 2876.12, "end": 2877.5, "probability": 0.9823 }, { "start": 2877.92, "end": 2878.98, "probability": 0.9661 }, { "start": 2879.5, "end": 2882.24, "probability": 0.8513 }, { "start": 2882.36, "end": 2883.2, "probability": 0.9229 }, { "start": 2883.74, "end": 2884.82, "probability": 0.7472 }, { "start": 2885.32, "end": 2887.92, "probability": 0.8668 }, { "start": 2888.06, "end": 2892.55, "probability": 0.9722 }, { "start": 2894.88, "end": 2894.94, "probability": 0.0153 }, { "start": 2894.94, "end": 2894.94, "probability": 0.1341 }, { "start": 2894.94, "end": 2895.64, "probability": 0.3556 }, { "start": 2895.96, "end": 2897.58, "probability": 0.3125 }, { "start": 2897.66, "end": 2898.68, "probability": 0.9047 }, { "start": 2898.76, "end": 2901.46, "probability": 0.95 }, { "start": 2901.98, "end": 2906.76, "probability": 0.9709 }, { "start": 2906.84, "end": 2908.34, "probability": 0.9674 }, { "start": 2909.16, "end": 2910.8, "probability": 0.7529 }, { "start": 2910.92, "end": 2915.12, "probability": 0.985 }, { "start": 2915.64, "end": 2917.9, "probability": 0.9531 }, { "start": 2918.02, "end": 2920.56, "probability": 0.9487 }, { "start": 2921.22, "end": 2923.16, "probability": 0.9716 }, { "start": 2923.26, "end": 2924.22, "probability": 0.7352 }, { "start": 2924.32, "end": 2926.5, "probability": 0.8204 }, { "start": 2926.6, "end": 2927.56, "probability": 0.8809 }, { "start": 2928.36, "end": 2934.18, "probability": 0.8426 }, { "start": 2934.28, "end": 2936.22, "probability": 0.9935 }, { "start": 2936.84, "end": 2937.94, "probability": 0.8135 }, { "start": 2938.92, "end": 2944.0, "probability": 0.9956 }, { "start": 2944.18, "end": 2946.62, "probability": 0.9725 }, { "start": 2947.08, "end": 2948.1, "probability": 0.919 }, { "start": 2948.16, "end": 2948.7, "probability": 0.4145 }, { "start": 2948.74, "end": 2949.62, "probability": 0.7423 }, { "start": 2950.18, "end": 2953.58, "probability": 0.9031 }, { "start": 2953.82, "end": 2956.38, "probability": 0.9268 }, { "start": 2957.06, "end": 2958.5, "probability": 0.7338 }, { "start": 2959.14, "end": 2963.3, "probability": 0.9546 }, { "start": 2963.84, "end": 2965.74, "probability": 0.9189 }, { "start": 2966.0, "end": 2966.6, "probability": 0.7366 }, { "start": 2967.56, "end": 2971.28, "probability": 0.9753 }, { "start": 2971.46, "end": 2972.72, "probability": 0.7692 }, { "start": 2973.26, "end": 2978.62, "probability": 0.9961 }, { "start": 2978.66, "end": 2980.22, "probability": 0.6606 }, { "start": 2980.56, "end": 2982.18, "probability": 0.9348 }, { "start": 2982.64, "end": 2986.16, "probability": 0.9839 }, { "start": 2987.22, "end": 2988.78, "probability": 0.8601 }, { "start": 2989.7, "end": 2990.58, "probability": 0.7468 }, { "start": 2990.76, "end": 2995.96, "probability": 0.9758 }, { "start": 2996.0, "end": 2998.48, "probability": 0.5893 }, { "start": 2998.6, "end": 2998.94, "probability": 0.6576 }, { "start": 2999.0, "end": 2999.68, "probability": 0.5801 }, { "start": 2999.8, "end": 3000.44, "probability": 0.9668 }, { "start": 3000.58, "end": 3002.46, "probability": 0.9061 }, { "start": 3002.8, "end": 3004.38, "probability": 0.9684 }, { "start": 3004.96, "end": 3006.42, "probability": 0.9912 }, { "start": 3006.88, "end": 3007.42, "probability": 0.3219 }, { "start": 3008.3, "end": 3013.04, "probability": 0.9216 }, { "start": 3013.7, "end": 3015.22, "probability": 0.8408 }, { "start": 3015.28, "end": 3016.94, "probability": 0.8201 }, { "start": 3017.32, "end": 3018.44, "probability": 0.8622 }, { "start": 3018.94, "end": 3019.36, "probability": 0.9116 }, { "start": 3020.1, "end": 3021.64, "probability": 0.9966 }, { "start": 3022.3, "end": 3023.78, "probability": 0.9983 }, { "start": 3023.9, "end": 3025.24, "probability": 0.9746 }, { "start": 3025.78, "end": 3026.8, "probability": 0.7235 }, { "start": 3026.94, "end": 3029.16, "probability": 0.9852 }, { "start": 3029.92, "end": 3032.14, "probability": 0.9829 }, { "start": 3032.88, "end": 3034.63, "probability": 0.998 }, { "start": 3035.54, "end": 3035.94, "probability": 0.6729 }, { "start": 3035.94, "end": 3039.3, "probability": 0.9906 }, { "start": 3039.4, "end": 3041.06, "probability": 0.9443 }, { "start": 3042.02, "end": 3043.64, "probability": 0.6964 }, { "start": 3044.18, "end": 3047.08, "probability": 0.9973 }, { "start": 3047.56, "end": 3050.58, "probability": 0.9673 }, { "start": 3050.72, "end": 3051.76, "probability": 0.7855 }, { "start": 3051.9, "end": 3052.18, "probability": 0.356 }, { "start": 3052.36, "end": 3054.08, "probability": 0.9673 }, { "start": 3054.36, "end": 3054.88, "probability": 0.9501 }, { "start": 3055.68, "end": 3057.74, "probability": 0.5794 }, { "start": 3057.82, "end": 3059.1, "probability": 0.9385 }, { "start": 3060.28, "end": 3060.54, "probability": 0.4713 }, { "start": 3077.1, "end": 3080.2, "probability": 0.0985 }, { "start": 3092.0, "end": 3093.23, "probability": 0.9841 }, { "start": 3094.1, "end": 3097.74, "probability": 0.9484 }, { "start": 3098.52, "end": 3100.52, "probability": 0.9917 }, { "start": 3101.04, "end": 3102.2, "probability": 0.981 }, { "start": 3102.76, "end": 3105.92, "probability": 0.9678 }, { "start": 3106.62, "end": 3108.82, "probability": 0.9872 }, { "start": 3109.36, "end": 3109.98, "probability": 0.747 }, { "start": 3110.44, "end": 3110.8, "probability": 0.8065 }, { "start": 3110.9, "end": 3112.14, "probability": 0.9371 }, { "start": 3112.18, "end": 3113.1, "probability": 0.6868 }, { "start": 3114.02, "end": 3118.12, "probability": 0.9902 }, { "start": 3118.22, "end": 3119.28, "probability": 0.7124 }, { "start": 3119.66, "end": 3120.26, "probability": 0.8551 }, { "start": 3120.8, "end": 3123.26, "probability": 0.8075 }, { "start": 3123.92, "end": 3126.8, "probability": 0.9492 }, { "start": 3127.2, "end": 3129.9, "probability": 0.8354 }, { "start": 3129.9, "end": 3131.08, "probability": 0.8741 }, { "start": 3131.66, "end": 3131.98, "probability": 0.5567 }, { "start": 3133.24, "end": 3136.0, "probability": 0.6708 }, { "start": 3136.38, "end": 3138.06, "probability": 0.7594 }, { "start": 3138.64, "end": 3139.5, "probability": 0.7466 }, { "start": 3139.66, "end": 3142.3, "probability": 0.9959 }, { "start": 3142.58, "end": 3146.08, "probability": 0.6671 }, { "start": 3146.88, "end": 3149.36, "probability": 0.9487 }, { "start": 3151.46, "end": 3151.46, "probability": 0.0731 }, { "start": 3151.46, "end": 3151.46, "probability": 0.0347 }, { "start": 3151.46, "end": 3154.08, "probability": 0.9546 }, { "start": 3154.16, "end": 3154.76, "probability": 0.589 }, { "start": 3155.08, "end": 3157.2, "probability": 0.8369 }, { "start": 3157.38, "end": 3158.6, "probability": 0.7754 }, { "start": 3158.62, "end": 3160.58, "probability": 0.0123 }, { "start": 3160.58, "end": 3160.9, "probability": 0.2458 }, { "start": 3160.9, "end": 3163.82, "probability": 0.813 }, { "start": 3163.92, "end": 3165.44, "probability": 0.7923 }, { "start": 3166.08, "end": 3167.56, "probability": 0.4922 }, { "start": 3168.08, "end": 3169.22, "probability": 0.9004 }, { "start": 3169.28, "end": 3170.32, "probability": 0.0307 }, { "start": 3170.32, "end": 3172.46, "probability": 0.9792 }, { "start": 3172.78, "end": 3172.78, "probability": 0.243 }, { "start": 3172.78, "end": 3173.4, "probability": 0.3925 }, { "start": 3173.44, "end": 3174.74, "probability": 0.6984 }, { "start": 3175.2, "end": 3176.82, "probability": 0.9599 }, { "start": 3177.22, "end": 3178.84, "probability": 0.7816 }, { "start": 3179.4, "end": 3181.52, "probability": 0.8966 }, { "start": 3182.14, "end": 3183.56, "probability": 0.9359 }, { "start": 3184.38, "end": 3186.04, "probability": 0.856 }, { "start": 3186.34, "end": 3187.5, "probability": 0.9834 }, { "start": 3187.82, "end": 3188.5, "probability": 0.64 }, { "start": 3189.46, "end": 3192.12, "probability": 0.9343 }, { "start": 3192.5, "end": 3193.16, "probability": 0.0489 }, { "start": 3193.16, "end": 3193.16, "probability": 0.0886 }, { "start": 3193.16, "end": 3193.16, "probability": 0.0066 }, { "start": 3193.16, "end": 3194.82, "probability": 0.7439 }, { "start": 3195.3, "end": 3198.44, "probability": 0.9535 }, { "start": 3198.46, "end": 3199.92, "probability": 0.8517 }, { "start": 3200.56, "end": 3200.6, "probability": 0.1002 }, { "start": 3200.6, "end": 3204.4, "probability": 0.9381 }, { "start": 3204.88, "end": 3205.86, "probability": 0.0098 }, { "start": 3206.0, "end": 3206.25, "probability": 0.0577 }, { "start": 3206.76, "end": 3208.74, "probability": 0.735 }, { "start": 3209.5, "end": 3210.62, "probability": 0.0867 }, { "start": 3211.32, "end": 3213.8, "probability": 0.5636 }, { "start": 3213.8, "end": 3214.7, "probability": 0.784 }, { "start": 3214.72, "end": 3216.64, "probability": 0.6953 }, { "start": 3216.9, "end": 3217.1, "probability": 0.0956 }, { "start": 3222.26, "end": 3222.46, "probability": 0.01 }, { "start": 3222.46, "end": 3222.62, "probability": 0.0644 }, { "start": 3222.62, "end": 3224.94, "probability": 0.3968 }, { "start": 3225.16, "end": 3226.68, "probability": 0.6306 }, { "start": 3227.24, "end": 3229.36, "probability": 0.6311 }, { "start": 3230.02, "end": 3232.82, "probability": 0.9613 }, { "start": 3232.82, "end": 3235.7, "probability": 0.9921 }, { "start": 3235.7, "end": 3236.22, "probability": 0.8782 }, { "start": 3236.98, "end": 3239.26, "probability": 0.9217 }, { "start": 3239.82, "end": 3246.9, "probability": 0.9583 }, { "start": 3247.46, "end": 3250.04, "probability": 0.8667 }, { "start": 3250.4, "end": 3252.66, "probability": 0.8262 }, { "start": 3254.16, "end": 3256.1, "probability": 0.8168 }, { "start": 3256.68, "end": 3259.32, "probability": 0.981 }, { "start": 3259.46, "end": 3260.98, "probability": 0.9474 }, { "start": 3261.4, "end": 3262.42, "probability": 0.8862 }, { "start": 3262.86, "end": 3264.24, "probability": 0.9757 }, { "start": 3265.08, "end": 3266.72, "probability": 0.9478 }, { "start": 3267.1, "end": 3268.58, "probability": 0.9934 }, { "start": 3268.94, "end": 3270.12, "probability": 0.8888 }, { "start": 3270.42, "end": 3271.84, "probability": 0.65 }, { "start": 3272.0, "end": 3273.04, "probability": 0.7084 }, { "start": 3273.26, "end": 3274.2, "probability": 0.9178 }, { "start": 3274.82, "end": 3281.29, "probability": 0.9965 }, { "start": 3281.86, "end": 3287.16, "probability": 0.9973 }, { "start": 3287.42, "end": 3287.58, "probability": 0.1515 }, { "start": 3287.58, "end": 3288.56, "probability": 0.5345 }, { "start": 3288.66, "end": 3289.48, "probability": 0.822 }, { "start": 3289.94, "end": 3293.62, "probability": 0.9252 }, { "start": 3293.66, "end": 3294.98, "probability": 0.9379 }, { "start": 3295.0, "end": 3295.38, "probability": 0.8189 }, { "start": 3295.66, "end": 3296.7, "probability": 0.9607 }, { "start": 3296.96, "end": 3297.92, "probability": 0.8428 }, { "start": 3298.0, "end": 3298.0, "probability": 0.0066 }, { "start": 3299.76, "end": 3300.14, "probability": 0.0629 }, { "start": 3300.14, "end": 3302.48, "probability": 0.6489 }, { "start": 3302.84, "end": 3303.62, "probability": 0.1874 }, { "start": 3303.98, "end": 3305.64, "probability": 0.2721 }, { "start": 3307.72, "end": 3308.92, "probability": 0.2988 }, { "start": 3308.92, "end": 3308.92, "probability": 0.4399 }, { "start": 3308.92, "end": 3309.7, "probability": 0.1044 }, { "start": 3309.82, "end": 3313.96, "probability": 0.8356 }, { "start": 3314.32, "end": 3317.11, "probability": 0.3078 }, { "start": 3317.96, "end": 3318.6, "probability": 0.4854 }, { "start": 3319.7, "end": 3320.12, "probability": 0.3181 }, { "start": 3321.32, "end": 3323.26, "probability": 0.1243 }, { "start": 3323.36, "end": 3324.52, "probability": 0.3235 }, { "start": 3324.62, "end": 3327.46, "probability": 0.8196 }, { "start": 3327.9, "end": 3328.24, "probability": 0.8849 }, { "start": 3330.91, "end": 3331.24, "probability": 0.105 }, { "start": 3331.9, "end": 3335.76, "probability": 0.4498 }, { "start": 3336.54, "end": 3336.54, "probability": 0.0941 }, { "start": 3336.54, "end": 3336.54, "probability": 0.323 }, { "start": 3336.54, "end": 3336.54, "probability": 0.1647 }, { "start": 3336.54, "end": 3336.54, "probability": 0.1456 }, { "start": 3336.54, "end": 3336.54, "probability": 0.1635 }, { "start": 3336.54, "end": 3337.62, "probability": 0.2683 }, { "start": 3338.96, "end": 3343.5, "probability": 0.8374 }, { "start": 3345.28, "end": 3347.38, "probability": 0.9969 }, { "start": 3347.38, "end": 3353.16, "probability": 0.8108 }, { "start": 3354.64, "end": 3356.64, "probability": 0.9972 }, { "start": 3357.56, "end": 3359.14, "probability": 0.9794 }, { "start": 3359.24, "end": 3360.34, "probability": 0.9155 }, { "start": 3360.74, "end": 3363.8, "probability": 0.9368 }, { "start": 3364.7, "end": 3367.22, "probability": 0.9962 }, { "start": 3367.82, "end": 3371.04, "probability": 0.9438 }, { "start": 3372.98, "end": 3373.72, "probability": 0.8547 }, { "start": 3373.8, "end": 3377.02, "probability": 0.9941 }, { "start": 3377.96, "end": 3378.62, "probability": 0.9002 }, { "start": 3378.8, "end": 3381.42, "probability": 0.979 }, { "start": 3382.34, "end": 3383.92, "probability": 0.8838 }, { "start": 3384.34, "end": 3385.91, "probability": 0.9268 }, { "start": 3386.24, "end": 3387.33, "probability": 0.9842 }, { "start": 3387.82, "end": 3389.14, "probability": 0.9929 }, { "start": 3389.28, "end": 3390.66, "probability": 0.9892 }, { "start": 3391.32, "end": 3392.7, "probability": 0.9967 }, { "start": 3393.14, "end": 3394.46, "probability": 0.5688 }, { "start": 3395.06, "end": 3396.36, "probability": 0.8888 }, { "start": 3396.62, "end": 3398.7, "probability": 0.6279 }, { "start": 3398.98, "end": 3399.52, "probability": 0.9023 }, { "start": 3400.6, "end": 3402.72, "probability": 0.8075 }, { "start": 3402.92, "end": 3406.18, "probability": 0.9946 }, { "start": 3407.48, "end": 3409.2, "probability": 0.9401 }, { "start": 3409.56, "end": 3411.16, "probability": 0.9858 }, { "start": 3411.58, "end": 3413.0, "probability": 0.9462 }, { "start": 3413.36, "end": 3415.48, "probability": 0.9781 }, { "start": 3416.08, "end": 3417.38, "probability": 0.938 }, { "start": 3418.28, "end": 3421.04, "probability": 0.9724 }, { "start": 3424.68, "end": 3426.68, "probability": 0.8761 }, { "start": 3427.3, "end": 3431.92, "probability": 0.9915 }, { "start": 3432.49, "end": 3437.12, "probability": 0.9976 }, { "start": 3438.58, "end": 3439.62, "probability": 0.8228 }, { "start": 3440.02, "end": 3440.51, "probability": 0.9783 }, { "start": 3441.22, "end": 3441.42, "probability": 0.9125 }, { "start": 3443.42, "end": 3444.9, "probability": 0.858 }, { "start": 3445.74, "end": 3447.58, "probability": 0.9299 }, { "start": 3448.46, "end": 3451.02, "probability": 0.897 }, { "start": 3451.88, "end": 3453.08, "probability": 0.9282 }, { "start": 3453.2, "end": 3454.22, "probability": 0.6671 }, { "start": 3454.32, "end": 3459.0, "probability": 0.9905 }, { "start": 3459.78, "end": 3463.82, "probability": 0.9984 }, { "start": 3466.18, "end": 3468.72, "probability": 0.9919 }, { "start": 3468.72, "end": 3471.32, "probability": 0.9893 }, { "start": 3472.08, "end": 3473.08, "probability": 0.9505 }, { "start": 3474.36, "end": 3475.08, "probability": 0.6526 }, { "start": 3475.14, "end": 3481.78, "probability": 0.9409 }, { "start": 3482.52, "end": 3484.76, "probability": 0.8811 }, { "start": 3485.38, "end": 3488.06, "probability": 0.9132 }, { "start": 3489.26, "end": 3490.86, "probability": 0.6294 }, { "start": 3491.68, "end": 3493.88, "probability": 0.842 }, { "start": 3494.18, "end": 3495.04, "probability": 0.6309 }, { "start": 3495.34, "end": 3496.78, "probability": 0.9521 }, { "start": 3496.98, "end": 3499.17, "probability": 0.9668 }, { "start": 3502.3, "end": 3503.0, "probability": 0.9562 }, { "start": 3504.04, "end": 3506.36, "probability": 0.9814 }, { "start": 3508.02, "end": 3511.28, "probability": 0.9063 }, { "start": 3511.38, "end": 3513.48, "probability": 0.5951 }, { "start": 3513.76, "end": 3515.12, "probability": 0.9988 }, { "start": 3517.3, "end": 3518.1, "probability": 0.7778 }, { "start": 3518.14, "end": 3521.35, "probability": 0.9976 }, { "start": 3522.82, "end": 3523.56, "probability": 0.6591 }, { "start": 3524.1, "end": 3524.26, "probability": 0.5676 }, { "start": 3524.26, "end": 3526.7, "probability": 0.8176 }, { "start": 3527.3, "end": 3528.46, "probability": 0.8196 }, { "start": 3529.92, "end": 3532.12, "probability": 0.9252 }, { "start": 3535.32, "end": 3537.22, "probability": 0.0542 }, { "start": 3539.04, "end": 3540.04, "probability": 0.374 }, { "start": 3557.18, "end": 3560.26, "probability": 0.7341 }, { "start": 3561.16, "end": 3563.2, "probability": 0.9958 }, { "start": 3563.96, "end": 3564.98, "probability": 0.7738 }, { "start": 3566.42, "end": 3569.54, "probability": 0.9409 }, { "start": 3569.74, "end": 3572.26, "probability": 0.9509 }, { "start": 3573.54, "end": 3578.1, "probability": 0.8014 }, { "start": 3578.66, "end": 3583.44, "probability": 0.9583 }, { "start": 3584.4, "end": 3585.74, "probability": 0.9218 }, { "start": 3588.7, "end": 3594.24, "probability": 0.961 }, { "start": 3595.4, "end": 3597.58, "probability": 0.9186 }, { "start": 3599.14, "end": 3602.76, "probability": 0.6189 }, { "start": 3604.0, "end": 3605.32, "probability": 0.8964 }, { "start": 3605.9, "end": 3608.12, "probability": 0.5393 }, { "start": 3609.26, "end": 3613.5, "probability": 0.9614 }, { "start": 3615.72, "end": 3618.4, "probability": 0.9734 }, { "start": 3620.12, "end": 3621.78, "probability": 0.9954 }, { "start": 3622.46, "end": 3625.82, "probability": 0.8837 }, { "start": 3627.0, "end": 3628.72, "probability": 0.9699 }, { "start": 3629.24, "end": 3636.12, "probability": 0.9976 }, { "start": 3636.96, "end": 3638.9, "probability": 0.9454 }, { "start": 3639.44, "end": 3640.64, "probability": 0.8773 }, { "start": 3641.4, "end": 3645.4, "probability": 0.8111 }, { "start": 3646.12, "end": 3650.5, "probability": 0.8341 }, { "start": 3651.1, "end": 3652.42, "probability": 0.791 }, { "start": 3653.44, "end": 3656.52, "probability": 0.9636 }, { "start": 3658.1, "end": 3659.94, "probability": 0.8913 }, { "start": 3660.58, "end": 3664.84, "probability": 0.9075 }, { "start": 3665.46, "end": 3667.58, "probability": 0.7087 }, { "start": 3668.9, "end": 3670.2, "probability": 0.9396 }, { "start": 3671.02, "end": 3673.54, "probability": 0.9961 }, { "start": 3674.3, "end": 3678.86, "probability": 0.9158 }, { "start": 3679.6, "end": 3681.48, "probability": 0.4085 }, { "start": 3682.14, "end": 3684.66, "probability": 0.9688 }, { "start": 3685.24, "end": 3691.06, "probability": 0.9938 }, { "start": 3692.2, "end": 3701.02, "probability": 0.981 }, { "start": 3701.78, "end": 3705.2, "probability": 0.8922 }, { "start": 3705.72, "end": 3708.96, "probability": 0.9785 }, { "start": 3710.28, "end": 3711.68, "probability": 0.9661 }, { "start": 3712.32, "end": 3716.36, "probability": 0.8703 }, { "start": 3716.76, "end": 3718.7, "probability": 0.9357 }, { "start": 3719.5, "end": 3722.74, "probability": 0.9824 }, { "start": 3722.8, "end": 3727.6, "probability": 0.9203 }, { "start": 3728.2, "end": 3735.0, "probability": 0.9917 }, { "start": 3735.58, "end": 3736.36, "probability": 0.9507 }, { "start": 3736.92, "end": 3740.46, "probability": 0.7858 }, { "start": 3740.86, "end": 3741.38, "probability": 0.8786 }, { "start": 3741.72, "end": 3743.54, "probability": 0.497 }, { "start": 3743.62, "end": 3745.14, "probability": 0.8516 }, { "start": 3752.02, "end": 3752.02, "probability": 0.4361 }, { "start": 3752.02, "end": 3752.02, "probability": 0.1614 }, { "start": 3752.02, "end": 3752.02, "probability": 0.1136 }, { "start": 3752.02, "end": 3752.02, "probability": 0.0238 }, { "start": 3752.02, "end": 3752.02, "probability": 0.1738 }, { "start": 3752.02, "end": 3752.08, "probability": 0.1579 }, { "start": 3752.08, "end": 3752.14, "probability": 0.1469 }, { "start": 3758.06, "end": 3758.34, "probability": 0.0773 }, { "start": 3758.4, "end": 3758.5, "probability": 0.0114 }, { "start": 3786.46, "end": 3787.38, "probability": 0.31 }, { "start": 3804.12, "end": 3807.42, "probability": 0.8809 }, { "start": 3808.8, "end": 3810.18, "probability": 0.9881 }, { "start": 3810.74, "end": 3815.26, "probability": 0.9701 }, { "start": 3815.26, "end": 3820.28, "probability": 0.9293 }, { "start": 3821.04, "end": 3823.56, "probability": 0.8898 }, { "start": 3824.1, "end": 3826.12, "probability": 0.9849 }, { "start": 3827.12, "end": 3832.62, "probability": 0.7561 }, { "start": 3833.26, "end": 3837.42, "probability": 0.9754 }, { "start": 3837.82, "end": 3841.06, "probability": 0.9939 }, { "start": 3841.06, "end": 3845.3, "probability": 0.9966 }, { "start": 3845.86, "end": 3847.66, "probability": 0.6631 }, { "start": 3848.68, "end": 3851.62, "probability": 0.8721 }, { "start": 3851.62, "end": 3855.02, "probability": 0.9908 }, { "start": 3856.24, "end": 3858.16, "probability": 0.8741 }, { "start": 3858.84, "end": 3864.44, "probability": 0.9409 }, { "start": 3864.84, "end": 3866.42, "probability": 0.7117 }, { "start": 3866.8, "end": 3870.24, "probability": 0.6543 }, { "start": 3871.0, "end": 3877.2, "probability": 0.9797 }, { "start": 3877.3, "end": 3880.32, "probability": 0.9925 }, { "start": 3880.32, "end": 3884.4, "probability": 0.9984 }, { "start": 3885.12, "end": 3888.14, "probability": 0.9758 }, { "start": 3888.14, "end": 3891.04, "probability": 0.9641 }, { "start": 3891.5, "end": 3895.3, "probability": 0.9648 }, { "start": 3895.72, "end": 3901.06, "probability": 0.9931 }, { "start": 3901.96, "end": 3902.0, "probability": 0.0267 }, { "start": 3902.0, "end": 3905.62, "probability": 0.6972 }, { "start": 3905.62, "end": 3909.98, "probability": 0.9918 }, { "start": 3910.7, "end": 3912.74, "probability": 0.4748 }, { "start": 3912.74, "end": 3915.52, "probability": 0.8805 }, { "start": 3915.94, "end": 3917.97, "probability": 0.9429 }, { "start": 3918.84, "end": 3920.46, "probability": 0.7733 }, { "start": 3920.7, "end": 3922.18, "probability": 0.8669 }, { "start": 3922.48, "end": 3923.74, "probability": 0.8611 }, { "start": 3924.16, "end": 3929.96, "probability": 0.9648 }, { "start": 3931.14, "end": 3933.96, "probability": 0.9895 }, { "start": 3933.96, "end": 3937.76, "probability": 0.9839 }, { "start": 3938.89, "end": 3942.78, "probability": 0.9978 }, { "start": 3943.1, "end": 3946.9, "probability": 0.9793 }, { "start": 3947.32, "end": 3949.24, "probability": 0.966 }, { "start": 3949.6, "end": 3951.42, "probability": 0.9609 }, { "start": 3951.8, "end": 3953.79, "probability": 0.5566 }, { "start": 3954.68, "end": 3959.6, "probability": 0.9666 }, { "start": 3959.9, "end": 3962.02, "probability": 0.9736 }, { "start": 3962.42, "end": 3963.74, "probability": 0.8369 }, { "start": 3964.06, "end": 3966.0, "probability": 0.9579 }, { "start": 3966.4, "end": 3968.86, "probability": 0.9006 }, { "start": 3969.2, "end": 3969.52, "probability": 0.0104 }, { "start": 3969.52, "end": 3969.52, "probability": 0.231 }, { "start": 3969.52, "end": 3972.14, "probability": 0.3163 }, { "start": 3972.26, "end": 3974.06, "probability": 0.2339 }, { "start": 3974.08, "end": 3974.58, "probability": 0.2314 }, { "start": 3975.66, "end": 3975.66, "probability": 0.2336 }, { "start": 3975.72, "end": 3977.46, "probability": 0.5933 }, { "start": 3977.48, "end": 3979.28, "probability": 0.1191 }, { "start": 3979.3, "end": 3980.1, "probability": 0.0679 }, { "start": 3980.1, "end": 3980.1, "probability": 0.6582 }, { "start": 3980.1, "end": 3983.06, "probability": 0.9451 }, { "start": 3983.06, "end": 3989.04, "probability": 0.9859 }, { "start": 3989.08, "end": 3989.56, "probability": 0.731 }, { "start": 3989.72, "end": 3990.02, "probability": 0.3254 }, { "start": 3990.02, "end": 3990.66, "probability": 0.7043 }, { "start": 3991.28, "end": 3992.42, "probability": 0.9609 }, { "start": 3993.56, "end": 3994.42, "probability": 0.5455 }, { "start": 3995.22, "end": 3996.8, "probability": 0.1114 }, { "start": 3997.5, "end": 3997.72, "probability": 0.1238 }, { "start": 3998.0, "end": 3999.48, "probability": 0.7884 }, { "start": 4000.44, "end": 4001.64, "probability": 0.7102 }, { "start": 4006.06, "end": 4008.84, "probability": 0.6208 }, { "start": 4009.62, "end": 4014.22, "probability": 0.9895 }, { "start": 4014.64, "end": 4017.54, "probability": 0.9819 }, { "start": 4017.64, "end": 4021.56, "probability": 0.9917 }, { "start": 4051.5, "end": 4051.64, "probability": 0.2917 }, { "start": 4051.64, "end": 4051.7, "probability": 0.0365 }, { "start": 4051.7, "end": 4054.44, "probability": 0.5274 }, { "start": 4055.74, "end": 4062.28, "probability": 0.9214 }, { "start": 4062.88, "end": 4063.44, "probability": 0.9716 }, { "start": 4064.64, "end": 4072.24, "probability": 0.9473 }, { "start": 4072.24, "end": 4078.14, "probability": 0.998 }, { "start": 4078.74, "end": 4081.3, "probability": 0.9974 }, { "start": 4082.78, "end": 4088.12, "probability": 0.803 }, { "start": 4093.32, "end": 4096.44, "probability": 0.972 }, { "start": 4097.84, "end": 4101.46, "probability": 0.9978 }, { "start": 4102.04, "end": 4103.02, "probability": 0.9634 }, { "start": 4103.58, "end": 4106.04, "probability": 0.782 }, { "start": 4106.92, "end": 4107.84, "probability": 0.8218 }, { "start": 4108.36, "end": 4111.02, "probability": 0.9431 }, { "start": 4111.5, "end": 4114.04, "probability": 0.9935 }, { "start": 4114.4, "end": 4118.64, "probability": 0.9928 }, { "start": 4118.64, "end": 4121.5, "probability": 0.9831 }, { "start": 4122.54, "end": 4125.98, "probability": 0.9695 }, { "start": 4126.52, "end": 4132.92, "probability": 0.9935 }, { "start": 4134.38, "end": 4140.96, "probability": 0.9896 }, { "start": 4144.94, "end": 4148.04, "probability": 0.9967 }, { "start": 4148.06, "end": 4148.84, "probability": 0.5419 }, { "start": 4149.54, "end": 4151.16, "probability": 0.9642 }, { "start": 4188.82, "end": 4188.92, "probability": 0.7351 }, { "start": 4190.7, "end": 4193.08, "probability": 0.8306 }, { "start": 4194.44, "end": 4195.28, "probability": 0.831 }, { "start": 4196.34, "end": 4200.68, "probability": 0.9302 }, { "start": 4202.54, "end": 4207.4, "probability": 0.9618 }, { "start": 4208.08, "end": 4210.82, "probability": 0.9543 }, { "start": 4211.68, "end": 4215.24, "probability": 0.7691 }, { "start": 4215.76, "end": 4218.1, "probability": 0.8956 }, { "start": 4219.02, "end": 4221.46, "probability": 0.9049 }, { "start": 4221.46, "end": 4224.0, "probability": 0.9965 }, { "start": 4224.68, "end": 4226.78, "probability": 0.9895 }, { "start": 4227.64, "end": 4231.58, "probability": 0.9946 }, { "start": 4232.04, "end": 4235.2, "probability": 0.9909 }, { "start": 4236.16, "end": 4238.7, "probability": 0.9751 }, { "start": 4239.34, "end": 4240.8, "probability": 0.9848 }, { "start": 4241.34, "end": 4245.4, "probability": 0.9883 }, { "start": 4246.2, "end": 4247.22, "probability": 0.7918 }, { "start": 4247.58, "end": 4249.02, "probability": 0.995 }, { "start": 4249.38, "end": 4251.7, "probability": 0.9937 }, { "start": 4252.04, "end": 4253.66, "probability": 0.8924 }, { "start": 4253.96, "end": 4255.96, "probability": 0.9902 }, { "start": 4257.22, "end": 4260.5, "probability": 0.9454 }, { "start": 4260.56, "end": 4263.6, "probability": 0.7945 }, { "start": 