{ "source_type": "knesset", "source_id": "plenum", "source_entry_id": "103688", "quality_score": 0.8716, "per_segment_quality_scores": [ { "start": 66.2, "end": 70.34, "probability": 0.5406 }, { "start": 71.02, "end": 73.28, "probability": 0.5284 }, { "start": 73.86, "end": 76.1, "probability": 0.9938 }, { "start": 76.76, "end": 77.62, "probability": 0.6707 }, { "start": 77.78, "end": 83.46, "probability": 0.9618 }, { "start": 84.06, "end": 85.0, "probability": 0.3034 }, { "start": 85.52, "end": 87.22, "probability": 0.2954 }, { "start": 89.36, "end": 92.78, "probability": 0.8988 }, { "start": 93.32, "end": 95.64, "probability": 0.9989 }, { "start": 95.73, "end": 98.4, "probability": 0.744 }, { "start": 99.44, "end": 101.38, "probability": 0.9094 }, { "start": 102.64, "end": 105.78, "probability": 0.6721 }, { "start": 106.36, "end": 108.5, "probability": 0.7511 }, { "start": 109.44, "end": 111.42, "probability": 0.2943 }, { "start": 112.76, "end": 115.82, "probability": 0.9958 }, { "start": 115.82, "end": 120.5, "probability": 0.8785 }, { "start": 121.16, "end": 122.18, "probability": 0.1711 }, { "start": 122.72, "end": 124.82, "probability": 0.8283 }, { "start": 125.4, "end": 129.3, "probability": 0.6513 }, { "start": 129.98, "end": 130.84, "probability": 0.9949 }, { "start": 134.41, "end": 136.51, "probability": 0.5309 }, { "start": 136.51, "end": 138.775, "probability": 0.4258 }, { "start": 139.71, "end": 142.13, "probability": 0.9424 }, { "start": 142.73, "end": 145.03, "probability": 0.2064 }, { "start": 145.83, "end": 147.63, "probability": 0.6625 }, { "start": 149.695, "end": 151.965, "probability": 0.0663 }, { "start": 154.005, "end": 158.36, "probability": 0.4678 }, { "start": 160.78, "end": 163.71, "probability": 0.0659 }, { "start": 163.93, "end": 166.11, "probability": 0.2882 }, { "start": 166.29, "end": 168.83, "probability": 0.3077 }, { "start": 171.64, "end": 173.35, "probability": 0.1167 }, { "start": 173.55, "end": 176.67, "probability": 0.0486 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.0, "end": 178.0, "probability": 0.0 }, { "start": 178.14, "end": 183.32, "probability": 0.9451 }, { "start": 183.32, "end": 189.7, "probability": 0.9971 }, { "start": 190.2, "end": 193.34, "probability": 0.9923 }, { "start": 194.02, "end": 195.52, "probability": 0.5049 }, { "start": 198.16, "end": 200.98, "probability": 0.5772 }, { "start": 202.86, "end": 204.6, "probability": 0.8791 }, { "start": 205.22, "end": 207.04, "probability": 0.8297 }, { "start": 207.04, "end": 209.98, "probability": 0.9972 }, { "start": 210.6, "end": 213.64, "probability": 0.9737 }, { "start": 214.58, "end": 215.46, "probability": 0.4415 }, { "start": 216.2, "end": 216.86, "probability": 0.9624 }, { "start": 219.0, "end": 220.14, "probability": 0.3791 }, { "start": 221.26, "end": 224.14, "probability": 0.6623 }, { "start": 225.5, "end": 226.44, "probability": 0.981 }, { "start": 227.0, "end": 230.66, "probability": 0.9848 }, { "start": 231.44, "end": 233.7, "probability": 0.9805 }, { "start": 234.7, "end": 239.96, "probability": 0.998 }, { "start": 240.68, "end": 240.98, "probability": 0.1134 }, { "start": 241.54, "end": 241.72, "probability": 0.0316 }, { "start": 242.64, "end": 244.9, "probability": 0.5312 }, { "start": 245.58, "end": 247.56, "probability": 0.9816 }, { "start": 248.6, "end": 253.08, "probability": 0.9822 }, { "start": 253.12, "end": 258.54, "probability": 0.885 }, { "start": 258.54, "end": 260.64, "probability": 0.98 }, { "start": 260.74, "end": 265.06, "probability": 0.9146 }, { "start": 265.66, "end": 268.08, "probability": 0.9777 }, { "start": 268.08, "end": 272.0, "probability": 0.8105 }, { "start": 273.1, "end": 274.58, "probability": 0.5034 }, { "start": 275.24, "end": 277.6, "probability": 0.9846 }, { "start": 278.44, "end": 279.6, "probability": 0.7551 }, { "start": 280.14, "end": 284.84, "probability": 0.9858 }, { "start": 285.82, "end": 289.98, "probability": 0.9773 }, { "start": 290.36, "end": 291.94, "probability": 0.8649 }, { "start": 308.56, "end": 309.28, "probability": 0.6122 }, { "start": 310.4, "end": 311.28, "probability": 0.8826 }, { "start": 312.1, "end": 312.7, "probability": 0.8322 }, { "start": 313.2, "end": 314.83, "probability": 0.9843 }, { "start": 315.16, "end": 317.62, "probability": 0.9961 }, { "start": 317.7, "end": 317.84, "probability": 0.6078 }, { "start": 318.04, "end": 320.5, "probability": 0.8286 }, { "start": 320.84, "end": 320.94, "probability": 0.5651 }, { "start": 320.94, "end": 320.94, "probability": 0.0002 }, { "start": 322.18, "end": 322.7, "probability": 0.2201 }, { "start": 322.7, "end": 322.92, "probability": 0.3259 }, { "start": 323.76, "end": 325.16, "probability": 0.8229 }, { "start": 326.58, "end": 327.32, "probability": 0.986 }, { "start": 329.41, "end": 331.34, "probability": 0.8931 }, { "start": 331.84, "end": 332.42, "probability": 0.5096 }, { "start": 332.44, "end": 334.6, "probability": 0.9146 }, { "start": 335.48, "end": 341.83, "probability": 0.9481 }, { "start": 343.18, "end": 345.4, "probability": 0.9946 }, { "start": 346.34, "end": 348.66, "probability": 0.9869 }, { "start": 349.64, "end": 351.94, "probability": 0.9756 }, { "start": 354.05, "end": 361.58, "probability": 0.8759 }, { "start": 362.76, "end": 363.34, "probability": 0.6213 }, { "start": 364.0, "end": 365.4, "probability": 0.8062 }, { "start": 366.32, "end": 367.1, "probability": 0.8144 }, { "start": 367.46, "end": 369.18, "probability": 0.8735 }, { "start": 369.38, "end": 372.92, "probability": 0.8347 }, { "start": 373.06, "end": 374.02, "probability": 0.9917 }, { "start": 374.18, "end": 375.56, "probability": 0.9524 }, { "start": 376.16, "end": 378.16, "probability": 0.847 }, { "start": 379.28, "end": 384.52, "probability": 0.7035 }, { "start": 385.24, "end": 385.6, "probability": 0.6233 }, { "start": 386.28, "end": 390.82, "probability": 0.7905 }, { "start": 391.78, "end": 392.2, "probability": 0.9033 }, { "start": 392.78, "end": 396.34, "probability": 0.9863 }, { "start": 396.92, "end": 401.48, "probability": 0.9906 }, { "start": 402.16, "end": 403.48, "probability": 0.9928 }, { "start": 403.66, "end": 404.72, "probability": 0.7799 }, { "start": 405.48, "end": 406.1, "probability": 0.9604 }, { "start": 407.46, "end": 411.62, "probability": 0.4764 }, { "start": 412.26, "end": 416.72, "probability": 0.9943 }, { "start": 417.66, "end": 418.36, "probability": 0.9709 }, { "start": 418.9, "end": 422.88, "probability": 0.9948 }, { "start": 423.56, "end": 427.36, "probability": 0.9339 }, { "start": 427.56, "end": 428.78, "probability": 0.9022 }, { "start": 428.9, "end": 430.68, "probability": 0.9537 }, { "start": 430.82, "end": 431.26, "probability": 0.9581 }, { "start": 431.98, "end": 432.46, "probability": 0.9876 }, { "start": 433.26, "end": 434.0, "probability": 0.5844 }, { "start": 434.64, "end": 437.76, "probability": 0.9917 }, { "start": 438.42, "end": 440.98, "probability": 0.9932 }, { "start": 441.06, "end": 443.12, "probability": 0.986 }, { "start": 443.62, "end": 445.68, "probability": 0.4628 }, { "start": 446.44, "end": 451.64, "probability": 0.9926 }, { "start": 451.84, "end": 454.82, "probability": 0.98 }, { "start": 454.82, "end": 457.14, "probability": 0.5996 }, { "start": 457.3, "end": 458.08, "probability": 0.988 }, { "start": 458.54, "end": 459.38, "probability": 0.9941 }, { "start": 460.0, "end": 460.88, "probability": 0.6955 }, { "start": 461.42, "end": 463.86, "probability": 0.9925 }, { "start": 464.4, "end": 466.5, "probability": 0.9611 }, { "start": 466.94, "end": 468.06, "probability": 0.6983 }, { "start": 469.28, "end": 471.92, "probability": 0.9956 }, { "start": 471.92, "end": 475.0, "probability": 0.9983 }, { "start": 475.14, "end": 478.76, "probability": 0.6657 }, { "start": 479.14, "end": 481.74, "probability": 0.9896 }, { "start": 482.26, "end": 487.38, "probability": 0.9902 }, { "start": 487.92, "end": 488.34, "probability": 0.8416 }, { "start": 488.8, "end": 489.52, "probability": 0.9795 }, { "start": 489.78, "end": 490.52, "probability": 0.9667 }, { "start": 490.6, "end": 491.66, "probability": 0.9149 }, { "start": 492.46, "end": 493.04, "probability": 0.832 }, { "start": 493.3, "end": 497.69, "probability": 0.968 }, { "start": 497.8, "end": 500.66, "probability": 0.9824 }, { "start": 501.18, "end": 505.94, "probability": 0.9302 }, { "start": 506.5, "end": 508.76, "probability": 0.9202 }, { "start": 508.84, "end": 509.74, "probability": 0.7304 }, { "start": 510.68, "end": 514.9, "probability": 0.994 }, { "start": 514.9, "end": 519.68, "probability": 0.9978 }, { "start": 519.86, "end": 520.22, "probability": 0.5004 }, { "start": 521.7, "end": 523.1, "probability": 0.9985 }, { "start": 523.66, "end": 526.92, "probability": 0.9926 }, { "start": 528.12, "end": 529.47, "probability": 0.7764 }, { "start": 529.9, "end": 532.1, "probability": 0.8979 }, { "start": 532.76, "end": 536.83, "probability": 0.733 }, { "start": 537.96, "end": 541.02, "probability": 0.9963 }, { "start": 541.82, "end": 545.24, "probability": 0.9884 }, { "start": 546.24, "end": 549.16, "probability": 0.7578 }, { "start": 549.68, "end": 552.6, "probability": 0.9857 }, { "start": 553.16, "end": 556.1, "probability": 0.7327 }, { "start": 556.1, "end": 558.46, "probability": 0.9936 }, { "start": 559.46, "end": 561.28, "probability": 0.8833 }, { "start": 561.8, "end": 564.96, "probability": 0.9541 }, { "start": 565.62, "end": 565.76, "probability": 0.2023 }, { "start": 565.86, "end": 566.26, "probability": 0.6647 }, { "start": 566.32, "end": 569.04, "probability": 0.8142 }, { "start": 569.64, "end": 572.14, "probability": 0.96 }, { "start": 573.04, "end": 575.14, "probability": 0.9109 }, { "start": 575.24, "end": 578.1, "probability": 0.9855 }, { "start": 579.14, "end": 581.2, "probability": 0.8045 }, { "start": 581.46, "end": 584.16, "probability": 0.9863 }, { "start": 585.12, "end": 588.38, "probability": 0.897 }, { "start": 588.38, "end": 591.24, "probability": 0.7608 }, { "start": 591.3, "end": 593.5, "probability": 0.9535 }, { "start": 594.1, "end": 596.5, "probability": 0.8046 }, { "start": 597.08, "end": 597.94, "probability": 0.9056 }, { "start": 598.56, "end": 600.7, "probability": 0.9974 }, { "start": 600.96, "end": 604.36, "probability": 0.9956 }, { "start": 605.08, "end": 605.46, "probability": 0.3954 }, { "start": 605.62, "end": 609.18, "probability": 0.9746 }, { "start": 609.68, "end": 613.48, "probability": 0.8163 }, { "start": 613.48, "end": 617.48, "probability": 0.9988 }, { "start": 617.48, "end": 620.72, "probability": 0.9847 }, { "start": 621.42, "end": 623.46, "probability": 0.8296 }, { "start": 623.68, "end": 625.98, "probability": 0.9476 }, { "start": 626.4, "end": 629.24, "probability": 0.9559 }, { "start": 629.28, "end": 629.9, "probability": 0.5869 }, { "start": 630.68, "end": 632.72, "probability": 0.5831 }, { "start": 632.82, "end": 635.94, "probability": 0.9797 }, { "start": 636.42, "end": 639.1, "probability": 0.8444 }, { "start": 639.18, "end": 639.74, "probability": 0.663 }, { "start": 639.9, "end": 643.28, "probability": 0.8943 }, { "start": 644.0, "end": 645.42, "probability": 0.7435 }, { "start": 645.74, "end": 647.34, "probability": 0.8773 }, { "start": 648.32, "end": 649.56, "probability": 0.7761 }, { "start": 650.18, "end": 651.48, "probability": 0.9512 }, { "start": 652.12, "end": 655.9, "probability": 0.76 }, { "start": 656.42, "end": 658.62, "probability": 0.5195 }, { "start": 659.26, "end": 660.28, "probability": 0.8546 }, { "start": 660.34, "end": 660.78, "probability": 0.7717 }, { "start": 661.3, "end": 662.46, "probability": 0.9333 }, { "start": 663.22, "end": 663.83, "probability": 0.906 }, { "start": 664.58, "end": 665.78, "probability": 0.8044 }, { "start": 666.44, "end": 666.92, "probability": 0.9498 }, { "start": 667.66, "end": 673.38, "probability": 0.999 }, { "start": 674.4, "end": 676.4, "probability": 0.9993 }, { "start": 677.14, "end": 679.54, "probability": 0.9945 }, { "start": 680.48, "end": 684.16, "probability": 0.9185 }, { "start": 684.8, "end": 687.08, "probability": 0.8118 }, { "start": 687.5, "end": 689.38, "probability": 0.9538 }, { "start": 689.9, "end": 695.94, "probability": 0.9595 }, { "start": 696.54, "end": 698.72, "probability": 0.8799 }, { "start": 698.92, "end": 702.36, "probability": 0.99 }, { "start": 702.36, "end": 705.08, "probability": 0.9986 }, { "start": 705.7, "end": 710.06, "probability": 0.9837 }, { "start": 711.14, "end": 711.54, "probability": 0.5612 }, { "start": 711.9, "end": 713.0, "probability": 0.7358 }, { "start": 714.1, "end": 714.88, "probability": 0.9071 }, { "start": 715.24, "end": 716.5, "probability": 0.9727 }, { "start": 717.26, "end": 719.16, "probability": 0.9952 }, { "start": 720.44, "end": 721.3, "probability": 0.9899 }, { "start": 721.78, "end": 724.48, "probability": 0.5932 }, { "start": 725.12, "end": 726.7, "probability": 0.8763 }, { "start": 727.32, "end": 730.86, "probability": 0.989 }, { "start": 731.5, "end": 733.32, "probability": 0.6952 }, { "start": 733.84, "end": 736.9, "probability": 0.9705 }, { "start": 737.64, "end": 738.24, "probability": 0.4988 }, { "start": 738.4, "end": 739.78, "probability": 0.9818 }, { "start": 740.24, "end": 743.3, "probability": 0.9712 }, { "start": 744.12, "end": 744.94, "probability": 0.9289 }, { "start": 745.34, "end": 746.98, "probability": 0.8936 }, { "start": 747.44, "end": 748.98, "probability": 0.863 }, { "start": 749.54, "end": 751.96, "probability": 0.9148 }, { "start": 752.72, "end": 753.45, "probability": 0.9495 }, { "start": 754.02, "end": 756.0, "probability": 0.993 }, { "start": 756.0, "end": 758.14, "probability": 0.9921 }, { "start": 758.66, "end": 759.68, "probability": 0.82 }, { "start": 760.2, "end": 763.64, "probability": 0.9565 }, { "start": 764.7, "end": 766.02, "probability": 0.9954 }, { "start": 767.02, "end": 771.6, "probability": 0.9541 }, { "start": 771.6, "end": 777.36, "probability": 0.9943 }, { "start": 778.42, "end": 779.32, "probability": 0.5723 }, { "start": 779.5, "end": 781.12, "probability": 0.9557 }, { "start": 781.56, "end": 783.18, "probability": 0.9896 }, { "start": 783.78, "end": 786.38, "probability": 0.8195 }, { "start": 786.52, "end": 787.68, "probability": 0.7721 }, { "start": 788.3, "end": 792.06, "probability": 0.9614 }, { "start": 792.7, "end": 793.2, "probability": 0.998 }, { "start": 794.34, "end": 796.72, "probability": 0.9966 }, { "start": 797.92, "end": 798.72, "probability": 0.7139 }, { "start": 799.06, "end": 802.26, "probability": 0.5831 }, { "start": 802.6, "end": 805.2, "probability": 0.9961 }, { "start": 805.98, "end": 808.94, "probability": 0.7861 }, { "start": 809.46, "end": 811.64, "probability": 0.6767 }, { "start": 812.24, "end": 814.3, "probability": 0.9277 }, { "start": 814.94, "end": 816.42, "probability": 0.9906 }, { "start": 817.32, "end": 820.56, "probability": 0.8536 }, { "start": 821.14, "end": 823.12, "probability": 0.9939 }, { "start": 823.12, "end": 826.26, "probability": 0.9883 }, { "start": 826.84, "end": 828.6, "probability": 0.9879 }, { "start": 829.2, "end": 830.8, "probability": 0.9985 }, { "start": 831.5, "end": 833.02, "probability": 0.9618 }, { "start": 833.44, "end": 835.7, "probability": 0.9024 }, { "start": 836.32, "end": 839.53, "probability": 0.8641 }, { "start": 840.28, "end": 843.4, "probability": 0.9533 }, { "start": 844.14, "end": 845.96, "probability": 0.983 }, { "start": 845.96, "end": 848.74, "probability": 0.9868 }, { "start": 849.72, "end": 850.94, "probability": 0.9176 }, { "start": 851.44, "end": 853.48, "probability": 0.8999 }, { "start": 854.42, "end": 855.42, "probability": 0.9631 }, { "start": 856.04, "end": 856.8, "probability": 0.6183 }, { "start": 856.86, "end": 860.46, "probability": 0.9678 }, { "start": 860.6, "end": 862.84, "probability": 0.8997 }, { "start": 863.44, "end": 866.04, "probability": 0.7836 }, { "start": 866.86, "end": 868.1, "probability": 0.6842 }, { "start": 869.12, "end": 870.1, "probability": 0.938 }, { "start": 870.78, "end": 872.4, "probability": 0.8741 }, { "start": 873.12, "end": 874.66, "probability": 0.8832 }, { "start": 875.22, "end": 877.44, "probability": 0.8207 }, { "start": 877.82, "end": 879.04, "probability": 0.9381 }, { "start": 879.56, "end": 881.76, "probability": 0.9114 }, { "start": 882.9, "end": 884.98, "probability": 0.9976 }, { "start": 885.44, "end": 885.98, "probability": 0.8891 }, { "start": 886.6, "end": 888.92, "probability": 0.6386 }, { "start": 889.7, "end": 890.7, "probability": 0.689 }, { "start": 891.34, "end": 895.7, "probability": 0.99 }, { "start": 896.42, "end": 898.04, "probability": 0.9937 }, { "start": 898.98, "end": 900.98, "probability": 0.9657 }, { "start": 901.66, "end": 903.36, "probability": 0.9744 }, { "start": 904.26, "end": 905.62, "probability": 0.9927 }, { "start": 906.06, "end": 906.7, "probability": 0.9796 }, { "start": 906.9, "end": 907.96, "probability": 0.8577 }, { "start": 908.54, "end": 910.12, "probability": 0.7704 }, { "start": 910.72, "end": 914.72, "probability": 0.9793 }, { "start": 914.72, "end": 918.5, "probability": 0.9898 }, { "start": 919.66, "end": 921.76, "probability": 0.9484 }, { "start": 922.74, "end": 924.52, "probability": 0.6342 }, { "start": 925.48, "end": 928.7, "probability": 0.8765 }, { "start": 928.76, "end": 929.22, "probability": 0.626 }, { "start": 930.2, "end": 931.34, "probability": 0.9824 }, { "start": 931.44, "end": 935.66, "probability": 0.9963 }, { "start": 936.8, "end": 938.33, "probability": 0.8121 }, { "start": 939.06, "end": 941.3, "probability": 0.9814 }, { "start": 941.74, "end": 942.14, "probability": 0.7702 }, { "start": 944.06, "end": 945.6, "probability": 0.6801 }, { "start": 946.02, "end": 947.56, "probability": 0.8235 }, { "start": 950.44, "end": 951.52, "probability": 0.5828 }, { "start": 957.58, "end": 959.37, "probability": 0.2799 }, { "start": 960.84, "end": 961.64, "probability": 0.9133 }, { "start": 962.06, "end": 963.64, "probability": 0.2809 }, { "start": 963.9, "end": 964.66, "probability": 0.9419 }, { "start": 966.32, "end": 969.92, "probability": 0.936 }, { "start": 970.38, "end": 971.7, "probability": 0.9933 }, { "start": 972.6, "end": 973.86, "probability": 0.8123 }, { "start": 974.38, "end": 975.34, "probability": 0.8897 }, { "start": 976.72, "end": 977.82, "probability": 0.3171 }, { "start": 979.06, "end": 982.92, "probability": 0.8657 }, { "start": 983.62, "end": 987.26, "probability": 0.9854 }, { "start": 987.8, "end": 990.12, "probability": 0.7022 }, { "start": 990.16, "end": 992.12, "probability": 0.8835 }, { "start": 992.2, "end": 994.84, "probability": 0.969 }, { "start": 994.94, "end": 998.06, "probability": 0.9757 }, { "start": 998.22, "end": 1001.42, "probability": 0.8555 }, { "start": 1001.74, "end": 1004.64, "probability": 0.9766 }, { "start": 1005.0, "end": 1006.68, "probability": 0.7715 }, { "start": 1006.84, "end": 1007.52, "probability": 0.5447 }, { "start": 1007.62, "end": 1008.12, "probability": 0.7713 }, { "start": 1008.22, "end": 1010.9, "probability": 0.9849 }, { "start": 1011.02, "end": 1012.72, "probability": 0.968 }, { "start": 1013.42, "end": 1019.24, "probability": 0.9928 }, { "start": 1019.32, "end": 1020.08, "probability": 0.6736 }, { "start": 1020.16, "end": 1020.98, "probability": 0.9346 }, { "start": 1021.28, "end": 1022.26, "probability": 0.6631 }, { "start": 1022.88, "end": 1025.06, "probability": 0.8857 }, { "start": 1025.06, "end": 1029.68, "probability": 0.9275 }, { "start": 1029.92, "end": 1032.06, "probability": 0.9814 }, { "start": 1032.74, "end": 1034.07, "probability": 0.8975 }, { "start": 1034.48, "end": 1038.62, "probability": 0.9775 }, { "start": 1038.62, "end": 1043.06, "probability": 0.9909 }, { "start": 1043.6, "end": 1047.76, "probability": 0.9488 }, { "start": 1047.76, "end": 1053.48, "probability": 0.9687 }, { "start": 1053.6, "end": 1053.6, "probability": 0.3259 }, { "start": 1053.6, "end": 1053.6, "probability": 0.0425 }, { "start": 1053.6, "end": 1055.46, "probability": 0.9493 }, { "start": 1056.72, "end": 1058.82, "probability": 0.9565 }, { "start": 1058.92, "end": 1061.52, "probability": 0.9581 }, { "start": 1061.66, "end": 1061.86, "probability": 0.6689 }, { "start": 1061.98, "end": 1063.24, "probability": 0.9584 }, { "start": 1063.3, "end": 1065.94, "probability": 0.9873 }, { "start": 1066.5, "end": 1068.14, "probability": 0.6408 }, { "start": 1069.0, "end": 1073.28, "probability": 0.9663 }, { "start": 1073.28, "end": 1077.96, "probability": 0.9888 }, { "start": 1079.28, "end": 1080.14, "probability": 0.0506 }, { "start": 1080.14, "end": 1082.58, "probability": 0.7954 }, { "start": 1082.72, "end": 1085.74, "probability": 0.9977 }, { "start": 1085.86, "end": 1089.22, "probability": 0.9923 }, { "start": 1089.8, "end": 1091.2, "probability": 0.9552 }, { "start": 1091.48, "end": 1096.06, "probability": 0.9792 }, { "start": 1096.84, "end": 1097.22, "probability": 0.8412 }, { "start": 1097.48, "end": 1098.7, "probability": 0.9719 }, { "start": 1098.92, "end": 1101.38, "probability": 0.9543 }, { "start": 1101.41, "end": 1103.64, "probability": 0.9062 }, { "start": 1104.12, "end": 1104.98, "probability": 0.9961 }, { "start": 1105.58, "end": 1107.12, "probability": 0.8123 }, { "start": 1107.78, "end": 1109.86, "probability": 0.9723 }, { "start": 1110.34, "end": 1114.72, "probability": 0.965 }, { "start": 1114.72, "end": 1118.38, "probability": 0.999 }, { "start": 1118.4, "end": 1121.14, "probability": 0.8656 }, { "start": 1121.34, "end": 1121.72, "probability": 0.6636 }, { "start": 1121.8, "end": 1125.44, "probability": 0.9153 }, { "start": 1125.44, "end": 1128.06, "probability": 0.9861 }, { "start": 1128.36, "end": 1128.98, "probability": 0.8982 }, { "start": 1129.62, "end": 1133.54, "probability": 0.996 }, { "start": 1134.06, "end": 1136.84, "probability": 0.9944 }, { "start": 1137.6, "end": 1140.1, "probability": 0.9906 }, { "start": 1141.14, "end": 1144.75, "probability": 0.9985 }, { "start": 1146.66, "end": 1147.1, "probability": 0.7177 }, { "start": 1147.44, "end": 1148.24, "probability": 0.6324 }, { "start": 1148.28, "end": 1150.18, "probability": 0.9336 }, { "start": 1150.38, "end": 1152.8, "probability": 0.914 }, { "start": 1153.24, "end": 1154.72, "probability": 0.8601 }, { "start": 1155.84, "end": 1156.32, "probability": 0.6972 }, { "start": 1156.48, "end": 1157.44, "probability": 0.9184 }, { "start": 1157.6, "end": 1159.16, "probability": 0.9255 }, { "start": 1159.2, "end": 1164.84, "probability": 0.9868 }, { "start": 1165.76, "end": 1168.38, "probability": 0.7382 }, { "start": 1169.02, "end": 1171.6, "probability": 0.5549 }, { "start": 1171.74, "end": 1174.98, "probability": 0.9906 }, { "start": 1175.22, "end": 1176.56, "probability": 0.7837 }, { "start": 1177.38, "end": 1181.46, "probability": 0.9788 }, { "start": 1181.78, "end": 1187.0, "probability": 0.929 }, { "start": 1187.54, "end": 1189.5, "probability": 0.9411 }, { "start": 1189.56, "end": 1191.96, "probability": 0.9466 }, { "start": 1192.04, "end": 1195.16, "probability": 0.7985 }, { "start": 1195.84, "end": 1196.76, "probability": 0.5491 }, { "start": 1196.84, "end": 1198.8, "probability": 0.9563 }, { "start": 1199.14, "end": 1201.1, "probability": 0.9871 }, { "start": 1201.94, "end": 1203.84, "probability": 0.9748 }, { "start": 1204.04, "end": 1205.58, "probability": 0.9213 }, { "start": 1205.94, "end": 1207.82, "probability": 0.971 }, { "start": 1208.4, "end": 1213.08, "probability": 0.9795 }, { "start": 1213.08, "end": 1218.2, "probability": 0.9956 }, { "start": 1219.32, "end": 1221.88, "probability": 0.999 }, { "start": 1222.54, "end": 1225.37, "probability": 0.3748 }, { "start": 1226.78, "end": 1228.0, "probability": 0.0468 }, { "start": 1228.0, "end": 1229.56, "probability": 0.8428 }, { "start": 1229.66, "end": 1230.32, "probability": 0.2709 }, { "start": 1230.42, "end": 1230.52, "probability": 0.222 }, { "start": 1230.52, "end": 1230.52, "probability": 0.0119 }, { "start": 1230.52, "end": 1232.38, "probability": 0.7991 }, { "start": 1232.98, "end": 1233.56, "probability": 0.9023 }, { "start": 1234.26, "end": 1234.5, "probability": 0.1182 }, { "start": 1234.5, "end": 1237.06, "probability": 0.9705 }, { "start": 1237.3, "end": 1238.35, "probability": 0.6074 }, { "start": 1239.22, "end": 1240.16, "probability": 0.8322 }, { "start": 1240.2, "end": 1240.96, "probability": 0.066 }, { "start": 1241.4, "end": 1244.84, "probability": 0.1028 }, { "start": 1245.98, "end": 1245.98, "probability": 0.0692 }, { "start": 1245.98, "end": 1246.94, "probability": 0.7424 }, { "start": 1248.44, "end": 1251.22, "probability": 0.1432 }, { "start": 1252.64, "end": 1252.86, "probability": 0.0727 }, { "start": 1253.66, "end": 1254.38, "probability": 0.0796 }, { "start": 1255.1, "end": 1255.12, "probability": 0.0594 }, { "start": 1255.12, "end": 1255.12, "probability": 0.0295 }, { "start": 1255.12, "end": 1259.8, "probability": 0.8433 }, { "start": 1259.8, "end": 1264.64, "probability": 0.9948 }, { "start": 1266.63, "end": 1268.74, "probability": 0.9502 }, { "start": 1268.96, "end": 1270.88, "probability": 0.9985 }, { "start": 1271.02, "end": 1271.88, "probability": 0.9966 }, { "start": 1272.86, "end": 1274.44, "probability": 0.9761 }, { "start": 1275.04, "end": 1277.64, "probability": 0.0306 }, { "start": 1277.64, "end": 1277.74, "probability": 0.0079 }, { "start": 1277.74, "end": 1280.24, "probability": 0.9253 }, { "start": 1281.58, "end": 1288.18, "probability": 0.988 }, { "start": 1288.18, "end": 1292.2, "probability": 0.9082 }, { "start": 1292.58, "end": 1293.28, "probability": 0.4732 }, { "start": 1293.68, "end": 1294.18, "probability": 0.5657 }, { "start": 1294.22, "end": 1296.08, "probability": 0.9392 }, { "start": 1296.34, "end": 1297.54, "probability": 0.0076 }, { "start": 1298.71, "end": 1301.64, "probability": 0.9719 }, { "start": 1302.48, "end": 1306.32, "probability": 0.7566 }, { "start": 1307.34, "end": 1312.3, "probability": 0.9691 }, { "start": 1313.1, "end": 1316.84, "probability": 0.9611 }, { "start": 1316.98, "end": 1317.5, "probability": 0.82 }, { "start": 1317.66, "end": 1321.28, "probability": 0.8729 }, { "start": 1322.16, "end": 1324.0, "probability": 0.7313 }, { "start": 1324.22, "end": 1324.74, "probability": 0.7964 }, { "start": 1325.06, "end": 1325.48, "probability": 0.9744 }, { "start": 1325.72, "end": 1327.29, "probability": 0.9911 }, { "start": 1327.98, "end": 1332.4, "probability": 0.9719 }, { "start": 1332.6, "end": 1333.7, "probability": 0.9713 }, { "start": 1333.78, "end": 1334.12, "probability": 0.4406 }, { "start": 1334.22, "end": 1339.3, "probability": 0.9851 }, { "start": 1340.62, "end": 1345.62, "probability": 0.9961 }, { "start": 1346.26, "end": 1348.18, "probability": 0.6744 }, { "start": 1348.2, "end": 1349.08, "probability": 0.7934 }, { "start": 1349.22, "end": 1350.58, "probability": 0.9623 }, { "start": 1350.66, "end": 1352.28, "probability": 0.9548 }, { "start": 1352.84, "end": 1353.78, "probability": 0.8672 }, { "start": 1354.36, "end": 1355.16, "probability": 0.7957 }, { "start": 1355.46, "end": 1356.26, "probability": 0.8932 }, { "start": 1356.42, "end": 1357.96, "probability": 0.9944 }, { "start": 1358.1, "end": 1361.56, "probability": 0.9911 }, { "start": 1362.68, "end": 1366.8, "probability": 0.9717 }, { "start": 1366.92, "end": 1370.62, "probability": 0.9984 }, { "start": 1371.3, "end": 1376.12, "probability": 0.9924 }, { "start": 1377.34, "end": 1382.16, "probability": 0.9399 }, { "start": 1382.22, "end": 1386.54, "probability": 0.9854 }, { "start": 1387.16, "end": 1391.68, "probability": 0.9484 }, { "start": 1391.76, "end": 1391.84, "probability": 0.5048 }, { "start": 1392.36, "end": 1396.24, "probability": 0.9966 }, { "start": 1396.34, "end": 1397.74, "probability": 0.6041 }, { "start": 1398.12, "end": 1400.92, "probability": 0.9946 }, { "start": 1401.8, "end": 1403.3, "probability": 0.63 }, { "start": 1405.12, "end": 1407.24, "probability": 0.3226 }, { "start": 1407.56, "end": 1407.56, "probability": 0.0918 }, { "start": 1408.32, "end": 1408.32, "probability": 0.27 }, { "start": 1408.32, "end": 1408.32, "probability": 0.1979 }, { "start": 1408.32, "end": 1409.14, "probability": 0.8544 }, { "start": 1409.8, "end": 1413.02, "probability": 0.9734 }, { "start": 1413.18, "end": 1416.82, "probability": 0.9522 }, { "start": 1416.94, "end": 1417.32, "probability": 0.6906 }, { "start": 1417.7, "end": 1420.74, "probability": 0.9922 }, { "start": 1420.84, "end": 1422.76, "probability": 0.995 }, { "start": 1423.0, "end": 1425.58, "probability": 0.9969 }, { "start": 1425.58, "end": 1428.88, "probability": 0.7553 }, { "start": 1429.84, "end": 1432.03, "probability": 0.9728 }, { "start": 1433.2, "end": 1434.64, "probability": 0.9714 }, { "start": 1435.58, "end": 1436.78, "probability": 0.725 }, { "start": 1437.18, "end": 1437.79, "probability": 0.9824 }, { "start": 1438.46, "end": 1440.36, "probability": 0.9583 }, { "start": 1440.68, "end": 1443.9, "probability": 0.958 }, { "start": 1444.4, "end": 1447.96, "probability": 0.9964 }, { "start": 1448.72, "end": 1452.02, "probability": 0.998 }, { "start": 1452.72, "end": 1455.72, "probability": 0.8298 }, { "start": 1456.42, "end": 1457.96, "probability": 0.8868 }, { "start": 1458.62, "end": 1461.48, "probability": 0.9608 }, { "start": 1461.64, "end": 1462.82, "probability": 0.8904 }, { "start": 1463.32, "end": 1466.73, "probability": 0.8952 }, { "start": 1467.94, "end": 1468.92, "probability": 0.7772 }, { "start": 1469.02, "end": 1474.06, "probability": 0.8079 }, { "start": 1474.3, "end": 1474.9, "probability": 0.9956 }, { "start": 1475.24, "end": 1477.46, "probability": 0.9241 }, { "start": 1477.46, "end": 1480.9, "probability": 0.8296 }, { "start": 1481.62, "end": 1484.04, "probability": 0.803 }, { "start": 1484.1, "end": 1489.74, "probability": 0.9661 }, { "start": 1490.1, "end": 1492.34, "probability": 0.9976 }, { "start": 1493.1, "end": 1495.66, "probability": 0.9872 }, { "start": 1496.84, "end": 1498.88, "probability": 0.8276 }, { "start": 1499.76, "end": 1502.76, "probability": 0.9978 }, { "start": 1503.4, "end": 1504.5, "probability": 0.9531 }, { "start": 1505.34, "end": 1510.08, "probability": 0.5236 }, { "start": 1510.08, "end": 1516.36, "probability": 0.7088 }, { "start": 1516.56, "end": 1517.76, "probability": 0.949 }, { "start": 1517.86, "end": 1518.12, "probability": 0.5525 }, { "start": 1518.7, "end": 1520.74, "probability": 0.8756 }, { "start": 1521.32, "end": 1522.76, "probability": 0.9867 }, { "start": 1523.8, "end": 1528.85, "probability": 0.9354 }, { "start": 1529.32, "end": 1531.04, "probability": 0.918 }, { "start": 1531.92, "end": 1534.04, "probability": 0.8542 }, { "start": 1534.5, "end": 1536.54, "probability": 0.9579 }, { "start": 1536.9, "end": 1540.74, "probability": 0.952 }, { "start": 1541.1, "end": 1543.04, "probability": 0.9918 }, { "start": 1543.98, "end": 1545.8, "probability": 0.9358 }, { "start": 1546.24, "end": 1549.8, "probability": 0.979 }, { "start": 1549.88, "end": 1551.1, "probability": 0.9766 }, { "start": 1551.94, "end": 1556.88, "probability": 0.9753 }, { "start": 1557.8, "end": 1561.68, "probability": 0.9824 }, { "start": 1562.32, "end": 1568.48, "probability": 0.9831 }, { "start": 1568.82, "end": 1569.54, "probability": 0.4701 }, { "start": 1569.64, "end": 1570.56, "probability": 0.9551 }, { "start": 1571.14, "end": 1574.8, "probability": 0.9985 }, { "start": 1574.92, "end": 1576.54, "probability": 0.9905 }, { "start": 1577.06, "end": 1577.42, "probability": 0.8425 }, { "start": 1577.86, "end": 1578.96, "probability": 0.9869 }, { "start": 1579.4, "end": 1580.59, "probability": 0.9902 }, { "start": 1582.25, "end": 1585.82, "probability": 0.9193 }, { "start": 1587.84, "end": 1592.5, "probability": 0.8934 }, { "start": 1592.98, "end": 1596.24, "probability": 0.9909 }, { "start": 1596.38, "end": 1596.82, "probability": 0.6808 }, { "start": 1597.06, "end": 1600.42, "probability": 0.9868 }, { "start": 1601.4, "end": 1604.22, "probability": 0.8477 }, { "start": 1606.3, "end": 1607.76, "probability": 0.3612 }, { "start": 1607.96, "end": 1609.44, "probability": 0.9951 }, { "start": 1609.98, "end": 1613.04, "probability": 0.9458 }, { "start": 1614.35, "end": 1617.56, "probability": 0.9961 }, { "start": 1617.56, "end": 1620.98, "probability": 0.9972 }, { "start": 1621.78, "end": 1623.29, "probability": 0.644 }, { "start": 1623.78, "end": 1628.18, "probability": 0.9856 }, { "start": 1628.18, "end": 1631.58, "probability": 0.9971 }, { "start": 1631.74, "end": 1635.98, "probability": 0.9863 }, { "start": 1636.38, "end": 1636.66, "probability": 0.6233 }, { "start": 1636.74, "end": 1640.54, "probability": 0.9971 }, { "start": 1640.72, "end": 1641.42, "probability": 0.9085 }, { "start": 1642.22, "end": 1643.34, "probability": 0.9966 }, { "start": 1643.56, "end": 1644.34, "probability": 0.8903 }, { "start": 1644.44, "end": 1645.64, "probability": 0.9438 }, { "start": 1646.9, "end": 1649.12, "probability": 0.9689 }, { "start": 1649.66, "end": 1650.58, "probability": 0.9604 }, { "start": 1651.0, "end": 1651.7, "probability": 0.3278 }, { "start": 1651.78, "end": 1652.38, "probability": 0.4728 }, { "start": 1652.38, "end": 1654.33, "probability": 0.1889 }, { "start": 1658.72, "end": 1659.52, "probability": 0.5677 }, { "start": 1659.76, "end": 1661.1, "probability": 0.951 }, { "start": 1661.74, "end": 1664.02, "probability": 0.5064 }, { "start": 1664.16, "end": 1664.98, "probability": 0.6034 }, { "start": 1665.26, "end": 1666.12, "probability": 0.7211 }, { "start": 1666.64, "end": 1671.84, "probability": 0.9692 }, { "start": 1672.14, "end": 1673.54, "probability": 0.8664 }, { "start": 1673.84, "end": 1677.54, "probability": 0.9571 }, { "start": 1678.08, "end": 1678.32, "probability": 0.0098 }, { "start": 1678.32, "end": 1678.32, "probability": 0.5644 }, { "start": 1678.32, "end": 1680.64, "probability": 0.5153 }, { "start": 1681.51, "end": 1683.88, "probability": 0.9308 }, { "start": 1684.0, "end": 1685.7, "probability": 0.7264 }, { "start": 1685.7, "end": 1686.46, "probability": 0.2157 }, { "start": 1687.46, "end": 1688.36, "probability": 0.8802 }, { "start": 1688.48, "end": 1690.74, "probability": 0.9569 }, { "start": 1691.18, "end": 1694.24, "probability": 0.9943 }, { "start": 1694.78, "end": 1697.66, "probability": 0.9299 }, { "start": 1698.34, "end": 1699.04, "probability": 0.7053 }, { "start": 1699.08, "end": 1703.46, "probability": 0.9855 }, { "start": 1703.76, "end": 1704.2, "probability": 0.893 }, { "start": 1704.78, "end": 1707.02, "probability": 0.9643 }, { "start": 1707.28, "end": 1709.26, "probability": 0.9819 }, { "start": 1709.9, "end": 1711.62, "probability": 0.9931 }, { "start": 1711.82, "end": 1714.38, "probability": 0.142 }, { "start": 1714.9, "end": 1716.72, "probability": 0.9738 }, { "start": 1717.04, "end": 1718.26, "probability": 0.8561 }, { "start": 1718.96, "end": 1719.84, "probability": 0.7704 }, { "start": 1720.3, "end": 1723.36, "probability": 0.9624 }, { "start": 1723.42, "end": 1727.64, "probability": 0.858 }, { "start": 1727.76, "end": 1729.76, "probability": 0.9572 }, { "start": 1731.16, "end": 1731.82, "probability": 0.8733 }, { "start": 1732.4, "end": 1732.94, "probability": 0.7458 }, { "start": 1733.46, "end": 1736.58, "probability": 0.9841 }, { "start": 1736.98, "end": 1739.42, "probability": 0.9813 }, { "start": 1739.84, "end": 1742.38, "probability": 0.965 }, { "start": 1742.48, "end": 1743.34, "probability": 0.8541 }, { "start": 1743.88, "end": 1744.67, "probability": 0.9342 }, { "start": 1745.54, "end": 1749.36, "probability": 0.95 }, { "start": 1749.54, "end": 1750.08, "probability": 0.9578 }, { "start": 1750.2, "end": 1751.26, "probability": 0.8934 }, { "start": 1751.76, "end": 1755.6, "probability": 0.9814 }, { "start": 1755.6, "end": 1758.08, "probability": 0.9978 }, { "start": 1758.26, "end": 1758.96, "probability": 0.6975 }, { "start": 1759.42, "end": 1760.16, "probability": 0.8483 }, { "start": 1760.24, "end": 1762.51, "probability": 0.9812 }, { "start": 1763.45, "end": 1767.14, "probability": 0.9903 }, { "start": 1767.72, "end": 1769.84, "probability": 0.9771 }, { "start": 1770.38, "end": 1775.76, "probability": 0.987 }, { "start": 1775.82, "end": 1778.22, "probability": 0.8334 }, { "start": 1778.42, "end": 1778.76, "probability": 0.8648 }, { "start": 1778.82, "end": 1779.56, "probability": 0.8781 }, { "start": 1779.66, "end": 1781.22, "probability": 0.9856 }, { "start": 1781.88, "end": 1784.24, "probability": 0.9484 }, { "start": 1784.38, "end": 1786.54, "probability": 0.8833 }, { "start": 1786.92, "end": 1790.36, "probability": 0.9959 }, { "start": 1790.86, "end": 1794.76, "probability": 0.8768 }, { "start": 1794.86, "end": 1795.72, "probability": 0.5298 }, { "start": 1795.8, "end": 1796.77, "probability": 0.9678 }, { "start": 1797.56, "end": 1804.46, "probability": 0.7903 }, { "start": 1805.16, "end": 1809.06, "probability": 0.9932 }, { "start": 1809.32, "end": 1812.34, "probability": 0.6919 }, { "start": 1812.86, "end": 1814.08, "probability": 0.9618 }, { "start": 1814.24, "end": 1814.36, "probability": 0.2973 }, { "start": 1814.36, "end": 1814.78, "probability": 0.5732 }, { "start": 1814.82, "end": 1816.88, "probability": 0.8947 }, { "start": 1816.96, "end": 1822.07, "probability": 0.9517 }, { "start": 1823.08, "end": 1826.64, "probability": 0.9832 }, { "start": 1828.34, "end": 1831.94, "probability": 0.5196 }, { "start": 1832.48, "end": 1834.98, "probability": 0.4741 }, { "start": 1835.5, "end": 1837.22, "probability": 0.9763 }, { "start": 1837.38, "end": 1841.28, "probability": 0.983 }, { "start": 1841.52, "end": 1843.48, "probability": 0.8729 }, { "start": 1843.84, "end": 1846.48, "probability": 0.6929 }, { "start": 1846.48, "end": 1849.4, "probability": 0.9988 }, { "start": 1850.14, "end": 1855.02, "probability": 0.9443 }, { "start": 1855.18, "end": 1856.67, "probability": 0.5781 }, { "start": 1857.68, "end": 1858.56, "probability": 0.7578 }, { "start": 1859.95, "end": 1864.2, "probability": 0.9718 }, { "start": 1864.2, "end": 1866.76, "probability": 0.9976 }, { "start": 1867.22, "end": 1870.48, "probability": 0.9501 }, { "start": 1870.48, "end": 1873.96, "probability": 0.9484 }, { "start": 1874.5, "end": 1877.82, "probability": 0.9804 }, { "start": 1879.18, "end": 1884.26, "probability": 0.9986 }, { "start": 1884.38, "end": 1888.88, "probability": 0.9622 }, { "start": 1889.76, "end": 1896.28, "probability": 0.9971 }, { "start": 1896.58, "end": 1896.76, "probability": 0.6459 }, { "start": 1897.46, "end": 1897.94, "probability": 0.7697 }, { "start": 1897.98, "end": 1901.36, "probability": 0.9958 }, { "start": 1901.38, "end": 1904.54, "probability": 0.9976 }, { "start": 1904.64, "end": 1906.38, "probability": 0.526 }, { "start": 1906.52, "end": 1910.18, "probability": 0.9937 }, { "start": 1910.9, "end": 1914.08, "probability": 0.9574 }, { "start": 1914.52, "end": 1918.52, "probability": 0.9373 }, { "start": 1919.32, "end": 1920.6, "probability": 0.0973 }, { "start": 1920.68, "end": 1922.14, "probability": 0.6662 }, { "start": 1924.42, "end": 1926.16, "probability": 0.9175 }, { "start": 1926.66, "end": 1929.2, "probability": 0.9866 }, { "start": 1929.5, "end": 1930.2, "probability": 0.9744 }, { "start": 1930.46, "end": 1930.66, "probability": 0.7812 }, { "start": 1931.5, "end": 1934.76, "probability": 0.9875 }, { "start": 1935.44, "end": 1936.68, "probability": 0.925 }, { "start": 1937.36, "end": 1941.26, "probability": 0.9525 }, { "start": 1941.38, "end": 1943.2, "probability": 0.9393 }, { "start": 1944.06, "end": 1948.12, "probability": 0.9901 }, { "start": 1948.12, "end": 1951.34, "probability": 0.9956 }, { "start": 1951.5, "end": 1954.24, "probability": 0.9961 }, { "start": 1954.24, "end": 1958.1, "probability": 0.9714 }, { "start": 1958.56, "end": 1960.48, "probability": 0.4949 }, { "start": 1961.12, "end": 1964.68, "probability": 0.9241 }, { "start": 1964.98, "end": 1965.22, "probability": 0.6813 }, { "start": 1965.28, "end": 1966.38, "probability": 0.8878 }, { "start": 1966.64, "end": 1970.52, "probability": 0.9976 }, { "start": 1970.52, "end": 1975.12, "probability": 0.975 }, { "start": 1975.2, "end": 1976.22, "probability": 0.6608 }, { "start": 1977.42, "end": 1979.96, "probability": 0.5726 }, { "start": 1980.72, "end": 1983.14, "probability": 0.9967 }, { "start": 1983.56, "end": 1987.06, "probability": 0.9623 }, { "start": 1987.24, "end": 1988.96, "probability": 0.7085 }, { "start": 1989.48, "end": 1991.44, "probability": 0.9901 }, { "start": 1992.06, "end": 1994.48, "probability": 0.9764 }, { "start": 1995.62, "end": 1997.1, "probability": 0.6273 }, { "start": 1997.28, "end": 1998.8, "probability": 0.9091 }, { "start": 1999.26, "end": 1999.94, "probability": 0.8649 }, { "start": 2000.42, "end": 2001.54, "probability": 0.8528 }, { "start": 2002.14, "end": 2005.2, "probability": 0.9856 }, { "start": 2005.34, "end": 2009.58, "probability": 0.8245 }, { "start": 2010.36, "end": 2012.58, "probability": 0.9793 }, { "start": 2012.58, "end": 2016.32, "probability": 0.9897 }, { "start": 2016.72, "end": 2020.02, "probability": 0.9779 }, { "start": 2020.18, "end": 2020.4, "probability": 0.2906 }, { "start": 2020.56, "end": 2022.78, "probability": 0.87 }, { "start": 2023.18, "end": 2027.12, "probability": 0.9076 }, { "start": 2027.44, "end": 2030.68, "probability": 0.9797 }, { "start": 2030.68, "end": 2033.6, "probability": 0.8082 }, { "start": 2033.68, "end": 2039.96, "probability": 0.9958 }, { "start": 2040.9, "end": 2043.18, "probability": 0.8187 }, { "start": 2043.26, "end": 2043.66, "probability": 0.8627 }, { "start": 2043.8, "end": 2044.85, "probability": 0.9834 }, { "start": 2045.14, "end": 2045.92, "probability": 0.7247 }, { "start": 2045.96, "end": 2047.38, "probability": 0.9705 }, { "start": 2047.9, "end": 2049.8, "probability": 0.9197 }, { "start": 2050.44, "end": 2053.12, "probability": 0.9114 }, { "start": 2053.12, "end": 2056.32, "probability": 0.999 }, { "start": 2056.38, "end": 2058.84, "probability": 0.9885 }, { "start": 2059.36, "end": 2062.06, "probability": 0.8942 }, { "start": 2062.62, "end": 2064.66, "probability": 0.7596 }, { "start": 2064.84, "end": 2066.26, "probability": 0.9717 }, { "start": 2066.92, "end": 2070.62, "probability": 0.9939 }, { "start": 2070.74, "end": 2073.26, "probability": 0.7151 }, { "start": 2073.8, "end": 2074.68, "probability": 0.8752 }, { "start": 2074.86, "end": 2076.0, "probability": 0.7822 }, { "start": 2076.1, "end": 2078.18, "probability": 0.978 }, { "start": 2078.26, "end": 2082.26, "probability": 0.9504 }, { "start": 2082.42, "end": 2084.2, "probability": 0.7689 }, { "start": 2085.14, "end": 2085.98, "probability": 0.7077 }, { "start": 2086.4, "end": 2091.18, "probability": 0.9854 }, { "start": 2092.0, "end": 2094.6, "probability": 0.8657 }, { "start": 2094.6, "end": 2098.36, "probability": 0.9436 }, { "start": 2098.6, "end": 2101.43, "probability": 0.923 }, { "start": 2102.08, "end": 2102.9, "probability": 0.474 }, { "start": 2103.02, "end": 2103.4, "probability": 0.5717 }, { "start": 2103.5, "end": 2106.26, "probability": 0.9856 }, { "start": 2106.42, "end": 2106.9, "probability": 0.7583 }, { "start": 2107.44, "end": 2110.66, "probability": 0.9843 }, { "start": 2110.66, "end": 2113.42, "probability": 0.9949 }, { "start": 2113.64, "end": 2114.42, "probability": 0.7993 }, { "start": 2114.86, "end": 2119.22, "probability": 0.9959 }, { "start": 2119.22, "end": 2121.58, "probability": 0.9984 }, { "start": 2121.7, "end": 2126.22, "probability": 0.9961 }, { "start": 2126.32, "end": 2127.78, "probability": 0.0046 }, { "start": 2127.96, "end": 2129.06, "probability": 0.7681 }, { "start": 2129.62, "end": 2130.36, "probability": 0.4971 }, { "start": 2130.36, "end": 2132.92, "probability": 0.9847 }, { "start": 2134.16, "end": 2135.18, "probability": 0.4984 }, { "start": 2135.6, "end": 2135.6, "probability": 0.0442 }, { "start": 2135.6, "end": 2136.56, "probability": 0.3227 }, { "start": 2136.76, "end": 2139.04, "probability": 0.6245 }, { "start": 2139.1, "end": 2139.46, "probability": 0.1973 }, { "start": 2139.46, "end": 2141.91, "probability": 0.0939 }, { "start": 2142.82, "end": 2146.23, "probability": 0.2998 }, { "start": 2147.8, "end": 2147.8, "probability": 0.0117 }, { "start": 2147.8, "end": 2147.8, "probability": 0.0253 }, { "start": 2147.8, "end": 2147.8, "probability": 0.0755 }, { "start": 2147.8, "end": 2147.8, "probability": 0.0245 }, { "start": 2147.8, "end": 2150.8, "probability": 0.8761 }, { "start": 2151.54, "end": 2152.34, "probability": 0.4868 }, { "start": 2156.64, "end": 2156.74, "probability": 0.1219 }, { "start": 2157.86, "end": 2158.8, "probability": 0.0987 }, { "start": 2158.9, "end": 2159.06, "probability": 0.0569 }, { "start": 2159.06, "end": 2159.06, "probability": 0.1655 }, { "start": 2159.06, "end": 2159.92, "probability": 0.3812 }, { "start": 2160.06, "end": 2160.6, "probability": 0.0722 }, { "start": 2160.68, "end": 2161.52, "probability": 0.4547 }, { "start": 2161.94, "end": 2162.4, "probability": 0.1394 }, { "start": 2162.76, "end": 2162.86, "probability": 0.0913 }, { "start": 2162.86, "end": 2163.82, "probability": 0.611 }, { "start": 2163.86, "end": 2165.76, "probability": 0.9556 }, { "start": 2166.22, "end": 2166.22, "probability": 0.0453 }, { "start": 2166.22, "end": 2166.7, "probability": 0.4153 }, { "start": 2167.56, "end": 2169.62, "probability": 0.9576 }, { "start": 2169.62, "end": 2171.98, "probability": 0.8743 }, { "start": 2172.96, "end": 2178.1, "probability": 0.9318 }, { "start": 2179.1, "end": 2179.82, "probability": 0.7615 }, { "start": 2180.06, "end": 2183.9, "probability": 0.9427 }, { "start": 2183.9, "end": 2187.2, "probability": 0.9922 }, { "start": 2187.3, "end": 2189.64, "probability": 0.9865 }, { "start": 2190.24, "end": 2192.36, "probability": 0.8 }, { "start": 2192.68, "end": 2195.06, "probability": 0.9814 }, { "start": 2195.32, "end": 2198.88, "probability": 0.9684 }, { "start": 2199.02, "end": 2200.48, "probability": 0.8631 }, { "start": 2200.56, "end": 2202.96, "probability": 0.9808 }, { "start": 2203.74, "end": 2206.94, "probability": 0.9824 }, { "start": 2207.28, "end": 2212.88, "probability": 0.9838 }, { "start": 2213.04, "end": 2217.78, "probability": 0.9988 }, { "start": 2217.78, "end": 2220.16, "probability": 0.9984 }, { "start": 2220.48, "end": 2224.3, "probability": 0.9976 }, { "start": 2224.96, "end": 2229.42, "probability": 0.9984 }, { "start": 2230.42, "end": 2234.64, "probability": 0.8126 }, { "start": 2235.32, "end": 2238.88, "probability": 0.9941 }, { "start": 2238.88, "end": 2242.18, "probability": 0.9973 }, { "start": 2242.3, "end": 2243.12, "probability": 0.5036 }, { "start": 2243.58, "end": 2245.94, "probability": 0.9952 }, { "start": 2245.94, "end": 2249.25, "probability": 0.9756 }, { "start": 2249.54, "end": 2254.86, "probability": 0.9854 }, { "start": 2255.9, "end": 2258.66, "probability": 0.9976 }, { "start": 2258.66, "end": 2261.16, "probability": 0.8579 }, { "start": 2261.86, "end": 2263.92, "probability": 0.1455 }, { "start": 2264.06, "end": 2265.3, "probability": 0.5251 }, { "start": 2265.94, "end": 2268.66, "probability": 0.3811 }, { "start": 2269.04, "end": 2270.04, "probability": 0.856 }, { "start": 2270.1, "end": 2270.64, "probability": 0.655 }, { "start": 2270.75, "end": 2271.56, "probability": 0.1474 }, { "start": 2271.56, "end": 2273.12, "probability": 0.7831 }, { "start": 2273.38, "end": 2273.54, "probability": 0.1662 }, { "start": 2273.54, "end": 2273.9, "probability": 0.3498 }, { "start": 2274.06, "end": 2274.34, "probability": 0.0408 }, { "start": 2274.34, "end": 2275.22, "probability": 0.2416 }, { "start": 2276.04, "end": 2276.66, "probability": 0.322 }, { "start": 2276.74, "end": 2279.54, "probability": 0.9243 }, { "start": 2280.14, "end": 2280.34, "probability": 0.6434 }, { "start": 2280.86, "end": 2282.77, "probability": 0.9368 }, { "start": 2283.36, "end": 2284.36, "probability": 0.53 }, { "start": 2285.12, "end": 2287.44, "probability": 0.2558 }, { "start": 2288.1, "end": 2289.12, "probability": 0.7426 }, { "start": 2289.4, "end": 2292.66, "probability": 0.7543 }, { "start": 2292.74, "end": 2293.34, "probability": 0.6974 }, { "start": 2293.78, "end": 2293.82, "probability": 0.1083 }, { "start": 2293.82, "end": 2293.94, "probability": 0.6801 }, { "start": 2294.1, "end": 2297.28, "probability": 0.9883 }, { "start": 2297.38, "end": 2298.88, "probability": 0.5911 }, { "start": 2299.26, "end": 2303.6, "probability": 0.9365 }, { "start": 2304.4, "end": 2304.72, "probability": 0.6626 }, { "start": 2305.1, "end": 2308.98, "probability": 0.9971 }, { "start": 2309.02, "end": 2314.3, "probability": 0.9971 }, { "start": 2314.58, "end": 2316.8, "probability": 0.9362 }, { "start": 2317.2, "end": 2317.94, "probability": 0.9746 }, { "start": 2318.16, "end": 2319.25, "probability": 0.9971 }, { "start": 2319.48, "end": 2323.36, "probability": 0.998 }, { "start": 2323.46, "end": 2324.96, "probability": 0.9912 }, { "start": 2325.06, "end": 2328.36, "probability": 0.9962 }, { "start": 2329.5, "end": 2329.82, "probability": 0.0539 }, { "start": 2330.45, "end": 2335.46, "probability": 0.8989 }, { "start": 2335.84, "end": 2338.98, "probability": 0.9411 }, { "start": 2339.9, "end": 2342.7, "probability": 0.7609 }, { "start": 2342.7, "end": 2345.08, "probability": 0.9951 }, { "start": 2345.92, "end": 2348.38, "probability": 0.8204 }, { "start": 2348.94, "end": 2351.7, "probability": 0.804 }, { "start": 2351.86, "end": 2353.06, "probability": 0.7438 }, { "start": 2353.22, "end": 2355.5, "probability": 0.9836 }, { "start": 2356.78, "end": 2357.16, "probability": 0.1065 }, { "start": 2357.16, "end": 2357.34, "probability": 0.3196 }, { "start": 2358.14, "end": 2358.64, "probability": 0.4293 }, { "start": 2359.14, "end": 2359.78, "probability": 0.2971 }, { "start": 2359.86, "end": 2360.12, "probability": 0.2425 }, { "start": 2360.76, "end": 2361.72, "probability": 0.8655 }, { "start": 2361.84, "end": 2362.86, "probability": 0.8577 }, { "start": 2362.94, "end": 2364.78, "probability": 0.9123 }, { "start": 2364.84, "end": 2365.14, "probability": 0.1127 }, { "start": 2365.38, "end": 2366.24, "probability": 0.9592 }, { "start": 2366.6, "end": 2367.44, "probability": 0.974 }, { "start": 2367.54, "end": 2370.98, "probability": 0.9375 }, { "start": 2371.74, "end": 2373.1, "probability": 0.9099 }, { "start": 2373.74, "end": 2377.06, "probability": 0.9721 }, { "start": 2377.36, "end": 2378.78, "probability": 0.9954 }, { "start": 2378.84, "end": 2380.0, "probability": 0.5069 }, { "start": 2380.62, "end": 2382.08, "probability": 0.9567 }, { "start": 2382.32, "end": 2384.0, "probability": 0.9604 }, { "start": 2384.7, "end": 2385.52, "probability": 0.1068 }, { "start": 2385.52, "end": 2386.61, "probability": 0.9482 }, { "start": 2386.76, "end": 2388.0, "probability": 0.9898 }, { "start": 2388.04, "end": 2390.23, "probability": 0.9878 }, { "start": 2391.44, "end": 2395.58, "probability": 0.8217 }, { "start": 2395.58, "end": 2398.18, "probability": 0.9773 }, { "start": 2399.7, "end": 2399.94, "probability": 0.0424 }, { "start": 2399.94, "end": 2399.94, "probability": 0.0317 }, { "start": 2399.94, "end": 2400.66, "probability": 0.3616 }, { "start": 2401.32, "end": 2403.96, "probability": 0.9761 }, { "start": 2404.74, "end": 2406.2, "probability": 0.9762 }, { "start": 2406.48, "end": 2408.28, "probability": 0.9969 }, { "start": 2408.42, "end": 2410.29, "probability": 0.5543 }, { "start": 2410.6, "end": 2413.56, "probability": 0.9421 }, { "start": 2414.26, "end": 2418.3, "probability": 0.9927 }, { "start": 2418.3, "end": 2421.46, "probability": 0.9343 }, { "start": 2421.84, "end": 2425.66, "probability": 0.9879 }, { "start": 2426.28, "end": 2428.12, "probability": 0.9731 }, { "start": 2428.36, "end": 2429.6, "probability": 0.9312 }, { "start": 2430.22, "end": 2432.72, "probability": 0.85 }, { "start": 2432.82, "end": 2433.24, "probability": 0.8776 }, { "start": 2433.78, "end": 2436.2, "probability": 0.9313 }, { "start": 2436.68, "end": 2437.96, "probability": 0.9695 }, { "start": 2438.06, "end": 2438.8, "probability": 0.8037 }, { "start": 2438.88, "end": 2441.26, "probability": 0.9765 }, { "start": 2441.9, "end": 2443.9, "probability": 0.9546 }, { "start": 2444.36, "end": 2447.26, "probability": 0.9781 }, { "start": 2448.64, "end": 2451.4, "probability": 0.52 }, { "start": 2452.08, "end": 2452.92, "probability": 0.2377 }, { "start": 2453.22, "end": 2454.38, "probability": 0.7429 }, { "start": 2454.98, "end": 2458.3, "probability": 0.9297 }, { "start": 2458.82, "end": 2462.42, "probability": 0.9828 }, { "start": 2462.62, "end": 2463.96, "probability": 0.9509 }, { "start": 2464.04, "end": 2466.7, "probability": 0.9731 }, { "start": 2467.38, "end": 2469.56, "probability": 0.9208 }, { "start": 2470.74, "end": 2471.0, "probability": 0.8804 }, { "start": 2471.1, "end": 2472.85, "probability": 0.9941 }, { "start": 2472.97, "end": 2476.97, "probability": 0.9329 }, { "start": 2477.05, "end": 2477.85, "probability": 0.7369 }, { "start": 2478.47, "end": 2481.41, "probability": 0.8413 }, { "start": 2481.77, "end": 2482.44, "probability": 0.8156 }, { "start": 2483.85, "end": 2486.17, "probability": 0.676 }, { "start": 2486.69, "end": 2486.93, "probability": 0.13 }, { "start": 2486.93, "end": 2488.89, "probability": 0.8903 }, { "start": 2489.29, "end": 2492.17, "probability": 0.8893 }, { "start": 2492.31, "end": 2493.61, "probability": 0.9377 }, { "start": 2494.05, "end": 2495.79, "probability": 0.9598 }, { "start": 2496.09, "end": 2496.66, "probability": 0.2129 }, { "start": 2497.05, "end": 2500.95, "probability": 0.975 }, { "start": 2501.49, "end": 2504.65, "probability": 0.8218 }, { "start": 2505.39, "end": 2507.41, "probability": 0.9411 }, { "start": 2507.57, "end": 2511.57, "probability": 0.9162 }, { "start": 2512.09, "end": 2515.21, "probability": 0.7941 }, { "start": 2515.39, "end": 2516.68, "probability": 0.9851 }, { "start": 2517.59, "end": 2524.61, "probability": 0.979 }, { "start": 2524.71, "end": 2530.13, "probability": 0.9696 }, { "start": 2530.13, "end": 2535.23, "probability": 0.9995 }, { "start": 2535.95, "end": 2538.93, "probability": 0.9985 }, { "start": 2539.69, "end": 2540.37, "probability": 0.6468 }, { "start": 2540.99, "end": 2542.25, "probability": 0.9073 }, { "start": 2556.97, "end": 2557.37, "probability": 0.158 }, { "start": 2557.67, "end": 2557.77, "probability": 0.1071 }, { "start": 2557.77, "end": 2557.77, "probability": 0.1474 }, { "start": 2557.77, "end": 2557.99, "probability": 0.0432 }, { "start": 2557.99, "end": 2558.07, "probability": 0.0761 }, { "start": 2558.07, "end": 2558.17, "probability": 0.1094 }, { "start": 2558.17, "end": 2558.21, "probability": 0.0674 }, { "start": 2590.43, "end": 2594.61, "probability": 0.7441 }, { "start": 2596.07, "end": 2597.29, "probability": 0.8708 }, { "start": 2598.39, "end": 2599.25, "probability": 0.7994 }, { "start": 2600.83, "end": 2601.41, "probability": 0.7219 }, { "start": 2602.23, "end": 2603.95, "probability": 0.9819 }, { "start": 2606.45, "end": 2608.81, "probability": 0.9741 }, { "start": 2609.81, "end": 2610.61, "probability": 0.9711 }, { "start": 2611.55, "end": 2612.95, "probability": 0.9824 }, { "start": 2613.85, "end": 2615.87, "probability": 0.9961 }, { "start": 2617.17, "end": 2618.87, "probability": 0.9089 }, { "start": 2620.81, "end": 2622.75, "probability": 0.6772 }, { "start": 2623.59, "end": 2623.91, "probability": 0.9099 }, { "start": 2624.79, "end": 2625.29, "probability": 0.8352 }, { "start": 2626.19, "end": 2627.19, "probability": 0.98 }, { "start": 2628.39, "end": 2629.77, "probability": 0.9665 }, { "start": 2630.61, "end": 2632.09, "probability": 0.9468 }, { "start": 2633.41, "end": 2634.21, "probability": 0.7772 }, { "start": 2635.71, "end": 2636.77, "probability": 0.8339 }, { "start": 2638.07, "end": 2639.3, "probability": 0.998 }, { "start": 2640.09, "end": 2641.07, "probability": 0.8176 }, { "start": 2641.89, "end": 2644.13, "probability": 0.9266 }, { "start": 2645.31, "end": 2648.04, "probability": 0.9863 }, { "start": 2649.11, "end": 2651.85, "probability": 0.9657 }, { "start": 2653.07, "end": 2655.23, "probability": 0.9992 }, { "start": 2656.03, "end": 2658.65, "probability": 0.9293 }, { "start": 2659.75, "end": 2663.71, "probability": 0.9943 }, { "start": 2664.87, "end": 2669.73, "probability": 0.9543 }, { "start": 2669.99, "end": 2671.17, "probability": 0.9531 }, { "start": 2672.33, "end": 2673.15, "probability": 0.6072 }, { "start": 2673.81, "end": 2674.29, "probability": 0.6553 }, { "start": 2674.81, "end": 2675.93, "probability": 0.9178 }, { "start": 2676.45, "end": 2678.89, "probability": 0.9462 }, { "start": 2679.65, "end": 2680.23, "probability": 0.7657 }, { "start": 2682.09, "end": 2684.33, "probability": 0.9614 }, { "start": 2685.17, "end": 2686.87, "probability": 0.6094 }, { "start": 2688.05, "end": 2690.37, "probability": 0.9613 }, { "start": 2690.95, "end": 2692.45, "probability": 0.9345 }, { "start": 2694.07, "end": 2694.75, "probability": 0.7305 }, { "start": 2695.23, "end": 2696.63, "probability": 0.9957 }, { "start": 2697.15, "end": 2700.39, "probability": 0.8431 }, { "start": 2701.15, "end": 2703.61, "probability": 0.9945 }, { "start": 2704.59, "end": 2708.07, "probability": 0.9206 }, { "start": 2709.97, "end": 2711.07, "probability": 0.9081 }, { "start": 2711.71, "end": 2712.69, "probability": 0.8888 }, { "start": 2713.51, "end": 2715.17, "probability": 0.8021 }, { "start": 2716.41, "end": 2718.63, "probability": 0.9489 }, { "start": 2718.69, "end": 2719.37, "probability": 0.9364 }, { "start": 2720.79, "end": 2723.81, "probability": 0.9912 }, { "start": 2725.59, "end": 2726.57, "probability": 0.9734 }, { "start": 2727.41, "end": 2728.57, "probability": 0.9848 }, { "start": 2728.69, "end": 2729.77, "probability": 0.9924 }, { "start": 2729.97, "end": 2730.59, "probability": 0.9728 }, { "start": 2731.01, "end": 2732.45, "probability": 0.9882 }, { "start": 2732.91, "end": 2734.47, "probability": 0.9917 }, { "start": 2735.17, "end": 2736.37, "probability": 0.9629 }, { "start": 2737.15, "end": 2737.99, "probability": 0.5852 }, { "start": 2738.79, "end": 2739.37, "probability": 0.8423 }, { "start": 2739.65, "end": 2742.03, "probability": 0.8325 }, { "start": 2742.03, "end": 2744.31, "probability": 0.9758 }, { "start": 2747.17, "end": 2748.37, "probability": 0.9402 }, { "start": 2749.05, "end": 2749.97, "probability": 0.8995 }, { "start": 2751.05, "end": 2751.95, "probability": 0.6523 }, { "start": 2752.83, "end": 2755.07, "probability": 0.9485 }, { "start": 2755.91, "end": 2757.93, "probability": 0.9567 }, { "start": 2759.43, "end": 2760.25, "probability": 0.8141 }, { "start": 2761.11, "end": 2763.93, "probability": 0.9668 }, { "start": 2764.69, "end": 2766.69, "probability": 0.9807 }, { "start": 2767.53, "end": 2770.79, "probability": 0.9955 }, { "start": 2771.15, "end": 2774.91, "probability": 0.901 }, { "start": 2775.77, "end": 2776.55, "probability": 0.9341 }, { "start": 2777.35, "end": 2778.14, "probability": 0.7083 }, { "start": 2779.25, "end": 2781.69, "probability": 0.9473 }, { "start": 2782.49, "end": 2783.51, "probability": 0.9316 }, { "start": 2784.31, "end": 2784.89, "probability": 0.9521 }, { "start": 2785.59, "end": 2786.45, "probability": 0.9601 }, { "start": 2786.99, "end": 2789.07, "probability": 0.8766 }, { "start": 2790.23, "end": 2791.49, "probability": 0.8924 }, { "start": 2792.19, "end": 2793.59, "probability": 0.7433 }, { "start": 2794.53, "end": 2798.97, "probability": 0.998 }, { "start": 2799.93, "end": 2803.23, "probability": 0.9844 }, { "start": 2804.05, "end": 2804.46, "probability": 0.973 }, { "start": 2805.39, "end": 2805.81, "probability": 0.6602 }, { "start": 2806.75, "end": 2808.27, "probability": 0.9719 }, { "start": 2809.07, "end": 2809.68, "probability": 0.9539 }, { "start": 2810.55, "end": 2811.35, "probability": 0.9807 }, { "start": 2812.11, "end": 2815.77, "probability": 0.6163 }, { "start": 2817.17, "end": 2817.17, "probability": 0.2031 }, { "start": 2817.17, "end": 2817.17, "probability": 0.041 }, { "start": 2817.17, "end": 2817.31, "probability": 0.4194 }, { "start": 2818.49, "end": 2820.55, "probability": 0.8085 }, { "start": 2821.29, "end": 2822.17, "probability": 0.8628 }, { "start": 2822.71, "end": 2825.78, "probability": 0.9384 }, { "start": 2826.93, "end": 2827.39, "probability": 0.9276 }, { "start": 2827.81, "end": 2828.73, "probability": 0.8273 }, { "start": 2828.91, "end": 2830.23, "probability": 0.9656 }, { "start": 2830.95, "end": 2832.67, "probability": 0.8928 }, { "start": 2833.81, "end": 2835.33, "probability": 0.9634 }, { "start": 2835.87, "end": 2836.41, "probability": 0.9526 }, { "start": 2837.27, "end": 2838.21, "probability": 0.9927 }, { "start": 2838.41, "end": 2840.39, "probability": 0.873 }, { "start": 2840.73, "end": 2843.03, "probability": 0.9908 }, { "start": 2843.81, "end": 2844.45, "probability": 0.7681 }, { "start": 2847.17, "end": 2847.65, "probability": 0.959 }, { "start": 2847.65, "end": 2848.83, "probability": 0.3138 }, { "start": 2849.83, "end": 2850.75, "probability": 0.9663 }, { "start": 2851.87, "end": 2852.19, "probability": 0.9399 }, { "start": 2853.35, "end": 2855.81, "probability": 0.9736 }, { "start": 2856.75, "end": 2859.43, "probability": 0.994 }, { "start": 2860.39, "end": 2861.12, "probability": 0.9574 }, { "start": 2861.73, "end": 2864.37, "probability": 0.9977 }, { "start": 2864.43, "end": 2864.89, "probability": 0.7807 }, { "start": 2865.53, "end": 2866.17, "probability": 0.9709 }, { "start": 2866.99, "end": 2868.63, "probability": 0.9597 }, { "start": 2869.55, "end": 2871.95, "probability": 0.9743 }, { "start": 2872.57, "end": 2873.52, "probability": 0.9897 }, { "start": 2875.13, "end": 2877.85, "probability": 0.8574 }, { "start": 2878.53, "end": 2881.43, "probability": 0.981 }, { "start": 2881.59, "end": 2884.29, "probability": 0.8468 }, { "start": 2884.87, "end": 2889.31, "probability": 0.9954 }, { "start": 2890.67, "end": 2894.71, "probability": 0.8033 }, { "start": 2895.45, "end": 2896.29, "probability": 0.9012 }, { "start": 2898.25, "end": 2899.05, "probability": 0.5943 }, { "start": 2899.21, "end": 2899.61, "probability": 0.601 }, { "start": 2900.19, "end": 2902.75, "probability": 0.9708 }, { "start": 2903.45, "end": 2905.95, "probability": 0.9955 }, { "start": 2906.65, "end": 2908.25, "probability": 0.9971 }, { "start": 2908.27, "end": 2909.53, "probability": 0.7924 }, { "start": 2910.33, "end": 2913.29, "probability": 0.9654 }, { "start": 2913.89, "end": 2918.51, "probability": 0.9985 }, { "start": 2919.27, "end": 2920.93, "probability": 0.9328 }, { "start": 2921.83, "end": 2922.67, "probability": 0.9985 }, { "start": 2923.37, "end": 2925.37, "probability": 0.9916 }, { "start": 2925.89, "end": 2928.41, "probability": 0.9954 }, { "start": 2928.81, "end": 2929.27, "probability": 0.4656 }, { "start": 2929.59, "end": 2929.73, "probability": 0.4847 }, { "start": 2929.73, "end": 2931.42, "probability": 0.9769 }, { "start": 2932.23, "end": 2932.79, "probability": 0.9655 }, { "start": 2933.41, "end": 2933.55, "probability": 0.2616 }, { "start": 2934.14, "end": 2937.13, "probability": 0.4885 }, { "start": 2937.35, "end": 2939.19, "probability": 0.0467 }, { "start": 2939.41, "end": 2940.67, "probability": 0.9667 }, { "start": 2940.79, "end": 2941.83, "probability": 0.6839 }, { "start": 2942.59, "end": 2943.85, "probability": 0.754 }, { "start": 2944.45, "end": 2950.89, "probability": 0.8933 }, { "start": 2951.69, "end": 2952.29, "probability": 0.0155 }, { "start": 2952.91, "end": 2954.39, "probability": 0.0411 }, { "start": 2956.62, "end": 2957.81, "probability": 0.0197 }, { "start": 2958.01, "end": 2958.05, "probability": 0.0942 }, { "start": 2958.05, "end": 2958.05, "probability": 0.1067 }, { "start": 2958.05, "end": 2960.95, "probability": 0.9453 }, { "start": 2961.79, "end": 2967.29, "probability": 0.8428 }, { "start": 2967.35, "end": 2969.19, "probability": 0.5113 }, { "start": 2969.41, "end": 2970.81, "probability": 0.9856 }, { "start": 2970.89, "end": 2976.15, "probability": 0.988 }, { "start": 2976.81, "end": 2977.83, "probability": 0.9572 }, { "start": 2977.95, "end": 2979.91, "probability": 0.9941 }, { "start": 2980.55, "end": 2982.57, "probability": 0.9611 }, { "start": 2983.39, "end": 2985.27, "probability": 0.8366 }, { "start": 2985.27, "end": 2985.95, "probability": 0.9398 }, { "start": 2987.25, "end": 2992.05, "probability": 0.9639 }, { "start": 2993.31, "end": 2996.87, "probability": 0.8948 }, { "start": 2997.45, "end": 2998.73, "probability": 0.9682 }, { "start": 3000.45, "end": 3002.31, "probability": 0.9797 }, { "start": 3003.09, "end": 3004.69, "probability": 0.8192 }, { "start": 3004.95, "end": 3005.51, "probability": 0.6764 }, { "start": 3005.65, "end": 3007.13, "probability": 0.9525 }, { "start": 3008.79, "end": 3009.87, "probability": 0.9722 }, { "start": 3010.45, "end": 3015.29, "probability": 0.9712 }, { "start": 3015.93, "end": 3018.23, "probability": 0.8949 }, { "start": 3019.07, "end": 3020.67, "probability": 0.6622 }, { "start": 3020.75, "end": 3024.45, "probability": 0.9932 }, { "start": 3024.99, "end": 3026.69, "probability": 0.861 }, { "start": 3027.53, "end": 3028.49, "probability": 0.9933 }, { "start": 3029.15, "end": 3030.15, "probability": 0.8306 }, { "start": 3030.97, "end": 3033.57, "probability": 0.8467 }, { "start": 3034.33, "end": 3035.51, "probability": 0.9814 }, { "start": 3036.61, "end": 3037.23, "probability": 0.9959 }, { "start": 3038.55, "end": 3043.21, "probability": 0.9973 }, { "start": 3044.19, "end": 3046.47, "probability": 0.9845 }, { "start": 3047.57, "end": 3051.05, "probability": 0.9781 }, { "start": 3051.99, "end": 3054.07, "probability": 0.9965 }, { "start": 3054.95, "end": 3059.53, "probability": 0.9987 }, { "start": 3060.25, "end": 3060.65, "probability": 0.9292 }, { "start": 3061.35, "end": 3063.49, "probability": 0.8538 }, { "start": 3064.71, "end": 3068.35, "probability": 0.9718 }, { "start": 3069.05, "end": 3071.07, "probability": 0.9014 }, { "start": 3071.69, "end": 3072.59, "probability": 0.9463 }, { "start": 3073.19, "end": 3074.93, "probability": 0.979 }, { "start": 3077.19, "end": 3077.91, "probability": 0.8134 }, { "start": 3078.63, "end": 3081.25, "probability": 0.8735 }, { "start": 3082.51, "end": 3083.95, "probability": 0.8681 }, { "start": 3085.05, "end": 3090.35, "probability": 0.9801 }, { "start": 3091.17, "end": 3093.75, "probability": 0.9395 }, { "start": 3094.47, "end": 3096.57, "probability": 0.9962 }, { "start": 3097.77, "end": 3099.51, "probability": 0.7346 }, { "start": 3100.23, "end": 3101.34, "probability": 0.9785 }, { "start": 3102.33, "end": 3103.49, "probability": 0.5842 }, { "start": 3104.05, "end": 3106.51, "probability": 0.973 }, { "start": 3107.23, "end": 3108.61, "probability": 0.8398 }, { "start": 3109.19, "end": 3112.05, "probability": 0.9915 }, { "start": 3112.91, "end": 3114.49, "probability": 0.9717 }, { "start": 3115.17, "end": 3117.45, "probability": 0.4951 }, { "start": 3117.45, "end": 3118.92, "probability": 0.9509 }, { "start": 3119.93, "end": 3125.67, "probability": 0.9854 }, { "start": 3126.75, "end": 3129.11, "probability": 0.9561 }, { "start": 3130.01, "end": 3132.39, "probability": 0.7992 }, { "start": 3132.39, "end": 3136.69, "probability": 0.9913 }, { "start": 3137.75, "end": 3142.13, "probability": 0.9935 }, { "start": 3143.87, "end": 3145.17, "probability": 0.9307 }, { "start": 3145.91, "end": 3148.13, "probability": 0.9938 }, { "start": 3148.89, "end": 3153.55, "probability": 0.9894 }, { "start": 3154.37, "end": 3155.57, "probability": 0.999 }, { "start": 3156.15, "end": 3160.19, "probability": 0.9558 }, { "start": 3160.87, "end": 3166.35, "probability": 0.9929 }, { "start": 3167.05, "end": 3169.21, "probability": 0.9961 }, { "start": 3169.65, "end": 3172.37, "probability": 0.9972 }, { "start": 3173.07, "end": 3174.17, "probability": 0.8543 }, { "start": 3175.49, "end": 3176.69, "probability": 0.8284 }, { "start": 3176.77, "end": 3179.21, "probability": 0.9759 }, { "start": 3179.73, "end": 3180.97, "probability": 0.9443 }, { "start": 3181.51, "end": 3183.08, "probability": 0.9935 }, { "start": 3183.27, "end": 3184.17, "probability": 0.8956 }, { "start": 3184.65, "end": 3185.47, "probability": 0.9526 }, { "start": 3186.15, "end": 3187.85, "probability": 0.9551 }, { "start": 3188.79, "end": 3191.39, "probability": 0.9941 }, { "start": 3192.19, "end": 3193.97, "probability": 0.7946 }, { "start": 3194.71, "end": 3197.77, "probability": 0.9889 }, { "start": 3198.51, "end": 3201.83, "probability": 0.9244 }, { "start": 3202.39, "end": 3203.53, "probability": 0.9401 }, { "start": 3204.13, "end": 3207.35, "probability": 0.9788 }, { "start": 3207.47, "end": 3207.71, "probability": 0.8059 }, { "start": 3209.17, "end": 3209.81, "probability": 0.6519 }, { "start": 3210.83, "end": 3213.09, "probability": 0.9006 }, { "start": 3220.05, "end": 3220.95, "probability": 0.1929 }, { "start": 3245.57, "end": 3246.57, "probability": 0.3558 }, { "start": 3247.83, "end": 3250.11, "probability": 0.8346 }, { "start": 3252.43, "end": 3254.99, "probability": 0.8075 }, { "start": 3256.77, "end": 3257.49, "probability": 0.9277 }, { "start": 3258.65, "end": 3262.39, "probability": 0.9499 }, { "start": 3265.09, "end": 3266.05, "probability": 0.1569 }, { "start": 3266.23, "end": 3267.09, "probability": 0.0236 }, { "start": 3267.27, "end": 3267.75, "probability": 0.1553 }, { "start": 3267.75, "end": 3268.35, "probability": 0.0315 }, { "start": 3270.97, "end": 3275.67, "probability": 0.6281 }, { "start": 3275.85, "end": 3279.49, "probability": 0.3583 }, { "start": 3279.79, "end": 3281.15, "probability": 0.8377 }, { "start": 3285.51, "end": 3288.77, "probability": 0.8951 }, { "start": 3289.71, "end": 3291.76, "probability": 0.2145 }, { "start": 3292.65, "end": 3293.21, "probability": 0.5677 }, { "start": 3293.21, "end": 3294.71, "probability": 0.2936 }, { "start": 3296.73, "end": 3299.45, "probability": 0.99 }, { "start": 3300.11, "end": 3303.71, "probability": 0.9702 }, { "start": 3304.47, "end": 3307.87, "probability": 0.9188 }, { "start": 3308.39, "end": 3309.87, "probability": 0.9936 }, { "start": 3310.77, "end": 3312.19, "probability": 0.6452 }, { "start": 3313.17, "end": 3314.47, "probability": 0.6939 }, { "start": 3314.87, "end": 3316.11, "probability": 0.916 }, { "start": 3316.77, "end": 3318.33, "probability": 0.9679 }, { "start": 3318.73, "end": 3322.81, "probability": 0.0925 }, { "start": 3322.81, "end": 3324.99, "probability": 0.1733 }, { "start": 3325.01, "end": 3328.03, "probability": 0.766 }, { "start": 3328.37, "end": 3331.01, "probability": 0.8636 }, { "start": 3331.61, "end": 3332.85, "probability": 0.9902 }, { "start": 3334.01, "end": 3337.23, "probability": 0.8135 }, { "start": 3340.97, "end": 3342.91, "probability": 0.1682 }, { "start": 3343.79, "end": 3343.79, "probability": 0.0004 }, { "start": 3344.25, "end": 3344.33, "probability": 0.3684 }, { "start": 3344.33, "end": 3344.33, "probability": 0.1368 }, { "start": 3344.33, "end": 3344.33, "probability": 0.1535 }, { "start": 3344.33, "end": 3344.97, "probability": 0.5791 }, { "start": 3345.41, "end": 3346.07, "probability": 0.3912 }, { "start": 3346.15, "end": 3346.43, "probability": 0.1165 }, { "start": 3346.43, "end": 3346.75, "probability": 0.2132 }, { "start": 3347.07, "end": 3347.11, "probability": 0.323 }, { "start": 3347.11, "end": 3350.23, "probability": 0.8287 }, { "start": 3351.17, "end": 3352.89, "probability": 0.8678 }, { "start": 3356.37, "end": 3356.91, "probability": 0.4931 }, { "start": 3357.71, "end": 3358.65, "probability": 0.0075 }, { "start": 3358.65, "end": 3358.65, "probability": 0.2429 }, { "start": 3358.65, "end": 3358.93, "probability": 0.4836 }, { "start": 3359.51, "end": 3361.11, "probability": 0.6693 }, { "start": 3361.95, "end": 3364.19, "probability": 0.5633 }, { "start": 3364.23, "end": 3365.75, "probability": 0.7511 }, { "start": 3367.23, "end": 3371.19, "probability": 0.9958 }, { "start": 3372.31, "end": 3374.55, "probability": 0.9898 }, { "start": 3375.49, "end": 3376.65, "probability": 0.857 }, { "start": 3377.59, "end": 3378.89, "probability": 0.9972 }, { "start": 3379.61, "end": 3380.59, "probability": 0.9915 }, { "start": 3382.37, "end": 3384.43, "probability": 0.9929 }, { "start": 3387.09, "end": 3388.11, "probability": 0.8752 }, { "start": 3388.97, "end": 3395.13, "probability": 0.926 }, { "start": 3395.77, "end": 3399.29, "probability": 0.9893 }, { "start": 3400.21, "end": 3401.37, "probability": 0.9046 }, { "start": 3402.39, "end": 3407.03, "probability": 0.9098 }, { "start": 3407.73, "end": 3412.03, "probability": 0.9914 }, { "start": 3414.01, "end": 3415.67, "probability": 0.7272 }, { "start": 3416.25, "end": 3419.29, "probability": 0.9857 }, { "start": 3419.73, "end": 3423.05, "probability": 0.9583 }, { "start": 3423.59, "end": 3424.39, "probability": 0.9361 }, { "start": 3424.95, "end": 3428.03, "probability": 0.9047 }, { "start": 3429.39, "end": 3430.81, "probability": 0.9147 }, { "start": 3431.45, "end": 3433.21, "probability": 0.7425 }, { "start": 3434.21, "end": 3435.15, "probability": 0.7535 }, { "start": 3435.93, "end": 3437.93, "probability": 0.0999 }, { "start": 3437.93, "end": 3439.97, "probability": 0.8795 }, { "start": 3441.05, "end": 3441.85, "probability": 0.1574 }, { "start": 3441.85, "end": 3444.29, "probability": 0.3582 }, { "start": 3444.33, "end": 3445.65, "probability": 0.3485 }, { "start": 3446.01, "end": 3447.24, "probability": 0.5098 }, { "start": 3453.91, "end": 3457.79, "probability": 0.9911 }, { "start": 3458.59, "end": 3462.77, "probability": 0.9748 }, { "start": 3463.01, "end": 3466.13, "probability": 0.9922 }, { "start": 3466.39, "end": 3466.59, "probability": 0.3132 }, { "start": 3466.61, "end": 3468.95, "probability": 0.2611 }, { "start": 3472.09, "end": 3472.17, "probability": 0.0942 }, { "start": 3472.17, "end": 3472.21, "probability": 0.1085 }, { "start": 3472.21, "end": 3472.89, "probability": 0.2595 }, { "start": 3472.91, "end": 3473.37, "probability": 0.4494 }, { "start": 3473.83, "end": 3474.53, "probability": 0.5089 }, { "start": 3474.75, "end": 3477.27, "probability": 0.8312 }, { "start": 3478.05, "end": 3479.25, "probability": 0.9574 }, { "start": 3479.75, "end": 3480.05, "probability": 0.0218 }, { "start": 3480.05, "end": 3481.67, "probability": 0.7107 }, { "start": 3482.17, "end": 3482.81, "probability": 0.0921 }, { "start": 3486.75, "end": 3488.69, "probability": 0.5626 }, { "start": 3491.85, "end": 3494.53, "probability": 0.7688 }, { "start": 3495.09, "end": 3496.77, "probability": 0.8886 }, { "start": 3497.45, "end": 3499.49, "probability": 0.7319 }, { "start": 3500.01, "end": 3500.25, "probability": 0.0807 }, { "start": 3500.25, "end": 3502.62, "probability": 0.9015 }, { "start": 3502.85, "end": 3504.69, "probability": 0.9713 }, { "start": 3505.97, "end": 3508.23, "probability": 0.9168 }, { "start": 3508.87, "end": 3510.27, "probability": 0.9053 }, { "start": 3511.19, "end": 3512.33, "probability": 0.9226 }, { "start": 3513.07, "end": 3513.07, "probability": 0.0868 }, { "start": 3513.07, "end": 3513.07, "probability": 0.0307 }, { "start": 3513.07, "end": 3514.37, "probability": 0.9131 }, { "start": 3514.51, "end": 3518.23, "probability": 0.8414 }, { "start": 3518.31, "end": 3520.59, "probability": 0.8274 }, { "start": 3520.71, "end": 3521.85, "probability": 0.9246 }, { "start": 3522.13, "end": 3523.2, "probability": 0.8806 }, { "start": 3523.65, "end": 3524.81, "probability": 0.9951 }, { "start": 3524.85, "end": 3530.17, "probability": 0.8658 }, { "start": 3530.43, "end": 3530.69, "probability": 0.0516 }, { "start": 3530.69, "end": 3532.29, "probability": 0.417 }, { "start": 3533.63, "end": 3534.07, "probability": 0.6643 }, { "start": 3534.79, "end": 3535.03, "probability": 0.9701 }, { "start": 3536.25, "end": 3539.39, "probability": 0.7565 }, { "start": 3540.03, "end": 3543.13, "probability": 0.9125 }, { "start": 3543.65, "end": 3545.79, "probability": 0.6908 }, { "start": 3546.57, "end": 3548.19, "probability": 0.9008 }, { "start": 3548.45, "end": 3549.31, "probability": 0.9829 }, { "start": 3550.39, "end": 3552.35, "probability": 0.9878 }, { "start": 3554.07, "end": 3555.61, "probability": 0.9556 }, { "start": 3556.11, "end": 3557.97, "probability": 0.8334 }, { "start": 3558.51, "end": 3559.85, "probability": 0.5926 }, { "start": 3559.95, "end": 3560.17, "probability": 0.042 }, { "start": 3560.17, "end": 3560.17, "probability": 0.0773 }, { "start": 3560.17, "end": 3562.73, "probability": 0.9722 }, { "start": 3562.95, "end": 3565.17, "probability": 0.8927 }, { "start": 3565.23, "end": 3566.27, "probability": 0.5735 }, { "start": 3567.43, "end": 3567.53, "probability": 0.588 }, { "start": 3567.85, "end": 3569.99, "probability": 0.9878 }, { "start": 3570.81, "end": 3572.53, "probability": 0.7617 }, { "start": 3573.09, "end": 3575.85, "probability": 0.9594 }, { "start": 3576.51, "end": 3578.81, "probability": 0.9137 }, { "start": 3578.85, "end": 3580.09, "probability": 0.9344 }, { "start": 3580.27, "end": 3582.03, "probability": 0.9724 }, { "start": 3582.35, "end": 3582.85, "probability": 0.9015 }, { "start": 3583.61, "end": 3586.31, "probability": 0.9004 }, { "start": 3586.91, "end": 3588.43, "probability": 0.7611 }, { "start": 3588.71, "end": 3590.83, "probability": 0.7994 }, { "start": 3591.21, "end": 3593.27, "probability": 0.5894 }, { "start": 3593.97, "end": 3595.09, "probability": 0.9814 }, { "start": 3597.53, "end": 3598.61, "probability": 0.6882 }, { "start": 3601.63, "end": 3603.77, "probability": 0.9185 }, { "start": 3605.26, "end": 3607.39, "probability": 0.0394 }, { "start": 3607.39, "end": 3608.77, "probability": 0.1374 }, { "start": 3608.77, "end": 3613.97, "probability": 0.9256 }, { "start": 3614.25, "end": 3615.63, "probability": 0.7607 }, { "start": 3615.69, "end": 3616.41, "probability": 0.5709 }, { "start": 3617.17, "end": 3621.47, "probability": 0.7793 }, { "start": 3621.83, "end": 3622.51, "probability": 0.3415 }, { "start": 3623.01, "end": 3624.83, "probability": 0.9148 }, { "start": 3626.51, "end": 3627.79, "probability": 0.8744 }, { "start": 3627.91, "end": 3629.51, "probability": 0.8069 }, { "start": 3629.57, "end": 3630.99, "probability": 0.9453 }, { "start": 3631.59, "end": 3635.23, "probability": 0.9779 }, { "start": 3635.89, "end": 3636.63, "probability": 0.2558 }, { "start": 3636.69, "end": 3641.05, "probability": 0.9514 }, { "start": 3641.31, "end": 3643.39, "probability": 0.533 }, { "start": 3644.25, "end": 3646.77, "probability": 0.9259 }, { "start": 3647.79, "end": 3650.21, "probability": 0.9921 }, { "start": 3651.13, "end": 3651.51, "probability": 0.0686 }, { "start": 3653.25, "end": 3655.09, "probability": 0.4532 }, { "start": 3657.05, "end": 3661.07, "probability": 0.7549 }, { "start": 3662.21, "end": 3665.57, "probability": 0.699 }, { "start": 3666.17, "end": 3669.17, "probability": 0.9818 }, { "start": 3669.31, "end": 3671.29, "probability": 0.7136 }, { "start": 3672.29, "end": 3672.55, "probability": 0.9524 }, { "start": 3673.11, "end": 3674.01, "probability": 0.88 }, { "start": 3674.59, "end": 3676.03, "probability": 0.797 }, { "start": 3676.67, "end": 3679.21, "probability": 0.835 }, { "start": 3679.85, "end": 3681.91, "probability": 0.9966 }, { "start": 3682.93, "end": 3684.35, "probability": 0.9663 }, { "start": 3685.05, "end": 3686.05, "probability": 0.9933 }, { "start": 3689.93, "end": 3690.67, "probability": 0.7376 }, { "start": 3691.23, "end": 3693.13, "probability": 0.9368 }, { "start": 3695.59, "end": 3695.67, "probability": 0.4921 }, { "start": 3710.95, "end": 3713.01, "probability": 0.5332 }, { "start": 3713.11, "end": 3714.05, "probability": 0.6509 }, { "start": 3715.45, "end": 3718.19, "probability": 0.9651 }, { "start": 3718.63, "end": 3721.23, "probability": 0.8843 }, { "start": 3722.75, "end": 3723.27, "probability": 0.5901 }, { "start": 3723.33, "end": 3724.63, "probability": 0.9939 }, { "start": 3724.71, "end": 3725.59, "probability": 0.9675 }, { "start": 3725.79, "end": 3726.19, "probability": 0.5469 }, { "start": 3726.69, "end": 3728.71, "probability": 0.8295 }, { "start": 3729.39, "end": 3730.59, "probability": 0.6424 }, { "start": 3731.11, "end": 3732.85, "probability": 0.9941 }, { "start": 3733.27, "end": 3737.73, "probability": 0.9517 }, { "start": 3738.81, "end": 3741.25, "probability": 0.9471 }, { "start": 3741.43, "end": 3742.11, "probability": 0.5435 }, { "start": 3742.93, "end": 3745.09, "probability": 0.7373 }, { "start": 3746.37, "end": 3747.85, "probability": 0.9507 }, { "start": 3748.45, "end": 3750.37, "probability": 0.837 }, { "start": 3751.47, "end": 3752.45, "probability": 0.6341 }, { "start": 3753.05, "end": 3754.87, "probability": 0.7726 }, { "start": 3755.25, "end": 3757.05, "probability": 0.981 }, { "start": 3759.19, "end": 3762.39, "probability": 0.7465 }, { "start": 3763.59, "end": 3766.21, "probability": 0.967 }, { "start": 3766.81, "end": 3768.53, "probability": 0.6279 }, { "start": 3769.25, "end": 3769.51, "probability": 0.6723 }, { "start": 3770.49, "end": 3771.19, "probability": 0.558 }, { "start": 3772.09, "end": 3772.8, "probability": 0.8892 }, { "start": 3773.87, "end": 3776.59, "probability": 0.9305 }, { "start": 3777.17, "end": 3779.99, "probability": 0.9775 }, { "start": 3780.15, "end": 3780.61, "probability": 0.5302 }, { "start": 3781.07, "end": 3784.79, "probability": 0.856 }, { "start": 3785.21, "end": 3786.61, "probability": 0.8239 }, { "start": 3787.49, "end": 3789.01, "probability": 0.9772 }, { "start": 3789.43, "end": 3790.88, "probability": 0.8296 }, { "start": 3791.43, "end": 3792.55, "probability": 0.9766 }, { "start": 3792.71, "end": 3792.81, "probability": 0.8761 }, { "start": 3793.11, "end": 3795.07, "probability": 0.9907 }, { "start": 3795.69, "end": 3796.23, "probability": 0.8793 }, { "start": 3796.43, "end": 3797.55, "probability": 0.8928 }, { "start": 3798.37, "end": 3799.14, "probability": 0.8555 }, { "start": 3800.49, "end": 3800.87, "probability": 0.4218 }, { "start": 3801.45, "end": 3803.23, "probability": 0.8328 }, { "start": 3803.93, "end": 3805.95, "probability": 0.9956 }, { "start": 3806.03, "end": 3806.91, "probability": 0.9667 }, { "start": 3806.99, "end": 3808.07, "probability": 0.6359 }, { "start": 3808.43, "end": 3813.13, "probability": 0.9794 }, { "start": 3813.33, "end": 3814.29, "probability": 0.0029 }, { "start": 3814.99, "end": 3818.33, "probability": 0.9941 }, { "start": 3818.97, "end": 3819.25, "probability": 0.9672 }, { "start": 3819.27, "end": 3820.63, "probability": 0.9722 }, { "start": 3821.09, "end": 3821.95, "probability": 0.7568 }, { "start": 3821.99, "end": 3826.25, "probability": 0.8955 }, { "start": 3826.75, "end": 3828.23, "probability": 0.9912 }, { "start": 3828.97, "end": 3833.43, "probability": 0.9893 }, { "start": 3834.21, "end": 3836.97, "probability": 0.7614 }, { "start": 3837.57, "end": 3841.93, "probability": 0.9958 }, { "start": 3842.23, "end": 3843.95, "probability": 0.9642 }, { "start": 3844.61, "end": 3845.33, "probability": 0.9427 }, { "start": 3846.01, "end": 3846.67, "probability": 0.3648 }, { "start": 3847.45, "end": 3848.73, "probability": 0.8651 }, { "start": 3848.79, "end": 3849.57, "probability": 0.4986 }, { "start": 3849.57, "end": 3854.37, "probability": 0.9074 }, { "start": 3854.55, "end": 3854.91, "probability": 0.4434 }, { "start": 3855.59, "end": 3857.03, "probability": 0.9935 }, { "start": 3858.21, "end": 3859.91, "probability": 0.9951 }, { "start": 3860.57, "end": 3861.35, "probability": 0.5897 }, { "start": 3862.05, "end": 3863.59, "probability": 0.9985 }, { "start": 3864.35, "end": 3867.35, "probability": 0.8451 }, { "start": 3867.81, "end": 3868.33, "probability": 0.7617 }, { "start": 3868.47, "end": 3869.67, "probability": 0.9258 }, { "start": 3869.77, "end": 3872.53, "probability": 0.9441 }, { "start": 3872.97, "end": 3874.27, "probability": 0.8284 }, { "start": 3874.81, "end": 3876.95, "probability": 0.9896 }, { "start": 3878.21, "end": 3879.45, "probability": 0.8883 }, { "start": 3880.03, "end": 3882.27, "probability": 0.9506 }, { "start": 3883.19, "end": 3887.11, "probability": 0.9688 }, { "start": 3887.23, "end": 3888.05, "probability": 0.7327 }, { "start": 3889.21, "end": 3890.15, "probability": 0.9296 }, { "start": 3890.69, "end": 3890.99, "probability": 0.9241 }, { "start": 3891.73, "end": 3897.29, "probability": 0.9977 }, { "start": 3897.37, "end": 3897.73, "probability": 0.8585 }, { "start": 3897.79, "end": 3898.65, "probability": 0.9181 }, { "start": 3899.33, "end": 3901.27, "probability": 0.8641 }, { "start": 3901.51, "end": 3901.81, "probability": 0.8284 }, { "start": 3901.91, "end": 3904.19, "probability": 0.7822 }, { "start": 3904.47, "end": 3905.49, "probability": 0.9689 }, { "start": 3905.79, "end": 3906.77, "probability": 0.7212 }, { "start": 3907.19, "end": 3907.83, "probability": 0.9272 }, { "start": 3908.47, "end": 3909.37, "probability": 0.2707 }, { "start": 3909.89, "end": 3911.39, "probability": 0.8491 }, { "start": 3911.77, "end": 3913.95, "probability": 0.6888 }, { "start": 3916.83, "end": 3918.51, "probability": 0.7762 }, { "start": 3918.77, "end": 3919.52, "probability": 0.9303 }, { "start": 3919.59, "end": 3921.79, "probability": 0.9752 }, { "start": 3922.53, "end": 3926.79, "probability": 0.9985 }, { "start": 3926.95, "end": 3927.61, "probability": 0.7796 }, { "start": 3927.83, "end": 3930.21, "probability": 0.9927 }, { "start": 3930.73, "end": 3931.31, "probability": 0.6876 }, { "start": 3931.99, "end": 3933.09, "probability": 0.8541 }, { "start": 3933.73, "end": 3936.21, "probability": 0.925 }, { "start": 3936.81, "end": 3937.55, "probability": 0.8178 }, { "start": 3938.29, "end": 3939.73, "probability": 0.8484 }, { "start": 3941.17, "end": 3942.45, "probability": 0.7969 }, { "start": 3943.23, "end": 3944.07, "probability": 0.5012 }, { "start": 3944.59, "end": 3945.25, "probability": 0.4241 }, { "start": 3946.19, "end": 3946.63, "probability": 0.798 }, { "start": 3950.49, "end": 3950.99, "probability": 0.6233 }, { "start": 3951.07, "end": 3953.07, "probability": 0.9601 }, { "start": 3955.95, "end": 3957.53, "probability": 0.0602 }, { "start": 3959.47, "end": 3961.85, "probability": 0.0173 }, { "start": 3962.29, "end": 3963.95, "probability": 0.0297 }, { "start": 3963.95, "end": 3966.91, "probability": 0.2113 }, { "start": 3966.91, "end": 3968.33, "probability": 0.1866 }, { "start": 3968.33, "end": 3968.77, "probability": 0.2156 }, { "start": 3968.81, "end": 3968.95, "probability": 0.1883 }, { "start": 3972.01, "end": 3972.21, "probability": 0.2487 }, { "start": 3981.41, "end": 3983.39, "probability": 0.2805 }, { "start": 3983.57, "end": 3983.94, "probability": 0.2916 }, { "start": 3988.29, "end": 3990.17, "probability": 0.7009 }, { "start": 3991.09, "end": 3996.69, "probability": 0.71 }, { "start": 3997.49, "end": 3999.93, "probability": 0.7292 }, { "start": 4000.85, "end": 4002.07, "probability": 0.9778 }, { "start": 4002.83, "end": 4004.27, "probability": 0.9072 }, { "start": 4004.87, "end": 4009.81, "probability": 0.9956 }, { "start": 4010.63, "end": 4011.03, "probability": 0.8114 }, { "start": 4011.23, "end": 4015.37, "probability": 0.9862 }, { "start": 4015.91, "end": 4019.71, "probability": 0.9504 }, { "start": 4020.15, "end": 4021.33, "probability": 0.9725 }, { "start": 4021.85, "end": 4024.04, "probability": 0.9641 }, { "start": 4025.35, "end": 4026.81, "probability": 0.9955 }, { "start": 4026.93, "end": 4028.81, "probability": 0.6677 }, { "start": 4028.89, "end": 4029.59, "probability": 0.7048 }, { "start": 4030.07, "end": 4030.69, "probability": 0.8271 }, { "start": 4030.75, "end": 4034.91, "probability": 0.9448 }, { "start": 4035.37, "end": 4036.35, "probability": 0.9182 }, { "start": 4036.71, "end": 4040.73, "probability": 0.8509 }, { "start": 4041.31, "end": 4045.61, "probability": 0.9987 }, { "start": 4046.19, "end": 4051.25, "probability": 0.927 }, { "start": 4051.63, "end": 4053.53, "probability": 0.8731 }, { "start": 4054.29, "end": 4058.35, "probability": 0.9933 }, { "start": 4058.35, "end": 4062.79, "probability": 0.9069 }, { "start": 4063.39, "end": 4064.97, "probability": 0.8645 }, { "start": 4065.51, "end": 4070.85, "probability": 0.6689 }, { "start": 4070.93, "end": 4071.25, "probability": 0.8286 }, { "start": 4071.97, "end": 4078.33, "probability": 0.7501 }, { "start": 4079.61, "end": 4083.05, "probability": 0.9802 }, { "start": 4083.35, "end": 4085.59, "probability": 0.6104 }, { "start": 4085.93, "end": 4088.25, "probability": 0.629 }, { "start": 4088.29, "end": 4089.62, "probability": 0.9246 }, { "start": 4090.69, "end": 4096.45, "probability": 0.9933 }, { "start": 4097.01, "end": 4101.95, "probability": 0.9214 }, { "start": 4102.77, "end": 4103.61, "probability": 0.702 }, { "start": 4103.85, "end": 4108.85, "probability": 0.9175 }, { "start": 4109.35, "end": 4109.35, "probability": 0.061 }, { "start": 4109.35, "end": 4111.47, "probability": 0.4453 }, { "start": 4111.53, "end": 4113.23, "probability": 0.9658 }, { "start": 4113.83, "end": 4115.53, "probability": 0.9358 }, { "start": 4115.63, "end": 4117.99, "probability": 0.9653 }, { "start": 4118.19, "end": 4124.29, "probability": 0.8431 }, { "start": 4124.81, "end": 4126.95, "probability": 0.9064 }, { "start": 4127.55, "end": 4133.19, "probability": 0.9409 }, { "start": 4133.61, "end": 4134.29, "probability": 0.8132 }, { "start": 4134.45, "end": 4135.41, "probability": 0.9065 }, { "start": 4135.51, "end": 4136.51, "probability": 0.7013 }, { "start": 4137.47, "end": 4138.05, "probability": 0.1777 }, { "start": 4138.69, "end": 4143.09, "probability": 0.9879 }, { "start": 4143.67, "end": 4145.31, "probability": 0.8087 }, { "start": 4145.89, "end": 4147.11, "probability": 0.9832 }, { "start": 4147.19, "end": 4148.45, "probability": 0.9526 }, { "start": 4149.19, "end": 4150.24, "probability": 0.9766 }, { "start": 4150.75, "end": 4152.17, "probability": 0.9731 }, { "start": 4152.61, "end": 4153.47, "probability": 0.5669 }, { "start": 4153.57, "end": 4154.11, "probability": 0.7881 }, { "start": 4154.41, "end": 4154.93, "probability": 0.2205 }, { "start": 4155.43, "end": 4156.74, "probability": 0.8671 }, { "start": 4157.17, "end": 4157.87, "probability": 0.8409 }, { "start": 4157.99, "end": 4161.37, "probability": 0.8888 }, { "start": 4161.95, "end": 4162.17, "probability": 0.531 }, { "start": 4162.29, "end": 4163.17, "probability": 0.8365 }, { "start": 4163.45, "end": 4164.59, "probability": 0.67 }, { "start": 4164.71, "end": 4165.31, "probability": 0.5085 }, { "start": 4165.45, "end": 4168.07, "probability": 0.7276 }, { "start": 4168.25, "end": 4168.57, "probability": 0.5506 }, { "start": 4168.65, "end": 4169.93, "probability": 0.9597 }, { "start": 4170.37, "end": 4174.09, "probability": 0.748 }, { "start": 4174.11, "end": 4175.53, "probability": 0.7158 }, { "start": 4175.87, "end": 4176.73, "probability": 0.3442 }, { "start": 4176.85, "end": 4177.92, "probability": 0.5362 }, { "start": 4178.01, "end": 4180.13, "probability": 0.8954 }, { "start": 4180.55, "end": 4181.17, "probability": 0.9255 }, { "start": 4181.39, "end": 4182.78, "probability": 0.7125 }, { "start": 4183.09, "end": 4184.89, "probability": 0.8682 }, { "start": 4185.43, "end": 4188.98, "probability": 0.9202 }, { "start": 4189.65, "end": 4190.39, "probability": 0.3087 }, { "start": 4190.39, "end": 4190.51, "probability": 0.3716 }, { "start": 4190.51, "end": 4190.83, "probability": 0.8774 }, { "start": 4190.91, "end": 4191.55, "probability": 0.845 }, { "start": 4192.05, "end": 4192.78, "probability": 0.828 }, { "start": 4192.97, "end": 4197.21, "probability": 0.9237 }, { "start": 4197.53, "end": 4202.39, "probability": 0.9448 }, { "start": 4202.79, "end": 4204.23, "probability": 0.7784 }, { "start": 4204.41, "end": 4205.27, "probability": 0.5998 }, { "start": 4205.91, "end": 4206.25, "probability": 0.367 }, { "start": 4206.33, "end": 4207.95, "probability": 0.8621 }, { "start": 4210.07, "end": 4211.95, "probability": 0.9058 }, { "start": 4252.99, "end": 4255.23, "probability": 0.7696 }, { "start": 4256.13, "end": 4256.95, "probability": 0.8768 }, { "start": 4257.61, "end": 4258.55, "probability": 0.8665 }, { "start": 4259.01, "end": 4262.39, "probability": 0.9653 }, { "start": 4263.31, "end": 4266.93, "probability": 0.9438 }, { "start": 4268.13, "end": 4271.67, "probability": 0.9919 }, { "start": 4272.45, "end": 4273.77, "probability": 0.808 }, { "start": 4273.87, "end": 4274.37, "probability": 0.7054 }, { "start": 4274.45, "end": 4275.17, "probability": 0.8201 }, { "start": 4275.65, "end": 4282.01, "probability": 0.9963 }, { "start": 4283.95, "end": 4284.57, "probability": 0.9537 }, { "start": 4284.91, "end": 4285.51, "probability": 0.9952 }, { "start": 4285.59, "end": 4286.23, "probability": 0.9748 }, { "start": 4286.29, "end": 4287.43, "probability": 0.984 }, { "start": 4287.47, "end": 4288.17, "probability": 0.9852 }, { "start": 4288.41, "end": 4289.37, "probability": 0.8223 }, { "start": 4289.55, "end": 4291.65, "probability": 0.9946 }, { "start": 4292.35, "end": 4293.75, "probability": 0.8943 }, { "start": 4295.95, "end": 4296.81, "probability": 0.7476 }, { "start": 4299.89, "end": 4304.13, "probability": 0.9695 }, { "start": 4304.81, "end": 4306.49, "probability": 0.9258 }, { "start": 4307.39, "end": 4309.31, "probability": 0.978 }, { "start": 4310.43, "end": 4311.91, "probability": 0.9712 }, { "start": 4313.13, "end": 4316.29, "probability": 0.9777 }, { "start": 4316.75, "end": 4318.65, "probability": 0.998 }, { "start": 4318.73, "end": 4319.45, "probability": 0.884 }, { "start": 4320.41, "end": 4324.17, "probability": 0.9938 }, { "start": 4325.19, "end": 4329.33, "probability": 0.9992 }, { "start": 4331.35, "end": 4334.97, "probability": 0.7911 }, { "start": 4334.97, "end": 4339.39, "probability": 0.9908 }, { "start": 4339.79, "end": 4342.41, "probability": 0.9434 }, { "start": 4342.51, "end": 4343.53, "probability": 0.7341 }, { "start": 4343.73, "end": 4344.32, "probability": 0.8606 }, { "start": 4345.15, "end": 4346.87, "probability": 0.9934 }, { "start": 4347.47, "end": 4351.29, "probability": 0.9785 }, { "start": 4352.09, "end": 4355.03, "probability": 0.9982 }, { "start": 4355.03, "end": 4357.87, "probability": 0.9995 }, { "start": 4358.45, "end": 4361.01, "probability": 0.9872 }, { "start": 4361.27, "end": 4361.93, "probability": 0.9375 }, { "start": 4363.03, "end": 4366.97, "probability": 0.9943 }, { "start": 4367.67, "end": 4368.61, "probability": 0.8419 }, { "start": 4368.81, "end": 4369.81, "probability": 0.9154 }, { "start": 4370.31, "end": 4373.41, "probability": 0.9958 }, { "start": 4373.41, "end": 4377.17, "probability": 0.9902 }, { "start": 4377.93, "end": 4378.91, "probability": 0.9753 }, { "start": 4379.65, "end": 4381.03, "probability": 0.9927 }, { "start": 4381.97, "end": 4383.29, "probability": 0.9246 }, { "start": 4383.85, "end": 4389.53, "probability": 0.986 }, { "start": 4390.57, "end": 4392.37, "probability": 0.9668 }, { "start": 4393.79, "end": 4397.67, "probability": 0.9905 }, { "start": 4398.19, "end": 4400.09, "probability": 0.997 }, { "start": 4400.67, "end": 4403.99, "probability": 0.9919 }, { "start": 4403.99, "end": 4406.61, "probability": 0.9985 }, { "start": 4407.39, "end": 4411.09, "probability": 0.9917 }, { "start": 4411.71, "end": 4414.43, "probability": 0.9971 }, { "start": 4415.17, "end": 4420.89, "probability": 0.9964 }, { "start": 4421.05, "end": 4423.29, "probability": 0.9971 }, { "start": 4424.01, "end": 4425.43, "probability": 0.9735 }, { "start": 4425.63, "end": 4430.77, "probability": 0.9453 }, { "start": 4430.91, "end": 4434.99, "probability": 0.9156 }, { "start": 4435.67, "end": 4440.22, "probability": 0.9569 }, { "start": 4440.53, "end": 4441.28, "probability": 0.9917 }, { "start": 4441.53, "end": 4442.65, "probability": 0.9597 }, { "start": 4444.15, "end": 4444.79, "probability": 0.9404 }, { "start": 4445.57, "end": 4447.64, "probability": 0.948 }, { "start": 4448.15, "end": 4450.53, "probability": 0.8438 }, { "start": 4451.09, "end": 4454.37, "probability": 0.99 }, { "start": 4454.89, "end": 4456.09, "probability": 0.9357 }, { "start": 4456.13, "end": 4456.71, "probability": 0.4882 }, { "start": 4456.79, "end": 4458.47, "probability": 0.9961 }, { "start": 4458.95, "end": 4461.39, "probability": 0.9038 }, { "start": 4461.53, "end": 4464.23, "probability": 0.9885 }, { "start": 4465.13, "end": 4468.87, "probability": 0.9918 }, { "start": 4469.41, "end": 4473.59, "probability": 0.9248 }, { "start": 4473.71, "end": 4475.07, "probability": 0.9802 }, { "start": 4475.51, "end": 4477.43, "probability": 0.608 }, { "start": 4477.87, "end": 4480.07, "probability": 0.9589 }, { "start": 4480.21, "end": 4482.35, "probability": 0.9312 }, { "start": 4482.59, "end": 4486.51, "probability": 0.9937 }, { "start": 4487.05, "end": 4489.67, "probability": 0.9982 }, { "start": 4489.67, "end": 4493.11, "probability": 0.9466 }, { "start": 4493.21, "end": 4495.07, "probability": 0.8661 }, { "start": 4495.59, "end": 4497.37, "probability": 0.9851 }, { "start": 4497.59, "end": 4497.97, "probability": 0.7968 }, { "start": 4498.09, "end": 4498.59, "probability": 0.6511 }, { "start": 4498.61, "end": 4500.31, "probability": 0.9497 }, { "start": 4530.51, "end": 4532.45, "probability": 0.7098 }, { "start": 4535.05, "end": 4539.55, "probability": 0.9107 }, { "start": 4540.71, "end": 4543.23, "probability": 0.9905 }, { "start": 4544.07, "end": 4545.83, "probability": 0.5224 }, { "start": 4548.15, "end": 4550.07, "probability": 0.8502 }, { "start": 4551.45, "end": 4553.39, "probability": 0.7751 }, { "start": 4553.57, "end": 4554.25, "probability": 0.9849 }, { "start": 4554.39, "end": 4555.91, "probability": 0.8535 }, { "start": 4557.39, "end": 4562.89, "probability": 0.9756 }, { "start": 4563.95, "end": 4570.09, "probability": 0.8901 }, { "start": 4570.89, "end": 4572.49, "probability": 0.8461 }, { "start": 4575.07, "end": 4581.81, "probability": 0.9934 }, { "start": 4582.49, "end": 4587.69, "probability": 0.9077 }, { "start": 4588.87, "end": 4591.37, "probability": 0.7622 }, { "start": 4592.43, "end": 4593.55, "probability": 0.9466 }, { "start": 4593.97, "end": 4595.8, "probability": 0.6265 }, { "start": 4596.41, "end": 4597.06, "probability": 0.8295 }, { "start": 4597.37, "end": 4598.1, "probability": 0.8068 }, { "start": 4599.67, "end": 4605.45, "probability": 0.9097 }, { "start": 4608.39, "end": 4609.21, "probability": 0.4946 }, { "start": 4609.79, "end": 4613.91, "probability": 0.9953 }, { "start": 4613.91, "end": 4617.16, "probability": 0.9995 }, { "start": 4617.95, "end": 4623.25, "probability": 0.9652 }, { "start": 4623.41, "end": 4624.13, "probability": 0.9954 }, { "start": 4624.95, "end": 4627.05, "probability": 0.7349 }, { "start": 4627.73, "end": 4630.19, "probability": 0.5654 }, { "start": 4630.89, "end": 4631.71, "probability": 0.8135 }, { "start": 4632.29, "end": 4635.17, "probability": 0.8084 }, { "start": 4636.29, "end": 4639.55, "probability": 0.9464 }, { "start": 4640.07, "end": 4640.99, "probability": 0.844 }, { "start": 4641.67, "end": 4646.83, "probability": 0.9133 }, { "start": 4647.43, "end": 4648.81, "probability": 0.9007 }, { "start": 4649.39, "end": 4651.89, "probability": 0.9869 }, { "start": 4652.35, "end": 4655.37, "probability": 0.9074 }, { "start": 4656.43, "end": 4658.19, "probability": 0.9937 }, { "start": 4658.75, "end": 4661.63, "probability": 0.9972 }, { "start": 4662.63, "end": 4664.09, "probability": 0.8725 }, { "start": 4665.29, "end": 4667.03, "probability": 0.9963 }, { "start": 4667.95, "end": 4669.23, "probability": 0.9091 }, { "start": 4670.09, "end": 4671.99, "probability": 0.9989 }, { "start": 4672.77, "end": 4673.43, "probability": 0.9974 }, { "start": 4674.01, "end": 4675.11, "probability": 0.9996 }, { "start": 4675.79, "end": 4679.05, "probability": 0.876 }, { "start": 4679.71, "end": 4682.73, "probability": 0.9839 }, { "start": 4683.89, "end": 4684.99, "probability": 0.8832 }, { "start": 4685.79, "end": 4690.71, "probability": 0.7924 }, { "start": 4691.73, "end": 4693.01, "probability": 0.9906 }, { "start": 4694.01, "end": 4698.07, "probability": 0.7792 }, { "start": 4698.79, "end": 4700.41, "probability": 0.9959 }, { "start": 4701.13, "end": 4702.29, "probability": 0.8823 }, { "start": 4703.27, "end": 4707.99, "probability": 0.9607 }, { "start": 4709.01, "end": 4713.25, "probability": 0.7239 }, { "start": 4713.91, "end": 4715.59, "probability": 0.9601 }, { "start": 4716.47, "end": 4718.13, "probability": 0.9083 }, { "start": 4719.05, "end": 4720.71, "probability": 0.9484 }, { "start": 4720.87, "end": 4724.23, "probability": 0.7591 }, { "start": 4724.61, "end": 4728.13, "probability": 0.826 }, { "start": 4729.39, "end": 4732.59, "probability": 0.8758 }, { "start": 4732.71, "end": 4733.45, "probability": 0.4163 }, { "start": 4733.47, "end": 4734.33, "probability": 0.6882 }, { "start": 4734.43, "end": 4735.23, "probability": 0.7905 }, { "start": 4736.55, "end": 4738.69, "probability": 0.8567 }, { "start": 4739.57, "end": 4743.81, "probability": 0.9497 }, { "start": 4744.69, "end": 4749.43, "probability": 0.9949 }, { "start": 4749.43, "end": 4753.61, "probability": 0.8879 }, { "start": 4753.65, "end": 4756.47, "probability": 0.7786 }, { "start": 4757.01, "end": 4757.67, "probability": 0.536 }, { "start": 4757.75, "end": 4758.89, "probability": 0.7532 }, { "start": 4772.6, "end": 4776.35, "probability": 0.8278 }, { "start": 4778.66, "end": 4781.47, "probability": 0.8007 }, { "start": 4783.15, "end": 4784.65, "probability": 0.8755 }, { "start": 4787.69, "end": 4790.96, "probability": 0.5965 }, { "start": 4792.07, "end": 4792.07, "probability": 0.4848 }, { "start": 4792.25, "end": 4792.93, "probability": 0.679 }, { "start": 4793.17, "end": 4794.15, "probability": 0.7868 }, { "start": 4794.33, "end": 4794.57, "probability": 0.6231 }, { "start": 4794.83, "end": 4795.75, "probability": 0.847 }, { "start": 4795.99, "end": 4797.03, "probability": 0.4686 }, { "start": 4797.25, "end": 4798.73, "probability": 0.2709 }, { "start": 4798.79, "end": 4798.79, "probability": 0.1022 }, { "start": 4798.97, "end": 4801.31, "probability": 0.9905 }, { "start": 4802.21, "end": 4803.95, "probability": 0.9434 }, { "start": 4804.39, "end": 4805.05, "probability": 0.2058 }, { "start": 4805.33, "end": 4805.61, "probability": 0.3857 }, { "start": 4805.77, "end": 4807.77, "probability": 0.6327 }, { "start": 4807.87, "end": 4808.37, "probability": 0.782 }, { "start": 4808.83, "end": 4811.81, "probability": 0.9775 }, { "start": 4812.09, "end": 4812.71, "probability": 0.1524 }, { "start": 4813.77, "end": 4818.01, "probability": 0.9839 }, { "start": 4818.13, "end": 4818.83, "probability": 0.6304 }, { "start": 4819.65, "end": 4821.81, "probability": 0.8606 }, { "start": 4822.07, "end": 4824.35, "probability": 0.9241 }, { "start": 4824.43, "end": 4825.53, "probability": 0.9081 }, { "start": 4825.95, "end": 4827.35, "probability": 0.978 }, { "start": 4829.97, "end": 4831.86, "probability": 0.4993 }, { "start": 4833.17, "end": 4833.49, "probability": 0.699 }, { "start": 4834.07, "end": 4835.19, "probability": 0.5211 }, { "start": 4836.17, "end": 4839.59, "probability": 0.9553 }, { "start": 4840.03, "end": 4842.73, "probability": 0.9584 }, { "start": 4842.73, "end": 4846.29, "probability": 0.9949 }, { "start": 4847.17, "end": 4849.81, "probability": 0.9 }, { "start": 4850.59, "end": 4854.47, "probability": 0.9941 }, { "start": 4854.55, "end": 4858.07, "probability": 0.9482 }, { "start": 4859.17, "end": 4860.43, "probability": 0.8242 }, { "start": 4860.97, "end": 4861.63, "probability": 0.9788 }, { "start": 4862.45, "end": 4865.75, "probability": 0.9387 }, { "start": 4866.43, "end": 4870.65, "probability": 0.9692 }, { "start": 4871.17, "end": 4872.49, "probability": 0.4348 }, { "start": 4872.49, "end": 4873.19, "probability": 0.0754 }, { "start": 4873.23, "end": 4878.31, "probability": 0.999 }, { "start": 4878.75, "end": 4878.75, "probability": 0.1022 }, { "start": 4878.75, "end": 4878.75, "probability": 0.0267 }, { "start": 4878.75, "end": 4882.79, "probability": 0.8658 }, { "start": 4883.39, "end": 4886.39, "probability": 0.9963 }, { "start": 4886.83, "end": 4888.61, "probability": 0.8993 }, { "start": 4888.97, "end": 4889.63, "probability": 0.4406 }, { "start": 4889.75, "end": 4890.47, "probability": 0.1732 }, { "start": 4890.67, "end": 4891.35, "probability": 0.875 }, { "start": 4891.43, "end": 4892.15, "probability": 0.9101 }, { "start": 4892.43, "end": 4893.91, "probability": 0.848 }, { "start": 4894.35, "end": 4895.15, "probability": 0.9097 }, { "start": 4895.21, "end": 4896.61, "probability": 0.9426 }, { "start": 4897.31, "end": 4898.53, "probability": 0.9191 }, { "start": 4900.47, "end": 4903.65, "probability": 0.799 }, { "start": 4904.01, "end": 4904.91, "probability": 0.6774 }, { "start": 4905.17, "end": 4906.52, "probability": 0.9009 }, { "start": 4907.81, "end": 4907.91, "probability": 0.066 }, { "start": 4907.91, "end": 4908.23, "probability": 0.3566 }, { "start": 4908.33, "end": 4910.31, "probability": 0.771 }, { "start": 4910.75, "end": 4914.63, "probability": 0.1441 }, { "start": 4915.81, "end": 4916.87, "probability": 0.0192 }, { "start": 4916.87, "end": 4916.87, "probability": 0.031 }, { "start": 4916.87, "end": 4916.87, "probability": 0.1239 }, { "start": 4916.87, "end": 4916.87, "probability": 0.1661 }, { "start": 4916.87, "end": 4916.87, "probability": 0.1946 }, { "start": 4916.87, "end": 4919.13, "probability": 0.855 }, { "start": 4919.43, "end": 4919.45, "probability": 0.058 }, { "start": 4919.45, "end": 4922.57, "probability": 0.5349 }, { "start": 4923.11, "end": 4923.21, "probability": 0.0681 }, { "start": 4923.21, "end": 4923.21, "probability": 0.1171 }, { "start": 4923.21, "end": 4923.21, "probability": 0.3806 }, { "start": 4923.21, "end": 4924.05, "probability": 0.4278 }, { "start": 4924.19, "end": 4925.15, "probability": 0.0229 }, { "start": 4926.25, "end": 4931.27, "probability": 0.9836 }, { "start": 4931.71, "end": 4936.89, "probability": 0.6355 }, { "start": 4937.33, "end": 4940.27, "probability": 0.998 }, { "start": 4940.51, "end": 4944.13, "probability": 0.988 }, { "start": 4944.69, "end": 4948.05, "probability": 0.9883 }, { "start": 4948.45, "end": 4950.03, "probability": 0.976 }, { "start": 4950.77, "end": 4951.33, "probability": 0.6595 }, { "start": 4951.35, "end": 4954.75, "probability": 0.9123 }, { "start": 4955.11, "end": 4956.59, "probability": 0.623 }, { "start": 4957.31, "end": 4959.69, "probability": 0.915 }, { "start": 4960.01, "end": 4961.09, "probability": 0.9917 }, { "start": 4961.53, "end": 4965.43, "probability": 0.9613 }, { "start": 4965.99, "end": 4969.21, "probability": 0.7977 }, { "start": 4969.67, "end": 4972.16, "probability": 0.8613 }, { "start": 4972.45, "end": 4974.77, "probability": 0.9821 }, { "start": 4975.11, "end": 4975.87, "probability": 0.7975 }, { "start": 4975.91, "end": 4976.71, "probability": 0.9072 }, { "start": 4977.05, "end": 4977.25, "probability": 0.0001 }, { "start": 4979.89, "end": 4980.41, "probability": 0.1399 }, { "start": 4980.41, "end": 4980.41, "probability": 0.0438 }, { "start": 4980.41, "end": 4981.49, "probability": 0.4678 }, { "start": 4981.81, "end": 4985.43, "probability": 0.7892 }, { "start": 4986.19, "end": 4987.75, "probability": 0.9802 }, { "start": 4988.09, "end": 4990.89, "probability": 0.9576 }, { "start": 4991.25, "end": 4992.79, "probability": 0.8336 }, { "start": 4993.27, "end": 4994.89, "probability": 0.9854 }, { "start": 4995.35, "end": 4999.57, "probability": 0.963 }, { "start": 4999.91, "end": 5001.73, "probability": 0.9631 }, { "start": 5002.11, "end": 5003.97, "probability": 0.9608 }, { "start": 5004.43, "end": 5006.79, "probability": 0.9878 }, { "start": 5007.19, "end": 5009.75, "probability": 0.9971 }, { "start": 5009.95, "end": 5012.65, "probability": 0.9975 }, { "start": 5012.65, "end": 