jackkuo commited on
Commit
0254bf0
·
verified ·
1 Parent(s): 4d7be70

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. -NAyT4oBgHgl3EQfRPZI/vector_store/index.pkl +3 -0
  2. .gitattributes +52 -0
  3. 0NE1T4oBgHgl3EQfkwRo/content/tmp_files/2301.03277v1.pdf.txt +1704 -0
  4. 0NFAT4oBgHgl3EQfCBxS/content/tmp_files/2301.08407v1.pdf.txt +858 -0
  5. 0NFAT4oBgHgl3EQfCBxS/content/tmp_files/load_file.txt +0 -0
  6. 29E2T4oBgHgl3EQf5whX/content/2301.04193v1.pdf +3 -0
  7. 29E2T4oBgHgl3EQf5whX/vector_store/index.pkl +3 -0
  8. 2NAzT4oBgHgl3EQfDfro/content/tmp_files/2301.00979v1.pdf.txt +1325 -0
  9. 2NAzT4oBgHgl3EQfDfro/content/tmp_files/load_file.txt +0 -0
  10. 2NFST4oBgHgl3EQfXTj3/content/tmp_files/2301.13784v1.pdf.txt +1349 -0
  11. 2NFST4oBgHgl3EQfXTj3/content/tmp_files/load_file.txt +0 -0
  12. 4dAyT4oBgHgl3EQfcPej/content/tmp_files/2301.00279v1.pdf.txt +537 -0
  13. 4dAyT4oBgHgl3EQfcPej/content/tmp_files/load_file.txt +0 -0
  14. 5NE3T4oBgHgl3EQfpArI/vector_store/index.pkl +3 -0
  15. 89E3T4oBgHgl3EQfqwpo/content/tmp_files/2301.04654v1.pdf.txt +1127 -0
  16. 89E3T4oBgHgl3EQfqwpo/content/tmp_files/load_file.txt +0 -0
  17. 8tE2T4oBgHgl3EQf8Qgm/content/2301.04216v1.pdf +3 -0
  18. 8tE2T4oBgHgl3EQf8Qgm/vector_store/index.pkl +3 -0
  19. 99E5T4oBgHgl3EQfRQ7z/content/2301.05520v1.pdf +3 -0
  20. 9tA0T4oBgHgl3EQfO_-M/content/tmp_files/2301.02169v1.pdf.txt +2522 -0
  21. 9tA0T4oBgHgl3EQfO_-M/content/tmp_files/load_file.txt +0 -0
  22. ANFLT4oBgHgl3EQfwzCR/content/tmp_files/2301.12165v1.pdf.txt +705 -0
  23. ANFLT4oBgHgl3EQfwzCR/content/tmp_files/load_file.txt +508 -0
  24. AtE1T4oBgHgl3EQf9Ab6/vector_store/index.pkl +3 -0
  25. B9E4T4oBgHgl3EQfFQzj/vector_store/index.faiss +3 -0
  26. BNAyT4oBgHgl3EQfRvex/content/2301.00073v1.pdf +3 -0
  27. BNAyT4oBgHgl3EQfRvex/vector_store/index.faiss +3 -0
  28. BNAyT4oBgHgl3EQfRvex/vector_store/index.pkl +3 -0
  29. BtFQT4oBgHgl3EQfNjak/content/tmp_files/2301.13272v1.pdf.txt +908 -0
  30. BtFQT4oBgHgl3EQfNjak/content/tmp_files/load_file.txt +0 -0
  31. CtAzT4oBgHgl3EQfGfuT/content/2301.01029v1.pdf +3 -0
  32. CtAzT4oBgHgl3EQfGfuT/vector_store/index.faiss +3 -0
  33. CtAzT4oBgHgl3EQfGfuT/vector_store/index.pkl +3 -0
  34. CtAzT4oBgHgl3EQfTvyL/vector_store/index.faiss +3 -0
  35. DdE1T4oBgHgl3EQfWQSA/content/tmp_files/2301.03112v1.pdf.txt +1426 -0
  36. DdE1T4oBgHgl3EQfWQSA/content/tmp_files/load_file.txt +0 -0
  37. E9AyT4oBgHgl3EQfevjq/content/2301.00329v1.pdf +3 -0
  38. E9AyT4oBgHgl3EQfevjq/vector_store/index.faiss +3 -0
  39. E9AyT4oBgHgl3EQfevjq/vector_store/index.pkl +3 -0
  40. E9AzT4oBgHgl3EQfG_uu/content/2301.01038v1.pdf +3 -0
  41. E9AzT4oBgHgl3EQfG_uu/vector_store/index.pkl +3 -0
  42. FNE1T4oBgHgl3EQfqgXp/content/tmp_files/2301.03345v1.pdf.txt +1265 -0
  43. FNE1T4oBgHgl3EQfqgXp/content/tmp_files/load_file.txt +0 -0
  44. FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf +3 -0
  45. FdAyT4oBgHgl3EQfe_hY/vector_store/index.pkl +3 -0
  46. FdE2T4oBgHgl3EQf-QlB/vector_store/index.pkl +3 -0
  47. FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf +3 -0
  48. FtFLT4oBgHgl3EQfGS-3/vector_store/index.faiss +3 -0
  49. G9E1T4oBgHgl3EQf_QZd/content/2301.03578v1.pdf +3 -0
  50. IdFIT4oBgHgl3EQfYSv6/content/2301.11248v1.pdf +3 -0
-NAyT4oBgHgl3EQfRPZI/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d2f6cffd652c3cec5da588baada9bf489be2463d020bbc3294a7bfda77d2529
3
+ size 220797
.gitattributes CHANGED
@@ -6944,3 +6944,55 @@ odAzT4oBgHgl3EQfqv0U/content/2301.01632v1.pdf filter=lfs diff=lfs merge=lfs -tex
6944
  xtAyT4oBgHgl3EQfnvhT/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6945
  6tE3T4oBgHgl3EQfpwpy/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6946
  6tE0T4oBgHgl3EQffABm/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6944
  xtAyT4oBgHgl3EQfnvhT/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6945
  6tE3T4oBgHgl3EQfpwpy/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6946
  6tE0T4oBgHgl3EQffABm/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6947
+ lNE_T4oBgHgl3EQf6By0/content/2301.08362v1.pdf filter=lfs diff=lfs merge=lfs -text
6948
+ IdFIT4oBgHgl3EQfYSv6/content/2301.11248v1.pdf filter=lfs diff=lfs merge=lfs -text
6949
+ vdAyT4oBgHgl3EQfnPg_/content/2301.00484v1.pdf filter=lfs diff=lfs merge=lfs -text
6950
+ yNAyT4oBgHgl3EQfnvis/content/2301.00495v1.pdf filter=lfs diff=lfs merge=lfs -text
6951
+ B9E4T4oBgHgl3EQfFQzj/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6952
+ y9E1T4oBgHgl3EQfRAMr/content/2301.03046v1.pdf filter=lfs diff=lfs merge=lfs -text
6953
+ d9E3T4oBgHgl3EQfegrm/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6954
+ G9E1T4oBgHgl3EQf_QZd/content/2301.03578v1.pdf filter=lfs diff=lfs merge=lfs -text
6955
+ CtAzT4oBgHgl3EQfTvyL/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6956
+ V9AzT4oBgHgl3EQf1f5A/content/2301.01799v1.pdf filter=lfs diff=lfs merge=lfs -text
6957
+ IdFIT4oBgHgl3EQfYSv6/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6958
+ LtE4T4oBgHgl3EQfig3U/content/2301.05135v1.pdf filter=lfs diff=lfs merge=lfs -text
6959
+ z9AzT4oBgHgl3EQftf3i/content/2301.01678v1.pdf filter=lfs diff=lfs merge=lfs -text
6960
+ qtE1T4oBgHgl3EQf2gXF/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6961
+ LdE5T4oBgHgl3EQfYg9W/content/2301.05574v1.pdf filter=lfs diff=lfs merge=lfs -text
6962
+ pdE0T4oBgHgl3EQfaACR/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6963
+ E9AyT4oBgHgl3EQfevjq/content/2301.00329v1.pdf filter=lfs diff=lfs merge=lfs -text
6964
+ ltFKT4oBgHgl3EQfDi1s/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6965
+ xtAyT4oBgHgl3EQfnvhT/content/2301.00493v1.pdf filter=lfs diff=lfs merge=lfs -text
6966
+ edFQT4oBgHgl3EQfkDbq/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6967
+ g9E3T4oBgHgl3EQfIQkV/content/2301.04331v1.pdf filter=lfs diff=lfs merge=lfs -text
6968
+ y9E1T4oBgHgl3EQfRAMr/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6969
+ odAzT4oBgHgl3EQfqv0U/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6970
+ FtFLT4oBgHgl3EQfGS-3/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6971
+ LtE2T4oBgHgl3EQfqAi5/content/2301.04035v1.pdf filter=lfs diff=lfs merge=lfs -text
6972
+ XNAzT4oBgHgl3EQfYfy5/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6973
+ ONFKT4oBgHgl3EQffS6d/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6974
+ KNE0T4oBgHgl3EQfigEg/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6975
+ BNAyT4oBgHgl3EQfRvex/content/2301.00073v1.pdf filter=lfs diff=lfs merge=lfs -text
6976
+ 8tE2T4oBgHgl3EQf8Qgm/content/2301.04216v1.pdf filter=lfs diff=lfs merge=lfs -text
6977
+ LtE4T4oBgHgl3EQfig3U/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6978
+ LdE5T4oBgHgl3EQfYg9W/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6979
+ FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf filter=lfs diff=lfs merge=lfs -text
6980
+ E9AyT4oBgHgl3EQfevjq/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6981
+ LtE2T4oBgHgl3EQfqAi5/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6982
+ CtAzT4oBgHgl3EQfGfuT/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6983
+ FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf filter=lfs diff=lfs merge=lfs -text
6984
+ _dE5T4oBgHgl3EQfSA7f/content/2301.05526v1.pdf filter=lfs diff=lfs merge=lfs -text
6985
+ _dE3T4oBgHgl3EQfsApn/content/2301.04664v1.pdf filter=lfs diff=lfs merge=lfs -text
6986
+ yNAyT4oBgHgl3EQfnvis/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6987
+ T9AyT4oBgHgl3EQfhPid/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6988
+ XNAzT4oBgHgl3EQfYfy5/content/2301.01337v1.pdf filter=lfs diff=lfs merge=lfs -text
6989
+ CtAzT4oBgHgl3EQfGfuT/content/2301.01029v1.pdf filter=lfs diff=lfs merge=lfs -text
6990
+ 29E2T4oBgHgl3EQf5whX/content/2301.04193v1.pdf filter=lfs diff=lfs merge=lfs -text
6991
+ 99E5T4oBgHgl3EQfRQ7z/content/2301.05520v1.pdf filter=lfs diff=lfs merge=lfs -text
6992
+ O9E3T4oBgHgl3EQfxgsc/content/2301.04711v1.pdf filter=lfs diff=lfs merge=lfs -text
6993
+ S9A0T4oBgHgl3EQfD__i/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6994
+ ONFKT4oBgHgl3EQffS6d/content/2301.11829v1.pdf filter=lfs diff=lfs merge=lfs -text
6995
+ XdA0T4oBgHgl3EQfFP_h/content/2301.02031v1.pdf filter=lfs diff=lfs merge=lfs -text
6996
+ BNAyT4oBgHgl3EQfRvex/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6997
+ U9AyT4oBgHgl3EQfuvmH/content/2301.00619v1.pdf filter=lfs diff=lfs merge=lfs -text
6998
+ E9AzT4oBgHgl3EQfG_uu/content/2301.01038v1.pdf filter=lfs diff=lfs merge=lfs -text
0NE1T4oBgHgl3EQfkwRo/content/tmp_files/2301.03277v1.pdf.txt ADDED
@@ -0,0 +1,1704 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.03277v1 [math.DG] 9 Jan 2023
2
+ Functionals for the Study of LCK Metrics on Compact
3
+ Complex Manifolds
4
+ Dan Popovici and Erfan Soheil
5
+ Abstract. We propose an approach to the existence problem for locally conformally K¨ahler metrics on
6
+ compact complex manifolds by introducing and studying a functional that is different according to whether
7
+ the complex dimension of the manifold is 2 or higher.
8
+ 1
9
+ Introduction
10
+ Let X be an n-dimensional compact complex manifold with n ≥ 2. In this paper, we propose a
11
+ variational approach to the existence of locally conformally K¨ahler (lcK) metrics on X by introducing
12
+ and analysing a functional in each of the cases n = 2 and n ≥ 3. This functional, defined on the
13
+ non-empty set HX of all the Hermitian metrics on X, assumes non-negative values and vanishes
14
+ precisely on the lcK metrics. We compute the first variation of our functional on both surfaces and
15
+ higher-dimensional manifolds.
16
+ We will identify a Hermitian metric on X with the associated C∞ positive definite (1, 1)-form
17
+ ω. The set HX of all these metrics is a non-empty open convex cone in the infinite-dimensional
18
+ real vector space C∞
19
+ 1, 1(X, R) of all the real-valued smooth (1, 1)-forms on X. As is well known,
20
+ a Hermitian metric ω is called K¨ahler if dω = 0 and a complex manifold X is said to be K¨ahler
21
+ if there exists a K¨ahler metric thereon. Meanwhile, the notion of locally conformally K¨ahler
22
+ (lcK) manifold originates with I. Vaisman in [Vai76]. There are several equivalent definitions of
23
+ lcK manifolds. The one adopted in this paper stipulates that a complex manifold X is lcK if there
24
+ exists an lcK metric thereon, while a Hermitian metric ω on X is said to be lcK if there exists a C∞
25
+ 1-form θ on X such that dθ = 0 and
26
+ dω = ω ∧ θ.
27
+ When it exists, the 1-form θ is unique and is called the Lee form of ω. For equivalent definitions of
28
+ lcK manifolds, the reader is referred e.g. to Definitions 3.18 and 3.29 of [OV22].
29
+ One of the early results in the theory of lcK manifolds is Vaisman’s theorem according to which
30
+ any lcK metric on a compact K¨ahler manifold is, in fact, globally conformally K¨ahler. This theorem
31
+ was extended to compact complex spaces with singularities by Preda and Stanciu in [PS22].
32
+ The question of when lcK metrics exist on a given compact complex manifold X has been
33
+ extensively studied. For example, Otiman characterised the existence of such metrics with prescribed
34
+ Lee form in terms of currents: given a d-closed 1-form θ on X and considering the associated twisted
35
+ operator dθ = d+θ∧·, Theorem 2.1 in [Oti14] stipulates that X admits an lcK metric whose Lee form
36
+ is θ if and only if there are no non-trivial positive (1, 1)-currents on X that are (1, 1)-components of
37
+ dθ-boundaries.
38
+ On the other hand, Istrati investigated the relation between the existence of special lcK metrics
39
+ on a compact complex manifold and the group of biholomorphisms of the manifold. Specifically,
40
+ according to Theorem 0.2 in [Ist19], a compact lcK manifold X admits a Vaisman metric if the
41
+ group of biholomorphisms of X contains a torus T that is not purely real. A compact torus T of
42
+ 1
43
+
44
+ biholomorphisms of a compact complex manifold (X, J) is said to be purely real (in the sense of
45
+ (1) of Definition 0.1. in [Ist19]) if its Lie algebra t satisfies the condition t ∩ Jt = 0, where J is the
46
+ complex structure of X. Recall that an lcK metric ω is said to be a Vaisman metric if ∇ωθ = 0,
47
+ where θ is the Lee form of ω and ∇ω is the Levi-Civita connection determined by ω.
48
+ The approach we propose in this paper to the issue of the existence of lcK metrics on a compact
49
+ complex n-dimensional manifold X is analytic. Given an arbitrary Hermitian metric ω on X, the
50
+ Lefschetz decomposition
51
+ dω = (dω)prim + ω ∧ θω
52
+ of dω into a uniquely determined ω-primitive part and a part divisible by ω with a uniquely de-
53
+ termined quotient 1-form θω (the Lee form of ω) gives rise to the following dichotomy (cf. Lemma
54
+ 2.2):
55
+ (i) either n = 2, in which case (dω)prim = 0 but the Lee form θω need not be d-closed, so the lcK
56
+ condition on ω is equivalent to dθω = 0. This turns out to be equivalent to ∂θ1, 0
57
+ ω
58
+ = 0. Therefore, we
59
+ define our functional L : HX −→ [0, +∞) in this case to be
60
+ L(ω) = ||∂θ1, 0
61
+ ω ||2
62
+ ω,
63
+ namely its value at every Hermitian metric ω on X is defined to be the squared L2
64
+ ω-norm of ∂θ1, 0
65
+ ω .
66
+ (ii) or n ≥ 3, in which case the lcK condition on ω is equivalent to the vanishing condition
67
+ (dω)prim = 0.
68
+ This is further equivalent to the vanishing of either (∂ω)prim or (¯∂ω)prim.
69
+ We,
70
+ therefore, define our functional L : HX −→ [0, +∞) in this case to be
71
+ L(ω) = ||(¯∂ω)prim||2
72
+ ω,
73
+ namely its value at every Hermitian metric ω on X is defined to be the squared L2
74
+ ω-norm of the
75
+ ω-primitive part of the (1, 2)-form ¯∂ω.
76
+ The main results of the paper are the computations of the first variation of our functional L in
77
+ each of the cases n = 2 (cf. Theorem 4.4) and n ≥ 3 (cf. Theorem 5.1).
78
+ While the functional L is scaling-invariant when n = 2, this fails to be the case when n ≥ 3. In
79
+ this latter case, we obtain two proofs – one as a corollary of the formula for the first variation of our
80
+ functional (cf. Proposition 5.3), the other as a direct consequence of the behaviour of our functional
81
+ in the scaling direction (cf. Proposition 6.2) – for the equivalence:
82
+ ω is a critical point for the functional L if and only if ω is lcK
83
+ Still in the case n ≥ 3, we introduce in Definition 6.5 a normalised version �Lρ of the functional L
84
+ depending on an arbitrary background Hermitian metric ρ. The first variation of �Lρ is then deduced
85
+ in Proposition 6.6 from the analogous computation for L obtained in Theorem 5.1. One motivation
86
+ for the normalisation we propose in terms of a (possibly balanced and possibly moving) metric ρ
87
+ stems from the conjecture predicting that the simultaneous existence of a balanced metric and of
88
+ an lcK metric on a compact complex manifold ought to imply the existence of a K¨ahler metric. We
89
+ hope to be able to develop this line of thought in future work.
90
+ 2
91
+
92
+ At the end of §.6, we use our scaling-invariant functionals L (in the case of compact complex
93
+ surfaces) and �Lρ (in the case of higher-dimensional compact complex manifolds) to produce positive
94
+ (1, 1)-currents whose failure to be either C∞ forms or strictly positive provides possible obstructions
95
+ to the existence of lcK metrics.
96
+ Acknowledgments. This work is part of the second-named author’s thesis under the supervision
97
+ of the first-named author. The former wishes to thank the latter for constant support.
98
+ 2
99
+ Preliminaries
100
+ In this section, we recast some standard material in the language of primitive forms and make a few
101
+ observations that will be used in the next sections.
102
+ Let X be a complex manifold with dimCX = n. We will denote by:
103
+ (i) C∞
104
+ k (X, C), resp. C∞
105
+ p, q(X, C), the space of C∞ differential forms of degree k, resp. of bidegree
106
+ (p, q) on X. When these forms α are real (in the sense that α = α), the corresponding spaces will
107
+ be denoted by C∞
108
+ k (X, R), resp. C∞
109
+ p, q(X, R).
110
+ (ii) ΛkT ⋆X, resp. Λp, qT ⋆X, the vector bundle of differential forms of degree k, resp. of bidegree
111
+ (p, q), as well as the spaces of such forms considered in a pointwise way.
112
+ For any (1, 1)-form ρ ≥ 0, we will also use the following notation:
113
+ ρk := ρk
114
+ k! ,
115
+ 1 ≤ k ≤ n.
116
+ When ρ = ω is C∞ and positive definite (i.e. ω is a Hermitian metric on X), it can immediately be
117
+ checked that
118
+ dωk = ωk−1 ∧ dω
119
+ and
120
+ ⋆ω ωk = ωn−k
121
+ for all 1 ≤ k ≤ n, where ⋆ = ⋆ω is the Hodge star operator induced by ω.
122
+ Recall the following standard
123
+ Definition 2.1 A C∞ positive definite (1, 1)-form (i.e. a Hermitian metric) ω on a complex man-
124
+ ifold X is said to be locally conformally K¨ahler (lcK) if
125
+ dω = ω ∧ θ
126
+ for some C∞ 1-form θ satisfying dθ = 0.
127
+ The 1-form θ is uniquely determined, is real and is called the Lee form of ω.
128
+ The obstruction to a given Hermitian metric ω being lcK depends on whether n = 2 or n ≥ 3.
129
+ Lemma 2.2 Let X be a complex manifold with dimCX = n.
130
+ (i) If n = 2, for any Hermitian metric ω there exists a unique, possibly non-closed, C∞ 1-form
131
+ θ = θω such that dω = ω ∧ θ. Therefore, ω is lcK if and only if θω is d-closed.
132
+ 3
133
+
134
+ Moreover, for any Hermitian metric ω, the 2-form dθω is ω-primitive, i.e. Λω(dθω) = 0, or
135
+ equivalently, ω ∧ dθω = 0, while the Lee form is real and is explicitly given by the formula:
136
+ θω = Λω(dω).
137
+ (1)
138
+ Alternatively, if θω = θ1, 0
139
+ ω
140
+ + θ0, 1
141
+ ω
142
+ is the splitting of θω into components of pure types, we have
143
+ θ1, 0
144
+ ω
145
+ = Λω(∂ω) = −i¯∂⋆ω
146
+ (2)
147
+ and the analogous formulae for θ0, 1
148
+ ω
149
+ = θ1, 0
150
+ ω
151
+ obtained by taking conjugates.
152
+ (ii) If n ≥ 3, for any Hermitian metric ω there exists a unique ω-primitive C∞ 3-form (dω)prim and
153
+ a unique C∞ 1-form θ = θω such that dω = (dω)prim + ω ∧ θ. The Lee form is real and is explicitly
154
+ given by the formula
155
+ θω =
156
+ 1
157
+ n − 1 Λω(dω).
158
+ (3)
159
+ Moreover, ω is lcK if and only if (dω)prim = 0.
160
+ If ω is lcK, then
161
+ θ1, 0
162
+ ω
163
+ =
164
+ 1
165
+ n − 1 Λω(∂ω) = −
166
+ i
167
+ n − 1
168
+ ¯∂⋆ω
169
+ (4)
170
+ and the analogous formulae obtained by taking conjugates hold for θ0, 1
171
+ ω
172
+ = θ1, 0
173
+ ω .
174
+ Recall that for any k ≤ n and any Hermitian metric ω on X, the multiplication map
175
+ Ll
176
+ ω = ωl ∧ · : ΛkT ⋆X −→ Λk+2lT ⋆X
177
+ defined at every point of X is an isomorphism if l = n−k, is injective (but in general not surjective)
178
+ for every l < n − k and is surjective (but in general not injective) for every l > n − k. A k-form is
179
+ said to be ω-primitive if it lies in the kernel of the multiplication map Ln−k+1
180
+ ω
181
+ . Equivalently, the
182
+ ω-primitive k-forms are precisely those that lie in the kernel of Λω : ΛkT ⋆X −→ Λk−2T ⋆X.
183
+ Also recall that for every k ≤ n, every k-form α admits a unique ⟨ , ⟩ω-orthogonal pointwise
184
+ splitting (called the Lefschetz decomposition):
185
+ α = αprim + ω ∧ β(1)
186
+ prim + ω2 ∧ β(2)
187
+ prim + · · · + ωr ∧ β(r)
188
+ prim,
189
+ (5)
190
+ where r is the largest non-negative integer such that 2r ≤ k, αprim, β(1)
191
+ prim, . . . , β(r)
192
+ prim are ω-primitive
193
+ forms of respective degrees k, k −2, . . . , k −2r ≥ 0, and ⟨ , ⟩ω is the pointwise inner product defined
194
+ by ω. We will call αprim the primitive part of α.
195
+ Finally, recall the Hermitian commutation relation:
196
+ i[Λω, ∂] = −(¯∂⋆
197
+ ω + ¯τ ⋆
198
+ ω)
199
+ (6)
200
+ proved in [Dem84], where τω := [Λω, ∂ω ∧ ·] is the torsion operator of order 0 and bidegree (1, 0).
201
+ This definition of τω yields
202
+ ¯τ ⋆
203
+ ωω = [(¯∂ω ∧ ·)⋆, Lω](ω) = (¯∂ω ∧ ·)⋆(ω2).
204
+ 4
205
+
206
+ On the other hand, if α1, 0 is any (1, 0)-form on X, let ¯ξα be the (0, 1)-vector field defined by
207
+ the requirement ¯ξα⌟ω = α1, 0. It is easily checked in local coordinates chosen about a given point x
208
+ such that the metric ω is defined by the identity matrix at x, that the adjoint w.r.t. ⟨ , ⟩ω of the
209
+ contraction operator by ¯ξα is given by the formula
210
+ (¯ξα⌟·)⋆ = −iα0, 1 ∧ ·,
211
+ or equivalently
212
+ − i¯ξα⌟· = (α0, 1 ∧ ·)⋆,
213
+ where α0, 1 = α1, 0. Explicitly, if α0, 1 = �
214
+ k
215
+ ¯akd¯zk on a neighbourhood of x, then −i¯ξα⌟· = (α0, 1∧·)⋆ =
216
+
217
+ k
218
+ ak
219
+
220
+ ∂¯zk ⌟· at x. Hence, −i¯ξα⌟α0, 1 = �
221
+ k
222
+ |ak|2 = |α0, 1|2
223
+ ω at x. We have just got the pointwise formula
224
+ − i¯ξα⌟α0, 1 = |α0, 1|2
225
+ ω = |α1, 0|2
226
+ ω
227
+ (7)
228
+ at every point of X.
229
+ Now, suppose that dω = ω ∧ θω for some (necessarily real) 1-form θω. Then, ¯∂ω = ω ∧ θ0, 1
230
+ ω , so
231
+ (¯∂ω ∧ ·)⋆ = −iΛω(¯ξθ⌟·), where ¯ξθ := ¯ξα with α1, 0 = θ1, 0
232
+ ω . The above formula for ¯τ ⋆
233
+ ωω translates to
234
+ ¯τ ⋆
235
+ ωω = −iΛω(¯ξθ⌟ω2) = −2iΛω(ω ∧ (¯ξθ⌟ω)) = −2i[Λω, Lω](¯ξθ⌟ω) = −2i(n − 1)θ1, 0
236
+ ω
237
+ The conclusion of this discussion is that, when dω = ω ∧ θω, formula (3) translates to
238
+ θ1, 0
239
+ ω
240
+ =
241
+ 1
242
+ n − 1 Λω(∂ω) =
243
+ 1
244
+ n − 1 [Λω, ∂](ω) =
245
+ 1
246
+ n − 1 i¯∂⋆
247
+ ωω +
248
+ 1
249
+ n − 1 i¯τ ⋆
250
+ ωω =
251
+ 1
252
+ n − 1 i¯∂⋆
253
+ ωω + 2θ1, 0
254
+ ω ,
255
+ which amounts to θ1, 0
256
+ ω
257
+ = −
258
+ 1
259
+ n−1 i¯∂⋆
260
+ ωω. This proves (4) for an arbitrary n, hence also (2) when n = 2,
261
+ if the other statements in Lemma 2.2 have been proved.
262
+ Proof of Lemma 2.2. (i) When n = 2, the map ω ∧ · : Λ1T ⋆X −→ Λ3T ⋆X is an isomorphism at
263
+ every point of X. In particular, the 3-form dω is the image of a unique 1-form θ under this map.
264
+ To see that dθ is primitive, we apply d to the identity dω = ω ∧ θ to get
265
+ 0 = d2ω = dω ∧ θ + ω ∧ dθ.
266
+ Meanwhile, multiplying the same identity by θ, we get dω ∧ θ = ω ∧ θ ∧ θ = 0 since θ ∧ θ = 0 due
267
+ to the degree of θ being 1. Therefore, ω ∧ dθ = 0, which means that the 2-form dθ is ω-primitive.
268
+ To prove formula (1), we apply Λω to the identity dω = ω ∧ θ to get
269
+ Λω(dω) = [Λω, Lω](θ) = −[Lω, Λω](θ) = −(1 − 2) θ = θ,
270
+ where we used the identities Λω(θ) = 0 (for bidegree reasons) and [Lω, Λω] = (k − n) Id on k-forms
271
+ (while here k = 1 and n = 2).
272
+ (ii) The splitting dω = (dω)prim +ω ∧θ is the Lefschetz decomposition of dω w.r.t. the metric ω.
273
+ Applying Λω, we get Λω(dω) = [Λω, Lω](θ) = −[Lω, Λω](θ) = −(1 − n) θ = (n − 1) θ, which proves
274
+ (3).
275
+ The implication “ω lcK =⇒ (dω)prim = 0“ follows at once from the definitions. To prove the
276
+ reverse implication, suppose that (dω)prim = 0. We have to show that θ is d-closed. The assumption
277
+ means that dω = ω ∧ θ, so dω ∧ θ = ω ∧ θ ∧ θ = 0 and 0 = d2ω = dω ∧ θ + ω ∧ dθ. Consequently,
278
+ ω ∧ dθ = 0. Now, the multiplication of k-forms by ωl is injective whenever l ≤ n − k. When n ≥ 3,
279
+ 5
280
+
281
+ if we choose l = 1 and k = 2 we get that the multiplication of 2-forms by ω is injective. Hence, the
282
+ identity ω ∧ dθ = 0 implies dθ = 0, so ω is lcK.
283
+
284
+ Another standard observation is that the Lefschetz decomposition transforms nicely, hence the
285
+ lcK property is preserved, under conformal rescaling.
286
+ Lemma 2.3 Let ω be an arbitrary Hermitian metric and let f be any smooth real-valued function
287
+ on a compact complex n-dimensional manifold X.
288
+ If dω = (dω)prim + ω ∧ θω is the Lefschetz
289
+ decomposition of dω w.r.t. the metric ω (with the understanding that (dω)prim = 0 when n = 2),
290
+ then
291
+ d(efω) = ef(dω)prim + efω ∧ (θω + df)
292
+ (8)
293
+ is the Lefschetz decomposition of d(efω) w.r.t. the metric �ω := efω.
294
+ Consequently, ω is lcK if and only if any conformal rescaling efω of ω is lcK, while the Lee form
295
+ transforms as θef ω = θω + df. In particular, when the lcK metric ω varies in a fixed conformal class,
296
+ the Lee form θω varies in a fixed De Rham 1-class {θω}DR ∈ H1(X, R) called the Lee De Rham
297
+ class associated with the given conformal class. Moreover, the map ω �→ θω defines a bijection from
298
+ the set of lcK metrics in a given conformal class to the set of elements of the corresponding Lee De
299
+ Rham 1-class.
300
+ Proof. Differentiating, we get d(efω) = efdω + efω ∧ df = ef(dω)prim + efω ∧ (θω + df). Meanwhile,
301
+ it can immediately be checked that
302
+ Λefω = e−fΛω,
303
+ so ker Λefω = ker Λω. Thus, the ω-primitive forms coincide with the �ω-primitive forms. Since Λ�ω
304
+ commutes with the multiplication by any real-valued function, ef(dω)prim is �ω-primitive, so (8) is
305
+ the Lefschetz decompostion of d�ω w.r.t. �ω.
306
+
307
+ When X is compact, we know from [Gau77] that every Hermitian metric ω on X admits a (unique
308
+ up to a positive multiplicative constant) conformal rescaling �ω := efω that is a Gauduchon metric.
309
+ These metrics are defined (cf. [Gau77]) by the requirement that ∂ ¯∂�ωn−1 = 0, where n is the complex
310
+ dimension of X. This fact, combined with Lemma 2.3, shows that no loss of generality is incurred
311
+ in the study of the existence of lcK metrics on compact complex manifolds if we confine ourselves
312
+ to Gauduchon metrics.
313
+ We end this review of known material with the following characterisation (cf. [AD15, Lemma
314
+ 2.5]) of Gauduchon metrics on surfaces in terms of their Lee forms.
315
+ Lemma 2.4 Let ω be a Hermitian metric on a complex surface X. The following equivalence holds:
316
+ ∂ ¯∂ω = 0
317
+ (i.e. ω is a Gauduchon metric)
318
+ ⇐⇒
319
+ ¯∂⋆
320
+ ωθ0, 1
321
+ ω
322
+ = 0,
323
+ where θ0, 1
324
+ ω
325
+ is the component of type (0, 1) of the Lee form θω of ω.
326
+ In particular, d⋆
327
+ ωθω = 0 if ω is Gauduchon.
328
+ 6
329
+
330
+ Proof. We give a proof different from the one in [AD15] by making use of the Hermitian commutation
331
+ relations. By applying ∂ to the identity ¯∂ω = ω ∧ θ0, 1
332
+ ω
333
+ and using the identity ∂ω = ω ∧ θ1, 0
334
+ ω , we get
335
+ ∂ ¯∂ω = ∂ω ∧ θ0, 1
336
+ ω
337
+ + ω ∧ ∂θ0, 1
338
+ ω
339
+ = ω ∧ (θ1, 0
340
+ ω
341
+ ∧ θ0, 1
342
+ ω
343
+ + ∂θ0, 1
344
+ ω ).
345
+ Taking Λω, we get
346
+ Λω(∂ ¯∂ω) = [Λω, Lω](θ1, 0
347
+ ω
348
+ ∧ θ0, 1
349
+ ω
350
+ + ∂θ0, 1
351
+ ω ) + ω ∧ Λω(θ1, 0
352
+ ω
353
+ ∧ θ0, 1
354
+ ω
355
+ + ∂θ0, 1
356
+ ω ) = Λω(θ1, 0
357
+ ω
358
+ ∧ θ0, 1
359
+ ω
360
+ + ∂θ0, 1
361
+ ω ) ω,
362
+ where the second identity follows from [Λω, Lω] = −(2 − 2) Id = 0 on 2-forms on complex surfaces.
363
+ Now, Λω(θ1, 0
364
+ ω
365
+ ∧ θ0, 1
366
+ ω
367
+ + ∂θ0, 1
368
+ ω ) is a function, so from the above identities we get the equivalences
369
+ Λω(∂ ¯∂ω) = 0
370
+ ⇐⇒
371
+ Λω(θ1, 0
372
+ ω
373
+ ∧ θ0, 1
374
+ ω
375
+ + ∂θ0, 1
376
+ ω ) = 0 ⇐⇒ θ1, 0
377
+ ω
378
+ ∧ θ0, 1
379
+ ω
380
+ + ∂θ0, 1
381
+ ω
382
+ is ω-primitive
383
+ ⇐⇒
384
+ ω ∧ (θ1, 0
385
+ ω
386
+ ∧ θ0, 1
387
+ ω
388
+ + ∂θ0, 1
389
+ ω ) = 0 ⇐⇒ ∂ ¯∂ω = 0.
390
+ We remember the equivalence ∂ ¯∂ω = 0 ⇐⇒ Λω(θ1, 0
391
+ ω
392
+ ∧ θ0, 1
393
+ ω ) + Λω(∂θ0, 1
394
+ ω ) = 0. Since Λω(iθ1, 0
395
+ ω
396
+
397
+ θ0, 1
398
+ ω ) = |θ1, 0
399
+ ω |2
400
+ ω (immediate verification) and Λωθ0, 1
401
+ ω
402
+ = 0 (for bidegree reasons), we get the equivalence:
403
+ ∂ ¯∂ω = 0 ⇐⇒ |θ1, 0
404
+ ω |2
405
+ ω + i[Λω, ∂] θ0, 1
406
+ ω
407
+ = 0.
408
+ The Hermitian commutation relation i[Λω, ∂] = −(¯∂⋆
409
+ ω + ¯τ ⋆
410
+ ω) (cf. (6), see [Dem84]) transforms the
411
+ last equivalence into
412
+ ∂ ¯∂ω = 0 ⇐⇒ |θ1, 0
413
+ ω |2
414
+ ω − (¯∂⋆
415
+ ωθ0, 1
416
+ ω
417
+ + ¯τ ⋆
418
+ ωθ0, 1
419
+ ω ) = 0.
420
+ (9)
421
+ On the other hand, ¯τ ⋆
422
+ ω = [(¯∂ω ∧ ·)⋆, ω ∧ ·]. From this we get
423
+ Formula 2.5 For any Hermitian metric ω on a complex surface, we have
424
+ ¯τ ⋆
425
+ ωθ0, 1
426
+ ω
427
+ = |θ0, 1
428
+ ω |2
429
+ ω.
430
+ Proof of Formula 2.5. Since (¯∂ω∧·)⋆θ0, 1
431
+ ω
432
+ = 0 for bidegree reasons, we get ¯τ ⋆
433
+ ωθ0, 1
434
+ ω
435
+ = (¯∂ω∧·)⋆(ω∧θ0, 1
436
+ ω ).
437
+ Since ¯∂ω = ω ∧ θ0, 1
438
+ ω , we have (¯∂ω ∧ ·)⋆ = −iΛω(¯ξθ⌟·) (see (7) and the discussion there below), where
439
+ ¯ξθ is the (0, 1)-vector field defined by the requirement ¯ξθ⌟ω = θ1, 0
440
+ ω . Hence
441
+ ¯τ ⋆
442
+ ωθ0, 1
443
+ ω
444
+ = −iΛω(θ1, 0
445
+ ω
446
+ ∧ θ0, 1
447
+ ω ) − iΛω[ω ∧ (¯ξθ⌟θ0, 1
448
+ ω )].
449
+ Since −i¯ξθ⌟θ0, 1
450
+ ω
451
+ = |θ0, 1
452
+ ω |2
453
+ ω (cf. (7)), we infer that
454
+ ¯τ ⋆
455
+ ωθ0, 1
456
+ ω
457
+ = −Λω(iθ1, 0
458
+ ω
459
+ ∧ θ0, 1
460
+ ω ) + 2 |θ0, 1
461
+ ω |2
462
+ ω,
463
+ since Λω(ω) = n = 2. Meanwhile, θ1, 0
464
+ ω
465
+ = θ0, 1
466
+ ω , so we get Λω(iθ1, 0
467
+ ω ∧θ0, 1
468
+ ω ) = |θ1, 0
469
+ ω |2
470
+ ω = |θ0, 1
471
+ ω |2
472
+ ω (immediate
473
+ verification in local coordinates). Formula 2.5 is now proved.
474
+
475
+ End of proof of Lemma 2.4. Formula 2.5 transforms equivalence (9) into
476
+ ∂ ¯∂ω = 0 ⇐⇒ (|θ1, 0
477
+ ω |2
478
+ ω − |θ0, 1
479
+ ω |2
480
+ ω) − ¯∂⋆
481
+ ωθ0, 1
482
+ ω
483
+ = 0 ⇐⇒ ¯∂⋆
484
+ ωθ0, 1
485
+ ω
486
+ = 0
487
+ and we are done
488
+
489
+ 7
490
+
491
+ 3
492
+ An enerygy functional for the study of lcK metrics
493
+ In what follows, we will restrict attention to the set
494
+ HX := {ω ∈ C∞
495
+ 1, 1(X, R) | ω > 0}
496
+ of all Hermitian metrics on X. This is a non-empty open cone in the infinite-dimensional vector
497
+ space C∞
498
+ 1, 1(X, R) of all smooth real (1, 1)-forms on X. It will be called the Hermitian cone of X.
499
+ Building on Lemma 2.2, we introduce the following energy functional. By || ||ω, respectively
500
+ | |ω, we mean the L2-norm, respectively the pointwise norm, defined by ω.
501
+ Definition 3.1 Let X be a compact complex manifold with dimCX = n.
502
+ (i) If n = 2, let L : HX −→ [0, +∞) be defined by
503
+ L(ω) :=
504
+
505
+ X
506
+ ∂θ1, 0
507
+ ω
508
+ ∧ ¯∂θ0, 1
509
+ ω
510
+ = ||∂θ1, 0
511
+ ω ||2
512
+ ω,
513
+ where θω is the Lee form of ω.
514
+ (ii) If n ≥ 3, let L : HX −→ [0, +∞) be defined by
515
+ L(ω) :=
516
+
517
+ X
518
+ i(¯∂ω)prim ∧ (¯∂ω)prim ∧ ωn−3 = ||(¯∂ω)prim||2
519
+ ω,
520
+ where (¯∂ω)prim is the ω-primitive part of ¯∂ω in its Lefschetz decomposition (5).
521
+ This definition is justified by the following observation.
522
+ Lemma 3.2 In the setup of Definition 3.1, for every metric ω ∈ HX the following equivalence holds:
523
+ ω
524
+ is an lcK metric ⇐⇒ L(ω) = 0.
525
+ Proof. • In the case n = 2, we know from (i) of Lemma 2.2 that ω is lcK if and only if dθω = 0.
526
+ This condition is equivalent to L(ω) = 0, where we set
527
+ L(ω) := ||dθω||2
528
+ ω =
529
+
530
+ X
531
+ dθω ∧ ⋆(d¯θω).
532
+ We also know from (i) of Lemma 2.2 that dθω is ω-primitive, so we get
533
+ 0 = Λω(dθω) = Λω(∂θ1, 0
534
+ ω ) + Λω(∂θ0, 1
535
+ ω
536
+ + ¯∂θ1, 0
537
+ ω ) + Λω(¯∂θ0, 1
538
+ ω ) = Λω(∂θ0, 1
539
+ ω
540
+ + ¯∂θ1, 0
541
+ ω ),
542
+ where the last identity follows from the previous one for bidegree reasons. We infer that the (1, 1)-
543
+ form ∂θ0, 1
544
+ ω
545
+ + ¯∂θ1, 0
546
+ ω
547
+ is ω-primitive. But so are ∂θ1, 0
548
+ ω
549
+ and ¯∂θ0, 1
550
+ ω
551
+ for bidegree reasons, so we can apply
552
+ the following general formula (cf. e.g. [Voi02, Proposition 6.29, p. 150]) that holds for any primitive
553
+ form v of arbitrary bidegree (p, q) on any complex n-dimensional manifold:
554
+ ⋆ v = (−1)k(k+1)/2 ip−q ωn−p−q ∧ v,
555
+ where k := p + q,
556
+ (10)
557
+ 8
558
+
559
+ to get
560
+ ⋆(dθω) = ∂θ1, 0
561
+ ω
562
+ − (∂θ0, 1
563
+ ω
564
+ + ¯∂θ1, 0
565
+ ω ) + ¯∂θ0, 1
566
+ ω . We infer that
567
+ dθω ∧ ⋆(d¯θω)
568
+ =
569
+ [∂θ1, 0
570
+ ω
571
+ + (∂θ0, 1
572
+ ω
573
+ + ¯∂θ1, 0
574
+ ω ) + ¯∂θ0, 1
575
+ ω ] ∧ [∂θ1, 0
576
+ ω
577
+ − (∂θ0, 1
578
+ ω
579
+ + ¯∂θ1, 0
580
+ ω ) + ¯∂θ0, 1
581
+ ω ]
582
+ =
583
+ 2 ∂θ1, 0
584
+ ω
585
+ ∧ ¯∂θ0, 1
586
+ ω
587
+ − (∂θ0, 1
588
+ ω
589
+ + ¯∂θ1, 0
590
+ ω )2
591
+ and finally that
592
+ L(ω) = 2 L(ω) −
593
+
594
+ X
595
+ (∂θ0, 1
596
+ ω
597
+ + ¯∂θ1, 0
598
+ ω )2.
599
+ (11)
600
+ On the other hand, the Stokes formula implies the first of the following identities
601
+ 0
602
+ =
603
+
604
+ X
605
+ dθω ∧ dθω =
606
+
607
+ X
608
+ [∂θ1, 0
609
+ ω
610
+ + (∂θ0, 1
611
+ ω
612
+ + ¯∂θ1, 0
613
+ ω ) + ¯∂θ0, 1
614
+ ω ] ∧ [∂θ1, 0
615
+ ω
616
+ + (∂θ0, 1
617
+ ω
618
+ + ¯∂θ1, 0
619
+ ω ) + ¯∂θ0, 1
620
+ ω ]
621
+ =
622
+ 2 L(ω) +
623
+
624
+ X
625
+ (∂θ0, 1
626
+ ω
627
+ + ¯∂θ1, 0
628
+ ω )2.
629
+ (12)
630
+ We conclude from (11) and (12) that L(ω) = 0 if and only if L(ω). Thus, we have proved that
631
+ ω is lcK if and only if L(ω) = 0, as claimed.
632
+ The identity L(ω) = ||∂θ1, 0
633
+ ω ||2
634
+ ω follows at once from the general formula (10) applied to the prim-
635
+ itive (2, 0)-form ∂θ1, 0
636
+ ω . Indeed, ⋆∂θ1, 0
637
+ ω
638
+ = ∂θ1, 0
639
+ ω , hence ∂θ1, 0
640
+ ω
641
+ ∧ ¯∂θ0, 1
642
+ ω
643
+ = ∂θ1, 0
644
+ ω
645
+ ∧ ⋆(∂θ1, 0
646
+ ω ) = |∂θ1, 0
647
+ ω |2
648
+ ω dVω.
649
+ • In the case n ≥ 3, we know from (ii) of Lemma 2.2 that ω is lcK if and only if (dω)prim = 0.
650
+ Now, (dω)prim = (∂ω)prim + (¯∂ω)prim and the forms (∂ω)prim and (¯∂ω)prim are conjugate to each
651
+ other and of different pure types ((2, 1), respectively (1, 2)), so the vanishing of (dω)prim is equivalent
652
+ to the vanishing of (¯∂ω)prim.
653
+ Meanwhile, the standard formula (10) applied to the primitive (2, 1)-form (¯∂ω)prim = (∂ω)prim
654
+ spells:
655
+ ⋆ (¯∂ω)prim = i (¯∂ω)prim ∧ ωn−3.
656
+ This proves the identity L(ω) = ||(¯∂ω)prim||2
657
+ ω.
658
+ Putting these pieces of information together, we get the following equivalences:
659
+ ω
660
+ lcK ⇐⇒ (dω)prim = 0 ⇐⇒ (¯∂ω)prim = 0 ⇐⇒ L(ω) = 0.
661
+ The proof is complete.
662
+
663
+ 4
664
+ First variation of the functional: case of complex surfaces
665
+ Let S be a compact complex surface. (So, we set X = S when n = 2.) We will compute the
666
+ differential of the functional L : HS −→ [0, +∞) defined on the Hermitian cone of S. Let ω ∈ HS.
667
+ Then, TωHS = C∞
668
+ 1, 1(S, R), so we will compute the differential
669
+ dωL : C∞
670
+ 1, 1(S, R) −→ R
671
+ by computing the derivative of L(ω + tγ) w.r.t. t ∈ (−ε, ε) at t = 0 for any given real (1, 1)-form γ.
672
+ 9
673
+
674
+ Lemma 4.1 The differential at ω of the map HS ∋ ω �→ θ0, 1
675
+ ω
676
+ = Λω(¯∂ω) is given by
677
+ (dωθ0, 1
678
+ ω )(γ) = d
679
+ dt|t=0Λω+tγ(¯∂ω + t ¯∂γ) = ⋆(γ ∧ ⋆¯∂ω) + Λω(¯∂γ),
680
+ while the differential at ω of L is given by
681
+ (dωL)(γ) = 2 Re
682
+
683
+ S
684
+ ∂θ1, 0
685
+ ω
686
+ ∧ ¯∂
687
+
688
+ ⋆ (γ ∧ ⋆¯∂ω) + Λω(¯∂γ)
689
+
690
+ ,
691
+ for every form γ ∈ C∞
692
+ 1, 1(S, R), where ⋆ = ⋆ω is the Hodge star operator defined by the metric ω.
693
+ Before giving the proof of this lemma, we recall the following result from [DP22] that will be
694
+ used several times in the sequel.
695
+ Lemma 4.2 ([DP22], Lemmas 3.5 and 3.3) For any complex manifold X of any dimension n ≥ 2,
696
+ for any bidegree (p, q) and any C∞ family (αt)t∈(−ε, ε) of forms αt ∈ C∞
697
+ p, q(X, C) with ε > 0 so small
698
+ that ω + tγ > 0 for all t ∈ (−ε, ε), the following formulae hold:
699
+ d
700
+ dt
701
+ ����
702
+ t=0
703
+ (Λω+tγαt) = Λω
704
+ �dαt
705
+ dt
706
+ ����
707
+ t=0
708
+
709
+ − (γ ∧ ·)⋆
710
+ ω α0 = Λω
711
+ �dαt
712
+ dt
713
+ �����
714
+ t=0
715
+
716
+ + (−1)p+q+1 ⋆ω (γ ∧ ⋆ωα0).
717
+ The former of the above equalities appears as such in Lemma 3.5 of [DP22], while the latter
718
+ equality follows from the former and from formula (27) of Lemma 3.3 of [DP22] which states that
719
+ ⋆ω(η ∧ ·) = (η ∧ ·)⋆
720
+ ω ⋆ω for any (1, 1)-form η on X.
721
+ Indeed, in our case, taking η = γ we get
722
+ ¯η = γ since γ is real. Moreover, composing with ⋆ω on the right and using the standard equality
723
+ ⋆ω⋆ω = (−1)p+q Id on (p, q)-forms, we get ⋆ω(γ ∧ ·)⋆ω = (−1)p+q (γ ∧ ·)⋆
724
+ ω on (p, q)-forms.
725
+ Proof of Lemma 4.1. The formula for (dωθ0, 1
726
+ ω )(γ) is an immediate consequence of Lemma 4.2 applied
727
+ with αt = ¯∂ω + t ¯∂γ (hence also with (p, q) = (1, 2)). We further get:
728
+ (dωL)(γ)
729
+ =
730
+ d
731
+ dt|t=0L(ω + tγ) = d
732
+ dt|t=0
733
+
734
+ S
735
+ ∂θ1, 0
736
+ ω+tγ ∧ ¯∂θ0, 1
737
+ ω+tγ
738
+ =
739
+
740
+ S
741
+
742
+
743
+ ⋆ (γ ∧ ⋆∂ω) + Λω(∂γ)
744
+
745
+ ∧ ¯∂θ0, 1
746
+ ω
747
+ +
748
+
749
+ S
750
+ ∂θ1, 0
751
+ ω
752
+ ∧ ¯∂
753
+
754
+ ⋆ (γ ∧ ⋆¯∂ω) + Λω(¯∂γ)
755
+
756
+ .
757
+ This is the stated formula for (dωL)(γ) since the two terms of the r.h.s. expression are mutually
758
+ conjugated.
759
+
760
+ We will now simplify the above expression of (dωL)(γ) starting with a preliminary observation.
761
+ Lemma 4.3 Let (X, ω) be an n-dimensional complex Hermitian manifold and let ⋆ = ⋆ω be the
762
+ Hodge star operator defined by ω.
763
+ (i) For every (0, 1)-form α on X, we have:
764
+ ⋆(α ∧ ω) = iΛω(α ∧ ωn−1).
765
+ 10
766
+
767
+ Moreover, if n = 2, then ⋆(α ∧ ω) = iα for any (0, 1)-form α on X.
768
+ (ii) If n = 2, then ⋆(γ ∧ α) = iΛω(γ ∧ α) for any (1, 1)-form γ and any (0, 1)-form α on X.
769
+ In particular, ⋆¯∂ω = iθ0, 1
770
+ ω
771
+ for any Hermitian metric ω on a complex surface.
772
+ (iii) In arbitrary dimension n, for any (1, 1)-form γ and any (0, 1)-form α on X, we have:
773
+ Λω(γ ∧ α) = (Λωγ) α + i ξα⌟γ,
774
+ where ξα is the (unique) vector field of type (1, 0) defined by the requirement
775
+ ξα⌟ω = iα.
776
+ Proof. (i) From the standard formula ⋆Λω = Lω⋆ (cf. e.g. [Dem97, VI, §.5.1]) we get
777
+ Λω = ⋆Lω⋆ on even-degreed forms and Λω = − ⋆ Lω⋆ on odd-degreed forms.
778
+ Consequently, ⋆(α ∧ ω) = ⋆Lωα = −(⋆Lω⋆) ⋆ α = Λω(⋆α) = Λω(−(1/i) α ∧ ωn−1/(n − 1)!), where
779
+ we used the fact that ⋆⋆ = −1 on odd-degreed forms and the standard formula (10) applied to the
780
+ (necessarily primitive) (0, 1)-form α.
781
+ When n = 2, we get ⋆(α ∧ ω) = iΛω(α ∧ ω) = i[Λω, Lω] α = −i(1 − 2) α = iα after using the
782
+ general formula [Lω, Λω] = (k − n) on k-forms on n-dimensional complex manifolds.
783
+ (ii) If n = 2, the map ω ∧ · : Λ1T ⋆X −→ Λ3T ⋆X is an isomorphism at every point of X. Since
784
+ γ ∧ α is a 3-form, there exists a unique 1-form β (necessarily of type (0, 1)) such that γ ∧ α = ω ∧ β.
785
+ Moreover, β = Λω(γ ∧ α) because ω ∧ Λω(γ ∧ α) = [Lω, Λω](γ ∧ α) = γ ∧ α. Indeed, ω ∧ (γ ∧ α) = 0
786
+ for bidegree reasons (here n = 2) and [Lω, Λω] = (k − n) on k-forms.
787
+ Thus, γ ∧ α = ω ∧ Λω(γ ∧ α). So, applying (i) for the second identity below, we get:
788
+ ⋆(γ ∧ α)
789
+ =
790
+ ⋆(ω ∧ Λω(γ ∧ α)) = iΛω(ω ∧ Λω(γ ∧ α))
791
+ =
792
+ i[Λω, Lω](Λω(γ ∧ α)) = iΛω(γ ∧ α).
793
+ For the last equality, we used again the general formula [Lω, Λω] = (k − n) on k-forms (n = 2 here).
794
+ In order to prove the formula for ⋆¯∂ω, recall that ¯∂ω = ω ∧ θ0, 1
795
+ ω , so we get
796
+ ⋆¯∂ω = ⋆(ω ∧ θ0, 1
797
+ ω ) = iΛω(ω ∧ θ0, 1
798
+ ω ) = i[Λω, Lω] θ0, 1
799
+ ω
800
+ = −i(1 − 2) θ0, 1
801
+ ω ,
802
+ where we used the first part of (ii) to get the second identity.
803
+ (iii) Since the claimed identity is pointwise and involves only zero-th order operators, we fix an
804
+ arbitrary point x ∈ X and choose local holomorphic coordinates about x such that at x we have
805
+ ω =
806
+ n�
807
+ a=1
808
+ idza ∧ d¯za
809
+ and
810
+ γ =
811
+ n�
812
+ j=1
813
+ γj¯j idzj ∧ d¯zj.
814
+ Then, Λω = −i
815
+ n�
816
+ j=1
817
+
818
+ ∂¯zj ⌟ ∂
819
+ ∂zj ⌟· at x. If we set α =
820
+ n�
821
+ j=1
822
+ αj d¯zj (at any point), we get ξα =
823
+ n�
824
+ j=1
825
+ αj
826
+
827
+ ∂zj (at
828
+ 11
829
+
830
+ x) and the following equalities (at x):
831
+ Λω(γ ∧ α)
832
+ =
833
+ −i
834
+ n
835
+
836
+ j=1
837
+
838
+ ∂¯zj
839
+ ⌟ ∂
840
+ ∂zj
841
+ ⌟(γ ∧ α)
842
+ (a)
843
+ = −i
844
+ n
845
+
846
+ j=1
847
+
848
+ ∂¯zj
849
+
850
+ �� ∂
851
+ ∂zj
852
+ ⌟γ
853
+
854
+ ∧ α
855
+
856
+ =
857
+ −i
858
+ n
859
+
860
+ j=1
861
+ � ∂
862
+ ∂¯zj
863
+ ⌟ ∂
864
+ ∂zj
865
+ ⌟γ
866
+
867
+ ∧ α + i
868
+ n
869
+
870
+ j=1
871
+ � ∂
872
+ ∂zj
873
+ ⌟γ
874
+
875
+
876
+ � ∂
877
+ ∂¯zj
878
+ ⌟α
879
+
880
+ (b)
881
+ =
882
+
883
+ n
884
+
885
+ j=1
886
+ γj¯j
887
+
888
+ α −
889
+ n
890
+
891
+ j=1
892
+ αjγj¯j d¯zj = (Λωγ) α + iξα⌟γ,
893
+ where (a) follows from (∂/∂zj)⌟α = 0 for bidegree reasons and (b) follows from (∂/∂zj)⌟γ = iγj¯j d¯zj
894
+ and from (∂/∂¯zj)⌟α = αj.
895
+ This proves the desired equality at x, hence at any point since x was arbitrary.
896
+
897
+ We can now derive a simplified form of the first variation of the functional L.
898
+ Theorem 4.4 Let S be a compact complex surface on which a Hermitian metric ω has been fixed.
899
+ (i) The differential at ω ∈ HS of the functional L : HS −→ [0, +∞) evaluated at any form
900
+ γ ∈ C∞
901
+ 1, 1(S, R) is given by any of the following three formulae:
902
+ (dωL)(γ)
903
+ =
904
+ −2 Re
905
+
906
+ S
907
+ Λω(γ) ∂θ1, 0
908
+ ω
909
+ ∧ ¯∂θ0, 1
910
+ ω
911
+ − 2 Re
912
+
913
+ S
914
+ ∂θ1, 0
915
+ ω
916
+ ∧ ¯∂Λω(γ) ∧ θ0, 1
917
+ ω
918
+ + 2 Re
919
+
920
+ S
921
+ ∂θ1, 0
922
+ ω
923
+ ∧ ¯∂Λω(¯∂γ)
924
+ −2 Re
925
+
926
+ S
927
+ i∂θ1, 0
928
+ ω
929
+ ∧ ¯∂(ξθ0, 1
930
+ ω ⌟γ)
931
+ (13)
932
+ =
933
+ −2 Re
934
+
935
+ S
936
+ Λω(γ) |∂θ1, 0
937
+ ω |2
938
+ ω dVω − 2 Re
939
+
940
+ S
941
+ ∂θ1, 0
942
+ ω
943
+ ∧ ¯∂Λω(γ) ∧ θ0, 1
944
+ ω
945
+ − 2 Re i⟨⟨∂ ¯∂θ1, 0
946
+ ω , ∂γ⟩⟩ω
947
+ −2 Re
948
+
949
+ S
950
+ i∂θ1, 0
951
+ ω
952
+ ∧ ¯∂(ξθ0, 1
953
+ ω ⌟γ)
954
+ (14)
955
+ =
956
+ −2 Re
957
+
958
+ S
959
+ ∂θ1, 0
960
+ ω
961
+ ∧ ¯∂Λω(γ ∧ θ0, 1
962
+ ω ) − 2 Re i⟨⟨∂ ¯∂θ1, 0
963
+ ω , ∂γ⟩⟩ω,
964
+ (15)
965
+ where ⋆ = ⋆ω is the Hodge star operator defined by the metric ω and ξθ0, 1
966
+ ω
967
+ is the vector field of type
968
+ (1, 0) defined by the requirement ξθ0, 1
969
+ ω ⌟ω = iθ0, 1
970
+ ω .
971
+ (ii) In particular, for any given ω ∈ HS, if we choose γ = ∂θ0, 1
972
+ ω
973
+ + ¯∂θ1, 0
974
+ ω , we have
975
+ (dωL)(γ) = −2 Re
976
+
977
+ S
978
+ i∂θ1, 0
979
+ ω
980
+ ∧ ¯∂
981
+
982
+ ξθ0, 1
983
+ ω ⌟γ
984
+
985
+ = −2 Re
986
+
987
+ S
988
+ ∂θ1, 0
989
+ ω
990
+ ∧ ¯∂Λω(γ ∧ θ0, 1
991
+ ω ).
992
+ Proof. (i) From (ii) and (iii) of Lemma 4.3 applied with α := iθ0, 1
993
+ ω , we get
994
+ ⋆(γ ∧ ⋆¯∂ω) = ⋆(γ ∧ iθ0, 1
995
+ ω ) = i Λω(γ ∧ iθ0, 1
996
+ ω ) = −Λω(γ) θ0, 1
997
+ ω .
998
+ 12
999
+
1000
+ Formula (13) follows from this and from Lemma 4.1.
1001
+ To get (14), we first notice that ¯∂θ0, 1
1002
+ ω
1003
+ = ⋆¯∂θ0, 1
1004
+ ω
1005
+ by the standard formula (10) applied to the
1006
+ (necessarily primitive) (0, 2)-form ¯∂θ0, 1
1007
+ ω . This accounts for the first term on the r.h.s. of (14). Then,
1008
+ we transform the third term in (13) as follows:
1009
+ 2 Re
1010
+
1011
+ S
1012
+ ∂θ1, 0
1013
+ ω
1014
+ ∧ ¯∂Λω(¯∂γ)
1015
+ (a)
1016
+ =
1017
+ −2 Re
1018
+
1019
+ S
1020
+ ∂θ1, 0
1021
+ ω
1022
+ ∧ ¯∂ ⋆ Lω ⋆ (¯∂γ)
1023
+ (b)
1024
+ = 2 Re
1025
+
1026
+ S
1027
+ ¯∂∂θ1, 0
1028
+ ω
1029
+ ∧ ⋆(ω ∧ ⋆(¯∂γ))
1030
+ (c)
1031
+ =
1032
+ 2 Re i
1033
+
1034
+ S
1035
+ ¯∂∂θ1, 0
1036
+ ω
1037
+ ∧ ⋆(¯∂γ)
1038
+ (d)
1039
+ = 2 Re i
1040
+
1041
+ S
1042
+ ⟨¯∂∂θ1, 0
1043
+ ω , ∂¯γ⟩ω dVω,
1044
+ where we used the standard identity Λω = − ⋆ Lω⋆ on odd-degreed forms to get (a), Stokes to get
1045
+ (b), part (i) of Lemma 4.3 to get (c), and the definition of ⋆ to get (d). Finally, we recall that ¯γ = γ
1046
+ since γ is real.
1047
+ Finally, (15) follows from Lemma 4.1 after using the equality ⋆(γ ∧ ⋆¯∂ω) = −Λω(γ ∧ θ0, 1
1048
+ ω ) (seen
1049
+ above in the proof of (13)) and after transforming the third term in (13) as we did above in the
1050
+ proof of (14).
1051
+ (ii) The stated choice of γ means that γ is the component (dθω)1, 1 of type (1, 1) of the primitive
1052
+ 2-form dθω.
1053
+ (See (i) of Lemma 2.2 for the primitivity statement.)
1054
+ Since Λω((dθω)2, 0) = 0 and
1055
+ Λω((dθω)0, 2) = 0 for bidegree reasons, we infer that
1056
+ Λω(γ) = Λω((dθω)1, 1) = Λω(dθω) = 0.
1057
+ Therefore, the first two integrals on the r.h.s. of (13) vanish.
1058
+ Meanwhile, to handle the third integral on the r.h.s. of (13), we notice that ∂¯γ = ∂ ¯∂θ1, 0
1059
+ ω
1060
+ and
1061
+ this gives the second equality below:
1062
+ 2 Re
1063
+
1064
+ S
1065
+ ∂θ1, 0
1066
+ ω
1067
+ ∧ ¯∂Λω(¯∂γ) = 2 Re i
1068
+
1069
+ S
1070
+ ⟨¯∂∂θ1, 0
1071
+ ω , ∂¯γ⟩ω dVω = −2 Re i||¯∂∂θ1, 0
1072
+ ω ||2
1073
+ ω = 0,
1074
+ where the first equality above followed from the proof of (14).
1075
+ Thus, the r.h.s. of formula (13) for (dωL)(γ) reduces to its last integral for this choice of γ. This
1076
+ proves the first claimed equality.
1077
+ For the same reason as above, the latter term on the r.h.s. of formula (15) for (dωL)(γ) vanishes.
1078
+ This proves the second claimed equality.
1079
+
1080
+ As an application of (i) of Theorem 4.4, we will now see that the differential dωL vanishes on all
1081
+ the real (1, 1)-forms γ that are ω-anti-primitive (in the sense that γ is ⟨ , ⟩ω-orthogonal to all the
1082
+ ω-primitive (1, 1)-forms, a condition which is equivalent to γ being a function multiple of ω).
1083
+ Corollary 4.5 Let S be a compact complex surface on which a Hermitian metric ω has been fixed.
1084
+ For any real-valued C∞ function f on X, we have
1085
+ (dωL)(fω) = 0.
1086
+ In particular, for any real (1, 1)-form γ on S we have
1087
+ (dωL)(γ) = (dωL)(γprim),
1088
+ where γprim is the ω-primitive component of γ in its Lefschetz decomposition.
1089
+ 13
1090
+
1091
+ Proof. Applying formula (13) with γ = fω and using the obvious equalities Λω(fω) = 2f (recall
1092
+ that dimCS = 2) and ξθ0, 1
1093
+ ω ⌟(fω) = f (iθ0, 1
1094
+ ω ), we get:
1095
+ (dωL)(fω)
1096
+ =
1097
+ −4 Re
1098
+
1099
+ S
1100
+ f ∂θ1, 0
1101
+ ω
1102
+ ∧ ¯∂θ0, 1
1103
+ ω
1104
+ − 4 Re
1105
+
1106
+ S
1107
+ ∂θ1, 0
1108
+ ω
1109
+ ∧ ¯∂f ∧ θ0, 1
1110
+ ω
1111
+ +2 Re
1112
+
1113
+ S
1114
+ ∂θ1, 0
1115
+ ω
1116
+ ∧ ¯∂Λω(f ¯∂ω + ¯∂f ∧ ω) − 2 Re
1117
+
1118
+ S
1119
+ i∂θ1, 0
1120
+ ω
1121
+ ∧ (if ¯∂θ0, 1
1122
+ ω
1123
+ + i¯∂f ∧ θ0, 1
1124
+ ω )
1125
+ =
1126
+ T1 + T2 + T3 + T4,
1127
+ (16)
1128
+ where T1, T2, T3 and T4 stand for the four terms, listed in order, on the r.h.s. of the above expression
1129
+ for (dωL)(fω).
1130
+ Computing T3, we get:
1131
+ T3 = 2 Re
1132
+
1133
+ S
1134
+ ∂θ1, 0
1135
+ ω
1136
+ ∧ ¯∂(f θ0, 1
1137
+ ω ) + 2 Re
1138
+
1139
+ S
1140
+ ∂θ1, 0
1141
+ ω
1142
+ ∧ ¯∂
1143
+
1144
+ [Λω, Lω](¯∂f)
1145
+
1146
+ ,
1147
+ where we used the equalities Λω(¯∂ω) = θ0, 1
1148
+ ω
1149
+ (see (1)) and Λω(¯∂f) = 0 (which leads to Λω(¯∂f ∧ ω) =
1150
+ [Λω, Lω](¯∂f)).
1151
+ Now, it is standard that [Λω, Lω] = (n − k) Id on k-forms on an n-dimensional
1152
+ complex manifold, so in our case we get [Λω, Lω](¯∂f) = ¯∂f since n = 2 and k = 1. We conclude
1153
+ that ¯∂([Λω, Lω](¯∂f)) = ¯∂2f = 0, hence
1154
+ T3 = 2 Re
1155
+
1156
+ S
1157
+ f ∂θ1, 0
1158
+ ω
1159
+ ∧ ¯∂θ0, 1
1160
+ ω
1161
+ + 2 Re
1162
+
1163
+ S
1164
+ ∂θ1, 0
1165
+ ω
1166
+ ∧ ¯∂f ∧ θ0, 1
1167
+ ω
1168
+ = T4,
1169
+ where the last equality follows at once from the definition of T4.
1170
+ Thus, formula (16) translates to
1171
+ (dωL)(fω)
1172
+ =
1173
+ T1 + T2 + T3 + T4
1174
+ =
1175
+ (−4 + 4) Re
1176
+
1177
+ S
1178
+ f ∂θ1, 0
1179
+ ω
1180
+ ∧ ¯∂θ0, 1
1181
+ ω
1182
+ + (−4 + 4) Re
1183
+
1184
+ S
1185
+ ∂θ1, 0
1186
+ ω
1187
+ ∧ ¯∂f ∧ θ0, 1
1188
+ ω
1189
+ =
1190
+ 0.
1191
+ This proves the first statement.
1192
+ The second statement follows at once from the first, from the linearity of the map dωL and from
1193
+ the Lefschetz decomposition γ = γprim + (1/2) Λω(γ) ω.
1194
+
1195
+ We hope that it will be possible in the future to prove that any Hermitian metric ω on a compact
1196
+ complex surface that is a critical point for the functional L is actually an lcK metric.
1197
+ 5
1198
+ First variation of the functional: case of dimension ≥ 3
1199
+ In this section, we suppose that the complex dimension of X is n ≥ 3. The goal is to compute the
1200
+ differential of the energy functional L introduced in Definition 3.1-(ii). Let ω be a Hermitian metric
1201
+ on X and let γ be a real (1, 1)-form. The latter can bee seen as a tangent vector to HX at ω.
1202
+ 14
1203
+
1204
+ Theorem 5.1 For any Hermitian metric ω and any real (1, 1)-form γ, we have:
1205
+ (dωL)(γ)
1206
+ =
1207
+
1208
+ X
1209
+ i(¯∂ω)prim ∧ (¯∂ω)prim ∧ γ ∧ ωn−4
1210
+ +2Re ⟨⟨(¯∂ω)prim, (¯∂γ)prim⟩⟩ω − 2Re ⟨⟨θ0, 1
1211
+ ω
1212
+ ∧ γ, (¯∂ω)prim⟩⟩ω.
1213
+ (17)
1214
+ Proof. Recall (cf. the conjugate of (4)) that (n−1) θ0, 1
1215
+ ω
1216
+ = Λω(¯∂ω) for any Hermitian metric ω. Now,
1217
+ for any real t sufficiency close to 0, ω + tγ is again a Hermitian metric on X. Taking αt = ¯∂ω + t ¯∂γ
1218
+ in Lemma 4.2, we get the second equality below:
1219
+ (n − 1) d
1220
+ dt
1221
+ ����
1222
+ t=0
1223
+ θ0, 1
1224
+ ω+tγ = d
1225
+ dt
1226
+ ����
1227
+ t=0
1228
+ Λω+tγ(¯∂ω + t¯∂γ) = Λω(¯∂γ) − (γ ∧ ·)⋆
1229
+ ω (¯∂ω).
1230
+ (18)
1231
+ On the other hand, taking (d/dt)|t=0 in the expression for L(ω + tγ) given in (ii) of Definition
1232
+ 3.1 (with ω + tγ in place of ω), we get:
1233
+ (dωL)(γ) = d
1234
+ dt
1235
+ ����
1236
+ t=0
1237
+ L(ω + tγ) = d
1238
+ dt
1239
+ ����
1240
+ t=0
1241
+
1242
+ X
1243
+ i(¯∂ω + t¯∂γ)prim ∧ (¯∂ω + t¯∂γ)prim ∧ (ω + tγ)n−3,
1244
+ (19)
1245
+ where the subscript prim indicates the (ω + tγ)-primitive part of the form to which it is attached.
1246
+ Now, consider the Lefschetz decompositions (cf. (5)) of ¯∂ω and ¯∂γ with respect to ω:
1247
+ ¯∂ω
1248
+ =
1249
+ (¯∂ω)prim + θ0, 1
1250
+ ω
1251
+ ∧ ω
1252
+ ¯∂γ
1253
+ =
1254
+ (¯∂γ)prim + θ0, 1
1255
+ γ
1256
+ ∧ ω
1257
+ and the Lefschetz decomposition of ¯∂ω + t¯∂γ with respect to ω + tγ:
1258
+ ¯∂ω + t¯∂γ
1259
+ =
1260
+ (¯∂ω + t¯∂γ)prim + θ0, 1
1261
+ ω+tγ ∧ (ω + tγ).
1262
+ By the above equations we get:
1263
+ (¯∂ω + t¯∂γ)prim = (¯∂ω)prim + θ0, 1
1264
+ ω
1265
+ ∧ ω + t (¯∂γ)prim + t θ0, 1
1266
+ γ
1267
+ ∧ ω − θ0, 1
1268
+ ω+tγ ∧ (ω + tγ),
1269
+ (20)
1270
+ where primitivity is construed w.r.t. the metric ω + tγ in the case of the left-hand side term and
1271
+ w.r.t. the metric ω in the case of (¯∂ω)prim and (¯∂γ)prim.
1272
+ Thanks to (20), equality (19) becomes:
1273
+ (dωL)(γ)
1274
+ =
1275
+ d
1276
+ dt
1277
+ ����t=0
1278
+
1279
+ X
1280
+ i
1281
+
1282
+ (¯∂ω)prim + θ0, 1
1283
+ ω
1284
+ ∧ ω + t (¯∂γ)prim + t θ0, 1
1285
+ γ
1286
+ ∧ ω − θ0, 1
1287
+ ω+tγ ∧ (ω + tγ)
1288
+
1289
+
1290
+
1291
+ (¯∂ω)prim + θ0, 1
1292
+ ω
1293
+ ∧ ω + t (¯∂γ)prim + t θ0, 1
1294
+ γ
1295
+ ∧ ω − θ0, 1
1296
+ ω+tγ ∧ (ω + tγ)
1297
+
1298
+ ∧ (ω + tγ)n−3.
1299
+ Now,
1300
+ d
1301
+ dt
1302
+ ����t=0
1303
+
1304
+ θ0, 1
1305
+ ω+tγ ∧ (ω + tγ)
1306
+
1307
+ =
1308
+ θ0, 1
1309
+ ω
1310
+ ∧ γ +
1311
+ � d
1312
+ dt
1313
+ ����t=0
1314
+ θ0, 1
1315
+ ω+tγ
1316
+
1317
+ ∧ ω
1318
+ =
1319
+ θ0, 1
1320
+ ω
1321
+ ∧ γ +
1322
+ 1
1323
+ n − 1
1324
+
1325
+ Λω(¯∂γ) − (γ ∧ ·)⋆
1326
+ ω(¯∂ω)
1327
+
1328
+ ∧ ω,
1329
+ 15
1330
+
1331
+ where formula (18) was used to get the last equality. Using this, straightforward computations yield:
1332
+ (dωL)(γ) = I1 + I1 + I2,
1333
+ (21)
1334
+ where
1335
+ I2
1336
+ =
1337
+
1338
+ X
1339
+ i
1340
+
1341
+ (¯∂ω)prim + θ0, 1
1342
+ ω
1343
+ ∧ ω − θ0, 1
1344
+ ω
1345
+ ∧ ω
1346
+
1347
+
1348
+
1349
+ (¯∂ω)prim + θ0, 1
1350
+ ω
1351
+ ∧ ω − θ0, 1
1352
+ ω
1353
+ ∧ ω
1354
+
1355
+ ∧ ωn−4 ∧ γ
1356
+ =
1357
+
1358
+ X
1359
+ i(¯∂ω)prim ∧ (¯∂ω)prim ∧ ωn−4 ∧ γ
1360
+ (22)
1361
+ and
1362
+ I1
1363
+ =
1364
+
1365
+ X
1366
+ i
1367
+
1368
+ (¯∂γ)prim + θ0, 1
1369
+ γ
1370
+ ∧ ω − θ0, 1
1371
+ ω
1372
+ ∧ γ −
1373
+ 1
1374
+ n − 1
1375
+
1376
+ Λω(¯∂γ) − (γ ∧ ·)⋆
1377
+ ω(¯∂ω)
1378
+
1379
+ ∧ ω
1380
+
1381
+ ∧ (∂ω)prim ∧ ωn−3
1382
+ =
1383
+
1384
+ X
1385
+ i(¯∂γ)prim ∧ (∂ω)prim ∧ ωn−3 −
1386
+
1387
+ X
1388
+ i θ0, 1
1389
+ ω
1390
+ ∧ γ ∧ (∂ω)prim ∧ ωn−3,
1391
+ (23)
1392
+ where the last equality follows from (∂ω)prim ∧ ωn−2 = 0 (a consequence of the ω-primitivity of the
1393
+ 3-form (∂ω)prim) which leads to the vanishing of the products of the second and the fourth terms
1394
+ (that are multiples of ω) inside the large parenthesis with (∂ω)prim ∧ωn−3 in the integral on the first
1395
+ line of (23).
1396
+ Now, due to the ω-primitivity of the 3-form (∂ω)prim, the standard formula (10) yields:
1397
+ ⋆(∂ω)prim = i (���ω)prim ∧ ωn−3,
1398
+ (24)
1399
+ where ⋆ = ⋆ω is the Hodge star operator induced by ω. Thus, (22) translates to
1400
+ I1
1401
+ =
1402
+
1403
+ X
1404
+ (¯∂γ)prim ∧ ⋆(¯∂ω)prim −
1405
+
1406
+ X
1407
+ θ0, 1
1408
+ ω
1409
+ ∧ γ ∧ ⋆(¯∂ω)prim
1410
+ =
1411
+ ⟨⟨(¯∂γ)prim, (¯∂ω)prim⟩⟩ω − ⟨⟨θ0, 1
1412
+ ω
1413
+ ∧ γ, (¯∂ω)prim⟩⟩ω.
1414
+ This last formula for I1, together with (21) and (22), proves the contention.
1415
+
1416
+ Recall that we are interested in the set of critical points of L. We now notice that a suitable
1417
+ choice of γ in the previous result leads to an explicit description of this set. Since equation (17) is
1418
+ valid for all real (1, 1)-forms γ, the choice γ = ω is licit, as any other choice. We get the following
1419
+ Corollary 5.2 Let X be a compact complex manifold with dimCX = n ≥ 3 and let L be the
1420
+ functional defined in 3.1-(ii). For any Hermitian metric ω on X, we have:
1421
+ (dωL)(ω) = (n − 1) ∥(¯∂ω)prim∥2
1422
+ ω = (n − 1) L(ω).
1423
+ (25)
1424
+ Proof. Taking γ = ω in equation (17), we get:
1425
+ (dωL)(ω)
1426
+ =
1427
+
1428
+ X
1429
+ i(¯∂ω)prim ∧ (¯∂ω)prim ∧ ω ∧ ωn−4 + 2Re ⟨⟨(¯∂ω)prim, (¯∂ω)prim⟩⟩ω
1430
+ −2Re ⟨⟨θ0, 1
1431
+ ω
1432
+ ∧ ω, (¯∂ω)prim⟩⟩ω
1433
+ =
1434
+ (n − 3)i
1435
+
1436
+ X
1437
+ (¯∂ω)prim ∧ (¯∂ω)prim ∧ ωn−3 + 2 ∥(¯∂ω)prim∥2
1438
+ ω − 2Re ⟨⟨θ0, 1
1439
+ ω , Λω((∂ω)prim)⟩⟩ω
1440
+ =
1441
+ (n − 1)∥(¯∂ω)prim∥2
1442
+ ω,
1443
+ 16
1444
+
1445
+ where the last equality followed from (¯∂ω)prim∧ωn−3 = −i ⋆(¯∂ω)prim (see (24)) and from Λω((∂ω)prim)) =
1446
+ 0 (due to any ω-primitive form lying in the kernel of Λω).
1447
+
1448
+ An immediate consequence of Corollary 5.2 is the following
1449
+ Proposition 5.3 Let X be a compact complex manifold with dimCX = n ≥ 3 and let ω be a
1450
+ Hermitian metric on X.
1451
+ If ω is a critical point for the functional L defined in 3.1-(ii), then ω is lcK.
1452
+ Proof. If ω is a critical point for L, then (dωL)(γ) = 0 for any real (1, 1)-form γ on X. Taking γ = ω
1453
+ and using (25), we get (¯∂ω)prim = 0. By (ii) of Lemma 2.2, this is equivalent to ω being lcK.
1454
+
1455
+ The converse follows trivially from what we already know. Indeed, if ω is an lcK metric, L(ω) = 0
1456
+ (by Lemma 3.2), so L achieves its minimum at ω since L ≥ 0. Any minimum is, of course, a critical
1457
+ point.
1458
+ 6
1459
+ Normalised energy functionals when dimCX ≥ 3
1460
+ We start with the immediate observation that the functional introduced in (i) of Definition 3.1 in
1461
+ the case of compact complex surfaces is scaling-invariant, so it does not need normalising.
1462
+ Proposition 6.1 Let S be a compact complex surface. The functional L : HS −→ [0, +∞), L(ω) =
1463
+
1464
+ X ∂θ1, 0
1465
+ ω
1466
+ ∧ ¯∂θ0, 1
1467
+ ω , has the property:
1468
+ L(λω) = L(ω)
1469
+ for every constant λ > 0 and every Hermitian metric ω on S.
1470
+ Proof. Recall (cf. (2)) that θ1, 0
1471
+ ω
1472
+ = Λω(∂ω) and θ0, 1
1473
+ ω
1474
+ = Λω(¯∂ω). On the other hand, for any constant
1475
+ λ > 0 and any form α of any bidegree (p, q), we have:
1476
+ Λλωα = 1
1477
+ λ Λωα,
1478
+ as can be checked right away. Therefore, θ1, 0
1479
+ λω = θ1, 0
1480
+ ω
1481
+ and θ0, 1
1482
+ λω = θ0, 1
1483
+ ω
1484
+ for every constant λ > 0. The
1485
+ contention follows.
1486
+
1487
+ By contrast, the functional L : HX −→ [0, +∞) introduced in (ii) of Definition 3.1 in the case
1488
+ of compact complex manifolds X with dimCX = n ≥ 3 is not scaling-invariant. Indeed, it follows at
1489
+ once from its definition that
1490
+ L(λω) = λn−1 L(ω)
1491
+ (26)
1492
+ for every constant λ > 0 and every Hermitian metric ω on X.
1493
+ This homogeneity property of L can be used to derive a short proof of the main property of L
1494
+ that was deduced in §.5 from the result of the computation of the first variation of L, namely from
1495
+ Theorem 5.1.
1496
+ 17
1497
+
1498
+ Proposition 6.2 (Proposition 5.3 revisited) Let X be a compact complex manifold with dimCX =
1499
+ n ≥ 3 and let ω be a Hermitian metric on X. The following equivalence holds:
1500
+ ω is a critical point for the functional L defined in 3.1-(ii) if and only if ω is lcK.
1501
+ Proof. Suppose ω is a critical point for L. This means that (dωL)(γ) = 0 for every real (1, 1)-form
1502
+ γ on X. Taking γ = ω, we get the first eqsuality below:
1503
+ 0 = (dωL)(ω) = d
1504
+ dt
1505
+ ����t=0
1506
+ L(ω + tω) = d
1507
+ dt
1508
+ ����t=0
1509
+
1510
+ (1 + t)n−1 L(ω)
1511
+
1512
+ = (n − 1) L(ω).
1513
+ Thus, whenever ω is a critical point for L, L(ω) = 0. This last fact is equivalent to the metric ω
1514
+ being lcK thanks to Lemma 3.2.
1515
+ Conversely, if ω is lcK, it is a minimum point for L, hence also a critical point, because L(ω) = 0
1516
+ by Lemma 3.2.
1517
+
1518
+ On the other hand, recall the following by now standard
1519
+ Observation 6.3 Let ω be a Hermitian metric on a complex manifold X with dimCX = n ≥ 2. If
1520
+ ω is both lcK and balanced, ω is K¨ahler.
1521
+ Proof.
1522
+ The Lefschetz decomposition of dω spells dω = (dω)prim + ω ∧ θ, where (dω)prim is an
1523
+ ω-primitive 3-form and θ is a 1-form on X.
1524
+ We saw in Lemma 2.2 that ω is lcK if and only if (dω)prim = 0. On the other hand, the following
1525
+ equivalences hold:
1526
+ ω is balanced
1527
+ ⇐⇒ dωn−1 = 0 ⇐⇒ ωn−2 ∧ dω = 0 ⇐⇒ dω is ω-primitive ⇐⇒ dω = (dω)prim.
1528
+ We infer that, if ω is both lcK and balanced, dω = 0, so ω is K¨ahler.
1529
+
1530
+ It is tempting to conjecture the existence of a K¨ahler metric in the more general situation where
1531
+ the lcK and balanced hypotheses are spread over possibly different metrics.
1532
+ Conjecture 6.4 Let X be a compact complex manifold with dimCX ≥ 3. If an lcK metric ω and a
1533
+ balanced metric ρ exist on X, there exists a K¨ahler metric on X.
1534
+ Together with the behaviour of L under rescaling (see (26)), this conjecture suggests a natural
1535
+ normalisation for our functional L when n ≥ 3.
1536
+ Definition 6.5 Let X be a compact complex manifold with dimCX = n ≥ 3. Fix a Hermitian
1537
+ metric ρ on X. We define the ρ-dependent functional acting on the Hermitian metrics of X:
1538
+ �Lρ : HX → [0, +∞),
1539
+ �Lρ(ω) :=
1540
+ L(ω)
1541
+ � �
1542
+ X ω ∧ ρn−1
1543
+ �n−1,
1544
+ (27)
1545
+ where L is the functional introduced in (ii) of Definition 3.1.
1546
+ 18
1547
+
1548
+ It follows from (26) that the normalised functional �Lρ is scaling-invariant:
1549
+ �Lρ(λ ω) = �Lρ(ω)
1550
+ for every constant λ > 0. Moreover, thanks to Lemma 3.2, �Lρ(ω) = 0 if and only of ω is an lcK
1551
+ metric on X.
1552
+ We now derive the formula for the first variation of the normalised functional �Lρ in terms of the
1553
+ similar expression for the unnormalised functional L that was computed in Theorem 5.1.
1554
+ Proposition 6.6 Let X be a compact complex manifold with dimCX = n ≥ 3. Fix a Hermitian
1555
+ metric ρ on X. Then, for any Hermitian metric ω and any real (1, 1)-form γ on X, we have:
1556
+ (dω �Lρ)(γ) =
1557
+ 1
1558
+ � �
1559
+ X ω ∧ ρn−1
1560
+ �n−1
1561
+
1562
+ (dωL)(γ) − (n − 1)
1563
+
1564
+ X γ ∧ ρn−1
1565
+
1566
+ X ω ∧ ρn−1
1567
+ L(ω)
1568
+
1569
+ ,
1570
+ (28)
1571
+ where (dωL)(γ) is given by formula (17) in Theorem 5.1.
1572
+ Proof. Straightforward computations yield:
1573
+ (dω�Lρ)(γ)
1574
+ =
1575
+ d
1576
+ dt
1577
+
1578
+ 1
1579
+ � �
1580
+ X(ω + tγ) ∧ ρn−1
1581
+ �n−1 L(ω + tγ)
1582
+
1583
+ t=0
1584
+ =
1585
+ 1
1586
+ � �
1587
+ X ω ∧ ρn−1
1588
+ �n−1 (dωL)(γ)
1589
+
1590
+ 1
1591
+ � �
1592
+ X ω ∧ ρn−1
1593
+ �2(n−1) (n − 1)
1594
+ � �
1595
+ X
1596
+ ω ∧ ρn−1
1597
+ �n−2 � �
1598
+ X
1599
+ γ ∧ ρn−1
1600
+
1601
+ L(ω).
1602
+ This is formula (28).
1603
+
1604
+ A natural question is whether the critical points of any (or some) of the normalised functionals
1605
+ �Lρ are precisely the lcK metrics (if any) on X. The following result goes some way in this direction.
1606
+ Corollary 6.7 Let X be a compact complex manifold with dimCX = n ≥ 3. Fix a Hermitian metric
1607
+ ρ on X. Suppose a Hermitian metric ω is a critical point for �Lρ. Then:
1608
+ (i) for every ρ-primitive real (1, 1)-form γ, (dωL)(γ) = 0.
1609
+ (ii) if the metric ρ is Gauduchon, (dωL)(i∂ ¯∂ϕ) = 0 for any real-valued C2 function ϕ on X.
1610
+ Proof. (i) If γ is ρ-primitive, then γ ∧ ρn−1 = 0, so formula (28) reduces to
1611
+ (dω �Lρ)(γ) =
1612
+ (dωL)(γ)
1613
+ � �
1614
+ X ω ∧ ρn−1
1615
+ �n−1.
1616
+ Meanwhile, (dω �Lρ)(γ) = 0 for every real (1, 1)-form γ since ω is a critical point for �Lρ.
1617
+ The
1618
+ contention follows.
1619
+ 19
1620
+
1621
+ (ii) Choose γ := ω + i∂ ¯∂ϕ for any function ϕ as in the statement. We get:
1622
+ 0
1623
+ (a)
1624
+ =
1625
+ � �
1626
+ X
1627
+ ω ∧ ρn−1
1628
+ �n−1
1629
+ (dω�Lρ)(ω + i∂ ¯∂ϕ)
1630
+ (b)= (dωL)(ω) − (n − 1) L(ω) + (dωL)(i∂ ¯∂ϕ)
1631
+ (c)
1632
+ = (dωL)(i∂ ¯∂ϕ),
1633
+ where ω being a critical point for �Lρ gave (a), formula (28) and the metric ρ being Gauduchon (the
1634
+ latter piece of information implying
1635
+
1636
+ X i∂ ¯∂ϕ ∧ ρn−1 = 0 thanks to the Stokes theorem) gave (b),
1637
+ while Corollary 5.2 gave (c).
1638
+
1639
+ As in the case of surfaces, our hope is that it will be possible in the future to prove that any
1640
+ Hermitian metric ω on a compact complex manifold of dimension ≥ 3 that is a critical point for one
1641
+ (or all) of the normalised functionals �Lρ is actually an lcK metric.
1642
+ Concluding remarks.
1643
+ (a) Let X be a compact complex manifold with dimCX = n ≥ 3. Fix a Hermitian metric ρ on
1644
+ X and consider the set Uρ of ρ-normalised Hermitian metrics ω on X such that
1645
+
1646
+ X
1647
+ ω ∧ ρn−1 = 1.
1648
+ By Definition 6.5, we have �Lρ(ω) = L(ω) for every ω ∈ Uρ. Moreover, since �Lρ is scaling-invariant,
1649
+ it is completely determined by its restriction to Uρ. Let
1650
+ cρ := inf
1651
+ ω∈HX
1652
+ �Lρ(ω) = inf
1653
+ ω∈Uρ
1654
+ �Lρ(ω) = inf
1655
+ ω∈Uρ L(ω) ≥ 0.
1656
+ For every ε > 0, there exists a Hermitian metric ωε ∈ Uρ such that cρ ≤ L(ωε) < cρ + ε. Since
1657
+ Uρ is a relatively compact subset of the space of positive (1, 1)-currents equipped with the weak
1658
+ topology of currents, there exists a subsequence εk ↓ 0 and a positive (see e.g. the terminology of
1659
+ [Dem97, III-1.B.]) (1, 1)-current Tρ ≥ 0 on X such that the sequence (ωεk)k converges weakly to Tρ
1660
+ as k → +∞. By construction, we have:
1661
+
1662
+ X
1663
+ Tρ ∧ ρn−1 = 1.
1664
+ The possible failure of the current Tρ ≥ 0 to be either a C∞ form or strictly positive (for example in
1665
+ the sense that it is bounded below by a positive multiple of a Hermitian metric on X) constitutes
1666
+ an obstruction to the existence of minimisers for the functional �Lρ. If it eventually turns out that
1667
+ the critical points of �Lρ, if any, are precisely the lcK metrics of X, if any, they will further coincide
1668
+ with the minimisers of �Lρ. In that case, the currents Tρ will provide obstructions to the existence
1669
+ of lcK metrics on X.
1670
+ (b) The same discussion as in the above (a) can be had on a compact complex surface S using
1671
+ the (already scaling-invariant) functional L introduced in (i) of Definition 3.1 if one can prove that
1672
+ its critical points coincide with the lcK metrics on S.
1673
+ 20
1674
+
1675
+ References
1676
+ [AD15] V. Apostolov, G. Dloussky — Locally Conformally Symplectic Structures on Compact Non-
1677
+ K¨ahler Complex Surfaces — Int. Math. Res. Notices, No. 9 (2016) 2717-2747.
1678
+ [DP22] S. Dinew, D. Popovici — A Variational Approach to SKT and Balanced Metrics — arXiv:2209.12813v1.
1679
+ [Dem 84] J.-P. Demailly — Sur l’identit´e de Bochner-Kodaira-Nakano en g´eom´etrie hermitienne —
1680
+ S´eminaire d’analyse P. Lelong, P. Dolbeault, H. Skoda (editors) 1983/1984, Lecture Notes in Math.,
1681
+ no. 1198, Springer Verlag (1986), 88-97.