4264.28, "end": 4270.42, "probability": 0.9785 }, { "start": 4271.92, "end": 4278.16, "probability": 0.9803 }, { "start": 4278.64, "end": 4279.58, "probability": 0.815 }, { "start": 4279.72, "end": 4285.1, "probability": 0.9457 }, { "start": 4285.64, "end": 4291.6, "probability": 0.7088 }, { "start": 4294.36, "end": 4297.96, "probability": 0.9827 }, { "start": 4297.96, "end": 4301.8, "probability": 0.9982 }, { "start": 4301.94, "end": 4303.14, "probability": 0.6874 }, { "start": 4303.14, "end": 4307.64, "probability": 0.9352 }, { "start": 4307.7, "end": 4311.24, "probability": 0.9883 }, { "start": 4311.74, "end": 4316.2, "probability": 0.9951 }, { "start": 4316.66, "end": 4319.85, "probability": 0.9907 }, { "start": 4320.16, "end": 4325.32, "probability": 0.9901 }, { "start": 4325.76, "end": 4330.42, "probability": 0.9922 }, { "start": 4330.8, "end": 4336.92, "probability": 0.9973 }, { "start": 4338.2, "end": 4342.06, "probability": 0.857 }, { "start": 4342.06, "end": 4345.68, "probability": 0.9887 }, { "start": 4346.5, "end": 4349.62, "probability": 0.942 }, { "start": 4350.16, "end": 4351.62, "probability": 0.9732 }, { "start": 4352.32, "end": 4353.02, "probability": 0.967 }, { "start": 4353.22, "end": 4358.76, "probability": 0.9966 }, { "start": 4359.2, "end": 4362.22, "probability": 0.9922 }, { "start": 4362.92, "end": 4367.02, "probability": 0.9983 }, { "start": 4367.34, "end": 4369.22, "probability": 0.7483 }, { "start": 4369.52, "end": 4372.54, "probability": 0.899 }, { "start": 4373.1, "end": 4376.62, "probability": 0.9984 }, { "start": 4376.9, "end": 4380.06, "probability": 0.9537 }, { "start": 4381.06, "end": 4384.88, "probability": 0.9937 }, { "start": 4384.88, "end": 4390.42, "probability": 0.9976 }, { "start": 4390.92, "end": 4393.02, "probability": 0.9761 }, { "start": 4394.0, "end": 4399.36, "probability": 0.6612 }, { "start": 4399.68, "end": 4404.92, "probability": 0.9966 }, { "start": 4405.88, "end": 4406.58, "probability": 0.9388 }, { "start": 4407.14, "end": 4409.4, "probability": 0.9946 }, { "start": 4409.4, "end": 4412.66, "probability": 0.9958 }, { "start": 4412.84, "end": 4414.34, "probability": 0.7671 }, { "start": 4414.46, "end": 4418.14, "probability": 0.9839 }, { "start": 4418.96, "end": 4421.32, "probability": 0.9766 }, { "start": 4423.0, "end": 4423.34, "probability": 0.8673 }, { "start": 4425.24, "end": 4429.58, "probability": 0.9973 }, { "start": 4430.12, "end": 4432.04, "probability": 0.9909 }, { "start": 4432.56, "end": 4436.44, "probability": 0.9468 }, { "start": 4437.86, "end": 4438.76, "probability": 0.9959 }, { "start": 4439.4, "end": 4443.58, "probability": 0.8934 }, { "start": 4444.36, "end": 4445.48, "probability": 0.9479 }, { "start": 4446.24, "end": 4450.7, "probability": 0.9551 }, { "start": 4451.46, "end": 4452.1, "probability": 0.7757 }, { "start": 4452.16, "end": 4453.1, "probability": 0.9238 }, { "start": 4453.66, "end": 4455.62, "probability": 0.8778 }, { "start": 4456.08, "end": 4458.02, "probability": 0.98 }, { "start": 4458.64, "end": 4462.2, "probability": 0.9911 }, { "start": 4462.68, "end": 4463.2, "probability": 0.8065 }, { "start": 4463.5, "end": 4464.6, "probability": 0.9896 }, { "start": 4464.76, "end": 4465.6, "probability": 0.9451 }, { "start": 4465.78, "end": 4466.86, "probability": 0.9098 }, { "start": 4467.26, "end": 4467.9, "probability": 0.8242 }, { "start": 4468.04, "end": 4471.38, "probability": 0.9938 }, { "start": 4472.16, "end": 4476.28, "probability": 0.9902 }, { "start": 4476.7, "end": 4480.42, "probability": 0.9386 }, { "start": 4481.56, "end": 4482.48, "probability": 0.9604 }, { "start": 4483.22, "end": 4484.04, "probability": 0.9706 }, { "start": 4484.78, "end": 4486.0, "probability": 0.5556 }, { "start": 4486.66, "end": 4489.78, "probability": 0.9853 }, { "start": 4490.44, "end": 4493.9, "probability": 0.9711 }, { "start": 4494.82, "end": 4499.12, "probability": 0.9981 }, { "start": 4500.52, "end": 4506.0, "probability": 0.9925 }, { "start": 4506.56, "end": 4509.76, "probability": 0.9937 }, { "start": 4510.1, "end": 4511.78, "probability": 0.9651 }, { "start": 4512.24, "end": 4514.76, "probability": 0.9801 }, { "start": 4515.18, "end": 4516.02, "probability": 0.9698 }, { "start": 4516.76, "end": 4517.66, "probability": 0.7179 }, { "start": 4518.0, "end": 4519.62, "probability": 0.6942 }, { "start": 4523.18, "end": 4523.3, "probability": 0.2591 }, { "start": 4548.26, "end": 4553.06, "probability": 0.5715 }, { "start": 4553.3, "end": 4553.74, "probability": 0.6199 }, { "start": 4558.26, "end": 4559.92, "probability": 0.8604 }, { "start": 4560.04, "end": 4565.3, "probability": 0.9634 }, { "start": 4565.3, "end": 4568.62, "probability": 0.9978 }, { "start": 4571.44, "end": 4575.66, "probability": 0.9875 }, { "start": 4575.66, "end": 4580.62, "probability": 0.9674 }, { "start": 4583.94, "end": 4584.44, "probability": 0.7758 }, { "start": 4584.58, "end": 4586.04, "probability": 0.856 }, { "start": 4586.2, "end": 4587.82, "probability": 0.989 }, { "start": 4587.9, "end": 4589.54, "probability": 0.9541 }, { "start": 4591.44, "end": 4593.22, "probability": 0.9608 }, { "start": 4610.42, "end": 4614.16, "probability": 0.9512 }, { "start": 4614.16, "end": 4615.4, "probability": 0.9506 }, { "start": 4615.52, "end": 4616.33, "probability": 0.9661 }, { "start": 4617.98, "end": 4618.98, "probability": 0.7632 }, { "start": 4622.0, "end": 4623.86, "probability": 0.6328 }, { "start": 4626.41, "end": 4629.76, "probability": 0.4994 }, { "start": 4630.0, "end": 4630.36, "probability": 0.7326 }, { "start": 4641.18, "end": 4644.18, "probability": 0.9708 }, { "start": 4644.36, "end": 4645.34, "probability": 0.9069 }, { "start": 4645.58, "end": 4646.74, "probability": 0.9554 }, { "start": 4647.94, "end": 4648.94, "probability": 0.5312 }, { "start": 4650.26, "end": 4655.58, "probability": 0.9706 }, { "start": 4658.02, "end": 4661.38, "probability": 0.77 }, { "start": 4662.4, "end": 4665.24, "probability": 0.9875 }, { "start": 4666.74, "end": 4668.35, "probability": 0.9966 }, { "start": 4669.74, "end": 4671.04, "probability": 0.9995 }, { "start": 4671.76, "end": 4675.46, "probability": 0.9973 }, { "start": 4677.0, "end": 4680.35, "probability": 0.7783 }, { "start": 4681.54, "end": 4682.62, "probability": 0.8438 }, { "start": 4684.52, "end": 4687.79, "probability": 0.9943 }, { "start": 4688.22, "end": 4691.36, "probability": 0.9474 }, { "start": 4692.78, "end": 4693.98, "probability": 0.9326 }, { "start": 4694.86, "end": 4701.38, "probability": 0.9949 }, { "start": 4702.04, "end": 4704.52, "probability": 0.5548 }, { "start": 4705.04, "end": 4705.32, "probability": 0.5638 }, { "start": 4705.32, "end": 4708.18, "probability": 0.9758 }, { "start": 4708.54, "end": 4711.98, "probability": 0.9904 }, { "start": 4713.6, "end": 4715.52, "probability": 0.9822 }, { "start": 4716.62, "end": 4719.24, "probability": 0.9914 }, { "start": 4719.82, "end": 4725.68, "probability": 0.9761 }, { "start": 4726.4, "end": 4730.24, "probability": 0.9412 }, { "start": 4731.7, "end": 4732.94, "probability": 0.961 }, { "start": 4735.02, "end": 4735.98, "probability": 0.7411 }, { "start": 4736.1, "end": 4737.28, "probability": 0.9763 }, { "start": 4737.42, "end": 4739.92, "probability": 0.9659 }, { "start": 4740.0, "end": 4742.24, "probability": 0.9671 }, { "start": 4742.96, "end": 4745.36, "probability": 0.9783 }, { "start": 4746.42, "end": 4747.64, "probability": 0.8163 }, { "start": 4748.3, "end": 4749.42, "probability": 0.9048 }, { "start": 4750.8, "end": 4754.84, "probability": 0.9858 }, { "start": 4755.6, "end": 4757.32, "probability": 0.9935 }, { "start": 4757.9, "end": 4759.24, "probability": 0.9883 }, { "start": 4759.84, "end": 4763.52, "probability": 0.9858 }, { "start": 4764.78, "end": 4766.92, "probability": 0.8354 }, { "start": 4768.22, "end": 4769.44, "probability": 0.8935 }, { "start": 4770.1, "end": 4770.9, "probability": 0.9454 }, { "start": 4771.52, "end": 4772.42, "probability": 0.9125 }, { "start": 4773.0, "end": 4777.12, "probability": 0.8656 }, { "start": 4777.68, "end": 4780.0, "probability": 0.9681 }, { "start": 4780.4, "end": 4783.6, "probability": 0.9882 }, { "start": 4785.48, "end": 4790.74, "probability": 0.9823 }, { "start": 4791.26, "end": 4792.74, "probability": 0.9955 }, { "start": 4794.02, "end": 4795.24, "probability": 0.8752 }, { "start": 4796.56, "end": 4799.96, "probability": 0.9965 }, { "start": 4800.56, "end": 4803.92, "probability": 0.9965 }, { "start": 4804.52, "end": 4805.54, "probability": 0.9349 }, { "start": 4806.14, "end": 4809.08, "probability": 0.9653 }, { "start": 4809.16, "end": 4810.28, "probability": 0.965 }, { "start": 4810.6, "end": 4812.38, "probability": 0.979 }, { "start": 4813.34, "end": 4815.56, "probability": 0.998 }, { "start": 4816.68, "end": 4820.96, "probability": 0.9208 }, { "start": 4821.78, "end": 4823.86, "probability": 0.8407 }, { "start": 4824.68, "end": 4828.52, "probability": 0.9952 }, { "start": 4829.24, "end": 4832.1, "probability": 0.9966 }, { "start": 4835.04, "end": 4838.88, "probability": 0.978 }, { "start": 4839.78, "end": 4844.8, "probability": 0.9857 }, { "start": 4845.26, "end": 4852.6, "probability": 0.9974 }, { "start": 4853.56, "end": 4854.84, "probability": 0.9984 }, { "start": 4855.96, "end": 4857.34, "probability": 0.999 }, { "start": 4858.66, "end": 4862.08, "probability": 0.9907 }, { "start": 4862.26, "end": 4862.36, "probability": 0.111 }, { "start": 4863.76, "end": 4864.46, "probability": 0.8153 }, { "start": 4865.18, "end": 4867.12, "probability": 0.9909 }, { "start": 4867.38, "end": 4875.08, "probability": 0.9707 }, { "start": 4875.64, "end": 4878.02, "probability": 0.9543 }, { "start": 4881.02, "end": 4885.56, "probability": 0.9393 }, { "start": 4886.42, "end": 4887.98, "probability": 0.8743 }, { "start": 4889.8, "end": 4891.54, "probability": 0.9879 }, { "start": 4892.48, "end": 4893.06, "probability": 0.8381 }, { "start": 4893.68, "end": 4896.06, "probability": 0.9933 }, { "start": 4897.0, "end": 4897.96, "probability": 0.9179 }, { "start": 4898.54, "end": 4901.22, "probability": 0.9827 }, { "start": 4902.04, "end": 4902.24, "probability": 0.7046 }, { "start": 4902.28, "end": 4903.18, "probability": 0.9564 }, { "start": 4903.4, "end": 4907.68, "probability": 0.9957 }, { "start": 4908.22, "end": 4913.86, "probability": 0.999 }, { "start": 4914.52, "end": 4915.12, "probability": 0.8175 }, { "start": 4915.72, "end": 4917.94, "probability": 0.9948 }, { "start": 4919.14, "end": 4922.38, "probability": 0.9864 }, { "start": 4923.18, "end": 4925.94, "probability": 0.9988 }, { "start": 4926.54, "end": 4930.1, "probability": 0.9985 }, { "start": 4930.28, "end": 4931.58, "probability": 0.9642 }, { "start": 4932.1, "end": 4933.96, "probability": 0.985 }, { "start": 4934.28, "end": 4937.2, "probability": 0.9675 }, { "start": 4937.64, "end": 4941.08, "probability": 0.8695 }, { "start": 4941.6, "end": 4942.48, "probability": 0.9352 }, { "start": 4942.88, "end": 4947.06, "probability": 0.9797 }, { "start": 4948.14, "end": 4948.96, "probability": 0.9734 }, { "start": 4951.86, "end": 4952.8, "probability": 0.739 }, { "start": 4953.52, "end": 4955.62, "probability": 0.7236 }, { "start": 4956.76, "end": 4962.52, "probability": 0.8692 }, { "start": 4963.08, "end": 4964.74, "probability": 0.7917 }, { "start": 4965.68, "end": 4967.02, "probability": 0.9399 }, { "start": 4967.06, "end": 4970.22, "probability": 0.7796 }, { "start": 4973.98, "end": 4977.26, "probability": 0.4592 }, { "start": 4978.5, "end": 4981.42, "probability": 0.0199 }, { "start": 4981.42, "end": 4982.24, "probability": 0.0468 }, { "start": 4995.68, "end": 4998.56, "probability": 0.4387 }, { "start": 4999.32, "end": 5001.64, "probability": 0.9336 }, { "start": 5002.54, "end": 5006.24, "probability": 0.7556 }, { "start": 5006.72, "end": 5008.92, "probability": 0.8335 }, { "start": 5010.28, "end": 5012.44, "probability": 0.7015 }, { "start": 5012.52, "end": 5014.74, "probability": 0.0146 }, { "start": 5015.88, "end": 5017.3, "probability": 0.0091 }, { "start": 5030.38, "end": 5030.6, "probability": 0.029 }, { "start": 5030.6, "end": 5031.12, "probability": 0.244 }, { "start": 5031.12, "end": 5031.7, "probability": 0.324 }, { "start": 5031.9, "end": 5032.22, "probability": 0.6567 }, { "start": 5032.22, "end": 5033.6, "probability": 0.4996 }, { "start": 5033.82, "end": 5036.26, "probability": 0.6998 }, { "start": 5037.98, "end": 5039.58, "probability": 0.9936 }, { "start": 5042.92, "end": 5045.68, "probability": 0.553 }, { "start": 5046.24, "end": 5051.24, "probability": 0.9631 }, { "start": 5051.82, "end": 5053.94, "probability": 0.9397 }, { "start": 5054.48, "end": 5055.46, "probability": 0.6918 }, { "start": 5056.18, "end": 5056.96, "probability": 0.4955 }, { "start": 5060.22, "end": 5060.32, "probability": 0.2234 }, { "start": 5061.22, "end": 5061.86, "probability": 0.5223 }, { "start": 5064.17, "end": 5069.06, "probability": 0.0152 }, { "start": 5069.44, "end": 5074.04, "probability": 0.0189 }, { "start": 5074.88, "end": 5075.68, "probability": 0.3477 }, { "start": 5082.24, "end": 5086.12, "probability": 0.4139 }, { "start": 5086.82, "end": 5088.56, "probability": 0.6635 }, { "start": 5088.8, "end": 5091.02, "probability": 0.9651 }, { "start": 5091.8, "end": 5092.68, "probability": 0.8432 }, { "start": 5093.68, "end": 5093.68, "probability": 0.2793 }, { "start": 5093.68, "end": 5095.54, "probability": 0.76 }, { "start": 5097.22, "end": 5099.12, "probability": 0.9654 }, { "start": 5101.22, "end": 5103.65, "probability": 0.9395 }, { "start": 5104.44, "end": 5111.04, "probability": 0.9856 }, { "start": 5111.58, "end": 5112.4, "probability": 0.1767 }, { "start": 5113.0, "end": 5115.3, "probability": 0.8032 }, { "start": 5116.08, "end": 5116.9, "probability": 0.1166 }, { "start": 5117.62, "end": 5120.82, "probability": 0.4949 }, { "start": 5121.24, "end": 5124.8, "probability": 0.8424 }, { "start": 5124.86, "end": 5125.42, "probability": 0.9146 }, { "start": 5127.38, "end": 5130.93, "probability": 0.3026 }, { "start": 5134.76, "end": 5136.7, "probability": 0.0538 }, { "start": 5136.7, "end": 5138.56, "probability": 0.1157 }, { "start": 5139.94, "end": 5142.14, "probability": 0.8073 }, { "start": 5145.68, "end": 5149.12, "probability": 0.9964 }, { "start": 5151.8, "end": 5155.68, "probability": 0.9911 }, { "start": 5155.76, "end": 5157.68, "probability": 0.9983 }, { "start": 5158.34, "end": 5159.38, "probability": 0.9283 }, { "start": 5160.06, "end": 5161.61, "probability": 0.9971 }, { "start": 5163.36, "end": 5166.8, "probability": 0.9763 }, { "start": 5168.44, "end": 5170.22, "probability": 0.963 }, { "start": 5171.98, "end": 5173.42, "probability": 0.9722 }, { "start": 5174.38, "end": 5182.36, "probability": 0.9912 }, { "start": 5184.5, "end": 5189.36, "probability": 0.9871 }, { "start": 5190.86, "end": 5193.9, "probability": 0.9995 }, { "start": 5195.5, "end": 5196.68, "probability": 0.7836 }, { "start": 5198.68, "end": 5202.44, "probability": 0.9996 }, { "start": 5204.1, "end": 5208.98, "probability": 0.9964 }, { "start": 5210.84, "end": 5215.4, "probability": 0.9977 }, { "start": 5216.34, "end": 5224.26, "probability": 0.9938 }, { "start": 5224.72, "end": 5226.58, "probability": 0.9803 }, { "start": 5227.28, "end": 5228.18, "probability": 0.8509 }, { "start": 5229.4, "end": 5230.18, "probability": 0.8512 }, { "start": 5231.26, "end": 5233.5, "probability": 0.3652 }, { "start": 5234.46, "end": 5235.72, "probability": 0.9893 }, { "start": 5238.44, "end": 5240.64, "probability": 0.9996 }, { "start": 5241.56, "end": 5245.48, "probability": 0.9934 }, { "start": 5246.62, "end": 5256.6, "probability": 0.9993 }, { "start": 5257.38, "end": 5259.72, "probability": 0.9993 }, { "start": 5260.62, "end": 5264.72, "probability": 0.9902 }, { "start": 5266.14, "end": 5267.22, "probability": 0.5012 }, { "start": 5268.12, "end": 5271.34, "probability": 0.9619 }, { "start": 5273.48, "end": 5281.04, "probability": 0.9966 }, { "start": 5282.68, "end": 5287.02, "probability": 0.9967 }, { "start": 5288.12, "end": 5288.46, "probability": 0.2405 }, { "start": 5288.66, "end": 5295.64, "probability": 0.9946 }, { "start": 5298.34, "end": 5300.44, "probability": 0.9775 }, { "start": 5300.6, "end": 5301.32, "probability": 0.9086 }, { "start": 5301.78, "end": 5306.56, "probability": 0.9727 }, { "start": 5308.4, "end": 5309.7, "probability": 0.9829 }, { "start": 5310.9, "end": 5313.08, "probability": 0.9839 }, { "start": 5314.08, "end": 5317.02, "probability": 0.8993 }, { "start": 5318.74, "end": 5318.78, "probability": 0.086 }, { "start": 5318.78, "end": 5318.78, "probability": 0.2157 }, { "start": 5318.78, "end": 5322.44, "probability": 0.7956 }, { "start": 5322.8, "end": 5323.96, "probability": 0.9296 }, { "start": 5324.38, "end": 5325.86, "probability": 0.9551 }, { "start": 5325.94, "end": 5327.56, "probability": 0.9243 }, { "start": 5328.66, "end": 5330.36, "probability": 0.9466 }, { "start": 5332.16, "end": 5333.06, "probability": 0.0312 }, { "start": 5334.14, "end": 5342.58, "probability": 0.9896 }, { "start": 5343.8, "end": 5346.06, "probability": 0.7884 }, { "start": 5346.66, "end": 5346.88, "probability": 0.3436 }, { "start": 5346.88, "end": 5348.88, "probability": 0.7479 }, { "start": 5349.16, "end": 5353.18, "probability": 0.9859 }, { "start": 5354.84, "end": 5360.24, "probability": 0.9679 }, { "start": 5361.24, "end": 5367.86, "probability": 0.9561 }, { "start": 5369.62, "end": 5371.92, "probability": 0.9717 }, { "start": 5374.04, "end": 5374.86, "probability": 0.562 }, { "start": 5375.6, "end": 5380.6, "probability": 0.9955 }, { "start": 5381.9, "end": 5385.86, "probability": 0.9958 }, { "start": 5387.02, "end": 5392.06, "probability": 0.9985 }, { "start": 5392.54, "end": 5395.1, "probability": 0.9507 }, { "start": 5396.78, "end": 5401.06, "probability": 0.9921 }, { "start": 5402.42, "end": 5406.16, "probability": 0.9957 }, { "start": 5407.98, "end": 5409.5, "probability": 0.9975 }, { "start": 5410.32, "end": 5415.42, "probability": 0.9938 }, { "start": 5416.48, "end": 5420.72, "probability": 0.98 }, { "start": 5422.0, "end": 5423.02, "probability": 0.8971 }, { "start": 5423.68, "end": 5425.04, "probability": 0.8945 }, { "start": 5425.72, "end": 5428.18, "probability": 0.9631 }, { "start": 5429.34, "end": 5431.28, "probability": 0.9724 }, { "start": 5432.02, "end": 5438.6, "probability": 0.9932 }, { "start": 5439.88, "end": 5443.6, "probability": 0.9905 }, { "start": 5444.12, "end": 5446.14, "probability": 0.99 }, { "start": 5447.52, "end": 5449.26, "probability": 0.9958 }, { "start": 5450.42, "end": 5455.78, "probability": 0.999 }, { "start": 5456.42, "end": 5461.56, "probability": 0.9576 }, { "start": 5463.02, "end": 5464.54, "probability": 0.8125 }, { "start": 5465.62, "end": 5469.8, "probability": 0.9719 }, { "start": 5470.46, "end": 5472.38, "probability": 0.973 }, { "start": 5473.62, "end": 5477.36, "probability": 0.9966 }, { "start": 5478.16, "end": 5480.3, "probability": 0.9906 }, { "start": 5480.92, "end": 5483.06, "probability": 0.9342 }, { "start": 5484.06, "end": 5484.82, "probability": 0.8651 }, { "start": 5485.52, "end": 5488.36, "probability": 0.9917 }, { "start": 5489.24, "end": 5493.14, "probability": 0.9884 }, { "start": 5493.96, "end": 5495.5, "probability": 0.9397 }, { "start": 5496.5, "end": 5497.14, "probability": 0.6171 }, { "start": 5498.06, "end": 5499.4, "probability": 0.9781 }, { "start": 5499.88, "end": 5503.44, "probability": 0.9988 }, { "start": 5503.92, "end": 5504.8, "probability": 0.7569 }, { "start": 5505.26, "end": 5506.42, "probability": 0.639 }, { "start": 5507.0, "end": 5508.16, "probability": 0.8553 }, { "start": 5508.7, "end": 5512.48, "probability": 0.9739 }, { "start": 5513.64, "end": 5516.6, "probability": 0.9829 }, { "start": 5518.72, "end": 5519.7, "probability": 0.929 }, { "start": 5520.38, "end": 5522.42, "probability": 0.9805 }, { "start": 5523.06, "end": 5524.56, "probability": 0.9194 }, { "start": 5525.34, "end": 5527.56, "probability": 0.9441 }, { "start": 5528.2, "end": 5534.92, "probability": 0.9969 }, { "start": 5536.74, "end": 5540.81, "probability": 0.999 }, { "start": 5541.18, "end": 5544.66, "probability": 0.999 }, { "start": 5545.66, "end": 5547.34, "probability": 0.9679 }, { "start": 5547.96, "end": 5550.36, "probability": 0.9886 }, { "start": 5551.02, "end": 5555.48, "probability": 0.9984 }, { "start": 5556.7, "end": 5560.1, "probability": 0.9912 }, { "start": 5560.1, "end": 5564.0, "probability": 0.9984 }, { "start": 5564.12, "end": 5565.6, "probability": 0.9956 }, { "start": 5566.72, "end": 5568.04, "probability": 0.9852 }, { "start": 5568.56, "end": 5572.36, "probability": 0.998 }, { "start": 5573.16, "end": 5576.51, "probability": 0.9374 }, { "start": 5577.42, "end": 5580.98, "probability": 0.9942 }, { "start": 5581.76, "end": 5588.96, "probability": 0.8834 }, { "start": 5590.14, "end": 5590.92, "probability": 0.6931 }, { "start": 5592.42, "end": 5594.56, "probability": 0.9813 }, { "start": 5595.16, "end": 5599.66, "probability": 0.9241 }, { "start": 5600.66, "end": 5604.56, "probability": 0.8271 }, { "start": 5605.76, "end": 5607.48, "probability": 0.9951 }, { "start": 5608.48, "end": 5610.2, "probability": 0.9452 }, { "start": 5611.4, "end": 5616.62, "probability": 0.9972 }, { "start": 5616.62, "end": 5621.14, "probability": 0.994 }, { "start": 5621.5, "end": 5625.68, "probability": 0.9981 }, { "start": 5625.98, "end": 5629.16, "probability": 0.9082 }, { "start": 5629.82, "end": 5634.18, "probability": 0.9973 }, { "start": 5636.46, "end": 5638.14, "probability": 0.7444 }, { "start": 5639.06, "end": 5641.62, "probability": 0.9141 }, { "start": 5642.26, "end": 5645.32, "probability": 0.7762 }, { "start": 5646.02, "end": 5647.98, "probability": 0.7843 }, { "start": 5648.22, "end": 5651.18, "probability": 0.987 }, { "start": 5652.0, "end": 5654.88, "probability": 0.996 }, { "start": 5654.88, "end": 5658.86, "probability": 0.9932 }, { "start": 5661.14, "end": 5662.28, "probability": 0.797 }, { "start": 5663.04, "end": 5668.4, "probability": 0.9918 }, { "start": 5669.62, "end": 5673.7, "probability": 0.9602 }, { "start": 5674.44, "end": 5677.94, "probability": 0.9988 }, { "start": 5678.66, "end": 5679.52, "probability": 0.8887 }, { "start": 5679.6, "end": 5682.64, "probability": 0.9702 }, { "start": 5682.72, "end": 5686.78, "probability": 0.9735 }, { "start": 5688.5, "end": 5688.8, "probability": 0.6869 }, { "start": 5690.12, "end": 5692.0, "probability": 0.9467 }, { "start": 5692.84, "end": 5696.44, "probability": 0.7943 }, { "start": 5697.52, "end": 5701.44, "probability": 0.9897 }, { "start": 5701.44, "end": 5705.42, "probability": 0.9797 }, { "start": 5706.28, "end": 5706.92, "probability": 0.7433 }, { "start": 5707.0, "end": 5707.74, "probability": 0.764 }, { "start": 5707.84, "end": 5712.14, "probability": 0.9964 }, { "start": 5713.02, "end": 5715.78, "probability": 0.9517 }, { "start": 5715.78, "end": 5720.3, "probability": 0.9906 }, { "start": 5721.78, "end": 5721.88, "probability": 0.8271 }, { "start": 5722.4, "end": 5722.96, "probability": 0.8821 }, { "start": 5723.2, "end": 5728.86, "probability": 0.9688 }, { "start": 5729.22, "end": 5730.86, "probability": 0.9857 }, { "start": 5731.8, "end": 5734.8, "probability": 0.9976 }, { "start": 5734.8, "end": 5739.22, "probability": 0.9987 }, { "start": 5740.32, "end": 5741.4, "probability": 0.9684 }, { "start": 5742.14, "end": 5745.74, "probability": 0.9962 }, { "start": 5745.74, "end": 5749.14, "probability": 0.9995 }, { "start": 5749.72, "end": 5751.8, "probability": 0.9976 }, { "start": 5752.46, "end": 5756.84, "probability": 0.9977 }, { "start": 5756.84, "end": 5760.26, "probability": 0.9984 }, { "start": 5760.7, "end": 5764.74, "probability": 0.992 }, { "start": 5765.56, "end": 5771.28, "probability": 0.9929 }, { "start": 5772.36, "end": 5773.26, "probability": 0.9441 }, { "start": 5773.97, "end": 5775.48, "probability": 0.9007 }, { "start": 5776.48, "end": 5781.08, "probability": 0.994 }, { "start": 5781.7, "end": 5786.66, "probability": 0.998 }, { "start": 5787.16, "end": 5790.04, "probability": 0.9612 }, { "start": 5790.1, "end": 5795.04, "probability": 0.549 }, { "start": 5795.06, "end": 5797.3, "probability": 0.0427 }, { "start": 5797.36, "end": 5797.36, "probability": 0.0875 }, { "start": 5797.36, "end": 5797.36, "probability": 0.1302 }, { "start": 5797.36, "end": 5802.6, "probability": 0.741 }, { "start": 5802.6, "end": 5802.74, "probability": 0.0672 }, { "start": 5804.06, "end": 5805.47, "probability": 0.133 }, { "start": 5805.66, "end": 5806.36, "probability": 0.3602 }, { "start": 5806.68, "end": 5807.64, "probability": 0.3625 }, { "start": 5807.64, "end": 5807.72, "probability": 0.4388 }, { "start": 5807.72, "end": 5807.9, "probability": 0.3902 }, { "start": 5807.9, "end": 5808.72, "probability": 0.2277 }, { "start": 5808.84, "end": 5809.46, "probability": 0.6132 }, { "start": 5810.0, "end": 5812.2, "probability": 0.9785 }, { "start": 5813.02, "end": 5813.66, "probability": 0.4428 }, { "start": 5814.9, "end": 5816.96, "probability": 0.4428 }, { "start": 5817.8, "end": 5817.8, "probability": 0.0089 }, { "start": 5820.02, "end": 5820.52, "probability": 0.1958 }, { "start": 5821.02, "end": 5823.02, "probability": 0.0322 }, { "start": 5823.06, "end": 5824.1, "probability": 0.4923 }, { "start": 5824.1, "end": 5824.1, "probability": 0.6298 }, { "start": 5824.16, "end": 5825.02, "probability": 0.6767 }, { "start": 5825.5, "end": 5826.0, "probability": 0.9281 }, { "start": 5826.48, "end": 5826.74, "probability": 0.4555 }, { "start": 5826.74, "end": 5828.84, "probability": 0.5314 }, { "start": 5829.14, "end": 5831.9, "probability": 0.034 }, { "start": 5832.98, "end": 5833.52, "probability": 0.6003 }, { "start": 5834.23, "end": 5838.68, "probability": 0.9814 }, { "start": 5839.56, "end": 5843.6, "probability": 0.9971 }, { "start": 5844.89, "end": 5849.74, "probability": 0.9972 }, { "start": 5850.34, "end": 5856.3, "probability": 0.9973 }, { "start": 5856.42, "end": 5857.42, "probability": 0.6785 }, { "start": 5858.02, "end": 5862.12, "probability": 0.8959 }, { "start": 5862.28, "end": 5862.76, "probability": 0.7645 }, { "start": 5862.94, "end": 5863.94, "probability": 0.7028 }, { "start": 5864.76, "end": 5868.26, "probability": 0.9964 }, { "start": 5868.82, "end": 5872.38, "probability": 0.8286 }, { "start": 5872.8, "end": 5874.28, "probability": 0.946 }, { "start": 5874.88, "end": 5877.8, "probability": 0.978 }, { "start": 5878.4, "end": 5880.78, "probability": 0.9994 }, { "start": 5883.92, "end": 5889.76, "probability": 0.9987 }, { "start": 5890.34, "end": 5892.76, "probability": 0.9531 }, { "start": 5893.26, "end": 5897.08, "probability": 0.9992 }, { "start": 5897.64, "end": 5899.5, "probability": 0.6103 }, { "start": 5900.38, "end": 5903.58, "probability": 0.7734 }, { "start": 5904.38, "end": 5905.48, "probability": 0.8168 }, { "start": 5907.84, "end": 5908.88, "probability": 0.8847 }, { "start": 5909.26, "end": 5910.44, "probability": 0.9902 }, { "start": 5910.56, "end": 5913.66, "probability": 0.9916 }, { "start": 