5015.17, "probability": 0.9785 }, { "start": 5015.57, "end": 5016.97, "probability": 0.8713 }, { "start": 5017.83, "end": 5018.79, "probability": 0.9652 }, { "start": 5019.27, "end": 5021.37, "probability": 0.9862 }, { "start": 5021.73, "end": 5025.61, "probability": 0.9985 }, { "start": 5025.77, "end": 5026.01, "probability": 0.5368 }, { "start": 5026.11, "end": 5026.63, "probability": 0.9702 }, { "start": 5026.79, "end": 5027.51, "probability": 0.939 }, { "start": 5027.61, "end": 5027.93, "probability": 0.7831 }, { "start": 5028.33, "end": 5036.05, "probability": 0.9248 }, { "start": 5036.55, "end": 5039.83, "probability": 0.9742 }, { "start": 5040.77, "end": 5041.97, "probability": 0.6787 }, { "start": 5042.55, "end": 5045.26, "probability": 0.9246 }, { "start": 5045.99, "end": 5045.99, "probability": 0.548 }, { "start": 5046.11, "end": 5047.07, "probability": 0.9197 }, { "start": 5047.17, "end": 5047.24, "probability": 0.005 }, { "start": 5047.85, "end": 5048.13, "probability": 0.8182 }, { "start": 5048.51, "end": 5051.35, "probability": 0.9961 }, { "start": 5051.71, "end": 5052.71, "probability": 0.8045 }, { "start": 5053.27, "end": 5057.67, "probability": 0.9814 }, { "start": 5058.05, "end": 5060.86, "probability": 0.981 }, { "start": 5061.49, "end": 5062.37, "probability": 0.7392 }, { "start": 5062.73, "end": 5063.21, "probability": 0.7159 }, { "start": 5063.71, "end": 5066.47, "probability": 0.8873 }, { "start": 5066.47, "end": 5067.03, "probability": 0.7401 }, { "start": 5067.19, "end": 5067.83, "probability": 0.6793 }, { "start": 5067.85, "end": 5069.93, "probability": 0.9026 }, { "start": 5070.17, "end": 5070.17, "probability": 0.1591 }, { "start": 5070.61, "end": 5074.96, "probability": 0.1626 }, { "start": 5075.51, "end": 5075.69, "probability": 0.3786 }, { "start": 5076.55, "end": 5078.33, "probability": 0.3704 }, { "start": 5078.49, "end": 5081.03, "probability": 0.1176 }, { "start": 5081.75, "end": 5081.89, "probability": 0.1036 }, { "start": 5082.11, "end": 5084.03, "probability": 0.2703 }, { "start": 5084.87, "end": 5086.71, "probability": 0.0289 }, { "start": 5086.83, "end": 5087.46, "probability": 0.1075 }, { "start": 5103.57, "end": 5104.37, "probability": 0.7472 }, { "start": 5104.91, "end": 5106.75, "probability": 0.7123 }, { "start": 5109.77, "end": 5114.51, "probability": 0.9923 }, { "start": 5116.65, "end": 5120.03, "probability": 0.987 }, { "start": 5123.25, "end": 5126.09, "probability": 0.9915 }, { "start": 5127.83, "end": 5128.55, "probability": 0.8171 }, { "start": 5129.45, "end": 5129.89, "probability": 0.7727 }, { "start": 5130.19, "end": 5131.17, "probability": 0.9902 }, { "start": 5131.23, "end": 5131.67, "probability": 0.7298 }, { "start": 5131.75, "end": 5132.39, "probability": 0.9388 }, { "start": 5132.75, "end": 5133.33, "probability": 0.9792 }, { "start": 5133.97, "end": 5138.35, "probability": 0.9893 }, { "start": 5139.03, "end": 5139.81, "probability": 0.6454 }, { "start": 5140.89, "end": 5142.73, "probability": 0.9852 }, { "start": 5143.71, "end": 5144.49, "probability": 0.8339 }, { "start": 5145.61, "end": 5151.27, "probability": 0.9863 }, { "start": 5151.43, "end": 5155.51, "probability": 0.9955 }, { "start": 5156.43, "end": 5158.27, "probability": 0.8195 }, { "start": 5158.27, "end": 5159.27, "probability": 0.8826 }, { "start": 5159.35, "end": 5164.13, "probability": 0.9964 }, { "start": 5165.19, "end": 5169.03, "probability": 0.9982 }, { "start": 5169.93, "end": 5171.83, "probability": 0.8855 }, { "start": 5172.09, "end": 5174.61, "probability": 0.9958 }, { "start": 5175.41, "end": 5177.07, "probability": 0.9292 }, { "start": 5177.67, "end": 5180.91, "probability": 0.7905 }, { "start": 5181.47, "end": 5182.11, "probability": 0.9058 }, { "start": 5182.69, "end": 5185.05, "probability": 0.9174 }, { "start": 5185.39, "end": 5187.63, "probability": 0.9233 }, { "start": 5188.19, "end": 5189.77, "probability": 0.9409 }, { "start": 5190.39, "end": 5193.13, "probability": 0.9816 }, { "start": 5193.13, "end": 5195.85, "probability": 0.9949 }, { "start": 5196.17, "end": 5197.13, "probability": 0.6406 }, { "start": 5197.21, "end": 5197.65, "probability": 0.2755 }, { "start": 5197.87, "end": 5198.85, "probability": 0.8596 }, { "start": 5201.43, "end": 5201.45, "probability": 0.9077 }, { "start": 5204.51, "end": 5210.51, "probability": 0.9896 }, { "start": 5210.85, "end": 5213.41, "probability": 0.9959 }, { "start": 5214.43, "end": 5216.53, "probability": 0.9995 }, { "start": 5216.91, "end": 5217.91, "probability": 0.8432 }, { "start": 5218.17, "end": 5219.65, "probability": 0.9961 }, { "start": 5221.77, "end": 5223.45, "probability": 0.9339 }, { "start": 5223.51, "end": 5224.85, "probability": 0.9973 }, { "start": 5225.71, "end": 5228.97, "probability": 0.9932 }, { "start": 5229.35, "end": 5231.61, "probability": 0.9406 }, { "start": 5231.89, "end": 5233.01, "probability": 0.989 }, { "start": 5233.79, "end": 5234.43, "probability": 0.6568 }, { "start": 5237.89, "end": 5238.25, "probability": 0.576 }, { "start": 5239.99, "end": 5242.11, "probability": 0.9944 }, { "start": 5243.39, "end": 5244.51, "probability": 0.9525 }, { "start": 5245.21, "end": 5247.87, "probability": 0.9846 }, { "start": 5249.31, "end": 5251.97, "probability": 0.9756 }, { "start": 5252.77, "end": 5253.71, "probability": 0.8752 }, { "start": 5253.85, "end": 5255.49, "probability": 0.8633 }, { "start": 5255.85, "end": 5257.33, "probability": 0.9927 }, { "start": 5258.07, "end": 5262.84, "probability": 0.9494 }, { "start": 5263.95, "end": 5266.23, "probability": 0.9987 }, { "start": 5266.23, "end": 5268.55, "probability": 0.9928 }, { "start": 5270.19, "end": 5273.13, "probability": 0.775 }, { "start": 5273.35, "end": 5276.15, "probability": 0.9748 }, { "start": 5276.83, "end": 5277.39, "probability": 0.9533 }, { "start": 5279.09, "end": 5281.31, "probability": 0.95 }, { "start": 5281.87, "end": 5283.41, "probability": 0.9766 }, { "start": 5285.91, "end": 5289.09, "probability": 0.9971 }, { "start": 5289.73, "end": 5293.09, "probability": 0.9961 }, { "start": 5293.63, "end": 5299.21, "probability": 0.9976 }, { "start": 5300.21, "end": 5300.75, "probability": 0.7016 }, { "start": 5300.89, "end": 5302.18, "probability": 0.9941 }, { "start": 5302.53, "end": 5304.71, "probability": 0.9227 }, { "start": 5304.99, "end": 5306.47, "probability": 0.8881 }, { "start": 5306.57, "end": 5307.31, "probability": 0.7229 }, { "start": 5307.31, "end": 5309.19, "probability": 0.8268 }, { "start": 5310.49, "end": 5312.71, "probability": 0.9844 }, { "start": 5313.67, "end": 5315.83, "probability": 0.999 }, { "start": 5316.29, "end": 5317.79, "probability": 0.9939 }, { "start": 5318.03, "end": 5321.23, "probability": 0.995 }, { "start": 5321.55, "end": 5324.01, "probability": 0.9932 }, { "start": 5324.75, "end": 5325.41, "probability": 0.7997 }, { "start": 5326.35, "end": 5328.05, "probability": 0.9802 }, { "start": 5328.17, "end": 5330.03, "probability": 0.8203 }, { "start": 5330.57, "end": 5331.15, "probability": 0.918 }, { "start": 5332.59, "end": 5333.09, "probability": 0.5829 }, { "start": 5333.67, "end": 5334.53, "probability": 0.6545 }, { "start": 5335.75, "end": 5337.21, "probability": 0.7774 }, { "start": 5338.01, "end": 5340.75, "probability": 0.8754 }, { "start": 5365.59, "end": 5369.79, "probability": 0.7042 }, { "start": 5370.93, "end": 5377.73, "probability": 0.9759 }, { "start": 5378.85, "end": 5387.25, "probability": 0.9917 }, { "start": 5388.01, "end": 5388.65, "probability": 0.9983 }, { "start": 5390.41, "end": 5396.27, "probability": 0.988 }, { "start": 5396.85, "end": 5397.55, "probability": 0.7966 }, { "start": 5398.99, "end": 5402.97, "probability": 0.9786 }, { "start": 5404.35, "end": 5408.17, "probability": 0.8389 }, { "start": 5408.91, "end": 5412.65, "probability": 0.9967 }, { "start": 5412.65, "end": 5416.61, "probability": 0.9207 }, { "start": 5417.07, "end": 5418.07, "probability": 0.8443 }, { "start": 5418.25, "end": 5419.33, "probability": 0.9458 }, { "start": 5419.89, "end": 5420.95, "probability": 0.941 }, { "start": 5421.69, "end": 5424.31, "probability": 0.9988 }, { "start": 5425.09, "end": 5426.39, "probability": 0.857 }, { "start": 5427.41, "end": 5431.09, "probability": 0.9802 }, { "start": 5432.01, "end": 5432.71, "probability": 0.6783 }, { "start": 5432.85, "end": 5436.59, "probability": 0.996 }, { "start": 5437.13, "end": 5439.27, "probability": 0.9961 }, { "start": 5440.33, "end": 5446.11, "probability": 0.9872 }, { "start": 5446.91, "end": 5448.69, "probability": 0.2908 }, { "start": 5449.91, "end": 5454.23, "probability": 0.8959 }, { "start": 5455.05, "end": 5458.01, "probability": 0.8648 }, { "start": 5458.59, "end": 5461.77, "probability": 0.9879 }, { "start": 5462.45, "end": 5463.21, "probability": 0.6458 }, { "start": 5463.35, "end": 5465.43, "probability": 0.9742 }, { "start": 5465.59, "end": 5467.01, "probability": 0.7305 }, { "start": 5467.83, "end": 5471.73, "probability": 0.9948 }, { "start": 5471.99, "end": 5472.59, "probability": 0.6927 }, { "start": 5473.09, "end": 5474.95, "probability": 0.9113 }, { "start": 5475.47, "end": 5479.27, "probability": 0.7863 }, { "start": 5480.09, "end": 5483.03, "probability": 0.9278 }, { "start": 5483.11, "end": 5484.87, "probability": 0.8854 }, { "start": 5485.39, "end": 5486.39, "probability": 0.7245 }, { "start": 5486.81, "end": 5489.45, "probability": 0.9159 }, { "start": 5489.89, "end": 5491.03, "probability": 0.9047 }, { "start": 5491.61, "end": 5492.91, "probability": 0.9453 }, { "start": 5493.51, "end": 5496.59, "probability": 0.9219 }, { "start": 5497.07, "end": 5499.07, "probability": 0.9966 }, { "start": 5499.45, "end": 5500.71, "probability": 0.9582 }, { "start": 5501.05, "end": 5502.15, "probability": 0.9851 }, { "start": 5502.85, "end": 5503.49, "probability": 0.9464 }, { "start": 5503.61, "end": 5506.63, "probability": 0.9961 }, { "start": 5507.11, "end": 5509.63, "probability": 0.9451 }, { "start": 5510.15, "end": 5510.99, "probability": 0.1974 }, { "start": 5510.99, "end": 5511.71, "probability": 0.2571 }, { "start": 5511.79, "end": 5512.3, "probability": 0.7686 }, { "start": 5513.07, "end": 5514.33, "probability": 0.2406 }, { "start": 5515.21, "end": 5516.71, "probability": 0.0267 }, { "start": 5517.32, "end": 5518.83, "probability": 0.722 }, { "start": 5518.83, "end": 5518.83, "probability": 0.0606 }, { "start": 5518.83, "end": 5520.19, "probability": 0.0554 }, { "start": 5520.27, "end": 5520.99, "probability": 0.7046 }, { "start": 5521.05, "end": 5522.03, "probability": 0.9385 }, { "start": 5522.17, "end": 5523.24, "probability": 0.7811 }, { "start": 5523.41, "end": 5525.25, "probability": 0.719 }, { "start": 5525.77, "end": 5528.23, "probability": 0.7934 }, { "start": 5528.55, "end": 5528.87, "probability": 0.8405 }, { "start": 5529.43, "end": 5530.01, "probability": 0.6054 }, { "start": 5530.17, "end": 5531.31, "probability": 0.9656 }, { "start": 5542.53, "end": 5544.33, "probability": 0.1607 }, { "start": 5544.33, "end": 5544.49, "probability": 0.1708 }, { "start": 5544.49, "end": 5544.85, "probability": 0.055 }, { "start": 5544.85, "end": 5545.49, "probability": 0.1044 }, { "start": 5572.13, "end": 5574.06, "probability": 0.9987 }, { "start": 5575.51, "end": 5576.33, "probability": 0.9744 }, { "start": 5576.51, "end": 5577.73, "probability": 0.4423 }, { "start": 5578.01, "end": 5578.23, "probability": 0.1846 }, { "start": 5578.43, "end": 5580.22, "probability": 0.9658 }, { "start": 5580.47, "end": 5581.77, "probability": 0.8706 }, { "start": 5582.81, "end": 5583.96, "probability": 0.999 }, { "start": 5584.79, "end": 5587.65, "probability": 0.9941 }, { "start": 5589.83, "end": 5590.07, "probability": 0.0806 }, { "start": 5590.35, "end": 5590.41, "probability": 0.0115 }, { "start": 5590.41, "end": 5590.41, "probability": 0.0327 }, { "start": 5590.41, "end": 5590.41, "probability": 0.1801 }, { "start": 5590.41, "end": 5591.09, "probability": 0.2697 }, { "start": 5591.19, "end": 5592.25, "probability": 0.4995 }, { "start": 5592.37, "end": 5594.27, "probability": 0.7764 }, { "start": 5596.83, "end": 5598.99, "probability": 0.4983 }, { "start": 5599.57, "end": 5605.69, "probability": 0.9866 }, { "start": 5606.45, "end": 5611.83, "probability": 0.9949 }, { "start": 5611.97, "end": 5612.87, "probability": 0.9484 }, { "start": 5613.87, "end": 5614.85, "probability": 0.9082 }, { "start": 5616.59, "end": 5619.31, "probability": 0.9985 }, { "start": 5620.63, "end": 5623.85, "probability": 0.9938 }, { "start": 5624.77, "end": 5625.57, "probability": 0.1164 }, { "start": 5625.57, "end": 5625.57, "probability": 0.065 }, { "start": 5625.57, "end": 5625.57, "probability": 0.1044 }, { "start": 5625.57, "end": 5625.57, "probability": 0.4605 }, { "start": 5625.57, "end": 5625.57, "probability": 0.686 }, { "start": 5625.67, "end": 5628.15, "probability": 0.9456 }, { "start": 5629.07, "end": 5631.77, "probability": 0.9824 }, { "start": 5632.37, "end": 5634.11, "probability": 0.9741 }, { "start": 5634.84, "end": 5635.59, "probability": 0.068 }, { "start": 5635.59, "end": 5637.63, "probability": 0.9473 }, { "start": 5638.65, "end": 5639.25, "probability": 0.6073 }, { "start": 5639.27, "end": 5640.17, "probability": 0.3365 }, { "start": 5640.91, "end": 5642.21, "probability": 0.501 }, { "start": 5642.21, "end": 5642.56, "probability": 0.5211 }, { "start": 5643.37, "end": 5646.27, "probability": 0.0673 }, { "start": 5646.27, "end": 5646.37, "probability": 0.0786 }, { "start": 5646.53, "end": 5647.07, "probability": 0.107 }, { "start": 5647.07, "end": 5651.47, "probability": 0.9871 }, { "start": 5651.63, "end": 5655.73, "probability": 0.9756 }, { "start": 5656.99, "end": 5658.07, "probability": 0.5158 }, { "start": 5658.59, "end": 5660.45, "probability": 0.9128 }, { "start": 5661.09, "end": 5662.35, "probability": 0.8145 }, { "start": 5662.45, "end": 5663.31, "probability": 0.8688 }, { "start": 5663.75, "end": 5665.59, "probability": 0.9924 }, { "start": 5666.19, "end": 5667.69, "probability": 0.8047 }, { "start": 5668.57, "end": 5669.57, "probability": 0.0206 }, { "start": 5670.65, "end": 5673.35, "probability": 0.0373 }, { "start": 5675.07, "end": 5676.65, "probability": 0.1516 }, { "start": 5677.67, "end": 5678.37, "probability": 0.0878 }, { "start": 5678.37, "end": 5680.76, "probability": 0.0855 }, { "start": 5682.85, "end": 5683.21, "probability": 0.075 }, { "start": 5683.21, "end": 5683.21, "probability": 0.2227 }, { "start": 5683.21, "end": 5683.21, "probability": 0.1366 }, { "start": 5683.21, "end": 5683.21, "probability": 0.1833 }, { "start": 5683.21, "end": 5683.61, "probability": 0.2964 }, { "start": 5683.93, "end": 5687.21, "probability": 0.9198 }, { "start": 5687.73, "end": 5690.51, "probability": 0.9828 }, { "start": 5691.47, "end": 5696.59, "probability": 0.97 }, { "start": 5697.19, "end": 5698.79, "probability": 0.9308 }, { "start": 5698.89, "end": 5700.39, "probability": 0.985 }, { "start": 5700.63, "end": 5701.97, "probability": 0.6401 }, { "start": 5702.23, "end": 5703.25, "probability": 0.8206 }, { "start": 5703.55, "end": 5703.85, "probability": 0.3342 }, { "start": 5703.85, "end": 5705.49, "probability": 0.7505 }, { "start": 5705.79, "end": 5706.73, "probability": 0.991 }, { "start": 5706.97, "end": 5706.97, "probability": 0.6754 }, { "start": 5706.97, "end": 5708.09, "probability": 0.2975 }, { "start": 5708.11, "end": 5708.11, "probability": 0.0623 }, { "start": 5708.19, "end": 5710.21, "probability": 0.9156 }, { "start": 5710.29, "end": 5710.41, "probability": 0.3756 }, { "start": 5710.41, "end": 5715.59, "probability": 0.9702 }, { "start": 5715.87, "end": 5718.3, "probability": 0.8859 }, { "start": 5718.87, "end": 5720.01, "probability": 0.9865 }, { "start": 5720.67, "end": 5723.15, "probability": 0.8911 }, { "start": 5723.69, "end": 5725.08, "probability": 0.9961 }, { "start": 5725.85, "end": 5728.61, "probability": 0.9704 }, { "start": 5730.31, "end": 5731.11, "probability": 0.5196 }, { "start": 5731.45, "end": 5733.31, "probability": 0.701 }, { "start": 5733.31, "end": 5734.28, "probability": 0.5587 }, { "start": 5735.41, "end": 5740.03, "probability": 0.9053 }, { "start": 5740.25, "end": 5741.28, "probability": 0.0084 }, { "start": 5741.79, "end": 5743.21, "probability": 0.0228 }, { "start": 5743.41, "end": 5743.93, "probability": 0.1303 }, { "start": 5743.93, "end": 5744.45, "probability": 0.0117 }, { "start": 5744.45, "end": 5744.45, "probability": 0.013 }, { "start": 5744.45, "end": 5744.45, "probability": 0.0239 }, { "start": 5744.45, "end": 5744.45, "probability": 0.0041 }, { "start": 5744.45, "end": 5744.45, "probability": 0.1254 }, { "start": 5744.45, "end": 5744.45, "probability": 0.2436 }, { "start": 5744.45, "end": 5744.93, "probability": 0.1236 }, { "start": 5745.09, "end": 5746.27, "probability": 0.497 }, { "start": 5746.63, "end": 5748.07, "probability": 0.4946 }, { "start": 5748.33, "end": 5751.8, "probability": 0.6445 }, { "start": 5752.35, "end": 5755.13, "probability": 0.6306 }, { "start": 5755.39, "end": 5755.93, "probability": 0.7089 }, { "start": 5756.21, "end": 5756.21, "probability": 0.0713 }, { "start": 5756.21, "end": 5756.21, "probability": 0.1185 }, { "start": 5756.21, "end": 5756.21, "probability": 0.0089 }, { "start": 5756.21, "end": 5756.23, "probability": 0.2529 }, { "start": 5756.23, "end": 5757.32, "probability": 0.1774 }, { "start": 5758.13, "end": 5760.37, "probability": 0.6298 }, { "start": 5760.57, "end": 5761.99, "probability": 0.6016 }, { "start": 5762.65, "end": 5763.21, "probability": 0.8674 }, { "start": 5763.41, "end": 5763.77, "probability": 0.0144 }, { "start": 5763.77, "end": 5764.09, "probability": 0.1399 }, { "start": 5764.21, "end": 5765.75, "probability": 0.449 }, { "start": 5766.05, "end": 5767.97, "probability": 0.066 }, { "start": 5767.97, "end": 5767.97, "probability": 0.081 }, { "start": 5767.97, "end": 5767.97, "probability": 0.2878 }, { "start": 5767.97, "end": 5770.59, "probability": 0.4279 }, { "start": 5770.59, "end": 5773.81, "probability": 0.991 }, { "start": 5774.01, "end": 5774.91, "probability": 0.731 }, { "start": 5775.19, "end": 5778.81, "probability": 0.823 }, { "start": 5778.81, "end": 5778.83, "probability": 0.0147 }, { "start": 5778.83, "end": 5778.83, "probability": 0.3509 }, { "start": 5778.83, "end": 5780.61, "probability": 0.4846 }, { "start": 5780.69, "end": 5781.87, "probability": 0.7764 }, { "start": 5782.63, "end": 5791.23, "probability": 0.0213 }, { "start": 5793.01, "end": 5793.17, "probability": 0.0819 }, { "start": 5793.17, "end": 5795.71, "probability": 0.9894 }, { "start": 5796.01, "end": 5797.77, "probability": 0.9049 }, { "start": 5798.49, "end": 5801.19, "probability": 0.9834 }, { "start": 5802.85, "end": 5806.91, "probability": 0.9341 }, { "start": 5807.11, "end": 5807.67, "probability": 0.7502 }, { "start": 5809.27, "end": 5813.31, "probability": 0.2605 }, { "start": 5818.89, "end": 5819.29, "probability": 0.8997 }, { "start": 5819.53, "end": 5820.01, "probability": 0.1622 }, { "start": 5820.01, "end": 5820.01, "probability": 0.1393 }, { "start": 5820.01, "end": 5820.01, "probability": 0.0225 }, { "start": 5820.01, "end": 5821.67, "probability": 0.2299 }, { "start": 5822.07, "end": 5822.61, "probability": 0.3705 }, { "start": 5823.03, "end": 5823.49, "probability": 0.3097 }, { "start": 5823.95, "end": 5826.23, "probability": 0.5237 }, { "start": 5930.0, "end": 5930.0, "probability": 0.0 }, { "start": 5930.0, "end": 5930.0, "probability": 0.0 }, { "start": 5930.0, "end": 5930.0, "probability": 0.0 }, { "start": 5930.0, "end": 5930.0, "probability": 0.0 }, { "start": 5930.0, "end": 5930.0, "probability": 0.0 }, { "start": 5930.0, "end": 5930.0, "probability": 0.0 }, { "start": 5930.0, "end": 5930.0, "probability": 0.0 }, { "start": 5930.0, "end": 5930.0, "probability": 0.0 }, { "start": 5930.0, "end": 5930.0, "probability": 0.0 }, { "start": 5930.0, "end": 5930.0, "probability": 0.0 }, { "start": 5930.0, "end": 5930.0, "probability": 0.0 }, { "start": 5930.0, "end": 5930.0, "probability": 0.0 }, { "start": 5930.0, "end": 5930.0, "probability": 0.0 }, { "start": 5930.0, "end": 5930.0, "probability": 0.0 }, { "start": 5930.0, "end": 5930.0, "probability": 0.0 }, { "start": 5930.0, "end": 5930.0, "probability": 0.0 }, { "start": 5930.0, "end": 5930.0, "probability": 0.0 }, { "start": 5930.0, "end": 5930.0, "probability": 0.0 }, { "start": 5930.0, "end": 5930.0, "probability": 0.0 }, { "start": 5930.0, "end": 5930.0, "probability": 0.0 }, { "start": 5930.0, "end": 5930.0, "probability": 0.0 }, { "start": 5930.0, "end": 5930.0, "probability": 0.0 }, { "start": 5930.0, "end": 5930.0, "probability": 0.0 }, { "start": 5930.0, "end": 5930.0, "probability": 0.0 }, { "start": 5930.0, "end": 5930.0, "probability": 0.0 }, { "start": 5930.0, "end": 5930.0, "probability": 0.0 }, { "start": 5930.0, "end": 5930.0, "probability": 0.0 }, { "start": 5930.0, "end": 5930.0, "probability": 0.0 }, { "start": 5930.0, "end": 5930.0, "probability": 0.0 }, { "start": 5930.0, "end": 5930.0, "probability": 0.0 }, { "start": 5930.0, "end": 5930.0, "probability": 0.0 }, { "start": 5930.0, "end": 5930.0, "probability": 0.0 }, { "start": 5930.0, "end": 5930.0, "probability": 0.0 }, { "start": 5930.0, "end": 5930.0, "probability": 0.0 }, { "start": 5930.0, "end": 5930.0, "probability": 0.0 }, { "start": 5930.0, "end": 5930.0, "probability": 0.0 }, { "start": 5930.0, "end": 5930.0, "probability": 0.0 }, { "start": 5930.0, "end": 5930.0, "probability": 0.0 }, { "start": 5930.0, "end": 5930.0, "probability": 0.0 }, { "start": 5930.0, "end": 5930.0, "probability": 0.0 }, { "start": 5930.0, "end": 5930.0, "probability": 0.0 }, { "start": 5930.0, "end": 5930.0, "probability": 0.0 }, { "start": 5930.0, "end": 5930.0, "probability": 0.0 }, { "start": 5930.0, "end": 5930.0, "probability": 0.0 }, { "start": 5930.0, "end": 5930.0, "probability": 0.0 }, { "start": 5932.2, "end": 5932.2, "probability": 0.2234 }, { "start": 5932.2, "end": 5937.92, "probability": 0.0488 }, { "start": 5940.72, "end": 5942.0, "probability": 0.0336 }, { "start": 5942.0, "end": 5942.98, "probability": 0.1052 }, { "start": 5944.4, "end": 5946.68, "probability": 0.0453 }, { "start": 5947.38, "end": 5949.94, "probability": 0.4314 }, { "start": 6059.0, "end": 6059.0, "probability": 0.0 }, { "start": 6059.0, "end": 6059.0, "probability": 0.0 }, { "start": 6059.0, "end": 6059.0, "probability": 0.0 }, { "start": 6059.0, "end": 6059.0, "probability": 0.0 }, { "start": 6059.0, "end": 6059.0, "probability": 0.0 }, { "start": 6059.0, "end": 6059.0, "probability": 0.0 }, { "start": 6059.0, "end": 6059.0, "probability": 0.0 }, { "start": 6059.0, "end": 6059.0, "probability": 0.0 }, { "start": 6059.0, "end": 6059.0, "probability": 0.0 }, { "start": 6059.0, "end": 6059.0, "probability": 0.0 }, { "start": 6059.0, "end": 6059.0, "probability": 0.0 }, { "start": 6059.0, "end": 6059.0, "probability": 0.0 }, { "start": 6059.0, "end": 6059.0, "probability": 0.0 }, { "start": 6059.0, "end": 6059.0, "probability": 0.0 }, { "start": 6059.0, "end": 6059.0, "probability": 0.0 }, { "start": 6059.0, "end": 6059.0, "probability": 0.0 }, { "start": 6059.0, "end": 6059.0, "probability": 0.0 }, { "start": 6059.0, "end": 6059.0, "probability": 0.0 }, { "start": 6059.0, "end": 6059.0, "probability": 0.0 }, { "start": 6059.0, "end": 6059.0, "probability": 0.0 }, { "start": 6059.0, "end": 6059.0, "probability": 0.0 }, { "start": 6059.0, "end": 6059.0, "probability": 0.0 }, { "start": 6059.0, "end": 6059.0, "probability": 0.0 }, { "start": 6059.0, "end": 6059.0, "probability": 0.0 }, { "start": 6059.0, "end": 6059.0, "probability": 0.0 }, { "start": 6059.0, "end": 6059.0, "probability": 0.0 }, { "start": 6059.0, "end": 6059.0, "probability": 0.0 }, { "start": 6059.0, "end": 6059.0, "probability": 0.0 }, { "start": 6059.0, "end": 6059.0, "probability": 0.0 }, { "start": 6059.0, "end": 6059.0, "probability": 0.0 }, { "start": 6059.0, "end": 6059.0, "probability": 0.0 }, { "start": 6059.0, "end": 6059.0, "probability": 0.0 }, { "start": 6059.0, "end": 6059.0, "probability": 0.0 }, { "start": 6059.0, "end": 6059.0, "probability": 0.0 }, { "start": 6059.0, "end": 6059.0, "probability": 0.0 }, { "start": 6059.0, "end": 6059.0, "probability": 0.0 }, { "start": 6059.0, "end": 6059.0, "probability": 0.0 }, { "start": 6059.0, "end": 6059.0, "probability": 0.0 }, { "start": 6059.0, "end": 6059.0, "probability": 0.0 }, { "start": 6059.0, "end": 6059.0, "probability": 0.0 }, { "start": 6059.28, "end": 6059.28, "probability": 0.0903 }, { "start": 6059.28, "end": 6059.28, "probability": 0.0894 }, { "start": 6059.28, "end": 6060.8, "probability": 0.2386 }, { "start": 6062.14, "end": 6063.9, "probability": 0.006 }, { "start": 6071.02, "end": 6072.9, "probability": 0.1292 }, { "start": 6073.52, "end": 6073.52, "probability": 0.1002 }, { "start": 6073.52, "end": 6073.52, "probability": 0.2022 }, { "start": 6073.52, "end": 6073.52, "probability": 0.0104 }, { "start": 6073.52, "end": 6073.52, "probability": 0.2247 }, { "start": 6073.52, "end": 6073.52, "probability": 0.0783 }, { "start": 6073.52, "end": 6073.52, "probability": 0.0441 }, { "start": 6073.52, "end": 6076.94, "probability": 0.7256 }, { "start": 6195.0, "end": 6195.0, "probability": 0.0 }, { "start": 6195.0, "end": 6195.0, "probability": 0.0 }, { "start": 6195.0, "end": 6195.0, "probability": 0.0 }, { "start": 6195.0, "end": 6195.0, "probability": 0.0 }, { "start": 6195.0, "end": 6195.0, "probability": 0.0 }, { "start": 6195.0, "end": 6195.0, "probability": 0.0 }, { "start": 6195.0, "end": 6195.0, "probability": 0.0 }, { "start": 6195.0, "end": 6195.0, "probability": 0.0 }, { "start": 6195.0, "end": 6195.0, "probability": 0.0 }, { "start": 6195.0, "end": 6195.0, "probability": 0.0 }, { "start": 6195.0, "end": 6195.0, "probability": 0.0 }, { "start": 6195.0, "end": 6195.0, "probability": 0.0 }, { "start": 6195.0, "end": 6195.0, "probability": 0.0 }, { "start": 6195.0, "end": 6195.0, "probability": 0.0 }, { "start": 6195.0, "end": 6195.0, "probability": 0.0 }, { "start": 6195.0, "end": 6195.0, "probability": 0.0 }, { "start": 6195.0, "end": 6195.0, "probability": 0.0 }, { "start": 6195.0, "end": 6195.0, "probability": 0.0 }, { "start": 6195.0, "end": 6195.0, "probability": 0.0 }, { "start": 6195.0, "end": 6195.0, "probability": 0.0 }, { "start": 6195.0, "end": 6195.0, "probability": 0.0 }, { "start": 6195.0, "end": 6195.0, "probability": 0.0 }, { "start": 6195.0, "end": 6195.0, "probability": 0.0 }, { "start": 6195.0, "end": 6195.0, "probability": 0.0 }, { "start": 6195.0, "end": 6195.0, "probability": 0.0 }, { "start": 6195.0, "end": 6195.0, "probability": 0.0 }, { "start": 6195.22, "end": 6201.1, "probability": 0.0332 }, { "start": 6201.74, "end": 6204.34, "probability": 0.067 }, { "start": 6204.34, "end": 6206.08, "probability": 0.0167 }, { "start": 6206.08, "end": 6206.88, "probability": 0.5782 }, { "start": 6206.88, "end": 6209.54, "probability": 0.5116 }, { "start": 6315.0, "end": 6315.0, "probability": 0.0 }, { "start": 6315.0, "end": 6315.0, "probability": 0.0 }, { "start": 6315.0, "end": 6315.0, "probability": 0.0 }, { "start": 6315.0, "end": 6315.0, "probability": 0.0 }, { "start": 6315.0, "end": 6315.0, "probability": 0.0 }, { "start": 6315.0, "end": 6315.0, "probability": 0.0 }, { "start": 6315.0, "end": 6315.0, "probability": 0.0 }, { "start": 6315.0, "end": 6315.0, "probability": 0.0 }, { "start": 6315.0, "end": 6315.0, "probability": 0.0 }, { "start": 6315.0, "end": 6315.0, "probability": 0.0 }, { "start": 6315.0, "end": 6315.0, "probability": 0.0 }, { "start": 6315.0, "end": 6315.0, "probability": 0.0 }, { "start": 6315.0, "end": 6315.0, "probability": 0.0 }, { "start": 6315.0, "end": 6315.0, "probability": 0.0 }, { "start": 6315.0, "end": 6315.0, "probability": 0.0 }, { "start": 6315.0, "end": 6315.0, "probability": 0.0 }, { "start": 6315.0, "end": 6315.0, "probability": 0.0 }, { "start": 6315.0, "end": 6315.0, "probability": 0.0 }, { "start": 6315.0, "end": 6315.0, "probability": 0.0 }, { "start": 6315.0, "end": 6315.0, "probability": 0.0 }, { "start": 6315.0, "end": 6315.0, "probability": 0.0 }, { "start": 6315.0, "end": 6315.0, "probability": 0.0 }, { "start": 6315.0, "end": 6315.0, "probability": 0.0 }, { "start": 6315.0, "end": 6315.0, "probability": 0.0 }, { "start": 6315.0, "end": 6315.0, "probability": 0.0 }, { "start": 6315.0, "end": 6315.0, "probability": 0.0 }, { "start": 6315.0, "end": 6315.0, "probability": 0.0 }, { "start": 6315.0, "end": 6315.0, "probability": 0.0 }, { "start": 6315.0, "end": 6315.0, "probability": 0.0 }, { "start": 6315.0, "end": 6315.0, "probability": 0.0 }, { "start": 6315.0, "end": 6315.0, "probability": 0.0 }, { "start": 6315.0, "end": 6315.0, "probability": 0.0 }, { "start": 6315.0, "end": 6315.0, "probability": 0.0 }, { "start": 6315.0, "end": 6315.0, "probability": 0.0 }, { "start": 6315.0, "end": 6315.0, "probability": 0.0 }, { "start": 6315.0, "end": 6315.0, "probability": 0.0 }, { "start": 6315.0, "end": 6315.0, "probability": 0.0 }, { "start": 6315.0, "end": 6315.0, "probability": 0.0 }, { "start": 6315.0, "end": 6315.0, "probability": 0.0 }, { "start": 6315.0, "end": 6315.0, "probability": 0.0 }, { "start": 6315.0, "end": 6315.0, "probability": 0.0 }, { "start": 6315.0, "end": 6315.0, "probability": 0.0 }, { "start": 6315.0, "end": 6315.0, "probability": 0.0 }, { "start": 6315.0, "end": 6315.0, "probability": 0.0 }, { "start": 6315.0, "end": 6315.0, "probability": 0.0 }, { "start": 6315.0, "end": 6315.0, "probability": 0.0 }, { "start": 6315.0, "end": 6315.0, "probability": 0.0 }, { "start": 6315.0, "end": 6315.0, "probability": 0.0 }, { "start": 6316.94, "end": 6319.6, "probability": 0.0023 }, { "start": 6319.9, "end": 6325.84, "probability": 0.7946 }, { "start": 6327.12, "end": 6329.42, "probability": 0.6585 }, { "start": 6329.56, "end": 6330.68, "probability": 0.1634 }, { "start": 6330.98, "end": 6331.94, "probability": 0.6403 }, { "start": 6332.38, "end": 6333.67, "probability": 0.9153 }, { "start": 6334.28, "end": 6335.08, "probability": 0.14 }, { "start": 6335.36, "end": 6336.88, "probability": 0.9678 }, { "start": 6338.14, "end": 6339.06, "probability": 0.3281 }, { "start": 6339.34, "end": 6339.6, "probability": 0.2736 }, { "start": 6339.6, "end": 6340.5, "probability": 0.6859 }, { "start": 6340.88, "end": 6342.06, "probability": 0.915 }, { "start": 6342.1, "end": 6344.98, "probability": 0.9932 }, { "start": 6345.1, "end": 6346.52, "probability": 0.9718 }, { "start": 6346.94, "end": 6349.18, "probability": 0.6643 }, { "start": 6349.18, "end": 6350.64, "probability": 0.7655 }, { "start": 6350.64, "end": 6350.85, "probability": 0.0115 }, { "start": 6351.38, "end": 6351.52, "probability": 0.1141 }, { "start": 6351.52, "end": 6353.5, "probability": 0.0383 }, { "start": 6354.36, "end": 6358.66, "probability": 0.1332 }, { "start": 6358.66, "end": 6359.56, "probability": 0.0511 }, { "start": 6359.56, "end": 6360.28, "probability": 0.0654 }, { "start": 6361.02, "end": 6361.48, "probability": 0.0819 }, { "start": 6366.18, "end": 6371.32, "probability": 0.1361 }, { "start": 6371.32, "end": 6372.99, "probability": 0.0192 }, { "start": 6373.28, "end": 6375.72, "probability": 0.0606 }, { "start": 6375.86, "end": 6380.88, "probability": 0.0222 }, { "start": 6381.72, "end": 6383.3, "probability": 0.1813 }, { "start": 6385.95, "end": 6386.74, "probability": 0.0143 }, { "start": 6440.0, "end": 6440.0, "probability": 0.0 }, { "start": 6440.0, "end": 6440.0, "probability": 0.0 }, { "start": 6440.0, "end": 6440.0, "probability": 0.0 }, { "start": 6440.0, "end": 6440.0, "probability": 0.0 }, { "start": 6440.0, "end": 6440.0, "probability": 0.0 }, { "start": 6440.0, "end": 6440.0, "probability": 0.0 }, { "start": 6440.0, "end": 6440.0, "probability": 0.0 }, { "start": 6440.0, "end": 6440.0, "probability": 0.0 }, { "start": 6440.0, "end": 6440.0, "probability": 0.0 }, { "start": 6440.0, "end": 6440.0, "probability": 0.0 }, { "start": 6440.0, "end": 6440.0, "probability": 0.0 }, { "start": 6440.0, "end": 6440.0, "probability": 0.0 }, { "start": 6440.0, "end": 6440.0, "probability": 0.0 }, { "start": 6440.0, "end": 6440.0, "probability": 0.0 }, { "start": 6440.0, "end": 6440.0, "probability": 0.0 }, { "start": 6440.0, "end": 6440.0, "probability": 0.0 }, { "start": 6440.0, "end": 6440.0, "probability": 0.0 }, { "start": 6440.0, "end": 6440.0, "probability": 0.0 }, { "start": 6440.0, "end": 6440.0, "probability": 0.0 }, { "start": 6440.0, "end": 6440.0, "probability": 0.0 }, { "start": 6440.0, "end": 6440.0, "probability": 0.0 }, { "start": 6440.0, "end": 6440.0, "probability": 0.0 }, { "start": 6440.0, "end": 6440.0, "probability": 0.0 }, { "start": 6440.0, "end": 6440.0, "probability": 0.0 }, { "start": 6440.0, "end": 6440.0, "probability": 0.0 }, { "start": 6440.0, "end": 6440.0, "probability": 0.0 }, { "start": 6440.0, "end": 6440.0, "probability": 0.0 }, { "start": 6440.0, "end": 6440.0, "probability": 0.0 }, { "start": 6440.0, "end": 6440.0, "probability": 0.0 }, { "start": 6440.0, "end": 6440.0, "probability": 0.0 }, { "start": 6440.0, "end": 6440.0, "probability": 0.0 }, { "start": 6440.0, "end": 6440.0, "probability": 0.0 }, { "start": 6440.0, "end": 6440.0, "probability": 0.0 }, { "start": 6440.0, "end": 6440.0, "probability": 0.0 }, { "start": 6440.0, "end": 6440.0, "probability": 0.0 }, { "start": 6440.0, "end": 6440.0, "probability": 0.0 }, { "start": 6440.0, "end": 6440.0, "probability": 0.0 }, { "start": 6440.0, "end": 6440.0, "probability": 0.0 }, { "start": 6440.0, "end": 6440.0, "probability": 0.0 }, { "start": 6440.0, "end": 6440.0, "probability": 0.0 }, { "start": 6440.0, "end": 6440.0, "probability": 0.0 }, { "start": 6440.0, "end": 6440.0, "probability": 0.0 }, { "start": 6440.16, "end": 6440.16, "probability": 0.3397 }, { "start": 6440.2, "end": 6441.08, "probability": 0.8036 }, { "start": 6441.16, "end": 6442.14, "probability": 0.5963 }, { "start": 6442.44, "end": 6443.64, "probability": 0.4627 }, { "start": 6444.76, "end": 6445.34, "probability": 0.5358 }, { "start": 6445.34, "end": 6446.24, "probability": 0.3608 }, { "start": 6446.68, "end": 6446.8, "probability": 0.3688 }, { "start": 6446.8, "end": 6448.54, "probability": 0.4051 }, { "start": 6449.28, "end": 6451.12, "probability": 0.7798 }, { "start": 6451.2, "end": 6452.54, "probability": 0.0264 }, { "start": 6452.64, "end": 6455.7, "probability": 0.2078 }, { "start": 6455.76, "end": 6457.82, "probability": 0.4599 }, { "start": 6459.8, "end": 6460.32, "probability": 0.1784 }, { "start": 6460.32, "end": 6460.32, "probability": 0.0435 }, { "start": 6460.32, "end": 6460.32, "probability": 0.0264 }, { "start": 6460.32, "end": 6463.1, "probability": 0.7051 }, { "start": 6463.22, "end": 6465.22, "probability": 0.9413 }, { "start": 6466.32, "end": 6468.62, "probability": 0.1194 }, { "start": 6469.18, "end": 6469.18, "probability": 0.0458 }, { "start": 6469.18, "end": 6469.18, "probability": 0.2718 }, { "start": 6469.18, "end": 6469.18, "probability": 0.1435 }, { "start": 6469.18, "end": 6469.67, "probability": 0.6421 }, { "start": 6471.0, "end": 6471.58, "probability": 0.139 }, { "start": 6471.86, "end": 6471.86, "probability": 0.2363 }, { "start": 6471.86, "end": 6471.86, "probability": 0.086 }, { "start": 6471.86, "end": 6471.86, "probability": 0.0143 }, { "start": 6471.98, "end": 6478.24, "probability": 0.6442 }, { "start": 6481.04, "end": 6481.44, "probability": 0.037 }, { "start": 6481.46, "end": 6481.78, "probability": 0.0209 }, { "start": 6481.78, "end": 6483.26, "probability": 0.0439 }, { "start": 6485.53, "end": 6489.16, "probability": 0.0293 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.0, "end": 6560.0, "probability": 0.0 }, { "start": 6560.38, "end": 6564.52, "probability": 0.3547 }, { "start": 6564.66, "end": 6565.84, "probability": 0.4394 }, { "start": 6566.62, "end": 6567.54, "probability": 0.641 }, { "start": 6568.2, "end": 6569.42, "probability": 0.7896 }, { "start": 6570.54, "end": 6571.76, "probability": 0.8371 }, { "start": 6571.96, "end": 6575.2, "probability": 0.5378 }, { "start": 6577.8, "end": 6579.66, "probability": 0.8576 }, { "start": 6579.74, "end": 6581.4, "probability": 0.5829 }, { "start": 6582.08, "end": 6584.42, "probability": 0.3817 }, { "start": 6584.44, "end": 6587.14, "probability": 0.8389 }, { "start": 6587.58, "end": 6588.0, "probability": 0.8632 }, { "start": 6588.12, "end": 6589.28, "probability": 0.96 }, { "start": 6590.3, "end": 6591.02, "probability": 0.1256 }, { "start": 6591.4, "end": 6591.98, "probability": 0.4958 }, { "start": 6592.7, "end": 6593.78, "probability": 0.048 }, { "start": 6593.84, "end": 6594.22, "probability": 0.0363 }, { "start": 6594.22, "end": 6594.64, "probability": 0.7471 }, { "start": 6594.76, "end": 6595.76, "probability": 0.7939 }, { "start": 6595.96, "end": 6597.44, "probability": 0.9987 }, { "start": 6597.58, "end": 6598.76, "probability": 0.9907 }, { "start": 6598.98, "end": 6600.36, "probability": 0.8748 }, { "start": 6600.42, "end": 6601.91, "probability": 0.9798 }, { "start": 6605.04, "end": 6605.3, "probability": 0.0246 }, { "start": 6605.3, "end": 6605.3, "probability": 0.1503 }, { "start": 6605.3, "end": 6605.78, "probability": 0.3848 }, { "start": 6608.9, "end": 6613.94, "probability": 0.9635 }, { "start": 6614.12, "end": 6614.36, "probability": 0.4481 }, { "start": 6614.6, "end": 6615.7, "probability": 0.5212 }, { "start": 6615.7, "end": 6616.36, "probability": 0.1042 }, { "start": 6618.9, "end": 6619.92, "probability": 0.0682 }, { "start": 6620.0, "end": 6620.74, "probability": 0.2242 }, { "start": 6620.92, "end": 6621.5, "probability": 0.7501 }, { "start": 6621.6, "end": 6621.98, "probability": 0.3591 }, { "start": 6622.02, "end": 6623.26, "probability": 0.3877 }, { "start": 6623.32, "end": 6623.42, "probability": 0.1099 }, { "start": 6623.7, "end": 6624.66, "probability": 0.5445 }, { "start": 6624.76, "end": 6625.58, "probability": 0.6483 }, { "start": 6625.78, "end": 6627.28, "probability": 0.3981 }, { "start": 6627.84, "end": 6627.98, "probability": 0.3719 }, { "start": 6627.98, "end": 6628.8, "probability": 0.0701 }, { "start": 6629.5, "end": 6631.2, "probability": 0.9163 }, { "start": 6631.3, "end": 6632.82, "probability": 0.4966 }, { "start": 6633.12, "end": 6634.2, "probability": 0.1195 }, { "start": 6635.58, "end": 6638.52, "probability": 0.3931 }, { "start": 6638.84, "end": 6639.92, "probability": 0.4958 }, { "start": 6639.98, "end": 6640.64, "probability": 0.3445 }, { "start": 6640.7, "end": 6641.66, "probability": 0.3017 }, { "start": 6642.14, "end": 6642.77, "probability": 0.6415 }, { "start": 6642.88, "end": 6643.3, "probability": 0.0382 }, { "start": 6643.3, "end": 6647.26, "probability": 0.4788 }, { "start": 6647.34, "end": 6648.38, "probability": 0.4787 }, { "start": 6648.9, "end": 6651.48, "probability": 0.2393 }, { "start": 6651.48, "end": 6653.1, "probability": 0.1283 }, { "start": 6653.94, "end": 6657.02, "probability": 0.0207 }, { "start": 6659.49, "end": 6661.54, "probability": 0.0378 }, { "start": 6661.54, "end": 6661.54, "probability": 0.0734 }, { "start": 6661.54, "end": 6664.48, "probability": 0.0279 }, { "start": 6664.76, "end": 6665.98, "probability": 0.0366 }, { "start": 6666.54, "end": 6670.42, "probability": 0.2109 }, { "start": 6670.56, "end": 6674.94, "probability": 0.0475 }, { "start": 6675.42, "end": 6678.06, "probability": 0.7101 }, { "start": 6678.06, "end": 6681.09, "probability": 0.1783 }, { "start": 6681.24, "end": 6682.5, "probability": 0.1089 }, { "start": 6693.0, "end": 6693.0, "probability": 0.0 }, { "start": 6693.0, "end": 6693.0, "probability": 0.0 }, { "start": 6693.0, "end": 6693.0, "probability": 0.0 }, { "start": 6693.0, "end": 6693.0, "probability": 0.0 }, { "start": 6693.0, "end": 6693.0, "probability": 0.0 }, { "start": 6693.0, "end": 6693.0, "probability": 0.0 }, { "start": 6693.0, "end": 6693.0, "probability": 0.0 }, { "start": 6693.0, "end": 6693.0, "probability": 0.0 }, { "start": 6693.0, "end": 6693.0, "probability": 0.0 }, { "start": 6693.0, "end": 6693.0, "probability": 0.0 }, { "start": 6693.0, "end": 6693.0, "probability": 0.0 }, { "start": 6693.46, "end": 6693.58, "probability": 0.2671 }, { "start": 6693.58, "end": 6693.66, "probability": 0.02 }, { "start": 6693.74, "end": 6694.5, "probability": 0.6408 }, { "start": 6694.92, "end": 6695.64, "probability": 0.8395 }, { "start": 6696.52, "end": 6697.1, "probability": 0.8424 }, { "start": 6697.14, "end": 6697.78, "probability": 0.7453 }, { "start": 6697.96, "end": 6699.52, "probability": 0.9074 }, { "start": 6700.8, "end": 6707.58, "probability": 0.9435 }, { "start": 6708.22, "end": 6709.6, "probability": 0.668 }, { "start": 6709.72, "end": 6711.98, "probability": 0.9082 }, { "start": 6712.26, "end": 6713.32, "probability": 0.5302 }, { "start": 6714.18, "end": 6718.16, "probability": 0.2834 }, { "start": 6718.82, "end": 6718.82, "probability": 0.329 }, { "start": 6718.82, "end": 6721.36, "probability": 0.8848 }, { "start": 6721.54, "end": 6725.8, "probability": 0.956 }, { "start": 6726.26, "end": 6727.54, "probability": 0.8301 }, { "start": 6728.34, "end": 6729.9, "probability": 0.0326 }, { "start": 6730.4, "end": 6733.04, "probability": 0.0079 }, { "start": 6735.16, "end": 6735.8, "probability": 0.0671 }, { "start": 6735.8, "end": 6735.8, "probability": 0.0316 }, { "start": 6735.8, "end": 6738.42, "probability": 0.3892 }, { "start": 6739.04, "end": 6742.24, "probability": 0.8431 }, { "start": 6742.88, "end": 6744.6, "probability": 0.9851 }, { "start": 6745.36, "end": 6749.14, "probability": 0.96 }, { "start": 6750.48, "end": 6754.84, "probability": 0.9971 }, { "start": 6755.74, "end": 6758.84, "probability": 0.9943 }, { "start": 6759.06, "end": 6762.3, "probability": 0.919 }, { "start": 6763.6, "end": 6767.92, "probability": 0.9327 }, { "start": 6768.0, "end": 6770.14, "probability": 0.7793 }, { "start": 6770.22, "end": 6774.48, "probability": 0.9907 }, { "start": 6775.52, "end": 6776.5, "probability": 0.6323 }, { "start": 6776.6, "end": 6777.42, "probability": 0.7008 }, { "start": 6777.46, "end": 6778.58, "probability": 0.7423 }, { "start": 6779.4, "end": 6783.68, "probability": 0.9678 }, { "start": 6783.88, "end": 6784.48, "probability": 0.732 }, { "start": 6784.9, "end": 6787.78, "probability": 0.9293 }, { "start": 6788.14, "end": 6789.0, "probability": 0.8936 }, { "start": 6789.66, "end": 6795.88, "probability": 0.9069 }, { "start": 6796.86, "end": 6797.24, "probability": 0.4863 }, { "start": 6797.42, "end": 6800.58, "probability": 0.8615 }, { "start": 6800.58, "end": 6805.02, "probability": 0.9057 }, { "start": 6806.06, "end": 6811.62, "probability": 0.9769 }, { "start": 6812.16, "end": 6813.54, "probability": 0.9481 }, { "start": 6814.34, "end": 6816.26, "probability": 0.9824 }, { "start": 6816.34, "end": 6821.78, "probability": 0.9854 }, { "start": 6822.9, "end": 6826.42, "probability": 0.7032 }, { "start": 6826.98, "end": 6828.32, "probability": 0.1081 }, { "start": 6829.04, "end": 6829.82, "probability": 0.1652 }, { "start": 6829.82, "end": 6831.42, "probability": 0.0636 }, { "start": 6831.52, "end": 6832.7, "probability": 0.7486 }, { "start": 6834.04, "end": 6836.42, "probability": 0.9901 }, { "start": 6836.5, "end": 6838.28, "probability": 0.7393 }, { "start": 6838.44, "end": 6840.72, "probability": 0.8224 }, { "start": 6840.72, "end": 6841.44, "probability": 0.3793 }, { "start": 6841.44, "end": 6841.44, "probability": 0.338 }, { "start": 6841.44, "end": 6844.88, "probability": 0.6718 }, { "start": 6844.88, "end": 6844.9, "probability": 0.3979 }, { "start": 6844.94, "end": 6845.54, "probability": 0.655 }, { "start": 6845.56, "end": 6846.16, "probability": 0.8583 }, { "start": 6846.48, "end": 6847.94, "probability": 0.8856 }, { "start": 6848.52, "end": 6849.34, "probability": 0.5917 }, { "start": 6849.38, "end": 6854.3, "probability": 0.9338 }, { "start": 6854.61, "end": 6854.68, "probability": 0.1387 }, { "start": 6854.76, "end": 6857.22, "probability": 0.8696 }, { "start": 6857.4, "end": 6858.64, "probability": 0.9153 }, { "start": 6858.72, "end": 6859.32, "probability": 0.8904 }, { "start": 6859.36, "end": 6860.04, "probability": 0.4734 }, { "start": 6860.7, "end": 6863.74, "probability": 0.9206 }, { "start": 6864.0, "end": 6870.44, "probability": 0.9688 }, { "start": 6870.82, "end": 6872.51, "probability": 0.4505 }, { "start": 6872.94, "end": 6874.88, "probability": 0.9748 }, { "start": 6874.96, "end": 6876.78, "probability": 0.9995 }, { "start": 6877.23, "end": 6878.56, "probability": 0.2195 }, { "start": 6878.56, "end": 6878.56, "probability": 0.1625 }, { "start": 6878.56, "end": 6878.56, "probability": 0.5284 }, { "start": 6878.56, "end": 6878.92, "probability": 0.3209 }, { "start": 6879.1, "end": 6881.82, "probability": 0.9402 }, { "start": 6882.44, "end": 6883.42, "probability": 0.8907 }, { "start": 6883.56, "end": 6885.46, "probability": 0.4932 }, { "start": 6885.88, "end": 6886.38, "probability": 0.0535 }, { "start": 6886.38, "end": 6886.92, "probability": 0.4075 }, { "start": 6887.18, "end": 6888.58, "probability": 0.752 }, { "start": 6888.79, "end": 6889.0, "probability": 0.1214 }, { "start": 6889.0, "end": 6890.84, "probability": 0.6668 }, { "start": 6891.0, "end": 6891.5, "probability": 0.6587 }, { "start": 6891.78, "end": 6894.08, "probability": 0.9888 }, { "start": 6894.12, "end": 6895.48, "probability": 0.7699 }, { "start": 6896.33, "end": 6898.51, "probability": 0.8084 }, { "start": 6902.0, "end": 6902.12, "probability": 0.0002 }, { "start": 6902.2, "end": 6902.72, "probability": 0.1159 }, { "start": 6902.74, "end": 6904.02, "probability": 0.0288 }, { "start": 6904.02, "end": 6905.22, "probability": 0.2138 }, { "start": 6906.04, "end": 6907.06, "probability": 0.6437 }, { "start": 6907.22, "end": 6911.5, "probability": 0.829 }, { "start": 6911.98, "end": 6914.78, "probability": 0.9971 }, { "start": 6915.12, "end": 6919.49, "probability": 0.9881 }, { "start": 6919.7, "end": 6920.56, "probability": 0.4666 }, { "start": 6920.92, "end": 6923.08, "probability": 0.3691 }, { "start": 6926.62, "end": 6927.49, "probability": 0.1006 }, { "start": 6927.82, "end": 6928.54, "probability": 0.3921 }, { "start": 6929.04, "end": 6930.1, "probability": 0.9541 }, { "start": 6930.18, "end": 6930.7, "probability": 0.708 }, { "start": 6931.26, "end": 6935.1, "probability": 0.9935 }, { "start": 6936.22, "end": 6939.28, "probability": 0.6755 }, { "start": 6939.82, "end": 6939.92, "probability": 0.3576 }, { "start": 6940.28, "end": 6940.52, "probability": 0.7007 }, { "start": 6940.58, "end": 6943.84, "probability": 0.995 }, { "start": 6944.04, "end": 6945.04, "probability": 0.929 }, { "start": 6945.1, "end": 6948.66, "probability": 0.936 }, { "start": 6949.2, "end": 6953.19, "probability": 0.9597 }, { "start": 6953.74, "end": 6955.4, "probability": 0.8191 }, { "start": 6955.52, "end": 6957.0, "probability": 0.9262 }, { "start": 6957.1, "end": 6959.46, "probability": 0.9805 }, { "start": 6962.4, "end": 6963.8, "probability": 0.4426 }, { "start": 6965.91, "end": 6969.38, "probability": 0.8223 }, { "start": 6969.44, "end": 6970.24, "probability": 0.8163 }, { "start": 6971.12, "end": 6975.08, "probability": 0.6574 }, { "start": 6975.78, "end": 6978.55, "probability": 0.7719 }, { "start": 6979.6, "end": 6980.22, "probability": 0.421 }, { "start": 6980.34, "end": 6981.14, "probability": 0.0957 }, { "start": 6982.2, "end": 6982.22, "probability": 0.0705 }, { "start": 6982.22, "end": 6985.34, "probability": 0.742 }, { "start": 6986.18, "end": 6990.94, "probability": 0.9529 }, { "start": 6991.04, "end": 6993.38, "probability": 0.877 }, { "start": 6995.68, "end": 6999.0, "probability": 0.9969 }, { "start": 6999.82, "end": 7002.38, "probability": 0.7375 }, { "start": 7003.4, "end": 7005.6, "probability": 0.8786 }, { "start": 7008.1, "end": 7012.78, "probability": 0.9027 }, { "start": 7012.94, "end": 7013.3, "probability": 0.2513 }, { "start": 7013.76, "end": 7016.08, "probability": 0.992 }, { "start": 7016.88, "end": 7019.51, "probability": 0.9146 }, { "start": 7021.52, "end": 7024.94, "probability": 0.9899 }, { "start": 7024.94, "end": 7028.72, "probability": 0.9964 }, { "start": 7029.16, "end": 7031.68, "probability": 0.9792 }, { "start": 7033.0, "end": 7033.2, "probability": 0.3477 }, { "start": 7035.54, "end": 7036.63, "probability": 0.999 }, { "start": 7038.46, "end": 7041.1, "probability": 0.9896 }, { "start": 7041.18, "end": 7043.48, "probability": 0.8284 }, { "start": 7045.6, "end": 7048.84, "probability": 0.994 }, { "start": 7049.86, "end": 7053.74, "probability": 0.9588 }, { "start": 7054.58, "end": 7058.84, "probability": 0.9894 }, { "start": 7060.84, "end": 7062.74, "probability": 0.2574 }, { "start": 7077.46, "end": 7078.17, "probability": 0.0682 }, { "start": 7079.6, "end": 7080.68, "probability": 0.0089 }, { "start": 7081.08, "end": 7081.08, "probability": 0.0135 }, { "start": 7081.08, "end": 7082.12, "probability": 0.0611 }, { "start": 7094.74, "end": 7096.5, "probability": 0.3368 }, { "start": 7097.48, "end": 7102.24, "probability": 0.7856 }, { "start": 7102.68, "end": 7105.62, "probability": 0.9938 }, { "start": 7106.62, "end": 7108.48, "probability": 0.5713 }, { "start": 7109.44, "end": 7112.46, "probability": 0.873 }, { "start": 7112.92, "end": 7118.1, "probability": 0.9733 }, { "start": 7119.08, "end": 7124.54, "probability": 0.9934 }, { "start": 7124.54, "end": 7130.4, "probability": 0.9946 }, { "start": 7130.92, "end": 7132.94, "probability": 0.9043 }, { "start": 7133.44, "end": 7136.02, "probability": 0.997 }, { "start": 7136.02, "end": 7136.88, "probability": 0.936 }, { "start": 7138.22, "end": 7139.72, "probability": 0.9788 }, { "start": 7139.88, "end": 7141.44, "probability": 0.9902 }, { "start": 7141.64, "end": 7144.2, "probability": 0.9919 }, { "start": 7145.78, "end": 7151.4, "probability": 0.9816 }, { "start": 7151.4, "end": 7156.48, "probability": 0.9983 }, { "start": 7157.12, "end": 7161.22, "probability": 0.9891 }, { "start": 7161.86, "end": 7166.1, "probability": 0.961 }, { "start": 7166.7, "end": 7169.58, "probability": 0.9941 }, { "start": 7170.12, "end": 7172.92, "probability": 0.9784 }, { "start": 7172.98, "end": 7176.04, "probability": 0.9954 }, { "start": 7177.88, "end": 7181.02, "probability": 0.8792 }, { "start": 7182.18, "end": 7184.82, "probability": 0.9287 }, { "start": 7185.5, "end": 7188.1, "probability": 0.8486 }, { "start": 7188.68, "end": 7194.28, "probability": 0.9253 }, { "start": 7195.02, "end": 7198.8, "probability": 0.7849 }, { "start": 7208.5, "end": 7209.62, "probability": 0.1797 }, { "start": 7209.62, "end": 7209.78, "probability": 0.0062 }, { "start": 7210.44, "end": 7212.21, "probability": 0.4067 }, { "start": 7212.4, "end": 7216.16, "probability": 0.8304 }, { "start": 7216.76, "end": 7218.42, "probability": 0.7163 }, { "start": 7219.2, "end": 7221.92, "probability": 0.9788 }, { "start": 7222.0, "end": 7223.72, "probability": 0.9979 }, { "start": 7223.82, "end": 7225.59, "probability": 0.9979 }, { "start": 7226.22, "end": 7226.91, "probability": 0.8818 }, { "start": 7226.98, "end": 7231.82, "probability": 0.8091 }, { "start": 7231.82, "end": 7235.4, "probability": 0.6752 }, { "start": 7235.44, "end": 7235.78, "probability": 0.4245 }, { "start": 7236.08, "end": 7237.72, "probability": 0.7105 }, { "start": 7239.8, "end": 7240.94, "probability": 0.9547 }, { "start": 7240.98, "end": 7241.82, "probability": 0.9458 }, { "start": 7242.06, "end": 7244.52, "probability": 0.988 }, { "start": 7245.18, "end": 7247.94, "probability": 0.9806 }, { "start": 7248.92, "end": 7249.68, "probability": 0.9272 }, { "start": 7250.3, "end": 7252.08, "probability": 0.6831 }, { "start": 7253.0, "end": 7256.12, "probability": 0.9941 }, { "start": 7256.12, "end": 7259.44, "probability": 0.9358 }, { "start": 7261.26, "end": 7266.54, "probability": 0.879 }, { "start": 7267.04, "end": 7267.98, "probability": 0.9395 }, { "start": 7268.64, "end": 7271.44, "probability": 0.9952 }, { "start": 7271.44, "end": 7275.42, "probability": 0.9929 }, { "start": 7275.56, "end": 7276.92, "probability": 0.7823 }, { "start": 7278.32, "end": 7279.68, "probability": 0.9292 }, { "start": 7280.46, "end": 7284.78, "probability": 0.9883 }, { "start": 7284.78, "end": 7287.26, "probability": 0.9763 }, { "start": 7287.38, "end": 7289.2, "probability": 0.9387 }, { "start": 7289.76, "end": 7292.36, "probability": 0.2606 }, { "start": 7294.28, "end": 7296.82, "probability": 0.3966 }, { "start": 7297.12, "end": 7299.54, "probability": 0.537 }, { "start": 7299.58, "end": 7299.68, "probability": 0.2652 }, { "start": 7300.08, "end": 7301.68, "probability": 0.6016 }, { "start": 7304.76, "end": 7305.98, "probability": 0.2246 }, { "start": 7306.5, "end": 7308.3, "probability": 0.6792 }, { "start": 7308.4, "end": 7309.9, "probability": 0.8994 }, { "start": 7309.94, "end": 7312.18, "probability": 0.8005 }, { "start": 7312.3, "end": 7313.7, "probability": 0.6421 }, { "start": 7314.1, "end": 7318.06, "probability": 0.9408 }, { "start": 7318.18, "end": 7318.86, "probability": 0.7668 }, { "start": 7321.64, "end": 7322.6, "probability": 0.0611 }, { "start": 7322.76, "end": 7324.84, "probability": 0.6748 }, { "start": 7325.86, "end": 7327.16, "probability": 0.6888 }, { "start": 7327.34, "end": 7328.9, "probability": 0.9385 }, { "start": 7330.38, "end": 7332.44, "probability": 0.8287 }, { "start": 7333.44, "end": 7337.6, "probability": 0.8822 }, { "start": 7337.6, "end": 7343.34, "probability": 0.6868 }, { "start": 7343.52, "end": 7344.2, "probability": 0.7419 }, { "start": 7344.74, "end": 7346.8, "probability": 0.0853 }, { "start": 7346.8, "end": 7347.34, "probability": 0.3559 }, { "start": 7347.98, "end": 7348.74, "probability": 0.9448 }, { "start": 7348.88, "end": 7350.48, "probability": 0.9637 }, { "start": 7350.6, "end": 7352.8, "probability": 0.8987 }, { "start": 7352.98, "end": 7356.44, "probability": 0.7719 }, { "start": 7356.92, "end": 7360.6, "probability": 0.6788 }, { "start": 7361.04, "end": 7363.3, "probability": 0.8843 }, { "start": 7363.86, "end": 7364.14, "probability": 0.4508 }, { "start": 7364.34, "end": 7366.66, "probability": 0.9622 }, { "start": 7367.18, "end": 7369.38, "probability": 0.8916 }, { "start": 7369.48, "end": 7373.24, "probability": 0.9764 }, { "start": 7373.26, "end": 7373.58, "probability": 0.6386 }, { "start": 7378.72, "end": 7380.24, "probability": 0.5148 }, { "start": 7380.4, "end": 7386.94, "probability": 0.9964 }, { "start": 7387.26, "end": 7389.22, "probability": 0.8828 }, { "start": 7389.26, "end": 7391.67, "probability": 0.972 }, { "start": 7392.84, "end": 7397.28, "probability": 0.8182 }, { "start": 7397.48, "end": 7398.96, "probability": 0.79 }, { "start": 7399.52, "end": 7402.16, "probability": 0.9913 }, { "start": 7402.18, "end": 7405.18, "probability": 0.9363 }, { "start": 7405.88, "end": 7407.58, "probability": 0.9305 }, { "start": 7407.72, "end": 7410.24, "probability": 0.8989 }, { "start": 7411.56, "end": 7411.91, "probability": 0.054 }, { "start": 7412.72, "end": 7413.98, "probability": 0.5004 }, { "start": 7414.6, "end": 7415.56, "probability": 0.8392 }, { "start": 7415.62, "end": 7416.48, "probability": 0.1852 }, { "start": 7419.17, "end": 7422.3, "probability": 0.8088 }, { "start": 7423.6, "end": 7427.94, "probability": 0.9382 }, { "start": 7428.46, "end": 7430.74, "probability": 0.9373 }, { "start": 7430.88, "end": 7434.2, "probability": 0.2771 }, { "start": 7434.2, "end": 7434.55, "probability": 0.3153 }, { "start": 7435.22, "end": 7435.82, "probability": 0.4919 }, { "start": 7436.24, "end": 7437.32, "probability": 0.3947 }, { "start": 7438.06, "end": 7440.18, "probability": 0.8363 }, { "start": 7440.6, "end": 7440.8, "probability": 0.3092 }, { "start": 7442.76, "end": 7443.82, "probability": 0.7032 }, { "start": 7444.52, "end": 7445.84, "probability": 0.8235 }, { "start": 7446.02, "end": 7448.74, "probability": 0.9884 }, { "start": 7448.92, "end": 7452.6, "probability": 0.996 }, { "start": 7453.26, "end": 7456.32, "probability": 0.8035 }, { "start": 7456.32, "end": 7459.72, "probability": 0.9962 }, { "start": 7460.06, "end": 7461.26, "probability": 0.0891 }, { "start": 7461.32, "end": 7467.34, "probability": 0.4536 }, { "start": 7467.6, "end": 7468.94, "probability": 0.236 }, { "start": 7469.58, "end": 7471.86, "probability": 0.4541 }, { "start": 7471.98, "end": 7473.94, "probability": 0.6907 }, { "start": 7476.5, "end": 7476.98, "probability": 0.2736 }, { "start": 7476.98, "end": 7476.98, "probability": 0.4005 }, { "start": 7476.98, "end": 7478.1, "probability": 0.4191 }, { "start": 7478.18, "end": 7481.46, "probability": 0.189 }, { "start": 7481.6, "end": 7482.6, "probability": 0.6307 }, { "start": 7482.66, "end": 7486.62, "probability": 0.9865 }, { "start": 7486.74, "end": 7490.36, "probability": 0.5333 }, { "start": 7490.46, "end": 7494.0, "probability": 0.9515 }, { "start": 7495.2, "end": 7496.2, "probability": 0.1791 }, { "start": 7496.56, "end": 7500.66, "probability": 0.8942 }, { "start": 7500.66, "end": 7504.63, "probability": 0.9888 }, { "start": 7505.06, "end": 7505.2, "probability": 0.3669 }, { "start": 7505.2, "end": 7505.2, "probability": 0.4466 }, { "start": 7505.2, "end": 7506.96, "probability": 0.8366 }, { "start": 7507.4, "end": 7508.7, "probability": 0.9364 }, { "start": 7509.08, "end": 7511.74, "probability": 0.8572 }, { "start": 7512.58, "end": 7515.9, "probability": 0.8725 }, { "start": 7520.31, "end": 7521.4, "probability": 0.1773 }, { "start": 7521.4, "end": 7521.58, "probability": 0.0564 }, { "start": 7521.6, "end": 7523.68, "probability": 0.4755 }, { "start": 7523.68, "end": 7523.68, "probability": 0.2911 }, { "start": 7523.68, "end": 7525.34, "probability": 0.6558 }, { "start": 7525.56, "end": 7526.08, "probability": 0.7908 }, { "start": 7527.66, "end": 7530.18, "probability": 0.7299 }, { "start": 7530.52, "end": 7531.72, "probability": 0.0979 }, { "start": 7532.3, "end": 7533.6, "probability": 0.0106 }, { "start": 7533.6, "end": 7533.98, "probability": 0.3615 }, { "start": 7534.26, "end": 7534.96, "probability": 0.6584 }, { "start": 7536.62, "end": 7538.96, "probability": 0.8971 }, { "start": 7540.5, "end": 7542.96, "probability": 0.7995 }, { "start": 7543.0, "end": 7543.97, "probability": 0.9386 }, { "start": 7544.8, "end": 7546.02, "probability": 0.5289 }, { "start": 7547.24, "end": 7551.5, "probability": 0.7672 }, { "start": 7552.18, "end": 7556.98, "probability": 0.7585 }, { "start": 7557.68, "end": 7558.28, "probability": 0.8768 }, { "start": 7559.42, "end": 7562.08, "probability": 0.9857 }, { "start": 7562.46, "end": 7564.18, "probability": 0.5952 }, { "start": 7565.74, "end": 7566.38, "probability": 0.5483 }, { "start": 7567.16, "end": 7567.48, "probability": 0.0709 }, { "start": 7567.82, "end": 7569.69, "probability": 0.8671 }, { "start": 7570.56, "end": 7571.16, "probability": 0.9277 }, { "start": 7571.38, "end": 7571.9, "probability": 0.2946 }, { "start": 7572.58, "end": 7572.84, "probability": 0.4152 }, { "start": 7573.26, "end": 7576.6, "probability": 0.9297 }, { "start": 7576.66, "end": 7577.48, "probability": 0.9275 }, { "start": 7577.64, "end": 7578.68, "probability": 0.9685 }, { "start": 7578.76, "end": 7579.92, "probability": 0.8919 }, { "start": 7580.14, "end": 7583.08, "probability": 0.9536 }, { "start": 7583.08, "end": 7583.68, "probability": 0.3395 }, { "start": 7584.09, "end": 7584.16, "probability": 0.2569 }, { "start": 7584.18, "end": 7586.01, "probability": 0.0307 }, { "start": 7586.64, "end": 7589.36, "probability": 0.9154 }, { "start": 7592.62, "end": 7592.96, "probability": 0.1637 }, { "start": 7592.96, "end": 7592.96, "probability": 0.1153 }, { "start": 7592.96, "end": 7594.5, "probability": 0.3953 }, { "start": 7594.92, "end": 7595.18, "probability": 0.3825 }, { "start": 7595.18, "end": 7596.14, "probability": 0.4896 }, { "start": 7596.32, "end": 7597.3, "probability": 0.8035 }, { "start": 7597.84, "end": 7598.64, "probability": 0.2574 }, { "start": 7598.64, "end": 7601.12, "probability": 0.624 }, { "start": 7601.48, "end": 7604.72, "probability": 0.9757 }, { "start": 7604.82, "end": 7605.78, "probability": 0.9028 }, { "start": 7606.0, "end": 7606.74, "probability": 0.5035 }, { "start": 7606.8, "end": 7608.62, "probability": 0.7187 }, { "start": 7608.82, "end": 7608.94, "probability": 0.161 }, { "start": 7609.04, "end": 7610.36, "probability": 0.0132 }, { "start": 7610.5, "end": 7613.28, "probability": 0.7273 }, { "start": 7613.76, "end": 7615.84, "probability": 0.936 }, { "start": 7616.6, "end": 7618.3, "probability": 0.5032 }, { "start": 7618.6, "end": 7620.9, "probability": 0.9818 }, { "start": 7621.12, "end": 7623.26, "probability": 0.1205 }, { "start": 7624.94, "end": 7627.72, "probability": 0.9979 }, { "start": 7627.8, "end": 7628.28, "probability": 0.632 }, { "start": 7628.38, "end": 7628.94, "probability": 0.7418 }, { "start": 7628.98, "end": 7629.82, "probability": 0.848 }, { "start": 7629.92, "end": 7632.24, "probability": 0.9186 }, { "start": 7632.32, "end": 7633.68, "probability": 0.5028 }, { "start": 7634.38, "end": 7636.36, "probability": 0.2545 }, { "start": 7638.08, "end": 7639.44, "probability": 0.2702 }, { "start": 7640.28, "end": 7641.9, "probability": 0.4104 }, { "start": 7641.98, "end": 7642.52, "probability": 0.0959 }, { "start": 7645.78, "end": 7646.54, "probability": 0.0933 }, { "start": 7646.56, "end": 7647.64, "probability": 0.5498 }, { "start": 7647.76, "end": 7648.86, "probability": 0.9124 }, { "start": 7648.98, "end": 7651.62, "probability": 0.9154 }, { "start": 7651.62, "end": 7655.02, "probability": 0.9932 }, { "start": 7655.02, "end": 7655.76, "probability": 0.3143 }, { "start": 7655.88, "end": 7656.32, "probability": 0.566 }, { "start": 7656.42, "end": 7659.92, "probability": 0.981 }, { "start": 7660.04, "end": 7660.9, "probability": 0.8994 }, { "start": 7664.66, "end": 7665.76, "probability": 0.2773 }, { "start": 7666.44, "end": 7666.64, "probability": 0.7682 }, { "start": 7667.42, "end": 7669.22, "probability": 0.8031 }, { "start": 7669.84, "end": 7675.72, "probability": 0.9578 }, { "start": 7676.46, "end": 7677.48, "probability": 0.8354 }, { "start": 7677.5, "end": 7678.28, "probability": 0.3838 }, { "start": 7678.38, "end": 7679.5, "probability": 0.4864 }, { "start": 7679.66, "end": 7682.64, "probability": 0.9939 }, { "start": 7682.64, "end": 7686.0, "probability": 0.7076 }, { "start": 7686.5, "end": 7688.99, "probability": 0.7081 }, { "start": 7689.26, "end": 7690.24, "probability": 0.8789 }, { "start": 7690.44, "end": 7692.26, "probability": 0.6054 }, { "start": 7692.78, "end": 7694.08, "probability": 0.774 }, { "start": 7694.14, "end": 7696.64, "probability": 0.9788 }, { "start": 7696.67, "end": 7700.9, "probability": 0.8507 }, { "start": 7701.42, "end": 7705.84, "probability": 0.9492 }, { "start": 7706.06, "end": 7708.16, "probability": 0.9888 }, { "start": 7708.74, "end": 7711.8, "probability": 0.9966 }, { "start": 7712.28, "end": 7715.28, "probability": 0.9902 }, { "start": 7715.76, "end": 7716.54, "probability": 0.9582 }, { "start": 7716.72, "end": 7718.62, "probability": 0.9836 }, { "start": 7718.98, "end": 7720.96, "probability": 0.9157 }, { "start": 7721.36, "end": 7722.66, "probability": 0.8899 }, { "start": 7723.06, "end": 7726.72, "probability": 0.9893 }, { "start": 7726.76, "end": 7728.64, "probability": 0.8031 }, { "start": 7729.1, "end": 7733.42, "probability": 0.9793 }, { "start": 7733.82, "end": 7736.0, "probability": 0.5466 }, { "start": 7736.1, "end": 7737.64, "probability": 0.0034 }, { "start": 7741.62, "end": 7742.66, "probability": 0.0418 }, { "start": 7744.22, "end": 7744.66, "probability": 0.002 }, { "start": 7744.66, "end": 7744.72, "probability": 0.093 }, { "start": 7744.72, "end": 7745.24, "probability": 0.0323 }, { "start": 7745.56, "end": 7747.46, "probability": 0.4356 }, { "start": 7747.46, "end": 7750.97, "probability": 0.5613 }, { "start": 7751.56, "end": 7752.82, "probability": 0.7 }, { "start": 7752.9, "end": 7754.37, "probability": 0.8874 }, { "start": 7754.5, "end": 7755.44, "probability": 0.7055 }, { "start": 7755.48, "end": 7755.58, "probability": 0.2231 }, { "start": 7755.58, "end": 7757.04, "probability": 0.745 }, { "start": 7757.42, "end": 7758.92, "probability": 0.6262 }, { "start": 7759.32, "end": 7760.25, "probability": 0.8909 }, { "start": 7760.58, "end": 7761.19, "probability": 0.5139 }, { "start": 7761.24, "end": 7761.4, "probability": 0.4987 }, { "start": 7761.94, "end": 7762.53, "probability": 0.3386 }, { "start": 7763.08, "end": 7767.24, "probability": 0.9896 }, { "start": 7767.24, "end": 7770.94, "probability": 0.6567 }, { "start": 7771.06, "end": 7771.56, "probability": 0.909 }, { "start": 7771.8, "end": 7772.66, "probability": 0.7844 }, { "start": 7772.74, "end": 7773.64, "probability": 0.9575 }, { "start": 7774.02, "end": 7775.82, "probability": 0.7887 }, { "start": 7775.88, "end": 7777.24, "probability": 0.9521 }, { "start": 7777.64, "end": 7779.7, "probability": 0.9933 }, { "start": 7779.78, "end": 7780.96, "probability": 0.8571 }, { "start": 7781.06, "end": 7781.06, "probability": 0.1091 }, { "start": 7781.06, "end": 7783.16, "probability": 0.7609 }, { "start": 7783.7, "end": 7786.18, "probability": 0.9539 }, { "start": 7786.18, "end": 7789.22, "probability": 0.9635 }, { "start": 7789.8, "end": 7790.5, "probability": 0.8366 }, { "start": 7790.7, "end": 7791.8, "probability": 0.8989 }, { "start": 7792.22, "end": 7792.98, "probability": 0.7249 }, { "start": 7793.04, "end": 7794.06, "probability": 0.6734 }, { "start": 7794.62, "end": 7794.98, "probability": 0.5971 }, { "start": 7795.06, "end": 7798.64, "probability": 0.9871 }, { "start": 7798.84, "end": 7800.3, "probability": 0.8514 }, { "start": 7800.76, "end": 7802.72, "probability": 0.9046 }, { "start": 7802.88, "end": 7804.52, "probability": 0.8994 }, { "start": 7804.52, "end": 7805.24, "probability": 0.7128 }, { "start": 7805.48, "end": 7805.94, "probability": 0.6552 }, { "start": 7806.34, "end": 7808.0, "probability": 0.9763 }, { "start": 7808.26, "end": 7810.36, "probability": 0.8349 }, { "start": 7810.54, "end": 7812.04, "probability": 0.6142 }, { "start": 7812.3, "end": 7814.16, "probability": 0.8923 }, { "start": 7814.76, "end": 7818.06, "probability": 0.2114 }, { "start": 7818.98, "end": 7819.94, "probability": 0.6194 }, { "start": 7819.96, "end": 7821.12, "probability": 0.8845 }, { "start": 7821.24, "end": 7821.88, "probability": 0.662 }, { "start": 7822.14, "end": 7822.84, "probability": 0.7834 }, { "start": 7823.22, "end": 7824.69, "probability": 0.9907 }, { "start": 7825.1, "end": 7827.15, "probability": 0.9463 }, { "start": 7827.84, "end": 7830.86, "probability": 0.9541 }, { "start": 7831.08, "end": 7831.08, "probability": 0.0556 }, { "start": 7831.08, "end": 7832.83, "probability": 0.8763 }, { "start": 7832.96, "end": 7834.82, "probability": 0.9254 }, { "start": 7834.82, "end": 7834.92, "probability": 0.4787 }, { "start": 7835.42, "end": 7835.6, "probability": 0.0016 }, { "start": 7836.88, "end": 7837.26, "probability": 0.0166 }, { "start": 7837.26, "end": 7837.26, "probability": 0.0936 }, { "start": 7837.26, "end": 7837.26, "probability": 0.3622 }, { "start": 7837.26, "end": 7840.2, "probability": 0.3439 }, { "start": 7840.24, "end": 7842.76, "probability": 0.9951 }, { "start": 7842.86, "end": 7844.04, "probability": 0.7544 }, { "start": 7844.08, "end": 7845.29, "probability": 0.8906 }, { "start": 7845.94, "end": 7847.3, "probability": 0.9953 }, { "start": 7847.92, "end": 7849.68, "probability": 0.6537 }, { "start": 7849.96, "end": 7851.0, "probability": 0.5279 }, { "start": 7851.12, "end": 7852.94, "probability": 0.9891 }, { "start": 7854.14, "end": 7855.1, "probability": 0.8051 }, { "start": 7855.4, "end": 7855.68, "probability": 0.6595 }, { "start": 7855.74, "end": 7857.14, "probability": 0.9902 }, { "start": 7857.2, "end": 7860.88, "probability": 0.9922 }, { "start": 7860.88, "end": 7861.6, "probability": 0.1527 }, { "start": 7862.2, "end": 7862.34, "probability": 0.2077 }, { "start": 7862.34, "end": 7863.06, "probability": 0.8179 }, { "start": 7865.4, "end": 7866.08, "probability": 0.7082 }, { "start": 7867.0, "end": 7872.12, "probability": 0.9909 }, { "start": 7872.12, "end": 7878.66, "probability": 0.996 }, { "start": 7878.82, "end": 7882.5, "probability": 0.9961 }, { "start": 7885.14, "end": 7885.18, "probability": 0.023 }, { "start": 7885.18, "end": 7885.18, "probability": 0.0209 }, { "start": 7885.18, "end": 7886.78, "probability": 0.7207 }, { "start": 7887.18, "end": 7887.48, "probability": 0.2658 }, { "start": 7887.48, "end": 7890.92, "probability": 0.7554 }, { "start": 7891.36, "end": 7892.48, "probability": 0.0247 }, { "start": 7892.48, "end": 7892.48, "probability": 0.133 }, { "start": 7892.48, "end": 7893.88, "probability": 0.3063 }, { "start": 7893.96, "end": 7896.04, "probability": 0.8844 }, { "start": 7896.64, "end": 7897.77, "probability": 0.4179 }, { "start": 7898.44, "end": 7900.86, "probability": 0.8388 }, { "start": 7900.96, "end": 7901.78, "probability": 0.961 }, { "start": 7902.22, "end": 7903.94, "probability": 0.8257 }, { "start": 7904.54, "end": 7905.58, "probability": 0.9683 }, { "start": 7906.16, "end": 7909.48, "probability": 0.9935 }, { "start": 7910.32, "end": 7912.84, "probability": 0.8943 }, { "start": 7912.86, "end": 7913.32, "probability": 0.4998 }, { "start": 7913.54, "end": 7913.78, "probability": 0.1691 }, { "start": 7913.8, "end": 7914.62, "probability": 0.8884 }, { "start": 7915.1, "end": 7917.0, "probability": 0.9551 }, { "start": 7917.48, "end": 7920.18, "probability": 0.9882 }, { "start": 7920.18, "end": 7923.34, "probability": 0.9274 }, { "start": 7923.34, "end": 7925.84, "probability": 0.1826 }, { "start": 7928.06, "end": 7928.68, "probability": 0.6631 }, { "start": 7928.68, "end": 7929.02, "probability": 0.4106 }, { "start": 7929.3, "end": 7931.94, "probability": 0.8206 }, { "start": 7932.44, "end": 7932.96, "probability": 0.2195 }, { "start": 7933.02, "end": 7934.32, "probability": 0.748 }, { "start": 7935.02, "end": 7936.54, "probability": 0.7229 }, { "start": 7936.68, "end": 7937.88, "probability": 0.4139 }, { "start": 7937.9, "end": 7939.04, "probability": 0.7711 }, { "start": 7939.28, "end": 7941.22, "probability": 0.9961 }, { "start": 7941.42, "end": 7942.1, "probability": 0.6083 }, { "start": 7942.16, "end": 7945.36, "probability": 0.9771 }, { "start": 7945.76, "end": 7948.18, "probability": 0.8755 }, { "start": 7948.26, "end": 7948.63, "probability": 0.6519 }, { "start": 7949.44, "end": 7951.18, "probability": 0.9747 }, { "start": 7951.46, "end": 7954.26, "probability": 0.9758 }, { "start": 7954.82, "end": 7955.68, "probability": 0.8538 }, { "start": 7956.26, "end": 7959.1, "probability": 0.8391 }, { "start": 7959.22, "end": 7961.12, "probability": 0.6891 }, { "start": 7961.12, "end": 7961.22, "probability": 0.0738 }, { "start": 7961.82, "end": 7963.7, "probability": 0.7981 }, { "start": 7963.84, "end": 7967.04, "probability": 0.9563 }, { "start": 7968.36, "end": 7971.38, "probability": 0.4817 }, { "start": 7971.8, "end": 7972.06, "probability": 0.0455 }, { "start": 7972.06, "end": 7972.06, "probability": 0.5479 }, { "start": 7972.06, "end": 7972.38, "probability": 0.6643 }, { "start": 7973.92, "end": 7974.3, "probability": 0.6271 }, { "start": 7975.02, "end": 7975.88, "probability": 0.644 }, { "start": 7976.2, "end": 7979.66, "probability": 0.8973 }, { "start": 7979.78, "end": 7981.92, "probability": 0.9453 }, { "start": 7982.04, "end": 7983.26, "probability": 0.9318 }, { "start": 7983.54, "end": 7986.04, "probability": 0.141 }, { "start": 7988.54, "end": 7991.7, "probability": 0.432 }, { "start": 7992.32, "end": 7993.81, "probability": 0.4568 }, { "start": 7994.02, "end": 7995.07, "probability": 0.2955 }, { "start": 7996.94, "end": 7999.56, "probability": 0.5684 }, { "start": 7999.92, "end": 8001.34, "probability": 0.5785 }, { "start": 8002.28, "end": 8002.42, "probability": 0.0172 }, { "start": 8002.42, "end": 8003.18, "probability": 0.5079 }, { "start": 8003.78, "end": 8006.24, "probability": 0.9209 }, { "start": 8006.76, "end": 8008.24, "probability": 0.7954 }, { "start": 8009.18, "end": 8011.16, "probability": 0.9598 }, { "start": 8011.68, "end": 8013.12, "probability": 0.6888 }, { "start": 8013.16, "end": 8015.02, "probability": 0.8269 }, { "start": 8015.28, "end": 8017.54, "probability": 0.297 }, { "start": 8022.14, "end": 8024.98, "probability": 0.8944 }, { "start": 8026.38, "end": 8030.54, "probability": 0.9372 }, { "start": 8030.84, "end": 8031.2, "probability": 0.9375 }, { "start": 8031.64, "end": 8034.88, "probability": 0.9492 }, { "start": 8034.88, "end": 8037.82, "probability": 0.9905 }, { "start": 8037.88, "end": 8038.2, "probability": 0.8532 }, { "start": 8038.9, "end": 8039.7, "probability": 0.7653 }, { "start": 8040.12, "end": 8042.5, "probability": 0.5699 }, { "start": 8042.78, "end": 8043.52, "probability": 0.8042 }, { "start": 8043.82, "end": 8045.48, "probability": 0.6001 }, { "start": 8045.7, "end": 8045.84, "probability": 0.4709 }, { "start": 8045.84, "end": 8046.44, "probability": 0.5782 }, { "start": 8046.52, "end": 8047.24, "probability": 0.8012 }, { "start": 8047.24, "end": 8050.9, "probability": 0.3481 }, { "start": 8053.28, "end": 8053.28, "probability": 0.252 }, { "start": 8053.28, "end": 8053.28, "probability": 0.0506 }, { "start": 8053.28, "end": 8053.28, "probability": 0.0517 }, { "start": 8053.28, "end": 8054.06, "probability": 0.87 }, { "start": 8054.58, "end": 8054.9, "probability": 0.8916 }, { "start": 8057.58, "end": 8057.92, "probability": 0.4845 }, { "start": 8057.92, "end": 8057.92, "probability": 0.2265 }, { "start": 8057.92, "end": 8057.92, "probability": 0.3723 }, { "start": 8057.92, "end": 8058.12, "probability": 0.1878 }, { "start": 8058.88, "end": 8060.98, "probability": 0.7764 }, { "start": 8061.4, "end": 8061.81, "probability": 0.3874 }, { "start": 8062.64, "end": 8063.18, "probability": 0.7263 }, { "start": 8063.26, "end": 8063.9, "probability": 0.9064 }, { "start": 8064.1, "end": 8067.74, "probability": 0.9347 }, { "start": 8068.38, "end": 8070.66, "probability": 0.7275 }, { "start": 8071.1, "end": 8071.1, "probability": 0.0623 }, { "start": 8071.1, "end": 8071.1, "probability": 0.0235 }, { "start": 8071.1, "end": 8071.94, "probability": 0.845 }, { "start": 8072.54, "end": 8077.18, "probability": 0.9966 }, { "start": 8077.18, "end": 8081.42, "probability": 0.9984 }, { "start": 8082.88, "end": 8083.66, "probability": 0.5165 }, { "start": 8085.0, "end": 8089.22, "probability": 0.9683 }, { "start": 8089.54, "end": 8090.2, "probability": 0.7645 }, { "start": 8090.7, "end": 8092.6, "probability": 0.9937 }, { "start": 8093.72, "end": 8095.4, "probability": 0.7917 }, { "start": 8095.86, "end": 8096.38, "probability": 0.3899 }, { "start": 8096.38, "end": 8097.18, "probability": 0.568 }, { "start": 8097.72, "end": 8098.48, "probability": 0.8987 }, { "start": 8099.38, "end": 8102.88, "probability": 0.5589 }, { "start": 8103.2, "end": 8105.8, "probability": 0.5132 }, { "start": 8106.2, "end": 8106.92, "probability": 0.7373 }, { "start": 8107.48, "end": 8108.05, "probability": 0.1112 }, { "start": 8108.84, "end": 8112.5, "probability": 0.7122 }, { "start": 8112.98, "end": 8113.92, "probability": 0.7025 }, { "start": 8118.76, "end": 8119.24, "probability": 0.5043 }, { "start": 8121.6, "end": 8122.34, "probability": 0.57 }, { "start": 8122.74, "end": 8124.44, "probability": 0.854 }, { "start": 8124.8, "end": 8125.9, "probability": 0.747 }, { "start": 8126.02, "end": 8127.0, "probability": 0.6099 }, { "start": 8127.02, "end": 8130.0, "probability": 0.9038 }, { "start": 8130.28, "end": 8131.74, "probability": 0.8518 }, { "start": 8131.86, "end": 8132.22, "probability": 0.4214 }, { "start": 8132.64, "end": 8136.82, "probability": 0.5668 }, { "start": 8137.34, "end": 8137.72, "probability": 0.5197 }, { "start": 8138.5, "end": 8139.56, "probability": 0.9663 }, { "start": 8139.74, "end": 8140.32, "probability": 0.7255 }, { "start": 8140.32, "end": 8141.24, "probability": 0.8179 }, { "start": 8141.34, "end": 8144.56, "probability": 0.9866 }, { "start": 8144.68, "end": 8145.0, "probability": 0.0042 }, { "start": 8145.68, "end": 8145.68, "probability": 0.065 }, { "start": 8145.68, "end": 8145.86, "probability": 0.4042 }, { "start": 8146.3, "end": 8146.86, "probability": 0.1244 }, { "start": 8146.86, "end": 8147.1, "probability": 0.2937 }, { "start": 8147.2, "end": 8151.04, "probability": 0.7927 }, { "start": 8151.12, "end": 8151.5, "probability": 0.1986 }, { "start": 8151.54, "end": 8152.26, "probability": 0.0671 }, { "start": 8153.48, "end": 8155.42, "probability": 0.1771 }, { "start": 8158.86, "end": 8158.9, "probability": 0.0116 }, { "start": 8158.9, "end": 8158.9, "probability": 0.0106 }, { "start": 8158.9, "end": 8158.9, "probability": 0.2738 }, { "start": 8158.9, "end": 8158.9, "probability": 0.1288 }, { "start": 8158.9, "end": 8158.9, "probability": 0.2589 }, { "start": 8158.9, "end": 8159.84, "probability": 0.3864 }, { "start": 8160.14, "end": 8161.92, "probability": 0.6343 }, { "start": 8162.24, "end": 8164.46, "probability": 0.9773 }, { "start": 8164.8, "end": 8165.68, "probability": 0.7122 }, { "start": 8165.96, "end": 8166.76, "probability": 0.5024 }, { "start": 8167.08, "end": 8169.2, "probability": 0.9689 }, { "start": 8169.28, "end": 8169.84, "probability": 0.5886 }, { "start": 8170.42, "end": 8170.42, "probability": 0.0219 }, { "start": 8171.1, "end": 8171.9, "probability": 0.9523 }, { "start": 8172.76, "end": 8172.88, "probability": 0.0639 }, { "start": 8173.22, "end": 8174.06, "probability": 0.957 }, { "start": 8174.16, "end": 8175.24, "probability": 0.9222 }, { "start": 8175.34, "end": 8177.7, "probability": 0.9817 }, { "start": 8177.82, "end": 8180.04, "probability": 0.9714 }, { "start": 8180.04, "end": 8182.86, "probability": 0.9158 }, { "start": 8183.05, "end": 8183.68, "probability": 0.1917 }, { "start": 8183.84, "end": 8187.12, "probability": 0.9907 }, { "start": 8188.83, "end": 8189.74, "probability": 0.3943 }, { "start": 8191.06, "end": 8191.24, "probability": 0.1267 }, { "start": 8191.24, "end": 8191.24, "probability": 0.2182 }, { "start": 8191.24, "end": 8191.24, "probability": 0.0851 }, { "start": 8191.24, "end": 8192.8, "probability": 0.7176 }, { "start": 8193.94, "end": 8198.42, "probability": 0.9369 }, { "start": 8198.5, "end": 8202.66, "probability": 0.991 }, { "start": 8202.88, "end": 8203.94, "probability": 0.6133 }, { "start": 8204.14, "end": 8206.34, "probability": 0.9107 }, { "start": 8207.02, "end": 8210.04, "probability": 0.9976 }, { "start": 8211.24, "end": 8215.68, "probability": 0.9821 }, { "start": 8216.08, "end": 8219.52, "probability": 0.9979 }, { "start": 8220.84, "end": 8220.84, "probability": 0.3561 }, { "start": 8220.84, "end": 8220.84, "probability": 0.5096 }, { "start": 8220.88, "end": 8223.42, "probability": 0.8737 }, { "start": 8223.94, "end": 8226.98, "probability": 0.9833 }, { "start": 8227.5, "end": 8229.0, "probability": 0.6309 }, { "start": 8230.22, "end": 8230.76, "probability": 0.3333 }, { "start": 8231.34, "end": 8231.86, "probability": 0.2484 }, { "start": 8231.98, "end": 8232.44, "probability": 0.229 }, { "start": 8232.62, "end": 8235.22, "probability": 0.8506 }, { "start": 8235.22, "end": 8236.06, "probability": 0.9056 }, { "start": 8236.06, "end": 8236.72, "probability": 0.5162 }, { "start": 8237.14, "end": 8239.8, "probability": 0.9912 }, { "start": 8239.9, "end": 8241.96, "probability": 0.9978 }, { "start": 8242.08, "end": 8243.12, "probability": 0.9985 }, { "start": 8243.62, "end": 8243.86, "probability": 0.5665 }, { "start": 8244.02, "end": 8244.84, "probability": 0.9209 }, { "start": 8244.9, "end": 8246.12, "probability": 0.924 }, { "start": 8246.5, "end": 8248.48, "probability": 0.7616 }, { "start": 8248.62, "end": 8250.92, "probability": 0.9938 }, { "start": 8251.52, "end": 8254.64, "probability": 0.8914 }, { "start": 8255.48, "end": 8256.74, "probability": 0.9 }, { "start": 8257.4, "end": 8257.88, "probability": 0.7794 }, { "start": 8257.98, "end": 8258.67, "probability": 0.8026 }, { "start": 8258.82, "end": 8260.3, "probability": 0.9841 }, { "start": 8261.14, "end": 8262.92, "probability": 0.9855 }, { "start": 8262.96, "end": 8267.06, "probability": 0.982 }, { "start": 8268.06, "end": 8268.68, "probability": 0.8701 }, { "start": 8268.98, "end": 8270.48, "probability": 0.8236 }, { "start": 8270.54, "end": 8272.28, "probability": 0.9257 }, { "start": 8273.46, "end": 8274.0, "probability": 0.7542 }, { "start": 8274.22, "end": 8275.32, "probability": 0.5264 }, { "start": 8275.42, "end": 8277.26, "probability": 0.8282 }, { "start": 8277.42, "end": 8279.26, "probability": 0.9691 }, { "start": 8280.8, "end": 8285.28, "probability": 0.8325 }, { "start": 8286.12, "end": 8290.86, "probability": 0.7563 }, { "start": 8293.46, "end": 8295.62, "probability": 0.9292 }, { "start": 8296.46, "end": 8296.92, "probability": 0.8345 }, { "start": 8297.02, "end": 8301.04, "probability": 0.9952 }, { "start": 8301.1, "end": 8301.24, "probability": 0.4371 }, { "start": 8301.32, "end": 8304.76, "probability": 0.7942 }, { "start": 8306.36, "end": 8308.22, "probability": 0.9752 }, { "start": 8312.5, "end": 8312.74, "probability": 0.0611 }, { "start": 8324.46, "end": 8325.16, "probability": 0.0474 }, { "start": 8329.3, "end": 8330.96, "probability": 0.6948 }, { "start": 8331.08, "end": 8331.42, "probability": 0.7185 }, { "start": 8333.54, "end": 8335.44, "probability": 0.9902 }, { "start": 8336.4, "end": 8337.84, "probability": 0.1537 }, { "start": 8339.3, "end": 8341.3, "probability": 0.6337 }, { "start": 8341.98, "end": 8342.98, "probability": 0.2709 }, { "start": 8351.48, "end": 8353.84, "probability": 0.9993 }, { "start": 8353.96, "end": 8354.66, "probability": 0.6483 }, { "start": 8354.82, "end": 8359.08, "probability": 0.9911 }, { "start": 8359.24, "end": 8362.24, "probability": 0.9526 }, { "start": 8362.48, "end": 8366.64, "probability": 0.9298 }, { "start": 8367.26, "end": 8368.14, "probability": 0.8222 }, { "start": 8368.84, "end": 8369.78, "probability": 0.7507 }, { "start": 8370.36, "end": 8371.6, "probability": 0.8851 }, { "start": 8372.34, "end": 8376.01, "probability": 0.8726 }, { "start": 8377.2, "end": 8380.75, "probability": 0.9434 }, { "start": 8382.72, "end": 8384.52, "probability": 0.7947 }, { "start": 8385.12, "end": 8392.12, "probability": 0.9024 }, { "start": 8392.48, "end": 8394.5, "probability": 0.4979 }, { "start": 8394.7, "end": 8395.48, "probability": 0.5829 }, { "start": 8395.62, "end": 8397.08, "probability": 0.6059 }, { "start": 8397.62, "end": 8399.84, "probability": 0.771 }, { "start": 8399.88, "end": 8400.42, "probability": 0.4846 }, { "start": 8400.64, "end": 8401.22, "probability": 0.7456 }, { "start": 8401.6, "end": 8404.14, "probability": 0.6752 }, { "start": 8405.22, "end": 8405.58, "probability": 0.0243 }, { "start": 8406.2, "end": 8406.22, "probability": 0.002 }, { "start": 8406.44, "end": 8406.54, "probability": 0.1892 }, { "start": 8408.64, "end": 8411.2, "probability": 0.6951 }, { "start": 8411.3, "end": 8413.46, "probability": 0.8853 }, { "start": 8414.56, "end": 8414.72, "probability": 0.3041 }, { "start": 8415.44, "end": 8415.6, "probability": 0.5675 }, { "start": 8416.06, "end": 8419.14, "probability": 0.8344 }, { "start": 8419.76, "end": 8422.64, "probability": 0.9043 }, { "start": 8422.73, "end": 8425.52, "probability": 0.6872 }, { "start": 8427.32, "end": 8429.66, "probability": 0.9555 }, { "start": 8429.78, "end": 8431.32, "probability": 0.9751 }, { "start": 8431.48, "end": 8432.48, "probability": 0.749 }, { "start": 8432.64, "end": 8433.44, "probability": 0.6773 }, { "start": 8434.46, "end": 8438.44, "probability": 0.9454 }, { "start": 8438.68, "end": 8440.42, "probability": 0.8258 }, { "start": 8440.74, "end": 8441.92, "probability": 0.5341 }, { "start": 8442.34, "end": 8444.92, "probability": 0.9985 }, { "start": 8445.94, "end": 8447.34, "probability": 0.9639 }, { "start": 8448.72, "end": 8450.22, "probability": 0.4947 }, { "start": 8450.86, "end": 8453.08, "probability": 0.9526 }, { "start": 8453.84, "end": 8458.58, "probability": 0.9691 }, { "start": 8460.75, "end": 8461.74, "probability": 0.2776 }, { "start": 8461.92, "end": 8464.7, "probability": 0.9468 }, { "start": 8465.72, "end": 8470.94, "probability": 0.9807 }, { "start": 8471.48, "end": 8472.34, "probability": 0.9247 }, { "start": 8472.4, "end": 8477.22, "probability": 0.9846 }, { "start": 8478.0, "end": 8479.78, "probability": 0.5914 }, { "start": 8480.62, "end": 8482.62, "probability": 0.9941 }, { "start": 8483.28, "end": 8484.26, "probability": 0.2783 }, { "start": 8484.86, "end": 8485.98, "probability": 0.5575 }, { "start": 8486.32, "end": 8487.82, "probability": 0.9968 }, { "start": 8488.3, "end": 8491.08, "probability": 0.8601 }, { "start": 8491.22, "end": 8491.96, "probability": 0.7217 }, { "start": 8492.42, "end": 8493.56, "probability": 0.9555 }, { "start": 8494.46, "end": 8499.1, "probability": 0.9652 }, { "start": 8499.5, "end": 8505.66, "probability": 0.9935 }, { "start": 8506.38, "end": 8508.64, "probability": 0.8406 }, { "start": 8508.74, "end": 8513.2, "probability": 0.985 }, { "start": 8513.42, "end": 8517.34, "probability": 0.9737 }, { "start": 8518.0, "end": 8518.8, "probability": 0.9819 }, { "start": 8519.36, "end": 8519.84, "probability": 0.989 }, { "start": 8520.06, "end": 8524.78, "probability": 0.9746 }, { "start": 8524.9, "end": 8526.59, "probability": 0.9602 }, { "start": 8529.28, "end": 8531.38, "probability": 0.8407 }, { "start": 8532.58, "end": 8535.04, "probability": 0.6306 }, { "start": 8535.72, "end": 8541.06, "probability": 0.9321 }, { "start": 8541.98, "end": 8548.94, "probability": 0.7646 }, { "start": 8548.94, "end": 8552.3, "probability": 0.9995 }, { "start": 8552.88, "end": 8559.0, "probability": 0.8933 }, { "start": 8559.64, "end": 8562.92, "probability": 0.9963 }, { "start": 8563.28, "end": 8568.12, "probability": 0.9927 }, { "start": 8568.12, "end": 8573.62, "probability": 0.9965 }, { "start": 8573.66, "end": 8577.04, "probability": 0.9959 }, { "start": 8577.14, "end": 8580.58, "probability": 0.9995 }, { "start": 8581.34, "end": 8583.16, "probability": 0.9311 }, { "start": 8583.38, "end": 8584.87, "probability": 0.635 }, { "start": 8587.02, "end": 8587.6, "probability": 0.7235 }, { "start": 8587.66, "end": 8589.04, "probability": 0.9222 }, { "start": 8589.28, "end": 8592.02, "probability": 0.9685 }, { "start": 8592.54, "end": 8593.5, "probability": 0.966 }, { "start": 8594.22, "end": 8596.7, "probability": 0.9941 }, { "start": 8597.52, "end": 8597.82, "probability": 0.4052 }, { "start": 8599.2, "end": 8599.54, "probability": 0.0554 }, { "start": 8599.54, "end": 8600.7, "probability": 0.6785 }, { "start": 8602.14, "end": 8604.66, "probability": 0.981 }, { "start": 8605.7, "end": 8608.76, "probability": 0.8778 }, { "start": 8610.02, "end": 8613.12, "probability": 0.958 }, { "start": 8614.38, "end": 8616.2, "probability": 0.5496 }, { "start": 8616.34, "end": 8621.3, "probability": 0.9907 }, { "start": 8622.08, "end": 8628.92, "probability": 0.9986 }, { "start": 8629.04, "end": 8635.36, "probability": 0.9944 }, { "start": 8637.1, "end": 8639.9, "probability": 0.8807 }, { "start": 8640.68, "end": 8642.82, "probability": 0.6848 }, { "start": 8643.88, "end": 8644.0, "probability": 0.0348 }, { "start": 8644.0, "end": 8646.94, "probability": 0.7524 }, { "start": 8647.56, "end": 8652.68, "probability": 0.9987 }, { "start": 8653.34, "end": 8654.1, "probability": 0.8704 }, { "start": 8655.26, "end": 8656.27, "probability": 0.9985 }, { "start": 8657.82, "end": 8659.0, "probability": 0.03 }, { "start": 8660.42, "end": 8660.6, "probability": 0.0172 }, { "start": 8660.6, "end": 8666.98, "probability": 0.798 }, { "start": 8675.88, "end": 8679.12, "probability": 0.0238 }, { "start": 8679.12, "end": 8682.64, "probability": 0.0779 }, { "start": 8689.5, "end": 8691.44, "probability": 0.0455 }, { "start": 8702.62, "end": 8708.16, "probability": 0.0258 }, { "start": 8708.32, "end": 8709.98, "probability": 0.0209 }, { "start": 8710.76, "end": 8710.76, "probability": 0.047 }, { "start": 8710.76, "end": 8710.76, "probability": 0.0482 }, { "start": 8710.76, "end": 8711.5, "probability": 0.075 }, { "start": 8713.1, "end": 8715.04, "probability": 0.0267 }, { "start": 8716.68, "end": 8719.82, "probability": 0.0406 }, { "start": 8720.32, "end": 8723.32, "probability": 0.0227 }, { "start": 8723.58, "end": 8723.88, "probability": 0.0598 }, { "start": 8723.88, "end": 8729.38, "probability": 0.4067 }, { "start": 8729.92, "end": 8732.76, "probability": 0.0478 }, { "start": 8760.0, "end": 8760.0, "probability": 0.0 }, { "start": 8760.0, "end": 8760.0, "probability": 0.0 }, { "start": 8760.0, "end": 8760.0, "probability": 0.0 }, { "start": 8760.0, "end": 8760.0, "probability": 0.0 }, { "start": 8760.0, "end": 8760.0, "probability": 0.0 }, { "start": 8760.0, "end": 8760.0, "probability": 0.0 }, { "start": 8760.0, "end": 8760.0, "probability": 0.0 }, { "start": 8760.0, "end": 8760.0, "probability": 0.0 }, { "start": 8760.0, "end": 8760.0, "probability": 0.0 }, { "start": 8760.0, "end": 8760.0, "probability": 0.0 }, { "start": 8760.0, "end": 8760.0, "probability": 0.0 }, { "start": 8760.0, "end": 8760.0, "probability": 0.0 }, { "start": 8760.0, "end": 8760.0, "probability": 0.0 }, { "start": 8760.0, "end": 8760.0, "probability": 0.0 }, { "start": 8760.0, "end": 8760.0, "probability": 0.0 }, { "start": 8760.0, "end": 8760.0, "probability": 0.0 }, { "start": 8760.0, "end": 8760.0, "probability": 0.0 }, { "start": 8760.0, "end": 8760.0, "probability": 0.0 }, { "start": 8760.0, "end": 8760.0, "probability": 0.0 }, { "start": 8760.0, "end": 8760.0, "probability": 0.0 }, { "start": 8760.0, "end": 8760.0, "probability": 0.0 }, { "start": 8760.0, "end": 8760.0, "probability": 0.0 }, { "start": 8760.0, "end": 8760.0, "probability": 0.0 }, { "start": 8760.0, "end": 8760.0, "probability": 0.0 }, { "start": 8760.0, "end": 8760.0, "probability": 0.0 }, { "start": 8760.0, "end": 8760.0, "probability": 0.0 }, { "start": 8760.0, "end": 8760.0, "probability": 0.0 }, { "start": 8760.0, "end": 8760.0, "probability": 0.0 }, { "start": 8760.0, "end": 8760.0, "probability": 0.0 }, { "start": 8760.0, "end": 8760.0, "probability": 0.0 }, { "start": 8760.0, "end": 8760.0, "probability": 0.0 }, { "start": 8760.0, "end": 8760.0, "probability": 0.0 }, { "start": 8760.0, "end": 8760.0, "probability": 0.0 }, { "start": 8760.0, "end": 8760.0, "probability": 0.0 }, { "start": 8760.0, "end": 8760.0, "probability": 0.0 }, { "start": 8760.0, "end": 8760.0, "probability": 0.0 }, { "start": 8760.0, "end": 8760.0, "probability": 0.0 }, { "start": 8760.0, "end": 8760.0, "probability": 0.0 }, { "start": 8761.11, "end": 8765.38, "probability": 0.847 }, { "start": 8765.4, "end": 8766.46, "probability": 0.1242 }, { "start": 8766.46, "end": 8766.92, "probability": 0.271 }, { "start": 8766.92, "end": 8767.82, "probability": 0.3832 }, { "start": 8768.2, "end": 8768.36, "probability": 0.4503 }, { "start": 8768.46, "end": 8770.88, "probability": 0.9904 }, { "start": 8771.02, "end": 8772.52, "probability": 0.0382 }, { "start": 8772.88, "end": 8773.16, "probability": 0.5619 }, { "start": 8773.44, "end": 8775.87, "probability": 0.9521 }, { "start": 8776.82, "end": 8778.92, "probability": 0.8583 }, { "start": 8779.02, "end": 8781.14, "probability": 0.9155 }, { "start": 8781.9, "end": 8784.9, "probability": 0.7343 }, { "start": 8787.98, "end": 8788.2, "probability": 0.0202 }, { "start": 8789.04, "end": 8789.3, "probability": 0.3477 }, { "start": 8794.92, "end": 8795.8, "probability": 0.5368 }, { "start": 8796.78, "end": 8797.22, "probability": 0.9114 }, { "start": 8798.62, "end": 8799.2, "probability": 0.8022 }, { "start": 8802.32, "end": 8803.6, "probability": 0.2277 }, { "start": 8804.7, "end": 8805.26, "probability": 0.8519 }, { "start": 8806.46, "end": 8807.82, "probability": 0.6649 }, { "start": 8808.54, "end": 8809.0, "probability": 0.7993 }, { "start": 8809.82, "end": 8810.7, "probability": 0.9581 }, { "start": 8811.62, "end": 8813.58, "probability": 0.9707 }, { "start": 8814.58, "end": 8815.32, "probability": 0.8485 }, { "start": 8816.08, "end": 8816.98, "probability": 0.6216 }, { "start": 8818.06, "end": 8818.5, "probability": 0.9961 }, { "start": 8819.32, "end": 8820.44, "probability": 0.9733 }, { "start": 8821.32, "end": 8823.58, "probability": 0.9783 }, { "start": 8827.08, "end": 8828.0, "probability": 0.9856 }, { "start": 8828.96, "end": 8829.94, "probability": 0.9236 }, { "start": 8831.9, "end": 8832.84, "probability": 0.7496 }, { "start": 8834.22, "end": 8836.28, "probability": 0.9805 }, { "start": 8837.03, "end": 8839.72, "probability": 0.9738 }, { "start": 8841.22, "end": 8841.72, "probability": 0.9665 }, { "start": 8842.78, "end": 8843.92, "probability": 0.9837 }, { "start": 8845.11, "end": 8847.18, "probability": 0.9897 }, { "start": 8847.94, "end": 8848.38, "probability": 0.9209 }, { "start": 8849.2, "end": 8849.86, "probability": 0.9856 }, { "start": 8851.4, "end": 8853.9, "probability": 0.914 }, { "start": 8855.38, "end": 8856.06, "probability": 0.8963 }, { "start": 8856.64, "end": 8857.38, "probability": 0.7141 }, { "start": 8858.54, "end": 8858.94, "probability": 0.5149 }, { "start": 8860.14, "end": 8861.06, "probability": 0.8593 }, { "start": 8862.06, "end": 8862.4, "probability": 0.841 }, { "start": 8863.12, "end": 8863.92, "probability": 0.8566 }, { "start": 8867.86, "end": 8868.22, "probability": 0.778 }, { "start": 8870.0, "end": 8870.84, "probability": 0.7183 }, { "start": 8872.59, "end": 8874.6, "probability": 0.9808 }, { "start": 8875.85, "end": 8877.4, "probability": 0.9695 }, { "start": 8878.95, "end": 8880.92, "probability": 0.994 }, { "start": 8881.88, "end": 8884.42, "probability": 0.8572 }, { "start": 8885.37, "end": 8887.1, "probability": 0.9431 }, { "start": 8890.28, "end": 8892.58, "probability": 0.9817 }, { "start": 8893.27, "end": 8895.32, "probability": 0.9915 }, { "start": 8900.58, "end": 8900.79, "probability": 0.6814 }, { "start": 8902.1, "end": 8903.54, "probability": 0.5627 }, { "start": 8905.2, "end": 8906.34, "probability": 0.8607 }, { "start": 8908.28, "end": 8908.84, "probability": 0.9284 }, { "start": 8909.62, "end": 8910.56, "probability": 0.8927 }, { "start": 8911.78, "end": 8913.88, "probability": 0.8757 }, { "start": 8915.76, "end": 8916.46, "probability": 0.9849 }, { "start": 8917.18, "end": 8918.12, "probability": 0.8014 }, { "start": 8918.98, "end": 8919.46, "probability": 0.7764 }, { "start": 8920.28, "end": 8921.16, "probability": 0.9848 }, { "start": 8921.98, "end": 8922.32, "probability": 0.807 }, { "start": 8923.24, "end": 8924.22, "probability": 0.9689 }, { "start": 8925.42, "end": 8925.52, "probability": 0.9656 }, { "start": 8926.9, "end": 8927.92, "probability": 0.7403 }, { "start": 8928.82, "end": 8929.18, "probability": 0.8817 }, { "start": 8929.98, "end": 8930.78, "probability": 0.9605 }, { "start": 8931.62, "end": 8934.38, "probability": 0.8634 }, { "start": 8935.26, "end": 8937.62, "probability": 0.965 }, { "start": 8939.16, "end": 8939.44, "probability": 0.9771 }, { "start": 8940.46, "end": 8941.26, "probability": 0.9718 }, { "start": 8945.14, "end": 8945.66, "probability": 0.8499 }, { "start": 8946.88, "end": 8947.8, "probability": 0.7761 }, { "start": 8949.74, "end": 8950.46, "probability": 0.9282 }, { "start": 8951.54, "end": 8952.46, "probability": 0.6158 }, { "start": 8953.7, "end": 8954.04, "probability": 0.6998 }, { "start": 8955.32, "end": 8956.82, "probability": 0.6841 }, { "start": 8957.8, "end": 8958.22, "probability": 0.7703 }, { "start": 8958.98, "end": 8960.1, "probability": 0.8984 }, { "start": 8961.64, "end": 8962.28, "probability": 0.9862 }, { "start": 8963.46, "end": 8964.78, "probability": 0.9686 }, { "start": 8965.64, "end": 8968.6, "probability": 0.7709 }, { "start": 8975.48, "end": 8975.98, "probability": 0.8783 }, { "start": 8977.74, "end": 8978.6, "probability": 0.4073 }, { "start": 8980.56, "end": 8981.62, "probability": 0.9678 }, { "start": 8982.46, "end": 8983.62, "probability": 0.8141 }, { "start": 8984.98, "end": 8985.46, "probability": 0.986 }, { "start": 8986.16, "end": 8987.08, "probability": 0.734 }, { "start": 8987.76, "end": 8988.3, "probability": 0.993 }, { "start": 8989.16, "end": 8990.02, "probability": 0.9608 }, { "start": 8991.82, "end": 8995.32, "probability": 0.9495 }, { "start": 8996.66, "end": 8997.48, "probability": 0.8192 }, { "start": 8998.36, "end": 8998.6, "probability": 0.0936 }, { "start": 9001.6, "end": 9002.88, "probability": 0.1538 }, { "start": 9004.2, "end": 9004.62, "probability": 0.5007 }, { "start": 9005.82, "end": 9007.1, "probability": 0.9683 }, { "start": 9008.2, "end": 9008.6, "probability": 0.822 }, { "start": 9009.66, "end": 9010.24, "probability": 0.8191 }, { "start": 9012.08, "end": 9014.3, "probability": 0.9695 }, { "start": 9015.35, "end": 9017.52, "probability": 0.9624 }, { "start": 9018.72, "end": 9019.2, "probability": 0.9784 }, { "start": 9020.62, "end": 9021.4, "probability": 0.9099 }, { "start": 9023.26, "end": 9024.04, "probability": 0.7614 }, { "start": 9025.04, "end": 9025.56, "probability": 0.9868 }, { "start": 9026.56, "end": 9026.96, "probability": 0.9846 }, { "start": 9030.36, "end": 9030.9, "probability": 0.6489 }, { "start": 9033.5, "end": 9034.2, "probability": 0.8209 }, { "start": 9035.32, "end": 9036.22, "probability": 0.7215 }, { "start": 9038.42, "end": 9038.7, "probability": 0.7363 }, { "start": 9039.74, "end": 9040.42, "probability": 0.8564 }, { "start": 9041.86, "end": 9042.28, "probability": 0.9321 }, { "start": 9044.02, "end": 9045.34, "probability": 0.7401 }, { "start": 9045.94, "end": 9046.4, "probability": 0.9774 }, { "start": 9047.36, "end": 9048.22, "probability": 0.943 }, { "start": 9048.88, "end": 9049.32, "probability": 0.9712 }, { "start": 9051.62, "end": 9052.84, "probability": 0.9239 }, { "start": 9054.14, "end": 9057.4, "probability": 0.8022 }, { "start": 9060.4, "end": 9062.18, "probability": 0.4873 }, { "start": 9063.16, "end": 9064.12, "probability": 0.4772 }, { "start": 9069.22, "end": 9069.54, "probability": 0.7979 }, { "start": 9070.12, "end": 9071.18, "probability": 0.6618 }, { "start": 9073.64, "end": 9076.82, "probability": 0.7363 }, { "start": 9077.86, "end": 9078.3, "probability": 0.9359 }, { "start": 9079.0, "end": 9079.8, "probability": 0.9064 }, { "start": 9082.48, "end": 9085.12, "probability": 0.969 }, { "start": 9085.84, "end": 9086.34, "probability": 0.9663 }, { "start": 9087.24, "end": 9087.74, "probability": 0.9023 }, { "start": 9090.96, "end": 9091.88, "probability": 0.1676 }, { "start": 9092.64, "end": 9093.18, "probability": 0.8037 }, { "start": 9094.12, "end": 9095.02, "probability": 0.7231 }, { "start": 9096.08, "end": 9096.66, "probability": 0.8083 }, { "start": 9097.46, "end": 9101.66, "probability": 0.8119 }, { "start": 9105.14, "end": 9106.58, "probability": 0.9626 }, { "start": 9109.54, "end": 9110.88, "probability": 0.6332 }, { "start": 9111.64, "end": 9112.06, "probability": 0.9722 }, { "start": 9113.06, "end": 9114.42, "probability": 0.8853 }, { "start": 9116.24, "end": 9116.62, "probability": 0.8943 }, { "start": 9117.68, "end": 9118.4, "probability": 0.9648 }, { "start": 9120.44, "end": 9120.9, "probability": 0.9912 }, { "start": 9121.74, "end": 9122.66, "probability": 0.9074 }, { "start": 9123.74, "end": 9125.24, "probability": 0.9753 }, { "start": 9125.78, "end": 9126.52, "probability": 0.5802 }, { "start": 9127.46, "end": 9127.98, "probability": 0.9954 }, { "start": 9128.98, "end": 9130.12, "probability": 0.991 }, { "start": 9131.4, "end": 9131.78, "probability": 0.968 }, { "start": 9132.78, "end": 9133.26, "probability": 0.9475 }, { "start": 9135.2, "end": 9135.56, "probability": 0.9977 }, { "start": 9137.58, "end": 9138.68, "probability": 0.6632 }, { "start": 9140.42, "end": 9141.12, "probability": 0.7824 }, { "start": 9141.66, "end": 9142.26, "probability": 0.7076 }, { "start": 9143.76, "end": 9144.3, "probability": 0.9924 }, { "start": 9146.12, "end": 9147.14, "probability": 0.6761 }, { "start": 9147.76, "end": 9149.86, "probability": 0.9487 }, { "start": 9151.04, "end": 9151.48, "probability": 0.9531 }, { "start": 9152.96, "end": 9153.8, "probability": 0.5451 }, { "start": 9155.98, "end": 9158.98, "probability": 0.9065 }, { "start": 9159.5, "end": 9160.38, "probability": 0.9779 }, { "start": 9161.22, "end": 9162.22, "probability": 0.9003 }, { "start": 9163.4, "end": 9163.86, "probability": 0.9922 }, { "start": 9165.02, "end": 9165.12, "probability": 0.2497 }, { "start": 9167.46, "end": 9167.92, "probability": 0.7587 }, { "start": 9168.86, "end": 9169.8, "probability": 0.6948 }, { "start": 9170.84, "end": 9171.26, "probability": 0.8516 }, { "start": 9172.2, "end": 9173.26, "probability": 0.6691 }, { "start": 9177.84, "end": 9181.2, "probability": 0.9709 }, { "start": 9183.0, "end": 9183.5, "probability": 0.9837 }, { "start": 9184.88, "end": 9185.8, "probability": 0.905 }, { "start": 9190.86, "end": 9193.7, "probability": 0.3337 }, { "start": 9194.4, "end": 9195.3, "probability": 0.8945 }, { "start": 9196.86, "end": 9197.36, "probability": 0.8961 }, { "start": 9199.68, "end": 9202.16, "probability": 0.9183 }, { "start": 9204.22, "end": 9205.08, "probability": 0.9563 }, { "start": 9206.02, "end": 9207.06, "probability": 0.8317 }, { "start": 9208.3, "end": 9210.48, "probability": 0.9663 }, { "start": 9211.44, "end": 9211.94, "probability": 0.9857 }, { "start": 9213.02, "end": 9213.94, "probability": 0.9229 }, { "start": 9214.66, "end": 9217.0, "probability": 0.9837 }, { "start": 9220.3, "end": 9221.04, "probability": 0.6521 }, { "start": 9222.16, "end": 9222.54, "probability": 0.7512 }, { "start": 9223.92, "end": 9224.56, "probability": 0.9239 }, { "start": 9226.24, "end": 9226.76, "probability": 0.9845 }, { "start": 9227.58, "end": 9228.64, "probability": 0.8706 }, { "start": 9230.02, "end": 9230.48, "probability": 0.9546 }, { "start": 9231.7, "end": 9232.54, "probability": 0.9797 }, { "start": 9234.0, "end": 9236.54, "probability": 0.9512 }, { "start": 9241.82, "end": 9242.12, "probability": 0.8794 }, { "start": 9243.18, "end": 9245.64, "probability": 0.7006 }, { "start": 9246.94, "end": 9248.24, "probability": 0.9631 }, { "start": 9249.36, "end": 9249.78, "probability": 0.8905 }, { "start": 9250.52, "end": 9251.8, "probability": 0.9853 }, { "start": 9252.8, "end": 9253.16, "probability": 0.9336 }, { "start": 9253.86, "end": 9254.86, "probability": 0.9562 }, { "start": 9256.06, "end": 9256.6, "probability": 0.9945 }, { "start": 9257.44, "end": 9258.88, "probability": 0.9316 }, { "start": 9262.68, "end": 9263.0, "probability": 0.6721 }, { "start": 9263.92, "end": 9265.46, "probability": 0.4898 }, { "start": 9266.52, "end": 9266.94, "probability": 0.9691 }, { "start": 9267.68, "end": 9269.1, "probability": 0.9072 }, { "start": 9270.32, "end": 9270.7, "probability": 0.9827 }, { "start": 9271.4, "end": 9273.54, "probability": 0.7288 }, { "start": 9274.68, "end": 9275.18, "probability": 0.967 }, { "start": 9276.04, "end": 9277.1, "probability": 0.8904 }, { "start": 9278.84, "end": 9279.2, "probability": 0.6802 }, { "start": 9280.34, "end": 9281.22, "probability": 0.7562 }, { "start": 9282.9, "end": 9283.34, "probability": 0.9055 }, { "start": 9284.16, "end": 9285.18, "probability": 0.9352 }, { "start": 9286.14, "end": 9286.64, "probability": 0.9559 }, { "start": 9287.4, "end": 9288.2, "probability": 0.7587 }, { "start": 9289.38, "end": 9289.78, "probability": 0.9961 }, { "start": 9290.62, "end": 9292.02, "probability": 0.8043 }, { "start": 9294.22, "end": 9296.48, "probability": 0.8525 }, { "start": 9297.38, "end": 9298.86, "probability": 0.8534 }, { "start": 9299.94, "end": 9300.28, "probability": 0.7689 }, { "start": 9301.1, "end": 9302.06, "probability": 0.8468 }, { "start": 9303.26, "end": 9305.1, "probability": 0.7594 }, { "start": 9311.12, "end": 9314.76, "probability": 0.5494 }, { "start": 9318.56, "end": 9320.0, "probability": 0.7998 }, { "start": 9323.86, "end": 9325.18, "probability": 0.7901 }, { "start": 9328.42, "end": 9328.58, "probability": 0.0194 }, { "start": 9329.12, "end": 9331.38, "probability": 0.8866 }, { "start": 9333.18, "end": 9334.22, "probability": 0.6714 }, { "start": 9337.1, "end": 9338.34, "probability": 0.5032 }, { "start": 9339.94, "end": 9340.86, "probability": 0.7688 }, { "start": 9342.76, "end": 9346.24, "probability": 0.9064 }, { "start": 9348.66, "end": 9349.5, "probability": 0.9861 }, { "start": 9350.46, "end": 9351.42, "probability": 0.8006 }, { "start": 9353.54, "end": 9354.38, "probability": 0.9878 }, { "start": 9355.66, "end": 9355.66, "probability": 0.2012 }, { "start": 9359.68, "end": 9360.84, "probability": 0.5128 }, { "start": 9364.48, "end": 9365.34, "probability": 0.4985 }, { "start": 9369.88, "end": 9371.04, "probability": 0.6772 }, { "start": 9373.97, "end": 9375.76, "probability": 0.6105 }, { "start": 9378.44, "end": 9379.36, "probability": 0.8775 }, { "start": 9380.56, "end": 9381.58, "probability": 0.6526 }, { "start": 9383.04, "end": 9389.28, "probability": 0.069 }, { "start": 9390.78, "end": 9391.7, "probability": 0.2454 }, { "start": 9393.26, "end": 9394.14, "probability": 0.9452 }, { "start": 9395.54, "end": 9397.94, "probability": 0.9224 }, { "start": 9399.54, "end": 9401.34, "probability": 0.8569 }, { "start": 9401.98, "end": 9406.82, "probability": 0.9634 }, { "start": 9407.21, "end": 9410.92, "probability": 0.913 }, { "start": 9411.66, "end": 9413.74, "probability": 0.8028 }, { "start": 9415.38, "end": 9419.32, "probability": 0.1126 }, { "start": 9421.14, "end": 9422.18, "probability": 0.1144 }, { "start": 9429.84, "end": 9430.04, "probability": 0.0195 }, { "start": 9478.2, "end": 9478.78, "probability": 0.0409 }, { "start": 9514.64, "end": 9515.0, "probability": 0.3254 }, { "start": 9517.0, "end": 9517.0, "probability": 0.0 }, { "start": 9518.28, "end": 9520.94, "probability": 0.1451 }, { "start": 9521.52, "end": 9522.72, "probability": 0.4077 }, { "start": 9522.94, "end": 9524.62, "probability": 0.9396 }, { "start": 9525.72, "end": 9528.64, "probability": 0.6455 }, { "start": 9530.28, "end": 9531.06, "probability": 0.5529 }, { "start": 9533.02, "end": 9534.38, "probability": 0.0183 }, { "start": 9542.42, "end": 9543.34, "probability": 0.5349 }, { "start": 9544.16, "end": 9544.62, "probability": 0.8767 }, { "start": 9547.54, "end": 9548.56, "probability": 0.6573 }, { "start": 9550.04, "end": 9550.48, "probability": 0.8774 }, { "start": 9551.54, "end": 9552.78, "probability": 0.6925 }, { "start": 9555.08, "end": 9555.84, "probability": 0.9149 }, { "start": 9556.8, "end": 9557.7, "probability": 0.8663 }, { "start": 9559.38, "end": 9560.14, "probability": 0.9811 }, { "start": 9560.8, "end": 9561.48, "probability": 0.8789 }, { "start": 9563.22, "end": 9563.89, "probability": 0.1337 }, { "start": 9566.52, "end": 9566.64, "probability": 0.3985 }, { "start": 9578.5, "end": 9578.66, "probability": 0.4834 }, { "start": 9582.64, "end": 9584.92, "probability": 0.7764 }, { "start": 9586.88, "end": 9587.98, "probability": 0.6573 }, { "start": 9589.2, "end": 9589.6, "probability": 0.8088 }, { "start": 9591.54, "end": 9592.26, "probability": 0.9073 }, { "start": 9594.14, "end": 9594.54, "probability": 0.8757 }, { "start": 9595.52, "end": 9596.38, "probability": 0.9549 }, { "start": 9597.42, "end": 9599.4, "probability": 0.9822 }, { "start": 9601.06, "end": 9603.78, "probability": 0.9901 }, { "start": 9607.18, "end": 9608.82, "probability": 0.7572 }, { "start": 9610.1, "end": 9611.08, "probability": 0.8537 }, { "start": 9612.2, "end": 9613.38, "probability": 0.6747 }, { "start": 9614.5, "end": 9615.38, "probability": 0.9261 }, { "start": 9616.56, "end": 9616.96, "probability": 0.8864 }, { "start": 9619.22, "end": 9620.08, "probability": 