{ "source_type": "knesset", "source_id": "plenum", "source_entry_id": "104663", "quality_score": 0.8623, "per_segment_quality_scores": [ { "start": 33.7, "end": 36.82, "probability": 0.98 }, { "start": 38.1, "end": 40.26, "probability": 0.6949 }, { "start": 42.5, "end": 47.7, "probability": 0.7289 }, { "start": 48.7, "end": 50.22, "probability": 0.6454 }, { "start": 51.34, "end": 54.78, "probability": 0.941 }, { "start": 55.46, "end": 56.78, "probability": 0.9292 }, { "start": 57.44, "end": 60.71, "probability": 0.9963 }, { "start": 60.92, "end": 62.78, "probability": 0.9995 }, { "start": 63.34, "end": 65.46, "probability": 0.783 }, { "start": 66.48, "end": 71.1, "probability": 0.9181 }, { "start": 71.76, "end": 73.92, "probability": 0.8193 }, { "start": 74.92, "end": 78.58, "probability": 0.9972 }, { "start": 79.48, "end": 80.5, "probability": 0.7833 }, { "start": 80.8, "end": 84.86, "probability": 0.906 }, { "start": 85.48, "end": 88.12, "probability": 0.9864 }, { "start": 89.16, "end": 92.48, "probability": 0.8325 }, { "start": 93.34, "end": 95.44, "probability": 0.7236 }, { "start": 96.14, "end": 97.26, "probability": 0.9805 }, { "start": 98.08, "end": 99.02, "probability": 0.9583 }, { "start": 104.72, "end": 106.3, "probability": 0.7614 }, { "start": 106.6, "end": 108.12, "probability": 0.8441 }, { "start": 108.2, "end": 109.84, "probability": 0.8995 }, { "start": 110.36, "end": 113.78, "probability": 0.9336 }, { "start": 114.5, "end": 116.7, "probability": 0.8989 }, { "start": 116.8, "end": 118.56, "probability": 0.5422 }, { "start": 119.12, "end": 119.52, "probability": 0.2032 }, { "start": 120.14, "end": 124.58, "probability": 0.9365 }, { "start": 125.18, "end": 127.22, "probability": 0.7773 }, { "start": 128.04, "end": 132.96, "probability": 0.7951 }, { "start": 133.52, "end": 137.74, "probability": 0.6967 }, { "start": 138.64, "end": 141.74, "probability": 0.7659 }, { "start": 142.6, "end": 145.6, "probability": 0.9506 }, { "start": 145.96, "end": 149.12, "probability": 0.7629 }, { "start": 149.74, "end": 150.84, "probability": 0.6951 }, { "start": 152.1, "end": 155.86, "probability": 0.4956 }, { "start": 155.86, "end": 157.78, "probability": 0.7016 }, { "start": 159.18, "end": 162.0, "probability": 0.6545 }, { "start": 162.6, "end": 164.76, "probability": 0.3399 }, { "start": 165.36, "end": 167.4, "probability": 0.9827 }, { "start": 168.34, "end": 169.02, "probability": 0.5687 }, { "start": 183.12, "end": 185.72, "probability": 0.2106 }, { "start": 186.73, "end": 189.66, "probability": 0.0221 }, { "start": 189.88, "end": 192.02, "probability": 0.1121 }, { "start": 192.56, "end": 194.64, "probability": 0.2501 }, { "start": 196.16, "end": 198.42, "probability": 0.0653 }, { "start": 200.28, "end": 203.4, "probability": 0.1561 }, { "start": 204.3, "end": 207.08, "probability": 0.0831 }, { "start": 209.2, "end": 211.14, "probability": 0.0226 }, { "start": 211.96, "end": 213.68, "probability": 0.0177 }, { "start": 215.08, "end": 215.34, "probability": 0.0156 }, { "start": 216.9, "end": 218.4, "probability": 0.0693 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 239.0, "end": 239.0, "probability": 0.0 }, { "start": 246.85, "end": 249.5, "probability": 0.5409 }, { "start": 250.88, "end": 251.38, "probability": 0.8904 }, { "start": 259.16, "end": 259.16, "probability": 0.0968 }, { "start": 259.16, "end": 259.22, "probability": 0.3685 }, { "start": 259.4, "end": 262.9, "probability": 0.9969 }, { "start": 263.24, "end": 270.02, "probability": 0.9337 }, { "start": 270.9, "end": 277.78, "probability": 0.997 }, { "start": 278.64, "end": 282.32, "probability": 0.7458 }, { "start": 283.26, "end": 285.58, "probability": 0.8762 }, { "start": 286.2, "end": 288.4, "probability": 0.8447 }, { "start": 289.62, "end": 290.96, "probability": 0.4601 }, { "start": 290.98, "end": 291.46, "probability": 0.8029 }, { "start": 291.54, "end": 293.16, "probability": 0.7616 }, { "start": 293.28, "end": 293.9, "probability": 0.0456 }, { "start": 293.9, "end": 293.98, "probability": 0.2548 }, { "start": 294.12, "end": 295.03, "probability": 0.5837 }, { "start": 295.2, "end": 295.8, "probability": 0.1945 }, { "start": 297.14, "end": 297.86, "probability": 0.9693 }, { "start": 299.56, "end": 302.4, "probability": 0.7493 }, { "start": 303.18, "end": 306.98, "probability": 0.9988 }, { "start": 306.98, "end": 309.9, "probability": 0.9956 }, { "start": 311.02, "end": 313.88, "probability": 0.9753 }, { "start": 315.14, "end": 317.98, "probability": 0.991 }, { "start": 318.62, "end": 320.3, "probability": 0.9196 }, { "start": 321.2, "end": 322.28, "probability": 0.7989 }, { "start": 323.61, "end": 327.92, "probability": 0.9957 }, { "start": 328.66, "end": 334.96, "probability": 0.9935 }, { "start": 335.76, "end": 337.6, "probability": 0.9057 }, { "start": 338.16, "end": 340.78, "probability": 0.9985 }, { "start": 341.62, "end": 343.54, "probability": 0.698 }, { "start": 344.42, "end": 347.32, "probability": 0.9211 }, { "start": 347.84, "end": 349.44, "probability": 0.9379 }, { "start": 350.04, "end": 350.97, "probability": 0.9868 }, { "start": 352.32, "end": 361.28, "probability": 0.9736 }, { "start": 361.46, "end": 365.08, "probability": 0.9614 }, { "start": 365.48, "end": 369.9, "probability": 0.9988 }, { "start": 370.08, "end": 372.42, "probability": 0.9989 }, { "start": 373.8, "end": 379.66, "probability": 0.998 }, { "start": 380.52, "end": 382.38, "probability": 0.9619 }, { "start": 382.56, "end": 384.3, "probability": 0.9286 }, { "start": 384.9, "end": 387.34, "probability": 0.986 }, { "start": 387.92, "end": 389.7, "probability": 0.9704 }, { "start": 390.2, "end": 392.74, "probability": 0.9861 }, { "start": 392.88, "end": 394.16, "probability": 0.9968 }, { "start": 395.0, "end": 398.0, "probability": 0.8972 }, { "start": 398.74, "end": 400.16, "probability": 0.8426 }, { "start": 401.16, "end": 403.04, "probability": 0.8691 }, { "start": 403.24, "end": 405.42, "probability": 0.9955 }, { "start": 405.88, "end": 406.74, "probability": 0.9556 }, { "start": 407.12, "end": 411.72, "probability": 0.9883 }, { "start": 412.34, "end": 415.0, "probability": 0.9677 }, { "start": 415.54, "end": 417.64, "probability": 0.8557 }, { "start": 418.22, "end": 419.48, "probability": 0.9536 }, { "start": 419.54, "end": 420.0, "probability": 0.7531 }, { "start": 420.4, "end": 422.56, "probability": 0.9777 }, { "start": 425.04, "end": 425.72, "probability": 0.7861 }, { "start": 427.06, "end": 427.32, "probability": 0.0477 }, { "start": 427.32, "end": 427.32, "probability": 0.4474 }, { "start": 427.32, "end": 427.34, "probability": 0.0121 }, { "start": 427.34, "end": 427.34, "probability": 0.1866 }, { "start": 427.34, "end": 427.55, "probability": 0.3855 }, { "start": 428.0, "end": 431.22, "probability": 0.6645 }, { "start": 431.36, "end": 433.86, "probability": 0.9238 }, { "start": 434.34, "end": 436.4, "probability": 0.9722 }, { "start": 437.04, "end": 440.24, "probability": 0.9992 }, { "start": 440.84, "end": 445.06, "probability": 0.9946 }, { "start": 445.18, "end": 445.88, "probability": 0.7852 }, { "start": 446.26, "end": 446.62, "probability": 0.739 }, { "start": 446.7, "end": 449.88, "probability": 0.9731 }, { "start": 450.62, "end": 451.8, "probability": 0.8346 }, { "start": 452.7, "end": 458.62, "probability": 0.8126 }, { "start": 459.1, "end": 461.54, "probability": 0.9952 }, { "start": 461.92, "end": 463.99, "probability": 0.9633 }, { "start": 465.68, "end": 467.5, "probability": 0.9287 }, { "start": 467.92, "end": 469.96, "probability": 0.991 }, { "start": 470.0, "end": 471.38, "probability": 0.813 }, { "start": 471.86, "end": 472.28, "probability": 0.6884 }, { "start": 472.42, "end": 473.38, "probability": 0.9775 }, { "start": 473.48, "end": 474.44, "probability": 0.9985 }, { "start": 474.8, "end": 475.88, "probability": 0.9802 }, { "start": 475.92, "end": 476.94, "probability": 0.7851 }, { "start": 477.24, "end": 478.06, "probability": 0.9766 }, { "start": 478.1, "end": 479.16, "probability": 0.9963 }, { "start": 479.68, "end": 484.26, "probability": 0.9764 }, { "start": 485.0, "end": 487.74, "probability": 0.995 }, { "start": 487.82, "end": 488.28, "probability": 0.6371 }, { "start": 488.58, "end": 489.32, "probability": 0.8785 }, { "start": 489.4, "end": 490.3, "probability": 0.6997 }, { "start": 490.3, "end": 490.58, "probability": 0.728 }, { "start": 490.98, "end": 491.78, "probability": 0.8643 }, { "start": 491.9, "end": 492.08, "probability": 0.6598 }, { "start": 492.26, "end": 493.46, "probability": 0.5134 }, { "start": 493.5, "end": 496.86, "probability": 0.9995 }, { "start": 497.46, "end": 499.96, "probability": 0.9726 }, { "start": 500.24, "end": 501.1, "probability": 0.7622 }, { "start": 501.36, "end": 502.46, "probability": 0.7221 }, { "start": 502.78, "end": 503.62, "probability": 0.8921 }, { "start": 503.98, "end": 504.9, "probability": 0.7429 }, { "start": 505.32, "end": 506.12, "probability": 0.4763 }, { "start": 506.22, "end": 507.5, "probability": 0.9901 }, { "start": 508.3, "end": 510.48, "probability": 0.7695 }, { "start": 510.9, "end": 514.18, "probability": 0.9985 }, { "start": 514.62, "end": 516.76, "probability": 0.9367 }, { "start": 517.16, "end": 518.82, "probability": 0.9993 }, { "start": 518.96, "end": 519.16, "probability": 0.3959 }, { "start": 519.22, "end": 519.92, "probability": 0.9008 }, { "start": 519.96, "end": 522.92, "probability": 0.9606 }, { "start": 522.98, "end": 523.88, "probability": 0.9642 }, { "start": 524.44, "end": 525.42, "probability": 0.9951 }, { "start": 525.94, "end": 531.56, "probability": 0.9846 }, { "start": 531.82, "end": 532.94, "probability": 0.9749 }, { "start": 533.98, "end": 537.52, "probability": 0.9644 }, { "start": 537.6, "end": 540.08, "probability": 0.9961 }, { "start": 540.64, "end": 541.86, "probability": 0.854 }, { "start": 542.54, "end": 543.68, "probability": 0.973 }, { "start": 543.96, "end": 545.58, "probability": 0.9964 }, { "start": 547.54, "end": 549.74, "probability": 0.9384 }, { "start": 550.28, "end": 552.86, "probability": 0.945 }, { "start": 552.86, "end": 555.12, "probability": 0.9917 }, { "start": 555.62, "end": 557.48, "probability": 0.8133 }, { "start": 557.6, "end": 559.86, "probability": 0.9778 }, { "start": 561.78, "end": 563.56, "probability": 0.9379 }, { "start": 563.88, "end": 564.66, "probability": 0.9206 }, { "start": 565.1, "end": 565.68, "probability": 0.984 }, { "start": 566.06, "end": 567.4, "probability": 0.9926 }, { "start": 567.48, "end": 568.78, "probability": 0.9392 }, { "start": 569.22, "end": 569.88, "probability": 0.986 }, { "start": 569.96, "end": 571.54, "probability": 0.9661 }, { "start": 571.98, "end": 572.92, "probability": 0.9938 }, { "start": 573.06, "end": 573.36, "probability": 0.7992 }, { "start": 574.38, "end": 576.22, "probability": 0.9622 }, { "start": 576.32, "end": 576.82, "probability": 0.9488 }, { "start": 577.18, "end": 580.68, "probability": 0.9933 }, { "start": 580.74, "end": 581.58, "probability": 0.6474 }, { "start": 582.12, "end": 583.14, "probability": 0.7746 }, { "start": 583.5, "end": 585.78, "probability": 0.9922 }, { "start": 586.22, "end": 590.2, "probability": 0.9966 }, { "start": 593.98, "end": 596.62, "probability": 0.9486 }, { "start": 596.76, "end": 598.44, "probability": 0.9487 }, { "start": 598.72, "end": 600.6, "probability": 0.9734 }, { "start": 600.72, "end": 602.24, "probability": 0.961 }, { "start": 603.2, "end": 607.04, "probability": 0.9785 }, { "start": 608.08, "end": 611.52, "probability": 0.6174 }, { "start": 611.58, "end": 612.4, "probability": 0.8938 }, { "start": 614.12, "end": 616.74, "probability": 0.9329 }, { "start": 618.42, "end": 618.9, "probability": 0.8738 }, { "start": 618.98, "end": 619.7, "probability": 0.6676 }, { "start": 619.98, "end": 621.62, "probability": 0.747 }, { "start": 621.64, "end": 623.6, "probability": 0.8232 }, { "start": 623.68, "end": 624.05, "probability": 0.7456 }, { "start": 624.46, "end": 627.68, "probability": 0.993 }, { "start": 628.18, "end": 628.66, "probability": 0.8838 }, { "start": 629.12, "end": 631.28, "probability": 0.8256 }, { "start": 632.34, "end": 633.5, "probability": 0.948 }, { "start": 633.88, "end": 634.86, "probability": 0.8085 }, { "start": 635.12, "end": 636.12, "probability": 0.9304 }, { "start": 636.42, "end": 639.1, "probability": 0.9905 }, { "start": 641.12, "end": 642.38, "probability": 0.988 }, { "start": 643.3, "end": 643.58, "probability": 0.8633 }, { "start": 644.34, "end": 647.56, "probability": 0.9707 }, { "start": 648.02, "end": 650.24, "probability": 0.9912 }, { "start": 652.92, "end": 658.52, "probability": 0.9829 }, { "start": 659.3, "end": 662.18, "probability": 0.9653 }, { "start": 662.86, "end": 665.52, "probability": 0.9785 }, { "start": 665.62, "end": 667.64, "probability": 0.9961 }, { "start": 669.18, "end": 669.72, "probability": 0.1414 }, { "start": 670.54, "end": 672.2, "probability": 0.6609 }, { "start": 677.32, "end": 679.38, "probability": 0.9988 }, { "start": 679.46, "end": 680.18, "probability": 0.9519 }, { "start": 680.2, "end": 680.78, "probability": 0.9644 }, { "start": 681.46, "end": 682.68, "probability": 0.6482 }, { "start": 683.42, "end": 684.06, "probability": 0.6902 }, { "start": 685.22, "end": 686.8, "probability": 0.9752 }, { "start": 687.24, "end": 688.52, "probability": 0.9943 }, { "start": 688.88, "end": 690.6, "probability": 0.9852 }, { "start": 691.7, "end": 692.6, "probability": 0.9634 }, { "start": 693.14, "end": 694.86, "probability": 0.0019 }, { "start": 696.42, "end": 696.66, "probability": 0.2436 }, { "start": 696.88, "end": 699.63, "probability": 0.0869 }, { "start": 699.92, "end": 699.92, "probability": 0.5191 }, { "start": 699.92, "end": 704.56, "probability": 0.9325 }, { "start": 704.94, "end": 706.06, "probability": 0.9231 }, { "start": 706.32, "end": 709.12, "probability": 0.975 }, { "start": 709.12, "end": 709.96, "probability": 0.985 }, { "start": 710.42, "end": 711.35, "probability": 0.9886 }, { "start": 711.66, "end": 713.66, "probability": 0.7621 }, { "start": 714.3, "end": 716.28, "probability": 0.9895 }, { "start": 716.62, "end": 718.7, "probability": 0.9871 }, { "start": 719.1, "end": 722.48, "probability": 0.9834 }, { "start": 722.88, "end": 724.84, "probability": 0.8863 }, { "start": 725.68, "end": 726.49, "probability": 0.9863 }, { "start": 726.86, "end": 728.92, "probability": 0.9914 }, { "start": 729.34, "end": 729.92, "probability": 0.8708 }, { "start": 730.4, "end": 732.3, "probability": 0.8521 }, { "start": 733.24, "end": 733.8, "probability": 0.618 }, { "start": 734.8, "end": 735.7, "probability": 0.2357 }, { "start": 736.29, "end": 738.47, "probability": 0.3865 }, { "start": 738.62, "end": 740.67, "probability": 0.9638 }, { "start": 740.81, "end": 742.73, "probability": 0.7312 }, { "start": 742.87, "end": 747.87, "probability": 0.9971 }, { "start": 748.33, "end": 750.61, "probability": 0.9651 }, { "start": 751.01, "end": 753.19, "probability": 0.9961 }, { "start": 753.19, "end": 755.91, "probability": 0.9459 }, { "start": 756.45, "end": 758.75, "probability": 0.9892 }, { "start": 758.87, "end": 761.03, "probability": 0.7699 }, { "start": 761.61, "end": 762.87, "probability": 0.9821 }, { "start": 762.95, "end": 764.57, "probability": 0.9483 }, { "start": 765.05, "end": 765.67, "probability": 0.9902 }, { "start": 766.43, "end": 770.59, "probability": 0.7557 }, { "start": 770.59, "end": 772.69, "probability": 0.9961 }, { "start": 772.71, "end": 774.39, "probability": 0.9918 }, { "start": 774.69, "end": 775.03, "probability": 0.275 }, { "start": 775.27, "end": 775.65, "probability": 0.3668 }, { "start": 775.99, "end": 779.03, "probability": 0.5512 }, { "start": 779.31, "end": 779.57, "probability": 0.0999 }, { "start": 779.57, "end": 779.57, "probability": 0.0335 }, { "start": 779.57, "end": 779.57, "probability": 0.3314 }, { "start": 779.57, "end": 783.51, "probability": 0.8405 }, { "start": 783.93, "end": 784.69, "probability": 0.6372 }, { "start": 784.79, "end": 785.07, "probability": 0.3563 }, { "start": 785.07, "end": 788.54, "probability": 0.9863 }, { "start": 789.57, "end": 792.23, "probability": 0.9542 }, { "start": 793.43, "end": 795.63, "probability": 0.1007 }, { "start": 796.61, "end": 796.93, "probability": 0.3907 }, { "start": 797.57, "end": 799.63, "probability": 0.0673 }, { "start": 799.71, "end": 799.71, "probability": 0.2005 }, { "start": 799.71, "end": 799.71, "probability": 0.3043 }, { "start": 799.71, "end": 799.95, "probability": 0.1095 }, { "start": 800.03, "end": 803.65, "probability": 0.1636 }, { "start": 803.65, "end": 803.65, "probability": 0.0729 }, { "start": 804.09, "end": 804.49, "probability": 0.6771 }, { "start": 805.23, "end": 808.79, "probability": 0.9453 }, { "start": 809.09, "end": 809.09, "probability": 0.0641 }, { "start": 809.09, "end": 809.09, "probability": 0.109 }, { "start": 809.09, "end": 809.09, "probability": 0.5192 }, { "start": 809.09, "end": 814.51, "probability": 0.1597 }, { "start": 814.77, "end": 815.31, "probability": 0.3152 }, { "start": 816.03, "end": 816.19, "probability": 0.1032 }, { "start": 816.19, "end": 816.19, "probability": 0.1951 }, { "start": 816.19, "end": 816.19, "probability": 0.0419 }, { "start": 816.19, "end": 816.39, "probability": 0.1558 }, { "start": 816.39, "end": 817.19, "probability": 0.4402 }, { "start": 817.65, "end": 821.35, "probability": 0.9957 }, { "start": 821.97, "end": 822.15, "probability": 0.311 }, { "start": 822.15, "end": 823.25, "probability": 0.9865 }, { "start": 823.77, "end": 826.07, "probability": 0.9862 }, { "start": 826.35, "end": 827.91, "probability": 0.9889 }, { "start": 828.19, "end": 828.81, "probability": 0.0885 }, { "start": 828.81, "end": 830.39, "probability": 0.9707 }, { "start": 830.77, "end": 831.71, "probability": 0.8207 }, { "start": 831.73, "end": 835.15, "probability": 0.9961 }, { "start": 835.49, "end": 836.39, "probability": 0.8095 }, { "start": 836.49, "end": 840.29, "probability": 0.9614 }, { "start": 840.55, "end": 841.85, "probability": 0.9946 }, { "start": 841.99, "end": 842.36, "probability": 0.9727 }, { "start": 842.95, "end": 845.31, "probability": 0.979 }, { "start": 846.13, "end": 848.09, "probability": 0.5693 }, { "start": 848.29, "end": 849.67, "probability": 0.6075 }, { "start": 850.31, "end": 851.99, "probability": 0.7075 }, { "start": 852.63, "end": 852.71, "probability": 0.4991 }, { "start": 852.71, "end": 855.09, "probability": 0.584 }, { "start": 856.27, "end": 857.61, "probability": 0.7534 }, { "start": 857.85, "end": 858.73, "probability": 0.4673 }, { "start": 859.17, "end": 860.97, "probability": 0.8911 }, { "start": 861.67, "end": 863.47, "probability": 0.4147 }, { "start": 863.47, "end": 865.18, "probability": 0.6552 }, { "start": 865.79, "end": 867.47, "probability": 0.5498 }, { "start": 867.93, "end": 869.75, "probability": 0.5971 }, { "start": 869.97, "end": 871.05, "probability": 0.2308 }, { "start": 871.59, "end": 873.77, "probability": 0.9175 }, { "start": 874.19, "end": 874.71, "probability": 0.6852 }, { "start": 875.07, "end": 877.99, "probability": 0.8835 }, { "start": 878.21, "end": 878.45, "probability": 0.8535 }, { "start": 878.51, "end": 879.09, "probability": 0.98 }, { "start": 879.35, "end": 880.23, "probability": 0.9656 }, { "start": 880.29, "end": 880.87, "probability": 0.3449 }, { "start": 881.07, "end": 886.09, "probability": 0.9058 }, { "start": 887.15, "end": 893.59, "probability": 0.9973 }, { "start": 893.91, "end": 894.27, "probability": 0.1725 }, { "start": 895.01, "end": 895.41, "probability": 0.1502 }, { "start": 895.67, "end": 895.67, "probability": 0.1671 }, { "start": 895.67, "end": 895.67, "probability": 0.0414 }, { "start": 895.67, "end": 895.67, "probability": 0.3546 }, { "start": 895.67, "end": 899.91, "probability": 0.9393 }, { "start": 900.61, "end": 906.47, "probability": 0.9963 }, { "start": 906.65, "end": 906.79, "probability": 0.0683 }, { "start": 906.79, "end": 906.79, "probability": 0.1714 }, { "start": 906.79, "end": 907.85, "probability": 0.6477 }, { "start": 908.17, "end": 911.94, "probability": 0.9127 }, { "start": 912.03, "end": 912.43, "probability": 0.0016 }, { "start": 912.53, "end": 915.73, "probability": 0.2072 }, { "start": 916.51, "end": 916.67, "probability": 0.3209 }, { "start": 917.85, "end": 917.85, "probability": 0.0049 }, { "start": 917.85, "end": 917.85, "probability": 0.1233 }, { "start": 917.85, "end": 919.13, "probability": 0.5615 }, { "start": 919.77, "end": 926.39, "probability": 0.9938 }, { "start": 927.19, "end": 929.39, "probability": 0.399 }, { "start": 932.17, "end": 935.85, "probability": 0.1074 }, { "start": 935.97, "end": 936.57, "probability": 0.1496 }, { "start": 936.83, "end": 937.75, "probability": 0.211 }, { "start": 937.99, "end": 938.85, "probability": 0.3948 }, { "start": 940.09, "end": 944.25, "probability": 0.0584 }, { "start": 944.47, "end": 945.81, "probability": 0.2168 }, { "start": 947.95, "end": 948.15, "probability": 0.3104 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.0, "end": 1027.0, "probability": 0.0 }, { "start": 1027.14, "end": 1029.46, "probability": 0.2757 }, { "start": 1029.54, "end": 1030.76, "probability": 0.7297 }, { "start": 1030.84, "end": 1031.42, "probability": 0.4983 }, { "start": 1031.42, "end": 1033.18, "probability": 0.5667 }, { "start": 1033.72, "end": 1033.98, "probability": 0.0429 }, { "start": 1033.98, "end": 1035.18, "probability": 0.7185 }, { "start": 1035.22, "end": 1036.36, "probability": 0.9532 }, { "start": 1036.76, "end": 1038.24, "probability": 0.9533 }, { "start": 1038.54, "end": 1041.4, "probability": 0.9319 }, { "start": 1041.84, "end": 1041.88, "probability": 0.0281 }, { "start": 1041.88, "end": 1041.88, "probability": 0.0337 }, { "start": 1041.88, "end": 1044.07, "probability": 0.7984 }, { "start": 1044.38, "end": 1046.12, "probability": 0.9909 }, { "start": 1046.2, "end": 1046.86, "probability": 0.956 }, { "start": 1047.38, "end": 1047.92, "probability": 0.9316 }, { "start": 1049.52, "end": 1051.22, "probability": 0.9657 }, { "start": 1051.76, "end": 1054.4, "probability": 0.9897 }, { "start": 1054.48, "end": 1055.24, "probability": 0.8487 }, { "start": 1056.86, "end": 1059.1, "probability": 0.9961 }, { "start": 1059.84, "end": 1062.06, "probability": 0.9827 }, { "start": 1062.76, "end": 1065.16, "probability": 0.9921 }, { "start": 1065.16, "end": 1067.94, "probability": 0.9814 }, { "start": 1068.1, "end": 1071.22, "probability": 0.9911 }, { "start": 1071.92, "end": 1073.38, "probability": 0.9963 }, { "start": 1073.52, "end": 1075.02, "probability": 0.998 }, { "start": 1075.56, "end": 1078.2, "probability": 0.9311 }, { "start": 1078.44, "end": 1080.62, "probability": 0.9778 }, { "start": 1081.14, "end": 1083.64, "probability": 0.9855 }, { "start": 1084.88, "end": 1089.32, "probability": 0.5632 }, { "start": 1089.64, "end": 1089.86, "probability": 0.1117 }, { "start": 1089.86, "end": 1096.18, "probability": 0.9684 }, { "start": 1096.32, "end": 1096.62, "probability": 0.326 }, { "start": 1096.96, "end": 1098.56, "probability": 0.9366 }, { "start": 1099.08, "end": 1102.36, "probability": 0.9852 }, { "start": 1102.88, "end": 1105.66, "probability": 0.9823 }, { "start": 1105.84, "end": 1106.32, "probability": 0.6657 }, { "start": 1106.34, "end": 1107.14, "probability": 0.5112 }, { "start": 1110.94, "end": 1111.52, "probability": 0.1134 }, { "start": 1111.52, "end": 1113.03, "probability": 0.2259 }, { "start": 1114.84, "end": 1117.66, "probability": 0.681 }, { "start": 1118.88, "end": 1118.88, "probability": 0.0678 }, { "start": 1118.88, "end": 1121.24, "probability": 0.979 }, { "start": 1121.38, "end": 1121.62, "probability": 0.0727 }, { "start": 1121.84, "end": 1122.48, "probability": 0.6773 }, { "start": 1123.32, "end": 1124.0, "probability": 0.009 }, { "start": 1124.86, "end": 1127.96, "probability": 0.5296 }, { "start": 1128.12, "end": 1128.6, "probability": 0.656 }, { "start": 1128.88, "end": 1129.56, "probability": 0.5096 }, { "start": 1129.72, "end": 1130.57, "probability": 0.801 }, { "start": 1131.02, "end": 1133.26, "probability": 0.1153 }, { "start": 1133.34, "end": 1133.68, "probability": 0.0397 }, { "start": 1134.56, "end": 1134.6, "probability": 0.0007 }, { "start": 1134.6, "end": 1134.81, "probability": 0.1014 }, { "start": 1136.89, "end": 1137.76, "probability": 0.0276 }, { "start": 1137.94, "end": 1140.94, "probability": 0.738 }, { "start": 1141.48, "end": 1143.16, "probability": 0.5779 }, { "start": 1143.2, "end": 1144.4, "probability": 0.5344 }, { "start": 1145.28, "end": 1146.86, "probability": 0.93 }, { "start": 1147.62, "end": 1150.36, "probability": 0.8218 }, { "start": 1150.86, "end": 1155.08, "probability": 0.9894 }, { "start": 1156.02, "end": 1158.9, "probability": 0.8602 }, { "start": 1159.14, "end": 1159.9, "probability": 0.0593 }, { "start": 1160.22, "end": 1160.8, "probability": 0.7607 }, { "start": 1162.28, "end": 1162.58, "probability": 0.1791 }, { "start": 1162.58, "end": 1162.76, "probability": 0.2067 }, { "start": 1162.76, "end": 1163.48, "probability": 0.0411 }, { "start": 1163.56, "end": 1164.42, "probability": 0.0445 }, { "start": 1165.49, "end": 1168.8, "probability": 0.1468 }, { "start": 1168.8, "end": 1170.62, "probability": 0.2667 }, { "start": 1170.62, "end": 1171.68, "probability": 0.215 }, { "start": 1171.68, "end": 1173.32, "probability": 0.0413 }, { "start": 1173.42, "end": 1174.98, "probability": 0.4051 }, { "start": 1174.98, "end": 1175.52, "probability": 0.0071 }, { "start": 1176.04, "end": 1176.3, "probability": 0.0301 }, { "start": 1176.3, "end": 1176.3, "probability": 0.0465 }, { "start": 1176.3, "end": 1176.74, "probability": 0.1864 }, { "start": 1177.6, "end": 1178.32, "probability": 0.3768 }, { "start": 1178.79, "end": 1180.45, "probability": 0.885 }, { "start": 1181.42, "end": 1183.04, "probability": 0.3187 }, { "start": 1183.04, "end": 1184.08, "probability": 0.0762 }, { "start": 1184.22, "end": 1185.11, "probability": 0.8252 }, { "start": 1185.92, "end": 1186.04, "probability": 0.0108 }, { "start": 1186.04, "end": 1188.54, "probability": 0.6159 }, { "start": 1190.04, "end": 1190.14, "probability": 0.0425 }, { "start": 1190.14, "end": 1191.2, "probability": 0.387 }, { "start": 1191.2, "end": 1192.88, "probability": 0.9725 }, { "start": 1193.68, "end": 1195.24, "probability": 0.6686 }, { "start": 1195.8, "end": 1195.86, "probability": 0.1447 }, { "start": 1195.86, "end": 1196.9, "probability": 0.7339 }, { "start": 1197.28, "end": 1197.42, "probability": 0.0185 }, { "start": 1197.42, "end": 1198.54, "probability": 0.5756 }, { "start": 1198.68, "end": 1200.1, "probability": 0.9554 }, { "start": 1200.26, "end": 1200.72, "probability": 0.0148 }, { "start": 1200.72, "end": 1201.7, "probability": 0.396 }, { "start": 1201.96, "end": 1202.06, "probability": 0.7161 }, { "start": 1202.12, "end": 1203.22, "probability": 0.8967 }, { "start": 1203.52, "end": 1204.56, "probability": 0.9307 }, { "start": 1204.94, "end": 1207.2, "probability": 0.8381 }, { "start": 1207.32, "end": 1207.36, "probability": 0.2352 }, { "start": 1207.52, "end": 1208.64, "probability": 0.652 }, { "start": 1209.36, "end": 1209.54, "probability": 0.5336 }, { "start": 1212.32, "end": 1212.4, "probability": 0.0958 }, { "start": 1212.4, "end": 1212.4, "probability": 0.0172 }, { "start": 1212.4, "end": 1212.4, "probability": 0.0856 }, { "start": 1212.4, "end": 1213.18, "probability": 0.8801 }, { "start": 1213.3, "end": 1214.22, "probability": 0.771 }, { "start": 1214.88, "end": 1215.02, "probability": 0.2075 }, { "start": 1215.02, "end": 1217.0, "probability": 0.7543 }, { "start": 1217.8, "end": 1217.8, "probability": 0.2868 }, { "start": 1220.3, "end": 1220.68, "probability": 0.0172 }, { "start": 1220.68, "end": 1220.74, "probability": 0.0262 }, { "start": 1220.74, "end": 1220.74, "probability": 0.0133 }, { "start": 1220.74, "end": 1221.86, "probability": 0.1176 }, { "start": 1221.86, "end": 1222.74, "probability": 0.7017 }, { "start": 1222.92, "end": 1223.32, "probability": 0.6347 }, { "start": 1223.76, "end": 1223.76, "probability": 0.7146 }, { "start": 1223.76, "end": 1223.76, "probability": 0.1152 }, { "start": 1223.76, "end": 1223.76, "probability": 0.6719 }, { "start": 1223.76, "end": 1226.22, "probability": 0.8452 }, { "start": 1226.24, "end": 1226.48, "probability": 0.0888 }, { "start": 1226.48, "end": 1227.38, "probability": 0.017 }, { "start": 1227.38, "end": 1228.12, "probability": 0.6115 }, { "start": 1229.0, "end": 1233.54, "probability": 0.6682 }, { "start": 1234.14, "end": 1234.34, "probability": 0.0378 }, { "start": 1234.34, "end": 1234.34, "probability": 0.0056 }, { "start": 1234.34, "end": 1236.46, "probability": 0.394 }, { "start": 1237.0, "end": 1237.0, "probability": 0.1448 }, { "start": 1237.0, "end": 1238.84, "probability": 0.9301 }, { "start": 1238.94, "end": 1239.14, "probability": 0.0051 }, { "start": 1239.3, "end": 1239.46, "probability": 0.0066 }, { "start": 1239.46, "end": 1239.46, "probability": 0.2698 }, { "start": 1239.46, "end": 1240.31, "probability": 0.9727 }, { "start": 1241.24, "end": 1241.88, "probability": 0.6349 }, { "start": 1241.96, "end": 1242.02, "probability": 0.1486 }, { "start": 1242.02, "end": 1243.6, "probability": 0.7731 }, { "start": 1243.62, "end": 1244.02, "probability": 0.3468 }, { "start": 1244.08, "end": 1246.26, "probability": 0.6556 }, { "start": 1246.52, "end": 1247.52, "probability": 0.4549 }, { "start": 1247.72, "end": 1248.88, "probability": 0.2633 }, { "start": 1249.28, "end": 1249.84, "probability": 0.6275 }, { "start": 1249.94, "end": 1250.46, "probability": 0.0663 }, { "start": 1250.46, "end": 1251.5, "probability": 0.4553 }, { "start": 1251.59, "end": 1251.98, "probability": 0.193 }, { "start": 1252.12, "end": 1252.12, "probability": 0.1023 }, { "start": 1252.12, "end": 1252.78, "probability": 0.6963 }, { "start": 1252.84, "end": 1253.34, "probability": 0.6098 }, { "start": 1254.0, "end": 1254.1, "probability": 0.7234 }, { "start": 1254.5, "end": 1255.85, "probability": 0.4271 }, { "start": 1256.96, "end": 1256.96, "probability": 0.0641 }, { "start": 1256.96, "end": 1258.44, "probability": 0.3552 }, { "start": 1258.54, "end": 1259.8, "probability": 0.9593 }, { "start": 1260.54, "end": 1263.22, "probability": 0.9768 }, { "start": 1263.36, "end": 1264.34, "probability": 0.6355 }, { "start": 1264.5, "end": 1265.6, "probability": 0.2714 }, { "start": 1266.68, "end": 1269.2, "probability": 0.2003 }, { "start": 1271.6, "end": 1272.08, "probability": 0.0413 }, { "start": 1272.08, "end": 1272.08, "probability": 0.0232 }, { "start": 1272.08, "end": 1272.08, "probability": 0.0798 }, { "start": 1272.08, "end": 1272.08, "probability": 0.0602 }, { "start": 1272.08, "end": 1276.74, "probability": 0.9855 }, { "start": 1276.74, "end": 1280.92, "probability": 0.9597 }, { "start": 1281.96, "end": 1283.62, "probability": 0.9166 }, { "start": 1283.72, "end": 1286.0, "probability": 0.8877 }, { "start": 1286.2, "end": 1288.68, "probability": 0.9976 }, { "start": 1289.16, "end": 1291.74, "probability": 0.9921 }, { "start": 1291.84, "end": 1292.9, "probability": 0.0424 }, { "start": 1292.9, "end": 1293.67, "probability": 0.2017 }, { "start": 1294.56, "end": 1294.56, "probability": 0.1995 }, { "start": 1294.56, "end": 1299.26, "probability": 0.9431 }, { "start": 1299.86, "end": 1304.98, "probability": 0.9892 }, { "start": 1305.4, "end": 1305.76, "probability": 0.7642 }, { "start": 1305.82, "end": 1308.28, "probability": 0.9698 }, { "start": 1308.8, "end": 1314.2, "probability": 0.9682 }, { "start": 1314.48, "end": 1315.28, "probability": 0.8223 }, { "start": 1315.3, "end": 1316.48, "probability": 0.6934 }, { "start": 1316.66, "end": 1318.96, "probability": 0.9912 }, { "start": 1319.1, "end": 1321.36, "probability": 0.9929 }, { "start": 1322.06, "end": 1324.84, "probability": 0.9328 }, { "start": 1325.18, "end": 1326.6, "probability": 0.9454 }, { "start": 1326.68, "end": 1332.2, "probability": 0.9966 }, { "start": 1332.5, "end": 1335.3, "probability": 0.9995 }, { "start": 1335.78, "end": 1339.96, "probability": 0.9946 }, { "start": 1340.26, "end": 1343.52, "probability": 0.9516 }, { "start": 1344.02, "end": 1348.0, "probability": 0.9857 }, { "start": 1348.08, "end": 1348.58, "probability": 0.9756 }, { "start": 1349.26, "end": 1350.53, "probability": 0.9917 }, { "start": 1350.9, "end": 1351.62, "probability": 0.9184 }, { "start": 1351.76, "end": 1353.68, "probability": 0.9979 }, { "start": 1353.72, "end": 1355.86, "probability": 0.9845 }, { "start": 1356.18, "end": 1357.56, "probability": 0.9873 }, { "start": 1357.6, "end": 1360.7, "probability": 0.6678 }, { "start": 1360.9, "end": 1362.48, "probability": 0.9513 }, { "start": 1363.12, "end": 1366.58, "probability": 0.9851 }, { "start": 1367.14, "end": 1367.6, "probability": 0.9471 }, { "start": 1367.7, "end": 1368.44, "probability": 0.9883 }, { "start": 1368.58, "end": 1369.34, "probability": 0.9142 }, { "start": 1369.74, "end": 1373.44, "probability": 0.9963 }, { "start": 1373.72, "end": 1376.12, "probability": 0.9865 }, { "start": 1376.52, "end": 1379.54, "probability": 0.9965 }, { "start": 1379.96, "end": 1383.36, "probability": 0.9195 }, { "start": 1383.8, "end": 1388.54, "probability": 0.9939 }, { "start": 1389.0, "end": 1390.66, "probability": 0.9956 }, { "start": 1391.18, "end": 1393.94, "probability": 0.8778 }, { "start": 1394.56, "end": 1395.32, "probability": 0.6315 }, { "start": 1396.02, "end": 1396.08, "probability": 0.0336 }, { "start": 1396.08, "end": 1397.58, "probability": 0.704 }, { "start": 1398.22, "end": 1398.58, "probability": 0.4868 }, { "start": 1398.82, "end": 1399.3, "probability": 0.0216 }, { "start": 1399.3, "end": 1403.64, "probability": 0.8893 }, { "start": 1404.58, "end": 1405.06, "probability": 0.0125 }, { "start": 1405.06, "end": 1405.06, "probability": 0.0561 }, { "start": 1405.06, "end": 1405.34, "probability": 0.2851 }, { "start": 1406.04, "end": 1406.08, "probability": 0.0123 }, { "start": 1406.08, "end": 1407.62, "probability": 0.4833 }, { "start": 1407.74, "end": 1407.76, "probability": 0.0547 }, { "start": 1407.76, "end": 1409.64, "probability": 0.7596 }, { "start": 1409.8, "end": 1411.4, "probability": 0.5737 }, { "start": 1411.4, "end": 1411.72, "probability": 0.1682 }, { "start": 1411.98, "end": 1413.4, "probability": 0.249 }, { "start": 1413.4, "end": 1413.4, "probability": 0.0007 }, { "start": 1413.4, "end": 1414.36, "probability": 0.3737 }, { "start": 1415.08, "end": 1417.18, "probability": 0.228 }, { "start": 1418.26, "end": 1418.78, "probability": 0.0897 }, { "start": 1418.78, "end": 1420.94, "probability": 0.763 }, { "start": 1421.04, "end": 1422.1, "probability": 0.7378 }, { "start": 1422.36, "end": 1422.36, "probability": 0.0524 }, { "start": 1422.36, "end": 1423.78, "probability": 0.4573 }, { "start": 1423.78, "end": 1424.46, "probability": 0.3958 }, { "start": 1425.3, "end": 1427.96, "probability": 0.1199 }, { "start": 1428.34, "end": 1428.81, "probability": 0.0343 }, { "start": 1428.86, "end": 1428.92, "probability": 0.7106 }, { "start": 1428.92, "end": 1430.36, "probability": 0.69 }, { "start": 1431.1, "end": 1431.1, "probability": 0.0344 }, { "start": 1431.1, "end": 1431.1, "probability": 0.3137 }, { "start": 1431.1, "end": 1431.5, "probability": 0.3996 }, { "start": 1431.5, "end": 1432.3, "probability": 0.672 }, { "start": 1434.62, "end": 1435.7, "probability": 0.6584 }, { "start": 1435.8, "end": 1435.89, "probability": 0.2317 }, { "start": 1436.3, "end": 1436.38, "probability": 0.7241 }, { "start": 1436.38, "end": 1437.64, "probability": 0.7495 }, { "start": 1437.98, "end": 1440.02, "probability": 0.9939 }, { "start": 1441.04, "end": 1441.12, "probability": 0.3365 }, { "start": 1441.12, "end": 1441.12, "probability": 0.0155 }, { "start": 1441.12, "end": 1442.42, "probability": 0.8512 }, { "start": 1442.98, "end": 1444.52, "probability": 0.6423 }, { "start": 1444.72, "end": 1444.74, "probability": 0.0045 }, { "start": 1444.74, "end": 1444.74, "probability": 0.1295 }, { "start": 1444.74, "end": 1444.74, "probability": 0.3401 }, { "start": 1444.74, "end": 1444.74, "probability": 0.4073 }, { "start": 1444.74, "end": 1445.34, "probability": 0.617 }, { "start": 1445.7, "end": 1446.36, "probability": 0.6217 }, { "start": 1446.36, "end": 1446.99, "probability": 0.0818 }, { "start": 1448.06, "end": 1448.94, "probability": 0.3789 }, { "start": 1449.58, "end": 1452.45, "probability": 0.5226 }, { "start": 1455.06, "end": 1455.8, "probability": 0.1778 }, { "start": 1497.0, "end": 1497.0, "probability": 0.0 }, { "start": 1497.0, "end": 1497.0, "probability": 0.0 }, { "start": 1497.0, "end": 1497.0, "probability": 0.0 }, { "start": 1497.0, "end": 1497.0, "probability": 0.0 }, { "start": 1497.0, "end": 1497.0, "probability": 0.0 }, { "start": 1497.0, "end": 1497.0, "probability": 0.0 }, { "start": 1497.0, "end": 1497.0, "probability": 0.0 }, { "start": 1497.0, "end": 1497.0, "probability": 0.0 }, { "start": 1497.0, "end": 1497.0, "probability": 0.0 }, { "start": 1497.0, "end": 1497.0, "probability": 0.0 }, { "start": 1497.0, "end": 1497.0, "probability": 0.0 }, { "start": 1497.0, "end": 1497.0, "probability": 0.0 }, { "start": 1497.0, "end": 1497.0, "probability": 0.0 }, { "start": 1497.0, "end": 1497.0, "probability": 0.0 }, { "start": 1497.0, "end": 1497.0, "probability": 0.0 }, { "start": 1497.0, "end": 1497.0, "probability": 0.0 }, { "start": 1497.0, "end": 1497.0, "probability": 0.0 }, { "start": 1497.0, "end": 1497.0, "probability": 0.0 }, { "start": 1497.0, "end": 1497.0, "probability": 0.0 }, { "start": 1497.0, "end": 1497.0, "probability": 0.0 }, { "start": 1497.0, "end": 1497.0, "probability": 0.0 }, { "start": 1497.0, "end": 1497.0, "probability": 0.0 }, { "start": 1497.0, "end": 1497.0, "probability": 0.0 }, { "start": 1497.0, "end": 1497.0, "probability": 0.0 }, { "start": 1497.0, "end": 1497.0, "probability": 0.0 }, { "start": 1497.0, "end": 1497.0, "probability": 0.0 }, { "start": 1497.0, "end": 1497.0, "probability": 0.0 }, { "start": 1497.0, "end": 1497.0, "probability": 0.0 }, { "start": 1497.0, "end": 1497.0, "probability": 0.0 }, { "start": 1497.0, "end": 1497.0, "probability": 0.0 }, { "start": 1497.0, "end": 1497.0, "probability": 0.0 }, { "start": 1497.0, "end": 1497.0, "probability": 0.0 }, { "start": 1497.0, "end": 1497.0, "probability": 0.0 }, { "start": 1497.08, "end": 1498.72, "probability": 0.799 }, { "start": 1499.16, "end": 1500.12, "probability": 0.8091 }, { "start": 1500.16, "end": 1504.9, "probability": 0.9739 }, { "start": 1505.34, "end": 1505.34, "probability": 0.1261 }, { "start": 1505.34, "end": 1505.34, "probability": 0.0053 }, { "start": 1505.36, "end": 1507.08, "probability": 0.9212 }, { "start": 1509.62, "end": 1509.62, "probability": 0.0768 }, { "start": 1509.62, "end": 1512.5, "probability": 0.6745 }, { "start": 1512.96, "end": 1514.42, "probability": 0.7427 }, { "start": 1514.54, "end": 1514.6, "probability": 0.0261 }, { "start": 1514.6, "end": 1517.44, "probability": 0.9241 }, { "start": 1517.5, "end": 1519.94, "probability": 0.8027 }, { "start": 1520.6, "end": 1521.94, "probability": 0.5135 }, { "start": 1522.46, "end": 1523.78, "probability": 0.8635 }, { "start": 1523.82, "end": 1524.58, "probability": 0.0954 }, { "start": 1524.58, "end": 1526.18, "probability": 0.2413 }, { "start": 1526.18, "end": 1526.18, "probability": 0.6619 }, { "start": 1526.18, "end": 1526.88, "probability": 0.0426 }, { "start": 1527.84, "end": 1527.84, "probability": 0.1119 }, { "start": 1527.84, "end": 1528.24, "probability": 0.0084 }, { "start": 1528.24, "end": 1529.38, "probability": 0.5443 }, { "start": 1529.56, "end": 1530.54, "probability": 0.8388 }, { "start": 1530.54, "end": 1534.34, "probability": 0.969 }, { "start": 1534.96, "end": 1534.98, "probability": 0.0107 }, { "start": 1534.98, "end": 1534.98, "probability": 0.0563 }, { "start": 1534.98, "end": 1536.44, "probability": 0.9407 }, { "start": 1536.54, "end": 1536.8, "probability": 0.3086 }, { "start": 1537.02, "end": 1537.02, "probability": 0.1338 }, { "start": 1537.02, "end": 1537.46, "probability": 0.2767 }, { "start": 1537.46, "end": 1539.74, "probability": 0.9863 }, { "start": 1540.2, "end": 1540.2, "probability": 0.0543 }, { "start": 1540.2, "end": 1541.44, "probability": 0.7384 }, { "start": 1541.6, "end": 1542.22, "probability": 0.3702 }, { "start": 1542.28, "end": 1544.14, "probability": 0.8441 }, { "start": 1544.2, "end": 1545.44, "probability": 0.9142 }, { "start": 1545.86, "end": 1547.52, "probability": 0.0316 }, { "start": 1547.52, "end": 1547.52, "probability": 0.3121 }, { "start": 1547.52, "end": 1547.52, "probability": 0.3069 }, { "start": 1547.52, "end": 1547.52, "probability": 0.0354 }, { "start": 1547.52, "end": 1548.94, "probability": 0.58 }, { "start": 1549.84, "end": 1552.54, "probability": 0.2092 }, { "start": 1553.32, "end": 1553.5, "probability": 0.0093 }, { "start": 1553.92, "end": 1553.92, "probability": 0.2195 }, { "start": 1553.92, "end": 1553.92, "probability": 0.3587 }, { "start": 1554.04, "end": 1555.1, "probability": 0.9444 }, { "start": 1555.1, "end": 1556.58, "probability": 0.1889 }, { "start": 1557.08, "end": 1558.76, "probability": 0.2873 }, { "start": 1559.42, "end": 1561.2, "probability": 0.8018 }, { "start": 1561.58, "end": 1565.62, "probability": 0.9118 }, { "start": 1565.96, "end": 1568.33, "probability": 0.1303 }, { "start": 1568.9, "end": 1568.9, "probability": 0.1887 }, { "start": 1568.9, "end": 1570.48, "probability": 0.7756 }, { "start": 1570.86, "end": 1573.34, "probability": 0.7258 }, { "start": 1573.68, "end": 1575.14, "probability": 0.0585 }, { "start": 1576.16, "end": 1579.06, "probability": 0.1277 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.0, "end": 1689.0, "probability": 0.0 }, { "start": 1689.1, "end": 1689.14, "probability": 0.0194 }, { "start": 1689.14, "end": 1692.02, "probability": 0.7349 }, { "start": 1692.6, "end": 1694.84, "probability": 0.9956 }, { "start": 1694.86, "end": 1696.32, "probability": 0.6751 }, { "start": 1696.7, "end": 1697.26, "probability": 0.4775 }, { "start": 1697.42, "end": 1697.98, "probability": 0.7346 }, { "start": 1698.32, "end": 1702.26, "probability": 0.1594 }, { "start": 1704.26, "end": 1704.94, "probability": 0.0876 }, { "start": 1704.94, "end": 1706.2, "probability": 0.0252 }, { "start": 1706.22, "end": 1707.54, "probability": 0.0808 }, { "start": 1707.86, "end": 1709.4, "probability": 0.072 }, { "start": 1710.2, "end": 1710.96, "probability": 0.1778 }, { "start": 1713.52, "end": 1717.58, "probability": 0.409 }, { "start": 1721.68, "end": 1721.88, "probability": 0.3464 }, { "start": 1722.56, "end": 1724.46, "probability": 0.0801 }, { "start": 1726.12, "end": 1726.56, "probability": 0.0968 }, { "start": 1730.2, "end": 1731.39, "probability": 0.0418 }, { "start": 1811.0, "end": 1811.0, "probability": 0.0 }, { "start": 1811.0, "end": 1811.0, "probability": 0.0 }, { "start": 1811.0, "end": 1811.0, "probability": 0.0 }, { "start": 1811.0, "end": 1811.0, "probability": 0.0 }, { "start": 1811.0, "end": 1811.0, "probability": 0.0 }, { "start": 1811.0, "end": 1811.0, "probability": 0.0 }, { "start": 1811.0, "end": 1811.0, "probability": 0.0 }, { "start": 1811.0, "end": 1811.0, "probability": 0.0 }, { "start": 1811.0, "end": 1811.0, "probability": 0.0 }, { "start": 1811.0, "end": 1811.0, "probability": 0.0 }, { "start": 1811.0, "end": 1811.0, "probability": 0.0 }, { "start": 1811.0, "end": 1811.0, "probability": 0.0 }, { "start": 1811.0, "end": 1811.0, "probability": 0.0 }, { "start": 1811.0, "end": 1811.0, "probability": 0.0 }, { "start": 1811.0, "end": 1811.0, "probability": 0.0 }, { "start": 1811.0, "end": 1811.0, "probability": 0.0 }, { "start": 1811.0, "end": 1811.0, "probability": 0.0 }, { "start": 1811.0, "end": 1811.0, "probability": 0.0 }, { "start": 1811.0, "end": 1811.0, "probability": 0.0 }, { "start": 1811.0, "end": 1811.0, "probability": 0.0 }, { "start": 1811.0, "end": 1811.0, "probability": 0.0 }, { "start": 1811.0, "end": 1811.0, "probability": 0.0 }, { "start": 1811.0, "end": 1811.0, "probability": 0.0 }, { "start": 1811.0, "end": 1811.0, "probability": 0.0 }, { "start": 1811.0, "end": 1811.0, "probability": 0.0 }, { "start": 1811.0, "end": 1811.0, "probability": 0.0 }, { "start": 1811.0, "end": 1811.0, "probability": 0.0 }, { "start": 1811.0, "end": 1811.0, "probability": 0.0 }, { "start": 1811.0, "end": 1811.0, "probability": 0.0 }, { "start": 1811.18, "end": 1814.82, "probability": 0.5499 }, { "start": 1814.98, "end": 1815.58, "probability": 0.5441 }, { "start": 1816.64, "end": 1817.28, "probability": 0.5054 }, { "start": 1817.78, "end": 1819.96, "probability": 0.7884 }, { "start": 1820.48, "end": 1821.16, "probability": 0.8577 }, { "start": 1822.24, "end": 1824.3, "probability": 0.5044 }, { "start": 1824.76, "end": 1829.82, "probability": 0.3097 }, { "start": 1829.82, "end": 1832.38, "probability": 0.7404 }, { "start": 1833.96, "end": 1837.24, "probability": 0.7656 }, { "start": 1837.98, "end": 1841.12, "probability": 0.9939 }, { "start": 1841.74, "end": 1844.12, "probability": 0.806 }, { "start": 1844.58, "end": 1845.38, "probability": 0.9664 }, { "start": 1846.3, "end": 1850.31, "probability": 0.9707 }, { "start": 1852.1, "end": 1853.46, "probability": 0.7428 }, { "start": 1855.08, "end": 1857.06, "probability": 0.9932 }, { "start": 1858.04, "end": 1862.48, "probability": 0.9658 }, { "start": 1863.18, "end": 1864.18, "probability": 0.8796 }, { "start": 1865.44, "end": 1866.38, "probability": 0.6503 }, { "start": 1867.24, "end": 1870.16, "probability": 0.9032 }, { "start": 1871.52, "end": 1872.64, "probability": 0.5008 }, { "start": 1874.0, "end": 1874.7, "probability": 0.9864 }, { "start": 1876.14, "end": 1877.24, "probability": 0.9255 }, { "start": 1878.3, "end": 1880.12, "probability": 0.9126 }, { "start": 1880.96, "end": 1882.0, "probability": 0.927 }, { "start": 1883.06, "end": 1883.52, "probability": 0.6569 }, { "start": 1884.32, "end": 1885.02, "probability": 0.9928 }, { "start": 1885.52, "end": 1886.1, "probability": 0.9778 }, { "start": 1887.34, "end": 1887.92, "probability": 0.4317 }, { "start": 1888.76, "end": 1890.86, "probability": 0.8845 }, { "start": 1892.14, "end": 1894.32, "probability": 0.9758 }, { "start": 1895.3, "end": 1896.4, "probability": 0.9305 }, { "start": 1897.02, "end": 1899.4, "probability": 0.9161 }, { "start": 1899.98, "end": 1901.72, "probability": 0.9571 }, { "start": 1902.24, "end": 1905.24, "probability": 0.8167 }, { "start": 1906.2, "end": 1906.8, "probability": 0.4064 }, { "start": 1906.84, "end": 1912.74, "probability": 0.9062 }, { "start": 1913.24, "end": 1914.52, "probability": 0.4085 }, { "start": 1915.74, "end": 1916.5, "probability": 0.884 }, { "start": 1917.44, "end": 1919.64, "probability": 0.8701 }, { "start": 1920.18, "end": 1921.52, "probability": 0.9881 }, { "start": 1922.42, "end": 1926.58, "probability": 0.9749 }, { "start": 1927.34, "end": 1929.96, "probability": 0.0368 }, { "start": 1931.22, "end": 1932.36, "probability": 0.1055 }, { "start": 1932.58, "end": 1933.57, "probability": 0.5215 }, { "start": 1934.12, "end": 1934.86, "probability": 0.7065 }, { "start": 1934.98, "end": 1937.38, "probability": 0.4236 }, { "start": 1937.7, "end": 1939.76, "probability": 0.4121 }, { "start": 1939.9, "end": 1940.04, "probability": 0.3159 }, { "start": 1941.79, "end": 1945.79, "probability": 0.9429 }, { "start": 1946.94, "end": 1947.54, "probability": 0.0491 }, { "start": 1947.54, "end": 1950.5, "probability": 0.9175 }, { "start": 1950.58, "end": 1951.32, "probability": 0.6809 }, { "start": 1952.04, "end": 1953.4, "probability": 0.7492 }, { "start": 1954.24, "end": 1955.02, "probability": 0.8164 }, { "start": 1955.78, "end": 1958.08, "probability": 0.7876 }, { "start": 1958.16, "end": 1959.06, "probability": 0.7265 }, { "start": 1959.24, "end": 1960.22, "probability": 0.5188 }, { "start": 1960.26, "end": 1961.32, "probability": 0.9904 }, { "start": 1962.3, "end": 1964.76, "probability": 0.9466 }, { "start": 1965.3, "end": 1967.99, "probability": 0.9808 }, { "start": 1969.46, "end": 1974.54, "probability": 0.9886 }, { "start": 1974.98, "end": 1976.72, "probability": 0.8151 }, { "start": 1977.34, "end": 1980.76, "probability": 0.7306 }, { "start": 1981.56, "end": 1982.68, "probability": 0.9565 }, { "start": 1983.28, "end": 1985.38, "probability": 0.9741 }, { "start": 1985.9, "end": 1986.16, "probability": 0.6807 }, { "start": 1986.16, "end": 1986.9, "probability": 0.5291 }, { "start": 1987.64, "end": 1989.94, "probability": 0.83 }, { "start": 1990.16, "end": 1992.72, "probability": 0.9146 }, { "start": 1994.2, "end": 1995.56, "probability": 0.917 }, { "start": 1997.54, "end": 2001.02, "probability": 0.6338 }, { "start": 2001.64, "end": 2002.68, "probability": 0.8691 }, { "start": 2006.72, "end": 2006.98, "probability": 0.0224 }, { "start": 2006.98, "end": 2006.98, "probability": 0.0656 }, { "start": 2006.98, "end": 2012.16, "probability": 0.9626 }, { "start": 2013.1, "end": 2019.54, "probability": 0.9844 }, { "start": 2020.56, "end": 2022.82, "probability": 0.859 }, { "start": 2023.6, "end": 2027.74, "probability": 0.9723 }, { "start": 2028.7, "end": 