diff --git "a/-dE3T4oBgHgl3EQfSgnV/content/tmp_files/load_file.txt" "b/-dE3T4oBgHgl3EQfSgnV/content/tmp_files/load_file.txt" new file mode 100644--- /dev/null +++ "b/-dE3T4oBgHgl3EQfSgnV/content/tmp_files/load_file.txt" @@ -0,0 +1,2206 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf,len=2205 +page_content='Springer Nature 2021 LATEX template Multilingual Entity and Relation Extraction from Unified to Language-specific Training Zixiang Wang1, Jian Yang1, Tongliang Li1, Jiaheng Liu1, Ying Mo1, Jiaqi Bai1, Longtao He2 and Zhoujun Li1* 1State Key Lab of Software Development Environment, Beihang University, Beijing, Beijing, China.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 2National Computer Network Emergency Response Technical Team/Coordination Center of China, Beijing, Beijing, China.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Corresponding author(s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' E-mail(s): lizj@buaa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='cn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Contributing authors: wangzixiang@buaa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='cn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' jiaya@buaa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='cn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' tonyliangli@buaa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='cn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' liujiaheng@buaa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='cn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' moying@buaa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='cn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' bjq@buaa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='cn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' hlt@cert.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='cn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Abstract Entity and relation extraction is a key task in information extraction, where the output can be used for downstream NLP tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Existing approaches for entity and relation extraction tasks mainly focus on the English corpora and ignore other languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Thus, it is critical to improving performance in a multilingual setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Meanwhile, multilingual training is usually used to boost cross-lingual performance by trans- ferring knowledge from languages (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', high-resource) to other (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', low-resource) languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' However, language interference usually exists in multilingual tasks as the model parameters are shared among all languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In this paper, we propose a two-stage multilingual train- ing method and a joint model called Multilingual Entity and Relation Extraction framework (mERE) to mitigate language interference across languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Specifically, we randomly concatenate sentences in differ- ent languages to train a Language-universal Aggregator (LA), which narrows the distance of embedding representations by obtaining the unified language representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Then, we separate parameters to mit- igate interference via tuning a Language-specific Switcher (LS), which includes several independent sub-modules to refine the language-specific 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='04434v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='CL] 11 Jan 2023 Springer Nature 2021 LATEX template 2 Article Title feature representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' After that, to enhance the relational triple extrac- tion, the sentence representations concatenated with the relation feature are used to recognize the entities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Extensive experimental results show that our method outperforms both the monolingual and multilingual baseline methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Besides, we also perform detailed analysis to show that mERE is lightweight but effective on relational triple extraction and mERE is easy to transfer to other backbone models of multi-field tasks, which further demonstrates the effectiveness of our method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Keywords: Joint extraction, Information extraction, Multilingual entity and relation extraction, Relational triple 1 Introduction Entity and relation extraction (ERE) contains two sub-tasks called named entity recognition (NER) [1–4] and relation classification (RC) [5, 6], which is the fundamental step of automatic knowledge graphs (KGs) [7] construction, knowledge discovery and intelligent question answering system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The results of ERE are typically described as a relational triple (h, r, t), where h and t are the head entity and the tail entity, respectively, and r denotes the relation between them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' For example, for the sentence “Big Ben is in UK.” with a predefined relation called “Locate in”, an ideal relational triple of this sentence is expressed as (Big Ben, Locate in, UK).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' As a large amount of data is available from different languages on the Internet, it is important to utilize such valuable resources and develop multilin- gual entity and relation extraction models, which can operate across language barriers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' However, most existing methods propose to solve ERE on English corpora, which can only deal with the monolingual extraction task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The main reason is that many languages suffer from the scarcity of corpora in ERE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Thus, multilingual training is proposed to help each other in a shared model, where the well-trained knowledge of high-resource languages can be trans- ferred to low-resource languages with a small amount of data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Recently, [8] propose a multilingual dataset called SMiLER, which is the first work to apply both monolingual and multilingual training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The authors in [8] introduce the multilingual entity and relation extraction model (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', HERBERTa) without considering interference across languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' However, such language interfer- ence is prevalent in multilingual tasks because of parameter sharing [9–11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' As shown in Figure 1, to mitigate interference among languages, we propose to extract the feature representation of the corresponding language sentence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' First, to facilitate the cross-lingual transfer among different languages, mul- tilingual representations are supposed to be closed under similar semantics using cross-lingual sentence-level concatenation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Then, based on the shared multilingual parameters, the language-specific representations derived from the independent modules can mitigate interference among multiple languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Springer Nature 2021 LATEX template Article Title 3 Specifically, we propose a two-stage multilingual training method and an 我爱吃苹果。' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' amo le mele.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' I love apples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=" J'adore les pommes." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' … Unified Feature Chinese Feature Italian Feature English Feature French Feature Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 1 This example includes 4 sentences from different languages, which express the same meaning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The four arrows represent four independent sentence representations extracted from different languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' effective model called multilingual Entity and Relation Extraction framework (mERE) to address the multilingual ERE task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In the first stage, we utilize a cross-lingual encoder to encode different language sentences and extract rela- tions directly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Then, we train the joint model with our Language-universal Aggregator (LA) to generate the unified language feature, which narrows the distance of similar semantic representation across languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' LA consists of a self-attention layer and is trained by random multi-sentences concatena- tion, which is used to learn semantic similarities in multilingual training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In the second stage, to alleviate the interference among languages, we freeze the parameters of LA and cross-lingual encoder in the first stage and optimize the independent parameters via fine-tuning the model with a Language-specific Switcher (LS), which consists of several independent sub-modules to produce the specific language features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Meanwhile, a selection mechanism is applied to choose the optimal group of sub-modules from LS, which enables the sub- module to share the same parameters with a certain group of languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Such an automatic sub-module selection mechanism saves many model parameters when the number of languages is large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' After that, each token representation is concatenated with the relation representation to enhance the recognition of the positions of entities in a sentence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Finally, in mERE, we adopt joint training to mitigate the error propagation problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' We conduct extensive experiments on the SMiLER benchmark of 14 lan- guages with 36 relations (including no relation) in total.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The experimental results demonstrate that our method outperforms previous monolingual and multilingual ERE baseline methods by a large margin across languages, which demonstrates that our method can effectively mitigate language interference by improving representation quality among languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Besides, we conduct detailed experiments to analyze how our method affects relational triple extrac- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Moreover, our method is simple but effective, and it is also easy to transfer to different backbone models of multi-field tasks with lightweight modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Springer Nature 2021 LATEX template 4 Article Title 2 Related Work Information Extraction Information extraction mainly focuses on extract- ing knowledge from unstructured text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' A well-known system called Never- Ending Language Learner was reading the Web for almost 10 years to collect new instances of pre-defined relations and entity types [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Instead of the pre- defined entity and relation types, Open Information Extraction (OpenIE) has also attracted much attention during the past decade.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' A notable example is TextRunner [13], which utilizes a syntactic parser to extract triples from the Internet automatically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Many systems have been proposed subsequently, such as rule-based systems [14–16] and clause based systems [17, 18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Recent super- vised methods are divided into three categories based on different architectures: (1) Generation-based models are typically sequence-to-sequence structure [19– 21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2) Sequence labeling-based models using Begin Inside Outside (BIO) or Subject Relation Object None (SRON) to label every word in a sentence [22, 23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (3) Span-based model takes advantage of span level feature which can be sufficiently exploited [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Entity and Relation Extraction Early entity and relation extraction tasks use a pipeline approach, which are two separate subtasks including named entity recognition and relation classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' [25] first works on Recurrent Neu- ral Network (RNN) based model for extraction, capturing the semantics of the entity and its adjacent phrases through parsing trees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' While [26] uses a syntac- tic tree-based RNN model to add weights to the important phrases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' [27] first used a Convolutional Neural Network (CNN) structure to fuse the extracted word and sentence level features for extraction work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' [28] uses a CNN structure based on a dependency tree to improve the performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' However, the pipeline approach has inevitable deficiencies: (1) The architecture ignores the interac- tions between entities and relations, causing the error propagation problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2) Some of the extracted entities are redundant in the named entity recognition phase, resulting in a degradation of performance in the relation classification phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Most studies focus on the joint approach, which models entity recognition and relation classification in the same network and naturally relieves error propagation problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The initial joint models are feature-based methods that heavily rely on NLP tools and manual efforts [29–32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Recent joint models are typically neural network-based methods, which benefit from their excellent fea- ture learning capability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' SPTree [33] is the first joint model based on the neural network method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Due to the two subtasks decoding with independent decoders but sharing parameters of the same encoding layers, this architecture also is known as parameters sharing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Following such kind of structure, [34] proposed an LSTM-based network that decodes entities and a CNN network to classify relations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' [35, 36] employ CRF to improve performance of entity recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' [37–40] use a pre-trained model called bidirectional encoder representation from transformers (BERT) to improve the accuracy of entity recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' [41] proposes a multi-feature fusion sentence representation and decoder sequence annotation to handle the overlapping triples which are overlapped with one Springer Nature 2021 LATEX template Article Title 5 or two entities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Another architecture is joint decoding, which extracts entity pairs and corresponding relations simultaneously in one stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' NovelTagging [42] first proposes a tagging scheme to implement a joint decoding manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' But it cannot figure out the overlapping problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The sequence-to-sequence scheme [43–46] models relational triples as a sequence, which can naturally deal with the nested entity and overlapping problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Multilingual Models Multilingual models are a type of model that per- forms cross-lingual transfer among different languages, such as multilingual pre-training [47–51] and machine translation [11, 52–54].