0.9707 }, { "start": 9622.86, "end": 9623.38, "probability": 0.9768 }, { "start": 9624.6, "end": 9625.78, "probability": 0.8421 }, { "start": 9626.48, "end": 9627.26, "probability": 0.979 }, { "start": 9627.8, "end": 9629.4, "probability": 0.9455 }, { "start": 9632.46, "end": 9634.1, "probability": 0.7785 }, { "start": 9635.04, "end": 9636.18, "probability": 0.6495 }, { "start": 9637.62, "end": 9638.0, "probability": 0.9465 }, { "start": 9642.36, "end": 9643.14, "probability": 0.5816 }, { "start": 9644.06, "end": 9644.46, "probability": 0.9235 }, { "start": 9645.54, "end": 9646.06, "probability": 0.9764 }, { "start": 9647.35, "end": 9650.34, "probability": 0.9604 }, { "start": 9652.8, "end": 9657.58, "probability": 0.8286 }, { "start": 9657.6, "end": 9658.82, "probability": 0.7396 }, { "start": 9659.58, "end": 9665.12, "probability": 0.0384 }, { "start": 9666.96, "end": 9667.96, "probability": 0.9176 }, { "start": 9670.32, "end": 9670.72, "probability": 0.5644 }, { "start": 9674.18, "end": 9675.02, "probability": 0.6766 }, { "start": 9675.94, "end": 9676.28, "probability": 0.895 }, { "start": 9677.18, "end": 9678.38, "probability": 0.5637 }, { "start": 9682.12, "end": 9682.64, "probability": 0.9932 }, { "start": 9683.66, "end": 9684.38, "probability": 0.8999 }, { "start": 9688.38, "end": 9689.34, "probability": 0.8417 }, { "start": 9689.96, "end": 9690.84, "probability": 0.8291 }, { "start": 9692.1, "end": 9692.58, "probability": 0.7788 }, { "start": 9693.82, "end": 9694.62, "probability": 0.9521 }, { "start": 9695.82, "end": 9696.32, "probability": 0.985 }, { "start": 9697.46, "end": 9698.44, "probability": 0.8093 }, { "start": 9700.34, "end": 9700.96, "probability": 0.1808 }, { "start": 9712.62, "end": 9713.44, "probability": 0.5026 }, { "start": 9714.46, "end": 9715.34, "probability": 0.5813 }, { "start": 9716.38, "end": 9718.34, "probability": 0.7407 }, { "start": 9719.58, "end": 9720.0, "probability": 0.9225 }, { "start": 9720.94, "end": 9721.8, "probability": 0.9311 }, { "start": 9722.58, "end": 9722.96, "probability": 0.9474 }, { "start": 9723.8, "end": 9724.76, "probability": 0.9344 }, { "start": 9726.26, "end": 9729.1, "probability": 0.9644 }, { "start": 9729.9, "end": 9730.4, "probability": 0.9608 }, { "start": 9731.28, "end": 9732.3, "probability": 0.9763 }, { "start": 9732.96, "end": 9735.76, "probability": 0.873 }, { "start": 9737.0, "end": 9739.2, "probability": 0.9633 }, { "start": 9740.48, "end": 9740.82, "probability": 0.5451 }, { "start": 9741.42, "end": 9744.36, "probability": 0.7989 }, { "start": 9745.56, "end": 9746.02, "probability": 0.866 }, { "start": 9747.18, "end": 9748.34, "probability": 0.9481 }, { "start": 9749.46, "end": 9751.88, "probability": 0.6673 }, { "start": 9753.0, "end": 9753.58, "probability": 0.9525 }, { "start": 9754.34, "end": 9755.56, "probability": 0.8801 }, { "start": 9758.04, "end": 9759.6, "probability": 0.467 }, { "start": 9760.36, "end": 9761.7, "probability": 0.5187 }, { "start": 9764.1, "end": 9764.66, "probability": 0.9578 }, { "start": 9765.86, "end": 9767.26, "probability": 0.9723 }, { "start": 9768.2, "end": 9770.74, "probability": 0.732 }, { "start": 9771.76, "end": 9772.26, "probability": 0.9642 }, { "start": 9773.88, "end": 9774.4, "probability": 0.625 }, { "start": 9776.58, "end": 9777.12, "probability": 0.9616 }, { "start": 9778.02, "end": 9779.28, "probability": 0.9143 }, { "start": 9780.18, "end": 9780.68, "probability": 0.8048 }, { "start": 9781.32, "end": 9782.32, "probability": 0.9272 }, { "start": 9782.96, "end": 9783.4, "probability": 0.9917 }, { "start": 9784.2, "end": 9784.72, "probability": 0.7763 }, { "start": 9788.0, "end": 9788.42, "probability": 0.5429 }, { "start": 9789.06, "end": 9791.82, "probability": 0.6131 }, { "start": 9793.2, "end": 9793.94, "probability": 0.9294 }, { "start": 9794.66, "end": 9795.54, "probability": 0.6091 }, { "start": 9799.28, "end": 9800.1, "probability": 0.8341 }, { "start": 9801.32, "end": 9802.62, "probability": 0.8491 }, { "start": 9804.14, "end": 9804.7, "probability": 0.9587 }, { "start": 9805.52, "end": 9806.36, "probability": 0.9652 }, { "start": 9807.2, "end": 9807.64, "probability": 0.9355 }, { "start": 9808.42, "end": 9809.3, "probability": 0.8713 }, { "start": 9810.4, "end": 9810.86, "probability": 0.9494 }, { "start": 9811.66, "end": 9813.12, "probability": 0.9275 }, { "start": 9818.08, "end": 9818.54, "probability": 0.814 }, { "start": 9820.18, "end": 9821.14, "probability": 0.7274 }, { "start": 9822.22, "end": 9822.98, "probability": 0.8642 }, { "start": 9823.8, "end": 9824.56, "probability": 0.9266 }, { "start": 9825.72, "end": 9826.12, "probability": 0.7222 }, { "start": 9827.06, "end": 9827.84, "probability": 0.9661 }, { "start": 9828.94, "end": 9829.38, "probability": 0.9795 }, { "start": 9830.34, "end": 9831.28, "probability": 0.9866 }, { "start": 9832.58, "end": 9833.78, "probability": 0.8472 }, { "start": 9837.08, "end": 9838.74, "probability": 0.8346 }, { "start": 9840.7, "end": 9842.2, "probability": 0.5205 }, { "start": 9844.06, "end": 9844.38, "probability": 0.7175 }, { "start": 9845.22, "end": 9846.12, "probability": 0.6335 }, { "start": 9846.76, "end": 9847.12, "probability": 0.9032 }, { "start": 9847.96, "end": 9849.38, "probability": 0.9525 }, { "start": 9850.24, "end": 9850.68, "probability": 0.8772 }, { "start": 9851.92, "end": 9852.86, "probability": 0.8686 }, { "start": 9858.64, "end": 9858.92, "probability": 0.5355 }, { "start": 9860.02, "end": 9861.02, "probability": 0.6095 }, { "start": 9866.56, "end": 9867.06, "probability": 0.7783 }, { "start": 9867.62, "end": 9870.3, "probability": 0.7505 }, { "start": 9871.04, "end": 9871.4, "probability": 0.5231 }, { "start": 9872.16, "end": 9873.12, "probability": 0.9308 }, { "start": 9874.2, "end": 9876.14, "probability": 0.9588 }, { "start": 9877.23, "end": 9879.28, "probability": 0.9703 }, { "start": 9880.42, "end": 9880.94, "probability": 0.9411 }, { "start": 9881.56, "end": 9882.94, "probability": 0.948 }, { "start": 9885.4, "end": 9886.36, "probability": 0.6784 }, { "start": 9897.94, "end": 9898.88, "probability": 0.6489 }, { "start": 9899.82, "end": 9900.16, "probability": 0.5015 }, { "start": 9901.3, "end": 9902.62, "probability": 0.891 }, { "start": 9903.3, "end": 9903.64, "probability": 0.7238 }, { "start": 9904.44, "end": 9905.62, "probability": 0.7007 }, { "start": 9907.94, "end": 9908.42, "probability": 0.9725 }, { "start": 9909.96, "end": 9911.22, "probability": 0.9067 }, { "start": 9912.76, "end": 9913.16, "probability": 0.9469 }, { "start": 9913.9, "end": 9915.34, "probability": 0.9509 }, { "start": 9916.46, "end": 9916.66, "probability": 0.5109 }, { "start": 9917.78, "end": 9918.54, "probability": 0.7862 }, { "start": 9919.9, "end": 9920.38, "probability": 0.9822 }, { "start": 9921.28, "end": 9922.06, "probability": 0.8674 }, { "start": 9924.76, "end": 9925.28, "probability": 0.9907 }, { "start": 9926.42, "end": 9927.74, "probability": 0.572 }, { "start": 9928.72, "end": 9929.16, "probability": 0.9518 }, { "start": 9930.0, "end": 9931.12, "probability": 0.9439 }, { "start": 9935.58, "end": 9935.96, "probability": 0.9797 }, { "start": 9937.02, "end": 9938.08, "probability": 0.9463 }, { "start": 9939.0, "end": 9939.44, "probability": 0.7894 }, { "start": 9940.24, "end": 9941.58, "probability": 0.9871 }, { "start": 9943.1, "end": 9943.52, "probability": 0.9951 }, { "start": 9945.5, "end": 9946.46, "probability": 0.5121 }, { "start": 9947.1, "end": 9947.6, "probability": 0.8911 }, { "start": 9948.46, "end": 9949.48, "probability": 0.5935 }, { "start": 9950.24, "end": 9950.6, "probability": 0.9878 }, { "start": 9951.88, "end": 9952.82, "probability": 0.7121 }, { "start": 9955.8, "end": 9956.66, "probability": 0.9744 }, { "start": 9959.96, "end": 9960.8, "probability": 0.377 }, { "start": 9961.96, "end": 9964.96, "probability": 0.7665 }, { "start": 9966.1, "end": 9969.84, "probability": 0.701 }, { "start": 9971.06, "end": 9971.54, "probability": 0.7916 }, { "start": 9972.34, "end": 9973.52, "probability": 0.7746 }, { "start": 9974.34, "end": 9974.82, "probability": 0.9424 }, { "start": 9975.96, "end": 9976.94, "probability": 0.7309 }, { "start": 9978.7, "end": 9979.2, "probability": 0.9875 }, { "start": 9980.36, "end": 9981.26, "probability": 0.9813 }, { "start": 9981.9, "end": 9982.38, "probability": 0.8436 }, { "start": 9983.18, "end": 9984.14, "probability": 0.9465 }, { "start": 9984.82, "end": 9985.7, "probability": 0.9907 }, { "start": 9986.6, "end": 9987.39, "probability": 0.3333 }, { "start": 9988.3, "end": 9989.26, "probability": 0.8381 }, { "start": 9990.34, "end": 9991.08, "probability": 0.8416 }, { "start": 9993.0, "end": 9993.42, "probability": 0.7236 }, { "start": 9994.42, "end": 9995.8, "probability": 0.973 }, { "start": 9996.34, "end": 9998.74, "probability": 0.8744 }, { "start": 9999.58, "end": 10001.32, "probability": 0.9739 }, { "start": 10002.1, "end": 10003.16, "probability": 0.9793 }, { "start": 10004.36, "end": 10004.88, "probability": 0.9871 }, { "start": 10006.18, "end": 10008.29, "probability": 0.9351 }, { "start": 10009.34, "end": 10010.34, "probability": 0.902 }, { "start": 10011.26, "end": 10011.74, "probability": 0.9821 }, { "start": 10012.38, "end": 10012.86, "probability": 0.9822 }, { "start": 10014.12, "end": 10014.48, "probability": 0.5768 }, { "start": 10015.7, "end": 10016.66, "probability": 0.665 }, { "start": 10017.74, "end": 10018.1, "probability": 0.9217 }, { "start": 10019.34, "end": 10020.26, "probability": 0.8216 }, { "start": 10021.32, "end": 10021.86, "probability": 0.9683 }, { "start": 10022.64, "end": 10023.56, "probability": 0.9727 }, { "start": 10024.9, "end": 10027.2, "probability": 0.9734 }, { "start": 10028.44, "end": 10029.06, "probability": 0.9935 }, { "start": 10029.62, "end": 10030.34, "probability": 0.9849 }, { "start": 10032.8, "end": 10033.78, "probability": 0.4447 }, { "start": 10034.48, "end": 10034.92, "probability": 0.5889 }, { "start": 10036.28, "end": 10037.66, "probability": 0.9493 }, { "start": 10038.4, "end": 10038.8, "probability": 0.952 }, { "start": 10039.64, "end": 10040.84, "probability": 0.9775 }, { "start": 10041.7, "end": 10042.24, "probability": 0.9917 }, { "start": 10043.2, "end": 10043.94, "probability": 0.9399 }, { "start": 10044.92, "end": 10045.44, "probability": 0.9727 }, { "start": 10046.26, "end": 10047.64, "probability": 0.9446 }, { "start": 10049.26, "end": 10049.76, "probability": 0.9958 }, { "start": 10050.78, "end": 10052.3, "probability": 0.8184 }, { "start": 10056.68, "end": 10057.16, "probability": 0.7871 }, { "start": 10058.98, "end": 10060.34, "probability": 0.7159 }, { "start": 10061.28, "end": 10061.7, "probability": 0.9694 }, { "start": 10062.42, "end": 10062.86, "probability": 0.9364 }, { "start": 10064.18, "end": 10066.5, "probability": 0.9561 }, { "start": 10069.9, "end": 10070.38, "probability": 0.5396 }, { "start": 10071.82, "end": 10072.66, "probability": 0.7346 }, { "start": 10073.76, "end": 10074.1, "probability": 0.8992 }, { "start": 10074.92, "end": 10075.94, "probability": 0.9721 }, { "start": 10077.66, "end": 10078.74, "probability": 0.9932 }, { "start": 10079.26, "end": 10080.04, "probability": 0.8009 }, { "start": 10081.44, "end": 10081.96, "probability": 0.9963 }, { "start": 10082.66, "end": 10083.76, "probability": 0.9673 }, { "start": 10084.54, "end": 10084.78, "probability": 0.6227 }, { "start": 10086.52, "end": 10087.84, "probability": 0.8813 }, { "start": 10088.88, "end": 10089.28, "probability": 0.9087 }, { "start": 10089.98, "end": 10090.9, "probability": 0.7703 }, { "start": 10091.86, "end": 10093.7, "probability": 0.9478 }, { "start": 10094.92, "end": 10097.6, "probability": 0.7858 }, { "start": 10098.56, "end": 10099.0, "probability": 0.9827 }, { "start": 10103.32, "end": 10107.12, "probability": 0.9731 }, { "start": 10107.82, "end": 10108.94, "probability": 0.6029 }, { "start": 10109.88, "end": 10110.3, "probability": 0.9153 }, { "start": 10112.06, "end": 10112.92, "probability": 0.8219 }, { "start": 10113.86, "end": 10116.98, "probability": 0.9705 }, { "start": 10117.56, "end": 10118.0, "probability": 0.9854 }, { "start": 10120.1, "end": 10121.52, "probability": 0.9629 }, { "start": 10123.24, "end": 10123.8, "probability": 0.7268 }, { "start": 10126.26, "end": 10129.75, "probability": 0.7186 }, { "start": 10135.36, "end": 10136.64, "probability": 0.364 }, { "start": 10137.82, "end": 10138.3, "probability": 0.579 }, { "start": 10141.66, "end": 10142.32, "probability": 0.6445 }, { "start": 10143.64, "end": 10144.02, "probability": 0.6328 }, { "start": 10148.54, "end": 10149.18, "probability": 0.5651 }, { "start": 10150.66, "end": 10151.5, "probability": 0.899 }, { "start": 10152.12, "end": 10152.7, "probability": 0.2539 }, { "start": 10153.9, "end": 10154.24, "probability": 0.8716 }, { "start": 10156.52, "end": 10157.48, "probability": 0.7338 }, { "start": 10158.72, "end": 10159.52, "probability": 0.9536 }, { "start": 10163.94, "end": 10164.48, "probability": 0.3847 }, { "start": 10165.9, "end": 10166.86, "probability": 0.7812 }, { "start": 10167.74, "end": 10168.28, "probability": 0.2836 }, { "start": 10169.64, "end": 10170.6, "probability": 0.9639 }, { "start": 10173.16, "end": 10173.26, "probability": 0.1977 }, { "start": 10173.26, "end": 10174.21, "probability": 0.4336 }, { "start": 10176.44, "end": 10180.78, "probability": 0.7018 }, { "start": 10183.0, "end": 10189.56, "probability": 0.9458 }, { "start": 10190.1, "end": 10191.92, "probability": 0.6855 }, { "start": 10202.42, "end": 10205.8, "probability": 0.1724 }, { "start": 10206.48, "end": 10208.82, "probability": 0.0192 }, { "start": 10208.82, "end": 10209.92, "probability": 0.0807 }, { "start": 10210.56, "end": 10210.94, "probability": 0.0093 }, { "start": 10214.96, "end": 10216.24, "probability": 0.0816 }, { "start": 10218.9, "end": 10221.14, "probability": 0.1819 }, { "start": 10229.38, "end": 10230.88, "probability": 0.0628 }, { "start": 10245.72, "end": 10246.12, "probability": 0.3222 }, { "start": 10248.46, "end": 10250.62, "probability": 0.2238 }, { "start": 10252.88, "end": 10256.6, "probability": 0.5622 }, { "start": 10256.6, "end": 10257.6, "probability": 0.0281 }, { "start": 10257.6, "end": 10262.06, "probability": 0.0332 }, { "start": 10403.0, "end": 10403.0, "probability": 0.0 }, { "start": 10403.0, "end": 10403.0, "probability": 0.0 }, { "start": 10403.0, "end": 10403.0, "probability": 0.0 }, { "start": 10403.0, "end": 10403.0, "probability": 0.0 }, { "start": 10403.0, "end": 10403.0, "probability": 0.0 }, { "start": 10403.3, "end": 10403.3, "probability": 0.029 }, { "start": 10403.3, "end": 10403.3, "probability": 0.0294 }, { "start": 10403.3, "end": 10403.3, "probability": 0.12 }, { "start": 10403.3, "end": 10403.58, "probability": 0.1721 }, { "start": 10403.98, "end": 10405.56, "probability": 0.5272 }, { "start": 10407.5, "end": 10407.56, "probability": 0.4632 }, { "start": 10407.56, "end": 10409.22, "probability": 0.7774 }, { "start": 10410.56, "end": 10411.96, "probability": 0.8491 }, { "start": 10425.94, "end": 10426.68, "probability": 0.0626 }, { "start": 10427.4, "end": 10429.64, "probability": 0.1149 }, { "start": 10429.66, "end": 10429.72, "probability": 0.0156 }, { "start": 10430.38, "end": 10431.68, "probability": 0.0702 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.0, "end": 10529.0, "probability": 0.0 }, { "start": 10529.22, "end": 10529.22, "probability": 0.1059 }, { "start": 10529.22, "end": 10529.36, "probability": 0.0588 }, { "start": 10530.3, "end": 10532.3, "probability": 0.9471 }, { "start": 10533.06, "end": 10535.04, "probability": 0.9771 }, { "start": 10535.62, "end": 10538.36, "probability": 0.9293 }, { "start": 10539.26, "end": 10539.72, "probability": 0.5397 }, { "start": 10540.06, "end": 10543.5, "probability": 0.9086 }, { "start": 10544.12, "end": 10545.1, "probability": 0.9131 }, { "start": 10545.82, "end": 10545.92, "probability": 0.7353 }, { "start": 10546.66, "end": 10550.24, "probability": 0.791 }, { "start": 10550.28, "end": 10553.74, "probability": 0.8405 }, { "start": 10554.46, "end": 10557.02, "probability": 0.9307 }, { "start": 10557.18, "end": 10558.06, "probability": 0.6967 }, { "start": 10558.54, "end": 10562.26, "probability": 0.8373 }, { "start": 10562.3, "end": 10563.02, "probability": 0.5522 }, { "start": 10563.5, "end": 10566.14, "probability": 0.7333 }, { "start": 10566.16, "end": 10568.48, "probability": 0.7803 }, { "start": 10568.5, "end": 10569.14, "probability": 0.6592 }, { "start": 10569.14, "end": 10569.48, "probability": 0.4995 }, { "start": 10569.48, "end": 10571.06, "probability": 0.8584 }, { "start": 10571.48, "end": 10574.5, "probability": 0.9927 }, { "start": 10575.12, "end": 10576.44, "probability": 0.9958 }, { "start": 10577.12, "end": 10578.16, "probability": 0.7278 }, { "start": 10578.9, "end": 10579.58, "probability": 0.7407 }, { "start": 10579.86, "end": 10582.7, "probability": 0.9037 }, { "start": 10582.8, "end": 10584.34, "probability": 0.8633 }, { "start": 10584.34, "end": 10584.6, "probability": 0.744 }, { "start": 10585.12, "end": 10586.72, "probability": 0.9929 }, { "start": 10587.26, "end": 10588.3, "probability": 0.8383 }, { "start": 10589.08, "end": 10590.98, "probability": 0.8552 }, { "start": 10591.84, "end": 10592.84, "probability": 0.8249 }, { "start": 10593.04, "end": 10593.97, "probability": 0.9468 }, { "start": 10594.34, "end": 10598.52, "probability": 0.9541 }, { "start": 10599.4, "end": 10599.66, "probability": 0.8761 }, { "start": 10600.42, "end": 10602.86, "probability": 0.6075 }, { "start": 10603.22, "end": 10605.24, "probability": 0.9792 }, { "start": 10605.85, "end": 10607.0, "probability": 0.9667 }, { "start": 10607.56, "end": 10607.88, "probability": 0.3351 }, { "start": 10608.72, "end": 10609.84, "probability": 0.9932 }, { "start": 10610.92, "end": 10612.06, "probability": 0.9502 }, { "start": 10612.82, "end": 10613.68, "probability": 0.9182 }, { "start": 10613.78, "end": 10615.86, "probability": 0.9373 }, { "start": 10616.0, "end": 10616.84, "probability": 0.9795 }, { "start": 10617.44, "end": 10618.28, "probability": 0.8978 }, { "start": 10618.38, "end": 10618.74, "probability": 0.7923 }, { "start": 10618.8, "end": 10622.32, "probability": 0.9927 }, { "start": 10622.56, "end": 10623.68, "probability": 0.979 }, { "start": 10624.4, "end": 10624.5, "probability": 0.8838 }, { "start": 10625.24, "end": 10625.8, "probability": 0.8319 }, { "start": 10626.5, "end": 10627.66, "probability": 0.9976 }, { "start": 10628.6, "end": 10629.78, "probability": 0.953 }, { "start": 10630.5, "end": 10631.86, "probability": 0.9888 }, { "start": 10632.36, "end": 10633.78, "probability": 0.9956 }, { "start": 10634.4, "end": 10637.02, "probability": 0.9005 }, { "start": 10637.06, "end": 10637.38, "probability": 0.8574 }, { "start": 10637.8, "end": 10639.04, "probability": 0.9505 }, { "start": 10639.06, "end": 10640.4, "probability": 0.9917 }, { "start": 10640.72, "end": 10641.12, "probability": 0.8591 }, { "start": 10641.14, "end": 10644.96, "probability": 0.9834 }, { "start": 10645.34, "end": 10645.34, "probability": 0.0787 }, { "start": 10645.34, "end": 10647.28, "probability": 0.9058 }, { "start": 10647.82, "end": 10648.32, "probability": 0.8927 }, { "start": 10648.42, "end": 10651.3, "probability": 0.8463 }, { "start": 10651.38, "end": 10652.64, "probability": 0.8506 }, { "start": 10653.1, "end": 10656.54, "probability": 0.806 }, { "start": 10656.96, "end": 10657.14, "probability": 0.5159 }, { "start": 10657.24, "end": 10659.92, "probability": 0.9471 }, { "start": 10660.08, "end": 10661.96, "probability": 0.8892 }, { "start": 10662.56, "end": 10665.54, "probability": 0.9004 }, { "start": 10665.88, "end": 10670.68, "probability": 0.9191 }, { "start": 10671.2, "end": 10672.12, "probability": 0.5059 }, { "start": 10672.66, "end": 10674.2, "probability": 0.8527 }, { "start": 10674.82, "end": 10676.96, "probability": 0.978 }, { "start": 10677.38, "end": 10678.44, "probability": 0.9061 }, { "start": 10679.04, "end": 10681.12, "probability": 0.9093 }, { "start": 10681.98, "end": 10684.44, "probability": 0.6027 }, { "start": 10684.5, "end": 10685.04, "probability": 0.5552 }, { "start": 10685.14, "end": 10686.56, "probability": 0.4515 }, { "start": 10686.96, "end": 10689.42, "probability": 0.0005 }, { "start": 10689.46, "end": 10689.58, "probability": 0.1418 }, { "start": 10689.58, "end": 10691.02, "probability": 0.0397 }, { "start": 10691.02, "end": 10691.76, "probability": 0.6904 }, { "start": 10691.98, "end": 10692.78, "probability": 0.9761 }, { "start": 10693.32, "end": 10695.96, "probability": 0.9479 }, { "start": 10696.28, "end": 10697.72, "probability": 0.5849 }, { "start": 10698.72, "end": 10699.8, "probability": 0.4967 }, { "start": 10700.16, "end": 10700.26, "probability": 0.0051 }, { "start": 10700.26, "end": 10702.34, "probability": 0.8203 }, { "start": 10702.42, "end": 10703.54, "probability": 0.8674 }, { "start": 10703.8, "end": 10707.88, "probability": 0.8328 }, { "start": 10711.19, "end": 10716.06, "probability": 0.7605 }, { "start": 10716.68, "end": 10720.54, "probability": 0.5642 }, { "start": 10723.5, "end": 10725.46, "probability": 0.9094 }, { "start": 10729.27, "end": 10730.2, "probability": 0.2647 }, { "start": 10738.7, "end": 10742.6, "probability": 0.0703 }, { "start": 10770.92, "end": 10774.22, "probability": 0.5912 }, { "start": 10774.22, "end": 10774.44, "probability": 0.7562 }, { "start": 10782.66, "end": 10784.6, "probability": 0.7153 }, { "start": 10785.6, "end": 10791.0, "probability": 0.7061 }, { "start": 10791.5, "end": 10792.24, "probability": 0.5775 }, { "start": 10793.0, "end": 10795.61, "probability": 0.7726 }, { "start": 10795.8, "end": 10798.34, "probability": 0.9919 }, { "start": 10799.7, "end": 10805.28, "probability": 0.7479 }, { "start": 10805.38, "end": 10811.86, "probability": 0.9368 }, { "start": 10823.18, "end": 10824.73, "probability": 0.7452 }, { "start": 10825.42, "end": 10828.06, "probability": 0.9952 }, { "start": 10828.62, "end": 10836.48, "probability": 0.9699 }, { "start": 10836.62, "end": 10840.26, "probability": 0.9081 }, { "start": 10840.72, "end": 10841.72, "probability": 0.868 }, { "start": 10842.24, "end": 10844.14, "probability": 0.9685 }, { "start": 10844.66, "end": 10850.46, "probability": 0.9737 }, { "start": 10850.86, "end": 10853.12, "probability": 0.726 }, { "start": 10853.22, "end": 10857.58, "probability": 0.8123 }, { "start": 10857.86, "end": 10858.18, "probability": 0.8151 }, { "start": 10858.22, "end": 10859.08, "probability": 0.9982 }, { "start": 10859.22, "end": 10859.84, "probability": 0.4719 }, { "start": 10860.36, "end": 10863.52, "probability": 0.9686 }, { "start": 10863.66, "end": 10868.88, "probability": 0.8214 }, { "start": 10871.28, "end": 10871.28, "probability": 0.0652 }, { "start": 10871.28, "end": 10871.82, "probability": 0.0683 }, { "start": 10871.82, "end": 10874.01, "probability": 0.5972 }, { "start": 10874.88, "end": 10874.92, "probability": 0.0719 }, { "start": 10874.92, "end": 10875.62, "probability": 0.9521 }, { "start": 10875.72, "end": 10878.94, "probability": 0.7046 }, { "start": 10879.0, "end": 10881.04, "probability": 0.9922 }, { "start": 10881.16, "end": 10881.86, "probability": 0.4584 }, { "start": 10882.46, "end": 10887.5, "probability": 0.989 }, { "start": 10888.16, "end": 10890.0, "probability": 0.0594 }, { "start": 10890.1, "end": 10891.7, "probability": 0.9221 }, { "start": 10892.76, "end": 10899.74, "probability": 0.3083 }, { "start": 10899.84, "end": 10900.02, "probability": 0.0895 }, { "start": 10900.36, "end": 10901.38, "probability": 0.0804 }, { "start": 10901.56, "end": 10901.56, "probability": 0.0366 }, { "start": 10901.66, "end": 10901.66, "probability": 0.0968 }, { "start": 10901.68, "end": 10901.68, "probability": 0.1049 }, { "start": 10901.68, "end": 10901.86, "probability": 0.1305 }, { "start": 10902.54, "end": 10903.4, "probability": 0.1664 }, { "start": 10905.24, "end": 10908.14, "probability": 0.2957 }, { "start": 10908.2, "end": 10912.22, "probability": 0.2137 }, { "start": 10913.98, "end": 10915.54, "probability": 0.023 }, { "start": 10915.98, "end": 10915.98, "probability": 0.0547 }, { "start": 10915.98, "end": 10916.04, "probability": 0.0821 }, { "start": 10916.04, "end": 10917.6, "probability": 0.1275 }, { "start": 10917.68, "end": 10920.86, "probability": 0.7706 }, { "start": 10921.78, "end": 10923.17, "probability": 0.7528 }, { "start": 10925.06, "end": 10926.21, "probability": 0.4805 }, { "start": 10926.38, "end": 10926.52, "probability": 0.8556 }, { "start": 10926.9, "end": 10928.1, "probability": 0.6246 }, { "start": 10930.88, "end": 10931.78, "probability": 0.3736 }, { "start": 10931.78, "end": 10933.28, "probability": 0.8358 }, { "start": 10937.4, "end": 10937.7, "probability": 0.0123 }, { "start": 10937.7, "end": 10938.36, "probability": 0.0653 }, { "start": 10939.08, "end": 10939.08, "probability": 0.0246 }, { "start": 10939.08, "end": 10939.08, "probability": 0.4167 }, { "start": 10939.08, "end": 10940.82, "probability": 0.9536 }, { "start": 10941.42, "end": 10941.88, "probability": 0.0073 }, { "start": 10941.88, "end": 10942.88, "probability": 0.0939 }, { "start": 10943.26, "end": 10943.48, "probability": 0.0164 }, { "start": 10943.6, "end": 10946.04, "probability": 0.3832 }, { "start": 10946.04, "end": 10951.84, "probability": 0.4731 }, { "start": 10952.7, "end": 10960.02, "probability": 0.9915 }, { "start": 10961.24, "end": 10961.92, "probability": 0.7766 }, { "start": 10962.24, "end": 10963.12, "probability": 0.6933 }, { "start": 10963.56, "end": 10964.46, "probability": 0.7031 }, { "start": 10964.46, "end": 10965.1, "probability": 0.6031 }, { "start": 10965.44, "end": 10965.84, "probability": 0.6076 }, { "start": 10966.0, "end": 10966.1, "probability": 0.1515 }, { "start": 10966.38, "end": 10969.7, "probability": 0.9736 }, { "start": 10978.08, "end": 10980.52, "probability": 0.6566 }, { "start": 10983.64, "end": 10984.72, "probability": 0.3394 }, { "start": 10989.28, "end": 10991.48, "probability": 0.0535 }, { "start": 10993.0, "end": 10993.78, "probability": 0.7426 }, { "start": 10995.26, "end": 10996.58, "probability": 0.7729 }, { "start": 10997.82, "end": 10998.76, "probability": 0.9881 }, { "start": 11000.22, "end": 11003.88, "probability": 0.9937 }, { "start": 11003.92, "end": 11004.52, "probability": 0.5004 }, { "start": 11004.78, "end": 11005.28, "probability": 0.5831 }, { "start": 11005.96, "end": 11008.28, "probability": 0.9974 }, { "start": 11009.12, "end": 11011.08, "probability": 0.939 }, { "start": 11011.7, "end": 11012.4, "probability": 0.7656 }, { "start": 11012.94, "end": 11013.9, "probability": 0.7872 }, { "start": 11014.48, "end": 11017.04, "probability": 0.8842 }, { "start": 11019.0, "end": 11021.48, "probability": 0.8842 }, { "start": 11022.16, "end": 11024.2, "probability": 0.9829 }, { "start": 11024.66, "end": 11028.8, "probability": 0.9835 }, { "start": 11029.4, "end": 11032.68, "probability": 0.9964 }, { "start": 11034.0, "end": 11034.76, "probability": 0.7382 }, { "start": 11035.5, "end": 11037.7, "probability": 0.8741 }, { "start": 11038.3, "end": 11040.7, "probability": 0.8423 }, { "start": 11041.12, "end": 11041.66, "probability": 0.925 }, { "start": 11043.18, "end": 11044.06, "probability": 0.9866 }, { "start": 11045.28, "end": 11046.29, "probability": 0.9907 }, { "start": 11046.56, "end": 11048.68, "probability": 0.4854 }, { "start": 11048.68, "end": 11048.68, "probability": 0.0545 }, { "start": 11048.68, "end": 11050.92, "probability": 0.939 }, { "start": 11051.9, "end": 11055.18, "probability": 0.7285 }, { "start": 11055.3, "end": 11056.32, "probability": 0.0422 }, { "start": 11056.32, "end": 11060.5, "probability": 0.9187 }, { "start": 11060.56, "end": 11061.92, "probability": 0.9678 }, { "start": 11062.82, "end": 11065.32, "probability": 0.8444 }, { "start": 11065.48, "end": 11066.36, "probability": 0.651 }, { "start": 11066.4, "end": 11067.74, "probability": 0.7777 }, { "start": 11067.9, "end": 11068.08, "probability": 0.737 }, { "start": 11068.56, "end": 11069.72, "probability": 0.9829 }, { "start": 11070.12, "end": 11071.52, "probability": 0.9404 }, { "start": 11071.6, "end": 11072.66, "probability": 0.9883 }, { "start": 11073.66, "end": 11077.46, "probability": 0.915 }, { "start": 11077.8, "end": 11078.8, "probability": 0.9995 }, { "start": 11079.12, "end": 11080.42, "probability": 0.5663 }, { "start": 11080.92, "end": 11082.26, "probability": 0.8771 }, { "start": 11082.28, "end": 11084.5, "probability": 0.9047 }, { "start": 11085.3, "end": 11089.52, "probability": 0.7871 }, { "start": 11091.16, "end": 11093.02, "probability": 0.9549 }, { "start": 11093.58, "end": 11093.74, "probability": 0.9425 }, { "start": 11094.62, "end": 11095.56, "probability": 0.9163 }, { "start": 11098.68, "end": 11099.16, "probability": 0.9731 }, { "start": 11101.3, "end": 11102.68, "probability": 0.958 }, { "start": 11103.58, "end": 11107.96, "probability": 0.6138 }, { "start": 11108.9, "end": 11110.72, "probability": 0.8974 }, { "start": 11111.28, "end": 11112.66, "probability": 0.9904 }, { "start": 11113.4, "end": 11115.14, "probability": 0.9794 }, { "start": 11115.24, "end": 11117.25, "probability": 0.9955 }, { "start": 11118.14, "end": 11118.9, "probability": 0.9698 }, { "start": 11120.42, "end": 11120.64, "probability": 0.7554 }, { "start": 11122.38, "end": 11125.26, "probability": 0.9827 }, { "start": 11126.56, "end": 11127.82, "probability": 0.9752 }, { "start": 11128.66, "end": 11129.8, "probability": 0.8586 }, { "start": 11130.26, "end": 11134.76, "probability": 0.9938 }, { "start": 11134.76, "end": 11139.56, "probability": 0.9868 }, { "start": 11141.06, "end": 11144.92, "probability": 0.7929 }, { "start": 11145.78, "end": 11147.06, "probability": 0.9623 }, { "start": 11147.5, "end": 11148.8, "probability": 0.9193 }, { "start": 11149.02, "end": 11149.61, "probability": 0.9189 }, { "start": 11150.9, "end": 11152.32, "probability": 0.9539 }, { "start": 11152.98, "end": 11155.86, "probability": 0.9932 }, { "start": 11156.02, "end": 11157.42, "probability": 0.9804 }, { "start": 11159.4, "end": 11162.98, "probability": 0.8535 }, { "start": 11164.36, "end": 11165.08, "probability": 0.9457 }, { "start": 11165.18, "end": 11165.98, "probability": 0.9283 }, { "start": 11166.06, "end": 11166.94, "probability": 0.9689 }, { "start": 11167.02, "end": 11167.38, "probability": 0.8412 }, { "start": 11167.46, "end": 11167.8, "probability": 0.8487 }, { "start": 11169.32, "end": 11170.22, "probability": 0.8729 }, { "start": 11171.54, "end": 11172.42, "probability": 0.973 }, { "start": 11173.08, "end": 11174.94, "probability": 0.985 }, { "start": 11175.14, "end": 11176.43, "probability": 0.9559 }, { "start": 11179.12, "end": 11180.02, "probability": 0.7279 }, { "start": 11182.78, "end": 11185.92, "probability": 0.98 }, { "start": 11186.84, "end": 11187.8, "probability": 0.6745 }, { "start": 11188.02, "end": 11189.13, "probability": 0.9836 }, { "start": 11191.06, "end": 11191.6, "probability": 0.8279 }, { "start": 11193.09, "end": 11197.18, "probability": 0.9756 }, { "start": 11199.02, "end": 11200.64, "probability": 0.998 }, { "start": 11201.38, "end": 11203.08, "probability": 0.9794 }, { "start": 11203.18, "end": 11205.78, "probability": 0.9628 }, { "start": 11207.48, "end": 11209.28, "probability": 0.7693 }, { "start": 11209.52, "end": 11211.14, "probability": 0.7164 }, { "start": 11211.2, "end": 11211.72, "probability": 0.4334 }, { "start": 11211.86, "end": 11215.04, "probability": 0.9583 }, { "start": 11215.7, "end": 11218.9, "probability": 0.7993 }, { "start": 11220.64, "end": 11222.32, "probability": 0.9832 }, { "start": 11222.7, "end": 11223.92, "probability": 0.5903 }, { "start": 11224.14, "end": 11224.35, "probability": 0.8696 }, { "start": 11224.86, "end": 11225.46, "probability": 0.4966 }, { "start": 11225.82, "end": 11226.8, "probability": 0.9548 }, { "start": 11228.34, "end": 11232.1, "probability": 0.9009 }, { "start": 11232.96, "end": 11233.68, "probability": 0.5728 }, { "start": 11234.44, "end": 11236.3, "probability": 0.947 }, { "start": 11236.94, "end": 11237.38, "probability": 0.7583 }, { "start": 11238.18, "end": 11239.06, "probability": 0.9497 }, { "start": 11239.62, "end": 11240.3, "probability": 0.9237 }, { "start": 11241.16, "end": 11242.82, "probability": 0.9614 }, { "start": 11244.14, "end": 11247.24, "probability": 0.9529 }, { "start": 11247.8, "end": 11249.04, "probability": 0.9641 }, { "start": 11250.52, "end": 11253.68, "probability": 0.8726 }, { "start": 11253.8, "end": 11254.42, "probability": 0.6191 }, { "start": 11255.44, "end": 11257.88, "probability": 0.978 }, { "start": 11258.5, "end": 11259.54, "probability": 0.7503 }, { "start": 11260.8, "end": 11263.64, "probability": 0.9945 }, { "start": 11263.8, "end": 11264.2, "probability": 0.9373 }, { "start": 11264.38, "end": 11264.68, "probability": 0.6342 }, { "start": 11266.14, "end": 11267.12, "probability": 0.7149 }, { "start": 11268.42, "end": 11268.88, "probability": 0.9719 }, { "start": 11269.52, "end": 11270.8, "probability": 0.6311 }, { "start": 11271.52, "end": 11273.32, "probability": 0.819 }, { "start": 11273.66, "end": 11278.1, "probability": 0.9951 }, { "start": 11278.76, "end": 11280.38, "probability": 0.929 }, { "start": 11280.48, "end": 11283.6, "probability": 0.897 }, { "start": 11285.44, "end": 11286.16, "probability": 0.9487 }, { "start": 11286.36, "end": 11287.32, "probability": 0.9844 }, { "start": 11287.58, "end": 11288.59, "probability": 0.7607 }, { "start": 11289.28, "end": 11290.98, "probability": 0.9612 }, { "start": 11292.32, "end": 11293.68, "probability": 0.9175 }, { "start": 11294.82, "end": 11296.48, "probability": 0.978 }, { "start": 11296.56, "end": 11297.02, "probability": 0.9494 }, { "start": 11297.16, "end": 11300.88, "probability": 0.8804 }, { "start": 11302.14, "end": 11305.8, "probability": 0.8808 }, { "start": 11305.96, "end": 11307.57, "probability": 0.1379 }, { "start": 11308.22, "end": 11309.66, "probability": 0.8761 }, { "start": 11310.72, "end": 11312.7, "probability": 0.8434 }, { "start": 11317.1, "end": 11317.34, "probability": 0.3819 }, { "start": 11317.34, "end": 11320.16, "probability": 0.4765 }, { "start": 11320.16, "end": 11320.16, "probability": 0.0666 }, { "start": 11320.16, "end": 11320.16, "probability": 0.0094 }, { "start": 11320.16, "end": 11320.93, "probability": 0.4455 }, { "start": 11322.36, "end": 11323.66, "probability": 0.9034 }, { "start": 11324.64, "end": 11325.44, "probability": 0.9976 }, { "start": 11326.62, "end": 11327.52, "probability": 0.6024 }, { "start": 11328.1, "end": 11328.72, "probability": 0.6932 }, { "start": 11330.12, "end": 11330.63, "probability": 0.7461 }, { "start": 11331.38, "end": 11334.68, "probability": 0.9676 }, { "start": 11336.02, "end": 11336.16, "probability": 0.0571 }, { "start": 11336.16, "end": 11338.56, "probability": 0.987 }, { "start": 11338.68, "end": 11340.18, "probability": 0.9801 }, { "start": 11340.7, "end": 11342.52, "probability": 0.7034 }, { "start": 11345.08, "end": 11346.18, "probability": 0.8066 }, { "start": 11348.58, "end": 11350.82, "probability": 0.9049 }, { "start": 11351.42, "end": 11353.26, "probability": 0.4539 }, { "start": 11353.38, "end": 11353.82, "probability": 0.5413 }, { "start": 11354.76, "end": 11357.0, "probability": 0.9907 }, { "start": 11357.7, "end": 11359.68, "probability": 0.8387 }, { "start": 11359.74, "end": 11361.36, "probability": 0.9893 }, { "start": 11362.94, "end": 11364.22, "probability": 0.727 }, { "start": 11364.38, "end": 11364.82, "probability": 0.8967 }, { "start": 11365.48, "end": 11365.92, "probability": 0.7075 }, { "start": 11366.26, "end": 11369.46, "probability": 0.9631 }, { "start": 11369.94, "end": 11371.64, "probability": 0.906 }, { "start": 11373.1, "end": 11373.36, "probability": 0.563 }, { "start": 11373.48, "end": 11379.4, "probability": 0.9534 }, { "start": 11379.4, "end": 11382.66, "probability": 0.9478 }, { "start": 11382.74, "end": 11384.12, "probability": 0.9912 }, { "start": 11386.9, "end": 11387.94, "probability": 0.6653 }, { "start": 11388.0, "end": 11389.74, "probability": 0.9156 }, { "start": 11394.9, "end": 11400.56, "probability": 0.6943 }, { "start": 11404.62, "end": 11406.54, "probability": 0.9871 }, { "start": 11406.74, "end": 11407.86, "probability": 0.7742 }, { "start": 11407.88, "end": 11409.46, "probability": 0.7669 }, { "start": 11410.08, "end": 11413.02, "probability": 0.5354 }, { "start": 11413.4, "end": 11414.92, "probability": 0.957 }, { "start": 11415.5, "end": 11416.46, "probability": 0.0737 }, { "start": 11418.5, "end": 11418.8, "probability": 0.0029 }, { "start": 11420.28, "end": 11420.78, "probability": 0.134 }, { "start": 11420.78, "end": 11420.78, "probability": 0.0728 }, { "start": 11420.78, "end": 11422.2, "probability": 0.5443 }, { "start": 11422.72, "end": 11423.12, "probability": 0.2347 }, { "start": 11423.88, "end": 11424.72, "probability": 0.9673 }, { "start": 11424.74, "end": 11425.2, "probability": 0.94 }, { "start": 11425.34, "end": 11427.6, "probability": 0.9841 }, { "start": 11428.02, "end": 11428.74, "probability": 0.9548 }, { "start": 11429.84, "end": 11430.58, "probability": 0.9892 }, { "start": 11431.52, "end": 11435.22, "probability": 0.8166 }, { "start": 11436.96, "end": 11437.98, "probability": 0.6213 }, { "start": 11439.74, "end": 11443.54, "probability": 0.8162 }, { "start": 11443.72, "end": 11444.5, "probability": 0.9956 }, { "start": 11445.04, "end": 11446.42, "probability": 0.9842 }, { "start": 11448.22, "end": 11452.72, "probability": 0.9773 }, { "start": 11453.32, "end": 11454.9, "probability": 0.989 }, { "start": 11456.12, "end": 11456.76, "probability": 0.7694 }, { "start": 11457.42, "end": 11459.1, "probability": 0.6825 }, { "start": 11460.34, "end": 11461.92, "probability": 0.9199 }, { "start": 11463.38, "end": 11465.04, "probability": 0.7876 }, { "start": 11465.12, "end": 11465.48, "probability": 0.904 }, { "start": 11465.66, "end": 11467.1, "probability": 0.9539 }, { "start": 11468.22, "end": 11471.78, "probability": 0.9878 }, { "start": 11471.78, "end": 11473.98, "probability": 0.881 }, { "start": 11474.5, "end": 11477.42, "probability": 0.9681 }, { "start": 11477.6, "end": 11477.88, "probability": 0.6023 }, { "start": 11478.22, "end": 11479.18, "probability": 0.7252 }, { "start": 11479.52, "end": 11481.1, "probability": 0.8967 }, { "start": 11481.48, "end": 11484.72, "probability": 0.9868 }, { "start": 11485.3, "end": 11487.7, "probability": 0.9948 }, { "start": 11488.08, "end": 11488.64, "probability": 0.7053 }, { "start": 11489.66, "end": 11490.22, "probability": 0.7114 }, { "start": 11490.36, "end": 11490.92, "probability": 0.8903 }, { "start": 11492.32, "end": 11492.56, "probability": 0.8792 }, { "start": 11492.64, "end": 11494.46, "probability": 0.6802 }, { "start": 11494.62, "end": 11496.22, "probability": 0.9488 }, { "start": 11496.72, "end": 11498.34, "probability": 0.9927 }, { "start": 11498.48, "end": 11499.9, "probability": 0.9595 }, { "start": 11499.96, "end": 11501.48, "probability": 0.7607 }, { "start": 11502.18, "end": 11503.0, "probability": 0.6583 }, { "start": 11504.06, "end": 11506.3, "probability": 0.7743 }, { "start": 11507.18, "end": 11508.56, "probability": 0.939 }, { "start": 11508.78, "end": 11509.0, "probability": 0.7786 }, { "start": 11511.18, "end": 11515.14, "probability": 0.8929 }, { "start": 11516.4, "end": 11517.61, "probability": 0.9866 }, { "start": 11518.04, "end": 11519.64, "probability": 0.9832 }, { "start": 11520.52, "end": 11522.22, "probability": 0.6196 }, { "start": 11523.18, "end": 11523.68, "probability": 0.3498 }, { "start": 11523.82, "end": 11523.98, "probability": 0.6111 }, { "start": 11525.18, "end": 11526.12, "probability": 0.8304 }, { "start": 11526.94, "end": 11528.88, "probability": 0.9939 }, { "start": 11528.92, "end": 11529.24, "probability": 0.8616 }, { "start": 11529.74, "end": 11533.72, "probability": 0.9946 }, { "start": 11536.28, "end": 11537.88, "probability": 0.1042 }, { "start": 11538.04, "end": 11538.12, "probability": 0.2951 }, { "start": 11538.12, "end": 11539.5, "probability": 0.7244 }, { "start": 11541.32, "end": 11542.04, "probability": 0.9823 }, { "start": 11545.42, "end": 11546.66, "probability": 0.6708 }, { "start": 11546.98, "end": 11548.58, "probability": 0.9946 }, { "start": 11549.24, "end": 11549.74, "probability": 0.7844 }, { "start": 11550.56, "end": 11552.02, "probability": 0.9149 }, { "start": 11552.16, "end": 11553.59, "probability": 0.6846 }, { "start": 11554.68, "end": 11555.5, "probability": 0.9521 }, { "start": 11556.58, "end": 11558.9, "probability": 0.9714 }, { "start": 11558.96, "end": 11559.74, "probability": 0.7547 }, { "start": 11559.78, "end": 11560.24, "probability": 0.3116 }, { "start": 11560.72, "end": 11562.38, "probability": 0.533 }, { "start": 11562.44, "end": 11563.94, "probability": 0.8907 }, { "start": 11564.46, "end": 11565.78, "probability": 0.5096 }, { "start": 11565.86, "end": 11567.21, "probability": 0.9026 }, { "start": 11567.58, "end": 11568.18, "probability": 0.7386 }, { "start": 11568.58, "end": 11569.12, "probability": 0.0912 }, { "start": 11569.28, "end": 11570.8, "probability": 0.7934 }, { "start": 11571.24, "end": 11572.28, "probability": 0.9418 }, { "start": 11573.54, "end": 11575.3, "probability": 0.4255 }, { "start": 11576.26, "end": 11577.4, "probability": 0.9956 }, { "start": 11578.78, "end": 11579.8, "probability": 0.8325 }, { "start": 11580.48, "end": 11581.48, "probability": 0.914 }, { "start": 11582.5, "end": 11585.56, "probability": 0.9665 }, { "start": 11586.32, "end": 11588.74, "probability": 0.9985 }, { "start": 11588.84, "end": 11590.2, "probability": 0.9933 }, { "start": 11592.42, "end": 11594.08, "probability": 0.9266 }, { "start": 11594.68, "end": 11597.18, "probability": 0.9801 }, { "start": 11598.67, "end": 11600.86, "probability": 0.8044 }, { "start": 11601.9, "end": 11603.58, "probability": 0.5809 }, { "start": 11604.68, "end": 11606.98, "probability": 0.8554 }, { "start": 11608.38, "end": 11608.6, "probability": 0.3972 }, { "start": 11609.06, "end": 11610.46, "probability": 0.9286 }, { "start": 11610.58, "end": 11612.38, "probability": 0.8716 }, { "start": 11612.42, "end": 11613.26, "probability": 0.8741 }, { "start": 11613.3, "end": 11614.18, "probability": 0.8984 }, { "start": 11614.44, "end": 11614.92, "probability": 0.65 }, { "start": 11615.52, "end": 11616.28, "probability": 0.6673 }, { "start": 11618.58, "end": 11619.5, "probability": 0.9885 }, { "start": 11620.26, "end": 11620.96, "probability": 0.961 }, { "start": 11621.46, "end": 11621.94, "probability": 0.43 }, { "start": 11622.22, "end": 11622.6, "probability": 0.7958 }, { "start": 11622.66, "end": 11623.02, "probability": 0.3821 }, { "start": 11623.08, "end": 11624.0, "probability": 0.7274 }, { "start": 11624.1, "end": 11626.06, "probability": 0.6608 }, { "start": 11626.48, "end": 11630.58, "probability": 0.9471 }, { "start": 11631.32, "end": 11632.94, "probability": 0.9587 }, { "start": 11633.42, "end": 11635.72, "probability": 0.8319 }, { "start": 11636.18, "end": 11637.0, "probability": 0.7203 }, { "start": 11637.56, "end": 11639.2, "probability": 0.9876 }, { "start": 11640.3, "end": 11643.38, "probability": 0.5851 }, { "start": 11644.06, "end": 11645.78, "probability": 0.9297 }, { "start": 11645.86, "end": 11647.12, "probability": 0.7189 }, { "start": 11648.68, "end": 11649.46, "probability": 0.6993 }, { "start": 11649.56, "end": 11652.54, "probability": 0.7151 }, { "start": 11653.36, "end": 11654.17, "probability": 0.9209 }, { "start": 11655.18, "end": 11656.28, "probability": 0.8605 }, { "start": 11656.42, "end": 11660.4, "probability": 0.9859 }, { "start": 11661.62, "end": 11661.9, "probability": 0.5492 }, { "start": 11662.26, "end": 11662.6, "probability": 0.4923 }, { "start": 11662.66, "end": 11664.42, "probability": 0.978 }, { "start": 11664.88, "end": 11665.24, "probability": 0.548 }, { "start": 11665.4, "end": 11670.64, "probability": 0.8455 }, { "start": 11670.7, "end": 11673.64, "probability": 0.9775 }, { "start": 11674.46, "end": 11676.3, "probability": 0.8834 }, { "start": 11676.82, "end": 11679.7, "probability": 0.9726 }, { "start": 11680.1, "end": 11682.74, "probability": 0.9974 }, { "start": 11683.5, "end": 11685.0, "probability": 0.9967 }, { "start": 11685.52, "end": 11689.06, "probability": 0.9734 }, { "start": 11689.34, "end": 11689.6, "probability": 0.4626 }, { "start": 11690.22, "end": 11693.54, "probability": 0.9528 }, { "start": 11694.5, "end": 11695.2, "probability": 0.3882 }, { "start": 11696.36, "end": 11697.3, "probability": 0.7538 }, { "start": 11698.02, "end": 11700.28, "probability": 0.9987 }, { "start": 11700.28, "end": 11703.4, "probability": 0.9502 }, { "start": 11705.1, "end": 11706.36, "probability": 0.5836 }, { "start": 11706.38, "end": 11707.27, "probability": 0.9479 }, { "start": 11707.58, "end": 11709.12, "probability": 0.9806 }, { "start": 11709.66, "end": 11712.32, "probability": 0.9692 }, { "start": 11712.48, "end": 11713.9, "probability": 0.9194 }, { "start": 11714.36, "end": 11716.84, "probability": 0.9856 }, { "start": 11718.04, "end": 11722.38, "probability": 0.9938 }, { "start": 11723.54, "end": 11724.74, "probability": 0.9212 }, { "start": 11725.02, "end": 11725.38, "probability": 0.0411 }, { "start": 11727.08, "end": 11727.18, "probability": 0.0982 }, { "start": 11727.18, "end": 11727.18, "probability": 0.0477 }, { "start": 11727.18, "end": 11727.7, "probability": 0.7492 }, { "start": 11728.66, "end": 11730.12, "probability": 0.9187 }, { "start": 11733.8, "end": 11734.18, "probability": 0.9901 }, { "start": 11735.2, "end": 11737.92, "probability": 0.9718 }, { "start": 11738.04, "end": 11739.06, "probability": 0.7017 }, { "start": 11739.58, "end": 11741.26, "probability": 0.9946 }, { "start": 11741.62, "end": 11744.66, "probability": 0.9806 }, { "start": 11745.18, "end": 11747.2, "probability": 0.994 }, { "start": 11747.28, "end": 11749.17, "probability": 0.998 }, { "start": 11749.52, "end": 11750.12, "probability": 0.9045 }, { "start": 11751.24, "end": 11753.56, "probability": 0.9985 }, { "start": 11754.78, "end": 11756.56, "probability": 0.8563 }, { "start": 11757.36, "end": 11758.62, "probability": 0.6826 }, { "start": 11759.56, "end": 11760.3, "probability": 0.9431 }, { "start": 11760.76, "end": 11762.86, "probability": 0.9505 }, { "start": 11763.54, "end": 11765.76, "probability": 0.9364 }, { "start": 11766.64, "end": 11767.72, "probability": 0.8877 }, { "start": 11768.36, "end": 11769.5, "probability": 0.6808 }, { "start": 11770.5, "end": 11773.88, "probability": 0.9767 }, { "start": 11774.08, "end": 11777.36, "probability": 0.8135 }, { "start": 11777.68, "end": 11779.94, "probability": 0.917 }, { "start": 11780.36, "end": 11781.6, "probability": 0.9835 }, { "start": 11781.66, "end": 11782.36, "probability": 0.7419 }, { "start": 11782.92, "end": 11783.16, "probability": 0.9106 }, { "start": 11783.6, "end": 11784.42, "probability": 0.7668 }, { "start": 11784.94, "end": 11785.92, "probability": 0.9878 }, { "start": 11786.08, "end": 11787.78, "probability": 0.9495 }, { "start": 11788.68, "end": 11791.82, "probability": 0.9814 }, { "start": 11792.88, "end": 11794.44, "probability": 0.769 }, { "start": 11794.9, "end": 11795.86, "probability": 0.8697 }, { "start": 11796.4, "end": 11797.62, "probability": 0.779 }, { "start": 11797.7, "end": 11799.44, "probability": 0.9879 }, { "start": 11799.82, "end": 11800.16, "probability": 0.5222 }, { "start": 11801.14, "end": 11803.82, "probability": 0.7196 }, { "start": 11805.12, "end": 11807.3, "probability": 0.3804 }, { "start": 11807.76, "end": 11808.94, "probability": 0.8337 }, { "start": 11809.2, "end": 11810.97, "probability": 0.9829 }, { "start": 11811.24, "end": 11812.12, "probability": 0.314 }, { "start": 11813.08, "end": 11813.08, "probability": 0.0322 }, { "start": 11813.08, "end": 11814.13, "probability": 0.4298 }, { "start": 11814.46, "end": 11818.0, "probability": 0.9309 }, { "start": 11818.56, "end": 11819.92, "probability": 0.8909 }, { "start": 11820.52, "end": 11823.38, "probability": 0.7504 }, { "start": 11824.44, "end": 11827.74, "probability": 0.9025 }, { "start": 11829.38, "end": 11829.38, "probability": 0.6348 }, { "start": 11829.38, "end": 11829.38, "probability": 0.1436 }, { "start": 11829.38, "end": 11833.96, "probability": 0.5545 }, { "start": 11834.7, "end": 11837.44, "probability": 0.952 }, { "start": 11837.54, "end": 11840.5, "probability": 0.984 }, { "start": 11841.22, "end": 11843.2, "probability": 0.8936 }, { "start": 11844.18, "end": 11849.78, "probability": 0.9902 }, { "start": 11850.22, "end": 11853.26, "probability": 0.9447 }, { "start": 11853.4, "end": 11854.22, "probability": 0.912 }, { "start": 11854.84, "end": 11855.74, "probability": 0.7103 }, { "start": 11856.16, "end": 11859.42, "probability": 0.8452 }, { "start": 11859.48, "end": 11861.14, "probability": 0.8789 }, { "start": 11861.68, "end": 11866.62, "probability": 0.6326 }, { "start": 11866.78, "end": 11869.88, "probability": 0.9823 }, { "start": 11870.62, "end": 11871.64, "probability": 0.9934 }, { "start": 11871.84, "end": 11878.48, "probability": 0.9292 }, { "start": 11878.84, "end": 11879.12, "probability": 0.8763 }, { "start": 11879.84, "end": 11881.04, "probability": 0.7016 }, { "start": 11881.2, "end": 11881.62, "probability": 0.6317 }, { "start": 11882.76, "end": 11886.58, "probability": 0.9063 }, { "start": 11887.66, "end": 11888.68, "probability": 0.8516 }, { "start": 11888.84, "end": 11889.37, "probability": 0.877 }, { "start": 11889.92, "end": 11892.23, "probability": 0.9753 }, { "start": 11894.38, "end": 11895.74, "probability": 0.949 }, { "start": 11896.62, "end": 11897.96, "probability": 0.7659 }, { "start": 11899.86, "end": 11900.2, "probability": 0.6048 }, { "start": 11901.4, "end": 11905.44, "probability": 0.9893 }, { "start": 11905.84, "end": 11908.24, "probability": 0.9878 }, { "start": 11908.8, "end": 11909.82, "probability": 0.8613 }, { "start": 11910.2, "end": 11912.73, "probability": 0.9978 }, { "start": 11913.84, "end": 11915.62, "probability": 0.8292 }, { "start": 11916.1, "end": 11917.18, "probability": 0.9881 }, { "start": 11917.98, "end": 11922.88, "probability": 0.999 }, { "start": 11922.96, "end": 11923.26, "probability": 0.0428 }, { "start": 11923.42, "end": 11923.94, "probability": 0.999 }, { "start": 11924.7, "end": 11930.38, "probability": 0.9982 }, { "start": 11930.42, "end": 11932.08, "probability": 0.5655 }, { "start": 11932.68, "end": 11933.1, "probability": 0.5632 }, { "start": 11934.0, "end": 11934.82, "probability": 0.2964 }, { "start": 11936.67, "end": 11939.98, "probability": 0.9888 }, { "start": 11940.22, "end": 11944.2, "probability": 0.9837 }, { "start": 11944.86, "end": 11945.7, "probability": 0.4381 }, { "start": 11946.5, "end": 11950.04, "probability": 0.7805 }, { "start": 11950.44, "end": 11951.0, "probability": 0.8752 }, { "start": 11951.46, "end": 11954.24, "probability": 0.6783 }, { "start": 11954.52, "end": 11956.23, "probability": 0.8588 }, { "start": 11956.56, "end": 11957.44, "probability": 0.347 }, { "start": 11958.3, "end": 11958.78, "probability": 0.8657 }, { "start": 11959.46, "end": 11963.72, "probability": 0.8943 }, { "start": 11963.84, "end": 11964.42, "probability": 0.971 }, { "start": 11964.98, "end": 11967.7, "probability": 0.9558 }, { "start": 11968.06, "end": 11969.92, "probability": 0.9435 }, { "start": 11970.44, "end": 11974.74, "probability": 0.8241 }, { "start": 11975.2, "end": 11977.16, "probability": 0.7789 }, { "start": 11977.62, "end": 11978.16, "probability": 0.6686 }, { "start": 11979.1, "end": 11981.6, "probability": 0.8447 }, { "start": 11989.5, "end": 11990.22, "probability": 0.041 }, { "start": 11990.22, "end": 11990.43, "probability": 0.1739 }, { "start": 11990.74, "end": 11990.74, "probability": 0.0448 }, { "start": 11990.74, "end": 11990.74, "probability": 0.117 }, { "start": 11990.74, "end": 11991.02, "probability": 0.0894 }, { "start": 11991.02, "end": 11992.7, "probability": 0.0615 }, { "start": 12005.78, "end": 12008.18, "probability": 0.2582 }, { "start": 12013.48, "end": 12015.58, "probability": 0.7295 }, { "start": 12016.18, "end": 12016.38, "probability": 0.868 }, { "start": 12016.92, "end": 12017.04, "probability": 0.0092 }, { "start": 12017.04, "end": 12017.34, "probability": 0.5083 }, { "start": 12017.56, "end": 12018.22, "probability": 0.9255 }, { "start": 12018.66, "end": 12019.4, "probability": 0.7494 }, { "start": 12019.5, "end": 12021.84, "probability": 0.8167 }, { "start": 12021.94, "end": 12022.4, "probability": 0.8131 }, { "start": 12022.68, "end": 12024.8, "probability": 0.7632 }, { "start": 12024.84, "end": 12025.54, "probability": 0.6415 }, { "start": 12025.6, "end": 12025.7, "probability": 0.6221 }, { "start": 12025.96, "end": 12026.36, "probability": 0.7168 }, { "start": 12026.86, "end": 12031.7, "probability": 0.8397 }, { "start": 12031.72, "end": 12033.18, "probability": 0.1736 }, { "start": 12033.34, "end": 12033.78, "probability": 0.8004 }, { "start": 12034.58, "end": 12034.58, "probability": 0.081 }, { "start": 12034.58, "end": 12037.68, "probability": 0.9871 }, { "start": 12038.34, "end": 12042.48, "probability": 0.9961 }, { "start": 12043.04, "end": 12045.18, "probability": 0.8872 }, { "start": 12045.84, "end": 12046.66, "probability": 0.4957 }, { "start": 12046.9, "end": 12048.0, "probability": 0.9587 }, { "start": 12048.52, "end": 12051.34, "probability": 0.9549 }, { "start": 12052.16, "end": 12052.54, "probability": 0.7965 }, { "start": 12052.6, "end": 12053.12, "probability": 0.7284 }, { "start": 12053.52, "end": 12055.96, "probability": 0.9863 }, { "start": 12056.56, "end": 12057.38, "probability": 0.9808 }, { "start": 12057.92, "end": 12059.26, "probability": 0.67 }, { "start": 12060.3, "end": 12064.53, "probability": 0.9353 }, { "start": 12065.28, "end": 12068.2, "probability": 0.7557 }, { "start": 12068.74, "end": 12072.28, "probability": 0.8914 }, { "start": 12073.02, "end": 12075.0, "probability": 0.9955 }, { "start": 12075.62, "end": 12077.2, "probability": 0.9978 }, { "start": 12077.84, "end": 12079.52, "probability": 0.9956 }, { "start": 12080.08, "end": 12081.68, "probability": 0.9913 }, { "start": 12082.18, "end": 12084.34, "probability": 0.9541 }, { "start": 12084.9, "end": 12085.84, "probability": 0.9905 }, { "start": 12086.42, "end": 12087.02, "probability": 0.9739 }, { "start": 12087.68, "end": 12088.74, "probability": 0.7922 }, { "start": 12089.24, "end": 12091.36, "probability": 0.7991 }, { "start": 12092.02, "end": 12093.34, "probability": 0.9976 }, { "start": 12093.96, "end": 12096.48, "probability": 0.9951 }, { "start": 12097.0, "end": 12099.18, "probability": 0.9966 }, { "start": 12099.84, "end": 12101.42, "probability": 0.9776 }, { "start": 12102.04, "end": 12102.98, "probability": 0.9175 }, { "start": 12103.76, "end": 12108.98, "probability": 0.9735 }, { "start": 12109.62, "end": 12111.4, "probability": 0.9889 }, { "start": 12111.98, "end": 12113.18, "probability": 0.6293 }, { "start": 12113.94, "end": 12116.5, "probability": 0.9917 }, { "start": 12117.64, "end": 12123.04, "probability": 0.9692 }, { "start": 12123.56, "end": 12127.36, "probability": 0.9875 }, { "start": 12128.49, "end": 12130.52, "probability": 0.9947 }, { "start": 12131.14, "end": 12133.82, "probability": 0.9811 }, { "start": 12133.92, "end": 12135.44, "probability": 0.6745 }, { "start": 12136.14, "end": 12138.24, "probability": 0.9958 }, { "start": 12138.88, "end": 12141.76, "probability": 0.9558 }, { "start": 12142.6, "end": 12143.38, "probability": 0.8741 }, { "start": 12144.18, "end": 12145.68, "probability": 0.5526 }, { "start": 12146.3, "end": 12147.02, "probability": 0.9262 }, { "start": 12147.12, "end": 12148.18, "probability": 0.9807 }, { "start": 12148.28, "end": 12150.3, "probability": 0.9499 }, { "start": 12150.82, "end": 12152.4, "probability": 0.9705 }, { "start": 12153.02, "end": 12155.16, "probability": 0.9124 }, { "start": 12155.7, "end": 12159.56, "probability": 0.9167 }, { "start": 12160.46, "end": 12161.7, "probability": 0.9966 }, { "start": 12162.26, "end": 12163.96, "probability": 0.598 }, { "start": 12164.54, "end": 12166.94, "probability": 0.9111 }, { "start": 12167.54, "end": 12168.8, "probability": 0.756 }, { "start": 12169.32, "end": 12172.08, "probability": 0.96 }, { "start": 12172.78, "end": 12174.5, "probability": 0.9447 }, { "start": 12175.1, "end": 12176.5, "probability": 0.7658 }, { "start": 12177.22, "end": 12180.05, "probability": 0.8049 }, { "start": 12180.96, "end": 12181.66, "probability": 0.6973 }, { "start": 12182.22, "end": 12185.2, "probability": 0.9839 }, { "start": 12185.82, "end": 12187.32, "probability": 0.9863 }, { "start": 12188.1, "end": 12189.5, "probability": 0.9828 }, { "start": 12190.02, "end": 12191.96, "probability": 0.8838 }, { "start": 12192.82, "end": 12194.02, "probability": 0.7825 }, { "start": 12194.64, "end": 12197.64, "probability": 0.9882 }, { "start": 12198.92, "end": 12200.52, "probability": 0.548 }, { "start": 12201.06, "end": 12203.22, "probability": 0.957 }, { "start": 12204.14, "end": 12208.86, "probability": 0.9219 }, { "start": 12209.88, "end": 12211.44, "probability": 0.9699 }, { "start": 12212.08, "end": 12213.6, "probability": 0.9276 }, { "start": 12215.5, "end": 12217.54, "probability": 0.6561 }, { "start": 12218.1, "end": 12220.48, "probability": 0.9627 }, { "start": 12220.58, "end": 12223.38, "probability": 0.9708 }, { "start": 12224.22, "end": 12226.64, "probability": 0.9894 }, { "start": 12227.76, "end": 12228.12, "probability": 0.1613 }, { "start": 12228.12, "end": 12230.24, "probability": 0.7932 }, { "start": 12230.66, "end": 12233.56, "probability": 0.9941 }, { "start": 12234.2, "end": 12235.44, "probability": 0.9894 }, { "start": 12235.76, "end": 12236.77, "probability": 0.8124 }, { "start": 12237.94, "end": 12240.48, "probability": 0.9612 }, { "start": 12240.8, "end": 12244.64, "probability": 0.9141 }, { "start": 12245.26, "end": 12246.08, "probability": 0.8708 }, { "start": 12246.82, "end": 12250.4, "probability": 0.9807 }, { "start": 12250.82, "end": 12252.34, "probability": 0.9565 }, { "start": 12253.4, "end": 12256.12, "probability": 0.9865 }, { "start": 12256.96, "end": 12260.34, "probability": 0.8169 }, { "start": 12261.1, "end": 12266.52, "probability": 0.9906 }, { "start": 12267.5, "end": 12268.7, "probability": 0.9839 }, { "start": 12269.34, "end": 12270.72, "probability": 0.9493 }, { "start": 12270.9, "end": 12271.56, "probability": 0.8059 }, { "start": 12271.96, "end": 12273.62, "probability": 0.9934 }, { "start": 12273.76, "end": 12274.04, "probability": 0.5992 }, { "start": 12274.6, "end": 12275.66, "probability": 0.8592 }, { "start": 12275.72, "end": 12276.18, "probability": 0.6408 }, { "start": 12276.28, "end": 12276.82, "probability": 0.9797 }, { "start": 12276.82, "end": 12276.86, "probability": 0.174 }, { "start": 12276.86, "end": 12277.68, "probability": 0.4589 }, { "start": 12277.7, "end": 12278.4, "probability": 0.9591 }, { "start": 12278.44, "end": 12280.48, "probability": 0.9852 }, { "start": 12281.02, "end": 12281.52, "probability": 0.4452 }, { "start": 12281.52, "end": 12282.59, "probability": 0.8887 }, { "start": 12283.42, "end": 12285.6, "probability": 0.7878 }, { "start": 12286.2, "end": 12289.92, "probability": 0.8338 }, { "start": 12290.62, "end": 12291.94, "probability": 0.9918 }, { "start": 12292.0, "end": 12293.6, "probability": 0.9398 }, { "start": 12294.66, "end": 12295.58, "probability": 0.9126 }, { "start": 12295.84, "end": 12297.2, "probability": 0.7481 }, { "start": 12297.34, "end": 12297.48, "probability": 0.1213 }, { "start": 12297.94, "end": 12298.58, "probability": 0.8433 }, { "start": 12298.68, "end": 12301.58, "probability": 0.9453 }, { "start": 12302.24, "end": 12302.76, "probability": 0.5197 }, { "start": 12302.78, "end": 12302.88, "probability": 0.471 }, { "start": 12303.34, "end": 12306.76, "probability": 0.7979 }, { "start": 12307.18, "end": 12309.06, "probability": 0.9678 }, { "start": 12309.14, "end": 12309.5, "probability": 0.3662 }, { "start": 12309.54, "end": 12312.22, "probability": 0.8169 }, { "start": 12312.34, "end": 12313.4, "probability": 0.7788 }, { "start": 12313.8, "end": 12314.68, "probability": 0.9035 }, { "start": 12314.72, "end": 12315.6, "probability": 0.9756 }, { "start": 12315.68, "end": 12316.54, "probability": 0.7574 }, { "start": 12316.84, "end": 12320.02, "probability": 0.9888 }, { "start": 12320.44, "end": 12322.1, "probability": 0.9814 }, { "start": 12322.86, "end": 12324.16, "probability": 0.9893 }, { "start": 12324.64, "end": 12325.9, "probability": 0.9843 }, { "start": 12326.6, "end": 12328.72, "probability": 0.9359 }, { "start": 12329.06, "end": 12330.88, "probability": 0.6919 }, { "start": 12331.46, "end": 12334.58, "probability": 0.8317 }, { "start": 12341.0, "end": 12341.96, "probability": 0.7654 }, { "start": 12342.76, "end": 12343.78, "probability": 0.9071 }, { "start": 12352.78, "end": 12354.36, "probability": 0.069 }, { "start": 12355.48, "end": 12360.16, "probability": 0.0852 }, { "start": 12361.94, "end": 12365.02, "probability": 0.6365 }, { "start": 12371.38, "end": 12375.03, "probability": 0.7981 }, { "start": 12376.26, "end": 12378.48, "probability": 0.9958 }, { "start": 12379.14, "end": 12384.52, "probability": 0.9926 }, { "start": 12385.0, "end": 12385.79, "probability": 0.8242 }, { "start": 12386.34, "end": 12386.56, "probability": 0.6443 }, { "start": 12386.88, "end": 12388.4, "probability": 0.9762 }, { "start": 12389.8, "end": 12391.44, "probability": 0.9878 }, { "start": 12392.38, "end": 12394.08, "probability": 0.9975 }, { "start": 12394.62, "end": 12395.42, "probability": 0.9153 }, { "start": 12395.52, "end": 12396.61, "probability": 0.9978 }, { "start": 12396.92, "end": 12399.46, "probability": 0.8109 }, { "start": 12400.34, "end": 12402.34, "probability": 0.8155 }, { "start": 12403.68, "end": 12405.96, "probability": 0.8997 }, { "start": 12406.48, "end": 12411.34, "probability": 0.9929 }, { "start": 12411.82, "end": 12413.66, "probability": 0.9193 }, { "start": 12414.5, "end": 12418.36, "probability": 0.9948 }, { "start": 12419.58, "end": 12422.2, "probability": 0.7538 }, { "start": 12422.8, "end": 12425.7, "probability": 0.8887 }, { "start": 12426.94, "end": 12427.88, "probability": 0.7445 }, { "start": 12429.52, "end": 12431.57, "probability": 0.9551 }, { "start": 12432.76, "end": 12434.66, "probability": 0.9956 }, { "start": 12435.32, "end": 12436.06, "probability": 0.9928 }, { "start": 12438.12, "end": 12445.12, "probability": 0.9972 }, { "start": 12447.44, "end": 12451.18, "probability": 0.9626 }, { "start": 12452.14, "end": 12453.3, "probability": 0.4764 }, { "start": 12454.38, "end": 12458.24, "probability": 0.959 }, { "start": 12458.86, "end": 12459.86, "probability": 0.6021 }, { "start": 12460.46, "end": 12462.54, "probability": 0.9644 }, { "start": 12463.18, "end": 12466.7, "probability": 0.9956 }, { "start": 12467.66, "end": 12472.22, "probability": 0.9111 }, { "start": 12473.14, "end": 12475.14, "probability": 0.8388 }, { "start": 12475.84, "end": 12480.62, "probability": 0.9895 }, { "start": 12481.08, "end": 12484.68, "probability": 0.9893 }, { "start": 12486.56, "end": 12488.06, "probability": 0.6347 }, { "start": 12488.72, "end": 12490.24, "probability": 0.9413 }, { "start": 12490.9, "end": 12493.04, "probability": 0.9935 }, { "start": 12493.12, "end": 12497.5, "probability": 0.9569 }, { "start": 12497.94, "end": 12498.94, "probability": 0.9966 }, { "start": 12500.54, "end": 12501.64, "probability": 0.8928 }, { "start": 12502.82, "end": 12503.66, "probability": 0.775 }, { "start": 12504.2, "end": 12510.14, "probability": 0.9909 }, { "start": 12510.72, "end": 12512.6, "probability": 0.9698 }, { "start": 12514.42, "end": 12516.62, "probability": 0.9198 }, { "start": 12516.72, "end": 12518.46, "probability": 0.8633 }, { "start": 12519.42, "end": 12520.38, "probability": 0.9931 }, { "start": 12520.9, "end": 12523.38, "probability": 0.6182 }, { "start": 12523.84, "end": 12527.6, "probability": 0.9974 }, { "start": 12527.72, "end": 12528.96, "probability": 0.952 }, { "start": 12530.54, "end": 12531.96, "probability": 0.984 }, { "start": 12533.26, "end": 12536.8, "probability": 0.7056 }, { "start": 12537.74, "end": 12542.32, "probability": 0.9946 }, { "start": 12542.82, "end": 12545.06, "probability": 0.9166 }, { "start": 12545.58, "end": 12546.58, "probability": 0.8027 }, { "start": 12546.76, "end": 12548.84, "probability": 0.9956 }, { "start": 12549.34, "end": 12551.14, "probability": 0.9976 }, { "start": 12552.1, "end": 12555.79, "probability": 0.9941 }, { "start": 12556.22, "end": 12556.9, "probability": 0.7158 }, { "start": 12558.48, "end": 12560.02, "probability": 0.8335 }, { "start": 12560.88, "end": 12563.14, "probability": 0.7956 }, { "start": 12563.96, "end": 12568.72, "probability": 0.9954 }, { "start": 12570.08, "end": 12571.2, "probability": 0.9956 }, { "start": 12572.12, "end": 12576.16, "probability": 0.9351 }, { "start": 12576.96, "end": 12580.56, "probability": 0.973 }, { "start": 12581.22, "end": 12582.58, "probability": 0.9688 }, { "start": 12583.02, "end": 12586.82, "probability": 0.6547 }, { "start": 12588.24, "end": 12591.36, "probability": 0.9644 }, { "start": 12594.28, "end": 12595.6, "probability": 0.9502 }, { "start": 12596.34, "end": 12597.74, "probability": 0.8949 }, { "start": 12598.28, "end": 12599.42, "probability": 0.8823 }, { "start": 12600.62, "end": 12602.66, "probability": 0.9846 }, { "start": 12602.82, "end": 12603.3, "probability": 0.6473 }, { "start": 12603.32, "end": 12604.04, "probability": 0.9341 }, { "start": 12604.5, "end": 12605.9, "probability": 0.688 }, { "start": 12606.08, "end": 12606.26, "probability": 0.652 }, { "start": 12606.34, "end": 12607.0, "probability": 0.5898 }, { "start": 12607.38, "end": 12608.84, "probability": 0.9937 }, { "start": 12610.06, "end": 12614.84, "probability": 0.9283 }, { "start": 12616.74, "end": 12618.44, "probability": 0.7916 }, { "start": 12618.84, "end": 12622.4, "probability": 0.9976 }, { "start": 12622.9, "end": 12624.56, "probability": 0.9784 }, { "start": 12626.3, "end": 12628.24, "probability": 0.7926 }, { "start": 12629.02, "end": 12629.54, "probability": 0.9439 }, { "start": 12630.58, "end": 12632.82, "probability": 0.9773 }, { "start": 12633.74, "end": 12635.86, "probability": 0.9475 }, { "start": 12637.2, "end": 12637.7, "probability": 0.9487 }, { "start": 12639.24, "end": 12639.38, "probability": 0.024 }, { "start": 12639.38, "end": 12642.06, "probability": 0.9987 }, { "start": 12642.6, "end": 12645.48, "probability": 0.999 }, { "start": 12646.6, "end": 12648.6, "probability": 0.8597 }, { "start": 12649.68, "end": 12650.54, "probability": 0.5829 }, { "start": 12651.04, "end": 12656.32, "probability": 0.9991 }, { "start": 12658.1, "end": 12660.54, "probability": 0.7673 }, { "start": 12661.68, "end": 12663.82, "probability": 0.9316 }, { "start": 12664.6, "end": 12669.25, "probability": 0.9545 }, { "start": 12669.74, "end": 12670.44, "probability": 0.9586 }, { "start": 12671.04, "end": 12671.46, "probability": 0.1552 }, { "start": 12671.46, "end": 12673.04, "probability": 0.9928 }, { "start": 12673.2, "end": 12673.58, "probability": 0.5151 }, { "start": 12674.02, "end": 12674.36, "probability": 0.2457 }, { "start": 12675.16, "end": 12675.72, "probability": 0.6508 }, { "start": 12675.72, "end": 12680.42, "probability": 0.8659 }, { "start": 12681.82, "end": 12684.54, "probability": 0.9511 }, { "start": 12685.26, "end": 12686.38, "probability": 0.8157 }, { "start": 12686.5, "end": 12692.38, "probability": 0.6046 }, { "start": 12693.08, "end": 12694.44, "probability": 0.6156 }, { "start": 12695.3, "end": 12698.0, "probability": 0.9822 }, { "start": 12698.62, "end": 12700.84, "probability": 0.9653 }, { "start": 12701.16, "end": 12703.42, "probability": 0.7783 }, { "start": 12704.22, "end": 12706.68, "probability": 0.9922 }, { "start": 12706.86, "end": 12707.36, "probability": 0.9613 }, { "start": 12711.33, "end": 12711.92, "probability": 0.981 }, { "start": 12711.96, "end": 12711.96, "probability": 0.0402 }, { "start": 12711.96, "end": 12711.96, "probability": 0.1606 }, { "start": 12711.96, "end": 12711.96, "probability": 0.0455 }, { "start": 12711.96, "end": 12715.18, "probability": 0.8248 }, { "start": 12716.26, "end": 12718.54, "probability": 0.9641 }, { "start": 12719.18, "end": 12720.76, "probability": 0.8577 }, { "start": 12721.32, "end": 12722.98, "probability": 0.9984 }, { "start": 12723.96, "end": 12724.92, "probability": 0.6922 }, { "start": 12726.42, "end": 12730.98, "probability": 0.9552 }, { "start": 12731.78, "end": 12733.58, "probability": 0.9961 }, { "start": 12734.14, "end": 12734.74, "probability": 0.8257 }, { "start": 12735.36, "end": 12737.34, "probability": 0.9913 }, { "start": 12738.04, "end": 12740.54, "probability": 0.7114 }, { "start": 12741.84, "end": 12743.42, "probability": 0.7712 }, { "start": 12743.94, "end": 12745.78, "probability": 0.6897 }, { "start": 12746.54, "end": 12749.08, "probability": 0.9703 }, { "start": 12749.8, "end": 12752.5, "probability": 0.8652 }, { "start": 12753.18, "end": 12756.72, "probability": 0.9937 }, { "start": 12756.88, "end": 12757.14, "probability": 0.6792 }, { "start": 12757.3, "end": 12757.9, "probability": 0.785 }, { "start": 12758.64, "end": 12760.26, "probability": 0.8175 }, { "start": 12761.32, "end": 12761.9, "probability": 0.7002 }, { "start": 12762.44, "end": 12765.28, "probability": 0.9034 }, { "start": 12765.74, "end": 12766.94, "probability": 0.7456 }, { "start": 12767.64, "end": 12769.28, "probability": 0.9321 }, { "start": 12770.14, "end": 12770.88, "probability": 0.9656 }, { "start": 12771.44, "end": 12772.92, "probability": 0.9651 }, { "start": 12773.64, "end": 12774.38, "probability": 0.9353 }, { "start": 12775.02, "end": 12776.38, "probability": 0.9818 }, { "start": 12777.92, "end": 12779.04, "probability": 0.1475 }, { "start": 12779.04, "end": 12781.0, "probability": 0.9204 }, { "start": 12782.04, "end": 12782.4, "probability": 0.5175 }, { "start": 12783.14, "end": 12786.12, "probability": 0.9328 }, { "start": 12786.84, "end": 12789.46, "probability": 0.9666 }, { "start": 12790.0, "end": 12791.68, "probability": 0.979 }, { "start": 12792.36, "end": 12794.92, "probability": 0.8596 }, { "start": 12795.6, "end": 12797.54, "probability": 0.8657 }, { "start": 12798.66, "end": 12799.2, "probability": 0.8658 }, { "start": 12799.72, "end": 12801.58, "probability": 0.8753 }, { "start": 12802.42, "end": 12803.78, "probability": 0.9199 }, { "start": 12804.68, "end": 12809.4, "probability": 0.9638 }, { "start": 12810.56, "end": 12811.52, "probability": 0.9778 }, { "start": 12811.94, "end": 12813.08, "probability": 0.9403 }, { "start": 12813.42, "end": 12814.3, "probability": 0.9732 }, { "start": 12814.8, "end": 12816.2, "probability": 0.9953 }, { "start": 12816.78, "end": 12818.32, "probability": 0.9819 }, { "start": 12818.76, "end": 12820.2, "probability": 0.8931 }, { "start": 12820.58, "end": 12823.06, "probability": 0.9808 }, { "start": 12823.76, "end": 12827.64, "probability": 0.8956 }, { "start": 12827.72, "end": 12829.78, "probability": 0.8796 }, { "start": 12830.74, "end": 12831.06, "probability": 0.3378 }, { "start": 12831.7, "end": 12833.4, "probability": 0.8008 }, { "start": 12835.24, "end": 12836.06, "probability": 0.7331 }, { "start": 12836.7, "end": 12841.34, "probability": 0.8805 }, { "start": 12841.92, "end": 12844.26, "probability": 0.9958 }, { "start": 12845.36, "end": 12847.32, "probability": 0.8474 }, { "start": 12847.94, "end": 12848.96, "probability": 0.9006 }, { "start": 12849.56, "end": 12851.82, "probability": 0.8549 }, { "start": 12852.5, "end": 12853.16, "probability": 0.8259 }, { "start": 12854.1, "end": 12859.5, "probability": 0.9848 }, { "start": 12860.12, "end": 12864.2, "probability": 0.9899 }, { "start": 12868.36, "end": 12869.42, "probability": 0.9738 }, { "start": 12870.14, "end": 12871.2, "probability": 0.8605 }, { "start": 12871.76, "end": 12872.6, "probability": 0.7265 }, { "start": 12873.44, "end": 12874.38, "probability": 0.8961 }, { "start": 12875.22, "end": 12876.06, "probability": 0.7985 }, { "start": 12876.68, "end": 12878.52, "probability": 0.9929 }, { "start": 12879.38, "end": 12881.58, "probability": 0.9698 }, { "start": 12882.12, "end": 12885.14, "probability": 0.9956 }, { "start": 12886.52, "end": 12888.06, "probability": 0.9821 }, { "start": 12888.76, "end": 12891.54, "probability": 0.986 }, { "start": 12896.42, "end": 12899.86, "probability": 0.9385 }, { "start": 12900.68, "end": 12903.94, "probability": 0.9937 }, { "start": 12904.54, "end": 12906.9, "probability": 0.9622 }, { "start": 12909.6, "end": 12915.12, "probability": 0.9339 }, { "start": 12916.2, "end": 12923.98, "probability": 0.677 }, { "start": 12925.34, "end": 12928.12, "probability": 0.8498 }, { "start": 12928.86, "end": 12930.98, "probability": 0.7434 }, { "start": 12931.84, "end": 12935.18, "probability": 0.8024 }, { "start": 12935.7, "end": 12939.6, "probability": 0.9327 }, { "start": 12940.0, "end": 12940.86, "probability": 0.8903 }, { "start": 12941.56, "end": 12945.44, "probability": 0.6314 }, { "start": 12946.1, "end": 12949.22, "probability": 0.7973 }, { "start": 12950.28, "end": 12953.84, "probability": 0.9913 }, { "start": 12954.54, "end": 12961.32, "probability": 0.9961 }, { "start": 12962.12, "end": 12963.17, "probability": 0.9819 }, { "start": 12963.82, "end": 12970.42, "probability": 0.8422 }, { "start": 12970.96, "end": 12972.76, "probability": 0.8984 }, { "start": 12973.34, "end": 12976.54, "probability": 0.9775 }, { "start": 12977.14, "end": 12977.88, "probability": 0.9876 }, { "start": 12978.46, "end": 12981.26, "probability": 0.9944 }, { "start": 12981.86, "end": 12985.44, "probability": 0.9857 }, { "start": 12986.58, "end": 12987.86, "probability": 0.9272 }, { "start": 12989.4, "end": 12992.44, "probability": 0.9856 }, { "start": 12993.02, "end": 12996.56, "probability": 0.9793 }, { "start": 12996.56, "end": 13000.62, "probability": 0.9985 }, { "start": 13001.12, "end": 13005.02, "probability": 0.9335 }, { "start": 13005.48, "end": 13008.38, "probability": 0.8582 }, { "start": 13009.06, "end": 13010.76, "probability": 0.9951 }, { "start": 13011.14, "end": 13013.52, "probability": 0.7131 }, { "start": 13014.02, "end": 13016.64, "probability": 0.8729 }, { "start": 13017.1, "end": 13017.84, "probability": 0.8222 }, { "start": 13018.3, "end": 13018.94, "probability": 0.965 }, { "start": 13019.46, "end": 13021.4, "probability": 0.869 }, { "start": 13021.72, "end": 13024.14, "probability": 0.9963 }, { "start": 13024.24, "end": 13027.98, "probability": 0.6029 }, { "start": 13045.14, "end": 13045.14, "probability": 0.0597 }, { "start": 13045.14, "end": 13046.2, "probability": 0.7032 }, { "start": 13046.42, "end": 13048.3, "probability": 0.7304 }, { "start": 13048.48, "end": 13050.06, "probability": 0.7379 }, { "start": 13053.18, "end": 13054.9, "probability": 0.9565 }, { "start": 13056.1, "end": 13058.66, "probability": 0.9334 }, { "start": 13059.64, "end": 13061.82, "probability": 0.8245 }, { "start": 13062.9, "end": 13066.46, "probability": 0.9963 }, { "start": 13067.18, "end": 13070.88, "probability": 0.9755 }, { "start": 13072.02, "end": 13074.74, "probability": 0.9354 }, { "start": 13075.06, "end": 13078.26, "probability": 0.9958 }, { "start": 13079.76, "end": 13081.68, "probability": 0.8291 }, { "start": 13082.16, "end": 13084.18, "probability": 0.973 }, { "start": 13085.5, "end": 13086.1, "probability": 0.8804 }, { "start": 13087.96, "end": 13088.26, "probability": 0.9788 }, { "start": 13089.64, "end": 13090.32, "probability": 0.9948 }, { "start": 13091.88, "end": 13096.38, "probability": 0.9914 }, { "start": 13097.24, "end": 13097.74, "probability": 0.9883 }, { "start": 13099.38, "end": 13100.24, "probability": 0.9095 }, { "start": 13101.3, "end": 13102.8, "probability": 0.9006 }, { "start": 13103.96, "end": 13106.42, "probability": 0.8806 }, { "start": 13107.92, "end": 13110.28, "probability": 0.8298 }, { "start": 13110.86, "end": 13111.46, "probability": 0.1046 }, { "start": 13111.56, "end": 13112.08, "probability": 0.6483 }, { "start": 13112.8, "end": 13115.68, "probability": 0.8896 }, { "start": 13116.3, "end": 13116.32, "probability": 0.1528 }, { "start": 13117.02, "end": 13117.5, "probability": 0.1419 }, { "start": 13117.5, "end": 13119.04, "probability": 0.936 }, { "start": 13119.82, "end": 13122.24, "probability": 0.9556 }, { "start": 13122.84, "end": 13125.4, "probability": 0.9646 }, { "start": 13125.98, "end": 13126.56, "probability": 0.9683 }, { "start": 13127.84, "end": 13128.82, "probability": 0.6531 }, { "start": 13129.54, "end": 13130.34, "probability": 0.9073 }, { "start": 13130.46, "end": 13130.84, "probability": 0.7699 }, { "start": 13131.16, "end": 13131.78, "probability": 0.8 }, { "start": 13131.98, "end": 13132.44, "probability": 0.6177 }, { "start": 13132.44, "end": 13133.32, "probability": 0.9808 }, { "start": 13133.38, "end": 13133.86, "probability": 0.821 }, { "start": 13134.38, "end": 13136.1, "probability": 0.7122 }, { "start": 13136.52, "end": 13138.9, "probability": 0.9821 }, { "start": 13138.98, "end": 13139.64, "probability": 0.9003 }, { "start": 13139.72, "end": 13140.26, "probability": 0.8118 }, { "start": 13140.64, "end": 13140.9, "probability": 0.6308 }, { "start": 13141.32, "end": 13141.98, "probability": 0.9594 }, { "start": 13142.64, "end": 13143.82, "probability": 0.7366 }, { "start": 13145.74, "end": 13146.24, "probability": 0.4696 }, { "start": 13147.02, "end": 13149.92, "probability": 0.8729 }, { "start": 13151.02, "end": 13153.58, "probability": 0.9663 }, { "start": 13153.82, "end": 13153.92, "probability": 0.7055 }, { "start": 13154.3, "end": 13154.82, "probability": 0.83 }, { "start": 13155.44, "end": 13156.42, "probability": 0.8634 }, { "start": 13157.12, "end": 13157.78, "probability": 0.6006 }, { "start": 13158.72, "end": 13160.84, "probability": 0.9907 }, { "start": 13162.02, "end": 13164.32, "probability": 0.7166 }, { "start": 13165.12, "end": 13165.5, "probability": 0.6663 }, { "start": 13166.42, "end": 13168.52, "probability": 0.8164 }, { "start": 13168.66, "end": 13170.18, "probability": 0.9882 }, { "start": 13171.26, "end": 13174.42, "probability": 0.9621 }, { "start": 13176.35, "end": 13178.34, "probability": 0.9959 }, { "start": 13178.34, "end": 13180.78, "probability": 0.5767 }, { "start": 13181.54, "end": 13182.44, "probability": 0.5225 }, { "start": 13182.68, "end": 13183.28, "probability": 0.5628 }, { "start": 13183.5, "end": 13183.5, "probability": 0.3255 }, { "start": 13183.54, "end": 13184.5, "probability": 0.9841 }, { "start": 13184.98, "end": 13185.82, "probability": 0.8094 }, { "start": 13186.48, "end": 13189.42, "probability": 0.9825 }, { "start": 13190.42, "end": 13190.88, "probability": 0.7785 }, { "start": 13191.56, "end": 13195.14, "probability": 0.9532 }, { "start": 13195.24, "end": 13197.36, "probability": 0.9138 }, { "start": 13197.48, "end": 13198.84, "probability": 0.9569 }, { "start": 13199.34, "end": 13200.92, "probability": 0.9956 }, { "start": 13201.8, "end": 13204.52, "probability": 0.9792 }, { "start": 13205.04, "end": 13206.52, "probability": 0.995 }, { "start": 13207.0, "end": 13211.9, "probability": 0.9716 }, { "start": 13212.66, "end": 13213.3, "probability": 0.8872 }, { "start": 13214.08, "end": 13215.16, "probability": 0.8959 }, { "start": 13215.88, "end": 13217.64, "probability": 0.5206 }, { "start": 13221.32, "end": 13222.1, "probability": 0.6252 }, { "start": 13222.62, "end": 13223.86, "probability": 0.9955 }, { "start": 13224.78, "end": 13227.02, "probability": 0.9893 }, { "start": 13227.64, "end": 13228.84, "probability": 0.9952 }, { "start": 13229.96, "end": 13231.86, "probability": 0.7992 }, { "start": 13232.2, "end": 13235.9, "probability": 0.9932 }, { "start": 13236.58, "end": 13237.96, "probability": 0.9926 }, { "start": 13238.4, "end": 13238.84, "probability": 0.624 }, { "start": 13239.42, "end": 13240.21, "probability": 0.9979 }, { "start": 13240.82, "end": 13242.72, "probability": 0.9756 }, { "start": 13243.5, "end": 13245.8, "probability": 0.989 }, { "start": 13248.08, "end": 13249.48, "probability": 0.9126 }, { "start": 13250.0, "end": 13252.82, "probability": 0.96 }, { "start": 13253.4, "end": 13255.51, "probability": 0.7737 }, { "start": 13256.36, "end": 13257.96, "probability": 0.8783 }, { "start": 13258.74, "end": 13260.96, "probability": 0.9693 }, { "start": 13262.5, "end": 13265.54, "probability": 0.9928 }, { "start": 13266.4, "end": 13267.96, "probability": 0.9919 }, { "start": 13268.54, "end": 13269.66, "probability": 0.8393 }, { "start": 13270.36, "end": 13271.54, "probability": 0.9871 }, { "start": 13272.32, "end": 13274.9, "probability": 0.9927 }, { "start": 13275.46, "end": 13276.94, "probability": 0.9043 }, { "start": 13277.62, "end": 13282.86, "probability": 0.9637 }, { "start": 13283.26, "end": 13287.32, "probability": 0.9788 }, { "start": 13288.06, "end": 13288.78, "probability": 0.8794 }, { "start": 13289.34, "end": 13293.7, "probability": 0.8563 }, { "start": 13293.7, "end": 13298.6, "probability": 0.9925 }, { "start": 13298.66, "end": 13300.0, "probability": 0.8625 }, { "start": 13300.24, "end": 13302.56, "probability": 0.9311 }, { "start": 13303.3, "end": 13306.94, "probability": 0.9878 }, { "start": 13307.54, "end": 13307.98, "probability": 0.4737 }, { "start": 13308.1, "end": 13308.48, "probability": 0.4321 }, { "start": 13308.64, "end": 13310.52, "probability": 0.9167 }, { "start": 13310.7, "end": 13311.49, "probability": 0.9722 }, { "start": 13311.78, "end": 13314.32, "probability": 0.6464 }, { "start": 13314.32, "end": 13316.44, "probability": 0.9877 }, { "start": 13317.44, "end": 13318.72, "probability": 0.9881 }, { "start": 13320.0, "end": 13320.58, "probability": 0.804 }, { "start": 13321.18, "end": 13324.84, "probability": 0.9675 }, { "start": 13325.02, "end": 13328.2, "probability": 0.783 }, { "start": 13328.74, "end": 13330.04, "probability": 0.7524 }, { "start": 13330.24, "end": 13332.22, "probability": 0.9314 }, { "start": 13332.32, "end": 13333.32, "probability": 0.9478 }, { "start": 13334.38, "end": 13336.36, "probability": 0.9744 }, { "start": 13337.42, "end": 13340.34, "probability": 0.963 }, { "start": 13340.44, "end": 13341.78, "probability": 0.9928 }, { "start": 13342.22, "end": 13345.14, "probability": 0.9829 }, { "start": 13345.94, "end": 13347.12, "probability": 0.7564 }, { "start": 13347.66, "end": 13350.82, "probability": 0.8344 }, { "start": 13350.98, "end": 13352.02, "probability": 0.9004 }, { "start": 13352.59, "end": 13355.37, "probability": 0.9599 }, { "start": 13355.88, "end": 13356.48, "probability": 0.7987 }, { "start": 13356.9, "end": 13359.7, "probability": 0.9933 }, { "start": 13359.72, "end": 13360.54, "probability": 0.7982 }, { "start": 13360.72, "end": 13360.72, "probability": 0.3786 }, { "start": 13361.18, "end": 13362.75, "probability": 0.9487 }, { "start": 13363.22, "end": 13365.92, "probability": 0.8028 }, { "start": 13366.48, "end": 13369.68, "probability": 0.7212 }, { "start": 13369.7, "end": 13370.56, "probability": 0.6696 }, { "start": 13371.16, "end": 13372.14, "probability": 0.9899 }, { "start": 13372.38, "end": 13373.02, "probability": 0.5885 }, { "start": 13373.6, "end": 13374.94, "probability": 0.9616 }, { "start": 13375.28, "end": 13375.96, "probability": 0.9279 }, { "start": 13400.78, "end": 13402.46, "probability": 0.8523 }, { "start": 13405.62, "end": 13406.54, "probability": 0.8063 }, { "start": 13407.54, "end": 13409.6, "probability": 0.9404 }, { "start": 13414.04, "end": 13418.9, "probability": 0.8883 }, { "start": 13419.42, "end": 13424.02, "probability": 0.9928 }, { "start": 13425.0, "end": 13427.46, "probability": 0.9271 }, { "start": 13427.62, "end": 13430.16, "probability": 0.8191 }, { "start": 13430.76, "end": 13432.4, "probability": 0.9698 }, { "start": 13433.14, "end": 13434.2, "probability": 0.9707 }, { "start": 13438.24, "end": 13440.94, "probability": 0.9139 }, { "start": 13441.94, "end": 13443.86, "probability": 0.9468 }, { "start": 13445.2, "end": 13445.88, "probability": 0.9565 }, { "start": 13447.52, "end": 13448.62, "probability": 0.9791 }, { "start": 13449.14, "end": 13450.19, "probability": 0.7681 }, { "start": 13450.84, "end": 13452.62, "probability": 0.6445 }, { "start": 13454.76, "end": 13457.52, "probability": 0.9863 }, { "start": 13457.52, "end": 13460.94, "probability": 0.9949 }, { "start": 13461.6, "end": 13463.5, "probability": 0.8015 }, { "start": 13465.18, "end": 13466.58, "probability": 0.5154 }, { "start": 13467.84, "end": 13468.08, "probability": 0.6556 }, { "start": 13469.3, "end": 13470.2, "probability": 0.8088 }, { "start": 13470.72, "end": 13473.08, "probability": 0.786 }, { "start": 13473.68, "end": 13475.44, "probability": 0.9938 }, { "start": 13476.74, "end": 13479.26, "probability": 0.7297 }, { "start": 13480.0, "end": 13480.6, "probability": 0.7059 }, { "start": 13483.6, "end": 13489.22, "probability": 0.9951 }, { "start": 13490.56, "end": 13491.38, "probability": 0.9093 }, { "start": 13492.52, "end": 13493.96, "probability": 0.7534 }, { "start": 13495.54, "end": 13496.16, "probability": 0.828 }, { "start": 13497.22, "end": 13499.66, "probability": 0.8929 }, { "start": 13500.5, "end": 13506.42, "probability": 0.9805 }, { "start": 13507.28, "end": 13508.04, "probability": 0.9299 }, { "start": 13510.02, "end": 13514.56, "probability": 0.9854 }, { "start": 13515.9, "end": 13518.34, "probability": 0.6442 }, { "start": 13519.18, "end": 13521.74, "probability": 0.996 }, { "start": 13522.66, "end": 13526.48, "probability": 0.9714 }, { "start": 13526.56, "end": 13526.96, "probability": 0.3925 }, { "start": 13528.28, "end": 13528.71, "probability": 0.7478 }, { "start": 13530.82, "end": 13532.36, "probability": 0.9518 }, { "start": 13533.22, "end": 13535.54, "probability": 0.6417 }, { "start": 13535.74, "end": 13536.82, "probability": 0.9911 }, { "start": 13537.78, "end": 13538.52, "probability": 0.7818 }, { "start": 13539.62, "end": 13541.34, "probability": 0.9934 }, { "start": 13541.88, "end": 13543.54, "probability": 0.9877 }, { "start": 13544.06, "end": 13545.6, "probability": 0.9202 }, { "start": 13545.88, "end": 13547.94, "probability": 0.6812 }, { "start": 13548.62, "end": 13550.24, "probability": 0.7857 }, { "start": 13551.22, "end": 13553.38, "probability": 0.896 }, { "start": 13553.82, "end": 13556.04, "probability": 0.8774 }, { "start": 13556.54, "end": 13557.19, "probability": 0.3155 }, { "start": 13557.44, "end": 13558.34, "probability": 0.9766 }, { "start": 13558.48, "end": 13560.2, "probability": 0.669 }, { "start": 13560.84, "end": 13561.36, "probability": 0.8065 }, { "start": 13562.08, "end": 13563.04, "probability": 0.9032 }, { "start": 13563.82, "end": 13565.16, "probability": 0.7776 }, { "start": 13566.6, "end": 13572.02, "probability": 0.9854 }, { "start": 13572.38, "end": 13574.8, "probability": 0.8369 }, { "start": 13575.4, "end": 13576.1, "probability": 0.9805 }, { "start": 13578.62, "end": 13580.22, "probability": 0.865 }, { "start": 13581.04, "end": 13584.2, "probability": 0.9117 }, { "start": 13585.3, "end": 13586.46, "probability": 0.9808 }, { "start": 13587.7, "end": 13588.62, "probability": 0.8687 }, { "start": 13589.64, "end": 13590.82, "probability": 0.9752 }, { "start": 13592.82, "end": 13594.42, "probability": 0.968 }, { "start": 13594.54, "end": 13596.6, "probability": 0.7872 }, { "start": 13597.12, "end": 13599.04, "probability": 0.9659 }, { "start": 13600.42, "end": 13602.56, "probability": 0.636 }, { "start": 13603.34, "end": 13605.1, "probability": 0.9907 }, { "start": 13605.52, "end": 13608.5, "probability": 0.9758 }, { "start": 13610.5, "end": 13613.6, "probability": 0.7983 }, { "start": 13613.86, "end": 13614.4, "probability": 0.5002 }, { "start": 13614.52, "end": 13619.12, "probability": 0.7842 }, { "start": 13619.36, "end": 13620.64, "probability": 0.8531 }, { "start": 13620.88, "end": 13621.54, "probability": 0.9771 }, { "start": 13622.34, "end": 13622.74, "probability": 0.9753 }, { "start": 13623.44, "end": 13625.2, "probability": 0.8801 }, { "start": 13625.72, "end": 13627.8, "probability": 0.9488 }, { "start": 13630.66, "end": 13633.98, "probability": 0.915 }, { "start": 13635.14, "end": 13639.04, "probability": 0.9751 }, { "start": 13640.12, "end": 13640.48, "probability": 0.9694 }, { "start": 13642.48, "end": 13644.94, "probability": 0.8727 }, { "start": 13645.86, "end": 13648.0, "probability": 0.9114 }, { "start": 13648.62, "end": 13650.2, "probability": 0.8389 }, { "start": 13650.3, "end": 13650.96, "probability": 0.8862 }, { "start": 13651.0, "end": 13651.52, "probability": 0.6732 }, { "start": 13652.02, "end": 13654.14, "probability": 0.7684 }, { "start": 13654.2, "end": 13657.54, "probability": 0.8459 }, { "start": 13659.02, "end": 13659.02, "probability": 0.3735 }, { "start": 13660.28, "end": 13661.52, "probability": 0.6131 }, { "start": 13662.04, "end": 13662.62, "probability": 0.9279 }, { "start": 13664.74, "end": 13665.83, "probability": 0.7456 }, { "start": 13665.92, "end": 13667.9, "probability": 0.9918 }, { "start": 13668.54, "end": 13669.22, "probability": 0.5921 }, { "start": 13669.7, "end": 13675.2, "probability": 0.9874 }, { "start": 13675.74, "end": 13678.48, "probability": 0.7144 }, { "start": 13679.54, "end": 13680.98, "probability": 0.7278 }, { "start": 13682.74, "end": 13685.4, "probability": 0.9517 }, { "start": 13686.36, "end": 13690.48, "probability": 0.9832 }, { "start": 13690.62, "end": 13692.3, "probability": 0.8334 }, { "start": 13694.46, "end": 13695.82, "probability": 0.9358 }, { "start": 13696.2, "end": 13698.58, "probability": 0.9086 }, { "start": 13698.6, "end": 13699.32, "probability": 0.6044 }, { "start": 13699.62, "end": 13701.26, "probability": 0.7312 }, { "start": 13702.34, "end": 13704.62, "probability": 0.9198 }, { "start": 13705.04, "end": 13707.18, "probability": 0.9755 }, { "start": 13707.2, "end": 13708.14, "probability": 0.763 }, { "start": 13708.48, "end": 13710.48, "probability": 0.7575 }, { "start": 13711.06, "end": 13711.42, "probability": 0.8871 }, { "start": 13712.98, "end": 13714.98, "probability": 0.7802 }, { "start": 13715.52, "end": 13716.32, "probability": 0.9685 }, { "start": 13716.5, "end": 13717.18, "probability": 0.9758 }, { "start": 13717.22, "end": 13720.3, "probability": 0.9757 }, { "start": 13720.4, "end": 13721.02, "probability": 0.803 }, { "start": 13721.06, "end": 13721.44, "probability": 0.7673 }, { "start": 13721.5, "end": 13722.4, "probability": 0.8799 }, { "start": 13722.96, "end": 13723.85, "probability": 0.8817 }, { "start": 13724.56, "end": 13726.5, "probability": 0.9691 }, { "start": 13726.7, "end": 13729.98, "probability": 0.9586 }, { "start": 13730.52, "end": 13735.62, "probability": 0.9608 }, { "start": 13737.38, "end": 13739.9, "probability": 0.9885 }, { "start": 13740.02, "end": 13741.12, "probability": 0.69 }, { "start": 13742.2, "end": 13743.14, "probability": 0.9248 }, { "start": 13744.86, "end": 13746.16, "probability": 0.9714 }, { "start": 13746.24, "end": 13748.64, "probability": 0.9857 }, { "start": 13749.32, "end": 13750.0, "probability": 0.8234 }, { "start": 13752.4, "end": 13753.32, "probability": 0.9646 }, { "start": 13753.52, "end": 13755.26, "probability": 0.6538 }, { "start": 13756.52, "end": 13758.78, "probability": 0.9952 }, { "start": 13758.78, "end": 13761.28, "probability": 0.9686 }, { "start": 13764.54, "end": 13765.38, "probability": 0.8809 }, { "start": 13767.34, "end": 13769.18, "probability": 0.9941 }, { "start": 13769.34, "end": 13770.12, "probability": 0.722 }, { "start": 13770.24, "end": 13770.78, "probability": 0.9795 }, { "start": 13770.88, "end": 13771.2, "probability": 0.715 }, { "start": 13771.56, "end": 13772.0, "probability": 0.8721 }, { "start": 13772.14, "end": 13772.82, "probability": 0.7164 }, { "start": 13773.54, "end": 13774.84, "probability": 0.8799 }, { "start": 13774.9, "end": 13776.96, "probability": 0.9736 }, { "start": 13778.22, "end": 13780.64, "probability": 0.9745 }, { "start": 13781.24, "end": 13783.4, "probability": 0.8199 }, { "start": 13783.88, "end": 13785.22, "probability": 0.6798 }, { "start": 13786.46, "end": 13788.26, "probability": 0.998 }, { "start": 13788.26, "end": 13790.48, "probability": 0.999 }, { "start": 13790.94, "end": 13793.72, "probability": 0.9972 }, { "start": 13795.48, "end": 13798.68, "probability": 0.8277 }, { "start": 13803.84, "end": 13804.8, "probability": 0.9768 }, { "start": 13805.84, "end": 13807.0, "probability": 0.8923 }, { "start": 13807.52, "end": 13809.22, "probability": 0.9508 }, { "start": 13809.7, "end": 13812.1, "probability": 0.9966 }, { "start": 13812.54, "end": 13813.72, "probability": 0.9185 }, { "start": 13814.22, "end": 13815.06, "probability": 0.991 }, { "start": 13815.24, "end": 13815.92, "probability": 0.9859 }, { "start": 13816.38, "end": 13817.08, "probability": 0.9451 }, { "start": 13817.2, "end": 13817.94, "probability": 0.8487 }, { "start": 13818.59, "end": 13820.58, "probability": 0.905 }, { "start": 13821.48, "end": 13822.72, "probability": 0.9917 }, { "start": 13823.62, "end": 13824.82, "probability": 0.9608 }, { "start": 13826.22, "end": 13826.94, "probability": 0.8913 }, { "start": 13827.02, "end": 13829.98, "probability": 0.9884 }, { "start": 13843.76, "end": 13843.92, "probability": 0.4835 }, { "start": 13843.92, "end": 13843.98, "probability": 0.0525 }, { "start": 13843.98, "end": 13843.98, "probability": 0.0672 }, { "start": 13843.98, "end": 13844.16, "probability": 0.1219 }, { "start": 13847.22, "end": 13848.0, "probability": 0.0717 }, { "start": 13848.1, "end": 13850.58, "probability": 0.2325 }, { "start": 13851.7, "end": 13853.76, "probability": 0.3959 }, { "start": 13854.74, "end": 13856.58, "probability": 0.9835 }, { "start": 13856.86, "end": 13858.34, "probability": 0.7939 }, { "start": 13859.08, "end": 13860.06, "probability": 0.7894 }, { "start": 13860.58, "end": 13862.05, "probability": 0.978 }, { "start": 13862.22, "end": 13862.86, "probability": 0.7677 }, { "start": 13862.98, "end": 13863.38, "probability": 0.9523 }, { "start": 13863.46, "end": 13863.56, "probability": 0.729 }, { "start": 13864.56, "end": 13866.48, "probability": 0.8901 }, { "start": 13867.42, "end": 13869.06, "probability": 0.9126 }, { "start": 13869.08, "end": 13873.84, "probability": 0.8879 }, { "start": 13874.9, "end": 13876.35, "probability": 0.9888 }, { "start": 13876.52, "end": 13879.0, "probability": 0.9943 }, { "start": 13879.14, "end": 13881.02, "probability": 0.9971 }, { "start": 13881.26, "end": 13881.8, "probability": 0.8903 }, { "start": 13881.9, "end": 13883.44, "probability": 0.967 }, { "start": 13883.88, "end": 13885.9, "probability": 0.9678 }, { "start": 13887.32, "end": 13889.28, "probability": 0.8761 }, { "start": 13889.72, "end": 13892.76, "probability": 0.9878 }, { "start": 13892.84, "end": 13894.64, "probability": 0.7769 }, { "start": 13895.2, "end": 13896.82, "probability": 0.9847 }, { "start": 13897.88, "end": 13899.14, "probability": 0.9548 }, { "start": 13899.78, "end": 13901.46, "probability": 0.8364 }, { "start": 13902.66, "end": 13905.74, "probability": 0.9589 }, { "start": 13906.24, "end": 13907.23, "probability": 0.619 }, { "start": 13907.52, "end": 13908.74, "probability": 0.7201 }, { "start": 13908.8, "end": 13910.26, "probability": 0.939 }, { "start": 13910.36, "end": 13912.12, "probability": 0.7593 }, { "start": 13912.82, "end": 13914.61, "probability": 0.9528 }, { "start": 13917.38, "end": 13918.42, "probability": 0.9903 }, { "start": 13918.82, "end": 13921.0, "probability": 0.7725 }, { "start": 13922.3, "end": 13924.7, "probability": 0.8586 }, { "start": 13926.56, "end": 13927.22, "probability": 0.9265 }, { "start": 13927.74, "end": 13928.4, "probability": 0.9785 }, { "start": 13929.64, "end": 13932.66, "probability": 0.917 }, { "start": 13933.6, "end": 13934.12, "probability": 0.9905 }, { "start": 13936.6, "end": 13938.52, "probability": 0.8147 }, { "start": 13940.08, "end": 13942.82, "probability": 0.6689 }, { "start": 13944.1, "end": 13944.64, "probability": 0.6483 }, { "start": 13945.16, "end": 13947.54, "probability": 0.6553 }, { "start": 13947.62, "end": 13948.82, "probability": 0.9796 }, { "start": 13948.94, "end": 13949.56, "probability": 0.6063 }, { "start": 13950.12, "end": 13953.06, "probability": 0.8943 }, { "start": 13954.88, "end": 13955.6, "probability": 0.545 }, { "start": 13956.46, "end": 13959.82, "probability": 0.7826 }, { "start": 13960.48, "end": 13961.58, "probability": 0.8523 }, { "start": 13962.26, "end": 13964.96, "probability": 0.7972 }, { "start": 13965.78, "end": 13969.24, "probability": 0.9858 }, { "start": 13969.98, "end": 13971.5, "probability": 0.978 }, { "start": 13972.56, "end": 13976.28, "probability": 0.9395 }, { "start": 13977.56, "end": 13980.8, "probability": 0.9438 }, { "start": 13982.4, "end": 13983.56, "probability": 0.8325 }, { "start": 13984.64, "end": 13985.38, "probability": 0.9312 }, { "start": 13986.46, "end": 13986.68, "probability": 0.896 }, { "start": 13987.48, "end": 13990.84, "probability": 0.8774 }, { "start": 13992.96, "end": 13995.38, "probability": 0.883 }, { "start": 13995.94, "end": 13996.22, "probability": 0.7055 }, { "start": 13996.26, "end": 13996.78, "probability": 0.8079 }, { "start": 13996.84, "end": 13997.38, "probability": 0.5023 }, { "start": 13997.56, "end": 14000.04, "probability": 0.3284 }, { "start": 14000.18, "end": 14000.32, "probability": 0.1657 }, { "start": 14000.74, "end": 14002.04, "probability": 0.3166 }, { "start": 14002.18, "end": 14003.82, "probability": 0.9143 }, { "start": 14004.38, "end": 14004.86, "probability": 0.7103 }, { "start": 14005.48, "end": 14005.54, "probability": 0.0865 }, { "start": 14005.54, "end": 14005.92, "probability": 0.4775 }, { "start": 14006.02, "end": 14006.88, "probability": 0.9456 }, { "start": 14007.22, "end": 14007.96, "probability": 0.938 }, { "start": 14008.1, "end": 14008.6, "probability": 0.1774 }, { "start": 14008.7, "end": 14009.34, "probability": 0.7218 }, { "start": 14009.86, "end": 14011.46, "probability": 0.8252 }, { "start": 14012.14, "end": 14014.2, "probability": 0.5358 }, { "start": 14014.3, "end": 14014.48, "probability": 0.2198 }, { "start": 14014.64, "end": 14015.86, "probability": 0.7558 }, { "start": 14016.24, "end": 14019.3, "probability": 0.9883 }, { "start": 14019.74, "end": 14020.14, "probability": 0.7764 }, { "start": 14020.4, "end": 14022.07, "probability": 0.8879 }, { "start": 14023.08, "end": 14026.26, "probability": 0.8014 }, { "start": 14026.38, "end": 14029.8, "probability": 0.6706 }, { "start": 14030.58, "end": 14031.26, "probability": 0.987 }, { "start": 14031.42, "end": 14031.9, "probability": 0.4982 }, { "start": 14031.96, "end": 14032.76, "probability": 0.6609 }, { "start": 14032.84, "end": 14034.38, "probability": 0.9495 }, { "start": 14034.48, "end": 14034.8, "probability": 0.8024 }, { "start": 14034.88, "end": 14036.58, "probability": 0.8992 }, { "start": 14036.72, "end": 14037.67, "probability": 0.9846 }, { "start": 14038.44, "end": 14039.1, "probability": 0.8466 }, { "start": 14039.64, "end": 14040.5, "probability": 0.913 }, { "start": 14041.96, "end": 14042.28, "probability": 0.4354 }, { "start": 14042.86, "end": 14044.26, "probability": 0.8073 }, { "start": 14045.62, "end": 14048.86, "probability": 0.601 }, { "start": 14051.26, "end": 14053.98, "probability": 0.5118 }, { "start": 14055.28, "end": 14055.6, "probability": 0.6059 }, { "start": 14056.56, "end": 14058.24, "probability": 0.9154 }, { "start": 14061.38, "end": 14061.6, "probability": 0.6235 }, { "start": 14064.32, "end": 14064.98, "probability": 0.7445 }, { "start": 14065.51, "end": 14068.28, "probability": 0.9037 }, { "start": 14068.78, "end": 14069.3, "probability": 0.3063 }, { "start": 14069.68, "end": 14070.78, "probability": 0.2611 }, { "start": 14071.32, "end": 14072.62, "probability": 0.8247 }, { "start": 14072.78, "end": 14073.76, "probability": 0.8103 }, { "start": 14074.72, "end": 14075.94, "probability": 0.9698 }, { "start": 14076.22, "end": 14077.7, "probability": 0.5906 }, { "start": 14078.06, "end": 14079.64, "probability": 0.4971 }, { "start": 14080.2, "end": 14080.98, "probability": 0.9551 }, { "start": 14081.22, "end": 14084.84, "probability": 0.9185 }, { "start": 14085.36, "end": 14088.02, "probability": 0.9758 }, { "start": 14088.92, "end": 14089.34, "probability": 0.3951 }, { "start": 14089.8, "end": 14093.7, "probability": 0.58 }, { "start": 14094.5, "end": 14096.42, "probability": 0.7203 }, { "start": 14096.56, "end": 14098.43, "probability": 0.5051 }, { "start": 14098.94, "end": 14101.36, "probability": 0.3886 }, { "start": 14101.48, "end": 14101.6, "probability": 0.6763 }, { "start": 14101.84, "end": 14104.54, "probability": 0.6398 }, { "start": 14104.64, "end": 14105.12, "probability": 0.5424 }, { "start": 14105.26, "end": 14105.98, "probability": 0.7524 }, { "start": 14105.98, "end": 14108.14, "probability": 0.7625 }, { "start": 14109.0, "end": 14109.1, "probability": 0.4395 }, { "start": 14109.1, "end": 14110.28, "probability": 0.4563 }, { "start": 14111.06, "end": 14113.22, "probability": 0.8057 }, { "start": 14114.82, "end": 14116.7, "probability": 0.9421 }, { "start": 14117.38, "end": 14118.86, "probability": 0.9038 }, { "start": 14119.52, "end": 14120.94, "probability": 0.8483 }, { "start": 14121.72, "end": 14122.32, "probability": 0.6689 }, { "start": 14123.64, "end": 14124.72, "probability": 0.9224 }, { "start": 14125.56, "end": 14127.57, "probability": 0.8247 }, { "start": 14129.32, "end": 14132.5, "probability": 0.8196 }, { "start": 14133.52, "end": 14134.54, "probability": 0.9015 }, { "start": 14135.38, "end": 14136.52, "probability": 0.8597 }, { "start": 14137.08, "end": 14138.24, "probability": 0.7255 }, { "start": 14139.44, "end": 14140.94, "probability": 0.8206 }, { "start": 14141.52, "end": 14148.2, "probability": 0.9777 }, { "start": 14151.98, "end": 14153.86, "probability": 0.9678 }, { "start": 14156.16, "end": 14159.46, "probability": 0.9332 }, { "start": 14160.06, "end": 14162.2, "probability": 0.7745 }, { "start": 14162.34, "end": 14166.4, "probability": 0.9509 }, { "start": 14166.6, "end": 14170.08, "probability": 0.9877 }, { "start": 14170.82, "end": 14172.64, "probability": 0.7655 }, { "start": 14173.08, "end": 14174.42, "probability": 0.9491 }, { "start": 14174.46, "end": 14175.3, "probability": 0.9585 }, { "start": 14175.34, "end": 14176.08, "probability": 0.8793 }, { "start": 14178.0, "end": 14179.28, "probability": 0.9415 }, { "start": 14179.46, "end": 14182.14, "probability": 0.561 }, { "start": 14182.38, "end": 14183.08, "probability": 0.9272 }, { "start": 14183.22, "end": 14183.8, "probability": 0.979 }, { "start": 14183.96, "end": 14185.97, "probability": 0.9058 }, { "start": 14186.86, "end": 14190.16, "probability": 0.9891 }, { "start": 14190.38, "end": 14191.32, "probability": 0.9589 }, { "start": 14191.92, "end": 14194.84, "probability": 0.9903 }, { "start": 14194.9, "end": 14195.74, "probability": 0.5215 }, { "start": 14196.16, "end": 14197.76, "probability": 0.7264 }, { "start": 14198.22, "end": 14198.9, "probability": 0.7617 }, { "start": 14199.04, "end": 14200.82, "probability": 0.9928 }, { "start": 14201.06, "end": 14206.76, "probability": 0.8935 }, { "start": 14206.92, "end": 14209.08, "probability": 0.4378 }, { "start": 14209.2, "end": 14211.5, "probability": 0.8426 }, { "start": 14212.16, "end": 14213.94, "probability": 0.8748 }, { "start": 14214.08, "end": 14214.72, "probability": 0.6833 }, { "start": 14214.96, "end": 14215.12, "probability": 0.351 }, { "start": 14215.36, "end": 14216.09, "probability": 0.9321 }, { "start": 14216.76, "end": 14218.28, "probability": 0.8708 }, { "start": 14218.44, "end": 14221.14, "probability": 0.9646 }, { "start": 14221.22, "end": 14222.72, "probability": 0.7751 }, { "start": 14223.24, "end": 14224.94, "probability": 0.5937 }, { "start": 14225.56, "end": 14227.36, "probability": 0.6551 }, { "start": 14227.46, "end": 14228.34, "probability": 0.87 }, { "start": 14228.42, "end": 14229.02, "probability": 0.8172 }, { "start": 14229.1, "end": 14231.08, "probability": 0.9912 }, { "start": 14231.14, "end": 14232.58, "probability": 0.9966 }, { "start": 14233.16, "end": 14234.22, "probability": 0.9854 }, { "start": 14234.88, "end": 14235.78, "probability": 0.494 }, { "start": 14235.96, "end": 14238.3, "probability": 0.5858 }, { "start": 14238.62, "end": 14239.1, "probability": 0.4692 }, { "start": 14239.2, "end": 14241.58, "probability": 0.591 }, { "start": 14242.1, "end": 14244.12, "probability": 0.6306 }, { "start": 14244.3, "end": 14245.2, "probability": 0.8196 }, { "start": 14245.5, "end": 14246.56, "probability": 0.8808 }, { "start": 14246.82, "end": 14247.5, "probability": 0.8113 }, { "start": 14247.76, "end": 14248.74, "probability": 0.9792 }, { "start": 14248.76, "end": 14249.08, "probability": 0.8815 }, { "start": 14249.46, "end": 14249.94, "probability": 0.6715 }, { "start": 14250.3, "end": 14251.9, "probability": 0.7346 }, { "start": 14252.08, "end": 14254.24, "probability": 0.5882 }, { "start": 14254.34, "end": 14255.54, "probability": 0.9398 }, { "start": 14255.6, "end": 14256.9, "probability": 0.5978 }, { "start": 14257.88, "end": 14259.98, "probability": 0.4123 }, { "start": 14260.62, "end": 14261.18, "probability": 0.8276 }, { "start": 14261.22, "end": 14265.7, "probability": 0.8674 }, { "start": 14265.86, "end": 14269.76, "probability": 0.9932 }, { "start": 14270.44, "end": 14273.48, "probability": 0.9824 }, { "start": 14273.62, "end": 14275.76, "probability": 0.8329 }, { "start": 14275.8, "end": 14277.16, "probability": 0.5574 }, { "start": 14277.42, "end": 14278.98, "probability": 0.9058 }, { "start": 14279.6, "end": 14280.98, "probability": 0.8978 }, { "start": 14281.28, "end": 14282.92, "probability": 0.6487 }, { "start": 14283.12, "end": 14285.9, "probability": 0.9007 }, { "start": 14285.98, "end": 14286.66, "probability": 0.6887 }, { "start": 14286.74, "end": 14287.14, "probability": 0.77 }, { "start": 14287.2, "end": 14288.68, "probability": 0.8563 }, { "start": 14288.8, "end": 14290.04, "probability": 0.7959 }, { "start": 14291.14, "end": 14294.28, "probability": 0.8767 }, { "start": 14294.76, "end": 14296.82, "probability": 0.791 }, { "start": 14297.36, "end": 14298.78, "probability": 0.7297 }, { "start": 14299.0, "end": 14300.04, "probability": 0.8383 }, { "start": 14300.52, "end": 14301.96, "probability": 0.9014 }, { "start": 14302.34, "end": 14302.44, "probability": 0.4894 }, { "start": 14303.64, "end": 14306.22, "probability": 0.9299 }, { "start": 14307.44, "end": 14308.77, "probability": 0.9702 }, { "start": 14309.36, "end": 14310.42, "probability": 0.9283 }, { "start": 14311.02, "end": 14311.9, "probability": 0.8713 }, { "start": 14313.12, "end": 14315.02, "probability": 0.9846 }, { "start": 14316.74, "end": 14317.92, "probability": 0.9905 }, { "start": 14318.88, "end": 14319.98, "probability": 0.7484 }, { "start": 14321.44, "end": 14323.74, "probability": 0.9477 }, { "start": 14325.42, "end": 14326.96, "probability": 0.9871 }, { "start": 14327.8, "end": 14328.77, "probability": 0.9367 }, { "start": 14330.74, "end": 14335.6, "probability": 0.9827 }, { "start": 14335.94, "end": 14340.52, "probability": 0.5189 }, { "start": 14340.86, "end": 14342.9, "probability": 0.8259 }, { "start": 14344.52, "end": 14347.59, "probability": 0.5127 }, { "start": 14348.54, "end": 14352.28, "probability": 0.9848 }, { "start": 14352.38, "end": 14354.04, "probability": 0.9821 }, { "start": 14354.22, "end": 14355.66, "probability": 0.594 }, { "start": 14356.26, "end": 14359.28, "probability": 0.9699 }, { "start": 