{ "source_type": "knesset", "source_id": "plenum", "source_entry_id": "102804", "quality_score": 0.9458, "per_segment_quality_scores": [ { "start": 40.27, "end": 40.42, "probability": 0.7062 }, { "start": 61.86, "end": 62.58, "probability": 0.6537 }, { "start": 62.78, "end": 63.26, "probability": 0.8804 }, { "start": 63.74, "end": 67.08, "probability": 0.9743 }, { "start": 67.18, "end": 67.82, "probability": 0.8618 }, { "start": 68.62, "end": 70.82, "probability": 0.9888 }, { "start": 71.34, "end": 74.4, "probability": 0.8653 }, { "start": 75.08, "end": 76.3, "probability": 0.6718 }, { "start": 77.08, "end": 78.72, "probability": 0.533 }, { "start": 79.34, "end": 80.38, "probability": 0.2937 }, { "start": 81.16, "end": 81.91, "probability": 0.6738 }, { "start": 82.82, "end": 83.48, "probability": 0.6965 }, { "start": 83.8, "end": 85.24, "probability": 0.8084 }, { "start": 85.92, "end": 87.3, "probability": 0.7081 }, { "start": 87.82, "end": 89.18, "probability": 0.7339 }, { "start": 107.2, "end": 107.2, "probability": 0.3477 }, { "start": 107.24, "end": 108.56, "probability": 0.6809 }, { "start": 109.04, "end": 109.72, "probability": 0.7751 }, { "start": 110.3, "end": 111.7, "probability": 0.9818 }, { "start": 125.6, "end": 126.34, "probability": 0.5933 }, { "start": 127.48, "end": 131.06, "probability": 0.7084 }, { "start": 132.36, "end": 135.98, "probability": 0.9867 }, { "start": 136.72, "end": 140.06, "probability": 0.9735 }, { "start": 140.22, "end": 141.0, "probability": 0.8124 }, { "start": 141.96, "end": 144.42, "probability": 0.9896 }, { "start": 144.42, "end": 148.2, "probability": 0.9979 }, { "start": 148.46, "end": 153.8, "probability": 0.9977 }, { "start": 154.88, "end": 159.78, "probability": 0.9941 }, { "start": 159.9, "end": 164.24, "probability": 0.9918 }, { "start": 166.62, "end": 167.62, "probability": 0.7669 }, { "start": 167.78, "end": 173.84, "probability": 0.9944 }, { "start": 174.84, "end": 177.6, "probability": 0.9825 }, { "start": 178.36, "end": 181.16, "probability": 0.9981 }, { "start": 181.38, "end": 184.6, "probability": 0.9995 }, { "start": 185.38, "end": 188.76, "probability": 0.9019 }, { "start": 189.6, "end": 192.24, "probability": 0.9634 }, { "start": 193.0, "end": 195.98, "probability": 0.9939 }, { "start": 196.13, "end": 199.9, "probability": 0.9924 }, { "start": 200.46, "end": 202.34, "probability": 0.5953 }, { "start": 202.88, "end": 205.74, "probability": 0.9927 }, { "start": 205.92, "end": 206.14, "probability": 0.7685 }, { "start": 206.96, "end": 207.62, "probability": 0.7867 }, { "start": 207.84, "end": 210.34, "probability": 0.9027 }, { "start": 219.04, "end": 220.17, "probability": 0.4763 }, { "start": 220.38, "end": 222.28, "probability": 0.7861 }, { "start": 222.74, "end": 225.52, "probability": 0.9753 }, { "start": 226.36, "end": 230.4, "probability": 0.9807 }, { "start": 231.24, "end": 231.34, "probability": 0.5359 }, { "start": 231.96, "end": 234.04, "probability": 0.5019 }, { "start": 234.78, "end": 236.92, "probability": 0.7681 }, { "start": 237.54, "end": 240.4, "probability": 0.9658 }, { "start": 241.04, "end": 243.2, "probability": 0.8715 }, { "start": 243.6, "end": 247.28, "probability": 0.9775 }, { "start": 247.88, "end": 251.02, "probability": 0.7236 }, { "start": 251.78, "end": 253.74, "probability": 0.9904 }, { "start": 253.92, "end": 254.9, "probability": 0.7684 }, { "start": 254.9, "end": 255.78, "probability": 0.5369 }, { "start": 255.94, "end": 258.32, "probability": 0.9545 }, { "start": 259.08, "end": 260.42, "probability": 0.8995 }, { "start": 261.08, "end": 263.02, "probability": 0.9508 }, { "start": 264.74, "end": 265.4, "probability": 0.4884 }, { "start": 266.2, "end": 266.94, "probability": 0.8463 }, { "start": 267.7, "end": 269.24, "probability": 0.9466 }, { "start": 269.54, "end": 270.22, "probability": 0.8266 }, { "start": 271.24, "end": 271.9, "probability": 0.7556 }, { "start": 272.16, "end": 275.52, "probability": 0.8843 }, { "start": 288.32, "end": 289.44, "probability": 0.7394 }, { "start": 290.16, "end": 290.5, "probability": 0.624 }, { "start": 291.74, "end": 293.3, "probability": 0.9753 }, { "start": 293.48, "end": 299.14, "probability": 0.9391 }, { "start": 299.93, "end": 304.48, "probability": 0.9888 }, { "start": 304.62, "end": 306.72, "probability": 0.9831 }, { "start": 307.3, "end": 308.52, "probability": 0.9175 }, { "start": 308.94, "end": 318.43, "probability": 0.9863 }, { "start": 319.76, "end": 322.76, "probability": 0.9874 }, { "start": 323.62, "end": 331.8, "probability": 0.9946 }, { "start": 332.7, "end": 333.98, "probability": 0.9332 }, { "start": 334.44, "end": 335.8, "probability": 0.9242 }, { "start": 335.94, "end": 340.2, "probability": 0.9732 }, { "start": 340.24, "end": 343.36, "probability": 0.9899 }, { "start": 344.3, "end": 351.56, "probability": 0.9835 }, { "start": 351.76, "end": 352.28, "probability": 0.9245 }, { "start": 352.4, "end": 352.86, "probability": 0.9565 }, { "start": 352.98, "end": 353.42, "probability": 0.776 }, { "start": 353.88, "end": 356.78, "probability": 0.9611 }, { "start": 356.86, "end": 360.82, "probability": 0.9904 }, { "start": 362.42, "end": 365.58, "probability": 0.5603 }, { "start": 366.14, "end": 371.64, "probability": 0.9819 }, { "start": 371.66, "end": 378.0, "probability": 0.971 }, { "start": 378.02, "end": 378.88, "probability": 0.8081 }, { "start": 379.58, "end": 380.88, "probability": 0.8927 }, { "start": 382.84, "end": 383.32, "probability": 0.5923 }, { "start": 383.42, "end": 384.0, "probability": 0.9271 }, { "start": 385.28, "end": 386.69, "probability": 0.9326 }, { "start": 387.34, "end": 393.02, "probability": 0.9194 }, { "start": 393.32, "end": 394.68, "probability": 0.4497 }, { "start": 394.68, "end": 394.68, "probability": 0.3134 }, { "start": 394.68, "end": 394.68, "probability": 0.2903 }, { "start": 394.68, "end": 394.68, "probability": 0.3684 }, { "start": 394.68, "end": 394.68, "probability": 0.4286 }, { "start": 394.68, "end": 394.68, "probability": 0.408 }, { "start": 394.68, "end": 394.68, "probability": 0.1015 }, { "start": 394.68, "end": 396.56, "probability": 0.6845 }, { "start": 423.72, "end": 423.72, "probability": 0.0963 }, { "start": 423.74, "end": 424.98, "probability": 0.6921 }, { "start": 425.26, "end": 425.84, "probability": 0.8441 }, { "start": 425.9, "end": 426.38, "probability": 0.95 }, { "start": 426.52, "end": 427.74, "probability": 0.9474 }, { "start": 429.28, "end": 431.74, "probability": 0.9597 }, { "start": 432.86, "end": 434.86, "probability": 0.9292 }, { "start": 435.9, "end": 441.76, "probability": 0.7368 }, { "start": 441.92, "end": 446.7, "probability": 0.8014 }, { "start": 447.46, "end": 448.5, "probability": 0.8661 }, { "start": 449.06, "end": 453.06, "probability": 0.8254 }, { "start": 453.98, "end": 457.86, "probability": 0.9214 }, { "start": 458.8, "end": 461.06, "probability": 0.9824 }, { "start": 461.7, "end": 464.02, "probability": 0.9648 }, { "start": 464.64, "end": 467.66, "probability": 0.9956 }, { "start": 468.74, "end": 470.44, "probability": 0.9861 }, { "start": 470.54, "end": 471.6, "probability": 0.618 }, { "start": 472.44, "end": 476.6, "probability": 0.8065 }, { "start": 477.3, "end": 478.31, "probability": 0.9388 }, { "start": 480.32, "end": 482.54, "probability": 0.998 }, { "start": 483.5, "end": 487.38, "probability": 0.976 }, { "start": 488.54, "end": 491.26, "probability": 0.9836 }, { "start": 491.64, "end": 492.7, "probability": 0.9212 }, { "start": 493.2, "end": 494.12, "probability": 0.9555 }, { "start": 494.3, "end": 495.62, "probability": 0.9357 }, { "start": 496.08, "end": 500.68, "probability": 0.9832 }, { "start": 502.46, "end": 504.74, "probability": 0.9778 }, { "start": 504.78, "end": 507.5, "probability": 0.9761 }, { "start": 507.5, "end": 511.06, "probability": 0.9913 }, { "start": 512.22, "end": 513.5, "probability": 0.9625 }, { "start": 513.88, "end": 515.32, "probability": 0.9721 }, { "start": 516.68, "end": 520.38, "probability": 0.9786 }, { "start": 520.72, "end": 521.08, "probability": 0.8679 }, { "start": 521.42, "end": 522.18, "probability": 0.8057 }, { "start": 523.18, "end": 524.52, "probability": 0.9033 }, { "start": 524.78, "end": 525.52, "probability": 0.9388 }, { "start": 525.58, "end": 528.12, "probability": 0.9137 }, { "start": 528.6, "end": 530.12, "probability": 0.9894 }, { "start": 531.02, "end": 535.22, "probability": 0.9654 }, { "start": 535.78, "end": 537.88, "probability": 0.9917 }, { "start": 537.88, "end": 539.84, "probability": 0.9726 }, { "start": 540.76, "end": 542.6, "probability": 0.9954 }, { "start": 543.32, "end": 547.18, "probability": 0.9839 }, { "start": 547.48, "end": 548.5, "probability": 0.9914 }, { "start": 548.7, "end": 553.56, "probability": 0.994 }, { "start": 553.92, "end": 555.05, "probability": 0.9835 }, { "start": 555.3, "end": 555.77, "probability": 0.9368 }, { "start": 556.06, "end": 560.52, "probability": 0.9966 }, { "start": 561.26, "end": 562.22, "probability": 0.6761 }, { "start": 562.7, "end": 563.46, "probability": 0.9273 }, { "start": 563.58, "end": 564.16, "probability": 0.9412 }, { "start": 564.36, "end": 568.52, "probability": 0.962 }, { "start": 568.86, "end": 570.86, "probability": 0.9922 }, { "start": 572.06, "end": 575.71, "probability": 0.9956 }, { "start": 575.74, "end": 579.56, "probability": 0.9917 }, { "start": 580.46, "end": 582.18, "probability": 0.9873 }, { "start": 582.8, "end": 584.92, "probability": 0.9951 }, { "start": 585.56, "end": 587.5, "probability": 0.9572 }, { "start": 588.04, "end": 589.3, "probability": 0.9993 }, { "start": 589.82, "end": 590.54, "probability": 0.8039 }, { "start": 591.54, "end": 595.84, "probability": 0.9907 }, { "start": 596.46, "end": 596.84, "probability": 0.4279 }, { "start": 596.88, "end": 599.82, "probability": 0.9882 }, { "start": 601.46, "end": 603.72, "probability": 0.9849 }, { "start": 604.02, "end": 606.36, "probability": 0.9862 }, { "start": 606.86, "end": 608.46, "probability": 0.9783 }, { "start": 609.46, "end": 611.94, "probability": 0.9847 }, { "start": 612.74, "end": 616.26, "probability": 0.9652 }, { "start": 616.38, "end": 618.88, "probability": 0.8856 }, { "start": 619.46, "end": 623.28, "probability": 0.9651 }, { "start": 624.8, "end": 626.66, "probability": 0.976 }, { "start": 627.26, "end": 630.06, "probability": 0.9891 }, { "start": 630.32, "end": 632.88, "probability": 0.9934 }, { "start": 633.76, "end": 637.68, "probability": 0.9878 }, { "start": 638.8, "end": 639.92, "probability": 0.7529 }, { "start": 640.5, "end": 643.02, "probability": 0.9917 }, { "start": 643.54, "end": 645.96, "probability": 0.9688 }, { "start": 646.28, "end": 647.7, "probability": 0.9403 }, { "start": 647.8, "end": 649.86, "probability": 0.9518 }, { "start": 650.34, "end": 652.4, "probability": 0.9678 }, { "start": 652.42, "end": 656.08, "probability": 0.9786 }, { "start": 657.26, "end": 659.98, "probability": 0.9764 }, { "start": 660.06, "end": 661.4, "probability": 0.9464 }, { "start": 661.82, "end": 662.78, "probability": 0.9854 }, { "start": 663.62, "end": 665.24, "probability": 0.9841 }, { "start": 665.98, "end": 667.86, "probability": 0.8433 }, { "start": 668.56, "end": 670.52, "probability": 0.6338 }, { "start": 671.26, "end": 672.08, "probability": 0.8013 }, { "start": 672.54, "end": 673.9, "probability": 0.9906 }, { "start": 674.38, "end": 675.34, "probability": 0.9884 }, { "start": 675.84, "end": 678.48, "probability": 0.9846 }, { "start": 678.84, "end": 681.08, "probability": 0.9206 }, { "start": 681.66, "end": 683.08, "probability": 0.463 }, { "start": 683.3, "end": 684.6, "probability": 0.983 }, { "start": 684.68, "end": 688.92, "probability": 0.9457 }, { "start": 689.16, "end": 690.64, "probability": 0.9801 }, { "start": 691.44, "end": 692.16, "probability": 0.938 }, { "start": 692.42, "end": 692.84, "probability": 0.645 }, { "start": 692.92, "end": 693.14, "probability": 0.3998 }, { "start": 693.37, "end": 695.94, "probability": 0.99 }, { "start": 696.2, "end": 699.92, "probability": 0.9991 }, { "start": 700.1, "end": 701.9, "probability": 0.9868 }, { "start": 702.22, "end": 704.78, "probability": 0.9678 }, { "start": 704.96, "end": 707.92, "probability": 0.9969 }, { "start": 708.28, "end": 709.83, "probability": 0.9527 }, { "start": 710.54, "end": 712.66, "probability": 0.9197 }, { "start": 713.5, "end": 714.86, "probability": 0.8919 }, { "start": 714.96, "end": 716.14, "probability": 0.9558 }, { "start": 716.5, "end": 717.82, "probability": 0.9619 }, { "start": 717.9, "end": 719.12, "probability": 0.9043 }, { "start": 720.08, "end": 721.62, "probability": 0.8977 }, { "start": 722.04, "end": 723.48, "probability": 0.9287 }, { "start": 723.92, "end": 726.06, "probability": 0.9486 }, { "start": 726.1, "end": 726.82, "probability": 0.9425 }, { "start": 727.6, "end": 731.06, "probability": 0.9895 }, { "start": 731.78, "end": 733.97, "probability": 0.9963 }, { "start": 734.5, "end": 735.68, "probability": 0.9144 }, { "start": 736.42, "end": 737.06, "probability": 0.6978 }, { "start": 737.4, "end": 738.32, "probability": 0.9603 }, { "start": 738.76, "end": 743.0, "probability": 0.9683 }, { "start": 743.28, "end": 743.62, "probability": 0.8123 }, { "start": 745.58, "end": 746.28, "probability": 0.723 }, { "start": 746.68, "end": 748.74, "probability": 0.9669 }, { "start": 775.78, "end": 776.46, "probability": 0.6279 }, { "start": 777.26, "end": 778.14, "probability": 0.8359 }, { "start": 779.24, "end": 780.36, "probability": 0.7683 }, { "start": 781.8, "end": 785.44, "probability": 0.9734 }, { "start": 786.7, "end": 788.5, "probability": 