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Specifically, mBERT pre-trained on 104 languages in Wikipedia has a strong ability for cross- lingual transfer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Multilingual neural machine translation (MNMT) trains a single NMT model in multiple language pairs supporting translation direc- tions between multiple languages by sharing parameters [55–58].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Early studies mainly utilize high-resource languages to help low-resource languages and even perform zero-shot transfer translation [59, 60].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Recent studies focus on designing language-specific components to mitigate the language interference in shared parameters, especially on high-resource pairs [11, 61, 62].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Our method boosts the sentence representation quality from superior unified representation to further language-specific representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Multilingual Entity and Relation Extraction Existing entity and rela- tion extraction datasets are insufficient in diversity and size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' English is always used to be training corpora.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' [8] presents a new, large and diversified dataset Samsung MultiLingual Entity and Relation Extraction (SMiLER) dataset to entity and relation extraction both for English and multilingual setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' This is currently the most comprehensive and largest multilingual dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In this paper, we propose a multilingual entity and relation extraction framework called mERE with two-stage training strategies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In the first stage, we concatenate random sentences and use the self-attention mechanism [63] to learn the unified representation across languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Inspired by MoE [64], we use several sub-modules with a selection mechanism to learn the specific representation of each language in the second stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Such two-stage learning greatly improves the performance of relational triple extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 3 Methodology In this section, we introduce the details of our training method for the multi- lingual joint extraction model as shown in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' We propose a two-stage training strategy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In the first stage, we train a Language-universal Aggrega- tor (LA) for learning the unified representations among multiple languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In the second stage, we freeze the parameters and fine-tune the Language-specific Switcher (LS), which is applied to select specific feature representations of various languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Springer Nature 2021 LATEX template 6 Article Title FR: Tour Eiffel à Paris.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' EN: Big Ben is in UK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ES: España en Europa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' IT: Torre pendente di Pisa in Italia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ….' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Cross-lingual Pretrained Encoder Embeddings Classifier Relation [CLS] [CLS] 𝜃1 𝜃2 𝜃3 𝜃4 Language-universal Aggregator Language-specific Switcher Entity1 Entity2 Big Ben UK Weighted sum NER Concatenate Encoder RC Switcher-based Tuning NER LA Encoder RC NER LA LS Freeze Multilingual Training Selection Distribution Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 2 The left part shows the two-stage training strategy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The right part is our frame- work with Language-universal Aggregator (LA) for unified representation generation and Language-specific Switcher (LS) for language-specific feature extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' We first train the LA with a concatenation of 2 random sentence representations, which are denoted as the green boxes (English) and yellow boxes (Italian) below the figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Note that each sentence representation is directly regarded as input of LA during the evaluation stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Then, we freeze part of the parameters and fine-tune the LS with all sub-modules during the training stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The figure illustrates 4 sub-modules of LS with a top-2 strategy during evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 Task Formulation The goal of multilingual joint entity and relation extraction aims to identify all possible relational triples from sentences in different languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Formally, given a sentence X from multilingual corpora D = {Dn}N n=1, where N represents the number of the all languages Lall = {Ln}N n=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The probability of the target triple Y = {s, r, o} is defined as below: P(Y | X) = p(r | X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' φ)p(s, o | X, r;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ϕ), (1) where r denotes relation, s and o are subject (head entity) and object (tail entity), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' p(r | X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' φ) means relation is only related to sentence X, and p(s, o | X, r;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ϕ) means the entity pair (s, o) is related to both sentence X and the relation r that they shared.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 Language-aggregation Training We train the model with Language-universal Aggregator (LA) to learn the unified representation, which effectively narrows the distance of semantic representations across different languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' To obtain context representations of each token from the multilingual sentences, we utilize the cross-lingual pre-trained encoder for building a multilingual model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Given the sentence XLn = {xLn 1 , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' , xLn i , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' , xLn m } with m tokens (including [CLS], [SEP] and Springer Nature 2021 LATEX template Article Title 7 [PAD]), xLn i ∈ Rd is the i-th token embedding and d is the embedding size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The whole sentence is encoded by the cross-lingual pre-trained encoder: hLn = H(XLn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' φ), (2) where hLn = {hLn 1 , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' , hLn i , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' , hLn m } ∈ Rm×d represents the encoded rep- resentation and d is the hidden size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' H denotes the cross-lingual pre-trained encoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Meanwhile, a relation classifier W r ∈ Rd×U is used to project pooled output vector hp (from the [CLS] token) to the relation rc, where U is the number of relation types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The relation extraction is defined as: rc = hpW r, (3) To better learn the unified semantic representation among multiple lan- guages, we randomly sample s sentences of different languages from the training corpora to generate the cross-lingual representations using Equation 2 and concatenate them to obtain hcat = [h LX1 1 , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' , h LXi i , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' , hLXs s ], where LXi denotes the language symbol of the i-th sentence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Considering that each token needs to capture the dependency of inner-sentence and acquire semantic sim- ilarity representation of inter-sentence among languages, we train LA which applies the self-attention mechanism for fusing the information of the given concatenated representation: ˆhcat = SF(QKT √ϵ )V (4) where Q = hcatWq, K = hcatWk and V = hcatWv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' SF represents the softmax operation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The three-parameter matrices Wq, Wk, and Wv are trainable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The term 1/√ϵ is the scaling factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ˆhcat = {ˆh LX1 1 , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' , ˆh LXi i , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' , ˆhLXs s } and ˆh LXi i is i-th element.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Instead of using language-specific features generated via Equation 8, we directly utilize each element representation in ˆh LXi i to train the model via Equation 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 Language-specific Training To acquire features of a specific language, we freeze the parameters of language aggregation and cross-lingual encoder in the first training stage and fine-tune the model with LS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' After obtaining the unified representation via LA, we extract the language-specific features via the LS with the selection mechanism from the unified representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Given the language symbol Ln ∈ Lall(1 ≤ n ≤ N) and our LS θ = {θt}T t=1(1 ≤ t ≤ T , 1 ≤ T ≤ N), our selection mechanism is used to select corresponding sub-modules θf(Ln), in which f(·) is a function that maps a lan- guage to corresponding LS modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' To design an appropriate map function for our selection mechanism, each sentence is prefixed to the corresponding lan- guage symbol, which enables the model to correctly route sentences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Besides, Springer Nature 2021 LATEX template 8 Article Title all sub-modules from LS attend to the selection procedure during the training stage, which solves the undifferentiability problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Specifically, the function ft(·) indicates the probability of selection of sub-module θt: ft (Ln) = exp � eLn t � �T i=1 exp � eLn i � (5) where eLn i is i-th element of the probability vector eLn = El[n]Wf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' El ∈ RN×d denotes the look-up table for all language prefix embeddings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The router matrix Wf ∈ Rd×T is used to project eLn which are normalized via a softmax distribution over the total T modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' For each sub-module θt from θ, we utilize Eθt(·) to transform unified feature representation ˆhLn into language-specific feature branch ˜hLn θt : ˜hLn θt = Eθt(ˆhLn) (6) Eθt(ˆhLn) = LN � σ(ˆhLnWu)Wd + ˆhLn� (7) where ˆhLn ∈ Rm×d is an element of ˆhcat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Wu ∈ Rd×b and Wd ∈ Rb×d are projection matrices (b > d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' σ is the ReLU activation function and LN(·) is the layer normalization function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The right part of Figure 2 corresponds to Equation 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' To ensure gradients are propagated to all sub-modules of LS {θt}T t=1, we apply the weighted average for obtaining the language-specific feature: ˜hLn = T � t=1 ft(Ln)Eθt � ˆhLn� (8) Note that for the whole process, function ft(Ln) in Equation 8 permits differentiability of the router.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In the evaluation stage, it is necessary to prune several sub-module branches with the lowest selection probabilities to obtain the best performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' There- fore, we use the top-K strategy to select the best k(1 ≤ k ≤ T ) sub-modules with the highest probabilities to generate the language-specific representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' When k = T indicates all sub-modules involved in the calculation which means the selection mechanism is the same as the training stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The mapping pro- cess is described as: Ln −→ {πLn 1 , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' , πLn i , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' , πLn k } ∈ Π(k), where πLn i is one of the sub-module index that corresponds to language Ln and Π(k) is the space of all k-length combinations of Ck T in total.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' After obtaining the language-specific representation from LS, we create four matrices to recognize the head and tail positions of two named entities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' To enhance the accuracy of recognition, we add a relation feature that constrains the extracted entities that are only related to the relevant relation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Formally, given a language-specific representation ˜hLn ∈ Rm×d of the m-length sentence Springer Nature 2021 LATEX template Article Title 9 and the relation vector re retrieved from relation embedding table Er ∈ RI×d, where I is the number of relations, the two entities are recognized as followed: entityx = (η((˜hLn ⊕ re)Wy))Uy (9) where the symbol collection entity={head, tail}, x={start,end} and y = {hs, he, ts, te}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' We concatenate the relation vector with each token rep- resentation to enhance the recognition of entities, namely ˜hLn ⊕ re = {[˜hLn 1 , re], .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' , [˜hLn i , re], .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' , [˜hLn m , re]} ∈ Rm×2d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Wy ∈ R2d×d are four down projection matrices and Uy ∈ Rd×1 are four index projection matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' η denotes tanh activation function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Note that we use ground-truth relation as input in training entity recognition, which conforms to the joint training method in our architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 Training Objective Our model presented in Figure 2 is trained jointly on multilingual ERE cor- pora.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' We first train the model only using a multilingual training strategy for our Language-universal Aggregator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Based on the unified language representa- tion, we fine-tune the model with Language-specific Switcher for learning the language-specific feature in the next step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The objective is to minimize the two training loss functions which are defined below: LLAT = M � m=1 E(x,y)∼Dm[Lere(x, y;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Θ)] (10) LLST = M � m=1 E(x,y)∼Dm[Lere(x, y;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Θ, θ)] (11) where D means multilingual entity and relation extraction training corpora and M denotes the number of the samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Θ indicates shared parameters and θ is parameters in LS with selection mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Lere is the loss function for entity and relation extraction, which is defined as below: Lere = α 2 (Lstart h + L end h + L start t + L end t ) + βLrel (12) where each L with any superscript is a cross-entropy loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The subscripts with h and t indicate the head entity and tail entity respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The start and end of superscripts denote the first token index and last token index of an entity separately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Lrel is the loss function for relation classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' α and β are two weights on entity recognition loss and relation classification loss respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Springer Nature 2021 LATEX template 10 Article Title 4 Experiments 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 Datasets We evaluate our model on the dataset SMiLER [8], which is the largest and most diversified multilingual dataset for multilingual entity and relation extraction tasks with 14 languages from 36 relation types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The SMiLER con- sists of about 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1M annotated sentences from Wikipedia and DBpedia, which includes English (En), Korean (Ko), Italian (It), French (Fr), German (De), Portuguese (Pt), Nederlands (Nl), Polish (Pl), Spanish (Es), Arabic (Ar), Rus- sian (Ru), Swedish (Sv), Farsi (Fa), Ukrainian (Uk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The relation types belong to roughly nine domains: location, organization, person, animal, art, device, measurement, event, and no relation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The statistics of SMiLER are shown in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' As the development set in SMiLER is not publicly available, we only randomly extract the sentences from the training set to create new files with the same split ratio as the original paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Table 1 The statistics of SMiLER dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' English corpora include full-size, middle-size, and small-size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The languages are ordered from high-resource languages (left) to low-resource languages (right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Languages EN-full EN-mid It Fr De Pt Nl En-small Ko Pl Es Ar Ru Sv Fa Uk sentences num.