1682
+ [Dem97] J.-P. Demailly — Complex Analytic and Algebraic Geometry — http://www-fourier.ujf-
1683
+ grenoble.fr/ demailly/books.html
1684
+ [Gau77] P. Gauduchon — Le th´eor`eme de l’excentricit´e nulle — C.R. Acad. Sc. Paris, S´erie A, t.
1685
+ 285 (1977), 387-390.
1686
+ [Ist19] ˙N. Istrati — Existence Criteria for Special Locally Conformally K¨ahler Metrics — Ann. Mat.
1687
+ Pura Appl. 198 (2) (2019), 335-353.
1688
+ [OV22] L. Ornea, M. Verbitsky — Principles of Locally Conformally Kahler Geometry — arXiv:2208.07188v2.
1689
+ [Oti14] A. Otiman — Currents on Locally Conformally K¨ahler Manifolds — Journal of Geometry
1690
+ and Physics, 86 (2014), 564-570.
1691
+ [Mic83] M. L. Michelsohn — On the Existence of Special Metrics in Complex Geometry — Acta
1692
+ Math. 143 (1983) 261-295.
1693
+ [PS22] O. Perdu, M. Stanciu — Vaisman Theorem for lcK Spaces —arXiv:2109.01000v3.
1694
+ [Vai76] I. Vaisman, — On Locally Conformal Almost K¨ahler Manifolds — Israel J. Math. 24 (1976)
1695
+ 338-351.
1696
+ [Voi02] C. Voisin — Hodge Theory and Complex Algebraic Geometry. I. — Cambridge Studies in
1697
+ Advanced Mathematics, 76, Cambridge University Press, Cambridge, 2002.
1698
+ Universit´e Paul Sabatier, Institut de Math´ematiques de Toulouse
1699
+ 118, route de Narbonne, 31062, Toulouse Cedex 9, France
1700
1701
+ and
1702
1703
+ 21
1704
+
0NFAT4oBgHgl3EQfCBxS/content/tmp_files/2301.08407v1.pdf.txt ADDED
@@ -0,0 +1,858 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Multi-Messenger Constraint on the Hubble Constant H0
2
+ with Tidal Disruption Events
3
+ Thomas Hong Tsun Wong∗
4
+ Department of Physics, University of California, San Diego, California, 92092, USA
5
+ (Dated: January 23, 2023)
6
+ Tidal disruption events (TDEs), apart from producing luminous electromagnetic (EM) flares,
7
+ can generate potentially detectable gravitational wave (GW) burst signals by future space-borne
8
+ GW detectors. In this Letter, we propose a methodology to constrain the Hubble constant H0 by
9
+ incorporating the TDE parameters measured by EM observations (e.g., stellar mass, black hole (BH)
10
+ mass and spin, and other orbital parameters) into the observed TDE GW waveforms. We argue
11
+ that an accurate knowledge of the BH spin could help constrain the orbital inclination angle, hence
12
+ alleviating the well-known distance-inclination degeneracy in GW waveform fitting. For individual
13
+ TDEs, the precise redshift measurement of the host galaxies along with the luminosity distance DL
14
+ constrained by EM and GW signals would give a self-contained measurement of H0 via Hubble’s
15
+ law, completely independent of any specific cosmological models.
16
+ I.
17
+ INTRODUCTION
18
+ The method of utilizing the emissions of gravitational
19
+ wave (GW) by compact object mergers, known as the
20
+ “standard sirens” (well-defined sources emitting at some
21
+ known frequencies), to measure H0 was long proposed
22
+ [1]. From Hubble’s law:
23
+ vH = cz = H0DL ,
24
+ (1)
25
+ the detected GW waveform provides constraints on DL
26
+ while the bright electromagnetic (EM) counterpart mea-
27
+ sures the redshift, known as the “bright siren” (an EM-
28
+ observable “standard siren”). It was only until recently
29
+ has this technique been implemented in the binary neu-
30
+ tron star merger event GW170817 [2]. The uncertainty in
31
+ H0 measurement is, however, dominated by the degener-
32
+ acy between DL and the inclination angle η, defined here
33
+ as the angle between the orbital angular momentum and
34
+ the line of sight [3], of the binary system from the GW
35
+ template-waveform fitting [2, 4], as seen for a small-angle
36
+ approximation:
37
+ hGW ∝ cos η
38
+ DL
39
+ ,
40
+ (2)
41
+ where hGW is the detected GW strain amplitude.
42
+ By
43
+ incorporating the multi-messenger information of the
44
+ event, the viewing-angle-dependent features of various
45
+ EM emission models (e.g., gamma-ray burst and kilo-
46
+ nova) are exploited to arbitrate the distance-inclination
47
+ degeneracy, providing a tighter constraint on DL, and
48
+ subsequently H0 ([4] and references therein).
49
+ One would naturally question whether compact object
50
+ mergers remain the sole astrophysical sources to mea-
51
+ sure H0 in a multi-messenger approach. As long as mas-
52
+ sive objects revolve around each other, GW emissions are
53
+ guaranteed, therefore tidal disruption of stars by massive
54
+ ∗ Email: [email protected]
55
+ black holes (BHs) would present themselves as viable can-
56
+ didates due to the fact that immense EM radiation is
57
+ released during the transient event [5–8]. When a star
58
+ approaches the galactic central supermassive black hole
59
+ (SMBH) at a sufficiently close distance, the tidal radius
60
+ rT ≈ (MBH/m⋆)1/3 r⋆, where MBH, m⋆, r⋆ are the BH
61
+ mass, stellar mass, and stellar radius, respectively, the
62
+ star is then torn apart given that the tidal field of the
63
+ hole exceeds the star’s self-gravity [9].
64
+ The disrupted
65
+ stellar material would be stretched into a debris stream,
66
+ approximately half of it will gradually dissipate orbital
67
+ energy into EM radiation, and eventually circularize into
68
+ an accretion disk. Optical, near-UV, X-ray all-sky sur-
69
+ veys have detected up to a hundred or so events, and
70
+ one to two orders of magnitude more are expected in the
71
+ coming decade [10, 11].
72
+ Tidal disruption events (TDEs) could only generate
73
+ GW bursts as the star is often disrupted within an or-
74
+ bital timescale, i.e. the intact star does not survive an
75
+ entire orbit to produce a full period of GW waveform [5].
76
+ An open comprehensive living catalog of TDE GW wave-
77
+ forms has been built to explore a wide range of parame-
78
+ ters [8]. Given their relatively long orbital timescale prior
79
+ to disruption (∼ 102−4 s), the characteristic GW burst
80
+ frequency is approximately in the range of 0.1 − 10 mHz,
81
+ which corresponds to the designed sensitivities of the up-
82
+ coming space-borne GW detectors [12–15]. But in fact,
83
+ most TDE GW signals are incapable of generating a large
84
+ enough signal-to-noise ratio to trigger a detection for
85
+ LISA [12] but would lie well within the detection limit of
86
+ post-LISA detectors [7, 14–16]. The TDE GW observed
87
+ rate by LISA is predicted to remain half a dozen or so
88
+ for the entire four-year mission [7] as the characteristic
89
+ strains of the events are weak given typical TDE param-
90
+ eters, which are estimated as [5, 8]:
91
+ hGW ∼ 10−22
92
+
93
+ DL
94
+ 20 Mpc
95
+ �−1
96
+ ×
97
+ β
98
+ � r⋆
99
+ R⊙
100
+ �−1 � m⋆
101
+ M⊙
102
+ �4/3 � MBH
103
+ 106 M⊙
104
+ �2/3
105
+ ,
106
+ (3)
107
+ arXiv:2301.08407v1 [astro-ph.HE] 20 Jan 2023
108
+
109
+ 2
110
+ where rp is the pericenter radius and β = rp/rT is the
111
+ penetration parameter [17] (quantifying how deeply the
112
+ orbit penetrates into the BH gravitational potential well).
113
+ The pessimistic observed rate by LISA inspires us to
114
+ explore the possibility of using a very limited number of
115
+ events to independently measure H0.
116
+ We hereby pro-
117
+ pose using TDE EM observations to constrain as many
118
+ parameters as possible prior to GW waveform fitting, re-
119
+ sulting in a remarkably improved GW constraint on the
120
+ luminosity distance DL. This work focuses on gathering
121
+ the cumulative modeling effort in obtaining TDE param-
122
+ eters, exploring their intercorrelations, and most impor-
123
+ tantly, proposing the first methodology to constrain H0
124
+ via TDEs. Prior to detecting GW signals, using simu-
125
+ lated waveforms to run the following analysis in an at-
126
+ tempt to constrain H0 would inevitably lead to a circu-
127
+ lar argument, therefore this letter serves as a primal in-
128
+ vestigation on the foundational idea of exploiting multi-
129
+ messenger signals of TDEs to measure H0.
130
+ In Section II, we illustrate the recent progress in con-
131
+ straining all waveform-dependent TDE parameters by
132
+ EM observations with physical modeling, laying the foun-
133
+ dational work to further propose the novel approach to
134
+ alleviate the distance-inclination degeneracy using the
135
+ constrained BH spin parameters, the methodology is
136
+ then presented with an estimation on which parameter(s)
137
+ would most dominate the H0 uncertainty. In Section III,
138
+ we discuss possible ways to further improve the precision
139
+ of H0 determination.
140
+ II.
141
+ MULTI-MESSENGER CONSTRAINTS ON DL
142
+ Given the ability to localize TDEs with the current
143
+ multi-wavelength surveys, the redshifts of the host galax-
144
+ ies can be comfortably measured with high certainty
145
+ [10, 11]. In order to estimate an accurate Hubble con-
146
+ stant H0, the problem lies in constraining the luminosity
147
+ distance DL from their GW counterparts.
148
+ Unfortunately, in order to accurately match the ob-
149
+ served waveforms with the templates, one could not
150
+ rely solely on the approximate peak amplitude in Eq.(3)
151
+ which depends mainly on three parameters.
152
+ Provided
153
+ the number of waveform-dependent parameters, there is
154
+ only hope to constrain DL, and hence H0, if most, if
155
+ not all, these TDE parameters could be constrained to
156
+ some extent with EM observations. We hereby show the
157
+ parameter inter-dependencies (summarized in Fig.2) and
158
+ how they are expected to yield a constrained H0.
159
+ A.
160
+ EM Constraints on TDE Parameters
161
+ 1.
162
+ Three main parameters: MBH, m⋆, β
163
+ TDE-host black hole mass is one of the easiest to infer
164
+ since there are a few MBH-galaxy relations available [18–
165
+ 20] and simulations/models specifically for TDE-specific
166
+ scenarios [5, 21–25]. The common TDE EM-GW detec-
167
+ tion rate is highly limited [7], a more accurate constraint
168
+ on the MBH of the few detectable events could perhaps be
169
+ computed in a case-by-case TDE-model-dependent man-
170
+ ner instead of using the global galaxy relations, even if
171
+ the latter has a slightly better constraint than the former.
172
+ Focusing on the disruption of main-sequence (MS)
173
+ stars, the mass-radius relation is given by [26], such that
174
+ all r⋆-dependence turns into m⋆ accordingly.
175
+ MCMC
176
+ method that fits both the peak luminosity and the
177
+ color temperature of the observed TDEs could con-
178
+ strain m⋆ down to a ∼few % uncertainty (but some-
179
+ times a lot higher) [23, 25].
180
+ It is indeed a challeng-
181
+ ing task to check whether the mass constraint is ac-
182
+ curate given there is yet to exist another independent
183
+ EM-measurement, additional GW waveform information
184
+ could complement the deficiency based on the approxi-
185
+ mate duration τ/frequency f of the burst [5, 8]:
186
+ f ∼ 1
187
+ τ ≈ 10−4 Hz × β3/2
188
+ � m⋆
189
+ M⊙
190
+ �1/2 � r⋆
191
+ R⊙
192
+ �−3/2
193
+ .
194
+ (4)
195
+ Orbital parameters remain the most challenging-to-
196
+ constrain variables as the TDE observables do not de-
197
+ pend as sensitively as they do on the masses. The β de-
198
+ pendency on TDE light curves is investigated with hydro-
199
+ dynamical simulations [21], resulting in co-dependency
200
+ on both masses. A relatively weaker constraint on β is
201
+ through analyzing the probability distribution among the
202
+ EM-observed TDE population [27]. Both works provided
203
+ corresponding analytical formulae. For the high signal-
204
+ to-noise TDE detections by LISA, a lower bound on β
205
+ (e.g., βmin ≳ 10 for MBH = 106 M⊙) can be imposed [7].
206
+ Given the rough EM-dependence, it could potentially be
207
+ slightly more beneficial to further constrain β from the
208
+ TDE GW waveform as the overall shape of the polar-
209
+ izations and the duration of the GW burst change when
210
+ β is varied [8]. The EM constraint can simply be used
211
+ as the prior knowledge with a large uncertainty between
212
+ βmin ≳ β ≥ βmax, where βmax happens at rp = rSch, i.e.,
213
+ all stellar materials are swallowed at pericenter passage
214
+ thus EM signal detection is unlikely.
215
+ It is important to note that these three parameters
216
+ are not completely independent, e.g., a less massive, i.e.,
217
+ more compact, star could not be tidally disrupted by a
218
+ very massive BH, but will instead be swallowed whole,
219
+ i.e. rT ≤ rSch, where rSch is the Schwarzschild radius of
220
+ the hole. Some regions in the parameter space are thus
221
+ automatically ruled out for any EM-observable event.
222
+ 2.
223
+ Degeneracy-breaking parameters:
224
+ Black hole spin and inclination angle: aBH, θ, η
225
+ Upon first glance, the spin properties of the host BH
226
+ might seem like a sub-dominant factor, but the way they
227
+ correlate with the orbital inclination angle η could ul-
228
+ timately lead to a probable alleviation of the known
229
+ distance-inclination degeneracy.
230
+
231
+ 3
232
+ 𝜃
233
+ x
234
+ y
235
+ z (los)
236
+ x
237
+ y
238
+ z (los)
239
+ x
240
+ y
241
+ z (los)
242
+ incoming orbital plane
243
+ BH spin
244
+ 𝜂
245
+ accretion
246
+ disk plane
247
+ multiple
248
+ windings
249
+ observed
250
+ prediction
251
+ simulation
252
+ FIG. 1. Schematic illustration of how a typical η orbit
253
+ would evolve into an accretion disk of specific ori-
254
+ entation given a BH spin offset. When the (large) BH
255
+ spin orientation sufficiently differs from the orbital angular
256
+ momentum of the stellar orbit, the disrupted stream debris
257
+ would evolve away from the initial orbital plane, resulting in a
258
+ stream collision somewhere else (red explosion) [21]. The po-
259
+ sition of the intersection could constrain the final orientation
260
+ of the circularized accretion disk, where then the viewing-
261
+ angle dependent model may be applied [28]. The z-axis is set
262
+ to be the line of sight (los).
263
+ The dimensionless spin magnitude and the spin orien-
264
+ tation are defined by 0 ≤ aBH ≡ cJ/GM 2
265
+ BH ≤ 1 and the
266
+ angle between the spin vector and the stellar orbital an-
267
+ gular momentum, 0◦ (prograde) ≤ θ ≤ 180◦ (retrograde),
268
+ respectively. Spin parameters could be constrained with
269
+ the observed light curve at peak accretion [29] (most sen-
270
+ sitive for high β) or with X-ray reverberation technique
271
+ when the accretion disk is formed [30]. If an observed
272
+ TDE has a rapidly spinning host BH, the launching of a
273
+ relativistic jet via the Blandford-Znajek mechanism [31]
274
+ would be advantageous in further constraining the BH
275
+ spin parameters [32].
276
+ The parameter η has never been investigated with EM
277
+ observables as the incoming orbit of the star has (nearly)
278
+ no influence on the multiwavelength/multi-epoch signa-
279
+ tures as we could not see lights at the exact disruption
280
+ phase.
281
+ However, when GW is included as part of the
282
+ multi-messenger analysis, η is of utmost importance.
283
+ The first-ever analysis on incorporating viewing-angle-
284
+ dependent models was used for the case of binary neu-
285
+ tron star merger GW170817 [4], where physical models
286
+ of gamma-ray burst and kilonova are used to constrain
287
+ the system inclination by modeling their light curves and
288
+ spectra-photometry. We propose that a similar approach
289
+ could be implemented with the work of [28, 33], in which
290
+ the TDE spectral features depend mainly on the view-
291
+ ing angle [34]. Assuming that the X-ray and optical/UV
292
+ emissions originate from the inner part of the accretion
293
+ disk and the disk luminosity reprocessed by the expand-
294
+ ing outflow, respectively [35], when viewing the TDE sys-
295
+ tem edge-on, the intrinsic X-ray emission from the disk
296
+ will be reprocessed by the optically thick outflow, opti-
297
+ cal/UV luminosity would dominate the observed spec-
298
+ trum; when viewing the TDE system face-on, we would
299
+ then expect to look into the optically thin funnel and
300
+ see a stronger X-ray luminosity from the exposed in-
301
+ ner disk. Given that both optical and X-ray luminosi-
302
+ ties are measured for many TDE candidates, their ratios
303
+ Loptical/LX−ray could potentially indicate the approxi-
304
+ mate inclination angle of the geometrically thick outer
305
+ accretion disk [28, 33], i.e., increase in viewing angle of
306
+ the disk generally augments the optical-to-X-ray lumi-
307
+ nosity ratio.
308
+ To link the orientations of the disk and the stellar or-
309
+ bital plane, for BH spins that are aligned with the orbital
310
+ plane’s normal (θ = 0), we could safely assume that the
311
+ stellar materials would on average remain on its incoming
312
+ orbital plane due to symmetry, such that the luminosity
313
+ ratio could directly be used to infer η. For cases where
314
+ the direction of the moderate/high BH spin is signifi-
315
+ cantly offset from the orbital plane’s normal (incoming
316
+ stellar orbits are often randomly oriented), relativistic
317
+ precession for close encounters (high β) would induce de-
318
+ flections of the debris stream out of the initial orbital
319
+ plane, leading to a certain period when the TDE flare
320
+ is not observable [36]. When the stream eventually self-
321
+ intersects and dissipates its orbital energy during circu-
322
+ larization, it is unlikely that the circularized disk will lie
323
+ on the original orbital plane [37]. Hence, in order to uti-
324
+ lize this analysis, both BH spin parameters should not
325
+ be neglected, their relations are illustrated by the stream
326
+ evolution in Fig.1 and indicated in Fig.2. When the spin
327
+ parameters are constrained by the modeling discussed in
328
+ Section BH spin, the simulation [36] could then be im-
329
+ plemented to predict how the initial orbit plane would
330
+ undergo multiple windings and end up on the final ac-
331
+ cretion disk plane where the stream intersection finally
332
+ happens, hence yielding the orbital inclination angle η
333
+ through forward modeling.
334
+
335
+ 4
336
+ The spin parameters have to be constrained by EM
337
+ observations as they are the input parameters for de-
338
+ termining the orbital inclination angle η, meaning that if
339
+ aBH and θ are fitted through GW waveform, the distance-
340
+ inclination degeneracy would still remain.
341
+ 3.
342
+ Other orbital parameters: e, φ
343
+ From the GW waveform simulation [8], the strain am-
344
+ plitude dependence of the orbital eccentricity e is approx-
345
+ imately an order of magnitude smaller than β and θ. Al-
346
+ beit the mild sensitivity in e, implying the insignificant
347
+ contribution to the uncertainty of DL, EM constraints
348
+ are still possible. The common assumption is that most
349
+ TDE stars have a roughly parabolic (e ≈ 1) flyby orbit
350
+ [38].
351
+ Hyperbolic orbits (e ≳ 1) are automatically not
352
+ taken into consideration since the stellar materials are
353
+ unbound after the disruption and would not produce a
354
+ detectable EM signal; and near-circular orbits are highly
355
+ unlikely based on loss cone dynamics [39]. The eccen-
356
+ tricity is then essentially constrained to some values in
357
+ between given by the fallback rate [40].
358
+ There exists one orbital orientation parameter φ, which
359
+ is the angle between the stellar pericenter axis and the
360
+ projection of the line of sight onto the orbital plane [8],
361
+ being the least dependent of all. This angle can hardly
362
+ be constrained by EM observations nor TDE models and
363
+ shall not possess any prior in the waveform fitting. (All
364
+ angles discussed θ, η, and φ are defined identically to [8].)
365
+ B.
366
+ Luminosity Distance DL and H0 Estimate
367
+ 1.
368
+ Key Methodology
369
+ Using suitable TDE models to fit the correspond-
370
+ ing observables discussed in Section II A, all seven EM-
371
+ constrained parameters (MBH, m⋆, β, aBH, θ, η, e) would
372
+ have their corresponding probability density functions
373
+ (PDFs) obtained through simulations and model-fitting.
374
+ As for DL and φ, they are expected to freely vary during
375
+ the waveform fitting, and no prior assumption should be
376
+ made on DL to prevent any bias. With the knowledge
377
+ to constrain the inclination angle η as an input parame-
378
+ ter, the distance-inclination degeneracy is expected to be
379
+ relieved to a very large extent.
380
+ All nine variables and their corresponding uncertain-
381
+ ties would be used to generate a huge catalog of GW
382
+ waveforms [8], centering at the constrained parameter
383
+ values to avoid exploring the large parameter space. Note
384
+ that some parameter values are prohibited (rT ≤ rSch),
385
+ e.g., large MBH for disruption of small m⋆, high β for
386
+ specific MBH and m⋆. The theoretically generated wave-
387
+ forms would then be fitted with that of the observed in
388
+ a similar manner as in [41], yielding a PDF of DL. The
389
+ PDF of DL would translate directly to the PDF of H0 us-
390
+ ing Eq.1. Setting this PDF as the likelihood in Bayesian
391
+ 𝑴𝐁𝐇
392
+ 𝒎⋆
393
+ 𝜷
394
+ 𝑒
395
+ 𝑎$%
396
+ 𝜃
397
+ 𝜂
398
+ 𝜙
399
+ 𝐷&
400
+ ℎ'(,*+,-.(𝑡)
401
+ EM constraints
402
+ ℎ'(,+/0(𝑡)
403
+ fitting
404
+ 𝐷&
405
+ 𝑧+/0
406
+ 𝐻1
407
+ To be fitted
408
+ 𝐻1
409
+ 𝐻1
410
+ prior
411
+ posterior
412
+ likelihood
413
+ EM
414
+ constraint
415
+ FIG. 2. Graphical model describing how the relations
416
+ amongst TDE parameters and how EM and GW ob-
417
+ servations are combined to yield H0 from a single
418
+ TDE. The main TDE parameters (MBH, m⋆, β) are indi-
419
+ cated by blue circles. Dashed arrows illustrate how param-
420
+ eters are obtained via other parameters, which involve some
421
+ simulations/models and additional EM observables (e.g., light
422
+ curves and spectra). EM-constrained parameters combining
423
+ with the GW waveform fitting process would give the PDF
424
+ of DL, then with the observed host galaxy redshift, the PDF
425
+ of H0 (likelihood) is found. The H0 likelihood and cosmo-
426
+ logically determined prior then give rise to the posterior (the
427
+ final determination of H0 by a single TDE). The filled boxes
428
+ indicate the outputs of each procedure.
429
+ formalism [2] and the H0 from other cosmological studies
430
+ [42, 43] as the prior, the posterior H0 is expected to peak
431
+ near the prior value while eliminating the other H0 peaks
432
+ derived from DL. The graphical description is shown in
433
+ Fig.2.
434
+ 2.
435
+ Bottleneck in H0 Measurement Uncertainty
436
+ As long as the parameters are entangled in such a
437
+ complicated manner (Fig.2), what we could do is, from
438
+ an order-of-magnitude point of view, estimate which pa-
439
+ rameter(s) would predominantly contribute to the uncer-
440
+ tainty σDL.
441
+ Fig.3 shows the main TDE parameters that impact the
442
+ GW burst amplitudes (the exact waveform of hGW here is
443
+ less important than those of LIGO events as TDEs often
444
+
445
+ 5
446
+ −20
447
+ −10
448
+ 0
449
+ 10
450
+ 20
451
+ t − tburst [103 s]
452
+ 10−24
453
+ 10−23
454
+ 10−22
455
+ 10−21
456
+ 10−20
457
+ hGW
458
+ MBH = 105 M⊙, m⋆ = 1 M⊙, β = 1
459
+ MBH = 106 M⊙, m⋆ = 1 M⊙, β = 1
460
+ MBH = 106 M⊙, m⋆ = 1 M⊙, β = 2
461
+ MBH = 106 M⊙, m⋆ = 1 M⊙, β = 5
462
+ MBH = 107 M⊙, m⋆ = 1 M⊙, β = 1
463
+ MBH = 107 M⊙, m⋆ = 10 M⊙, β = 1
464
+ FIG. 3.
465
+ TDE parameters that dominate the depen-
466
+ dency on GW waveform amplitude |hGW|.
467
+ Amongst
468
+ the seven EM-constrained parameters, varying these three pa-
469
+ rameters: MBH (solid), m⋆ (dotted), and β (dashed), would
470
+ fluctuate hGW to a large extent. All waveforms are centered
471
+ at tburst, the time when the peak amplitude is reached. The
472
+ other parameters are chosen as follows: aBH = 0, θ = 0, e = 1,
473
+ η = 0, DL = 20 Mpc. Plotted from simulation results [8].
474
+ only generate single bursts), while the rest either become
475
+ important only in extreme scenarios (high β or near-
476
+ maximal BH spin) or are always subdominant.
477
+ These
478
+ three parameters, coincidentally, are often the input pa-
479
+ rameters in most simulations (as seen from the number of
480
+ arrows pointing out of them in Fig.2), thus their uncer-
481
+ tainties are cumulative and are projected onto the rest.
482
+ Amongst them, we believe the penetration parameter β
483
+ ought to contribute the largest uncertainty of H0. Even
484
+ though MBH is used thrice to determine other parameters
485
+ (while twice by β), MBH is typically better constrained
486
+ than β [22, 23, 27], unless for very massive BHs where
487
+ the detectable β range can be as narrow as order of unity.
488
+ σH0 is found to be dominated by the distance-inclination
489
+ degeneracy [2, 4], implying that ση should dominate over
490
+ the rest. Given that β is used to determine η, σβ should
491
+ in turn dominate.
492
+ It is understandable as the magni-
493
+ tude of the off-plane precession sensitively depends on
494
+ how close the stellar debris orbits around the spinning
495
+ BH [36]. σMBH would then be the next dominating un-
496
+ certainty.
497
+ The few hundred TDE GW waveforms in the presently
498
+ enlarging library [8] have a resolution too low in the 9-
499
+ dimensional parameter space to yield a reasonable fitting.
500
+ This should immediately raise the question: What is the
501
+ approximate number of waveforms required to result in
502
+ a reasonable fit, which then translates into a reasonable
503
+ H0 precision? If a uniform search in parameter space is
504
+ implemented, the number of waveforms generated would
505
+ skyrocket as the number of parameters increase. Hav-
506
+ ing established that each parameter affects the waveform
507
+ to different extents, it is only sensible to vary densely
508
+ on the parameters of dominant contributions, such as
509
+ MBH, β, and η. Adaptive resolution on which parame-
510
+ ters to explore should precede uniformly increasing the
511
+ total number of waveforms across all parameter spaces in
512
+ the catalog. Ultimately, the goal of the multi-messenger
513
+ analysis is to better constrain DL, not finding the best-fit
514
+ TDE parameters.
515
+ III.
516
+ DISCUSSION
517
+ As predicted by [5, 7, 8, 16], even the optimistic TDE
518
+ GW detection rate by LISA is expected to remain a few
519
+ for the entire duration of the mission. It is therefore of
520
+ utmost importance that the analyses of the few limited
521
+ multi-messenger TDE observations could be maximized,
522
+ stressing the power of this methodology to independently
523
+ measure H0 with a handful of events. To strengthen the
524
+ constraining power of TDE parameters as a whole, the
525
+ GW burst signal during disruption could trigger the im-
526
+ mediate follow-up EM observations such that light from
527
+ the pre-peak epoch can be captured.
528
+ When DECIGO
529
+ and the other next-generation spaceborne GW detectors
530
+ are eventually in operation, the expected thousands to
531
+ millions of TDE detections might in turn place EM ob-
532
+ servation as the bottleneck of the multimessenger era,
533
+ but by then a statistically significant measurement of H0
534
+ from TDEs should already be obtained.
535
+ If the uncer-
536
+ tainty on DL, hence H0, could be reduced even by some
537
+ small portion, after incorporating EM constraints with
538
+ this proposed methodology, this would then conclusively
539
+ demonstrate the functionality of TDE multi-messenger
540
+ H0 measurement, while placing the development of TDE
541
+ modeling at the bottleneck of the analysis.
542
+ For typical cases, σβ would be dominant, still, there
543
+ are certain possible ways to further constrain β:
544
+ by
545
+ brute force, we would benefit from a GW TDE triggering
546
+ of pre-peak high-cadence EM observation [21]; more β-
547
+ sensitive observable could be found with improved mod-
548
+ eling; or exploiting the potentially huge detectable TDE
549
+ population by post-LISA interferometers, then the β-
550
+ distributions [27] could directly constrain H0 and not the
551
+ individual β in each event.
552
+ Given the modeling complication and intertwining re-
553
+ lations among parameters, measuring H0 with TDEs is
554
+ clearly a non-trivial task and would likely require a col-
555
+ laborative effort in the field. All in all, it is manifest that
556
+ the proliferating EM and GW detections of TDEs and
557
+ more comprehensive TDE simulations in the next decade
558
+ should lead to both precise and accurate measurements
559
+ of the Hubble constant in addition to the standard siren
560
+ approach.
561
+
562
+ 6
563
+ ACKNOWLEDGMENTS
564
+ I thank S.K. Li, Paul C.W. Lai, Lars L. Thomsen, and
565
+ George M. Fuller for useful comments and discussions.
566
+ [1] B. F. Schutz, Determining the Hubble constant from
567
+ gravitational wave observations, Nature (London) 323,
568
+ 310 (1986).
569
+ [2] LIGO Collaboration, B. P. Abbott, R. Abbott, T. D.
570
+ Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams,
571
+ P. Addesso,
572
+ R. X. Adhikari, and V. B. Adya, A
573
+ gravitational-wave standard siren measurement of the
574
+ Hubble constant, Nature (London) 551, 85 (2017),
575
+ arXiv:1710.05835 [astro-ph.CO].
576
+ [3] Note that this definition differs by 90◦ as compared with
577
+ the conventional description.
578
+ [4] M. Bulla, M. W. Coughlin, S. Dhawan, and T. Dietrich,
579
+ Multi-Messenger Constraints on the Hubble Constant
580
+ Through Combination of Gravitational Waves, Gamma-
581
+ Ray Bursts and Kilonovae from Neutron Star Mergers,
582
+ Universe 8, 289 (2022), arXiv:2205.09145 [astro-ph.HE].
583
+ [5] S. Kobayashi, P. Laguna, E. S. Phinney, and P. M´esz´aros,
584
+ Gravitational Waves and X-Ray Signals from Stellar Dis-
585
+ ruption by a Massive Black Hole, Astrophys. J. 615, 855
586
+ (2004), arXiv:astro-ph/0404173 [astro-ph].
587
+ [6] M. Eracleous, S. Gezari, A. Sesana, T. Bogdanovic,
588
+ M. MacLeod, N. Roth, and L. Dai, An Arena for Multi-
589
+ Messenger Astrophysics: Inspiral and Tidal Disruption
590
+ of White Dwarfs by Massive Black Holes, baas 51, 10
591
+ (2019), arXiv:1902.06612 [astro-ph.HE].
592
+ [7] H. Pfister, M. Toscani, T. H. T. Wong, J. L. Dai,
593
+ G.
594
+ Lodato,
595
+ and
596
+ E.
597
+ M.
598
+ Rossi,
599
+ Observable
600
+ gravita-
601
+ tional waves from tidal disruption events and their
602
+ electromagnetic counterpart, mnras 510, 2025 (2022),
603
+ arXiv:2103.05883 [astro-ph.HE].
604
+ [8] M. Toscani, G. Lodato, D. J. Price, and D. Liptai,
605
+ Gravitational waves from tidal disruption events:
606
+ an
607
+ open and comprehensive catalog, mnras 510, 992 (2022),
608
+ arXiv:2111.05145 [astro-ph.HE].
609
+ [9] J. G. Hills, Possible power source of Seyfert galaxies and
610
+ QSOs, Nature (London) 254, 295 (1975).
611
+ [10] K. D. French, T. Wevers, J. Law-Smith, O. Graur, and
612
+ A. I. Zabludoff, The Host Galaxies of Tidal Disrup-
613
+ tion Events, ssr 216, 32 (2020), arXiv:2003.02863 [astro-
614
+ ph.HE].
615
+ [11] S. Gezari, Tidal Disruption Events, araa 59, 21 (2021),
616
+ arXiv:2104.14580 [astro-ph.HE].
617
+ [12] LISA
618
+ Collaboration,
619
+ P.
620
+ Amaro-Seoane,
621
+ H.
622
+ Audley,
623
+ S. Babak, J. Baker, E. Barausse, P. Bender, E. Berti,
624
+ P. Binetruy, M. Born, and D. Bortoluzzi, Laser Interfer-
625
+ ometer Space Antenna, arXiv e-prints , arXiv:1702.00786
626
+ (2017), arXiv:1702.00786 [astro-ph.IM].
627
+ [13] TianQin Collaboration, J. Luo, L.-S. Chen, H.-Z. Duan,
628
+ Y.-G. Gong, S. Hu, J. Ji, Q. Liu, J. Mei, V. Milyukov, and
629
+ M. Sazhin, TianQin: a space-borne gravitational wave
630
+ detector, Classical and Quantum Gravity 33, 035010
631
+ (2016), arXiv:1512.02076 [astro-ph.IM].
632
+ [14] DECIGO Collaboration, S. Kawamura, T. Nakamura,
633
+ M. Ando, N. Seto, K. Tsubono, K. Numata, R. Taka-
634
+ hashi, S. Nagano, T. Ishikawa, and M. Musha, The
635
+ Japanese space gravitational wave antenna—DECIGO,
636
+ Classical and Quantum Gravity 23, S125 (2006).
637
+ [15] G. M. Harry, P. Fritschel, D. A. Shaddock, W. Folkner,
638
+ and E. S. Phinney, Laser interferometry for the Big
639
+ Bang Observer, Classical and Quantum Gravity 23, 4887
640
+ (2006).
641
+ [16] M. Toscani, E. M. Rossi, N. Tamanini, and G. Cusin,
642
+ Lensing
643
+ of
644
+ gravitational
645
+ waves
646
+ from
647
+ tidal
648
+ disrup-
649
+ tion events, arXiv e-prints , arXiv:2301.01804 (2023),
650
+ arXiv:2301.01804 [astro-ph.HE].
651
+ [17] As a simple approximation, β ≥ 1 usually refers to the
652
+ complete disruption of the star, but [21] has shown that
653
+ the cutoff between survival and disrupted sometimes lies
654
+ above unity.
655
+ [18] N. J. McConnell and C.-P. Ma, Revisiting the Scaling
656
+ Relations of Black Hole Masses and Host Galaxy Prop-
657
+ erties, Astrophys. J. 764, 184 (2013), arXiv:1211.2816
658
+ [astro-ph.CO].
659
+ [19] K. G¨ultekin, D. O. Richstone, K. Gebhardt, T. R. Lauer,
660
+ S. Tremaine, M. C. Aller, R. Bender, A. Dressler, S. M.
661
+ Faber, A. V. Filippenko, R. Green, L. C. Ho, J. Ko-
662
+ rmendy, J. Magorrian, J. Pinkney, and C. Siopis, The
663
+ M-σ and M-L Relations in Galactic Bulges, and Deter-
664
+ minations of Their Intrinsic Scatter, Astrophys. J. 698,
665
+ 198 (2009), arXiv:0903.4897 [astro-ph.GA].
666
+ [20] A. E. Reines and M. Volonteri, Relations between Cen-
667
+ tral Black Hole Mass and Total Galaxy Stellar Mass
668
+ in the Local Universe, Astrophys. J. 813, 82 (2015),
669
+ arXiv:1508.06274 [astro-ph.GA].
670
+ [21] J. Guillochon and E. Ramirez-Ruiz, Hydrodynamical
671
+ Simulations to Determine the Feeding Rate of Black
672
+ Holes by the Tidal Disruption of Stars: The Importance
673
+ of the Impact Parameter and Stellar Structure, Astro-
674
+ phys. J. 767, 25 (2013), arXiv:1206.2350 [astro-ph.HE].
675
+ [22] B. Mockler, J. Guillochon, and E. Ramirez-Ruiz, Weigh-
676
+ ing Black Holes Using Tidal Disruption Events, As-
677
+ trophys. J. 872, 151 (2019), arXiv:1801.08221 [astro-
678
+ ph.HE].
679
+ [23] T. Ryu, J. Krolik, and T. Piran, Measuring Stellar and
680
+ Black Hole Masses of Tidal Disruption Events, Astro-
681
+ phys. J. 904, 73 (2020), arXiv:2007.13765 [astro-ph.HE].
682
+ [24] S. Wen, P. G. Jonker, N. C. Stone, A. I. Zabludoff,
683
+ and D. Psaltis, Continuum-fitting the X-Ray Spectra of
684
+ Tidal Disruption Events, Astrophys. J. 897, 80 (2020),
685
+ arXiv:2003.12583 [astro-ph.HE].
686
+ [25] Z. Q. Zhou, F. K. Liu, S. Komossa, R. Cao, L. C. Ho,
687
+ X. Chen, and S. Li, Measuring Black Hole Masses from
688
+ Tidal Disruption Events and Testing the MBH-σ∗ Re-
689
+ lation, Astrophys. J. 907, 77 (2021), arXiv:2002.02267
690
+ [astro-ph.HE].
691
+ [26] R. Kippenhahn, A. Weigert, and A. Weiss, Stellar Struc-
692
+ ture and Evolution (2013).
693
+ [27] T. H. T. Wong, H. Pfister, and L. Dai, Revisiting the
694
+ Rates and Demographics of Tidal Disruption Events: Ef-
695
+ fects of the Disk Formation Efficiency, apjl 927, L19
696
+
697
+ 7
698
+ (2022), arXiv:2111.09173 [astro-ph.HE].
699
+ [28] L. Dai, J. C. McKinney, N. Roth, E. Ramirez-Ruiz,
700
+ and M. C. Miller, A Unified Model for Tidal Disruption
701
+ Events, apjl 859, L20 (2018), arXiv:1803.03265 [astro-
702
+ ph.HE].
703
+ [29] M. Kesden, Black-hole spin dependence in the light
704
+ curves of tidal disruption events, Phys. Rev. D 86, 064026
705
+ (2012), arXiv:1207.6401 [astro-ph.CO].
706
+ [30] L. L. Thomsen, L. Dai, E. Kara, and C. Reynolds,
707
+ Relativistic X-Ray Reverberation from Super-Eddington
708
+ Accretion
709
+ Flow,
710
+ Astrophys.
711
+ J.
712
+ 925,
713
+ 151
714
+ (2022),
715
+ arXiv:2109.03477 [astro-ph.HE].
716
+ [31] R. D. Blandford and R. L. Znajek, Electromagnetic ex-
717
+ traction of energy from Kerr black holes., mnras 179, 433
718
+ (1977).
719
+ [32] W.-H. Lei and B. Zhang, Black Hole Spin in Sw J1644+57
720
+ and Sw J2058+05, apjl 740, L27 (2011), arXiv:1108.3115
721
+ [astro-ph.HE].
722
+ [33] L. L. Thomsen,
723
+ T. M. Kwan,
724
+ L. Dai,
725
+ S. C. Wu,
726
+ N. Roth, and E. Ramirez-Ruiz, Dynamical Unifica-
727
+ tion of Tidal Disruption Events, apjl 937, L28 (2022),
728
+ arXiv:2206.02804 [astro-ph.HE].
729
+ [34] [33] found the dependency between the Loptical/LX−ray
730
+ ratio and the BH accretion rate
731
+ ˙Macc(t) along a specific
732
+ viewing angle. Despite the additional layer of complexity,
733
+ ˙Macc(t) is, however, not challenging to be deduced from
734
+ observation [52].
735
+ [35] The origin of optical emission is still currently under de-
736
+ bate: some believe it is from the shocks created during
737
+ the stream self-intersection [48, 51], while some think it
738
+ comes from the reprocessing layer surrounding the disk
739
+ [28, 52].
740
+ [36] J. Guillochon and E. Ramirez-Ruiz, A Dark Year for
741
+ Tidal Disruption Events, Astrophys. J. 809, 166 (2015),
742
+ arXiv:1501.05306 [astro-ph.HE].
743
+ [37] E. Tejeda, E. Gafton, S. Rosswog, and J. C. Miller, Tidal
744
+ disruptions by rotating black holes: relativistic hydrody-
745
+ namics with Newtonian codes, mnras 469, 4483 (2017),
746
+ arXiv:1701.00303 [astro-ph.HE].
747
+ [38] M. J. Rees, Tidal disruption of stars by black holes of
748
+ 106-108 solar masses in nearby galaxies, Nature (London)
749
+ 333, 523 (1988).
750
+ [39] D. Merritt, Loss-cone dynamics, Classical and Quan-
751
+ tum Gravity 30, 244005 (2013), arXiv:1307.3268 [astro-
752
+ ph.GA].
753
+ [40] K. Hayasaki, S. Zhong, S. Li, P. Berczik, and R. Spurzem,
754
+ Classification of Tidal Disruption Events Based on Stel-
755
+ lar Orbital Properties, Astrophys. J. 855, 129 (2018),
756
+ arXiv:1802.06798 [astro-ph.HE].
757
+ [41] J. Veitch, V. Raymond, B. Farr, W. Farr, P. Graff,
758
+ S. Vitale, B. Aylott, K. Blackburn, N. Christensen, and
759
+ M. Coughlin, Parameter estimation for compact bina-
760
+ ries with ground-based gravitational-wave observations
761
+ using the LALInference software library, Phys. Rev. D
762
+ 91, 042003 (2015), arXiv:1409.7215 [gr-qc].
763
+ [42] A. G. Riess, L. M. Macri, S. L. Hoffmann, D. Scolnic,
764
+ S. Casertano, A. V. Filippenko, B. E. Tucker, M. J. Reid,
765
+ D. O. Jones, J. M. Silverman, R. Chornock, P. Challis,
766
+ W. Yuan, P. J. Brown, and R. J. Foley, A 2.4% Determi-
767
+ nation of the Local Value of the Hubble Constant, Astro-
768
+ phys. J. 826, 56 (2016), arXiv:1604.01424 [astro-ph.CO].
769
+ [43] Planck Collaboration, P. A. R. Ade, N. Aghanim, M. Ar-
770
+ naud, M. Ashdown, J. Aumont, C. Baccigalupi, A. J.
771
+ Banday, R. B. Barreiro, J. G. Bartlett, and N. Bartolo,
772
+ Planck 2015 results. XIII. Cosmological parameters, aap
773
+ 594, A13 (2016), arXiv:1502.01589 [astro-ph.CO].
774
+ [44] A. T. L. Lam, M. Shibata, and K. Kiuchi, Numerical-
775
+ relativity
776
+ simulation
777
+ for
778
+ tidal
779
+ disruption
780
+ of
781
+ white
782
+ dwarfs by a supermassive black hole, arXiv e-prints
783
+ ,
784
+ arXiv:2212.10891
785
+ (2022),
786
+ arXiv:2212.10891
787
+ [astro-
788
+ ph.HE].
789
+ [45] D. Merritt and L. Ferrarese, The M-σ Relation for Su-
790
+ permassive Black Holes, Astrophys. J. 547, 140 (2001),
791
+ arXiv:astro-ph/0008310 [astro-ph].
792
+ [46] M. Nauenberg, Analytic Approximations to the Mass-
793
+ Radius Relation and Energy of Zero-Temperature Stars,
794
+ Astrophys. J. 175, 417 (1972).
795
+ [47] K. Maguire, M. Eracleous, P. G. Jonker, M. MacLeod,
796
+ and S. Rosswog, Tidal Disruptions of White Dwarfs:
797
+ Theoretical Models and Observational Prospects, ssr
798
+ 216, 39 (2020), arXiv:2004.00146 [astro-ph.HE].
799
+ [48] H. Shiokawa, J. H. Krolik, R. M. Cheng, T. Piran, and
800
+ S. C. Noble, General Relativistic Hydrodynamic Simula-
801
+ tion of Accretion Flow from a Stellar Tidal Disruption,
802
+ Astrophys. J. 804, 85 (2015), arXiv:1501.04365 [astro-
803
+ ph.HE].
804
+ [49] N. P. M. Kuin, K. Wu, S. Oates, A. Lien, S. Emery,
805
+ J. A. Kennea, M. de Pasquale, Q. Han, P. J. Brown, and
806
+ A. Tohuvavohu, Swift spectra of AT2018cow: a white
807
+ dwarf tidal disruption event?, mnras 487, 2505 (2019),
808
+ arXiv:1808.08492 [astro-ph.HE].
809
+ [50] R. V. Shcherbakov, A. Pe’er, C. S. Reynolds, R. Haas,
810
+ T. Bode, and P. Laguna, GRB060218 as a Tidal Disrup-
811
+ tion of a White Dwarf by an Intermediate-mass Black
812
+ Hole, Astrophys. J. 769, 85 (2013), arXiv:1212.4837
813
+ [astro-ph.HE].
814
+ [51] T. Piran, G. Svirski, J. Krolik, R. M. Cheng, and H. Sh-
815
+ iokawa, Disk Formation Versus Disk Accretion: What
816
+ Powers Tidal Disruption Events?, Astrophys. J. 806, 164
817
+ (2015), arXiv:1502.05792 [astro-ph.HE].
818
+ [52] G. Lodato and E. M. Rossi, Multiband light curves
819
+ of tidal disruption events, mnras 410, 359 (2011),
820
+ arXiv:1008.4589 [astro-ph.CO].
821
+ [53] M. MacLeod, M. Trenti, and E. Ramirez-Ruiz, The Close
822
+ Stellar Companions to Intermediate-mass Black Holes,
823
+ Astrophys. J. 819, 70 (2016), arXiv:1508.07000 [astro-
824
+ ph.HE].
825
+ [54] S. Rosswog, E. Ramirez-Ruiz, and W. R. Hix, Atypical
826
+ Thermonuclear Supernovae from Tidally Crushed White
827
+ Dwarfs, Astrophys. J. 679, 1385 (2008), arXiv:0712.2513
828
+ [astro-ph].
829
+ [55] C. S. Kochanek, Tidal disruption event demographics,
830
+ mnras 461, 371 (2016), arXiv:1601.06787 [astro-ph.HE].
831
+ [56] L. Verde, T. Treu, and A. G. Riess, Tensions between
832
+ the early and late Universe, Nature Astronomy 3, 891
833
+ (2019), arXiv:1907.10625 [astro-ph.CO].
834
+ [57] L. Dai, J. C. McKinney, and M. C. Miller, Soft X-
835
+ Ray Temperature Tidal Disruption Events from Stars
836
+ on
837
+ Deep
838
+ Plunging
839
+ Orbits,
840
+ apjl
841
+ 812,
842
+ L39
843
+ (2015),
844
+ arXiv:1507.04333 [astro-ph.HE].
845
+ [58] J. L. Dai, G. Lodato, and R. Cheng, The Physics of Ac-
846
+ cretion Discs, Winds and Jets in Tidal Disruption Events,
847
+ ssr 217, 12 (2021).
848
+ [59] D. Laghi, N. Tamanini, W. Del Pozzo, A. Sesana, J. Gair,
849
+ S. Babak, and D. Izquierdo-Villalba, Gravitational-wave
850
+ cosmology with extreme mass-ratio inspirals, mnras 508,
851
+ 4512 (2021), arXiv:2102.01708 [astro-ph.CO].
852
+
853
+ 8
854
+ [60] C. L. MacLeod and C. J. Hogan, Precision of Hubble
855
+ constant derived using black hole binary absolute dis-
856
+ tances and statistical redshift information, Phys. Rev. D
857
+ 77, 043512 (2008), arXiv:0712.0618 [astro-ph].
858
+
0NFAT4oBgHgl3EQfCBxS/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
29E2T4oBgHgl3EQf5whX/content/2301.04193v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54395aa25ee5b5f5b6bed790cfcf8117204e96d469cb9b6e52a80c61a34a973f
3
+ size 610469
29E2T4oBgHgl3EQf5whX/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9780b158d8daf050b874d1120be91a01ca66e5db031bcf1f5a373bc81d452082
3
+ size 95962
2NAzT4oBgHgl3EQfDfro/content/tmp_files/2301.00979v1.pdf.txt ADDED
@@ -0,0 +1,1325 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Effective and Efficient Training for Sequential Recommendation
2
+ Using Cumulative Cross-Entropy Loss
3
+ Fangyu Li,1 Shenbao Yu, 2 Feng Zeng, 3 Fang Yang 1*
4
+ 1 2 3 Department of Automation, Xiamen University, Xiamen China
5
+ {lifangyu, yushenbao}@stu.xmu.edu.cn, {zengfeng, yang}@xmu.edu.cn
6
+ Abstract
7
+ Increasing research interests focus on sequential recom-
8
+ mender systems, aiming to model dynamic sequence repre-
9
+ sentation precisely. However, the most commonly used loss
10
+ function in state-of-the-art sequential recommendation mod-
11
+ els has essential limitations. To name a few, Bayesian Per-
12
+ sonalized Ranking (BPR) loss suffers the vanishing gradi-
13
+ ent problem from numerous negative sampling and prediction
14
+ biases; Binary Cross-Entropy (BCE) loss subjects to nega-
15
+ tive sampling numbers, thereby it is likely to ignore valuable
16
+ negative examples and reduce the training efficiency; Cross-
17
+ Entropy (CE) loss only focuses on the last timestamp of the
18
+ training sequence, which causes low utilization of sequence
19
+ information and results in inferior user sequence representa-
20
+ tion. To avoid these limitations, in this paper, we propose to
21
+ calculate Cumulative Cross-Entropy (CCE) loss over the se-
22
+ quence. CCE is simple and direct, which enjoys the virtues of
23
+ painless deployment, no negative sampling, and effective and
24
+ efficient training. We conduct extensive experiments on five
25
+ benchmark datasets to demonstrate the effectiveness and effi-
26
+ ciency of CCE. The results show that employing CCE loss on
27
+ three state-of-the-art models GRU4Rec, SASRec, and S3-Rec
28
+ can reach 125.63%, 69.90%, and 33.24% average improve-
29
+ ment of full ranking NDCG@5, respectively. Using CCE, the
30
+ performance curve of the models on the test data increases
31
+ rapidly with the wall clock time, and is superior to that of
32
+ other loss functions in almost the whole process of model
33
+ training.
34
+ Introduction
35
+ With the rapid development of recurrent neural networks
36
+ (RNN), transformer, graph neural network (GNN), convo-
37
+ lutional neural network (CNN), and other deep neural net-
38
+ works, sequential recommendation models based on user in-
39
+ teraction records are becoming increasingly popular in rec-
40
+ ommender systems. For instance, GRU4Rec (Hidasi et al.
41
+ 2016), GRU4Rec+ (Hidasi and Karatzoglou 2018), and
42
+ NARM (Li et al. 2017) are based on RNN; SASRec (Kang
43
+ and McAuley 2018), BERT4Rec (Sun et al. 2019), S3-Rec
44
+ (Zhou et al. 2020), and NOVA-BERT (Liu et al. 2021) are
45
+ based on transformer; SR-GNN (Wu et al. 2019) and Caser
46
+ (Tang and Wang 2018) are based on GNN and CNN, respec-
47
+ tively.
48
+ *Corresponding author. Email-address: [email protected]
49
+ In order to unleash the full potential of the sequence rec-
50
+ ommendation model, it needs to match a suitable loss func-
51
+ tion that plays an essential role in determining the effective-
52
+ ness and efficiency of model training. However, existing loss
53
+ functions used in sequential recommendation have their own
54
+ defects. For example, one of the popular methods, GRU4Rec
55
+ utilizes BPR (Rendle et al. 2009) or TOP1 loss as the ob-
56
+ jective function, which suffers from the gradient vanishing
57
+ problem (Hidasi and Karatzoglou 2018).
58
+ We focus on two rarely discussed issues about loss func-
59
+ tions. First, most loss functions only calculate the loss on the
60
+ last timestamp of the training sequence, which ignores the
61
+ natural sequential properties of sequence data. Fig. 1 gives
62
+ an illustrative example, where Fig. 1(a) and Fig. 1(b) show
63
+ the difference in loss calculation of GRU4Rec and SASRec,
64
+ the former involves only the last timestamp while the latter
65
+ covers all timestamps. Fig. 1(c) visualizes the NDCG@10
66
+ scores of GRU4Rec on each timestamp of the user sequence
67
+ (the length is fixed to 50) of Yelp data, using three dif-
68
+ ferent loss functions. As shown in Fig. 1(c), the vanilla
69
+ GRU4Rec optimizes the loss on the last timestamp of train-
70
+ ing sequence, so it achieves its highest performance at the
71
+ last timestamp (the 48th), but has the poorest performance
72
+ at other timestamps including the validation (the 49th) and
73
+ test data (the 50th). Instead, the GRU4Rec model trained
74
+ with BCE loss optimizes all timestamps of the training se-
75
+ quence, which results in performance improvements over
76
+ vanilla GRU4Rec on the validation and test data. This obser-
77
+ vation indicates that only calculating the last timestamp loss
78
+ in the objective function cannot guarantee the accuracy of
79
+ the intermediate timestamp, which causes low utilization of
80
+ sequence information and generates inferior user sequence
81
+ representation.
82
+ Second, negative sampling is a widely-used approach to
83
+ improve performance for sequential recommendation. Cor-
84
+ respondingly, the loss functions, e.g. BCE used in SASRec,
85
+ considers a small number of negative examples for each
86
+ timestamp in each user sequence, which indicates that it in-
87
+ volves tiny parts of the negative samples and is likely to
88
+ ignore some informative negative examples. On the other
89
+ hand, increasing the number of negative samples will re-
90
+ duce the computational efficiency, hence the trade-off be-
91
+ tween the model effectiveness and efficiency is hard to bal-
92
+ ance when employing negative sampling in model training.
93
+ arXiv:2301.00979v1 [cs.IR] 3 Jan 2023
94
+
95
+ Transfor
96
+ mer
97
+ Transfor
98
+ mer
99
+ Transfor
100
+ mer
101
+ Embedding Layer
102
+ Prediction Layer
103
+ S1
104
+ S2
105
+ S3
106
+ S4
107
+ Out1
108
+ Out2
109
+ Out3
110
+ R1
111
+ R2
112
+ R3
113
+ Calculate Loss on the All Timestamps
114
+ GRU
115
+ Embedding Layer
116
+ Prediction
117
+ Layer
118
+ S1
119
+ S2
120
+ S3
121
+ S4
122
+ Out1
123
+ Out2
124
+ Out3
125
+ R3
126
+ Calculate Loss on the Last Timestamp
127
+ GRU
128
+ GRU
129
+ (b) SASRec model architecture.
130
+ (a) GRU4Rec model architecture.
131
+ (c) Simplified experimental results of GRU4Rec with different losses.
132
+ Figure 1: The architectures of GRU4Rec & SASRec and performance comparison of three loss functions. We displays the
133
+ average NDCG@10 scores of GRU4Rec using three loss functions, at each timestamp on the Yelp dataset. The sequence length
134
+ is fixed to 50, with the 49th and 50th timestamps represent the validation and test item respectively.
135
+ To tackle these problems, in this paper, we propose a
136
+ novel Cumulative Cross-Entropy (CCE) loss that jointly
137
+ considers all timestamps in the training process and all neg-
138
+ ative samples for loss function calculation without negative
139
+ sampling (see also the performance of the proposed method
140
+ in Fig. 1(c)). In addition, CCE sufficiently covers the gra-
141
+ dient of the item embedding matrix by each item’s softmax
142
+ score. Furthermore, the proposed model employs the mask-
143
+ ing strategy for the varied length of user sequence to guar-
144
+ antee the training efficiency.
145
+ We validate our method on three typical sequential recom-
146
+ mendation models (i.e., GRU4Rec, SASRec, and S3-Rec)
147
+ on five benchmark datasets from different domains. Exper-
148
+ imental results show that our method obtain average im-
149
+ provements of 125.63%, 69.90%, and 33.24% in terms of
150
+ full ranking NDCG@5 for GRU4Rec, SASRec, and S3-Rec,
151
+ respectively. Specifically, GRU4Rec trained with CCE loss
152
+ can markedly improve the NDCG@5 score by 266.67% over
153
+ vanilla GRU4Rec on the Toys dataset (McAuley et al. 2015).
154
+ The main contributions are threefold. First, we identify
155
+ limitations in the existing loss function used by sequen-
156
+ tial recommendation models. Second, we designed Cumu-
157
+ lative Cross-Entropy loss, which extends the cross-entropy
158
+ to all timestamps of the training sequence and can effec-
159
+ tively solve the limitation of timestamp and negative sam-
160
+ pling. Lastly, we conduct extensive experiments on five real-
161
+ world datasets, demonstrating significant improvements in
162
+ HIT@k and NDCG@k metrics over existing state-of-the-art
163
+ methods.
164
+ Related Work
165
+ According to the sequence timestamps involved in the loss
166
+ computation, we divide the loss functions used in existing
167
+ sequential recommendation models into three categories. To
168
+ the best of our knowledge, this issue has not received much
169
+ attention in existing studies.
170
+ Last Timestamp Loss Family
171
+ It refers to the loss function that only involves the last
172
+ timestamp of the training sequence. Generally, most neural
173
+ network-based sequential recommendation models belong
174
+ to this family. The first sequential recommendation method
175
+ based on RNN is GRU4Rec (Hidasi et al. 2016), which uti-
176
+ lizes the Gated Recurrent Units (GRU) and employs several
177
+ pointwise and pairwise ranking losses - such as BPR, TOP1,
178
+ and CE, which only calculate the loss of the last timestamp.
179
+ Besides, the improved GRU4Rec+ (Hidasi and Karatzoglou
180
+ 2018) argues that the original pairwise loss function used
181
+ in GRU4Rec likely causes the gradient vanishing problem,
182
+ thereby proposes the improved listwise loss function BPR-
183
+ max and TOP-max. Most recent works that are influenced by
184
+ GRU4Rec directly adopt or adapt BPR loss, e.g., the hierar-
185
+ chical gating networks HGN (Ma, Kang, and Liu 2019), the
186
+ GNN-based model MA-GNN (Ma et al. 2020) and STEN
187
+ (Li et al. 2021). Besides, some models use CE loss as the
188
+ objective function, such as NARM (Li et al. 2017), STAMP
189
+ (Liu et al. 2018), SMART SENSE (Jeon et al. 2022), and SR-
190
+ GNN (Wu et al. 2019). To alleviate the item cold-start prob-
191
+ lem, Mecos (Zheng et al. 2021) uses CE loss to optimize a
192
+ meta-learning task. Besides, a recent work (Petrov and Mac-
193
+ donald 2022) utilizes the LambdaRank (Burges 2010) loss
194
+ function, which still belongs to the last timestamp family.
195
+ Masked Language Model Loss Family
196
+ The Masked Language Model (MLM) (Devlin et al. 2018)
197
+ loss is derived from the cloze task (Taylor 1953), and the ob-
198
+ jective is to accurately predict the item that randomly mask
199
+ in input sequence. Recent work adopted the idea of MLM
200
+ and employs MLM loss in sequential recommendation. For
201
+ example, BERT4Rec (Sun et al. 2019), utilizes BERT (De-
202
+ vlin et al. 2018) to model user behavior; NOVA-BERT (Liu
203
+ et al. 2021) introduces an attention mechanism that suf-
204
+ ficiently leverages side information to guide and preserve
205
+ item representations invariant in its vector space. However,
206
+ the item masking methods sacrifice much training time to
207
+ achieve good performances.
208
+
209
+ All Timestamp Loss Family
210
+ As the name suggests, it considers all timestamps of the
211
+ training sequence in loss computation. To the best of our
212
+ knowledge, the BCE loss is the mainly member in this fam-
213
+ ily besides CCE loss proposed in this paper. It is employed
214
+ in the CNN-based model Caser (Tang and Wang 2018), the
215
+ attention-based model SASRec (Kang and McAuley 2018),
216
+ RKSA (Ji et al. 2020), ELECRec (Chen, Li, and Xiong
217
+ 2022) and CAFE (Li et al. 2022), and the state-of-the-art
218
+ self-supervised learning model S3-Rec (Zhou et al. 2020).
219
+ Note that S3-Rec uses BCE loss at its fine-tuning stage, and
220
+ utilizes item attributes and Mutual Information Maximiza-
221
+ tion (MIM) to capture fusion between context data and se-
222
+ quence data at the pre-training stage. In addition, the genera-
223
+ tor module in ELECRec extends the CE loss to ALL Times-
224
+ tamp, but its role in the loss calculation does not ignore the
225
+ mask item as the BCE loss does. There is a paucity of discus-
226
+ sions on the training objective of BCE loss. In our opinion,
227
+ all timestamp loss is able to take full advantage of the prop-
228
+ erties of sequence data, that is, the input under the current
229
+ timestamp is the label of the previous timestamp. However,
230
+ the BCE loss is inevitably affected by negative sampling,
231
+ and the number of negative samples will affect its perfor-
232
+ mance and computational efficiency.
233
+ Typical models and Loss Functions in
234
+ sequential recommendation
235
+ We first formulate the problem of sequential recommenda-
236
+ tion, then introduce two most representative model struc-
237
+ tures of neural network-based sequential recommendation
238
+ models and the most commonly used loss functions, i.e.
239
+ BPR, TOP1, BCE, and CE.
240
+ Problem Statement
241
+ Suppose that there are a set of users U =
242
+
243
+ u1, u2, ..., u|U|
244
+
245
+ and a set of items I =
246
+
247
+ i1, i2, ..., i|I|
248
+
249
+ , where |U| and
250
+ |I| denote the the number of users and items, respectively.
251
+ In the sequential recommendation, we mainly focus on the
252
+ user’s historical interaction records. Therefore, we formulate
253
+ a user sequence S1:n = (S1, S2, ..., Sn) based on interaction
254
+ records in chronological order, where n denotes the length
255
+ of user sequence and St denotes the user interaction item at
256
+ timestamp t. We first define two kinds of sequential recom-
257
+ mendation models below:
258
+ Rn = flast(S1:n),
259
+ (1)
260
+ R1:n = fall(S1:n),
261
+ (2)
262
+ where flast and fall are models that adopt the last times-
263
+ tamp loss and all timestamp loss, respectively. Rn
264
+ =
265
+
266
+ rn,1, rn,2, ..., rn,|I|
267
+
268
+ denotes the outputs of all items at
269
+ timestamp n, where rn,t is the prediction score of item it
270
+ at timestamp n. R1:n = (R1, R2, ..., Rn) is the result on all
271
+ timestamps.
272
+ Next, we define the embedding layer and prediction layer,
273
+ which are the typical operations in the sequential recommen-
274
+ dation. Given a sequence input with the fixed-length l, the
275
+ input sequence of the embedding layer (i.e., S1:l) is trans-
276
+ formed to the embedding vector E1:l = (e1, e2, ..., el) ∈
277
+ Rl×e by the embedding matrix We ∈ R|I|×e. In addition,
278
+ the prediction layer is an unbiased dense layer with a weight
279
+ matrix W T
280
+ e , which shares the weight matrix with the embed-
281
+ ding layer. We now proceed to inntroduce the GRU4Rec and
282
+ SASRec models, as well as the corresponding loss fuctions.
283
+ GRU4Rec
284
+ Model Architecture
285
+ GRU4Rec is one of the most classi-
286
+ cal sequential recommendation models, which utilizes GRU
287
+ to model the user sequence and output a sequence represen-
288
+ tation. Given three components of the GRU, i.e., the update
289
+ gate z, the candidate hidden state ˆh and the reset gate r, the
290
+ hidden state ht ∈ Rd can be calculated as:
291
+ ht = zt ˆht + (1 − zt)ht−1.
292
+ (3)
293
+ In Eq. 3, we have:
294
+ zt = σ(Wzet + Uzht−1),
295
+ (4)
296
+ ˆht = σ(Whet + Uh(rt ⊙ ht−1)),
297
+ (5)
298
+ rt = σ(Wret + Urht−1),
299
+ (6)
300
+ where Wz,r,h ∈ Rd×e and Uz,r,h ∈ Rd×d are the weight
301
+ matrices, respectively. The last hidden state hl of the GRU
302
+ is the vector that represents the input sequence S1:l, which
303
+ passes through the prediction layer to get the final result
304
+ Rl = hlW T
305
+ e =
306
+
307
+ rl,1, rl,2, ..., rl,|I|
308
+
309
+ .
310
+ Loss Function
311
+ There are three loss function of vanilla
312
+ GRU4Rec, i.e., BPR loss (Rendle et al. 2009), TOP1 loss,
313
+ and CE loss. Here we give the calculation method of BPR
314
+ and TOP1 as follows:
315
+ Lbpr = − 1
316
+ Ns
317
+ Ns
318
+
319
+ neg=1
320
+ log σ(rl,pos − rl,neg),
321
+ (7)
322
+ Ltop1 = 1
323
+ Ns
324
+ Ns
325
+
326
+ neg=1
327
+ σ(rl,neg − rl,pos),
328
+ (8)
329
+ where Ns is the number of negative samples. rl,pos, rl,neg
330
+ are the scores of the positive item and negative item at the
331
+ last timestamp l, respectively. Note that we omit the regular-
332
+ ization term for readability since it has nothing to do with the
333
+ following discussion. To simplify the formula, we use b+,−
334
+ to represent the prediction bias of (rl,pos − rl,neg) and b−,+
335
+ to denote (rl,neg − rl,pos). We then examine their gradients
336
+ w.r.t. the score of positive item rl,pos as follows:
337
+ ∂Lbpr
338
+ ∂rl,pos
339
+ = − 1
340
+ Ns
341
+ Ns
342
+
343
+ neg=1
344
+ (1 − σ(b+,−)) ,
345
+ (9)
346
+ ∂Ltop1
347
+ ∂rl,pos
348
+ = 1
349
+ Ns
350
+ Ns
351
+
352
+ neg=1
353
+ σ(b−,+) (1 − σ(b−,+)) .
354
+ (10)
355
+ Obviously, the vanishing gradient problem will occur for
356
+ both loss functions when the number of negative samples Ns
357
+ increases. In addition, the prediction bias b+,− for BPR (or
358
+ b1,+ for TOP1) that tends to infinity also induces the vanish-
359
+ ing gradient problem. In practice, due to the huge size of the
360
+
361
+ negative set, the case of prediction bias occurs frequently.
362
+ Therefore, GRU4Rec+ proposed the improved BPR-max
363
+ and TOP1-max losses via applying softmax scores on nega-
364
+ tive examples, which can be calculated as follows:
365
+ Lbpr−max = − log
366
+ Ns
367
+
368
+ neg=1
369
+ snegσ(b+,−),
370
+ (11)
371
+ Ltop1−max =
372
+ Ns
373
+
374
+ neg=1
375
+ snegσ(b−,+),
376
+ (12)
377
+ where sneg is the softmax score of the negative examples
378
+ ineg. We also examine their gradients w.r.t. the score of pos-
379
+ itive item rl,pos:
380
+ ∂Lbpr−max
381
+ ∂rl,pos
382
+ = −
383
+ �Ns
384
+ neg=1 snegσ(b+,−) (1 − σ(b+,−))
385
+ �Ns
386
+ neg=1 snegσ(b+,−)
387
+ ,
388
+ (13)
389
+ ∂Ltop1−max
390
+ ∂rl,pos
391
+ = −
392
+ Ns
393
+
394
+ neg=1
395
+ snegσ(b−,+)(1 − (σ(b−,+)) .
396
+ (14)
397
+ Through the softmax score sneg, the new loss can miti-
398
+ gate the vanishing gradient problem. However, as we men-
399
+ tioned, the trade-off between the model effectiveness and
400
+ efficiency is hard to balance when employing negative sam-
401
+ pling in model training. Meanwhile, the sampling operation
402
+ may skip informative negative samples.
403
+ SASRec
404
+ Model Architecture
405
+ The SASRec model is the first to in-
406
+ troduce Transformer (Vaswani et al. 2017) into sequential
407
+ recommendation. SASRec stacks two layers of transformer
408
+ encoders. For readability, we only introduce the single layers
409
+ of the transformer encoder block. Before the transformer en-
410
+ coder, SASRec adds a position vector P1:l ∈ Rl×e, thereby
411
+ the final input is ˆE = E1:l + P1:l. Then it use Multi-Head
412
+ Self-Attention (MH) layer to learn the asymmetric interac-
413
+ tions and make the model more flexible, which consists of
414
+ multiple independent self-attention layers (SA) and trans-
415
+ form by a weight matrix WO ∈ Re×e:
416
+ MH( ˆE) = [SA1( ˆE), SA2( ˆE), · · · , SAH( ˆE)]WO, (15)
417
+ SAj( ˆE) = attention( ˆEWQj, ˆEWKj, ˆEWV j),
418
+ (16)
419
+ attention(Q, K, V ) = softmax
420
+ �QKT
421
+ √e
422
+
423
+ V,
424
+ (17)
425
+ where WQj, WKj, WV j ∈ Re×e/H are the linear projection
426
+ matrix that scales the input ˆE into a small space. Note that in
427
+ the case of self-attention, the queries Q, keys K, and values
428
+ V all equal to the input ˆE. To satisfy the nature of sequence
429
+ data, SASRec cut off the connection of Qi and Kj(j > i)
430
+ in the attention calculation (Eq. 17). The multi-head self-
431
+ attention layer aggregate all previous item embedding with
432
+ adaptive weights and is still a linear model. Therefore, to
433
+ endow the model with nonlinear, SASRec applies a point-
434
+ wise two-layer feed-forward network F with ReLU (Nair
435
+ and Hinton 2010) activation function:
436
+ F( ˆE) = ReLU(MH( ˆE)W1)W2.
437
+ (18)
438
+ To avoid overfitting, dropout (Srivastava et al. 2014) and
439
+ layer normalization (Ba, Kiros, and Hinton 2016) are used
440
+ for the input of both modules (MH and F). Further, to sta-
441
+ bilize training, a residual connection (He et al. 2016) is ap-
442
+ plied.
443
+ g(x) = x + Dropout(g(LayerNormalization(x))),
444
+ (19)
445
+ where g(x) is the multi-head self-attention layer or point-
446
+ wise feed-forward network. Finally, through the prediction
447
+ layer, the result of SASRec is R1:l = F( ˆE)W T
448
+ e .
449
+ Loss Function
450
+ SASRec adopts the binary cross-entropy
451
+ (BCE) loss as the objective function, and here we use mask
452
+ to simplify the objective function.
453
+ Lbce = −
454
+ l
455
+
456
+ t=1
457
+ MASK [log σ(rt,pos) + log σ(1 − rt,neg)] ,
458
+ (20)
459
+ where MASK = (mask1, mask2, ..., maskl) is the mask
460
+ vector, maskt is False when St in the sequence S1:l is the
461
+ mask item, and True otherwise. We can find that the main
462
+ difference in loss function between GRU4Rec and SASRec
463
+ is the cumulative term of time. Intuitively, this loss allows
464
+ more positive samples to participate in the optimization pro-
465
+ cess. However, it depends on the negative sampling oper-
466
+ ation, and randomly generates only one negative item for
467
+ each timestamp. Further, we give the gradient w.r.t the score
468
+ of positive item rt,pos and negative item rt,neg as follows:
469
+ ∂Lbce
470
+ ∂rt,pos
471
+ = −maskt(1 − σ(rt,pos)),
472
+ (21)
473
+ ∂Lbce
474
+ ∂rt,neg
475
+ = maskt(1 − σ(1 − rt,neg)).
476
+ (22)
477
+ As we can see, the gradient coincides with the objective of
478
+ the sequential recommendation. However, the majority of
479
+ negative items do not participate in the loss calculation due
480
+ to the sampling strategy, which means that they contribute
481
+ little to the update of model parameters. Therefore, BCE
482
+ is essentially prone to lose information. Intuitively, adding
483
+ more negative examples can alleviate this problem, but it
484
+ would spend much more time on sampling operation.
485
+ Our Method : Cumulative Cross-Entropy Loss
486
+ Based on the above discussions, we observe that, instead
487
+ of average loss, adaptive loss via softmax function may be
488
+ more suitable for sequential recommendation. In this sense,
489
+ the Cross-Entropy (CE) loss is a natural choice. Its calcula-
490
+
491
+ tion and gradient can be described as follows:
492
+ Lce = − log
493
+ exp (rl,pos)
494
+ �|I|
495
+ j=1 exp (rl,j)
496
+ ,
497
+ (23)
498
+ ∂Lce
499
+ ∂rl,pos
500
+ =
501
+ exp (rl,pos)
502
+ �|I|
503
+ j=1 exp (rl,j)
504
+ − 1,
505
+ (24)
506
+ ∂Lce
507
+ ∂rl,j
508
+ =
509
+ exp (rl,j)
510
+ �|I|
511
+ j=1 exp (rl,j)
512
+ .
513
+ (25)
514
+ Note that without sampling, CE loss aggregates the predic-
515
+ tion score of the whole item size, which contains the whole
516
+ negative example set. Compared with BCE, the CE loss is
517
+ more suitable for sequential recommendation for the follow-
518
+ ing reasons: 1) Sequential recommendation can be regarded
519
+ as a multi-classification task, and the softmax function used
520
+ in CE loss was born for this; 2) The gradient of CE loss
521
+ can cover the whole item set in a single step. 3) CE avoids
522
+ negative sampling, and hence refrains from difficulties aris-
523
+ ing therefrom, such as the additional time cost of sampling.
524
+ Therefore, CE can improve the training efficiency and re-
525
+ duces the risk of information loss.
526
+ However, the current form of CE loss used in sequential
527
+ recommendation only focuses on the last timestamp. In this
528
+ paper, we directly extend it to all timestamps, and propose
529
+ a novel Cumulative Cross-Entropy loss, which is calculated
530
+ as follows:
531
+ Lcce = −
532
+ l
533
+
534
+ t=1
535
+ MASK log
536
+ exp (rt,pos)
537
+ �|I|
538
+ j=1 exp (rt,j)
539
+ .
540
+ (26)
541
+ The idea of CCE is simple and direct. It revises the short-
542
+ sighted training objective of CE, and takes the advantage of
543
+ BCE that perform loss calculation on each timestamp of the
544
+ sequence; Further, it avoids the negative sampling operation
545
+ in BCE, and calculates gradient on the entire item set like
546
+ CE. Extensive experiments verify the effectiveness of the
547
+ CCE loss.
548
+ Experiments
549
+ We conduct extensive experiments on five benchmark
550
+ datasets to validate the effectiveness and efficiency of the
551
+ proposed CCE loss, aiming to answer the following research
552
+ questions. RQ1: How does the CCE loss perform when em-
553
+ ployed in the state-of-the-art models? RQ2: How efficient is
554
+ the training of the models using the CCE loss? RQ3: How
555
+ does the CCE loss perform across all timestamps?
556
+ Experiments Setup
557
+ Datasets
558
+ We use five public benchmark datasets collected
559
+ from three real-world platforms, namely, three sub-category
560
+ datasets on Amazon1 (McAuley et al. 2015): Beauty, Sports
561
+ and Toys; a business recommendation dataset Yelp2; and a
562
+ music artist recommendation dataset LastFM3 (Cantador,
563
+ Brusilovsky, and Kuflik 2011). Note that we only use the
564
+ transaction records after January 1st, 2019 in Yelp.
565
+ 1http://jmcauley.ucsd.edu/data/amazon/links.html
566
+ 2https://www.yelp.com/dataset
567
+ 3https://grouplens.org/datasets/hetrec-2011/
568
+ Table 1: Statistics of five datasets after preprocessing
569
+ Dataset
570
+ Sports
571
+ Toys
572
+ Yelp
573
+ Beauty
574
+ LastFM
575
+ # of sequences
576
+ 35598
577
+ 19412
578
+ 30431
579
+ 22362
580
+ 1090
581
+ # of items
582
+ 18357
583
+ 11924
584
+ 20033
585
+ 12101
586
+ 3646
587
+ # of iteractions
588
+ 296337
589
+ 167597
590
+ 316454
591
+ 198502
592
+ 52551
593
+ Average length
594
+ 16.14
595
+ 14.06
596
+ 15.80
597
+ 16.40
598
+ 14.41
599
+ Density
600
+ 0.05%
601
+ 0.07%
602
+ 0.05%
603
+ 0.07%
604
+ 1.32%
605
+ Data Processing
606
+ Following the recent and state-of-the-
607
+ arts in sequential recommendation (Kang and McAuley
608
+ 2018; Zhou et al. 2020; Tang and Wang 2018; Sun et al.
609
+ 2019), we divide a given dataset into train, validation, and
610
+ test sets according to the leave-one-out strategy. In addi-
611
+ tion, to reproduce the pre-training model S3-Rec, we pre-
612
+ processed the original datasets as follows. (1) We remove
613
+ users and items with less than five interaction records. (2)
614
+ We group the interaction records by users and sort them
615
+ chronologically. (3) We keep the user sequence with the
616
+ fixed-length l. After preprocessing, the statistics of the five
617
+ datasets are summarized in Table 1.
618
+ Baseline Methods
619
+ Since most sequential recommenda-
620
+ tion models only output results at the final timestamp Rl, we
621
+ here choose three representative models, which are not only
622
+ able to output all timestamp results R1:l, but also equipped
623
+ with stable and superior performance:
624
+ • GRU4Rec (Hidasi et al. 2016). which is the first to apply
625
+ GRU to model user interaction sequence for the session-
626
+ based recommendation.
627
+ • SASRec (Kang and McAuley 2018). which is a
628
+ transformer-based model, using a multi-head attention
629
+ mechanism to learn the asymmetric interactions and
630
+ make the model more flexible.
631
+ • S3-Rec (Zhou et al. 2020). which is the first to introduce
632
+ self-supervised learning to the sequential recommenda-
633
+ tion.
634
+ For comparative loss functions, we choose CE as the rep-
635
+ resentative of the last timestamp loss function since it per-
636
+ forms better than BPR loss and Top1 loss in our preliminary
637
+ experiments. Besides, we use BCE as the representative of
638
+ all timestamp loss function. Note that we ignore the masked
639
+ language model loss due to its large training cost.
640
+ Implementation Details
641
+ To reproduce the sequential rec-
642
+ ommendation models GRU4Rec, SASRec, and S3-Rec, we
643
+ use the open-source of S3-Rec code4 and RecBole5 repo.
644
+ The hyperparameters of these models are set as suggested
645
+ in the original paper. For each dataset, the fixed length of
646
+ the input sequence is set to 50, the size of the item em-
647
+ beddings is 64. Besides, we use the Adam optimizer with
648
+ the default learning rate of 0.001, parameters β1 and β2 are
649
+ set to 0.9 and 0.999, respectively. We train models for 150
650
+ epochs with the early stop strategy6. We save the optimal
651
+ model based on the evaluation metrics on the validation set
652
+ 4https://github.com/RUCAIBox/CIKM2020-S3Rec
653
+ 5https://github.com/RUCAIBox/RecBole
654
+ 6We terminate the training when the evaluation metric does not
655
+ improve for ten consecutive epochs.
656
+
657
+ Table 2: Comparing three loss functions with respect to the performance of GRU4Rec, SASRec, and S3-Rec on five datasets. Best
658
+ results are in boldface, and the best one between Lbce and Lce is indicated by underline. “Improve” denotes the improvement
659
+ over the best performance of Lbce (or Lce), while the degradation cases are marked with ↓.
660
+ Dataset
661
+ Metric
662
+ GRU4Rec
663
+ SASRec
664
+ S3-Rec
665
+ Lbce
666
+ Lce
667
+ Lcce
668
+ Improve.
669
+ Lbce
670
+ Lce
671
+ Lcce
672
+ Improve.
673
+ Lbce
674
+ Lce
675
+ Lcce
676
+ Improve.
677
+ Sports
678
+ HR@5
679
+ 0.0100
680
+ 0.0099
681
+ 0.0221
682
+ 121.00%
683
+ 0.0216
684
+ 0.0168
685
+ 0.0380
686
+ 75.93%
687
+ 0.0217
688
+ 0.0325
689
+ 0.0456
690
+ 40.31%
691
+ HR@10
692
+ 0.0184
693
+ 0.0163
694
+ 0.0357
695
+ 94.02%
696
+ 0.0330
697
+ 0.0229
698
+ 0.0541
699
+ 63.94%
700
+ 0.0359
701
+ 0.0478
702
+ 0.0642
703
+ 34.31%
704
+ HR@20
705
+ 0.0297
706
+ 0.0253
707
+ 0.0548
708
+ 84.51%
709
+ 0.0491
710
+ 0.0330
711
+ 0.0752
712
+ 53.16%
713
+ 0.0567
714
+ 0.0709
715
+ 0.0908
716
+ 28.07%
717
+ NDCG@5
718
+ 0.0063
719
+ 0.0064
720
+ 0.0143
721
+ 123.44%
722
+ 0.0147
723
+ 0.0117
724
+ 0.0267
725
+ 81.63%
726
+ 0.0137
727
+ 0.0213
728
+ 0.0311
729
+ 46.01%
730
+ NDCG@10
731
+ 0.0090
732
+ 0.0085
733
+ 0.0187
734
+ 107.78%
735
+ 0.0184
736
+ 0.0137
737
+ 0.0318
738
+ 72.83%
739
+ 0.0182
740
+ 0.0262
741
+ 0.0371
742
+ 41.60%
743
+ NDCG@20
744
+ 0.0118
745
+ 0.0107
746
+ 0.0235
747
+ 99.15%
748
+ 0.0225
749
+ 0.0162
750
+ 0.0371
751
+ 64.89%
752
+ 0.0234
753
+ 0.0320
754
+ 0.0438
755
+ 36.88%
756
+ Toys
757
+ HR@5
758
+ 0.0128
759
+ 0.0097
760
+ 0.0420
761
+ 228.13%
762
+ 0.0430
763
+ 0.0385
764
+ 0.0736
765
+ 71.16%
766
+ 0.0409
767
+ 0.0568
768
+ 0.0791
769
+ 39.26%
770
+ HR@10
771
+ 0.0236
772
+ 0.0153
773
+ 0.0597
774
+ 152.97%
775
+ 0.0613
776
+ 0.0485
777
+ 0.0989
778
+ 61.34%
779
+ 0.0641
780
+ 0.0796
781
+ 0.1096
782
+ 37.69%
783
+ HR@20
784
+ 0.0401
785
+ 0.0229
786
+ 0.0834
787
+ 107.98%
788
+ 0.0862
789
+ 0.0616
790
+ 0.1299
791
+ 50.70%
792
+ 0.0998
793
+ 0.1119
794
+ 0.1492
795
+ 33.33%
796
+ NDCG@5
797
+ 0.0081
798
+ 0.0065
799
+ 0.0297
800
+ 266.67%
801
+ 0.0288
802
+ 0.0291
803
+ 0.0533
804
+ 83.16%
805
+ 0.0261
806
+ 0.0398
807
+ 0.0566
808
+ 42.21%
809
+ NDCG@10
810
+ 0.0116
811
+ 0.0083
812
+ 0.0354
813
+ 205.17%
814
+ 0.0347
815
+ 0.0323
816
+ 0.0615
817
+ 77.23%
818
+ 0.0335
819
+ 0.0472
820
+ 0.0664
821
+ 40.68%
822
+ NDCG@20
823
+ 0.0157
824
+ 0.0102
825
+ 0.0414
826
+ 163.69%
827
+ 0.0410
828
+ 0.0356
829
+ 0.0693
830
+ 69.02%
831
+ 0.0425
832
+ 0.0553
833
+ 0.0764
834
+ 38.16%
835
+ Yelp
836
+ HR@5
837
+ 0.0128
838
+ 0.0094
839
+ 0.0211
840
+ 64.84%
841
+ 0.0166
842
+ 0.0101
843
+ 0.0232
844
+ 39.76%
845
+ 0.0206
846
+ 0.0178
847
+ 0.0290
848
+ 40.78%
849
+ HR@10
850
+ 0.0220
851
+ 0.0164
852
+ 0.0367
853
+ 66.82%
854
+ 0.0273
855
+ 0.0174
856
+ 0.0379
857
+ 38.83%
858
+ 0.0354
859
+ 0.0311
860
+ 0.0474
861
+ 33.90%
862
+ HR@20
863
+ 0.0378
864
+ 0.0273
865
+ 0.0603
866
+ 59.52%
867
+ 0.0499
868
+ 0.0275
869
+ 0.0623
870
+ 24.85%
871
+ 0.0552
872
+ 0.0498
873
+ 0.0756
874
+ 36.96%
875
+ NDCG@5
876
+ 0.0080
877
+ 0.0055
878
+ 0.0134
879
+ 67.50%
880
+ 0.0106
881
+ 0.0064
882
+ 0.0151
883
+ 42.45%
884
+ 0.0126
885
+ 0.0115
886
+ 0.0184
887
+ 46.03%
888
+ NDCG@10
889
+ 0.0109
890
+ 0.0078
891
+ 0.0184
892
+ 68.81%
893
+ 0.0140
894
+ 0.0087
895
+ 0.0198
896
+ 41.43%
897
+ 0.0173
898
+ 0.0157
899
+ 0.0243
900
+ 40.46%
901
+ NDCG@20
902
+ 0.0149
903
+ 0.0105
904
+ 0.0244
905
+ 63.76%
906
+ 0.0184
907
+ 0.0112
908
+ 0.0259
909
+ 40.76%
910
+ 0.0223
911
+ 0.0204
912
+ 0.0314
913
+ 40.81%
914
+ Beauty
915
+ HR@5
916
+ 0.0161
917
+ 0.0223
918
+ 0.0489
919
+ 119.28%
920
+ 0.0358
921
+ 0.0401
922
+ 0.0694
923
+ 73.07%
924
+ 0.0379
925
+ 0.0577
926
+ 0.0753
927
+ 30.50%
928
+ HR@10
929
+ 0.0266
930
+ 0.0343
931
+ 0.0695
932
+ 102.62%
933
+ 0.0573
934
+ 0.0537
935
+ 0.0932
936
+ 62.65%
937
+ 0.0614
938
+ 0.0830
939
+ 0.1031
940
+ 24.22%
941
+ HR@20
942
+ 0.0447
943
+ 0.0514
944
+ 0.0998
945
+ 94.16%
946
+ 0.0878
947
+ 0.0719
948
+ 0.1286
949
+ 46.47%
950
+ 0.0979
951
+ 0.1203
952
+ 0.1440
953
+ 47.09%
954
+ NDCG@5
955
+ 0.0100
956
+ 0.0147
957
+ 0.0342
958
+ 132.65%
959
+ 0.0235
960
+ 0.0291
961
+ 0.0492
962
+ 69.07%
963
+ 0.0232
964
+ 0.0389
965
+ 0.0529
966
+ 35.99%
967
+ NDCG@10
968
+ 0.0133
969
+ 0.0185
970
+ 0.0408
971
+ 120.54%
972
+ 0.0305
973
+ 0.0355
974
+ 0.0568
975
+ 60.00%
976
+ 0.0307
977
+ 0.0471
978
+ 0.0619
979
+ 31.42%
980
+ NDCG@20
981
+ 0.0179
982
+ 0.0228
983
+ 0.0484
984
+ 112.28%
985
+ 0.0381
986
+ 0.0381
987
+ 0.0657
988
+ 72.44%
989
+ 0.0400
990
+ 0.0565
991
+ 0.0721
992
+ 27.61%
993
+ LastFM
994
+ HR@5
995
+ 0.0248
996
+ 0.0211
997
+ 0.0339
998
+ 36.69%
999
+ 0.0266
1000
+ 0.0083
1001
+ 0.0450
1002
+ 69.17%
1003
+ 0.0431
1004
+ 0.0339
1005
+ 0.0422
1006
+ -2.09% ↓
1007
+ HR@10
1008
+ 0.0468
1009
+ 0.0312
1010
+ 0.0459
1011
+ -1.92% ↓
1012
+ 0.0404
1013
+ 0.0156
1014
+ 0.0587
1015
+ 45.30%
1016
+ 0.0688
1017
+ 0.0541
1018
+ 0.0789
1019
+ 14.68%
1020
+ HR@20
1021
+ 0.0624
1022
+ 0.0495
1023
+ 0.0606
1024
+ -2.88% ↓
1025
+ 0.0550
1026
+ 0.0284
1027
+ 0.0862
1028
+ 56.73%
1029
+ 0.1220
1030
+ 0.0881
1031
+ 0.1349
1032
+ 10.57%
1033
+ NDCG@5
1034
+ 0.0161
1035
+ 0.0138
1036
+ 0.0222
1037
+ 37.89%
1038
+ 0.0179
1039
+ 0.0049
1040
+ 0.0310
1041
+ 73.18%
1042
+ 0.0273
1043
+ 0.0197
1044
+ 0.0262
1045
+ -4.03% ↓
1046
+ NDCG@10
1047
+ 0.0232
1048
+ 0.0171
1049
+ 0.0262
1050
+ 12.93%
1051
+ 0.0223
1052
+ 0.0073
1053
+ 0.0354
1054
+ 58.74%
1055
+ 0.0356
1056
+ 0.0260
1057
+ 0.0381
1058
+ 7.02%
1059
+ NDCG@20
1060
+ 0.0272
1061
+ 0.0218
1062
+ 0.0299
1063
+ 9.93%
1064
+ 0.0259
1065
+ 0.0105
1066
+ 0.0423
1067
+ 63.32%
1068
+ 0.0491
1069
+ 0.0346
1070
+ 0.0519
1071
+ 5.70%
1072
+ at the training stage, then report their performances on the
1073
+ test set. Note that for the pre-training model S3-Rec, we use
1074
+ the reproduced model offered by its source code, and retrain
1075
+ it at the fine-tuning stage. All experiments are conducted us-
1076
+ ing 10-cores of an Intel i9-10900K CPU, 24GB of memory
1077
+ and an NVIDIA GeForce RTX 3090 GPU.
1078
+ Evaluation Metrics
1079
+ To evaluate the performance of se-
1080
+ quential recommendation models, we adopt the top-k Hit
1081
+ Ratio (HIT@k, k=5, 10, 20) and top-k Normalized Dis-
1082
+ counted Cumulative Gain (NDCG@k, k=5, 10, 20), which
1083
+ are commonly used in previous studies (Hidasi et al. 2016;
1084
+ Kang and McAuley 2018; Zhou et al. 2020). The details of
1085
+ the metrics can be found in (Krichene and Rendle 2020).
1086
+ Recent work on sampling strategies (Dallmann, Zoller, and
1087
+ Hotho 2021; Krichene and Rendle 2020) found that under
1088
+ the same sampling test set, the results of the evaluation met-
1089
+ rics are inconsistent when using different sampling strategy.
1090
+ To avoid inconsistency, we report the full ranking metrics.
1091
+ Experimental Results
1092
+ Overall Results (RQ1)
1093
+ Table 2 shows the performance of
1094
+ the GRU4Rec, SASRec, and S3-Rec using CCE, BCE, and
1095
+ CE, respectively. We observe that the CCE loss improves
1096
+ the best performance of BCE (or CE) for all models in most
1097
+ cases. In addition, we perform t-test on the results, which
1098
+ shows that the performance of all models using the proposed
1099
+ CCE loss are significantly different from that of using BCE
1100
+ or CE (at significant level p < .001). Note that there are only
1101
+ 4 out of 90 cases, where results produced by the CCE loss
1102
+ has very slight performance decrease (up to 4.03%).
1103
+ For GRU4Rec, compared with BCE and CE, the pro-
1104
+ posed CCE loss greatly promotes the performance of the
1105
+ model. The average improvements on five datasets in
1106
+ terms of HR@5, HR@10, HR@20, NDCG@5, NDCG@10,
1107
+ NDCG@20 are 113.99%, 82.90%, 68.66% 125.63%,
1108
+ 103.05% and 89.76% respectively. Interestingly, the CCE
1109
+ loss brings an astonishing 266.67% improvement at
1110
+ NDCG@5 on Toys. In addition, experiments show that the
1111
+ GRU4Rec with CCE can achieve better performance on
1112
+ Sports, Yelp, Beauty, and LastFM than the original SASRec,
1113
+ which indicates that the loss function has great influence on
1114
+ model performance.