0.444 }, { "start": 789.06, "end": 792.84, "probability": 0.6949 }, { "start": 794.28, "end": 794.68, "probability": 0.73 }, { "start": 796.08, "end": 799.04, "probability": 0.9609 }, { "start": 800.34, "end": 804.14, "probability": 0.8939 }, { "start": 804.36, "end": 805.2, "probability": 0.7524 }, { "start": 805.42, "end": 806.28, "probability": 0.9387 }, { "start": 807.06, "end": 811.17, "probability": 0.9826 }, { "start": 812.24, "end": 812.7, "probability": 0.9247 }, { "start": 814.12, "end": 815.5, "probability": 0.8381 }, { "start": 816.22, "end": 817.26, "probability": 0.9886 }, { "start": 818.48, "end": 819.18, "probability": 0.8147 }, { "start": 819.76, "end": 823.4, "probability": 0.9873 }, { "start": 823.96, "end": 824.84, "probability": 0.6766 }, { "start": 825.48, "end": 826.94, "probability": 0.9775 }, { "start": 828.26, "end": 830.54, "probability": 0.4144 }, { "start": 831.72, "end": 834.76, "probability": 0.9884 }, { "start": 836.44, "end": 838.1, "probability": 0.9411 }, { "start": 838.84, "end": 841.65, "probability": 0.9868 }, { "start": 842.3, "end": 844.14, "probability": 0.8677 }, { "start": 845.3, "end": 848.24, "probability": 0.7442 }, { "start": 848.76, "end": 850.08, "probability": 0.9883 }, { "start": 850.92, "end": 852.92, "probability": 0.96 }, { "start": 853.74, "end": 857.24, "probability": 0.6313 }, { "start": 858.04, "end": 858.74, "probability": 0.9539 }, { "start": 859.9, "end": 862.86, "probability": 0.9949 }, { "start": 863.46, "end": 865.5, "probability": 0.9191 }, { "start": 867.28, "end": 871.94, "probability": 0.7085 }, { "start": 872.12, "end": 872.64, "probability": 0.8152 }, { "start": 872.9, "end": 875.14, "probability": 0.9315 }, { "start": 875.18, "end": 875.96, "probability": 0.9641 }, { "start": 876.56, "end": 881.86, "probability": 0.9611 }, { "start": 882.88, "end": 885.96, "probability": 0.9978 }, { "start": 887.2, "end": 888.8, "probability": 0.9215 }, { "start": 888.9, "end": 890.36, "probability": 0.999 }, { "start": 891.76, "end": 895.44, "probability": 0.969 }, { "start": 895.94, "end": 897.14, "probability": 0.8279 }, { "start": 897.94, "end": 905.94, "probability": 0.9653 }, { "start": 906.84, "end": 911.68, "probability": 0.9696 }, { "start": 911.78, "end": 914.82, "probability": 0.9648 }, { "start": 916.98, "end": 919.38, "probability": 0.8193 }, { "start": 920.0, "end": 922.74, "probability": 0.9795 }, { "start": 924.4, "end": 927.38, "probability": 0.9682 }, { "start": 927.42, "end": 928.18, "probability": 0.8461 }, { "start": 928.9, "end": 931.66, "probability": 0.9758 }, { "start": 933.11, "end": 935.46, "probability": 0.9946 }, { "start": 935.46, "end": 937.84, "probability": 0.9529 }, { "start": 938.68, "end": 941.44, "probability": 0.9895 }, { "start": 941.44, "end": 945.8, "probability": 0.9312 }, { "start": 946.04, "end": 946.78, "probability": 0.6798 }, { "start": 946.98, "end": 948.02, "probability": 0.6904 }, { "start": 948.86, "end": 953.98, "probability": 0.9969 }, { "start": 954.98, "end": 959.32, "probability": 0.9872 }, { "start": 960.16, "end": 963.66, "probability": 0.9834 }, { "start": 964.18, "end": 967.58, "probability": 0.9266 }, { "start": 967.64, "end": 968.28, "probability": 0.823 }, { "start": 969.1, "end": 970.4, "probability": 0.9932 }, { "start": 971.16, "end": 974.22, "probability": 0.96 }, { "start": 974.86, "end": 976.96, "probability": 0.9982 }, { "start": 977.6, "end": 980.32, "probability": 0.9979 }, { "start": 980.98, "end": 984.06, "probability": 0.9985 }, { "start": 985.72, "end": 988.24, "probability": 0.8822 }, { "start": 989.04, "end": 990.6, "probability": 0.9856 }, { "start": 990.86, "end": 993.64, "probability": 0.9351 }, { "start": 994.98, "end": 998.16, "probability": 0.9736 }, { "start": 998.92, "end": 1001.22, "probability": 0.9946 }, { "start": 1001.92, "end": 1002.92, "probability": 0.868 }, { "start": 1003.62, "end": 1007.04, "probability": 0.8849 }, { "start": 1007.36, "end": 1009.4, "probability": 0.9174 }, { "start": 1009.98, "end": 1011.82, "probability": 0.9673 }, { "start": 1011.94, "end": 1012.96, "probability": 0.8926 }, { "start": 1013.32, "end": 1013.94, "probability": 0.5818 }, { "start": 1014.24, "end": 1017.12, "probability": 0.9181 }, { "start": 1018.02, "end": 1021.12, "probability": 0.9067 }, { "start": 1021.12, "end": 1024.48, "probability": 0.9565 }, { "start": 1024.86, "end": 1028.02, "probability": 0.8997 }, { "start": 1029.1, "end": 1032.82, "probability": 0.971 }, { "start": 1033.22, "end": 1035.72, "probability": 0.9683 }, { "start": 1035.72, "end": 1037.14, "probability": 0.8371 }, { "start": 1037.76, "end": 1039.66, "probability": 0.5236 }, { "start": 1039.82, "end": 1043.92, "probability": 0.9833 }, { "start": 1044.46, "end": 1047.42, "probability": 0.8022 }, { "start": 1047.74, "end": 1047.84, "probability": 0.8221 }, { "start": 1048.32, "end": 1051.7, "probability": 0.889 }, { "start": 1051.7, "end": 1056.54, "probability": 0.8887 }, { "start": 1056.6, "end": 1057.3, "probability": 0.2864 }, { "start": 1058.12, "end": 1061.04, "probability": 0.7294 }, { "start": 1062.02, "end": 1063.82, "probability": 0.862 }, { "start": 1064.8, "end": 1070.02, "probability": 0.9854 }, { "start": 1072.3, "end": 1074.56, "probability": 0.8403 }, { "start": 1075.78, "end": 1076.52, "probability": 0.7105 }, { "start": 1076.6, "end": 1077.2, "probability": 0.6167 }, { "start": 1077.48, "end": 1078.64, "probability": 0.856 }, { "start": 1078.76, "end": 1080.12, "probability": 0.9342 }, { "start": 1081.06, "end": 1084.5, "probability": 0.8514 }, { "start": 1085.54, "end": 1086.46, "probability": 0.6371 }, { "start": 1087.26, "end": 1090.2, "probability": 0.9856 }, { "start": 1091.62, "end": 1092.98, "probability": 0.9951 }, { "start": 1093.36, "end": 1095.36, "probability": 0.1473 }, { "start": 1095.92, "end": 1096.74, "probability": 0.1373 }, { "start": 1096.9, "end": 1098.78, "probability": 0.6944 }, { "start": 1098.9, "end": 1102.24, "probability": 0.074 }, { "start": 1102.24, "end": 1102.24, "probability": 0.0253 }, { "start": 1102.24, "end": 1102.24, "probability": 0.3417 }, { "start": 1102.24, "end": 1103.96, "probability": 0.5458 }, { "start": 1104.48, "end": 1105.45, "probability": 0.4991 }, { "start": 1105.76, "end": 1107.36, "probability": 0.8596 }, { "start": 1107.94, "end": 1110.68, "probability": 0.285 }, { "start": 1111.14, "end": 1114.42, "probability": 0.1186 }, { "start": 1114.42, "end": 1114.42, "probability": 0.0501 }, { "start": 1114.42, "end": 1114.42, "probability": 0.22 }, { "start": 1114.42, "end": 1114.42, "probability": 0.0193 }, { "start": 1114.42, "end": 1114.56, "probability": 0.0392 }, { "start": 1114.98, "end": 1114.98, "probability": 0.0091 }, { "start": 1114.98, "end": 1119.28, "probability": 0.5653 }, { "start": 1119.76, "end": 1120.22, "probability": 0.0091 }, { "start": 1120.38, "end": 1122.98, "probability": 0.4916 }, { "start": 1123.66, "end": 1124.78, "probability": 0.7265 }, { "start": 1125.7, "end": 1127.06, "probability": 0.815 }, { "start": 1128.46, "end": 1133.28, "probability": 0.9867 }, { "start": 1134.28, "end": 1137.86, "probability": 0.9402 }, { "start": 1137.98, "end": 1138.68, "probability": 0.9461 }, { "start": 1138.8, "end": 1139.36, "probability": 0.6156 }, { "start": 1139.54, "end": 1140.06, "probability": 0.6132 }, { "start": 1140.34, "end": 1142.04, "probability": 0.9611 }, { "start": 1143.04, "end": 1146.84, "probability": 0.9704 }, { "start": 1148.14, "end": 1149.1, "probability": 0.8797 }, { "start": 1149.7, "end": 1152.06, "probability": 0.1538 }, { "start": 1152.9, "end": 1154.28, "probability": 0.7825 }, { "start": 1154.48, "end": 1158.1, "probability": 0.8787 }, { "start": 1158.1, "end": 1161.66, "probability": 0.9843 }, { "start": 1162.28, "end": 1167.16, "probability": 0.8761 }, { "start": 1167.62, "end": 1170.58, "probability": 0.9526 }, { "start": 1170.68, "end": 1171.16, "probability": 0.7273 }, { "start": 1171.42, "end": 1171.92, "probability": 0.5948 }, { "start": 1172.16, "end": 1174.48, "probability": 0.7638 }, { "start": 1175.22, "end": 1175.92, "probability": 0.4284 }, { "start": 1176.32, "end": 1179.02, "probability": 0.9579 }, { "start": 1203.82, "end": 1204.8, "probability": 0.588 }, { "start": 1205.9, "end": 1207.3, "probability": 0.8762 }, { "start": 1207.96, "end": 1208.3, "probability": 0.4455 }, { "start": 1226.46, "end": 1230.2, "probability": 0.9976 }, { "start": 1231.56, "end": 1234.62, "probability": 0.9928 }, { "start": 1235.48, "end": 1239.36, "probability": 0.9941 }, { "start": 1240.1, "end": 1243.88, "probability": 0.9891 }, { "start": 1244.52, "end": 1247.02, "probability": 0.6339 }, { "start": 1247.56, "end": 1251.48, "probability": 0.962 }, { "start": 1251.58, "end": 1251.96, "probability": 0.903 }, { "start": 1252.38, "end": 1253.68, "probability": 0.9855 }, { "start": 1254.98, "end": 1257.44, "probability": 0.9771 }, { "start": 1258.02, "end": 1260.02, "probability": 0.9764 }, { "start": 1260.8, "end": 1264.74, "probability": 0.9754 }, { "start": 1264.82, "end": 1265.98, "probability": 0.8555 }, { "start": 1266.16, "end": 1268.62, "probability": 0.9451 }, { "start": 1269.42, "end": 1274.04, "probability": 0.9976 }, { "start": 1274.6, "end": 1276.88, "probability": 0.9443 }, { "start": 1277.18, "end": 1278.02, "probability": 0.9912 }, { "start": 1279.48, "end": 1282.28, "probability": 0.9915 }, { "start": 1282.94, "end": 1284.34, "probability": 0.7635 }, { "start": 1285.2, "end": 1286.34, "probability": 0.9264 }, { "start": 1287.28, "end": 1290.38, "probability": 0.9672 }, { "start": 1291.68, "end": 1293.58, "probability": 0.999 }, { "start": 1294.16, "end": 1297.88, "probability": 0.9879 }, { "start": 1298.06, "end": 1298.6, "probability": 0.8762 }, { "start": 1298.7, "end": 1301.78, "probability": 0.9818 }, { "start": 1302.28, "end": 1305.38, "probability": 0.7939 }, { "start": 1306.1, "end": 1307.02, "probability": 0.9794 }, { "start": 1307.6, "end": 1309.2, "probability": 0.7947 }, { "start": 1310.38, "end": 1312.8, "probability": 0.9517 }, { "start": 1313.24, "end": 1316.28, "probability": 0.9084 }, { "start": 1316.48, "end": 1321.28, "probability": 0.8715 }, { "start": 1321.92, "end": 1323.5, "probability": 0.6403 }, { "start": 1324.84, "end": 1326.8, "probability": 0.9698 }, { "start": 1327.2, "end": 1328.68, "probability": 0.4991 }, { "start": 1329.06, "end": 1329.92, "probability": 0.8882 }, { "start": 1331.58, "end": 1333.84, "probability": 0.8901 }, { "start": 1334.48, "end": 1337.46, "probability": 0.9896 }, { "start": 1337.92, "end": 1342.42, "probability": 0.9591 }, { "start": 1342.8, "end": 1343.94, "probability": 0.967 }, { "start": 1346.5, "end": 1350.8, "probability": 0.925 }, { "start": 1351.36, "end": 1353.66, "probability": 0.9096 }, { "start": 1354.3, "end": 1356.04, "probability": 0.9894 }, { "start": 1356.58, "end": 1359.82, "probability": 0.9919 }, { "start": 1361.7, "end": 1366.36, "probability": 0.9985 }, { "start": 1367.68, "end": 1369.22, "probability": 0.7751 }, { "start": 1370.62, "end": 1374.26, "probability": 0.9602 }, { "start": 1374.66, "end": 1376.83, "probability": 0.9861 }, { "start": 1377.57, "end": 1379.22, "probability": 0.9888 }, { "start": 1380.54, "end": 1382.66, "probability": 0.9965 }, { "start": 1382.94, "end": 1383.92, "probability": 0.9134 }, { "start": 1384.62, "end": 1387.24, "probability": 0.98 }, { "start": 1387.78, "end": 1391.08, "probability": 0.9326 }, { "start": 1391.42, "end": 1392.92, "probability": 0.9949 }, { "start": 1394.66, "end": 1396.08, "probability": 0.9863 }, { "start": 1396.44, "end": 1397.8, "probability": 0.9666 }, { "start": 1398.24, "end": 1404.08, "probability": 0.9385 }, { "start": 1404.78, "end": 1409.18, "probability": 0.9958 }, { "start": 1409.64, "end": 1411.52, "probability": 0.9887 }, { "start": 1412.76, "end": 1414.58, "probability": 0.9261 }, { "start": 1415.42, "end": 1419.38, "probability": 0.999 }, { "start": 1421.2, "end": 1425.94, "probability": 0.9994 }, { "start": 1427.64, "end": 1429.46, "probability": 0.9866 }, { "start": 1430.44, "end": 1431.84, "probability": 0.9628 }, { "start": 1432.02, "end": 1435.54, "probability": 0.9873 }, { "start": 1436.0, "end": 1437.38, "probability": 0.9298 }, { "start": 1438.38, "end": 1441.58, "probability": 0.9702 }, { "start": 1441.58, "end": 1445.52, "probability": 0.9961 }, { "start": 1445.98, "end": 1450.52, "probability": 0.9924 }, { "start": 1451.02, "end": 1455.9, "probability": 0.9819 }, { "start": 1456.76, "end": 1460.28, "probability": 0.9974 }, { "start": 1460.28, "end": 1464.82, "probability": 0.9963 }, { "start": 1465.7, "end": 1469.84, "probability": 0.9991 }, { "start": 1469.84, "end": 1475.12, "probability": 0.9979 }, { "start": 1475.92, "end": 1478.06, "probability": 0.9968 }, { "start": 1478.54, "end": 1481.8, "probability": 0.9983 }, { "start": 1481.86, "end": 1484.28, "probability": 0.9985 }, { "start": 1486.0, "end": 1490.42, "probability": 0.8873 }, { "start": 1490.82, "end": 1492.68, "probability": 0.9978 }, { "start": 1493.78, "end": 1496.0, "probability": 0.9903 }, { "start": 1496.0, "end": 1498.86, "probability": 0.6853 }, { "start": 1499.68, "end": 1502.22, "probability": 0.9966 }, { "start": 1502.6, "end": 1505.0, "probability": 0.9992 }, { "start": 1505.84, "end": 1506.34, "probability": 0.8649 }, { "start": 1507.4, "end": 1512.58, "probability": 0.9558 }, { "start": 1513.5, "end": 1513.72, "probability": 0.6818 }, { "start": 1515.94, "end": 1516.58, "probability": 0.7848 }, { "start": 1521.16, "end": 1524.26, "probability": 0.9143 }, { "start": 1549.84, "end": 1550.92, "probability": 