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 748k 269k 76k 62k 53k 45k 40k 35k 20k 17k 12k 9k 7k 5k 3k 1k relation types 36 36 22 22 22 22 22 32 28 22 22 9 8 22 8 7 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 Implementation Details We conduct experiments on SMiLER, 14 languages in total.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' EN-small is treated as our English corpora.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' We utilize mBERT as our cross-lingual encoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' We train our model with AdamW, the learning rate is 3e-5 and weight decay is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The batch size is set to 16 on Tesla V100 GPU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The hidden size d is 768 and dimension b of projection matrices Wu and Wd is 1024.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The max sequence length is 256 and we concatenate 2 sentences during the first training stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' For the second training stage, we freeze most parameters in the first stage except the relation classifier and 8 matrices used to predict entities from Equation 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The sub-module number T of LS is set to 6 (2 layers for 3 sub-modules and 1 layer for the other).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The epoch is set to 5 at the first stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The max epoch of the second stage is set to 8 with an early stopping mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The loss weights are set to 2 in named entity recognition and 1 in relation classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In the evaluation stage, we set k = 3 in the top-K strategy to select the sub-modules in LS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' We adopt standard micro-F1 metric to calculate scores on the models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The extracted entity pair is regarded as correct if the predictions of the head entity and tail entity are both the same as the ground truth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' A triple is treated as correct if the entity pair and the corresponding relation type are all correct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' no relation type is included in relation prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' We also add a mask for the relation that is not absent in a language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Springer Nature 2021 LATEX template Article Title 11 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 Baselines As far as we know, the SMiLER is a new dataset and thus only an existing method for multilingual ERE without publishing source code.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The relevant task is cross-lingual relation classification, which is also few in studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' There- fore, we reproduce the following competitive baselines to compare with our proposed approach for a fair comparison: HEBERTa [8]: A multilingual entity and relation extraction framework called Hybrid Entity and Relation extraction BERT, which achieves the state-of-the-art performance on SMiLER.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' HERBERTa uses a pipeline train- ing manner that combines two independent BERT models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The first sub-model classifies the input sequence as one of 36 pre-defined relations (including no relation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The relation generated from the first sub-model is then fed to the second BERT and concatenated with the same input sequence as the input of the second model for entity recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' mBERT [65]: A cross-lingual model first uses the mBERT as a backbone for RC, which is trained on 104 languages with the corresponding Wikipedia dumps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' We reproduce the results with the code shared at https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' com/boun-tabi/RELX MTMB [65]: A multilingual pre-training scheme called Matching the Mul- tilingual Blanks (MTMB).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The framework shows several advantages against the mBERT on monolingual tasks and achieves significant improvements in cross-lingual transfer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Note that this framework is only designed for RC and not adapted to entity and relation extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Therefore, we simply modified the output layer of the baseline to conduct the ERE task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In addition to the above baselines, we also build a simplified multilin- gual joint entity and relation extraction framework called mERE-LS-LA as a basic structure which is concatenated relation representation with the sentence representation to enhance the extraction performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Table 2 The F1 scores of different models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' * denotes the model is reproduced by us on our experiment settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' - denotes that the language data is not involved both in the training and the evaluation stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' MONO, EURO, and SVO mean training data in 3 different language groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The languages are ordered from high-resource languages (left) to low-resource languages (right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The bold font number is the best score in each language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Test Sets AVG It Fr De Pt Nl En Ko Pl Es Ar Ru Sv Fa Uk HERBERTa* 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='9 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='9 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='8 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='6 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 mBERT*1 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='6 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='9 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='6 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 MTMB*1 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='6 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='9 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='8 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='9 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='8 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 mERE 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='9 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='6 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='6 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='6 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 mERE (EURO) 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='9 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 mERE (SVO) 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='9 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='6 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 mERE-LS 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='9 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='6 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='6 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='8 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='8 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 mERE-LS-LA (MONO) 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='9 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='9 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='6 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 mERE-LS-LA 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='9 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='9 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='8 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 1We modified the output layer to implement the entity recognition to accommodate the ERE task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' We train the model in the joint training method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Springer Nature 2021 LATEX template 12 Article Title 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 Models and Languages Comparison The results presented from the Tables are rounded to one decimal place.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' From Table 2, our method improves multilingual baselines by a large margin over pre- vious baselines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' There is a 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3% improvement on averaged F1 score compared with the previous strongest baseline MTMB which outperforms HERBERTa due to its strong multilingual pre-training scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Our mERE achieves the best scores on 8 out of 14 languages, especially on high-resource languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The other 5 out of 6 languages achieve the second-best scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Surprisingly, even our baseline mERE-LS-LA has 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='9% improvement over the MTMB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' It seems that our basic structure is more effective on multilingual entity and rela- tion extraction tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Compared with mERE-LS that only uses LA, our full model mERE has nearly 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7% F1 value improvement on average and yields similar or higher results on 13 languages except for Sv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The improvement can be attributed to our switcher-based language-specific training strategy, which finally extracts accurate information for entity recognition in each language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Compared with our baseline mERE-LS-LA, our full model mERE has nearly 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4% F1 value improvement on average which means mERE-LS also has nearly 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7% F1 value improvement on average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' All such impressive results demon- strate that our full model mERE truly enhances the representation quality and mitigates language interference to a certain extent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' We set several language groups to analyze the impact of different languages: (1)MONO: 14 languages in monolingual training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2)EURO: It, Fr, Pt, De, Es, En.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (3)SVO2: EURO, Ru, Sv, Nl, Pl, Uk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The default is all languages in multilingual training from Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Compared with mERE-LS-LA training in multilingual corpora, we can observe that multilingual training achieves much higher results than mERE-LS-LA (MONO) monolingual training from Table 2, especially on low-resource languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Such as improvements of Uk (25%), Fa (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1%), and Ru (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4%).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' It demonstrates that languages with less training data can benefit most from high-resource languages in multilingual training including ERE tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The results of the EURO family group are close to mERE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' It is worth noting that Es achieves the best score in the EURO group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' We conclude that Es benefits a lot from similarities of languages that are in the same language family even with less training data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In the SVO group, we can also visualize that most languages in EURO decrease slightly with the interference of other non-EURO languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The different language families, or the languages with a big difference in syntactic structures might be the main interference among languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' However, compared with mERE (SVO), mERE yields the same results on low-resource languages and somewhat higher results on high-resource languages even the three non-SVO (Fa, Ar, and Ko) data involved during the training stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' We suppose that these non-SVO languages which are big different from others and are all low-resource may facilitate distinguishing high-resource languages in learning language-specific 2SVO stands for the relative position of the Subject, Verb, and Object in the typical affirmative sentence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' We treat Korean, Farsi, and Arabic as non-SVO languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Arabic is VSO, while Korean and Farsi are SOV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Springer Nature 2021 LATEX template Article Title 13 features due to each sub-module from LS being independent, without sharing parameters in the same space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Lastly, we also observe some duplicated F1 scores across low-resource languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' This phenomenon is caused by a small number of sentences in test sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 Entity and Relation Analysis Figure 3 shows F1 scores of relation and entity pair of mERE and mERE-LS- LA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' We can observe that the relation classification seems to be easier than the named entity recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The correctness of entity pair extraction is the main bottleneck of the model performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' With the help of our LA and LS, mERE achieves higher results on entity pair recognition compared with mERE-LS- LA in general.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Surprisingly, we can visualize that the performance of relation classification also has a slight improvement in mERE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' We conclude that the improvement of the named entity recognition facilitates relation classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Since information interaction between two sub-tasks can benefit each other in the joint training architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 50 55 60 65 70 75 80 85 90 95 100 Total It Fr De Pt Nl En Ko Pl Es Ar Ru Sv Fa Uk Relation(mERE) Entity Pair(mERE) Relation(mERE-LS-LA) Entity Pair(mERE-LS-LA) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 3 The F1 scores of relations and entity pairs on all languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' F1 scores of detailed relation labels are shown in Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Most of the relations achieve higher F1 scores across languages, such as “no relation” and “has-type”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Part of relations differs widely across languages, such as relation “has-child”(F1 = 100 on Nl, F1 = 33 on De, F1 = 0 on Es).