1115
+ For SASRec, our CCE loss achieves an overall increase
1116
+ in terms of all metrics on five datasets. Specifically, the av-
1117
+ erage improvements in terms of HR@5, HR@10, HR@20,
1118
+ NDCG@5, NDCG@10, NDCG@20 are 65.82%, 54.41%,
1119
+ 46.38%, 69.90%, 62.05%, and 62.09%, respectively. Com-
1120
+ pared with the GRU4Rec and SASRec models, although S3-
1121
+ Rec with BCE (or CE) obtains the best performance, the
1122
+ CCE loss still shows a substantial improvement for S3-Rec
1123
+ in terms of the six metrics, i.e., the average improvements
1124
+ are 29.75% (HR@5), 28.96% (HR@10), 25.73% (HR@20),
1125
+ 33.24% (NDCG@5), 32.24% (NDCG@10), and 29.83%
1126
+ (NDCG@20), respectively.
1127
+
1128
+ (a) Sports
1129
+ (b) Toys
1130
+ (c) Yelp
1131
+ GRU4Rec
1132
+ SASRec
1133
+ S3-Rec
1134
+ (d) Beauty
1135
+ (e) LastFM
1136
+ Figure 2: The performance curve (NDCG@10) of GRU4Rec, SASRec and S3Rec using different loss functions on the test data
1137
+ during training process.
1138
+ (a) Sports
1139
+ (b) Toys
1140
+ (c) Yelp
1141
+ GRU4Rec
1142
+ (d) Beauty
1143
+ (e) LastFM
1144
+ Figure 3: The performance of GRU4Rec using different loss functions at all timestamps on the five datasets.
1145
+ Training Efficiency (RQ2)
1146
+ We evaluate the training effi-
1147
+ ciency of our approach from two aspects, as suggested in
1148
+ (Kang and McAuley 2018). Fig. 2 displays the NDCG@10
1149
+ scores on the test sets during the training process of baseline
1150
+ models with different loss functions on the five benchmark
1151
+ datasets. We also show the training speed, which counts the
1152
+ average time consumption for one training epoch (second-
1153
+ s/epoch) (see the bottom-right corner of each graph). As can
1154
+ be seen from Fig. 2, compared with the BCE and CE loss,
1155
+ despite sharing the similar training speeds for all models, the
1156
+ performance curve of the models with CCE on the test data
1157
+ increases rapidly as the wall clock time increases, as well as
1158
+ dominating the models with other loss functions for nearly
1159
+ the entire training process. For example, the SASRec+CCE
1160
+ takes about 100 seconds to reach a much higher value of
1161
+ NDCG@10 (i.e., 0.035) on Sports, while spends 12.24 sec-
1162
+ onds for one epoch, which is close to BCE (11.21s/epoch)
1163
+ and CE (12.62s/epoch). In summary, we argue that the CCE
1164
+ loss can effectively and efficiently help model training.
1165
+ Performance on All Timestamps (RQ3)
1166
+ In this section,
1167
+ we extend the results in Fig. 1c to five benchmark datasets.
1168
+ As shown in Fig. 3, the vertical axes represent NDCG@10
1169
+ scores of GRU4Rec, while the horizontal axes represent the
1170
+ whole timestamp of the input sequence. The last two times-
1171
+ tamps refer to the validation and test item, respectively,
1172
+ where the model performance drops drastically in nature.
1173
+ On Beauty, Sports, Toys, and Yelp, CCE has a very signifi-
1174
+ cant boost across all timestamps, which shows that CCE can
1175
+ better guarantee the accuracy of the intermediate process of
1176
+ model inference. For the LastFM dataset, CCE has only a
1177
+ slight improvement over BCE in the training sequence. This
1178
+ result may explain why it does not show great advantages on
1179
+ the test data. Intuitively, a loss function that is able to guar-
1180
+ antee the accuracy for all timestamps of training sequence
1181
+ can effectively improve the recommendation accuracy.
1182
+ Conclusion
1183
+ In this paper, we address the issue of loss function design
1184
+ in sequential recommendation models. We point out that the
1185
+ whole training sequence should be considered when calcu-
1186
+ lating the loss, rather than the last timestamp. Meanwhile,
1187
+ avoiding negative sampling can improve the training effi-
1188
+ ciency and accuracy of recommendations. We propose a
1189
+ novel cumulative cross-entropy loss and apply it to three
1190
+ typical models, i.e., GRU4Rec, SASRec, and S3Rec. Exper-
1191
+ iments on five benchmark datasets demonstrate its effective-
1192
+ ness. We hope that this work can inspire the design of loss
1193
+ function in the subsequent research on sequence recommen-
1194
+
1195
+ dation models and contribute to effective and efficient train-
1196
+ ing for sequential recommendation.
1197
+ References
1198
+ Ba, J. L.; Kiros, J. R.; and Hinton, G. E. 2016. Layer nor-
1199
+ malization. arXiv preprint arXiv:1607.06450.
1200
+ Burges, C. J. 2010. From ranknet to lambdarank to lamb-
1201
+ damart: An overview. Learning.
1202
+ Cantador, I.; Brusilovsky, P.; and Kuflik, T. 2011. Second
1203
+ workshop on information heterogeneity and fusion in rec-
1204
+ ommender systems (HetRec2011).
1205
+ In Proceedings of the
1206
+ fifth ACM conference on Recommender systems, 387–388.
1207
+ Chen, Y.; Li, J.; and Xiong, C. 2022. ELECRec: Training
1208
+ Sequential Recommenders as Discriminators. In Proceed-
1209
+ ings of the 44th International ACM SIGIR Conference on
1210
+ Research and Development in Information Retrieval.
1211
+ Dallmann, A.; Zoller, D.; and Hotho, A. 2021.
1212
+ A Case
1213
+ Study on Sampling Strategies for Evaluating Neural Sequen-
1214
+ tial Item Recommendation Models. In Fifteenth ACM Con-
1215
+ ference on Recommender Systems, 505–514.
1216
+ Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2018.
1217
+ Bert: Pre-training of deep bidirectional transformers for lan-
1218
+ guage understanding. arXiv preprint arXiv:1810.04805.
1219
+ He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
1220
+ ual learning for image recognition. In Proceedings of the
1221
+ IEEE conference on computer vision and pattern recogni-
1222
+ tion, 770–778.
1223
+ Hidasi, B.; and Karatzoglou, A. 2018. Recurrent neural net-
1224
+ works with top-k gains for session-based recommendations.
1225
+ In Proceedings of the 27th ACM international conference on
1226
+ information and knowledge management, 843–852.
1227
+ Hidasi, B.; Karatzoglou, A.; Baltrunas, L.; and Tikk, D.
1228
+ 2016. Session-based recommendations with recurrent neural
1229
+ networks. In ICLR.
1230
+ Jeon, H.; Kim, J.; Yoon, H.; Lee, J.; and Kang, U. 2022. Ac-
1231
+ curate Action Recommendation for Smart Home via Two-
1232
+ Level Encoders and Commonsense Knowledge.
1233
+ Ji, M.; Joo, W.; Song, K.; Kim, Y.-Y.; and Moon, I.-C. 2020.
1234
+ Sequential recommendation with relation-aware kernelized
1235
+ self-attention. In Proceedings of the AAAI conference on
1236
+ artificial intelligence, 4304–4311.
1237
+ Kang, W.-C.; and McAuley, J. 2018. Self-attentive sequen-
1238
+ tial recommendation. In 2018 IEEE international confer-
1239
+ ence on data mining (ICDM), 197–206. IEEE.
1240
+ Krichene, W.; and Rendle, S. 2020. On Sampled Metrics
1241
+ for Item Recommendation. In Proceedings of the 26th ACM
1242
+ SIGKDD International Conference on Knowledge Discov-
1243
+ ery & Data Mining.
1244
+ Li, J.; Ren, P.; Chen, Z.; Ren, Z.; Lian, T.; and Ma, J. 2017.
1245
+ Neural attentive session-based recommendation.
1246
+ In Pro-
1247
+ ceedings of the 2017 ACM on Conference on Information
1248
+ and Knowledge Management, 1419–1428.
1249
+ Li, J.; Zhao, T.; Li, J.; Chan, J.; Faloutsos, C.; Karypis, G.;
1250
+ Pantel, S.-M.; and McAuley, J. 2022. Coarse-to-Fine Sparse
1251
+ Sequential Recommendation. In Proceedings of the 44th In-
1252
+ ternational ACM SIGIR Conference on Research and Devel-
1253
+ opment in Information Retrieval.
1254
+ Li, Y.; Ding, Y.; Chen, B.; Xin, X.; Wang, Y.; Shi, Y.; Tang,
1255
+ R.; and Wang, D. 2021. Extracting Attentive Social Tempo-
1256
+ ral Excitation for Sequential Recommendation. In Proceed-
1257
+ ings of the 30th ACM international conference on informa-
1258
+ tion and knowledge managemen.
1259
+ Liu, C.; Li, X.; Cai, G.; Dong, Z.; Zhu, H.; and Shang, L.
1260
+ 2021. Noninvasive self-attention for side information fusion
1261
+ in sequential recommendation. In AAAI.
1262
+ Liu, Q.; Zeng, Y.; Mokhosi, R.; and Zhang, H. 2018.
1263
+ STAMP: short-term attention/memory priority model for
1264
+ session-based recommendation. In Proceedings of the 24th
1265
+ ACM SIGKDD international conference on knowledge dis-
1266
+ covery & data mining, 1831–1839.
1267
+ Ma, C.; Kang, P.; and Liu, X. 2019. Hierarchical gating net-
1268
+ works for sequential recommendation. In Proceedings of the
1269
+ 25th ACM SIGKDD international conference on knowledge
1270
+ discovery & data mining, 825–833.
1271
+ Ma, C.; Ma, L.; Zhang, Y.; Sun, J.; Liu, X.; and Coates, M.
1272
+ 2020. Memory augmented graph neural networks for se-
1273
+ quential recommendation. In Proceedings of the AAAI con-
1274
+ ference on artificial intelligence, 5045–5052.
1275
+ McAuley, J.; Targett, C.; Shi, Q.; and Van Den Hengel, A.
1276
+ 2015. Image-based recommendations on styles and substi-
1277
+ tutes. In Proceedings of the 38th international ACM SIGIR
1278
+ conference on research and development in information re-
1279
+ trieval, 43–52.
1280
+ Nair, V.; and Hinton, G. E. 2010. Rectified linear units im-
1281
+ prove restricted boltzmann machines. In ICML.
1282
+ Petrov, A.; and Macdonald, C. 2022.
1283
+ Effective and Effi-
1284
+ cient Training for Sequential Recommendation using Re-
1285
+ cency Sampling. In Proceedings of the 16th ACM confer-
1286
+ ence on recommender systems.
1287
+ Rendle, S.; Freudenthaler, C.; Gantner, Z.; and Schmidt-
1288
+ Thieme, L. 2009.
1289
+ BPR: Bayesian Personalized Ranking
1290
+ from Implicit Feedback. In Uncertainty in Artificial Intel-
1291
+ ligence.
1292
+ Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; and
1293
+ Salakhutdinov, R. 2014. Dropout: a simple way to prevent
1294
+ neural networks from overfitting. The journal of machine
1295
+ learning research, 15(1): 1929–1958.
1296
+ Sun, F.; Liu, J.; Wu, J.; Pei, C.; Lin, X.; Ou, W.; and Jiang,
1297
+ P. 2019. BERT4Rec: Sequential recommendation with bidi-
1298
+ rectional encoder representations from transformer. In Pro-
1299
+ ceedings of the 28th ACM international conference on infor-
1300
+ mation and knowledge management, 1441–1450.
1301
+ Tang, J.; and Wang, K. 2018. Personalized top-n sequential
1302
+ recommendation via convolutional sequence embedding. In
1303
+ Proceedings of the eleventh ACM international conference
1304
+ on web search and data mining, 565–573.
1305
+ Taylor, W. L. 1953. “Cloze procedure”: A new tool for mea-
1306
+ suring readability. Journalism quarterly, 30(4): 415–433.
1307
+
1308
+ Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
1309
+ L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
1310
+ tention is all you need. Advances in neural information pro-
1311
+ cessing systems, 30.
1312
+ Wu, S.; Tang, Y.; Zhu, Y.; Wang, L.; Xie, X.; and Tan, T.
1313
+ 2019. Session-based recommendation with graph neural net-
1314
+ works. In AAAI.
1315
+ Zheng, Y.; Liu, S.; Li, Z.; and Wu, S. 2021. Cold-start se-
1316
+ quential recommendation via meta learner. In Proceedings
1317
+ of the AAAI Conference on Artificial Intelligence, 4706–
1318
+ 4713.
1319
+ Zhou, K.; Wang, H.; Zhao, W. X.; Zhu, Y.; Wang, S.; Zhang,
1320
+ F.; Wang, Z.; and Wen, J.-R. 2020. S3-rec: Self-supervised
1321
+ learning for sequential recommendation with mutual infor-
1322
+ mation maximization. In Proceedings of the 29th ACM In-
1323
+ ternational Conference on Information & Knowledge Man-
1324
+ agement, 1893–1902.
1325
+
2NAzT4oBgHgl3EQfDfro/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
2NFST4oBgHgl3EQfXTj3/content/tmp_files/2301.13784v1.pdf.txt ADDED
@@ -0,0 +1,1349 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.13784v1 [math.RT] 31 Jan 2023
2
+ PRE-GALOIS CATEGORIES AND FRA¨ISS´E’S THEOREM
3
+ NATE HARMAN AND ANDREW SNOWDEN
4
+ Abstract. Galois categories can be viewed as the combinatorial analog of Tannakian cat-
5
+ egories. We introduce the notion of pre-Galois category, which can be viewed as the combi-
6
+ natorial analog of pre-Tannakian categories. Given an oligomorphic group G, the category
7
+ S(G) of finitary smooth G-sets is pre-Galois. Our main theorem (approximately) says that
8
+ these examples are exhaustive; this result is, in a sense, a reformulation of Fra¨ıss´e’s the-
9
+ orem. We also introduce a more general class of B-categories, and give some examples of
10
+ B-categories that are not pre-Galois using permutation classes. This work is motivated by
11
+ certain applications to pre-Tannakian categories.
12
+ Contents
13
+ 1.
14
+ Introduction
15
+ 1
16
+ 2.
17
+ Oligomorphic groups
18
+ 4
19
+ 3.
20
+ Combinatorial tensor categories
21
+ 5
22
+ 4.
23
+ Pre-Galois categories
24
+ 11
25
+ 5.
26
+ Categories of atoms
27
+ 14
28
+ 6.
29
+ Fra¨ıss´e theory
30
+ 18
31
+ 7.
32
+ Examples from relational structures
33
+ 22
34
+ References
35
+ 25
36
+ 1. Introduction
37
+ 1.1. Background. The famous Tannakian reconstruction theorem says that an algebraic
38
+ group can be recovered from its representation category. To be a bit more precise, fix an
39
+ algebraically closed field k. A pre-Tannakian category is a k-linear abelian category equipped
40
+ with a symmetric tensor structure satisfying some axioms. A Tannakian category is a pre-
41
+ Tannakian category C equipped with a fiber functor ω, i.e., a faithful exact tensor functor
42
+ to finite dimensional vector spaces. The motivating example of a Tannakian category is the
43
+ category Repk(G) of finite dimensional representations of an algebraic group G/k; the fiber
44
+ functor is simply the forgetful functor. The main theorem of Tannakian categories states
45
+ these examples are essentially exhaustive: if C is a Tannakian category then C is equivalent
46
+ to Repk(G), where G is the (pro-algebraic) automorphism group of ω. See [DM] for details.
47
+ It is not so easy to construct pre-Tannakian categories that are not (super-)Tannakian,
48
+ but a number of interesting examples are known, including Deligne’s interpolation categories
49
+ [Del], the Delannoy category [HSS], and the Verlinde category [Ost]. A major problem in
50
+ the field of tensor categories is to better understand the pre-Tannakian landscape.
51
+ Date: January 31, 2023.
52
+ 1
53
+
54
+ 2
55
+ NATE HARMAN AND ANDREW SNOWDEN
56
+ There is a combinatorial analog of Tannakian reconstruction, in the form of Grothendieck’s
57
+ Galois theory. A Galois category is a category C equipped with a functor ω to finite sets
58
+ satisfying certain axioms (see Definition 4.11). The motivating example of a Galois category
59
+ is the category of finite G-sets, for a group G. The main theorem of Galois categories states
60
+ that these examples are essentially exhaustive: if C is a Galois category then C is equivalent
61
+ to the category of smooth (=discrete) G-sets, where G is the (profinite) automorphism group
62
+ of ω. Grothendieck applied this theorem to construct the ´etale fundamental group.
63
+ Conspicuously absent from the combinatorial side is an analog of pre-Tannakian categories.
64
+ The purpose of this paper is to fill this gap: we define this class of categories, prove one
65
+ main theorem about them, and construct some interesting examples.
66
+ 1.2. Pre-Galois categories. The following is our combinatorial analog of pre-Tannakian
67
+ categories:
68
+ Definition 1.1. A category B is pre-Galois if the following conditions hold:
69
+ (a) B has finite co-products (and thus an initial object 0).
70
+ (b) Every object of B is isomorphic to a finite co-product of atoms, i.e., objects that do
71
+ not decompose under co-product.
72
+ (c) If X is an atom and Y and Z are other objects, then any map X → Y ∐ Z factors
73
+ uniquely through Y or Z.
74
+ (d) B has fiber products and a final object 1.
75
+ (e) Any monomorphism of atoms is an isomorphism.
76
+ (f) If X → Z and Y → Z are maps of atoms then X ×Z Y is non-empty (i.e., not 0).
77
+ (g) The final object 1 is atomic.
78
+ (h) Equivalence relations in B are effective (see Definition 4.8).
79
+
80
+ The above axioms are motivated by properties of the category of finite G-sets, for a group
81
+ G. “Atoms” should be thought of as transitive G-sets. The first three axioms basically say
82
+ that objects admit a finite “orbit decomposition” which behaves in the expected manner.
83
+ We define a B-category to be one satisfying axioms (a)–(e). This turns out to be a very
84
+ nice class of categories already. For example, we show that every B-category is balanced
85
+ (Corollary 3.13) and has finite Hom sets (Proposition 3.17). Axiom (e) is somewhat subtle,
86
+ but these nice properties of B-categories depend on it.
87
+ Of the remaining three axioms, (f) is clearly the most important: in a sense, it is easy to
88
+ explain all failures of (g) and (h), but this is not the case for (f). We say that a B-category is
89
+ non-degenerate if it satisfies (f) and (g). Non-degeneracy implies a number of nice properties,
90
+ such as existence of co-equalizers. Axiom (h) ensures that quotients are well-behaved.
91
+ One can match properties of pre-Galois categories and pre-Tannakian categories, to some
92
+ extent. Axiom (a) corresponds to additivity on the pre-Tannakian side. Both pre-Galois
93
+ and pre-Tannakian categories are finitely complete and co-complete. Axiom (h) corresponds
94
+ to the first isomorphism theorem on the pre-Tannakian side.
95
+ Axiom (b) corresponds to
96
+ the finite length condition on the pre-Tannakian side. The co-product and product in a
97
+ pre-Galois category correspond to the direct sum and tensor product in a pre-Tannakian
98
+ category. Axiom (g) corresponds to the pre-Tannakian axiom that the unit object is simple.
99
+ Finally, (f) corresponds to the fact that in a pre-Tannkain category the tensor product of
100
+ non-zero objects is non-zero.
101
+
102
+ PRE-GALOIS CATEGORIES AND FRA¨ISS´E’S THEOREM
103
+ 3
104
+ 1.3. Examples. For any group G, the category S(G) of finite G-sets is a pre-Galois category,
105
+ and this is the motivating example. One might try to construct other examples by considering
106
+ (possibly infinite) G-sets with finitely many orbits. This does not work in general since a
107
+ product of two such G-sets need not have finitely many orbits. For instance, G acting on
108
+ itself by left multiplication has one orbit, but the orbits of G on G × G are in bijection with
109
+ G itself.
110
+ It turns out that the above idea can be made to work in at least one situation, however.
111
+ Recall that an oligomorphic group is a permutation group (G, Ω) such that G has finitely
112
+ many orbits on Ωn for all n ≥ 0. The simplest example of an oligomorphic group is the infinite
113
+ symmetric group. Model theory, and the theory of Fra¨ıss´e limits in particular, provides many
114
+ more examples. See [Cam1] for general background. Given an oligomorphic group G, we
115
+ define S(G) to be the category of sets equipped with an action of G that is smooth (every
116
+ stabilizer is open in the natural topology) and which has finitely many orbits.
117
+ It turns
118
+ out that this category is closed under products; this is a consequence of the oligomorphic
119
+ condition. It is not hard to show that S(G) is in fact pre-Galois.
120
+ The above examples admit a mild generalization: we define a class of topological groups
121
+ called admissible groups, which include profinite groups and oligomorphic groups, and we
122
+ associate a pre-Galois category S(G) to such G. From the topological perspective, the key
123
+ finiteness property of G is Roelcke pre-compactness. We review this theory in §2; a more
124
+ detailed treatment can be found in [HS1, §2].
125
+ In Example 7.3 we give a non-trivial example of a degenerate B-category using a non-
126
+ Fra¨ıss´e class of relational structures. It would be interesting if one could give a more direct
127
+ construction of such an example.
128
+ 1.4. The main theorem. The following is our main result on pre-Galois categories.
129
+ Theorem 1.2 (Theorem 6.15). Let B be a category. The following are equivalent:
130
+ (a) B is pre-Galois and has countably many isomorphism classes.
131
+ (b) B is equivalent to S(G) for some first-countable admissible group G.
132
+ The countability hypotheses above should not be necessary, but we impose them to make
133
+ the proof and exposition easier. Theorem 6.15 in fact does a bit more than the above theorem,
134
+ in that it accommodates all (countable) non-degenerate B-categories; in other words, we still
135
+ obtain a classification result when we do not impose Definition 1.1(h). The non-degeneracy
136
+ condition seems essential, however.
137
+ 1.5. Overview of proof. Let B be a B-category, and let A be the full subcategory of Bop
138
+ spanned by atoms. We show that B can be recovered from A, and exactly characterize the
139
+ categories A that arise in this manner (we call them A-categories). The key point in the
140
+ proof of Theorem 1.2 is that A is a Fra¨ıss´e category, meaning it is the kind of category to
141
+ which the categorical version of Fra¨ıss´e’s theorem applies. This theorem produces a universal
142
+ homogeneous ind-object Ω in A. We show that G = Aut(Ω) is naturally an admissible group,
143
+ and that B is equivalent to S(G).
144
+ The correspondence between A- and B-categories is also useful for producing examples
145
+ of B-categories: indeed, it is easy to construct A-categories by taking classes of relational
146
+ structures, and one can then convert them to B-categories. We follow this plan in §7.
147
+
148
+ 4
149
+ NATE HARMAN AND ANDREW SNOWDEN
150
+ 1.6. Motivation. As stated above, a major problem in tensor category theory is under-
151
+ standing pre-Tannakian categories. In a recent paper [HS1], we made a bit of progress on
152
+ this problem: we constructed a pre-Tannakian category Rep
153
+ Rep
154
+ Rep
155
+ Rep
156
+ Rep
157
+ Rep
158
+ Rep
159
+ Rep
160
+ Rep
161
+ Rep
162
+ Rep
163
+ Rep
164
+ Rep
165
+ Rep
166
+ Rep
167
+ Rep
168
+ Repk(G, µ) associated to an oligo-
169
+ morphic group G equipped with a measure µ (in a sense that we introduced), satisfying
170
+ certain conditions. Our construction recovers Deligne’s interpolation categories in certain
171
+ cases, and leads to new categories (like the Delannoy category) in other cases. Some con-
172
+ structions and results in [HS1] hold for more general B-categories, and this was our original
173
+ motivation for developing the theory.
174
+ 1.7. An application. In forthcoming work [HS3], we give an application of this paper,
175
+ which we now briefly describe. Let C be a pre-Tannakian tensor category. Define Frob(C) to
176
+ be the category whose objects are special commutative Frobenius algebras in C, and whose
177
+ morphisms are co-algebra homomorphisms. We show that Frob(C) is a pre-Galois category,
178
+ and thus (assuming a countability hypothesis) has the form S(G) for some admissible group
179
+ G. We define the oligomorphic component group of C to be the group G. This is an interesting
180
+ invariant of the category C; for example, it recovers the infinite symmetric group from
181
+ Deligne’s category Rep
182
+ Rep
183
+ Rep
184
+ Rep
185
+ Rep
186
+ Rep
187
+ Rep
188
+ Rep
189
+ Rep
190
+ Rep
191
+ Rep
192
+ Rep
193
+ Rep
194
+ Rep
195
+ Rep
196
+ Rep
197
+ Rep(St). Using this, we classify pre-Tannakian categories with enough
198
+ Frobenius algebras, which (we hope) is a step towards a general classification.
199
+ 1.8. Outline. In §2, we review oligomorphic and admissible groups and the associated cat-
200
+ egories S(G); these are the motivating examples of pre-Galois categories. In §3, we define
201
+ B-categories and establish some of their basic properties. In §4, we introduce pre-Galois cat-
202
+ egories, and establish some of their special features. In §5, we study the category of atoms
203
+ in a B-category, which leads to the notion of A-category. In §6, we review Fra¨ıss´e theory
204
+ and prove our main theorem. Finally, in §7, we give some examples of A- and B-categories
205
+ coming from relational structures.
206
+ 1.9. Notation. We list some of the important notation here:
207
+ 0 : the initial object of a B-category (e.g., the empty set)
208
+ 1 : the final object of a B-category (e.g., the one-point set)
209
+ S(G) : the category of finitary (and smooth) G-sets
210
+ T(G) : the category of transitive (and smooth) G-sets
211
+ A(B) : the A-category associated to B (see §5.1)
212
+ B(A) : the B-category associated to A (see §5.1)
213
+ 2. Oligomorphic groups
214
+ In this section, we review oligomorphic and admissible groups, and recall the category S(G)
215
+ of finitary G-sets. These categories are the motivation for the general notion of pre-Galois
216
+ category we study in this paper.
217
+ 2.1. Oligomorphic groups. An oligomorphic group is a permutation group (G, Ω) such
218
+ that G has finitely many orbits on Ωn for all n ≥ 0. Here are a few concrete examples:
219
+ • The infinite symmetric group S, i.e., the group of all permutations of Ω = {1, 2, . . .}.
220
+ • The infinite general linear group over a finite field F, i.e., the group of all linear
221
+ automorphisms of F⊕∞.
222
+ • The group of all order-preserving self-bijections of Q.
223
+
224
+ PRE-GALOIS CATEGORIES AND FRA¨ISS´E’S THEOREM
225
+ 5
226
+ Many more examples can be obtained from Fra¨ıss´e limits. For example, if R is the Rado
227
+ graph (which is the Fra¨ıss´e limit of all finite graphs) then Aut(R) acts oligomorphically
228
+ on the vertex set of R.
229
+ We refer to Cameron’s book [Cam1] for general background on
230
+ oligomorphic groups.
231
+ 2.2. Admissible groups. Fix an oligomorphic group (G, Ω). For a finite subset A of Ω, let
232
+ G(A) be the subgroup of G fixing each element of A. The groups G(A) form a neighborhood
233
+ basis of the identity for a topology on G. This topology has the following properties [HS1,
234
+ §2.2]:
235
+ • It is Hausdorff.
236
+ • It is non-archimedean: open subgroups form a neighborhood basis of the identity.
237
+ • It is Roelcke pre-compact: if U and V are open subgroups then V \G/U is finite.
238
+ We define an admissible group to be a topological group with these three properties. Thus
239
+ every oligomorphic group gives rise to an admissible group. We also note that any finite
240
+ group is admissible (with the discrete topology), and any profinite group is admissible.
241
+ While we are most interested in oligomorphic groups, we typically will not have a preferred
242
+ permutation action, and so it is most natural to work with admissible groups.
243
+ 2.3. Actions. Let G be an admissible group. We say that an action of G on a set X is
244
+ smooth if all stabilizers are open. We use the term “G-set” to mean “set equipped with a
245
+ smooth action of G.” We say that a G-set is finitary if it has finitely many orbits. We write
246
+ S(G) for the category of finitary G-sets (with morphisms being G-equivariant maps), and
247
+ T(G) for the full subcategory on the transitive G-sets. An important property of S(G) is
248
+ that it is closed under products and fiber products; see [HS1, §2.3].
249
+ There is a variant of the category S(G) that will play an important role. A stabilizer class
250
+ in G is a collection E of open subgroups of G satisfying the following conditions:
251
+ (a) E contains G.
252
+ (b) E is closed under conjugation.
253
+ (c) E is closed under finite intersections.
254
+ (d) E forms a neighborhood basis for the identity of G.
255
+ We say that a G-set is E -smooth if its stabilizers all belong to E . We let S(G; E ) be the full
256
+ subcategory of S(G) spanned by the E -smooth sets, and analogously define T(G; E ). The
257
+ category S(G; E ) is also closed under products and fiber products.
258
+ Example 2.1. Let S be the infinite symmetric group, let S(n) ⊂ S be the subgroup fixing
259
+ each of 1, . . . , n, and let Sn be the symmetric group on n letters. Let E be the set of all
260
+ subgroups of S conjugate to some S(n), and let Y be the set of all subgroups of S conjugate
261
+ to one of the form Sm1 × · · · Smr × S(n), where m1 + · · · + mr = n. Then E and Y are
262
+ stabilizer classes in S.
263
+
264
+ 3. Combinatorial tensor categories
265
+ In this section, we introduce the class of B-categories, which we view as combinatorial
266
+ analogs of tensor categories. All categories in this section are essentially small.
267
+
268
+ 6
269
+ NATE HARMAN AND ANDREW SNOWDEN
270
+ 3.1. Basic definitions. Let B be a category with finite co-products. We write 0 for the
271
+ initial object and refer to it (or any object isomorphic to it) as empty. We say that an object
272
+ X is atomic, or an atom, if it is non-empty and does not decompose non-trivially under
273
+ co-product; that is, given an isomorphism X ∼= Y ∐ Z either Y or Z is empty.
274
+ We now introduce our combinatorial analog of tensor categories.
275
+ Definition 3.1. A B-category is an essentially small category B satisfying the following
276
+ conditions:
277
+ (a) B has finite co-products.
278
+ (b) Every object of B is isomorphic to a finite co-product of atoms.
279
+ (c) Given objects X, Y , and Z, with X atomic, the natural map
280
+ Hom(X, Y ) ∐ Hom(X, Z) → Hom(X, Y ∐ Z)
281
+ is a bijection.
282
+ (d) B has fiber products and a final object 1.
283
+ (e) Any monomorphism of atoms is an isomorphism.
284
+ We also define a B0-category to be an essentially small category satisfying (a)–(c), and a
285
+ B1-category to be one satisfying (a)–(d).
286
+
287
+ The following proposition establishes the motivating example.
288
+ Proposition 3.2. Let G be an admissible group and let E be a stabilizer class. Then the
289
+ category S(G; E ) is a B-category.
290
+ Proof. (a) The co-product is given by disjoint union.
291
+ (b) Atoms are transitive E -smooth G-sets. Every finitary E -smooth G-set is clearly a
292
+ finite disjoint union of transitive E -smooth G-sets.
293
+ (c) Suppose X is an atom and Y and Z are arbitrary objects of S(G; E ). Let f : X → Y ∐Z
294
+ be a map. If any point of X maps into Y (or Z) then all of X maps into Y (or Z) since the
295
+ map is G-equivariant and G acts transitively on X. Thus axiom (c) holds.
296
+ (d) The ordinary fiber product of sets is the fiber product in S(G; E ). The final object is
297
+ the one-point G-set (which is E -smooth since E is required to contain G).
298
+ (e) Suppose f : X → Y is a monomorphism of atoms in S(G; E ). As in any category
299
+ with fiber products, this implies that the projection map X ×Y X → X is an isomorphism.
300
+ Since the set underlying X ×Y X is just the usual fiber product of sets, we see that f is an
301
+ injective function. Since f is an injective map of transitive G-sets, it is bijective, and thus
302
+ an isomorphism in the category.
303
+
304
+ Remark 3.3. We mention a few simple ways of producing new B-categories.
305
+ (a) Let B be a B-category and let X be an object of B. Let Σ be the class of all atomic
306
+ objects appearing as a summand of Xn for some n. Let B′ be the full subcategory of
307
+ B spanned by objects that are co-products of objects in Σ. Then B′ is a B-category;
308
+ we call this the subcategory generated by X.
309
+ (b) Let B be a B-category and let S be an object of B. Then the category B/S of objects
310
+ over S is a B-category. If B = S(G) and S = G/U for an open subgroup U then
311
+ B/S = S(U).
312
+ (c) Suppose B1 and B2 are B-categories. Then the product category B1 ⊞ B2 is a B-
313
+ category; we call it the sum category.
314
+
315
+ PRE-GALOIS CATEGORIES AND FRA¨ISS´E’S THEOREM
316
+ 7
317
+ (d) Let B be a B-category and let 1 = S1 ∐ · · · ∐ Sn be the atomic decomposition of the
318
+ final object. Then B is naturally equivalent to B/S1 ⊞ · · · ⊞ B/Sn, and each B/Si has
319
+ an atomic final object.
320
+
321
+ 3.2. Properties of B0-categories. Although we are mostly interested in B-categories, some
322
+ results hold in greater generality, and this additional generality is useful in later proofs. In
323
+ this spirit, we now prove some basic results about B0-categories. We fix a B0-category B for
324
+ §3.2.
325
+ Proposition 3.4. If X is non-empty then there are no maps X → 0.
326
+ Proof. It suffices to treat where X is atomic, so we assume this. By Definition 3.1(c) the
327
+ natural map
328
+ Hom(X, 0) ∐ Hom(X, 0) → Hom(X, 0 ∐ 0) = Hom(X, 0)
329
+ is bijective, and so Hom(X, 0) = ∅ as required.
330
+
331
+ Proposition 3.5. Let f : X → Y be a morphism. Write X = X1 ∐ · · · ∐ Xn and Y =
332
+ Y1 ∐ · · · ∐ Ym where each Xi and Yi is atomic. There exists a unique function a: [n] → [m]
333
+ such that the restriction of f to Xi factors uniquely through Ya(i); let fi : Xi → Ya(i) be the
334
+ induced map. Then f is uniquely determined by a and the fi’s. Moreover, every choice of a
335
+ and the fi’s comes from some f.
336
+ Proof. For each i, the natural map
337
+ m
338
+
339
+ j=1
340
+ Hom(Xi, Yj) → Hom(Xi, Y )
341
+ is a bijection. For m = 0, this is Proposition 3.4, for m = 1 it is obvious, and for m ≥ 2
342
+ it follows from Definition 3.1(c) inductively. We thus see that, given i, there is a unique
343
+ a(i) ∈ [m] and a unique morphism fi : Xi → Ya(j) such that the restriction of f to Xi is fi
344
+ following by the natural map Ya(j) → Y . This proves the existence of a and the fi’s. That
345
+ they determine f, and that every choice arises, follows from the definition of co-product.
346
+
347
+ Corollary 3.6. Let f, f ′: X → X′ and g, g′: Y → Y ′ be morphisms. Then f ∐ g = f ′ ∐ g′
348
+ if and only if f = f ′ and g = g′.
349
+ Proposition 3.7. Let f : X → X′ and g : Y → Y ′ be morphisms. Then:
350
+ (a) f ∐ g is monomorphic if and only if f and g are monomorphic.
351
+ (b) f ∐ g is epimorphic if and only if f and g are epimorphic.
352
+ Proof. (a) First suppose that f is not monomorphic. Let h, h′: W → X be distinct maps
353
+ such that fh = fh′. Then h∐idY and h′ ∐idY are maps W ∐Y → X ∐Y , which are distinct
354
+ by Corollary 3.6, but have the same composition with f ∐g. Thus f ∐g is not monomorphic.
355
+ Now suppose that f and g are monomorphic. Let h, h′ : W → X ∐ Y be maps that have
356
+ equal composition with f ∐ g. We show h = h′. It suffices to treat the case where W is
357
+ atomic, since a map out of W is determined by its restrictions to the summands of W. Thus
358
+ assume W is atomic. Then W maps into exactly one of X or Y under h; without loss of
359
+ generality, say X. Then W maps into X′ under (f ∐ g) ◦ h. It follows that W also maps
360
+ into X′ under (f ∐ g) ◦ h′, and so must map into X under h′. Regarding h and h′ as maps
361
+ into X, we thus have (fh ∐ g) = (fh′ ∐ g) as maps W ∐ Y → W ∐ Y ′, and so fh = fh′ by
362
+ Corollary 3.6. Since f is monomorphic, we conclude h = h′. Thus f ∐ g is monomorphic.
363
+
364
+ 8
365
+ NATE HARMAN AND ANDREW SNOWDEN
366
+ (b) First suppose that f is not epimorphic. Let h, h′ : X′ → Z be distinct maps such that
367
+ hf = h′f. Then h ∐ idY ′ and h′ ∐ idY ′ are maps X′ ∐ Y ′ → X ∐ Y ′, which are distinct by
368
+ Corollary 3.6, but have the same composition with f ∐ g. Thus f ∐ g is not epimorphic.
369
+ Now suppose that f and g are epimorphic. Let h, h′ : X′ ∐ Y ′ → Z be maps having equal
370
+ composition with f ∐g. Restricting h and h′ to X′, we see that they have equal composition
371
+ with f. Since f is epimorphic, this means h and h′ have equal restriction to X′. Similarly,
372
+ they have equal restriction to Y ′. By the definition of co-product, this means h = h′, and so
373
+ f ∐ g is epimorphic.
374
+
375
+ Corollary 3.8. For any objects X and Y , the natural map X → X ∐Y is a monomorphism.
376
+ Proof. Let i be the identity map of X, and let j : 0 → Y be the unique map. Clearly, i
377
+ and j are monomorphisms. The map in question is (isomorphic to) i ∐ j, and is thus a
378
+ monomorphism by Proposition 3.7(a).
379
+
380
+ Proposition 3.9. Fiber products distribute over co-products, in the following sense. Let X,
381
+ X′, and Y be objects of B equipped with morphisms to another object Z. Suppose that the
382
+ fiber products X ×Z Y and X′ ×Z Y exist. Then the fiber product (X ∐ X′) ×Z Y also exists,
383
+ and the natural map
384
+ (X ×Z Y ) ∐ (X′ ×Z Y ) → (X ∐ X′) ×Z Y
385
+ is an isomorphism.
386
+ Proof. Let P = (X ×Z Y ) ∐ (X′ ×Z Y ) and let Φ be the functor on B given by
387
+ Φ(W) =
388
+
389
+ Hom(W, X) ∐ Hom(W, X′)
390
+
391
+ ×Hom(W,Z) Hom(W, Y ).
392
+ Since P has natural maps to X ∐ X′ and Y that agree when composed to Z, there is a
393
+ natural transformation Hom(−, P) → Φ. It suffices to show that this is an isomorphism, for
394
+ then P will represent the fiber product. To check that this is an isomorphism, it suffices to
395
+ verify that Hom(W, P) → Φ(W) is a bijection when W is an atom. In this case, we have
396
+ natural identifications
397
+ Hom(W, P) = Hom(W, X ×Z Y ) ∐ Hom(W, X′ ×Z Y )
398
+ =
399
+
400
+ Hom(W, X) ×Hom(W,Z) Hom(W, Y )
401
+
402
+
403
+
404
+ Hom(W, X′) ×Hom(W,Z) Hom(W, Y )
405
+
406
+ =Φ(W),
407
+ and so the result follows.
408
+
409
+ 3.3. Properties of B-categories. We now prove some general results on B-categories. We
410
+ fix a B-category B for the duration of §3.3.
411
+ Proposition 3.10. The only subobjects of an atom X are 0 and X.
412
+ Proof. Suppose that Y is a non-empty subobject of X. Write Y = Y1 ∐ · · · ∐ Yn with each
413
+ Yi an atom and n ≥ 1. Since Yi → Y is monic by Corollary 3.8, it follows that Yi → X
414
+ is monic, and thus an isomorphism by Definition 3.1(e). It now follows that n = 1, since
415
+ the map X ∐ X → X is not monic (the two natural maps X → X ∐ X are distinct by
416
+ Definition 3.1(c), but have equal composition to X). This completes the proof.
417
+
418
+ Proposition 3.11. Any map of atoms is epimorphic.
419
+
420
+ PRE-GALOIS CATEGORIES AND FRA¨ISS´E’S THEOREM
421
+ 9
422
+ Proof. Let f : X → Y be a map of atoms, and let g, h: Y → Z be maps such that g◦f = h◦f.
423
+ Since B has finite limits, the equalizer Eq(g, h) of g and h exists, and is naturally a subobject
424
+ of Y . Since f factors through Eq(g, h) and X is non-empty, it follows that Eq(g, h) is non-
425
+ empty (Proposition 3.4). Thus Eq(g, h) is equal to Y (Proposition 3.10), and so g = h.
426
+
427
+ Proposition 3.12. Let f : X → Y be a morphism. Write X = X1 ∐ · · · ∐ Xn and Y =
428
+ Y1 ∐ · · · ∐ Ym where each Xi and Yi is atomic. Let a: [n] → [m] and fi : Xi → Ya(i) be as in
429
+ Proposition 3.5.
430
+ (a) f is epimorphic if and only if a is surjective.
431
+ (b) f is monomorphic if and only if a is injective and each fi is an isomorphism.
432
+ Proof. For j ∈ [m], let Xj = �
433
+ a(i)=j Xi, and let f j : Xj → Yj be the restriction of f. Then f
434
+ is the co-product of the f j, and so by Proposition 3.7, f is monomorphic (resp. epimorphic)
435
+ if and only if each f j is.
436
+ (a) Suppose that f is monomorphic. Then each f j is monomorphic, and so by Proposi-
437
+ tion 3.10 either Xj is empty or f j is an isomorphism. It follows that a is injective and each
438
+ fi is an isomorphism. Conversely, suppose that a is injective and each fi is an isomorphism.
439
+ Then each f j is clearly monomorphic, and so f is too.
440
+ (b) Suppose that f is epimorphic. Then each f j is epimorphic. It follows that Xj is
441
+ non-empty, as 0 → Yj is not epimorphic (the two maps Yj → Yj ∐ Yj are distinct by
442
+ Definition 3.1(c) but have the same restriction to 0).
443
+ Thus a is surjective.
444
+ Conversely,
445
+ suppose that a is surjective. Then for each j ∈ [m] there is some i with a(i) = j, and then
446
+ map fi is epimorphic by Proposition 3.11. It follows that f j is epimorphic too. Since this
447
+ holds for each j, we find that f is epimorphic.
448
+
449
+ Corollary 3.13. The category B is balanced: a morphism that is both monomorphic and
450
+ epimorphic is an isomorphism.
451
+ Proof. Using notation as in the proposition, if f is monomorphic and epimorphic then a is
452
+ a bijection and each fi is an isomorphism, and so f is an isomorphism.
453
+
454
+ Corollary 3.14. Let X = X1 ∐ · · · ∐ Xn with each Xi atomic. For a subset S of [n], let
455
+ XS = �
456
+ i∈S Xi. Then every subobject of X is one of the XS, and XS ⊂ XT if and only if
457
+ S ⊂ T.
458
+ Proof. This follows immediately from the structure of monomorphisms given in Proposi-
459
+ tion 3.12.
460
+
461
+ Corollary 3.15. Let f : X → Y be a morphism, and use notation as in Proposition 3.5.
462
+ (a) im(f) exists, and is equal to �
463
+ j∈im(a) Yj.
464
+ (b) f is an epimorphism if and only if im(f) = Y .
465
+ (c) The map X → im(f) is an epimorphism, and a monomorphism if and only if f is.
466
+ Proof. This follows from the structure of f given in Proposition 3.5, the characterization of
467
+ monomorphisms and epimorphisms in Proposition 3.12, and the classification of subobjects
468
+ in Corollary 3.14.
469
+
470
+ Proposition 3.16. Let f : X → Y be a morphism, and let ∆: X → X ×Y X be the diagonal
471
+ map. The following are equivalent:
472
+ (a) f is monomorphic.
473
+
474
+ 10
475
+ NATE HARMAN AND ANDREW SNOWDEN
476
+ (b) ∆ is an isomorphism.
477
+ (c) ∆ is epimorphic.
478
+ Proof. In any category, (a) and (b) are equivalent, and (b) implies (c). In a balanced category
479
+ (such as a B-category), (c) implies (b) since ∆ is always monomorphic.
480
+
481
+ Proposition 3.17. For any objects X and Y , the set Hom(X, Y ) is finite.
482
+ Proof. Consider a map f : X → Y . Let Γf ⊂ X × Y be the image of idX × f : X → X × Y ,
483
+ and let p: Γf → X and q: Γf → Y be the projections. Since idX × f is a monomorphism,
484
+ it follows from Corollary 3.15 that the natural map X → Γf is both a monomorphism and
485
+ an epimorphism, and is thus an isomorphism by Corollary 3.13; its inverse is clearly p. We
486
+ thus see that f = q ◦ p−1, and so f can be recovered from Γf. As X × Y has only finitely
487
+ many subobjects (by Corollary 3.14), the result follows.
488
+
489
+ Corollary 3.18. Any self-map of an atom is an isomorphism.
490
+ Proof. Let f : X → X be a map with X an atom. Then f is an epimorphism (Proposi-
491
+ tion 3.11), and so f ∗: Hom(X, X) → Hom(X, X) is injective. Since Hom(X, X) is finite
492
+ (Proposition 3.17), it follows that f ∗ is bijective, and so there exists g ∈ Hom(X, X) such
493
+ g ◦ f = idX. Thus f is a monomorphism, and hence an isomorphism (Corollary 3.13).
494
+
495
+ 3.4. Orbits. Suppose G is an admissible group and X is a finitary G-set. One can then
496
+ form the orbit space G\X, which is a finite set. Passing to orbits is often an important idea.
497
+ There is an analog of this construction in our more general categories. Let B be a B0-
498
+ category. We define the orbit set of X, denoted Xorb, to be the set of atomic subobjects
499
+ of X. This construction is natural: it follows from Proposition 3.5 that a map f : X → Y
500
+ naturally induces a function f orb: Xorb → Y orb. We therefore have a functor
501
+ B → FinSet,
502
+ X �→ Xorb,
503
+ where FinSet is the category of finite sets.
504
+ We now show how one can read off some
505
+ properties of a morphism from how it behaves on orbits.
506
+ Proposition 3.19. Suppose B is a B-category and f : X → Y is a morphism.
507
+ (a) f is epimorphic if and only if f orb is surjective.
508
+ (b) f is monomorphic if and only if Xorb → (X ×Y X)orb is surjective (or bijective); in
509
+ this case, f orb is injective.
510
+ Proof. (a) follows from Proposition 3.12(a).
511
+ We now prove (b).
512
+ Let ∆: X → X ×Y X
513
+ be the diagonal. If f is monomorphic then ∆ is an isomorphism (Proposition 3.16), and
514
+ so ∆orb is a bijection; conversely, if ∆orb is surjective then ∆ is epimorphic by (a), and
515
+ so f is monomorphic (Proposition 3.16).
516
+ If f is monomorphic then f orb is injective by
517
+ Proposition 3.12(b).
518
+
519
+ Remark 3.20. Let B be a B1-category. One can sometimes modify B to produce a B-
520
+ category, as we now describe. Let f : X → Y be a morphism in B. We make the following
521
+ definitions:
522
+ • f is a pre-monomorphism if the map Xorb → (X ×Y X)orb is bijective.
523
+ • f is a pre-epimorphism if the map Xorb → Y orb is surjective.
524
+ • f is a pre-isomorphism if it is a pre-monomorphism and pre-isomorphism.
525
+
526
+ PRE-GALOIS CATEGORIES AND FRA¨ISS´E’S THEOREM
527
+ 11
528
+ Suppose that the class of pre-isomorphisms is stable under base change. Then this class
529
+ forms a right multiplicative system, as defined in [Stacks, Tag 04VC]. The localized category
530
+ is a B-category, and is the universal B-category to which B maps (with respect to functors
531
+ that preserve finite co-products, finite limits, and atoms).
532
+
533
+ 4. Pre-Galois categories
534
+ In this section, we identify a few categorical properties of S(G) that need not hold for
535
+ a general B-category, the most important of which is non-degeneracy. Motivated by these
536
+ observations, we introduce the class of pre-Galois categories. We also discuss how they relate
537
+ to the existing notion of Galois category. All categories in this section are assumed to be
538
+ essentially small.
539
+ 4.1. Non-degeneracy. We begin with the following observation.
540
+ Proposition 4.1. Let B be a B1-category. The following are equivalent:
541
+ (a) If X → Z and Y → Z are maps of atoms then X ×Z Y is non-empty.
542
+ (b) A base change of an epimorphism is an epimorphism.
543
+ (c) A product of epimorphisms is an epimorphism.
544
+ Proof. (a) ⇒ (b). Let f : X → Y be an epimorphism, let Y ′ → Y be an arbitrary map, and
545
+ let f ′: X′ → Y ′ be the base change of f. We show that f ′ is an epimorphism. Since fiber
546
+ products distribute over co-products, it suffices to treat the case where X, Y , and Y ′ are
547
+ atoms. By assumption, X′ is then non-empty, and so f ′ is an epimorphism.
548
+ (b) ⇒ (c). Let X → Y and X′ → Y ′ be epimorphisms. Consider the composition
549
+ X × X′ → Y × X′ → Y × Y ′.
550
+ The first map is the base change of the epimorphism X → Y along the map X′ → 1, and
551
+ is thus an epimorphism; similarly, the second map is the base change of the epimorphism
552
+ X′ → Y ′ along the map Y → 1, and is thus an epimorphism. It follows that the composition
553
+ X × X′ → Y × Y ′ is an epimorphism, as required.
554
+ (c) ⇒ (a). Let X → Y and Y ′ → Y be maps of atoms, and let X′ = X ×Y Y ′ be the fiber
555
+ product. Since X → Y is an epimorphism, by assumption X′ → Y ′ is also an epimorphism.
556
+ Thus X′ is non-empty.
557
+
558
+ Motivated by the above proposition, we make the following definition.
559
+ Definition 4.2. A B1-category is non-degenerate if the equivalent conditions of Proposi-
560
+ tion 4.1 hold, and the final object 1 is atomic.
561
+
562
+ It is clear that the category S(G; E ) is non-degenerate, for any admissible group G and
563
+ stabilizer class E . In Example 7.3, we give an interesting example of a degenerate B-category.
564
+ 4.2. Implications of non-degeneracy. Fix a non-degenerate B-category B. We now ex-
565
+ amine some consequences of the non-degeneracy condition. We note that these results can
566
+ be deduced from the classification of such categories (provided by Theorem 6.15), but we
567
+ find it instructive to give direct proofs. For a morphism f : X → Y , we define the kernel
568
+ pair of f to be Eq(f) = X ×Y X. It is a subobject of X × X.
569
+ Proposition 4.3. Let f : X → Y and g : X → Z be epimorphisms. Then f factors through
570
+ g if and only if Eq(g) ⊂ Eq(f).
571
+
572
+ 12
573
+ NATE HARMAN AND ANDREW SNOWDEN
574
+ Proof. It is clear that if f factors through g then Eq(g) ⊂ Eq(f). We now prove the converse;
575
+ thus assume Eq(g) ⊂ Eq(f). Let I be the image of X in Y ×Z, and let h: X → I, p: I → Y ,
576
+ and q: I → Z be the natural maps; note that f = p ◦ h and g = q ◦ h. We have
577
+ Eq(h) = Eq(f × g) = Eq(f) ∩ Eq(g) = Eq(g),
578
+ where f × g denotes the map X → Y × Z. Consider the commutative diagram
579
+ X ×I X
580
+
581
+
582
+ X ×Z X
583
+
584
+ I
585
+ � I ×Z I
586
+ The top map is the inclusion Eq(h) ⊂ Eq(g), which is an isomorphism. The right map is
587
+ an epimorphism since h is an epimorphism and the category B is non-degenerate; to be a
588
+ little more precise, note that this morphism is the base change of X × X → I × I along
589
+ the diagonal Z → Z × Z. It follows that the bottom map is an epimorphism, and so q is
590
+ an monomorphism (Proposition 3.16), and thus an isomorphism (Corollary 3.13). We thus
591
+ have f = p ◦ q−1 ◦ g, which completes the proof.
592
+
593
+ Corollary 4.4. For X fixed, there are finitely many epimorphisms X → Y up to isomor-
594
+ phism.
595
+ Proof. By the proposition, an epimorphism f : X → Y is determined up to isomorphism
596
+ by Eq(f), which is a subobject of X × X.
597
+ Since X × X has finitely many subobjects
598
+ (Corollary 3.14), the result follows.
599
+
600
+ Proposition 4.5. A non-degenerate B-category B is finitely co-complete.
601
+ Proof. Since B has finite co-products, it suffices to show that it has co-equalizers.
602
+ Let
603
+ f, g : X → Y be parallel morphisms. Let {qi : Y → Zi}i∈U be representatives of the isomor-
604
+ phism classes of epimorphisms out of Y ; this set is finite by Corollary 4.4. Let V be the set
605
+ of indices i ∈ U such that qi ◦ f = qi ◦ g. Define I to be the image of the map Y → �
606
+ i∈V Zi,
607
+ and let h: Y → I be the natural map. We claim that h is a co-equalizer of (f, g).
608
+ To see this, suppose that a: Y → T is a morphism with a ◦ f = a ◦ g. The morphism a
609
+ factors as c◦b, where b is an epimorphism and c is a monomorphism; we may as well assume
610
+ b = qi for some i ∈ U. Since c is a monomorphism, it follows that qi ◦ f = qi ◦ g, and so
611
+ i ∈ V . Let pi : I → Zi be the projection onto the ith factor, so that qi = pi ◦ h. Composing
612
+ with c, we have a = c ◦ pi ◦ h. We thus see that a factors through h. The factorization is
613
+ unique since h is an epimorphism.
614
+
615
+ Remark 4.6. The above proof actually shows that any B-category satisfying Corollary 4.4
616
+ is finitely co-complete. All B-categories we know (including the degenerate ones) satisfy this
617
+ corollary.
618
+
619
+ 4.3. Effective equivalence relations. Let G be an admissible group and let E be a stabi-
620
+ lizer class. By Proposition 4.5, the category S(G; E ) is finitely co-complete. This is somewhat
621
+ surprising, since every smooth G-set is a quotient of some E -smooth G-set. The explanation
622
+ here is that co-equalizers in S(G; E ) do not agree with co-equalizers in S(G). In fact, S(G; E )
623
+ is a reflective subcategory of S(G), and co-equalizers in S(G; E ) are obtained by computing
624
+ in S(G) and then applying the reflector. We now give an example to illustrate the situation.
625
+
626
+ PRE-GALOIS CATEGORIES AND FRA¨ISS´E’S THEOREM
627
+ 13
628
+ Example 4.7. Let G = S be the infinite symmetric group acting on Ω = {1, 2, . . .}. Let
629
+ Ω[2] be the subset of Ω2 consisting of pairs (x, y) with x ̸= y and let Ω(2) be the set of
630
+ 2-element subsets of Ω. Let p: Ω[2] → Ω(2) be the natural surjection, and let R = Eq(p) be
631
+ the kernel-pair of p. In the category S(G), the co-equalizer of R ⇒ Ω[2] is Ω(2).
632
+ Now, let E be the stabilizer class consisting of subgroups conjugate to some S(n), as
633
+ in Example 2.1.
634
+ The G-sets Ω[2] and R are E -smooth, while Ω(2) is not.
635
+ The reflector
636
+ Φ: S(G) → S(G; E ) is computed on transitive G-sets by Φ(G/U) = G/V , where V is the
637
+ minimal open subgroup over U that belongs to E (it is not difficult to see directly that such
638
+ a subgroup exists). We have Ω(2) ∼= G/U, where U = S2 × S(2). From the classification of
639
+ open subgroups of S (see, e.g., [HS1, Proposition 15.1]), we see that the only subgroup in E
640
+ containing U is S itself. Thus Φ(Ω(2)) = 1 is the one-point set, and this is the co-equalizer
641
+ of R ⇒ Ω[2] in the category S(S; E ).
642
+
643
+ The following terminology is useful for explaining this situation:
644
+ Definition 4.8. Let C be a finitely complete category. We say that an equivalence relation
645
+ R on an object X is effective if the quotient X/R exists (this is defined as the co-equalizer
646
+ of R ⇒ X), and the kernel pair of the quotient map X → X/R is R itself. We say that C
647
+ has effective equivalence relations if all equivalence relations in C are effective.
648
+
649
+ With this terminology, Example 4.7 can be summarized as follows: R is an effective
650
+ equivalence relation in S(S), but not in the subcategory S(S; E ). The following proposition
651
+ gives the general statement in this direction.
652
+ Proposition 4.9. Let G be an admissible group and let E be a stabilizer class.
653
+ (a) The category S(G) has effective equivalence relations.
654
+ (b) If S(G; E ) has effective equivalence relations then S(G; E ) = S(G), i.e., E contains
655
+ all open subgroups of G.
656
+ Proof. (a) The category of sets has effective equivalence relations. This property passes to
657
+ S(G) since finite limits and co-limits here are computed on the underlying sets.
658
+ (b) Let U be an open subgroup of G, and let V be a member of E with V ⊂ U. Put
659
+ Y = G/V and X = G/U, let π: Y → X be the natural map, and let R ⊂ Y × Y be the
660
+ kernel pair of π. Since Y × Y belongs to S(G; E ), so does the subobject R, and so R defines
661
+ an equivalence relation on Y in the category S(G; E ). Thus, by assumption, there is a map
662
+ π′: Y → X′ in S(G; E ) with kernel pair R; of course, we may as well assume π′ is surjective.
663
+ Since the inclusion of S(G; E ) into S(G) preserves fiber products, it follows that R is the
664
+ kernel pair of π′ in S(G). Thus π and π′ are isomorphic. In particular, G/V is E -smooth,
665
+ and so V belongs to E .
666
+
667
+ 4.4. Pre-Galois categories. We now introduce this class of categories:
668
+ Definition 4.10. A pre-Galois category is a non-degenerate B-category with effective equiv-
669
+ alence relations.
670
+
671
+ This definition is equivalent to the one given in the introduction. As the preceding dis-
672
+ cussion shows, if G is an admissible group then S(G) is a pre-Galois category.
673
+ 4.5. Comparison with Galois categories. We now discuss the relation between the clas-
674
+ sical notion of Galois category and our notion of pre-Galois category. We begin by recalling
675
+ the former:
676
+
677
+ 14
678
+ NATE HARMAN AND ANDREW SNOWDEN
679
+ Definition 4.11. A Galois category is a pair (C, ω) where C is a category and ω : C → FinSet
680
+ is a functor (the fiber functor) such that the following axioms hold:
681
+ (a) C has finite limits and colimits.
682
+ (b) Every morphism X → Y in C factors as X → I → Y , where I is a summand of Y
683
+ and X → I is a strict epimorphim, i.e., X → I is the co-equalizer of X ×I X ⇒ X.
684
+ (c) ω is exact, i.e., it commutes with finite limits and co-limits.
685
+ (d) ω is conservative, i.e., ω(ϕ) is an isomorphism if and only if ϕ is.
686
+ We note there are other axiomizations; this one comes from [Cad, §2.1.1].
687
+
688
+ The following is the main result we are after.
689
+ Proposition 4.12. Let B be a category and ω : B → FinSet a functor. The following are
690
+ equivalent:
691
+ (i) (B, ω) is a Galois category.
692
+ (ii) B is a pre-Galois category and ω is exact and conservative.
693
+ Proof. Suppose (i) holds. By the main theorem of Galois categories [Cad, Theorem 2.8],
694
+ up to equivalence, B is the category of finite G-sets, for some pro-finite group G, and ω is
695
+ the forgetful functor. Since G is an admissible group and B = S(G), it follows that B is
696
+ pre-Galois. Thus (ii) holds.
697
+ Now suppose (ii) holds. We verify the conditions of Definition 4.11. Conditions (c) and (d)
698
+ hold by assumtion. Any B-category is finitely complete by definition, and a non-degenerate
699
+ one is finitely co-complete by Proposition 4.5; thus (a) holds. Every morphism f in a B-
700
+ category factors as f = g◦h, where h is an epimorphism and g is the inclusion of a summand.
701
+ Thus to complete the proof of (b), it suffices to show that every epimorphism is strict.
702
+ Let f : X → Y be an epimorphism, and let R = Eq(f) be its kernel pair. Since equivalence
703
+ relations are effective, the quotient g : X → X/R exists, and R = Eq(g). By Proposition 4.3,
704
+ we see that g and f are isomorphic. Since g is the co-kernel of R, so is f, i.e., f is strict.
705
+
706
+ The proposition can be summarized as: “Galois = pre-Galois + fiber functor.”
707
+ 5. Categories of atoms
708
+ A B-category is completely determined by its atoms. In this section, we make this state-
709
+ ment precise: we introduce the notion of an A-category, and show that A-categories are
710
+ exactly the (opposite) categories of atoms in a B-categories. The A-category perspective is
711
+ useful since it provides a bridge between B-categories and finite relational structures. All
712
+ categories in this section are assumed to be essentially small.
713
+ 5.1. The A and B constructions. Let B be a B0-category. We define A(B) to be the full
714
+ subcategory of Bop spanned by the atoms of B. For example, if B = S(G) then A(B) =
715
+ T(G)op is the opposite of the category of transitive G-sets.
716
+ Let A be an essentially small category. We define a category B(A) as follows. An object
717
+ of B(A) is a finite sequence X• = (X1, . . . , Xn) where Xi is an object of A. A morphism
718
+ (X1, . . . , Xn) → (Y1, . . . , Ym) consists of a function a: [n] → [m] together with a morphism
719
+ Xi → Ya(i) in Aop for each i ∈ [n]. Composition is defined in the obvious manner.
720
+ Proposition 5.1. For any B0-category B, we have an equivalence Φ: B(A(B)) → B given
721
+ on objects by
722
+ Φ((X1, . . . , Xn)) = X1 ∐ · · · ∐ Xn.
723
+
724
+ PRE-GALOIS CATEGORIES AND FRA¨ISS´E’S THEOREM
725
+ 15
726
+ Proof. This follows from the basic properties of B0-categories established in §3.2.
727
+
728
+ Proposition 5.2. For any category A, the category B(A) is a B0-category and we have a
729
+ natural equivalence A ∼= A(B(A)).
730
+ Proof. (a) It is clear that co-products in B(A) are given on objects by
731
+ (X1, . . . , Xm) ∐ (Y1, . . . , Yn) = (X1, . . . , Xm, Y1, . . . , Yn),
732
+ with the obvious structure maps. We note that the zero object of B(A) is the empty sequence
733
+ ().
734
+ (b) Suppose that X• = (X1, . . . , Xn) and Y• = (Y1, . . . , Ym) are isomorphic objects of
735
+ B(A). Let (a, f): X• → Y• be the given isomorphism, where a: [n] → [m] is a map of sets
736
+ and fi : Xi → Ya(i) is a morphism in Aop, and let (b, g): Y• → X• be its inverse. Since the
737
+ composition is the identity, it follows that b ◦ a and a ◦ b are the identity maps of [n] and
738
+ [m]; thus n = m and a and b are inverse permutations. Moreover, fi : Xi → Ya(i) is an
739
+ isomorphism with inverse ga(i).
740
+ From the above, together with the description of the co-product on B(A), it follows that
741
+ (X) is an atomic object of B(A), for any object X of A. We thus see that every object of
742
+ B(A) is a finite co-product of atomic objects.
743
+ (c) It follows from the definition of morphisms in B(A) that the natural map
744
+ HomB(A)((X), Y• ∐ Z•) → HomB(A)((X), Y•) ∐ HomB(A)((X), Z•)
745
+ is bijective, for any object X of A and objects Y• and Z• of B(A).
746
+
747
+ We thus see that there is a correspondence between B0-categories and all (essentially small)
748
+ categories. In the remainder of this section, we refine this correspondence, and determine
749
+ what B1- and B-categories correspond to. To this end, we begin with one simple observation:
750
+ Proposition 5.3. Let f : X → Y be a morphism in the category A, and let f ′: (Y ) → (X)
751
+ be the corresponding morphism in B(A). Then f is an isomorphism (resp. monomorphism,
752
+ epimorphism) if and only if f ′ is an isomorphism (resp. epimorphism, monomorphism).
753
+ Proof. The statement for isomorphisms is clear, as an inverse to one of f or f ′ gives an
754
+ inverse to the other. It is also clear that if f is not a monomorphism then f ′ is not an
755
+ epimorphism, as a witness to the failure of the former leads to one for the latter. Similarly,
756
+ it is clear that if f is not an epimorphism then f ′ is not a monomorphism.
757
+ Now suppose that f ′ is not a monomorphism.
758
+ Then there exist distinct morphisms
759
+ g′, h′: (Z1, . . . , Zn) → (Y ) such that f ′ ◦ g′ = f ′ ◦ h′. Let g′
760
+ i and h′
761
+ i be the components
762
+ of g′ and h′, and let gi and hi be the corresponding morphisms in A. Since g′ ̸= h′ there is
763
+ some i such that g′
764
+ i ̸= h′
765
+ i. Thus gi and hi are distinct morphisms in A with gi ◦ f = hi ◦ f,
766
+ and so f is not an epimorphism.
767
+ Finally, suppose that f ′ is not an epimorphism.
768
+ Then there exist distinct morphisms
769
+ g′, h′: (X) → (W1, . . . , Wn) such that g′ ◦ f ′ = h′ ◦ f ′. By definition, g′ corresponds to a
770
+ morphism g : Wi → X for some i, and h′ to a morphism h: Wj → X for some j. The equality
771
+ g′ ◦ f ′ = h′ ◦ f ′ exactly means that i = j and g ◦ f = h ◦ f. Since g′ ̸= h′ we have g ̸= h, and
772
+ so f is not a monomorphism.
773
+
774
+ 5.2. Initial objects. Let A be a category. We say that a set S of objects of A is an initial
775
+ set if for every object X of A there exists a unique object I of S such that HomA(I, X)
776
+ is non-empty, and this set contains a single element. Suppose A has an initial set S. For
777
+
778
+ 16
779
+ NATE HARMAN AND ANDREW SNOWDEN
780
+ I ∈ S, let AI be the full subcategory of A spanned by objects X for which there exists a
781
+ map I → X. Then AI has I as an initial object, and A is the disjoint union of the AI’s
782
+ (as a category). Conversely, if A is a (set-indexed) disjoint union of categories with initial
783
+ objects, then A has an initial set.
784
+ Proposition 5.4. Let A be a category, and let B = B(A).
785
+ (a) A has a finite initial set if and only if B has a final object.
786
+ (b) A has an initial object if and only if B has an atomic final object.
787
+ Proof. (a) Suppose that {I1, . . . , In} is an initial object of A. We claim that I• = (I1, . . . , In)
788
+ is a final object of B. Indeed, let X• = (X1, . . . , Xm) be given. For each 1 ≤ i ≤ m there is
789
+ a unique 1 ≤ a(i) ≤ n such HomA(Ia(i), Xi) is non-empty, and it contains a single element
790
+ fi. The map a together with f1, . . . , fn define a morphism X• → I• in B, and it is clearly
791
+ the unique such map. Thus I• is a final object of B. This reasoning is reversible too: if I•
792
+ is a final object of B then {I1, . . . , In} is an initial set of A.
793
+ (b) This is clear from the proof of (a).
794
+
795
+ 5.3. Amalgamations. A pre-amalgamation in A is a pair of morphisms (b: A → B, c: A →
796
+ C). Given a pre-amalgamation (b, c), define Amalg(b, c) to be the category whose objects are
797
+ pairs (b′ : B → D, c′: C → D) of morphisms in A with b′b = c′c, with the obvious morphisms.
798
+ An amalgamation set for (b, c) is an initial set of this category; we call the elements of this
799
+ set amalgamations.
800
+ Proposition 5.5. Let A be a category and let B = B(A) be the corresponding B0-category.
801
+ The following are equivalent:
802
+ (a) Every pre-amalgamation in A has a finite amalgamation set.
803
+ (b) The category B has fiber products.
804
+ Proof. Suppose (b) holds. Let (b, c) be a pre-amalgamation in A, where b: A → B and
805
+ c: A → C. Let (X1, . . . , Xn) be the fiber product of (B) with (C) over (A) in B. The
806
+ map (X1, . . . , Xn) → (B) in B corresponds to morphisms fi : B → Xi in A, for 1 ≤ i ≤ n.
807
+ Similarly, the map (X1, . . . , Xn) → C corresponds to morphisms gi : Xi → C in A, for
808
+ 1 ≤ i ≤ n. Clearly, fi ◦ a = gi ◦ b, so each (fi, gi) is an object of Amalg(b, c).
809
+ We claim that S = {(fi, gi)}1≤i≤n is an amalgamation set for (b, c). Thus let (f : B →
810
+ Y, g : C → Y ) be an arbitrary object of Amalg(b, c). Then f defines a morphism (Y ) → (B)
811
+ in B, and similarly, g defines a morphism (Y ) → (C) in B. The two composition to (A) agree,
812
+ and so there is a unique morphism (Y ) → (X1, . . . , Xn) that composes with the projections
813
+ to the given morphisms. This proves the claim, and so (a) holds.
814
+ Now suppose (a) holds. Let (B) → (A) and (C) → (A) be morphisms of atoms in B,
815
+ corresponding to maps b: A → B and c: A → C in A. Let {(fi, gi)}1≤i≤n be an amalgamation
816
+ set for (b, c), where fi and gi map to Xi. Then, reversing the above reasoning, we see that
817
+ (X1, . . . , Xn) is naturally the fiber product of (B) and (C) over (A).
818
+ We thus find that the fiber product of morphisms of atoms in B always exists. It follows
819
+ from Proposition 3.9 that all fibers products exist.
820
+
821
+
822
+ PRE-GALOIS CATEGORIES AND FRA¨ISS´E’S THEOREM
823
+ 17
824
+ We say that a category A has the amalgamation property (AP) if for every pre-amalgamation
825
+ (b, c) the category Amalg(b, c) is non-empty. This means that every diagram
826
+ B
827
+ � D
828
+ A
829
+ b
830
+
831
+ c
832
+ � C
833
+
834
+ can be filled, i.e., one can find D and the dotted arrows making the square commute.
835
+ Proposition 5.6. Let A be a category in which all pre-amalgamations have a finite amal-
836
+ gamation set, and let B = B(A). Then A has the amalgamation property if and only if for
837
+ every morphism of atoms X → Z and Y → Z in B, the fiber product X ×Z Y is non-empty.
838
+ Proof. This is clear from the proof of Proposition 5.5.
839
+
840
+ 5.4. A-categories. We are finally ready to introduce the main concept of this section:
841
+ Definition 5.7. An A-category is an essentially small category A satisfying the following
842
+ conditions:
843
+ (a) The category A has a finite initial set.
844
+ (b) Every pre-amalgamation has a finite amalgamation set.
845
+ (c) Every epimorphism in A is an isomorphism.
846
+ An A1-category is an essentially small category satisfying conditions (a) and (b).
847
+
848
+ The following is the main result of this section:
849
+ Theorem 5.8. Let A be a category and put B = B(A).
850
+ (a) B is a B1-category ⇐⇒ A is an A1-category.
851
+ (b) B is a B-category ⇐⇒ A is an A-category.
852
+ (c) B is a non-degenerate B-category ⇐⇒ A is an A-category with an initial object and
853
+ the amalgamation property.
854
+ Proof. (a) follows from Propositions 5.2, 5.4(a), and 5.5; (b) then follows from Proposi-
855
+ tion 5.3; and (c) then follows from Propositions 5.4(b) and 5.6.
856
+
857
+ Corollary 5.9. All morphisms in an A-category are monomorphisms.
858
+ Proof. This follows from Propositions 3.11 and 5.3.
859
+
860
+ Corollary 5.10. Any endomorphism in an A-category is an isomorphism.
861
+ Proof. This follows from Corollary 3.18 and 5.3.
862
+
863
+ Remark 5.11. A category in which all endomorphisms are isomorphisms is called an EI-
864
+ category. Thus the above corollary shows that every A-category is an EI-category. Repre-
865
+ sentations of EI-categories have received some attention in the literature, e.g., [GL].
866
+
867
+ We now discuss the condition Definition 5.7(c) in a bit more detail. The contrapositive of
868
+ Definition 5.7(c) can be phrased as follows: if f : X → Y is a non-isomorphism then there
869
+ exist distinct morphisms g1, g2: Y → Z such that g1 ◦ f = g2 ◦ f. As Corollary 5.9 suggests,
870
+ when working on the “A side,” morphisms will in some sense be embeddings. From this
871
+ perspective, Definition 5.7(c) essentially means that if X is a proper subobject of Y then we
872
+ can find distinct embeddings of Y into some auxiliary object that agree on X.
873
+
874
+ 18
875
+ NATE HARMAN AND ANDREW SNOWDEN
876
+ There is one other perspective on Definition 5.7(c) that is sometimes useful. Let f : X → Y
877
+ be a morphism in an A1-category. We refer to objects in the amalgamation set of (f, f) as
878
+ self-amalgamations of Y over X. There is always a trivial self-amalgamation, namely Y
879
+ itself, or more precisely, the pair (idY , idY ). One easily sees that f is an epimorphism if and
880
+ only if this is the only self-amalgamation. Thus the contrapositive of Definition 5.7(c) is
881
+ equivalent to the following: if f : X → Y is a non-isomorphism then there is a non-trivial
882
+ self-amalgamation of Y over X.
883
+ 5.5. Products. Let A1 and A2 be A1-categories. One easily sees that the product category
884
+ A1 × A2 is also an A1-category, and is an A-category if both A1 and A2 are. This motivates
885
+ the following construction:
886
+ Definition 5.12. Let B1 and B2 be B1-categories. We define the tensor product category
887
+ to be the B1-category
888
+ B1 ⊠ B2 = B(A(B1) × A(B2)).
889
+ If B1 and B2 are both B-categories then so is B1 ⊠ B2.
890
+
891
+ Example 5.13. Let G1 and G2 be admissible groups with stabilizer classes E1 and E2. One
892
+ can then show
893
+ S(G1; E1) ⊠ S(G2; E2) ∼= S(G1 × G2; E1 × E2),
894
+ where E1 × E2 denotes the set of open subgroups of the product of the form U1 × U2 with
895
+ Ui ∈ Ei. Note that if E1 and E2 each contain all open subgroups then the same need not be
896
+ true for E1 ×E2. Thus one is essentially forced to confront stabilizer classes when considering
897
+ the tensor product construction.
898
+
899
+ 6. Fra¨ıss´e theory
900
+ In this section, we review classical Fra¨ıss´e theory and its categorical reformulation, and
901
+ then apply this theory to prove the main theorems of this paper.
902
+ 6.1. Classical Fra¨ıss´e theory. We now recall the classical formulation Fra¨ıss´e’s theorem.
903
+ While we will not apply this version of the theorem, it serves as motivation for the categorical
904
+ form discussed in §6.2 that we do use. We will also use the language of relational structures
905
+ in §7 to construct examples of A-categories. We refer to [Cam1] and [Mac] for more complete
906
+ discussions.
907
+ A signature is a collection Σ = {(Ri, ni)}i∈I where Ri is a formal symbol and ni is a
908
+ positive integer, called the arity of Ri. Fix a signature Σ. A (relational) structure for Σ
909
+ is a set X equipped with for each i ∈ I an ni-ary relation Ri on X (i.e., a subset of Xni).
910
+ Given a structure X and a subset Y , there is an induced structure on Y ; we call structures
911
+ obtained in this manner substructures of X. An embedding of structures X → Y is an
912
+ injective function that identifies X with a substructure of Y .
913
+ A structure Ω is called homogeneous if whenever X and Y are finite substructures and
914
+ i: X → Y is an isomorphism of structures, there exists an automorphism σ of Ω such that
915
+ σ(x) = i(x) for all x ∈ X. The age of a structure Ω, denoted age(Ω), is the set of all finite
916
+ structures that embed into Ω. If Ω is a countable homogeneous structure then C = age(Ω)
917
+ has the following properties:
918
+ • C is hereditary: if Y belongs to C and X is (isomorphic to) a substructure of Y then
919
+ X belongs to C.
920
+ • The set |C| of isomorphism classes in C is countable.
921
+
922
+ PRE-GALOIS CATEGORIES AND FRA¨ISS´E’S THEOREM
923
+ 19
924
+ • C satisfies the amalgamation property, as defined in §5.3; here we treat C as a category
925
+ with morphisms being embeddings.
926
+ Fra¨ıss´e’s theorem is the converse statement: if C is a class of finite structures satisfying the
927
+ above three conditions then C is the age of a countable homogeneous structure Ω, which is
928
+ unique up to isomorphism. A class satisfying the above conditions is called a Fra¨ıss´e class,
929
+ and the resulting homogeneous structure Ω is called the Fra¨ıss´e limit of C.
930
+ For a class C of structures, let Cn denote the subclass consisting of structures with n
931
+ elements. Suppose Ω is a homogeneous structure and C = age(Ω) has the property that |Cn|
932
+ is finite for all n. Then one easily sees that G = Aut(Ω) acts oligomorphically on Ω. In this
933
+ way, Fra¨ıss´e limits provide a powerful mechanism for constructing oligomorphic groups.
934
+ Example 6.1. We give a few examples of Fra¨ıss´e limits.
935
+ (a) Take the signature to be empty, so that a structure is simply a set. The class C of all
936
+ finite sets is a Fra¨ıss´e class, and the Fra¨ıss´e limit Ω is a countable infinite set. The
937
+ oligomorphic group G = Aut(Ω) is the infinite symmetric group.
938
+ (b) Take the signature to consist of a single binary relation. The class C of all finite
939
+ totally ordered sets is a Fra¨ıss´e class, and the Fra¨ıss´e limit Ω is the set of rational
940
+ numbers equipped with its standard total order.
941
+ (c) Again, take the signature to consist of a single binary relation. Let C be the class of
942
+ all finite simple graphs. This is a Fra¨ıss´e class, and the limit is the Rado graph.
943
+
944
+ 6.2. Categorical Fra¨ıss´e theory. Given a class C of relational structures, one can regard C
945
+ as a category with morphisms being embeddings. Fra¨ıss´e’s theorem is thus a statement about
946
+ a certain class of categories. It turns out that the theorem actually holds for a much broader
947
+ class of categories. This observation goes back to the work of Droste–G¨obel [DG1, DG2],
948
+ and has been discussed in more recent work as well [Car, Irw, Kub]. We follow the treatment
949
+ in the appendix to our recent paper [HS2].
950
+ Fix a category C in which all objects are monomorphisms; we often refer to morphisms
951
+ in C as embeddings. An ind-object in C is a diagram X1 → X2 → · · · in C. It is possible
952
+ to consider ind-objects indexed by more general posets, but we will only need this simple
953
+ version. There is a natural notion of morphism between ind-objects, and between an ordinary
954
+ object and an ind-object; see [HS2, §A.2].
955
+ Let Ω be an ind-object of C. We say that Ω is universal if every object of C embeds into
956
+ Ω. We say that Ω is homogeneous if every isomorphism of finite subobjects is induced by an
957
+ automorphism. Precisely, this means the following. Suppose α: X → Ω and β : Y → Ω are
958
+ embeddings, where X and Y are objects of C, and that we have an isomorphism γ : X → Y
959
+ in C. Then there must exist an automorphism σ of Ω such that σ ◦ α = β ◦ γ. We say that
960
+ C is a Fra¨ıss´e category if it admits a universal homogeneous ind-object. We note that any
961
+ two universal homogeneous ind-objects are isomorphic [HS2, Proposition A.7].
962
+ Fra¨ıss´e’s theorem gives a characterization of Fra¨ıss´e categories. To state it, we will need
963
+ the amalgamation property (AP) defined in §5.3, as well as the following condition:
964
+ (RCC) Relative countable cofinality: for any object X of C there exists a cofinal sequence of
965
+ morphisms out of X, i.e., there is a sequence of morphisms {αn : X → Yn}n≥1 such
966
+ that if β : X → Y is any morphism then there is a morphism γ : Y → Yn for some
967
+ n such that γ ◦ β = αn.
968
+ The following is the categorical Fra¨ıss´e theorem (in one form).
969
+
970
+ 20
971
+ NATE HARMAN AND ANDREW SNOWDEN
972
+ Theorem 6.2 ([HS2, Theorem A.11]). Suppose that C has an initial object. Then C is a
973
+ Fra¨ıss´e category if and only if (RCC) and (AP) hold.
974
+ Example 6.3. Here is an example where the categorical Fra¨ıss´e theorem applies while the
975
+ classical one does not apply. A cubic space is a complex vector space V equipped with a
976
+ linear map Sym3(V ) → C. There is a natural notion of embedding for cubic spaces. In
977
+ [HS2], we show that the category of finite dimensional cubic spaces is a Fra¨ıss´e category; we
978
+ give many other related examples as well.
979
+
980
+ 6.3. Fra¨ıss´e theory for A-categories. The following is our main Fra¨ıss´e-like theorem for
981
+ A-categories.
982
+ Theorem 6.4. Let A be an A-category satisfying the following conditions:
983
+ • A has an initial object.
984
+ • A satisfies the amalgamation property.
985
+ • A has countably many isomorphism classes.
986
+ Then there exists an admissible group G and a stabilizer class E for G such that A is
987
+ equivalent to T(G; E )op.
988
+ We will actually prove a slightly more precise statement. Let A be any category satisfying
989
+ the three conditions of Theorem 6.4. By Theorem 6.2, the category A is Fra¨ıss´e, and thus
990
+ admits a universal homogeneous ind-object Ω. Let G be its automorphism group. For an
991
+ object X, we let Φ(X) be the set of all embeddings X → Ω; note that this is non-empty
992
+ since Ω is universal. The group G naturally acts on Φ(X), via its action on Ω, and this
993
+ action is transitive by homogeneity. Give α ∈ Φ(X), we let Gα be the stabilizer of α in G.
994
+ Let E be the set of all subgroups of G of the form Gα, for some α.
995
+ Theorem 6.5. Let A be an A1-category satisfying the three conditions of Theorem 6.4, and
996
+ let Ω, G, E , and Φ be as above.
997
+ (a) The family E is a neighborhood basis for a first-countable admissible topology on G.
998
+ (b) The family E is a stabilizer class for G.
999
+ (c) The construction Φ defines a faithful and essentially surjective functor A → T(G; E )op.
1000
+ (d) If A is an A-category then the functor in (c) is an equivalence.
1001
+ Remark 6.6. In §7.4, we give an example of an A1-category (that is not an A-category)
1002
+ where the functor in (c) is not an equivalence.
1003
+
1004
+ Remark 6.7. There is a notion of completeness for admissible groups. In Theorem 6.4, there
1005
+ is in fact a unique (up to isomorphism) complete group satisfying the concluding statement.
1006
+ The group G constructed following the statement of the theorem is thie complete group.
1007
+
1008
+ We now prove the theorem, in a series of lemmas. We fix A, Ω, G, E , and Φ as in the
1009
+ theorem statement in what follows. We also write 1 for the initial object of A.
1010
+ Lemma 6.8. Let X and Y be objects of A, and let α: X → Ω and β : Y → Ω be embeddings.
1011
+ Then there is a unique (up to isomorphism) diagram
1012
+ Y
1013
+ δ
1014
+ �❘
1015
+
1016
+
1017
+
1018
+
1019
+
1020
+
1021
+
1022
+
1023
+
1024
+
1025
+ β
1026
+
1027
+ 1
1028
+ �♠
1029
+
1030
+
1031
+
1032
+
1033
+
1034
+
1035
+
1036
+
1037
+
1038
+
1039
+ �◗
1040
+
1041
+
1042
+
1043
+
1044
+
1045
+
1046
+
1047
+
1048
+
1049
+
1050
+ Z
1051
+ ǫ
1052
+ � Ω
1053
+ X
1054
+ γ
1055
+ �❧
1056
+
1057
+
1058
+
1059
+
1060
+
1061
+
1062
+
1063
+
1064
+
1065
+
1066
+ α
1067
+
1068
+
1069
+ PRE-GALOIS CATEGORIES AND FRA¨ISS´E’S THEOREM
1070
+ 21
1071
+ where (Z, γ, δ) is an amalgamation of X and Y over the trivial object 1. We have Gǫ =
1072
+ Gα ∩ Gβ.
1073
+ Proof. The existence and uniqueness of the diagram follow from the definition of A1-category.
1074
+ We have α = ǫγ, and so for σ ∈ G we have σα = σǫγ; thus Gǫ ⊂ Gα. Of course, the same
1075
+ holds with β, and so Gǫ ⊂ Gα ∩ Gβ. We now prove the reverse containment. Thus let
1076
+ σ ∈ Gα ∩ Gβ be given.
1077
+ Then the above diagram commutes with ǫ changed to σǫ.
1078
+ By
1079
+ uniqueness of the above diagram, it follows that ǫ = σǫ, and so σ ∈ Gǫ, as required.
1080
+
1081
+ Lemma 6.9. Let X and Y be objects of A, let E = G\(Φ(X) × Φ(Y )), and let F be
1082
+ an amalgamation set for X and Y over 1. Then we have a natural bijection E ∼= F; in
1083
+ particular, E is finite.
1084
+ Proof. Given α ∈ Φ(X) and β ∈ Φ(Y ), let (Z, γ, δ) be the amalgamation from Lemma 6.8. It
1085
+ is clear that if (α, β) is modified by an element of G then the amalgamation is unchanged (up
1086
+ to isomorphism). This construction therefore yields a well-defined map E → F. Conversely,
1087
+ if (Z, γ, δ) is any amalgamation then by choosing an embedding ǫ: Z → Ω, we get the pair
1088
+ (γ∗(ǫ), δ∗(ǫ)) in Φ(X) × Φ(Y ), and the orbit of this pair is independent of the choice fo ǫ.
1089
+ This provides a map F → E. One readily verifies the two maps are inverse to one another.
1090
+ Since F is finite by the definition of A1-category, it follows that E is finite.
1091
+
1092
+ Lemma 6.10. The set E is a neighborhood basis for an admissible topology on G, and E is
1093
+ a stabilizer class for the admissible group G.
1094
+ Proof. If α is the unique embedding of the trivial object into Ω then Gα = G; thus G belongs
1095
+ to E . It is clear that E is closed under conjugation. Lemma 6.8 shows that E is closed under
1096
+ finite intersections. It follows that E is a neighborhood basis for a topology on G, and the
1097
+ E is a stabilizer class.
1098
+ It remains to show that the topological group G is admissible. It is non-archimedean by
1099
+ construction. We now verify that it is Hausdorff. Thus suppose σ belongs to �
1100
+ U∈E U. Then
1101
+ for any embedding α: X → Ω we have σα = α. Since a map of ind-objects is determined by
1102
+ its restrictions to (non-ind) objects, it follows that σ is the identity, and so G is Hausdorff.
1103
+ Finally, we show G is Roelcke pre-compact. It suffices to show Gα0\G/Gβ0 is finite for two
1104
+ embeddings α0 : X → Ω and β0 : Y → Ω. This set is in bijection with G\(G/Gα0 × G/Gβ0).
1105
+ Since G acts transitively on Φ(X) with stabilizer Gα0, the set G/Gα (with its G-action) is
1106
+ identified with Φ(X); similarly, G/Gβ0 is identified with Φ(Y ). Thus finiteness follows from
1107
+ Lemma 6.9.
1108
+
1109
+ We have thus proved Theorem 6.5(a,b). Now, the action of G on Φ(X) is smooth, by
1110
+ definition of the topology on G. If α: X → Y is a morphism in A then there is an induced
1111
+ morphism α∗: Φ(Y ) → Φ(X) of G-sets. It follows that we have a functor
1112
+ Φ: A → T(G)op.
1113
+ To complete the proof of the theorem, we study properties of this functor in the next sequence
1114
+ of lemmas.
1115
+ Lemma 6.11. The functor Φ is faithful.
1116
+ Proof. Let α and β be two morphisms X → Y in C such that α∗ = β∗. Choose an embedding
1117
+ γ : Y → Ω, which is possible since Ω is universal. By assumption, we have γ ◦ α = γ ◦ β.
1118
+ Since γ is a monomorphism, it follows that α = β. Thus Φ is faithful.
1119
+
1120
+
1121
+ 22
1122
+ NATE HARMAN AND ANDREW SNOWDEN
1123
+ Lemma 6.12. The essential image of Φ is T(G; E ).
1124
+ Proof. For an object X of A, the G-set Φ(X) is isomorphic to G/Gα, where α ∈ Φ(X) is
1125
+ any element. We thus see that the essential image of Φ exactly consists of G-sets isomorphic
1126
+ to G/U with U ∈ E , which is exactly T(G; E ).
1127
+
1128
+ We have thus proved Theorem 6.5(c). We now turn our attention to Theorem 6.5(d). In
1129
+ what follows, we assume that A is an A-category.
1130
+ Lemma 6.13. The functor Φ is conservative; that is, if α: X → Y is a morphism in C such
1131
+ that α∗: Φ(Y ) → Φ(X) is an isomorphism then α is an isomorphism.
1132
+ Proof. Since A is an A-category, it is enough to show that α is an epimorphism.
1133
+ Thus
1134
+ suppose that β and γ are maps Y → Z such that β ◦ α = γ ◦ α. We thus have α∗β∗ = α∗γ∗.
1135
+ Since α∗ is an isomorphism, it follows that β∗ = γ∗. Since Φ is faithful, we find β = γ, as
1136
+ required.
1137
+
1138
+ Lemma 6.14. The functor Φ is full.
1139
+ Proof. Let X and Y be objects of C, and let ϕ: Φ(Y ) → Φ(X) be a map of G-sets. Choose an
1140
+ element β ∈ Φ(Y ), and let α = ϕ(β). Note that since ϕ is G-equivariant, we have Gβ ⊂ Gα.
1141
+ Let (Z, γ, δ) be an amalgamation of X and Y over 1, and let ǫ: Z → Ω be an embedding,
1142
+ as in Lemma 6.8. We have Gǫ = Gα ∩ Gβ = Gβ. Thus γ∗: Φ(Z) → Φ(Y ) is an isomorphism
1143
+ of G-sets; indeed, it is a G-equivariant map of transitive G-sets mapping ǫ to β, and ǫ and
1144
+ β have the same stabilizer in G. By the Lemma 6.13, it follows that γ is an isomorphism.
1145
+ Since the diagram in Lemma 6.8 is only defined up to isomorphism, we may as well suppose
1146
+ that Z = Y , γ = idY , and β = ǫ. We thus see that δ∗: Φ(Y ) → Φ(X) is a map of G-sets
1147
+ carrying β to α.
1148
+ Since Φ(Y ) is transitive, it follows that ϕ = δ∗, which completes the
1149
+ proof.
1150
+
1151
+ 6.4. Fra¨ıss´e theory for B-categories. The following is our main theorem on B-categories,
1152
+ and contains Theorem 1.2 as a special case.
1153
+ Theorem 6.15. Let B be a B-category that is non-degenerate and has countably many
1154
+ isomorphism classes. Then there is a first-countable admissible group G and a stabilizer
1155
+ class E such that B is equivalent to S(G; E ). Moreover, if equivalence relations in B are
1156
+ effective (i.e., B is pre-Galois) then B is equivalent to S(G).
1157
+ Proof. Let A = A(B). By Theorem 5.8, this is an A-category satisfying the three conditions
1158
+ of Theorem 6.4.
1159
+ Thus by that theorem, we have A ∼= T(G; E ) for some first-countable
1160
+ admissible group G and stabilizer class E . We have equivalences B = B(A) and S(G; E ) =
1161
+ B(T(G; E )op), and so we obtain an equivalence B ∼= S(G; E ). The second statement follows
1162
+ from Proposition 4.9.
1163
+
1164
+ 7. Examples from relational structures
1165
+ We now look at some examples of A-categories and B-categories coming from classes of
1166
+ relational structures. See §6.1 for basic definitions on relational structures.
1167
+
1168
+ PRE-GALOIS CATEGORIES AND FRA¨ISS´E’S THEOREM
1169
+ 23
1170
+ 7.1. General comments. Let C be a non-empty class of finite relational structures. We
1171
+ assume throughout this section that C is hereditary and that |Cn| is finite for all n ≥ 0.
1172
+ Recall that we can regard C as a category, with morphisms being embeddings of structures.