2029.9, "probability": 0.9678 }, { "start": 2031.42, "end": 2033.94, "probability": 0.9399 }, { "start": 2034.8, "end": 2037.4, "probability": 0.9441 }, { "start": 2038.56, "end": 2042.42, "probability": 0.7983 }, { "start": 2042.58, "end": 2044.64, "probability": 0.9093 }, { "start": 2045.08, "end": 2046.64, "probability": 0.9615 }, { "start": 2047.14, "end": 2049.34, "probability": 0.9442 }, { "start": 2049.44, "end": 2053.06, "probability": 0.8116 }, { "start": 2053.3, "end": 2056.96, "probability": 0.9238 }, { "start": 2058.14, "end": 2060.4, "probability": 0.7179 }, { "start": 2061.36, "end": 2063.34, "probability": 0.9181 }, { "start": 2065.76, "end": 2067.98, "probability": 0.8924 }, { "start": 2068.58, "end": 2069.74, "probability": 0.9209 }, { "start": 2071.0, "end": 2072.24, "probability": 0.9573 }, { "start": 2072.82, "end": 2074.58, "probability": 0.7346 }, { "start": 2075.38, "end": 2076.52, "probability": 0.9386 }, { "start": 2077.58, "end": 2080.7, "probability": 0.9781 }, { "start": 2080.98, "end": 2081.92, "probability": 0.5402 }, { "start": 2082.3, "end": 2085.36, "probability": 0.9938 }, { "start": 2085.88, "end": 2086.8, "probability": 0.5283 }, { "start": 2089.08, "end": 2091.7, "probability": 0.3063 }, { "start": 2091.7, "end": 2092.3, "probability": 0.583 }, { "start": 2092.86, "end": 2095.6, "probability": 0.9605 }, { "start": 2098.04, "end": 2104.02, "probability": 0.9988 }, { "start": 2104.76, "end": 2106.6, "probability": 0.9844 }, { "start": 2107.34, "end": 2111.54, "probability": 0.9971 }, { "start": 2112.7, "end": 2117.04, "probability": 0.8316 }, { "start": 2117.76, "end": 2119.68, "probability": 0.7838 }, { "start": 2120.32, "end": 2121.26, "probability": 0.6339 }, { "start": 2123.58, "end": 2124.18, "probability": 0.6183 }, { "start": 2124.86, "end": 2125.7, "probability": 0.5336 }, { "start": 2126.3, "end": 2128.46, "probability": 0.3104 }, { "start": 2129.1, "end": 2131.44, "probability": 0.7087 }, { "start": 2131.98, "end": 2132.2, "probability": 0.4991 }, { "start": 2132.88, "end": 2133.62, "probability": 0.1593 }, { "start": 2134.18, "end": 2135.72, "probability": 0.8951 }, { "start": 2136.4, "end": 2139.34, "probability": 0.9915 }, { "start": 2140.34, "end": 2141.58, "probability": 0.8077 }, { "start": 2141.66, "end": 2143.73, "probability": 0.2097 }, { "start": 2143.92, "end": 2148.14, "probability": 0.8985 }, { "start": 2148.46, "end": 2152.32, "probability": 0.9678 }, { "start": 2153.16, "end": 2153.96, "probability": 0.7505 }, { "start": 2155.32, "end": 2156.2, "probability": 0.9932 }, { "start": 2157.38, "end": 2158.1, "probability": 0.6526 }, { "start": 2159.24, "end": 2160.3, "probability": 0.9177 }, { "start": 2160.34, "end": 2162.34, "probability": 0.9197 }, { "start": 2163.64, "end": 2164.76, "probability": 0.9756 }, { "start": 2165.64, "end": 2166.4, "probability": 0.9111 }, { "start": 2167.7, "end": 2170.18, "probability": 0.7441 }, { "start": 2171.54, "end": 2174.84, "probability": 0.7461 }, { "start": 2175.38, "end": 2179.22, "probability": 0.9781 }, { "start": 2182.2, "end": 2182.7, "probability": 0.7941 }, { "start": 2183.06, "end": 2184.92, "probability": 0.6186 }, { "start": 2186.02, "end": 2186.23, "probability": 0.6436 }, { "start": 2186.7, "end": 2188.38, "probability": 0.9595 }, { "start": 2188.38, "end": 2188.82, "probability": 0.8664 }, { "start": 2189.02, "end": 2189.68, "probability": 0.809 }, { "start": 2190.52, "end": 2191.2, "probability": 0.094 }, { "start": 2191.38, "end": 2191.88, "probability": 0.312 }, { "start": 2192.0, "end": 2199.98, "probability": 0.9878 }, { "start": 2200.92, "end": 2202.81, "probability": 0.994 }, { "start": 2203.88, "end": 2205.34, "probability": 0.9878 }, { "start": 2205.5, "end": 2207.34, "probability": 0.9951 }, { "start": 2207.96, "end": 2209.3, "probability": 0.9946 }, { "start": 2209.92, "end": 2213.4, "probability": 0.9932 }, { "start": 2214.74, "end": 2222.3, "probability": 0.989 }, { "start": 2223.44, "end": 2224.24, "probability": 0.6728 }, { "start": 2224.7, "end": 2226.04, "probability": 0.85 }, { "start": 2226.7, "end": 2229.22, "probability": 0.731 }, { "start": 2229.5, "end": 2235.56, "probability": 0.9955 }, { "start": 2236.58, "end": 2237.1, "probability": 0.85 }, { "start": 2237.78, "end": 2241.2, "probability": 0.9995 }, { "start": 2242.58, "end": 2245.7, "probability": 0.9622 }, { "start": 2246.68, "end": 2248.12, "probability": 0.9308 }, { "start": 2249.0, "end": 2250.47, "probability": 0.9763 }, { "start": 2250.64, "end": 2254.62, "probability": 0.9282 }, { "start": 2255.82, "end": 2259.12, "probability": 0.9281 }, { "start": 2260.38, "end": 2262.9, "probability": 0.9762 }, { "start": 2263.94, "end": 2266.96, "probability": 0.9857 }, { "start": 2267.58, "end": 2269.62, "probability": 0.7979 }, { "start": 2271.18, "end": 2274.86, "probability": 0.9735 }, { "start": 2275.52, "end": 2277.84, "probability": 0.9958 }, { "start": 2278.9, "end": 2280.86, "probability": 0.9978 }, { "start": 2280.92, "end": 2281.34, "probability": 0.7973 }, { "start": 2281.4, "end": 2282.7, "probability": 0.824 }, { "start": 2282.72, "end": 2282.98, "probability": 0.0212 }, { "start": 2283.08, "end": 2283.59, "probability": 0.4509 }, { "start": 2284.3, "end": 2285.48, "probability": 0.7765 }, { "start": 2286.12, "end": 2288.92, "probability": 0.5343 }, { "start": 2288.94, "end": 2289.76, "probability": 0.9018 }, { "start": 2289.86, "end": 2290.68, "probability": 0.9924 }, { "start": 2290.82, "end": 2291.75, "probability": 0.2784 }, { "start": 2292.8, "end": 2299.1, "probability": 0.9258 }, { "start": 2300.02, "end": 2300.64, "probability": 0.7348 }, { "start": 2301.2, "end": 2304.1, "probability": 0.9824 }, { "start": 2306.14, "end": 2307.18, "probability": 0.9554 }, { "start": 2307.86, "end": 2309.36, "probability": 0.9763 }, { "start": 2311.02, "end": 2311.02, "probability": 0.6365 }, { "start": 2311.06, "end": 2312.18, "probability": 0.685 }, { "start": 2312.28, "end": 2313.4, "probability": 0.9638 }, { "start": 2314.64, "end": 2317.5, "probability": 0.9395 }, { "start": 2318.18, "end": 2323.04, "probability": 0.9404 }, { "start": 2323.98, "end": 2326.86, "probability": 0.8691 }, { "start": 2327.8, "end": 2330.96, "probability": 0.8348 }, { "start": 2332.0, "end": 2333.66, "probability": 0.9064 }, { "start": 2335.06, "end": 2339.58, "probability": 0.9941 }, { "start": 2340.44, "end": 2341.74, "probability": 0.925 }, { "start": 2342.2, "end": 2345.6, "probability": 0.8966 }, { "start": 2346.0, "end": 2346.18, "probability": 0.6284 }, { "start": 2346.36, "end": 2348.3, "probability": 0.8914 }, { "start": 2348.9, "end": 2351.68, "probability": 0.9334 }, { "start": 2352.06, "end": 2358.16, "probability": 0.957 }, { "start": 2358.16, "end": 2363.8, "probability": 0.9969 }, { "start": 2365.56, "end": 2368.72, "probability": 0.9658 }, { "start": 2369.28, "end": 2374.86, "probability": 0.8794 }, { "start": 2376.04, "end": 2378.52, "probability": 0.1411 }, { "start": 2388.54, "end": 2388.58, "probability": 0.1168 }, { "start": 2397.72, "end": 2402.0, "probability": 0.6157 }, { "start": 2403.21, "end": 2407.38, "probability": 0.8836 }, { "start": 2408.54, "end": 2409.44, "probability": 0.9126 }, { "start": 2410.52, "end": 2410.95, "probability": 0.7898 }, { "start": 2411.94, "end": 2412.54, "probability": 0.8872 }, { "start": 2414.26, "end": 2414.96, "probability": 0.9396 }, { "start": 2416.18, "end": 2418.14, "probability": 0.9907 }, { "start": 2419.48, "end": 2420.42, "probability": 0.9359 }, { "start": 2421.56, "end": 2422.68, "probability": 0.7632 }, { "start": 2423.86, "end": 2425.4, "probability": 0.9508 }, { "start": 2425.94, "end": 2426.9, "probability": 0.7419 }, { "start": 2428.06, "end": 2430.6, "probability": 0.8745 }, { "start": 2431.02, "end": 2431.74, "probability": 0.8295 }, { "start": 2432.44, "end": 2432.6, "probability": 0.054 }, { "start": 2432.6, "end": 2434.26, "probability": 0.9478 }, { "start": 2435.1, "end": 2436.8, "probability": 0.9324 }, { "start": 2438.6, "end": 2439.54, "probability": 0.4503 }, { "start": 2440.56, "end": 2441.12, "probability": 0.9872 }, { "start": 2441.78, "end": 2442.44, "probability": 0.4595 }, { "start": 2443.34, "end": 2443.9, "probability": 0.4621 }, { "start": 2445.2, "end": 2447.74, "probability": 0.5095 }, { "start": 2448.6, "end": 2449.98, "probability": 0.8054 }, { "start": 2451.02, "end": 2451.38, "probability": 0.7888 }, { "start": 2452.66, "end": 2453.28, "probability": 0.6829 }, { "start": 2454.42, "end": 2456.14, "probability": 0.8181 }, { "start": 2457.86, "end": 2460.7, "probability": 0.9983 }, { "start": 2461.26, "end": 2462.32, "probability": 0.9799 }, { "start": 2463.18, "end": 2464.76, "probability": 0.9666 }, { "start": 2465.82, "end": 2469.6, "probability": 0.7578 }, { "start": 2470.1, "end": 2470.52, "probability": 0.9709 }, { "start": 2471.02, "end": 2471.62, "probability": 0.7751 }, { "start": 2472.68, "end": 2474.88, "probability": 0.986 }, { "start": 2476.1, "end": 2477.32, "probability": 0.6129 }, { "start": 2478.02, "end": 2479.46, "probability": 0.8368 }, { "start": 2480.76, "end": 2482.44, "probability": 0.9957 }, { "start": 2483.24, "end": 2488.92, "probability": 0.9976 }, { "start": 2491.1, "end": 2493.06, "probability": 0.9766 }, { "start": 2493.84, "end": 2497.04, "probability": 0.908 }, { "start": 2497.36, "end": 2498.24, "probability": 0.9618 }, { "start": 2498.82, "end": 2500.96, "probability": 0.9866 }, { "start": 2501.52, "end": 2502.26, "probability": 0.6957 }, { "start": 2503.18, "end": 2506.5, "probability": 0.9137 }, { "start": 2506.56, "end": 2507.2, "probability": 0.8964 }, { "start": 2507.96, "end": 2507.98, "probability": 0.0589 }, { "start": 2507.98, "end": 2511.56, "probability": 0.6667 }, { "start": 2512.06, "end": 2512.06, "probability": 0.0288 }, { "start": 2512.06, "end": 2512.06, "probability": 0.6978 }, { "start": 2512.06, "end": 2513.22, "probability": 0.5236 }, { "start": 2513.56, "end": 2513.56, "probability": 0.0134 }, { "start": 2513.56, "end": 2514.88, "probability": 0.4148 }, { "start": 2515.32, "end": 2517.1, "probability": 0.8029 }, { "start": 2517.22, "end": 2517.36, "probability": 0.0356 }, { "start": 2517.36, "end": 2518.76, "probability": 0.3518 }, { "start": 2519.14, "end": 2519.26, "probability": 0.0972 }, { "start": 2519.26, "end": 2520.39, "probability": 0.8231 }, { "start": 2520.82, "end": 2524.4, "probability": 0.3923 }, { "start": 2524.4, "end": 2526.08, "probability": 0.3458 }, { "start": 2526.08, "end": 2528.7, "probability": 0.9492 }, { "start": 2529.3, "end": 2529.42, "probability": 0.0919 }, { "start": 2529.7, "end": 2531.14, "probability": 0.8063 }, { "start": 2531.72, "end": 2532.8, "probability": 0.8303 }, { "start": 2532.94, "end": 2533.58, "probability": 0.2963 }, { "start": 2533.58, "end": 2533.76, "probability": 0.2555 }, { "start": 2533.98, "end": 2535.3, "probability": 0.9118 }, { "start": 2535.82, "end": 2535.86, "probability": 0.0277 }, { "start": 2535.86, "end": 2536.79, "probability": 0.3874 }, { "start": 2537.12, "end": 2538.3, "probability": 0.8332 }, { "start": 2538.52, "end": 2541.94, "probability": 0.923 }, { "start": 2542.12, "end": 2545.44, "probability": 0.7399 }, { "start": 2545.68, "end": 2546.54, "probability": 0.7112 }, { "start": 2547.16, "end": 2548.72, "probability": 0.9564 }, { "start": 2549.14, "end": 2552.14, "probability": 0.7449 }, { "start": 2552.14, "end": 2554.72, "probability": 0.8125 }, { "start": 2555.46, "end": 2557.26, "probability": 0.921 }, { "start": 2557.72, "end": 2559.38, "probability": 0.9888 }, { "start": 2560.38, "end": 2560.6, "probability": 0.3407 }, { "start": 2560.62, "end": 2561.78, "probability": 0.8256 }, { "start": 2562.14, "end": 2569.28, "probability": 0.8229 }, { "start": 2569.74, "end": 2570.02, "probability": 0.1638 }, { "start": 2570.02, "end": 2570.02, "probability": 0.0804 }, { "start": 2570.02, "end": 2570.02, "probability": 0.029 }, { "start": 2570.02, "end": 2570.02, "probability": 0.3498 }, { "start": 2570.02, "end": 2570.72, "probability": 0.6956 }, { "start": 2571.46, "end": 2574.78, "probability": 0.928 }, { "start": 2575.68, "end": 2577.06, "probability": 0.9254 }, { "start": 2592.59, "end": 2596.02, "probability": 0.0601 }, { "start": 2596.02, "end": 2596.96, "probability": 0.1007 }, { "start": 2596.96, "end": 2599.06, "probability": 0.1141 }, { "start": 2599.06, "end": 2599.92, "probability": 0.1147 }, { "start": 2599.92, "end": 2601.82, "probability": 0.1415 }, { "start": 2607.62, "end": 2608.94, "probability": 0.0412 }, { "start": 2619.26, "end": 2621.7, "probability": 0.1437 }, { "start": 2623.08, "end": 2623.88, "probability": 0.1089 }, { "start": 2623.88, "end": 2624.48, "probability": 0.0156 }, { "start": 2624.48, "end": 2627.96, "probability": 0.1839 }, { "start": 2629.08, "end": 2630.86, "probability": 0.0911 }, { "start": 2630.86, "end": 2631.1, "probability": 0.0659 }, { "start": 2631.1, "end": 2631.1, "probability": 0.1424 }, { "start": 2631.18, "end": 2633.82, "probability": 0.0075 }, { "start": 2636.14, "end": 2638.88, "probability": 0.0597 }, { "start": 2673.0, "end": 2673.0, "probability": 0.0 }, { "start": 2673.0, "end": 2673.0, "probability": 0.0 }, { "start": 2673.0, "end": 2673.0, "probability": 0.0 }, { "start": 2673.0, "end": 2673.0, "probability": 0.0 }, { "start": 2673.0, "end": 2673.0, "probability": 0.0 }, { "start": 2673.0, "end": 2673.0, "probability": 0.0 }, { "start": 2673.0, "end": 2673.0, "probability": 0.0 }, { "start": 2673.0, "end": 2673.0, "probability": 0.0 }, { "start": 2673.0, "end": 2673.0, "probability": 0.0 }, { "start": 2673.0, "end": 2673.0, "probability": 0.0 }, { "start": 2673.0, "end": 2673.0, "probability": 0.0 }, { "start": 2673.0, "end": 2673.0, "probability": 0.0 }, { "start": 2673.0, "end": 2673.0, "probability": 0.0 }, { "start": 2673.0, "end": 2673.0, "probability": 0.0 }, { "start": 2673.0, "end": 2673.0, "probability": 0.0 }, { "start": 2673.0, "end": 2673.0, "probability": 0.0 }, { "start": 2673.0, "end": 2673.0, "probability": 0.0 }, { "start": 2673.0, "end": 2673.0, "probability": 0.0 }, { "start": 2673.0, "end": 2673.0, "probability": 0.0 }, { "start": 2673.0, "end": 2673.0, "probability": 0.0 }, { "start": 2673.0, "end": 2673.0, "probability": 0.0 }, { "start": 2673.0, "end": 2673.0, "probability": 0.0 }, { "start": 2673.0, "end": 2673.0, "probability": 0.0 }, { "start": 2673.0, "end": 2673.0, "probability": 0.0 }, { "start": 2673.0, "end": 2673.0, "probability": 0.0 }, { "start": 2673.0, "end": 2673.0, "probability": 0.0 }, { "start": 2673.0, "end": 2673.0, "probability": 0.0 }, { "start": 2673.0, "end": 2673.0, "probability": 0.0 }, { "start": 2673.0, "end": 2673.0, "probability": 0.0 }, { "start": 2673.0, "end": 2673.0, "probability": 0.0 }, { "start": 2673.0, "end": 2673.0, "probability": 0.0 }, { "start": 2673.0, "end": 2673.0, "probability": 0.0 }, { "start": 2673.0, "end": 2673.0, "probability": 0.0 }, { "start": 2673.0, "end": 2673.0, "probability": 0.0 }, { "start": 2673.0, "end": 2673.0, "probability": 0.0 }, { "start": 2673.0, "end": 2673.0, "probability": 0.0 }, { "start": 2673.0, "end": 2673.0, "probability": 0.0 }, { "start": 2673.0, "end": 2673.0, "probability": 0.0 }, { "start": 2673.0, "end": 2673.0, "probability": 0.0 }, { "start": 2673.0, "end": 2673.0, "probability": 0.0 }, { "start": 2673.0, "end": 2673.0, "probability": 0.0 }, { "start": 2673.0, "end": 2673.0, "probability": 0.0 }, { "start": 2673.0, "end": 2673.0, "probability": 0.0 }, { "start": 2673.28, "end": 2677.62, "probability": 0.6875 }, { "start": 2678.6, "end": 2683.28, "probability": 0.4034 }, { "start": 2684.52, "end": 2687.6, "probability": 0.9712 }, { "start": 2688.8, "end": 2689.84, "probability": 0.7012 }, { "start": 2691.22, "end": 2691.64, "probability": 0.5148 }, { "start": 2691.9, "end": 2692.88, "probability": 0.83 }, { "start": 2695.42, "end": 2699.6, "probability": 0.406 }, { "start": 2700.24, "end": 2705.76, "probability": 0.9351 }, { "start": 2706.32, "end": 2707.07, "probability": 0.9176 }, { "start": 2708.4, "end": 2712.54, "probability": 0.9733 }, { "start": 2713.1, "end": 2714.1, "probability": 0.9101 }, { "start": 2714.36, "end": 2719.44, "probability": 0.9108 }, { "start": 2720.1, "end": 2723.48, "probability": 0.5576 }, { "start": 2723.82, "end": 2726.2, "probability": 0.7175 }, { "start": 2726.78, "end": 2729.72, "probability": 0.9782 }, { "start": 2730.88, "end": 2734.5, "probability": 0.9666 }, { "start": 2735.4, "end": 2735.5, "probability": 0.481 }, { "start": 2735.5, "end": 2738.68, "probability": 0.9946 }, { "start": 2739.38, "end": 2740.7, "probability": 0.7988 }, { "start": 2740.8, "end": 2741.96, "probability": 0.9961 }, { "start": 2742.6, "end": 2743.14, "probability": 0.7286 }, { "start": 2743.7, "end": 2745.29, "probability": 0.868 }, { "start": 2746.28, "end": 2749.48, "probability": 0.7135 }, { "start": 2750.02, "end": 2751.02, "probability": 0.9401 }, { "start": 2751.16, "end": 2752.78, "probability": 0.7783 }, { "start": 2753.5, "end": 2756.66, "probability": 0.9753 }, { "start": 2756.82, "end": 2758.9, "probability": 0.9447 }, { "start": 2759.36, "end": 2763.0, "probability": 0.9787 }, { "start": 2763.46, "end": 2764.5, "probability": 0.9579 }, { "start": 2764.9, "end": 2766.52, "probability": 0.9923 }, { "start": 2766.88, "end": 2768.81, "probability": 0.6202 }, { "start": 2769.5, "end": 2773.8, "probability": 0.8147 }, { "start": 2774.16, "end": 2774.95, "probability": 0.7372 }, { "start": 2775.98, "end": 2778.96, "probability": 0.8378 }, { "start": 2779.4, "end": 2781.06, "probability": 0.9885 }, { "start": 2781.98, "end": 2783.7, "probability": 0.8172 }, { "start": 2784.48, "end": 2787.22, "probability": 0.9973 }, { "start": 2788.06, "end": 2789.24, "probability": 0.9233 }, { "start": 2789.66, "end": 2790.92, "probability": 0.8274 }, { "start": 2791.24, "end": 2792.96, "probability": 0.7925 }, { "start": 2793.48, "end": 2797.18, "probability": 0.9354 }, { "start": 2797.48, "end": 2798.76, "probability": 0.9985 }, { "start": 2799.58, "end": 2804.78, "probability": 0.9041 }, { "start": 2804.92, "end": 2805.38, "probability": 0.7693 }, { "start": 2806.96, "end": 2810.08, "probability": 0.811 }, { "start": 2810.54, "end": 2815.86, "probability": 0.9487 }, { "start": 2817.16, "end": 2817.92, "probability": 0.5947 }, { "start": 2818.14, "end": 2819.26, "probability": 0.9531 }, { "start": 2819.34, "end": 2822.14, "probability": 0.6582 }, { "start": 2822.16, "end": 2822.7, "probability": 0.6794 }, { "start": 2823.42, "end": 2823.64, "probability": 0.8692 }, { "start": 2840.32, "end": 2841.24, "probability": 0.726 }, { "start": 2842.16, "end": 2843.1, "probability": 0.7323 }, { "start": 2843.2, "end": 2850.24, "probability": 0.7766 }, { "start": 2850.9, "end": 2854.66, "probability": 0.9841 }, { "start": 2855.54, "end": 2861.84, "probability": 0.996 }, { "start": 2862.42, "end": 2867.2, "probability": 0.9036 }, { "start": 2867.2, "end": 2871.72, "probability": 0.9707 }, { "start": 2872.34, "end": 2874.84, "probability": 0.9952 }, { "start": 2875.54, "end": 2877.72, "probability": 0.8913 }, { "start": 2877.86, "end": 2881.1, "probability": 0.8475 }, { "start": 2881.58, "end": 2882.28, "probability": 0.6711 }, { "start": 2882.52, "end": 2887.92, "probability": 0.8165 }, { "start": 2888.6, "end": 2895.08, "probability": 0.9348 }, { "start": 2895.6, "end": 2897.1, "probability": 0.9197 }, { "start": 2897.84, "end": 2900.86, "probability": 0.7613 }, { "start": 2901.38, "end": 2904.0, "probability": 0.7102 }, { "start": 2904.18, "end": 2905.0, "probability": 0.5704 }, { "start": 2905.44, "end": 2909.78, "probability": 0.9938 }, { "start": 2911.32, "end": 2915.64, "probability": 0.9457 }, { "start": 2916.4, "end": 2919.76, "probability": 0.9899 }, { "start": 2920.32, "end": 2923.62, "probability": 0.9212 }, { "start": 2923.62, "end": 2927.4, "probability": 0.9967 }, { "start": 2927.86, "end": 2929.64, "probability": 0.997 }, { "start": 2929.72, "end": 2931.02, "probability": 0.9098 }, { "start": 2931.52, "end": 2935.28, "probability": 0.9739 }, { "start": 2935.28, "end": 2940.1, "probability": 0.9839 }, { "start": 2940.48, "end": 2946.74, "probability": 0.994 }, { "start": 2946.86, "end": 2948.04, "probability": 0.7453 }, { "start": 2948.46, "end": 2951.96, "probability": 0.9812 }, { "start": 2952.44, "end": 2955.22, "probability": 0.9748 }, { "start": 2955.78, "end": 2956.48, "probability": 0.906 }, { "start": 2956.52, "end": 2958.62, "probability": 0.9647 }, { "start": 2958.98, "end": 2962.54, "probability": 0.9955 }, { "start": 2962.74, "end": 2963.18, "probability": 0.7192 }, { "start": 2963.64, "end": 2965.54, "probability": 0.575 }, { "start": 2966.3, "end": 2968.8, "probability": 0.9156 }, { "start": 2969.2, "end": 2971.21, "probability": 0.9469 }, { "start": 2972.8, "end": 2977.72, "probability": 0.9844 }, { "start": 2978.02, "end": 2980.98, "probability": 0.9781 }, { "start": 2980.98, "end": 2983.38, "probability": 0.9703 }, { "start": 2984.16, "end": 2989.52, "probability": 0.9958 }, { "start": 2989.52, "end": 2994.64, "probability": 0.9852 }, { "start": 2995.28, "end": 2998.1, "probability": 0.9451 }, { "start": 2998.5, "end": 3002.94, "probability": 0.796 }, { "start": 3002.94, "end": 3005.78, "probability": 0.9974 }, { "start": 3006.34, "end": 3009.64, "probability": 0.8046 }, { "start": 3010.76, "end": 3014.24, "probability": 0.938 }, { "start": 3015.16, "end": 3016.34, "probability": 0.8662 }, { "start": 3016.86, "end": 3018.24, "probability": 0.8169 }, { "start": 3018.6, "end": 3023.1, "probability": 0.9932 }, { "start": 3023.46, "end": 3025.02, "probability": 0.9128 }, { "start": 3025.14, "end": 3026.02, "probability": 0.6778 }, { "start": 3026.4, "end": 3031.72, "probability": 0.9856 }, { "start": 3031.8, "end": 3034.1, "probability": 0.9957 }, { "start": 3034.24, "end": 3036.14, "probability": 0.9201 }, { "start": 3036.24, "end": 3037.54, "probability": 0.8903 }, { "start": 3038.0, "end": 3041.42, "probability": 0.9162 }, { "start": 3041.84, "end": 3044.26, "probability": 0.7686 }, { "start": 3044.98, "end": 3048.14, "probability": 0.9941 }, { "start": 3048.62, "end": 3052.5, "probability": 0.958 }, { "start": 3052.86, "end": 3058.05, "probability": 0.9495 }, { "start": 3058.08, "end": 3062.88, "probability": 0.9945 }, { "start": 3063.1, "end": 3063.26, "probability": 0.7209 }, { "start": 3063.44, "end": 3066.96, "probability": 0.9819 }, { "start": 3067.24, "end": 3071.3, "probability": 0.9888 }, { "start": 3071.4, "end": 3074.5, "probability": 0.9432 }, { "start": 3074.88, "end": 3075.92, "probability": 0.827 }, { "start": 3076.32, "end": 3077.9, "probability": 0.9946 }, { "start": 3078.42, "end": 3079.84, "probability": 0.9978 }, { "start": 3080.12, "end": 3083.56, "probability": 0.9914 }, { "start": 3083.66, "end": 3084.26, "probability": 0.8893 }, { "start": 3084.72, "end": 3085.68, "probability": 0.8015 }, { "start": 3087.04, "end": 3087.7, "probability": 0.9666 }, { "start": 3089.64, "end": 3092.84, "probability": 0.8932 }, { "start": 3121.24, "end": 3122.32, "probability": 0.772 }, { "start": 3123.16, "end": 3124.36, "probability": 0.7896 }, { "start": 3127.34, "end": 3130.84, "probability": 0.9443 }, { "start": 3132.14, "end": 3133.8, "probability": 0.9966 }, { "start": 3135.14, "end": 3137.86, "probability": 0.9679 }, { "start": 3138.04, "end": 3138.62, "probability": 0.768 }, { "start": 3138.68, "end": 3139.48, "probability": 0.832 }, { "start": 3140.52, "end": 3141.32, "probability": 0.7536 }, { "start": 3142.52, "end": 3143.5, "probability": 0.9913 }, { "start": 3144.5, "end": 3145.2, "probability": 0.4361 }, { "start": 3146.2, "end": 3146.88, "probability": 0.6317 }, { "start": 3147.62, "end": 3149.5, "probability": 0.9179 }, { "start": 3150.26, "end": 3151.02, "probability": 0.8477 }, { "start": 3151.82, "end": 3153.24, "probability": 0.9341 }, { "start": 3154.5, "end": 3156.54, "probability": 0.9614 }, { "start": 3157.06, "end": 3157.66, "probability": 0.9218 }, { "start": 3158.28, "end": 3159.52, "probability": 0.9644 }, { "start": 3160.56, "end": 3161.9, "probability": 0.9902 }, { "start": 3162.28, "end": 3164.6, "probability": 0.992 }, { "start": 3165.16, "end": 3165.96, "probability": 0.9782 }, { "start": 3167.3, "end": 3171.46, "probability": 0.9973 }, { "start": 3171.58, "end": 3171.8, "probability": 0.6099 }, { "start": 3173.54, "end": 3176.8, "probability": 0.9382 }, { "start": 3178.86, "end": 3182.26, "probability": 0.9794 }, { "start": 3182.74, "end": 3187.0, "probability": 0.9764 }, { "start": 3188.14, "end": 3189.44, "probability": 0.9956 }, { "start": 3190.26, "end": 3192.8, "probability": 0.9707 }, { "start": 3194.16, "end": 3197.64, "probability": 0.9814 }, { "start": 3197.78, "end": 3201.46, "probability": 0.9469 }, { "start": 3201.98, "end": 3203.22, "probability": 0.8297 }, { "start": 3205.0, "end": 3206.94, "probability": 0.77 }, { "start": 3208.04, "end": 3209.38, "probability": 0.9295 }, { "start": 3210.88, "end": 3213.78, "probability": 0.9895 }, { "start": 3214.54, "end": 3215.77, "probability": 0.9902 }, { "start": 3216.82, "end": 3218.6, "probability": 0.9877 }, { "start": 3219.46, "end": 3222.21, "probability": 0.9961 }, { "start": 3223.34, "end": 3229.22, "probability": 0.9633 }, { "start": 3230.08, "end": 3233.02, "probability": 0.99 }, { "start": 3233.02, "end": 3235.86, "probability": 0.9911 }, { "start": 3236.04, "end": 3236.78, "probability": 0.7184 }, { "start": 3237.06, "end": 3238.04, "probability": 0.7347 }, { "start": 3238.46, "end": 3240.14, "probability": 0.9985 }, { "start": 3241.16, "end": 3242.74, "probability": 0.9934 }, { "start": 3243.4, "end": 3243.92, "probability": 0.7468 }, { "start": 3245.4, "end": 3246.0, "probability": 0.9941 }, { "start": 3246.9, "end": 3249.32, "probability": 0.7208 }, { "start": 3250.0, "end": 3250.82, "probability": 0.8207 }, { "start": 3251.78, "end": 3254.22, "probability": 0.9736 }, { "start": 3255.64, "end": 3257.44, "probability": 0.8193 }, { "start": 3258.16, "end": 3258.8, "probability": 0.8881 }, { "start": 3259.32, "end": 3261.16, "probability": 0.9557 }, { "start": 3261.66, "end": 3263.54, "probability": 0.9841 }, { "start": 3264.46, "end": 3267.3, "probability": 0.6478 }, { "start": 3267.88, "end": 3268.94, "probability": 0.8447 }, { "start": 3269.72, "end": 3273.17, "probability": 0.9032 }, { "start": 3274.14, "end": 3275.36, "probability": 0.726 }, { "start": 3278.24, "end": 3279.18, "probability": 0.9894 }, { "start": 3280.1, "end": 3282.76, "probability": 0.9961 }, { "start": 3283.2, "end": 3285.18, "probability": 0.9978 }, { "start": 3285.3, "end": 3285.68, "probability": 0.4604 }, { "start": 3285.72, "end": 3286.26, "probability": 0.9072 }, { "start": 3288.28, "end": 3289.78, "probability": 0.6027 }, { "start": 3290.26, "end": 3290.46, "probability": 0.8146 }, { "start": 3290.56, "end": 3291.82, "probability": 0.9844 }, { "start": 3292.0, "end": 3293.92, "probability": 0.7715 }, { "start": 3294.04, "end": 3294.45, "probability": 0.5081 }, { "start": 3295.1, "end": 3296.82, "probability": 0.852 }, { "start": 3296.82, "end": 3297.22, "probability": 0.2029 }, { "start": 3298.14, "end": 3299.26, "probability": 0.6247 }, { "start": 3299.38, "end": 3299.38, "probability": 0.1667 }, { "start": 3299.38, "end": 3299.38, "probability": 0.0976 }, { "start": 3299.38, "end": 3299.38, "probability": 0.2489 }, { "start": 3299.38, "end": 3300.26, "probability": 0.6172 }, { "start": 3300.34, "end": 3303.06, "probability": 0.7884 }, { "start": 3303.73, "end": 3305.46, "probability": 0.7537 }, { "start": 3305.96, "end": 3306.48, "probability": 0.5806 }, { "start": 3306.48, "end": 3307.02, "probability": 0.0442 }, { "start": 3307.02, "end": 3311.72, "probability": 0.9652 }, { "start": 3312.08, "end": 3312.92, "probability": 0.9738 }, { "start": 3313.22, "end": 3314.42, "probability": 0.9927 }, { "start": 3314.64, "end": 3315.4, "probability": 0.9911 }, { "start": 3315.78, "end": 3317.12, "probability": 0.504 }, { "start": 3317.12, "end": 3317.52, "probability": 0.6109 }, { "start": 3317.84, "end": 3319.0, "probability": 0.8794 }, { "start": 3319.16, "end": 3320.14, "probability": 0.9586 }, { "start": 3320.2, "end": 3320.78, "probability": 0.6936 }, { "start": 3320.78, "end": 3321.2, "probability": 0.7014 }, { "start": 3321.82, "end": 3323.24, "probability": 0.9038 }, { "start": 3323.24, "end": 3325.16, "probability": 0.2701 }, { "start": 3325.16, "end": 3325.96, "probability": 0.8245 }, { "start": 3325.96, "end": 3328.34, "probability": 0.2984 }, { "start": 3328.94, "end": 3331.36, "probability": 0.302 }, { "start": 3331.36, "end": 3331.36, "probability": 0.1999 }, { "start": 3331.36, "end": 3331.36, "probability": 0.0292 }, { "start": 3331.36, "end": 3334.88, "probability": 0.872 }, { "start": 3334.88, "end": 3335.44, "probability": 0.7663 }, { "start": 3335.5, "end": 3336.42, "probability": 0.7631 }, { "start": 3337.34, "end": 3340.78, "probability": 0.9474 }, { "start": 3347.16, "end": 3347.16, "probability": 0.0905 }, { "start": 3347.16, "end": 3347.18, "probability": 0.2735 }, { "start": 3347.18, "end": 3347.26, "probability": 0.2991 }, { "start": 3347.26, "end": 3347.26, "probability": 0.1898 }, { "start": 3347.26, "end": 3348.14, "probability": 0.0285 }, { "start": 3348.14, "end": 3348.14, "probability": 0.0392 }, { "start": 3370.38, "end": 3372.98, "probability": 0.1301 }, { "start": 3373.96, "end": 3378.92, "probability": 0.8863 }, { "start": 3378.92, "end": 3384.08, "probability": 0.9943 }, { "start": 3384.98, "end": 3385.9, "probability": 0.885 }, { "start": 3386.0, "end": 3388.02, "probability": 0.9302 }, { "start": 3388.08, "end": 3390.12, "probability": 0.9212 }, { "start": 3390.42, "end": 3393.26, "probability": 0.7794 }, { "start": 3393.26, "end": 3399.02, "probability": 0.9748 }, { "start": 3399.94, "end": 3400.72, "probability": 0.9017 }, { "start": 3400.94, "end": 3405.9, "probability": 0.9955 }, { "start": 3406.74, "end": 3409.62, "probability": 0.9858 }, { "start": 3410.18, "end": 3410.42, "probability": 0.7621 }, { "start": 3410.96, "end": 3412.08, "probability": 0.9661 }, { "start": 3412.52, "end": 3415.8, "probability": 0.9963 }, { "start": 3416.54, "end": 3418.08, "probability": 0.4847 }, { "start": 3418.14, "end": 3419.4, "probability": 0.8184 }, { "start": 3419.54, "end": 3421.54, "probability": 0.7602 }, { "start": 3422.96, "end": 3426.08, "probability": 0.7654 }, { "start": 3426.58, "end": 3430.7, "probability": 0.8592 }, { "start": 3431.04, "end": 3433.3, "probability": 0.93 }, { "start": 3433.48, "end": 3433.48, "probability": 0.2266 }, { "start": 3433.48, "end": 3436.56, "probability": 0.9563 }, { "start": 3437.0, "end": 3437.58, "probability": 0.88 }, { "start": 3438.56, "end": 3439.2, "probability": 0.3777 }, { "start": 3439.92, "end": 3440.42, "probability": 0.8013 }, { "start": 3441.14, "end": 3445.76, "probability": 0.9895 }, { "start": 3446.26, "end": 3447.82, "probability": 0.9725 }, { "start": 3448.88, "end": 3451.46, "probability": 0.6769 }, { "start": 3452.5, "end": 3452.52, "probability": 0.1797 }, { "start": 3452.52, "end": 3452.52, "probability": 0.1687 }, { "start": 3452.52, "end": 3452.52, "probability": 0.1632 }, { "start": 3452.52, "end": 3452.52, "probability": 0.2005 }, { "start": 3452.52, "end": 3457.26, "probability": 0.9416 }, { "start": 3458.2, "end": 3463.7, "probability": 0.8967 }, { "start": 3464.42, "end": 3465.22, "probability": 0.6756 }, { "start": 3466.38, "end": 3467.04, "probability": 0.6636 }, { "start": 3467.2, "end": 3471.48, "probability": 0.9897 }, { "start": 3472.62, "end": 3474.38, "probability": 0.9749 }, { "start": 3475.48, "end": 3478.02, "probability": 0.3385 }, { "start": 3478.54, "end": 3479.28, "probability": 0.0271 }, { "start": 3479.28, "end": 3479.28, "probability": 0.0684 }, { "start": 3479.28, "end": 3479.28, "probability": 0.0701 }, { "start": 3479.28, "end": 3482.27, "probability": 0.4487 }, { "start": 3483.54, "end": 3483.54, "probability": 0.0021 }, { "start": 3484.2, "end": 3484.3, "probability": 0.0244 }, { "start": 3484.34, "end": 3486.72, "probability": 0.8369 }, { "start": 3487.2, "end": 3488.24, "probability": 0.1701 }, { "start": 3488.32, "end": 3488.86, "probability": 0.5401 }, { "start": 3489.28, "end": 3490.48, "probability": 0.0898 }, { "start": 3490.48, "end": 3490.94, "probability": 0.9667 }, { "start": 3491.44, "end": 3495.6, "probability": 0.9485 }, { "start": 3497.12, "end": 3498.4, "probability": 0.7281 }, { "start": 3498.82, "end": 3503.1, "probability": 0.9873 }, { "start": 3503.76, "end": 3507.02, "probability": 0.8977 }, { "start": 3507.38, "end": 3514.28, "probability": 0.9509 }, { "start": 3514.92, "end": 3515.46, "probability": 0.9675 }, { "start": 3515.58, "end": 3518.6, "probability": 0.9709 }, { "start": 3518.94, "end": 3522.78, "probability": 0.907 }, { "start": 3523.68, "end": 3524.86, "probability": 0.8291 }, { "start": 3525.28, "end": 3526.66, "probability": 0.89 }, { "start": 3526.9, "end": 3531.78, "probability": 0.9817 }, { "start": 3532.1, "end": 3534.14, "probability": 0.8195 }, { "start": 3534.86, "end": 3540.42, "probability": 0.9945 }, { "start": 3541.48, "end": 3546.04, "probability": 0.9607 }, { "start": 3546.46, "end": 3547.98, "probability": 0.8935 }, { "start": 3548.32, "end": 3551.74, "probability": 0.9873 }, { "start": 3552.44, "end": 3556.32, "probability": 0.9672 }, { "start": 3556.98, "end": 3560.34, "probability": 0.874 }, { "start": 3560.52, "end": 3560.54, "probability": 0.1249 }, { "start": 3560.54, "end": 3566.44, "probability": 0.9129 }, { "start": 3567.12, "end": 3569.68, "probability": 0.6951 }, { "start": 3570.16, "end": 3571.42, "probability": 0.9038 }, { "start": 3572.08, "end": 3572.66, "probability": 0.756 }, { "start": 3573.92, "end": 3577.0, "probability": 0.9551 }, { "start": 3577.9, "end": 3581.4, "probability": 0.9819 }, { "start": 3581.8, "end": 3584.02, "probability": 0.9701 }, { "start": 3584.98, "end": 3589.4, "probability": 0.9961 }, { "start": 3589.4, "end": 3594.22, "probability": 0.9919 }, { "start": 3594.72, "end": 3596.02, "probability": 0.9839 }, { "start": 3596.42, "end": 3597.5, "probability": 0.6094 }, { "start": 3597.98, "end": 3599.38, "probability": 0.9751 }, { "start": 3599.96, "end": 3603.4, "probability": 0.9131 }, { "start": 3604.3, "end": 3608.88, "probability": 0.8405 }, { "start": 3609.82, "end": 3611.26, "probability": 0.801 }, { "start": 3611.58, "end": 3612.06, "probability": 0.8894 }, { "start": 3613.44, "end": 3614.42, "probability": 0.6419 }, { "start": 3616.1, "end": 3618.8, "probability": 0.951 }, { "start": 3619.2, "end": 3620.5, "probability": 0.9736 }, { "start": 3621.22, "end": 3624.16, "probability": 0.9333 }, { "start": 3624.4, "end": 3626.14, "probability": 0.5019 }, { "start": 3626.14, "end": 3627.12, "probability": 0.9497 }, { "start": 3627.94, "end": 3628.52, "probability": 0.1021 }, { "start": 3628.6, "end": 3629.32, "probability": 0.7206 }, { "start": 3630.32, "end": 3635.94, "probability": 0.9631 }, { "start": 3636.12, "end": 3639.52, "probability": 0.9771 }, { "start": 3640.3, "end": 3643.68, "probability": 0.8179 }, { "start": 3644.08, "end": 3645.94, "probability": 0.9609 }, { "start": 3646.9, "end": 3648.94, "probability": 0.7696 }, { "start": 3649.38, "end": 3650.44, "probability": 0.8829 }, { "start": 3650.8, "end": 3653.82, "probability": 0.8719 }, { "start": 3653.96, "end": 3657.84, "probability": 0.9226 }, { "start": 3658.72, "end": 3659.76, "probability": 0.7233 }, { "start": 3659.82, "end": 3661.1, "probability": 0.7865 }, { "start": 3661.22, "end": 3661.96, "probability": 0.5894 }, { "start": 3662.88, "end": 3663.62, "probability": 0.5065 }, { "start": 3663.64, "end": 3667.3, "probability": 0.8131 }, { "start": 3667.4, "end": 3668.02, "probability": 0.6053 }, { "start": 3668.66, "end": 3669.82, "probability": 0.9801 }, { "start": 3670.74, "end": 3675.74, "probability": 0.9334 }, { "start": 3676.02, "end": 3679.8, "probability": 0.9941 }, { "start": 3679.84, "end": 3682.6, "probability": 0.7863 }, { "start": 3683.12, "end": 3685.42, "probability": 0.9153 }, { "start": 3685.9, "end": 3688.92, "probability": 0.9722 }, { "start": 3689.52, "end": 3693.66, "probability": 0.5966 }, { "start": 3693.82, "end": 3694.28, "probability": 0.4642 }, { "start": 3694.7, "end": 3695.72, "probability": 0.7333 }, { "start": 3696.16, "end": 3701.56, "probability": 0.9151 }, { "start": 3701.56, "end": 3704.86, "probability": 0.8258 }, { "start": 3705.42, "end": 3710.4, "probability": 0.9324 }, { "start": 3710.4, "end": 3713.7, "probability": 0.8637 }, { "start": 3714.38, "end": 3717.95, "probability": 0.9968 }, { "start": 3718.14, "end": 3721.9, "probability": 0.9744 }, { "start": 3722.26, "end": 3724.18, "probability": 0.7035 }, { "start": 3724.36, "end": 3725.1, "probability": 0.9146 }, { "start": 3725.58, "end": 3728.7, "probability": 0.4747 }, { "start": 3728.94, "end": 3730.92, "probability": 0.57 }, { "start": 3731.46, "end": 3734.52, "probability": 0.7291 }, { "start": 3734.7, "end": 3734.86, "probability": 0.6125 }, { "start": 3735.0, "end": 3736.26, "probability": 0.9096 }, { "start": 3736.46, "end": 3737.14, "probability": 0.5563 }, { "start": 3737.46, "end": 3738.42, "probability": 0.5135 }, { "start": 3738.54, "end": 3739.05, "probability": 0.8486 }, { "start": 3739.92, "end": 3741.06, "probability": 0.5212 }, { "start": 3741.42, "end": 3744.62, "probability": 0.9364 }, { "start": 3745.3, "end": 3750.22, "probability": 0.6966 }, { "start": 3750.24, "end": 3751.4, "probability": 0.7603 }, { "start": 3751.62, "end": 3754.16, "probability": 0.9408 }, { "start": 3754.3, "end": 3756.5, "probability": 0.5699 }, { "start": 3757.04, "end": 3758.96, "probability": 0.6654 }, { "start": 3759.36, "end": 3760.42, "probability": 0.6699 }, { "start": 3760.72, "end": 3761.36, "probability": 0.9431 }, { "start": 3761.52, "end": 3762.48, "probability": 0.7353 }, { "start": 3762.48, "end": 3763.06, "probability": 0.5003 }, { "start": 3763.6, "end": 3764.18, "probability": 0.7004 }, { "start": 3764.34, "end": 3768.88, "probability": 0.8167 }, { "start": 3769.36, "end": 3770.36, "probability": 0.4189 }, { "start": 3770.66, "end": 3775.06, "probability": 0.9166 }, { "start": 3775.76, "end": 3778.12, "probability": 0.962 }, { "start": 3778.14, "end": 3780.2, "probability": 0.4375 }, { "start": 3782.94, "end": 3783.76, "probability": 0.0181 }, { "start": 3783.76, "end": 3783.76, "probability": 0.0782 }, { "start": 3783.76, "end": 3783.76, "probability": 0.2074 }, { "start": 3783.76, "end": 3784.76, "probability": 0.5532 }, { "start": 3784.8, "end": 3786.76, "probability": 0.9697 }, { "start": 3787.46, "end": 3788.22, "probability": 0.799 }, { "start": 3788.3, "end": 3789.26, "probability": 0.9791 }, { "start": 3789.44, "end": 3790.72, "probability": 0.6858 }, { "start": 3790.84, "end": 3791.92, "probability": 0.7786 }, { "start": 3792.4, "end": 3794.26, "probability": 0.7967 }, { "start": 3794.34, "end": 3796.66, "probability": 0.6482 }, { "start": 3796.72, "end": 3797.57, "probability": 0.7765 }, { "start": 3798.34, "end": 3801.48, "probability": 0.6593 }, { "start": 3801.6, "end": 3803.94, "probability": 0.9836 }, { "start": 3804.84, "end": 3806.92, "probability": 0.8098 }, { "start": 3807.14, "end": 3809.38, "probability": 0.9873 }, { "start": 3809.92, "end": 3811.58, "probability": 0.9595 }, { "start": 3812.38, "end": 3813.99, "probability": 0.9246 }, { "start": 3814.12, "end": 3815.96, "probability": 0.8962 }, { "start": 3816.16, "end": 3817.68, "probability": 0.986 }, { "start": 3817.76, "end": 3819.08, "probability": 0.985 }, { "start": 3819.5, "end": 3822.96, "probability": 0.8766 }, { "start": 3823.3, "end": 3824.14, "probability": 0.8755 }, { "start": 3824.38, "end": 3825.94, "probability": 0.8923 }, { "start": 3826.72, "end": 3827.74, "probability": 0.7455 }, { "start": 3827.74, "end": 3830.34, "probability": 0.7412 }, { "start": 3830.74, "end": 3834.38, "probability": 0.9976 }, { "start": 3834.72, "end": 3836.96, "probability": 0.9966 }, { "start": 3837.04, "end": 3839.3, "probability": 0.9873 }, { "start": 3839.3, "end": 3844.48, "probability": 0.8261 }, { "start": 3845.0, "end": 3847.08, "probability": 0.9486 }, { "start": 3847.8, "end": 3854.06, "probability": 0.997 }, { "start": 3854.22, "end": 3855.38, "probability": 0.7798 }, { "start": 3855.44, "end": 3856.05, "probability": 0.6812 }, { "start": 3856.14, "end": 3860.22, "probability": 0.9554 }, { "start": 3860.32, "end": 3862.42, "probability": 0.9215 }, { "start": 3862.42, "end": 3865.18, "probability": 0.9357 }, { "start": 3865.82, "end": 3867.92, "probability": 0.9601 }, { "start": 3868.04, "end": 3870.24, "probability": 0.9941 }, { "start": 3870.3, "end": 3871.12, "probability": 0.8856 }, { "start": 3871.48, "end": 3878.02, "probability": 0.9123 }, { "start": 3878.38, "end": 3881.2, "probability": 0.8352 }, { "start": 3881.56, "end": 3886.4, "probability": 0.9806 }, { "start": 3886.84, "end": 3890.04, "probability": 0.9509 }, { "start": 3890.5, "end": 3891.54, "probability": 0.1526 }, { "start": 3891.62, "end": 3892.38, "probability": 0.831 }, { "start": 3892.54, "end": 3895.8, "probability": 0.7334 }, { "start": 3895.94, "end": 3902.77, "probability": 0.8494 }, { "start": 3903.66, "end": 3904.36, "probability": 0.8603 }, { "start": 3904.52, "end": 3905.54, "probability": 0.7373 }, { "start": 3905.92, "end": 3908.78, "probability": 0.61 }, { "start": 3908.78, "end": 3909.18, "probability": 0.3146 }, { "start": 3909.26, "end": 3910.6, "probability": 0.819 }, { "start": 3911.48, "end": 3914.36, "probability": 0.8458 }, { "start": 3914.48, "end": 3915.28, "probability": 0.7548 }, { "start": 3915.88, "end": 3916.02, "probability": 0.6563 }, { "start": 3916.12, "end": 3919.36, "probability": 0.6752 }, { "start": 3919.98, "end": 3920.6, "probability": 0.3287 }, { "start": 3921.31, "end": 3923.02, "probability": 0.8024 }, { "start": 3923.28, "end": 3923.96, "probability": 0.3698 }, { "start": 3924.02, "end": 3925.48, "probability": 0.8588 }, { "start": 3926.24, "end": 3929.22, "probability": 0.923 }, { "start": 3929.92, "end": 3932.58, "probability": 0.7187 }, { "start": 3932.68, "end": 3934.06, "probability": 0.9734 }, { "start": 3934.56, "end": 3934.91, "probability": 0.8201 }, { "start": 3935.2, "end": 3939.44, "probability": 0.7258 }, { "start": 3939.82, "end": 3940.32, "probability": 0.5889 }, { "start": 3940.62, "end": 3941.32, "probability": 0.4478 }, { "start": 3941.4, "end": 3942.3, "probability": 0.9146 }, { "start": 3942.4, "end": 3943.68, "probability": 0.9423 }, { "start": 3944.22, "end": 3947.14, "probability": 0.9181 }, { "start": 3947.26, "end": 3948.94, "probability": 0.8066 }, { "start": 3948.94, "end": 3950.08, "probability": 0.6312 }, { "start": 3950.08, "end": 3951.06, "probability": 0.9839 }, { "start": 3951.2, "end": 3953.88, "probability": 0.8682 }, { "start": 3954.16, "end": 3957.68, "probability": 0.8384 }, { "start": 3958.56, "end": 3959.4, "probability": 0.5624 }, { "start": 3959.54, "end": 3962.26, "probability": 0.4923 }, { "start": 3962.28, "end": 3962.82, "probability": 0.5925 }, { "start": 3962.92, "end": 3964.12, "probability": 0.8416 }, { "start": 3964.62, "end": 3965.34, "probability": 0.7127 }, { "start": 3965.6, "end": 3966.62, "probability": 0.596 }, { "start": 3966.64, "end": 3967.3, "probability": 0.8883 }, { "start": 3970.19, "end": 3975.3, "probability": 0.9095 }, { "start": 3988.58, "end": 3989.46, "probability": 0.4434 }, { "start": 3991.06, "end": 3993.26, "probability": 0.8016 }, { "start": 3993.58, "end": 3994.74, "probability": 0.8662 }, { "start": 3995.34, "end": 3997.86, "probability": 0.9762 }, { "start": 3999.24, "end": 4002.1, "probability": 0.7931 }, { "start": 4003.58, "end": 4006.46, "probability": 0.9922 }, { "start": 4007.44, "end": 4010.08, "probability": 0.9919 }, { "start": 4011.58, "end": 4014.68, "probability": 0.9963 }, { "start": 4015.22, "end": 4016.2, "probability": 0.9371 }, { "start": 4017.32, "end": 4020.68, "probability": 0.8994 }, { "start": 4021.32, "end": 4022.3, "probability": 0.9916 }, { "start": 4023.7, "end": 4024.8, "probability": 0.744 }, { "start": 4025.3, "end": 4027.36, "probability": 0.708 }, { "start": 4027.62, "end": 4029.16, "probability": 0.9966 }, { "start": 4029.72, "end": 4031.8, "probability": 0.9419 }, { "start": 4032.74, "end": 4033.74, "probability": 0.8474 }, { "start": 4034.14, "end": 4035.4, "probability": 0.7501 }, { "start": 4036.64, "end": 4040.58, "probability": 0.8062 }, { "start": 4040.84, "end": 4043.0, "probability": 0.9421 }, { "start": 4043.34, "end": 4044.42, "probability": 0.9804 }, { "start": 4045.04, "end": 4046.74, "probability": 0.9316 }, { "start": 4048.62, "end": 4049.82, "probability": 0.9935 }, { "start": 4051.3, "end": 4056.4, "probability": 0.9988 }, { "start": 4057.66, "end": 4065.36, "probability": 0.9871 }, { "start": 4065.5, "end": 4066.78, "probability": 0.9224 }, { "start": 4067.5, "end": 4069.64, "probability": 0.9993 }, { "start": 4069.64, "end": 4073.36, "probability": 0.9924 }, { "start": 4073.66, "end": 4074.38, "probability": 0.0285 }, { "start": 4074.48, "end": 4075.66, "probability": 0.5356 }, { "start": 4076.12, "end": 4079.01, "probability": 0.9829 }, { "start": 4079.22, "end": 4079.68, "probability": 0.2108 }, { "start": 4080.06, "end": 4080.4, "probability": 0.0547 }, { "start": 4081.12, "end": 4081.88, "probability": 0.9333 }, { "start": 4082.06, "end": 4086.56, "probability": 0.9653 }, { "start": 4087.38, "end": 4087.94, "probability": 0.7647 }, { "start": 4088.26, "end": 4090.88, "probability": 0.8295 }, { "start": 4090.9, "end": 4092.28, "probability": 0.9719 }, { "start": 4092.84, "end": 4100.4, "probability": 0.9858 }, { "start": 4101.24, "end": 4102.76, "probability": 0.9949 }, { "start": 4103.66, "end": 4105.5, "probability": 0.8556 }, { "start": 4106.04, "end": 4107.6, "probability": 0.981 }, { "start": 4108.84, "end": 4113.48, "probability": 0.912 }, { "start": 4114.36, "end": 4119.76, "probability": 0.9862 }, { "start": 4120.36, "end": 4124.56, "probability": 0.9746 }, { "start": 4125.3, "end": 4126.28, "probability": 0.793 }, { "start": 4127.16, "end": 4128.96, "probability": 0.9411 }, { "start": 4129.62, "end": 4135.38, "probability": 0.9914 }, { "start": 4135.88, "end": 4138.86, "probability": 0.9676 }, { "start": 4139.18, "end": 4140.18, "probability": 0.9739 }, { "start": 4141.0, "end": 4144.0, "probability": 0.9836 }, { "start": 4144.76, "end": 4150.88, "probability": 0.9952 }, { "start": 4151.34, "end": 4153.4, "probability": 0.9382 }, { "start": 4154.82, "end": 4155.64, "probability": 0.6475 }, { "start": 4156.04, "end": 4161.1, "probability": 0.9878 }, { "start": 4161.78, "end": 4167.78, "probability": 0.9819 }, { "start": 4168.42, "end": 4171.28, "probability": 0.9935 }, { "start": 4171.94, "end": 4175.8, "probability": 0.9977 }, { "start": 4175.8, "end": 4178.56, "probability": 0.9081 }, { "start": 4179.8, "end": 4183.06, "probability": 0.9901 }, { "start": 4183.4, "end": 4184.04, "probability": 0.6564 }, { "start": 4184.3, "end": 4185.1, "probability": 0.9172 }, { "start": 4185.5, "end": 4187.56, "probability": 0.9601 }, { "start": 4188.2, "end": 4192.22, "probability": 0.9596 }, { "start": 4192.88, "end": 4196.3, "probability": 0.9905 }, { "start": 4196.3, "end": 4199.6, "probability": 0.9983 }, { "start": 4199.6, "end": 4200.38, "probability": 0.7689 }, { "start": 4200.42, "end": 4200.68, "probability": 0.4215 }, { "start": 4200.68, "end": 4202.48, "probability": 0.8786 }, { "start": 4203.14, "end": 4208.46, "probability": 0.9313 }, { "start": 4209.22, "end": 4212.56, "probability": 0.9967 }, { "start": 4212.8, "end": 4213.1, "probability": 0.8113 }, { "start": 4213.31, "end": 4215.66, "probability": 0.7884 }, { "start": 4215.76, "end": 4216.72, "probability": 0.8475 }, { "start": 4217.08, "end": 4220.52, "probability": 0.994 }, { "start": 4220.72, "end": 4223.82, "probability": 0.9586 }, { "start": 4224.24, "end": 4228.9, "probability": 0.998 }, { "start": 4229.62, "end": 4230.56, "probability": 0.8203 }, { "start": 4231.1, "end": 4235.36, "probability": 0.9885 }, { "start": 4235.5, "end": 4236.06, "probability": 0.6928 }, { "start": 4236.26, "end": 4240.24, "probability": 0.9518 }, { "start": 4240.7, "end": 4241.34, "probability": 0.9197 }, { "start": 4247.29, "end": 4254.04, "probability": 0.9949 }, { "start": 4265.2, "end": 4267.32, "probability": 0.6972 }, { "start": 4267.98, "end": 4272.3, "probability": 0.9324 }, { "start": 4273.56, "end": 4282.84, "probability": 0.8838 }, { "start": 4283.96, "end": 4286.14, "probability": 0.8109 }, { "start": 4287.59, "end": 4290.48, "probability": 0.7694 }, { "start": 4291.86, "end": 4291.96, "probability": 0.3682 }, { "start": 4292.06, "end": 4292.54, "probability": 0.6946 }, { "start": 4292.58, "end": 4293.99, "probability": 0.9912 }, { "start": 4294.36, "end": 4296.76, "probability": 0.9731 }, { "start": 4297.18, "end": 4297.94, "probability": 0.9462 }, { "start": 4298.8, "end": 4302.5, "probability": 0.9575 }, { "start": 4303.24, "end": 4306.86, "probability": 0.979 }, { "start": 4307.52, "end": 4311.14, "probability": 0.9151 }, { "start": 