diff --git "a/2dE2T4oBgHgl3EQf5gh4/content/tmp_files/2301.04191v1.pdf.txt" "b/2dE2T4oBgHgl3EQf5gh4/content/tmp_files/2301.04191v1.pdf.txt" new file mode 100644--- /dev/null +++ "b/2dE2T4oBgHgl3EQf5gh4/content/tmp_files/2301.04191v1.pdf.txt" @@ -0,0 +1,2493 @@ +Springer Nature 2021 LATEX template +A JWST transmission spectrum of a nearby +Earth-sized exoplanet +Jacob Lustig-Yaeger1*, Guangwei Fu2*, E. M. May1, Kevin N. +Ortiz Ceballos3, Sarah E. Moran4, Sarah Peacock5,6, Kevin +B. Stevenson1, Mercedes L´opez-Morales3, Ryan J. +MacDonald7,8, L. C. Mayorga1, David K. Sing2,9, Kristin S. +Sotzen1, Jeff A. Valenti10, Jea Adams3, Munazza K. +Alam, Natasha E. Batalha12, Katherine A. Bennett9, Junellie +Gonzalez-Quiles9, James Kirk13, Ethan Kruse5,6, Joshua D. +Lothringer14, Zafar Rustamkulov9 and Hannah R. Wakeford15 +1Johns Hopkins APL, Laurel, MD, 20723, USA. +2Department of Physics & Astronomy, Johns Hopkins University, +Baltimore, MD, USA. +3Center for Astrophysics | Harvard & Smithsonian, 60 Garden St, +Cambridge, MA 02138, USA. +4Lunar and Planetary Laboratory, University of Arizona, Tucson, +AZ, 85721, USA. +5University of Maryland, Baltimore County, MD 21250, USA. +6NASA Goddard Space Flight Center, Greenbelt, MD 20771, +USA. +7Department of Astronomy, University of Michigan, Ann Arbor, +MI, USA. +8NHFP Sagan Fellow. +9Department of Earth & Planetary Sciences, Johns Hopkins +University, Baltimore, MD, USA. +10Space Telescope Science Institute, Baltimore, MD 21218, USA. +11Carnegie Earth & Planets Laboratory, Washington, DC, 20015, +USA. +12NASA Ames Research Center, Moffett Field, CA, USA. +13Department of Physics, Imperial College London, Prince +Consort Road, London, SW7 2AZ, UK. +1 +arXiv:2301.04191v1 [astro-ph.EP] 10 Jan 2023 + +Springer Nature 2021 LATEX template +2 +Lustig-Yaeger & Fu et al. — LHS 475b with JWST +14Department of Physics, Utah Valley University, Orem, UT, +84058 USA. +15School of Physics, HH Wills Physics Laboratory, University of +Bristol, Bristol, UK. +*Corresponding author(s). E-mail(s): +jacob.lustig-yaeger@jhuapl.edu; guangweifu@gmail.com; +Abstract +The critical first step in the search for life on exoplanets over the next +decade [1, 2] is to determine whether rocky planets transiting small M- +dwarf stars possess atmospheres [3, 4] and, if so, what processes sculpt +them over time [5–7]. Because of its broad wavelength coverage and +improved resolution compared to previous methods, spectroscopy with +JWST offers a new capability to detect and characterize the atmo- +spheres of Earth-sized, M-dwarf planets [8, 9]. Here we use JWST to +independently validate the discovery of LHS 475b [10], a warm (586 +K), 0.99 Earth-radius exoplanet, interior to the habitable zone, and +report a precise 2.9 − 5.3 µm transmission spectrum. With two transit +observations, we rule out primordial hydrogen-dominated and cloudless +pure methane atmospheres. Thus far, the featureless transmission spec- +trum remains consistent with a planet that has a high-altitude cloud +deck (similar to Venus), a tenuous atmosphere (similar to Mars), or no +appreciable atmosphere at all (akin to Mercury). There are no signs +of stellar contamination due to spots or faculae [11]. Our observations +demonstrate that JWST has the requisite sensitivity to constrain the +secondary atmospheres of terrestrial exoplanets with absorption fea- +tures < 50 ppm, and that our current atmospheric constraints speak +to the nature of the planet itself, rather than instrumental limits. +Keywords: JWST, Terrestrial Exoplanet Atmospheres, Transmission +Spectroscopy + +Springer Nature 2021 LATEX template +Lustig-Yaeger & Fu et al. — LHS 475b with JWST +3 +The search for atmospheres on rocky exoplanets has only just begun. Prior +constraints on the presence of terrestrial exoplanet atmospheres using the Hub- +ble Space Telescope (HST) and the Spitzer Space Telescope (Spitzer) have +succeeded in ruling out primordial H2/He atmospheres [12–16] that would pro- +duce large and detectable absorption features in a transmission spectrum; thick +atmospheres that would produce shallow infrared secondary eclipse depths +[17]; and a tentative detection of a terrestrial atmosphere [18] that remains +controversial [19, 20]. JWST is expected to break new ground in the search +for atmospheres on rocky exoplanets that transit nearby M dwarfs [9, 21]. +However, theoretical modeling work predicts a tumultuous stellar environment +in these compact M-dwarf systems [22, 23] that raises the critical question +of whether or not small, rocky exoplanets can maintain thick and detectable +atmospheres in the face of significant atmospheric loss processes. +We observed two transits of LHS 475b (previously the planet candidate +TOI 910.01) on 31 August 2022 and 4 September 2022 with JWST’s Near +InfraRed Spectrograph (NIRSpec) [24, 25] G395H instrument mode as part +of the JWST Cycle 1 Guest Observing (GO) Program 1981 (PI: K. Steven- +son). This mode covers wavelengths 2.87 − 5.27 µm and has a native spectral +resolving power of R = λ/∆λ ≈ 2700. We used the Bright Object Time Series +(BOTS) mode with the NRSRAPID readout pattern, S1600A1 slit, and the +SUB2048 subarray. Each time-series observation lasted a total of 2.9 hours, +which captured the 39.98 ± 4.04 minute transit that occurred during this +window. This resulted in approximately 1.75 hours and 0.5 hours of stellar +baseline before and after transit, respectively. The Methods contains additional +information on the observations. +We selected the LHS 475 system as one of several nearby M-dwarf systems +with known or candidate rocky planets. Prior to validation, LHS 475b was +classified as a planet candidate first identified in Sector 12 by the Transiting +Exoplanet Survey Satellite (TESS) [26]. TESS observed subsequent transits of +the planet in Sectors 13, 27, and 39. LHS 475b transits a 3300 K, 0.2789 R⊙ +M3.5V dwarf star on a 2.029-day orbital period [27]. This planet is likely to +be tidally locked, with a permanent dayside facing its host star [28], and an +equilibrium temperature of 586 K. +We validated the discovery of LHS 475b by eliminating both instrumental +and astrophysical false positives. JWST detected two transit signals at the +predicted times that are consistent in depth and duration with the 45 TESS +transits (978 ± 73 ppm, 42 ± 13 minutes). Archival DSS images from 1999 +rule out the possibility of a background transiting star-planet system or an +eclipsing binary. LHS 475 is a high-proper-motion star (1.28 arcsec/year) and +no flux sources were identified in the archival data along its path from 1999 to +2022. See the Methods for more details about the archival imagery. In parallel +with this work, Ment et al. (in prep) performed an independent validation of +LHS 475b using ground-based follow-up observations. +We reduced the JWST data using three independent pipelines—Eureka! +[29], FIREFLy [30], and Tiberius [31–33]—that yielded consistent results + +Springer Nature 2021 LATEX template +4 +Lustig-Yaeger & Fu et al. — LHS 475b with JWST +Fig. 1 White light curves from both LHS 475b visits using the FIREFLy reduction (see +Methods). For each visit, we combined data from both the NRS1 and NRS2 detectors into +a single white light curve and applied a vertical offset for clarity. A transit model and visit- +long linear trend are sufficient to fit the raw white light curves (panel a). Residuals from the +best fit (panel b) highlight a small, ∼15-minute ramp at the start of each visit. Residuals +are shown on the same y-scale as panel a. Both histograms of the residuals (panel c) are +Gaussian distributed. +(within 1.1σ, see Methods for details on each analysis). For our final inter- +pretation, we utilize results from the FIREFLy pipeline as it is the most +representative of the three reductions. We generated white light curves across +the full G395H wavelength range covered by the two detectors, NRS1 from +2.884 - 3.720 µm and NRS2 from 3.820 - 5.177 µm. The planet transits are +clearly visible in the raw white light curves (see Figure 1). We note the presence +of a small ramp at the start of the observation; no additional structure is seen +in the residuals. There is also no evidence of starspot crossings during the tran- +sits. Our joint fit to the white light curves gives a planet-to-star radius ratio +of Rp/Rs = 0.03257 ± 0.00014, a mid-transit time of T0 = 59822.8762593 ± +0.000026 BMJDTDB, an orbital period of P = 2.029088 ± 0.000006 days, a +ratio of the semi-major axis to the stellar radius of a/Rs = 15.87235 ± 0.472, +and an inclination of i = 87.194◦ ± 1.39◦. Therefore, LHS 475b has a radius +of Rp = 0.99 ± 0.05 R⊕ (6319 ± 318 km). Although LHS 475b’s mass has not +been measured, assuming an interior composition that is consistent with the +small, rocky M-dwarf exoplanet population [34], we estimate a planet mass of +Mp = 0.914 ± 0.187 M⊕. +We fitted the spectroscopic light curves at the detector’s pixel resolution +to derive wavelength-dependent transit depths independently for the first and +second visit. The orbital parameters were fixed to the values from the joint +white light curve analysis, leaving the planet-to-star radius ratio, linear tem- +poral slope, and a constant offset as free parameters. We adopted stellar limb +darkening from a 3D stellar model grid [35]. We then performed a weighted +average of spectra from the two visits and binned the combined native-pixel- +resolution transit depths into 56 points (R ≈ 100). Our co-added and binned +transmission spectrum is shown in Figure 2. + +Data + Model +Residuals + offset +1.002 +Visit ++ +1.001 +relative flux +1.000 +Visit 2 +0.999 +(a) +(b) +-2.0 -1.5 -1.0 -0.5 0.0 +0.5 +2.0 +-1.5-1.0 +-0.5 +0.0 +0.5 +time from mid-transit fhoursSpringer Nature 2021 LATEX template +Lustig-Yaeger & Fu et al. — LHS 475b with JWST +5 +Fig. 2 +Final, binned spectrum (black points) compared to models (coloured lines). Top: +Our data strongly (> 10σ) rule out hydrogen-dominated atmospheres with compositions +from 1× – 100× solar metallicity, with reduced-χ2s reported in the legend for each model. +The blue shaded bar highlights the region detailed in the bottom panel. Bottom: Our data +also rule out, though to lower (2–5σ) significance, high mean molecular weight compositions +of 1000× solar metallicity or a pure methane atmosphere. We weakly disfavor a pure water +atmosphere or an Earth composition atmosphere. The data are consistent with a pure carbon +dioxide atmosphere or that of an airless body. Each model is plotted relative to the mean +transit depth. +The observed transmission spectrum is featureless. A flat line, representa- +tive of an airless-body or high mean molecular weight (MMW) atmosphere, +fitted to the binned data produces a reduced χ2 = 0.91. No evidence is seen for +stellar contamination from unocculted cool spots or hot faculae on the stellar +disk [e.g., 11, 15, see Methods]. Despite the featureless spectrum, the precision +is sufficiently high to rule out (> 5σ) several archetypal atmospheric composi- +tions, including primordial hydrogen-helium atmospheres with less than 100 × +solar metallicity, as well as pure CH4 atmospheres ≥ 1 bar. We can specifically +rule out this pure CH4 atmospheres due to the low mass of the CH4 molecule +and the presence of the strong 3.3 µm CH4 band in the G395H bandpass. Other + +Springer Nature 2021 LATEX template +6 +Lustig-Yaeger & Fu et al. — LHS 475b with JWST +secondary atmospheres are more challenging to rule out and distinguish from +one another, however. We only weakly disfavor (at ≳1σ; [36]) 1000 × solar +metallicity, pure steam, or warm Earth-like atmospheric compositions. Both +a pure ≥ 1 bar carbon dioxide atmosphere or no atmosphere are favored yet +are statistically indistinguishable from each other. In the context of Solar Sys- +tem terrestrial archetype atmospheres (see Methods Fig. 11), we also weakly +disfavor (≳1σ) clear, warm Venus-like and Titan-like atmospheres. We cannot +statistically distinguish between a thin Mars-like atmosphere, a hazy Titan-like +atmosphere, and a cloudy Venus, which are all consistent with the data. +Following previous analyses [37], we performed Bayesian retrievals to better +explore the range of atmospheres that remain consistent with our spectro- +scopic measurements. We assumed a five component atmospheric composition +consisting of the four most common and spectroscopically active molecules +(H2O, CO2, CH4, and CO) in the Solar System terrestrial atmospheres, plus +an unspecified gas that constitutes the bulk atmospheric composition but is +spectroscopically inactive at these wavelengths [e.g. 38]. We allow the mean +molecular weight of the bulk gas to vary between 2.5 g/mol and 50 g/mol. +Since a solid planetary surface and an optically thick gray cloud deck are +indistinguishable in the transit spectrum, we fit for the apparent surface pres- +sure (the pressure of an opaque surface above which the atmosphere extends). +We marginalize over the aforementioned planet mass, which is assumed to be +consistent with a rocky interior composition. The vertical extent of the atmo- +sphere is dictated by the scale height, which is implicitly controlled by varying +the atmospheric temperature, mean molecular weight, and planet gravity. See +Figure 3 for the retrieval results summarizing the range of allowed atmo- +spheres given our data and highlighting the degeneracies that persist among +the remaining atmospheric possibilities. +If the planet has an atmosphere, it is likely to be a high mean molecu- +lar weight secondary atmosphere that is tenuous (Mars-like) or cloudy/hazy +(Venus-like or Titan-like). Compact atmospheres with small scale heights are +preferred across the full range of apparent surface pressures. High mean molec- +ular weight atmospheres dominated by species heavier than 40 g/mol, like CO2 +or Argon, can be thicker while maintaining relatively flat spectra. Atmospheric +characteristics that increase the scale height, including high temperatures and +low mean molecular weight bulk atmospheric compositions, tend to be dis- +favored, particularly for apparent surface pressures ≳10 mbar. Models with +scale heights larger than 20 km strongly skew towards the low mean molecular +weight atmospheres (µ < 10 g/mol), make up ∼50% of the lowest apparent +surface pressure samples, and tend to have low abundances of all absorbing +molecules. These extended atmospheres with low apparent surface pressures +are unlikely to form clouds or hazes at such high altitudes and are the most sus- +ceptible to atmospheric loss, making them less physically plausible scenarios. +Although LHS 475 is typical of low-activity M dwarfs in the solar neighbor- +hood [39], atmospheric escape processes are still a concern for a primordial + +Springer Nature 2021 LATEX template +Lustig-Yaeger & Fu et al. — LHS 475b with JWST +7 +Fig. 3 Retrieval results showing preferred atmospheric properties for models containing +H2O, CO2, CH4, and CO, plus a variable bulk gas composition for LHS 475b given the trans- +mission spectrum measurements. Darker color shading indicates higher relative posterior +probability density as a function of the apparent surface pressure (P0), molecular weight (µ) +of the bulk atmospheric composition (left), and isothermal scale height (H, right). Dashed +contours denote the 1σ (white), 2σ (gray), and 3σ (black) Bayesian credible regions. The +red arrow depicts how the Jeans escape flux depends on the scale height and emphasizes the +region of the parameter space that is more susceptible to atmospheric