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The big difference is caused by the number of relations of training data in each language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' For some relations that occur F1 = 0 scores, we find out the relations (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='g won- award on Nl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' has-parent on Pl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' has-child on Es) are only one test sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Such low results for some languages could be explained by a smaller number of relations in the test set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='Springer Nature 2021 LATEX template ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='Article Title ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='En ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='It ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='Fr ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='Pt ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='Es ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='De ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='Ar ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='Nl ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='Ru ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='Pl ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='Uk ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='Sv ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='Fa ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='Ko ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='no_relation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='is-where ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='birth-place ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='has-type ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='movie-has-director ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='has-occupation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='from-country ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='has-genre ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='has-author ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='has-population ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='headquarters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='is-member-of ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org-has-member ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='has-parent ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org-has-founder ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='has-spouse ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='won-award ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='has-nationality ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org-leader ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='starring ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='has-edu ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='has-child ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='event-year ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='has-sibling ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='has-length ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='invented-when ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='has-tourist-attraction ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='has-lifespan ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='first-product ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='has-height ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='has-highest-mountain ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='invented-by ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='has-weight ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='post-code ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='loc-leader ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='eats ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='85 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='86 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='91 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='86 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='75 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='97 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='90 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='96 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='88 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='81 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='90 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='85 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='93 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='97 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='89 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='91 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='92 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='89 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='89 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='94 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='84 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='89 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='81 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='84 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='92 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='92 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='97 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='95 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='97 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='91 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='95 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='94 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='76 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='99 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='92 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='99 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='59 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='72 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='68 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='79 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='67 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='83 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='70 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='96 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='67 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='98 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='75 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='57 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='56 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='66 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='72 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='67 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='86 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='91 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='83 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='75 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='86 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='67 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='92 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='93 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='94 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='92 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='94 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='96 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='99 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='67 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='83 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='78 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='77 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='92 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='77 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='88 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='82 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='91 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='96 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='88 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='95 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='88 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='86 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='88 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='57 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='83 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='92 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='90 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='89 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='89 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='90 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='83 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='86 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='89 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='95 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='79 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='63 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='92 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='75 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='67 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='67 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='91 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='75 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='67 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='86 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='67 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='33 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='92 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='33 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='67 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='87 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='83 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='62 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='78 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='88 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='56 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 4 The F1 scores of all relation labels on all languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The darker color means a higher F1 score, while the lighter color means a lower F1 score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Figure 5 shows F1 scores of head entities and tail entities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' We can observe that F1 scores of head entities are much higher than tail entities among most languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' It seems that head entities are easier to be recognized than tail entities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' It is because the head entity always occurs at the beginning position of the sentence and thus the model probably memorizes the position, while the tail entity does not have any consistent position which is hard to predict.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='6 Ablation Study Sentences Concatenation To validate the effect of the number of sentences for learning the unified features among different languages, we conduct sev- eral experiments on the different numbers of sentences in concatenation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' We learn from Figure 6 that there are evident F1 improvements with LA on dif- ferent concatenation numbers of sentences over only one sentence encoding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The multilingual model obtains the best performance when concatenating with the sentence pair.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The increasing number of concatenated sentences has a slight decrease in performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' We conjecture that increasing the number of sentences may also bring somewhat interference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Springer Nature 2021 LATEX template Article Title 15 50 55 60 65 70 75 80 85 90 95 100 Total It Fr De Pt Nl En Ko Pl Es Ar Ru Sv Fa Uk head entity tail entity Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 5 The performance of head entities (blue bar) and tail entities (orange bar) on different languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 1 2 3 4 Languages 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='6 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='8 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='9 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 F1 score mERE-LS Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 6 The performance of sentences concatenation in the first training stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Selection Mechanism To observe how the selection mechanism affects our model performance, we also train one-to-one sub-modules of LS called mERE14 without using the selection mechanism in the second training stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Each inde- pendent sub-module corresponds to a language and each sentence is routed via a language prefix which represents the number of sub-module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' We can visualize from Figure 7 that increasing the number of parameters also improves obvi- ously over mERE-LS-LA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Nonetheless, the mERE14 will suffer from the sharp increasing training time and inference time, and big space consumption when the number of languages is large enough.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Instead of increasing parameters, our Language-specific Switcher can effectively ameliorate extraction quality with only slight extra parameters and less time consumption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Since similar languages tend to select the same sub-modules from our LS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The mERE saves Springer Nature 2021 LATEX template 16 Article Title nearly 700M model capacity in our statistics and achieves better performance among most languages compared with mERE14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' It is obvious that mERE is light and easy to transfer to other multi-field tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Selection Distribution It Fr De Pt Nl En Ko Pl Es Ar Ru Sv Fa Uk Languages 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 F1 scores mERE-LS-LA mERE14 mERE Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 7 The performance of three models on 14 languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' mERE14 utilizes 14 one-to-one sub-modules of LS without the selection mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Each sub-module corresponds to a language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Figure 8 illustrates the heatmap of selection probability on 6 sub-modules from LS for each language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' For each sub-module from top to bottom in Figure 8, we can visualize θ1 pays more attention to low-resource languages while θ4, θ5, and θ6 pay more attention to languages from the EURO family, which are mostly high-resource languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The θ2 and θ3 seem to be more balanced on parameters sharing of languages except for 2 or 3 prominent languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' We conclude that some sub-modules are mainly used to extract features from similar languages and others are used to assist the specific languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' For each language from left to right, we can visualize that the selected sub-modules with higher probabilities are easy to distinguish in high-resource languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In contrast, the selection probabilities across all sub-modules are relatively similar on low-resource languages in total.