1173
+ Proposition 7.1. The category C is an A1-category, and the following are equivalent:
1174
+ (a) C is an A-category.
1175
+ (b) Given Y ∈ C and a proper substructure X ⊂ Y , there exists a structure Z ∈ C and
1176
+ distinct embeddings Y ⇒ Z that have equal restriction to X.
1177
+ (c) Given Y ∈ C and a proper substructure X ⊂ Y , there exists a non-trivial self-
1178
+ amalgamation of Y over X.
1179
+ Proof. The class C contains the empty structure since it is non-empty and hereditary. It is
1180
+ clear that the empty structure is the initial object of C, and so C has an initial set. This
1181
+ verifies Definition 5.7(a).
1182
+ Let (β, γ) be a pre-amalgamation, where β : A → B and γ : A → C. Consider an object
1183
+ (δ, ǫ) of Amalg(β, γ), where δ: B → D and ǫ: C → D. We say that (δ, ǫ) is minimal if δ
1184
+ and ǫ are jointly surjective, i.e., D = im(δ) ∪ im(ǫ). Every object of Amalg(β, γ) admits a
1185
+ unique (up to isomorphism) map from a minimal object. Indeed, in the above notation, let
1186
+ D′ = im(δ) ∪ im(ǫ), regarded as a substructure of D. Then D′ is a minimal, with structure
1187
+ maps δ and ǫ, and the inclusion D′ → D is a map in Amalg(β, γ); a key point here is that
1188
+ D′ still belongs ot the class C since C is hereditary.
1189
+ Let S be a set of isomorphism class representatives for the minimal objects of Amalg(β, γ).
1190
+ The above argument shows that S is an amalgamation set for (β, γ). Since the cardinality of
1191
+ a minimal object is at most #B + #C and we have assumed |Cn| is finite for all n, it follows
1192
+ that S is finite. This verifies Definition 5.7(b).
1193
+ We have already explained (at the end of §5.4) how the remaining three conditions are
1194
+ equivalent.
1195
+
1196
+ Suppose that C is indeed an A-category and that it is also satisfies the amalgamation
1197
+ property; then C is a Fra¨ıss´e class. Let Ω be the Fra¨ıss´e limit, and let G = Aut(Ω), which
1198
+ acts oligomorphically on Ω. Theorem 6.4 gives an equivalence of A with T(G; E )op, where
1199
+ E is the set of subgroups of G of the form G(A) where A ⊂ Ω is a finite subset. (Recall that
1200
+ G(A) is the subgroup of G fixing each element of A.)
1201
+ 7.2. Sets. Let C be the class of all finite sets (the signature in this case is empty). This is an
1202
+ A-category by Proposition 7.1. The amalgamation property holds. The Fra¨ıss´e limit is the
1203
+ countable set Ω = {1, 2, . . .} and its automorphism group is the infinite symmetric group S.
1204
+ Let E be the stabilizer class consisting conjugates of S(n), for variable n (see Example 2.1).
1205
+ Then we have an equivalence of categories C ∼= T(S; E )op.
1206
+ We can also describe the A-category T(S)op. Define a category C′ as follows. An object is
1207
+ a pair (X, G) where X is a finite set and G is a subgroup of the symmetric group Perm(X)
1208
+ on X. A morphism (X, G) → (Y, H) is an injective function α: X → Y such that H is
1209
+ contained in G, where here we identify Perm(X) with Perm(im(α)), which we in turn regard
1210
+ as a subgroup of Perm(Y ) in the usual manner. Then T(S)op is equivalent to C′.
1211
+ 7.3. Total orders. Let C be the class of finite totally ordered sets (the signature consists of
1212
+ a single binary relation). This is an A-category by Proposition 7.1, and the amalgamation
1213
+ property holds. The Fra¨ıss´e limit Ω is the set of rational numbers, with its usual order.
1214
+ Let G = Aut(Ω). It turns out that every open subgroup of G has the form G(A) for some
1215
+
1216
+ 24
1217
+ NATE HARMAN AND ANDREW SNOWDEN
1218
+ finite subset A ⊂ Ω [HS1, Proposition 17.1]. We thus have an equivalence C ∼= T(G)op. The
1219
+ Delannoy category studied in [HSS] is associated to this group G.
1220
+ 7.4. The countable matching. Let C be the class of all simple graphs in which each
1221
+ vertex belongs to at most one edge; the signature consists of a single binary relation (the
1222
+ edge relation on vertices). This is a Fra¨ıss´e class. The limit Ω is a perfect matching on a
1223
+ countable vertex set. Its automorphism group G is the wreath product Z/2 ≀ S, where S is
1224
+ the infinite symmetric group.
1225
+ The category C is an A1-category by Proposition 7.1, but it is not an A-category. To see
1226
+ this, let Y be a single edge, and let X ⊂ Y be one of the vertices. Then any map X → Z
1227
+ admits at most one extension to Y , and so Proposition 7.1(b) fails. Alternatively, the only
1228
+ self-amalgamation of Y over X is the trivial one, and so Proposition 7.1(c) fails.
1229
+ Theorem 6.5 does produce a faithful and essentially surjective functor Φ: C → T(G; E )op,
1230
+ for an appropriate stabilizer class E . We can see directly that this functor is not full: indeed,
1231
+ the map Φ(Y ) → Φ(X) is an isomorphism since every embedding X → Ω extends uniquely
1232
+ to Y . The inverse map does not come from a map Y → X in C, as there are no such maps.
1233
+ Let C0 be the (non-hereditary) subclass of C consisting of graphs in which each vertex
1234
+ belongs to exactly one edge. Then Φ restricts to an equivalence C0 → T(G; E )op.
1235
+ 7.5. Permutation classes. Let P be the class of all finite sets equipped with a pair of total
1236
+ orders. Let X be a structure of P. Label the elements of X as 1, 2, . . . , n according to the
1237
+ first order. We can then enumerate the elements of X under the second order to get a string
1238
+ in the alphabet {1, . . . , n} in which each letter appears once. This string exactly determines
1239
+ the isomorphism type of X. We can thus view structures in P as permutations, and thus
1240
+ typically use symbols like σ for its members. The embedding order on P is the so-called
1241
+ containment order on partitions.
1242
+ A permutation class is a non-empty hereditary subclass C of P. There is an extensive
1243
+ literature on permutation classes; for an overview, see [Vat]. We mention one relevant result
1244
+ here: a theorem of Cameron [Cam2] asserts that there are exactly five permutation classes
1245
+ that are Fra¨ıss´e classes.
1246
+ Let σ be a permutation of length n, and let α1, . . . , αn be other permutations of lengths
1247
+ m1, . . . , mn. There is then a permutation σ[α1, . . . , αn] of length m = m1 + · · · + mn, called
1248
+ inflation. We refer to [Vat, §3.2] for the definition, and just give an example here:
1249
+ 231[12, 321, 3412] = 56 987 3412.
1250
+ We have inserted spaces into the result to make the operation more clear. The three com-
1251
+ ponents on the right correspond to the three permutations in the brackets. Each uses an
1252
+ interval of numbers, and the order of the intervals is determined by the outside permuta-
1253
+ tion. A permutation class C is substitution closed if σ[α1, . . . , αn] belongs to C whenever
1254
+ σ, α1, . . . , αn all belong to C.
1255
+ Proposition 7.2. Let C be a substitution closed permutation class containing some permu-
1256
+ tation of length ≥ 2. Then C is an A-category.
1257
+ Proof. Let τ → σ be a non-isomorphism in C, and suppose the embedding misses i ∈ σ. Let
1258
+ n be the length of σ, and consider the inflation σ′ = σ[α1, . . . , αn] where αj = 1 for j ̸= i,
1259
+ and αi has length length 2. Note that C contains the permutation 1 and some permutation
1260
+ of length 2 since it is hereditary. One easily sees that σ′ is a non-trivial self-amalgamation
1261
+ of σ over τ. Thus C is an A-category by Proposition 7.1.
1262
+
1263
+
1264
+ PRE-GALOIS CATEGORIES AND FRA¨ISS´E’S THEOREM
1265
+ 25
1266
+ Example 7.3. A permutation is separable if it can be built from the permutation 1 with
1267
+ sums and skew-sums; the empty permutation is also separable. (Given two permutations
1268
+ α and β their sum is 12[α, β] and their skew-sum is 21[α, β].) Equivalently, a permutation
1269
+ is separable if the permutations 2413 and 3142 do not embed into it. The class C of all
1270
+ separable permutations is a substitution closed permutation class. It is thus an A-category
1271
+ by the above proposition.
1272
+ The class C does not have the amalgamation property. To see this, regard 123 as a subper-
1273
+ mutation of 1342 (using the first three positions) and 3124 (using the last three positions).
1274
+ In the class of all permutations, there is a unique amalgamation, namely 41352. This is not
1275
+ separable, since when the middle 3 is deleted we obtain 3142. However, C does have the
1276
+ joint embedding property, which means that any two objects embed into a common third
1277
+ object: indeed, if α and β are separable permutations then α and β each embed into their
1278
+ sum 12[α, β], which is also separable.
1279
+ Let B = B(C). Then B is a B-category. Since C has an initial object, the final object 1 of
1280
+ B is atomic. Since the amalgamation property fails for C, it follows that there are maps of
1281
+ atoms X → Z and Y → Z in B such that X ×Z Y = 0 (indeed, take X, Y , and Z to be the
1282
+ atoms corresponding to the permutations 1342, 3124, and 123 discussed above). However,
1283
+ since C has the joint embedding property, it follows that X × Y is non-empty for all atoms
1284
+ X and Y of B.
1285
+
1286
+ References
1287
+ [Cad]
1288
+ Anna Cadoret. “Galois categories” in Arithmetic and geometry around Galois theory. Progr. Math.,
1289
+ vol. 304, Birkh¨auser/Springer, Basel, 2013, pp. 171–246. DOI:10.1007/978-3-0348-0487-5 3
1290
+ [Cam1]
1291
+ Peter J. Cameron. Oligomorphic permutation groups. London Mathematical Society Lecture Note
1292
+ Series, vol. 152, Cambridge University Press, Cambridge, 1990.
1293
+ [Cam2]
1294
+ Peter J. Cameron. Homogeneous Permutations. Electron. J. Combin. 9 (2002), no. 3.
1295
+ DOI:10.37236/1674
1296
+ [Car]
1297
+ Olivia Caramello. Fraisse’s construction from a topos-theoretic perspective. Log. Univers. 8 (2014),
1298
+ no. 2, 261–281. DOI:10.1007/s11787-014-0104-6 arXiv:0805.2778
1299
+ [Del]
1300
+ P. Deligne. La cat´egorie des repr´esentations du groupe sym´etrique St, lorsque t n’est pas un entier
1301
+ naturel. In: Algebraic Groups and Homogeneous Spaces, in: Tata Inst. Fund. Res. Stud. Math.,
1302
+ Tata Inst. Fund. Res., Mumbai, 2007, pp. 209–273.
1303
+ Available at: https://www.math.ias.edu/files/deligne/Symetrique.pdf
1304
+ [DG1]
1305
+ Manfred Droste, R¨udier G¨obel. A categorial theorem on universal objects and its application
1306
+ in abelian group theory and computer science. Contemp. Math. 131 (Part 3) 1992, pp. 49–74.
1307
+ DOI:10.1090/conm/131.3
1308
+ [DG2]
1309
+ Manfred Droste, R¨udier G¨obel. Universal domains and the amalgamation property. Math. Struc-
1310
+ tures Comput. Sci. 3 (1993), no. 2, pp. 137–159. DOI:10.1017/S0960129500000177
1311
+ [DM]
1312
+ P. Deligne, J. Milne. Tannakian Categories. In “Hodge cycles, motives, and Shimura varieties,”
1313
+ Lecture Notes in Math., vol. 900, Springer–Verlag, 1982. DOI:10.1007/978-3-540-38955-2 4
1314
+ Available at: http://www.jmilne.org/math/xnotes/tc.html
1315
+ [Fra]
1316
+ R. Fra¨ıss´e. Sur certaines relations qui g´en´eralisent l’order des nombres rationnels. C. R. Acad. Sci.
1317
+ 237 (1953), pp. 540–542.
1318
+ [GL]
1319
+ Wee Liang Gan, Liping Li. Noetherian property of infinite EI categories. New York J. Math. 21
1320
+ (2015) pp. 369–382. arXiv:1407.8235
1321
+ [HS1]
1322
+ Nate Harman, Andrew Snowden. Oligomorphic groups and tensor categories. arXiv:2204.04526
1323
+ [HS2]
1324
+ Nate Harman, Andrew Snowden. Ultrahomogeneous tensor structures. arXiv:2207.09626
1325
+ [HS3]
1326
+ Nate Harman, Andrew Snowden. Oligomorphic component groups of pre-Tannakian categories. In
1327
+ preparation.
1328
+ [HSS]
1329
+ Nate Harman, Andrew Snowden, Noah Snyder. The Delannoy category. arXiv:2211.15392
1330
+
1331
+ 26
1332
+ NATE HARMAN AND ANDREW SNOWDEN
1333
+ [Irw]
1334
+ Trevor L. Irwin. Fra¨ıss´e limits and colimits with applications to continua. Ph. D. Thesis, Indiana
1335
+ University, 2007.
1336
+ [Kub]
1337
+ Wies�law Kubi´s. Fra¨ıss´e sequences: category-theoretic approach to universal homogeneous struc-
1338
+ tures. arXiv:0711.1683
1339
+ [Mac]
1340
+ Dugald Macpherson. A survey of homogeneous structures. Discrete Math. 311 (2011), no. 15,
1341
+ pp. 1599–1634. DOI:10.1016/j.disc.2011.01.024
1342
+ [Ost]
1343
+ Victor Ostrik. On symmetric fusion categories in positive characteristic. Selecta Math. N.S. 26
1344
+ (2020). DOI:10.1007/s00029-020-00567-5 arXiv:1503.01492
1345
+ [Stacks] Stacks Project. http://stacks.math.columbia.edu (accessed 2022).
1346
+ [Vat]
1347
+ Vincent Vatter. “Permutation classes” in “Handbook of enumerative combinatorics” ed. by Mikl´os
1348
+ B´ona. CRC Press, 2015. arXiv:1409.5159
1349
+
2NFST4oBgHgl3EQfXTj3/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
4dAyT4oBgHgl3EQfcPej/content/tmp_files/2301.00279v1.pdf.txt ADDED
@@ -0,0 +1,537 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.00279v1 [math.AC] 31 Dec 2022
2
+ A NOTE ON WEAK w-PROJECTIVE MODULES
3
+ REFAT ABDELMAWLA KHALED ASSAAD
4
+ Abstract. Let R be a ring. An R-module M is said to be a weak w-projective
5
+ module if Ext1
6
+ R(M, N) = 0 for all N ∈ P†∞
7
+ w
8
+ (see, [18]). In this paper, we in-
9
+ troduce and study some properties of weak w-projective modules. And we use
10
+ these modules to characterize some classical rings, for example, we will prove
11
+ that a ring R is a DW -ring if and only if every weak w-projective is projective,
12
+ R is a Von Neumann regular ring if and only if every FP-projective is weak w-
13
+ projective if and only if every finitely presented R-module is weak w-projective
14
+ and R is a w-semi-hereditary if and only if every finite type submodule of a
15
+ free module is weak w-projective if and only if every finitely generated ideal
16
+ of R is a weak w-projective.
17
+ 1. Introduction
18
+ In this paper, all rings are considered commutative with unity and all modules
19
+ are unital. Let R be a ring and M be an R-module. As usual, we use pdR(M),
20
+ idR(M) and fdR(M) to denote, respectively, the classical projective dimension,
21
+ injective dimension and flat dimension of M, and w.gl.dim(R) and gl.dim(R) to
22
+ denote, respectively, the weak and global homological dimensions of R.
23
+ Now, we review some definitions and notation. Let J be an ideal of R. Following
24
+ [23], J is called a Glaz-Vasconcelos ideal (a GV -ideal for short) if J is finitely gener-
25
+ ated and the natural homomorphism ϕ : R → J∗ = HomR(J, R) is an isomorphism.
26
+ Note that the set GV (R) of GV -ideals of R is a multiplicative system of ideals of
27
+ R. Let M be an R-module. It is Defined
28
+ torGV (M) = {x ∈ M | Jx = 0 for some J ∈ GV (R)}.
29
+ It is clear that torGV (M) is submodule of M. M is said to be GV -torsion (resp.,
30
+ GV -torsion-free) if torGV (M) = M (resp., torGV (M) = 0).
31
+ A GV -torsion-free
32
+ module M is called a w-module if Ext1
33
+ R(R/J, M) = 0 for any J ∈ GV (R). Then,
34
+ projective modules and reflexive modules are w-modules. In the recent paper [23],
35
+ it was shown that flat modules are w-modules. Also it is known that a GV -torsion-
36
+ free R-module M is a w-module if and only ExtR
37
+ 1 (N, M) = 0 for every GV -torsion
38
+ R-module N (see, [13], Theorem 6.2.7). The notion of w-modules was introduced
39
+ firstly over a domain [17] in the study of Strong Mori domains and was extended
40
+ to commutative rings with zero divisors in [23]. Let w − Max(R) denote the set
41
+ of w-ideals of R maximal among proper integral w-ideals of R (maximal w-ideals).
42
+ Following [23, Proposition 3.8], every maximal w-ideal is prime. For any GV -torsion
43
+ free module M,
44
+ Mw := {x ∈ E(M) | Jx ⊆ M for some J ∈ GV (R)}
45
+ 2010 Mathematics Subject Classification. 13D05, 13D07, 13H05.
46
+ Key words and phrases. projective modules , weak w-projective modules, w-flat, GV -torsion,
47
+ finitely presented type, DW -rings, coherent rings, w-coherent rings.
48
+ 1
49
+
50
+ 2
51
+ R.A.K. ASSAAD
52
+ is a w-submodule of E(M) containing M and is called the w-envelope of M, where
53
+ E(M) denotes the injective hull of M. It is clear that a GV -torsion-free module M
54
+ is a w-module if and only if Mw = M.
55
+ Let M and N be R-modules and let f : M → N be a homomorphism. Following
56
+ [12], f is called a w-monomorphism (resp., w-epimorphism, w-isomorphism) if fm :
57
+ Mm → Nm is a monomorphism (resp., an epimorphism, an isomorphism) for all
58
+ m ∈ w − Max(R). A sequence A → B → C of modules and homomorphisms is
59
+ called w-exact if the sequence Am → Bm → Cm is exact for all m ∈ w − Max(R).
60
+ An R-module M is said to be of finite type if there exists a finitely generated free
61
+ R-module F and a w-epimorphism g : F → M. Similarly, an R-module M is said to
62
+ be of finitely presented type if there exists a w-exact sequence F1 → F0 → M → 0,
63
+ where F1 and F0 are finitely generated free.
64
+ In recent years, homological theoretic characterization of w-modules has received
65
+ attention in several papers the literature (for example see [[1], [21], [19], [18]]).
66
+ The notion of w-projective modules and w-flat modules appeared first in [11] when
67
+ R is an integral domain and was extended to an arbitrary commutative ring in
68
+ [[14], [2]].
69
+ In [14], F. G. Wang and H. Kim generalized projective modules to
70
+ w-projective modules by the w-operation.
71
+ An R-module M is said to be a w-
72
+ projevtive if Ext1
73
+ R(L(M), N) is GV -torsion for any torsion-free w-module N, where
74
+ L(M) = (M/ torGV (M))w. Denote by Pw the class of all w-projective R-modules.
75
+ Following [20], an R-module M is a w-split if and only if Ext1
76
+ R(M, N) is GV -torsion
77
+ for all R-modules N. Denote by Sw the class of all w-split R-modules. Hence, by
78
+ [[?], Corollary 2.4], every w-split module is w-projective.
79
+ Following [2], an R-
80
+ module M is said to be w-flat if for any w-monomorphism f : A → B, the induced
81
+ sequence 1 ⊗ f : M ⊗R A → M ⊗R B is a w-monomorphism. Denote by Fw the
82
+ class of all w-flat R-modules. Following [18], throughout this paper, P†∞
83
+ w
84
+ denote
85
+ the class of GV -torsion-free R-modules N with the property that Extk
86
+ R(M, N) = 0
87
+ for all w-projective R-modules M and for all integers k ≥ 1 Clearly, every GV -
88
+ torsionfree injective R-module belongs to P†∞
89
+ w .
90
+ An R-module M is said to be
91
+ weak w-projective if Ext1
92
+ R(M, N) = 0 for all N ∈ P†∞
93
+ w : Denote by wPw the class
94
+ of all weak w-projective modules. Following [18], Wang and Qiao introduce the
95
+ notions of the weak w-projective dimension (w.w-pd) of a module and the global
96
+ weak w-projective dimension (gl.w.w-dim) of a ring. Following [18], a GV -torsion-
97
+ free module M is said to be a strong w-module if Exti
98
+ R(N, M) = 0for any integer
99
+ i ≥ 1 and all GV -torsion modules N. Denote by W∞ the class of all strong w-
100
+ modules. Then all GV -torsion-free injective modules are strong w-modules. Clearly,
101
+ P†∞
102
+ w
103
+ ⊆ W∞. But, in [18], they do not showed that P†∞
104
+ w
105
+ and W∞ are the different
106
+ class of R-modules, and this question was answered in [8].
107
+ Recall from [4] that an R-module M is called FP-projective if Ext1
108
+ R(M, N) = 0
109
+ for any absolutely pure R-module N. Denote by FP the class of all FP-projective
110
+ modules. Recall that an R-module A is an absolutely pure if A is a pure submodule
111
+ in every R-module which contains A as a submodule (see, [3]). C. Megibbeni showed
112
+ in [5], that an R-module A is absolutely pure if and only if Ext1
113
+ R(F, A) = 0, for
114
+ every finitely presented module F. Hence, an absolutely pure module is precisely
115
+ a FP-injective module in [7].
116
+
117
+ A NOTE ON WEAK w-PROJECTIVE MODULES
118
+ 3
119
+ 2. results
120
+ In this section, we introduce a characterize of some classical ring. But we need
121
+ the following lemma
122
+ Lemma 2.1. ([18], Proposition 2.5) An R-module M is weak w-projective if Ext1
123
+ R(M, N) =
124
+ 0 for all N ∈ P†∞
125
+ w
126
+ and for all k ≥ 0.
127
+ It is obvious that, for the class of modules
128
+ { projective } ⊆ { w-split } ⊆ { w-proective } ⊆ {weak w-proective } ⊆ { w-flat }.
129
+ By [[1], Proposition 2.5], if R is a perfect ring, then the five classes of modules above
130
+ coincide.
131
+ In the following proposition, we will give some characterizations of weak w-
132
+ projective modules.
133
+ Proposition 2.2. Let M be an R-module. Then the following are equivalent:
134
+ (1) M is weak w-projective.
135
+ (2) M ⊗ F is weak w-projective for any projective R-module F.
136
+ (3) HomR(F, M) is weak w-projective for any finitely generated projective R-
137
+ module F.
138
+ (4) For any exact sequence of R-modules
139
+ 0 → A → B → C → 0
140
+ with A ∈
141
+ P†∞
142
+ w , the sequence 0 → HomR(M, A) → HomR(M, B) → HomR(M, C) → 0
143
+ is exact.
144
+ (5) For any w-exact sequence of R-modules 0 → L → E → M → 0
145
+ the se-
146
+ quence 0 → HomR(M, N) → HomR(E, N) → HomR(L, N) → 0
147
+ is exact
148
+ for any R-module N ∈ P†∞
149
+ w .
150
+ (6) For any exact sequence of R-modules 0 → L → E → M → 0 the sequence
151
+ 0 → HomR(M, N) → HomR(E, N) → HomR(L, N) → 0
152
+ is exact for any
153
+ R-module N ∈ P†∞
154
+ w .
155
+ Proof. (1) ⇒ (2). Let F be a projective R-module. For any R-module N in P†∞
156
+ w ,
157
+ we have Ext1
158
+ R(F ⊗M, N) ∼= HomR(F, Ext1
159
+ R(M, N)) by [[13], Theorem 3.3.10]. Since
160
+ M is a weak w-projective, Ext1
161
+ R(M, N) = 0. Thus, Ext1
162
+ R(F ⊗ M, N) = 0. Hence,
163
+ F ⊗ M is a weak w-projective.
164
+ (2) ⇒ (1) and (3) ⇒ (1). Follow by letting F = R.
165
+ (1) ⇒ (3). Let N ∈ P†∞
166
+ w , for any finitely generated projective R-module F, we
167
+ have F ⊗ Ext1
168
+ R(M, N) ∼= Ext1
169
+ R(HomR(F, M), N) by [[13], Theorem 3.3.12]. Since
170
+ M is weak w-projective, so Ext1
171
+ R(M, N) = 0. Hence, Ext1
172
+ R(HomR(F, M), N) = 0,
173
+ which implies that HomR(F, M) is weak w-projective.
174
+ (1) ⇒ (4). Let 0 → A → B → C → 0 be an exact sequence with A ∈ P†∞
175
+ w , then
176
+ we have the exact sequence 0 → HomR(M, A) → HomR(M, B) → HomR(M, C) →
177
+ Ext1
178
+ R(M, A). Since M is weak w-projective and A ∈ P†∞
179
+ w , so Ext1
180
+ R(M, A) = 0.
181
+ Thus, 0 → HomR(M, A) → HomR(M, B) → HomR(M, C) → 0 is exact.
182
+ (4) ⇒ (1). Let N ∈ P†∞
183
+ w , consdier an exact sequence 0 → N → E → L → 0
184
+ with E is injective module, then we have the exact sequence 0 → HomR(M, N) →
185
+ HomR(M, E) → HomR(M, L) → Ext1
186
+ R(M, N) → 0, and keeping in mind that
187
+ 0 → HomR(M, N) → HomR(M, E) → HomR(M, L) → 0 is exact, we deduce that
188
+ Ext1
189
+ R(M, N) = 0. Hence, M is weak w-projective.
190
+ (1) ⇒ (5).
191
+ Let 0 → L → E → M → 0
192
+ be a w-exact sequence. For any R-
193
+ module N ∈ P†∞
194
+ w
195
+ so N ∈ W∞. By [[18], Lemma 2.1], we have the exact sequence
196
+
197
+ 4
198
+ R.A.K. ASSAAD
199
+ 0 → HomR(M, N) → HomR(E, N) → HomR(L, N) → Ext1
200
+ R(M, N). Since M is
201
+ weak w-projective, so Ext1
202
+ R(M, N) = 0, and (5) is holds.
203
+ (5) ⇒ (6). Trivial.
204
+ (6) ⇒ (1). Let 0 → L → E → M → 0 be an exact sequence with E is projective.
205
+ Hence, for any R-module N ∈ P†∞
206
+ w , we have 0 → HomR(M, N) → HomR(E, N) →
207
+ HomR(L, N) → Ext1
208
+ R(M, N) → 0 is exact sequence, and keeping in mind that
209
+ 0 → HomR(M, N) → HomR(E, N) → HomR(L, N) → 0 is exact, we deduce that
210
+ Ext1
211
+ R(M, N) = 0, which implies that M is weak w-projective.
212
+
213
+ Recall from [12], that a ring is said to be w-coherent if every finitely generated
214
+ ideal of R is of finitely presented type.
215
+ Proposition 2.3. Let R be a w-coherent ring, E be an injective R-module, M be a
216
+ finitely presented type and N be an R{x}-module. Then, if M is weak w-projective
217
+ R-module, so TorR
218
+ n (M, Hom(N, E)) = 0.
219
+ Proof. Let M be a weak w-projective R-module and let N be an R{x}-modul, so
220
+ Extn
221
+ R(M, n) = 0 by [[18], Proposition 2.5] and since every R{x}-module in P†∞
222
+ w
223
+ by
224
+ [[18], Proposition 2.4]. Henace, by [[16], Proposition 2.13(6)], we have
225
+ TorR
226
+ n (M, Hom(N, E)) ∼= Hom(Extn
227
+ R(M, N), E) = 0.
228
+ Which implies that, TorR
229
+ n (M, Hom(N, E)) = 0
230
+
231
+ Proposition 2.4. Every weak w-projective of finite type is of finitely presented
232
+ type.
233
+ Proof. Let M be a weak w-projective R-module of finite type, so by [[18], Corollary
234
+ 2.9] M is w-projective of finite type. Thus, by [[13], Theorem 6.7.22], we have M
235
+ is finitely presented type.
236
+
237
+ Proposition 2.5. Let M be a GV -torsion-free module. The following assertions
238
+ hold.
239
+ (1) Mw/M is a weak w-projective module.
240
+ (2) M is a weak w-projective if and only if so is Mw.
241
+ Proof. (1). Let M be a GV -torsion-free module. So, by [[13], Proposition 6.2.5] we
242
+ have Mw/M a GV -torsion module. Hence, by [[18], Proposition 2.3(2)], we have
243
+ Mw/M is weak w-projective.
244
+ (2). Let N be an R-module in P†∞
245
+ w . Since M is GV -torsion-free, we have by (1)
246
+ Mw/M is weak w-projective module. Consider the following exact sequence
247
+ 0 → M → Mw → Mw/M → 0
248
+ which is w-exact. Hence, by [[18], Proposition 2.5], M is weak w-projective if and
249
+ only if Mw is weak w-projective.
250
+
251
+ Recall that a ring R is called a DW-ring if every ideal of R is a w-ideal, or
252
+ equivalently every maximal ideal of R is w-ideal [6]. Examples of DW-rings are
253
+ Pr¨ufer domains, domains with Krull dimension one, and rings with Krull dimension
254
+ zero. We note that if R is DW-ring, then every R-module in P†∞
255
+ w .
256
+ In the following proposition, we will give a new characterizations of DW-rings which
257
+ are the only rings with these properties.
258
+ Proposition 2.6. Let R be a ring. The following statements are equivalent:
259
+
260
+ A NOTE ON WEAK w-PROJECTIVE MODULES
261
+ 5
262
+ (1) Every weak w-projective R-module is projective.
263
+ (2) Every w-projective R-module is projective.
264
+ (3) Every GV -torsion R-module is projective.
265
+ (4) Every GV -torsion-free R-module is strong w-module.
266
+ (5) Every finitely presented type w-flat is projective.
267
+ (6) Every weak w-projective R-module is w-module.
268
+ (7) R is DW-ring.
269
+ Proof. (1) ⇒ (2) and (2) ⇒ (3). The are trivial.
270
+ (3) ⇒ (4). Let M be a GV -torsion-free R-module, for any GV -torsion R-module
271
+ N, we have Exti
272
+ R(N, M) = 0 since N is projective. Hence, M is a strong w-module.
273
+ (4) ⇒ (7). By [[12], Theorem 3.8] since every strong w-module is w-module.
274
+ (1) ⇒ (6). Trivial, since every projective R-module is w-module.
275
+ (2) ⇒ (5). Let M be a finitely presented type w-flat. By [[18], Corollary 2.9], we
276
+ have M is a finite type w-projective. Hence, M is a projective R-module by (2).
277
+ (5) ⇒ (7). Let M be a finitely presented w-flat. Then, M is finitely presented type
278
+ w-flat, so M is projective by (5). Hence, by [[9], Proposition 2.1], we have R is a
279
+ DW-ring.
280
+ (6) ⇒ (7). Let M be a GV -torsion-free R-module. Hence, by Proposition 2.5,
281
+ we have Mw/M is weak w-projectiveis and so w-module by (6). Thus, Mw/M is
282
+ a GV -torsion-free. Hence, Mw/M = 0 and so Mw = M. Thus, M is w-module.
283
+ Then, R is a DW-ring by [[12], Theorem 3.8].
284
+ (7) ⇒ (1).
285
+ Let M be a weak w-projective.
286
+ For any R-module N, we have
287
+ Ext1
288
+ R(M, N) = 0 because N ∈ P†∞
289
+ w
290
+ (since R is DW). Hence, M is a projective
291
+ module.
292
+
293
+ Note that the equivalence (1) ⇔ (7) in Proposition 2.6 was given in [[8], Propo-
294
+ sition 4.4] for the domain case.
295
+ L. Mao and N. Ding in [[4]], proved that a ring R is a Von Neumann regular if
296
+ and only if every FP-projective R-module is projective.
297
+ Next, we will give new characterizations of a Von Neumann regular rings by weak
298
+ w-projective modules.
299
+ Proposition 2.7. Let R be a ring. Then, the following statements are equivalent:
300
+ (1) Every FP-projective R-module is weak w-projective.
301
+ (2) Every finitely presented R-module is weak w-projectiv.
302
+ (3) Every finitely presented R-module is w-flat.
303
+ (4) R is a Von Neumann regular.
304
+ Proof. (1) ⇒ (2). Follows from the fact that every finitely presented R-module is
305
+ FP-projective.
306
+ (2) ⇒ (3). Let M be a finitely presented R-module, so M is weak w-projective.
307
+ Hence, M is w-flat by [[18], Corollary 2.11].
308
+ (3) ⇒ (4). Let I be a finitely generated ideal of R, then R/I is finitely presented.
309
+ So R/I is w-flat by (3), then w − fdR(R/I) = 0. Thus, w − w.gl.dim(R) = 0 by
310
+ [[19], Proposition 3.3]. Hence, R is Von Neumann regular by [[15], Theorem 4.4].
311
+ (4) ⇒ (1). Let M be a FP-projective, so M is projective by [[4], Remarks 2.2].
312
+ Hence, M is a weak w-projective.
313
+
314
+ Next, we will give an example of FP-projective module which is not weak w-
315
+ projective.
316
+
317
+ 6
318
+ R.A.K. ASSAAD
319
+ Example 2.8. Consider the local Quasi-Frobenius ring R := k[X]/(X2) where k
320
+ is a field, and denote by X the residue class in R of X. Then, (X) is FP-projective
321
+ R-module which is not weak w-projective.
322
+ Proof. Since R is a Quasi-Frobenius ring, then every absolutely pure R-module is
323
+ injective. Hence, for any absolutely pure R-module N, we have Ext1
324
+ R((X), N) = 0,
325
+ so (X) is FP-projective. But, (X) is not projective by [[10], Example 2.2], and so
326
+ not weak w-projective, since R is DW-ring.
327
+
328
+ Recall from [[15]] that a ring R is said to be w-semi-hereditary if every finite
329
+ type ideal of R is w-projective.
330
+ Proposition 2.9. The following are equivalent:
331
+ (1) R w-semi-hereditary.
332
+ (2) Every finite type submodule of a free module is weak w-projective.
333
+ (3) Every finite type ideal of R is a weak w-projective.
334
+ (4) Every finitely generated submodule of a free module is weak w-projective.
335
+ (5) Every finitely generated ideal of R is a weak w-projective
336
+ Proof. (1) ⇒ (2). Let J be a finite type submodule of a any free module. Hence,
337
+ J is w-projective by [[15], Theorem 4.11]. Then J is weak w-projective by [[18],
338
+ Corollary 2.9].
339
+ (2) ⇒ (3) ⇒ (5) and (2) ⇒ (4) ⇒ (5). These are trivial.
340
+ (5) ⇒ (1). Let J be a finite type ideal of R. Then J is w-isomorphic to a finitely
341
+ generated subideal I of J. Hence J is weak w-projective by hypothesis and [[18],
342
+ Corollary 2.7].
343
+
344
+ Proposition 2.10. Every GV -torsion-free weak w-projective module is torsion-
345
+ free.
346
+ Proof. Let M be a GV -torsion-free weak w-projective module. Hence, M is a GV -
347
+ torsion-free w-flat by [[18], Corollary 2.11].Thus, by [[13], Proposition 6.7.6], we
348
+ have M is torsion-free.
349
+
350
+ In the next example we will prove that a weak w-projective module need not to
351
+ be torsion-free.
352
+ Example 2.11. Let R be an integral domain and J be a proper GV -ideal of R.
353
+ Then M := R ⊕ R/J is a weak w-projective module but not torsion-free.
354
+ Proposition 2.12. Let R be a ring and M be a finitely presented R-module. Then,
355
+ the following statements are equivalent:
356
+ (1) M is w-split.
357
+ (2) M is weak w-projective.
358
+ (3) For any w-exact 0 → A → B → C → 0 , the sequence
359
+ 0 → HomR(M, A) → HomR(M, B) → HomR(M, C) → 0 is w-exact.
360
+ Proof. (1) ⇒ (2). Trivial, since every w-split R-module is weak w-projective.
361
+ (2) ⇒ (3). Let 0 → A → B → C → 0 be a w-exact sequence of R-modules. Then,
362
+ for any maximal w-ideal m of R, 0 → Am → Bm → Cm → 0 is exact sequence of
363
+ Rm-modules. Thus, since Mm is free by [[18], Proposition 2.8], we have the exact
364
+
365
+ A NOTE ON WEAK w-PROJECTIVE MODULES
366
+ 7
367
+ sequence 0 → HomR(Mm, Am) → HomR(Mm, Bm) → HomR(Mm, Cm) → 0 . Since
368
+ M is finitely presented, we have the commutative diagram
369
+ HomRm(Mm, Am)
370
+
371
+ HomRm(Mm, Bm)
372
+
373
+ HomRm(Mm, Cm)
374
+ || ≀
375
+ || ≀
376
+ || ≀
377
+ HomR(M, A)m
378
+
379
+ HomR(M, B)m
380
+
381
+ HomR(M, C)m
382
+ Thus, 0 → HomR(M, A)m → HomR(M, B)m → HomR(M, C)m → 0 is exact, and
383
+ so, 0 → HomR(M, A) → HomR(M, B) → HomR(M, C) → 0 is w-exact.
384
+ (3) ⇒ (1). By [[20], Proposition 2.4].
385
+
386
+ Recall from [22], that a w-exact sequence of R-modules 0 → A → B → C → 0
387
+ is said to be w-pure exact if, for any R-module M, the induced sequence
388
+ 0 → A ⊗ M → B ⊗ M → C ⊗ M → 0
389
+ is w-exact.
390
+ Proposition 2.13. Let C be a finitely presented type R-module. Then, the follow-
391
+ ing statements are equivalent:
392
+ (1) C is a weak w-projective R-module.
393
+ (2) Every w-exact sequence of R-modules 0 → A → B → C → 0 is w-pure
394
+ exact.
395
+ Proof. (1) ⇒ (2). Since every weak w-projective is w-flat by [[18], Corollary 2.11].
396
+ Hence, by [[22], Theorem 2.6], we have the result.
397
+ (2) ⇒ (1). Let 0 → A → B → C → 0 be a w-exact sequence, so is a w-pure
398
+ exact by hypothesis. Thus, C is w-flat by [[22], Theorem 2.6]. Hence C is a weak
399
+ w-projective by [[18], Corollary 2.9].
400
+
401
+ Proposition 2.14. The following are equivalent for a finite type R-module M.
402
+ (1) M is a w-projective module.
403
+ (2) Ext1
404
+ R(M, B) = 0 for any B ∈ P†∞
405
+ w .
406
+ (3) Ext1
407
+ R(M, N) = 0 for any R{x}-module N.
408
+ (4) M{x} is a projective R{x}-module.
409
+ Proof. (1) ⇒ (2). This is trivial.
410
+ (2) ⇒ (3). By [[18], Proposition 2.4].
411
+ (3) ⇒ (4). Let N be an R{x}-module, we have by [[16], Proposition 2.5],
412
+ Extn
413
+ R{x}(M{x}, N) ∼= Extn
414
+ R(M, N) = 0.
415
+ Thus, M{x} is a projective R{x}-module.
416
+ (4) ⇒ (1). Let M{x} be a projective R{x}-module, so M{x} is finitely generated
417
+ by [[13], Theorem 6.6.24] and since M is of finite type. Hence, by [[13], Theorem
418
+ 6.7.18], M is w-projective module.
419
+
420
+ Recall form [[18]], that an R-module D is said to be P†∞
421
+ w -divisible if it is iso-
422
+ morphic to E/N where E is a GV -torsin-free injective R-module and N ∈ P†∞
423
+ w
424
+ is
425
+ a submodule of E.
426
+ Proposition 2.15. Let M be an R-module and any integer m ≥ 1. The following
427
+ are equivalent.
428
+ (1) w.w-pdRM ≤ m.
429
+ (2) Extm
430
+ R (M, D) = 0 for all P†∞
431
+ w -divisible R-module D.
432
+
433
+ 8
434
+ R.A.K. ASSAAD
435
+ Proof. (1) ⇒ (2). Let N ∈ P†∞
436
+ w . Then there exists an exact sequence of R-modules
437
+ 0 → N → E → H → 0, where E is a GV -torsion-free injective R-module. Hence,
438
+ D is P†∞
439
+ w -divisibl. Then we have the induced exact sequence
440
+ Extm
441
+ R (M, H) → Extm+1
442
+ R
443
+ (M, N) → Extm+1
444
+ R
445
+ (M, E) = 0,
446
+ for any integer m ≥ 1. The left term is zero by hypothesis. Hence, Extm+1
447
+ R
448
+ (M, N) =
449
+ 0, which implies that w.w-pdRM ≤ m by [[18], Proposition 3.1].
450
+ (2) ⇒ (1). Let w.w-pdRM ≤ m and D be a P†∞
451
+ w -divisible R-module. Then we
452
+ have an exact sequence 0 → N → E → H → 0, where E is a GV -torsion-free
453
+ injective R-module and N ∈ P†∞
454
+ w . Hence, we have the exact sequence
455
+ 0 = Extm
456
+ R (M, E) → Extm
457
+ R (M, H) → Extm+1
458
+ R
459
+ (M, N).
460
+ The right term is zero by [[18], Proposition 3.1]. Therefore, Extm
461
+ R (M, H) = 0.
462
+
463
+ Proposition 2.16. Let M and N be two R-modules. Then,
464
+ w.w-pdR(M ⊕ N) = sup{w.w-pdRM, w.w-pdRN}
465
+ Proof. The inequality w.w-pdR(M ⊕ N) ≤ sup{w.w-pdRM, w.w-pdRN} follows
466
+ from the fact that the class of weak w-projective modules is closed under direct
467
+ sums by [[18], Proposition 2.5(1)]. For the converse inequality, we may assume that
468
+ w.w-pdR(M ⊕ N) = n is finite. Thus, for any R-module X ∈ P†∞
469
+ w ,
470
+ Extn+1
471
+ R
472
+ (M ⊕ N, X) ∼= Extn+1
473
+ R
474
+ (M, X) ⊕ Extn+1
475
+ R
476
+ (N, X).
477
+ Since Extn+1
478
+ R
479
+ (M ⊕ N, X) = 0 by [[18], Proposition 3.1]. Hence, Extn+1
480
+ R
481
+ (M, X) =
482
+ Extn+1
483
+ R
484
+ (N, X) = 0, which implies that, sup{w.w-pdRM, w.w-pdRN} ≤ n.
485
+
486
+ References
487
+ [1] F. A. Almahdi, M. Tamekkante and R. A. K. Assaad, On the right orthogonal complement
488
+ of the class of w-flat modules, J. Ramanujan Math. Soc. 33 No.2 (2018) 159–175. 2, 3
489
+ [2] H. Kim and F. Wang, On LCM-stable modules, J. Algebra Appl. 13, no. 4 (2014), 1350133,
490
+ 18 pages. 2
491
+ [3] B. H. Maddox, Absolutely pure modules, Proc. Amer. Math. Soc. 18 (1967) 155–158. 2
492
+ [4] L. Mao and N. Ding, FP-projective dimension, Comm. in Algebra. 33 (2005) 1153–1170. 2,
493
+ 5
494
+ [5] C. Megibben, Absolutely pure modules, Proc. Am. Math. Soc. 26 (1970) 561-566. 2
495
+ [6] A. Mimouni, Integral domains in which each ideal is a w-ideal, Commun. Algebra 33 (2005),
496
+ 1345–1355. 4
497
+ [7] B. Stenstr¨om, Coherent rings and FP-injective modules, J. Lond. Math. Soc. 2(2) (1970)
498
+ 323–329. 2
499
+ [8] Y. Y. Pu, W. Zhao, G. H. Tang, and F. G. Wang, w∞-projective modules and Krull domains,
500
+ Commun. Algebra, Vol. 50, No. 8, (2022), 3390–3402. 2, 5
501
+ [9] M. Tamekkante, R. A. K. Assaad and E. Bouba, Note On The DW Rings, Inter. Elec. J. of
502
+ Algebra. VO. 25 (2019). 5
503
+ [10] M. Tamekkante, M. Chhiti and K.Louartiti, Weak Projective Modules and Dimension, Int.
504
+ J. of Algebra. 5 (2011) 1219 -1224. 6
505
+ [11] F. Wang, On w-projective modules and w-flat modules, Algebra Colloq. 4 (1997), no. 1,
506
+ 111-120. 2
507
+ [12] F. Wang, Finitely presented type modules and w-coherent rings, J. Sichuan Normal Univ.
508
+ 33 (2010) 1–9. 2, 4, 5
509
+ [13] F. Wang and H. Kim, Foundations of Commutative Rings and Their Modules, (Springer
510
+ Nature Singapore Pte Ltd., Singapore, 2016). 1, 3, 4, 6, 7
511
+ [14] F. Wang and H. Kim, Two generalizations of projective modules and their applications, J.
512
+ Pure Applied Algebra 219 (2015) 2099-2123. 2
513
+
514
+ A NOTE ON WEAK w-PROJECTIVE MODULES
515
+ 9
516
+ [15] F. Wang and H. Kim, w-injective modules and w-semi-hereditary rings, J. Korean Math.
517
+ Soc. 51 (2014), no. 3, 509–525. 5, 6
518
+ [16] F. Wang and H. Kim, Relative FP-injective modules and relative IF rings, Commun. Alge-
519
+ bra, Vol. 49, (2021), 3552-3582. 4, 7
520
+ [17] F. Wang and R. L. McCasland, On w-modules over strong Mori domains, Comm. Algebra
521
+ 25(4), 1285-1306 (1997). 1
522
+ [18] F. Wang and L. Qiao, A homological characterization of Krull domains II, Comm. in Algebra.
523
+ (2019). 1, 2, 3, 4, 5, 6, 7, 8
524
+ [19] F. Wang and L. Qiao, The w-weak global dimension of commutative rings, Bull. Korean
525
+ Math. Soc. 52 (2015), no. 4, 1327–1338. 2, 5
526
+ [20] F. Wang and L. Qiao, A new version of a theorem of Kaplansky. arXiv: 1901.02316. 2, 7
527
+ [21] F. G. Wang and D. C. Zhou, A homological characterization of Krull domains, Bull. Korean
528
+ Math. Soc. 55 (2018), no. 2, 649–657. 2
529
+ [22] S. Xing and F. Wang, Purity over Pr¨ufer v-multiplication domains, J. of Algebra Appl. Vol.
530
+ 16, No. 5 1850100 (2018). 7
531
+ [23] H. Y. Yin, F. G. Wang, X. S. Zhu and Y. H. Chen, w-modules over commutative rings, J.
532
+ Korean. Math. Soc. 48(1) (2011) 207–222.
533
+ 1
534
+ Department of Mathematics, Faculty of Science, University Moulay Ismail Meknes,
535
+ Box 11201, Zitoune, Morocco
536
+ Email address: [email protected]
537
+
4dAyT4oBgHgl3EQfcPej/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
5NE3T4oBgHgl3EQfpArI/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31d697d382c5913a13d8c7f99df84f60c743e4848e42c402ec70c32bd8bab464
3
+ size 14933
89E3T4oBgHgl3EQfqwpo/content/tmp_files/2301.04654v1.pdf.txt ADDED
@@ -0,0 +1,1127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.04654v1 [nlin.CD] 11 Jan 2023
2
+ Classical and Quantum Elliptical Billiards: Mixed Phase Space and Short
3
+ Correlations in Singlets and Doublets
4
+ T. Ara´ujo Lima1, ∗ and R. B. do Carmo2, †
5
+ 1Departamento de F´ısica, Universidade Federal Rural de Pernambuco, Recife, PE 52171-900, Brazil
6
+ 2Instituto Federal de Alagoas, Piranhas, AL 57460-000, Brazil
7
+ (Dated: January 13, 2023)
8
+ Billiards are flat cavities where a particle is free to move between elastic collisions with the bound-
9
+ ary. In chaos theory these systems are simple prototypes, their conservative dynamics of a billiard
10
+ may vary from regular to chaotic, depending only on the border. The results reported here seek
11
+ to shed light on the quantization of classically chaotic systems. We present numerical results on
12
+ classical and quantum properties in two bi-parametric families of Billiards, Elliptical Stadium Bil-
13
+ liard (ESB) and Elliptical-C3 Billiards (E-C3B). Both are elliptical perturbations of chaotic billiards
14
+ with originally circular sectors on their borders. Our numerical calculations show evidence that the
15
+ elliptical families can present a mixed classical phase space, identified by a parameter ρc < 1,
16
+ which we use to guide our analysis of quantum spectra. We explored the short correlations through
17
+ nearest neighbor spacing distribution p(s), which showed that in the mixed region of the classical
18
+ phase space, p(s) is well described by the Berry-Robnik-Brody (BRB) distributions for the ESB.
19
+ In agreement with the expected from the so-called ergodic parameter α = tH/tT, the ratio between
20
+ the Heisenberg time and the classical diffusive-like transport time signals the possibility of quantum
21
+ dynamical localization when α < 1. For the E-C3B family, the eigenstates can be split into singlets
22
+ and doublets. BRB describes p(s) for singlets as the previous family in the mixed region. However,
23
+ the p(s) for doublets are described by new distributions recently introduced in the literature but
24
+ only tested in a few cases for ρc < 1. We observed that as ρc decreases, the p(s)’s tend to move
25
+ away simultaneously from the GOE (singlets) and GUE (doublets) distributions.
26
+ Keywords: Billiards. Chaos. Quantization. GOE. GUE.
27
+ I.
28
+ INTRODUCTION
29
+ The idea that molecules may be behind Thermody-
30
+ namics (grounded in Statistical Mechanics) was one of
31
+ the tremendous scientific advances of the 19th century. In
32
+ particular, these particles, constituents of gases, are asso-
33
+ ciated with the concept of ergodicity, then called molecu-
34
+ lar chaos. The word ergodic came from the Greek ergon
35
+ (work) and odos (trajectory) and was used by Boltzmann
36
+ to represent the hypothetical visit to all points of the
37
+ phase space by a particle of that gas with random micro-
38
+ scopic dynamic behavior. The introduction of the proba-
39
+ bility in theory that came to be called Statistical Mechan-
40
+ ics of Equilibrium passed by a long probationary regime,
41
+ with more convincing results occurring only in the first
42
+ decades of the 20th century [1]. The so-called Ergodic
43
+ Hypothesis only gained the rigor of a theorem with the
44
+ work of the Russian mathematician Y. Sinai in the 60s-
45
+ 70s for an ideal gas of only two particles [2]. A system is
46
+ chaotic if two neighboring trajectories in the phase space
47
+ separate exponentially.
48
+ Suppose the distance in phase
49
+ space between such trajectories is proportional to eλt.
50
+ The λ parameter is called the Lyapunov exponent. In re-
51
+ ality, λ represents the greatest of Lyapunov’s exponents.
52
+ Therefore, the existence of at least one positive Lyapunov
53
+ exponent characterizes a chaotic system [3]. Billiards sys-
54
+ tems are prototypes in the study of chaos and describe
55
+ ∗ Corresponding author: [email protected]
56
57
+ the free movement of a point particle in a closed domain
58
+ Ω with elastic reflections on the boundary ∂Ω of the do-
59
+ main. The nature of this conservative dynamical system
60
+ depends exclusively on the shape of the border ∂Ω, vary-
61
+ ing from entirely regular (i.e., ellipses and annular con-
62
+ centric regions) to completely chaotic (i.e., Sinai billiard).
63
+ Without loss of generality, we consider that the particle
64
+ has mass m = 1 and velocity of module |v| = 1. A dis-
65
+ crete dynamics well describes this 2-dimensional motion
66
+ in time on variables (ℓ, φ), the fraction of perimeter of
67
+ ∂Ω, and the incidence angle where a collision happens
68
+ parametrizes the discrete-time generally [4]. A primor-
69
+ dial example that deserves to be mentioned here is the
70
+ Bunimovich stadium. This billiard can present λ > 0.
71
+ Its shape consists of two semicircles joined by two finite-
72
+ size segments 2t, forming a stadium.
73
+ It is chaotic for
74
+ any t > 0. In a pure circular billiard, collisions keep the
75
+ angular momentum in relation to its center (focus) con-
76
+ stant.
77
+ The Bunimovich stadium does not present this
78
+ property in its dynamics, known as a defocusing [5]. It is
79
+ hugely relevant to this work because the Elliptical Sta-
80
+ dium Billiard is a perturbation of it, resulting in classical
81
+ dynamics with mixed phase space.
82
+ Quantum mechanics has been one of the best-tested
83
+ physical theories since its emergence. The theory makes
84
+ excellent predictions not only for the atom of hydro-
85
+ gen, which is classically integrable, as well as the he-
86
+ lium atom, which is classically not integrable. Nothing is
87
+ more natural than whether there is an effect analogous to
88
+ chaos in quantum mechanics. The term quantum chaos
89
+ is generally understood as studying the quantum behav-
90
+
91
+ 2
92
+ ior of classically chaotic systems [6]. One commonly used
93
+ means of studying these systems is to statistically char-
94
+ acterize spectral properties in the semiclassical regime
95
+ and compare them with results from the random matri-
96
+ ces theory [7].
97
+ In billiards, obtaining the energy spectrum is an essen-
98
+ tial step for analysis. The problem is to solve the time-
99
+ independent Schr¨odinger equation with null potential in
100
+ the planar region Ω with Dirichlet boundary conditions
101
+ at ∂Ω:
102
+
103
+ ∇2ϕn(r) = −k2
104
+ nϕ(r),
105
+ r ∈ Ω
106
+ ϕn(r) = 0,
107
+ r ∈ ∂Ω,
108
+ (1)
109
+ expression is also known as the Helmholtz Equation [8].
110
+ Where k2
111
+ n = 2mEn/ℏ2. In order to characterize univer-
112
+ sality, one must first unfold the energy spectrum {En}
113
+ so that a unit means (⟨sn⟩ = 1) nearest neighbor spacing
114
+ (nns) sn = En+1 − En is obtained. This approach be-
115
+ came relevant after two important conjectures. Namely,
116
+ the Berry-Tabor (BT) conjecture [9] and the Bohigas-
117
+ Giannoni-Schmit (BGS) conjecture [10].
118
+ The BT con-
119
+ jecture states that, in the semiclassical limit, the statis-
120
+ tical properties of the energy spectrum of a classically
121
+ integrable system must correspond to the prediction of
122
+ uncorrelated randomly distributed energy levels.
123
+ As a
124
+ result, the semiclassical nns distribution p(s) must obey
125
+ Poisson:
126
+ pP(s) = exp(−s).
127
+ (2)
128
+ On the other hand, according to the BGS conjecture, in
129
+ the case of a classically chaotic system, the spectral prop-
130
+ erties must follow the universal statistics of the eigen-
131
+ values of Gaussian random matrices [7]. Several recent
132
+ works have improved the turnover of the BGS conjecture
133
+ in a theorem [11–14]. These proofs still have controver-
134
+ sies and limitations pointed out by some authors [15, 16].
135
+ The terminology ”BGS conjecture” fits the current arti-
136
+ cle for quantized billiards.
137
+ More recently, in [17], the
138
+ conjecture was extended to purely ergodic systems. If
139
+ one disregards spin, in the presence (absence) of time-
140
+ reversal symmetry, p(s) must correspond to that of the
141
+ GOE, Gaussian Orthogonal Ensemble (GUE, Gaussian
142
+ Unitary Ensemble):
143
+
144
+ pGOE(s) = (π/2)s exp(−πs2/4),
145
+ pGUE(s) = (32/π2)s2 exp(−4s2/π).
146
+ (3)
147
+ Based on these assumptions, Leyvraz, Schmit, and Selig-
148
+ man (LSS) [18] predicted and tested numerically that
149
+ chaotic billiards with only a three-fold (C3) symmetry
150
+ (without reflection symmetry) have doublets with spec-
151
+ tral statistics of the GUE type, although billiards are
152
+ by time reversal. LSS considered a billiard consisting of
153
+ three straight segments of an equilateral triangle with
154
+ rounded corners by two circumferences of different radii,
155
+ here called Circular-C3 Billiard (C-C3B). In particular,
156
+ LSS showed results for a double ratio between the radii
157
+ where there is a satisfactory agreement for p(s) with the
158
+ GUE statistics, for a total of approximately 800 dou-
159
+ blets. Later, C. Dembowski et al. used microwave bil-
160
+ liards with C3 symmetry to check experimentally the re-
161
+ sult predicted by LSS. Besides, they showed that singlets
162
+ follow GOE [19].
163
+ The BT [20], BGS [21–23] and LSS conjectures have
164
+ been investigated in the literature, but there have been
165
+ comparatively fewer studies on the LSS findings [24–27].
166
+ Until now, little has been said about the situations of
167
+ C3 symmetric billiards with mixed classical phase space,
168
+ where chaotic sea and stable KAM-islands coexist. Here,
169
+ we propose to shed light on the quantum properties of bil-
170
+ liards with mixed classical phase space. For this, we per-
171
+ form numerical calculations on the energy spectra of two
172
+ bi-parametric families of billiards with elliptical sectors
173
+ on their boundaries and analyze the short correlations.
174
+ The first one is the Elliptical Stadium Billiard (ESB), a
175
+ perturbation of the Bunimovich Stadium, whose mixed
176
+ classical phase space was studied in [28, 29]. In sequence,
177
+ we introduce a perturbation of the C-C3B, replacing the
178
+ circumferences with ellipses. Recently, billiards with el-
179
+ liptical borders have been studied in other contexts, i.e.,
180
+ in singular potentials [30], in relativistic limits [31], and
181
+ flows that move around chaotic cores [32].
182
+ We start
183
+ the analysis by presenting the billiards, discussing their
184
+ classical dynamics, showing some mixed phase spaces,
185
+ and calculating the fraction of the chaotic sea on these
186
+ phase spaces. Finally, we follow with the quantized bil-
187
+ liards’ spectral properties, investigating the nns distribu-
188
+ tion p(s) with formulas for intermediate quantum statis-
189
+ tics derived for the doublets recently [27].
190
+ II.
191
+ THE BI-PARAMETRIC BILLIARDS
192
+ FAMILIES AND CLASSICAL DYNAMICS
193
+ The billiards systems studied in this work belong to
194
+ two bi-parametric families, the Elliptical Stadium Bil-
195
+ liards (ESB) and Elliptical-C3 Billiards (E-C3B). The
196
+ first one consists of a perturbation of the Bunimovich
197
+ Stadium. It comprises two half-ellipses (major semi-axis
198
+ a and minor semi-axis 1) that bracket a rectangular sec-
199
+ tor of thickness 2t and height 2.
200
+ [28] showed that in
201
+ the region a ∈ (1,
202
+
203
+ 2) and t ∈ (0, ∞) are possible to
204
+ find chaotic dynamics or a mixed phase space depending
205
+ on the parameters.
206
+ In [29] is presented a critical be-
207
+ havior of the billiard dynamics near a transition curve,
208
+ t(a) =
209
+
210
+ a2 − 1 for the interval a ∈ (1,
211
+
212
+ 4/3). Based
213
+ on these previous works, we focus our analysis on this
214
+ last interval and t ∈ (0, 1/
215
+
216
+ 3). The E-C3B is based on
217
+ C-C3B, but ellipses instead of circumferences curve the
218
+ corners. The larger (smaller) ellipse has Ae (ae) and Be
219
+ (be) semi-axes. In all cases described here, the relations
220
+ Ae = 2ae and Be = 2be are maintained, with ae and be in
221
+ the range (0,
222
+
223
+ 3/6). The LSS billiard is reproduced with
224
+ ae = be =
225
+
226
+ 3/12. Here, by our knowledge, we present
227
+ for the first time a perturbation on the C-C3B resulting
228
+ in a system that shows a mixed phase space.
229
+
230
+ 3
231
+ A Fundamental Domain (FD) is a neighborhood in Ω
232
+ that contains only one image for any point in the sys-
233
+ tem. Besides the boundary of the ∂Ω, there are addi-
234
+ tional boundaries between adjacent FDs, which are the
235
+ symmetry lines. Classically, billiard dynamics can always
236
+ be reduced to a FD by assuming specular reflections at
237
+ the symmetry lines [33, 34]. For this, we use the FD of
238
+ each billiard in our calculations on the classical dynam-
239
+ ics. In Fig. 1, we graph billiards in families indicating
240
+ the parameters and their respective FDs.
241
+ ESB
242
+ E-C3B
243
+ 1
244
+ a
245
+ t
246
+ 1
247
+ a
248
+ t
249
+ Symmetry Lines
250
+ Additional Boundaries
251
+ Original Boundaries
252
+ �3/3
253
+ �3/3
254
+ ae
255
+ be
256
+ Ae
257
+ Be
258
+ 120º
259
+ 120º
260
+ 120º
261
+ 120º
262
+ (a)
263
+ (b)
264
+ FIG. 1. (a) Original Boundaries of Elliptical Stadium Billiard
265
+ and Elliptical-C3 Billiard. For ESB, the symmetry lines are
266
+ referent to reflections on vertical and horizontal axes. While
267
+ E-C3B are referent to 120◦ rotational axes. (b) Fundamental
268
+ Domains of ESB and E-C3B. The symmetry lines are replaced
269
+ by additional boundaries forming the planar region where we
270
+ analyze these billiards’ classical dynamics.
271
+ The global dynamical properties of the ESB with unit
272
+ mass and velocity may be characterized through colli-
273
+ sions of orbits with the vertical side of its FD shown in
274
+ Fig. 1. An additional part of the boundary dictates this
275
+ edge and does not change with the variation of parame-
276
+ ters. The reduced phase space is then a rectangle defined
277
+ by the vertical position y, where a collision occurs at dis-
278
+ crete time n, and the tangent component of the velocity
279
+ in a collision, vy, with 0 < y < 1 and −1 < vy < 1.
280
+ The small gray dots in Fig.
281
+ 2 show the phase plane
282
+ for some values of parameters (a, t) after n = 105 colli-
283
+ sions from the initial conditions (ICs), clearly exhibiting
284
+ a mixed (regular-irregular) characteristic. We plot one
285
+ example of a stable trajectory in red for each one. Quan-
286
+ titative characterization of these mixed-phase spaces can
287
+ be made through the chaotic (regular) fraction ρc (ρr)
288
+ of each phase portrait with ρc + ρr = 1 and 0 ⩽ ρc ⩽ 1.
289
+ The phase plane is partitioned into Nc small disjoint cells
290
+ to measure these quantities [27, 29, 35–37]. For a given
291
+ orbit, let N(n) be the number of different cells in the
292
+ phase space, which are visited up to n impacts in the
293
+ cross-section. The relative measure r(n) is defined as the
294
+ fraction of visited cells averaged over a set of ICs, i.e.,
295
+ r(n) = ⟨N(n)⟩/Nc. So the chaotic fraction of the phase
296
+ space is obtained via
297
+ ρc = lim
298
+ n→∞ lim
299
+ Nc→∞ r(n),
300
+ (4)
301
+ for ICs in the chaotic sea. In our numerical approach,
302
+ we consider Nc = 106, n = 2 · 107, and averages in 20
303
+ random ICs. For the billiards with mixed phase space
304
+ in Fig.
305
+ 2, ρ(a)
306
+ c
307
+ = 0.991884 and ρ(b)
308
+ c
309
+ = 0.857184. The
310
+ left panel of Fig.
311
+ 3 shows a numerical diagram of ρc.
312
+ The ergodic property (ρc = 1) is numerically guaranteed
313
+ in black regions. This diagram also supports previous
314
+ works [28, 29], where a critical transition from a mixed
315
+ phase space to a fully ergodic was found to cross a critical
316
+ line t(a) =
317
+
318
+ a2 − 1.
319
+ y
320
+ y
321
+ vy
322
+ (a) a = 1.04
323
+ t = 0.15
324
+ (b) a = 1.04
325
+ t = 0.01
326
+ FIG. 2. Upper Panels: ESB boundaries for some values of pa-
327
+ rameters (a, t) with stable trajectories in red. Lower Panels:
328
+ corresponding phase portraits for 105 collisions with the ver-
329
+ tical boundary from the IC (y0, vy0) = (0.5, 0.0) (small gray
330
+ dots). The red plots correspond to the trajectories in the up-
331
+ per panels. The mixed phase spaces present ρ(a)
332
+ c
333
+ = 0.991884
334
+ and ρ(b)
335
+ c
336
+ = 0.857184.
337
+ The E-C3B’s classical dynamical properties will be
338
+ studied in the same way but are characterized through
339
+ the collisions of the orbits with the horizontal side of its
340
+ FD shown in Fig. 1, which does not change with the vari-
341
+ ation of parameters. The reduced phase space is then a
342
+ rectangle defined by the horizontal position x, and the
343
+ tangent component of the velocity in a collision, vx, with
344
+ 0 < x <
345
+
346
+ 3/3 and −1 < vx < 1. The small gray dots
347
+ in Fig. 4 show the phase plane for some values of pa-
348
+ rameters (ae, be) after n = 2 · 107 collisions from the ICs,
349
+ clearly exhibiting mixed (regular-irregular) characteris-
350
+ tic. The values of chaotic fraction are ρ(a)
351
+ c
352
+ = 0.935152
353
+ and ρ(b)
354
+ c
355
+ = 0.800792. The right panel of Fig. 3 shows a
356
+ numerical diagram of ρc. The ergodic property (ρc = 1)
357
+ is numerically guaranteed in black regions.
358
+ This map
359
+
360
+ 1.0
361
+ 0.5
362
+ 0.0
363
+ -0.5
364
+ -1.0
365
+ 0.2
366
+ 0.2
367
+ 0.0
368
+ 0.4
369
+ 0.6
370
+ 0.8
371
+ 0.4
372
+ 0.6
373
+ 0.8
374
+ 1.0
375
+ 0.0
376
+ 1.04
377
+ ae
378
+ be
379
+ FIG. 3. Left Panel: diagram of the chaotic fraction of the
380
+ phase space ρc for the ESB. The tiny green line is the critical
381
+ line t(a) =
382
+
383
+ a2 − 1 studied in [28, 29]. Right Panel: same
384
+ diagram for the E-C3B showing a distinguished phase space
385
+ behavior depending on the parameters. The ergodic property
386
+ (ρc = 1) is numerically guaranteed in black regions. These
387
+ maps will guide us in exploring quantum properties, where
388
+ these values will be relevant parameters to our analysis.
389
+ will guide us in exploring quantum properties described
390
+ in the next section, where these values will be relevant
391
+ parameters to our analysis.
392
+ G
393
+ x
394
+ x
395
+ (a) ae = 0.2784
396
+ (b) ae = 0.2886088
397
+ vx
398
+ be = 0.256
399
+ be = 0.281522
400
+ FIG. 4.
401
+ Upper Panels: E-C3B boundaries for some values
402
+ of parameters (ae, be) with stable trajectories in red. Lower
403
+ Panels: corresponding phase portraits for 2·107 collisions with
404
+ the horizontal boundary from the IC (x0, vx0) = (0.5, 0.0)
405
+ (small gray dots). The red plots correspond to the trajectories
406
+ in the upper panels. The mixed phase spaces present ρ(a)
407
+ c
408
+ =
409
+ 0.935152 and ρ(b)
410
+ c
411
+ = 0.800792.
412
+ III.
413
+ QUANTIZATION AND EIGENVALUES
414
+ SHORT CORRELATIONS
415
+ All Energy spectra {En} of eq.
416
+ (1) were calculated
417
+ with an algorithm based on the scaling method intro-
418
+ duced by E. Vergini and M. Saraceno (VS) in [38]. This
419
+ approach allows us to access high-lying energy eigenval-
420
+ ues that have been unfolded to obtain a unit mean spac-
421
+ ing (⟨sn⟩ = 1) for each billiard. Our results are based
422
+ on sets of approximately 70,000 eigenvalues for a given
423
+ pair of parameters. According to [6], there is possibly no
424
+ more intensely studied spectral statistics more than p(s),
425
+ the density of probability of finding two levels nearest
426
+ neighbor spaced by s.
427
+ A.
428
+ The Singlets Case
429
+ Initially, we focused on results for ESB. Some pro-
430
+ poses have been made to describe these distributions for
431
+ systems whose present mixed-phase space on its classi-
432
+ cal counterpart. Here we focus on two of them. They
433
+ result in intermediate formulas between Poisson and
434
+ GOE statistics through parameters variation.
435
+ Firstly,
436
+ we cite the purely phenomenologic approach by Brody
437
+ [39], where an exponent ν is gradually varied to obtain
438
+ a smooth change between the integrable (ν = 0) and
439
+ chaotic (ν = 1) cases:
440
+ pB(s) = aν(ν + 1)sν exp
441
+
442
+ −aνs(ν+1)�
443
+ ,
444
+ (5)
445
+ where aν =
446
+
447
+ Γ
448
+
449
+ ν+2
450
+ ν+1
451
+ ��ν+1
452
+ and Γ(x) is the Gamma func-
453
+ tion.
454
+ The second distribution cited here is the Berry-
455
+ Robnik-Brody (BRB), a proposal that takes under con-
456
+ sideration the chaotic (regular) fraction of the classical
457
+ phase space ρc (ρr) [40]:
458
+ pBRB(s) =
459
+ exp(−ρrs)
460
+
461
+
462
+
463
+ ρ2
464
+ r
465
+ (β + 1)Γ
466
+
467
+ β+2
468
+ β+1
469
+ �Q
470
+
471
+ 1
472
+ β + 1; aβ(ρcs)β+1
473
+
474
+ +
475
+ [2ρrρc + (β + 1)aβρβ+2
476
+ c
477
+ sβ] exp[−aβ(ρcs)β+1]
478
+
479
+ .
480
+ (6)
481
+ As in the Brody distribution, aβ =
482
+
483
+ Γ
484
+
485
+ β+2
486
+ β+1
487
+ ��β+1
488
+ and
489
+ Q(κ; x) is the Incomplete Gamma function.
490
+ This dis-
491
+ tribution can go through other distributions varying the
492
+ free parameters ρc and β. For β = 0, pBRB(s) = pP(s)
493
+ and for β = 1 it recovers the distribution of Berry-Robnik
494
+ (BR) [41]. If ρc = 0, pBRB(s) = pP(s) again, while for
495
+ ρc = 1, pBRB = pB(s).
496
+ The nns for ESB were previously studied in [22] with
497
+ around 3,000 eigenvalues of eq.
498
+ (1).
499
+ We use the VS
500
+ method to obtain around 65,000 eigenvalues beyond the
501
+ first 5,000.
502
+ The BRB distribution can fit all p(s) ob-
503
+ tained for all parameters tested on ESB. We have two
504
+ independent parameters for this distribution, ρc, and β.
505
+ However, we fixed ρc at the value obtained in the diagram
506
+ of Fig. 3. The upper panels of Fig. 5 shows representa-
507
+ tive results. The chaotic case presents β = 1.000 ± 0.020,
508
+ the GOE distribution. The mixed (0 < ρc < 1) present
509
+ β = 0.978 ± 0.018 and β = 0.191 ± 0.014, intermediate
510
+ distributions between Poisson and GOE. These results go
511
+ in the direction of the quantum localization, previously
512
+ studied in other billiards systems [42, 43] and discussed
513
+ next.
514
+
515
+ 1.0
516
+ 0.5
517
+ 0.0
518
+ -0.5
519
+ 0.2
520
+ 0.0
521
+ 0.1
522
+ 0.4
523
+ 0.5
524
+ 0.3
525
+ 0.60.0
526
+ 0.1
527
+ 0.2
528
+ 0.3
529
+ 0.4
530
+ 0.5
531
+ 0.61.00
532
+ 0.3
533
+ 0.2
534
+ ae
535
+ 0.1
536
+ 0.0
537
+ 0.78
538
+ 0.0
539
+ 0.1
540
+ 0.2
541
+ 0.3
542
+ be1.00
543
+ 0.6
544
+ 0.5
545
+ 0.4
546
+ t 0.3
547
+ 0.2
548
+ 0.1
549
+ 0.0
550
+ 1.00
551
+ 1.04
552
+ 1.08
553
+ 1.12
554
+ 1.16 0.60
555
+ a5
556
+ 0.0
557
+ 0.2
558
+ 0.4
559
+ 0.6
560
+ 0.8
561
+ 1.0
562
+ 0.0
563
+ 1.0
564
+ 2.0
565
+ 3�
566
+
567
+ 0.0
568
+ 0.2
569
+ 0.4
570
+ 0.6
571
+ 0.8
572
+ 1.0
573
+ 0.0
574
+ 1.0
575
+ 2.0
576
+ ��
577
+
578
+ 0.0
579
+ 1.0
580
+ 2.0
581
+ ���
582
+ p(s)
583
+ p(s)
584
+ s
585
+ s
586
+ s
587
+ (
588
+
589
+
590
+ ESB
591
+ E-C3B
592
+ E-C3B
593
+ E-C3B
594
+ ESB
595
+ ESB
596
+ (b)
597
+
598
+ 
599
+  
600
+ (e)
601
+  
602
+ ae = 0.2784
603
+ be = 0.256
604
+ ae = 0.2
605
+ be = 0.25
606
+ t = 0.287
607
+ t = 0.15
608
+ t = 0.01
609
+ ae = 0.2886088
610
+ be = 0.281522
611
+ FIG. 5. Representative results for BRB distributions fits for p(s). Upper Panels: results on ESB with a = 1.04 and some values
612
+ of t. The chaotic case t = 0.287 (ρc = 1) presents β = 1.000 ± 0.020, the GOE distribution. The mixed cases t = 0.15 and
613
+ t = 0.01 (0 < ρc < 1) present β = 0.978 ± 0.018 and β = 0.191 ± 0.014 respectively, intermediate distributions between Poisson
614
+ and GOE. Lower Panels: results on E-C3B with some values of (ae, be). The chaotic case, (ae, be) = (0.2, 0.25) (ρc = 1) presents
615
+ β = 1.000 ± 0.097, the GOE distribution. The mixed cases, (ae, be) = (0.2784, 0.256) and (ae, be) = (0.2886088, 0.281522)
616
+ (0 < ρc < 1) present β = 0.999 ± 0.057 and β = 0.203 ± 0.073 respectively, in the range of intermediate distributions between
617
+ Poisson and GOE. The fits with the Brody formula and BRB distribution are indistinguishable in both billiards families.
618
+ Quantum dynamical localization corresponds to a pe-
619
+ culiar quantum distribution of the linear or angular mo-
620
+ mentum peaked at zero, with walls that decay exponen-
621
+ tially, differently from the classical results, which pre-
622
+ dicts, for a chaotic or disordered system, a diffusive trans-
623
+ port [44]. The phenomenon can be reviewed in [45]. An
624
+ interesting feature of the quantum dynamical localization
625
+ is that it allows us to estimate the conditions under which
626
+ the comparison with the standard random matrix theory
627
+ is adequate or, in other words, whether an energy eigen-
628
+ values data set belongs to the deep semiclassical regime.
629
+ We follow closely [42] in the short description below. The
630
+ key idea is to express the ergodic parameter α = tH/tT,
631
+ where tH is the (quantum) Heisenberg time, and tT is the
632
+ (classical) transport time, in terms of accessible magni-
633
+ tudes, such as the (quantum) energy E and the (classical)
634
+ number of collisions off the billiard border, NT. From [42]
635
+ the ratio is expressed as
636
+ α = kL
637
+ πNT
638
+ ,
639
+ (7)
640
+ where L is the perimeter of the boundary and k2 ∼ E.
641
+ The condition for quantum dynamical localization in a
642
+ given energy spectrum, α ⩽ 1, can then be written as
643
+ k ⩽ kc = πNT/L. To estimate NT, we consider an en-
644
+ semble of orbits initially directed perpendicularly to ∂Ω
645
+ and follow its random spreading as a function of the dis-
646
+ crete time n. The symbols in Fig. 6 illustrate the results
647
+ for the mean square momentum ⟨p2⟩ as a function of
648
+ n in a monolog scale (averaged in sets of 103 randomly
649
+ chosen ICs) for members of two billiards family.
650
+ Sat-
651
+ uration of ⟨p2⟩ occurs at different times NT depending
652
+ on parameters. For the ESB family, all calculated spec-
653
+ tra have kmax ≲ kc as the largest eigenvalue, equivalent
654
+ to the 70,000th level at least. These facts are in agree-
655
+ ment with the intermediate statistics well fitted with eq.
656
+ (6) as in [23, 27, 40, 42]. The same occurs for the sin-
657
+ glets in the E-C3B family, where the condition kmax ≲ kc
658
+ is equivalent to the 70,000th level. The representative
659
+ results are in the lower panels of Fig. 5. The chaotic
660
+ case presents β = 1.000 ± 0.097, the GOE distribution.
661
+ The mixed (0 < ρc < 1) present β = 0.999 ± 0.057 and
662
+ β = 0.203 ± 0.073, in the range of intermediate distribu-
663
+ tions between Poisson and GOE. In the next section, we
664
+ discuss the doublets subspace.
665
+ B.
666
+ The Doublets Case
667
+ Consider a classically chaotic system with time-
668
+ reversal (TR) invariance and a point-group (PG) symme-
669
+ try. If the TR and the PG operations do not commute,
670
+ non-self-conjugate invariant subspaces of the PG must
671
+ exhibit GUE spectral fluctuations instead of GOE ones
672
+ [18]. For example, consider a billiard in the xy plane with
673
+ the C3 symmetry. Such a billiard has eigenfunctions ϕm
674
+ (m = −1, 0, +1), such that ϕ0 is symmetric and repeats
675
+ itself after a rotation of 2π/3 about the symmetry axis,
676
+ whereas ϕ±1 will be repeated only after three consecutive
677
+ rotations of 2π/3. In other words, if R(2π/3) is the rota-
678
+ tion operator for an angle of 2π/3, one has R(2π/3)ϕm =
679
+ exp(i 2π
680
+ 3 m)ϕm. Let Θ be the time reversal operator. Θ is
681
+ an antiunitary operator that commutes with the Hamil-
682
+ tonian H, which has eigenvalue Em, i.e., Hϕm = Emϕm.
683
+ It follows that HΘϕm = ΘHϕm = EmΘϕm (Θϕm is also
684
+ an eigenfunction of H with the same eigenvalue Em). Are
685
+
686
+ 6
687
+ 0.0
688
+ 1.0
689
+ 2.0
690
+  
691
+ 4.0
692
+ 5.0
693
+ 0.0
694
+ 0.1
695
+ 0.2
696
+ 0
697
+  
698
+ 0.4
699
+ log10 n
700
+ Elliptical-C3 Billiard
701
+ Elliptical Stadium Billiard
702
+ 0.0
703
+ 0.1
704
+ 0.2
705
+ 0.3
706
+ 0.4
707
+ FIG. 6. Calculated mean square of the momentum as a func-
708
+ tion of the discrete time n in a monolog scale (number of
709
+ collisions of the particle off the billiard boundary). Lines are
710
+ guides for the eyes. Upper panel: results for members of the
711
+ ESB family with a = 1.04. The red dots are for t = 0.287
712
+ and present saturation at NT ≃ 7.102.
713
+ Blue dots are for
714
+ t = 0.15, and saturation at NT ≃ 2.103, and black dots are for
715
+ t = 0.01 presenting NT ≃ 6.102. Lower Panel: same calcula-
716
+ tions for the E-C3B, the red dots are for (ae, be) = (0.2, 0.25)
717
+ and present saturation at NT ≃ 3.102.
718
+ Blue dots are for
719
+ (ae, be) = (0.2784, 0.256) and saturation at NT ≃ 7.102, and,
720
+ black dots are for (ae, be) = (0.2886088, 0.281522) presenting
721
+ NT ≃ 2.103.
722
+ ϕm and Θϕm the same eigenstate? For this subspace one
723
+ may write Θϕm = (−1)mϕ−m. Thus, Θϕ0 = ϕ0, i.e., ϕ0
724
+ is a singlet. The top panels in Fig. 7 show cases of the
725
+ probability density |varphi0|2. On the other hand, ϕ1
726
+ and ϕ−1 must correspond to distinct states. One refers
727
+ to this doublet state as a Kramers degeneracy. The mid-
728
+ dle panels in Fig. 7 show the real and imaginary parts
729
+ of the member ϕ1 of a doublet, say (ϕ1, ϕ−1), in the
730
+ same billiard. The probability density |ϕ1|2 recovers the
731
+ C3 symmetry (rightmost middle panel in Fig. 7). The
732
+ bottom panels in Fig. 7 show the same state under the
733
+ application under rotation operator R(2π/3). A complex
734
+ conjugation of the shown state obtains the other mem-
735
+ ber ϕ−1 of the doublet.
736
+ Since these degenerate states
737
+ are not TR invariant, they must follow the GUE of ran-
738
+ dom matrices, providing the billiard is classically chaotic,
739
+ according to the LSS results.
740
+ For the E-C3B, the degenerate states remain invariant
741
+ to TR. However, the spectral distribution will be changed
742
+ for cases where the classical dynamics is not completely
743
+ chaotic (ρc < 1), with a p(s) resultant that deviates from
744
+ the GUE case. Thus, it is necessary to use new inter-
745
+ mediate formulas to study the distribution of doublets in
746
+ billiards with mixed classical phase space. The following
747
+ formulas we derived in [27].
748
+ Following the same steps
749
+ in [39] led to the eq. (5), a Brody-like formula for the
750
+ transition between the Poisson and GUE distributions is
751
+ FIG. 7. Top panels: Density plots of squared eigenfunctions
752
+ corresponding to singlet states in the LSS billiard, exhibiting
753
+ the underlying C3 symmetry. In the color scale, |ϕ1,a|2 is the
754
+ maximum probability in each case. Middle panels: Real and
755
+ imaginary parts of a member ϕ1 of a doublet. In the color
756
+ scale, ±ϕ1,a is the minimum and maximum of the wave func-
757
+ tion. The probability density recovers the C3 symmetry (right
758
+ panels). Bottom panels: Same state in the middle under the
759
+ application of the rotation operator R(2π/3).
760
+ obtained, namely,
761
+ pB,2(s) = (η + 1)b2
762
+ ηs2η exp
763
+
764
+ −bηsη+1�
765
+ ,
766
+ (8)
767
+ where
768
+ bη =
769
+
770
+ Γ
771
+ �2η + 1
772
+ η + 1
773
+ ��−(η+1)
774
+ ,
775
+ (9)
776
+ and 0 ⩽ η ⩽ 1. For η = 0, pB,2(s) reduces to the Poisson
777
+ distribution, whereas for η = 1, the Wigner distribution
778
+ for the GUE is obtained. In [40], the dynamical local-
779
+ ization of chaotic eigenstates was taken into account and
780
+ their coupling with the regular ones through tunneling
781
+ effects. The so-called BRB distribution previously dis-
782
+ cussed in sec.
783
+ III A. Following this, the formula that
784
+ corresponds to the Poisson ↔ GUE crossover is
785
+ pBRB,2(s)eρrs =
786
+ ρrρcb
787
+ 1
788
+ γ+1
789
+ γ
790
+ (2 − ρrs) Q
791
+ �1 + 2γ
792
+ 1 + γ ; bγ (ρcs)γ+1
793
+
794
+ +
795
+
796
+ ρ2
797
+ r
798
+
799
+ 1 + bγργ+1
800
+ c
801
+ sγ+1�
802
+ +
803
+ (1 + γ)
804
+
805
+ ργ+1
806
+ 2
807
+ bγsγ�2 �
808
+ e−bγ(ρcs)γ+1,
809
+ (10)
810
+ where bγ is defined as in eq. (9) and Q(κ; x) is the incom-
811
+ plete Gamma function. Here, pBRB,2(s) = pP(s) if ρr = 1
812
+ or if γ = 0, and pBRB,2(s) = pB,2(s) if ρr = 0. In [27], the
813
+ above formula was widely tested only in the regime of
814
+
815
+ 1.5
816
+ 1
817
+ 0.5
818
+ 0
819
+ -0.5
820
+ -1
821
+ -1.5
822
+ -24
823
+ 3.5
824
+ 3
825
+ 2.5
826
+ 2
827
+ 1.5
828
+ 1
829
+ 0.507
830
+ full ergodicity (polygonal cases) and in a single case with
831
+ ρc < 1. Here, we detail a non-polygonal billiards family
832
+ that produces a wide variability of ρc values. In these
833
+ cases, pBRB,2 well-fitted distributions of nns for ρc < 1
834
+ for all investigated cases. The representative results are
835
+ in Fig. 8. As in the previous section, the doublets sub-
836
+ space is in the region of the spectrum such that k ≲ kc,
837
+ equivalent to 60,000th level.
838
+ 0.0
839
+ 0.2
840
+ 0.4
841
+ 0.6
842
+ 0.8
843
+ 1.0
844
+ E-C3B
845
+ E-C3B
846
+ E-C3B
847
+ (a)
848
+ (b)
849
+ 
850
+ ae = 0.2784
851
+ be = 0.256
852
+ ae = 0.2
853
+ be = 0.25
854
+ ae = 0.2886088
855
+ be = 0.281522
856
+ p(s)
857
+ p(s)
858
+ p(s)
859
+ s
860
+ 0.0
861
+ 0.2
862
+ 0.4
863
+ 0.6
864
+ 0.8
865
+ 1.0
866
+ 0.0
867
+ 1.0
868
+ 2.0
869
+ 
870
+ 0.0
871
+ 0.2
872
+ 0.4
873
+ 0.6
874
+ 0.8
875
+ 1.0
876
+ FIG. 8. Representative results for BRB-like distributions, eq.
877
+ (10), fits for p(s) in doublets subspace for same members of E-
878
+ C3B family of Fig. 5. In panel (a), the chaotic case (ae, be) =
879
+ (0.2, 0.25) (ρc = 1) presents γ = 0.960 ± 0.050, in the range
880
+ of a GUE distribution. In panels (b) and (c), the mixed cases
881
+ (ae, be) = (0.2784, 0.256) and (ae, be) = (0.2886088, 0.281522)
882
+ (0 < ρc < 1) present γ = 1.000 ± 0.032 and γ = 1.00 ±
883
+ 0.13 respectively, in the range of intermediate distributions
884
+ between Poisson and GUE. Fits with Brody-like formula (8),
885
+ and BRB-like distribution (10), are indistinguishable.
886
+ IV.
887
+ CONCLUSIONS ANS PERSPECTIVES
888
+ This paper presents numerical results on classical dy-
889
+ namics and quantization in two bi-parametric billiard
890
+ families. The ESB comprises two ellipses of minor semi-
891
+ axe unitary, major semi-axe a, and a rectangular region of
892
+ length 2t [28, 29]. The other family, introduced here as E-
893
+ C3B, presents the C3 symmetry [18, 25, 27] and is formed
894
+ by an equilateral triangle with rounded corners by two
895
+ ellipses with semi-axis Ae = 2ae and Be = 2be. First, we
896
+ investigate the classical dynamics of these billiards where
897
+ we built detailed diagrams for the chaotic fraction (ρc) of
898
+ their phase spaces. After that, we investigated the nns
899
+ distributions p(s) for these systems, a measure of short
900
+ correlations. In the asymmetric ESB family, the param-
901
+ eters space region (a, t) where the classical phase space
902
+ is mixed (regular and chaotic regions coexist), all found
903
+ statistics present intermediated results between Poisson
904
+ and GOE distributions. The BRB distribution [40], eq.
905
+ (6), very well fitted all cases.
906
+ These results perfectly
907
+ agree with the expected from the ergodic parameter α
908
+ that signals the possibility of quantum dynamical local-
909
+ ization when α < 1. All sets of eigenvalues used as data
910
+ are in a range of energy that satisfies this condition. In
911
+ the E-C3B family, the eigenstates can be split into sin-
912
+ glets and doublets subspaces due the symmetry. The first
913
+ subspace presents similar results to the previous family,
914
+ reinforcing the agreement with the expected energy range
915
+ set with α < 1 [43]. The doublets subspace, whose for
916
+ the chaotic cases is expected a GUE distribution shows
917
+ the more relevant result in this work. All found statistics
918
+ present intermediated results between Poisson and GUE
919
+ distributions for the parameter space (ae, be) where the
920
+ classical phase space is mixed. A BRB-like formula [27],
921
+ eq. (10), well fitted all cases. This formula was tested for
922
+ ρc < 1 and α < 1 in just a few cases. Particularly in the
923
+ E-C3B family, the minimum value of the chaotic fraction
924
+ of the classical phase space is ρc ≃ 0.8. This limitation
925
+ can be avoided if we set free the conditions Ae = 2ae
926
+ and Be = 2be, used here to follow closer to the C-C3B
927
+ introduced by LSS. In this perspective, a phase diagram
928
+ analog to Fig. 3 even more intricate is generated, possible
929
+ further explorations of eq. (10).
930
+ The parameter β in eq. (6) was extensively compared
931
+ with other localization metrics, including analyses involv-
932
+ ing Husimi functions, calculations of the entropy localiza-
933
+ tion measure [42], and normalized inverse participation
934
+ ratio [23]. How the new distribution, eq. (10), uses the
935
+ same arguments to include the parameter γ is merito-
936
+ rious in a future comparison between this quantity and
937
+ other localization metrics.
938
+ Another theme meritorious
939
+ of investigation is the level statistics in an energy range
940
+ that α ≫ 1. The BR formulas are expected to provide
941
+ a good description of the deep semiclassical regime [41],
942
+ an excellent agreement has been found with numerical
943
+ experiments in a billiard for which the eigenvalues set
944
+ is around 1,500,000th level [42], an impressive number.
945
+ The BR-like formula in [27] should be tested in a range
946
+ of high energy in the doublets subspace to close the com-
947
+ parisons between the short correlations in the singlets
948
+ sets and doublets subspace. In addition, our results indi-
949
+ cate an intriguing correlation between singlets and dou-
950
+ blets spectra for the E-C3B family, producing p(s)’s that
951
+ move away from the GOE and GUE distributions as ρc
952
+ decreases, thus requiring a further investigation of the ob-
953
+
954
+ 8
955
+ served effect. In this perspective, a range opens up to in-
956
+ vestigate the correlation of spectra of different subspaces
957
+ [26, 34, 46–48] in billiards that present only rotational
958
+ symmetries greater than three, which will give the pos-
959
+ sibility of performing other tests with the new formulas
960
+ (8) and (10).
961
+ ACKNOWLEDGMENTS
962
+ Useful discussions with F. M. de Aguiar and K. Terto
963
+ are gratefully acknowledged. This work has been sup-
964
+ ported by the Brazilian Agencies CNPq, CAPES and
965
+ FACEPE.
966
+ [1] J. R. Dorfman, An Introduction to Chaos in Nonequilib-
967
+ rium Statiscal Mechanis, 1st ed. (Cambridge University
968
+ Press, 1999).
969
+ [2] Y. G. Sinai, Dynamical systems with elastic reflections.
970
+ ergodic properties of dispersing billiards, Uspekhi Mat.
971
+ Nauk 25, 141 (1970).
972
+ [3] E. Ott, Chaos in Dynamical Systems, 2nd ed. (Cambridge
973
+ University Press, 2002).
974
+ [4] N. Chernov and R. Markarian, Chaotic Billiards, 1st ed.
975
+ (American Mathematical Society, 2006).
976
+ [5] L. A. Bunimovich, On ergodic properties of certain bil-
977
+ liards, Uspekhi Mat. Nauk 8, 73 (1974).
978
+ [6] H.-J. St¨ockmann, Quantum Chaos, an introduction, 1st
979
+ ed. (Cambridge University Press, 2000).
980
+ [7] M. L. Mehta, Random Matrices, 1st ed. (Elsevier, 2004).
981
+ [8] S. Hassani, Mathematical Physics: a modern introduction
982
+ its foundations, 1st ed. (Springer-Verlag New York, Inc.,
983
+ 1999).
984
+ [9] M. V. Berry and M. Tabor, Level clustering in the regular
985
+ spectrum, Proc. R. Soc. Lond. A. 356, 375 (1977).
986
+ [10] O. Bohigas, M. J. Giannoni, and C. Schmit, Charac-
987
+ terization of chaotic quantum spectra and universality
988
+ of level fluctuation laws, Physical Review Letters 52, 1
989
+ (1984).
990
+ [11] S. M¨uller, S. Heusler, P. Braun, F. Haake, and A. Alt-
991
+ land, Semiclassical foundation of universality in quantum
992
+ chaos, Physical Review Letters 93, 014103 (2004).