escape. If the planet +possesses an atmosphere with at least 1 ppm CO2 or CH4, then the models prefer high mean +molecular weight, compact atmospheres (µ > 20 g/mol at 1.2σ; H < 25 km at 1.2σ) with +low apparent surface pressures (P0 < 0.01 bar at 1.3σ; P0 < 1 bar at 2σ). These scenarios +correspond to either a tenuous or cloudy secondary atmosphere. +extended atmosphere, and if LHS 475 b is indeed airless, such processes would +likely constitute the primary reason for this. +Our two transit observations demonstrate that JWST has the sensitivity +to detect and constrain the secondary atmospheres of terrestrial exoplanets, +and therefore our atmospheric non-detection reflects the nature of the target +itself. We place a 3σ constraint on the maximum size of absorption features +in our spectrum at 61 ppm for H2O at 2.8 µm, 38 ppm for CH4 at 3.3 µm, +49 ppm for CO2 at 4.3 µm, and 62 ppm for CO at 4.6 µm. These constraints +demonstrate JWST’s sensitivity to absorption features smaller than 50 ppm +for an Earth-sized exoplanet. We find no indication of a noise floor down to +5 ppm (See Methods Figure 8). These are critical benchmarks for forthcom- +ing rocky exoplanet observations with JWST. Furthermore, our non-detection +of starspot crossings during transit and the lack of stellar contamination in +the transmission spectrum are promising signs in this initial reconnaissance +of LHS 475b. These findings indicate that additional transit observations of +LHS 475b with JWST are likely to tighten the constraints on a possible atmo- +sphere. A third transit of LHS 475b is scheduled as part of this program (GO +1981) in 2023. An alternative path to break the degeneracy between a cloudy +planet and an airless body is to obtain thermal emission measurements of +LHS 475b during secondary eclipse because an airless body is expected to be +several hundred Kelvin hotter than a cloudy world and will therefore produce + +10-6 +Titan (haze-top) +increasing +atmospheric +10 +escape +)-4 +Venus (cloud-top) +10 +100 +Farth (clear) +Titan (clear) +O +a +Venus (clear) +10 +20 +30 +40 +0 +20 +40 +60 +80 +atmospheric mmw [g/mol] +scale height [km]Springer Nature 2021 LATEX template +8 +Lustig-Yaeger & Fu et al. — LHS 475b with JWST +large and detectable eclipse depths at JWST’s MIRI wavelengths [4, 40]. Our +findings only skim the surface of what is possible with JWST. +Acknowledgements +This work is based in part on observations made with the NASA/ESA/CSA +JWST. The data were obtained from the Mikulski Archive for Space Telescopes +at the Space Telescope Science Institute, which is operated by the Association +of Universities for Research in Astronomy, Inc., under NASA contract NAS +5-03127 for JWST. These observations are associated with program #1981. +Support for program #1981 was provided by NASA through a grant from +the Space Telescope Science Institute, which is operated by the Association +of Universities for Research in Astronomy, Inc., under NASA contract NAS +5-03127. + +Springer Nature 2021 LATEX template +Lustig-Yaeger & Fu et al. — LHS 475b with JWST +9 +Fig. 4 +2D light curves of LHS 475b as a function of time and wavelength for the first +visit, measured with NIRSpec/G395H. The horizontal stripe down the middle of each panel +corresponds to the gap between the NRS1 and NRS2 detectors. Left: data normalized by +the median stellar spectrum. Middle: Maximum probability transit models. Right: Residuals +from the model fit. Note, the Eureka! and FIREFLy reductions trim more blue columns from +NRS1 where there is minimal throughput than the Tiberius pipeline, which accounts for the +regions without data in those reductions. Similarly, the Eureka! reduction also trims off the +initial ramp that can be seen in Figure 1. +Methods. +1 Data Analysis +1.1 Observations +We observed two transits of LHS 475b with the NIRSpec G395H grating +covering the 2.87–5.14 µm wavelength range split over the NRS1 and NRS2 +detectors, with a detector gap between 3.72 and 3.82 µm. The first transit was +observed on the 31 August 2022 18:48 UTC and the second on 4 September +2022 20:09 UTC. Each visit lasted 4.4 hours in total with 2.9 hours of expo- +sure time. Both transits were executed with the same observing settings, using +the Bright Object Time Series (BOTS) mode with the NRSRAPID readout +pattern, S1600A1 slit, and the SUB2048 subarray from NIRSpec. We obtained +a total of 1158 integrations per visit, with 9 groups per integration and 0.902 +seconds per group. +We extracted and analyzed the data from each visit independently with the +Eureka!, FIREFLy and Tiberius pipelines as described below. 2D lightcurves, +models, and residuals from the three reductions are shown in Figure 4. + +Data +Model +Residuals +0.0015 +Eureka! +4.5 +4.0 +0.0010 +3.5 +3.0 - ++ +0.0005 +5.0 +FIREFLY +wavelength +residuals +4.0 ++ 0.0000 +3.5 +3.0 ++-0.0005 +5.0 +Tiberius +4.5 +4.0 +-0.0010 +3.5 +3.0 +-0.0015 +-2.0 -1.5 -1.0 -0.5 0.0 0.5-2.0 -1.5 -1.0 -0.5 0.0 0.5-2.0 -1.5 -1.0 -0.5 0.0 0.5 +time from mid-transit [hours]Springer Nature 2021 LATEX template +10 +Lustig-Yaeger & Fu et al. — LHS 475b with JWST +1.2 Spectral Extraction +1.2.1 Eureka! +Eureka! [29] is an end-to-end analysis pipeline for time series observations +(TSOs) of exoplanets. Eureka! serves as a wrapper for stages 1 and 2 of the +jwst pipeline [41], allowing the user to specify which steps are run in addition +to custom modules. In later stages, Eureka! performs spectroscopic extraction, +light curve generation, and light curve fitting. +In this work, we apply Eureka!’s custom group-level background subtrac- +tion (GLBS) in stage 1 prior to ramp fitting to remove 1/f noise which has +been found to impact the accuracy of ramp fits for data with a small numbers +of groups up the ramp [30, 42]. Due to G395H’s curved trace we first identify +the center of the trace, then mask all pixels within an aperture of 8 pixels. All +remaining pixels in a given column (cross-dispersion direction) were used to +calculate a median background/noise level for that column. We skip the jump +step detection, otherwise running all standard stage 1 steps for TSOs. +In stage 2, we skip the flat field step (at the time of writing, only pre-flight +flat fields were available, which are insufficient for the precision we require +and adds significant noise to the data) and the photom step. Because we are +interested in relative flux measurements, we do not require the absolute flux +calibration provided by these two steps. +A second round of background subtraction is done in stage 3 to capture +any remaining background or 1/f noise, using pixels more than 9 pixels away +from the center of the trace. The spectrum is extracted with an aperture of 5 +pixels for NRS1 and 4 pixels for NRS2 using median frame optimal spectral +extraction. To convert from DN/s to electrons, we apply a median of the gain +files. At the time of writing only pre-flight gain files were available, which are +insufficient for the precision we require and adds significant noise to the data +if applied on a per-pixel basis. For NRS1 we extract only columns 800 − 2047 +due to the negligible throughput outside of that region of the detector. For +NRS2 we extract the full dispersion direction, but note that the edges are less +reliable due to the trace approaching the top or bottom of the subarray. +White light curves are generated across the full wavelength range of the +extracted data: 2.884 - 3.720 µm for NRS1 and 3.820 - 5.177 µm for NRS2. +For transit 1 we reach a white light precision of 112 ppm and 162 ppm for +NRS1 and NRS2, respectively. For transit 2 we reach a white light precision +of 116 ppm and 149 ppm for NRS1 and NRS2, respectively. For each transit, +NRS1 and NRS2 are combined into a single white light curve prior to light +curve fitting. We extract spectroscopic light curves at the pixel-resolution fol- +lowing recommendations from [43], however we find that our GLBS routine +sufficiently removes the 1/f noise in our data set, with no improvement on the +final transmission spectrum precision between fitting light curves at the native +pixel resolution and then binning, or binning prior to fitting (see Section 1.3.1). +Figure 5 shows our spectroscopic precision compared to expected noise lev- +els. Bad columns are denoted by squares (flagged in both transits) or darker + +Springer Nature 2021 LATEX template +Lustig-Yaeger & Fu et al. — LHS 475b with JWST +11 +Fig. 5 Eureka! spectrophotometric precision at the native pixel resolution, compared to +expected noise levels for both events. The expected noise level, as well as 1.25× and 2× the +expected noise are shown as grey lines, these have been smoothed to the resolution of the +final transit spectrum for visualization purposes. Squares denote columns which are greater +than 1.5× the expected noise level in both transits, dark blue circles denote columns which +are greater than 1.5× the expected noise level in only one transit. These columns are flagged +and not used to generate the final transmission spectrum. +circles (flagged in only one transit). This corresponds to 1.13% and 1.56% of +columns in transit 1 NRS1 and NRS2, respectively, and 1.05% and 2.10% of +columns in transit 2 NRS1 and NRS2, respectively. Excluding these columns, +for transit 1 we achieve a median precision of 1.19× and 1.23× the expected +noise level for NRS1 and NRS2, respectively, while for transit 2 we achieve +1.19× and 1.24× the expected noise level for NRS1 and NRS2, respectively. +1.2.2 FIREFLy +We used the FIREFLy [Fast InfraRed Exoplanet Fitting for Lightcurves, 30, 44] +to analyse the JWST data. We started with the uncal.fits files and ran the +jwst pipeline for stage 1 and 2 with modified steps including group-level 1/f +and background subtraction and skipping the jump-step. Both changes were +shown to decrease the scattering in the extracted lightcurves. After obtaining +the rateints.fits files from the stage 2 output, we performed custom cosmic +rays and bad/hot pixels corrections. The spectral traces are then masked in +the cleaned 2D images before applying 1/f correction, which subtracts the +median value of the unmasked background pixels at each column. Next, we +measured the shifts of the spectral trace in x and y directions by using cross +correlation in the selected 2D spectral region. The measured shifts are less +than one hundredth of a pixel which illustrates the excellent pointing stability + +10000+ +Transit 1 +NRS1 +NRS2 +9000 +Native Pixel Resolution +[wdd] +8000 +7000 +precision [ +6000 +2x Expected Limit +5000 +4000 +3000 +2000 +Expected Precision Limit +10000 +Transit 2 +NRS1 +NRS2 +9000 +Native Pixel Resolution +precision [ppm] +8000 +7000 +6000 + 2x Expected Limit +5000 +4000 +3000 +Expected Precision Limit +2000 +3.0 +3.2 +3.4 +3.8 +4.0 +4.2 +4.4 +4.6 +5.0 +3.6 +4.8 +5.2 +wavelength [um]Springer Nature 2021 LATEX template +12 +Lustig-Yaeger & Fu et al. — LHS 475b with JWST +of JWST. After aligning each 2D spectrum, we determine the spectral trace by +first cross correlating a Gaussian profile at each column to obtain the spectrum +location in the y direction, and then fit a 4th order polynomial as a function of +the x direction. The spectrum is then extracted for each integration centered +at the fitted spectral trace to form the light curves. +1.2.3 Tiberius +The Tiberius pipeline is a spectral extraction and light-curve fitting code based +on the LRG-BEASTS pipeline [31–33]. We used Tiberius on the Eureka! stage +1 group-level background-subtracted product, which had 1/f noise removed, +to produce white and spectroscopic transit light curves. First we created bad- +pixel masks for NRS1 and NRS2 by manually selecting hot pixels in the data. +These hot pixels were combined with all pixels flagged as 3σ outliers from the +background, and were interpolated over using their nearest neighboring pixels. +We also interpolate the spatial dimension of the data on a 10x grid, which +improves flux extraction at the sub-pixel level, reducing noise. The spectra +were then traced by fitting Gaussian functions for each column of the detectors, +and then using a running median to smooth the trace centers. These centers +were fit with a 4th-order polynomial, 3σ outliers were removed, and the centers +were again refit with a 4th-order polynomial. +In addition to the background subtraction already performed in the cre- +ation of the stage 1 product, we perform an additional background subtraction +step here to remove residual background light or remaining 1/f noise. We +mask from the detector a defined aperture of 4 pixels plus 6 more pixels off- +set from it, and clipped 3σ outliers in the background pixels, with respect to +their specific column and frame. Finally, the background signal for each col- +umn was subtracted from it, and the spectra were then extracted using a 4 +pixel aperture. +1.3 Light Curve Fitting +1.3.1 Eureka! +We perform a joint fit on both white light curves to constrain the system +parameters. Limb darkening is calculated with the ExoTic-LD pacakge [45–47] +using a quadratic limb darkening [48, 49] and the 3D stellar grid from [35]. +Stellar parameters are adopted from [35], assuming Teff = 3312 K, log(g) = +4.94, Fe/H = 0.0. For all light curve fits both limb darkening parameters are +held constant. We find that the uncertainty induced in the light curve fits by +the stellar models is smaller than the uncertainty in individual transit depths, +with consistent transit spectra regardless of free or fixed limb darkening. We +trim the first 150 integrations prior to light curve fitting to remove a slight +ramp at the beginning of the data, which can be seen in Figure 1. +For all light curve fitting we consider a transit model [batman, 50] and a +linear ramp in time. We use emcee [51], running each chain to at least 10× +the auto-correlation time. The joint white light curve fit includes the planet + +Springer Nature 2021 LATEX template +Lustig-Yaeger & Fu et al. — LHS 475b with JWST +13 +Fig. 6 Comparison of uncertainty on planet radius derived from light curves fit at the native +pixel resolution and fitting of pre-binned light curves. The y-axis is in parts per thousand. We +find little to no difference in the uncertainty, suggesting that our 1/f correction is sufficient +to address the column-column variances. +radius, orbital period, center of transit, inclination, and scaled semi-major +axis as shared parameters, and independent temporal ramps for each white +light curve. Best fit orbital parameters are given in Table 1. The Eureka! +spectroscopic fits adopt the Eureka! white light best-fit orbital parameters +and only fit for planet radius and the linear temporal ramp. Following [43] we +extract and fit our light curves at the native pixel resolution of the detectors, +and later bin the data to our preferred resolution. +To test the robustness of our group-level 1/f noise correction, we also fit +a set of pre-binned light curves and compare the resulting uncertainty on the +planet radius. Figure 6 shows our uncertainty on planet radius for transit 1 for +both the native pixel resolution light curve fitting, and our pre-binned light +curve fitting. We find no significant improvement by fitting the full resolution +light curves, suggesting the 1/f noise has been sufficiently removed. We suggest +that this test should be run on all NIRSpec G395H TSOs to ensure that one +has sufficiently removed the 1/f noise. +1.3.2 FIREFLy +The extracted light curves are first summed in the wavelength direction includ- +ing both NRS1 and NRS2 