0.6904 }, { "start": 1551.56, "end": 1552.3, "probability": 0.8927 }, { "start": 1552.82, "end": 1553.42, "probability": 0.7225 }, { "start": 1554.6, "end": 1559.04, "probability": 0.9915 }, { "start": 1560.16, "end": 1562.32, "probability": 0.9831 }, { "start": 1562.92, "end": 1563.76, "probability": 0.7888 }, { "start": 1564.68, "end": 1566.18, "probability": 0.9314 }, { "start": 1566.94, "end": 1572.58, "probability": 0.98 }, { "start": 1574.26, "end": 1576.58, "probability": 0.7428 }, { "start": 1577.3, "end": 1577.86, "probability": 0.9419 }, { "start": 1578.62, "end": 1581.34, "probability": 0.9963 }, { "start": 1582.24, "end": 1584.08, "probability": 0.9966 }, { "start": 1584.94, "end": 1586.32, "probability": 0.9321 }, { "start": 1587.34, "end": 1587.6, "probability": 0.2926 }, { "start": 1588.66, "end": 1589.68, "probability": 0.9565 }, { "start": 1590.68, "end": 1597.04, "probability": 0.9694 }, { "start": 1598.32, "end": 1599.8, "probability": 0.9689 }, { "start": 1600.48, "end": 1601.9, "probability": 0.9958 }, { "start": 1602.6, "end": 1605.62, "probability": 0.9934 }, { "start": 1606.5, "end": 1606.72, "probability": 0.5094 }, { "start": 1607.38, "end": 1609.88, "probability": 0.9851 }, { "start": 1610.52, "end": 1614.82, "probability": 0.9778 }, { "start": 1615.34, "end": 1616.02, "probability": 0.9437 }, { "start": 1616.56, "end": 1620.04, "probability": 0.9493 }, { "start": 1620.78, "end": 1623.68, "probability": 0.9985 }, { "start": 1623.68, "end": 1627.02, "probability": 0.9988 }, { "start": 1627.66, "end": 1630.92, "probability": 0.994 }, { "start": 1632.3, "end": 1634.24, "probability": 0.9987 }, { "start": 1634.94, "end": 1636.56, "probability": 0.9139 }, { "start": 1637.32, "end": 1640.26, "probability": 0.9983 }, { "start": 1641.0, "end": 1644.12, "probability": 0.9895 }, { "start": 1645.1, "end": 1645.68, "probability": 0.995 }, { "start": 1646.24, "end": 1647.82, "probability": 0.8486 }, { "start": 1648.84, "end": 1650.08, "probability": 0.9827 }, { "start": 1651.48, "end": 1652.08, "probability": 0.9551 }, { "start": 1653.54, "end": 1655.88, "probability": 0.9595 }, { "start": 1656.52, "end": 1660.72, "probability": 0.994 }, { "start": 1661.46, "end": 1664.58, "probability": 0.9269 }, { "start": 1664.58, "end": 1668.08, "probability": 0.9574 }, { "start": 1668.64, "end": 1669.76, "probability": 0.9932 }, { "start": 1670.52, "end": 1672.32, "probability": 0.9892 }, { "start": 1673.74, "end": 1674.7, "probability": 0.9156 }, { "start": 1675.69, "end": 1676.78, "probability": 0.7943 }, { "start": 1677.36, "end": 1682.08, "probability": 0.98 }, { "start": 1682.08, "end": 1684.76, "probability": 0.9966 }, { "start": 1685.36, "end": 1687.28, "probability": 0.9979 }, { "start": 1688.16, "end": 1688.7, "probability": 0.7156 }, { "start": 1689.46, "end": 1694.04, "probability": 0.9964 }, { "start": 1694.04, "end": 1696.32, "probability": 0.999 }, { "start": 1697.5, "end": 1698.46, "probability": 0.907 }, { "start": 1699.22, "end": 1705.64, "probability": 0.8828 }, { "start": 1706.01, "end": 1708.0, "probability": 0.974 }, { "start": 1708.62, "end": 1710.84, "probability": 0.9825 }, { "start": 1711.36, "end": 1712.84, "probability": 0.9878 }, { "start": 1713.42, "end": 1714.12, "probability": 0.936 }, { "start": 1714.82, "end": 1716.98, "probability": 0.929 }, { "start": 1718.12, "end": 1722.08, "probability": 0.9953 }, { "start": 1723.56, "end": 1724.76, "probability": 0.6376 }, { "start": 1725.26, "end": 1727.78, "probability": 0.9964 }, { "start": 1727.78, "end": 1730.58, "probability": 0.9036 }, { "start": 1731.92, "end": 1733.22, "probability": 0.9652 }, { "start": 1733.78, "end": 1735.16, "probability": 0.9838 }, { "start": 1735.88, "end": 1736.8, "probability": 0.9771 }, { "start": 1737.5, "end": 1738.24, "probability": 0.9535 }, { "start": 1739.4, "end": 1743.1, "probability": 0.9178 }, { "start": 1743.8, "end": 1745.26, "probability": 0.9966 }, { "start": 1745.98, "end": 1747.22, "probability": 0.9976 }, { "start": 1747.98, "end": 1749.3, "probability": 0.9922 }, { "start": 1749.7, "end": 1751.4, "probability": 0.99 }, { "start": 1752.08, "end": 1756.6, "probability": 0.9943 }, { "start": 1757.88, "end": 1759.58, "probability": 0.9985 }, { "start": 1760.16, "end": 1762.84, "probability": 0.9797 }, { "start": 1764.1, "end": 1767.6, "probability": 0.8611 }, { "start": 1768.42, "end": 1768.86, "probability": 0.5145 }, { "start": 1769.56, "end": 1770.46, "probability": 0.9855 }, { "start": 1771.12, "end": 1771.58, "probability": 0.718 }, { "start": 1772.2, "end": 1776.48, "probability": 0.9901 }, { "start": 1777.06, "end": 1780.76, "probability": 0.9894 }, { "start": 1781.34, "end": 1782.36, "probability": 0.9094 }, { "start": 1783.56, "end": 1783.66, "probability": 0.5115 }, { "start": 1784.16, "end": 1785.3, "probability": 0.9209 }, { "start": 1785.76, "end": 1788.96, "probability": 0.9621 }, { "start": 1789.98, "end": 1793.74, "probability": 0.8652 }, { "start": 1794.58, "end": 1797.54, "probability": 0.9972 }, { "start": 1798.28, "end": 1800.64, "probability": 0.6494 }, { "start": 1801.34, "end": 1803.12, "probability": 0.9791 }, { "start": 1804.12, "end": 1805.38, "probability": 0.9269 }, { "start": 1805.9, "end": 1809.1, "probability": 0.9944 }, { "start": 1809.88, "end": 1810.34, "probability": 0.9553 }, { "start": 1811.92, "end": 1815.82, "probability": 0.9641 }, { "start": 1816.62, "end": 1819.54, "probability": 0.998 }, { "start": 1820.6, "end": 1825.16, "probability": 0.8709 }, { "start": 1825.98, "end": 1827.4, "probability": 0.8939 }, { "start": 1828.06, "end": 1829.64, "probability": 0.9906 }, { "start": 1830.12, "end": 1832.42, "probability": 0.9896 }, { "start": 1832.92, "end": 1834.97, "probability": 0.8465 }, { "start": 1835.6, "end": 1836.72, "probability": 0.9327 }, { "start": 1838.58, "end": 1841.46, "probability": 0.7991 }, { "start": 1841.86, "end": 1842.76, "probability": 0.8531 }, { "start": 1843.56, "end": 1844.76, "probability": 0.9915 }, { "start": 1845.36, "end": 1847.3, "probability": 0.9788 }, { "start": 1847.86, "end": 1852.24, "probability": 0.9659 }, { "start": 1853.0, "end": 1855.68, "probability": 0.9592 }, { "start": 1856.64, "end": 1859.99, "probability": 0.9934 }, { "start": 1860.0, "end": 1862.56, "probability": 0.9995 }, { "start": 1863.46, "end": 1863.96, "probability": 0.7013 }, { "start": 1866.3, "end": 1867.16, "probability": 0.6174 }, { "start": 1867.68, "end": 1869.86, "probability": 0.8724 }, { "start": 1880.18, "end": 1880.18, "probability": 0.4135 }, { "start": 1880.18, "end": 1880.18, "probability": 0.0856 }, { "start": 1880.18, "end": 1880.18, "probability": 0.1762 }, { "start": 1880.18, "end": 1880.18, "probability": 0.1794 }, { "start": 1880.18, "end": 1880.18, "probability": 0.0351 }, { "start": 1880.18, "end": 1880.18, "probability": 0.1955 }, { "start": 1880.18, "end": 1880.18, "probability": 0.022 }, { "start": 1916.18, "end": 1917.12, "probability": 0.2425 }, { "start": 1917.74, "end": 1920.16, "probability": 0.7261 }, { "start": 1921.78, "end": 1925.4, "probability": 0.7749 }, { "start": 1925.58, "end": 1927.6, "probability": 0.7221 }, { "start": 1928.3, "end": 1932.62, "probability": 0.9853 }, { "start": 1933.34, "end": 1933.48, "probability": 0.4849 }, { "start": 1935.22, "end": 1938.62, "probability": 0.974 }, { "start": 1939.86, "end": 1940.78, "probability": 0.7987 }, { "start": 1941.08, "end": 1945.06, "probability": 0.949 }, { "start": 1945.14, "end": 1948.14, "probability": 0.984 }, { "start": 1948.8, "end": 1951.84, "probability": 0.9861 }, { "start": 1953.08, "end": 1955.4, "probability": 0.7934 }, { "start": 1956.15, "end": 1962.96, "probability": 0.9995 }, { "start": 1963.46, "end": 1966.76, "probability": 0.976 }, { "start": 1967.44, "end": 1973.38, "probability": 0.9957 }, { "start": 1973.76, "end": 1977.14, "probability": 0.9937 }, { "start": 1978.1, "end": 1981.54, "probability": 0.9984 }, { "start": 1981.54, "end": 1988.56, "probability": 0.9763 }, { "start": 1988.86, "end": 1989.74, "probability": 0.7183 }, { "start": 1990.28, "end": 1992.25, "probability": 0.4824 }, { "start": 1993.28, "end": 1995.02, "probability": 0.6544 }, { "start": 1995.72, "end": 1997.4, "probability": 0.8682 }, { "start": 1998.48, "end": 2000.62, "probability": 0.972 }, { "start": 2001.14, "end": 2004.08, "probability": 0.8977 }, { "start": 2004.86, "end": 2006.8, "probability": 0.9961 }, { "start": 2006.96, "end": 2010.58, "probability": 0.9834 }, { "start": 2011.44, "end": 2014.64, "probability": 0.9285 }, { "start": 2015.36, "end": 2018.98, "probability": 0.8136 }, { "start": 2019.62, "end": 2021.42, "probability": 0.7735 }, { "start": 2021.84, "end": 2024.58, "probability": 0.8682 }, { "start": 2024.76, "end": 2027.64, "probability": 0.6672 }, { "start": 2028.1, "end": 2030.58, "probability": 0.94 }, { "start": 2031.06, "end": 2032.0, "probability": 0.9021 }, { "start": 2032.04, "end": 2038.5, "probability": 0.9766 }, { "start": 2039.52, "end": 2043.36, "probability": 0.9656 }, { "start": 2044.0, "end": 2047.99, "probability": 0.9545 }, { "start": 2051.02, "end": 2057.76, "probability": 0.4761 }, { "start": 2058.3, "end": 2067.4, "probability": 0.9946 }, { "start": 2068.2, "end": 2068.52, "probability": 0.6871 }, { "start": 2069.24, "end": 2071.52, "probability": 0.6774 }, { "start": 2071.84, "end": 2072.33, "probability": 0.8965 }, { "start": 2073.52, "end": 2073.78, "probability": 0.263 }, { "start": 2073.78, "end": 2074.2, "probability": 0.9146 }, { "start": 2075.42, "end": 2077.06, "probability": 0.2041 }, { "start": 2077.4, "end": 2083.8, "probability": 0.8093 }, { "start": 2084.28, "end": 2085.48, "probability": 0.6486 }, { "start": 2086.02, "end": 2088.06, "probability": 0.5578 }, { "start": 2089.99, "end": 2095.02, "probability": 0.9355 }, { "start": 2096.06, "end": 2097.44, "probability": 0.8053 }, { "start": 2098.06, "end": 2099.88, "probability": 0.997 }, { "start": 2100.4, "end": 2102.0, "probability": 0.9458 }, { "start": 2102.38, "end": 2103.04, "probability": 0.8811 }, { "start": 2103.16, "end": 2106.28, "probability": 0.9343 }, { "start": 2106.88, "end": 2107.6, "probability": 0.7326 }, { "start": 2108.0, "end": 2112.48, "probability": 0.7751 }, { "start": 2112.98, "end": 2117.84, "probability": 0.8 }, { "start": 2117.88, "end": 2121.14, "probability": 0.5186 }, { "start": 2121.32, "end": 2126.32, "probability": 0.979 }, { "start": 2126.86, "end": 2132.24, "probability": 0.9663 }, { "start": 2132.24, "end": 2138.5, "probability": 0.9951 }, { "start": 2139.32, "end": 2141.46, "probability": 0.9551 }, { "start": 2142.02, "end": 2143.46, "probability": 0.9328 }, { "start": 2143.66, "end": 2148.38, "probability": 0.9536 }, { "start": 2148.38, "end": 2151.18, "probability": 0.5243 }, { "start": 2151.64, "end": 2153.18, "probability": 0.7251 }, { "start": 2153.32, "end": 2154.48, "probability": 0.7537 }, { "start": 2155.28, "end": 2158.52, "probability": 0.8408 }, { "start": 2158.52, "end": 2162.54, "probability": 0.6347 }, { "start": 2163.02, "end": 2168.02, "probability": 0.9778 }, { "start": 2168.08, "end": 2173.56, "probability": 0.7802 }, { "start": 2174.66, "end": 2180.5, "probability": 0.9688 }, { "start": 2180.5, "end": 2186.19, "probability": 0.9976 }, { "start": 2187.08, "end": 2195.2, "probability": 0.9652 }, { "start": 2195.36, "end": 2196.48, "probability": 0.6323 }, { "start": 2196.72, "end": 2200.92, "probability": 0.9647 }, { "start": 2201.48, "end": 2203.3, "probability": 0.9737 }, { "start": 2203.42, "end": 2204.78, "probability": 0.9561 }, { "start": 2205.12, "end": 2207.02, "probability": 0.9326 }, { "start": 2207.28, "end": 2211.06, "probability": 0.894 }, { "start": 2211.6, "end": 2215.22, "probability": 0.7502 }, { "start": 2216.68, "end": 2221.38, "probability": 0.9264 }, { "start": 2222.14, "end": 2226.34, "probability": 0.9919 }, { "start": 2226.34, "end": 2231.76, "probability": 0.9876 }, { "start": 2232.24, "end": 2234.61, "probability": 0.7847 }, { "start": 2234.72, "end": 2239.92, "probability": 0.8426 }, { "start": 2240.38, "end": 2243.86, "probability": 0.8013 }, { "start": 2245.24, "end": 2248.22, "probability": 0.9917 }, { "start": 2249.08, "end": 2252.22, "probability": 0.9953 }, { "start": 2252.64, "end": 2253.12, "probability": 0.7356 }, { "start": 2254.0, "end": 2254.42, "probability": 0.6551 }, { "start": 2254.62, "end": 2255.4, "probability": 0.8726 }, { "start": 2275.6, "end": 2275.76, "probability": 0.4969 }, { "start": 2288.66, "end": 2290.1, "probability": 0.6773 }, { "start": 2291.08, "end": 2291.88, "probability": 0.8871 }, { "start": 2292.6, "end": 2292.82, "probability": 0.9645 }, { "start": 2294.1, "end": 2295.04, "probability": 0.986 }, { "start": 2296.84, "end": 2303.5, "probability": 0.9827 }, { "start": 2303.76, "end": 2306.54, "probability": 0.7023 }, { "start": 2307.36, "end": 2308.46, "probability": 0.7924 }, { "start": 2309.22, "end": 2310.44, "probability": 0.4926 }, { "start": 2311.06, "end": 2313.42, "probability": 0.6592 }, { "start": 2313.48, "end": 2316.7, "probability": 0.9619 }, { "start": 2318.16, "end": 2318.8, "probability": 0.7882 }, { "start": 2319.98, "end": 2320.74, "probability": 0.8183 }, { "start": 2322.0, "end": 2327.16, "probability": 0.9058 }, { "start": 2327.88, "end": 2331.74, "probability": 0.9626 }, { "start": 2332.88, "end": 2338.04, "probability": 0.9276 }, { "start": 2339.52, "end": 2340.1, "probability": 0.648 }, { "start": 2340.8, "end": 2345.44, "probability": 0.9719 }, { "start": 2346.22, "end": 2348.68, "probability": 0.8845 }, { "start": 2349.5, "end": 2351.14, "probability": 