993
+ [12] S. M¨uller, S. Heusler, P. Braun, F. Haake, and A. Al-
994
+ tland, Periodic-orbit theory of universality in quantum
995
+ chaos, Physical Review E 72, 046207 (2005).
996
+ [13] S. Heusler,
997
+ S. M¨uller,
998
+ A. Altland,
999
+ P. Braun, and
1000
+ F. Haake, Periodic-orbit theory of level correlations,
1001
+ Physical Review Letters 98, 044103 (2007).
1002
+ [14] S. M¨uller, M. S. Heusler, A. Altland, P. Braum, and
1003
+ F. Haake, Periodic-orbit theory of universal level corre-
1004
+ lations in quantum chaos, New Journal of Physics 11,
1005
+ 103025 (2009).
1006
+ [15] D. Ullmo, Bohigas-giannoni-schmit conjecture, Scholar-
1007
+ pedia (2016).
1008
+ [16] B.
1009
+ Shnirelman,
1010
+ Shnirelman
1011
+ theorem,
1012
+ Scholarpedia
1013
+ (2020).
1014
+ [17] ˇC. Lozej, G. Casati, and T. Prosen, Quantum chaos in tri-
1015
+ angular billiards, PhysicalL Review R 4, 013138 (2022).
1016
+ [18] F. Leyvraz, C. Schmit, and T. Seligman, Anomalous
1017
+ spectral statistics in a symmetrical billiard, Journal of
1018
+ Physics A: Mathematical and General 29, L575 (1996).
1019
+ [19] C.
1020
+ Dembowski,
1021
+ B.
1022
+ Dietz,
1023
+ H.-D.
1024
+ Gr¨af,
1025
+ A.
1026
+ Heine,
1027
+ F. Leyvraz, M. Miski-Oglu, A. Richter, and T. H. Selig-
1028
+ man, Phase shift experiments identifying kramers dou-
1029
+ blets in a chaotic superconducting microwave billiard of
1030
+ threefold symmetry, Physical Review Letters 90, 014102
1031
+ (2003).
1032
+ [20] G. Casati, B. V. Chirikov, and I. Guarneri, Energy-level
1033
+ statistics of integrable quantum systems, Physical Re-
1034
+ view Letters 54, 1350 (1985).
1035
+ [21] M. Robnik, Quantising a generic family of billiards with
1036
+ analytic boundaries, J. Phys. A: Math. Gen. 17, 1049
1037
+ (1984).
1038
+ [22] V. Lopac, I. Mrkonji´c, N. Pavin, and D. Radi´c, Chaotic
1039
+ dynamics of the elliptical stadium billiard in the full pa-
1040
+ rameter space, Physica D 217, 88 (2006).
1041
+ [23] B. Batisti´c, ˇC. Lozej, and M. Robnik, Statistical proper-
1042
+ ties of the localization measure of chaotic eigenstates and
1043
+ the spectral statistics in a mixed-type billiard, Physical
1044
+ Review E 100, 062208 (2019).
1045
+ [24] B. Dietz, A. Heine, V. Heuveline, and A. Richter, Test
1046
+ of a numerical approach to the quantization of billiards,
1047
+ Physical Review E 71, 026703 (2005).
1048
+ [25] D. D. de Menezes, M. J. e Silva, and F. M. de Aguiar, Nu-
1049
+ merical experiments on quantum chaotic billiards, Chaos
1050
+ 17, 023116 (2007).
1051
+ [26] S. H. Tekur and M. S. Santhanam, Symmetry deduction
1052
+ from spectral fluctuations in complex quantum systems,
1053
+ Physical Review Research 2, 032063(R) (2020).
1054
+ [27] T. A. Lima, R. B. do Carmo, K. Terto, and F. M.
1055
+ de Aguiar, Time-reversal invariant hexagonal billiards
1056
+ with a point symmetry, Physical Review E 104, 064211
1057
+ (2021).
1058
+ [28] E. Canale, R. Markarian, O. S. Kamphorst, and S. P.
1059
+ de Carvalho, A lower bound for chaos on the elliptical
1060
+ stadium, Physica D 115, 189 (1998).
1061
+ [29] T. Ara´ujoLima and F. M. de Aguiar, Classical bil-
1062
+ liards and quantum fluids, Physical Review E 91, 012923
1063
+ (2015).
1064
+ [30] B. Dietz and A. Richter, Intermediate statistics in sin-
1065
+ gular quarter-ellipse shaped microwave billiards, Journal
1066
+ of Physics A: Mathematical and Theoritical 55, 314001
1067
+ (2022).
1068
+ [31] P. Yu, W. Zhang, B. Dietz, and L. Huang, Quantum
1069
+ signatures of chaos in relativistic quantum billiards with
1070
+ shapes of circle- and ellipse-sectors, Journal of Physics A:
1071
+ Mathematical and Theoritical 55, 224015 (2022).
1072
+
1073
+ 9
1074
+ [32] L. A. Bunimovich, Elliptic flowers:
1075
+ simply connected
1076
+ billiard tables where chaotic (non-chaotic) flows move
1077
+ around chaotic (non-chaotic) cores, Nonlinearity 35, 3245
1078
+ (2022).
1079
+ [33] P. Cvitanovi´c and B. Eckhardt, Symmetry decomposition
1080
+ of chaotic dynamics, Nonlinearity 6, 277 (1993).
1081
+ [34] Z.-Y. Li and L. Huang, Quantization and interference
1082
+ of a quantum billiard with fourfold rotational symmetry,
1083
+ Physical Review E 101, 062201 (2020).
1084
+ [35] M. Robnik, J. Dobnikar, A. Rapisarda, and T. Prosen,
1085
+ New universal aspects of diffusion on strongly chaotic
1086
+ systems, Journal Physics A: Mathematical and General
1087
+ 30, L803 (1997).
1088
+ [36] G. Casati and T. Prosen, Mixing property of triangular
1089
+ billiards, Physical Review Letters 83, 4729 (1999).
1090
+ [37] T. Ara´ujoLima, S. Rodr´ıguez-P´erez, and F. M. de Aguiar,
1091
+ Ergodicity and quantum correlations in irrational trian-
1092
+ gular billiards, Physical Review E 87, 062902 (2013).
1093
+ [38] E. Vergini and M. Saraceno, Calculation by scaling of
1094
+ highly excited states billiards, Physical Review E 52,
1095
+ 2204 (1995).
1096
+ [39] T. A. Brody, A statistical measure for the repulsion of
1097
+ energy levels, Lettere Al Nuovo Cimento 7 (1973).
1098
+ [40] B. Batisti´c and M. Robnik, Semiempirical theory of level
1099
+ spacing distribution beyond the berry–robnik regime:
1100
+ modeling the localization and the tunneling effects, Jour-
1101
+ nal Physics A: Mathematical and General 43, 215101
1102
+ (2010).
1103
+ [41] M. Berry and M. Robnik, Semiclassical level spacing
1104
+ when regular and chaotic orbits coexist, Journal Physics
1105
+ A: Mathematical and General 17, 2413 (1984).
1106
+ [42] B. Batisti´c and M. Robnik, Quantum localization of
1107
+ chaotic eigenstates and the level spacing distribution,
1108
+ Physical Review E 88, 052913 (2013).
1109
+ [43] ˇC. Lozej, D. Lukman, and M. Robnik, Classical and
1110
+ quantum mixed-type lemon billiards without stickiness,
1111
+ Nonlinear Phenomena in Complex Systems, An Interdis-
1112
+ ciplinary Journal 24, 1 (2021).
1113
+ [44] F. Borgonovi, G. Casati, and B. Li, Diffusion and local-
1114
+ ization in chaotic billiards, Physical Review Letters 77,
1115
+ 4744 (1996).
1116
+ [45] T. Prosen, Proceedings of the International School of
1117
+ Physics, edited by G. Casati, I. Guarneri, and U. Smi-
1118
+ lansky, 1st ed. (IOS Press, Amsterdam, 2000).
1119
+ [46] A. Y. Abul-Magd, Level statistics for nearly integrable
1120
+ systems, Physical Review E 80, 017201 (2009).
1121
+ [47] A. A. Abul-Magd and A. Y. Abul-Magd, Unfolding of
1122
+ the spectrum for chaotic and mixed systems, Physica A
1123
+ 396, 185 (2014).
1124
+ [48] U. T. Bhosale, Superposition and higher-order spacing
1125
+ ratios in random matrix theory with application to com-
1126
+ plex systems, Physical Review B 104, 054204 (2021).
1127
+
89E3T4oBgHgl3EQfqwpo/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
8tE2T4oBgHgl3EQf8Qgm/content/2301.04216v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45488dfcc027238d1e6cc800f386ad00d474217324c09bd5807e6ba55518e7fd
3
+ size 3658397
8tE2T4oBgHgl3EQf8Qgm/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c173ccbb3624479369e155f93dc20ae8577bd310928dc3786a591b9bc2eb723
3
+ size 140365
99E5T4oBgHgl3EQfRQ7z/content/2301.05520v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18c1f22e3ad63b04792d54961c16161e51e0d1e9254ab7dcd1660a0ce3bd239d
3
+ size 13055767
9tA0T4oBgHgl3EQfO_-M/content/tmp_files/2301.02169v1.pdf.txt ADDED
@@ -0,0 +1,2522 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Computational analysis of NM-polynomial based topological
2
+ indices and graph-entropies of carbon nanotube Y-junctions
3
+ Sohan Lal1, Vijay Kumar Bhat1,∗, Sahil Sharma1
4
+ 1School of Mathematics, Shri Mata Vaishno Devi University,
5
+ Katra-182320, Jammu and Kashmir, India.
6
7
+ Abstract
8
+ Carbon nanotube Y-junctions are of great interest to the next generation of innovative
9
+ multi-terminal nanodevices. Topological indices are graph-theoretically based parameters that
10
+ describe various structural properties of a chemical molecule.
11
+ The entropy of a graph is a
12
+ topological descriptor that serves to characterize the complexity of the underlying molecular
13
+ graph.
14
+ The concept of entropy is a physical property of a thermodynamic system.
15
+ Graph
16
+ entropies are the essential thermophysical quantities defined for various graph invariants and
17
+ are applied to measure the heterogeneity and relative stabilities of molecules. In this paper,
18
+ several neighborhood degree sum-based topological indices including graph-based entropies of
19
+ carbon nanotube Y-junction graphs are computed.
20
+ Keywords: Armchair carbon nanotube, graph entropy, NM-polynomial, topological indices, Y-
21
+ junction graph.
22
+ MSC (2020): 05C10, 05C35, 05C90
23
+ 1
24
+ Introduction
25
+ Nanotechnology is currently popular because of its evolving, electron transfer property and low-cost
26
+ implementation.
27
+ Nanotubes [1], were discovered in 1985 and carbon nanotubes [2] in 1991.
28
+ In
29
+ nanoscience and technology, branched or non-straight carbon nanotubes such as L, T, X, and Y
30
+ have a lot of applications in electronic devices, such as three-terminal transistors, multi-terminal
31
+ nanoelectronics, switches, amplifiers, etc., [3, 4, 5, 6, 7, 8]. These junctions are a great option for the
32
+ production of nanoscale electronic devices with better switching and reliable transport properties at
33
+ room temperature. For more applications of carbon nanotube Y-junctions, we refer to [9, 10, 11].
34
+ The first proposed branched carbon nanotube was of Y shape, commonly known as Y-junction or
35
+ three-terminal junction. These junctions are classified as an armchair, zig-zag, or chiral depending
36
+ on the chirality of connected carbon nanotubes. Also, they can be single-walled or multi-walled,
37
+ symmetric or asymmetric, capped or uncapped. A carbon nanotube is called uncapped if both ends
38
+ are open. A Y-junction is called symmetric if the nanotubes joining in the Y shape are identical,
39
+ heptagons appeared isolated, and are distributed symmetrically. For various symmetric and asym-
40
+ metric carbon nanotube Y-junctions, we refer to [12, 13, 14, 15].
41
+ A carbon nanotube Y-junction is formed by joining three identical carbon nanotubes in a Y-
42
+ shaped pattern. These junctions contain exactly six hexagons as well as heptagons at the branch-
43
+ ing points. The first structural model of symmetrical single-walled armchair carbon nanotube Y-
44
+ junctions was proposed by Chernozatonskii [16] and Scuseria [17], independently, in 1992. These
45
+ junctions were experimentally observed [18] in 1995. For more applications and properties of carbon
46
+ nanotube Y-junction graphs, we refer to [19, 20, 21].
47
+ Mathematical chemistry is a branch of theoretical chemistry that employs mathematical tech-
48
+ niques to explain the molecular structure of a chemical molecule and its physicochemical properties.
49
+ Molecular graphs are a visual representation of a chemical molecule with vertices representing atoms
50
+ and edges representing bonds between the atoms [22]. Let G = (V (G), E(G)) be a molecular graph
51
+ with vertex set V (G) and edge set E(G). The order of a molecular graph G is defined as the total
52
+ number of vertices in G, denoted by |V (G)|, and the number of edges in G is called size of G, denoted
53
+ by |E(G)|. Any edge of the graph connecting its vertices u and v, is denoted by e = uv ∈ E(G).
54
+ Two vertices of graph G are said to be adjacent if there exists an edge between them. The degree
55
+ of vertex v ∈ V (G), denoted by d(v), is defined as the number of vertices that are adjacent to
56
+ 1
57
+ arXiv:2301.02169v1 [cond-mat.mes-hall] 3 Jan 2023
58
+
59
+ vertex v, i.e., d(v)= |{u : e = uv ∈ E(G)}|. The neighborhood degree sum of vertex v ∈ V (G) is
60
+ denoted by dn(v), and is defined as the sum of the degrees of all vertices that are adjacent to v,
61
+ i.e., dn(v) = �
62
+ u
63
+ d(v): uv ∈ E(G). The minimum cardinality of the set K ⊆ V (G) such that G \ K
64
+ is disconnected graph is called connectivity or vertex-connectivity of a connected graph G. The
65
+ connected graph G is said to be k-connected if its connectivity is k.
66
+ Topological indices are the numerical values calculated from molecular graphs to describe various
67
+ structural properties of the chemical molecule. They are frequently used to model many physico-
68
+ chemical properties in various quantitative structure-property/activity relationship (QSPR/QSAR)
69
+ studies [23, 24, 25]. In 1947, the chemist Harold Wiener [26] initiated the concept of topological
70
+ indices. Since then, various topological indices have been introduced, and a lot of research has been
71
+ conducted toward computing the indices for different molecular graphs and networks. A topological
72
+ index based on the degree of end vertices of an edge can predict various physicochemical properties
73
+ of the molecule, such as heat of formation, strain energy, entropy, enthalpy, boiling points, flash
74
+ point, etc., without using any weight lab [24].
75
+ The Zagreb indices and their variations have been used to investigate molecular complexity, ZE-
76
+ isomerism, and chirality [27]. In general, the Zagreb indices have shown applicability for deriving
77
+ multilinear regression models. Ghorbani and Hosseinzadeh [28] introduced the third version of the
78
+ Zagreb index and shows that this index shows a good correlation with acentric factor and entropy
79
+ of the octane isomers. Mondal et al. [29] introduced neighborhood degree sum-based topological
80
+ indices namely neighborhood version of forgotten topological index and neighborhood version of
81
+ second modified Zagreb index and discuss some mathematical properties and degeneracy of these
82
+ novel indices. For more neighborhood degree sum-based topological indices, their properties, and
83
+ applications, we refer to [24, 30, 31].
84
+ The process of computing the topological indices of a molecular graph from their definitions is
85
+ complex and time-consuming. Thus, for a particular family of graphs and networks, algebraic poly-
86
+ nomials play an important role in reducing the computational time and complexity when computing
87
+ its topological indices. In short, with the help of algebraic polynomials, one can easily compute
88
+ various kinds of graph indices within a short span of time. The NM-polynomial plays vital role in
89
+ the computation of neighborhood degree sum-based topological indices. Let dn(v) denotes the neigh-
90
+ borhood degrees sum of vertex v ∈ V (G). Then, the neighborhood M-polynomial (NM-polynomial)
91
+ of G is defined as [30, 32, 33]
92
+ NM(G; x, y) =
93
+
94
+ i≤j
95
+ |Eij(G)|xiyj
96
+ (1)
97
+ where, |Eij(G)|, i, j ≥ 1, be the number of all edges e = uv ∈ E(G) such that {dn(u) = i, dn(v) = j}.
98
+ Recently, various neighborhood degree sum-based topological indices have been computed via
99
+ the NM-polynomial technique. For example, Mondal et al. [30, 34] obtained some neighborhood
100
+ and multiplicative neighborhood degree sum-based indices of molecular graphs by using their NM-
101
+ polynomials. Kirmani et al. [24] and Mondal et al. [35], investigated some neighborhood degree
102
+ sum-based topological indices of antiviral drugs used for the treatment of COVID-19 via the NM-
103
+ polynomial technique. Shanmukha et al. [36] computed the topological indices of porous graphene
104
+ via NM-polynomial method. For more neighborhood degree sum-based topological indices via NM-
105
+ polynomials, we refer to [24, 35, 37, 38].
106
+ Some neighborhood degree sum-based topological indices and their derivation from NM-polynomial
107
+ are given in Table 1.
108
+ In chemical graph theory, the determination of the structural information content [39] of a graph
109
+ is mostly based on the vertex partition of a graph to obtain a probability distribution of its vertex
110
+ set [40]. Based on such a probability distribution, the entropy of a graph can be defined. Thus,
111
+ the structural information content of a graph is defined as the entropy of the underlying graph
112
+ topology. The concept of graph entropy or entropy of graph was first time appeared in [41], where
113
+ molecular graphs are used to study the information content of an organism. Entropy-based methods
114
+ are powerful tools to investigate various problems in cybernetics, mathematical chemistry, pattern
115
+ recognition, and computational physics [22, 39, 42, 43, 44].
116
+ 2
117
+
118
+ Table 1: Description of some topological indices and its derivation from NM-polynomial
119
+ Topological index
120
+ Formula
121
+ Derivation from NM(G; x, y)
122
+ Third version of Zagreb index [28]: NM1(G)
123
+
124
+ uv∈E(G)
125
+
126
+ dn(u) + dn(v)
127
+
128
+ (Dx + Dy)(NM(G; x, y))|x=y=1
129
+ Neighborhood second Zagreb index [29]: NM2(G)
130
+
131
+ uv∈E(G)
132
+
133
+ dn(u)dn(v)
134
+
135
+ (DxDy)(NM(G; x, y))|x=y=1
136
+ Neighborhood second modified Zagreb index [30]: nmM2(G)
137
+
138
+ uv∈E(G)
139
+
140
+ 1
141
+ dn(u)dn(v)
142
+
143
+ (SxSy)(NM(G; x, y))|x=y=1
144
+ Neighborhood forgotten topological index [29]: NF (G)
145
+
146
+ uv∈E(G)
147
+
148
+ d2
149
+ n(u) + d2
150
+ n(v)
151
+
152
+ (D2
153
+ x + D2
154
+ y)(NM(G; x, y))|x=y=1
155
+ Third NDe index [30]: ND3(G)
156
+
157
+ uv∈E(G)
158
+ dn(u)dn(v)(dn(u) + dn(v))
159
+ DxDy(Dx + Dy)(NM(G; x, y))|x=y=1
160
+ Neighborhood general Randic index [30]: NRα(G)
161
+
162
+ uv∈E(G)
163
+
164
+ n(u)dα
165
+ n(v)
166
+ (Dα
167
+ x Dα
168
+ y )(NM(G; x, y))|x=y=1
169
+ Neighborhood inverse Randic index [30]: NRRα(G)
170
+
171
+ uv∈E(G)
172
+ 1
173
+
174
+ n(u)dα
175
+ n(v)
176
+ (Sα
177
+ x Sα
178
+ y )(NM(G; x, y))|x=y=1
179
+ Fifth NDe index [30]: ND5(G)
180
+
181
+ uv∈E(G)
182
+ � d2
183
+ n(u)+d2
184
+ n(v)
185
+ dn(u)dn(v)
186
+
187
+ (DxSy + SxDy)(NM(G; x, y))|x=y=1
188
+ Neighborhood harmonic index [30]: NH(G)
189
+
190
+ ab∈E(G)
191
+ 2
192
+ dn(u)+dn(v)
193
+ 2SxT (NM(G; x, y))|x=y=1
194
+ Neighborhood inverse sum indeg index [30]: NI(G)
195
+
196
+ uv∈E(G)
197
+ � dn(u)dn(v)
198
+ dn(u)+dn(v)
199
+
200
+ (SxT DxDy)(NM(G; x, y))|x=y=1
201
+ where, Dx = x
202
+ � (∂(NM(G;x,y))
203
+ ∂x
204
+
205
+ , Dy = y
206
+ � (∂(NM(G;x,y))
207
+ ∂y
208
+
209
+ , Sx =
210
+ � x
211
+ 0
212
+ NM(G;t,y)
213
+ t
214
+ dt, Sy =
215
+ � y
216
+ 0
217
+ NM(G;x,t)
218
+ t
219
+ dt,
220
+ T (NM(G; x, y)) = NM(G; x, x).
221
+ Entropy is a measure of randomness, uncertainty, heterogeneity, or lack of information in a sys-
222
+ tem. Based on information indices, there are various approaches to deriving graph entropy from the
223
+ topological structure of a given chemical molecule [45]. For example, Trucco [39] and Rashevsky
224
+ [41] defined graph entropies in terms of degree of vertex, extended degree sequences, and number of
225
+ vertices of a molecular graph. Tan and Wu [46] study network heterogeneity by using vertex-degree
226
+ based entropies. Mowshowitz defined the entropy of a graph in terms of equivalence relations de-
227
+ fined on the vertex set of a graph and discussed some properties related to structural information
228
+ [47, 48, 49, 50].
229
+ Recently, Shabbir and Nadeem [51] defined graph entropies in terms of topological indices for the
230
+ molecular graphs of carbon nanotube Y-junctions and developed the regression models between the
231
+ graph entropies and topological indices. Nadeem et al. [52] calculated some degree-based topological
232
+ indices for armchair carbon semicapped and capped nanotubes and investigated their chemical and
233
+ physical properties. Baˇca et al. [53] computed some degree-based topological indices of a carbon
234
+ nanotube network and studied its properties. Azeem et al. [54] calculated some M-polynomials
235
+ based topological indices of carbon nanotube Y-junctions and their variants. Ahmad [55], studied
236
+ some ve-degree based topological indices of carbon nanotube Y-junctions and discussed their proper-
237
+ ties. Ayesha [56] calculated the bond energy of symmetrical single-walled armchair carbon nanotube
238
+ Y-junctions and developed regression models between bond energy and topological indices. Rahul et
239
+ al. [57] calculated some degree-based topological indices and graph-entropies of graphene, graphyne,
240
+ and graphdiyne by using Shannon’s approach.
241
+ The above-mentioned literature and applications of carbon nanotubes in the field of nanoscience
242
+ and technology inspired us to develop more research on the molecular structure of carbon nanotube
243
+ Y-junction and their variants. In addition, no work has been reported on NM-polynomial based
244
+ topological indices and index-entropies of Y-junction graphs. Therefore, the main contribution of
245
+ this study includes the following:
246
+ • Computation of NM-polynomials of carbon nanotube Y-junction graphs.
247
+ • Computation of some neighborhood degree sum-based topological indices from NM-polynomials.
248
+ • Some graph index-entropies in terms of topological indices are defined and computed.
249
+ 3
250
+
251
+ • Comparative analysis of obtained topological indices and graph index-entropies of Y-junction
252
+ graphs.
253
+ 2
254
+ Aim and Methodology
255
+ We use the edge partition technique, graph-theoretical tools, combinatorial computation, and the
256
+ degree counting method to derive our results. The degree of end vertices is used to generate the
257
+ patterns of edge partitions of the Y-junction graphs. Using such partitions, a general expression
258
+ of NM-polynomials is derived. Then, several neighborhood degree sum-based topological indices
259
+ are obtained from the expression of these NM-polynomials with the help of Table 1. Also, graph
260
+ index- entropies in terms of topological indices have been defined by using edge-weight functions
261
+ and computed for Y-junction graphs.
262
+ The paper is structured as follows: In Section 3, we define topological index-based graph en-
263
+ tropies. The Y-junction graphs and their constructions are described in Section 4. In Section 5, the
264
+ general expression of the NM-polynomials and neighborhood degree sum-based topological indices
265
+ of Y-junction graphs are presented. Section 6 describes the graph index-entropies of Y-junction
266
+ graphs. The numerical analysis of the findings is discussed in Section 7. Finally, the conclusion is
267
+ drawn and discussed in Section 8.
268
+ 3
269
+ Definitions and Preliminaries
270
+ In this section, we define graph index-entropies in terms of an edge-weight function. In 2008, Dehmer
271
+ [40] defined the entropy for a connected graph G as follows:
272
+ Definition 1. [40] Let G = (V (G), E(G)) be a connected graph of order n and g be an arbitrary
273
+ information functional. Then the entropy of G is defined as
274
+ Hg(G) = −
275
+ n
276
+
277
+ i=1
278
+ g(vi)
279
+ n�
280
+ i=1
281
+ g(vi)
282
+ log
283
+
284
+ g(vi)
285
+ n�
286
+ i=1
287
+ g(vi)
288
+
289
+ .
290
+ (2)
291
+ Since an information function defined on the vertex set of a graph is an arbitrary function. Hence,
292
+ Dehmer’s definition shows the possibility of producing various graph entropies for a variation in the
293
+ selection of information functionals. For such graph entropy, we can refer to [58, 59, 60].
294
+ Let β : E(G) → R+ ∪ {0} be an edge-weight function and dn(u) =
295
+
296
+ uv∈E(G)
297
+ d(u), denotes the
298
+ sum of degrees of end vertices of an edges incident to vertex u ∈ V (G) (also known as neighborhood
299
+ degree-sum of vertex u). Then, for eight different edge-weight functions, the third-version of Zagreb
300
+ index, neighborhood second Zagreb index, neighborhood forgotten topological index, neighborhood
301
+ second modified Zagreb index, third NDe index, fifth NDe index, neighborhood harmonic index and
302
+ neighborhood inverse sum indeg index-entropies have been defined in the following manner:
303
+ • Third-version of Zagreb index-entropy: If e = uv is an edge of a connected graph G and
304
+ β1(e) = dn(u) + dn(v) is an edge-weight function defined on E(G). Then, the third-version of
305
+ Zagreb index is
306
+ NM1(G) =
307
+
308
+ e=uv∈E(G)
309
+ β1(e) =
310
+
311
+ e=uv∈E(G)
312
+ dn(u) + dn(v).
313
+ (3)
314
+ Equation (2) for this edge-weight function gives us
315
+ Hβ1(G)
316
+ =
317
+
318
+
319
+ e∈E(G)
320
+ β1(e)
321
+
322
+ e∈E(G)
323
+ β1(e)log
324
+
325
+ β1(e)
326
+
327
+ e∈E(G)
328
+ β1(e)
329
+
330
+ =
331
+
332
+ 1
333
+
334
+ e∈E(G)
335
+ β1(e)
336
+
337
+ e∈E(G)
338
+ β1(e)
339
+
340
+ log(β1(e)) − log
341
+
342
+ e∈E(G)
343
+ β1(e)
344
+
345
+ 4
346
+
347
+ =
348
+
349
+ 1
350
+
351
+ e∈E(G)
352
+ β1(e)
353
+
354
+ e∈E(G)
355
+ β1(e)log(β1(e)) +
356
+ 1
357
+
358
+ e∈E(G)
359
+ β1(e)
360
+
361
+ e∈E(G)
362
+ β1(e)log
363
+
364
+
365
+ e∈E(G)
366
+ β1(e)
367
+
368
+ =
369
+ log
370
+
371
+
372
+ e∈E(G)
373
+ β1(e)
374
+
375
+
376
+ 1
377
+
378
+ e∈E(G)
379
+ β1(e)
380
+
381
+ e∈E(G)
382
+ β1(e)log(β1(e)).
383
+ On replacing
384
+
385
+ e∈E(G)
386
+ β1(e) by NM1(G) in the above equation, we get the following third-version
387
+ of Zagreb index-entropy
388
+ Hβ1(G) = log(NM1(G)) −
389
+ 1
390
+ NM1(G)
391
+
392
+ e∈E(G)
393
+ β1(e)logβ1(e).
394
+ (4)
395
+ Similarly, we define other graph index-entropies as follows:
396
+ • Neighborhood second Zagreb index-entropy: For β2(e) = dn(u)dn(v), the neighborhood
397
+ second Zagreb index and neighborhood second Zagreb index-entropy are
398
+ NM2(G) =
399
+
400
+ e=uv∈E(G)
401
+ dn(u)dn(v),
402
+ (5)
403
+ and
404
+ Hβ2(G) = log(NM2(G)) −
405
+ 1
406
+ NM2(G)
407
+
408
+ e∈E(G)
409
+ β2(e)logβ2(e).
410
+ (6)
411
+ • Neighborhood forgotten topological index-entropy: For β3(e) = d2
412
+ n(u) + d2
413
+ n(v), the
414
+ neighborhood forgotten topological index and neighborhood forgotten topological index-entropy
415
+ are
416
+ NF(G) =
417
+
418
+ e=uv∈E(G)
419
+ d2
420
+ n(u) + d2
421
+ n(v),
422
+ (7)
423
+ and
424
+ Hβ3(G) = log(NF(G)) −
425
+ 1
426
+ NF(G)
427
+
428
+ e∈E(G)
429
+ β3(e)logβ3(e).
430
+ (8)
431
+ • Neighborhood second modified Zagreb index-entropy: For β4(e) =
432
+ 1
433
+ dn(u)dn(v), the
434
+ neighborhood second modified Zagreb index and neighborhood second modified Zagreb index-
435
+ entropy are
436
+ nmM2(G) =
437
+
438
+ e=uv∈E(G)
439
+ 1
440
+ dn(u)dn(v),
441
+ (9)
442
+ and
443
+ Hβ4(G) = log(nmM2(G)) −
444
+ 1
445
+ nmM2(G)
446
+
447
+ e∈E(G)
448
+ β4(e)logβ4(e).
449
+ (10)
450
+ • Third NDe index-entropy: For β5(e) = dn(u)dn(v)
451
+
452
+ dn(u) + dn(v)
453
+
454
+ , the third NDe index
455
+ and third NDe index-entropy are
456
+ ND3(G) =
457
+
458
+ e=uv∈E(G)
459
+ dn(u)dn(v)
460
+
461
+ dn(u) + dn(v)
462
+
463
+ ,
464
+ (11)
465
+ and
466
+ Hβ5(G) = log(ND3(G)) −
467
+ 1
468
+ ND3(G)
469
+
470
+ e∈E(G)
471
+ β5(e)logβ5(e).
472
+ (12)
473
+ • Fifth NDe index-entropy: For β6(e) = dn(u)
474
+ dn(v) + dn(v)
475
+ dn(u), the fifth NDe index and fifth NDe
476
+ index-entropy are
477
+ ND5(G) =
478
+
479
+ e=uv∈E(G)
480
+ dn(u)
481
+ dn(v) + dn(v)
482
+ dn(u),
483
+ (13)
484
+ and
485
+ Hβ6(G) = log(ND5(G)) −
486
+ 1
487
+ ND5(G)
488
+
489
+ e∈E(G)
490
+ β6(e)logβ6(e).
491
+ (14)
492
+ 5
493
+
494
+ • Neighborhood harmonic index-entropy: For β7(e) =
495
+ 2
496
+ dn(u)+dn(v), the neighborhood har-
497
+ monic index and neighborhood harmonic index-entropy are
498
+ NH(G) =
499
+
500
+ e=uv∈E(G)
501
+ 2
502
+ dn(u) + dn(v),
503
+ (15)
504
+ and
505
+ Hβ7(G) = log(NH(G)) −
506
+ 1
507
+ NH(G)
508
+
509
+ e∈E(G)
510
+ β7(e)logβ7(e).
511
+ (16)
512
+ • Neighborhood inverse sum indeg index-entropy: For β8(e) =
513
+ dn(u)dn(v)
514
+ dn(u)+dn(v), the neighbor-
515
+ hood inverse sum index and neighborhood inverse sum index-entropy are
516
+ NI(G) =
517
+
518
+ e=uv∈E(G)
519
+ dn(u)dn(v)
520
+ dn(u) + dn(v),
521
+ (17)
522
+ and
523
+ Hβ8(G) = log(NI(G)) −
524
+ 1
525
+ NI(G)
526
+
527
+ e∈E(G)
528
+ β8(e)logβ8(e).
529
+ (18)
530
+ 4
531
+ Y-Junction Graphs
532
+ The Y-junctions examined in this study are created by the covalent connection of three identical
533
+ single-walled carbon nanotubes crossing at an angle of 120◦ and are uniquely determined by their
534
+ chiral vector v = nv1 +nv2, where v1 and v2 are graphene sheet lattice vectors and n is non-negative
535
+ integer. Let m ≥ 1 and n ≥ 4 be an even integer. Then, an uncapped symmetrical single-walled
536
+ carbon nanotube Y-junction is made up of an armchair Y (n, n) and three identical single-walled
537
+ armchair carbon nanotubes Tm(n, n) each of length m (layers of hexogones), denoted by Y m(n, n).
538
+ In Y m(n, n), we have 3
539
+ 4n2 − 3
540
+ 2n + 5 faces including three openings (where the tubes meet to the
541
+ amchair) each of chirality (n, n), six heptagones, and 3
542
+ 4n2 − 3
543
+ 2n − 4 hexagones. In addition, the tube
544
+ Tm(n, n) contains 2mn hexagonal faces.
545
+ Let n, m, and l be positive integers with m ≥ 1 and n = 2l, for some l ≥ 2. Then J = Jm(n, n)
546
+ be the Y -junction graph of Y m(n, n). It has 9l2 − 3l + 2 hexagonal rings along with six heptagons.
547
+ The graph J is of order 6l2 +18l +6+24ml and size 9l2 +21l +9+36ml. It has 6l2 +12l +6+24ml
548
+ vertices of degree three and 12l vertices of degree two. Note that graph J is a 2-conneced graph.
549
+ Along with 2-connected Y-junction graph J, the 1-connected Y-junction graphs have also been
550
+ taken into consideration. These graphs are obtained by adding pendants to the degree 2 vertices
551
+ of the 2-connected graph J. Note that, each tube of J has 2n vertices of degree 2. Therefore, the
552
+ graph J has 6n vertices of degree 2.
553
+ The graph obtained by connecting 2n pendants to any one tube in J is denoted by J1, and we
554
+ call it as second type Y-junction graph. The order and size of graph J1 are 6l2 + 22l + 6 + 24ml and
555
+ 9l2 + 25l + 9 + 36ml, respectively. The graph J2 represents a graph which is obtained by attaching
556
+ 4n pendants to any two tubes of J and we call it as third type Y-junction graph. In J2, we have
557
+ 6l2 + 26l + 6 + 24ml vertices and 9l2 + 29l + 9 + 36ml edges. The graph obtained by joining 6n
558
+ pendants to all the three tubes of J is denoted by J3, and we called it as fourth type Y-junction
559
+ graph. It has 6l2 + 30l + 6 + 24ml vertices and 9l2 + 33l + 9 + 36ml edges. The carbon nanotube
560
+ Y-junction graphs J, J1, J2, and J3 are shown in Figure 1.
561
+ The edge partition of Y-junction graphs J, J1, J2, and J3 based on the neighborhood degree-sum
562
+ of end vertices of an edge is given in Table 2.
563
+ 6
564
+
565
+ (a) Y-junction graph J
566
+ (b) Y-junction graph J1
567
+ (c) Y-junction graph J2
568
+ (d) Y-junction graph J3
569
+ Figure 1: A symmetrical uncapped single-walled armchair carbon nanotubes Y-junction graphs
570
+ Table 2: Edge partitions of J, J1, J2, and J3
571
+ dn(u), dn(v)
572
+ J-frequency
573
+ J1-frequency
574
+ J2-frequency
575
+ J3-frequency
576
+ (3,7)
577
+ 0
578
+ 4l
579
+ 8l
580
+ 12l
581
+ (5,5)
582
+ 6l
583
+ 4l
584
+ 2l
585
+ 0
586
+ (5,8)
587
+ 12l
588
+ 8l
589
+ 4l
590
+ 0
591
+ (7,7)
592
+ 0
593
+ 2l
594
+ 4l
595
+ 6l
596
+ (7,9)
597
+ 0
598
+ 4l
599
+ 8l
600
+ 12l
601
+ (8,8)
602
+ 6l
603
+ 4l
604
+ 2l
605
+ 0
606
+ (8,9)
607
+ 12l
608
+ 8l
609
+ 4l
610
+ 0
611
+ (9,9)
612
+ 9l2 − 15l + 36ml + 9
613
+ 9l2 − 9l + 36ml + 9
614
+ 9l2 − 3l + 36ml + 9
615
+ 9l2 + 3l + 36ml + 9
616
+ 5
617
+ NM-Polynomials and Topological Indices of Y-Junction
618
+ Graphs
619
+ In this section, we develop the general expression of NM-polynomials for the Y-junction graphs and
620
+ then recover various neighborhood degree-sum based topological indices from these polynomials.
621
+ Theorem 1. Let J be the Y-junction graph of an uncapped symmetrical single-walled armchair
622
+ carbon nanotube. Then
623
+ NM(J; x, y) = 6lx5y5 + 12lx5y8 + 6lx8y8 + 12lx8y9 + (9l2 − 15l + 9 + 36ml)x9y9.
624
+ Proof. The Y-junction graph of an uncapped symmetrical single-walled armchair carbon nanotubes
625
+ has 9l2 +21l +9+36ml number of edges. Let E(i,j) be the set of all edges with neighborhood degree
626
+ sum of end vertices i, j, i.e., E(i,j) = {uv ∈ E(J) : dn(u) = i, dn(v) = j}.
627
+ 7
628
+
629
+ Extension of J to JiBy means of structural analysis of J, the edge set of J can be partitioned into five sets on the basis
630
+ of neighborhood degree sum of end vertices as follows:
631
+ E(5,5) = {uv ∈ E(J) : dn(u) = 5, dn(v) = 5}, E(5,8) = {uv ∈ E(J) : dn(u) = 5, dn(v) = 8},
632
+ E(8,8) = {uv ∈ E(Jm(n, n)) : dn(u) = 8, dn(v) = 8}, E(8,9) = {uv ∈ E(J) : dn(u) = 8, dn(v) = 9},
633
+ E(9,9) = {uv ∈ E(J) : dn(u) = 9, dn(v) = 9}, and |E(5,5)| = 6l, |E(5,8)| = 12l, |E(8,8)| = 6l,
634
+ |E(8,9)| = 12l, |E(9,9)| = 9l2 − 15l + 9 + 36ml.
635
+ From Equation (1), the NM-polynomial of J is obtained as follows:
636
+ NM(J; x, y)
637
+ =
638
+
639
+ i≤j
640
+ |E(i,j)|xiyj
641
+ =
642
+ |E(5,5)|x5y5 + |E(5,8)|x5y8 + |E(8,8)|x8y8 + |E(8,9)|x8y9 + |E(9,9)|x9y9
643
+ =
644
+ 6lx5y5 + 12lx5y8 + 6lx8y8 + 12lx8y9 + (9l2 − 15l + 9 + 36ml)x9y9.
645
+ Theorem 2. Let J be the Y-junction graph of an uncapped symmetrical single-walled armchair
646
+ carbon nanotube . Then
647
+ (i) NM1(J) = 162l2 + 246l + 648ml + 162
648
+ (ii) NM2(J) = 729l2 + 663l + 2916ml + 729
649
+ (iii) NF(J) = 1458l2 + 1446l + 5832ml + 1458
650
+ (iv) nmM2(J) = 0.11l2 + 0.62l + 0.44ml + 0.11
651
+ (v) NRα(J) = 6l(25α + 2(40)α + 64α + 2(72)α) + 81α(9l2 − 15l + 9 + 36ml)
652
+ (vi) ND3(J) = 13122l2 + 6702l + 52488ml + 13122
653
+ (vii) ND5(J) = 18l2 + 44.86l + 72ml + 18
654
+ (viii) NH(J) = l2 + 9.69l + 4ml + 1
655
+ (ix) NI(J) = 40.5l2 + 59.24l + 162ml + 40.5
656
+ (x) S(J) = 1167.7l2 + 714.23l + 4670.9ml + 1167.7.
657
+ Proof. Let f(x, y) = NM(J; x, y) = 6lx5y5 +12lx5y8 +6lx8y8 +12lx8y9 +(9l2 −15l+9+36ml)x9y9.
658
+ Then, we have
659
+ Dx(f(x, y)) = 30lx5y5 + 60lx5y8 + 48lx8y8 + 96lx8y9 + 9(9l2 − 15l + 9 + 36ml)x9y9.
660
+ Dy(f(x, y)) = 30lx5y5 + 96lx5y8 + 48lx8y8 + 108lx8y9 + 9(9l2 − 15l + 9 + 36ml)x9y9.
661
+ D2
662
+ x(f(x, y)) = 150lx5y5 + 300lx5y8 + 384lx8y8 + 768lx8y9 + 81(9l2 − 15l + 9 + 36ml)x9y9.
663
+ D2
664
+ y(f(x, y)) = 150lx5y5 + 768lx5y8 + 384lx8y8 + 972lx8y9 + 81(9l2 − 15l + 9 + 36ml)x9y9.
665
+ DxDy(f(x, y)) = 150lx5y5 + 480lx5y8 + 384lx8y8 + 864lx8y9 + 81(9l2 − 15l + 9 + 36ml)x9y9.
666
+ (Dx + Dy)f(x, y) = 60lx5y5 + 156lx5y8 + 96lx8y8 + 204lx8y9 + 18(9l2 − 15l + 9 + 36ml)x9y9.
667
+ DxDy(Dx + Dy)f(x, y)
668
+ =
669
+ 1500lx5y5 + 6240lx5y8 + 6144lx8y8 + 14688lx8y9 + 1458(9l2 − 15l +
670
+ 9 + 36ml)x9y9.
671
+ (D2
672
+ x + D2
673
+ y)f(x, y) = 300lx5y5 + 1068lx5y8 + 768lx8y8 + 1740lx8y9 + 162(9l2 − 15l + 9 + 36ml)x9y9.
674
+
675
+ xDα
676
+ y (f(x, y))
677
+ =
678
+ 6l(25)αx5y5 + 12l(40)αx5y8 + 6l(64)αx8y8 + 12l(72)αx8y9 + (81)α
679
+ (9l2 − 15l + 9 + 36ml)x9y9.
680
+ 8
681
+
682
+ SxSy(f(x, y)) = 6l
683
+ 25x5y5 + 12l
684
+ 40 x5y8 + 6l
685
+ 64x8y8 + 12l
686
+ 72 x8y9 + (9l2−15l+9+36ml)
687
+ 81
688
+ x9y9.
689
+ SyDx + SxDy(f(x, y)) = 12lx5y5 + 267l
690
+ 10 x5y8 + 12lx8y8 + 145l
691
+ 6 x8y9 + 2(9l2 − 15l + 9 + 36ml)x9y9.
692
+ 2SxT(f(x, y)) = 6l
693
+ 5 x10 + 24l
694
+ 13 x13 + 3l
695
+ 4 x16 + 24l
696
+ 17 x17 + (9l2−15l+9+36ml)
697
+ 9
698
+ x18.
699
+ SxTDxDy(f(x, y)) = 15lx10 + 480l
700
+ 13 x13 + 384l
701
+ 16 x16 + 864l
702
+ 17 x17 + 81(9l2−15l+9+36ml)
703
+ 18
704
+ x18.
705
+ S3
706
+ xQ−2TD3
707
+ xD3
708
+ y(f(x, y)) = 93750l
709
+ 512 x8+ 768000l
710
+ 1331 x11+ 1572864l
711
+ 2744
712
+ x14+ 4478976l
713
+ 3375
714
+ x15+ 531441(9l2−15l+9+36ml)
715
+ 4096
716
+ x16.
717
+ Now, using Table 1 we have
718
+ (i) NM1(J) = (Dx + Dy)f(x, y)|x=y=1 = 162l2 + 246l + 648ml + 162.
719
+ (ii) NM2(J) = (DxDy)f(x, y)|x=y=1 = 729l2 + 663l + 2916ml + 729.
720
+ (iii) NF(J) = (D2
721
+ x + D2
722
+ y)f(x, y)|x=y=1 = 1458l2 + 1446l + 5832ml + 1458.
723
+ (iv) nmM2(J) = (SxSy)f(x, y)|x=y=1 = 0.11l2 + 0.62l + 0.44ml + 0.11.
724
+ (v) NRα(J) = (Dα
725
+ xDα
726
+ y )f(x, y)|x=y=1 = 6l(25α+2(40)α+64α+2(72)α)+81α(9l2−15l+9+36ml).
727
+ (vi) ND3(J) = DxDy(Dx + Dy)f(x, y)|x=y=1 = 13122l2 + 6702l + 52488ml + 13122.
728
+ (vii) ND5(J) = SyDx + SxDy(f(x, y))|x=y=1 = 18l2 + 44.86l + 72ml + 18.
729
+ (viii) NH(J) = 2SxT(f(x, y))|x=y=1 = l2 + 9.69l + 4ml + 1.
730
+ (ix) NI(J) = SxTDxDy(f(x, y))|x=y=1 = 40.5l2 + 59.24l + 162ml + 40.5.
731
+ (x) S(J) = S3
732
+ xQ−2TD3
733
+ xD3
734
+ y(f(x, y))|x=y=1 = 1167.7l2 + 714.23l + 4670.9ml + 1167.7.
735
+ Theorem 3. Let J1 be the second type Y-junction graph of an uncapped symmetrical single-walled
736
+ armchair carbon nanotube. Then
737
+ NM(J1; x, y) = 4lx3y7+4lx5y5+8lx5y8+2lx7y7+4lx7y9+4lx8y8+8lx8y9+(9l2−9l+9+36ml)x9y9.
738
+ Proof. The second type Y-junction graph of an uncapped symmetrical single-walled armchair carbon
739
+ nanotubes has 9l2 +25l+9+36ml edges. Let E(i,j) be the set of all edges with neighborhood degree
740
+ sum of end vertices i, j, i.e., E(i,j) = {uv ∈ E(J1) : dn(u) = i, dn(v) = j}.
741
+ By means of structure analysis of J1, the edge set of J1 can be partitioned into eight sets on the
742
+ basis of neighborhood degree sum of end vertices as follows:
743
+ E(3,7) = {uv ∈ E(J1) : dn(u) = 3, dn(v) = 7}, E(5,5) = {uv ∈ E(J1) : dn(u) = 5, dn(v) = 5},
744
+ E(5,8) = {uv ∈ E(J1) : dn(u) = 5, dn(v) = 8}, E(7,7) = {uv ∈ E(J1) : dn(u) = 7, dn(v) = 7},
745
+ E(7,9) = {uv ∈ E(J1) : dn(u) = 7, dn(v) = 9}, E(8,8) = {uv ∈ E(J1) : dn(u) = 8, dn(v) = 8},
746
+ E(8,9) = {uv ∈ E(J1) : dn(u) = 8, dn(v) = 9}, E(9,9) = {uv ∈ E(J1) : dn(u) = 9, dn(v) = 9},
747
+ and |E(3,7)| = 4l, |E(5,5)| = 4l, |E(5,8)| = 8l, |E(7,7)| = 2l, |E(7,9)| = 4l, |E(8,8)| = 4l, |E(8,9)| = 8l,
748
+ |E(9,9)| = 9l2 − 9l + 9 + 36ml.
749
+ From Equation (1), the NM-polynomial of J1 is obtained as follows:
750
+ NM(J1; x, y)
751
+ =
752
+
753
+ i≤j
754
+ |E(i,j)|xiyj
755
+ =
756
+ |E(3,7)|x3y7 + |E(5,5)|x5y5 + |E(5,8)|x5y8 + |E(7,7)|x7y7 + |E(7,9)|x7y9 +
757
+ |E(8,8)|x8y8 + |E(8,9)|x8y9 + |E(9,9)|x9y9
758
+ =
759
+ 4lx3y7 + 4lx5y5 + 8lx5y8 + 2lx7y7 + 4lx7y9 + 4lx8y8 + 8lx8y9 +
760
+ (9l2 − 9l + 9 + 36ml)x9y9.
761
+ Theorem 4. Let J1 be the second type Y-junction graph of an uncapped symmetrical single-walled
762
+ armchair carbon nanotube. Then
763
+ 9
764
+
765
+ (i) NM1(J1) = 162l2 + 314l + 648ml + 162
766
+ (ii) NM2(J1) = 729l2 + 957l + 2916ml + 729
767
+ (iii) NF(J1) = 1458l2 + 2074l + 5832ml + 1458
768
+ (iv) nmM2(J1) = 0.11l2 + 0.72l + 0.44ml + 0.11
769
+ (v) NRα(J1)
770
+ =
771
+ 2l(2(21)α + 2(25)α + 4(40)α + (49)α + 2(63)α + 2(64)α + 4(72)α) + (81)α(9l2 − 9l + 9
772
+ +36ml)
773
+ (vi) ND3(J1) = 13122l2 + 12170l + 52488ml + 13122
774
+ (vii) ND5(J1) = 18l2 + 56.328l + 72ml + 18
775
+ (viii) NH(J1) = l2 + 3.98l + 4ml + 1
776
+ (ix) NI(J1) = 40.5l2 + 75.15l + 162ml + 40.5
777
+ (x) S(J1) = 1167.7l2 + 1178.92l + 4670.9ml + 1167.7.
778
+ Proof. Refer to Theorem 2 for proof.
779
+ Theorem 5. Let J2 be the third type Y-junction graph of an uncapped symmetrical single-walled
780
+ armchair carbon nanotube. Then
781
+ NM(J2; x, y) = 8lx3y7+2lx5y5+4lx5y8+4lx7y7+8lx7y9+2lx8y8+4lx8y9+(9l2−3l+9+36ml)x9y9.
782
+ Proof. The third type Y-junction graph of an uncapped symmetrical single-walled armchair carbon
783
+ nanotubes has 9l2 + 29l + 9 + 36ml number of edges. Let E(i,j) be the set of all edges with neigh-
784
+ borhood degree sum of end vertices i, j, i.e., E(i,j) = {uv ∈ E(J2) : dn(u) = i, dn(v) = j}.
785
+ By means of structure analysis of J2, the edge set of J2 can be partitioned into eight sets on the
786
+ basis of neighborhood degree sum of end vertices as follows:
787
+ E(3,7) = {uv ∈ E(J2) : dn(u) = 3, dn(v) = 7}, E(5,5) = {uv ∈ E(J2) : dn(u) = 5, dn(v) = 5},
788
+ E(5,8) = {uv ∈ E(J)
789
+ 2 : dn(u) = 5, dn(v) = 8}, E(7,7) = {uv ∈ E(J2) : dn(u) = 7, dn(v) = 7},
790
+ E(7,9) = {uv ∈ E(J2) : dn(u) = 7, dn(v) = 9}, E(8,8) = {uv ∈ E(J2) : dn(u) = 8, dn(v) = 8},
791
+ E(8,9) = {uv ∈ E(J2) : dn(u) = 8, dn(v) = 9}, E(9,9) = {uv ∈ E(J2) : dn(u) = 9, dn(v) = 9},
792
+ and |E(3,7)| = 8l, |E(5,5)| = 2l, |E(5,8)| = 4l, |E(7,7)| = 4l, |E(7,9)| = 8l, |E(8,8)| = 2l, |E(8,9)| = 4l,
793
+ |E(9,9)| = 9l2 − 3l + 9 + 36ml.
794
+ From Equation (1), the NM-polynomial of J2 is obtained as follows:
795
+ NM(J2; x, y)
796
+ =
797
+
798
+ i≤j
799
+ |E(i,j)|xiyj
800
+ =
801
+ |E(3,7)|x3y7 + |E(5,5)|x5y5 + |E(5,8)|x5y8 + |E(7,7)|x7y7 + |E(7,9)|x7y9 +
802
+ |E(8,8)|x8y8 + |E(8,9)|x8y9 + |E(9,9)|x9y9
803
+ =
804
+ 8lx3y7 + 2lx5y5 + 4lx5y8 + 4lx7y7 + 8lx7y9 + 2lx8y8 + 4lx8y9 +
805
+ (9l2 − 3l + 9 + 36ml)x9y9.
806
+ Theorem 6. Let J2 be the third type Y-junction graph of an uncapped symmetrical single-walled
807
+ armchair carbon nanotube. Then
808
+ (i) NM1(J2) = 162l2 + 382l + 648ml + 162
809
+ (ii) NM2(J2) = 729l2 + 1251l + 2916ml + 729
810
+ (iii) NF(J2) = 1458l2 + 2478l + 5832ml + 1458
811
+ (iv) nmM2(J2) = 0.11l2 + 0.819l + 0.44ml + 0.11
812
+ 10
813
+
814
+ (v) NRα(J2) = 2l(4(21)α+(25)α+2(40)α+2(49)α+4(63)α+(64)α+2(72)α)+(81)α(9l2−3l+9+36ml)
815
+ (vi) ND3(J2) = 13122l2 + 17638l + 52488ml + 13122
816
+ (vii) ND5(J2) = 18l2 + 65.56l + 72ml + 18
817
+ (viii) NH(J2) = l2 + 4.57l + 4ml + 1
818
+ (ix) NI(J2) = 40.5l2 + 91.048l + 162ml + 40.5
819
+ (x) S(J2) = 1167.7l2 + 1643.61l + 4670.9ml + 1167.7.
820
+ Proof. Refer to Theorem 2 for proof.
821
+ Theorem 7. Let J3 be the fourth type Y-junction graph of an uncapped symmetrical single-walled
822
+ armchair carbon nanotube. Then
823
+ NM(J3; x, y) = 12lx3y7 + 6lx7y7 + 12lx7y9 + (9l2 + 3l + 9 + 36ml)x9y9.
824
+ Proof. The fourth type Y-junction graph of an uncapped symmetrical single-walled armchair car-
825
+ bon nanotube has 9l2 + 33l + 9 + 36ml number of edges. Let E(i,j) be the set of all edges with
826
+ neighborhood degree sum of end vertices i, j, i.e., E(i,j) = {uv ∈ E(J3) : dn(u) = i, dn(v) = j}.
827
+ By means of structure analysis of J3, the edge set of J3 can be partitioned into four sets on the basis
828
+ of neighborhood degree sum of end vertices as follows:
829
+ E(3,7) = {uv ∈ E(J3) : dn(u) = 3, dn(v) = 7}, E(7,7) = {uv ∈ E(J3) : dn(u) = 7, dn(v) = 7},
830
+ E(7,9) = {uv ∈ E(J3) : dn(u) = 7, dn(v) = 9}, E(9,9) = {uv ∈ E(J3) : dn(u) = 9, dn(v) = 9}, and
831
+ |E(3,7)| = 12l, |E(7,7)| = 6l, |E(7,9)| = 12l, |E(9,9)| = 9l2 + 3l + 9 + 36ml.
832
+ From Equation (1), the NM-polynomial of J3 is obtained as follows:
833
+ NM(J3; x, y)
834
+ =
835
+
836
+ i≤j
837
+ |E(i,j)|xiyj
838
+ =
839
+ |E(3,7)|x3y7 + |E(7,7)|x7y7 + |E(7,9)|x7y9 + |E(9,9)|x9y9
840
+ =
841
+ 12lx3y7 + 6lx7y7 + 12lx7y9 + (9l2 + 3l + 9 + 36ml)x9y9.
842
+ Theorem 8. Let J3 be the fourth type Y-junction graph of an uncapped symmetrical single-walled
843
+ armchair carbon nanotube. Then
844
+ (i) NM1(J3) = 162l2 + 450l + 648ml + 162
845
+ (ii) NM2(J3) = 729l2 + 1545l + 2916ml + 729
846
+ (iii) NF(J3) = 1458l2 + 3330l + 5832ml + 1458
847
+ (iv) nmM2(J3) = 0.11l2 + 0.92l + 0.44ml + 0.11
848
+ (v) NRα(J3) = 6l(2(21)α + (49)α + 2(63)α) + (81)α(9l2 + 3l + 9 + 36ml)
849
+ (vi) ND3(J3) = 13122l2 + 23106l + 52488ml + 13122
850
+ (vii) ND5(J3) = 18l2 + 75.90l + 72ml + 18
851
+ (viii) NH(J3) = l2 + 5.090l + 4ml + 1
852
+ (ix) NI(J3) = 40.5l2 + 106.95l + 162ml + 40.5
853
+ (x) S(J3) = 1167.7l2 + 2085.95l + 4670.9ml + 1167.7.
854
+ Proof. Refer to Theorem 2 for proof.
855
+ 11
856
+
857
+ 6
858
+ Graph Index-Entropies of Y-Junction Graphs
859
+ In this section, we compute the index-entropy of carbon nanotube Y-junctions in terms of neigh-
860
+ borhood degree sum-based topological indices. We first compute index-entropies of the Y-junction
861
+ graph J whose edge partition is given in Table 2.
862
+ • Third-version of Zagreb index-entropy of J
863
+ From part (i) of Theorem 2, we have
864
+ NM1(J) = 162l2 + 246l + 648ml + 162.
865
+ (19)
866
+ Now, from Equation (4), the third-version of Zagreb index-entropy of J is
867
+ Hβ1(J) = log(NM1(J)) −
868
+ 1
869
+ NM1(J)
870
+
871
+ e∈E(J)
872
+ β1(e)logβ1(e).
873
+ (20)
874
+ Using Table 2 and Equation (19) in Equation (20), we get the required third-version of Zagreb
875
+ index-entropy of J as follows:
876
+ Hβ1(J)
877
+ =
878
+ log(NM1(J)) −
879
+ 1
880
+ NM1(J)
881
+
882
+ e∈E(J)
883
+ β1(e)logβ1(e)
884
+ =
885
+ log(162l2 + 246l + 648ml + 162) −
886
+ 1
887
+ 162l2 + 246l + 648ml + 162
888
+
889
+ 6l(10)(log10) +
890
+ 12l(13)(log13) + 6l(16)(log16) + 12l(17)(log17) + (9l2 − 15l + 36ml + 9)(18)(log18)
891
+
892
+ =
893
+ log(162l2 + 246l + 648ml + 162) −
894
+ 1
895
+ 162l2 + 246l + 648ml + 162
896
+
897
+ 60l(log10) +
898
+ 156l(log13) + 96l(log16) + 204l(log17) + (162l2 − 270l + 648ml + 162)(log18)
899
+
900
+ =
901
+ log(162l2 + 246l + 648ml + 162) −
902
+ 1
903
+ 162l2 + 246l + 648ml + 162
904
+
905
+ 60l(1) + 156l(1.1139433523)
906
+ +96l(1.2041199827) + 204l(1.2304489214) + (162l2 − 270l + 648ml + 162)(1.2552725051)
907
+
908
+ ≈ log(162l2 + 246l + 648ml + 162) − 202.5l2 + 261.78l + 810ml + 202.5
909
+ 162l2 + 246l + 648ml + 162
910
+ .
911
+ • Neighborhood second Zagreb index-entropy of J
912
+ From part (ii) of Theorem 2, we have
913
+ NM2(J) = 729l2 + 663l + 2916ml + 729.
914
+ (21)
915
+ By using the values given in Table 2 and Equation (21) in Equation (6), we get the required neigh-
916
+ borhood second Zagreb index-entropy of J as follows:
917
+ Hβ2(J)
918
+ =
919
+ log(NM2(J)) −
920
+ 1
921
+ NM2(J)
922
+
923
+ e∈E(J)
924
+ β2(e)logβ2(e)
925
+ =
926
+ log(729l2 + 663l + 2916ml + 729) −
927
+ 1
928
+ 729l2 + 663l + 2916ml + 729
929
+
930
+ 6l(25)(log25) +
931
+ 12l(40)(log40) + 6l(64)(log64) + 12l(72)(log72) + (9l2 − 15l + 36ml + 9)(81)(log81)
932
+
933
+ ≈ log(729l2 + 663l + 2916ml + 729) − 1391.22l2 + 958.27l + 5564.88ml + 1391.22
934
+ 729l2 + 663l + 2916ml + 729
935
+ .
936
+ Similarly, we compute the remaning index-entropies of J. Table 3 shows some calculated graph
937
+ index-entropies of J.
938
+ In this way, the topological index-based entropies for Y-junction graphs J1, J2, and J3 are
939
+ calculated.
940
+ The index-based entropies of J1 J2, and J3 are given in Tables 4, 5, and 6.
941
+ 12
942
+
943
+ Table 3: Index-entropies of J
944
+ Entropy
945
+ Values of entropies
946
+ Hβ3(J)
947
+ log(1458l2 + 1446l + 5832ml + 1458) − 3221.62l2+2601.62l+12885.84ml+3221.46
948
+ 1458l2+1446l+5832ml+1458
949
+ Hβ4(J)
950
+ log(0.11l2 + 0.62l + 0.44ml + 0.11) + 0.207l2+0.92l+0.828ml+0.207
951
+ 0.11l2+0.62l+0.44ml+0.11
952
+ Hβ5(J)
953
+ log(13122l2 + 12170l + 52488ml + 13122) − 41514.75l2+15202.13l+166059.31ml+41514.75
954
+ 13122l2+12170l+52488ml+13122
955
+ Hβ6(J)
956
+ log(18l2 + 44.86l + 72ml + 18) − 5.41l2+14.81l+21.67ml+5.41
957
+ 18l2+44.86l+72ml+18
958
+ Hβ7(J)
959
+ log(l2 + 9.69l + 4ml + 1) + 0.95l2+2.72l+3.81ml+0.95
960
+ l2+9.69l+4ml+1
961
+ Hβ8(J)
962
+ log(40.5l2 + 59.24l + 162ml + 40.5) − 26.45l2+26.18l+105.82ml+26.45
963
+ 40.5l2+59.24l+162ml+40.5
964
+ Table 4: Index-entropies of J1
965
+ Entropy
966
+ Values of entropies
967
+ Hβ1(J1)
968
+ log(162l2 + 314l + 648ml + 162) − 203.31l2+346.09l+813.24ml+203.31
969
+ 162l2+314l+648ml+162
970
+ Hβ2(J1)
971
+ log(729l2 + 957l + 2916ml + 729) − 1391.22l2+1523.54l+5564.88ml+1391.22
972
+ 729l2+957l+2916ml+729
973
+ Hβ3(J1)
974
+ log(1458l2 + 2074l + 5832ml + 1458) − 3221.46l2+3991l+12885.84ml+3221.46
975
+ 1458l2+2074l+5832ml+1458
976
+ Hβ4(J1)
977
+ log(0.11l2 + 0.72l + 0.44ml + 0.11) + 0.207l2+1.065l+0.897ml+0.207
978
+ 0.11l2+0.72l+0.44ml+0.11
979
+ Hβ5(J1)
980
+ log(13122l2 + 12170l + 52488ml + 13122) − 41514.75l2+32699.53l+166059ml+41514.75
981
+ 13122l2+12170l+52488ml+13122
982
+ Hβ6(J1)
983
+ log(18l2 + 56.328l + 72ml + 18) − 5.41l2+19.09l+21.67ml+5.41
984
+ 18l2+56.328l+72ml+18
985
+ Hβ7(J1)
986
+ log(l2 + 3.98l + 4ml + 1) + 0.9l2+3.21l+3.6ml+0.9
987
+ l2+3.98l+4ml+1
988
+ Hβ8(J1)
989
+ log(40.5l2 + 75.15l + 162ml + 40.5) − 26.37l2+36.84l+105.48ml+26.37
990
+ 40.5l2+75.15l+162ml+40.5
991
+ Table 5: Index-entropies of J2
992
+ Entropy
993
+ Values of entropies
994
+ Hβ1(J2)
995
+ log(162l2 + 382l + 648ml + 162) − 203.31l2+430.65l+813.24ml+203.31
996
+ 162l2+382l+648ml+162
997
+ Hβ2(J2)
998
+ log(729l2 + 1251l + 2916ml + 729) − 1391.22l2+2088.77l+5564.88ml+1391.22
999
+ 729l2+1251l+2916ml+729
1000
+ Hβ3(J2)
1001
+ log(1458l2 + 2478l + 5832ml + 1458) − 3221.46l2+5380.37l+12885.84ml+3221.46
1002
+ 1458l2+2478l+5832ml+1458
1003
+ Hβ4(J2)
1004
+ log(0.11l2 + 0.819l + 0.44ml + 0.11) + 0.099l2+1.007l+0.396ml+0.099
1005
+ 0.11l2+0.819l+0.44ml+0.11
1006
+ Hβ5(J2)
1007
+ log(13122l2 + 17638l + 52488ml + 13122) − 41514.75l2+50196.95l+166059ml+50196.95
1008
+ 13122l2+17638l+52488ml+13122
1009
+ Hβ6(J2)
1010
+ log(18l2 + 65.56l + 72ml + 18) − 5.41l2+23.44l+21.67ml+5.41
1011
+ 18l2+65.56l+72ml+18
1012
+ Hβ7(J2)
1013
+ log(l2 + 4.57l + 4ml + 1) + 0.9l2+3.61l+3.6ml+0.9
1014
+ l2+4.57l+4ml+1
1015
+ Hβ8(J2)
1016
+ log(40.5l2 + 91.048l + 162ml + 40.5) − 26.37l2+46.387l+105.48ml+26.37
1017
+ 40.5l2+91.048l+162ml+40.5
1018
+ 13
1019
+
1020
+ Table 6: Index-entropies of J3
1021
+ Entropy
1022
+ Values of entropies
1023
+ Hβ1(J3)
1024
+ log(162l2 + 450l + 648ml + 162) − 203.31l2+515.23l+813.24ml+203.31
1025
+ 162l2+450l+648ml+162
1026
+ Hβ2(J3)
1027
+ log(729l2 + 1545l + 2916ml + 729) − 1391.22l2+2654.14l+5564.88ml+1391.22
1028
+ 729l2+1545l+2916ml+729
1029
+ Hβ3(J3)
1030
+ log(1458l2 + 3330l + 5832ml + 1458) − 3221.46l2+6769.75l+12885.84ml+3221.46
1031
+ 1458l2+3330l+5832ml+1458
1032
+ Hβ4(J3)
1033
+ log(0.11l2 + 0.92l + 0.44ml + 0.11) + 0.18l2+1.35l+0.72ml+0.18
1034
+ 0.11l2+0.92l+0.44ml+0.11
1035
+ Hβ5(J3)
1036
+ log(13122l2 + 23106l + 52488ml + 13122) − 41514.75l2+67694.4l+166059ml+41514
1037
+ 13122l2+23106l+52488ml+13122
1038
+ Hβ6(J3)
1039
+ log(18l2 + 75.90l + 72ml + 18) − 5.41l2+27.79l+21.67ml+5.41
1040
+ 18l2+75.90l+72ml+18
1041
+ Hβ7(J3)
1042
+ log(l2 + 5.090l + 4ml + 1) + 0.9l2+4.04l+3.6ml+0.9
1043
+ l2+5.090l+4ml+1
1044
+ Hβ8(J3)
1045
+ log(40.5l2 + 106.95l + 162ml + 40.5) − 26.37l2+56.44l+105.48ml+26.37
1046
+ 40.5l2+106.95l+162ml+40.5
1047
+ 7
1048
+ Numerical Results and Discussions
1049
+ The numerical values of topological indices and graph index-entropies of Y-junction graphs are com-
1050
+ puted in this section for some values of l and m.
1051
+ In addition, we plot line and bar graphs for
1052
+ comparison of the obtained results. Here, we use the logarithm of the base 10 for calculations.
1053
+ The numerical values of topological indices for Y-junction graph J are given in Table 7. The
1054
+ logarithmic values of Table 7 are plotted in Figure 2. From the vertical axis of Figure 2, we can
1055
+ conclude that for Y-junction graph J, the topological indices have the following order:
1056
+ nmM2 ≤
1057
+ NR−1/2 ≤ NH ≤ ND5 ≤ NI ≤ NM1 ≤ NM2 ≤ S ≤ NF ≤ ND3. The third NDe index has
1058
+ the most dominating nature compared to other topological indices, whereas neighborhood second
1059
+ modified Zagreb index grew slowly.
1060
+ Table 7: Numerical values of topological indices for Y-junction graph J
1061
+ [l, m]
1062
+ NM1(J)
1063
+ NM2(J)
1064
+ NF (J)
1065
+ NmM2(J)
1066
+ NR− 1
1067
+ 2
1068
+ (J)
1069
+ ND3(J)
1070
+ ND5(J)
1071
+ NH(J)
1072
+ NI(J)
1073
+ S(J)
1074
+ [2,2]
1075
+ 3894
1076
+ 16635
1077
+ 33510
1078
+ 3.55
1079
+ 20.7436
1080
+ 288966
1081
+ 467.72
1082
+ 40.38
1083
+ 968.92
1084
+ 25950.56
1085
+ [3,3]
1086
+ 8190
1087
+ 35523
1088
+ 71406
1089
+ 6.92
1090
+ 45.27693
1091
+ 623718
1092
+ 962.58
1093
+ 75.07
1094
+ 2040.63
1095
+ 55857.79
1096
+ [4,4]
1097
+ 14106
1098
+ 61701
1099
+ 123882
1100
+ 11.39
1101
+ 79.81026
1102
+ 1089690
1103
+ 1637.44
1104
+ 119.76
1105
+ 3517.34
1106
+ 97442.22
1107
+ [5,5]
1108
+ 21642
1109
+ 95169
1110
+ 190938
1111
+ 16.96
1112
+ 124.3436
1113
+ 1686882
1114
+ 2492.3
1115
+ 174.45
1116
+ 5399.05
1117
+ 150703.9
1118
+ [6,6]
1119
+ 30798
1120
+ 135927
1121
+ 272574
1122
+ 23.63
1123
+ 178.8769
1124
+ 2415294
1125
+ 3527.16
1126
+ 239.14
1127
+ 7685.76
1128
+ 215642.7
1129
+ [7,7]
1130
+ 41574
1131
+ 183975
1132
+ 368790
1133
+ 31.4
1134
+ 243.4103
1135
+ 3274926
1136
+ 4742.02
1137
+ 313.83
1138
+ 10377.47
1139
+ 292258.7
1140
+ [8,8]
1141
+ 53970
1142
+ 239313
1143
+ 479586
1144
+ 40.27
1145
+ 317.9436
1146
+ 4265778
1147
+ 6136.88
1148
+ 398.52
1149
+ 13474.18
1150
+ 380551.9
1151
+ [9.9]
1152
+ 67986
1153
+ 301941
1154
+ 604962
1155
+ 50.24
1156
+ 440.4769
1157
+ 5387850
1158
+ 7711.74
1159
+ 493.21
1160
+ 16975.89
1161
+ 480522.4
1162
+ [10,10]
1163
+ 83622
1164
+ 371859
1165
+ 744918
1166
+ 61.31
1167
+ 497.0103
1168
+ 6641142
1169
+ 9466.6
1170
+ 597.9
1171
+ 20882.6
1172
+ 592170
1173
+ Figure 2: Graphical comparison among topological indices of Y-junction graph J
1174
+ 14
1175
+
1176
+ indices
1177
+ 1000000
1178
+ NM,(J)
1179
+ 100000
1180
+ NF(J)
1181
+ nmr
1182
+ M.(J)
1183
+ NR
1184
+ 10000
1185
+ D
1186
+ (J
1187
+ 1000
1188
+ NH(J)
1189
+ NI(J)
1190
+ S(J)
1191
+ 100
1192
+ 10
1193
+ [4,4]
1194
+ [5,5]
1195
+ [6,6]
1196
+ [7,7]
1197
+ [2,2]
1198
+ [3,3]
1199
+ [8,8]
1200
+ [9,9] [10,10]
1201
+ [1,m]Table 8 shows some numerical values of topological indices for Y-junction graph J1. The logarith-
1202
+ mic values of these topological indices are plotted in Figure 3. From Figure 3, we can conclude that
1203
+ the topological indices for Y-junction graph J1 have the following order: nmM2 ≤ NH ≤ NR−1/2 ≤
1204
+ ND5 ≤ NI ≤ NM1 ≤ NM2 ≤ S ≤ NF ≤ ND3. Also, we see that the logarithemic values of
1205
+ NR−1/2 and NH for J1 are almost same.
1206
+ Table 8: Numerical values of topological indices for Y-junction graph J1
1207
+ [l, m]
1208
+ NM1(J1)
1209
+ NM2(J1)
1210
+ NF (J1)
1211
+ nmM2(J1)
1212
+ NR− 1
1213
+ 2
1214
+ (J1)
1215
+ ND3(J1)
1216
+ ND5(J1)
1217
+ NH(J1)
1218
+ NI(J1)
1219
+ S(J1)
1220
+ [2,2]
1221
+ 4030
1222
+ 17223
1223
+ 35166
1224
+ 3.75
1225
+ 29.34052
1226
+ 299902
1227
+ 490.656
1228
+ 28.96
1229
+ 1000.8
1230
+ 26879.94
1231
+ [3,3]
1232
+ 8394
1233
+ 36405
1234
+ 74190
1235
+ 7.22
1236
+ 58.51078
1237
+ 640122
1238
+ 996.984
1239
+ 57.94
1240
+ 2088.45
1241
+ 57251.86
1242
+ [4,4]
1243
+ 14378
1244
+ 62877
1245
+ 127994
1246
+ 11.79
1247
+ 97.68103
1248
+ 1111562
1249
+ 1683.312
1250
+ 96.92
1251
+ 3581.1
1252
+ 99300.98
1253
+ [5,5]
1254
+ 21982
1255
+ 96639
1256
+ 196578
1257
+ 17.46
1258
+ 146.8513
1259
+ 1714222
1260
+ 2549.64
1261
+ 145.9
1262
+ 5478.75
1263
+ 153027.3
1264
+ [6,6]
1265
+ 31206
1266
+ 137691
1267
+ 279942
1268
+ 24.23
1269
+ 206.0216
1270
+ 2448102
1271
+ 3595.968
1272
+ 204.88
1273
+ 7781.4
1274
+ 218430.8
1275
+ [7,7]
1276
+ 42050
1277
+ 186033
1278
+ 378086
1279
+ 32.1
1280
+ 275.1918
1281
+ 3313202
1282
+ 4822.296
1283
+ 273.86
1284
+ 10489.05
1285
+ 295511.5
1286
+ [8,8]
1287
+ 54514
1288
+ 241665
1289
+ 491010
1290
+ 41.07
1291
+ 354.3621
1292
+ 4309522
1293
+ 6228.624
1294
+ 352.84
1295
+ 13601.7
1296
+ 384269.5
1297
+ [9.9]
1298
+ 68598
1299
+ 304587
1300
+ 618714
1301
+ 51.14
1302
+ 443.5323
1303
+ 5437062
1304
+ 7814.952
1305
+ 441.82
1306
+ 17119.35
1307
+ 484704.6
1308
+ [10,10]
1309
+ 84302
1310
+ 374799
1311
+ 761198
1312
+ 62.31
1313
+ 542.7026
1314
+ 6695822
1315
+ 9581.28
1316
+ 540.8
1317
+ 21042
1318
+ 596816.9
1319
+ Figure 3: Graphical comparison among topological indices of Y-junction graph J1
1320
+ Table 9 shows some calculated values of topological indices for Y-junction graph J2. The log-
1321
+ arithmic values of these indices are plotted in Figure 4. The vertical axis of Figure 4 shows the
1322
+ comparison clearly. Figure 4 shows that the logarithmic values of ND3 are extremely high when
1323
+ compared to other topological indices of J2. From Figure 4, we see that the graph of NR−1/2 and
1324
+ NH are almost coincide.
1325
+ Table 9: Numerical values of topological indices for Y-junction graph J2
1326
+ [l, m]
1327
+ NM1(J2)
1328
+ NM2(J2)
1329
+ NF (J2)
1330
+ nmM2(J2)
1331
+ NR− 1
1332
+ 2
1333
+ (J2)
1334
+ ND3(J2)
1335
+ ND5(J2)
1336
+ NH(J2)
1337
+ NI(J2)
1338
+ S(J2)
1339
+ [2,2]
1340
+ 4166
1341
+ 17811
1342
+ 35574
1343
+ 3.948
1344
+ 30.49121
1345
+ 310838
1346
+ 509.12
1347
+ 30.14
1348
+ 1032.596
1349
+ 27809.32
1350
+ [3,3]
1351
+ 8598
1352
+ 37287
1353
+ 74502
1354
+ 7.517
1355
+ 60.23681
1356
+ 656526
1357
+ 1024.68
1358
+ 59.71
1359
+ 2136.144
1360
+ 58645.93
1361
+ [4,4]
1362
+ 14650
1363
+ 64053
1364
+ 128010
1365
+ 12.186
1366
+ 99.98241
1367
+ 1133434
1368
+ 1720.24
1369
+ 99.28
1370
+ 3644.692
1371
+ 101159.7
1372
+ [5,5]
1373
+ 22322
1374
+ 98109
1375
+ 196098
1376
+ 17.955
1377
+ 149.728
1378
+ 1741562
1379
+ 2595.8
1380
+ 148.85
1381
+ 5558.24
1382
+ 155350.8
1383
+ [6,6]
1384
+ 31614
1385
+ 139455
1386
+ 278766
1387
+ 24.824
1388
+ 209.2192
1389
+ 2480910
1390
+ 3651.36
1391
+ 208.42
1392
+ 7876.788
1393
+ 221219
1394
+ [7,7]
1395
+ 42526
1396
+ 188091
1397
+ 376014
1398
+ 32.793
1399
+ 279.2192
1400
+ 3351478
1401
+ 4886.92
1402
+ 277.99
1403
+ 10600.34
1404
+ 298764.4
1405
+ [8,8]
1406
+ 55058
1407
+ 244017
1408
+ 487842
1409
+ 41.862
1410
+ 358.9648
1411
+ 4353266
1412
+ 6302.48
1413
+ 357.56
1414
+ 13728.88
1415
+ 387987
1416
+ [9,9]
1417
+ 69210
1418
+ 307233
1419
+ 614250
1420
+ 52.031
1421
+ 448.7104
1422
+ 5486274
1423
+ 7898.48
1424
+ 447.13
1425
+ 17262.43
1426
+ 488886.8
1427
+ [10,10]
1428
+ 84982
1429
+ 377739
1430
+ 755238
1431
+ 63.3
1432
+ 548.456
1433
+ 6750502
1434
+ 9673.6
1435
+ 546.7
1436
+ 21200.98
1437
+ 601463.8
1438
+ 15
1439
+
1440
+ indices
1441
+ 1000000
1442
+ -NM,(J,)
1443
+ 100000
1444
+ NM,(J,)
1445
+ NF(J))
1446
+ 10000
1447
+ NR
1448
+ (J1)
1449
+ ND,(J,)
1450
+ 1000
1451
+ ND,(J)
1452
+ NH(J,)
1453
+ 100
1454
+ NI(J)
1455
+ 10
1456
+ [2,2]
1457
+ [3,3]
1458
+ [4,4]
1459
+ [5,5]
1460
+ [6,6]
1461
+ [7,7]
1462
+ [8,8]
1463
+ [9,9][10,10]
1464
+ [1,m]Figure 4: Graphical comparison among topological indices of Y-junction J2
1465
+ Table 10 shows some numerical values of topological indices of Y-junction J3. Figure 5 depicts
1466
+ the graphical comparison of these indices. Table 10 and Figure 5 show that the values of topological
1467
+ indices strictly increase as the values of l and m increases.
1468
+ From Tables 7, 8, 9, and 10, we see that as the values of l and m in Y-junction graphs increases, the
1469
+ corresponding values of topological indices grew very fastly.
1470
+ Table 10: Numerical values of topological indices of Y-junction graph J3
1471
+ [l, m]
1472
+ NM1(J3)
1473
+ NM2(J3)
1474
+ NF (J3)
1475
+ NmM2(J3)
1476
+ NR− 1
1477
+ 2
1478
+ (J3)
1479
+ ND3(J3)
1480
+ ND5(J3)
1481
+ NH(J3)
1482
+ NI(J3)
1483
+ S(J3)
1484
+ [2,2]
1485
+ 4302
1486
+ 18399
1487
+ 37278
1488
+ 4.15
1489
+ 31.6419
1490
+ 321774
1491
+ 529.8
1492
+ 31.18
1493
+ 1064.4
1494
+ 28694
1495
+ [3,3]
1496
+ 8802
1497
+ 38169
1498
+ 77058
1499
+ 7.82
1500
+ 61.9628
1501
+ 672930
1502
+ 1055.7
1503
+ 61.27
1504
+ 2183.85
1505
+ 59973
1506
+ [4,4]
1507
+ 14922
1508
+ 65229
1509
+ 131418
1510
+ 12.59
1511
+ 102.284
1512
+ 1155306
1513
+ 1761.6
1514
+ 101.36
1515
+ 3708.3
1516
+ 102929
1517
+ [5,5]
1518
+ 22662
1519
+ 99579
1520
+ 200358
1521
+ 18.46
1522
+ 152.605
1523
+ 1768902
1524
+ 2647.5
1525
+ 151.45
1526
+ 5637.75
1527
+ 157562
1528
+ [6,6]
1529
+ 32022
1530
+ 141219
1531
+ 283878
1532
+ 25.43
1533
+ 212.926
1534
+ 2513718
1535
+ 3713.4
1536
+ 211.54
1537
+ 7972.2
1538
+ 223873
1539
+ [7,7]
1540
+ 43002
1541
+ 190149
1542
+ 381978
1543
+ 33.5
1544
+ 283.247
1545
+ 3389754
1546
+ 4959.3
1547
+ 281.63
1548
+ 10711.7
1549
+ 301861
1550
+ [8,8]
1551
+ 55602
1552
+ 246369
1553
+ 494658
1554
+ 42.67
1555
+ 363.568
1556
+ 4397010
1557
+ 6385.2
1558
+ 361.72
1559
+ 13856.1
1560
+ 391526
1561
+ [9,9]
1562
+ 69822
1563
+ 309879
1564
+ 621918
1565
+ 52.94
1566
+ 453.889
1567
+ 5535486
1568
+ 7991.1
1569
+ 451.81
1570
+ 17405.6
1571
+ 492868
1572
+ [10,10]
1573
+ 85662
1574
+ 380679
1575
+ 763758
1576
+ 64.31
1577
+ 554.209
1578
+ 6805182
1579
+ 9777
1580
+ 551.9
1581
+ 21360
1582
+ 605887
1583
+ Figure 5: Graphical comparison among topological indices of Y-junction graph J3
1584
+ A few values of graph index-entropies of Y-junction graph J are listed in Table 11 and illustrated
1585
+ in Figure 6.
1586
+ From Figure 6, we see that entropy measures of Hβ1, Hβ2, Hβ3, and Hβ8 almost
1587
+ 16
1588
+
1589
+ indices
1590
+ 1000000
1591
+ 100000
1592
+ NF(J.
1593
+ 10000
1594
+ NR
1595
+ 1000
1596
+ ND,(J)
1597
+ ND,(J2)
1598
+ 100
1599
+ - NH(J,)
1600
+ - NI(J2)
1601
+ 10
1602
+ [2,2]
1603
+ [3,3]
1604
+ [4,4]
1605
+ [5,5]
1606
+ [6,6]
1607
+ [7,7]
1608
+ [8,8]
1609
+ [9,9][10,10]
1610
+ [1,m]indices
1611
+ 1000000
1612
+ 100000
1613
+ NM(J.
1614
+ NM,(J3)
1615
+ NF(J3)
1616
+ 10000
1617
+ "M,(J3)
1618
+ NR.1/2(J3)
1619
+ ND,(J3)
1620
+ 1000
1621
+ ND,(J3)
1622
+ NH(J3)
1623
+ NI(J3)
1624
+ 100
1625
+ S(J3)
1626
+ 10
1627
+ [2,2]
1628
+ [4,4]
1629
+ [5,5]
1630
+ [6,6]
1631
+ [7,7]
1632
+ [3,3]
1633
+ [8,8]
1634
+ [9,9][10,10]
1635
+ [1,m]coincide.
1636
+ Table 11: Numerical values of index-entropies of J
1637
+ [l, m]
1638
+ Hβ1 (J)
1639
+ Hβ2 (J)
1640
+ Hβ3 (J)
1641
+ Hβ4 (J)
1642
+ Hβ5 (J)
1643
+ Hβ6 (J)
1644
+ Hβ7 (J)
1645
+ Hβ8 (J)
1646
+ [2,2]
1647
+ 2.363878
1648
+ 2.349537
1649
+ 2.351098
1650
+ 2.293045
1651
+ 2.469266
1652
+ 1.849911
1653
+ 2.235934
1654
+ 2.358964
1655
+ [3,3]
1656
+ 2.680031
1657
+ 2.668041
1658
+ 2.669162
1659
+ 2.614962
1660
+ 2.751708
1661
+ 2.162725
1662
+ 2.567487
1663
+ 2.674998
1664
+ [4,4]
1665
+ 2.912369
1666
+ 2.901799
1667
+ 2.902659
1668
+ 2.851695
1669
+ 2.966026
1670
+ 2.393078
1671
+ 2.813031
1672
+ 2.907277
1673
+ [5,5]
1674
+ 3.09586
1675
+ 3.086229
1676
+ 3.086919
1677
+ 3.038506
1678
+ 3.138274
1679
+ 2.575276
1680
+ 3.00722
1681
+ 3.090734
1682
+ [6,6]
1683
+ 3.24743
1684
+ 3.238462
1685
+ 3.239031
1686
+ 3.192634
1687
+ 3.28218
1688
+ 2.725919
1689
+ 3.167437
1690
+ 3.242282
1691
+ [7,7]
1692
+ 3.37652
1693
+ 3.368045
1694
+ 3.368525
1695
+ 3.323745
1696
+ 3.40572
1697
+ 2.85433
1698
+ 3.303596
1699
+ 3.371357
1700
+ [8,8]
1701
+ 3.488993
1702
+ 3.480834
1703
+ 3.481247
1704
+ 3.437785
1705
+ 3.51397
1706
+ 2.966216
1707
+ 3.421864
1708
+ 3.483755
1709
+ [9.9]
1710
+ 3.588472
1711
+ 3.580678
1712
+ 3.581037
1713
+ 3.538669
1714
+ 3.610178
1715
+ 3.065343
1716
+ 3.526328
1717
+ 3.583289
1718
+ [10,10]
1719
+ 3.677788
1720
+ 3.670239
1721
+ 3.670554
1722
+ 3.629107
1723
+ 3.696846
1724
+ 3.154321
1725
+ 3.61983
1726
+ 3.672599
1727
+ Figure 6: Graphical comparison among index-entropies of J
1728
+ The values of index-entropy of Y-junction graph J1 is listed in Table 12 and illustrated in Figure
1729
+ 7. From Table 12 and Figure 7, we find that measures of graph index-entropies Hβ1, Hβ2, Hβ3, Hβ5,
1730
+ Hβ6, and Hβ1 are almost same.
1731
+ Table 12: Numerical values of index-entropies of J1
1732
+ [l, m]
1733
+ Hβ1 (J1)
1734
+ Hβ2 (J1)
1735
+ Hβ3 (J1)
1736
+ Hβ4 (J1)
1737
+ Hβ5 (J1)
1738
+ Hβ6 (J1)
1739
+ Hβ7 (J1)
1740
+ Hβ8 (J1)
1741
+ [2,2]
1742
+ 2.374116
1743
+ 2.362875
1744
+ 2.365677
1745
+ 2.37483
1746
+ 2.351939
1747
+ 2.381171
1748
+ 2.336108
1749
+ 2.373399
1750
+ [3,3]
1751
+ 2.686117
1752
+ 2.677718
1753
+ 2.679751
1754
+ 2.705906
1755
+ 2.66972
1756
+ 2.691361
1757
+ 2.643717
1758
+ 2.686081
1759
+ [4,4]
1760
+ 2.916047
1761
+ 2.909359
1762
+ 2.91094
1763
+ 2.948613
1764
+ 2.903076
1765
+ 2.92019
1766
+ 2.871061
1767
+ 2.916411
1768
+ [5,5]
1769
+ 3.097981
1770
+ 3.092424
1771
+ 3.093709
1772
+ 3.139639
1773
+ 3.087253
1774
+ 3.101393
1775
+ 3.051307
1776
+ 3.098605
1777
+ [6,6]
1778
+ 3.248463
1779
+ 3.243705
1780
+ 3.244784
1781
+ 3.2969
1782
+ 3.239312
1783
+ 3.251355
1784
+ 3.200605
1785
+ 3.24927
1786
+ [7,7]
1787
+ 3.376753
1788
+ 3.372588
1789
+ 3.373514
1790
+ 3.430435
1791
+ 3.368768
1792
+ 3.379258
1793
+ 3.23802
1794
+ 3.377694
1795
+ [8,8]
1796
+ 3.488549
1797
+ 3.484842
1798
+ 3.485651
1799
+ 3.546395
1800
+ 3.481462
1801
+ 3.490754
1802
+ 3.439143
1803
+ 3.489594
1804
+ [9.9]
1805
+ 3.587606
1806
+ 3.584263
1807
+ 3.584979
1808
+ 3.648847
1809
+ 3.58132
1810
+ 3.589572
1811
+ 3.537668
1812
+ 3.588733
1813
+ [10,10]
1814
+ 3.676529
1815
+ 3.673482
1816
+ 3.674123
1817
+ 3.740586
1818
+ 3.6707383
1819
+ 3.6783
1820
+ 3.626158
1821
+ 3.677722
1822
+ 17
1823
+
1824
+ 3.8
1825
+ Hβ,(J)
1826
+ 3.6
1827
+ Hβ,(J)
1828
+ Hβ,(J)
1829
+ 3.4
1830
+ Hβ(J)
1831
+ 3.2
1832
+ Hβ,(J)
1833
+ Hβ,(J)
1834
+ 3.0
1835
+ Hβ, (J)
1836
+ Index-entropies
1837
+ 2.8
1838
+ 2.6
1839
+ 2.4
1840
+ 2.2
1841
+ 2.0
1842
+ 1.8
1843
+ [2,2] [3,3] [4,4]
1844
+ [5,5]
1845
+ [6,6]
1846
+ [7,7]
1847
+ [8,8]
1848
+ [9,9] [10,10]
1849
+ [1,m]Figure 7: Graphical comparison among index-entropies of J1
1850
+ Table 13 depicts some graph index-entropies of Y-junction graph J2. The graphical comparison
1851
+ of index-entropies of Y-junction graph J2 is shown in Figure 8. From Figure 8, we see that graph
1852
+ index-entropies of J2 increases as the values of l and m increases.
1853
+ Table 13: Numerical values of index-entropies of J2
1854
+ [l, m]
1855
+ Hβ1 (J2)
1856
+ Hβ2 (J2)
1857
+ Hβ3 (J2)
1858
+ Hβ4 (J2)
1859
+ Hβ5 (J2)
1860
+ Hβ6 (J2)
1861
+ Hβ7 (J2)
1862
+ Hβ8 (J2)
1863
+ [2,2]
1864
+ 2.388128
1865
+ 2.375827
1866
+ 2.346955
1867
+ 1.633105
1868
+ 2.336917
1869
+ 2.391354
1870
+ 2.345766
1871
+ 2.35432
1872
+ [3,3]
1873
+ 2.696411
1874
+ 2.687189
1875
+ 2.666479
1876
+ 1.88376
1877
+ 2.665889
1878
+ 2.698832
1879
+ 2.650775
1880
+ 2.672367
1881
+ [4,4]
1882
+ 2.924151
1883
+ 2.916793
1884
+ 2.9007
1885
+ 2.074455
1886
+ 2.902766
1887
+ 2.926068
1888
+ 2.876596
1889
+ 2.905747
1890
+ [5,5]
1891
+ 3.104655
1892
+ 3.098533
1893
+ 3.085384
1894
+ 2.229346
1895
+ 3.088295
1896
+ 3.106231
1897
+ 3.055853
1898
+ 3.089892
1899
+ [6,6]
1900
+ 3.254134
1901
+ 3.248888
1902
+ 3.237774
1903
+ 2.360107
1904
+ 3.240916
1905
+ 3.255465
1906
+ 3.204459
1907
+ 3.241908
1908
+ [7,7]
1909
+ 3.381681
1910
+ 3.377087
1911
+ 3.367462
1912
+ 2.473394
1913
+ 3.370602
1914
+ 3.3882828
1915
+ 3.331363
1916
+ 3.371323
1917
+ [8,8]
1918
+ 3.492905
1919
+ 3.488816
1920
+ 3.480327
1921
+ 2.573399
1922
+ 3.48337
1923
+ 3.49391
1924
+ 3.442095
1925
+ 3.483978
1926
+ [9.9]
1927
+ 3.59151
1928
+ 3.587821
1929
+ 3.580028
1930
+ 2.662948
1931
+ 3.583139
1932
+ 3.592399
1933
+ 3.540309
1934
+ 3.583714
1935
+ [10,10]
1936
+ 3.680065
1937
+ 3.676703
1938
+ 3.659833
1939
+ 2.744042
1940
+ 3.672602
1941
+ 3.680861
1942
+ 3.628548
1943
+ 3.673185
1944
+ Figure 8: Graphical comparison among index-entropies of J2
1945
+ In Table 14, we calculate some graph index-entropies of Y-junction graph J3. Figure 9 shows
1946
+ the graphical comparison among index-entropies of J3. From Table 14 and Figure 9, we see that
1947
+ index entropies Hβ1, Hβ2, Hβ3, Hβ6, and Hβ8 of J3 are almost same. Also, Tables 11, 12, 13, and 14
1948
+ shows that graph index-entropies of Y-junction graph increases as the values of l and m increases.