14359.86, "end": 14363.78, "probability": 0.5675 }, { "start": 14364.44, "end": 14365.82, "probability": 0.988 }, { "start": 14366.3, "end": 14368.12, "probability": 0.5752 }, { "start": 14369.16, "end": 14370.76, "probability": 0.9335 }, { "start": 14371.38, "end": 14372.48, "probability": 0.6613 }, { "start": 14373.42, "end": 14376.02, "probability": 0.7992 }, { "start": 14376.82, "end": 14378.12, "probability": 0.9201 }, { "start": 14379.18, "end": 14379.96, "probability": 0.9755 }, { "start": 14380.58, "end": 14385.56, "probability": 0.9172 }, { "start": 14385.66, "end": 14387.16, "probability": 0.9337 }, { "start": 14387.24, "end": 14387.84, "probability": 0.8122 }, { "start": 14389.2, "end": 14393.84, "probability": 0.9256 }, { "start": 14394.5, "end": 14397.94, "probability": 0.9702 }, { "start": 14398.72, "end": 14399.92, "probability": 0.733 }, { "start": 14399.98, "end": 14400.72, "probability": 0.8846 }, { "start": 14401.14, "end": 14401.42, "probability": 0.2698 }, { "start": 14401.6, "end": 14403.09, "probability": 0.6382 }, { "start": 14403.56, "end": 14406.04, "probability": 0.9814 }, { "start": 14406.04, "end": 14408.38, "probability": 0.5205 }, { "start": 14408.48, "end": 14409.34, "probability": 0.9526 }, { "start": 14409.66, "end": 14413.79, "probability": 0.9414 }, { "start": 14414.3, "end": 14416.58, "probability": 0.5534 }, { "start": 14416.76, "end": 14419.14, "probability": 0.7132 }, { "start": 14419.38, "end": 14419.87, "probability": 0.9611 }, { "start": 14420.78, "end": 14421.28, "probability": 0.9144 }, { "start": 14422.84, "end": 14425.08, "probability": 0.9479 }, { "start": 14426.3, "end": 14427.48, "probability": 0.9084 }, { "start": 14428.64, "end": 14433.28, "probability": 0.9526 }, { "start": 14433.88, "end": 14434.44, "probability": 0.6799 }, { "start": 14437.26, "end": 14438.36, "probability": 0.951 }, { "start": 14438.54, "end": 14439.56, "probability": 0.979 }, { "start": 14440.06, "end": 14440.82, "probability": 0.765 }, { "start": 14441.12, "end": 14442.0, "probability": 0.9455 }, { "start": 14442.08, "end": 14442.98, "probability": 0.8653 }, { "start": 14443.02, "end": 14444.08, "probability": 0.96 }, { "start": 14444.16, "end": 14445.2, "probability": 0.4912 }, { "start": 14445.66, "end": 14448.34, "probability": 0.5045 }, { "start": 14448.56, "end": 14449.22, "probability": 0.3506 }, { "start": 14449.7, "end": 14450.24, "probability": 0.5157 }, { "start": 14450.32, "end": 14452.74, "probability": 0.8377 }, { "start": 14452.82, "end": 14454.94, "probability": 0.9461 }, { "start": 14454.94, "end": 14459.22, "probability": 0.7623 }, { "start": 14459.34, "end": 14461.38, "probability": 0.9056 }, { "start": 14462.64, "end": 14464.28, "probability": 0.8285 }, { "start": 14464.46, "end": 14467.36, "probability": 0.8118 }, { "start": 14467.78, "end": 14468.46, "probability": 0.8789 }, { "start": 14468.92, "end": 14470.72, "probability": 0.9756 }, { "start": 14470.76, "end": 14471.88, "probability": 0.998 }, { "start": 14472.06, "end": 14473.46, "probability": 0.999 }, { "start": 14474.56, "end": 14476.28, "probability": 0.4478 }, { "start": 14476.76, "end": 14478.0, "probability": 0.7746 }, { "start": 14478.3, "end": 14478.65, "probability": 0.4298 }, { "start": 14479.5, "end": 14481.8, "probability": 0.8268 }, { "start": 14482.22, "end": 14484.96, "probability": 0.5925 }, { "start": 14485.34, "end": 14488.32, "probability": 0.2866 }, { "start": 14488.58, "end": 14490.18, "probability": 0.621 }, { "start": 14492.11, "end": 14495.2, "probability": 0.8511 }, { "start": 14495.9, "end": 14497.16, "probability": 0.1818 }, { "start": 14497.28, "end": 14498.3, "probability": 0.6618 }, { "start": 14498.6, "end": 14502.08, "probability": 0.9832 }, { "start": 14502.44, "end": 14505.62, "probability": 0.7471 }, { "start": 14505.62, "end": 14508.26, "probability": 0.9572 }, { "start": 14508.3, "end": 14508.8, "probability": 0.8094 }, { "start": 14509.26, "end": 14510.28, "probability": 0.8285 }, { "start": 14511.0, "end": 14514.68, "probability": 0.546 }, { "start": 14514.7, "end": 14515.26, "probability": 0.9174 }, { "start": 14515.66, "end": 14518.82, "probability": 0.5682 }, { "start": 14519.28, "end": 14520.94, "probability": 0.3347 }, { "start": 14522.02, "end": 14524.84, "probability": 0.7769 }, { "start": 14524.98, "end": 14526.9, "probability": 0.7506 }, { "start": 14527.02, "end": 14531.84, "probability": 0.9338 }, { "start": 14532.24, "end": 14533.84, "probability": 0.9937 }, { "start": 14534.24, "end": 14534.44, "probability": 0.1692 }, { "start": 14534.46, "end": 14534.66, "probability": 0.676 }, { "start": 14534.76, "end": 14537.14, "probability": 0.9847 }, { "start": 14537.2, "end": 14540.54, "probability": 0.4889 }, { "start": 14540.92, "end": 14541.48, "probability": 0.7062 }, { "start": 14541.48, "end": 14543.64, "probability": 0.5052 }, { "start": 14543.68, "end": 14545.24, "probability": 0.6165 }, { "start": 14545.28, "end": 14546.32, "probability": 0.6825 }, { "start": 14546.38, "end": 14547.78, "probability": 0.6408 }, { "start": 14547.8, "end": 14552.02, "probability": 0.9653 }, { "start": 14552.04, "end": 14553.08, "probability": 0.6416 }, { "start": 14553.16, "end": 14554.74, "probability": 0.3488 }, { "start": 14556.32, "end": 14557.1, "probability": 0.6201 }, { "start": 14557.24, "end": 14557.54, "probability": 0.7674 }, { "start": 14557.66, "end": 14558.24, "probability": 0.7916 }, { "start": 14558.5, "end": 14559.18, "probability": 0.6241 }, { "start": 14559.24, "end": 14559.92, "probability": 0.2898 }, { "start": 14560.3, "end": 14562.54, "probability": 0.564 }, { "start": 14565.06, "end": 14565.44, "probability": 0.7447 }, { "start": 14566.18, "end": 14568.28, "probability": 0.9198 }, { "start": 14568.94, "end": 14570.78, "probability": 0.6865 }, { "start": 14570.98, "end": 14575.44, "probability": 0.9748 }, { "start": 14575.46, "end": 14576.18, "probability": 0.8295 }, { "start": 14576.78, "end": 14580.24, "probability": 0.9777 }, { "start": 14580.46, "end": 14582.02, "probability": 0.7965 }, { "start": 14582.42, "end": 14583.06, "probability": 0.6438 }, { "start": 14583.08, "end": 14585.08, "probability": 0.8166 }, { "start": 14585.58, "end": 14586.16, "probability": 0.8689 }, { "start": 14586.3, "end": 14587.72, "probability": 0.7548 }, { "start": 14587.8, "end": 14588.52, "probability": 0.6394 }, { "start": 14589.22, "end": 14591.02, "probability": 0.9987 }, { "start": 14591.16, "end": 14594.39, "probability": 0.8291 }, { "start": 14595.46, "end": 14596.4, "probability": 0.7316 }, { "start": 14596.72, "end": 14601.62, "probability": 0.8856 }, { "start": 14601.98, "end": 14604.48, "probability": 0.8188 }, { "start": 14604.56, "end": 14606.86, "probability": 0.6858 }, { "start": 14607.34, "end": 14609.84, "probability": 0.6965 }, { "start": 14610.42, "end": 14612.32, "probability": 0.8196 }, { "start": 14612.84, "end": 14614.86, "probability": 0.875 }, { "start": 14615.52, "end": 14617.32, "probability": 0.8027 }, { "start": 14617.62, "end": 14619.66, "probability": 0.8937 }, { "start": 14619.72, "end": 14622.52, "probability": 0.9896 }, { "start": 14622.58, "end": 14623.78, "probability": 0.6978 }, { "start": 14624.36, "end": 14628.22, "probability": 0.9799 }, { "start": 14628.52, "end": 14629.64, "probability": 0.6345 }, { "start": 14629.7, "end": 14630.74, "probability": 0.7435 }, { "start": 14630.9, "end": 14631.81, "probability": 0.9897 }, { "start": 14631.94, "end": 14636.12, "probability": 0.4133 }, { "start": 14636.22, "end": 14637.42, "probability": 0.2223 }, { "start": 14637.48, "end": 14637.78, "probability": 0.6413 }, { "start": 14637.94, "end": 14638.56, "probability": 0.6307 }, { "start": 14638.88, "end": 14639.36, "probability": 0.6268 }, { "start": 14639.76, "end": 14640.1, "probability": 0.4073 }, { "start": 14640.38, "end": 14641.98, "probability": 0.9132 }, { "start": 14642.06, "end": 14642.41, "probability": 0.0441 }, { "start": 14642.86, "end": 14646.66, "probability": 0.9874 }, { "start": 14646.82, "end": 14647.4, "probability": 0.5903 }, { "start": 14647.58, "end": 14647.96, "probability": 0.0608 }, { "start": 14648.08, "end": 14649.68, "probability": 0.8662 }, { "start": 14650.34, "end": 14651.96, "probability": 0.5612 }, { "start": 14652.82, "end": 14654.48, "probability": 0.7935 }, { "start": 14654.6, "end": 14658.4, "probability": 0.9533 }, { "start": 14658.76, "end": 14659.64, "probability": 0.5843 }, { "start": 14660.16, "end": 14660.42, "probability": 0.5065 }, { "start": 14663.6, "end": 14665.32, "probability": 0.9875 }, { "start": 14665.94, "end": 14667.44, "probability": 0.9843 }, { "start": 14667.74, "end": 14669.16, "probability": 0.9818 }, { "start": 14669.16, "end": 14669.8, "probability": 0.9261 }, { "start": 14670.22, "end": 14672.86, "probability": 0.069 }, { "start": 14673.2, "end": 14675.7, "probability": 0.5488 }, { "start": 14675.78, "end": 14677.5, "probability": 0.9956 }, { "start": 14678.5, "end": 14680.4, "probability": 0.9503 }, { "start": 14680.78, "end": 14685.3, "probability": 0.9296 }, { "start": 14685.72, "end": 14686.92, "probability": 0.3312 }, { "start": 14686.92, "end": 14687.96, "probability": 0.7285 }, { "start": 14688.26, "end": 14688.98, "probability": 0.7523 }, { "start": 14689.42, "end": 14690.52, "probability": 0.9966 }, { "start": 14691.22, "end": 14694.42, "probability": 0.0059 }, { "start": 14694.52, "end": 14696.62, "probability": 0.2442 }, { "start": 14697.69, "end": 14699.32, "probability": 0.3612 }, { "start": 14699.38, "end": 14700.86, "probability": 0.9342 }, { "start": 14701.09, "end": 14702.56, "probability": 0.5776 }, { "start": 14702.68, "end": 14703.38, "probability": 0.5797 }, { "start": 14703.46, "end": 14704.56, "probability": 0.9948 }, { "start": 14705.04, "end": 14707.48, "probability": 0.7515 }, { "start": 14707.52, "end": 14709.26, "probability": 0.5155 }, { "start": 14709.34, "end": 14709.78, "probability": 0.7833 }, { "start": 14709.84, "end": 14711.0, "probability": 0.9308 }, { "start": 14711.3, "end": 14711.92, "probability": 0.9814 }, { "start": 14712.42, "end": 14713.38, "probability": 0.8091 }, { "start": 14713.72, "end": 14716.3, "probability": 0.1336 }, { "start": 14718.26, "end": 14718.4, "probability": 0.0416 }, { "start": 14718.4, "end": 14718.92, "probability": 0.0159 }, { "start": 14719.2, "end": 14721.72, "probability": 0.5752 }, { "start": 14721.76, "end": 14722.26, "probability": 0.7671 }, { "start": 14722.76, "end": 14727.62, "probability": 0.6206 }, { "start": 14729.14, "end": 14730.22, "probability": 0.2751 }, { "start": 14730.48, "end": 14731.56, "probability": 0.5393 }, { "start": 14732.48, "end": 14734.54, "probability": 0.4404 }, { "start": 14734.54, "end": 14736.24, "probability": 0.4903 }, { "start": 14737.18, "end": 14739.14, "probability": 0.5641 }, { "start": 14739.56, "end": 14742.44, "probability": 0.0299 }, { "start": 14755.14, "end": 14758.74, "probability": 0.8633 }, { "start": 14760.1, "end": 14761.02, "probability": 0.0207 }, { "start": 14764.34, "end": 14767.02, "probability": 0.0437 }, { "start": 14770.34, "end": 14771.8, "probability": 0.0164 }, { "start": 14771.8, "end": 14774.91, "probability": 0.0603 }, { "start": 14777.31, "end": 14778.54, "probability": 0.1933 }, { "start": 14779.22, "end": 14779.76, "probability": 0.1356 }, { "start": 14782.15, "end": 14783.62, "probability": 0.0208 }, { "start": 14783.68, "end": 14786.14, "probability": 0.0376 }, { "start": 14786.14, "end": 14787.94, "probability": 0.1111 }, { "start": 14788.4, "end": 14789.74, "probability": 0.0322 }, { "start": 14789.8, "end": 14791.82, "probability": 0.0586 }, { "start": 14791.94, "end": 14793.52, "probability": 0.0385 }, { "start": 14793.52, "end": 14795.0, "probability": 0.0239 }, { "start": 14799.0, "end": 14799.0, "probability": 0.0 }, { "start": 14799.0, "end": 14799.0, "probability": 0.0 }, { "start": 14799.0, "end": 14799.0, "probability": 0.0 }, { "start": 14799.0, "end": 14799.0, "probability": 0.0 }, { "start": 14799.0, "end": 14799.0, "probability": 0.0 }, { "start": 14799.0, "end": 14799.0, "probability": 0.0 }, { "start": 14799.08, "end": 14799.34, "probability": 0.0633 }, { "start": 14799.66, "end": 14802.54, "probability": 0.0475 }, { "start": 14802.54, "end": 14803.65, "probability": 0.0159 }, { "start": 14804.2, "end": 14804.22, "probability": 0.0209 }, { "start": 14804.22, "end": 14805.46, "probability": 0.0874 }, { "start": 14806.22, "end": 14811.28, "probability": 0.0242 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.0, "end": 14922.0, "probability": 0.0 }, { "start": 14922.08, "end": 14922.7, "probability": 0.1886 }, { "start": 14922.7, "end": 14923.84, "probability": 0.6359 }, { "start": 14924.0, "end": 14924.22, "probability": 0.7318 }, { "start": 14924.34, "end": 14924.64, "probability": 0.7737 }, { "start": 14925.14, "end": 14925.84, "probability": 0.5868 }, { "start": 14925.98, "end": 14930.08, "probability": 0.8787 }, { "start": 14930.68, "end": 14934.52, "probability": 0.9973 }, { "start": 14935.5, "end": 14938.56, "probability": 0.9792 }, { "start": 14938.8, "end": 14940.34, "probability": 0.868 }, { "start": 14940.92, "end": 14941.6, "probability": 0.9327 }, { "start": 14941.7, "end": 14943.02, "probability": 0.9857 }, { "start": 14943.08, "end": 14943.72, "probability": 0.962 }, { "start": 14944.16, "end": 14945.0, "probability": 0.9743 }, { "start": 14945.26, "end": 14945.68, "probability": 0.944 }, { "start": 14946.14, "end": 14946.88, "probability": 0.8396 }, { "start": 14947.14, "end": 14948.5, "probability": 0.9935 }, { "start": 14949.04, "end": 14952.1, "probability": 0.9473 }, { "start": 14952.18, "end": 14953.58, "probability": 0.9856 }, { "start": 14953.88, "end": 14956.59, "probability": 0.7389 }, { "start": 14956.78, "end": 14959.16, "probability": 0.9973 }, { "start": 14959.52, "end": 14960.52, "probability": 0.9648 }, { "start": 14960.6, "end": 14961.58, "probability": 0.6449 }, { "start": 14961.68, "end": 14962.3, "probability": 0.8671 }, { "start": 14963.54, "end": 14965.38, "probability": 0.3993 }, { "start": 14965.62, "end": 14965.7, "probability": 0.3285 }, { "start": 14965.7, "end": 14967.68, "probability": 0.942 }, { "start": 14968.6, "end": 14970.74, "probability": 0.5988 }, { "start": 14972.58, "end": 14974.82, "probability": 0.6946 }, { "start": 14974.82, "end": 14977.44, "probability": 0.9724 }, { "start": 14978.36, "end": 14982.0, "probability": 0.85 }, { "start": 14982.82, "end": 14983.79, "probability": 0.9883 }, { "start": 14984.52, "end": 14985.92, "probability": 0.9085 }, { "start": 14987.5, "end": 14988.4, "probability": 0.7593 }, { "start": 14988.46, "end": 14988.94, "probability": 0.9486 }, { "start": 14989.68, "end": 14991.28, "probability": 0.9048 }, { "start": 14991.52, "end": 14993.04, "probability": 0.9589 }, { "start": 14994.1, "end": 14994.18, "probability": 0.9629 }, { "start": 14994.22, "end": 14999.88, "probability": 0.9829 }, { "start": 15002.02, "end": 15003.2, "probability": 0.8413 }, { "start": 15004.36, "end": 15005.66, "probability": 0.7083 }, { "start": 15005.8, "end": 15006.36, "probability": 0.7884 }, { "start": 15006.42, "end": 15007.4, "probability": 0.9803 }, { "start": 15008.1, "end": 15008.38, "probability": 0.7081 }, { "start": 15008.4, "end": 15010.22, "probability": 0.9749 }, { "start": 15010.6, "end": 15012.36, "probability": 0.861 }, { "start": 15013.34, "end": 15015.94, "probability": 0.9744 }, { "start": 15016.14, "end": 15017.12, "probability": 0.9326 }, { "start": 15017.24, "end": 15020.02, "probability": 0.8988 }, { "start": 15021.22, "end": 15022.32, "probability": 0.9025 }, { "start": 15022.36, "end": 15025.32, "probability": 0.9437 }, { "start": 15027.98, "end": 15029.68, "probability": 0.6582 }, { "start": 15030.68, "end": 15032.0, "probability": 0.9907 }, { "start": 15032.06, "end": 15033.42, "probability": 0.9789 }, { "start": 15033.88, "end": 15035.02, "probability": 0.824 }, { "start": 15035.44, "end": 15037.52, "probability": 0.9814 }, { "start": 15038.46, "end": 15039.42, "probability": 0.9705 }, { "start": 15039.5, "end": 15042.62, "probability": 0.9662 }, { "start": 15042.7, "end": 15043.24, "probability": 0.2708 }, { "start": 15043.88, "end": 15045.26, "probability": 0.3734 }, { "start": 15045.32, "end": 15045.73, "probability": 0.804 }, { "start": 15045.96, "end": 15046.1, "probability": 0.6946 }, { "start": 15047.54, "end": 15051.07, "probability": 0.9279 }, { "start": 15051.23, "end": 15051.32, "probability": 0.4174 }, { "start": 15051.36, "end": 15052.9, "probability": 0.9637 }, { "start": 15053.3, "end": 15055.28, "probability": 0.808 }, { "start": 15057.7, "end": 15059.08, "probability": 0.9863 }, { "start": 15059.64, "end": 15061.98, "probability": 0.9881 }, { "start": 15064.1, "end": 15067.64, "probability": 0.798 }, { "start": 15067.9, "end": 15070.34, "probability": 0.979 }, { "start": 15070.9, "end": 15072.22, "probability": 0.7173 }, { "start": 15072.34, "end": 15075.36, "probability": 0.9876 }, { "start": 15075.84, "end": 15076.88, "probability": 0.7478 }, { "start": 15078.4, "end": 15079.08, "probability": 0.6691 }, { "start": 15080.08, "end": 15082.64, "probability": 0.9172 }, { "start": 15083.32, "end": 15084.32, "probability": 0.9839 }, { "start": 15084.4, "end": 15084.54, "probability": 0.8706 }, { "start": 15084.62, "end": 15085.52, "probability": 0.9956 }, { "start": 15085.66, "end": 15088.93, "probability": 0.9707 }, { "start": 15091.36, "end": 15093.5, "probability": 0.9076 }, { "start": 15093.58, "end": 15094.12, "probability": 0.4759 }, { "start": 15094.34, "end": 15096.16, "probability": 0.6343 }, { "start": 15096.3, "end": 15100.96, "probability": 0.9822 }, { "start": 15101.36, "end": 15102.98, "probability": 0.9452 }, { "start": 15103.12, "end": 15104.68, "probability": 0.6763 }, { "start": 15105.34, "end": 15105.56, "probability": 0.6742 }, { "start": 15105.68, "end": 15105.78, "probability": 0.587 }, { "start": 15106.18, "end": 15106.92, "probability": 0.0724 }, { "start": 15107.18, "end": 15107.48, "probability": 0.5434 }, { "start": 15107.54, "end": 15109.1, "probability": 0.4365 }, { "start": 15109.18, "end": 15109.22, "probability": 0.1504 }, { "start": 15109.22, "end": 15109.36, "probability": 0.1915 }, { "start": 15109.44, "end": 15110.2, "probability": 0.7257 }, { "start": 15110.5, "end": 15111.94, "probability": 0.6012 }, { "start": 15112.16, "end": 15112.88, "probability": 0.7312 }, { "start": 15112.98, "end": 15114.3, "probability": 0.9026 }, { "start": 15114.34, "end": 15114.44, "probability": 0.4247 }, { "start": 15114.44, "end": 15114.72, "probability": 0.4181 }, { "start": 15114.78, "end": 15116.14, "probability": 0.8141 }, { "start": 15116.78, "end": 15119.4, "probability": 0.977 }, { "start": 15121.68, "end": 15123.74, "probability": 0.9623 }, { "start": 15123.86, "end": 15126.48, "probability": 0.9707 }, { "start": 15126.88, "end": 15127.62, "probability": 0.901 }, { "start": 15127.68, "end": 15128.62, "probability": 0.8669 }, { "start": 15128.94, "end": 15130.24, "probability": 0.9697 }, { "start": 15130.32, "end": 15131.11, "probability": 0.9946 }, { "start": 15131.54, "end": 15135.48, "probability": 0.9784 }, { "start": 15136.08, "end": 15138.2, "probability": 0.8527 }, { "start": 15138.54, "end": 15139.82, "probability": 0.941 }, { "start": 15139.88, "end": 15140.08, "probability": 0.9062 }, { "start": 15140.24, "end": 15143.32, "probability": 0.9736 }, { "start": 15143.84, "end": 15144.52, "probability": 0.7706 }, { "start": 15144.58, "end": 15146.62, "probability": 0.8809 }, { "start": 15146.96, "end": 15147.48, "probability": 0.4795 }, { "start": 15147.94, "end": 15149.28, "probability": 0.582 }, { "start": 15149.9, "end": 15150.24, "probability": 0.3864 }, { "start": 15150.34, "end": 15151.25, "probability": 0.8909 }, { "start": 15151.64, "end": 15152.72, "probability": 0.9989 }, { "start": 15152.78, "end": 15153.32, "probability": 0.847 }, { "start": 15153.86, "end": 15155.24, "probability": 0.9888 }, { "start": 15155.32, "end": 15156.34, "probability": 0.9751 }, { "start": 15156.8, "end": 15157.0, "probability": 0.8973 }, { "start": 15157.0, "end": 15158.04, "probability": 0.9722 }, { "start": 15158.12, "end": 15159.68, "probability": 0.7075 }, { "start": 15159.74, "end": 15164.32, "probability": 0.9849 }, { "start": 15164.62, "end": 15166.44, "probability": 0.9517 }, { "start": 15166.5, "end": 15167.18, "probability": 0.8478 }, { "start": 15167.82, "end": 15168.4, "probability": 0.7773 }, { "start": 15168.66, "end": 15171.74, "probability": 0.8818 }, { "start": 15171.82, "end": 15172.34, "probability": 0.6342 }, { "start": 15176.84, "end": 15176.84, "probability": 0.0123 }, { "start": 15183.12, "end": 15185.36, "probability": 0.114 }, { "start": 15185.36, "end": 15186.18, "probability": 0.1049 }, { "start": 15186.56, "end": 15188.17, "probability": 0.2148 }, { "start": 15188.46, "end": 15190.12, "probability": 0.2304 }, { "start": 15191.2, "end": 15191.88, "probability": 0.0528 }, { "start": 15191.94, "end": 15191.94, "probability": 0.2951 }, { "start": 15195.54, "end": 15204.12, "probability": 0.2715 }, { "start": 15204.3, "end": 15205.14, "probability": 0.1731 }, { "start": 15207.68, "end": 15208.04, "probability": 0.3419 }, { "start": 15209.48, "end": 15210.76, "probability": 0.0145 }, { "start": 15212.2, "end": 15213.64, "probability": 0.0333 }, { "start": 15213.78, "end": 15216.32, "probability": 0.0364 }, { "start": 15216.78, "end": 15218.22, "probability": 0.3801 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.0, "end": 15308.0, "probability": 0.0 }, { "start": 15308.14, "end": 15308.78, "probability": 0.1687 }, { "start": 15308.78, "end": 15308.78, "probability": 0.0156 }, { "start": 15308.78, "end": 15308.78, "probability": 0.2961 }, { "start": 15308.78, "end": 15309.74, "probability": 0.8337 }, { "start": 15309.86, "end": 15310.38, "probability": 0.7446 }, { "start": 15311.48, "end": 15312.94, "probability": 0.9412 }, { "start": 15313.16, "end": 15313.36, "probability": 0.4768 }, { "start": 15326.76, "end": 15326.96, "probability": 0.7186 }, { "start": 15328.5, "end": 15329.88, "probability": 0.0148 }, { "start": 15342.08, "end": 15344.24, "probability": 0.022 }, { "start": 15345.4, "end": 15348.24, "probability": 0.0734 }, { "start": 15350.5, "end": 15357.46, "probability": 0.1639 }, { "start": 15359.6, "end": 15363.9, "probability": 0.1566 }, { "start": 15365.22, "end": 15365.44, "probability": 0.1125 }, { "start": 15366.42, "end": 15372.86, "probability": 0.1403 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15434.0, "end": 15434.0, "probability": 0.0 }, { "start": 15440.68, "end": 15441.44, "probability": 0.09 }, { "start": 15443.14, "end": 15449.68, "probability": 0.1799 }, { "start": 15450.04, "end": 15452.24, "probability": 0.0086 }, { "start": 15452.52, "end": 15452.56, "probability": 0.0147 }, { "start": 15453.42, "end": 15453.78, "probability": 0.1213 }, { "start": 15456.1, "end": 15458.06, "probability": 0.0427 }, { "start": 15560.0, "end": 15560.0, "probability": 0.0 }, { "start": 15560.0, "end": 15560.0, "probability": 0.0 }, { "start": 15560.0, "end": 15560.0, "probability": 0.0 }, { "start": 15560.0, "end": 15560.0, "probability": 0.0 }, { "start": 15560.0, "end": 15560.0, "probability": 0.0 }, { "start": 15560.0, "end": 15560.0, "probability": 0.0 }, { "start": 15560.0, "end": 15560.0, "probability": 0.0 }, { "start": 15560.0, "end": 15560.0, "probability": 0.0 }, { "start": 15560.0, "end": 15560.0, "probability": 0.0 }, { "start": 15560.0, "end": 15560.0, "probability": 0.0 }, { "start": 15560.0, "end": 15560.0, "probability": 0.0 }, { "start": 15560.0, "end": 15560.0, "probability": 0.0 }, { "start": 15560.0, "end": 15560.0, "probability": 0.0 }, { "start": 15560.0, "end": 15560.0, "probability": 0.0 }, { "start": 15560.0, "end": 15560.0, "probability": 0.0 }, { "start": 15560.0, "end": 15560.0, "probability": 0.0 }, { "start": 15560.0, "end": 15560.0, "probability": 0.0 }, { "start": 15560.0, "end": 15560.0, "probability": 0.0 }, { "start": 15560.0, "end": 15560.0, "probability": 0.0 }, { "start": 15560.0, "end": 15560.0, "probability": 0.0 }, { "start": 15560.0, "end": 15560.0, "probability": 0.0 }, { "start": 15560.0, "end": 15560.0, "probability": 0.0 }, { "start": 15560.0, "end": 15560.0, "probability": 0.0 }, { "start": 15560.0, "end": 15560.0, "probability": 0.0 }, { "start": 15560.0, "end": 15560.0, "probability": 0.0 }, { "start": 15560.0, "end": 15560.0, "probability": 0.0 }, { "start": 15560.0, "end": 15560.0, "probability": 0.0 }, { "start": 15560.0, "end": 15560.0, "probability": 0.0 }, { "start": 15560.0, "end": 15560.0, "probability": 0.0 }, { "start": 15560.0, "end": 15560.0, "probability": 0.0 }, { "start": 15560.0, "end": 15560.0, "probability": 0.0 }, { "start": 15560.0, "end": 15560.0, "probability": 0.0 }, { "start": 15560.0, "end": 15560.0, "probability": 0.0 }, { "start": 15560.0, "end": 15560.0, "probability": 0.0 }, { "start": 15560.0, "end": 15560.0, "probability": 0.0 }, { "start": 15560.0, "end": 15560.0, "probability": 0.0 }, { "start": 15560.0, "end": 15560.0, "probability": 0.0 }, { "start": 15560.0, "end": 15560.0, "probability": 0.0 }, { "start": 15560.0, "end": 15560.0, "probability": 0.0 }, { "start": 15560.0, "end": 15560.0, "probability": 0.0 }, { "start": 15560.0, "end": 15560.0, "probability": 0.0 }, { "start": 15560.0, "end": 15560.0, "probability": 0.0 }, { "start": 15560.0, "end": 15560.0, "probability": 0.0 }, { "start": 15560.0, "end": 15560.0, "probability": 0.0 }, { "start": 15560.59, "end": 15560.8, "probability": 0.1264 }, { "start": 15560.8, "end": 15560.8, "probability": 0.0621 }, { "start": 15560.8, "end": 15562.09, "probability": 0.6946 }, { "start": 15562.88, "end": 15565.72, "probability": 0.9794 }, { "start": 15566.24, "end": 15571.82, "probability": 0.9588 }, { "start": 15572.72, "end": 15573.62, "probability": 0.7343 }, { "start": 15574.86, "end": 15577.06, "probability": 0.9515 }, { "start": 15577.68, "end": 15580.6, "probability": 0.9875 }, { "start": 15582.16, "end": 15582.16, "probability": 0.0772 }, { "start": 15582.24, "end": 15582.24, "probability": 0.0432 }, { "start": 15582.24, "end": 15583.72, "probability": 0.9581 }, { "start": 15583.86, "end": 15584.16, "probability": 0.0036 }, { "start": 15585.12, "end": 15585.12, "probability": 0.0065 }, { "start": 15585.12, "end": 15586.52, "probability": 0.8349 }, { "start": 15588.2, "end": 15590.22, "probability": 0.9783 }, { "start": 15591.16, "end": 15592.56, "probability": 0.8506 }, { "start": 15593.48, "end": 15596.88, "probability": 0.913 }, { "start": 15597.64, "end": 15599.76, "probability": 0.9538 }, { "start": 15600.46, "end": 15606.46, "probability": 0.9883 }, { "start": 15606.46, "end": 15611.9, "probability": 0.9998 }, { "start": 15612.66, "end": 15615.14, "probability": 0.7874 }, { "start": 15616.02, "end": 15619.28, "probability": 0.9969 }, { "start": 15620.76, "end": 15623.24, "probability": 0.9985 }, { "start": 15624.04, "end": 15627.29, "probability": 0.9958 }, { "start": 15628.1, "end": 15629.54, "probability": 0.9938 }, { "start": 15630.04, "end": 15630.66, "probability": 0.8485 }, { "start": 15631.12, "end": 15633.92, "probability": 0.9792 }, { "start": 15634.9, "end": 15634.94, "probability": 0.0981 }, { "start": 15635.1, "end": 15635.54, "probability": 0.6253 }, { "start": 15635.66, "end": 15638.44, "probability": 0.9881 }, { "start": 15639.36, "end": 15645.18, "probability": 0.9985 }, { "start": 15646.0, "end": 15649.04, "probability": 0.9384 }, { "start": 15649.86, "end": 15653.66, "probability": 0.9927 }, { "start": 15654.36, "end": 15655.54, "probability": 0.833 }, { "start": 15656.34, "end": 15658.6, "probability": 0.7563 }, { "start": 15659.68, "end": 15660.5, "probability": 0.8109 }, { "start": 15661.6, "end": 15666.08, "probability": 0.9892 }, { "start": 15666.48, "end": 15667.36, "probability": 0.9134 }, { "start": 15667.92, "end": 15669.7, "probability": 0.8889 }, { "start": 15670.0, "end": 15672.54, "probability": 0.9629 }, { "start": 15673.2, "end": 15674.3, "probability": 0.9998 }, { "start": 15674.84, "end": 15677.56, "probability": 0.9441 }, { "start": 15678.66, "end": 15679.86, "probability": 0.9924 }, { "start": 15680.5, "end": 15682.46, "probability": 0.9651 }, { "start": 15683.1, "end": 15684.24, "probability": 0.9946 }, { "start": 15685.28, "end": 15686.96, "probability": 0.9206 }, { "start": 15687.54, "end": 15689.12, "probability": 0.9835 }, { "start": 15690.0, "end": 15690.7, "probability": 0.9399 }, { "start": 15692.36, "end": 15694.44, "probability": 0.9895 }, { "start": 15695.38, "end": 15696.68, "probability": 0.8197 }, { "start": 15697.3, "end": 15699.3, "probability": 0.9984 }, { "start": 15699.82, "end": 15702.42, "probability": 0.8962 }, { "start": 15703.16, "end": 15703.38, "probability": 0.9585 }, { "start": 15704.0, "end": 15705.08, "probability": 0.9876 }, { "start": 15705.84, "end": 15708.08, "probability": 0.9976 }, { "start": 15708.74, "end": 15712.22, "probability": 0.9936 }, { "start": 15712.98, "end": 15716.02, "probability": 0.999 }, { "start": 15716.64, "end": 15719.98, "probability": 0.9981 }, { "start": 15719.98, "end": 15725.05, "probability": 0.9989 }, { "start": 15725.64, "end": 15728.42, "probability": 0.9901 }, { "start": 15729.56, "end": 15731.28, "probability": 0.7921 }, { "start": 15732.56, "end": 15733.62, "probability": 0.3188 }, { "start": 15735.5, "end": 15740.06, "probability": 0.884 }, { "start": 15740.52, "end": 15743.8, "probability": 0.9383 }, { "start": 15745.16, "end": 15746.48, "probability": 0.666 }, { "start": 15746.52, "end": 15748.66, "probability": 0.9082 }, { "start": 15749.1, "end": 15750.06, "probability": 0.9736 }, { "start": 15750.78, "end": 15753.1, "probability": 0.9729 }, { "start": 15753.54, "end": 15755.94, "probability": 0.7353 }, { "start": 15756.72, "end": 15757.86, "probability": 0.9604 }, { "start": 15759.54, "end": 15760.9, "probability": 0.8454 }, { "start": 15761.92, "end": 15763.04, "probability": 0.9493 }, { "start": 15763.62, "end": 15766.16, "probability": 0.9882 }, { "start": 15766.88, "end": 15768.8, "probability": 0.8184 }, { "start": 15769.9, "end": 15773.4, "probability": 0.982 }, { "start": 15774.04, "end": 15775.68, "probability": 0.958 }, { "start": 15776.16, "end": 15779.6, "probability": 0.9832 }, { "start": 15779.72, "end": 15780.22, "probability": 0.8668 }, { "start": 15780.48, "end": 15781.96, "probability": 0.8696 }, { "start": 15783.3, "end": 15783.72, "probability": 0.459 }, { "start": 15783.74, "end": 15785.96, "probability": 0.9282 }, { "start": 15786.04, "end": 15787.32, "probability": 0.3048 }, { "start": 15787.38, "end": 15788.24, "probability": 0.461 }, { "start": 15788.66, "end": 15789.9, "probability": 0.9753 }, { "start": 15790.68, "end": 15791.42, "probability": 0.8358 }, { "start": 15792.5, "end": 15794.66, "probability": 0.0212 }, { "start": 15795.78, "end": 15796.56, "probability": 0.3999 }, { "start": 15796.66, "end": 15799.46, "probability": 0.8953 }, { "start": 15799.94, "end": 15800.64, "probability": 0.7588 }, { "start": 15800.74, "end": 15801.58, "probability": 0.7297 }, { "start": 15802.51, "end": 15808.6, "probability": 0.9938 }, { "start": 15809.32, "end": 15810.54, "probability": 0.9881 }, { "start": 15810.56, "end": 15810.96, "probability": 0.6256 }, { "start": 15811.1, "end": 15811.6, "probability": 0.5306 }, { "start": 15811.64, "end": 15812.14, "probability": 0.7578 }, { "start": 15812.44, "end": 15812.92, "probability": 0.8386 }, { "start": 15813.66, "end": 15814.74, "probability": 0.9328 }, { "start": 15817.02, "end": 15818.36, "probability": 0.9294 }, { "start": 15818.98, "end": 15819.26, "probability": 0.5902 }, { "start": 15820.56, "end": 15821.46, "probability": 0.6629 }, { "start": 15822.74, "end": 15823.46, "probability": 0.6894 }, { "start": 15824.67, "end": 15828.18, "probability": 0.7788 }, { "start": 15828.2, "end": 15828.94, "probability": 0.6264 }, { "start": 15829.08, "end": 15831.8, "probability": 0.7364 }, { "start": 15831.88, "end": 15832.63, "probability": 0.9463 }, { "start": 15833.6, "end": 15833.84, "probability": 0.3611 }, { "start": 15834.34, "end": 15834.76, "probability": 0.728 }, { "start": 15834.9, "end": 15835.46, "probability": 0.8473 }, { "start": 15836.94, "end": 15839.9, "probability": 0.7606 }, { "start": 15840.1, "end": 15840.44, "probability": 0.5352 }, { "start": 15841.38, "end": 15841.82, "probability": 0.556 }, { "start": 15842.0, "end": 15843.28, "probability": 0.4123 }, { "start": 15843.48, "end": 15844.18, "probability": 0.5209 }, { "start": 15844.3, "end": 15844.48, "probability": 0.3708 }, { "start": 15844.84, "end": 15845.22, "probability": 0.2838 }, { "start": 15845.32, "end": 15846.48, "probability": 0.6295 }, { "start": 15846.72, "end": 15848.74, "probability": 0.7706 }, { "start": 15848.92, "end": 15851.74, "probability": 0.369 }, { "start": 15852.64, "end": 15854.08, "probability": 0.7273 }, { "start": 15854.36, "end": 15854.46, "probability": 0.1161 }, { "start": 15854.46, "end": 15856.64, "probability": 0.4558 }, { "start": 15856.72, "end": 15856.9, "probability": 0.6496 }, { "start": 15857.26, "end": 15859.44, "probability": 0.3662 }, { "start": 15859.78, "end": 15862.38, "probability": 0.9946 }, { "start": 15866.5, "end": 15868.3, "probability": 0.9515 }, { "start": 15868.38, "end": 15870.88, "probability": 0.3858 }, { "start": 15870.94, "end": 15874.34, "probability": 0.8099 }, { "start": 15874.44, "end": 15874.88, "probability": 0.4352 }, { "start": 15875.16, "end": 15875.4, "probability": 0.6151 }, { "start": 15876.9, "end": 15877.96, "probability": 0.0058 }, { "start": 15879.66, "end": 15880.42, "probability": 0.5174 }, { "start": 15880.54, "end": 15883.32, "probability": 0.6622 }, { "start": 15884.42, "end": 15887.06, "probability": 0.7258 }, { "start": 15888.24, "end": 15890.6, "probability": 0.2959 }, { "start": 15891.6, "end": 15893.92, "probability": 0.5949 }, { "start": 15895.32, "end": 15895.98, "probability": 0.3867 }, { "start": 15896.26, "end": 15896.46, "probability": 0.5132 }, { "start": 15896.66, "end": 15897.75, "probability": 0.8394 }, { "start": 15898.52, "end": 15901.14, "probability": 0.7544 }, { "start": 15902.13, "end": 15906.2, "probability": 0.9047 }, { "start": 15906.4, "end": 15908.36, "probability": 0.956 }, { "start": 15909.16, "end": 15910.3, "probability": 0.3714 }, { "start": 15911.36, "end": 15913.42, "probability": 0.68 }, { "start": 15914.28, "end": 15915.54, "probability": 0.7499 }, { "start": 15915.78, "end": 15919.9, "probability": 0.7404 }, { "start": 15921.48, "end": 15922.44, "probability": 0.9214 }, { "start": 15925.44, "end": 15926.92, "probability": 0.7519 }, { "start": 15927.96, "end": 15930.1, "probability": 0.8419 }, { "start": 15933.4, "end": 15939.54, "probability": 0.9334 }, { "start": 15939.68, "end": 15940.23, "probability": 0.9953 }, { "start": 15941.22, "end": 15945.04, "probability": 0.8522 }, { "start": 15945.12, "end": 15947.78, "probability": 0.9373 }, { "start": 15949.5, "end": 15951.88, "probability": 0.4898 }, { "start": 15953.44, "end": 15958.74, "probability": 0.9556 }, { "start": 15960.52, "end": 15962.42, "probability": 0.8887 }, { "start": 15963.02, "end": 15967.62, "probability": 0.7766 }, { "start": 15968.88, "end": 15970.72, "probability": 0.7622 }, { "start": 15971.94, "end": 15974.04, "probability": 0.8939 }, { "start": 15974.28, "end": 15974.7, "probability": 0.5536 }, { "start": 15975.18, "end": 15976.26, "probability": 0.3786 }, { "start": 15976.86, "end": 15977.4, "probability": 0.9535 }, { "start": 15978.36, "end": 15982.18, "probability": 0.8205 }, { "start": 15983.92, "end": 15988.5, "probability": 0.6547 }, { "start": 15989.92, "end": 15989.92, "probability": 0.0252 }, { "start": 15989.92, "end": 15991.84, "probability": 0.7629 }, { "start": 15992.78, "end": 15994.62, "probability": 0.9672 }, { "start": 15996.18, "end": 15998.82, "probability": 0.7862 }, { "start": 16000.36, "end": 16001.44, "probability": 0.9263 }, { "start": 16003.0, "end": 16006.06, "probability": 0.9501 }, { "start": 16006.06, "end": 16008.8, "probability": 0.7602 }, { "start": 16010.02, "end": 16012.0, "probability": 0.7495 }, { "start": 16012.74, "end": 16014.62, "probability": 0.9735 }, { "start": 16014.62, "end": 16016.58, "probability": 0.7966 }, { "start": 16016.7, "end": 16017.08, "probability": 0.8008 }, { "start": 16017.15, "end": 16017.66, "probability": 0.4881 }, { "start": 16017.96, "end": 16018.5, "probability": 0.1965 }, { "start": 16021.12, "end": 16022.91, "probability": 0.7307 }, { "start": 16025.52, "end": 16030.64, "probability": 0.8369 }, { "start": 16032.28, "end": 16034.46, "probability": 0.9087 }, { "start": 16035.3, "end": 16037.86, "probability": 0.674 }, { "start": 16038.6, "end": 16043.48, "probability": 0.9878 }, { "start": 16045.1, "end": 16049.28, "probability": 0.8838 }, { "start": 16050.76, "end": 16055.18, "probability": 0.9984 }, { "start": 16055.34, "end": 16056.32, "probability": 0.7795 }, { "start": 16056.52, "end": 16057.56, "probability": 0.8073 }, { "start": 16058.4, "end": 16059.52, "probability": 0.9431 }, { "start": 16061.38, "end": 16063.8, "probability": 0.9942 }, { "start": 16063.9, "end": 16065.32, "probability": 0.7834 }, { "start": 16065.4, "end": 16066.54, "probability": 0.835 }, { "start": 16066.68, "end": 16067.66, "probability": 0.5376 }, { "start": 16067.7, "end": 16068.5, "probability": 0.5165 }, { "start": 16069.38, "end": 16073.12, "probability": 0.8951 }, { "start": 16074.14, "end": 16074.24, "probability": 0.6443 }, { "start": 16074.96, "end": 16076.62, "probability": 0.9185 }, { "start": 16077.84, "end": 16078.58, "probability": 0.9606 }, { "start": 16080.32, "end": 16081.72, "probability": 0.7759 }, { "start": 16082.66, "end": 16084.99, "probability": 0.9917 }, { "start": 16085.8, "end": 16088.68, "probability": 0.9136 }, { "start": 16090.08, "end": 16095.54, "probability": 0.9696 }, { "start": 16096.78, "end": 16099.18, "probability": 0.7494 }, { "start": 16100.32, "end": 16102.82, "probability": 0.7898 }, { "start": 16104.6, "end": 16109.8, "probability": 0.7946 }, { "start": 16110.1, "end": 16111.8, "probability": 0.684 }, { "start": 16112.24, "end": 16112.7, "probability": 0.5479 }, { "start": 16113.52, "end": 16114.33, "probability": 0.3066 }, { "start": 16115.74, "end": 16116.94, "probability": 0.5843 }, { "start": 16117.82, "end": 16124.48, "probability": 0.8052 }, { "start": 16124.96, "end": 16126.02, "probability": 0.7437 }, { "start": 16126.1, "end": 16127.03, "probability": 0.8074 }, { "start": 16127.84, "end": 16129.44, "probability": 0.8976 }, { "start": 16130.72, "end": 16131.8, "probability": 0.9746 }, { "start": 16131.9, "end": 16136.42, "probability": 0.9664 }, { "start": 16136.46, "end": 16137.29, "probability": 0.865 }, { "start": 16137.68, "end": 16138.79, "probability": 0.6794 }, { "start": 16138.92, "end": 16143.86, "probability": 0.9373 }, { "start": 16144.52, "end": 16147.11, "probability": 0.974 }, { "start": 16148.04, "end": 16150.42, "probability": 0.8031 }, { "start": 16150.6, "end": 16151.86, "probability": 0.7206 }, { "start": 16151.92, "end": 16152.48, "probability": 0.6967 }, { "start": 16152.86, "end": 16154.06, "probability": 0.8941 }, { "start": 16155.3, "end": 16157.48, "probability": 0.6422 }, { "start": 16157.92, "end": 16159.6, "probability": 0.5948 }, { "start": 16160.78, "end": 16163.28, "probability": 0.9026 }, { "start": 16163.86, "end": 16165.48, "probability": 0.8083 }, { "start": 16165.94, "end": 16167.16, "probability": 0.9267 }, { "start": 16167.68, "end": 16169.98, "probability": 0.6794 }, { "start": 16170.12, "end": 16173.86, "probability": 0.6471 }, { "start": 16174.72, "end": 16176.58, "probability": 0.7875 }, { "start": 16177.3, "end": 16178.14, "probability": 0.6611 }, { "start": 16178.18, "end": 16178.98, "probability": 0.7854 }, { "start": 16179.4, "end": 16180.28, "probability": 0.6627 }, { "start": 16180.7, "end": 16182.5, "probability": 0.8592 }, { "start": 16182.64, "end": 16183.48, "probability": 0.7359 }, { "start": 16183.56, "end": 16184.0, "probability": 0.7592 }, { "start": 16184.06, "end": 16184.32, "probability": 0.9448 }, { "start": 16185.3, "end": 16186.16, "probability": 0.7258 }, { "start": 16188.38, "end": 16189.32, "probability": 0.7544 }, { "start": 16189.32, "end": 16189.32, "probability": 0.0593 }, { "start": 16189.32, "end": 16189.5, "probability": 0.5525 }, { "start": 16191.02, "end": 16192.78, "probability": 0.8106 }, { "start": 16211.1, "end": 16211.12, "probability": 0.1654 }, { "start": 16211.12, "end": 16212.88, "probability": 0.1462 }, { "start": 16213.03, "end": 16213.77, "probability": 0.0219 }, { "start": 16214.24, "end": 16214.94, "probability": 0.147 }, { "start": 16214.94, "end": 16215.0, "probability": 0.1951 }, { "start": 16216.4, "end": 16216.9, "probability": 0.0036 }, { "start": 16216.96, "end": 16219.02, "probability": 0.0345 }, { "start": 16219.02, "end": 16219.02, "probability": 0.0617 }, { "start": 16251.08, "end": 16252.58, "probability": 0.6497 }, { "start": 16254.94, "end": 16257.04, "probability": 0.6691 }, { "start": 16257.66, "end": 16258.5, "probability": 0.716 }, { "start": 16260.3, "end": 16261.12, "probability": 0.9243 }, { "start": 16262.6, "end": 16265.0, "probability": 0.8774 }, { "start": 16266.58, "end": 16270.44, "probability": 0.984 }, { "start": 16273.86, "end": 16275.12, "probability": 0.5413 }, { "start": 16276.6, "end": 16277.34, "probability": 0.7293 }, { "start": 16277.42, "end": 16278.4, "probability": 0.932 }, { "start": 16278.52, "end": 16279.5, "probability": 0.9259 }, { "start": 16279.76, "end": 16281.78, "probability": 0.9626 }, { "start": 16283.12, "end": 16284.06, "probability": 0.9055 }, { "start": 16285.3, "end": 16290.42, "probability": 0.9931 }, { "start": 16295.46, "end": 16296.42, "probability": 0.8253 }, { "start": 16299.16, "end": 16300.31, "probability": 0.9922 }, { "start": 16303.06, "end": 16305.58, "probability": 0.9054 }, { "start": 16305.68, "end": 16306.92, "probability": 0.3654 }, { "start": 16306.98, "end": 16307.74, "probability": 0.5945 }, { "start": 16307.74, "end": 16308.44, "probability": 0.6265 }, { "start": 16309.02, "end": 16311.28, "probability": 0.942 }, { "start": 16313.96, "end": 16319.08, "probability": 0.9253 }, { "start": 16320.6, "end": 16321.38, "probability": 0.4009 }, { "start": 16322.9, "end": 16326.65, "probability": 0.9564 }, { "start": 16329.36, "end": 16330.51, "probability": 0.75 }, { "start": 16332.5, "end": 16334.1, "probability": 0.8527 }, { "start": 16336.42, "end": 16337.98, "probability": 0.9963 }, { "start": 16338.08, "end": 16340.06, "probability": 0.8716 }, { "start": 16341.56, "end": 16343.1, "probability": 0.9969 }, { "start": 16343.92, "end": 16345.66, "probability": 0.985 }, { "start": 16348.04, "end": 16348.24, "probability": 0.226 }, { "start": 16351.14, "end": 16356.16, "probability": 0.9956 }, { "start": 16357.26, "end": 16357.98, "probability": 0.784 }, { "start": 16358.06, "end": 16358.74, "probability": 0.7366 }, { "start": 16358.86, "end": 16360.5, "probability": 0.9786 }, { "start": 16361.32, "end": 16363.44, "probability": 0.9868 }, { "start": 16364.8, "end": 16365.56, "probability": 0.5057 }, { "start": 16365.62, "end": 16368.96, "probability": 0.9928 }, { "start": 16370.84, "end": 16372.08, "probability": 0.9687 }, { "start": 16373.66, "end": 16375.23, "probability": 0.9702 }, { "start": 16377.68, "end": 16378.7, "probability": 0.8037 }, { "start": 16379.96, "end": 16380.84, "probability": 0.6114 }, { "start": 16381.04, "end": 16382.68, "probability": 0.8063 }, { "start": 16382.74, "end": 16387.06, "probability": 0.946 }, { "start": 16388.1, "end": 16391.28, "probability": 0.8589 }, { "start": 16391.34, "end": 16392.04, "probability": 0.9556 }, { "start": 16393.2, "end": 16394.37, "probability": 0.9935 }, { "start": 16395.34, "end": 16396.35, "probability": 0.9883 }, { "start": 16397.3, "end": 16398.58, "probability": 0.9108 }, { "start": 16400.2, "end": 16402.18, "probability": 0.9844 }, { "start": 16403.5, "end": 16407.54, "probability": 0.9143 }, { "start": 16408.26, "end": 16411.26, "probability": 0.7107 }, { "start": 16411.66, "end": 16413.06, "probability": 0.8481 }, { "start": 16413.58, "end": 16414.5, "probability": 0.9076 }, { "start": 16415.78, "end": 16417.08, "probability": 0.6971 }, { "start": 16418.06, "end": 16418.46, "probability": 0.8681 }, { "start": 16419.52, "end": 16420.3, "probability": 0.9777 }, { "start": 16420.82, "end": 16422.24, "probability": 0.9039 }, { "start": 16422.4, "end": 16425.73, "probability": 0.9802 }, { "start": 16432.14, "end": 16433.9, "probability": 0.7743 }, { "start": 16436.1, "end": 16438.3, "probability": 0.9839 }, { "start": 16438.42, "end": 16439.76, "probability": 0.9922 }, { "start": 16440.98, "end": 16442.88, "probability": 0.9951 }, { "start": 16443.66, "end": 16445.42, "probability": 0.9906 }, { "start": 16447.18, "end": 16449.58, "probability": 0.9985 }, { "start": 16450.72, "end": 16452.08, "probability": 0.9875 }, { "start": 16453.26, "end": 16453.74, "probability": 0.8027 }, { "start": 16454.4, "end": 16456.22, "probability": 0.8047 }, { "start": 16456.82, "end": 16457.56, "probability": 0.8184 }, { "start": 16458.44, "end": 16459.4, "probability": 0.9847 }, { "start": 16460.18, "end": 16461.69, "probability": 0.9733 }, { "start": 16462.48, "end": 16463.58, "probability": 0.9451 }, { "start": 16464.46, "end": 16465.26, "probability": 0.9301 }, { "start": 16466.9, "end": 16467.66, "probability": 0.9294 }, { "start": 16467.9, "end": 16470.3, "probability": 0.9951 }, { "start": 16471.74, "end": 16473.86, "probability": 0.8898 }, { "start": 16475.72, "end": 16477.84, "probability": 0.9695 }, { "start": 16479.2, "end": 16482.04, "probability": 0.9986 }, { "start": 16482.56, "end": 16484.78, "probability": 0.9973 }, { "start": 16486.1, "end": 16486.74, "probability": 0.5697 }, { "start": 16487.66, "end": 16491.8, "probability": 0.9762 }, { "start": 16493.79, "end": 16494.16, "probability": 0.0392 }, { "start": 16494.16, "end": 16498.24, "probability": 0.9224 }, { "start": 16498.26, "end": 16498.5, "probability": 0.2922 }, { "start": 16500.0, "end": 16501.52, "probability": 0.7106 }, { "start": 16503.1, "end": 16504.0, "probability": 0.8879 }, { "start": 16505.98, "end": 16508.14, "probability": 0.9627 }, { "start": 16509.84, "end": 16510.87, "probability": 0.9808 }, { "start": 16511.26, "end": 16511.76, "probability": 0.9606 }, { "start": 16512.34, "end": 16515.66, "probability": 0.8407 }, { "start": 16516.32, "end": 16523.54, "probability": 0.9404 }, { "start": 16523.64, "end": 16526.8, "probability": 0.7627 }, { "start": 16526.82, "end": 16527.38, "probability": 0.6003 }, { "start": 16527.44, "end": 16528.18, "probability": 0.5907 }, { "start": 16528.92, "end": 16530.1, "probability": 0.7229 }, { "start": 16530.6, "end": 16531.34, "probability": 0.8936 }, { "start": 16532.16, "end": 16534.84, "probability": 0.7462 }, { "start": 16535.7, "end": 16537.5, "probability": 0.9949 }, { "start": 16538.56, "end": 16539.59, "probability": 0.8877 }, { "start": 16540.58, "end": 16542.74, "probability": 0.999 }, { "start": 16543.56, "end": 16544.58, "probability": 0.67 }, { "start": 16544.7, "end": 16545.68, "probability": 0.7332 }, { "start": 16546.54, "end": 16551.36, "probability": 0.967 }, { "start": 16551.42, "end": 16552.34, "probability": 0.5787 }, { "start": 16552.98, "end": 16554.16, "probability": 0.7797 }, { "start": 16555.24, "end": 16559.06, "probability": 0.8669 }, { "start": 16559.68, "end": 16560.18, "probability": 0.6362 }, { "start": 16560.38, "end": 16562.1, "probability": 0.9491 }, { "start": 16597.08, "end": 16597.94, "probability": 0.7063 }, { "start": 16599.18, "end": 16600.92, "probability": 0.8285 }, { "start": 16602.64, "end": 16604.66, "probability": 0.8342 }, { "start": 16605.8, "end": 16609.08, "probability": 0.9837 }, { "start": 16610.78, "end": 16614.32, "probability": 0.9625 }, { "start": 16615.46, "end": 16617.62, "probability": 0.6557 }, { "start": 16618.84, "end": 16620.18, "probability": 0.9922 }, { "start": 16621.08, "end": 16622.5, "probability": 0.7289 }, { "start": 16623.24, "end": 16625.76, "probability": 0.8984 }, { "start": 16626.94, "end": 16629.8, "probability": 0.9824 }, { "start": 16630.4, "end": 16631.1, "probability": 0.9519 }, { "start": 16631.64, "end": 16632.54, "probability": 0.6561 }, { "start": 16633.46, "end": 16637.14, "probability": 0.9332 }, { "start": 16638.44, "end": 16641.0, "probability": 0.9283 }, { "start": 16642.28, "end": 16644.0, "probability": 0.8114 }, { "start": 16644.82, "end": 16646.48, "probability": 0.9557 }, { "start": 16647.22, "end": 16647.59, "probability": 0.9414 }, { "start": 16648.6, "end": 16653.2, "probability": 0.9966 }, { "start": 16654.62, "end": 16658.06, "probability": 0.9948 }, { "start": 16658.6, "end": 16660.4, "probability": 0.9848 }, { "start": 16661.64, "end": 16662.82, "probability": 0.8701 }, { "start": 16663.54, "end": 16664.96, "probability": 0.857 }, { "start": 16665.88, "end": 16672.6, "probability": 0.9892 }, { "start": 16673.58, "end": 16677.28, "probability": 0.983 }, { "start": 16677.98, "end": 16683.7, "probability": 0.9981 }, { "start": 16684.68, "end": 16684.96, "probability": 0.3776 }, { "start": 16685.86, "end": 16688.56, "probability": 0.9988 }, { "start": 16689.08, "end": 16690.62, "probability": 0.9961 }, { "start": 16691.64, "end": 16692.79, "probability": 0.9662 }, { "start": 16693.52, "end": 16698.64, "probability": 0.9167 }, { "start": 16698.64, "end": 16702.6, "probability": 0.9899 }, { "start": 16703.48, "end": 16703.52, "probability": 0.6772 }, { "start": 16704.34, "end": 16708.96, "probability": 0.9793 }, { "start": 16710.58, "end": 16710.94, "probability": 0.1777 }, { "start": 16711.38, "end": 16712.32, "probability": 0.8875 }, { "start": 16714.2, "end": 16714.74, "probability": 0.9365 }, { "start": 16715.3, "end": 16717.34, "probability": 0.6584 }, { "start": 16718.08, "end": 16718.94, "probability": 0.9135 }, { "start": 16719.96, "end": 16723.08, "probability": 0.9774 }, { "start": 16723.92, "end": 16726.34, "probability": 0.993 }, { "start": 16727.12, "end": 16728.82, "probability": 0.7551 }, { "start": 16729.64, "end": 16729.78, "probability": 0.022 }, { "start": 16730.96, "end": 16735.6, "probability": 0.79 }, { "start": 16735.6, "end": 16740.5, "probability": 0.7739 }, { "start": 16742.74, "end": 16744.46, "probability": 0.949 }, { "start": 16745.0, "end": 16747.62, "probability": 0.9945 }, { "start": 16748.14, "end": 16748.78, "probability": 0.7406 }, { "start": 16749.62, "end": 16750.18, "probability": 0.5595 }, { "start": 16753.02, "end": 16761.12, "probability": 0.9806 }, { "start": 16762.2, "end": 16763.38, "probability": 0.9961 }, { "start": 16764.42, "end": 16765.18, "probability": 0.6327 }, { "start": 16766.9, "end": 16768.16, "probability": 0.8298 }, { "start": 16768.76, "end": 16770.94, "probability": 0.9772 }, { "start": 16771.7, "end": 16776.18, "probability": 0.9514 }, { "start": 16778.48, "end": 16784.7, "probability": 0.9906 }, { "start": 16785.52, "end": 16789.86, "probability": 0.9912 }, { "start": 16792.36, "end": 16793.1, "probability": 0.2499 }, { "start": 16795.52, "end": 16795.7, "probability": 0.0994 }, { "start": 16795.7, "end": 16797.9, "probability": 0.8193 }, { "start": 16798.5, "end": 16802.46, "probability": 0.9968 }, { "start": 16802.57, "end": 16807.64, "probability": 0.9728 }, { "start": 16808.44, "end": 16808.6, "probability": 0.7231 }, { "start": 16809.54, "end": 16811.08, "probability": 0.9625 }, { "start": 16812.38, "end": 16813.26, "probability": 0.7069 }, { "start": 16814.68, "end": 16815.68, "probability": 0.9964 }, { "start": 16816.4, "end": 16819.7, "probability": 0.8101 }, { "start": 16820.6, "end": 16822.34, "probability": 0.8429 }, { "start": 16823.2, "end": 16825.52, "probability": 0.9123 }, { "start": 16826.86, "end": 16827.54, "probability": 0.744 }, { "start": 16828.2, "end": 16831.78, "probability": 0.945 }, { "start": 16832.44, "end": 16835.16, "probability": 0.9723 }, { "start": 16836.24, "end": 16839.06, "probability": 0.9233 }, { "start": 16839.76, "end": 16842.78, "probability": 0.9903 }, { "start": 16843.92, "end": 16844.66, "probability": 0.9714 }, { "start": 16845.72, "end": 16850.66, "probability": 0.9863 }, { "start": 16851.32, "end": 16857.68, "probability": 0.9829 }, { "start": 16858.94, "end": 16862.16, "probability": 0.9661 }, { "start": 16862.88, "end": 16864.24, "probability": 0.7414 }, { "start": 16864.78, "end": 16865.68, "probability": 0.9604 }, { "start": 16867.56, "end": 16871.78, "probability": 0.7093 }, { "start": 16873.14, "end": 16873.92, "probability": 0.931 }, { "start": 16875.54, "end": 16878.4, "probability": 0.9556 }, { "start": 16878.96, "end": 16882.78, "probability": 0.9694 }, { "start": 16883.84, "end": 16885.94, "probability": 0.9844 }, { "start": 16886.44, "end": 16888.08, "probability": 0.9437 }, { "start": 16888.98, "end": 16892.56, "probability": 0.9076 }, { "start": 16893.26, "end": 16895.86, "probability": 0.9844 }, { "start": 16896.4, "end": 16900.72, "probability": 0.956 }, { "start": 16901.36, "end": 16904.84, "probability": 0.9951 }, { "start": 16905.48, "end": 16907.48, "probability": 0.9638 }, { "start": 16908.1, "end": 16911.06, "probability": 0.9971 }, { "start": 16912.06, "end": 16913.08, "probability": 0.8165 }, { "start": 16913.76, "end": 16914.28, "probability": 0.9733 }, { "start": 16914.86, "end": 16915.5, "probability": 0.8018 }, { "start": 16916.22, "end": 16919.86, "probability": 0.6999 }, { "start": 16920.06, "end": 16920.84, "probability": 0.7353 }, { "start": 16921.34, "end": 16921.94, "probability": 0.7305 }, { "start": 16922.66, "end": 16928.42, "probability": 0.9763 }, { "start": 16930.1, "end": 16931.22, "probability": 0.7586 }, { "start": 16932.6, "end": 16933.02, "probability": 0.543 }, { "start": 16934.02, "end": 16935.2, "probability": 0.8436 }, { "start": 16936.06, "end": 16939.48, "probability": 0.9262 }, { "start": 16940.08, "end": 16942.4, "probability": 0.9827 }, { "start": 16944.38, "end": 16945.46, "probability": 0.8148 }, { "start": 16946.18, "end": 16947.4, "probability": 0.6152 }, { "start": 16948.28, "end": 16948.88, "probability": 0.8616 }, { "start": 16949.62, "end": 16951.5, "probability": 0.7237 }, { "start": 16952.3, "end": 16955.32, "probability": 0.998 }, { "start": 16955.94, "end": 16957.86, "probability": 0.7886 }, { "start": 16958.52, "end": 16964.48, "probability": 0.9572 }, { "start": 16965.92, "end": 16970.36, "probability": 0.9572 }, { "start": 16971.14, "end": 16972.52, "probability": 0.9054 }, { "start": 16973.26, "end": 16977.66, "probability": 0.9952 }, { "start": 16978.26, "end": 16979.02, "probability": 0.8242 }, { "start": 16980.08, "end": 16984.12, "probability": 0.992 }, { "start": 16984.72, "end": 16985.9, "probability": 0.7318 }, { "start": 16986.42, "end": 16989.9, "probability": 0.9583 }, { "start": 16991.26, "end": 16992.1, "probability": 0.7137 }, { "start": 16993.43, "end": 16997.6, "probability": 0.6422 }, { "start": 16998.3, "end": 16999.98, "probability": 0.9824 }, { "start": 17000.58, "end": 17002.84, "probability": 0.937 }, { "start": 17003.48, "end": 17004.1, "probability": 0.8635 }, { "start": 17004.68, "end": 17006.78, "probability": 0.9897 }, { "start": 17008.26, "end": 17011.78, "probability": 0.9073 }, { "start": 17012.68, "end": 17017.54, "probability": 0.9365 }, { "start": 17017.66, "end": 17017.92, "probability": 0.5053 }, { "start": 17019.26, "end": 17024.02, "probability": 0.5285 }, { "start": 17025.12, "end": 17025.82, "probability": 0.8542 }, { "start": 17026.72, "end": 17027.94, "probability": 0.7283 }, { "start": 17029.46, "end": 17029.88, "probability": 0.8072 }, { "start": 17030.44, "end": 17031.3, "probability": 0.9651 }, { "start": 17032.66, "end": 17036.24, "probability": 0.9924 }, { "start": 17036.32, "end": 17039.24, "probability": 0.9923 }, { "start": 17042.42, "end": 17047.16, "probability": 0.981 }, { "start": 17047.78, "end": 17049.34, "probability": 0.9641 }, { "start": 17049.64, "end": 17050.36, "probability": 0.8235 }, { "start": 17050.4, "end": 17051.48, "probability": 0.9987 }, { "start": 17052.52, "end": 17053.63, "probability": 0.811 }, { "start": 17053.82, "end": 17054.9, "probability": 0.8259 }, { "start": 17055.0, "end": 17056.04, "probability": 0.8085 }, { "start": 17057.84, "end": 17059.02, "probability": 0.508 }, { "start": 17060.16, "end": 17063.14, "probability": 0.9374 }, { "start": 17063.26, "end": 17065.76, "probability": 0.9321 }, { "start": 17067.34, "end": 17070.24, "probability": 0.9536 }, { "start": 17070.38, "end": 17071.44, "probability": 0.926 }, { "start": 17073.68, "end": 17075.68, "probability": 0.9409 }, { "start": 17077.28, "end": 17079.64, "probability": 0.9523 }, { "start": 17080.38, "end": 17082.32, "probability": 0.9921 }, { "start": 17083.16, "end": 17085.64, "probability": 0.9933 }, { "start": 17087.02, "end": 17089.34, "probability": 0.997 }, { "start": 17090.06, "end": 17092.36, "probability": 0.9507 }, { "start": 17094.28, "end": 17095.54, "probability": 0.0948 }, { "start": 17095.64, "end": 17096.42, "probability": 0.3851 }, { "start": 17096.94, "end": 17097.74, "probability": 0.7772 }, { "start": 17097.78, "end": 17098.56, "probability": 0.7262 }, { "start": 17098.76, "end": 17102.36, "probability": 0.8488 }, { "start": 17103.16, "end": 17104.2, "probability": 0.6521 }, { "start": 17105.14, "end": 17108.02, "probability": 0.9883 }, { "start": 17109.26, "end": 17109.8, "probability": 0.5746 }, { "start": 17110.64, "end": 17111.76, "probability": 0.9739 }, { "start": 17113.0, "end": 17115.4, "probability": 0.9917 }, { "start": 17115.96, "end": 17117.12, "probability": 0.9678 }, { "start": 17117.62, "end": 17119.88, "probability": 0.5712 }, { "start": 17120.06, "end": 17121.1, "probability": 0.089 }, { "start": 17122.06, "end": 17122.46, "probability": 0.8006 }, { "start": 17122.66, "end": 17126.76, "probability": 0.9201 }, { "start": 17128.16, "end": 17130.1, "probability": 0.9297 }, { "start": 17133.54, "end": 17134.74, "probability": 0.7795 }, { "start": 17134.98, "end": 17134.98, "probability": 0.7325 }, { "start": 17134.98, "end": 17135.92, "probability": 0.6872 }, { "start": 17136.0, "end": 17136.22, "probability": 0.6431 }, { "start": 17136.7, "end": 17139.6, "probability": 0.2761 }, { "start": 17139.8, "end": 17140.98, "probability": 0.8961 }, { "start": 17141.88, "end": 17144.38, "probability": 0.9395 }, { "start": 17144.9, "end": 17146.48, "probability": 0.8209 }, { "start": 17146.54, "end": 17147.3, "probability": 0.9502 }, { "start": 17147.38, "end": 17148.02, "probability": 0.6871 }, { "start": 17148.56, "end": 17153.36, "probability": 0.8169 }, { "start": 17153.94, "end": 17156.44, "probability": 0.9868 }, { "start": 17156.7, "end": 17158.76, "probability": 0.6856 }, { "start": 17159.2, "end": 17159.84, "probability": 0.6988 }, { "start": 17161.02, "end": 17162.96, "probability": 0.8876 }, { "start": 17163.68, "end": 17165.22, "probability": 0.8798 }, { "start": 17165.36, "end": 17165.86, "probability": 0.9359 }, { "start": 17166.08, "end": 17166.7, "probability": 0.6462 }, { "start": 17166.92, "end": 17170.16, "probability": 0.5712 }, { "start": 17170.32, "end": 17170.82, "probability": 0.6322 }, { "start": 17170.82, "end": 17172.92, "probability": 0.9158 }, { "start": 17173.38, "end": 17173.64, "probability": 0.8208 }, { "start": 17173.66, "end": 17181.59, "probability": 0.8451 }, { "start": 17181.88, "end": 17182.42, "probability": 0.7212 }, { "start": 17183.52, "end": 17183.98, "probability": 0.7032 }, { "start": 17184.12, "end": 17184.5, "probability": 0.4777 }, { "start": 17185.44, "end": 17189.02, "probability": 0.884 }, { "start": 17189.1, "end": 17189.96, "probability": 0.9961 }, { "start": 17191.08, "end": 17193.84, "probability": 0.9799 }, { "start": 17196.28, "end": 17197.38, "probability": 0.7568 }, { "start": 17198.62, "end": 17199.08, "probability": 0.897 }, { "start": 17200.06, "end": 17202.29, "probability": 0.3011 }, { "start": 17202.64, "end": 17204.1, "probability": 0.6731 }, { "start": 17204.74, "end": 17205.11, "probability": 0.131 }, { "start": 17205.6, "end": 17205.6, "probability": 0.4099 }, { "start": 17206.1, "end": 17207.62, "probability": 0.4542 }, { "start": 17207.92, "end": 17213.87, "probability": 0.9965 }, { "start": 17214.9, "end": 17216.8, "probability": 0.0514 }, { "start": 17216.8, "end": 17219.02, "probability": 0.8354 }, { "start": 17219.6, "end": 17224.04, "probability": 0.1443 }, { "start": 17224.42, "end": 17225.04, "probability": 0.0535 }, { "start": 17225.04, "end": 17225.04, "probability": 0.371 }, { "start": 17225.04, "end": 17225.9, "probability": 0.5615 }, { "start": 17226.44, "end": 17228.4, "probability": 0.7277 }, { "start": 17228.4, "end": 17229.88, "probability": 0.7783 }, { "start": 17230.4, "end": 17232.7, "probability": 0.0614 }, { "start": 17233.22, "end": 17233.22, "probability": 0.0846 }, { "start": 17233.22, "end": 17233.22, "probability": 0.0423 }, { "start": 17233.22, "end": 17233.22, "probability": 0.0703 }, { "start": 17233.22, "end": 17233.22, "probability": 0.4087 }, { "start": 17233.22, "end": 17235.5, "probability": 0.359 }, { "start": 17235.7, "end": 17236.24, "probability": 0.5812 }, { "start": 17236.4, "end": 17237.06, "probability": 0.3308 }, { "start": 17237.24, "end": 17237.78, "probability": 0.3684 }, { "start": 17238.9, "end": 17243.8, "probability": 0.6217 }, { "start": 17243.96, "end": 17244.87, "probability": 0.5293 }, { "start": 17245.66, "end": 17246.84, "probability": 0.8265 }, { "start": 17247.5, "end": 17247.84, "probability": 0.8805 }, { "start": 17248.16, "end": 17250.88, "probability": 0.6532 }, { "start": 17251.66, "end": 17252.4, "probability": 0.8236 }, { "start": 17253.02, "end": 17255.18, "probability": 0.8277 }, { "start": 17255.28, "end": 17255.48, "probability": 0.0435 }, { "start": 17255.48, "end": 17257.02, "probability": 0.4282 }, { "start": 17257.14, "end": 17259.44, "probability": 0.7315 }, { "start": 17259.88, "end": 17261.14, "probability": 0.9212 }, { "start": 17263.08, "end": 17267.9, "probability": 0.7889 }, { "start": 17268.64, "end": 17269.66, "probability": 0.6128 }, { "start": 17269.84, "end": 17272.66, "probability": 0.9746 }, { "start": 17273.06, "end": 17273.5, "probability": 0.7795 }, { "start": 17274.98, "end": 17275.68, "probability": 0.8523 }, { "start": 17275.84, "end": 17278.35, "probability": 0.9836 }, { "start": 17279.08, "end": 17279.58, "probability": 0.9274 }, { "start": 17279.64, "end": 17280.0, "probability": 0.8541 }, { "start": 17280.32, "end": 17281.52, "probability": 0.8843 }, { "start": 17282.16, "end": 17283.42, "probability": 0.8263 }, { "start": 17283.98, "end": 17285.92, "probability": 0.9937 }, { "start": 17286.27, "end": 17289.06, "probability": 0.7156 }, { "start": 17289.58, "end": 17291.42, "probability": 0.9655 }, { "start": 17292.3, "end": 17295.48, "probability": 0.9834 }, { "start": 17296.42, "end": 17299.62, "probability": 0.7006 }, { "start": 17299.74, "end": 17301.3, "probability": 0.9927 }, { "start": 17301.82, "end": 17305.26, "probability": 0.9409 }, { "start": 17305.94, "end": 17307.02, "probability": 0.8782 }, { "start": 17307.24, "end": 17309.18, "probability": 0.9866 }, { "start": 17309.36, "end": 17312.36, "probability": 0.9531 }, { "start": 17312.9, "end": 17316.24, "probability": 0.9956 }, { "start": 17316.7, "end": 17319.24, "probability": 0.8831 }, { "start": 17319.54, "end": 17323.08, "probability": 0.9875 }, { "start": 17323.16, "end": 17324.82, "probability": 0.7866 }, { "start": 17325.4, "end": 17327.58, "probability": 0.9526 }, { "start": 17328.48, "end": 17331.58, "probability": 0.716 }, { "start": 17332.44, "end": 17332.44, "probability": 0.0308 }, { "start": 17332.44, "end": 17332.44, "probability": 0.0384 }, { "start": 17332.44, "end": 17333.13, "probability": 0.3975 }, { "start": 17333.32, "end": 17334.44, "probability": 0.9196 }, { "start": 17334.54, "end": 17335.57, "probability": 0.7181 }, { "start": 17336.08, "end": 17337.7, "probability": 0.7951 }, { "start": 17337.96, "end": 17339.18, "probability": 0.8719 }, { "start": 17339.28, "end": 17339.76, "probability": 0.8259 }, { "start": 17340.26, "end": 17345.32, "probability": 0.9373 }, { "start": 17345.78, "end": 17347.16, "probability": 0.9954 }, { "start": 17348.64, "end": 17349.36, "probability": 0.6709 }, { "start": 17349.38, "end": 17350.0, "probability": 0.6474 }, { "start": 17350.08, "end": 17351.98, "probability": 0.9792 }, { "start": 17367.08, "end": 17367.96, "probability": 0.16 }, { "start": 17380.84, "end": 17380.96, "probability": 0.7664 }, { "start": 17383.36, "end": 17384.0, "probability": 0.7713 }, { "start": 17384.68, "end": 17385.58, "probability": 0.7867 }, { "start": 17387.34, "end": 17391.64, "probability": 0.9965 }, { "start": 17392.82, "end": 17393.7, "probability": 0.9588 }, { "start": 17394.24, "end": 17395.72, "probability": 0.9472 }, { "start": 17397.38, "end": 17398.96, "probability": 0.999 }, { "start": 17400.34, "end": 17401.52, "probability": 0.9948 }, { "start": 17402.46, "end": 17403.6, "probability": 0.7168 }, { "start": 17404.68, "end": 17410.88, "probability": 0.9058 }, { "start": 17411.44, "end": 17413.5, "probability": 0.8442 }, { "start": 17413.66, "end": 17415.08, "probability": 0.9867 }, { "start": 17415.52, "end": 17417.22, "probability": 0.996 }, { "start": 17417.66, "end": 17418.18, "probability": 0.8165 }, { "start": 17418.94, "end": 17419.44, "probability": 0.7951 }, { "start": 17420.84, "end": 17422.8, "probability": 0.9794 }, { "start": 17423.6, "end": 17424.16, "probability": 0.8904 }, { "start": 17425.42, "end": 17427.46, "probability": 0.9843 }, { "start": 17428.14, "end": 17433.08, "probability": 0.9658 }, { "start": 17433.86, "end": 17435.54, "probability": 0.882 }, { "start": 17435.94, "end": 17436.58, "probability": 0.9431 }, { "start": 17437.6, "end": 17438.4, "probability": 0.6785 }, { "start": 17439.56, "end": 17442.34, "probability": 0.9889 }, { "start": 17442.4, "end": 17442.54, "probability": 0.7781 }, { "start": 17442.68, "end": 17445.5, "probability": 0.9896 }, { "start": 17445.72, "end": 17447.4, "probability": 0.9569 }, { "start": 17448.22, "end": 17452.46, "probability": 0.8992 }, { "start": 17453.02, "end": 17454.78, "probability": 0.9913 }, { "start": 17455.42, "end": 17460.52, "probability": 0.9922 }, { "start": 17460.8, "end": 17464.56, "probability": 0.9938 }, { "start": 17465.96, "end": 17466.72, "probability": 0.85 }, { "start": 17467.84, "end": 17469.18, "probability": 0.8951 }, { "start": 17470.16, "end": 17471.62, "probability": 0.6066 }, { "start": 17472.6, "end": 17473.34, "probability": 0.9966 }, { "start": 17474.94, "end": 17477.08, "probability": 0.9117 }, { "start": 17477.84, "end": 17479.12, "probability": 0.9472 }, { "start": 17479.72, "end": 17482.6, "probability": 0.9876 }, { "start": 17483.64, "end": 17484.76, "probability": 0.9772 }, { "start": 17485.32, "end": 17488.46, "probability": 0.9696 }, { "start": 17488.62, "end": 17489.28, "probability": 0.877 }, { "start": 17489.68, "end": 17490.24, "probability": 0.7497 }, { "start": 17490.58, "end": 17491.4, "probability": 0.6732 }, { "start": 17491.92, "end": 17494.38, "probability": 0.9326 }, { "start": 17495.16, "end": 17495.68, "probability": 0.9246 }, { "start": 17496.32, "end": 17498.68, "probability": 0.9701 }, { "start": 17499.52, "end": 17502.66, "probability": 0.8359 }, { "start": 17503.28, "end": 17504.88, "probability": 0.9899 }, { "start": 17505.38, "end": 17509.3, "probability": 0.9254 }, { "start": 17509.9, "end": 17510.02, "probability": 0.4015 }, { "start": 17511.04, "end": 17511.08, "probability": 0.519 }, { "start": 17512.28, "end": 17512.78, "probability": 0.7182 }, { "start": 17513.74, "end": 17516.08, "probability": 0.9048 }, { "start": 17517.6, "end": 17518.78, "probability": 0.8342 }, { "start": 17519.46, "end": 17520.64, "probability": 0.8873 }, { "start": 17521.38, "end": 17522.78, "probability": 0.962 }, { "start": 17522.9, "end": 17524.82, "probability": 0.729 }, { "start": 17524.9, "end": 17525.4, "probability": 0.556 }, { "start": 17525.54, "end": 17526.02, "probability": 0.752 }, { "start": 17526.24, "end": 17526.7, "probability": 0.7381 }, { "start": 17527.34, "end": 17527.98, "probability": 0.7396 }, { "start": 17528.0, "end": 17528.88, "probability": 0.7317 }, { "start": 17529.18, "end": 17530.69, "probability": 0.9438 }, { "start": 17531.2, "end": 17536.84, "probability": 0.3089 }, { "start": 17536.96, "end": 17538.42, "probability": 0.6738 }, { "start": 17538.46, "end": 17541.28, "probability": 0.8957 }, { "start": 17541.52, "end": 17544.1, "probability": 0.9922 }, { "start": 17544.54, "end": 17544.82, "probability": 0.4985 }, { "start": 17545.14, "end": 17545.3, "probability": 0.8187 }, { "start": 17545.56, "end": 17545.96, "probability": 0.9393 }, { "start": 17546.18, "end": 17546.56, "probability": 0.9464 }, { "start": 17546.82, "end": 17549.86, "probability": 0.8561 }, { "start": 17550.22, "end": 17551.22, "probability": 0.9082 }, { "start": 17551.32, "end": 17552.02, "probability": 0.4996 }, { "start": 17552.92, "end": 17554.86, "probability": 0.9759 }, { "start": 17555.24, "end": 17556.02, "probability": 0.8835 }, { "start": 17556.5, "end": 17556.62, "probability": 0.2685 }, { "start": 17556.72, "end": 17557.46, "probability": 0.9368 }, { "start": 17557.52, "end": 17558.75, "probability": 0.9771 }, { "start": 17559.52, "end": 17560.29, "probability": 0.9705 }, { "start": 17560.58, "end": 17561.7, "probability": 0.9893 }, { "start": 17561.82, "end": 17562.28, "probability": 0.7831 }, { "start": 17562.72, "end": 17563.3, "probability": 0.59 }, { "start": 17564.56, "end": 17567.4, "probability": 0.9939 }, { "start": 17568.0, "end": 17569.56, "probability": 0.974 }, { "start": 17570.18, "end": 17571.68, "probability": 0.9744 }, { "start": 17572.4, "end": 17575.28, "probability": 0.9862 }, { "start": 17578.08, "end": 17581.9, "probability": 0.8576 }, { "start": 17583.0, "end": 17583.8, "probability": 0.8215 }, { "start": 17584.32, "end": 17587.46, "probability": 0.8491 }, { "start": 17588.12, "end": 17588.3, "probability": 0.9324 }, { "start": 17588.96, "end": 17592.6, "probability": 0.9771 }, { "start": 17593.18, "end": 17593.84, "probability": 0.6962 }, { "start": 17594.16, "end": 17594.86, "probability": 0.5377 }, { "start": 17594.94, "end": 17596.02, "probability": 0.7956 }, { "start": 17596.52, "end": 17597.5, "probability": 0.9142 }, { "start": 17598.24, "end": 17601.26, "probability": 0.9246 }, { "start": 17602.04, "end": 17605.44, "probability": 0.9595 }, { "start": 17606.12, "end": 17607.26, "probability": 0.7952 }, { "start": 17607.78, "end": 17608.84, "probability": 0.9822 }, { "start": 17609.26, "end": 17612.94, "probability": 0.9062 }, { "start": 17613.2, "end": 17614.92, "probability": 0.9871 }, { "start": 17615.34, "end": 17617.04, "probability": 0.9261 }, { "start": 17617.34, "end": 17618.36, "probability": 0.6554 }, { "start": 17618.96, "end": 17619.76, "probability": 0.7887 }, { "start": 17620.28, "end": 17623.3, "probability": 0.963 }, { "start": 17624.04, "end": 17627.82, "probability": 0.8965 }, { "start": 17627.92, "end": 17629.62, "probability": 0.9295 }, { "start": 17630.06, "end": 17631.16, "probability": 0.9741 }, { "start": 17631.5, "end": 17635.14, "probability": 0.6841 }, { "start": 17635.56, "end": 17638.68, "probability": 0.9893 }, { "start": 17639.78, "end": 17642.82, "probability": 0.9274 }, { "start": 17642.9, "end": 17643.78, "probability": 0.9985 }, { "start": 17644.26, "end": 17645.18, "probability": 0.9829 }, { "start": 17645.24, "end": 17646.6, "probability": 0.9655 }, { "start": 17647.14, "end": 17647.8, "probability": 0.4538 }, { "start": 17648.48, "end": 17649.14, "probability": 0.3483 }, { "start": 17649.66, "end": 17650.4, "probability": 0.6794 }, { "start": 17650.92, "end": 17651.5, "probability": 0.8338 }, { "start": 17651.94, "end": 17652.98, "probability": 0.8994 }, { "start": 17653.36, "end": 17654.01, "probability": 0.864 }, { "start": 17654.54, "end": 17655.62, "probability": 0.543 }, { "start": 17655.72, "end": 17657.66, "probability": 0.9915 }, { "start": 17658.1, "end": 17658.9, "probability": 0.7279 }, { "start": 17659.42, "end": 17661.91, "probability": 0.8768 }, { "start": 17662.16, "end": 17663.68, "probability": 0.9317 }, { "start": 17663.94, "end": 17664.2, "probability": 0.655 }, { "start": 17664.24, "end": 17665.36, "probability": 0.9567 }, { "start": 17665.46, "end": 17669.2, "probability": 0.9316 }, { "start": 17669.76, "end": 17669.94, "probability": 0.0732 }, { "start": 17670.38, "end": 17670.7, "probability": 0.7968 }, { "start": 17671.52, "end": 17672.32, "probability": 0.9465 }, { "start": 17672.38, "end": 17673.88, "probability": 0.9465 }, { "start": 17674.6, "end": 17675.42, "probability": 0.7935 }, { "start": 17676.4, "end": 17677.28, "probability": 0.8206 }, { "start": 17677.54, "end": 17678.9, "probability": 0.979 }, { "start": 17679.54, "end": 17680.94, "probability": 0.9799 }, { "start": 17681.64, "end": 17684.9, "probability": 0.6824 }, { "start": 17685.06, "end": 17685.54, "probability": 0.9321 }, { "start": 17685.82, "end": 17686.7, "probability": 0.7703 }, { "start": 17687.4, "end": 17691.08, "probability": 0.9062 }, { "start": 17691.52, "end": 17693.1, "probability": 0.8832 }, { "start": 17693.2, "end": 17694.1, "probability": 0.9362 }, { "start": 17694.42, "end": 17694.92, "probability": 0.3219 }, { "start": 17695.04, "end": 17697.52, "probability": 0.9904 }, { "start": 17698.04, "end": 17698.28, "probability": 0.0408 }, { "start": 17698.28, "end": 17698.64, "probability": 0.2992 }, { "start": 17699.24, "end": 17700.44, "probability": 0.9174 }, { "start": 17700.8, "end": 17703.34, "probability": 0.981 }, { "start": 17703.92, "end": 17704.44, "probability": 0.9082 }, { "start": 17705.18, "end": 17707.42, "probability": 0.9356 }, { "start": 17708.06, "end": 17708.26, "probability": 0.3598 }, { "start": 17708.34, "end": 17711.5, "probability": 0.9658 }, { "start": 17711.98, "end": 17712.6, "probability": 0.831 }, { "start": 17713.34, "end": 17714.7, "probability": 0.9848 }, { "start": 17715.44, "end": 17717.24, "probability": 0.9601 }, { "start": 17717.76, "end": 17718.46, "probability": 0.7647 }, { "start": 17719.18, "end": 17721.9, "probability": 0.9964 }, { "start": 17722.02, "end": 17722.46, "probability": 0.526 }, { "start": 17722.58, "end": 17723.02, "probability": 0.4498 }, { "start": 17723.5, "end": 17726.34, "probability": 0.9935 }, { "start": 17727.02, "end": 17727.48, "probability": 0.76 }, { "start": 17727.94, "end": 17731.24, "probability": 0.9834 }, { "start": 17731.64, "end": 17732.02, "probability": 0.9143 }, { "start": 17733.04, "end": 17735.92, "probability": 0.9938 }, { "start": 17736.32, "end": 17736.82, "probability": 0.8456 }, { "start": 17737.06, "end": 17737.56, "probability": 0.8188 }, { "start": 17737.82, "end": 17738.16, "probability": 0.834 }, { "start": 17739.0, "end": 17739.48, "probability": 0.9463 }, { "start": 17740.16, "end": 17741.1, "probability": 0.9033 }, { "start": 17741.84, "end": 17742.36, "probability": 0.7466 }, { "start": 17742.98, "end": 17744.64, "probability": 0.4285 }, { "start": 17746.78, "end": 17749.48, "probability": 0.9856 }, { "start": 17750.18, "end": 17750.76, "probability": 0.5181 }, { "start": 17751.56, "end": 17752.9, "probability": 0.951 }, { "start": 17753.1, "end": 17755.46, "probability": 0.7969 }, { "start": 17756.3, "end": 17756.88, "probability": 0.9781 }, { "start": 17757.5, "end": 17758.04, "probability": 0.7365 }, { "start": 17758.22, "end": 17761.17, "probability": 0.9772 }, { "start": 17761.46, "end": 17762.16, "probability": 0.7512 }, { "start": 17763.26, "end": 17767.02, "probability": 0.9913 }, { "start": 17767.76, "end": 17768.5, "probability": 0.7773 }, { "start": 17769.68, "end": 17772.44, "probability": 0.9937 }, { "start": 17772.84, "end": 17774.23, "probability": 0.9416 }, { "start": 17774.7, "end": 17775.36, "probability": 0.9689 }, { "start": 17775.92, "end": 17780.14, "probability": 0.9717 }, { "start": 17780.3, "end": 17780.5, "probability": 0.6074 }, { "start": 17781.36, "end": 17783.52, "probability": 0.9656 }, { "start": 17784.16, "end": 17784.86, "probability": 0.5622 }, { "start": 17785.62, "end": 17786.62, "probability": 0.9979 }, { "start": 17787.42, "end": 17788.56, "probability": 0.9988 }, { "start": 17789.36, "end": 17790.5, "probability": 0.9371 }, { "start": 17790.62, "end": 17791.5, "probability": 0.8757 }, { "start": 17791.92, "end": 17793.08, "probability": 0.9867 }, { "start": 17793.4, "end": 17795.24, "probability": 0.9936 }, { "start": 17795.48, "end": 17797.16, "probability": 0.993 }, { "start": 17797.66, "end": 17799.22, "probability": 0.9727 }, { "start": 17800.16, "end": 17802.62, "probability": 0.6265 }, { "start": 17802.62, "end": 17803.12, "probability": 0.6872 }, { "start": 17803.82, "end": 17804.59, "probability": 0.7234 }, { "start": 17805.12, "end": 17808.08, "probability": 0.5681 }, { "start": 17808.56, "end": 17811.76, "probability": 0.8709 }, { "start": 17811.76, "end": 17812.92, "probability": 0.3501 }, { "start": 17812.94, "end": 17813.5, "probability": 0.6508 }, { "start": 17813.64, "end": 17814.04, "probability": 0.5531 }, { "start": 17814.42, "end": 17815.58, "probability": 0.8866 }, { "start": 17815.88, "end": 17818.12, "probability": 0.5798 }, { "start": 17818.18, "end": 17819.56, "probability": 0.6132 }, { "start": 17819.6, "end": 17819.76, "probability": 0.5279 }, { "start": 17820.68, "end": 17821.2, "probability": 0.9425 }, { "start": 17821.56, "end": 17823.04, "probability": 0.8657 }, { "start": 17823.66, "end": 17824.56, "probability": 0.8774 }, { "start": 17825.66, "end": 17830.1, "probability": 0.9974 }, { "start": 17830.1, "end": 17833.2, "probability": 0.9982 }, { "start": 17833.7, "end": 17834.34, "probability": 0.8298 }, { "start": 17835.02, "end": 17836.54, "probability": 0.996 }, { "start": 17837.12, "end": 17840.4, "probability": 0.8893 }, { "start": 17840.86, "end": 17841.74, "probability": 0.9311 }, { "start": 17842.06, "end": 17843.86, "probability": 0.9648 }, { "start": 17844.48, "end": 17846.72, "probability": 0.592 }, { "start": 17848.02, "end": 17849.92, "probability": 0.9803 }, { "start": 17851.28, "end": 17851.93, "probability": 0.5052 }, { "start": 17853.1, "end": 17854.02, "probability": 0.9788 }, { "start": 17854.7, "end": 17855.64, "probability": 0.9844 }, { "start": 17856.2, "end": 17857.54, "probability": 0.9951 }, { "start": 17858.32, "end": 17859.38, "probability": 0.9766 }, { "start": 17859.52, "end": 17860.06, "probability": 0.7491 }, { "start": 17860.22, "end": 17861.78, "probability": 0.9863 }, { "start": 17862.24, "end": 17863.68, "probability": 0.9893 }, { "start": 17864.34, "end": 17866.51, "probability": 0.9328 }, { "start": 17867.06, "end": 17867.8, "probability": 0.9666 }, { "start": 17868.38, "end": 17869.44, "probability": 0.9655 }, { "start": 17870.08, "end": 17870.96, "probability": 0.9709 }, { "start": 17871.3, "end": 17874.14, "probability": 0.9927 }, { "start": 17874.66, "end": 17876.08, "probability": 0.838 }, { "start": 17876.92, "end": 17877.6, "probability": 0.7834 }, { "start": 17878.68, "end": 17879.74, "probability": 0.9253 }, { "start": 17880.16, "end": 17881.12, "probability": 0.7397 }, { "start": 17881.36, "end": 17882.04, "probability": 0.8139 }, { "start": 17882.36, "end": 17883.64, "probability": 0.9639 }, { "start": 17884.42, "end": 17886.16, "probability": 0.6551 }, { "start": 17887.04, "end": 17890.0, "probability": 0.9907 }, { "start": 17890.46, "end": 17891.62, "probability": 0.8144 }, { "start": 17892.14, "end": 17894.0, "probability": 0.9928 }, { "start": 17894.04, "end": 17894.7, "probability": 0.8595 }, { "start": 17894.84, "end": 17895.9, "probability": 0.9172 }, { "start": 17896.12, "end": 17897.34, "probability": 0.9979 }, { "start": 17898.12, "end": 17899.42, "probability": 0.9547 }, { "start": 17899.74, "end": 17901.08, "probability": 0.8685 }, { "start": 17901.32, "end": 17904.26, "probability": 0.9944 }, { "start": 17904.94, "end": 17908.42, "probability": 0.9927 }, { "start": 17909.32, "end": 17909.7, "probability": 0.274 }, { "start": 17909.7, "end": 17912.44, "probability": 0.9171 }, { "start": 17912.56, "end": 17914.52, "probability": 0.9981 }, { "start": 17914.84, "end": 17915.56, "probability": 0.9147 }, { "start": 17915.94, "end": 17917.56, "probability": 0.9955 }, { "start": 17917.7, "end": 17918.94, "probability": 0.9888 }, { "start": 17919.6, "end": 17922.12, "probability": 0.9961 }, { "start": 17922.12, "end": 17925.08, "probability": 0.9874 }, { "start": 17925.82, "end": 17929.81, "probability": 0.9525 }, { "start": 17930.56, "end": 17932.18, "probability": 0.8107 }, { "start": 17932.78, "end": 17933.92, "probability": 0.5475 }, { "start": 17934.08, "end": 17935.36, "probability": 0.9355 }, { "start": 17935.8, "end": 17936.5, "probability": 0.769 }, { "start": 17936.62, "end": 17937.01, "probability": 0.79 }, { "start": 17938.1, "end": 17939.08, "probability": 0.5465 }, { "start": 17940.84, "end": 17942.12, "probability": 0.8835 }, { "start": 17942.8, "end": 17945.1, "probability": 0.9288 }, { "start": 17946.1, "end": 17947.22, "probability": 0.9709 }, { "start": 17947.9, "end": 17950.26, "probability": 0.7935 }, { "start": 17951.08, "end": 17951.34, "probability": 0.6772 }, { "start": 17952.06, "end": 17955.76, "probability": 0.8293 }, { "start": 17956.28, "end": 17958.38, "probability": 0.8514 }, { "start": 17959.04, "end": 17960.6, "probability": 0.954 }, { "start": 17961.06, "end": 17964.96, "probability": 0.9643 }, { "start": 17965.08, "end": 17966.04, "probability": 0.9238 }, { "start": 17966.68, "end": 17968.04, "probability": 0.9761 }, { "start": 17968.64, "end": 17971.18, "probability": 0.8867 }, { "start": 17971.54, "end": 17975.02, "probability": 0.7334 }, { "start": 17975.28, "end": 17975.8, "probability": 0.7913 }, { "start": 17975.9, "end": 17976.18, "probability": 0.8278 }, { "start": 17976.54, "end": 17980.88, "probability": 0.9219 }, { "start": 17981.24, "end": 17981.86, "probability": 0.8882 }, { "start": 17981.96, "end": 17983.02, "probability": 0.9449 }, { "start": 17983.18, "end": 17983.86, "probability": 0.9539 }, { "start": 17983.94, "end": 17984.74, "probability": 0.6515 }, { "start": 17986.04, "end": 17987.12, "probability": 0.3154 }, { "start": 17987.64, "end": 17989.1, "probability": 0.3823 }, { "start": 17990.48, "end": 17991.3, "probability": 0.088 }, { "start": 17992.94, "end": 17994.88, "probability": 0.8062 }, { "start": 17994.98, "end": 17996.62, "probability": 0.8043 }, { "start": 17997.56, "end": 17997.92, "probability": 0.0652 }, { "start": 17998.18, "end": 17998.52, "probability": 0.6965 }, { "start": 17999.62, "end": 17999.94, "probability": 0.1811 }, { "start": 17999.94, "end": 18000.88, "probability": 0.5653 }, { "start": 18001.66, "end": 18002.92, "probability": 0.0559 }, { "start": 18003.34, "end": 18005.22, "probability": 0.0877 }, { "start": 18005.84, "end": 18006.24, "probability": 0.1945 }, { "start": 18006.24, "end": 18006.72, "probability": 0.1783 }, { "start": 18008.58, "end": 18009.46, "probability": 0.9257 }, { "start": 18011.14, "end": 18013.74, "probability": 0.9905 }, { "start": 18014.6, "end": 18016.62, "probability": 0.9188 }, { "start": 18017.26, "end": 18018.7, "probability": 0.9885 }, { "start": 18019.26, "end": 18020.28, "probability": 0.9956 }, { "start": 18021.09, "end": 18023.48, "probability": 0.7992 }, { "start": 18023.9, "end": 18023.9, "probability": 0.7371 }, { "start": 18023.92, "end": 18025.43, "probability": 0.8002 }, { "start": 18025.6, "end": 18029.36, "probability": 0.9771 }, { "start": 18030.16, "end": 18032.5, "probability": 0.9632 }, { "start": 18033.18, "end": 18034.6, "probability": 0.8894 }, { "start": 18035.24, "end": 18037.4, "probability": 0.9928 }, { "start": 18038.18, "end": 18039.34, "probability": 0.6734 }, { "start": 18039.48, "end": 18039.84, "probability": 0.9116 }, { "start": 18041.1, "end": 18043.18, "probability": 0.8347 }, { "start": 18043.46, "end": 18045.78, "probability": 0.9923 }, { "start": 18046.88, "end": 18047.64, "probability": 0.8643 }, { "start": 18048.68, "end": 18051.74, "probability": 0.9889 }, { "start": 18052.53, "end": 18053.4, "probability": 0.046 }, { "start": 18053.4, "end": 18053.82, "probability": 0.4118 }, { "start": 18054.12, "end": 18056.08, "probability": 0.959 }, { "start": 18056.1, "end": 18056.7, "probability": 0.5045 }, { "start": 18056.7, "end": 18056.74, "probability": 0.5015 }, { "start": 18057.3, "end": 18058.5, "probability": 0.5972 }, { "start": 18058.84, "end": 18059.86, "probability": 0.9167 }, { "start": 18060.16, "end": 18060.82, "probability": 0.9891 }, { "start": 18061.64, "end": 18062.38, "probability": 0.9756 }, { "start": 18062.54, "end": 18063.44, "probability": 0.4863 }, { "start": 18063.7, "end": 18065.18, "probability": 0.7126 }, { "start": 18065.32, "end": 18069.78, "probability": 0.9597 }, { "start": 18069.78, "end": 18069.85, "probability": 0.1292 }, { "start": 18070.1, "end": 18072.76, "probability": 0.9346 }, { "start": 18075.1, "end": 18075.78, "probability": 0.0117 }, { "start": 18075.78, "end": 18075.78, "probability": 0.091 }, { "start": 18075.78, "end": 18076.3, "probability": 0.2892 }, { "start": 18080.04, "end": 18080.22, "probability": 0.3248 }, { "start": 18080.22, "end": 18081.32, "probability": 0.0721 }, { "start": 18083.78, "end": 18084.12, "probability": 0.1086 }, { "start": 18084.94, "end": 18085.44, "probability": 0.0639 }, { "start": 18085.92, "end": 18086.52, "probability": 0.0355 }, { "start": 18087.12, "end": 18087.86, "probability": 0.1651 }, { "start": 18088.38, "end": 18089.64, "probability": 0.2963 }, { "start": 18090.74, "end": 18092.98, "probability": 0.9261 }, { "start": 18093.08, "end": 18095.59, "probability": 0.9058 }, { "start": 18097.2, "end": 18099.6, "probability": 0.5693 }, { "start": 18100.92, "end": 18102.42, "probability": 0.2641 }, { "start": 18103.42, "end": 18106.48, "probability": 0.9839 }, { "start": 18107.92, "end": 18115.42, "probability": 0.7567 }, { "start": 18115.62, "end": 18116.08, "probability": 0.8182 }, { "start": 18116.64, "end": 18117.86, "probability": 0.7021 }, { "start": 18118.24, "end": 18118.36, "probability": 0.0585 }, { "start": 18118.4, "end": 18119.94, "probability": 0.9819 }, { "start": 18120.04, "end": 18120.6, "probability": 0.513 }, { "start": 18120.86, "end": 18121.82, "probability": 0.9449 }, { "start": 18121.82, "end": 18122.38, "probability": 0.5022 }, { "start": 18122.7, "end": 18124.26, "probability": 0.7856 }, { "start": 18125.86, "end": 18125.88, "probability": 0.4007 }, { "start": 18125.88, "end": 18126.18, "probability": 0.8489 }, { "start": 18127.16, "end": 18131.54, "probability": 0.9924 }, { "start": 18132.07, "end": 18133.92, "probability": 0.5102 }, { "start": 18134.1, "end": 18135.64, "probability": 0.1679 }, { "start": 18136.24, "end": 18139.42, "probability": 0.7083 }, { "start": 18140.12, "end": 18140.86, "probability": 0.401 }, { "start": 18140.86, "end": 18141.62, "probability": 0.2098 }, { "start": 18141.94, "end": 18142.75, "probability": 0.7781 }, { "start": 18143.36, "end": 18146.66, "probability": 0.7879 }, { "start": 18146.8, "end": 18148.18, "probability": 0.7406 }, { "start": 18148.82, "end": 18149.48, "probability": 0.0899 }, { "start": 18150.28, "end": 18150.54, "probability": 0.0108 }, { "start": 18150.54, "end": 18150.54, "probability": 0.1076 }, { "start": 18150.54, "end": 18150.54, "probability": 0.0509 }, { "start": 18150.54, "end": 18152.78, "probability": 0.7687 }, { "start": 18152.78, "end": 18154.84, "probability": 0.8745 }, { "start": 18154.92, "end": 18155.5, "probability": 0.069 }, { "start": 18157.58, "end": 18157.74, "probability": 0.2549 }, { "start": 18157.76, "end": 18157.76, "probability": 0.1407 }, { "start": 18157.76, "end": 18157.76, "probability": 0.0194 }, { "start": 18157.76, "end": 18160.38, "probability": 0.7836 }, { "start": 18160.88, "end": 18168.04, "probability": 0.9755 }, { "start": 18168.52, "end": 18169.14, "probability": 0.5503 }, { "start": 18170.98, "end": 18172.48, "probability": 0.9403 }, { "start": 18172.62, "end": 18173.04, "probability": 0.8759 }, { "start": 18173.24, "end": 18174.52, "probability": 0.3561 }, { "start": 18174.72, "end": 18175.0, "probability": 0.7588 }, { "start": 18175.16, "end": 18177.0, "probability": 0.9906 }, { "start": 18178.24, "end": 18180.8, "probability": 0.9971 }, { "start": 18182.44, "end": 18185.8, "probability": 0.9971 }, { "start": 18189.32, "end": 18190.52, "probability": 0.792 }, { "start": 18190.94, "end": 18191.34, "probability": 0.2273 }, { "start": 18191.34, "end": 18192.22, "probability": 0.3979 }, { "start": 18193.06, "end": 18194.04, "probability": 0.8132 }, { "start": 18194.3, "end": 18197.68, "probability": 0.995 }, { "start": 18198.12, "end": 18199.6, "probability": 0.864 }, { "start": 18200.7, "end": 18203.14, "probability": 0.6998 }, { "start": 18203.88, "end": 18205.42, "probability": 0.7044 }, { "start": 18206.14, "end": 18209.96, "probability": 0.9941 }, { "start": 18212.94, "end": 18214.14, "probability": 0.9853 }, { "start": 18214.66, "end": 18215.5, "probability": 0.9722 }, { "start": 18216.44, "end": 18221.04, "probability": 0.9377 }, { "start": 18221.58, "end": 18221.96, "probability": 0.9507 }, { "start": 18223.18, "end": 18224.46, "probability": 0.9941 }, { "start": 18228.22, "end": 18230.74, "probability": 0.9983 }, { "start": 18231.76, "end": 18232.46, "probability": 0.9963 }, { "start": 18233.64, "end": 18235.36, "probability": 0.9888 }, { "start": 18235.9, "end": 18237.84, "probability": 0.9971 }, { "start": 18238.46, "end": 18239.88, "probability": 0.8397 }, { "start": 18242.2, "end": 18244.24, "probability": 0.9877 }, { "start": 18244.58, "end": 18245.32, "probability": 0.8249 }, { "start": 18245.8, "end": 18247.42, "probability": 0.9872 }, { "start": 18249.24, "end": 18250.44, "probability": 0.9232 }, { "start": 18251.44, "end": 18257.06, "probability": 0.9565 }, { "start": 18258.58, "end": 18261.12, "probability": 0.9954 }, { "start": 18262.6, "end": 18265.8, "probability": 0.9972 }, { "start": 18265.8, "end": 18268.76, "probability": 0.9869 }, { "start": 18268.84, "end": 18269.4, "probability": 0.4185 }, { "start": 18269.88, "end": 18273.68, "probability": 0.939 }, { "start": 18273.88, "end": 18274.68, "probability": 0.5536 }, { "start": 18274.72, "end": 18274.8, "probability": 0.5624 }, { "start": 18274.9, "end": 18274.9, "probability": 0.698 }, { "start": 18274.94, "end": 18280.24, "probability": 0.9873 }, { "start": 18280.58, "end": 18281.24, "probability": 0.8399 }, { "start": 18282.28, "end": 18285.12, "probability": 0.1744 }, { "start": 18285.12, "end": 18286.82, "probability": 0.3127 }, { "start": 18287.52, "end": 18287.64, "probability": 0.3044 }, { "start": 18287.78, "end": 18288.75, "probability": 0.7037 }, { "start": 18288.94, "end": 18289.44, "probability": 0.8129 }, { "start": 18289.58, "end": 18290.38, "probability": 0.9883 }, { "start": 18291.42, "end": 18292.28, "probability": 0.0838 }, { "start": 18292.28, "end": 18292.28, "probability": 0.264 }, { "start": 18292.28, "end": 18293.26, "probability": 0.9912 }, { "start": 18294.02, "end": 18295.96, "probability": 0.7733 }, { "start": 18296.28, "end": 18298.06, "probability": 0.9403 }, { "start": 18298.06, "end": 18298.5, "probability": 0.4724 }, { "start": 18298.68, "end": 18302.5, "probability": 0.9265 }, { "start": 18303.32, "end": 18304.72, "probability": 0.7573 }, { "start": 18305.08, "end": 18307.44, "probability": 0.9702 }, { "start": 18308.62, "end": 18309.9, "probability": 0.9804 }, { "start": 18311.04, "end": 18312.36, "probability": 0.3495 }, { "start": 18313.28, "end": 18314.54, "probability": 0.1634 }, { "start": 18314.78, "end": 18315.46, "probability": 0.6226 }, { "start": 18315.46, "end": 18318.28, "probability": 0.7715 }, { "start": 18319.18, "end": 18321.46, "probability": 0.974 }, { "start": 18322.1, "end": 18323.98, "probability": 0.9966 }, { "start": 18324.38, "end": 18325.32, "probability": 0.9956 }, { "start": 18327.24, "end": 18328.32, "probability": 0.7701 }, { "start": 18329.06, "end": 18330.7, "probability": 0.8822 }, { "start": 18331.3, "end": 18334.1, "probability": 0.8862 }, { "start": 18334.85, "end": 18338.28, "probability": 0.95 }, { "start": 18338.38, "end": 18339.02, "probability": 0.8035 }, { "start": 18339.08, "end": 18339.54, "probability": 0.9079 }, { "start": 18339.7, "end": 18340.16, "probability": 0.9507 }, { "start": 18340.22, "end": 18341.28, "probability": 0.9248 }, { "start": 18343.04, "end": 18343.72, "probability": 0.9229 }, { "start": 18343.78, "end": 18348.34, "probability": 0.9758 }, { "start": 18349.42, "end": 18353.44, "probability": 0.9813 }, { "start": 18353.58, "end": 18359.8, "probability": 0.9987 }, { "start": 18360.8, "end": 18363.72, "probability": 0.8975 }, { "start": 18363.86, "end": 18365.28, "probability": 0.5869 }, { "start": 18371.14, "end": 18371.86, "probability": 0.7228 }, { "start": 18372.02, "end": 18375.52, "probability": 0.9963 }, { "start": 18376.54, "end": 18379.72, "probability": 0.991 }, { "start": 18380.62, "end": 18381.38, "probability": 0.6271 }, { "start": 18381.94, "end": 18382.96, "probability": 0.8001 }, { "start": 18383.86, "end": 18385.23, "probability": 0.9956 }, { "start": 18386.28, "end": 18389.52, "probability": 0.9983 }, { "start": 18389.76, "end": 18391.82, "probability": 0.9946 }, { "start": 18392.84, "end": 18395.8, "probability": 0.9858 }, { "start": 18395.84, "end": 18399.72, "probability": 0.993 }, { "start": 18400.7, "end": 18405.0, "probability": 0.9875 }, { "start": 18405.1, "end": 18406.66, "probability": 0.9526 }, { "start": 18407.24, "end": 18407.96, "probability": 0.847 }, { "start": 18408.88, "end": 18412.2, "probability": 0.9976 }, { "start": 18413.06, "end": 18416.44, "probability": 0.9827 }, { "start": 18417.1, "end": 18419.56, "probability": 0.9966 }, { "start": 18419.56, "end": 18423.3, "probability": 0.9981 }, { "start": 18427.28, "end": 18427.86, "probability": 0.8762 }, { "start": 18428.92, "end": 18432.48, "probability": 0.9978 }, { "start": 18434.1, "end": 18434.66, "probability": 0.6826 }, { "start": 18435.86, "end": 18437.46, "probability": 0.9004 }, { "start": 18437.92, "end": 18439.82, "probability": 0.9235 }, { "start": 18440.74, "end": 18441.28, "probability": 0.9604 }, { "start": 18441.58, "end": 18443.03, "probability": 0.9678 }, { "start": 18443.42, "end": 18444.24, "probability": 0.7766 }, { "start": 18444.82, "end": 18447.18, "probability": 0.7522 }, { "start": 18448.11, "end": 18450.24, "probability": 0.8691 }, { "start": 18451.64, "end": 18452.59, "probability": 0.9424 }, { "start": 18453.3, "end": 18454.02, "probability": 0.9777 }, { "start": 18454.4, "end": 18455.15, "probability": 0.9478 }, { "start": 18455.62, "end": 18457.48, "probability": 0.9627 }, { "start": 18458.1, "end": 18459.16, "probability": 0.7754 }, { "start": 18459.68, "end": 18461.72, "probability": 0.8174 }, { "start": 18462.78, "end": 18464.14, "probability": 0.982 }, { "start": 18464.54, "end": 18465.76, "probability": 0.9721 }, { "start": 18466.42, "end": 18466.92, "probability": 0.9649 }, { "start": 18467.58, "end": 18468.62, "probability": 0.8913 }, { "start": 18468.74, "end": 18469.18, "probability": 0.5943 }, { "start": 18469.18, "end": 18471.5, "probability": 0.9771 }, { "start": 18472.56, "end": 18473.0, "probability": 0.9675 }, { "start": 18473.88, "end": 18474.48, "probability": 0.9747 }, { "start": 18475.68, "end": 18479.0, "probability": 0.9876 }, { "start": 18479.44, "end": 18479.76, "probability": 0.7119 }, { "start": 18479.76, "end": 18479.76, "probability": 0.5094 }, { "start": 18479.76, "end": 18481.33, "probability": 0.894 }, { "start": 18481.86, "end": 18483.2, "probability": 0.8091 }, { "start": 18483.54, "end": 18485.16, "probability": 0.8597 }, { "start": 18485.58, "end": 18485.82, "probability": 0.925 }, { "start": 18485.88, "end": 18486.48, "probability": 0.9717 }, { "start": 18487.42, "end": 18490.16, "probability": 0.9976 }, { "start": 18491.98, "end": 18492.6, "probability": 0.5411 }, { "start": 18492.68, "end": 18496.56, "probability": 0.9902 }, { "start": 18497.34, "end": 18497.92, "probability": 0.8422 }, { "start": 18498.42, "end": 18499.02, "probability": 0.0792 }, { "start": 18499.04, "end": 18499.96, "probability": 0.4852 }, { "start": 18500.64, "end": 18501.14, "probability": 0.8415 }, { "start": 18501.18, "end": 18501.94, "probability": 0.6701 }, { "start": 18502.1, "end": 18502.2, "probability": 0.3848 }, { "start": 18502.36, "end": 18503.72, "probability": 0.9015 }, { "start": 18503.9, "end": 18506.94, "probability": 0.9587 }, { "start": 18507.2, "end": 18507.28, "probability": 0.3873 }, { "start": 18507.28, "end": 18507.28, "probability": 0.5075 }, { "start": 18507.32, "end": 18507.86, "probability": 0.7634 }, { "start": 18508.06, "end": 18512.62, "probability": 0.7417 }, { "start": 18513.54, "end": 18514.92, "probability": 0.9526 }, { "start": 18514.92, "end": 18515.13, "probability": 0.0065 }, { "start": 18516.36, "end": 18517.64, "probability": 0.798 }, { "start": 18517.82, "end": 18521.1, "probability": 0.9903 }, { "start": 18521.3, "end": 18521.82, "probability": 0.8344 }, { "start": 18521.96, "end": 18522.46, "probability": 0.9379 }, { "start": 18522.56, "end": 18523.78, "probability": 0.84 }, { "start": 18523.9, "end": 18524.4, "probability": 0.7749 }, { "start": 18524.52, "end": 18526.76, "probability": 0.9449 }, { "start": 18527.52, "end": 18529.62, "probability": 0.9023 }, { "start": 18529.68, "end": 18530.2, "probability": 0.5205 }, { "start": 18530.22, "end": 18531.78, "probability": 0.9391 }, { "start": 18550.72, "end": 18552.14, "probability": 0.7917 }, { "start": 18552.84, "end": 18553.56, "probability": 0.6939 }, { "start": 18554.72, "end": 18556.66, "probability": 0.7241 }, { "start": 18557.16, "end": 18557.96, "probability": 0.9539 }, { "start": 18559.62, "end": 18562.98, "probability": 0.9775 }, { "start": 18563.92, "end": 18565.34, "probability": 0.9595 }, { "start": 18566.18, "end": 18567.94, "probability": 0.8704 }, { "start": 18569.32, "end": 18572.22, "probability": 0.8543 }, { "start": 18573.28, "end": 18573.9, "probability": 0.6928 }, { "start": 18574.94, "end": 18575.72, "probability": 0.8118 }, { "start": 18576.1, "end": 18578.48, "probability": 0.9638 }, { "start": 18579.56, "end": 18582.18, "probability": 0.9565 }, { "start": 18583.16, "end": 18585.92, "probability": 0.9865 }, { "start": 18587.2, "end": 18591.42, "probability": 0.9939 }, { "start": 18592.88, "end": 18594.86, "probability": 0.9984 }, { "start": 18595.7, "end": 18597.27, "probability": 0.9989 }, { "start": 18598.6, "end": 18600.62, "probability": 0.9945 }, { "start": 18601.18, "end": 18604.74, "probability": 0.9964 }, { "start": 18605.44, "end": 18607.94, "probability": 0.9725 }, { "start": 18609.56, "end": 18612.16, "probability": 0.9339 }, { "start": 18613.64, "end": 18618.68, "probability": 0.9959 }, { "start": 18619.46, "end": 18621.7, "probability": 0.9681 }, { "start": 18622.22, "end": 18623.94, "probability": 0.9927 }, { "start": 18625.08, "end": 18628.24, "probability": 0.9377 }, { "start": 18629.1, "end": 18632.44, "probability": 0.9652 }, { "start": 18633.04, "end": 18636.22, "probability": 0.8745 }, { "start": 18637.96, "end": 18643.04, "probability": 0.9468 }, { "start": 18643.76, "end": 18645.12, "probability": 0.9713 }, { "start": 18645.86, "end": 18648.94, "probability": 0.9656 }, { "start": 18649.82, "end": 18649.98, "probability": 0.3233 }, { "start": 18650.08, "end": 18654.94, "probability": 0.9878 }, { "start": 18657.08, "end": 18658.42, "probability": 0.9092 }, { "start": 18659.04, "end": 18660.84, "probability": 0.9809 }, { "start": 18661.48, "end": 18663.28, "probability": 0.9946 }, { "start": 18664.64, "end": 18666.98, "probability": 0.9142 }, { "start": 18667.58, "end": 18672.48, "probability": 0.9176 }, { "start": 18673.72, "end": 18674.04, "probability": 0.7399 }, { "start": 18674.08, "end": 18674.88, "probability": 0.96 }, { "start": 18675.32, "end": 18677.92, "probability": 0.9908 }, { "start": 18678.7, "end": 18682.86, "probability": 0.948 }, { "start": 18683.84, "end": 18687.08, "probability": 0.9966 }, { "start": 18688.3, "end": 18691.02, "probability": 0.9531 }, { "start": 18692.1, "end": 18692.72, "probability": 0.9508 }, { "start": 18692.8, "end": 18693.4, "probability": 0.8192 }, { "start": 18693.54, "end": 18695.46, "probability": 0.9344 }, { "start": 18696.48, "end": 18698.07, "probability": 0.9265 }, { "start": 18699.42, "end": 18701.02, "probability": 0.801 }, { "start": 18701.74, "end": 18705.16, "probability": 0.7541 }, { "start": 18705.82, "end": 18706.76, "probability": 0.6622 }, { "start": 18707.98, "end": 18709.3, "probability": 0.3655 }, { "start": 18709.94, "end": 18710.74, "probability": 0.7491 }, { "start": 18710.82, "end": 18713.72, "probability": 0.9911 }, { "start": 18714.46, "end": 18715.82, "probability": 0.8788 }, { "start": 18716.68, "end": 18718.36, "probability": 0.3335 }, { "start": 18718.36, "end": 18719.98, "probability": 0.8883 }, { "start": 18721.34, "end": 18722.42, "probability": 0.9569 }, { "start": 18725.68, "end": 18727.78, "probability": 0.9405 }, { "start": 18728.38, "end": 18732.38, "probability": 0.9947 }, { "start": 18732.86, "end": 18733.56, "probability": 0.8336 }, { "start": 18734.2, "end": 18735.98, "probability": 0.9951 }, { "start": 18736.52, "end": 18740.08, "probability": 0.9928 }, { "start": 18740.08, "end": 18743.6, "probability": 0.8708 }, { "start": 18744.42, "end": 18744.98, "probability": 0.7599 }, { "start": 18746.0, "end": 18747.02, "probability": 0.6789 }, { "start": 18747.02, "end": 18752.38, "probability": 0.9823 }, { "start": 18753.9, "end": 18754.42, "probability": 0.9351 }, { "start": 18754.98, "end": 18755.68, "probability": 0.7638 }, { "start": 18756.26, "end": 18758.5, "probability": 0.9404 }, { "start": 18759.52, "end": 18763.36, "probability": 0.9397 }, { "start": 18763.52, "end": 18768.08, "probability": 0.8673 }, { "start": 18768.66, "end": 18772.38, "probability": 0.9897 }, { "start": 18773.3, "end": 18774.26, "probability": 0.8953 }, { "start": 18775.16, "end": 18776.36, "probability": 0.9012 }, { "start": 18777.24, "end": 18778.34, "probability": 0.8609 }, { "start": 18779.12, "end": 18782.8, "probability": 0.9573 }, { "start": 18783.3, "end": 18784.04, "probability": 0.854 }, { "start": 18784.46, "end": 18784.86, "probability": 0.9381 }, { "start": 18785.22, "end": 18786.02, "probability": 0.9644 }, { "start": 18787.34, "end": 18789.06, "probability": 0.937 }, { "start": 18789.48, "end": 18789.98, "probability": 0.8806 }, { "start": 18790.32, "end": 18792.4, "probability": 0.9528 }, { "start": 18792.86, "end": 18797.62, "probability": 0.9978 }, { "start": 18798.58, "end": 18799.22, "probability": 0.694 }, { "start": 18800.14, "end": 18802.78, "probability": 0.9961 }, { "start": 18803.8, "end": 18805.04, "probability": 0.939 }, { "start": 18805.86, "end": 18808.16, "probability": 0.9954 }, { "start": 18808.62, "end": 18809.5, "probability": 0.9595 }, { "start": 18810.54, "end": 18812.5, "probability": 0.9775 }, { "start": 18813.42, "end": 18815.5, "probability": 0.8975 }, { "start": 18815.9, "end": 18817.84, "probability": 0.9888 }, { "start": 18818.54, "end": 18821.34, "probability": 0.99 }, { "start": 18822.58, "end": 18823.72, "probability": 0.9798 }, { "start": 18824.96, "end": 18826.1, "probability": 0.944 }, { "start": 18826.82, "end": 18827.72, "probability": 0.9783 }, { "start": 18828.52, "end": 18832.2, "probability": 0.8708 }, { "start": 18832.5, "end": 18832.8, "probability": 0.7249 }, { "start": 18833.38, "end": 18836.86, "probability": 0.9849 }, { "start": 18837.76, "end": 18838.86, "probability": 0.8914 }, { "start": 18839.52, "end": 18840.64, "probability": 0.9609 }, { "start": 18841.44, "end": 18842.16, "probability": 0.0841 }, { "start": 18842.18, "end": 18842.64, "probability": 0.7294 }, { "start": 18842.96, "end": 18845.8, "probability": 0.9707 }, { "start": 18845.8, "end": 18848.37, "probability": 0.9989 }, { "start": 18849.24, "end": 18851.62, "probability": 0.9976 }, { "start": 18852.2, "end": 18855.08, "probability": 0.9989 }, { "start": 18855.08, "end": 18858.0, "probability": 0.9986 }, { "start": 18858.08, "end": 18858.3, "probability": 0.324 }, { "start": 18858.32, "end": 18859.3, "probability": 0.3627 }, { "start": 18859.78, "end": 18860.42, "probability": 0.6598 }, { "start": 18861.24, "end": 18861.82, "probability": 0.9732 }, { "start": 18862.4, "end": 18863.22, "probability": 0.8976 }, { "start": 18863.96, "end": 18865.34, "probability": 0.9902 }, { "start": 18865.92, "end": 18867.2, "probability": 0.9104 }, { "start": 18867.78, "end": 18868.36, "probability": 0.8555 }, { "start": 18868.66, "end": 18870.04, "probability": 0.7827 }, { "start": 18870.44, "end": 18870.91, "probability": 0.7355 }, { "start": 18871.56, "end": 18872.68, "probability": 0.7868 }, { "start": 18873.26, "end": 18873.96, "probability": 0.897 }, { "start": 18874.64, "end": 18878.46, "probability": 0.9977 }, { "start": 18879.69, "end": 18882.08, "probability": 0.9929 }, { "start": 18882.84, "end": 18886.14, "probability": 0.8784 }, { "start": 18886.68, "end": 18888.62, "probability": 0.9863 }, { "start": 18889.36, "end": 18890.06, "probability": 0.9623 }, { "start": 18890.84, "end": 18892.52, "probability": 0.9782 }, { "start": 18893.08, "end": 18894.6, "probability": 0.9814 }, { "start": 18895.36, "end": 18896.88, "probability": 0.8404 }, { "start": 18897.52, "end": 18897.8, "probability": 0.6996 }, { "start": 18897.86, "end": 18900.42, "probability": 0.845 }, { "start": 18900.46, "end": 18902.81, "probability": 0.9518 }, { "start": 18904.4, "end": 18904.42, "probability": 0.0462 }, { "start": 18904.46, "end": 18905.26, "probability": 0.0467 }, { "start": 18905.36, "end": 18906.38, "probability": 0.415 }, { "start": 18907.6, "end": 18909.42, "probability": 0.5185 }, { "start": 18909.68, "end": 18911.28, "probability": 0.1424 }, { "start": 18912.44, "end": 18913.14, "probability": 0.1394 }, { "start": 18913.54, "end": 18915.08, "probability": 0.0434 }, { "start": 18915.46, "end": 18915.56, "probability": 0.1353 }, { "start": 18916.88, "end": 18919.3, "probability": 0.6152 }, { "start": 18919.94, "end": 18922.48, "probability": 0.6587 }, { "start": 18922.6, "end": 18923.84, "probability": 0.9867 }, { "start": 18923.86, "end": 18924.7, "probability": 0.967 }, { "start": 18926.1, "end": 18926.5, "probability": 0.0281 }, { "start": 18926.5, "end": 18930.14, "probability": 0.9724 }, { "start": 18930.14, "end": 18933.8, "probability": 0.9043 }, { "start": 18934.16, "end": 18934.6, "probability": 0.7222 }, { "start": 18935.6, "end": 18938.2, "probability": 0.8887 }, { "start": 18939.28, "end": 18941.52, "probability": 0.9069 }, { "start": 18942.06, "end": 18943.66, "probability": 0.9327 }, { "start": 18944.06, "end": 18945.3, "probability": 0.1444 }, { "start": 18945.3, "end": 18946.72, "probability": 0.1356 }, { "start": 18946.98, "end": 18947.64, "probability": 0.4604 }, { "start": 18947.74, "end": 18947.94, "probability": 0.7448 }, { "start": 18948.22, "end": 18952.25, "probability": 0.6731 }, { "start": 18952.96, "end": 18954.66, "probability": 0.8836 }, { "start": 18957.16, "end": 18957.24, "probability": 0.0579 }, { "start": 18957.24, "end": 18958.08, "probability": 0.3533 }, { "start": 18958.28, "end": 18962.92, "probability": 0.7283 }, { "start": 18962.92, "end": 18963.44, "probability": 0.6216 }, { "start": 18964.58, "end": 18965.82, "probability": 