4311.28, "end": 4312.42, "probability": 0.9036 }, { "start": 4313.12, "end": 4314.6, "probability": 0.7318 }, { "start": 4315.44, "end": 4317.36, "probability": 0.9187 }, { "start": 4319.2, "end": 4320.24, "probability": 0.7786 }, { "start": 4320.52, "end": 4325.04, "probability": 0.9937 }, { "start": 4325.88, "end": 4327.86, "probability": 0.7612 }, { "start": 4328.48, "end": 4329.26, "probability": 0.7573 }, { "start": 4329.72, "end": 4330.6, "probability": 0.8626 }, { "start": 4330.9, "end": 4331.8, "probability": 0.9913 }, { "start": 4331.88, "end": 4332.73, "probability": 0.5476 }, { "start": 4333.12, "end": 4339.28, "probability": 0.8818 }, { "start": 4339.64, "end": 4341.64, "probability": 0.8617 }, { "start": 4342.34, "end": 4344.02, "probability": 0.7381 }, { "start": 4344.92, "end": 4345.92, "probability": 0.6714 }, { "start": 4346.88, "end": 4349.04, "probability": 0.8831 }, { "start": 4349.88, "end": 4353.06, "probability": 0.8843 }, { "start": 4353.78, "end": 4359.48, "probability": 0.6623 }, { "start": 4360.1, "end": 4363.72, "probability": 0.9886 }, { "start": 4364.24, "end": 4367.98, "probability": 0.9567 }, { "start": 4368.58, "end": 4371.26, "probability": 0.998 }, { "start": 4371.64, "end": 4372.04, "probability": 0.4491 }, { "start": 4372.16, "end": 4373.2, "probability": 0.9885 }, { "start": 4373.5, "end": 4374.5, "probability": 0.9266 }, { "start": 4374.6, "end": 4375.64, "probability": 0.771 }, { "start": 4376.68, "end": 4380.88, "probability": 0.9964 }, { "start": 4381.52, "end": 4384.26, "probability": 0.9966 }, { "start": 4384.26, "end": 4384.28, "probability": 0.0437 }, { "start": 4384.34, "end": 4385.58, "probability": 0.9455 }, { "start": 4386.0, "end": 4389.06, "probability": 0.9871 }, { "start": 4389.8, "end": 4391.56, "probability": 0.9172 }, { "start": 4391.64, "end": 4394.34, "probability": 0.9203 }, { "start": 4394.34, "end": 4397.32, "probability": 0.9971 }, { "start": 4398.2, "end": 4398.52, "probability": 0.4543 }, { "start": 4399.08, "end": 4402.48, "probability": 0.9691 }, { "start": 4402.92, "end": 4405.34, "probability": 0.9079 }, { "start": 4406.22, "end": 4406.78, "probability": 0.9209 }, { "start": 4407.5, "end": 4408.1, "probability": 0.6151 }, { "start": 4409.08, "end": 4413.58, "probability": 0.98 }, { "start": 4414.22, "end": 4416.14, "probability": 0.9963 }, { "start": 4416.62, "end": 4417.4, "probability": 0.7429 }, { "start": 4417.76, "end": 4419.28, "probability": 0.9754 }, { "start": 4420.02, "end": 4420.62, "probability": 0.7466 }, { "start": 4420.66, "end": 4422.28, "probability": 0.9362 }, { "start": 4422.54, "end": 4424.66, "probability": 0.9467 }, { "start": 4425.24, "end": 4427.4, "probability": 0.5124 }, { "start": 4427.4, "end": 4427.9, "probability": 0.3976 }, { "start": 4428.4, "end": 4429.54, "probability": 0.9563 }, { "start": 4429.62, "end": 4430.48, "probability": 0.8597 }, { "start": 4431.36, "end": 4434.92, "probability": 0.9634 }, { "start": 4435.9, "end": 4437.5, "probability": 0.9167 }, { "start": 4438.16, "end": 4440.03, "probability": 0.9988 }, { "start": 4441.2, "end": 4442.3, "probability": 0.4978 }, { "start": 4442.38, "end": 4443.78, "probability": 0.8577 }, { "start": 4444.32, "end": 4446.36, "probability": 0.5289 }, { "start": 4446.92, "end": 4447.8, "probability": 0.7377 }, { "start": 4447.96, "end": 4450.0, "probability": 0.9911 }, { "start": 4450.56, "end": 4451.44, "probability": 0.9282 }, { "start": 4451.98, "end": 4455.16, "probability": 0.8155 }, { "start": 4455.48, "end": 4456.26, "probability": 0.9662 }, { "start": 4456.82, "end": 4457.04, "probability": 0.8942 }, { "start": 4457.98, "end": 4458.78, "probability": 0.8794 }, { "start": 4459.58, "end": 4459.88, "probability": 0.907 }, { "start": 4460.54, "end": 4462.06, "probability": 0.795 }, { "start": 4462.68, "end": 4463.67, "probability": 0.9969 }, { "start": 4464.2, "end": 4468.82, "probability": 0.9795 }, { "start": 4469.14, "end": 4469.48, "probability": 0.2725 }, { "start": 4469.48, "end": 4469.66, "probability": 0.5608 }, { "start": 4475.16, "end": 4477.88, "probability": 0.6923 }, { "start": 4477.96, "end": 4478.94, "probability": 0.5435 }, { "start": 4479.08, "end": 4482.22, "probability": 0.7762 }, { "start": 4507.32, "end": 4509.44, "probability": 0.5693 }, { "start": 4510.68, "end": 4516.4, "probability": 0.957 }, { "start": 4517.36, "end": 4520.12, "probability": 0.7849 }, { "start": 4521.2, "end": 4523.98, "probability": 0.8156 }, { "start": 4524.56, "end": 4527.82, "probability": 0.9265 }, { "start": 4528.38, "end": 4530.88, "probability": 0.9976 }, { "start": 4531.5, "end": 4537.6, "probability": 0.8408 }, { "start": 4538.58, "end": 4544.24, "probability": 0.9813 }, { "start": 4544.32, "end": 4546.18, "probability": 0.9884 }, { "start": 4546.88, "end": 4548.44, "probability": 0.8959 }, { "start": 4549.5, "end": 4553.28, "probability": 0.8549 }, { "start": 4554.1, "end": 4557.7, "probability": 0.9863 }, { "start": 4558.34, "end": 4561.52, "probability": 0.9607 }, { "start": 4562.24, "end": 4563.6, "probability": 0.8375 }, { "start": 4563.76, "end": 4567.8, "probability": 0.9793 }, { "start": 4567.8, "end": 4571.62, "probability": 0.9988 }, { "start": 4572.44, "end": 4578.0, "probability": 0.9138 }, { "start": 4578.0, "end": 4582.3, "probability": 0.9969 }, { "start": 4582.88, "end": 4587.74, "probability": 0.9952 }, { "start": 4588.54, "end": 4591.78, "probability": 0.9462 }, { "start": 4592.44, "end": 4594.4, "probability": 0.8007 }, { "start": 4595.04, "end": 4599.8, "probability": 0.8716 }, { "start": 4600.26, "end": 4602.68, "probability": 0.7654 }, { "start": 4603.34, "end": 4603.74, "probability": 0.8073 }, { "start": 4604.42, "end": 4605.98, "probability": 0.9645 }, { "start": 4606.56, "end": 4608.94, "probability": 0.9893 }, { "start": 4609.78, "end": 4610.1, "probability": 0.5432 }, { "start": 4610.28, "end": 4612.5, "probability": 0.9482 }, { "start": 4613.0, "end": 4616.92, "probability": 0.9629 }, { "start": 4617.66, "end": 4621.78, "probability": 0.9606 }, { "start": 4622.84, "end": 4626.34, "probability": 0.9047 }, { "start": 4626.88, "end": 4629.06, "probability": 0.0522 }, { "start": 4629.66, "end": 4631.36, "probability": 0.9465 }, { "start": 4632.02, "end": 4636.04, "probability": 0.9845 }, { "start": 4637.0, "end": 4643.7, "probability": 0.9463 }, { "start": 4643.7, "end": 4650.4, "probability": 0.9072 }, { "start": 4651.42, "end": 4655.38, "probability": 0.9956 }, { "start": 4655.38, "end": 4659.4, "probability": 0.8767 }, { "start": 4660.06, "end": 4661.06, "probability": 0.7991 }, { "start": 4661.84, "end": 4665.74, "probability": 0.9516 }, { "start": 4666.3, "end": 4668.0, "probability": 0.9502 }, { "start": 4668.62, "end": 4674.82, "probability": 0.9915 }, { "start": 4675.34, "end": 4679.24, "probability": 0.9813 }, { "start": 4679.8, "end": 4683.52, "probability": 0.8832 }, { "start": 4683.52, "end": 4686.58, "probability": 0.8797 }, { "start": 4687.14, "end": 4692.12, "probability": 0.976 }, { "start": 4692.34, "end": 4695.68, "probability": 0.9896 }, { "start": 4696.22, "end": 4702.14, "probability": 0.9929 }, { "start": 4702.56, "end": 4707.2, "probability": 0.9919 }, { "start": 4708.62, "end": 4709.56, "probability": 0.635 }, { "start": 4710.02, "end": 4711.92, "probability": 0.7179 }, { "start": 4712.5, "end": 4714.68, "probability": 0.9471 }, { "start": 4724.72, "end": 4725.02, "probability": 0.2546 }, { "start": 4725.73, "end": 4728.56, "probability": 0.9291 }, { "start": 4728.74, "end": 4729.1, "probability": 0.4874 }, { "start": 4729.2, "end": 4731.54, "probability": 0.9879 }, { "start": 4731.68, "end": 4732.12, "probability": 0.7554 }, { "start": 4732.3, "end": 4735.22, "probability": 0.9071 }, { "start": 4736.74, "end": 4737.92, "probability": 0.3906 }, { "start": 4741.8, "end": 4743.52, "probability": 0.9529 }, { "start": 4743.6, "end": 4744.48, "probability": 0.8458 }, { "start": 4744.62, "end": 4745.37, "probability": 0.493 }, { "start": 4746.04, "end": 4748.38, "probability": 0.844 }, { "start": 4748.42, "end": 4749.24, "probability": 0.4951 }, { "start": 4751.4, "end": 4752.0, "probability": 0.9424 }, { "start": 4752.0, "end": 4752.51, "probability": 0.7309 }, { "start": 4754.4, "end": 4756.2, "probability": 0.7461 }, { "start": 4757.94, "end": 4764.82, "probability": 0.9819 }, { "start": 4764.82, "end": 4769.02, "probability": 0.9932 }, { "start": 4769.64, "end": 4771.04, "probability": 0.8073 }, { "start": 4771.8, "end": 4772.88, "probability": 0.2889 }, { "start": 4773.62, "end": 4778.22, "probability": 0.7827 }, { "start": 4778.96, "end": 4785.08, "probability": 0.9912 }, { "start": 4785.24, "end": 4786.08, "probability": 0.7317 }, { "start": 4786.82, "end": 4789.84, "probability": 0.998 }, { "start": 4790.36, "end": 4790.94, "probability": 0.8534 }, { "start": 4791.14, "end": 4792.06, "probability": 0.9956 }, { "start": 4792.32, "end": 4802.36, "probability": 0.934 }, { "start": 4804.17, "end": 4808.46, "probability": 0.9018 }, { "start": 4808.58, "end": 4812.22, "probability": 0.8267 }, { "start": 4812.3, "end": 4813.08, "probability": 0.6872 }, { "start": 4814.06, "end": 4821.64, "probability": 0.9639 }, { "start": 4822.28, "end": 4825.17, "probability": 0.9785 }, { "start": 4825.98, "end": 4828.72, "probability": 0.9448 }, { "start": 4828.88, "end": 4833.76, "probability": 0.9935 }, { "start": 4833.88, "end": 4840.66, "probability": 0.9802 }, { "start": 4840.66, "end": 4844.8, "probability": 0.8587 }, { "start": 4846.1, "end": 4848.26, "probability": 0.9165 }, { "start": 4848.92, "end": 4853.06, "probability": 0.9297 }, { "start": 4853.06, "end": 4857.7, "probability": 0.9697 }, { "start": 4858.66, "end": 4862.04, "probability": 0.9924 }, { "start": 4862.6, "end": 4864.45, "probability": 0.9132 }, { "start": 4866.86, "end": 4867.96, "probability": 0.0471 }, { "start": 4868.16, "end": 4868.64, "probability": 0.0645 }, { "start": 4869.76, "end": 4870.7, "probability": 0.0566 }, { "start": 4870.82, "end": 4874.68, "probability": 0.5744 }, { "start": 4874.74, "end": 4875.98, "probability": 0.9445 }, { "start": 4876.5, "end": 4879.64, "probability": 0.9645 }, { "start": 4880.46, "end": 4886.52, "probability": 0.9786 }, { "start": 4887.56, "end": 4891.54, "probability": 0.9683 }, { "start": 4891.6, "end": 4892.74, "probability": 0.8732 }, { "start": 4893.58, "end": 4894.86, "probability": 0.9854 }, { "start": 4895.4, "end": 4896.42, "probability": 0.5594 }, { "start": 4897.04, "end": 4899.62, "probability": 0.9863 }, { "start": 4900.76, "end": 4905.92, "probability": 0.896 }, { "start": 4906.64, "end": 4908.0, "probability": 0.858 }, { "start": 4908.66, "end": 4909.78, "probability": 0.988 }, { "start": 4911.26, "end": 4913.1, "probability": 0.9854 }, { "start": 4914.96, "end": 4916.1, "probability": 0.9234 }, { "start": 4916.7, "end": 4921.02, "probability": 0.9215 }, { "start": 4921.7, "end": 4926.14, "probability": 0.8048 }, { "start": 4926.6, "end": 4929.32, "probability": 0.8392 }, { "start": 4929.88, "end": 4935.23, "probability": 0.9565 }, { "start": 4936.72, "end": 4940.1, "probability": 0.9972 }, { "start": 4940.6, "end": 4942.82, "probability": 0.9933 }, { "start": 4943.44, "end": 4943.64, "probability": 0.7847 }, { "start": 4944.54, "end": 4951.64, "probability": 0.9825 }, { "start": 4952.42, "end": 4952.62, "probability": 0.4593 }, { "start": 4953.7, "end": 4959.01, "probability": 0.9919 }, { "start": 4959.44, "end": 4962.66, "probability": 0.9962 }, { "start": 4962.74, "end": 4967.94, "probability": 0.8676 }, { "start": 4968.6, "end": 4971.64, "probability": 0.9005 }, { "start": 4972.4, "end": 4977.6, "probability": 0.9205 }, { "start": 4978.28, "end": 4981.66, "probability": 0.984 }, { "start": 4982.64, "end": 4982.64, "probability": 0.5409 }, { "start": 4982.86, "end": 4983.82, "probability": 0.9689 }, { "start": 4983.88, "end": 4987.78, "probability": 0.9884 }, { "start": 4987.92, "end": 4988.72, "probability": 0.9847 }, { "start": 4989.3, "end": 4991.5, "probability": 0.9995 }, { "start": 4991.96, "end": 4994.06, "probability": 0.9466 }, { "start": 4994.5, "end": 4996.38, "probability": 0.9738 }, { "start": 4997.1, "end": 4999.5, "probability": 0.9508 }, { "start": 5000.32, "end": 5003.04, "probability": 0.7459 }, { "start": 5005.68, "end": 5010.36, "probability": 0.9946 }, { "start": 5010.72, "end": 5016.72, "probability": 0.9766 }, { "start": 5017.3, "end": 5018.66, "probability": 0.9088 }, { "start": 5019.2, "end": 5020.94, "probability": 0.9763 }, { "start": 5021.5, "end": 5022.98, "probability": 0.4923 }, { "start": 5023.44, "end": 5024.5, "probability": 0.9441 }, { "start": 5025.24, "end": 5029.72, "probability": 0.9938 }, { "start": 5029.92, "end": 5032.26, "probability": 0.7221 }, { "start": 5033.5, "end": 5035.44, "probability": 0.9935 }, { "start": 5035.56, "end": 5038.92, "probability": 0.9941 }, { "start": 5038.92, "end": 5043.7, "probability": 0.8709 }, { "start": 5043.8, "end": 5044.88, "probability": 0.9107 }, { "start": 5044.9, "end": 5046.06, "probability": 0.4776 }, { "start": 5046.1, "end": 5048.82, "probability": 0.9346 }, { "start": 5048.88, "end": 5049.16, "probability": 0.6209 }, { "start": 5049.38, "end": 5049.42, "probability": 0.0384 }, { "start": 5049.42, "end": 5050.54, "probability": 0.9038 }, { "start": 5052.59, "end": 5055.06, "probability": 0.7817 }, { "start": 5055.14, "end": 5055.86, "probability": 0.8334 }, { "start": 5055.88, "end": 5057.3, "probability": 0.9873 }, { "start": 5057.68, "end": 5060.18, "probability": 0.6014 }, { "start": 5060.74, "end": 5066.32, "probability": 0.9762 }, { "start": 5066.84, "end": 5070.9, "probability": 0.9574 }, { "start": 5071.04, "end": 5071.64, "probability": 0.7475 }, { "start": 5072.84, "end": 5073.56, "probability": 0.7894 }, { "start": 5074.84, "end": 5074.84, "probability": 0.5881 }, { "start": 5074.84, "end": 5074.84, "probability": 0.6443 }, { "start": 5074.84, "end": 5078.4, "probability": 0.958 }, { "start": 5078.46, "end": 5081.02, "probability": 0.9797 }, { "start": 5082.32, "end": 5085.6, "probability": 0.8447 }, { "start": 5085.88, "end": 5086.5, "probability": 0.8648 }, { "start": 5120.08, "end": 5121.26, "probability": 0.7446 }, { "start": 5129.98, "end": 5131.38, "probability": 0.7004 }, { "start": 5132.1, "end": 5135.0, "probability": 0.9644 }, { "start": 5135.62, "end": 5141.08, "probability": 0.9248 }, { "start": 5141.34, "end": 5145.06, "probability": 0.9751 }, { "start": 5145.06, "end": 5149.46, "probability": 0.9952 }, { "start": 5149.98, "end": 5150.84, "probability": 0.6223 }, { "start": 5154.75, "end": 5162.18, "probability": 0.9856 }, { "start": 5162.72, "end": 5165.34, "probability": 0.9933 }, { "start": 5166.04, "end": 5168.94, "probability": 0.9897 }, { "start": 5170.12, "end": 5170.64, "probability": 0.4178 }, { "start": 5170.72, "end": 5172.56, "probability": 0.96 }, { "start": 5172.72, "end": 5178.28, "probability": 0.987 }, { "start": 5179.02, "end": 5183.1, "probability": 0.9956 }, { "start": 5183.9, "end": 5185.9, "probability": 0.8995 }, { "start": 5187.78, "end": 5188.28, "probability": 0.6338 }, { "start": 5188.5, "end": 5191.74, "probability": 0.999 }, { "start": 5191.74, "end": 5196.35, "probability": 0.9971 }, { "start": 5196.6, "end": 5199.16, "probability": 0.9127 }, { "start": 5199.23, "end": 5201.22, "probability": 0.7774 }, { "start": 5201.38, "end": 5204.12, "probability": 0.946 }, { "start": 5204.24, "end": 5207.06, "probability": 0.0274 }, { "start": 5207.06, "end": 5207.2, "probability": 0.6664 }, { "start": 5211.32, "end": 5212.14, "probability": 0.6733 }, { "start": 5214.84, "end": 5220.66, "probability": 0.9865 }, { "start": 5220.76, "end": 5220.76, "probability": 0.0064 }, { "start": 5221.4, "end": 5222.38, "probability": 0.2364 }, { "start": 5222.9, "end": 5226.64, "probability": 0.9738 }, { "start": 5227.02, "end": 5232.34, "probability": 0.8649 }, { "start": 5232.5, "end": 5234.36, "probability": 0.6083 }, { "start": 5234.5, "end": 5236.0, "probability": 0.8137 }, { "start": 5236.0, "end": 5238.96, "probability": 0.7669 }, { "start": 5239.46, "end": 5240.66, "probability": 0.719 }, { "start": 5240.9, "end": 5240.9, "probability": 0.0188 }, { "start": 5240.92, "end": 5244.25, "probability": 0.409 }, { "start": 5245.32, "end": 5246.5, "probability": 0.3181 }, { "start": 5246.82, "end": 5249.28, "probability": 0.462 }, { "start": 5249.46, "end": 5250.32, "probability": 0.7734 }, { "start": 5250.42, "end": 5252.56, "probability": 0.9099 }, { "start": 5252.72, "end": 5256.52, "probability": 0.9971 }, { "start": 5256.66, "end": 5258.52, "probability": 0.9574 }, { "start": 5258.98, "end": 5259.82, "probability": 0.537 }, { "start": 5259.94, "end": 5262.72, "probability": 0.1906 }, { "start": 5262.86, "end": 5265.76, "probability": 0.237 }, { "start": 5267.18, "end": 5267.58, "probability": 0.4845 }, { "start": 5268.36, "end": 5269.19, "probability": 0.2547 }, { "start": 5269.4, "end": 5269.84, "probability": 0.4739 }, { "start": 5269.88, "end": 5271.88, "probability": 0.4081 }, { "start": 5272.04, "end": 5272.04, "probability": 0.0904 }, { "start": 5272.04, "end": 5272.08, "probability": 0.2788 }, { "start": 5272.3, "end": 5273.0, "probability": 0.1622 }, { "start": 5273.1, "end": 5273.68, "probability": 0.8195 }, { "start": 5273.78, "end": 5275.28, "probability": 0.6923 }, { "start": 5275.44, "end": 5277.4, "probability": 0.6077 }, { "start": 5277.48, "end": 5278.32, "probability": 0.6819 }, { "start": 5278.84, "end": 5282.8, "probability": 0.7817 }, { "start": 5283.61, "end": 5285.68, "probability": 0.998 }, { "start": 5286.52, "end": 5290.88, "probability": 0.9695 }, { "start": 5291.02, "end": 5291.54, "probability": 0.8086 }, { "start": 5292.2, "end": 5295.2, "probability": 0.9948 }, { "start": 5295.28, "end": 5296.94, "probability": 0.98 }, { "start": 5297.74, "end": 5301.4, "probability": 0.987 }, { "start": 5301.88, "end": 5305.7, "probability": 0.9927 }, { "start": 5305.7, "end": 5312.38, "probability": 0.9986 }, { "start": 5312.5, "end": 5312.6, "probability": 0.4226 }, { "start": 5312.66, "end": 5313.54, "probability": 0.562 }, { "start": 5313.66, "end": 5314.94, "probability": 0.6228 }, { "start": 5315.6, "end": 5318.62, "probability": 0.9984 }, { "start": 5319.48, "end": 5323.88, "probability": 0.9876 }, { "start": 5324.1, "end": 5328.22, "probability": 0.9661 }, { "start": 5328.56, "end": 5330.64, "probability": 0.9774 }, { "start": 5330.92, "end": 5331.88, "probability": 0.3095 }, { "start": 5345.56, "end": 5345.88, "probability": 0.1786 }, { "start": 5346.26, "end": 5346.94, "probability": 0.0209 }, { "start": 5346.94, "end": 5349.46, "probability": 0.6669 }, { "start": 5349.46, "end": 5351.96, "probability": 0.8826 }, { "start": 5355.68, "end": 5357.32, "probability": 0.8127 }, { "start": 5357.44, "end": 5360.58, "probability": 0.9414 }, { "start": 5360.8, "end": 5361.24, "probability": 0.8898 }, { "start": 5361.28, "end": 5362.56, "probability": 0.7243 }, { "start": 5362.64, "end": 5365.72, "probability": 0.8306 }, { "start": 5366.98, "end": 5367.9, "probability": 0.0541 }, { "start": 5370.48, "end": 5370.52, "probability": 0.0211 }, { "start": 5371.12, "end": 5372.06, "probability": 0.2071 }, { "start": 5372.06, "end": 5372.22, "probability": 0.0698 }, { "start": 5372.22, "end": 5372.9, "probability": 0.0643 }, { "start": 5373.04, "end": 5374.82, "probability": 0.147 }, { "start": 5375.16, "end": 5377.86, "probability": 0.1745 }, { "start": 5377.88, "end": 5379.78, "probability": 0.4929 }, { "start": 5380.02, "end": 5380.22, "probability": 0.5075 }, { "start": 5381.82, "end": 5382.28, "probability": 0.588 }, { "start": 5382.28, "end": 5382.54, "probability": 0.0945 }, { "start": 5383.2, "end": 5384.08, "probability": 0.402 }, { "start": 5385.44, "end": 5386.86, "probability": 0.0967 }, { "start": 5386.86, "end": 5386.86, "probability": 0.3457 }, { "start": 5386.86, "end": 5388.0, "probability": 0.701 }, { "start": 5388.06, "end": 5389.22, "probability": 0.8666 }, { "start": 5389.26, "end": 5390.46, "probability": 0.8252 }, { "start": 5390.48, "end": 5394.14, "probability": 0.881 }, { "start": 5394.36, "end": 5395.3, "probability": 0.7185 }, { "start": 5395.3, "end": 5395.42, "probability": 0.8107 }, { "start": 5395.42, "end": 5396.62, "probability": 0.5043 }, { "start": 5397.4, "end": 5397.77, "probability": 0.1449 }, { "start": 5398.58, "end": 5400.16, "probability": 0.8689 }, { "start": 5400.48, "end": 5403.48, "probability": 0.9491 }, { "start": 5404.12, "end": 5408.36, "probability": 0.8655 }, { "start": 5408.4, "end": 5408.96, "probability": 0.314 }, { "start": 5409.4, "end": 5409.74, "probability": 0.095 }, { "start": 5410.31, "end": 5411.58, "probability": 0.3241 }, { "start": 5412.28, "end": 5414.02, "probability": 0.3514 }, { "start": 5414.08, "end": 5414.96, "probability": 0.319 }, { "start": 5415.74, "end": 5415.76, "probability": 0.7957 }, { "start": 5416.08, "end": 5416.74, "probability": 0.9146 }, { "start": 5416.94, "end": 5417.76, "probability": 0.4062 }, { "start": 5417.8, "end": 5419.6, "probability": 0.8887 }, { "start": 5419.68, "end": 5419.68, "probability": 0.4256 }, { "start": 5419.68, "end": 5419.68, "probability": 0.3468 }, { "start": 5419.68, "end": 5421.08, "probability": 0.7292 }, { "start": 5421.08, "end": 5425.18, "probability": 0.5891 }, { "start": 5425.64, "end": 5427.26, "probability": 0.1292 }, { "start": 5427.5, "end": 5429.38, "probability": 0.5014 }, { "start": 5429.44, "end": 5430.3, "probability": 0.751 }, { "start": 5430.4, "end": 5430.86, "probability": 0.3114 }, { "start": 5431.28, "end": 5432.84, "probability": 0.9103 }, { "start": 5433.02, "end": 5434.2, "probability": 0.9015 }, { "start": 5434.72, "end": 5434.8, "probability": 0.046 }, { "start": 5434.8, "end": 5434.94, "probability": 0.1762 }, { "start": 5435.48, "end": 5435.9, "probability": 0.3415 }, { "start": 5436.28, "end": 5437.09, "probability": 0.2555 }, { "start": 5437.74, "end": 5438.16, "probability": 0.4741 }, { "start": 5438.24, "end": 5438.87, "probability": 0.5442 }, { "start": 5439.4, "end": 5440.3, "probability": 0.5952 }, { "start": 5440.48, "end": 5441.08, "probability": 0.3629 }, { "start": 5442.46, "end": 5447.36, "probability": 0.9543 }, { "start": 5447.5, "end": 5448.14, "probability": 0.5857 }, { "start": 5448.16, "end": 5451.16, "probability": 0.9473 }, { "start": 5451.82, "end": 5453.82, "probability": 0.6885 }, { "start": 5454.64, "end": 5456.62, "probability": 0.7136 }, { "start": 5456.78, "end": 5460.28, "probability": 0.894 }, { "start": 5460.71, "end": 5463.14, "probability": 0.7461 }, { "start": 5463.18, "end": 5465.88, "probability": 0.7739 }, { "start": 5466.14, "end": 5468.26, "probability": 0.8391 }, { "start": 5468.5, "end": 5468.98, "probability": 0.7945 }, { "start": 5469.24, "end": 5470.2, "probability": 0.9088 }, { "start": 5470.34, "end": 5471.58, "probability": 0.9329 }, { "start": 5472.32, "end": 5473.2, "probability": 0.9937 }, { "start": 5475.81, "end": 5480.16, "probability": 0.9908 }, { "start": 5482.7, "end": 5484.3, "probability": 0.95 }, { "start": 5484.4, "end": 5488.36, "probability": 0.9771 }, { "start": 5489.1, "end": 5490.64, "probability": 0.9343 }, { "start": 5492.26, "end": 5493.86, "probability": 0.5823 }, { "start": 5495.22, "end": 5496.11, "probability": 0.583 }, { "start": 5496.46, "end": 5496.68, "probability": 0.8428 }, { "start": 5497.98, "end": 5499.38, "probability": 0.5514 }, { "start": 5500.98, "end": 5503.26, "probability": 0.166 }, { "start": 5504.16, "end": 5505.9, "probability": 0.1169 }, { "start": 5506.7, "end": 5507.24, "probability": 0.9701 }, { "start": 5507.24, "end": 5510.4, "probability": 0.8343 }, { "start": 5510.58, "end": 5513.4, "probability": 0.5553 }, { "start": 5513.4, "end": 5516.58, "probability": 0.9851 }, { "start": 5516.82, "end": 5519.8, "probability": 0.9918 }, { "start": 5519.86, "end": 5520.62, "probability": 0.8215 }, { "start": 5520.7, "end": 5522.37, "probability": 0.9702 }, { "start": 5522.5, "end": 5526.66, "probability": 0.9893 }, { "start": 5527.0, "end": 5528.46, "probability": 0.7801 }, { "start": 5528.52, "end": 5529.0, "probability": 0.9256 }, { "start": 5529.26, "end": 5534.16, "probability": 0.9936 }, { "start": 5535.0, "end": 5536.38, "probability": 0.9575 }, { "start": 5536.48, "end": 5539.84, "probability": 0.9722 }, { "start": 5540.04, "end": 5541.78, "probability": 0.9946 }, { "start": 5542.16, "end": 5547.52, "probability": 0.9871 }, { "start": 5552.96, "end": 5556.64, "probability": 0.9897 }, { "start": 5556.98, "end": 5559.86, "probability": 0.991 }, { "start": 5560.12, "end": 5565.18, "probability": 0.9844 }, { "start": 5565.18, "end": 5569.51, "probability": 0.9883 }, { "start": 5570.36, "end": 5573.76, "probability": 0.9138 }, { "start": 5573.94, "end": 5575.38, "probability": 0.8441 }, { "start": 5575.52, "end": 5575.84, "probability": 0.5714 }, { "start": 5575.9, "end": 5576.94, "probability": 0.7575 }, { "start": 5577.24, "end": 5578.84, "probability": 0.9929 }, { "start": 5579.14, "end": 5580.88, "probability": 0.6155 }, { "start": 5581.48, "end": 5585.16, "probability": 0.8992 }, { "start": 5585.82, "end": 5587.04, "probability": 0.813 }, { "start": 5587.16, "end": 5588.9, "probability": 0.8805 }, { "start": 5589.0, "end": 5592.9, "probability": 0.9746 }, { "start": 5592.98, "end": 5594.02, "probability": 0.8333 }, { "start": 5594.94, "end": 5601.06, "probability": 0.7495 }, { "start": 5601.92, "end": 5602.84, "probability": 0.0214 }, { "start": 5603.64, "end": 5604.96, "probability": 0.0672 }, { "start": 5605.7, "end": 5607.48, "probability": 0.6999 }, { "start": 5608.02, "end": 5610.82, "probability": 0.792 }, { "start": 5611.56, "end": 5613.34, "probability": 0.6677 }, { "start": 5613.44, "end": 5615.76, "probability": 0.0823 }, { "start": 5615.76, "end": 5619.6, "probability": 0.9346 }, { "start": 5619.64, "end": 5625.86, "probability": 0.6626 }, { "start": 5626.2, "end": 5627.42, "probability": 0.4386 }, { "start": 5627.44, "end": 5628.52, "probability": 0.7964 }, { "start": 5628.94, "end": 5630.68, "probability": 0.3501 }, { "start": 5631.64, "end": 5637.1, "probability": 0.9957 }, { "start": 5637.1, "end": 5643.42, "probability": 0.9856 }, { "start": 5643.92, "end": 5646.06, "probability": 0.9829 }, { "start": 5646.26, "end": 5648.48, "probability": 0.8745 }, { "start": 5648.74, "end": 5649.12, "probability": 0.652 }, { "start": 5649.12, "end": 5649.68, "probability": 0.6041 }, { "start": 5649.92, "end": 5651.23, "probability": 0.0293 }, { "start": 5652.78, "end": 5655.16, "probability": 0.2425 }, { "start": 5655.36, "end": 5657.66, "probability": 0.8829 }, { "start": 5657.74, "end": 5658.88, "probability": 0.5059 }, { "start": 5658.96, "end": 5661.34, "probability": 0.4945 }, { "start": 5661.78, "end": 5664.52, "probability": 0.998 }, { "start": 5664.52, "end": 5668.1, "probability": 0.8045 }, { "start": 5668.3, "end": 5670.62, "probability": 0.9973 }, { "start": 5670.84, "end": 5673.06, "probability": 0.9237 }, { "start": 5673.14, "end": 5675.28, "probability": 0.9931 }, { "start": 5675.42, "end": 5676.1, "probability": 0.1659 }, { "start": 5677.0, "end": 5678.08, "probability": 0.0766 }, { "start": 5678.7, "end": 5681.28, "probability": 0.2214 }, { "start": 5685.28, "end": 5686.72, "probability": 0.2621 }, { "start": 5687.64, "end": 5691.24, "probability": 0.3376 }, { "start": 5691.9, "end": 5696.54, "probability": 0.7345 }, { "start": 5696.7, "end": 5697.16, "probability": 0.8073 }, { "start": 5697.38, "end": 5698.72, "probability": 0.8486 }, { "start": 5698.8, "end": 5701.98, "probability": 0.7361 }, { "start": 5702.24, "end": 5705.54, "probability": 0.9368 }, { "start": 5706.04, "end": 5707.38, "probability": 0.8733 }, { "start": 5707.5, "end": 5709.6, "probability": 0.8737 }, { "start": 5709.88, "end": 5715.22, "probability": 0.8252 }, { "start": 5715.42, "end": 5717.46, "probability": 0.98 }, { "start": 5717.64, "end": 5718.76, "probability": 0.9877 }, { "start": 5719.04, "end": 5720.7, "probability": 0.9804 }, { "start": 5720.98, "end": 5725.5, "probability": 0.9815 }, { "start": 5725.5, "end": 5729.38, "probability": 0.981 }, { "start": 5729.6, "end": 5730.98, "probability": 0.9983 }, { "start": 5731.48, "end": 5732.12, "probability": 0.9489 }, { "start": 5732.22, "end": 5732.96, "probability": 0.7514 }, { "start": 5733.24, "end": 5734.8, "probability": 0.9512 }, { "start": 5735.44, "end": 5736.48, "probability": 0.9016 }, { "start": 5737.04, "end": 5737.89, "probability": 0.9933 }, { "start": 5738.72, "end": 5741.32, "probability": 0.9643 }, { "start": 5741.42, "end": 5742.12, "probability": 0.4315 }, { "start": 5742.82, "end": 5743.76, "probability": 0.6741 }, { "start": 5743.8, "end": 5744.58, "probability": 0.8215 }, { "start": 5744.7, "end": 5749.04, "probability": 0.9492 }, { "start": 5749.2, "end": 5753.3, "probability": 0.9946 }, { "start": 5753.74, "end": 5754.69, "probability": 0.8628 }, { "start": 5755.08, "end": 5757.78, "probability": 0.84 }, { "start": 5759.14, "end": 5764.6, "probability": 0.6665 }, { "start": 5764.68, "end": 5766.76, "probability": 0.9203 }, { "start": 5767.0, "end": 5770.32, "probability": 0.9615 }, { "start": 5771.26, "end": 5774.39, "probability": 0.8696 }, { "start": 5775.16, "end": 5779.42, "probability": 0.8345 }, { "start": 5779.86, "end": 5781.38, "probability": 0.7871 }, { "start": 5781.74, "end": 5789.36, "probability": 0.7245 }, { "start": 5789.5, "end": 5792.02, "probability": 0.8732 }, { "start": 5792.68, "end": 5793.38, "probability": 0.4916 }, { "start": 5796.18, "end": 5798.22, "probability": 0.0469 }, { "start": 5799.82, "end": 5800.34, "probability": 0.0077 }, { "start": 5800.66, "end": 5803.0, "probability": 0.7272 }, { "start": 5803.36, "end": 5807.48, "probability": 0.8611 }, { "start": 5808.06, "end": 5809.08, "probability": 0.0245 }, { "start": 5810.16, "end": 5814.96, "probability": 0.2982 }, { "start": 5815.18, "end": 5820.18, "probability": 0.3796 }, { "start": 5820.92, "end": 5821.92, "probability": 0.2587 }, { "start": 5822.24, "end": 5823.24, "probability": 0.2645 }, { "start": 5823.4, "end": 5828.52, "probability": 0.8171 }, { "start": 5828.62, "end": 5832.7, "probability": 0.994 }, { "start": 5832.7, "end": 5836.36, "probability": 0.9982 }, { "start": 5836.36, "end": 5840.66, "probability": 0.9515 }, { "start": 5841.04, "end": 5846.62, "probability": 0.9837 }, { "start": 5847.06, "end": 5849.98, "probability": 0.8544 }, { "start": 5849.98, "end": 5853.52, "probability": 0.9944 }, { "start": 5853.52, "end": 5854.64, "probability": 0.502 }, { "start": 5855.16, "end": 5856.24, "probability": 0.7595 }, { "start": 5857.4, "end": 5859.07, "probability": 0.667 }, { "start": 5859.34, "end": 5862.36, "probability": 0.9702 }, { "start": 5862.44, "end": 5864.63, "probability": 0.877 }, { "start": 5864.92, "end": 5864.94, "probability": 0.0043 }, { "start": 5864.94, "end": 5866.33, "probability": 0.3453 }, { "start": 5866.78, "end": 5870.56, "probability": 0.4018 }, { "start": 5871.2, "end": 5871.2, "probability": 0.0783 }, { "start": 5871.2, "end": 5872.46, "probability": 0.1835 }, { "start": 5872.54, "end": 5875.28, "probability": 0.2022 }, { "start": 5875.36, "end": 5876.07, "probability": 0.8091 }, { "start": 5877.08, "end": 5878.13, "probability": 0.8369 }, { "start": 5878.36, "end": 5878.87, "probability": 0.9181 }, { "start": 5879.32, "end": 5879.66, "probability": 0.4965 }, { "start": 5880.56, "end": 5881.07, "probability": 0.7629 }, { "start": 5881.58, "end": 5883.42, "probability": 0.2785 }, { "start": 5883.54, "end": 5885.2, "probability": 0.1247 }, { "start": 5885.58, "end": 5885.58, "probability": 0.0055 }, { "start": 5885.58, "end": 5886.78, "probability": 0.0543 }, { "start": 5887.52, "end": 5887.52, "probability": 0.4305 }, { "start": 5887.88, "end": 5888.81, "probability": 0.4933 }, { "start": 5889.08, "end": 5891.06, "probability": 0.5059 }, { "start": 5891.24, "end": 5892.19, "probability": 0.3647 }, { "start": 5892.54, "end": 5894.42, "probability": 0.8335 }, { "start": 5894.56, "end": 5898.26, "probability": 0.7463 }, { "start": 5898.26, "end": 5900.82, "probability": 0.9935 }, { "start": 5901.26, "end": 5902.86, "probability": 0.9595 }, { "start": 5902.94, "end": 5904.02, "probability": 0.2119 }, { "start": 5904.18, "end": 5905.05, "probability": 0.9591 }, { "start": 5905.26, "end": 5907.48, "probability": 0.9458 }, { "start": 5907.48, "end": 5908.88, "probability": 0.9398 }, { "start": 5909.06, "end": 5909.76, "probability": 0.6149 }, { "start": 5909.94, "end": 5912.9, "probability": 0.7615 }, { "start": 5912.98, "end": 5914.32, "probability": 0.4503 }, { "start": 5914.44, "end": 5916.4, "probability": 0.3321 }, { "start": 5916.62, "end": 5917.24, "probability": 0.5082 }, { "start": 5917.38, "end": 5919.22, "probability": 0.8458 }, { "start": 5919.62, "end": 5923.6, "probability": 0.9448 }, { "start": 5923.72, "end": 5926.42, "probability": 0.9495 }, { "start": 5926.48, "end": 5928.24, "probability": 0.5336 }, { "start": 5928.28, "end": 5930.16, "probability": 0.9968 }, { "start": 5930.16, "end": 5932.32, "probability": 0.7576 }, { "start": 5932.38, "end": 5933.1, "probability": 0.4384 }, { "start": 5933.28, "end": 5933.56, "probability": 0.7181 }, { "start": 5933.8, "end": 5934.5, "probability": 0.9828 }, { "start": 5934.6, "end": 5938.08, "probability": 0.7293 }, { "start": 5938.34, "end": 5940.1, "probability": 0.8789 }, { "start": 5940.16, "end": 5941.38, "probability": 0.9346 }, { "start": 5941.5, "end": 5942.3, "probability": 0.7019 }, { "start": 5942.3, "end": 5943.26, "probability": 0.9509 }, { "start": 5943.48, "end": 5944.24, "probability": 0.9248 }, { "start": 5944.34, "end": 5945.18, "probability": 0.4736 }, { "start": 5945.3, "end": 5947.51, "probability": 0.695 }, { "start": 5947.76, "end": 5950.14, "probability": 0.0093 }, { "start": 5950.26, "end": 5950.88, "probability": 0.0189 }, { "start": 5950.88, "end": 5950.88, "probability": 0.1074 }, { "start": 5950.88, "end": 5951.92, "probability": 0.1731 }, { "start": 5952.48, "end": 5954.02, "probability": 0.6619 }, { "start": 5954.32, "end": 5955.14, "probability": 0.0829 }, { "start": 5955.2, "end": 5955.94, "probability": 0.4477 }, { "start": 5955.96, "end": 5956.2, "probability": 0.717 }, { "start": 5956.24, "end": 5957.1, "probability": 0.6818 }, { "start": 5957.24, "end": 5961.88, "probability": 0.927 }, { "start": 5961.96, "end": 5962.18, "probability": 0.0547 }, { "start": 5962.18, "end": 5965.0, "probability": 0.9563 }, { "start": 5965.08, "end": 5965.96, "probability": 0.667 }, { "start": 5966.1, "end": 5966.14, "probability": 0.3273 }, { "start": 5966.14, "end": 5967.22, "probability": 0.7337 }, { "start": 5967.34, "end": 5968.08, "probability": 0.7878 }, { "start": 5968.44, "end": 5973.4, "probability": 0.4049 }, { "start": 5973.4, "end": 5974.64, "probability": 0.1658 }, { "start": 5974.66, "end": 5976.58, "probability": 0.2994 }, { "start": 5976.7, "end": 5977.32, "probability": 0.2444 }, { "start": 5977.32, "end": 5977.91, "probability": 0.4629 }, { "start": 5979.3, "end": 5979.68, "probability": 0.7028 }, { "start": 5980.02, "end": 5980.58, "probability": 0.7314 }, { "start": 5980.7, "end": 5983.84, "probability": 0.9454 }, { "start": 5983.98, "end": 5984.92, "probability": 0.6753 }, { "start": 5985.58, "end": 5988.88, "probability": 0.7922 }, { "start": 5989.36, "end": 5990.94, "probability": 0.978 }, { "start": 5991.1, "end": 5991.66, "probability": 0.8586 }, { "start": 5991.72, "end": 5992.8, "probability": 0.9293 }, { "start": 5992.94, "end": 5995.72, "probability": 0.9902 }, { "start": 5996.34, "end": 5999.04, "probability": 0.6575 }, { "start": 5999.28, "end": 6003.84, "probability": 0.9586 }, { "start": 6003.92, "end": 6005.64, "probability": 0.9763 }, { "start": 6005.78, "end": 6008.32, "probability": 0.9936 }, { "start": 6008.4, "end": 6010.58, "probability": 0.9971 }, { "start": 6010.86, "end": 6011.48, "probability": 0.8525 }, { "start": 6011.8, "end": 6015.7, "probability": 0.9451 }, { "start": 6015.72, "end": 6017.24, "probability": 0.9897 }, { "start": 6017.38, "end": 6020.42, "probability": 0.9929 }, { "start": 6020.54, "end": 6022.68, "probability": 0.5791 }, { "start": 6022.7, "end": 6024.1, "probability": 0.7961 }, { "start": 6024.58, "end": 6025.36, "probability": 0.8451 }, { "start": 6026.14, "end": 6026.82, "probability": 0.7729 }, { "start": 6027.21, "end": 6029.98, "probability": 0.6368 }, { "start": 6030.12, "end": 6031.22, "probability": 0.6913 }, { "start": 6031.54, "end": 6032.8, "probability": 0.8702 }, { "start": 6033.46, "end": 6034.48, "probability": 0.7261 }, { "start": 6034.8, "end": 6035.88, "probability": 0.8237 }, { "start": 6036.08, "end": 6037.64, "probability": 0.5071 }, { "start": 6038.2, "end": 6038.92, "probability": 0.3408 }, { "start": 6039.04, "end": 6040.56, "probability": 0.9428 }, { "start": 6040.72, "end": 6043.12, "probability": 0.5086 }, { "start": 6043.42, "end": 6043.7, "probability": 0.6155 }, { "start": 6043.84, "end": 6045.28, "probability": 0.8379 }, { "start": 6046.44, "end": 6048.92, "probability": 0.9827 }, { "start": 6048.92, "end": 6051.5, "probability": 0.8113 }, { "start": 6051.64, "end": 6053.0, "probability": 0.8228 }, { "start": 6065.21, "end": 6065.98, "probability": 0.2054 }, { "start": 6065.98, "end": 6065.98, "probability": 0.1637 }, { "start": 6065.98, "end": 6065.98, "probability": 0.1132 }, { "start": 6065.98, "end": 6065.98, "probability": 0.135 }, { "start": 6065.98, "end": 6065.98, "probability": 0.0572 }, { "start": 6065.98, "end": 6065.98, "probability": 0.0823 }, { "start": 6065.98, "end": 6065.98, "probability": 0.0038 }, { "start": 6065.98, "end": 6065.98, "probability": 0.021 }, { "start": 6065.98, "end": 6067.1, "probability": 0.1417 }, { "start": 6067.5, "end": 6070.66, "probability": 0.466 }, { "start": 6071.24, "end": 6071.76, "probability": 0.0234 }, { "start": 6071.76, "end": 6072.54, "probability": 0.7179 }, { "start": 6072.84, "end": 6073.54, "probability": 0.068 }, { "start": 6073.58, "end": 6079.72, "probability": 0.9543 }, { "start": 6079.72, "end": 6085.48, "probability": 0.9941 }, { "start": 6085.88, "end": 6086.86, "probability": 0.6228 }, { "start": 6086.94, "end": 6087.4, "probability": 0.7586 }, { "start": 6087.58, "end": 6088.02, "probability": 0.917 }, { "start": 6088.34, "end": 6091.92, "probability": 0.9817 }, { "start": 6092.2, "end": 6092.94, "probability": 0.5689 }, { "start": 6093.12, "end": 6095.36, "probability": 0.1197 }, { "start": 6095.68, "end": 6096.9, "probability": 0.5823 }, { "start": 6097.28, "end": 6098.4, "probability": 0.247 }, { "start": 6098.54, "end": 6103.36, "probability": 0.7184 }, { "start": 6103.62, "end": 6106.0, "probability": 0.8687 }, { "start": 6106.14, "end": 6107.36, "probability": 0.4951 }, { "start": 6107.74, "end": 6109.07, "probability": 0.9465 }, { "start": 6109.54, "end": 6111.14, "probability": 0.7688 }, { "start": 6111.26, "end": 6114.05, "probability": 0.8708 }, { "start": 6114.38, "end": 6117.84, "probability": 0.9961 }, { "start": 6117.88, "end": 6118.28, "probability": 0.2537 }, { "start": 6118.28, "end": 6122.38, "probability": 0.9089 }, { "start": 6122.78, "end": 6124.78, "probability": 0.974 }, { "start": 6124.9, "end": 6126.42, "probability": 0.916 }, { "start": 6126.58, "end": 6127.98, "probability": 0.352 }, { "start": 6128.12, "end": 6129.1, "probability": 0.1713 }, { "start": 6129.6, "end": 6130.86, "probability": 0.4974 }, { "start": 6131.26, "end": 6133.24, "probability": 0.7324 }, { "start": 6133.24, "end": 6135.52, "probability": 0.6087 }, { "start": 6136.41, "end": 6138.24, "probability": 0.9181 }, { "start": 6138.4, "end": 6141.4, "probability": 0.9526 }, { "start": 6141.92, "end": 6146.38, "probability": 0.6166 }, { "start": 6146.52, "end": 6148.5, "probability": 0.8638 }, { "start": 6149.02, "end": 6149.62, "probability": 0.8945 }, { "start": 6151.7, "end": 6152.18, "probability": 0.0365 }, { "start": 6153.12, "end": 6154.04, "probability": 0.2538 }, { "start": 6154.56, "end": 6157.18, "probability": 0.4631 }, { "start": 6157.36, "end": 6160.62, "probability": 0.7337 }, { "start": 6160.62, "end": 6163.48, "probability": 0.5742 }, { "start": 6163.86, "end": 6164.48, "probability": 0.1869 }, { "start": 6164.6, "end": 6166.18, "probability": 0.8536 }, { "start": 6166.38, "end": 6167.12, "probability": 0.5627 }, { "start": 6167.44, "end": 6168.74, "probability": 0.4544 }, { "start": 6168.84, "end": 6169.72, "probability": 0.6647 }, { "start": 6169.82, "end": 6174.3, "probability": 0.6406 }, { "start": 6174.3, "end": 6176.52, "probability": 0.9574 }, { "start": 6176.64, "end": 6178.18, "probability": 0.7267 }, { "start": 6178.54, "end": 6179.2, "probability": 0.0273 }, { "start": 6179.4, "end": 6180.54, "probability": 0.7119 }, { "start": 6180.62, "end": 6181.34, "probability": 0.4993 }, { "start": 6181.48, "end": 6184.92, "probability": 0.8576 }, { "start": 6185.52, "end": 6186.06, "probability": 0.3882 }, { "start": 6186.12, "end": 6189.0, "probability": 0.1117 }, { "start": 6189.12, "end": 6189.5, "probability": 0.8188 }, { "start": 6189.68, "end": 6192.58, "probability": 0.825 }, { "start": 6192.7, "end": 6193.2, "probability": 0.2623 }, { "start": 6193.28, "end": 6195.34, "probability": 0.9448 }, { "start": 6195.42, "end": 6198.12, "probability": 0.8145 }, { "start": 6198.36, "end": 6200.18, "probability": 0.5626 }, { "start": 6200.46, "end": 6201.92, "probability": 0.5016 }, { "start": 6202.0, "end": 6202.71, "probability": 0.812 }, { "start": 6203.24, "end": 6204.84, "probability": 0.75 }, { "start": 6205.08, "end": 6206.64, "probability": 0.7262 }, { "start": 6206.74, "end": 6208.62, "probability": 0.9434 }, { "start": 6208.62, "end": 6210.38, "probability": 0.9277 }, { "start": 6210.56, "end": 6215.46, "probability": 0.811 }, { "start": 6215.88, "end": 6219.34, "probability": 0.9427 }, { "start": 6219.78, "end": 6223.94, "probability": 0.9264 }, { "start": 6224.18, "end": 6225.1, "probability": 0.9618 }, { "start": 6225.42, "end": 6228.92, "probability": 0.8848 }, { "start": 6229.34, "end": 6229.8, "probability": 0.596 }, { "start": 6229.86, "end": 6231.64, "probability": 0.7911 }, { "start": 6231.88, "end": 6232.38, "probability": 0.6787 }, { "start": 6233.63, "end": 6235.9, "probability": 0.8611 }, { "start": 6236.66, "end": 6236.66, "probability": 0.1182 }, { "start": 6236.66, "end": 6236.92, "probability": 0.0129 }, { "start": 6236.92, "end": 6237.26, "probability": 0.4666 }, { "start": 6237.46, "end": 6239.98, "probability": 0.8771 }, { "start": 6240.02, "end": 6240.34, "probability": 0.844 }, { "start": 6240.38, "end": 6241.64, "probability": 0.9666 }, { "start": 6242.36, "end": 6243.9, "probability": 0.769 }, { "start": 6244.56, "end": 6247.36, "probability": 0.9932 }, { "start": 6247.38, "end": 6248.22, "probability": 0.4177 }, { "start": 6248.26, "end": 6249.78, "probability": 0.7596 }, { "start": 6249.92, "end": 6250.58, "probability": 0.0175 }, { "start": 6250.58, "end": 6250.58, "probability": 0.0747 }, { "start": 6250.82, "end": 6251.68, "probability": 0.6897 }, { "start": 6251.82, "end": 6252.76, "probability": 0.4628 }, { "start": 6252.96, "end": 6255.78, "probability": 0.99 }, { "start": 6255.86, "end": 6255.98, "probability": 0.114 }, { "start": 6255.98, "end": 6256.46, "probability": 0.0142 }, { "start": 6256.72, "end": 6257.82, "probability": 0.1949 }, { "start": 6258.34, "end": 6260.02, "probability": 0.0086 }, { "start": 6261.78, "end": 6262.38, "probability": 0.0575 }, { "start": 6263.58, "end": 6265.9, "probability": 0.7897 }, { "start": 6265.96, "end": 6270.24, "probability": 0.9988 }, { "start": 6270.56, "end": 6271.36, "probability": 0.7872 }, { "start": 6271.56, "end": 6272.06, "probability": 0.3266 }, { "start": 6272.72, "end": 6276.5, "probability": 0.298 }, { "start": 6276.56, "end": 6277.26, "probability": 0.7234 }, { "start": 6277.36, "end": 6279.24, "probability": 0.4719 }, { "start": 6280.27, "end": 6281.24, "probability": 0.5419 }, { "start": 6281.52, "end": 6284.54, "probability": 0.7466 }, { "start": 6284.6, "end": 6286.22, "probability": 0.3629 }, { "start": 6286.86, "end": 6289.76, "probability": 0.2956 }, { "start": 6291.34, "end": 6294.98, "probability": 0.7075 }, { "start": 6295.12, "end": 6295.88, "probability": 0.8029 }, { "start": 6296.26, "end": 6298.32, "probability": 0.8449 }, { "start": 6298.36, "end": 6298.8, "probability": 0.5331 }, { "start": 6298.86, "end": 6300.1, "probability": 0.8674 }, { "start": 6300.2, "end": 6301.7, "probability": 0.9646 }, { "start": 6301.72, "end": 6302.24, "probability": 0.1575 }, { "start": 6302.58, "end": 6305.86, "probability": 0.6824 }, { "start": 6305.95, "end": 6307.76, "probability": 0.6071 }, { "start": 6307.84, "end": 6308.66, "probability": 0.7072 }, { "start": 6308.72, "end": 6313.78, "probability": 0.9945 }, { "start": 6314.5, "end": 6315.46, "probability": 0.6777 }, { "start": 6315.56, "end": 6317.16, "probability": 0.9437 }, { "start": 6317.38, "end": 6319.24, "probability": 0.8961 }, { "start": 6319.68, "end": 6320.68, "probability": 0.7922 }, { "start": 6320.76, "end": 6321.9, "probability": 0.8838 }, { "start": 6323.34, "end": 6324.18, "probability": 0.8679 }, { "start": 6324.3, "end": 6324.8, "probability": 0.7819 }, { "start": 6324.96, "end": 6327.86, "probability": 0.8655 }, { "start": 6327.94, "end": 6328.42, "probability": 0.7626 }, { "start": 6329.26, "end": 6330.12, "probability": 0.8454 }, { "start": 6330.24, "end": 6332.86, "probability": 0.998 }, { "start": 6332.96, "end": 6335.44, "probability": 0.9817 }, { "start": 6336.16, "end": 6338.92, "probability": 0.9718 }, { "start": 6339.04, "end": 6341.36, "probability": 0.0242 }, { "start": 6342.5, "end": 6343.34, "probability": 0.799 }, { "start": 6344.04, "end": 6345.14, "probability": 0.7888 }, { "start": 6346.86, "end": 6351.82, "probability": 0.1445 }, { "start": 6354.71, "end": 6354.88, "probability": 0.0646 }, { "start": 6354.88, "end": 6354.96, "probability": 0.3618 }, { "start": 6354.96, "end": 6354.96, "probability": 0.0847 }, { "start": 6354.96, "end": 6355.32, "probability": 0.4861 }, { "start": 6355.32, "end": 6356.08, "probability": 0.5814 }, { "start": 6356.46, "end": 6357.76, "probability": 0.9016 }, { "start": 6357.88, "end": 6360.12, "probability": 0.813 }, { "start": 6360.12, "end": 6362.62, "probability": 0.9944 }, { "start": 6363.1, "end": 6365.44, "probability": 0.9841 }, { "start": 6365.54, "end": 6367.7, "probability": 0.7994 }, { "start": 6367.8, "end": 6368.12, "probability": 0.8012 }, { "start": 6368.14, "end": 6371.02, "probability": 0.9765 }, { "start": 6371.14, "end": 6371.82, "probability": 0.421 }, { "start": 6372.44, "end": 6374.82, "probability": 0.253 }, { "start": 6374.82, "end": 6378.14, "probability": 0.9522 }, { "start": 6378.26, "end": 6380.38, "probability": 0.0984 }, { "start": 6380.74, "end": 6381.06, "probability": 0.234 }, { "start": 6381.38, "end": 6384.24, "probability": 0.4484 }, { "start": 6384.42, "end": 6385.08, "probability": 0.7517 }, { "start": 6385.2, "end": 6387.18, "probability": 0.9888 }, { "start": 6387.42, "end": 6388.5, "probability": 0.5938 }, { "start": 6388.58, "end": 6389.5, "probability": 0.3995 }, { "start": 6389.96, "end": 6390.82, "probability": 0.8761 }, { "start": 6391.4, "end": 6394.58, "probability": 0.9761 }, { "start": 6394.66, "end": 6399.1, "probability": 0.9789 }, { "start": 6401.52, "end": 6401.8, "probability": 0.2695 }, { "start": 6401.8, "end": 6403.42, "probability": 0.4595 }, { "start": 6403.86, "end": 6405.42, "probability": 0.9941 }, { "start": 6406.28, "end": 6409.62, "probability": 0.8425 }, { "start": 6410.16, "end": 6413.3, "probability": 0.989 }, { "start": 6413.46, "end": 6414.88, "probability": 0.7973 }, { "start": 6415.34, "end": 6419.12, "probability": 0.9667 }, { "start": 6419.5, "end": 6420.8, "probability": 0.9122 }, { "start": 6421.0, "end": 6422.82, "probability": 0.9759 }, { "start": 6423.18, "end": 6423.9, "probability": 0.686 }, { "start": 6424.52, "end": 6427.66, "probability": 0.8951 }, { "start": 6440.84, "end": 6443.76, "probability": 0.9953 }, { "start": 6444.42, "end": 6444.46, "probability": 0.0925 }, { "start": 6444.46, "end": 6448.04, "probability": 0.9341 }, { "start": 6448.5, "end": 6450.84, "probability": 0.9985 }, { "start": 6451.5, "end": 6453.5, "probability": 0.9221 }, { "start": 6453.66, "end": 6455.14, "probability": 0.9374 }, { "start": 6456.06, "end": 6458.2, "probability": 0.7711 }, { "start": 6458.34, "end": 6461.82, "probability": 0.9111 }, { "start": 6461.92, "end": 6465.12, "probability": 0.9902 }, { "start": 6465.16, "end": 6466.82, "probability": 0.9899 }, { "start": 6467.36, "end": 6471.64, "probability": 0.9945 }, { "start": 6472.06, "end": 6475.28, "probability": 0.8031 }, { "start": 6475.42, "end": 6477.58, "probability": 0.9857 }, { "start": 6478.06, "end": 6478.62, "probability": 0.5368 }, { "start": 6479.02, "end": 6479.04, "probability": 0.5048 }, { "start": 6479.18, "end": 6480.2, "probability": 0.8748 }, { "start": 6480.36, "end": 6485.7, "probability": 0.9869 }, { "start": 6486.5, "end": 6487.22, "probability": 0.5146 }, { "start": 6487.58, "end": 