1949
+ 18
1950
+
1951
+ 4.0
1952
+ Hβ(J,)
1953
+ Hβ,(J,)
1954
+ 3.5
1955
+ Hβ,(J,)
1956
+ Hβ(J,)
1957
+ Hβ,(J)
1958
+ 3.0
1959
+ Hβ,(J,)
1960
+ Hβ,(J,)
1961
+ Hβ(J,)
1962
+ 2.5
1963
+ Index-entropies
1964
+ 2.0
1965
+ 1.5
1966
+ 1.0
1967
+ 0.5
1968
+ 0.0
1969
+ [3,3]
1970
+ [2,2]
1971
+ [4,4]
1972
+ [5,5]
1973
+ [7,7]
1974
+ [6,6]
1975
+ [8,8]
1976
+ [9,9]
1977
+ [10,10]
1978
+ [1,m] Hβ,(J2)
1979
+ Hβ,(J2)
1980
+ 3.5
1981
+ Hβ,(J2)
1982
+ I Hβ,(J2)
1983
+ I Hβ,(J2)
1984
+ 3.0
1985
+ Hβ,(J2)
1986
+ Hβ,(J2)
1987
+ Hβ,(J2)
1988
+ 2.5
1989
+ Index-entropies
1990
+ 2.0
1991
+ 1.5
1992
+ 1.0
1993
+ 0.5
1994
+ 0.0
1995
+ [3,3]
1996
+ [2,2]
1997
+ [4,4]
1998
+ [5,5]
1999
+ [7,7]
2000
+ [6,6]
2001
+ [8,8]
2002
+ [9,9]
2003
+ [10,10]
2004
+ [1,m] Table 14: Numerical values of index-entropies of J3
2005
+ [l, m]
2006
+ Hβ1 (J3)
2007
+ Hβ2 (J3)
2008
+ Hβ3 (J3)
2009
+ Hβ4 (J3)
2010
+ Hβ5 (J3)
2011
+ Hβ6 (J3)
2012
+ Hβ7 (J3)
2013
+ Hβ8 (J3)
2014
+ [2,2]
2015
+ 2.401692
2016
+ 2.388393
2017
+ 2.393488
2018
+ 2.179494
2019
+ 1.755856
2020
+ 2.404539
2021
+ 2.359174
2022
+ 2.40079
2023
+ [3,3]
2024
+ 2.706459
2025
+ 2.696449
2026
+ 2.7002
2027
+ 2.469933
2028
+ 2.242514
2029
+ 2.708584
2030
+ 2.660759
2031
+ 2.70624
2032
+ [4,4]
2033
+ 2.932101
2034
+ 2.924095
2035
+ 2.927043
2036
+ 2.687
2037
+ 2.571439
2038
+ 2.933776
2039
+ 2.884517
2040
+ 2.932298
2041
+ [5,5]
2042
+ 3.11224
2043
+ 3.104551
2044
+ 3.106972
2045
+ 2.86049
2046
+ 2.816575
2047
+ 3.112596
2048
+ 3.062409
2049
+ 3.111698
2050
+ [6,6]
2051
+ 3.259727
2052
+ 3.254003
2053
+ 3.256051
2054
+ 3.005032
2055
+ 3.010781
2056
+ 3.260882
2057
+ 3.210048
2058
+ 3.260399
2059
+ [7,7]
2060
+ 3.38655
2061
+ 3.381534
2062
+ 3.383306
2063
+ 3.128925
2064
+ 3.171078
2065
+ 3.387542
2066
+ 3.336232
2067
+ 3.387369
2068
+ [8,8]
2069
+ 3.497215
2070
+ 3.492748
2071
+ 3.494307
2072
+ 3.237341
2073
+ 3.307302
2074
+ 3.498082
2075
+ 3.446407
2076
+ 3.498149
2077
+ [9.9]
2078
+ 3.595375
2079
+ 3.591345
2080
+ 3.592735
2081
+ 3.33372
2082
+ 3.425608
2083
+ 3.596141
2084
+ 3.544179
2085
+ 3.5964
2086
+ [10,10]
2087
+ 3.683569
2088
+ 3.679896
2089
+ 3.681147
2090
+ 3.420469
2091
+ 3.530087
2092
+ 3.684252
2093
+ 3.632058
2094
+ 3.684668
2095
+ Figure 9: Graphical comparison among index-entropies of J3
2096
+ 8
2097
+ Conclusion and Future work
2098
+ In this study, the general expression of NM-polynomial for carbon nanotube Y-junction graphs is
2099
+ derived. Also, various neighborhood degree sum-based topological indices are retrieved from the
2100
+ expression of these polynomials.
2101
+ In addition, eight graph entropies in terms of these topologi-
2102
+ cal indices have been defined and calculated for Y-junction graphs. Furthermore, some numerical
2103
+ values of topological indices and index-entropies of Y-junction graphs are plotted for comparison.
2104
+ Since topological indices based on the degree of vertices has a significant ability to predict various
2105
+ physicochemical properties and biological activities of the chemical molecule. Therefore, the study’s
2106
+ findings will be a viable option for predicting various physicochemical properties and understanding
2107
+ the structural problems of carbon nanotube Y-junctions.
2108
+ We mention some possible directions for future research, including multiplicative topological
2109
+ indices, graph index-entropies, regression models between the index-entropies and the topological
2110
+ indices, metric and edge metric dimension, etc., to predict thermochemical data, physicochemical
2111
+ properties, and structural information of carbon nanotube Y-junctions.
2112
+ Data Availability
2113
+ No data was used to support the findings of this study.
2114
+ Conflicts of Interest
2115
+ There are no conflicts of interest declared by the authors.
2116
+ Funding Statement
2117
+ The authors received no specific funding for this study.
2118
+ 19
2119
+
2120
+ Hβ,(J3)
2121
+ Hβ,(J3)
2122
+ Hβ,(J3)
2123
+ 3.5
2124
+ Hβ,(J3)
2125
+ Hβ,(J3)
2126
+ Hβ,(Js)
2127
+ 3.0
2128
+ Hβ,(J3)
2129
+ Hβ,(J3)
2130
+ 2.5
2131
+ Index-entropies
2132
+ 2.0
2133
+ 1.0
2134
+ 0.5
2135
+ 0.0
2136
+ [3,3]
2137
+ [2,2]
2138
+ [4,4]
2139
+ [5,5]
2140
+ 17,7]
2141
+ [6,6]
2142
+ [8,8]
2143
+ [9,9]
2144
+ [10,10]
2145
+ [1,m]Author’s Contribution Statement
2146
+ The final draft was written by Sohan Lal and Vijay Kumar Bhat.
2147
+ Figures and Tables are
2148
+ prepared by Sohan Lal and Sahil Sharma. All authors reviewed and edited the final draft.
2149
+ References
2150
+ [1] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley, C60: Buckminsterfullerene,
2151
+ Nature, 318(6042) (1985), 162–163. https://doi.org/10.1038/318162a0.
2152
+ [2] S. Iijima,
2153
+ Helical microtubules of graphitic carbon,
2154
+ Nature,
2155
+ 354(6348) (1991),
2156
+ 56–58.
2157
+ https://doi.org/10.1038/354056a0.
2158
+ [3] D. H. Kim, J. Huang, H. K. Shin, S. Roy, W. Choi, Transport phenomena and conduction
2159
+ mechanism of single-walled carbon nanotubes (SWNTs) at Y-and crossed-junctions, Nano lett.,
2160
+ 6(12) (2006), 2821-2825. https://doi.org/10.1021/nl061977q.
2161
+ [4] H.
2162
+ Mei,
2163
+ Y.
2164
+ Cheng,
2165
+ Research
2166
+ progress
2167
+ of
2168
+ electrical
2169
+ properties
2170
+ based
2171
+ on
2172
+ carbon
2173
+ nanotubes;
2174
+ Interconnection,
2175
+ Ferroelectrics,
2176
+ 564(1)
2177
+ (2020),
2178
+ 1–18.
2179
+ https://doi.org/10.1080/00150193.2020.1761697.
2180
+ [5] V. Meunier, M. B. Nardelli, J. Bernholc, T. Zacharia, J. C. Charlier, Intrinsic electron trans-
2181
+ port properties of carbon nanotube Y-junctions, Appl. Phys. Lett., 81(27) (2002), 5234–5236.
2182
+ https://doi.org/10.1063/1.1533842.
2183
+ [6] T. Palm, L. Thylen, Designing logic functions using an electron waveguide Y-branch switch, J.
2184
+ Appl. Phys., 79(10) (1996), 8076–8081. https://doi.org/10.1063/1.362362.
2185
+ [7] X. Yang, Z. Han, Y. Li, D. Chen, P. Zhang, A. C. To, Heat welding of non-orthogonal x-junction
2186
+ of single-walled carbon nanotubes, Physica E Low Dimens. Syst. Nanostruct., 46 (2012), 30–32.
2187
+ https://doi.org/10.1016/j.physe.2012.08.015.
2188
+ [8] A.
2189
+ Aiyiti,
2190
+ Z.
2191
+ Zhang,
2192
+ B.
2193
+ Chen,
2194
+ S.
2195
+ Hu,
2196
+ J.
2197
+ Chen,
2198
+ X.
2199
+ Xu,
2200
+ B.
2201
+ Li,
2202
+ Thermal
2203
+ rec-
2204
+ tification
2205
+ in
2206
+ Y-junction
2207
+ carbon
2208
+ nanotube
2209
+ bundle,
2210
+ Carbon,
2211
+ 140
2212
+ (2018),
2213
+ 673–679.
2214
+ https://doi.org/10.1016/j.carbon.2018.09.002.
2215
+ [9] H.
2216
+ He,
2217
+ L.
2218
+ A.
2219
+ Pham-Huy,
2220
+ P.
2221
+ Dramou,
2222
+ D.
2223
+ Xiao,
2224
+ P.
2225
+ Zuo,
2226
+ C.
2227
+ Pham-Huy,
2228
+ Car-
2229
+ bon Nanotubes:
2230
+ Applications in Pharmacy and Medicine,
2231
+ Biomed Res. Int.,
2232
+ (2013).
2233
+ https://doi.org/10.1155/2013/578290.
2234
+ [10] P. M. Ajayan, O. Z. Zhou, Applications of carbon nanotubes, Top. Appl. Phys., 80 (2001)
2235
+ 391-425. https://doi.org/10.1007/3-540-39947-X 14.
2236
+ [11] J. M. Schnorr, T. M. Swager, Emerging applications of carbon nanotubes, Chem. Mater., 23(3)
2237
+ (2011), 646-657. https://doi.org/10.1021/cm102406h.
2238
+ [12] I. L´aszl´o, Topological description and construction of single wall carbon nanotube junctions,
2239
+ Croat. Chem. Acta., 78(2) (2005), 217–221.
2240
+ [13] K. Nagy, C. L. Nagy, Hypergraphene from armchair nanotube Y junctions, diamond and related
2241
+ nanostructures, Carbon Mater: Chem Phys., 6 (2013), 207–227. https://doi.org/10.1007/978-
2242
+ 94-007-6371-5 11.
2243
+ [14] G. Treboux, P. Lapstun, K. Silverbrook, Conductance in nanotube Y-junctions, Chem. Phys.
2244
+ Lett., 306 (1999), 402–406. https://doi.org/10.1016/S0009-2614(99)00445-5.
2245
+ [15] E. Tylianakis, G. K. Dimitrakakis, S. Melchor, J. A. Dobado, G. E. Froudakis, Porus nanotube
2246
+ network: a novel 3-D nanostructured material with enhanced hydrogen storage capacity, Chem.
2247
+ Commun., 47(8) (2011), 2303–2305. https://doi.org/10.1039/C0CC03002C.
2248
+ [16] L. A. Chernozatonskii, Carbon nanotube connectors and planar jungle gyms, Phys. Lett. A,
2249
+ 172(3) (1992), 173–176. https://doi.org/10.1016/0375-9601(92)90978-U.
2250
+ [17] G. E. Scuseria, Negative curvature and hyperfullerenes, Chem. Phys. Lett., 195(5-6) (1992),
2251
+ 534–536. https://doi.org/10.1016/0009-2614(92)85558-R.
2252
+ 20
2253
+
2254
+ [18] D. Zhou, S. Seraphin, Complex branching phenomena in the growth of carbon nanotubes, Chem.
2255
+ Phys. Lett., 238(4-6) (1995), 286–289. https://doi.org/10.1016/0009-2614(95)00406-T.
2256
+ [19] P. R. Bandaru, Electrical properties and applications of carbon nanotube structures, J. Nanosci.
2257
+ Nanotechnol., 7(4-5) (2007), 1239-1267. https://doi.org/10.1166/jnn.2007.307.
2258
+ [20] L.
2259
+ Chernozatonskii,
2260
+ Three-terminal
2261
+ junctions
2262
+ of
2263
+ carbon
2264
+ nanotubes:
2265
+ synthesis,
2266
+ struc-
2267
+ tures,
2268
+ properties
2269
+ and
2270
+ applications,
2271
+ J.
2272
+ Nanoparticle
2273
+ Res.,
2274
+ 5(5)
2275
+ (2003),
2276
+ 473-484.
2277
+ https://doi.org/10.1023/B:NANO.0000006154.15176.0f.
2278
+ [21] Y. Yin, Y. Chen, J. Yin, K. Huang, Geometric conservation laws for perfect Y-branched
2279
+ carbon nanotubes, Nanotechnology, 17(19) (2006), 4941–4945. https://doi.org/10.1088/0957-
2280
+ 4484/17/19/027.
2281
+ [22] I. Gutman, O. E. Polansky, Mathematical concepts in organic chemistry, Springer, 1986.
2282
+ https://doi.org/10.1007/978-3-642-70982-1.
2283
+ [23] E. Estrada,
2284
+ E. Molina,
2285
+ Novel local (fragment-based) topological molecular descriptors
2286
+ for QSPR/QSAR and molecular design,
2287
+ J. Mol. Graph. Model.,
2288
+ 20(1) (2001),
2289
+ 54-64.
2290
+ https://doi.org/10.1016/S1093-3263(01)00100-0.
2291
+ [24] S. A. K. Kirmani, P. Ali, F. Azam, Topological indices and QSPR/QSAR analysis of some
2292
+ antiviral drugs being investigated for the treatment of COVID-19 patients, Int. J. Quantum
2293
+ Chem., 121(9) (2021). https://doi.org/10.1002/qua.26594.
2294
+ [25] S.
2295
+ Mondal,
2296
+ A.
2297
+ Dey,
2298
+ N.
2299
+ De,
2300
+ A.
2301
+ Pal,
2302
+ QSPR
2303
+ analysis
2304
+ of
2305
+ some
2306
+ novel
2307
+ neighbour-
2308
+ hood degree-based topological descriptors, Complex Intell. Syst., 7(2) (2021), 977-996.
2309
+ https://doi.org/10.1007/s40747-020-00262-0.
2310
+ [26] H. Wiener, Structural determination of the paraffin boiling points, J. Am. Chem. Soc., 69
2311
+ (1947), 17–20.
2312
+ [27] R. Jagadeesh, M. R. Kanna, R. S. Indumathi, Some results on topological indices of graphene,
2313
+ Nanomater. Nanotechnol., 6 (2016). https://doi.org/10.1177/1847980416679626.
2314
+ [28] M. Ghorbani, M. A. Hosseinzadeh, The third version of Zagreb index, Discrete Math. Algo-
2315
+ rithms Appl., 5(04) (2013). https://doi.org/10.1142/S1793830913500390.
2316
+ [29] S. Mondal, N. De, A. Pal, On some new neighborhood degree based indices, Acta Chemica Iasi,
2317
+ 27(1) (2019), 31–46.
2318
+ [30] S.
2319
+ Mondal,
2320
+ M.
2321
+ K.
2322
+ Siddiqui,
2323
+ N.
2324
+ De,
2325
+ A.
2326
+ Pal,
2327
+ Neighborhood
2328
+ M-polynomial
2329
+ of
2330
+ crys-
2331
+ tallographic
2332
+ structures,
2333
+ Biointerface
2334
+ Res.
2335
+ Appl.
2336
+ Chem.,
2337
+ 11(2)
2338
+ (2021),
2339
+ 9372-9381.
2340
+ https://doi.org/10.33263/BRIAC112.93729381.
2341
+ [31] M. Chamua, J. Buragohain, A. Bharali, M. E. Nazari, Predictive ability of neighborhood degree
2342
+ sum-based topological indices of polycyclic aromatic hydrocarbons, J. Mol. Struct., 1270 (2022).
2343
+ https://doi.org/10.1016/j.molstruc.2022.133904.
2344
+ [32] S. Mondal, N. De, A. Pal, On some new neighborhood degree-based indices for some oxide and
2345
+ silicate networks, J. Multidiscip. Res., 2(3) (2019), 384–409. https://doi.org/10.3390/j2030026.
2346
+ [33] S. Mondal, N. De, A. Pal, On some general neighborhood degree based indices, Int. J. Appl.
2347
+ Math., 32(6) (2019), 1037–1049. https://doi.org/10.12732/ijam.v32i6.10.
2348
+ [34] S.
2349
+ Mondal,
2350
+ N.
2351
+ De,
2352
+ A.
2353
+ Pal,
2354
+ Neighborhood
2355
+ degree
2356
+ sum-based
2357
+ molecular
2358
+ descriptors
2359
+ of
2360
+ fractal
2361
+ and
2362
+ Cayley
2363
+ tree
2364
+ dendrimers,
2365
+ Eur.
2366
+ Phys.
2367
+ J.
2368
+ Plus,
2369
+ 136(3)
2370
+ (2021),
2371
+ 1-37.
2372
+ https://doi.org/10.1140/epjp/s13360-021-01292-4.
2373
+ [35] S. Mondal, N. De, A. Pal, Topological indices of some chemical structures applied for
2374
+ the treatment of COVID-19 patients, Polycycl. Aromat. Compd., 42(4) (2022), 1220-1234.
2375
+ https://doi.org/10.1080/10406638.2020.1770306.
2376
+ [36] M. C. Shanmukha, A. Usha, K. C. Shilpa, N. S. Basavarajappa, M-polynomial and neighbor-
2377
+ hood M-polynomial methods for topological indices of porous graphene, Eur. Phys. J. Plus,
2378
+ 136(10) (2021), 1-16. https://doi.org/10.1140/epjp/s13360-021-02074-8.
2379
+ 21
2380
+
2381
+ [37] S. Mondal, N. De, M. K. Siddiqui, A. Pal, Topological properties of para-line graph of some con-
2382
+ vex polytopes using neighborhood M-polynomial, Biointerface Res. Appl. Chem., 11(3) (2020),
2383
+ 9915-9927. https://doi.org/10.33263/BRIAC113.99159927.
2384
+ [38] S. Mondal, M. Imran, N. De, A. Pal, Neighborhood M-polynomial of titanium compounds,
2385
+ Arab. J. Chem., 14(8) (2021), 103244. https://doi.org/10.1016/j.arabjc.2021.103244.
2386
+ [39] E. Trucco, A note on the information content of graphs, Bull. Math. Biophys., 18(2) (1956),
2387
+ 129–135. https://doi.org/10.1007/BF02477836.
2388
+ [40] M.
2389
+ Dehmer,
2390
+ Information
2391
+ processing
2392
+ in
2393
+ complex
2394
+ networks:
2395
+ graph
2396
+ entropy
2397
+ and
2398
+ information
2399
+ functionals,
2400
+ Appl.
2401
+ Math.
2402
+ Comput.,
2403
+ 201(1-2)
2404
+ (2008),
2405
+ 82–94.
2406
+ https://doi.org/10.1016/j.amc.2007.12.010.
2407
+ [41] N. Rashevsky, Life, information theory, and topology, Bull. Math. Biophys., 17(3) (1955), 229-
2408
+ 235. https://doi.org/10.1007/BF02477860.
2409
+ [42] W. H. Zurek, Complexity, entropy and the physics of information, CRC Press, 2018.
2410
+ https://doi.org/10.1201/9780429502880.
2411
+ [43] M. Arockiaraj, J. Jency, J. Abraham, S. Ruth Julie Kavitha, K. Balasubramanian, Two-
2412
+ dimensional coronene fractal structures: topological entropy measures, energetics, NMR and
2413
+ ESR spectroscopic patterns and existence of isentropic structures, Mol. Phys., 120(11) (2022),
2414
+ 1-15. https://doi.org/10.1080/00268976.2022.2079568.
2415
+ [44] J. Abraham, M. Arockiaraj, J. Jency, S. Kavitha, K. Balasubramanian, Graph entropies, enu-
2416
+ meration of circuits, walks and topological properties of three classes of isoreticular metal or-
2417
+ ganic frameworks, J. Math. Chem., 60(4) (2022), 695-732. https://doi.org/10.1007/s10910-021-
2418
+ 01321-8.
2419
+ [45] D. Bonchev, Information theoretic indices for characterization of chemical structures, Research
2420
+ Studies Press, Chichester, 1983.
2421
+ [46] Y. J. Tan, J. Wu, Network structure entropy and its application to scale-free networks, Syst.
2422
+ Eng. Theory Pract., 24(6) (2006), 1–3.
2423
+ [47] A. Mowshowitz, Entropy and the complexity of graphs: I. An index of the relative complexity
2424
+ of a graph, Bull. Math. Biophys., 30 (1968), 175–204. https://doi.org/10.1007/BF02476948.
2425
+ [48] A.
2426
+ Mowshowitz,
2427
+ Entropy
2428
+ and
2429
+ the
2430
+ complexity
2431
+ of
2432
+ graphs:
2433
+ II.
2434
+ The
2435
+ information
2436
+ con-
2437
+ tent
2438
+ of
2439
+ digraphs
2440
+ and
2441
+ infinite
2442
+ graphs,
2443
+ Bull.
2444
+ Math.
2445
+ Biophys.,
2446
+ 30
2447
+ (1968),
2448
+ 225–240.
2449
+ https://doi.org/10.1007/BF02476692.
2450
+ [49] A. Mowshowitz, Entropy and the complexity of graphs: III. Graphs with prescribed information
2451
+ content, Bull. Math. Biophys., 30 (1968), 387–414. https://doi.org/10.1007/BF02476603.
2452
+ [50] A. Mowshowitz, Entropy and the complexity of graphs: IV. Entropy measures and graphical
2453
+ structure, Bull. Math. Biophys., 30 (1968), 533–546. https://doi.org/10.1007/BF02476673.
2454
+ [51] A. Shabbir, M. F. Nadeem, Computational analysis of topological index-based entropies of car-
2455
+ bon nanotube Y-junctions, J. Stat. Phys., 188(31) (2022), 1-26. https://doi.org/10.1007/s10955-
2456
+ 022-02955-x.
2457
+ [52] M. F. Nadeem, M. Azeem, I. Farman, Comparative study of topological indices for capped
2458
+ and uncapped carbon nanotubes, Polycycl. Aromat. Compd., 42(7) (2022), 4666-4683.
2459
+ https://doi.org/10.1080/10406638.2021.1903952.
2460
+ [53] M. Baˇca, J. Horv´athov´a, M. Mokriˇsov´a, A. Semaniˇcov´a-Feˇnovˇc´ıkov´a, A. Suh´anyiov´a, On
2461
+ topological indices of a carbon nanotube network, Can. J. Chem., 93(10) (2015), 1157-1160.
2462
+ https://doi.org/10.1139/cjc-2015-0175.
2463
+ [54] M.
2464
+ Azeem,
2465
+ M.
2466
+ Jamil,
2467
+ A.
2468
+ Javed,
2469
+ A.
2470
+ Ahmad,
2471
+ Verification
2472
+ of
2473
+ some
2474
+ topological
2475
+ indices
2476
+ of
2477
+ Y-junction
2478
+ based
2479
+ nanostructures
2480
+ by
2481
+ M-polynomials,
2482
+ J.
2483
+ Math.,
2484
+ (2022).
2485
+ https://doi.org/10.1155/2022/8238651.
2486
+ [55] A. N. A. H. Ahmad, Comparative study of Y-junction nanotubes with vertex-edge based topo-
2487
+ logical descriptors, J. Math., (2022). https://doi.org/10.1155/2022/2383074.
2488
+ 22
2489
+
2490
+ [56] A.
2491
+ Shabbir,
2492
+ Computing
2493
+ and
2494
+ comparative
2495
+ analysis
2496
+ of
2497
+ topological
2498
+ invariants
2499
+ of
2500
+ symmetrical
2501
+ carbon
2502
+ nanotube
2503
+ Y
2504
+ junctions,
2505
+ Arab.
2506
+ J.
2507
+ Chem.,
2508
+ 15(1)
2509
+ (2022).
2510
+ https://doi.org/10.1016/j.arabjc.2021.103509.
2511
+ [57] M. P. Rahul, J. Clement, J. S. Junias, M. Arockiaraj, K. Balasubramanian, Degree-based
2512
+ entropies of graphene, graphyne and graphdiyne using Shannon’s approach, J. Mol. Struct.,
2513
+ 1260 (2022). https://doi.org/10.1016/j.molstruc.2022.132797.
2514
+ [58] S. Cao, M. Dehmer, Y. Shi, Extremality of degree-based graph entropies, Inform. Sci., 278
2515
+ (2014), 22–33. https://doi.org/10.1016/j.ins.2014.03.133.
2516
+ [59] Z. Chen, M. Dehmer, Y. Shi, A note on distance-based graph entropies, Entropy, 16(10) (2014),
2517
+ 5416–5427. https://doi.org/10.3390/e16105416.
2518
+ [60] M. Dehmer, K. Varmuza, S. Borgert, F. Emmert-Streib, On entropy-based molecular descrip-
2519
+ tors: statistical analysis of real and synthetic chemical structures, J. Chem. Inf. Model. 49(7)
2520
+ (2009), 1655–1663. https://doi.org/10.1021/ci900060x.
2521
+ 23
2522
+
9tA0T4oBgHgl3EQfO_-M/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
ANFLT4oBgHgl3EQfwzCR/content/tmp_files/2301.12165v1.pdf.txt ADDED
@@ -0,0 +1,705 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ Dynamic Point Cloud Geometry Compression
3
+ Using Multiscale Inter Conditional Coding
4
+ Jianqiang Wang, Dandan Ding, Hao Chen, and Zhan Ma
5
+ Abstract—This work extends the Multiscale Sparse Repre-
6
+ sentation (MSR) framework developed for static Point Cloud
7
+ Geometry Compression (PCGC) to support the dynamic PCGC
8
+ through the use of multiscale inter conditional coding. To this
9
+ end, the reconstruction of the preceding Point Cloud Geometry
10
+ (PCG) frame is progressively downscaled to generate multi-
11
+ scale temporal priors which are then scale-wise transferred
12
+ and integrated with lower-scale spatial priors from the same
13
+ frame to form the contextual information to improve occupancy
14
+ probability approximation when processing the current PCG
15
+ frame from one scale to another. Following the Common Test
16
+ Conditions (CTC) defined in the standardization committee, the
17
+ proposed method presents State-Of-The-Art (SOTA) compression
18
+ performance, yielding 78% lossy BD-Rate gain to the latest
19
+ standard-compliant V-PCC and 45% lossless bitrate reduction
20
+ to the latest G-PCC. Even for recently-emerged learning-based
21
+ solutions, our method still shows significant performance gains.
22
+ Index Terms—Dynamic point cloud geometry, Multiscale tem-
23
+ poral prior, Inter conditional coding.
24
+ I. INTRODUCTION
25
+ Dynamic point clouds are of great importance for applica-
26
+ tions like holographic communication, autonomous machinery,
27
+ etc., for which the efficient compression of dynamic Point
28
+ Cloud Geometry (PCG) plays a vital role in service provision-
29
+ ing. In addition to rules-based Point Cloud Geometry Com-
30
+ pression (PCGC) technologies standardized by the ISO/IEC
31
+ MPEG (Moving Picture Experts Group), e.g., Video-based
32
+ PCC (V-PCC) and Geometry-based PCC (G-PCC) [3], [4], [5],
33
+ learning-based PCGC methods have been extensively investi-
34
+ gated in the past few years, greatly improving the performance
35
+ with very encouraging prospects [6]. Among those learning-
36
+ based solutions, multiscale sparse representation (MSR) [2],
37
+ [1], [7], [8] has improved the performance unprecedentedly by
38
+ effectively exploiting cross-scale and same-scale correlations
39
+ in the same frame of a static PCG for compact representation.
40
+ The compression of a static PCG frame independently can also
41
+ be referred to as the intra coding of the PCG.
42
+ This work extends the MSR framework originally developed
43
+ for static PCGs to compress the dynamic PCGs [2], [1]. In this
44
+ regard, we suggest the inclusion of multiscale temporal priors
45
+ for inter conditional coding. As in Fig. 1, for a previously-
46
+ reconstructed PCG frame (e.g., PCG t − 1), we progressively
47
+ downsample it and extract scale-wise hierarchical features
48
+ which are then transferred as additional temporal priors to help
49
+ the compression of the same-scale PCG tensor of the current
50
+ frame (e.g., PCG t). To this end, we basically concatenate
51
+ J. Wang, H. Chen and Z. Ma are with Nanjing University, China; D. Ding
52
+ is with Hangzhou Normal University, China.
53
+ the same-scale temporal priors from the inter reference and
54
+ lower-scale spatial priors from the same intra frame to form
55
+ the contextual information for better conditional occupancy
56
+ probability approximation in compression. Such an inter con-
57
+ ditional coding scheme for dynamic PCGC is implemented on
58
+ top of the SparsePCGC [1] originally developed for the static
59
+ PCGC, to quantitatively evaluate its efficiency. Experimental
60
+ results demonstrate the leading performance of our method
61
+ when compared with existing methods (either rules-based
62
+ or learning-based ones) in both lossy and lossless modes,
63
+ following the Common Test Conditions (CTC) used in the
64
+ MPEG standardization committee [9].
65
+ II. RELATED WORK
66
+ In addition to existing G-PCC and V-PCC standards and
67
+ other rules-based PCC methods in [10], [11], [12], [13], [14],
68
+ [15], an excessive number of learning-based PCC solutions
69
+ have emerged in the past years. Therefore the ISO/IEC MPEG
70
+ 3D graphics coding group initiated the Artificial Intelligence-
71
+ based Point Cloud Compression (AI-PCC) to investigate po-
72
+ tential technologies for better compression of point clouds.
73
+ Static PCGC. Recently, major endeavors have been paid
74
+ to study the compression of a static PCG [6], a.k.a. Static
75
+ PCGC, yielding voxel-based [16], [17], point-based [18],
76
+ octree-based [19], and sparse tensor-based approaches [7],
77
+ [2], [1]. Among them, sparse tensor-based methods not only
78
+ attain the leading performance but also have low complexity.
79
+ The first representative work is the PCGCv2 [2] where a
80
+ static PCG tensor is hierarchically downsampled and lossily
81
+ compressed using a Sparse Convolutional Neural Network
82
+ (SparseCNN) based autoencoder. Later, the SparsePCGC [1]
83
+ improves the PCGCv2 greatly under a unified MSR framework
84
+ to support both lossless and lossy compression of various point
85
+ clouds by extensively exploiting cross-scale and same-scale
86
+ correlations for better contextual modeling using SparseCNN-
87
+ based Occupancy Probability Approximation (SOPA) models.
88
+ More details regarding the MSR and SOPA model can be
89
+ found in [1].
90
+ Dynamic
91
+ PCGC.
92
+ On
93
+ top
94
+ of
95
+ the
96
+ PCGCv2,
97
+ Fan
98
+ et
99
+ al. [20] and Akhtar et al. [21] proposed to encode inter resid-
100
+ uals between temporal successive PCG frames for dynamic
101
+ PCGC. Their main difference lies in the generation of inter
102
+ prediction signals. Fan et al. [20] used a SparseCNN-based
103
+ motion estimation to align the coordinate of the reference to
104
+ the current frame, and then interpolate k nearest neighbors
105
+ to first derive the temporal prediction and then compute the
106
+ residual difference; while Akhtar et al. [21] employed a “con-
107
+ arXiv:2301.12165v1 [cs.CV] 28 Jan 2023
108
+
109
+ 2
110
+ PCG t
111
+ PCG t-1
112
+ Nth
113
+ scale
114
+ N-1th
115
+ scale
116
+ SOPA
117
+ (1-stage)
118
+ m-1th
119
+ scale
120
+ mth
121
+ scale
122
+ Lossless Phase
123
+ Lossy Phase
124
+ Nth
125
+ scale
126
+ N-1th
127
+ scale
128
+ m-1th
129
+ scale
130
+ mth
131
+ scale
132
+ Extractor
133
+ m-2th
134
+ scale
135
+ m-2th
136
+ scale
137
+ SparsePCGC
138
+ Down-
139
+ scaling
140
+ Down-
141
+ scaling
142
+ Predictor
143
+ SConv 93×32
144
+ Extractor
145
+ Extractor
146
+ Extractor
147
+ Predictor
148
+ SConv 93×32
149
+ Predictor
150
+ SConv 93×32
151
+ Predictor
152
+ SConv 93×32
153
+ Encoder
154
+ Encoder
155
+ SOPA
156
+ (1-stage)
157
+ SOPA
158
+ (8-stage)
159
+ SOPA
160
+ (8-stage)
161
+ feat
162
+ feat
163
+ feat
164
+ feat
165
+ feat
166
+ (a)
167
+ Encoder or
168
+ Feature Extractor
169
+ SOPA (1-stage)
170
+ Scale i
171
+ Scale i-1
172
+ Scale i-1
173
+ Scale i
174
+ Occuancy
175
+ Probability
176
+ (b)
177
+ Fig. 1: Dynamic PCGC in a two-frame example. (a) On top of the MSR framework used by SparsePCGC for static PCGC
178
+ originally, multiscale temporal priors of (t−1)-th frame are first extracted using Extractors and transferred using Predictors for
179
+ the compression of t-th frame, where temporal priors are concatenated with the same-frame lower-scale priors for improving
180
+ the capacity of SOPA model. (b) Network examples for Encoder (or Feature Extractor) and 1-stage SOPA. Lossy SparsePCGC
181
+ is comprised of a lossless phase using 8-stage SOPA and a lossy phase using 1-stage SOPA instead, across different scales.
182
+ On the contrary, lossless SparsePCGC uses 8-stage SOPA for all scales [1]. Sparse Convolution (SConv) constitutes the basic
183
+ feature processing layer. Inception-ResNet (IRN) blocks are used for deep feature aggregation [2].
184
+ volution on target coordinates” operation to map the feature-
185
+ space information from the reference to the current frame to
186
+ derive the inter residual.
187
+ This letter also applies the “convolution on target coor-
188
+ dinates” to exploit correlations across temporal successive
189
+ frames in feature space. Instead of using the inter residual
190
+ at a fixed scale, we generate multiscale temporal priors for
191
+ scale-wise contextual information aggregation, which greatly
192
+ improves the conditional probability approximation in com-
193
+ pression of our method, as shown subsequently.
194
+ III. PROPOSED METHOD
195
+ A. Overall Framework
196
+ The proposed MSR-based dynamic PCGC is shown in
197
+ Fig. 1. A two-frame example is illustrated where the (t − 1)-
198
+ th frame is already encoded and reconstructed as the temporal
199
+ reference, and the t-th frame is about to be encoded. Appar-
200
+ ently, such a two-frame example can be easily extended to a
201
+ sequence of frames.
202
+ To compress the t-th frame, a straightforward solution is
203
+ to encode each PCG frame independently, a.k.a. intra coding,
204
+ using default SparsePCGC to solely exploit cross-scale and
205
+ same-scale correlations in the same frame. As there are strong
206
+ temporal correlations across successive frames, inter prediction
207
+ is often utilized for improving compression efficiency. To this
208
+ end, this work follows the MSR principle to first progressively
209
+ extract features using Extractors from the (t − 1)-th recon-
210
+ struction ˆxt−1, and then generate multiscale temporal priors
211
+ via a one-layer sparse convolution (SConv) based Predictors
212
+ for inter conditional coding of t-th frame xt.
213
+ Similar to the SparsePCGC, dyadic resampling is applied
214
+ for multiscale computation [1]. Assuming the highest scale
215
+ of an input point cloud at N, the lossy compression of this
216
+ PCG is comprised of m-scale lossless and (N −m)-scale lossy
217
+ compression. Adapting m is to balance the lossy rate-distortion
218
+ tradeoff [22]. As seen, in the lossless phase, temporal priors
219
+ from the inter reference are concatenated with the lower-
220
+ scale spatial priors in the same intra frame which are then
221
+ fed into the 8-stage SOPA model for better approximation of
222
+ occupancy probability for lossless coding; while in the lossy
223
+ phase, such concatenated spatiotemporal priors can be either
224
+ augmented with decoded local neighborhood information or
225
+ directly used in 1-stage SOPA model for better geometry
226
+ reconstruction. By contrast, the lossless compression of an
227
+ input PCG applies 8-stage SOPA uniformly for all scales to
228
+ process such concatenated spatiotemporal priors.
229
+ We next detail each individual module developed for the
230
+ use of multiscale temporal priors in inter conditional coding.
231
+ B. Encoder/Extractor & SOPA Models
232
+ The Encoder (and Extractor) model which is typically
233
+ devised with the resolution downscaling, aggregates local
234
+ neighborhood information to form spatial intra (or temporal
235
+ inter) priors for enhancing the SOPA model. Correspondingly,
236
+ the SOPA model estimates the occupancy probability for ge-
237
+ ometry reconstruction (i.e., voxel occupancy status) gradually
238
+ from lower to higher scale, using both spatial priors (e.g.,
239
+ decoded latent feature, lower-scale input) in the same frame
240
+ and temporal priors from the inter reference.
241
+ The Encoder/Extractor model applies sparse convolutions
242
+ and nonlinear activations for computation as shown in Fig. 1b,
243
+ consisting of a convolutional voxel downsampling layer with
244
+ kernel size and stride of 2 at each dimension, e.g., SConv 23×
245
+ 32 s2↓, and stacked Inception-ResNet (IRN) blocks for deep
246
+ feature aggregation. The IRN contains multiple convolutional
247
+ layers with a kernel size of 3×3×3, e.g., SConv 33 × 32 [2].
248
+ The 1-stage SOPA model mostly mirrors the processing of
249
+ the Encoder/Extractor where a transposed convolutional voxel
250
+ upsampling layer with kernel size and stride of 2 is used, e.g.,
251
+ SConv 23 ×32 s2↑. This 1-stage SOPA can be easily extended
252
+ to support multi-stage computation by grouping upscaled
253
+
254
+ 3
255
+ ������������������������
256
+ ������������������������
257
+ �������������������������
258
+ ������������������������
259
+ SOPA
260
+ Encoder
261
+ (a)
262
+ ������������������������
263
+ ������������������������
264
+ ������������������������−1
265
+ ������������������������
266
+ �������������������������
267
+ ������������
268
+ �������������������������−1
269
+ ������������
270
+ Extractor
271
+ Encoder
272
+ SOPA
273
+ (b)
274
+ ������������������������
275
+ ������������������������
276
+ ������������������������−1
277
+ �������������������������−1
278
+ ������������������������, ������������������������−1
279
+ �������������������������
280
+ c
281
+ c
282
+ Extractor
283
+ Encoder
284
+ SOPA
285
+ (c)
286
+ Fig. 2: Intra and Inter Coding of PCGs. (a) intra coding used
287
+ in SparsePCGC [1], (b) inter residual coding used in [20], [21],
288
+ (3) the proposed inter conditional coding.
289
+ voxels for stage-wise processing [1]. As exemplified in the
290
+ lossless phase of Fig. 1, 8-stage SOPA is used to progressively
291
+ reconstruct the voxels by utilizing previously-processed, same-
292
+ scale neighbors for better probability estimation.
293
+ C. Inter Conditional Coding
294
+ We use the Predictor to transfer information from the inter
295
+ reference for the compression of the current frame. As in
296
+ Fig. 1, the Predictor is implemented using a one-layer sparse
297
+ convolution to perform the “convolution on target coordi-
298
+ nates”, which has the same number of parameters and opera-
299
+ tions as the normal convolution, except the target coordinates
300
+ of its output can be customized. For instance, a sparse tensor
301
+ is formulated using a set of coordinates ⃗C = {(xi, yi, zi)}i
302
+ and associated features ⃗F = {⃗fi}i. The sparse convolution is
303
+ formulated as :
304
+ ⃗f out
305
+ u
306
+ =
307
+
308
+ k∈N3(u, ⃗Cin) Wk ⃗f in
309
+ u+k
310
+ for
311
+ u ∈ ⃗Cout,
312
+ (1)
313
+ where ⃗Cin and ⃗Cout are input and output coordinates in the
314
+ reference frame and current frame, respectively. N3(u, ⃗Cin) =
315
+ {k|u + k ∈ ⃗Cin, k ∈ N3} defines a 3D convolutional kernel
316
+ centered at u ∈ ⃗Cout with offset k in ⃗Cin. ⃗f in
317
+ u+k and ⃗f out
318
+ u
319
+ are
320
+ corresponding input and output feature vectors at coordinate
321
+ u+k ∈ ⃗Cin and u ∈ ⃗Cout, respectively. Wi is kernel weights.
322
+ In this work, the Predictor takes each coordinate of the current
323
+ frame as the center, aggregates, and transfers the colocated
324
+ features at each scale in a 9 × 9 × 9 local window of the
325
+ reference, e.g., SConv 93 × 32.
326
+ The use of temporal priors yt−1 from the reference for inter
327
+ prediction is exemplified in Fig. 2. As for a comparison, intra
328
+ coding is also pictured in Fig. 2a. The inter residual coding
329
+ scheme is used in [20], [21] where the feature residual between
330
+ the reference yt−1 and current frame is encoded as in Fig. 2b.
331
+ The residual compensation is usually limited at the first layer
332
+ of the lossy phase because it requires the correct geometry
333
+ information for augmentation. Having residual compensation
334
+ in other lossy scales is impractical because incorrect geometry
335
+ would severely degrade the reconstruction quality [2].
336
+ By contrast, a simple-yet-effective spatiotemporal feature
337
+ concatenation is applied to perform the inter conditional
338
+ coding in Fig. 2c which is flexible and applicable to all scales
339
+ under the MSR framework. As seen, the reference reconstruc-
340
+ tion ˆxt−1 is used to generate scale-wise temporal priors which
341
+ 0.0
342
+ 0.1
343
+ 0.2
344
+ 0.3
345
+ 0.4
346
+ 0.5
347
+ bpp
348
+ 64
349
+ 66
350
+ 68
351
+ 70
352
+ 72
353
+ 74
354
+ 76
355
+ 78
356
+ D1 PSNR (dB)
357
+ average_100
358
+ Ours
359
+ SparsePCGC
360
+ Fan et al.
361
+ Akhtar et al.
362
+ PCGCv2
363
+ V-PCC
364
+ 0.0
365
+ 0.1
366
+ 0.2
367
+ 0.3
368
+ 0.4
369
+ 0.5
370
+ bpp
371
+ 64
372
+ 66
373
+ 68
374
+ 70
375
+ 72
376
+ 74
377
+ 76
378
+ 78
379
+ D1 PSNR (dB)
380
+ average_32
381
+ Ours
382
+ SparsePCGC
383
+ Fan et al.
384
+ Akhtar et al.
385
+ PCGCv2
386
+ V-PCC
387
+ Fig. 3: Efficiency Comparison. Rate-Distortion (R-D) curves
388
+ of different methods. 100 (left) and 32 (right) frames are eval-
389
+ uated across a wide range of bitrates following the CTC [9].
390
+ are then concatenated with the (cross-scale) spatial priors from
391
+ the same frame to help the compression in both lossless and
392
+ lossy compression. In this way, we retain all the information
393
+ of temporal reference and use it for the compression of yt,
394
+ which allows the codec to adaptively extract useful information
395
+ for occupancy probability estimation. In lossless mode, it
396
+ generates bitstream with less bitrate consumption; while in
397
+ lossy mode, it helps to better reconstruct the geometry with
398
+ less distortion.
399
+ D. Loss Functions
400
+ To quantify the voxel occupancy probability, we use the
401
+ Binary Cross-Entropy (BCE) loss to measure the bitrate re-
402
+ quired to encode the occupancy status. At the same time,
403
+ the BCE loss also represents the geometry distortion in lossy
404
+ compression. For the compression of latent feature in the
405
+ encoder, we use a simple factorized entropy model [23] to
406
+ estimate its probability, and cross-entropy loss to calculate the
407
+ bitrate RF . The total loss function is the combination of BCE
408
+ loss and rate consumption RF , i.e., Loss = BCE+λ·R, where
409
+ λ is the weight used to adjust the rate-distortion tradeoff.
410
+ IV. EXPERIMENTAL RESULTS
411
+ A. Testing and Training Conditions
412
+ Training and Testing Datasets. We use the 8i Voxelized
413
+ Full Bodies (8iVFB) dataset [24] for training and the Owlii
414
+ dynamic human sequence dataset [25] for testing. The training
415
+ dataset contains 5 sequences: longdress, loot, redandblack,
416
+ soldier, queen, each of which has 300 frames at 10-bit
417
+ geometry precision. The test dataset contains 4 sequences:
418
+ basketball player, dancer, model, exercise. They are all quan-
419
+ tized to 10-bit geometry precision. The splitting of training
420
+ and testing samples follows the Exploration Experiment (EE)
421
+ recommendations used in MPEG AI-PCC group [9].
422
+ Training Strategies. In training, we partition each frame
423
+ into 4 blocks with kdtree and progressively downscale them
424
+ to 4 different scales for data augmentation. We train one
425
+ model for lossless coding and five models for lossy coding.
426
+ By adjusting m in lossy phase and the R-D weight λ in the
427
+ loss function, we obtain five different lossy coding models,
428
+ covering bitrates from 0.01 to 0.18 bpp (bits per point).
429
+ Testing Conditions. The testing follows the common test
430
+ condition (CTC) defined in the AI-PCC group for dynamic
431
+ PCGC [9]. The first frame is encoded in intra mode, followed
432
+ by all P frames that use the temporally-closest reconstruction
433
+
434
+ 4
435
+ TABLE I: Compression performance comparison with other methods (tested on 100/32 frames following the MPEG CTC [9])
436
+ sequences
437
+ (100/32)
438
+ lossless (bpp)
439
+ lossy (BD-Rate Gain %)
440
+ G-PCC
441
+ SparsePCGC
442
+ Ours
443
+ SparsePCGC
444
+ Fan [20]
445
+ Akhtar [21]
446
+ PCGCv2 [2]
447
+ V-PCC
448
+ player
449
+ 0.824/0.812
450
+ 0.445/0.441
451
+ 0.400/0.388
452
+ -27.7/-24.2
453
+ -28.3/-28.0
454
+ -49.8/-49.1
455
+ -53.0/-51.3
456
+ -78.6/-78.9
457
+ dancer
458
+ 0.854/0.849
459
+ 0.461/0.460
460
+ 0.425/0.425
461
+ -11.9/-14.0
462
+ -26.7/-28.4
463
+ -49.1/-50.0
464
+ -45.8/-47.4
465
+ -77.6/-79.2
466
+ model
467
+ 0.840/0.811
468
+ 0.460/0.451
469
+ 0.404/0.388
470
+ -28.9/-26.6
471
+ -31.4/-31.7
472
+ -50.2/-53.4
473
+ -55.2/-55.0
474
+ -76.8/-78.8
475
+ exercise
476
+ 0.829/0/819
477
+ 0.448/0.442
478
+ 0.388/0.379
479
+ -31.0/-25.3
480
+ -26.0/-23.2
481
+ -49.7/-47.7
482
+ -55.3/-51.5
483
+ -77.6/-77.2
484
+ average
485
+ 0.837/0.823
486
+ 0.454/0.449
487
+ 0.404/0.395
488
+ -24.9/-22.5
489
+ -28.1/-27.8
490
+ -49.7/-50.0
491
+ -52.3/-51.3
492
+ -77.7/-78.5
493
+ TABLE II: Average runtime comparison in lossless mode
494
+ Time (s/frame)
495
+ G-PCC
496
+ SparsePCGC
497
+ Ours
498
+ Enc
499
+ 4.75
500
+ 1.82
501
+ 1.96
502
+ Dec
503
+ 2.60
504
+ 1.66
505
+ 1.82
506
+ as the reference. Results are averaged for cases using 32
507
+ frames and 100 frames. The bitrate is evaluated by the average
508
+ bits per input point (bpp) for each sequence. The geometric
509
+ distortion is evaluated by D1-PSNR per frame to produce a
510
+ sequence-level average (the first intra frame is also included).
511
+ B. Performance Evaluation
512
+ For lossy coding, the V-PCC [26] is selected for comparison
513
+ because of its SOTA performance for dynamic lossy PCGC;
514
+ Here we apply the default low-delay HEVC video encoding
515
+ in V-PCC. While for lossless coding, the G-PCC (octree) is
516
+ compared because of its superior efficiency. Moreover, we
517
+ compare with other learning-based PCGC methods, including
518
+ the PCGCv2 [2] and the SparsePCGC [1] which were orig-
519
+ inally developed for static PCGC, and two recently-emerged
520
+ dynamic PCGC methods proposed by Akhtar et al. [21] and
521
+ Fan et al. [20]. For the PCGCv2 and SparsePCGC, every
522
+ PCG frame is coded independently as intra mode without
523
+ inter prediction. Regarding learning-based methods [20], [21],
524
+ since they are both being studied in the MPEG AI-PCC group
525
+ following the CTC for training and testing [9], we directly cite
526
+ their results reported in the latest standard ad-hoc summary for
527
+ a fair comparison [27], [28].
528
+ Comparison to G-PCC/V-PCC. As shown in Table I and
529
+ Fig. 3, in lossless mode, the proposed method reaches an
530
+ average 45% gain over the G-PCC anchor, e.g., 0.404 bpp
531
+ versus 0.837 bpp when testing 100 frames; while in lossy
532
+ mode, our method provides ≈78% BD-Rate improvement
533
+ against the anchor V-PCC.
534
+ Comparison to learned static PCGC. We present our BD-
535
+ Rate gains over state-of-the-art learning-based methods used
536
+ for static PCGC [2], [1]. As also in Table I, compared with
537
+ PCGCv2 [2] that only supports the lossy coding, the proposed
538
+ method attains 52.3%/51.3% BD-Rate reduction. In lossless
539
+ mode, we improve the SparsePCGC [1] by around 11% on
540
+ average (0.404/0.395 bpp versus 0.454/0.449 bpp); while in
541
+ lossy mode, the gain over SparsePCGC is even higher, > 22%
542
+ on average. Note that the proposed method is extended on top
543
+ of the SparsePCGC by introducing inter conditional coding.
544
+ The resultant BD-Rate gain further confirms the superiority of
545
+ the use of multiscale temporal priors in dynamic PCGC.
546
+ Comparison to learned dynamic PCGC. Further, we
547
+ compare the proposed method with learning-based dynamic
548
+ PCGC methods [20], [21] in Table I. We only compare lossy
549
+ mode performance because their solutions only support lossy
550
+ compression. As shown, the proposed method significantly
551
+ outperforms existing methods with approximately 28% and
552
+ 50% BD-Rate gains over Fan et al. [20] and Akhtar et al. [21]
553
+ on average. Our superior performance mainly attributes to: 1)
554
+ we adopt a multi-stage SOPA in lossless phase, which is more
555
+ efficient than the use of lossless G-PCC in [21], [20]; 2) in
556
+ the lossy phase, inter residual compensation at a fixed scale
557
+ limits the performance of [21], [20]. Note that even using the
558
+ same lossless G-PCC in our method as in [20], [21], the BD-
559
+ Rate gains are also mostly retained due to the use of inter
560
+ conditional coding.
561
+ We also visualize corresponding R-D curves in Fig. 3. It
562
+ shows that our method consistently performs better than other
563
+ methods across a wider range of bitrates. It is also observed
564
+ that Fan et al. [20] focus on high bitrates and cannot reach
565
+ at bitrates below 0.06 bpp, while Akhtar et al. [21] is mostly
566
+ applicable to low bit rates but performs poorly at high bitrates.
567
+ This occurs mainly due to the fixed scale setting in their
568
+ respective lossy phase, i.e., Fan et al. [20] downscales 2
569
+ times and Akhtar et al. [21] downscales 3 times, for lossy
570
+ compression. By contrast, our method provides flexible scale
571
+ adjustment (i.e. high/medium/low bitrates with adaptive m
572
+ e.g., m ∈ 1, 2, 3), and multiscale inter conditional coding
573
+ through simple-yet-effective feature concatenation. These im-
574
+ provements not only enable the support of both lossless and
575
+ lossy compression but also yield SOTA performance.
576
+ Complexity. We collect the runtime by respectively running
577
+ the G-PCC, SparsePCGC, and the proposed method in lossless
578
+ coding, as shown in Table II for complexity evaluation. The
579
+ runtime is tested on an Intel Xeon Silver 4210 CPU and
580
+ an Nvidia GeForce RTX 2080 GPU, which is just used as
581
+ the intuitive reference to have a general understanding of
582
+ the computational complexity. As seen, the proposed method
583
+ presents faster encoding and decoding than G-PCC when
584
+ using GPU acceleration. The runtime increase relative to the
585
+ SparsePCGC-based intra coding is marginal.
586
+ V. CONCLUSION
587
+ This paper presents the compression of dynamic point cloud
588
+ geometry, which incorporates the multiscale temporal priors
589
+ into the multiscale sparse representation framework to enable
590
+ inter conditional coding across temporal frames. Extensive
591
+ experiments demonstrate that the proposed approach achieves
592
+ SOTA performance in both lossy and lossless modes when
593
+ compressing the dense object point cloud geometry.
594
+
595
+ 5
596
+ REFERENCES
597
+ [1] Jianqiang Wang, Dandan Ding, Zhu Li, Xiaoxing Feng, Chuntong Cao,
598
+ and Zhan Ma, “Sparse tensor-based multiscale representation for point
599
+ cloud geometry compression,” IEEE Transactions on Pattern Analysis
600
+ and Machine Intelligence, pp. 1–18, 2022.
601
+ [2] Jianqiang Wang, Dandan Ding, Zhu Li, and Zhan Ma,
602
+ “Multiscale
603
+ point cloud geometry compression,” 2021 Data Compression Conference
604
+ (DCC), pp. 73–82, 2021.
605
+ [3] D Graziosi, O Nakagami, S Kuma, et al., “An overview of ongoing
606
+ point cloud compression standardization activities: video-based (V-PCC)
607
+ and geometry-based (G-PCC),”
608
+ APSIPA Transactions on Signal and
609
+ Information Processing, vol. 9, 2020.
610
+ [4] Sebastian Schwarz, Marius Preda, Vittorio Baroncini, Madhukar Buda-
611
+ gavi, Pablo Cesar, Philip A Chou, Robert A Cohen, Maja Krivoku´ca,
612
+ S´ebastien Lasserre, Zhu Li, et al., “Emerging mpeg standards for point
613
+ cloud compression,” IEEE Journal on Emerging and Selected Topics in
614
+ Circuits and Systems, vol. 9, no. 1, pp. 133–148, 2018.
615
+ [5] Chao Cao, Marius Preda, Vladyslav Zakharchenko, Euee S Jang, and
616
+ Titus Zaharia,
617
+ “Compression of sparse and dense dynamic point
618
+ clouds—methods and standards,” Proceedings of the IEEE, vol. 109,
619
+ no. 9, pp. 1537–1558, 2021.
620
+ [6] Maurice Quach, Jiahao Pang, Dong Tian, Giuseppe Valenzise, and
621
+ Fr´ed´eric Dufaux,
622
+ “Survey on deep learning-based point cloud com-
623
+ pression,” Frontiers in Signal Processing, 2022.
624
+ [7] Gexin Liu, Jianqiang Wang, Dandan Ding, and Zhan Ma, “PCGFormer:
625
+ Lossy point cloud geometry compression via local self-attention,” in
626
+ IEEE VCIP, 2022.
627
+ [8] Ruixiang Xue, Jianqiang Wang, and Zhan Ma, “Efficient LiDAR point
628
+ cloud geometry compression through neighborhood point attention,”
629
+ ArXiv, vol. abs/2208.12573, 2022.
630
+ [9] WG7, MPEG 3D Graphics Coding, “Description of exploration exper-
631
+ iment 5.3 on AI-based dynamic pc coding,” ISO/IEC JTC 1/SC 29/WG
632
+ 7 N00386, July 2022.
633
+ [10] Eduardo Peixoto,
634
+ “Intra-frame compression of point cloud geometry
635
+ using dyadic decomposition,” IEEE Signal Processing Letters, vol. 27,
636
+ pp. 246–250, 2020.
637
+ [11] Shuai Gu, Junhui Hou, Huanqiang Zeng, and Hui Yuan, “3D point cloud
638
+ attribute compression via graph prediction,”
639
+ IEEE Signal Processing
640
+ Letters, vol. 27, pp. 176–180, 2020.
641
+ [12] Evaristo Ramalho, Eduardo Peixoto, and Edil Medeiros, “Silhouette 4D
642
+ with context selection: Lossless geometry compression of dynamic point
643
+ clouds,” IEEE Signal Processing Letters, vol. 28, pp. 1660–1664, 2021.
644
+ [13] Dorina Thanou, Philip A. Chou, and Pascal Frossard,
645
+ “Graph-based
646
+ compression of dynamic 3d point cloud sequences,” IEEE Transactions
647
+ on Image Processing, vol. 25, no. 4, pp. 1765–1778, 2016.
648
+ [14] Diogo C. Garcia, Tiago A. Fonseca, Renan U. Ferreira, and Ricardo L.
649
+ de Queiroz, ,” IEEE Transactions on Image Processing, vol. 29, pp.
650
+ 313–322, 2020.
651
+ [15] Shuai Gu, Junhui Hou, Huanqiang Zeng, Hui Yuan, and Kai-Kuang
652
+ Ma, “3d point cloud attribute compression using geometry-guided sparse
653
+ representation,” IEEE Transactions on Image Processing, vol. 29, pp.
654
+ 796–808, 2019.
655
+ [16] Jianqiang Wang, Hao Zhu, Haojie Liu, and Zhan Ma,
656
+ “Lossy point
657
+ cloud geometry compression via end-to-end learning,” IEEE TCSVT,
658
+ vol. 31, pp. 4909–4923, 2021.
659
+ [17] Andr´e F. R. Guarda, Nuno M. M. Rodrigues, and Fernando Pereira,
660
+ “Adaptive deep learning-based point cloud geometry coding,”
661
+ IEEE
662
+ Journal of Selected Topics in Signal Processing, vol. 15, no. 2, pp.
663
+ 415–430, 2021.
664
+ [18] Junteng Zhang, Gexin Liu, Dandan Ding, and Zhan Ma, “Transformer
665
+ and upsampling-based point cloud compression,” in Proceedings of the
666
+ 1st International Workshop on Advances in Point Cloud Compression,
667
+ Processing and Analysis, New York, NY, USA, 2022, APCCPA ’22, p.
668
+ 33–39, Association for Computing Machinery.
669
+ [19] Lila Huang, Shenlong Wang, K. Wong, et al.,
670
+ “Octsqueeze: Octree-
671
+ structured entropy model for lidar compression,” 2020 IEEE/CVF CVPR,
672
+ pp. 1310–1320, 2020.
673
+ [20] Tingyu Fan, Linyao Gao, Yiling Xu, Zhu Li, and Dong Wang,
674
+ “D-
675
+ DPCC: Deep dynamic point cloud compression via 3D motion predic-
676
+ tion,” in IJCAI, 2022.
677
+ [21] Anique Akhtar, Zhu Li, and Geert Van der Auwera,
678
+ “Inter-frame
679
+ compression for dynamic point cloud geometry coding,”
680
+ ArXiv, vol.
681
+ abs/2207.12554, 2022.
682
+ [22] Gary J Sullivan and Thomas Wiegand, “Rate-distortion optimization for
683
+ video compression,” IEEE signal processing magazine, vol. 15, no. 6,
684
+ pp. 74–90, 1998.
685
+ [23] Johannes Ball´e, David Minnen, Saurabh Singh, et al., “Variational image
686
+ compression with a scale hyperprior,” in ICLR, 2018.
687
+ [24] Eugene d’Eon, Bob Harrison, Taos Myers, and Philip A. Chou,
688
+ “8i
689
+ voxelized full bodies - a voxelized point cloud dataset,”
690
+ ISO/IEC
691
+ JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG) m38673/M72012, May
692
+ 2016.
693
+ [25] Xu Yi, Lu Yao, and Wen Ziyu, “Owlii dynamic human mesh sequence
694
+ dataset,” ISO/IEC JTC1/SC29/WG11 (MPEG/JPEG) m41658, October,
695
+ 2017.
696
+ [26] “ISO/IEC 23090-5 - Visual Volumetric Video-based Coding (V3C) and
697
+ Video-based Point Cloud Compression (V-PCC),” .
698
+ [27] Anique Akhtar and Zhu Li and Geert Van der Auwera and others,
699
+ “Results dynamic point cloud compression,” 8th WG7 Meeting, 139th
700
+ MPEG Meeting, Online. m60307, July 2022.
701
+ [28] Yiling Xu and Tingyu Fan and Linyao Gao and others, “D-DPCC Test
702
+ Results on 10-bit Owlii,”
703
+ 8th WG7 Meeting, 139th MPEG Meeting,
704
+ Online. m60267, July 2022.
705
+
ANFLT4oBgHgl3EQfwzCR/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,508 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf,len=507
2
+ page_content='1 Dynamic Point Cloud Geometry Compression Using Multiscale Inter Conditional Coding Jianqiang Wang, Dandan Ding, Hao Chen, and Zhan Ma Abstract—This work extends the Multiscale Sparse Repre- sentation (MSR) framework developed for static Point Cloud Geometry Compression (PCGC) to support the dynamic PCGC through the use of multiscale inter conditional coding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
3
+ page_content=' To this end, the reconstruction of the preceding Point Cloud Geometry (PCG) frame is progressively downscaled to generate multi- scale temporal priors which are then scale-wise transferred and integrated with lower-scale spatial priors from the same frame to form the contextual information to improve occupancy probability approximation when processing the current PCG frame from one scale to another.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
4
+ page_content=' Following the Common Test Conditions (CTC) defined in the standardization committee, the proposed method presents State-Of-The-Art (SOTA) compression performance, yielding 78% lossy BD-Rate gain to the latest standard-compliant V-PCC and 45% lossless bitrate reduction to the latest G-PCC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
5
+ page_content=' Even for recently-emerged learning-based solutions, our method still shows significant performance gains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
6
+ page_content=' Index Terms—Dynamic point cloud geometry, Multiscale tem- poral prior, Inter conditional coding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
7
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
8
+ page_content=' INTRODUCTION Dynamic point clouds are of great importance for applica- tions like holographic communication, autonomous machinery, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
9
+ page_content=', for which the efficient compression of dynamic Point Cloud Geometry (PCG) plays a vital role in service provision- ing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
10
+ page_content=' In addition to rules-based Point Cloud Geometry Com- pression (PCGC) technologies standardized by the ISO/IEC MPEG (Moving Picture Experts Group), e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
11
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
12
+ page_content=', Video-based PCC (V-PCC) and Geometry-based PCC (G-PCC) [3], [4], [5], learning-based PCGC methods have been extensively investi- gated in the past few years, greatly improving the performance with very encouraging prospects [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
13
+ page_content=' Among those learning- based solutions, multiscale sparse representation (MSR) [2], [1], [7], [8] has improved the performance unprecedentedly by effectively exploiting cross-scale and same-scale correlations in the same frame of a static PCG for compact representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
14
+ page_content=' The compression of a static PCG frame independently can also be referred to as the intra coding of the PCG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
15
+ page_content=' This work extends the MSR framework originally developed for static PCGs to compress the dynamic PCGs [2], [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
16
+ page_content=' In this regard, we suggest the inclusion of multiscale temporal priors for inter conditional coding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
17
+ page_content=' As in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
18
+ page_content=' 1, for a previously- reconstructed PCG frame (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
19
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
20
+ page_content=', PCG t − 1), we progressively downsample it and extract scale-wise hierarchical features which are then transferred as additional temporal priors to help the compression of the same-scale PCG tensor of the current frame (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
21
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
22
+ page_content=', PCG t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
23
+ page_content=' To this end, we basically concatenate J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
24
+ page_content=' Wang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
25
+ page_content=' Chen and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
26
+ page_content=' Ma are with Nanjing University, China;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
27
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
28
+ page_content=' Ding is with Hangzhou Normal University, China.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
29
+ page_content=' the same-scale temporal priors from the inter reference and lower-scale spatial priors from the same intra frame to form the contextual information for better conditional occupancy probability approximation in compression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
30
+ page_content=' Such an inter con- ditional coding scheme for dynamic PCGC is implemented on top of the SparsePCGC [1] originally developed for the static PCGC, to quantitatively evaluate its efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
31
+ page_content=' Experimental results demonstrate the leading performance of our method when compared with existing methods (either rules-based or learning-based ones) in both lossy and lossless modes, following the Common Test Conditions (CTC) used in the MPEG standardization committee [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
32
+ page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
33
+ page_content=' RELATED WORK In addition to existing G-PCC and V-PCC standards and other rules-based PCC methods in [10], [11], [12], [13], [14], [15], an excessive number of learning-based PCC solutions have emerged in the past years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
34
+ page_content=' Therefore the ISO/IEC MPEG 3D graphics coding group initiated the Artificial Intelligence- based Point Cloud Compression (AI-PCC) to investigate po- tential technologies for better compression of point clouds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
35
+ page_content=' Static PCGC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
36
+ page_content=' Recently, major endeavors have been paid to study the compression of a static PCG [6], a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
37
+ page_content='k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
38
+ page_content='a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
39
+ page_content=' Static PCGC, yielding voxel-based [16], [17], point-based [18], octree-based [19], and sparse tensor-based approaches [7], [2], [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
40
+ page_content=' Among them, sparse tensor-based methods not only attain the leading performance but also have low complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
41
+ page_content=' The first representative work is the PCGCv2 [2] where a static PCG tensor is hierarchically downsampled and lossily compressed using a Sparse Convolutional Neural Network (SparseCNN) based autoencoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
42
+ page_content=' Later, the SparsePCGC [1] improves the PCGCv2 greatly under a unified MSR framework to support both lossless and lossy compression of various point clouds by extensively exploiting cross-scale and same-scale correlations for better contextual modeling using SparseCNN- based Occupancy Probability Approximation (SOPA) models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
43
+ page_content=' More details regarding the MSR and SOPA model can be found in [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
44
+ page_content=' Dynamic PCGC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
45
+ page_content=' On top of the PCGCv2, Fan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
46
+ page_content=' [20] and Akhtar et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
47
+ page_content=' [21] proposed to encode inter resid- uals between temporal successive PCG frames for dynamic PCGC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
48
+ page_content=' Their main difference lies in the generation of inter prediction signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
49
+ page_content=' Fan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
50
+ page_content=' [20] used a SparseCNN-based motion estimation to align the coordinate of the reference to the current frame, and then interpolate k nearest neighbors to first derive the temporal prediction and then compute the residual difference;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
51
+ page_content=' while Akhtar et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
52
+ page_content=' [21] employed a “con- arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
53
+ page_content='12165v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
54
+ page_content='CV] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
55
+ page_content='28 Jan 2023 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
56
+ page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
57
+ page_content='PCG t ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
58
+ page_content='PCG t-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
59
+ page_content='Nth ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
60
+ page_content='scale ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
61
+ page_content='N-1th ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
62
+ page_content='scale ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
63
+ page_content='SOPA ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
64
+ page_content='(1-stage) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
65
+ page_content='m-1th ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
66
+ page_content='scale ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
67
+ page_content='mth ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
68
+ page_content='scale ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
69
+ page_content='Lossless Phase ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
70
+ page_content='Lossy Phase ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
71
+ page_content='Nth ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
72
+ page_content='scale ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
73
+ page_content='N-1th ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
74
+ page_content='scale ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
75
+ page_content='m-1th ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
76
+ page_content='scale ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
77
+ page_content='mth ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
78
+ page_content='scale ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
79
+ page_content='Extractor ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
80
+ page_content='m-2th ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
81
+ page_content='scale ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
82
+ page_content='m-2th ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
83
+ page_content='scale ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
84
+ page_content='SparsePCGC ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
85
+ page_content='Down- ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
86
+ page_content='scaling ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
87
+ page_content='Down- ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
88
+ page_content='scaling ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
89
+ page_content='Predictor ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
90
+ page_content='SConv 93×32 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
91
+ page_content='Extractor ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
92
+ page_content='Extractor ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
93
+ page_content='Extractor ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
94
+ page_content='Predictor ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
95
+ page_content='SConv 93×32 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
96
+ page_content='Predictor ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
97
+ page_content='SConv 93×32 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
98
+ page_content='Predictor ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
99
+ page_content='SConv 93×32 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
100
+ page_content='Encoder ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
101
+ page_content='Encoder ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
102
+ page_content='SOPA ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
103
+ page_content='(1-stage) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
104
+ page_content='SOPA ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
105
+ page_content='(8-stage) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
106
+ page_content='SOPA ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
107
+ page_content='(8-stage) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
108
+ page_content='feat ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
109
+ page_content='feat ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
110
+ page_content='feat ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
111
+ page_content='feat ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
112
+ page_content='feat ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
113
+ page_content='(a) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
114
+ page_content='Encoder or ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
115
+ page_content='Feature Extractor ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
116
+ page_content='SOPA (1-stage) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
117
+ page_content='Scale i ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
118
+ page_content='Scale i-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
119
+ page_content='Scale i-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
120
+ page_content='Scale i ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
121
+ page_content='Occuancy ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
122
+ page_content='Probability ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
123
+ page_content='(b) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
124
+ page_content='Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
125
+ page_content=' 1: Dynamic PCGC in a two-frame example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
126
+ page_content=' (a) On top of the MSR framework used by SparsePCGC for static PCGC originally, multiscale temporal priors of (t−1)-th frame are first extracted using Extractors and transferred using Predictors for the compression of t-th frame, where temporal priors are concatenated with the same-frame lower-scale priors for improving the capacity of SOPA model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
127
+ page_content=' (b) Network examples for Encoder (or Feature Extractor) and 1-stage SOPA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
128
+ page_content=' Lossy SparsePCGC is comprised of a lossless phase using 8-stage SOPA and a lossy phase using 1-stage SOPA instead, across different scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
129
+ page_content=' On the contrary, lossless SparsePCGC uses 8-stage SOPA for all scales [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
130
+ page_content=' Sparse Convolution (SConv) constitutes the basic feature processing layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
131
+ page_content=' Inception-ResNet (IRN) blocks are used for deep feature aggregation [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
132
+ page_content=' volution on target coordinates” operation to map the feature- space information from the reference to the current frame to derive the inter residual.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
133
+ page_content=' This letter also applies the “convolution on target coor- dinates” to exploit correlations across temporal successive frames in feature space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
134
+ page_content=' Instead of using the inter residual at a fixed scale, we generate multiscale temporal priors for scale-wise contextual information aggregation, which greatly improves the conditional probability approximation in com- pression of our method, as shown subsequently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
135
+ page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
136
+ page_content=' PROPOSED METHOD A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
137
+ page_content=' Overall Framework The proposed MSR-based dynamic PCGC is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
138
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
139
+ page_content=' A two-frame example is illustrated where the (t − 1)- th frame is already encoded and reconstructed as the temporal reference, and the t-th frame is about to be encoded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
140
+ page_content=' Appar- ently, such a two-frame example can be easily extended to a sequence of frames.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
141
+ page_content=' To compress the t-th frame, a straightforward solution is to encode each PCG frame independently, a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
142
+ page_content='k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
143
+ page_content='a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
144
+ page_content=' intra coding, using default SparsePCGC to solely exploit cross-scale and same-scale correlations in the same frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
145
+ page_content=' As there are strong temporal correlations across successive frames, inter prediction is often utilized for improving compression efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
146
+ page_content=' To this end, this work follows the MSR principle to first progressively extract features using Extractors from the (t − 1)-th recon- struction ˆxt−1, and then generate multiscale temporal priors via a one-layer sparse convolution (SConv) based Predictors for inter conditional coding of t-th frame xt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
147
+ page_content=' Similar to the SparsePCGC, dyadic resampling is applied for multiscale computation [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
148
+ page_content=' Assuming the highest scale of an input point cloud at N, the lossy compression of this PCG is comprised of m-scale lossless and (N −m)-scale lossy compression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
149
+ page_content=' Adapting m is to balance the lossy rate-distortion tradeoff [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
150
+ page_content=' As seen, in the lossless phase, temporal priors from the inter reference are concatenated with the lower- scale spatial priors in the same intra frame which are then fed into the 8-stage SOPA model for better approximation of occupancy probability for lossless coding;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
151
+ page_content=' while in the lossy phase, such concatenated spatiotemporal priors can be either augmented with decoded local neighborhood information or directly used in 1-stage SOPA model for better geometry reconstruction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
152
+ page_content=' By contrast, the lossless compression of an input PCG applies 8-stage SOPA uniformly for all scales to process such concatenated spatiotemporal priors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
153
+ page_content=' We next detail each individual module developed for the use of multiscale temporal priors in inter conditional coding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
154
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
155
+ page_content=' Encoder/Extractor & SOPA Models The Encoder (and Extractor) model which is typically devised with the resolution downscaling, aggregates local neighborhood information to form spatial intra (or temporal inter) priors for enhancing the SOPA model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
156
+ page_content=' Correspondingly, the SOPA model estimates the occupancy probability for ge- ometry reconstruction (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
157
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
158
+ page_content=', voxel occupancy status) gradually from lower to higher scale, using both spatial priors (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
159
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
160
+ page_content=', decoded latent feature, lower-scale input) in the same frame and temporal priors from the inter reference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
161
+ page_content=' The Encoder/Extractor model applies sparse convolutions and nonlinear activations for computation as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
162
+ page_content=' 1b, consisting of a convolutional voxel downsampling layer with kernel size and stride of 2 at each dimension, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
163
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
164
+ page_content=', SConv 23× 32 s2↓, and stacked Inception-ResNet (IRN) blocks for deep feature aggregation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
165
+ page_content=' The IRN contains multiple convolutional layers with a kernel size of 3×3×3, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
166
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
167
+ page_content=', SConv 33 × 32 [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
168
+ page_content=' The 1-stage SOPA model mostly mirrors the processing of the Encoder/Extractor where a transposed convolutional voxel upsampling layer with kernel size and stride of 2 is used, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
169
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
170
+ page_content=', SConv 23 ×32 s2↑.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
171
+ page_content=' This 1-stage SOPA can be easily extended ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
172
+ page_content='to support multi-stage computation by grouping upscaled ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
173
+ page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
174
+ page_content='������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
175
+ page_content='������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
176
+ page_content='������������������������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
177
+ page_content='������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
178
+ page_content='SOPA ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
179
+ page_content='Encoder ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
180
+ page_content='(a) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
181
+ page_content='������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
182
+ page_content='������������������������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
183
+ page_content='������������������������−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
184
+ page_content='������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
185
+ page_content='������������������������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
186
+ page_content='������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
187
+ page_content='�������������������������−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
188
+ page_content='������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
189
+ page_content='Extractor ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
190
+ page_content='Encoder ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
191
+ page_content='SOPA ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
192
+ page_content='(b) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
193
+ page_content='������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
194
+ page_content='������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
195
+ page_content='������������������������−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
196
+ page_content='�������������������������−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
197
+ page_content='������������������������,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
198
+ page_content=' ������������������������−1 ������������������������� c c Extractor Encoder SOPA (c) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
199
+ page_content=' 2: Intra and Inter Coding of PCGs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
200
+ page_content=' (a) intra coding used in SparsePCGC [1], (b) inter residual coding used in [20], [21], (3) the proposed inter conditional coding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
201
+ page_content=' voxels for stage-wise processing [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
202
+ page_content=' As exemplified in the lossless phase of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
203
+ page_content=' 1, 8-stage SOPA is used to progressively reconstruct the voxels by utilizing previously-processed, same- scale neighbors for better probability estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
204
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
205
+ page_content=' Inter Conditional Coding We use the Predictor to transfer information from the inter reference for the compression of the current frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
206
+ page_content=' As in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
207
+ page_content=' 1, the Predictor is implemented using a one-layer sparse convolution to perform the “convolution on target coordi- nates”, which has the same number of parameters and opera- tions as the normal convolution, except the target coordinates of its output can be customized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
208
+ page_content=' For instance, a sparse tensor is formulated using a set of coordinates ⃗C = {(xi, yi, zi)}i and associated features ⃗F = {⃗fi}i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
209
+ page_content=' The sparse convolution is formulated as : ⃗f out u = � k∈N3(u, ⃗Cin) Wk ⃗f in u+k for u ∈ ⃗Cout, (1) where ⃗Cin and ⃗Cout are input and output coordinates in the reference frame and current frame, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
210
+ page_content=' N3(u, ⃗Cin) = {k|u + k ∈ ⃗Cin, k ∈ N3} defines a 3D convolutional kernel centered at u ∈ ⃗Cout with offset k in ⃗Cin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
211
+ page_content=' ⃗f in u+k and ⃗f out u are corresponding input and output feature vectors at coordinate u+k ∈ ⃗Cin and u ∈ ⃗Cout, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
212
+ page_content=' Wi is kernel weights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
213
+ page_content=' In this work, the Predictor takes each coordinate of the current frame as the center, aggregates, and transfers the colocated features at each scale in a 9 × 9 × 9 local window of the reference, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
214
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
215
+ page_content=', SConv 93 × 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
216
+ page_content=' The use of temporal priors yt−1 from the reference for inter prediction is exemplified in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
217
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
218
+ page_content=' As for a comparison, intra coding is also pictured in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
219
+ page_content=' 2a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
220
+ page_content=' The inter residual coding scheme is used in [20], [21] where the feature residual between the reference yt−1 and current frame is encoded as in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
221
+ page_content=' 2b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
222
+ page_content=' The residual compensation is usually limited at the first layer of the lossy phase because it requires the correct geometry information for augmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
223
+ page_content=' Having residual compensation in other lossy scales is impractical because incorrect geometry would severely degrade the reconstruction quality [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
224
+ page_content=' By contrast, a simple-yet-effective spatiotemporal feature concatenation is applied to perform the inter conditional coding in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
225
+ page_content=' 2c which is flexible and applicable to all scales under the MSR framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
226
+ page_content=' As seen, the reference reconstruc- tion ˆxt−1 is used to generate scale-wise temporal priors which 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
227
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
228
+ page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
229
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
230
+ page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
231
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
232
+ page_content='5 bpp 64 66 68 70 72 74 76 78 D1 PSNR (dB) average_100 Ours SparsePCGC Fan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
233
+ page_content=' Akhtar et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
234
+ page_content=' PCGCv2 V-PCC 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
235
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
236
+ page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
237
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
238
+ page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
239
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
240
+ page_content='5 bpp 64 66 68 70 72 74 76 78 D1 PSNR (dB) average_32 Ours SparsePCGC Fan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
241
+ page_content=' Akhtar et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
242
+ page_content=' PCGCv2 V-PCC Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
243
+ page_content=' 3: Efficiency Comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
244
+ page_content=' Rate-Distortion (R-D) curves of different methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
245
+ page_content=' 100 (left) and 32 (right) frames are eval- uated across a wide range of bitrates following the CTC [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
246
+ page_content=' are then concatenated with the (cross-scale) spatial priors from the same frame to help the compression in both lossless and lossy compression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
247
+ page_content=' In this way, we retain all the information of temporal reference and use it for the compression of yt, which allows the codec to adaptively extract useful information for occupancy probability estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
248
+ page_content=' In lossless mode, it generates bitstream with less bitrate consumption;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
249
+ page_content=' while in lossy mode, it helps to better reconstruct the geometry with less distortion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
250
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
251
+ page_content=' Loss Functions To quantify the voxel occupancy probability, we use the Binary Cross-Entropy (BCE) loss to measure the bitrate re- quired to encode the occupancy status.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
252
+ page_content=' At the same time, the BCE loss also represents the geometry distortion in lossy compression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
253
+ page_content=' For the compression of latent feature in the encoder, we use a simple factorized entropy model [23] to estimate its probability, and cross-entropy loss to calculate the bitrate RF .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
254
+ page_content=' The total loss function is the combination of BCE loss and rate consumption RF , i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
255
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
256
+ page_content=', Loss = BCE+λ·R, where λ is the weight used to adjust the rate-distortion tradeoff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
257
+ page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
258
+ page_content=' EXPERIMENTAL RESULTS A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
259
+ page_content=' Testing and Training Conditions Training and Testing Datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
260
+ page_content=' We use the 8i Voxelized Full Bodies (8iVFB) dataset [24] for training and the Owlii dynamic human sequence dataset [25] for testing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
261
+ page_content=' The training dataset contains 5 sequences: longdress, loot, redandblack, soldier, queen, each of which has 300 frames at 10-bit geometry precision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
262
+ page_content=' The test dataset contains 4 sequences: basketball player, dancer, model, exercise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
263
+ page_content=' They are all quan- tized to 10-bit geometry precision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
264
+ page_content=' The splitting of training and testing samples follows the Exploration Experiment (EE) recommendations used in MPEG AI-PCC group [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
265
+ page_content=' Training Strategies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
266
+ page_content=' In training, we partition each frame into 4 blocks with kdtree and progressively downscale them to 4 different scales for data augmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
267
+ page_content=' We train one model for lossless coding and five models for lossy coding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
268
+ page_content=' By adjusting m in lossy phase and the R-D weight λ in the loss function, we obtain five different lossy coding models, covering bitrates from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
269
+ page_content='01 to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
270
+ page_content='18 bpp (bits per point).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
271
+ page_content=' Testing Conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
272
+ page_content=' The testing follows the common test condition (CTC) defined in the AI-PCC group for dynamic PCGC [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
273
+ page_content=' The first frame is encoded in intra mode, followed by all P frames that use the temporally-closest reconstruction 4 TABLE I: Compression performance comparison with other methods (tested on 100/32 frames following the MPEG CTC [9]) sequences (100/32) lossless (bpp) lossy (BD-Rate Gain %) G-PCC SparsePCGC Ours SparsePCGC Fan [20] Akhtar [21] PCGCv2 [2] V-PCC player 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
274
+ page_content='824/0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
275
+ page_content='812 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
276
+ page_content='445/0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
277
+ page_content='441 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
278
+ page_content='400/0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
279
+ page_content='388 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
280
+ page_content='7/-24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
281
+ page_content='2 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
282
+ page_content='3/-28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
283
+ page_content='0 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
284
+ page_content='8/-49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
285
+ page_content='1 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
286
+ page_content='0/-51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
287
+ page_content='3 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
288
+ page_content='6/-78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
289
+ page_content='9 dancer 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
290
+ page_content='854/0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
291
+ page_content='849 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
292
+ page_content='461/0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
293
+ page_content='460 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
294
+ page_content='425/0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
295
+ page_content='425 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
296
+ page_content='9/-14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
297
+ page_content='0 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
298
+ page_content='7/-28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
299
+ page_content='4 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
300
+ page_content='1/-50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
301
+ page_content='0 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
302
+ page_content='8/-47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
303
+ page_content='4 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
304
+ page_content='6/-79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
305
+ page_content='2 model 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
306
+ page_content='840/0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
307
+ page_content='811 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
308
+ page_content='460/0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
309
+ page_content='451 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
310
+ page_content='404/0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
311
+ page_content='388 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
312
+ page_content='9/-26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
313
+ page_content='6 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
314
+ page_content='4/-31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
315
+ page_content='7 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
316
+ page_content='2/-53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
317
+ page_content='4 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
318
+ page_content='2/-55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
319
+ page_content='0 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
320
+ page_content='8/-78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
321
+ page_content='8 exercise 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
322
+ page_content='829/0/819 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
323
+ page_content='448/0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
324
+ page_content='442 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
325
+ page_content='388/0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
326
+ page_content='379 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
327
+ page_content='0/-25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
328
+ page_content='3 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
329
+ page_content='0/-23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
330
+ page_content='2 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
331
+ page_content='7/-47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
332
+ page_content='7 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
333
+ page_content='3/-51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
334
+ page_content='5 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
335
+ page_content='6/-77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
336
+ page_content='2 average 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
337
+ page_content='837/0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
338
+ page_content='823 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
339
+ page_content='454/0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
340
+ page_content='449 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
341
+ page_content='404/0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
342
+ page_content='395 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
343
+ page_content='9/-22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
344
+ page_content='5 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
345
+ page_content='1/-27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
346
+ page_content='8 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
347
+ page_content='7/-50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
348
+ page_content='0 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
349
+ page_content='3/-51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
350
+ page_content='3 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
351
+ page_content='7/-78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
352
+ page_content='5 TABLE II: Average runtime comparison in lossless mode Time (s/frame) G-PCC SparsePCGC Ours Enc 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
353
+ page_content='75 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
354
+ page_content='82 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
355
+ page_content='96 Dec 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
356
+ page_content='60 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
357
+ page_content='66 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
358
+ page_content='82 as the reference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
359
+ page_content=' Results are averaged for cases using 32 frames and 100 frames.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
360
+ page_content=' The bitrate is evaluated by the average bits per input point (bpp) for each sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
361
+ page_content=' The geometric distortion is evaluated by D1-PSNR per frame to produce a sequence-level average (the first intra frame is also included).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
362
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
363
+ page_content=' Performance Evaluation For lossy coding, the V-PCC [26] is selected for comparison because of its SOTA performance for dynamic lossy PCGC;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
364
+ page_content=' Here we apply the default low-delay HEVC video encoding in V-PCC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
365
+ page_content=' While for lossless coding, the G-PCC (octree) is compared because of its superior efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
366
+ page_content=' Moreover, we compare with other learning-based PCGC methods, including the PCGCv2 [2] and the SparsePCGC [1] which were orig- inally developed for static PCGC, and two recently-emerged dynamic PCGC methods proposed by Akhtar et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
367
+ page_content=' [21] and Fan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
368
+ page_content=' [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
369
+ page_content=' For the PCGCv2 and SparsePCGC, every PCG frame is coded independently as intra mode without inter prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
370
+ page_content=' Regarding learning-based methods [20], [21], since they are both being studied in the MPEG AI-PCC group following the CTC for training and testing [9], we directly cite their results reported in the latest standard ad-hoc summary for a fair comparison [27], [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
371
+ page_content=' Comparison to G-PCC/V-PCC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
372
+ page_content=' As shown in Table I and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
373
+ page_content=' 3, in lossless mode, the proposed method reaches an average 45% gain over the G-PCC anchor, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
374
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
375
+ page_content=', 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
376
+ page_content='404 bpp versus 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
377
+ page_content='837 bpp when testing 100 frames;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
378
+ page_content=' while in lossy mode, our method provides ≈78% BD-Rate improvement against the anchor V-PCC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
379
+ page_content=' Comparison to learned static PCGC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
380
+ page_content=' We present our BD- Rate gains over state-of-the-art learning-based methods used for static PCGC [2], [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
381
+ page_content=' As also in Table I, compared with PCGCv2 [2] that only supports the lossy coding, the proposed method attains 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
382
+ page_content='3%/51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
383
+ page_content='3% BD-Rate reduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
384
+ page_content=' In lossless mode, we improve the SparsePCGC [1] by around 11% on average (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
385
+ page_content='404/0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
386
+ page_content='395 bpp versus 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
387
+ page_content='454/0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
388
+ page_content='449 bpp);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
389
+ page_content=' while in lossy mode, the gain over SparsePCGC is even higher, > 22% on average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
390
+ page_content=' Note that the proposed method is extended on top of the SparsePCGC by introducing inter conditional coding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
391
+ page_content=' The resultant BD-Rate gain further confirms the superiority of the use of multiscale temporal priors in dynamic PCGC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
392
+ page_content=' Comparison to learned dynamic PCGC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
393
+ page_content=' Further, we compare the proposed method with learning-based dynamic PCGC methods [20], [21] in Table I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
394
+ page_content=' We only compare lossy mode performance because their solutions only support lossy compression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
395
+ page_content=' As shown, the proposed method significantly outperforms existing methods with approximately 28% and 50% BD-Rate gains over Fan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
396
+ page_content=' [20] and Akhtar et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
397
+ page_content=' [21] on average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
398
+ page_content=' Our superior performance mainly attributes to: 1) we adopt a multi-stage SOPA in lossless phase, which is more efficient than the use of lossless G-PCC in [21], [20];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
399
+ page_content=' 2) in the lossy phase, inter residual compensation at a fixed scale limits the performance of [21], [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
400
+ page_content=' Note that even using the same lossless G-PCC in our method as in [20], [21], the BD- Rate gains are also mostly retained due to the use of inter conditional coding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
401
+ page_content=' We also visualize corresponding R-D curves in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
402
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
403
+ page_content=' It shows that our method consistently performs better than other methods across a wider range of bitrates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
404
+ page_content=' It is also observed that Fan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
405
+ page_content=' [20] focus on high bitrates and cannot reach at bitrates below 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
406
+ page_content='06 bpp, while Akhtar et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
407
+ page_content=' [21] is mostly applicable to low bit rates but performs poorly at high bitrates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
408
+ page_content=' This occurs mainly due to the fixed scale setting in their respective lossy phase, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
409
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
410
+ page_content=', Fan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
411
+ page_content=' [20] downscales 2 times and Akhtar et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
412
+ page_content=' [21] downscales 3 times, for lossy compression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
413
+ page_content=' By contrast, our method provides flexible scale adjustment (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
414
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
415
+ page_content=' high/medium/low bitrates with adaptive m e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
416
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
417
+ page_content=', m ∈ 1, 2, 3), and multiscale inter conditional coding through simple-yet-effective feature concatenation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
418
+ page_content=' These im- provements not only enable the support of both lossless and lossy compression but also yield SOTA performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
419
+ page_content=' Complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
420
+ page_content=' We collect the runtime by respectively running the G-PCC, SparsePCGC, and the proposed method in lossless coding, as shown in Table II for complexity evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
421
+ page_content=' The runtime is tested on an Intel Xeon Silver 4210 CPU and an Nvidia GeForce RTX 2080 GPU, which is just used as the intuitive reference to have a general understanding of the computational complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
422
+ page_content=' As seen, the proposed method presents faster encoding and decoding than G-PCC when using GPU acceleration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
423
+ page_content=' The runtime increase relative to the SparsePCGC-based intra coding is marginal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
424
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
425
+ page_content=' CONCLUSION This paper presents the compression of dynamic point cloud geometry, which incorporates the multiscale temporal priors into the multiscale sparse representation framework to enable inter conditional coding across temporal frames.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
426
+ page_content=' Extensive experiments demonstrate that the proposed approach achieves SOTA performance in both lossy and lossless modes when compressing the dense object point cloud geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
427
+ page_content=' 5 REFERENCES [1] Jianqiang Wang, Dandan Ding, Zhu Li, Xiaoxing Feng, Chuntong Cao, and Zhan Ma, “Sparse tensor-based multiscale representation for point cloud geometry compression,” IEEE Transactions on Pattern Analysis and Machine Intelligence, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
428
+ page_content=' 1–18, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
429
+ page_content=' [2] Jianqiang Wang, Dandan Ding, Zhu Li, and Zhan Ma, “Multiscale point cloud geometry compression,” 2021 Data Compression Conference (DCC), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
430
+ page_content=' 73–82, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
431
+ page_content=' [3] D Graziosi, O Nakagami, S Kuma, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
432
+ page_content=', “An overview of ongoing point cloud compression standardization activities: video-based (V-PCC) and geometry-based (G-PCC),” APSIPA Transactions on Signal and Information Processing, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
433
+ page_content=' 9, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
434
+ page_content=' [4] Sebastian Schwarz, Marius Preda, Vittorio Baroncini, Madhukar Buda- gavi, Pablo Cesar, Philip A Chou, Robert A Cohen, Maja Krivoku´ca, S´ebastien Lasserre, Zhu Li, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
435
+ page_content=', “Emerging mpeg standards for point cloud compression,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
436
+ page_content=' 9, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
437
+ page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
438
+ page_content=' 133–148, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
439
+ page_content=' [5] Chao Cao, Marius Preda, Vladyslav Zakharchenko, Euee S Jang, and Titus Zaharia, “Compression of sparse and dense dynamic point clouds—methods and standards,” Proceedings of the IEEE, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
440
+ page_content=' 109, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
441
+ page_content=' 9, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
442
+ page_content=' 1537–1558, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
443
+ page_content=' [6] Maurice Quach, Jiahao Pang, Dong Tian, Giuseppe Valenzise, and Fr´ed´eric Dufaux, “Survey on deep learning-based point cloud com- pression,” Frontiers in Signal Processing, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
444
+ page_content=' [7] Gexin Liu, Jianqiang Wang, Dandan Ding, and Zhan Ma, “PCGFormer: Lossy point cloud geometry compression via local self-attention,” in IEEE VCIP, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
445
+ page_content=' [8] Ruixiang Xue, Jianqiang Wang, and Zhan Ma, “Efficient LiDAR point cloud geometry compression through neighborhood point attention,” ArXiv, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
446
+ page_content=' abs/2208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
447
+ page_content='12573, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
448
+ page_content=' [9] WG7, MPEG 3D Graphics Coding, “Description of exploration exper- iment 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
449
+ page_content='3 on AI-based dynamic pc coding,” ISO/IEC JTC 1/SC 29/WG 7 N00386, July 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
450
+ page_content=' [10] Eduardo Peixoto, “Intra-frame compression of point cloud geometry using dyadic decomposition,” IEEE Signal Processing Letters, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
451
+ page_content=' 27, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
452
+ page_content=' 246–250, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
453
+ page_content=' [11] Shuai Gu, Junhui Hou, Huanqiang Zeng, and Hui Yuan, “3D point cloud attribute compression via graph prediction,” IEEE Signal Processing Letters, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
454
+ page_content=' 27, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
455
+ page_content=' 176–180, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
456
+ page_content=' [12] Evaristo Ramalho, Eduardo Peixoto, and Edil Medeiros, “Silhouette 4D with context selection: Lossless geometry compression of dynamic point clouds,” IEEE Signal Processing Letters, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
457
+ page_content=' 28, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
458
+ page_content=' 1660–1664, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
459
+ page_content=' [13] Dorina Thanou, Philip A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
460
+ page_content=' Chou, and Pascal Frossard, “Graph-based compression of dynamic 3d point cloud sequences,” IEEE Transactions on Image Processing, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
461
+ page_content=' 25, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
462
+ page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
463
+ page_content=' 1765–1778, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
464
+ page_content=' [14] Diogo C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
465
+ page_content=' Garcia, Tiago A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
466
+ page_content=' Fonseca, Renan U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
467
+ page_content=' Ferreira, and Ricardo L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
468
+ page_content=' de Queiroz, ,” IEEE Transactions on Image Processing, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
469
+ page_content=' 29, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
470
+ page_content=' 313–322, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
471
+ page_content=' [15] Shuai Gu, Junhui Hou, Huanqiang Zeng, Hui Yuan, and Kai-Kuang Ma, “3d point cloud attribute compression using geometry-guided sparse representation,” IEEE Transactions on Image Processing, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
472
+ page_content=' 29, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
473
+ page_content=' 796–808, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
474
+ page_content=' [16] Jianqiang Wang, Hao Zhu, Haojie Liu, and Zhan Ma, “Lossy point cloud geometry compression via end-to-end learning,” IEEE TCSVT, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
475
+ page_content=' 31, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
476
+ page_content=' 4909–4923, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
477
+ page_content=' [17] Andr´e F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
478
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
479
+ page_content=' Guarda, Nuno M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
480
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
481
+ page_content=' Rodrigues, and Fernando Pereira, “Adaptive deep learning-based point cloud geometry coding,” IEEE Journal of Selected Topics in Signal Processing, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
482
+ page_content=' 15, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
483
+ page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
484
+ page_content=' 415–430, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
485
+ page_content=' [18] Junteng Zhang, Gexin Liu, Dandan Ding, and Zhan Ma, “Transformer and upsampling-based point cloud compression,” in Proceedings of the 1st International Workshop on Advances in Point Cloud Compression, Processing and Analysis, New York, NY, USA, 2022, APCCPA ’22, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
486
+ page_content=' 33–39, Association for Computing Machinery.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
487
+ page_content=' [19] Lila Huang, Shenlong Wang, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
488
+ page_content=' Wong, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
489
+ page_content=', “Octsqueeze: Octree- structured entropy model for lidar compression,” 2020 IEEE/CVF CVPR, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
490
+ page_content=' 1310–1320, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
491
+ page_content=' [20] Tingyu Fan, Linyao Gao, Yiling Xu, Zhu Li, and Dong Wang, “D- DPCC: Deep dynamic point cloud compression via 3D motion predic- tion,” in IJCAI, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
492
+ page_content=' [21] Anique Akhtar, Zhu Li, and Geert Van der Auwera, “Inter-frame compression for dynamic point cloud geometry coding,” ArXiv, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
493
+ page_content=' abs/2207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
494
+ page_content='12554, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
495
+ page_content=' [22] Gary J Sullivan and Thomas Wiegand, “Rate-distortion optimization for video compression,” IEEE signal processing magazine, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
496
+ page_content=' 15, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
497
+ page_content=' 6, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
498
+ page_content=' 74–90, 1998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
499
+ page_content=' [23] Johannes Ball´e, David Minnen, Saurabh Singh, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
500
+ page_content=', “Variational image compression with a scale hyperprior,” in ICLR, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
501
+ page_content=' [24] Eugene d’Eon, Bob Harrison, Taos Myers, and Philip A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
502
+ page_content=' Chou, “8i voxelized full bodies - a voxelized point cloud dataset,” ISO/IEC JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG) m38673/M72012, May 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
503
+ page_content=' [25] Xu Yi, Lu Yao, and Wen Ziyu, “Owlii dynamic human mesh sequence dataset,” ISO/IEC JTC1/SC29/WG11 (MPEG/JPEG) m41658, October, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
504
+ page_content=' [26] “ISO/IEC 23090-5 - Visual Volumetric Video-based Coding (V3C) and Video-based Point Cloud Compression (V-PCC),” .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
505
+ page_content=' [27] Anique Akhtar and Zhu Li and Geert Van der Auwera and others, “Results dynamic point cloud compression,” 8th WG7 Meeting, 139th MPEG Meeting, Online.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
506
+ page_content=' m60307, July 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
507
+ page_content=' [28] Yiling Xu and Tingyu Fan and Linyao Gao and others, “D-DPCC Test Results on 10-bit Owlii,” 8th WG7 Meeting, 139th MPEG Meeting, Online.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
508
+ page_content=' m60267, July 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFLT4oBgHgl3EQfwzCR/content/2301.12165v1.pdf'}
AtE1T4oBgHgl3EQf9Ab6/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0abdd2b0bbfbee18e2a756c75895b653a5d6107ccdffe0cb8d628098bbc07ee7
3
+ size 163133
B9E4T4oBgHgl3EQfFQzj/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b1ca5da9fc050c1bac9a85014520846326be6e6387f374c1461390c12caf3fd
3
+ size 2097197
BNAyT4oBgHgl3EQfRvex/content/2301.00073v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10b6d812e15132bfd43ac2747f1d750dace1d93a07b8e7edc6f81c44a9175499
3
+ size 631192
BNAyT4oBgHgl3EQfRvex/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c16760f3b511597a6247420f27e06678d87f483405ab5dfff4ce5bbeaaafd8d5
3
+ size 3866669
BNAyT4oBgHgl3EQfRvex/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd0e3982b5a963e78bdeb9b0e40848858e9ab4cd24bbeced58c6cbc5fa34e9ef
3
+ size 136787
BtFQT4oBgHgl3EQfNjak/content/tmp_files/2301.13272v1.pdf.txt ADDED
@@ -0,0 +1,908 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Adsorption of melting DNA
2
+ Debjyoti Majumdar1, ∗
3
+ 1Alexandre Yersin Department of Solar Energy and Environmental Physics, Jacob Blaustein Institutes for Desert Research,
4
+ Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel
5
+ (Dated: February 1, 2023)
6
+ The melting of a homopolymer double-stranded (ds) DNA is studied numerically, in the presence
7
+ of an attractive and impenetrable surface on a simple cubic lattice. The two strands of the DNA are
8
+ modelled using two self-avoiding walks, capable of interacting at complementary sites, thereby mim-
9
+ icking the base pairing. The impenetrable surface is modelled by restricting the DNA configurations
10
+ at the z ≥ 0 plane, with attractive interactions for monomers at z = 0. Further, we consider two
11
+ variants for z = 0 occupations by ds segments, where one or two surface interactions are counted.