to form the whitelight light curve for each visit. We +then used batman [50] and emcee [51] to joint fit the whitelight lightcurves +from the two visits with six free parameters including Rplanet/Rstar, a/Rstar, +orbital inclination, mid-transit time for both visits, and linear temporal slope +for both visits. The best-fit joint white light orbital parameters are listed in +Table 1. We fixed the limb darkening to the quadratic coefficients from the 3D +stellar model in the Stagger-grid [35] interpolated at Fe/H=0, Teff=3312K +and log(g)=4.94. +The orbital parameters and quadratic limb darkening coefficients are +then fixed to fit the lightcurve from each wavelength column. We used the +scipy.optimize.curvefit function with three free parameters including +linear temporal slope, constant offset and Rplanet/Rstar. + +Transit 1 +Native Pixel Light Curve Fitting +Pre-binned Light Curve Fitting +O +NRS1 +● NRS2 +3.0 +3.2 +3.4 +3.6 +3.8 +4.0 +4.2 +4.4 +4.6 +4.8 +5.0 +5.2 +wavelength [um]Springer Nature 2021 LATEX template +14 +Lustig-Yaeger & Fu et al. — LHS 475b with JWST +Parameter +Eureka! +FIREFLy +Tiberius +Rp/Rs +[unitless] +0.032756 ++1.44×10−4 +−1.44×10−4 +0.03257 ++1.40×10−4 +−1.43×10−4 +0.032226 ++4.86×10−4 +−4.86×10−4 +T0 +[BMJDT DB] +59822.8762805 ++2.92×10−5 +−2.91×10−5 +59822.8762593 ++2.62×10−5 +−2.62×10−5 +59822.8763396 ++5.85×10−5 +−5.85×10−5 +Period +[days] +2.02908843 ++5.65×10−6 +−5.66×10−6 +2.0290882 +(Fixed) +2.02909 +(Fixed) +a/Rs +[unitless] +15.223 ++4.62×10−1 +−4.37×10−1 +15.87235 ++4.88×10−1 +−4.56×10−1 +18.161 ++1.79 +−1.79 +i +[degrees] +86.991 ++1.41×10−1 +−1.39×10−1 +87.194 ++1.41×10−1 +−1.37×10−1 +88.237 ++4.80×10−1 +−4.80×10−1 +Table 1 Best fit orbital parameters from white light curve fitting. We adopt the FIREFLy +results as our system parameters. Eureka! and FIREFLy values are derived from joint fits to +both white light curves. Tiberius parameters are derived from a weighted mean of fits to +individual light curves. +1.3.3 Tiberius +We extracted a white light curve for each detector (NRS1 and NRS2), for +each transit. These white light curves were fit independently using a Lev- +enberg–Marquardt damped least squares routine with the Tiberius pipeline. +Limb darkening parameters were obtained with LDTK [52, 53] from assumed +stellar parameters of Teff = 3312 K, log(g) = 4.94, Fe/H = 0.0, and a quadratic +limb darkening law was used. The results of the white light curve fits were +used to fix the transit parameters for the spectroscopic light curve fits, which +were performed at pixel-level resolution using the same damped least squares +routine. Since the white light curves were fit independently, the best-fit param- +eters in Table 1 were obtained from a weighted average of the results of each +of the four white light curve fits (weighted by flux received on each detector). +1.4 Final Transmission Spectrum +All three independently reduced spectra from above are in agreement, showing +no atmospheric features and being statistically consistent with a flat line. The +findings reported in the study do not depend upon which reduction pipeline +is used. To select the final transmission spectrum for model interpretation, we +performed two tests. The first test computed the mean absolute deviation of +each spectrum relative to the averaged spectrum of the three reductions. The +purpose of this test was to identify the reduction that is the most representative +of the three reductions. The FIREFLy reduction was favored by this test. The +second test computed the reduced chi-squared relative to a flat line. This +test was meant to validate the size of the error bars. The unbinned FIREFLy +transmission spectrum had a reduced chi-squared of 1.015. +1.5 Planet Validation +The JWST detection of a transit at the same period, phase, and depth as the +TESS TOI eliminates the possibility of a TESS false positive due to a telescope +or instrument systematic effect. This leaves only astrophysical sources, such +as a background eclipsing binary, as the remaining false positive mechanism. + +Springer Nature 2021 LATEX template +Lustig-Yaeger & Fu et al. — LHS 475b with JWST +15 +Fig. 7 A 3.36” × 3.36” DSS image centered on LHS 475 taken 1999 June 20. The red +circle depicts the star’s J2000 position per Simbad, whereas the blue circle indicates the +star’s position for the JWST observations in September of 2022. We see no indication of a +background star at the 2022 position that could be the source of the observed transit signal. +For reference, NIRSpec’s field of view is 1.6×1.6 pixels on this image. +Using an archival DSS image of LHS 475, we leverage the star’s high +proper motion to rule out astrophysical false positives. The star moves 1.28 +arcsec/year [54, 0.3423 arcsec/year in RA, −1.2303 arcsec/year in Dec;], which +corresponds to ∼29 pixels in Figure 7 from the June 1999 DSS image to our +Sep 2022 JWST observation. The lack of measurable flux at LHS 475’s 2022 +position enables us to rule out all scenarios involving transits within a poten- +tial background system. Finally, we rule our a stellar binary companion due to +the precisely measured Gaia DR3 parallax of 80.1134 mas, which corresponds +to a distance of only 12.5 pc. +1.6 Implications for JWST/NIRSpec Noise Floor +In the interest of exploring the effects of correlated noise and constraining the +instrument noise floor, we concatenate residuals from both visits and com- +pute Allan variance plots for the white and spectroscopic light curve fits (see +Figure 8). Using the Eureka! white light curve data, we find no indication of a +noise floor down to 5 ppm; however, we identify correlated noise at timescales +of < 5 minutes. This timescale is consistent with the thermal cycling of heaters +in the ISIM Electronics Compartment, which induces small forces on the tele- +scopes backplane structure [55]. The effect is semi-periodic, the result of several +heaters cycling at different frequencies. + +200 +20000 +175 - +17500 +150 +15000 +125 +12500 + Pixel Number +2000 +10000 +100 +2022 +7500 +75 - +5000 +50 +2500 +25 +0 + 0 +0 +25 +50 +75 +100 +125 +150 +175 +200 +Pixel NumberSpringer Nature 2021 LATEX template +16 +Lustig-Yaeger & Fu et al. — LHS 475b with JWST +Fig. 8 Allan variance plots from the white and spectroscopic light curve fits. Panel (a) illus- +trates that the white light curve residuals from two of the analyses exhibit some correlated +noise at timescales of < 5 minutes (< 35 integrations). This is likely due to uncorrected 1/f +noise from the thermal cycling of on-board heaters [55, Section 4.5.3]. At longer timescales +(> 18 minutes), the Eureka! pipeline returns to the expected standard error with RMS val- +ues below 10 ppm. The Tiberius reduction did not sum the flux across both detectors and +was not used for this noise floor analysis. The spectroscopic RMS values in panels (b) – (d) +are more consistent with the standard error, thus confirming that the spectroscopic light +curves are dominated by white noise. +2 Modeling +With the reduced data and coadded transmission spectrum produced in the +previous section, we now use a variety of models to update the state of knowl- +edge on the LHS 475 system. We use archival photometry to update the +LHS 475 stellar parameters and assess the impact of stellar contamination on +the JWST transmission spectrum; we use empirical mass-radius relations to +estimate the planet mass given our precise radius measurement; and we fit +atmospheric models to the transmission spectrum to obtain constraints on the +possible atmospheric composition of LHS 475b. + +100 +Normalized RMS +10 +Eureka! Median RMS +Std. Err. (1/V N) +10-2 +100 +101 +102 +Bin Size [Number of Integrations]100 +Normalized RMS +10 +Tiberius Median RMS +Std. Err. (1/V N) +10-2 +100 +101 +102 +Bin Size [Number of Integrations]102 +RMS [ppm] +101 +ppm +Firefly RMS +Std. Err. (1/VN) +Eureka! RMS +Std. Err. (1/VN) +100 +100 +101 +102 +Bin Size [Number of Integrations]100 +Normalized RMS +10 +Firefly Median RMS +Std. Err. (1/V N) +10-2 +100 +101 +102 +Bin Size [Number of Integrations]Springer Nature 2021 LATEX template +Lustig-Yaeger & Fu et al. — LHS 475b with JWST +17 +2.1 Stellar Modeling and Transit Light Source +Contamination +We use PHOENIX spectra guided by archival photometry1 from the VizieR Pho- +tometry Viewer2 to improve constraints on the stellar parameters. Effective +temperature (Teff) is a primary driver of spectral shape and so we are able to +refine estimates by matching models to the observations at visible and near- +IR wavelengths. To do this, we computed a grid of synthetic spectra following +similar procedures to those outlined in [53] with Teff = 3200 – 3400 K (∆T += 10 K), log(g) = 4.5 – 5.2 dex (∆log(g) = 0.1 dex), and M⋆ = 0.262 M⊙. +This parameter space was chosen by expanding around the stellar parameters +published in the Tess Input Catalog [27]. For each model, we computed syn- +thetic visible and near-IR photometry over the same wavelengths as the filter +profiles for available measurements for LHS 475 and used a reduced χ2 test to +identify the model that most closely matched the observations. The reduced +χ2 test was conducted with both the observations and models normalized to +the 2MASS J band flux density value to isolate matching the spectral shape. +The fully explored grid yielded χ2 +ν values between 6.8 – 987.2, with 30 mod- +els returning similar values less than 50 (Figure 9). These models have Teff = +3300 (+80, -30) K, log(g) = 5.2 ± 0.5 g/cm3, and M⋆ = 0.262 M⊙. To deter- +mine the radius of the star we scaled all models with χ2 +ν < 50 by R2 +⋆/dist2 +until FJ2MASS,mod = FJ2MASS,obs, +R⋆ = +� +(FJ2MASS,obs/FJ2MASS,mod) × dist2 +(1) +We adopted the Gaia EDR3 distance of 12.481 ± 0.0065 pc [54], which +returned a radius of 0.2789 ± 0.0014 R⊙. +LHS 475 is typical of low-activity M dwarfs in the solar neighborhood. +TESS only detected two flares on LHS 475, both with energy below 1031 erg. +The inferred flare rate and other activity diagnostics are all consistent with the +general population of relatively inactive M dwarfs in a volume-limited sample +[39]. Hα and He I D3 are both in absorption, not emission. Ca II 8542 is +relatively deep. +Fitting models of the Transit Light Source (TLS) effect to the observed and +coadded transmission spectrum allows us to assess the degree to which stellar +contamination may impact and/or explain any characteristics of the planet’s +transmission spectrum. The TLS effect can impart slopes and features into +the transmission spectrum due to differences in the spot or faculae coverage +along the planet’s transit chord relative to the average coverage across the +visible stellar disk [11]. Following the formalism of [15], we calculate the TLS +1For NIRSpec observations, the jwst pipeline requires the flat field step be run for absolute flux +calibration. At the time of writing, only ground or dummy frames were available for the three +types of NIRSpec flat fields and for the correction applied in the photom step of the jwst Stage 2 +pipeline. These ground and dummy frames do not provide high accuracy absolute flux calibration, +so we choose to not use our new data for Stellar Modeling at this time. +2http://vizier.cds.unistra.fr/vizier/sed/ + +Springer Nature 2021 LATEX template +18 +Lustig-Yaeger & Fu et al. — LHS 475b with JWST +Fig. 9 Comparison of our 30 closest matching PHOENIX models (χ2 +ν < 50) to all available +archival photometry of LHS 475 from the VizieR Photometry Viewer. These models have +Teff = 3380 – 3320 K, log(g) = 4.7 – 5.7 g/cm2, M = 0.262 M⊙. +contamination spectrum +ϵλ = (1 − fspot − ffac)Sλ,phot + fspotSλ,spot + ffacSλ,fac +(1 − Fspot − Ffac)Sλ,phot + FspotSλ,spot + FfacSλ,fac +(2) +where Sλ,phot, Sλ,spot, and Sλ,fac refer to the spectrum of the stellar photo- +sphere, spots, and faculae, respectively, fspot and ffac refer to the spot and +faculae projected area covering fractions along the transit chord, and similarly +Fspot and Ffac refer to the spot and faculae projected area covering fractions +across the entire visible stellar disk. Thus, ϵλ is the ratio of the stellar spec- +trum along the transit chord to the spectrum of the whole disk, and a general +model for how the TLS effect contaminates the observed transmission spec- +trum. Given Equation 2 the observed drop in flux that we refer to as the +transmission spectrum is simply +∆Fλ,obs = ϵλ +�Rp +Rs +�2 +λ +(3) +where the TLS contamination spectrum is multiplied by the wavelength- +dependent “true” planet transmission spectrum. We use the Dynesty nested +sampling code [56] to infer posterior distributions for the TLS contamination +model parameters under the assumption of a wavelength independent planet +transmission spectrum. We run the standard nested sampling algorithm [57] + +PHOENIX Models with x<50 +1.2 +LHS 475 Observations +1.0 +0.8 +0.6 +0.4 +0.2 +0.0 +5000 +10000 +15000 +20000 +25000 +30000 +Wavelength (A)Springer Nature 2021 LATEX template +Lustig-Yaeger & Fu et al. — LHS 475b with JWST +19 +Fig. 10 Corner plot comparing the prior (orange) and posterior (dark blue) PDFs for +a subset of the fitting parameters in the TLS contamination retrieval. The flat spectrum +reveals a consistent spot (and faculae) coverage along the transit chord compared to the full +stellar disk. +with 1000 live points until the estimated contribution to the total evidence +from the remaining prior volume drops below the threshold of dlogz=0.075. +In general, no evidence of TLS contamination is observed in the flat +transmission spectrum and the TLS model readily reproduces the featureless +spectrum. Figure 10 compares the prior and posterior probability distributions +for a subset of the TLS model parameters. The inferred posterior distribution +for the TLS contamination model generally reproduce the prior distributions, +with the exception of the covariance between the spot (faculae) area cover- +ing fraction along the transit chord compared to the spot (faculae) covering +fraction on the full disk. These two convariance are constrained along a line + +disk spot +-0.15 +Posterior PDF +Prior PDF +disk faculae +-0.19 +0.8 +disk faculae +fraction +0.6 +chord spot +0.2 +chord spot +fraction +chord faculae +0.2 +-0.21 +chord faculae +fraction +0.6 +disk spot +disk faculae +chord spot +chord faculae +fraction +fraction +fraction +fractionSpringer Nature 2021 LATEX template +20 +Lustig-Yaeger & Fu et al. — LHS 475b with JWST +with a slope of approximately unity, such that the ratio of spot (faculae) cov- +ering fraction on the full stellar disk to spot (faculae) covering fraction along +the transit chord is 1.005 ± 0.003 (0.948 ± 0.006). This implies that—although +the exact area covered by spots (and faculae) is not well constrained—at the +observed precision there is no evidence of differing spot (or faculae) cover- +age along the transit chord compared to the average stellar disk. We repeated +the same TLS contamination retrieval with the addition of the transit depth +measured by TESS in the optical (978±73 ppm) and obtained the same result. +2.2 Planet Radius, Mass, and Equilibrium Temperature +From the constraint on the white light curve transit depth (1060 ± 9 ppm) +and the stellar radius (Rs = 0.279 ± 0.014 R⊙), we calculate the planet radius +to be Rp = 0.991 ± 0.050 R⊕ (6319 ± 318 km). The 5% radius precision is +dominated by uncertainty in the stellar radius. For reference, the preexisting +radius constraint from TESS sectors 12-39 was 0.93 ± 0.70 R⊕ [10]. +Despite the lack of a mass measurement for LHS 475b, we use three different +methods to estimate the mass: 1) from the transmission spectrum [13], 2) from +probabilistic mass-radius-relation [58], and 3) from probabilistic bulk density +arguments. We use atmospheric models over a range of masses compared to +the spectroscopic data from NIRSpec/G395H to infer conservative upper and +lower limits of the possible mass for LHS 475b. To do so, we employ the +forward model framework discussed in the following section. First, we find the +uppermost mass limit by finding the densest planet that could stably support +a hydrogen-helium envelope and fit the data. To obtain a reduced-χ2 ≤ 1, we +determine that we must consider a mass of 24 M⊕. Combined with the precise +radius constraint, this upper limit mass results in a planetary density of 119 +g/cm−3, or 6× that of pure uranium. Given this unrealistic density, we can +clearly reject a hydrogen-helium atmosphere around a very dense planet. On +the other hand, to find the lowest mass that is consistent with the NIRSpec +data, we instead consider a planet with a very high mean molecular weight +atmosphere, but from a reasonably abundant molecule – that of pure CO2 +– and scale the mass down until we obtain a reduced-χ2 ≤ 1. Under this +atmospheric assumption, we find that masses consistent with the data extend +down to 0.78 M⊕. Together this method gives us a range of masses consistent +with the observed atmosphere between 0.78 - 24 M⊕. +Next, we use the mass-radius relationship gleaned from the existing pop- +ulation of small M dwarf exoplanets to estimate the planet’s mass given our +precise radius constraint. Using the Forcaster code’s probabilistic mass-radius +relationship and mass prediction tool [58], we estimate the mass of LHS 475b +to be Mp = 0.980+0.632 +−0.359 M⊕. +Our third mass estimate leverages recent results on the interior bulk densi- +ties among the M dwarf small planet population. Given the radius constraint +for LHS 475b, the planet is consistent with the population of M dwarf plan- +ets having rocky interior compositions (1.21 ± 0.28 R⊕) [34]. Therefore, if we +assume that LHS 475b is indeed a rocky planet with a mean bulk density + +Springer Nature 2021 LATEX template +Lustig-Yaeger & Fu et al. — LHS 475b with JWST +21 +consistent with the M dwarf rocky planet population (0.94 ± 0.13 ρ⊕) [34], +then we find the planet mass to be Mp = 0.914 ± 0.187 M⊕. If we consider +that instead the planet were in the population of lower density water worlds +(with 50% water, 50% rock interiors), then this would ultimately have ram- +ifications for the scale height and water content of the atmosphere [e.g., 59], +that are inconsistent with the featureless transmission spectrum that we mea- +sured. Therefore, it is likely that LHS 475b has a mass that is consistent with +a rocky mean bulk density. In the atmospheric models that follow, we assume +the planet is consistent with the population with rocky interiors and use the +corresponding mass Mp = 0.914 ± 0.187 M⊕, which is consistent with our +previous estimates, albeit with a tighter constraint. +We update LHS 475b’s zero bond albedo equilibrium temperature to +586 ± 12 K (assuming uniform heat redistribution). In the limit of instant +re-radiation expected from a planet with a tenuous or nonexistent atmo- +sphere, the estimated day side brightness temperature is 748 ± 16 K. These +updates may aid in the planning of any future secondary eclipse observations +of LHS 475b. +2.3 Atmospheric Modeling +We use atmospheric radiative transfer models to simulate the transmission +spectrum of LHS 475b for comparison with our JWST observations. In the next +section, forward models of single-composition end-member atmospheres and +archetypal atmospheres are used to illustrate the atmospheric compositions +that are consistent with our observed data. Then, retrieval models are used +to simulate a broad range of atmospheric compositions to place constraints +on key atmospheric parameters given the precise, yet featureless transmission +spectrum. +2.3.1 Forward Modeling +We use the forward modeling capabilities of two different open-source atmo- +spheric radiative transfer codes, PICASO [60] and CHIMERA [61, 62], to explore +the plausibility of various atmospheric archetypes. We compute each model +atmosphere for a planet mass consistent with a rocky mean bulk density, +Mp = 0.914 M⊕, a planetary radius of Rp = 0.991 R⊕, and a stellar radius +Rs = 0.279 R⊙, and a planetary equilibrium temperature of Teq = 600 K, +as above. In each case, we compare the modeled transmission spectrum to +the NIRSpec/G395H data for LHS 475b from 2.9 – 5.3 µm and compute the +reduced-χ2 between the modeled spectrum and the data. +For the CHIMERA models, we compute chemically consistent atmospheric +mixing ratios for 1×, 10×, 100×, and 1000× solar metalicities, with a solar +C/O ratio. CHIMERA uses a preset grid of atmospheric molecular abundances +along temperature-pressure profiles, metallicity, and C/O ratio generated from +the NASA CEA code [63]. For the temperature-pressure profile, the code uses +the five-parameter, double gray, one-dimensional parametrization of [64], where + +Springer Nature 2021 LATEX template +22 +Lustig-Yaeger & Fu et al. — LHS 475b with JWST +we input a planetary equilibrium temperature of 600 K. For these CHIMERA +models, we include opacity from H2O, CH4, CO, CO2, NH3, N2, HCN, H2S, +H2/He CIA [65, 66], and Rayleigh scattering from H2. We consider simplistic +cloudy hydrogen-dominated atmospheric models with CHIMERA by computing +a cloud-top pressure for a grey absorbing cloud. We generate atmospheric +transmission models with the correlated-k method of radiative transfer and +bin the resulting model to the data before calculating our reduced-χ2. +For the PICASO models, we generate simplified end-member atmospheric +compositions with isothermal temperature-pressure profiles. We set a pressure +grid which ranges from 1 µbar to 100 bar, and then set an isothermic tem- +perature at the equilibrium temperature of 600 K. For the models shown in +Figure 2, each atmosphere consists solely of either H2O, CO2, CH4, or as in +the case of the Earth-like atmosphere, follows the atmospheric abundances of +Earth above the water cold-trap, with 78% N2, 21% O2, 0.9% Ar, 416 ppm +CO2, 524 ppm He, and 187 ppm CH4. For the models shown in Figure 11, +we generate individual pressure grids with an upper bound according to the +terrestrial body’s surface pressure (e.g., the Earth-like model has an upper +atmospheric pressure bound of 1 bar; the Venus-like model has an upper pres- +sure bound of 90 bar). We assume isothermal temperature profiles (at 600 K) +with atmospheric abundances fixed to the composition of each Solar System +body above any cold trap. For the cloudy Venus and hazy Titan cases, we +implement a simple grey absorbing cloud at the pressure level according to the +Venus cloud-top (1 mbar) and the Titan haze-top (0.01 mbar). The opacity +database is resampled to R=10,000 and is taken from [67]. Models are then +binned to the data for reduced-χ2 comparison. +We strongly rule out clear atmospheres of 1× to 100× solar, with reduced- +χ2s ≥ 9, or over 10σ. Given the mass estimate analysis above, even with +the uncertain planetary mass, we are able to reject low (≤100× solar) atmo- +spheres. To obtain a reduced-χ2 ∼ 1 in cloudy low-metallicity atmospheres, +we must insert an opaque cloud deck with cloud-top pressure between 0.5 and +1 µbar, which can be discarded as unrealistic given the lack of cloud-forming +material at such low pressures. Each of these cases represents a hydrogen-rich +atmosphere around a rocky, 600 K planet, which would not be stable against +escape over the lifetime of the system, and thus our ability to reject them is +not unexpected. +For the 1000× atmosphere, we calculate a reduced-χ2 to the data of 1.5, +which weakly rules out this scenario to 2.5σ. The pure methane atmosphere +is rejected with a reduced-χ2=2.3, or 5σ. Both the end-member atmospheric +compositions of a pure steam or Earth-like atmospheric abundances are weakly +disfavored at ≳1σ. A pure 1 bar carbon dioxide atmosphere or no atmosphere +at all are preferred but not statistically distinguishable from each other. For +the Solar System terrestrial archetype atmospheres shown in Figure 11, we +also weakly disfavor (≳1σ) clear Venus, Titan, or Earth-like atmospheres, but +cannot statistically distinguish between a thin Mars-like atmosphere, a hazy + +Springer Nature 2021 LATEX template +Lustig-Yaeger & Fu et al. — LHS 475b with JWST +23 +3.0 +3.5 +4.0 +4.5 +5.0 +Wavelength ( m) +200 +150 +100 +50 +0 +50 +100 +150 +200 +Relative Transit Depth (ppm) +Earth-like: +2=1.1 +Mars-like: +2=1.0 +Titan-like, clear: +2=1.3 +Titan-like, hazy: +2=0.95 +Venus-like, clear: +2=1.1 +Venus-like, cloudy: +2=0.97 +Mercury-like: +2=0.91 +JWST/NIRSpec G395H +Fig. 11 +Final, binned spectrum (black points) compared to atmospheric models with +compositions of the Solar System terrestrial planets (coloured lines). Our data, to weakly rule +out Earth composition (blue solid), clear Titan composition (orange solid), and clear Venus +composition atmospheres (yellow solid). However, the data are all consistent within error to +that of a hazy Titan composition with a haze-top at 0.01 mbar (dotted orange), a cloudy +Venus composition with a cloud-top at 1 mbar (dotted yellow), and a Mars composition +atmosphere (red solid), as well as that of an airless body, like Mercury (grey dotted line). +Titan-like atmosphere, or a cloudy Venus, as consistent with the retrieval +modeling shown in Figure 3 and discussed below. +2.3.2 Retrieval Modeling +We use two different atmospheric retrieval codes—smarter and POSEIDON—to +explore the range of atmospheric properties that are consistent with, or ruled +out, by LHS 475b’s transmission spectrum. +Retrievals with smarter +The smarter retrieval code [68, 69] couples line-by-line radiative transfer cal- +culations from the Spectral Mapping Atmospheric Radiative Transfer forward +model (smart [70]) to the dynesty nested sampling Bayesian inference code +[56] to retrieve planetary and atmospheric parameters that are consistent with +the JWST observations. We assume an isothermal temperature-pressure profile +and evenly-mixed gas volume mixing ratios. We calculate line absorption coef- +ficients for gaseous molecules using the lblabc code [70] with inputs from the +HITRAN2016 line list [71]. To speed up the retrieval calculations, absorption +coefficients are produced for an isothermal temperature of 550 K and resam- +pled to a fixed wavenumber resolution of 0.25 cm−1. Our tests that relaxed +these assumptions on the line absorption coefficients resulted in negligible +errors relative to the measurement uncertainties. +Our nominal smarter retrieval setup uses 9 free parameters that include +the log10volume mixing ratios for the molecules H2O, CH4, CO2, and CO, + +Springer Nature 2021 LATEX template +24 +Lustig-Yaeger & Fu et al. — LHS 475b with JWST +along with the reference radius of the planet (Rp,ref) at the spectral con- +tinuum (which is interpreted as either a cloud-top or the solid-surface), the +atmospheric pressure at the reference radius (P0), the isothermal temperature +(T0), the planet mass (Mp), and the mean molecular weight (MMW) of the +bulk atmospheric composition (µ). We impose uninformative flat priors on the +gases within the interval U(−12, 0) log10(VMR), the radius within ±10% of +the white light radius constraint, the apparent surface pressure P0 ∼ U(−6, 1) +log10(bar), and the isothermal temperature T0 ∼ U(200, 900) K. The total +atmospheric MMW is calculated self-consistently from the gases included in +the retrieval plus an unknown, agnostic background gas that fills the remain- +ing volume of the atmosphere after the other gases are accounted for. The +agnostic background gas has a molecular weight sampled from a flat prior dis- +tribution µ ∼ U(2.5, 50.0) g/mol. This covers a range in MMW from a low +mass solar composition mixture of H2+He to high mass, simple molecules such +as CO2 and O3. While this model construction is similar to other retrievals +that assume a known background gas such as H2+He or N2, using a flat prior +on the molecular weight of the background gas eliminates a strong implicit +prior on the total atmospheric MMW (which is strongly biased to that of the +assumed background gas). We assume that the planet possesses a rocky inte- +rior composition, as previously discussed, and sample planet masses from a +normal distribution Mp ∼ N(0.914, 0.187) M⊕. +We run smarter retrievals using the dynesty code with the standard nested +sampling algorithm [57] and fit the final coadded transmission spectrum from +the FIREFLy reduction binned to a fixed resolution of ∆λ = 10 nm. We use +600 live points and run the model until the estimated contribution to the +total evidence from the remaining prior volume drops below the threshold of +dlogz=0.075. To obtain additional posterior samples that effectively reduces +the numerical sampling errors in the final visualization of the posteriors, we +run an MCMC chain using emcee [51]. The MCMC is run with 135 walkers for +1000 steps and is initialized using points from the equally weighted dynesty +posterior. The resulting MCMC chain requires no iterations to be removed +for the burn-in and the emcee posteriors agree with the dynesty posteriors to +within the finite sampling uncertainty. Our final posteriors are constructed by +combining the list of samples obtained with the two inference codes. +Figure 12 shows the posterior PDFs from our nominal smarter retrieval +along with an overview of spectral models sampled from the posterior. +Although a large swath of terrestrial atmospheric parameter space remains +allowed given the observations, a non-negligible subset of models are disfa- +vored and provide us with insights into the nature of the planet. Figure 3 +highlights these constraints and includes the isothermal scale height for atmo- +spheres contained in the posterior distribution. Scale height calculations are +performed in a post-processing step after running the retrieval to compress the +degeneracies between planet gravity (fit in terms of planet radius and mass), +isothermal temperature, and mean molecular weight into a single representa- +tive value for the atmosphere’s vertical extensiveness. In general, atmospheric + +Springer Nature 2021 LATEX template +Lustig-Yaeger & Fu et al. — LHS 475b with JWST +25 +Fig. 12 Corner plot showing the 1D and 2D marginalized posterior probability distribution +for a subset of the smarter model parameters. The upper right axis shows the 1σ and 3σ +envelope around the median retrieved spectrum, which corresponds to the multidimensional +posterior PDF projected onto the observed spectrum. Disfavored atmospheres are thick +(large P0), hot (large T0), and composed primarily of light molecules (low µ). +characteristics that tend towards increasing the scale height of the atmosphere +are disfavored, including high temperatures and low mean molecular weight +bulk atmospheric compositions, particularly for atmospheres with apparent +surface pressures ≳10 mbar (1000 Pa). Conversely, compact atmospheres with +small scale heights—due to high mean molecular weight molecules or cool +temperatures—are allowed across the full range of apparent surface pressures +explored. These two general characteristics yield a preference for extremely low +apparent surface pressures of ∼1 µbar. High abundances of CO2 and CH4 can +be ruled out in the thick and extended atmospheric