diff --git "a/9tFLT4oBgHgl3EQfui8A/content/tmp_files/load_file.txt" "b/9tFLT4oBgHgl3EQfui8A/content/tmp_files/load_file.txt" new file mode 100644--- /dev/null +++ "b/9tFLT4oBgHgl3EQfui8A/content/tmp_files/load_file.txt" @@ -0,0 +1,685 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfui8A/content/2301.12155v1.pdf,len=684 +page_content='epl draft Towards a liquid-state theory for active matter Yuting Irene Li1, Rosalba Garcia-Millan1,3, Michael E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfui8A/content/2301.12155v1.pdf'} +page_content=' Cates1 and ´Etienne Fodor2 1 DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK 2 Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg 3 St John’s College, University of Cambridge, Cambridge CB2 1TP, UK PACS 05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfui8A/content/2301.12155v1.pdf'} +page_content='70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfui8A/content/2301.12155v1.pdf'} +page_content='Ln – Nonequilibrium and irreversible thermodynamics Abstract – In equilibrium, the collective behaviour of particles interacting via steep, short-ranged potentials is well captured by the virial expansion of the free energy at low density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfui8A/content/2301.12155v1.pdf'} +page_content=' Here, we extend this approach beyond equilibrium to the case of active matter with self-propelled particles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfui8A/content/2301.12155v1.pdf'} +page_content=' Given that active systems do not admit any free-energy description in general, our aim is to build the dynamics of the coarse-grained density from first principles without any equilibrium assumption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfui8A/content/2301.12155v1.pdf'} +page_content=' Starting from microscopic equations of motion, we obtain the hierarchy of density correlations, which we close with an ansatz for the two-point density valid in the dilute regime at small activity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfui8A/content/2301.12155v1.pdf'} +page_content=' This closure yields the nonlinear dynamics of the one-point density, with hydrodynamic coefficients depending explicitly on microscopic interactions, by analogy with the equilibrium virial expan- sion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfui8A/content/2301.12155v1.pdf'} +page_content=' This dynamics admits a spinodal instability for purely repulsive interactions, a signature of motility-induced phase separation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfui8A/content/2301.12155v1.pdf'} +page_content=' Therefore, although our approach should be restricted to dilute, weakly-active systems a priori, it actually captures the features of a broader class of active matter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfui8A/content/2301.12155v1.pdf'} +page_content=' Active matter is a wide category of systems out of equi- librium, where a net flow of energy takes place at the local, individual level [1–3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfui8A/content/2301.12155v1.pdf'} +page_content=' Examples are swimming bacteria [4] and active emulsions [5], amongst others.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfui8A/content/2301.12155v1.pdf'} +page_content=' The realm of motile active matter includes interacting, many-particle systems, where particles move persistently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfui8A/content/2301.12155v1.pdf'} +page_content=' Different the- oretical approaches have been proposed to describe such systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfui8A/content/2301.12155v1.pdf'} +page_content=' They include (i) particle-based models, such as run-and-tumble particles (RTPs) [6], active Brownian par- ticles (ABPs) [7], and active Ornstein-Uhlenbeck particles (AOUPs) [8,9], (ii) microscopic field theories [10,11], and (iii) coarse-grained field theories [12–14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfui8A/content/2301.12155v1.pdf'} +page_content=' Self-propelled particles tend to slow down at high densi- ties, due to either biochemical reasons or steric repulsions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfui8A/content/2301.12155v1.pdf'} +page_content=' In contrast with passively diffusing particles, this slow- down in turn increases the local density, creating a pos- itive feedback loop that can result in a phase separation between a dense and a dilute phase, known as motility- induced phase separation (MIPS) [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfui8A/content/2301.12155v1.pdf'} +page_content=' To predict an- alytically the emergence of MIPS, previous works have relied on a local mean-field approximation to replace mi- croscopic interaction with density-dependent motility [16], and also on an adiabatic elimination of orientational de- gree of freedom [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfui8A/content/2301.12155v1.pdf'} +page_content=' Other studies have developed some aspects of a liquid-state theory for active matter with pair- wise interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfui8A/content/2301.12155v1.pdf'} +page_content=' This is done, for instance, by expressing thermodynamic observables, such as pressure [17–19] and dissipation [20,21], in terms of correlations between hydro- dynamic fields, typically density and polarization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfui8A/content/2301.12155v1.pdf'} +page_content=' Also, exact results for density correlations have been obtained at infinite dimensions [22,23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfui8A/content/2301.12155v1.pdf'} +page_content=' The success of equilibrium thermodynamics largely stems from the ability to detect phase transitions by an- alyzing the free-energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfui8A/content/2301.12155v1.pdf'} +page_content=' In the dilute regime, the virial expansion provides an approximate expression of the free- energy that averages the effect of steep, short-ranged pair- wise interactions [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFLT4oBgHgl3EQfui8A/content/2301.12155v1.pdf'} +page_content=' For passive Brownian particles (PBPs) interacting with an isotropic pairwise potential � i,j