12
+ This consideration has significant consequences, to the extent of changing the stability of the bound
13
+ phase in the adsorbed state. Interestingly, adsorption changes to first-order on coinciding with the
14
+ melting transition.
15
+ Introduction: The denaturation of the double-stranded
16
+ DNA (dsDNA) from a bound (ds) to an unbound single-
17
+ stranded (ss) phase is an important step towards fun-
18
+ damental biological processes such as DNA replication,
19
+ RNA transcription, packaging of DNA and repairing [1].
20
+ In vitro, the melting transition is induced by changing the
21
+ temperature or pH of the DNA solution. However, the
22
+ physiological condition would allow neither extremes of
23
+ temperature nor pH level inside the cell. Therefore, the
24
+ cell has to rely on other ambient factors to locally modify
25
+ the stability of the ds structure of the DNA. Among oth-
26
+ ers, one of the crucial factors and a potential candidate
27
+ that can alter the stability of the native DNA form is in-
28
+ teraction of the DNA with a surface, e.g., with proteins
29
+ or cell membranes. The strands being polymers can un-
30
+ dergo an adsorption transition, where the two strands,
31
+ either in the ds or ss phase, get adsorbed on a surface
32
+ [2]. In vivo, the protein-induced DNA-membrane com-
33
+ plex is used during the replication process, cell division,
34
+ and for inducing local bends in the rigid duplex DNA
35
+ [3, 4].
36
+ Again, adsorption is instrumental in packaging
37
+ DNA inside the virus heads [5, 6]. On the technological
38
+ front, the adsorbing property of the DNA is often used to
39
+ target drug delivery in gene therapy [7, 8], and for man-
40
+ ufacturing biosensors with quick and accurate detection
41
+ of DNA in bodily samples.
42
+ In all these instances, the
43
+ surface-DNA interaction can be tuned by changing the
44
+ nature of the surface. This tunability calls for a detailed
45
+ phase mapping arising from the interaction of the DNA
46
+ with the adsorbing surface.
47
+ The melting and the adsorption transition individu-
48
+ ally, forms the subject of many theoretical and experi-
49
+ mental studies in the past. Theoretically, lattice mod-
50
+ els have been useful in extracting sensible results on par
51
+ with the experiments. The melting transition was shown
52
+ to be first-order when excluded volume interactions are
53
+ fully included [9]. On the other hand, the polymer ad-
54
+ sorption transition was shown to be continuous [2, 10].
55
+ With this in mind, in this paper, we explore the inter-
56
+ play between the melting and the adsorption transition
57
+ of a model homopolymer DNA, using a lattice adaptation
58
+ of the Poland-Scheraga model on a simple cubic lattice.
59
+ Self-avoidance is duly implemented among the intra- and
60
+ inter-strand segments. We found that the melting vs. ad-
61
+ sorption phase diagram is drastically different for the two
62
+ different schemes of interaction between the ds and the
63
+ adsorbing surface. For specific values of the coupling po-
64
+ tentials, the two transitions overlap, with the continuous
65
+ adsorption transition becoming first-order.
66
+ The model: We model the DNA strands (say A and
67
+ B) as two self-avoiding walks (SAWs), represented by the
68
+ vectors rA
69
+ i and rB
70
+ j (1 ≤ i, j ≤ N), and capable of forming
71
+ a base pair (bp) among the complementary monomers
72
+ (i = j) from the two strands while occupying the same
73
+ lattice site (rA
74
+ i = rB
75
+ i ). One end of the DNA is grafted in
76
+ the z = 0 plane. The other end is free to wander in the
77
+ z ≥ 0 direction, with the z = 0 plane impenetrable and
78
+ attractive. An energy −ϵbp is associated with each bound
79
+ bp independent of the bp index (homopolymer) and is
80
+ represented by the reduced variable g = ϵbp/kBT, where
81
+ T is the temperature and kB is the Boltzmann constant.
82
+ For each interaction with the z = 0 surface, there is an
83
+ energetic gain of −ϵs, represented by the reduced variable
84
+ q = ϵs/kBT. Further, we consider two variants: model I
85
+ and model II. The difference in the two variants is in the
86
+ strength of the ds interaction with the surface; in model
87
+ arXiv:2301.13272v1 [cond-mat.soft] 30 Jan 2023
88
+
89
+ 2
90
+ (a)
91
+ (b)
92
+ Adsorbing
93
+ surface
94
+ (c)
95
+ ds
96
+ ss
97
+ bubble
98
+ Y-fork
99
+ FIG. 1.
100
+ (Color online) Schematic diagram for the (a) lat-
101
+ eral view of model I, and (b) planar view of model II. In (a)
102
+ representing model I, only one strand is interacting with the
103
+ surface effectively in the bound state. While both the strands
104
+ are simultaneously in contact in model II, as in (b). (c) Two-
105
+ dimensional depiction of our lattice model.
106
+ I, we consider only one unit of interaction (ϵs), while
107
+ in model II, we consider two units of interaction (2ϵs),
108
+ each for one of the strands. Such consideration comes
109
+ from the speculation that when interacting sidewise, like
110
+ in Fig. 1(a), there would be an effective interaction of
111
+ one strand. By contrast, when both the strands touch
112
+ the plane simultaneously, each strand would contribute
113
+ [Fig. 1(b)]. These two scenarios may arise depending on
114
+ the hardness of the surface. While metallic surfaces (such
115
+ as Gold) used during experiments are hard, biological
116
+ surfaces tend to be much softer. A schematic diagram
117
+ of our model is shown in Fig. 1(c).
118
+ The Hamiltonian
119
+ for a typical configuration according to model II can be
120
+ written as,
121
+ βH = −g
122
+ N
123
+
124
+ i=1
125
+ δrA
126
+ i ,rB
127
+ i − q
128
+ N
129
+
130
+ i=1
131
+
132
+ α=A,B
133
+ δ0,zα
134
+ i ,
135
+ (1)
136
+ where, β = 1/(kBT) and δi,j is the Kronecker delta. The
137
+ adsorbing surface can generally be of complex geometry
138
+ with different degrees of roughness and curvature. How-
139
+ ever, we choose a smooth and impenetrable flat surface
140
+ for simplicity. For simulation, we use the pruned and en-
141
+ riched Rosenbluth method (PERM) to sample the equi-
142
+ librium configurations, averaging over 108 tours. We set
143
+ the Boltzmann constant kB = 1 throughout our study.
144
+ For melting, the average number of bound bps per unit
145
+ length (nc) serves as the order parameter with nc = 1 and
146
+ 0 in the bound and unbound phase, respectively. The
147
+ bound and the unbound phases are dominated by energy
148
+ and entropy, respectively, depending upon whichever
149
+ minimizes the free energy.
150
+ For our model, in the ab-
151
+ sence of any adsorbing surface (i.e., q = 0), the melting
152
+ takes place at gc = 1.3413 with the crossover exponent
153
+ φm = 0.94 [9, 11]. On the other hand, the 3d to 2d ad-
154
+ sorption of a lattice polymer is a continuous transition
155
+ with the critical point at qc = 0.2856 [10]. For adsorp-
156
+ tion, the average number of surface contacts per unit
157
+ length (ns) is the order parameter [12], and we denote
158
+ its fluctuation by Cs. The corresponding critical expo-
159
+ nent controlling the growth of surface contacts at the
160
+ critical point is φa, and the order parameter follows a
161
+ scaling, ns ∼ N φa−1 [13]. The exponent φa is expected
162
+ to be universal, and the most recent improved estimate of
163
+ the critical exponent from computer simulations suggest
164
+ φa = 0.48(4) [10, 14].
165
+ Naively, one would expect four distinct phases when
166
+ melting and adsorption are considered together [4]. How-
167
+ ever, the unbound-adsorbed phase was found missing in a
168
+ theoretical study [15], which employs a model similar to
169
+ model II, except that excluded volume interactions were
170
+ neglected. Overall, in Ref. [15], it was found that the
171
+ bound state is stabilized in the presence of an adsorbing
172
+ surface. By contrast, on the experimental side, Ref. [16]
173
+ had demonstrated that directly adsorbed DNA hybrids
174
+ are significantly less stable than if free. Therefore, fur-
175
+ ther study of the melting-adsorption interplay, employing
176
+ more versatile models is essential for a complete under-
177
+ standing.
178
+ Model I: In this model variant, we consider equal sur-
179
+ face interaction energy for both ss and ds segments.
180
+ This choice of interaction yields four equilibrium phases,
181
+ viz., bound-desorbed (BD), unbound-desorbed (UD),
182
+ unbound-adsorbed (UA), and the bound-adsorbed (BA)
183
+ phase [Fig. 2(a)]. The melting and the adsorption lines
184
+ are obtained by varying g and q, respectively, while keep-
185
+ ing one of them fixed [13]. The error bars in qc and gc
186
+ are of the size of the plotting points. As the two lines
187
+ (gc = 1.3413 and qc = 0.2856) approach each other, the
188
+ bound state is primarily stabilized for increasing q, which
189
+ is somewhat surprising [Fig. 2(c)]. This increased stabil-
190
+ ity of the bound state persists for 0.26(6) <∼ q <∼ 0.4, and
191
+ is perhaps due to the fact, that, in this region the bound
192
+ and unbound phases in the vicinity of the melting line
193
+ are unequally placed in the adsorbed phase. This short
194
+ period of stability is followed by a steady increase in the
195
+ threshold g for bound state for q > 0.4, separating the
196
+ destabilized bound and unbound state in the adsorbed
197
+ phase. One can understand this using the energy-entropy
198
+
199
+ 3
200
+ 0.9
201
+ 1
202
+ 1.1
203
+ 1.2
204
+ 1.3
205
+ 1.4
206
+ 1.5
207
+ 1.6
208
+ 1.7
209
+ 1.8
210
+ 0
211
+ 0.2
212
+ 0.4
213
+ 0.6
214
+ 0.8
215
+ 1
216
+ BD
217
+ UD
218
+ UA
219
+ BA
220
+ (a)
221
+ (b)
222
+ (c)
223
+ (d)
224
+ g
225
+ q
226
+ melt
227
+ ads
228
+ 0.4
229
+ 0.5
230
+ 0.6
231
+ 0.7
232
+ 0.8
233
+ 0
234
+ 0.5
235
+ 1
236
+ 1.5
237
+ 2
238
+ 2.5
239
+ 3
240
+ 3.5
241
+ 4
242
+ 4.5
243
+ PnsX(2N)
244
+ ns/(2N)
245
+ 700
246
+ 800
247
+ 900
248
+ 1000
249
+ 1.28
250
+ 1.3
251
+ 1.32
252
+ 1.34
253
+ 1.36
254
+ 1.38
255
+ 1.4
256
+ 0.28 0.32 0.36 0.4
257
+ -20 -15 -10 -5
258
+ 0
259
+ 5 10 15 20
260
+ 0
261
+ 0.02
262
+ 0.04
263
+ Cs/N2Φa-1
264
+ (q-qc)NΦa
265
+ 1000
266
+ 900
267
+ 800
268
+ 700
269
+ FIG. 2. (Color online) (a) Model I phase diagram for melting
270
+ ‘melt’ and adsorption ‘ads’ . The different phases are: bound-
271
+ desorbed (BD), unbound-desorbed (UD), unbound-adsorbed
272
+ (UA), and bound-adsorbed (BA). The dotted lines represent
273
+ the transition points for the individual cases; for melting gc =
274
+ 1.3413 and for adsorption qc = 0.2856. (b) Scaling plots of
275
+ the probability distribution (Pns) of surface contacts (ns) on
276
+ the BA → UA transition line corresponding to g = 1.5 and
277
+ qc = 0.659, and for chain lengths N = 700 to 1000. (c) A
278
+ zoom in of the phase diagram in (a) showing a decrease in
279
+ the threshold g for bound state. (d) Scaling plot of surface
280
+ contact fluctuation Cs for g = 1.5, using qc = 0.659 and
281
+ φa = 0.99.
282
+ argument; since the number of independent surface con-
283
+ tacts increases upon unbinding, with each ds bp result-
284
+ ing in two new possible ss surface contacts, along with
285
+ an increase in the entropy, the UA phase is strongly fa-
286
+ vored over the BA phase. A significant consequence is,
287
+ the melting in the adsorbed phase (BA→UA) is differ-
288
+ ent from the pure melting in two-dimensions (2d) where
289
+ the melting point is at gc = 0.753(3). Noticeably, while
290
+ undergoing UA to BA transition by varying q, the sys-
291
+ tem shows first-order like fluctuation of surface contacts
292
+ while the average number of surface contacts ns reduces
293
+ to half its value than that in the UA phase [Fig. 2](d).
294
+ This observation is supported by the scaling plot of the
295
+ surface contact probability distribution (Pns) at a point
296
+ (g = 1.5 and q = 0.659) above the melting phase bound-
297
+ ary, using the scaling exponent φa = 0.99 for data col-
298
+ lapse [Fig. 2](b). However, it is not a genuine desorption
299
+ transition, and is due to the fact that the ds and ss sur-
300
+ face contacts are treated on equal footing. For higher g
301
+ values, the BA phase undergoes a continuous desorption
302
+ around limg→∞ qc = 0.2856.
303
+ Summarizing the results of model I, we see, that the
304
+ bound phase is stabilized only for a small range of q val-
305
+ ues [Fig. 2(c)].
306
+ Otherwise, the bound state is mainly
307
+ destabilized. For q < 0.265(5), the two transitions re-
308
+ main decoupled without affecting each other.
309
+ Results
310
+ involving model I is in accordance with Ref. [16], where
311
+ adsorbed DNA hybrids are found to be less stable than
312
+ their free counterpart. Importantly, these results suggest
313
+ that since the destabilization of the dsDNA is essential
314
+ for the ease of opening up a bound segment, adsorption
315
+ could play a crucial role in initiating certain biological
316
+ processes related to the transferring of genetic informa-
317
+ tion.
318
+ Model II: For model II, a ds bound segment has a
319
+ higher energy gain (precisely, double) than a ss segment
320
+ upon interaction with the surface. Using this scheme of
321
+ interaction, the phase plane is divided into four distinct
322
+ phases viz., BD, UD, UA and the BA phase [Fig. 3].
323
+ We can further identify three types of melting transition
324
+ using these four phases: (i) when both the phases are
325
+ desorbed, (ii) when the bound phase is adsorbed, and
326
+ the unbound phase is desorbed, and (iii) when both the
327
+ phases are adsorbed. While in the phases correspond-
328
+ ing to the melting type (i) and (iii), the two transitions
329
+ remain decoupled, for melting type (ii), both the tran-
330
+ sitions coincide into one transition, represented by an
331
+ overlapping phase boundary giving rise to multicritical
332
+ points.
333
+ Intriguingly, the adsorption transition is pro-
334
+ moted to first-order in this overlapping region.
335
+ Adja-
336
+ cent to this overlapping region, and bounded by the lines
337
+ g = 1.3413 and q = 0.2856 on the other two sides, is
338
+ a small triangular island (denoted by a) [Fig. 3], akin
339
+ to the Borromean phase found in nuclear systems [15].
340
+ This a phase is not possible when either of the poten-
341
+ tials is turned off, and exists as a result of the combined
342
+ effect of the two potentials, even though neither g nor q
343
+ is strong enough to support an ordered state, individu-
344
+ ally. This small window of q and g values, corresponding
345
+ to the coinciding phase line, facilitates achieving an ad-
346
+ sorbed and a bound phase by changing only g or q, with
347
+ the other parameter fixed. Such points (or region) can
348
+ be crucial for real biological systems since it reduces a
349
+ multi-parameter system to be controlled by a single pa-
350
+ rameter. Adsorption in this region follows the same scal-
351
+
352
+ 4
353
+ 0.6
354
+ 0.8
355
+ 1
356
+ 1.2
357
+ 1.4
358
+ 1.6
359
+ 1.8
360
+ 0
361
+ 0.1
362
+ 0.2
363
+ 0.3
364
+ 0.4
365
+ 0.5
366
+ 0.6
367
+ BD
368
+ UD
369
+ UA
370
+ BA
371
+ a
372
+ (ar1)
373
+ (a)
374
+ (b)
375
+ (c)
376
+ g
377
+ q
378
+ melt
379
+ ads
380
+ 0
381
+ 0.5
382
+ 1
383
+ 1.5
384
+ 2
385
+ 2.5
386
+ 0
387
+ 0.1 0.2 0.3 0.4 0.5 0.6 0.7
388
+ PnsX(2N)
389
+ ns/(2N)
390
+ 500
391
+ 600
392
+ 700
393
+ 800
394
+ 900
395
+ 1000
396
+ -6 -4 -2 0 2
397
+ 4 6
398
+ 0
399
+ 0.02
400
+ 0.04
401
+ 0.06
402
+ 0.08
403
+ 0.1
404
+ Cs/N2φa-1
405
+ (q-qc)Nφa
406
+ 1000
407
+ 900
408
+ 800
409
+ 700
410
+ FIG. 3. (Color online) (a) Model II phase diagram. The dif-
411
+ ferent phases are: bound-desorbed (BD), unbound-desorbed
412
+ (UD), unbound-adsorbed (UA) and bound-adsorbed (BA).
413
+ Dashed lines represent, g = 0.753 in red and q = 0.1428 in
414
+ gray. Dotted lines represent, g = 1.3413 and q = 0.2856. (b)
415
+ Probability distribution of surface contacts (Pns) at gc = 1.25
416
+ and qc = 0.278 (arrow ar1 in (a)), for chain lengths N = 700
417
+ to 1000. (c) Scaling plot for fluctuation of average number
418
+ of surface contacts per unit length Cs for g = 1.25 using
419
+ φa = 0.98 and qc = 0.277(7).
420
+ ing exponent as of the first-order melting transition with
421
+ φa = φm ∼ 1 [Fig. 3(c)] [17]. A first-order adsorption
422
+ is also evident from the probability distribution of the
423
+ surface contacts (Pns) at the transition point, e.g., for
424
+ gc = 1.25 and qc = 0.278 in Fig. 3(b) [18]. The melting
425
+ transition, however, remains unaffected. Below a, the ad-
426
+ sorbed phase is destabilized for a small range of g values.
427
+ For the transition from BA to UA phase the melting is
428
+ two dimensional for sufficiently large q with φm ≈ 1.5
429
+ when the system is completely adsorbed.
430
+ Unlike model I, the bound state in model II is stabi-
431
+ lized in the presence of the adsorbing surface. Since, post-
432
+ melting, the entropy gain is smaller in the adsorbed phase
433
+ (two dimensions), compared to the unbound state in the
434
+ desorbed phase (three dimensions), the bound state in
435
+ the adsorbed phase is more stable than that in the des-
436
+ orbed phase, leading to a gradual lowering in the thresh-
437
+ old g, which finally converges to limq→∞ gc ≈ 0.753(3),
438
+ the two-dimensional melting point. A similar argument
439
+ also applies for the adsorption transition for which the
440
+ critical adsorption strength qc decreases and saturates at
441
+ limg→∞ qc = 0.1428 [20].
442
+ Although our results from model II are in line with
443
+ Ref. [15], qualitatively, we obtain all four possible phases,
444
+ instead of three, as in [15], where the UA phase was
445
+ absent. Biologically, adsorption-induced stability could
446
+ be important to guard DNA native form against thermal
447
+ fluctuation and external forces. Importantly, adsorption
448
+ can energetically compensate for the bending of the rigid
449
+ ds segments, thereby, providing an alternative to bubble
450
+ mediated bending [21].
451
+ Conclusion: To conclude, in this paper, we elucidate
452
+ the role of adsorption in modifying the melting transi-
453
+ tion and vice-versa. Two separate models were consid-
454
+ ered, which differs in the strength of interaction with
455
+ the surface along the ds segments.
456
+ Such a considera-
457
+ tion arises from the speculation that the orientation of
458
+ the DNA in conjunction with the nature of the adsorb-
459
+ ing surface could play an important role in determining
460
+ which of the studied model effectively applies. The two
461
+ models show significant differences: model I shows that
462
+ the ds structure is mostly destabilized in the presence
463
+ of an attractive surface. This finding resemble the re-
464
+ sult from the experiment performed with DNA hybrids
465
+ in Ref. [16]. On the other hand, model II shows that DNA
466
+ is only stabilized in the presence of an attractive surface.
467
+ Although this model is similar to the theoretical model
468
+ of Ref. [15], there are significant improvements, such as
469
+ we consider excluded volume interaction. Moreover, we
470
+ found the presence of all four possible phases, which is not
471
+ the case in Ref [15]. In both the models, adsorption coin-
472
+ ciding with the melting transition is first-order, however,
473
+ whether this denotes a non-universality in the adsorp-
474
+ tion transition is yet to be understood. Findings from
475
+ both the models carry biological significance. Our work,
476
+ therefore, contributes toward completing the picture by
477
+ connecting the experimental and theoretical findings.
478
+ Acknowledgement:
479
+ D.M.
480
+ was
481
+ supported
482
+ by
483
+ the
484
+ German-Israeli Foundation through grant number I-
485
+ 2485-303.14/2017 and by the Israel Science Foundation
486
+ through grant number 1301/17, and the BCSC Fellow-
487
+ ship from the Jacob Blaustein Center for Scientific Co-
488
+ operation. Part of the simulations were carried out on the
489
+ Samkhya computing facility at the Institute of Physics,
490
+ Bhubaneswar.
491
+
492
+ 5
493
494
+ [1] T. E. Cloutier and J. Widom, Mol. Cell 14, 355 (2004); J.
495
+ Yan and J. F. Marko, Phys. Rev. Lett. 93, 108108 (2004).
496
+ [2] E. Eisenriegler, K. Kremer and K. Binder, J. Chem. Phys.
497
+ 77, 6296 (1982).
498
+ [3] W. Firshein, Annu. Rev. Microbiol., 43 89 (1989).
499
+ [4] R. Kapri and S. M. Bhattacharjee, Eur. Phys. Letts. 83
500
+ 68002 (2008); R. Kapri, J. Chem. Phys. 130, 145105
501
+ (2009).
502
+ [5] G. A. Carri and M. Muthukumar, Phys. Rev. Lett. 82,
503
+ 5405-5408 (1999).
504
+ [6] P. K. Purohit, et al., Biophys. Jour. 88, 851–866 (2005).
505
+ [7] S. Z. Bathaie et al., Nucleic Acids Res. 27, 1001 (1999).
506
+ [8] J. O. R¨adler et al., Science 275, 810 (1997).
507
+ [9] M. S. Causo, B. Coluzzi, and P. Grassberger, Phys. Rev.
508
+ E 62, 3958 (2000).
509
+ [10] P. Grassberger, J. Phys. A: Math. Gen. 38, 323-331
510
+ (2005).
511
+ [11] φ = 1 for first-order transition, and φ < 1 for continu-
512
+ ous/second order transition.
513
+ [12] Here, length N denotes the maximum number of possible
514
+ bps.
515
+ [13] See Supplemental Material.
516
+ [14] C. J. Bradly, A. L. Owczarek and T. Prellberg, Phys.
517
+ Rev. E 97, 022503 (2018).
518
+ [15] A. E. Allahverdyan et. al, Phys. Rev. Lett. 96, 098302
519
+ (2006); A.E. Allahverdyan et. al, Phys. Rev. E 79, 031903
520
+ (2009).
521
+ [16] S. M. Schreiner et al., Anal. Chem. 83, 4288–4295 (2011).
522
+ [17] A similar inter-change of the transition order was previ-
523
+ ously observed in a theoretical model studying the inter-
524
+ play of helix-coil transition and adsorption in a polymer
525
+ [5].
526
+ [18] A growing peak on either side of the distribution, and
527
+ a deepening valley in between, is typical of a first-order
528
+ transition. The valley represent suppressed states due to
529
+ the growing surface term between the two phases. The
530
+ inter-peak gap converges to a non-zero value. However, for
531
+ models where this surface/interface, separating two coex-
532
+ isting phases, is reduced to a point, this valley is absent
533
+ [19]. Also see SM [13].
534
+ [19] T. Garel, H. Orland, and E. Orlandini, Eur. Phys. J. B
535
+ 12, 261-268 (1999).
536
+ [20] This is exact (other digits omitted) and can be obtained
537
+ considering the fact, that, for model II even though the
538
+ length is halved in the bound state, the energy in the
539
+ adsorbed phase remains same. Therefore, the effective ad-
540
+ sorbed energy per unit length (N) is doubled.
541
+ [21] Double-stranded (ds) bound DNA segments are about 25
542
+ times rigid than the single-stranded (ss) unbound DNA
543
+ segments. These ss segments flanked by ds segments on
544
+ either side are known as bubbles. These bubbles can act as
545
+ hinge for bends in DNA.
546
+ SUPPLEMENTARY MATERIAL
547
+ I. SIMULATION ALGORITHM
548
+ -60
549
+ -40
550
+ -20
551
+ 0
552
+ 20
553
+ 40-60
554
+ -40
555
+ -20
556
+ 0
557
+ 20
558
+ 40
559
+ 0
560
+ 1
561
+ 2
562
+ 3
563
+ 4
564
+ 5
565
+ S1
566
+ S2
567
+ X
568
+ Y
569
+ Z
570
+ FIG. S1.
571
+ (Color online) A typical configuration showing
572
+ strand A (S1) and strand B (S2) with the adsorbing plane
573
+ at z = 0.
574
+ We use the pruned and enriched Rosenbluth algorithm
575
+ (PERM) [1] to simulate the configurations of the dsDNA
576
+ over an attractive surface [Fig. S1].
577
+ Two strands are
578
+ grown at once, adding monomers on the top of the lastly
579
+ added monomer of both the strands at once. At each
580
+ step, we calculate the joint possibilities of stepping into
581
+ free sites obtained by a Cartesian product of the indi-
582
+ vidual sets of possibilities i.e.
583
+ Sn = Sn(A) × Sn(B).
584
+ Each element in Sn corresponds to an ordered pair of
585
+ new steps for both the strands, and carries a Boltzmann
586
+ weight of exp(g × l + q × k), where l = 1 for a base-
587
+ pair (bp) and 0 otherwise, while k = 0, 2 or 1 depending
588
+ upon the number of surface contacts and model. Then,
589
+ a choice is made according to the importance sampling.
590
+ At each step the local partition function is calculated as
591
+ wn = �
592
+ Sn exp(g×l+q×k). The partition sum for length
593
+ n is then estimated by product over the local partition
594
+ sums at each step, Wn = �n
595
+ i=1 wi, and averaging over
596
+ the number of started tours, Zn = ⟨Wn⟩. Enrichment
597
+ and pruning at nth step is performed depending on the
598
+
599
+ 6
600
+ ratio, r = Zn/Wn:
601
+ r =
602
+
603
+
604
+
605
+
606
+
607
+ 1,
608
+ continue to grow
609
+ < 1,
610
+ prune with probability (1 − r)
611
+ > 1,
612
+ make k-copies.
613
+ If r < 1 and pruning fails, the configuration is contin-
614
+ ued to grow but with Wn = Zn. For enrichment (r > 1)
615
+ k is chosen as, k = min(⌊r⌋, N(Sn)), where each copy
616
+ carries a weight Wn
617
+ k , and N(Sn) is the cardinality of the
618
+ set Sn. Averages are taken over 108 tours.
619
+ At length n, any general thermodynamic observable
620
+ (Qn) is averaged on the fly using the formula:
621
+ ⟨Qn⟩(g, q) = ⟨QnWn(g, q)⟩
622
+ Zn(g, q)
623
+ ,
624
+ (S1)
625
+ where the ⟨· · · ⟩ in the numerator represents the run-
626
+ ning average of the quantity over number of started tours
627
+ and using the local estimate of the configuration weight
628
+ Wn.
629
+ One of the important aspects in simulating lattice
630
+ self-avoiding walks is in checking if the immediate next
631
+ sites are empty. The straightforward way is to check if
632
+ any of the last N − 1 steps occupy the site. However,
633
+ for walks of length N the time required in this oper-
634
+ ation grows as O(N), and O(N 2) for the total chain.
635
+ This can be avoided using the bit map method in which
636
+ the whole lattice is stored in an array using a hashing
637
+ scheme where each site is given an array address like:
638
+ f(x, y, z) = x+yL+zL2 +offset, where L is the dimen-
639
+ sions of the virtual lattice box and offset = ⌊Ld/2⌋ is a
640
+ constant number which depends upon L to make the ad-
641
+ dress start from zero. Here, the checking of self-avoidance
642
+ is ≈ O(1), with no possibility of hashing collision. How-
643
+ ever, since our problem requires constraining the polymer
644
+ above the plane on which it is grafted there is a significant
645
+ chance that the polymer will move out of the simulation
646
+ box. A possible way out is to use a linked list method e.g.
647
+ the AVL tree binary search [2]. In AVL, the algorithm
648
+ works by creating a tree like structure where each node
649
+ represent an occupied lattice site. Each entry for a new
650
+ step is associated with search, insertion and rebalancing
651
+ the tree branches. Each insertion or deletion operation
652
+ requires O(log(n)) time, where n is the total number of
653
+ nodes which translates to the number of monomers or oc-
654
+ cupied sites or the polymer length. For a chain of length
655
+ N + 1, the total growth time (assuming only insertion
656
+ is performed) is: ln(1) + ln(2) · · · ln(N) = ln(N!). Using
657
+ 0
658
+ 0.05
659
+ 0.1
660
+ 0.15
661
+ 0.2
662
+ 0.25
663
+ 0.3
664
+ 0.35
665
+ 0
666
+ 1
667
+ 2
668
+ 3
669
+ 4
670
+ 5
671
+ 6
672
+ 7
673
+ 8
674
+ Pn,nsX(2N)φa
675
+ ns/(2N)φa
676
+ 500
677
+ 600
678
+ 700
679
+ 800
680
+ 900
681
+ 1000
682
+ FIG. S2. (Color online) Scaling plot of surface contacts proba-
683
+ bility distribution (Pn,ns) for different lengths N = 500−1000,
684
+ at qc = 0.285 and g = 0.7 in model II. For data-collapse we
685
+ use φa = 0.5. Notice that, while N is the number of max-
686
+ imum possible bps, 2N is the maximum number of possible
687
+ surface contacts.
688
+ Sterling approximation, and for large N, this is approx-
689
+ imately O(N ln N). Moreover, the AVL algorithm can
690
+ be easily incorporated in the recursive structure of the
691
+ PERM algorithm.
692
+ II. SURFACE CONTACT HISTOGRAM
693
+ Often, crossovers result into a melang´e of critical expo-
694
+ nents, obtained from different methods such as the finite-
695
+ size-scaling analysis, scaling of the specific heat peaks
696
+ with length (N), the reunion exponent also known as the
697
+ bubble-size-exponent (for DNA), among others.
698
+ There-
699
+ fore, deciding the behavior of the transition becomes dif-
700
+ ficult. In this kind of situation it is advised to look at
701
+ the probability distribution P(·) of the associated order
702
+ parameter close to the transition point.
703
+ A first-order transition is characterised by doubly
704
+ peaked distribution with growing depth of the valley in
705
+ between. This valley is the result of a d − 1 dimensional
706
+ surface separating the two phases of the d dimensional
707
+ system which suppresses the states in between the peaks.
708
+ It grows exponentially deep in the thermodynamic limit,
709
+
710
+ 7
711
+ P ∼ exp(−σLd−1), where L is the size of the system.
712
+ However, for certain models (or problems) this interface
713
+ can be reduced to a point separating the two phases e.g.
714
+ in our DNA model the interface between a bound seg-
715
+ ment and an unbound segment is a point, in adsorption
716
+ a point separates the adsorbed and desorbed phases, or
717
+ the point interface separating the collapse-ferromagnetic
718
+ phase from the coiled-paramagnetic phase in the case of
719
+ a magnetic polymer [3]. In these situations the valley is
720
+ absent and the surface free energy is no longer extensive
721
+ in N.
722
+ To understand the change in the nature of the adsorp-
723
+ tion transition, we look at the probability distribution
724
+ of the surface contacts (ns) at different lengths, denoted
725
+ by Pn,ns close to the transition point (qc). To calculate
726
+ Pn,ns(q, g), we find the conditional partition sum Zn,ns
727
+ for fixed q and g, where n is the length having ns number
728
+ of surface contacts for different lengths. Finally, Pn,ns is
729
+ found using the formula,
730
+ Pn,ns(q, g) =
731
+ Zn,ns(q, g)
732
+ �2n
733
+ ns=0 Zn,ns(q, g)
734
+ .
735
+ (S2)
736
+ For a continuous transition, the order parameter distri-
737
+ bution is expected to hold a scaling relation of the form
738
+ Pns ∼ N −φap(ns/N φa).
739
+ (S3)
740
+ In Fig. S2, we show the scaling plot for Pn,ns for the
741
+ adsorption transition in the unbound state corresponding
742
+ to q = 0.285 and g = 0.7.
743
+ III. ESTIMATION OF THE TRANSITION
744
+ POINTS
745
+ For q < qc, the partition sum of a SAW scales as
746
+ Z(q, N) ∼ µNN γ1−1,
747
+ (S4)
748
+ where the subscript 1 in the entropic exponent γ1 de-
749
+ notes the fact that one end is grafted on an impenetra-
750
+ ble surface, while the exponential growth through µ (the
751
+ effective coordination number) is invariant. Near the ad-
752
+ sorption transition (q ∼ qc), Z(q, N) should scale as
753
+ Z(q, N) ∼ µNN γ′
754
+ 1−1ψ[(q − qc)N φa],
755
+ (S5)
756
+ where ψ(x) is the scaling function.
757
+ Taking derivative
758
+ of ln Z(q, N) in Eq. (S5) with respect to q, and setting
759
+ q = qc, one obtains the scaling form of the mean adsorbed
760
+ energy per unit length (N) at the critical point as
761
+ ns ∼ N φa−1.
762
+ (S6)
763
+ Therefore, at the critical adsorption point the quan-
764
+ tity ns/N φa−1 should be N independent for N → ∞.
765
+ For example, in Fig. S3(b) the estimated critical adsorp-
766
+ tion point using Eq. (S6) is qc = 0.1431(5) for g = 5.
767
+ For higher g’s, when the chain is completely bound, this
768
+ should converge to qc = 0.1428.
769
+ One must be careful
770
+ to use the appropriate φa; for continuous transitions we
771
+ use φa = 1/2, and φa = 0.92 for first-order transitions.
772
+ We can have an idea about the nature of the transition
773
+ and that about the transition point, beforehand, from
774
+ the shape of the Cs curves. Further, following Ref. [4],
775
+ we also looked at the quantity,
776
+ γ′
777
+ 1,eff = 1 + ln
778
+
779
+ Z(q, 2N)/Z(q, N/2)/µ3N/2�
780
+ ln 4
781
+ ,
782
+ (S7)
783
+ using µ = 4.6840386.
784
+ Here, we simulate chains of
785
+ length upto N = 10, 000, to see ns/N φa−1 and γ′
786
+ 1,eff
787
+ upto N = 5000 [Fig. S4]. However, since our model has
788
+ added complexities, e.g., two complementary monomers
789
+ from different strands can occupy the same site to form a
790
+ bp, we think that Eq. (S6) to be more reliable to estimate
791
+ qc.
792
+ For melting, we looked at the average number of bound
793
+ bps per unit length (nc) and its fluctuation (Cc), to es-
794
+ timate the transition points. The melting points are ob-
795
+ tained from the scaling (or data collapse) of nc and Cc,
796
+ following the equations,
797
+ nc ∼ N φm−1f[(g − gc)N φm],
798
+ (S8)
799
+ and,
800
+ Cc ∼ N 2φm−1h[(g − gc)N φm],
801
+ (S9)
802
+ Tuning gc and φm to the appropriate values would
803
+ make the data for different lengths fall upon each other
804
+ resulting in data collapse.
805
+ For continuous adsorption transitions, we also use the
806
+ crossing point of the Cs curves of the two longest lengths
807
+ to determine the critical point [Fig. S3(a)]. However, for
808
+ first-order adsorption the method of data collapse is used
809
+ using Eq. (S8) and (S9) but with q in place of g and, nc
810
+ and Cc replaced with ns and Cs, respectively.
811
+
812
+ 8
813
+ 0
814
+ 2
815
+ 4
816
+ 6
817
+ 8
818
+ 10
819
+ 12
820
+ 14
821
+ 0.1
822
+ 0.12
823
+ 0.14
824
+ 0.16
825
+ 0.18
826
+ 0.2
827
+ 0.22
828
+ Cs
829
+ q
830
+ 1000
831
+ 800
832
+ 600
833
+ 400
834
+ 200
835
+ 3.4
836
+ 3.6
837
+ 100
838
+ 1000
839
+ ns/N-0.5
840
+ N
841
+ q=0.1428
842
+ q=0.1430
843
+ q=0.1431
844
+ q=0.1432
845
+ q=0.1433
846
+ FIG. S3. (Color online) (a) Fluctuation of surface contacts
847
+ per unit length Cs for model II, g = 5, and lengths N =
848
+ 100 to 1000. (b) Long-length behavior of the average surface
849
+ contacts per unit length (ns) scaled by N −0.5 for different
850
+ q values around the critical adsorption point for g = 5 in
851
+ model II. The adsorption transition is estimated to be qc =
852
+ 0.143 denoted by the dashed blue line in (a), and to be qc =
853
+ 0.1431(5) from (b).
854
+ 1
855
+ 2
856
+ 3
857
+ 4
858
+ 5
859
+ 6
860
+ 7
861
+ 8
862
+ 9
863
+ 10
864
+ 100
865
+ 1000
866
+ ns/NΦ-1
867
+ N
868
+ 0.2700
869
+ 0.2800
870
+ 0.2856
871
+ 0.2870
872
+ 0.2900
873
+ 0.3000
874
+ 0.1
875
+ 0.2
876
+ 0.3
877
+ 0.4
878
+ 0.5
879
+ 0.6
880
+ 0.7
881
+ 0.01
882
+ 0.1
883
+ γ'1,eff
884
+ N-Φ
885
+ 0.2700
886
+ 0.2800
887
+ 0.2856
888
+ 0.2870
889
+ 0.2900
890
+ 0.3000
891
+ FIG. S4. (Color online) Scaled average surface contacts per
892
+ unit length ns/N −0.5 in (a) and γ′
893
+ 1,eff from Eq. (S7) in (b),
894
+ using φ = 0.5 for different q values and g = 1.17 in model II.
895
+
896
+ 9
897
898
+ [1] P. Grassberger,
899
+ Pruned-enriched Rosenbluth method:
900
+ simulations of θ polymers of chain length up to 1, 000, 000,
901
+ Phys. Rev. E 56, 3682 (1997).
902
+ [2] G. M. Adelson-Velsky and E. M. Landis, Dokl. Akad. Nauk
903
+ SSSR 146, 263 (1962) [Soviet Math. Dokl, 3, 1259 (1962)].
904
+ [3] T. Garel, H. Orland, and E. Orlandini, Eur. Phys. J. B
905
+ 12, 261-268 (1999).
906
+ [4] P. Grassberger, J. Phys. A: Math. Gen. 38, 323-331
907
+ (2005).
908
+
BtFQT4oBgHgl3EQfNjak/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
CtAzT4oBgHgl3EQfGfuT/content/2301.01029v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f88a74729dc708a923fc5e090b109a232983bd311829bb19aa3fc1823a3c5941
3
+ size 785408
CtAzT4oBgHgl3EQfGfuT/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9d4d03ab80f8b13b08b1a06b8932a2b3fad7d8f58b4440a0d5a613dfb13e93b
3
+ size 2883629
CtAzT4oBgHgl3EQfGfuT/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9157ea739a71d1a5ecda667c481470a8ecf492b3d546d96321de68a6413c4030
3
+ size 104477
CtAzT4oBgHgl3EQfTvyL/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3efe0f089304740265af6ef8b9f34d1fa0949b8fd299aec0f0c734a41754ff0c
3
+ size 7798829
DdE1T4oBgHgl3EQfWQSA/content/tmp_files/2301.03112v1.pdf.txt ADDED
@@ -0,0 +1,1426 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.03112v1 [math.AT] 8 Jan 2023
2
+ PERIODIC CYCLIC HOMOLOGY OVER Q
3
+ KONRAD BALS
4
+ Abstract. Let X be a derived scheme over an animated commutative ring of characteristic 0. We
5
+ give a complete description of the periodic cyclic homology of X in terms of the Hodge completed
6
+ derived de Rham complex of X. In particular this extends earlier computations of Loday-Quillen
7
+ to non-smooth algebras. Moreover, we get an explicit condition on the Hodge completed derived
8
+ de Rham complex, that makes the HKR-filtration on periodic cyclic homology constructed by
9
+ Antieau and Bhatt-Lurie exhaustive.
10
+ 1. Introduction
11
+ For a commutative ring k and a k-algebra R, the Hochschild homology HH(R/k) gives an element
12
+ in the derived category D(k) of k. It has proven itself to be an interesting invariant, appearing for
13
+ example in trace methods computing algebraic K-theory or in Connes’ non-commutative geometry.
14
+ It was also Connes in [Con85] who constructed the cyclic structure on Hochschild homology to
15
+ define negative cyclic homology HC−(R/k) := HH(R/k)hS1 and later periodic cyclic homology
16
+ HP(R/k) := HH(R/k)tS1 and proving a relation between HC− of smooth functions on a manifold
17
+ and de Rham cohomology of the manifold.
18
+ Transferring Connes’ geometric interpretation into
19
+ algebraic observations in [LQ84] Loday and Quillen compute the homotopy groups HC−
20
+ ∗ (R/k) in
21
+ terms of algebraic de Rham cohomology in many cases. For the purpose of this paper passing here
22
+ to the Tate-construction, they prove:
23
+ Theorem 1.1 ([LQ84]). Assume Q ⊂ k commutative and R a smooth commutative k-algebra, then
24
+ HP∗(R/k) ∼=
25
+
26
+ n∈Z
27
+ H∗−2n
28
+ dR
29
+ (R; k)
30
+ In this paper we give a generalization of this computation to the non-smooth and non-affine
31
+ situation. By the classical observation that HH(R[S−1]/k) ≃ HH(R/k) ⊗R R[S−1] for every affine
32
+ open Spec(R[S−1]) ⊂ SpecR Hochschild homology extends to a sheaf HHk in the Zariski1 topology
33
+ on schemes over k (c.f. [WG91]). In fact, similarly we get a sheaf HPk extending periodic cyclic
34
+ homology. We recall the details in Appendix A and write HH(X/k) := Γ(X, HHk) and HP(X/k) :=
35
+ Γ(X, HPk).
36
+ Moreover, Hochschild homology as a functor CAlg♥
37
+ k → D(k) from discrete k-algebras to D(k) is
38
+ left Kan extended from discrete polynomial algebras2 and, thus, further extends to a sifted colimit
39
+ preserving functor from the category of animated commutative (i.e. simplicial commutative) k-
40
+ algebras CAlgan
41
+ k/. So putting both generalizations together and writing LΩ∗
42
+ X/k for the derived de
43
+ Rham complex of a derived scheme X over an animated Q-algebra k, we can state our main theorem
44
+ in a great generality. In particular, if k is discrete and X = Spec(R) for a discrete k-algebra R, this
45
+ gives new results on the periodic cyclic homology of ordinary algebras.
46
+ Theorem 1.2. Given an animated commutative ring k with Q ⊂ π0(k) and X a derived k-scheme,
47
+ we have
48
+ HP(X/k) ≃
49
+
50
+ n∈Z
51
+
52
+ LΩ∗
53
+ X/k[−2n]
54
+ 1In fact by [BMS19] 3.4. even in the fpqc topology via a different argument.
55
+ 2If P• is a simplicial resolution of the k-algebra R, it suffices to check that | HH(P•/k)| ≃ HH(R/k).
56
+ 1
57
+
58
+ 2
59
+ KONRAD BALS
60
+ where �
61
+ LΩ∗
62
+ X/k is the completion of LΩ∗
63
+ X/k with respect to the Hodge filtration LΩ≥•
64
+ −/k.
65
+ The key ingredient in the proof is to understand how the Tate-construction behaves under the
66
+ passage from smooth algebras to general or even animated algebras and it is this behavior that lets
67
+ the product appear on the right hand side.
68
+ In [Ant19] Antieau constructs the HKR-filtration on HP(X/k) with n-th associated graded
69
+
70
+ LΩ∗
71
+ X/k[2n]. If k is an (animated) Q-algebra we can give a complete identification of this HKR-
72
+ filtration in terms of the equivalence of Theorem 1.2 and we prove
73
+ Theorem 1.3. In the situation of Theorem 1.2 the HKR-filtration on HP(X/k) corresponds to the
74
+ ascending partial product filtration on �
75
+ n∈Z �
76
+ LΩ∗
77
+ X/k[−2n], that is
78
+ Fili
79
+ HKR HP(X/k) ≃
80
+
81
+ n≤−i
82
+
83
+ LΩ∗
84
+ X/k[−2n].
85
+ In particular, the HKR-filtration is exhaustive, if and only if �
86
+ LΩ∗
87
+ X/k is (homologically) bounded
88
+ above.
89
+ This criterion will give us a large class of examples with exhaustive HKR-filtration. If k is a
90
+ discrete Noetherian commutative Q-algebra and X an ordinary scheme of finite type over Spec k,
91
+ then Bhatt gives in [Bha12] a concrete way to compute �
92
+ LΩ∗
93
+ X/k, which in particular lives in non-
94
+ positive degrees (cf. Corollary 4.27. loc.cit.). Passing to filtered colimits we get
95
+ Corollary 1.4. If k is a discrete Q-algebra and X an ordinary qcqs scheme over k, then the HKR-
96
+ filtration on HP(X/k) is exhaustive.
97
+ Furthermore, the analysis of the Tate-filtration in characteristic 0, which is reviewed in the
98
+ Appendix B, also gives a description of the multiplicativity of the equivalence in the Theorem
99
+ 1.2.
100
+ In general for an algebra A ∈ CAlgk there is just no algebra structure on �
101
+ n∈Z A[−2n],
102
+ however, for a (animated) commutative k-algebra R, the object HP(R/k) carries a natural structure
103
+ of a commutative algebra in Modk.
104
+ In section 4 we construct the corresponding multiplicative
105
+ structure on �
106
+ n∈Z �
107
+ LΩ∗
108
+ X/k[−2n]. On homotopy groups the induced graded ring structure comes from
109
+ LΩ≤n
110
+ X/k((t)). Note that there is the terminal topology on π∗ �
111
+ LΩ∗
112
+ X/k making the maps π∗ �
113
+ LΩ∗
114
+ X/k →
115
+ π∗LΩ≤n
116
+ X/k continuous. It is not Hausdorff because not every element is detected in some π∗LΩ≤n
117
+ R/k.
118
+ With this we can almost completely describe the graded ring π∗ HP(X/k) in terms of π∗ �
119
+ LΩ∗
120
+ X/k:
121
+ Theorem 1.5. In the situation of Theorem 1.2, we can describe the homotopy groups HP∗(X/k)
122
+ algebraically as
123
+ HP∗(X/k) ∼=
124
+ ��
125
+ n∈Z
126
+ antn : an ∈ π∗+2n �
127
+ LΩ∗
128
+ X/k
129
+
130
+ with addition and multiplication given as
131
+ ��
132
+ n∈Z
133
+ antn
134
+
135
+ +
136
+ ��
137
+ n∈Z
138
+ bntn
139
+
140
+ =
141
+
142
+ n∈Z
143
+ (an + bn)tn
144
+ ��
145
+ n∈Z
146
+ antn
147
+
148
+ ·
149
+ ��
150
+ n∈Z
151
+ bntn
152
+
153
+ =
154
+
155
+ n∈Z
156
+ cntn
157
+ where cn is a limit of the finite partial sums of �
158
+ i+j=n ai · bj in the topology on π∗ �
159
+ LΩ∗
160
+ R/k
161
+ 3
162
+ 3This is sometimes called a net and explicitly means for every open U ∋ 0, there is a finite subset I0 ⊂ {i+j = n},
163
+ such that for all finite subset J ⊂ {i + j = n} containing I0 we have cn − �
164
+ (i,j)∈J ai · bj ∈ U.
165
+
166
+ PERIODIC CYCLIC HOMOLOGY OVER Q
167
+ 3
168
+ However, we want to immediately issue the warning that because the topology on π∗ �
169
+ LΩ∗
170
+ R/k is not
171
+ Hausdorff, the element cn ∈ π∗ �
172
+ LΩ∗
173
+ R/k is not uniquely determined as a limit. To fully understand
174
+ the homotopy groups HP∗(X/k) algebraically, one, furthermore, has to analyze the lim1-terms
175
+ contributing to π∗ �
176
+ LΩ∗
177
+ R/k.
178
+ 1.1. Outline. We begin in section 2 with a formality statement for S1-actions in the derived cat-
179
+ egory over rational algebras (Corollary 2.3) in order to recall a coherent version of the HKR-theorem
180
+ in Proposition 2.7. This allows us to coherently compute HP for smooth algebras.
181
+ In section 3 we will use the language of filtrations in order to generalize the computations for
182
+ smooth algebras to arbitrary derived schemes and prove Theorem 1.2 (cf. Theorem 3.4). In particu-
183
+ lar we will use the multiplicativity of the Tate-filtration. The Tate-filtration itself and its multiplic-
184
+ ative structure in the rational setting will be reviewed in the Appendix B. Furthermore in section 3
185
+ we will exploit the consequences for the HKR-filtration and prove Theorem 1.3 and Corollary 1.4.
186
+ Finally, the last section (4) is completely devoted to the proof of Theorem 1.5.
187
+ 1.2. Notation. Throughout this note we are freely using the ∞-categorical language as developed
188
+ in [Lur09] and [Lur16]. In particular, for a commutative ring k we identify the derived category D(k)
189
+ with the category Modk := ModHkSp of Hk-module spectra and thus view it as a stably symmetric
190
+ monoidal ∞-category. It comes with a canonical lax symmetric monoidal functor ι: Ch∗(k) → D(k)
191
+ from the 1-category of chain complexes and we will constantly abuse notation by identifying C∗
192
+ with ιC∗ for C∗ ∈ Ch∗(k).
193
+ Moreover, we will use the 1-category CDGAk of commutative differential graded algebras over
194
+ k. An object (C∗, d) ∈ CDGAk consists of a commutative graded k-algebra �
195
+ i∈Z Ci of discrete
196
+ R-modules with differentials d: Ci−1 → Ci for all i > 0 satisfying the Leibniz rule. There will be
197
+ two orthogonal ways to view a CDGAk as an object in CAlgk, either with 0 differential or with
198
+ differential d and we already warn the reader to not confuse those functors.
199
+ In particular, for a commutative ring k and a commutative k-algebra R, we will generally view
200
+ the de Rham complex Ω∗
201
+ R/k as an object in CAlgk := CAlg(Modk), and if we want to view it as a
202
+ CDGA over k we write ΩH
203
+ R/k.
204
+ Later in the paper, we need to talk about filtrations in a stable category C, by which we always
205
+ mean decreasingly indexed, Z-graded filtrations, i.e. functors from Zop
206
+ ≤ into C. For a symmetric
207
+ monoidal category C we equip the category Fil(C) := Fun(Zop
208
+ ≤ , C) with the Day convolution tensor
209
+ product ⊗Day. The n-th associated graded grnF of F is given by the cofibre of the map F n+1 → F n.
210
+ A splitting of a filtration F • ∈ Fil(C) consists of a collection (An)n∈Z together with an map of
211
+ filtrations �
212
+ n≥• An → F • inducing an equivalence on associated graded. In particular, a splitting
213
+ (An) of F canonical gives an identification grnF ≃ An.
214
+ Finally, to fix vocabulary, a filtration
215
+ F • ∈ Fil(C) on F ∈ C is complete if lim F • ≃ 0 and is exhaustive if colim F • ≃ F. We write
216
+ Fil∧(C) ⊂ Fil(C) for the full subcategory on complete filtrations and denote by (−)∧ its left adjoint.
217
+ 1.3. Acknowledgment. I would like to thank Achim Krause, Jonas McCandless and Thomas
218
+ Nikolaus for helpful discussions on this topic. Finally, again I want to thank Thomas Nikolaus for
219
+ bringing this project up. Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
220
+ Foundation) under Germany’s Excellence Strategy EXC 2044–390685587, Mathematics Münster:
221
+ Dynamics–Geometry–Structure and the CRC 1442 Geometry: Deformations and Rigidity.
222
+ 2. Formality over Q
223
+ The explicit computations heavily rely on strong formality properties that hold if working over
224
+ Q-algebras.
225
+ In this section we will prove a strong version of the HKR-theorem for Hochschild
226
+ homology. This enables us to establish a coherent versions of the Theorem 1.1 copied from [LQ84].
227
+
228
+ 4
229
+ KONRAD BALS
230
+ Throughout the first section, let k be a discrete commutative Q-algebra. The key ingredient is a
231
+ formality statement of C∗(S1, k), due to [TV11].
232
+ Construction 2.1. The multiplication S1 × S1 → S1 and the diagonal S1 → S1 × S1 exhibit S1
233
+ as an associative bialgebra in spaces. Because the symmetric monoidal structure on S is cartesian,
234
+ by the dual of [Lur15][Proposition 2.4.3.8] the coalgebra structure given by the diagonal refines
235
+ to a cocommutative coalgebra structure.
236
+ Now the functor C∗(−, k): S → D(k) from spaces to
237
+ the derived category of k taking singular chains with coefficients in k refines via the Eilenberg-
238
+ Zilber maps to a symmetric monoidal functor.
239
+ Therefore C∗(S1, k) acquires the structure of a
240
+ cocommutative bialgebra in D(k).
241
+ Moreover, the functor ι: Ch∗(k) → D(k) from the 1-category of chain complexes to the ∞-
242
+ category D(k) is lax symmetric monoidal and precisely restricts to a symmetric monoidal functor
243
+ on the full 1-subcategory ChK−flat
244
+
245
+ (k) of K-flat chain complexes. Thus the chain complex for ǫ in
246
+ degree 1
247
+ Λk(ǫ) := (k · ǫ
248
+ 0−→ k · 1)
249
+ with multiplication ǫ2 = 0 and primitive comultiplication ∆ǫ = (ǫ⊗1+1⊗ǫ) gives a cocommutative
250
+ bialgebra object in D(k) under the identification of Λk(ǫ) as an element in D(k).
251
+ Proposition 2.2 ([TV11]). In this setting where k is a discrete Q-algebra, there is a natural equi-
252
+ valence C∗(S1, k) ≃ Λk(ǫ) as cocommutative bialgebras in D(k) for ǫ primitive in degree 1.
253
+ For completeness reasons we would like to include a proof here:
254
+ Proof. Both objects C∗(S1, k) and Λk(ǫ) have canonical augmentations coming from S1 → ∗ in S
255
+ and ǫ �→ 0 in Ch∗(k). We will in fact show, that they even agree as augmented cocommutative
256
+ algebras in D(k). Using the adjunction (e.g. cf. [Lur16] Theorem 5.2.2.174)
257
+ bar: Algaug(coCAlgD(k))
258
+ coCAlgaug(D(k)) :cobar
259
+ it satisfies to construct a map of (co-)augmented cocommutative coalgebras under the bar-functor.
260
+ In fact the computation in [Ada56] show that for C∗(S1, k) the unit of the adjunction C∗(S1, k) →
261
+ cobar(barC∗(S1, k)) is an equivalence, so that an identification of barC∗(S1, k) ≃ C∗(BS1, k) trans-
262
+ lates to an identification of C∗(S1, k) under cobar. Therefore, we want to understand the cocommut-
263
+ ative coalgebra structure of barC∗(BS1, k) or equivalently the dual commutative algebra structure
264
+ on C∗(BS1, k), as both objects are of finite type. A choice of a generator in H2(BS1, k) gives
265
+ a map k[x] := Free(k[−2]) → C∗(BS1, k) from the free commutative k-algebra on a generator x
266
+ in degree −2. Because Q ⊂ k, on homotopy groups both sides are free on a generator in degree
267
+ −2 and we have C∗(BS1, k) ≃ k[x] is free as a commutative algebra. Finally, translating back to
268
+ cocommutative bialgebras, we can compute
269
+ cobar(k[x])∨ ≃ (bark[x])∨ ≃
270
+
271
+ k ⊗k[x] k
272
+ �∨
273
+ by resolving k with the DGA (Λk[x](ǫ∨), dǫ∨ = x) for a primitive element ǫ∨ in degree −1. Thus
274
+
275
+ k ⊗k[x] k
276
+ �∨ ≃ Λk(ǫ∨)∨ ≃ Λk(ǫ) for ǫ a dual basis to ǫ∨.
277
+
278
+ From now on, to shorten notation we set A := Λk(ǫ) for |ǫ| = 1 primitive.
279
+ Corollary 2.3. For a rational discrete algebra k the categories Fun(BS1, D(k)) and ModAD(k) are
280
+ equivalent as symmetric monoidal categories, where the symmetric monoidal structure on the latter
281
+ comes from the coalgebra structure on A.
282
+ 4There is a gap in the proof of the cited reference as pointed out by [DH22], which could be fixed in the latest
283
+ version (v4) of [BCN21].
284
+
285
+ PERIODIC CYCLIC HOMOLOGY OVER Q
286
+ 5
287
+ Proof. There is a symmetric monoidal equivalence Fun(BS1, D(k)) ≃ ModC∗(S1,k)D(k) as sym-
288
+ metric monoidal categories, where the symmetric monoidal structure on the right hand side comes
289
+ from the cocommutative bialgebra structure on C∗(S1, k). Thus the equivalence C∗(S1, k) ≃ A as
290
+ cocommutative bialgebras gives a symmetric monoidal equivalence of their module categories (c.f.
291
+ Proposition 2.2.1. in [Rak20]).
292
+
293
+ Remark 2.4. The above equivalence induces the identity on underlying objects.
294
+ Thus, given a
295
+ complex X ∈ D(k) equipping X with an action of S1 is equivalent to providing a module structure
296
+ over A. Informally, this amounts to a map d: k · ǫ[1] ⊗ X ≃ X[1] → X and coherent homotopies
297
+ witnessing d2 ≃ 0.
298
+ Construction 2.5. Let CDGAk denote the 1-category of commutative differential graded algebras
299
+ over k as introduced in the Notations. Forgetting the differential, there is a functor CDGAk →
300
+ CAlgCh∗(k) sending (C∗, d) ∈ CDGA to �
301
+ i∈Z Ci[i] ∈ CAlgCh∗(k) with 0 differential.
302
+ In 1-
303
+ categories now an action of A precisely corresponds to an ascending differential, such that this
304
+ functor refines through CAlgModACh∗(k) and postcomposing with ι we get a map
305
+ CDGAk → CAlgModACh∗(k) → CAlgModAD(k).
306
+ To avoid confusion we will write U : CDGAk → CAlgBS1
307
+ k
308
+ for this functor.
309
+ Remark 2.6. For a k-algebra R the de Rham complex ΩH
310
+ R/k by definition lives in CDGAk. Now via
311
+ the previous construction the underlying chain complex
312
+ UΩH
313
+ R/k ≃
314
+
315
+ n∈N
316
+ Ωn
317
+ R/k[n] ≃
318
+
319
+ · · ·
320
+ 0−→ Ω2
321
+ R/k
322
+ 0−→ Ω1
323
+ R/k
324
+ 0−→ Ω0
325
+ R/k
326
+
327
+ (1)
328
+ gives an object in CAlgBS1
329
+ k
330
+ .
331
+ This simplifies the analysis of Hochschild homology in the rational setting and we can phrase a
332
+ strong version of the HKR-theorem, which has been well known (e.g. [Qui70]). However, we would
333
+ like to emphasize on all the structure the following result captures and give a different proof as in
334
+ the cited source:
335
+ Proposition 2.7. If Q ⊂ k, then for every smooth discrete k-algebra R, there are natural equival-
336
+ ences
337
+ HH(R/k)
338
+
339
+ −→ UΩH
340
+ R/k ≃
341
+
342
+ n∈N
343
+ Ωn
344
+ R/k[n]
345
+ of commutative algebras in D(k) with S1-action, where the S1-action on the right hand side is given
346
+ by the de Rham differential (cf. Construction 2.5).
347
+ Proof. In the category CAlgBS1
348
+ k
349
+ Hochschild homology enjoys a universal property: For every com-
350
+ mutative k-algebra S with S1-action any non-equivariant map R → S extends uniquely up to
351
+ contractible choice over R → HH(R/k). Thus we get the dashed S1-equivariant algebra map
352
+ R ≃ Ω0
353
+ R/k
354
+
355
+ n∈N Ωn
356
+ R/k[n]
357
+ HH(R/k)
358
+ The original computation in the HKR-theorem [HKR62] gives an equivalence ΩH
359
+ R/k
360
+
361
+ −→ HH∗(R/k)
362
+ of differentially graded algebras. Postcomposing with the map above on homotopy groups, we get
363
+ a map ΩH
364
+ R/k → HH∗(R/k) → ΩH
365
+ R/k. Finally, ΩH
366
+ R/k has a universal property among commutative
367
+ differentially graded algebras, as the initial CDGA with a map from R into its zeroth part. Because
368
+ on the zeroth part the composition above is given by the identity R → R, the same is true for the
369
+ entire map, forcing HH∗(R) → ΩH
370
+ R/k to be an equivalence.
371
+
372
+
373
+ 6
374
+ KONRAD BALS
375
+ Remark 2.8. This strong version of the HKR-theorem can be understood as a rigidification of the
376
+ Hochschild homology functor from polynomial k-algebras Polyk: It gives a functorial factorization
377
+ CDGAk
378
+ Polyk
379
+ CAlgModAD(k),
380
+ U
381
+ ΩH
382
+ −/k
383
+ HH(−/k)
384
+ through the functor ΩH
385
+ −/k : Polyk → CDGAk of 1-categories.
386
+ We can now get a very good understanding of the Tate-construction for such formal objects:
387
+ Definition 2.9. For (C∗, d) ∈ CDGAk we write |C∗| for the chain algebra (C−∗, d). This gives a
388
+ functor |−|: CDGAk → CAlgCh∗(k) of 1-categories. More generally, given a graded object C∗ with
389
+ differential d we want to write |C∗| to stress that we view it as a chain complex.
390
+ Example 2.10. By definition we have |ΩH
391
+ R/k| ≃ Ω∗
392
+ R/k.
393
+ With this notation set, we can make the classical computations of periodic cyclic homology in
394
+ characteristic zero. This is also done for example in the lectures [KN18].
395
+ Lemma 2.11. For (C∗, d) ∈ CDGAk there is a natural map |C∗| → (UC∗)tS1 in CAlgk.
396
+ Proof. Because of the lax monoidal natural transformation (−)hS1 → (−)tS1, it suffices to estab-
397
+ lish a natural map |C∗| → ChS1
398
+
399
+ . Under the symmetric monoidal equivalence Fun(BS1, D(k)) ≃
400
+ ModAD(k) the functor (−)hS1 corresponds to mapA(k, −). A choice of projective resolution P∗ of
401
+ k as an A-coalgebra reduces us to give a functorial map |C∗| → mapA(P∗, UC∗) where the right
402
+ hand side is the 1-categorical mapping chain complex. Now put P∗ = (A⟨t∨⟩, dP ) as the free divided
403
+ power algebra on a primitive generator t∨ in degree 2 with dP t∨ = ǫ. Thus, computing the mapping
404
+ chain complex gives an equivalence
405
+ mapA(P∗, UC∗) ∼= (UC∗�t�, td)
406
+ for |t| = −2 a dual generator to t∨ and we can explicitly describe a multiplicative chain map
407
+ |Ci| → (UC∗�t�, td) given by Ci ≃ Ci · ti → UC∗�t� on chain groups. This finishes the proof.
408
+
409
+ Remark 2.12. The computation in Lemma 2.11 actually completely describes UChS1
410
+
411
+ and under the
412
+ equivalence UCtS1
413
+
414
+ ≃ UChS1
415
+
416
+ ⊗khS1 ktS1 we already get a full identification UCtS1
417
+
418
+ ≃ (UC∗((t)), td).
419
+ For C∗ = ΩH
420
+ R/k for R smooth over a rational algebra k we thus could have a full understanding
421
+ of HP(R/k). However, we will not directly use this, but rather proof a general statement with more
422
+ structure, that generalizes to non-smooth and animated algebras.
423
+ 3. Main Theorem
424
+ Notation 3.1. Given C∗ ∈ CDGAk, we denote by Fil•
425
+ H|C∗| the filtration
426
+ Filn
427
+ H|C∗| := |τ≥nC∗|
428
+ where τ≥nC∗ is the part of grading greater or equal n. Unraveling, Fil•
429
+ H|C∗| precisely gives the
430
+ stupid or brutal filtration on the chain complex |C∗| ∈ Ch∗(k).
431
+ Moreover, for X ∈ Fun(BS1, Sp) let Fil•
432
+ T XtS1 be the Tate filtration on XtS1, see Appendix B for
433
+ more details. It is a complete commutatively multiplicative and exhaustive filtration with associated
434
+ graded grnFilT XtS1 ≃ X[−2n]. The Tate-filtration also restricts to a complete (and exhaustive)
435
+ filtration on Fil0
436
+ T XtS1 ≃ XhS1.
437
+
438
+ PERIODIC CYCLIC HOMOLOGY OVER Q
439
+ 7
440
+ Theorem 3.2. For C∗ ∈ CDGAk the map |C∗| → UCtS1
441
+
442
+ refines and extends to an equivalence
443
+
444
+ Fil•
445
+ H|C∗| ⊗Day Fil•
446
+ T ktS1�∧
447
+ → Fil•
448
+ T UCtS1
449
+
450
+ of commutatively multiplicative filtered objects in D(k).
451
+ Proof. In the concrete description of ChS1
452
+
453
+ in Lemma 2.11, we can identify the Tate-filtration with
454
+ the t-adic filtration on (C∗�t�, td) via Proposition B.12 and the map from Lemma 2.11 refines to
455
+ a map of commutatively multiplicative filtrations Fil•
456
+ H|C∗| → Fil•
457
+ T UCtS1
458
+
459
+ . Because the target is a
460
+ module over the commutative algebra Fil•
461
+ T ktS1, we get the map
462
+ Fil•
463
+ H|C∗| ⊗Day Fil•
464
+ T ktS1 → Fil•
465
+ T UCtS1
466
+
467
+ (2)
468
+ and because the target is complete, it even factors over the completion. To show that we get an
469
+ equivalence of complete filtrations, it is enough to check on associated graded. Let us introduce a
470
+ formal character t in degree −2 to visually relate Tate filtrations and t-adic filtrations and write
471
+ grnFil•
472
+ T ktS1 ≃ k[−2n] =: k · tn. Then on the nth associated graded the map (2) is given by
473
+
474
+ i+j=n
475
+ Ci[−i] ⊗ k · tj ≃
476
+
477
+ i+j=n
478
+ Ci[i] · ti ⊗ k · tj → UC∗ · tn
479
+ and thus an equivalence by construction, as UC∗ ≃ � Ci[i] as a complex.
480
+
481
+ We can finally return to our situation of interest and immediately get a description of HP(R/k)
482
+ in more general situations:
483
+ Corollary 3.3. If k is an animated ring with rational homotopy groups and R in (CAlgan)k/, then
484
+ there is an equivalence of commutatively multiplicative complete filtrations
485
+
486
+ Fil•
487
+ HLΩ∗
488
+ R/k ⊗Day Fil•
489
+ T ktS1�∧
490
+ → Fil•
491
+ T HP(R/k).
492
+ (3)
493
+ Proof. First assume that k is discrete. We want to show that both sides commute with sifted colimits
494
+ as functors to Fil∧(D(k)). For Fil•
495
+ HLΩ∗
496
+ R/k after completion this is by definition and because the
497
+ Day convolution tensor product commutes with all colimits it follows for the left hand side. As
498
+ functors to complete filtrations we can also check this on associated graded for the right hand side:
499
+ And also here any shifts of HH(R/k) commute with sifted colimits.
500
+ We thus can reduce to the case that k is an ordinary Q-algebra and R smooth over k. Then the
501
+ equivalence immediately follows from Theorem 3.2 by putting C∗ = ΩH
502
+ R/k.
503
+ In the general case of an animated morphism k → R between animated Q-algebras we can give
504
+ the exact same proof. Choose a simplicial resolution kn → Rn of polynomial algebras. Again by
505
+ definition Fil•
506
+ HLΩ∗
507
+ R/k ≃ colim Fil•
508
+ HLΩ∗
509
+ Rn/kn and thus the left hand side is determined by its value
510
+ on polynomial rings. On the right hand side we check again, that on associated graded we get an
511
+ equivalence
512
+ HH(R/k) ≃ HH(R/Q) ⊗HH(k/Q) k ≃ colim HH(Rn/Q) ⊗HH(kn/Q) kn
513
+ where the first equivalence comes from the base-change formula for Hochschild homology (cf.
514
+ [AMN18] proof of Theorem 3.4) and the second from the facts that HH(−/Q) commutes with
515
+ colimits in CAlgQ and that the colimit is sifted.
516
+ Thus also in the general case, the statement
517
+ reduces to Theorem 3.2.
518
+
519
+ Finally, in order to compute the periodic cyclic homology in our case, we only have to understand
520
+ the left hand filtration in (3).
521
+ There are basically two obstacles, that we have to take care of:
522
+ Completion does not behave well with Day convolution and does not behave well with underlying
523
+ objects.
524
+
525
+ 8
526
+ KONRAD BALS
527
+ Theorem 3.4. Let k be an animated ring with Q ⊂ π0k and X a derived scheme over k. Then
528
+ there is a natural equivalence of underlying objects in Modk
529
+ HP(X/k) ≃
530
+
531
+ n∈Z
532
+
533
+ LΩ∗
534
+ X/k[−2n]
535
+ Proof. Because both sides are sheaves in the Zariski topology on X we are reduced to the case
536
+ X = SpecR for R ∈ CAlgan
537
+ k/. By the above Corollary 3.3 there is a natural equivalence of filtrations
538
+
539
+ Fil•
540
+ HLΩ∗
541
+ R/k ⊗Day Fil•
542
+ T ktS1�∧
543
+ → Fil•
544
+ T HP(R/k).
545
+ Because the Tate-filtration is exhaustive on HP(R/k) it suffices to compute the underlying object of
546
+ the left filtration. Now the filtration FilT ktS1 carries a canonical splitting, because the connecting
547
+ homomorphism in
548
+ Filn+1
549
+ T
550
+ ktS1
551
+ Filn
552
+ T ktS1
553
+ grnFil•
554
+ T ktS1
555
+ khS1[−2(n + 1)]
556
+ khS1[−2n]
557
+ k[−2n]
558
+ is forced to vanish for degree reasons, in fact Map(k[−2], khS1[−2n − 3]) is contractible. Therefore,
559
+ we have a map of filtrations �
560
+ n≥• k[−2n] → Fil•
561
+ T ktS1, inducing an equivalence on associated graded,
562
+ and, thus, as the left hand side is complete, it even is an equivalence of filtrations.
563
+ We claim now, that this splitting induces an equivalence
564
+
565
+ n∈Z
566
+ (Fil•−n
567
+ H
568
+ LΩ∗
569
+ R/k[−2n])∧ ≃ (FilHLΩ∗
570
+ R/k ⊗Day FilT ktS1)∧
571
+ Indeed, the canonical map �
572
+ n∈Z(Fil•−n
573
+ H
574
+ LΩ∗
575
+ R/k[−2n]) → �
576
+ n∈Z(Fil•−n
577
+ H
578
+ LΩ∗
579
+ R/k[−2n])∧ exhibits the
580
+ right hand side as the completion: It is evidently complete and the map on the m-th associated
581
+ graded
582
+
583
+ n∈Z
584
+ LΩm−n
585
+ R/k [−2n] →
586
+
587
+ i∈Z
588
+ LΩm−n
589
+ R/k [−2n]
590
+ is an equivalence, because LΩm−n
591
+ R/k is always bounded below and 0 for n > m.
592
+ Finally we want to compute the underlying object, i.e.
593
+ the colimit.
594
+ Consider the canonical
595
+ colimit-limit-interchange can map sitting in the cofibre sequence
596
+ colim
597
+ ��
598
+ n∈Z
599
+ Fil•−n
600
+ H
601
+
602
+ LΩ∗
603
+ R/k[−2n]
604
+
605
+ can
606
+ −−→
607
+
608
+ n∈Z
609
+
610
+ LΩ∗
611
+ R/k[−2n] → colim
612
+ ��
613
+ n∈Z
614
+ LΩ≤•−n−1
615
+ R/k
616
+ [−2n]
617
+
618
+ But because LΩ≤•−n−1
619
+ R/k
620
+ is bounded below for all n, and 0 for n ≥ •, the right most product is
621
+ actually degreewise finite and, thus, vanishes in the colimit. Now putting everything together gives
622
+ the result.
623
+
624
+ We want to use the result to investigate the exhaustiveness of the HKR-filtration constructed in
625
+ [Ant19]. It arises from the left Kan extension of the Beilinson Whitehead tower of the Tate filtration
626
+ on HP(−/k) from smooth algebras to bicomplete filtrations as the underlying outer filtration. For
627
+ more details c.f. loc. cit. or [BL22] section 6.3.
628
+ Proposition 3.5. In the situation of the Theorem 3.4, the HKR-filtration on HP(R/k) can be
629
+ identified with the filtration by partial products of �
630
+ n∈Z
631
+
632
+ LΩ∗
633
+ Rn/kn[−2n]. Precisely,
634
+ Fili
635
+ HKR HP(R/k) ≃
636
+
637
+ n≤−i
638
+
639
+ LΩ∗
640
+ Rn/kn[−2n]
641
+
642
+ PERIODIC CYCLIC HOMOLOGY OVER Q
643
+ 9
644
+ Proof. By definition of the HKR-filtration we only have to construct equivalences in the case R over
645
+ k a smooth algebra. But now the Tate-filtration on HP(R/k) induces a shifted Hodge filtration on
646
+ the factor Ω∗
647
+ R/k[2n] with Film
648
+ T (Ω∗
649
+ R/k[2n]) ≃ (Filn+m
650
+ H
651
+ Ω∗
652
+ R/k)[2n]. Because Filn+m
653
+ H
654
+ Ω∗
655
+ R/k ∈ D(k)≤−n−m
656
+ we have
657
+ Film
658
+ T (Ω∗
659
+ R/k[2n]) ∈ D(k)≤n−m
660
+ Moreover, we can similarly compute
661
+ grmFil•
662
+ T (Ω∗
663
+ R/k[2n]) ≃ Ωn+m
664
+ R/k [−n − m + 2n] ∈ D(k)≥n−m.
665
+ In fact these two conditions precisely show that Fil•
666
+ T (Ω∗
667
+ R/k[2n]) is concentrated in degree n with
668
+ respect to the Beilinson t-structure on Fil(D(k)). From our complete description of Fil•
669
+ T HP(R/k)
670
+ in terms of Ω∗
671
+ R/k · [2n] we get
672
+ Fil•
673
+ T (Ω∗
674
+ R/k[2n]) ≃ πnFil•
675
+ T HP(R/k) ≃ grnFil•
676
+ HKR HP(R/k)
677
+ where the last equivalence comes form the definition of the HKR-filtration. In particular, HP(R/k)
678
+ decomposes into the product of the associated gradeds of the HKR-filtration, which proves the
679
+ claim.
680
+
681
+ Corollary 3.6. In the situation of the theorem the HKR-filtration from [Ant19] is exhaustive if and
682
+ only if �
683
+ LΩ∗
684
+ X/k is bounded above.
685
+ Proof. We can phrase the exhaustiveness as the condition that the natural map
686
+ colim
687
+ i
688
+
689
+ n≥i
690
+
691
+ LΩ∗
692
+ X/k[2n] →
693
+
694
+ n∈Z
695
+
696
+ LΩ∗
697
+ X/k[2n] ≃
698
+
699
+ n∈Z
700
+
701
+ LΩ∗
702
+ X/k[−2n]
703
+ is an equivalence. This is precisely the case when �
704
+ LΩ∗
705
+ X/k[2n] eventually leaves any fixed degree for
706
+ n → ∞, precisely when it is bounded above.
707
+
708
+ Example 3.7. In [Ant19] Antieau proves without assumptions on the discrete commutative base ring
709
+ k, that the HKR-filtration is exhaustive if X is quasi-lci over k, i.e. LΩ1
710
+ R/k has Tor-amplitude in
711
+ [0, 1]. We recover this statement in our situation via the observation that the lci-condition forces
712
+
713
+ LΩ∗
714
+ X/k to be concentrated in degrees (−∞, 0].
715
+ Moreover, with a result in [Bha12] in the rational setting we can even prove a more drastic result:
716
+ Corollary 3.8. If k is a discrete Q-algebra and X a qcqs-scheme over k, then the HKR-filtration
717
+ is exhaustive.
718
+ Proof. By the last Corollary we want to prove that �
719
+ LΩ∗
720
+ X/k is bounded above. Because X is qcqs
721
+ and �
722
+ LΩ∗
723
+ −/k is a sheaf, its global sections on X are computed by a finite limit of the value on affines
724
+ (cf. Remark A.7). Thus, it satisfies to show the claim for X = SpecR with an arbitrary k-algebra
725
+ R. If we write k → R as a filtered colimit of maps (kn → Rn)n∈N in CAlg(D(k0)♥)∆1, where kn is
726
+ Noetherian and Rn is of finite type over kn, we get �
727
+ LΩ∗
728
+ R/k ≃ colim
729
+
730
+ LΩ∗
731
+ Rn/kn in D(k0). Hence, we
732
+ can further reduce the claim to the case k Noetherian and R finite type over k. In this situation
733
+ the result of Theorem 4.10 in [Bha12] gives a concrete description of �
734
+ LΩ∗
735
+ R/k, in particular it sits in
736
+ homological degree (−∞, 0].
737
+
738
+ 4. Multiplicative Structure
739
+ In the Corollary 3.3 the equivalence
740
+
741
+ Fil•
742
+ HLΩ∗
743
+ R/k ⊗Day Fil•
744
+ T ktS1�∧
745
+ → Fil•
746
+ T HP(R/k)
747
+
748
+ 10
749
+ KONRAD BALS
750
+ was compatible with the commutative algebra structures on both sides. Thus we are able to deduce
751
+ properties of the induced commutative algebra structure on �
752
+ n∈Z �
753
+ LΩ∗
754
+ R/k[−2n]. But first we will
755
+ describe algebra structures on these big products more generally:
756
+ Definition 4.1. Given a complete and exhaustive commutative multiplicative filtration R• ∈
757
+ CAlgFil(Modk) on a commutative algebra R ∈ CAlgk. We define
758
+ R�t±1� := colim
759
+
760
+ R• ⊗Day Fil•
761
+ T ktS1�∧
762
+ Example 4.2. If R ∈ CAlgk for an animated commutative ring k, equipped with the constant
763
+ negatively graded filtration, then we have R�t±1� ≃ RtS1 with respect to the trivial S1-action on R.
764
+ If moreover, π0k is rational, we can even write R((t)) := RtS1 as the unique commutative algebra in
765
+ Modk with homotopy groups π∗R((t)) for a generator |t| = −2.
766
+ Corollary 4.3. In the situation of Theorem 3.4 the equivalence refines to a natural equivalence
767
+ HP(X/k) ≃ �
768
+ LΩ∗
769
+ X/k�t±1� in CAlgk.
770
+ In fact, in the situation of Corollary 4.3 we can demystify the object �
771
+ LΩ∗
772
+ X/k�t±1�. The object
773
+ R�t±1� does not fully depend on R• as a complete filtered object. We will show a very special case,
774
+ of this feature:
775
+ Lemma 4.4. If F • ∈ Modk is a filtered object with F n = 0 for n but finite n, then colim(F • ⊗Day
776
+ Fil•
777
+ T ktS1)∧ ≃ 0. In particular, if R• → R• is a map in CAlgFil(Modk)∧ such that the maps induce
778
+ equivalences for all but finite n, then R�t±1� ≃ R�t±1�.
779
+ Proof. As in the proof of Theorem 3.4, we get an equivalence �
780
+ n∈Z F •−n[−2n]
781
+
782
+ −→ F •⊗DayFil•
783
+ T ktS1.
784
+ However, the left hand side is already complete: F •−n is complete because it is eventually 0 and
785
+ the direct sum is in fact a product, because there are only finitely many non-zeros factors. Finally,
786
+ the underlying object of F • is 0 and thus also of the complete filtration F • ⊗Day Fil•
787
+ T ktS1.
788
+ For the last statement, we note that the construction colim(− ⊗Day Fil•
789
+ T ktS1)∧ is exact.
790
+
791
+ Proposition 4.5. In Corollary 4.3 we can have further identifications of commutative algebras
792
+ HP(X/k) ≃ �
793
+ LΩ∗
794
+ X/k�t±1�
795
+
796
+ −→ limm LΩ≤m
797
+ X/k((t)).
798
+ Proof. We start in a general setting: Given a complete multiplicative exhaustive filtration R• on a
799
+ k-algebra R. Set R•/Rm to be the filtration with (R•/Rm)(l) := Rl/Rm for l ≤ m and 0 otherwise.
800
+ Because R• is complete we have R•
801
+
802
+ −→ limm R•/Rm. Checking on associated graded we get an
803
+ equivalence
804
+
805
+ R• ⊗Day Fil•
806
+ T ktS1�∧
807
+
808
+ −→ lim
809
+ m
810
+
811
+ R•/Rm ⊗Day Fil•
812
+ T ktS1�∧
813
+ and thus the natural map R�t±1� → limm(R/Rm�t±1�). Now if R• is eventually constant in negative
814
+ degrees, and because it is eventually 0 in positive degrees R•/Rm�t±1� ≃ R/Rm((t)) by Lemma 4.4
815
+ and Example 4.2.
816
+ Finally, in the concrete situation R• = Fil•
817
+ H �
818
+ LΩ∗
819
+ X/k, which satisfies this last assumption, we have
820
+ an easy description of the quotients �
821
+ LΩ∗
822
+ X/k/ �
823
+ LΩ≥m+1
824
+ X/k
825
+ ≃ LΩ≤m
826
+ X/k. And now the proof of Theorem
827
+ 3.4 gives an equivalence LΩ≤m
828
+ X/k�t±1� ≃ �
829
+ n∈Z LΩ≤m
830
+ X/k[−2n] on underlying objects, such that the
831
+ map from �
832
+ LΩ∗
833
+ X/k�t±1� can be identified with the natural map �
834
+ LΩ∗
835
+ X/k → LΩ≤m
836
+ X/k in each factor. In
837
+ particular this map is an equivalence in the limit.
838
+
839
+ We can finally get to the description of the homotopy groups HP∗(X/k) explained in the in-
840
+ troduction. Disregarding the multiplicative structure on HP∗(X/k) Theorem 3.4 already gives the
841
+
842
+ PERIODIC CYCLIC HOMOLOGY OVER Q
843
+ 11
844
+ additive identification
845
+ HP∗(X/k) ∼=
846
+
847
+ n∈Z
848
+ π∗+2n �
849
+ LΩ∗
850
+ X/k ∼=
851
+ ��
852
+ n∈Z
853
+ antn : an ∈ π∗+2n �
854
+ LΩ∗
855
+ X/k
856
+
857
+ with the componentwise addition as stated in the introduction. We will now show how to describe
858
+ the multiplication: Given
859
+ ��
860
+ n∈Z antn�
861
+ ,
862
+ ��
863
+ n∈Z bntn�
864
+ ∈ HP∗(X/k), then we know that
865
+ ��
866
+ n∈Z
867
+ antn
868
+
869
+ ·
870
+ ��
871
+ n∈Z
872
+ bntn
873
+
874
+ =
875
+
876
+ n∈Z
877
+ cntn
878
+ (4)
879
+ for some cn ∈ π∗ �
880
+ LΩ∗
881
+ X/k, so that we want to describe these coefficients cn.