0.9453 }, { "start": 18966.52, "end": 18967.04, "probability": 0.9648 }, { "start": 18968.34, "end": 18968.82, "probability": 0.4836 }, { "start": 18969.08, "end": 18970.36, "probability": 0.6537 }, { "start": 18972.82, "end": 18973.44, "probability": 0.793 }, { "start": 18974.28, "end": 18974.28, "probability": 0.258 }, { "start": 18974.28, "end": 18974.6, "probability": 0.4593 }, { "start": 18974.98, "end": 18976.7, "probability": 0.9297 }, { "start": 18977.06, "end": 18978.18, "probability": 0.8025 }, { "start": 18979.0, "end": 18979.4, "probability": 0.8189 }, { "start": 18979.58, "end": 18979.7, "probability": 0.5172 }, { "start": 18979.7, "end": 18980.5, "probability": 0.252 }, { "start": 18980.58, "end": 18982.44, "probability": 0.9901 }, { "start": 18982.54, "end": 18982.96, "probability": 0.9736 }, { "start": 18983.88, "end": 18987.68, "probability": 0.8473 }, { "start": 18988.72, "end": 18990.22, "probability": 0.6977 }, { "start": 18992.18, "end": 18996.12, "probability": 0.9959 }, { "start": 18996.86, "end": 19002.48, "probability": 0.7998 }, { "start": 19003.04, "end": 19005.06, "probability": 0.9673 }, { "start": 19005.86, "end": 19007.7, "probability": 0.6654 }, { "start": 19008.4, "end": 19010.16, "probability": 0.9828 }, { "start": 19010.9, "end": 19011.26, "probability": 0.2111 }, { "start": 19011.3, "end": 19014.78, "probability": 0.9056 }, { "start": 19014.92, "end": 19016.21, "probability": 0.9702 }, { "start": 19017.66, "end": 19020.18, "probability": 0.8159 }, { "start": 19020.28, "end": 19020.64, "probability": 0.8101 }, { "start": 19020.76, "end": 19020.94, "probability": 0.4604 }, { "start": 19021.06, "end": 19021.94, "probability": 0.8814 }, { "start": 19022.3, "end": 19026.86, "probability": 0.9681 }, { "start": 19026.92, "end": 19029.48, "probability": 0.7946 }, { "start": 19029.52, "end": 19029.86, "probability": 0.3473 }, { "start": 19030.12, "end": 19030.84, "probability": 0.6799 }, { "start": 19030.96, "end": 19032.56, "probability": 0.6759 }, { "start": 19033.26, "end": 19036.96, "probability": 0.6059 }, { "start": 19037.26, "end": 19038.14, "probability": 0.5031 }, { "start": 19039.3, "end": 19041.44, "probability": 0.9736 }, { "start": 19042.18, "end": 19047.82, "probability": 0.9746 }, { "start": 19048.0, "end": 19049.0, "probability": 0.9629 }, { "start": 19049.08, "end": 19050.59, "probability": 0.907 }, { "start": 19050.82, "end": 19053.15, "probability": 0.9792 }, { "start": 19053.86, "end": 19054.0, "probability": 0.1817 }, { "start": 19054.28, "end": 19061.02, "probability": 0.9795 }, { "start": 19061.24, "end": 19062.72, "probability": 0.9439 }, { "start": 19062.88, "end": 19064.6, "probability": 0.9874 }, { "start": 19066.74, "end": 19068.0, "probability": 0.1387 }, { "start": 19068.0, "end": 19071.0, "probability": 0.7681 }, { "start": 19071.52, "end": 19073.14, "probability": 0.5006 }, { "start": 19073.96, "end": 19074.38, "probability": 0.708 }, { "start": 19074.48, "end": 19075.66, "probability": 0.9948 }, { "start": 19075.76, "end": 19075.88, "probability": 0.8156 }, { "start": 19076.2, "end": 19076.5, "probability": 0.8612 }, { "start": 19076.64, "end": 19082.1, "probability": 0.983 }, { "start": 19082.86, "end": 19083.0, "probability": 0.2377 }, { "start": 19083.0, "end": 19083.0, "probability": 0.5836 }, { "start": 19083.0, "end": 19085.64, "probability": 0.7213 }, { "start": 19085.64, "end": 19085.66, "probability": 0.0182 }, { "start": 19085.66, "end": 19086.4, "probability": 0.5584 }, { "start": 19086.44, "end": 19086.9, "probability": 0.6799 }, { "start": 19087.52, "end": 19093.08, "probability": 0.9711 }, { "start": 19093.46, "end": 19093.78, "probability": 0.5442 }, { "start": 19093.94, "end": 19097.46, "probability": 0.9729 }, { "start": 19098.02, "end": 19099.2, "probability": 0.9554 }, { "start": 19099.34, "end": 19099.58, "probability": 0.7486 }, { "start": 19100.06, "end": 19102.14, "probability": 0.8037 }, { "start": 19102.5, "end": 19104.54, "probability": 0.7996 }, { "start": 19105.18, "end": 19106.76, "probability": 0.967 }, { "start": 19107.22, "end": 19108.36, "probability": 0.5692 }, { "start": 19108.36, "end": 19108.36, "probability": 0.1713 }, { "start": 19108.36, "end": 19108.82, "probability": 0.2739 }, { "start": 19108.96, "end": 19114.92, "probability": 0.977 }, { "start": 19115.94, "end": 19119.42, "probability": 0.9798 }, { "start": 19119.94, "end": 19123.26, "probability": 0.9732 }, { "start": 19124.02, "end": 19129.52, "probability": 0.9879 }, { "start": 19129.58, "end": 19133.3, "probability": 0.999 }, { "start": 19133.88, "end": 19133.88, "probability": 0.1345 }, { "start": 19133.88, "end": 19135.04, "probability": 0.8511 }, { "start": 19135.48, "end": 19137.5, "probability": 0.9974 }, { "start": 19137.96, "end": 19142.4, "probability": 0.8033 }, { "start": 19142.54, "end": 19143.16, "probability": 0.5206 }, { "start": 19143.46, "end": 19145.72, "probability": 0.9956 }, { "start": 19146.28, "end": 19150.58, "probability": 0.9435 }, { "start": 19151.14, "end": 19152.9, "probability": 0.9028 }, { "start": 19153.02, "end": 19154.12, "probability": 0.9698 }, { "start": 19154.22, "end": 19155.06, "probability": 0.7445 }, { "start": 19155.62, "end": 19157.5, "probability": 0.9727 }, { "start": 19157.98, "end": 19159.26, "probability": 0.9982 }, { "start": 19159.78, "end": 19161.0, "probability": 0.9697 }, { "start": 19161.36, "end": 19161.82, "probability": 0.7756 }, { "start": 19161.88, "end": 19162.3, "probability": 0.6125 }, { "start": 19162.48, "end": 19167.74, "probability": 0.9334 }, { "start": 19168.38, "end": 19169.06, "probability": 0.9792 }, { "start": 19170.0, "end": 19171.72, "probability": 0.8918 }, { "start": 19171.88, "end": 19173.08, "probability": 0.9434 }, { "start": 19174.4, "end": 19175.82, "probability": 0.9782 }, { "start": 19176.6, "end": 19178.68, "probability": 0.8353 }, { "start": 19179.18, "end": 19180.2, "probability": 0.9382 }, { "start": 19180.54, "end": 19182.6, "probability": 0.9259 }, { "start": 19182.84, "end": 19186.44, "probability": 0.7148 }, { "start": 19186.6, "end": 19186.68, "probability": 0.281 }, { "start": 19186.68, "end": 19188.5, "probability": 0.7569 }, { "start": 19188.92, "end": 19191.8, "probability": 0.9922 }, { "start": 19192.0, "end": 19195.65, "probability": 0.8755 }, { "start": 19196.1, "end": 19197.66, "probability": 0.804 }, { "start": 19197.94, "end": 19200.34, "probability": 0.8919 }, { "start": 19200.9, "end": 19203.3, "probability": 0.897 }, { "start": 19203.3, "end": 19205.32, "probability": 0.9993 }, { "start": 19205.4, "end": 19205.4, "probability": 0.3719 }, { "start": 19205.44, "end": 19206.42, "probability": 0.9623 }, { "start": 19207.18, "end": 19208.19, "probability": 0.9961 }, { "start": 19208.82, "end": 19209.12, "probability": 0.4888 }, { "start": 19209.12, "end": 19209.58, "probability": 0.9164 }, { "start": 19209.86, "end": 19210.36, "probability": 0.919 }, { "start": 19210.7, "end": 19212.58, "probability": 0.9038 }, { "start": 19212.7, "end": 19214.88, "probability": 0.9403 }, { "start": 19215.0, "end": 19216.54, "probability": 0.9961 }, { "start": 19216.94, "end": 19218.72, "probability": 0.9361 }, { "start": 19219.2, "end": 19220.0, "probability": 0.7812 }, { "start": 19220.0, "end": 19220.6, "probability": 0.822 }, { "start": 19220.64, "end": 19221.04, "probability": 0.2634 }, { "start": 19221.14, "end": 19221.86, "probability": 0.9121 }, { "start": 19222.54, "end": 19226.42, "probability": 0.8164 }, { "start": 19226.58, "end": 19228.12, "probability": 0.7305 }, { "start": 19228.64, "end": 19228.94, "probability": 0.7099 }, { "start": 19229.18, "end": 19233.9, "probability": 0.9866 }, { "start": 19234.0, "end": 19236.24, "probability": 0.8703 }, { "start": 19236.32, "end": 19240.92, "probability": 0.922 }, { "start": 19241.92, "end": 19245.34, "probability": 0.9801 }, { "start": 19245.42, "end": 19245.72, "probability": 0.5097 }, { "start": 19245.8, "end": 19247.01, "probability": 0.8154 }, { "start": 19247.3, "end": 19247.62, "probability": 0.9561 }, { "start": 19248.7, "end": 19249.24, "probability": 0.0047 }, { "start": 19249.26, "end": 19251.88, "probability": 0.8198 }, { "start": 19251.88, "end": 19252.91, "probability": 0.8788 }, { "start": 19253.86, "end": 19255.22, "probability": 0.6667 }, { "start": 19255.66, "end": 19258.0, "probability": 0.968 }, { "start": 19260.3, "end": 19261.26, "probability": 0.6379 }, { "start": 19261.84, "end": 19265.54, "probability": 0.7249 }, { "start": 19266.36, "end": 19266.75, "probability": 0.9967 }, { "start": 19267.66, "end": 19268.86, "probability": 0.9937 }, { "start": 19270.02, "end": 19272.74, "probability": 0.8772 }, { "start": 19273.78, "end": 19276.6, "probability": 0.9403 }, { "start": 19277.26, "end": 19278.44, "probability": 0.9279 }, { "start": 19279.64, "end": 19280.78, "probability": 0.9795 }, { "start": 19281.08, "end": 19281.47, "probability": 0.9856 }, { "start": 19281.9, "end": 19282.35, "probability": 0.9595 }, { "start": 19282.94, "end": 19283.48, "probability": 0.8566 }, { "start": 19284.16, "end": 19284.76, "probability": 0.9324 }, { "start": 19285.3, "end": 19286.08, "probability": 0.6324 }, { "start": 19287.08, "end": 19289.8, "probability": 0.9536 }, { "start": 19290.84, "end": 19293.1, "probability": 0.9624 }, { "start": 19294.32, "end": 19295.9, "probability": 0.9746 }, { "start": 19296.28, "end": 19298.92, "probability": 0.9784 }, { "start": 19299.66, "end": 19299.92, "probability": 0.6996 }, { "start": 19301.28, "end": 19302.52, "probability": 0.9757 }, { "start": 19303.4, "end": 19303.98, "probability": 0.9821 }, { "start": 19304.88, "end": 19307.48, "probability": 0.0403 }, { "start": 19307.62, "end": 19307.86, "probability": 0.0517 }, { "start": 19307.86, "end": 19308.1, "probability": 0.5093 }, { "start": 19308.16, "end": 19308.62, "probability": 0.4359 }, { "start": 19308.76, "end": 19309.5, "probability": 0.8522 }, { "start": 19309.8, "end": 19310.28, "probability": 0.4995 }, { "start": 19310.46, "end": 19310.84, "probability": 0.6623 }, { "start": 19311.04, "end": 19314.48, "probability": 0.9915 }, { "start": 19314.76, "end": 19315.7, "probability": 0.7897 }, { "start": 19316.16, "end": 19317.92, "probability": 0.5991 }, { "start": 19318.48, "end": 19323.76, "probability": 0.967 }, { "start": 19323.78, "end": 19323.92, "probability": 0.43 }, { "start": 19324.0, "end": 19327.6, "probability": 0.9196 }, { "start": 19327.86, "end": 19329.3, "probability": 0.8868 }, { "start": 19329.4, "end": 19329.9, "probability": 0.6618 }, { "start": 19346.9, "end": 19347.88, "probability": 0.8501 }, { "start": 19348.34, "end": 19352.66, "probability": 0.939 }, { "start": 19352.86, "end": 19353.62, "probability": 0.7429 }, { "start": 19357.16, "end": 19359.7, "probability": 0.8346 }, { "start": 19359.72, "end": 19360.69, "probability": 0.9568 }, { "start": 19361.02, "end": 19362.14, "probability": 0.7521 }, { "start": 19362.24, "end": 19363.39, "probability": 0.9855 }, { "start": 19364.08, "end": 19365.18, "probability": 0.6844 }, { "start": 19365.3, "end": 19365.46, "probability": 0.9233 }, { "start": 19365.58, "end": 19365.7, "probability": 0.2878 }, { "start": 19366.1, "end": 19368.71, "probability": 0.9954 }, { "start": 19368.76, "end": 19369.98, "probability": 0.8257 }, { "start": 19370.12, "end": 19370.36, "probability": 0.7725 }, { "start": 19371.02, "end": 19375.9, "probability": 0.9835 }, { "start": 19376.11, "end": 19376.64, "probability": 0.0898 }, { "start": 19376.64, "end": 19378.34, "probability": 0.7338 }, { "start": 19379.1, "end": 19380.46, "probability": 0.6381 }, { "start": 19380.94, "end": 19381.6, "probability": 0.5352 }, { "start": 19381.64, "end": 19382.18, "probability": 0.8149 }, { "start": 19382.22, "end": 19383.22, "probability": 0.7688 }, { "start": 19383.22, "end": 19383.95, "probability": 0.5158 }, { "start": 19384.28, "end": 19388.12, "probability": 0.8423 }, { "start": 19388.16, "end": 19390.16, "probability": 0.993 }, { "start": 19390.8, "end": 19391.92, "probability": 0.9452 }, { "start": 19391.98, "end": 19392.08, "probability": 0.6141 }, { "start": 19392.42, "end": 19392.88, "probability": 0.8879 }, { "start": 19393.34, "end": 19395.54, "probability": 0.9363 }, { "start": 19396.08, "end": 19401.14, "probability": 0.9909 }, { "start": 19401.22, "end": 19401.5, "probability": 0.7658 }, { "start": 19402.12, "end": 19402.58, "probability": 0.952 }, { "start": 19403.08, "end": 19406.68, "probability": 0.544 }, { "start": 19407.16, "end": 19408.2, "probability": 0.6455 }, { "start": 19408.82, "end": 19411.06, "probability": 0.6775 }, { "start": 19411.68, "end": 19414.88, "probability": 0.9884 }, { "start": 19415.6, "end": 19417.88, "probability": 0.7992 }, { "start": 19418.7, "end": 19420.66, "probability": 0.922 }, { "start": 19420.72, "end": 19424.64, "probability": 0.9828 }, { "start": 19424.82, "end": 19425.42, "probability": 0.9775 }, { "start": 19426.18, "end": 19430.48, "probability": 0.809 }, { "start": 19430.58, "end": 19431.2, "probability": 0.9336 }, { "start": 19431.98, "end": 19432.78, "probability": 0.9889 }, { "start": 19433.18, "end": 19433.54, "probability": 0.7488 }, { "start": 19433.58, "end": 19434.48, "probability": 0.7828 }, { "start": 19437.48, "end": 19442.28, "probability": 0.9642 }, { "start": 19442.92, "end": 19444.44, "probability": 0.8649 }, { "start": 19444.54, "end": 19446.76, "probability": 0.8481 }, { "start": 19448.1, "end": 19449.64, "probability": 0.9793 }, { "start": 19449.78, "end": 19450.94, "probability": 0.9584 }, { "start": 19451.04, "end": 19451.5, "probability": 0.974 }, { "start": 19452.08, "end": 19453.28, "probability": 0.9897 }, { "start": 19453.64, "end": 19455.8, "probability": 0.8899 }, { "start": 19456.72, "end": 19459.32, "probability": 0.9975 }, { "start": 19460.1, "end": 19462.82, "probability": 0.9392 }, { "start": 19462.82, "end": 19464.02, "probability": 0.9195 }, { "start": 19464.54, "end": 19466.98, "probability": 0.9572 }, { "start": 19467.82, "end": 19469.15, "probability": 0.9641 }, { "start": 19469.34, "end": 19470.16, "probability": 0.7438 }, { "start": 19471.96, "end": 19474.02, "probability": 0.7865 }, { "start": 19474.12, "end": 19476.26, "probability": 0.9969 }, { "start": 19476.44, "end": 19479.44, "probability": 0.9855 }, { "start": 19479.9, "end": 19480.88, "probability": 0.9502 }, { "start": 19480.98, "end": 19482.12, "probability": 0.9742 }, { "start": 19482.78, "end": 19485.5, "probability": 0.984 }, { "start": 19486.02, "end": 19489.0, "probability": 0.9556 }, { "start": 19489.52, "end": 19493.24, "probability": 0.9941 }, { "start": 19493.32, "end": 19495.02, "probability": 0.9602 }, { "start": 19495.64, "end": 19497.26, "probability": 0.9941 }, { "start": 19497.6, "end": 19498.47, "probability": 0.5137 }, { "start": 19499.1, "end": 19501.7, "probability": 0.9917 }, { "start": 19502.06, "end": 19503.5, "probability": 0.9385 }, { "start": 19503.88, "end": 19506.14, "probability": 0.9372 }, { "start": 19506.78, "end": 19511.18, "probability": 0.9684 }, { "start": 19512.12, "end": 19517.18, "probability": 0.9979 }, { "start": 19517.4, "end": 19518.42, "probability": 0.7715 }, { "start": 19518.62, "end": 19519.58, "probability": 0.9069 }, { "start": 19520.08, "end": 19522.66, "probability": 0.9946 }, { "start": 19523.1, "end": 19527.1, "probability": 0.982 }, { "start": 19527.18, "end": 19528.4, "probability": 0.7577 }, { "start": 19528.46, "end": 19530.32, "probability": 0.9819 }, { "start": 19530.76, "end": 19531.88, "probability": 0.8839 }, { "start": 19532.32, "end": 19535.0, "probability": 0.7312 }, { "start": 19535.42, "end": 19537.64, "probability": 0.9948 }, { "start": 19538.06, "end": 19539.88, "probability": 0.9926 }, { "start": 19540.4, "end": 19542.78, "probability": 0.978 }, { "start": 19543.84, "end": 19544.74, "probability": 0.8708 }, { "start": 19545.38, "end": 19549.1, "probability": 0.9326 }, { "start": 19549.58, "end": 19552.39, "probability": 0.894 }, { "start": 19552.92, "end": 19553.36, "probability": 0.98 }, { "start": 19554.02, "end": 19556.14, "probability": 0.9091 }, { "start": 19556.52, "end": 19557.54, "probability": 0.9609 }, { "start": 19557.94, "end": 19559.14, "probability": 0.9783 }, { "start": 19559.56, "end": 19561.92, "probability": 0.9626 }, { "start": 19562.06, "end": 19563.14, "probability": 0.6927 }, { "start": 19563.68, "end": 19565.72, "probability": 0.9316 }, { "start": 19566.28, "end": 19566.58, "probability": 0.5806 }, { "start": 19567.06, "end": 19570.18, "probability": 0.9823 }, { "start": 19570.84, "end": 19576.82, "probability": 0.9933 }, { "start": 19576.86, "end": 19577.7, "probability": 0.739 }, { "start": 19578.14, "end": 19581.5, "probability": 0.9711 }, { "start": 19581.98, "end": 19582.56, "probability": 0.9749 }, { "start": 19582.96, "end": 19588.04, "probability": 0.9827 }, { "start": 19588.04, "end": 19593.0, "probability": 0.8877 }, { "start": 19593.64, "end": 19594.88, "probability": 0.7573 }, { "start": 19595.46, "end": 19596.32, "probability": 0.9137 }, { "start": 19596.86, "end": 19597.58, "probability": 0.6251 }, { "start": 19597.76, "end": 19598.28, "probability": 0.9434 }, { "start": 19598.62, "end": 19602.48, "probability": 0.988 }, { "start": 19603.14, "end": 19604.68, "probability": 0.7518 }, { "start": 19605.24, "end": 19608.54, "probability": 0.9744 }, { "start": 19609.32, "end": 19612.74, "probability": 0.9727 }, { "start": 19613.34, "end": 19615.9, "probability": 0.9943 }, { "start": 19616.52, "end": 19621.48, "probability": 0.9813 }, { "start": 19621.9, "end": 19625.3, "probability": 0.962 }, { "start": 19626.16, "end": 19628.61, "probability": 0.9928 }, { "start": 19629.22, "end": 19633.0, "probability": 0.9894 }, { "start": 19633.42, "end": 19634.42, "probability": 0.9794 }, { "start": 19634.48, "end": 19635.76, "probability": 0.9387 }, { "start": 19636.1, "end": 19637.6, "probability": 0.8356 }, { "start": 19638.38, "end": 19639.74, "probability": 0.98 }, { "start": 19640.28, "end": 19641.48, "probability": 0.8081 }, { "start": 19641.76, "end": 19642.42, "probability": 0.8023 }, { "start": 19642.62, "end": 19643.7, "probability": 0.9269 }, { "start": 19644.32, "end": 19646.7, "probability": 0.9976 }, { "start": 19647.26, "end": 19650.72, "probability": 0.8578 }, { "start": 19651.22, "end": 19651.8, "probability": 0.785 }, { "start": 19652.64, "end": 19655.22, "probability": 0.9077 }, { "start": 19655.48, "end": 19656.18, "probability": 0.8589 }, { "start": 19656.56, "end": 19659.04, "probability": 0.9883 }, { "start": 19659.04, "end": 19661.86, "probability": 0.8774 }, { "start": 19662.28, "end": 19664.42, "probability": 0.8316 }, { "start": 19665.0, "end": 19668.26, "probability": 0.9873 }, { "start": 19669.24, "end": 19672.52, "probability": 0.9993 }, { "start": 19674.26, "end": 19678.28, "probability": 0.9972 }, { "start": 19678.78, "end": 19681.64, "probability": 0.9928 }, { "start": 19682.1, "end": 19685.82, "probability": 0.9897 }, { "start": 19687.0, "end": 19687.66, "probability": 0.5621 }, { "start": 19687.76, "end": 19693.86, "probability": 0.9966 }, { "start": 19694.34, "end": 19697.04, "probability": 0.951 }, { "start": 19697.5, "end": 19698.2, "probability": 0.7049 }, { "start": 19698.76, "end": 19703.6, "probability": 0.9517 }, { "start": 19704.18, "end": 19708.74, "probability": 0.9949 }, { "start": 19709.36, "end": 19713.38, "probability": 0.9863 }, { "start": 19713.88, "end": 19717.9, "probability": 0.988 }, { "start": 19718.44, "end": 19720.55, "probability": 0.9764 }, { "start": 19721.44, "end": 19726.14, "probability": 0.9965 }, { "start": 19726.66, "end": 19730.0, "probability": 0.8758 }, { "start": 19730.44, "end": 19731.85, "probability": 0.9946 }, { "start": 19732.66, "end": 19738.86, "probability": 0.8428 }, { "start": 19739.44, "end": 19740.0, "probability": 0.779 }, { "start": 19740.16, "end": 19740.44, "probability": 0.4582 }, { "start": 19741.46, "end": 19742.92, "probability": 0.64 }, { "start": 19742.92, "end": 19743.92, "probability": 0.5762 }, { "start": 19743.96, "end": 19744.85, "probability": 0.6285 }, { "start": 19745.48, "end": 19746.32, "probability": 0.9363 }, { "start": 19746.54, "end": 19747.13, "probability": 0.9702 }, { "start": 19747.38, "end": 19749.7, "probability": 0.9717 }, { "start": 19749.78, "end": 19750.34, "probability": 0.9406 }, { "start": 19751.34, "end": 19751.44, "probability": 0.0812 }, { "start": 19751.44, "end": 19751.82, "probability": 0.7971 }, { "start": 19752.56, "end": 19753.84, "probability": 0.7671 }, { "start": 19754.34, "end": 19755.0, "probability": 0.2609 }, { "start": 19755.0, "end": 19756.36, "probability": 0.9421 }, { "start": 19756.4, "end": 19759.74, "probability": 0.7681 }, { "start": 19759.92, "end": 19760.28, "probability": 0.0728 }, { "start": 19760.46, "end": 19761.68, "probability": 0.1808 }, { "start": 19761.7, "end": 19762.88, "probability": 0.2803 }, { "start": 19763.08, "end": 19763.9, "probability": 0.2457 }, { "start": 19763.94, "end": 19764.3, "probability": 0.3663 }, { "start": 19764.9, "end": 19766.42, "probability": 0.2282 }, { "start": 19766.44, "end": 19767.1, "probability": 0.5699 }, { "start": 19767.26, "end": 19767.68, "probability": 0.7953 }, { "start": 19767.84, "end": 19772.78, "probability": 0.917 }, { "start": 19773.2, "end": 19776.1, "probability": 0.8958 }, { "start": 19776.5, "end": 19776.82, "probability": 0.2692 }, { "start": 19776.82, "end": 19778.1, "probability": 0.3738 }, { "start": 19778.12, "end": 19781.36, "probability": 0.9809 }, { "start": 19782.4, "end": 19783.78, "probability": 0.3768 }, { "start": 19784.66, "end": 19789.54, "probability": 0.9527 }, { "start": 19790.04, "end": 19791.7, "probability": 0.9778 }, { "start": 19792.18, "end": 19793.38, "probability": 0.9938 }, { "start": 19793.98, "end": 19800.76, "probability": 0.9281 }, { "start": 19801.04, "end": 19807.12, "probability": 0.9944 }, { "start": 19807.74, "end": 19811.12, "probability": 0.9836 }, { "start": 19811.52, "end": 19814.88, "probability": 0.9824 }, { "start": 19815.46, "end": 19816.76, "probability": 0.8711 }, { "start": 19816.88, "end": 19817.82, "probability": 0.9475 }, { "start": 19818.08, "end": 19821.2, "probability": 0.9887 }, { "start": 19821.28, "end": 19823.32, "probability": 0.7241 }, { "start": 19823.84, "end": 19824.76, "probability": 0.9862 }, { "start": 19824.88, "end": 19826.54, "probability": 0.8211 }, { "start": 19827.02, "end": 19828.8, "probability": 0.8812 }, { "start": 19828.9, "end": 19830.04, "probability": 0.7892 }, { "start": 19830.16, "end": 19830.36, "probability": 0.7159 }, { "start": 19830.5, "end": 19833.39, "probability": 0.9941 }, { "start": 19833.84, "end": 19837.78, "probability": 0.998 }, { "start": 19838.32, "end": 19840.26, "probability": 0.9163 }, { "start": 19840.66, "end": 19845.54, "probability": 0.9984 }, { "start": 19846.02, "end": 19846.18, "probability": 0.5851 }, { "start": 19846.2, "end": 19847.78, "probability": 0.97 }, { "start": 19848.3, "end": 19849.34, "probability": 0.8253 }, { "start": 19849.5, "end": 19852.94, "probability": 0.7621 }, { "start": 19853.38, "end": 19854.0, "probability": 0.9811 }, { "start": 19854.32, "end": 19854.48, "probability": 0.6497 }, { "start": 19854.58, "end": 19856.4, "probability": 0.5744 }, { "start": 19856.86, "end": 19858.6, "probability": 0.9165 }, { "start": 19860.02, "end": 19860.36, "probability": 0.2312 }, { "start": 19860.36, "end": 19861.46, "probability": 0.5629 }, { "start": 19863.54, "end": 19864.5, "probability": 0.537 }, { "start": 19865.52, "end": 19866.62, "probability": 0.858 }, { "start": 19867.66, "end": 19869.14, "probability": 0.2483 }, { "start": 19870.38, "end": 19871.22, "probability": 0.0553 }, { "start": 19888.32, "end": 19890.18, "probability": 0.4409 }, { "start": 19890.72, "end": 19891.2, "probability": 0.697 }, { "start": 19892.64, "end": 19893.82, "probability": 0.8833 }, { "start": 19894.6, "end": 19896.48, "probability": 0.9355 }, { "start": 19897.26, "end": 19898.4, "probability": 0.9659 }, { "start": 19899.4, "end": 19901.18, "probability": 0.8901 }, { "start": 19902.26, "end": 19907.86, "probability": 0.9827 }, { "start": 19909.02, "end": 19910.22, "probability": 0.045 }, { "start": 19910.48, "end": 19912.92, "probability": 0.8954 }, { "start": 19913.54, "end": 19913.72, "probability": 0.9353 }, { "start": 19915.36, "end": 19918.52, "probability": 0.9741 }, { "start": 19919.12, "end": 19919.7, "probability": 0.833 }, { "start": 19920.42, "end": 19926.44, "probability": 0.907 }, { "start": 19926.84, "end": 19930.22, "probability": 0.8915 }, { "start": 19930.7, "end": 19933.1, "probability": 0.9158 }, { "start": 19933.2, "end": 19933.82, "probability": 0.7535 }, { "start": 19933.94, "end": 19934.24, "probability": 0.513 }, { "start": 19935.0, "end": 19936.18, "probability": 0.3419 }, { "start": 19936.18, "end": 19938.28, "probability": 0.4891 }, { "start": 19939.76, "end": 19940.38, "probability": 0.8364 }, { "start": 19942.0, "end": 19943.34, "probability": 0.9808 }, { "start": 19944.02, "end": 19945.1, "probability": 0.9814 }, { "start": 19945.36, "end": 19951.46, "probability": 0.9976 }, { "start": 19951.56, "end": 19952.08, "probability": 0.4388 }, { "start": 19952.16, "end": 19953.68, "probability": 0.4604 }, { "start": 19954.52, "end": 19956.24, "probability": 0.8259 }, { "start": 19956.92, "end": 19957.12, "probability": 0.9339 }, { "start": 19957.22, "end": 19961.9, "probability": 0.9438 }, { "start": 19962.62, "end": 19965.38, "probability": 0.8697 }, { "start": 19965.76, "end": 19965.98, "probability": 0.5014 }, { "start": 19966.38, "end": 19966.76, "probability": 0.8086 }, { "start": 19966.96, "end": 19972.62, "probability": 0.958 }, { "start": 19973.64, "end": 19974.52, "probability": 0.538 }, { "start": 19975.0, "end": 19977.48, "probability": 0.9758 }, { "start": 19978.38, "end": 19979.58, "probability": 0.9214 }, { "start": 19980.12, "end": 19980.58, "probability": 0.6255 }, { "start": 19980.68, "end": 19982.16, "probability": 0.972 }, { "start": 19982.5, "end": 19984.68, "probability": 0.9899 }, { "start": 19985.02, "end": 19987.44, "probability": 0.7995 }, { "start": 19987.66, "end": 19988.43, "probability": 0.896 }, { "start": 19989.08, "end": 19989.8, "probability": 0.9178 }, { "start": 19992.0, "end": 19992.78, "probability": 0.6612 }, { "start": 19993.4, "end": 19994.28, "probability": 0.2523 }, { "start": 19996.26, "end": 19997.42, "probability": 0.6947 }, { "start": 19998.38, "end": 19998.38, "probability": 0.8433 }, { "start": 19998.38, "end": 20000.08, "probability": 0.814 }, { "start": 20002.62, "end": 20005.94, "probability": 0.9942 }, { "start": 20007.42, "end": 20008.14, "probability": 0.7308 }, { "start": 20009.76, "end": 20012.72, "probability": 0.9718 }, { "start": 20014.14, "end": 20016.4, "probability": 0.8552 }, { "start": 20016.42, "end": 20018.42, "probability": 0.6903 }, { "start": 20019.12, "end": 20023.54, "probability": 0.9766 }, { "start": 20024.28, "end": 20025.3, "probability": 0.8515 }, { "start": 20025.44, "end": 20026.48, "probability": 0.9296 }, { "start": 20026.9, "end": 20033.28, "probability": 0.9407 }, { "start": 20033.84, "end": 20035.38, "probability": 0.7985 }, { "start": 20035.54, "end": 20039.6, "probability": 0.9858 }, { "start": 20040.66, "end": 20043.96, "probability": 0.9941 }, { "start": 20044.02, "end": 20045.38, "probability": 0.9948 }, { "start": 20046.3, "end": 20046.48, "probability": 0.9413 }, { "start": 20047.06, "end": 20050.34, "probability": 0.9982 }, { "start": 20051.0, "end": 20054.4, "probability": 0.9683 }, { "start": 20054.96, "end": 20055.84, "probability": 0.752 }, { "start": 20057.02, "end": 20060.38, "probability": 0.8508 }, { "start": 20060.56, "end": 20061.8, "probability": 0.7897 }, { "start": 20062.38, "end": 20064.0, "probability": 0.9669 }, { "start": 20064.6, "end": 20066.04, "probability": 0.9919 }, { "start": 20066.58, "end": 20071.1, "probability": 0.8687 }, { "start": 20071.32, "end": 20072.42, "probability": 0.9155 }, { "start": 20073.06, "end": 20073.84, "probability": 0.8583 }, { "start": 20074.94, "end": 20077.94, "probability": 0.7378 }, { "start": 20079.64, "end": 20080.0, "probability": 0.7683 }, { "start": 20080.1, "end": 20082.98, "probability": 0.9819 }, { "start": 20083.52, "end": 20086.82, "probability": 0.7851 }, { "start": 20087.28, "end": 20088.08, "probability": 0.7916 }, { "start": 20088.12, "end": 20088.56, "probability": 0.4699 }, { "start": 20090.1, "end": 20094.96, "probability": 0.9104 }, { "start": 20096.2, "end": 20098.82, "probability": 0.9622 }, { "start": 20101.16, "end": 20102.52, "probability": 0.9874 }, { "start": 20103.18, "end": 20106.84, "probability": 0.9751 }, { "start": 20106.94, "end": 20107.08, "probability": 0.3247 }, { "start": 20107.86, "end": 20112.58, "probability": 0.055 }, { "start": 20113.6, "end": 20115.06, "probability": 0.4557 }, { "start": 20115.16, "end": 20118.78, "probability": 0.8497 }, { "start": 20118.86, "end": 20119.8, "probability": 0.9803 }, { "start": 20120.26, "end": 20121.06, "probability": 0.8171 }, { "start": 20121.14, "end": 20123.64, "probability": 0.9326 }, { "start": 20124.16, "end": 20125.42, "probability": 0.0669 }, { "start": 20125.92, "end": 20126.02, "probability": 0.0703 }, { "start": 20126.06, "end": 20126.7, "probability": 0.744 }, { "start": 20126.78, "end": 20129.02, "probability": 0.7946 }, { "start": 20129.3, "end": 20129.5, "probability": 0.9013 }, { "start": 20129.76, "end": 20131.7, "probability": 0.8916 }, { "start": 20132.02, "end": 20134.3, "probability": 0.9803 }, { "start": 20134.56, "end": 20137.2, "probability": 0.1933 }, { "start": 20137.2, "end": 20137.55, "probability": 0.0339 }, { "start": 20138.48, "end": 20140.04, "probability": 0.9894 }, { "start": 20140.84, "end": 20142.2, "probability": 0.7691 }, { "start": 20143.04, "end": 20144.34, "probability": 0.225 }, { "start": 20144.9, "end": 20146.54, "probability": 0.7251 }, { "start": 20146.6, "end": 20148.8, "probability": 0.5664 }, { "start": 20148.82, "end": 20148.92, "probability": 0.5361 }, { "start": 20149.2, "end": 20150.02, "probability": 0.8101 }, { "start": 20151.32, "end": 20155.1, "probability": 0.8647 }, { "start": 20156.22, "end": 20158.24, "probability": 0.7195 }, { "start": 20158.34, "end": 20158.9, "probability": 0.6643 }, { "start": 20158.98, "end": 20160.88, "probability": 0.9461 }, { "start": 20161.4, "end": 20163.28, "probability": 0.9697 }, { "start": 20164.28, "end": 20168.72, "probability": 0.6481 }, { "start": 20171.02, "end": 20174.14, "probability": 0.9902 }, { "start": 20175.56, "end": 20176.64, "probability": 0.754 }, { "start": 20177.3, "end": 20181.96, "probability": 0.7103 }, { "start": 20182.5, "end": 20183.54, "probability": 0.994 }, { "start": 20184.38, "end": 20187.58, "probability": 0.9189 }, { "start": 20188.38, "end": 20190.8, "probability": 0.841 }, { "start": 20190.96, "end": 20193.52, "probability": 0.6169 }, { "start": 20194.04, "end": 20195.48, "probability": 0.97 }, { "start": 20196.3, "end": 20197.66, "probability": 0.7803 }, { "start": 20197.74, "end": 20199.92, "probability": 0.8015 }, { "start": 20200.16, "end": 20200.64, "probability": 0.7478 }, { "start": 20201.26, "end": 20201.72, "probability": 0.784 }, { "start": 20203.72, "end": 20210.8, "probability": 0.8478 }, { "start": 20212.68, "end": 20213.44, "probability": 0.924 }, { "start": 20213.64, "end": 20215.28, "probability": 0.3767 }, { "start": 20215.38, "end": 20216.88, "probability": 0.8007 }, { "start": 20217.66, "end": 20219.46, "probability": 0.6157 }, { "start": 20220.62, "end": 20224.18, "probability": 0.7475 }, { "start": 20225.12, "end": 20226.76, "probability": 0.9621 }, { "start": 20228.14, "end": 20228.96, "probability": 0.7143 }, { "start": 20229.08, "end": 20231.36, "probability": 0.9827 }, { "start": 20232.48, "end": 20235.02, "probability": 0.7402 }, { "start": 20235.02, "end": 20237.6, "probability": 0.9976 }, { "start": 20238.46, "end": 20239.84, "probability": 0.9837 }, { "start": 20239.88, "end": 20241.58, "probability": 0.9943 }, { "start": 20241.66, "end": 20243.6, "probability": 0.9614 }, { "start": 20243.82, "end": 20244.06, "probability": 0.7187 }, { "start": 20244.88, "end": 20245.58, "probability": 0.8144 }, { "start": 20246.34, "end": 20247.28, "probability": 0.6598 }, { "start": 20247.32, "end": 20252.05, "probability": 0.2663 }, { "start": 20253.54, "end": 20257.28, "probability": 0.8468 }, { "start": 20259.3, "end": 20259.91, "probability": 0.8833 }, { "start": 20260.68, "end": 20261.46, "probability": 0.6292 }, { "start": 20261.6, "end": 20261.94, "probability": 0.5042 }, { "start": 20262.06, "end": 20262.96, "probability": 0.9766 }, { "start": 20263.06, "end": 20264.28, "probability": 0.9534 }, { "start": 20265.5, "end": 20268.78, "probability": 0.989 }, { "start": 20268.78, "end": 20269.24, "probability": 0.6998 }, { "start": 20270.36, "end": 20271.46, "probability": 0.6702 }, { "start": 20273.04, "end": 20275.38, "probability": 0.7563 }, { "start": 20275.42, "end": 20277.6, "probability": 0.9736 }, { "start": 20278.72, "end": 20283.24, "probability": 0.9933 }, { "start": 20283.72, "end": 20285.82, "probability": 0.8939 }, { "start": 20287.46, "end": 20289.04, "probability": 0.9561 }, { "start": 20290.06, "end": 20292.18, "probability": 0.9294 }, { "start": 20293.28, "end": 20295.68, "probability": 0.9976 }, { "start": 20297.08, "end": 20300.36, "probability": 0.9497 }, { "start": 20301.0, "end": 20302.82, "probability": 0.9991 }, { "start": 20304.42, "end": 20305.44, "probability": 0.9907 }, { "start": 20306.48, "end": 20307.84, "probability": 0.8932 }, { "start": 20308.72, "end": 20312.62, "probability": 0.9756 }, { "start": 20312.62, "end": 20315.03, "probability": 0.8952 }, { "start": 20315.84, "end": 20319.24, "probability": 0.926 }, { "start": 20319.68, "end": 20320.72, "probability": 0.9204 }, { "start": 20320.86, "end": 20321.4, "probability": 0.719 }, { "start": 20321.4, "end": 20322.58, "probability": 0.7851 }, { "start": 20322.72, "end": 20323.28, "probability": 0.8247 }, { "start": 20323.44, "end": 20323.98, "probability": 0.711 }, { "start": 20324.08, "end": 20325.68, "probability": 0.9802 }, { "start": 20326.66, "end": 20327.74, "probability": 0.9946 }, { "start": 20327.88, "end": 20330.34, "probability": 0.6903 }, { "start": 20331.16, "end": 20333.52, "probability": 0.9248 }, { "start": 20334.24, "end": 20335.48, "probability": 0.9861 }, { "start": 20335.62, "end": 20336.22, "probability": 0.186 }, { "start": 20336.58, "end": 20339.42, "probability": 0.3559 }, { "start": 20340.0, "end": 20340.8, "probability": 0.6725 }, { "start": 20341.4, "end": 20343.3, "probability": 0.8542 }, { "start": 20343.3, "end": 20343.74, "probability": 0.7486 }, { "start": 20344.5, "end": 20348.22, "probability": 0.925 }, { "start": 20350.78, "end": 20351.86, "probability": 0.5342 }, { "start": 20352.36, "end": 20352.48, "probability": 0.142 }, { "start": 20352.62, "end": 20353.6, "probability": 0.7199 }, { "start": 20353.7, "end": 20354.38, "probability": 0.4004 }, { "start": 20354.74, "end": 20354.84, "probability": 0.4457 }, { "start": 20354.88, "end": 20356.02, "probability": 0.5295 }, { "start": 20356.02, "end": 20356.8, "probability": 0.404 }, { "start": 20356.88, "end": 20359.52, "probability": 0.4624 }, { "start": 20359.82, "end": 20361.88, "probability": 0.7679 }, { "start": 20363.78, "end": 20364.92, "probability": 0.4784 }, { "start": 20365.16, "end": 20365.22, "probability": 0.9379 }, { "start": 20365.22, "end": 20366.42, "probability": 0.8665 }, { "start": 20366.48, "end": 20368.48, "probability": 0.9977 }, { "start": 20369.04, "end": 20372.3, "probability": 0.7706 }, { "start": 20372.3, "end": 20375.7, "probability": 0.9746 }, { "start": 20375.86, "end": 20376.46, "probability": 0.8312 }, { "start": 20376.5, "end": 20378.02, "probability": 0.6657 }, { "start": 20378.44, "end": 20378.86, "probability": 0.7593 }, { "start": 20379.46, "end": 20380.98, "probability": 0.8003 }, { "start": 20382.14, "end": 20383.54, "probability": 0.4744 }, { "start": 20383.82, "end": 20384.08, "probability": 0.3508 }, { "start": 20384.34, "end": 20384.98, "probability": 0.856 }, { "start": 20385.9, "end": 20388.12, "probability": 0.6836 }, { "start": 20388.2, "end": 20388.42, "probability": 0.8127 }, { "start": 20388.8, "end": 20389.34, "probability": 0.8715 }, { "start": 20396.02, "end": 20396.02, "probability": 0.1026 }, { "start": 20396.02, "end": 20396.02, "probability": 0.3237 }, { "start": 20396.02, "end": 20396.02, "probability": 0.2732 }, { "start": 20396.02, "end": 20396.02, "probability": 0.3477 }, { "start": 20396.02, "end": 20396.08, "probability": 0.115 }, { "start": 20396.08, "end": 20396.7, "probability": 0.0193 }, { "start": 20396.7, "end": 20397.12, "probability": 0.1696 }, { "start": 20397.12, "end": 20397.24, "probability": 0.0183 }, { "start": 20397.28, "end": 20397.5, "probability": 0.068 }, { "start": 20429.96, "end": 20431.64, "probability": 0.867 }, { "start": 20432.16, "end": 20434.6, "probability": 0.6949 }, { "start": 20436.48, "end": 20436.88, "probability": 0.1071 }, { "start": 20436.88, "end": 20437.48, "probability": 0.3484 }, { "start": 20439.02, "end": 20439.78, "probability": 0.5672 }, { "start": 20441.06, "end": 20442.38, "probability": 0.5556 }, { "start": 20442.48, "end": 20442.88, "probability": 0.8727 }, { "start": 20445.46, "end": 20445.92, "probability": 0.7553 }, { "start": 20446.76, "end": 20447.39, "probability": 0.5346 }, { "start": 20447.58, "end": 20447.96, "probability": 0.7744 }, { "start": 20447.98, "end": 20449.74, "probability": 0.9492 }, { "start": 20449.76, "end": 20450.72, "probability": 0.9598 }, { "start": 20450.88, "end": 20451.18, "probability": 0.8867 }, { "start": 20452.08, "end": 20454.04, "probability": 0.5453 }, { "start": 20456.14, "end": 20456.58, "probability": 0.5306 }, { "start": 20457.0, "end": 20458.62, "probability": 0.9821 }, { "start": 20458.62, "end": 20460.04, "probability": 0.686 }, { "start": 20460.1, "end": 20461.66, "probability": 0.9899 }, { "start": 20463.68, "end": 20467.3, "probability": 0.9813 }, { "start": 20469.02, "end": 20474.02, "probability": 0.9913 }, { "start": 20475.14, "end": 20480.04, "probability": 0.988 }, { "start": 20481.26, "end": 20482.48, "probability": 0.8475 }, { "start": 20482.98, "end": 20488.3, "probability": 0.997 }, { "start": 20489.32, "end": 20491.58, "probability": 0.9838 }, { "start": 20493.02, "end": 20496.82, "probability": 0.9758 }, { "start": 20498.14, "end": 20500.84, "probability": 0.9862 }, { "start": 20500.96, "end": 20504.42, "probability": 0.8867 }, { "start": 20505.04, "end": 20506.28, "probability": 0.9697 }, { "start": 20506.3, "end": 20507.76, "probability": 0.8306 }, { "start": 20507.86, "end": 20508.58, "probability": 0.9951 }, { "start": 20509.88, "end": 20514.68, "probability": 0.9039 }, { "start": 20515.76, "end": 20517.5, "probability": 0.5255 }, { "start": 20519.5, "end": 20523.14, "probability": 0.9757 }, { "start": 20523.94, "end": 20525.58, "probability": 0.9786 }, { "start": 20527.12, "end": 20528.0, "probability": 0.9058 }, { "start": 20530.88, "end": 20532.78, "probability": 0.9832 }, { "start": 20532.92, "end": 20535.44, "probability": 0.991 }, { "start": 20535.6, "end": 20536.98, "probability": 0.9653 }, { "start": 20538.5, "end": 20542.54, "probability": 0.687 }, { "start": 20544.15, "end": 20546.6, "probability": 0.9786 }, { "start": 20546.78, "end": 20547.64, "probability": 0.7102 }, { "start": 20547.72, "end": 20550.46, "probability": 0.9901 }, { "start": 20550.6, "end": 20551.28, "probability": 0.7172 }, { "start": 20551.36, "end": 20553.1, "probability": 0.751 }, { "start": 20553.76, "end": 20555.5, "probability": 0.9197 }, { "start": 20555.7, "end": 20557.94, "probability": 0.9976 }, { "start": 20559.22, "end": 20559.9, "probability": 0.6442 }, { "start": 20560.72, "end": 20561.48, "probability": 0.7744 }, { "start": 20561.58, "end": 20561.86, "probability": 0.4544 }, { "start": 20561.96, "end": 20564.12, "probability": 0.8748 }, { "start": 20565.76, "end": 20567.26, "probability": 0.9713 }, { "start": 20567.8, "end": 20568.66, "probability": 0.9637 }, { "start": 20568.74, "end": 20572.14, "probability": 0.9827 }, { "start": 20572.32, "end": 20573.44, "probability": 0.8184 }, { "start": 20573.8, "end": 20578.98, "probability": 0.9929 }, { "start": 20579.94, "end": 20582.12, "probability": 0.999 }, { "start": 20582.68, "end": 20587.5, "probability": 0.9995 }, { "start": 20587.88, "end": 20589.92, "probability": 0.998 }, { "start": 20592.16, "end": 20593.38, "probability": 0.9709 }, { "start": 20594.58, "end": 20599.22, "probability": 0.9966 }, { "start": 20599.94, "end": 20603.08, "probability": 0.8553 }, { "start": 20605.3, "end": 20607.24, "probability": 0.959 }, { "start": 20607.44, "end": 20612.28, "probability": 0.9228 }, { "start": 20612.48, "end": 20613.24, "probability": 0.9971 }, { "start": 20613.52, "end": 20615.43, "probability": 0.9871 }, { "start": 20616.32, "end": 20617.44, "probability": 0.8135 }, { "start": 20617.56, "end": 20618.38, "probability": 0.9232 }, { "start": 20618.52, "end": 20620.56, "probability": 0.9848 }, { "start": 20620.64, "end": 20621.62, "probability": 0.761 }, { "start": 20622.2, "end": 20623.94, "probability": 0.9958 }, { "start": 20623.94, "end": 20626.16, "probability": 0.9946 }, { "start": 20626.68, "end": 20627.48, "probability": 0.8152 }, { "start": 20630.88, "end": 20631.74, "probability": 0.5624 }, { "start": 20632.04, "end": 20632.46, "probability": 0.9902 }, { "start": 20632.68, "end": 20633.88, "probability": 0.9639 }, { "start": 20633.88, "end": 20634.38, "probability": 0.8622 }, { "start": 20634.42, "end": 20637.76, "probability": 0.7854 }, { "start": 20637.82, "end": 20640.04, "probability": 0.9684 }, { "start": 20641.44, "end": 20643.54, "probability": 0.9639 }, { "start": 20643.62, "end": 20645.3, "probability": 0.9844 }, { "start": 20647.68, "end": 20653.64, "probability": 0.9796 }, { "start": 20653.72, "end": 20653.82, "probability": 0.4846 }, { "start": 20653.86, "end": 20655.76, "probability": 0.8537 }, { "start": 20656.62, "end": 20657.68, "probability": 0.7891 }, { "start": 20658.54, "end": 20661.06, "probability": 0.9868 }, { "start": 20661.36, "end": 20663.66, "probability": 0.9661 }, { "start": 20664.0, "end": 20665.12, "probability": 0.9833 }, { "start": 20665.6, "end": 20667.22, "probability": 0.8072 }, { "start": 20667.66, "end": 20670.52, "probability": 0.9929 }, { "start": 20671.1, "end": 20671.7, "probability": 0.7464 }, { "start": 20672.52, "end": 20675.97, "probability": 0.9944 }, { "start": 20677.01, "end": 20679.64, "probability": 0.9951 }, { "start": 20680.04, "end": 20686.72, "probability": 0.9261 }, { "start": 20686.72, "end": 20689.93, "probability": 0.9993 }, { "start": 20691.38, "end": 20693.18, "probability": 0.9075 }, { "start": 20693.26, "end": 20693.44, "probability": 0.8043 }, { "start": 20693.84, "end": 20695.96, "probability": 0.9991 }, { "start": 20695.96, "end": 20700.7, "probability": 0.9851 }, { "start": 20700.86, "end": 20701.6, "probability": 0.5306 }, { "start": 20701.7, "end": 20703.2, "probability": 0.7296 }, { "start": 20705.02, "end": 20706.24, "probability": 0.9824 }, { "start": 20707.52, "end": 20711.38, "probability": 0.8228 }, { "start": 20711.44, "end": 20712.1, "probability": 0.9668 }, { "start": 20712.6, "end": 20715.34, "probability": 0.9561 }, { "start": 20716.22, "end": 20720.08, "probability": 0.8163 }, { "start": 20720.24, "end": 20724.14, "probability": 0.9897 }, { "start": 20724.14, "end": 20729.14, "probability": 0.9974 }, { "start": 20729.6, "end": 20730.82, "probability": 0.8818 }, { "start": 20730.92, "end": 20731.44, "probability": 0.8107 }, { "start": 20731.96, "end": 20732.62, "probability": 0.8324 }, { "start": 20732.66, "end": 20735.68, "probability": 0.9792 }, { "start": 20736.2, "end": 20737.42, "probability": 0.9814 }, { "start": 20737.46, "end": 20739.44, "probability": 0.9408 }, { "start": 20739.5, "end": 20740.38, "probability": 0.9873 }, { "start": 20741.52, "end": 20743.44, "probability": 0.9768 }, { "start": 20744.88, "end": 20748.49, "probability": 0.953 }, { "start": 20749.18, "end": 20751.86, "probability": 0.8136 }, { "start": 20752.52, "end": 20755.22, "probability": 0.9917 }, { "start": 20756.18, "end": 20759.44, "probability": 0.8988 }, { "start": 20760.14, "end": 20762.14, "probability": 0.9507 }, { "start": 20763.44, "end": 20765.74, "probability": 0.9741 }, { "start": 20766.0, "end": 20767.54, "probability": 0.949 }, { "start": 20767.64, "end": 20769.01, "probability": 0.8584 }, { "start": 20770.84, "end": 20773.5, "probability": 0.9956 }, { "start": 20773.5, "end": 20776.94, "probability": 0.981 }, { "start": 20777.78, "end": 20778.02, "probability": 0.0138 }, { "start": 20779.0, "end": 20781.18, "probability": 0.9388 }, { "start": 20781.72, "end": 20782.08, "probability": 0.6652 }, { "start": 20782.14, "end": 20787.46, "probability": 0.9927 }, { "start": 20788.74, "end": 20792.34, "probability": 0.896 }, { "start": 20792.4, "end": 20795.08, "probability": 0.9922 }, { "start": 20796.46, "end": 20801.0, "probability": 0.8965 }, { "start": 20801.04, "end": 20802.82, "probability": 0.7761 }, { "start": 20803.38, "end": 20804.22, "probability": 0.9604 }, { "start": 20804.52, "end": 20808.34, "probability": 0.8637 }, { "start": 20809.28, "end": 20812.66, "probability": 0.8958 }, { "start": 20814.7, "end": 20816.82, "probability": 0.8533 }, { "start": 20816.82, "end": 20818.48, "probability": 0.9978 }, { "start": 20818.52, "end": 20819.34, "probability": 0.9825 }, { "start": 20820.32, "end": 20823.94, "probability": 0.988 }, { "start": 20824.02, "end": 20824.58, "probability": 0.6255 }, { "start": 20824.9, "end": 20826.18, "probability": 0.8218 }, { "start": 20826.22, "end": 20831.14, "probability": 0.9927 }, { "start": 20831.24, "end": 20831.92, "probability": 0.5651 }, { "start": 20832.98, "end": 20837.06, "probability": 0.9951 }, { "start": 20837.14, "end": 20837.44, "probability": 0.8024 }, { "start": 20837.6, "end": 20837.76, "probability": 0.9366 }, { "start": 20837.86, "end": 20838.36, "probability": 0.9456 }, { "start": 20839.32, "end": 20843.44, "probability": 0.9937 }, { "start": 20844.33, "end": 20849.74, "probability": 0.9987 }, { "start": 20850.56, "end": 20854.16, "probability": 0.9788 }, { "start": 20855.3, "end": 20858.02, "probability": 0.8877 }, { "start": 20858.64, "end": 20861.2, "probability": 0.9918 }, { "start": 20861.22, "end": 20862.68, "probability": 0.7706 }, { "start": 20863.26, "end": 20867.48, "probability": 0.971 }, { "start": 20867.74, "end": 20869.5, "probability": 0.9981 }, { "start": 20870.04, "end": 20872.07, "probability": 0.9959 }, { "start": 20872.08, "end": 20875.06, "probability": 0.9934 }, { "start": 20875.8, "end": 20876.48, "probability": 0.9174 }, { "start": 20877.08, "end": 20879.62, "probability": 0.9948 }, { "start": 20879.62, "end": 20881.74, "probability": 0.9283 }, { "start": 20881.8, "end": 20886.32, "probability": 0.9679 }, { "start": 20887.24, "end": 20889.18, "probability": 0.8705 }, { "start": 20890.76, "end": 20894.02, "probability": 0.9067 }, { "start": 20894.12, "end": 20894.96, "probability": 0.9775 }, { "start": 20895.54, "end": 20897.18, "probability": 0.9141 }, { "start": 20897.22, "end": 20898.08, "probability": 0.5387 }, { "start": 20898.52, "end": 20900.78, "probability": 0.9692 }, { "start": 20902.38, "end": 20902.92, "probability": 0.77 }, { "start": 20903.3, "end": 20904.26, "probability": 0.9941 }, { "start": 20904.34, "end": 20906.32, "probability": 0.9507 }, { "start": 20907.4, "end": 20911.78, "probability": 0.9893 }, { "start": 20912.02, "end": 20912.78, "probability": 0.0554 }, { "start": 20913.18, "end": 20913.7, "probability": 0.7722 }, { "start": 20913.94, "end": 20915.12, "probability": 0.921 }, { "start": 20915.14, "end": 20916.68, "probability": 0.9869 }, { "start": 20916.96, "end": 20918.04, "probability": 0.981 }, { "start": 20918.14, "end": 20920.78, "probability": 0.9199 }, { "start": 20921.34, "end": 20922.58, "probability": 0.9184 }, { "start": 20922.72, "end": 20923.22, "probability": 0.7322 }, { "start": 20923.28, "end": 20925.62, "probability": 0.9355 }, { "start": 20927.88, "end": 20930.12, "probability": 0.0822 }, { "start": 20930.12, "end": 20934.28, "probability": 0.4697 }, { "start": 20934.5, "end": 20937.82, "probability": 0.1701 }, { "start": 20938.16, "end": 20939.32, "probability": 0.0645 }, { "start": 20939.56, "end": 20943.86, "probability": 0.4253 }, { "start": 20943.96, "end": 20944.98, "probability": 0.8076 }, { "start": 20945.08, "end": 20946.62, "probability": 0.9912 }, { "start": 20946.78, "end": 20948.66, "probability": 0.9304 }, { "start": 20948.78, "end": 20950.48, "probability": 0.98 }, { "start": 20950.76, "end": 20951.48, "probability": 0.7046 }, { "start": 20951.56, "end": 20954.6, "probability": 0.9305 }, { "start": 20954.68, "end": 20957.12, "probability": 0.9209 }, { "start": 20957.3, "end": 20960.03, "probability": 0.038 }, { "start": 20961.8, "end": 20963.58, "probability": 0.962 }, { "start": 20963.88, "end": 20964.86, "probability": 0.6719 }, { "start": 20966.42, "end": 20968.13, "probability": 0.1053 }, { "start": 20969.18, "end": 20972.92, "probability": 0.9121 }, { "start": 20973.32, "end": 20974.13, "probability": 0.5801 }, { "start": 20974.7, "end": 20975.8, "probability": 0.9209 }, { "start": 20975.94, "end": 20979.68, "probability": 0.98 }, { "start": 20979.8, "end": 20983.56, "probability": 0.9928 }, { "start": 20983.88, "end": 20985.12, "probability": 0.9889 }, { "start": 20985.24, "end": 20986.68, "probability": 0.6244 }, { "start": 20986.68, "end": 20987.38, "probability": 0.3616 }, { "start": 20988.04, "end": 20989.26, "probability": 0.965 }, { "start": 20990.04, "end": 20991.04, "probability": 0.7582 }, { "start": 20991.9, "end": 20993.62, "probability": 0.8044 }, { "start": 20993.74, "end": 20995.58, "probability": 0.629 }, { "start": 20995.64, "end": 20996.08, "probability": 0.877 }, { "start": 20996.2, "end": 20996.92, "probability": 0.9512 }, { "start": 20997.12, "end": 20997.64, "probability": 0.7396 }, { "start": 20997.86, "end": 20998.92, "probability": 0.8393 }, { "start": 20999.2, "end": 21003.62, "probability": 0.9763 }, { "start": 21004.22, "end": 21005.32, "probability": 0.8477 }, { "start": 21005.38, "end": 21009.78, "probability": 0.9873 }, { "start": 21010.0, "end": 21010.58, "probability": 0.7674 }, { "start": 21010.76, "end": 21011.54, "probability": 0.7792 }, { "start": 21011.64, "end": 21013.54, "probability": 0.9178 }, { "start": 21013.6, "end": 21015.54, "probability": 0.7498 }, { "start": 21015.68, "end": 21016.68, "probability": 0.8738 }, { "start": 21016.74, "end": 21021.08, "probability": 0.8877 }, { "start": 21021.14, "end": 21022.7, "probability": 0.9299 }, { "start": 21022.74, "end": 21025.56, "probability": 0.9069 }, { "start": 21026.1, "end": 21028.06, "probability": 0.9304 }, { "start": 21028.3, "end": 21029.9, "probability": 0.9658 }, { "start": 21030.1, "end": 21030.5, "probability": 0.7994 }, { "start": 21030.8, "end": 21032.66, "probability": 0.9777 }, { "start": 21033.32, "end": 21035.26, "probability": 0.9042 }, { "start": 21035.78, "end": 21038.84, "probability": 0.1329 }, { "start": 21039.04, "end": 21040.0, "probability": 0.1581 }, { "start": 21040.17, "end": 21045.29, "probability": 0.0325 }, { "start": 21048.33, "end": 21049.74, "probability": 0.0524 }, { "start": 21051.04, "end": 21053.6, "probability": 0.0519 }, { "start": 21077.22, "end": 21078.38, "probability": 0.2267 }, { "start": 21079.26, "end": 21079.52, "probability": 0.0169 }, { "start": 21080.16, "end": 21081.6, "probability": 0.3709 }, { "start": 21083.58, "end": 21085.52, "probability": 0.9962 }, { "start": 21086.7, "end": 21088.18, "probability": 0.979 }, { "start": 21088.8, "end": 21089.26, "probability": 0.9761 }, { "start": 21089.34, "end": 21090.52, "probability": 0.8545 }, { "start": 21091.1, "end": 21091.2, "probability": 0.5747 }, { "start": 21092.22, "end": 21094.66, "probability": 0.9868 }, { "start": 21095.38, "end": 21098.22, "probability": 0.2176 }, { "start": 21098.66, "end": 21100.18, "probability": 0.9405 }, { "start": 21100.3, "end": 21104.14, "probability": 0.9943 }, { "start": 21104.56, "end": 21108.08, "probability": 0.9926 }, { "start": 21108.88, "end": 21109.8, "probability": 0.7475 }, { "start": 21110.3, "end": 21110.68, "probability": 0.9322 }, { "start": 21110.82, "end": 21114.04, "probability": 0.5493 }, { "start": 21114.6, "end": 21116.6, "probability": 0.9655 }, { "start": 21116.76, "end": 21119.04, "probability": 0.9819 }, { "start": 21120.7, "end": 21123.48, "probability": 0.6601 }, { "start": 21123.78, "end": 21124.6, "probability": 0.7188 }, { "start": 21126.1, "end": 21127.34, "probability": 0.9317 }, { "start": 21127.34, "end": 21127.34, "probability": 0.0269 }, { "start": 21127.34, "end": 21130.94, "probability": 0.9695 }, { "start": 21131.24, "end": 21132.52, "probability": 0.8983 }, { "start": 21132.92, "end": 21135.0, "probability": 0.9226 }, { "start": 21135.18, "end": 21138.54, "probability": 0.9829 }, { "start": 21139.68, "end": 21140.26, "probability": 0.3273 }, { "start": 21140.92, "end": 21141.8, "probability": 0.6397 }, { "start": 21142.44, "end": 21146.34, "probability": 0.9984 }, { "start": 21147.08, "end": 21148.08, "probability": 0.8047 }, { "start": 21148.66, "end": 21149.98, "probability": 0.9675 }, { "start": 21150.1, "end": 21152.92, "probability": 0.9407 }, { "start": 21153.74, "end": 21154.24, "probability": 0.7639 }, { "start": 21155.02, "end": 21156.82, "probability": 0.8423 }, { "start": 21157.78, "end": 21159.48, "probability": 0.8463 }, { "start": 21159.66, "end": 21160.96, "probability": 0.5011 }, { "start": 21161.34, "end": 21164.92, "probability": 0.9972 }, { "start": 21165.4, "end": 21167.74, "probability": 0.9896 }, { "start": 21168.2, "end": 21170.76, "probability": 0.5272 }, { "start": 21171.98, "end": 21173.92, "probability": 0.8302 }, { "start": 21174.94, "end": 21180.64, "probability": 0.998 }, { "start": 21180.78, "end": 21181.58, "probability": 0.9252 }, { "start": 21182.14, "end": 21185.36, "probability": 0.9984 }, { "start": 21187.48, "end": 21188.26, "probability": 0.6501 }, { "start": 21188.26, "end": 21189.0, "probability": 0.7104 }, { "start": 21189.74, "end": 21192.12, "probability": 0.9936 }, { "start": 21193.2, "end": 21195.26, "probability": 0.9954 }, { "start": 21196.16, "end": 21197.84, "probability": 0.8556 }, { "start": 21198.24, "end": 21200.14, "probability": 0.9937 }, { "start": 21201.04, "end": 21203.48, "probability": 0.9902 }, { "start": 21204.4, "end": 21205.32, "probability": 0.9729 }, { "start": 21205.66, "end": 21206.54, "probability": 0.7573 }, { "start": 21206.6, "end": 21207.39, "probability": 0.9905 }, { "start": 21207.5, "end": 21208.66, "probability": 0.9714 }, { "start": 21209.3, "end": 21209.98, "probability": 0.9793 }, { "start": 21210.94, "end": 21212.32, "probability": 0.9984 }, { "start": 21213.42, "end": 21217.22, "probability": 0.7781 }, { "start": 21217.86, "end": 21220.44, "probability": 0.7615 }, { "start": 21220.84, "end": 21222.58, "probability": 0.9967 }, { "start": 21224.44, "end": 21225.48, "probability": 0.9463 }, { "start": 21227.1, "end": 21227.2, "probability": 0.8232 }, { "start": 21228.56, "end": 21229.7, "probability": 0.8233 }, { "start": 21231.65, "end": 21237.26, "probability": 0.9882 }, { "start": 21237.8, "end": 21238.88, "probability": 0.8304 }, { "start": 21239.22, "end": 21239.58, "probability": 0.9631 }, { "start": 21239.72, "end": 21242.6, "probability": 0.9951 }, { "start": 21244.18, "end": 21244.92, "probability": 0.123 }, { "start": 21246.3, "end": 21247.3, "probability": 0.8516 }, { "start": 21247.6, "end": 21249.06, "probability": 0.7676 }, { "start": 21254.26, "end": 21255.15, "probability": 0.9893 }, { "start": 21255.42, "end": 21257.98, "probability": 0.9963 }, { "start": 21258.38, "end": 21259.08, "probability": 0.8885 }, { "start": 21259.38, "end": 21259.62, "probability": 0.7816 }, { "start": 21260.22, "end": 21263.78, "probability": 0.925 }, { "start": 21264.48, "end": 21264.78, "probability": 0.0001 }, { "start": 21265.34, "end": 21266.22, "probability": 0.3581 }, { "start": 21267.22, "end": 21268.14, "probability": 0.9175 }, { "start": 21268.75, "end": 21268.96, "probability": 0.7982 }, { "start": 21269.28, "end": 21270.46, "probability": 0.8485 }, { "start": 21270.66, "end": 21273.61, "probability": 0.9656 }, { "start": 21274.4, "end": 21276.12, "probability": 0.991 }, { "start": 21276.4, "end": 21278.06, "probability": 0.9917 }, { "start": 21278.42, "end": 21280.56, "probability": 0.9878 }, { "start": 21282.28, "end": 21285.06, "probability": 0.8738 }, { "start": 21286.0, "end": 21286.68, "probability": 0.8728 }, { "start": 21286.78, "end": 21287.58, "probability": 0.9445 }, { "start": 21287.66, "end": 21290.5, "probability": 0.8296 }, { "start": 21292.0, "end": 21292.52, "probability": 0.658 }, { "start": 21293.38, "end": 21295.84, "probability": 0.9946 }, { "start": 21296.68, "end": 21298.14, "probability": 0.5391 }, { "start": 21299.02, "end": 21301.04, "probability": 0.8735 }, { "start": 21302.12, "end": 21302.96, "probability": 0.8648 }, { "start": 21303.04, "end": 21303.5, "probability": 0.9507 }, { "start": 21303.66, "end": 21305.7, "probability": 0.2223 }, { "start": 21305.7, "end": 21308.2, "probability": 0.501 }, { "start": 21308.32, "end": 21308.74, "probability": 0.6695 }, { "start": 21308.84, "end": 21310.36, "probability": 0.6595 }, { "start": 21311.34, "end": 21313.98, "probability": 0.8992 }, { "start": 21314.52, "end": 21316.12, "probability": 0.9917 }, { "start": 21316.86, "end": 21318.12, "probability": 0.7985 }, { "start": 21318.24, "end": 21318.4, "probability": 0.2133 }, { "start": 21318.56, "end": 21319.42, "probability": 0.9563 }, { "start": 21320.02, "end": 21321.46, "probability": 0.9958 }, { "start": 21322.22, "end": 21324.3, "probability": 0.7808 }, { "start": 21324.84, "end": 21326.16, "probability": 0.9927 }, { "start": 21327.1, "end": 21327.76, "probability": 0.8881 }, { "start": 21328.38, "end": 21329.64, "probability": 0.9866 }, { "start": 21330.34, "end": 21333.72, "probability": 0.9333 }, { "start": 21334.78, "end": 21336.74, "probability": 0.9994 }, { "start": 21337.52, "end": 21340.16, "probability": 0.6895 }, { "start": 21340.68, "end": 21343.06, "probability": 0.9272 }, { "start": 21343.8, "end": 21344.36, "probability": 0.5407 }, { "start": 21345.44, "end": 21345.74, "probability": 0.0842 }, { "start": 21346.28, "end": 21347.18, "probability": 0.6589 }, { "start": 21347.6, "end": 21348.46, "probability": 0.8916 }, { "start": 21348.54, "end": 21350.24, "probability": 0.9976 }, { "start": 21350.46, "end": 21354.36, "probability": 0.8608 }, { "start": 21354.96, "end": 21356.02, "probability": 0.5365 }, { "start": 21356.14, "end": 21360.48, "probability": 0.8462 }, { "start": 21361.44, "end": 21362.2, "probability": 0.6383 }, { "start": 21362.6, "end": 21363.92, "probability": 0.8615 }, { "start": 21364.06, "end": 21364.72, "probability": 0.709 }, { "start": 21366.52, "end": 21368.5, "probability": 0.776 }, { "start": 21369.54, "end": 21372.4, "probability": 0.5671 }, { "start": 21372.58, "end": 21376.34, "probability": 0.9058 }, { "start": 21376.94, "end": 21379.96, "probability": 0.9722 }, { "start": 21380.42, "end": 21382.17, "probability": 0.7922 }, { "start": 21383.3, "end": 21387.58, "probability": 0.8995 }, { "start": 21388.22, "end": 21389.08, "probability": 0.5423 }, { "start": 21389.52, "end": 21390.38, "probability": 0.7447 }, { "start": 21390.7, "end": 21391.82, "probability": 0.9287 }, { "start": 21392.2, "end": 21392.77, "probability": 0.9673 }, { "start": 21393.06, "end": 21394.14, "probability": 0.9855 }, { "start": 21394.9, "end": 21396.48, "probability": 0.9917 }, { "start": 21397.44, "end": 21399.78, "probability": 0.9952 }, { "start": 21399.86, "end": 21402.08, "probability": 0.9731 }, { "start": 21403.14, "end": 21405.42, "probability": 0.9519 }, { "start": 21405.62, "end": 21407.52, "probability": 0.9185 }, { "start": 21407.98, "end": 21408.44, "probability": 0.8966 }, { "start": 21408.62, "end": 21409.28, "probability": 0.9844 }, { "start": 21410.3, "end": 21411.47, "probability": 0.9985 }, { "start": 21412.5, "end": 21415.54, "probability": 0.999 }, { "start": 21416.24, "end": 21417.72, "probability": 0.8411 }, { "start": 21418.36, "end": 21418.72, "probability": 0.8192 }, { "start": 21418.96, "end": 21419.8, "probability": 0.813 }, { "start": 21420.34, "end": 21421.28, "probability": 0.7829 }, { "start": 21421.76, "end": 21424.78, "probability": 0.9679 }, { "start": 21425.42, "end": 21428.08, "probability": 0.9824 }, { "start": 21428.56, "end": 21429.94, "probability": 0.8481 }, { "start": 21430.52, "end": 21430.78, "probability": 0.6368 }, { "start": 21430.8, "end": 21431.66, "probability": 0.8497 }, { "start": 21431.72, "end": 21433.1, "probability": 0.9885 }, { "start": 21433.46, "end": 21433.66, "probability": 0.4013 }, { "start": 21433.96, "end": 21434.46, "probability": 0.4467 }, { "start": 21434.46, "end": 21435.02, "probability": 0.3724 }, { "start": 21435.32, "end": 21436.4, "probability": 0.3469 }, { "start": 21437.22, "end": 21439.02, "probability": 0.8914 }, { "start": 21439.74, "end": 21442.42, "probability": 0.8582 }, { "start": 21443.08, "end": 21445.28, "probability": 0.9956 }, { "start": 21445.78, "end": 21451.38, "probability": 0.9845 }, { "start": 21453.46, "end": 21454.72, "probability": 0.7231 }, { "start": 21455.32, "end": 21457.02, "probability": 0.9553 }, { "start": 21457.16, "end": 21459.28, "probability": 0.9146 }, { "start": 21459.46, "end": 21462.64, "probability": 0.8862 }, { "start": 21463.06, "end": 21463.56, "probability": 0.9888 }, { "start": 21465.0, "end": 21466.06, "probability": 0.9755 }, { "start": 21466.14, "end": 21466.32, "probability": 0.4116 }, { "start": 21466.42, "end": 21468.6, "probability": 0.6665 }, { "start": 21468.64, "end": 21469.48, "probability": 0.9155 }, { "start": 21469.48, "end": 21471.65, "probability": 0.8976 }, { "start": 21472.02, "end": 21472.46, "probability": 0.7819 }, { "start": 21472.54, "end": 21472.72, "probability": 0.6435 }, { "start": 21472.78, "end": 21473.24, "probability": 0.8641 }, { "start": 21473.3, "end": 21473.56, "probability": 0.6887 }, { "start": 21474.46, "end": 21475.86, "probability": 0.7723 }, { "start": 21476.6, "end": 21478.86, "probability": 0.9515 }, { "start": 21479.44, "end": 21482.44, "probability": 0.8127 }, { "start": 21482.46, "end": 21484.52, "probability": 0.9657 }, { "start": 21485.2, "end": 21486.48, "probability": 0.943 }, { "start": 21488.38, "end": 21490.88, "probability": 0.941 }, { "start": 21492.24, "end": 21495.58, "probability": 0.7313 }, { "start": 21496.34, "end": 21499.52, "probability": 0.8324 }, { "start": 21500.54, "end": 21502.54, "probability": 0.9802 }, { "start": 21506.06, "end": 21506.65, "probability": 0.9155 }, { "start": 21506.78, "end": 21507.9, "probability": 0.9109 }, { "start": 21508.9, "end": 21509.68, "probability": 0.9263 }, { "start": 21509.78, "end": 21513.78, "probability": 0.7567 }, { "start": 21515.02, "end": 21517.84, "probability": 0.8764 }, { "start": 21518.1, "end": 21520.92, "probability": 0.8421 }, { "start": 21521.84, "end": 21523.98, "probability": 0.9937 }, { "start": 21524.66, "end": 21529.2, "probability": 0.9973 }, { "start": 21530.14, "end": 21531.82, "probability": 0.9849 }, { "start": 21532.48, "end": 21533.26, "probability": 0.8086 }, { "start": 21533.34, "end": 21535.3, "probability": 0.8535 }, { "start": 21538.28, "end": 21539.0, "probability": 0.1355 }, { "start": 21539.0, "end": 21540.91, "probability": 0.9277 }, { "start": 21541.62, "end": 21543.88, "probability": 0.8548 }, { "start": 21544.58, "end": 21546.2, "probability": 0.7003 }, { "start": 21547.04, "end": 21547.94, "probability": 0.1528 }, { "start": 21548.44, "end": 21550.32, "probability": 0.9497 }, { "start": 21551.14, "end": 21553.52, "probability": 0.8972 }, { "start": 21553.64, "end": 21555.24, "probability": 0.8821 }, { "start": 21555.38, "end": 21559.92, "probability": 0.9601 }, { "start": 21560.48, "end": 21561.5, "probability": 0.9803 }, { "start": 21561.68, "end": 21563.66, "probability": 0.973 }, { "start": 21564.34, "end": 21564.74, "probability": 0.1762 }, { "start": 21565.04, "end": 21565.92, "probability": 0.8928 }, { "start": 21567.82, "end": 21571.64, "probability": 0.9921 }, { "start": 21571.64, "end": 21575.78, "probability": 0.7164 }, { "start": 21576.34, "end": 21577.94, "probability": 0.9526 }, { "start": 21578.08, "end": 21580.68, "probability": 0.9122 }, { "start": 21582.04, "end": 21583.78, "probability": 0.972 }, { "start": 21584.5, "end": 21589.54, "probability": 0.9142 }, { "start": 21590.18, "end": 21593.4, "probability": 0.9946 }, { "start": 21594.32, "end": 21596.5, "probability": 0.8787 }, { "start": 21596.66, "end": 21598.8, "probability": 0.7297 }, { "start": 21599.68, "end": 21600.58, "probability": 0.9682 }, { "start": 21601.34, "end": 21602.46, "probability": 0.9394 }, { "start": 21603.5, "end": 21604.44, "probability": 0.9714 }, { "start": 21604.56, "end": 21607.24, "probability": 0.8457 }, { "start": 21609.8, "end": 21611.68, "probability": 0.9712 }, { "start": 21611.92, "end": 21613.64, "probability": 0.9894 }, { "start": 21614.08, "end": 21616.6, "probability": 0.9767 }, { "start": 21617.36, "end": 21619.98, "probability": 0.9394 }, { "start": 21620.12, "end": 21620.58, "probability": 0.5813 }, { "start": 21621.28, "end": 21624.92, "probability": 0.9943 }, { "start": 21625.5, "end": 21628.8, "probability": 0.9584 }, { "start": 21629.28, "end": 21631.34, "probability": 0.9902 }, { "start": 21631.38, "end": 21631.56, "probability": 0.7653 }, { "start": 21631.66, "end": 21632.67, "probability": 0.937 }, { "start": 21634.68, "end": 21636.38, "probability": 0.7944 }, { "start": 21637.18, "end": 21638.13, "probability": 0.9016 }, { "start": 21638.2, "end": 21639.78, "probability": 0.9921 }, { "start": 21639.84, "end": 21642.96, "probability": 0.9954 }, { "start": 21643.06, "end": 21644.33, "probability": 0.8452 }, { "start": 21644.84, "end": 21646.53, "probability": 0.8596 }, { "start": 21647.36, "end": 21650.68, "probability": 0.9018 }, { "start": 21652.04, "end": 21657.14, "probability": 0.9975 }, { "start": 21657.66, "end": 21661.82, "probability": 0.9597 }, { "start": 21662.52, "end": 21664.3, "probability": 0.9733 }, { "start": 21665.32, "end": 21668.94, "probability": 0.9942 }, { "start": 21670.28, "end": 21675.18, "probability": 0.9964 }, { "start": 21675.34, "end": 21677.48, "probability": 0.8782 }, { "start": 21677.64, "end": 21678.52, "probability": 0.4982 }, { "start": 21678.64, "end": 21679.86, "probability": 0.9077 }, { "start": 21681.0, "end": 21682.36, "probability": 0.8398 }, { "start": 21682.86, "end": 21683.4, "probability": 0.117 }, { "start": 21683.58, "end": 21683.64, "probability": 0.0344 }, { "start": 21683.64, "end": 21685.2, "probability": 0.8199 }, { "start": 21685.76, "end": 21688.84, "probability": 0.8028 }, { "start": 21688.98, "end": 21690.54, "probability": 0.3471 }, { "start": 21690.7, "end": 21693.36, "probability": 0.5883 }, { "start": 21693.36, "end": 21694.36, "probability": 0.5656 }, { "start": 21694.56, "end": 21697.1, "probability": 0.9618 }, { "start": 21697.24, "end": 21697.34, "probability": 0.2239 }, { "start": 21697.88, "end": 21698.2, "probability": 0.0937 }, { "start": 21698.34, "end": 21698.36, "probability": 0.0669 }, { "start": 21698.36, "end": 21698.44, "probability": 0.0066 }, { "start": 21698.44, "end": 21703.08, "probability": 0.7225 }, { "start": 21704.39, "end": 21706.9, "probability": 0.0602 }, { "start": 21709.06, "end": 21710.1, "probability": 0.0486 }, { "start": 21711.12, "end": 21711.12, "probability": 0.0165 }, { "start": 21711.12, "end": 21711.12, "probability": 0.099 }, { "start": 21711.12, "end": 21711.12, "probability": 0.1338 }, { "start": 21711.12, "end": 21712.24, "probability": 0.5022 }, { "start": 21712.42, "end": 21713.84, "probability": 0.8065 }, { "start": 21714.56, "end": 21717.8, "probability": 0.8984 }, { "start": 21717.8, "end": 21720.56, "probability": 0.9846 }, { "start": 21721.28, "end": 21722.81, "probability": 0.883 }, { "start": 21723.7, "end": 21724.18, "probability": 0.8068 }, { "start": 21725.02, "end": 21726.82, "probability": 0.6724 }, { "start": 21727.7, "end": 21729.26, "probability": 0.9639 }, { "start": 21729.94, "end": 21733.2, "probability": 0.9912 }, { "start": 21733.76, "end": 21736.66, "probability": 0.9753 }, { "start": 21737.42, "end": 21741.06, "probability": 0.9473 }, { "start": 21741.06, "end": 21744.2, "probability": 0.9663 }, { "start": 21744.84, "end": 21746.31, "probability": 0.9255 }, { "start": 21746.94, "end": 21750.15, "probability": 0.9452 }, { "start": 21750.98, "end": 21752.08, "probability": 0.8063 }, { "start": 21752.8, "end": 21755.32, "probability": 0.4066 }, { "start": 21756.8, "end": 21758.0, "probability": 0.9702 }, { "start": 21758.76, "end": 21758.86, "probability": 0.0746 }, { "start": 21758.86, "end": 21760.72, "probability": 0.5039 }, { "start": 21760.76, "end": 21762.33, "probability": 0.7539 }, { "start": 21763.1, "end": 21764.93, "probability": 0.7306 }, { "start": 21765.44, "end": 21765.86, "probability": 0.2205 }, { "start": 21766.62, "end": 21767.82, "probability": 0.7832 }, { "start": 21768.62, "end": 21773.38, "probability": 0.9778 }, { "start": 21774.26, "end": 21779.33, "probability": 0.9705 }, { "start": 21779.78, "end": 21783.48, "probability": 0.998 }, { "start": 21784.0, "end": 21787.46, "probability": 0.9973 }, { "start": 21787.98, "end": 21790.46, "probability": 0.9945 }, { "start": 21790.68, "end": 21792.54, "probability": 0.4008 }, { "start": 21792.68, "end": 21792.92, "probability": 0.1632 }, { "start": 21794.8, "end": 21797.61, "probability": 0.8669 }, { "start": 21798.18, "end": 21800.74, "probability": 0.9654 }, { "start": 21830.1, "end": 21830.76, "probability": 0.6705 }, { "start": 21832.08, "end": 21834.14, "probability": 0.6185 }, { "start": 21834.4, "end": 21835.36, "probability": 0.8116 }, { "start": 21836.94, "end": 21840.58, "probability": 0.6588 }, { "start": 21841.6, "end": 21845.86, "probability": 0.8767 }, { "start": 21847.24, "end": 21847.64, "probability": 0.9814 }, { "start": 21849.78, "end": 21852.88, "probability": 0.9532 }, { "start": 21853.72, "end": 21854.46, "probability": 0.948 }, { "start": 21854.68, "end": 21856.34, "probability": 0.564 }, { "start": 21857.6, "end": 21859.14, "probability": 0.993 }, { "start": 21859.74, "end": 21860.72, "probability": 0.8162 }, { "start": 21862.08, "end": 21863.52, "probability": 0.8433 }, { "start": 21864.22, "end": 21865.08, "probability": 0.9015 }, { "start": 21865.22, "end": 21865.84, "probability": 0.8809 }, { "start": 21866.62, "end": 21867.2, "probability": 0.7195 }, { "start": 21868.22, "end": 21869.62, "probability": 0.6744 }, { "start": 21870.3, "end": 21872.38, "probability": 0.9978 }, { "start": 21875.16, "end": 21876.14, "probability": 0.8885 }, { "start": 21877.58, "end": 21879.32, "probability": 0.9604 }, { "start": 21880.84, "end": 21883.54, "probability": 0.9934 }, { "start": 21884.64, "end": 21886.58, "probability": 0.9425 }, { "start": 21887.16, "end": 21890.84, "probability": 0.9984 }, { "start": 21891.72, "end": 21892.76, "probability": 0.9906 }, { "start": 21893.76, "end": 21897.6, "probability": 0.979 }, { "start": 21897.84, "end": 21900.2, "probability": 0.932 }, { "start": 21900.2, "end": 21902.2, "probability": 0.9829 }, { "start": 21902.38, "end": 21905.16, "probability": 0.9191 }, { "start": 21905.38, "end": 21907.64, "probability": 0.1874 }, { "start": 21907.64, "end": 21907.64, "probability": 0.0115 }, { "start": 21907.64, "end": 21907.64, "probability": 0.1205 }, { "start": 21907.64, "end": 21908.28, "probability": 0.3994 }, { "start": 21909.42, "end": 21910.24, "probability": 0.7295 }, { "start": 21910.92, "end": 21911.3, "probability": 0.9134 }, { "start": 21912.34, "end": 21914.74, "probability": 0.95 }, { "start": 21915.54, "end": 21918.28, "probability": 0.9559 }, { "start": 21918.52, "end": 21919.54, "probability": 0.4389 }, { "start": 21919.64, "end": 21923.16, "probability": 0.6802 }, { "start": 21923.34, "end": 21923.54, "probability": 0.3747 }, { "start": 21923.78, "end": 21925.78, "probability": 0.9966 }, { "start": 21926.88, "end": 21929.86, "probability": 0.9435 }, { "start": 21930.72, "end": 21933.68, "probability": 0.937 }, { "start": 21934.26, "end": 21937.5, "probability": 0.7469 }, { "start": 21937.66, "end": 21938.25, "probability": 0.8931 }, { "start": 21938.38, "end": 21942.32, "probability": 0.9688 }, { "start": 21943.48, "end": 21945.58, "probability": 0.9966 }, { "start": 21945.7, "end": 21946.64, "probability": 0.9341 }, { "start": 21946.64, "end": 21947.64, "probability": 0.9573 }, { "start": 21948.54, "end": 21949.41, "probability": 0.9976 }, { "start": 21950.38, "end": 21952.94, "probability": 0.6704 }, { "start": 21953.76, "end": 21953.94, "probability": 0.3073 }, { "start": 21954.62, "end": 21956.34, "probability": 0.6728 }, { "start": 21956.64, "end": 21957.66, "probability": 0.5149 }, { "start": 21958.59, "end": 21959.78, "probability": 0.816 }, { "start": 21960.08, "end": 21960.08, "probability": 0.2574 }, { "start": 21960.08, "end": 21961.7, "probability": 0.8949 }, { "start": 21961.98, "end": 21963.52, "probability": 0.9822 }, { "start": 21963.84, "end": 21966.76, "probability": 0.8394 }, { "start": 21967.5, "end": 21968.26, "probability": 0.0117 }, { "start": 21968.28, "end": 21969.48, "probability": 0.7077 }, { "start": 21969.56, "end": 21970.08, "probability": 0.0462 }, { "start": 21970.12, "end": 21970.84, "probability": 0.7879 }, { "start": 21971.08, "end": 21975.24, "probability": 0.9866 }, { "start": 21976.36, "end": 21978.74, "probability": 0.8139 }, { "start": 21979.88, "end": 21981.34, "probability": 0.7831 }, { "start": 21981.42, "end": 21985.36, "probability": 0.9672 }, { "start": 21985.7, "end": 21986.18, "probability": 0.7184 }, { "start": 21986.78, "end": 21988.9, "probability": 0.8486 }, { "start": 21989.32, "end": 21992.5, "probability": 0.9181 }, { "start": 21993.04, "end": 21994.88, "probability": 0.9156 }, { "start": 21995.06, "end": 21995.96, "probability": 0.9529 }, { "start": 21996.5, "end": 21998.66, "probability": 0.996 }, { "start": 21998.74, "end": 21999.68, "probability": 0.8859 }, { "start": 22000.84, "end": 22000.88, "probability": 0.1789 }, { "start": 22000.88, "end": 22002.98, "probability": 0.9775 }, { "start": 22003.06, "end": 22003.84, "probability": 0.952 }, { "start": 22004.1, "end": 22005.02, "probability": 0.9932 }, { "start": 22005.56, "end": 22006.42, "probability": 0.9238 }, { "start": 22007.26, "end": 22008.21, "probability": 0.9375 }, { "start": 22008.96, "end": 22009.42, "probability": 0.8567 }, { "start": 22010.7, "end": 22012.28, "probability": 0.9906 }, { "start": 22013.34, "end": 22017.92, "probability": 0.7429 }, { "start": 22017.98, "end": 22019.18, "probability": 0.9252 }, { "start": 22019.32, "end": 22019.52, "probability": 0.8651 }, { "start": 22020.0, "end": 22022.47, "probability": 0.876 }, { "start": 22024.4, "end": 22027.36, "probability": 0.8641 }, { "start": 22027.88, "end": 22028.64, "probability": 0.8427 }, { "start": 22029.18, "end": 22030.66, "probability": 0.827 }, { "start": 22031.24, "end": 22033.64, "probability": 0.9418 }, { "start": 22033.9, "end": 22035.62, "probability": 0.957 }, { "start": 22035.68, "end": 22037.24, "probability": 0.9897 }, { "start": 22039.24, "end": 22042.84, "probability": 0.8168 }, { "start": 22043.36, "end": 22044.4, "probability": 0.892 }, { "start": 22045.1, "end": 22050.48, "probability": 0.9797 }, { "start": 22051.62, "end": 22051.84, "probability": 0.5908 }, { "start": 22051.94, "end": 22053.34, "probability": 0.9734 }, { "start": 22054.26, "end": 22057.78, "probability": 0.9952 }, { "start": 22058.4, "end": 22058.84, "probability": 0.3379 }, { "start": 22058.98, "end": 22059.16, "probability": 0.7366 }, { "start": 22059.8, "end": 22062.3, "probability": 0.9861 }, { "start": 22062.3, "end": 22064.64, "probability": 0.9842 }, { "start": 22065.24, "end": 22068.2, "probability": 0.8779 }, { "start": 22068.36, "end": 22070.36, "probability": 0.9783 }, { "start": 22070.44, "end": 22071.04, "probability": 0.839 }, { "start": 22071.74, "end": 22073.04, "probability": 0.9774 }, { "start": 22073.78, "end": 22075.9, "probability": 0.9878 }, { "start": 22076.82, "end": 22080.0, "probability": 0.8995 }, { "start": 22081.1, "end": 22081.87, "probability": 0.9251 }, { "start": 22082.62, "end": 22083.26, "probability": 0.6028 }, { "start": 22084.28, "end": 22085.42, "probability": 0.7778 }, { "start": 22086.84, "end": 22087.5, "probability": 0.9641 }, { "start": 22088.26, "end": 22090.16, "probability": 0.9536 }, { "start": 22090.82, "end": 22091.34, "probability": 0.9995 }, { "start": 22092.22, "end": 22094.56, "probability": 0.986 }, { "start": 22095.12, "end": 22096.88, "probability": 0.8471 }, { "start": 22097.4, "end": 22097.94, "probability": 0.7611 }, { "start": 22099.3, "end": 22102.18, "probability": 0.9788 }, { "start": 22104.04, "end": 22108.38, "probability": 0.9067 }, { "start": 22108.38, "end": 22110.52, "probability": 0.8866 }, { "start": 22110.74, "end": 22111.0, "probability": 0.6177 }, { "start": 22111.06, "end": 22111.72, "probability": 0.6069 }, { "start": 22111.78, "end": 22112.92, "probability": 0.715 }, { "start": 22113.46, "end": 22115.38, "probability": 0.8639 }, { "start": 22115.96, "end": 22115.96, "probability": 0.6217 }, { "start": 22115.96, "end": 22116.54, "probability": 0.3674 }, { "start": 22116.62, "end": 22118.48, "probability": 0.7959 }, { "start": 22119.16, "end": 22121.94, "probability": 0.7431 }, { "start": 22122.02, "end": 22124.18, "probability": 0.748 }, { "start": 22124.22, "end": 22126.48, "probability": 0.9186 }, { "start": 22127.06, "end": 22129.08, "probability": 0.7673 }, { "start": 22129.3, "end": 22131.6, "probability": 0.2916 }, { "start": 22132.61, "end": 22133.24, "probability": 0.7184 }, { "start": 22133.38, "end": 22135.82, "probability": 0.9423 }, { "start": 22136.28, "end": 22140.26, "probability": 0.9797 }, { "start": 22140.94, "end": 22141.98, "probability": 0.9435 }, { "start": 22142.64, "end": 22143.0, "probability": 0.4966 }, { "start": 22143.32, "end": 22144.36, "probability": 0.5011 }, { "start": 22144.7, "end": 22148.54, "probability": 0.9598 }, { "start": 22148.62, "end": 22148.74, "probability": 0.034 }, { "start": 22148.88, "end": 22152.26, "probability": 0.9861 }, { "start": 22152.84, "end": 22154.58, "probability": 0.7464 }, { "start": 22155.58, "end": 22156.8, "probability": 0.8596 }, { "start": 22157.56, "end": 22160.06, "probability": 0.5165 }, { "start": 22160.32, "end": 22161.42, "probability": 0.9133 }, { "start": 22161.56, "end": 22162.42, "probability": 0.8121 }, { "start": 22162.46, "end": 22164.74, "probability": 0.9678 }, { "start": 22165.88, "end": 22166.24, "probability": 0.9224 }, { "start": 22167.12, "end": 22167.88, "probability": 0.9976 }, { "start": 22169.02, "end": 22173.0, "probability": 0.9832 }, { "start": 22174.3, "end": 22174.52, "probability": 0.7249 }, { "start": 22175.36, "end": 22175.92, "probability": 0.9307 }, { "start": 22177.22, "end": 22180.8, "probability": 0.907 }, { "start": 22181.44, "end": 22182.96, "probability": 0.9414 }, { "start": 22182.96, "end": 22184.78, "probability": 0.9934 }, { "start": 22185.94, "end": 22186.58, "probability": 0.8281 }, { "start": 22186.76, "end": 22188.22, "probability": 0.9943 }, { "start": 22188.8, "end": 22189.56, "probability": 0.5894 }, { "start": 22190.6, "end": 22192.62, "probability": 0.6833 }, { "start": 22193.56, "end": 22195.54, "probability": 0.9743 }, { "start": 22196.22, "end": 22197.3, "probability": 0.9023 }, { "start": 22197.66, "end": 22200.56, "probability": 0.8631 }, { "start": 22201.14, "end": 22203.54, "probability": 0.7516 }, { "start": 22203.78, "end": 22204.52, "probability": 0.9666 }, { "start": 22206.34, "end": 22207.66, "probability": 0.801 }, { "start": 22208.18, "end": 22210.6, "probability": 0.9599 }, { "start": 22211.4, "end": 22213.96, "probability": 0.9787 }, { "start": 22214.6, "end": 22215.18, "probability": 0.9854 }, { "start": 22216.22, "end": 22219.14, "probability": 0.8761 }, { "start": 22219.2, "end": 22220.94, "probability": 0.6966 }, { "start": 22221.42, "end": 22223.26, "probability": 0.8716 }, { "start": 22223.62, "end": 22224.04, "probability": 0.9138 }, { "start": 22224.64, "end": 22226.1, "probability": 0.9452 }, { "start": 22226.22, "end": 22229.14, "probability": 0.6453 }, { "start": 22229.28, "end": 22231.64, "probability": 0.9567 }, { "start": 22231.76, "end": 22233.74, "probability": 0.9626 }, { "start": 22234.58, "end": 22236.64, "probability": 0.8587 }, { "start": 22237.24, "end": 22238.18, "probability": 0.3937 }, { "start": 22240.06, "end": 22242.18, "probability": 0.637 }, { "start": 22243.38, "end": 22247.16, "probability": 0.9287 }, { "start": 22247.51, "end": 22249.58, "probability": 0.9984 }, { "start": 22252.24, "end": 22254.32, "probability": 0.6415 }, { "start": 22254.68, "end": 22257.96, "probability": 0.9496 }, { "start": 22258.76, "end": 22260.66, "probability": 0.9707 }, { "start": 22260.84, "end": 22263.64, "probability": 0.9871 }, { "start": 22264.68, "end": 22268.42, "probability": 0.9922 }, { "start": 22268.56, "end": 22269.78, "probability": 0.992 }, { "start": 22271.68, "end": 22272.6, "probability": 0.887 }, { "start": 22272.92, "end": 22274.14, "probability": 0.9569 }, { "start": 22274.5, "end": 22274.76, "probability": 0.9285 }, { "start": 22274.84, "end": 22276.16, "probability": 0.9834 }, { "start": 22277.2, "end": 22277.7, "probability": 0.8675 }, { "start": 22278.68, "end": 22280.18, "probability": 0.8482 }, { "start": 22281.54, "end": 22283.52, "probability": 0.7493 }, { "start": 22283.96, "end": 22284.2, "probability": 0.6992 }, { "start": 22284.24, "end": 22286.26, "probability": 0.8628 }, { "start": 22286.91, "end": 22290.22, "probability": 0.8942 }, { "start": 22290.46, "end": 22293.6, "probability": 0.7415 }, { "start": 22293.96, "end": 22294.32, "probability": 0.1152 }, { "start": 22294.42, "end": 22295.34, "probability": 0.0001 }, { "start": 22296.44, "end": 22298.68, "probability": 0.5722 }, { "start": 22298.86, "end": 22299.18, "probability": 0.3938 }, { "start": 22299.42, "end": 22300.56, "probability": 0.952 }, { "start": 22301.07, "end": 22302.56, "probability": 0.6172 }, { "start": 22302.66, "end": 22305.32, "probability": 0.9624 }, { "start": 22305.4, "end": 22307.67, "probability": 0.8882 }, { "start": 22308.48, "end": 22312.08, "probability": 0.812 }, { "start": 22312.9, "end": 22315.04, "probability": 0.7021 }, { "start": 22315.1, "end": 22320.4, "probability": 0.7436 }, { "start": 22321.24, "end": 22323.76, "probability": 0.9591 }, { "start": 22324.06, "end": 22325.04, "probability": 0.9295 }, { "start": 22325.92, "end": 22327.64, "probability": 0.9305 }, { "start": 22328.5, "end": 22330.52, "probability": 0.7907 }, { "start": 22331.48, "end": 22332.18, "probability": 0.9468 }, { "start": 22332.3, "end": 22333.56, "probability": 0.9335 }, { "start": 22333.56, "end": 22335.32, "probability": 0.9556 }, { "start": 22335.36, "end": 22335.9, "probability": 0.9104 }, { "start": 22337.46, "end": 22342.22, "probability": 0.8458 }, { "start": 22342.28, "end": 22344.8, "probability": 0.9939 }, { "start": 22346.06, "end": 22346.92, "probability": 0.9604 }, { "start": 22347.72, "end": 22348.22, "probability": 0.5197 }, { "start": 22348.82, "end": 22350.16, "probability": 0.4709 }, { "start": 22350.22, "end": 22351.16, "probability": 0.6123 }, { "start": 22351.7, "end": 22355.3, "probability": 0.852 }, { "start": 22355.9, "end": 22357.48, "probability": 0.8127 }, { "start": 22358.98, "end": 22359.72, "probability": 0.8845 }, { "start": 22360.32, "end": 22363.26, "probability": 0.9312 }, { "start": 22363.4, "end": 22363.64, "probability": 0.9407 }, { "start": 22363.74, "end": 22368.9, "probability": 0.9586 }, { "start": 22369.25, "end": 22372.1, "probability": 0.951 }, { "start": 22373.44, "end": 22375.06, "probability": 0.9868 }, { "start": 22376.08, "end": 22377.78, "probability": 0.9626 }, { "start": 22377.86, "end": 22378.96, "probability": 0.7462 }, { "start": 22379.04, "end": 22382.86, "probability": 0.7287 }, { "start": 22383.48, "end": 22385.76, "probability": 0.9788 }, { "start": 22386.48, "end": 22387.12, "probability": 0.8616 }, { "start": 22389.34, "end": 22392.04, "probability": 0.0997 }, { "start": 22392.24, "end": 22392.58, "probability": 0.0516 }, { "start": 22392.58, "end": 22393.52, "probability": 0.8237 }, { "start": 22393.84, "end": 22396.16, "probability": 0.9928 }, { "start": 22396.16, "end": 22398.7, "probability": 0.8342 }, { "start": 22399.28, "end": 22400.54, "probability": 0.8966 }, { "start": 22400.74, "end": 22402.64, "probability": 0.9974 }, { "start": 22403.6, "end": 22404.44, "probability": 0.9983 }, { "start": 22405.12, "end": 22406.78, "probability": 0.9519 }, { "start": 22407.06, "end": 22409.42, "probability": 0.7285 }, { "start": 22410.1, "end": 22411.88, "probability": 0.8741 }, { "start": 22411.94, "end": 22413.72, "probability": 0.7912 }, { "start": 22414.3, "end": 22415.54, "probability": 0.9912 }, { "start": 22416.56, "end": 22419.76, "probability": 0.9656 }, { "start": 22419.76, "end": 22422.78, "probability": 0.9365 }, { "start": 22423.24, "end": 22423.9, "probability": 0.6855 }, { "start": 22424.44, "end": 22425.32, "probability": 0.6559 }, { "start": 22425.96, "end": 22426.78, "probability": 0.7612 }, { "start": 22427.16, "end": 22429.36, "probability": 0.8335 }, { "start": 22430.38, "end": 22432.02, "probability": 0.8105 }, { "start": 22432.08, "end": 22432.58, "probability": 0.6707 }, { "start": 22432.94, "end": 22433.34, "probability": 0.8427 }, { "start": 22433.96, "end": 22437.24, "probability": 0.9873 }, { "start": 22437.9, "end": 22438.54, "probability": 0.7492 }, { "start": 22438.8, "end": 22440.92, "probability": 0.9247 }, { "start": 22441.22, "end": 22441.4, "probability": 0.7607 }, { "start": 22441.54, "end": 22443.92, "probability": 0.5857 }, { "start": 22443.92, "end": 22444.37, "probability": 0.3535 }, { "start": 22446.2, "end": 22447.11, "probability": 0.8298 }, { "start": 22450.92, "end": 22451.84, "probability": 0.4222 }, { "start": 22452.86, "end": 22453.9, "probability": 0.9346 }, { "start": 22454.24, "end": 22455.26, "probability": 0.7957 }, { "start": 22456.46, "end": 22457.3, "probability": 0.9352 }, { "start": 22458.24, "end": 22459.14, "probability": 0.7872 }, { "start": 22461.64, "end": 22463.74, "probability": 0.5852 }, { "start": 22463.74, "end": 22464.44, "probability": 0.5852 }, { "start": 22465.7, "end": 22466.38, "probability": 0.763 }, { "start": 22466.86, "end": 22467.84, "probability": 0.76 }, { "start": 22468.06, "end": 22469.24, "probability": 0.5557 }, { "start": 22470.8, "end": 22471.86, "probability": 0.7083 }, { "start": 22471.96, "end": 22472.3, "probability": 0.79 }, { "start": 22472.86, "end": 22480.3, "probability": 0.4953 }, { "start": 22480.44, "end": 22481.26, "probability": 0.8301 }, { "start": 22482.92, "end": 22484.94, "probability": 0.8851 }, { "start": 22485.32, "end": 22485.86, "probability": 0.0104 }, { "start": 22486.32, "end": 22487.26, "probability": 0.8375 }, { "start": 22487.6, "end": 22488.2, "probability": 0.475 }, { "start": 22488.34, "end": 22488.88, "probability": 0.9889 }, { "start": 22488.88, "end": 22489.46, "probability": 0.5854 }, { "start": 22490.0, "end": 22491.6, "probability": 0.7309 }, { "start": 22492.82, "end": 22496.04, "probability": 0.955 }, { "start": 22497.08, "end": 22499.2, "probability": 0.9123 }, { "start": 22500.78, "end": 22506.52, "probability": 0.9902 }, { "start": 22507.3, "end": 22511.14, "probability": 0.9755 }, { "start": 22511.92, "end": 22513.2, "probability": 0.8153 }, { "start": 22513.76, "end": 22518.7, "probability": 0.994 }, { "start": 22519.56, "end": 22520.2, "probability": 0.9292 }, { "start": 22520.64, "end": 22522.12, "probability": 0.801 }, { "start": 22523.12, "end": 22524.82, "probability": 0.9785 }, { "start": 22526.0, "end": 22527.04, "probability": 0.9283 }, { "start": 22528.04, "end": 22531.98, "probability": 0.8929 }, { "start": 22532.1, "end": 22532.88, "probability": 0.6676 }, { "start": 22534.14, "end": 22540.9, "probability": 0.9875 }, { "start": 22541.36, "end": 22542.26, "probability": 0.6454 }, { "start": 22542.3, "end": 22544.24, "probability": 0.9758 }, { "start": 22547.28, "end": 22550.46, "probability": 0.8807 }, { "start": 22550.98, "end": 22551.43, "probability": 0.7771 }, { "start": 22553.04, "end": 22554.92, "probability": 0.967 }, { "start": 22555.46, "end": 22558.26, "probability": 0.9412 }, { "start": 22558.54, "end": 22559.96, "probability": 0.839 }, { "start": 22560.16, "end": 22561.24, "probability": 0.7409 }, { "start": 22561.44, "end": 22562.47, "probability": 0.9927 }, { "start": 22563.06, "end": 22564.06, "probability": 0.8625 }, { "start": 22564.78, "end": 22566.84, "probability": 0.7025 }, { "start": 22568.4, "end": 22572.26, "probability": 0.6873 }, { "start": 22573.42, "end": 22575.86, "probability": 0.9671 }, { "start": 22576.56, "end": 22579.62, "probability": 0.9864 }, { "start": 22580.16, "end": 22581.8, "probability": 0.9961 }, { "start": 22581.8, "end": 22585.56, "probability": 0.9575 }, { "start": 22586.18, "end": 22587.21, "probability": 0.9951 }, { "start": 22588.06, "end": 22589.83, "probability": 0.9141 }, { "start": 22590.18, "end": 22595.22, "probability": 0.9844 }, { "start": 22595.76, "end": 22596.48, "probability": 0.9642 }, { "start": 22596.56, "end": 22598.9, "probability": 0.9431 }, { "start": 22599.76, "end": 22600.64, "probability": 0.7825 }, { "start": 22600.72, "end": 22601.4, "probability": 0.7718 }, { "start": 22601.48, "end": 22605.18, "probability": 0.9719 }, { "start": 22605.94, "end": 22607.32, "probability": 0.6447 }, { "start": 22608.66, "end": 22610.71, "probability": 0.9675 }, { "start": 22611.14, "end": 22612.68, "probability": 0.9652 }, { "start": 22613.4, "end": 22615.62, "probability": 0.9869 }, { "start": 22616.36, "end": 22618.71, "probability": 0.998 }, { "start": 22619.1, "end": 22620.46, "probability": 0.9985 }, { "start": 22621.52, "end": 22625.78, "probability": 0.9985 }, { "start": 22626.62, "end": 22628.74, "probability": 0.9174 }, { "start": 22629.42, "end": 22631.53, "probability": 0.9827 }, { "start": 22632.42, "end": 22634.08, "probability": 0.984 }, { "start": 22634.24, "end": 22635.24, "probability": 0.9284 }, { "start": 22635.4, "end": 22636.28, "probability": 0.8607 }, { "start": 22637.44, "end": 22639.86, "probability": 0.9079 }, { "start": 22640.44, "end": 22641.32, "probability": 0.9754 }, { "start": 22641.36, "end": 22641.98, "probability": 0.7981 }, { "start": 22642.16, "end": 22643.18, "probability": 0.958 }, { "start": 22643.5, "end": 22644.02, "probability": 0.9751 }, { "start": 22644.34, "end": 22645.22, "probability": 0.876 }, { "start": 22646.02, "end": 22647.1, "probability": 0.797 }, { "start": 22647.42, "end": 22648.38, "probability": 0.8761 }, { "start": 22649.3, "end": 22651.4, "probability": 0.8684 }, { "start": 22652.14, "end": 22655.7, "probability": 0.988 }, { "start": 22656.52, "end": 22657.48, "probability": 0.9152 }, { "start": 22658.12, "end": 22661.28, "probability": 0.9908 }, { "start": 22661.94, "end": 22664.42, "probability": 0.9971 }, { "start": 22664.5, "end": 22665.42, "probability": 0.7659 }, { "start": 22665.88, "end": 22666.9, "probability": 0.974 }, { "start": 22667.42, "end": 22671.12, "probability": 0.9922 }, { "start": 22671.2, "end": 22675.48, "probability": 0.999 }, { "start": 22676.14, "end": 22677.22, "probability": 0.9592 }, { "start": 22677.4, "end": 22680.64, "probability": 0.991 }, { "start": 22680.74, "end": 22681.29, "probability": 0.957 }, { "start": 22682.26, "end": 22684.0, "probability": 0.9736 }, { "start": 22684.32, "end": 22684.96, "probability": 0.9692 }, { "start": 22686.14, "end": 22688.62, "probability": 0.9918 }, { "start": 22689.16, "end": 22692.04, "probability": 0.9736 }, { "start": 22692.68, "end": 22693.58, "probability": 0.9917 }, { "start": 22694.94, "end": 22696.92, "probability": 0.9872 }, { "start": 22697.18, "end": 22700.26, "probability": 0.9833 }, { "start": 22701.28, "end": 22701.28, "probability": 0.9385 }, { "start": 22702.46, "end": 22703.7, "probability": 0.8606 }, { "start": 22703.8, "end": 22709.98, "probability": 0.9757 }, { "start": 22710.04, "end": 22711.74, "probability": 0.8706 }, { "start": 22713.22, "end": 22716.7, "probability": 0.9944 }, { "start": 22717.0, "end": 22723.0, "probability": 0.9951 }, { "start": 22723.0, "end": 22727.7, "probability": 0.9884 }, { "start": 22728.22, "end": 22729.48, "probability": 0.9934 }, { "start": 22730.46, "end": 22732.68, "probability": 0.9792 }, { "start": 22733.84, "end": 22739.04, "probability": 0.9807 }, { "start": 22739.14, "end": 22742.12, "probability": 0.9945 }, { "start": 22743.0, "end": 22748.96, "probability": 0.9873 }, { "start": 22749.36, "end": 22754.46, "probability": 0.9822 }, { "start": 22755.06, "end": 22756.62, "probability": 0.7844 }, { "start": 22757.42, "end": 22761.62, "probability": 0.9944 }, { "start": 22763.32, "end": 22767.24, "probability": 0.9856 }, { "start": 22767.3, "end": 22767.7, "probability": 0.9365 }, { "start": 22768.3, "end": 22769.92, "probability": 0.9674 }, { "start": 22770.58, "end": 22773.2, "probability": 0.995 }, { "start": 22773.78, "end": 22774.82, "probability": 0.9478 }, { "start": 22774.92, "end": 22776.19, "probability": 0.9907 }, { "start": 22777.1, "end": 22777.1, "probability": 0.5599 }, { "start": 22777.12, "end": 22781.58, "probability": 0.9922 }, { "start": 22781.58, "end": 22785.66, "probability": 0.9993 }, { "start": 22785.68, "end": 22785.88, "probability": 0.608 }, { "start": 22786.46, "end": 22787.42, "probability": 0.3768 }, { "start": 22787.98, "end": 22790.16, "probability": 0.9421 }, { "start": 22790.26, "end": 22790.78, "probability": 0.808 }, { "start": 22795.6, "end": 22795.82, "probability": 0.2695 }, { "start": 22795.82, "end": 22796.95, "probability": 0.6367 }, { "start": 22800.36, "end": 22803.48, "probability": 0.7777 }, { "start": 22805.7, "end": 22806.36, "probability": 0.9604 }, { "start": 22807.72, "end": 22808.62, "probability": 0.7275 }, { "start": 22809.6, "end": 22813.3, "probability": 0.9961 }, { "start": 22814.72, "end": 22815.86, "probability": 0.97 }, { "start": 22816.44, "end": 22818.26, "probability": 0.664 }, { "start": 22818.9, "end": 22822.06, "probability": 0.8657 }, { "start": 22822.96, "end": 22827.78, "probability": 0.9761 }, { "start": 22828.48, "end": 22830.32, "probability": 0.791 }, { "start": 22830.9, "end": 22832.14, "probability": 0.9333 }, { "start": 22832.48, "end": 22834.39, "probability": 0.9929 }, { "start": 22836.14, "end": 22836.86, "probability": 0.82 }, { "start": 22837.9, "end": 22839.16, "probability": 0.8933 }, { "start": 22840.24, "end": 22841.02, "probability": 0.8938 }, { "start": 22841.7, "end": 22844.32, "probability": 0.9717 }, { "start": 22844.88, "end": 22846.02, "probability": 0.9758 }, { "start": 22846.04, "end": 22846.44, "probability": 0.8553 }, { "start": 22846.88, "end": 22848.52, "probability": 0.7822 }, { "start": 22849.12, "end": 22852.18, "probability": 0.9863 }, { "start": 22853.92, "end": 22854.34, "probability": 0.4881 }, { "start": 22855.18, "end": 22861.12, "probability": 0.9919 }, { "start": 22861.28, "end": 22861.62, "probability": 0.74 }, { "start": 22862.28, "end": 22862.8, "probability": 0.5724 }, { "start": 22863.88, "end": 22865.04, "probability": 0.9655 }, { "start": 22865.78, "end": 22866.86, "probability": 0.9686 }, { "start": 22867.74, "end": 22870.23, "probability": 0.7593 }, { "start": 22871.84, "end": 22872.76, "probability": 0.9031 }, { "start": 22873.32, "end": 22875.12, "probability": 0.9361 }, { "start": 22877.36, "end": 22879.59, "probability": 0.9801 }, { "start": 22880.16, "end": 22883.38, "probability": 0.8887 }, { "start": 22883.86, "end": 22885.82, "probability": 0.9884 }, { "start": 22887.06, "end": 22888.64, "probability": 0.7767 }, { "start": 22889.0, "end": 22890.9, "probability": 0.7791 }, { "start": 22891.42, "end": 22893.66, "probability": 0.9971 }, { "start": 22893.8, "end": 22894.1, "probability": 0.6992 }, { "start": 22896.56, "end": 22900.92, "probability": 0.8212 }, { "start": 22901.6, "end": 22902.44, "probability": 0.8906 }, { "start": 22903.48, "end": 22907.8, "probability": 0.9961 }, { "start": 22907.9, "end": 22908.66, "probability": 0.782 }, { "start": 22909.58, "end": 22909.98, "probability": 0.7135 }, { "start": 22911.98, "end": 22912.94, "probability": 0.9365 }, { "start": 22914.64, "end": 22916.7, "probability": 0.9753 }, { "start": 22917.86, "end": 22919.52, "probability": 0.978 }, { "start": 22921.08, "end": 22923.06, "probability": 0.978 }, { "start": 22923.74, "end": 22925.62, "probability": 0.981 }, { "start": 22926.44, "end": 22927.52, "probability": 0.9688 }, { "start": 22927.7, "end": 22929.26, "probability": 0.7817 }, { "start": 22929.34, "end": 22930.12, "probability": 0.7424 }, { "start": 22930.3, "end": 22933.0, "probability": 0.9678 }, { "start": 22933.9, "end": 22935.32, "probability": 0.9555 }, { "start": 22935.94, "end": 22937.38, "probability": 0.8923 }, { "start": 22937.96, "end": 22939.18, "probability": 0.9875 }, { "start": 22941.08, "end": 22942.08, "probability": 0.935 }, { "start": 22942.8, "end": 22943.84, "probability": 0.7453 }, { "start": 22944.24, "end": 22947.06, "probability": 0.8572 }, { "start": 22947.64, "end": 22952.02, "probability": 0.9808 }, { "start": 22952.6, "end": 22953.88, "probability": 0.9253 }, { "start": 22954.52, "end": 22957.18, "probability": 0.9573 }, { "start": 22958.02, "end": 22959.74, "probability": 0.9697 }, { "start": 22960.26, "end": 22961.84, "probability": 0.6146 }, { "start": 22962.74, "end": 22964.28, "probability": 0.9884 }, { "start": 22964.8, "end": 22965.66, "probability": 0.8297 }, { "start": 22965.86, "end": 22967.86, "probability": 0.7306 }, { "start": 22968.24, "end": 22969.14, "probability": 0.969 }, { "start": 22969.68, "end": 22970.98, "probability": 0.3815 }, { "start": 22971.38, "end": 22973.04, "probability": 0.9946 }, { "start": 22973.38, "end": 22974.02, "probability": 0.9407 }, { "start": 22974.66, "end": 22978.94, "probability": 0.9977 }, { "start": 22979.06, "end": 22979.56, "probability": 0.9157 }, { "start": 22979.66, "end": 22980.3, "probability": 0.8904 }, { "start": 22981.42, "end": 22982.56, "probability": 0.5347 }, { "start": 22984.14, "end": 22985.06, "probability": 0.8138 }, { "start": 22985.88, "end": 22986.52, "probability": 0.8909 }, { "start": 22987.2, "end": 22988.28, "probability": 0.8285 }, { "start": 22988.78, "end": 22989.7, "probability": 0.9201 }, { "start": 22989.78, "end": 22990.4, "probability": 0.8835 }, { "start": 22990.82, "end": 22991.84, "probability": 0.9839 }, { "start": 22991.94, "end": 22992.64, "probability": 0.7177 }, { "start": 22992.88, "end": 22994.16, "probability": 0.7056 }, { "start": 22994.54, "end": 22996.82, "probability": 0.9754 }, { "start": 22997.52, "end": 22999.04, "probability": 0.9989 }, { "start": 22999.72, "end": 23000.88, "probability": 0.8522 }, { "start": 23001.56, "end": 23002.66, "probability": 0.8474 }, { "start": 23002.86, "end": 23003.32, "probability": 0.9679 }, { "start": 23003.94, "end": 23005.52, "probability": 0.9824 }, { "start": 23006.16, "end": 23007.42, "probability": 0.9443 }, { "start": 23007.94, "end": 23008.86, "probability": 0.803 }, { "start": 23009.18, "end": 23010.88, "probability": 0.9096 }, { "start": 23011.2, "end": 23012.86, "probability": 0.9268 }, { "start": 23013.52, "end": 23014.32, "probability": 0.9341 }, { "start": 23014.7, "end": 23015.34, "probability": 0.8146 }, { "start": 23015.62, "end": 23016.28, "probability": 0.9705 }, { "start": 23016.66, "end": 23017.3, "probability": 0.7706 }, { "start": 23017.38, "end": 23017.68, "probability": 0.7908 }, { "start": 23017.72, "end": 23019.06, "probability": 0.9439 }, { "start": 23019.48, "end": 23024.56, "probability": 0.9819 }, { "start": 23025.2, "end": 23027.12, "probability": 0.998 }, { "start": 23027.42, "end": 23029.54, "probability": 0.8784 }, { "start": 23029.96, "end": 23030.4, "probability": 0.5598 }, { "start": 23033.7, "end": 23038.36, "probability": 0.9421 }, { "start": 23038.96, "end": 23039.62, "probability": 0.3311 }, { "start": 23039.74, "end": 23040.1, "probability": 0.8762 }, { "start": 23040.5, "end": 23041.26, "probability": 0.8118 }, { "start": 23041.42, "end": 23041.82, "probability": 0.5705 }, { "start": 23041.98, "end": 23042.1, "probability": 0.9004 }, { "start": 23042.2, "end": 23042.82, "probability": 0.9493 }, { "start": 23043.5, "end": 23044.08, "probability": 0.5767 }, { "start": 23044.08, "end": 23045.06, "probability": 0.821 }, { "start": 23045.42, "end": 23046.94, "probability": 0.9526 }, { "start": 23047.08, "end": 23047.76, "probability": 0.5711 }, { "start": 23047.84, "end": 23050.0, "probability": 0.7304 }, { "start": 23050.08, "end": 23050.92, "probability": 0.9025 }, { "start": 23051.34, "end": 23051.58, "probability": 0.5214 }, { "start": 23051.62, "end": 23053.22, "probability": 0.9346 }, { "start": 23053.32, "end": 23054.26, "probability": 0.9285 }, { "start": 23054.58, "end": 23056.0, "probability": 0.8604 }, { "start": 23056.26, "end": 23056.78, "probability": 0.7523 }, { "start": 23057.4, "end": 23057.84, "probability": 0.661 }, { "start": 23058.28, "end": 23059.02, "probability": 0.8677 }, { "start": 23059.06, "end": 23059.92, "probability": 0.9423 }, { "start": 23060.36, "end": 23063.08, "probability": 0.8831 }, { "start": 23063.86, "end": 23065.12, "probability": 0.9446 }, { "start": 23065.84, "end": 23066.8, "probability": 0.8136 }, { "start": 23067.44, "end": 23068.88, "probability": 0.9469 }, { "start": 23069.32, "end": 23072.28, "probability": 0.9806 }, { "start": 23072.48, "end": 23075.58, "probability": 0.818 }, { "start": 23076.3, "end": 23077.15, "probability": 0.9971 }, { "start": 23077.94, "end": 23078.89, "probability": 0.9282 }, { "start": 23079.56, "end": 23081.18, "probability": 0.9983 }, { "start": 23081.7, "end": 23083.85, "probability": 0.9037 }, { "start": 23084.74, "end": 23085.64, "probability": 0.764 }, { "start": 23086.08, "end": 23086.4, "probability": 0.6948 }, { "start": 23086.56, "end": 23086.86, "probability": 0.6804 }, { "start": 23086.92, "end": 23089.72, "probability": 0.9773 }, { "start": 23089.84, "end": 23090.98, "probability": 0.9678 }, { "start": 23091.44, "end": 23092.32, "probability": 0.7487 }, { "start": 23092.94, "end": 23093.92, "probability": 0.9033 }, { "start": 23094.36, "end": 23097.92, "probability": 0.9797 }, { "start": 23098.58, "end": 23099.48, "probability": 0.9585 }, { "start": 23099.6, "end": 23101.86, "probability": 0.8733 }, { "start": 23102.66, "end": 23103.38, "probability": 0.4484 }, { "start": 23103.4, "end": 23107.84, "probability": 0.5767 }, { "start": 23107.84, "end": 23110.78, "probability": 0.9801 }, { "start": 23110.94, "end": 23112.0, "probability": 0.9222 }, { "start": 23112.94, "end": 23115.34, "probability": 0.88 }, { "start": 23115.52, "end": 23117.54, "probability": 0.9247 }, { "start": 23118.58, "end": 23119.66, "probability": 0.6356 }, { "start": 23120.32, "end": 23120.32, "probability": 0.4028 }, { "start": 23120.32, "end": 23124.98, "probability": 0.9614 }, { "start": 23125.06, "end": 23126.94, "probability": 0.7916 }, { "start": 23128.12, "end": 23129.08, "probability": 0.3281 }, { "start": 23129.1, "end": 23129.9, "probability": 0.2542 }, { "start": 23129.9, "end": 23131.3, "probability": 0.145 }, { "start": 23131.32, "end": 23132.2, "probability": 0.304 }, { "start": 23132.2, "end": 23132.28, "probability": 0.2813 }, { "start": 23132.5, "end": 23132.7, "probability": 0.5345 }, { "start": 23132.9, "end": 23133.0, "probability": 0.4658 }, { "start": 23133.0, "end": 23133.02, "probability": 0.3762 }, { "start": 23133.1, "end": 23134.76, "probability": 0.994 }, { "start": 23135.16, "end": 23136.34, "probability": 0.8264 }, { "start": 23136.68, "end": 23139.46, "probability": 0.9553 }, { "start": 23139.9, "end": 23141.36, "probability": 0.9966 }, { "start": 23141.44, "end": 23143.88, "probability": 0.6018 }, { "start": 23144.26, "end": 23144.48, "probability": 0.9563 }, { "start": 23148.12, "end": 23149.98, "probability": 0.4954 }, { "start": 23150.58, "end": 23151.86, "probability": 0.9124 }, { "start": 23152.12, "end": 23152.74, "probability": 0.1793 }, { "start": 23152.74, "end": 23153.32, "probability": 0.5963 }, { "start": 23153.46, "end": 23153.48, "probability": 0.2552 }, { "start": 23153.48, "end": 23154.24, "probability": 0.922 }, { "start": 23154.72, "end": 23155.74, "probability": 0.3093 }, { "start": 23155.78, "end": 23160.88, "probability": 0.9896 }, { "start": 23161.2, "end": 23161.78, "probability": 0.4957 }, { "start": 23161.9, "end": 23164.16, "probability": 0.6726 }, { "start": 23164.48, "end": 23165.44, "probability": 0.9609 }, { "start": 23165.54, "end": 23166.22, "probability": 0.9606 }, { "start": 23166.5, "end": 23166.78, "probability": 0.9762 }, { "start": 23167.32, "end": 23169.24, "probability": 0.9538 }, { "start": 23169.56, "end": 23171.34, "probability": 0.9105 }, { "start": 23171.98, "end": 23173.06, "probability": 0.8322 }, { "start": 23173.64, "end": 23175.94, "probability": 0.9791 }, { "start": 23176.62, "end": 23177.5, "probability": 0.9561 }, { "start": 23178.14, "end": 23179.52, "probability": 0.8853 }, { "start": 23180.08, "end": 23181.34, "probability": 0.9363 }, { "start": 23181.42, "end": 23184.66, "probability": 0.979 }, { "start": 23184.9, "end": 23186.38, "probability": 0.9634 }, { "start": 23188.3, "end": 23188.3, "probability": 0.1962 }, { "start": 23188.3, "end": 23188.3, "probability": 0.1876 }, { "start": 23188.3, "end": 23190.66, "probability": 0.3326 }, { "start": 23190.72, "end": 23192.24, "probability": 0.437 }, { "start": 23192.24, "end": 23192.88, "probability": 0.1121 }, { "start": 23196.36, "end": 23197.0, "probability": 0.0434 }, { "start": 23197.0, "end": 23197.04, "probability": 0.049 }, { "start": 23197.04, "end": 23197.04, "probability": 0.0942 }, { "start": 23197.04, "end": 23197.04, "probability": 0.047 }, { "start": 23197.04, "end": 23198.56, "probability": 0.4451 }, { "start": 23198.56, "end": 23199.68, "probability": 0.0967 }, { "start": 23201.16, "end": 23201.16, "probability": 0.1033 }, { "start": 23201.16, "end": 23201.16, "probability": 0.1052 }, { "start": 23201.16, "end": 23202.13, "probability": 0.7429 }, { "start": 23202.42, "end": 23202.86, "probability": 0.509 }, { "start": 23202.86, "end": 23202.96, "probability": 0.3613 }, { "start": 23203.1, "end": 23203.94, "probability": 0.918 }, { "start": 23204.08, "end": 23209.77, "probability": 0.9075 }, { "start": 23210.18, "end": 23213.48, "probability": 0.8361 }, { "start": 23214.0, "end": 23214.5, "probability": 0.4329 }, { "start": 23214.82, "end": 23215.86, "probability": 0.4438 }, { "start": 23216.34, "end": 23220.42, "probability": 0.9435 }, { "start": 23221.74, "end": 23226.58, "probability": 0.8999 }, { "start": 23228.18, "end": 23230.2, "probability": 0.9862 }, { "start": 23230.72, "end": 23234.5, "probability": 0.8623 }, { "start": 23235.18, "end": 23235.68, "probability": 0.7312 }, { "start": 23235.98, "end": 23236.24, "probability": 0.9508 }, { "start": 23236.34, "end": 23236.54, "probability": 0.8222 }, { "start": 23237.02, "end": 23239.39, "probability": 