6487.74, "probability": 0.5091 }, { "start": 6487.74, "end": 6489.26, "probability": 0.9521 }, { "start": 6489.36, "end": 6491.06, "probability": 0.9913 }, { "start": 6491.28, "end": 6495.37, "probability": 0.8919 }, { "start": 6495.98, "end": 6499.36, "probability": 0.9663 }, { "start": 6499.5, "end": 6501.96, "probability": 0.9739 }, { "start": 6502.26, "end": 6505.62, "probability": 0.8137 }, { "start": 6506.32, "end": 6509.12, "probability": 0.9712 }, { "start": 6509.64, "end": 6511.7, "probability": 0.6123 }, { "start": 6512.4, "end": 6514.34, "probability": 0.9578 }, { "start": 6518.77, "end": 6522.86, "probability": 0.6897 }, { "start": 6523.52, "end": 6528.54, "probability": 0.9788 }, { "start": 6529.27, "end": 6533.3, "probability": 0.8453 }, { "start": 6533.44, "end": 6536.58, "probability": 0.9681 }, { "start": 6536.68, "end": 6538.04, "probability": 0.8946 }, { "start": 6538.1, "end": 6538.58, "probability": 0.4706 }, { "start": 6538.74, "end": 6543.49, "probability": 0.8174 }, { "start": 6544.52, "end": 6547.1, "probability": 0.1656 }, { "start": 6548.04, "end": 6548.26, "probability": 0.0097 }, { "start": 6551.6, "end": 6554.62, "probability": 0.7897 }, { "start": 6554.72, "end": 6558.56, "probability": 0.9823 }, { "start": 6558.82, "end": 6561.82, "probability": 0.9867 }, { "start": 6562.24, "end": 6563.48, "probability": 0.9902 }, { "start": 6563.62, "end": 6565.42, "probability": 0.9549 }, { "start": 6565.44, "end": 6566.09, "probability": 0.8555 }, { "start": 6567.64, "end": 6572.48, "probability": 0.9981 }, { "start": 6572.48, "end": 6575.96, "probability": 0.9965 }, { "start": 6576.7, "end": 6578.7, "probability": 0.8257 }, { "start": 6579.26, "end": 6580.12, "probability": 0.5566 }, { "start": 6580.4, "end": 6586.38, "probability": 0.9336 }, { "start": 6587.92, "end": 6596.34, "probability": 0.9836 }, { "start": 6596.42, "end": 6597.78, "probability": 0.96 }, { "start": 6597.9, "end": 6598.42, "probability": 0.6333 }, { "start": 6598.52, "end": 6601.32, "probability": 0.7068 }, { "start": 6601.6, "end": 6602.62, "probability": 0.7077 }, { "start": 6602.82, "end": 6607.08, "probability": 0.9922 }, { "start": 6607.56, "end": 6609.14, "probability": 0.8958 }, { "start": 6609.22, "end": 6611.08, "probability": 0.5438 }, { "start": 6611.2, "end": 6613.9, "probability": 0.9697 }, { "start": 6613.9, "end": 6616.24, "probability": 0.9764 }, { "start": 6616.78, "end": 6621.42, "probability": 0.9927 }, { "start": 6621.42, "end": 6624.84, "probability": 0.9841 }, { "start": 6625.26, "end": 6627.66, "probability": 0.6561 }, { "start": 6627.76, "end": 6631.24, "probability": 0.9896 }, { "start": 6631.3, "end": 6631.56, "probability": 0.6979 }, { "start": 6631.76, "end": 6632.48, "probability": 0.5054 }, { "start": 6632.92, "end": 6636.96, "probability": 0.9943 }, { "start": 6637.28, "end": 6638.0, "probability": 0.8561 }, { "start": 6638.06, "end": 6639.44, "probability": 0.922 }, { "start": 6639.84, "end": 6642.96, "probability": 0.9828 }, { "start": 6642.96, "end": 6647.0, "probability": 0.9807 }, { "start": 6647.66, "end": 6650.0, "probability": 0.856 }, { "start": 6650.24, "end": 6653.16, "probability": 0.9895 }, { "start": 6653.4, "end": 6653.54, "probability": 0.2984 }, { "start": 6653.62, "end": 6658.9, "probability": 0.9925 }, { "start": 6659.6, "end": 6662.74, "probability": 0.949 }, { "start": 6663.22, "end": 6665.0, "probability": 0.9501 }, { "start": 6665.02, "end": 6669.78, "probability": 0.9989 }, { "start": 6669.78, "end": 6677.02, "probability": 0.9953 }, { "start": 6678.08, "end": 6679.64, "probability": 0.6 }, { "start": 6680.66, "end": 6682.34, "probability": 0.9701 }, { "start": 6682.44, "end": 6685.86, "probability": 0.8908 }, { "start": 6686.0, "end": 6686.66, "probability": 0.6524 }, { "start": 6687.44, "end": 6692.06, "probability": 0.9784 }, { "start": 6692.22, "end": 6698.12, "probability": 0.997 }, { "start": 6698.12, "end": 6703.98, "probability": 0.985 }, { "start": 6706.8, "end": 6712.62, "probability": 0.9972 }, { "start": 6713.0, "end": 6716.76, "probability": 0.9895 }, { "start": 6717.68, "end": 6718.14, "probability": 0.5287 }, { "start": 6718.18, "end": 6719.32, "probability": 0.9662 }, { "start": 6719.44, "end": 6725.82, "probability": 0.9937 }, { "start": 6725.82, "end": 6733.48, "probability": 0.9945 }, { "start": 6734.18, "end": 6735.9, "probability": 0.8014 }, { "start": 6736.48, "end": 6737.42, "probability": 0.9146 }, { "start": 6737.71, "end": 6745.26, "probability": 0.9404 }, { "start": 6745.26, "end": 6752.24, "probability": 0.9966 }, { "start": 6752.48, "end": 6756.41, "probability": 0.861 }, { "start": 6758.1, "end": 6765.94, "probability": 0.9513 }, { "start": 6766.5, "end": 6768.96, "probability": 0.9805 }, { "start": 6770.88, "end": 6773.88, "probability": 0.9067 }, { "start": 6774.62, "end": 6775.58, "probability": 0.9542 }, { "start": 6776.12, "end": 6779.26, "probability": 0.7036 }, { "start": 6779.32, "end": 6782.62, "probability": 0.705 }, { "start": 6783.04, "end": 6783.18, "probability": 0.0433 }, { "start": 6783.32, "end": 6784.98, "probability": 0.6329 }, { "start": 6789.65, "end": 6793.56, "probability": 0.9318 }, { "start": 6793.74, "end": 6797.96, "probability": 0.8635 }, { "start": 6798.56, "end": 6799.78, "probability": 0.2234 }, { "start": 6803.98, "end": 6805.08, "probability": 0.5239 }, { "start": 6811.38, "end": 6813.3, "probability": 0.998 }, { "start": 6813.44, "end": 6814.92, "probability": 0.5027 }, { "start": 6817.28, "end": 6821.88, "probability": 0.9666 }, { "start": 6823.16, "end": 6825.16, "probability": 0.9945 }, { "start": 6825.32, "end": 6829.84, "probability": 0.7102 }, { "start": 6829.88, "end": 6832.12, "probability": 0.9829 }, { "start": 6832.8, "end": 6835.74, "probability": 0.9291 }, { "start": 6835.8, "end": 6837.74, "probability": 0.7318 }, { "start": 6837.78, "end": 6838.16, "probability": 0.7904 }, { "start": 6838.28, "end": 6842.47, "probability": 0.9706 }, { "start": 6842.74, "end": 6844.78, "probability": 0.8659 }, { "start": 6845.4, "end": 6849.64, "probability": 0.9888 }, { "start": 6850.16, "end": 6853.6, "probability": 0.9905 }, { "start": 6853.96, "end": 6857.24, "probability": 0.9982 }, { "start": 6857.48, "end": 6861.16, "probability": 0.9453 }, { "start": 6862.08, "end": 6864.74, "probability": 0.9575 }, { "start": 6864.96, "end": 6868.74, "probability": 0.9598 }, { "start": 6868.78, "end": 6869.72, "probability": 0.7515 }, { "start": 6870.44, "end": 6871.48, "probability": 0.7372 }, { "start": 6871.74, "end": 6874.04, "probability": 0.9916 }, { "start": 6874.66, "end": 6877.38, "probability": 0.4559 }, { "start": 6877.68, "end": 6877.68, "probability": 0.0478 }, { "start": 6877.68, "end": 6877.68, "probability": 0.22 }, { "start": 6877.68, "end": 6881.48, "probability": 0.8646 }, { "start": 6881.66, "end": 6884.6, "probability": 0.8913 }, { "start": 6884.74, "end": 6886.8, "probability": 0.9957 }, { "start": 6886.8, "end": 6889.02, "probability": 0.9856 }, { "start": 6889.58, "end": 6895.42, "probability": 0.9606 }, { "start": 6895.42, "end": 6900.48, "probability": 0.9972 }, { "start": 6900.82, "end": 6904.85, "probability": 0.6214 }, { "start": 6905.06, "end": 6905.24, "probability": 0.0648 }, { "start": 6905.24, "end": 6907.93, "probability": 0.9228 }, { "start": 6908.74, "end": 6912.92, "probability": 0.9895 }, { "start": 6913.1, "end": 6915.78, "probability": 0.9829 }, { "start": 6917.42, "end": 6917.82, "probability": 0.8083 }, { "start": 6917.86, "end": 6918.54, "probability": 0.9448 }, { "start": 6919.02, "end": 6923.46, "probability": 0.9305 }, { "start": 6923.88, "end": 6925.22, "probability": 0.8762 }, { "start": 6925.88, "end": 6927.84, "probability": 0.9124 }, { "start": 6928.38, "end": 6931.24, "probability": 0.7833 }, { "start": 6932.26, "end": 6938.86, "probability": 0.9919 }, { "start": 6938.98, "end": 6941.52, "probability": 0.9985 }, { "start": 6941.52, "end": 6944.56, "probability": 0.9983 }, { "start": 6945.2, "end": 6946.78, "probability": 0.9623 }, { "start": 6946.94, "end": 6949.56, "probability": 0.9852 }, { "start": 6950.72, "end": 6950.98, "probability": 0.7238 }, { "start": 6951.1, "end": 6957.06, "probability": 0.917 }, { "start": 6957.06, "end": 6960.26, "probability": 0.9978 }, { "start": 6960.42, "end": 6961.59, "probability": 0.9937 }, { "start": 6962.44, "end": 6963.04, "probability": 0.7311 }, { "start": 6963.1, "end": 6966.64, "probability": 0.8155 }, { "start": 6967.08, "end": 6968.64, "probability": 0.7888 }, { "start": 6968.7, "end": 6973.42, "probability": 0.8435 }, { "start": 6973.5, "end": 6974.68, "probability": 0.9559 }, { "start": 6975.58, "end": 6976.98, "probability": 0.4307 }, { "start": 6977.22, "end": 6980.3, "probability": 0.5521 }, { "start": 6980.36, "end": 6987.22, "probability": 0.9948 }, { "start": 6987.78, "end": 6987.98, "probability": 0.3314 }, { "start": 6988.08, "end": 6989.46, "probability": 0.277 }, { "start": 6989.48, "end": 6989.94, "probability": 0.3626 }, { "start": 6989.94, "end": 6989.98, "probability": 0.5289 }, { "start": 6990.14, "end": 6994.76, "probability": 0.9766 }, { "start": 6995.72, "end": 7001.68, "probability": 0.9853 }, { "start": 7001.78, "end": 7002.88, "probability": 0.9956 }, { "start": 7004.08, "end": 7004.24, "probability": 0.2599 }, { "start": 7005.36, "end": 7006.12, "probability": 0.6353 }, { "start": 7006.22, "end": 7009.78, "probability": 0.9582 }, { "start": 7017.66, "end": 7017.82, "probability": 0.0604 }, { "start": 7017.92, "end": 7021.38, "probability": 0.9618 }, { "start": 7022.14, "end": 7024.09, "probability": 0.9954 }, { "start": 7024.18, "end": 7025.34, "probability": 0.9941 }, { "start": 7025.58, "end": 7027.76, "probability": 0.9676 }, { "start": 7028.32, "end": 7029.52, "probability": 0.3284 }, { "start": 7030.06, "end": 7030.06, "probability": 0.0447 }, { "start": 7030.06, "end": 7034.58, "probability": 0.8737 }, { "start": 7034.88, "end": 7037.0, "probability": 0.9889 }, { "start": 7037.24, "end": 7037.9, "probability": 0.5582 }, { "start": 7037.9, "end": 7038.36, "probability": 0.5451 }, { "start": 7038.48, "end": 7040.57, "probability": 0.9676 }, { "start": 7040.9, "end": 7044.58, "probability": 0.974 }, { "start": 7044.76, "end": 7045.0, "probability": 0.0349 }, { "start": 7045.0, "end": 7045.0, "probability": 0.0825 }, { "start": 7045.0, "end": 7045.04, "probability": 0.2291 }, { "start": 7045.37, "end": 7049.98, "probability": 0.9974 }, { "start": 7050.2, "end": 7051.9, "probability": 0.6915 }, { "start": 7052.76, "end": 7055.48, "probability": 0.7413 }, { "start": 7055.52, "end": 7057.92, "probability": 0.9753 }, { "start": 7058.44, "end": 7059.74, "probability": 0.738 }, { "start": 7059.74, "end": 7059.9, "probability": 0.1232 }, { "start": 7059.9, "end": 7062.3, "probability": 0.7985 }, { "start": 7062.42, "end": 7063.08, "probability": 0.3611 }, { "start": 7063.08, "end": 7065.4, "probability": 0.7812 }, { "start": 7067.42, "end": 7067.42, "probability": 0.0007 }, { "start": 7069.12, "end": 7069.82, "probability": 0.0026 }, { "start": 7069.82, "end": 7069.84, "probability": 0.0577 }, { "start": 7069.84, "end": 7069.92, "probability": 0.0426 }, { "start": 7069.92, "end": 7069.92, "probability": 0.0894 }, { "start": 7069.92, "end": 7070.8, "probability": 0.5223 }, { "start": 7070.86, "end": 7072.68, "probability": 0.9772 }, { "start": 7072.76, "end": 7081.28, "probability": 0.9834 }, { "start": 7083.04, "end": 7085.56, "probability": 0.9368 }, { "start": 7085.67, "end": 7087.8, "probability": 0.4136 }, { "start": 7087.98, "end": 7088.32, "probability": 0.3539 }, { "start": 7088.36, "end": 7089.88, "probability": 0.9833 }, { "start": 7090.31, "end": 7090.58, "probability": 0.1494 }, { "start": 7090.6, "end": 7090.78, "probability": 0.3272 }, { "start": 7090.98, "end": 7091.26, "probability": 0.1376 }, { "start": 7091.26, "end": 7092.58, "probability": 0.415 }, { "start": 7092.7, "end": 7096.3, "probability": 0.9161 }, { "start": 7096.3, "end": 7099.7, "probability": 0.9873 }, { "start": 7100.06, "end": 7102.1, "probability": 0.9266 }, { "start": 7102.46, "end": 7106.04, "probability": 0.984 }, { "start": 7106.2, "end": 7106.96, "probability": 0.9437 }, { "start": 7107.46, "end": 7109.86, "probability": 0.7931 }, { "start": 7110.4, "end": 7113.08, "probability": 0.8884 }, { "start": 7113.22, "end": 7114.22, "probability": 0.5512 }, { "start": 7115.06, "end": 7116.28, "probability": 0.7627 }, { "start": 7116.52, "end": 7120.8, "probability": 0.9622 }, { "start": 7120.94, "end": 7122.32, "probability": 0.9207 }, { "start": 7122.32, "end": 7122.46, "probability": 0.1124 }, { "start": 7123.66, "end": 7124.5, "probability": 0.2548 }, { "start": 7124.66, "end": 7127.22, "probability": 0.5195 }, { "start": 7127.22, "end": 7129.62, "probability": 0.7584 }, { "start": 7129.92, "end": 7130.54, "probability": 0.7143 }, { "start": 7130.64, "end": 7131.98, "probability": 0.6233 }, { "start": 7132.02, "end": 7133.36, "probability": 0.8402 }, { "start": 7133.74, "end": 7135.78, "probability": 0.3464 }, { "start": 7136.04, "end": 7137.48, "probability": 0.138 }, { "start": 7137.54, "end": 7141.7, "probability": 0.799 }, { "start": 7142.46, "end": 7144.66, "probability": 0.5195 }, { "start": 7144.7, "end": 7145.98, "probability": 0.9858 }, { "start": 7146.04, "end": 7149.45, "probability": 0.4731 }, { "start": 7151.62, "end": 7156.8, "probability": 0.7315 }, { "start": 7156.8, "end": 7162.8, "probability": 0.9842 }, { "start": 7163.26, "end": 7165.34, "probability": 0.6642 }, { "start": 7165.46, "end": 7167.42, "probability": 0.8848 }, { "start": 7167.66, "end": 7168.2, "probability": 0.7816 }, { "start": 7168.3, "end": 7174.64, "probability": 0.7882 }, { "start": 7174.68, "end": 7178.22, "probability": 0.9492 }, { "start": 7180.14, "end": 7182.18, "probability": 0.8539 }, { "start": 7182.46, "end": 7183.46, "probability": 0.7933 }, { "start": 7183.48, "end": 7190.58, "probability": 0.9646 }, { "start": 7191.18, "end": 7192.56, "probability": 0.7173 }, { "start": 7192.72, "end": 7193.5, "probability": 0.9259 }, { "start": 7193.66, "end": 7196.98, "probability": 0.9649 }, { "start": 7196.98, "end": 7199.54, "probability": 0.6442 }, { "start": 7200.02, "end": 7201.36, "probability": 0.9182 }, { "start": 7201.96, "end": 7202.38, "probability": 0.4954 }, { "start": 7202.56, "end": 7203.22, "probability": 0.9045 }, { "start": 7203.74, "end": 7203.96, "probability": 0.7361 }, { "start": 7204.62, "end": 7209.18, "probability": 0.9938 }, { "start": 7209.7, "end": 7214.58, "probability": 0.976 }, { "start": 7214.58, "end": 7218.56, "probability": 0.9514 }, { "start": 7219.52, "end": 7221.98, "probability": 0.9243 }, { "start": 7222.18, "end": 7224.6, "probability": 0.8923 }, { "start": 7224.6, "end": 7225.46, "probability": 0.8711 }, { "start": 7225.56, "end": 7228.44, "probability": 0.8402 }, { "start": 7229.5, "end": 7229.96, "probability": 0.8375 }, { "start": 7230.06, "end": 7233.32, "probability": 0.9628 }, { "start": 7241.02, "end": 7244.54, "probability": 0.8013 }, { "start": 7245.16, "end": 7246.0, "probability": 0.7731 }, { "start": 7246.2, "end": 7247.58, "probability": 0.9967 }, { "start": 7247.76, "end": 7248.0, "probability": 0.894 }, { "start": 7248.94, "end": 7251.36, "probability": 0.9081 }, { "start": 7252.08, "end": 7256.58, "probability": 0.9859 }, { "start": 7260.14, "end": 7261.85, "probability": 0.6692 }, { "start": 7262.44, "end": 7263.48, "probability": 0.9183 }, { "start": 7267.78, "end": 7268.14, "probability": 0.5131 }, { "start": 7268.94, "end": 7269.84, "probability": 0.7634 }, { "start": 7269.98, "end": 7275.3, "probability": 0.9929 }, { "start": 7281.14, "end": 7281.8, "probability": 0.2499 }, { "start": 7282.42, "end": 7284.44, "probability": 0.9612 }, { "start": 7284.44, "end": 7286.88, "probability": 0.9958 }, { "start": 7288.38, "end": 7289.36, "probability": 0.5579 }, { "start": 7289.78, "end": 7290.48, "probability": 0.936 }, { "start": 7291.05, "end": 7298.94, "probability": 0.9948 }, { "start": 7299.08, "end": 7299.96, "probability": 0.9409 }, { "start": 7301.2, "end": 7304.34, "probability": 0.9575 }, { "start": 7305.2, "end": 7307.32, "probability": 0.8804 }, { "start": 7307.78, "end": 7318.86, "probability": 0.9953 }, { "start": 7318.94, "end": 7321.41, "probability": 0.7272 }, { "start": 7322.92, "end": 7323.44, "probability": 0.8889 }, { "start": 7323.54, "end": 7324.22, "probability": 0.6606 }, { "start": 7324.4, "end": 7329.16, "probability": 0.8479 }, { "start": 7329.26, "end": 7329.4, "probability": 0.4467 }, { "start": 7330.06, "end": 7330.96, "probability": 0.8121 }, { "start": 7331.85, "end": 7336.66, "probability": 0.9084 }, { "start": 7346.54, "end": 7349.22, "probability": 0.8667 }, { "start": 7349.28, "end": 7351.32, "probability": 0.9943 }, { "start": 7352.04, "end": 7353.34, "probability": 0.7671 }, { "start": 7354.41, "end": 7356.34, "probability": 0.5369 }, { "start": 7356.34, "end": 7357.98, "probability": 0.8507 }, { "start": 7358.02, "end": 7358.8, "probability": 0.8145 }, { "start": 7358.94, "end": 7361.58, "probability": 0.9905 }, { "start": 7362.32, "end": 7363.32, "probability": 0.7281 }, { "start": 7363.94, "end": 7365.6, "probability": 0.5805 }, { "start": 7365.62, "end": 7368.28, "probability": 0.9435 }, { "start": 7368.3, "end": 7368.82, "probability": 0.7847 }, { "start": 7368.9, "end": 7369.62, "probability": 0.8785 }, { "start": 7370.14, "end": 7372.18, "probability": 0.6893 }, { "start": 7373.64, "end": 7374.44, "probability": 0.006 }, { "start": 7388.94, "end": 7390.46, "probability": 0.7079 }, { "start": 7399.4, "end": 7400.12, "probability": 0.0056 }, { "start": 7400.24, "end": 7401.64, "probability": 0.8144 }, { "start": 7404.12, "end": 7408.82, "probability": 0.7238 }, { "start": 7409.26, "end": 7413.22, "probability": 0.9066 }, { "start": 7415.06, "end": 7420.06, "probability": 0.9565 }, { "start": 7420.9, "end": 7422.98, "probability": 0.9617 }, { "start": 7422.98, "end": 7423.5, "probability": 0.6742 }, { "start": 7424.2, "end": 7426.2, "probability": 0.5341 }, { "start": 7426.36, "end": 7428.44, "probability": 0.6066 }, { "start": 7428.48, "end": 7429.02, "probability": 0.5029 }, { "start": 7429.1, "end": 7429.1, "probability": 0.5356 }, { "start": 7429.1, "end": 7431.64, "probability": 0.9349 }, { "start": 7434.34, "end": 7436.2, "probability": 0.8724 }, { "start": 7438.42, "end": 7441.4, "probability": 0.9418 }, { "start": 7442.56, "end": 7443.92, "probability": 0.9053 }, { "start": 7443.98, "end": 7448.74, "probability": 0.9809 }, { "start": 7448.74, "end": 7452.24, "probability": 0.9998 }, { "start": 7452.44, "end": 7452.8, "probability": 0.5259 }, { "start": 7452.88, "end": 7454.52, "probability": 0.9905 }, { "start": 7455.42, "end": 7456.52, "probability": 0.9934 }, { "start": 7456.68, "end": 7458.24, "probability": 0.9542 }, { "start": 7458.32, "end": 7461.08, "probability": 0.9982 }, { "start": 7462.38, "end": 7468.74, "probability": 0.9456 }, { "start": 7468.94, "end": 7470.72, "probability": 0.9613 }, { "start": 7470.88, "end": 7471.04, "probability": 0.8796 }, { "start": 7471.16, "end": 7472.05, "probability": 0.9263 }, { "start": 7472.36, "end": 7475.22, "probability": 0.9893 }, { "start": 7475.9, "end": 7479.92, "probability": 0.7855 }, { "start": 7480.94, "end": 7485.34, "probability": 0.9521 }, { "start": 7487.32, "end": 7489.42, "probability": 0.9707 }, { "start": 7491.14, "end": 7491.92, "probability": 0.9685 }, { "start": 7493.0, "end": 7494.18, "probability": 0.8834 }, { "start": 7495.66, "end": 7500.38, "probability": 0.9814 }, { "start": 7501.04, "end": 7502.98, "probability": 0.8548 }, { "start": 7503.9, "end": 7506.72, "probability": 0.9198 }, { "start": 7506.8, "end": 7507.94, "probability": 0.8964 }, { "start": 7508.04, "end": 7509.95, "probability": 0.9927 }, { "start": 7510.78, "end": 7513.31, "probability": 0.9517 }, { "start": 7514.3, "end": 7519.62, "probability": 0.9949 }, { "start": 7519.62, "end": 7523.98, "probability": 0.9746 }, { "start": 7525.98, "end": 7526.52, "probability": 0.3511 }, { "start": 7527.5, "end": 7528.26, "probability": 0.653 }, { "start": 7528.36, "end": 7530.48, "probability": 0.9868 }, { "start": 7530.94, "end": 7531.88, "probability": 0.9325 }, { "start": 7533.06, "end": 7535.68, "probability": 0.8534 }, { "start": 7537.2, "end": 7537.78, "probability": 0.8987 }, { "start": 7538.18, "end": 7541.88, "probability": 0.9744 }, { "start": 7542.8, "end": 7545.86, "probability": 0.994 }, { "start": 7546.56, "end": 7552.42, "probability": 0.8597 }, { "start": 7552.68, "end": 7555.8, "probability": 0.9937 }, { "start": 7555.84, "end": 7557.4, "probability": 0.9709 }, { "start": 7558.64, "end": 7560.84, "probability": 0.9604 }, { "start": 7560.84, "end": 7561.62, "probability": 0.6617 }, { "start": 7561.96, "end": 7562.3, "probability": 0.0474 }, { "start": 7562.38, "end": 7563.98, "probability": 0.8406 }, { "start": 7565.22, "end": 7570.82, "probability": 0.8811 }, { "start": 7570.88, "end": 7573.84, "probability": 0.8953 }, { "start": 7573.84, "end": 7576.44, "probability": 0.2258 }, { "start": 7576.98, "end": 7577.36, "probability": 0.4291 }, { "start": 7578.56, "end": 7579.5, "probability": 0.4389 }, { "start": 7580.3, "end": 7580.96, "probability": 0.6867 }, { "start": 7580.96, "end": 7582.34, "probability": 0.608 }, { "start": 7582.38, "end": 7586.21, "probability": 0.8352 }, { "start": 7586.4, "end": 7587.44, "probability": 0.069 }, { "start": 7589.18, "end": 7592.02, "probability": 0.9214 }, { "start": 7592.08, "end": 7593.38, "probability": 0.985 }, { "start": 7593.76, "end": 7596.54, "probability": 0.7269 }, { "start": 7597.68, "end": 7599.36, "probability": 0.8659 }, { "start": 7606.62, "end": 7609.04, "probability": 0.4526 }, { "start": 7609.14, "end": 7614.18, "probability": 0.8813 }, { "start": 7614.4, "end": 7616.76, "probability": 0.9253 }, { "start": 7617.2, "end": 7617.7, "probability": 0.613 }, { "start": 7618.38, "end": 7620.18, "probability": 0.9473 }, { "start": 7620.46, "end": 7621.66, "probability": 0.925 }, { "start": 7622.42, "end": 7624.14, "probability": 0.0955 }, { "start": 7624.2, "end": 7625.6, "probability": 0.8407 }, { "start": 7625.96, "end": 7628.58, "probability": 0.8167 }, { "start": 7629.14, "end": 7629.96, "probability": 0.9602 }, { "start": 7633.14, "end": 7636.98, "probability": 0.8571 }, { "start": 7638.6, "end": 7639.86, "probability": 0.4978 }, { "start": 7639.86, "end": 7646.21, "probability": 0.6808 }, { "start": 7646.72, "end": 7647.6, "probability": 0.3013 }, { "start": 7647.9, "end": 7649.94, "probability": 0.858 }, { "start": 7651.19, "end": 7655.02, "probability": 0.9988 }, { "start": 7655.2, "end": 7656.48, "probability": 0.9761 }, { "start": 7656.56, "end": 7657.08, "probability": 0.8781 }, { "start": 7657.16, "end": 7658.8, "probability": 0.9712 }, { "start": 7658.92, "end": 7660.1, "probability": 0.9521 }, { "start": 7660.16, "end": 7660.9, "probability": 0.9937 }, { "start": 7661.58, "end": 7662.56, "probability": 0.908 }, { "start": 7662.74, "end": 7664.58, "probability": 0.9425 }, { "start": 7664.64, "end": 7668.96, "probability": 0.8774 }, { "start": 7672.18, "end": 7679.58, "probability": 0.9817 }, { "start": 7679.76, "end": 7684.4, "probability": 0.9325 }, { "start": 7685.14, "end": 7686.24, "probability": 0.7775 }, { "start": 7687.9, "end": 7690.3, "probability": 0.6532 }, { "start": 7690.36, "end": 7691.12, "probability": 0.9248 }, { "start": 7691.12, "end": 7694.56, "probability": 0.9902 }, { "start": 7695.24, "end": 7696.08, "probability": 0.7678 }, { "start": 7696.82, "end": 7697.82, "probability": 0.8197 }, { "start": 7699.25, "end": 7703.58, "probability": 0.9743 }, { "start": 7703.74, "end": 7709.64, "probability": 0.9644 }, { "start": 7709.92, "end": 7712.8, "probability": 0.971 }, { "start": 7714.72, "end": 7717.0, "probability": 0.9478 }, { "start": 7718.3, "end": 7723.94, "probability": 0.9823 }, { "start": 7724.06, "end": 7726.46, "probability": 0.8602 }, { "start": 7727.52, "end": 7729.66, "probability": 0.9937 }, { "start": 7730.0, "end": 7732.88, "probability": 0.9958 }, { "start": 7733.44, "end": 7735.57, "probability": 0.9907 }, { "start": 7735.64, "end": 7738.42, "probability": 0.6806 }, { "start": 7739.36, "end": 7740.96, "probability": 0.8434 }, { "start": 7741.02, "end": 7746.14, "probability": 0.9932 }, { "start": 7746.32, "end": 7749.3, "probability": 0.5445 }, { "start": 7750.08, "end": 7751.3, "probability": 0.7547 }, { "start": 7751.46, "end": 7751.72, "probability": 0.8037 }, { "start": 7751.88, "end": 7755.42, "probability": 0.9572 }, { "start": 7757.38, "end": 7760.8, "probability": 0.7753 }, { "start": 7761.26, "end": 7763.9, "probability": 0.907 }, { "start": 7767.4, "end": 7768.6, "probability": 0.5542 }, { "start": 7771.58, "end": 7772.16, "probability": 0.5075 }, { "start": 7773.14, "end": 7773.7, "probability": 0.6907 }, { "start": 7781.8, "end": 7782.92, "probability": 0.7642 }, { "start": 7783.72, "end": 7785.22, "probability": 0.9961 }, { "start": 7786.32, "end": 7789.34, "probability": 0.7437 }, { "start": 7789.64, "end": 7792.72, "probability": 0.2443 }, { "start": 7793.5, "end": 7794.24, "probability": 0.6635 }, { "start": 7794.8, "end": 7795.96, "probability": 0.4161 }, { "start": 7796.74, "end": 7797.84, "probability": 0.7056 }, { "start": 7798.92, "end": 7802.28, "probability": 0.9295 }, { "start": 7803.02, "end": 7807.18, "probability": 0.9766 }, { "start": 7807.64, "end": 7808.94, "probability": 0.9668 }, { "start": 7808.98, "end": 7810.52, "probability": 0.95 }, { "start": 7810.58, "end": 7810.99, "probability": 0.8791 }, { "start": 7812.1, "end": 7814.72, "probability": 0.646 }, { "start": 7815.02, "end": 7818.3, "probability": 0.6409 }, { "start": 7819.0, "end": 7819.9, "probability": 0.9155 }, { "start": 7820.82, "end": 7824.66, "probability": 0.8518 }, { "start": 7824.66, "end": 7827.68, "probability": 0.9927 }, { "start": 7828.52, "end": 7829.22, "probability": 0.0773 }, { "start": 7829.22, "end": 7831.45, "probability": 0.4499 }, { "start": 7831.66, "end": 7833.06, "probability": 0.5539 }, { "start": 7833.22, "end": 7834.36, "probability": 0.9318 }, { "start": 7834.54, "end": 7835.46, "probability": 0.9097 }, { "start": 7835.54, "end": 7837.24, "probability": 0.9634 }, { "start": 7837.44, "end": 7838.86, "probability": 0.9218 }, { "start": 7839.2, "end": 7843.46, "probability": 0.9568 }, { "start": 7843.72, "end": 7844.54, "probability": 0.9017 }, { "start": 7845.4, "end": 7848.14, "probability": 0.7629 }, { "start": 7849.48, "end": 7850.16, "probability": 0.1164 }, { "start": 7851.3, "end": 7854.26, "probability": 0.5056 }, { "start": 7854.42, "end": 7857.26, "probability": 0.219 }, { "start": 7857.4, "end": 7859.98, "probability": 0.1543 }, { "start": 7860.1, "end": 7862.62, "probability": 0.886 }, { "start": 7862.7, "end": 7863.12, "probability": 0.9573 }, { "start": 7863.56, "end": 7867.9, "probability": 0.9783 }, { "start": 7867.9, "end": 7871.62, "probability": 0.812 }, { "start": 7871.82, "end": 7875.74, "probability": 0.991 }, { "start": 7875.9, "end": 7877.68, "probability": 0.1356 }, { "start": 7878.52, "end": 7880.28, "probability": 0.1729 }, { "start": 7883.3, "end": 7884.36, "probability": 0.0201 }, { "start": 7884.36, "end": 7885.04, "probability": 0.2866 }, { "start": 7885.62, "end": 7886.82, "probability": 0.7937 }, { "start": 7887.04, "end": 7889.9, "probability": 0.7213 }, { "start": 7890.36, "end": 7894.04, "probability": 0.9708 }, { "start": 7894.22, "end": 7895.0, "probability": 0.8788 }, { "start": 7895.5, "end": 7898.12, "probability": 0.8678 }, { "start": 7898.68, "end": 7901.13, "probability": 0.9988 }, { "start": 7901.24, "end": 7902.12, "probability": 0.8867 }, { "start": 7902.5, "end": 7903.52, "probability": 0.7179 }, { "start": 7903.66, "end": 7906.64, "probability": 0.9795 }, { "start": 7907.08, "end": 7908.16, "probability": 0.823 }, { "start": 7910.63, "end": 7911.2, "probability": 0.2965 }, { "start": 7911.26, "end": 7911.26, "probability": 0.106 }, { "start": 7911.26, "end": 7911.26, "probability": 0.0272 }, { "start": 7911.26, "end": 7914.7, "probability": 0.964 }, { "start": 7915.06, "end": 7916.24, "probability": 0.8518 }, { "start": 7916.52, "end": 7919.3, "probability": 0.9828 }, { "start": 7920.74, "end": 7922.72, "probability": 0.8665 }, { "start": 7924.15, "end": 7928.18, "probability": 0.9839 }, { "start": 7928.28, "end": 7929.6, "probability": 0.725 }, { "start": 7930.18, "end": 7934.38, "probability": 0.9935 }, { "start": 7934.56, "end": 7936.36, "probability": 0.9688 }, { "start": 7939.3, "end": 7940.98, "probability": 0.7821 }, { "start": 7941.06, "end": 7946.22, "probability": 0.9961 }, { "start": 7948.32, "end": 7950.36, "probability": 0.9947 }, { "start": 7953.38, "end": 7955.18, "probability": 0.8045 }, { "start": 7956.7, "end": 7959.32, "probability": 0.8929 }, { "start": 7959.78, "end": 7961.84, "probability": 0.9465 }, { "start": 7961.94, "end": 7962.44, "probability": 0.3797 }, { "start": 7962.46, "end": 7964.84, "probability": 0.8508 }, { "start": 7965.46, "end": 7965.56, "probability": 0.0013 }, { "start": 7966.16, "end": 7967.12, "probability": 0.1761 }, { "start": 7967.16, "end": 7968.3, "probability": 0.4052 }, { "start": 7968.3, "end": 7969.04, "probability": 0.6976 }, { "start": 7969.28, "end": 7969.42, "probability": 0.7986 }, { "start": 7969.64, "end": 7974.84, "probability": 0.9847 }, { "start": 7975.96, "end": 7978.0, "probability": 0.7492 }, { "start": 7978.34, "end": 7979.04, "probability": 0.8623 }, { "start": 7979.12, "end": 7980.36, "probability": 0.8744 }, { "start": 7980.36, "end": 7981.18, "probability": 0.7161 }, { "start": 7981.82, "end": 7984.46, "probability": 0.9895 }, { "start": 7984.46, "end": 7987.7, "probability": 0.9919 }, { "start": 7988.26, "end": 7993.02, "probability": 0.8572 }, { "start": 7993.32, "end": 7997.3, "probability": 0.9967 }, { "start": 7997.3, "end": 8000.36, "probability": 0.9988 }, { "start": 8000.84, "end": 8000.98, "probability": 0.3103 }, { "start": 8000.98, "end": 8003.22, "probability": 0.5756 }, { "start": 8003.86, "end": 8006.47, "probability": 0.4076 }, { "start": 8006.94, "end": 8009.3, "probability": 0.3105 }, { "start": 8009.36, "end": 8010.66, "probability": 0.7449 }, { "start": 8011.9, "end": 8014.62, "probability": 0.4594 }, { "start": 8016.26, "end": 8018.78, "probability": 0.8868 }, { "start": 8019.44, "end": 8019.7, "probability": 0.4907 }, { "start": 8019.92, "end": 8021.32, "probability": 0.9383 }, { "start": 8021.5, "end": 8025.48, "probability": 0.9663 }, { "start": 8026.16, "end": 8029.28, "probability": 0.4978 }, { "start": 8029.28, "end": 8031.06, "probability": 0.2218 }, { "start": 8033.26, "end": 8033.44, "probability": 0.0515 }, { "start": 8033.44, "end": 8033.44, "probability": 0.2829 }, { "start": 8033.44, "end": 8034.06, "probability": 0.2975 }, { "start": 8034.12, "end": 8035.42, "probability": 0.5932 }, { "start": 8035.42, "end": 8037.5, "probability": 0.584 }, { "start": 8037.52, "end": 8043.86, "probability": 0.8507 }, { "start": 8043.9, "end": 8044.64, "probability": 0.7739 }, { "start": 8044.8, "end": 8047.2, "probability": 0.045 }, { "start": 8047.98, "end": 8048.0, "probability": 0.0128 }, { "start": 8048.0, "end": 8048.0, "probability": 0.0493 }, { "start": 8048.0, "end": 8048.71, "probability": 0.2259 }, { "start": 8048.84, "end": 8051.88, "probability": 0.7102 }, { "start": 8052.12, "end": 8052.66, "probability": 0.4895 }, { "start": 8052.68, "end": 8053.48, "probability": 0.8889 }, { "start": 8054.87, "end": 8059.58, "probability": 0.8633 }, { "start": 8059.66, "end": 8060.14, "probability": 0.5202 }, { "start": 8060.9, "end": 8062.34, "probability": 0.0563 }, { "start": 8062.48, "end": 8063.38, "probability": 0.4174 }, { "start": 8063.52, "end": 8065.62, "probability": 0.709 }, { "start": 8065.88, "end": 8069.8, "probability": 0.9487 }, { "start": 8069.92, "end": 8070.33, "probability": 0.6708 }, { "start": 8070.64, "end": 8073.02, "probability": 0.9978 }, { "start": 8073.42, "end": 8075.84, "probability": 0.988 }, { "start": 8075.84, "end": 8077.22, "probability": 0.3017 }, { "start": 8078.1, "end": 8081.88, "probability": 0.0172 }, { "start": 8082.22, "end": 8085.68, "probability": 0.4659 }, { "start": 8085.96, "end": 8086.51, "probability": 0.4603 }, { "start": 8086.82, "end": 8089.52, "probability": 0.7527 }, { "start": 8089.68, "end": 8091.06, "probability": 0.6829 }, { "start": 8091.24, "end": 8096.6, "probability": 0.3384 }, { "start": 8097.14, "end": 8098.16, "probability": 0.8934 }, { "start": 8098.32, "end": 8099.04, "probability": 0.9312 }, { "start": 8099.18, "end": 8101.8, "probability": 0.9844 }, { "start": 8101.96, "end": 8105.13, "probability": 0.9338 }, { "start": 8105.28, "end": 8108.82, "probability": 0.9319 }, { "start": 8108.82, "end": 8109.7, "probability": 0.4527 }, { "start": 8110.5, "end": 8110.64, "probability": 0.3271 }, { "start": 8110.76, "end": 8114.04, "probability": 0.9173 }, { "start": 8114.1, "end": 8115.14, "probability": 0.7935 }, { "start": 8115.32, "end": 8117.72, "probability": 0.7019 }, { "start": 8118.24, "end": 8119.64, "probability": 0.9574 }, { "start": 8119.7, "end": 8121.3, "probability": 0.9743 }, { "start": 8121.44, "end": 8122.34, "probability": 0.5015 }, { "start": 8122.34, "end": 8125.18, "probability": 0.6668 }, { "start": 8125.46, "end": 8126.6, "probability": 0.7235 }, { "start": 8127.02, "end": 8129.88, "probability": 0.9139 }, { "start": 8130.26, "end": 8134.5, "probability": 0.9529 }, { "start": 8134.64, "end": 8135.61, "probability": 0.9361 }, { "start": 8136.28, "end": 8138.32, "probability": 0.7988 }, { "start": 8138.95, "end": 8142.08, "probability": 0.0449 }, { "start": 8142.38, "end": 8147.48, "probability": 0.8018 }, { "start": 8147.78, "end": 8148.58, "probability": 0.722 }, { "start": 8148.96, "end": 8154.48, "probability": 0.9133 }, { "start": 8154.66, "end": 8158.36, "probability": 0.9883 }, { "start": 8158.46, "end": 8159.44, "probability": 0.896 }, { "start": 8160.16, "end": 8160.98, "probability": 0.2521 }, { "start": 8161.04, "end": 8162.22, "probability": 0.3735 }, { "start": 8164.28, "end": 8165.08, "probability": 0.1137 }, { "start": 8165.12, "end": 8168.7, "probability": 0.9468 }, { "start": 8168.8, "end": 8171.62, "probability": 0.9926 }, { "start": 8171.98, "end": 8176.44, "probability": 0.9482 }, { "start": 8176.58, "end": 8177.44, "probability": 0.925 }, { "start": 8177.8, "end": 8181.28, "probability": 0.9902 }, { "start": 8181.44, "end": 8183.1, "probability": 0.4935 }, { "start": 8183.56, "end": 8185.02, "probability": 0.8387 }, { "start": 8185.28, "end": 8189.81, "probability": 0.8308 }, { "start": 8190.48, "end": 8194.42, "probability": 0.9766 }, { "start": 8194.64, "end": 8196.54, "probability": 0.7938 }, { "start": 8196.9, "end": 8199.82, "probability": 0.3065 }, { "start": 8200.62, "end": 8200.72, "probability": 0.1877 }, { "start": 8204.34, "end": 8204.96, "probability": 0.3563 }, { "start": 8209.69, "end": 8211.84, "probability": 0.545 }, { "start": 8212.1, "end": 8213.18, "probability": 0.5757 }, { "start": 8213.58, "end": 8218.18, "probability": 0.9489 }, { "start": 8218.28, "end": 8220.2, "probability": 0.9785 }, { "start": 8220.2, "end": 8222.6, "probability": 0.9967 }, { "start": 8222.7, "end": 8224.62, "probability": 0.8667 }, { "start": 8247.74, "end": 8248.66, "probability": 0.7158 }, { "start": 8250.56, "end": 8252.22, "probability": 0.9814 }, { "start": 8252.32, "end": 8254.26, "probability": 0.5442 }, { "start": 8254.32, "end": 8255.8, "probability": 0.9868 }, { "start": 8256.08, "end": 8257.4, "probability": 0.949 }, { "start": 8258.59, "end": 8260.21, "probability": 0.993 }, { "start": 8260.75, "end": 8264.48, "probability": 0.8379 }, { "start": 8264.58, "end": 8266.62, "probability": 0.9327 }, { "start": 8266.92, "end": 8267.3, "probability": 0.715 }, { "start": 8267.76, "end": 8268.46, "probability": 0.9468 }, { "start": 8269.49, "end": 8273.26, "probability": 0.4903 }, { "start": 8273.32, "end": 8274.02, "probability": 0.5903 }, { "start": 8274.32, "end": 8274.8, "probability": 0.683 }, { "start": 8274.86, "end": 8275.98, "probability": 0.0305 }, { "start": 8278.16, "end": 8278.64, "probability": 0.1006 }, { "start": 8278.64, "end": 8278.64, "probability": 0.0507 }, { "start": 8278.64, "end": 8278.64, "probability": 0.1255 }, { "start": 8278.64, "end": 8278.64, "probability": 0.0201 }, { "start": 8278.64, "end": 8281.02, "probability": 0.3813 }, { "start": 8282.54, "end": 8283.36, "probability": 0.6757 }, { "start": 8283.46, "end": 8285.08, "probability": 0.6246 }, { "start": 8285.22, "end": 8286.54, "probability": 0.7422 }, { "start": 8287.18, "end": 8288.42, "probability": 0.7092 }, { "start": 8288.58, "end": 8289.08, "probability": 0.6201 }, { "start": 8289.18, "end": 8291.34, "probability": 0.9738 }, { "start": 8293.85, "end": 8297.46, "probability": 0.841 }, { "start": 8298.13, "end": 8305.76, "probability": 0.9056 }, { "start": 8307.54, "end": 8308.12, "probability": 0.862 }, { "start": 8308.42, "end": 8309.78, "probability": 0.7639 }, { "start": 8310.76, "end": 8312.1, "probability": 0.3703 }, { "start": 8312.14, "end": 8315.76, "probability": 0.8737 }, { "start": 8316.82, "end": 8322.0, "probability": 0.8233 }, { "start": 8322.7, "end": 8327.16, "probability": 0.7467 }, { "start": 8328.28, "end": 8329.74, "probability": 0.7671 }, { "start": 8331.28, "end": 8335.48, "probability": 0.5136 }, { "start": 8336.84, "end": 8342.12, "probability": 0.8149 }, { "start": 8342.22, "end": 8345.75, "probability": 0.9384 }, { "start": 8347.12, "end": 8351.02, "probability": 0.8882 }, { "start": 8351.58, "end": 8355.48, "probability": 0.7982 }, { "start": 8356.4, "end": 8357.96, "probability": 0.4646 }, { "start": 8358.6, "end": 8360.34, "probability": 0.2483 }, { "start": 8360.6, "end": 8362.14, "probability": 0.7378 }, { "start": 8363.46, "end": 8364.68, "probability": 0.9811 }, { "start": 8365.12, "end": 8365.44, "probability": 0.5351 }, { "start": 8365.62, "end": 8371.9, "probability": 0.7236 }, { "start": 8371.9, "end": 8373.64, "probability": 0.7804 }, { "start": 8374.1, "end": 8375.52, "probability": 0.9181 }, { "start": 8375.66, "end": 8377.04, "probability": 0.3283 }, { "start": 8377.1, "end": 8379.52, "probability": 0.4808 }, { "start": 8379.54, "end": 8382.18, "probability": 0.981 }, { "start": 8382.94, "end": 8384.4, "probability": 0.9317 }, { "start": 8385.4, "end": 8390.02, "probability": 0.9868 }, { "start": 8390.66, "end": 8394.4, "probability": 0.9784 }, { "start": 8396.56, "end": 8397.12, "probability": 0.8793 }, { "start": 8398.18, "end": 8398.88, "probability": 0.4417 }, { "start": 8399.0, "end": 8400.36, "probability": 0.868 }, { "start": 8400.86, "end": 8402.18, "probability": 0.9193 }, { "start": 8402.24, "end": 8402.48, "probability": 0.3829 }, { "start": 8402.48, "end": 8403.66, "probability": 0.8438 }, { "start": 8404.48, "end": 8407.12, "probability": 0.9963 }, { "start": 8407.74, "end": 8409.8, "probability": 0.6481 }, { "start": 8410.08, "end": 8415.02, "probability": 0.8776 }, { "start": 8417.03, "end": 8424.88, "probability": 0.9651 }, { "start": 8425.02, "end": 8426.9, "probability": 0.9381 }, { "start": 8427.26, "end": 8430.58, "probability": 0.9309 }, { "start": 8431.16, "end": 8434.96, "probability": 0.9929 }, { "start": 8436.34, "end": 8438.82, "probability": 0.9331 }, { "start": 8439.34, "end": 8440.38, "probability": 0.5973 }, { "start": 8440.92, "end": 8442.92, "probability": 0.6544 }, { "start": 8442.98, "end": 8443.62, "probability": 0.6648 }, { "start": 8443.62, "end": 8445.16, "probability": 0.9315 }, { "start": 8445.36, "end": 8446.2, "probability": 0.7141 }, { "start": 8446.36, "end": 8448.3, "probability": 0.7941 }, { "start": 8448.38, "end": 8449.64, "probability": 0.9762 }, { "start": 8450.16, "end": 8451.62, "probability": 0.8165 }, { "start": 8454.19, "end": 8457.48, "probability": 0.7716 }, { "start": 8458.02, "end": 8459.62, "probability": 0.7665 }, { "start": 8459.78, "end": 8461.76, "probability": 0.9917 }, { "start": 8461.76, "end": 8463.92, "probability": 0.9679 }, { "start": 8464.32, "end": 8468.36, "probability": 0.998 }, { "start": 8468.36, "end": 8471.48, "probability": 0.9943 }, { "start": 8471.68, "end": 8472.78, "probability": 0.0817 }, { "start": 8477.86, "end": 8479.14, "probability": 0.4336 }, { "start": 8479.22, "end": 8479.34, "probability": 0.3644 }, { "start": 8479.5, "end": 8481.58, "probability": 0.9712 }, { "start": 8486.92, "end": 8487.6, "probability": 0.7098 }, { "start": 8487.68, "end": 8488.64, "probability": 0.7751 }, { "start": 8488.76, "end": 8489.99, "probability": 0.9302 }, { "start": 8490.04, "end": 8497.15, "probability": 0.9195 }, { "start": 8497.6, "end": 8503.38, "probability": 0.724 }, { "start": 8503.48, "end": 8505.48, "probability": 0.9276 }, { "start": 8506.26, "end": 8506.52, "probability": 0.5593 }, { "start": 8506.7, "end": 8506.9, "probability": 0.4644 }, { "start": 8506.9, "end": 8511.02, "probability": 0.7697 }, { "start": 8511.52, "end": 8513.84, "probability": 0.6759 }, { "start": 8513.86, "end": 8514.0, "probability": 0.1351 }, { "start": 8514.16, "end": 8515.24, "probability": 0.9517 }, { "start": 8515.28, "end": 8516.88, "probability": 0.5081 }, { "start": 8516.92, "end": 8518.26, "probability": 0.8841 }, { "start": 8518.62, "end": 8519.25, "probability": 0.6543 }, { "start": 8519.82, "end": 8521.26, "probability": 0.8114 }, { "start": 8523.09, "end": 8527.0, "probability": 0.7608 }, { "start": 8530.01, "end": 8532.84, "probability": 0.9397 }, { "start": 8533.18, "end": 8533.8, "probability": 0.9431 }, { "start": 8533.9, "end": 8535.16, "probability": 0.6839 }, { "start": 8536.73, "end": 8538.82, "probability": 0.9276 }, { "start": 8538.94, "end": 8539.72, "probability": 0.8553 }, { "start": 8539.8, "end": 8541.78, "probability": 0.9122 }, { "start": 8542.12, "end": 8543.86, "probability": 0.5411 }, { "start": 8545.46, "end": 8550.72, "probability": 0.7007 }, { "start": 8552.2, "end": 8553.24, "probability": 0.892 }, { "start": 8553.92, "end": 8557.7, "probability": 0.9805 }, { "start": 8558.28, "end": 8561.06, "probability": 0.9321 }, { "start": 8561.46, "end": 8564.9, "probability": 0.9088 }, { "start": 8565.62, "end": 8565.84, "probability": 0.2526 }, { "start": 8567.2, "end": 8568.62, "probability": 0.8677 }, { "start": 8568.9, "end": 8569.74, "probability": 0.7753 }, { "start": 8569.76, "end": 8571.74, "probability": 0.7083 }, { "start": 8571.74, "end": 8577.04, "probability": 0.9966 }, { "start": 8577.12, "end": 8580.04, "probability": 0.9624 }, { "start": 8580.8, "end": 8583.86, "probability": 0.9983 }, { "start": 8583.92, "end": 8588.08, "probability": 0.9543 }, { "start": 8588.76, "end": 8589.64, "probability": 0.882 }, { "start": 8589.66, "end": 8592.14, "probability": 0.8102 }, { "start": 8592.22, "end": 8594.16, "probability": 0.9862 }, { "start": 8594.22, "end": 8594.88, "probability": 0.9524 }, { "start": 8594.96, "end": 8596.5, "probability": 0.5678 }, { "start": 8596.5, "end": 8597.38, "probability": 0.8783 }, { "start": 8597.54, "end": 8598.68, "probability": 0.9001 }, { "start": 8599.28, "end": 8601.9, "probability": 0.8737 }, { "start": 8602.24, "end": 8605.78, "probability": 0.9936 }, { "start": 8605.78, "end": 8609.48, "probability": 0.9855 }, { "start": 8609.76, "end": 8610.12, "probability": 0.7068 }, { "start": 8610.36, "end": 8611.64, "probability": 0.9755 }, { "start": 8612.02, "end": 8613.22, "probability": 0.976 }, { "start": 8613.32, "end": 8614.52, "probability": 0.8464 }, { "start": 8614.66, "end": 8615.68, "probability": 0.9869 }, { "start": 8615.8, "end": 8618.89, "probability": 0.898 }, { "start": 8619.22, "end": 8620.45, "probability": 0.9741 }, { "start": 8620.62, "end": 8620.94, "probability": 0.6439 }, { "start": 8620.94, "end": 8622.14, "probability": 0.5638 }, { "start": 8622.64, "end": 8624.42, "probability": 0.7533 }, { "start": 8624.7, "end": 8627.98, "probability": 0.9701 }, { "start": 8628.04, "end": 8628.52, "probability": 0.9149 }, { "start": 8628.58, "end": 8629.52, "probability": 0.963 }, { "start": 8629.9, "end": 8631.74, "probability": 0.3899 }, { "start": 8631.92, "end": 8636.12, "probability": 0.8228 }, { "start": 8636.26, "end": 8637.48, "probability": 0.9712 }, { "start": 8637.58, "end": 8639.69, "probability": 0.9035 }, { "start": 8640.64, "end": 8644.9, "probability": 0.9949 }, { "start": 8644.9, "end": 8648.56, "probability": 0.9911 }, { "start": 8648.9, "end": 8650.6, "probability": 0.9619 }, { "start": 8650.7, "end": 8653.4, "probability": 0.9754 }, { "start": 8653.7, "end": 8658.0, "probability": 0.9829 }, { "start": 8658.06, "end": 8662.5, "probability": 0.9951 }, { "start": 8662.8, "end": 8666.04, "probability": 0.9985 }, { "start": 8666.2, "end": 8666.88, "probability": 0.7104 }, { "start": 8667.38, "end": 8668.84, "probability": 0.8534 }, { "start": 8668.88, "end": 8673.04, "probability": 0.9899 }, { "start": 8678.32, "end": 8680.54, "probability": 0.8988 }, { "start": 8680.6, "end": 8681.52, "probability": 0.8093 }, { "start": 8681.66, "end": 8682.66, "probability": 0.752 }, { "start": 8682.98, "end": 8684.17, "probability": 0.8807 }, { "start": 8684.42, "end": 8689.2, "probability": 0.9928 }, { "start": 8689.6, "end": 8689.62, "probability": 0.5429 }, { "start": 8689.7, "end": 8689.98, "probability": 0.7912 }, { "start": 8690.1, "end": 8694.32, "probability": 0.7811 }, { "start": 8695.08, "end": 8698.7, "probability": 0.9824 }, { "start": 8698.82, "end": 8700.66, "probability": 0.9424 }, { "start": 8701.06, "end": 8701.86, "probability": 0.8105 }, { "start": 8701.92, "end": 8704.86, "probability": 0.9736 }, { "start": 8705.3, "end": 8710.14, "probability": 0.9948 }, { "start": 8711.86, "end": 8713.4, "probability": 0.92 }, { "start": 8713.52, "end": 8717.94, "probability": 0.9717 }, { "start": 8718.8, "end": 8720.3, "probability": 0.8474 }, { "start": 8720.4, "end": 8721.07, "probability": 0.9746 }, { "start": 8722.26, "end": 8723.8, "probability": 0.7408 }, { "start": 8724.92, "end": 8726.34, "probability": 0.8307 }, { "start": 8726.88, "end": 8727.1, "probability": 0.1333 }, { "start": 8729.06, "end": 8731.14, "probability": 0.0724 }, { "start": 8731.14, "end": 8731.14, "probability": 0.096 }, { "start": 8731.96, "end": 8732.24, "probability": 0.0838 }, { "start": 8734.3, "end": 8737.1, "probability": 0.647 }, { "start": 8737.28, "end": 8738.11, "probability": 0.6836 }, { "start": 8738.68, "end": 8741.4, "probability": 0.1352 }, { "start": 8744.88, "end": 8751.4, "probability": 0.8552 }, { "start": 8753.2, "end": 8755.82, "probability": 0.7419 }, { "start": 8758.36, "end": 8759.14, "probability": 0.6733 }, { "start": 8759.52, "end": 8761.28, "probability": 0.0514 }, { "start": 8761.3, "end": 8761.7, "probability": 0.0387 }, { "start": 8761.7, "end": 8762.32, "probability": 0.104 }, { "start": 8762.44, "end": 8763.36, "probability": 0.6073 }, { "start": 8763.46, "end": 8764.32, "probability": 0.7857 }, { "start": 8764.62, "end": 8765.24, "probability": 0.191 }, { "start": 8765.4, "end": 8767.02, "probability": 0.5269 }, { "start": 8767.22, "end": 8767.84, "probability": 0.7633 }, { "start": 8767.92, "end": 8769.78, "probability": 0.6769 }, { "start": 8770.06, "end": 8771.5, "probability": 0.8496 }, { "start": 8772.16, "end": 8775.18, "probability": 0.7125 }, { "start": 8775.54, "end": 8782.0, "probability": 0.9751 }, { "start": 8782.08, "end": 8784.94, "probability": 0.7668 }, { "start": 8785.1, "end": 8789.54, "probability": 0.8931 }, { "start": 8789.62, "end": 8793.28, "probability": 0.9934 }, { "start": 8793.84, "end": 8794.86, "probability": 0.8566 }, { "start": 8794.9, "end": 8795.36, "probability": 0.7812 }, { "start": 8796.0, "end": 8798.34, "probability": 0.7556 }, { "start": 8798.96, "end": 8801.36, "probability": 0.7675 }, { "start": 8801.44, "end": 8803.26, "probability": 0.9583 }, { "start": 8803.98, "end": 8805.46, "probability": 0.3316 }, { "start": 8805.56, "end": 8809.36, "probability": 0.4349 }, { "start": 8809.64, "end": 8811.76, "probability": 0.3617 }, { "start": 8812.54, "end": 8816.1, "probability": 0.7334 }, { "start": 8816.96, "end": 8818.06, "probability": 0.5842 }, { "start": 8819.2, "end": 8821.75, "probability": 0.3841 }, { "start": 8822.02, "end": 8823.56, "probability": 0.0345 }, { "start": 8823.7, "end": 8826.5, "probability": 0.3447 }, { "start": 8826.56, "end": 8826.8, "probability": 0.1104 }, { "start": 8827.04, "end": 8827.96, "probability": 0.3422 }, { "start": 8827.96, "end": 8829.5, "probability": 0.752 }, { "start": 8829.84, "end": 8832.36, "probability": 0.6938 }, { "start": 8832.36, "end": 8832.84, "probability": 0.5867 }, { "start": 8833.22, "end": 8835.18, "probability": 0.681 }, { "start": 8835.26, "end": 8837.1, "probability": 0.8821 }, { "start": 8837.46, "end": 8839.01, "probability": 0.9575 }, { "start": 8839.26, "end": 8844.24, "probability": 0.9878 }, { "start": 8844.4, "end": 8847.08, "probability": 0.9935 }, { "start": 8847.14, "end": 8848.6, "probability": 0.8363 }, { "start": 8849.67, "end": 8856.86, "probability": 0.9929 }, { "start": 8857.14, "end": 