0.8284 }, { "start": 2352.0, "end": 2355.66, "probability": 0.8124 }, { "start": 2356.36, "end": 2358.1, "probability": 0.6898 }, { "start": 2359.54, "end": 2363.46, "probability": 0.9683 }, { "start": 2363.56, "end": 2366.04, "probability": 0.7984 }, { "start": 2367.16, "end": 2371.04, "probability": 0.9714 }, { "start": 2372.08, "end": 2374.96, "probability": 0.1445 }, { "start": 2375.16, "end": 2376.51, "probability": 0.0178 }, { "start": 2383.82, "end": 2387.96, "probability": 0.5386 }, { "start": 2388.28, "end": 2392.28, "probability": 0.6379 }, { "start": 2393.08, "end": 2395.46, "probability": 0.8012 }, { "start": 2395.62, "end": 2396.91, "probability": 0.5032 }, { "start": 2397.68, "end": 2400.02, "probability": 0.6559 }, { "start": 2400.58, "end": 2401.34, "probability": 0.5322 }, { "start": 2402.74, "end": 2403.34, "probability": 0.5722 }, { "start": 2403.42, "end": 2403.82, "probability": 0.4172 }, { "start": 2405.36, "end": 2406.12, "probability": 0.5018 }, { "start": 2406.74, "end": 2407.98, "probability": 0.6471 }, { "start": 2408.78, "end": 2410.06, "probability": 0.6607 }, { "start": 2410.08, "end": 2411.5, "probability": 0.6654 }, { "start": 2411.66, "end": 2412.66, "probability": 0.694 }, { "start": 2413.18, "end": 2415.88, "probability": 0.988 }, { "start": 2416.48, "end": 2419.14, "probability": 0.953 }, { "start": 2419.3, "end": 2420.56, "probability": 0.9233 }, { "start": 2420.7, "end": 2421.98, "probability": 0.0246 }, { "start": 2422.92, "end": 2424.24, "probability": 0.1943 }, { "start": 2425.4, "end": 2425.88, "probability": 0.083 }, { "start": 2426.72, "end": 2429.04, "probability": 0.6582 }, { "start": 2429.2, "end": 2431.24, "probability": 0.4635 }, { "start": 2431.32, "end": 2432.3, "probability": 0.6613 }, { "start": 2432.84, "end": 2432.84, "probability": 0.5281 }, { "start": 2432.84, "end": 2433.84, "probability": 0.5736 }, { "start": 2434.04, "end": 2434.6, "probability": 0.5063 }, { "start": 2434.68, "end": 2439.02, "probability": 0.5401 }, { "start": 2439.2, "end": 2441.98, "probability": 0.2238 }, { "start": 2442.0, "end": 2444.88, "probability": 0.7561 }, { "start": 2444.94, "end": 2447.3, "probability": 0.845 }, { "start": 2447.94, "end": 2448.58, "probability": 0.8162 }, { "start": 2449.14, "end": 2456.42, "probability": 0.9869 }, { "start": 2456.66, "end": 2457.66, "probability": 0.915 }, { "start": 2458.38, "end": 2461.42, "probability": 0.8329 }, { "start": 2461.92, "end": 2464.1, "probability": 0.9976 }, { "start": 2464.96, "end": 2468.7, "probability": 0.9793 }, { "start": 2469.28, "end": 2469.88, "probability": 0.9504 }, { "start": 2471.12, "end": 2475.08, "probability": 0.998 }, { "start": 2475.22, "end": 2479.64, "probability": 0.9962 }, { "start": 2480.44, "end": 2481.64, "probability": 0.9396 }, { "start": 2481.82, "end": 2482.38, "probability": 0.9077 }, { "start": 2482.42, "end": 2483.02, "probability": 0.706 }, { "start": 2483.14, "end": 2484.88, "probability": 0.9289 }, { "start": 2485.78, "end": 2491.28, "probability": 0.9866 }, { "start": 2491.28, "end": 2497.3, "probability": 0.9595 }, { "start": 2497.58, "end": 2499.34, "probability": 0.8689 }, { "start": 2499.48, "end": 2502.78, "probability": 0.9717 }, { "start": 2502.9, "end": 2507.62, "probability": 0.9893 }, { "start": 2508.18, "end": 2510.38, "probability": 0.7627 }, { "start": 2511.44, "end": 2511.98, "probability": 0.525 }, { "start": 2512.62, "end": 2513.42, "probability": 0.7712 }, { "start": 2513.6, "end": 2517.56, "probability": 0.9805 }, { "start": 2518.4, "end": 2522.02, "probability": 0.8313 }, { "start": 2522.84, "end": 2525.9, "probability": 0.96 }, { "start": 2526.3, "end": 2532.98, "probability": 0.9608 }, { "start": 2534.1, "end": 2536.78, "probability": 0.9927 }, { "start": 2537.53, "end": 2538.88, "probability": 0.9213 }, { "start": 2540.42, "end": 2540.92, "probability": 0.9844 }, { "start": 2541.74, "end": 2545.34, "probability": 0.9018 }, { "start": 2545.7, "end": 2547.34, "probability": 0.9954 }, { "start": 2548.02, "end": 2550.1, "probability": 0.9005 }, { "start": 2550.66, "end": 2556.32, "probability": 0.9927 }, { "start": 2556.64, "end": 2557.48, "probability": 0.9692 }, { "start": 2558.22, "end": 2560.38, "probability": 0.8807 }, { "start": 2561.2, "end": 2565.42, "probability": 0.9988 }, { "start": 2566.62, "end": 2568.34, "probability": 0.7228 }, { "start": 2568.92, "end": 2571.18, "probability": 0.6887 }, { "start": 2571.72, "end": 2575.58, "probability": 0.8139 }, { "start": 2576.2, "end": 2577.74, "probability": 0.7967 }, { "start": 2579.3, "end": 2583.14, "probability": 0.9349 }, { "start": 2583.92, "end": 2585.4, "probability": 0.9916 }, { "start": 2586.38, "end": 2588.4, "probability": 0.5374 }, { "start": 2588.74, "end": 2593.36, "probability": 0.8371 }, { "start": 2593.6, "end": 2594.78, "probability": 0.44 }, { "start": 2595.46, "end": 2596.78, "probability": 0.8017 }, { "start": 2597.2, "end": 2600.66, "probability": 0.9128 }, { "start": 2601.12, "end": 2608.48, "probability": 0.9774 }, { "start": 2608.58, "end": 2614.22, "probability": 0.8751 }, { "start": 2615.2, "end": 2617.94, "probability": 0.8525 }, { "start": 2618.98, "end": 2622.38, "probability": 0.9977 }, { "start": 2623.26, "end": 2624.08, "probability": 0.8286 }, { "start": 2624.48, "end": 2628.14, "probability": 0.9908 }, { "start": 2628.26, "end": 2630.76, "probability": 0.9709 }, { "start": 2631.32, "end": 2632.88, "probability": 0.8905 }, { "start": 2634.42, "end": 2636.32, "probability": 0.9976 }, { "start": 2636.96, "end": 2638.04, "probability": 0.9831 }, { "start": 2638.6, "end": 2639.8, "probability": 0.7515 }, { "start": 2640.42, "end": 2641.84, "probability": 0.9664 }, { "start": 2642.88, "end": 2647.86, "probability": 0.9253 }, { "start": 2648.26, "end": 2653.06, "probability": 0.9984 }, { "start": 2655.84, "end": 2656.4, "probability": 0.8241 }, { "start": 2656.88, "end": 2657.22, "probability": 0.7496 }, { "start": 2657.36, "end": 2658.5, "probability": 0.9602 }, { "start": 2658.96, "end": 2660.26, "probability": 0.7757 }, { "start": 2660.36, "end": 2661.92, "probability": 0.9677 }, { "start": 2662.04, "end": 2666.36, "probability": 0.8804 }, { "start": 2666.64, "end": 2669.78, "probability": 0.9689 }, { "start": 2670.62, "end": 2674.38, "probability": 0.9946 }, { "start": 2674.72, "end": 2676.74, "probability": 0.9881 }, { "start": 2677.22, "end": 2680.06, "probability": 0.9963 }, { "start": 2680.06, "end": 2687.08, "probability": 0.9587 }, { "start": 2687.86, "end": 2692.7, "probability": 0.9524 }, { "start": 2693.3, "end": 2699.24, "probability": 0.9736 }, { "start": 2699.7, "end": 2706.02, "probability": 0.9803 }, { "start": 2706.5, "end": 2710.62, "probability": 0.9729 }, { "start": 2710.62, "end": 2715.08, "probability": 0.9956 }, { "start": 2715.18, "end": 2717.6, "probability": 0.9102 }, { "start": 2718.56, "end": 2720.06, "probability": 0.7485 }, { "start": 2720.56, "end": 2723.24, "probability": 0.9968 }, { "start": 2723.4, "end": 2727.54, "probability": 0.9617 }, { "start": 2727.96, "end": 2728.88, "probability": 0.9242 }, { "start": 2728.98, "end": 2730.85, "probability": 0.7617 }, { "start": 2733.06, "end": 2743.04, "probability": 0.9868 }, { "start": 2744.85, "end": 2745.78, "probability": 0.8927 }, { "start": 2747.18, "end": 2757.48, "probability": 0.9957 }, { "start": 2758.58, "end": 2763.66, "probability": 0.9976 }, { "start": 2764.56, "end": 2765.96, "probability": 0.5054 }, { "start": 2766.72, "end": 2767.6, "probability": 0.7928 }, { "start": 2768.54, "end": 2771.4, "probability": 0.8739 }, { "start": 2772.48, "end": 2773.44, "probability": 0.633 }, { "start": 2774.32, "end": 2775.9, "probability": 0.9929 }, { "start": 2776.76, "end": 2785.24, "probability": 0.9955 }, { "start": 2786.02, "end": 2792.74, "probability": 0.9556 }, { "start": 2793.04, "end": 2794.36, "probability": 0.5988 }, { "start": 2795.0, "end": 2795.7, "probability": 0.6307 }, { "start": 2795.76, "end": 2797.02, "probability": 0.8963 }, { "start": 2830.52, "end": 2832.28, "probability": 0.7138 }, { "start": 2835.06, "end": 2836.96, "probability": 0.9088 }, { "start": 2837.6, "end": 2842.44, "probability": 0.9658 }, { "start": 2843.36, "end": 2848.9, "probability": 0.9914 }, { "start": 2849.56, "end": 2850.8, "probability": 0.9585 }, { "start": 2851.96, "end": 2853.82, "probability": 0.8982 }, { "start": 2853.94, "end": 2854.26, "probability": 0.7485 }, { "start": 2854.4, "end": 2854.9, "probability": 0.6739 }, { "start": 2855.1, "end": 2856.16, "probability": 0.8852 }, { "start": 2857.42, "end": 2860.02, "probability": 0.9691 }, { "start": 2860.74, "end": 2861.8, "probability": 0.9531 }, { "start": 2861.92, "end": 2862.26, "probability": 0.8633 }, { "start": 2862.28, "end": 2864.14, "probability": 0.9891 }, { "start": 2865.02, "end": 2868.92, "probability": 0.9871 }, { "start": 2869.7, "end": 2870.84, "probability": 0.7128 }, { "start": 2870.98, "end": 2871.84, "probability": 0.8414 }, { "start": 2872.59, "end": 2876.84, "probability": 0.9955 }, { "start": 2877.46, "end": 2878.52, "probability": 0.9972 }, { "start": 2879.08, "end": 2882.98, "probability": 0.8396 }, { "start": 2883.6, "end": 2887.96, "probability": 0.9681 }, { "start": 2888.68, "end": 2889.14, "probability": 0.5398 }, { "start": 2889.26, "end": 2889.6, "probability": 0.5771 }, { "start": 2889.66, "end": 2890.98, "probability": 0.5643 }, { "start": 2891.1, "end": 2892.1, "probability": 0.6277 }, { "start": 2892.34, "end": 2893.04, "probability": 0.7565 }, { "start": 2894.4, "end": 2895.1, "probability": 0.9357 }, { "start": 2895.5, "end": 2896.24, "probability": 0.9173 }, { "start": 2896.44, "end": 2896.84, "probability": 0.958 }, { "start": 2897.04, "end": 2897.54, "probability": 0.9925 }, { "start": 2897.66, "end": 2898.04, "probability": 0.9441 }, { "start": 2898.16, "end": 2898.96, "probability": 0.96 }, { "start": 2899.12, "end": 2900.06, "probability": 0.9655 }, { "start": 2900.36, "end": 2900.8, "probability": 0.4287 }, { "start": 2901.6, "end": 2905.42, "probability": 0.9891 }, { "start": 2906.06, "end": 2907.98, "probability": 0.9947 }, { "start": 2908.16, "end": 2908.42, "probability": 0.3678 }, { "start": 2909.89, "end": 2913.55, "probability": 0.9891 }, { "start": 2914.22, "end": 2916.98, "probability": 0.8056 }, { "start": 2917.54, "end": 2920.1, "probability": 0.9588 }, { "start": 2920.62, "end": 2922.36, "probability": 0.6872 }, { "start": 2923.14, "end": 2925.64, "probability": 0.8795 }, { "start": 2926.3, "end": 2926.94, "probability": 0.8516 }, { "start": 2927.64, "end": 2930.18, "probability": 0.904 }, { "start": 2931.08, "end": 2932.74, "probability": 0.9974 }, { "start": 2933.3, "end": 2936.54, "probability": 0.9932 }, { "start": 2936.96, "end": 2937.78, "probability": 0.5833 }, { "start": 2939.16, "end": 2940.88, "probability": 0.7328 }, { "start": 2942.2, "end": 2945.12, "probability": 0.9544 }, { "start": 2945.66, "end": 2950.42, "probability": 0.9866 }, { "start": 2950.42, "end": 2955.12, "probability": 0.9956 }, { "start": 2956.06, "end": 2957.96, "probability": 0.9956 }, { "start": 2958.98, "end": 2961.36, "probability": 0.995 }, { "start": 2962.68, "end": 2966.96, "probability": 0.9808 }, { "start": 2967.68, "end": 2969.58, "probability": 0.8698 }, { "start": 2970.28, "end": 2972.28, "probability": 0.8638 }, { "start": 2972.84, "end": 2973.3, "probability": 0.6273 }, { "start": 2974.0, "end": 2976.44, "probability": 0.9861 }, { "start": 2977.46, "end": 2982.86, "probability": 0.9626 }, { "start": 2983.78, "end": 2985.18, "probability": 0.9427 }, { "start": 2986.02, "end": 2986.74, "probability": 0.7878 }, { "start": 2988.13, "end": 2991.22, "probability": 0.8092 }, { "start": 2991.32, "end": 2993.65, "probability": 0.9424 }, { "start": 2994.42, "end": 2996.76, "probability": 0.9705 }, { "start": 2996.94, "end": 3001.5, "probability": 0.9651 }, { "start": 3002.36, "end": 3006.64, "probability": 0.9282 }, { "start": 3006.96, "end": 3007.64, "probability": 0.7993 }, { "start": 3008.5, "end": 3009.8, "probability": 0.9425 }, { "start": 3010.46, "end": 3012.08, "probability": 0.9187 }, { "start": 3012.4, "end": 3013.44, "probability": 0.9374 }, { "start": 3013.56, "end": 3017.72, "probability": 0.7602 }, { "start": 3017.78, "end": 3018.44, "probability": 0.7317 }, { "start": 3019.06, "end": 3019.84, "probability": 0.9198 }, { "start": 3019.96, "end": 3020.38, "probability": 0.8212 }, { "start": 3020.62, "end": 3025.56, "probability": 0.983 }, { "start": 3025.66, "end": 3026.3, "probability": 0.7155 }, { "start": 3026.4, "end": 3027.12, "probability": 0.9418 }, { "start": 3027.2, "end": 3027.65, "probability": 0.7336 }, { "start": 3028.92, "end": 3030.54, "probability": 0.9963 }, { "start": 3030.68, "end": 3032.76, "probability": 0.9812 }, { "start": 3032.76, "end": 3034.86, "probability": 0.803 }, { "start": 3034.92, "end": 3036.5, "probability": 0.6912 }, { "start": 3037.08, "end": 3039.11, "probability": 0.6528 }, { "start": 3039.28, "end": 3041.38, "probability": 0.9178 }, { "start": 3042.16, "end": 3043.64, "probability": 0.9064 }, { "start": 3043.8, "end": 3044.4, "probability": 0.74 }, { "start": 3046.14, "end": 3046.14, "probability": 0.0001 }, { "start": 3048.66, "end": 3048.96, "probability": 0.1764 }, { "start": 3048.96, "end": 3048.96, "probability": 0.0259 }, { "start": 3048.96, "end": 3048.96, "probability": 0.3228 }, { "start": 3048.96, "end": 3050.24, "probability": 0.0976 }, { "start": 3052.26, "end": 3052.26, "probability": 0.1653 }, { "start": 3052.26, "end": 3052.26, "probability": 0.0981 }, { "start": 3052.26, "end": 3053.68, "probability": 