0.8865 }, { "start": 23239.68, "end": 23240.28, "probability": 0.6689 }, { "start": 23240.4, "end": 23241.24, "probability": 0.9382 }, { "start": 23241.6, "end": 23241.74, "probability": 0.6941 }, { "start": 23241.86, "end": 23246.02, "probability": 0.9946 }, { "start": 23246.02, "end": 23250.88, "probability": 0.9958 }, { "start": 23250.88, "end": 23256.02, "probability": 0.9976 }, { "start": 23256.36, "end": 23258.3, "probability": 0.864 }, { "start": 23258.84, "end": 23261.94, "probability": 0.7475 }, { "start": 23262.24, "end": 23264.24, "probability": 0.8975 }, { "start": 23264.38, "end": 23265.48, "probability": 0.6323 }, { "start": 23266.02, "end": 23268.54, "probability": 0.9764 }, { "start": 23269.34, "end": 23269.93, "probability": 0.9858 }, { "start": 23270.14, "end": 23271.3, "probability": 0.9841 }, { "start": 23271.78, "end": 23272.28, "probability": 0.9221 }, { "start": 23272.66, "end": 23274.42, "probability": 0.7762 }, { "start": 23274.54, "end": 23275.7, "probability": 0.9008 }, { "start": 23276.1, "end": 23276.34, "probability": 0.6812 }, { "start": 23276.4, "end": 23277.02, "probability": 0.7588 }, { "start": 23277.64, "end": 23278.86, "probability": 0.9275 }, { "start": 23279.66, "end": 23281.22, "probability": 0.9688 }, { "start": 23281.34, "end": 23282.32, "probability": 0.4377 }, { "start": 23282.92, "end": 23283.92, "probability": 0.9041 }, { "start": 23284.24, "end": 23287.08, "probability": 0.9831 }, { "start": 23287.68, "end": 23290.2, "probability": 0.6116 }, { "start": 23290.76, "end": 23293.18, "probability": 0.8214 }, { "start": 23293.76, "end": 23294.8, "probability": 0.8696 }, { "start": 23295.16, "end": 23296.62, "probability": 0.9958 }, { "start": 23296.9, "end": 23301.8, "probability": 0.9977 }, { "start": 23302.42, "end": 23302.96, "probability": 0.4945 }, { "start": 23303.88, "end": 23304.66, "probability": 0.728 }, { "start": 23305.54, "end": 23306.38, "probability": 0.8032 }, { "start": 23307.46, "end": 23309.44, "probability": 0.7816 }, { "start": 23310.46, "end": 23313.8, "probability": 0.9927 }, { "start": 23314.24, "end": 23315.84, "probability": 0.9906 }, { "start": 23316.38, "end": 23316.98, "probability": 0.7202 }, { "start": 23317.48, "end": 23318.12, "probability": 0.8138 }, { "start": 23318.46, "end": 23319.04, "probability": 0.9131 }, { "start": 23319.46, "end": 23321.22, "probability": 0.999 }, { "start": 23322.36, "end": 23325.0, "probability": 0.9889 }, { "start": 23325.76, "end": 23326.92, "probability": 0.9794 }, { "start": 23327.14, "end": 23327.76, "probability": 0.9908 }, { "start": 23328.02, "end": 23328.78, "probability": 0.9645 }, { "start": 23329.26, "end": 23330.1, "probability": 0.6315 }, { "start": 23330.24, "end": 23331.02, "probability": 0.7748 }, { "start": 23331.48, "end": 23334.44, "probability": 0.9542 }, { "start": 23334.72, "end": 23335.4, "probability": 0.5112 }, { "start": 23335.68, "end": 23337.34, "probability": 0.9651 }, { "start": 23337.92, "end": 23338.58, "probability": 0.8724 }, { "start": 23339.14, "end": 23342.3, "probability": 0.9891 }, { "start": 23342.38, "end": 23343.98, "probability": 0.9285 }, { "start": 23344.42, "end": 23346.78, "probability": 0.729 }, { "start": 23351.0, "end": 23352.56, "probability": 0.8751 }, { "start": 23378.52, "end": 23379.44, "probability": 0.6913 }, { "start": 23380.06, "end": 23381.28, "probability": 0.8899 }, { "start": 23382.58, "end": 23387.8, "probability": 0.8568 }, { "start": 23391.9, "end": 23392.24, "probability": 0.0703 }, { "start": 23392.72, "end": 23392.72, "probability": 0.197 }, { "start": 23392.72, "end": 23393.22, "probability": 0.3388 }, { "start": 23393.68, "end": 23394.42, "probability": 0.5037 }, { "start": 23396.02, "end": 23396.12, "probability": 0.4124 }, { "start": 23397.58, "end": 23397.74, "probability": 0.2057 }, { "start": 23397.74, "end": 23398.04, "probability": 0.0786 }, { "start": 23398.2, "end": 23398.79, "probability": 0.2138 }, { "start": 23400.49, "end": 23401.9, "probability": 0.7318 }, { "start": 23403.42, "end": 23410.04, "probability": 0.7592 }, { "start": 23410.82, "end": 23413.74, "probability": 0.9512 }, { "start": 23414.48, "end": 23415.96, "probability": 0.9241 }, { "start": 23416.02, "end": 23418.7, "probability": 0.9762 }, { "start": 23419.44, "end": 23422.86, "probability": 0.8875 }, { "start": 23423.52, "end": 23425.2, "probability": 0.0393 }, { "start": 23425.6, "end": 23425.86, "probability": 0.4059 }, { "start": 23426.08, "end": 23427.16, "probability": 0.023 }, { "start": 23427.28, "end": 23429.56, "probability": 0.9414 }, { "start": 23430.84, "end": 23434.96, "probability": 0.8831 }, { "start": 23436.72, "end": 23436.72, "probability": 0.8672 }, { "start": 23437.28, "end": 23439.0, "probability": 0.9868 }, { "start": 23439.84, "end": 23441.9, "probability": 0.7687 }, { "start": 23445.2, "end": 23447.84, "probability": 0.6092 }, { "start": 23449.72, "end": 23452.78, "probability": 0.9154 }, { "start": 23454.32, "end": 23455.5, "probability": 0.756 }, { "start": 23458.12, "end": 23461.3, "probability": 0.4999 }, { "start": 23461.36, "end": 23463.74, "probability": 0.8456 }, { "start": 23464.06, "end": 23464.2, "probability": 0.5496 }, { "start": 23464.36, "end": 23466.18, "probability": 0.998 }, { "start": 23467.16, "end": 23471.42, "probability": 0.9806 }, { "start": 23472.78, "end": 23476.78, "probability": 0.9954 }, { "start": 23476.92, "end": 23479.65, "probability": 0.9746 }, { "start": 23480.76, "end": 23481.68, "probability": 0.9717 }, { "start": 23482.84, "end": 23486.96, "probability": 0.8486 }, { "start": 23487.24, "end": 23487.24, "probability": 0.3759 }, { "start": 23487.38, "end": 23487.98, "probability": 0.7969 }, { "start": 23488.06, "end": 23488.62, "probability": 0.5416 }, { "start": 23489.02, "end": 23489.88, "probability": 0.8649 }, { "start": 23489.92, "end": 23489.92, "probability": 0.2034 }, { "start": 23489.92, "end": 23490.1, "probability": 0.0243 }, { "start": 23490.16, "end": 23490.82, "probability": 0.7778 }, { "start": 23491.04, "end": 23491.88, "probability": 0.9272 }, { "start": 23492.7, "end": 23496.04, "probability": 0.9152 }, { "start": 23496.54, "end": 23497.02, "probability": 0.9128 }, { "start": 23497.08, "end": 23497.22, "probability": 0.234 }, { "start": 23497.3, "end": 23502.08, "probability": 0.9717 }, { "start": 23503.24, "end": 23504.24, "probability": 0.7234 }, { "start": 23504.42, "end": 23508.06, "probability": 0.9382 }, { "start": 23508.74, "end": 23509.7, "probability": 0.994 }, { "start": 23509.84, "end": 23511.72, "probability": 0.9616 }, { "start": 23512.48, "end": 23513.46, "probability": 0.606 }, { "start": 23515.02, "end": 23515.6, "probability": 0.6854 }, { "start": 23516.14, "end": 23516.74, "probability": 0.8358 }, { "start": 23526.92, "end": 23527.92, "probability": 0.7786 }, { "start": 23529.52, "end": 23535.44, "probability": 0.99 }, { "start": 23535.6, "end": 23540.84, "probability": 0.8469 }, { "start": 23540.84, "end": 23543.32, "probability": 0.9993 }, { "start": 23544.12, "end": 23546.78, "probability": 0.9573 }, { "start": 23552.34, "end": 23554.43, "probability": 0.8193 }, { "start": 23556.68, "end": 23558.66, "probability": 0.8794 }, { "start": 23559.74, "end": 23560.56, "probability": 0.6614 }, { "start": 23561.76, "end": 23564.28, "probability": 0.9258 }, { "start": 23565.08, "end": 23567.92, "probability": 0.9956 }, { "start": 23568.64, "end": 23570.68, "probability": 0.9395 }, { "start": 23570.84, "end": 23572.41, "probability": 0.7099 }, { "start": 23573.38, "end": 23574.61, "probability": 0.8136 }, { "start": 23575.36, "end": 23576.06, "probability": 0.8872 }, { "start": 23576.36, "end": 23579.62, "probability": 0.1141 }, { "start": 23579.8, "end": 23581.42, "probability": 0.4522 }, { "start": 23583.32, "end": 23584.58, "probability": 0.8223 }, { "start": 23586.16, "end": 23586.9, "probability": 0.209 }, { "start": 23587.26, "end": 23587.26, "probability": 0.291 }, { "start": 23587.32, "end": 23589.42, "probability": 0.8766 }, { "start": 23589.82, "end": 23590.48, "probability": 0.0833 }, { "start": 23590.48, "end": 23593.92, "probability": 0.6873 }, { "start": 23594.52, "end": 23597.22, "probability": 0.8378 }, { "start": 23597.26, "end": 23601.04, "probability": 0.9812 }, { "start": 23601.12, "end": 23605.78, "probability": 0.6782 }, { "start": 23606.74, "end": 23609.44, "probability": 0.593 }, { "start": 23611.16, "end": 23614.24, "probability": 0.9909 }, { "start": 23614.76, "end": 23617.16, "probability": 0.9973 }, { "start": 23618.8, "end": 23619.94, "probability": 0.8008 }, { "start": 23620.8, "end": 23624.9, "probability": 0.9883 }, { "start": 23625.78, "end": 23627.11, "probability": 0.9976 }, { "start": 23628.16, "end": 23630.36, "probability": 0.772 }, { "start": 23631.28, "end": 23635.6, "probability": 0.9941 }, { "start": 23636.28, "end": 23638.66, "probability": 0.9984 }, { "start": 23640.22, "end": 23642.78, "probability": 0.9289 }, { "start": 23644.08, "end": 23645.48, "probability": 0.9884 }, { "start": 23646.82, "end": 23647.86, "probability": 0.974 }, { "start": 23648.82, "end": 23651.8, "probability": 0.8704 }, { "start": 23652.24, "end": 23654.64, "probability": 0.9225 }, { "start": 23655.02, "end": 23658.56, "probability": 0.8051 }, { "start": 23660.0, "end": 23668.2, "probability": 0.9949 }, { "start": 23668.7, "end": 23669.16, "probability": 0.9533 }, { "start": 23669.32, "end": 23670.78, "probability": 0.9702 }, { "start": 23672.44, "end": 23678.0, "probability": 0.8489 }, { "start": 23678.98, "end": 23683.42, "probability": 0.9877 }, { "start": 23684.72, "end": 23686.76, "probability": 0.8233 }, { "start": 23689.44, "end": 23691.22, "probability": 0.9753 }, { "start": 23691.4, "end": 23694.2, "probability": 0.9703 }, { "start": 23694.28, "end": 23695.3, "probability": 0.9958 }, { "start": 23696.08, "end": 23700.74, "probability": 0.9891 }, { "start": 23700.74, "end": 23704.78, "probability": 0.9963 }, { "start": 23704.9, "end": 23706.24, "probability": 0.5337 }, { "start": 23706.76, "end": 23709.68, "probability": 0.6716 }, { "start": 23710.66, "end": 23712.76, "probability": 0.7747 }, { "start": 23714.28, "end": 23718.48, "probability": 0.7607 }, { "start": 23719.46, "end": 23722.36, "probability": 0.8835 }, { "start": 23723.04, "end": 23725.49, "probability": 0.8658 }, { "start": 23725.64, "end": 23729.48, "probability": 0.943 }, { "start": 23729.6, "end": 23733.36, "probability": 0.8448 }, { "start": 23733.4, "end": 23734.4, "probability": 0.3022 }, { "start": 23734.7, "end": 23735.6, "probability": 0.0637 }, { "start": 23735.76, "end": 23736.66, "probability": 0.5112 }, { "start": 23736.82, "end": 23742.0, "probability": 0.9839 }, { "start": 23742.74, "end": 23746.44, "probability": 0.7523 }, { "start": 23746.54, "end": 23746.86, "probability": 0.1373 }, { "start": 23747.2, "end": 23748.88, "probability": 0.2562 }, { "start": 23749.04, "end": 23749.86, "probability": 0.35 }, { "start": 23750.74, "end": 23752.36, "probability": 0.9961 }, { "start": 23753.42, "end": 23757.52, "probability": 0.9436 }, { "start": 23758.36, "end": 23760.88, "probability": 0.8634 }, { "start": 23761.7, "end": 23763.08, "probability": 0.5213 }, { "start": 23765.74, "end": 23766.55, "probability": 0.998 }, { "start": 23767.74, "end": 23769.36, "probability": 0.9282 }, { "start": 23769.96, "end": 23773.84, "probability": 0.9629 }, { "start": 23774.42, "end": 23778.5, "probability": 0.9839 }, { "start": 23778.86, "end": 23779.64, "probability": 0.7799 }, { "start": 23779.74, "end": 23783.67, "probability": 0.9417 }, { "start": 23786.82, "end": 23792.6, "probability": 0.8529 }, { "start": 23792.7, "end": 23793.42, "probability": 0.9893 }, { "start": 23795.06, "end": 23800.4, "probability": 0.9972 }, { "start": 23801.02, "end": 23804.46, "probability": 0.7553 }, { "start": 23804.52, "end": 23807.03, "probability": 0.7934 }, { "start": 23807.42, "end": 23808.88, "probability": 0.4847 }, { "start": 23811.82, "end": 23812.74, "probability": 0.7201 }, { "start": 23812.76, "end": 23816.0, "probability": 0.2877 }, { "start": 23816.56, "end": 23820.2, "probability": 0.9967 }, { "start": 23820.38, "end": 23821.74, "probability": 0.1308 }, { "start": 23822.34, "end": 23823.5, "probability": 0.4561 }, { "start": 23823.64, "end": 23824.68, "probability": 0.6115 }, { "start": 23824.76, "end": 23825.42, "probability": 0.8669 }, { "start": 23825.8, "end": 23827.53, "probability": 0.2566 }, { "start": 23828.32, "end": 23829.06, "probability": 0.6165 }, { "start": 23832.0, "end": 23832.6, "probability": 0.9299 }, { "start": 23844.92, "end": 23845.02, "probability": 0.145 }, { "start": 23846.06, "end": 23850.42, "probability": 0.9898 }, { "start": 23850.8, "end": 23854.04, "probability": 0.6236 }, { "start": 23854.24, "end": 23854.92, "probability": 0.884 }, { "start": 23855.46, "end": 23856.65, "probability": 0.9392 }, { "start": 23857.2, "end": 23860.94, "probability": 0.9651 }, { "start": 23861.5, "end": 23862.79, "probability": 0.5386 }, { "start": 23863.36, "end": 23863.88, "probability": 0.8229 }, { "start": 23867.4, "end": 23869.1, "probability": 0.4241 }, { "start": 23869.66, "end": 23872.0, "probability": 0.422 }, { "start": 23872.58, "end": 23873.76, "probability": 0.5667 }, { "start": 23874.5, "end": 23875.04, "probability": 0.8015 }, { "start": 23875.14, "end": 23877.98, "probability": 0.9392 }, { "start": 23878.3, "end": 23878.5, "probability": 0.4179 }, { "start": 23878.6, "end": 23879.61, "probability": 0.5571 }, { "start": 23880.1, "end": 23881.6, "probability": 0.6808 }, { "start": 23881.8, "end": 23883.42, "probability": 0.6742 }, { "start": 23883.58, "end": 23885.22, "probability": 0.9551 }, { "start": 23885.98, "end": 23886.46, "probability": 0.6731 }, { "start": 23886.54, "end": 23887.66, "probability": 0.9282 }, { "start": 23889.21, "end": 23889.9, "probability": 0.4005 }, { "start": 23897.3, "end": 23897.84, "probability": 0.7925 }, { "start": 23897.94, "end": 23900.48, "probability": 0.7889 }, { "start": 23900.66, "end": 23905.6, "probability": 0.9589 }, { "start": 23906.92, "end": 23908.9, "probability": 0.6555 }, { "start": 23908.94, "end": 23909.29, "probability": 0.0509 }, { "start": 23909.78, "end": 23910.4, "probability": 0.6282 }, { "start": 23910.54, "end": 23910.86, "probability": 0.0518 }, { "start": 23910.94, "end": 23911.32, "probability": 0.2282 }, { "start": 23911.54, "end": 23911.7, "probability": 0.3141 }, { "start": 23912.36, "end": 23912.68, "probability": 0.2672 }, { "start": 23912.74, "end": 23913.32, "probability": 0.1848 }, { "start": 23913.32, "end": 23913.64, "probability": 0.2312 }, { "start": 23913.76, "end": 23915.04, "probability": 0.3866 }, { "start": 23915.04, "end": 23915.36, "probability": 0.5472 }, { "start": 23915.92, "end": 23916.54, "probability": 0.7869 }, { "start": 23916.94, "end": 23917.08, "probability": 0.2759 }, { "start": 23917.26, "end": 23917.72, "probability": 0.0386 }, { "start": 23917.72, "end": 23918.02, "probability": 0.2857 }, { "start": 23918.24, "end": 23918.66, "probability": 0.3331 }, { "start": 23919.24, "end": 23919.78, "probability": 0.0332 }, { "start": 23919.86, "end": 23920.3, "probability": 0.286 }, { "start": 23920.48, "end": 23921.12, "probability": 0.7572 }, { "start": 23921.22, "end": 23921.66, "probability": 0.1152 }, { "start": 23922.3, "end": 23923.28, "probability": 0.1634 }, { "start": 23924.4, "end": 23925.51, "probability": 0.1904 }, { "start": 23926.6, "end": 23929.8, "probability": 0.3371 }, { "start": 23932.1, "end": 23932.9, "probability": 0.1744 }, { "start": 23933.94, "end": 23936.62, "probability": 0.4719 }, { "start": 23937.34, "end": 23937.66, "probability": 0.4184 }, { "start": 23937.86, "end": 23938.6, "probability": 0.592 }, { "start": 23938.86, "end": 23939.2, "probability": 0.2786 }, { "start": 23939.3, "end": 23939.8, "probability": 0.4426 }, { "start": 23939.96, "end": 23940.52, "probability": 0.3773 }, { "start": 23940.64, "end": 23941.78, "probability": 0.3199 }, { "start": 23942.38, "end": 23945.4, "probability": 0.5701 }, { "start": 23945.54, "end": 23945.92, "probability": 0.351 }, { "start": 23946.08, "end": 23946.28, "probability": 0.299 }, { "start": 23947.28, "end": 23947.64, "probability": 0.2807 }, { "start": 23948.08, "end": 23948.56, "probability": 0.5218 }, { "start": 23948.64, "end": 23950.3, "probability": 0.2846 }, { "start": 23950.34, "end": 23951.86, "probability": 0.5416 }, { "start": 23952.6, "end": 23953.8, "probability": 0.7674 }, { "start": 23954.0, "end": 23954.42, "probability": 0.3283 }, { "start": 23954.5, "end": 23954.78, "probability": 0.4892 }, { "start": 23955.1, "end": 23955.48, "probability": 0.3231 }, { "start": 23955.98, "end": 23956.32, "probability": 0.0083 }, { "start": 23956.46, "end": 23957.46, "probability": 0.2514 }, { "start": 23958.56, "end": 23959.6, "probability": 0.5611 }, { "start": 23960.62, "end": 23962.38, "probability": 0.9704 }, { "start": 23963.54, "end": 23966.72, "probability": 0.8014 }, { "start": 23968.22, "end": 23970.48, "probability": 0.6129 }, { "start": 23970.54, "end": 23971.12, "probability": 0.6643 }, { "start": 23971.5, "end": 23972.18, "probability": 0.5679 }, { "start": 23984.02, "end": 23985.16, "probability": 0.6163 }, { "start": 23985.26, "end": 23985.74, "probability": 0.6324 }, { "start": 23987.96, "end": 23990.26, "probability": 0.1872 }, { "start": 23990.86, "end": 23992.38, "probability": 0.0066 }, { "start": 23992.44, "end": 23993.12, "probability": 0.0865 }, { "start": 23993.28, "end": 23995.98, "probability": 0.1192 }, { "start": 23996.0, "end": 23996.0, "probability": 0.0 }, { "start": 23996.0, "end": 23996.0, "probability": 0.0 }, { "start": 23996.0, "end": 23996.0, "probability": 0.0 }, { "start": 23996.02, "end": 23996.87, "probability": 0.4578 }, { "start": 23997.76, "end": 23999.8, "probability": 0.9487 }, { "start": 23999.92, "end": 24002.48, "probability": 0.532 }, { "start": 24002.56, "end": 24003.38, "probability": 0.5939 }, { "start": 24003.38, "end": 24004.0, "probability": 0.7357 }, { "start": 24004.04, "end": 24004.68, "probability": 0.581 }, { "start": 24004.82, "end": 24005.24, "probability": 0.5619 }, { "start": 24015.63, "end": 24016.04, "probability": 0.0444 }, { "start": 24016.1, "end": 24017.38, "probability": 0.1672 }, { "start": 24017.7, "end": 24023.32, "probability": 0.1903 }, { "start": 24117.0, "end": 24117.0, "probability": 0.0 }, { "start": 24117.0, "end": 24117.0, "probability": 0.0 }, { "start": 24117.0, "end": 24117.0, "probability": 0.0 }, { "start": 24117.0, "end": 24117.0, "probability": 0.0 }, { "start": 24117.0, "end": 24117.0, "probability": 0.0 }, { "start": 24117.0, "end": 24117.0, "probability": 0.0 }, { "start": 24117.0, "end": 24117.0, "probability": 0.0 }, { "start": 24117.0, "end": 24117.0, "probability": 0.0 }, { "start": 24117.0, "end": 24117.0, "probability": 0.0 }, { "start": 24117.0, "end": 24117.0, "probability": 0.0 }, { "start": 24117.0, "end": 24117.0, "probability": 0.0 }, { "start": 24117.0, "end": 24117.0, "probability": 0.0 }, { "start": 24117.0, "end": 24117.0, "probability": 0.0 }, { "start": 24117.0, "end": 24117.0, "probability": 0.0 }, { "start": 24117.0, "end": 24117.0, "probability": 0.0 }, { "start": 24117.0, "end": 24117.0, "probability": 0.0 }, { "start": 24117.0, "end": 24117.0, "probability": 0.0 }, { "start": 24117.0, "end": 24117.0, "probability": 0.0 }, { "start": 24117.0, "end": 24117.0, "probability": 0.0 }, { "start": 24117.0, "end": 24117.0, "probability": 0.0 }, { "start": 24117.0, "end": 24117.0, "probability": 0.0 }, { "start": 24117.0, "end": 24117.0, "probability": 0.0 }, { "start": 24117.0, "end": 24117.0, "probability": 0.0 }, { "start": 24117.0, "end": 24117.0, "probability": 0.0 }, { "start": 24117.0, "end": 24117.0, "probability": 0.0 }, { "start": 24117.0, "end": 24117.0, "probability": 0.0 }, { "start": 24117.0, "end": 24117.0, "probability": 0.0 }, { "start": 24117.0, "end": 24117.0, "probability": 0.0 }, { "start": 24117.0, "end": 24117.0, "probability": 0.0 }, { "start": 24117.0, "end": 24117.0, "probability": 0.0 }, { "start": 24117.12, "end": 24117.26, "probability": 0.1483 }, { "start": 24117.26, "end": 24118.35, "probability": 0.1716 }, { "start": 24118.96, "end": 24123.06, "probability": 0.6639 }, { "start": 24123.9, "end": 24129.52, "probability": 0.558 }, { "start": 24129.56, "end": 24130.16, "probability": 0.5002 }, { "start": 24130.5, "end": 24131.02, "probability": 0.7649 }, { "start": 24134.6, "end": 24136.6, "probability": 0.1655 }, { "start": 24137.46, "end": 24137.46, "probability": 0.0077 }, { "start": 24137.46, "end": 24138.3, "probability": 0.0682 }, { "start": 24139.24, "end": 24141.02, "probability": 0.2098 }, { "start": 24239.0, "end": 24239.0, "probability": 0.0 }, { "start": 24239.0, "end": 24239.0, "probability": 0.0 }, { "start": 24239.0, "end": 24239.0, "probability": 0.0 }, { "start": 24239.0, "end": 24239.0, "probability": 0.0 }, { "start": 24239.0, "end": 24239.0, "probability": 0.0 }, { "start": 24239.0, "end": 24239.0, "probability": 0.0 }, { "start": 24239.0, "end": 24239.0, "probability": 0.0 }, { "start": 24239.0, "end": 24239.0, "probability": 0.0 }, { "start": 24239.0, "end": 24239.0, "probability": 0.0 }, { "start": 24239.0, "end": 24239.0, "probability": 0.0 }, { "start": 24239.0, "end": 24239.0, "probability": 0.0 }, { "start": 24239.0, "end": 24239.0, "probability": 0.0 }, { "start": 24239.0, "end": 24239.0, "probability": 0.0 }, { "start": 24239.0, "end": 24239.0, "probability": 0.0 }, { "start": 24239.0, "end": 24239.0, "probability": 0.0 }, { "start": 24239.0, "end": 24239.0, "probability": 0.0 }, { "start": 24239.0, "end": 24239.0, "probability": 0.0 }, { "start": 24239.0, "end": 24239.0, "probability": 0.0 }, { "start": 24239.0, "end": 24239.0, "probability": 0.0 }, { "start": 24239.0, "end": 24239.0, "probability": 0.0 }, { "start": 24239.0, "end": 24239.0, "probability": 0.0 }, { "start": 24239.0, "end": 24239.0, "probability": 0.0 }, { "start": 24239.0, "end": 24239.0, "probability": 0.0 }, { "start": 24239.0, "end": 24239.0, "probability": 0.0 }, { "start": 24239.0, "end": 24239.0, "probability": 0.0 }, { "start": 24239.0, "end": 24239.0, "probability": 0.0 }, { "start": 24239.0, "end": 24239.0, "probability": 0.0 }, { "start": 24239.0, "end": 24239.0, "probability": 0.0 }, { "start": 24239.0, "end": 24239.0, "probability": 0.0 }, { "start": 24239.0, "end": 24239.0, "probability": 0.0 }, { "start": 24239.0, "end": 24239.0, "probability": 0.0 }, { "start": 24239.16, "end": 24239.76, "probability": 0.1507 }, { "start": 24240.36, "end": 24240.36, "probability": 0.0004 }, { "start": 24255.96, "end": 24257.38, "probability": 0.0106 }, { "start": 24257.38, "end": 24258.26, "probability": 0.2052 }, { "start": 24258.5, "end": 24262.04, "probability": 0.2297 }, { "start": 24264.5, "end": 24265.42, "probability": 0.3395 }, { "start": 24282.8, "end": 24285.46, "probability": 0.2672 }, { "start": 24285.96, "end": 24288.42, "probability": 0.3373 }, { "start": 24289.64, "end": 24295.7, "probability": 0.2887 }, { "start": 24295.7, "end": 24296.42, "probability": 0.5065 }, { "start": 24296.44, "end": 24297.36, "probability": 0.429 }, { "start": 24297.38, "end": 24297.78, "probability": 0.6544 }, { "start": 24299.88, "end": 24302.2, "probability": 0.3665 }, { "start": 24366.0, "end": 24366.0, "probability": 0.0 }, { "start": 24366.0, "end": 24366.0, "probability": 0.0 }, { "start": 24366.0, "end": 24366.0, "probability": 0.0 }, { "start": 24366.0, "end": 24366.0, "probability": 0.0 }, { "start": 24366.0, "end": 24366.0, "probability": 0.0 }, { "start": 24366.0, "end": 24366.0, "probability": 0.0 }, { "start": 24366.0, "end": 24366.0, "probability": 0.0 }, { "start": 24366.0, "end": 24366.0, "probability": 0.0 }, { "start": 24366.0, "end": 24366.0, "probability": 0.0 }, { "start": 24366.0, "end": 24366.0, "probability": 0.0 }, { "start": 24366.0, "end": 24366.0, "probability": 0.0 }, { "start": 24366.0, "end": 24366.0, "probability": 0.0 }, { "start": 24366.0, "end": 24366.0, "probability": 0.0 }, { "start": 24366.0, "end": 24366.0, "probability": 0.0 }, { "start": 24366.0, "end": 24366.0, "probability": 0.0 }, { "start": 24366.0, "end": 24366.0, "probability": 0.0 }, { "start": 24366.0, "end": 24366.0, "probability": 0.0 }, { "start": 24366.0, "end": 24366.0, "probability": 0.0 }, { "start": 24366.0, "end": 24366.0, "probability": 0.0 }, { "start": 24366.0, "end": 24366.0, "probability": 0.0 }, { "start": 24366.0, "end": 24366.0, "probability": 0.0 }, { "start": 24366.0, "end": 24366.0, "probability": 0.0 }, { "start": 24366.0, "end": 24366.0, "probability": 0.0 }, { "start": 24366.0, "end": 24366.0, "probability": 0.0 }, { "start": 24366.0, "end": 24366.0, "probability": 0.0 }, { "start": 24366.0, "end": 24366.0, "probability": 0.0 }, { "start": 24366.08, "end": 24366.42, "probability": 0.161 }, { "start": 24366.48, "end": 24368.44, "probability": 0.8983 }, { "start": 24368.62, "end": 24371.72, "probability": 0.6688 }, { "start": 24371.76, "end": 24372.44, "probability": 0.36 }, { "start": 24372.52, "end": 24373.18, "probability": 0.5061 }, { "start": 24373.96, "end": 24377.3, "probability": 0.4288 }, { "start": 24379.22, "end": 24381.61, "probability": 0.0417 }, { "start": 24389.04, "end": 24389.92, "probability": 0.047 }, { "start": 24389.94, "end": 24389.94, "probability": 0.1133 }, { "start": 24389.94, "end": 24391.7, "probability": 0.4514 }, { "start": 24392.14, "end": 24393.7, "probability": 0.915 }, { "start": 24394.04, "end": 24396.78, "probability": 0.9113 }, { "start": 24397.34, "end": 24397.92, "probability": 0.6412 }, { "start": 24397.96, "end": 24398.6, "probability": 0.5482 }, { "start": 24415.38, "end": 24415.82, "probability": 0.2919 }, { "start": 24415.82, "end": 24415.82, "probability": 0.3075 }, { "start": 24415.82, "end": 24417.28, "probability": 0.5399 }, { "start": 24417.44, "end": 24420.36, "probability": 0.7137 }, { "start": 24420.36, "end": 24421.3, "probability": 0.8102 }, { "start": 24422.22, "end": 24425.98, "probability": 0.5322 }, { "start": 24426.06, "end": 24426.74, "probability": 0.3413 }, { "start": 24454.46, "end": 24454.92, "probability": 0.7101 }, { "start": 24456.0, "end": 24459.38, "probability": 0.0204 }, { "start": 24460.04, "end": 24461.82, "probability": 0.0955 }, { "start": 24467.07, "end": 24470.5, "probability": 0.1219 }, { "start": 24471.22, "end": 24472.12, "probability": 0.1954 }, { "start": 24472.72, "end": 24474.38, "probability": 0.1951 }, { "start": 24486.0, "end": 24486.0, "probability": 0.0 }, { "start": 24486.0, "end": 24486.0, "probability": 0.0 }, { "start": 24486.0, "end": 24486.0, "probability": 0.0 }, { "start": 24486.0, "end": 24486.0, "probability": 0.0 }, { "start": 24486.0, "end": 24486.0, "probability": 0.0 }, { "start": 24486.0, "end": 24486.0, "probability": 0.0 }, { "start": 24486.0, "end": 24486.0, "probability": 0.0 }, { "start": 24486.0, "end": 24486.0, "probability": 0.0 }, { "start": 24486.0, "end": 24486.0, "probability": 0.0 }, { "start": 24486.0, "end": 24486.0, "probability": 0.0 }, { "start": 24486.3, "end": 24486.58, "probability": 0.1816 }, { "start": 24486.58, "end": 24491.34, "probability": 0.7467 }, { "start": 24492.2, "end": 24497.12, "probability": 0.9009 }, { "start": 24498.42, "end": 24500.07, "probability": 0.0623 }, { "start": 24500.98, "end": 24501.26, "probability": 0.1244 }, { "start": 24502.16, "end": 24502.38, "probability": 0.0167 }, { "start": 24524.9, "end": 24525.62, "probability": 0.1291 }, { "start": 24525.68, "end": 24527.93, "probability": 0.267 }, { "start": 24529.6, "end": 24531.0, "probability": 0.2825 }, { "start": 24531.36, "end": 24535.14, "probability": 0.7871 }, { "start": 24535.82, "end": 24538.88, "probability": 0.5565 }, { "start": 24539.92, "end": 24541.08, "probability": 0.6973 }, { "start": 24541.88, "end": 24542.66, "probability": 0.7117 }, { "start": 24543.74, "end": 24544.82, "probability": 0.6813 }, { "start": 24544.86, "end": 24546.78, "probability": 0.7441 }, { "start": 24546.78, "end": 24548.32, "probability": 0.9627 }, { "start": 24549.4, "end": 24551.98, "probability": 0.3662 }, { "start": 24553.2, "end": 24553.7, "probability": 0.8106 }, { "start": 24556.4, "end": 24557.58, "probability": 0.4039 }, { "start": 24558.68, "end": 24560.24, "probability": 0.1714 }, { "start": 24560.88, "end": 24562.04, "probability": 0.4229 }, { "start": 24562.82, "end": 24563.26, "probability": 0.675 }, { "start": 24564.04, "end": 24564.86, "probability": 0.7425 }, { "start": 24567.88, "end": 24569.88, "probability": 0.9502 }, { "start": 24571.52, "end": 24572.02, "probability": 0.9663 }, { "start": 24572.9, "end": 24573.8, "probability": 0.6556 }, { "start": 24575.56, "end": 24578.3, "probability": 0.9083 }, { "start": 24579.48, "end": 24580.46, "probability": 0.9701 }, { "start": 24581.16, "end": 24581.62, "probability": 0.9062 }, { "start": 24582.5, "end": 24583.48, "probability": 0.9207 }, { "start": 24584.5, "end": 24584.76, "probability": 0.5587 }, { "start": 24585.88, "end": 24586.78, "probability": 0.7577 }, { "start": 24587.82, "end": 24589.9, "probability": 0.8158 }, { "start": 24594.12, "end": 24594.96, "probability": 0.6709 }, { "start": 24595.5, "end": 24596.38, "probability": 0.9542 }, { "start": 24597.4, "end": 24599.58, "probability": 0.9423 }, { "start": 24600.52, "end": 24602.42, "probability": 0.9885 }, { "start": 24603.34, "end": 24603.82, "probability": 0.9946 }, { "start": 24604.44, "end": 24605.28, "probability": 0.9531 }, { "start": 24606.04, "end": 24608.06, "probability": 0.9885 }, { "start": 24608.82, "end": 24609.1, "probability": 0.9883 }, { "start": 24610.16, "end": 24613.2, "probability": 0.5794 }, { "start": 24615.28, "end": 24615.7, "probability": 0.7423 }, { "start": 24616.74, "end": 24617.56, "probability": 0.7269 }, { "start": 24618.38, "end": 24620.16, "probability": 0.9349 }, { "start": 24621.78, "end": 24622.22, "probability": 0.9695 }, { "start": 24622.82, "end": 24623.56, "probability": 0.9734 }, { "start": 24624.86, "end": 24626.74, "probability": 0.953 }, { "start": 24627.8, "end": 24628.04, "probability": 0.9905 }, { "start": 24628.66, "end": 24629.64, "probability": 0.9907 }, { "start": 24630.42, "end": 24630.74, "probability": 0.9963 }, { "start": 24631.28, "end": 24632.18, "probability": 0.9822 }, { "start": 24633.04, "end": 24633.42, "probability": 0.9946 }, { "start": 24634.16, "end": 24635.28, "probability": 0.6079 }, { "start": 24636.18, "end": 24637.86, "probability": 0.6709 }, { "start": 24641.2, "end": 24643.1, "probability": 0.8259 }, { "start": 24646.58, "end": 24648.2, "probability": 0.945 }, { "start": 24649.02, "end": 24649.48, "probability": 0.9507 }, { "start": 24650.04, "end": 24650.78, "probability": 0.8948 }, { "start": 24652.02, "end": 24652.36, "probability": 0.9734 }, { "start": 24653.42, "end": 24654.42, "probability": 0.9502 }, { "start": 24655.16, "end": 24655.54, "probability": 0.9634 }, { "start": 24656.16, "end": 24656.98, "probability": 0.9494 }, { "start": 24660.46, "end": 24662.54, "probability": 0.9305 }, { "start": 24663.92, "end": 24665.76, "probability": 0.639 }, { "start": 24667.62, "end": 24670.36, "probability": 0.9146 }, { "start": 24671.44, "end": 24671.88, "probability": 0.7224 }, { "start": 24672.72, "end": 24673.44, "probability": 0.9052 }, { "start": 24674.64, "end": 24676.76, "probability": 0.9656 }, { "start": 24677.44, "end": 24679.4, "probability": 0.9846 }, { "start": 24680.16, "end": 24680.56, "probability": 0.9839 }, { "start": 24681.24, "end": 24682.58, "probability": 0.6739 }, { "start": 24684.1, "end": 24686.46, "probability": 0.9502 }, { "start": 24688.54, "end": 24688.94, "probability": 0.5751 }, { "start": 24689.92, "end": 24690.74, "probability": 0.823 }, { "start": 24692.84, "end": 24694.96, "probability": 0.8685 }, { "start": 24696.06, "end": 24697.96, "probability": 0.6653 }, { "start": 24698.96, "end": 24701.02, "probability": 0.8594 }, { "start": 24705.24, "end": 24706.08, "probability": 0.8861 }, { "start": 24706.66, "end": 24707.96, "probability": 0.7868 }, { "start": 24710.7, "end": 24712.14, "probability": 0.2265 }, { "start": 24720.8, "end": 24722.0, "probability": 0.1799 }, { "start": 24722.68, "end": 24722.86, "probability": 0.496 }, { "start": 24723.8, "end": 24725.12, "probability": 0.7601 }, { "start": 24726.46, "end": 24728.36, "probability": 0.6143 }, { "start": 24729.3, "end": 24730.96, "probability": 0.9045 }, { "start": 24731.66, "end": 24731.92, "probability": 0.9048 }, { "start": 24732.64, "end": 24733.44, "probability": 0.726 }, { "start": 24734.22, "end": 24736.04, "probability": 0.712 }, { "start": 24737.78, "end": 24739.9, "probability": 0.4529 }, { "start": 24741.18, "end": 24741.9, "probability": 0.5036 }, { "start": 24743.08, "end": 24746.1, "probability": 0.6093 }, { "start": 24747.08, "end": 24747.5, "probability": 0.7952 }, { "start": 24748.32, "end": 24749.46, "probability": 0.9776 }, { "start": 24750.2, "end": 24751.74, "probability": 0.9403 }, { "start": 24756.44, "end": 24756.68, "probability": 0.5374 }, { "start": 24757.54, "end": 24757.9, "probability": 0.7261 }, { "start": 24759.24, "end": 24761.26, "probability": 0.9128 }, { "start": 24762.06, "end": 24762.34, "probability": 0.9519 }, { "start": 24763.06, "end": 24765.88, "probability": 0.8427 }, { "start": 24772.18, "end": 24773.96, "probability": 0.7283 }, { "start": 24774.88, "end": 24775.52, "probability": 0.9827 }, { "start": 24777.0, "end": 24777.42, "probability": 0.9634 }, { "start": 24778.72, "end": 24779.28, "probability": 0.9833 }, { "start": 24780.0, "end": 24780.3, "probability": 0.9829 }, { "start": 24780.84, "end": 24781.42, "probability": 0.9797 }, { "start": 24782.74, "end": 24783.04, "probability": 0.5057 }, { "start": 24784.6, "end": 24785.8, "probability": 0.5468 }, { "start": 24786.4, "end": 24786.7, "probability": 0.9045 }, { "start": 24787.28, "end": 24788.08, "probability": 0.7334 }, { "start": 24791.6, "end": 24792.02, "probability": 0.9758 }, { "start": 24792.8, "end": 24794.0, "probability": 0.8312 }, { "start": 24795.46, "end": 24797.08, "probability": 0.8815 }, { "start": 24801.88, "end": 24802.28, "probability": 0.5891 }, { "start": 24803.4, "end": 24804.22, "probability": 0.8118 }, { "start": 24805.14, "end": 24807.0, "probability": 0.9111 }, { "start": 24810.78, "end": 24811.52, "probability": 0.7394 }, { "start": 24812.16, "end": 24813.0, "probability": 0.8967 }, { "start": 24814.02, "end": 24814.42, "probability": 0.9866 }, { "start": 24815.34, "end": 24816.14, "probability": 0.9809 }, { "start": 24817.6, "end": 24819.54, "probability": 0.9718 }, { "start": 24820.52, "end": 24820.78, "probability": 0.9851 }, { "start": 24821.62, "end": 24822.54, "probability": 0.8148 }, { "start": 24824.06, "end": 24824.34, "probability": 0.9832 }, { "start": 24825.04, "end": 24825.84, "probability": 0.8367 }, { "start": 24826.88, "end": 24827.12, "probability": 0.9937 }, { "start": 24828.0, "end": 24829.18, "probability": 0.7571 }, { "start": 24830.0, "end": 24832.06, "probability": 0.9209 }, { "start": 24834.28, "end": 24836.62, "probability": 0.9602 }, { "start": 24837.42, "end": 24839.58, "probability": 0.9407 }, { "start": 24843.12, "end": 24843.5, "probability": 0.9163 }, { "start": 24844.38, "end": 24845.1, "probability": 0.9386 }, { "start": 24846.76, "end": 24849.18, "probability": 0.8123 }, { "start": 24851.28, "end": 24853.94, "probability": 0.6927 }, { "start": 24859.96, "end": 24863.08, "probability": 0.7415 }, { "start": 24863.9, "end": 24865.72, "probability": 0.7485 }, { "start": 24870.08, "end": 24873.04, "probability": 0.9329 }, { "start": 24874.4, "end": 24876.28, "probability": 0.5418 }, { "start": 24877.44, "end": 24879.14, "probability": 0.875 }, { "start": 24879.84, "end": 24881.6, "probability": 0.821 }, { "start": 24883.44, "end": 24884.26, "probability": 0.2171 }, { "start": 24885.86, "end": 24887.72, "probability": 0.2235 }, { "start": 24899.56, "end": 24900.5, "probability": 0.5362 }, { "start": 24905.02, "end": 24905.42, "probability": 0.6318 }, { "start": 24906.46, "end": 24907.34, "probability": 0.6855 }, { "start": 24909.42, "end": 24911.36, "probability": 0.8685 }, { "start": 24912.16, "end": 24912.8, "probability": 0.677 }, { "start": 24914.3, "end": 24916.04, "probability": 0.9602 }, { "start": 24918.24, "end": 24923.5, "probability": 0.63 }, { "start": 24926.48, "end": 24930.94, "probability": 0.686 }, { "start": 24934.02, "end": 24935.0, "probability": 0.3197 }, { "start": 24936.88, "end": 24937.72, "probability": 0.8087 }, { "start": 24938.44, "end": 24939.46, "probability": 0.8477 }, { "start": 24940.44, "end": 24940.8, "probability": 0.6909 }, { "start": 24942.12, "end": 24942.94, "probability": 0.7242 }, { "start": 24945.14, "end": 24947.68, "probability": 0.9839 }, { "start": 24948.62, "end": 24948.92, "probability": 0.9719 }, { "start": 24949.58, "end": 24950.4, "probability": 0.9172 }, { "start": 24951.72, "end": 24952.14, "probability": 0.9954 }, { "start": 24953.04, "end": 24954.0, "probability": 0.8981 }, { "start": 24955.58, "end": 24955.88, "probability": 0.9639 }, { "start": 24956.62, "end": 24957.5, "probability": 0.7378 }, { "start": 24958.44, "end": 24958.7, "probability": 0.9897 }, { "start": 24959.62, "end": 24960.32, "probability": 0.8431 }, { "start": 24960.88, "end": 24960.94, "probability": 0.8938 }, { "start": 24963.02, "end": 24963.76, "probability": 0.5266 }, { "start": 24964.8, "end": 24965.06, "probability": 0.4989 }, { "start": 24965.84, "end": 24969.36, "probability": 0.6813 }, { "start": 24970.26, "end": 24971.22, "probability": 0.8659 }, { "start": 24971.86, "end": 24972.56, "probability": 0.8225 }, { "start": 24975.38, "end": 24975.78, "probability": 0.9441 }, { "start": 24976.48, "end": 24977.42, "probability": 0.9528 }, { "start": 24978.18, "end": 24978.58, "probability": 0.9812 }, { "start": 24979.24, "end": 24980.04, "probability": 0.9604 }, { "start": 24980.84, "end": 24983.06, "probability": 0.9526 }, { "start": 24984.04, "end": 24984.3, "probability": 0.9387 }, { "start": 24985.1, "end": 24985.76, "probability": 0.9564 }, { "start": 24986.74, "end": 24986.98, "probability": 0.9763 }, { "start": 24987.84, "end": 24988.92, "probability": 0.9465 }, { "start": 24989.76, "end": 24989.94, "probability": 0.9927 }, { "start": 24991.3, "end": 24992.56, "probability": 0.7227 }, { "start": 24993.34, "end": 24993.58, "probability": 0.8684 }, { "start": 24994.54, "end": 24995.58, "probability": 0.6902 }, { "start": 24996.36, "end": 24996.62, "probability": 0.9822 }, { "start": 24997.38, "end": 24998.82, "probability": 0.8391 }, { "start": 25002.9, "end": 25003.12, "probability": 0.5537 }, { "start": 25004.4, "end": 25005.14, "probability": 0.7187 }, { "start": 25009.94, "end": 25012.0, "probability": 0.7839 }, { "start": 25012.96, "end": 25013.8, "probability": 0.4779 }, { "start": 25015.8, "end": 25017.28, "probability": 0.9259 }, { "start": 25018.22, "end": 25019.2, "probability": 0.8696 }, { "start": 25021.52, "end": 25022.48, "probability": 0.988 }, { "start": 25023.12, "end": 25023.96, "probability": 0.7258 }, { "start": 25026.24, "end": 25027.08, "probability": 0.9033 }, { "start": 25027.6, "end": 25029.02, "probability": 0.898 }, { "start": 25031.14, "end": 25032.2, "probability": 0.5751 }, { "start": 25033.34, "end": 25033.74, "probability": 0.591 }, { "start": 25034.72, "end": 25035.58, "probability": 0.7177 }, { "start": 25036.61, "end": 25038.46, "probability": 0.8599 }, { "start": 25041.86, "end": 25044.84, "probability": 0.6578 }, { "start": 25045.96, "end": 25046.8, "probability": 0.7545 }, { "start": 25047.46, "end": 25049.28, "probability": 0.6986 }, { "start": 25051.42, "end": 25052.26, "probability": 0.2537 }, { "start": 25053.62, "end": 25054.2, "probability": 0.8747 }, { "start": 25055.16, "end": 25055.94, "probability": 0.3897 }, { "start": 25057.5, "end": 25057.9, "probability": 0.9138 }, { "start": 25059.7, "end": 25060.48, "probability": 0.7012 }, { "start": 25063.64, "end": 25067.48, "probability": 0.8341 }, { "start": 25068.92, "end": 25070.7, "probability": 0.9524 }, { "start": 25072.0, "end": 25072.74, "probability": 0.9826 }, { "start": 25074.38, "end": 25074.76, "probability": 0.7238 }, { "start": 25076.22, "end": 25078.2, "probability": 0.8089 }, { "start": 25078.8, "end": 25080.72, "probability": 0.7668 }, { "start": 25081.8, "end": 25082.5, "probability": 0.974 }, { "start": 25083.48, "end": 25084.78, "probability": 0.776 }, { "start": 25085.66, "end": 25086.1, "probability": 0.9622 }, { "start": 25088.26, "end": 25089.42, "probability": 0.9352 }, { "start": 25090.7, "end": 25091.74, "probability": 0.9779 }, { "start": 25093.12, "end": 25093.94, "probability": 0.774 }, { "start": 25094.6, "end": 25095.36, "probability": 0.9943 }, { "start": 25095.96, "end": 25096.8, "probability": 0.9033 }, { "start": 25097.36, "end": 25097.98, "probability": 0.5703 }, { "start": 25099.2, "end": 25100.04, "probability": 0.7195 }, { "start": 25101.0, "end": 25103.08, "probability": 0.5344 }, { "start": 25104.48, "end": 25105.74, "probability": 0.7439 }, { "start": 25106.76, "end": 25107.6, "probability": 0.9644 }, { "start": 25108.5, "end": 25109.56, "probability": 0.9621 }, { "start": 25111.44, "end": 25112.28, "probability": 0.9847 }, { "start": 25113.24, "end": 25114.04, "probability": 0.9633 }, { "start": 25114.6, "end": 25116.28, "probability": 0.9469 }, { "start": 25117.78, "end": 25118.62, "probability": 0.9889 }, { "start": 25119.84, "end": 25121.48, "probability": 0.6755 }, { "start": 25122.18, "end": 25123.06, "probability": 0.6725 }, { "start": 25124.36, "end": 25126.4, "probability": 0.6614 }, { "start": 25127.32, "end": 25128.04, "probability": 0.9951 }, { "start": 25128.64, "end": 25129.42, "probability": 0.8859 }, { "start": 25130.66, "end": 25133.48, "probability": 0.9124 }, { "start": 25134.2, "end": 25135.1, "probability": 0.9321 }, { "start": 25136.62, "end": 25137.32, "probability": 0.9915 }, { "start": 25138.54, "end": 25141.7, "probability": 0.879 }, { "start": 25143.08, "end": 25145.3, "probability": 0.5617 }, { "start": 25146.38, "end": 25147.48, "probability": 0.2669 }, { "start": 25148.3, "end": 25150.38, "probability": 0.8047 }, { "start": 25152.24, "end": 25154.2, "probability": 0.6647 }, { "start": 25155.34, "end": 25157.36, "probability": 0.8396 }, { "start": 25158.72, "end": 25160.94, "probability": 0.7023 }, { "start": 25161.76, "end": 25164.85, "probability": 0.9551 }, { "start": 25167.25, "end": 25168.23, "probability": 0.5899 }, { "start": 25168.53, "end": 25170.01, "probability": 0.4042 }, { "start": 25170.09, "end": 25171.13, "probability": 0.4961 }, { "start": 25171.31, "end": 25172.49, "probability": 0.8428 }, { "start": 25194.87, "end": 25197.13, "probability": 0.0528 }, { "start": 25198.81, "end": 25200.75, "probability": 0.0884 }, { "start": 25203.23, "end": 25203.23, "probability": 0.1071 }, { "start": 25205.75, "end": 25206.13, "probability": 0.0933 }, { "start": 25206.13, "end": 25208.73, "probability": 0.011 }, { "start": 25208.73, "end": 25208.73, "probability": 0.127 }, { "start": 25208.89, "end": 25209.05, "probability": 0.0031 }, { "start": 25301.0, "end": 25301.0, "probability": 0.0 }, { "start": 25301.0, "end": 25301.0, "probability": 0.0 }, { "start": 25301.0, "end": 25301.0, "probability": 0.0 }, { "start": 25301.0, "end": 25301.0, "probability": 0.0 }, { "start": 25301.0, "end": 25301.0, "probability": 0.0 }, { "start": 25301.0, "end": 25301.0, "probability": 0.0 }, { "start": 25302.28, "end": 25302.34, "probability": 0.1472 }, { "start": 25302.34, "end": 25302.34, "probability": 0.3388 }, { "start": 25302.44, "end": 25305.38, "probability": 0.9961 }, { "start": 25306.02, "end": 25309.16, "probability": 0.9818 }, { "start": 25310.5, "end": 25315.04, "probability": 0.9624 }, { "start": 25315.86, "end": 25318.58, "probability": 0.9506 }, { "start": 25319.38, "end": 25321.68, "probability": 0.8399 }, { "start": 25322.5, "end": 25323.02, "probability": 0.5492 }, { "start": 25323.12, "end": 25325.38, "probability": 0.921 }, { "start": 25326.06, "end": 25326.82, "probability": 0.5184 }, { "start": 25326.86, "end": 25328.08, "probability": 0.9366 }, { "start": 25328.12, "end": 25329.5, "probability": 0.9737 }, { "start": 25329.7, "end": 25331.06, "probability": 0.8294 }, { "start": 25331.16, "end": 25334.0, "probability": 0.9965 }, { "start": 25334.02, "end": 25336.76, "probability": 0.9944 }, { "start": 25337.06, "end": 25338.52, "probability": 0.8085 }, { "start": 25339.12, "end": 25341.8, "probability": 0.9984 }, { "start": 25342.36, "end": 25344.24, "probability": 0.8953 }, { "start": 25345.02, "end": 25347.8, "probability": 0.9865 }, { "start": 25348.56, "end": 25352.54, "probability": 0.9631 }, { "start": 25354.74, "end": 25355.78, "probability": 0.2002 }, { "start": 25355.78, "end": 25355.82, "probability": 0.2468 }, { "start": 25356.26, "end": 25357.18, "probability": 0.782 }, { "start": 25357.44, "end": 25357.76, "probability": 0.0013 }, { "start": 25359.26, "end": 25360.08, "probability": 0.4327 }, { "start": 25360.18, "end": 25365.82, "probability": 0.9228 }, { "start": 25366.9, "end": 25367.38, "probability": 0.7947 }, { "start": 25368.12, "end": 25370.64, "probability": 0.9846 }, { "start": 25370.72, "end": 25373.44, "probability": 0.9903 }, { "start": 25374.48, "end": 25376.62, "probability": 0.971 }, { "start": 25377.58, "end": 25380.98, "probability": 0.7569 }, { "start": 25381.62, "end": 25384.22, "probability": 0.5851 }, { "start": 25384.8, "end": 25385.74, "probability": 0.502 }, { "start": 25386.6, "end": 25389.36, "probability": 0.5551 }, { "start": 25390.2, "end": 25391.76, "probability": 0.8561 }, { "start": 25391.98, "end": 25392.98, "probability": 0.9344 }, { "start": 25393.46, "end": 25395.92, "probability": 0.8757 }, { "start": 25396.78, "end": 25398.56, "probability": 0.8745 }, { "start": 25399.1, "end": 25401.08, "probability": 0.9806 }, { "start": 25401.6, "end": 25404.22, "probability": 0.8632 }, { "start": 25404.66, "end": 25406.58, "probability": 0.9963 }, { "start": 25406.82, "end": 25407.74, "probability": 0.9204 }, { "start": 25410.98, "end": 25411.08, "probability": 0.0059 }, { "start": 25411.08, "end": 25411.48, "probability": 0.3754 }, { "start": 25411.48, "end": 25412.44, "probability": 0.765 }, { "start": 25414.64, "end": 25416.58, "probability": 0.667 }, { "start": 25417.46, "end": 25421.54, "probability": 0.9924 }, { "start": 25423.14, "end": 25426.12, "probability": 0.8387 }, { "start": 25426.44, "end": 25427.38, "probability": 0.5866 }, { "start": 25428.2, "end": 25431.82, "probability": 0.903 }, { "start": 25432.38, "end": 25434.04, "probability": 0.5875 }, { "start": 25435.58, "end": 25441.64, "probability": 0.9185 }, { "start": 25441.67, "end": 25448.08, "probability": 0.7902 }, { "start": 25448.88, "end": 25450.64, "probability": 0.7273 }, { "start": 25451.24, "end": 25453.88, "probability": 0.9702 }, { "start": 25455.86, "end": 25459.3, "probability": 0.6559 }, { "start": 25459.3, "end": 25463.12, "probability": 0.9385 }, { "start": 25464.02, "end": 25470.68, "probability": 0.9312 }, { "start": 25471.74, "end": 25476.44, "probability": 0.971 }, { "start": 25476.48, "end": 25479.92, "probability": 0.827 }, { "start": 25481.0, "end": 25487.54, "probability": 0.9597 }, { "start": 25488.22, "end": 25488.68, "probability": 0.6586 }, { "start": 25489.28, "end": 25493.02, "probability": 0.9954 }, { "start": 25493.26, "end": 25495.18, "probability": 0.7253 }, { "start": 25496.76, "end": 25497.4, "probability": 0.7011 }, { "start": 25497.4, "end": 25502.06, "probability": 0.9924 }, { "start": 25502.66, "end": 25503.62, "probability": 0.9805 }, { "start": 25504.46, "end": 25506.98, "probability": 0.9624 }, { "start": 25507.5, "end": 25509.64, "probability": 0.9772 }, { "start": 25509.74, "end": 25510.74, "probability": 0.7247 }, { "start": 25512.26, "end": 25513.38, "probability": 0.9077 }, { "start": 25519.22, "end": 25520.56, "probability": 0.6617 }, { "start": 25524.32, "end": 25525.4, "probability": 0.5605 }, { "start": 25528.8, "end": 25530.74, "probability": 0.8143 }, { "start": 25532.72, "end": 25534.02, "probability": 0.9414 }, { "start": 25534.08, "end": 25535.56, "probability": 0.613 }, { "start": 25536.12, "end": 25539.18, "probability": 0.9883 }, { "start": 25539.22, "end": 25542.86, "probability": 0.6685 }, { "start": 25543.54, "end": 25549.08, "probability": 0.8393 }, { "start": 25551.57, "end": 25554.52, "probability": 0.7906 }, { "start": 25562.02, "end": 25563.74, "probability": 0.6212 }, { "start": 25563.82, "end": 25564.64, "probability": 0.4734 }, { "start": 25564.78, "end": 25565.3, "probability": 0.4795 }, { "start": 25565.38, "end": 25566.48, "probability": 0.8384 }, { "start": 25567.24, "end": 25567.88, "probability": 0.1483 }, { "start": 25568.74, "end": 25569.06, "probability": 0.0772 }, { "start": 25569.06, "end": 25569.06, "probability": 0.0222 }, { "start": 25569.06, "end": 25571.05, "probability": 0.7926 }, { "start": 25571.46, "end": 25572.94, "probability": 0.1378 }, { "start": 25572.94, "end": 25575.06, "probability": 0.8459 }, { "start": 25576.12, "end": 25580.3, "probability": 0.973 }, { "start": 25580.4, "end": 25583.58, "probability": 0.9873 }, { "start": 25584.38, "end": 25585.34, "probability": 0.2597 }, { "start": 25586.32, "end": 25588.56, "probability": 0.6014 }, { "start": 25588.7, "end": 25589.56, "probability": 0.7519 }, { "start": 25590.14, "end": 25591.66, "probability": 0.8426 }, { "start": 25592.22, "end": 25595.4, "probability": 0.9294 }, { "start": 25596.26, "end": 25599.1, "probability": 0.77 }, { "start": 25599.16, "end": 25599.96, "probability": 0.6095 }, { "start": 25601.88, "end": 25602.74, "probability": 0.8264 }, { "start": 25606.92, "end": 25609.96, "probability": 0.7461 }, { "start": 25611.1, "end": 25612.34, "probability": 0.7331 }, { "start": 25613.52, "end": 25619.22, "probability": 0.9492 }, { "start": 25620.06, "end": 25623.44, "probability": 0.981 }, { "start": 25623.44, "end": 25628.2, "probability": 0.9938 }, { "start": 25629.74, "end": 25631.18, "probability": 0.9886 }, { "start": 25632.3, "end": 25633.26, "probability": 0.9987 }, { "start": 25645.46, "end": 25650.06, "probability": 0.9437 }, { "start": 25650.9, "end": 25655.14, "probability": 0.9813 }, { "start": 25655.88, "end": 25659.44, "probability": 0.9938 }, { "start": 25660.62, "end": 25661.78, "probability": 0.8922 }, { "start": 25662.76, "end": 25666.76, "probability": 0.9926 }, { "start": 25667.76, "end": 25672.5, "probability": 0.9413 }, { "start": 25673.52, "end": 25675.26, "probability": 0.995 }, { "start": 25675.5, "end": 25679.1, "probability": 0.9935 }, { "start": 25679.96, "end": 25681.5, "probability": 0.9971 }, { "start": 25681.78, "end": 25683.28, "probability": 0.9976 }, { "start": 25684.18, "end": 25685.42, "probability": 0.8202 }, { "start": 25686.02, "end": 25688.44, "probability": 0.8035 }, { "start": 25688.96, "end": 25690.04, "probability": 0.9744 }, { "start": 25690.92, "end": 25692.58, "probability": 0.9915 }, { "start": 25693.28, "end": 25695.13, "probability": 0.958 }, { "start": 25696.3, "end": 25696.62, "probability": 0.2547 }, { "start": 25696.7, "end": 25696.96, "probability": 0.8894 }, { "start": 25696.98, "end": 25698.16, "probability": 0.9536 }, { "start": 25698.64, "end": 25699.08, "probability": 0.6191 }, { "start": 25699.12, "end": 25700.46, "probability": 0.9839 }, { "start": 25700.84, "end": 25702.42, "probability": 0.9563 }, { "start": 25703.44, "end": 25704.72, "probability": 0.9871 }, { "start": 25705.74, "end": 25707.92, "probability": 0.864 }, { "start": 25708.74, "end": 25711.46, "probability": 0.9712 }, { "start": 25712.2, "end": 25715.02, "probability": 0.9971 }, { "start": 25716.06, "end": 25717.76, "probability": 0.998 }, { "start": 25718.74, "end": 25724.58, "probability": 0.9958 }, { "start": 25725.38, "end": 25731.08, "probability": 0.9857 }, { "start": 25731.78, "end": 25732.32, "probability": 0.9696 }, { "start": 25733.6, "end": 25735.02, "probability": 0.9755 }, { "start": 25735.96, "end": 25738.48, "probability": 0.9375 }, { "start": 25739.22, "end": 25741.22, "probability": 0.908 }, { "start": 25741.58, "end": 25743.26, "probability": 0.9529 }, { "start": 25744.2, "end": 25745.58, "probability": 0.924 }, { "start": 25746.28, "end": 25749.48, "probability": 0.9767 }, { "start": 25750.1, "end": 25754.86, "probability": 0.9919 }, { "start": 25755.74, "end": 25756.9, "probability": 0.9888 }, { "start": 25757.58, "end": 25758.38, "probability": 0.9234 }, { "start": 25758.94, "end": 25759.52, "probability": 0.8319 }, { "start": 25760.4, "end": 25763.26, "probability": 0.9765 }, { "start": 25763.9, "end": 25767.3, "probability": 0.9447 }, { "start": 25767.6, "end": 25769.74, "probability": 0.8477 }, { "start": 25771.86, "end": 25772.04, "probability": 0.1155 }, { "start": 25772.04, "end": 25775.0, "probability": 0.8762 }, { "start": 25775.64, "end": 25779.68, "probability": 0.9951 }, { "start": 25780.1, "end": 25780.56, "probability": 0.7137 }, { "start": 25781.14, "end": 25783.98, "probability": 0.6368 }, { "start": 25783.98, "end": 25785.11, "probability": 0.984 }, { "start": 25785.94, "end": 25786.54, "probability": 0.9661 }, { "start": 25787.12, "end": 25790.3, "probability": 0.9897 }, { "start": 25791.0, "end": 25793.75, "probability": 0.9577 }, { "start": 25794.4, "end": 25796.84, "probability": 0.9744 }, { "start": 25797.22, "end": 25798.32, "probability": 0.7222 }, { "start": 25798.94, "end": 25801.92, "probability": 0.9386 }, { "start": 25802.56, "end": 25804.08, "probability": 0.9934 }, { "start": 25804.68, "end": 25805.52, "probability": 0.5904 }, { "start": 25805.58, "end": 25807.94, "probability": 0.9832 }, { "start": 25808.14, "end": 25808.34, "probability": 0.7269 }, { "start": 25808.62, "end": 25811.2, "probability": 0.9937 }, { "start": 25811.88, "end": 25815.0, "probability": 0.7783 }, { "start": 25815.24, "end": 25815.66, "probability": 0.9256 }, { "start": 25816.22, "end": 25818.74, "probability": 0.824 }, { "start": 25818.78, "end": 25822.07, "probability": 0.9364 }, { "start": 25822.86, "end": 25824.06, "probability": 0.7425 }, { "start": 25830.28, "end": 25831.06, "probability": 0.6207 }, { "start": 25832.46, "end": 25833.38, "probability": 0.1029 }, { "start": 25833.92, "end": 25838.6, "probability": 0.1024 }, { "start": 25863.94, "end": 25866.22, "probability": 0.8962 }, { "start": 25867.64, "end": 25868.14, "probability": 0.5088 }, { "start": 25869.76, "end": 25873.18, "probability": 0.9805 }, { "start": 25875.46, "end": 25879.28, "probability": 0.9832 }, { "start": 25880.46, "end": 25882.22, "probability": 0.9896 }, { "start": 25883.0, "end": 25885.36, "probability": 0.9976 }, { "start": 25886.2, "end": 25886.68, "probability": 0.6007 }, { "start": 25886.86, "end": 25889.3, "probability": 0.4896 }, { "start": 25889.36, "end": 25889.81, "probability": 0.9133 }, { "start": 25890.18, "end": 25891.18, "probability": 0.9325 }, { "start": 25891.26, "end": 25892.0, "probability": 0.6635 }, { "start": 25893.12, "end": 25894.18, "probability": 0.8888 }, { "start": 25894.28, "end": 25895.08, "probability": 0.9347 }, { "start": 25895.26, "end": 25897.37, "probability": 0.9109 }, { "start": 25897.64, "end": 25898.32, "probability": 0.4612 }, { "start": 25899.16, "end": 25899.66, "probability": 0.8477 }, { "start": 25900.48, "end": 25901.38, "probability": 0.9695 }, { "start": 25902.42, "end": 25904.21, "probability": 0.9927 }, { "start": 25905.6, "end": 25907.32, "probability": 0.9801 }, { "start": 25908.26, "end": 25909.4, "probability": 0.8319 }, { "start": 25910.04, "end": 25912.1, "probability": 0.8875 }, { "start": 25912.44, "end": 25913.38, "probability": 0.9 }, { "start": 25913.78, "end": 25914.76, "probability": 0.9009 }, { "start": 25915.18, "end": 25916.92, "probability": 0.862 }, { "start": 25917.06, "end": 25919.98, "probability": 0.9821 }, { "start": 25921.02, "end": 25922.3, "probability": 0.9829 }, { "start": 25923.06, "end": 25924.22, "probability": 0.8258 }, { "start": 25924.68, "end": 25925.98, "probability": 0.917 }, { "start": 25926.42, "end": 25927.88, "probability": 0.9612 }, { "start": 25927.98, "end": 25928.06, "probability": 0.3 }, { "start": 25928.18, "end": 25929.94, "probability": 0.9714 }, { "start": 25930.38, "end": 25933.04, "probability": 0.9933 }, { "start": 25934.1, "end": 25935.14, "probability": 0.964 }, { "start": 25936.2, "end": 25936.66, "probability": 0.4247 }, { "start": 25937.52, "end": 25939.66, "probability": 0.7957 }, { "start": 25939.78, "end": 25941.48, "probability": 0.9799 }, { "start": 25942.26, "end": 25942.82, "probability": 0.9321 }, { "start": 25943.5, "end": 25944.18, "probability": 0.8495 }, { "start": 25945.14, "end": 25946.42, "probability": 0.5915 }, { "start": 25946.5, "end": 25947.87, "probability": 0.8676 }, { "start": 25948.48, "end": 25950.36, "probability": 0.998 }, { "start": 25951.16, "end": 25951.9, "probability": 0.592 }, { "start": 25953.12, "end": 25953.12, "probability": 0.0097 }, { "start": 25953.12, "end": 25953.48, "probability": 0.1576 }, { "start": 25953.48, "end": 25954.06, "probability": 0.9736 }, { "start": 25954.84, "end": 25956.28, "probability": 0.8998 }, { "start": 25956.96, "end": 25959.44, "probability": 0.8681 }, { "start": 25960.08, "end": 25961.98, "probability": 0.8713 }, { "start": 25962.4, "end": 25963.8, "probability": 0.9812 }, { "start": 25964.76, "end": 25966.26, "probability": 0.8786 }, { "start": 25967.02, "end": 25970.54, "probability": 0.9534 }, { "start": 25971.16, "end": 25971.82, "probability": 0.6666 }, { "start": 25971.92, "end": 25978.26, "probability": 0.9443 }, { "start": 25979.06, "end": 25979.78, "probability": 0.9119 }, { "start": 25980.32, "end": 25981.42, "probability": 0.9956 }, { "start": 25982.18, "end": 25984.44, "probability": 0.9463 }, { "start": 25986.0, "end": 25990.02, "probability": 0.9833 }, { "start": 25990.72, "end": 25993.1, "probability": 0.9948 }, { "start": 25993.2, "end": 25995.98, "probability": 0.9744 }, { "start": 25996.16, "end": 25997.0, "probability": 0.6567 }, { "start": 25997.1, "end": 25997.48, "probability": 0.5068 }, { "start": 25998.0, "end": 25998.43, "probability": 0.7544 }, { "start": 25999.28, "end": 26002.26, "probability": 0.9711 }, { "start": 26002.9, "end": 26004.76, "probability": 0.9526 }, { "start": 26004.86, "end": 26005.98, "probability": 0.9528 }, { "start": 26006.06, "end": 26007.02, "probability": 0.9934 }, { "start": 26007.56, "end": 26009.4, "probability": 0.9956 }, { "start": 26009.96, "end": 26011.24, "probability": 0.699 }, { "start": 26011.42, "end": 26012.4, "probability": 0.7708 }, { "start": 26012.54, "end": 26013.82, "probability": 0.9369 }, { "start": 26013.94, "end": 26014.86, "probability": 0.7851 }, { "start": 26015.74, "end": 26016.86, "probability": 0.8206 }, { "start": 26017.36, "end": 26017.5, "probability": 0.8882 }, { "start": 26017.98, "end": 26019.7, "probability": 0.558 }, { "start": 26019.98, "end": 26021.62, "probability": 0.5041 }, { "start": 26021.66, "end": 26021.78, "probability": 0.4795 }, { "start": 26022.1, "end": 26022.7, "probability": 0.3971 }, { "start": 26023.5, "end": 26023.64, "probability": 0.0573 }, { "start": 26023.64, "end": 26024.4, "probability": 0.7655 }, { "start": 26025.04, "end": 26027.4, "probability": 0.945 }, { "start": 26029.64, "end": 26032.98, "probability": 0.748 }, { "start": 26034.01, "end": 26036.69, "probability": 0.9768 }, { "start": 26037.56, "end": 26039.02, "probability": 0.9096 }, { "start": 26039.58, "end": 26041.28, "probability": 0.955 }, { "start": 26041.9, "end": 26043.74, "probability": 0.784 }, { "start": 26044.58, "end": 26046.08, "probability": 0.9974 }, { "start": 26046.2, "end": 26050.84, "probability": 0.9878 }, { "start": 26051.24, "end": 26051.76, "probability": 0.7868 }, { "start": 26051.78, "end": 26052.74, "probability": 0.7183 }, { "start": 26053.12, "end": 26053.5, "probability": 0.9296 }, { "start": 26054.46, "end": 26055.08, "probability": 0.5476 }, { "start": 26055.44, "end": 26056.1, "probability": 0.6935 }, { "start": 26056.38, "end": 26057.72, "probability": 0.7489 }, { "start": 26057.92, "end": 26059.3, "probability": 0.9461 }, { "start": 26059.4, "end": 26059.56, "probability": 0.7885 }, { "start": 26059.78, "end": 26061.14, "probability": 0.8352 }, { "start": 26061.34, "end": 26063.68, "probability": 0.8616 }, { "start": 26086.54, "end": 26091.62, "probability": 0.7243 }, { "start": 26094.28, "end": 26094.28, "probability": 0.0678 }, { "start": 26094.28, "end": 26096.38, "probability": 0.5696 }, { "start": 26097.24, "end": 26099.16, "probability": 0.9937 }, { "start": 26100.66, "end": 26102.6, "probability": 0.8846 }, { "start": 26102.82, "end": 26105.74, "probability": 0.9872 }, { "start": 26106.6, "end": 26107.7, "probability": 0.9873 }, { "start": 26108.94, "end": 26111.88, "probability": 0.824 }, { "start": 26112.56, "end": 26112.78, "probability": 0.7994 }, { "start": 26113.6, "end": 26114.14, "probability": 0.9578 }, { "start": 26114.98, "end": 26115.08, "probability": 0.4872 }, { "start": 26116.4, "end": 26117.0, "probability": 0.5833 }, { "start": 26117.02, "end": 26117.06, "probability": 0.1715 }, { "start": 26117.06, "end": 26117.94, "probability": 0.9121 }, { "start": 26118.12, "end": 26119.14, "probability": 0.9634 }, { "start": 26119.26, "end": 26120.06, "probability": 0.7391 }, { "start": 26121.42, "end": 26121.42, "probability": 0.4288 }, { "start": 26121.42, "end": 26123.07, "probability": 0.496 }, { "start": 26123.96, "end": 26124.84, "probability": 0.2115 }, { "start": 26125.14, "end": 26125.84, "probability": 0.6446 }, { "start": 26127.38, "end": 26127.82, "probability": 0.3155 }, { "start": 26129.08, "end": 26131.67, "probability": 0.9266 }, { "start": 26132.4, "end": 26136.16, "probability": 0.9541 }, { "start": 26136.78, "end": 26137.26, "probability": 0.7658 }, { "start": 26137.9, "end": 26138.48, "probability": 0.7603 }, { "start": 26139.14, "end": 26142.04, "probability": 0.1253 }, { "start": 26142.72, "end": 26145.84, "probability": 0.9761 }, { "start": 26146.02, "end": 26146.02, "probability": 0.0666 }, { "start": 26146.02, "end": 26146.82, "probability": 0.5017 }, { "start": 26146.88, "end": 26147.74, "probability": 0.7128 }, { "start": 26147.82, "end": 26151.66, "probability": 0.7873 }, { "start": 26151.88, "end": 26154.72, "probability": 0.9489 }, { "start": 26156.06, "end": 26159.3, "probability": 0.9872 }, { "start": 26160.2, "end": 26162.3, "probability": 0.9731 }, { "start": 26162.96, "end": 26165.3, "probability": 0.9979 }, { "start": 26166.68, "end": 26168.4, "probability": 0.9569 }, { "start": 26169.54, "end": 26171.14, "probability": 0.5908 }, { "start": 26171.72, "end": 26175.17, "probability": 0.9403 }, { "start": 26176.16, "end": 26180.82, "probability": 0.9915 }, { "start": 26181.82, "end": 26184.96, "probability": 0.9942 }, { "start": 26185.04, "end": 26185.94, "probability": 0.8844 }, { "start": 26186.58, "end": 26187.16, "probability": 0.7406 }, { "start": 26188.04, "end": 26191.14, "probability": 0.9891 }, { "start": 26191.7, "end": 26196.8, "probability": 0.7353 }, { "start": 26197.66, "end": 26199.34, "probability": 0.9009 }, { "start": 26200.04, "end": 26203.36, "probability": 0.7182 }, { "start": 26204.22, "end": 26206.9, "probability": 0.9811 }, { "start": 26207.12, "end": 26209.68, "probability": 0.8313 }, { "start": 26210.58, "end": 26216.72, "probability": 0.7179 }, { "start": 26216.98, "end": 26217.74, "probability": 0.5233 }, { "start": 26217.9, "end": 26218.16, "probability": 0.5339 }, { "start": 26218.84, "end": 26221.08, "probability": 0.9423 }, { "start": 26221.92, "end": 26225.9, "probability": 0.9736 }, { "start": 26225.98, "end": 26227.88, "probability": 0.9796 }, { "start": 26228.04, "end": 26229.06, "probability": 0.7884 }, { "start": 26229.2, "end": 26230.5, "probability": 0.9956 }, { "start": 26231.4, "end": 26234.84, "probability": 0.8879 }, { "start": 26235.04, "end": 26236.64, "probability": 0.9856 }, { "start": 26237.16, "end": 26239.22, "probability": 0.6804 }, { "start": 26239.4, "end": 26243.7, "probability": 0.8728 }, { "start": 26244.04, "end": 26246.5, "probability": 0.803 }, { "start": 26247.24, "end": 26252.82, "probability": 0.997 }, { "start": 26252.94, "end": 26257.32, "probability": 0.9946 }, { "start": 26258.14, "end": 26260.48, "probability": 0.9834 }, { "start": 26260.64, "end": 26263.48, "probability": 0.9749 }, { "start": 26264.08, "end": 26267.74, "probability": 0.9839 }, { "start": 26268.42, "end": 26269.22, "probability": 0.7393 }, { "start": 26269.28, "end": 26274.6, "probability": 0.9913 }, { "start": 26275.26, "end": 26279.28, "probability": 0.9976 }, { "start": 26279.92, "end": 26281.94, "probability": 0.8441 }, { "start": 26282.16, "end": 26285.02, "probability": 0.8749 }, { "start": 26285.92, "end": 26288.44, "probability": 0.9976 }, { "start": 26288.44, "end": 26292.2, "probability": 0.9922 }, { "start": 26292.9, "end": 26295.86, "probability": 0.9524 }, { "start": 26296.5, "end": 26300.26, "probability": 0.9972 }, { "start": 26300.92, "end": 26304.44, "probability": 0.9977 }, { "start": 26305.18, "end": 26308.88, "probability": 0.9264 }, { "start": 26309.46, "end": 26313.3, "probability": 0.8625 }, { "start": 26314.02, "end": 26317.2, "probability": 0.9933 }, { "start": 26317.6, "end": 26323.26, "probability": 0.9972 }, { "start": 26323.48, "end": 26323.74, "probability": 0.5461 }, { "start": 26324.16, "end": 26327.04, "probability": 0.9885 }, { "start": 26327.72, "end": 26329.78, "probability": 0.8666 }, { "start": 26346.32, "end": 26346.32, "probability": 0.1043 }, { "start": 26347.54, "end": 26349.2, "probability": 0.8171 }, { "start": 26349.4, "end": 26350.22, "probability": 0.6619 }, { "start": 26350.48, "end": 26350.62, "probability": 0.6725 }, { "start": 26351.28, "end": 26351.82, "probability": 0.2688 }, { "start": 26351.96, "end": 26353.09, "probability": 0.6135 }, { "start": 26354.78, "end": 26355.57, "probability": 0.9865 }, { "start": 26355.96, "end": 26356.82, "probability": 0.3653 }, { "start": 26356.94, "end": 26357.14, "probability": 0.2815 }, { "start": 26357.62, "end": 26358.12, "probability": 0.8423 }, { "start": 26358.7, "end": 26359.3, "probability": 0.9644 }, { "start": 26362.44, "end": 26364.68, "probability": 0.5792 }, { "start": 26365.92, "end": 26366.68, "probability": 0.9467 }, { "start": 26367.4, "end": 26368.02, "probability": 0.6523 }, { "start": 26369.6, "end": 26370.28, "probability": 0.7265 }, { "start": 26372.12, "end": 26375.2, "probability": 0.9844 }, { "start": 26375.36, "end": 26375.74, "probability": 0.7417 }, { "start": 26376.16, "end": 26377.46, "probability": 0.7874 }, { "start": 26377.56, "end": 26378.06, "probability": 0.6351 }, { "start": 26378.12, "end": 26379.81, "probability": 0.9644 }, { "start": 26381.38, "end": 26382.04, "probability": 0.6038 }, { "start": 26382.04, "end": 26384.72, "probability": 0.9523 }, { "start": 26384.82, "end": 26389.44, "probability": 0.9941 }, { "start": 26389.48, "end": 26390.44, "probability": 0.6048 }, { "start": 26390.52, "end": 26391.6, "probability": 0.7322 }, { "start": 26391.64, "end": 26392.2, "probability": 0.8211 }, { "start": 26392.36, "end": 26393.62, "probability": 0.2523 }, { "start": 26393.68, "end": 26394.22, "probability": 0.3946 }, { "start": 26394.22, "end": 26394.22, "probability": 0.4875 }, { "start": 26394.28, "end": 26394.52, "probability": 0.2335 }, { "start": 26394.6, "end": 26395.94, "probability": 0.8204 }, { "start": 26396.7, "end": 26398.84, "probability": 0.8055 }, { "start": 26399.48, "end": 26401.06, "probability": 0.9938 }, { "start": 26401.74, "end": 26403.12, "probability": 0.6281 }, { "start": 26403.8, "end": 26405.04, "probability": 0.9927 }, { "start": 26405.36, "end": 26407.48, "probability": 0.8627 }, { "start": 26407.54, "end": 26409.02, "probability": 0.7865 }, { "start": 26409.56, "end": 26410.84, "probability": 0.9799 }, { "start": 26411.0, "end": 26411.84, "probability": 0.9852 }, { "start": 26411.94, "end": 26412.7, "probability": 0.549 }, { "start": 26413.12, "end": 26414.14, "probability": 0.541 }, { "start": 26415.08, "end": 26417.66, "probability": 0.0368 }, { "start": 26418.1, "end": 26418.84, "probability": 0.0765 }, { "start": 26419.16, "end": 26419.88, "probability": 0.382 }, { "start": 26419.94, "end": 26422.4, "probability": 0.9287 }, { "start": 26422.42, "end": 26425.04, "probability": 0.8927 }, { "start": 26425.22, "end": 26426.26, "probability": 0.5589 }, { "start": 26426.72, "end": 26427.3, "probability": 0.9431 }, { "start": 26427.44, "end": 26428.22, "probability": 0.8029 }, { "start": 26428.34, "end": 26429.44, "probability": 0.9169 }, { "start": 26429.5, "end": 26431.16, "probability": 0.9145 }, { "start": 26431.54, "end": 26435.64, "probability": 0.9377 }, { "start": 26436.02, "end": 26436.9, "probability": 0.8949 }, { "start": 26437.0, "end": 26437.8, "probability": 0.5206 }, { "start": 26437.88, "end": 26445.12, "probability": 0.9926 }, { "start": 26445.28, "end": 26445.74, "probability": 0.4511 }, { "start": 26445.94, "end": 26446.68, "probability": 0.9141 }, { "start": 26446.76, "end": 26449.44, "probability": 0.9985 }, { "start": 26449.54, "end": 26451.78, "probability": 0.9924 }, { "start": 26452.26, "end": 26452.96, "probability": 0.6786 }, { "start": 26453.1, "end": 26453.84, "probability": 0.6502 }, { "start": 26453.98, "end": 26454.55, "probability": 0.8125 }, { "start": 26454.96, "end": 26456.46, "probability": 0.71 }, { "start": 26456.86, "end": 26457.42, "probability": 0.8846 }, { "start": 26457.8, "end": 26458.52, "probability": 0.6606 }, { "start": 26458.6, "end": 26459.16, "probability": 0.7705 }, { "start": 26459.24, "end": 26461.86, "probability": 0.9875 }, { "start": 26461.9, "end": 26463.54, "probability": 0.9271 }, { "start": 26464.3, "end": 26465.86, "probability": 0.9565 }, { "start": 26466.0, "end": 26467.56, "probability": 0.7762 }, { "start": 26467.8, "end": 26469.44, "probability": 0.9969 }, { "start": 26470.02, "end": 26475.3, "probability": 0.5076 }, { "start": 26475.4, "end": 26478.9, "probability": 0.5761 }, { "start": 26479.52, "end": 26480.52, "probability": 0.19 }, { "start": 26480.56, "end": 26481.08, "probability": 0.7704 }, { "start": 26481.08, "end": 26481.64, "probability": 0.8585 }, { "start": 26481.84, "end": 26482.47, "probability": 0.7812 }, { "start": 26482.64, "end": 26483.9, "probability": 0.9146 }, { "start": 26484.02, "end": 26484.92, "probability": 0.9363 }, { "start": 26485.5, "end": 26486.75, "probability": 0.9692 }, { "start": 26487.58, "end": 26487.58, "probability": 0.3036 }, { "start": 26487.72, "end": 26490.54, "probability": 0.613 }, { "start": 26490.94, "end": 26491.56, "probability": 0.6367 }, { "start": 26491.6, "end": 26492.29, "probability": 0.9502 }, { "start": 26492.88, "end": 26495.2, "probability": 0.9448 }, { "start": 26495.46, "end": 26496.22, "probability": 0.7399 }, { "start": 26496.44, "end": 26497.34, "probability": 0.9536 }, { "start": 26497.84, "end": 26500.1, "probability": 0.9718 }, { "start": 26500.5, "end": 26501.08, "probability": 0.9697 }, { "start": 26501.52, "end": 26502.48, "probability": 0.9746 }, { "start": 26503.18, "end": 26503.77, "probability": 0.5263 }, { "start": 26503.92, "end": 26505.16, "probability": 0.5217 }, { "start": 26505.3, "end": 26506.6, "probability": 0.8589 }, { "start": 26507.06, "end": 26507.88, "probability": 0.9068 }, { "start": 26508.02, "end": 26508.96, "probability": 0.8303 }, { "start": 26509.04, "end": 26510.82, "probability": 0.9963 }, { "start": 26513.2, "end": 26513.84, "probability": 0.0331 }, { "start": 26513.84, "end": 26517.98, "probability": 0.9897 }, { "start": 26518.3, "end": 26519.68, "probability": 0.989 }, { "start": 26519.96, "end": 26521.44, "probability": 0.9435 }, { "start": 26521.8, "end": 26522.72, "probability": 0.95 }, { "start": 26522.88, "end": 26525.18, "probability": 0.9865 }, { "start": 26526.04, "end": 26526.74, "probability": 0.4042 }, { "start": 26527.26, "end": 26531.24, "probability": 0.8882 }, { "start": 26531.44, "end": 26533.6, "probability": 0.7808 }, { "start": 26533.8, "end": 26535.8, "probability": 0.9604 }, { "start": 26536.12, "end": 26537.68, "probability": 0.9102 }, { "start": 26538.16, "end": 26538.59, "probability": 0.9614 }, { "start": 26539.18, "end": 26540.16, "probability": 0.9651 }, { "start": 26540.26, "end": 26541.52, "probability": 0.9629 }, { "start": 26541.86, "end": 26542.38, "probability": 0.8265 }, { "start": 26542.4, "end": 26542.64, "probability": 0.9469 }, { "start": 26542.68, "end": 26542.88, "probability": 0.8113 }, { "start": 26542.9, "end": 26542.9, "probability": 0.7652 }, { "start": 26543.02, "end": 26544.26, "probability": 0.9626 }, { "start": 26544.94, "end": 26548.84, "probability": 0.8729 }, { "start": 26549.48, "end": 26550.84, "probability": 0.8162 }, { "start": 26551.16, "end": 26554.36, "probability": 0.668 }, { "start": 26554.46, "end": 26555.16, "probability": 0.8942 }, { "start": 26555.3, "end": 26557.95, "probability": 0.6168 }, { "start": 26558.58, "end": 26559.74, "probability": 0.7333 }, { "start": 26559.88, "end": 26560.34, "probability": 0.0599 }, { "start": 26560.34, "end": 26564.38, "probability": 0.1613 }, { "start": 26575.64, "end": 26577.9, "probability": 0.6961 }, { "start": 26578.48, "end": 26578.9, "probability": 0.0316 }, { "start": 26580.0, "end": 26580.22, "probability": 0.0858 }, { "start": 26580.22, "end": 26580.22, "probability": 0.0344 }, { "start": 26580.22, "end": 26580.22, "probability": 0.0291 }, { "start": 26580.22, "end": 26580.92, "probability": 0.2319 }, { "start": 26581.32, "end": 26581.84, "probability": 0.1651 }, { "start": 26581.84, "end": 26582.08, "probability": 0.0584 }, { "start": 26582.48, "end": 26583.02, "probability": 0.2295 }, { "start": 26588.72, "end": 26591.42, "probability": 0.0154 }, { "start": 26603.42, "end": 26605.66, "probability": 0.0445 }, { "start": 26607.68, "end": 26610.08, "probability": 0.0235 }, { "start": 26611.37, "end": 26611.96, "probability": 0.0516 }, { "start": 26611.96, "end": 26612.17, "probability": 0.0957 }, { "start": 26616.08, "end": 26617.96, "probability": 0.1049 }, { "start": 26617.96, "end": 26618.58, "probability": 0.0694 }, { "start": 26619.3, "end": 26619.48, "probability": 0.4403 }, { "start": 26619.74, "end": 26620.18, "probability": 0.1819 }, { "start": 26620.18, "end": 26620.2, "probability": 0.0151 }, { "start": 26620.24, "end": 26620.38, "probability": 0.0648 }, { "start": 26620.38, "end": 26620.4, "probability": 0.1719 }, { "start": 26620.46, "end": 26620.46, "probability": 0.33 }, { "start": 26621.22, "end": 26624.22, "probability": 0.5465 }, { "start": 26625.78, "end": 26630.9, "probability": 0.9093 }, { "start": 26632.14, "end": 26635.58, "probability": 0.7849 }, { "start": 26635.84, "end": 26639.62, "probability": 0.8375 }, { "start": 26640.04, "end": 26642.02, "probability": 0.9901 }, { "start": 26642.44, "end": 26643.04, "probability": 0.7425 }, { "start": 26643.82, "end": 26646.75, "probability": 0.7205 }, { "start": 26647.52, "end": 26648.34, "probability": 0.6379 }, { "start": 26649.14, "end": 26652.22, "probability": 0.9534 }, { "start": 26652.38, "end": 26652.66, "probability": 0.966 }, { "start": 26653.28, "end": 26654.96, "probability": 0.6046 }, { "start": 26656.08, "end": 26659.34, "probability": 0.9988 }, { "start": 26660.38, "end": 26663.12, "probability": 0.9584 }, { "start": 26664.46, "end": 26668.24, "probability": 0.9664 }, { "start": 26668.82, "end": 26670.42, "probability": 0.9105 }, { "start": 26670.64, "end": 26671.6, "probability": 0.8356 }, { "start": 26672.82, "end": 26675.16, "probability": 0.9894 }, { "start": 26676.58, "end": 26679.74, "probability": 0.9505 }, { "start": 26680.26, "end": 26686.64, "probability": 0.8852 }, { "start": 26686.72, "end": 26688.5, "probability": 0.8799 }, { "start": 26689.24, "end": 26690.22, "probability": 0.9816 }, { "start": 26690.76, "end": 26693.48, "probability": 0.9609 }, { "start": 26694.1, "end": 26696.42, "probability": 0.9709 }, { "start": 26697.0, "end": 26703.8, "probability": 0.9806 }, { "start": 26704.34, "end": 26708.52, "probability": 0.9939 }, { "start": 26709.08, "end": 26713.52, "probability": 0.9985 }, { "start": 26714.02, "end": 26717.06, "probability": 0.7986 }, { "start": 26718.48, "end": 26719.56, "probability": 0.852 }, { "start": 26719.64, "end": 26720.28, "probability": 0.6228 }, { "start": 26720.42, "end": 26721.46, "probability": 0.873 }, { "start": 26721.56, "end": 26722.44, "probability": 0.8791 }, { "start": 26722.96, "end": 26725.16, "probability": 0.9952 }, { "start": 26726.5, "end": 26727.24, "probability": 0.9092 }, { "start": 26727.4, "end": 26727.56, "probability": 0.8746 }, { "start": 26727.74, "end": 26727.84, "probability": 0.7121 }, { "start": 26727.94, "end": 26730.02, "probability": 0.8129 }, { "start": 26730.46, "end": 26733.4, "probability": 0.778 }, { "start": 26734.1, "end": 26735.5, "probability": 0.9956 }, { "start": 26736.04, "end": 26736.38, "probability": 0.6639 }, { "start": 26736.52, "end": 26737.98, "probability": 0.9017 }, { "start": 26738.42, "end": 26739.22, "probability": 0.7633 }, { "start": 26739.3, "end": 26739.9, "probability": 0.8826 }, { "start": 26740.04, "end": 26740.26, "probability": 0.4985 }, { "start": 26740.28, "end": 26740.68, "probability": 0.3141 }, { "start": 26741.56, "end": 26742.08, "probability": 0.9754 }, { "start": 26742.76, "end": 26744.84, "probability": 0.9803 }, { "start": 26745.76, "end": 26746.34, "probability": 0.4787 }, { "start": 26747.0, "end": 26747.5, "probability": 0.7496 }, { "start": 26748.54, "end": 26751.9, "probability": 0.9453 }, { "start": 26752.42, "end": 26753.8, "probability": 0.8302 }, { "start": 26753.92, "end": 26757.9, "probability": 0.9712 }, { "start": 26758.0, "end": 26760.04, "probability": 0.8573 }, { "start": 26760.04, "end": 26760.5, "probability": 0.3176 }, { "start": 26760.98, "end": 26762.42, "probability": 0.9403 }, { "start": 26763.14, "end": 26763.82, "probability": 0.8567 }, { "start": 26764.14, "end": 26765.1, "probability": 0.9384 }, { "start": 26765.56, "end": 26767.54, "probability": 0.9923 }, { "start": 26768.04, "end": 26770.86, "probability": 0.978 }, { "start": 26771.4, "end": 26774.7, "probability": 0.7749 }, { "start": 26775.26, "end": 26776.82, "probability": 0.991 }, { "start": 26776.86, "end": 26779.44, "probability": 0.948 }, { "start": 26779.92, "end": 26780.7, "probability": 0.8961 }, { "start": 26781.02, "end": 26781.1, "probability": 0.0495 }, { "start": 26781.1, "end": 26785.28, "probability": 0.9037 }, { "start": 26785.44, "end": 26785.86, "probability": 0.7541 }, { "start": 26786.2, "end": 26788.38, "probability": 0.7896 }, { "start": 26788.92, "end": 26790.16, "probability": 0.9736 }, { "start": 26790.82, "end": 26794.72, "probability": 0.9927 }, { "start": 26794.8, "end": 26795.88, "probability": 0.9451 }, { "start": 26796.62, "end": 26798.16, "probability": 0.9573 }, { "start": 26798.22, "end": 26800.92, "probability": 0.8978 }, { "start": 26801.48, "end": 26803.24, "probability": 0.1404 }, { "start": 26803.66, "end": 26805.6, "probability": 0.3758 }, { "start": 26824.38, "end": 26825.2, "probability": 0.8075 }, { "start": 26825.88, "end": 26826.95, "probability": 0.8995 }, { "start": 26828.72, "end": 26830.48, "probability": 0.6989 }, { "start": 26830.74, "end": 26833.98, "probability": 0.7147 }, { "start": 26835.62, "end": 26836.42, "probability": 0.9281 }, { "start": 26836.96, "end": 26840.44, "probability": 0.9723 }, { "start": 26842.72, "end": 26844.94, "probability": 0.903 }, { "start": 26846.5, "end": 26847.0, "probability": 0.7164 }, { "start": 26847.84, "end": 26850.1, "probability": 0.8486 }, { "start": 26852.12, "end": 26855.0, "probability": 0.9951 }, { "start": 26856.35, "end": 26860.48, "probability": 0.959 }, { "start": 26861.54, "end": 26862.76, "probability": 0.8833 }, { "start": 26863.5, "end": 26866.14, "probability": 0.7231 }, { "start": 26866.82, "end": 26868.34, "probability": 0.884 }, { "start": 26869.64, "end": 26870.48, "probability": 0.843 }, { "start": 26871.48, "end": 26873.88, "probability": 0.9961 }, { "start": 26874.74, "end": 26877.42, "probability": 0.9623 }, { "start": 26878.62, "end": 26879.6, "probability": 0.792 }, { "start": 26880.24, "end": 26882.08, "probability": 0.9373 }, { "start": 26882.64, "end": 26884.4, "probability": 0.8929 }, { "start": 26885.2, "end": 26888.64, "probability": 0.8862 }, { "start": 26889.18, "end": 26891.56, "probability": 0.6597 }, { "start": 26892.84, "end": 26896.78, "probability": 0.978 }, { "start": 26897.5, "end": 26900.26, "probability": 0.921 }, { "start": 26900.6, "end": 26902.34, "probability": 0.8586 }, { "start": 26903.16, "end": 26903.66, "probability": 0.729 }, { "start": 26904.36, "end": 26905.72, "probability": 0.9127 }, { "start": 26906.34, "end": 26907.0, "probability": 0.8048 }, { "start": 26907.6, "end": 26908.66, "probability": 0.9169 }, { "start": 26908.72, "end": 26911.12, "probability": 0.9795 }, { "start": 26911.88, "end": 26912.82, "probability": 0.8592 }, { "start": 26913.36, "end": 26917.32, "probability": 0.9961 }, { "start": 26917.86, "end": 26920.02, "probability": 0.9656 }, { "start": 26920.92, "end": 26923.02, "probability": 0.7924 }, { "start": 26923.28, "end": 26925.16, "probability": 0.9649 }, { "start": 26925.88, "end": 26926.52, "probability": 0.9821 }, { "start": 26927.1, "end": 26928.96, "probability": 0.9772 }, { "start": 26929.62, "end": 26932.52, "probability": 0.9097 }, { "start": 26933.26, "end": 26935.08, "probability": 0.8822 }, { "start": 26935.52, "end": 26938.26, "probability": 0.9908 }, { "start": 26939.22, "end": 26941.9, "probability": 0.9725 }, { "start": 26942.08, "end": 26942.96, "probability": 0.8043 }, { "start": 26943.06, "end": 26943.66, "probability": 0.8413 }, { "start": 26944.44, "end": 26946.54, "probability": 0.989 }, { "start": 26947.24, "end": 26950.72, "probability": 0.9283 }, { "start": 26951.32, "end": 26952.28, "probability": 0.9645 }, { "start": 26952.84, "end": 26954.9, "probability": 0.9862 }, { "start": 26955.64, "end": 26957.98, "probability": 0.5737 }, { "start": 26958.16, "end": 26958.42, "probability": 0.3862 }, { "start": 26958.5, "end": 26960.74, "probability": 0.6328 }, { "start": 26960.88, "end": 26961.84, "probability": 0.9623 }, { "start": 26961.88, "end": 26962.38, "probability": 0.3937 }, { "start": 26962.48, "end": 26963.18, "probability": 0.7375 }, { "start": 26963.68, "end": 26965.91, "probability": 0.853 }, { "start": 26966.91, "end": 26969.65, "probability": 0.9891 }, { "start": 26969.73, "end": 26971.51, "probability": 0.6868 }, { "start": 26971.57, "end": 26972.37, "probability": 0.7542 }, { "start": 26972.83, "end": 26974.37, "probability": 0.9218 }, { "start": 26975.11, "end": 26975.73, "probability": 0.5773 }, { "start": 26976.17, "end": 26977.57, "probability": 0.7396 }, { "start": 26978.11, "end": 26981.75, "probability": 0.9634 }, { "start": 26982.17, "end": 26983.77, "probability": 0.9787 }, { "start": 26984.77, "end": 26988.03, "probability": 0.9959 }, { "start": 26988.85, "end": 26991.29, "probability": 0.9404 }, { "start": 26991.31, "end": 26992.03, "probability": 0.8877 }, { "start": 26992.85, "end": 26994.99, "probability": 0.6981 }, { "start": 26996.01, "end": 26998.23, "probability": 0.6923 }, { "start": 26998.75, "end": 27002.61, "probability": 0.988 }, { "start": 27003.17, "end": 27003.61, "probability": 0.3652 }, { "start": 27003.73, "end": 27005.21, "probability": 0.9979 }, { "start": 27005.83, "end": 27006.75, "probability": 0.9098 }, { "start": 27007.09, "end": 27007.83, "probability": 0.7739 }, { "start": 27007.93, "end": 27010.39, "probability": 0.927 }, { "start": 27010.85, "end": 27011.47, "probability": 0.5525 }, { "start": 27011.59, "end": 27012.17, "probability": 0.7185 }, { "start": 27012.27, "end": 27013.08, "probability": 0.9077 }, { "start": 27014.29, "end": 27016.19, "probability": 0.9248 }, { "start": 27017.07, "end": 27018.53, "probability": 0.9598 }, { "start": 27018.73, "end": 27020.82, "probability": 0.9731 }, { "start": 27021.37, "end": 27022.23, "probability": 0.7247 }, { "start": 27022.61, "end": 27022.91, "probability": 0.3343 }, { "start": 27023.13, "end": 27025.93, "probability": 0.9185 }, { "start": 27025.99, "end": 27027.79, "probability": 0.8573 }, { "start": 27027.89, "end": 27030.01, "probability": 0.8472 }, { "start": 27030.09, "end": 27030.91, "probability": 0.7292 }, { "start": 27046.23, "end": 27047.85, "probability": 0.0482 }, { "start": 27047.94, "end": 27048.43, "probability": 0.0143 }, { "start": 27048.83, "end": 27049.37, "probability": 0.0531 }, { "start": 27050.39, "end": 27051.69, "probability": 0.3907 }, { "start": 27051.69, "end": 27052.35, "probability": 0.0486 }, { "start": 27052.45, "end": 27054.37, "probability": 0.1186 }, { "start": 27054.37, "end": 27055.15, "probability": 0.0662 }, { "start": 27055.15, "end": 27055.15, "probability": 0.1899 }, { "start": 27055.65, "end": 27056.51, "probability": 0.2008 }, { "start": 27058.59, "end": 27060.99, "probability": 0.0253 }, { "start": 27064.69, "end": 27064.69, "probability": 0.003 }, { "start": 27065.85, "end": 27066.27, "probability": 0.0545 }, { "start": 27068.37, "end": 27069.49, "probability": 0.0272 }, { "start": 27102.25, "end": 27103.25, "probability": 0.1205 }, { "start": 27103.95, "end": 27104.23, "probability": 0.0432 }, { "start": 27105.67, "end": 27106.17, "probability": 0.4898 }, { "start": 27106.51, "end": 27109.91, "probability": 0.1149 }, { "start": 27111.61, "end": 27114.07, "probability": 0.8937 }, { "start": 27115.15, "end": 27119.39, "probability": 0.979 }, { "start": 27120.47, "end": 27121.51, "probability": 0.9599 }, { "start": 27121.63, "end": 27122.35, "probability": 0.6433 }, { "start": 27122.41, "end": 27122.81, "probability": 0.6144 }, { "start": 27122.87, "end": 27123.81, "probability": 0.6575 }, { "start": 27125.59, "end": 27133.57, "probability": 0.958 }, { "start": 27136.23, "end": 27141.35, "probability": 0.9895 }, { "start": 27142.19, "end": 27144.52, "probability": 0.6416 }, { "start": 27146.49, "end": 27148.44, "probability": 0.9731 }, { "start": 27149.05, "end": 27151.85, "probability": 0.7113 }, { "start": 27152.97, "end": 27154.77, "probability": 0.9961 }, { "start": 27156.05, "end": 27159.53, "probability": 0.8967 }, { "start": 27161.81, "end": 27163.21, "probability": 0.9297 }, { "start": 27165.09, "end": 27171.33, "probability": 0.9895 }, { "start": 27172.75, "end": 27174.25, "probability": 0.9808 }, { "start": 27174.79, "end": 27176.79, "probability": 0.9153 }, { "start": 27179.75, "end": 27182.68, "probability": 0.9141 }, { "start": 27184.95, "end": 27185.67, "probability": 0.9771 }, { "start": 27186.55, "end": 27191.23, "probability": 0.9796 }, { "start": 27192.49, "end": 27195.21, "probability": 0.8062 }, { "start": 27196.17, "end": 27198.89, "probability": 0.9518 }, { "start": 27200.19, "end": 27201.57, "probability": 0.9897 }, { "start": 27202.79, "end": 27205.55, "probability": 0.9302 }, { "start": 27206.29, "end": 27208.11, "probability": 0.8347 }, { "start": 27209.95, "end": 27211.01, "probability": 0.692 }, { "start": 27211.21, "end": 27219.39, "probability": 0.989 }, { "start": 27220.13, "end": 27221.51, "probability": 0.948 }, { "start": 27221.63, "end": 27224.49, "probability": 0.4947 }, { "start": 27227.55, "end": 27228.39, "probability": 0.3689 }, { "start": 27228.59, "end": 27233.21, "probability": 0.6734 }, { "start": 27233.89, "end": 27234.49, "probability": 0.5769 }, { "start": 27235.17, "end": 27236.79, "probability": 0.5445 }, { "start": 27236.93, "end": 27238.33, "probability": 0.9524 }, { "start": 27238.85, "end": 27240.73, "probability": 0.9824 }, { "start": 27241.33, "end": 27242.53, "probability": 0.8621 }, { "start": 27243.33, "end": 27245.15, "probability": 0.9985 }, { "start": 27248.45, "end": 27253.22, "probability": 0.9305 }, { "start": 27255.49, "end": 27262.21, "probability": 0.9395 }, { "start": 27263.25, "end": 27268.27, "probability": 0.8807 }, { "start": 27269.83, "end": 27271.93, "probability": 0.9743 }, { "start": 27273.67, "end": 27277.29, "probability": 0.9458 }, { "start": 27278.25, "end": 27281.39, "probability": 0.8255 }, { "start": 27282.27, "end": 27283.13, "probability": 0.5283 }, { "start": 27284.01, "end": 27284.93, "probability": 0.7413 }, { "start": 27286.87, "end": 27289.49, "probability": 0.7724 }, { "start": 27290.17, "end": 27292.11, "probability": 0.9799 }, { "start": 27293.11, "end": 27294.37, "probability": 0.5721 }, { "start": 27294.77, "end": 27296.55, "probability": 0.7128 }, { "start": 27298.33, "end": 27299.55, "probability": 0.8606 }, { "start": 27300.13, "end": 27301.49, "probability": 0.5969 }, { "start": 27301.89, "end": 27303.13, "probability": 0.9746 }, { "start": 27305.65, "end": 27311.41, "probability": 0.0876 }, { "start": 27311.69, "end": 27314.11, "probability": 0.0064 }, { "start": 27330.53, "end": 27333.33, "probability": 0.5772 }, { "start": 27334.95, "end": 27336.89, "probability": 0.6747 }, { "start": 27338.07, "end": 27340.94, "probability": 0.8203 }, { "start": 27342.01, "end": 27343.27, "probability": 0.7281 }, { "start": 27344.11, "end": 27345.96, "probability": 0.9492 }, { "start": 27346.41, "end": 27347.93, "probability": 0.7841 }, { "start": 27348.05, "end": 27348.93, "probability": 0.9993 }, { "start": 27350.33, "end": 27353.51, "probability": 0.9812 }, { "start": 27353.69, "end": 27354.82, "probability": 0.9199 }, { "start": 27356.69, "end": 27357.07, "probability": 0.5213 }, { "start": 27357.39, "end": 27357.81, "probability": 0.5812 }, { "start": 27358.07, "end": 27358.77, "probability": 0.5799 }, { "start": 27359.05, "end": 27360.61, "probability": 0.3989 }, { "start": 27360.61, "end": 27362.29, "probability": 0.9983 }, { "start": 27362.47, "end": 27364.4, "probability": 0.9883 }, { "start": 27365.79, "end": 27368.59, "probability": 0.9805 }, { "start": 27368.59, "end": 27371.55, "probability": 0.9832 }, { "start": 27372.65, "end": 27375.65, "probability": 0.9595 }, { "start": 27375.69, "end": 27376.43, "probability": 0.7434 }, { "start": 27377.43, "end": 27379.23, "probability": 0.8616 }, { "start": 27380.35, "end": 27381.55, "probability": 0.9427 }, { "start": 27382.23, "end": 27383.99, "probability": 0.8439 }, { "start": 27385.11, "end": 27387.37, "probability": 0.8726 }, { "start": 27388.67, "end": 27390.07, "probability": 0.8201 }, { "start": 27391.03, "end": 27393.03, "probability": 0.9956 }, { "start": 27393.23, "end": 27395.47, "probability": 0.8809 }, { "start": 27395.49, "end": 27395.85, "probability": 0.9741 }, { "start": 27396.07, "end": 27397.42, "probability": 0.9182 }, { "start": 27398.77, "end": 27401.25, "probability": 0.9551 }, { "start": 27401.97, "end": 27403.03, "probability": 0.9964 }, { "start": 27404.19, "end": 27405.27, "probability": 0.5616 }, { "start": 27405.61, "end": 27406.23, "probability": 0.7262 }, { "start": 27407.05, "end": 27409.11, "probability": 0.8181 }, { "start": 27409.93, "end": 27413.05, "probability": 0.9819 }, { "start": 27413.23, "end": 27414.13, "probability": 0.7494 }, { "start": 27414.29, "end": 27414.67, "probability": 0.835 }, { "start": 27415.71, "end": 27416.75, "probability": 0.9926 }, { "start": 27418.19, "end": 27418.67, "probability": 0.8259 }, { "start": 27418.71, "end": 27419.39, "probability": 0.9696 }, { "start": 27419.63, "end": 27421.79, "probability": 0.7534 }, { "start": 27422.89, "end": 27423.59, "probability": 0.5074 }, { "start": 27425.03, "end": 27426.47, "probability": 0.9944 }, { "start": 27427.73, "end": 27428.61, "probability": 0.8536 }, { "start": 27429.23, "end": 27430.73, "probability": 0.995 }, { "start": 27430.77, "end": 27432.51, "probability": 0.9974 }, { "start": 27433.51, "end": 27435.89, "probability": 0.9627 }, { "start": 27439.53, "end": 27441.47, "probability": 0.204 }, { "start": 27441.47, "end": 27441.47, "probability": 0.0661 }, { "start": 27441.47, "end": 27444.07, "probability": 0.4782 }, { "start": 27444.67, "end": 27446.95, "probability": 0.9839 }, { "start": 27447.97, "end": 27448.61, "probability": 0.9192 }, { "start": 27448.67, "end": 27450.67, "probability": 0.9013 }, { "start": 27451.09, "end": 27451.96, "probability": 0.9846 }, { "start": 27452.81, "end": 27454.73, "probability": 0.9722 }, { "start": 27455.67, "end": 27458.91, "probability": 0.8728 }, { "start": 27460.13, "end": 27460.65, "probability": 0.7213 }, { "start": 27461.35, "end": 27462.15, "probability": 0.9173 }, { "start": 27462.23, "end": 27463.71, "probability": 0.6043 }, { "start": 27463.77, "end": 27464.72, "probability": 0.9479 }, { "start": 27467.87, "end": 27468.15, "probability": 0.0887 }, { "start": 27468.15, "end": 27469.43, "probability": 0.1524 }, { "start": 27469.59, "end": 27471.83, "probability": 0.6718 }, { "start": 27473.01, "end": 27473.55, "probability": 0.9624 }, { "start": 27473.67, "end": 27476.81, "probability": 0.9456 }, { "start": 27478.17, "end": 27480.53, "probability": 0.8455 }, { "start": 27481.65, "end": 27482.51, "probability": 0.6817 }, { "start": 27483.49, "end": 27486.08, "probability": 0.9907 }, { "start": 27486.97, "end": 27488.0, "probability": 0.924 }, { "start": 27489.55, "end": 27490.89, "probability": 0.9207 }, { "start": 27490.97, "end": 27492.11, "probability": 0.9619 }, { "start": 27492.19, "end": 27493.61, "probability": 0.995 }, { "start": 27494.54, "end": 27496.01, "probability": 0.9941 }, { "start": 27496.81, "end": 27500.09, "probability": 0.9684 }, { "start": 27501.83, "end": 27502.43, "probability": 0.7679 }, { "start": 27502.65, "end": 27504.97, "probability": 0.9836 }, { "start": 27505.05, "end": 27506.79, "probability": 0.9902 }, { "start": 27508.06, "end": 27511.63, "probability": 0.7714 }, { "start": 27512.55, "end": 27513.05, "probability": 0.9807 }, { "start": 27513.61, "end": 27515.83, "probability": 0.9922 }, { "start": 27516.47, "end": 27518.45, "probability": 0.9846 }, { "start": 27518.87, "end": 27519.53, "probability": 0.8853 }, { "start": 27519.73, "end": 27521.2, "probability": 0.9878 }, { "start": 27521.83, "end": 27524.79, "probability": 0.2423 }, { "start": 27524.83, "end": 27527.33, "probability": 0.6547 }, { "start": 27528.19, "end": 27530.23, "probability": 0.9752 }, { "start": 27530.79, "end": 27531.51, "probability": 0.7545 }, { "start": 27531.63, "end": 27532.65, "probability": 0.9729 }, { "start": 27532.99, "end": 27534.21, "probability": 0.9661 }, { "start": 27534.25, "end": 27535.27, "probability": 0.7782 }, { "start": 27537.61, "end": 27538.33, "probability": 0.4132 }, { "start": 27538.33, "end": 27538.37, "probability": 0.594 }, { "start": 27538.67, "end": 27541.31, "probability": 0.9481 }, { "start": 27543.75, "end": 27546.0, "probability": 0.9118 }, { "start": 27568.71, "end": 27571.33, "probability": 0.7261 }, { "start": 27572.89, "end": 27575.19, "probability": 0.9436 }, { "start": 27576.79, "end": 27577.91, "probability": 0.847 }, { "start": 27581.03, "end": 27583.85, "probability": 0.9014 }, { "start": 27584.31, "end": 27584.93, "probability": 0.596 }, { "start": 27586.75, "end": 27587.91, "probability": 0.7814 }, { "start": 27589.81, "end": 27590.91, "probability": 0.9176 }, { "start": 27592.17, "end": 27596.29, "probability": 0.9704 }, { "start": 27597.63, "end": 27598.35, "probability": 0.8507 }, { "start": 27598.79, "end": 27601.12, "probability": 0.9626 }, { "start": 27602.13, "end": 27605.05, "probability": 0.9933 }, { "start": 27605.57, "end": 27608.93, "probability": 0.9001 }, { "start": 27609.83, "end": 27611.43, "probability": 0.4903 }, { "start": 27612.77, "end": 27615.49, "probability": 0.837 }, { "start": 27616.25, "end": 27619.15, "probability": 0.9956 }, { "start": 27619.45, "end": 27621.38, "probability": 0.9138 }, { "start": 27622.63, "end": 27623.35, "probability": 0.6617 }, { "start": 27624.15, "end": 27624.87, "probability": 0.8506 }, { "start": 27625.47, "end": 27625.81, "probability": 0.8602 }, { "start": 27625.93, "end": 27627.03, "probability": 0.9939 }, { "start": 27627.09, "end": 27627.67, "probability": 0.9386 }, { "start": 27628.09, "end": 27628.73, "probability": 0.8177 }, { "start": 27629.43, "end": 27631.89, "probability": 0.9427 }, { "start": 27632.31, "end": 27632.49, "probability": 0.4853 }, { "start": 27632.57, "end": 27633.05, "probability": 0.9294 }, { "start": 27633.35, "end": 27634.99, "probability": 0.9777 }, { "start": 27635.59, "end": 27635.81, "probability": 0.8268 }, { "start": 27637.17, "end": 27637.87, "probability": 0.7382 }, { "start": 27638.75, "end": 27640.65, "probability": 0.8049 }, { "start": 27641.17, "end": 27642.81, "probability": 0.854 }, { "start": 27643.19, "end": 27643.89, "probability": 0.8879 }, { "start": 27644.69, "end": 27646.55, "probability": 0.8079 }, { "start": 27647.77, "end": 27648.71, "probability": 0.875 }, { "start": 27649.01, "end": 27649.45, "probability": 0.7457 }, { "start": 27650.09, "end": 27650.77, "probability": 0.8725 }, { "start": 27651.79, "end": 27653.99, "probability": 0.9862 }, { "start": 27654.95, "end": 27657.39, "probability": 0.9412 }, { "start": 27658.89, "end": 27659.65, "probability": 0.8262 }, { "start": 27660.35, "end": 27661.07, "probability": 0.89 }, { "start": 27661.93, "end": 27662.85, "probability": 0.7463 }, { "start": 27664.11, "end": 27664.73, "probability": 0.9414 }, { "start": 27665.71, "end": 27667.97, "probability": 0.9586 }, { "start": 27669.17, "end": 27670.87, "probability": 0.9731 }, { "start": 27671.09, "end": 27674.03, "probability": 0.9355 }, { "start": 27675.63, "end": 27677.93, "probability": 0.7676 }, { "start": 27680.65, "end": 27682.93, "probability": 0.9275 }, { "start": 27683.43, "end": 27685.53, "probability": 0.7494 }, { "start": 27685.97, "end": 27687.81, "probability": 0.5652 }, { "start": 27688.59, "end": 27690.51, "probability": 0.9194 }, { "start": 27691.33, "end": 27696.29, "probability": 0.8916 }, { "start": 27696.57, "end": 27697.3, "probability": 0.9111 }, { "start": 27697.65, "end": 27700.23, "probability": 0.875 }, { "start": 27700.65, "end": 27700.97, "probability": 0.8395 }, { "start": 27701.03, "end": 27701.52, "probability": 0.8627 }, { "start": 27701.93, "end": 27703.23, "probability": 0.6194 }, { "start": 27703.67, "end": 27705.63, "probability": 0.7167 }, { "start": 27706.43, "end": 27707.19, "probability": 0.8429 }, { "start": 27707.31, "end": 27707.79, "probability": 0.8761 }, { "start": 27708.23, "end": 27709.75, "probability": 0.7359 }, { "start": 27709.75, "end": 27710.71, "probability": 0.8306 }, { "start": 27711.09, "end": 27711.47, "probability": 0.3766 }, { "start": 27711.57, "end": 27714.19, "probability": 0.9712 }, { "start": 27714.93, "end": 27716.19, "probability": 0.9268 }, { "start": 27716.47, "end": 27717.97, "probability": 0.9669 }, { "start": 27718.53, "end": 27719.15, "probability": 0.8111 }, { "start": 27719.65, "end": 27720.31, "probability": 0.6797 }, { "start": 27722.31, "end": 27725.26, "probability": 0.8187 }, { "start": 27726.37, "end": 27727.61, "probability": 0.9419 }, { "start": 27728.05, "end": 27728.47, "probability": 0.9151 }, { "start": 27728.97, "end": 27730.59, "probability": 0.7528 }, { "start": 27730.81, "end": 27732.29, "probability": 0.9763 }, { "start": 27756.21, "end": 27756.27, "probability": 0.0838 }, { "start": 27768.61, "end": 27770.15, "probability": 0.148 }, { "start": 27773.83, "end": 27780.51, "probability": 0.9652 }, { "start": 27782.53, "end": 27786.19, "probability": 0.9357 }, { "start": 27786.31, "end": 27787.95, "probability": 0.8206 }, { "start": 27788.83, "end": 27796.79, "probability": 0.9863 }, { "start": 27798.17, "end": 27800.37, "probability": 0.7502 }, { "start": 27801.31, "end": 27802.13, "probability": 0.7596 }, { "start": 27803.69, "end": 27805.21, "probability": 0.5555 }, { "start": 27806.07, "end": 27807.01, "probability": 0.9908 }, { "start": 27808.59, "end": 27810.23, "probability": 0.7355 }, { "start": 27813.15, "end": 27818.85, "probability": 0.9871 }, { "start": 27820.65, "end": 27828.03, "probability": 0.9961 }, { "start": 27829.57, "end": 27833.79, "probability": 0.9974 }, { "start": 27833.85, "end": 27837.61, "probability": 0.9702 }, { "start": 27839.91, "end": 27843.71, "probability": 0.9978 }, { "start": 27844.11, "end": 27848.91, "probability": 0.9741 }, { "start": 27849.09, "end": 27853.59, "probability": 0.9805 }, { "start": 27853.65, "end": 27854.17, "probability": 0.5069 }, { "start": 27855.01, "end": 27858.73, "probability": 0.9385 }, { "start": 27859.11, "end": 27860.83, "probability": 0.998 }, { "start": 27862.03, "end": 27863.23, "probability": 0.7836 }, { "start": 27864.09, "end": 27867.23, "probability": 0.9858 }, { "start": 27867.29, "end": 27869.11, "probability": 0.889 }, { "start": 27870.11, "end": 27873.71, "probability": 0.9479 }, { "start": 27873.89, "end": 27875.73, "probability": 0.9669 }, { "start": 27877.01, "end": 27879.69, "probability": 0.9833 }, { "start": 27879.85, "end": 27883.01, "probability": 0.9397 }, { "start": 27883.97, "end": 27886.71, "probability": 0.9423 }, { "start": 27887.81, "end": 27888.49, "probability": 0.9763 }, { "start": 27889.79, "end": 27891.29, "probability": 0.9868 }, { "start": 27891.57, "end": 27893.23, "probability": 0.9666 }, { "start": 27893.61, "end": 27895.67, "probability": 0.7373 }, { "start": 27896.45, "end": 27902.67, "probability": 0.9407 }, { "start": 27902.73, "end": 27903.52, "probability": 0.958 }, { "start": 27905.59, "end": 27905.59, "probability": 0.0893 }, { "start": 27905.59, "end": 27910.09, "probability": 0.973 }, { "start": 27911.01, "end": 27912.23, "probability": 0.9177 }, { "start": 27912.35, "end": 27913.63, "probability": 0.789 }, { "start": 27913.67, "end": 27916.03, "probability": 0.7844 }, { "start": 27917.83, "end": 27920.18, "probability": 0.8986 }, { "start": 27920.67, "end": 27923.51, "probability": 0.2185 }, { "start": 27923.51, "end": 27924.47, "probability": 0.692 }, { "start": 27924.49, "end": 27927.01, "probability": 0.8862 }, { "start": 27929.29, "end": 27932.11, "probability": 0.95 }, { "start": 27932.87, "end": 27935.89, "probability": 0.986 }, { "start": 27936.75, "end": 27937.47, "probability": 0.9745 }, { "start": 27938.83, "end": 27943.45, "probability": 0.6243 }, { "start": 27944.17, "end": 27947.35, "probability": 0.8003 }, { "start": 27947.99, "end": 27949.41, "probability": 0.8958 }, { "start": 27950.25, "end": 27951.41, "probability": 0.8187 }, { "start": 27952.27, "end": 27955.25, "probability": 0.9283 }, { "start": 27955.79, "end": 27957.07, "probability": 0.8254 }, { "start": 27957.67, "end": 27958.99, "probability": 0.9176 }, { "start": 27959.53, "end": 27963.77, "probability": 0.8037 }, { "start": 27964.25, "end": 27964.41, "probability": 0.4083 }, { "start": 27964.75, "end": 27967.23, "probability": 0.9946 }, { "start": 27967.91, "end": 27969.79, "probability": 0.9915 }, { "start": 27970.31, "end": 27973.21, "probability": 0.9673 }, { "start": 27974.21, "end": 27977.17, "probability": 0.7269 }, { "start": 27979.11, "end": 27979.69, "probability": 0.6532 }, { "start": 27981.21, "end": 27982.79, "probability": 0.9204 }, { "start": 27982.99, "end": 27985.33, "probability": 0.8696 }, { "start": 28008.09, "end": 28010.91, "probability": 0.5989 }, { "start": 28011.49, "end": 28012.61, "probability": 0.8867 }, { "start": 28013.35, "end": 28013.91, "probability": 0.8618 }, { "start": 28014.03, "end": 28014.77, "probability": 0.7926 }, { "start": 28014.93, "end": 28018.23, "probability": 0.9529 }, { "start": 28018.77, "end": 28019.51, "probability": 0.9185 }, { "start": 28019.59, "end": 28019.79, "probability": 0.759 }, { "start": 28021.28, "end": 28021.69, "probability": 0.5166 }, { "start": 28022.31, "end": 28024.39, "probability": 0.6806 }, { "start": 28024.65, "end": 28024.65, "probability": 0.3705 }, { "start": 28024.75, "end": 28025.35, "probability": 0.9541 }, { "start": 28025.39, "end": 28026.34, "probability": 0.5024 }, { "start": 28026.63, "end": 28027.09, "probability": 0.3974 }, { "start": 28028.27, "end": 28029.01, "probability": 0.9855 }, { "start": 28030.37, "end": 28032.35, "probability": 0.953 }, { "start": 28033.53, "end": 28034.23, "probability": 0.7477 }, { "start": 28034.83, "end": 28035.51, "probability": 0.6504 }, { "start": 28036.11, "end": 28038.55, "probability": 0.8341 }, { "start": 28039.59, "end": 28042.23, "probability": 0.7344 }, { "start": 28042.71, "end": 28043.77, "probability": 0.4347 }, { "start": 28043.89, "end": 28045.03, "probability": 0.981 }, { "start": 28045.13, "end": 28046.13, "probability": 0.974 }, { "start": 28046.49, "end": 28047.51, "probability": 0.8635 }, { "start": 28048.13, "end": 28052.33, "probability": 0.9854 }, { "start": 28053.43, "end": 28054.57, "probability": 0.752 }, { "start": 28055.63, "end": 28056.12, "probability": 0.5743 }, { "start": 28057.09, "end": 28057.85, "probability": 0.9201 }, { "start": 28058.57, "end": 28059.45, "probability": 0.9358 }, { "start": 28060.49, "end": 28062.67, "probability": 0.9792 }, { "start": 28063.57, "end": 28064.44, "probability": 0.8916 }, { "start": 28065.13, "end": 28070.69, "probability": 0.964 }, { "start": 28071.17, "end": 28072.27, "probability": 0.8276 }, { "start": 28074.25, "end": 28076.89, "probability": 0.9355 }, { "start": 28077.77, "end": 28078.77, "probability": 0.9689 }, { "start": 28079.47, "end": 28080.91, "probability": 0.7315 }, { "start": 28081.13, "end": 28081.13, "probability": 0.1794 }, { "start": 28081.13, "end": 28081.57, "probability": 0.6737 }, { "start": 28081.73, "end": 28082.43, "probability": 0.8795 }, { "start": 28082.83, "end": 28083.45, "probability": 0.9163 }, { "start": 28084.09, "end": 28084.73, "probability": 0.9647 }, { "start": 28085.33, "end": 28086.67, "probability": 0.6681 }, { "start": 28088.11, "end": 28088.77, "probability": 0.8816 }, { "start": 28090.89, "end": 28093.73, "probability": 0.9682 }, { "start": 28094.27, "end": 28095.15, "probability": 0.9393 }, { "start": 28095.63, "end": 28100.15, "probability": 0.9114 }, { "start": 28100.17, "end": 28101.67, "probability": 0.7646 }, { "start": 28101.75, "end": 28104.43, "probability": 0.8702 }, { "start": 28104.51, "end": 28105.33, "probability": 0.8131 }, { "start": 28105.37, "end": 28106.2, "probability": 0.8491 }, { "start": 28106.91, "end": 28108.53, "probability": 0.9942 }, { "start": 28108.85, "end": 28109.59, "probability": 0.9069 }, { "start": 28110.23, "end": 28112.03, "probability": 0.9674 }, { "start": 28113.85, "end": 28114.45, "probability": 0.9272 }, { "start": 28115.95, "end": 28117.27, "probability": 0.9802 }, { "start": 28117.89, "end": 28119.43, "probability": 0.807 }, { "start": 28120.85, "end": 28125.63, "probability": 0.7788 }, { "start": 28126.29, "end": 28127.69, "probability": 0.9846 }, { "start": 28128.61, "end": 28129.81, "probability": 0.8458 }, { "start": 28130.97, "end": 28131.95, "probability": 0.9336 }, { "start": 28132.55, "end": 28133.97, "probability": 0.9907 }, { "start": 28134.75, "end": 28136.75, "probability": 0.9973 }, { "start": 28137.83, "end": 28138.59, "probability": 0.538 }, { "start": 28139.27, "end": 28140.65, "probability": 0.998 }, { "start": 28141.73, "end": 28144.33, "probability": 0.9986 }, { "start": 28144.87, "end": 28145.87, "probability": 0.9923 }, { "start": 28147.59, "end": 28149.99, "probability": 0.719 }, { "start": 28150.69, "end": 28152.65, "probability": 0.9772 }, { "start": 28153.31, "end": 28153.67, "probability": 0.936 }, { "start": 28154.23, "end": 28155.15, "probability": 0.9917 }, { "start": 28156.05, "end": 28157.51, "probability": 0.9934 }, { "start": 28158.61, "end": 28164.45, "probability": 0.9473 }, { "start": 28165.13, "end": 28165.45, "probability": 0.7832 }, { "start": 28166.35, "end": 28166.65, "probability": 0.7884 }, { "start": 28167.81, "end": 28169.23, "probability": 0.944 }, { "start": 28169.61, "end": 28174.69, "probability": 0.9398 }, { "start": 28175.63, "end": 28179.31, "probability": 0.9934 }, { "start": 28180.07, "end": 28183.89, "probability": 0.7463 }, { "start": 28184.95, "end": 28185.93, "probability": 0.8347 }, { "start": 28186.61, "end": 28188.05, "probability": 0.8049 }, { "start": 28188.63, "end": 28190.81, "probability": 0.8459 }, { "start": 28192.21, "end": 28195.89, "probability": 0.9663 }, { "start": 28196.33, "end": 28197.13, "probability": 0.5656 }, { "start": 28197.13, "end": 28197.45, "probability": 0.124 }, { "start": 28197.49, "end": 28198.15, "probability": 0.7699 }, { "start": 28198.35, "end": 28200.01, "probability": 0.9842 }, { "start": 28200.51, "end": 28201.45, "probability": 0.7289 }, { "start": 28201.69, "end": 28201.79, "probability": 0.8269 }, { "start": 28201.95, "end": 28202.63, "probability": 0.9448 }, { "start": 28203.01, "end": 28208.95, "probability": 0.9608 }, { "start": 28209.73, "end": 28216.41, "probability": 0.9893 }, { "start": 28216.47, "end": 28220.99, "probability": 0.8971 }, { "start": 28221.33, "end": 28224.83, "probability": 0.993 }, { "start": 28225.17, "end": 28225.41, "probability": 0.6838 }, { "start": 28225.61, "end": 28226.09, "probability": 0.5587 }, { "start": 28226.23, "end": 28228.14, "probability": 0.8842 }, { "start": 28235.81, "end": 28236.49, "probability": 0.1539 }, { "start": 28239.57, "end": 28240.07, "probability": 0.1327 }, { "start": 28241.36, "end": 28241.43, "probability": 0.2861 }, { "start": 28254.43, "end": 28256.11, "probability": 0.3328 }, { "start": 28257.03, "end": 28258.55, "probability": 0.9901 }, { "start": 28259.85, "end": 28262.87, "probability": 0.9952 }, { "start": 28263.83, "end": 28265.05, "probability": 0.9974 }, { "start": 28266.19, "end": 28273.03, "probability": 0.9809 }, { "start": 28274.17, "end": 28274.87, "probability": 0.5095 }, { "start": 28275.75, "end": 28279.11, "probability": 0.6872 }, { "start": 28280.09, "end": 28281.33, "probability": 0.5616 }, { "start": 28282.15, "end": 28283.21, "probability": 0.5152 }, { "start": 28284.27, "end": 28285.67, "probability": 0.6017 }, { "start": 28286.47, "end": 28287.65, "probability": 0.4226 }, { "start": 28288.67, "end": 28292.19, "probability": 0.7712 }, { "start": 28293.23, "end": 28294.25, "probability": 0.3552 }, { "start": 28295.61, "end": 28297.23, "probability": 0.7533 }, { "start": 28298.17, "end": 28302.07, "probability": 0.9486 }, { "start": 28302.89, "end": 28303.41, "probability": 0.9397 }, { "start": 28304.15, "end": 28305.21, "probability": 0.927 }, { "start": 28306.15, "end": 28307.27, "probability": 0.9317 }, { "start": 28308.23, "end": 28311.77, "probability": 0.7847 }, { "start": 28312.93, "end": 28315.91, "probability": 0.9586 }, { "start": 28317.07, "end": 28320.07, "probability": 0.9414 }, { "start": 28320.89, "end": 28323.03, "probability": 0.9604 }, { "start": 28323.27, "end": 28323.57, "probability": 0.8177 }, { "start": 28324.69, "end": 28325.43, "probability": 0.7225 }, { "start": 28326.55, "end": 28327.21, "probability": 0.9127 }, { "start": 28328.83, "end": 28330.79, "probability": 0.9153 }, { "start": 28364.89, "end": 28366.57, "probability": 0.4041 }, { "start": 28367.85, "end": 28368.63, "probability": 0.4925 }, { "start": 28369.43, "end": 28370.07, "probability": 0.951 }, { "start": 28370.73, "end": 28371.33, "probability": 0.9539 }, { "start": 28371.85, "end": 28375.25, "probability": 0.9256 }, { "start": 28375.87, "end": 28380.83, "probability": 0.72 }, { "start": 28381.51, "end": 28382.77, "probability": 0.2774 }, { "start": 28382.77, "end": 28383.13, "probability": 0.227 }, { "start": 28384.59, "end": 28386.29, "probability": 0.7864 }, { "start": 28386.29, "end": 28391.99, "probability": 0.9513 }, { "start": 28392.59, "end": 28395.23, "probability": 0.8152 }, { "start": 28395.53, "end": 28396.19, "probability": 0.7871 }, { "start": 28396.33, "end": 28399.17, "probability": 0.9752 }, { "start": 28400.15, "end": 28400.95, "probability": 0.7452 }, { "start": 28401.07, "end": 28405.37, "probability": 0.8943 }, { "start": 28405.37, "end": 28409.63, "probability": 0.9282 }, { "start": 28409.93, "end": 28411.72, "probability": 0.9067 }, { "start": 28412.29, "end": 28415.37, "probability": 0.9972 }, { "start": 28415.99, "end": 28417.49, "probability": 0.9191 }, { "start": 28418.15, "end": 28420.15, "probability": 0.8857 }, { "start": 28420.87, "end": 28424.35, "probability": 0.9702 }, { "start": 28425.05, "end": 28426.29, "probability": 0.8636 }, { "start": 28426.61, "end": 28430.41, "probability": 0.9634 }, { "start": 28430.87, "end": 28433.45, "probability": 0.9073 }, { "start": 28433.93, "end": 28437.67, "probability": 0.9376 }, { "start": 28438.73, "end": 28445.13, "probability": 0.8428 }, { "start": 28445.59, "end": 28446.21, "probability": 0.8157 }, { "start": 28446.61, "end": 28448.43, "probability": 0.7347 }, { "start": 28448.61, "end": 28452.75, "probability": 0.8615 }, { "start": 28453.03, "end": 28454.85, "probability": 0.9229 }, { "start": 28455.67, "end": 28458.39, "probability": 0.9771 }, { "start": 28459.13, "end": 28461.53, "probability": 0.908 }, { "start": 28462.17, "end": 28463.81, "probability": 0.8322 }, { "start": 28464.67, "end": 28468.77, "probability": 0.7395 }, { "start": 28469.33, "end": 28471.65, "probability": 0.8317 }, { "start": 28472.51, "end": 28473.85, "probability": 0.9398 }, { "start": 28474.03, "end": 28476.37, "probability": 0.9951 }, { "start": 28477.07, "end": 28478.15, "probability": 0.8677 }, { "start": 28478.23, "end": 28480.13, "probability": 0.967 }, { "start": 28480.23, "end": 28481.13, "probability": 0.9678 }, { "start": 28481.25, "end": 28482.63, "probability": 0.9597 }, { "start": 28483.25, "end": 28488.15, "probability": 0.9939 }, { "start": 28488.69, "end": 28489.41, "probability": 0.0985 }, { "start": 28489.51, "end": 28490.33, "probability": 0.8066 }, { "start": 28490.59, "end": 28492.81, "probability": 0.8925 }, { "start": 28492.99, "end": 28496.23, "probability": 0.9456 }, { "start": 28496.27, "end": 28497.45, "probability": 0.951 }, { "start": 28497.93, "end": 28500.03, "probability": 0.9955 }, { "start": 28500.53, "end": 28501.33, "probability": 0.9895 }, { "start": 28502.39, "end": 28504.25, "probability": 0.7557 }, { "start": 28504.33, "end": 28505.13, "probability": 0.7201 }, { "start": 28505.17, "end": 28506.17, "probability": 0.6927 }, { "start": 28506.23, "end": 28508.37, "probability": 0.9827 }, { "start": 28509.49, "end": 28513.59, "probability": 0.8021 }, { "start": 28514.45, "end": 28516.05, "probability": 0.9387 }, { "start": 28516.85, "end": 28519.39, "probability": 0.9912 }, { "start": 28519.87, "end": 28520.33, "probability": 0.8813 }, { "start": 28520.43, "end": 28520.81, "probability": 0.3157 }, { "start": 28521.51, "end": 28525.13, "probability": 0.9396 }, { "start": 28525.77, "end": 28528.32, "probability": 0.9539 }, { "start": 28528.49, "end": 28531.69, "probability": 0.9993 }, { "start": 28532.33, "end": 28536.11, "probability": 0.9463 }, { "start": 28536.53, "end": 28539.29, "probability": 0.9058 }, { "start": 28540.13, "end": 28543.99, "probability": 0.9536 }, { "start": 28544.57, "end": 28548.39, "probability": 0.9788 }, { "start": 28548.85, "end": 28553.77, "probability": 0.9968 }, { "start": 28554.49, "end": 28557.87, "probability": 0.998 }, { "start": 28558.21, "end": 28558.41, "probability": 0.3578 }, { "start": 28558.45, "end": 28562.63, "probability": 0.9833 }, { "start": 28562.71, "end": 28567.39, "probability": 0.5359 }, { "start": 28568.55, "end": 28571.17, "probability": 0.9 }, { "start": 28571.97, "end": 28573.37, "probability": 0.9927 }, { "start": 28574.37, "end": 28574.97, "probability": 0.9585 }, { "start": 28576.71, "end": 28578.36, "probability": 0.7728 }, { "start": 28578.81, "end": 28580.15, "probability": 0.6815 }, { "start": 28580.33, "end": 28584.31, "probability": 0.9396 }, { "start": 28584.99, "end": 28588.15, "probability": 0.9718 }, { "start": 28588.2, "end": 28591.99, "probability": 0.9482 }, { "start": 28592.51, "end": 28595.21, "probability": 0.9299 }, { "start": 28595.29, "end": 28599.13, "probability": 0.9905 }, { "start": 28599.75, "end": 28602.17, "probability": 0.9208 }, { "start": 28602.25, "end": 28607.3, "probability": 0.9966 }, { "start": 28607.95, "end": 28612.33, "probability": 0.929 }, { "start": 28612.33, "end": 28612.81, "probability": 0.7047 }, { "start": 28613.17, "end": 28613.65, "probability": 0.6852 }, { "start": 28616.29, "end": 28618.87, "probability": 0.7292 }, { "start": 28628.22, "end": 28628.91, "probability": 0.2708 }, { "start": 28643.15, "end": 28643.61, "probability": 0.1079 }, { "start": 28645.41, "end": 28657.23, "probability": 0.9526 }, { "start": 28657.75, "end": 28660.75, "probability": 0.3813 }, { "start": 28661.81, "end": 28664.55, "probability": 0.8768 }, { "start": 28666.27, "end": 28667.92, "probability": 0.7519 }, { "start": 28669.71, "end": 28672.79, "probability": 0.7331 }, { "start": 28674.33, "end": 28681.03, "probability": 0.868 }, { "start": 28681.95, "end": 28685.09, "probability": 0.8982 }, { "start": 28686.47, "end": 28688.03, "probability": 0.6396 }, { "start": 28689.79, "end": 28692.01, "probability": 0.9842 }, { "start": 28692.99, "end": 28694.21, "probability": 0.5451 }, { "start": 28694.51, "end": 28695.59, "probability": 0.6957 }, { "start": 28695.79, "end": 28696.17, "probability": 0.5962 }, { "start": 28696.33, "end": 28696.89, "probability": 0.4982 }, { "start": 28696.99, "end": 28697.37, "probability": 0.7564 }, { "start": 28698.53, "end": 28700.97, "probability": 0.9981 }, { "start": 28701.91, "end": 28702.79, "probability": 0.8622 }, { "start": 28704.55, "end": 28708.13, "probability": 0.9956 }, { "start": 28709.45, "end": 28711.25, "probability": 0.9917 }, { "start": 28713.21, "end": 28714.45, "probability": 0.969 }, { "start": 28715.69, "end": 28716.49, "probability": 0.6133 }, { "start": 28717.71, "end": 28719.07, "probability": 0.4587 }, { "start": 28720.21, "end": 28721.21, "probability": 0.9801 }, { "start": 28722.69, "end": 28724.67, "probability": 0.8604 }, { "start": 28726.21, "end": 28727.29, "probability": 0.7423 }, { "start": 28728.03, "end": 28731.47, "probability": 0.9624 }, { "start": 28731.77, "end": 28735.21, "probability": 0.9152 }, { "start": 28736.21, "end": 28741.99, "probability": 0.9743 }, { "start": 28742.13, "end": 28743.09, "probability": 0.7336 }, { "start": 28744.09, "end": 28746.55, "probability": 0.9667 }, { "start": 28747.99, "end": 28751.85, "probability": 0.9968 }, { "start": 28752.97, "end": 28757.69, "probability": 0.9147 }, { "start": 28758.99, "end": 28759.87, "probability": 0.9032 }, { "start": 28760.09, "end": 28760.85, "probability": 0.641 }, { "start": 28761.05, "end": 28763.55, "probability": 0.9749 }, { "start": 28764.39, "end": 28769.31, "probability": 0.9689 }, { "start": 28770.33, "end": 28772.61, "probability": 0.7626 }, { "start": 28773.43, "end": 28775.39, "probability": 0.9531 }, { "start": 28776.43, "end": 28780.13, "probability": 0.8611 }, { "start": 28780.31, "end": 28780.71, "probability": 0.7859 }, { "start": 28780.87, "end": 28783.53, "probability": 0.974 }, { "start": 28784.45, "end": 28788.35, "probability": 0.98 }, { "start": 28788.48, "end": 28790.02, "probability": 0.9512 }, { "start": 28791.09, "end": 28794.37, "probability": 0.7542 }, { "start": 28795.19, "end": 28797.77, "probability": 0.5995 }, { "start": 28798.93, "end": 28799.83, "probability": 0.8644 }, { "start": 28799.95, "end": 28801.55, "probability": 0.9946 }, { "start": 28801.69, "end": 28802.32, "probability": 0.866 }, { "start": 28803.39, "end": 28807.57, "probability": 0.9392 }, { "start": 28808.25, "end": 28813.79, "probability": 0.9757 }, { "start": 28815.67, "end": 28817.09, "probability": 0.3291 }, { "start": 28817.71, "end": 28820.09, "probability": 0.8965 }, { "start": 28820.27, "end": 28824.97, "probability": 0.8997 }, { "start": 28825.43, "end": 28827.15, "probability": 0.9863 }, { "start": 28828.57, "end": 28829.09, "probability": 0.5688 }, { "start": 28829.19, "end": 28830.71, "probability": 0.8403 }, { "start": 28842.35, "end": 28844.31, "probability": 0.1361 }, { "start": 28844.95, "end": 28845.67, "probability": 0.1589 }, { "start": 28845.67, "end": 28846.07, "probability": 0.0613 }, { "start": 28846.49, "end": 28846.49, "probability": 0.1355 }, { "start": 28863.45, "end": 28865.33, "probability": 0.5816 }, { "start": 28866.09, "end": 28866.79, "probability": 0.8665 }, { "start": 28868.41, "end": 28870.17, "probability": 0.9556 }, { "start": 28871.33, "end": 28874.85, "probability": 0.8847 }, { "start": 28875.47, "end": 28878.15, "probability": 0.8978 }, { "start": 28879.13, "end": 28880.19, "probability": 0.9952 }, { "start": 28880.91, "end": 28883.83, "probability": 0.9844 }, { "start": 28883.91, "end": 28887.49, "probability": 0.9413 }, { "start": 28888.41, "end": 28891.61, "probability": 0.9937 }, { "start": 28892.65, "end": 28893.83, "probability": 0.9415 }, { "start": 28894.79, "end": 28899.59, "probability": 0.9977 }, { "start": 28900.61, "end": 28901.33, "probability": 0.7565 }, { "start": 28902.07, "end": 28903.31, "probability": 0.9947 }, { "start": 28903.83, "end": 28904.89, "probability": 0.9967 }, { "start": 28906.05, "end": 28906.73, "probability": 0.8172 }, { "start": 28907.63, "end": 28910.07, "probability": 0.9954 }, { "start": 28910.65, "end": 28912.55, "probability": 0.0768 }, { "start": 28913.37, "end": 28914.17, "probability": 0.9254 }, { "start": 28914.55, "end": 28915.77, "probability": 0.2038 }, { "start": 28918.56, "end": 28922.21, "probability": 0.8955 }, { "start": 28922.97, "end": 28924.45, "probability": 0.8715 }, { "start": 28925.77, "end": 28932.13, "probability": 0.8798 }, { "start": 28933.21, "end": 28937.19, "probability": 0.9815 }, { "start": 28937.77, "end": 28941.45, "probability": 0.9929 }, { "start": 28941.52, "end": 28945.43, "probability": 0.9906 }, { "start": 28946.79, "end": 28951.87, "probability": 0.9956 }, { "start": 28952.57, "end": 28955.49, "probability": 0.986 }, { "start": 28955.89, "end": 28959.39, "probability": 0.9937 }, { "start": 28959.83, "end": 28960.47, "probability": 0.9277 }, { "start": 28961.49, "end": 28964.09, "probability": 0.9968 }, { "start": 28965.25, "end": 28967.21, "probability": 0.9834 }, { "start": 28968.05, "end": 28971.43, "probability": 0.9779 }, { "start": 28973.13, "end": 28975.79, "probability": 0.9954 }, { "start": 28976.75, "end": 28978.97, "probability": 0.8134 }, { "start": 28980.21, "end": 28984.89, "probability": 0.5693 }, { "start": 28985.89, "end": 28988.81, "probability": 0.7928 }, { "start": 28989.47, "end": 28993.89, "probability": 0.9299 }, { "start": 28994.39, "end": 28996.91, "probability": 0.9816 }, { "start": 28997.37, "end": 28998.99, "probability": 0.99 }, { "start": 28999.35, "end": 29001.29, "probability": 0.8659 }, { "start": 29002.43, "end": 29004.15, "probability": 0.9771 }, { "start": 29004.71, "end": 29006.63, "probability": 0.7439 }, { "start": 29007.85, "end": 29010.35, "probability": 0.8777 }, { "start": 29011.41, "end": 29013.65, "probability": 0.9937 }, { "start": 29014.95, "end": 29015.79, "probability": 0.7807 }, { "start": 29017.03, "end": 29018.07, "probability": 0.981 }, { "start": 29019.01, "end": 29019.79, "probability": 0.7601 }, { "start": 29021.07, "end": 29022.29, "probability": 0.8641 }, { "start": 29023.03, "end": 29023.67, "probability": 0.8504 }, { "start": 29024.37, "end": 29025.01, "probability": 0.8257 }, { "start": 29026.89, "end": 29030.09, "probability": 0.9271 }, { "start": 29030.73, "end": 29031.87, "probability": 0.7279 }, { "start": 29032.53, "end": 29033.43, "probability": 0.9197 }, { "start": 29034.47, "end": 29035.19, "probability": 0.958 }, { "start": 29036.11, "end": 29039.39, "probability": 0.956 }, { "start": 29040.17, "end": 29041.77, "probability": 0.6954 }, { "start": 29042.95, "end": 29044.23, "probability": 0.8467 }, { "start": 29044.81, "end": 29045.67, "probability": 0.6731 }, { "start": 29046.45, "end": 29048.43, "probability": 0.9879 }, { "start": 29049.11, "end": 29050.25, "probability": 0.995 }, { "start": 29050.25, "end": 29050.57, "probability": 0.7366 }, { "start": 29051.13, "end": 29052.33, "probability": 0.9792 }, { "start": 29053.77, "end": 29055.81, "probability": 0.9253 }, { "start": 29061.33, "end": 29063.53, "probability": 0.1615 }, { "start": 29063.97, "end": 29065.15, "probability": 0.1732 }, { "start": 29065.15, "end": 29065.41, "probability": 0.1884 }, { "start": 29065.43, "end": 29065.65, "probability": 0.0649 }, { "start": 29078.71, "end": 29078.71, "probability": 0.118 }, { "start": 29078.71, "end": 29078.73, "probability": 0.1315 }, { "start": 29099.75, "end": 29099.95, "probability": 0.1396 }, { "start": 29103.23, "end": 29103.23, "probability": 0.0013 }, { "start": 29103.75, "end": 29104.05, "probability": 0.9149 }, { "start": 29105.39, "end": 29107.51, "probability": 0.7308 }, { "start": 29110.25, "end": 29112.45, "probability": 0.4461 }, { "start": 29112.79, "end": 29117.21, "probability": 0.9683 }, { "start": 29119.17, "end": 29125.77, "probability": 0.9851 }, { "start": 29126.83, "end": 29131.97, "probability": 0.8825 }, { "start": 29132.85, "end": 29134.01, "probability": 0.8265 }, { "start": 29135.17, "end": 29136.41, "probability": 0.9125 }, { "start": 29137.21, "end": 29140.57, "probability": 0.9878 }, { "start": 29140.75, "end": 29144.11, "probability": 0.9013 }, { "start": 29144.11, "end": 29146.95, "probability": 0.7102 }, { "start": 29147.01, "end": 29147.83, "probability": 0.6212 }, { "start": 29148.35, "end": 29149.51, "probability": 0.6854 }, { "start": 29150.51, "end": 29152.13, "probability": 0.6406 }, { "start": 29153.17, "end": 29156.13, "probability": 0.8341 }, { "start": 29156.87, "end": 29158.55, "probability": 0.7834 }, { "start": 29160.07, "end": 29160.45, "probability": 0.2425 }, { "start": 29161.01, "end": 29161.95, "probability": 0.937 }, { "start": 29163.05, "end": 29163.75, "probability": 0.0342 }, { "start": 29164.17, "end": 29165.65, "probability": 0.9536 }, { "start": 29166.29, "end": 29170.03, "probability": 0.9587 }, { "start": 29171.75, "end": 29174.87, "probability": 0.8958 }, { "start": 29175.55, "end": 29176.09, "probability": 0.9449 }, { "start": 29177.21, "end": 29184.51, "probability": 0.9775 }, { "start": 29185.05, "end": 29188.09, "probability": 0.6701 }, { "start": 29188.63, "end": 29190.05, "probability": 0.6687 }, { "start": 29190.63, "end": 29191.53, "probability": 0.7441 }, { "start": 29191.57, "end": 29192.45, "probability": 0.6941 }, { "start": 29192.77, "end": 29193.33, "probability": 0.7767 }, { "start": 29193.89, "end": 29194.99, "probability": 0.8245 }, { "start": 29196.43, "end": 29197.79, "probability": 0.8603 }, { "start": 29197.97, "end": 29198.75, "probability": 0.611 }, { "start": 29198.83, "end": 29199.47, "probability": 0.4977 }, { "start": 29200.07, "end": 29202.39, "probability": 0.5379 }, { "start": 29202.39, "end": 29205.71, "probability": 0.6673 }, { "start": 29205.75, "end": 29206.89, "probability": 0.8003 }, { "start": 29208.17, "end": 29212.87, "probability": 0.9635 }, { "start": 29213.55, "end": 29213.95, "probability": 0.6706 }, { "start": 29214.01, "end": 29214.55, "probability": 0.8171 }, { "start": 29214.69, "end": 29215.43, "probability": 0.927 }, { "start": 29215.51, "end": 29215.94, "probability": 0.9404 }, { "start": 29217.01, "end": 29220.35, "probability": 0.9308 }, { "start": 29220.93, "end": 29222.27, "probability": 0.8118 }, { "start": 29222.73, "end": 29225.29, "probability": 0.9805 }, { "start": 29226.43, "end": 29226.69, "probability": 0.0 }, { "start": 29228.03, "end": 29228.47, "probability": 0.0581 }, { "start": 29228.47, "end": 29229.15, "probability": 0.0928 }, { "start": 29229.21, "end": 29229.67, "probability": 0.5928 }, { "start": 29230.15, "end": 29235.67, "probability": 0.9606 }, { "start": 29236.21, "end": 29237.57, "probability": 0.7803 }, { "start": 29238.21, "end": 29239.61, "probability": 0.875 }, { "start": 29240.21, "end": 29241.32, "probability": 0.8787 }, { "start": 29242.11, "end": 29245.83, "probability": 0.9391 }, { "start": 29246.97, "end": 29248.91, "probability": 0.9225 }, { "start": 29249.17, "end": 29250.97, "probability": 0.7667 }, { "start": 29252.31, "end": 29257.31, "probability": 0.8986 }, { "start": 29258.25, "end": 29259.45, "probability": 0.8857 }, { "start": 29261.73, "end": 29265.17, "probability": 0.9131 }, { "start": 29265.17, "end": 29266.25, "probability": 0.671 }, { "start": 29266.51, "end": 29268.61, "probability": 0.4436 }, { "start": 29268.73, "end": 29269.33, "probability": 0.431 }, { "start": 29269.69, "end": 29272.97, "probability": 0.9794 }, { "start": 29273.27, "end": 29275.11, "probability": 0.9927 }, { "start": 29275.55, "end": 29275.89, "probability": 0.7389 }, { "start": 29276.69, "end": 29277.03, "probability": 0.6583 }, { "start": 29279.53, "end": 29281.39, "probability": 0.954 }, { "start": 29313.47, "end": 29314.85, "probability": 0.5745 }, { "start": 29317.73, "end": 29321.33, "probability": 0.6428 }, { "start": 29322.73, "end": 29325.01, "probability": 0.8419 }, { "start": 29325.89, "end": 29327.47, "probability": 0.9766 }, { "start": 29328.67, "end": 29331.25, "probability": 0.9823 }, { "start": 29332.87, "end": 29333.69, "probability": 0.8231 }, { "start": 29334.81, "end": 29338.65, "probability": 0.9985 }, { "start": 29340.15, "end": 29342.05, "probability": 0.9271 }, { "start": 29343.09, "end": 29345.09, "probability": 0.9906 }, { "start": 29345.25, "end": 29346.19, "probability": 0.9472 }, { "start": 29346.29, "end": 29348.97, "probability": 0.9889 }, { "start": 29350.19, "end": 29350.71, "probability": 0.9913 }, { "start": 29355.37, "end": 29357.71, "probability": 0.7827 }, { "start": 29358.29, "end": 29361.33, "probability": 0.8302 }, { "start": 29362.55, "end": 29364.61, "probability": 0.9714 }, { "start": 29365.67, "end": 29367.03, "probability": 0.9706 }, { "start": 29367.09, "end": 29367.52, "probability": 0.7257 }, { "start": 29367.99, "end": 29370.81, "probability": 0.971 }, { "start": 29371.41, "end": 29371.79, "probability": 0.7936 }, { "start": 29373.55, "end": 29374.27, "probability": 0.6337 }, { "start": 29376.83, "end": 29378.73, "probability": 0.6673 }, { "start": 29378.97, "end": 29380.35, "probability": 0.9757 }, { "start": 29396.09, "end": 29396.15, "probability": 0.2575 }, { "start": 29396.21, "end": 29396.93, "probability": 0.6048 }, { "start": 29406.77, "end": 29411.01, "probability": 0.9899 }, { "start": 29412.11, "end": 29420.31, "probability": 0.8109 }, { "start": 29420.95, "end": 29423.73, "probability": 0.9421 }, { "start": 29424.69, "end": 29426.69, "probability": 0.9912 }, { "start": 29426.87, "end": 29432.39, "probability": 0.9764 }, { "start": 29433.57, "end": 29436.63, "probability": 0.9927 }, { "start": 29437.13, "end": 29438.8, "probability": 0.9899 }, { "start": 29439.61, "end": 29445.39, "probability": 0.9985 }, { "start": 29445.67, "end": 29449.97, "probability": 0.9595 }, { "start": 29450.57, "end": 29452.57, "probability": 0.9224 }, { "start": 29453.49, "end": 29457.17, "probability": 0.9896 }, { "start": 29457.95, "end": 29459.73, "probability": 0.8705 }, { "start": 29459.89, "end": 29460.87, "probability": 0.8515 }, { "start": 29461.01, "end": 29462.87, "probability": 0.9624 }, { "start": 29464.27, "end": 29468.37, "probability": 0.991 }, { "start": 29468.37, "end": 29473.35, "probability": 0.9954 }, { "start": 29474.35, "end": 29478.69, "probability": 0.9976 }, { "start": 29479.61, "end": 29483.11, "probability": 0.9652 }, { "start": 29483.71, "end": 29486.13, "probability": 0.998 }, { "start": 29486.73, "end": 29492.55, "probability": 0.9894 }, { "start": 29493.17, "end": 29496.75, "probability": 0.9915 }, { "start": 29497.35, "end": 29500.85, "probability": 0.999 }, { "start": 29501.47, "end": 29502.37, "probability": 0.8258 }, { "start": 29502.59, "end": 29505.37, "probability": 0.9785 }, { "start": 29505.53, "end": 29507.63, "probability": 0.9875 }, { "start": 29508.33, "end": 29511.13, "probability": 0.9973 }, { "start": 29511.13, "end": 29516.57, "probability": 0.9971 }, { "start": 29517.77, "end": 29522.07, "probability": 0.9965 }, { "start": 29522.95, "end": 29527.69, "probability": 0.9192 }, { "start": 29528.03, "end": 29529.33, "probability": 0.9949 }, { "start": 29530.47, "end": 29532.61, "probability": 0.995 }, { "start": 29534.07, "end": 29543.59, "probability": 0.9931 }, { "start": 29544.55, "end": 29552.39, "probability": 0.9585 }, { "start": 29552.91, "end": 29556.59, "probability": 0.9941 }, { "start": 29557.65, "end": 29563.37, "probability": 0.9834 }, { "start": 29564.37, "end": 29565.23, "probability": 0.7362 }, { "start": 29565.33, "end": 29568.29, "probability": 0.9791 }, { "start": 29568.47, "end": 29568.95, "probability": 0.8868 }, { "start": 29570.05, "end": 29576.99, "probability": 0.9838 }, { "start": 29577.73, "end": 29579.85, "probability": 0.5686 }, { "start": 29580.53, "end": 29583.55, "probability": 0.9738 }, { "start": 29584.13, "end": 29585.63, "probability": 0.8896 }, { "start": 29586.13, "end": 29589.25, "probability": 0.9963 }, { "start": 29589.79, "end": 29593.89, "probability": 0.9949 }, { "start": 29593.89, "end": 29598.19, "probability": 0.991 }, { "start": 29598.61, "end": 29600.01, "probability": 0.975 }, { "start": 29600.53, "end": 29608.43, "probability": 0.994 }, { "start": 29608.77, "end": 29612.49, "probability": 0.9222 }, { "start": 29612.63, "end": 29615.85, "probability": 0.9849 }, { "start": 29615.95, "end": 29617.67, "probability": 0.9289 }, { "start": 29618.73, "end": 29620.97, "probability": 0.6233 }, { "start": 29621.33, "end": 29625.87, "probability": 0.999 }, { "start": 29626.05, "end": 29626.27, "probability": 0.726 }, { "start": 29626.39, "end": 29629.59, "probability": 0.984 }, { "start": 29630.13, "end": 29631.41, "probability": 0.93 }, { "start": 29631.59, "end": 29632.35, "probability": 0.8353 }, { "start": 29632.79, "end": 29634.15, "probability": 0.968 }, { "start": 29634.55, "end": 29641.19, "probability": 0.9927 }, { "start": 29641.19, "end": 29645.43, "probability": 0.9844 }, { "start": 29645.95, "end": 29647.05, "probability": 0.9956 }, { "start": 29647.57, "end": 29648.07, "probability": 0.8884 }, { "start": 29648.77, "end": 29649.35, "probability": 0.773 }, { "start": 29651.59, "end": 29655.75, "probability": 0.7253 }, { "start": 29656.47, "end": 29659.37, "probability": 0.2686 }, { "start": 29659.49, "end": 29660.13, "probability": 0.6511 }, { "start": 29660.97, "end": 29662.07, "probability": 0.9885 }, { "start": 29662.31, "end": 29662.61, "probability": 0.7188 }, { "start": 29662.69, "end": 29663.65, "probability": 0.9956 }, { "start": 29663.85, "end": 29664.01, "probability": 0.8858 }, { "start": 29664.31, "end": 29665.51, "probability": 0.9915 }, { "start": 29665.59, "end": 29665.83, "probability": 0.9195 }, { "start": 29665.97, "end": 29666.55, "probability": 0.7318 }, { "start": 29667.17, "end": 29667.89, "probability": 0.3937 }, { "start": 29668.69, "end": 29669.65, "probability": 0.8506 }, { "start": 29669.65, "end": 29671.21, "probability": 0.271 }, { "start": 29671.53, "end": 29672.24, "probability": 0.7091 }, { "start": 29675.01, "end": 29677.05, "probability": 0.7646 }, { "start": 29680.05, "end": 29682.59, "probability": 0.9544 }, { "start": 29683.39, "end": 29683.73, "probability": 0.4874 }, { "start": 29685.43, "end": 29686.15, "probability": 0.1133 }, { "start": 29687.25, "end": 29689.61, "probability": 0.022 }, { "start": 29690.12, "end": 29692.15, "probability": 0.9507 }, { "start": 29692.97, "end": 29695.01, "probability": 0.8941 }, { "start": 29701.62, "end": 29703.71, "probability": 0.5719 }, { "start": 29707.65, "end": 29708.37, "probability": 0.0355 }, { "start": 29709.69, "end": 29710.51, "probability": 0.4541 }, { "start": 29710.63, "end": 29712.49, "probability": 0.4681 }, { "start": 29714.65, "end": 29715.19, "probability": 0.6082 }, { "start": 29715.19, "end": 29715.53, "probability": 0.3253 }, { "start": 29715.67, "end": 29716.27, "probability": 0.2354 }, { "start": 29716.83, "end": 29723.31, "probability": 0.1699 }, { "start": 29725.17, "end": 29726.35, "probability": 0.0005 }, { "start": 29727.17, "end": 29728.97, "probability": 0.0311 }, { "start": 29733.73, "end": 29733.93, "probability": 0.2713 }, { "start": 29735.99, "end": 29737.45, "probability": 0.8939 }, { "start": 29738.69, "end": 29739.69, "probability": 0.9712 }, { "start": 29739.77, "end": 29744.95, "probability": 0.9979 }, { "start": 29744.95, "end": 29749.73, "probability": 0.9886 }, { "start": 29750.99, "end": 29751.41, "probability": 0.7487 }, { "start": 29751.71, "end": 29753.59, "probability": 0.5418 }, { "start": 29753.83, "end": 29754.81, "probability": 0.9915 }, { "start": 29754.87, "end": 29755.99, "probability": 0.9039 }, { "start": 29756.89, "end": 29759.19, "probability": 0.7378 }, { "start": 29759.43, "end": 29761.13, "probability": 0.7279 }, { "start": 29762.33, "end": 29764.23, "probability": 0.9906 }, { "start": 29766.73, "end": 29769.24, "probability": 0.9883 }, { "start": 29771.81, "end": 29772.33, "probability": 0.6817 }, { "start": 29773.67, "end": 29775.37, "probability": 0.7101 }, { "start": 29776.39, "end": 29778.09, "probability": 0.9076 }, { "start": 29779.15, "end": 29783.27, "probability": 0.9805 }, { "start": 29784.19, "end": 29785.11, "probability": 0.9985 }, { "start": 29785.17, "end": 29786.23, "probability": 0.8612 }, { "start": 29786.59, "end": 29788.14, "probability": 0.7695 }, { "start": 29788.97, "end": 29793.17, "probability": 0.749 }, { "start": 29794.37, "end": 29796.03, "probability": 0.5938 }, { "start": 29796.49, "end": 29796.59, "probability": 0.5731 }, { "start": 29797.65, "end": 29800.69, "probability": 0.8389 }, { "start": 29801.67, "end": 29803.03, "probability": 0.9233 }, { "start": 29803.57, "end": 29807.29, "probability": 0.9867 }, { "start": 29807.99, "end": 29810.45, "probability": 0.9702 }, { "start": 29810.53, "end": 29810.87, "probability": 0.458 }, { "start": 29810.91, "end": 29811.21, "probability": 0.3683 }, { "start": 29811.61, "end": 29812.17, "probability": 0.8558 }, { "start": 29812.25, "end": 29812.49, "probability": 0.472 }, { "start": 29813.73, "end": 29813.87, "probability": 0.4611 }, { "start": 29814.05, "end": 29815.29, "probability": 0.5729 }, { "start": 29815.29, "end": 29817.39, "probability": 0.3844 }, { "start": 29817.39, "end": 29819.19, "probability": 0.3849 }, { "start": 29819.51, "end": 29821.21, "probability": 0.8868 }, { "start": 29821.79, "end": 29824.47, "probability": 0.7638 }, { "start": 29826.79, "end": 29829.09, "probability": 0.8777 }, { "start": 29829.97, "end": 29834.09, "probability": 0.8558 }, { "start": 29834.41, "end": 29835.19, "probability": 0.835 }, { "start": 29836.17, "end": 29836.91, "probability": 0.6342 }, { "start": 29837.03, "end": 29837.23, "probability": 0.7495 }, { "start": 29839.03, "end": 29840.63, "probability": 0.7024 }, { "start": 29842.01, "end": 29843.23, "probability": 0.8107 }, { "start": 29843.39, "end": 29844.09, "probability": 0.8504 }, { "start": 29844.67, "end": 29848.69, "probability": 0.9701 }, { "start": 29849.63, "end": 29851.85, "probability": 0.9427 }, { "start": 29852.03, "end": 29853.75, "probability": 0.436 }, { "start": 29854.01, "end": 29855.01, "probability": 0.7815 }, { "start": 29855.33, "end": 29856.85, "probability": 0.876 }, { "start": 29857.57, "end": 29861.59, "probability": 0.9955 }, { "start": 29862.63, "end": 29863.26, "probability": 0.8476 }, { "start": 29864.55, "end": 29865.07, "probability": 0.9609 }, { "start": 29866.03, "end": 29867.81, "probability": 0.9977 }, { "start": 29868.65, "end": 29869.1, "probability": 0.8085 }, { "start": 29870.67, "end": 29871.35, "probability": 0.9978 }, { "start": 29873.21, "end": 29875.61, "probability": 0.9937 }, { "start": 29876.13, "end": 29878.89, "probability": 0.9979 }, { "start": 29879.67, "end": 29882.49, "probability": 0.9937 }, { "start": 29882.53, "end": 29883.25, "probability": 0.8878 }, { "start": 29884.27, "end": 29885.43, "probability": 0.9962 }, { "start": 29888.81, "end": 29890.11, "probability": 0.8895 }, { "start": 29890.51, "end": 29892.57, "probability": 0.9897 }, { "start": 29892.69, "end": 29898.65, "probability": 0.9917 }, { "start": 29899.77, "end": 29901.43, "probability": 0.9534 }, { "start": 29901.95, "end": 29905.91, "probability": 0.9172 }, { "start": 29906.99, "end": 29908.15, "probability": 0.7479 }, { "start": 29909.41, "end": 29912.21, "probability": 0.9807 }, { "start": 29912.21, "end": 29914.11, "probability": 0.9947 }, { "start": 29915.07, "end": 29916.79, "probability": 0.9124 }, { "start": 29916.83, "end": 29918.39, "probability": 0.9572 }, { "start": 29919.01, "end": 29919.89, "probability": 0.6785 }, { "start": 29919.99, "end": 29920.07, "probability": 0.6079 }, { "start": 29920.07, "end": 29920.55, "probability": 0.7986 }, { "start": 29921.29, "end": 29921.59, "probability": 0.5712 }, { "start": 29921.63, "end": 29922.33, "probability": 0.9832 }, { "start": 29922.39, "end": 29922.89, "probability": 0.9783 }, { "start": 29922.93, "end": 29923.95, "probability": 0.9894 }, { "start": 29924.03, "end": 29924.61, "probability": 0.9259 }, { "start": 29925.79, "end": 29926.39, "probability": 0.6861 }, { "start": 29926.63, "end": 29927.91, "probability": 0.9934 }, { "start": 29928.35, "end": 29929.17, "probability": 0.7972 }, { "start": 29929.43, "end": 29931.61, "probability": 0.6139 }, { "start": 29931.81, "end": 29933.33, "probability": 0.6013 }, { "start": 29933.45, "end": 29933.55, "probability": 0.5376 }, { "start": 29933.67, "end": 29935.01, "probability": 0.7872 }, { "start": 29935.13, "end": 29935.27, "probability": 0.8483 }, { "start": 29935.39, "end": 29936.35, "probability": 0.9712 }, { "start": 29936.61, "end": 29936.77, "probability": 0.8313 }, { "start": 29936.95, "end": 29937.87, "probability": 0.979 }, { "start": 29937.91, "end": 29938.21, "probability": 0.6668 }, { "start": 29938.83, "end": 29940.51, "probability": 0.8141 }, { "start": 29941.03, "end": 29942.13, "probability": 0.6636 }, { "start": 29942.83, "end": 29944.21, "probability": 0.9163 }, { "start": 29944.53, "end": 29947.05, "probability": 0.9473 }, { "start": 29952.99, "end": 29953.31, "probability": 0.4834 }, { "start": 29993.33, "end": 29994.11, "probability": 0.5257 }, { "start": 29997.01, "end": 29998.31, "probability": 0.8159 }, { "start": 29998.35, "end": 29998.65, "probability": 0.8447 }, { "start": 29998.89, "end": 30003.37, "probability": 0.9912 }, { "start": 30004.69, "end": 30007.73, "probability": 0.9735 }, { "start": 30009.11, "end": 30014.25, "probability": 0.9796 }, { "start": 30014.33, "end": 30015.27, "probability": 0.9183 }, { "start": 30016.81, "end": 30021.87, "probability": 0.9949 }, { "start": 30021.87, "end": 30026.25, "probability": 0.9924 }, { "start": 30026.41, "end": 30027.79, "probability": 0.8979 }, { "start": 30030.99, "end": 30032.59, "probability": 0.8967 }, { "start": 30032.81, "end": 30034.29, "probability": 0.6091 }, { "start": 30034.71, "end": 30035.49, "probability": 0.5728 }, { "start": 30036.87, "end": 30040.23, "probability": 0.9905 }, { "start": 30041.75, "end": 30045.57, "probability": 0.9946 }, { "start": 30046.27, "end": 30051.79, "probability": 0.946 }, { "start": 30051.87, "end": 30059.15, "probability": 0.9856 }, { "start": 30059.35, "end": 30064.33, "probability": 0.9912 }, { "start": 30065.39, "end": 30067.75, "probability": 0.9919 }, { "start": 30068.37, "end": 30069.71, "probability": 0.6536 }, { "start": 30070.01, "end": 30071.25, "probability": 0.9968 }, { "start": 30071.99, "end": 30074.61, "probability": 0.7837 }, { "start": 30075.23, "end": 30078.77, "probability": 0.9944 }, { "start": 30079.93, "end": 30081.37, "probability": 0.9915 }, { "start": 30081.55, "end": 30082.63, "probability": 0.6351 }, { "start": 30083.03, "end": 30088.95, "probability": 0.9564 }, { "start": 30090.33, "end": 30095.43, "probability": 0.7532 }, { "start": 30098.13, "end": 30101.09, "probability": 0.7816 }, { "start": 30101.97, "end": 30102.55, "probability": 0.7695 }, { "start": 30104.01, "end": 30105.69, "probability": 0.9889 }, { "start": 30107.35, "end": 30113.17, "probability": 0.9933 }, { "start": 30113.33, "end": 30115.53, "probability": 0.9829 }, { "start": 30116.57, "end": 30119.21, "probability": 0.9977 }, { "start": 30119.37, "end": 30121.39, "probability": 0.8653 }, { "start": 30121.51, "end": 30123.33, "probability": 0.9794 }, { "start": 30123.47, "end": 30127.95, "probability": 0.9945 }, { "start": 30128.79, "end": 30130.83, "probability": 0.9966 }, { "start": 30131.07, "end": 30135.33, "probability": 0.9973 }, { "start": 30135.65, "end": 30136.99, "probability": 0.6963 }, { "start": 30138.91, "end": 30142.29, "probability": 0.9873 }, { "start": 30142.97, "end": 30144.85, "probability": 0.8688 }, { "start": 30146.37, "end": 30147.29, "probability": 0.8639 }, { "start": 30148.23, "end": 30151.61, "probability": 0.9515 }, { "start": 30152.79, "end": 30154.05, "probability": 0.9822 }, { "start": 30155.01, "end": 30155.83, "probability": 0.969 }, { "start": 30157.21, "end": 30158.03, "probability": 0.9866 }, { "start": 30159.71, "end": 30160.65, "probability": 0.7931 }, { "start": 30162.49, "end": 30165.59, "probability": 0.9937 }, { "start": 30165.81, "end": 30166.53, "probability": 0.7252 }, { "start": 30166.79, "end": 30170.05, "probability": 0.9823 }, { "start": 30170.21, "end": 30171.43, "probability": 0.8368 }, { "start": 30172.63, "end": 30173.71, "probability": 0.9732 }, { "start": 30175.38, "end": 30181.89, "probability": 0.9201 }, { "start": 30182.01, "end": 30187.77, "probability": 0.9956 }, { "start": 30188.51, "end": 30190.03, "probability": 0.9945 }, { "start": 30190.61, "end": 30191.31, "probability": 0.9801 }, { "start": 30192.11, "end": 30193.65, "probability": 0.9801 }, { "start": 30195.77, "end": 30198.15, "probability": 0.8252 }, { "start": 30199.05, "end": 30201.47, "probability": 0.9803 }, { "start": 30202.23, "end": 30202.45, "probability": 0.8804 }, { "start": 30206.53, "end": 30206.53, "probability": 0.5231 }, { "start": 30206.53, "end": 30208.39, "probability": 0.6699 }, { "start": 30208.51, "end": 30210.25, "probability": 0.7901 }, { "start": 30210.25, "end": 30212.65, "probability": 0.3021 }, { "start": 30213.59, "end": 30215.21, "probability": 0.3421 }, { "start": 30217.42, "end": 30218.92, "probability": 0.1438 }, { "start": 30246.21, "end": 30247.97, "probability": 0.7883 }, { "start": 30249.13, "end": 30255.45, "probability": 0.9702 }, { "start": 30255.59, "end": 30260.61, "probability": 0.9246 }, { "start": 30262.47, "end": 30263.73, "probability": 0.6909 }, { "start": 30264.31, "end": 30265.53, "probability": 0.9629 }, { "start": 30266.67, "end": 30266.83, "probability": 0.811 }, { "start": 30269.67, "end": 30272.63, "probability": 0.9326 }, { "start": 30274.29, "end": 30277.19, "probability": 0.9512 }, { "start": 30277.93, "end": 30279.71, "probability": 0.485 }, { "start": 30280.07, "end": 30283.37, "probability": 0.9606 }, { "start": 30284.77, "end": 30288.15, "probability": 0.0209 }, { "start": 30288.59, "end": 30288.81, "probability": 0.7841 }, { "start": 30289.13, "end": 30291.71, "probability": 0.9163 }, { "start": 30292.83, "end": 30301.43, "probability": 0.9516 }, { "start": 30301.82, "end": 30303.81, "probability": 0.8641 }, { "start": 30304.61, "end": 30311.07, "probability": 0.9653 }, { "start": 30312.07, "end": 30314.03, "probability": 0.8148 }, { "start": 30314.71, "end": 30315.67, "probability": 0.7528 }, { "start": 30316.65, "end": 30318.01, "probability": 0.8032 }, { "start": 30319.07, "end": 30322.45, "probability": 0.9546 }, { "start": 30323.19, "end": 30326.15, "probability": 0.8438 }, { "start": 30326.75, "end": 30328.17, "probability": 0.9381 }, { "start": 30329.61, "end": 30332.56, "probability": 0.957 }, { "start": 30333.33, "end": 30334.75, "probability": 0.9643 }, { "start": 30335.07, "end": 30335.99, "probability": 0.9377 }, { "start": 30336.69, "end": 30339.25, "probability": 0.9792 }, { "start": 30339.93, "end": 30341.57, "probability": 0.9614 }, { "start": 30341.95, "end": 30342.41, "probability": 0.7946 }, { "start": 30342.43, "end": 30342.75, "probability": 0.8146 }, { "start": 30342.89, "end": 30347.61, "probability": 0.9504 }, { "start": 30348.61, "end": 30349.65, "probability": 0.9929 }, { "start": 30350.47, "end": 30354.61, "probability": 0.9742 }, { "start": 30355.73, "end": 30357.49, "probability": 0.9129 }, { "start": 30358.51, "end": 30364.01, "probability": 0.838 }, { "start": 30364.59, "end": 30366.45, "probability": 0.9478 }, { "start": 30367.09, "end": 30371.15, "probability": 0.9938 }, { "start": 30372.11, "end": 30375.93, "probability": 0.9663 }, { "start": 30376.75, "end": 30377.45, "probability": 0.5362 }, { "start": 30378.05, "end": 30381.15, "probability": 0.9855 }, { "start": 30382.07, "end": 30384.95, "probability": 0.7062 }, { "start": 30385.03, "end": 30385.77, "probability": 0.9473 }, { "start": 30385.97, "end": 30391.53, "probability": 0.9054 }, { "start": 30392.17, "end": 30395.33, "probability": 0.9458 }, { "start": 30396.49, "end": 30399.61, "probability": 0.7988 }, { "start": 30399.79, "end": 30401.61, "probability": 0.7841 }, { "start": 30402.17, "end": 30403.53, "probability": 0.931 }, { "start": 30404.31, "end": 30404.97, "probability": 0.7458 }, { "start": 30406.65, "end": 30407.81, "probability": 0.6989 }, { "start": 30409.69, "end": 30411.57, "probability": 0.8085 }, { "start": 30411.79, "end": 30413.59, "probability": 0.9154 }, { "start": 30424.79, "end": 30424.89, "probability": 0.1465 }, { "start": 30424.93, "end": 30425.35, "probability": 0.2567 }, { "start": 30425.35, "end": 30426.31, "probability": 0.1244 }, { "start": 30426.31, "end": 30427.37, "probability": 0.0542 }, { "start": 30435.13, "end": 30439.23, "probability": 0.0742 }, { "start": 30451.71, "end": 30453.25, "probability": 0.074 }, { "start": 30476.45, "end": 30476.63, "probability": 0.1395 }, { "start": 30476.63, "end": 30476.63, "probability": 0.3481 }, { "start": 30476.63, "end": 30479.49, "probability": 0.9634 }, { "start": 30480.39, "end": 30480.91, "probability": 0.8781 }, { "start": 30482.47, "end": 30484.67, "probability": 0.8477 }, { "start": 30485.59, "end": 30487.25, "probability": 0.9219 }, { "start": 30487.83, "end": 30488.45, "probability": 0.6905 }, { "start": 30490.15, "end": 30493.29, "probability": 0.998 }, { "start": 30493.41, "end": 30495.63, "probability": 0.9497 }, { "start": 30496.71, "end": 30501.05, "probability": 0.9771 }, { "start": 30503.45, "end": 30504.39, "probability": 0.9826 }, { "start": 30505.97, "end": 30506.91, "probability": 0.9932 }, { "start": 30508.01, "end": 30511.25, "probability": 0.9956 }, { "start": 30511.35, "end": 30512.28, "probability": 0.9275 }, { "start": 30514.25, "end": 30516.89, "probability": 0.9554 }, { "start": 30517.37, "end": 30517.63, "probability": 0.5406 }, { "start": 30517.69, "end": 30519.14, "probability": 0.998 }, { "start": 30519.35, "end": 30520.89, "probability": 0.998 }, { "start": 30520.97, "end": 30522.18, "probability": 0.9095 }, { "start": 30522.73, "end": 30524.99, "probability": 0.9918 }, { "start": 30525.79, "end": 30527.63, "probability": 0.9765 }, { "start": 30529.15, "end": 30531.93, "probability": 0.9179 }, { "start": 30532.09, "end": 30532.49, "probability": 0.8494 }, { "start": 30532.59, "end": 30534.23, "probability": 0.562 }, { "start": 30534.81, "end": 30535.59, "probability": 0.6109 }, { "start": 30536.91, "end": 30537.81, "probability": 0.9406 }, { "start": 30538.73, "end": 30540.87, "probability": 0.9036 }, { "start": 30542.13, "end": 30543.65, "probability": 0.9318 }, { "start": 30543.69, "end": 30545.01, "probability": 0.9287 }, { "start": 30547.49, "end": 30548.21, "probability": 0.0306 }, { "start": 30549.11, "end": 30550.47, "probability": 0.9595 }, { "start": 30550.77, "end": 30550.89, "probability": 0.018 }, { "start": 30551.23, "end": 30553.83, "probability": 0.9996 }, { "start": 30554.27, "end": 30557.39, "probability": 0.9055 }, { "start": 30558.47, "end": 30559.47, "probability": 0.8149 }, { "start": 30560.47, "end": 30561.75, "probability": 0.9949 }, { "start": 30562.35, "end": 30563.65, "probability": 0.9409 }, { "start": 30563.99, "end": 30567.83, "probability": 0.9992 }, { "start": 30569.85, "end": 30570.83, "probability": 0.9222 }, { "start": 30571.01, "end": 30572.25, "probability": 0.9039 }, { "start": 30572.33, "end": 30573.17, "probability": 0.9604 }, { "start": 30573.75, "end": 30574.31, "probability": 0.9761 }, { "start": 30574.39, "end": 30574.77, "probability": 0.7371 }, { "start": 30574.85, "end": 30575.23, "probability": 0.3971 }, { "start": 30575.25, "end": 30575.77, "probability": 0.9421 }, { "start": 30576.37, "end": 30577.15, "probability": 0.8633 }, { "start": 30577.87, "end": 30580.25, "probability": 0.9989 }, { "start": 30580.81, "end": 30582.87, "probability": 0.8109 }, { "start": 30582.95, "end": 30583.99, "probability": 0.8582 }, { "start": 30584.83, "end": 30585.79, "probability": 0.6727 }, { "start": 30586.77, "end": 30589.47, "probability": 0.8806 }, { "start": 30590.13, "end": 30591.57, "probability": 0.6526 }, { "start": 30591.57, "end": 30591.89, "probability": 0.8031 }, { "start": 30591.97, "end": 30593.03, "probability": 0.8738 }, { "start": 30593.11, "end": 30593.67, "probability": 0.8985 }, { "start": 30594.03, "end": 30595.21, "probability": 0.9897 }, { "start": 30595.69, "end": 30596.79, "probability": 0.967 }, { "start": 30597.65, "end": 30598.77, "probability": 0.9746 }, { "start": 30599.31, "end": 30600.43, "probability": 0.9253 }, { "start": 30601.07, "end": 30603.17, "probability": 0.9832 }, { "start": 30603.79, "end": 30603.81, "probability": 0.0289 }, { "start": 30603.97, "end": 30604.89, "probability": 0.8914 }, { "start": 30605.03, "end": 30608.69, "probability": 0.9973 }, { "start": 30609.21, "end": 30611.27, "probability": 0.829 }, { "start": 30611.73, "end": 30612.47, "probability": 0.9668 }, { "start": 30612.51, "end": 30614.25, "probability": 0.9801 }, { "start": 30614.77, "end": 30618.57, "probability": 0.9773 }, { "start": 30618.99, "end": 30619.99, "probability": 0.9411 }, { "start": 30620.95, "end": 30621.89, "probability": 0.9244 }, { "start": 30621.93, "end": 30622.41, "probability": 0.6278 }, { "start": 30623.01, "end": 30623.64, "probability": 0.6238 }, { "start": 30624.43, "end": 30624.95, "probability": 0.9456 }, { "start": 30625.15, "end": 30625.93, "probability": 0.7768 }, { "start": 30626.43, "end": 30629.09, "probability": 0.9181 }, { "start": 30629.71, "end": 30631.87, "probability": 0.9944 }, { "start": 30632.31, "end": 30633.81, "probability": 0.9927 }, { "start": 30634.27, "end": 30635.43, "probability": 0.6355 }, { "start": 30635.55, "end": 30638.51, "probability": 0.9796 }, { "start": 30638.83, "end": 30639.33, "probability": 0.725 }, { "start": 30640.05, "end": 30642.47, "probability": 0.9544 }, { "start": 30643.03, "end": 30643.33, "probability": 0.5825 }, { "start": 30645.29, "end": 30646.01, "probability": 0.63 }, { "start": 30646.21, "end": 30647.49, "probability": 0.936 }, { "start": 30648.17, "end": 30648.67, "probability": 0.4767 }, { "start": 30648.93, "end": 30650.11, "probability": 0.8812 }, { "start": 30651.73, "end": 30652.79, "probability": 0.7369 }, { "start": 30673.37, "end": 30676.09, "probability": 0.6653 }, { "start": 30676.65, "end": 30678.7, "probability": 0.9183 }, { "start": 30680.15, "end": 30683.23, "probability": 0.9672 }, { "start": 30684.53, "end": 30690.97, "probability": 0.9888 }, { "start": 30692.4, "end": 30694.95, "probability": 0.9799 }, { "start": 30695.61, "end": 30701.93, "probability": 0.9956 }, { "start": 30702.79, "end": 30705.83, "probability": 0.9287 }, { "start": 30706.77, "end": 30713.73, "probability": 0.9635 }, { "start": 30715.03, "end": 30717.53, "probability": 0.9973 }, { "start": 30717.73, "end": 30720.01, "probability": 0.999 }, { "start": 30721.23, "end": 30724.91, "probability": 0.9924 }, { "start": 30724.91, "end": 30732.09, "probability": 0.9889 }, { "start": 30733.35, "end": 30737.95, "probability": 0.9028 }, { "start": 30738.99, "end": 30742.47, "probability": 0.9771 }, { "start": 30743.41, "end": 30748.82, "probability": 0.9906 }, { "start": 30749.03, "end": 30752.13, "probability": 0.9194 }, { "start": 30752.27, "end": 30755.11, "probability": 0.7717 }, { "start": 30755.77, "end": 30761.29, "probability": 0.9652 }, { "start": 30762.15, "end": 30763.63, "probability": 0.8642 }, { "start": 30763.81, "end": 30764.99, "probability": 0.6657 }, { "start": 30765.09, "end": 30770.47, "probability": 0.99 }, { "start": 30771.27, "end": 30773.81, "probability": 0.9963 }, { "start": 30777.07, "end": 30786.67, "probability": 0.9968 }, { "start": 30786.67, "end": 30793.79, "probability": 0.9995 }, { "start": 30795.83, "end": 30799.29, "probability": 0.9973 }, { "start": 30800.55, "end": 30802.07, "probability": 0.4996 }, { "start": 30802.31, "end": 30807.85, "probability": 0.9845 }, { "start": 30808.23, "end": 30810.43, "probability": 0.872 }, { "start": 30810.61, "end": 30813.17, "probability": 0.9948 }, { "start": 30814.39, "end": 30818.91, "probability": 0.9942 }, { "start": 30818.91, "end": 30824.09, "probability": 0.9922 }, { "start": 30824.09, "end": 30828.34, "probability": 0.8843 }, { "start": 30829.31, "end": 30832.93, "probability": 0.9949 }, { "start": 30833.23, "end": 30836.99, "probability": 0.9667 }, { "start": 30837.57, "end": 30838.83, "probability": 0.9696 }, { "start": 30839.37, "end": 30841.71, "probability": 0.91 }, { "start": 30841.89, "end": 30846.77, "probability": 0.9408 }, { "start": 30846.89, "end": 30849.03, "probability": 0.9687 }, { "start": 30850.03, "end": 30851.81, "probability": 0.9854 }, { "start": 30852.01, "end": 30852.89, "probability": 0.8325 }, { "start": 30853.09, "end": 30853.89, "probability": 0.5962 }, { "start": 30854.63, "end": 30855.29, "probability": 0.804 }, { "start": 30856.03, "end": 30857.49, "probability": 0.9877 }, { "start": 30857.67, "end": 30860.97, "probability": 0.9741 }, { "start": 30861.77, "end": 30863.55, "probability": 0.9395 }, { "start": 30863.59, "end": 30867.22, "probability": 0.9868 }, { "start": 30868.39, "end": 30870.45, "probability": 0.9585 }, { "start": 30870.67, "end": 30873.01, "probability": 0.9003 }, { "start": 30873.11, "end": 30875.47, "probability": 0.998 }, { "start": 30876.11, "end": 30878.27, "probability": 0.9963 }, { "start": 30878.89, "end": 30883.47, "probability": 0.9964 }, { "start": 30883.67, "end": 30886.03, "probability": 0.9929 }, { "start": 30886.61, "end": 30891.89, "probability": 0.9963 }, { "start": 30892.33, "end": 30892.57, "probability": 0.711 }, { "start": 30894.05, "end": 30894.43, "probability": 0.5633 }, { "start": 30894.73, "end": 30896.85, "probability": 0.6966 }, { "start": 30896.89, "end": 30899.83, "probability": 0.9268 }, { "start": 30899.95, "end": 30900.13, "probability": 0.6038 }, { "start": 30901.63, "end": 30903.03, "probability": 0.8525 }, { "start": 30903.27, "end": 30903.63, "probability": 0.5935 }, { "start": 30904.67, "end": 30906.93, "probability": 0.1592 }, { "start": 30908.69, "end": 30908.79, "probability": 0.0426 }, { "start": 30908.79, "end": 30909.63, "probability": 0.6505 }, { "start": 30910.29, "end": 30912.11, "probability": 0.8996 }, { "start": 30912.91, "end": 30913.39, "probability": 0.7797 }, { "start": 30913.39, "end": 30914.47, "probability": 0.7099 }, { "start": 30914.59, "end": 30915.79, "probability": 0.6131 }, { "start": 30915.79, "end": 30916.37, "probability": 0.8679 }, { "start": 30916.83, "end": 30917.19, "probability": 0.9198 }, { "start": 30918.11, "end": 30919.55, "probability": 0.9935 }, { "start": 30920.83, "end": 30921.29, "probability": 0.4498 }, { "start": 30921.99, "end": 30923.17, "probability": 0.7795 }, { "start": 30923.71, "end": 30925.13, "probability": 0.9429 }, { "start": 30927.1, "end": 30929.07, "probability": 0.8484 }, { "start": 30929.21, "end": 30929.51, "probability": 0.6061 }, { "start": 30929.57, "end": 30930.41, "probability": 0.7498 }, { "start": 30930.61, "end": 30931.67, "probability": 0.3409 }, { "start": 30931.71, "end": 30932.91, "probability": 0.1974 }, { "start": 30933.91, "end": 30936.05, "probability": 0.8188 }, { "start": 30936.05, "end": 30936.79, "probability": 0.4605 }, { "start": 30939.23, "end": 30940.15, "probability": 0.6844 }, { "start": 30940.71, "end": 30941.85, "probability": 0.7734 }, { "start": 30943.37, "end": 30944.57, "probability": 0.8436 }, { "start": 30945.02, "end": 30946.32, "probability": 0.9873 }, { "start": 30946.69, "end": 30951.15, "probability": 0.9762 }, { "start": 30953.45, "end": 30954.58, "probability": 0.9946 }, { "start": 30955.47, "end": 30956.97, "probability": 0.4619 }, { "start": 30957.07, "end": 30960.03, "probability": 0.9866 }, { "start": 30960.13, "end": 30962.91, "probability": 0.9794 }, { "start": 30963.51, "end": 30964.57, "probability": 0.9689 }, { "start": 30964.71, "end": 30965.43, "probability": 0.9741 }, { "start": 30967.57, "end": 30969.49, "probability": 0.8553 }, { "start": 30970.35, "end": 30971.61, "probability": 0.9941 }, { "start": 30972.37, "end": 30976.85, "probability": 0.9852 }, { "start": 30977.55, "end": 30980.59, "probability": 0.7179 }, { "start": 30980.59, "end": 30983.53, "probability": 0.9931 }, { "start": 30983.53, "end": 30984.55, "probability": 0.6619 }, { "start": 30985.75, "end": 30986.59, "probability": 0.0822 }, { "start": 30986.91, "end": 30987.67, "probability": 0.6621 }, { "start": 30987.73, "end": 30988.87, "probability": 0.8211 }, { "start": 30989.32, "end": 30991.85, "probability": 0.8844 }, { "start": 30992.03, "end": 30993.65, "probability": 0.8525 }, { "start": 30993.79, "end": 30994.51, "probability": 0.599 }, { "start": 30994.65, "end": 30995.39, "probability": 0.8213 }, { "start": 30996.05, "end": 30998.19, "probability": 0.688 }, { "start": 31004.37, "end": 31004.57, "probability": 0.4159 }, { "start": 31004.59, "end": 31005.97, "probability": 0.6853 }, { "start": 31006.03, "end": 31006.31, "probability": 0.7489 }, { "start": 31006.65, "end": 31008.33, "probability": 0.9627 }, { "start": 31008.41, "end": 31008.99, "probability": 0.7133 }, { "start": 31009.09, "end": 31009.65, "probability": 0.8717 }, { "start": 31009.79, "end": 31011.14, "probability": 0.993 }, { "start": 31013.05, "end": 31015.31, "probability": 0.8658 }, { "start": 31016.01, "end": 31017.99, "probability": 0.9556 }, { "start": 31018.47, "end": 31019.27, "probability": 0.807 }, { "start": 31019.37, "end": 31020.39, "probability": 0.8994 }, { "start": 31020.49, "end": 31021.53, "probability": 0.7953 }, { "start": 31022.59, "end": 31024.87, "probability": 0.9668 }, { "start": 31024.99, "end": 31026.38, "probability": 0.1215 }, { "start": 31027.27, "end": 31028.55, "probability": 0.3473 }, { "start": 31028.91, "end": 31029.49, "probability": 0.2022 }, { "start": 31029.49, "end": 31030.85, "probability": 0.7273 }, { "start": 31031.23, "end": 31032.29, "probability": 0.8127 }, { "start": 31032.43, "end": 31032.89, "probability": 0.6749 }, { "start": 31032.99, "end": 31035.49, "probability": 0.993 }, { "start": 31035.63, "end": 31037.97, "probability": 0.7794 }, { "start": 31038.91, "end": 31039.91, "probability": 0.9474 }, { "start": 31039.97, "end": 31041.73, "probability": 0.9927 }, { "start": 31042.45, "end": 31043.45, "probability": 0.9204 }, { "start": 31044.27, "end": 31046.77, "probability": 0.9932 }, { "start": 31046.77, "end": 31048.93, "probability": 0.9986 }, { "start": 31049.93, "end": 31051.83, "probability": 0.944 }, { "start": 31052.67, "end": 31053.71, "probability": 0.8438 }, { "start": 31054.39, "end": 31060.29, "probability": 0.9764 }, { "start": 31061.15, "end": 31062.79, "probability": 0.9692 }, { "start": 31062.85, "end": 31063.19, "probability": 0.5943 }, { "start": 31063.29, "end": 31063.91, "probability": 0.6887 }, { "start": 31063.99, "end": 31065.56, "probability": 0.8233 }, { "start": 31066.03, "end": 31066.75, "probability": 0.5515 }, { "start": 31066.79, "end": 31067.33, "probability": 0.7621 }, { "start": 31067.39, "end": 31068.03, "probability": 0.9301 }, { "start": 31068.67, "end": 31069.47, "probability": 0.7444 }, { "start": 31069.55, "end": 31071.21, "probability": 0.9355 }, { "start": 31071.37, "end": 31072.31, "probability": 0.9683 }, { "start": 31073.55, "end": 31075.15, "probability": 0.9033 }, { "start": 31076.93, "end": 31081.61, "probability": 0.9974 }, { "start": 31081.77, "end": 31082.49, "probability": 0.7092 }, { "start": 31082.99, "end": 31087.75, "probability": 0.9701 }, { "start": 31088.35, "end": 31090.49, "probability": 0.9926 }, { "start": 31091.01, "end": 31094.51, "probability": 0.956 }, { "start": 31095.07, "end": 31096.33, "probability": 0.7862 }, { "start": 31096.77, "end": 31103.19, "probability": 0.9247 }, { "start": 31103.69, "end": 31105.41, "probability": 0.9518 }, { "start": 31105.73, "end": 31108.71, "probability": 0.9908 }, { "start": 31109.07, "end": 31109.93, "probability": 0.9015 }, { "start": 31110.75, "end": 31113.01, "probability": 0.7852 }, { "start": 31113.33, "end": 31115.01, "probability": 0.8548 }, { "start": 31115.35, "end": 31116.57, "probability": 0.5891 }, { "start": 31116.67, "end": 31118.75, "probability": 0.9242 }, { "start": 31119.29, "end": 31121.67, "probability": 0.8593 }, { "start": 31121.93, "end": 31122.81, "probability": 0.9919 }, { "start": 31122.91, "end": 31123.99, "probability": 0.6938 }, { "start": 31124.75, "end": 31129.69, "probability": 0.9886 }, { "start": 31129.85, "end": 31132.17, "probability": 0.9808 }, { "start": 31132.23, "end": 31132.67, "probability": 0.8441 }, { "start": 31135.77, "end": 31136.27, "probability": 0.6457 }, { "start": 31136.45, "end": 31138.35, "probability": 0.735 }, { "start": 31138.51, "end": 31139.76, "probability": 0.2965 }, { "start": 31141.21, "end": 31143.18, "probability": 0.42 }, { "start": 31143.27, "end": 31143.71, "probability": 0.4318 }, { "start": 31143.85, "end": 31144.61, "probability": 0.4921 }, { "start": 31145.17, "end": 31145.37, "probability": 0.8043 }, { "start": 31146.25, "end": 31147.83, "probability": 0.7793 }, { "start": 31148.03, "end": 31148.71, "probability": 0.8328 }, { "start": 31148.75, "end": 31149.47, "probability": 0.9116 }, { "start": 31149.55, "end": 31152.51, "probability": 0.2844 }, { "start": 31153.29, "end": 31153.79, "probability": 0.0687 }, { "start": 31153.91, "end": 31153.91, "probability": 0.114 }, { "start": 31153.95, "end": 31155.09, "probability": 0.7733 }, { "start": 31155.79, "end": 31157.75, "probability": 0.797 }, { "start": 31157.97, "end": 31158.15, "probability": 0.6669 }, { "start": 31159.29, "end": 31160.05, "probability": 0.3741 }, { "start": 31160.19, "end": 31163.39, "probability": 0.6656 }, { "start": 31164.63, "end": 31166.17, "probability": 0.7017 }, { "start": 31166.81, "end": 31168.35, "probability": 0.4235 }, { "start": 31168.43, "end": 31169.09, "probability": 0.3511 }, { "start": 31169.27, "end": 31170.37, "probability": 0.8331 }, { "start": 31171.25, "end": 31172.15, "probability": 0.8616 }, { "start": 31173.69, "end": 31178.73, "probability": 0.9646 }, { "start": 31179.47, "end": 31180.54, "probability": 0.9854 }, { "start": 31180.59, "end": 31184.75, "probability": 0.9993 }, { "start": 31184.75, "end": 31187.33, "probability": 0.9997 }, { "start": 31189.01, "end": 31190.93, "probability": 0.9997 }, { "start": 31191.63, "end": 31193.19, "probability": 0.9993 }, { "start": 31194.75, "end": 31197.33, "probability": 0.9971 }, { "start": 31198.59, "end": 31200.83, "probability": 0.9916 }, { "start": 31201.45, "end": 31202.87, "probability": 0.9994 }, { "start": 31204.09, "end": 31206.19, "probability": 0.9017 }, { "start": 31207.49, "end": 31211.17, "probability": 0.9649 }, { "start": 31211.25, "end": 31214.83, "probability": 0.9561 }, { "start": 31214.97, "end": 31218.05, "probability": 0.9236 }, { "start": 31218.33, "end": 31218.89, "probability": 0.523 }, { "start": 31219.03, "end": 31220.31, "probability": 0.7959 }, { "start": 31221.35, "end": 31227.51, "probability": 0.9972 }, { "start": 31228.53, "end": 31233.11, "probability": 0.9819 }, { "start": 31234.33, "end": 31236.27, "probability": 0.9956 }, { "start": 31236.81, "end": 31237.83, "probability": 0.9788 }, { "start": 31237.85, "end": 31242.93, "probability": 0.8793 }, { "start": 31243.55, "end": 31246.85, "probability": 0.9862 }, { "start": 31247.67, "end": 31250.73, "probability": 0.9764 }, { "start": 31250.73, "end": 31254.77, "probability": 0.9993 }, { "start": 31255.33, "end": 31259.07, "probability": 0.9759 }, { "start": 31259.19, "end": 31262.23, "probability": 0.0246 }, { "start": 31262.23, "end": 31263.15, "probability": 0.3066 }, { "start": 31263.43, "end": 31266.15, "probability": 0.975 }, { "start": 31266.97, "end": 31268.07, "probability": 0.9824 }, { "start": 31268.89, "end": 31272.25, "probability": 0.9915 }, { "start": 31272.25, "end": 31275.06, "probability": 0.9922 }, { "start": 31275.91, "end": 31280.53, "probability": 0.9771 }, { "start": 31280.53, "end": 31286.63, "probability": 0.9224 }, { "start": 31288.01, "end": 31292.75, "probability": 0.9963 }, { "start": 31293.83, "end": 31297.97, "probability": 0.9934 }, { "start": 31298.35, "end": 31298.81, "probability": 0.682 }, { "start": 31298.97, "end": 31301.33, "probability": 0.7041 }, { "start": 31301.47, "end": 31304.99, "probability": 0.9924 }, { "start": 31307.07, "end": 31311.45, "probability": 0.998 }, { "start": 31312.01, "end": 31313.47, "probability": 0.9919 }, { "start": 31314.15, "end": 31318.89, "probability": 0.9766 }, { "start": 31319.35, "end": 31322.75, "probability": 0.9919 }, { "start": 31323.31, "end": 31324.53, "probability": 0.7262 }, { "start": 31324.97, "end": 31326.02, "probability": 0.7827 }, { "start": 31326.73, "end": 31332.89, "probability": 0.9827 }, { "start": 31333.85, "end": 31336.45, "probability": 0.9958 }, { "start": 31336.61, "end": 31336.71, "probability": 0.8472 }, { "start": 31337.13, "end": 31337.83, "probability": 0.9199 }, { "start": 31337.99, "end": 31338.51, "probability": 0.4799 }, { "start": 31339.81, "end": 31343.85, "probability": 0.9741 }, { "start": 31343.93, "end": 31346.51, "probability": 0.969 }, { "start": 31346.51, "end": 31350.47, "probability": 0.9764 }, { "start": 31351.09, "end": 31354.01, "probability": 0.999 }, { "start": 31354.01, "end": 31356.65, "probability": 0.9914 }, { "start": 31356.93, "end": 31357.71, "probability": 0.7715 }, { "start": 31357.91, "end": 31358.89, "probability": 0.998 }, { "start": 31359.29, "end": 31360.29, "probability": 0.9143 }, { "start": 31360.45, "end": 31365.49, "probability": 0.9765 }, { "start": 31366.05, "end": 31367.55, "probability": 0.9897 }, { "start": 31367.71, "end": 31369.53, "probability": 0.9544 }, { "start": 31370.15, "end": 31371.87, "probability": 0.9382 }, { "start": 31372.77, "end": 31376.07, "probability": 0.9102 }, { "start": 31376.83, "end": 31378.13, "probability": 0.9458 }, { "start": 31378.71, "end": 31380.11, "probability": 0.9353 }, { "start": 31380.17, "end": 31383.25, "probability": 0.9 }, { "start": 31384.03, "end": 31388.13, "probability": 0.9841 }, { "start": 31388.69, "end": 31391.63, "probability": 0.9833 }, { "start": 31392.33, "end": 31392.57, "probability": 0.2393 }, { "start": 31392.57, "end": 31394.17, "probability": 0.8794 }, { "start": 31395.13, "end": 31399.71, "probability": 0.9045 }, { "start": 31400.31, "end": 31404.03, "probability": 0.9474 }, { "start": 31404.41, "end": 31406.23, "probability": 0.5955 }, { "start": 31406.89, "end": 31411.74, "probability": 0.9822 }, { "start": 31413.33, "end": 31415.99, "probability": 0.9979 }, { "start": 31416.67, "end": 31420.73, "probability": 0.9988 }, { "start": 31421.27, "end": 31422.31, "probability": 0.0071 }, { "start": 31422.87, "end": 31427.53, "probability": 0.998 }, { "start": 31428.35, "end": 31428.55, "probability": 0.6483 }, { "start": 31428.75, "end": 31429.63, "probability": 0.6927 }, { "start": 31429.65, "end": 31430.51, "probability": 0.9648 }, { "start": 31430.57, "end": 31434.63, "probability": 0.9862 }, { "start": 31435.41, "end": 31437.05, "probability": 0.8325 }, { "start": 31437.31, "end": 31441.57, "probability": 0.992 }, { "start": 31441.61, "end": 31442.67, "probability": 0.821 }, { "start": 31443.09, "end": 31443.83, "probability": 0.7624 }, { "start": 31444.33, "end": 31445.27, "probability": 0.8704 }, { "start": 31445.79, "end": 31450.19, "probability": 0.9429 }, { "start": 31450.39, "end": 31451.47, "probability": 0.6959 }, { "start": 31451.53, "end": 31452.05, "probability": 0.5368 }, { "start": 31452.11, "end": 31454.61, "probability": 0.7725 }, { "start": 31457.09, "end": 31458.57, "probability": 0.9695 }, { "start": 31485.03, "end": 31487.19, "probability": 0.6895 }, { "start": 31489.27, "end": 31490.85, "probability": 0.6167 }, { "start": 31491.93, "end": 31494.71, "probability": 0.9746 }, { "start": 31495.57, "end": 31500.55, "probability": 0.9966 }, { "start": 31501.81, "end": 31502.59, "probability": 0.9514 }, { "start": 31503.11, "end": 31509.71, "probability": 0.9871 }, { "start": 31509.71, "end": 31516.69, "probability": 0.9946 }, { "start": 31517.17, "end": 31518.15, "probability": 0.7818 }, { "start": 31518.83, "end": 31520.65, "probability": 0.8308 }, { "start": 31521.87, "end": 31525.01, "probability": 0.9002 }, { "start": 31525.15, "end": 31533.19, "probability": 0.9815 }, { "start": 31535.15, "end": 31537.87, "probability": 0.9962 }, { "start": 31538.51, "end": 31541.53, "probability": 0.5566 }, { "start": 31542.19, "end": 31547.63, "probability": 0.9001 }, { "start": 31548.79, "end": 31553.73, "probability": 0.987 }, { "start": 31554.87, "end": 31562.81, "probability": 0.8201 }, { "start": 31563.89, "end": 31565.73, "probability": 0.7617 }, { "start": 31566.59, "end": 31571.39, "probability": 0.9961 }, { "start": 31571.39, "end": 31575.99, "probability": 0.9899 }, { "start": 31576.25, "end": 31576.25, "probability": 0.0045 }, { "start": 31576.25, "end": 31576.25, "probability": 0.1479 }, { "start": 31576.25, "end": 31580.25, "probability": 0.9595 }, { "start": 31581.09, "end": 31585.71, "probability": 0.9956 }, { "start": 31585.71, "end": 31589.99, "probability": 0.9937 }, { "start": 31590.83, "end": 31592.01, "probability": 0.7988 }, { "start": 31592.95, "end": 31596.33, "probability": 0.8646 }, { "start": 31597.19, "end": 31600.17, "probability": 0.9912 }, { "start": 31600.95, "end": 31603.42, "probability": 0.9914 }, { "start": 31604.05, "end": 31611.65, "probability": 0.975 }, { "start": 31612.31, "end": 31615.91, "probability": 0.7551 }, { "start": 31616.03, "end": 31618.47, "probability": 0.9884 }, { "start": 31619.09, "end": 31620.67, "probability": 0.7954 }, { "start": 31621.27, "end": 31623.81, "probability": 0.9894 }, { "start": 31624.17, "end": 31626.43, "probability": 0.9477 }, { "start": 31627.37, "end": 31632.91, "probability": 0.9934 }, { "start": 31633.85, "end": 31633.87, "probability": 0.0236 }, { "start": 31633.87, "end": 31633.87, "probability": 0.0095 }, { "start": 31633.87, "end": 31637.25, "probability": 0.8699 }, { "start": 31637.55, "end": 31639.43, "probability": 0.9824 }, { "start": 31640.19, "end": 31644.89, "probability": 0.9962 }, { "start": 31645.13, "end": 31650.99, "probability": 0.9634 }, { "start": 31652.83, "end": 31654.51, "probability": 0.1274 }, { "start": 31654.51, "end": 31654.51, "probability": 0.1896 }, { "start": 31654.51, "end": 31655.65, "probability": 0.242 }, { "start": 31656.47, "end": 31659.97, "probability": 0.6163 }, { "start": 31659.99, "end": 31660.06, "probability": 0.374 }, { "start": 31664.01, "end": 31665.35, "probability": 0.2958 }, { "start": 31666.05, "end": 31666.27, "probability": 0.0126 }, { "start": 31666.27, "end": 31666.27, "probability": 0.2129 }, { "start": 31666.27, "end": 31666.27, "probability": 0.5616 }, { "start": 31666.27, "end": 31672.15, "probability": 0.2923 }, { "start": 31672.15, "end": 31673.29, "probability": 0.3014 }, { "start": 31673.69, "end": 31674.23, "probability": 0.7027 }, { "start": 31674.23, "end": 31676.91, "probability": 0.769 }, { "start": 31677.93, "end": 31677.93, "probability": 0.1261 }, { "start": 31677.93, "end": 31677.93, "probability": 0.0306 }, { "start": 31677.93, "end": 31677.93, "probability": 0.5488 }, { "start": 31677.93, "end": 31681.05, "probability": 0.8193 }, { "start": 31681.67, "end": 31681.69, "probability": 0.6048 }, { "start": 31681.69, "end": 31684.01, "probability": 0.8668 }, { "start": 31684.09, "end": 31684.63, "probability": 0.4611 }, { "start": 31685.29, "end": 31685.93, "probability": 0.9016 }, { "start": 31686.63, "end": 31688.29, "probability": 0.1313 }, { "start": 31688.77, "end": 31689.33, "probability": 0.325 }, { "start": 31690.03, "end": 31692.35, "probability": 0.7905 }, { "start": 31693.97, "end": 31694.83, "probability": 0.3924 }, { "start": 31695.93, "end": 31695.93, "probability": 0.0377 }, { "start": 31704.91, "end": 31707.23, "probability": 0.1451 }, { "start": 31716.65, "end": 31716.65, "probability": 0.752 }, { "start": 31716.65, "end": 31718.09, "probability": 0.0691 }, { "start": 31719.53, "end": 31720.47, "probability": 0.5518 }, { "start": 31721.43, "end": 31723.85, "probability": 0.7604 }, { "start": 31744.55, "end": 31751.07, "probability": 0.4809 }, { "start": 31765.45, "end": 31766.24, "probability": 0.758 }, { "start": 31767.13, "end": 31768.31, "probability": 0.6202 }, { "start": 31770.83, "end": 31774.47, "probability": 0.9917 }, { "start": 31776.19, "end": 31781.39, "probability": 0.2771 }, { "start": 31782.07, "end": 31782.39, "probability": 0.8073 }, { "start": 31783.73, "end": 31783.81, "probability": 0.0798 }, { "start": 31785.74, "end": 31786.51, "probability": 0.0967 }, { "start": 31787.13, "end": 31787.39, "probability": 0.1336 }, { "start": 31790.17, "end": 31790.67, "probability": 0.0503 }, { "start": 31791.47, "end": 31792.81, "probability": 0.8315 }, { "start": 31792.89, "end": 31794.71, "probability": 0.5565 }, { "start": 31794.83, "end": 31795.51, "probability": 0.5766 }, { "start": 31798.36, "end": 31801.49, "probability": 0.6219 }, { "start": 31802.62, "end": 31806.31, "probability": 0.8031 }, { "start": 31807.31, "end": 31810.83, "probability": 0.9634 }, { "start": 31811.47, "end": 31813.33, "probability": 0.9979 }, { "start": 31814.51, "end": 31817.47, "probability": 0.9666 }, { "start": 31817.77, "end": 31818.77, "probability": 0.0866 }, { "start": 31819.71, "end": 31822.31, "probability": 0.965 }, { "start": 31823.75, "end": 31827.23, "probability": 0.9707 }, { "start": 31828.47, "end": 31829.57, "probability": 0.5524 }, { "start": 31830.25, "end": 31831.89, "probability": 0.9903 }, { "start": 31833.21, "end": 31838.61, "probability": 0.9924 }, { "start": 31839.13, "end": 31841.13, "probability": 0.9556 }, { "start": 31841.71, "end": 31844.79, "probability": 0.8617 }, { "start": 31845.69, "end": 31846.43, "probability": 0.4887 }, { "start": 31846.47, "end": 31849.29, "probability": 0.8077 }, { "start": 31849.71, "end": 31855.03, "probability": 0.9739 }, { "start": 31855.03, "end": 31859.53, "probability": 0.9945 }, { "start": 31859.61, "end": 31860.35, "probability": 0.8096 }, { "start": 31861.31, "end": 31866.25, "probability": 0.9884 }, { "start": 31866.53, "end": 31871.16, "probability": 0.9401 }, { "start": 31872.39, "end": 31873.09, "probability": 0.8769 }, { "start": 31873.99, "end": 31876.77, "probability": 0.9988 }, { "start": 31876.85, "end": 31877.83, "probability": 0.7343 }, { "start": 31878.43, "end": 31879.23, "probability": 0.9591 }, { "start": 31880.07, "end": 31880.97, "probability": 0.95 }, { "start": 31881.85, "end": 31884.79, "probability": 0.9673 }, { "start": 31885.85, "end": 31890.11, "probability": 0.9971 }, { "start": 31890.11, "end": 31894.21, "probability": 0.9941 }, { "start": 31894.77, "end": 31895.63, "probability": 0.8004 }, { "start": 31896.19, "end": 31898.77, "probability": 0.8842 }, { "start": 31899.17, "end": 31901.07, "probability": 0.9766 }, { "start": 31901.41, "end": 31903.89, "probability": 0.9815 }, { "start": 31904.51, "end": 31905.57, "probability": 0.541 }, { "start": 31906.53, "end": 31908.09, "probability": 0.865 }, { "start": 31908.87, "end": 31909.69, "probability": 0.6558 }, { "start": 31910.79, "end": 31911.47, "probability": 0.8038 }, { "start": 31912.15, "end": 31914.4, "probability": 0.8872 }, { "start": 31915.31, "end": 31915.96, "probability": 0.912 }, { "start": 31917.13, "end": 31919.45, "probability": 0.986 }, { "start": 31919.97, "end": 31924.29, "probability": 0.9113 }, { "start": 31925.37, "end": 31926.79, "probability": 0.9448 }, { "start": 31926.85, "end": 31928.15, "probability": 0.9751 }, { "start": 31928.57, "end": 31929.93, "probability": 0.9953 }, { "start": 31929.99, "end": 31933.67, "probability": 0.8462 }, { "start": 31934.51, "end": 31937.23, "probability": 0.9504 }, { "start": 31938.29, "end": 31942.33, "probability": 0.9953 }, { "start": 31943.25, "end": 31946.89, "probability": 0.8726 }, { "start": 31947.43, "end": 31947.65, "probability": 0.5829 }, { "start": 31947.71, "end": 31949.98, "probability": 0.8402 }, { "start": 31950.53, "end": 31951.41, "probability": 0.7154 }, { "start": 31952.15, "end": 31957.87, "probability": 0.9251 }, { "start": 31958.27, "end": 31959.53, "probability": 0.7146 }, { "start": 31960.33, "end": 31961.99, "probability": 0.995 }, { "start": 31962.07, "end": 31962.63, "probability": 0.9739 }, { "start": 31962.69, "end": 31964.61, "probability": 0.9893 }, { "start": 31964.67, "end": 31966.85, "probability": 0.9571 }, { "start": 31966.93, "end": 31968.27, "probability": 0.999 }, { "start": 31968.89, "end": 31970.69, "probability": 0.8585 }, { "start": 31971.23, "end": 31973.85, "probability": 0.9693 }, { "start": 31974.19, "end": 31975.67, "probability": 0.9926 }, { "start": 31976.03, "end": 31977.47, "probability": 0.5658 }, { "start": 31977.85, "end": 31981.01, "probability": 0.9547 }, { "start": 31981.59, "end": 31982.39, "probability": 0.6518 }, { "start": 31982.95, "end": 31984.36, "probability": 0.8698 }, { "start": 31986.87, "end": 31987.93, "probability": 0.0996 }, { "start": 31989.35, "end": 31990.21, "probability": 0.6786 }, { "start": 31990.87, "end": 31995.61, "probability": 0.7778 }, { "start": 31996.05, "end": 32000.47, "probability": 0.9595 }, { "start": 32000.99, "end": 32003.97, "probability": 0.9917 }, { "start": 32004.49, "end": 32007.85, "probability": 0.5093 }, { "start": 32008.09, "end": 32009.19, "probability": 0.853 }, { "start": 32009.93, "end": 32011.22, "probability": 0.7787 }, { "start": 32011.41, "end": 32011.91, "probability": 0.0218 }, { "start": 32012.03, "end": 32012.09, "probability": 0.0268 }, { "start": 32012.09, "end": 32012.09, "probability": 0.1616 }, { "start": 32012.09, "end": 32012.86, "probability": 0.2478 }, { "start": 32013.43, "end": 32014.81, "probability": 0.5667 }, { "start": 32015.17, "end": 32017.15, "probability": 0.9707 }, { "start": 32017.49, "end": 32019.01, "probability": 0.9478 }, { "start": 32019.31, "end": 32020.15, "probability": 0.9575 }, { "start": 32021.01, "end": 32022.67, "probability": 0.7173 }, { "start": 32023.35, "end": 32023.84, "probability": 0.8774 }, { "start": 32024.71, "end": 32030.07, "probability": 0.9494 }, { "start": 32030.79, "end": 32032.85, "probability": 0.9978 }, { "start": 32032.85, "end": 32035.47, "probability": 0.7279 }, { "start": 32035.89, "end": 32036.67, "probability": 0.9844 }, { "start": 32037.39, "end": 32041.91, "probability": 0.9805 }, { "start": 32042.61, "end": 32044.33, "probability": 0.3631 }, { "start": 32044.89, "end": 32046.39, "probability": 0.8074 }, { "start": 32047.27, "end": 32048.47, "probability": 0.9508 }, { "start": 32048.53, "end": 32050.91, "probability": 0.8579 }, { "start": 32051.43, "end": 32054.05, "probability": 0.9855 }, { "start": 32054.13, "end": 32055.51, "probability": 0.9318 }, { "start": 32056.03, "end": 32059.1, "probability": 0.7244 }, { "start": 32060.01, "end": 32065.77, "probability": 0.9927 }, { "start": 32066.17, "end": 32066.33, "probability": 0.7437 }, { "start": 32066.45, "end": 32067.69, "probability": 0.9271 }, { "start": 32068.03, "end": 32069.53, "probability": 0.8776 }, { "start": 32069.83, "end": 32070.65, "probability": 0.7413 }, { "start": 32070.73, "end": 32071.67, "probability": 0.5887 }, { "start": 32074.25, "end": 32077.49, "probability": 0.5966 }, { "start": 32077.49, "end": 32077.67, "probability": 0.4252 }, { "start": 32079.85, "end": 32080.93, "probability": 0.7438 }, { "start": 32081.83, "end": 32086.85, "probability": 0.9077 }, { "start": 32086.87, "end": 32088.71, "probability": 0.9497 }, { "start": 32088.89, "end": 32089.09, "probability": 0.4 }, { "start": 32089.57, "end": 32095.21, "probability": 0.9801 }, { "start": 32095.67, "end": 32096.49, "probability": 0.7803 }, { "start": 32097.03, "end": 32098.89, "probability": 0.6351 }, { "start": 32098.99, "end": 32101.15, "probability": 0.9853 }, { "start": 32101.75, "end": 32102.73, "probability": 0.1859 }, { "start": 32103.17, "end": 32104.41, "probability": 0.9514 }, { "start": 32104.47, "end": 32105.57, "probability": 0.6337 }, { "start": 32105.67, "end": 32107.81, "probability": 0.9803 }, { "start": 32108.21, "end": 32111.59, "probability": 0.9708 }, { "start": 32111.73, "end": 32113.25, "probability": 0.0276 }, { "start": 32113.99, "end": 32114.51, "probability": 0.2276 }, { "start": 32114.51, "end": 32114.51, "probability": 0.269 }, { "start": 32114.51, "end": 32115.79, "probability": 0.3226 }, { "start": 32115.85, "end": 32116.05, "probability": 0.0552 }, { "start": 32116.05, "end": 32118.37, "probability": 0.9445 }, { "start": 32119.43, "end": 32120.03, "probability": 0.0765 }, { "start": 32120.03, "end": 32121.33, "probability": 0.349 }, { "start": 32121.71, "end": 32125.71, "probability": 0.9837 }, { "start": 32125.97, "end": 32126.33, "probability": 0.6505 }, { "start": 32126.75, "end": 32131.61, "probability": 0.979 }, { "start": 32131.71, "end": 32134.21, "probability": 0.9727 }, { "start": 32134.69, "end": 32138.29, "probability": 0.9645 }, { "start": 32138.55, "end": 32139.09, "probability": 0.5898 }, { "start": 32139.69, "end": 32143.43, "probability": 0.9451 }, { "start": 32143.97, "end": 32144.47, "probability": 0.8658 }, { "start": 32145.27, "end": 32147.43, "probability": 0.7422 }, { "start": 32148.25, "end": 32148.57, "probability": 0.8862 }, { "start": 32148.57, "end": 32149.49, "probability": 0.0152 }, { "start": 32150.45, "end": 32153.71, "probability": 0.185 }, { "start": 32154.53, "end": 32155.57, "probability": 0.2518 }, { "start": 32156.09, "end": 32159.09, "probability": 0.38 }, { "start": 32159.63, "end": 32164.37, "probability": 0.9321 }, { "start": 32165.15, "end": 32167.93, "probability": 0.984 }, { "start": 32168.55, "end": 32170.33, "probability": 0.9604 }, { "start": 32170.37, "end": 32174.25, "probability": 0.9574 }, { "start": 32174.63, "end": 32177.07, "probability": 0.79 }, { "start": 32177.55, "end": 32179.51, "probability": 0.9656 }, { "start": 32179.83, "end": 32180.61, "probability": 0.4931 }, { "start": 32180.73, "end": 32182.35, "probability": 0.0358 }, { "start": 32182.35, "end": 32183.19, "probability": 0.4227 }, { "start": 32183.49, "end": 32185.47, "probability": 0.902 }, { "start": 32185.79, "end": 32187.48, "probability": 0.9685 }, { "start": 32188.01, "end": 32188.61, "probability": 0.1539 }, { "start": 32188.61, "end": 32189.93, "probability": 0.0898 }, { "start": 32190.15, "end": 32191.41, "probability": 0.9463 }, { "start": 32191.93, "end": 32194.41, "probability": 0.877 }, { "start": 32194.69, "end": 32196.05, "probability": 0.8973 }, { "start": 32196.49, "end": 32197.61, "probability": 0.847 }, { "start": 32197.81, "end": 32198.89, "probability": 0.9155 }, { "start": 32199.31, "end": 32199.61, "probability": 0.7441 }, { "start": 32199.77, "end": 32202.69, "probability": 0.6123 }, { "start": 32203.15, "end": 32204.49, "probability": 0.8945 }, { "start": 32204.59, "end": 32204.97, "probability": 0.157 }, { "start": 32205.09, "end": 32206.85, "probability": 0.7853 }, { "start": 32207.13, "end": 32208.4, "probability": 0.8743 }, { "start": 32208.81, "end": 32210.27, "probability": 0.9011 }, { "start": 32210.81, "end": 32211.79, "probability": 0.9072 }, { "start": 32212.25, "end": 32213.69, "probability": 0.9844 }, { "start": 32214.19, "end": 32214.25, "probability": 0.0037 }, { "start": 32214.25, "end": 32214.25, "probability": 0.274 }, { "start": 32214.25, "end": 32215.89, "probability": 0.7352 }, { "start": 32216.03, "end": 32218.13, "probability": 0.6201 }, { "start": 32218.47, "end": 32220.35, "probability": 0.5218 }, { "start": 32220.51, "end": 32221.67, "probability": 0.8829 }, { "start": 32222.31, "end": 32223.67, "probability": 0.5028 }, { "start": 32224.33, "end": 32225.37, "probability": 0.1568 }, { "start": 32225.47, "end": 32226.33, "probability": 0.124 }, { "start": 32227.03, "end": 32228.63, "probability": 0.122 }, { "start": 32229.17, "end": 32230.25, "probability": 0.5818 }, { "start": 32230.65, "end": 32233.73, "probability": 0.9436 }, { "start": 32233.87, "end": 32235.24, "probability": 0.9376 }, { "start": 32235.57, "end": 32236.33, "probability": 0.9012 }, { "start": 32236.87, "end": 32240.33, "probability": 0.8383 }, { "start": 32240.89, "end": 32240.99, "probability": 0.0833 }, { "start": 32240.99, "end": 32241.95, "probability": 0.8408 }, { "start": 32242.39, "end": 32244.59, "probability": 0.8203 }, { "start": 32245.41, "end": 32246.35, "probability": 0.9243 }, { "start": 32246.57, "end": 32247.21, "probability": 0.8141 }, { "start": 32247.35, "end": 32249.89, "probability": 0.978 }, { "start": 32250.01, "end": 32252.27, "probability": 0.9871 }, { "start": 32252.73, "end": 32254.75, "probability": 0.9702 }, { "start": 32254.83, "end": 32256.23, "probability": 0.9501 }, { "start": 32256.29, "end": 32257.75, "probability": 0.9673 }, { "start": 32258.03, "end": 32259.01, "probability": 0.9402 }, { "start": 32260.81, "end": 32261.03, "probability": 0.2853 }, { "start": 32261.03, "end": 32261.03, "probability": 0.1225 }, { "start": 32261.03, "end": 32262.25, "probability": 0.2689 }, { "start": 32263.01, "end": 32263.59, "probability": 0.3939 }, { "start": 32263.65, "end": 32264.29, "probability": 0.3751 }, { "start": 32264.39, "end": 32265.65, "probability": 0.7482 }, { "start": 32265.83, "end": 32267.82, "probability": 0.9151 }, { "start": 32268.31, "end": 32271.65, "probability": 0.4832 }, { "start": 32271.97, "end": 32275.11, "probability": 0.6058 }, { "start": 32275.17, "end": 32275.81, "probability": 0.0674 }, { "start": 32275.99, "end": 32276.61, "probability": 0.3556 }, { "start": 32277.29, "end": 32278.95, "probability": 0.9717 }, { "start": 32279.37, "end": 32279.95, "probability": 0.6631 }, { "start": 32280.07, "end": 32280.56, "probability": 0.1018 }, { "start": 32281.55, "end": 32282.53, "probability": 0.0798 }, { "start": 32282.93, "end": 32284.31, "probability": 0.1758 }, { "start": 32284.53, "end": 32285.65, "probability": 0.4188 }, { "start": 32286.05, "end": 32286.19, "probability": 0.8341 }, { "start": 32286.29, "end": 32286.79, "probability": 0.6157 }, { "start": 32287.15, "end": 32288.45, "probability": 0.7164 }, { "start": 32289.45, "end": 32290.33, "probability": 0.6186 }, { "start": 32290.41, "end": 32290.41, "probability": 0.5001 }, { "start": 32290.43, "end": 32291.29, "probability": 0.9684 }, { "start": 32292.09, "end": 32293.31, "probability": 0.593 }, { "start": 32293.35, "end": 32294.63, "probability": 0.6216 }, { "start": 32295.23, "end": 32296.93, "probability": 0.6953 }, { "start": 32296.97, "end": 32298.21, "probability": 0.2425 }, { "start": 32299.38, "end": 32299.87, "probability": 0.257 }, { "start": 32299.91, "end": 32303.31, "probability": 0.8673 }, { "start": 32303.95, "end": 32304.53, "probability": 0.0781 }, { "start": 32304.53, "end": 32306.5, "probability": 0.3021 }, { "start": 32307.31, "end": 32307.33, "probability": 0.3605 }, { "start": 32307.33, "end": 32308.62, "probability": 0.4898 }, { "start": 32309.49, "end": 32309.51, "probability": 0.1064 }, { "start": 32309.51, "end": 32311.85, "probability": 0.9626 }, { "start": 32312.97, "end": 32312.97, "probability": 0.1309 }, { "start": 32312.97, "end": 32317.31, "probability": 0.7273 }, { "start": 32317.77, "end": 32318.47, "probability": 0.0918 }, { "start": 32318.95, "end": 32319.05, "probability": 0.0328 }, { "start": 32319.07, "end": 32319.07, "probability": 0.3676 }, { "start": 32319.07, "end": 32319.77, "probability": 0.0888 }, { "start": 32319.93, "end": 32320.41, "probability": 0.5257 }, { "start": 32320.57, "end": 32322.43, "probability": 0.3864 }, { "start": 32322.65, "end": 32323.57, "probability": 0.9841 }, { "start": 32324.93, "end": 32326.27, "probability": 0.5787 }, { "start": 32326.37, "end": 32327.25, "probability": 0.3291 }, { "start": 32327.39, "end": 32328.93, "probability": 0.7264 }, { "start": 32329.19, "end": 32331.25, "probability": 0.7828 }, { "start": 32331.25, "end": 32334.01, "probability": 0.8457 }, { "start": 32334.63, "end": 32341.17, "probability": 0.9229 }, { "start": 32341.35, "end": 32341.71, "probability": 0.7536 }, { "start": 32342.45, "end": 32343.03, "probability": 0.9775 }, { "start": 32343.89, "end": 32345.47, "probability": 0.095 }, { "start": 32345.67, "end": 32347.67, "probability": 0.2674 }, { "start": 32347.81, "end": 32348.45, "probability": 0.3057 }, { "start": 32348.67, "end": 32349.03, "probability": 0.752 }, { "start": 32349.17, "end": 32349.49, "probability": 0.8425 }, { "start": 32349.61, "end": 32350.15, "probability": 0.7419 }, { "start": 32350.21, "end": 32351.39, "probability": 0.8207 }, { "start": 32351.55, "end": 32353.05, "probability": 0.5302 }, { "start": 32353.43, "end": 32355.09, "probability": 0.9913 }, { "start": 32355.73, "end": 32356.15, "probability": 0.6283 }, { "start": 32356.95, "end": 32359.09, "probability": 0.903 }, { "start": 32359.65, "end": 32362.93, "probability": 0.986 }, { "start": 32362.93, "end": 32365.65, "probability": 0.988 }, { "start": 32365.69, "end": 32367.27, "probability": 0.6875 }, { "start": 32367.89, "end": 32368.65, "probability": 0.3797 }, { "start": 32370.35, "end": 32371.03, "probability": 0.1129 }, { "start": 32371.03, "end": 32371.03, "probability": 0.1658 }, { "start": 32371.03, "end": 32372.29, "probability": 0.5497 }, { "start": 32372.43, "end": 32375.09, "probability": 0.9609 }, { "start": 32376.55, "end": 32376.57, "probability": 0.1938 }, { "start": 32376.57, "end": 32376.57, "probability": 0.1851 }, { "start": 32376.57, "end": 32378.33, "probability": 0.7723 }, { "start": 32378.45, "end": 32380.07, "probability": 0.7523 }, { "start": 32380.09, "end": 32382.47, "probability": 0.5613 }, { "start": 32383.53, "end": 32385.07, "probability": 0.5197 }, { "start": 32385.41, "end": 32387.73, "probability": 0.8236 }, { "start": 32388.23, "end": 32390.73, "probability": 0.5399 }, { "start": 32391.89, "end": 32392.49, "probability": 0.649 }, { "start": 32392.59, "end": 32395.81, "probability": 0.7386 }, { "start": 32396.61, "end": 32398.73, "probability": 0.897 }, { "start": 32398.89, "end": 32401.16, "probability": 0.9436 }, { "start": 32401.31, "end": 32401.31, "probability": 0.5004 }, { "start": 32401.39, "end": 32401.75, "probability": 0.7997 }, { "start": 32401.75, "end": 32403.73, "probability": 0.8394 }, { "start": 32404.59, "end": 32406.51, "probability": 0.9599 }, { "start": 32406.93, "end": 32407.33, "probability": 0.1424 }, { "start": 32407.45, "end": 32407.57, "probability": 0.2091 }, { "start": 32407.59, "end": 32409.19, "probability": 0.9893 }, { "start": 32409.73, "end": 32410.39, "probability": 0.5858 }, { "start": 32410.41, "end": 32412.23, "probability": 0.365 }, { "start": 32413.23, "end": 32413.35, "probability": 0.9912 }, { "start": 32414.11, "end": 32414.57, "probability": 0.1679 }, { "start": 32414.57, "end": 32416.17, "probability": 0.9393 }, { "start": 32416.67, "end": 32419.15, "probability": 0.8847 }, { "start": 32419.41, "end": 32421.65, "probability": 0.9799 }, { "start": 32421.73, "end": 32422.27, "probability": 0.5915 }, { "start": 32422.53, "end": 32423.85, "probability": 0.882 }, { "start": 32424.25, "end": 32425.63, "probability": 0.8555 }, { "start": 32426.21, "end": 32427.12, "probability": 0.3503 }, { "start": 32427.49, "end": 32431.65, "probability": 0.1363 }, { "start": 32431.73, "end": 32432.21, "probability": 0.434 }, { "start": 32432.31, "end": 32434.61, "probability": 0.2672 }, { "start": 32435.09, "end": 32437.75, "probability": 0.8911 }, { "start": 32437.75, "end": 32439.61, "probability": 0.376 }, { "start": 32439.83, "end": 32440.99, "probability": 0.944 }, { "start": 32441.17, "end": 32442.51, "probability": 0.7886 }, { "start": 32442.71, "end": 32443.73, "probability": 0.7983 }, { "start": 32444.11, "end": 32444.95, "probability": 0.6957 }, { "start": 32445.47, "end": 32446.01, "probability": 0.5541 }, { "start": 32446.13, "end": 32447.28, "probability": 0.9125 }, { "start": 32447.99, "end": 32449.69, "probability": 0.6068 }, { "start": 32449.71, "end": 32451.43, "probability": 0.9167 }, { "start": 32451.75, "end": 32452.27, "probability": 0.0228 }, { "start": 32453.25, "end": 32453.57, "probability": 0.0134 }, { "start": 32453.57, "end": 32454.25, "probability": 0.0782 }, { "start": 32455.29, "end": 32458.43, "probability": 0.5159 }, { "start": 32458.57, "end": 32460.93, "probability": 0.9857 }, { "start": 32461.25, "end": 32464.31, "probability": 0.9688 }, { "start": 32464.33, "end": 32465.75, "probability": 0.6547 }, { "start": 32466.13, "end": 32468.07, "probability": 0.6381 }, { "start": 32468.25, "end": 32470.19, "probability": 0.8501 }, { "start": 32470.51, "end": 32472.81, "probability": 0.8234 }, { "start": 32473.11, "end": 32475.11, "probability": 0.3229 }, { "start": 32475.35, "end": 32479.85, "probability": 0.0195 }, { "start": 32479.85, "end": 32480.31, "probability": 0.158 }, { "start": 32480.55, "end": 32480.55, "probability": 0.0397 }, { "start": 32480.55, "end": 32480.57, "probability": 0.0971 }, { "start": 32480.57, "end": 32483.46, "probability": 0.6843 }, { "start": 32484.15, "end": 32486.65, "probability": 0.9166 }, { "start": 32486.93, "end": 32488.35, "probability": 0.591 }, { "start": 32488.71, "end": 32490.59, "probability": 0.5582 }, { "start": 32490.63, "end": 32494.21, "probability": 0.1806 }, { "start": 32494.37, "end": 32495.51, "probability": 0.2024 }, { "start": 32497.91, "end": 32499.55, "probability": 0.2201 }, { "start": 32500.09, "end": 32502.13, "probability": 0.0316 }, { "start": 32502.13, "end": 32503.69, "probability": 0.0487 }, { "start": 32503.69, "end": 32503.69, "probability": 0.0143 }, { "start": 32503.69, "end": 32504.52, "probability": 0.4807 }, { "start": 32505.33, "end": 32507.55, "probability": 0.2811 }, { "start": 32507.99, "end": 32508.92, "probability": 0.0155 }, { "start": 32512.23, "end": 32512.45, "probability": 0.0131 }, { "start": 32512.45, "end": 32512.57, "probability": 0.0914 }, { "start": 32512.57, "end": 32514.53, "probability": 0.3608 }, { "start": 32514.55, "end": 32515.37, "probability": 0.4694 }, { "start": 32515.43, "end": 32515.85, "probability": 0.8279 }, { "start": 32515.95, "end": 32517.29, "probability": 0.2082 }, { "start": 32517.83, "end": 32520.99, "probability": 0.5251 }, { "start": 32521.63, "end": 32523.41, "probability": 0.9354 }, { "start": 32523.77, "end": 32525.31, "probability": 0.9984 }, { "start": 32525.85, "end": 32528.15, "probability": 0.2072 }, { "start": 32528.25, "end": 32533.19, "probability": 0.7372 }, { "start": 32533.29, "end": 32536.13, "probability": 0.3808 }, { "start": 32536.65, "end": 32540.67, "probability": 0.9611 }, { "start": 32541.17, "end": 32542.41, "probability": 0.9979 }, { "start": 32544.81, "end": 32545.39, "probability": 0.5102 }, { "start": 32545.45, "end": 32545.65, "probability": 0.0253 }, { "start": 32545.87, "end": 32546.43, "probability": 0.1323 }, { "start": 32546.61, "end": 32549.29, "probability": 0.5822 }, { "start": 32549.71, "end": 32551.35, "probability": 0.7 }, { "start": 32551.35, "end": 32552.52, "probability": 0.5991 }, { "start": 32553.49, "end": 32557.61, "probability": 0.7032 }, { "start": 32558.01, "end": 32559.03, "probability": 0.6869 }, { "start": 32559.29, "end": 32560.63, "probability": 0.6743 }, { "start": 32560.89, "end": 32562.59, "probability": 0.6528 }, { "start": 32562.79, "end": 32563.97, "probability": 0.8133 }, { "start": 32564.15, "end": 32565.11, "probability": 0.7456 }, { "start": 32565.11, "end": 32565.53, "probability": 0.0575 }, { "start": 32565.59, "end": 32567.47, "probability": 0.0713 }, { "start": 32567.65, "end": 32568.31, "probability": 0.8777 }, { "start": 32568.39, "end": 32569.71, "probability": 0.7566 }, { "start": 32570.09, "end": 32571.01, "probability": 0.8086 }, { "start": 32571.43, "end": 32572.81, "probability": 0.6812 }, { "start": 32573.25, "end": 32577.34, "probability": 0.9807 }, { "start": 32577.77, "end": 32577.85, "probability": 0.0116 }, { "start": 32577.85, "end": 32579.53, "probability": 0.3527 }, { "start": 32579.81, "end": 32581.09, "probability": 0.3513 }, { "start": 32581.25, "end": 32584.01, "probability": 0.4848 }, { "start": 32584.63, "end": 32588.71, "probability": 0.0283 }, { "start": 32589.11, "end": 32590.41, "probability": 0.3933 }, { "start": 32590.97, "end": 32590.97, "probability": 0.2281 }, { "start": 32590.97, "end": 32596.13, "probability": 0.5079 }, { "start": 32596.85, "end": 32599.09, "probability": 0.9124 }, { "start": 32599.27, "end": 32600.79, "probability": 0.8892 }, { "start": 32600.87, "end": 32602.53, "probability": 0.8166 }, { "start": 32602.53, "end": 32605.71, "probability": 0.9881 }, { "start": 32606.29, "end": 32606.55, "probability": 0.3812 }, { "start": 32606.75, "end": 32607.39, "probability": 0.756 }, { "start": 32607.43, "end": 32608.07, "probability": 0.9088 }, { "start": 32608.11, "end": 32609.14, "probability": 0.8349 }, { "start": 32609.63, "end": 32611.43, "probability": 0.9668 }, { "start": 32612.07, "end": 32613.79, "probability": 0.793 }, { "start": 32613.81, "end": 32615.54, "probability": 0.9915 }, { "start": 32616.11, "end": 32617.19, "probability": 0.9814 }, { "start": 32617.87, "end": 32620.43, "probability": 0.5471 }, { "start": 32620.93, "end": 32621.75, "probability": 0.8962 }, { "start": 32622.29, "end": 32623.83, "probability": 0.9932 }, { "start": 32624.21, "end": 32624.96, "probability": 0.9889 }, { "start": 32625.45, "end": 32626.13, "probability": 0.8606 }, { "start": 32626.25, "end": 32626.69, "probability": 0.8013 }, { "start": 32634.71, "end": 32635.45, "probability": 0.5396 }, { "start": 32635.49, "end": 32637.45, "probability": 0.7158 }, { "start": 32638.65, "end": 32640.83, "probability": 0.9256 }, { "start": 32640.89, "end": 32643.31, "probability": 0.8073 }, { "start": 32644.31, "end": 32644.95, "probability": 0.7402 }, { "start": 32647.98, "end": 32650.99, "probability": 0.5738 }, { "start": 32651.07, "end": 32651.83, "probability": 0.9819 }, { "start": 32652.45, "end": 32653.39, "probability": 0.7056 }, { "start": 32657.85, "end": 32658.75, "probability": 0.6464 }, { "start": 32659.23, "end": 32660.46, "probability": 0.9165 }, { "start": 32661.15, "end": 32662.65, "probability": 0.802 }, { "start": 32674.27, "end": 32680.63, "probability": 0.1015 }, { "start": 32681.87, "end": 32683.11, "probability": 0.0469 }, { "start": 32684.33, "end": 32688.15, "probability": 0.0258 }, { "start": 32688.15, "end": 32689.13, "probability": 0.6911 }, { "start": 32689.13, "end": 32689.39, "probability": 0.1396 }, { "start": 32690.11, "end": 32693.13, "probability": 0.5073 }, { "start": 32699.27, "end": 32706.63, "probability": 0.9901 }, { "start": 32708.29, "end": 32710.18, "probability": 0.7334 }, { "start": 32711.43, "end": 32717.35, "probability": 0.9043 }, { "start": 32717.35, "end": 32721.77, "probability": 0.9138 }, { "start": 32722.33, "end": 32722.45, "probability": 0.0278 }, { "start": 32723.17, "end": 32732.17, "probability": 0.7399 }, { "start": 32732.27, "end": 32732.87, "probability": 0.8856 }, { "start": 32757.05, "end": 32757.67, "probability": 0.6368 }, { "start": 32759.19, "end": 32760.41, "probability": 0.7561 }, { "start": 32762.03, "end": 32766.13, "probability": 0.9707 }, { "start": 32767.95, "end": 32769.43, "probability": 0.9622 }, { "start": 32770.37, "end": 32771.15, "probability": 0.9995 }, { "start": 32772.21, "end": 32774.27, "probability": 0.986 }, { "start": 32775.17, "end": 32782.29, "probability": 0.9994 }, { "start": 32783.49, "end": 32791.31, "probability": 0.9049 }, { "start": 32792.31, "end": 32795.01, "probability": 0.9919 }, { "start": 32795.87, "end": 32800.41, "probability": 0.9993 }, { "start": 32801.55, "end": 32804.01, "probability": 0.9913 }, { "start": 32806.59, "end": 32809.63, "probability": 0.8986 }, { "start": 32810.95, "end": 32814.15, "probability": 0.9922 }, { "start": 32814.91, "end": 32816.67, "probability": 0.9781 }, { "start": 32817.79, "end": 32820.51, "probability": 0.4992 }, { "start": 32821.57, "end": 32823.85, "probability": 0.9763 }, { "start": 32825.09, "end": 32827.77, "probability": 0.9882 }, { "start": 32829.71, "end": 32830.95, "probability": 0.4655 }, { "start": 32832.19, "end": 32835.39, "probability": 0.8204 }, { "start": 32836.07, "end": 32839.69, "probability": 0.7472 }, { "start": 32840.43, "end": 32842.21, "probability": 0.8513 }, { "start": 32842.89, "end": 32848.13, "probability": 0.9642 }, { "start": 32848.13, "end": 32853.41, "probability": 0.9929 }, { "start": 32854.65, "end": 32856.13, "probability": 0.9976 }, { "start": 32857.59, "end": 32862.83, "probability": 0.9937 }, { "start": 32862.99, "end": 32865.65, "probability": 0.9841 }, { "start": 32867.07, "end": 32867.93, "probability": 0.9495 }, { "start": 32868.75, "end": 32871.15, "probability": 0.834 }, { "start": 32871.81, "end": 32872.63, "probability": 0.9387 }, { "start": 32873.23, "end": 32874.53, "probability": 0.9902 }, { "start": 32875.21, "end": 32878.97, "probability": 0.9868 }, { "start": 32879.05, "end": 32879.45, "probability": 0.8096 }, { "start": 32885.37, "end": 32886.65, "probability": 0.5708 }, { "start": 32886.81, "end": 32889.97, "probability": 0.8686 }, { "start": 32924.95, "end": 32927.09, "probability": 0.6172 }, { "start": 32928.59, "end": 32929.89, "probability": 0.9998 }, { "start": 32931.19, "end": 32933.85, "probability": 0.9883 }, { "start": 32934.51, "end": 32937.09, "probability": 0.9685 }, { "start": 32938.13, "end": 32939.83, "probability": 0.99 }, { "start": 32940.43, "end": 32945.15, "probability": 0.9795 }, { "start": 32947.67, "end": 32950.29, "probability": 0.959 }, { "start": 32950.39, "end": 32953.65, "probability": 0.9036 }, { "start": 32954.39, "end": 32957.31, "probability": 0.9744 }, { "start": 32958.65, "end": 32960.01, "probability": 0.9843 }, { "start": 32960.31, "end": 32964.05, "probability": 0.9887 }, { "start": 32964.13, "end": 32965.33, "probability": 0.9072 }, { "start": 32965.57, "end": 32968.95, "probability": 0.8673 }, { "start": 32969.03, "end": 32972.15, "probability": 0.9815 }, { "start": 32972.69, "end": 32973.65, "probability": 0.9747 }, { "start": 32973.77, "end": 32974.55, "probability": 0.9359 }, { "start": 32974.99, "end": 32975.99, "probability": 0.9511 }, { "start": 32976.05, "end": 32977.31, "probability": 0.8759 }, { "start": 32977.85, "end": 32978.73, "probability": 0.9716 }, { "start": 32979.61, "end": 32982.63, "probability": 0.9955 }, { "start": 32983.23, "end": 32988.87, "probability": 0.7338 }, { "start": 32989.21, "end": 32991.37, "probability": 0.9775 }, { "start": 32992.39, "end": 32993.95, "probability": 0.9683 }, { "start": 32995.73, "end": 32997.85, "probability": 0.9802 }, { "start": 32998.51, "end": 33001.41, "probability": 0.9798 }, { "start": 33001.95, "end": 33004.45, "probability": 0.9822 }, { "start": 33005.65, "end": 33006.51, "probability": 0.9663 }, { "start": 33008.21, "end": 33012.41, "probability": 0.9966 }, { "start": 33013.81, "end": 33015.77, "probability": 0.8295 }, { "start": 33016.71, "end": 33018.67, "probability": 0.9902 }, { "start": 33019.39, "end": 33022.91, "probability": 0.9778 }, { "start": 33024.15, "end": 33025.91, "probability": 0.834 }, { "start": 33026.93, "end": 33028.29, "probability": 0.9453 }, { "start": 33028.97, "end": 33030.99, "probability": 0.9878 }, { "start": 33031.77, "end": 33032.35, "probability": 0.4631 }, { "start": 33033.15, "end": 33034.75, "probability": 0.8601 }, { "start": 33035.67, "end": 33040.17, "probability": 0.9862 }, { "start": 33041.51, "end": 33047.07, "probability": 0.8955 }, { "start": 33048.15, "end": 33049.76, "probability": 0.9927 }, { "start": 33050.95, "end": 33059.29, "probability": 0.9959 }, { "start": 33061.03, "end": 33065.39, "probability": 0.9854 }, { "start": 33066.67, "end": 33067.87, "probability": 0.9505 }, { "start": 33069.45, "end": 33074.33, "probability": 0.9598 }, { "start": 33074.99, "end": 33077.33, "probability": 0.9827 }, { "start": 33078.07, "end": 33083.33, "probability": 0.9927 }, { "start": 33083.83, "end": 33084.75, "probability": 0.5743 }, { "start": 33084.75, "end": 33085.11, "probability": 0.9927 }, { "start": 33085.63, "end": 33086.26, "probability": 0.8354 }, { "start": 33087.85, "end": 33091.21, "probability": 0.7839 }, { "start": 33092.37, "end": 33098.63, "probability": 0.9515 }, { "start": 33099.31, "end": 33101.13, "probability": 0.9808 }, { "start": 33101.59, "end": 33105.25, "probability": 0.9917 }, { "start": 33105.91, "end": 33107.35, "probability": 0.8339 }, { "start": 33108.13, "end": 33108.77, "probability": 0.7322 }, { "start": 33109.29, "end": 33112.77, "probability": 0.9977 }, { "start": 33113.43, "end": 33117.73, "probability": 0.9941 }, { "start": 33118.31, "end": 33120.13, "probability": 0.8444 }, { "start": 33120.87, "end": 33121.21, "probability": 0.6616 }, { "start": 33121.21, "end": 33121.21, "probability": 0.2939 }, { "start": 33121.21, "end": 33122.65, "probability": 0.3035 }, { "start": 33150.37, "end": 33150.93, "probability": 0.4877 }, { "start": 33152.11, "end": 33153.03, "probability": 0.824 }, { "start": 33154.47, "end": 33155.77, "probability": 0.6747 }, { "start": 33157.01, "end": 33159.61, "probability": 0.7935 }, { "start": 33161.39, "end": 33167.95, "probability": 0.9336 }, { "start": 33169.29, "end": 33171.93, "probability": 0.0965 }, { "start": 33172.75, "end": 33173.99, "probability": 0.9668 }, { "start": 33174.27, "end": 33174.41, "probability": 0.5089 }, { "start": 33174.55, "end": 33175.69, "probability": 0.9932 }, { "start": 33176.43, "end": 33180.29, "probability": 0.9897 }, { "start": 33180.71, "end": 33181.13, "probability": 0.4814 }, { "start": 33182.01, "end": 33182.77, "probability": 0.9199 }, { "start": 33183.21, "end": 33186.13, "probability": 0.9109 }, { "start": 33186.59, "end": 33187.94, "probability": 0.9907 }, { "start": 33188.75, "end": 33190.85, "probability": 0.9284 }, { "start": 33191.85, "end": 33194.37, "probability": 0.999 }, { "start": 33194.89, "end": 33195.87, "probability": 0.734 }, { "start": 33196.64, "end": 33201.67, "probability": 0.9727 }, { "start": 33201.79, "end": 33202.33, "probability": 0.5108 }, { "start": 33202.45, "end": 33203.69, "probability": 0.946 }, { "start": 33204.33, "end": 33208.25, "probability": 0.8599 }, { "start": 33208.49, "end": 33209.55, "probability": 0.9307 }, { "start": 33211.89, "end": 33212.49, "probability": 0.9534 }, { "start": 33213.05, "end": 33213.81, "probability": 0.7912 }, { "start": 33214.41, "end": 33215.27, "probability": 0.8359 }, { "start": 33216.03, "end": 33217.85, "probability": 0.9596 }, { "start": 33218.29, "end": 33219.83, "probability": 0.9536 }, { "start": 33220.05, "end": 33223.43, "probability": 0.9735 }, { "start": 33224.55, "end": 33225.45, "probability": 0.9104 }, { "start": 33225.81, "end": 33226.47, "probability": 0.9355 }, { "start": 33226.85, "end": 33227.37, "probability": 0.694 }, { "start": 33227.41, "end": 33228.39, "probability": 0.8176 }, { "start": 33228.41, "end": 33236.17, "probability": 0.8766 }, { "start": 33236.97, "end": 33240.19, "probability": 0.9053 }, { "start": 33241.07, "end": 33241.83, "probability": 0.9495 }, { "start": 33241.93, "end": 33243.83, "probability": 0.6768 }, { "start": 33244.27, "end": 33245.45, "probability": 0.7618 }, { "start": 33245.73, "end": 33248.43, "probability": 0.9705 }, { "start": 33248.89, "end": 33251.65, "probability": 0.9694 }, { "start": 33252.59, "end": 33256.27, "probability": 0.9868 }, { "start": 33256.59, "end": 33264.03, "probability": 0.6421 }, { "start": 33264.39, "end": 33264.93, "probability": 0.6786 }, { "start": 33265.19, "end": 33265.93, "probability": 0.5256 }, { "start": 33266.07, "end": 33266.94, "probability": 0.4929 }, { "start": 33267.55, "end": 33268.43, "probability": 0.9671 }, { "start": 33269.92, "end": 33271.43, "probability": 0.4758 }, { "start": 33271.55, "end": 33272.45, "probability": 0.416 }, { "start": 33272.69, "end": 33272.79, "probability": 0.2694 }, { "start": 33273.21, "end": 33275.27, "probability": 0.9845 }, { "start": 33275.33, "end": 33276.19, "probability": 0.6391 }, { "start": 33276.47, "end": 33277.19, "probability": 0.5473 }, { "start": 33277.63, "end": 33278.85, "probability": 0.7123 }, { "start": 33279.83, "end": 33281.91, "probability": 0.5989 }, { "start": 33282.09, "end": 33283.35, "probability": 0.979 }, { "start": 33283.43, "end": 33285.22, "probability": 0.9044 }, { "start": 33286.09, "end": 33287.31, "probability": 0.9319 }, { "start": 33287.97, "end": 33290.39, "probability": 0.9914 }, { "start": 33290.39, "end": 33292.83, "probability": 0.9951 }, { "start": 33292.97, "end": 33293.47, "probability": 0.8137 }, { "start": 33294.07, "end": 33298.03, "probability": 0.9878 }, { "start": 33298.95, "end": 33300.65, "probability": 0.7144 }, { "start": 33300.73, "end": 33302.03, "probability": 0.9001 }, { "start": 33302.34, "end": 33304.03, "probability": 0.8812 }, { "start": 33304.49, "end": 33306.99, "probability": 0.958 }, { "start": 33307.73, "end": 33309.15, "probability": 0.5082 }, { "start": 33309.61, "end": 33310.46, "probability": 0.9956 }, { "start": 33311.01, "end": 33311.72, "probability": 0.9351 }, { "start": 33312.73, "end": 33313.97, "probability": 0.6401 }, { "start": 33314.05, "end": 33314.77, "probability": 0.8624 }, { "start": 33315.03, "end": 33316.05, "probability": 0.6973 }, { "start": 33316.17, "end": 33316.49, "probability": 0.4929 }, { "start": 33316.61, "end": 33318.63, "probability": 0.8635 }, { "start": 33319.91, "end": 33321.25, "probability": 0.274 }, { "start": 33321.43, "end": 33323.41, "probability": 0.9658 }, { "start": 33323.89, "end": 33324.49, "probability": 0.9717 }, { "start": 33325.09, "end": 33330.73, "probability": 0.7623 }, { "start": 33331.61, "end": 33333.11, "probability": 0.7579 }, { "start": 33333.79, "end": 33334.87, "probability": 0.7388 }, { "start": 33335.23, "end": 33335.83, "probability": 0.9121 }, { "start": 33335.91, "end": 33337.83, "probability": 0.999 }, { "start": 33337.93, "end": 33338.45, "probability": 0.9456 }, { "start": 33338.53, "end": 33338.99, "probability": 0.6831 }, { "start": 33339.47, "end": 33341.03, "probability": 0.7424 }, { "start": 33341.23, "end": 33343.27, "probability": 0.9532 }, { "start": 33343.33, "end": 33345.87, "probability": 0.8984 }, { "start": 33346.03, "end": 33346.05, "probability": 0.349 }, { "start": 33346.35, "end": 33346.77, "probability": 0.3935 }, { "start": 33346.85, "end": 33347.15, "probability": 