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' We conclude that train- ing data is rich enough to determine which way to route on high-resource languages and a more balanced selection decision is made on less training data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' It is learned from Figure 8 that there are nearly 3 out of 6 prominently higher selection probabilities on the high-resource languages, and so do the low-resource languages with careful observation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' It proves that only 3 sub- modules play the dominant role in refining the language-specific feature for each language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' To avoid interference from the other irrelevant sub-modules, we adopt a top-K strategy to filter out 6 − k sub-modules with lower selec- tion probabilities in the evaluation stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The top-6 strategy means selecting all sub-modules, which is the same as the training stage and the performance is relatively low (77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='74) on average, while our mERE achieves the best perfor- mance (77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='87) when adopting the top-3 strategy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' It demonstrates that filtering out the least important sub-modules is necessary to enhance the prediction quality, which also reduces the redundant parameters in the evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The Springer Nature 2021 LATEX template Article Title 17 top-1 achieves the worst performance (77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='60), which demonstrates the part of sub-modules are also helpful for the task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Therefore, the best performance is obtained when the k value is balanced in all languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Layer Number of It Fr De Pt Nl En Ko Pl Es Ar Ru Sv Fa Uk 1 2 3 4 5 6 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 8 The selection probability distributions of 6 sub-modules from LS on 14 languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The sub-modules {θ}6 1 are numbered from 1 to 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The languages are ordered from high- resource languages (left) to low-resource languages (right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The darker color means a higher selection probability to the corresponding sub-module and a lower probability to select a certain sub-module when the color is lighter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Language-specific Switcher Table 3 used to evaluate the effect of the layer number of LS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' We divide the 6 sub-modules into 2 groups (each group has the same layer number) with different combinations of layer numbers to accommo- date the scenarios, such as high- and low-resource language feature extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' From Table 3, we can observe that the combination 1-2 achieves the best F1 score on average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The combinations which are set to 1-1 and 4-4 also achieve better performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' With the increase or decrease of the layer number to a cer- tain degree, the performances are almost the same, which maintains relatively low averaged F1 scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The full layer number combination 4-4 is an exception in the case, which demonstrates the performance still can be improved when the model capacity is large enough.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' According to the outcomes from Table 3, we conclude that the layer number of LS obviously impacts the results, with the best results attained when a balance is reached.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 5 Conclusion In this paper, we introduce a two-stage training method and a robust frame- work called mERE for multilingual entity and relation extraction, which ameliorates the sentence representation quality and mitigates the language interference among multiple languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Specifically, we first learn the gener- alities across all languages to obtain the unified language representation via the Language-universal Aggregator and then learn the specialties of each lan- guage via the Language-specific Switcher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Experimental results demonstrate Springer Nature 2021 LATEX template 18 Article Title Table 3 The different layer numbers of sub-modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Every 3 sub-modules in a group has the same layer numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Layer Num.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='01 and Layer Num.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='02 denote the layer number of the first group and second group respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Layer Num.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='01 Layer Num.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='02 AVG IT FR DE PT NL EN KO PL ES AR RU SV FA UK 1 1 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='9 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='8 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 1 2 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='9 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='6 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='6 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='6 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 1 3 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='8 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='8 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='9 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='6 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 1 4 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='8 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='6 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='8 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 2 2 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='8 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='9 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='6 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='6 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 2 3 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='9 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='8 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 2 4 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='6 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 3 3 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='6 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='8 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 3 4 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='9 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='8 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 4 4 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='9 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='9 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='6 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='6 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='6 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 that our method significantly outperforms both monolingual and multilingual ERE baselines, which demonstrates that our framework can extract relational triples among various languages well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Moreover, our framework is also light and easy to transfer to other backbone models of multi-field tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In the future, we will pay more attention to complex multilingual relational triple extraction, such as overlapping relational triples or multiple relational triples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Besides, we will also do further research on a better contextual repre- sentation among multiple languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Although there is a long way to experience in multilingual entity and relation extraction tasks, it is important to inves- tigate the valuable structured information in many other languages for the downstream NLP tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Acknowledgments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' This work was supported in part by the National Nat- ural Science Foundation of China (Grant Nos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 62276017, U1636211, 61672081), the 2022 Tencent Big Travel Rhino-Bird Special Research Program, and the Fund of the State Key Laboratory of Software Development Environment (Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' SKLSDE-2021ZX-18).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' References [1] Huang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Xu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Yu, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Bidirectional LSTM-CRF models for sequence tagging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' CoRR abs/1508.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='01991 (2015) 1508.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='01991 [2] Wang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Shou, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Chen, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Chen, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Pyramid: A layered model for nested named entity recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Jurafsky, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Chai, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Schluter, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Tetreault, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Proceedings of the 58th Annual Meet- ing of the Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 5918–5928.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Association for Computational Linguistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='acl-main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='525.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='acl-main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='525 [3] Joshi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Chen, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Weld, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zettlemoyer, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Levy, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Spanbert: Improving pre-training by representing and predicting spans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Assoc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Linguistics 8, 64–77 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 1162/tacl a 00300 Springer Nature 2021 LATEX template Article Title 19 [4] Tan, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Shen, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zhang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Lu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zhuang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': A sequence-to-set net- work for nested named entity recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Zhou, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal, Canada, 19-27 August 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 3936–3942.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ijcai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='24963/ijcai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2021/542.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='24963/ijcai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2021/542 [5] Levy, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Seo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Choi, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zettlemoyer, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Zero-shot relation extraction via reading comprehension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Levy, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Specia, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), Vancouver, Canada, August 3-4, 2017, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 333–342.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Asso- ciation for Computational Linguistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 18653/v1/K17-1034.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/K17-1034 [6] Li, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Wang, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zhang, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zhang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Yang, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Chen, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Logic-guided semantic representation learning for zero-shot relation classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Scott, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Bel, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zong, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Proceedings of the 28th International Conference on Computational Linguistics, COLING 2020, Barcelona, Spain (Online), December 8-13, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 2967–2978.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' International Com- mittee on Computational Linguistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 18653/v1/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='coling-main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='265.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='coling- main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='265 [7] Lin, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Mao, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Liu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Xu, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Cambria, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Fusing topology contexts and logical rules in language models for knowledge graph completion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Inf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Fusion 90, 253–264 (2023).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='inffus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='020 [8] Seganti, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Firlag, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Skowronska, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Satlawa, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Andruszkiewicz, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Multilingual entity and relation extraction dataset and model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Merlo, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Tiedemann, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Tsarfaty, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguis- tics: Main Volume, EACL 2021, Online, April 19 - 23, 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 1946–1955.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Association for Computational Linguistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/ 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='eacl-main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='166.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='eacl- main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='166 [9] Wang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Lipton, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Tsvetkov, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': On negative interference in mul- tilingual models: Findings and A meta-learning treatment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Webber, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Cohn, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', He, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Proceedings of the 2020 Confer- ence on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 4438–4450.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Association for Com- putational Linguistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' emnlp-main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='359.