5915.16, "end": 5919.06, "probability": 0.9877 }, { "start": 5919.06, "end": 5921.08, "probability": 0.9808 }, { "start": 5921.68, "end": 5925.0, "probability": 0.9971 }, { "start": 5925.62, "end": 5926.22, "probability": 0.7871 }, { "start": 5926.86, "end": 5929.74, "probability": 0.9958 }, { "start": 5930.6, "end": 5931.96, "probability": 0.9172 }, { "start": 5932.58, "end": 5934.52, "probability": 0.9947 }, { "start": 5935.1, "end": 5937.34, "probability": 0.8162 }, { "start": 5940.5, "end": 5946.08, "probability": 0.9229 }, { "start": 5946.7, "end": 5952.82, "probability": 0.9801 }, { "start": 5952.94, "end": 5954.04, "probability": 0.7934 }, { "start": 5956.28, "end": 5960.04, "probability": 0.988 }, { "start": 5961.22, "end": 5967.08, "probability": 0.9694 }, { "start": 5967.08, "end": 5972.58, "probability": 0.9985 }, { "start": 5973.72, "end": 5976.06, "probability": 0.9963 }, { "start": 5976.9, "end": 5981.32, "probability": 0.998 }, { "start": 5981.32, "end": 5985.38, "probability": 0.9965 }, { "start": 5985.74, "end": 5986.9, "probability": 0.6162 }, { "start": 5988.58, "end": 5993.28, "probability": 0.9961 }, { "start": 5993.86, "end": 5995.04, "probability": 0.7939 }, { "start": 5995.1, "end": 6000.94, "probability": 0.979 }, { "start": 6002.1, "end": 6002.94, "probability": 0.6781 }, { "start": 6004.24, "end": 6007.26, "probability": 0.9312 }, { "start": 6008.16, "end": 6009.5, "probability": 0.9989 }, { "start": 6010.24, "end": 6015.58, "probability": 0.9944 }, { "start": 6015.58, "end": 6018.96, "probability": 0.9962 }, { "start": 6020.12, "end": 6023.44, "probability": 0.9929 }, { "start": 6024.54, "end": 6027.86, "probability": 0.9972 }, { "start": 6028.34, "end": 6029.74, "probability": 0.9885 }, { "start": 6030.12, "end": 6034.3, "probability": 0.9831 }, { "start": 6035.64, "end": 6036.42, "probability": 0.739 }, { "start": 6037.5, "end": 6041.66, "probability": 0.9977 }, { "start": 6041.96, "end": 6044.24, "probability": 0.6019 }, { "start": 6044.26, "end": 6045.44, "probability": 0.8171 }, { "start": 6045.56, "end": 6046.2, "probability": 0.5983 }, { "start": 6047.0, "end": 6047.51, "probability": 0.3351 }, { "start": 6049.26, "end": 6052.0, "probability": 0.962 }, { "start": 6053.0, "end": 6055.4, "probability": 0.9757 }, { "start": 6056.34, "end": 6058.7, "probability": 0.7308 }, { "start": 6059.92, "end": 6063.72, "probability": 0.9904 }, { "start": 6064.4, "end": 6065.16, "probability": 0.7963 }, { "start": 6065.88, "end": 6069.14, "probability": 0.9824 }, { "start": 6069.8, "end": 6072.08, "probability": 0.8579 }, { "start": 6072.94, "end": 6074.38, "probability": 0.8278 }, { "start": 6074.46, "end": 6080.62, "probability": 0.9843 }, { "start": 6080.76, "end": 6087.46, "probability": 0.9907 }, { "start": 6088.06, "end": 6088.74, "probability": 0.7978 }, { "start": 6089.28, "end": 6092.7, "probability": 0.9862 }, { "start": 6092.96, "end": 6094.66, "probability": 0.4837 }, { "start": 6094.68, "end": 6094.68, "probability": 0.4407 }, { "start": 6094.68, "end": 6096.18, "probability": 0.8567 }, { "start": 6116.2, "end": 6118.06, "probability": 0.8527 }, { "start": 6119.82, "end": 6121.78, "probability": 0.9341 }, { "start": 6121.9, "end": 6128.46, "probability": 0.9932 }, { "start": 6128.8, "end": 6129.72, "probability": 0.9851 }, { "start": 6130.78, "end": 6132.4, "probability": 0.9232 }, { "start": 6132.64, "end": 6133.32, "probability": 0.6576 }, { "start": 6133.48, "end": 6137.48, "probability": 0.9824 }, { "start": 6138.34, "end": 6139.46, "probability": 0.8166 }, { "start": 6140.08, "end": 6141.5, "probability": 0.9241 }, { "start": 6142.1, "end": 6144.62, "probability": 0.9434 }, { "start": 6144.68, "end": 6148.22, "probability": 0.9579 }, { "start": 6148.94, "end": 6152.18, "probability": 0.9979 }, { "start": 6152.76, "end": 6156.06, "probability": 0.9699 }, { "start": 6157.16, "end": 6158.82, "probability": 0.954 }, { "start": 6158.98, "end": 6161.28, "probability": 0.9622 }, { "start": 6161.84, "end": 6163.09, "probability": 0.9635 }, { "start": 6163.28, "end": 6167.34, "probability": 0.9604 }, { "start": 6167.94, "end": 6169.02, "probability": 0.6292 }, { "start": 6170.9, "end": 6172.58, "probability": 0.9576 }, { "start": 6173.36, "end": 6177.62, "probability": 0.752 }, { "start": 6178.48, "end": 6179.98, "probability": 0.989 }, { "start": 6180.52, "end": 6182.78, "probability": 0.992 }, { "start": 6182.92, "end": 6184.84, "probability": 0.9336 }, { "start": 6186.24, "end": 6188.06, "probability": 0.9911 }, { "start": 6188.68, "end": 6190.7, "probability": 0.9956 }, { "start": 6190.8, "end": 6193.2, "probability": 0.9301 }, { "start": 6194.06, "end": 6196.48, "probability": 0.8978 }, { "start": 6197.42, "end": 6199.68, "probability": 0.9969 }, { "start": 6200.38, "end": 6201.66, "probability": 0.9984 }, { "start": 6202.94, "end": 6203.54, "probability": 0.2366 }, { "start": 6204.12, "end": 6204.9, "probability": 0.5777 }, { "start": 6205.42, "end": 6206.2, "probability": 0.6359 }, { "start": 6206.84, "end": 6207.92, "probability": 0.9913 }, { "start": 6209.0, "end": 6212.06, "probability": 0.9679 }, { "start": 6212.38, "end": 6213.12, "probability": 0.9662 }, { "start": 6214.68, "end": 6218.13, "probability": 0.812 }, { "start": 6219.0, "end": 6222.39, "probability": 0.6885 }, { "start": 6224.7, "end": 6225.63, "probability": 0.9854 }, { "start": 6226.9, "end": 6230.32, "probability": 0.9364 }, { "start": 6231.24, "end": 6232.14, "probability": 0.9878 }, { "start": 6233.34, "end": 6234.3, "probability": 0.7745 }, { "start": 6235.16, "end": 6238.0, "probability": 0.9487 }, { "start": 6238.94, "end": 6242.84, "probability": 0.9495 }, { "start": 6243.84, "end": 6246.32, "probability": 0.9685 }, { "start": 6246.86, "end": 6249.48, "probability": 0.6307 }, { "start": 6251.04, "end": 6251.79, "probability": 0.9313 }, { "start": 6252.02, "end": 6253.16, "probability": 0.7681 }, { "start": 6253.64, "end": 6256.54, "probability": 0.9868 }, { "start": 6257.18, "end": 6261.82, "probability": 0.9861 }, { "start": 6262.7, "end": 6264.54, "probability": 0.9502 }, { "start": 6265.14, "end": 6265.94, "probability": 0.7611 }, { "start": 6266.44, "end": 6269.11, "probability": 0.9647 }, { "start": 6269.8, "end": 6272.76, "probability": 0.8933 }, { "start": 6274.06, "end": 6277.34, "probability": 0.9796 }, { "start": 6278.6, "end": 6278.8, "probability": 0.8407 }, { "start": 6278.92, "end": 6279.48, "probability": 0.8429 }, { "start": 6279.5, "end": 6280.38, "probability": 0.7447 }, { "start": 6280.42, "end": 6281.92, "probability": 0.9734 }, { "start": 6283.5, "end": 6284.28, "probability": 0.2483 }, { "start": 6284.48, "end": 6285.42, "probability": 0.8752 }, { "start": 6287.1, "end": 6291.99, "probability": 0.885 }, { "start": 6292.86, "end": 6294.5, "probability": 0.9934 }, { "start": 6295.82, "end": 6298.86, "probability": 0.9821 }, { "start": 6300.8, "end": 6301.64, "probability": 0.6357 }, { "start": 6302.28, "end": 6302.83, "probability": 0.4205 }, { "start": 6302.86, "end": 6303.48, "probability": 0.8696 }, { "start": 6303.62, "end": 6304.88, "probability": 0.7328 }, { "start": 6305.48, "end": 6306.94, "probability": 0.9951 }, { "start": 6307.74, "end": 6309.2, "probability": 0.9319 }, { "start": 6310.2, "end": 6313.36, "probability": 0.8794 }, { "start": 6313.94, "end": 6317.16, "probability": 0.7704 }, { "start": 6317.58, "end": 6320.58, "probability": 0.945 }, { "start": 6321.82, "end": 6322.56, "probability": 0.5972 }, { "start": 6322.64, "end": 6324.58, "probability": 0.907 }, { "start": 6345.56, "end": 6346.4, "probability": 0.5696 }, { "start": 6346.48, "end": 6347.5, "probability": 0.732 }, { "start": 6347.82, "end": 6349.64, "probability": 0.9949 }, { "start": 6349.64, "end": 6352.7, "probability": 0.998 }, { "start": 6353.2, "end": 6353.83, "probability": 0.8893 }, { "start": 6354.48, "end": 6356.34, "probability": 0.9722 }, { "start": 6357.0, "end": 6358.58, "probability": 0.7728 }, { "start": 6359.6, "end": 6360.44, "probability": 0.7838 }, { "start": 6361.06, "end": 6364.36, "probability": 0.9868 }, { "start": 6364.9, "end": 6366.02, "probability": 0.8401 }, { "start": 6366.56, "end": 6368.92, "probability": 0.9331 }, { "start": 6370.14, "end": 6374.4, "probability": 0.9077 }, { "start": 6375.3, "end": 6378.06, "probability": 0.9873 }, { "start": 6378.86, "end": 6380.3, "probability": 0.8473 }, { "start": 6381.66, "end": 6383.46, "probability": 0.8231 }, { "start": 6383.98, "end": 6387.66, "probability": 0.9606 }, { "start": 6388.58, "end": 6393.12, "probability": 0.9762 }, { "start": 6394.16, "end": 6396.2, "probability": 0.7591 }, { "start": 6396.88, "end": 6399.34, "probability": 0.9329 }, { "start": 6400.64, "end": 6404.6, "probability": 0.954 }, { "start": 6406.6, "end": 6408.78, "probability": 0.9939 }, { "start": 6409.34, "end": 6411.54, "probability": 0.9536 }, { "start": 6412.62, "end": 6415.24, "probability": 0.6301 }, { "start": 6415.98, "end": 6418.58, "probability": 0.7228 }, { "start": 6419.16, "end": 6421.9, "probability": 0.9806 }, { "start": 6421.96, "end": 6422.4, "probability": 0.7966 }, { "start": 6422.76, "end": 6423.46, "probability": 0.8811 }, { "start": 6424.06, "end": 6426.86, "probability": 0.8549 }, { "start": 6427.54, "end": 6428.4, "probability": 0.9578 }, { "start": 6429.56, "end": 6430.7, "probability": 0.9927 }, { "start": 6431.8, "end": 6433.54, "probability": 0.8032 }, { "start": 6434.46, "end": 6436.6, "probability": 0.8411 }, { "start": 6436.64, "end": 6440.49, "probability": 0.9901 }, { "start": 6441.16, "end": 6443.4, "probability": 0.9862 }, { "start": 6443.96, "end": 6445.94, "probability": 0.9953 }, { "start": 6446.64, "end": 6448.13, "probability": 0.9971 }, { "start": 6448.78, "end": 6449.26, "probability": 0.7981 }, { "start": 6449.28, "end": 6450.52, "probability": 0.8881 }, { "start": 6450.58, "end": 6451.92, "probability": 0.9801 }, { "start": 6453.06, "end": 6454.12, "probability": 0.9615 }, { "start": 6455.08, "end": 6456.96, "probability": 0.7705 }, { "start": 6457.82, "end": 6462.6, "probability": 0.9978 }, { "start": 6462.72, "end": 6465.4, "probability": 0.9751 }, { "start": 6465.48, "end": 6466.72, "probability": 0.8268 }, { "start": 6467.86, "end": 6471.34, "probability": 0.9814 }, { "start": 6472.1, "end": 6473.92, "probability": 0.9639 }, { "start": 6474.46, "end": 6476.14, "probability": 0.9366 }, { "start": 6476.74, "end": 6478.22, "probability": 0.9197 }, { "start": 6479.18, "end": 6479.84, "probability": 0.6591 }, { "start": 6480.62, "end": 6481.86, "probability": 0.8448 }, { "start": 6482.04, "end": 6482.88, "probability": 0.4914 }, { "start": 6482.9, "end": 6483.34, "probability": 0.6891 }, { "start": 6483.8, "end": 6484.5, "probability": 0.833 }, { "start": 6485.36, "end": 6487.74, "probability": 0.837 }, { "start": 6488.44, "end": 6490.9, "probability": 0.8837 }, { "start": 6490.96, "end": 6491.88, "probability": 0.7239 }, { "start": 6492.36, "end": 6495.96, "probability": 0.9909 }, { "start": 6496.36, "end": 6498.64, "probability": 0.9797 }, { "start": 6500.04, "end": 6501.64, "probability": 0.8613 }, { "start": 6502.52, "end": 6504.28, "probability": 0.6451 }, { "start": 6504.82, "end": 6509.46, "probability": 0.9635 }, { "start": 6510.72, "end": 6511.46, "probability": 0.541 }, { "start": 6512.18, "end": 6515.4, "probability": 0.9634 }, { "start": 6516.02, "end": 6518.38, "probability": 0.9568 }, { "start": 6521.36, "end": 6522.38, "probability": 0.9202 }, { "start": 6522.42, "end": 6527.89, "probability": 0.4717 }, { "start": 6529.18, "end": 6534.42, "probability": 0.5384 }, { "start": 6534.5, "end": 6537.48, "probability": 0.878 }, { "start": 6538.12, "end": 6539.34, "probability": 0.9844 }, { "start": 6539.62, "end": 6541.44, "probability": 0.493 }, { "start": 6541.52, "end": 6547.48, "probability": 0.6709 }, { "start": 6548.06, "end": 6549.56, "probability": 0.8997 }, { "start": 6549.72, "end": 6550.06, "probability": 0.7695 }, { "start": 6550.54, "end": 6551.92, "probability": 0.9261 }, { "start": 6552.48, "end": 6553.44, "probability": 0.8091 }, { "start": 6554.16, "end": 6555.66, "probability": 0.9099 }, { "start": 6565.34, "end": 6565.5, "probability": 0.5042 }, { "start": 6566.32, "end": 6566.38, "probability": 0.4715 }, { "start": 6566.38, "end": 6566.64, "probability": 0.1497 }, { "start": 6581.68, "end": 6584.86, "probability": 0.8114 }, { "start": 6585.26, "end": 6586.38, "probability": 0.7114 }, { "start": 6586.7, "end": 6588.8, "probability": 0.8431 }, { "start": 6588.86, "end": 6590.3, "probability": 0.9224 }, { "start": 6590.32, "end": 6591.1, "probability": 0.8677 }, { "start": 6591.84, "end": 6592.96, "probability": 0.7852 }, { "start": 6593.68, "end": 6597.52, "probability": 0.9973 }, { "start": 6597.98, "end": 6599.98, "probability": 0.9954 }, { "start": 6601.16, "end": 6604.46, "probability": 0.9961 }, { "start": 6605.08, "end": 6607.72, "probability": 0.8836 }, { "start": 6608.18, "end": 6611.4, "probability": 0.7373 }, { "start": 6612.08, "end": 6614.52, "probability": 0.6519 }, { "start": 6615.14, "end": 6618.34, "probability": 0.7687 }, { "start": 6619.2, "end": 6621.16, "probability": 0.5345 }, { "start": 6621.78, "end": 6623.72, "probability": 0.94 }, { "start": 6624.36, "end": 6625.36, "probability": 0.8189 }, { "start": 6626.32, "end": 6628.42, "probability": 0.9983 }, { "start": 6629.0, "end": 6632.26, "probability": 0.9905 }, { "start": 6633.18, "end": 6634.36, "probability": 0.841 }, { "start": 6634.82, "end": 6636.26, "probability": 0.5068 }, { "start": 6636.56, "end": 6638.5, "probability": 0.679 }, { "start": 6639.26, "end": 6640.06, "probability": 0.6517 }, { "start": 6640.12, "end": 6641.28, "probability": 0.4989 }, { "start": 6641.44, "end": 6642.16, "probability": 0.6334 }, { "start": 6642.16, "end": 6643.34, "probability": 0.6232 }, { "start": 6643.86, "end": 6644.78, "probability": 0.8126 }, { "start": 6645.32, "end": 6647.92, "probability": 0.9407 }, { "start": 6648.48, "end": 6650.48, "probability": 0.982 }, { "start": 6651.14, "end": 6653.0, "probability": 0.796 }, { "start": 6653.5, "end": 6657.72, "probability": 0.9607 }, { "start": 6658.8, "end": 6659.84, "probability": 0.8346 }, { "start": 6660.1, "end": 6663.5, "probability": 0.9753 }, { "start": 6664.44, "end": 6664.84, "probability": 0.7256 }, { "start": 6665.72, "end": 6670.94, "probability": 0.9854 }, { "start": 6672.32, "end": 6675.07, "probability": 0.8721 }, { "start": 6675.98, "end": 6680.58, "probability": 0.9948 }, { "start": 6681.86, "end": 6684.67, "probability": 0.9964 }, { "start": 6684.96, "end": 6687.56, "probability": 0.999 }, { "start": 6688.16, "end": 6693.86, "probability": 0.984 }, { "start": 6694.78, "end": 6698.54, "probability": 0.9961 }, { "start": 6699.22, "end": 6705.7, "probability": 0.9913 }, { "start": 6706.48, "end": 6708.66, "probability": 0.9948 }, { "start": 6709.5, "end": 6713.58, "probability": 0.9895 }, { "start": 6713.58, "end": 6718.32, "probability": 0.9981 }, { "start": 6718.82, "end": 6720.56, "probability": 0.8604 }, { "start": 6721.14, "end": 6722.44, "probability": 0.9852 }, { "start": 6723.34, "end": 6726.16, "probability": 0.936 }, { "start": 6727.1, "end": 6727.48, "probability": 0.5342 }, { "start": 6727.94, "end": 6731.94, "probability": 0.9964 }, { "start": 6732.36, "end": 6732.82, "probability": 0.7351 }, { "start": 6733.34, "end": 6733.7, "probability": 0.9316 }, { "start": 6734.9, "end": 6735.32, "probability": 0.5917 }, { "start": 6736.02, "end": 6741.0, "probability": 0.9972 }, { "start": 6741.52, "end": 6745.82, "probability": 0.9948 }, { "start": 6745.82, "end": 6749.84, "probability": 0.9991 }, { "start": 6750.84, "end": 6751.78, "probability": 0.9529 }, { "start": 6751.9, "end": 6756.64, "probability": 0.877 }, { "start": 6757.32, "end": 6758.98, "probability": 0.9373 }, { "start": 6759.84, "end": 6761.04, "probability": 0.8097 }, { "start": 6761.4, "end": 6762.32, "probability": 0.3993 }, { "start": 6762.38, "end": 6763.66, "probability": 0.6664 }, { "start": 6764.2, "end": 6764.86, "probability": 0.5058 }, { "start": 6765.14, "end": 6766.36, "probability": 0.9805 }, { "start": 6788.58, "end": 6790.48, "probability": 0.7375 }, { "start": 6792.8, "end": 6793.48, "probability": 0.5698 }, { "start": 6795.8, "end": 6796.76, "probability": 0.9092 }, { "start": 6797.34, "end": 6800.0, "probability": 0.9021 }, { "start": 6800.98, "end": 6803.56, "probability": 0.9919 }, { "start": 6804.7, "end": 6808.22, "probability": 0.6714 }, { "start": 6809.16, "end": 6811.86, "probability": 0.9858 }, { "start": 6812.2, "end": 6812.62, "probability": 0.7866 }, { "start": 6813.76, "end": 6816.32, "probability": 0.9654 }, { "start": 6817.32, "end": 6819.06, "probability": 0.9897 }, { "start": 6819.88, "end": 6822.64, "probability": 0.9594 }, { "start": 6823.54, "end": 6825.72, "probability": 0.97 }, { "start": 6826.58, "end": 6829.34, "probability": 0.981 }, { "start": 6830.2, "end": 6831.73, "probability": 0.9883 }, { "start": 6832.12, "end": 6833.17, "probability": 0.9841 }, { "start": 6833.98, "end": 6837.06, "probability": 0.9873 }, { "start": 6837.64, "end": 6840.54, "probability": 0.9805 }, { "start": 6841.38, "end": 6844.02, "probability": 0.9954 }, { "start": 6846.24, "end": 6848.4, "probability": 0.9985 }, { "start": 6849.78, "end": 6851.5, "probability": 0.9995 }, { "start": 6852.68, "end": 6855.56, "probability": 0.9704 }, { "start": 6855.56, "end": 6858.04, "probability": 0.987 }, { "start": 6859.38, "end": 6861.64, "probability": 0.978 }, { "start": 6862.56, "end": 6865.62, "probability": 0.9922 }, { "start": 6866.5, "end": 6868.32, "probability": 0.9957 }, { "start": 6868.92, "end": 6870.6, "probability": 0.9271 }, { "start": 6871.26, "end": 6875.22, "probability": 0.9409 }, { "start": 6877.2, "end": 6879.14, "probability": 0.7574 }, { "start": 6879.98, "end": 6880.24, "probability": 0.7673 }, { "start": 6881.76, "end": 6882.48, "probability": 0.5303 }, { "start": 6882.48, "end": 6886.64, "probability": 0.9376 }, { "start": 6886.64, "end": 6890.26, "probability": 0.9968 }, { "start": 6892.04, "end": 6894.66, "probability": 0.9956 }, { "start": 6895.2, "end": 6896.76, "probability": 0.9768 }, { "start": 6897.34, "end": 6898.02, "probability": 0.9582 }, { "start": 6898.74, "end": 6899.26, "probability": 0.3376 }, { "start": 6900.26, "end": 6904.16, "probability": 0.8658 }, { "start": 6904.92, "end": 6910.18, "probability": 0.9428 }, { "start": 6910.76, "end": 6913.82, "probability": 0.9186 }, { "start": 6914.94, "end": 6919.64, "probability": 0.9961 }, { "start": 6920.48, "end": 6925.76, "probability": 0.9932 }, { "start": 6926.92, "end": 6929.28, "probability": 0.9968 }, { "start": 6929.96, "end": 6931.22, "probability": 0.6734 }, { "start": 6931.9, "end": 6937.42, "probability": 0.9967 }, { "start": 6937.42, "end": 6943.34, "probability": 0.9976 }, { "start": 6944.0, "end": 6945.5, "probability": 0.8466 }, { "start": 6946.44, "end": 6948.9, "probability": 0.99 }, { "start": 6949.48, "end": 6954.68, "probability": 0.9976 }, { "start": 6955.72, "end": 6957.0, "probability": 0.7468 }, { "start": 6957.56, "end": 6959.8, "probability": 0.9849 }, { "start": 6960.4, "end": 6963.7, "probability": 0.9963 }, { "start": 6964.42, "end": 6966.88, "probability": 0.9883 }, { "start": 6967.76, "end": 6969.28, "probability": 0.8109 }, { "start": 6970.76, "end": 6971.98, "probability": 0.9856 }, { "start": 6973.04, "end": 6976.1, "probability": 0.9965 }, { "start": 6977.0, "end": 6978.15, "probability": 0.9475 }, { "start": 6978.96, "end": 6980.14, "probability": 0.9769 }, { "start": 6981.06, "end": 6981.24, "probability": 0.3293 }, { "start": 6982.24, "end": 6982.8, "probability": 0.6199 }, { "start": 6982.94, "end": 6984.5, "probability": 0.5023 }, { "start": 6984.72, "end": 6985.94, "probability": 0.9617 }, { "start": 7007.8, "end": 7008.86, "probability": 0.7305 }, { "start": 7010.0, "end": 7011.5, "probability": 0.817 }, { "start": 7012.84, "end": 7022.8, "probability": 0.9631 }, { "start": 7023.52, "end": 7025.2, "probability": 0.6518 }, { "start": 7027.48, "end": 7029.0, "probability": 0.8868 }, { "start": 7029.68, "end": 7032.24, "probability": 0.854 }, { "start": 7035.25, "end": 7035.76, "probability": 0.8063 }, { "start": 7037.41, "end": 7039.7, "probability": 0.5205 }, { "start": 7041.83, "end": 7043.37, "probability": 0.7934 }, { "start": 7045.52, "end": 7046.45, "probability": 0.8003 }, { "start": 7048.37, "end": 7049.22, "probability": 0.9561 }, { "start": 7049.75, "end": 7050.71, "probability": 0.8232 }, { "start": 7052.51, "end": 7056.39, "probability": 0.8303 }, { "start": 7057.55, "end": 7058.55, "probability": 0.9563 }, { "start": 7059.09, "end": 7064.33, "probability": 0.8942 }, { "start": 7064.81, "end": 7067.65, "probability": 0.9707 }, { "start": 7067.97, "end": 7070.19, "probability": 0.68 }, { "start": 7073.37, "end": 7075.25, "probability": 0.9165 }, { "start": 7076.31, "end": 7077.43, "probability": 0.6372 }, { "start": 7078.45, "end": 7082.78, "probability": 0.9468 }, { "start": 7082.93, "end": 7084.03, "probability": 0.8296 }, { "start": 7084.43, "end": 7085.39, "probability": 0.6588 }, { "start": 7085.83, "end": 7086.51, "probability": 0.5147 }, { "start": 7086.61, "end": 7087.23, "probability": 0.7054 }, { "start": 7088.87, "end": 7091.44, "probability": 0.9321 }, { "start": 7091.81, "end": 7095.97, "probability": 0.8148 }, { "start": 7096.13, "end": 7096.41, "probability": 0.8443 }, { "start": 7096.91, "end": 7099.95, "probability": 0.9492 }, { "start": 7103.73, "end": 7107.21, "probability": 0.6946 }, { "start": 7108.19, "end": 7109.53, "probability": 0.8562 }, { "start": 7110.37, "end": 7114.15, "probability": 0.8722 }, { "start": 7114.79, "end": 7118.91, "probability": 0.6907 }, { "start": 7119.47, "end": 7122.59, "probability": 0.9845 }, { "start": 7123.65, "end": 7128.67, "probability": 0.9875 }, { "start": 7128.77, "end": 7130.62, "probability": 0.6235 }, { "start": 7131.03, "end": 7131.27, "probability": 0.3627 }, { "start": 7132.25, "end": 7133.37, "probability": 0.5831 }, { "start": 7133.63, "end": 7135.51, "probability": 0.7452 }, { "start": 7135.63, "end": 7137.83, "probability": 0.8892 }, { "start": 7140.05, "end": 7141.97, "probability": 0.2764 }, { "start": 7144.55, "end": 7147.37, "probability": 0.7317 }, { "start": 7147.37, "end": 7147.51, "probability": 0.0013 }, { "start": 7157.25, "end": 7157.25, "probability": 0.0032 }, { "start": 7157.25, "end": 7158.75, "probability": 0.1563 }, { "start": 7159.19, "end": 7159.25, "probability": 0.055 }, { "start": 7168.91, "end": 7169.05, "probability": 0.3314 }, { "start": 7171.23, "end": 7175.47, "probability": 0.9285 }, { "start": 7176.13, "end": 7177.31, "probability": 0.8582 }, { "start": 7178.61, "end": 7180.17, "probability": 0.692 }, { "start": 7181.75, "end": 7185.03, "probability": 0.8607 }, { "start": 7186.25, "end": 7192.51, "probability": 0.984 }, { "start": 7193.47, "end": 7197.45, "probability": 0.9406 }, { "start": 7198.59, "end": 7201.61, "probability": 0.9321 }, { "start": 7202.41, "end": 7205.33, "probability": 0.9852 }, { "start": 7206.01, "end": 7211.95, "probability": 0.9968 }, { "start": 7211.95, "end": 7220.41, "probability": 0.9814 }, { "start": 7221.01, "end": 7225.89, "probability": 0.9829 }, { "start": 7226.91, "end": 7232.13, "probability": 0.9975 }, { "start": 7233.51, "end": 7235.55, "probability": 0.9365 }, { "start": 7236.45, "end": 7236.97, "probability": 0.7936 }, { "start": 7237.39, "end": 7238.33, "probability": 0.9381 }, { "start": 7238.81, "end": 7242.37, "probability": 0.938 }, { "start": 7243.21, "end": 7250.19, "probability": 0.994 }, { "start": 7250.91, "end": 7255.07, "probability": 0.9902 }, { "start": 7256.11, "end": 7258.33, "probability": 0.8118 }, { "start": 7259.09, "end": 7264.25, "probability": 0.936 }, { "start": 7264.81, "end": 7270.49, "probability": 0.9915 }, { "start": 7271.69, "end": 7280.07, "probability": 0.9829 }, { "start": 7281.61, "end": 7286.49, "probability": 0.8793 }, { "start": 7286.91, "end": 7290.41, "probability": 0.9982 }, { "start": 7291.39, "end": 7293.81, "probability": 0.8125 }, { "start": 7294.39, "end": 7295.63, "probability": 0.7263 }, { "start": 7296.25, "end": 7297.67, "probability": 0.766 }, { "start": 7298.31, "end": 7300.21, "probability": 0.9871 }, { "start": 7300.77, "end": 7304.63, "probability": 0.9578 }, { "start": 7305.41, "end": 7309.55, "probability": 0.9966 }, { "start": 7310.71, "end": 7312.53, "probability": 0.9938 }, { "start": 7312.95, "end": 7314.33, "probability": 0.8743 }, { "start": 7314.43, "end": 7315.97, "probability": 0.6574 }, { "start": 7316.43, "end": 7319.99, "probability": 0.9789 }, { "start": 7320.67, "end": 7321.75, "probability": 0.7437 }, { "start": 7322.57, "end": 7327.55, "probability": 0.9939 }, { "start": 7327.55, "end": 7333.01, "probability": 0.9972 }, { "start": 7333.87, "end": 7340.83, "probability": 0.988 }, { "start": 7341.33, "end": 7346.55, "probability": 0.9969 }, { "start": 7347.35, "end": 7349.55, "probability": 0.9559 }, { "start": 7349.97, "end": 7352.57, "probability": 0.961 }, { "start": 7353.37, "end": 7354.51, "probability": 0.9751 }, { "start": 7355.21, "end": 7355.91, "probability": 0.7917 }, { "start": 7356.87, "end": 7362.41, "probability": 0.9771 }, { "start": 7363.55, "end": 7368.21, "probability": 0.9728 }, { "start": 7368.81, "end": 7371.27, "probability": 0.8729 }, { "start": 7371.67, "end": 7376.33, "probability": 0.9951 }, { "start": 7376.77, "end": 7377.03, "probability": 0.554 }, { "start": 7377.35, "end": 7377.91, "probability": 0.6774 }, { "start": 7378.05, "end": 7379.61, "probability": 0.981 }, { "start": 7379.83, "end": 7381.87, "probability": 0.9571 }, { "start": 7388.99, "end": 7389.17, "probability": 0.1325 }, { "start": 7389.17, "end": 7389.17, "probability": 0.1231 }, { "start": 7389.17, "end": 7389.17, "probability": 0.124 }, { "start": 7389.17, "end": 7389.23, "probability": 0.088 }, { "start": 7409.79, "end": 7413.31, "probability": 0.5809 }, { "start": 7414.01, "end": 7415.89, "probability": 0.7747 }, { "start": 7417.49, "end": 7420.29, "probability": 0.9712 }, { "start": 7421.51, "end": 7423.71, "probability": 0.7463 }, { "start": 7424.71, "end": 7429.15, "probability": 0.9515 }, { "start": 7430.63, "end": 7434.75, "probability": 0.7989 }, { "start": 7435.39, "end": 7436.17, "probability": 0.9309 }, { "start": 7436.93, "end": 7438.73, "probability": 0.9928 }, { "start": 7439.45, "end": 7441.87, "probability": 0.8477 }, { "start": 7442.09, "end": 7443.16, "probability": 0.9647 }, { "start": 7443.55, "end": 7444.12, "probability": 0.6987 }, { "start": 7444.89, "end": 7446.85, "probability": 0.9189 }, { "start": 7447.51, "end": 7449.05, "probability": 0.9922 }, { "start": 7450.09, "end": 7451.87, "probability": 0.8144 }, { "start": 7452.01, "end": 7454.27, "probability": 0.9442 }, { "start": 7454.81, "end": 7456.17, "probability": 0.9675 }, { "start": 7456.81, "end": 7459.89, "probability": 0.9878 }, { "start": 7460.57, "end": 7461.23, "probability": 0.5476 }, { "start": 7462.01, "end": 