scenarios. While CH4 can +be ruled out in a relatively low MMW CH4-dominated atmosphere (16 g/mol), + +NIRSpec G395H +-1.70 +1300 +Atmospheric Model (± lo, 3o) + 218.27; x2 += 0.97 +transit depth [ppm] +1200 +1100 +1000 +[] L +900 +095 +800 +3.5 +4.0 +4.5 +5.0 +[g/mol] +15.86 +wavelength [μm] +[g/ mol] +3. +-4.79 +H20 +-2.87 +92- +001 +5.0 +8 +To [K] +CH4 +Po [Pa] +μ [g/mol] +H20 +CO2 +COSpringer Nature 2021 LATEX template +26 +Lustig-Yaeger & Fu et al. — LHS 475b with JWST +CO2 is more difficult to rule out in a heavier CO2-dominated atmosphere (44 +g/mol). +The H2O marginalized posterior shows a slight uptick towards large VMRs +due to a small rise in the spectrum at the blue end (<3 µm) where there is +a H2O band. However, we caution that since a flat line model fit provides a +χ2 ≈ 1, the retrieval is inherently overfitting and cannot lead to a statistically +significant detection of molecular absorption from these data. To emphasize +this point we fit the spectrum with a generalized Gaussian model (plus a flat +transit depth component) [e.g. 42] as a minimally parametric stand-in model +for any molecular absorbers not included in the retrieval. This model recognizes +the same blue end slope in its maximum likelihood solution, but is disfavored +relative to the best fitting flat line at 3.1σ, further indicating that the “feature” +is consistent with noise. +We also run a series of smarter retrieval models with the same setup as +previously described except with single gas compositions. From the posterior +distributions, we derive the maximum size of molecular absorption features +such that any larger and they would have been detected in the spectrum. At +3σ confidence, we rule out H2O absorption features larger than 61 ppm at 2.8 +µm, CH4 features larger than 38 ppm at 3.3 µm, CO2 features larger than 49 +ppm at 4.3 µm, and CO features larger than 62 ppm at 4.6 µm. +Retrievals with POSEIDON +POSEIDON [72] is an atmospheric retrieval code that has been widely applied +to interpret transmission spectra of giant exoplanets. POSEIDON also supports +retrievals of terrestrial exoplanets [73, 74], which we here apply to LHS 475b’s +transmission spectrum. The most up-to-date description of POSEIDON’s radia- +tive transfer technique, forward atmospheric model, and opacity sources is +contained in [75]. We explore the range of possible atmospheres for LHS 475b +using the nested sampling algorithm PyMultiNest [76, 77]. +We employ a 9-parameter POSEIDON retrieval configuration. We compute +transmission spectra at a spectral resolution of R = 20,000 from 2.6–5.3 µm +(using cross sections resampled from a high-resolution wavenumber grid with +0.01 cm−1 spacing). Our model atmospheres cover 10−7–10 bar with 100 layers +spaced uniformly in log-pressure. We assume 1D plane-parallel atmospheres +with an isothermal pressure-temperature profile, uniform-in-altitude gas vol- +ume mixing ratios, and that hydrostatic equilibrium and the ideal gas law hold +throughout the atmosphere. The stellar radius is fixed to Rs = 0.279 R⊙. The +atmospheric structure and composition are thus described by 7 quantities: the +isothermal temperature, T, the atmospheric radius at the 1 bar apparent sur- +face pressure level, Rp, ref, and the volume mixing ratios of H2, H2O, CH4, CO2, +and CO. We prescribe N2 as a spectrally inactive filler gas, which allows the +mean molecular weight to vary in a similar manner to the smarter retrievals, +except bounded within the simplex of gas weights included in the model. We +also fit for the pressure of an opaque surface (or cloud), Psurf, and the gravita- +tional field strength at the pressure level corresponding to the observed planet + +Springer Nature 2021 LATEX template +Lustig-Yaeger & Fu et al. — LHS 475b with JWST +27 +Fig. 13 Retrieved volume mixing ratios from the POSEIDON retrievals of LHS 475b’s +transmission spectrum. Two retrievals with different prior treatments for the atmospheric +composition are overplotted: centered log-ratio (CLR) transformed abundances with a pri- +ori unknown composition (green); and log-uniform abundances assuming an N2-dominated +atmosphere (orange). Statistical 2σ upper and lower limits are annotated (or ‘N/A’ if uncon- +strained). Both retrievals rule out H2-dominated atmospheres. The log-uniform retrieval +finds upper limits on H2O, CH4, CO2, and CO due to the assumption that N2 dominates +the atmosphere, while the agnostic CLR treatment does not find upper limits for their abun- +dances. For clarity in viewing upper limits, we switch from a logarithmic to linear x-axis at a +mixing ratio of 10%. The probability densities for the linear histogram bins are renormalized +to match the probability density of the nearest logarithmic bin left of the 10% boundary. +radius (r = 0.991 R⊕), g. Our priors for the non-mixing ratio parameters are +as follows: T ∼ U (200 K, 900 K), Rp, ref ∼ U (0.9 Rp, 1.1 Rp), log10 Psurf ∼ U +(-7, 1) (units of bar), and log10 g ∼ N (2.960, 0.0992) (units of cm s−2). The +Gaussian prior on log10 g arises from error propagation from the uncertainties +on Rp and Mp — with the latter uncertainty assuming the same rocky interior +assumption as the other models. We use 4,000 PyMultiNest live points during +each retrieval. +We explore two distinct prior treatments for the atmospheric gas mix- +ing ratios during our POSEIDON retrievals. Our first approach parameterizes +the mixing ratios of H2, H2O, CH4, CO2, and CO with priors uniform-in- +the-logarithm, log10 Xi ∼ U (-12, 0), with the remainder of the atmosphere +filled with N2 (XN2 = 1 − � +i Xi). Any samples requiring negative N2 mix- +ing ratios are rejected. This ‘log-uniform’ mixing ratio prior is the standard +method used for giant exoplanet retrievals, albeit with H2 + He assumed as +the filler gas. However, this approach implicitly places a strong prior favouring +high abundances for the filler gas [78]. For small planets such as LHS 475b, +where we do not know a priori which gas dominates the atmosphere, one + +2α limits +2o limits +2o limits +N/A +H2 < 27% +N/A +N² > 37% +H0 < 19% +H2 < 12% +CLR Prior +log-uniform Prior +10-610-410-2 0.2 +1.010-610-410-2 0.20.4 +0.4 +0.6 +0.8 +1.0 +10-610-410-2 0.2 0.4 0.6 +0.8 +0.60.81.0 +N2 +H2 +H20 +2o limits +2o limits +2o limits +Probability density +N/A +N/A +N/A +CH4 < 9% +CO2 < 14% +CO < 44% +10-610-410-2 0.2 +10-610-410-2 0.2 +10-610-410-2 0.2 +0.4 +0.6 +0.8 +1.0 +0.4 +0.6 +0.8 +1.0 +0.4 +0.6 +0.8 +1.0 +CH4 +CO2 +COSpringer Nature 2021 LATEX template +28 +Lustig-Yaeger & Fu et al. — LHS 475b with JWST +may prefer an agnostic prior that treats all n gases equally. Instead of the +agnostic background gas employed by smarter to resolve this assumption, +our second approach with POSEIDON uses the centred log-ratio transformation +(CLR) [79] of the mixing ratios as free parameters: ξi = ln(Xi/g(X)), where +g(X) = +��n +j=0 Xj +�1/n +. For n = 6 gases with a minimum mixing ratio of +Xmin = 10−12, we ascribe a uniform prior on the 5 CLR variables: ξi ∼ U +(-20.996, 22.105) — for our POSEIDON model, these correspond to H2, H2O, +CH4, CO2, and CO. The upper limit corresponds to the ith gas (i = 1...5) +dominating the atmosphere and all other gases having Xj̸=i = Xmin, while the +lower limit corresponds to Xi = Xmin and the other gases equally filling the +remainder of the atmosphere. Since �n +i=0 ξi = 0 (which automatically ensures +�n +i=0 Xi = 1), we use a numerical rejection scheme to ensure that ξ0 (corre- +sponding here to N2) falls within the allowed prior range for the other ξi. The +results for the CLR approach are permutation invariant, so switching which +gas corresponds to i = 0 does not alter the results. +We find that the derived constraints on LHS 475b’s atmosphere are sen- +sitive to the choice of mixing ratio prior. Figure 13 compares the retrieved +abundances from POSEIDON for the CLR and log-uniform mixing ratio pri- +ors. Both approaches rule out H2 dominated atmospheres: log (H2) < 27% for +CLR priors vs. log (H2) < 12% for log-uniform priors (both 2σ upper limits). +However, the log-uniform retrieval also infers upper limits on the abundances +of H2O, CH4, CO2, and CO — ranging from < 9% to < 44% — which arise +from the built in prior bias towards N2 being the background gas. The CLR +prior, in contrast, recognizes that these heavier gases all provide reasonable +explanations for LHS 475b’s flat transmission spectrum due to their high mean +molecular weight — consistent with the smarter retrieval which also ruled out +low mean molecular weights. However, even with the CLR prior, certain atmo- +spheric scenarios are still disfavored. By examining Figure 14, which shows the +full POSEIDON posterior for the CLR prior, one can see that CH4 dominated +atmospheres with surface pressures ≳ 10 mbar are ruled out to 3σ confidence. +In other words, our retrieval accounting for the a priori unknown background +gas confirms the result from our forward modelling analysis that thick, pure +CH4 atmospheres with Psurf ≥ 1 bar are strongly ruled by our LHS 475b +transmission spectrum. +Acknowledgments. +Data Availability: +The data used in this paper are from the JWST Cycle 1 General Observer +program 1981 and are publicly available on the Mikulski Archive for Space +Telescopes (https://mast.stsci.edu). Fully reduced data products from this +paper will posted on the Zenodo long term public archive upon acceptance. + +Springer Nature 2021 LATEX template +Lustig-Yaeger & Fu et al. — LHS 475b with JWST +29 +Rp, ref = 0.97+0.01 +−0.02 +2.70 +2.85 +3.00 +3.15 +3.30 +log g +log g = 2.98+0.09 +−0.09 +6 +4 +2 +0 +log Psurf +log Psurf = −3.96+2.70 +−2.05 +300 +450 +600 +750 +900 +T +T = 393+264 +−138 +10.0 +7.5 +5.0 +2.5 +0.0 +log H2 +log H2 = −6.20+3.89 +−3.75 +10.0 +7.5 +5.0 +2.5 +0.0 +log H2O +log H2O = −5.21+4.67 +−4.46 +10.0 +7.5 +5.0 +2.5 +0.0 +log CH4 +log CH4 = −5.88+4.04 +−3.96 +10.0 +7.5 +5.0 +2.5 +0.0 +log CO2 +log CO2 = −5.85+5.62 +−4.10 +0.90 +0.95 +1.00 +1.05 +Rp, ref +10.0 +7.5 +5.0 +2.5 +0.0 +log CO +2.70 +2.85 +3.00 +3.15 +3.30 +log g +6 +4 +2 +0 +log Psurf +300 +450 +600 +750 +900 +T +10.0 +7.5 +5.0 +2.5 +0.0 +log H2 +10.0 +7.5 +5.0 +2.5 +0.0 +log H2O +10.0 +7.5 +5.0 +2.5 +0.0 +log CH4 +10.0 +7.5 +5.0 +2.5 +0.0 +log CO2 +10.0 +7.5 +5.0 +2.5 +0.0 +log CO +log CO = −2.00+2.00 +−6.40 +LHS 475b +Fig. 14 Corner plot showing the 1D and 2D marginalized posterior probability distribu- +tions from the POSEIDON retrieval using CLR mixing ratio parameters. The units are: Rp, ref +(R⊕), g (cm s−2), Psurf (bar), and T (K). The inset shows the corresponding retrieved +transmission spectrum model (1σ and 2σ confidence regions) compared to the NIRSpec +G395H observations. The solution rules out H2-dominated atmospheres (to > 5σ) and thick +atmospheres (Psurf ≳ 10 mbar) dominated by CH4 (to 3σ). +Code Availability: +The codes used throughout this work for data analysis, atmospheric mod- +eling, and manuscript preparation are as follows: Astropy [80, 81], Batman +[50], CHIMERA [61, 62], Dynesty [56], emcee [51], Eureka! [29], ExoCTK [82], +Forecaster [58], IPython [83], jwst [41], Matplotlib [84], NumPy [85, 86], +PICASO [60], POSEIDON [72], PyMC3[87], SciPy [88], smarter [69]. +References +[1] Fujii, Y., Angerhausen, D., Deitrick, R., Domagal-Goldman, S., Grenfell, +J.L., Hori, Y., Kane, S.R., Pall´e, E., Rauer, H., Siegler, N., Stapelfeldt, + +×10-3 +Retrieved Spectrum (Median) +1.24 +G 4102b +Retrieved Spectrum (lo) +Retrieved Spectrum (2o) +1.20 +Retrieved Spectrum (Binned) + JWST NIRSpec G395H +2 +1.16 +1.12 +.08 +1.04 +1.00 +0.96 +0.92 +2.8 +3 +3.2 +3.4 +3.6 +3.8 +4 +4.2 +4.4 +4.6 +4.8 +5 +5.2 +Wavelength (μm)Springer Nature 2021 LATEX template +30 +Lustig-Yaeger & Fu et al. — LHS 475b with JWST +K., Stevenson, K.B.: Exoplanet Biosignatures: Observational Prospects. +Astrobiology 18(6), 739–778 (2018) arXiv:1705.07098 [astro-ph.EP]. +https://doi.org/10.1089/ast.2017.1733 +[2] of Sciences Engineering, N.A., Medicine: Exoplanet Science Strategy, +(2018) +[3] Seager, S., Deming, D.: On the Method to Infer an Atmosphere on a +Tidally Locked Super Earth Exoplanet and Upper Limits to GJ 876d. +ApJ 703(2), 1884–1889 (2009) arXiv:0910.1505 [astro-ph.EP]. https:// +doi.org/10.1088/0004-637X/703/2/1884 +[4] Mansfield, M., Kite, E.S., Hu, R., Koll, D.D.B., Malik, M., Bean, +J.L., Kempton, E.M.-R.: Identifying Atmospheres on Rocky Exoplanets +through Inferred High Albedo. ApJ 886(2), 141 (2019) arXiv:1907.13150 +[astro-ph.EP]. https://doi.org/10.3847/1538-4357/ab4c90 +[5] Segura, A., Kasting, J.F., Meadows, V., Cohen, M., Scalo, J., Crisp, +D., Butler, R.A.H., Tinetti, G.: Biosignatures from Earth-Like Planets +Around M Dwarfs. Astrobiology 5, 706–725 (2005) astro-ph/0510224. +https://doi.org/10.1089/ast.2005.5.706 +[6] Tian, F.: Atmospheric escape from solar system terrestrial planets and +exoplanets. Annual Review of Earth and Planetary Sciences 43, 459–476 +(2015) +[7] Luger, R., Barnes, R.: Extreme Water Loss and Abiotic O2Buildup on +Planets Throughout the Habitable Zones of M Dwarfs. Astrobiology 15, +119–143 (2015) arXiv:1411.7412 [astro-ph.EP]. https://doi.org/10.1089/ +ast.2014.1231 +[8] Batalha, N.E., Lewis, N.K., Line, M.R., Valenti, J., Stevenson, K.: Strate- +gies for Constraining the Atmospheres of Temperate Terrestrial Planets +with JWST. ApJL 856(2), 34 (2018) arXiv:1803.07983 [astro-ph.EP]. +https://doi.org/10.3847/2041-8213/aab896 +[9] Lustig-Yaeger, J., Meadows, V.S., Lincowski, A.P.: The Detectability +and Characterization of the TRAPPIST-1 Exoplanet Atmospheres with +JWST. AJ 158(1), 27 (2019) arXiv:1905.07070 [astro-ph.EP]. https:// +doi.org/10.3847/1538-3881/ab21e0 +[10] Guerrero, N.M., Seager, S., Huang, C.X., Vanderburg, A., Garcia Soto, +A., Mireles, I., Hesse, K., Fong, W., Glidden, A., Shporer, A., Latham, +D.W., Collins, K.A., Quinn, S.N., Burt, J., Dragomir, D., Crossfield, +I., Vanderspek, R., Fausnaugh, M., Burke, C.J., Ricker, G., Daylan, T., +Essack, Z., G¨unther, M.N., Osborn, H.P., Pepper, J., Rowden, P., Sha, +L., Villanueva, J. Steven, Yahalomi, D.A., Yu, L., Ballard, S., Batalha, + +Springer Nature 2021 LATEX template +Lustig-Yaeger & Fu et al. — LHS 475b with JWST +31 +N.M., Berardo, D., Chontos, A., Dittmann, J.A., Esquerdo, G.A., Mikal- +Evans, T., Jayaraman, R., Krishnamurthy, A., Louie, D.R., Mehrle, N., +Niraula, P., Rackham, B.V., Rodriguez, J.E., Rowden, S.J.L., Sousa-Silva, +C., Watanabe, D., Wong, I., Zhan, Z., Zivanovic, G., Christiansen, J.L., +Ciardi, D.R., Swain, M.A., Lund, M.B., Mullally, S.E., Fleming, S.W., +Rodriguez, D.R., Boyd, P.T., Quintana, E.V., Barclay, T., Col´on, K.D., +Rinehart, S.A., Schlieder, J.E., Clampin, M., Jenkins, J.M., Twicken, +J.D., Caldwell, D.A., Coughlin, J.L., Henze, C., Lissauer, J.J., Morris, +R.L., Rose, M.E., Smith, J.C., Tenenbaum, P., Ting, E.B., Wohler, B., +Bakos, G.´A., Bean, J.L., Berta-Thompson, Z.K., Bieryla, A., Bouma, +L.G., Buchhave, L.A., Butler, N., Charbonneau, D., Doty, J.P., Ge, J., +Holman, M.J., Howard, A.W., Kaltenegger, L., Kane, S.R., Kjeldsen, H., +Kreidberg, L., Lin, D.N.C., Minsky, C., Narita, N., Paegert, M., P´al, A., +Palle, E., Sasselov, D.D., Spencer, A., Sozzetti, A., Stassun, K.G., Tor- +res, G., Udry, S., Winn, J.N.: The TESS Objects of Interest Catalog +from the TESS Prime Mission. ApJS 254(2), 39 (2021) arXiv:2103.12538 +[astro-ph.EP]. https://doi.org/10.3847/1538-4365/abefe1 +[11] Rackham, B.V., Apai, D., Giampapa, M.S.: The Transit Light Source +Effect: False Spectral Features and Incorrect Densities for M-dwarf Tran- +siting Planets. ApJ 853(2), 122 (2018) arXiv:1711.05691 [astro-ph.EP]. +https://doi.org/10.3847/1538-4357/aaa08c +[12] Delrez, L., Gillon, M., Triaud, A.H.M.J., Demory, B.