0.7316 }, { "start": 33347.81, "end": 33351.33, "probability": 0.8072 }, { "start": 33351.47, "end": 33352.29, "probability": 0.8168 }, { "start": 33352.47, "end": 33353.03, "probability": 0.848 }, { "start": 33353.15, "end": 33355.85, "probability": 0.7799 }, { "start": 33355.85, "end": 33358.47, "probability": 0.6162 }, { "start": 33359.13, "end": 33363.63, "probability": 0.9255 }, { "start": 33364.07, "end": 33364.55, "probability": 0.9209 }, { "start": 33364.57, "end": 33365.47, "probability": 0.8514 }, { "start": 33365.55, "end": 33366.89, "probability": 0.7928 }, { "start": 33367.81, "end": 33369.81, "probability": 0.5049 }, { "start": 33370.05, "end": 33371.29, "probability": 0.7811 }, { "start": 33371.67, "end": 33372.63, "probability": 0.7134 }, { "start": 33373.03, "end": 33375.21, "probability": 0.985 }, { "start": 33375.21, "end": 33377.71, "probability": 0.9763 }, { "start": 33378.25, "end": 33379.23, "probability": 0.9495 }, { "start": 33379.91, "end": 33381.93, "probability": 0.6826 }, { "start": 33382.11, "end": 33383.74, "probability": 0.9354 }, { "start": 33397.03, "end": 33397.65, "probability": 0.1783 }, { "start": 33398.45, "end": 33398.89, "probability": 0.0416 }, { "start": 33416.85, "end": 33418.53, "probability": 0.5108 }, { "start": 33419.93, "end": 33421.35, "probability": 0.6732 }, { "start": 33422.55, "end": 33423.65, "probability": 0.6596 }, { "start": 33424.73, "end": 33429.71, "probability": 0.8016 }, { "start": 33431.13, "end": 33432.61, "probability": 0.9728 }, { "start": 33434.35, "end": 33435.25, "probability": 0.9634 }, { "start": 33437.59, "end": 33439.67, "probability": 0.8881 }, { "start": 33441.29, "end": 33445.45, "probability": 0.8711 }, { "start": 33446.75, "end": 33449.75, "probability": 0.8702 }, { "start": 33450.99, "end": 33452.81, "probability": 0.9572 }, { "start": 33453.95, "end": 33454.81, "probability": 0.6893 }, { "start": 33455.91, "end": 33457.2, "probability": 0.9841 }, { "start": 33458.81, "end": 33460.67, "probability": 0.9972 }, { "start": 33462.39, "end": 33464.97, "probability": 0.9912 }, { "start": 33466.65, "end": 33468.33, "probability": 0.9854 }, { "start": 33470.83, "end": 33473.17, "probability": 0.8454 }, { "start": 33475.07, "end": 33477.33, "probability": 0.7378 }, { "start": 33478.57, "end": 33480.75, "probability": 0.9886 }, { "start": 33483.23, "end": 33487.83, "probability": 0.9899 }, { "start": 33489.37, "end": 33491.49, "probability": 0.9764 }, { "start": 33492.39, "end": 33495.65, "probability": 0.8926 }, { "start": 33497.95, "end": 33500.07, "probability": 0.9306 }, { "start": 33500.89, "end": 33503.01, "probability": 0.9332 }, { "start": 33504.19, "end": 33506.81, "probability": 0.939 }, { "start": 33507.65, "end": 33508.05, "probability": 0.5533 }, { "start": 33509.61, "end": 33510.85, "probability": 0.9789 }, { "start": 33511.49, "end": 33515.09, "probability": 0.9739 }, { "start": 33515.67, "end": 33516.59, "probability": 0.6953 }, { "start": 33517.55, "end": 33518.99, "probability": 0.9188 }, { "start": 33519.77, "end": 33521.56, "probability": 0.9746 }, { "start": 33522.91, "end": 33526.51, "probability": 0.9683 }, { "start": 33528.45, "end": 33530.23, "probability": 0.9912 }, { "start": 33530.93, "end": 33532.77, "probability": 0.976 }, { "start": 33534.01, "end": 33536.33, "probability": 0.9352 }, { "start": 33537.23, "end": 33539.65, "probability": 0.9937 }, { "start": 33540.19, "end": 33542.24, "probability": 0.9453 }, { "start": 33543.03, "end": 33544.01, "probability": 0.9708 }, { "start": 33544.65, "end": 33546.18, "probability": 0.9509 }, { "start": 33546.75, "end": 33550.41, "probability": 0.9512 }, { "start": 33551.41, "end": 33553.61, "probability": 0.5466 }, { "start": 33554.15, "end": 33554.91, "probability": 0.925 }, { "start": 33556.95, "end": 33557.59, "probability": 0.9584 }, { "start": 33560.41, "end": 33562.77, "probability": 0.874 }, { "start": 33563.49, "end": 33565.32, "probability": 0.9666 }, { "start": 33566.65, "end": 33567.65, "probability": 0.9529 }, { "start": 33570.47, "end": 33571.55, "probability": 0.9951 }, { "start": 33572.83, "end": 33573.15, "probability": 0.6093 }, { "start": 33574.57, "end": 33577.05, "probability": 0.9805 }, { "start": 33577.93, "end": 33578.45, "probability": 0.4308 }, { "start": 33579.09, "end": 33580.75, "probability": 0.9705 }, { "start": 33581.51, "end": 33582.64, "probability": 0.9966 }, { "start": 33584.13, "end": 33585.89, "probability": 0.9743 }, { "start": 33585.99, "end": 33586.89, "probability": 0.7493 }, { "start": 33587.45, "end": 33588.17, "probability": 0.999 }, { "start": 33589.59, "end": 33591.21, "probability": 0.9789 }, { "start": 33592.59, "end": 33593.81, "probability": 0.7552 }, { "start": 33595.15, "end": 33596.15, "probability": 0.9469 }, { "start": 33597.45, "end": 33598.97, "probability": 0.9659 }, { "start": 33599.51, "end": 33602.75, "probability": 0.9013 }, { "start": 33604.01, "end": 33605.79, "probability": 0.9741 }, { "start": 33605.83, "end": 33609.99, "probability": 0.9849 }, { "start": 33611.45, "end": 33613.25, "probability": 0.957 }, { "start": 33613.73, "end": 33613.93, "probability": 0.4489 }, { "start": 33614.21, "end": 33616.09, "probability": 0.5539 }, { "start": 33616.21, "end": 33617.45, "probability": 0.9026 }, { "start": 33618.77, "end": 33619.89, "probability": 0.8821 }, { "start": 33621.11, "end": 33621.63, "probability": 0.5437 }, { "start": 33622.35, "end": 33623.63, "probability": 0.9335 }, { "start": 33625.99, "end": 33627.27, "probability": 0.7773 }, { "start": 33627.37, "end": 33627.69, "probability": 0.9176 }, { "start": 33637.99, "end": 33639.11, "probability": 0.5625 }, { "start": 33649.39, "end": 33650.03, "probability": 0.0396 }, { "start": 33650.03, "end": 33650.31, "probability": 0.4245 }, { "start": 33650.85, "end": 33653.67, "probability": 0.7418 }, { "start": 33654.83, "end": 33656.21, "probability": 0.9255 }, { "start": 33658.17, "end": 33658.75, "probability": 0.9165 }, { "start": 33659.55, "end": 33660.83, "probability": 0.9769 }, { "start": 33662.21, "end": 33664.37, "probability": 0.9884 }, { "start": 33665.67, "end": 33667.85, "probability": 0.928 }, { "start": 33669.61, "end": 33671.51, "probability": 0.9518 }, { "start": 33673.65, "end": 33674.33, "probability": 0.3759 }, { "start": 33675.29, "end": 33676.55, "probability": 0.8834 }, { "start": 33678.75, "end": 33680.33, "probability": 0.9108 }, { "start": 33682.37, "end": 33683.93, "probability": 0.749 }, { "start": 33684.91, "end": 33686.51, "probability": 0.9339 }, { "start": 33690.59, "end": 33692.69, "probability": 0.7922 }, { "start": 33693.27, "end": 33694.83, "probability": 0.6586 }, { "start": 33695.79, "end": 33696.23, "probability": 0.6294 }, { "start": 33697.41, "end": 33698.97, "probability": 0.9748 }, { "start": 33699.27, "end": 33700.23, "probability": 0.3454 }, { "start": 33700.29, "end": 33702.87, "probability": 0.9611 }, { "start": 33703.99, "end": 33705.13, "probability": 0.7941 }, { "start": 33710.39, "end": 33711.91, "probability": 0.9904 }, { "start": 33713.57, "end": 33715.19, "probability": 0.9971 }, { "start": 33716.57, "end": 33719.17, "probability": 0.0257 }, { "start": 33734.55, "end": 33735.41, "probability": 0.4041 }, { "start": 33735.95, "end": 33736.85, "probability": 0.615 }, { "start": 33737.55, "end": 33738.03, "probability": 0.837 }, { "start": 33739.07, "end": 33740.48, "probability": 0.9821 }, { "start": 33741.45, "end": 33748.09, "probability": 0.971 }, { "start": 33749.21, "end": 33750.45, "probability": 0.9806 }, { "start": 33750.51, "end": 33751.52, "probability": 0.9608 }, { "start": 33752.05, "end": 33756.03, "probability": 0.1177 }, { "start": 33756.03, "end": 33756.03, "probability": 0.0679 }, { "start": 33756.03, "end": 33760.21, "probability": 0.856 }, { "start": 33760.57, "end": 33767.29, "probability": 0.607 }, { "start": 33767.87, "end": 33773.07, "probability": 0.9941 }, { "start": 33773.95, "end": 33777.21, "probability": 0.9932 }, { "start": 33778.15, "end": 33780.39, "probability": 0.9471 }, { "start": 33781.09, "end": 33782.73, "probability": 0.74 }, { "start": 33783.21, "end": 33786.37, "probability": 0.9321 }, { "start": 33788.73, "end": 33797.29, "probability": 0.9492 }, { "start": 33797.39, "end": 33798.01, "probability": 0.6021 }, { "start": 33798.97, "end": 33799.73, "probability": 0.8453 }, { "start": 33800.89, "end": 33803.81, "probability": 0.9853 }, { "start": 33803.89, "end": 33804.81, "probability": 0.8941 }, { "start": 33805.07, "end": 33806.15, "probability": 0.7577 }, { "start": 33806.57, "end": 33808.07, "probability": 0.7224 }, { "start": 33808.49, "end": 33811.03, "probability": 0.9826 }, { "start": 33811.17, "end": 33812.11, "probability": 0.6333 }, { "start": 33813.03, "end": 33817.19, "probability": 0.9954 }, { "start": 33817.61, "end": 33823.01, "probability": 0.9685 }, { "start": 33823.73, "end": 33824.87, "probability": 0.9629 }, { "start": 33825.33, "end": 33829.21, "probability": 0.958 }, { "start": 33829.63, "end": 33834.03, "probability": 0.8048 }, { "start": 33834.55, "end": 33838.53, "probability": 0.8942 }, { "start": 33838.97, "end": 33843.23, "probability": 0.9592 }, { "start": 33843.95, "end": 33845.67, "probability": 0.9915 }, { "start": 33846.21, "end": 33849.45, "probability": 0.81 }, { "start": 33850.57, "end": 33852.15, "probability": 0.7612 }, { "start": 33852.53, "end": 33856.31, "probability": 0.9899 }, { "start": 33856.83, "end": 33858.81, "probability": 0.7061 }, { "start": 33859.69, "end": 33862.26, "probability": 0.9104 }, { "start": 33863.61, "end": 33867.85, "probability": 0.9951 }, { "start": 33868.69, "end": 33871.02, "probability": 0.8748 }, { "start": 33871.81, "end": 33873.26, "probability": 0.9777 }, { "start": 33873.55, "end": 33875.55, "probability": 0.9951 }, { "start": 33875.93, "end": 33877.63, "probability": 0.955 }, { "start": 33878.41, "end": 33879.33, "probability": 0.8844 }, { "start": 33879.87, "end": 33883.85, "probability": 0.9783 }, { "start": 33884.43, "end": 33887.79, "probability": 0.9917 }, { "start": 33888.09, "end": 33891.45, "probability": 0.9746 }, { "start": 33892.39, "end": 33896.95, "probability": 0.9984 }, { "start": 33897.31, "end": 33897.31, "probability": 0.0713 }, { "start": 33897.31, "end": 33899.31, "probability": 0.3888 }, { "start": 33899.31, "end": 33899.31, "probability": 0.0568 }, { "start": 33899.31, "end": 33900.25, "probability": 0.3521 }, { "start": 33900.63, "end": 33902.85, "probability": 0.9189 }, { "start": 33903.13, "end": 33904.73, "probability": 0.9606 }, { "start": 33905.03, "end": 33909.41, "probability": 0.3374 }, { "start": 33910.85, "end": 33910.93, "probability": 0.0137 }, { "start": 33910.93, "end": 33910.93, "probability": 0.0219 }, { "start": 33910.93, "end": 33911.31, "probability": 0.0464 }, { "start": 33911.31, "end": 33912.59, "probability": 0.2068 }, { "start": 33912.77, "end": 33913.61, "probability": 0.3554 }, { "start": 33913.79, "end": 33916.75, "probability": 0.8988 }, { "start": 33916.85, "end": 33916.97, "probability": 0.1882 }, { "start": 33917.09, "end": 33918.61, "probability": 0.8307 }, { "start": 33918.81, "end": 33920.61, "probability": 0.6985 }, { "start": 33921.19, "end": 33923.17, "probability": 0.9495 }, { "start": 33925.11, "end": 33929.17, "probability": 0.8772 }, { "start": 33932.81, "end": 33934.13, "probability": 0.3624 }, { "start": 33934.67, "end": 33936.67, "probability": 0.5393 }, { "start": 33936.75, "end": 33937.19, "probability": 0.6924 }, { "start": 33937.67, "end": 33939.43, "probability": 0.9663 }, { "start": 33939.79, "end": 33940.49, "probability": 0.2767 }, { "start": 33946.09, "end": 33948.83, "probability": 0.3728 }, { "start": 33950.47, "end": 33951.27, "probability": 0.7347 }, { "start": 33951.59, "end": 33952.25, "probability": 0.0057 }, { "start": 33952.95, "end": 33954.47, "probability": 0.8008 }, { "start": 33956.97, "end": 33958.43, "probability": 0.9181 }, { "start": 33960.99, "end": 33963.15, "probability": 0.9678 }, { "start": 33965.11, "end": 33966.61, "probability": 0.9567 }, { "start": 33969.87, "end": 33972.41, "probability": 0.7463 }, { "start": 33975.05, "end": 33976.69, "probability": 0.7985 }, { "start": 33978.91, "end": 33980.21, "probability": 0.9299 }, { "start": 33982.89, "end": 33983.53, "probability": 0.1281 }, { "start": 33984.55, "end": 33987.39, "probability": 0.0317 }, { "start": 33990.83, "end": 33991.87, "probability": 0.0713 }, { "start": 33991.87, "end": 33992.79, "probability": 0.0193 }, { "start": 33995.43, "end": 33997.95, "probability": 0.5547 }, { "start": 34026.56, "end": 34027.62, "probability": 0.9866 }, { "start": 34034.32, "end": 34036.9, "probability": 0.5005 }, { "start": 34038.56, "end": 34039.46, "probability": 0.6913 }, { "start": 34041.94, "end": 34043.58, "probability": 0.932 }, { "start": 34045.72, "end": 34050.24, "probability": 0.8892 }, { "start": 34051.74, "end": 34053.02, "probability": 0.5229 }, { "start": 34053.82, "end": 34055.84, "probability": 0.1446 }, { "start": 34062.54, "end": 34063.18, "probability": 0.338 }, { "start": 34063.82, "end": 34064.14, "probability": 0.5004 }, { "start": 34064.96, "end": 34065.38, "probability": 0.9082 }, { "start": 34067.76, "end": 34070.2, "probability": 0.9452 }, { "start": 34071.06, "end": 34076.86, "probability": 0.844 }, { "start": 34078.22, "end": 34081.04, "probability": 0.8384 }, { "start": 34081.74, "end": 34082.06, "probability": 0.9478 }, { "start": 34082.82, "end": 34084.44, "probability": 0.9819 }, { "start": 34084.7, "end": 34086.3, "probability": 0.8672 }, { "start": 34086.62, "end": 34087.36, "probability": 0.5396 }, { "start": 34087.58, "end": 34088.42, "probability": 0.6096 }, { "start": 34089.02, "end": 34091.92, "probability": 0.9476 }, { "start": 34093.42, "end": 34096.54, "probability": 0.0388 }, { "start": 34096.68, "end": 34098.82, "probability": 0.9052 }, { "start": 34099.12, "end": 34099.12, "probability": 0.099 }, { "start": 34099.12, "end": 34100.1, "probability": 0.8987 }, { "start": 34100.72, "end": 34103.06, "probability": 0.9859 }, { "start": 34103.8, "end": 34105.68, "probability": 0.7936 }, { "start": 34106.26, "end": 34108.9, "probability": 0.8948 }, { "start": 34109.62, "end": 34110.21, "probability": 0.9934 }, { "start": 34111.06, "end": 34112.36, "probability": 0.9084 }, { "start": 34112.88, "end": 34114.42, "probability": 0.8472 }, { "start": 34115.34, "end": 34119.56, "probability": 0.951 }, { "start": 34120.24, "end": 34122.42, "probability": 0.6085 }, { "start": 34122.96, "end": 34123.14, "probability": 0.4617 }, { "start": 34123.82, "end": 34127.94, "probability": 0.9452 }, { "start": 34129.12, "end": 34131.74, "probability": 0.8923 }, { "start": 34132.86, "end": 34136.46, "probability": 0.9976 }, { "start": 34136.64, "end": 34137.3, "probability": 0.6417 }, { "start": 34137.96, "end": 34139.48, "probability": 0.9606 }, { "start": 34141.76, "end": 34142.76, "probability": 0.8553 }, { "start": 34143.36, "end": 34146.4, "probability": 0.989 }, { "start": 34147.12, "end": 34149.92, "probability": 0.8009 }, { "start": 34150.8, "end": 34151.8, "probability": 0.9947 }, { "start": 34152.42, "end": 34155.88, "probability": 0.9317 }, { "start": 34156.42, "end": 34157.7, "probability": 0.9578 }, { "start": 34158.76, "end": 34162.66, "probability": 0.9334 }, { "start": 34162.74, "end": 34164.34, "probability": 0.0829 }, { "start": 34167.86, "end": 34168.28, "probability": 0.2158 }, { "start": 34182.93, "end": 34185.6, "probability": 0.4366 }, { "start": 34186.06, "end": 34186.5, "probability": 0.3525 }, { "start": 34186.98, "end": 34187.62, "probability": 0.6202 }, { "start": 34187.64, "end": 34189.18, "probability": 0.7374 }, { "start": 34189.4, "end": 34190.02, "probability": 0.7941 }, { "start": 34192.15, "end": 34194.34, "probability": 0.7943 }, { "start": 34194.86, "end": 34195.56, "probability": 0.0005 }, { "start": 34196.4, "end": 34197.32, "probability": 0.051 }, { "start": 34198.22, "end": 34198.48, "probability": 0.0214 }, { "start": 34199.92, "end": 34200.8, "probability": 0.0371 }, { "start": 34208.16, "end": 34210.66, "probability": 0.0782 }, { "start": 34214.04, "end": 34214.42, "probability": 0.6104 }, { "start": 34218.22, "end": 34221.9, "probability": 0.1475 }, { "start": 34222.76, "end": 34222.76, "probability": 0.0365 }, { "start": 34224.06, "end": 34224.62, "probability": 0.4978 }, { "start": 34224.62, "end": 34224.62, "probability": 0.1311 }, { "start": 34224.62, "end": 34227.36, "probability": 0.0855 }, { "start": 34228.7, "end": 34229.52, "probability": 0.0947 }, { "start": 34232.04, "end": 34232.6, "probability": 0.1505 }, { "start": 34243.32, "end": 34245.3, "probability": 0.0268 }, { "start": 34247.49, "end": 34248.46, "probability": 0.1319 }, { "start": 34250.62, "end": 34252.32, "probability": 0.2025 }, { "start": 34253.8, "end": 34255.08, "probability": 0.1372 }, { "start": 34259.94, "end": 34259.94, "probability": 0.0407 }, { "start": 34279.0, "end": 34279.0, "probability": 0.0 }, { "start": 34279.0, "end": 34279.0, "probability": 0.0 }, { "start": 34279.0, "end": 34279.0, "probability": 0.0 }, { "start": 34279.0, "end": 34279.0, "probability": 0.0 }, { "start": 34279.0, "end": 34279.0, "probability": 0.0 }, { "start": 34279.0, "end": 34279.0, "probability": 0.0 }, { "start": 34279.0, "end": 34279.0, "probability": 0.0 }, { "start": 34279.0, "end": 34279.0, "probability": 0.0 }, { "start": 34279.0, "end": 34279.0, "probability": 0.0 }, { "start": 34279.0, "end": 34279.0, "probability": 0.0 }, { "start": 34279.0, "end": 34279.0, "probability": 0.0 }, { "start": 34279.0, "end": 34279.0, "probability": 0.0 }, { "start": 34279.0, "end": 34279.0, "probability": 0.0 }, { "start": 34279.0, "end": 34279.0, "probability": 0.0 }, { "start": 34279.0, "end": 34279.0, "probability": 0.0 }, { "start": 34279.0, "end": 34279.0, "probability": 0.0 }, { "start": 34279.0, "end": 34279.0, "probability": 0.0 }, { "start": 34279.0, "end": 34279.0, "probability": 0.0 }, { "start": 34279.0, "end": 34279.0, "probability": 0.0 }, { "start": 34279.36, "end": 34281.22, "probability": 0.0188 }, { "start": 34283.0, "end": 34284.38, "probability": 0.1767 }, { "start": 34284.78, "end": 34287.32, "probability": 0.3104 }, { "start": 34287.32, "end": 34289.48, "probability": 0.5568 }, { "start": 34289.6, "end": 34289.64, "probability": 0.4373 }, { "start": 34293.93, "end": 34295.44, "probability": 0.8083 }, { "start": 34400.0, "end": 34400.0, "probability": 0.0 }, { "start": 34400.0, "end": 34400.0, "probability": 0.0 }, { "start": 34400.0, "end": 34400.0, "probability": 0.0 }, { "start": 34400.0, "end": 34400.0, "probability": 0.0 }, { "start": 34400.0, "end": 34400.0, "probability": 0.0 }, { "start": 34400.0, "end": 34400.0, "probability": 0.0 }, { "start": 34400.0, "end": 34400.0, "probability": 0.0 }, { "start": 34400.0, "end": 34400.0, "probability": 0.0 }, { "start": 34400.0, "end": 34400.0, "probability": 0.0 }, { "start": 34400.0, "end": 34400.0, "probability": 0.0 }, { "start": 34400.0, "end": 34400.0, "probability": 0.0 }, { "start": 34400.0, "end": 34400.0, "probability": 0.0 }, { "start": 34400.0, "end": 34400.0, "probability": 0.0 }, { "start": 34400.0, "end": 34400.0, "probability": 0.0 }, { "start": 34400.0, "end": 34400.0, "probability": 0.0 }, { "start": 34400.0, "end": 34400.0, "probability": 0.0 }, { "start": 34400.0, "end": 34400.0, "probability": 0.0 }, { "start": 34400.0, "end": 34400.0, "probability": 0.0 }, { "start": 34400.0, "end": 34400.0, "probability": 0.0 }, { "start": 34400.0, "end": 34400.0, "probability": 0.0 }, { "start": 34400.0, "end": 34400.0, "probability": 0.0 }, { "start": 34400.0, "end": 34400.0, "probability": 0.0 }, { "start": 34400.0, "end": 34400.0, "probability": 0.0 }, { "start": 34400.0, "end": 34400.0, "probability": 0.0 }, { "start": 34400.0, "end": 34400.0, "probability": 0.0 }, { "start": 34400.0, "end": 34400.0, "probability": 0.0 }, { "start": 34400.3, "end": 34401.02, "probability": 0.0005 }, { "start": 34401.02, "end": 34402.82, "probability": 0.8377 }, { "start": 34403.06, "end": 34403.83, "probability": 0.9063 }, { "start": 34403.98, "end": 34405.12, "probability": 0.7446 }, { "start": 34405.12, "end": 34405.24, "probability": 0.6085 }, { "start": 34406.08, "end": 34407.72, "probability": 0.88 }, { "start": 34407.92, "end": 34409.17, "probability": 0.915 }, { "start": 34409.72, "end": 34412.34, "probability": 0.4138 }, { "start": 34412.34, "end": 34414.92, "probability": 0.8721 }, { "start": 34417.68, "end": 34420.98, "probability": 0.8778 }, { "start": 34421.58, "end": 34425.6, "probability": 0.6438 }, { "start": 34426.22, "end": 34428.16, "probability": 0.7085 }, { "start": 34429.15, "end": 34429.99, "probability": 0.2063 }, { "start": 34431.68, "end": 34432.26, "probability": 0.9325 }, { "start": 34434.04, "end": 34434.99, "probability": 0.6594 }, { "start": 34436.2, "end": 34436.76, "probability": 0.9723 }, { "start": 34437.72, "end": 34438.62, "probability": 0.7096 }, { "start": 34439.58, "end": 34440.1, "probability": 0.9946 }, { "start": 34440.94, "end": 34441.74, "probability": 0.8471 }, { "start": 34442.78, "end": 34443.3, "probability": 0.993 }, { "start": 34444.06, "end": 34444.8, "probability": 0.9242 }, { "start": 34445.48, "end": 34445.92, "probability": 0.8801 }, { "start": 34447.34, "end": 34448.22, "probability": 0.708 }, { "start": 34449.12, "end": 34449.7, "probability": 0.9987 }, { "start": 34450.88, "end": 34451.84, "probability": 0.951 }, { "start": 34452.74, "end": 34453.3, "probability": 0.9956 }, { "start": 34454.04, "end": 34455.04, "probability": 0.9088 }, { "start": 34456.22, "end": 34459.88, "probability": 0.6915 }, { "start": 34461.14, "end": 34461.68, "probability": 0.6997 }, { "start": 34462.82, "end": 34463.66, "probability": 0.7407 }, { "start": 34465.24, "end": 34466.5, "probability": 0.9951 }, { "start": 34467.3, "end": 34468.24, "probability": 0.9557 }, { "start": 34469.28, "end": 34470.16, "probability": 0.9959 }, { "start": 34471.12, "end": 34472.38, "probability": 0.9919 }, { "start": 34473.14, "end": 34475.16, "probability": 0.946 }, { "start": 34476.32, "end": 34477.04, "probability": 0.9972 }, { "start": 34478.0, "end": 34478.86, "probability": 0.9291 }, { "start": 34483.78, "end": 34484.54, "probability": 0.5733 }, { "start": 34485.8, "end": 34486.62, "probability": 0.6166 }, { "start": 34487.82, "end": 34488.4, "probability": 0.9315 }, { "start": 34489.54, "end": 34490.52, "probability": 0.8743 }, { "start": 34491.16, "end": 34493.36, "probability": 0.9301 }, { "start": 34494.54, "end": 34495.2, "probability": 0.9951 }, { "start": 34496.34, "end": 34497.26, "probability": 0.8855 }, { "start": 34497.92, "end": 34498.38, "probability": 0.8367 }, { "start": 34499.16, "end": 34501.12, "probability": 0.9609 }, { "start": 34501.9, "end": 34502.66, "probability": 0.9889 }, { "start": 34503.4, "end": 34505.48, "probability": 0.9879 }, { "start": 34506.24, "end": 34506.8, "probability": 0.9779 }, { "start": 34507.52, "end": 34508.36, "probability": 0.9629 }, { "start": 34513.16, "end": 34516.22, "probability": 0.7574 }, { "start": 34517.34, "end": 34517.88, "probability": 0.6415 }, { "start": 34518.94, "end": 34520.16, "probability": 0.6686 }, { "start": 34522.08, "end": 34522.6, "probability": 0.9104 }, { "start": 34523.24, "end": 34523.96, "probability": 0.9047 }, { "start": 34524.82, "end": 34526.62, "probability": 0.9564 }, { "start": 34527.4, "end": 34527.98, "probability": 0.988 }, { "start": 34528.94, "end": 34529.72, "probability": 0.951 }, { "start": 34531.44, "end": 34533.58, "probability": 0.9072 }, { "start": 34535.14, "end": 34538.16, "probability": 0.2713 }, { "start": 34551.24, "end": 34552.08, "probability": 0.5056 }, { "start": 34554.76, "end": 34555.36, "probability": 0.7856 }, { "start": 34556.22, "end": 34557.02, "probability": 0.7205 }, { "start": 34558.22, "end": 34558.68, "probability": 0.8253 }, { "start": 34559.82, "end": 34560.84, "probability": 0.6413 }, { "start": 34562.84, "end": 34565.68, "probability": 0.9067 }, { "start": 34566.34, "end": 34566.86, "probability": 0.5174 }, { "start": 34567.7, "end": 34569.12, "probability": 0.1657 }, { "start": 34570.32, "end": 34570.94, "probability": 0.7777 }, { "start": 34571.76, "end": 34572.74, "probability": 0.7998 }, { "start": 34573.78, "end": 34574.32, "probability": 0.8955 }, { "start": 34575.78, "end": 34576.68, "probability": 0.9131 }, { "start": 34577.91, "end": 34580.86, "probability": 0.8394 }, { "start": 34581.56, "end": 34583.92, "probability": 0.9646 }, { "start": 34584.88, "end": 34585.54, "probability": 0.9969 }, { "start": 34587.88, "end": 34588.76, "probability": 0.9368 }, { "start": 34591.9, "end": 34592.5, "probability": 0.9778 }, { "start": 34593.36, "end": 34594.28, "probability": 0.9613 }, { "start": 34595.36, "end": 34595.94, "probability": 0.9943 }, { "start": 34596.64, "end": 34598.62, "probability": 0.0111 }, { "start": 34599.62, "end": 34602.18, "probability": 0.6575 }, { "start": 34603.16, "end": 34603.72, "probability": 0.8988 }, { "start": 34604.38, "end": 34605.56, "probability": 0.9273 }, { "start": 34606.32, "end": 34608.44, "probability": 0.9215 }, { "start": 34612.62, "end": 34613.26, "probability": 0.9108 }, { "start": 34614.22, "end": 34615.5, "probability": 0.7584 }, { "start": 34617.94, "end": 34618.94, "probability": 0.7982 }, { "start": 34620.36, "end": 34620.96, "probability": 0.3929 }, { "start": 34621.62, "end": 34622.14, "probability": 0.9746 }, { "start": 34623.4, "end": 34624.44, "probability": 0.9199 }, { "start": 34625.2, "end": 34625.62, "probability": 0.9873 }, { "start": 34628.02, "end": 34628.98, "probability": 0.6854 }, { "start": 34635.02, "end": 34635.42, "probability": 0.5456 }, { "start": 34637.16, "end": 34637.9, "probability": 0.6765 }, { "start": 34640.24, "end": 34641.02, "probability": 0.9194 }, { "start": 34641.96, "end": 34642.7, "probability": 0.8369 }, { "start": 34646.5, "end": 34647.4, "probability": 0.787 }, { "start": 34648.4, "end": 34649.68, "probability": 0.7694 }, { "start": 34651.74, "end": 34653.26, "probability": 0.9504 }, { "start": 34653.94, "end": 34658.0, "probability": 0.9556 }, { "start": 34659.06, "end": 34659.06, "probability": 0.0019 }, { "start": 34663.46, "end": 34664.62, "probability": 0.245 }, { "start": 34665.62, "end": 34666.1, "probability": 0.4983 }, { "start": 34666.68, "end": 34669.74, "probability": 0.7326 }, { "start": 34670.68, "end": 34671.22, "probability": 0.8308 }, { "start": 34672.66, "end": 34674.28, "probability": 0.9314 }, { "start": 34676.84, "end": 34677.54, "probability": 0.9212 }, { "start": 34678.68, "end": 34679.48, "probability": 0.9572 }, { "start": 34680.28, "end": 34681.84, "probability": 0.8556 }, { "start": 34683.52, "end": 34684.1, "probability": 0.8972 }, { "start": 34685.76, "end": 34686.98, "probability": 0.8817 }, { "start": 34687.66, "end": 34688.7, "probability": 0.0655 }, { "start": 34698.98, "end": 34699.44, "probability": 0.7148 }, { "start": 34700.56, "end": 34701.3, "probability": 0.5704 }, { "start": 34702.86, "end": 34707.48, "probability": 0.8999 }, { "start": 34709.12, "end": 34709.6, "probability": 0.8687 }, { "start": 34710.6, "end": 34711.52, "probability": 0.9136 }, { "start": 34713.4, "end": 34715.94, "probability": 0.9445 }, { "start": 34717.08, "end": 34717.68, "probability": 0.991 }, { "start": 34718.66, "end": 34719.34, "probability": 0.9828 }, { "start": 34720.2, "end": 34722.14, "probability": 0.9834 }, { "start": 34723.32, "end": 34723.62, "probability": 0.9939 }, { "start": 34724.56, "end": 34725.5, "probability": 0.7846 }, { "start": 34727.1, "end": 34727.52, "probability": 0.9922 }, { "start": 34728.58, "end": 34729.38, "probability": 0.5148 }, { "start": 34734.9, "end": 34738.2, "probability": 0.6296 }, { "start": 34738.78, "end": 34739.08, "probability": 0.577 }, { "start": 34739.84, "end": 34740.82, "probability": 0.5845 }, { "start": 34744.92, "end": 34745.2, "probability": 0.5076 }, { "start": 34746.58, "end": 34747.64, "probability": 0.6546 }, { "start": 34748.7, "end": 34749.2, "probability": 0.9683 }, { "start": 34750.82, "end": 34751.84, "probability": 0.9051 }, { "start": 34752.66, "end": 34753.18, "probability": 0.9622 }, { "start": 34754.26, "end": 34754.96, "probability": 0.9004 }, { "start": 34756.7, "end": 34757.36, "probability": 0.9951 }, { "start": 34758.2, "end": 34758.9, "probability": 0.8732 }, { "start": 34759.76, "end": 34760.3, "probability": 0.9904 }, { "start": 34760.94, "end": 34762.08, "probability": 0.503 }, { "start": 34762.82, "end": 34765.06, "probability": 0.9792 }, { "start": 34766.28, "end": 34768.62, "probability": 0.9793 }, { "start": 34771.02, "end": 34773.9, "probability": 0.5958 }, { "start": 34776.14, "end": 34776.84, "probability": 0.9609 }, { "start": 34777.72, "end": 34778.68, "probability": 0.7218 }, { "start": 34779.32, "end": 34780.12, "probability": 0.8682 }, { "start": 34780.72, "end": 34784.56, "probability": 0.8616 }, { "start": 34787.1, "end": 34788.74, "probability": 0.9762 }, { "start": 34789.82, "end": 34790.56, "probability": 0.5438 }, { "start": 34792.14, "end": 34793.22, "probability": 0.7719 }, { "start": 34794.06, "end": 34794.9, "probability": 0.8628 }, { "start": 34796.54, "end": 34796.98, "probability": 0.9626 }, { "start": 34797.62, "end": 34798.74, "probability": 0.3162 }, { "start": 34801.96, "end": 34803.96, "probability": 0.717 }, { "start": 34805.0, "end": 34805.62, "probability": 0.978 }, { "start": 34806.84, "end": 34807.86, "probability": 0.5991 }, { "start": 34809.0, "end": 34809.62, "probability": 0.971 }, { "start": 34810.4, "end": 34812.38, "probability": 0.9568 }, { "start": 34813.28, "end": 34814.08, "probability": 0.8128 }, { "start": 34815.08, "end": 34817.78, "probability": 0.5435 }, { "start": 34818.84, "end": 34819.86, "probability": 0.6995 }, { "start": 34821.16, "end": 34821.88, "probability": 0.9456 }, { "start": 34823.46, "end": 34824.04, "probability": 0.9803 }, { "start": 34825.02, "end": 34825.68, "probability": 0.8341 }, { "start": 34827.56, "end": 34828.12, "probability": 0.6283 }, { "start": 34829.26, "end": 34830.08, "probability": 0.6546 }, { "start": 34831.3, "end": 34833.5, "probability": 0.9481 }, { "start": 34834.58, "end": 34835.14, "probability": 0.98 }, { "start": 34835.9, "end": 34836.74, "probability": 0.9186 }, { "start": 34839.5, "end": 34840.08, "probability": 0.9966 }, { "start": 34841.3, "end": 34842.3, "probability": 0.903 }, { "start": 34843.28, "end": 34843.62, "probability": 0.9858 }, { "start": 34844.42, "end": 34844.8, "probability": 0.9646 }, { "start": 34846.26, "end": 34846.78, "probability": 0.991 }, { "start": 34847.6, "end": 34848.4, "probability": 0.8394 }, { "start": 34849.34, "end": 34849.62, "probability": 0.9231 }, { "start": 34850.6, "end": 34851.42, "probability": 0.8616 }, { "start": 34855.54, "end": 34856.2, "probability": 0.4019 }, { "start": 34858.16, "end": 34858.76, "probability": 0.9717 }, { "start": 34860.2, "end": 34861.1, "probability": 0.8982 }, { "start": 34862.84, "end": 34863.34, "probability": 0.7211 }, { "start": 34864.5, "end": 34865.52, "probability": 0.9047 }, { "start": 34866.3, "end": 34868.28, "probability": 0.9646 }, { "start": 34869.32, "end": 34869.86, "probability": 0.948 }, { "start": 34870.52, "end": 34871.6, "probability": 0.9816 }, { "start": 34872.32, "end": 34872.58, "probability": 0.9529 }, { "start": 34873.6, "end": 34877.78, "probability": 0.9503 }, { "start": 34878.46, "end": 34878.98, "probability": 0.9863 }, { "start": 34879.86, "end": 34881.06, "probability": 0.7868 }, { "start": 34881.72, "end": 34882.0, "probability": 0.5406 }, { "start": 34882.74, "end": 34883.86, "probability": 0.4864 }, { "start": 34885.8, "end": 34886.32, "probability": 0.9094 }, { "start": 34887.58, "end": 34888.52, "probability": 0.798 }, { "start": 34889.32, "end": 34891.2, "probability": 0.8831 }, { "start": 34892.32, "end": 34894.08, "probability": 0.7384 }, { "start": 34895.1, "end": 34895.74, "probability": 0.9634 }, { "start": 34896.46, "end": 34897.44, "probability": 0.9647 }, { "start": 34898.18, "end": 34900.3, "probability": 0.8619 }, { "start": 34907.64, "end": 34909.2, "probability": 0.5886 }, { "start": 34911.9, "end": 34912.9, "probability": 0.6695 }, { "start": 34913.66, "end": 34914.16, "probability": 0.8393 }, { "start": 34921.28, "end": 34921.92, "probability": 0.2084 }, { "start": 34925.88, "end": 34926.32, "probability": 0.6976 }, { "start": 34926.86, "end": 34929.74, "probability": 0.6021 }, { "start": 34931.06, "end": 34932.72, "probability": 0.8962 }, { "start": 34933.58, "end": 34935.5, "probability": 0.7837 }, { "start": 34937.82, "end": 34938.4, "probability": 0.9883 }, { "start": 34944.42, "end": 34948.9, "probability": 0.6906 }, { "start": 34949.3, "end": 34950.28, "probability": 0.4886 }, { "start": 34952.12, "end": 34954.4, "probability": 0.8637 }, { "start": 34955.18, "end": 34957.04, "probability": 0.9346 }, { "start": 34958.18, "end": 34958.8, "probability": 0.951 }, { "start": 34962.1, "end": 34963.1, "probability": 0.4777 }, { "start": 34964.22, "end": 34966.64, "probability": 0.7461 }, { "start": 34967.74, "end": 34968.22, "probability": 0.8208 }, { "start": 34970.18, "end": 34970.96, "probability": 0.8078 }, { "start": 34972.96, "end": 34973.96, "probability": 0.9875 }, { "start": 34976.44, "end": 34977.58, "probability": 0.9615 }, { "start": 34979.52, "end": 34982.5, "probability": 0.9639 }, { "start": 34984.62, "end": 34987.42, "probability": 0.7302 }, { "start": 34988.14, "end": 34989.96, "probability": 0.7854 }, { "start": 34991.2, "end": 34992.5, "probability": 0.7852 }, { "start": 34993.72, "end": 34995.94, "probability": 0.8943 }, { "start": 34996.96, "end": 34998.04, "probability": 0.7834 }, { "start": 35000.32, "end": 35001.98, "probability": 0.8846 }, { "start": 35007.56, "end": 35009.68, "probability": 0.6234 }, { "start": 35010.2, "end": 35011.32, "probability": 0.6293 }, { "start": 35012.72, "end": 35017.2, "probability": 0.6924 }, { "start": 35017.36, "end": 35022.04, "probability": 0.8599 }, { "start": 35022.1, "end": 35023.96, "probability": 0.9253 }, { "start": 35024.64, "end": 35026.2, "probability": 0.9543 }, { "start": 35027.58, "end": 35028.18, "probability": 0.1219 }, { "start": 35029.48, "end": 35033.28, "probability": 0.7848 }, { "start": 35033.98, "end": 35039.38, "probability": 0.9001 }, { "start": 35040.1, "end": 35042.68, "probability": 0.8389 }, { "start": 35043.34, "end": 35044.03, "probability": 0.1749 }, { "start": 35044.84, "end": 35045.74, "probability": 0.9389 }, { "start": 35046.5, "end": 35047.4, "probability": 0.3572 }, { "start": 35048.18, "end": 35049.16, "probability": 0.9802 }, { "start": 35052.86, "end": 35057.94, "probability": 0.9956 }, { "start": 35058.88, "end": 35060.2, "probability": 0.577 }, { "start": 35063.26, "end": 35063.48, "probability": 0.7974 }, { "start": 35064.42, "end": 35065.8, "probability": 0.668 }, { "start": 35068.18, "end": 35069.86, "probability": 0.924 }, { "start": 35071.9, "end": 35074.8, "probability": 0.231 }, { "start": 35074.8, "end": 35075.4, "probability": 0.2392 }, { "start": 35077.38, "end": 35077.48, "probability": 0.1987 }, { "start": 35079.0, "end": 35080.54, "probability": 0.6481 }, { "start": 35081.26, "end": 35081.68, "probability": 0.7321 }, { "start": 35084.42, "end": 35085.26, "probability": 0.1121 }, { "start": 35085.52, "end": 35085.52, "probability": 0.3689 }, { "start": 35085.7, "end": 35087.98, "probability": 0.0868 }, { "start": 35093.04, "end": 35097.32, "probability": 0.3651 }, { "start": 35097.48, "end": 35098.04, "probability": 0.7748 }, { "start": 35098.74, "end": 35100.03, "probability": 0.8084 }, { "start": 35101.08, "end": 35105.8, "probability": 0.6886 }, { "start": 35106.72, "end": 35108.32, "probability": 0.718 }, { "start": 35108.56, "end": 35110.2, "probability": 0.3993 }, { "start": 35110.36, "end": 35112.3, "probability": 0.0673 }, { "start": 35112.32, "end": 35112.42, "probability": 0.0382 }, { "start": 35112.42, "end": 35113.61, "probability": 0.7573 }, { "start": 35114.48, "end": 35116.4, "probability": 0.8499 }, { "start": 35117.26, "end": 35118.5, "probability": 0.9536 }, { "start": 35119.78, "end": 35121.46, "probability": 0.9341 }, { "start": 35122.34, "end": 35126.16, "probability": 0.2318 }, { "start": 35127.06, "end": 35127.62, "probability": 0.0651 }, { "start": 35128.62, "end": 35131.23, "probability": 0.2021 }, { "start": 35138.04, "end": 35140.14, "probability": 0.2853 }, { "start": 35142.46, "end": 35144.12, "probability": 0.4344 }, { "start": 35145.38, "end": 35148.22, "probability": 0.6136 }, { "start": 35148.88, "end": 35150.28, "probability": 0.032 }, { "start": 35166.38, "end": 35168.28, "probability": 0.7465 }, { "start": 35169.42, "end": 35171.78, "probability": 0.9283 }, { "start": 35172.8, "end": 35175.6, "probability": 0.9847 }, { "start": 35176.9, "end": 35178.18, "probability": 0.9352 }, { "start": 35180.88, "end": 35183.1, "probability": 0.8816 }, { "start": 35184.6, "end": 35188.66, "probability": 0.8569 }, { "start": 35188.66, "end": 35193.14, "probability": 0.098 }, { "start": 35193.6, "end": 35194.9, "probability": 0.5281 }, { "start": 35196.08, "end": 35199.76, "probability": 0.9749 }, { "start": 35200.36, "end": 35203.78, "probability": 0.6383 }, { "start": 35203.86, "end": 35209.32, "probability": 0.8545 }, { "start": 35210.26, "end": 35212.26, "probability": 0.8055 }, { "start": 35213.02, "end": 35213.56, "probability": 0.8998 }, { "start": 35214.58, "end": 35217.34, "probability": 0.9582 }, { "start": 35229.3, "end": 35231.1, "probability": 0.7941 }, { "start": 35232.28, "end": 35232.72, "probability": 0.6038 }, { "start": 35232.78, "end": 35235.44, "probability": 0.9333 }, { "start": 35235.54, "end": 35237.64, "probability": 0.8884 }, { "start": 35238.28, "end": 35239.38, "probability": 0.972 }, { "start": 35240.56, "end": 35242.76, "probability": 0.9429 }, { "start": 35242.9, "end": 35243.58, "probability": 0.8824 }, { "start": 35243.68, "end": 35244.36, "probability": 0.2951 }, { "start": 35245.38, "end": 35247.42, "probability": 0.6548 }, { "start": 35247.98, "end": 35248.6, "probability": 0.9516 }, { "start": 35249.76, "end": 35254.84, "probability": 0.9683 }, { "start": 35255.3, "end": 35258.4, "probability": 0.9854 }, { "start": 35258.96, "end": 35260.38, "probability": 0.9718 }, { "start": 35261.22, "end": 35263.54, "probability": 0.9274 }, { "start": 35264.26, "end": 35268.8, "probability": 0.9944 }, { "start": 35269.18, "end": 35276.22, "probability": 0.9628 }, { "start": 35276.4, "end": 35280.04, "probability": 0.9849 }, { "start": 35280.1, "end": 35280.5, "probability": 0.7505 }, { "start": 35282.14, "end": 35285.02, "probability": 0.8564 }, { "start": 35286.64, "end": 35288.46, "probability": 0.9971 }, { "start": 35291.22, "end": 35292.1, "probability": 0.5386 }, { "start": 35292.36, "end": 35294.92, "probability": 0.8413 }, { "start": 35310.0, "end": 35311.06, "probability": 0.5359 }, { "start": 35311.64, "end": 35312.52, "probability": 0.2748 }, { "start": 35312.52, "end": 35313.58, "probability": 0.5587 }, { "start": 35315.16, "end": 35317.96, "probability": 0.9988 }, { "start": 35319.22, "end": 35321.32, "probability": 0.7881 }, { "start": 35322.94, "end": 35324.2, "probability": 0.6188 }, { "start": 35325.28, "end": 35327.66, "probability": 0.7842 }, { "start": 35327.9, "end": 35330.88, "probability": 0.8793 }, { "start": 35331.12, "end": 35332.38, "probability": 0.9619 }, { "start": 35334.52, "end": 35335.51, "probability": 0.802 }, { "start": 35336.36, "end": 35337.49, "probability": 0.9771 }, { "start": 35338.94, "end": 35340.76, "probability": 0.9612 }, { "start": 35340.98, "end": 35343.05, "probability": 0.8508 }, { "start": 35344.2, "end": 35345.49, "probability": 0.7625 }, { "start": 35347.3, "end": 35348.82, "probability": 0.8042 }, { "start": 35349.82, "end": 35351.26, "probability": 0.9728 }, { "start": 35353.74, "end": 35359.02, "probability": 0.9835 }, { "start": 35361.5, "end": 35362.22, "probability": 0.43 }, { "start": 35364.12, "end": 35367.04, "probability": 0.9592 }, { "start": 35368.68, "end": 35371.54, "probability": 0.9958 }, { "start": 35372.24, "end": 35373.54, "probability": 0.9273 }, { "start": 35373.58, "end": 35374.46, "probability": 0.9173 }, { "start": 35374.94, "end": 35375.75, "probability": 0.957 }, { "start": 35376.0, "end": 35376.96, "probability": 0.8296 }, { "start": 35378.34, "end": 35380.74, "probability": 0.9527 }, { "start": 35381.12, "end": 35383.92, "probability": 0.814 }, { "start": 35384.08, "end": 35385.94, "probability": 0.9951 }, { "start": 35387.24, "end": 35389.28, "probability": 0.9992 }, { "start": 35389.44, "end": 35390.88, "probability": 0.9969 }, { "start": 35390.98, "end": 35393.72, "probability": 0.9983 }, { "start": 35395.0, "end": 35399.04, "probability": 0.9714 }, { "start": 35400.6, "end": 35403.88, "probability": 0.9985 }, { "start": 35403.88, "end": 35408.34, "probability": 0.9941 }, { "start": 35409.06, "end": 35412.38, "probability": 0.9852 }, { "start": 35412.96, "end": 35414.42, "probability": 0.7655 }, { "start": 35415.92, "end": 35419.94, "probability": 0.5432 }, { "start": 35420.36, "end": 35421.34, "probability": 0.7831 }, { "start": 35421.44, "end": 35422.38, "probability": 0.6485 }, { "start": 35422.4, "end": 35422.62, "probability": 0.5831 }, { "start": 35422.64, "end": 35426.26, "probability": 0.9761 }, { "start": 35426.88, "end": 35429.96, "probability": 0.9956 }, { "start": 35431.2, "end": 35432.16, "probability": 0.7538 }, { "start": 35433.42, "end": 35434.56, "probability": 0.8813 }, { "start": 35436.32, "end": 35439.42, "probability": 0.9543 }, { "start": 35441.0, "end": 35442.56, "probability": 0.782 }, { "start": 35443.26, "end": 35444.96, "probability": 0.998 }, { "start": 35446.72, "end": 35449.54, "probability": 0.9731 }, { "start": 35450.88, "end": 35454.82, "probability": 0.9932 }, { "start": 35454.88, "end": 35455.52, "probability": 0.8635 }, { "start": 35455.98, "end": 35458.0, "probability": 0.9898 }, { "start": 35459.16, "end": 35460.42, "probability": 0.7412 }, { "start": 35462.54, "end": 35465.34, "probability": 0.9614 }, { "start": 35465.8, "end": 35469.06, "probability": 0.9873 }, { "start": 35470.02, "end": 35471.89, "probability": 0.998 }, { "start": 35473.46, "end": 35476.1, "probability": 0.985 }, { "start": 35476.12, "end": 35477.48, "probability": 0.8778 }, { "start": 35479.78, "end": 35481.1, "probability": 0.968 }, { "start": 35481.76, "end": 35482.62, "probability": 0.7548 }, { "start": 35485.22, "end": 35487.36, "probability": 0.9898 }, { "start": 35488.46, "end": 35493.62, "probability": 0.9695 }, { "start": 35493.62, "end": 35497.88, "probability": 0.9849 }, { "start": 35498.64, "end": 35500.42, "probability": 0.9961 }, { "start": 35502.36, "end": 35503.76, "probability": 0.7205 }, { "start": 35503.92, "end": 35505.48, "probability": 0.9138 }, { "start": 35527.46, "end": 35527.83, "probability": 0.4406 }, { "start": 35534.02, "end": 35534.84, "probability": 0.686 }, { "start": 35536.52, "end": 35539.52, "probability": 0.9171 }, { "start": 35540.82, "end": 35544.02, "probability": 0.9629 }, { "start": 35544.12, "end": 35546.78, "probability": 0.9971 }, { "start": 35547.92, "end": 35549.34, "probability": 0.9697 }, { "start": 35550.6, "end": 35554.44, "probability": 0.9972 }, { "start": 35555.82, "end": 35556.24, "probability": 0.9799 }, { "start": 35556.32, "end": 35557.76, "probability": 0.7235 }, { "start": 35557.88, "end": 35558.28, "probability": 0.7281 }, { "start": 35558.4, "end": 35559.58, "probability": 0.8643 }, { "start": 35559.7, "end": 35561.2, "probability": 0.9899 }, { "start": 35562.4, "end": 35565.16, "probability": 0.9964 }, { "start": 35565.38, "end": 35566.18, "probability": 0.432 }, { "start": 35566.32, "end": 35567.02, "probability": 0.9048 }, { "start": 35568.88, "end": 35570.78, "probability": 0.8568 }, { "start": 35571.9, "end": 35573.46, "probability": 0.9094 }, { "start": 35573.62, "end": 35575.0, "probability": 0.9811 }, { "start": 35575.88, "end": 35576.93, "probability": 0.9944 }, { "start": 35578.08, "end": 35579.76, "probability": 0.9966 }, { "start": 35580.92, "end": 35583.5, "probability": 0.9822 }, { "start": 35583.88, "end": 35585.7, "probability": 0.698 }, { "start": 35586.2, "end": 35590.08, "probability": 0.9544 }, { "start": 35590.94, "end": 35593.34, "probability": 0.9811 }, { "start": 35594.66, "end": 35599.12, "probability": 0.9796 }, { "start": 35600.0, "end": 35602.68, "probability": 0.9724 }, { "start": 35602.68, "end": 35605.22, "probability": 0.8958 }, { "start": 35605.66, "end": 35606.84, "probability": 0.8588 }, { "start": 35607.54, "end": 35609.86, "probability": 0.9935 }, { "start": 35610.04, "end": 35611.67, "probability": 0.9968 }, { "start": 35612.86, "end": 35614.94, "probability": 0.9895 }, { "start": 35615.54, "end": 35616.5, "probability": 0.9819 }, { "start": 35616.66, "end": 35619.6, "probability": 0.9983 }, { "start": 35619.68, "end": 35620.38, "probability": 0.8553 }, { "start": 35621.06, "end": 35622.58, "probability": 0.9865 }, { "start": 35623.32, "end": 35624.06, "probability": 0.5756 }, { "start": 35624.68, "end": 35628.37, "probability": 0.9336 }, { "start": 35629.02, "end": 35632.58, "probability": 0.7753 }, { "start": 35633.58, "end": 35634.02, "probability": 0.9187 }, { "start": 35634.14, "end": 35636.66, "probability": 0.9593 }, { "start": 35636.86, "end": 35640.9, "probability": 0.9893 }, { "start": 35641.64, "end": 35643.04, "probability": 0.9701 }, { "start": 35643.56, "end": 35645.54, "probability": 0.9329 }, { "start": 35646.42, "end": 35648.5, "probability": 0.9941 }, { "start": 35649.22, "end": 35653.02, "probability": 0.9517 }, { "start": 35654.04, "end": 35655.42, "probability": 0.6189 }, { "start": 35656.96, "end": 35659.6, "probability": 0.9917 }, { "start": 35659.8, "end": 35660.88, "probability": 0.9941 }, { "start": 35661.46, "end": 35664.84, "probability": 0.9793 }, { "start": 35665.46, "end": 35667.64, "probability": 0.8745 }, { "start": 35668.26, "end": 35671.5, "probability": 0.9966 }, { "start": 35672.08, "end": 35673.46, "probability": 0.9966 }, { "start": 35674.38, "end": 35679.46, "probability": 0.9811 }, { "start": 35679.56, "end": 35681.0, "probability": 0.7534 }, { "start": 35681.38, "end": 35681.98, "probability": 0.812 }, { "start": 35682.62, "end": 35685.16, "probability": 0.7745 }, { "start": 35685.7, "end": 35687.88, "probability": 0.968 }, { "start": 35688.36, "end": 35692.16, "probability": 0.9687 }, { "start": 35692.2, "end": 35695.42, "probability": 0.7158 }, { "start": 35696.04, "end": 35698.68, "probability": 0.7421 }, { "start": 35700.0, "end": 35703.64, "probability": 0.9485 }, { "start": 35704.68, "end": 35707.58, "probability": 0.9387 }, { "start": 35707.82, "end": 35710.28, "probability": 0.3174 }, { "start": 35711.66, "end": 35711.72, "probability": 0.476 }, { "start": 35711.72, "end": 35711.72, "probability": 0.0442 }, { "start": 35711.72, "end": 35711.72, "probability": 0.2444 }, { "start": 35711.72, "end": 35713.26, "probability": 0.912 }, { "start": 35713.36, "end": 35713.86, "probability": 0.7053 }, { "start": 35713.86, "end": 35714.29, "probability": 0.4999 }, { "start": 35715.0, "end": 35715.72, "probability": 0.6772 }, { "start": 35731.24, "end": 35733.34, "probability": 0.4999 }, { "start": 35738.2, "end": 35738.96, "probability": 0.5316 }, { "start": 35740.46, "end": 35741.2, "probability": 0.6333 }, { "start": 35741.32, "end": 35741.54, "probability": 0.7708 }, { "start": 35742.14, "end": 35743.12, "probability": 0.8068 }, { "start": 35744.1, "end": 35744.4, "probability": 0.4387 }, { "start": 35744.46, "end": 35749.66, "probability": 0.7558 }, { "start": 35749.74, "end": 35750.9, "probability": 0.883 }, { "start": 35753.7, "end": 35755.22, "probability": 0.7476 }, { "start": 35756.58, "end": 35757.94, "probability": 0.5097 }, { "start": 35758.46, "end": 35762.76, "probability": 0.9795 }, { "start": 35763.5, "end": 35766.35, "probability": 0.8212 }, { "start": 35768.64, "end": 35769.94, "probability": 0.783 }, { "start": 35770.5, "end": 35772.56, "probability": 0.9783 }, { "start": 35773.2, "end": 35775.7, "probability": 0.9149 }, { "start": 35776.12, "end": 35777.0, "probability": 0.7655 }, { "start": 35778.64, "end": 35781.42, "probability": 0.8909 }, { "start": 35781.68, "end": 35784.98, "probability": 0.6206 }, { "start": 35785.2, "end": 35785.72, "probability": 0.7998 }, { "start": 35786.12, "end": 35786.92, "probability": 0.493 }, { "start": 35787.28, "end": 35789.48, "probability": 0.715 }, { "start": 35790.82, "end": 35793.42, "probability": 0.7517 }, { "start": 35795.04, "end": 35797.2, "probability": 0.5482 }, { "start": 35797.52, "end": 35801.42, "probability": 0.6369 }, { "start": 35802.32, "end": 35804.04, "probability": 0.8784 }, { "start": 35804.08, "end": 35805.7, "probability": 0.8799 }, { "start": 35805.78, "end": 35807.52, "probability": 0.8204 }, { "start": 35809.14, "end": 35811.92, "probability": 0.9807 }, { "start": 35811.96, "end": 35812.76, "probability": 0.9544 }, { "start": 35813.74, "end": 35815.0, "probability": 0.9718 }, { "start": 35815.62, "end": 35819.14, "probability": 0.9824 }, { "start": 35820.04, "end": 35821.21, "probability": 0.6071 }, { "start": 35821.56, "end": 35823.16, "probability": 0.991 }, { "start": 35823.2, "end": 35823.66, "probability": 0.6233 }, { "start": 35823.72, "end": 35826.16, "probability": 0.9951 }, { "start": 35826.9, "end": 35828.42, "probability": 0.9841 }, { "start": 35829.24, "end": 35832.04, "probability": 0.9792 }, { "start": 35832.04, "end": 35835.86, "probability": 0.9602 }, { "start": 35836.36, "end": 35839.46, "probability": 0.8761 }, { "start": 35840.18, "end": 35841.8, "probability": 0.9562 }, { "start": 35842.56, "end": 35845.8, "probability": 0.9849 }, { "start": 35846.24, "end": 35849.84, "probability": 0.7937 }, { "start": 35849.84, "end": 35853.22, "probability": 0.908 }, { "start": 35855.58, "end": 35857.49, "probability": 0.9724 }, { "start": 35859.28, "end": 35860.04, "probability": 0.9576 }, { "start": 35861.22, "end": 35862.28, "probability": 0.9941 }, { "start": 35862.44, "end": 35863.84, "probability": 0.6733 }, { "start": 35864.36, "end": 35865.18, "probability": 0.9076 }, { "start": 35865.48, "end": 35866.64, "probability": 0.7997 }, { "start": 35867.08, "end": 35869.58, "probability": 0.9371 }, { "start": 35870.28, "end": 35873.18, "probability": 0.7582 }, { "start": 35874.12, "end": 35874.66, "probability": 0.9551 }, { "start": 35875.72, "end": 35877.52, "probability": 0.7636 }, { "start": 35878.56, "end": 35879.9, "probability": 0.2015 }, { "start": 35880.0, "end": 35881.1, "probability": 0.947 }, { "start": 35881.26, "end": 35881.78, "probability": 0.7417 }, { "start": 35882.7, "end": 35884.28, "probability": 0.7159 }, { "start": 35884.84, "end": 35885.98, "probability": 0.8526 }, { "start": 35886.9, "end": 35887.06, "probability": 0.8247 }, { "start": 35887.98, "end": 35891.54, "probability": 0.9795 }, { "start": 35892.2, "end": 35893.54, "probability": 0.9949 }, { "start": 35893.98, "end": 35896.21, "probability": 0.9951 }, { "start": 35897.1, "end": 35898.8, "probability": 0.8298 }, { "start": 35899.38, "end": 35902.66, "probability": 0.4888 }, { "start": 35902.68, "end": 35903.36, "probability": 0.3334 }, { "start": 35904.24, "end": 35905.58, "probability": 0.9292 }, { "start": 35905.92, "end": 35908.36, "probability": 0.882 }, { "start": 35909.26, "end": 35910.76, "probability": 0.2564 }, { "start": 35911.04, "end": 35912.24, "probability": 0.8923 }, { "start": 35912.54, "end": 35913.46, "probability": 0.8354 }, { "start": 35913.48, "end": 35914.08, "probability": 0.9606 }, { "start": 35914.16, "end": 35914.48, "probability": 0.9187 }, { "start": 35916.22, "end": 35918.1, "probability": 0.8391 }, { "start": 35919.96, "end": 35921.32, "probability": 0.9838 }, { "start": 35923.18, "end": 35925.4, "probability": 0.6069 }, { "start": 35926.68, "end": 35927.9, "probability": 0.8052 }, { "start": 35929.38, "end": 35931.18, "probability": 0.9778 }, { "start": 35932.88, "end": 35934.44, "probability": 0.9885 }, { "start": 35935.98, "end": 35937.78, "probability": 0.991 }, { "start": 35939.82, "end": 35941.4, "probability": 0.9939 }, { "start": 35944.04, "end": 35945.56, "probability": 0.7091 }, { "start": 35966.42, "end": 35967.1, "probability": 0.727 }, { "start": 35968.96, "end": 35969.92, "probability": 0.7796 }, { "start": 35970.44, "end": 35971.54, "probability": 0.7692 }, { "start": 35973.8, "end": 35977.04, "probability": 0.943 }, { "start": 35978.46, "end": 35980.16, "probability": 0.8317 }, { "start": 35980.34, "end": 35980.34, "probability": 0.0322 }, { "start": 35982.52, "end": 35989.42, "probability": 0.9924 }, { "start": 35991.66, "end": 35993.92, "probability": 0.9731 }, { "start": 35996.94, "end": 36000.86, "probability": 0.9757 }, { "start": 36000.86, "end": 36005.28, "probability": 0.7191 }, { "start": 36006.56, "end": 36010.56, "probability": 0.9653 }, { "start": 36011.6, "end": 36013.14, "probability": 0.9921 }, { "start": 36014.22, "end": 36016.34, "probability": 0.9653 }, { "start": 36017.7, "end": 36019.12, "probability": 0.957 }, { "start": 36019.84, "end": 36021.14, "probability": 0.9837 }, { "start": 36022.94, "end": 36027.04, "probability": 0.9568 }, { "start": 36027.1, "end": 36029.44, "probability": 0.8679 }, { "start": 36031.18, "end": 36032.55, "probability": 0.7412 }, { "start": 36034.86, "end": 36038.02, "probability": 0.7503 }, { "start": 36041.08, "end": 36044.16, "probability": 0.9821 }, { "start": 36044.72, "end": 36047.1, "probability": 0.9905 }, { "start": 36047.76, "end": 36051.1, "probability": 0.9747 }, { "start": 36051.2, "end": 36052.38, "probability": 0.6568 }, { "start": 36052.86, "end": 36055.68, "probability": 0.8005 }, { "start": 36056.04, "end": 36059.02, "probability": 0.9649 }, { "start": 36059.66, "end": 36064.44, "probability": 0.7891 }, { "start": 36065.02, "end": 36066.84, "probability": 0.8679 }, { "start": 36068.36, "end": 36069.08, "probability": 0.9921 }, { "start": 36073.16, "end": 36074.36, "probability": 0.8094 }, { "start": 36074.48, "end": 36078.6, "probability": 0.5916 }, { "start": 36080.0, "end": 36082.94, "probability": 0.9961 }, { "start": 36083.16, "end": 36084.78, "probability": 0.7924 }, { "start": 36085.48, "end": 36086.06, "probability": 0.2868 }, { "start": 36087.12, "end": 36091.4, "probability": 0.9973 }, { "start": 36091.46, "end": 36093.62, "probability": 0.9969 }, { "start": 36095.2, "end": 36099.2, "probability": 0.9321 }, { "start": 36099.28, "end": 36101.08, "probability": 0.985 }, { "start": 36101.86, "end": 36102.27, "probability": 0.8916 }, { "start": 36102.38, "end": 36102.74, "probability": 0.8179 }, { "start": 36102.8, "end": 36105.52, "probability": 0.9758 }, { "start": 36106.18, "end": 36107.08, "probability": 0.9753 }, { "start": 36108.22, "end": 36113.12, "probability": 0.8406 }, { "start": 36113.16, "end": 36115.84, "probability": 0.8144 }, { "start": 36115.9, "end": 36117.12, "probability": 0.5552 }, { "start": 36117.14, "end": 36120.84, "probability": 0.9859 }, { "start": 36121.64, "end": 36123.34, "probability": 0.8599 }, { "start": 36126.52, "end": 36130.94, "probability": 0.829 }, { "start": 36130.96, "end": 36133.06, "probability": 0.792 }, { "start": 36133.36, "end": 36136.1, "probability": 0.72 }, { "start": 36137.16, "end": 36137.91, "probability": 0.9756 }, { "start": 36138.24, "end": 36140.98, "probability": 0.9673 }, { "start": 36140.98, "end": 36145.06, "probability": 0.8752 }, { "start": 36145.3, "end": 36145.44, "probability": 0.0529 }, { "start": 36145.48, "end": 36147.08, "probability": 0.7037 }, { "start": 36147.08, "end": 36151.5, "probability": 0.9062 }, { "start": 36151.54, "end": 36154.22, "probability": 0.9465 }, { "start": 36154.32, "end": 36155.46, "probability": 0.7467 }, { "start": 36157.34, "end": 36158.78, "probability": 0.6322 }, { "start": 36160.18, "end": 36161.64, "probability": 0.906 }, { "start": 36167.0, "end": 36167.7, "probability": 0.1417 }, { "start": 36170.08, "end": 36171.76, "probability": 0.1706 }, { "start": 36172.5, "end": 36173.2, "probability": 0.265 }, { "start": 36177.26, "end": 36177.7, "probability": 0.1149 }, { "start": 36191.76, "end": 36197.52, "probability": 0.7316 }, { "start": 36198.54, "end": 36204.94, "probability": 0.998 }, { "start": 36204.94, "end": 36210.22, "probability": 0.9985 }, { "start": 36210.92, "end": 36211.58, "probability": 0.9821 }, { "start": 36212.26, "end": 36213.16, "probability": 0.8269 }, { "start": 36214.48, "end": 36217.74, "probability": 0.9017 }, { "start": 36218.12, "end": 36219.5, "probability": 0.81 }, { "start": 36221.64, "end": 36225.3, "probability": 0.9814 }, { "start": 36226.28, "end": 36226.98, "probability": 0.3437 }, { "start": 36227.84, "end": 36232.68, "probability": 0.9152 }, { "start": 36233.54, "end": 36239.18, "probability": 0.9993 }, { "start": 36239.54, "end": 36239.86, "probability": 0.6235 }, { "start": 36241.26, "end": 36244.48, "probability": 0.9957 }, { "start": 36244.48, "end": 36248.22, "probability": 0.9749 }, { "start": 36248.94, "end": 36251.72, "probability": 0.8477 }, { "start": 36252.58, "end": 36257.66, "probability": 0.7364 }, { "start": 36257.68, "end": 36259.34, "probability": 0.9607 }, { "start": 36260.16, "end": 36261.98, "probability": 0.9441 }, { "start": 36262.94, "end": 36266.58, "probability": 0.9982 }, { "start": 36268.32, "end": 36270.74, "probability": 0.941 }, { "start": 36271.74, "end": 36272.62, "probability": 0.9937 }, { "start": 36273.46, "end": 36275.02, "probability": 0.9362 }, { "start": 36276.18, "end": 36277.68, "probability": 0.964 }, { "start": 36278.44, "end": 36280.84, "probability": 0.9872 }, { "start": 36281.5, "end": 36282.46, "probability": 0.9836 }, { "start": 36283.3, "end": 36286.8, "probability": 0.967 }, { "start": 36287.4, "end": 36288.82, "probability": 0.992 }, { "start": 36289.58, "end": 36292.68, "probability": 0.9551 }, { "start": 36293.68, "end": 36297.14, "probability": 0.9786 }, { "start": 36297.92, "end": 36300.38, "probability": 0.9977 }, { "start": 36300.78, "end": 36301.78, "probability": 0.8677 }, { "start": 36302.38, "end": 36302.98, "probability": 0.6006 }, { "start": 36303.16, "end": 36305.14, "probability": 0.9692 }, { "start": 36305.94, "end": 36307.06, "probability": 0.8076 }, { "start": 36307.44, "end": 36309.38, "probability": 0.9912 }, { "start": 36309.5, "end": 36312.68, "probability": 0.9818 }, { "start": 36313.76, "end": 36318.78, "probability": 0.9724 }, { "start": 36319.46, "end": 36321.32, "probability": 0.8942 }, { "start": 36322.24, "end": 36324.0, "probability": 0.9975 }, { "start": 36324.74, "end": 36327.72, "probability": 0.9252 }, { "start": 36328.42, "end": 36330.46, "probability": 0.9851 }, { "start": 36331.06, "end": 36332.98, "probability": 0.9506 }, { "start": 36333.66, "end": 36336.26, "probability": 0.9985 }, { "start": 36336.32, "end": 36339.04, "probability": 0.6399 }, { "start": 36339.66, "end": 36340.8, "probability": 0.8359 }, { "start": 36341.4, "end": 36342.76, "probability": 0.9479 }, { "start": 36344.52, "end": 36345.78, "probability": 0.8013 }, { "start": 36346.18, "end": 36346.56, "probability": 0.9683 }, { "start": 36348.45, "end": 36353.38, "probability": 0.8704 }, { "start": 36355.0, "end": 36356.44, "probability": 0.8093 }, { "start": 36358.68, "end": 36362.1, "probability": 0.9822 }, { "start": 36363.48, "end": 36366.72, "probability": 0.9939 }, { "start": 36367.68, "end": 36370.56, "probability": 0.9504 }, { "start": 36371.6, "end": 36373.0, "probability": 0.9683 }, { "start": 36373.68, "end": 36375.32, "probability": 0.7871 }, { "start": 36376.48, "end": 36377.96, "probability": 0.9173 }, { "start": 36379.5, "end": 36382.06, "probability": 0.9243 }, { "start": 36383.34, "end": 36385.4, "probability": 0.9767 }, { "start": 36386.4, "end": 36388.58, "probability": 0.9896 }, { "start": 36389.36, "end": 36390.82, "probability": 0.9781 }, { "start": 36392.28, "end": 36393.1, "probability": 0.7081 }, { "start": 36394.36, "end": 36397.58, "probability": 0.9809 }, { "start": 36399.02, "end": 36400.63, "probability": 0.9845 }, { "start": 36402.24, "end": 36403.42, "probability": 0.9432 }, { "start": 36407.86, "end": 36410.38, "probability": 0.5822 }, { "start": 36410.38, "end": 36412.64, "probability": 0.1665 }, { "start": 36425.64, "end": 36426.56, "probability": 0.7679 }, { "start": 36441.14, "end": 36442.46, "probability": 0.8823 }, { "start": 36443.68, "end": 36448.58, "probability": 0.9832 }, { "start": 36450.82, "end": 36458.1, "probability": 0.9933 }, { "start": 36458.22, "end": 36459.46, "probability": 0.9397 }, { "start": 36459.5, "end": 36463.16, "probability": 0.9891 }, { "start": 36463.96, "end": 36469.96, "probability": 0.9956 }, { "start": 36471.02, "end": 36476.92, "probability": 0.999 }, { "start": 36476.94, "end": 36481.04, "probability": 0.9995 }, { "start": 36481.74, "end": 36483.3, "probability": 0.9987 }, { "start": 36484.73, "end": 36488.3, "probability": 0.7668 }, { "start": 36489.98, "end": 36493.06, "probability": 0.9777 }, { "start": 36493.4, "end": 36495.06, "probability": 0.9293 }, { "start": 36496.4, "end": 36497.36, "probability": 0.8342 }, { "start": 36498.26, "end": 36502.02, "probability": 0.9985 }, { "start": 36503.64, "end": 36504.7, "probability": 0.937 }, { "start": 36505.38, "end": 36509.8, "probability": 0.9964 }, { "start": 36509.8, "end": 36513.68, "probability": 0.9998 }, { "start": 36514.7, "end": 36517.74, "probability": 0.9595 }, { "start": 36518.52, "end": 36520.18, "probability": 0.7397 }, { "start": 36521.22, "end": 36523.97, "probability": 0.9836 }, { "start": 36525.24, "end": 36526.98, "probability": 0.9821 }, { "start": 36527.58, "end": 36531.54, "probability": 0.9943 }, { "start": 36532.06, "end": 36534.84, "probability": 0.9587 }, { "start": 36535.84, "end": 36539.44, "probability": 0.9913 }, { "start": 36539.96, "end": 36543.0, "probability": 0.6158 }, { "start": 36543.0, "end": 36546.9, "probability": 0.9943 }, { "start": 36547.64, "end": 36550.32, "probability": 0.9993 }, { "start": 36551.78, "end": 36553.04, "probability": 0.7224 }, { "start": 36553.64, "end": 36556.74, "probability": 0.9987 }, { "start": 36557.68, "end": 36559.8, "probability": 0.7918 }, { "start": 36560.74, "end": 36562.16, "probability": 0.9727 }, { "start": 36562.86, "end": 36568.24, "probability": 0.9927 }, { "start": 36569.0, "end": 36573.2, "probability": 0.9884 }, { "start": 36573.3, "end": 36573.8, "probability": 0.8778 }, { "start": 36574.22, "end": 36576.28, "probability": 0.8481 }, { "start": 36576.6, "end": 36579.78, "probability": 0.9327 }, { "start": 36580.32, "end": 36585.18, "probability": 0.9874 }, { "start": 36586.22, "end": 36588.22, "probability": 0.9963 }, { "start": 36588.76, "end": 36592.1, "probability": 0.9563 }, { "start": 36592.58, "end": 36594.88, "probability": 0.9987 }, { "start": 36595.16, "end": 36597.5, "probability": 0.9863 }, { "start": 36598.42, "end": 36600.16, "probability": 0.8604 }, { "start": 36600.9, "end": 36605.46, "probability": 0.9968 }, { "start": 36606.1, "end": 36609.56, "probability": 0.9923 }, { "start": 36610.7, "end": 36612.46, "probability": 0.9541 }, { "start": 36613.04, "end": 36617.78, "probability": 0.9966 }, { "start": 36617.78, "end": 36622.82, "probability": 0.9209 }, { "start": 36623.22, "end": 36627.88, "probability": 0.9945 }, { "start": 36628.4, "end": 36629.82, "probability": 0.9102 }, { "start": 36631.2, "end": 36632.92, "probability": 0.953 }, { "start": 36633.96, "end": 36635.48, "probability": 0.7338 }, { "start": 36635.56, "end": 36637.86, "probability": 0.8765 }, { "start": 36638.84, "end": 36640.52, "probability": 0.8826 }, { "start": 36642.42, "end": 36644.06, "probability": 0.7521 }, { "start": 36646.18, "end": 36647.72, "probability": 0.9799 }, { "start": 36648.98, "end": 36650.38, "probability": 0.9907 }, { "start": 36651.22, "end": 36653.8, "probability": 0.9946 }, { "start": 36655.34, "end": 36662.22, "probability": 0.0652 }, { "start": 36663.32, "end": 36667.3, "probability": 0.9233 }, { "start": 36673.8, "end": 36674.44, "probability": 0.0007 }, { "start": 36674.98, "end": 36675.76, "probability": 0.418 }, { "start": 36675.78, "end": 36677.3, "probability": 0.7602 }, { "start": 36677.3, "end": 36678.43, "probability": 0.4471 }, { "start": 36679.74, "end": 36680.38, "probability": 0.3496 }, { "start": 36680.94, "end": 36681.64, "probability": 0.9264 }, { "start": 36682.7, "end": 36683.64, "probability": 0.8535 }, { "start": 36684.44, "end": 36685.58, "probability": 0.6158 }, { "start": 36693.54, "end": 36695.96, "probability": 0.6661 }, { "start": 36696.3, "end": 36697.5, "probability": 0.722 }, { "start": 36698.04, "end": 36699.54, "probability": 0.7832 }, { "start": 36700.48, "end": 36702.72, "probability": 0.9842 }, { "start": 36703.62, "end": 36705.58, "probability": 0.9988 }, { "start": 36705.66, "end": 36706.38, "probability": 0.986 }, { "start": 36706.58, "end": 36707.08, "probability": 0.8791 }, { "start": 36707.2, "end": 36707.68, "probability": 0.9753 }, { "start": 36707.82, "end": 36708.16, "probability": 0.9791 }, { "start": 36708.3, "end": 36708.78, "probability": 0.9001 }, { "start": 36709.34, "end": 36713.08, "probability": 0.9849 }, { "start": 36714.08, "end": 36714.48, "probability": 0.8146 }, { "start": 36714.64, "end": 36714.84, "probability": 0.9712 }, { "start": 36714.94, "end": 36716.14, "probability": 0.9781 }, { "start": 36716.52, "end": 36719.36, "probability": 0.9932 }, { "start": 36720.3, "end": 36721.28, "probability": 0.8564 }, { "start": 36721.86, "end": 36726.64, "probability": 0.9434 }, { "start": 36727.22, "end": 36728.57, "probability": 0.9979 }, { "start": 36729.22, "end": 36731.9, "probability": 0.9706 }, { "start": 36733.56, "end": 36735.26, "probability": 0.9756 }, { "start": 36735.44, "end": 36738.16, "probability": 0.9904 }, { "start": 36739.06, "end": 36739.54, "probability": 0.698 }, { "start": 36742.26, "end": 36742.88, "probability": 0.8788 }, { "start": 36743.52, "end": 36744.88, "probability": 0.9453 }, { "start": 36745.04, "end": 36745.78, "probability": 0.9538 }, { "start": 36746.42, "end": 36747.4, "probability": 0.9878 }, { "start": 36747.62, "end": 36748.38, "probability": 0.9592 }, { "start": 36748.48, "end": 36748.76, "probability": 0.9814 }, { "start": 36748.82, "end": 36749.72, "probability": 0.9815 }, { "start": 36749.82, "end": 36752.28, "probability": 0.994 }, { "start": 36752.4, "end": 36753.44, "probability": 0.9153 }, { "start": 36756.46, "end": 36758.56, "probability": 0.9918 }, { "start": 36759.92, "end": 36762.68, "probability": 0.8834 }, { "start": 36764.7, "end": 36765.58, "probability": 0.8366 }, { "start": 36765.82, "end": 36768.7, "probability": 0.8008 }, { "start": 36769.74, "end": 36774.82, "probability": 0.786 }, { "start": 36775.94, "end": 36777.68, "probability": 0.8842 }, { "start": 36778.76, "end": 36779.1, "probability": 0.3314 }, { "start": 36779.1, "end": 36781.42, "probability": 0.7119 }, { "start": 36782.14, "end": 36784.14, "probability": 0.9886 }, { "start": 36785.12, "end": 36787.12, "probability": 0.9982 }, { "start": 36789.94, "end": 36791.42, "probability": 0.8115 }, { "start": 36791.52, "end": 36794.62, "probability": 0.96 }, { "start": 36795.2, "end": 36795.86, "probability": 0.9905 }, { "start": 36796.4, "end": 36798.04, "probability": 0.8601 }, { "start": 36798.68, "end": 36802.66, "probability": 0.9912 }, { "start": 36804.0, "end": 36809.78, "probability": 0.9661 }, { "start": 36809.88, "end": 36811.24, "probability": 0.7859 }, { "start": 36811.7, "end": 36812.9, "probability": 0.7234 }, { "start": 36813.54, "end": 36815.22, "probability": 0.8838 }, { "start": 36816.04, "end": 36817.68, "probability": 0.9212 }, { "start": 36818.1, "end": 36819.77, "probability": 0.9839 }, { "start": 36820.3, "end": 36820.8, "probability": 0.8756 }, { "start": 36821.24, "end": 36824.24, "probability": 0.827 }, { "start": 36824.28, "end": 36824.98, "probability": 0.3817 }, { "start": 36825.4, "end": 36828.86, "probability": 0.9962 }, { "start": 36829.54, "end": 36829.84, "probability": 0.7229 }, { "start": 36831.54, "end": 36834.28, "probability": 0.9951 }, { "start": 36834.62, "end": 36836.98, "probability": 0.8735 }, { "start": 36837.5, "end": 36839.66, "probability": 0.9693 }, { "start": 36840.88, "end": 36841.66, "probability": 0.8905 }, { "start": 36841.76, "end": 36844.16, "probability": 0.9939 }, { "start": 36845.04, "end": 36846.06, "probability": 0.9155 }, { "start": 36846.62, "end": 36848.28, "probability": 0.9845 }, { "start": 36848.88, "end": 36849.52, "probability": 0.835 }, { "start": 36850.2, "end": 36850.88, "probability": 0.5186 }, { "start": 36851.4, "end": 36854.28, "probability": 0.9785 }, { "start": 36855.12, "end": 36856.38, "probability": 0.8149 }, { "start": 36856.96, "end": 36861.96, "probability": 0.9954 }, { "start": 36862.46, "end": 36864.28, "probability": 0.9468 }, { "start": 36864.36, "end": 36865.18, "probability": 0.9366 }, { "start": 36865.68, "end": 36865.86, "probability": 0.4537 }, { "start": 36866.02, "end": 36866.18, "probability": 0.6338 }, { "start": 36866.76, "end": 36869.42, "probability": 0.9832 }, { "start": 36870.28, "end": 36873.14, "probability": 0.9824 }, { "start": 36873.58, "end": 36873.84, "probability": 0.8224 }, { "start": 36873.84, "end": 36874.18, "probability": 0.847 }, { "start": 36874.52, "end": 36876.1, "probability": 0.8843 }, { "start": 36876.26, "end": 36876.58, "probability": 0.1674 }, { "start": 36876.74, "end": 36878.52, "probability": 0.8698 }, { "start": 36880.48, "end": 36881.6, "probability": 0.7805 }, { "start": 36884.3, "end": 36885.52, "probability": 0.2449 }, { "start": 36887.22, "end": 36888.16, "probability": 0.9508 }, { "start": 36889.6, "end": 36891.32, "probability": 0.9183 }, { "start": 36892.54, "end": 36894.12, "probability": 0.9584 }, { "start": 36895.88, "end": 36899.0, "probability": 0.9083 }, { "start": 36900.2, "end": 36903.62, "probability": 0.9136 }, { "start": 36906.11, "end": 36908.2, "probability": 0.7085 }, { "start": 36909.18, "end": 36910.56, "probability": 0.9709 }, { "start": 36911.62, "end": 36913.8, "probability": 0.9443 }, { "start": 36914.62, "end": 36916.88, "probability": 0.9373 }, { "start": 36918.66, "end": 36919.5, "probability": 0.9017 }, { "start": 36921.34, "end": 36922.3, "probability": 0.972 }, { "start": 36929.54, "end": 36930.92, "probability": 0.2139 }, { "start": 36930.92, "end": 36932.94, "probability": 0.8626 }, { "start": 36934.18, "end": 36934.52, "probability": 0.8338 }, { "start": 36935.3, "end": 36936.84, "probability": 0.9961 }, { "start": 36939.82, "end": 36942.32, "probability": 0.8963 }, { "start": 36943.6, "end": 36945.12, "probability": 0.9973 }, { "start": 36946.06, "end": 36947.04, "probability": 0.9258 }, { "start": 36947.52, "end": 36950.0, "probability": 0.8415 }, { "start": 36950.92, "end": 36952.74, "probability": 0.9526 }, { "start": 36953.28, "end": 36955.08, "probability": 0.951 }, { "start": 36955.66, "end": 36958.14, "probability": 0.9631 }, { "start": 36958.68, "end": 36959.98, "probability": 0.8964 }, { "start": 36960.74, "end": 36961.6, "probability": 0.7423 }, { "start": 36961.64, "end": 36962.52, "probability": 0.6174 }, { "start": 36963.0, "end": 36964.52, "probability": 0.9085 }, { "start": 36964.92, "end": 36967.1, "probability": 0.9197 }, { "start": 36967.24, "end": 36968.76, "probability": 0.9877 }, { "start": 36969.78, "end": 36973.74, "probability": 0.9321 }, { "start": 36974.68, "end": 36976.82, "probability": 0.9968 }, { "start": 36977.66, "end": 36978.86, "probability": 0.8801 }, { "start": 36979.84, "end": 36981.22, "probability": 0.9924 }, { "start": 36981.7, "end": 36982.68, "probability": 0.6089 }, { "start": 36983.16, "end": 36983.54, "probability": 0.8336 }, { "start": 36983.62, "end": 36985.66, "probability": 0.991 }, { "start": 36986.54, "end": 36990.76, "probability": 0.9961 }, { "start": 36990.9, "end": 36993.44, "probability": 0.8357 }, { "start": 36993.9, "end": 36995.68, "probability": 0.8622 }, { "start": 36996.18, "end": 36996.58, "probability": 0.8401 }, { "start": 36996.64, "end": 36996.88, "probability": 0.6619 }, { "start": 36996.96, "end": 36998.33, "probability": 0.6517 }, { "start": 36999.1, "end": 36999.92, "probability": 0.6523 }, { "start": 37000.42, "end": 37003.9, "probability": 0.9924 }, { "start": 37004.6, "end": 37007.68, "probability": 0.9235 }, { "start": 37008.3, "end": 37009.82, "probability": 0.4874 }, { "start": 37010.2, "end": 37010.66, "probability": 0.9403 }, { "start": 37011.08, "end": 37013.56, "probability": 0.994 }, { "start": 37014.22, "end": 37016.5, "probability": 0.9746 }, { "start": 37016.9, "end": 37018.26, "probability": 0.9795 }, { "start": 37018.72, "end": 37019.04, "probability": 0.9733 }, { "start": 37019.4, "end": 37023.38, "probability": 0.9644 }, { "start": 37023.98, "end": 37025.2, "probability": 0.9569 }, { "start": 37025.74, "end": 37026.74, "probability": 0.6061 }, { "start": 37027.22, "end": 37027.84, "probability": 0.9264 }, { "start": 37028.78, "end": 37030.14, "probability": 0.9419 }, { "start": 37030.54, "end": 37031.39, "probability": 0.9385 }, { "start": 37032.06, "end": 37034.4, "probability": 0.9189 }, { "start": 37034.7, "end": 37037.45, "probability": 0.67 }, { "start": 37038.24, "end": 37039.86, "probability": 0.7853 }, { "start": 37040.48, "end": 37041.24, "probability": 0.9408 }, { "start": 37041.5, "end": 37044.32, "probability": 0.9819 }, { "start": 37044.9, "end": 37046.72, "probability": 0.986 }, { "start": 37047.18, "end": 37049.3, "probability": 0.9968 }, { "start": 37049.84, "end": 37050.32, "probability": 0.5084 }, { "start": 37050.36, "end": 37050.84, "probability": 0.7532 }, { "start": 37051.18, "end": 37052.0, "probability": 0.0805 }, { "start": 37052.0, "end": 37054.5, "probability": 0.9702 }, { "start": 37055.0, "end": 37057.5, "probability": 0.9973 }, { "start": 37058.06, "end": 37060.5, "probability": 0.8919 }, { "start": 37060.98, "end": 37061.92, "probability": 0.8325 }, { "start": 37062.54, "end": 37063.26, "probability": 0.8132 }, { "start": 37063.38, "end": 37064.12, "probability": 0.651 }, { "start": 37064.26, "end": 37065.26, "probability": 0.9363 }, { "start": 37065.98, "end": 37067.34, "probability": 0.5674 }, { "start": 37067.88, "end": 37070.68, "probability": 0.9941 }, { "start": 37071.08, "end": 37071.44, "probability": 0.4767 }, { "start": 37071.72, "end": 37073.86, "probability": 0.9966 }, { "start": 37074.4, "end": 37076.46, "probability": 0.8617 }, { "start": 37077.32, "end": 37081.08, "probability": 0.9612 }, { "start": 37081.98, "end": 37084.3, "probability": 0.9839 }, { "start": 37084.78, "end": 37087.36, "probability": 0.8804 }, { "start": 37087.6, "end": 37089.1, "probability": 0.9353 }, { "start": 37089.78, "end": 37090.54, "probability": 0.969 }, { "start": 37090.72, "end": 37092.8, "probability": 0.9069 }, { "start": 37093.32, "end": 37094.02, "probability": 0.6852 }, { "start": 37094.98, "end": 37098.08, "probability": 0.9965 }, { "start": 37098.56, "end": 37101.44, "probability": 0.9961 }, { "start": 37101.98, "end": 37103.26, "probability": 0.9386 }, { "start": 37103.78, "end": 37106.02, "probability": 0.9688 }, { "start": 37106.66, "end": 37108.2, "probability": 0.8363 }, { "start": 37108.32, "end": 37108.7, "probability": 0.6802 }, { "start": 37109.66, "end": 37111.36, "probability": 0.8081 }, { "start": 37111.6, "end": 37114.1, "probability": 0.9658 }, { "start": 37115.22, "end": 37115.88, "probability": 0.7678 }, { "start": 37116.18, "end": 37118.4, "probability": 0.9091 }, { "start": 37120.28, "end": 37121.46, "probability": 0.7116 }, { "start": 37121.76, "end": 37124.28, "probability": 0.7651 }, { "start": 37125.4, "end": 37131.28, "probability": 0.5958 }, { "start": 37132.2, "end": 37135.16, "probability": 0.7879 }, { "start": 37137.38, "end": 37141.62, "probability": 0.9794 }, { "start": 37141.64, "end": 37145.64, "probability": 0.4558 }, { "start": 37146.82, "end": 37154.99, "probability": 0.8314 }, { "start": 37159.54, "end": 37161.62, "probability": 0.0061 }, { "start": 37162.12, "end": 37162.76, "probability": 0.014 }, { "start": 37174.38, "end": 37175.22, "probability": 0.158 }, { "start": 37175.22, "end": 37179.2, "probability": 0.9665 }, { "start": 37179.86, "end": 37181.24, "probability": 0.6111 }, { "start": 37182.22, "end": 37184.8, "probability": 0.8062 }, { "start": 37184.92, "end": 37187.16, "probability": 0.7752 }, { "start": 37187.76, "end": 37190.96, "probability": 0.6962 }, { "start": 37191.6, "end": 37197.02, "probability": 0.0789 }, { "start": 37197.68, "end": 37204.02, "probability": 0.018 }, { "start": 37204.02, "end": 37206.92, "probability": 0.0395 }, { "start": 37206.98, "end": 37208.36, "probability": 0.3231 }, { "start": 37217.2, "end": 37217.36, "probability": 0.0776 }, { "start": 37217.36, "end": 37221.56, "probability": 0.8516 }, { "start": 37222.22, "end": 37223.82, "probability": 0.7505 }, { "start": 37225.16, "end": 37227.35, "probability": 0.9972 }, { "start": 37228.3, "end": 37233.22, "probability": 0.9437 }, { "start": 37233.22, "end": 37236.98, "probability": 0.9806 }, { "start": 37238.4, "end": 37241.66, "probability": 0.4022 }, { "start": 37242.96, "end": 37246.24, "probability": 0.6359 }, { "start": 37246.94, "end": 37248.92, "probability": 0.9932 }, { "start": 37249.06, "end": 37250.8, "probability": 0.7579 }, { "start": 37251.38, "end": 37253.14, "probability": 0.9992 }, { "start": 37257.44, "end": 37258.82, "probability": 0.5999 }, { "start": 37275.22, "end": 37277.0, "probability": 0.8154 }, { "start": 37283.92, "end": 37289.42, "probability": 0.5388 }, { "start": 37290.84, "end": 37291.98, "probability": 0.7217 }, { "start": 37292.52, "end": 37295.02, "probability": 0.6253 }, { "start": 37295.48, "end": 37297.06, "probability": 0.8123 }, { "start": 37297.08, "end": 37298.06, "probability": 0.5706 }, { "start": 37298.26, "end": 37299.04, "probability": 0.7936 }, { "start": 37299.12, "end": 37300.28, "probability": 0.214 }, { "start": 37300.7, "end": 37303.32, "probability": 0.8513 }, { "start": 37303.88, "end": 37304.46, "probability": 0.2011 }, { "start": 37304.7, "end": 37308.1, "probability": 0.0935 }, { "start": 37311.5, "end": 37313.62, "probability": 0.4775 }, { "start": 37313.76, "end": 37314.14, "probability": 0.7339 }, { "start": 37317.8, "end": 37318.4, "probability": 0.6654 }, { "start": 37318.88, "end": 37319.96, "probability": 0.7399 }, { "start": 37320.44, "end": 37322.86, "probability": 0.6924 }, { "start": 37323.82, "end": 37323.94, "probability": 0.4787 }, { "start": 37328.4, "end": 37332.06, "probability": 0.7755 }, { "start": 37332.06, "end": 37336.24, "probability": 0.4762 }, { "start": 37337.16, "end": 37339.22, "probability": 0.7701 }, { "start": 37339.4, "end": 37340.9, "probability": 0.8263 }, { "start": 37341.06, "end": 37343.9, "probability": 0.9186 }, { "start": 37344.94, "end": 37354.16, "probability": 0.8294 }, { "start": 37354.16, "end": 37358.4, "probability": 0.9912 }, { "start": 37359.28, "end": 37362.58, "probability": 0.9521 }, { "start": 37362.62, "end": 37364.82, "probability": 0.7655 }, { "start": 37365.04, "end": 37365.04, "probability": 0.3969 }, { "start": 37366.03, "end": 37367.84, "probability": 0.2892 }, { "start": 37367.94, "end": 37368.18, "probability": 0.4015 }, { "start": 37368.26, "end": 37369.39, "probability": 0.9561 }, { "start": 37369.48, "end": 37372.8, "probability": 0.9224 }, { "start": 37377.6, "end": 37380.84, "probability": 0.9722 }, { "start": 37381.1, "end": 37382.82, "probability": 0.2406 }, { "start": 37384.08, "end": 37386.14, "probability": 0.8246 }, { "start": 37387.24, "end": 37389.34, "probability": 0.9725 }, { "start": 37391.49, "end": 37394.04, "probability": 0.5295 }, { "start": 37395.16, "end": 37396.22, "probability": 0.9175 }, { "start": 37396.46, "end": 37397.3, "probability": 0.827 }, { "start": 37397.8, "end": 37399.42, "probability": 0.9897 }, { "start": 37400.22, "end": 37402.78, "probability": 0.9903 }, { "start": 37403.55, "end": 37408.12, "probability": 0.8083 }, { "start": 37408.86, "end": 37411.88, "probability": 0.9925 }, { "start": 37414.0, "end": 37415.5, "probability": 0.9701 }, { "start": 37417.02, "end": 37418.12, "probability": 0.9603 }, { "start": 37419.04, "end": 37421.02, "probability": 0.9189 }, { "start": 37421.94, "end": 37423.6, "probability": 0.9954 }, { "start": 37424.3, "end": 37426.36, "probability": 0.9575 }, { "start": 37427.28, "end": 37430.22, "probability": 0.994 }, { "start": 37430.34, "end": 37431.74, "probability": 0.7115 }, { "start": 37432.7, "end": 37432.92, "probability": 0.1964 }, { "start": 37440.94, "end": 37441.92, "probability": 0.0941 }, { "start": 37441.92, "end": 37441.96, "probability": 0.4814 }, { "start": 37441.96, "end": 37442.54, "probability": 0.7313 }, { "start": 37442.84, "end": 37443.64, "probability": 0.8641 }, { "start": 37444.3, "end": 37445.66, "probability": 0.652 }, { "start": 37446.62, "end": 37449.38, "probability": 0.9611 }, { "start": 37450.88, "end": 37452.06, "probability": 0.6697 }, { "start": 37452.5, "end": 37456.02, "probability": 0.7749 }, { "start": 37456.12, "end": 37458.46, "probability": 0.4976 }, { "start": 37458.5, "end": 37460.52, "probability": 0.9266 }, { "start": 37461.02, "end": 37461.04, "probability": 0.0646 }, { "start": 37461.04, "end": 37462.16, "probability": 0.9875 }, { "start": 37463.24, "end": 37464.66, "probability": 0.9664 }, { "start": 37465.42, "end": 37468.04, "probability": 0.9919 }, { "start": 37469.32, "end": 37470.18, "probability": 0.837 }, { "start": 37471.28, "end": 37473.04, "probability": 0.9612 }, { "start": 37473.98, "end": 37475.66, "probability": 0.751 }, { "start": 37476.44, "end": 37477.8, "probability": 0.9371 }, { "start": 37478.4, "end": 37482.16, "probability": 0.9974 }, { "start": 37483.4, "end": 37486.18, "probability": 0.9829 }, { "start": 37486.4, "end": 37491.82, "probability": 0.9155 }, { "start": 37492.4, "end": 37492.82, "probability": 0.813 }, { "start": 37494.16, "end": 37495.34, "probability": 0.9141 }, { "start": 37496.64, "end": 37496.92, "probability": 0.3489 }, { "start": 37496.96, "end": 37500.62, "probability": 0.8321 }, { "start": 37501.46, "end": 37502.16, "probability": 0.5543 }, { "start": 37502.6, "end": 37504.32, "probability": 0.851 }, { "start": 37505.24, "end": 37506.54, "probability": 0.805 }, { "start": 37506.78, "end": 37508.3, "probability": 0.8636 }, { "start": 37508.38, "end": 37509.5, "probability": 0.7605 }, { "start": 37509.58, "end": 37509.92, "probability": 0.2997 }, { "start": 37509.98, "end": 37510.3, "probability": 0.7183 }, { "start": 37510.38, "end": 37511.18, "probability": 0.8335 }, { "start": 37511.48, "end": 37512.4, "probability": 0.5132 }, { "start": 37512.46, "end": 37514.74, "probability": 0.5752 }, { "start": 37514.84, "end": 37515.54, "probability": 0.6785 }, { "start": 37516.14, "end": 37520.0, "probability": 0.9025 }, { "start": 37520.24, "end": 37524.86, "probability": 0.9916 }, { "start": 37525.58, "end": 37528.48, "probability": 0.9861 }, { "start": 37529.16, "end": 37534.14, "probability": 0.9961 }, { "start": 37534.72, "end": 37538.76, "probability": 0.9062 }, { "start": 37538.98, "end": 37539.46, "probability": 0.7274 }, { "start": 37541.6, "end": 37541.84, "probability": 0.1918 }, { "start": 37541.88, "end": 37541.88, "probability": 0.2527 }, { "start": 37541.88, "end": 37544.68, "probability": 0.8856 }, { "start": 37547.77, "end": 37551.36, "probability": 0.5499 }, { "start": 37553.06, "end": 37554.38, "probability": 0.7022 }, { "start": 37554.54, "end": 37555.92, "probability": 0.9623 }, { "start": 37556.8, "end": 37558.2, "probability": 0.9874 }, { "start": 37558.32, "end": 37559.4, "probability": 0.9941 }, { "start": 37559.56, "end": 37560.8, "probability": 0.9906 }, { "start": 37562.53, "end": 37564.85, "probability": 0.5655 }, { "start": 37565.16, "end": 37566.3, "probability": 0.8108 }, { "start": 37581.2, "end": 37582.82, "probability": 0.5665 }, { "start": 37582.96, "end": 37583.68, "probability": 0.8043 }, { "start": 37584.24, "end": 37586.94, "probability": 0.8085 }, { "start": 37588.3, "end": 37594.78, "probability": 0.9747 }, { "start": 37595.08, "end": 37595.38, "probability": 0.9736 }, { "start": 37595.62, "end": 37597.24, "probability": 0.985 }, { "start": 37598.26, "end": 37603.68, "probability": 0.9885 }, { "start": 37604.18, "end": 37605.84, "probability": 0.9602 }, { "start": 37605.94, "end": 37609.7, "probability": 0.9535 }, { "start": 37610.36, "end": 37614.26, "probability": 0.9894 }, { "start": 37614.48, "end": 37615.34, "probability": 0.5227 }, { "start": 37617.28, "end": 37621.16, "probability": 0.9761 }, { "start": 37622.24, "end": 37622.88, "probability": 0.7821 }, { "start": 37623.88, "end": 37625.34, "probability": 0.5086 }, { "start": 37626.12, "end": 37626.76, "probability": 0.7925 }, { "start": 37627.6, "end": 37629.52, "probability": 0.9976 }, { "start": 37631.1, "end": 37631.84, "probability": 0.9355 }, { "start": 37632.04, "end": 37634.1, "probability": 0.9988 }, { "start": 37635.24, "end": 37637.38, "probability": 0.9491 }, { "start": 37637.54, "end": 37638.84, "probability": 0.0184 }, { "start": 37641.4, "end": 37644.82, "probability": 0.0762 }, { "start": 37644.82, "end": 37645.04, "probability": 0.0487 }, { "start": 37645.04, "end": 37646.9, "probability": 0.2916 }, { "start": 37647.58, "end": 37650.26, "probability": 0.9719 }, { "start": 37651.16, "end": 37652.12, "probability": 0.82 }, { "start": 37652.78, "end": 37658.12, "probability": 0.9885 }, { "start": 37659.06, "end": 37663.16, "probability": 0.9955 }, { "start": 37663.78, "end": 37665.48, "probability": 0.9852 }, { "start": 37666.7, "end": 37671.2, "probability": 0.6542 }, { "start": 37671.5, "end": 37679.84, "probability": 0.9658 }, { "start": 37680.38, "end": 37684.94, "probability": 0.9988 }, { "start": 37686.5, "end": 37689.56, "probability": 0.9949 }, { "start": 37690.08, "end": 37692.14, "probability": 0.9508 }, { "start": 37692.82, "end": 37694.02, "probability": 0.9384 }, { "start": 37695.14, "end": 37696.6, "probability": 0.8485 }, { "start": 37697.5, "end": 37700.38, "probability": 0.9401 }, { "start": 37700.48, "end": 37702.08, "probability": 0.9868 }, { "start": 37702.84, "end": 37703.44, "probability": 0.7735 }, { "start": 37704.16, "end": 37708.42, "probability": 0.9979 }, { "start": 37709.22, "end": 37714.74, "probability": 0.9941 }, { "start": 37715.6, "end": 37716.6, "probability": 0.8174 }, { "start": 37717.22, "end": 37719.18, "probability": 0.9493 }, { "start": 37719.72, "end": 37723.78, "probability": 0.9871 }, { "start": 37724.66, "end": 37728.92, "probability": 0.9193 }, { "start": 37729.6, "end": 37732.72, "probability": 0.9609 }, { "start": 37733.18, "end": 37736.28, "probability": 0.998 }, { "start": 37736.4, "end": 37737.72, "probability": 0.9418 }, { "start": 37739.4, "end": 37745.32, "probability": 0.9595 }, { "start": 37745.44, "end": 37747.36, "probability": 0.9673 }, { "start": 37748.96, "end": 37749.44, "probability": 0.7965 }, { "start": 37750.0, "end": 37750.24, "probability": 0.4676 }, { "start": 37751.5, "end": 37752.74, "probability": 0.9944 }, { "start": 37753.68, "end": 37755.54, "probability": 0.9827 }, { "start": 37756.82, "end": 37760.52, "probability": 0.9966 }, { "start": 37762.26, "end": 37765.24, "probability": 0.9941 }, { "start": 37765.98, "end": 37767.16, "probability": 0.9385 }, { "start": 37769.42, "end": 37773.06, "probability": 0.8521 }, { "start": 37773.06, "end": 37773.9, "probability": 0.3908 }, { "start": 37774.0, "end": 37774.22, "probability": 0.1856 }, { "start": 37774.86, "end": 37774.92, "probability": 0.1145 }, { "start": 37774.92, "end": 37774.92, "probability": 0.2244 }, { "start": 37774.92, "end": 37776.02, "probability": 0.7676 }, { "start": 37776.4, "end": 37777.52, "probability": 0.5965 }, { "start": 37777.84, "end": 37779.94, "probability": 0.5544 }, { "start": 37780.73, "end": 37781.57, "probability": 0.2506 }, { "start": 37781.58, "end": 37782.3, "probability": 0.6078 }, { "start": 37782.52, "end": 37782.52, "probability": 0.5898 }, { "start": 37782.52, "end": 37783.6, "probability": 0.8512 }, { "start": 37783.64, "end": 37784.02, "probability": 0.8708 }, { "start": 37785.96, "end": 37788.1, "probability": 0.9015 }, { "start": 37789.36, "end": 37790.72, "probability": 0.7573 }, { "start": 37792.68, "end": 37795.32, "probability": 0.9734 }, { "start": 37798.3, "end": 37799.45, "probability": 0.663 }, { "start": 37800.12, "end": 37801.42, "probability": 0.8839 }, { "start": 37802.2, "end": 37804.7, "probability": 0.8514 }, { "start": 37805.22, "end": 37805.42, "probability": 0.4083 }, { "start": 37805.74, "end": 37806.4, "probability": 0.9705 }, { "start": 37808.12, "end": 37809.16, "probability": 0.43 }, { "start": 37822.58, "end": 37823.68, "probability": 0.7526 }, { "start": 37823.8, "end": 37824.9, "probability": 0.8587 }, { "start": 37825.14, "end": 37826.04, "probability": 0.8857 }, { "start": 37829.1, "end": 37829.72, "probability": 0.859 }, { "start": 37831.32, "end": 37833.94, "probability": 0.9702 }, { "start": 37834.6, "end": 37835.68, "probability": 0.9651 }, { "start": 37836.82, "end": 37839.48, "probability": 0.7415 }, { "start": 37840.16, "end": 37841.96, "probability": 0.8981 }, { "start": 37842.7, "end": 37843.26, "probability": 0.4975 }, { "start": 37844.34, "end": 37846.78, "probability": 0.7629 }, { "start": 37847.3, "end": 37848.18, "probability": 0.7985 }, { "start": 37848.84, "end": 37851.0, "probability": 0.9117 }, { "start": 37851.76, "end": 37852.84, "probability": 0.8832 }, { "start": 37854.84, "end": 37856.02, "probability": 0.9806 }, { "start": 37857.52, "end": 37859.64, "probability": 0.969 }, { "start": 37860.94, "end": 37861.82, "probability": 0.7994 }, { "start": 37862.74, "end": 37864.98, "probability": 0.7178 }, { "start": 37866.26, "end": 37868.3, "probability": 0.7173 }, { "start": 37869.6, "end": 37870.4, "probability": 0.9341 }, { "start": 37870.6, "end": 37871.2, "probability": 0.8734 }, { "start": 37871.56, "end": 37872.66, "probability": 0.8631 }, { "start": 37873.28, "end": 37875.58, "probability": 0.4926 }, { "start": 37876.46, "end": 37878.56, "probability": 0.9966 }, { "start": 37879.38, "end": 37880.52, "probability": 0.5956 }, { "start": 37880.7, "end": 37883.16, "probability": 0.8984 }, { "start": 37884.16, "end": 37885.24, "probability": 0.9699 }, { "start": 37886.14, "end": 37888.5, "probability": 0.9871 }, { "start": 37889.02, "end": 37891.46, "probability": 0.9053 }, { "start": 37893.56, "end": 37894.28, "probability": 0.6232 }, { "start": 37894.48, "end": 37896.98, "probability": 0.9976 }, { "start": 37897.44, "end": 37898.86, "probability": 0.9329 }, { "start": 37900.34, "end": 37901.1, "probability": 0.8422 }, { "start": 37901.74, "end": 37903.94, "probability": 0.4265 }, { "start": 37906.28, "end": 37908.58, "probability": 0.5739 }, { "start": 37909.42, "end": 37910.2, "probability": 0.5433 }, { "start": 37910.74, "end": 37913.2, "probability": 0.8552 }, { "start": 37913.28, "end": 37914.02, "probability": 0.9243 }, { "start": 37914.48, "end": 37916.34, "probability": 0.8882 }, { "start": 37916.56, "end": 37917.62, "probability": 0.6774 }, { "start": 37918.3, "end": 37918.96, "probability": 0.5074 }, { "start": 37919.84, "end": 37921.92, "probability": 0.8839 }, { "start": 37922.64, "end": 37923.72, "probability": 0.8842 }, { "start": 37924.54, "end": 37925.55, "probability": 0.9925 }, { "start": 37926.44, "end": 37928.48, "probability": 0.7795 }, { "start": 37928.9, "end": 37930.52, "probability": 0.9139 }, { "start": 37930.54, "end": 37932.74, "probability": 0.6396 }, { "start": 37933.7, "end": 37935.1, "probability": 0.7997 }, { "start": 37935.34, "end": 37936.74, "probability": 0.8096 }, { "start": 37937.04, "end": 37938.48, "probability": 0.9915 }, { "start": 37939.22, "end": 37939.32, "probability": 0.9845 }, { "start": 37939.86, "end": 37941.86, "probability": 0.585 }, { "start": 37944.74, "end": 37947.52, "probability": 0.938 }, { "start": 37947.74, "end": 37948.66, "probability": 0.9702 }, { "start": 37949.86, "end": 37950.48, "probability": 0.9136 }, { "start": 37950.56, "end": 37953.18, "probability": 0.8339 }, { "start": 37954.26, "end": 37957.44, "probability": 0.5334 }, { "start": 37958.5, "end": 37959.98, "probability": 0.9412 }, { "start": 37960.94, "end": 37964.02, "probability": 0.5009 }, { "start": 37964.2, "end": 37964.86, "probability": 0.9426 }, { "start": 37965.42, "end": 37967.34, "probability": 0.9551 }, { "start": 37968.5, "end": 37969.32, "probability": 0.7365 }, { "start": 37969.92, "end": 37971.52, "probability": 0.9456 }, { "start": 37971.88, "end": 37973.28, "probability": 0.6603 }, { "start": 37973.74, "end": 37975.04, "probability": 0.8193 }, { "start": 37975.92, "end": 37977.38, "probability": 0.5068 }, { "start": 37978.04, "end": 37980.66, "probability": 0.8093 }, { "start": 37980.84, "end": 37982.32, "probability": 0.7131 }, { "start": 37983.42, "end": 37988.12, "probability": 0.9812 }, { "start": 37988.72, "end": 37993.11, "probability": 0.8451 }, { "start": 37993.42, "end": 37996.24, "probability": 0.9882 }, { "start": 37996.9, "end": 37998.02, "probability": 0.9065 }, { "start": 37998.56, "end": 38000.36, "probability": 0.9054 }, { "start": 38000.54, "end": 38004.2, "probability": 0.8759 }, { "start": 38004.74, "end": 38009.28, "probability": 0.783 }, { "start": 38009.28, "end": 38009.72, "probability": 0.8011 }, { "start": 38009.82, "end": 38010.22, "probability": 0.8273 }, { "start": 38011.64, "end": 38013.16, "probability": 0.7755 }, { "start": 38013.98, "end": 38014.92, "probability": 0.845 }, { "start": 38016.72, "end": 38018.26, "probability": 0.8418 }, { "start": 38018.66, "end": 38018.86, "probability": 0.0566 }, { "start": 38019.1, "end": 38020.72, "probability": 0.9807 }, { "start": 38022.04, "end": 38025.58, "probability": 0.9902 }, { "start": 38026.58, "end": 38027.94, "probability": 0.9686 }, { "start": 38031.87, "end": 38033.21, "probability": 0.8533 }, { "start": 38034.68, "end": 38036.4, "probability": 0.9433 }, { "start": 38037.26, "end": 38040.66, "probability": 0.9626 }, { "start": 38041.62, "end": 38042.68, "probability": 0.98 }, { "start": 38043.44, "end": 38045.74, "probability": 0.7329 }, { "start": 38046.42, "end": 38046.6, "probability": 0.0752 }, { "start": 38046.6, "end": 38047.02, "probability": 0.5869 }, { "start": 38068.16, "end": 38070.16, "probability": 0.7258 }, { "start": 38071.38, "end": 38075.14, "probability": 0.9966 }, { "start": 38076.08, "end": 38078.54, "probability": 0.9932 }, { "start": 38079.14, "end": 38079.59, "probability": 0.6128 }, { "start": 38081.87, "end": 38086.98, "probability": 0.7941 }, { "start": 38088.06, "end": 38091.8, "probability": 0.9993 }, { "start": 38092.48, "end": 38093.82, "probability": 0.985 }, { "start": 38094.5, "end": 38095.66, "probability": 0.9902 }, { "start": 38095.98, "end": 38096.56, "probability": 0.7714 }, { "start": 38096.58, "end": 38099.82, "probability": 0.8351 }, { "start": 38100.74, "end": 38103.76, "probability": 0.9753 }, { "start": 38104.28, "end": 38107.0, "probability": 0.7683 }, { "start": 38107.06, "end": 38107.54, "probability": 0.7181 }, { "start": 38107.58, "end": 38109.36, "probability": 0.8357 }, { "start": 38109.74, "end": 38110.84, "probability": 0.9836 }, { "start": 38110.88, "end": 38111.94, "probability": 0.9359 }, { "start": 38113.12, "end": 38113.58, "probability": 0.601 }, { "start": 38114.04, "end": 38118.48, "probability": 0.9414 }, { "start": 38118.92, "end": 38120.82, "probability": 0.9678 }, { "start": 38121.42, "end": 38122.7, "probability": 0.9821 }, { "start": 38123.64, "end": 38127.6, "probability": 0.8836 }, { "start": 38128.14, "end": 38129.02, "probability": 0.9112 }, { "start": 38129.54, "end": 38129.92, "probability": 0.7959 }, { "start": 38130.14, "end": 38134.28, "probability": 0.9695 }, { "start": 38134.28, "end": 38137.28, "probability": 0.9959 }, { "start": 38138.0, "end": 38138.96, "probability": 0.8537 }, { "start": 38139.44, "end": 38140.16, "probability": 0.9974 }, { "start": 38140.56, "end": 38141.07, "probability": 0.9888 }, { "start": 38141.56, "end": 38141.96, "probability": 0.999 }, { "start": 38142.76, "end": 38143.7, "probability": 0.6729 }, { "start": 38143.9, "end": 38145.14, "probability": 0.8 }, { "start": 38145.48, "end": 38148.8, "probability": 0.7555 }, { "start": 38149.54, "end": 38150.34, "probability": 0.7758 }, { "start": 38151.02, "end": 38153.12, "probability": 0.9799 }, { "start": 38153.56, "end": 38154.36, "probability": 0.9412 }, { "start": 38154.82, "end": 38155.44, "probability": 0.9771 }, { "start": 38155.54, "end": 38156.68, "probability": 0.9326 }, { "start": 38156.94, "end": 38158.31, "probability": 0.5309 }, { "start": 38158.38, "end": 38159.2, "probability": 0.9571 }, { "start": 38159.24, "end": 38162.26, "probability": 0.9039 }, { "start": 38162.9, "end": 38164.38, "probability": 0.9569 }, { "start": 38165.0, "end": 38169.58, "probability": 0.9933 }, { "start": 38169.98, "end": 38170.66, "probability": 0.9897 }, { "start": 38171.04, "end": 38173.58, "probability": 0.9916 }, { "start": 38174.58, "end": 38178.76, "probability": 0.9932 }, { "start": 38179.44, "end": 38181.16, "probability": 0.9002 }, { "start": 38181.86, "end": 38183.6, "probability": 0.7898 }, { "start": 38183.84, "end": 38188.36, "probability": 0.8831 }, { "start": 38189.08, "end": 38194.44, "probability": 0.9933 }, { "start": 38194.72, "end": 38195.18, "probability": 0.9414 }, { "start": 38195.66, "end": 38195.76, "probability": 0.4215 }, { "start": 38195.76, "end": 38197.09, "probability": 0.2446 }, { "start": 38197.66, "end": 38202.1, "probability": 0.8916 }, { "start": 38202.1, "end": 38205.76, "probability": 0.5208 }, { "start": 38206.34, "end": 38208.72, "probability": 0.7409 }, { "start": 38209.28, "end": 38210.82, "probability": 0.8912 }, { "start": 38210.9, "end": 38211.54, "probability": 0.8998 }, { "start": 38211.62, "end": 38212.26, "probability": 0.95 }, { "start": 38213.0, "end": 38215.9, "probability": 0.9731 }, { "start": 38216.46, "end": 38217.98, "probability": 0.9907 }, { "start": 38218.48, "end": 38221.19, "probability": 0.966 }, { "start": 38222.1, "end": 38223.46, "probability": 0.9601 }, { "start": 38223.6, "end": 38225.88, "probability": 0.7197 }, { "start": 38226.52, "end": 38231.78, "probability": 0.9451 }, { "start": 38232.22, "end": 38232.4, "probability": 0.6555 }, { "start": 38232.94, "end": 38234.94, "probability": 0.9968 }, { "start": 38235.56, "end": 38237.64, "probability": 0.8015 }, { "start": 38238.1, "end": 38241.32, "probability": 0.9728 }, { "start": 38241.64, "end": 38243.14, "probability": 0.9542 }, { "start": 38243.64, "end": 38247.58, "probability": 0.8838 }, { "start": 38248.18, "end": 38251.28, "probability": 0.7396 }, { "start": 38251.34, "end": 38253.2, "probability": 0.9805 }, { "start": 38254.16, "end": 38256.06, "probability": 0.8657 }, { "start": 38256.12, "end": 38256.3, "probability": 0.6418 }, { "start": 38256.3, "end": 38257.12, "probability": 0.9917 }, { "start": 38257.4, "end": 38258.83, "probability": 0.9966 }, { "start": 38259.26, "end": 38260.02, "probability": 0.5148 }, { "start": 38260.2, "end": 38260.68, "probability": 0.414 }, { "start": 38260.9, "end": 38263.02, "probability": 0.9638 }, { "start": 38263.4, "end": 38264.5, "probability": 0.7868 }, { "start": 38264.56, "end": 38265.22, "probability": 0.8731 }, { "start": 38265.6, "end": 38266.86, "probability": 0.7088 }, { "start": 38267.2, "end": 38267.6, "probability": 0.6561 }, { "start": 38267.84, "end": 38268.48, "probability": 0.9618 }, { "start": 38269.58, "end": 38271.24, "probability": 0.7849 }, { "start": 38272.9, "end": 38274.44, "probability": 0.9684 }, { "start": 38275.4, "end": 38277.02, "probability": 0.7345 }, { "start": 38287.06, "end": 38287.74, "probability": 0.5875 }, { "start": 38301.56, "end": 38302.06, "probability": 0.3656 }, { "start": 38302.12, "end": 38303.74, "probability": 0.7067 }, { "start": 38304.3, "end": 38305.1, "probability": 0.8952 }, { "start": 38305.7, "end": 38307.08, "probability": 0.9953 }, { "start": 38307.92, "end": 38310.42, "probability": 0.9644 }, { "start": 38311.1, "end": 38315.94, "probability": 0.9978 }, { "start": 38317.34, "end": 38318.24, "probability": 0.9173 }, { "start": 38319.06, "end": 38320.14, "probability": 0.9694 }, { "start": 38322.1, "end": 38325.26, "probability": 0.9681 }, { "start": 38325.82, "end": 38328.24, "probability": 0.9347 }, { "start": 38328.56, "end": 38328.9, "probability": 0.6808 }, { "start": 38329.58, "end": 38331.38, "probability": 0.9946 }, { "start": 38331.9, "end": 38332.08, "probability": 0.2544 }, { "start": 38332.26, "end": 38335.52, "probability": 0.9788 }, { "start": 38335.74, "end": 38338.9, "probability": 0.427 }, { "start": 38339.52, "end": 38340.98, "probability": 0.9941 }, { "start": 38341.06, "end": 38342.04, "probability": 0.9364 }, { "start": 38342.84, "end": 38343.54, "probability": 0.9131 }, { "start": 38344.54, "end": 38345.53, "probability": 0.9783 }, { "start": 38345.98, "end": 38348.1, "probability": 0.0651 }, { "start": 38348.1, "end": 38351.12, "probability": 0.6156 }, { "start": 38351.3, "end": 38352.02, "probability": 0.8815 }, { "start": 38353.48, "end": 38354.42, "probability": 0.9514 }, { "start": 38355.06, "end": 38356.52, "probability": 0.9143 }, { "start": 38357.98, "end": 38359.06, "probability": 0.9869 }, { "start": 38360.68, "end": 38364.0, "probability": 0.9345 }, { "start": 38364.72, "end": 38366.2, "probability": 0.8564 }, { "start": 38367.1, "end": 38367.2, "probability": 0.9248 }, { "start": 38367.38, "end": 38368.76, "probability": 0.9559 }, { "start": 38368.84, "end": 38369.65, "probability": 0.8699 }, { "start": 38370.48, "end": 38371.52, "probability": 0.9535 }, { "start": 38371.62, "end": 38373.32, "probability": 0.9565 }, { "start": 38374.28, "end": 38376.66, "probability": 0.9985 }, { "start": 38377.26, "end": 38380.5, "probability": 0.8911 }, { "start": 38380.84, "end": 38383.08, "probability": 0.8815 }, { "start": 38383.24, "end": 38384.04, "probability": 0.9347 }, { "start": 38384.64, "end": 38385.42, "probability": 0.814 }, { "start": 38385.46, "end": 38387.2, "probability": 0.9964 }, { "start": 38387.54, "end": 38388.33, "probability": 0.9649 }, { "start": 38388.56, "end": 38389.26, "probability": 0.98 }, { "start": 38389.88, "end": 38391.16, "probability": 0.8697 }, { "start": 38391.68, "end": 38392.43, "probability": 0.7703 }, { "start": 38393.58, "end": 38398.58, "probability": 0.9594 }, { "start": 38398.96, "end": 38401.04, "probability": 0.9853 }, { "start": 38401.74, "end": 38405.36, "probability": 0.9117 }, { "start": 38405.7, "end": 38406.92, "probability": 0.969 }, { "start": 38407.3, "end": 38408.9, "probability": 0.9654 }, { "start": 38409.06, "end": 38409.72, "probability": 0.9131 }, { "start": 38410.1, "end": 38411.02, "probability": 0.9709 }, { "start": 38411.44, "end": 38412.92, "probability": 0.9867 }, { "start": 38413.0, "end": 38413.84, "probability": 0.9685 }, { "start": 38414.36, "end": 38415.16, "probability": 0.9785 }, { "start": 38415.26, "end": 38420.18, "probability": 0.9768 }, { "start": 38420.32, "end": 38421.41, "probability": 0.9516 }, { "start": 38422.74, "end": 38424.48, "probability": 0.7708 }, { "start": 38425.52, "end": 38427.14, "probability": 0.9558 }, { "start": 38428.06, "end": 38430.6, "probability": 0.8952 }, { "start": 38435.22, "end": 38437.9, "probability": 0.9819 }, { "start": 38438.06, "end": 38438.9, "probability": 0.8804 }, { "start": 38439.6, "end": 38440.56, "probability": 0.9674 }, { "start": 38441.7, "end": 38442.64, "probability": 0.7132 }, { "start": 38443.14, "end": 38445.12, "probability": 0.8501 }, { "start": 38446.85, "end": 38448.96, "probability": 0.9878 }, { "start": 38450.92, "end": 38453.62, "probability": 0.7209 }, { "start": 38454.14, "end": 38456.02, "probability": 0.7729 }, { "start": 38456.22, "end": 38459.32, "probability": 0.9937 }, { "start": 38462.1, "end": 38464.84, "probability": 0.9878 }, { "start": 38465.0, "end": 38468.06, "probability": 0.9146 }, { "start": 38468.06, "end": 38472.38, "probability": 0.9901 }, { "start": 38473.16, "end": 38474.86, "probability": 0.643 }, { "start": 38475.1, "end": 38476.26, "probability": 0.8445 }, { "start": 38476.74, "end": 38477.54, "probability": 0.7654 }, { "start": 38478.08, "end": 38478.38, "probability": 0.9471 }, { "start": 38478.96, "end": 38482.72, "probability": 0.9609 }, { "start": 38483.0, "end": 38485.58, "probability": 0.9878 }, { "start": 38485.64, "end": 38488.22, "probability": 0.647 }, { "start": 38488.62, "end": 38493.24, "probability": 0.9735 }, { "start": 38493.66, "end": 38494.75, "probability": 0.9336 }, { "start": 38496.42, "end": 38497.78, "probability": 0.8323 }, { "start": 38498.49, "end": 38499.2, "probability": 0.2177 }, { "start": 38499.2, "end": 38499.75, "probability": 0.5645 }, { "start": 38500.14, "end": 38500.99, "probability": 0.259 }, { "start": 38501.68, "end": 38501.68, "probability": 0.031 }, { "start": 38501.68, "end": 38502.1, "probability": 0.6594 }, { "start": 38502.1, "end": 38502.38, "probability": 0.4321 }, { "start": 38502.44, "end": 38503.64, "probability": 0.5593 }, { "start": 38503.66, "end": 38504.1, "probability": 0.8668 }, { "start": 38504.1, "end": 38504.6, "probability": 0.2238 }, { "start": 38505.36, "end": 38509.08, "probability": 0.9953 }, { "start": 38509.62, "end": 38511.48, "probability": 0.9978 }, { "start": 38511.52, "end": 38511.78, "probability": 0.7607 }, { "start": 38512.48, "end": 38512.82, "probability": 0.5696 }, { "start": 38513.3, "end": 38513.76, "probability": 0.8566 }, { "start": 38513.94, "end": 38516.74, "probability": 0.9919 }, { "start": 38517.74, "end": 38518.0, "probability": 0.2921 }, { "start": 38518.0, "end": 38518.1, "probability": 0.216 }, { "start": 38518.88, "end": 38520.42, "probability": 0.9442 }, { "start": 38521.4, "end": 38522.64, "probability": 0.8664 }, { "start": 38523.48, "end": 38523.64, "probability": 0.0658 }, { "start": 38523.64, "end": 38525.24, "probability": 0.769 }, { "start": 38525.34, "end": 38525.64, "probability": 0.6268 }, { "start": 38525.68, "end": 38526.42, "probability": 0.9226 }, { "start": 38526.42, "end": 38527.12, "probability": 0.6492 }, { "start": 38527.4, "end": 38531.82, "probability": 0.914 }, { "start": 38531.82, "end": 38537.26, "probability": 0.6447 }, { "start": 38539.24, "end": 38539.73, "probability": 0.0893 }, { "start": 38540.88, "end": 38542.68, "probability": 0.1841 }, { "start": 38543.68, "end": 38544.34, "probability": 0.1561 }, { "start": 38545.93, "end": 38548.3, "probability": 0.0148 }, { "start": 38549.48, "end": 38549.72, "probability": 0.0485 }, { "start": 38553.9, "end": 38554.92, "probability": 0.0406 }, { "start": 38555.94, "end": 38557.2, "probability": 0.0478 }, { "start": 38557.86, "end": 38559.22, "probability": 0.0436 }, { "start": 38560.64, "end": 38564.5, "probability": 0.7075 }, { "start": 38564.68, "end": 38565.3, "probability": 0.9509 }, { "start": 38566.1, "end": 38570.49, "probability": 0.917 }, { "start": 38572.02, "end": 38572.86, "probability": 0.2156 }, { "start": 38574.06, "end": 38574.06, "probability": 0.2647 }, { "start": 38574.42, "end": 38576.56, "probability": 0.9925 }, { "start": 38606.16, "end": 38606.54, "probability": 0.8203 } ], "segments_count": 14619, "words_count": 67826, "avg_words_per_segment": 4.6396, "avg_segment_duration": 1.6935, "avg_words_per_minute": 101.7193, "plenum_id": "103688", "duration": 40007.75, "title": null, "plenum_date": "2022-01-03" }