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='emnlp-main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='359 [10] Gong, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Li, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Genzel, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Adaptive sparse transformer for multilingual translation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' CoRR abs/2104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='07358 (2021) 2104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='07358 Springer Nature 2021 LATEX template 20 Article Title [11] Yang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Yin, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Ma, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zhang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Wei, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': High-resource language-specific training for multilingual neural machine translation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Raedt, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Proceedings of the Thirty-First International Joint Con- ference on Artificial Intelligence, IJCAI 2022, Vienna, Austria, 23-29 July 2022, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 4461–4467.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ijcai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='24963/ijcai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 2022/619.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='24963/ijcai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2022/619 [12] Mitchell, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Cohen, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Jr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Talukdar, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Yang, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Betteridge, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Carlson, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Mishra, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Gardner, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Kisiel, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Krish- namurthy, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Lao, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Mazaitis, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Mohamed, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Nakashole, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Platanios, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Ritter, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Samadi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Settles, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Wang, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Wijaya, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Gupta, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Chen, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Saparov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Greaves, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Welling, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Never- ending learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ACM 61(5), 103–115 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/ 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1145/3191513 [13] Yates, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Banko, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Broadhead, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Cafarella, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Etzioni, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Soder- land, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Textrunner: Open information extraction on the web.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Sidner, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Schultz, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Stone, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zhai, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Human Language Technology Conference of the North American Chapter of the Association of Com- putational Linguistics, Proceedings, April 22-27, 2007, Rochester, New York, USA, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 25–26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The Association for Computational Linguistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://aclanthology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/N07-4013/ [14] Fader, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Soderland, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Etzioni, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Identifying relations for open infor- mation extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, EMNLP 2011, 27-31 July 2011, John McIntyre Conference Centre, Edinburgh, UK, A Meeting of SIG- DAT, a Special Interest Group of The ACL, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 1535–1545.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ACL, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://aclanthology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/D11-1142/ [15] de S´a Mesquita, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Schmidek, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Barbosa, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Effectiveness and efficiency of open relation extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, EMNLP 2013, 18-21 October 2013, Grand Hyatt Seattle, Seattle, Washington, USA, A Meeting of SIGDAT, a Special Interest Group of The ACL, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 447–457.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ACL, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://aclanthology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/D13-1043/ [16] White, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Reisinger, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Sakaguchi, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Vieira, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zhang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Rudinger, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Rawlins, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Durme, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Universal decompositional semantics on universal dependencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Su, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Carreras, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Duh, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Proceedings of the 2016 Conference on Empirical Meth- ods in Natural Language Processing, EMNLP 2016, Austin, Texas, USA, November 1-4, 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 1713–1723.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The Association for Compu- tational Linguistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/d16-1177.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/d16-1177 Springer Nature 2021 LATEX template Article Title 21 [17] Corro, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Gemulla, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Clausie: clause-based open information extrac- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Schwabe, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Almeida, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Glaser, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Baeza-Yates, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Moon, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') 22nd International World Wide Web Con- ference, WWW ’13, Rio de Janeiro, Brazil, May 13-17, 2013, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 355–366.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' International World Wide Web Conferences Steering Com- mittee / ACM, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1145/2488388.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2488420.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1145/2488388.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2488420 [18] Angeli, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Premkumar, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Manning, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' : Leveraging linguistic structure for open domain information extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Pro- cessing of the Asian Federation of Natural Language Processing, ACL 2015, July 26-31, 2015, Beijing, China, Volume 1: Long Papers, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 344–354.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The Association for Computer Linguistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https: //doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3115/v1/p15-1034.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3115/v1/p15-1034 [19] Cui, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Wei, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zhou, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Neural open information extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Gurevych, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Miyao, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, ACL 2018, Melbourne, Australia, July 15-20, 2018, Volume 2: Short Papers, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 407–413.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Associa- tion for Computational Linguistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/ v1/P18-2065.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://aclanthology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/P18-2065/ [20] Kolluru, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Aggarwal, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Rathore, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Mausam, Chakrabarti, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Imojie: Iterative memory-based joint open information extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Juraf- sky, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Chai, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Schluter, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Tetreault, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Proceedings of the 58th Annual Meeting of the Association for Computational Lin- guistics, ACL 2020, Online, July 5-10, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 5871–5886.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Association for Computational Linguistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/ 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='acl-main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='521.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='acl-main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='521 [21] Li, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Wang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Low resource quantitative information extraction via structure searching and prefix-based text generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' AAAI Press, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2023) [22] Stanovsky, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Michael, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zettlemoyer, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Dagan, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Supervised open information extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Walker, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Ji, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Stent, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Pro- ceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Tech- nologies, NAACL-HLT 2018, New Orleans, Louisiana, USA, June 1-6, 2018, Volume 1 (Long Papers), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 885–895.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Association for Compu- tational Linguistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/n18-1081.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/n18-1081 [23] Kolluru, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Adlakha, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Aggarwal, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Mausam, Chakrabarti, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Springer Nature 2021 LATEX template 22 Article Title Openie6: Iterative grid labeling and coordination analysis for open information extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Webber, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Cohn, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', He, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Proceedings of the 2020 Conference on Empirical Meth- ods in Natural Language Processing, EMNLP 2020, Online, Novem- ber 16-20, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 3748–3761.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Association for Computational Lin- guistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='emnlp-main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='306.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='emnlp-main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='306 [24] Zhan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zhao, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Span model for open information extraction on accurate corpus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Sympo- sium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 9523–9530.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' AAAI Press, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2020) [25] Socher, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Huval, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Manning, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Ng, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' : Semantic composition- ality through recursive matrix-vector spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Tsujii, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Henderson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Pasca, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Proceedings of the 2012 Joint Conference on Empiri- cal Methods in Natural Language Processing and Computational Natural Language Learning, EMNLP-CoNLL 2012, July 12-14, 2012, Jeju Island, Korea, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 1201–1211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ACL, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://aclanthology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/D12- 1110/ [26] Hashimoto, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Miwa, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Tsuruoka, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Chikayama, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Simple cus- tomization of recursive neural networks for semantic relation classifica- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, EMNLP 2013, 18-21 October 2013, Grand Hyatt Seattle, Seattle, Washington, USA, A Meeting of SIGDAT, a Special Interest Group of The ACL, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 1372–1376.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ACL, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://aclanthology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/D13-1137/ [27] Zeng, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Liu, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Lai, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zhou, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zhao, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Relation classification via convolutional deep neural network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Hajic, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Tsujii, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') COLING 2014, 25th International Conference on Computational Linguistics, Pro- ceedings of the Conference: Technical Papers, August 23-29, 2014, Dublin, Ireland, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 2335–2344.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ACL, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://aclanthology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/C14- 1220/ [28] Xu, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Feng, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Huang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zhao, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Semantic relation classifi- cation via convolutional neural networks with simple negative sam- pling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: M`arquez, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Callison-Burch, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Su, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Pighin, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Marton, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Proceedings of the 2015 Conference on Empirical Meth- ods in Natural Language Processing, EMNLP 2015, Lisbon, Portugal, September 17-21, 2015, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 536–540.