-O., de Wit, J., +Ingalls, J.G., Agol, E., Bolmont, E., Burdanov, A., Burgasser, A.J., +Carey, S.J., Jehin, E., Leconte, J., Lederer, S., Queloz, D., Selsis, F., +Van Grootel, V.: Early 2017 observations of TRAPPIST-1 with Spitzer. +MNRAS 475(3), 3577–3597 (2018) arXiv:1801.02554 [astro-ph.EP]. https: +//doi.org/10.1093/mnras/sty051 +[13] de Wit, J., Wakeford, H.R., Gillon, M., Lewis, N.K., Valenti, J.A., +Demory, B.-O., Burgasser, A.J., Burdanov, A., Delrez, L., Jehin, E., +Lederer, S.M., Queloz, D., Triaud, A.H.M.J., Van Grootel, V.: A com- +bined transmission spectrum of the Earth-sized exoplanets TRAPPIST-1 +b and c. Nature 537, 69–72 (2016) arXiv:1606.01103 [astro-ph.EP]. https: +//doi.org/10.1038/nature18641 +[14] de Wit, J., Wakeford, H.R., Lewis, N.K., Delrez, L., Gillon, M., Selsis, +F., Leconte, J., Demory, B.-O., Bolmont, E., Bourrier, V., Burgasser, +A.J., Grimm, S., Jehin, E., Lederer, S.M., Owen, J.E., Stamenkovi´c, +V., Triaud, A.H.M.J.: Atmospheric reconnaissance of the habitable- +zone Earth-sized planets orbiting TRAPPIST-1. Nature Astronomy 2, +214–219 (2018) arXiv:1802.02250 [astro-ph.EP]. https://doi.org/10.1038/ +s41550-017-0374-z +[15] Zhang, Z., Zhou, Y., Rackham, B.V., Apai, D.: The Near-infrared + +Springer Nature 2021 LATEX template +32 +Lustig-Yaeger & Fu et al. — LHS 475b with JWST +Transmission Spectra of TRAPPIST-1 Planets b, c, d, e, f, and g +and Stellar Contamination in Multi-epoch Transit Spectra. AJ 156(4), +178 (2018) arXiv:1802.02086 [astro-ph.EP]. https://doi.org/10.3847/ +1538-3881/aade4f +[16] Edwards, B., Changeat, Q., Mori, M., Anisman, L.O., Morvan, M., +Yip, K.H., Tsiaras, A., Al-Refaie, A., Waldmann, I., Tinetti, G.: Hub- +ble WFC3 Spectroscopy of the Habitable-zone Super-Earth LHS 1140 b. +AJ 161(1), 44 (2021) arXiv:2011.08815 [astro-ph.EP]. https://doi.org/10. +3847/1538-3881/abc6a5 +[17] Kreidberg, L., Koll, D.D.B., Morley, C., Hu, R., Schaefer, L., Dem- +ing, D., Stevenson, K.B., Dittmann, J., Vanderburg, A., Berardo, D., +Guo, X., Stassun, K., Crossfield, I., Charbonneau, D., Latham, D.W., +Loeb, A., Ricker, G., Seager, S., Vanderspek, R.: Absence of a thick +atmosphere on the terrestrial exoplanet LHS 3844b. Nature 573(7772), +87–90 (2019) arXiv:1908.06834 [astro-ph.EP]. https://doi.org/10.1038/ +s41586-019-1497-4 +[18] Swain, M.R., Estrela, R., Roudier, G.M., Sotin, C., Rimmer, P.B., +Valio, A., West, R., Pearson, K., Huber-Feely, N., Zellem, R.T.: +Detection of an Atmosphere on a Rocky Exoplanet. AJ 161(5), +213 (2021) arXiv:2103.05657 [astro-ph.EP]. https://doi.org/10.3847/ +1538-3881/abe879 +[19] Mugnai, L.V., Modirrousta-Galian, D., Edwards, B., Changeat, Q., Bouw- +man, J., Morello, G., Al-Refaie, A., Baeyens, R., Bieger, M.F., Blain, D., +Gressier, A., Guilluy, G., Jaziri, Y., Kiefer, F., Morvan, M., Pluriel, W., +Poveda, M., Skaf, N., Whiteford, N., Wright, S., Yip, K.H., Zingales, T., +Charnay, B., Drossart, P., Leconte, J., Venot, O., Waldmann, I., Beaulieu, +J.-P.: ARES. V. No Evidence For Molecular Absorption in the HST +WFC3 Spectrum of GJ 1132 b. AJ 161(6), 284 (2021) arXiv:2104.01873 +[astro-ph.EP]. https://doi.org/10.3847/1538-3881/abf3c3 +[20] Libby-Roberts, J.E., Berta-Thompson, Z.K., Diamond-Lowe, H., Gully- +Santiago, M.A., Irwin, J.M., Kempton, E.M.-R., Rackham, B.V., Char- +bonneau, D., D´esert, J.-M., Dittmann, J.A., Hofmann, R., Morley, C.V., +Newton, E.R.: The Featureless HST/WFC3 Transmission Spectrum of +the Rocky Exoplanet GJ 1132b: No Evidence for a Cloud-free Pri- +mordial Atmosphere and Constraints on Starspot Contamination. AJ +164(2), 59 (2022) arXiv:2105.10487 [astro-ph.EP]. https://doi.org/10. +3847/1538-3881/ac75de +[21] Morley, C.V., Kreidberg, L., Rustamkulov, Z., Robinson, T., Fortney, +J.J.: Observing the Atmospheres of Known Temperate Earth-sized Plan- +ets with JWST. ApJ 850(2), 121 (2017) arXiv:1708.04239 [astro-ph.EP]. + +Springer Nature 2021 LATEX template +Lustig-Yaeger & Fu et al. — LHS 475b with JWST +33 +https://doi.org/10.3847/1538-4357/aa927b +[22] Garcia-Sage, K., Glocer, A., Drake, J.J., Gronoff, G., Cohen, O.: On the +Magnetic Protection of the Atmosphere of Proxima Centauri b. ApJL +844(1), 13 (2017). https://doi.org/10.3847/2041-8213/aa7eca +[23] Airapetian, V.S., Barnes, R., Cohen, O., Collinson, G.A., Danchi, W.C., +Dong, C.F., Del Genio, A.D., France, K., Garcia-Sage, K., Glocer, A., +Gopalswamy, N., Grenfell, J.L., Gronoff, G., G¨udel, M., Herbst, K., Hen- +ning, W.G., Jackman, C.H., Jin, M., Johnstone, C.P., Kaltenegger, L., +Kay, C.D., Kobayashi, K., Kuang, W., Li, G., Lynch, B.J., L¨uftinger, +T., Luhmann, J.G., Maehara, H., Mlynczak, M.G., Notsu, Y., Osten, +R.A., Ramirez, R.M., Rugheimer, S., Scheucher, M., Schlieder, J.E., Shi- +bata, K., Sousa-Silva, C., Stamenkovi´c, V., Strangeway, R.J., Usmanov, +A.V., Vergados, P., Verkhoglyadova, O.P., Vidotto, A.A., Voytek, M., +Way, M.J., Zank, G.P., Yamashiki, Y.: Impact of space weather on cli- +mate and habitability of terrestrial-type exoplanets. International Journal +of Astrobiology 19(2), 136–194 (2020) arXiv:1905.05093 [astro-ph.EP]. +https://doi.org/10.1017/S1473550419000132 +[24] Jakobsen, P., Ferruit, P., Alves de Oliveira, C., Arribas, S., Bagnasco, G., +Barho, R., Beck, T.L., Birkmann, S., B¨oker, T., Bunker, A.J., Charlot, S., +de Jong, P., de Marchi, G., Ehrenwinkler, R., Falcolini, M., Fels, R., Franx, +M., Franz, D., Funke, M., Giardino, G., Gnata, X., Holota, W., Honnen, +K., Jensen, P.L., Jentsch, M., Johnson, T., Jollet, D., Karl, H., Kling, G., +K¨ohler, J., Kolm, M.-G., Kumari, N., Lander, M.E., Lemke, R., L´opez- +Caniego, M., L¨utzgendorf, N., Maiolino, R., Manjavacas, E., Marston, A., +Maschmann, M., Maurer, R., Messerschmidt, B., Moseley, S.H., Mosner, +P., Mott, D.B., Muzerolle, J., Pirzkal, N., Pittet, J.-F., Plitzke, A., Posselt, +W., Rapp, B., Rauscher, B.J., Rawle, T., Rix, H.-W., R¨odel, A., Rumler, +P., Sabbi, E., Salvignol, J.-C., Schmid, T., Sirianni, M., Smith, C., Strada, +P., te Plate, M., Valenti, J., Wettemann, T., Wiehe, T., Wiesmayer, M., +Willott, C.J., Wright, R., Zeidler, P., Zincke, C.: The Near-Infrared Spec- +trograph (NIRSpec) on the James Webb Space Telescope. I. Overview of +the instrument and its capabilities. A&A 661, 80 (2022) arXiv:2202.03305 +[astro-ph.IM]. https://doi.org/10.1051/0004-6361/202142663 +[25] Birkmann, S.M., Ferruit, P., Giardino, G., Nielsen, L.D., Garc´ıa Mu˜noz, +A., Kendrew, S., Rauscher, B.J., Beck, T.L., Keyes, C., Valenti, J.A., +Jakobsen, P., Dorner, B., Alves de Oliveira, C., Arribas, S., B¨oker, T., +Bunker, A.J., Charlot, S., de Marchi, G., Kumari, N., L´opez-Caniego, +M., L¨utzgendorf, N., Maiolino, R., Manjavacas, E., Marston, A., Mose- +ley, S.H., Prizkal, N., Proffitt, C., Rawle, T., Rix, H.-W., te Plate, M., +Sabbi, E., Sirianni, M., Willott, C.J., Zeidler, P.: The Near-Infrared +Spectrograph (NIRSpec) on the James Webb Space Telescope. IV. Capa- +bilities and predicted performance for exoplanet characterization. A&A + +Springer Nature 2021 LATEX template +34 +Lustig-Yaeger & Fu et al. — LHS 475b with JWST +661, 83 (2022) arXiv:2202.03309 [astro-ph.IM]. https://doi.org/10.1051/ +0004-6361/202142592 +[26] Ricker, G.R., Winn, J.N., Vanderspek, R., Latham, D.W., Bakos, G.´A., +Bean, J.L., Berta-Thompson, Z.K., Brown, T.M., Buchhave, L., But- +ler, N.R., Butler, R.P., Chaplin, W.J., Charbonneau, D., Christensen- +Dalsgaard, J., Clampin, M., Deming, D., Doty, J., De Lee, N., Dressing, +C., Dunham, E.W., Endl, M., Fressin, F., Ge, J., Henning, T., Holman, +M.J., Howard, A.W., Ida, S., Jenkins, J.M., Jernigan, G., Johnson, J.A., +Kaltenegger, L., Kawai, N., Kjeldsen, H., Laughlin, G., Levine, A.M., Lin, +D., Lissauer, J.J., MacQueen, P., Marcy, G., McCullough, P.R., Morton, +T.D., Narita, N., Paegert, M., Palle, E., Pepe, F., Pepper, J., Quirren- +bach, A., Rinehart, S.A., Sasselov, D., Sato, B., Seager, S., Sozzetti, +A., Stassun, K.G., Sullivan, P., Szentgyorgyi, A., Torres, G., Udry, S., +Villasenor, J.: Transiting Exoplanet Survey Satellite (TESS). Journal of +Astronomical Telescopes, Instruments, and Systems 1, 014003 (2015). +https://doi.org/10.1117/1.JATIS.1.1.014003 +[27] Stassun, K.G., Oelkers, R.J., Paegert, M., Torres, G., Pepper, J., De +Lee, N., Collins, K., Latham, D.W., Muirhead, P.S., Chittidi, J., Rojas- +Ayala, B., Fleming, S.W., Rose, M.E., Tenenbaum, P., Ting, E.B., +Kane, S.R., Barclay, T., Bean, J.L., Brassuer, C.E., Charbonneau, D., +Ge, J., Lissauer, J.J., Mann, A.W., McLean, B., Mullally, S., Narita, +N., Plavchan, P., Ricker, G.R., Sasselov, D., Seager, S., Sharma, S., +Shiao, B., Sozzetti, A., Stello, D., Vanderspek, R., Wallace, G., Winn, +J.N.: The Revised TESS Input Catalog and Candidate Target List. AJ +158(4), 138 (2019) arXiv:1905.10694 [astro-ph.SR]. https://doi.org/10. +3847/1538-3881/ab3467 +[28] Kasting, J.F., Whitmire, D.P., Reynolds, R.T.: Habitable Zones around +Main Sequence Stars. Icarus 101(1), 108–128 (1993). https://doi.org/10. +1006/icar.1993.1010 +[29] Bell, T.J., Ahrer, E.-M., Brande, J., Carter, A.L., Feinstein, A.D., Guz- +man Caloca, G., Mansfield, M., Zieba, S., Piaulet, C., Benneke, B., +Filippazzo, J., May, E.M., Roy, P.-A., Kreidberg, L., Stevenson, K.B.: +Eureka!: An End-to-End Pipeline for JWST Time-Series Observations. +arXiv e-prints, 2207–03585 (2022) arXiv:2207.03585 [astro-ph.IM] +[30] Rustamkulov, Z., Sing, D.K., Mukherjee, S., May, E.M., Kirk, J., +Schlawin, E., Line, M.R., Piaulet, C., Carter, A.L., Batalha, N.E., Goyal, +J.M., L´opez-Morales, M., Lothringer, J.D., MacDonald, R.J., Moran, +S.E., Stevenson, K.B., Wakeford, H.R., Espinoza, N., Bean, J.L., Batalha, +N.M., Benneke, B., Berta-Thompson, Z.K., Crossfield, I.J.M., Gao, P., +Kreidberg, L., Powell, D.K., Cubillos, P.E., Gibson, N.P., Leconte, J., +Molaverdikhani, K., Nikolov, N.K., Parmentier, V., Roy, P., Taylor, J., + +Springer Nature 2021 LATEX template +Lustig-Yaeger & Fu et al. — LHS 475b with JWST +35 +Turner, J.D., Wheatley, P.J., Aggarwal, K., Ahrer, E., Alam, M.K., Alder- +son, L., Allen, N.H., Banerjee, A., Barat, S., Barrado, D., Barstow, J.K., +Bell, T.J., Blecic, J., Brande, J., Casewell, S., Changeat, Q., Chubb, K.L., +Crouzet, N., Daylan, T., Decin, L., D´esert, J., Mikal-Evans, T., Fein- +stein, A.D., Flagg, L., Fortney, J.J., Harrington, J., Heng, K., Hong, Y., +Hu, R., Iro, N., Kataria, T., Kempton, E.M.-R., Krick, J., Lendl, M., +Lillo-Box, J., Louca, A., Lustig-Yaeger, J., Mancini, L., Mansfield, M., +Mayne, N.J., Miguel, Y., Morello, G., Ohno, K., Palle, E., Petit dit de +la Roche, D.J.M., Rackham, B.V., Radica, M., Ramos-Rosado, L., Red- +field, S., Rogers, L.K., Shkolnik, E.L., Southworth, J., Teske, J., Tremblin, +P., Tucker, G.S., Venot, O., Waalkes, W.C., Welbanks, L., Zhang, X., +Zieba, S.: Early Release Science of the exoplanet WASP-39b with JWST +NIRSpec PRISM. arXiv e-prints, 2211–10487 (2022) arXiv:2211.10487 +[astro-ph.EP] +[31] Kirk, J., Wheatley, P.J., Louden, T., Skillen, I., King, G.W., McCormac, +J., Irwin, P.G.J.: LRG-BEASTS III: ground-based transmission spec- +trum of the gas giant orbiting the cool dwarf WASP-80. MNRAS 474(1), +876–885 (2018) arXiv:1710.10083 [astro-ph.EP]. https://doi.org/10.1093/ +mnras/stx2826 +[32] Kirk, J., L´opez-Morales, M., Wheatley, P.J., Weaver, I.C., Skillen, +I., Louden, T., McCormac, J., Espinoza, N.: LRG-BEASTS: Trans- +mission Spectroscopy and Retrieval Analysis of the Highly Inflated +Saturn-mass Planet WASP-39b. AJ 158(4), 144 (2019) arXiv:1908.02358 +[astro-ph.EP]. https://doi.org/10.3847/1538-3881/ab397d +[33] Kirk, J., Rackham, B.V., MacDonald, R.J., L´opez-Morales, M., Espinoza, +N., Lendl, M., Wilson, J., Osip, D.J., Wheatley, P.J., Skillen, I., Apai, D., +Bixel, A., Gibson, N.P., Jord´an, A., Lewis, N.K., Louden, T., McGruder, +C.D., Nikolov, N., Rodler, F., Weaver, I.C.: ACCESS and LRG-BEASTS: +A Precise New Optical Transmission Spectrum of the Ultrahot Jupiter +WASP-103b. AJ 162(1), 34 (2021) arXiv:2105.00012 [astro-ph.EP]. https: +//doi.org/10.3847/1538-3881/abfcd2 +[34] Luque, R., Pall´e, E.: Density, not radius, separates rocky and water-rich +small planets orbiting M dwarf stars. Science 377(6611), 1211–1214 (2022) +arXiv:2209.03871 [astro-ph.EP]. https://doi.org/10.1126/science.abl7164 +[35] Magic, Z., Chiavassa, A., Collet, R., Asplund, M.: The Stagger-grid: A +grid of 3D stellar atmosphere models. IV. Limb darkening coefficients. +A&A 573, 90 (2015) arXiv:1403.3487 [astro-ph.SR]. https://doi.org/10. +1051/0004-6361/201423804 +[36] Trotta, R.: Bayes in the sky: Bayesian inference and model selection in +cosmology. Contemporary Physics 49(2), 71–104 (2008) arXiv:0803.4089 + +Springer Nature 2021 LATEX template +36 +Lustig-Yaeger & Fu et al. — LHS 475b with JWST +[astro-ph]. https://doi.org/10.1080/00107510802066753 +[37] Kreidberg, L., Bean, J.L., D´esert, J.-M., Benneke, B., Deming, D., Steven- +son, K.B., Seager, S., Berta-Thompson, Z., Seifahrt, A., Homeier, D.: +Clouds in the atmosphere of the super-Earth exoplanet GJ1214b. Nature +505, 69–72 (2014) arXiv:1401.0022 [astro-ph.EP]. https://doi.org/10. +1038/nature12888 +[38] Tremblay, L., Line, M.R., Stevenson, K., Kataria, T., Zellem, R.T., Fort- +ney, J.J., Morley, C.: The Detectability and Constraints of Biosignature +Gases in the Near- and Mid-infrared from Transit Transmission Spec- +troscopy. AJ 159(3), 117 (2020) arXiv:1912.10939 [astro-ph.EP]. https: +//doi.org/10.3847/1538-3881/ab64dd +[39] Medina, A.A., Winters, J.G., Irwin, J.M., Charbonneau, D.: Flare +Rates, Rotation Periods, and Spectroscopic Activity Indicators of a +Volume-complete Sample of Mid- to Late-M Dwarfs within 15 pc. ApJ +905(2), 107 (2020) arXiv:2010.15635 [astro-ph.SR]. https://doi.org/10. +3847/1538-4357/abc686 +[40] Koll, D.D.B., Malik, M., Mansfield, M., Kempton, E.M.-R., Kite, +E., Abbot, D., Bean, J.L.: Identifying Candidate Atmospheres on +Rocky +M +Dwarf +Planets +via +Eclipse +Photometry. +ApJ +886(2), +140 (2019) arXiv:1907.13138 [astro-ph.EP]. https://doi.org/10.3847/ +1538-4357/ab4c91 +[41] Bushouse, H., Eisenhamer, J., Dencheva, N., Davies, J., Greenfield, P., +Morrison, J., Hodge, P., Simon, B., Grumm, D., Droettboom, M., Slavich, +E., Sosey, M., Pauly, T., Miller, T., Jedrzejewski, R., Hack, W., Davis, +D., Crawford, S., Law, D., Gordon, K., Regan, M., Cara, M., MacDon- +ald, K., Bradley, L., Shanahan, C., Jamieson, W., Teodoro, M., Williams, +T.: JWST Calibration Pipeline. https://doi.org/10.5281/zenodo.7325378. +https://doi.org/10.5281/zenodo.7325378 +[42] The JWST Transiting Exoplanet Community Early Release Science +Team, Ahrer, E.-M., Alderson, L., Batalha, N.M., Batalha, N.E., Bean, +J.L., Beatty, T.G., Bell, T.J., Benneke, B., Berta-Thompson, Z.K., Carter, +A.L., Crossfield, I.J.M., Espinoza, N., Feinstein, A.D., Fortney, J.J., +Gibson, N.P., Goyal, J.M., Kempton, E.M.-R., Kirk, J., Kreidberg, L., +L´opez-Morales, M., Line, M.R., Lothringer, J.D., Moran, S.E., Mukher- +jee, S., Ohno, K., Parmentier, V., Piaulet, C., Rustamkulov, Z., Schlawin, +E., Sing, D.K., Stevenson, K.B., Wakeford, H.R., Allen, N.H., Birkmann, +S.M., Brande, J., Crouzet, N., Cubillos, P.E., Damiano, M., D´esert, J.- +M., Gao, P., Harrington, J., Hu, R., Kendrew, S., Knutson, H.A., Lagage, +P.-O., Leconte, J., Lendl, M., MacDonald, R.J., May, E.M., Miguel, Y., +Molaverdikhani, K., Moses, J.I., Murray, C.A., Nehring, M., Nikolov, + +Springer Nature 2021 LATEX template +Lustig-Yaeger & Fu et al. — LHS 475b with JWST +37 +N.K., Petit dit de la Roche, D.J.M., Radica, M., Roy, P.