0.3468 }, { "start": 3053.9, "end": 3055.26, "probability": 0.9391 }, { "start": 3055.46, "end": 3061.54, "probability": 0.7209 }, { "start": 3061.54, "end": 3065.14, "probability": 0.9144 }, { "start": 3065.62, "end": 3066.18, "probability": 0.3982 }, { "start": 3066.24, "end": 3066.58, "probability": 0.7969 }, { "start": 3066.76, "end": 3067.24, "probability": 0.7286 }, { "start": 3067.92, "end": 3068.86, "probability": 0.838 }, { "start": 3069.96, "end": 3070.51, "probability": 0.6637 }, { "start": 3071.38, "end": 3071.94, "probability": 0.8332 }, { "start": 3072.22, "end": 3073.7, "probability": 0.3672 }, { "start": 3073.9, "end": 3074.58, "probability": 0.7601 }, { "start": 3074.72, "end": 3075.48, "probability": 0.6749 }, { "start": 3075.54, "end": 3076.55, "probability": 0.6849 }, { "start": 3077.62, "end": 3080.2, "probability": 0.9888 }, { "start": 3080.26, "end": 3081.78, "probability": 0.8568 }, { "start": 3081.9, "end": 3082.98, "probability": 0.8648 }, { "start": 3083.2, "end": 3084.74, "probability": 0.6592 }, { "start": 3084.92, "end": 3087.02, "probability": 0.7581 }, { "start": 3087.04, "end": 3089.02, "probability": 0.5087 }, { "start": 3089.16, "end": 3089.74, "probability": 0.613 }, { "start": 3090.22, "end": 3091.22, "probability": 0.7852 }, { "start": 3092.54, "end": 3097.26, "probability": 0.7461 }, { "start": 3097.74, "end": 3100.29, "probability": 0.9624 }, { "start": 3101.1, "end": 3101.1, "probability": 0.2184 }, { "start": 3101.1, "end": 3102.44, "probability": 0.6731 }, { "start": 3103.04, "end": 3103.52, "probability": 0.5909 }, { "start": 3104.08, "end": 3105.54, "probability": 0.8615 }, { "start": 3105.74, "end": 3110.54, "probability": 0.9778 }, { "start": 3110.56, "end": 3112.7, "probability": 0.8595 }, { "start": 3113.66, "end": 3116.34, "probability": 0.7379 }, { "start": 3117.0, "end": 3117.4, "probability": 0.8261 }, { "start": 3117.6, "end": 3118.76, "probability": 0.9133 }, { "start": 3118.98, "end": 3119.62, "probability": 0.8474 }, { "start": 3120.12, "end": 3122.06, "probability": 0.7473 }, { "start": 3122.74, "end": 3125.14, "probability": 0.6309 }, { "start": 3125.62, "end": 3128.24, "probability": 0.5346 }, { "start": 3128.86, "end": 3130.9, "probability": 0.8798 }, { "start": 3131.84, "end": 3132.84, "probability": 0.9028 }, { "start": 3132.86, "end": 3133.4, "probability": 0.8939 }, { "start": 3135.06, "end": 3136.36, "probability": 0.8162 }, { "start": 3136.42, "end": 3136.42, "probability": 0.8003 }, { "start": 3136.48, "end": 3137.48, "probability": 0.676 }, { "start": 3139.46, "end": 3141.24, "probability": 0.2823 }, { "start": 3141.48, "end": 3145.24, "probability": 0.0879 }, { "start": 3145.72, "end": 3145.72, "probability": 0.3664 }, { "start": 3145.72, "end": 3146.32, "probability": 0.7186 }, { "start": 3146.42, "end": 3147.15, "probability": 0.8425 }, { "start": 3147.4, "end": 3151.46, "probability": 0.6233 }, { "start": 3151.56, "end": 3152.2, "probability": 0.2815 }, { "start": 3152.26, "end": 3152.9, "probability": 0.0715 }, { "start": 3152.98, "end": 3154.98, "probability": 0.6741 }, { "start": 3155.17, "end": 3155.24, "probability": 0.2248 }, { "start": 3155.86, "end": 3158.79, "probability": 0.9761 }, { "start": 3159.04, "end": 3160.16, "probability": 0.9267 }, { "start": 3160.3, "end": 3162.28, "probability": 0.7703 }, { "start": 3162.82, "end": 3164.98, "probability": 0.9954 }, { "start": 3165.9, "end": 3169.82, "probability": 0.5535 }, { "start": 3171.32, "end": 3175.58, "probability": 0.8857 }, { "start": 3176.42, "end": 3177.84, "probability": 0.9443 }, { "start": 3178.48, "end": 3180.44, "probability": 0.3464 }, { "start": 3180.6, "end": 3186.62, "probability": 0.973 }, { "start": 3186.7, "end": 3187.86, "probability": 0.751 }, { "start": 3188.4, "end": 3190.64, "probability": 0.814 }, { "start": 3190.82, "end": 3191.66, "probability": 0.727 }, { "start": 3192.76, "end": 3195.98, "probability": 0.9479 }, { "start": 3196.16, "end": 3196.62, "probability": 0.4328 }, { "start": 3196.66, "end": 3197.6, "probability": 0.8073 }, { "start": 3197.72, "end": 3198.38, "probability": 0.5688 }, { "start": 3198.92, "end": 3199.48, "probability": 0.4961 }, { "start": 3199.64, "end": 3201.42, "probability": 0.4381 }, { "start": 3201.82, "end": 3202.81, "probability": 0.3955 }, { "start": 3203.64, "end": 3205.02, "probability": 0.7221 }, { "start": 3205.12, "end": 3206.48, "probability": 0.8853 }, { "start": 3206.58, "end": 3208.96, "probability": 0.9666 }, { "start": 3209.82, "end": 3210.02, "probability": 0.0014 }, { "start": 3210.96, "end": 3212.34, "probability": 0.5385 }, { "start": 3212.54, "end": 3213.18, "probability": 0.7583 }, { "start": 3213.32, "end": 3213.8, "probability": 0.9507 }, { "start": 3213.94, "end": 3215.27, "probability": 0.8836 }, { "start": 3215.96, "end": 3217.83, "probability": 0.9921 }, { "start": 3218.46, "end": 3219.82, "probability": 0.8419 }, { "start": 3220.26, "end": 3220.7, "probability": 0.6362 }, { "start": 3221.22, "end": 3221.52, "probability": 0.508 }, { "start": 3221.58, "end": 3223.1, "probability": 0.9568 }, { "start": 3224.89, "end": 3226.68, "probability": 0.4995 }, { "start": 3227.24, "end": 3229.86, "probability": 0.9507 }, { "start": 3230.54, "end": 3232.4, "probability": 0.9249 }, { "start": 3232.5, "end": 3233.08, "probability": 0.9438 }, { "start": 3233.16, "end": 3234.16, "probability": 0.6196 }, { "start": 3234.24, "end": 3238.58, "probability": 0.8964 }, { "start": 3239.36, "end": 3239.68, "probability": 0.7489 }, { "start": 3239.76, "end": 3239.96, "probability": 0.7408 }, { "start": 3240.12, "end": 3241.54, "probability": 0.787 }, { "start": 3241.58, "end": 3244.22, "probability": 0.7439 }, { "start": 3244.58, "end": 3245.94, "probability": 0.7505 }, { "start": 3246.14, "end": 3246.48, "probability": 0.6062 }, { "start": 3247.14, "end": 3247.74, "probability": 0.5854 }, { "start": 3248.12, "end": 3249.44, "probability": 0.8014 }, { "start": 3249.92, "end": 3253.24, "probability": 0.9053 }, { "start": 3253.52, "end": 3256.62, "probability": 0.981 }, { "start": 3257.12, "end": 3257.38, "probability": 0.6073 }, { "start": 3257.62, "end": 3258.06, "probability": 0.5709 }, { "start": 3258.1, "end": 3259.68, "probability": 0.8993 }, { "start": 3273.92, "end": 3274.18, "probability": 0.1752 }, { "start": 3284.66, "end": 3286.68, "probability": 0.6056 }, { "start": 3288.38, "end": 3290.44, "probability": 0.7941 }, { "start": 3291.46, "end": 3294.22, "probability": 0.9506 }, { "start": 3295.9, "end": 3296.72, "probability": 0.832 }, { "start": 3296.9, "end": 3297.38, "probability": 0.7451 }, { "start": 3297.76, "end": 3299.34, "probability": 0.8845 }, { "start": 3300.58, "end": 3302.96, "probability": 0.9241 }, { "start": 3304.04, "end": 3307.7, "probability": 0.789 }, { "start": 3308.62, "end": 3309.88, "probability": 0.5211 }, { "start": 3310.5, "end": 3311.23, "probability": 0.9827 }, { "start": 3313.2, "end": 3315.64, "probability": 0.9871 }, { "start": 3316.98, "end": 3318.45, "probability": 0.8966 }, { "start": 3320.04, "end": 3322.0, "probability": 0.9326 }, { "start": 3323.34, "end": 3326.56, "probability": 0.9965 }, { "start": 3327.1, "end": 3331.54, "probability": 0.9561 }, { "start": 3332.72, "end": 3334.34, "probability": 0.9738 }, { "start": 3335.4, "end": 3336.22, "probability": 0.9786 }, { "start": 3337.0, "end": 3337.72, "probability": 0.4996 }, { "start": 3338.2, "end": 3341.04, "probability": 0.979 }, { "start": 3342.4, "end": 3346.16, "probability": 0.8256 }, { "start": 3346.66, "end": 3348.48, "probability": 0.9789 }, { "start": 3348.64, "end": 3351.16, "probability": 0.9952 }, { "start": 3351.74, "end": 3352.26, "probability": 0.5027 }, { "start": 3352.9, "end": 3354.28, "probability": 0.6605 }, { "start": 3355.1, "end": 3357.86, "probability": 0.6671 }, { "start": 3357.94, "end": 3359.64, "probability": 0.8664 }, { "start": 3360.54, "end": 3361.18, "probability": 0.0344 }, { "start": 3361.74, "end": 3362.12, "probability": 0.8442 }, { "start": 3363.44, "end": 3367.16, "probability": 0.9767 }, { "start": 3367.16, "end": 3371.48, "probability": 0.8603 }, { "start": 3372.4, "end": 3373.44, "probability": 0.9453 }, { "start": 3374.9, "end": 3376.4, "probability": 0.8241 }, { "start": 3377.24, "end": 3378.02, "probability": 0.5968 }, { "start": 3378.22, "end": 3379.14, "probability": 0.9051 }, { "start": 3382.32, "end": 3382.58, "probability": 0.8358 }, { "start": 3384.02, "end": 3384.44, "probability": 0.528 }, { "start": 3386.44, "end": 3387.06, "probability": 0.9489 }, { "start": 3387.5, "end": 3387.87, "probability": 0.8996 }, { "start": 3388.86, "end": 3391.04, "probability": 0.7181 }, { "start": 3392.42, "end": 3394.0, "probability": 0.9817 }, { "start": 3394.08, "end": 3396.98, "probability": 0.9954 }, { "start": 3397.74, "end": 3401.08, "probability": 0.7812 }, { "start": 3401.54, "end": 3403.61, "probability": 0.4433 }, { "start": 3404.58, "end": 3405.1, "probability": 0.7692 }, { "start": 3405.44, "end": 3410.44, "probability": 0.9951 }, { "start": 3410.68, "end": 3411.28, "probability": 0.8424 }, { "start": 3412.46, "end": 3414.6, "probability": 0.9905 }, { "start": 3414.86, "end": 3418.2, "probability": 0.947 }, { "start": 3418.9, "end": 3421.06, "probability": 0.9863 }, { "start": 3422.14, "end": 3424.84, "probability": 0.9658 }, { "start": 3427.18, "end": 3428.1, "probability": 0.9344 }, { "start": 3428.28, "end": 3434.44, "probability": 0.9645 }, { "start": 3435.32, "end": 3436.7, "probability": 0.769 }, { "start": 3437.66, "end": 3440.46, "probability": 0.9849 }, { "start": 3441.64, "end": 3443.6, "probability": 0.993 }, { "start": 3444.82, "end": 3446.9, "probability": 0.8552 }, { "start": 3448.2, "end": 3449.76, "probability": 0.9919 }, { "start": 3451.04, "end": 3453.1, "probability": 0.9416 }, { "start": 3454.02, "end": 3457.04, "probability": 0.9927 }, { "start": 3457.96, "end": 3461.24, "probability": 0.9971 }, { "start": 3463.84, "end": 3465.52, "probability": 0.9965 }, { "start": 3466.6, "end": 3468.14, "probability": 0.8898 }, { "start": 3468.76, "end": 3470.46, "probability": 0.9481 }, { "start": 3471.16, "end": 3473.3, "probability": 0.9952 }, { "start": 3473.72, "end": 3475.34, "probability": 0.9823 }, { "start": 3477.44, "end": 3481.48, "probability": 0.7764 }, { "start": 3482.42, "end": 3484.12, "probability": 0.8929 }, { "start": 3484.64, "end": 3487.5, "probability": 0.5774 }, { "start": 3488.84, "end": 3490.24, "probability": 0.4897 }, { "start": 3490.42, "end": 3492.36, "probability": 0.9829 }, { "start": 3493.52, "end": 3495.14, "probability": 0.9749 }, { "start": 3496.12, "end": 3499.52, "probability": 0.9546 }, { "start": 3500.88, "end": 3502.54, "probability": 0.8959 }, { "start": 3503.66, "end": 3505.58, "probability": 0.9922 }, { "start": 3505.78, "end": 3506.1, "probability": 0.709 }, { "start": 3506.26, "end": 3506.36, "probability": 0.6417 }, { "start": 3508.14, "end": 3509.76, "probability": 0.939 }, { "start": 3510.58, "end": 3513.5, "probability": 0.9514 }, { "start": 3513.96, "end": 3516.72, "probability": 0.8599 }, { "start": 3518.02, "end": 3519.16, "probability": 0.836 }, { "start": 3519.76, "end": 3521.64, "probability": 0.9562 }, { "start": 3523.1, "end": 3524.4, "probability": 0.8823 }, { "start": 3525.72, "end": 3526.74, "probability": 0.9513 }, { "start": 3527.26, "end": 3530.58, "probability": 0.981 }, { "start": 3531.2, "end": 3533.7, "probability": 0.9837 }, { "start": 3533.98, "end": 3535.02, "probability": 0.8932 }, { "start": 3535.98, "end": 3536.14, "probability": 0.6254 }, { "start": 3536.22, "end": 3539.44, "probability": 0.93 }, { "start": 3539.84, "end": 3541.3, "probability": 0.9005 }, { "start": 3542.14, "end": 3545.6, "probability": 0.9489 }, { "start": 3546.52, "end": 3548.56, "probability": 0.8447 }, { "start": 3550.42, "end": 3551.89, "probability": 0.9797 }, { "start": 3553.2, "end": 3556.48, "probability": 0.9446 }, { "start": 3557.16, "end": 3559.5, "probability": 0.9869 }, { "start": 3559.58, "end": 3561.52, "probability": 0.9782 }, { "start": 3562.74, "end": 3565.24, "probability": 0.944 }, { "start": 3565.38, "end": 3565.94, "probability": 0.7144 }, { "start": 3565.98, "end": 3568.16, "probability": 0.9421 }, { "start": 3569.44, "end": 3570.92, "probability": 0.966 }, { "start": 3571.88, "end": 3573.22, "probability": 0.9637 }, { "start": 3573.94, "end": 3575.4, "probability": 0.9614 }, { "start": 3576.08, "end": 3576.73, "probability": 0.9355 }, { "start": 3577.12, "end": 3577.71, "probability": 0.5295 }, { "start": 3578.18, "end": 3578.75, "probability": 0.6318 }, { "start": 3579.94, "end": 3581.23, "probability": 0.9666 }, { "start": 3581.54, "end": 3582.12, "probability": 0.5329 }, { "start": 3583.24, "end": 3583.76, "probability": 0.8044 }, { "start": 3584.6, "end": 3585.24, "probability": 0.9794 }, { "start": 3586.08, "end": 3587.06, "probability": 0.9172 }, { "start": 3587.8, "end": 3589.44, "probability": 0.8948 }, { "start": 3590.22, "end": 3591.96, "probability": 0.8685 }, { "start": 3593.06, "end": 3594.4, "probability": 0.978 }, { "start": 3595.44, "end": 3596.91, "probability": 0.7185 }, { "start": 3597.24, "end": 3597.42, "probability": 0.3739 }, { "start": 3598.52, "end": 3601.3, "probability": 0.9592 }, { "start": 3602.0, "end": 3604.1, "probability": 0.973 }, { "start": 3604.98, "end": 3606.38, "probability": 0.9338 }, { "start": 3606.92, "end": 3608.48, "probability": 0.906 }, { "start": 3608.66, "end": 3610.76, "probability": 0.96 }, { "start": 3611.3, "end": 3613.38, "probability": 0.8015 }, { "start": 3613.46, "end": 3615.07, "probability": 