diff --git "a/89E1T4oBgHgl3EQfCALf/content/tmp_files/load_file.txt" "b/89E1T4oBgHgl3EQfCALf/content/tmp_files/load_file.txt" new file mode 100644--- /dev/null +++ "b/89E1T4oBgHgl3EQfCALf/content/tmp_files/load_file.txt" @@ -0,0 +1,694 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89E1T4oBgHgl3EQfCALf/content/2301.02860v1.pdf,len=693 +page_content='THERMODYNAMICAL MODELING OF MULTIPHASE FLOW SYSTEM WITH SURFACE TENSION AND FLOW HAJIME KOBA Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89E1T4oBgHgl3EQfCALf/content/2301.02860v1.pdf'} +page_content=' We consider the governing equations for the motion of the viscous fluids in two moving domains and an evolving surface from both energetic and thermodynamic points of view.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89E1T4oBgHgl3EQfCALf/content/2301.02860v1.pdf'} +page_content=' We make mathematical models for multi- phase flow with surface flow by our energetic variational and thermodynamic approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89E1T4oBgHgl3EQfCALf/content/2301.02860v1.pdf'} +page_content=' More precisely, we apply our energy densities, the first law of thermodynamics, and the law of conservation of total energy to derive our multiphase flow system with surface tension and flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89E1T4oBgHgl3EQfCALf/content/2301.02860v1.pdf'} +page_content=' We study the conserva- tive forms and conservation laws of our system by using the surface transport theorem and integration by parts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89E1T4oBgHgl3EQfCALf/content/2301.02860v1.pdf'} +page_content=' Moreover, we investigate the enthalpy, the entropy, the Helmholtz free energy, and the Gibbs free energy of our model by applying the thermodynamic identity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89E1T4oBgHgl3EQfCALf/content/2301.02860v1.pdf'} +page_content=' The key idea of deriving surface tension and viscosities is to make use of both the first law of thermodynamics and our energy densities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89E1T4oBgHgl3EQfCALf/content/2301.02860v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89E1T4oBgHgl3EQfCALf/content/2301.02860v1.pdf'} +page_content=' Introduction Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89E1T4oBgHgl3EQfCALf/content/2301.02860v1.pdf'} +page_content=' Moving Domains, Surfaces and Notations We are interested in a mathematical modeling of a soap bubble floating in the air.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89E1T4oBgHgl3EQfCALf/content/2301.02860v1.pdf'} +page_content=' When we focus on a soap bubble, we can see the fluid flow in the bubble.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89E1T4oBgHgl3EQfCALf/content/2301.02860v1.pdf'} +page_content=' We 2020 Mathematics Subject Classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89E1T4oBgHgl3EQfCALf/content/2301.02860v1.pdf'} +page_content=' 80M30, 35Q79, 76-10, 80-10, 35A15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89E1T4oBgHgl3EQfCALf/content/2301.02860v1.pdf'} +page_content=' Key words and phrases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89E1T4oBgHgl3EQfCALf/content/2301.02860v1.pdf'} +page_content=' Multiphase flow, Surface tension, Surface flow, Mathematical model- ing, First law of thermodynamics, Energetic variational approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89E1T4oBgHgl3EQfCALf/content/2301.02860v1.pdf'} +page_content=' This work was partly supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number JP21K03326.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89E1T4oBgHgl3EQfCALf/content/2301.02860v1.pdf'} +page_content=' 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89E1T4oBgHgl3EQfCALf/content/2301.02860v1.pdf'} +page_content='02860v1 [math-ph] 7 Jan 2023 PA,PB, Ps: Density n2 UA, UB, Us: Velocity μA, μB, μs, 入A,入B, 入s: Viscosity nr TA,TB, s: Pressure I(t) A,OB,Os: Temperature A(t) B(t) eA, eB, es: Internal energy KA, KB, Ks: Thermal conductivity hA,hB,hs: Enthalpy SA, SB, Ss: Entropy 2 AB = A(t) UI(t) U 2B(t2 HAJIME KOBA call the fluid flow in the bubble a surface flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89E1T4oBgHgl3EQfCALf/content/2301.02860v1.pdf'} +page_content=' We can consider a surface flow as a fluid-flow on an evolving surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89E1T4oBgHgl3EQfCALf/content/2301.02860v1.pdf'} +page_content=' To make a mathematical model for a soap bubble floating in the air, we have to study the dependencies among fluid-flows in two moving domains and surface flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89E1T4oBgHgl3EQfCALf/content/2301.02860v1.pdf'} +page_content=' We consider the governing equations for the motion of the viscous fluids in the two moving domains and surface from both energetic and thermodynamic points of view.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89E1T4oBgHgl3EQfCALf/content/2301.02860v1.pdf'} +page_content=' More precisely, we apply the first law of thermodynamics and our energy densities to derive our multiphase flow system with surface tension and flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89E1T4oBgHgl3EQfCALf/content/2301.02860v1.pdf'} +page_content=' Let us first introduce fundamental notations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89E1T4oBgHgl3EQfCALf/content/2301.02860v1.pdf'} +page_content=' Let t ≥ 0 be the time variable, and x(= t(x1, x2, x3)) ∈ R3 the spatial variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89E1T4oBgHgl3EQfCALf/content/2301.02860v1.pdf'} +page_content=' Fix T > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89E1T4oBgHgl3EQfCALf/content/2301.02860v1.pdf'} +page_content=' Let Ω ⊂ R3 be a bounded domain with a smooth boundary ∂Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89E1T4oBgHgl3EQfCALf/content/2301.02860v1.pdf'} +page_content=' The symbol nΩ = nΩ(x) = t(nΩ 1 , nΩ 2 , nΩ 3 ) denotes the unit outer normal vector at x ∈ ∂Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89E1T4oBgHgl3EQfCALf/content/2301.02860v1.pdf'} +page_content=' Let ΩA(t)(= {ΩA(t)}0≤t