8858.4, "probability": 0.904 }, { "start": 8858.54, "end": 8860.34, "probability": 0.9902 }, { "start": 8862.2, "end": 8866.58, "probability": 0.984 }, { "start": 8866.58, "end": 8869.54, "probability": 0.9935 }, { "start": 8869.56, "end": 8870.4, "probability": 0.7198 }, { "start": 8870.74, "end": 8871.92, "probability": 0.8235 }, { "start": 8872.38, "end": 8876.08, "probability": 0.9478 }, { "start": 8876.4, "end": 8879.6, "probability": 0.988 }, { "start": 8879.66, "end": 8881.93, "probability": 0.8206 }, { "start": 8882.06, "end": 8883.6, "probability": 0.9602 }, { "start": 8883.66, "end": 8885.56, "probability": 0.8579 }, { "start": 8885.6, "end": 8889.16, "probability": 0.8246 }, { "start": 8889.42, "end": 8890.62, "probability": 0.3727 }, { "start": 8891.57, "end": 8897.54, "probability": 0.959 }, { "start": 8897.7, "end": 8900.62, "probability": 0.9861 }, { "start": 8900.78, "end": 8901.7, "probability": 0.861 }, { "start": 8902.04, "end": 8903.7, "probability": 0.9709 }, { "start": 8904.32, "end": 8908.1, "probability": 0.9895 }, { "start": 8908.32, "end": 8909.38, "probability": 0.4994 }, { "start": 8910.08, "end": 8911.9, "probability": 0.9866 }, { "start": 8912.52, "end": 8914.18, "probability": 0.9967 }, { "start": 8914.34, "end": 8915.52, "probability": 0.9777 }, { "start": 8915.56, "end": 8918.0, "probability": 0.4328 }, { "start": 8918.72, "end": 8919.98, "probability": 0.4705 }, { "start": 8920.64, "end": 8921.32, "probability": 0.1017 }, { "start": 8921.48, "end": 8921.72, "probability": 0.3839 }, { "start": 8921.92, "end": 8923.74, "probability": 0.4854 }, { "start": 8923.76, "end": 8926.74, "probability": 0.2991 }, { "start": 8927.38, "end": 8930.2, "probability": 0.8404 }, { "start": 8930.4, "end": 8931.73, "probability": 0.4788 }, { "start": 8932.02, "end": 8932.5, "probability": 0.0484 }, { "start": 8932.5, "end": 8933.12, "probability": 0.248 }, { "start": 8934.18, "end": 8934.6, "probability": 0.8734 }, { "start": 8934.8, "end": 8935.62, "probability": 0.8532 }, { "start": 8935.76, "end": 8937.72, "probability": 0.9727 }, { "start": 8937.72, "end": 8938.34, "probability": 0.7547 }, { "start": 8938.62, "end": 8941.84, "probability": 0.5701 }, { "start": 8942.16, "end": 8943.52, "probability": 0.8762 }, { "start": 8943.86, "end": 8945.52, "probability": 0.709 }, { "start": 8945.68, "end": 8950.36, "probability": 0.994 }, { "start": 8950.52, "end": 8951.72, "probability": 0.2745 }, { "start": 8951.72, "end": 8952.83, "probability": 0.4173 }, { "start": 8956.08, "end": 8957.2, "probability": 0.454 }, { "start": 8957.24, "end": 8957.64, "probability": 0.4883 }, { "start": 8958.06, "end": 8958.3, "probability": 0.0058 }, { "start": 8958.3, "end": 8958.66, "probability": 0.0078 }, { "start": 8958.74, "end": 8959.22, "probability": 0.0403 }, { "start": 8959.32, "end": 8959.36, "probability": 0.6696 }, { "start": 8959.4, "end": 8960.22, "probability": 0.9653 }, { "start": 8960.26, "end": 8961.76, "probability": 0.9072 }, { "start": 8961.9, "end": 8965.12, "probability": 0.9017 }, { "start": 8965.24, "end": 8966.84, "probability": 0.9954 }, { "start": 8966.9, "end": 8970.1, "probability": 0.9938 }, { "start": 8970.78, "end": 8974.51, "probability": 0.5092 }, { "start": 8974.94, "end": 8979.36, "probability": 0.9633 }, { "start": 8979.42, "end": 8979.84, "probability": 0.6616 }, { "start": 8980.02, "end": 8980.32, "probability": 0.6276 }, { "start": 8982.28, "end": 8985.78, "probability": 0.5457 }, { "start": 8986.16, "end": 8987.0, "probability": 0.5019 }, { "start": 8987.04, "end": 8988.22, "probability": 0.8159 }, { "start": 8988.62, "end": 8992.56, "probability": 0.8315 }, { "start": 8992.98, "end": 8994.04, "probability": 0.5742 }, { "start": 8994.71, "end": 8995.91, "probability": 0.6619 }, { "start": 8996.52, "end": 8997.43, "probability": 0.6254 }, { "start": 8997.76, "end": 9001.76, "probability": 0.8407 }, { "start": 9002.39, "end": 9005.28, "probability": 0.6507 }, { "start": 9005.92, "end": 9007.28, "probability": 0.4723 }, { "start": 9008.9, "end": 9011.44, "probability": 0.4887 }, { "start": 9011.86, "end": 9017.6, "probability": 0.8303 }, { "start": 9017.64, "end": 9018.32, "probability": 0.7081 }, { "start": 9018.9, "end": 9022.26, "probability": 0.9825 }, { "start": 9022.32, "end": 9024.4, "probability": 0.8036 }, { "start": 9024.44, "end": 9025.06, "probability": 0.7778 }, { "start": 9025.06, "end": 9026.26, "probability": 0.8123 }, { "start": 9026.28, "end": 9027.33, "probability": 0.9709 }, { "start": 9027.62, "end": 9029.9, "probability": 0.76 }, { "start": 9029.96, "end": 9032.78, "probability": 0.9812 }, { "start": 9032.96, "end": 9033.58, "probability": 0.7846 }, { "start": 9034.04, "end": 9034.56, "probability": 0.4811 }, { "start": 9034.6, "end": 9038.44, "probability": 0.9723 }, { "start": 9038.5, "end": 9039.28, "probability": 0.8007 }, { "start": 9039.36, "end": 9040.84, "probability": 0.9153 }, { "start": 9040.92, "end": 9042.32, "probability": 0.7221 }, { "start": 9042.4, "end": 9043.96, "probability": 0.873 }, { "start": 9044.06, "end": 9045.23, "probability": 0.5099 }, { "start": 9045.84, "end": 9047.38, "probability": 0.5326 }, { "start": 9048.26, "end": 9049.16, "probability": 0.4281 }, { "start": 9049.3, "end": 9049.64, "probability": 0.487 }, { "start": 9049.78, "end": 9050.44, "probability": 0.2105 }, { "start": 9050.64, "end": 9054.72, "probability": 0.989 }, { "start": 9055.42, "end": 9055.78, "probability": 0.3288 }, { "start": 9055.78, "end": 9056.8, "probability": 0.7041 }, { "start": 9056.84, "end": 9057.04, "probability": 0.0344 }, { "start": 9059.4, "end": 9060.72, "probability": 0.2183 }, { "start": 9060.74, "end": 9062.08, "probability": 0.7841 }, { "start": 9062.4, "end": 9066.18, "probability": 0.9521 }, { "start": 9066.68, "end": 9067.92, "probability": 0.5943 }, { "start": 9067.98, "end": 9070.02, "probability": 0.3116 }, { "start": 9071.22, "end": 9074.02, "probability": 0.4864 }, { "start": 9074.9, "end": 9076.86, "probability": 0.6745 }, { "start": 9078.14, "end": 9082.24, "probability": 0.4867 }, { "start": 9082.82, "end": 9084.56, "probability": 0.656 }, { "start": 9085.58, "end": 9087.08, "probability": 0.3953 }, { "start": 9087.7, "end": 9088.33, "probability": 0.5518 }, { "start": 9089.1, "end": 9091.6, "probability": 0.8955 }, { "start": 9091.78, "end": 9093.04, "probability": 0.8391 }, { "start": 9093.18, "end": 9099.5, "probability": 0.8999 }, { "start": 9099.68, "end": 9100.5, "probability": 0.7949 }, { "start": 9101.04, "end": 9103.6, "probability": 0.5605 }, { "start": 9103.6, "end": 9107.02, "probability": 0.7633 }, { "start": 9107.32, "end": 9110.46, "probability": 0.5718 }, { "start": 9110.46, "end": 9112.5, "probability": 0.7788 }, { "start": 9112.66, "end": 9113.74, "probability": 0.2626 }, { "start": 9114.14, "end": 9115.26, "probability": 0.4824 }, { "start": 9115.28, "end": 9116.94, "probability": 0.6425 }, { "start": 9116.94, "end": 9121.14, "probability": 0.5362 }, { "start": 9121.28, "end": 9123.68, "probability": 0.9881 }, { "start": 9123.86, "end": 9124.28, "probability": 0.3061 }, { "start": 9124.48, "end": 9124.96, "probability": 0.6846 }, { "start": 9125.24, "end": 9127.66, "probability": 0.3275 }, { "start": 9128.64, "end": 9130.6, "probability": 0.988 }, { "start": 9130.7, "end": 9131.76, "probability": 0.7504 }, { "start": 9131.92, "end": 9134.03, "probability": 0.9028 }, { "start": 9134.9, "end": 9140.5, "probability": 0.8062 }, { "start": 9143.72, "end": 9144.64, "probability": 0.7605 }, { "start": 9145.19, "end": 9146.72, "probability": 0.7994 }, { "start": 9146.9, "end": 9151.06, "probability": 0.9922 }, { "start": 9151.5, "end": 9154.84, "probability": 0.9958 }, { "start": 9155.88, "end": 9158.5, "probability": 0.9956 }, { "start": 9159.1, "end": 9160.24, "probability": 0.5108 }, { "start": 9160.9, "end": 9162.98, "probability": 0.7973 }, { "start": 9163.76, "end": 9167.46, "probability": 0.9945 }, { "start": 9167.9, "end": 9172.48, "probability": 0.9642 }, { "start": 9173.5, "end": 9174.88, "probability": 0.5885 }, { "start": 9174.94, "end": 9175.66, "probability": 0.8652 }, { "start": 9175.98, "end": 9177.78, "probability": 0.9785 }, { "start": 9178.2, "end": 9179.26, "probability": 0.7453 }, { "start": 9179.82, "end": 9183.34, "probability": 0.7558 }, { "start": 9183.34, "end": 9186.11, "probability": 0.9375 }, { "start": 9187.26, "end": 9188.75, "probability": 0.6377 }, { "start": 9189.02, "end": 9191.32, "probability": 0.978 }, { "start": 9193.9, "end": 9196.1, "probability": 0.0204 }, { "start": 9196.22, "end": 9196.22, "probability": 0.043 }, { "start": 9196.22, "end": 9196.76, "probability": 0.218 }, { "start": 9196.9, "end": 9197.9, "probability": 0.1579 }, { "start": 9199.04, "end": 9199.68, "probability": 0.3699 }, { "start": 9199.86, "end": 9200.32, "probability": 0.876 }, { "start": 9200.38, "end": 9201.96, "probability": 0.8452 }, { "start": 9202.18, "end": 9203.06, "probability": 0.7314 }, { "start": 9203.6, "end": 9205.28, "probability": 0.932 }, { "start": 9205.58, "end": 9207.32, "probability": 0.7822 }, { "start": 9208.16, "end": 9211.9, "probability": 0.908 }, { "start": 9212.25, "end": 9214.0, "probability": 0.9863 }, { "start": 9214.16, "end": 9215.64, "probability": 0.688 }, { "start": 9215.72, "end": 9217.22, "probability": 0.9902 }, { "start": 9217.38, "end": 9218.87, "probability": 0.7464 }, { "start": 9219.06, "end": 9219.9, "probability": 0.9394 }, { "start": 9219.94, "end": 9221.7, "probability": 0.9959 }, { "start": 9222.16, "end": 9224.04, "probability": 0.9222 }, { "start": 9224.16, "end": 9226.3, "probability": 0.9575 }, { "start": 9226.38, "end": 9227.5, "probability": 0.9702 }, { "start": 9227.6, "end": 9229.4, "probability": 0.8487 }, { "start": 9231.06, "end": 9233.44, "probability": 0.9946 }, { "start": 9233.96, "end": 9237.1, "probability": 0.9969 }, { "start": 9237.18, "end": 9237.6, "probability": 0.8967 }, { "start": 9237.64, "end": 9239.08, "probability": 0.7321 }, { "start": 9240.1, "end": 9241.52, "probability": 0.9995 }, { "start": 9242.54, "end": 9247.84, "probability": 0.8226 }, { "start": 9248.76, "end": 9250.82, "probability": 0.2848 }, { "start": 9250.96, "end": 9251.8, "probability": 0.8311 }, { "start": 9251.92, "end": 9256.76, "probability": 0.654 }, { "start": 9258.28, "end": 9258.38, "probability": 0.3006 }, { "start": 9258.38, "end": 9259.32, "probability": 0.0619 }, { "start": 9259.36, "end": 9261.68, "probability": 0.9886 }, { "start": 9261.78, "end": 9263.52, "probability": 0.2841 }, { "start": 9264.1, "end": 9267.22, "probability": 0.3184 }, { "start": 9268.22, "end": 9269.9, "probability": 0.8797 }, { "start": 9270.08, "end": 9271.48, "probability": 0.6678 }, { "start": 9271.54, "end": 9275.11, "probability": 0.5793 }, { "start": 9275.3, "end": 9276.36, "probability": 0.8534 }, { "start": 9276.54, "end": 9279.35, "probability": 0.0647 }, { "start": 9279.7, "end": 9280.48, "probability": 0.6333 }, { "start": 9280.6, "end": 9281.37, "probability": 0.8945 }, { "start": 9281.72, "end": 9281.98, "probability": 0.405 }, { "start": 9282.38, "end": 9287.72, "probability": 0.905 }, { "start": 9288.26, "end": 9293.66, "probability": 0.7791 }, { "start": 9294.32, "end": 9300.04, "probability": 0.3808 }, { "start": 9300.14, "end": 9302.9, "probability": 0.3453 }, { "start": 9303.02, "end": 9304.1, "probability": 0.8628 }, { "start": 9304.24, "end": 9306.96, "probability": 0.9921 }, { "start": 9307.38, "end": 9308.38, "probability": 0.6825 }, { "start": 9309.46, "end": 9312.8, "probability": 0.7726 }, { "start": 9312.88, "end": 9315.06, "probability": 0.9902 }, { "start": 9315.1, "end": 9319.96, "probability": 0.9692 }, { "start": 9320.5, "end": 9323.1, "probability": 0.9203 }, { "start": 9323.16, "end": 9326.44, "probability": 0.9657 }, { "start": 9326.44, "end": 9329.12, "probability": 0.9682 }, { "start": 9329.22, "end": 9329.78, "probability": 0.7286 }, { "start": 9331.82, "end": 9333.76, "probability": 0.7186 }, { "start": 9333.82, "end": 9335.77, "probability": 0.6504 }, { "start": 9337.88, "end": 9346.66, "probability": 0.9681 }, { "start": 9347.12, "end": 9348.3, "probability": 0.5803 }, { "start": 9351.02, "end": 9351.58, "probability": 0.3244 }, { "start": 9353.36, "end": 9357.76, "probability": 0.7812 }, { "start": 9358.34, "end": 9361.46, "probability": 0.9926 }, { "start": 9363.34, "end": 9363.46, "probability": 0.9302 }, { "start": 9364.24, "end": 9365.46, "probability": 0.322 }, { "start": 9365.54, "end": 9368.72, "probability": 0.8515 }, { "start": 9374.34, "end": 9375.14, "probability": 0.5277 }, { "start": 9388.1, "end": 9388.9, "probability": 0.4606 }, { "start": 9395.36, "end": 9400.14, "probability": 0.8176 }, { "start": 9403.55, "end": 9406.98, "probability": 0.9017 }, { "start": 9407.84, "end": 9409.04, "probability": 0.6692 }, { "start": 9409.26, "end": 9412.18, "probability": 0.8834 }, { "start": 9412.72, "end": 9414.44, "probability": 0.9679 }, { "start": 9415.2, "end": 9416.08, "probability": 0.6604 }, { "start": 9416.68, "end": 9417.8, "probability": 0.5558 }, { "start": 9417.8, "end": 9423.28, "probability": 0.675 }, { "start": 9424.06, "end": 9424.9, "probability": 0.535 }, { "start": 9426.52, "end": 9429.38, "probability": 0.015 }, { "start": 9447.54, "end": 9448.58, "probability": 0.2121 }, { "start": 9448.6, "end": 9454.88, "probability": 0.7557 }, { "start": 9455.56, "end": 9459.36, "probability": 0.77 }, { "start": 9461.0, "end": 9467.78, "probability": 0.7678 }, { "start": 9468.84, "end": 9470.02, "probability": 0.8545 }, { "start": 9472.98, "end": 9474.0, "probability": 0.5322 }, { "start": 9474.64, "end": 9475.24, "probability": 0.616 }, { "start": 9475.52, "end": 9476.18, "probability": 0.5435 }, { "start": 9476.72, "end": 9477.92, "probability": 0.5064 }, { "start": 9478.96, "end": 9482.82, "probability": 0.0054 }, { "start": 9484.5, "end": 9490.8, "probability": 0.0159 }, { "start": 9501.34, "end": 9501.84, "probability": 0.0369 }, { "start": 9502.18, "end": 9507.02, "probability": 0.7351 }, { "start": 9507.24, "end": 9509.32, "probability": 0.9127 }, { "start": 9510.24, "end": 9516.52, "probability": 0.9557 }, { "start": 9516.96, "end": 9518.62, "probability": 0.818 }, { "start": 9530.42, "end": 9531.82, "probability": 0.5435 }, { "start": 9532.1, "end": 9540.16, "probability": 0.6289 }, { "start": 9541.0, "end": 9546.32, "probability": 0.7372 }, { "start": 9547.04, "end": 9547.56, "probability": 0.882 }, { "start": 9547.84, "end": 9548.86, "probability": 0.8081 }, { "start": 9549.58, "end": 9551.54, "probability": 0.7415 }, { "start": 9551.6, "end": 9556.6, "probability": 0.9949 }, { "start": 9557.55, "end": 9561.2, "probability": 0.2394 }, { "start": 9561.8, "end": 9564.6, "probability": 0.984 }, { "start": 9566.08, "end": 9566.88, "probability": 0.7793 }, { "start": 9567.52, "end": 9568.02, "probability": 0.5001 }, { "start": 9568.58, "end": 9569.92, "probability": 0.8936 }, { "start": 9570.68, "end": 9573.68, "probability": 0.9664 }, { "start": 9573.76, "end": 9574.56, "probability": 0.8362 }, { "start": 9575.48, "end": 9577.56, "probability": 0.9499 }, { "start": 9578.42, "end": 9580.06, "probability": 0.9647 }, { "start": 9580.8, "end": 9582.92, "probability": 0.9684 }, { "start": 9583.54, "end": 9586.38, "probability": 0.8924 }, { "start": 9587.62, "end": 9591.7, "probability": 0.9886 }, { "start": 9592.42, "end": 9594.36, "probability": 0.7599 }, { "start": 9595.18, "end": 9596.06, "probability": 0.778 }, { "start": 9596.14, "end": 9596.68, "probability": 0.7178 }, { "start": 9596.74, "end": 9598.6, "probability": 0.7694 }, { "start": 9599.16, "end": 9601.42, "probability": 0.9181 }, { "start": 9602.26, "end": 9605.36, "probability": 0.9458 }, { "start": 9606.02, "end": 9607.28, "probability": 0.816 }, { "start": 9607.34, "end": 9609.08, "probability": 0.9641 }, { "start": 9609.56, "end": 9610.46, "probability": 0.952 }, { "start": 9611.0, "end": 9612.7, "probability": 0.9482 }, { "start": 9614.32, "end": 9617.2, "probability": 0.9929 }, { "start": 9617.2, "end": 9620.78, "probability": 0.9937 }, { "start": 9620.88, "end": 9624.02, "probability": 0.9868 }, { "start": 9624.08, "end": 9624.78, "probability": 0.4197 }, { "start": 9625.68, "end": 9626.92, "probability": 0.6834 }, { "start": 9627.08, "end": 9632.12, "probability": 0.9277 }, { "start": 9633.06, "end": 9637.86, "probability": 0.8585 }, { "start": 9639.32, "end": 9640.26, "probability": 0.6786 }, { "start": 9640.36, "end": 9640.92, "probability": 0.7174 }, { "start": 9641.04, "end": 9644.7, "probability": 0.9799 }, { "start": 9645.24, "end": 9648.74, "probability": 0.9763 }, { "start": 9649.4, "end": 9649.9, "probability": 0.6922 }, { "start": 9649.98, "end": 9654.6, "probability": 0.9697 }, { "start": 9655.72, "end": 9658.56, "probability": 0.9944 }, { "start": 9658.56, "end": 9662.46, "probability": 0.9308 }, { "start": 9662.98, "end": 9666.77, "probability": 0.7496 }, { "start": 9667.6, "end": 9668.4, "probability": 0.2546 }, { "start": 9670.43, "end": 9675.16, "probability": 0.9308 }, { "start": 9677.04, "end": 9677.66, "probability": 0.9985 }, { "start": 9678.54, "end": 9679.72, "probability": 0.7371 }, { "start": 9680.22, "end": 9682.38, "probability": 0.7537 }, { "start": 9683.46, "end": 9687.08, "probability": 0.5894 }, { "start": 9687.74, "end": 9690.04, "probability": 0.7802 }, { "start": 9690.1, "end": 9690.7, "probability": 0.851 }, { "start": 9691.54, "end": 9694.7, "probability": 0.91 }, { "start": 9694.76, "end": 9696.8, "probability": 0.3013 }, { "start": 9697.98, "end": 9701.06, "probability": 0.9923 }, { "start": 9701.06, "end": 9701.4, "probability": 0.4503 }, { "start": 9702.18, "end": 9705.04, "probability": 0.4241 }, { "start": 9707.0, "end": 9711.26, "probability": 0.9848 }, { "start": 9711.34, "end": 9713.76, "probability": 0.9402 }, { "start": 9714.42, "end": 9716.04, "probability": 0.8843 }, { "start": 9716.1, "end": 9718.5, "probability": 0.94 }, { "start": 9719.12, "end": 9721.14, "probability": 0.984 }, { "start": 9721.24, "end": 9722.26, "probability": 0.9885 }, { "start": 9722.88, "end": 9724.64, "probability": 0.9973 }, { "start": 9724.74, "end": 9727.1, "probability": 0.7609 }, { "start": 9727.72, "end": 9729.78, "probability": 0.9743 }, { "start": 9729.86, "end": 9730.98, "probability": 0.7397 }, { "start": 9732.32, "end": 9733.7, "probability": 0.861 }, { "start": 9736.82, "end": 9738.72, "probability": 0.6476 }, { "start": 9738.78, "end": 9739.76, "probability": 0.9175 }, { "start": 9740.0, "end": 9746.92, "probability": 0.9873 }, { "start": 9748.18, "end": 9749.88, "probability": 0.8701 }, { "start": 9751.48, "end": 9752.76, "probability": 0.9523 }, { "start": 9753.36, "end": 9755.2, "probability": 0.978 }, { "start": 9757.38, "end": 9757.98, "probability": 0.9897 }, { "start": 9760.78, "end": 9761.72, "probability": 0.4685 }, { "start": 9762.54, "end": 9763.4, "probability": 0.6888 }, { "start": 9764.0, "end": 9764.88, "probability": 0.7229 }, { "start": 9769.32, "end": 9770.1, "probability": 0.1553 }, { "start": 9770.44, "end": 9777.26, "probability": 0.058 }, { "start": 9777.26, "end": 9778.14, "probability": 0.0172 }, { "start": 9778.58, "end": 9778.94, "probability": 0.0198 }, { "start": 9782.04, "end": 9783.76, "probability": 0.0739 }, { "start": 9783.76, "end": 9784.56, "probability": 0.2243 }, { "start": 9784.88, "end": 9785.38, "probability": 0.0887 }, { "start": 9786.06, "end": 9791.72, "probability": 0.5811 }, { "start": 9792.96, "end": 9800.44, "probability": 0.995 }, { "start": 9801.98, "end": 9807.04, "probability": 0.9854 }, { "start": 9807.16, "end": 9812.38, "probability": 0.4905 }, { "start": 9812.66, "end": 9813.9, "probability": 0.4894 }, { "start": 9814.54, "end": 9815.72, "probability": 0.8977 }, { "start": 9815.82, "end": 9817.1, "probability": 0.8213 }, { "start": 9817.16, "end": 9818.48, "probability": 0.7126 }, { "start": 9818.7, "end": 9821.24, "probability": 0.7659 }, { "start": 9822.24, "end": 9823.48, "probability": 0.7847 }, { "start": 9823.48, "end": 9827.78, "probability": 0.9966 }, { "start": 9828.3, "end": 9830.56, "probability": 0.3113 }, { "start": 9830.94, "end": 9835.78, "probability": 0.9362 }, { "start": 9836.44, "end": 9840.16, "probability": 0.2697 }, { "start": 9840.48, "end": 9844.3, "probability": 0.9743 }, { "start": 9846.41, "end": 9848.06, "probability": 0.8127 }, { "start": 9848.16, "end": 9850.12, "probability": 0.8452 }, { "start": 9856.1, "end": 9858.02, "probability": 0.8794 }, { "start": 9858.16, "end": 9858.62, "probability": 0.6134 }, { "start": 9858.68, "end": 9859.42, "probability": 0.6635 }, { "start": 9859.66, "end": 9860.22, "probability": 0.6493 }, { "start": 9860.36, "end": 9861.72, "probability": 0.7942 }, { "start": 9862.98, "end": 9863.08, "probability": 0.1573 }, { "start": 9865.18, "end": 9866.8, "probability": 0.0879 }, { "start": 9867.34, "end": 9872.3, "probability": 0.7654 }, { "start": 9873.04, "end": 9873.98, "probability": 0.2427 }, { "start": 9873.98, "end": 9873.98, "probability": 0.0789 }, { "start": 9874.18, "end": 9877.8, "probability": 0.8464 }, { "start": 9877.8, "end": 9881.76, "probability": 0.4392 }, { "start": 9881.76, "end": 9882.8, "probability": 0.6362 }, { "start": 9882.96, "end": 9884.46, "probability": 0.7697 }, { "start": 9887.2, "end": 9887.44, "probability": 0.349 }, { "start": 9890.04, "end": 9890.84, "probability": 0.4996 }, { "start": 9891.28, "end": 9893.7, "probability": 0.9975 }, { "start": 9893.98, "end": 9899.16, "probability": 0.7526 }, { "start": 9899.72, "end": 9901.48, "probability": 0.8721 }, { "start": 9908.72, "end": 9913.66, "probability": 0.9492 }, { "start": 9913.74, "end": 9916.17, "probability": 0.6686 }, { "start": 9916.86, "end": 9919.68, "probability": 0.7511 }, { "start": 9919.76, "end": 9920.22, "probability": 0.407 }, { "start": 9920.42, "end": 9922.9, "probability": 0.5892 }, { "start": 9922.9, "end": 9927.48, "probability": 0.988 }, { "start": 9927.48, "end": 9927.58, "probability": 0.738 }, { "start": 9929.64, "end": 9930.28, "probability": 0.7455 }, { "start": 9936.38, "end": 9938.88, "probability": 0.777 }, { "start": 9939.6, "end": 9942.16, "probability": 0.9438 }, { "start": 9942.52, "end": 9947.54, "probability": 0.6962 }, { "start": 9948.34, "end": 9950.54, "probability": 0.9517 }, { "start": 9951.78, "end": 9954.8, "probability": 0.9885 }, { "start": 9955.48, "end": 9955.64, "probability": 0.1838 }, { "start": 9956.06, "end": 9958.0, "probability": 0.986 }, { "start": 9958.18, "end": 9959.48, "probability": 0.6029 }, { "start": 9959.76, "end": 9963.34, "probability": 0.98 }, { "start": 9963.94, "end": 9964.0, "probability": 0.0217 }, { "start": 9964.0, "end": 9965.74, "probability": 0.9174 }, { "start": 9966.92, "end": 9970.32, "probability": 0.924 }, { "start": 9970.58, "end": 9971.84, "probability": 0.4601 }, { "start": 9972.34, "end": 9975.1, "probability": 0.9541 }, { "start": 9975.72, "end": 9977.24, "probability": 0.5795 }, { "start": 9978.02, "end": 9982.2, "probability": 0.9243 }, { "start": 9983.26, "end": 9983.26, "probability": 0.0005 }, { "start": 9983.26, "end": 9986.6, "probability": 0.9587 }, { "start": 9986.7, "end": 9987.98, "probability": 0.6283 }, { "start": 9988.72, "end": 9991.4, "probability": 0.9841 }, { "start": 9991.4, "end": 9992.58, "probability": 0.9662 }, { "start": 9992.74, "end": 9994.02, "probability": 0.6064 }, { "start": 9994.34, "end": 9996.0, "probability": 0.9985 }, { "start": 9996.54, "end": 9998.45, "probability": 0.9251 }, { "start": 9999.64, "end": 10003.02, "probability": 0.7768 }, { "start": 10003.4, "end": 10006.69, "probability": 0.9679 }, { "start": 10007.98, "end": 10009.9, "probability": 0.393 }, { "start": 10010.0, "end": 10011.12, "probability": 0.929 }, { "start": 10011.6, "end": 10014.14, "probability": 0.9948 }, { "start": 10014.2, "end": 10014.4, "probability": 0.6198 }, { "start": 10017.14, "end": 10017.98, "probability": 0.5797 }, { "start": 10018.18, "end": 10022.98, "probability": 0.9513 }, { "start": 10023.82, "end": 10026.82, "probability": 0.9723 }, { "start": 10029.4, "end": 10029.78, "probability": 0.775 }, { "start": 10030.62, "end": 10031.42, "probability": 0.7002 }, { "start": 10033.6, "end": 10037.2, "probability": 0.7222 }, { "start": 10045.6, "end": 10048.78, "probability": 0.9958 }, { "start": 10049.51, "end": 10054.82, "probability": 0.9645 }, { "start": 10058.54, "end": 10060.27, "probability": 0.3176 }, { "start": 10061.94, "end": 10063.28, "probability": 0.77 }, { "start": 10065.72, "end": 10067.7, "probability": 0.9298 }, { "start": 10068.16, "end": 10069.36, "probability": 0.977 }, { "start": 10070.08, "end": 10071.7, "probability": 0.9426 }, { "start": 10074.72, "end": 10078.4, "probability": 0.9249 }, { "start": 10079.68, "end": 10082.24, "probability": 0.9951 }, { "start": 10082.76, "end": 10085.78, "probability": 0.9426 }, { "start": 10086.9, "end": 10089.18, "probability": 0.9703 }, { "start": 10091.12, "end": 10100.5, "probability": 0.9624 }, { "start": 10101.6, "end": 10101.84, "probability": 0.4507 }, { "start": 10101.86, "end": 10102.06, "probability": 0.9486 }, { "start": 10102.16, "end": 10105.36, "probability": 0.9607 }, { "start": 10105.66, "end": 10112.74, "probability": 0.9591 }, { "start": 10113.7, "end": 10118.98, "probability": 0.9854 }, { "start": 10120.34, "end": 10120.7, "probability": 0.8091 }, { "start": 10121.84, "end": 10124.48, "probability": 0.9978 }, { "start": 10125.74, "end": 10134.34, "probability": 0.9857 }, { "start": 10135.8, "end": 10139.14, "probability": 0.995 }, { "start": 10139.88, "end": 10141.24, "probability": 0.9656 }, { "start": 10142.4, "end": 10146.6, "probability": 0.9474 }, { "start": 10148.04, "end": 10151.58, "probability": 0.9906 }, { "start": 10151.58, "end": 10157.14, "probability": 0.9909 }, { "start": 10157.74, "end": 10160.8, "probability": 0.9783 }, { "start": 10161.28, "end": 10162.66, "probability": 0.903 }, { "start": 10163.34, "end": 10164.38, "probability": 0.9223 }, { "start": 10165.36, "end": 10167.44, "probability": 0.9668 }, { "start": 10168.24, "end": 10170.26, "probability": 0.9765 }, { "start": 10172.1, "end": 10174.1, "probability": 0.8499 }, { "start": 10175.24, "end": 10177.12, "probability": 0.9553 }, { "start": 10178.22, "end": 10183.02, "probability": 0.9864 }, { "start": 10183.98, "end": 10184.6, "probability": 0.5744 }, { "start": 10185.34, "end": 10191.84, "probability": 0.9915 }, { "start": 10193.32, "end": 10196.36, "probability": 0.8931 }, { "start": 10196.92, "end": 10202.76, "probability": 0.9984 }, { "start": 10203.38, "end": 10205.2, "probability": 0.9977 }, { "start": 10206.14, "end": 10206.86, "probability": 0.9003 }, { "start": 10207.1, "end": 10207.64, "probability": 0.9464 }, { "start": 10207.68, "end": 10213.38, "probability": 0.819 }, { "start": 10214.06, "end": 10218.12, "probability": 0.7066 }, { "start": 10219.14, "end": 10219.92, "probability": 0.8523 }, { "start": 10220.02, "end": 10223.9, "probability": 0.9445 }, { "start": 10224.26, "end": 10225.26, "probability": 0.9678 }, { "start": 10226.62, "end": 10227.6, "probability": 0.9576 }, { "start": 10227.68, "end": 10228.14, "probability": 0.8438 }, { "start": 10228.32, "end": 10232.8, "probability": 0.9963 }, { "start": 10233.36, "end": 10238.94, "probability": 0.9785 }, { "start": 10239.72, "end": 10244.17, "probability": 0.9915 }, { "start": 10244.68, "end": 10245.42, "probability": 0.8605 }, { "start": 10246.16, "end": 10248.92, "probability": 0.9988 }, { "start": 10249.84, "end": 10251.76, "probability": 0.8805 }, { "start": 10252.4, "end": 10254.62, "probability": 0.8954 }, { "start": 10255.24, "end": 10258.36, "probability": 0.9868 }, { "start": 10259.14, "end": 10259.48, "probability": 0.9086 }, { "start": 10260.78, "end": 10261.76, "probability": 0.6885 }, { "start": 10262.7, "end": 10266.22, "probability": 0.7493 }, { "start": 10268.76, "end": 10270.72, "probability": 0.0603 }, { "start": 10295.2, "end": 10297.96, "probability": 0.7229 }, { "start": 10299.1, "end": 10304.16, "probability": 0.9982 }, { "start": 10304.78, "end": 10306.3, "probability": 0.9727 }, { "start": 10306.82, "end": 10309.1, "probability": 0.8094 }, { "start": 10310.12, "end": 10314.92, "probability": 0.9983 }, { "start": 10314.92, "end": 10321.84, "probability": 0.7961 }, { "start": 10321.84, "end": 10326.92, "probability": 0.9974 }, { "start": 10328.02, "end": 10331.12, "probability": 0.8469 }, { "start": 10331.9, "end": 10333.26, "probability": 0.8899 }, { "start": 10333.5, "end": 10338.44, "probability": 0.9845 }, { "start": 10339.7, "end": 10345.2, "probability": 0.9758 }, { "start": 10345.2, "end": 10351.0, "probability": 0.9934 }, { "start": 10352.0, "end": 10354.44, "probability": 0.9832 }, { "start": 10355.54, "end": 10357.36, "probability": 0.9249 }, { "start": 10357.74, "end": 10365.96, "probability": 0.9308 }, { "start": 10367.92, "end": 10371.32, "probability": 0.9951 }, { "start": 10371.32, "end": 10376.78, "probability": 0.8916 }, { "start": 10377.32, "end": 10378.98, "probability": 0.9116 }, { "start": 10379.6, "end": 10382.62, "probability": 0.9499 }, { "start": 10383.16, "end": 10387.32, "probability": 0.9893 }, { "start": 10387.84, "end": 10391.48, "probability": 0.9927 }, { "start": 10391.48, "end": 10396.84, "probability": 0.972 }, { "start": 10397.84, "end": 10398.82, "probability": 0.6642 }, { "start": 10400.32, "end": 10403.26, "probability": 0.9763 }, { "start": 10404.32, "end": 10406.7, "probability": 0.9912 }, { "start": 10407.84, "end": 10412.36, "probability": 0.9753 }, { "start": 10413.1, "end": 10413.88, "probability": 0.7134 }, { "start": 10415.44, "end": 10415.8, "probability": 0.0748 }, { "start": 10416.56, "end": 10421.08, "probability": 0.9845 }, { "start": 10421.08, "end": 10425.84, "probability": 0.9948 }, { "start": 10426.7, "end": 10426.94, "probability": 0.4463 }, { "start": 10427.68, "end": 10430.3, "probability": 0.9932 }, { "start": 10430.88, "end": 10432.4, "probability": 0.9568 }, { "start": 10433.0, "end": 10434.64, "probability": 0.7412 }, { "start": 10435.6, "end": 10442.38, "probability": 0.9499 }, { "start": 10443.66, "end": 10446.26, "probability": 0.9961 }, { "start": 10447.2, "end": 10447.4, "probability": 0.0414 }, { "start": 10448.18, "end": 10452.56, "probability": 0.9892 }, { "start": 10452.8, "end": 10454.62, "probability": 0.5889 }, { "start": 10454.7, "end": 10454.94, "probability": 0.0535 }, { "start": 10455.72, "end": 10460.44, "probability": 0.8525 }, { "start": 10460.82, "end": 10461.78, "probability": 0.7648 }, { "start": 10462.46, "end": 10466.88, "probability": 0.8044 }, { "start": 10467.36, "end": 10468.0, "probability": 0.708 }, { "start": 10469.04, "end": 10473.48, "probability": 0.9738 }, { "start": 10474.52, "end": 10476.36, "probability": 0.6058 }, { "start": 10477.06, "end": 10480.14, "probability": 0.9718 }, { "start": 10481.46, "end": 10483.36, "probability": 0.6421 }, { "start": 10484.45, "end": 10485.98, "probability": 0.6979 }, { "start": 10487.36, "end": 10487.4, "probability": 0.0695 }, { "start": 10487.4, "end": 10493.06, "probability": 0.9141 }, { "start": 10493.06, "end": 10499.44, "probability": 0.9867 }, { "start": 10499.84, "end": 10500.1, "probability": 0.7017 }, { "start": 10500.12, "end": 10502.06, "probability": 0.8794 }, { "start": 10502.16, "end": 10504.0, "probability": 0.8183 }, { "start": 10504.3, "end": 10506.38, "probability": 0.9873 }, { "start": 10507.04, "end": 10513.44, "probability": 0.9609 }, { "start": 10513.44, "end": 10513.96, "probability": 0.664 }, { "start": 10513.96, "end": 10514.22, "probability": 0.7214 }, { "start": 10515.4, "end": 10517.44, "probability": 0.9746 }, { "start": 10518.48, "end": 10519.2, "probability": 0.7498 }, { "start": 10520.42, "end": 10521.94, "probability": 0.973 }, { "start": 10525.08, "end": 10525.78, "probability": 0.5716 }, { "start": 10527.96, "end": 10529.94, "probability": 0.9464 }, { "start": 10533.74, "end": 10534.56, "probability": 0.6062 }, { "start": 10535.46, "end": 10537.0, "probability": 0.9395 }, { "start": 10538.14, "end": 10538.44, "probability": 0.7418 }, { "start": 10559.0, "end": 10560.04, "probability": 0.4966 }, { "start": 10560.6, "end": 10561.48, "probability": 0.5967 }, { "start": 10564.64, "end": 10565.36, "probability": 0.9526 }, { "start": 10566.02, "end": 10567.38, "probability": 0.9325 }, { "start": 10568.7, "end": 10572.76, "probability": 0.9163 }, { "start": 10574.68, "end": 10576.28, "probability": 0.9017 }, { "start": 10578.28, "end": 10583.32, "probability": 0.9544 }, { "start": 10585.72, "end": 10587.54, "probability": 0.8342 }, { "start": 10588.78, "end": 10590.32, "probability": 0.8076 }, { "start": 10591.14, "end": 10596.06, "probability": 0.797 }, { "start": 10597.04, "end": 10599.8, "probability": 0.3687 }, { "start": 10601.36, "end": 10603.82, "probability": 0.6766 }, { "start": 10604.28, "end": 10606.24, "probability": 0.968 }, { "start": 10606.36, "end": 10607.16, "probability": 0.5947 }, { "start": 10608.94, "end": 10611.4, "probability": 0.0361 }, { "start": 10613.08, "end": 10614.98, "probability": 0.016 }, { "start": 10617.44, "end": 10619.78, "probability": 0.0514 }, { "start": 10620.58, "end": 10623.96, "probability": 0.3095 }, { "start": 10624.7, "end": 10624.7, "probability": 0.0 }, { "start": 10625.92, "end": 10625.92, "probability": 0.4392 }, { "start": 10626.74, "end": 10627.35, "probability": 0.1143 }, { "start": 10629.78, "end": 10631.31, "probability": 0.1297 }, { "start": 10633.2, "end": 10635.84, "probability": 0.0182 }, { "start": 10636.8, "end": 10638.16, "probability": 0.0563 }, { "start": 10641.52, "end": 10641.82, "probability": 0.0319 }, { "start": 10641.82, "end": 10642.02, "probability": 0.038 }, { "start": 10642.02, "end": 10642.1, "probability": 0.1205 }, { "start": 10642.1, "end": 10643.42, "probability": 0.3296 }, { "start": 10643.62, "end": 10645.98, "probability": 0.7421 }, { "start": 10646.74, "end": 10646.94, "probability": 0.0225 }, { "start": 10649.22, "end": 10649.34, "probability": 0.0391 }, { "start": 10649.34, "end": 10649.69, "probability": 0.413 }, { "start": 10652.7, "end": 10653.71, "probability": 0.159 }, { "start": 10654.82, "end": 10657.82, "probability": 0.1862 }, { "start": 10658.62, "end": 10659.42, "probability": 0.0862 }, { "start": 10686.0, "end": 10686.0, "probability": 0.0 }, { "start": 10686.0, "end": 10686.0, "probability": 0.0 }, { "start": 10686.0, "end": 10686.0, "probability": 0.0 }, { "start": 10686.0, "end": 10686.0, "probability": 0.0 }, { "start": 10686.0, "end": 10686.0, "probability": 0.0 }, { "start": 10686.0, "end": 10686.0, "probability": 0.0 }, { "start": 10686.0, "end": 10686.0, "probability": 0.0 }, { "start": 10686.0, "end": 10686.0, "probability": 0.0 }, { "start": 10686.0, "end": 10686.0, "probability": 0.0 }, { "start": 10686.0, "end": 10686.0, "probability": 0.0 }, { "start": 10686.0, "end": 10686.0, "probability": 0.0 }, { "start": 10686.0, "end": 10686.0, "probability": 0.0 }, { "start": 10686.0, "end": 10686.0, "probability": 0.0 }, { "start": 10686.0, "end": 10686.0, "probability": 0.0 }, { "start": 10693.44, "end": 10695.56, "probability": 0.3855 }, { "start": 10696.24, "end": 10697.96, "probability": 0.8097 }, { "start": 10699.5, "end": 10701.89, "probability": 0.0852 }, { "start": 10703.68, "end": 10705.7, "probability": 0.8453 }, { "start": 10705.86, "end": 10707.3, "probability": 0.3743 }, { "start": 10707.84, "end": 10710.7, "probability": 0.6754 }, { "start": 10711.72, "end": 10714.72, "probability": 0.0863 }, { "start": 10718.2, "end": 10719.72, "probability": 0.4718 }, { "start": 10720.64, "end": 10721.82, "probability": 0.3817 }, { "start": 10722.76, "end": 10723.82, "probability": 0.1715 }, { "start": 10723.82, "end": 10725.88, "probability": 0.0664 }, { "start": 10727.92, "end": 10729.18, "probability": 0.2737 }, { "start": 10729.32, "end": 10730.04, "probability": 0.3264 }, { "start": 10730.32, "end": 10731.14, "probability": 0.498 }, { "start": 10732.2, "end": 10733.08, "probability": 0.71 }, { "start": 10733.6, "end": 10734.76, "probability": 0.5438 }, { "start": 10735.52, "end": 10737.74, "probability": 0.9969 }, { "start": 10738.38, "end": 10739.06, "probability": 0.7146 }, { "start": 10740.4, "end": 10741.6, "probability": 0.9178 }, { "start": 10742.14, "end": 10743.76, "probability": 0.7145 }, { "start": 10744.14, "end": 10745.0, "probability": 0.6279 }, { "start": 10745.68, "end": 10746.36, "probability": 0.826 }, { "start": 10748.48, "end": 10752.36, "probability": 0.9384 }, { "start": 10752.92, "end": 10754.88, "probability": 0.9404 }, { "start": 10755.16, "end": 10757.44, "probability": 0.918 }, { "start": 10757.8, "end": 10758.38, "probability": 0.9682 }, { "start": 10759.08, "end": 10759.84, "probability": 0.8222 }, { "start": 10760.94, "end": 10761.88, "probability": 0.5444 }, { "start": 10764.36, "end": 10767.28, "probability": 0.7816 }, { "start": 10770.22, "end": 10770.86, "probability": 0.6771 }, { "start": 10771.6, "end": 10774.64, "probability": 0.9583 }, { "start": 10775.64, "end": 10777.16, "probability": 0.8807 }, { "start": 10777.92, "end": 10779.82, "probability": 0.9734 }, { "start": 10781.36, "end": 10782.16, "probability": 0.9783 }, { "start": 10783.0, "end": 10784.76, "probability": 0.9434 }, { "start": 10786.22, "end": 10787.08, "probability": 0.9793 }, { "start": 10788.24, "end": 10789.66, "probability": 0.8821 }, { "start": 10791.92, "end": 10792.84, "probability": 0.7083 }, { "start": 10793.48, "end": 10795.02, "probability": 0.9683 }, { "start": 10796.06, "end": 10796.88, "probability": 0.9316 }, { "start": 10797.96, "end": 10799.6, "probability": 0.9868 }, { "start": 10801.2, "end": 10801.9, "probability": 0.9878 }, { "start": 10802.78, "end": 10804.56, "probability": 0.9961 }, { "start": 10805.94, "end": 10806.74, "probability": 0.7486 }, { "start": 10807.6, "end": 10808.92, "probability": 0.9983 }, { "start": 10837.94, "end": 10838.52, "probability": 0.7653 }, { "start": 10839.46, "end": 10840.9, "probability": 0.8737 }, { "start": 10841.44, "end": 10843.36, "probability": 0.8081 }, { "start": 10844.58, "end": 10848.76, "probability": 0.9977 }, { "start": 10849.7, "end": 10851.64, "probability": 0.999 }, { "start": 10852.88, "end": 10855.02, "probability": 0.911 }, { "start": 10855.76, "end": 10860.34, "probability": 0.9771 }, { "start": 10861.68, "end": 10864.12, "probability": 0.9985 }, { "start": 10864.82, "end": 10865.98, "probability": 0.6182 }, { "start": 10866.66, "end": 10870.36, "probability": 0.8374 }, { "start": 10870.36, "end": 10873.78, "probability": 0.9954 }, { "start": 10873.92, "end": 10874.48, "probability": 0.477 }, { "start": 10874.56, "end": 10875.24, "probability": 0.6347 }, { "start": 10875.38, "end": 10879.76, "probability": 0.9937 }, { "start": 10879.94, "end": 10885.08, "probability": 0.9919 }, { "start": 10885.8, "end": 10889.88, "probability": 0.9833 }, { "start": 10890.66, "end": 10892.86, "probability": 0.9546 }, { "start": 10893.66, "end": 10897.92, "probability": 0.9886 }, { "start": 10898.06, "end": 10899.34, "probability": 0.8976 }, { "start": 10900.02, "end": 10903.08, "probability": 0.9939 }, { "start": 10903.98, "end": 10909.1, "probability": 0.9849 }, { "start": 10909.68, "end": 10910.26, "probability": 0.352 }, { "start": 10910.6, "end": 10911.1, "probability": 0.8855 }, { "start": 10911.18, "end": 10915.24, "probability": 0.9275 }, { "start": 10915.24, "end": 10919.36, "probability": 0.9669 }, { "start": 10920.36, "end": 10925.04, "probability": 0.8837 }, { "start": 10925.04, "end": 10927.68, "probability": 0.9795 }, { "start": 10928.28, "end": 10929.4, "probability": 0.8713 }, { "start": 10929.64, "end": 10934.64, "probability": 0.9881 }, { "start": 10935.18, "end": 10937.34, "probability": 0.9963 }, { "start": 10937.96, "end": 10940.94, "probability": 0.9717 }, { "start": 10941.62, "end": 10945.0, "probability": 0.9869 }, { "start": 10945.64, "end": 10948.24, "probability": 0.96 }, { "start": 10948.84, "end": 10950.3, "probability": 0.929 }, { "start": 10950.8, "end": 10952.96, "probability": 0.9796 }, { "start": 10952.96, "end": 10956.84, "probability": 0.9945 }, { "start": 10956.98, "end": 10958.74, "probability": 0.7223 }, { "start": 10959.4, "end": 10964.02, "probability": 0.9699 }, { "start": 10964.02, "end": 10969.04, "probability": 0.9965 }, { "start": 10969.26, "end": 10970.84, "probability": 0.7042 }, { "start": 10971.6, "end": 10974.66, "probability": 0.6413 }, { "start": 10975.2, "end": 10977.62, "probability": 0.9487 }, { "start": 10978.3, "end": 10981.52, "probability": 0.9932 }, { "start": 10982.11, "end": 10986.72, "probability": 0.9977 }, { "start": 10986.72, "end": 10991.38, "probability": 0.9997 }, { "start": 10991.9, "end": 10992.26, "probability": 0.7867 }, { "start": 10992.9, "end": 10995.45, "probability": 0.7963 }, { "start": 10996.24, "end": 10999.7, "probability": 0.9852 }, { "start": 11000.32, "end": 11001.23, "probability": 0.8349 }, { "start": 11002.26, "end": 11004.44, "probability": 0.8603 }, { "start": 11004.78, "end": 11013.02, "probability": 0.975 }, { "start": 11013.86, "end": 11019.28, "probability": 0.9956 }, { "start": 11019.98, "end": 11023.4, "probability": 0.9295 }, { "start": 11023.8, "end": 11026.16, "probability": 0.9083 }, { "start": 11026.32, "end": 11026.82, "probability": 0.76 }, { "start": 11027.24, "end": 11028.78, "probability": 0.9486 }, { "start": 11029.0, "end": 11029.3, "probability": 0.7824 }, { "start": 11029.44, "end": 11030.28, "probability": 0.7503 }, { "start": 11032.8, "end": 11035.82, "probability": 0.9299 }, { "start": 11036.34, "end": 11037.22, "probability": 0.7405 }, { "start": 11039.58, "end": 11041.4, "probability": 0.9865 }, { "start": 11058.64, "end": 11060.68, "probability": 0.7955 }, { "start": 11062.74, "end": 11064.34, "probability": 0.9974 }, { "start": 11065.42, "end": 11067.97, "probability": 0.8001 }, { "start": 11069.5, "end": 11073.14, "probability": 0.9724 }, { "start": 11073.66, "end": 11074.54, "probability": 0.9946 }, { "start": 11075.62, "end": 11077.42, "probability": 0.8239 }, { "start": 11078.8, "end": 11080.64, "probability": 0.906 }, { "start": 11081.72, "end": 11082.56, "probability": 0.8345 }, { "start": 11083.42, "end": 11084.0, "probability": 0.993 }, { "start": 11085.22, "end": 11089.08, "probability": 0.941 }, { "start": 11089.08, "end": 11092.9, "probability": 0.9958 }, { "start": 11092.94, "end": 11093.9, "probability": 0.8368 }, { "start": 11094.62, "end": 11096.88, "probability": 0.9777 }, { "start": 11098.02, "end": 11101.1, "probability": 0.8149 }, { "start": 11101.2, "end": 11103.78, "probability": 0.6529 }, { "start": 11104.3, "end": 11105.64, "probability": 0.9741 }, { "start": 11106.16, "end": 11107.06, "probability": 0.5979 }, { "start": 11107.76, "end": 11111.14, "probability": 0.9554 }, { "start": 11111.58, "end": 11112.35, "probability": 0.605 }, { "start": 11112.6, "end": 11112.6, "probability": 0.1253 }, { "start": 11112.6, "end": 11115.34, "probability": 0.7954 }, { "start": 11115.48, "end": 11117.7, "probability": 0.3001 }, { "start": 11118.3, "end": 11119.0, "probability": 0.5249 }, { "start": 11119.58, "end": 11119.58, "probability": 0.0433 }, { "start": 11119.58, "end": 11123.58, "probability": 0.9461 }, { "start": 11124.1, "end": 11125.9, "probability": 0.7233 }, { "start": 11127.22, "end": 11127.88, "probability": 0.9138 }, { "start": 11129.34, "end": 11132.62, "probability": 0.9184 }, { "start": 11133.48, "end": 11139.58, "probability": 0.9714 }, { "start": 11140.48, "end": 11142.72, "probability": 0.9985 }, { "start": 11143.42, "end": 11144.24, "probability": 0.6538 }, { "start": 11145.86, "end": 11150.5, "probability": 0.9175 }, { "start": 11150.56, "end": 11154.86, "probability": 0.8673 }, { "start": 11155.88, "end": 11155.88, "probability": 0.0226 }, { "start": 11155.88, "end": 11156.52, "probability": 0.7454 }, { "start": 11157.68, "end": 11159.92, "probability": 0.8766 }, { "start": 11160.66, "end": 11163.24, "probability": 0.9542 }, { "start": 11163.8, "end": 11165.14, "probability": 0.3344 }, { "start": 11165.18, "end": 11168.9, "probability": 0.5471 }, { "start": 11168.9, "end": 11168.9, "probability": 0.0566 }, { "start": 11169.12, "end": 11169.72, "probability": 0.4614 }, { "start": 11169.9, "end": 11172.7, "probability": 0.9482 }, { "start": 11173.54, "end": 11174.36, "probability": 0.6222 }, { "start": 11175.12, "end": 11178.47, "probability": 0.8081 }, { "start": 11179.88, "end": 11181.9, "probability": 0.9141 }, { "start": 11182.08, "end": 11182.64, "probability": 0.7165 }, { "start": 11183.14, "end": 11184.12, "probability": 0.7427 }, { "start": 11184.16, "end": 11185.02, "probability": 0.8191 }, { "start": 11186.98, "end": 11188.02, "probability": 0.8988 }, { "start": 11188.14, "end": 11190.8, "probability": 0.9844 }, { "start": 11191.08, "end": 11192.38, "probability": 0.6505 }, { "start": 11196.96, "end": 11197.0, "probability": 0.069 }, { "start": 11197.0, "end": 11200.44, "probability": 0.6206 }, { "start": 11201.0, "end": 11203.76, "probability": 0.9302 }, { "start": 11205.06, "end": 11205.74, "probability": 0.9101 }, { "start": 11207.24, "end": 11210.34, "probability": 0.8683 }, { "start": 11210.7, "end": 11212.84, "probability": 0.8407 }, { "start": 11213.14, "end": 11213.9, "probability": 0.9595 }, { "start": 11214.12, "end": 11215.4, "probability": 0.921 }, { "start": 11215.46, "end": 11216.12, "probability": 0.983 }, { "start": 11216.16, "end": 11220.74, "probability": 0.9625 }, { "start": 11221.96, "end": 11223.06, "probability": 0.9922 }, { "start": 11223.3, "end": 11224.89, "probability": 0.9797 }, { "start": 11225.64, "end": 11227.26, "probability": 0.8065 }, { "start": 11227.78, "end": 11228.72, "probability": 0.6245 }, { "start": 11229.48, "end": 11231.26, "probability": 0.9832 }, { "start": 11231.36, "end": 11234.42, "probability": 0.9595 }, { "start": 11235.4, "end": 11236.47, "probability": 0.9982 }, { "start": 11236.72, "end": 11237.06, "probability": 0.7142 }, { "start": 11237.94, "end": 11239.34, "probability": 0.9583 }, { "start": 11239.66, "end": 11239.94, "probability": 0.6998 }, { "start": 11240.06, "end": 11242.46, "probability": 0.8454 }, { "start": 11242.74, "end": 11243.9, "probability": 0.9399 }, { "start": 11244.1, "end": 11244.86, "probability": 0.7672 }, { "start": 11245.84, "end": 11246.86, "probability": 0.7084 }, { "start": 11247.52, "end": 11251.22, "probability": 0.9333 }, { "start": 11252.16, "end": 11252.82, "probability": 0.9423 }, { "start": 11253.1, "end": 11258.26, "probability": 0.9528 }, { "start": 11258.5, "end": 11258.92, "probability": 0.7729 }, { "start": 11259.76, "end": 11260.68, "probability": 0.6748 }, { "start": 11261.5, "end": 11263.94, "probability": 0.938 }, { "start": 11265.02, "end": 11265.8, "probability": 0.7728 }, { "start": 11266.9, "end": 11268.2, "probability": 0.7418 }, { "start": 11277.87, "end": 11278.3, "probability": 0.1852 }, { "start": 11279.74, "end": 11279.9, "probability": 0.2638 }, { "start": 11290.58, "end": 11290.86, "probability": 0.1521 }, { "start": 11290.86, "end": 11290.96, "probability": 0.054 }, { "start": 11290.96, "end": 11291.14, "probability": 0.0327 }, { "start": 11291.14, "end": 11291.24, "probability": 0.0395 }, { "start": 11317.44, "end": 11319.98, "probability": 0.6485 }, { "start": 11320.44, "end": 11323.76, "probability": 0.6096 }, { "start": 11323.78, "end": 11325.04, "probability": 0.8129 }, { "start": 11326.0, "end": 11330.42, "probability": 0.9946 }, { "start": 11331.02, "end": 11333.54, "probability": 0.9711 }, { "start": 11333.82, "end": 11335.02, "probability": 0.8745 }, { "start": 11335.18, "end": 11336.78, "probability": 0.8037 }, { "start": 11337.3, "end": 11339.68, "probability": 0.8955 }, { "start": 11340.58, "end": 11341.64, "probability": 0.784 }, { "start": 11342.12, "end": 11342.94, "probability": 0.7479 }, { "start": 11343.32, "end": 11343.84, "probability": 0.4417 }, { "start": 11343.84, "end": 11344.51, "probability": 0.5241 }, { "start": 11344.62, "end": 11345.19, "probability": 0.505 }, { "start": 11345.46, "end": 11349.54, "probability": 0.7617 }, { "start": 11349.94, "end": 11351.38, "probability": 0.9788 }, { "start": 11351.38, "end": 11353.56, "probability": 0.8008 }, { "start": 11354.16, "end": 11355.16, "probability": 0.5406 }, { "start": 11355.86, "end": 11357.3, "probability": 0.6686 }, { "start": 11357.4, "end": 11361.46, "probability": 0.9666 }, { "start": 11363.48, "end": 11368.2, "probability": 0.8939 }, { "start": 11368.88, "end": 11370.64, "probability": 0.6991 }, { "start": 11370.72, "end": 11371.46, "probability": 0.6593 }, { "start": 11371.58, "end": 11372.0, "probability": 0.2194 }, { "start": 11372.08, "end": 11374.1, "probability": 0.8427 }, { "start": 11375.4, "end": 11378.52, "probability": 0.8706 }, { "start": 11378.58, "end": 11379.0, "probability": 0.3174 }, { "start": 11379.08, "end": 11383.76, "probability": 0.9876 }, { "start": 11384.48, "end": 11388.28, "probability": 0.7582 }, { "start": 11388.54, "end": 11389.72, "probability": 0.3381 }, { "start": 11389.86, "end": 11391.72, "probability": 