0.9414 }, { "start": 3626.68, "end": 3628.16, "probability": 0.039 }, { "start": 3628.16, "end": 3628.96, "probability": 0.1013 }, { "start": 3630.44, "end": 3632.52, "probability": 0.0665 }, { "start": 3633.66, "end": 3635.06, "probability": 0.0441 }, { "start": 3635.06, "end": 3635.38, "probability": 0.0644 }, { "start": 3635.63, "end": 3636.92, "probability": 0.0219 }, { "start": 3636.92, "end": 3636.92, "probability": 0.0574 }, { "start": 3636.92, "end": 3636.92, "probability": 0.048 }, { "start": 3636.92, "end": 3636.92, "probability": 0.0142 }, { "start": 3636.92, "end": 3636.92, "probability": 0.0551 }, { "start": 3636.92, "end": 3638.86, "probability": 0.6062 }, { "start": 3639.26, "end": 3640.18, "probability": 0.433 }, { "start": 3640.75, "end": 3642.78, "probability": 0.4385 }, { "start": 3644.91, "end": 3645.2, "probability": 0.0411 }, { "start": 3645.2, "end": 3647.24, "probability": 0.936 }, { "start": 3647.72, "end": 3648.9, "probability": 0.8716 }, { "start": 3648.9, "end": 3650.86, "probability": 0.2022 }, { "start": 3651.2, "end": 3654.52, "probability": 0.7382 }, { "start": 3655.32, "end": 3656.7, "probability": 0.821 }, { "start": 3657.0, "end": 3659.4, "probability": 0.8232 }, { "start": 3659.48, "end": 3660.9, "probability": 0.8934 }, { "start": 3661.04, "end": 3661.38, "probability": 0.5184 }, { "start": 3662.14, "end": 3663.3, "probability": 0.8178 }, { "start": 3663.48, "end": 3664.2, "probability": 0.9821 }, { "start": 3664.36, "end": 3665.99, "probability": 0.8131 }, { "start": 3666.1, "end": 3667.22, "probability": 0.9902 }, { "start": 3667.66, "end": 3668.48, "probability": 0.0399 }, { "start": 3668.56, "end": 3671.24, "probability": 0.7036 }, { "start": 3672.56, "end": 3673.92, "probability": 0.9351 }, { "start": 3675.0, "end": 3677.54, "probability": 0.913 }, { "start": 3678.38, "end": 3679.88, "probability": 0.9587 }, { "start": 3680.66, "end": 3681.46, "probability": 0.8027 }, { "start": 3681.58, "end": 3683.0, "probability": 0.5159 }, { "start": 3683.04, "end": 3683.48, "probability": 0.9713 }, { "start": 3683.7, "end": 3683.8, "probability": 0.5988 }, { "start": 3684.02, "end": 3684.82, "probability": 0.9297 }, { "start": 3684.96, "end": 3685.12, "probability": 0.6659 }, { "start": 3685.6, "end": 3686.6, "probability": 0.6564 }, { "start": 3686.68, "end": 3687.7, "probability": 0.6904 }, { "start": 3688.92, "end": 3691.62, "probability": 0.915 }, { "start": 3692.56, "end": 3697.02, "probability": 0.9736 }, { "start": 3697.42, "end": 3700.02, "probability": 0.9985 }, { "start": 3700.4, "end": 3701.86, "probability": 0.9313 }, { "start": 3702.78, "end": 3705.66, "probability": 0.9705 }, { "start": 3705.66, "end": 3708.1, "probability": 0.9233 }, { "start": 3708.88, "end": 3710.08, "probability": 0.7674 }, { "start": 3710.14, "end": 3712.56, "probability": 0.9971 }, { "start": 3712.98, "end": 3715.24, "probability": 0.9492 }, { "start": 3716.68, "end": 3719.62, "probability": 0.7982 }, { "start": 3720.9, "end": 3723.78, "probability": 0.7734 }, { "start": 3724.76, "end": 3727.74, "probability": 0.9933 }, { "start": 3727.74, "end": 3731.42, "probability": 0.9971 }, { "start": 3731.78, "end": 3733.38, "probability": 0.9924 }, { "start": 3734.0, "end": 3736.74, "probability": 0.9704 }, { "start": 3738.04, "end": 3740.72, "probability": 0.6161 }, { "start": 3741.26, "end": 3743.98, "probability": 0.9032 }, { "start": 3744.76, "end": 3747.68, "probability": 0.9906 }, { "start": 3748.42, "end": 3751.1, "probability": 0.9407 }, { "start": 3751.76, "end": 3753.78, "probability": 0.9955 }, { "start": 3754.46, "end": 3755.52, "probability": 0.9031 }, { "start": 3755.7, "end": 3756.46, "probability": 0.9851 }, { "start": 3756.72, "end": 3757.42, "probability": 0.7452 }, { "start": 3757.52, "end": 3758.12, "probability": 0.6732 }, { "start": 3758.24, "end": 3758.56, "probability": 0.5636 }, { "start": 3759.82, "end": 3762.68, "probability": 0.9859 }, { "start": 3762.9, "end": 3763.6, "probability": 0.2908 }, { "start": 3763.66, "end": 3769.1, "probability": 0.992 }, { "start": 3769.1, "end": 3773.3, "probability": 0.9946 }, { "start": 3774.32, "end": 3776.22, "probability": 0.9979 }, { "start": 3776.68, "end": 3779.94, "probability": 0.9033 }, { "start": 3780.54, "end": 3781.92, "probability": 0.8906 }, { "start": 3782.62, "end": 3785.96, "probability": 0.612 }, { "start": 3786.4, "end": 3786.82, "probability": 0.8058 }, { "start": 3787.78, "end": 3788.38, "probability": 0.811 }, { "start": 3789.76, "end": 3790.88, "probability": 0.967 }, { "start": 3798.74, "end": 3798.84, "probability": 0.505 }, { "start": 3802.02, "end": 3802.12, "probability": 0.157 }, { "start": 3802.12, "end": 3802.12, "probability": 0.1787 }, { "start": 3802.12, "end": 3802.12, "probability": 0.0569 }, { "start": 3802.12, "end": 3802.12, "probability": 0.2185 }, { "start": 3802.12, "end": 3802.18, "probability": 0.2715 }, { "start": 3829.07, "end": 3834.46, "probability": 0.4459 }, { "start": 3835.14, "end": 3836.76, "probability": 0.5911 }, { "start": 3837.82, "end": 3840.7, "probability": 0.5422 }, { "start": 3841.3, "end": 3842.5, "probability": 0.9487 }, { "start": 3842.76, "end": 3846.92, "probability": 0.9915 }, { "start": 3847.34, "end": 3850.5, "probability": 0.9724 }, { "start": 3851.12, "end": 3852.5, "probability": 0.8304 }, { "start": 3853.18, "end": 3854.28, "probability": 0.7161 }, { "start": 3855.38, "end": 3857.62, "probability": 0.9565 }, { "start": 3857.72, "end": 3858.23, "probability": 0.7923 }, { "start": 3859.76, "end": 3864.48, "probability": 0.6647 }, { "start": 3865.24, "end": 3867.46, "probability": 0.6615 }, { "start": 3868.98, "end": 3869.95, "probability": 0.9067 }, { "start": 3871.06, "end": 3873.48, "probability": 0.9824 }, { "start": 3873.68, "end": 3875.12, "probability": 0.9812 }, { "start": 3875.74, "end": 3877.96, "probability": 0.9398 }, { "start": 3879.06, "end": 3880.12, "probability": 0.76 }, { "start": 3880.22, "end": 3883.64, "probability": 0.89 }, { "start": 3883.7, "end": 3886.56, "probability": 0.9971 }, { "start": 3887.48, "end": 3889.56, "probability": 0.5201 }, { "start": 3890.08, "end": 3891.4, "probability": 0.9983 }, { "start": 3892.84, "end": 3895.74, "probability": 0.9706 }, { "start": 3897.08, "end": 3897.64, "probability": 0.6056 }, { "start": 3897.9, "end": 3901.98, "probability": 0.9418 }, { "start": 3902.56, "end": 3905.56, "probability": 0.77 }, { "start": 3905.76, "end": 3907.44, "probability": 0.9592 }, { "start": 3908.58, "end": 3911.42, "probability": 0.7894 }, { "start": 3911.44, "end": 3912.14, "probability": 0.4912 }, { "start": 3916.1, "end": 3916.54, "probability": 0.5717 }, { "start": 3917.75, "end": 3919.8, "probability": 0.9331 }, { "start": 3920.36, "end": 3922.54, "probability": 0.6869 }, { "start": 3923.02, "end": 3925.25, "probability": 0.998 }, { "start": 3926.98, "end": 3932.9, "probability": 0.8993 }, { "start": 3934.96, "end": 3936.94, "probability": 0.7344 }, { "start": 3937.06, "end": 3939.54, "probability": 0.9346 }, { "start": 3939.76, "end": 3940.34, "probability": 0.5494 }, { "start": 3941.2, "end": 3944.2, "probability": 0.738 }, { "start": 3944.66, "end": 3945.26, "probability": 0.432 }, { "start": 3945.26, "end": 3946.62, "probability": 0.8057 }, { "start": 3947.18, "end": 3950.16, "probability": 0.5875 }, { "start": 3950.5, "end": 3954.5, "probability": 0.9812 }, { "start": 3955.2, "end": 3958.52, "probability": 0.9817 }, { "start": 3959.04, "end": 3959.92, "probability": 0.5399 }, { "start": 3961.42, "end": 3961.84, "probability": 0.7084 }, { "start": 3962.38, "end": 3964.04, "probability": 0.9024 }, { "start": 3965.12, "end": 3967.94, "probability": 0.9884 }, { "start": 3969.46, "end": 3975.9, "probability": 0.9888 }, { "start": 3976.6, "end": 3978.52, "probability": 0.9963 }, { "start": 3979.12, "end": 3981.82, "probability": 0.9985 }, { "start": 3983.12, "end": 3986.94, "probability": 0.9854 }, { "start": 3988.0, "end": 3990.08, "probability": 0.9641 }, { "start": 3991.44, "end": 3992.98, "probability": 0.9547 }, { "start": 3993.48, "end": 3994.18, "probability": 0.8646 }, { "start": 3995.36, "end": 3995.72, "probability": 0.638 }, { "start": 3996.66, "end": 3997.86, "probability": 0.8665 }, { "start": 3998.7, "end": 4002.6, "probability": 0.8858 }, { "start": 4003.34, "end": 4007.06, "probability": 0.9948 }, { "start": 4007.6, "end": 4008.42, "probability": 0.9688 }, { "start": 4008.74, "end": 4009.54, "probability": 0.9619 }, { "start": 4010.5, "end": 4011.88, "probability": 0.9944 }, { "start": 4012.22, "end": 4012.96, "probability": 0.6834 }, { "start": 4013.36, "end": 4014.74, "probability": 0.8854 }, { "start": 4014.82, "end": 4020.6, "probability": 0.774 }, { "start": 4020.84, "end": 4022.9, "probability": 0.9894 }, { "start": 4025.04, "end": 4027.68, "probability": 0.9847 }, { "start": 4027.82, "end": 4029.22, "probability": 0.9408 }, { "start": 4030.54, "end": 4031.64, "probability": 0.6815 }, { "start": 4035.72, "end": 4035.74, "probability": 0.038 }, { "start": 4035.74, "end": 4035.74, "probability": 0.0769 }, { "start": 4035.74, "end": 4037.22, "probability": 0.9854 }, { "start": 4038.14, "end": 4038.62, "probability": 0.6847 }, { "start": 4039.92, "end": 4040.12, "probability": 0.9867 }, { "start": 4040.98, "end": 4044.34, "probability": 0.9792 }, { "start": 4044.58, "end": 4046.6, "probability": 0.9549 }, { "start": 4046.76, "end": 4049.08, "probability": 0.9095 }, { "start": 4049.36, "end": 4051.26, "probability": 0.7068 }, { "start": 4051.84, "end": 4051.98, "probability": 0.0513 }, { "start": 4051.98, "end": 4055.46, "probability": 0.9747 }, { "start": 4056.08, "end": 4057.56, "probability": 0.6109 }, { "start": 4058.48, "end": 4062.38, "probability": 0.8109 }, { "start": 4062.38, "end": 4067.02, "probability": 0.9954 }, { "start": 4067.12, "end": 4067.22, "probability": 0.8296 }, { "start": 4068.48, "end": 4073.04, "probability": 0.9842 }, { "start": 4073.42, "end": 4074.62, "probability": 0.9938 }, { "start": 4075.22, "end": 4078.14, "probability": 0.9976 }, { "start": 4078.14, "end": 4080.9, "probability": 0.9325 }, { "start": 4081.82, "end": 4082.74, "probability": 0.8056 }, { "start": 4083.02, "end": 4084.06, "probability": 0.9261 }, { "start": 4084.2, "end": 4085.29, "probability": 0.9952 }, { "start": 4086.16, "end": 4087.04, "probability": 0.9516 }, { "start": 4087.42, "end": 4089.19, "probability": 0.6575 }, { "start": 4089.6, "end": 4091.04, "probability": 0.9739 }, { "start": 4091.18, "end": 4091.6, "probability": 0.6228 }, { "start": 4097.38, "end": 4099.56, "probability": 0.9465 }, { "start": 4100.12, "end": 4100.86, "probability": 0.8523 }, { "start": 4102.66, "end": 4105.28, "probability": 0.8904 }, { "start": 4105.46, "end": 4105.92, "probability": 0.8506 }, { "start": 4105.94, "end": 4108.14, "probability": 0.7053 }, { "start": 4108.64, "end": 4111.82, "probability": 0.9873 }, { "start": 4112.12, "end": 4112.98, "probability": 0.9688 }, { "start": 4113.4, "end": 4116.38, "probability": 0.967 }, { "start": 4116.58, "end": 4116.94, "probability": 0.7598 }, { "start": 4117.56, "end": 4117.78, "probability": 0.9852 }, { "start": 4120.35, "end": 4124.32, "probability": 0.978 }, { "start": 4124.84, "end": 4127.6, "probability": 0.9799 }, { "start": 4129.88, "end": 4132.0, "probability": 0.9368 }, { "start": 4133.6, "end": 4134.52, "probability": 0.922 }, { "start": 4135.36, "end": 4137.82, "probability": 0.9855 }, { "start": 4139.14, "end": 4141.42, "probability": 0.9941 }, { "start": 4142.44, "end": 4145.42, "probability": 0.9824 }, { "start": 4146.8, "end": 4147.7, "probability": 0.7534 }, { "start": 4147.82, "end": 4153.72, "probability": 0.9702 }, { "start": 4154.46, "end": 4158.44, "probability": 0.925 }, { "start": 4158.66, "end": 4160.5, "probability": 0.9961 }, { "start": 4161.36, "end": 4162.52, "probability": 0.9246 }, { "start": 4163.34, "end": 4164.66, "probability": 0.7303 }, { "start": 4165.18, "end": 4167.42, "probability": 0.6357 }, { "start": 4168.08, "end": 4170.08, "probability": 0.9958 }, { "start": 4170.74, "end": 4171.34, "probability": 0.5294 }, { "start": 4171.84, "end": 4174.08, "probability": 0.9731 }, { "start": 4174.18, "end": 4177.94, "probability": 0.998 }, { "start": 4178.3, "end": 4178.98, "probability": 0.9568 }, { "start": 4179.28, "end": 4180.7, "probability": 0.9855 }, { "start": 4181.54, "end": 4181.78, "probability": 0.9794 }, { "start": 4182.34, "end": 4184.14, "probability": 0.9655 }, { "start": 4184.78, "end": 4187.84, "probability": 0.934 }, { "start": 4188.86, "end": 4189.26, "probability": 0.6707 }, { "start": 4190.2, "end": 4191.56, "probability": 0.7615 }, { "start": 4193.26, "end": 4195.16, "probability": 0.9403 }, { "start": 4195.7, "end": 4200.96, "probability": 0.9882 }, { "start": 4201.38, "end": 4202.3, "probability": 0.999 }, { "start": 4202.86, "end": 4206.74, "probability": 0.9428 }, { "start": 4206.92, "end": 4207.46, "probability": 0.9919 }, { "start": 4208.06, "end": 4215.85, "probability": 0.9845 }, { "start": 4217.42, "end": 4218.64, "probability": 0.9681 }, { "start": 4220.78, "end": 4226.32, "probability": 0.9933 }, { "start": 4227.18, "end": 4227.98, "probability": 0.992 }, { "start": 4228.68, "end": 4228.94, "probability": 0.9402 }, { "start": 4230.5, "end": 4231.14, "probability": 0.7315 }, { "start": 4231.42, "end": 4234.28, "probability": 0.9874 }, { "start": 4234.28, "end": 4237.26, "probability": 0.7057 }, { "start": 4238.22, "end": 4238.48, "probability": 0.8995 }, { "start": 4241.96, "end": 4242.16, "probability": 0.0151 }, { "start": 4242.16, "end": 4242.16, "probability": 