7464.23, "probability": 0.9336 }, { "start": 7465.03, "end": 7465.57, "probability": 0.7476 }, { "start": 7465.57, "end": 7468.01, "probability": 0.9921 }, { "start": 7468.59, "end": 7472.05, "probability": 0.8171 }, { "start": 7472.63, "end": 7474.53, "probability": 0.9628 }, { "start": 7475.19, "end": 7476.23, "probability": 0.9691 }, { "start": 7477.55, "end": 7478.03, "probability": 0.9092 }, { "start": 7479.45, "end": 7480.91, "probability": 0.8004 }, { "start": 7481.43, "end": 7483.73, "probability": 0.9131 }, { "start": 7484.21, "end": 7487.21, "probability": 0.9942 }, { "start": 7487.81, "end": 7488.83, "probability": 0.896 }, { "start": 7489.31, "end": 7496.05, "probability": 0.9906 }, { "start": 7496.07, "end": 7496.89, "probability": 0.7365 }, { "start": 7497.57, "end": 7498.47, "probability": 0.5425 }, { "start": 7499.41, "end": 7501.17, "probability": 0.9997 }, { "start": 7502.13, "end": 7503.93, "probability": 0.989 }, { "start": 7505.19, "end": 7510.03, "probability": 0.9922 }, { "start": 7510.61, "end": 7512.05, "probability": 0.6746 }, { "start": 7515.19, "end": 7521.33, "probability": 0.9239 }, { "start": 7521.55, "end": 7523.81, "probability": 0.9836 }, { "start": 7524.71, "end": 7529.37, "probability": 0.9856 }, { "start": 7529.37, "end": 7532.45, "probability": 0.9988 }, { "start": 7533.73, "end": 7535.99, "probability": 0.9753 }, { "start": 7537.13, "end": 7540.19, "probability": 0.8639 }, { "start": 7540.77, "end": 7544.61, "probability": 0.979 }, { "start": 7544.91, "end": 7546.29, "probability": 0.4973 }, { "start": 7546.81, "end": 7549.87, "probability": 0.7846 }, { "start": 7550.43, "end": 7553.57, "probability": 0.8473 }, { "start": 7553.65, "end": 7554.37, "probability": 0.8729 }, { "start": 7554.97, "end": 7557.71, "probability": 0.9791 }, { "start": 7558.15, "end": 7560.97, "probability": 0.9974 }, { "start": 7562.25, "end": 7564.47, "probability": 0.9772 }, { "start": 7564.47, "end": 7568.89, "probability": 0.9985 }, { "start": 7569.45, "end": 7573.33, "probability": 0.9707 }, { "start": 7574.15, "end": 7575.15, "probability": 0.9202 }, { "start": 7575.73, "end": 7577.49, "probability": 0.9331 }, { "start": 7577.95, "end": 7581.95, "probability": 0.9126 }, { "start": 7582.49, "end": 7583.53, "probability": 0.8499 }, { "start": 7584.29, "end": 7587.37, "probability": 0.9985 }, { "start": 7587.81, "end": 7589.17, "probability": 0.9978 }, { "start": 7589.75, "end": 7591.27, "probability": 0.6908 }, { "start": 7592.03, "end": 7593.85, "probability": 0.7363 }, { "start": 7594.41, "end": 7597.03, "probability": 0.9977 }, { "start": 7597.81, "end": 7599.11, "probability": 0.9729 }, { "start": 7599.63, "end": 7600.91, "probability": 0.9708 }, { "start": 7601.49, "end": 7603.23, "probability": 0.9644 }, { "start": 7603.95, "end": 7607.11, "probability": 0.9872 }, { "start": 7607.81, "end": 7611.23, "probability": 0.9841 }, { "start": 7612.39, "end": 7616.47, "probability": 0.9854 }, { "start": 7616.75, "end": 7618.11, "probability": 0.9395 }, { "start": 7618.49, "end": 7619.89, "probability": 0.2977 }, { "start": 7620.03, "end": 7620.39, "probability": 0.615 }, { "start": 7620.47, "end": 7623.37, "probability": 0.9935 }, { "start": 7623.43, "end": 7626.71, "probability": 0.9823 }, { "start": 7627.13, "end": 7628.03, "probability": 0.7317 }, { "start": 7628.71, "end": 7631.15, "probability": 0.9924 }, { "start": 7631.69, "end": 7636.87, "probability": 0.9967 }, { "start": 7636.95, "end": 7638.79, "probability": 0.9678 }, { "start": 7639.73, "end": 7641.23, "probability": 0.604 }, { "start": 7642.15, "end": 7643.77, "probability": 0.72 }, { "start": 7644.81, "end": 7645.73, "probability": 0.8174 }, { "start": 7646.99, "end": 7647.55, "probability": 0.0451 }, { "start": 7649.23, "end": 7651.63, "probability": 0.7298 }, { "start": 7654.39, "end": 7655.89, "probability": 0.9417 }, { "start": 7656.47, "end": 7657.67, "probability": 0.858 }, { "start": 7658.45, "end": 7662.51, "probability": 0.5219 }, { "start": 7663.05, "end": 7664.45, "probability": 0.906 }, { "start": 7666.47, "end": 7667.21, "probability": 0.4384 }, { "start": 7668.67, "end": 7671.67, "probability": 0.9578 }, { "start": 7675.35, "end": 7677.07, "probability": 0.8819 }, { "start": 7677.97, "end": 7677.97, "probability": 0.3693 }, { "start": 7677.97, "end": 7679.97, "probability": 0.3566 }, { "start": 7679.97, "end": 7680.07, "probability": 0.2913 }, { "start": 7681.99, "end": 7683.61, "probability": 0.8116 }, { "start": 7684.63, "end": 7685.31, "probability": 0.8145 }, { "start": 7686.81, "end": 7688.35, "probability": 0.9958 }, { "start": 7690.99, "end": 7691.69, "probability": 0.8722 }, { "start": 7691.81, "end": 7694.53, "probability": 0.988 }, { "start": 7694.73, "end": 7695.61, "probability": 0.5085 }, { "start": 7696.87, "end": 7697.53, "probability": 0.7187 }, { "start": 7698.55, "end": 7699.57, "probability": 0.9712 }, { "start": 7700.59, "end": 7703.01, "probability": 0.9756 }, { "start": 7703.99, "end": 7707.71, "probability": 0.9966 }, { "start": 7708.63, "end": 7711.77, "probability": 0.9581 }, { "start": 7712.51, "end": 7715.99, "probability": 0.7924 }, { "start": 7717.09, "end": 7717.53, "probability": 0.9548 }, { "start": 7717.53, "end": 7718.69, "probability": 0.9808 }, { "start": 7718.81, "end": 7720.33, "probability": 0.8427 }, { "start": 7720.81, "end": 7722.65, "probability": 0.9152 }, { "start": 7722.73, "end": 7723.57, "probability": 0.792 }, { "start": 7725.35, "end": 7726.65, "probability": 0.9967 }, { "start": 7726.71, "end": 7728.39, "probability": 0.6469 }, { "start": 7729.69, "end": 7730.69, "probability": 0.8339 }, { "start": 7731.35, "end": 7733.19, "probability": 0.9786 }, { "start": 7734.15, "end": 7735.58, "probability": 0.9785 }, { "start": 7735.77, "end": 7736.77, "probability": 0.8386 }, { "start": 7737.49, "end": 7741.13, "probability": 0.8173 }, { "start": 7741.75, "end": 7743.99, "probability": 0.9877 }, { "start": 7744.21, "end": 7745.27, "probability": 0.7584 }, { "start": 7745.87, "end": 7746.37, "probability": 0.9307 }, { "start": 7747.69, "end": 7751.41, "probability": 0.9948 }, { "start": 7754.07, "end": 7755.61, "probability": 0.7007 }, { "start": 7756.63, "end": 7758.05, "probability": 0.7424 }, { "start": 7759.29, "end": 7761.17, "probability": 0.9953 }, { "start": 7761.45, "end": 7763.69, "probability": 0.7483 }, { "start": 7764.21, "end": 7768.11, "probability": 0.9832 }, { "start": 7769.37, "end": 7770.19, "probability": 0.6934 }, { "start": 7770.23, "end": 7772.67, "probability": 0.8263 }, { "start": 7773.27, "end": 7775.79, "probability": 0.2264 }, { "start": 7777.03, "end": 7780.35, "probability": 0.6237 }, { "start": 7781.91, "end": 7786.21, "probability": 0.9653 }, { "start": 7788.07, "end": 7790.01, "probability": 0.9706 }, { "start": 7791.51, "end": 7792.77, "probability": 0.9669 }, { "start": 7793.77, "end": 7794.29, "probability": 0.8821 }, { "start": 7794.47, "end": 7798.55, "probability": 0.97 }, { "start": 7798.55, "end": 7801.87, "probability": 0.9758 }, { "start": 7803.07, "end": 7809.03, "probability": 0.9053 }, { "start": 7809.59, "end": 7810.89, "probability": 0.7439 }, { "start": 7811.51, "end": 7812.83, "probability": 0.9851 }, { "start": 7813.07, "end": 7814.95, "probability": 0.8547 }, { "start": 7816.13, "end": 7817.37, "probability": 0.7273 }, { "start": 7818.05, "end": 7819.16, "probability": 0.9917 }, { "start": 7820.41, "end": 7822.49, "probability": 0.9956 }, { "start": 7822.99, "end": 7825.21, "probability": 0.998 }, { "start": 7825.85, "end": 7828.21, "probability": 0.9514 }, { "start": 7828.63, "end": 7833.33, "probability": 0.9761 }, { "start": 7833.81, "end": 7835.53, "probability": 0.9633 }, { "start": 7835.69, "end": 7837.13, "probability": 0.9777 }, { "start": 7837.21, "end": 7838.23, "probability": 0.8516 }, { "start": 7838.73, "end": 7841.91, "probability": 0.9813 }, { "start": 7842.19, "end": 7842.73, "probability": 0.7381 }, { "start": 7843.23, "end": 7844.11, "probability": 0.8519 }, { "start": 7844.29, "end": 7844.85, "probability": 0.7661 }, { "start": 7845.11, "end": 7846.45, "probability": 0.9143 }, { "start": 7846.53, "end": 7847.15, "probability": 0.8745 }, { "start": 7847.53, "end": 7849.41, "probability": 0.7278 }, { "start": 7849.87, "end": 7850.55, "probability": 0.7725 }, { "start": 7850.81, "end": 7856.71, "probability": 0.9716 }, { "start": 7857.43, "end": 7858.38, "probability": 0.9249 }, { "start": 7859.27, "end": 7860.59, "probability": 0.952 }, { "start": 7860.67, "end": 7861.59, "probability": 0.9727 }, { "start": 7861.63, "end": 7861.99, "probability": 0.7382 }, { "start": 7862.07, "end": 7863.67, "probability": 0.896 }, { "start": 7864.11, "end": 7864.65, "probability": 0.9148 }, { "start": 7865.17, "end": 7866.31, "probability": 0.8911 }, { "start": 7867.11, "end": 7871.85, "probability": 0.4995 }, { "start": 7871.99, "end": 7874.11, "probability": 0.7352 }, { "start": 7875.45, "end": 7877.29, "probability": 0.8457 }, { "start": 7877.73, "end": 7882.99, "probability": 0.9614 }, { "start": 7882.99, "end": 7887.15, "probability": 0.8721 }, { "start": 7887.69, "end": 7889.07, "probability": 0.8984 }, { "start": 7889.33, "end": 7890.37, "probability": 0.9395 }, { "start": 7890.99, "end": 7894.51, "probability": 0.4534 }, { "start": 7895.41, "end": 7896.17, "probability": 0.9363 }, { "start": 7897.61, "end": 7897.93, "probability": 0.8047 }, { "start": 7899.57, "end": 7901.23, "probability": 0.9795 }, { "start": 7901.33, "end": 7902.63, "probability": 0.9819 }, { "start": 7902.67, "end": 7907.13, "probability": 0.9858 }, { "start": 7907.41, "end": 7910.61, "probability": 0.9865 }, { "start": 7911.28, "end": 7913.35, "probability": 0.9292 }, { "start": 7913.57, "end": 7916.53, "probability": 0.8624 }, { "start": 7916.61, "end": 7917.25, "probability": 0.6223 }, { "start": 7917.71, "end": 7920.15, "probability": 0.9232 }, { "start": 7921.87, "end": 7922.49, "probability": 0.9356 }, { "start": 7924.14, "end": 7927.33, "probability": 0.7788 }, { "start": 7931.73, "end": 7932.89, "probability": 0.6027 }, { "start": 7933.93, "end": 7937.27, "probability": 0.6167 }, { "start": 7938.61, "end": 7943.61, "probability": 0.9939 }, { "start": 7943.69, "end": 7944.93, "probability": 0.8293 }, { "start": 7945.53, "end": 7948.67, "probability": 0.9893 }, { "start": 7948.81, "end": 7953.91, "probability": 0.9977 }, { "start": 7953.95, "end": 7954.65, "probability": 0.715 }, { "start": 7954.75, "end": 7956.31, "probability": 0.7094 }, { "start": 7957.31, "end": 7958.51, "probability": 0.6688 }, { "start": 7958.83, "end": 7959.61, "probability": 0.918 }, { "start": 7959.83, "end": 7960.19, "probability": 0.9556 }, { "start": 7960.25, "end": 7960.97, "probability": 0.9829 }, { "start": 7961.37, "end": 7967.59, "probability": 0.0899 }, { "start": 7969.42, "end": 7969.63, "probability": 0.195 }, { "start": 7969.63, "end": 7969.63, "probability": 0.3724 }, { "start": 7969.63, "end": 7969.63, "probability": 0.0192 }, { "start": 7969.63, "end": 7970.69, "probability": 0.2585 }, { "start": 7970.83, "end": 7974.47, "probability": 0.8162 }, { "start": 7974.81, "end": 7974.81, "probability": 0.0257 }, { "start": 7974.83, "end": 7976.53, "probability": 0.1548 }, { "start": 7977.97, "end": 7978.67, "probability": 0.2637 }, { "start": 7979.23, "end": 7979.37, "probability": 0.4392 }, { "start": 7981.53, "end": 7983.89, "probability": 0.3343 }, { "start": 7984.27, "end": 7984.99, "probability": 0.2233 }, { "start": 7985.95, "end": 7987.45, "probability": 0.4967 }, { "start": 7987.65, "end": 7989.03, "probability": 0.4677 }, { "start": 7989.03, "end": 7989.87, "probability": 0.2525 }, { "start": 7990.03, "end": 7992.09, "probability": 0.9247 }, { "start": 7992.53, "end": 7993.09, "probability": 0.8137 }, { "start": 7993.11, "end": 7995.07, "probability": 0.7827 }, { "start": 7995.17, "end": 7995.23, "probability": 0.3868 }, { "start": 7995.23, "end": 7995.67, "probability": 0.6638 }, { "start": 7995.69, "end": 7996.45, "probability": 0.6112 }, { "start": 7996.95, "end": 7997.09, "probability": 0.2779 }, { "start": 7997.09, "end": 7997.13, "probability": 0.0789 }, { "start": 7997.13, "end": 7997.91, "probability": 0.857 }, { "start": 7997.97, "end": 8002.89, "probability": 0.7994 }, { "start": 8003.03, "end": 8003.45, "probability": 0.9059 }, { "start": 8004.01, "end": 8005.91, "probability": 0.946 }, { "start": 8006.19, "end": 8009.47, "probability": 0.9375 }, { "start": 8009.57, "end": 8010.29, "probability": 0.188 }, { "start": 8010.29, "end": 8010.85, "probability": 0.4257 }, { "start": 8010.93, "end": 8012.91, "probability": 0.4165 }, { "start": 8013.23, "end": 8014.47, "probability": 0.4106 }, { "start": 8014.53, "end": 8014.63, "probability": 0.2982 }, { "start": 8014.71, "end": 8015.57, "probability": 0.528 }, { "start": 8015.59, "end": 8015.67, "probability": 0.7241 }, { "start": 8015.85, "end": 8017.78, "probability": 0.7451 }, { "start": 8017.83, "end": 8017.87, "probability": 0.3626 }, { "start": 8017.91, "end": 8019.61, "probability": 0.8416 }, { "start": 8019.73, "end": 8020.18, "probability": 0.5051 }, { "start": 8020.21, "end": 8020.69, "probability": 0.8314 }, { "start": 8020.79, "end": 8021.41, "probability": 0.5104 }, { "start": 8024.26, "end": 8024.77, "probability": 0.0512 }, { "start": 8024.77, "end": 8024.77, "probability": 0.1287 }, { "start": 8024.77, "end": 8025.09, "probability": 0.0428 }, { "start": 8025.21, "end": 8027.29, "probability": 0.8669 }, { "start": 8027.47, "end": 8030.15, "probability": 0.7896 }, { "start": 8030.21, "end": 8030.95, "probability": 0.9846 }, { "start": 8031.37, "end": 8034.37, "probability": 0.9055 }, { "start": 8034.57, "end": 8038.69, "probability": 0.8975 }, { "start": 8038.77, "end": 8040.07, "probability": 0.9459 }, { "start": 8040.15, "end": 8042.67, "probability": 0.4027 }, { "start": 8042.67, "end": 8044.28, "probability": 0.635 }, { "start": 8044.91, "end": 8045.55, "probability": 0.7418 }, { "start": 8046.07, "end": 8047.13, "probability": 0.7465 }, { "start": 8047.71, "end": 8050.21, "probability": 0.9741 }, { "start": 8050.59, "end": 8051.31, "probability": 0.9377 }, { "start": 8051.79, "end": 8055.37, "probability": 0.9809 }, { "start": 8055.37, "end": 8058.45, "probability": 0.9374 }, { "start": 8058.75, "end": 8059.51, "probability": 0.8025 }, { "start": 8060.31, "end": 8062.11, "probability": 0.8347 }, { "start": 8062.33, "end": 8063.83, "probability": 0.8295 }, { "start": 8063.97, "end": 8066.37, "probability": 0.7453 }, { "start": 8066.45, "end": 8066.79, "probability": 0.5152 }, { "start": 8066.85, "end": 8069.87, "probability": 0.9462 }, { "start": 8069.95, "end": 8070.81, "probability": 0.4356 }, { "start": 8071.31, "end": 8072.49, "probability": 0.9107 }, { "start": 8072.55, "end": 8072.98, "probability": 0.9659 }, { "start": 8073.13, "end": 8074.41, "probability": 0.8838 }, { "start": 8074.41, "end": 8075.09, "probability": 0.7254 }, { "start": 8075.47, "end": 8077.83, "probability": 0.8545 }, { "start": 8078.17, "end": 8079.95, "probability": 0.8843 }, { "start": 8080.53, "end": 8086.15, "probability": 0.9339 }, { "start": 8086.39, "end": 8088.23, "probability": 0.7921 }, { "start": 8088.27, "end": 8088.97, "probability": 0.7683 }, { "start": 8089.33, "end": 8090.27, "probability": 0.8726 }, { "start": 8090.51, "end": 8091.76, "probability": 0.9146 }, { "start": 8091.87, "end": 8092.91, "probability": 0.2346 }, { "start": 8093.43, "end": 8095.19, "probability": 0.3221 }, { "start": 8095.71, "end": 8097.39, "probability": 0.9663 }, { "start": 8097.63, "end": 8098.61, "probability": 0.9828 }, { "start": 8099.39, "end": 8101.31, "probability": 0.8644 }, { "start": 8101.99, "end": 8103.03, "probability": 0.9157 }, { "start": 8103.19, "end": 8106.67, "probability": 0.7219 }, { "start": 8106.97, "end": 8108.01, "probability": 0.8308 }, { "start": 8108.61, "end": 8110.89, "probability": 0.6751 }, { "start": 8111.21, "end": 8112.57, "probability": 0.6753 }, { "start": 8112.69, "end": 8113.17, "probability": 0.8271 }, { "start": 8113.25, "end": 8114.73, "probability": 0.8174 }, { "start": 8115.01, "end": 8115.81, "probability": 0.447 }, { "start": 8116.01, "end": 8119.61, "probability": 0.995 }, { "start": 8119.67, "end": 8119.95, "probability": 0.2619 }, { "start": 8119.99, "end": 8122.27, "probability": 0.9122 }, { "start": 8122.63, "end": 8124.05, "probability": 0.8652 }, { "start": 8124.21, "end": 8125.17, "probability": 0.978 }, { "start": 8125.41, "end": 8128.39, "probability": 0.8057 }, { "start": 8128.47, "end": 8129.71, "probability": 0.5445 }, { "start": 8129.71, "end": 8131.85, "probability": 0.9158 }, { "start": 8131.99, "end": 8132.55, "probability": 0.7085 }, { "start": 8132.63, "end": 8133.37, "probability": 0.5278 }, { "start": 8133.59, "end": 8134.79, "probability": 0.7809 }, { "start": 8135.81, "end": 8138.87, "probability": 0.5016 }, { "start": 8139.89, "end": 8140.49, "probability": 0.4232 }, { "start": 8140.65, "end": 8142.33, "probability": 0.8966 }, { "start": 8142.71, "end": 8144.64, "probability": 0.8882 }, { "start": 8144.98, "end": 8146.36, "probability": 0.7567 }, { "start": 8146.54, "end": 8148.16, "probability": 0.9531 }, { "start": 8148.64, "end": 8152.28, "probability": 0.5013 }, { "start": 8152.28, "end": 8154.82, "probability": 0.9863 }, { "start": 8154.9, "end": 8156.06, "probability": 0.9691 }, { "start": 8156.5, "end": 8157.06, "probability": 0.5993 }, { "start": 8157.76, "end": 8158.9, "probability": 0.7972 }, { "start": 8159.0, "end": 8160.5, "probability": 0.9904 }, { "start": 8160.52, "end": 8163.68, "probability": 0.988 }, { "start": 8164.74, "end": 8169.64, "probability": 0.9919 }, { "start": 8170.24, "end": 8171.14, "probability": 0.7448 }, { "start": 8171.74, "end": 8174.66, "probability": 0.8015 }, { "start": 8175.02, "end": 8176.72, "probability": 0.8899 }, { "start": 8176.92, "end": 8179.96, "probability": 0.7595 }, { "start": 8180.34, "end": 8180.68, "probability": 0.0686 }, { "start": 8181.08, "end": 8184.76, "probability": 0.8284 }, { "start": 8184.92, "end": 8186.26, "probability": 0.6002 }, { "start": 8186.78, "end": 8187.4, "probability": 0.722 }, { "start": 8187.7, "end": 8188.79, "probability": 0.9772 }, { "start": 8189.18, "end": 8189.82, "probability": 0.8719 }, { "start": 8189.88, "end": 8190.7, "probability": 0.8682 }, { "start": 8191.08, "end": 8191.99, "probability": 0.7555 }, { "start": 8192.64, "end": 8196.46, "probability": 0.9801 }, { "start": 8196.96, "end": 8198.3, "probability": 0.7874 }, { "start": 8198.3, "end": 8199.66, "probability": 0.5611 }, { "start": 8199.78, "end": 8199.96, "probability": 0.0139 }, { "start": 8199.96, "end": 8199.96, "probability": 0.0835 }, { "start": 8199.96, "end": 8200.82, "probability": 0.482 }, { "start": 8200.82, "end": 8203.58, "probability": 0.831 }, { "start": 8204.14, "end": 8205.24, "probability": 0.6646 }, { "start": 8205.36, "end": 8207.24, "probability": 0.8213 }, { "start": 8207.56, "end": 8208.72, "probability": 0.9474 }, { "start": 8208.9, "end": 8211.5, "probability": 0.6867 }, { "start": 8211.62, "end": 8211.64, "probability": 0.0913 }, { "start": 8211.64, "end": 8216.14, "probability": 0.8683 }, { "start": 8216.46, "end": 8217.04, "probability": 0.498 }, { "start": 8217.04, "end": 8217.32, "probability": 0.8942 }, { "start": 8217.58, "end": 8217.86, "probability": 0.7179 }, { "start": 8218.22, "end": 8220.58, "probability": 0.9504 }, { "start": 8221.1, "end": 8222.0, "probability": 0.9113 }, { "start": 8241.88, "end": 8243.02, "probability": 0.7526 }, { "start": 8243.12, "end": 8243.62, "probability": 0.742 }, { "start": 8244.7, "end": 8245.72, "probability": 0.5776 }, { "start": 8246.06, "end": 8249.14, "probability": 0.6498 }, { "start": 8250.4, "end": 8254.64, "probability": 0.9789 }, { "start": 8255.94, "end": 8256.54, "probability": 0.9639 }, { "start": 8257.8, "end": 8265.64, "probability": 0.9946 }, { "start": 8266.4, "end": 8269.32, "probability": 0.9995 }, { "start": 8270.82, "end": 8278.92, "probability": 0.9963 }, { "start": 8280.08, "end": 8283.26, "probability": 0.8081 }, { "start": 8284.84, "end": 8287.12, "probability": 0.9711 }, { "start": 8287.26, "end": 8288.22, "probability": 0.9956 }, { "start": 8288.94, "end": 8290.22, "probability": 0.9581 }, { "start": 8291.26, "end": 8294.3, "probability": 0.9908 }, { "start": 8295.18, "end": 8298.36, "probability": 0.9938 }, { "start": 8299.26, "end": 8299.98, "probability": 0.8408 }, { "start": 8300.76, "end": 8303.24, "probability": 0.9863 }, { "start": 8303.24, "end": 8308.6, "probability": 0.9971 }, { "start": 8309.32, "end": 8310.68, "probability": 0.9479 }, { "start": 8311.5, "end": 8313.2, "probability": 0.9826 }, { "start": 8314.12, "end": 8314.28, "probability": 0.3563 }, { "start": 8315.04, "end": 8318.1, "probability": 0.9969 }, { "start": 8319.06, "end": 8321.06, "probability": 0.9901 }, { "start": 8321.86, "end": 8323.0, "probability": 0.9954 }, { "start": 8323.58, "end": 8324.64, "probability": 0.8763 }, { "start": 8325.78, "end": 8330.82, "probability": 0.9982 }, { "start": 8332.24, "end": 8333.74, "probability": 0.9913 }, { "start": 8335.66, "end": 8338.1, "probability": 0.9961 }, { "start": 8338.1, "end": 8341.86, "probability": 0.9961 }, { "start": 8342.76, "end": 8347.96, "probability": 0.9932 }, { "start": 8349.5, "end": 8351.62, "probability": 0.9928 }, { "start": 8351.62, "end": 8354.14, "probability": 0.9993 }, { "start": 8354.58, "end": 8359.54, "probability": 0.995 }, { "start": 8360.58, "end": 8365.08, "probability": 0.9982 }, { "start": 8366.1, "end": 8369.46, "probability": 0.9927 }, { "start": 8369.94, "end": 8370.48, "probability": 0.8808 }, { "start": 8370.94, "end": 8371.94, "probability": 0.8444 }, { "start": 8372.56, "end": 8375.04, "probability": 0.9332 }, { "start": 8376.14, "end": 8378.44, "probability": 0.9966 }, { "start": 8379.16, "end": 8380.02, "probability": 0.8606 }, { "start": 8380.42, "end": 8381.52, "probability": 0.9948 }, { "start": 8382.0, "end": 8387.04, "probability": 0.9946 }, { "start": 8387.8, "end": 8391.62, "probability": 0.9137 }, { "start": 8391.62, "end": 8395.56, "probability": 0.9977 }, { "start": 8396.76, "end": 8397.8, "probability": 0.7288 }, { "start": 8399.02, "end": 8399.64, "probability": 0.9896 }, { "start": 8401.26, "end": 8404.58, "probability": 0.8167 }, { "start": 8405.34, "end": 8407.52, "probability": 0.9758 }, { "start": 8408.14, "end": 8412.46, "probability": 0.8981 }, { "start": 8412.98, "end": 8415.94, "probability": 0.9777 }, { "start": 8417.36, "end": 8419.42, "probability": 0.9915 }, { "start": 8419.46, "end": 8424.02, "probability": 0.9814 }, { "start": 8424.5, "end": 8426.6, "probability": 0.951 }, { "start": 8426.74, "end": 8428.88, "probability": 0.9572 }, { "start": 8430.22, "end": 8432.38, "probability": 0.9888 }, { "start": 8432.46, "end": 8435.9, "probability": 0.8106 }, { "start": 8435.96, "end": 8436.22, "probability": 0.6838 }, { "start": 8436.78, "end": 8438.64, "probability": 0.6065 }, { "start": 8439.08, "end": 8439.36, "probability": 0.8091 }, { "start": 8439.92, "end": 8443.38, "probability": 0.9955 }, { "start": 8443.38, "end": 8446.36, "probability": 0.9852 }, { "start": 8447.64, "end": 8450.4, "probability": 0.9814 }, { "start": 8450.46, "end": 8452.6, "probability": 0.8859 }, { "start": 8453.94, "end": 8456.64, "probability": 0.949 }, { "start": 8456.72, "end": 8457.76, "probability": 0.8317 }, { "start": 8458.24, "end": 8459.98, "probability": 0.953 }, { "start": 8460.02, "end": 8460.8, "probability": 0.7142 }, { "start": 8462.08, "end": 8466.74, "probability": 0.9328 }, { "start": 8467.56, "end": 8468.84, "probability": 0.9088 }, { "start": 8469.64, "end": 8471.82, "probability": 0.991 }, { "start": 8473.04, "end": 8475.73, "probability": 0.7919 }, { "start": 8475.92, "end": 8476.48, "probability": 0.8218 }, { "start": 8476.56, "end": 8479.8, "probability": 0.9584 }, { "start": 8480.9, "end": 8483.33, "probability": 0.8914 }, { "start": 8484.24, "end": 8484.84, "probability": 0.2246 }, { "start": 8485.72, "end": 8487.08, "probability": 0.7261 }, { "start": 8487.44, "end": 8488.42, "probability": 0.9734 }, { "start": 8489.12, "end": 8491.0, "probability": 0.8765 }, { "start": 8492.34, "end": 8493.24, "probability": 0.7817 }, { "start": 8493.46, "end": 8495.44, "probability": 0.8164 }, { "start": 8495.92, "end": 8496.54, "probability": 0.6602 }, { "start": 8497.7, "end": 8500.96, "probability": 0.872 }, { "start": 8501.46, "end": 8505.3, "probability": 0.7192 }, { "start": 8505.62, "end": 8505.8, "probability": 0.5941 }, { "start": 8505.82, "end": 8511.24, "probability": 0.9888 }, { "start": 8511.78, "end": 8515.4, "probability": 0.9897 }, { "start": 8515.76, "end": 8516.02, "probability": 0.6356 }, { "start": 8516.6, "end": 8517.24, "probability": 0.7124 }, { "start": 8517.38, "end": 8518.44, "probability": 0.9359 }, { "start": 8519.06, "end": 8519.62, "probability": 0.5525 }, { "start": 8520.16, "end": 8521.14, "probability": 0.8206 }, { "start": 8521.72, "end": 8522.17, "probability": 0.7485 }, { "start": 8523.02, "end": 8524.36, "probability": 0.9396 }, { "start": 8525.55, "end": 8530.12, "probability": 0.9427 }, { "start": 8533.58, "end": 8534.7, "probability": 0.998 }, { "start": 8535.36, "end": 8536.84, "probability": 0.4081 }, { "start": 8541.42, "end": 8542.1, "probability": 0.6783 }, { "start": 8543.72, "end": 8546.14, "probability": 0.6578 }, { "start": 8546.56, "end": 8547.68, "probability": 0.9812 }, { "start": 8547.8, "end": 8548.24, "probability": 0.9534 }, { "start": 8549.62, "end": 8552.54, "probability": 0.6218 }, { "start": 8553.5, "end": 8561.0, "probability": 0.9653 }, { "start": 8561.88, "end": 8565.32, "probability": 0.9144 }, { "start": 8565.4, "end": 8566.08, "probability": 0.7996 }, { "start": 8566.26, "end": 8567.36, "probability": 0.7396 }, { "start": 8568.12, "end": 8569.96, "probability": 0.9031 }, { "start": 8570.48, "end": 8572.37, "probability": 0.9724 }, { "start": 8574.78, "end": 8576.38, "probability": 0.8899 }, { "start": 8576.46, "end": 8580.84, "probability": 0.8453 }, { "start": 8581.72, "end": 8584.38, "probability": 0.7192 }, { "start": 8584.94, "end": 8587.74, "probability": 0.8653 }, { "start": 8588.82, "end": 8589.54, "probability": 0.5835 }, { "start": 8589.62, "end": 8589.76, "probability": 0.1055 }, { "start": 8589.76, "end": 8590.84, "probability": 0.9814 }, { "start": 8590.9, "end": 8591.14, "probability": 0.2201 }, { "start": 8591.24, "end": 8593.16, "probability": 0.7617 }, { "start": 8594.28, "end": 8598.98, "probability": 0.8456 }, { "start": 8599.06, "end": 8599.5, "probability": 0.629 }, { "start": 8599.56, "end": 8603.14, "probability": 0.9581 }, { "start": 8603.44, "end": 8604.32, "probability": 0.9778 }, { "start": 8604.86, "end": 8607.94, "probability": 0.8575 }, { "start": 8608.28, "end": 8609.24, "probability": 0.7988 }, { "start": 8609.86, "end": 8613.43, "probability": 0.5905 }, { "start": 8613.96, "end": 8614.26, "probability": 0.7782 }, { "start": 8614.34, "end": 8617.92, "probability": 0.8652 }, { "start": 