0.6486 }, { "start": 11392.26, "end": 11394.09, "probability": 0.8501 }, { "start": 11394.3, "end": 11397.02, "probability": 0.8756 }, { "start": 11397.42, "end": 11398.7, "probability": 0.9064 }, { "start": 11399.2, "end": 11404.58, "probability": 0.8272 }, { "start": 11405.04, "end": 11408.98, "probability": 0.9504 }, { "start": 11409.12, "end": 11412.5, "probability": 0.9473 }, { "start": 11413.5, "end": 11418.66, "probability": 0.8282 }, { "start": 11419.46, "end": 11422.2, "probability": 0.9801 }, { "start": 11423.08, "end": 11424.34, "probability": 0.6888 }, { "start": 11425.14, "end": 11428.66, "probability": 0.9888 }, { "start": 11428.76, "end": 11430.9, "probability": 0.6856 }, { "start": 11431.58, "end": 11435.46, "probability": 0.4755 }, { "start": 11435.68, "end": 11437.76, "probability": 0.9894 }, { "start": 11438.72, "end": 11439.14, "probability": 0.4928 }, { "start": 11439.16, "end": 11439.66, "probability": 0.6381 }, { "start": 11439.68, "end": 11440.22, "probability": 0.7763 }, { "start": 11440.26, "end": 11441.74, "probability": 0.6232 }, { "start": 11442.0, "end": 11443.82, "probability": 0.4696 }, { "start": 11443.92, "end": 11447.04, "probability": 0.9707 }, { "start": 11447.76, "end": 11448.69, "probability": 0.6704 }, { "start": 11449.16, "end": 11451.98, "probability": 0.63 }, { "start": 11452.1, "end": 11453.88, "probability": 0.8622 }, { "start": 11454.26, "end": 11455.24, "probability": 0.9633 }, { "start": 11455.92, "end": 11458.54, "probability": 0.908 }, { "start": 11459.12, "end": 11462.42, "probability": 0.7882 }, { "start": 11462.76, "end": 11465.16, "probability": 0.9919 }, { "start": 11465.22, "end": 11466.56, "probability": 0.6103 }, { "start": 11466.8, "end": 11467.1, "probability": 0.3733 }, { "start": 11467.16, "end": 11467.58, "probability": 0.4742 }, { "start": 11467.9, "end": 11468.66, "probability": 0.6038 }, { "start": 11468.74, "end": 11469.48, "probability": 0.6316 }, { "start": 11470.08, "end": 11470.42, "probability": 0.785 }, { "start": 11470.58, "end": 11472.08, "probability": 0.6036 }, { "start": 11472.42, "end": 11475.12, "probability": 0.9232 }, { "start": 11475.26, "end": 11476.82, "probability": 0.753 }, { "start": 11477.2, "end": 11478.74, "probability": 0.9629 }, { "start": 11479.02, "end": 11483.44, "probability": 0.8214 }, { "start": 11483.52, "end": 11485.54, "probability": 0.7503 }, { "start": 11486.12, "end": 11487.42, "probability": 0.3318 }, { "start": 11487.42, "end": 11489.82, "probability": 0.6619 }, { "start": 11489.82, "end": 11490.26, "probability": 0.3975 }, { "start": 11490.34, "end": 11492.28, "probability": 0.533 }, { "start": 11492.58, "end": 11495.17, "probability": 0.9019 }, { "start": 11495.84, "end": 11500.32, "probability": 0.9675 }, { "start": 11500.7, "end": 11501.8, "probability": 0.6714 }, { "start": 11501.82, "end": 11503.08, "probability": 0.5574 }, { "start": 11503.26, "end": 11503.26, "probability": 0.6591 }, { "start": 11503.26, "end": 11504.72, "probability": 0.8232 }, { "start": 11504.88, "end": 11505.46, "probability": 0.9902 }, { "start": 11505.72, "end": 11507.06, "probability": 0.6667 }, { "start": 11507.42, "end": 11509.32, "probability": 0.8132 }, { "start": 11509.32, "end": 11509.98, "probability": 0.5263 }, { "start": 11510.06, "end": 11512.52, "probability": 0.6734 }, { "start": 11512.56, "end": 11513.16, "probability": 0.4545 }, { "start": 11513.22, "end": 11514.16, "probability": 0.5134 }, { "start": 11514.9, "end": 11516.68, "probability": 0.8568 }, { "start": 11516.78, "end": 11517.16, "probability": 0.155 }, { "start": 11517.42, "end": 11517.7, "probability": 0.5103 }, { "start": 11517.8, "end": 11518.78, "probability": 0.5465 }, { "start": 11519.0, "end": 11520.08, "probability": 0.9904 }, { "start": 11520.44, "end": 11521.08, "probability": 0.5974 }, { "start": 11521.36, "end": 11521.74, "probability": 0.6868 }, { "start": 11522.26, "end": 11524.46, "probability": 0.3331 }, { "start": 11524.46, "end": 11527.78, "probability": 0.5718 }, { "start": 11528.04, "end": 11529.68, "probability": 0.669 }, { "start": 11529.96, "end": 11530.38, "probability": 0.2933 }, { "start": 11530.4, "end": 11531.58, "probability": 0.7353 }, { "start": 11532.16, "end": 11535.22, "probability": 0.8116 }, { "start": 11535.32, "end": 11537.94, "probability": 0.6007 }, { "start": 11538.54, "end": 11539.76, "probability": 0.6322 }, { "start": 11539.84, "end": 11541.18, "probability": 0.8053 }, { "start": 11541.92, "end": 11544.42, "probability": 0.9637 }, { "start": 11544.88, "end": 11547.72, "probability": 0.9873 }, { "start": 11548.1, "end": 11550.38, "probability": 0.9601 }, { "start": 11550.9, "end": 11551.9, "probability": 0.6332 }, { "start": 11551.96, "end": 11554.76, "probability": 0.6622 }, { "start": 11555.02, "end": 11556.18, "probability": 0.5717 }, { "start": 11556.54, "end": 11556.82, "probability": 0.5068 }, { "start": 11557.0, "end": 11557.74, "probability": 0.7573 }, { "start": 11558.72, "end": 11560.26, "probability": 0.8833 }, { "start": 11561.5, "end": 11562.26, "probability": 0.6808 }, { "start": 11563.16, "end": 11565.08, "probability": 0.9602 }, { "start": 11566.28, "end": 11567.0, "probability": 0.9289 }, { "start": 11567.64, "end": 11569.12, "probability": 0.9914 }, { "start": 11569.96, "end": 11570.68, "probability": 0.953 }, { "start": 11571.5, "end": 11572.1, "probability": 0.9906 }, { "start": 11572.68, "end": 11573.5, "probability": 0.9482 }, { "start": 11574.38, "end": 11575.26, "probability": 0.9626 }, { "start": 11576.02, "end": 11578.12, "probability": 0.8664 }, { "start": 11579.48, "end": 11580.5, "probability": 0.773 }, { "start": 11581.28, "end": 11582.98, "probability": 0.9696 }, { "start": 11584.4, "end": 11585.18, "probability": 0.8773 }, { "start": 11586.1, "end": 11587.28, "probability": 0.9925 }, { "start": 11588.1, "end": 11588.86, "probability": 0.9491 }, { "start": 11589.68, "end": 11591.86, "probability": 0.988 }, { "start": 11592.94, "end": 11593.68, "probability": 0.9413 }, { "start": 11594.32, "end": 11596.48, "probability": 0.7671 }, { "start": 11597.16, "end": 11599.78, "probability": 0.9313 }, { "start": 11600.52, "end": 11601.68, "probability": 0.9021 }, { "start": 11601.74, "end": 11601.74, "probability": 0.2807 }, { "start": 11602.8, "end": 11603.76, "probability": 0.0779 }, { "start": 11604.18, "end": 11607.52, "probability": 0.5003 }, { "start": 11608.12, "end": 11608.82, "probability": 0.1808 }, { "start": 11609.02, "end": 11610.12, "probability": 0.0602 }, { "start": 11633.12, "end": 11633.78, "probability": 0.4655 }, { "start": 11642.24, "end": 11642.98, "probability": 0.628 }, { "start": 11643.9, "end": 11647.2, "probability": 0.796 }, { "start": 11649.34, "end": 11652.72, "probability": 0.9208 }, { "start": 11653.72, "end": 11654.46, "probability": 0.9242 }, { "start": 11655.1, "end": 11658.2, "probability": 0.8929 }, { "start": 11659.12, "end": 11660.94, "probability": 0.9713 }, { "start": 11662.18, "end": 11662.66, "probability": 0.9016 }, { "start": 11664.04, "end": 11669.5, "probability": 0.6937 }, { "start": 11670.28, "end": 11672.44, "probability": 0.9934 }, { "start": 11673.74, "end": 11675.42, "probability": 0.9669 }, { "start": 11676.6, "end": 11683.72, "probability": 0.9859 }, { "start": 11683.72, "end": 11689.8, "probability": 0.9889 }, { "start": 11690.34, "end": 11691.32, "probability": 0.8187 }, { "start": 11692.34, "end": 11695.3, "probability": 0.9988 }, { "start": 11696.0, "end": 11698.34, "probability": 0.9808 }, { "start": 11699.18, "end": 11700.44, "probability": 0.9933 }, { "start": 11701.22, "end": 11701.98, "probability": 0.8452 }, { "start": 11702.1, "end": 11704.6, "probability": 0.9873 }, { "start": 11705.16, "end": 11706.16, "probability": 0.9414 }, { "start": 11706.92, "end": 11708.08, "probability": 0.9995 }, { "start": 11708.52, "end": 11710.54, "probability": 0.7612 }, { "start": 11710.7, "end": 11713.14, "probability": 0.895 }, { "start": 11713.74, "end": 11714.92, "probability": 0.9682 }, { "start": 11715.36, "end": 11716.31, "probability": 0.9745 }, { "start": 11716.92, "end": 11720.14, "probability": 0.9719 }, { "start": 11720.66, "end": 11721.93, "probability": 0.9941 }, { "start": 11723.6, "end": 11724.72, "probability": 0.9666 }, { "start": 11724.92, "end": 11726.14, "probability": 0.9788 }, { "start": 11726.38, "end": 11727.89, "probability": 0.9803 }, { "start": 11728.22, "end": 11729.32, "probability": 0.9578 }, { "start": 11729.66, "end": 11732.96, "probability": 0.9819 }, { "start": 11733.94, "end": 11736.96, "probability": 0.9946 }, { "start": 11737.5, "end": 11738.5, "probability": 0.8099 }, { "start": 11738.72, "end": 11743.26, "probability": 0.9901 }, { "start": 11743.26, "end": 11745.92, "probability": 0.9714 }, { "start": 11746.6, "end": 11750.0, "probability": 0.8746 }, { "start": 11750.54, "end": 11753.9, "probability": 0.8495 }, { "start": 11755.28, "end": 11757.58, "probability": 0.993 }, { "start": 11757.96, "end": 11759.5, "probability": 0.9619 }, { "start": 11759.76, "end": 11760.36, "probability": 0.6262 }, { "start": 11760.74, "end": 11761.42, "probability": 0.9853 }, { "start": 11762.24, "end": 11763.1, "probability": 0.7369 }, { "start": 11763.28, "end": 11764.46, "probability": 0.9077 }, { "start": 11764.6, "end": 11767.32, "probability": 0.8682 }, { "start": 11768.56, "end": 11769.02, "probability": 0.7111 }, { "start": 11769.46, "end": 11772.62, "probability": 0.9879 }, { "start": 11773.14, "end": 11773.76, "probability": 0.6045 }, { "start": 11774.66, "end": 11774.86, "probability": 0.4817 }, { "start": 11775.78, "end": 11776.5, "probability": 0.9341 }, { "start": 11777.14, "end": 11778.08, "probability": 0.6616 }, { "start": 11778.68, "end": 11781.46, "probability": 0.8626 }, { "start": 11781.64, "end": 11784.9, "probability": 0.7781 }, { "start": 11785.5, "end": 11786.18, "probability": 0.7705 }, { "start": 11786.6, "end": 11787.86, "probability": 0.9624 }, { "start": 11788.36, "end": 11789.86, "probability": 0.9652 }, { "start": 11790.04, "end": 11791.92, "probability": 0.866 }, { "start": 11792.42, "end": 11795.35, "probability": 0.8213 }, { "start": 11796.06, "end": 11797.11, "probability": 0.7075 }, { "start": 11797.98, "end": 11798.84, "probability": 0.8661 }, { "start": 11799.3, "end": 11800.12, "probability": 0.8621 }, { "start": 11800.58, "end": 11803.09, "probability": 0.8041 }, { "start": 11803.64, "end": 11804.66, "probability": 0.8524 }, { "start": 11804.84, "end": 11807.04, "probability": 0.9919 }, { "start": 11807.62, "end": 11808.98, "probability": 0.7564 }, { "start": 11809.48, "end": 11811.44, "probability": 0.8327 }, { "start": 11811.52, "end": 11812.48, "probability": 0.8676 }, { "start": 11812.52, "end": 11813.42, "probability": 0.7954 }, { "start": 11813.46, "end": 11814.56, "probability": 0.8929 }, { "start": 11814.64, "end": 11815.34, "probability": 0.9255 }, { "start": 11815.5, "end": 11816.04, "probability": 0.7275 }, { "start": 11816.3, "end": 11817.74, "probability": 0.6767 }, { "start": 11817.94, "end": 11818.58, "probability": 0.5145 }, { "start": 11818.62, "end": 11819.97, "probability": 0.9899 }, { "start": 11820.2, "end": 11821.5, "probability": 0.9895 }, { "start": 11821.82, "end": 11827.98, "probability": 0.8627 }, { "start": 11828.44, "end": 11829.34, "probability": 0.6482 }, { "start": 11829.6, "end": 11832.7, "probability": 0.9551 }, { "start": 11832.88, "end": 11833.18, "probability": 0.683 }, { "start": 11833.2, "end": 11835.75, "probability": 0.9863 }, { "start": 11836.36, "end": 11837.72, "probability": 0.9821 }, { "start": 11838.3, "end": 11840.6, "probability": 0.8025 }, { "start": 11841.14, "end": 11841.58, "probability": 0.9302 }, { "start": 11841.84, "end": 11842.4, "probability": 0.9619 }, { "start": 11842.52, "end": 11842.74, "probability": 0.9278 }, { "start": 11843.14, "end": 11843.7, "probability": 0.9808 }, { "start": 11843.76, "end": 11844.6, "probability": 0.9417 }, { "start": 11844.94, "end": 11845.58, "probability": 0.7737 }, { "start": 11845.68, "end": 11846.22, "probability": 0.6925 }, { "start": 11846.38, "end": 11847.5, "probability": 0.9582 }, { "start": 11848.1, "end": 11848.82, "probability": 0.6153 }, { "start": 11848.82, "end": 11852.0, "probability": 0.971 }, { "start": 11852.42, "end": 11854.08, "probability": 0.9003 }, { "start": 11854.48, "end": 11854.92, "probability": 0.8282 }, { "start": 11862.52, "end": 11864.98, "probability": 0.9772 }, { "start": 11867.34, "end": 11867.96, "probability": 0.7119 }, { "start": 11869.0, "end": 11870.9, "probability": 0.9771 }, { "start": 11872.58, "end": 11873.24, "probability": 0.9173 }, { "start": 11874.4, "end": 11876.5, "probability": 0.9761 }, { "start": 11877.54, "end": 11878.36, "probability": 0.7412 }, { "start": 11878.84, "end": 11880.9, "probability": 0.9221 }, { "start": 11893.2, "end": 11893.9, "probability": 0.7142 }, { "start": 11894.92, "end": 11895.66, "probability": 0.8854 }, { "start": 11896.7, "end": 11898.02, "probability": 0.8454 }, { "start": 11898.62, "end": 11901.06, "probability": 0.9974 }, { "start": 11902.34, "end": 11905.54, "probability": 0.9931 }, { "start": 11906.06, "end": 11908.34, "probability": 0.9737 }, { "start": 11909.24, "end": 11910.96, "probability": 0.9512 }, { "start": 11911.76, "end": 11914.82, "probability": 0.9681 }, { "start": 11916.1, "end": 11918.6, "probability": 0.9976 }, { "start": 11919.56, "end": 11921.7, "probability": 0.9607 }, { "start": 11921.7, "end": 11924.64, "probability": 0.9241 }, { "start": 11925.58, "end": 11927.4, "probability": 0.9971 }, { "start": 11928.0, "end": 11928.66, "probability": 0.9786 }, { "start": 11929.06, "end": 11930.3, "probability": 0.9587 }, { "start": 11930.78, "end": 11932.94, "probability": 0.9636 }, { "start": 11934.2, "end": 11934.62, "probability": 0.9338 }, { "start": 11934.8, "end": 11938.24, "probability": 0.9968 }, { "start": 11938.86, "end": 11943.64, "probability": 0.998 }, { "start": 11944.36, "end": 11947.72, "probability": 0.9761 }, { "start": 11948.38, "end": 11950.68, "probability": 0.952 }, { "start": 11951.78, "end": 11953.08, "probability": 0.9337 }, { "start": 11953.62, "end": 11956.66, "probability": 0.9985 }, { "start": 11957.38, "end": 11958.9, "probability": 0.8628 }, { "start": 11959.7, "end": 11961.84, "probability": 0.9779 }, { "start": 11962.12, "end": 11963.7, "probability": 0.999 }, { "start": 11964.42, "end": 11967.64, "probability": 0.9969 }, { "start": 11968.66, "end": 11971.2, "probability": 0.9966 }, { "start": 11971.64, "end": 11972.36, "probability": 0.9271 }, { "start": 11972.98, "end": 11973.98, "probability": 0.995 }, { "start": 11974.62, "end": 11976.88, "probability": 0.9847 }, { "start": 11977.94, "end": 11978.46, "probability": 0.8684 }, { "start": 11979.04, "end": 11980.54, "probability": 0.9826 }, { "start": 11981.02, "end": 11983.58, "probability": 0.9741 }, { "start": 11984.68, "end": 11988.16, "probability": 0.9993 }, { "start": 11988.76, "end": 11989.82, "probability": 0.8038 }, { "start": 11990.64, "end": 11994.24, "probability": 0.9819 }, { "start": 11995.04, "end": 11997.8, "probability": 0.9854 }, { "start": 11998.34, "end": 12001.54, "probability": 0.9099 }, { "start": 12002.46, "end": 12003.64, "probability": 0.8975 }, { "start": 12004.22, "end": 12006.82, "probability": 0.9989 }, { "start": 12007.14, "end": 12009.5, "probability": 0.998 }, { "start": 12011.22, "end": 12012.46, "probability": 0.9332 }, { "start": 12013.04, "end": 12017.44, "probability": 0.9984 }, { "start": 12018.06, "end": 12018.9, "probability": 0.8676 }, { "start": 12019.88, "end": 12022.4, "probability": 0.9962 }, { "start": 12023.26, "end": 12025.92, "probability": 0.993 }, { "start": 12026.66, "end": 12029.34, "probability": 0.9931 }, { "start": 12029.34, "end": 12033.42, "probability": 0.9965 }, { "start": 12034.42, "end": 12036.9, "probability": 0.7415 }, { "start": 12037.54, "end": 12040.74, "probability": 0.9968 }, { "start": 12041.42, "end": 12043.3, "probability": 0.8892 }, { "start": 12044.14, "end": 12047.92, "probability": 0.8477 }, { "start": 12047.92, "end": 12051.62, "probability": 0.9909 }, { "start": 12052.46, "end": 12054.04, "probability": 0.9966 }, { "start": 12054.68, "end": 12055.44, "probability": 0.9235 }, { "start": 12055.66, "end": 12056.34, "probability": 0.6593 }, { "start": 12056.36, "end": 12058.2, "probability": 0.5767 }, { "start": 12058.38, "end": 12059.42, "probability": 0.9707 }, { "start": 12061.28, "end": 12062.44, "probability": 0.8208 }, { "start": 12062.8, "end": 12064.56, "probability": 0.9902 }, { "start": 12065.04, "end": 12068.42, "probability": 0.9844 }, { "start": 12068.42, "end": 12072.28, "probability": 0.9901 }, { "start": 12072.38, "end": 12073.76, "probability": 0.999 }, { "start": 12074.58, "end": 12075.04, "probability": 0.7594 }, { "start": 12075.36, "end": 12076.78, "probability": 0.5498 }, { "start": 12077.62, "end": 12079.92, "probability": 0.8788 }, { "start": 12083.58, "end": 12084.44, "probability": 0.189 }, { "start": 12101.82, "end": 12102.46, "probability": 0.4055 }, { "start": 12102.56, "end": 12104.75, "probability": 0.7703 }, { "start": 12105.4, "end": 12106.04, "probability": 0.8858 }, { "start": 12106.26, "end": 12108.14, "probability": 0.3624 }, { "start": 12109.64, "end": 12112.5, "probability": 0.7359 }, { "start": 12113.44, "end": 12116.87, "probability": 0.9829 }, { "start": 12118.26, "end": 12120.1, "probability": 0.5293 }, { "start": 12121.08, "end": 12121.82, "probability": 0.8561 }, { "start": 12122.56, "end": 12125.74, "probability": 0.8348 }, { "start": 12126.92, "end": 12129.96, "probability": 0.7308 }, { "start": 12130.42, "end": 12130.9, "probability": 0.9183 }, { "start": 12130.94, "end": 12131.62, "probability": 0.9491 }, { "start": 12131.7, "end": 12133.66, "probability": 0.9398 }, { "start": 12133.76, "end": 12134.32, "probability": 0.8689 }, { "start": 12134.44, "end": 12136.24, "probability": 0.9942 }, { "start": 12136.8, "end": 12139.04, "probability": 0.9882 }, { "start": 12139.84, "end": 12140.62, "probability": 0.9496 }, { "start": 12140.84, "end": 12144.26, "probability": 0.9953 }, { "start": 12144.26, "end": 12148.98, "probability": 0.9967 }, { "start": 12149.04, "end": 12152.42, "probability": 0.9767 }, { "start": 12152.94, "end": 12156.64, "probability": 0.9909 }, { "start": 12157.96, "end": 12158.18, "probability": 0.707 }, { "start": 12158.38, "end": 12158.94, "probability": 0.7296 }, { "start": 12159.1, "end": 12161.54, "probability": 0.9978 }, { "start": 12163.2, "end": 12163.92, "probability": 0.8015 }, { "start": 12164.24, "end": 12165.54, "probability": 0.7435 }, { "start": 12165.64, "end": 12166.4, "probability": 0.8725 }, { "start": 12166.42, "end": 12170.7, "probability": 0.9474 }, { "start": 12170.82, "end": 12172.38, "probability": 0.88 }, { "start": 12173.12, "end": 12174.08, "probability": 0.8942 }, { "start": 12174.72, "end": 12175.64, "probability": 0.6852 }, { "start": 12175.76, "end": 12179.18, "probability": 0.9958 }, { "start": 12179.34, "end": 12179.68, "probability": 0.286 }, { "start": 12180.66, "end": 12181.16, "probability": 0.8835 }, { "start": 12182.44, "end": 12184.76, "probability": 0.7585 }, { "start": 12185.66, "end": 12185.76, "probability": 0.165 }, { "start": 12185.76, "end": 12186.28, "probability": 0.5874 }, { "start": 12186.96, "end": 12188.16, "probability": 0.9082 }, { "start": 12188.26, "end": 12191.88, "probability": 0.9648 }, { "start": 12193.18, "end": 12196.6, "probability": 0.9924 }, { "start": 12196.68, "end": 12197.83, "probability": 0.8698 }, { "start": 12199.74, "end": 12201.32, "probability": 0.9833 }, { "start": 12203.82, "end": 12203.98, "probability": 0.3609 }, { "start": 12204.82, "end": 12205.7, "probability": 0.8704 }, { "start": 12205.98, "end": 12208.88, "probability": 0.9927 }, { "start": 12210.46, "end": 12213.62, "probability": 0.6242 }, { "start": 12214.84, "end": 12215.77, "probability": 0.7393 }, { "start": 12216.08, "end": 12216.86, "probability": 0.2993 }, { "start": 12217.12, "end": 12217.68, "probability": 0.8911 }, { "start": 12218.2, "end": 12219.52, "probability": 0.7964 }, { "start": 12219.58, "end": 12221.02, "probability": 0.9681 }, { "start": 12221.38, "end": 12221.9, "probability": 0.7921 }, { "start": 12221.9, "end": 12222.7, "probability": 0.6851 }, { "start": 12222.96, "end": 12223.22, "probability": 0.7239 }, { "start": 12223.54, "end": 12223.9, "probability": 0.8935 }, { "start": 12223.96, "end": 12224.4, "probability": 0.9453 }, { "start": 12224.78, "end": 12225.72, "probability": 0.8086 }, { "start": 12226.46, "end": 12232.54, "probability": 0.8201 }, { "start": 12233.36, "end": 12236.02, "probability": 0.9751 }, { "start": 12236.7, "end": 12239.22, "probability": 0.9785 }, { "start": 12240.5, "end": 12241.56, "probability": 0.8534 }, { "start": 12242.36, "end": 12243.44, "probability": 0.7012 }, { "start": 12244.18, "end": 12246.16, "probability": 0.9204 }, { "start": 12246.48, "end": 12247.7, "probability": 0.8625 }, { "start": 12248.06, "end": 12250.14, "probability": 0.9113 }, { "start": 12250.34, "end": 12251.44, "probability": 0.4412 }, { "start": 12251.96, "end": 12254.92, "probability": 0.9946 }, { "start": 12255.76, "end": 12256.34, "probability": 0.9104 }, { "start": 12256.98, "end": 12262.28, "probability": 0.9702 }, { "start": 12262.86, "end": 12263.38, "probability": 0.8213 }, { "start": 12264.0, "end": 12264.78, "probability": 0.7721 }, { "start": 12266.42, "end": 12266.93, "probability": 0.9531 }, { "start": 12268.08, "end": 12268.92, "probability": 0.8979 }, { "start": 12270.16, "end": 12272.1, "probability": 0.9302 }, { "start": 12273.68, "end": 12275.0, "probability": 0.9912 }, { "start": 12275.74, "end": 12278.45, "probability": 0.989 }, { "start": 12279.74, "end": 12281.98, "probability": 0.7232 }, { "start": 12282.86, "end": 12284.08, "probability": 0.9887 }, { "start": 12285.4, "end": 12289.12, "probability": 0.9907 }, { "start": 12289.7, "end": 12293.36, "probability": 0.5514 }, { "start": 12294.08, "end": 12294.92, "probability": 0.6511 }, { "start": 12296.48, "end": 12296.8, "probability": 0.018 }, { "start": 12296.8, "end": 12299.24, "probability": 0.8684 }, { "start": 12299.92, "end": 12301.86, "probability": 0.8587 }, { "start": 12302.86, "end": 12308.02, "probability": 0.8448 }, { "start": 12308.48, "end": 12308.9, "probability": 0.8776 }, { "start": 12310.02, "end": 12313.56, "probability": 0.9495 }, { "start": 12314.08, "end": 12314.71, "probability": 0.9095 }, { "start": 12315.6, "end": 12318.74, "probability": 0.802 }, { "start": 12319.46, "end": 12321.2, "probability": 0.9971 }, { "start": 12321.98, "end": 12326.38, "probability": 0.9946 }, { "start": 12326.52, "end": 12328.74, "probability": 0.6328 }, { "start": 12328.76, "end": 12330.04, "probability": 0.9171 }, { "start": 12330.16, "end": 12330.98, "probability": 0.4469 }, { "start": 12331.08, "end": 12331.58, "probability": 0.7384 }, { "start": 12331.58, "end": 12333.56, "probability": 0.8805 }, { "start": 12333.7, "end": 12337.5, "probability": 0.744 }, { "start": 12338.02, "end": 12341.18, "probability": 0.9253 }, { "start": 12341.26, "end": 12342.04, "probability": 0.5551 }, { "start": 12342.66, "end": 12344.26, "probability": 0.3466 }, { "start": 12344.7, "end": 12344.76, "probability": 0.3381 }, { "start": 12344.76, "end": 12345.4, "probability": 0.8147 }, { "start": 12345.62, "end": 12346.46, "probability": 0.8371 }, { "start": 12346.54, "end": 12348.72, "probability": 0.9461 }, { "start": 12351.36, "end": 12353.92, "probability": 0.5222 }, { "start": 12353.92, "end": 12354.26, "probability": 0.0494 }, { "start": 12354.26, "end": 12354.94, "probability": 0.2131 }, { "start": 12354.94, "end": 12356.28, "probability": 0.8716 }, { "start": 12356.38, "end": 12357.7, "probability": 0.5792 }, { "start": 12359.18, "end": 12361.6, "probability": 0.4974 }, { "start": 12361.8, "end": 12362.1, "probability": 0.146 }, { "start": 12362.1, "end": 12362.1, "probability": 0.4714 }, { "start": 12362.1, "end": 12363.99, "probability": 0.5531 }, { "start": 12375.98, "end": 12376.22, "probability": 0.1592 }, { "start": 12384.36, "end": 12386.7, "probability": 0.9938 }, { "start": 12387.4, "end": 12388.1, "probability": 0.8314 }, { "start": 12390.52, "end": 12393.36, "probability": 0.9197 }, { "start": 12394.12, "end": 12395.02, "probability": 0.5955 }, { "start": 12396.46, "end": 12401.24, "probability": 0.9967 }, { "start": 12402.22, "end": 12405.44, "probability": 0.8135 }, { "start": 12406.26, "end": 12408.5, "probability": 0.9966 }, { "start": 12409.04, "end": 12409.86, "probability": 0.8995 }, { "start": 12411.28, "end": 12412.34, "probability": 0.8322 }, { "start": 12413.34, "end": 12417.22, "probability": 0.9928 }, { "start": 12417.84, "end": 12420.0, "probability": 0.9626 }, { "start": 12420.86, "end": 12422.64, "probability": 0.9956 }, { "start": 12423.28, "end": 12424.36, "probability": 0.9832 }, { "start": 12425.28, "end": 12425.98, "probability": 0.7767 }, { "start": 12426.26, "end": 12426.68, "probability": 0.9137 }, { "start": 12427.04, "end": 12428.21, "probability": 0.9224 }, { "start": 12429.18, "end": 12431.18, "probability": 0.6974 }, { "start": 12432.1, "end": 12434.32, "probability": 0.9969 }, { "start": 12434.92, "end": 12438.92, "probability": 0.8929 }, { "start": 12440.02, "end": 12443.32, "probability": 0.8464 }, { "start": 12443.78, "end": 12445.14, "probability": 0.9797 }, { "start": 12446.2, "end": 12448.78, "probability": 0.9858 }, { "start": 12449.26, "end": 12452.34, "probability": 0.9887 }, { "start": 12452.34, "end": 12455.38, "probability": 0.9971 }, { "start": 12456.12, "end": 12456.6, "probability": 0.9153 }, { "start": 12458.4, "end": 12460.42, "probability": 0.9883 }, { "start": 12461.74, "end": 12462.62, "probability": 0.9923 }, { "start": 12463.44, "end": 12465.26, "probability": 0.9264 }, { "start": 12467.22, "end": 12468.72, "probability": 0.8015 }, { "start": 12469.76, "end": 12471.44, "probability": 0.7948 }, { "start": 12472.06, "end": 12472.72, "probability": 0.7792 }, { "start": 12473.24, "end": 12473.66, "probability": 0.8696 }, { "start": 12474.24, "end": 12475.78, "probability": 0.9722 }, { "start": 12476.34, "end": 12478.14, "probability": 0.9846 }, { "start": 12478.46, "end": 12479.12, "probability": 0.8969 }, { "start": 12479.5, "end": 12481.16, "probability": 0.8825 }, { "start": 12481.52, "end": 12482.16, "probability": 0.9179 }, { "start": 12482.46, "end": 12483.54, "probability": 0.8873 }, { "start": 12483.86, "end": 12488.24, "probability": 0.9858 }, { "start": 12488.92, "end": 12489.12, "probability": 0.1114 }, { "start": 12489.14, "end": 12489.88, "probability": 0.5318 }, { "start": 12489.96, "end": 12493.14, "probability": 0.7617 }, { "start": 12493.24, "end": 12493.24, "probability": 0.1633 }, { "start": 12493.24, "end": 12493.42, "probability": 0.0455 }, { "start": 12493.42, "end": 12493.96, "probability": 0.3132 }, { "start": 12494.66, "end": 12495.32, "probability": 0.9811 }, { "start": 12495.92, "end": 12496.3, "probability": 0.4445 }, { "start": 12496.52, "end": 12499.62, "probability": 0.8714 }, { "start": 12499.94, "end": 12502.1, "probability": 0.9733 }, { "start": 12502.64, "end": 12503.84, "probability": 0.9888 }, { "start": 12505.04, "end": 12506.32, "probability": 0.8793 }, { "start": 12507.0, "end": 12507.9, "probability": 0.9724 }, { "start": 12508.22, "end": 12508.68, "probability": 0.638 }, { "start": 12509.3, "end": 12511.34, "probability": 0.8671 }, { "start": 12511.98, "end": 12511.98, "probability": 0.2501 }, { "start": 12511.98, "end": 12514.32, "probability": 0.448 }, { "start": 12516.48, "end": 12518.94, "probability": 0.9194 }, { "start": 12519.58, "end": 12520.3, "probability": 0.6785 }, { "start": 12520.38, "end": 12521.22, "probability": 0.6581 }, { "start": 12521.64, "end": 12525.4, "probability": 0.9453 }, { "start": 12526.74, "end": 12529.04, "probability": 0.9972 }, { "start": 12530.18, "end": 12531.24, "probability": 0.9467 }, { "start": 12532.08, "end": 12532.74, "probability": 0.953 }, { "start": 12533.38, "end": 12533.76, "probability": 0.6979 }, { "start": 12534.16, "end": 12535.82, "probability": 0.9526 }, { "start": 12537.24, "end": 12537.42, "probability": 0.2352 }, { "start": 12539.98, "end": 12541.56, "probability": 0.7869 }, { "start": 12543.0, "end": 12545.5, "probability": 0.8434 }, { "start": 12545.92, "end": 12550.98, "probability": 0.9301 }, { "start": 12551.08, "end": 12551.94, "probability": 0.6343 }, { "start": 12552.32, "end": 12555.88, "probability": 0.9797 }, { "start": 12557.36, "end": 12558.96, "probability": 0.9636 }, { "start": 12559.4, "end": 12564.86, "probability": 0.8554 }, { "start": 12565.46, "end": 12566.54, "probability": 0.966 }, { "start": 12566.96, "end": 12568.26, "probability": 0.9839 }, { "start": 12568.96, "end": 12569.7, "probability": 0.7764 }, { "start": 12569.8, "end": 12570.46, "probability": 0.8691 }, { "start": 12570.68, "end": 12571.52, "probability": 0.992 }, { "start": 12571.6, "end": 12572.38, "probability": 0.8404 }, { "start": 12572.84, "end": 12573.94, "probability": 0.8973 }, { "start": 12574.38, "end": 12575.48, "probability": 0.9837 }, { "start": 12575.9, "end": 12577.08, "probability": 0.9905 }, { "start": 12577.14, "end": 12578.0, "probability": 0.7734 }, { "start": 12578.8, "end": 12581.18, "probability": 0.9893 }, { "start": 12583.22, "end": 12584.34, "probability": 0.9741 }, { "start": 12586.04, "end": 12588.32, "probability": 0.93 }, { "start": 12588.86, "end": 12591.38, "probability": 0.8926 }, { "start": 12592.32, "end": 12593.18, "probability": 0.682 }, { "start": 12593.64, "end": 12594.32, "probability": 0.9392 }, { "start": 12594.42, "end": 12595.05, "probability": 0.8887 }, { "start": 12595.22, "end": 12595.28, "probability": 0.7649 }, { "start": 12595.46, "end": 12596.1, "probability": 0.7744 }, { "start": 12597.44, "end": 12599.26, "probability": 0.3579 }, { "start": 12599.32, "end": 12601.16, "probability": 0.9666 }, { "start": 12602.44, "end": 12603.18, "probability": 0.9749 }, { "start": 12603.74, "end": 12606.62, "probability": 0.9487 }, { "start": 12607.56, "end": 12610.1, "probability": 0.9716 }, { "start": 12610.58, "end": 12611.8, "probability": 0.9707 }, { "start": 12612.6, "end": 12614.2, "probability": 0.825 }, { "start": 12614.78, "end": 12618.72, "probability": 0.8961 }, { "start": 12620.02, "end": 12620.26, "probability": 0.6862 }, { "start": 12620.72, "end": 12623.36, "probability": 0.9388 }, { "start": 12626.32, "end": 12627.34, "probability": 0.7613 }, { "start": 12628.34, "end": 12632.02, "probability": 0.9622 }, { "start": 12635.56, "end": 12636.48, "probability": 0.2606 }, { "start": 12658.56, "end": 12659.44, "probability": 0.3805 }, { "start": 12660.62, "end": 12663.46, "probability": 0.4096 }, { "start": 12664.3, "end": 12665.34, "probability": 0.2581 }, { "start": 12665.34, "end": 12666.52, "probability": 0.5426 }, { "start": 12667.33, "end": 12669.04, "probability": 0.807 }, { "start": 12670.06, "end": 12674.52, "probability": 0.9298 }, { "start": 12674.64, "end": 12676.12, "probability": 0.94 }, { "start": 12677.12, "end": 12678.32, "probability": 0.8982 }, { "start": 12679.2, "end": 12680.88, "probability": 0.9639 }, { "start": 12682.12, "end": 12684.34, "probability": 0.9622 }, { "start": 12685.02, "end": 12688.24, "probability": 0.9933 }, { "start": 12689.06, "end": 12691.45, "probability": 0.9997 }, { "start": 12692.84, "end": 12693.06, "probability": 0.6733 }, { "start": 12693.66, "end": 12695.66, "probability": 0.9958 }, { "start": 12696.22, "end": 12700.28, "probability": 0.9891 }, { "start": 12700.46, "end": 12701.28, "probability": 0.7708 }, { "start": 12701.8, "end": 12702.76, "probability": 0.9946 }, { "start": 12703.54, "end": 12707.0, "probability": 0.9968 }, { "start": 12708.16, "end": 12709.78, "probability": 0.9824 }, { "start": 12711.1, "end": 12716.3, "probability": 0.7067 }, { "start": 12716.88, "end": 12718.1, "probability": 0.6471 }, { "start": 12719.3, "end": 12720.7, "probability": 0.8078 }, { "start": 12720.96, "end": 12721.88, "probability": 0.4888 }, { "start": 12721.98, "end": 12722.4, "probability": 0.6741 }, { "start": 12723.3, "end": 12724.16, "probability": 0.8873 }, { "start": 12724.28, "end": 12727.24, "probability": 0.9858 }, { "start": 12728.14, "end": 12729.54, "probability": 0.8129 }, { "start": 12730.66, "end": 12733.46, "probability": 0.9497 }, { "start": 12734.42, "end": 12736.68, "probability": 0.9807 }, { "start": 12737.38, "end": 12738.32, "probability": 0.9971 }, { "start": 12739.44, "end": 12740.08, "probability": 0.9859 }, { "start": 12741.08, "end": 12741.84, "probability": 0.8139 }, { "start": 12741.98, "end": 12742.14, "probability": 0.9771 }, { "start": 12742.24, "end": 12743.57, "probability": 0.9638 }, { "start": 12743.98, "end": 12745.44, "probability": 0.9895 }, { "start": 12746.34, "end": 12750.76, "probability": 0.9971 }, { "start": 12750.86, "end": 12752.46, "probability": 0.989 }, { "start": 12753.66, "end": 12755.7, "probability": 0.9573 }, { "start": 12756.9, "end": 12758.46, "probability": 0.9998 }, { "start": 12759.32, "end": 12763.96, "probability": 0.9988 }, { "start": 12764.94, "end": 12771.86, "probability": 0.9829 }, { "start": 12773.28, "end": 12776.32, "probability": 0.9881 }, { "start": 12776.42, "end": 12779.4, "probability": 0.9523 }, { "start": 12780.14, "end": 12785.46, "probability": 0.7158 }, { "start": 12786.24, "end": 12787.34, "probability": 0.9978 }, { "start": 12787.94, "end": 12791.3, "probability": 0.998 }, { "start": 12791.42, "end": 12791.88, "probability": 0.5964 }, { "start": 12793.2, "end": 12795.26, "probability": 0.9932 }, { "start": 12795.36, "end": 12795.98, "probability": 0.9566 }, { "start": 12796.2, "end": 12797.88, "probability": 0.9731 }, { "start": 12798.6, "end": 12802.9, "probability": 0.9839 }, { "start": 12802.9, "end": 12805.8, "probability": 0.9985 }, { "start": 12806.4, "end": 12809.06, "probability": 0.996 }, { "start": 12809.64, "end": 12810.94, "probability": 0.9628 }, { "start": 12811.06, "end": 12811.7, "probability": 0.9919 }, { "start": 12812.6, "end": 12816.12, "probability": 0.9961 }, { "start": 12816.12, "end": 12819.56, "probability": 0.9993 }, { "start": 12819.64, "end": 12826.12, "probability": 0.9992 }, { "start": 12827.3, "end": 12828.52, "probability": 0.9255 }, { "start": 12829.28, "end": 12830.34, "probability": 0.7234 }, { "start": 12831.44, "end": 12832.02, "probability": 0.9019 }, { "start": 12832.46, "end": 12833.15, "probability": 0.8964 }, { "start": 12834.44, "end": 12834.44, "probability": 0.0254 }, { "start": 12834.44, "end": 12837.6, "probability": 0.8131 }, { "start": 12837.72, "end": 12838.06, "probability": 0.8376 }, { "start": 12838.5, "end": 12839.5, "probability": 0.7227 }, { "start": 12840.9, "end": 12841.54, "probability": 0.7508 }, { "start": 12843.22, "end": 12846.66, "probability": 0.9766 }, { "start": 12847.56, "end": 12852.54, "probability": 0.9548 }, { "start": 12852.78, "end": 12856.68, "probability": 0.7619 }, { "start": 12856.82, "end": 12857.88, "probability": 0.6429 }, { "start": 12858.56, "end": 12861.5, "probability": 0.8034 }, { "start": 12862.5, "end": 12864.02, "probability": 0.7991 }, { "start": 12864.12, "end": 12864.58, "probability": 0.9185 }, { "start": 12864.6, "end": 12868.3, "probability": 0.9982 }, { "start": 12868.3, "end": 12871.06, "probability": 0.9983 }, { "start": 12871.68, "end": 12875.12, "probability": 0.9906 }, { "start": 12875.68, "end": 12876.6, "probability": 0.9359 }, { "start": 12876.66, "end": 12877.5, "probability": 0.6502 }, { "start": 12877.56, "end": 12877.9, "probability": 0.6972 }, { "start": 12877.96, "end": 12879.2, "probability": 0.9386 }, { "start": 12879.9, "end": 12882.92, "probability": 0.9705 }, { "start": 12883.9, "end": 12887.12, "probability": 0.8316 }, { "start": 12887.12, "end": 12890.96, "probability": 0.9934 }, { "start": 12891.5, "end": 12893.98, "probability": 0.9723 }, { "start": 12894.78, "end": 12899.72, "probability": 0.9969 }, { "start": 12899.88, "end": 12902.0, "probability": 0.9611 }, { "start": 12902.62, "end": 12905.54, "probability": 0.9847 }, { "start": 12905.62, "end": 12906.06, "probability": 0.6401 }, { "start": 12907.5, "end": 12914.1, "probability": 0.9917 }, { "start": 12914.8, "end": 12915.08, "probability": 0.8311 }, { "start": 12915.6, "end": 12916.24, "probability": 0.5237 }, { "start": 12916.86, "end": 12917.8, "probability": 0.7086 }, { "start": 12918.04, "end": 12918.64, "probability": 0.9396 }, { "start": 12919.74, "end": 12921.49, "probability": 0.8763 }, { "start": 12922.22, "end": 12923.36, "probability": 0.7266 }, { "start": 12923.54, "end": 12925.68, "probability": 0.3542 }, { "start": 12925.8, "end": 12929.98, "probability": 0.7892 }, { "start": 12930.74, "end": 12933.9, "probability": 0.8519 }, { "start": 12934.56, "end": 12936.96, "probability": 0.9574 }, { "start": 12938.12, "end": 12939.78, "probability": 0.9379 }, { "start": 12939.78, "end": 12942.02, "probability": 0.7427 }, { "start": 12942.54, "end": 12943.02, "probability": 0.66 }, { "start": 12943.2, "end": 12943.58, "probability": 0.6771 }, { "start": 12943.84, "end": 12944.02, "probability": 0.606 }, { "start": 12965.58, "end": 12968.96, "probability": 0.1261 }, { "start": 12968.96, "end": 12970.48, "probability": 0.0387 }, { "start": 12971.48, "end": 12972.04, "probability": 0.0422 }, { "start": 12975.34, "end": 12976.1, "probability": 0.6271 }, { "start": 12976.88, "end": 12979.66, "probability": 0.9869 }, { "start": 12985.72, "end": 12987.36, "probability": 0.0623 }, { "start": 12992.32, "end": 12992.68, "probability": 0.1049 }, { "start": 12995.74, "end": 12996.2, "probability": 0.004 }, { "start": 12997.84, "end": 13000.5, "probability": 0.02 }, { "start": 13001.62, "end": 13004.18, "probability": 0.0067 }, { "start": 13004.18, "end": 13004.46, "probability": 0.0557 }, { "start": 13005.78, "end": 13010.06, "probability": 0.0992 }, { "start": 13011.42, "end": 13012.77, "probability": 0.0415 }, { "start": 13014.26, "end": 13014.98, "probability": 0.2758 }, { "start": 13014.98, "end": 13015.88, "probability": 0.1513 }, { "start": 13015.88, "end": 13020.72, "probability": 0.0947 }, { "start": 13026.0, "end": 13026.0, "probability": 0.0 }, { "start": 13026.0, "end": 13026.0, "probability": 0.0 }, { "start": 13026.0, "end": 13026.0, "probability": 0.0 }, { "start": 13026.0, "end": 13026.0, "probability": 0.0 }, { "start": 13026.0, "end": 13026.0, "probability": 0.0 }, { "start": 13026.0, "end": 13026.0, "probability": 0.0 }, { "start": 13026.0, "end": 13026.0, "probability": 0.0 }, { "start": 13026.2, "end": 13027.08, "probability": 0.091 }, { "start": 13027.08, "end": 13027.08, "probability": 0.1288 }, { "start": 13027.08, "end": 13027.24, "probability": 0.4164 }, { "start": 13028.26, "end": 13029.46, "probability": 0.0904 }, { "start": 13036.22, "end": 13037.0, "probability": 0.1398 }, { "start": 13052.4, "end": 13059.88, "probability": 0.1186 }, { "start": 13061.46, "end": 13063.18, "probability": 0.1382 }, { "start": 13063.9, "end": 13065.7, "probability": 0.0923 }, { "start": 13065.74, "end": 13069.2, "probability": 0.1809 }, { "start": 13149.0, "end": 13149.0, "probability": 0.0 }, { "start": 13149.0, "end": 13149.0, "probability": 0.0 }, { "start": 13149.0, "end": 13149.0, "probability": 0.0 }, { "start": 13149.0, "end": 13149.0, "probability": 0.0 }, { "start": 13149.0, "end": 13149.0, "probability": 0.0 }, { "start": 13149.0, "end": 13149.0, "probability": 0.0 }, { "start": 13149.0, "end": 13149.0, "probability": 0.0 }, { "start": 13149.0, "end": 13149.0, "probability": 0.0 }, { "start": 13149.0, "end": 13149.0, "probability": 0.0 }, { "start": 13149.0, "end": 13149.0, "probability": 0.0 }, { "start": 13149.0, "end": 13149.0, "probability": 0.0 }, { "start": 13149.0, "end": 13149.0, "probability": 0.0 }, { "start": 13149.0, "end": 13149.0, "probability": 0.0 }, { "start": 13149.0, "end": 13149.0, "probability": 0.0 }, { "start": 13149.0, "end": 13149.0, "probability": 0.0 }, { "start": 13149.0, "end": 13149.0, "probability": 0.0 }, { "start": 13149.0, "end": 13149.0, "probability": 0.0 }, { "start": 13149.0, "end": 13149.0, "probability": 0.0 }, { "start": 13149.0, "end": 13149.0, "probability": 0.0 }, { "start": 13149.0, "end": 13149.0, "probability": 0.0 }, { "start": 13149.0, "end": 13149.0, "probability": 0.0 }, { "start": 13149.0, "end": 13149.0, "probability": 0.0 }, { "start": 13149.0, "end": 13149.0, "probability": 0.0 }, { "start": 13149.0, "end": 13149.0, "probability": 0.0 }, { "start": 13149.0, "end": 13149.0, "probability": 0.0 }, { "start": 13149.0, "end": 13149.0, "probability": 0.0 }, { "start": 13149.0, "end": 13149.0, "probability": 0.0 }, { "start": 13149.0, "end": 13149.0, "probability": 0.0 }, { "start": 13149.0, "end": 13149.0, "probability": 0.0 }, { "start": 13149.0, "end": 13149.0, "probability": 0.0 }, { "start": 13149.0, "end": 13149.0, "probability": 0.0 }, { "start": 13149.0, "end": 13149.0, "probability": 0.0 }, { "start": 13149.0, "end": 13149.0, "probability": 0.0 }, { "start": 13149.0, "end": 13149.0, "probability": 0.0 }, { "start": 13149.0, "end": 13149.0, "probability": 0.0 }, { "start": 13149.0, "end": 13149.0, "probability": 0.0 }, { "start": 13149.0, "end": 13149.0, "probability": 0.0 }, { "start": 13149.0, "end": 13149.0, "probability": 0.0 }, { "start": 13149.0, "end": 13149.0, "probability": 0.0 }, { "start": 13149.2, "end": 13149.24, "probability": 0.0186 }, { "start": 13149.24, "end": 13149.56, "probability": 0.0414 }, { "start": 13150.0, "end": 13150.86, "probability": 0.9565 }, { "start": 13151.0, "end": 13151.8, "probability": 0.9084 }, { "start": 13151.86, "end": 13154.48, "probability": 0.9756 }, { "start": 13155.44, "end": 13158.8, "probability": 0.9877 }, { "start": 13159.72, "end": 13160.26, "probability": 0.5988 }, { "start": 13160.36, "end": 13163.28, "probability": 0.9806 }, { "start": 13163.82, "end": 13165.54, "probability": 0.7713 }, { "start": 13166.24, "end": 13172.38, "probability": 0.9625 }, { "start": 13172.38, "end": 13176.48, "probability": 0.9964 }, { "start": 13177.1, "end": 13178.64, "probability": 0.981 }, { "start": 13179.34, "end": 13182.48, "probability": 0.9554 }, { "start": 13182.48, "end": 13185.06, "probability": 0.992 }, { "start": 13186.16, "end": 13186.4, "probability": 0.8074 }, { "start": 13186.46, "end": 13186.56, "probability": 0.726 }, { "start": 13186.82, "end": 13189.58, "probability": 0.9979 }, { "start": 13190.2, "end": 13191.44, "probability": 0.2406 }, { "start": 13191.46, "end": 13194.96, "probability": 0.998 }, { "start": 13194.96, "end": 13197.2, "probability": 0.9942 }, { "start": 13198.56, "end": 13200.58, "probability": 0.999 }, { "start": 13200.58, "end": 13203.14, "probability": 0.9989 }, { "start": 13203.62, "end": 13207.18, "probability": 0.9886 }, { "start": 13207.9, "end": 13211.0, "probability": 0.9958 }, { "start": 13211.0, "end": 13215.3, "probability": 0.9976 }, { "start": 13215.3, "end": 13218.9, "probability": 0.9987 }, { "start": 13219.66, "end": 13224.58, "probability": 0.989 }, { "start": 13225.52, "end": 13227.52, "probability": 0.9495 }, { "start": 13227.52, "end": 13230.38, "probability": 0.9988 }, { "start": 13230.92, "end": 13233.22, "probability": 0.999 }, { "start": 13233.64, "end": 13235.84, "probability": 0.9806 }, { "start": 13236.9, "end": 13239.38, "probability": 0.997 }, { "start": 13239.76, "end": 13241.76, "probability": 0.9725 }, { "start": 13242.18, "end": 13243.7, "probability": 0.924 }, { "start": 13244.2, "end": 13246.52, "probability": 0.9913 }, { "start": 13246.98, "end": 13248.62, "probability": 0.9778 }, { "start": 13249.32, "end": 13252.26, "probability": 0.9985 }, { "start": 13252.26, "end": 13254.72, "probability": 0.9961 }, { "start": 13255.22, "end": 13258.18, "probability": 0.9728 }, { "start": 13258.26, "end": 13260.72, "probability": 0.9786 }, { "start": 13261.6, "end": 13262.36, "probability": 0.8184 }, { "start": 13262.78, "end": 13269.68, "probability": 0.9926 }, { "start": 13269.68, "end": 13273.24, "probability": 0.9993 }, { "start": 13273.84, "end": 13274.28, "probability": 0.9642 }, { "start": 13275.4, "end": 13275.84, "probability": 0.4833 }, { "start": 13275.86, "end": 13278.34, "probability": 0.9938 }, { "start": 13278.34, "end": 13280.94, "probability": 0.9836 }, { "start": 13281.7, "end": 13282.4, "probability": 0.8287 }, { "start": 13283.0, "end": 13287.02, "probability": 0.9963 }, { "start": 13287.4, "end": 13290.58, "probability": 0.9966 }, { "start": 13291.14, "end": 13293.24, "probability": 0.9822 }, { "start": 13293.76, "end": 13296.56, "probability": 0.9425 }, { "start": 13296.56, "end": 13299.2, "probability": 0.9801 }, { "start": 13300.34, "end": 13303.06, "probability": 0.99 }, { "start": 13303.88, "end": 13304.5, "probability": 0.7624 }, { "start": 13305.08, "end": 13310.52, "probability": 0.984 }, { "start": 13310.52, "end": 13315.14, "probability": 0.9964 }, { "start": 13316.22, "end": 13316.76, "probability": 0.8388 }, { "start": 13317.36, "end": 13320.08, "probability": 0.9985 }, { "start": 13320.08, "end": 13324.2, "probability": 0.9974 }, { "start": 13324.66, "end": 13328.76, "probability": 0.981 }, { "start": 13329.36, "end": 13331.64, "probability": 0.9981 }, { "start": 13331.64, "end": 13334.58, "probability": 0.9971 }, { "start": 13335.04, "end": 13337.62, "probability": 0.9925 }, { "start": 13338.6, "end": 13342.76, "probability": 0.9976 }, { "start": 13342.76, "end": 13346.08, "probability": 0.9896 }, { "start": 13346.08, "end": 13348.86, "probability": 0.9941 }, { "start": 13349.52, "end": 13351.4, "probability": 0.9934 }, { "start": 13351.54, "end": 13355.12, "probability": 0.9836 }, { "start": 13355.12, "end": 13358.58, "probability": 0.8252 }, { "start": 13358.96, "end": 13361.46, "probability": 0.9974 }, { "start": 13361.86, "end": 13365.88, "probability": 0.9833 }, { "start": 13366.76, "end": 13367.54, "probability": 0.7573 }, { "start": 13368.0, "end": 13371.58, "probability": 0.9976 }, { "start": 13372.2, "end": 13374.52, "probability": 0.8254 }, { "start": 13376.78, "end": 13378.16, "probability": 0.5263 }, { "start": 13378.3, "end": 13379.34, "probability": 0.7334 }, { "start": 13380.02, "end": 13382.12, "probability": 0.8077 }, { "start": 13383.36, "end": 13384.08, "probability": 0.7401 }, { "start": 13384.2, "end": 13385.7, "probability": 0.9728 }, { "start": 13407.1, "end": 13407.22, "probability": 0.6629 }, { "start": 13407.88, "end": 13409.0, "probability": 0.7895 }, { "start": 13413.88, "end": 13415.92, "probability": 0.6875 }, { "start": 13417.08, "end": 13420.0, "probability": 0.8784 }, { "start": 13420.8, "end": 13424.89, "probability": 0.9939 }, { "start": 13425.18, "end": 13429.1, "probability": 0.995 }, { "start": 13430.12, "end": 13433.14, "probability": 0.9767 }, { "start": 13434.18, "end": 13437.64, "probability": 0.9923 }, { "start": 13437.64, "end": 13441.04, "probability": 0.9985 }, { "start": 13441.68, "end": 13443.38, "probability": 0.9631 }, { "start": 13444.22, "end": 13447.76, "probability": 0.9731 }, { "start": 13448.38, "end": 13452.1, "probability": 0.9977 }, { "start": 13452.1, "end": 13457.52, "probability": 0.994 }, { "start": 13458.02, "end": 13461.22, "probability": 0.977 }, { "start": 13461.7, "end": 13466.96, "probability": 0.9971 }, { "start": 13467.82, "end": 13473.78, "probability": 0.9734 }, { "start": 13474.78, "end": 13476.02, "probability": 0.9266 }, { "start": 13476.88, "end": 13481.86, "probability": 0.9991 }, { "start": 13482.74, "end": 13485.86, "probability": 0.9572 }, { "start": 13486.3, "end": 13487.91, "probability": 0.9932 }, { "start": 13488.68, "end": 13492.0, "probability": 0.9569 }, { "start": 13492.0, "end": 13495.98, "probability": 0.9509 }, { "start": 13496.9, "end": 13501.85, "probability": 0.9933 }, { "start": 13502.46, "end": 13504.92, "probability": 0.9776 }, { "start": 13505.56, "end": 13511.62, "probability": 0.9858 }, { "start": 13512.44, "end": 13517.36, "probability": 0.9921 }, { "start": 13517.36, "end": 13523.3, "probability": 0.999 }, { "start": 13523.92, "end": 13528.7, "probability": 0.9753 }, { "start": 13528.86, "end": 13529.84, "probability": 0.5974 }, { "start": 13530.4, "end": 13530.78, "probability": 0.7095 }, { "start": 13530.88, "end": 13532.28, "probability": 0.8744 }, { "start": 13532.48, "end": 13537.84, "probability": 0.9832 }, { "start": 13538.6, "end": 13542.44, "probability": 0.903 }, { "start": 13543.0, "end": 13544.57, "probability": 0.9679 }, { "start": 13545.22, "end": 13548.36, "probability": 0.9953 }, { "start": 13549.36, "end": 13551.96, "probability": 0.972 }, { "start": 13552.5, "end": 13558.2, "probability": 0.9954 }, { "start": 13558.98, "end": 13564.22, "probability": 0.9285 }, { "start": 13564.42, "end": 13569.82, "probability": 0.9885 }, { "start": 13571.32, "end": 13574.24, "probability": 0.7995 }, { "start": 13574.84, "end": 13579.6, "probability": 0.9932 }, { "start": 13580.4, "end": 13582.64, "probability": 0.9991 }, { "start": 13583.24, "end": 13585.02, "probability": 0.9927 }, { "start": 