0.1157 }, { "start": 4242.16, "end": 4244.08, "probability": 0.5995 }, { "start": 4244.6, "end": 4245.22, "probability": 0.9033 }, { "start": 4246.34, "end": 4250.12, "probability": 0.9514 }, { "start": 4250.92, "end": 4254.86, "probability": 0.987 }, { "start": 4256.67, "end": 4260.78, "probability": 0.9177 }, { "start": 4261.6, "end": 4262.38, "probability": 0.9867 }, { "start": 4263.6, "end": 4264.46, "probability": 0.9753 }, { "start": 4265.06, "end": 4266.9, "probability": 0.9453 }, { "start": 4266.94, "end": 4268.98, "probability": 0.9209 }, { "start": 4270.12, "end": 4270.32, "probability": 0.9655 }, { "start": 4270.94, "end": 4273.88, "probability": 0.9862 }, { "start": 4278.74, "end": 4279.58, "probability": 0.8627 }, { "start": 4280.0, "end": 4282.68, "probability": 0.9912 }, { "start": 4284.14, "end": 4285.84, "probability": 0.9014 }, { "start": 4286.72, "end": 4287.56, "probability": 0.4175 }, { "start": 4288.84, "end": 4291.84, "probability": 0.9396 }, { "start": 4292.0, "end": 4292.82, "probability": 0.7517 }, { "start": 4292.88, "end": 4293.96, "probability": 0.5817 }, { "start": 4294.42, "end": 4295.96, "probability": 0.9439 }, { "start": 4296.6, "end": 4300.78, "probability": 0.9608 }, { "start": 4301.3, "end": 4303.66, "probability": 0.9932 }, { "start": 4304.64, "end": 4307.96, "probability": 0.9709 }, { "start": 4309.9, "end": 4312.66, "probability": 0.9857 }, { "start": 4313.04, "end": 4314.34, "probability": 0.6832 }, { "start": 4314.72, "end": 4318.78, "probability": 0.8465 }, { "start": 4320.08, "end": 4320.96, "probability": 0.4954 }, { "start": 4323.2, "end": 4324.88, "probability": 0.817 }, { "start": 4326.0, "end": 4328.68, "probability": 0.8612 }, { "start": 4330.08, "end": 4332.7, "probability": 0.9644 }, { "start": 4333.1, "end": 4333.92, "probability": 0.755 }, { "start": 4333.98, "end": 4334.86, "probability": 0.7128 }, { "start": 4335.28, "end": 4338.5, "probability": 0.7994 }, { "start": 4339.0, "end": 4342.4, "probability": 0.9436 }, { "start": 4342.7, "end": 4344.56, "probability": 0.8444 }, { "start": 4345.8, "end": 4348.76, "probability": 0.9446 }, { "start": 4348.98, "end": 4350.96, "probability": 0.9337 }, { "start": 4351.76, "end": 4352.66, "probability": 0.8868 }, { "start": 4353.68, "end": 4357.1, "probability": 0.9922 }, { "start": 4357.74, "end": 4358.6, "probability": 0.5642 }, { "start": 4359.4, "end": 4362.4, "probability": 0.9965 }, { "start": 4363.24, "end": 4364.2, "probability": 0.8648 }, { "start": 4364.8, "end": 4368.74, "probability": 0.9912 }, { "start": 4369.6, "end": 4371.08, "probability": 0.9273 }, { "start": 4371.54, "end": 4371.76, "probability": 0.5431 }, { "start": 4372.04, "end": 4372.28, "probability": 0.7506 }, { "start": 4372.4, "end": 4374.44, "probability": 0.8404 }, { "start": 4375.08, "end": 4376.46, "probability": 0.8959 }, { "start": 4376.56, "end": 4377.19, "probability": 0.8511 }, { "start": 4377.3, "end": 4380.58, "probability": 0.998 }, { "start": 4381.32, "end": 4381.9, "probability": 0.8119 }, { "start": 4383.6, "end": 4386.74, "probability": 0.9575 }, { "start": 4387.28, "end": 4389.82, "probability": 0.9755 }, { "start": 4391.08, "end": 4391.72, "probability": 0.9262 }, { "start": 4393.08, "end": 4394.42, "probability": 0.7455 }, { "start": 4394.5, "end": 4395.18, "probability": 0.9213 }, { "start": 4395.4, "end": 4399.88, "probability": 0.972 }, { "start": 4400.6, "end": 4402.4, "probability": 0.9491 }, { "start": 4403.1, "end": 4403.48, "probability": 0.6088 }, { "start": 4404.8, "end": 4406.54, "probability": 0.9814 }, { "start": 4407.16, "end": 4407.61, "probability": 0.9429 }, { "start": 4408.92, "end": 4411.1, "probability": 0.9836 }, { "start": 4411.1, "end": 4412.84, "probability": 0.968 }, { "start": 4413.38, "end": 4414.02, "probability": 0.9668 }, { "start": 4416.72, "end": 4419.3, "probability": 0.9961 }, { "start": 4420.24, "end": 4422.58, "probability": 0.9827 }, { "start": 4423.32, "end": 4423.72, "probability": 0.875 }, { "start": 4424.44, "end": 4427.98, "probability": 0.9763 }, { "start": 4428.74, "end": 4431.78, "probability": 0.9515 }, { "start": 4431.88, "end": 4433.04, "probability": 0.9405 }, { "start": 4436.32, "end": 4436.84, "probability": 0.0923 }, { "start": 4436.84, "end": 4437.82, "probability": 0.7737 }, { "start": 4438.72, "end": 4439.88, "probability": 0.6684 }, { "start": 4440.58, "end": 4442.84, "probability": 0.9461 }, { "start": 4443.66, "end": 4443.86, "probability": 0.9562 }, { "start": 4444.66, "end": 4445.9, "probability": 0.987 }, { "start": 4446.94, "end": 4447.76, "probability": 0.9224 }, { "start": 4448.38, "end": 4449.96, "probability": 0.937 }, { "start": 4450.22, "end": 4452.9, "probability": 0.9919 }, { "start": 4454.08, "end": 4455.34, "probability": 0.9408 }, { "start": 4457.84, "end": 4461.1, "probability": 0.9978 }, { "start": 4461.46, "end": 4462.74, "probability": 0.9302 }, { "start": 4463.18, "end": 4463.74, "probability": 0.9685 }, { "start": 4463.94, "end": 4465.5, "probability": 0.9653 }, { "start": 4466.0, "end": 4466.98, "probability": 0.9365 }, { "start": 4467.7, "end": 4471.24, "probability": 0.9394 }, { "start": 4472.32, "end": 4476.1, "probability": 0.8857 }, { "start": 4476.22, "end": 4477.62, "probability": 0.7456 }, { "start": 4477.86, "end": 4478.26, "probability": 0.783 }, { "start": 4478.66, "end": 4479.1, "probability": 0.9731 }, { "start": 4479.18, "end": 4480.66, "probability": 0.9867 }, { "start": 4480.76, "end": 4481.24, "probability": 0.9441 }, { "start": 4481.84, "end": 4482.66, "probability": 0.9194 }, { "start": 4483.1, "end": 4483.44, "probability": 0.7852 }, { "start": 4484.2, "end": 4487.24, "probability": 0.9751 }, { "start": 4488.08, "end": 4488.74, "probability": 0.8879 }, { "start": 4489.14, "end": 4490.12, "probability": 0.7922 }, { "start": 4490.64, "end": 4491.22, "probability": 0.9957 }, { "start": 4491.8, "end": 4491.98, "probability": 0.9111 }, { "start": 4492.94, "end": 4495.02, "probability": 0.8726 }, { "start": 4495.28, "end": 4499.2, "probability": 0.9934 }, { "start": 4500.04, "end": 4500.96, "probability": 0.7924 }, { "start": 4502.1, "end": 4504.32, "probability": 0.7211 }, { "start": 4505.28, "end": 4509.48, "probability": 0.8789 }, { "start": 4510.22, "end": 4510.9, "probability": 0.4905 }, { "start": 4511.92, "end": 4512.6, "probability": 0.357 }, { "start": 4513.54, "end": 4514.6, "probability": 0.7482 }, { "start": 4515.7, "end": 4518.64, "probability": 0.9482 }, { "start": 4519.22, "end": 4520.2, "probability": 0.6391 }, { "start": 4521.04, "end": 4521.82, "probability": 0.9051 }, { "start": 4523.8, "end": 4528.54, "probability": 0.9943 }, { "start": 4529.8, "end": 4532.78, "probability": 0.9924 }, { "start": 4534.34, "end": 4535.74, "probability": 0.8953 }, { "start": 4536.74, "end": 4538.44, "probability": 0.9872 }, { "start": 4538.92, "end": 4542.94, "probability": 0.9886 }, { "start": 4543.22, "end": 4544.64, "probability": 0.9472 }, { "start": 4545.56, "end": 4547.18, "probability": 0.9825 }, { "start": 4548.4, "end": 4548.96, "probability": 0.9401 }, { "start": 4549.56, "end": 4551.7, "probability": 0.9917 }, { "start": 4552.56, "end": 4553.54, "probability": 0.8012 }, { "start": 4554.18, "end": 4555.22, "probability": 0.9907 }, { "start": 4555.86, "end": 4557.31, "probability": 0.9839 }, { "start": 4558.38, "end": 4561.42, "probability": 0.9876 }, { "start": 4562.94, "end": 4565.53, "probability": 0.8729 }, { "start": 4567.38, "end": 4569.66, "probability": 0.7036 }, { "start": 4570.56, "end": 4571.34, "probability": 0.8612 }, { "start": 4572.92, "end": 4579.68, "probability": 0.9899 }, { "start": 4580.4, "end": 4582.92, "probability": 0.9983 }, { "start": 4583.68, "end": 4585.8, "probability": 0.9143 }, { "start": 4586.96, "end": 4588.24, "probability": 0.9433 }, { "start": 4589.24, "end": 4589.24, "probability": 0.9199 }, { "start": 4590.42, "end": 4592.38, "probability": 0.9208 }, { "start": 4593.36, "end": 4594.38, "probability": 0.5391 }, { "start": 4595.22, "end": 4598.72, "probability": 0.7297 }, { "start": 4599.5, "end": 4600.42, "probability": 0.9365 }, { "start": 4601.16, "end": 4602.1, "probability": 0.9786 }, { "start": 4602.72, "end": 4603.48, "probability": 0.968 }, { "start": 4605.5, "end": 4610.32, "probability": 0.9906 }, { "start": 4610.44, "end": 4611.92, "probability": 0.998 }, { "start": 4612.78, "end": 4615.24, "probability": 0.7533 }, { "start": 4616.74, "end": 4617.0, "probability": 0.7891 }, { "start": 4617.4, "end": 4618.97, "probability": 0.9604 }, { "start": 4620.97, "end": 4621.9, "probability": 0.9984 }, { "start": 4622.32, "end": 4623.8, "probability": 0.9828 }, { "start": 4624.74, "end": 4625.22, "probability": 0.7255 }, { "start": 4626.12, "end": 4627.64, "probability": 0.8612 }, { "start": 4628.3, "end": 4630.14, "probability": 0.9806 }, { "start": 4631.12, "end": 4633.12, "probability": 0.9072 }, { "start": 4634.04, "end": 4636.78, "probability": 0.9673 }, { "start": 4637.68, "end": 4638.78, "probability": 0.8804 }, { "start": 4639.82, "end": 4641.28, "probability": 0.9777 }, { "start": 4641.82, "end": 4642.54, "probability": 0.9944 }, { "start": 4642.64, "end": 4643.26, "probability": 0.9818 }, { "start": 4643.72, "end": 4645.54, "probability": 0.9793 }, { "start": 4645.88, "end": 4646.59, "probability": 0.8249 }, { "start": 4647.14, "end": 4650.94, "probability": 0.9801 }, { "start": 4651.1, "end": 4653.46, "probability": 0.9858 }, { "start": 4653.98, "end": 4657.58, "probability": 0.9883 }, { "start": 4661.25, "end": 4664.12, "probability": 0.8348 }, { "start": 4665.4, "end": 4666.94, "probability": 0.9966 }, { "start": 4668.66, "end": 4670.06, "probability": 0.9608 }, { "start": 4670.64, "end": 4673.08, "probability": 0.8354 }, { "start": 4673.6, "end": 4675.34, "probability": 0.9692 }, { "start": 4676.06, "end": 4676.3, "probability": 0.4913 }, { "start": 4677.54, "end": 4682.48, "probability": 0.9966 }, { "start": 4683.52, "end": 4684.2, "probability": 0.9483 }, { "start": 4685.4, "end": 4686.64, "probability": 0.5269 }, { "start": 4687.04, "end": 4687.62, "probability": 0.8578 }, { "start": 4687.8, "end": 4690.1, "probability": 0.8848 }, { "start": 4690.88, "end": 4691.38, "probability": 0.6565 }, { "start": 4694.12, "end": 4695.72, "probability": 0.9337 }, { "start": 4696.14, "end": 4697.54, "probability": 0.8575 }, { "start": 4697.8, "end": 4699.38, "probability": 0.958 }, { "start": 4700.2, "end": 4702.08, "probability": 0.5446 }, { "start": 4703.04, "end": 4704.8, "probability": 0.9338 }, { "start": 4705.2, "end": 4705.38, "probability": 0.7496 }, { "start": 4705.68, "end": 4706.04, "probability": 0.734 }, { "start": 4706.3, "end": 4706.56, "probability": 0.7422 }, { "start": 4706.84, "end": 4707.62, "probability": 0.9587 }, { "start": 4712.52, "end": 4715.16, "probability": 0.9683 }, { "start": 4715.5, "end": 4715.93, "probability": 0.6854 }, { "start": 4716.54, "end": 4717.12, "probability": 0.8267 }, { "start": 4717.5, "end": 4723.74, "probability": 0.997 }, { "start": 4723.8, "end": 4729.26, "probability": 0.8869 }, { "start": 4729.68, "end": 4732.62, "probability": 0.9893 }, { "start": 4732.76, "end": 4734.88, "probability": 0.9388 }, { "start": 4735.04, "end": 4735.94, "probability": 0.7079 }, { "start": 4736.34, "end": 4736.94, "probability": 0.8637 }, { "start": 4737.22, "end": 4738.14, "probability": 0.9935 }, { "start": 4738.26, "end": 4739.04, "probability": 0.7774 }, { "start": 4739.68, "end": 4741.44, "probability": 0.9335 }, { "start": 4741.56, "end": 4742.16, "probability": 0.5192 }, { "start": 4742.26, "end": 4743.6, "probability": 0.591 }, { "start": 4744.16, "end": 4746.42, "probability": 0.9539 }, { "start": 4746.66, "end": 4747.64, "probability": 0.8752 }, { "start": 4749.84, "end": 4751.1, "probability": 0.9087 }, { "start": 4753.48, "end": 4754.32, "probability": 0.7417 }, { "start": 4755.33, "end": 4755.98, "probability": 0.9995 }, { "start": 4756.56, "end": 4758.32, "probability": 0.9931 }, { "start": 4759.06, "end": 4760.88, "probability": 0.996 }, { "start": 4761.78, "end": 4765.18, "probability": 0.7477 }, { "start": 4766.34, "end": 4767.77, "probability": 0.7962 }, { "start": 4769.28, "end": 4774.92, "probability": 0.7879 }, { "start": 4776.18, "end": 4778.12, "probability": 0.5439 }, { "start": 4781.74, "end": 4783.56, "probability": 0.9344 }, { "start": 4783.74, "end": 4784.36, "probability": 0.7485 }, { "start": 4784.46, "end": 4785.82, "probability": 0.3333 }, { "start": 4786.34, "end": 4787.08, "probability": 0.501 }, { "start": 4787.5, "end": 4788.68, "probability": 0.8831 }, { "start": 4789.2, "end": 4789.9, "probability": 0.8059 }, { "start": 4790.62, "end": 4791.18, "probability": 0.8813 }, { "start": 4791.8, "end": 4796.58, "probability": 0.9668 }, { "start": 4798.5, "end": 4800.04, "probability": 0.8662 }, { "start": 4800.26, "end": 4800.84, "probability": 0.7331 }, { "start": 4800.92, "end": 4802.22, "probability": 0.9585 }, { "start": 4802.26, "end": 4802.64, "probability": 0.816 }, { "start": 4802.8, "end": 4804.2, "probability": 0.9269 }, { "start": 4804.78, "end": 4806.68, "probability": 0.9407 }, { "start": 4807.04, "end": 4810.16, "probability": 0.6993 }, { "start": 4810.64, "end": 4810.74, "probability": 0.6379 }, { "start": 4811.42, "end": 4811.9, "probability": 0.9744 }, { "start": 4813.84, "end": 4815.58, "probability": 0.9158 }, { "start": 4817.08, "end": 4819.74, "probability": 0.7194 }, { "start": 4820.74, "end": 4822.88, "probability": 0.9895 }, { "start": 4824.1, "end": 4824.72, "probability": 0.7661 }, { "start": 4825.62, "end": 4826.68, "probability": 