8617.92, "end": 8619.3, "probability": 0.6057 }, { "start": 8619.76, "end": 8623.14, "probability": 0.986 }, { "start": 8623.6, "end": 8624.97, "probability": 0.546 }, { "start": 8625.34, "end": 8627.18, "probability": 0.6191 }, { "start": 8627.68, "end": 8631.52, "probability": 0.9818 }, { "start": 8631.8, "end": 8633.22, "probability": 0.9866 }, { "start": 8633.62, "end": 8634.62, "probability": 0.8886 }, { "start": 8635.12, "end": 8637.28, "probability": 0.7495 }, { "start": 8637.52, "end": 8641.76, "probability": 0.6343 }, { "start": 8641.86, "end": 8642.96, "probability": 0.8096 }, { "start": 8643.6, "end": 8646.68, "probability": 0.8405 }, { "start": 8647.34, "end": 8649.53, "probability": 0.874 }, { "start": 8650.42, "end": 8650.88, "probability": 0.4232 }, { "start": 8651.04, "end": 8654.44, "probability": 0.9645 }, { "start": 8654.72, "end": 8656.58, "probability": 0.7496 }, { "start": 8657.24, "end": 8658.22, "probability": 0.6426 }, { "start": 8658.6, "end": 8661.34, "probability": 0.9167 }, { "start": 8661.36, "end": 8662.46, "probability": 0.5197 }, { "start": 8662.52, "end": 8665.16, "probability": 0.7673 }, { "start": 8665.58, "end": 8667.24, "probability": 0.9038 }, { "start": 8667.66, "end": 8668.94, "probability": 0.8353 }, { "start": 8669.5, "end": 8672.9, "probability": 0.9648 }, { "start": 8673.16, "end": 8674.56, "probability": 0.9957 }, { "start": 8675.22, "end": 8678.9, "probability": 0.9678 }, { "start": 8679.24, "end": 8680.21, "probability": 0.8516 }, { "start": 8680.62, "end": 8681.92, "probability": 0.9128 }, { "start": 8681.98, "end": 8685.42, "probability": 0.9229 }, { "start": 8685.48, "end": 8686.5, "probability": 0.5938 }, { "start": 8687.02, "end": 8688.13, "probability": 0.6914 }, { "start": 8688.34, "end": 8688.6, "probability": 0.9435 }, { "start": 8688.62, "end": 8691.41, "probability": 0.9675 }, { "start": 8692.18, "end": 8693.64, "probability": 0.8608 }, { "start": 8693.7, "end": 8696.34, "probability": 0.978 }, { "start": 8696.94, "end": 8698.68, "probability": 0.7164 }, { "start": 8698.82, "end": 8702.58, "probability": 0.9496 }, { "start": 8703.04, "end": 8705.54, "probability": 0.8263 }, { "start": 8705.56, "end": 8706.76, "probability": 0.5545 }, { "start": 8706.8, "end": 8707.46, "probability": 0.3583 }, { "start": 8707.52, "end": 8708.0, "probability": 0.7503 }, { "start": 8708.32, "end": 8711.26, "probability": 0.8947 }, { "start": 8711.3, "end": 8711.72, "probability": 0.4487 }, { "start": 8711.98, "end": 8712.75, "probability": 0.8028 }, { "start": 8713.02, "end": 8714.96, "probability": 0.953 }, { "start": 8715.16, "end": 8717.9, "probability": 0.396 }, { "start": 8717.9, "end": 8718.34, "probability": 0.4773 }, { "start": 8718.38, "end": 8720.4, "probability": 0.7976 }, { "start": 8720.9, "end": 8723.14, "probability": 0.9861 }, { "start": 8723.28, "end": 8725.74, "probability": 0.8663 }, { "start": 8725.92, "end": 8726.79, "probability": 0.6392 }, { "start": 8727.18, "end": 8727.95, "probability": 0.9627 }, { "start": 8728.36, "end": 8729.7, "probability": 0.6954 }, { "start": 8729.7, "end": 8730.6, "probability": 0.8362 }, { "start": 8730.78, "end": 8732.72, "probability": 0.8803 }, { "start": 8733.0, "end": 8734.64, "probability": 0.6247 }, { "start": 8734.76, "end": 8735.62, "probability": 0.686 }, { "start": 8735.7, "end": 8737.42, "probability": 0.5076 }, { "start": 8737.44, "end": 8737.56, "probability": 0.6773 }, { "start": 8737.56, "end": 8738.19, "probability": 0.9526 }, { "start": 8738.9, "end": 8742.36, "probability": 0.9817 }, { "start": 8743.02, "end": 8743.58, "probability": 0.6463 }, { "start": 8744.3, "end": 8746.44, "probability": 0.7208 }, { "start": 8749.26, "end": 8752.9, "probability": 0.8154 }, { "start": 8753.58, "end": 8755.76, "probability": 0.9291 }, { "start": 8756.48, "end": 8758.7, "probability": 0.8456 }, { "start": 8760.82, "end": 8762.52, "probability": 0.2594 }, { "start": 8763.84, "end": 8764.56, "probability": 0.9011 }, { "start": 8765.7, "end": 8766.42, "probability": 0.9697 }, { "start": 8767.9, "end": 8768.94, "probability": 0.9832 }, { "start": 8770.14, "end": 8771.14, "probability": 0.991 }, { "start": 8772.74, "end": 8773.58, "probability": 0.8174 }, { "start": 8774.3, "end": 8778.28, "probability": 0.9906 }, { "start": 8779.66, "end": 8780.08, "probability": 0.805 }, { "start": 8789.28, "end": 8790.86, "probability": 0.8495 }, { "start": 8793.92, "end": 8795.18, "probability": 0.6693 }, { "start": 8795.64, "end": 8796.68, "probability": 0.7467 }, { "start": 8799.41, "end": 8803.24, "probability": 0.6362 }, { "start": 8805.16, "end": 8810.34, "probability": 0.9736 }, { "start": 8810.82, "end": 8811.64, "probability": 0.9655 }, { "start": 8811.78, "end": 8812.76, "probability": 0.9891 }, { "start": 8813.58, "end": 8814.68, "probability": 0.7597 }, { "start": 8815.4, "end": 8816.58, "probability": 0.9876 }, { "start": 8818.94, "end": 8821.0, "probability": 0.7364 }, { "start": 8822.26, "end": 8824.04, "probability": 0.722 }, { "start": 8824.6, "end": 8825.46, "probability": 0.45 }, { "start": 8825.56, "end": 8828.46, "probability": 0.9022 }, { "start": 8829.56, "end": 8831.38, "probability": 0.9104 }, { "start": 8832.26, "end": 8836.02, "probability": 0.7147 }, { "start": 8837.86, "end": 8838.5, "probability": 0.4822 }, { "start": 8839.1, "end": 8845.14, "probability": 0.9888 }, { "start": 8846.8, "end": 8847.62, "probability": 0.7802 }, { "start": 8850.2, "end": 8853.6, "probability": 0.9812 }, { "start": 8854.82, "end": 8857.88, "probability": 0.9851 }, { "start": 8858.66, "end": 8860.81, "probability": 0.7935 }, { "start": 8860.98, "end": 8862.08, "probability": 0.7739 }, { "start": 8863.16, "end": 8865.82, "probability": 0.9055 }, { "start": 8865.9, "end": 8868.7, "probability": 0.9568 }, { "start": 8869.66, "end": 8870.88, "probability": 0.9007 }, { "start": 8871.9, "end": 8874.62, "probability": 0.7044 }, { "start": 8876.96, "end": 8879.98, "probability": 0.0407 }, { "start": 8879.98, "end": 8883.26, "probability": 0.928 }, { "start": 8883.74, "end": 8885.88, "probability": 0.9863 }, { "start": 8886.0, "end": 8888.32, "probability": 0.9816 }, { "start": 8888.32, "end": 8890.34, "probability": 0.8483 }, { "start": 8890.8, "end": 8893.4, "probability": 0.9681 }, { "start": 8894.84, "end": 8901.32, "probability": 0.9848 }, { "start": 8903.66, "end": 8906.48, "probability": 0.9898 }, { "start": 8906.62, "end": 8907.52, "probability": 0.7992 }, { "start": 8908.18, "end": 8910.0, "probability": 0.6018 }, { "start": 8913.18, "end": 8915.42, "probability": 0.8698 }, { "start": 8915.96, "end": 8920.67, "probability": 0.6087 }, { "start": 8921.98, "end": 8923.62, "probability": 0.7942 }, { "start": 8924.14, "end": 8925.26, "probability": 0.9326 }, { "start": 8926.72, "end": 8927.48, "probability": 0.641 }, { "start": 8928.12, "end": 8929.26, "probability": 0.9871 }, { "start": 8930.1, "end": 8931.72, "probability": 0.9714 }, { "start": 8932.74, "end": 8936.12, "probability": 0.9754 }, { "start": 8936.8, "end": 8937.66, "probability": 0.8477 }, { "start": 8938.86, "end": 8942.04, "probability": 0.776 }, { "start": 8942.38, "end": 8943.03, "probability": 0.9946 }, { "start": 8946.04, "end": 8948.3, "probability": 0.8305 }, { "start": 8948.64, "end": 8950.4, "probability": 0.9756 }, { "start": 8950.76, "end": 8953.7, "probability": 0.9108 }, { "start": 8954.24, "end": 8954.7, "probability": 0.2147 }, { "start": 8955.46, "end": 8958.84, "probability": 0.9724 }, { "start": 8960.7, "end": 8961.62, "probability": 0.8037 }, { "start": 8962.3, "end": 8965.42, "probability": 0.8203 }, { "start": 8966.04, "end": 8968.75, "probability": 0.971 }, { "start": 8969.86, "end": 8971.74, "probability": 0.9686 }, { "start": 8971.8, "end": 8972.24, "probability": 0.8655 }, { "start": 8972.54, "end": 8974.36, "probability": 0.7279 }, { "start": 8975.12, "end": 8975.74, "probability": 0.5474 }, { "start": 8976.58, "end": 8977.68, "probability": 0.491 }, { "start": 8978.84, "end": 8980.16, "probability": 0.743 }, { "start": 8981.0, "end": 8981.52, "probability": 0.5096 }, { "start": 8982.42, "end": 8984.5, "probability": 0.9096 }, { "start": 8999.52, "end": 9000.84, "probability": 0.6395 }, { "start": 9000.86, "end": 9001.32, "probability": 0.756 }, { "start": 9002.16, "end": 9002.16, "probability": 0.3384 }, { "start": 9002.16, "end": 9003.94, "probability": 0.6833 }, { "start": 9005.78, "end": 9008.36, "probability": 0.9647 }, { "start": 9009.8, "end": 9012.76, "probability": 0.9631 }, { "start": 9012.88, "end": 9016.9, "probability": 0.9017 }, { "start": 9018.8, "end": 9019.82, "probability": 0.9954 }, { "start": 9020.22, "end": 9021.06, "probability": 0.9939 }, { "start": 9021.62, "end": 9022.56, "probability": 0.9778 }, { "start": 9022.88, "end": 9026.1, "probability": 0.9518 }, { "start": 9026.18, "end": 9028.1, "probability": 0.9885 }, { "start": 9028.28, "end": 9031.76, "probability": 0.7541 }, { "start": 9031.76, "end": 9034.48, "probability": 0.8596 }, { "start": 9034.52, "end": 9035.86, "probability": 0.9272 }, { "start": 9036.26, "end": 9037.62, "probability": 0.6753 }, { "start": 9037.7, "end": 9038.49, "probability": 0.6348 }, { "start": 9039.52, "end": 9042.6, "probability": 0.9795 }, { "start": 9042.64, "end": 9046.08, "probability": 0.9925 }, { "start": 9048.6, "end": 9050.75, "probability": 0.9958 }, { "start": 9051.28, "end": 9052.28, "probability": 0.925 }, { "start": 9052.4, "end": 9056.26, "probability": 0.9893 }, { "start": 9056.38, "end": 9057.52, "probability": 0.8432 }, { "start": 9058.32, "end": 9061.18, "probability": 0.8987 }, { "start": 9061.18, "end": 9063.2, "probability": 0.9816 }, { "start": 9063.36, "end": 9064.4, "probability": 0.8162 }, { "start": 9064.42, "end": 9065.48, "probability": 0.8359 }, { "start": 9065.52, "end": 9066.52, "probability": 0.7305 }, { "start": 9066.64, "end": 9068.6, "probability": 0.5181 }, { "start": 9068.62, "end": 9068.64, "probability": 0.4787 }, { "start": 9068.64, "end": 9068.82, "probability": 0.7849 }, { "start": 9069.1, "end": 9074.36, "probability": 0.9366 }, { "start": 9075.84, "end": 9076.86, "probability": 0.9909 }, { "start": 9076.96, "end": 9078.32, "probability": 0.9819 }, { "start": 9079.16, "end": 9079.36, "probability": 0.0572 }, { "start": 9079.36, "end": 9082.1, "probability": 0.8613 }, { "start": 9082.66, "end": 9083.6, "probability": 0.8948 }, { "start": 9085.2, "end": 9087.88, "probability": 0.9795 }, { "start": 9087.88, "end": 9091.5, "probability": 0.9573 }, { "start": 9091.86, "end": 9092.92, "probability": 0.7659 }, { "start": 9094.4, "end": 9096.8, "probability": 0.9925 }, { "start": 9097.12, "end": 9101.5, "probability": 0.96 }, { "start": 9103.2, "end": 9104.1, "probability": 0.8106 }, { "start": 9106.06, "end": 9106.2, "probability": 0.365 }, { "start": 9106.28, "end": 9106.88, "probability": 0.634 }, { "start": 9106.98, "end": 9107.72, "probability": 0.6451 }, { "start": 9107.8, "end": 9110.4, "probability": 0.9962 }, { "start": 9111.96, "end": 9112.94, "probability": 0.6911 }, { "start": 9113.38, "end": 9118.22, "probability": 0.9925 }, { "start": 9118.22, "end": 9121.38, "probability": 0.9512 }, { "start": 9121.44, "end": 9122.33, "probability": 0.9071 }, { "start": 9123.94, "end": 9125.03, "probability": 0.9387 }, { "start": 9125.68, "end": 9127.46, "probability": 0.8864 }, { "start": 9128.64, "end": 9129.84, "probability": 0.8836 }, { "start": 9129.92, "end": 9132.5, "probability": 0.8974 }, { "start": 9132.62, "end": 9133.52, "probability": 0.6656 }, { "start": 9135.14, "end": 9141.42, "probability": 0.9919 }, { "start": 9143.24, "end": 9143.7, "probability": 0.7357 }, { "start": 9143.84, "end": 9146.12, "probability": 0.9646 }, { "start": 9146.16, "end": 9149.44, "probability": 0.9946 }, { "start": 9150.28, "end": 9150.36, "probability": 0.699 }, { "start": 9150.42, "end": 9153.78, "probability": 0.8945 }, { "start": 9155.56, "end": 9158.14, "probability": 0.9098 }, { "start": 9158.3, "end": 9159.2, "probability": 0.7637 }, { "start": 9160.1, "end": 9162.32, "probability": 0.9978 }, { "start": 9163.06, "end": 9166.6, "probability": 0.7603 }, { "start": 9166.66, "end": 9170.68, "probability": 0.9925 }, { "start": 9171.18, "end": 9171.2, "probability": 0.0 }, { "start": 9173.22, "end": 9175.58, "probability": 0.9934 }, { "start": 9175.58, "end": 9178.26, "probability": 0.8258 }, { "start": 9179.28, "end": 9182.62, "probability": 0.9988 }, { "start": 9182.96, "end": 9183.42, "probability": 0.4837 }, { "start": 9183.5, "end": 9184.74, "probability": 0.7143 }, { "start": 9186.12, "end": 9189.08, "probability": 0.9984 }, { "start": 9190.02, "end": 9192.74, "probability": 0.9978 }, { "start": 9192.74, "end": 9195.86, "probability": 0.9742 }, { "start": 9197.24, "end": 9200.62, "probability": 0.8446 }, { "start": 9200.62, "end": 9203.14, "probability": 0.7478 }, { "start": 9205.36, "end": 9206.68, "probability": 0.0901 }, { "start": 9206.8, "end": 9207.84, "probability": 0.9172 }, { "start": 9207.96, "end": 9210.94, "probability": 0.9941 }, { "start": 9212.26, "end": 9213.44, "probability": 0.9704 }, { "start": 9214.04, "end": 9216.2, "probability": 0.9784 }, { "start": 9217.6, "end": 9218.6, "probability": 0.7885 }, { "start": 9220.12, "end": 9220.85, "probability": 0.539 }, { "start": 9221.58, "end": 9223.18, "probability": 0.9705 }, { "start": 9223.32, "end": 9224.52, "probability": 0.9943 }, { "start": 9224.56, "end": 9225.48, "probability": 0.7766 }, { "start": 9225.54, "end": 9226.18, "probability": 0.8726 }, { "start": 9226.24, "end": 9226.92, "probability": 0.9185 }, { "start": 9227.0, "end": 9227.62, "probability": 0.9141 }, { "start": 9227.7, "end": 9228.48, "probability": 0.746 }, { "start": 9228.52, "end": 9229.44, "probability": 0.9709 }, { "start": 9231.12, "end": 9232.16, "probability": 0.7988 }, { "start": 9233.34, "end": 9233.56, "probability": 0.7291 }, { "start": 9233.62, "end": 9236.53, "probability": 0.8808 }, { "start": 9236.84, "end": 9238.8, "probability": 0.4598 }, { "start": 9238.98, "end": 9239.08, "probability": 0.3136 }, { "start": 9239.08, "end": 9239.82, "probability": 0.7352 }, { "start": 9241.48, "end": 9244.46, "probability": 0.9343 }, { "start": 9244.54, "end": 9247.16, "probability": 0.9987 }, { "start": 9247.56, "end": 9249.46, "probability": 0.9362 }, { "start": 9249.46, "end": 9253.0, "probability": 0.9988 }, { "start": 9253.26, "end": 9256.5, "probability": 0.9041 }, { "start": 9256.62, "end": 9258.6, "probability": 0.9888 }, { "start": 9259.48, "end": 9260.64, "probability": 0.3725 }, { "start": 9261.36, "end": 9262.74, "probability": 0.9954 }, { "start": 9263.4, "end": 9265.94, "probability": 0.9917 }, { "start": 9266.22, "end": 9268.18, "probability": 0.7399 }, { "start": 9268.18, "end": 9271.34, "probability": 0.9941 }, { "start": 9271.42, "end": 9273.0, "probability": 0.915 }, { "start": 9273.08, "end": 9274.64, "probability": 0.9761 }, { "start": 9275.4, "end": 9275.74, "probability": 0.7177 }, { "start": 9275.84, "end": 9276.4, "probability": 0.7187 }, { "start": 9276.48, "end": 9277.68, "probability": 0.7603 }, { "start": 9277.74, "end": 9278.44, "probability": 0.7445 }, { "start": 9278.46, "end": 9279.28, "probability": 0.7668 }, { "start": 9279.38, "end": 9280.1, "probability": 0.9921 }, { "start": 9280.24, "end": 9280.52, "probability": 0.9407 }, { "start": 9281.34, "end": 9281.92, "probability": 0.8134 }, { "start": 9281.96, "end": 9282.24, "probability": 0.58 }, { "start": 9282.4, "end": 9282.92, "probability": 0.7314 }, { "start": 9284.14, "end": 9284.56, "probability": 0.6972 }, { "start": 9284.66, "end": 9285.56, "probability": 0.6779 }, { "start": 9285.62, "end": 9287.14, "probability": 0.9426 }, { "start": 9287.22, "end": 9290.31, "probability": 0.9383 }, { "start": 9290.36, "end": 9290.36, "probability": 0.3513 }, { "start": 9290.36, "end": 9290.36, "probability": 0.1192 }, { "start": 9290.36, "end": 9292.42, "probability": 0.482 }, { "start": 9292.88, "end": 9294.44, "probability": 0.6011 }, { "start": 9295.04, "end": 9296.9, "probability": 0.9577 }, { "start": 9297.14, "end": 9298.52, "probability": 0.991 }, { "start": 9298.66, "end": 9301.62, "probability": 0.9123 }, { "start": 9301.7, "end": 9303.0, "probability": 0.9701 }, { "start": 9303.1, "end": 9303.96, "probability": 0.8202 }, { "start": 9304.2, "end": 9308.04, "probability": 0.9639 }, { "start": 9308.88, "end": 9309.4, "probability": 0.5845 }, { "start": 9309.64, "end": 9311.24, "probability": 0.9863 }, { "start": 9311.78, "end": 9312.94, "probability": 0.898 }, { "start": 9313.38, "end": 9314.24, "probability": 0.7939 }, { "start": 9314.96, "end": 9317.1, "probability": 0.932 }, { "start": 9319.46, "end": 9321.6, "probability": 0.6159 }, { "start": 9322.04, "end": 9323.02, "probability": 0.0853 }, { "start": 9323.22, "end": 9324.2, "probability": 0.6865 }, { "start": 9325.46, "end": 9326.2, "probability": 0.8111 }, { "start": 9327.54, "end": 9327.78, "probability": 0.4418 }, { "start": 9328.44, "end": 9329.9, "probability": 0.5913 }, { "start": 9330.06, "end": 9331.96, "probability": 0.5536 }, { "start": 9332.72, "end": 9333.5, "probability": 0.8459 }, { "start": 9334.64, "end": 9335.0, "probability": 0.9359 }, { "start": 9335.54, "end": 9336.5, "probability": 0.9548 }, { "start": 9337.12, "end": 9339.14, "probability": 0.5097 }, { "start": 9339.26, "end": 9339.78, "probability": 0.4973 }, { "start": 9341.74, "end": 9342.3, "probability": 0.7018 }, { "start": 9343.92, "end": 9345.38, "probability": 0.6611 }, { "start": 9346.42, "end": 9348.5, "probability": 0.7955 }, { "start": 9349.34, "end": 9352.48, "probability": 0.933 }, { "start": 9352.82, "end": 9355.46, "probability": 0.9468 }, { "start": 9355.58, "end": 9357.9, "probability": 0.9945 }, { "start": 9357.98, "end": 9358.92, "probability": 0.9426 }, { "start": 9359.66, "end": 9361.86, "probability": 0.929 }, { "start": 9362.28, "end": 9362.96, "probability": 0.7534 }, { "start": 9363.4, "end": 9364.04, "probability": 0.8212 }, { "start": 9364.1, "end": 9364.72, "probability": 0.9517 }, { "start": 9364.82, "end": 9365.44, "probability": 0.9268 }, { "start": 9365.5, "end": 9366.14, "probability": 0.8433 }, { "start": 9366.18, "end": 9366.6, "probability": 0.5531 }, { "start": 9367.28, "end": 9369.72, "probability": 0.9155 }, { "start": 9370.18, "end": 9370.42, "probability": 0.5196 }, { "start": 9370.54, "end": 9373.72, "probability": 0.9979 }, { "start": 9373.88, "end": 9376.28, "probability": 0.8203 }, { "start": 9376.34, "end": 9376.6, "probability": 0.4935 }, { "start": 9377.06, "end": 9377.88, "probability": 0.7646 }, { "start": 9379.28, "end": 9380.06, "probability": 0.161 }, { "start": 9380.56, "end": 9382.66, "probability": 0.9832 }, { "start": 9383.56, "end": 9386.22, "probability": 0.9066 }, { "start": 9386.94, "end": 9392.96, "probability": 0.978 }, { "start": 9393.54, "end": 9396.06, "probability": 0.9728 }, { "start": 9396.74, "end": 9396.86, "probability": 0.3858 }, { "start": 9396.9, "end": 9397.86, "probability": 0.6967 }, { "start": 9398.24, "end": 9398.82, "probability": 0.9171 }, { "start": 9399.32, "end": 9400.52, "probability": 0.8809 }, { "start": 9400.72, "end": 9401.02, "probability": 0.7629 }, { "start": 9401.44, "end": 9401.74, "probability": 0.3672 }, { "start": 9401.94, "end": 9402.04, "probability": 0.2442 }, { "start": 9402.24, "end": 9403.76, "probability": 0.7244 }, { "start": 9403.8, "end": 9404.18, "probability": 0.8187 }, { "start": 9404.7, "end": 9407.12, "probability": 0.9131 }, { "start": 9407.98, "end": 9409.48, "probability": 0.9893 }, { "start": 9410.14, "end": 9417.54, "probability": 0.9886 }, { "start": 9417.86, "end": 9418.2, "probability": 0.5113 }, { "start": 9418.28, "end": 9418.86, "probability": 0.6892 }, { "start": 9418.92, "end": 9421.64, "probability": 0.9464 }, { "start": 9421.76, "end": 9422.24, "probability": 0.1838 }, { "start": 9422.36, "end": 9423.84, "probability": 0.714 }, { "start": 9424.02, "end": 9425.68, "probability": 0.7669 }, { "start": 9425.8, "end": 9426.1, "probability": 0.7708 }, { "start": 9426.86, "end": 9428.82, "probability": 0.9971 }, { "start": 9429.18, "end": 9431.8, "probability": 0.8892 }, { "start": 9432.4, "end": 9434.46, "probability": 0.9888 }, { "start": 9434.94, "end": 9436.26, "probability": 0.9925 }, { "start": 9436.66, "end": 9438.03, "probability": 0.6682 }, { "start": 9438.6, "end": 9438.76, "probability": 0.391 }, { "start": 9438.76, "end": 9440.52, "probability": 0.5766 }, { "start": 9440.6, "end": 9441.14, "probability": 0.3323 }, { "start": 9441.74, "end": 9443.12, "probability": 0.9012 }, { "start": 9443.32, "end": 9444.87, "probability": 0.9917 }, { "start": 9445.28, "end": 9446.2, "probability": 0.736 }, { "start": 9446.24, "end": 9446.8, "probability": 0.911 }, { "start": 9446.8, "end": 9447.62, "probability": 0.96 }, { "start": 9448.24, "end": 9450.16, "probability": 0.9734 }, { "start": 9450.64, "end": 9451.34, "probability": 0.819 }, { "start": 9451.44, "end": 9453.12, "probability": 0.9747 }, { "start": 9453.2, "end": 9453.92, "probability": 0.7963 }, { "start": 9453.92, "end": 9454.38, "probability": 0.8403 }, { "start": 9454.54, "end": 9456.86, "probability": 0.905 }, { "start": 9456.9, "end": 9458.54, "probability": 0.9677 }, { "start": 9458.9, "end": 9460.4, "probability": 0.8015 }, { "start": 9461.14, "end": 9464.6, "probability": 0.9006 }, { "start": 9465.48, "end": 9467.72, "probability": 0.8523 }, { "start": 9467.82, "end": 9471.92, "probability": 0.9575 }, { "start": 9472.24, "end": 9473.3, "probability": 0.6719 }, { "start": 9474.1, "end": 9475.14, "probability": 0.5834 }, { "start": 9475.26, "end": 9477.2, "probability": 0.8945 }, { "start": 9477.36, "end": 9481.46, "probability": 0.9989 }, { "start": 9481.46, "end": 9485.4, "probability": 0.996 }, { "start": 9485.56, "end": 9486.44, "probability": 0.8447 }, { "start": 9486.6, "end": 9487.48, "probability": 0.9161 }, { "start": 9487.58, "end": 9487.9, "probability": 0.4368 }, { "start": 9488.04, "end": 9490.9, "probability": 0.6918 }, { "start": 9491.38, "end": 9493.86, "probability": 0.9979 }, { "start": 9494.06, "end": 9494.24, "probability": 0.8053 }, { "start": 9494.3, "end": 9496.72, "probability": 0.991 }, { "start": 9497.18, "end": 9498.24, "probability": 0.9136 }, { "start": 9498.42, "end": 9498.86, "probability": 0.7033 }, { "start": 9499.79, "end": 9503.76, "probability": 0.996 }, { "start": 9503.92, "end": 9507.92, "probability": 0.8054 }, { "start": 9507.92, "end": 9509.5, "probability": 0.8662 }, { "start": 9510.0, "end": 9514.44, "probability": 0.9785 }, { "start": 9514.44, "end": 9519.4, "probability": 0.9856 }, { "start": 9519.5, "end": 9520.18, "probability": 0.9642 }, { "start": 9520.84, "end": 9521.8, "probability": 0.3198 }, { "start": 9522.22, "end": 9523.18, "probability": 0.7806 }, { "start": 9523.38, "end": 9525.8, "probability": 0.9966 }, { "start": 9525.8, "end": 9528.02, "probability": 0.9861 }, { "start": 9528.46, "end": 9530.54, "probability": 0.9321 }, { "start": 9530.54, "end": 9531.1, "probability": 0.8137 }, { "start": 9531.14, "end": 9532.78, "probability": 0.6344 }, { "start": 9532.94, "end": 9533.7, "probability": 0.9206 }, { "start": 9534.56, "end": 9535.32, "probability": 0.6944 }, { "start": 9535.32, "end": 9535.32, "probability": 0.3058 }, { "start": 9535.32, "end": 9535.36, "probability": 0.015 }, { "start": 9535.36, "end": 9536.6, "probability": 0.5904 }, { "start": 9536.66, "end": 9537.57, "probability": 0.9172 }, { "start": 9537.88, "end": 9538.28, "probability": 0.7917 }, { "start": 9538.28, "end": 9539.18, "probability": 0.8473 }, { "start": 9539.18, "end": 9542.56, "probability": 0.9887 }, { "start": 9542.56, "end": 9546.94, "probability": 0.95 }, { "start": 9546.94, "end": 9550.56, "probability": 0.9963 }, { "start": 9551.34, "end": 9553.76, "probability": 0.6534 }, { "start": 9553.76, "end": 9555.0, "probability": 0.2012 }, { "start": 9555.0, "end": 9555.0, "probability": 0.4763 }, { "start": 9555.04, "end": 9555.94, "probability": 0.5944 }, { "start": 9556.74, "end": 9558.36, "probability": 0.8494 }, { "start": 9558.5, "end": 9560.18, "probability": 0.8629 }, { "start": 9560.34, "end": 9561.08, "probability": 0.596 }, { "start": 9561.14, "end": 9563.62, "probability": 0.9839 }, { "start": 9564.0, "end": 9566.52, "probability": 0.8106 }, { "start": 9567.04, "end": 9568.7, "probability": 0.9316 }, { "start": 9569.64, "end": 9570.02, "probability": 0.7366 }, { "start": 9570.9, "end": 9574.32, "probability": 0.9425 }, { "start": 9574.52, "end": 9576.46, "probability": 0.9609 }, { "start": 9576.84, "end": 9577.52, "probability": 0.9318 }, { "start": 9577.62, "end": 9580.93, "probability": 0.9487 }, { "start": 9581.28, "end": 9582.79, "probability": 0.9955 }, { "start": 9583.2, "end": 9583.92, "probability": 0.6157 }, { "start": 9584.0, "end": 9584.94, "probability": 0.8579 }, { "start": 9585.0, "end": 9586.2, "probability": 0.9249 }, { "start": 9586.68, "end": 9586.8, "probability": 0.6194 }, { "start": 9587.08, "end": 9588.54, "probability": 0.8492 }, { "start": 9589.02, "end": 9594.1, "probability": 0.94 }, { "start": 9594.56, "end": 9594.86, "probability": 0.8936 }, { "start": 9595.22, "end": 9595.34, "probability": 0.7274 }, { "start": 9595.46, "end": 9596.12, "probability": 0.8181 }, { "start": 9596.2, "end": 9597.8, "probability": 0.9342 }, { "start": 9597.8, "end": 9598.02, "probability": 0.3831 }, { "start": 9598.32, "end": 9600.54, "probability": 0.9964 }, { "start": 9600.94, "end": 9603.98, "probability": 0.9961 }, { "start": 9604.1, "end": 9604.6, "probability": 0.7359 }, { "start": 9604.6, "end": 9605.96, "probability": 0.802 }, { "start": 9606.0, "end": 9607.68, "probability": 0.5695 }, { "start": 9608.6, "end": 9610.82, "probability": 0.6542 }, { "start": 9612.02, "end": 9612.02, "probability": 0.5168 }, { "start": 9612.02, "end": 9613.14, "probability": 0.9595 }, { "start": 9613.48, "end": 9614.26, "probability": 0.5394 }, { "start": 9614.4, "end": 9615.84, "probability": 0.9914 }, { "start": 9617.12, "end": 9618.28, "probability": 0.1186 }, { "start": 9618.28, "end": 9621.1, "probability": 0.9133 }, { "start": 9625.36, "end": 9626.5, "probability": 0.9845 }, { "start": 9628.4, "end": 9629.96, "probability": 0.9369 }, { "start": 9631.32, "end": 9632.12, "probability": 0.2178 }, { "start": 9632.26, "end": 9633.96, "probability": 0.4974 }, { "start": 9634.16, "end": 9634.3, "probability": 0.2523 }, { "start": 9634.38, "end": 9635.22, "probability": 0.9712 }, { "start": 9635.46, "end": 9638.48, "probability": 0.0661 }, { "start": 9639.66, "end": 9641.64, "probability": 0.7735 }, { "start": 9641.76, "end": 9642.66, "probability": 0.9905 }, { "start": 9643.1, "end": 9645.22, "probability": 0.5648 }, { "start": 9647.14, "end": 9648.18, "probability": 0.8912 }, { "start": 9649.9, "end": 9652.46, "probability": 0.5268 }, { "start": 9653.64, "end": 9656.54, "probability": 0.9075 }, { "start": 9657.4, "end": 9658.96, "probability": 0.995 }, { "start": 9659.54, "end": 9662.42, "probability": 0.6924 }, { "start": 9662.52, "end": 