13586.08, "end": 13589.76, "probability": 0.9958 }, { "start": 13589.76, "end": 13595.84, "probability": 0.9785 }, { "start": 13596.34, "end": 13596.58, "probability": 0.5589 }, { "start": 13597.76, "end": 13599.62, "probability": 0.9508 }, { "start": 13600.4, "end": 13601.72, "probability": 0.9382 }, { "start": 13605.19, "end": 13608.52, "probability": 0.5492 }, { "start": 13609.16, "end": 13610.04, "probability": 0.7753 }, { "start": 13610.04, "end": 13610.04, "probability": 0.7963 }, { "start": 13610.04, "end": 13610.78, "probability": 0.8633 }, { "start": 13612.12, "end": 13612.8, "probability": 0.883 }, { "start": 13613.64, "end": 13614.96, "probability": 0.9402 }, { "start": 13614.98, "end": 13615.74, "probability": 0.9486 }, { "start": 13616.02, "end": 13616.62, "probability": 0.4996 }, { "start": 13642.66, "end": 13643.06, "probability": 0.3848 }, { "start": 13643.12, "end": 13643.72, "probability": 0.6309 }, { "start": 13644.4, "end": 13645.96, "probability": 0.6601 }, { "start": 13647.14, "end": 13650.46, "probability": 0.9342 }, { "start": 13650.64, "end": 13652.7, "probability": 0.814 }, { "start": 13653.38, "end": 13655.6, "probability": 0.7456 }, { "start": 13657.24, "end": 13663.38, "probability": 0.9971 }, { "start": 13663.38, "end": 13668.48, "probability": 0.9995 }, { "start": 13669.1, "end": 13670.46, "probability": 0.4937 }, { "start": 13671.0, "end": 13674.9, "probability": 0.9946 }, { "start": 13675.2, "end": 13676.22, "probability": 0.9684 }, { "start": 13677.62, "end": 13679.46, "probability": 0.7609 }, { "start": 13680.38, "end": 13685.06, "probability": 0.9847 }, { "start": 13686.84, "end": 13693.83, "probability": 0.9976 }, { "start": 13695.07, "end": 13697.95, "probability": 0.7736 }, { "start": 13699.43, "end": 13700.59, "probability": 0.9846 }, { "start": 13701.29, "end": 13704.01, "probability": 0.8465 }, { "start": 13704.53, "end": 13705.59, "probability": 0.8166 }, { "start": 13706.07, "end": 13707.99, "probability": 0.9977 }, { "start": 13708.47, "end": 13711.01, "probability": 0.9785 }, { "start": 13711.65, "end": 13712.33, "probability": 0.9797 }, { "start": 13712.65, "end": 13714.21, "probability": 0.9044 }, { "start": 13714.99, "end": 13715.51, "probability": 0.6302 }, { "start": 13715.59, "end": 13718.87, "probability": 0.9521 }, { "start": 13719.23, "end": 13719.53, "probability": 0.5577 }, { "start": 13720.31, "end": 13721.63, "probability": 0.8532 }, { "start": 13722.65, "end": 13723.55, "probability": 0.5433 }, { "start": 13724.29, "end": 13725.07, "probability": 0.7935 }, { "start": 13725.35, "end": 13726.33, "probability": 0.95 }, { "start": 13726.53, "end": 13727.33, "probability": 0.9611 }, { "start": 13727.67, "end": 13728.35, "probability": 0.9395 }, { "start": 13728.41, "end": 13730.51, "probability": 0.7212 }, { "start": 13731.17, "end": 13731.17, "probability": 0.1535 }, { "start": 13731.17, "end": 13731.17, "probability": 0.5002 }, { "start": 13731.17, "end": 13731.67, "probability": 0.528 }, { "start": 13731.71, "end": 13732.25, "probability": 0.7753 }, { "start": 13732.41, "end": 13732.91, "probability": 0.4952 }, { "start": 13732.99, "end": 13733.43, "probability": 0.8437 }, { "start": 13733.63, "end": 13734.33, "probability": 0.7262 }, { "start": 13734.89, "end": 13737.73, "probability": 0.9194 }, { "start": 13738.49, "end": 13739.93, "probability": 0.8838 }, { "start": 13740.01, "end": 13740.61, "probability": 0.4415 }, { "start": 13740.71, "end": 13741.85, "probability": 0.8092 }, { "start": 13741.99, "end": 13742.39, "probability": 0.9519 }, { "start": 13742.61, "end": 13743.57, "probability": 0.9731 }, { "start": 13743.67, "end": 13744.09, "probability": 0.8728 }, { "start": 13744.85, "end": 13746.25, "probability": 0.6601 }, { "start": 13746.73, "end": 13747.43, "probability": 0.9403 }, { "start": 13747.59, "end": 13748.61, "probability": 0.783 }, { "start": 13748.73, "end": 13749.09, "probability": 0.8603 }, { "start": 13749.83, "end": 13751.39, "probability": 0.7367 }, { "start": 13751.91, "end": 13752.81, "probability": 0.9644 }, { "start": 13753.33, "end": 13753.87, "probability": 0.9146 }, { "start": 13754.01, "end": 13755.17, "probability": 0.7445 }, { "start": 13755.25, "end": 13755.87, "probability": 0.6199 }, { "start": 13756.65, "end": 13758.29, "probability": 0.8913 }, { "start": 13760.17, "end": 13761.47, "probability": 0.997 }, { "start": 13761.59, "end": 13761.99, "probability": 0.3248 }, { "start": 13762.11, "end": 13763.21, "probability": 0.8201 }, { "start": 13763.27, "end": 13763.83, "probability": 0.7562 }, { "start": 13764.31, "end": 13765.85, "probability": 0.6141 }, { "start": 13765.95, "end": 13766.49, "probability": 0.5494 }, { "start": 13767.09, "end": 13768.89, "probability": 0.8723 }, { "start": 13769.59, "end": 13770.87, "probability": 0.9488 }, { "start": 13770.87, "end": 13773.07, "probability": 0.9404 }, { "start": 13773.17, "end": 13774.31, "probability": 0.3209 }, { "start": 13775.03, "end": 13775.85, "probability": 0.424 }, { "start": 13775.87, "end": 13776.49, "probability": 0.6688 }, { "start": 13776.49, "end": 13776.49, "probability": 0.5171 }, { "start": 13776.49, "end": 13776.7, "probability": 0.7873 }, { "start": 13777.61, "end": 13781.11, "probability": 0.8025 }, { "start": 13781.71, "end": 13783.65, "probability": 0.6864 }, { "start": 13784.17, "end": 13786.49, "probability": 0.7781 }, { "start": 13787.15, "end": 13788.47, "probability": 0.0362 }, { "start": 13791.41, "end": 13791.67, "probability": 0.4595 }, { "start": 13801.93, "end": 13802.45, "probability": 0.9009 }, { "start": 13804.13, "end": 13805.61, "probability": 0.7803 }, { "start": 13806.64, "end": 13807.55, "probability": 0.3151 }, { "start": 13807.55, "end": 13810.17, "probability": 0.8009 }, { "start": 13811.21, "end": 13812.49, "probability": 0.786 }, { "start": 13813.97, "end": 13817.89, "probability": 0.9948 }, { "start": 13818.79, "end": 13819.57, "probability": 0.9504 }, { "start": 13820.87, "end": 13822.95, "probability": 0.9979 }, { "start": 13824.29, "end": 13827.99, "probability": 0.7812 }, { "start": 13829.29, "end": 13831.76, "probability": 0.993 }, { "start": 13832.95, "end": 13834.81, "probability": 0.9888 }, { "start": 13836.07, "end": 13836.71, "probability": 0.7702 }, { "start": 13836.83, "end": 13838.01, "probability": 0.9163 }, { "start": 13838.23, "end": 13840.17, "probability": 0.98 }, { "start": 13841.35, "end": 13842.59, "probability": 0.6738 }, { "start": 13843.55, "end": 13846.93, "probability": 0.6856 }, { "start": 13847.73, "end": 13849.95, "probability": 0.0204 }, { "start": 13850.09, "end": 13853.05, "probability": 0.9904 }, { "start": 13854.01, "end": 13861.15, "probability": 0.9888 }, { "start": 13861.55, "end": 13867.66, "probability": 0.9717 }, { "start": 13868.31, "end": 13870.17, "probability": 0.397 }, { "start": 13870.33, "end": 13872.35, "probability": 0.9219 }, { "start": 13872.57, "end": 13874.57, "probability": 0.9512 }, { "start": 13874.97, "end": 13876.27, "probability": 0.6667 }, { "start": 13879.31, "end": 13879.53, "probability": 0.0406 }, { "start": 13879.53, "end": 13879.77, "probability": 0.4415 }, { "start": 13879.91, "end": 13882.92, "probability": 0.688 }, { "start": 13883.73, "end": 13888.43, "probability": 0.8864 }, { "start": 13888.97, "end": 13894.59, "probability": 0.8867 }, { "start": 13895.77, "end": 13899.01, "probability": 0.8148 }, { "start": 13899.77, "end": 13905.09, "probability": 0.9128 }, { "start": 13905.13, "end": 13905.65, "probability": 0.4245 }, { "start": 13906.13, "end": 13910.43, "probability": 0.9942 }, { "start": 13910.79, "end": 13912.67, "probability": 0.7333 }, { "start": 13913.03, "end": 13915.49, "probability": 0.9509 }, { "start": 13915.79, "end": 13919.57, "probability": 0.9272 }, { "start": 13919.89, "end": 13921.05, "probability": 0.8162 }, { "start": 13922.39, "end": 13925.89, "probability": 0.8658 }, { "start": 13926.13, "end": 13927.21, "probability": 0.9768 }, { "start": 13928.21, "end": 13931.67, "probability": 0.6833 }, { "start": 13933.07, "end": 13938.63, "probability": 0.8952 }, { "start": 13939.09, "end": 13940.19, "probability": 0.7194 }, { "start": 13940.57, "end": 13942.09, "probability": 0.7275 }, { "start": 13942.39, "end": 13943.77, "probability": 0.8273 }, { "start": 13943.81, "end": 13945.91, "probability": 0.955 }, { "start": 13946.27, "end": 13947.09, "probability": 0.7745 }, { "start": 13947.77, "end": 13950.31, "probability": 0.9901 }, { "start": 13950.35, "end": 13954.03, "probability": 0.9693 }, { "start": 13954.31, "end": 13954.93, "probability": 0.6371 }, { "start": 13955.03, "end": 13959.43, "probability": 0.9523 }, { "start": 13959.43, "end": 13961.95, "probability": 0.9982 }, { "start": 13962.07, "end": 13964.49, "probability": 0.8989 }, { "start": 13964.59, "end": 13966.39, "probability": 0.6663 }, { "start": 13966.51, "end": 13967.81, "probability": 0.9102 }, { "start": 13969.99, "end": 13971.97, "probability": 0.755 }, { "start": 13972.53, "end": 13974.21, "probability": 0.9343 }, { "start": 13974.93, "end": 13977.35, "probability": 0.5664 }, { "start": 13978.03, "end": 13979.99, "probability": 0.9247 }, { "start": 13982.1, "end": 13986.11, "probability": 0.7819 }, { "start": 13986.69, "end": 13986.69, "probability": 0.0136 }, { "start": 13999.59, "end": 14000.17, "probability": 0.02 }, { "start": 14002.09, "end": 14002.09, "probability": 0.042 }, { "start": 14002.09, "end": 14003.47, "probability": 0.6386 }, { "start": 14004.09, "end": 14005.65, "probability": 0.9143 }, { "start": 14006.47, "end": 14007.77, "probability": 0.9054 }, { "start": 14007.97, "end": 14008.45, "probability": 0.6804 }, { "start": 14008.63, "end": 14012.35, "probability": 0.9224 }, { "start": 14012.97, "end": 14015.77, "probability": 0.9934 }, { "start": 14015.95, "end": 14017.19, "probability": 0.7416 }, { "start": 14017.67, "end": 14019.69, "probability": 0.8386 }, { "start": 14019.89, "end": 14021.07, "probability": 0.0065 }, { "start": 14021.17, "end": 14021.69, "probability": 0.9531 }, { "start": 14023.43, "end": 14029.22, "probability": 0.9747 }, { "start": 14030.21, "end": 14036.15, "probability": 0.9954 }, { "start": 14037.23, "end": 14043.11, "probability": 0.9987 }, { "start": 14045.19, "end": 14046.57, "probability": 0.9731 }, { "start": 14046.71, "end": 14047.43, "probability": 0.4807 }, { "start": 14047.85, "end": 14052.13, "probability": 0.9941 }, { "start": 14053.01, "end": 14056.21, "probability": 0.9788 }, { "start": 14057.51, "end": 14060.39, "probability": 0.9888 }, { "start": 14062.29, "end": 14062.97, "probability": 0.9574 }, { "start": 14064.41, "end": 14066.23, "probability": 0.5532 }, { "start": 14066.27, "end": 14069.19, "probability": 0.9968 }, { "start": 14069.97, "end": 14071.51, "probability": 0.637 }, { "start": 14071.93, "end": 14072.63, "probability": 0.5697 }, { "start": 14072.79, "end": 14073.99, "probability": 0.9867 }, { "start": 14074.17, "end": 14079.07, "probability": 0.9834 }, { "start": 14079.11, "end": 14080.53, "probability": 0.9031 }, { "start": 14081.03, "end": 14082.15, "probability": 0.7052 }, { "start": 14082.55, "end": 14083.59, "probability": 0.6949 }, { "start": 14083.63, "end": 14084.67, "probability": 0.8604 }, { "start": 14084.87, "end": 14088.77, "probability": 0.8382 }, { "start": 14091.33, "end": 14093.17, "probability": 0.9201 }, { "start": 14096.7, "end": 14098.03, "probability": 0.8958 }, { "start": 14098.07, "end": 14099.99, "probability": 0.5661 }, { "start": 14100.21, "end": 14100.65, "probability": 0.7593 }, { "start": 14100.75, "end": 14101.85, "probability": 0.8399 }, { "start": 14103.01, "end": 14107.33, "probability": 0.9867 }, { "start": 14107.67, "end": 14108.49, "probability": 0.7568 }, { "start": 14109.53, "end": 14110.57, "probability": 0.9465 }, { "start": 14111.11, "end": 14113.59, "probability": 0.966 }, { "start": 14114.75, "end": 14118.37, "probability": 0.9774 }, { "start": 14119.37, "end": 14120.53, "probability": 0.2493 }, { "start": 14122.31, "end": 14126.47, "probability": 0.9771 }, { "start": 14126.85, "end": 14128.27, "probability": 0.9971 }, { "start": 14129.05, "end": 14129.89, "probability": 0.7079 }, { "start": 14130.73, "end": 14131.49, "probability": 0.4174 }, { "start": 14132.31, "end": 14132.91, "probability": 0.7551 }, { "start": 14132.91, "end": 14133.89, "probability": 0.9021 }, { "start": 14134.03, "end": 14134.47, "probability": 0.9332 }, { "start": 14134.57, "end": 14134.98, "probability": 0.7634 }, { "start": 14135.21, "end": 14136.45, "probability": 0.7425 }, { "start": 14137.41, "end": 14138.37, "probability": 0.9831 }, { "start": 14138.69, "end": 14140.57, "probability": 0.9634 }, { "start": 14140.63, "end": 14142.35, "probability": 0.9159 }, { "start": 14142.35, "end": 14146.51, "probability": 0.9817 }, { "start": 14146.95, "end": 14147.91, "probability": 0.7593 }, { "start": 14148.01, "end": 14150.23, "probability": 0.7337 }, { "start": 14154.01, "end": 14155.34, "probability": 0.9508 }, { "start": 14157.14, "end": 14158.99, "probability": 0.9264 }, { "start": 14159.23, "end": 14161.19, "probability": 0.9309 }, { "start": 14161.45, "end": 14161.99, "probability": 0.6215 }, { "start": 14162.73, "end": 14163.67, "probability": 0.7442 }, { "start": 14163.75, "end": 14165.65, "probability": 0.9783 }, { "start": 14166.67, "end": 14170.53, "probability": 0.7617 }, { "start": 14171.73, "end": 14173.25, "probability": 0.3985 }, { "start": 14174.87, "end": 14178.17, "probability": 0.9767 }, { "start": 14178.79, "end": 14179.97, "probability": 0.4006 }, { "start": 14180.15, "end": 14181.73, "probability": 0.879 }, { "start": 14181.79, "end": 14182.17, "probability": 0.2826 }, { "start": 14182.45, "end": 14182.91, "probability": 0.9277 }, { "start": 14182.95, "end": 14183.55, "probability": 0.9414 }, { "start": 14184.89, "end": 14185.71, "probability": 0.9474 }, { "start": 14186.29, "end": 14187.33, "probability": 0.9993 }, { "start": 14188.01, "end": 14189.19, "probability": 0.6034 }, { "start": 14189.77, "end": 14191.85, "probability": 0.9677 }, { "start": 14192.55, "end": 14193.95, "probability": 0.9689 }, { "start": 14194.97, "end": 14196.95, "probability": 0.9263 }, { "start": 14197.27, "end": 14200.43, "probability": 0.9889 }, { "start": 14200.49, "end": 14200.97, "probability": 0.8581 }, { "start": 14201.31, "end": 14202.23, "probability": 0.9294 }, { "start": 14202.31, "end": 14203.11, "probability": 0.9463 }, { "start": 14203.45, "end": 14205.43, "probability": 0.8336 }, { "start": 14206.13, "end": 14207.51, "probability": 0.6194 }, { "start": 14207.87, "end": 14208.67, "probability": 0.9227 }, { "start": 14208.77, "end": 14209.19, "probability": 0.9205 }, { "start": 14209.21, "end": 14209.83, "probability": 0.7555 }, { "start": 14210.29, "end": 14213.43, "probability": 0.9634 }, { "start": 14213.87, "end": 14215.83, "probability": 0.9927 }, { "start": 14216.07, "end": 14218.49, "probability": 0.9915 }, { "start": 14218.49, "end": 14220.99, "probability": 0.9991 }, { "start": 14221.29, "end": 14222.93, "probability": 0.0552 }, { "start": 14223.51, "end": 14224.49, "probability": 0.0314 }, { "start": 14224.49, "end": 14226.03, "probability": 0.5847 }, { "start": 14226.15, "end": 14228.11, "probability": 0.9679 }, { "start": 14228.75, "end": 14228.75, "probability": 0.239 }, { "start": 14228.75, "end": 14230.07, "probability": 0.9354 }, { "start": 14230.11, "end": 14231.15, "probability": 0.9001 }, { "start": 14231.51, "end": 14232.33, "probability": 0.9548 }, { "start": 14232.39, "end": 14233.49, "probability": 0.9479 }, { "start": 14233.77, "end": 14234.23, "probability": 0.6323 }, { "start": 14234.29, "end": 14235.33, "probability": 0.7283 }, { "start": 14236.47, "end": 14237.03, "probability": 0.0991 }, { "start": 14237.03, "end": 14237.03, "probability": 0.0149 }, { "start": 14237.03, "end": 14237.75, "probability": 0.0337 }, { "start": 14237.83, "end": 14239.99, "probability": 0.598 }, { "start": 14240.21, "end": 14240.95, "probability": 0.894 }, { "start": 14240.99, "end": 14242.07, "probability": 0.9756 }, { "start": 14242.15, "end": 14242.51, "probability": 0.9165 }, { "start": 14242.87, "end": 14243.83, "probability": 0.915 }, { "start": 14243.91, "end": 14244.95, "probability": 0.8847 }, { "start": 14245.35, "end": 14247.75, "probability": 0.9566 }, { "start": 14248.05, "end": 14250.17, "probability": 0.5335 }, { "start": 14250.67, "end": 14251.66, "probability": 0.8222 }, { "start": 14252.33, "end": 14256.71, "probability": 0.9931 }, { "start": 14257.79, "end": 14258.07, "probability": 0.006 }, { "start": 14258.43, "end": 14261.49, "probability": 0.782 }, { "start": 14261.55, "end": 14262.29, "probability": 0.6302 }, { "start": 14262.83, "end": 14263.31, "probability": 0.2523 }, { "start": 14263.77, "end": 14263.93, "probability": 0.0454 }, { "start": 14263.93, "end": 14264.23, "probability": 0.657 }, { "start": 14264.57, "end": 14265.99, "probability": 0.3348 }, { "start": 14266.49, "end": 14267.0, "probability": 0.1141 }, { "start": 14267.95, "end": 14268.75, "probability": 0.4373 }, { "start": 14269.11, "end": 14270.71, "probability": 0.1699 }, { "start": 14270.75, "end": 14271.63, "probability": 0.2622 }, { "start": 14271.79, "end": 14272.65, "probability": 0.8701 }, { "start": 14272.65, "end": 14275.27, "probability": 0.9537 }, { "start": 14275.47, "end": 14276.97, "probability": 0.8801 }, { "start": 14276.97, "end": 14281.35, "probability": 0.7172 }, { "start": 14281.43, "end": 14281.73, "probability": 0.2915 }, { "start": 14281.85, "end": 14283.15, "probability": 0.7212 }, { "start": 14283.77, "end": 14286.49, "probability": 0.7443 }, { "start": 14286.57, "end": 14286.98, "probability": 0.7065 }, { "start": 14287.77, "end": 14288.18, "probability": 0.9102 }, { "start": 14288.55, "end": 14288.85, "probability": 0.4116 }, { "start": 14290.59, "end": 14293.93, "probability": 0.0392 }, { "start": 14295.83, "end": 14298.95, "probability": 0.5708 }, { "start": 14300.01, "end": 14300.09, "probability": 0.0155 }, { "start": 14300.09, "end": 14300.09, "probability": 0.0384 }, { "start": 14300.09, "end": 14300.09, "probability": 0.0601 }, { "start": 14300.09, "end": 14300.67, "probability": 0.2169 }, { "start": 14300.81, "end": 14304.69, "probability": 0.5041 }, { "start": 14305.49, "end": 14306.99, "probability": 0.7947 }, { "start": 14307.03, "end": 14309.75, "probability": 0.8984 }, { "start": 14310.35, "end": 14313.97, "probability": 0.9749 }, { "start": 14313.97, "end": 14315.73, "probability": 0.7942 }, { "start": 14316.57, "end": 14318.05, "probability": 0.9378 }, { "start": 14318.69, "end": 14319.23, "probability": 0.8273 }, { "start": 14319.97, "end": 14321.29, "probability": 0.9307 }, { "start": 14321.99, "end": 14323.19, "probability": 0.5402 }, { "start": 14323.39, "end": 14324.99, "probability": 0.9622 }, { "start": 14325.23, "end": 14326.51, "probability": 0.9184 }, { "start": 14326.97, "end": 14328.15, "probability": 0.832 }, { "start": 14328.73, "end": 14330.07, "probability": 0.6865 }, { "start": 14330.49, "end": 14332.87, "probability": 0.1684 }, { "start": 14332.91, "end": 14333.73, "probability": 0.3632 }, { "start": 14334.03, "end": 14338.53, "probability": 0.7656 }, { "start": 14338.57, "end": 14341.73, "probability": 0.9684 }, { "start": 14341.85, "end": 14341.91, "probability": 0.2581 }, { "start": 14342.13, "end": 14342.75, "probability": 0.4279 }, { "start": 14343.09, "end": 14343.83, "probability": 0.278 }, { "start": 14344.13, "end": 14347.45, "probability": 0.4763 }, { "start": 14347.45, "end": 14348.57, "probability": 0.3413 }, { "start": 14348.99, "end": 14349.67, "probability": 0.5004 }, { "start": 14349.73, "end": 14351.43, "probability": 0.0496 }, { "start": 14352.53, "end": 14354.51, "probability": 0.3545 }, { "start": 14354.91, "end": 14357.37, "probability": 0.2978 }, { "start": 14358.85, "end": 14360.71, "probability": 0.8057 }, { "start": 14361.11, "end": 14362.79, "probability": 0.2834 }, { "start": 14363.83, "end": 14366.89, "probability": 0.3238 }, { "start": 14367.97, "end": 14368.79, "probability": 0.4019 }, { "start": 14369.39, "end": 14369.61, "probability": 0.4815 }, { "start": 14369.69, "end": 14370.69, "probability": 0.4143 }, { "start": 14370.81, "end": 14371.45, "probability": 0.4524 }, { "start": 14371.59, "end": 14373.11, "probability": 0.5932 }, { "start": 14373.45, "end": 14375.0, "probability": 0.9244 }, { "start": 14382.77, "end": 14384.87, "probability": 0.62 }, { "start": 14385.59, "end": 14387.31, "probability": 0.8712 }, { "start": 14387.93, "end": 14390.79, "probability": 0.983 }, { "start": 14391.41, "end": 14393.01, "probability": 0.9407 }, { "start": 14393.27, "end": 14397.29, "probability": 0.725 }, { "start": 14397.89, "end": 14398.97, "probability": 0.5736 }, { "start": 14398.99, "end": 14399.85, "probability": 0.9658 }, { "start": 14399.91, "end": 14401.64, "probability": 0.9958 }, { "start": 14401.75, "end": 14402.55, "probability": 0.4125 }, { "start": 14402.59, "end": 14408.29, "probability": 0.9077 }, { "start": 14408.39, "end": 14410.99, "probability": 0.9813 }, { "start": 14411.61, "end": 14412.53, "probability": 0.7009 }, { "start": 14413.27, "end": 14415.69, "probability": 0.9365 }, { "start": 14416.39, "end": 14418.11, "probability": 0.9979 }, { "start": 14418.21, "end": 14418.21, "probability": 0.4015 }, { "start": 14418.21, "end": 14420.77, "probability": 0.7906 }, { "start": 14421.33, "end": 14425.51, "probability": 0.8087 }, { "start": 14425.51, "end": 14426.15, "probability": 0.3802 }, { "start": 14426.99, "end": 14426.99, "probability": 0.2405 }, { "start": 14426.99, "end": 14427.47, "probability": 0.1189 }, { "start": 14427.57, "end": 14427.89, "probability": 0.8127 }, { "start": 14428.05, "end": 14430.49, "probability": 0.9512 }, { "start": 14431.13, "end": 14431.87, "probability": 0.7293 }, { "start": 14432.03, "end": 14433.07, "probability": 0.749 }, { "start": 14433.53, "end": 14436.25, "probability": 0.9902 }, { "start": 14436.77, "end": 14438.49, "probability": 0.9599 }, { "start": 14438.69, "end": 14441.15, "probability": 0.9971 }, { "start": 14441.15, "end": 14444.43, "probability": 0.7941 }, { "start": 14445.15, "end": 14446.59, "probability": 0.8822 }, { "start": 14446.81, "end": 14449.99, "probability": 0.9856 }, { "start": 14450.09, "end": 14450.35, "probability": 0.6693 }, { "start": 14450.35, "end": 14452.59, "probability": 0.4255 }, { "start": 14453.0, "end": 14454.85, "probability": 0.7498 }, { "start": 14454.85, "end": 14456.11, "probability": 0.437 }, { "start": 14456.65, "end": 14461.01, "probability": 0.9744 }, { "start": 14461.29, "end": 14461.29, "probability": 0.5503 }, { "start": 14461.41, "end": 14465.07, "probability": 0.9758 }, { "start": 14465.81, "end": 14468.41, "probability": 0.9908 }, { "start": 14469.43, "end": 14472.25, "probability": 0.8667 }, { "start": 14473.01, "end": 14473.89, "probability": 0.9761 }, { "start": 14475.13, "end": 14475.45, "probability": 0.8692 }, { "start": 14476.13, "end": 14479.86, "probability": 0.9041 }, { "start": 14480.13, "end": 14484.63, "probability": 0.9893 }, { "start": 14484.73, "end": 14487.03, "probability": 0.9602 }, { "start": 14487.61, "end": 14487.67, "probability": 0.0812 }, { "start": 14487.67, "end": 14488.77, "probability": 0.5353 }, { "start": 14491.51, "end": 14495.89, "probability": 0.7707 }, { "start": 14496.55, "end": 14498.01, "probability": 0.7427 }, { "start": 14498.65, "end": 14502.93, "probability": 0.9945 }, { "start": 14502.93, "end": 14506.93, "probability": 0.9968 }, { "start": 14506.93, "end": 14509.65, "probability": 0.9172 }, { "start": 14509.79, "end": 14511.69, "probability": 0.9902 }, { "start": 14512.49, "end": 14513.67, "probability": 0.9093 }, { "start": 14513.81, "end": 14515.51, "probability": 0.9954 }, { "start": 14517.19, "end": 14519.95, "probability": 0.9742 }, { "start": 14520.45, "end": 14522.17, "probability": 0.9911 }, { "start": 14522.83, "end": 14526.59, "probability": 0.9927 }, { "start": 14526.95, "end": 14528.27, "probability": 0.9309 }, { "start": 14528.73, "end": 14533.11, "probability": 0.9413 }, { "start": 14533.27, "end": 14535.97, "probability": 0.9616 }, { "start": 14536.79, "end": 14539.17, "probability": 0.9834 }, { "start": 14539.71, "end": 14541.93, "probability": 0.933 }, { "start": 14543.95, "end": 14547.37, "probability": 0.7173 }, { "start": 14547.99, "end": 14550.15, "probability": 0.0287 }, { "start": 14550.15, "end": 14550.23, "probability": 0.1324 }, { "start": 14550.23, "end": 14550.3, "probability": 0.3625 }, { "start": 14552.74, "end": 14555.9, "probability": 0.8953 }, { "start": 14558.77, "end": 14562.57, "probability": 0.9234 }, { "start": 14563.15, "end": 14564.69, "probability": 0.9309 }, { "start": 14565.83, "end": 14568.15, "probability": 0.9931 }, { "start": 14568.73, "end": 14572.65, "probability": 0.9639 }, { "start": 14573.17, "end": 14575.29, "probability": 0.9283 }, { "start": 14576.01, "end": 14578.35, "probability": 0.1173 }, { "start": 14578.35, "end": 14578.35, "probability": 0.1691 }, { "start": 14578.35, "end": 14580.71, "probability": 0.844 }, { "start": 14580.71, "end": 14581.53, "probability": 0.6386 }, { "start": 14581.87, "end": 14583.7, "probability": 0.5744 }, { "start": 14584.21, "end": 14586.23, "probability": 0.9536 }, { "start": 14586.93, "end": 14588.29, "probability": 0.9151 }, { "start": 14588.91, "end": 14589.47, "probability": 0.4926 }, { "start": 14589.65, "end": 14590.91, "probability": 0.7227 }, { "start": 14591.27, "end": 14596.25, "probability": 0.9831 }, { "start": 14596.33, "end": 14599.67, "probability": 0.996 }, { "start": 14600.17, "end": 14600.69, "probability": 0.9325 }, { "start": 14600.75, "end": 14601.78, "probability": 0.8188 }, { "start": 14602.63, "end": 14604.85, "probability": 0.8662 }, { "start": 14605.55, "end": 14606.81, "probability": 0.5937 }, { "start": 14607.19, "end": 14608.33, "probability": 0.9747 }, { "start": 14608.93, "end": 14609.67, "probability": 0.8433 }, { "start": 14610.37, "end": 14611.95, "probability": 0.9883 }, { "start": 14612.35, "end": 14615.83, "probability": 0.9641 }, { "start": 14616.29, "end": 14618.41, "probability": 0.985 }, { "start": 14618.43, "end": 14619.93, "probability": 0.9917 }, { "start": 14620.05, "end": 14621.73, "probability": 0.7177 }, { "start": 14622.37, "end": 14624.95, "probability": 0.9633 }, { "start": 14625.03, "end": 14625.75, "probability": 0.8989 }, { "start": 14626.29, "end": 14629.83, "probability": 0.9983 }, { "start": 14630.29, "end": 14633.19, "probability": 0.9772 }, { "start": 14633.19, "end": 14634.25, "probability": 0.5993 }, { "start": 14634.59, "end": 14635.55, "probability": 0.8953 }, { "start": 14635.97, "end": 14636.99, "probability": 0.9815 }, { "start": 14637.29, "end": 14638.29, "probability": 0.9336 }, { "start": 14638.57, "end": 14639.43, "probability": 0.964 }, { "start": 14639.59, "end": 14641.85, "probability": 0.8896 }, { "start": 14642.21, "end": 14642.75, "probability": 0.8611 }, { "start": 14642.97, "end": 14644.91, "probability": 0.801 }, { "start": 14645.41, "end": 14645.67, "probability": 0.6145 }, { "start": 14647.45, "end": 14648.67, "probability": 0.9871 }, { "start": 14649.79, "end": 14651.13, "probability": 0.3416 }, { "start": 14651.19, "end": 14652.88, "probability": 0.7227 }, { "start": 14654.49, "end": 14656.31, "probability": 0.6628 }, { "start": 14656.83, "end": 14659.63, "probability": 0.5278 }, { "start": 14659.81, "end": 14660.63, "probability": 0.2909 }, { "start": 14660.85, "end": 14661.61, "probability": 0.7062 }, { "start": 14681.22, "end": 14683.39, "probability": 0.2768 }, { "start": 14683.71, "end": 14684.75, "probability": 0.0303 }, { "start": 14685.43, "end": 14689.11, "probability": 0.6633 }, { "start": 14690.39, "end": 14693.67, "probability": 0.0908 }, { "start": 14693.67, "end": 14694.73, "probability": 0.0108 }, { "start": 14698.67, "end": 14700.69, "probability": 0.0728 }, { "start": 14700.78, "end": 14702.65, "probability": 0.039 }, { "start": 14702.65, "end": 14703.51, "probability": 0.022 }, { "start": 14704.13, "end": 14706.83, "probability": 0.0597 }, { "start": 14709.05, "end": 14709.3, "probability": 0.0201 }, { "start": 14726.0, "end": 14726.0, "probability": 0.0 }, { "start": 14726.0, "end": 14726.0, "probability": 0.0 }, { "start": 14726.0, "end": 14726.0, "probability": 0.0 }, { "start": 14726.08, "end": 14726.3, "probability": 0.2602 }, { "start": 14726.42, "end": 14728.14, "probability": 0.7874 }, { "start": 14728.32, "end": 14730.11, "probability": 0.9497 }, { "start": 14730.86, "end": 14736.62, "probability": 0.9077 }, { "start": 14736.7, "end": 14739.86, "probability": 0.9961 }, { "start": 14740.28, "end": 14741.68, "probability": 0.8864 }, { "start": 14741.72, "end": 14742.32, "probability": 0.6727 }, { "start": 14742.42, "end": 14743.28, "probability": 0.9062 }, { "start": 14743.36, "end": 14743.82, "probability": 0.6235 }, { "start": 14743.92, "end": 14745.7, "probability": 0.9823 }, { "start": 14746.38, "end": 14750.02, "probability": 0.9836 }, { "start": 14750.64, "end": 14753.14, "probability": 0.9974 }, { "start": 14753.58, "end": 14759.3, "probability": 0.8721 }, { "start": 14759.92, "end": 14761.12, "probability": 0.6141 }, { "start": 14762.58, "end": 14768.04, "probability": 0.974 }, { "start": 14768.04, "end": 14773.16, "probability": 0.9952 }, { "start": 14773.16, "end": 14777.36, "probability": 0.9961 }, { "start": 14777.92, "end": 14786.06, "probability": 0.9758 }, { "start": 14787.52, "end": 14793.66, "probability": 0.9961 }, { "start": 14793.66, "end": 14800.4, "probability": 0.9984 }, { "start": 14801.22, "end": 14804.3, "probability": 0.9336 }, { "start": 14804.36, "end": 14808.08, "probability": 0.8735 }, { "start": 14808.76, "end": 14816.78, "probability": 0.9907 }, { "start": 14817.82, "end": 14819.4, "probability": 0.9777 }, { "start": 14820.22, "end": 14820.72, "probability": 0.7058 }, { "start": 14822.02, "end": 14823.42, "probability": 0.9767 }, { "start": 14823.48, "end": 14828.28, "probability": 0.8848 }, { "start": 14828.74, "end": 14830.88, "probability": 0.6726 }, { "start": 14830.96, "end": 14835.62, "probability": 0.9935 }, { "start": 14836.64, "end": 14838.08, "probability": 0.5205 }, { "start": 14838.6, "end": 14844.5, "probability": 0.9943 }, { "start": 14844.62, "end": 14845.48, "probability": 0.6711 }, { "start": 14845.58, "end": 14846.92, "probability": 0.7758 }, { "start": 14847.56, "end": 14848.7, "probability": 0.4938 }, { "start": 14849.36, "end": 14855.08, "probability": 0.996 }, { "start": 14856.28, "end": 14857.24, "probability": 0.7744 }, { "start": 14857.42, "end": 14862.7, "probability": 0.9964 }, { "start": 14863.12, "end": 14868.68, "probability": 0.9868 }, { "start": 14869.58, "end": 14873.96, "probability": 0.9971 }, { "start": 14874.6, "end": 14876.36, "probability": 0.9102 }, { "start": 14876.54, "end": 14877.7, "probability": 0.5951 }, { "start": 14878.2, "end": 14882.28, "probability": 0.9929 }, { "start": 14882.7, "end": 14884.26, "probability": 0.7514 }, { "start": 14884.92, "end": 14886.8, "probability": 0.0585 }, { "start": 14886.88, "end": 14887.08, "probability": 0.5663 }, { "start": 14887.36, "end": 14889.2, "probability": 0.8763 }, { "start": 14889.32, "end": 14891.32, "probability": 0.8426 }, { "start": 14891.72, "end": 14894.18, "probability": 0.9805 }, { "start": 14894.18, "end": 14896.3, "probability": 0.9966 }, { "start": 14896.8, "end": 14900.62, "probability": 0.973 }, { "start": 14900.96, "end": 14906.04, "probability": 0.9962 }, { "start": 14906.52, "end": 14907.86, "probability": 0.7469 }, { "start": 14908.48, "end": 14912.4, "probability": 0.9592 }, { "start": 14912.56, "end": 14913.18, "probability": 0.693 }, { "start": 14913.22, "end": 14915.74, "probability": 0.8769 }, { "start": 14916.4, "end": 14918.16, "probability": 0.7433 }, { "start": 14918.62, "end": 14921.5, "probability": 0.66 }, { "start": 14922.24, "end": 14923.91, "probability": 0.911 }, { "start": 14924.42, "end": 14925.82, "probability": 0.9232 }, { "start": 14925.88, "end": 14926.64, "probability": 0.7429 }, { "start": 14928.02, "end": 14929.94, "probability": 0.9132 }, { "start": 14930.86, "end": 14931.5, "probability": 0.6399 }, { "start": 14931.64, "end": 14932.64, "probability": 0.897 }, { "start": 14940.62, "end": 14941.04, "probability": 0.1631 }, { "start": 14941.04, "end": 14941.08, "probability": 0.1854 }, { "start": 14941.08, "end": 14941.08, "probability": 0.0786 }, { "start": 14963.94, "end": 14964.8, "probability": 0.2573 }, { "start": 14965.84, "end": 14968.12, "probability": 0.9948 }, { "start": 14969.78, "end": 14971.74, "probability": 0.9858 }, { "start": 14971.74, "end": 14974.2, "probability": 0.9945 }, { "start": 14974.9, "end": 14977.3, "probability": 0.9998 }, { "start": 14978.2, "end": 14979.18, "probability": 0.7277 }, { "start": 14979.8, "end": 14980.86, "probability": 0.9871 }, { "start": 14982.1, "end": 14984.6, "probability": 0.9969 }, { "start": 14984.6, "end": 14988.32, "probability": 0.9817 }, { "start": 14989.0, "end": 14992.7, "probability": 0.9942 }, { "start": 14993.8, "end": 14997.2, "probability": 0.8063 }, { "start": 14998.02, "end": 15000.04, "probability": 0.9978 }, { "start": 15000.7, "end": 15004.24, "probability": 0.9381 }, { "start": 15004.78, "end": 15007.16, "probability": 0.9953 }, { "start": 15008.02, "end": 15012.42, "probability": 0.9886 }, { "start": 15012.98, "end": 15015.88, "probability": 0.9964 }, { "start": 15017.14, "end": 15018.4, "probability": 0.7458 }, { "start": 15018.46, "end": 15022.96, "probability": 0.9972 }, { "start": 15022.96, "end": 15027.36, "probability": 0.9993 }, { "start": 15028.16, "end": 15032.87, "probability": 0.9811 }, { "start": 15033.62, "end": 15036.14, "probability": 0.9646 }, { "start": 15036.9, "end": 15039.68, "probability": 0.9937 }, { "start": 15040.28, "end": 15043.26, "probability": 0.9841 }, { "start": 15044.36, "end": 15046.78, "probability": 0.9834 }, { "start": 15046.78, "end": 15049.88, "probability": 0.9637 }, { "start": 15050.42, "end": 15051.66, "probability": 0.9201 }, { "start": 15051.74, "end": 15052.28, "probability": 0.7283 }, { "start": 15052.38, "end": 15053.42, "probability": 0.9072 }, { "start": 15053.84, "end": 15055.46, "probability": 0.92 }, { "start": 15055.56, "end": 15056.12, "probability": 0.5305 }, { "start": 15056.38, "end": 15056.96, "probability": 0.9263 }, { "start": 15057.48, "end": 15058.7, "probability": 0.633 }, { "start": 15059.74, "end": 15060.8, "probability": 0.8428 }, { "start": 15061.76, "end": 15064.68, "probability": 0.9724 }, { "start": 15065.2, "end": 15068.42, "probability": 0.9939 }, { "start": 15068.42, "end": 15072.84, "probability": 0.9891 }, { "start": 15073.04, "end": 15076.32, "probability": 0.6087 }, { "start": 15076.94, "end": 15080.42, "probability": 0.9872 }, { "start": 15081.48, "end": 15083.64, "probability": 0.8753 }, { "start": 15084.54, "end": 15086.96, "probability": 0.9951 }, { "start": 15087.56, "end": 15092.52, "probability": 0.9965 }, { "start": 15092.98, "end": 15093.34, "probability": 0.6728 }, { "start": 15094.08, "end": 15095.58, "probability": 0.8137 }, { "start": 15096.22, "end": 15097.58, "probability": 0.9292 }, { "start": 15098.2, "end": 15100.28, "probability": 0.9739 }, { "start": 15100.84, "end": 15101.76, "probability": 0.9409 }, { "start": 15102.38, "end": 15106.98, "probability": 0.8389 }, { "start": 15107.58, "end": 15111.04, "probability": 0.9711 }, { "start": 15112.0, "end": 15112.77, "probability": 0.6294 }, { "start": 15114.72, "end": 15118.96, "probability": 0.9976 }, { "start": 15118.96, "end": 15124.89, "probability": 0.9937 }, { "start": 15126.82, "end": 15128.16, "probability": 0.9883 }, { "start": 15129.22, "end": 15130.4, "probability": 0.9941 }, { "start": 15131.16, "end": 15134.08, "probability": 0.9993 }, { "start": 15134.08, "end": 15136.9, "probability": 0.9977 }, { "start": 15137.7, "end": 15142.3, "probability": 0.9955 }, { "start": 15142.3, "end": 15147.8, "probability": 0.9958 }, { "start": 15148.6, "end": 15151.16, "probability": 0.9967 }, { "start": 15151.82, "end": 15154.28, "probability": 0.9963 }, { "start": 15155.26, "end": 15160.6, "probability": 0.9905 }, { "start": 15161.04, "end": 15161.28, "probability": 0.6659 }, { "start": 15162.46, "end": 15164.4, "probability": 0.992 }, { "start": 15165.08, "end": 15166.34, "probability": 0.8754 }, { "start": 15167.16, "end": 15167.28, "probability": 0.8865 }, { "start": 15167.82, "end": 15168.1, "probability": 0.3441 }, { "start": 15168.1, "end": 15169.14, "probability": 0.7375 }, { "start": 15169.2, "end": 15169.62, "probability": 0.5226 }, { "start": 15169.84, "end": 15171.64, "probability": 0.8714 }, { "start": 15171.72, "end": 15172.24, "probability": 0.9024 }, { "start": 15172.96, "end": 15174.1, "probability": 0.9789 }, { "start": 15174.14, "end": 15174.74, "probability": 0.8214 }, { "start": 15174.84, "end": 15175.92, "probability": 0.9897 }, { "start": 15176.04, "end": 15176.6, "probability": 0.8024 }, { "start": 15177.56, "end": 15178.3, "probability": 0.4478 }, { "start": 15178.96, "end": 15179.54, "probability": 0.7046 }, { "start": 15180.24, "end": 15180.92, "probability": 0.4034 }, { "start": 15181.06, "end": 15182.88, "probability": 0.424 }, { "start": 15183.0, "end": 15183.78, "probability": 0.8829 }, { "start": 15183.9, "end": 15184.88, "probability": 0.8079 }, { "start": 15185.0, "end": 15185.58, "probability": 0.959 }, { "start": 15185.7, "end": 15186.36, "probability": 0.7633 }, { "start": 15186.46, "end": 15186.92, "probability": 0.8083 }, { "start": 15188.3, "end": 15190.2, "probability": 0.9829 }, { "start": 15191.78, "end": 15192.48, "probability": 0.9845 }, { "start": 15192.76, "end": 15193.26, "probability": 0.3996 }, { "start": 15193.42, "end": 15194.14, "probability": 0.9065 }, { "start": 15194.32, "end": 15194.78, "probability": 0.7476 }, { "start": 15195.46, "end": 15196.32, "probability": 0.9603 }, { "start": 15197.04, "end": 15199.18, "probability": 0.9556 }, { "start": 15199.84, "end": 15201.88, "probability": 0.8931 }, { "start": 15202.46, "end": 15204.36, "probability": 0.8407 }, { "start": 15204.88, "end": 15205.62, "probability": 0.3962 }, { "start": 15205.62, "end": 15205.62, "probability": 0.3196 }, { "start": 15205.62, "end": 15206.06, "probability": 0.5756 }, { "start": 15206.56, "end": 15207.22, "probability": 0.5101 }, { "start": 15207.36, "end": 15208.12, "probability": 0.9634 }, { "start": 15208.28, "end": 15208.76, "probability": 0.7767 }, { "start": 15209.82, "end": 15210.58, "probability": 0.6806 }, { "start": 15210.76, "end": 15211.82, "probability": 0.7663 }, { "start": 15211.98, "end": 15213.08, "probability": 0.6368 }, { "start": 15213.12, "end": 15213.38, "probability": 0.8804 }, { "start": 15214.28, "end": 15215.3, "probability": 0.8231 }, { "start": 15215.44, "end": 15216.02, "probability": 0.6809 }, { "start": 15216.14, "end": 15217.42, "probability": 0.9706 }, { "start": 15217.48, "end": 15218.2, "probability": 0.9145 }, { "start": 15219.04, "end": 15220.32, "probability": 0.9856 }, { "start": 15220.86, "end": 15224.24, "probability": 0.96 }, { "start": 15226.66, "end": 15229.92, "probability": 0.9825 }, { "start": 15230.76, "end": 15231.32, "probability": 0.5191 }, { "start": 15231.44, "end": 15232.2, "probability": 0.9795 }, { "start": 15232.32, "end": 15232.84, "probability": 0.4736 }, { "start": 15233.1, "end": 15233.72, "probability": 0.9038 }, { "start": 15234.02, "end": 15234.56, "probability": 0.8434 }, { "start": 15235.28, "end": 15237.26, "probability": 0.9645 }, { "start": 15237.86, "end": 15239.06, "probability": 0.9919 }, { "start": 15239.26, "end": 15243.12, "probability": 0.9177 }, { "start": 15243.12, "end": 15243.7, "probability": 0.3572 }, { "start": 15243.74, "end": 15243.94, "probability": 0.0258 }, { "start": 15243.94, "end": 15244.96, "probability": 0.7464 }, { "start": 15269.68, "end": 15270.28, "probability": 0.3488 }, { "start": 15272.46, "end": 15273.04, "probability": 0.4398 }, { "start": 15273.4, "end": 15274.32, "probability": 0.5194 }, { "start": 15275.16, "end": 15276.66, "probability": 0.6913 }, { "start": 15277.64, "end": 15281.12, "probability": 0.9785 }, { "start": 15281.12, "end": 15285.4, "probability": 0.995 }, { "start": 15286.24, "end": 15287.28, "probability": 0.5648 }, { "start": 15288.58, "end": 15291.74, "probability": 0.9927 }, { "start": 15292.88, "end": 15298.16, "probability": 0.9912 }, { "start": 15299.38, "end": 15302.3, "probability": 0.9231 }, { "start": 15303.1, "end": 15305.1, "probability": 0.9573 }, { "start": 15306.54, "end": 15310.04, "probability": 0.9889 }, { "start": 15310.96, "end": 15312.96, "probability": 0.9258 }, { "start": 15314.11, "end": 15317.76, "probability": 0.9047 }, { "start": 15318.44, "end": 15322.7, "probability": 0.9846 }, { "start": 15322.78, "end": 15324.74, "probability": 0.9989 }, { "start": 15325.48, "end": 15327.44, "probability": 0.9273 }, { "start": 15329.22, "end": 15336.24, "probability": 0.9857 }, { "start": 15338.06, "end": 15342.8, "probability": 0.7603 }, { "start": 15343.32, "end": 15344.16, "probability": 0.922 }, { "start": 15344.22, "end": 15345.74, "probability": 0.9667 }, { "start": 15346.1, "end": 15347.28, "probability": 0.9938 }, { "start": 15347.52, "end": 15348.26, "probability": 0.3779 }, { "start": 15348.96, "end": 15350.78, "probability": 0.8182 }, { "start": 15351.56, "end": 15355.86, "probability": 0.7911 }, { "start": 15358.14, "end": 15361.58, "probability": 0.9078 }, { "start": 15361.74, "end": 15363.1, "probability": 0.5829 }, { "start": 15363.64, "end": 15364.44, "probability": 0.9283 }, { "start": 15364.84, "end": 15365.42, "probability": 0.9478 }, { "start": 15366.24, "end": 15369.5, "probability": 0.9008 }, { "start": 15369.66, "end": 15370.56, "probability": 0.862 }, { "start": 15370.7, "end": 15371.48, "probability": 0.9024 }, { "start": 15371.54, "end": 15372.4, "probability": 0.941 }, { "start": 15373.92, "end": 15376.54, "probability": 0.9285 }, { "start": 15377.56, "end": 15381.23, "probability": 0.7754 }, { "start": 15383.1, "end": 15396.24, "probability": 0.9858 }, { "start": 15396.36, "end": 15398.1, "probability": 0.6927 }, { "start": 15399.2, "end": 15402.54, "probability": 0.7872 }, { "start": 15403.86, "end": 15407.48, "probability": 0.9966 }, { "start": 15407.66, "end": 15408.88, "probability": 0.8816 }, { "start": 15409.44, "end": 15411.3, "probability": 0.9373 }, { "start": 15412.42, "end": 15415.58, "probability": 0.9966 }, { "start": 15415.72, "end": 15418.32, "probability": 0.7011 }, { "start": 15419.02, "end": 15421.46, "probability": 0.9294 }, { "start": 15422.04, "end": 15424.6, "probability": 0.924 }, { "start": 15425.16, "end": 15427.44, "probability": 0.9929 }, { "start": 15427.5, "end": 15432.98, "probability": 0.9971 }, { "start": 15433.46, "end": 15434.46, "probability": 0.647 }, { "start": 15434.54, "end": 15438.16, "probability": 0.9968 }, { "start": 15446.06, "end": 15448.04, "probability": 0.5488 }, { "start": 15448.3, "end": 15449.7, "probability": 0.9441 }, { "start": 15450.16, "end": 15450.48, "probability": 0.0402 }, { "start": 15450.72, "end": 15451.68, "probability": 0.3902 }, { "start": 15452.14, "end": 15452.38, "probability": 0.8915 }, { "start": 15452.6, "end": 15455.06, "probability": 0.596 }, { "start": 15455.18, "end": 15456.68, "probability": 0.9306 }, { "start": 15457.2, "end": 15458.5, "probability": 0.9656 }, { "start": 15459.76, "end": 15463.0, "probability": 0.708 }, { "start": 15464.0, "end": 15465.58, "probability": 0.9863 }, { "start": 15466.28, "end": 15466.96, "probability": 0.8783 }, { "start": 15467.88, "end": 15469.2, "probability": 0.8955 }, { "start": 15469.8, "end": 15472.44, "probability": 0.9705 }, { "start": 15473.64, "end": 15474.36, "probability": 0.9888 }, { "start": 15475.46, "end": 15477.28, "probability": 0.7544 }, { "start": 15478.08, "end": 15478.68, "probability": 0.5393 }, { "start": 15483.82, "end": 15485.36, "probability": 0.8496 }, { "start": 15486.62, "end": 15486.96, "probability": 0.0368 }, { "start": 15486.96, "end": 15487.14, "probability": 0.1974 }, { "start": 15487.44, "end": 15490.06, "probability": 0.8285 }, { "start": 15490.6, "end": 15491.74, "probability": 0.8539 }, { "start": 15497.04, "end": 15501.16, "probability": 0.0261 }, { "start": 15507.42, "end": 15507.92, "probability": 0.0002 }, { "start": 15509.5, "end": 15509.5, "probability": 0.1211 }, { "start": 15509.5, "end": 15509.5, "probability": 0.1925 }, { "start": 15509.5, "end": 15509.5, "probability": 0.0757 }, { "start": 15509.5, "end": 15511.41, "probability": 0.626 }, { "start": 15514.06, "end": 15514.54, "probability": 0.6116 }, { "start": 15515.78, "end": 15517.54, "probability": 0.5401 }, { "start": 15518.14, "end": 15518.64, "probability": 0.5862 }, { "start": 15519.4, "end": 15520.06, "probability": 0.6896 }, { "start": 15520.72, "end": 15520.96, "probability": 0.9211 }, { "start": 15521.7, "end": 15522.22, "probability": 0.8591 }, { "start": 15522.78, "end": 15530.24, "probability": 0.9886 }, { "start": 15530.46, "end": 15530.88, "probability": 0.7383 }, { "start": 15533.72, "end": 15537.38, "probability": 0.7832 }, { "start": 15537.5, "end": 15541.36, "probability": 0.9399 }, { "start": 15541.38, "end": 15543.26, "probability": 0.3337 }, { "start": 15543.58, "end": 15544.22, "probability": 0.593 }, { "start": 15544.54, "end": 15545.86, "probability": 0.8495 }, { "start": 15546.42, "end": 15547.16, "probability": 0.552 }, { "start": 15547.28, "end": 15550.02, "probability": 0.9699 }, { "start": 15550.08, "end": 15550.7, "probability": 0.8271 }, { "start": 15550.82, "end": 15551.2, "probability": 0.8666 }, { "start": 15551.9, "end": 15553.22, "probability": 0.9857 }, { "start": 15554.08, "end": 15554.82, "probability": 0.2703 }, { "start": 15554.94, "end": 15555.5, "probability": 0.6137 }, { "start": 15555.6, "end": 15558.1, "probability": 0.9725 }, { "start": 15558.26, "end": 15560.88, "probability": 0.9792 }, { "start": 15561.3, "end": 15566.9, "probability": 0.716 }, { "start": 15566.98, "end": 15569.38, "probability": 0.9366 }, { "start": 15570.2, "end": 15572.36, "probability": 0.8841 }, { "start": 15572.36, "end": 15575.28, "probability": 0.9626 }, { "start": 15575.78, "end": 15578.16, "probability": 0.9948 }, { "start": 15578.4, "end": 15579.3, "probability": 0.2773 }, { "start": 15579.82, "end": 15583.56, "probability": 0.9936 }, { "start": 15583.64, "end": 15584.54, "probability": 0.8793 }, { "start": 15584.96, "end": 15587.9, "probability": 0.9744 }, { "start": 15588.54, "end": 15589.02, "probability": 0.4223 }, { "start": 15589.04, "end": 15590.34, "probability": 0.7391 }, { "start": 15590.42, "end": 15592.5, "probability": 0.9858 }, { "start": 15592.86, "end": 15593.84, "probability": 0.0966 }, { "start": 15593.94, "end": 15596.72, "probability": 0.8771 }, { "start": 15596.72, "end": 15599.2, "probability": 0.9847 }, { "start": 15599.28, "end": 15600.44, "probability": 0.8107 }, { "start": 15601.0, "end": 15603.62, "probability": 0.8254 }, { "start": 15604.02, "end": 15607.08, "probability": 0.9944 }, { "start": 15607.08, "end": 15610.36, "probability": 0.9893 }, { "start": 15611.18, "end": 15615.0, "probability": 0.993 }, { "start": 15615.0, "end": 15618.58, "probability": 0.9673 }, { "start": 15619.5, "end": 15621.64, "probability": 0.9955 }, { "start": 15621.64, "end": 15624.0, "probability": 0.9922 }, { "start": 15624.36, "end": 15625.8, "probability": 0.9912 }, { "start": 15625.88, "end": 15626.64, "probability": 0.7344 }, { "start": 15626.74, "end": 15629.2, "probability": 0.9604 }, { "start": 15629.84, "end": 15632.32, "probability": 0.9933 }, { "start": 15632.32, "end": 15636.02, "probability": 0.9989 }, { "start": 15636.04, "end": 15637.62, "probability": 0.9976 }, { "start": 15638.14, "end": 15639.68, "probability": 0.995 }, { "start": 15639.84, "end": 15640.06, "probability": 0.6235 }, { "start": 15640.12, "end": 15640.92, "probability": 0.8235 }, { "start": 15641.36, "end": 15643.16, "probability": 0.8843 }, { "start": 15643.16, "end": 15646.1, "probability": 0.9884 }, { "start": 15646.56, "end": 15648.02, "probability": 0.9704 }, { "start": 15648.18, "end": 15650.36, "probability": 0.9844 }, { "start": 15650.36, "end": 15653.5, "probability": 0.9937 }, { "start": 15654.16, "end": 15656.26, "probability": 0.9956 }, { "start": 15656.26, "end": 15658.04, "probability": 0.9649 }, { "start": 15658.2, "end": 15660.22, "probability": 0.7642 }, { "start": 15660.74, "end": 15662.18, "probability": 0.8021 }, { "start": 15662.74, "end": 15664.22, "probability": 0.7488 }, { "start": 15664.26, "end": 15665.96, "probability": 0.9881 }, { "start": 15665.96, "end": 15667.92, "probability": 0.9761 }, { "start": 15668.48, "end": 15668.94, "probability": 0.5504 }, { "start": 15669.0, "end": 15670.4, "probability": 0.953 }, { "start": 15670.48, "end": 15671.94, "probability": 0.7123 }, { "start": 15672.3, "end": 15673.88, "probability": 0.9493 }, { "start": 15677.34, "end": 15678.66, "probability": 0.5553 }, { "start": 15679.38, "end": 15682.66, "probability": 0.9012 }, { "start": 