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The Association for Computa- tional Linguistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/d15-1062.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Springer Nature 2021 LATEX template Article Title 23 https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/d15-1062 [29] Roth, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Yih, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': A linear programming formulation for global inference in natural language tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Ng, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Riloff, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Proceed- ings of the Eighth Conference on Computational Natural Language Learning, CoNLL 2004, Held in Cooperation with HLT-NAACL 2004, Boston, Massachusetts, USA, May 6-7, 2004, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 1–8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ACL, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://aclanthology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/W04-2401/ [30] Kate, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Mooney, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Joint entity and relation extraction using card- pyramid parsing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Lapata, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Sarkar, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Proceedings of the Fourteenth Conference on Computational Natural Language Learning, CoNLL 2010, Uppsala, Sweden, July 15-16, 2010, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 203–212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ACL, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://aclanthology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/W10-2924/ [31] Yu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Lam, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Jointly identifying entities and extracting relations in encyclopedia text via A graphical model approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Huang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Jurafsky, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') COLING 2010, 23rd International Conference on Computational Linguistics, Posters Volume, 23-27 August 2010, Beijing, China, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 1399–1407.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Chinese Information Processing Society of China, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://aclanthology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/C10-2160/ [32] Li, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Ji, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Incremental joint extraction of entity mentions and rela- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, ACL 2014, June 22-27, 2014, Baltimore, MD, USA, Volume 1: Long Papers, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 402–412.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The Association for Computer Linguistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3115/v1/p14-1038.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3115/v1/p14-1038 [33] Miwa, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Bansal, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': End-to-end relation extraction using lstms on sequences and tree structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Proceedings of the 54th Annual Meet- ing of the Association for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The Association for Computer Linguistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/p16-1105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/p16-1105 [34] Zheng, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Hao, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Lu, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Bao, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Xu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Hao, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Xu, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Joint entity and relation extraction based on a hybrid neural network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Neuro- computing 257, 59–66 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='neucom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 075 [35] Tan, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zhao, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Wang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Xiao, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Jointly extracting multiple triplets with multilayer translation constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: The Thirty-Third AAAI Con- ference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Springer Nature 2021 LATEX template 24 Article Title 7080–7087.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' AAAI Press, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1609/aaai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='v33i01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 33017080.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1609/aaai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='v33i01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='33017080 [36] Liu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Chen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Wang, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zhang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Li, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Xu, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Attention as relation: Learning supervised multi-head self-attention for relation extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Bessiere, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Proceedings of the Twenty-Ninth Inter- national Joint Conference on Artificial Intelligence, IJCAI 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 3787–3793.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ijcai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='24963/ijcai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2020/524.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='24963/ijcai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2020/524 [37] Wadden, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Wennberg, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Luan, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Hajishirzi, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Entity, relation, and event extraction with contextualized span representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Inui, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Jiang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Ng, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Wan, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Proceedings of the 2019 Confer- ence on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP- IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 5783–5788.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Association for Computational Linguistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/ 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/D19-1585.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/D19-1585 [38] Eberts, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Ulges, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Span-based joint entity and relation extraction with transformer pre-training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Giacomo, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Catal´a, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Dilkina, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Milano, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Barro, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Bugar´ın, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Lang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') ECAI 2020 - 24th European Conference on Artificial Intelligence, 29 August-8 September 2020, Santiago de Compostela, Spain, August 29 - September 8, 2020 - Including 10th Conference on Prestigious Applications of Artificial Intel- ligence (PAIS 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Frontiers in Artificial Intelligence and Applications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 325, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 2006–2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' IOS Press, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3233/ FAIA200321.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3233/FAIA200321 [39] Ji, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Yu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Li, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Ma, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Wu, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Tan, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Liu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Span-based joint entity and relation extraction with attention-based span-specific and contextual semantic representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Scott, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Bel, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zong, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Proceedings of the 28th International Conference on Compu- tational Linguistics, COLING 2020, Barcelona, Spain (Online), Decem- ber 8-13, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 88–99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' International Committee on Computational Linguistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='coling-main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='coling-main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='8 [40] Qiao, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zou, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Huang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Fang, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zhu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Chen, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': A joint model for entity and relation extraction based on BERT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Neural Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 34(5), 3471–3481 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1007/s00521-021-05815-z [41] Lai, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Cheng, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Wang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Ye, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zhang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': RMAN: relational multi-head attention neural network for joint extraction of entities and relations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Intell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 52(3), 3132–3142 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1007/ s10489-021-02600-2 Springer Nature 2021 LATEX template Article Title 25 [42] Zheng, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Wang, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Bao, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Hao, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zhou, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Xu, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Joint extraction of entities and relations based on a novel tagging scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Barzilay, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Kan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, ACL 2017, Vancouver, Canada, July 30 - August 4, Volume 1: Long Papers, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 1227–1236.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Association for Compu- tational Linguistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/P17-1113.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/P17-1113 [43] Zeng, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zeng, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', He, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Liu, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zhao, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Extracting relational facts by an end-to-end neural model with copy mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Gurevych, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Miyao, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Proceedings of the 56th Annual Meeting of the Associa- tion for Computational Linguistics, ACL 2018, Melbourne, Australia, July 15-20, 2018, Volume 1: Long Papers, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 506–514.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Association for Compu- tational Linguistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/P18-1047.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://aclanthology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/P18-1047/ [44] Zeng, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', He, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zeng, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Liu, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Liu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zhao, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Learning the extrac- tion order of multiple relational facts in a sentence with reinforcement learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Inui, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Jiang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Ng, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Wan, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Process- ing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 367–377.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Association for Computational Linguistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https: //doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/D19-1035.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/D19-1035 [45] Nayak, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Ng, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' : Effective modeling of encoder-decoder archi- tecture for joint entity and relation extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: The Thirty- Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Con- ference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 8528–8535.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' AAAI Press, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://ojs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='aaai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/index.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='php/AAAI/article/view/6374 [46] Wang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Yang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Yang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Li, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', He, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': A triple relation network for joint entity and relation extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Electronics 11(10) (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3390/electronics11101535 [47] Devlin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Chang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Lee, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Toutanova, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': BERT: pre-training of deep bidirectional transformers for language understanding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Burstein, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Doran, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Solorio, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Lin- guistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 4171–4186.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Association for Computational Linguistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https: //doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/n19-1423.