9666.04, "probability": 0.9146 }, { "start": 9666.04, "end": 9668.54, "probability": 0.856 }, { "start": 9668.56, "end": 9669.36, "probability": 0.7245 }, { "start": 9669.44, "end": 9672.56, "probability": 0.6538 }, { "start": 9673.74, "end": 9678.06, "probability": 0.8397 }, { "start": 9678.9, "end": 9680.92, "probability": 0.983 }, { "start": 9682.02, "end": 9682.7, "probability": 0.4435 }, { "start": 9683.66, "end": 9684.52, "probability": 0.9451 }, { "start": 9684.66, "end": 9685.72, "probability": 0.9138 }, { "start": 9686.64, "end": 9692.18, "probability": 0.9937 }, { "start": 9692.74, "end": 9695.76, "probability": 0.9954 }, { "start": 9696.96, "end": 9697.68, "probability": 0.7745 }, { "start": 9697.84, "end": 9702.78, "probability": 0.9924 }, { "start": 9703.66, "end": 9704.65, "probability": 0.9714 }, { "start": 9705.16, "end": 9705.92, "probability": 0.8417 }, { "start": 9705.98, "end": 9707.8, "probability": 0.9895 }, { "start": 9708.64, "end": 9711.12, "probability": 0.9972 }, { "start": 9712.32, "end": 9715.56, "probability": 0.931 }, { "start": 9716.48, "end": 9717.9, "probability": 0.8957 }, { "start": 9717.94, "end": 9722.76, "probability": 0.9839 }, { "start": 9723.22, "end": 9724.25, "probability": 0.9758 }, { "start": 9725.34, "end": 9726.12, "probability": 0.8141 }, { "start": 9726.66, "end": 9730.44, "probability": 0.8591 }, { "start": 9730.74, "end": 9732.42, "probability": 0.8383 }, { "start": 9733.12, "end": 9735.14, "probability": 0.931 }, { "start": 9736.24, "end": 9739.54, "probability": 0.9382 }, { "start": 9740.12, "end": 9742.6, "probability": 0.9462 }, { "start": 9743.22, "end": 9747.32, "probability": 0.9302 }, { "start": 9748.32, "end": 9749.7, "probability": 0.803 }, { "start": 9750.26, "end": 9752.12, "probability": 0.9942 }, { "start": 9752.2, "end": 9752.46, "probability": 0.6917 }, { "start": 9752.5, "end": 9754.08, "probability": 0.9165 }, { "start": 9754.34, "end": 9755.02, "probability": 0.9671 }, { "start": 9755.7, "end": 9756.14, "probability": 0.482 }, { "start": 9756.7, "end": 9757.66, "probability": 0.4847 }, { "start": 9758.62, "end": 9759.82, "probability": 0.6697 }, { "start": 9760.04, "end": 9761.6, "probability": 0.5447 }, { "start": 9761.78, "end": 9762.02, "probability": 0.8636 }, { "start": 9762.46, "end": 9764.34, "probability": 0.9119 }, { "start": 9764.76, "end": 9765.28, "probability": 0.6247 }, { "start": 9765.4, "end": 9769.2, "probability": 0.9531 }, { "start": 9769.8, "end": 9772.35, "probability": 0.95 }, { "start": 9772.88, "end": 9773.7, "probability": 0.8118 }, { "start": 9773.78, "end": 9776.78, "probability": 0.8846 }, { "start": 9776.78, "end": 9779.82, "probability": 0.8575 }, { "start": 9780.38, "end": 9781.52, "probability": 0.5681 }, { "start": 9781.6, "end": 9782.54, "probability": 0.7506 }, { "start": 9782.68, "end": 9783.74, "probability": 0.6805 }, { "start": 9784.26, "end": 9784.68, "probability": 0.7641 }, { "start": 9785.4, "end": 9788.14, "probability": 0.9498 }, { "start": 9788.36, "end": 9791.08, "probability": 0.9207 }, { "start": 9791.56, "end": 9792.28, "probability": 0.9645 }, { "start": 9792.78, "end": 9793.92, "probability": 0.7052 }, { "start": 9794.84, "end": 9796.28, "probability": 0.9487 }, { "start": 9797.0, "end": 9797.84, "probability": 0.9517 }, { "start": 9798.72, "end": 9798.98, "probability": 0.4961 }, { "start": 9799.02, "end": 9800.91, "probability": 0.7069 }, { "start": 9801.28, "end": 9802.16, "probability": 0.5725 }, { "start": 9802.64, "end": 9804.7, "probability": 0.9945 }, { "start": 9805.72, "end": 9808.42, "probability": 0.9968 }, { "start": 9809.1, "end": 9810.86, "probability": 0.4496 }, { "start": 9810.9, "end": 9811.68, "probability": 0.6618 }, { "start": 9812.0, "end": 9813.06, "probability": 0.9897 }, { "start": 9813.32, "end": 9814.16, "probability": 0.9715 }, { "start": 9814.54, "end": 9816.34, "probability": 0.9517 }, { "start": 9816.9, "end": 9818.94, "probability": 0.9438 }, { "start": 9819.28, "end": 9819.66, "probability": 0.6795 }, { "start": 9821.04, "end": 9823.34, "probability": 0.9988 }, { "start": 9823.34, "end": 9827.42, "probability": 0.9572 }, { "start": 9827.82, "end": 9828.58, "probability": 0.9063 }, { "start": 9829.46, "end": 9830.38, "probability": 0.9953 }, { "start": 9830.72, "end": 9831.88, "probability": 0.9968 }, { "start": 9831.88, "end": 9832.8, "probability": 0.8428 }, { "start": 9833.2, "end": 9833.94, "probability": 0.6677 }, { "start": 9834.02, "end": 9836.5, "probability": 0.9202 }, { "start": 9836.98, "end": 9838.78, "probability": 0.9714 }, { "start": 9838.78, "end": 9841.58, "probability": 0.9767 }, { "start": 9841.88, "end": 9843.9, "probability": 0.9957 }, { "start": 9844.76, "end": 9846.26, "probability": 0.3134 }, { "start": 9846.26, "end": 9848.3, "probability": 0.9824 }, { "start": 9848.64, "end": 9849.7, "probability": 0.7533 }, { "start": 9849.94, "end": 9850.38, "probability": 0.6926 }, { "start": 9851.14, "end": 9851.38, "probability": 0.8163 }, { "start": 9851.76, "end": 9852.1, "probability": 0.7214 }, { "start": 9852.48, "end": 9852.8, "probability": 0.9468 }, { "start": 9853.52, "end": 9856.08, "probability": 0.2988 }, { "start": 9856.08, "end": 9857.71, "probability": 0.5414 }, { "start": 9858.34, "end": 9860.38, "probability": 0.9968 }, { "start": 9860.72, "end": 9862.64, "probability": 0.8218 }, { "start": 9862.96, "end": 9865.3, "probability": 0.9905 }, { "start": 9865.3, "end": 9868.58, "probability": 0.9937 }, { "start": 9869.7, "end": 9872.26, "probability": 0.7368 }, { "start": 9873.02, "end": 9873.66, "probability": 0.7141 }, { "start": 9873.74, "end": 9874.12, "probability": 0.9536 }, { "start": 9874.78, "end": 9876.46, "probability": 0.9099 }, { "start": 9877.72, "end": 9882.18, "probability": 0.9436 }, { "start": 9882.44, "end": 9884.26, "probability": 0.9697 }, { "start": 9884.72, "end": 9887.46, "probability": 0.9968 }, { "start": 9887.88, "end": 9888.97, "probability": 0.9738 }, { "start": 9889.3, "end": 9891.7, "probability": 0.9976 }, { "start": 9891.7, "end": 9894.78, "probability": 0.9983 }, { "start": 9895.28, "end": 9896.45, "probability": 0.9914 }, { "start": 9896.92, "end": 9898.5, "probability": 0.9006 }, { "start": 9898.94, "end": 9899.68, "probability": 0.8142 }, { "start": 9900.08, "end": 9904.02, "probability": 0.9719 }, { "start": 9904.38, "end": 9905.62, "probability": 0.9281 }, { "start": 9906.0, "end": 9907.12, "probability": 0.9562 }, { "start": 9907.24, "end": 9907.98, "probability": 0.8148 }, { "start": 9908.18, "end": 9909.08, "probability": 0.8633 }, { "start": 9909.08, "end": 9910.1, "probability": 0.7336 }, { "start": 9910.4, "end": 9913.12, "probability": 0.9767 }, { "start": 9913.38, "end": 9914.2, "probability": 0.9187 }, { "start": 9914.96, "end": 9915.44, "probability": 0.8887 }, { "start": 9915.56, "end": 9916.26, "probability": 0.6812 }, { "start": 9916.66, "end": 9919.31, "probability": 0.8765 }, { "start": 9920.36, "end": 9926.08, "probability": 0.9804 }, { "start": 9926.44, "end": 9928.0, "probability": 0.9106 }, { "start": 9928.56, "end": 9929.88, "probability": 0.9655 }, { "start": 9930.02, "end": 9930.02, "probability": 0.6993 }, { "start": 9930.02, "end": 9932.32, "probability": 0.9973 }, { "start": 9932.32, "end": 9935.88, "probability": 0.9989 }, { "start": 9935.96, "end": 9938.7, "probability": 0.8503 }, { "start": 9939.3, "end": 9939.54, "probability": 0.615 }, { "start": 9940.0, "end": 9943.78, "probability": 0.8151 }, { "start": 9944.48, "end": 9944.93, "probability": 0.5393 }, { "start": 9945.8, "end": 9946.62, "probability": 0.7068 }, { "start": 9947.36, "end": 9947.81, "probability": 0.4694 }, { "start": 9948.36, "end": 9949.78, "probability": 0.8826 }, { "start": 9967.76, "end": 9968.26, "probability": 0.6874 }, { "start": 9972.16, "end": 9973.9, "probability": 0.7525 }, { "start": 9976.48, "end": 9978.07, "probability": 0.9961 }, { "start": 9979.04, "end": 9981.1, "probability": 0.9448 }, { "start": 9981.9, "end": 9984.3, "probability": 0.6657 }, { "start": 9984.3, "end": 9986.24, "probability": 0.5205 }, { "start": 9987.8, "end": 9991.6, "probability": 0.8677 }, { "start": 9995.04, "end": 9997.36, "probability": 0.8569 }, { "start": 9999.17, "end": 10002.18, "probability": 0.8311 }, { "start": 10002.28, "end": 10003.88, "probability": 0.9917 }, { "start": 10004.64, "end": 10009.58, "probability": 0.7564 }, { "start": 10010.5, "end": 10014.08, "probability": 0.9748 }, { "start": 10014.72, "end": 10019.18, "probability": 0.9562 }, { "start": 10019.3, "end": 10021.94, "probability": 0.9653 }, { "start": 10021.94, "end": 10029.43, "probability": 0.9381 }, { "start": 10029.68, "end": 10034.66, "probability": 0.9834 }, { "start": 10035.2, "end": 10037.02, "probability": 0.9713 }, { "start": 10037.12, "end": 10042.38, "probability": 0.993 }, { "start": 10043.14, "end": 10043.86, "probability": 0.8889 }, { "start": 10043.98, "end": 10048.58, "probability": 0.9847 }, { "start": 10048.76, "end": 10053.62, "probability": 0.9902 }, { "start": 10053.74, "end": 10054.38, "probability": 0.9746 }, { "start": 10055.42, "end": 10056.16, "probability": 0.8777 }, { "start": 10056.96, "end": 10059.56, "probability": 0.7943 }, { "start": 10059.7, "end": 10060.48, "probability": 0.9797 }, { "start": 10061.1, "end": 10064.38, "probability": 0.8345 }, { "start": 10064.92, "end": 10067.36, "probability": 0.9453 }, { "start": 10067.48, "end": 10067.82, "probability": 0.4901 }, { "start": 10067.92, "end": 10067.92, "probability": 0.3906 }, { "start": 10067.92, "end": 10070.74, "probability": 0.6655 }, { "start": 10071.56, "end": 10074.48, "probability": 0.8528 }, { "start": 10075.08, "end": 10076.66, "probability": 0.98 }, { "start": 10076.76, "end": 10082.48, "probability": 0.9841 }, { "start": 10082.62, "end": 10084.34, "probability": 0.9889 }, { "start": 10084.8, "end": 10086.15, "probability": 0.9957 }, { "start": 10087.18, "end": 10089.24, "probability": 0.8702 }, { "start": 10089.38, "end": 10090.14, "probability": 0.9912 }, { "start": 10090.74, "end": 10093.24, "probability": 0.9935 }, { "start": 10094.44, "end": 10095.0, "probability": 0.5877 }, { "start": 10095.3, "end": 10096.66, "probability": 0.7407 }, { "start": 10097.91, "end": 10098.62, "probability": 0.9016 }, { "start": 10099.32, "end": 10100.2, "probability": 0.9739 }, { "start": 10100.92, "end": 10103.46, "probability": 0.9901 }, { "start": 10103.56, "end": 10106.5, "probability": 0.6798 }, { "start": 10106.56, "end": 10108.38, "probability": 0.9955 }, { "start": 10108.96, "end": 10110.4, "probability": 0.9976 }, { "start": 10110.92, "end": 10116.56, "probability": 0.9815 }, { "start": 10117.24, "end": 10118.4, "probability": 0.9294 }, { "start": 10118.94, "end": 10121.36, "probability": 0.996 }, { "start": 10121.98, "end": 10127.84, "probability": 0.9974 }, { "start": 10128.5, "end": 10132.42, "probability": 0.9995 }, { "start": 10132.56, "end": 10135.22, "probability": 0.7769 }, { "start": 10135.54, "end": 10135.54, "probability": 0.3577 }, { "start": 10135.54, "end": 10136.24, "probability": 0.7219 }, { "start": 10137.12, "end": 10139.05, "probability": 0.9858 }, { "start": 10139.52, "end": 10140.15, "probability": 0.8813 }, { "start": 10140.8, "end": 10142.82, "probability": 0.9966 }, { "start": 10143.18, "end": 10144.04, "probability": 0.8906 }, { "start": 10144.1, "end": 10146.52, "probability": 0.8654 }, { "start": 10146.52, "end": 10148.88, "probability": 0.4746 }, { "start": 10148.96, "end": 10149.68, "probability": 0.6987 }, { "start": 10149.8, "end": 10151.1, "probability": 0.9052 }, { "start": 10151.3, "end": 10151.86, "probability": 0.4522 }, { "start": 10151.86, "end": 10152.76, "probability": 0.9084 }, { "start": 10152.82, "end": 10157.22, "probability": 0.9695 }, { "start": 10157.86, "end": 10159.96, "probability": 0.9857 }, { "start": 10160.44, "end": 10160.68, "probability": 0.7125 }, { "start": 10160.68, "end": 10162.92, "probability": 0.9973 }, { "start": 10163.36, "end": 10165.9, "probability": 0.9962 }, { "start": 10166.42, "end": 10166.88, "probability": 0.9643 }, { "start": 10166.92, "end": 10168.22, "probability": 0.9645 }, { "start": 10168.36, "end": 10170.58, "probability": 0.8501 }, { "start": 10171.7, "end": 10172.52, "probability": 0.7931 }, { "start": 10172.94, "end": 10174.72, "probability": 0.7407 }, { "start": 10174.84, "end": 10177.4, "probability": 0.9963 }, { "start": 10177.82, "end": 10178.82, "probability": 0.8948 }, { "start": 10179.54, "end": 10183.08, "probability": 0.8737 }, { "start": 10183.36, "end": 10185.84, "probability": 0.9953 }, { "start": 10186.68, "end": 10187.28, "probability": 0.7581 }, { "start": 10187.6, "end": 10188.94, "probability": 0.9136 }, { "start": 10189.06, "end": 10189.52, "probability": 0.6426 }, { "start": 10189.52, "end": 10193.12, "probability": 0.6314 }, { "start": 10194.48, "end": 10199.62, "probability": 0.9671 }, { "start": 10199.74, "end": 10202.26, "probability": 0.9989 }, { "start": 10202.96, "end": 10205.5, "probability": 0.9679 }, { "start": 10205.7, "end": 10206.96, "probability": 0.8559 }, { "start": 10207.18, "end": 10209.24, "probability": 0.9696 }, { "start": 10209.3, "end": 10210.16, "probability": 0.5607 }, { "start": 10210.24, "end": 10211.28, "probability": 0.9277 }, { "start": 10211.8, "end": 10212.56, "probability": 0.7627 }, { "start": 10212.6, "end": 10214.44, "probability": 0.9867 }, { "start": 10214.88, "end": 10215.6, "probability": 0.784 }, { "start": 10215.78, "end": 10216.14, "probability": 0.9701 }, { "start": 10216.32, "end": 10217.7, "probability": 0.9873 }, { "start": 10217.76, "end": 10218.3, "probability": 0.9145 }, { "start": 10218.36, "end": 10218.72, "probability": 0.9277 }, { "start": 10219.66, "end": 10220.02, "probability": 0.8839 }, { "start": 10220.7, "end": 10222.52, "probability": 0.8948 }, { "start": 10223.78, "end": 10223.96, "probability": 0.4767 }, { "start": 10225.92, "end": 10230.5, "probability": 0.9531 }, { "start": 10231.28, "end": 10232.58, "probability": 0.7955 }, { "start": 10232.9, "end": 10233.48, "probability": 0.2951 }, { "start": 10233.48, "end": 10234.6, "probability": 0.6782 }, { "start": 10235.98, "end": 10238.36, "probability": 0.54 }, { "start": 10238.36, "end": 10238.62, "probability": 0.361 }, { "start": 10253.1, "end": 10254.16, "probability": 0.1962 }, { "start": 10254.86, "end": 10256.66, "probability": 0.696 }, { "start": 10257.54, "end": 10258.86, "probability": 0.5785 }, { "start": 10262.1, "end": 10264.78, "probability": 0.6707 }, { "start": 10265.46, "end": 10266.14, "probability": 0.6545 }, { "start": 10267.14, "end": 10269.2, "probability": 0.806 }, { "start": 10269.82, "end": 10273.9, "probability": 0.9912 }, { "start": 10274.34, "end": 10277.82, "probability": 0.9556 }, { "start": 10278.08, "end": 10278.52, "probability": 0.5061 }, { "start": 10278.94, "end": 10279.66, "probability": 0.7192 }, { "start": 10280.12, "end": 10280.28, "probability": 0.0221 }, { "start": 10280.65, "end": 10284.3, "probability": 0.7037 }, { "start": 10284.5, "end": 10286.2, "probability": 0.7598 }, { "start": 10286.46, "end": 10289.06, "probability": 0.7719 }, { "start": 10289.2, "end": 10294.24, "probability": 0.9951 }, { "start": 10294.38, "end": 10294.76, "probability": 0.9138 }, { "start": 10295.2, "end": 10295.94, "probability": 0.9684 }, { "start": 10296.82, "end": 10299.2, "probability": 0.7006 }, { "start": 10300.18, "end": 10302.26, "probability": 0.9648 }, { "start": 10303.78, "end": 10307.22, "probability": 0.9639 }, { "start": 10309.4, "end": 10311.96, "probability": 0.8096 }, { "start": 10312.04, "end": 10314.82, "probability": 0.7864 }, { "start": 10315.34, "end": 10317.5, "probability": 0.8926 }, { "start": 10317.7, "end": 10320.74, "probability": 0.5708 }, { "start": 10321.44, "end": 10322.28, "probability": 0.2671 }, { "start": 10322.28, "end": 10322.28, "probability": 0.0935 }, { "start": 10322.28, "end": 10322.28, "probability": 0.0612 }, { "start": 10322.28, "end": 10322.63, "probability": 0.4052 }, { "start": 10323.06, "end": 10324.62, "probability": 0.8376 }, { "start": 10324.74, "end": 10325.14, "probability": 0.1177 }, { "start": 10326.82, "end": 10327.66, "probability": 0.1808 }, { "start": 10328.2, "end": 10328.64, "probability": 0.319 }, { "start": 10328.64, "end": 10329.16, "probability": 0.3836 }, { "start": 10329.16, "end": 10331.22, "probability": 0.9277 }, { "start": 10332.68, "end": 10333.18, "probability": 0.0337 }, { "start": 10333.18, "end": 10333.2, "probability": 0.0506 }, { "start": 10333.2, "end": 10333.28, "probability": 0.0203 }, { "start": 10333.28, "end": 10333.77, "probability": 0.2267 }, { "start": 10333.92, "end": 10335.42, "probability": 0.8998 }, { "start": 10335.5, "end": 10335.86, "probability": 0.6575 }, { "start": 10337.44, "end": 10341.3, "probability": 0.9648 }, { "start": 10341.34, "end": 10343.4, "probability": 0.4771 }, { "start": 10344.46, "end": 10345.16, "probability": 0.0027 }, { "start": 10347.22, "end": 10350.52, "probability": 0.1189 }, { "start": 10350.88, "end": 10351.38, "probability": 0.6233 }, { "start": 10354.76, "end": 10355.22, "probability": 0.3139 }, { "start": 10359.78, "end": 10360.95, "probability": 0.5378 }, { "start": 10362.78, "end": 10362.78, "probability": 0.1233 }, { "start": 10362.78, "end": 10363.26, "probability": 0.8058 }, { "start": 10364.86, "end": 10368.38, "probability": 0.7739 }, { "start": 10369.74, "end": 10373.52, "probability": 0.9787 }, { "start": 10374.1, "end": 10388.94, "probability": 0.1544 }, { "start": 10388.94, "end": 10388.98, "probability": 0.0373 }, { "start": 10388.98, "end": 10390.04, "probability": 0.0394 }, { "start": 10392.24, "end": 10395.86, "probability": 0.0348 }, { "start": 10396.72, "end": 10397.02, "probability": 0.4412 }, { "start": 10398.32, "end": 10402.46, "probability": 0.8966 }, { "start": 10402.9, "end": 10404.36, "probability": 0.7497 }, { "start": 10404.48, "end": 10405.14, "probability": 0.5898 }, { "start": 10405.72, "end": 10407.1, "probability": 0.9199 }, { "start": 10417.04, "end": 10422.34, "probability": 0.9785 }, { "start": 10422.5, "end": 10423.28, "probability": 0.8474 }, { "start": 10424.48, "end": 10425.94, "probability": 0.9961 }, { "start": 10426.3, "end": 10427.64, "probability": 0.7783 }, { "start": 10428.64, "end": 10431.2, "probability": 0.4516 }, { "start": 10431.22, "end": 10433.7, "probability": 0.1863 }, { "start": 10433.9, "end": 10434.94, "probability": 0.6439 }, { "start": 10435.06, "end": 10436.32, "probability": 0.9809 }, { "start": 10437.12, "end": 10439.48, "probability": 0.713 }, { "start": 10439.58, "end": 10439.88, "probability": 0.8927 }, { "start": 10451.92, "end": 10452.16, "probability": 0.3417 }, { "start": 10452.24, "end": 10454.52, "probability": 0.6719 }, { "start": 10456.68, "end": 10458.26, "probability": 0.8116 }, { "start": 10458.82, "end": 10460.87, "probability": 0.8518 }, { "start": 10463.84, "end": 10470.22, "probability": 0.9265 }, { "start": 10471.14, "end": 10472.72, "probability": 0.9989 }, { "start": 10473.54, "end": 10474.56, "probability": 0.9832 }, { "start": 10475.84, "end": 10478.66, "probability": 0.9943 }, { "start": 10479.68, "end": 10480.66, "probability": 0.7295 }, { "start": 10480.86, "end": 10483.34, "probability": 0.9203 }, { "start": 10485.26, "end": 10487.86, "probability": 0.9242 }, { "start": 10488.3, "end": 10492.5, "probability": 0.9802 }, { "start": 10493.56, "end": 10494.48, "probability": 0.5483 }, { "start": 10495.58, "end": 10498.6, "probability": 0.9469 }, { "start": 10500.0, "end": 10505.86, "probability": 0.8484 }, { "start": 10506.02, "end": 10510.7, "probability": 0.9918 }, { "start": 10512.38, "end": 10513.18, "probability": 0.5089 }, { "start": 10513.52, "end": 10518.58, "probability": 0.9598 }, { "start": 10519.86, "end": 10524.96, "probability": 0.9879 }, { "start": 10525.82, "end": 10526.76, "probability": 0.8199 }, { "start": 10527.42, "end": 10529.02, "probability": 0.8266 }, { "start": 10529.62, "end": 10530.86, "probability": 0.9728 }, { "start": 10531.32, "end": 10533.38, "probability": 0.7484 }, { "start": 10534.46, "end": 10539.78, "probability": 0.9888 }, { "start": 10542.42, "end": 10543.93, "probability": 0.9583 }, { "start": 10544.46, "end": 10548.84, "probability": 0.9565 }, { "start": 10548.96, "end": 10552.52, "probability": 0.9963 }, { "start": 10553.26, "end": 10555.1, "probability": 0.8409 }, { "start": 10557.2, "end": 10560.46, "probability": 0.627 }, { "start": 10562.26, "end": 10568.54, "probability": 0.9388 }, { "start": 10569.24, "end": 10572.34, "probability": 0.9476 }, { "start": 10572.42, "end": 10577.64, "probability": 0.9941 }, { "start": 10580.24, "end": 10583.36, "probability": 0.9348 }, { "start": 10583.36, "end": 10586.04, "probability": 0.9525 }, { "start": 10586.96, "end": 10588.64, "probability": 0.9319 }, { "start": 10589.56, "end": 10590.24, "probability": 0.5115 }, { "start": 10592.09, "end": 10596.52, "probability": 0.9692 }, { "start": 10598.06, "end": 10604.68, "probability": 0.9915 }, { "start": 10606.82, "end": 10607.04, "probability": 0.8301 }, { "start": 10607.78, "end": 10611.86, "probability": 0.9836 }, { "start": 10612.44, "end": 10613.96, "probability": 0.9983 }, { "start": 10615.82, "end": 10620.24, "probability": 0.7925 }, { "start": 10621.16, "end": 10623.92, "probability": 0.9897 }, { "start": 10624.12, "end": 10628.88, "probability": 0.835 }, { "start": 10629.64, "end": 10630.84, "probability": 0.7867 }, { "start": 10632.3, "end": 10634.76, "probability": 0.7007 }, { "start": 10634.88, "end": 10635.46, "probability": 0.4691 }, { "start": 10641.14, "end": 10644.22, "probability": 0.0475 }, { "start": 10646.38, "end": 10646.48, "probability": 0.1287 }, { "start": 10664.84, "end": 10666.8, "probability": 0.7314 }, { "start": 10670.62, "end": 10672.02, "probability": 0.2642 }, { "start": 10673.06, "end": 10674.76, "probability": 0.0558 }, { "start": 10675.02, "end": 10675.24, "probability": 0.1706 }, { "start": 10675.32, "end": 10676.56, "probability": 0.0766 }, { "start": 10692.54, "end": 10692.98, "probability": 0.1436 }, { "start": 10694.36, "end": 10697.26, "probability": 0.991 }, { "start": 10698.34, "end": 10703.3, "probability": 0.9814 }, { "start": 10704.9, "end": 10705.46, "probability": 0.5409 }, { "start": 10706.6, "end": 10707.4, "probability": 0.6739 }, { "start": 10707.54, "end": 10708.02, "probability": 0.8596 }, { "start": 10708.16, "end": 10710.06, "probability": 0.9897 }, { "start": 10711.48, "end": 10715.64, "probability": 0.9568 }, { "start": 10715.68, "end": 10717.08, "probability": 0.7849 }, { "start": 10719.6, "end": 10722.58, "probability": 0.79 }, { "start": 10724.02, "end": 10725.58, "probability": 0.9932 }, { "start": 10726.5, "end": 10729.24, "probability": 0.5816 }, { "start": 10730.54, "end": 10732.14, "probability": 0.8189 }, { "start": 10732.3, "end": 10734.53, "probability": 0.6752 }, { "start": 10735.58, "end": 10736.22, "probability": 0.6816 }, { "start": 10736.28, "end": 10737.66, "probability": 0.7803 }, { "start": 10738.72, "end": 10742.82, "probability": 0.992 }, { "start": 10744.34, "end": 10745.68, "probability": 0.9945 }, { "start": 10746.36, "end": 10749.24, "probability": 0.9902 }, { "start": 10750.24, "end": 10751.72, "probability": 0.6774 }, { "start": 10752.76, "end": 10753.52, "probability": 0.881 }, { "start": 10754.24, "end": 10756.0, "probability": 0.7343 }, { "start": 10756.98, "end": 10759.04, "probability": 0.9668 }, { "start": 10760.86, "end": 10765.1, "probability": 0.9946 }, { "start": 10765.82, "end": 10767.36, "probability": 0.9427 }, { "start": 10767.68, "end": 10768.0, "probability": 0.8688 }, { "start": 10768.76, "end": 10770.7, "probability": 0.8787 }, { "start": 10771.94, "end": 10773.56, "probability": 0.6593 }, { "start": 10774.06, "end": 10776.2, "probability": 0.9951 }, { "start": 10776.36, "end": 10777.82, "probability": 0.9638 }, { "start": 10778.74, "end": 10778.86, "probability": 0.5146 }, { "start": 10778.98, "end": 10779.86, "probability": 0.9512 }, { "start": 10779.98, "end": 10782.84, "probability": 0.7793 }, { "start": 10783.72, "end": 10785.16, "probability": 0.4642 }, { "start": 10785.26, "end": 10786.42, "probability": 0.9829 }, { "start": 10786.56, "end": 10788.84, "probability": 0.9277 }, { "start": 10790.3, "end": 10791.8, "probability": 0.9486 }, { "start": 10792.74, "end": 10794.28, "probability": 0.9209 }, { "start": 10795.6, "end": 10796.82, "probability": 0.9624 }, { "start": 10797.72, "end": 10798.78, "probability": 0.9434 }, { "start": 10799.24, "end": 10802.5, "probability": 0.5603 }, { "start": 10802.5, "end": 10802.5, "probability": 0.1897 }, { "start": 10802.5, "end": 10804.6, "probability": 0.9716 }, { "start": 10804.64, "end": 10807.94, "probability": 0.9293 }, { "start": 10808.54, "end": 10810.92, "probability": 0.9902 }, { "start": 10812.46, "end": 10815.34, "probability": 0.9878 }, { "start": 10816.5, "end": 10822.08, "probability": 0.9899 }, { "start": 10822.16, "end": 10823.68, "probability": 0.9662 }, { "start": 10825.96, "end": 10827.92, "probability": 0.7702 }, { "start": 10829.16, "end": 10830.62, "probability": 0.7394 }, { "start": 10831.56, "end": 10834.06, "probability": 0.9912 }, { "start": 10835.42, "end": 10837.32, "probability": 0.9956 }, { "start": 10837.4, "end": 10838.6, "probability": 0.8249 }, { "start": 10839.2, "end": 10840.12, "probability": 0.9203 }, { "start": 10841.42, "end": 10845.2, "probability": 0.9953 }, { "start": 10846.22, "end": 10847.64, "probability": 0.7665 }, { "start": 10849.18, "end": 10850.5, "probability": 0.873 }, { "start": 10851.62, "end": 10853.3, "probability": 0.7851 }, { "start": 10854.36, "end": 10856.62, "probability": 0.9958 }, { "start": 10857.82, "end": 10858.6, "probability": 0.94 }, { "start": 10859.18, "end": 10860.54, "probability": 0.7659 }, { "start": 10861.76, "end": 10862.76, "probability": 0.823 }, { "start": 10864.02, "end": 10865.6, "probability": 0.5938 }, { "start": 10868.12, "end": 10871.68, "probability": 0.7664 }, { "start": 10874.3, "end": 10877.3, "probability": 0.7709 }, { "start": 10877.4, "end": 10879.8, "probability": 0.9883 }, { "start": 10882.0, "end": 10882.88, "probability": 0.6954 }, { "start": 10883.74, "end": 10884.7, "probability": 0.9626 }, { "start": 10885.98, "end": 10891.28, "probability": 0.9929 }, { "start": 10893.7, "end": 10898.66, "probability": 0.9978 }, { "start": 10899.24, "end": 10902.86, "probability": 0.9844 }, { "start": 10902.98, "end": 10903.94, "probability": 0.7037 }, { "start": 10907.31, "end": 10909.64, "probability": 0.8111 }, { "start": 10910.18, "end": 10911.2, "probability": 0.1813 }, { "start": 10911.44, "end": 10913.1, "probability": 0.9746 }, { "start": 10914.64, "end": 10916.52, "probability": 0.9979 }, { "start": 10916.62, "end": 10917.8, "probability": 0.8064 }, { "start": 10918.24, "end": 10919.36, "probability": 0.8153 }, { "start": 10919.56, "end": 10921.0, "probability": 0.9657 }, { "start": 10921.16, "end": 10924.32, "probability": 0.8394 }, { "start": 10924.76, "end": 10926.64, "probability": 0.9868 }, { "start": 