15683.66, "end": 15685.06, "probability": 0.9854 }, { "start": 15685.72, "end": 15687.42, "probability": 0.9465 }, { "start": 15687.56, "end": 15688.62, "probability": 0.974 }, { "start": 15688.84, "end": 15689.16, "probability": 0.822 }, { "start": 15690.83, "end": 15693.8, "probability": 0.8308 }, { "start": 15694.74, "end": 15695.94, "probability": 0.9564 }, { "start": 15696.24, "end": 15698.92, "probability": 0.606 }, { "start": 15698.92, "end": 15699.18, "probability": 0.3091 }, { "start": 15700.36, "end": 15701.4, "probability": 0.6195 }, { "start": 15701.4, "end": 15701.6, "probability": 0.6607 }, { "start": 15701.98, "end": 15703.94, "probability": 0.7866 }, { "start": 15705.4, "end": 15708.06, "probability": 0.6595 }, { "start": 15708.76, "end": 15710.18, "probability": 0.9612 }, { "start": 15710.34, "end": 15711.0, "probability": 0.8171 }, { "start": 15711.4, "end": 15713.44, "probability": 0.6338 }, { "start": 15714.18, "end": 15714.92, "probability": 0.7337 }, { "start": 15716.2, "end": 15717.56, "probability": 0.9684 }, { "start": 15717.82, "end": 15718.58, "probability": 0.864 }, { "start": 15718.74, "end": 15721.2, "probability": 0.9132 }, { "start": 15721.54, "end": 15723.04, "probability": 0.9964 }, { "start": 15723.38, "end": 15724.0, "probability": 0.9637 }, { "start": 15727.7, "end": 15728.82, "probability": 0.5306 }, { "start": 15728.82, "end": 15728.82, "probability": 0.5011 }, { "start": 15728.82, "end": 15729.73, "probability": 0.9079 }, { "start": 15729.96, "end": 15730.62, "probability": 0.8986 }, { "start": 15731.38, "end": 15732.76, "probability": 0.989 }, { "start": 15732.82, "end": 15733.48, "probability": 0.8939 }, { "start": 15733.94, "end": 15735.58, "probability": 0.9841 }, { "start": 15735.82, "end": 15736.46, "probability": 0.9453 }, { "start": 15737.36, "end": 15739.84, "probability": 0.7595 }, { "start": 15741.1, "end": 15743.54, "probability": 0.9481 }, { "start": 15744.54, "end": 15746.42, "probability": 0.966 }, { "start": 15746.42, "end": 15747.38, "probability": 0.9586 }, { "start": 15747.5, "end": 15749.2, "probability": 0.936 }, { "start": 15749.2, "end": 15749.88, "probability": 0.7452 }, { "start": 15750.1, "end": 15752.26, "probability": 0.8719 }, { "start": 15754.46, "end": 15755.68, "probability": 0.0299 }, { "start": 15757.76, "end": 15759.28, "probability": 0.243 }, { "start": 15785.48, "end": 15788.86, "probability": 0.5749 }, { "start": 15790.08, "end": 15791.08, "probability": 0.8613 }, { "start": 15792.92, "end": 15794.24, "probability": 0.9182 }, { "start": 15794.66, "end": 15795.69, "probability": 0.969 }, { "start": 15796.16, "end": 15796.4, "probability": 0.879 }, { "start": 15797.66, "end": 15805.04, "probability": 0.9938 }, { "start": 15806.2, "end": 15808.84, "probability": 0.893 }, { "start": 15809.5, "end": 15811.52, "probability": 0.9805 }, { "start": 15812.56, "end": 15817.68, "probability": 0.9464 }, { "start": 15817.68, "end": 15820.98, "probability": 0.9927 }, { "start": 15822.34, "end": 15827.92, "probability": 0.9995 }, { "start": 15828.8, "end": 15831.56, "probability": 0.9967 }, { "start": 15832.48, "end": 15834.0, "probability": 0.9828 }, { "start": 15834.18, "end": 15838.16, "probability": 0.9731 }, { "start": 15838.74, "end": 15840.62, "probability": 0.9915 }, { "start": 15841.28, "end": 15841.86, "probability": 0.9941 }, { "start": 15842.72, "end": 15846.23, "probability": 0.9897 }, { "start": 15846.96, "end": 15849.19, "probability": 0.8216 }, { "start": 15849.8, "end": 15853.12, "probability": 0.9425 }, { "start": 15854.06, "end": 15857.78, "probability": 0.9932 }, { "start": 15857.78, "end": 15860.92, "probability": 0.9991 }, { "start": 15860.98, "end": 15861.42, "probability": 0.5215 }, { "start": 15862.46, "end": 15866.22, "probability": 0.9959 }, { "start": 15866.22, "end": 15871.04, "probability": 0.9938 }, { "start": 15872.1, "end": 15875.36, "probability": 0.9646 }, { "start": 15875.36, "end": 15880.26, "probability": 0.9969 }, { "start": 15880.26, "end": 15884.04, "probability": 0.9972 }, { "start": 15884.76, "end": 15885.66, "probability": 0.8324 }, { "start": 15886.72, "end": 15890.18, "probability": 0.9786 }, { "start": 15890.72, "end": 15892.68, "probability": 0.909 }, { "start": 15893.28, "end": 15896.54, "probability": 0.9949 }, { "start": 15898.06, "end": 15901.72, "probability": 0.9909 }, { "start": 15902.26, "end": 15904.98, "probability": 0.9891 }, { "start": 15905.58, "end": 15908.96, "probability": 0.9912 }, { "start": 15910.04, "end": 15912.36, "probability": 0.9873 }, { "start": 15912.52, "end": 15918.84, "probability": 0.9912 }, { "start": 15919.36, "end": 15921.92, "probability": 0.9869 }, { "start": 15922.7, "end": 15923.12, "probability": 0.441 }, { "start": 15923.74, "end": 15927.12, "probability": 0.9682 }, { "start": 15927.64, "end": 15931.32, "probability": 0.9918 }, { "start": 15932.2, "end": 15935.26, "probability": 0.9855 }, { "start": 15936.12, "end": 15941.4, "probability": 0.74 }, { "start": 15942.04, "end": 15944.16, "probability": 0.962 }, { "start": 15944.7, "end": 15948.6, "probability": 0.9952 }, { "start": 15948.6, "end": 15953.48, "probability": 0.9881 }, { "start": 15953.56, "end": 15955.08, "probability": 0.8317 }, { "start": 15955.6, "end": 15956.14, "probability": 0.9908 }, { "start": 15956.98, "end": 15962.1, "probability": 0.9978 }, { "start": 15962.88, "end": 15967.3, "probability": 0.9963 }, { "start": 15968.04, "end": 15971.82, "probability": 0.9894 }, { "start": 15972.52, "end": 15976.24, "probability": 0.9978 }, { "start": 15976.24, "end": 15982.8, "probability": 0.9966 }, { "start": 15983.48, "end": 15986.7, "probability": 0.9982 }, { "start": 15987.22, "end": 15989.54, "probability": 0.7899 }, { "start": 15989.86, "end": 15990.14, "probability": 0.2618 }, { "start": 15990.14, "end": 15991.88, "probability": 0.8523 }, { "start": 15993.54, "end": 15997.0, "probability": 0.9932 }, { "start": 15997.16, "end": 15997.76, "probability": 0.8811 }, { "start": 16014.42, "end": 16014.52, "probability": 0.5983 }, { "start": 16015.06, "end": 16015.9, "probability": 0.9939 }, { "start": 16017.86, "end": 16018.68, "probability": 0.7092 }, { "start": 16020.1, "end": 16020.84, "probability": 0.7917 }, { "start": 16021.72, "end": 16022.66, "probability": 0.555 }, { "start": 16023.7, "end": 16025.3, "probability": 0.7939 }, { "start": 16026.08, "end": 16026.86, "probability": 0.9661 }, { "start": 16026.86, "end": 16030.5, "probability": 0.9089 }, { "start": 16031.88, "end": 16032.74, "probability": 0.0912 }, { "start": 16034.26, "end": 16036.5, "probability": 0.9293 }, { "start": 16037.4, "end": 16038.7, "probability": 0.9429 }, { "start": 16039.46, "end": 16039.86, "probability": 0.7236 }, { "start": 16042.4, "end": 16046.2, "probability": 0.8677 }, { "start": 16046.9, "end": 16049.08, "probability": 0.795 }, { "start": 16049.1, "end": 16050.74, "probability": 0.5056 }, { "start": 16050.96, "end": 16051.86, "probability": 0.9679 }, { "start": 16053.42, "end": 16056.6, "probability": 0.9183 }, { "start": 16057.8, "end": 16059.32, "probability": 0.9902 }, { "start": 16061.99, "end": 16066.34, "probability": 0.6172 }, { "start": 16067.7, "end": 16069.42, "probability": 0.9272 }, { "start": 16071.22, "end": 16078.92, "probability": 0.9921 }, { "start": 16079.7, "end": 16080.88, "probability": 0.962 }, { "start": 16081.78, "end": 16088.58, "probability": 0.984 }, { "start": 16089.78, "end": 16091.34, "probability": 0.8987 }, { "start": 16092.0, "end": 16095.52, "probability": 0.7677 }, { "start": 16096.44, "end": 16098.44, "probability": 0.6708 }, { "start": 16099.22, "end": 16101.92, "probability": 0.9092 }, { "start": 16102.58, "end": 16105.2, "probability": 0.926 }, { "start": 16107.0, "end": 16110.09, "probability": 0.9712 }, { "start": 16110.36, "end": 16112.58, "probability": 0.9142 }, { "start": 16113.24, "end": 16115.28, "probability": 0.9166 }, { "start": 16115.9, "end": 16120.84, "probability": 0.9896 }, { "start": 16121.02, "end": 16122.72, "probability": 0.5141 }, { "start": 16123.72, "end": 16125.92, "probability": 0.9228 }, { "start": 16126.83, "end": 16130.68, "probability": 0.7128 }, { "start": 16130.68, "end": 16134.14, "probability": 0.8569 }, { "start": 16134.6, "end": 16135.72, "probability": 0.8903 }, { "start": 16136.66, "end": 16141.24, "probability": 0.8867 }, { "start": 16142.66, "end": 16145.26, "probability": 0.9944 }, { "start": 16146.24, "end": 16149.52, "probability": 0.8541 }, { "start": 16149.58, "end": 16150.3, "probability": 0.9205 }, { "start": 16152.18, "end": 16156.56, "probability": 0.9897 }, { "start": 16156.62, "end": 16157.58, "probability": 0.5922 }, { "start": 16157.58, "end": 16158.04, "probability": 0.6729 }, { "start": 16158.44, "end": 16158.62, "probability": 0.8723 }, { "start": 16158.72, "end": 16160.24, "probability": 0.8186 }, { "start": 16160.5, "end": 16161.2, "probability": 0.793 }, { "start": 16162.68, "end": 16165.22, "probability": 0.7231 }, { "start": 16165.26, "end": 16166.46, "probability": 0.8579 }, { "start": 16166.74, "end": 16168.08, "probability": 0.8474 }, { "start": 16168.54, "end": 16171.02, "probability": 0.9952 }, { "start": 16171.9, "end": 16174.16, "probability": 0.9958 }, { "start": 16174.16, "end": 16177.62, "probability": 0.8726 }, { "start": 16178.12, "end": 16183.36, "probability": 0.9771 }, { "start": 16187.08, "end": 16188.12, "probability": 0.0186 }, { "start": 16188.72, "end": 16188.84, "probability": 0.2471 }, { "start": 16188.84, "end": 16188.9, "probability": 0.0589 }, { "start": 16188.9, "end": 16189.32, "probability": 0.924 }, { "start": 16191.88, "end": 16191.88, "probability": 0.3508 }, { "start": 16191.88, "end": 16192.18, "probability": 0.5007 }, { "start": 16192.42, "end": 16195.54, "probability": 0.6851 }, { "start": 16196.44, "end": 16196.56, "probability": 0.0309 }, { "start": 16197.82, "end": 16197.94, "probability": 0.2878 }, { "start": 16206.3, "end": 16206.4, "probability": 0.2969 }, { "start": 16206.4, "end": 16206.4, "probability": 0.2923 }, { "start": 16206.4, "end": 16206.4, "probability": 0.0207 }, { "start": 16206.4, "end": 16207.52, "probability": 0.6156 }, { "start": 16209.7, "end": 16211.36, "probability": 0.4767 }, { "start": 16211.36, "end": 16213.3, "probability": 0.6753 }, { "start": 16214.76, "end": 16215.52, "probability": 0.0804 }, { "start": 16215.52, "end": 16218.22, "probability": 0.8506 }, { "start": 16218.44, "end": 16222.4, "probability": 0.7362 }, { "start": 16222.5, "end": 16223.64, "probability": 0.9156 }, { "start": 16224.04, "end": 16225.58, "probability": 0.6261 }, { "start": 16225.68, "end": 16226.18, "probability": 0.725 }, { "start": 16227.32, "end": 16230.72, "probability": 0.9748 }, { "start": 16230.92, "end": 16231.5, "probability": 0.6672 }, { "start": 16231.56, "end": 16232.06, "probability": 0.5779 }, { "start": 16232.08, "end": 16232.96, "probability": 0.7272 }, { "start": 16233.48, "end": 16234.9, "probability": 0.4927 }, { "start": 16236.06, "end": 16237.6, "probability": 0.8369 }, { "start": 16237.64, "end": 16237.84, "probability": 0.6418 }, { "start": 16237.96, "end": 16238.26, "probability": 0.8603 }, { "start": 16238.62, "end": 16239.58, "probability": 0.7932 }, { "start": 16239.68, "end": 16240.88, "probability": 0.7534 }, { "start": 16241.04, "end": 16241.42, "probability": 0.8967 }, { "start": 16241.48, "end": 16243.02, "probability": 0.9707 }, { "start": 16243.56, "end": 16244.03, "probability": 0.8638 }, { "start": 16245.34, "end": 16245.76, "probability": 0.4904 }, { "start": 16246.42, "end": 16247.72, "probability": 0.9966 }, { "start": 16248.08, "end": 16249.02, "probability": 0.9966 }, { "start": 16249.82, "end": 16251.58, "probability": 0.9834 }, { "start": 16252.44, "end": 16253.76, "probability": 0.9371 }, { "start": 16253.8, "end": 16253.96, "probability": 0.7529 }, { "start": 16253.96, "end": 16255.26, "probability": 0.7636 }, { "start": 16255.32, "end": 16256.78, "probability": 0.9759 }, { "start": 16257.64, "end": 16258.9, "probability": 0.9839 }, { "start": 16259.0, "end": 16261.4, "probability": 0.6734 }, { "start": 16261.46, "end": 16262.32, "probability": 0.7821 }, { "start": 16262.44, "end": 16263.82, "probability": 0.8284 }, { "start": 16264.34, "end": 16265.9, "probability": 0.9431 }, { "start": 16266.24, "end": 16270.56, "probability": 0.9941 }, { "start": 16271.82, "end": 16274.44, "probability": 0.9958 }, { "start": 16274.48, "end": 16274.88, "probability": 0.7481 }, { "start": 16275.42, "end": 16277.52, "probability": 0.8141 }, { "start": 16277.68, "end": 16279.34, "probability": 0.9223 }, { "start": 16279.9, "end": 16282.66, "probability": 0.8636 }, { "start": 16283.52, "end": 16286.1, "probability": 0.9815 }, { "start": 16287.0, "end": 16288.22, "probability": 0.825 }, { "start": 16289.1, "end": 16289.72, "probability": 0.5492 }, { "start": 16291.16, "end": 16294.16, "probability": 0.9618 }, { "start": 16294.8, "end": 16296.36, "probability": 0.8889 }, { "start": 16297.52, "end": 16298.48, "probability": 0.8228 }, { "start": 16311.7, "end": 16313.12, "probability": 0.443 }, { "start": 16313.38, "end": 16315.24, "probability": 0.9209 }, { "start": 16315.92, "end": 16316.46, "probability": 0.7205 }, { "start": 16317.42, "end": 16318.72, "probability": 0.9704 }, { "start": 16319.62, "end": 16320.18, "probability": 0.6146 }, { "start": 16320.46, "end": 16323.38, "probability": 0.9795 }, { "start": 16324.2, "end": 16326.98, "probability": 0.745 }, { "start": 16327.08, "end": 16327.59, "probability": 0.7333 }, { "start": 16328.5, "end": 16329.82, "probability": 0.9512 }, { "start": 16329.96, "end": 16330.06, "probability": 0.5758 }, { "start": 16330.76, "end": 16331.16, "probability": 0.9341 }, { "start": 16332.34, "end": 16333.28, "probability": 0.8121 }, { "start": 16334.04, "end": 16334.72, "probability": 0.803 }, { "start": 16336.18, "end": 16338.24, "probability": 0.9755 }, { "start": 16339.38, "end": 16340.94, "probability": 0.6362 }, { "start": 16343.74, "end": 16343.84, "probability": 0.5714 }, { "start": 16343.84, "end": 16345.28, "probability": 0.7605 }, { "start": 16345.58, "end": 16348.96, "probability": 0.7365 }, { "start": 16349.88, "end": 16350.86, "probability": 0.9788 }, { "start": 16351.56, "end": 16351.56, "probability": 0.4759 }, { "start": 16352.32, "end": 16353.54, "probability": 0.9868 }, { "start": 16353.72, "end": 16356.1, "probability": 0.7764 }, { "start": 16356.22, "end": 16356.62, "probability": 0.8387 }, { "start": 16356.7, "end": 16358.36, "probability": 0.6418 }, { "start": 16358.52, "end": 16361.44, "probability": 0.0179 }, { "start": 16362.64, "end": 16363.02, "probability": 0.4925 }, { "start": 16369.24, "end": 16369.52, "probability": 0.7102 }, { "start": 16369.68, "end": 16370.8, "probability": 0.4133 }, { "start": 16370.98, "end": 16371.06, "probability": 0.4772 }, { "start": 16371.06, "end": 16372.02, "probability": 0.9361 }, { "start": 16372.06, "end": 16372.56, "probability": 0.6405 }, { "start": 16373.12, "end": 16375.16, "probability": 0.3295 }, { "start": 16376.52, "end": 16378.52, "probability": 0.8663 }, { "start": 16379.04, "end": 16381.72, "probability": 0.873 }, { "start": 16382.38, "end": 16383.8, "probability": 0.916 }, { "start": 16384.0, "end": 16384.34, "probability": 0.4669 }, { "start": 16384.4, "end": 16386.0, "probability": 0.9169 }, { "start": 16386.64, "end": 16389.82, "probability": 0.672 }, { "start": 16390.48, "end": 16395.74, "probability": 0.7983 }, { "start": 16395.86, "end": 16396.38, "probability": 0.9041 }, { "start": 16396.42, "end": 16396.86, "probability": 0.8244 }, { "start": 16397.42, "end": 16398.34, "probability": 0.9966 }, { "start": 16399.32, "end": 16400.3, "probability": 0.9746 }, { "start": 16400.9, "end": 16402.16, "probability": 0.9847 }, { "start": 16402.77, "end": 16404.06, "probability": 0.8789 }, { "start": 16404.56, "end": 16405.31, "probability": 0.7276 }, { "start": 16405.96, "end": 16407.24, "probability": 0.9949 }, { "start": 16407.58, "end": 16409.34, "probability": 0.9971 }, { "start": 16409.38, "end": 16410.56, "probability": 0.7362 }, { "start": 16411.62, "end": 16414.62, "probability": 0.9655 }, { "start": 16415.5, "end": 16418.22, "probability": 0.8041 }, { "start": 16418.74, "end": 16419.34, "probability": 0.7999 }, { "start": 16420.3, "end": 16420.48, "probability": 0.4005 }, { "start": 16420.52, "end": 16421.34, "probability": 0.9727 }, { "start": 16421.46, "end": 16422.22, "probability": 0.7138 }, { "start": 16422.3, "end": 16422.88, "probability": 0.8864 }, { "start": 16422.92, "end": 16424.28, "probability": 0.9946 }, { "start": 16425.28, "end": 16427.34, "probability": 0.9226 }, { "start": 16428.2, "end": 16428.52, "probability": 0.4227 }, { "start": 16428.64, "end": 16429.2, "probability": 0.8894 }, { "start": 16429.46, "end": 16430.41, "probability": 0.6517 }, { "start": 16430.62, "end": 16431.86, "probability": 0.9629 }, { "start": 16432.84, "end": 16434.52, "probability": 0.8144 }, { "start": 16434.94, "end": 16436.98, "probability": 0.9927 }, { "start": 16437.68, "end": 16438.54, "probability": 0.9839 }, { "start": 16438.76, "end": 16444.04, "probability": 0.6649 }, { "start": 16445.22, "end": 16445.64, "probability": 0.4862 }, { "start": 16445.98, "end": 16447.66, "probability": 0.6018 }, { "start": 16447.78, "end": 16448.98, "probability": 0.8072 }, { "start": 16449.28, "end": 16449.74, "probability": 0.6227 }, { "start": 16449.76, "end": 16450.66, "probability": 0.8259 }, { "start": 16450.72, "end": 16451.12, "probability": 0.7433 }, { "start": 16451.12, "end": 16454.18, "probability": 0.9456 }, { "start": 16454.94, "end": 16456.86, "probability": 0.0507 }, { "start": 16457.44, "end": 16458.86, "probability": 0.7349 }, { "start": 16458.96, "end": 16459.2, "probability": 0.6959 }, { "start": 16459.52, "end": 16462.72, "probability": 0.9893 }, { "start": 16462.78, "end": 16463.83, "probability": 0.932 }, { "start": 16463.92, "end": 16465.12, "probability": 0.8788 }, { "start": 16465.14, "end": 16467.1, "probability": 0.7388 }, { "start": 16467.52, "end": 16468.15, "probability": 0.7973 }, { "start": 16469.02, "end": 16469.84, "probability": 0.799 }, { "start": 16472.94, "end": 16473.42, "probability": 0.4998 }, { "start": 16473.46, "end": 16474.13, "probability": 0.0146 }, { "start": 16474.92, "end": 16475.66, "probability": 0.8243 }, { "start": 16475.78, "end": 16478.72, "probability": 0.7561 }, { "start": 16479.94, "end": 16481.5, "probability": 0.6653 }, { "start": 16482.22, "end": 16483.72, "probability": 0.9404 }, { "start": 16484.1, "end": 16484.88, "probability": 0.208 }, { "start": 16485.08, "end": 16485.78, "probability": 0.8831 }, { "start": 16486.04, "end": 16487.04, "probability": 0.855 }, { "start": 16487.14, "end": 16488.4, "probability": 0.7064 }, { "start": 16488.5, "end": 16488.78, "probability": 0.8779 }, { "start": 16488.84, "end": 16489.95, "probability": 0.6071 }, { "start": 16490.3, "end": 16492.22, "probability": 0.8006 }, { "start": 16492.34, "end": 16492.52, "probability": 0.0044 }, { "start": 16492.52, "end": 16493.98, "probability": 0.2169 }, { "start": 16493.98, "end": 16494.84, "probability": 0.4821 }, { "start": 16494.84, "end": 16496.38, "probability": 0.9204 }, { "start": 16496.52, "end": 16497.46, "probability": 0.9664 }, { "start": 16498.22, "end": 16498.62, "probability": 0.784 }, { "start": 16498.7, "end": 16501.74, "probability": 0.8135 }, { "start": 16501.8, "end": 16502.4, "probability": 0.5262 }, { "start": 16502.4, "end": 16503.44, "probability": 0.7463 }, { "start": 16503.6, "end": 16504.46, "probability": 0.6437 }, { "start": 16504.54, "end": 16506.0, "probability": 0.6822 }, { "start": 16510.52, "end": 16512.88, "probability": 0.24 }, { "start": 16513.6, "end": 16517.32, "probability": 0.9585 }, { "start": 16517.38, "end": 16518.59, "probability": 0.7585 }, { "start": 16519.14, "end": 16520.02, "probability": 0.3481 }, { "start": 16520.02, "end": 16520.94, "probability": 0.6565 }, { "start": 16521.16, "end": 16522.2, "probability": 0.5543 }, { "start": 16522.24, "end": 16523.06, "probability": 0.793 }, { "start": 16523.08, "end": 16523.8, "probability": 0.8802 }, { "start": 16523.88, "end": 16524.5, "probability": 0.8373 }, { "start": 16524.9, "end": 16525.38, "probability": 0.9102 }, { "start": 16526.4, "end": 16528.48, "probability": 0.7186 }, { "start": 16528.54, "end": 16530.46, "probability": 0.9323 }, { "start": 16532.78, "end": 16536.36, "probability": 0.5205 }, { "start": 16536.52, "end": 16537.2, "probability": 0.6039 }, { "start": 16537.48, "end": 16538.1, "probability": 0.6127 }, { "start": 16538.1, "end": 16538.1, "probability": 0.9016 }, { "start": 16538.1, "end": 16538.64, "probability": 0.9288 }, { "start": 16539.5, "end": 16540.2, "probability": 0.9617 }, { "start": 16541.22, "end": 16544.16, "probability": 0.9389 }, { "start": 16561.36, "end": 16564.4, "probability": 0.5891 }, { "start": 16565.66, "end": 16566.54, "probability": 0.1762 }, { "start": 16566.7, "end": 16567.64, "probability": 0.6833 }, { "start": 16567.78, "end": 16569.06, "probability": 0.2256 }, { "start": 16569.34, "end": 16569.72, "probability": 0.5174 }, { "start": 16569.72, "end": 16574.6, "probability": 0.9453 }, { "start": 16576.28, "end": 16577.76, "probability": 0.9753 }, { "start": 16577.92, "end": 16580.64, "probability": 0.9949 }, { "start": 16581.6, "end": 16585.08, "probability": 0.7922 }, { "start": 16585.82, "end": 16589.52, "probability": 0.9929 }, { "start": 16590.12, "end": 16594.84, "probability": 0.9417 }, { "start": 16595.68, "end": 16598.48, "probability": 0.8648 }, { "start": 16598.88, "end": 16600.44, "probability": 0.9277 }, { "start": 16601.26, "end": 16602.06, "probability": 0.9954 }, { "start": 16602.9, "end": 16604.98, "probability": 0.5371 }, { "start": 16605.0, "end": 16607.72, "probability": 0.982 }, { "start": 16612.25, "end": 16614.14, "probability": 0.7508 }, { "start": 16614.42, "end": 16616.78, "probability": 0.8068 }, { "start": 16641.8, "end": 16645.24, "probability": 0.9843 }, { "start": 16645.24, "end": 16645.74, "probability": 0.4892 }, { "start": 16645.9, "end": 16647.9, "probability": 0.8197 }, { "start": 16647.92, "end": 16651.42, "probability": 0.5285 }, { "start": 16652.18, "end": 16657.14, "probability": 0.2747 }, { "start": 16667.56, "end": 16668.74, "probability": 0.5417 }, { "start": 16670.02, "end": 16671.86, "probability": 0.1581 }, { "start": 16672.4, "end": 16674.1, "probability": 0.9355 }, { "start": 16685.04, "end": 16685.84, "probability": 0.4371 }, { "start": 16685.86, "end": 16687.44, "probability": 0.349 }, { "start": 16687.44, "end": 16688.36, "probability": 0.7917 }, { "start": 16688.44, "end": 16690.1, "probability": 0.7592 }, { "start": 16690.43, "end": 16692.67, "probability": 0.0893 }, { "start": 16698.6, "end": 16703.0, "probability": 0.9932 }, { "start": 16705.16, "end": 16710.76, "probability": 0.9714 }, { "start": 16710.82, "end": 16711.82, "probability": 0.3188 }, { "start": 16712.84, "end": 16715.7, "probability": 0.7844 }, { "start": 16716.38, "end": 16718.77, "probability": 0.9429 }, { "start": 16720.3, "end": 16720.56, "probability": 0.8022 }, { "start": 16721.84, "end": 16725.7, "probability": 0.9253 }, { "start": 16725.9, "end": 16727.48, "probability": 0.9691 }, { "start": 16727.54, "end": 16730.5, "probability": 0.9943 }, { "start": 16731.82, "end": 16734.18, "probability": 0.983 }, { "start": 16735.0, "end": 16737.8, "probability": 0.9972 }, { "start": 16737.8, "end": 16741.76, "probability": 0.9989 }, { "start": 16741.88, "end": 16742.98, "probability": 0.6876 }, { "start": 16744.02, "end": 16748.6, "probability": 0.9976 }, { "start": 16749.76, "end": 16753.14, "probability": 0.9961 }, { "start": 16753.74, "end": 16755.14, "probability": 0.8879 }, { "start": 16755.22, "end": 16756.8, "probability": 0.865 }, { "start": 16756.9, "end": 16760.76, "probability": 0.9607 }, { "start": 16761.64, "end": 16764.12, "probability": 0.9731 }, { "start": 16765.36, "end": 16765.66, "probability": 0.8787 }, { "start": 16766.54, "end": 16768.64, "probability": 0.9045 }, { "start": 16769.28, "end": 16771.48, "probability": 0.8623 }, { "start": 16773.02, "end": 16775.48, "probability": 0.5933 }, { "start": 16776.38, "end": 16778.88, "probability": 0.8451 }, { "start": 16782.3, "end": 16785.6, "probability": 0.7646 }, { "start": 16786.24, "end": 16788.66, "probability": 0.999 }, { "start": 16790.4, "end": 16792.46, "probability": 0.8392 }, { "start": 16793.64, "end": 16797.06, "probability": 0.8446 }, { "start": 16798.24, "end": 16800.62, "probability": 0.8906 }, { "start": 16801.5, "end": 16802.42, "probability": 0.8716 }, { "start": 16803.56, "end": 16804.72, "probability": 0.9593 }, { "start": 16805.22, "end": 16806.14, "probability": 0.9227 }, { "start": 16806.18, "end": 16808.6, "probability": 0.9854 }, { "start": 16809.3, "end": 16811.17, "probability": 0.974 }, { "start": 16812.09, "end": 16815.76, "probability": 0.9604 }, { "start": 16816.8, "end": 16819.18, "probability": 0.998 }, { "start": 16819.48, "end": 16822.01, "probability": 0.9971 }, { "start": 16823.42, "end": 16824.98, "probability": 0.8359 }, { "start": 16825.44, "end": 16826.06, "probability": 0.5982 }, { "start": 16826.2, "end": 16833.14, "probability": 0.9815 }, { "start": 16834.1, "end": 16840.98, "probability": 0.9881 }, { "start": 16842.62, "end": 16844.46, "probability": 0.8309 }, { "start": 16845.18, "end": 16847.5, "probability": 0.9921 }, { "start": 16848.3, "end": 16852.92, "probability": 0.9952 }, { "start": 16853.42, "end": 16853.98, "probability": 0.4435 }, { "start": 16854.2, "end": 16857.36, "probability": 0.7987 }, { "start": 16857.76, "end": 16858.94, "probability": 0.804 }, { "start": 16859.12, "end": 16860.79, "probability": 0.9854 }, { "start": 16861.76, "end": 16862.66, "probability": 0.971 }, { "start": 16864.38, "end": 16865.58, "probability": 0.9877 }, { "start": 16866.76, "end": 16868.89, "probability": 0.9971 }, { "start": 16869.82, "end": 16872.04, "probability": 0.5055 }, { "start": 16872.08, "end": 16872.08, "probability": 0.1055 }, { "start": 16872.14, "end": 16873.06, "probability": 0.902 }, { "start": 16873.18, "end": 16875.03, "probability": 0.9951 }, { "start": 16875.5, "end": 16878.16, "probability": 0.9953 }, { "start": 16878.9, "end": 16882.2, "probability": 0.9255 }, { "start": 16882.88, "end": 16890.6, "probability": 0.9639 }, { "start": 16891.7, "end": 16892.7, "probability": 0.8668 }, { "start": 16893.04, "end": 16896.4, "probability": 0.9746 }, { "start": 16896.68, "end": 16899.46, "probability": 0.9847 }, { "start": 16900.44, "end": 16903.22, "probability": 0.949 }, { "start": 16903.68, "end": 16904.46, "probability": 0.9753 }, { "start": 16904.8, "end": 16905.32, "probability": 0.8262 }, { "start": 16905.76, "end": 16906.44, "probability": 0.9753 }, { "start": 16906.82, "end": 16907.64, "probability": 0.9655 }, { "start": 16907.88, "end": 16908.62, "probability": 0.9067 }, { "start": 16908.66, "end": 16909.38, "probability": 0.7456 }, { "start": 16909.66, "end": 16910.39, "probability": 0.9019 }, { "start": 16911.36, "end": 16914.9, "probability": 0.9762 }, { "start": 16914.9, "end": 16916.66, "probability": 0.3933 }, { "start": 16918.1, "end": 16918.26, "probability": 0.0979 }, { "start": 16918.26, "end": 16918.96, "probability": 0.5965 }, { "start": 16919.48, "end": 16919.9, "probability": 0.345 }, { "start": 16919.92, "end": 16920.4, "probability": 0.6826 }, { "start": 16920.82, "end": 16921.2, "probability": 0.6609 }, { "start": 16921.2, "end": 16921.72, "probability": 0.7671 }, { "start": 16922.08, "end": 16922.52, "probability": 0.6191 }, { "start": 16922.52, "end": 16923.0, "probability": 0.7891 }, { "start": 16923.2, "end": 16923.62, "probability": 0.6303 }, { "start": 16923.62, "end": 16924.16, "probability": 0.8294 }, { "start": 16924.72, "end": 16927.02, "probability": 0.959 }, { "start": 16927.54, "end": 16930.58, "probability": 0.9907 }, { "start": 16931.52, "end": 16934.4, "probability": 0.9976 }, { "start": 16934.56, "end": 16936.58, "probability": 0.9421 }, { "start": 16937.12, "end": 16939.9, "probability": 0.8528 }, { "start": 16939.98, "end": 16941.76, "probability": 0.7175 }, { "start": 16941.86, "end": 16943.52, "probability": 0.9498 }, { "start": 16945.48, "end": 16947.1, "probability": 0.9894 }, { "start": 16947.98, "end": 16951.84, "probability": 0.7815 }, { "start": 16952.56, "end": 16953.36, "probability": 0.7272 }, { "start": 16954.2, "end": 16957.56, "probability": 0.9756 }, { "start": 16958.34, "end": 16959.68, "probability": 0.9832 }, { "start": 16959.72, "end": 16960.42, "probability": 0.981 }, { "start": 16960.66, "end": 16962.2, "probability": 0.9884 }, { "start": 16963.02, "end": 16964.86, "probability": 0.7302 }, { "start": 16965.22, "end": 16967.42, "probability": 0.9436 }, { "start": 16968.18, "end": 16968.74, "probability": 0.6956 }, { "start": 16983.56, "end": 16983.72, "probability": 0.0422 }, { "start": 16983.72, "end": 16985.78, "probability": 0.6211 }, { "start": 16985.88, "end": 16986.64, "probability": 0.7014 }, { "start": 16986.66, "end": 16987.24, "probability": 0.8737 }, { "start": 16987.38, "end": 16989.89, "probability": 0.9975 }, { "start": 16991.72, "end": 16994.24, "probability": 0.777 }, { "start": 16994.83, "end": 16995.9, "probability": 0.9033 }, { "start": 16996.04, "end": 16996.92, "probability": 0.6577 }, { "start": 16996.96, "end": 17001.36, "probability": 0.9834 }, { "start": 17001.44, "end": 17003.92, "probability": 0.9468 }, { "start": 17004.44, "end": 17006.58, "probability": 0.9821 }, { "start": 17006.94, "end": 17008.72, "probability": 0.8209 }, { "start": 17009.32, "end": 17013.7, "probability": 0.9908 }, { "start": 17013.74, "end": 17015.56, "probability": 0.9438 }, { "start": 17016.28, "end": 17018.36, "probability": 0.7535 }, { "start": 17018.84, "end": 17020.78, "probability": 0.9548 }, { "start": 17020.84, "end": 17021.46, "probability": 0.4327 }, { "start": 17021.46, "end": 17021.81, "probability": 0.3101 }, { "start": 17022.12, "end": 17022.5, "probability": 0.8174 }, { "start": 17026.3, "end": 17028.74, "probability": 0.9233 }, { "start": 17029.74, "end": 17030.38, "probability": 0.9519 }, { "start": 17061.09, "end": 17063.02, "probability": 0.2425 }, { "start": 17063.64, "end": 17068.36, "probability": 0.0192 }, { "start": 17068.62, "end": 17068.82, "probability": 0.1918 }, { "start": 17068.82, "end": 17070.16, "probability": 0.2555 }, { "start": 17071.12, "end": 17074.62, "probability": 0.1586 }, { "start": 17081.01, "end": 17082.62, "probability": 0.0905 }, { "start": 17082.86, "end": 17087.16, "probability": 0.0596 }, { "start": 17087.16, "end": 17088.2, "probability": 0.0688 }, { "start": 17090.22, "end": 17092.68, "probability": 0.2439 }, { "start": 17093.92, "end": 17094.22, "probability": 0.3036 }, { "start": 17124.0, "end": 17124.0, "probability": 0.0 }, { "start": 17124.0, "end": 17124.0, "probability": 0.0 }, { "start": 17124.0, "end": 17124.0, "probability": 0.0 }, { "start": 17124.0, "end": 17124.0, "probability": 0.0 }, { "start": 17124.0, "end": 17124.0, "probability": 0.0 }, { "start": 17124.0, "end": 17124.0, "probability": 0.0 }, { "start": 17124.0, "end": 17124.0, "probability": 0.0 }, { "start": 17124.0, "end": 17124.0, "probability": 0.0 }, { "start": 17124.0, "end": 17124.0, "probability": 0.0 }, { "start": 17124.0, "end": 17124.0, "probability": 0.0 }, { "start": 17124.0, "end": 17124.0, "probability": 0.0 }, { "start": 17124.0, "end": 17124.0, "probability": 0.0 }, { "start": 17124.0, "end": 17124.0, "probability": 0.0 }, { "start": 17124.0, "end": 17124.0, "probability": 0.0 }, { "start": 17124.0, "end": 17124.0, "probability": 0.0 }, { "start": 17127.58, "end": 17129.98, "probability": 0.7085 }, { "start": 17130.24, "end": 17130.94, "probability": 0.6696 }, { "start": 17131.72, "end": 17132.92, "probability": 0.1236 }, { "start": 17135.7, "end": 17137.3, "probability": 0.5208 }, { "start": 17138.86, "end": 17143.44, "probability": 0.9901 }, { "start": 17143.44, "end": 17147.34, "probability": 0.68 }, { "start": 17148.76, "end": 17149.28, "probability": 0.1914 }, { "start": 17150.4, "end": 17151.24, "probability": 0.82 }, { "start": 17151.82, "end": 17155.92, "probability": 0.979 }, { "start": 17156.94, "end": 17159.4, "probability": 0.9945 }, { "start": 17159.98, "end": 17164.92, "probability": 0.9552 }, { "start": 17164.92, "end": 17168.58, "probability": 0.9963 }, { "start": 17169.98, "end": 17174.22, "probability": 0.9706 }, { "start": 17174.82, "end": 17177.44, "probability": 0.9615 }, { "start": 17177.92, "end": 17180.34, "probability": 0.9939 }, { "start": 17181.1, "end": 17184.08, "probability": 0.8555 }, { "start": 17184.68, "end": 17189.4, "probability": 0.9852 }, { "start": 17190.08, "end": 17190.46, "probability": 0.6597 }, { "start": 17192.28, "end": 17193.7, "probability": 0.7366 }, { "start": 17194.34, "end": 17195.78, "probability": 0.7395 }, { "start": 17196.34, "end": 17198.88, "probability": 0.7937 }, { "start": 17199.48, "end": 17205.4, "probability": 0.9791 }, { "start": 17205.4, "end": 17210.64, "probability": 0.9906 }, { "start": 17211.62, "end": 17213.0, "probability": 0.8802 }, { "start": 17213.36, "end": 17217.82, "probability": 0.9236 }, { "start": 17218.56, "end": 17220.2, "probability": 0.8665 }, { "start": 17221.82, "end": 17223.48, "probability": 0.923 }, { "start": 17224.2, "end": 17225.92, "probability": 0.927 }, { "start": 17226.16, "end": 17229.46, "probability": 0.9529 }, { "start": 17231.08, "end": 17232.84, "probability": 0.9989 }, { "start": 17233.62, "end": 17234.6, "probability": 0.8728 }, { "start": 17235.8, "end": 17236.48, "probability": 0.7972 }, { "start": 17237.16, "end": 17241.58, "probability": 0.9531 }, { "start": 17242.44, "end": 17244.98, "probability": 0.9976 }, { "start": 17245.54, "end": 17247.32, "probability": 0.8291 }, { "start": 17248.22, "end": 17249.22, "probability": 0.7381 }, { "start": 17249.92, "end": 17253.18, "probability": 0.9186 }, { "start": 17254.14, "end": 17255.14, "probability": 0.9448 }, { "start": 17255.64, "end": 17256.72, "probability": 0.9619 }, { "start": 17257.18, "end": 17258.2, "probability": 0.958 }, { "start": 17258.54, "end": 17260.86, "probability": 0.994 }, { "start": 17262.2, "end": 17267.52, "probability": 0.983 }, { "start": 17268.02, "end": 17269.42, "probability": 0.9755 }, { "start": 17270.12, "end": 17272.94, "probability": 0.9846 }, { "start": 17273.56, "end": 17278.84, "probability": 0.9271 }, { "start": 17279.36, "end": 17281.3, "probability": 0.9839 }, { "start": 17281.82, "end": 17284.76, "probability": 0.961 }, { "start": 17285.34, "end": 17287.2, "probability": 0.9807 }, { "start": 17288.42, "end": 17288.68, "probability": 0.6362 }, { "start": 17288.92, "end": 17289.66, "probability": 0.9708 }, { "start": 17290.14, "end": 17296.06, "probability": 0.9536 }, { "start": 17296.06, "end": 17300.64, "probability": 0.9732 }, { "start": 17301.2, "end": 17302.98, "probability": 0.967 }, { "start": 17303.72, "end": 17306.1, "probability": 0.9962 }, { "start": 17307.24, "end": 17308.46, "probability": 0.8002 }, { "start": 17309.36, "end": 17311.2, "probability": 0.8445 }, { "start": 17312.24, "end": 17313.58, "probability": 0.9199 }, { "start": 17314.3, "end": 17320.7, "probability": 0.9717 }, { "start": 17321.58, "end": 17328.38, "probability": 0.9956 }, { "start": 17328.9, "end": 17331.88, "probability": 0.9692 }, { "start": 17332.88, "end": 17334.14, "probability": 0.803 }, { "start": 17335.19, "end": 17340.84, "probability": 0.939 }, { "start": 17341.92, "end": 17345.72, "probability": 0.9821 }, { "start": 17349.48, "end": 17352.9, "probability": 0.518 }, { "start": 17355.12, "end": 17357.3, "probability": 0.8145 }, { "start": 17358.04, "end": 17359.16, "probability": 0.7642 }, { "start": 17359.86, "end": 17362.14, "probability": 0.9861 }, { "start": 17362.8, "end": 17367.5, "probability": 0.993 }, { "start": 17368.04, "end": 17370.14, "probability": 0.957 }, { "start": 17370.92, "end": 17372.02, "probability": 0.4267 }, { "start": 17372.58, "end": 17374.6, "probability": 0.952 }, { "start": 17375.22, "end": 17378.33, "probability": 0.974 }, { "start": 17379.22, "end": 17380.32, "probability": 0.748 }, { "start": 17380.92, "end": 17382.53, "probability": 0.9739 }, { "start": 17383.22, "end": 17386.82, "probability": 0.9445 }, { "start": 17387.7, "end": 17388.84, "probability": 0.9465 }, { "start": 17389.68, "end": 17392.1, "probability": 0.9944 }, { "start": 17392.66, "end": 17396.0, "probability": 0.9869 }, { "start": 17396.38, "end": 17401.0, "probability": 0.9943 }, { "start": 17401.98, "end": 17406.0, "probability": 0.994 }, { "start": 17406.38, "end": 17412.22, "probability": 0.7504 }, { "start": 17412.7, "end": 17416.72, "probability": 0.988 }, { "start": 17417.08, "end": 17417.92, "probability": 0.8251 }, { "start": 17418.42, "end": 17421.04, "probability": 0.7688 }, { "start": 17421.7, "end": 17424.3, "probability": 0.9235 }, { "start": 17424.7, "end": 17425.22, "probability": 0.4084 }, { "start": 17425.28, "end": 17426.42, "probability": 0.7441 }, { "start": 17427.02, "end": 17429.34, "probability": 0.945 }, { "start": 17429.68, "end": 17434.82, "probability": 0.9524 }, { "start": 17435.36, "end": 17435.76, "probability": 0.788 }, { "start": 17435.92, "end": 17438.02, "probability": 0.7444 }, { "start": 17439.6, "end": 17440.02, "probability": 0.4753 }, { "start": 17462.7, "end": 17466.0, "probability": 0.5917 }, { "start": 17466.46, "end": 17469.64, "probability": 0.8634 }, { "start": 17469.64, "end": 17471.58, "probability": 0.4983 }, { "start": 17471.58, "end": 17473.54, "probability": 0.4292 }, { "start": 17475.24, "end": 17476.34, "probability": 0.0383 }, { "start": 17481.44, "end": 17483.12, "probability": 0.2229 }, { "start": 17498.74, "end": 17498.74, "probability": 0.0421 }, { "start": 17498.74, "end": 17498.74, "probability": 0.0128 }, { "start": 17520.78, "end": 17525.86, "probability": 0.8979 }, { "start": 17526.02, "end": 17527.14, "probability": 0.9954 }, { "start": 17528.26, "end": 17529.98, "probability": 0.7532 }, { "start": 17530.06, "end": 17531.56, "probability": 0.8513 }, { "start": 17531.56, "end": 17533.94, "probability": 0.9844 }, { "start": 17534.24, "end": 17537.82, "probability": 0.9167 }, { "start": 17537.82, "end": 17542.06, "probability": 0.9983 }, { "start": 17543.04, "end": 17546.9, "probability": 0.9977 }, { "start": 17548.82, "end": 17553.14, "probability": 0.9987 }, { "start": 17554.4, "end": 17558.84, "probability": 0.998 }, { "start": 17558.84, "end": 17565.84, "probability": 0.9994 }, { "start": 17566.86, "end": 17568.32, "probability": 0.9561 }, { "start": 17569.58, "end": 17575.34, "probability": 0.9967 }, { "start": 17575.34, "end": 17581.24, "probability": 0.9943 }, { "start": 17581.76, "end": 17583.48, "probability": 0.9766 }, { "start": 17584.24, "end": 17586.02, "probability": 0.9587 }, { "start": 17587.16, "end": 17587.6, "probability": 0.648 }, { "start": 17588.4, "end": 17590.08, "probability": 0.9506 }, { "start": 17590.14, "end": 17593.54, "probability": 0.9666 }, { "start": 17593.54, "end": 17597.84, "probability": 0.995 }, { "start": 17598.52, "end": 17601.32, "probability": 0.997 }, { "start": 17601.32, "end": 17604.6, "probability": 0.9952 }, { "start": 17605.68, "end": 17612.36, "probability": 0.9976 }, { "start": 17613.3, "end": 17616.64, "probability": 0.9982 }, { "start": 17617.4, "end": 17621.84, "probability": 0.998 }, { "start": 17621.84, "end": 17625.88, "probability": 0.9159 }, { "start": 17626.56, "end": 17628.48, "probability": 0.8997 }, { "start": 17629.2, "end": 17629.94, "probability": 0.9224 }, { "start": 17631.58, "end": 17632.98, "probability": 0.8841 }, { "start": 17633.5, "end": 17634.66, "probability": 0.9193 }, { "start": 17635.54, "end": 17636.86, "probability": 0.8292 }, { "start": 17636.96, "end": 17639.04, "probability": 0.9861 }, { "start": 17639.54, "end": 17640.92, "probability": 0.9642 }, { "start": 17641.06, "end": 17641.92, "probability": 0.7541 }, { "start": 17642.76, "end": 17649.44, "probability": 0.9732 }, { "start": 17650.66, "end": 17650.66, "probability": 0.0086 }, { "start": 17650.74, "end": 17650.74, "probability": 0.0994 }, { "start": 17650.74, "end": 17650.74, "probability": 0.0957 }, { "start": 17650.74, "end": 17658.2, "probability": 0.9833 }, { "start": 17658.8, "end": 17662.14, "probability": 0.9844 }, { "start": 17662.86, "end": 17663.06, "probability": 0.2218 }, { "start": 17663.06, "end": 17665.0, "probability": 0.9677 }, { "start": 17666.68, "end": 17667.78, "probability": 0.9395 }, { "start": 17668.5, "end": 17670.76, "probability": 0.981 }, { "start": 17671.54, "end": 17673.34, "probability": 0.9525 }, { "start": 17673.78, "end": 17679.88, "probability": 0.9803 }, { "start": 17680.4, "end": 17686.34, "probability": 0.9819 }, { "start": 17686.44, "end": 17686.76, "probability": 0.2063 }, { "start": 17687.46, "end": 17690.78, "probability": 0.9889 }, { "start": 17691.52, "end": 17692.62, "probability": 0.939 }, { "start": 17693.26, "end": 17698.86, "probability": 0.9925 }, { "start": 17699.44, "end": 17702.88, "probability": 0.9025 }, { "start": 17703.42, "end": 17706.46, "probability": 0.9888 }, { "start": 17707.0, "end": 17709.96, "probability": 0.9599 }, { "start": 17710.42, "end": 17713.8, "probability": 0.9601 }, { "start": 17717.4, "end": 17719.34, "probability": 0.48 }, { "start": 17719.34, "end": 17720.64, "probability": 0.4642 }, { "start": 17721.1, "end": 17722.58, "probability": 0.9893 }, { "start": 17722.6, "end": 17725.66, "probability": 0.9601 }, { "start": 17726.2, "end": 17730.14, "probability": 0.9946 }, { "start": 17730.68, "end": 17732.0, "probability": 0.8763 }, { "start": 17732.62, "end": 17735.9, "probability": 0.993 }, { "start": 17736.44, "end": 17737.94, "probability": 0.9088 }, { "start": 17738.06, "end": 17738.3, "probability": 0.7601 }, { "start": 17740.16, "end": 17742.32, "probability": 0.7886 }, { "start": 17742.46, "end": 17745.7, "probability": 0.9849 }, { "start": 17746.34, "end": 17746.41, "probability": 0.0161 }, { "start": 17747.7, "end": 17749.68, "probability": 0.3656 }, { "start": 17750.68, "end": 17752.24, "probability": 0.3975 }, { "start": 17753.52, "end": 17755.45, "probability": 0.5222 }, { "start": 17755.8, "end": 17756.54, "probability": 0.266 }, { "start": 17756.84, "end": 17757.04, "probability": 0.2014 }, { "start": 17757.04, "end": 17759.18, "probability": 0.7788 }, { "start": 17759.78, "end": 17765.36, "probability": 0.7461 }, { "start": 17765.98, "end": 17767.42, "probability": 0.4561 }, { "start": 17767.56, "end": 17767.56, "probability": 0.2054 }, { "start": 17767.56, "end": 17771.84, "probability": 0.7031 }, { "start": 17772.86, "end": 17773.72, "probability": 0.493 }, { "start": 17773.96, "end": 17777.91, "probability": 0.5777 }, { "start": 17778.46, "end": 17780.78, "probability": 0.102 }, { "start": 17781.9, "end": 17783.48, "probability": 0.873 }, { "start": 17783.56, "end": 17785.54, "probability": 0.9506 }, { "start": 17786.0, "end": 17786.88, "probability": 0.688 }, { "start": 17786.9, "end": 17789.34, "probability": 0.9823 }, { "start": 17790.22, "end": 17794.36, "probability": 0.9467 }, { "start": 17795.32, "end": 17797.56, "probability": 0.7859 }, { "start": 17798.12, "end": 17800.06, "probability": 0.9645 }, { "start": 17800.78, "end": 17801.48, "probability": 0.9511 }, { "start": 17802.34, "end": 17803.26, "probability": 0.9889 }, { "start": 17804.04, "end": 17804.72, "probability": 0.9699 }, { "start": 17805.64, "end": 17808.78, "probability": 0.6796 }, { "start": 17809.35, "end": 17812.5, "probability": 0.7395 }, { "start": 17813.74, "end": 17816.14, "probability": 0.98 }, { "start": 17816.76, "end": 17819.0, "probability": 0.9822 }, { "start": 17819.76, "end": 17821.86, "probability": 0.9577 }, { "start": 17822.88, "end": 17824.04, "probability": 0.8142 }, { "start": 17824.42, "end": 17825.08, "probability": 0.82 }, { "start": 17825.54, "end": 17826.76, "probability": 0.9945 }, { "start": 17827.14, "end": 17827.68, "probability": 0.9244 }, { "start": 17829.08, "end": 17830.72, "probability": 0.994 }, { "start": 17832.04, "end": 17832.76, "probability": 0.9698 }, { "start": 17833.44, "end": 17834.99, "probability": 0.9751 }, { "start": 17835.16, "end": 17835.88, "probability": 0.9622 }, { "start": 17836.14, "end": 17837.74, "probability": 0.7734 }, { "start": 17838.2, "end": 17838.84, "probability": 0.6172 }, { "start": 17840.08, "end": 17841.2, "probability": 0.9703 }, { "start": 17841.44, "end": 17842.04, "probability": 0.9016 }, { "start": 17842.2, "end": 17844.34, "probability": 0.6968 }, { "start": 17844.52, "end": 17845.26, "probability": 0.9693 }, { "start": 17845.5, "end": 17847.26, "probability": 0.9792 }, { "start": 17848.1, "end": 17849.02, "probability": 0.9895 }, { "start": 17849.22, "end": 17851.32, "probability": 0.7204 }, { "start": 17851.5, "end": 17852.24, "probability": 0.7244 }, { "start": 17853.2, "end": 17854.06, "probability": 0.9542 }, { "start": 17854.6, "end": 17855.18, "probability": 0.9005 }, { "start": 17855.8, "end": 17857.2, "probability": 0.9921 }, { "start": 17857.42, "end": 17858.16, "probability": 0.9643 }, { "start": 17858.62, "end": 17859.88, "probability": 0.9895 }, { "start": 17860.9, "end": 17861.7, "probability": 0.952 }, { "start": 17862.92, "end": 17865.9, "probability": 0.7162 }, { "start": 17867.12, "end": 17868.94, "probability": 0.9186 }, { "start": 17869.22, "end": 17869.94, "probability": 0.9055 }, { "start": 17870.2, "end": 17871.6, "probability": 0.973 }, { "start": 17871.82, "end": 17872.44, "probability": 0.921 }, { "start": 17873.08, "end": 17875.24, "probability": 0.9917 }, { "start": 17876.02, "end": 17877.66, "probability": 0.8608 }, { "start": 17878.34, "end": 17878.88, "probability": 0.4286 }, { "start": 17879.72, "end": 17881.08, "probability": 0.8032 }, { "start": 17881.32, "end": 17882.0, "probability": 0.8166 }, { "start": 17882.42, "end": 17884.6, "probability": 0.8862 }, { "start": 17884.8, "end": 17885.5, "probability": 0.9647 }, { "start": 17886.42, "end": 17888.9, "probability": 0.9858 }, { "start": 17889.8, "end": 17891.14, "probability": 0.9945 }, { "start": 17891.74, "end": 17895.2, "probability": 0.8265 }, { "start": 17896.18, "end": 17898.68, "probability": 0.9466 }, { "start": 17898.98, "end": 17900.74, "probability": 0.9966 }, { "start": 17900.76, "end": 17901.5, "probability": 0.9721 }, { "start": 17902.46, "end": 17903.98, "probability": 0.9405 }, { "start": 17904.56, "end": 17905.24, "probability": 0.9366 }, { "start": 17905.62, "end": 17906.84, "probability": 0.9681 }, { "start": 17907.12, "end": 17907.74, "probability": 0.4113 }, { "start": 17907.9, "end": 17909.29, "probability": 0.8259 }, { "start": 17910.36, "end": 17911.38, "probability": 0.4849 }, { "start": 17911.7, "end": 17914.16, "probability": 0.8733 }, { "start": 17915.32, "end": 17919.56, "probability": 0.0148 }, { "start": 17935.84, "end": 17936.36, "probability": 0.0292 }, { "start": 17937.26, "end": 17937.26, "probability": 0.5215 }, { "start": 17937.26, "end": 17939.42, "probability": 0.3694 }, { "start": 17939.72, "end": 17941.96, "probability": 0.9294 }, { "start": 17941.96, "end": 17944.7, "probability": 0.3499 }, { "start": 17945.42, "end": 17947.22, "probability": 0.9897 }, { "start": 17947.94, "end": 17948.24, "probability": 0.9554 }, { "start": 17950.3, "end": 17953.14, "probability": 0.9959 }, { "start": 17954.18, "end": 17956.56, "probability": 0.891 }, { "start": 17957.46, "end": 17959.1, "probability": 0.8398 }, { "start": 17959.26, "end": 17960.64, "probability": 0.7432 }, { "start": 17960.74, "end": 17962.56, "probability": 0.9921 }, { "start": 17963.2, "end": 17966.86, "probability": 0.9616 }, { "start": 17966.86, "end": 17968.24, "probability": 0.5095 }, { "start": 17968.8, "end": 17974.0, "probability": 0.9885 }, { "start": 17976.66, "end": 17981.56, "probability": 0.9717 }, { "start": 17981.56, "end": 17983.36, "probability": 0.7754 }, { "start": 17983.36, "end": 17986.32, "probability": 0.9648 }, { "start": 17987.8, "end": 17990.12, "probability": 0.1292 }, { "start": 17992.14, "end": 17992.8, "probability": 0.5226 }, { "start": 17994.36, "end": 17996.52, "probability": 0.8096 }, { "start": 17998.47, "end": 18003.08, "probability": 0.8359 }, { "start": 18003.8, "end": 18007.66, "probability": 0.916 }, { "start": 18009.14, "end": 18010.36, "probability": 0.9085 }, { "start": 18010.98, "end": 18011.9, "probability": 0.4654 }, { "start": 18012.3, "end": 18014.2, "probability": 0.9727 }, { "start": 18014.46, "end": 18015.06, "probability": 0.6918 }, { "start": 18015.2, "end": 18016.76, "probability": 0.638 }, { "start": 18016.96, "end": 18020.26, "probability": 0.2932 }, { "start": 18020.44, "end": 18022.94, "probability": 0.7725 }, { "start": 18024.58, "end": 18024.72, "probability": 0.2468 } ], "segments_count": 6853, "words_count": 33203, "avg_words_per_segment": 4.845, "avg_segment_duration": 1.8542, "avg_words_per_minute": 110.0535, "plenum_id": "104663", "duration": 18101.92, "title": null, "plenum_date": "2022-01-24" }