882
+ Construction 4.6. The graded ring π∗ �
883
+ LΩ∗
884
+ X/k can be equipped with the coarsest topology making
885
+ all maps π∗ �
886
+ LΩ∗
887
+ X/k → π∗LΩ≤m
888
+ X/k continuous for the discrete topology on the target. Concretely, this
889
+ means a neighborhood basis of 0 is given by the kernels of these maps above. In particular, the
890
+ topology cannot separate points that lie in every single such kernel, i.e. lie in the kernel of the
891
+ surjective map π∗ �
892
+ LΩ∗
893
+ X/k → lim π∗LΩ≤m
894
+ X/k. In degree i this is precisely given by lim1 πi+1LΩ≤m
895
+ X/k. In
896
+ fact lim π∗LΩ≤m
897
+ X/k is the "Hausdorffization" of this non-Hausdorff topology.
898
+ Lemma 4.7. In the equation (4) the coefficient cn is a limit of the net �
899
+ i+j=n ai · bj.
900
+ Proof. It is enough to prove this statement for homogeneous elements, and for simplicity assume
901
+ that (�
902
+ n∈Z antn) and (�
903
+ n∈Z bntn) are both in degree 0. For the general case, one only has to
904
+ correctly modify the degrees of elements, the arguments are the same.
905
+ By definition of the topology on π∗ �
906
+ LΩ∗
907
+ X/k we have to show, that cn − �
908
+ (i,j)∈Jn ai · bj for finite
909
+ Jn ⊂ {i + j = n} eventually lies in the kernel of the maps π∗ �
910
+ LΩ∗
911
+ X/k → π∗LΩ≤m
912
+ X/k. By Proposition
913
+ 4.5 these maps assemble to ring maps
914
+ ϕn : HP∗(X/k) → π∗LΩ≤m
915
+ X/k((t)),
916
+ where we understand the multiplication of Laurent-series on the target. Moreover, because the
917
+ coefficients of the target are in degrees ≥ −m as a graded ring, we even know, that ai · bj is sent
918
+ to 0 in π∗LΩ≤m
919
+ R/k as soon as i < m/2 or j < m/2.
920
+ That means for every family of finite sets
921
+ Jn ⊂ {i + j = n} containing In := {i + j = n : i, j ≥ m/2}
922
+ ϕn
923
+ ��
924
+ n∈Z
925
+ ��
926
+ Jn
927
+ ai · bj
928
+
929
+ tn
930
+
931
+ =
932
+
933
+ n∈Z
934
+ ��
935
+ In
936
+ ϕn(ai) · ϕn(bj)
937
+
938
+ tn
939
+ =
940
+ ��
941
+ n∈Z
942
+ ϕn(an)tn
943
+
944
+ ·
945
+ ��
946
+ n∈Z
947
+ ϕn(bn)tn
948
+
949
+ But also by definition we have ϕn
950
+ ��
951
+ n∈Z cntn�
952
+ =
953
+ ��
954
+ n∈Z ϕn(an)tn�
955
+ ·
956
+ ��
957
+ n∈Z ϕn(bn)tn�
958
+ . In particular,
959
+ taking the difference and restricting again to single coefficients cn − �
960
+ Jn ai · bj is sent to 0 in
961
+ π∗LΩ≤m
962
+ X/k.
963
+
964
+ This concludes the description of HP∗(X/k) given in the introduction.
965
+ Appendix A. HP of Schemes
966
+ In this section, we want to carefully describe the extension of Hochschild and periodic cyclic
967
+ homology to (derived) schemes. We will refer to [Lur18] [Section 1.1], [Lur10] and [Toë14] for an
968
+ introduction to derived schemes over animated commutative (aka simplicially commutative) rings.
969
+ We will only sketch the definition:
970
+
971
+ 12
972
+ KONRAD BALS
973
+ Definition A.1. For an animated commutative k-algebra R, define the affine derived scheme SpecR
974
+ to be the pair (|SpecR|, OSpecR) where |SpecR| = |Specπ0R| is a topological space and OSpecR is
975
+ a CAlgan
976
+ k/-valued sheaf on |SpecR| with OSpecR(D(f)) ≃ R[f −1] for every elementary open D(f) ⊂
977
+ |Specπ0R|.5
978
+ A general pair X = (|X|, OX) with |X| a topological space and OX ∈ ShvCAlgan
979
+ k/(|X|) is called a
980
+ derived scheme, if there exist an open cover U of X, such that for all U ∈ U we have (U, OX|U) ∼=
981
+ SpecR6 for some R ∈ CAlgan
982
+ k/.
983
+ Remark A.2. This notion generalizes ordinary schemes. In particular given a derived scheme X, the
984
+ underlying ringed space π0X := (|X|, π0OX) is an ordinary scheme and we call a derived scheme X
985
+ affine7, quasi-affine, quasi-compact resp. quasi-separated if π0X is so.
986
+ Definition A.3. Let X be a derived k-scheme. A Zariski-sheaf with values in a category C on X
987
+ is a C-valued sheaf on the topological space |X|, i.e. a functor F : U(X)op → C from the opposite of
988
+ the poset U(X) of opens of |X|, satisfying
989
+ F(U) ≃
990
+ lim
991
+ ∅̸=S⊂I
992
+ finite
993
+ F(US)
994
+ for every U = �
995
+ i∈I Ui ∈ U(X) and with US = Ui0 ∩ . . . ∩ Uik for S = {i0, . . . , ik}.
996
+ Given a derived scheme X over k the goal is now to upgrade the functors HH(−/k), HP(−/k):
997
+ CAlgan
998
+ k/ → Modk to Zariski-sheaves HHk and HPk on X in order to define HH(X/k) := Γ(X, HHk)
999
+ and HP(X) := Γ(X, HPk).
1000
+ Proposition A.4. Given a topological space X and Ue a set of open subsets of X, such that
1001
+ 1) Ue forms a basis of the topology of X,
1002
+ 2) Ue is closed under intersections.
1003
+ Then the adjunction
1004
+ Fun(U(X)op, C)
1005
+ Fun(Uop
1006
+ e , C)
1007
+ res
1008
+ Ran
1009
+ restrict to an equivalence of sheaf cat-
1010
+ egories ShvC(X)
1011
+
1012
+ −→ ShvC(Ue) with the induced Grothendieck topology on Ue.
1013
+ If, moreover, Ue
1014
+ consist of quasi-compact opens, then ShvC(X) ≃ Fun′(Uop
1015
+ e , C), where the right hand side consists
1016
+ of those presheaves F : Uop
1017
+ e
1018
+ → C, that satisfy F(∅) = 0 and F(U ∪ V ) ≃ F(U) ×F(U∩V ) F(V ) for
1019
+ U, V, U ∪ V ∈ Ue.
1020
+ Proof. The first statement is a special case of the infinity categorical comparison Lemma for Grothen-
1021
+ dieck sites proven in [Hoy14] Lemma C.3, and the second claim is [Lur18] Proposition 1.1.4.4.
1022
+
1023
+ We now do the standard procedure of extending an algebraic functor CAlgan
1024
+ k/ → C to a sheaf on
1025
+ geometric objects. We proceed in steps:
1026
+ Lemma A.5. Given a quasi-affine derived scheme X over k, there are Modk-valued sheaves HHk
1027
+ and HPk on X, extending HH(−/k) and HP(−/k), i.e.
1028
+ for all affine open derived subschemes
1029
+ U ⊂ X, the sheaves recover Hochschild homology, resp. periodic cyclic homology:
1030
+ Γ(U, HHk) ≃ HH(OX(U)/k)
1031
+ Γ(U, HPk) ≃ HP(OX(U)/k)
1032
+ Proof. Set Ue to be the set of affine open derived subschemes of X. Then HH(−/k) and HP(−/k) give
1033
+ functors Uop
1034
+ e
1035
+ → Modk and let HHk and HPk denote their right Kan extension along Uop
1036
+ e
1037
+ → U(X)op.
1038
+ We want to argue, that these are already Zariski-sheaves on X.
1039
+ Because X is quasi-affine, intersections of affines are computed in a surrounding affine derived
1040
+ scheme, and are affine again. The collection Ue, thus, satisfies the conditions 1), 2) of Propos-
1041
+ ition A.4 and contains only quasi-compact opens, so that we are reduced to checking that the
1042
+ 5The existence of SpecR is deduced in [Lur18] from Proposition A.4 below.
1043
+ 6Under the appropriate notion of equivalence.
1044
+ 7In fact X is affine, if and only if X = SpecR for R ∈ CAlgan
1045
+ k/.
1046
+
1047
+ PERIODIC CYCLIC HOMOLOGY OVER Q
1048
+ 13
1049
+ functors HH(−/k) and HP(−/k) satisfy the finite limit condition of Fun′(Uop
1050
+ e , Modk). As the Tate-
1051
+ construction commutes with finite limits, it is enough to only show the claim for Hochschild homo-
1052
+ logy.
1053
+ For R ∈ CAlgan
1054
+ k/ the natural map R → HH(R/k) in CAlgk equips HH(R/k) with a module
1055
+ structure over R, such that for a map of animated commutative rings R → R′ the functoriality
1056
+ induces a map HH(R/k) ⊗R R′ → HH(R′/k) in ModR′. Now if U ⊂ X is an affine open derived
1057
+ subscheme of X, then for every other affine open V ⊂ U this map
1058
+ HH(OX(U)/k) ⊗OX(U) OX(V ) → HH(OX(V )/k)
1059
+ is an equivalence. Indeed, it suffices to check this locally on V , so we can reduce to distinguished
1060
+ opens D(f) ⊂ V ⊂ U for f ∈ π0OX(U). But using that HH(−/k) commutes with filtered colimits
1061
+ we can identify both sides with HH(OX(U)[f −1]).
1062
+ Finally, assume that F : I → Ue is a finite diagram with colimit U as appearing in Proposition
1063
+ A.4, then by the above HH(OX(F op(−))/k) ≃ HH(OX(U)/k) ⊗OX(U) OX(F op(−)) and we win as
1064
+ tensoring is exact and OX(F op(−)) is a finite limit diagram due to the sheaf condition of OX (using
1065
+ Proposition A.4 in the other direction).
1066
+
1067
+ Lemma A.6. Given an arbitrary derived k-scheme X, we can furthermore extend Hochschild and
1068
+ periodic cyclic homology to sheaves HHk and HPk on X.
1069
+ Moreover, for all open qcqs derived
1070
+ subschemes U ⊂ X we have
1071
+ Γ(U, HPk) ≃ Γ(U, HHk)tS1
1072
+ Proof. Let Ue now be the set of quasi-affine open derived subschemes of X, which satisfies 1) and
1073
+ 2) of Proposition A.4. By the last Lemma HH(−/k) and HP(−/k) extend to sheaves on Uop
1074
+ e
1075
+ and
1076
+ by Proposition A.4 thus further extend to sheaves on entire X.
1077
+ Now take U ⊂ X a quasi-compact quasi-separated derived open subscheme. Because of quasi-
1078
+ compactness there exist a finite open cover of U by affine open subschemes U1, . . . Un and by the
1079
+ sheaf condition we get
1080
+ Γ(U, HPk) ≃
1081
+ lim
1082
+ S⊂[1,n] Γ(US, HPk)
1083
+ in the notation of Definition A.3. Each US is now quasi-affine as an open derived subscheme of an
1084
+ affine and quasi-compact by the quasi-separatedness of U. Thus, because the limit above is finite, it
1085
+ satisfies to check the claim for U quasi-compact quasi-affine. Again, choosing a finite open cover by
1086
+ affines and using that the intersection of affines in quasi-affines is affine again, we can even reduce
1087
+ to the case that U is an affine open. But in this case
1088
+ Γ(U, HPk) ≃ HP(OX(U)/k) ≃ HH(OX(U)/k)tS1 ≃ Γ(U, HHk)tS1
1089
+
1090
+ Remark A.7. The proof of the last Lemma shows even more: For any sheaf F on a derived scheme
1091
+ X, the sections Γ(U, F) over a qcqs open derived subscheme U are computed as a finite limit of the
1092
+ values of F on affines.
1093
+ Appendix B. Tate Filtration
1094
+ In this section we want to review the construction of the classical Tate-filtration introduced in
1095
+ [GM95]. This content is not new and also recently has been explained in [BL22] section 6.1. We
1096
+ would like to particular put a focus on multiplicative structures.
1097
+ Definition B.1. Given a representation ρ: S1 → GL(V ) of S1, the representation sphere SV is the
1098
+ one-point compactification of V . Furthermore we define SV := Σ∞SV as the suspension spectrum
1099
+ of the representation sphere.
1100
+ Remark B.2. Note that if V is finite dimensional there immediately is an equivalence SV ≃ SdimR V ,
1101
+ so that the homotopy type of SV only depends on the dimension of V . However, the S1-action
1102
+ really uses the representation S1 → GL(V ).
1103
+
1104
+ 14
1105
+ KONRAD BALS
1106
+ Example B.3. For V = C there is the standard representation given by S1 ≃ U(1) ֒→ C×. Its
1107
+ representation sphere sits in the pushout
1108
+ S1
1109
+
1110
+
1111
+ SV
1112
+ with S1-acting freely on itself.
1113
+ Thus, after adding basepoints to the top row Σ∞ gives a fibre
1114
+ sequence S[S1] := Σ∞
1115
+ + S1 → S → SV of spectra with S1-action.
1116
+ Construction B.4. Let V be a finite dimensional representation of S1. The map 0 → V of repres-
1117
+ entations induces a sequence
1118
+ 0 → V → V ⊕ V → V ⊕ V ⊕ V → · · ·
1119
+ which translates to the representation sphere spectra to a Z-graded filtration
1120
+ S•V := · · · → S−2V → S−V → S → SV → S2V → S3V → · · ·
1121
+ (5)
1122
+ where S−nV := DSnV is the Spanier-Whitehead dual. Now if V ̸= 0 all maps have to be non-
1123
+ equivariantly nullhomotopic, but this is definitely not the case with respect to the S1-action. We
1124
+ will see this later in Proposition B.6.
1125
+ Definition B.5. Given a spectrum X ∈ SpBS1 with S1-action, we define the Tate-filtration
1126
+ FilT XtS1 as
1127
+ · · · →
1128
+
1129
+ S−2V ⊗X
1130
+ �hS1
1131
+
1132
+
1133
+ S−V ⊗X
1134
+ �hS1
1135
+ →XhS1→
1136
+
1137
+ SV ⊗ X
1138
+ �hS1
1139
+
1140
+
1141
+ S2V ⊗X
1142
+ �hS1
1143
+ → · · ·
1144
+ for V the standard representation of S1 constructed in Example B.3.
1145
+ This definition would not be sensible if this would not give a filtration on XtS1 and we are bound
1146
+ to prove:
1147
+ Proposition B.6. For X ∈ SpBS1 the Tate filtration Fil•
1148
+ T XtS1 is complete with underlying object
1149
+ XtS1.
1150
+ Proof. Because homotopy fixed points, as a limit, preserve completeness it satisfies to prove that
1151
+ lim S−nV ⊗ X ≃ 0 as a spectrum. But here we can compute
1152
+ lim S−nV ⊗ X ≃ lim map
1153
+
1154
+ SnV , X
1155
+
1156
+ ≃ map
1157
+
1158
+ colim SnV , X
1159
+
1160
+ ≃ 0
1161
+ because the colimit goes along nullhomotopic maps. However, as already indicated, those maps are
1162
+ not equivariantly nullhomotopic In fact every map
1163
+ S−nV ⊗ X → S(−n+1)V ⊗ X
1164
+ induces an equivalence on the S1-Tate construction. Indeed, via Example B.3 we can identify the
1165
+ fibre as S−nV ⊗ S[S1], which is an induced S1-spectrum, such that Tate vanishes on this fibre. Now
1166
+ we can look at the Z-indexed fibre sequences defining the Tate constructions of S−nV ⊗ X:
1167
+ Σ
1168
+
1169
+ S−nV ⊗ X
1170
+
1171
+ hS1
1172
+
1173
+ S−nV ⊗ X
1174
+ �hS1
1175
+
1176
+ ��
1177
+
1178
+ ≃Filn
1179
+ T XtS1
1180
+
1181
+ S−nV ⊗ X
1182
+ �tS1
1183
+ .
1184
+ By the observation above the right hand filtration is constant at XtS1. The colimit of the left hand
1185
+ filtration vanishes, because commuting the colimit with Σ(− ⊗ X)hS1 reduces again to computing
1186
+ a filtered colimit along nullhomotopic maps, which is 0. Thus together we see colim Filn
1187
+ T XtS1 ≃
1188
+ XtS1.
1189
+
1190
+
1191
+ PERIODIC CYCLIC HOMOLOGY OVER Q
1192
+ 15
1193
+ We are interested in possible algebra structures on the Tate filtration. Because (−)tS1 is lax
1194
+ monoidal, XtS1 for an algebra X ∈ Alg(Sp) inherits an algebra structure again.
1195
+ However, the
1196
+ question of algebra structures on FilT XtS1 with respect to the Day convolution is more subtle.
1197
+ We will use the following different description of the filtered category as a modules over a graded
1198
+ algebra. This insight comes from Lurie in [Lur15] 3.2 and in this form is in [Rak20] Proposition
1199
+ 3.2.9.
1200
+ Definition B.7. For a stable symmetric monoidal category C with unit
1201
+ 1, let
1202
+ 1[β] denote the
1203
+ underlying graded object of the unit in Fil(C). It is a commutative algebra in Gr(C) with underlying
1204
+ graded object �
1205
+ n≤0
1206
+ 1.
1207
+ Every object in the symmetric monoidal category Fil(C) is canonically a module over the unit,
1208
+ such that the symmetric monoidal forgetful functor Fil(C) → Gr(C) refines to a functor Fil(C) →
1209
+ Mod
1210
+ 1[β](Gr(C)). In fact remembering this action of
1211
+ 1[β] recovers the full filtered object:
1212
+ Theorem B.8 ([Rak20]). For a symmetric monoidal stable category C the above functor Fil(C) →
1213
+ Mod
1214
+ 1[β](Gr(C)) is an equivalence of symmetric monoidal categories.
1215
+ In our situation we want to use this for C = SpBS1
1216
+ Q
1217
+ and show that the filtered object S−•V ⊗ Q is
1218
+ a commutative algebra in Fil(SpBS1
1219
+ Q
1220
+ ). There is also an algebraic description of this category due to
1221
+ Greenlees-Shipley [GS09] in the non-Borel-complete setting and later as we use it here by [MNN17].
1222
+ Similar to above, because again in SpQ every object carries a canonical module structure over the
1223
+ unit Q, the lax functor (−)hS1 : SpBS1
1224
+ Q
1225
+ → SpQ refines to a functor into ModQhS1 (SpQ) and we have
1226
+ as a special case of Theorem 7.35 in [MNN17]:
1227
+ Theorem B.9 ([MNN17]). The functor (−)hS1 : SpBS1
1228
+ Q
1229
+ → ModQhS1 (SpQ) is fully faithful with
1230
+ essential image given by those modules over QhS1 ≃ Q�t� that are complete with respect to the t-adic
1231
+ filtration.
1232
+ The Thom isomorphism over Q for complex vector bundles over BS1 gives an S1-equivariant
1233
+ equivalence of SV ⊗Q ≃ Q[2] with trivial S1-action on the right. Thus the map S⊗Q → SV ⊗Q ≃ Q[2]
1234
+ in SpBS1
1235
+ Q
1236
+ corresponds to an Q�t�-module map Q�t� → Q�t�[2] for |t| = −2. In particular as a Q�t�-
1237
+ module map it is determined by the image of 1 in Q·t. Because this map is not 0 as seen in the proof
1238
+ of Proposition B.6, up to a unit, it is given by multiplication by t. More generally this argument
1239
+ gives an identification of the image of the filtration S−•V ⊗ Q under (−)hS1 with the filtration
1240
+ · · ·
1241
+ ·t−→ Q�t�[−2n]
1242
+ ·t−→ Q�t�
1243
+ ·t−→ Q�t�[2n]
1244
+ ·t−→ · · ·
1245
+ of Q�t�-modules.
1246
+ Lemma B.10. The filtration S−•V ⊗Q can be given a commutative algebra structure in Fil(SpBS1
1247
+ Q
1248
+ ).
1249
+ Proof. Under the symmetric monoidal equivalences from the cited Theorems B.8 and B.9 we are
1250
+ reduced to equip the underlying graded object �
1251
+ n∈Z Q�t�[−2n] of (S−•V ⊗Q)hS1 with a commutative
1252
+ algebra structure over Q�t�[β]. To avoid confusion, let us introduce a formal variable s in grading
1253
+ degree −1 and homological degree 2 to get an identification of underlying objects
1254
+
1255
+ n∈Z
1256
+ Q�t�[−2n] ≃ Q�t�[s±1],
1257
+ which is the free graded commutative Q�t�-algebra on the variables s±1. In particular sending β to
1258
+ s · t gives Q�t�[s±1] the desired commutative algebra structure.
1259
+
1260
+ Proposition B.11. For a commutative ring k with Q ⊂ π0k and R ∈ CAlgBS1
1261
+ k
1262
+ the filtration
1263
+ FilT RtS1 permits the structure of a commutative algebra in Fil(Modk).
1264
+
1265
+ 16
1266
+ KONRAD BALS
1267
+ Proof. By construction FilT (−)tS1 is the composite
1268
+ ModBS1
1269
+ k
1270
+ (−)⊗(S−•V ⊗k)
1271
+ −−−−−−−−−−→ Fil(ModBS1
1272
+ k
1273
+ )
1274
+ (−)hS1
1275
+ −−−−→ Fil(Modk).
1276
+ The second functor has a canonical lax structure. Because k is a commutative algebra over Q, also
1277
+ (S−•V ⊗ k) inherits a commutative algebra structure via Lemma B.10 and thus FilT (−)tS1 refines
1278
+ to a lax symmetric monoidal functor and sends commutative algebras in ModBS1
1279
+ k
1280
+ to commutative
1281
+ algebras in Fil(Modk).
1282
+
1283
+ Given C∗ ∈ CDGAQ
1284
+ ι֒−→ SpBS1
1285
+ Q
1286
+ we would like to conclude this section with the comparison of the
1287
+ induced filtration on Fil≥0
1288
+ T UCtS1
1289
+
1290
+ on the zeroth part Fil0
1291
+ T UCtS1
1292
+
1293
+ ≃ UChS1
1294
+
1295
+ to concrete filtrations on
1296
+ the chain level.
1297
+ Proposition B.12. In the notation of Lemma 2.11, there is an identification of the t-adic filtration
1298
+ on UChS1
1299
+
1300
+ ≃ (UC∗�t�, td) with the Tate filtration Fil≥0
1301
+ T UCtS1
1302
+
1303
+ .
1304
+ Proof. Using the cocommutative bialgebra A := Q[ǫ]/ǫ2 as defined in Construction 2.1 we have the
1305
+ symmetric monoidal equivalence of categories SpBS1
1306
+ Q
1307
+
1308
+ −→ ModASpQ (Corollary 2.3). Therefore the
1309
+ filtration Fil≥0
1310
+ T UCtS1
1311
+
1312
+ reads as
1313
+ · · · → mapA(Q, Q[−4] ⊗ C∗) → mapA(Q, Q[−2] ⊗ C∗) → mapA(Q, Q ⊗ C∗) ≃ UChS1
1314
+
1315
+ By duality this filtration is equivalently induced by the maps Q[2n] → Q[2n + 1] from S−•V ⊗ Q for
1316
+ n ≥ 0 in the first variable of the mapping spectrum. Choosing P∗ = (A⟨t∨⟩, dP ) for t∨ primitive in
1317
+ degree 2 and dP (t∨) = ǫ as in the proof of Lemma 2.11, these maps
1318
+ P∗[2n]
1319
+ · · ·
1320
+ k · (t∨)2
1321
+ k · ǫt∨
1322
+ k · t∨
1323
+ k · ǫ
1324
+ k
1325
+ P∗[2n + 1]
1326
+ · · ·
1327
+ k · t∨
1328
+ k · ǫ
1329
+ k
1330
+
1331
+ 0
1332
+
1333
+ 0
1334
+
1335
+ 0
1336
+ are uniquely determined as A-module maps by the image of t∨. Because again the map is non-zero,
1337
+ the image of t∨ has to be a unit. In particular, up to isomorphism the maps
1338
+ ChS1
1339
+
1340
+ [−2n − 2] → ChS1
1341
+
1342
+ [−2n]
1343
+ are given by multiplication with the dual t in (C∗�t�, td).
1344
+
1345
+ References
1346
+ [Ada56]
1347
+ J. F. Adams. ‘On The Cobar Construction’. In: Proceedings of the National Academy of
1348
+ Sciences 42.7 (1956), pp. 409–412.
1349
+ [AMN18]
1350
+ B. Antieau, A. Mathew and T. Nikolaus. ‘On the Blumberg–Mandell Künneth theorem
1351
+ for TP’. In: Selecta Mathematica 24 (2018).
1352
+ [Ant19]
1353
+ B. Antieau. ‘Periodic cyclic homology and derived de Rham cohomology’. In: Annals of
1354
+ K-Theory 4.3 (2019), pp. 505–519.
1355
+ [BCN21]
1356
+ L. Brantner, R. Campos and J. Nuiten. PD Operads and Explicit Partition Lie Algebras.
1357
+ 2021. arXiv: 2104.03870.
1358
+ [Bha12]
1359
+ B. Bhatt. Completions and derived de Rham cohomology. 2012. arXiv: 1207.6193.
1360
+ [BL22]
1361
+ B. Bhatt and J. Lurie. Absolute prismatic cohomology. 2022. arXiv: 2201.06120.
1362
+ [BMS19]
1363
+ B. Bhatt, M. Morrow and P. Scholze. ‘Topological Hochschild homology and integral
1364
+ p-adic Hodge theory’. In: Publications mathématiques de l’IHÉS 129 (1 2019), pp. 199–
1365
+ 310.
1366
+ [Con85]
1367
+ A. Connes. ‘Non-commutative differential geometry’. In: Publications Mathématiques de
1368
+ L’Institut des Hautes Scientifiques 62 (1985), pp. 41–144.
1369
+
1370
+ REFERENCES
1371
+ 17
1372
+ [DH22]
1373
+ I. Dan-Cohen and A. Horev. Koszul duality for left modules over associative algebras.
1374
+ 2022. arXiv: 2210.11861.
1375
+ [GM95]
1376
+ J. Greenlees and P. May. ‘Generalized Tate Cohomology’. In: Memoires of the American
1377
+ Mathematical Society. Vol. 543. 1995.
1378
+ [GS09]
1379
+ J. Greenlees and B. Shipley. ‘An algebraic model for free rational G-spectra for connected
1380
+ compact Lie groups G’. In: Mathematische Zeitschrift 269 (2009).
1381
+ [HKR62]
1382
+ G. Hochschild, B. Kostant and A. Rosenberg. ‘Differential Forms on Regular Affine
1383
+ Algebras’. In: Transactions of the American Mathematical Society 102 (1962), pp. 383–
1384
+ 408.
1385
+ [Hoy14]
1386
+ M. Hoyois. ‘A quadratic refinement of the Grothendieck–Lefschetz–Verdier trace for-
1387
+ mula’. In: Algebraic & Geometric Topology 14.6 (2014), pp. 3603–3658.
1388
+ [KN18]
1389
+ A. Krause and T. Nikolaus. Lectures on Topological Hochschild Homology and Cyclotomic
1390
+ Spectra. Available on the second authors’s website. 2018.
1391
+ [LQ84]
1392
+ J.-L. Loday and D. Quillen. ‘Cyclic homology and the Lie algebra homology of matrices.’
1393
+ In: Commentarii mathematici Helvetici 59 (1984), pp. 565–591.
1394
+ [Lur09]
1395
+ J. Lurie. Higher Topos Theory. Princeton University Press, 2009.
1396
+ [Lur10]
1397
+ J. Lurie. DAG V. Available on the author’s website. 2010.
1398
+ [Lur15]
1399
+ J. Lurie. Rotation invariance in algebraic K-theory. Available on the author’s website.
1400
+ 2015.
1401
+ [Lur16]
1402
+ J. Lurie. Higher Algebra. Available on the author’s website. 2016.
1403
+ [Lur18]
1404
+ J. Lurie. Elliptic Cohomology I: Spectral Abelian Varieties. Available on the author’s
1405
+ website. 2018.
1406
+ [MNN17]
1407
+ A. Mathew, N. Naumann and J. Noel. ‘Nilpotence and descent in equivariant stable
1408
+ homotopy theory’. In: Advances in Mathematics 305 (2017), pp. 994–1084.
1409
+ [Qui70]
1410
+ D. Quillen. ‘On the (co)homology of commutative rings’. In: Applications of Categorical
1411
+ Algebra. Vol. 17. 1970.
1412
+ [Rak20]
1413
+ A. Raksit. Hochschild homology and the derived de Rham complex revisited. 2020. arXiv:
1414
+ 2007.02576.
1415
+ [Toë14]
1416
+ B. Toën. ‘Derived algebraic geometry’. In: EMS Surv. Math Schi. 1 2 (2014), pp. 153–
1417
+ 240.
1418
+ [TV11]
1419
+ B. Toën and G. Vezzosi. ‘S 1 -equivariant simplicial algebras, de Rham theory and
1420
+ multiplicative HKR theorems’. In: Compositio Mathematica 147 (2011).
1421
+ [WG91]
1422
+ C. A. Weibel and S. C. Geller. ‘Étale descent for hochschild and cyclic homology’. In:
1423
+ Commentarii Mathematici Helvetici 66 (1991), pp. 368–388.
1424
+ WWU Münster, Mathematisches Institut, Einsteinstr. 62, 48149 Münster, Germany
1425
+ Email address: [email protected]
1426
+
DdE1T4oBgHgl3EQfWQSA/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
E9AyT4oBgHgl3EQfevjq/content/2301.00329v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1929e9d33108e68ae6bdcece2b9fea55fe9b8714ac4168d627f768183311e7da
3
+ size 2792970
E9AyT4oBgHgl3EQfevjq/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ae1dc358ea45d3e057d1535264cee74376ac533fbcb8252ee0a3eb18ff372f6
3
+ size 2621485
E9AyT4oBgHgl3EQfevjq/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ddc646ad5d01f7f347e1f070d39d472bcdaa1eb5ec4c21786de522f8ce6c4eb
3
+ size 103816
E9AzT4oBgHgl3EQfG_uu/content/2301.01038v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8bce0973fbdb72f6ef01e4512c39b36f4a427b2d62849e8ae724e3cbcf275ca3
3
+ size 2138044
E9AzT4oBgHgl3EQfG_uu/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a1885747b29452bafecfef9979b85d73264f329c9c11aa6a228bae95c7c3540
3
+ size 196109
FNE1T4oBgHgl3EQfqgXp/content/tmp_files/2301.03345v1.pdf.txt ADDED
@@ -0,0 +1,1265 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ CaSpeR: Latent Spectral Regularization for Continual Learning
2
+ Emanuele Frascaroli1,3, Riccardo Benaglia1,3, Matteo Boschini1, Luca Moschella2
3
+ Cosimo Fiorini3, Emanuele Rodol`a2, Simone Calderara1
4
+ 1AImageLab University of Modena and Reggio Emilia
5
+ 2Sapienza University of Rome
6
+ 3Ammagamma
7
+ Abstract
8
+ While biological intelligence grows organically
9
+ as new knowledge is gathered throughout life,
10
+ Artificial Neural Networks forget catastrophi-
11
+ cally whenever they face a changing training data
12
+ distribution. Rehearsal-based Continual Learn-
13
+ ing (CL) approaches have been established as a
14
+ versatile and reliable solution to overcome this
15
+ limitation; however, sudden input disruptions
16
+ and memory constraints are known to alter the
17
+ consistency of their predictions. We study this
18
+ phenomenon by investigating the geometric char-
19
+ acteristics of the learner’s latent space and find
20
+ that replayed data points of different classes in-
21
+ creasingly mix up, interfering with classification.
22
+ Hence, we propose a geometric regularizer that
23
+ enforces weak requirements on the Laplacian
24
+ spectrum of the latent space, promoting a par-
25
+ titioning behavior. We show that our proposal,
26
+ called Continual Spectral Regularizer (CaSpeR),
27
+ can be easily combined with any rehearsal-based
28
+ CL approach and improves the performance of
29
+ SOTA methods on standard benchmarks.
30
+ Fi-
31
+ nally, we conduct additional analysis to provide
32
+ insights into CaSpeR’s effects and applicability.
33
+ 1
34
+ INTRODUCTION
35
+ Within the natural world, intelligent creatures continually
36
+ learn to adapt their behavior to changing external condi-
37
+ tions. In doing so, they seamlessly blend novel notions
38
+ with previous understanding into a cohesive body of knowl-
39
+ edge. On the contrary, ANNs greedily fit the data they are
40
+ currently trained on. For a model that learns on a chang-
41
+ ing stream of data, this results in the swift deterioration of
42
+ previously acquired information – a phenomenon known as
43
+ catastrophic forgetting (McCloskey and Cohen, 1989).
44
+ Continual Learning (CL) is a branch of machine learning
45
+ that designs approaches to help deep models retain pre-
46
+ vious knowledge while training on new data (De Lange
47
+ et al., 2021; Parisi et al., 2019). The evaluation of these
48
+ B
49
+ Memory Buffer
50
+ Feature
51
+ Extractor
52
+
53
+ B
54
+ Memory Buffer
55
+ Feature
56
+ Extractor
57
+
58
+ Latent Space
59
+ Rehearsal method + C a S p e R
60
+ Basic Rehearsal method
61
+ Latent Graph Spectrum
62
+ Latent Space
63
+ λ1 λ2 λ3 λ4
64
+ λ5 λ6
65
+ λ7 λ8
66
+ Eigengap
67
+ λ2
68
+ Eigengap
69
+ λ3 λ4
70
+ λ5
71
+ λ6 λ7 λ8
72
+ λ1
73
+ Latent Graph Spectrum
74
+ Figure 1: An overview of the proposed CaSpeR regular-
75
+ izer. Rehearsal-based CL methods struggle to separate the
76
+ latent-space projections of replay data points. Our proposal
77
+ acts on the spectrum of the latent geometry graph to induce
78
+ a partitioning behavior by maximizing the eigengap for the
79
+ number of seen classes (best seen in color).
80
+ methods is typically conducted by dividing a classification
81
+ dataset into disjoint subsets of classes, called tasks, letting
82
+ the model fit one task at a time and, finally, evaluating it on
83
+ all previously seen classes (van de Ven and Tolias, 2018).
84
+ Recent literature favors the employment of rehearsal meth-
85
+ ods; namely, CL approaches that address forgetting by re-
86
+ taining a small memory buffer of samples encountered in
87
+ previous tasks and interleaving them with current training
88
+ data (Chaudhry et al., 2019; Buzzega et al., 2020a).
89
+ On the one hand, rehearsal is a straightforward solution that
90
+ allows the learner to keep track of the joint distribution of
91
+ all input classes seen so far. On the other hand, the mem-
92
+ ory buffer can only accommodate a limited amount of past
93
+ examples, resulting in overfitting issues (high accuracy on
94
+ the memory buffer, low accuracy on the test set of the orig-
95
+ inal tasks). Recent studies characterize this phenomenon
96
+ arXiv:2301.03345v1 [cs.LG] 9 Jan 2023
97
+
98
+ CaSpeR: Latent Spectral Regularization for Continual Learning
99
+ in terms of abruptly divergent gradients upon introducing
100
+ new classes (Caccia et al., 2022; Boschini et al., 2022b) or
101
+ deteriorating decision surface (Bonicelli et al., 2022). A
102
+ well-known outcome is the accumulation of a predictive
103
+ bias in favor of the currently seen classes (Wu et al., 2019;
104
+ Ahn et al., 2021).
105
+ While these works focus their analysis on the overall pre-
106
+ diction of the model, we instead consider the changes
107
+ occurring in its latent space as tasks progress.
108
+ Specifi-
109
+ cally, we observe that the learner struggles to separate la-
110
+ tent projections of replay examples belonging to different
111
+ classes. This constitutes a weak spot for the learner, mak-
112
+ ing the downstream classifier prone to interference when-
113
+ ever the input distribution changes and representations are
114
+ perturbed. Given the Riemannian nature of the latent space
115
+ of DNNs (Arvanitidis et al., 2018), we naturally revert to
116
+ spectral geometry to model and constrain its evolution.
117
+ Spectral geometry is preferred over other geometric tools
118
+ as it focuses on the latent-space structure without imposing
119
+ constraints on individual coordinates.
120
+ In this work, we introduce a loss term aimed at endow-
121
+ ing the model’s latent space with a cohesive structure. Our
122
+ proposed approach, called Continual Spectral Regularizer
123
+ (CaSpeR), leverages graph-spectral theory to promote the
124
+ generation of well-separated latent embeddings, as illus-
125
+ trated Fig. 1. We show that our proposal can be seam-
126
+ lessly combined with any rehearsal-based CL method to
127
+ improve its classification accuracy and robustness against
128
+ catastrophic forgetting. Moreover, since CaSpeR does not
129
+ rely on the availability of annotations for each example, we
130
+ show that it can be easily applied to semi-supervised sce-
131
+ narios to provide better accuracy and easier convergence.
132
+ In summary, we make the following contributions:
133
+ • We study the interference in rehearsal CL models by
134
+ investigating the geometry of their latent space. To
135
+ the best of our knowledge, this is the first attempt at a
136
+ geometric characterization of catastrophic forgetting;
137
+ • We propose Continual Spectral Regularizer: a simple
138
+ geometrically motivated loss term, inducing the online
139
+ learner to produce well-organized latent embeddings;
140
+ • We validate our proposal by combining it with sev-
141
+ eral SOTA rehearsal-based CL approaches. Our re-
142
+ sults show that CaSpeR is effective both in the Class-
143
+ Incremental and Task-Incremental CL setting (van de
144
+ Ven and Tolias, 2018) by increasing the geometric
145
+ consistency of the latent space;
146
+ • Finally, we show that CaSpeR can be beneficially
147
+ applied also to the challenging Continual Semi-
148
+ Supervised Learning (CSSL) scenario, producing
149
+ higher accuracy and easier convergence.
150
+ 2
151
+ RELATED WORK
152
+ 2.1
153
+ Continual Learning
154
+ Continual Learning approaches are designed to comple-
155
+ ment and assist in-training deep learning models to mini-
156
+ mize the incidence of catastrophic forgetting (McCloskey
157
+ and Cohen, 1989) when learning on a changing input distri-
158
+ bution. This aim can be pursued through different classes
159
+ of solutions (De Lange et al., 2021): architectural meth-
160
+ ods explicitly allocate separate portions of the model to
161
+ separate tasks (Mallya and Lazebnik, 2018; Serra et al.,
162
+ 2018); regularization methods rely on a loss term to pre-
163
+ vent the model from changing either its structure (Kirk-
164
+ patrick et al., 2017; Ritter et al., 2018) or its response (Li
165
+ and Hoiem, 2017; Schwarz et al., 2018); rehearsal meth-
166
+ ods derive from the simple Experience Replay (ER) base-
167
+ line, which exploits a working memory buffer to stash en-
168
+ countered data-points, and later replays them when they
169
+ are no longer available on the input stream (Robins, 1995;
170
+ Chaudhry et al., 2019).
171
+ Due to their versatility and effectiveness, current re-
172
+ search efforts focus primarily on the latter class of ap-
173
+ proaches (Aljundi et al., 2019). Recent trends highlight in-
174
+ terest in improving several aspects of the basic ER formula,
175
+ e.g., by introducing better-designed memory sampling
176
+ strategies (Aljundi et al., 2019; Bang et al., 2021), combin-
177
+ ing replay with other optimization techniques (Lopez-Paz
178
+ and Ranzato, 2017; Riemer et al., 2019; Chaudhry et al.,
179
+ 2021) or providing richer replay signals (Buzzega et al.,
180
+ 2020a; Ebrahimi et al., 2021).
181
+ One of the most prominent challenges for the enhancement
182
+ of rehearsal methods is the imbalance between stream and
183
+ replay data. Due to the reduced amount and variety of the
184
+ latter, a continually learned classifier struggles to produce
185
+ unified predictions and is instead biased towards the last
186
+ learned classes (Hou et al., 2019; Wu et al., 2019).
187
+ To
188
+ counter this effect, researchers have come up with architec-
189
+ tural modifications of the model (Hou et al., 2019; Douil-
190
+ lard et al., 2020), purposed alterations to the learning ob-
191
+ jective of the final classifier (Ahn et al., 2021; Caccia et al.,
192
+ 2022) or the outright removal of it, by applying representa-
193
+ tion learning instead (Cha et al., 2021; Pham et al., 2021).
194
+ Our proposal also aims at reducing the intrinsic bias of re-
195
+ hearsal methods, but does so by enforcing a desirable prop-
196
+ erty on the latent space of the model. This is achieved
197
+ through a geometrically motivated regularization term that
198
+ can be easily combined with any existing replay method.
199
+ 2.2
200
+ Spectral geometry
201
+ Our proposal is built upon the eigendecomposition of the
202
+ Laplace operator on a graph, thus falling within the broader
203
+ area of spectral graph theory. In particular, ours can be
204
+
205
+ Frascaroli, Benaglia, Boschini, Moschella, Fiorini, Rodol`a, Calderara
206
+ τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10
207
+ Task
208
+ 0
209
+ 500
210
+ 1000
211
+ 1500
212
+ 2000
213
+ 2500
214
+ 3000
215
+ 3500
216
+ 4000
217
+ 4500
218
+ Label-Signal Variation (σ)
219
+ iCaRL
220
+ ER-ACE
221
+ X-DER
222
+ + CaSpeR
223
+ + CaSpeR
224
+ + CaSpeR
225
+ X-DER
226
+ X-DER + CaSpeR
227
+ Task: τ6
228
+ τ7
229
+ τ8
230
+ τ9
231
+ (a)
232
+ (b)
233
+ Figure 2: Illustrations of how CL alters a model’s latent space. (a) A quantitative evaluation measured as Label-Signal
234
+ Variation (σ) within the LGG for buffer data points – lower is better; (b) TSNE embedding of the features computed by
235
+ X-DER for buffered examples in later tasks (top). Interference between classes is visibly reduced if CaSpeR is applied
236
+ (bottom). All experiments are carried out on Split CIFAR-100, (a) uses buffer size 500, (b) uses 2000 (best seen in colors).
237
+ regarded as an inverse spectral technique, as we prescribe
238
+ the general behavior of some eigenvalues and seek a graph
239
+ whose Laplacian spectrum matches this behavior.
240
+ In the geometry processing area, such approaches take
241
+ the name of isospectralization techniques and have been
242
+ recently used in diverse applications such as deformable
243
+ 3D shape matching (Cosmo et al., 2019), shape explo-
244
+ ration and reconstruction (Marin et al., 2020), shape mod-
245
+ eling (Moschella et al., 2022) and adversarial attacks on
246
+ shapes (Rampini et al., 2021). Differently from these ap-
247
+ proaches, we work on a single graph (as opposed to pairs
248
+ of 3D meshes) and our formulation does not take an input
249
+ spectrum as a target to be matched precisely. Instead, we
250
+ pose a weaker requirement: the gap between nearby eigen-
251
+ values must be maximized, regardless of its exact value.
252
+ Since our graph represents a discretization of the latent
253
+ space of a CL model, this simple regularization has im-
254
+ portant consequences on its learning process.
255
+ 3
256
+ METHOD
257
+ Our approach exploits tools from spectral geometry to reg-
258
+ ularize the model’s latent space to hinder forgetting. In
259
+ Sec. 3.1 we describe the Continual Learning paradigm; in
260
+ Sec. 3.2 we present a preliminary experiment, highlighting
261
+ the problem we want to address; finally, in Sec. 3.3 we il-
262
+ lustrate our geometric regularizer.
263
+ 3.1
264
+ Continual Learning Setting
265
+ Following the CL criterion, the model Fθ is exposed incre-
266
+ mentally to a stream of tasks τi, where i ∈ {1, 2, ..., T}.
267
+ The parameters θ include both the weights of the feature
268
+ extractor and the classifier, θf and θc respectively. Each
269
+ task consists of a sequence of images and their correspond-
270
+ ing labels τi = {(xi
271
+ 1, yi
272
+ 1), (xi
273
+ 2, yi
274
+ 2), ..., (xi
275
+ n, yi
276
+ n)} and does
277
+ not contain data belonging to classes already seen in previ-
278
+ ous tasks, so Y i ∩ Y j = Ø, with i ̸= j and Y i = {yi
279
+ k}n
280
+ k=1.
281
+ At each step i, the model cannot freely access data from
282
+ previous tasks and is optimized by minimizing a loss func-
283
+ tion over the current set of examples:
284
+ θ(i) = argmin
285
+ θ
286
+ ℓstream = argmin
287
+ θ
288
+ n
289
+
290
+ j=1
291
+
292
+
293
+ Fθ(xi
294
+ j), yi
295
+ j
296
+
297
+ ,
298
+ (1)
299
+ where the parameters are initialized with the ones obtained
300
+ after training on the previous task θ(i−1). If the model
301
+ does not include mechanisms to prevent forgetting, the ac-
302
+ curacy on all previous tasks will collapse. Rehearsal-based
303
+ CL methods preserve a portion of examples from previous
304
+ tasks and store them in a buffer B, with fixed size m. This
305
+ data is then used by the model in conjunction with a spe-
306
+ cific loss function ℓb to hamper catastrophic forgetting:
307
+ θ(i) = argmin
308
+ θ
309
+ ℓstream + ℓb.
310
+ (2)
311
+ For instance, Experience Replay (ER) simply employs a
312
+ cross-entropy loss over a batch of examples from B:
313
+ ℓer ≜ CrossEntropy
314
+
315
+ Fθ(xb), yb�
316
+ .
317
+ (3)
318
+ There exist different strategies for sampling the task data-
319
+ points to fill the buffer. These will be explained in Sec. 4,
320
+ along with detail on the ℓb employed by each baseline.
321
+ 3.2
322
+ Analysis of changing Latent Space Geometry
323
+ We are particularly interested in how the latent space
324
+ changes in response to the introduction of a novel task
325
+ on the input stream.
326
+ For this reason, we compute the
327
+ graph G over the latent-space projection of the replay ex-
328
+ amples gathered by the CL model after training on τi
329
+ (i ∈ {2, ...T})1. In order to measure the sparsity of the
330
+ 1Please refer to Sec. 3.3 for a detailed description of this pro-
331
+ cedure.
332
+
333
+ CaSpeR: Latent Spectral Regularization for Continual Learning
334
+ Algorithm 1 CaSpeR Loss Computation
335
+ Input Memory buffer B of saved samples
336
+ 1: xb ← BalancedSampling(B)
337
+ 2: zb ← Fθf (xb)
338
+ 3: A ← k-NN(zb)
339
+ 4: D ← diag(�b
340
+ i a1,i, �b
341
+ i a2,i, ..., �b
342
+ i ab,i)
343
+ 5: L ← I − D−1/2AD−1/2
344
+ ▷ Eq. 5
345
+ 6: λ ← Eigenvalues(L)
346
+ 7: ℓCaSpeR ← −λg+1 + �g
347
+ j=1 λj
348
+ ▷ Eq. 6
349
+ Output ℓCaSpeR
350
+ latent space w.r.t. classes representations, we compute the
351
+ Label-Signal Variation σ (Lassance et al., 2021) on the ad-
352
+ jacency matrix A ∈ Rm×m of G:
353
+ σ ≜
354
+ m
355
+
356
+ i=1
357
+ m
358
+
359
+ j=1
360
+ 1yb
361
+ i =yb
362
+ jai,j ,
363
+ (4)
364
+ where 1· is the indicator function. In Fig. 2a, we evaluate
365
+ several SOTA rehearsal CL methods and show they exhibit
366
+ a steadily growing σ, which indicates that examples from
367
+ distinct classes are increasingly entangled in later tasks.
368
+ This effect can also be observed qualitatively by consider-
369
+ ing a TSNE embedding of the points in B (shown in Fig. 2b
370
+ for X-DER), which suggests that the distances between ex-
371
+ amples from different classes are reduced in later tasks. We
372
+ remark that both evaluations improve when our proposed
373
+ regularizer is applied on top of the evaluated methods.
374
+ 3.3
375
+ CaSpeR: Continual Spectral Regularizer
376
+ Motivation. Our method builds upon the fact that the la-
377
+ tent spaces of neural models bear a structure informative of
378
+ the data space they are trained on (Shao et al., 2018). This
379
+ structure can be enforced through loss regularizers; e.g.,
380
+ in (Cosmo et al., 2020), a minimum-distortion criterion is
381
+ applied on the latent space of a VAE for a shape genera-
382
+ tion task. We follow a similar line of thought and propose
383
+ adopting a geometric (namely, spectral-geometric) term to
384
+ regularize the latent representations of a CL model.
385
+ Our regularizer is based on the graph-theoretic formulation
386
+ of clustering, where we seek to partition the vertices of G
387
+ into well-separated subgraphs with high internal connec-
388
+ tivity. A body of results from spectral graph theory, dating
389
+ back at least to (Cheeger, 1969; Sinclair and Jerrum, 1989;
390
+ Shi and Malik, 2000), explain the gap occurring between
391
+ neighboring Laplacian eigenvalues as a quantitative mea-
392
+ sure of graph partitioning. Our proposal, called Continual
393
+ Spectral Regularizer (CaSpeR), draws on these results, but
394
+ turns the forward problem of computing the optimal parti-
395
+ tioning of a given graph, into the inverse problem of seek-
396
+ ing a graph with the desired partitioning.
397
+ Building the LGG. We take the examples in B and for-
398
+ ward them through the network; their features are used to
399
+ build a k-NN graph G; following (Lassance et al., 2021),
400
+ we refer to it as the latent geometry graph (LGG).
401
+ Spectral Regularizer. Let us denote by A the adjacency
402
+ matrix of G, we calculate its degree matrix D and we com-
403
+ pute its normalized Laplacian as:
404
+ L = I − D−1/2AD−1/2 ,
405
+ (5)
406
+ where I is the identity matrix. Finally, we compute the
407
+ eigenvalues λ of L and sort them by ascending order. Let
408
+ g be the number of different classes within the buffer, we
409
+ calculate our regularizing loss as:
410
+ ℓCaSpeR ≜ −λg+1 +
411
+ g
412
+
413
+ j=1
414
+ λj .
415
+ (6)
416
+ The proposed loss term is weighted through the hyperpa-
417
+ rameter ρ and added to the stream classification loss. Over-
418
+ all, our model optimizes the following objective:
419
+ argmin
420
+ θ
421
+ ℓstream + ℓb + ρ ℓCaSpeR .
422
+ (7)
423
+ Through Eq. 6, we increase the eigengap λg+1 − λg while
424
+ minimizing the first g eigenvalues – the intuition being
425
+ that the number of eigenvalues close to zero corresponds
426
+ to the number of loosely connected partitions within the
427
+ graph (Lee et al., 2014). Therefore, our loss indirectly en-
428
+ courages the points in the buffer to be clustered without
429
+ strict supervision. We refer the reader to Algorithm 1 for a
430
+ step-by-step summary of the outlined procedure.
431
+ Efficient Batch Operation. While seemingly straightfor-
432
+ ward, the operation of CaSpeR entails the cumbersome task
433
+ of constructing the entire LGG G at each forward step. In-
434
+ deed, accurately mapping the model’s ever-changing latent
435
+ space requires processing all available replay examples in
436
+ the buffer B, which is typically orders of magnitude larger
437
+ than a batch of examples on the input stream.
438
+ To avoid a slow training procedure with high memory
439
+ requirements, we propose an efficient approximation of
440
+ our initial objective. Instead of operating on G directly,
441
+ we sample a randomly chosen sub-graph Gp ⊂ G span-
442
+ ning only p out of the g classes represented in the mem-
443
+ ory buffer. As Gp still includes a conspicuous amount of
444
+ nodes, we resort to an additional sub-sampling and extract
445
+ Gt
446
+ p ⊂ Gp, a smaller graph with t exemplars for each class.
447
+ By repeating these random samplings in each forward step,
448
+ we optimize a Monte Carlo approximation of Eq. 6:
449
+ ℓ∗
450
+ CaSpeR ≜
451
+ E
452
+ Gp⊂G
453
+
454
+ E
455
+ Gtp ⊂Gp
456
+
457
+ − λ
458
+ Gt
459
+ p
460
+ p+1 +
461
+ p
462
+
463
+ j=1
464
+ λ
465
+ Gt
466
+ p
467
+ j
468
+ ��
469
+ ,
470
+ (8)
471
+ where the λGt
472
+ p denote the eigenvalues of the Laplacian of
473
+ Gt
474
+ p. It must be noted that enforce the eigengap at p, as we
475
+ know by construction that each Gt
476
+ p comprises samples from
477
+ p communities within G.
478
+
479
+ Frascaroli, Benaglia, Boschini, Moschella, Fiorini, Rodol`a, Calderara
480
+ 4
481
+ EVALUATION
482
+ 4.1
483
+ Evaluation protocol
484
+ Settings. To assess the effectiveness of the proposed
485
+ method, we consider both split incremental classification
486
+ protocols formalized in (van de Ven and Tolias, 2018):
487
+ Task-Incremental Learning (Task-IL), where the task infor-
488
+ mation is given during training and evaluation; and Class
489
+ Incremental Learning (Class-IL), where the model learns
490
+ to make predictions in the absence of task information. On
491
+ the one hand, Class-IL is recognized as a more realistic and
492
+ challenging benchmark (Farquhar and Gal, 2018; Aljundi
493
+ et al., 2019); on the other, Task-IL is especially relevant for
494
+ the quantification of forgetting, as it is unaffected by data
495
+ imbalance biases (Wu et al., 2019; Boschini et al., 2022a).
496
+ Benchmarked models. To evaluate the benefit of our
497
+ regularizer, we apply it to the following state-of-the-art
498
+ rehearsal-based methods:
499
+ • Experience
500
+ Replay
501
+ with
502
+ Asymmetric
503
+ Cross-
504
+ Entropy (ER-ACE) (Caccia et al., 2022): starting
505
+ from classic Experience Replay, the authors obtain a
506
+ significant performance gain by freezing the previous
507
+ task heads of the classifier while computing the loss
508
+ on the streaming data;
509
+ • Incremental Classifier and Representation Learn-
510
+ ing (iCaRL) (Rebuffi et al., 2017):
511
+ this method
512
+ seeks to learn the best representation of data that
513
+ fits a nearest-neighbor classifier w.r.t. class prototypes
514
+ stored in the buffer;
515
+ • Dark Experience Replay (DER++) (Buzzega et al.,
516
+ 2020a): another variant of ER, which combines the
517
+ standard classification replay with a distillation loss;
518
+ • eXtended-DER (X-DER) (Boschini et al., 2022a):
519
+ a method which improves DER++ by addressing its
520
+ shortcomings and focusing on organically accommo-
521
+ dating future knowledge2;
522
+ • Pooled
523
+ Outputs
524
+ Distillation
525
+ Network
526
+ (POD-
527
+ Net) (Douillard et al., 2020):
528
+ the authors extend
529
+ iCarl’s classification method:
530
+ their model learns
531
+ multiple representations for each class and adopts two
532
+ additional distillation losses.
533
+ We remark that these approaches adopt different strate-
534
+ gies for the construction of their memory buffer: X-DER,
535
+ iCaRL and PODNet use a class-balanced offline sam-
536
+ pling strategy; ER-ACE and DER++ use reservoir sam-
537
+ pling (Vitter, 1985), which might lead to uneven class rep-
538
+ resentation within the stored examples. Since CaSpeR re-
539
+ lies on the availability of a minimum amount of samples
540
+ 2Specifically, we use the more effective baseline based on a
541
+ Regular Polytope Classifier (Pernici et al., 2021)
542
+ per class, we adjust the latter sampling strategy to enforce
543
+ equity, as done in (Buzzega et al., 2020b).
544
+ To have a better understanding of the results, we include the
545
+ performance of the upper bound (Joint), obtained by train-
546
+ ing on all classes together in a standard offline manner, and
547
+ the lower bound (Finetune) obtained by training on each
548
+ task sequentially without any method to prevent forgetting.
549
+ Datasets. We conduct all the experiments on two com-
550
+ monly used image datasets, splitting the classes from the
551
+ main dataset into separate disjoint sets used to sequentially
552
+ train the evaluated models.
553
+ • Split CIFAR-100: CIFAR100 (Krizhevsky et al.,
554
+ 2009) contains 100 classes with 500 images per class,
555
+ where each image has a dimension of 32 × 32. We
556
+ split the dataset into 10 subsets of 10 classes each;
557
+ • Split miniImageNet: miniImageNet (Vinyals et al.,
558
+ 2016) is a subset of the ImageNet dataset where each
559
+ image is resized to 84 × 84. We use the 20 tasks per 5
560
+ classes protocol.
561
+ Metrics. We mainly quantify the performance of the com-
562
+ pared models in terms of Final Average Accuracy ( ¯AF ),
563
+ i.e., the average classification accuracy of the model at the
564
+ end of the overall training process:
565
+ ¯AF ≜ 1
566
+ T
567
+ T
568
+
569
+ i=1
570
+ aT
571
+ i ,
572
+ (9)
573
+ where aj
574
+ i is the accuracy of the model at the end of task
575
+ j calculated on the test set of task τi and reported in per-
576
+ centage value. To quantify the severity of the performance
577
+ degradation that occurs as a result of catastrophic forget-
578
+ ting, we propose a novel measure called Final Average Ad-
579
+ justed Forgetting ( ¯F ∗
580
+ F ), which we define as follows:
581
+ ¯F ∗
582
+ F ≜
583
+ 1
584
+ T − 1
585
+ T −1
586
+
587
+ i=1
588
+ a∗
589
+ i − aT
590
+ i
591
+ a∗
592
+ i
593
+ ,
594
+ where a∗
595
+ i =
596
+ max
597
+ t∈{i,...,T −1} at
598
+ i, ∀i ∈ {1, . . . , T − 1}.
599
+ (10)
600
+ ¯F ∗
601
+ F is typically bounded in [0, 100]3, where the upper
602
+ bound is given by a method that retains no accuracy on pre-
603
+ vious tasks (as is the case for the Finetune baseline). This
604
+ measure derives from the widely employed Forgetting met-
605
+ ric (Chaudhry et al., 2018), which tends to be more forgiv-
606
+ ing of those methods that do not properly learn the current
607
+ task (Buzzega et al., 2020a).
608
+ Hyperparameter selection. To ensure a fair evaluation,
609
+ we train all the models with the same batch size and the
610
+ 3 ¯F ∗
611
+ F might assume a negative value if the learner improves its
612
+ accuracy on past tasks; this generally indicates a pathological case
613
+ where the model did not fully exploit the input stream of data.
614
+
615
+ CaSpeR: Latent Spectral Regularization for Continual Learning
616
+ Table 1: Class-IL results – ¯AF ( ¯F ∗
617
+ F ) – for SOTA rehearsal CL methods, with and without CaSpeR.
618
+ Class-IL
619
+ Split CIFAR-100
620
+ Split miniImageNet
621
+ Joint (UB)
622
+ 63.11±2.07 (−)
623
+ 52.76±1.10 (−)
624
+ Finetune (LB)
625
+ 8.38 (100.00)
626
+ 3.87 (100.00)
627
+ Buffer Size
628
+ 500
629
+ 2000
630
+ 2000
631
+ 5000
632
+ ER-ACE
633
+ 35.63 (45.03)
634
+ 46.63 (28.78)
635
+ 20.31 (39.06)
636
+ 26.17 (28.99)
637
+ + CaSpeR
638
+ 36.70+1.07 (46.61)
639
+ 47.74+1.11 (27.17)
640
+ 23.36+3.05 (47.90)
641
+ 27.89+1.72 (28.36)
642
+ iCaRL
643
+ 39.94 (32.24)
644
+ 40.95 (30.18)
645
+ 19.69 (36.89)
646
+ 20.78 (30.74)
647
+ + CaSpeR
648
+ 40.50+0.56 (32.38)
649
+ 41.77+0.82 (28.81)
650
+ 20.31+0.62 (36.26)
651
+ 21.45+0.67 (37.26)
652
+ DER++
653
+ 26.34 (66.13)
654
+ 45.68 (33.06)
655
+ 21.23 (71.76)
656
+ 28.94 (58.00)
657
+ + CaSpeR
658
+ 31.66+5.32 (52.29)
659
+ 46.34+0.66 (30.08)
660
+ 21.48+0.25 (73.56)
661
+ 29.17+0.23 (57.69)
662
+ X-DER
663
+ 35.89 (44.54)
664
+ 46.37 (23.57)
665
+ 24.80 (44.69)
666
+ 31.00 (30.12)
667
+ + CaSpeR
668
+ 38.23+2.34 (43.90)
669
+ 50.39+4.02 (17.65)
670
+ 25.73+0.93 (42.93)
671
+ 31.39+0.39 (28.71)
672
+ PODNet
673
+ 29.61 (55.06)
674
+ 32.12 (46.73)
675
+ 16.82 (52.32)
676
+ 20.81 (46.50)
677
+ + CaSpeR
678
+ 31.29+1.68 (50.02)
679
+ 34.51+2.39 (40.66)
680
+ 17.14+0.32 (50.33)
681
+ 21.78+0.97 (46.74)
682
+ same number of epochs. Moreover, we employ the same
683
+ backbone for all experiments on the same dataset.
684
+ In
685
+ particular, we use Resnet18 (He et al., 2016) for Split
686
+ CIFAR-100 and EfficientNet-B2 (Tan and Le, 2019) for
687
+ Split miniImageNet. The best hyperparameters for each
688
+ model-dataset configuration are found via grid search.
689
+ We refer the reader to the Appendix for additional details.
690
+ 4.2
691
+ Experimental results
692
+ We report a breakdown of the results of our evaluation in
693
+ Tab. 1 (Class-IL) and 2 (Task-IL). At first glance, CaSpeR
694
+ leads to a steady improvement in ¯AF across all evaluated
695
+ methods and settings.
696
+ However, some interesting addi-
697
+ tional trends emerge upon closer examination.
698
+ Firstly, we notice that the improvement in accuracy does
699
+ not grow with the memory buffer size.
700
+ This is in con-
701
+ trast with the typical behaviour of replay regularization
702
+ terms (Cha et al., 2021; Chaudhry et al., 2019). We believe
703
+ such a tendency to be the result of our distinctively geo-
704
+ metric approach: as spectral properties of graphs are un-
705
+ derstood to be robust w.r.t. to coarsening (Jin et al., 2020),
706
+ CaSpeR does not need a large pool of data to be effective.
707
+ Remarkably, the majority of the evaluated methods achieve
708
+ comparable ¯AF gains for both CL settings on Split CIFAR-
709
+ 100; this suggests that our method allows the model to bet-
710
+ ter learn and consolidate each task individually (Task-IL)
711
+ while providing balanced responses for both stream and
712
+ replay classes (Class-IL). This second tendency is further
713
+ confirmed by the conspicuous reduction in Class-IL ¯F ∗
714
+ F ,
715
+ which confirms that CaSpeR counteracts the learning bias,
716
+ whereby the learner predominantly focuses on the classes
717
+ on the input stream.
718
+ While still improving over the baselines, we see a reduced
719
+ ¯AF improvement in the Split miniImageNet benchmark.
720
+ The mixed ¯F ∗
721
+ F results in Class-IL might suggest that our
722
+ approach is not particularly beneficial when it comes to
723
+ comparing classes learned at different tasks. We suspect
724
+ this might be a byproduct of our approximated batch op-
725
+ eration, which only considers a few classes at any given
726
+ training step and therefore struggles when dealing with the
727
+ increased amount of tasks in this dataset.
728
+ Even so, the
729
+ Task-IL values for ¯F ∗
730
+ F are favorably reduced, meaning that
731
+ CaSpeR lets the model learn individual tasks more accu-
732
+ rately so that it aptly recovers its predictive capability when
733
+ cued with the correct task.
734
+ As a final note, PODNet appears to be an outlier; with
735
+ lower ¯AF and higher ¯F ∗
736
+ F with respect to the other evalu-
737
+ ated approaches, it exhibits a marked tendency to overfit
738
+ current training data. Nevertheless, CaSpeR is still capable
739
+ of impacting its training positively, delivering a stabilizing
740
+ effect that is especially relevant when the memory buffer
741
+ is large. This suggests that the additional clustering facil-
742
+ itates the model’s convergence, which aligns with the ob-
743
+ servations we make in Sec. 5.3, where we exploit CaSpeR
744
+ with limited supervision.
745
+ 5
746
+ MODEL ANALYSIS
747
+ 5.1
748
+ k-NN classification
749
+ To further verify whether CaSpeR successfully separates
750
+ the latent embeddings for examples of different classes, we
751
+ evaluate the accuracy of k-NN-classifiers (Wu et al., 2018)
752
+ trained on top of the latent representations produced by the
753
+ methods of Sec. 4. In Tab. 3, we report the results for 5-NN
754
+ and 11-NN classifiers using the final buffer B as a support
755
+ set. We observe that CaSpeR also shows its steady bene-
756
+ ficial effect on top of this classification approach, further
757
+ confirming that it is instrumental in disentangling the rep-
758
+ resentations of different classes.
759
+
760
+ Frascaroli, Benaglia, Boschini, Moschella, Fiorini, Rodol`a, Calderara
761
+ Table 2: Task-IL results – ¯AF ( ¯F ∗
762
+ F ) – for SOTA rehearsal CL methods, with and without CaSpeR.
763
+ Task-IL
764
+ Split CIFAR-100
765
+ Split miniImageNet
766
+ Joint (UB)
767
+ 88.81±0.84 (−)
768
+ 87.39±0.46 (−)
769
+ Finetune (LB)
770
+ 30.10 (62.84)
771
+ 24.05 (67.37)
772
+ Buffer Size
773
+ 500
774
+ 2000
775
+ 2000
776
+ 5000
777
+ ER-ACE
778
+ 73.86 (10.73)
779
+ 80.69 (4.02)
780
+ 69.34 (12.99)
781
+ 73.38 (8.59)
782
+ + CaSpeR
783
+ 75.14+1.28 (4.91)
784
+ 81.51+0.82 (4.38)
785
+ 69.59+0.25 (13.05)
786
+ 73.41+0.03 (8.53)
787
+ iCaRL
788
+ 78.38 (5.38)
789
+ 78.47 (3.98)
790
+ 70.35 (3.92)
791
+ 70.99 (2.82)
792
+ + CaSpeR
793
+ 79.09+0.71 (4.46)
794
+ 79.43+0.96 (3.41)
795
+ 71.19+0.84 (3.67)
796
+ 71.93+0.94 (3.65)
797
+ DER++
798
+ 68.55 (12.24)
799
+ 79.60 (3.96)
800
+ 69.15 (13.22)
801
+ 73.81 (8.59)
802
+ + CaSpeR
803
+ 72.40+3.85 (9.28)
804
+ 80.78+1.18 (3.04)
805
+ 70.07+0.92 (12.47)
806
+ 74.32+0.51 (7.91)
807
+ X-DER
808
+ 77.28 (2.43)
809
+ 82.55 (0.92)
810
+ 74.32 (4.95)
811
+ 77.70 (3.71)
812
+ + CaSpeR
813
+ 78.26+0.98 (5.47)
814
+ 83.77+1.22 (0.27)
815
+ 75.99+1.67 (3.88)
816
+ 78.71+1.01 (2.32)
817
+ PODNet
818
+ 68.37 (18.76)
819
+ 67.63 (18.16)
820
+ 59.60 (14.00)
821
+ 64.15 (10.71)
822
+ + CaSpeR
823
+ 69.07+0.70 (18.85)
824
+ 71.90+4.27 (11.32)
825
+ 60.06+0.46 (10.61)
826
+ 69.24+5.09 (8.18)
827
+ ODE.85
828
+ ER-ACE
829
+ ODE.75
830
+ ER-ACE + CaSpeR
831
+ ODE.83
832
+ X-DER
833
+ ODE.64
834
+ X-DER +CaSpeR
835
+ ODE.81
836
+ iCaRL
837
+ ODE.79
838
+ iCaRL + CaSpeR
839
+ 0.
840
+ .2
841
+ .4
842
+ .6
843
+ .8
844
+ 1.
845
+ Fn. Map Magnitude (C|·|)
846
+ Figure 3: For several rehearsal methods with and without CaSpeR, the functional map magnitude matrices C|·| between
847
+ the LGGs G5 and G10, computed on the test set of τ1, ..., τ5 after training up to τ5 and τ10 respectively (Split CIFAR-100
848
+ - buffer size 2000). The closer C|·| to the diagonal, the less geometric distortion between G5 and G10. We report the first
849
+ 25 rows and columns of C|·|, focusing on smooth (low-frequency) correspondences (Ovsjanikov et al., 2012), and apply a
850
+ C|·| > 0.15 threshold to increase clarity.
851
+ Table 3: Class-IL ¯AF values of k-NN classifiers trained
852
+ on top of the latent representations of replay data points.
853
+ Results on Split CIFAR-100 for Buffer Size 2000.
854
+ k-NN Clsf
855
+ w/o CaSpeR
856
+ w/ CaSpeR
857
+ (Class-IL)
858
+ 5-NN
859
+ 11-NN
860
+ 5-NN
861
+ 11-NN
862
+ ER-ACE
863
+ 43.73
864
+ 44.41
865
+ 46.75+3.02
866
+ 47.29+2.88
867
+ iCaRL
868
+ 34.86
869
+ 37.78
870
+ 36.00+1.14
871
+ 38.33+0.55
872
+ DER++
873
+ 44.21
874
+ 44.24
875
+ 45.75+1.54
876
+ 46.00+1.76
877
+ X-DER
878
+ 43.44
879
+ 44.62
880
+ 49.47+6.03
881
+ 49.49+4.87
882
+ PODNet
883
+ 21.11
884
+ 22.60
885
+ 27.88+6.77
886
+ 28.94+6.34
887
+ 5.2
888
+ Latent Space Consistency
889
+ To provide further insights into the dynamics of the latent
890
+ space on the evaluated models, we study the emergence of
891
+ distortions in the LGG. Given a continual learning model,
892
+ we are interested in a comparison between G5 and G10, the
893
+ LGGs produced after training on τ5 and τ10 respectively,
894
+ computed on the test set of tasks τ1, ..., τ5.
895
+ The comparison between G5 and G10 can be better under-
896
+ stood in terms of the node-to-node bijection T : G5 →
897
+ G10, which can be represented as a functional map matrix
898
+ C (Ovsjanikov et al., 2012) with elements
899
+ ci,j ≜ ⟨φG5
900
+ i , φG10
901
+ j
902
+ ◦ T⟩ ,
903
+ (11)
904
+ where φG5
905
+ i
906
+ is the i-th Laplacian eigenvector of G5 (simi-
907
+ larly for G10), and ◦ denotes the standard function compo-
908
+ sition. In other words, the matrix C encodes the similarity
909
+ between the Laplacian eigenspaces of the two graphs. In
910
+ an ideal scenario where the latent space is subject to no
911
+ modification between τ5 and τ10 w.r.t. previously learned
912
+ classes, T is an isomorphism and C is a diagonal ma-
913
+ trix (Ovsjanikov et al., 2012). In a practical scenario, T
914
+ is only approximately isomorphic and, the better the ap-
915
+ proximation, the more C is sparse and funnel-shaped.
916
+ In Fig. 3, we report C|·| ≜ abs(C) for ER-ACE, DER++,
917
+ iCaRL and X-DER on Split CIFAR-100, both with and
918
+ without CaSpeR. It can be observed that the methods that
919
+ benefit the most from our proposal (ER-ACE, X-DER) dis-
920
+ play a tighter functional map matrix. This indicates that
921
+
922
+ CaSpeR: Latent Spectral Regularization for Continual Learning
923
+ the partitioning behavior promoted by CaSpeR leads to re-
924
+ duced interference, as the portion of the LGG that refers
925
+ to previously learned classes remains geometrically con-
926
+ sistent in later tasks. On the other hand, in line with the
927
+ considerations made in Sec. 4.2, the improvement is only
928
+ marginal for iCaRL. Its different training regime, which is
929
+ less discriminative in nature, seemingly induces a limited
930
+ amount of change on the structure of the latent space.
931
+ To quantify the similarity of each C|·| matrix to the iden-
932
+ tity, we also report its off-diagonal energy, computed as fol-
933
+ lows (Rodol`a et al., 2017):
934
+ ODE ≜
935
+ 1
936
+ ||C||2
937
+ F
938
+
939
+ i
940
+
941
+ j̸=i
942
+ c2
943
+ i,j,
944
+ (12)
945
+ where || · ||F indicates the Frobenius norm. CaSpeR pro-
946
+ duces a clear decrease in ODE, signifying an increase in
947
+ the diagonality of the functional matrices.
948
+ 5.3
949
+ Continual Semi-supervised Learning
950
+ In Sec. 4.2, we shed light on some interesting properties
951
+ of CaSpeR, i.e., its ability to operate well in a low-data
952
+ regime and its role in facilitating the convergence of under-
953
+ performing baselines. Both issues naturally emerge in the
954
+ Continual Semi-Supervised Learning (CSSL) setting (Bos-
955
+ chini et al., 2022b), a recently-proposed CL experimental
956
+ benchmark, where only a fraction of the examples on the
957
+ input stream are associated with an annotation.
958
+ In a supervised CL setting, we apply CaSpeR to buffer data
959
+ points, thus encouraging the separation of all previously en-
960
+ countered classes in the latent space. However, we remark
961
+ that our proposed approach does not have strict supervision
962
+ requirements, as it does not need the labels attached to each
963
+ node in the LGG, but rather just the total amount of classes
964
+ g that must be clustered (Eq. 6).
965
+ In Tab. 4, we report the results of an experiment on Split
966
+ CIFAR-100 in the CSSL setting with only 0.8% or 5%
967
+ annotated labels.
968
+ Typical CL methods operating in this
969
+ scenario are forced to discard a consistent amount of data
970
+ (ER-ACE), leading to majorly reduced performance w.r.t.
971
+ the fully-supervised case, or to use the in-training model to
972
+ annotate unlabeled samples (pseudo-labeling, PsER-ACE),
973
+ but might backfire if the provided supervision does not suf-
974
+ fice for the learner to produce reliable responses (as is the
975
+ case with 0.8% labels).
976
+ To allow for the exploitation of unlabeled exemplars, we
977
+ also apply CaSpeR on data points from the input stream,
978
+ by taking k equal to the number of classes in a given task.
979
+ We show that this leads to an overall improvement of the
980
+ tested models and – particularly – counteracts the failure
981
+ case where PseudoER-ACE is applied on top of a few an-
982
+ notated data. This indicates that CaSpeR manages to limit
983
+ the impact of the noisy labels produced by pseudo-labeling.
984
+ Table 4: Class-IL ¯AF values on Split CIFAR-100, with re-
985
+ duced amount of annotations (CSSL). Buffer size 2000. †
986
+ indicates results taken from (Boschini et al., 2022b).
987
+ CSSL
988
+ w/o CaSpeR
989
+ w/ CaSpeR
990
+ Labels %
991
+ 0.8%
992
+ 5%
993
+ 0.8%
994
+ 5%
995
+ ER-ACE
996
+ 8.46
997
+ 11.87
998
+ 8.55+0.09
999
+ 14.16+2.29
1000
+ PsER-ACE
1001
+ 2.31
1002
+ 16.35
1003
+ 9.69+7.38
1004
+ 17.42+1.07
1005
+ CCIC
1006
+ 11.5†
1007
+ 19.5†
1008
+ 12.22+0.72
1009
+ 20.32+0.82
1010
+ Finally, we show that CaSpeR can be easily applied to
1011
+ CCIC (Boschini et al., 2022b) – a CSSL method that lever-
1012
+ ages both labeled and unlabeled data – to improve its ¯AF .
1013
+ 6
1014
+ CONCLUSION
1015
+ In this work, we investigate how the latent space of a CL
1016
+ model changes throughout training. We find that latent-
1017
+ space projections of past exemplars are relentlessly drawn
1018
+ closer together, possibly interfering and paving the way for
1019
+ catastrophic forgetting.
1020
+ Drawing on spectral graph theory, we propose Continual
1021
+ Spectral Regularizer (CaSpeR): a regularizer that encour-
1022
+ ages the clustering of data points in the latent space. We
1023
+ show that our approach can be easily combined with any
1024
+ rehearsal-based CL approach, improving the performance
1025
+ of SOTA methods on standard benchmarks.
1026
+ Furthermore, we analyze the effects of CaSpeR showing
1027
+ that the regularized latent space correctly separates exam-
1028
+ ples from different classes and is subject to fewer distor-
1029
+ tions. Finally, we verify that our proposed approach is also
1030
+ applicable with partial supervision, improving the accuracy
1031
+ of Continual Semi-Supervised Learning baselines and fa-
1032
+ cilitating their convergence in a low-label regime.
1033
+ Limitations & Societal Impact
1034
+ While our proposed regularizer can moderately operate
1035
+ without full supervision, we remark that it still depends on
1036
+ the availability of supervised training signals. The appli-
1037
+ cability of geometric-based constraints to unsupervised or
1038
+ self-supervised CL scenarios is still a work in progress.
1039
+ Due to the abstract nature of our setting, we do not believe
1040
+ that this work can have a detrimental impact on society.
1041
+ However, given the necessity for the proposed regularizer
1042
+ to store and re-use previously learned training samples, we
1043
+ remark that its applicability might be limited if privacy con-
1044
+ straints are in place.
1045
+
1046
+ Frascaroli, Benaglia, Boschini, Moschella, Fiorini, Rodol`a, Calderara
1047
+ References
1048
+ H. Ahn, J. Kwak, S. Lim, H. Bang, H. Kim, and T. Moon.
1049
+ SS-IL: Separated Softmax for Incremental Learning.
1050
+ In IEEE International Conference on Computer Vision,
1051
+ 2021.
1052
+ R. Aljundi, M. Lin, B. Goujaud, and Y. Bengio. Gradient
1053
+ Based Sample Selection for Online Continual Learning.
1054
+ In Advances in Neural Information Processing Systems,
1055
+ 2019.
1056
+ G. Arvanitidis, L. K. Hansen, and S. Hauberg. Latent space
1057
+ oddity: on the curvature of deep generative models. In
1058
+ International Conference on Learning Representations
1059
+ Workshop, 2018.
1060
+ J. Bang, H. Kim, Y. Yoo, J.-W. Ha, and J. Choi. Rain-
1061
+ bow memory: Continual learning with a memory of di-
1062
+ verse samples. In Proceedings of the IEEE conference
1063
+ on Computer Vision and Pattern Recognition, 2021.
1064
+ L. Bonicelli, M. Boschini, A. Porrello, C. Spampinato, and
1065
+ S. Calderara. On the Effectiveness of Lipschitz-Driven
1066
+ Rehearsal in Continual Learning. In Advances in Neural
1067
+ Information Processing Systems, 2022.
1068
+ M. Boschini, L. Bonicelli, P. Buzzega, A. Porrello, and
1069
+ S. Calderara. Class-incremental continual learning into
1070
+ the extended der-verse. IEEE Transactions on Pattern
1071
+ Analysis and Machine Intelligence, 2022a.
1072
+ M. Boschini, P. Buzzega, L. Bonicelli, A. Porrello,
1073
+ and S. Calderara.
1074
+ Continual semi-supervised learning
1075
+ through contrastive interpolation consistency.
1076
+ Pattern
1077
+ Recognition Letters, 2022b.
1078
+ P. Buzzega, M. Boschini, A. Porrello, D. Abati, and
1079
+ S. Calderara.
1080
+ Dark Experience for General Continual
1081
+ Learning: a Strong, Simple Baseline. In Advances in
1082
+ Neural Information Processing Systems, 2020a.
1083
+ P. Buzzega, M. Boschini, A. Porrello, and S. Calderara. Re-
1084
+ thinking Experience Replay: a Bag of Tricks for Contin-
1085
+ ual Learning.
1086
+ In International Conference on Pattern
1087
+ Recognition, 2020b.
1088
+ L. Caccia, R. Aljundi, N. Asadi, T. Tuytelaars, J. Pineau,
1089
+ and E. Belilovsky. New Insights on Reducing Abrupt
1090
+ Representation Change in Online Continual Learning. In
1091
+ International Conference on Learning Representations
1092
+ Workshop, 2022.
1093
+ H. Cha, J. Lee, and J. Shin. Co2l: Contrastive continual
1094
+ learning.
1095
+ In IEEE International Conference on Com-
1096
+ puter Vision, 2021.
1097
+ A. Chaudhry, P. K. Dokania, T. Ajanthan, and P. H. Torr.
1098
+ Riemannian walk for incremental learning: Understand-
1099
+ ing forgetting and intransigence. In Proceedings of the
1100
+ European Conference on Computer Vision, 2018.
1101
+ A. Chaudhry, M. Rohrbach, M. Elhoseiny, T. Ajanthan,
1102
+ P. K. Dokania, P. H. Torr, and M. Ranzato.
1103
+ On tiny
1104
+ episodic memories in continual learning.
1105
+ In Inter-
1106
+ national Conference on Machine Learning Workshop,
1107
+ 2019.
1108
+ A. Chaudhry, A. Gordo, P. Dokania, P. Torr, and D. Lopez-
1109
+ Paz. Using hindsight to anchor past knowledge in con-
1110
+ tinual learning. In Proceedings of the AAAI Conference
1111
+ on Artificial Intelligence, 2021.
1112
+ J. Cheeger. A lower bound for the smallest eigenvalue of
1113
+ the laplacian. In Problems in analysis. Princeton Univer-
1114
+ sity Press, 1969.
1115
+ L. Cosmo, M. Panine, A. Rampini, M. Ovsjanikov, M. M.
1116
+ Bronstein, and E. Rodol`a. Isospectralization, or how to
1117
+ hear shape, style, and correspondence. In Proceedings
1118
+ of the IEEE conference on Computer Vision and Pattern
1119
+ Recognition, 2019.
1120
+ L. Cosmo, A. Norelli, O. Halimi, R. Kimmel, and
1121
+ E. Rodol`a. Limp: Learning latent shape representations
1122
+ with metric preservation priors. In Proceedings of the
1123
+ European Conference on Computer Vision, 2020.
1124
+ M. De Lange, R. Aljundi, M. Masana, S. Parisot, X. Jia,
1125
+ A. Leonardis, G. Slabaugh, and T. Tuytelaars. A contin-
1126
+ ual learning survey: Defying forgetting in classification
1127
+ tasks. IEEE Transactions on Pattern Analysis and Ma-
1128
+ chine Intelligence, 2021.
1129
+ A. Douillard, M. Cord, C. Ollion, T. Robert, and E. Valle.
1130
+ Podnet: Pooled outputs distillation for small-tasks incre-
1131
+ mental learning. In Proceedings of the European Con-
1132
+ ference on Computer Vision, 2020.
1133
+ S. Ebrahimi, S. Petryk, A. Gokul, W. Gan, J. E. Gonza-
1134
+ lez, M. Rohrbach, and T. Darrell. Remembering for the
1135
+ right reasons: Explanations reduce catastrophic forget-
1136
+ ting. Applied AI Letters, 2021.
1137
+ S. Farquhar and Y. Gal. Towards Robust Evaluations of
1138
+ Continual Learning. In International Conference on Ma-
1139
+ chine Learning Workshop, 2018.
1140
+ K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
1141
+ ing for image recognition. In Proceedings of the IEEE
1142
+ conference on Computer Vision and Pattern Recognition,
1143
+ 2016.
1144
+ S. Hou, X. Pan, C. C. Loy, Z. Wang, and D. Lin. Learn-
1145
+ ing a unified classifier incrementally via rebalancing. In
1146
+ Proceedings of the IEEE conference on Computer Vision
1147
+ and Pattern Recognition, 2019.
1148
+ Y. Jin, A. Loukas, and J. JaJa. Graph coarsening with pre-
1149
+ served spectral properties. In International Conference
1150
+ on Artificial Intelligence and Statistics, 2020.
1151
+ J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness,
1152
+ G. Desjardins, A. A. Rusu, K. Milan, J. Quan, T. Ra-
1153
+ malho, A. Grabska-Barwinska, et al. Overcoming catas-
1154
+ trophic forgetting in neural networks. Proceedings of the
1155
+ National Academy of Sciences, 2017.
1156
+
1157
+ CaSpeR: Latent Spectral Regularization for Continual Learning
1158
+ A. Krizhevsky et al. Learning multiple layers of features
1159
+ from tiny images. Technical report, Citeseer, 2009.
1160
+ C. Lassance, V. Gripon, and A. Ortega. Representing deep
1161
+ neural networks latent space geometries with graphs.
1162
+ MDPI Algorithms, 2021.
1163
+ J. R. Lee, S. O. Gharan, and L. Trevisan. Multiway spectral
1164
+ partitioning and higher-order cheeger inequalities. Jour-
1165
+ nal of the ACM, 2014.
1166
+ Z. Li and D. Hoiem. Learning without forgetting. IEEE
1167
+ Transactions on Pattern Analysis and Machine Intelli-
1168
+ gence, 2017.
1169
+ D. Lopez-Paz and M. Ranzato. Gradient episodic memory
1170
+ for continual learning. In Advances in Neural Informa-
1171
+ tion Processing Systems, 2017.
1172
+ A. Mallya and S. Lazebnik. Packnet: Adding multiple tasks
1173
+ to a single network by iterative pruning. In Proceedings
1174
+ of the IEEE conference on Computer Vision and Pattern
1175
+ Recognition, 2018.
1176
+ R. Marin, A. Rampini, U. Castellani, E. Rodol`a, M. Ovs-
1177
+ janikov, and S. Melzi. Instant recovery of shape from
1178
+ spectrum via latent space connections. In V. Struc and
1179
+ F. G. Fern´andez, editors, International Conference on
1180
+ 3D Vision, 2020.
1181
+ M. McCloskey and N. J. Cohen. Catastrophic interference
1182
+ in connectionist networks: The sequential learning prob-
1183
+ lem. Psychology of learning and motivation, 1989.
1184
+ L. Moschella, S. Melzi, L. Cosmo, F. Maggioli, O. Litany,
1185
+ M. Ovsjanikov, L. J. Guibas, and E. Rodol`a. Learning
1186
+ spectral unions of partial deformable 3d shapes. Com-
1187
+ puter Graphics Forum, 2022.
1188
+ M. Ovsjanikov, M. Ben-Chen, J. Solomon, A. Butscher,
1189
+ and L. Guibas. Functional maps: a flexible represen-
1190
+ tation of maps between shapes. ACM Transactions on
1191
+ Graphics (ToG), 2012.
1192
+ G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and
1193
+ S. Wermter. Continual lifelong learning with neural net-
1194
+ works: A review. Neural Networks, 2019.
1195
+ F. Pernici, M. Bruni, C. Baecchi, F. Turchini, and
1196
+ A. Del Bimbo.
1197
+ Class-incremental learning with pre-
1198
+ allocated fixed classifiers. In International Conference
1199
+ on Pattern Recognition, 2021.
1200
+ Q. Pham, C. Liu, and S. Hoi. Dualnet: Continual learn-
1201
+ ing, fast and slow. In Advances in Neural Information
1202
+ Processing Systems, 2021.
1203
+ A. Rampini, F. Pestarini, L. Cosmo, S. Melzi, and
1204
+ E. Rodol`a. Universal spectral adversarial attacks for de-
1205
+ formable shapes. In Proceedings of the IEEE conference
1206
+ on Computer Vision and Pattern Recognition, 2021.
1207
+ S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert.
1208
+ iCaRL: Incremental classifier and representation learn-
1209
+ ing. In Proceedings of the IEEE conference on Computer
1210
+ Vision and Pattern Recognition, 2017.
1211
+ M. Riemer, I. Cases, R. Ajemian, M. Liu, I. Rish, Y. Tu,
1212
+ and G. Tesauro. Learning to Learn without Forgetting by
1213
+ Maximizing Transfer and Minimizing Interference. In
1214
+ International Conference on Learning Representations
1215
+ Workshop, 2019.
1216
+ H. Ritter, A. Botev, and D. Barber.
1217
+ Online structured
1218
+ laplace approximations for overcoming catastrophic for-
1219
+ getting. Advances in Neural Information Processing Sys-
1220
+ tems, 2018.
1221
+ A. Robins. Catastrophic forgetting, rehearsal and pseudore-
1222
+ hearsal. Connection Science, 1995.
1223
+ E. Rodol`a, L. Cosmo, M. M. Bronstein, A. Torsello, and
1224
+ D. Cremers. Partial functional correspondence. In Com-
1225
+ puter Graphics Forum, 2017.
1226
+ J. Schwarz, W. Czarnecki, J. Luketina, A. Grabska-
1227
+ Barwinska, Y. W. Teh, R. Pascanu, and R. Hadsell.
1228
+ Progress & compress: A scalable framework for con-
1229
+ tinual learning. In International Conference on Machine
1230
+ Learning, 2018.
1231
+ J. Serra, D. Suris, M. Miron, and A. Karatzoglou. Over-
1232
+ coming Catastrophic Forgetting with Hard Attention to
1233
+ the Task.
1234
+ In International Conference on Machine
1235
+ Learning, 2018.
1236
+ H. Shao, A. Kumar, and P. T. Fletcher. The riemannian ge-
1237
+ ometry of deep generative models. In IEEE International
1238
+ Conference on Computer Vision and Pattern Recognition
1239
+ Workshops, 2018.
1240
+ J. Shi and J. Malik. Normalized cuts and image segmen-
1241
+ tation. IEEE Transactions on Pattern Analysis and Ma-
1242
+ chine Intelligence, 2000.
1243
+ A. Sinclair and M. Jerrum. Approximate counting, uniform
1244
+ generation and rapidly mixing markov chains. Informa-
1245
+ tion and Computation, 1989.
1246
+ M. Tan and Q. Le. Efficientnet: Rethinking model scal-
1247
+ ing for convolutional neural networks. In International
1248
+ Conference on Machine Learning, 2019.
1249
+ G. M. van de Ven and A. S. Tolias. Three continual learn-
1250
+ ing scenarios. In Neural Information Processing Systems
1251
+ Workshops, 2018.
1252
+ O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al.
1253
+ Matching networks for one shot learning. In Advances
1254
+ in Neural Information Processing Systems, 2016.
1255
+ J. S. Vitter. Random sampling with a reservoir. ACM Trans-
1256
+ actions on Mathematical Software, 1985.
1257
+ Y. Wu, Y. Chen, L. Wang, Y. Ye, Z. Liu, Y. Guo, and
1258
+ Y. Fu. Large scale incremental learning. In Proceedings
1259
+ of the IEEE conference on Computer Vision and Pattern
1260
+ Recognition, 2019.
1261
+ Z. Wu, Y. Xiong, S. X. Yu, and D. Lin. Unsupervised fea-
1262
+ ture learning via non-parametric instance discrimination.
1263
+ In Proceedings of the IEEE conference on Computer Vi-
1264
+ sion and Pattern Recognition, 2018.
1265
+
FNE1T4oBgHgl3EQfqgXp/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4ae6261c2d2e4313aa6e509a4fcedb8e9f8d3f05bdc67e4d5cc4101d39751e9
3
+ size 242159
FdAyT4oBgHgl3EQfe_hY/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02859d5ddac7b6889c12983e47127ccea8c40cdd750d1e97b2c0777d5054d0ce
3
+ size 158108
FdE2T4oBgHgl3EQf-QlB/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb9bab60c7d42c97b2a01c9ebe6b560153849ff2b0004e3c53ef3378c87a64da
3
+ size 43042
FtFLT4oBgHgl3EQfGS-3/content/2301.11991v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6a818ed4e31295f0ba1714c6ad2d1e72e18ae43b0f9a3469662adf34b3aea4f
3
+ size 1024001
FtFLT4oBgHgl3EQfGS-3/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c22d5f76cf00d73fb6169ed9f93870f3310c65a802b74e0725b31a9e3c04622
3
+ size 1900589
G9E1T4oBgHgl3EQf_QZd/content/2301.03578v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:86e4b460d46c245eb623693ed9bebba11b330a6778d2084f2ad249d1dff58c6c
3
+ size 27018760
IdFIT4oBgHgl3EQfYSv6/content/2301.11248v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:557f6e612ffaff112a82d552f26ff6f2f515736b909e121583f60a464a3a23e1
3
+ size 620263