-A., Stassun, +K.G., Taylor, J., Waalkes, W.C., Wachiraphan, P., Welbanks, L., Wheat- +ley, P.J., Aggarwal, K., Alam, M.K., Banerjee, A., Barstow, J.K., Blecic, +J., Casewell, S.L., Changeat, Q., Chubb, K.L., Col´on, K.D., Coulombe, +L.-P., Daylan, T., de Val-Borro, M., Decin, L., Dos Santos, L.A., Flagg, +L., France, K., Fu, G., Garc´ıa Mu˜noz, A., Gizis, J.E., Glidden, A., Grant, +D., Heng, K., Henning, T., Hong, Y.-C., Inglis, J., Iro, N., Kataria, +T., Komacek, T.D., Krick, J.E., Lee, E.K.H., Lewis, N.K., Lillo-Box, +J., Lustig-Yaeger, J., Mancini, L., Mandell, A.M., Mansfield, M., Mar- +ley, M.S., Mikal-Evans, T., Morello, G., Nixon, M.C., Ortiz Ceballos, K., +Piette, A.A.A., Powell, D., Rackham, B.V., Ramos-Rosado, L., Rauscher, +E., Redfield, S., Rogers, L.K., Roman, M.T., Roudier, G.M., Scarsdale, +N., Shkolnik, E.L., Southworth, J., Spake, J.J., E Steinrueck, M., Tan, X., +Teske, J.K., Tremblin, P., Tsai, S.-M., Tucker, G.S., Turner, J.D., Valenti, +J.A., Venot, O., Waldmann, I.P., Wallack, N.L., Zhang, X., Zieba, S.: Iden- +tification of carbon dioxide in an exoplanet atmosphere. arXiv e-prints, +2208–11692 (2022) arXiv:2208.11692 [astro-ph.EP] +[43] Espinoza, N., ´Ubeda, L., Birkmann, S.M., Ferruit, P., Valenti, J.A., Sing, +D.K., Rustamkulov, Z., Regan, M., Kendrew, S., Sabbi, E., Schlawin, E., +Beatty, T., Albert, L., Greene, T.P., Nikolov, N., Karakla, D., Keyes, +C., Kumari, N., Alves de Oliveira, C., B¨oker, T., Pe˜na-Guerrero, M., +Giardino, G., Manjavacas, E., Proffitt, C., Rawle, T.: Spectroscopic Time- +series Performance of JWST/NIRSpec from Commissioning Observations. +arXiv e-prints, 2211–01459 (2022) arXiv:2211.01459 [astro-ph.EP] +[44] Rustamkulov, Z., Sing, D.K., Liu, R., Wang, A.: Analysis of a JWST +NIRSpec Lab Time Series: Characterizing Systematics, Recovering Exo- +planet Transit Spectroscopy, and Constraining a Noise Floor. ApJL +928(1), 7 (2022) arXiv:2203.04173 [astro-ph.EP]. https://doi.org/10. +3847/2041-8213/ac5b6f +[45] Laginja, I., Wakeford, H.R.: ExoTiC-ISM: A Python package for +marginalised exoplanet transit parameters across a grid of systematic +instrument models. Journal of Open Source Software 5(51), 2281 (2020). +https://doi.org/10.21105/joss.02281 +[46] Laginja, I., Wakeford, H.R.: ExoTiC-ISM V2.0.0. https://doi.org/10. +5281/zenodo.3923986. https://doi.org/10.5281/zenodo.3923986 +[47] Wakeford, H., Grant, D.: Exo-TiC/ExoTiC-LD: ExoTiC-LD V2.1 Zen- +odo Release. https://doi.org/10.5281/zenodo.6809899. https://doi.org/ +10.5281/zenodo.6809899 +[48] Claret, A.: A new non-linear limb-darkening law for LTE stellar atmo- +sphere models. Calculations for -5.0 <= log[M/H] <= +1, 2000 K <= + +Springer Nature 2021 LATEX template +38 +Lustig-Yaeger & Fu et al. — LHS 475b with JWST +Teff <= 50000 K at several surface gravities. A&A 363, 1081–1190 +(2000) +[49] Sing, D.K.: Stellar limb-darkening coefficients for CoRot and Kepler. A&A +510, 21 (2010) arXiv:0912.2274 [astro-ph.EP]. https://doi.org/10.1051/ +0004-6361/200913675 +[50] Kreidberg, L.: batman: BAsic Transit Model cAlculatioN in Python. +PASP 127(957), 1161 (2015) arXiv:1507.08285 [astro-ph.EP]. https://doi. +org/10.1086/683602 +[51] Foreman-Mackey, D., Hogg, D.W., Lang, D., Goodman, J.: emcee: The +MCMC Hammer. PASP 125(925), 306 (2013) arXiv:1202.3665 [astro- +ph.IM]. https://doi.org/10.1086/670067 +[52] Parviainen, H., Pall´e, E., Nortmann, L., Nowak, G., Iro, N., Murgas, F., +Aigrain, S.: The GTC exoplanet transit spectroscopy survey II: An overly- +large Rayleigh-like feature for exoplanet TrES-3b. ArXiv e-prints (2015) +arXiv:1510.04988 [astro-ph.EP] +[53] Husser, T.-O., Wende-von Berg, S., Dreizler, S., Homeier, D., Rein- +ers, +A., +Barman, +T., +Hauschildt, +P.H.: +A +new +extensive +library +of +PHOENIX +stellar +atmospheres +and +synthetic +spectra. +A&A +553, 6 (2013) arXiv:1303.5632 [astro-ph.SR]. https://doi.org/10.1051/ +0004-6361/201219058 +[54] Gaia Collaboration, Brown, A.G.A., Vallenari, A., Prusti, T., de Brui- +jne, J.H.J., Babusiaux, C., Biermann, M., Creevey, O.L., Evans, D.W., +Eyer, L., Hutton, A., Jansen, F., Jordi, C., Klioner, S.A., Lammers, U., +Lindegren, L., Luri, X., Mignard, F., Panem, C., Pourbaix, D., Randich, +S., Sartoretti, P., Soubiran, C., Walton, N.A., Arenou, F., Bailer-Jones, +C.A.L., Bastian, U., Cropper, M., Drimmel, R., Katz, D., Lattanzi, M.G., +van Leeuwen, F., Bakker, J., Cacciari, C., Casta˜neda, J., De Angeli, F., +Ducourant, C., Fabricius, C., Fouesneau, M., Fr´emat, Y., Guerra, R., +Guerrier, A., Guiraud, J., Jean-Antoine Piccolo, A., Masana, E., Messi- +neo, R., Mowlavi, N., Nicolas, C., Nienartowicz, K., Pailler, F., Panuzzo, +P., Riclet, F., Roux, W., Seabroke, G.M., Sordo, R., Tanga, P., Th´evenin, +F., Gracia-Abril, G., Portell, J., Teyssier, D., Altmann, M., Andrae, R., +Bellas-Velidis, I., Benson, K., Berthier, J., Blomme, R., Brugaletta, E., +Burgess, P.W., Busso, G., Carry, B., Cellino, A., Cheek, N., Clementini, +G., Damerdji, Y., Davidson, M., Delchambre, L., Dell’Oro, A., Fern´andez- +Hern´andez, J., Galluccio, L., Garc´ıa-Lario, P., Garcia-Reinaldos, M., +Gonz´alez-N´u˜nez, J., Gosset, E., Haigron, R., Halbwachs, J.-L., Hambly, +N.C., Harrison, D.L., Hatzidimitriou, D., Heiter, U., Hern´andez, J., Hes- +troffer, D., Hodgkin, S.T., Holl, B., Janßen, K., Jevardat de Fombelle, +G., Jordan, S., Krone-Martins, A., Lanzafame, A.C., L¨offler, W., Lorca, + +Springer Nature 2021 LATEX template +Lustig-Yaeger & Fu et al. — LHS 475b with JWST +39 +A., Manteiga, M., Marchal, O., Marrese, P.M., Moitinho, A., Mora, +A., Muinonen, K., Osborne, P., Pancino, E., Pauwels, T., Petit, J.-M., +Recio-Blanco, A., Richards, P.J., Riello, M., Rimoldini, L., Robin, A.C., +Roegiers, T., Rybizki, J., Sarro, L.M., Siopis, C., Smith, M., Sozzetti, A., +Ulla, A., Utrilla, E., van Leeuwen, M., van Reeven, W., Abbas, U., Abreu +Aramburu, A., Accart, S., Aerts, C., Aguado, J.J., Ajaj, M., Altavilla, +G., ´Alvarez, M.A., ´Alvarez Cid-Fuentes, J., Alves, J., Anderson, R.I., +Anglada Varela, E., Antoja, T., Audard, M., Baines, D., Baker, S.G., +Balaguer-N´u˜nez, L., Balbinot, E., Balog, Z., Barache, C., Barbato, D., +Barros, M., Barstow, M.A., Bartolom´e, S., Bassilana, J.-L., Bauchet, N., +Baudesson-Stella, A., Becciani, U., Bellazzini, M., Bernet, M., Bertone, +S., Bianchi, L., Blanco-Cuaresma, S., Boch, T., Bombrun, A., Bossini, +D., Bouquillon, S., Bragaglia, A., Bramante, L., Breedt, E., Bressan, A., +Brouillet, N., Bucciarelli, B., Burlacu, A., Busonero, D., Butkevich, A.G., +Buzzi, R., Caffau, E., Cancelliere, R., C´anovas, H., Cantat-Gaudin, T., +Carballo, R., Carlucci, T., Carnerero, M.I., Carrasco, J.M., Casamiquela, +L., Castellani, M., Castro-Ginard, A., Castro Sampol, P., Chaoul, L., +Charlot, P., Chemin, L., Chiavassa, A., Cioni, M.-R.L., Comoretto, G., +Cooper, W.J., Cornez, T., Cowell, S., Crifo, F., Crosta, M., Crowley, +C., Dafonte, C., Dapergolas, A., David, M., David, P., de Laverny, P., +De Luise, F., De March, R., De Ridder, J., de Souza, R., de Teodoro, +P., de Torres, A., del Peloso, E.F., del Pozo, E., Delbo, M., Delgado, +A., Delgado, H.E., Delisle, J.-B., Di Matteo, P., Diakite, S., Diener, C., +Distefano, E., Dolding, C., Eappachen, D., Edvardsson, B., Enke, H., +Esquej, P., Fabre, C., Fabrizio, M., Faigler, S., Fedorets, G., Fernique, P., +Fienga, A., Figueras, F., Fouron, C., Fragkoudi, F., Fraile, E., Franke, F., +Gai, M., Garabato, D., Garcia-Gutierrez, A., Garc´ıa-Torres, M., Garo- +falo, A., Gavras, P., Gerlach, E., Geyer, R., Giacobbe, P., Gilmore, G., +Girona, S., Giuffrida, G., Gomel, R., Gomez, A., Gonzalez-Santamaria, +I., Gonz´alez-Vidal, J.J., Granvik, M., Guti´errez-S´anchez, R., Guy, L.P., +Hauser, M., Haywood, M., Helmi, A., Hidalgo, S.L., Hilger, T., H�ladczuk, +N., Hobbs, D., Holland, G., Huckle, H.E., Jasniewicz, G., Jonker, P.G., +Juaristi Campillo, J., Julbe, F., Karbevska, L., Kervella, P., Khanna, +S., Kochoska, A., Kontizas, M., Kordopatis, G., Korn, A.J., Kostrzewa- +Rutkowska, Z., Kruszy´nska, K., Lambert, S., Lanza, A.F., Lasne, Y., Le +Campion, J.-F., Le Fustec, Y., Lebreton, Y., Lebzelter, T., Leccia, S., +Leclerc, N., Lecoeur-Taibi, I., Liao, S., Licata, E., Lindstrøm, E.P., Lis- +ter, T.A., Livanou, E., Lobel, A., Madrero Pardo, P., Managau, S., Mann, +R.G., Marchant, J.M., Marconi, M., Marcos Santos, M.M.S., Marinoni, +S., Marocco, F., Marshall, D.J., Martin Polo, L., Mart´ın-Fleitas, J.M., +Masip, A., Massari, D., Mastrobuono-Battisti, A., Mazeh, T., McMil- +lan, P.J., Messina, S., Michalik, D., Millar, N.R., Mints, A., Molina, +D., Molinaro, R., Moln´ar, L., Montegriffo, P., Mor, R., Morbidelli, R., +Morel, T., Morris, D., Mulone, A.F., Munoz, D., Muraveva, T., Mur- +phy, C.P., Musella, I., Noval, L., Ord´enovic, C., Orr`u, G., Osinde, J., + +Springer Nature 2021 LATEX template +40 +Lustig-Yaeger & Fu et al. — LHS 475b with JWST +Pagani, C., Pagano, I., Palaversa, L., Palicio, P.A., Panahi, A., Pawlak, +M., Pe˜nalosa Esteller, X., Penttil¨a, A., Piersimoni, A.M., Pineau, F.-X., +Plachy, E., Plum, G., Poggio, E., Poretti, E., Poujoulet, E., Prˇsa, A., +Pulone, L., Racero, E., Ragaini, S., Rainer, M., Raiteri, C.M., Rambaux, +N., Ramos, P., Ramos-Lerate, M., Re Fiorentin, P., Regibo, S., Reyl´e, C., +Ripepi, V., Riva, A., Rixon, G., Robichon, N., Robin, C., Roelens, M., +Rohrbasser, L., Romero-G´omez, M., Rowell, N., Royer, F., Rybicki, K.A., +Sadowski, G., Sagrist`a Sell´es, A., Sahlmann, J., Salgado, J., Salguero, E., +Samaras, N., Sanchez Gimenez, V., Sanna, N., Santove˜na, R., Sarasso, +M., Schultheis, M., Sciacca, E., Segol, M., Segovia, J.C., S´egransan, D., +Semeux, D., Shahaf, S., Siddiqui, H.I., Siebert, A., Siltala, L., Slezak, E., +Smart, R.L., Solano, E., Solitro, F., Souami, D., Souchay, J., Spagna, +A., Spoto, F., Steele, I.A., Steidelm¨uller, H., Stephenson, C.A., S¨uveges, +M., Szabados, L., Szegedi-Elek, E., Taris, F., Tauran, G., Taylor, M.B., +Teixeira, R., Thuillot, W., Tonello, N., Torra, F., Torra, J., Turon, C., +Unger, N., Vaillant, M., van Dillen, E., Vanel, O., Vecchiato, A., Viala, +Y., Vicente, D., Voutsinas, S., Weiler, M., Wevers, T., Wyrzykowski, +�L., Yoldas, A., Yvard, P., Zhao, H., Zorec, J., Zucker, S., Zurbach, C., +Zwitter, T.: Gaia Early Data Release 3. Summary of the contents and +survey properties. A&A 649, 1 (2021) arXiv:2012.01533 [astro-ph.GA]. +https://doi.org/10.1051/0004-6361/202039657 +[55] Rigby, J., Perrin, M., McElwain, M., Kimble, R., Friedman, S., Lallo, +M., Doyon, R., Feinberg, L., Ferruit, P., Glasse, A., Rieke, M., Rieke, G., +Wright, G., Willott, C., Colon, K., Milam, S., Neff, S., Stark, C., Valenti, +J., Abell, J., Abney, F., Abul-Huda, Y., Acton, D.S., Adams, E., Adler, +D., Aguilar, J., Ahmed, N., Albert, L., Alberts, S., Aldridge, D., Allen, +M., Altenburg, M., Alvarez Marquez, J., Alves de Oliveira, C., Andersen, +G., Anderson, H., Anderson, S., Argyriou, I., Armstrong, A., Arribas, S., +Artigau, E., Arvai, A., Atkinson, C., Bacon, G., Bair, T., Banks, K., Bar- +rientes, J., Barringer, B., Bartosik, P., Bast, W., Baudoz, P., Beatty, T., +Bechtold, K., Beck, T., Bergeron, E., Bergkoetter, M., Bhatawdekar, R., +Birkmann, S., Blazek, R., Blome, C., Boccaletti, A., Boeker, T., Boia, J., +Bonaventura, N., Bond, N., Bosley, K., Boucarut, R., Bourque, M., Bouw- +man, J., Bower, G., Bowers, C., Boyer, M., Bradley, L., Brady, G., Braun, +H., Breda, D., Bresnahan, P., Bright, S., Britt, C., Bromenschenkel, A., +Brooks, B., Brooks, K., Brown, B., Brown, M., Brown, P., Bunker, A., +Burger, M., Bushouse, H., Cale, S., Cameron, A., Cameron, P., Canipe, A., +Caplinger, J., Caputo, F., Cara, M., Carey, L., Carniani, S., Carrasquilla, +M., Carruthers, M., Case, M., Catherine, R., Chance, D., Chapman, G., +Charlot, S., Charlow, B., Chayer, P., Chen, B., Cherinka, B., Chichester, +S., Chilton, Z., Chonis, T., Clampin, M., Clark, C., Clark, K., Coe, D., +Coleman, B., Comber, B., Comeau, T., Connolly, D., Cooper, J., Cooper, +R., Coppock, E., Correnti, M., Cossou, C., Coulais, A., Coyle, L., Cracraft, +M., Curti, M., Cuturic, S., Davis, K., Davis, M., Dean, B., DeLisa, A., +deMeester, W., Dencheva, N., Dencheva, N., DePasquale, J., Deschenes, + +Springer Nature 2021 LATEX template +Lustig-Yaeger & Fu et al. — LHS 475b with JWST +41 +J., Hunor Detre, ¨O., Diaz, R., Dicken, D., DiFelice, A., Dillman, M., +Dixon, W., Doggett, J., Donaldson, T., Douglas, R., DuPrie, K., Dupuis, +J., Durning, J., Easmin, N., Eck, W., Edeani, C., Egami, E., Ehrenwin- +kler, R., Eisenhamer, J., Eisenhower, M., Elie, M., Elliott, J., Elliott, K., +Ellis, T., Engesser, M., Espinoza, N., Etienne, O., Etxaluze, M., Falini, +P., Feeney, M., Ferry, M., Filippazzo, J., Fincham, B., Fix, M., Flagey, +N., Florian, M., Flynn, J., Fontanella, E., Ford, T., Forshay, P., Fox, O., +Franz, D., Fu, H., Fullerton, A., Galkin, S., Galyer, A., Garcia Marin, M., +Gardner, J., Gardner, L., Garland, D., Garrett, B., Gasman, D., Gaspar, +A., Gaudreau, D., Gauthier, P., Geers, V., Geithner, P., Gennaro, M., Gia- +rdino, G., Girard, J., Giuliano, M., Glassmire, K., Glauser, A., Glazer, S., +Godfrey, J., Golimowski, D., Gollnitz, D., Gong, F., Gonzaga, S., Gordon, +M., Gordon, K., Goudfrooij, P., Greene, T., Greenhouse, M., Grimaldi, S., +Groebner, A., Grundy, T., Guillard, P., Gutman, I., Ha, K.Q., Haderlein, +P., Hagedorn, A., Hainline, K., Haley, C., Hami, M., Hamilton, F., Ham- +mel, H., Hansen, C., Harkins, T., Harr, M., Hart, J., Hart, Q., Hartig, G., +Hashimoto, R., Haskins, S., Hathaway, W., Havey, K., Hayden, B., Hecht, +K., Heller-Boyer, C., Henriques, C., Henry, A., Hermann, K., Hernandez, +S., Hesman, B., Hicks, B., Hilbert, B., Hines, D., Hoffman, M., Holfeltz, +S., Holler, B.J., Hoppa, J., Hott, K., Howard, J., Howard, R., Hunter, A., +Hunter, D., Hurst, B., Husemann, B., Hustak, L., Ilinca Ignat, L., Illing- +worth, G., Irish, S., Jackson, W., Jahromi, A., Jakobsen, P., James, L., +James, B., Januszewski, W., Jenkins, A., Jirdeh, H., Johnson, P., Johnson, +T., Jones, V., Jones, R., Jones, D., Jones, O., Jordan, I., Jordan, M., Jur- +czyk, S., Jurling, A., Kaleida, C., Kalmanson, P., Kammerer, J., Kang, H., +Kao, S.-H., Karakla, D., Kavanagh, P., Kelly, D., Kendrew, S., Kennedy, +H., Kenny, D., Keski-kuha, R., Keyes, C., Kidwell, R., Kinzel, W., Kirk, +J., Kirkpatrick, M., Kirshenblat, D., Klaassen, P., Knapp, B., Knight, +J.S., Knollenberg, P., Koehler, R., Koekemoer, A., Kovacs, A., Kulp, T., +Kumari, N., Kyprianou, M., La Massa, S., Labador, A., Labiano Ortega, +A., Lagage, P.-O., Lajoie, C.-P., Lallo, M., Lam, M., Lamb, T., Lam- +bros, S., Lampenfield, R., Langston, J., Larson, K., Law, D., Lawrence, +J., Lee, D., Leisenring, J., Lepo, K., Leveille, M., Levenson, N., Levine, +M., Levy, Z., Lewis, D., Lewis, H., Libralato, M., Lightsey, P., Link, M., +Liu, L., Lo, A., Lockwood, A., Logue, R., Long, C., Long, D., Loomis, +C., Lopez-Caniego, M., Alvarez, J.L., Love-Pruitt, J., Lucy, A., Luetz- +gendorf, N., Maghami, P., Maiolino, R., Major, M., Malla, S., Malumuth, +E., Manjavacas, E., Mannfolk, C., Marrione, A., Marston, A., Martel, A., +Maschmann, M., Masci, G., Masciarelli, M., Maszkiewicz, M., Mather, +J., McKenzie, K., McLean, B., McMaster, M., Melbourne, K., Mel´endez, +M., Menzel, M., Merz, K., Meyett, M., Meza, L., Miskey, C., Misselt, +K., Moller, C., Morrison, J., Morse, E., Moseley, H., Mosier, G., Moun- +tain, M., Mueckay, J., Mueller, M., Mullally, S., Murphy, J., Murray, K., +Murray, C., Mustelier, D., Muzerolle, J., Mycroft, M., Myers, R., Myrick, +K., Nanavati, S., Nance, E., Nayak, O., Naylor, B., Nelan, E., Nickson, + +Springer Nature 2021 LATEX template +42 +Lustig-Yaeger & Fu et al. — LHS 475b with JWST +B., Nielson, A., Nieto-Santisteban, M., Nikolov, N., Noriega-Crespo, A., +O’Shaughnessy, B., O’Sullivan, B., Ochs, W., Ogle, P., Oleszczuk, B., +Olmsted, J., Osborne, S., Ottens, R., Owens, B., Pacifici, C., Pagan, A., +Page, J., Park, S., Parrish, K., Patapis, P., Paul, L., Pauly, T., Pavlovsky, +C., Pedder, A., Peek, M., Pena-Guerrero, M., Pennanen, K., Perez, Y., +Perna, M., Perriello, B., Phillips, K., Pietraszkiewicz, M., Pinaud, J.