10928.12, "end": 10929.38, "probability": 0.7911 }, { "start": 10930.4, "end": 10932.3, "probability": 0.9869 }, { "start": 10933.22, "end": 10936.16, "probability": 0.9839 }, { "start": 10936.22, "end": 10937.06, "probability": 0.8439 }, { "start": 10938.4, "end": 10940.14, "probability": 0.9831 }, { "start": 10941.44, "end": 10942.86, "probability": 0.9873 }, { "start": 10943.6, "end": 10947.96, "probability": 0.996 }, { "start": 10948.46, "end": 10949.12, "probability": 0.7504 }, { "start": 10949.26, "end": 10949.56, "probability": 0.7778 }, { "start": 10950.1, "end": 10952.73, "probability": 0.9741 }, { "start": 10953.22, "end": 10955.04, "probability": 0.8401 }, { "start": 10957.75, "end": 10959.81, "probability": 0.823 }, { "start": 10960.62, "end": 10961.24, "probability": 0.949 }, { "start": 10961.84, "end": 10962.82, "probability": 0.7693 }, { "start": 10968.58, "end": 10970.38, "probability": 0.8277 }, { "start": 10972.14, "end": 10974.12, "probability": 0.7738 }, { "start": 10976.84, "end": 10978.9, "probability": 0.9864 }, { "start": 10981.14, "end": 10986.02, "probability": 0.9974 }, { "start": 10987.12, "end": 10988.46, "probability": 0.9573 }, { "start": 10989.1, "end": 10990.0, "probability": 0.8872 }, { "start": 10992.06, "end": 10997.82, "probability": 0.9969 }, { "start": 10998.26, "end": 10999.34, "probability": 0.6963 }, { "start": 11001.22, "end": 11003.22, "probability": 0.9972 }, { "start": 11005.08, "end": 11005.78, "probability": 0.9949 }, { "start": 11007.18, "end": 11008.5, "probability": 0.8192 }, { "start": 11009.08, "end": 11012.14, "probability": 0.9761 }, { "start": 11012.66, "end": 11015.02, "probability": 0.9701 }, { "start": 11015.8, "end": 11017.14, "probability": 0.9753 }, { "start": 11018.6, "end": 11024.0, "probability": 0.9971 }, { "start": 11024.16, "end": 11024.52, "probability": 0.7955 }, { "start": 11024.9, "end": 11025.24, "probability": 0.7393 }, { "start": 11025.92, "end": 11027.6, "probability": 0.9712 }, { "start": 11028.16, "end": 11029.8, "probability": 0.9572 }, { "start": 11030.86, "end": 11033.8, "probability": 0.9934 }, { "start": 11034.58, "end": 11036.16, "probability": 0.9148 }, { "start": 11037.5, "end": 11038.43, "probability": 0.4462 }, { "start": 11039.04, "end": 11041.08, "probability": 0.6483 }, { "start": 11041.18, "end": 11045.28, "probability": 0.7319 }, { "start": 11045.38, "end": 11046.74, "probability": 0.8312 }, { "start": 11046.84, "end": 11048.04, "probability": 0.8907 }, { "start": 11048.92, "end": 11051.48, "probability": 0.9658 }, { "start": 11054.12, "end": 11055.0, "probability": 0.929 }, { "start": 11055.16, "end": 11058.38, "probability": 0.9879 }, { "start": 11058.94, "end": 11061.38, "probability": 0.9922 }, { "start": 11062.44, "end": 11063.48, "probability": 0.7048 }, { "start": 11063.58, "end": 11063.94, "probability": 0.7146 }, { "start": 11064.0, "end": 11067.12, "probability": 0.979 }, { "start": 11067.68, "end": 11070.68, "probability": 0.9982 }, { "start": 11071.22, "end": 11074.12, "probability": 0.9312 }, { "start": 11074.82, "end": 11077.28, "probability": 0.9971 }, { "start": 11077.94, "end": 11079.22, "probability": 0.782 }, { "start": 11080.64, "end": 11085.3, "probability": 0.9872 }, { "start": 11085.88, "end": 11087.6, "probability": 0.9512 }, { "start": 11088.08, "end": 11088.52, "probability": 0.2807 }, { "start": 11088.52, "end": 11089.32, "probability": 0.8879 }, { "start": 11089.5, "end": 11089.78, "probability": 0.493 }, { "start": 11090.36, "end": 11091.16, "probability": 0.9797 }, { "start": 11093.28, "end": 11095.26, "probability": 0.991 }, { "start": 11096.06, "end": 11097.08, "probability": 0.9771 }, { "start": 11097.22, "end": 11097.82, "probability": 0.7107 }, { "start": 11097.86, "end": 11098.36, "probability": 0.8508 }, { "start": 11098.4, "end": 11099.62, "probability": 0.724 }, { "start": 11100.24, "end": 11104.5, "probability": 0.6662 }, { "start": 11105.42, "end": 11108.44, "probability": 0.7392 }, { "start": 11108.44, "end": 11112.72, "probability": 0.6622 }, { "start": 11112.9, "end": 11114.3, "probability": 0.8118 }, { "start": 11115.96, "end": 11116.78, "probability": 0.9373 }, { "start": 11116.86, "end": 11121.94, "probability": 0.9871 }, { "start": 11121.94, "end": 11127.8, "probability": 0.9981 }, { "start": 11127.9, "end": 11128.76, "probability": 0.8554 }, { "start": 11129.0, "end": 11129.8, "probability": 0.7693 }, { "start": 11130.64, "end": 11133.46, "probability": 0.6257 }, { "start": 11134.65, "end": 11140.16, "probability": 0.9945 }, { "start": 11140.6, "end": 11147.44, "probability": 0.9852 }, { "start": 11148.02, "end": 11151.56, "probability": 0.9349 }, { "start": 11151.6, "end": 11152.84, "probability": 0.881 }, { "start": 11152.96, "end": 11154.84, "probability": 0.8712 }, { "start": 11155.46, "end": 11158.08, "probability": 0.9348 }, { "start": 11158.7, "end": 11162.06, "probability": 0.9155 }, { "start": 11162.48, "end": 11164.12, "probability": 0.9956 }, { "start": 11164.64, "end": 11166.34, "probability": 0.503 }, { "start": 11166.84, "end": 11170.04, "probability": 0.7455 }, { "start": 11170.42, "end": 11172.92, "probability": 0.809 }, { "start": 11173.22, "end": 11175.04, "probability": 0.7708 }, { "start": 11175.52, "end": 11177.7, "probability": 0.9172 }, { "start": 11177.86, "end": 11179.52, "probability": 0.9904 }, { "start": 11179.62, "end": 11180.04, "probability": 0.8656 }, { "start": 11181.12, "end": 11182.76, "probability": 0.8332 }, { "start": 11182.8, "end": 11184.44, "probability": 0.9331 }, { "start": 11184.9, "end": 11188.22, "probability": 0.9791 }, { "start": 11189.46, "end": 11191.74, "probability": 0.8678 }, { "start": 11207.94, "end": 11208.8, "probability": 0.814 }, { "start": 11208.8, "end": 11210.92, "probability": 0.6785 }, { "start": 11212.54, "end": 11215.86, "probability": 0.9534 }, { "start": 11216.0, "end": 11216.8, "probability": 0.884 }, { "start": 11218.08, "end": 11221.04, "probability": 0.9349 }, { "start": 11221.86, "end": 11223.6, "probability": 0.9761 }, { "start": 11223.74, "end": 11225.16, "probability": 0.7052 }, { "start": 11225.4, "end": 11226.6, "probability": 0.9843 }, { "start": 11227.52, "end": 11230.24, "probability": 0.9795 }, { "start": 11230.34, "end": 11231.5, "probability": 0.9165 }, { "start": 11232.56, "end": 11234.42, "probability": 0.9774 }, { "start": 11235.24, "end": 11237.14, "probability": 0.7529 }, { "start": 11237.84, "end": 11239.56, "probability": 0.9818 }, { "start": 11241.22, "end": 11242.38, "probability": 0.8972 }, { "start": 11242.66, "end": 11243.74, "probability": 0.7258 }, { "start": 11244.68, "end": 11247.86, "probability": 0.5829 }, { "start": 11248.5, "end": 11250.76, "probability": 0.9878 }, { "start": 11251.4, "end": 11252.94, "probability": 0.9585 }, { "start": 11253.3, "end": 11256.0, "probability": 0.8398 }, { "start": 11256.58, "end": 11259.9, "probability": 0.9934 }, { "start": 11259.9, "end": 11263.0, "probability": 0.9912 }, { "start": 11263.64, "end": 11264.3, "probability": 0.6383 }, { "start": 11264.84, "end": 11265.98, "probability": 0.897 }, { "start": 11266.52, "end": 11269.46, "probability": 0.9961 }, { "start": 11269.9, "end": 11270.38, "probability": 0.632 }, { "start": 11270.54, "end": 11271.18, "probability": 0.3923 }, { "start": 11271.78, "end": 11274.06, "probability": 0.9994 }, { "start": 11275.14, "end": 11277.42, "probability": 0.9971 }, { "start": 11278.7, "end": 11280.01, "probability": 0.9694 }, { "start": 11280.98, "end": 11283.12, "probability": 0.9911 }, { "start": 11283.74, "end": 11284.42, "probability": 0.936 }, { "start": 11285.08, "end": 11285.64, "probability": 0.5126 }, { "start": 11285.7, "end": 11287.08, "probability": 0.9976 }, { "start": 11287.12, "end": 11288.84, "probability": 0.995 }, { "start": 11289.9, "end": 11292.64, "probability": 0.988 }, { "start": 11293.14, "end": 11296.78, "probability": 0.9927 }, { "start": 11297.46, "end": 11302.28, "probability": 0.9958 }, { "start": 11302.28, "end": 11308.24, "probability": 0.9962 }, { "start": 11309.14, "end": 11311.66, "probability": 0.9976 }, { "start": 11312.3, "end": 11316.14, "probability": 0.9732 }, { "start": 11316.84, "end": 11319.96, "probability": 0.9959 }, { "start": 11320.6, "end": 11323.62, "probability": 0.8183 }, { "start": 11324.38, "end": 11326.12, "probability": 0.9681 }, { "start": 11326.84, "end": 11329.08, "probability": 0.9951 }, { "start": 11329.86, "end": 11335.64, "probability": 0.9932 }, { "start": 11336.34, "end": 11337.06, "probability": 0.9614 }, { "start": 11338.38, "end": 11341.14, "probability": 0.8675 }, { "start": 11342.0, "end": 11345.12, "probability": 0.9167 }, { "start": 11345.68, "end": 11347.96, "probability": 0.9822 }, { "start": 11348.58, "end": 11348.94, "probability": 0.6078 }, { "start": 11349.8, "end": 11353.18, "probability": 0.9681 }, { "start": 11353.78, "end": 11357.64, "probability": 0.9749 }, { "start": 11357.64, "end": 11361.78, "probability": 0.9963 }, { "start": 11362.48, "end": 11365.84, "probability": 0.772 }, { "start": 11366.52, "end": 11368.8, "probability": 0.995 }, { "start": 11369.32, "end": 11371.04, "probability": 0.9776 }, { "start": 11371.54, "end": 11377.44, "probability": 0.966 }, { "start": 11377.94, "end": 11384.5, "probability": 0.9985 }, { "start": 11385.1, "end": 11386.18, "probability": 0.8008 }, { "start": 11387.0, "end": 11389.42, "probability": 0.8351 }, { "start": 11390.1, "end": 11393.56, "probability": 0.995 }, { "start": 11394.08, "end": 11394.52, "probability": 0.7627 }, { "start": 11394.76, "end": 11396.5, "probability": 0.9387 }, { "start": 11396.52, "end": 11400.96, "probability": 0.9833 }, { "start": 11401.5, "end": 11402.48, "probability": 0.9673 }, { "start": 11403.08, "end": 11404.5, "probability": 0.4853 }, { "start": 11404.52, "end": 11405.94, "probability": 0.856 }, { "start": 11412.9, "end": 11413.1, "probability": 0.3657 }, { "start": 11413.1, "end": 11413.4, "probability": 0.3742 }, { "start": 11413.46, "end": 11414.7, "probability": 0.8765 }, { "start": 11414.8, "end": 11415.43, "probability": 0.7837 }, { "start": 11418.02, "end": 11419.28, "probability": 0.6611 }, { "start": 11419.52, "end": 11421.44, "probability": 0.9792 }, { "start": 11422.38, "end": 11423.7, "probability": 0.7366 }, { "start": 11424.06, "end": 11424.06, "probability": 0.5173 }, { "start": 11424.06, "end": 11425.56, "probability": 0.4636 }, { "start": 11426.3, "end": 11426.94, "probability": 0.711 }, { "start": 11427.12, "end": 11427.58, "probability": 0.6229 }, { "start": 11428.0, "end": 11428.79, "probability": 0.8062 }, { "start": 11429.14, "end": 11431.96, "probability": 0.6337 }, { "start": 11432.35, "end": 11433.94, "probability": 0.5517 }, { "start": 11433.96, "end": 11434.5, "probability": 0.5799 }, { "start": 11434.54, "end": 11435.14, "probability": 0.9391 }, { "start": 11436.94, "end": 11437.94, "probability": 0.9658 }, { "start": 11439.28, "end": 11439.6, "probability": 0.0796 }, { "start": 11439.6, "end": 11440.94, "probability": 0.686 }, { "start": 11440.98, "end": 11442.86, "probability": 0.523 }, { "start": 11443.26, "end": 11443.86, "probability": 0.5894 }, { "start": 11443.92, "end": 11444.1, "probability": 0.4019 }, { "start": 11444.1, "end": 11445.16, "probability": 0.6679 }, { "start": 11445.34, "end": 11447.06, "probability": 0.8086 }, { "start": 11447.18, "end": 11448.44, "probability": 0.7195 }, { "start": 11448.62, "end": 11449.26, "probability": 0.855 }, { "start": 11449.74, "end": 11452.12, "probability": 0.853 }, { "start": 11452.64, "end": 11455.36, "probability": 0.5771 }, { "start": 11455.48, "end": 11456.88, "probability": 0.959 }, { "start": 11456.96, "end": 11461.92, "probability": 0.8178 }, { "start": 11462.48, "end": 11464.0, "probability": 0.9949 }, { "start": 11464.78, "end": 11469.5, "probability": 0.9868 }, { "start": 11469.84, "end": 11472.7, "probability": 0.9926 }, { "start": 11472.84, "end": 11473.9, "probability": 0.9927 }, { "start": 11474.0, "end": 11474.96, "probability": 0.9771 }, { "start": 11475.06, "end": 11475.82, "probability": 0.6913 }, { "start": 11476.72, "end": 11478.97, "probability": 0.9571 }, { "start": 11479.16, "end": 11479.48, "probability": 0.4845 }, { "start": 11479.48, "end": 11480.14, "probability": 0.6448 }, { "start": 11480.58, "end": 11481.7, "probability": 0.9022 }, { "start": 11481.86, "end": 11486.5, "probability": 0.9828 }, { "start": 11486.82, "end": 11487.96, "probability": 0.7503 }, { "start": 11488.5, "end": 11489.18, "probability": 0.8252 }, { "start": 11489.34, "end": 11490.7, "probability": 0.9946 }, { "start": 11490.82, "end": 11491.9, "probability": 0.9709 }, { "start": 11492.24, "end": 11495.5, "probability": 0.9835 }, { "start": 11495.6, "end": 11496.7, "probability": 0.97 }, { "start": 11497.48, "end": 11499.94, "probability": 0.7162 }, { "start": 11499.96, "end": 11499.96, "probability": 0.6294 }, { "start": 11500.86, "end": 11500.96, "probability": 0.8496 }, { "start": 11504.04, "end": 11508.58, "probability": 0.9037 }, { "start": 11508.76, "end": 11510.0, "probability": 0.9097 }, { "start": 11510.1, "end": 11511.1, "probability": 0.7835 }, { "start": 11511.54, "end": 11512.84, "probability": 0.8148 }, { "start": 11512.98, "end": 11514.2, "probability": 0.8665 }, { "start": 11514.32, "end": 11515.16, "probability": 0.8038 }, { "start": 11515.32, "end": 11517.1, "probability": 0.706 }, { "start": 11517.52, "end": 11519.42, "probability": 0.8095 }, { "start": 11519.74, "end": 11522.32, "probability": 0.5027 }, { "start": 11522.5, "end": 11524.94, "probability": 0.9823 }, { "start": 11525.1, "end": 11525.52, "probability": 0.8546 }, { "start": 11525.54, "end": 11526.16, "probability": 0.6561 }, { "start": 11526.2, "end": 11529.12, "probability": 0.9768 }, { "start": 11529.54, "end": 11531.32, "probability": 0.9504 }, { "start": 11531.54, "end": 11531.98, "probability": 0.3499 }, { "start": 11532.08, "end": 11532.32, "probability": 0.0631 }, { "start": 11532.32, "end": 11534.1, "probability": 0.7691 }, { "start": 11534.5, "end": 11539.2, "probability": 0.9946 }, { "start": 11539.9, "end": 11540.88, "probability": 0.6618 }, { "start": 11541.46, "end": 11545.54, "probability": 0.7383 }, { "start": 11546.04, "end": 11550.8, "probability": 0.9545 }, { "start": 11551.22, "end": 11551.84, "probability": 0.5381 }, { "start": 11552.44, "end": 11554.92, "probability": 0.5803 }, { "start": 11555.66, "end": 11559.12, "probability": 0.886 }, { "start": 11559.22, "end": 11565.46, "probability": 0.6226 }, { "start": 11566.35, "end": 11570.12, "probability": 0.6085 }, { "start": 11570.52, "end": 11574.9, "probability": 0.7804 }, { "start": 11574.9, "end": 11577.94, "probability": 0.7192 }, { "start": 11578.74, "end": 11579.52, "probability": 0.8861 }, { "start": 11579.62, "end": 11581.42, "probability": 0.7641 }, { "start": 11581.5, "end": 11582.12, "probability": 0.1456 }, { "start": 11582.3, "end": 11582.92, "probability": 0.4095 }, { "start": 11583.28, "end": 11585.5, "probability": 0.9441 }, { "start": 11585.62, "end": 11586.62, "probability": 0.8734 }, { "start": 11586.7, "end": 11587.82, "probability": 0.7591 }, { "start": 11589.08, "end": 11590.52, "probability": 0.882 }, { "start": 11591.1, "end": 11591.62, "probability": 0.4939 }, { "start": 11592.12, "end": 11592.36, "probability": 0.7039 }, { "start": 11592.36, "end": 11592.87, "probability": 0.6914 }, { "start": 11593.96, "end": 11596.18, "probability": 0.6088 }, { "start": 11596.36, "end": 11597.06, "probability": 0.8698 }, { "start": 11597.96, "end": 11599.76, "probability": 0.6358 }, { "start": 11599.84, "end": 11603.26, "probability": 0.6593 }, { "start": 11603.76, "end": 11604.94, "probability": 0.5282 }, { "start": 11605.02, "end": 11605.78, "probability": 0.998 }, { "start": 11606.7, "end": 11611.0, "probability": 0.9017 }, { "start": 11611.04, "end": 11613.26, "probability": 0.6802 }, { "start": 11613.4, "end": 11615.94, "probability": 0.5749 }, { "start": 11616.42, "end": 11617.62, "probability": 0.6161 }, { "start": 11617.86, "end": 11619.1, "probability": 0.9925 }, { "start": 11619.5, "end": 11620.28, "probability": 0.6135 }, { "start": 11620.4, "end": 11621.28, "probability": 0.7052 }, { "start": 11621.68, "end": 11622.8, "probability": 0.8801 }, { "start": 11622.86, "end": 11624.42, "probability": 0.7651 }, { "start": 11625.02, "end": 11625.62, "probability": 0.9059 }, { "start": 11625.9, "end": 11627.06, "probability": 0.978 }, { "start": 11627.16, "end": 11628.44, "probability": 0.9905 }, { "start": 11628.52, "end": 11632.46, "probability": 0.9876 }, { "start": 11632.76, "end": 11633.74, "probability": 0.9209 }, { "start": 11634.26, "end": 11638.16, "probability": 0.9518 }, { "start": 11638.32, "end": 11638.74, "probability": 0.7782 }, { "start": 11638.78, "end": 11639.76, "probability": 0.834 }, { "start": 11639.9, "end": 11640.42, "probability": 0.8155 }, { "start": 11640.68, "end": 11641.28, "probability": 0.3395 }, { "start": 11641.74, "end": 11644.86, "probability": 0.6932 }, { "start": 11644.96, "end": 11646.36, "probability": 0.9255 }, { "start": 11646.92, "end": 11649.22, "probability": 0.9948 }, { "start": 11649.62, "end": 11650.84, "probability": 0.9059 }, { "start": 11650.94, "end": 11652.8, "probability": 0.614 }, { "start": 11653.3, "end": 11656.12, "probability": 0.6749 }, { "start": 11656.28, "end": 11657.94, "probability": 0.7054 }, { "start": 11657.98, "end": 11658.58, "probability": 0.1461 }, { "start": 11659.3, "end": 11659.32, "probability": 0.3972 }, { "start": 11659.32, "end": 11659.67, "probability": 0.4995 }, { "start": 11659.86, "end": 11660.4, "probability": 0.7281 }, { "start": 11661.1, "end": 11663.44, "probability": 0.9578 }, { "start": 11663.72, "end": 11664.66, "probability": 0.8621 }, { "start": 11665.16, "end": 11665.92, "probability": 0.6786 }, { "start": 11666.1, "end": 11667.2, "probability": 0.8989 }, { "start": 11667.28, "end": 11670.62, "probability": 0.8462 }, { "start": 11670.62, "end": 11673.56, "probability": 0.6591 }, { "start": 11673.58, "end": 11674.12, "probability": 0.3117 }, { "start": 11674.12, "end": 11674.84, "probability": 0.8848 }, { "start": 11675.24, "end": 11676.62, "probability": 0.7457 }, { "start": 11676.92, "end": 11678.18, "probability": 0.4543 }, { "start": 11678.38, "end": 11678.9, "probability": 0.3135 }, { "start": 11678.92, "end": 11679.52, "probability": 0.3738 }, { "start": 11679.8, "end": 11680.38, "probability": 0.9728 }, { "start": 11681.02, "end": 11681.7, "probability": 0.8701 }, { "start": 11682.06, "end": 11683.91, "probability": 0.6642 }, { "start": 11685.63, "end": 11687.1, "probability": 0.5646 }, { "start": 11687.32, "end": 11687.46, "probability": 0.3667 }, { "start": 11687.46, "end": 11689.4, "probability": 0.2638 }, { "start": 11690.44, "end": 11691.94, "probability": 0.2745 }, { "start": 11691.96, "end": 11693.86, "probability": 0.282 }, { "start": 11694.14, "end": 11694.42, "probability": 0.7122 }, { "start": 11694.92, "end": 11696.48, "probability": 0.7835 }, { "start": 11697.12, "end": 11699.5, "probability": 0.667 }, { "start": 11700.92, "end": 11703.02, "probability": 0.9841 }, { "start": 11705.94, "end": 11708.26, "probability": 0.7687 }, { "start": 11708.5, "end": 11708.99, "probability": 0.8418 }, { "start": 11710.4, "end": 11712.54, "probability": 0.9052 }, { "start": 11713.06, "end": 11713.72, "probability": 0.9395 }, { "start": 11714.42, "end": 11716.6, "probability": 0.0113 }, { "start": 11717.36, "end": 11717.6, "probability": 0.6204 }, { "start": 11723.23, "end": 11724.56, "probability": 0.6617 }, { "start": 11725.36, "end": 11725.36, "probability": 0.3959 }, { "start": 11725.36, "end": 11727.16, "probability": 0.7285 }, { "start": 11727.78, "end": 11728.62, "probability": 0.7424 }, { "start": 11728.64, "end": 11729.24, "probability": 0.8972 }, { "start": 11729.66, "end": 11730.2, "probability": 0.8324 }, { "start": 11730.36, "end": 11733.62, "probability": 0.7045 }, { "start": 11733.96, "end": 11735.9, "probability": 0.9801 }, { "start": 11736.8, "end": 11741.02, "probability": 0.7411 }, { "start": 11741.84, "end": 11743.66, "probability": 0.8687 }, { "start": 11744.3, "end": 11747.0, "probability": 0.9972 }, { "start": 11747.52, "end": 11750.45, "probability": 0.7218 }, { "start": 11750.88, "end": 11752.62, "probability": 0.6757 }, { "start": 11752.74, "end": 11753.7, "probability": 0.6741 }, { "start": 11754.22, "end": 11756.42, "probability": 0.9949 }, { "start": 11756.42, "end": 11759.78, "probability": 0.9706 }, { "start": 11760.52, "end": 11764.54, "probability": 0.9953 }, { "start": 11765.28, "end": 11767.2, "probability": 0.6126 }, { "start": 11768.04, "end": 11774.2, "probability": 0.9833 }, { "start": 11774.2, "end": 11779.88, "probability": 0.9938 }, { "start": 11779.92, "end": 11784.24, "probability": 0.9419 }, { "start": 11785.86, "end": 11787.26, "probability": 0.3144 }, { "start": 11788.12, "end": 11795.66, "probability": 0.9959 }, { "start": 11795.76, "end": 11800.56, "probability": 0.9979 }, { "start": 11801.28, "end": 11806.96, "probability": 0.9227 }, { "start": 11807.04, "end": 11808.73, "probability": 0.9704 }, { "start": 11809.0, "end": 11815.18, "probability": 0.9527 }, { "start": 11815.58, "end": 11818.06, "probability": 0.819 }, { "start": 11818.74, "end": 11822.92, "probability": 0.9287 }, { "start": 11823.5, "end": 11825.26, "probability": 0.852 }, { "start": 11825.58, "end": 11827.82, "probability": 0.6616 }, { "start": 11827.9, "end": 11831.58, "probability": 0.9895 }, { "start": 11831.8, "end": 11836.12, "probability": 0.8342 }, { "start": 11836.48, "end": 11837.54, "probability": 0.8475 }, { "start": 11837.96, "end": 11841.24, "probability": 0.9568 }, { "start": 11842.06, "end": 11847.74, "probability": 0.9729 }, { "start": 11848.5, "end": 11853.72, "probability": 0.9974 }, { "start": 11853.88, "end": 11856.56, "probability": 0.998 }, { "start": 11856.9, "end": 11861.7, "probability": 0.9878 }, { "start": 11861.82, "end": 11865.12, "probability": 0.9908 }, { "start": 11865.44, "end": 11867.88, "probability": 0.9731 }, { "start": 11868.46, "end": 11871.9, "probability": 0.9475 }, { "start": 11872.46, "end": 11877.16, "probability": 0.9858 }, { "start": 11877.88, "end": 11881.38, "probability": 0.7137 }, { "start": 11882.14, "end": 11886.02, "probability": 0.9792 }, { "start": 11886.02, "end": 11889.88, "probability": 0.7984 }, { "start": 11890.32, "end": 11892.7, "probability": 0.8581 }, { "start": 11893.06, "end": 11896.7, "probability": 0.8324 }, { "start": 11897.64, "end": 11900.08, "probability": 0.9381 }, { "start": 11900.74, "end": 11903.08, "probability": 0.811 }, { "start": 11903.94, "end": 11904.96, "probability": 0.8356 }, { "start": 11905.06, "end": 11906.5, "probability": 0.79 }, { "start": 11906.76, "end": 11910.3, "probability": 0.983 }, { "start": 11910.4, "end": 11911.36, "probability": 0.6755 }, { "start": 11911.8, "end": 11913.26, "probability": 0.8145 }, { "start": 11913.68, "end": 11917.0, "probability": 0.9679 }, { "start": 11918.16, "end": 11922.28, "probability": 0.9385 }, { "start": 11922.28, "end": 11925.74, "probability": 0.9894 }, { "start": 11926.18, "end": 11929.36, "probability": 0.87 }, { "start": 11929.92, "end": 11932.22, "probability": 0.9923 }, { "start": 11932.22, "end": 11934.28, "probability": 0.4755 }, { "start": 11935.82, "end": 11939.46, "probability": 0.9912 }, { "start": 11939.86, "end": 11940.14, "probability": 0.6962 }, { "start": 11940.42, "end": 11943.66, "probability": 0.8887 }, { "start": 11943.98, "end": 11946.62, "probability": 0.5318 }, { "start": 11946.78, "end": 11947.47, "probability": 0.7179 }, { "start": 11947.88, "end": 11953.3, "probability": 0.9011 }, { "start": 11953.8, "end": 11954.6, "probability": 0.7957 }, { "start": 11954.66, "end": 11957.24, "probability": 0.993 }, { "start": 11957.7, "end": 11958.42, "probability": 0.7271 }, { "start": 11958.74, "end": 11962.28, "probability": 0.8773 }, { "start": 11962.82, "end": 11962.82, "probability": 0.5784 }, { "start": 11962.98, "end": 11965.28, "probability": 0.9091 }, { "start": 11965.58, "end": 11967.2, "probability": 0.9858 }, { "start": 11967.48, "end": 11969.22, "probability": 0.9736 }, { "start": 11969.56, "end": 11970.0, "probability": 0.8818 }, { "start": 11970.34, "end": 11972.34, "probability": 0.5878 }, { "start": 11972.64, "end": 11973.68, "probability": 0.9283 }, { "start": 11974.72, "end": 11976.48, "probability": 0.6835 }, { "start": 11992.74, "end": 11993.3, "probability": 0.709 }, { "start": 11994.0, "end": 11994.92, "probability": 0.7205 }, { "start": 11995.36, "end": 11996.71, "probability": 0.9597 }, { "start": 12001.2, "end": 12006.34, "probability": 0.8157 }, { "start": 12007.78, "end": 12009.06, "probability": 0.6802 }, { "start": 12010.16, "end": 12015.02, "probability": 0.9816 }, { "start": 12015.1, "end": 12017.58, "probability": 0.9861 }, { "start": 12017.7, "end": 12019.82, "probability": 0.818 }, { "start": 12020.84, "end": 12025.52, "probability": 0.9752 }, { "start": 12026.82, "end": 12027.7, "probability": 0.9689 }, { "start": 12028.86, "end": 12030.7, "probability": 0.9682 }, { "start": 12031.04, "end": 12032.58, "probability": 0.8042 }, { "start": 12032.66, "end": 12035.82, "probability": 0.887 }, { "start": 12036.54, "end": 12038.22, "probability": 0.939 }, { "start": 12041.3, "end": 12045.44, "probability": 0.8803 }, { "start": 12046.5, "end": 12047.86, "probability": 0.979 }, { "start": 12049.0, "end": 12054.7, "probability": 0.9844 }, { "start": 12054.72, "end": 12055.3, "probability": 0.168 }, { "start": 12056.16, "end": 12056.86, "probability": 0.8456 }, { "start": 12057.76, "end": 12061.16, "probability": 0.9478 }, { "start": 12061.62, "end": 12063.12, "probability": 0.8473 }, { "start": 12063.66, "end": 12064.66, "probability": 0.7817 }, { "start": 12065.84, "end": 12074.8, "probability": 0.9622 }, { "start": 12076.14, "end": 12078.72, "probability": 0.9296 }, { "start": 12079.28, "end": 12081.24, "probability": 0.9932 }, { "start": 12082.34, "end": 12082.88, "probability": 0.6916 }, { "start": 12083.02, "end": 12083.36, "probability": 0.8639 }, { "start": 12083.44, "end": 12083.98, "probability": 0.7742 }, { "start": 12084.18, "end": 12084.48, "probability": 0.8183 }, { "start": 12084.58, "end": 12086.32, "probability": 0.8548 }, { "start": 12087.08, "end": 12090.88, "probability": 0.9928 }, { "start": 12091.98, "end": 12093.5, "probability": 0.7523 }, { "start": 12094.14, "end": 12095.08, "probability": 0.8678 }, { "start": 12095.6, "end": 12096.4, "probability": 0.7523 }, { "start": 12097.52, "end": 12099.28, "probability": 0.9255 }, { "start": 12100.84, "end": 12103.84, "probability": 0.8705 }, { "start": 12105.14, "end": 12109.82, "probability": 0.9907 }, { "start": 12110.38, "end": 12112.78, "probability": 0.3023 }, { "start": 12113.88, "end": 12114.7, "probability": 0.7225 }, { "start": 12114.82, "end": 12115.72, "probability": 0.6236 }, { "start": 12116.1, "end": 12116.52, "probability": 0.7855 }, { "start": 12116.56, "end": 12117.0, "probability": 0.9594 }, { "start": 