0.8983 }, { "start": 4827.8, "end": 4828.86, "probability": 0.6805 }, { "start": 4829.22, "end": 4831.06, "probability": 0.9072 }, { "start": 4831.48, "end": 4833.79, "probability": 0.5823 }, { "start": 4836.32, "end": 4838.8, "probability": 0.9908 }, { "start": 4839.38, "end": 4840.46, "probability": 0.9683 }, { "start": 4840.98, "end": 4843.76, "probability": 0.9574 }, { "start": 4845.12, "end": 4847.4, "probability": 0.8431 }, { "start": 4848.04, "end": 4848.64, "probability": 0.8476 }, { "start": 4849.06, "end": 4851.46, "probability": 0.9875 }, { "start": 4851.84, "end": 4854.08, "probability": 0.9841 }, { "start": 4854.22, "end": 4855.4, "probability": 0.5798 }, { "start": 4855.68, "end": 4857.26, "probability": 0.9968 }, { "start": 4858.2, "end": 4859.8, "probability": 0.9076 }, { "start": 4860.58, "end": 4862.34, "probability": 0.9321 }, { "start": 4862.76, "end": 4864.69, "probability": 0.9816 }, { "start": 4865.04, "end": 4865.58, "probability": 0.7666 }, { "start": 4867.28, "end": 4869.62, "probability": 0.6968 }, { "start": 4869.96, "end": 4871.94, "probability": 0.9912 }, { "start": 4872.78, "end": 4874.02, "probability": 0.9517 }, { "start": 4874.94, "end": 4877.5, "probability": 0.9951 }, { "start": 4878.74, "end": 4880.52, "probability": 0.641 }, { "start": 4882.02, "end": 4884.18, "probability": 0.9795 }, { "start": 4886.04, "end": 4887.9, "probability": 0.9896 }, { "start": 4887.98, "end": 4890.54, "probability": 0.9937 }, { "start": 4891.32, "end": 4895.1, "probability": 0.9952 }, { "start": 4895.1, "end": 4897.24, "probability": 0.5913 }, { "start": 4899.38, "end": 4900.82, "probability": 0.9927 }, { "start": 4901.74, "end": 4902.0, "probability": 0.7485 }, { "start": 4902.93, "end": 4904.02, "probability": 0.9937 }, { "start": 4904.08, "end": 4905.56, "probability": 0.9825 }, { "start": 4907.86, "end": 4908.1, "probability": 0.6429 }, { "start": 4908.84, "end": 4910.14, "probability": 0.8599 }, { "start": 4911.2, "end": 4916.18, "probability": 0.939 }, { "start": 4917.82, "end": 4918.48, "probability": 0.6672 }, { "start": 4921.52, "end": 4927.54, "probability": 0.8794 }, { "start": 4928.72, "end": 4929.72, "probability": 0.0429 }, { "start": 4929.72, "end": 4929.72, "probability": 0.0622 }, { "start": 4929.72, "end": 4929.92, "probability": 0.2761 }, { "start": 4930.42, "end": 4934.28, "probability": 0.924 }, { "start": 4935.18, "end": 4936.5, "probability": 0.7337 }, { "start": 4936.9, "end": 4937.5, "probability": 0.644 }, { "start": 4937.74, "end": 4938.86, "probability": 0.9909 }, { "start": 4939.02, "end": 4939.9, "probability": 0.9065 }, { "start": 4939.96, "end": 4940.6, "probability": 0.9868 }, { "start": 4940.88, "end": 4941.54, "probability": 0.7044 }, { "start": 4942.04, "end": 4944.3, "probability": 0.9917 }, { "start": 4945.52, "end": 4947.6, "probability": 0.7498 }, { "start": 4947.66, "end": 4951.34, "probability": 0.9622 }, { "start": 4952.6, "end": 4954.04, "probability": 0.9574 }, { "start": 4954.62, "end": 4955.84, "probability": 0.9619 }, { "start": 4956.78, "end": 4959.3, "probability": 0.9705 }, { "start": 4961.36, "end": 4963.64, "probability": 0.9622 }, { "start": 4964.22, "end": 4966.12, "probability": 0.9486 }, { "start": 4967.16, "end": 4968.58, "probability": 0.6272 }, { "start": 4968.68, "end": 4969.06, "probability": 0.6492 }, { "start": 4969.62, "end": 4972.02, "probability": 0.9739 }, { "start": 4972.7, "end": 4976.34, "probability": 0.9814 }, { "start": 4977.14, "end": 4978.02, "probability": 0.4517 }, { "start": 4978.18, "end": 4979.24, "probability": 0.9473 }, { "start": 4979.38, "end": 4979.98, "probability": 0.799 }, { "start": 4982.17, "end": 4984.82, "probability": 0.6401 }, { "start": 4985.12, "end": 4987.66, "probability": 0.8865 }, { "start": 4987.72, "end": 4990.52, "probability": 0.9033 }, { "start": 4991.68, "end": 4993.64, "probability": 0.9848 }, { "start": 4994.16, "end": 4997.48, "probability": 0.8162 }, { "start": 4997.96, "end": 5001.02, "probability": 0.9624 }, { "start": 5001.28, "end": 5003.6, "probability": 0.7178 }, { "start": 5004.36, "end": 5007.26, "probability": 0.9397 }, { "start": 5007.6, "end": 5009.82, "probability": 0.8855 }, { "start": 5010.58, "end": 5012.34, "probability": 0.9806 }, { "start": 5013.08, "end": 5015.38, "probability": 0.5033 }, { "start": 5015.62, "end": 5016.14, "probability": 0.7099 }, { "start": 5017.24, "end": 5017.24, "probability": 0.0296 }, { "start": 5017.24, "end": 5020.76, "probability": 0.584 }, { "start": 5021.46, "end": 5026.26, "probability": 0.6884 }, { "start": 5026.88, "end": 5032.68, "probability": 0.9789 }, { "start": 5032.78, "end": 5033.48, "probability": 0.8684 }, { "start": 5037.14, "end": 5040.34, "probability": 0.2701 }, { "start": 5052.7, "end": 5052.7, "probability": 0.1823 }, { "start": 5052.7, "end": 5052.7, "probability": 0.0651 }, { "start": 5052.7, "end": 5052.74, "probability": 0.0144 }, { "start": 5072.78, "end": 5074.62, "probability": 0.3257 }, { "start": 5075.34, "end": 5076.34, "probability": 0.234 }, { "start": 5076.68, "end": 5077.88, "probability": 0.1778 }, { "start": 5078.2, "end": 5079.26, "probability": 0.9454 }, { "start": 5080.5, "end": 5083.92, "probability": 0.9857 }, { "start": 5083.92, "end": 5087.14, "probability": 0.9665 }, { "start": 5087.94, "end": 5090.96, "probability": 0.1566 }, { "start": 5091.52, "end": 5095.48, "probability": 0.8561 }, { "start": 5096.18, "end": 5099.24, "probability": 0.9909 }, { "start": 5099.24, "end": 5104.04, "probability": 0.998 }, { "start": 5104.62, "end": 5109.18, "probability": 0.9878 }, { "start": 5109.18, "end": 5115.36, "probability": 0.9965 }, { "start": 5115.36, "end": 5122.42, "probability": 0.9985 }, { "start": 5123.02, "end": 5126.86, "probability": 0.9905 }, { "start": 5127.52, "end": 5128.24, "probability": 0.9979 }, { "start": 5128.84, "end": 5132.64, "probability": 0.9953 }, { "start": 5133.12, "end": 5135.64, "probability": 0.9817 }, { "start": 5135.64, "end": 5140.04, "probability": 0.9629 }, { "start": 5141.1, "end": 5145.76, "probability": 0.9714 }, { "start": 5146.32, "end": 5148.66, "probability": 0.8403 }, { "start": 5148.88, "end": 5151.78, "probability": 0.9922 }, { "start": 5152.58, "end": 5157.88, "probability": 0.9775 }, { "start": 5158.6, "end": 5162.28, "probability": 0.975 }, { "start": 5162.28, "end": 5166.4, "probability": 0.9979 }, { "start": 5167.4, "end": 5168.16, "probability": 0.8345 }, { "start": 5168.98, "end": 5171.78, "probability": 0.9908 }, { "start": 5172.38, "end": 5172.78, "probability": 0.8015 }, { "start": 5172.92, "end": 5175.54, "probability": 0.9964 }, { "start": 5175.9, "end": 5179.84, "probability": 0.9961 }, { "start": 5179.94, "end": 5181.0, "probability": 0.7399 }, { "start": 5181.56, "end": 5184.94, "probability": 0.9537 }, { "start": 5185.04, "end": 5189.3, "probability": 0.9849 }, { "start": 5189.78, "end": 5190.46, "probability": 0.5289 }, { "start": 5190.6, "end": 5190.98, "probability": 0.8437 }, { "start": 5191.08, "end": 5193.38, "probability": 0.9823 }, { "start": 5194.2, "end": 5194.76, "probability": 0.9237 }, { "start": 5195.86, "end": 5199.48, "probability": 0.9672 }, { "start": 5199.6, "end": 5201.58, "probability": 0.9552 }, { "start": 5201.82, "end": 5204.58, "probability": 0.9818 }, { "start": 5207.22, "end": 5207.76, "probability": 0.6672 }, { "start": 5207.88, "end": 5208.14, "probability": 0.8832 }, { "start": 5209.54, "end": 5210.26, "probability": 0.846 }, { "start": 5210.68, "end": 5213.98, "probability": 0.9433 }, { "start": 5216.08, "end": 5219.32, "probability": 0.9348 }, { "start": 5220.06, "end": 5220.94, "probability": 0.843 }, { "start": 5229.64, "end": 5232.42, "probability": 0.7698 }, { "start": 5232.68, "end": 5235.3, "probability": 0.815 }, { "start": 5235.66, "end": 5239.9, "probability": 0.988 }, { "start": 5241.14, "end": 5243.3, "probability": 0.9436 }, { "start": 5243.3, "end": 5248.84, "probability": 0.992 }, { "start": 5248.84, "end": 5253.56, "probability": 0.9868 }, { "start": 5253.6, "end": 5257.82, "probability": 0.9534 }, { "start": 5258.03, "end": 5261.5, "probability": 0.9906 }, { "start": 5261.5, "end": 5266.76, "probability": 0.9987 }, { "start": 5266.84, "end": 5271.4, "probability": 0.995 }, { "start": 5272.04, "end": 5274.88, "probability": 0.9973 }, { "start": 5275.36, "end": 5278.74, "probability": 0.9807 }, { "start": 5279.5, "end": 5280.68, "probability": 0.772 }, { "start": 5280.76, "end": 5281.68, "probability": 0.9557 }, { "start": 5281.84, "end": 5285.86, "probability": 0.9893 }, { "start": 5287.08, "end": 5289.18, "probability": 0.7973 }, { "start": 5289.34, "end": 5289.7, "probability": 0.8319 }, { "start": 5289.86, "end": 5293.32, "probability": 0.9932 }, { "start": 5293.94, "end": 5297.86, "probability": 0.9906 }, { "start": 5298.82, "end": 5303.16, "probability": 0.9912 }, { "start": 5303.9, "end": 5304.72, "probability": 0.8755 }, { "start": 5305.4, "end": 5310.26, "probability": 0.9937 }, { "start": 5310.26, "end": 5314.16, "probability": 0.9969 }, { "start": 5315.36, "end": 5319.78, "probability": 0.7904 }, { "start": 5319.98, "end": 5323.29, "probability": 0.999 }, { "start": 5323.62, "end": 5327.3, "probability": 0.996 }, { "start": 5328.82, "end": 5332.88, "probability": 0.9966 }, { "start": 5334.16, "end": 5338.52, "probability": 0.9992 }, { "start": 5339.16, "end": 5345.24, "probability": 0.9973 }, { "start": 5346.04, "end": 5350.8, "probability": 0.9902 }, { "start": 5351.94, "end": 5353.7, "probability": 0.9564 }, { "start": 5353.96, "end": 5359.14, "probability": 0.8928 }, { "start": 5359.14, "end": 5365.76, "probability": 0.9654 }, { "start": 5367.78, "end": 5371.64, "probability": 0.9963 }, { "start": 5372.2, "end": 5373.02, "probability": 0.9189 }, { "start": 5373.14, "end": 5373.7, "probability": 0.845 }, { "start": 5374.42, "end": 5379.04, "probability": 0.9932 }, { "start": 5379.9, "end": 5384.76, "probability": 0.9738 }, { "start": 5384.8, "end": 5389.08, "probability": 0.9993 }, { "start": 5389.88, "end": 5395.26, "probability": 0.9981 }, { "start": 5395.48, "end": 5398.9, "probability": 0.9832 }, { "start": 5399.22, "end": 5399.32, "probability": 0.4524 }, { "start": 5399.6, "end": 5400.38, "probability": 0.8604 }, { "start": 5401.36, "end": 5406.1, "probability": 0.9576 }, { "start": 5406.62, "end": 5411.36, "probability": 0.9854 }, { "start": 5422.4, "end": 5425.26, "probability": 0.9249 }, { "start": 5427.96, "end": 5428.82, "probability": 0.7828 }, { "start": 5429.58, "end": 5433.22, "probability": 0.8766 }, { "start": 5434.14, "end": 5437.26, "probability": 0.9122 }, { "start": 5438.3, "end": 5443.58, "probability": 0.7476 }, { "start": 5443.66, "end": 5444.28, "probability": 0.6861 }, { "start": 5445.9, "end": 5447.2, "probability": 0.783 }, { "start": 5448.64, "end": 5448.64, "probability": 0.0249 }, { "start": 5448.64, "end": 5451.88, "probability": 0.5487 }, { "start": 5452.52, "end": 5458.18, "probability": 0.6828 }, { "start": 5458.8, "end": 5462.0, "probability": 0.8458 }, { "start": 5462.74, "end": 5464.6, "probability": 0.9058 }, { "start": 5465.46, "end": 5466.66, "probability": 0.7953 }, { "start": 5471.06, "end": 5472.68, "probability": 0.4251 }, { "start": 5473.34, "end": 5473.62, "probability": 0.4728 }, { "start": 5477.86, "end": 5479.72, "probability": 0.6159 }, { "start": 5480.58, "end": 5482.14, "probability": 0.8051 }, { "start": 5482.24, "end": 5483.46, "probability": 0.9276 }, { "start": 5493.68, "end": 5496.32, "probability": 0.4606 }, { "start": 5496.64, "end": 5496.78, "probability": 0.1155 }, { "start": 5496.78, "end": 5497.64, "probability": 0.2096 }, { "start": 5498.94, "end": 5499.14, "probability": 0.7927 }, { "start": 5499.82, "end": 5500.8, "probability": 0.7043 }, { "start": 5501.5, "end": 5502.68, "probability": 0.7128 }, { "start": 5503.26, "end": 5506.76, "probability": 0.7665 }, { "start": 5507.3, "end": 5511.24, "probability": 0.327 }, { "start": 5512.03, "end": 5514.39, "probability": 0.979 }, { "start": 5515.16, "end": 5517.0, "probability": 0.5355 }, { "start": 5518.76, "end": 5522.2, "probability": 0.5036 }, { "start": 5522.76, "end": 5522.9, "probability": 0.3214 }, { "start": 5522.9, "end": 5523.56, "probability": 0.6375 }, { "start": 5523.98, "end": 5526.08, "probability": 0.6171 }, { "start": 5526.64, "end": 5527.9, "probability": 0.685 }, { "start": 5528.02, "end": 5531.2, "probability": 0.8322 }, { "start": 5531.39, "end": 5533.92, "probability": 0.698 }, { "start": 5534.46, "end": 5539.56, "probability": 0.6918 }, { "start": 5540.2, "end": 5541.82, "probability": 0.9697 }, { "start": 5542.02, "end": 5545.28, "probability": 0.9865 }, { "start": 5545.28, "end": 5548.62, "probability": 0.7253 }, { "start": 5549.64, "end": 5549.84, "probability": 0.1181 }, { "start": 5550.4, "end": 5552.64, "probability": 0.2021 }, { "start": 5553.4, "end": 5554.62, "probability": 0.9525 }, { "start": 5555.04, "end": 5555.2, "probability": 0.7443 }, { "start": 5556.56, "end": 5557.14, "probability": 0.7306 }, { "start": 5557.22, "end": 5558.08, "probability": 0.5558 }, { "start": 5558.1, "end": 5559.78, "probability": 0.9751 }, { "start": 5559.98, "end": 5560.58, "probability": 0.8473 }, { "start": 5560.64, "end": 5561.94, "probability": 0.39 }, { "start": 5563.2, "end": 5566.68, "probability": 0.9336 }, { "start": 5567.36, "end": 5567.7, "probability": 0.3619 } ], "segments_count": 1804, "words_count": 9046, "avg_words_per_segment": 5.0144, "avg_segment_duration": 2.1391, "avg_words_per_minute": 90.3884, "plenum_id": "102804", "duration": 6004.75, "title": null, "plenum_date": "2021-12-21" }