- +P., Pirzkal, N., Pitman, J., Piwowar, A., Platais, V., Player, D., Plesha, +R., Pollizi, J., Polster, E., Pontoppidan, K., Porterfield, B., Proffitt, C., +Pueyo, L., Pulliam, C., Quirt, B., Quispe Neira, I., Ramos Alarcon, R., +Ramsay, L., Rapp, G., Rapp, R., Rauscher, B., Ravindranath, S., Rawle, +T., Regan, M., Reichard, T.A., Reis, C., Ressler, M.E., Rest, A., Reynolds, +P., Rhue, T., Richon, K., Rickman, E., Ridgaway, M., Ritchie, C., Rix, H.- +W., Robberto, M., Robinson, G., Robinson, M., Robinson, O., Rock, F., +Rodriguez, D., Rodriguez Del Pino, B., Roellig, T., Rohrbach, S., Roman, +A., Romelfanger, F., Rose, P., Roteliuk, A., Roth, M., Rothwell, B., Row- +lands, N., Roy, A., Royer, P., Royle, P., Rui, C., Rumler, P., Runnels, J., +Russ, M., Rustamkulov, Z., Ryden, G., Ryer, H., Sabata, M., Sabatke, D., +Sabbi, E., Samuelson, B., Sapp, B., Sappington, B., Sargent, B., Sauer, +A., Scheithauer, S., Schlawin, E., Schlitz, J., Schmitz, T., Schneider, A., +Schreiber, J., Schulze, V., Schwab, R., Scott, J., Sembach, K., Shanahan, +C., Shaughnessy, B., Shaw, R., Shawger, N., Shay, C., Sheehan, E., Shen, +S., Sherman, A., Shiao, B., Shih, H.-Y., Shivaei, I., Sienkiewicz, M., Sing, +D., Sirianni, M., Sivaramakrishnan, A., Skipper, J., Sloan, G., Slocum, C., +Slowinski, S., Smith, E., Smith, E., Smith, D., Smith, C., Snyder, G., Soh, +W., Sohn, T., Soto, C., Spencer, R., Stallcup, S., Stansberry, J., Starr, C., +Starr, E., Stewart, A., Stiavelli, M., Straughn, A., Strickland, D., Stys, J., +Summers, F., Sun, F., Sunnquist, B., Swade, D., Swam, M., Swaters, R., +Swoish, R., Taylor, J.M., Taylor, R., Te Plate, M., Tea, M., Teague, K., +Telfer, R., Temim, T., Thatte, D., Thompson, C., Thompson, L., Thom- +son, S., Tikkanen, T., Tippet, W., Todd, C., Toolan, S., Tran, H., Trejo, +E., Truong, J., Tsukamoto, C., Tustain, S., Tyra, H., Ubeda, L., Under- +wood, K., Uzzo, M., Van Campen, J., Vandal, T., Vandenbussche, B., +Vila, B., Volk, K., Wahlgren, G., Waldman, M., Walker, C., Wander, M., +Warfield, C., Warner, G., Wasiak, M., Watkins, M., Weaver, A., Weilert, +M., Weiser, N., Weiss, B., Weissman, S., Welty, A., West, G., Wheate, +L., Wheatley, E., Wheeler, T., White, R., Whiteaker, K., Whitehouse, P., +Whiteleather, J., Whitman, W., Williams, C., Willmer, C., Willoughby, +S., Wilson, A., Wirth, G., Wislowski, E., Wolf, E., Wolfe, D., Wolff, S., +Workman, B., Wright, R., Wu, C., Wu, R., Wymer, K., Yates, K., Yeager, +C., Yeates, J., Yerger, E., Yoon, J., Young, A., Yu, S., Zak, D., Zeidler, +P., Zhou, J., Zielinski, T., Zincke, C., Zonak, S.: The Science Performance +of JWST as Characterized in Commissioning. arXiv e-prints, 2207–05632 +(2022) arXiv:2207.05632 [astro-ph.IM] +[56] Speagle, J.S.: DYNESTY: a dynamic nested sampling package for estimat- +ing Bayesian posteriors and evidences. MNRAS 493(3), 3132–3158 (2020) + +Springer Nature 2021 LATEX template +Lustig-Yaeger & Fu et al. — LHS 475b with JWST +43 +arXiv:1904.02180 [astro-ph.IM]. https://doi.org/10.1093/mnras/staa278 +[57] Skilling, J.: Nested Sampling. In: Fischer, R., Preuss, R., Toussaint, +U.V. (eds.) Bayesian Inference and Maximum Entropy Methods in Sci- +ence and Engineering: 24th International Workshop on Bayesian Inference +and Maximum Entropy Methods in Science and Engineering. Ameri- +can Institute of Physics Conference Series, vol. 735, pp. 395–405 (2004). +https://doi.org/10.1063/1.1835238 +[58] Chen, J., Kipping, D.: Probabilistic Forecasting of the Masses and Radii +of Other Worlds. ApJ 834(1), 17 (2017) arXiv:1603.08614 [astro-ph.EP]. +https://doi.org/10.3847/1538-4357/834/1/17 +[59] Turbet, M., Ehrenreich, D., Lovis, C., Bolmont, E., Fauchez, T.: The +runaway greenhouse radius inflation effect. An observational diagnostic to +probe water on Earth-sized planets and test the habitable zone concept. +A&A 628, 12 (2019) arXiv:1906.03527 [astro-ph.EP]. https://doi.org/10. +1051/0004-6361/201935585 +[60] Batalha, N.E., Lewis, T., Fortney, J.J., Batalha, N.M., Kempton, E., +Lewis, N.K., Line, M.R.: The Precision of Mass Measurements Required +for Robust Atmospheric Characterization of Transiting Exoplanets. ApJL +885(1), 25 (2019) arXiv:1910.00076 [astro-ph.EP]. https://doi.org/10. +3847/2041-8213/ab4909 +[61] Line, M.R., Yung, Y.L.: A Systematic Retrieval Analysis of Secondary +Eclipse Spectra. III. Diagnosing Chemical Disequilibrium in Planetary +Atmospheres. ApJ 779, 3 (2013) arXiv:1309.6679 [astro-ph.EP]. https: +//doi.org/10.1088/0004-637X/779/1/3 +[62] Line, M.R., Knutson, H., Wolf, A.S., Yung, Y.L.: A Systematic Retrieval +Analysis of Secondary Eclipse Spectra. II. A Uniform Analysis of Nine +Planets and their C to O Ratios. ApJ 783, 70 (2014) arXiv:1309.6663 +[astro-ph.EP]. https://doi.org/10.1088/0004-637X/783/2/70 +[63] McBride, B.J., Gordon, S.: Computer program for calculation of complex +chemical equilibrium compositions and applications ii. user’s manual and +program description. Technical report, NASA (1996) +[64] Guillot, T.: On the radiative equilibrium of irradiated planetary atmo- +spheres. A&A 520, 27 (2010) arXiv:1006.4702 [astro-ph.EP]. https://doi. +org/10.1051/0004-6361/200913396 +[65] Freedman, R.S., Marley, M.S., Lodders, K.: Line and Mean Opacities +for Ultracool Dwarfs and Extrasolar Planets. ApJS 174, 504–513 (2008) +0706.2374 + +Springer Nature 2021 LATEX template +44 +Lustig-Yaeger & Fu et al. — LHS 475b with JWST +[66] Freedman, R.S., Lustig-Yaeger, J., Fortney, J.J., Lupu, R.E., Marley, +M.S., Lodders, K.: Gaseous Mean Opacities for Giant Planet and Ultra- +cool Dwarf Atmospheres over a Range of Metallicities and Temperatures. +ApJS 214, 25 (2014) arXiv:1409.0026 [astro-ph.EP]. https://doi.org/10. +1088/0067-0049/214/2/25 +[67] Batalha, N., Freedman, R., Lupu, R., Marley, M.: Resampled Opac- +ity Database for PICASO V2. https://doi.org/10.5281/zenodo.3759675. +https://doi.org/10.5281/zenodo.3759675 +[68] Lustig-Yaeger, +J.: +The +detection, +characterization, +and +retrieval +of +terrestrial +exoplanet +atmospheres. +PhD +thesis, +University +of +Washington +(2020). +https://www.proquest.com/dissertations-theses/ +detection-characterization-retrieval-terrestrial/docview/2457714855/ +se-2?accountid=11752 +[69] Lustig-Yaeger, J., Sotzen, K.S., Stevenson, K.B., Luger, R., May, +E.M., Mayorga, L.C., Mandt, K., Izenberg, N.R.: Hierarchical Bayesian +Atmospheric Retrieval Modeling for Population Studies of Exoplanet +Atmospheres: A Case Study on the Habitable Zone. AJ 163(3), +140 (2022) arXiv:2202.00701 [astro-ph.EP]. https://doi.org/10.3847/ +1538-3881/ac5034 +[70] Meadows, V.S., Crisp, D.: Ground-based near-infrared observations of +the Venus nightside: The thermal structure and water abundance near +the surface. J. Geophys. Res. 101, 4595–4622 (1996). https://doi.org/10. +1029/95JE03567 +[71] Gordon, I.E., Rothman, L.S., Hill, C., Kochanov, R.V., Tan, Y., Bernath, +P.F., Birk, M., Boudon, V., Campargue, A., Chance, K.V., Drouin, B.J., +Flaud, J.-M., Gamache, R.R., Hodges, J.T., Jacquemart, D., Perevalov, +V.I., Perrin, A., Shine, K.P., Smith, M.-A.H., Tennyson, J., Toon, G.C., +Tran, H., Tyuterev, V.G., Barbe, A., Cs´asz´ar, A.G., Devi, V.M., Furten- +bacher, T., Harrison, J.J., Hartmann, J.-M., Jolly, A., Johnson, T.J., +Karman, T., Kleiner, I., Kyuberis, A.A., Loos, J., Lyulin, O.M., Massie, +S.T., Mikhailenko, S.N., Moazzen-Ahmadi, N., M¨uller, H.S.P., Naumenko, +O.V., Nikitin, A.V., Polyansky, O.L., Rey, M., Rotger, M., Sharpe, +S.W., Sung, K., Starikova, E., Tashkun, S.A., Auwera, J.V., Wagner, G., +Wilzewski, J., Wcis�lo, P., Yu, S., Zak, E.J.: The HITRAN2016 molecu- +lar spectroscopic database. JQSRT 203, 3–69 (2017). https://doi.org/10. +1016/j.jqsrt.2017.06.038 +[72] MacDonald, R.J., Madhusudhan, N.: HD 209458b in new light: evi- +dence of nitrogen chemistry, patchy clouds and sub-solar water. MNRAS +469(2), 1979–1996 (2017) arXiv:1701.01113 [astro-ph.EP]. https://doi. +org/10.1093/mnras/stx804 + +Springer Nature 2021 LATEX template +Lustig-Yaeger & Fu et al. — LHS 475b with JWST +45 +[73] Kaltenegger, L., MacDonald, R.J., Kozakis, T., Lewis, N.K., Mama- +jek, +E.E., +McDowell, +J.C., +Vanderburg, +A.: +The +White +Dwarf +Opportunity: +Robust +Detections +of +Molecules +in +Earth-like +Exo- +planet Atmospheres with the James Webb Space Telescope. ApJL +901(1), 1 (2020) arXiv:2009.07274 [astro-ph.EP]. https://doi.org/10. +3847/2041-8213/aba9d3 +[74] Lin, Z., MacDonald, R.J., Kaltenegger, L., Wilson, D.J.: Differentiating +modern and prebiotic Earth scenarios for TRAPPIST-1e: high-resolution +transmission spectra and predictions for JWST. MNRAS 505(3), 3562– +3578 (2021) arXiv:2105.09319 [astro-ph.EP]. https://doi.org/10.1093/ +mnras/stab1486 +[75] MacDonald, R.J., Lewis, N.K.: TRIDENT: A Rapid 3D Radiative- +transfer +Model +for +Exoplanet +Transmission +Spectra. +ApJ +929(1), +20 +(2022) +arXiv:2111.05862 +[astro-ph.EP]. +https://doi.org/10.3847/ +1538-4357/ac47fe +[76] Feroz, F., Hobson, M.P., Bridges, M.: MULTINEST: an efficient and +robust Bayesian inference tool for cosmology and particle physics. +MNRAS 398(4), 1601–1614 (2009) arXiv:0809.3437 [astro-ph]. https: +//doi.org/10.1111/j.1365-2966.2009.14548.x +[77] Buchner, J., Georgakakis, A., Nandra, K., Hsu, L., Rangel, C., Brightman, +M., Merloni, A., Salvato, M., Donley, J., Kocevski, D.: X-ray spectral +modelling of the AGN obscuring region in the CDFS: Bayesian model +selection and catalogue. A&A 564, 125 (2014) arXiv:1402.0004 [astro- +ph.HE]. https://doi.org/10.1051/0004-6361/201322971 +[78] Benneke, +B., +Seager, +S.: +Atmospheric +Retrieval +for +Super-Earths: +Uniquely Constraining the Atmospheric Composition with Transmission +Spectroscopy. ApJ 753(2), 100 (2012) arXiv:1203.4018 [astro-ph.EP]. +https://doi.org/10.1088/0004-637X/753/2/100 +[79] Aitchison, J.: The Statistical Analysis of Compositional Data. Mono- +graphs on Statistics and Applied Probability. Springer, ??? (1986) +[80] Astropy Collaboration, Robitaille, T.P., Tollerud, E.J., Greenfield, P., +Droettboom, M., Bray, E., Aldcroft, T., Davis, M., Ginsburg, A., Price- +Whelan, A.M., Kerzendorf, W.E., Conley, A., Crighton, N., Barbary, K., +Muna, D., Ferguson, H., Grollier, F., Parikh, M.M., Nair, P.H., Unther, +H.M., Deil, C., Woillez, J., Conseil, S., Kramer, R., Turner, J.E.H., +Singer, L., Fox, R., Weaver, B.A., Zabalza, V., Edwards, Z.I., Azalee +Bostroem, K., Burke, D.J., Casey, A.R., Crawford, S.M., Dencheva, N., +Ely, J., Jenness, T., Labrie, K., Lim, P.L., Pierfederici, F., Pontzen, A., +Ptak, A., Refsdal, B., Servillat, M., Streicher, O.: Astropy: A commu- +nity Python package for astronomy. A&A 558, 33 (2013) arXiv:1307.6212 + +Springer Nature 2021 LATEX template +46 +Lustig-Yaeger & Fu et al. — LHS 475b with JWST +[astro-ph.IM]. https://doi.org/10.1051/0004-6361/201322068 +[81] Astropy Collaboration, Price-Whelan, A.M., Sip˝ocz, B.M., G¨unther, +H.M., Lim, P.L., Crawford, S.M., Conseil, S., Shupe, D.L., Craig, M.W., +Dencheva, N., Ginsburg, A., Vand erPlas, J.T., Bradley, L.D., P´erez- +Su´arez, D., de Val-Borro, M., Aldcroft, T.L., Cruz, K.L., Robitaille, +T.P., Tollerud, E.J., Ardelean, C., Babej, T., Bach, Y.P., Bachetti, M., +Bakanov, A.V., Bamford, S.P., Barentsen, G., Barmby, P., Baumbach, +A., Berry, K.L., Biscani, F., Boquien, M., Bostroem, K.A., Bouma, L.G., +Brammer, G.B., Bray, E.M., Breytenbach, H., Buddelmeijer, H., Burke, +D.J., Calderone, G., Cano Rodr´ıguez, J.L., Cara, M., Cardoso, J.V.M., +Cheedella, S., Copin, Y., Corrales, L., Crichton, D., D’Avella, D., Deil, +C., Depagne, ´E., Dietrich, J.P., Donath, A., Droettboom, M., Earl, N., +Erben, T., Fabbro, S., Ferreira, L.A., Finethy, T., Fox, R.T., Garri- +son, L.H., Gibbons, S.L.J., Goldstein, D.A., Gommers, R., Greco, J.P., +Greenfield, P., Groener, A.M., Grollier, F., Hagen, A., Hirst, P., Home- +ier, D., Horton, A.J., Hosseinzadeh, G., Hu, L., Hunkeler, J.S., Ivezi´c, +ˇZ., Jain, A., Jenness, T., Kanarek, G., Kendrew, S., Kern, N.S., Kerzen- +dorf, W.E., Khvalko, A., King, J., Kirkby, D., Kulkarni, A.M., Kumar, +A., Lee, A., Lenz, D., Littlefair, S.P., Ma, Z., Macleod, D.M., Mas- +tropietro, M., McCully, C., Montagnac, S., Morris, B.M., Mueller, M., +Mumford, S.J., Muna, D., Murphy, N.A., Nelson, S., Nguyen, G.H., Ninan, +J.P., N¨othe, M., Ogaz, S., Oh, S., Parejko, J.K., Parley, N., Pascual, +S., Patil, R., Patil, A.A., Plunkett, A.L., Prochaska, J.X., Rastogi, T., +Reddy Janga, V., Sabater, J., Sakurikar, P., Seifert, M., Sherbert, L.E., +Sherwood-Taylor, H., Shih, A.Y., Sick, J., Silbiger, M.T., Singanamalla, +S., Singer, L.P., Sladen, P.H., Sooley, K.A., Sornarajah, S., Streicher, +O., Teuben, P., Thomas, S.W., Tremblay, G.R., Turner, J.E.H., Terr´on, +V., van Kerkwijk, M.H., de la Vega, A., Watkins, L.L., Weaver, B.A., +Whitmore, J.B., Woillez, J., Zabalza, V., Astropy Contributors: The +Astropy Project: Building an Open-science Project and Status of the v2.0 +Core Package. AJ 156(3), 123 (2018) arXiv:1801.02634 [astro-ph.IM]. +https://doi.org/10.3847/1538-3881/aabc4f +[82] Bourque, M., Espinoza, N., Filippazzo, J., Fix, M., King, T., Martlin, +C., Medina, J., Batalha, N., Fox, M., Fowler, J., Fraine, J., Hill, M., +Lewis, N., Stevenson, K., Valenti, J., Wakeford, H.: The Exoplanet Char- +acterization Toolkit (ExoCTK). https://doi.org/10.5281/zenodo.4556063. +https://doi.org/10.5281/zenodo.4556063 +[83] P´erez, F., Granger, B.E.: IPython: a system for interactive scientific +computing. Computing in Science and Engineering 9(3), 21–29 (2007). +https://doi.org/10.1109/MCSE.2007.53 +[84] Hunter, J.D.: Matplotlib: A 2d graphics environment. Computing in +Science Engineering 9(3), 90–95 (2007). https://doi.org/10.1109/MCSE. + +Springer Nature 2021 LATEX template +Lustig-Yaeger & Fu et al. — LHS 475b with JWST +47 +2007.55 +[85] van der Walt, S., Colbert, S.C., Varoquaux, G.: The numpy array: +A structure for efficient numerical computation. Computing in Science +Engineering 13(2), 22–30 (2011). https://doi.org/10.1109/MCSE.2011. +37 +[86] Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen, +P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, +R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., +del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, +K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: +Array programming with NumPy. Nature 585(7825), 357–362 (2020). +https://doi.org/10.1038/s41586-020-2649-2 +[87] Salvatier, J., Wieckiˆa, T.V., Fonnesbeck, C.: PyMC3: Python probabilis- +tic programming framework. Astrophysics Source Code Library, record +ascl:1610.016 (2016) +[88] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., +Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., +van der Walt, S.J., Brett, M., Wilson, J., Jarrod Millman, K., Mayorov, +N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C., Polat, ˙I., +Feng, Y., Moore, E.W., Vand erPlas, J., Laxalde, D., Perktold, J., Cim- +rman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., +Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., Contributors, S...: SciPy +1.0: Fundamental Algorithms for Scientific Computing in Python. Nature +Methods 17, 261–272 (2020). https://doi.org/10.1038/s41592-019-0686-2 +