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/n19-1423 Springer Nature 2021 LATEX template 26 Article Title [48] Yang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Ma, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zhang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Wu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zhou, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Alternating language modeling for cross-lingual pre-training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: AAAI 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 9386–9393 (2020) [49] Conneau, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Khandelwal, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Goyal, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Chaudhary, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Wen- zek, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Guzm´an, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Grave, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Ott, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zettlemoyer, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Stoy- anov, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Unsupervised cross-lingual representation learning at scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Association for Computational Lin- guistics, Online (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='acl-main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='747.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://aclanthology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='acl-main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='747 [50] Yang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Ma, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Dong, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Huang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Huang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Yin, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zhang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Yang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Wei, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Ganlm: Encoder-decoder pre-training with an auxiliary discriminator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' CoRR abs/2212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='10218 (2022) 2212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='10218.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='48550/arXiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='10218 [51] Liu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Yu, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Peng, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Sun, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Li, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Cross-lingual cross-modal con- solidation for effective multilingual video corpus moment retrieval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: NAACL 2022, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 1854–1862 (2022) [52] Yang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Yin, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Ma, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zhang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Wu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Guo, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Wei, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': UM4: unified multilingual multiple teacher-student model for zero-resource neural machine translation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Raedt, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Pro- ceedings of the Thirty-First International Joint Conference on Artifi- cial Intelligence, IJCAI 2022, Vienna, Austria, 23-29 July 2022, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 4454–4460.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ijcai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='24963/ijcai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2022/618.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='24963/ijcai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2022/618 [53] Yang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Ma, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Huang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zhang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Dong, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Huang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Muzio, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Singhal, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Hassan, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Song, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Wei, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Multilingual machine transla- tion systems from microsoft for WMT21 shared task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: WMT@EMNLP 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 446–455 (2021) [54] Guo, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Liu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Huang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Yang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zhang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Wei, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Lvp- m3: Language-aware visual prompt for multilingual multimodal machine translation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' EMNLP (2022) [55] Firat, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Cho, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Bengio, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Multi-way, multilingual neural machine translation with a shared attention mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Knight, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Nenkova, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Rambow, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') NAACL HLT 2016, The 2016 Conference of the North American Chapter of the Association for Computa- tional Linguistics: Human Language Technologies, San Diego California, USA, June 12-17, 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 866–875.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The Association for Compu- tational Linguistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/n16-1101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/n16-1101 Springer Nature 2021 LATEX template Article Title 27 [56] Johnson, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Schuster, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Le, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Krikun, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Wu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Chen, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Tho- rat, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Vi´egas, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Wattenberg, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Corrado, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Hughes, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Dean, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Google’s multilingual neural machine translation system: Enabling zero- shot translation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Assoc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Linguistics 5, 339–351 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1162/tacl a 00065 [57] Fan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Bhosale, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Schwenk, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Ma, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', El-Kishky, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Goyal, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Baines, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Celebi, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Wenzek, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Chaudhary, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Goyal, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Birch, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Liptchinsky, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Edunov, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Auli, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Joulin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Beyond english-centric multilingual machine translation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Mach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Learn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 22, 107–110748 (2021) [58] Lin, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Pan, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Wang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Qiu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Feng, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zhou, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Li, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Pre-training multilingual neural machine translation by leveraging alignment informa- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Webber, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Cohn, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', He, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 2649–2663.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Association for Computational Linguistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/ 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='emnlp-main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='emnlp-main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='210 [59] Aharoni, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Johnson, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Firat, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Massively multilingual neural machine translation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Burstein, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Doran, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Solorio, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Pro- ceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technolo- gies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 3874–3884.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Association for Compu- tational Linguistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/n19-1388.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/n19-1388 [60] Zhang, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Williams, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Titov, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Sennrich, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Improving massively multilingual neural machine translation and zero-shot translation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Jurafsky, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Chai, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Schluter, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Tetreault, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Proceedings of the 58th Annual Meeting of the Association for Computational Lin- guistics, ACL 2020, Online, July 5-10, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 1628–1639.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Association for Computational Linguistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/ 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='acl-main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='148.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='acl-main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='148 [61] V´azquez, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Raganato, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Tiedemann, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Creutz, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Multilingual NMT with a language-independent attention bridge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Augenstein, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Gella, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Ruder, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Kann, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Can, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Welbl, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Conneau, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Ren, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Rei, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Proceedings of the 4th Workshop on Representation Learning for NLP, RepL4NLP@ACL 2019, Florence, Italy, August 2, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 33–39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Association for Computational Linguistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/ 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/w19-4305.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/w19-4305 [62] Philip, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Berard, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Gall´e, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Besacier, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Monolingual adapters Springer Nature 2021 LATEX template 28 Article Title for zero-shot neural machine translation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Webber, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Cohn, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', He, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Proceedings of the 2020 Conference on Empir- ical Methods in Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 4465–4470.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Association for Computational Lin- guistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='emnlp-main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='361.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='emnlp-main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='361 [63] Vaswani, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Shazeer, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Parmar, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Uszkoreit, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Jones, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Gomez, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Kaiser, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Polosukhin, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Attention is all you need.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Guyon, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Luxburg, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Bengio, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Wallach, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Fergus, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Vish- wanathan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Garnett, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Advances in Neural Information Processing Systems, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Curran Associates, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://proceedings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='neurips.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa- Paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='pdf [64] Shazeer, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Mirhoseini, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Maziarz, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Davis, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Le, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Hinton, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Dean, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: International Conference on Learning Rep- resentations (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://openreview.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='net/forum?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='id=B1ckMDqlg [65] K¨oksal, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', ¨Ozg¨ur, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': The RELX dataset and matching the multilingual blanks for cross-lingual relation classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Find- ings of the Association for Computational Linguistics: EMNLP 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 340–350.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Association for Computational Linguistics, Online (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='findings-emnlp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='aclweb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/anthology/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='findings-emnlp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='32' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'}