12117.12, "end": 12118.48, "probability": 0.9558 }, { "start": 12118.78, "end": 12119.72, "probability": 0.3944 }, { "start": 12121.18, "end": 12123.4, "probability": 0.9702 }, { "start": 12124.1, "end": 12128.46, "probability": 0.9817 }, { "start": 12129.16, "end": 12129.5, "probability": 0.8232 }, { "start": 12130.24, "end": 12133.68, "probability": 0.8931 }, { "start": 12135.7, "end": 12138.46, "probability": 0.9627 }, { "start": 12139.02, "end": 12141.94, "probability": 0.9986 }, { "start": 12142.02, "end": 12142.88, "probability": 0.8323 }, { "start": 12144.64, "end": 12146.54, "probability": 0.9434 }, { "start": 12147.8, "end": 12148.74, "probability": 0.8782 }, { "start": 12149.51, "end": 12152.5, "probability": 0.9992 }, { "start": 12153.02, "end": 12155.14, "probability": 0.9256 }, { "start": 12157.02, "end": 12158.96, "probability": 0.8919 }, { "start": 12159.9, "end": 12161.67, "probability": 0.999 }, { "start": 12162.48, "end": 12166.86, "probability": 0.7841 }, { "start": 12168.1, "end": 12172.82, "probability": 0.9795 }, { "start": 12173.7, "end": 12181.24, "probability": 0.8278 }, { "start": 12182.62, "end": 12189.18, "probability": 0.9953 }, { "start": 12189.3, "end": 12192.08, "probability": 0.997 }, { "start": 12192.64, "end": 12193.26, "probability": 0.7708 }, { "start": 12194.18, "end": 12195.36, "probability": 0.9793 }, { "start": 12195.42, "end": 12197.88, "probability": 0.9941 }, { "start": 12198.38, "end": 12201.38, "probability": 0.981 }, { "start": 12202.96, "end": 12204.78, "probability": 0.842 }, { "start": 12205.6, "end": 12208.08, "probability": 0.9865 }, { "start": 12208.14, "end": 12213.4, "probability": 0.9895 }, { "start": 12213.4, "end": 12218.04, "probability": 0.9955 }, { "start": 12218.14, "end": 12222.14, "probability": 0.9949 }, { "start": 12222.4, "end": 12222.84, "probability": 0.664 }, { "start": 12225.36, "end": 12226.0, "probability": 0.8849 }, { "start": 12226.64, "end": 12227.84, "probability": 0.9672 }, { "start": 12228.08, "end": 12228.58, "probability": 0.5492 }, { "start": 12228.68, "end": 12231.12, "probability": 0.5398 }, { "start": 12235.76, "end": 12236.85, "probability": 0.8411 }, { "start": 12241.68, "end": 12242.96, "probability": 0.4536 }, { "start": 12243.92, "end": 12244.84, "probability": 0.7059 }, { "start": 12244.98, "end": 12246.9, "probability": 0.8254 }, { "start": 12251.26, "end": 12254.12, "probability": 0.8901 }, { "start": 12256.18, "end": 12258.36, "probability": 0.9397 }, { "start": 12259.06, "end": 12263.02, "probability": 0.9967 }, { "start": 12263.74, "end": 12268.26, "probability": 0.75 }, { "start": 12268.26, "end": 12269.46, "probability": 0.5629 }, { "start": 12270.24, "end": 12270.62, "probability": 0.3204 }, { "start": 12271.04, "end": 12273.26, "probability": 0.9739 }, { "start": 12274.0, "end": 12274.72, "probability": 0.5243 }, { "start": 12274.88, "end": 12275.98, "probability": 0.3431 }, { "start": 12276.04, "end": 12276.4, "probability": 0.7347 }, { "start": 12276.6, "end": 12277.68, "probability": 0.8623 }, { "start": 12278.34, "end": 12282.16, "probability": 0.9966 }, { "start": 12282.9, "end": 12284.12, "probability": 0.9811 }, { "start": 12285.4, "end": 12288.22, "probability": 0.9919 }, { "start": 12289.04, "end": 12289.82, "probability": 0.9855 }, { "start": 12290.48, "end": 12291.48, "probability": 0.979 }, { "start": 12292.48, "end": 12294.86, "probability": 0.9793 }, { "start": 12295.8, "end": 12298.44, "probability": 0.8833 }, { "start": 12299.08, "end": 12299.92, "probability": 0.9601 }, { "start": 12301.66, "end": 12303.66, "probability": 0.954 }, { "start": 12303.76, "end": 12305.24, "probability": 0.9536 }, { "start": 12305.74, "end": 12309.5, "probability": 0.9927 }, { "start": 12310.52, "end": 12314.14, "probability": 0.9862 }, { "start": 12314.14, "end": 12318.1, "probability": 0.9958 }, { "start": 12318.98, "end": 12321.32, "probability": 0.9714 }, { "start": 12321.54, "end": 12322.34, "probability": 0.9549 }, { "start": 12322.92, "end": 12324.4, "probability": 0.9364 }, { "start": 12325.66, "end": 12328.54, "probability": 0.9896 }, { "start": 12328.54, "end": 12330.88, "probability": 0.9941 }, { "start": 12331.56, "end": 12331.66, "probability": 0.8298 }, { "start": 12331.8, "end": 12332.34, "probability": 0.66 }, { "start": 12332.46, "end": 12335.28, "probability": 0.9891 }, { "start": 12335.72, "end": 12338.02, "probability": 0.9894 }, { "start": 12338.56, "end": 12342.2, "probability": 0.9946 }, { "start": 12343.18, "end": 12345.82, "probability": 0.8839 }, { "start": 12345.9, "end": 12349.06, "probability": 0.993 }, { "start": 12349.54, "end": 12353.68, "probability": 0.9678 }, { "start": 12354.42, "end": 12356.96, "probability": 0.9925 }, { "start": 12357.08, "end": 12360.04, "probability": 0.9976 }, { "start": 12360.14, "end": 12364.1, "probability": 0.8555 }, { "start": 12365.14, "end": 12366.18, "probability": 0.9765 }, { "start": 12367.4, "end": 12368.9, "probability": 0.9321 }, { "start": 12370.34, "end": 12371.38, "probability": 0.6535 }, { "start": 12372.58, "end": 12374.94, "probability": 0.5939 }, { "start": 12374.94, "end": 12375.54, "probability": 0.629 }, { "start": 12376.3, "end": 12380.78, "probability": 0.9595 }, { "start": 12381.62, "end": 12382.68, "probability": 0.9503 }, { "start": 12382.72, "end": 12383.52, "probability": 0.9445 }, { "start": 12384.3, "end": 12387.98, "probability": 0.9932 }, { "start": 12388.26, "end": 12389.34, "probability": 0.7832 }, { "start": 12390.06, "end": 12392.26, "probability": 0.5967 }, { "start": 12392.26, "end": 12393.74, "probability": 0.9824 }, { "start": 12394.34, "end": 12395.14, "probability": 0.9436 }, { "start": 12395.7, "end": 12398.82, "probability": 0.989 }, { "start": 12400.04, "end": 12400.92, "probability": 0.9094 }, { "start": 12401.84, "end": 12405.56, "probability": 0.9958 }, { "start": 12406.32, "end": 12409.74, "probability": 0.717 }, { "start": 12409.96, "end": 12410.76, "probability": 0.7248 }, { "start": 12411.3, "end": 12412.81, "probability": 0.9537 }, { "start": 12413.92, "end": 12418.6, "probability": 0.9966 }, { "start": 12419.62, "end": 12420.86, "probability": 0.8694 }, { "start": 12422.08, "end": 12423.52, "probability": 0.7507 }, { "start": 12423.58, "end": 12424.22, "probability": 0.9327 }, { "start": 12424.26, "end": 12424.64, "probability": 0.9554 }, { "start": 12424.66, "end": 12425.16, "probability": 0.7826 }, { "start": 12425.36, "end": 12426.34, "probability": 0.9332 }, { "start": 12426.68, "end": 12427.98, "probability": 0.9922 }, { "start": 12428.1, "end": 12429.1, "probability": 0.9678 }, { "start": 12429.82, "end": 12431.78, "probability": 0.9944 }, { "start": 12432.36, "end": 12433.41, "probability": 0.6314 }, { "start": 12433.92, "end": 12434.22, "probability": 0.2484 }, { "start": 12434.34, "end": 12436.92, "probability": 0.8928 }, { "start": 12437.62, "end": 12441.26, "probability": 0.7775 }, { "start": 12441.46, "end": 12442.44, "probability": 0.8797 }, { "start": 12442.9, "end": 12443.3, "probability": 0.9526 }, { "start": 12443.92, "end": 12447.68, "probability": 0.9897 }, { "start": 12448.18, "end": 12449.7, "probability": 0.8562 }, { "start": 12450.02, "end": 12450.42, "probability": 0.7894 }, { "start": 12450.86, "end": 12452.58, "probability": 0.9564 }, { "start": 12452.72, "end": 12453.12, "probability": 0.4809 }, { "start": 12454.44, "end": 12457.44, "probability": 0.7603 }, { "start": 12460.54, "end": 12460.64, "probability": 0.6659 }, { "start": 12461.22, "end": 12461.64, "probability": 0.7417 }, { "start": 12462.04, "end": 12463.66, "probability": 0.6809 }, { "start": 12468.08, "end": 12468.18, "probability": 0.6129 }, { "start": 12468.8, "end": 12469.56, "probability": 0.9408 }, { "start": 12478.92, "end": 12480.18, "probability": 0.7153 }, { "start": 12482.36, "end": 12482.6, "probability": 0.6743 }, { "start": 12482.6, "end": 12484.38, "probability": 0.5375 }, { "start": 12485.1, "end": 12486.9, "probability": 0.9835 }, { "start": 12486.98, "end": 12487.7, "probability": 0.9868 }, { "start": 12487.92, "end": 12488.66, "probability": 0.8979 }, { "start": 12488.68, "end": 12489.42, "probability": 0.7587 }, { "start": 12489.62, "end": 12490.14, "probability": 0.6587 }, { "start": 12491.02, "end": 12492.6, "probability": 0.9681 }, { "start": 12494.3, "end": 12496.08, "probability": 0.3858 }, { "start": 12497.54, "end": 12499.26, "probability": 0.7869 }, { "start": 12500.14, "end": 12503.58, "probability": 0.9878 }, { "start": 12504.22, "end": 12507.78, "probability": 0.9267 }, { "start": 12507.92, "end": 12510.22, "probability": 0.9914 }, { "start": 12510.86, "end": 12511.36, "probability": 0.447 }, { "start": 12511.48, "end": 12512.62, "probability": 0.9694 }, { "start": 12512.82, "end": 12514.66, "probability": 0.9126 }, { "start": 12514.78, "end": 12515.22, "probability": 0.9055 }, { "start": 12515.92, "end": 12518.02, "probability": 0.9414 }, { "start": 12518.14, "end": 12518.75, "probability": 0.9587 }, { "start": 12519.54, "end": 12521.26, "probability": 0.8853 }, { "start": 12522.04, "end": 12522.96, "probability": 0.8903 }, { "start": 12523.76, "end": 12526.08, "probability": 0.9789 }, { "start": 12526.84, "end": 12528.4, "probability": 0.7134 }, { "start": 12529.26, "end": 12530.78, "probability": 0.9078 }, { "start": 12530.86, "end": 12534.12, "probability": 0.9734 }, { "start": 12534.46, "end": 12539.3, "probability": 0.7159 }, { "start": 12539.82, "end": 12545.3, "probability": 0.9912 }, { "start": 12545.4, "end": 12547.62, "probability": 0.9988 }, { "start": 12548.08, "end": 12552.8, "probability": 0.9932 }, { "start": 12553.3, "end": 12553.72, "probability": 0.7061 }, { "start": 12553.98, "end": 12554.26, "probability": 0.8094 }, { "start": 12554.3, "end": 12554.3, "probability": 0.4078 }, { "start": 12554.38, "end": 12556.24, "probability": 0.9979 }, { "start": 12556.6, "end": 12557.66, "probability": 0.9778 }, { "start": 12557.72, "end": 12558.64, "probability": 0.969 }, { "start": 12558.98, "end": 12560.12, "probability": 0.9067 }, { "start": 12560.68, "end": 12561.86, "probability": 0.9612 }, { "start": 12563.6, "end": 12564.6, "probability": 0.7295 }, { "start": 12565.0, "end": 12569.66, "probability": 0.9719 }, { "start": 12569.66, "end": 12573.46, "probability": 0.6913 }, { "start": 12573.46, "end": 12574.5, "probability": 0.8122 }, { "start": 12575.26, "end": 12577.2, "probability": 0.9911 }, { "start": 12577.3, "end": 12578.4, "probability": 0.8274 }, { "start": 12578.86, "end": 12583.28, "probability": 0.9956 }, { "start": 12583.92, "end": 12584.96, "probability": 0.9089 }, { "start": 12585.44, "end": 12587.58, "probability": 0.9816 }, { "start": 12587.96, "end": 12592.72, "probability": 0.8969 }, { "start": 12593.22, "end": 12594.58, "probability": 0.8795 }, { "start": 12595.06, "end": 12597.56, "probability": 0.9991 }, { "start": 12597.56, "end": 12600.48, "probability": 0.9998 }, { "start": 12601.04, "end": 12604.9, "probability": 0.9987 }, { "start": 12605.26, "end": 12606.58, "probability": 0.9956 }, { "start": 12606.84, "end": 12608.14, "probability": 0.9788 }, { "start": 12608.56, "end": 12609.46, "probability": 0.7665 }, { "start": 12610.18, "end": 12614.04, "probability": 0.9925 }, { "start": 12614.7, "end": 12616.78, "probability": 0.9708 }, { "start": 12617.3, "end": 12619.02, "probability": 0.9795 }, { "start": 12619.1, "end": 12622.96, "probability": 0.8301 }, { "start": 12622.96, "end": 12627.32, "probability": 0.8967 }, { "start": 12627.36, "end": 12628.4, "probability": 0.7915 }, { "start": 12628.78, "end": 12629.77, "probability": 0.9589 }, { "start": 12630.16, "end": 12631.18, "probability": 0.2792 }, { "start": 12631.22, "end": 12631.78, "probability": 0.7254 }, { "start": 12632.2, "end": 12635.76, "probability": 0.9842 }, { "start": 12636.6, "end": 12639.58, "probability": 0.9897 }, { "start": 12639.66, "end": 12640.12, "probability": 0.8627 }, { "start": 12640.54, "end": 12641.9, "probability": 0.7188 }, { "start": 12642.92, "end": 12644.3, "probability": 0.7511 }, { "start": 12645.76, "end": 12645.88, "probability": 0.6928 }, { "start": 12646.62, "end": 12647.44, "probability": 0.5169 }, { "start": 12648.46, "end": 12650.22, "probability": 0.9602 }, { "start": 12651.04, "end": 12652.3, "probability": 0.9113 }, { "start": 12652.9, "end": 12656.09, "probability": 0.7908 }, { "start": 12660.26, "end": 12660.38, "probability": 0.0371 }, { "start": 12660.38, "end": 12660.38, "probability": 0.5047 }, { "start": 12660.38, "end": 12660.82, "probability": 0.1922 }, { "start": 12660.94, "end": 12661.9, "probability": 0.7059 }, { "start": 12662.24, "end": 12663.42, "probability": 0.5849 }, { "start": 12663.48, "end": 12664.0, "probability": 0.9089 }, { "start": 12664.24, "end": 12665.12, "probability": 0.7133 }, { "start": 12665.18, "end": 12665.62, "probability": 0.8525 }, { "start": 12666.06, "end": 12667.06, "probability": 0.5511 }, { "start": 12667.22, "end": 12667.67, "probability": 0.5084 }, { "start": 12668.42, "end": 12669.12, "probability": 0.9784 }, { "start": 12669.24, "end": 12669.98, "probability": 0.8741 }, { "start": 12670.6, "end": 12671.44, "probability": 0.8812 }, { "start": 12671.56, "end": 12672.24, "probability": 0.976 }, { "start": 12672.6, "end": 12673.5, "probability": 0.9801 }, { "start": 12673.96, "end": 12675.02, "probability": 0.9668 }, { "start": 12676.88, "end": 12677.7, "probability": 0.8909 }, { "start": 12679.75, "end": 12682.18, "probability": 0.5156 }, { "start": 12682.68, "end": 12683.28, "probability": 0.8039 }, { "start": 12684.24, "end": 12685.1, "probability": 0.5322 }, { "start": 12685.26, "end": 12685.94, "probability": 0.7165 }, { "start": 12686.0, "end": 12686.56, "probability": 0.9314 }, { "start": 12687.1, "end": 12688.34, "probability": 0.7306 }, { "start": 12690.62, "end": 12691.62, "probability": 0.9932 }, { "start": 12701.18, "end": 12702.6, "probability": 0.4529 }, { "start": 12702.6, "end": 12703.6, "probability": 0.4112 }, { "start": 12704.48, "end": 12706.9, "probability": 0.9717 }, { "start": 12708.48, "end": 12710.06, "probability": 0.6294 }, { "start": 12710.72, "end": 12711.68, "probability": 0.3841 }, { "start": 12712.67, "end": 12714.62, "probability": 0.7614 }, { "start": 12715.02, "end": 12715.42, "probability": 0.7112 }, { "start": 12715.6, "end": 12717.64, "probability": 0.6661 }, { "start": 12718.7, "end": 12720.24, "probability": 0.0836 }, { "start": 12720.42, "end": 12721.04, "probability": 0.5513 }, { "start": 12721.12, "end": 12722.84, "probability": 0.6867 }, { "start": 12722.9, "end": 12723.22, "probability": 0.9709 }, { "start": 12723.38, "end": 12723.44, "probability": 0.8706 }, { "start": 12723.54, "end": 12724.38, "probability": 0.8101 }, { "start": 12724.46, "end": 12725.4, "probability": 0.8675 }, { "start": 12725.84, "end": 12726.94, "probability": 0.7769 }, { "start": 12728.42, "end": 12732.8, "probability": 0.9697 }, { "start": 12733.94, "end": 12734.82, "probability": 0.5385 }, { "start": 12735.5, "end": 12738.4, "probability": 0.9626 }, { "start": 12739.5, "end": 12744.84, "probability": 0.9969 }, { "start": 12746.68, "end": 12750.22, "probability": 0.9761 }, { "start": 12751.52, "end": 12754.36, "probability": 0.9983 }, { "start": 12754.86, "end": 12755.18, "probability": 0.4911 }, { "start": 12756.42, "end": 12757.14, "probability": 0.8588 }, { "start": 12757.98, "end": 12758.5, "probability": 0.8795 }, { "start": 12759.42, "end": 12761.26, "probability": 0.9347 }, { "start": 12761.96, "end": 12764.36, "probability": 0.9497 }, { "start": 12764.44, "end": 12767.72, "probability": 0.8289 }, { "start": 12768.74, "end": 12769.88, "probability": 0.9509 }, { "start": 12770.9, "end": 12773.4, "probability": 0.9849 }, { "start": 12773.62, "end": 12776.57, "probability": 0.8912 }, { "start": 12776.84, "end": 12778.2, "probability": 0.8933 }, { "start": 12781.46, "end": 12782.78, "probability": 0.6775 }, { "start": 12783.58, "end": 12784.72, "probability": 0.8784 }, { "start": 12786.02, "end": 12789.48, "probability": 0.9118 }, { "start": 12789.6, "end": 12792.18, "probability": 0.7393 }, { "start": 12793.56, "end": 12794.8, "probability": 0.9783 }, { "start": 12794.9, "end": 12796.5, "probability": 0.9939 }, { "start": 12796.66, "end": 12797.48, "probability": 0.8866 }, { "start": 12798.06, "end": 12799.04, "probability": 0.9525 }, { "start": 12799.14, "end": 12800.46, "probability": 0.9897 }, { "start": 12800.5, "end": 12801.58, "probability": 0.9213 }, { "start": 12801.58, "end": 12803.14, "probability": 0.9894 }, { "start": 12803.32, "end": 12803.98, "probability": 0.3806 }, { "start": 12805.68, "end": 12809.38, "probability": 0.7026 }, { "start": 12809.62, "end": 12813.56, "probability": 0.9731 }, { "start": 12813.62, "end": 12815.1, "probability": 0.4425 }, { "start": 12815.12, "end": 12816.32, "probability": 0.5087 }, { "start": 12817.6, "end": 12818.1, "probability": 0.0295 }, { "start": 12818.18, "end": 12818.44, "probability": 0.0135 }, { "start": 12818.44, "end": 12819.14, "probability": 0.7433 }, { "start": 12820.12, "end": 12821.3, "probability": 0.6184 }, { "start": 12822.27, "end": 12822.86, "probability": 0.938 }, { "start": 12823.96, "end": 12827.26, "probability": 0.7 }, { "start": 12827.36, "end": 12830.16, "probability": 0.8594 }, { "start": 12830.48, "end": 12831.34, "probability": 0.7576 }, { "start": 12831.94, "end": 12832.92, "probability": 0.851 }, { "start": 12834.02, "end": 12837.34, "probability": 0.8644 }, { "start": 12837.34, "end": 12840.5, "probability": 0.9786 }, { "start": 12840.6, "end": 12840.76, "probability": 0.8271 }, { "start": 12841.04, "end": 12841.66, "probability": 0.8356 }, { "start": 12842.16, "end": 12843.26, "probability": 0.662 }, { "start": 12847.4, "end": 12849.74, "probability": 0.9963 }, { "start": 12849.88, "end": 12851.14, "probability": 0.8972 }, { "start": 12851.36, "end": 12854.28, "probability": 0.7613 }, { "start": 12854.42, "end": 12855.84, "probability": 0.8279 }, { "start": 12856.0, "end": 12859.54, "probability": 0.9929 }, { "start": 12859.82, "end": 12863.29, "probability": 0.7298 }, { "start": 12864.02, "end": 12866.08, "probability": 0.8967 }, { "start": 12866.26, "end": 12868.0, "probability": 0.9803 }, { "start": 12868.32, "end": 12869.64, "probability": 0.6966 }, { "start": 12870.2, "end": 12871.73, "probability": 0.9844 }, { "start": 12872.04, "end": 12875.76, "probability": 0.9864 }, { "start": 12876.18, "end": 12876.74, "probability": 0.7751 }, { "start": 12877.08, "end": 12878.5, "probability": 0.6697 }, { "start": 12879.3, "end": 12880.76, "probability": 0.9174 }, { "start": 12880.84, "end": 12881.36, "probability": 0.7475 }, { "start": 12881.48, "end": 12883.94, "probability": 0.9717 }, { "start": 12884.06, "end": 12884.82, "probability": 0.9783 }, { "start": 12885.06, "end": 12885.74, "probability": 0.5948 }, { "start": 12885.86, "end": 12886.26, "probability": 0.6999 }, { "start": 12886.9, "end": 12890.08, "probability": 0.9206 }, { "start": 12890.12, "end": 12890.98, "probability": 0.9374 }, { "start": 12891.06, "end": 12891.44, "probability": 0.9171 }, { "start": 12891.52, "end": 12892.46, "probability": 0.69 }, { "start": 12892.52, "end": 12893.28, "probability": 0.8446 }, { "start": 12893.36, "end": 12893.56, "probability": 0.9308 }, { "start": 12893.68, "end": 12894.54, "probability": 0.45 }, { "start": 12894.56, "end": 12894.92, "probability": 0.8103 }, { "start": 12895.34, "end": 12897.82, "probability": 0.8442 }, { "start": 12897.86, "end": 12898.9, "probability": 0.8011 }, { "start": 12900.4, "end": 12901.74, "probability": 0.9931 }, { "start": 12901.84, "end": 12902.14, "probability": 0.2673 }, { "start": 12902.3, "end": 12902.42, "probability": 0.7753 }, { "start": 12902.56, "end": 12904.69, "probability": 0.9668 }, { "start": 12905.66, "end": 12907.52, "probability": 0.7555 }, { "start": 12907.68, "end": 12908.66, "probability": 0.8605 }, { "start": 12908.84, "end": 12909.42, "probability": 0.7553 }, { "start": 12909.48, "end": 12911.04, "probability": 0.9883 }, { "start": 12911.12, "end": 12913.16, "probability": 0.9648 }, { "start": 12913.32, "end": 12915.62, "probability": 0.9927 }, { "start": 12915.62, "end": 12918.51, "probability": 0.9663 }, { "start": 12918.98, "end": 12919.78, "probability": 0.7747 }, { "start": 12919.84, "end": 12920.96, "probability": 0.7489 }, { "start": 12921.88, "end": 12922.98, "probability": 0.8706 }, { "start": 12923.08, "end": 12925.54, "probability": 0.9985 }, { "start": 12926.38, "end": 12926.54, "probability": 0.4533 }, { "start": 12926.62, "end": 12927.45, "probability": 0.9514 }, { "start": 12927.72, "end": 12929.0, "probability": 0.8896 }, { "start": 12929.24, "end": 12929.86, "probability": 0.7655 }, { "start": 12929.9, "end": 12932.52, "probability": 0.9337 }, { "start": 12934.54, "end": 12935.96, "probability": 0.929 }, { "start": 12937.2, "end": 12937.52, "probability": 0.9788 }, { "start": 12938.02, "end": 12938.48, "probability": 0.9786 }, { "start": 12938.54, "end": 12939.16, "probability": 0.9638 }, { "start": 12939.36, "end": 12939.84, "probability": 0.6906 }, { "start": 12939.9, "end": 12941.2, "probability": 0.968 }, { "start": 12942.0, "end": 12943.52, "probability": 0.9752 }, { "start": 12943.62, "end": 12944.68, "probability": 0.9668 }, { "start": 12944.76, "end": 12945.78, "probability": 0.915 }, { "start": 12945.78, "end": 12947.02, "probability": 0.9916 }, { "start": 12947.06, "end": 12947.8, "probability": 0.9916 }, { "start": 12947.96, "end": 12948.62, "probability": 0.9735 }, { "start": 12948.62, "end": 12949.46, "probability": 0.9929 }, { "start": 12949.54, "end": 12950.29, "probability": 0.6853 }, { "start": 12950.94, "end": 12951.96, "probability": 0.828 }, { "start": 12953.4, "end": 12956.24, "probability": 0.9668 }, { "start": 12956.42, "end": 12957.9, "probability": 0.9615 }, { "start": 12958.0, "end": 12961.86, "probability": 0.8925 }, { "start": 12963.22, "end": 12964.76, "probability": 0.9685 }, { "start": 12966.1, "end": 12968.78, "probability": 0.8906 }, { "start": 12968.9, "end": 12971.6, "probability": 0.9651 }, { "start": 12972.1, "end": 12972.48, "probability": 0.7441 }, { "start": 12972.6, "end": 12973.16, "probability": 0.9661 }, { "start": 12973.24, "end": 12974.46, "probability": 0.7017 }, { "start": 12974.54, "end": 12979.9, "probability": 0.9736 }, { "start": 12980.14, "end": 12981.54, "probability": 0.809 }, { "start": 12981.54, "end": 12981.82, "probability": 0.0628 }, { "start": 12981.82, "end": 12983.58, "probability": 0.8922 }, { "start": 12984.02, "end": 12984.14, "probability": 0.2982 }, { "start": 12984.26, "end": 12987.43, "probability": 0.9786 }, { "start": 12987.64, "end": 12988.5, "probability": 0.2748 }, { "start": 12988.5, "end": 12988.5, "probability": 0.0958 }, { "start": 12988.5, "end": 12989.18, "probability": 0.0208 }, { "start": 12989.94, "end": 12993.24, "probability": 0.8308 }, { "start": 12993.44, "end": 12993.58, "probability": 0.7638 }, { "start": 12993.68, "end": 12994.7, "probability": 0.886 }, { "start": 12994.82, "end": 12995.38, "probability": 0.9147 }, { "start": 12995.66, "end": 12997.26, "probability": 0.5312 }, { "start": 12997.92, "end": 12999.7, "probability": 0.9922 }, { "start": 12999.84, "end": 13000.3, "probability": 0.415 }, { "start": 13000.3, "end": 13000.5, "probability": 0.4913 }, { "start": 13000.5, "end": 13000.8, "probability": 0.277 }, { "start": 13000.88, "end": 13001.58, "probability": 0.9293 }, { "start": 13002.28, "end": 13002.92, "probability": 0.8556 }, { "start": 13003.2, "end": 13004.83, "probability": 0.4031 }, { "start": 13005.12, "end": 13008.06, "probability": 0.9983 }, { "start": 13008.12, "end": 13009.5, "probability": 0.9922 }, { "start": 13009.58, "end": 13010.52, "probability": 0.9305 }, { "start": 13010.86, "end": 13012.12, "probability": 0.8843 }, { "start": 13012.48, "end": 13012.74, "probability": 0.6707 }, { "start": 13012.98, "end": 13012.98, "probability": 0.4115 }, { "start": 13013.74, "end": 13016.22, "probability": 0.8595 }, { "start": 13016.96, "end": 13018.36, "probability": 0.7768 }, { "start": 13018.9, "end": 13019.4, "probability": 0.9259 }, { "start": 13020.36, "end": 13021.76, "probability": 0.7763 }, { "start": 13022.32, "end": 13023.12, "probability": 0.9806 }, { "start": 13023.64, "end": 13025.36, "probability": 0.9434 }, { "start": 13026.14, "end": 13027.76, "probability": 0.665 }, { "start": 13028.48, "end": 13028.98, "probability": 0.894 }, { "start": 13029.64, "end": 13031.16, "probability": 0.9071 }, { "start": 13031.62, "end": 13034.36, "probability": 0.8586 }, { "start": 13034.52, "end": 13034.94, "probability": 0.7118 }, { "start": 13035.26, "end": 13035.58, "probability": 0.45 }, { "start": 13035.68, "end": 13036.62, "probability": 0.9288 }, { "start": 13038.68, "end": 13040.08, "probability": 0.8862 }, { "start": 13041.48, "end": 13042.59, "probability": 0.7408 }, { "start": 13043.3, "end": 13047.04, "probability": 0.4842 }, { "start": 13047.68, "end": 13051.6, "probability": 0.1565 }, { "start": 13051.88, "end": 13053.14, "probability": 0.7296 }, { "start": 13053.8, "end": 13060.3, "probability": 0.1012 }, { "start": 13063.87, "end": 13066.89, "probability": 0.0846 }, { "start": 13068.96, "end": 13070.12, "probability": 0.8665 }, { "start": 13070.24, "end": 13070.54, "probability": 0.4466 }, { "start": 13071.18, "end": 13073.68, "probability": 0.9107 }, { "start": 13077.4, "end": 13079.06, "probability": 0.6189 }, { "start": 13079.68, "end": 13081.74, "probability": 0.6876 }, { "start": 13082.84, "end": 13084.4, "probability": 0.7534 }, { "start": 13085.08, "end": 13085.42, "probability": 0.0806 }, { "start": 13085.42, "end": 13087.74, "probability": 0.6947 }, { "start": 13088.74, "end": 13091.76, "probability": 0.5798 }, { "start": 13092.22, "end": 13093.78, "probability": 0.1508 }, { "start": 13094.04, "end": 13094.62, "probability": 0.339 }, { "start": 13095.56, "end": 13098.0, "probability": 0.5962 }, { "start": 13098.9, "end": 13103.44, "probability": 0.6432 }, { "start": 13103.58, "end": 13103.97, "probability": 0.6523 }, { "start": 13104.28, "end": 13105.02, "probability": 0.4758 }, { "start": 13105.28, "end": 13105.68, "probability": 0.6918 }, { "start": 13106.78, "end": 13107.54, "probability": 0.0082 }, { "start": 13108.4, "end": 13108.4, "probability": 0.322 }, { "start": 13108.4, "end": 13110.62, "probability": 0.7693 }, { "start": 13112.64, "end": 13114.44, "probability": 0.8263 }, { "start": 13115.42, "end": 13116.42, "probability": 0.3849 }, { "start": 13116.48, "end": 13118.34, "probability": 0.9486 }, { "start": 13118.46, "end": 13119.18, "probability": 0.8352 }, { "start": 13119.5, "end": 13120.94, "probability": 0.4743 }, { "start": 13121.36, "end": 13123.64, "probability": 0.6255 }, { "start": 13124.2, "end": 13125.68, "probability": 0.4775 } ], "segments_count": 5029, "words_count": 24232, "avg_words_per_segment": 4.8185, "avg_segment_duration": 1.8329, "avg_words_per_minute": 107.0996, "plenum_id": "101519", "duration": 13575.4, "title": null, "plenum_date": "2021-11-15" }