diff --git "a/9tE3T4oBgHgl3EQfSQmN/content/tmp_files/load_file.txt" "b/9tE3T4oBgHgl3EQfSQmN/content/tmp_files/load_file.txt" new file mode 100644--- /dev/null +++ "b/9tE3T4oBgHgl3EQfSQmN/content/tmp_files/load_file.txt" @@ -0,0 +1,1626 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf,len=1625 +page_content='Adaptive proximal algorithms for convex optimization under local Lipschitz continuity of the gradient* Puya Latafat† Andreas Themelis‡ Lorenzo Stella§ Panagiotis Patrinos† Abstract Backtracking linesearch is the de facto approach for minimizing continuously differentiable functions with locally Lipschitz gradient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' In recent years, it has been shown that in the convex setting it is possible to avoid linesearch altogether, and to allow the stepsize to adapt based on a local smoothness estimate without any backtracks or evaluations of the function value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' In this work we propose an adaptive proximal gradient method, adaPGM, that uses novel tight estimates of the local smoothness modulus which leads to less conservative stepsize updates and that can additionally cope with nonsmooth terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' This idea is extended to the primal-dual setting where an adaptive three term primal-dual algorithm, adaPDM, is proposed which can be viewed as an extension of the PDHG method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Moreover, in this setting the fully adaptive adaPDM+ method is proposed that avoids evaluating the linear operator norm by invoking a backtracking procedure, that, remarkably, does not require extra gradient evaluations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Numerical simulations demonstrate the effectiveness of the proposed algorithm compared to the state of the art.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Keywords.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Convex minimization · proximal gradient method · primal-dual algorithms · locally Lip- schitz gradient · linesearch-free adaptive stepsizes AMS subject classifications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 65K05 · 90C06 · 90C25 · 90C30 · 90C47 Contents 1 Introduction 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1 Contributions .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2 Organization .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='3 Notation .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 5 2 Adaptive proximal gradient method 5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1 Local estimates of Lipschitz and cocoercivity moduli .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2 Convergence results .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 8 This work was supported by: the Research Foundation Flanders (FWO) postdoctoral grant 12Y7622N and research projects G081222N, G033822N, G0A0920N;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Research Council KU Leuven C1 project No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' C14/18/068;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 953348;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Japan Society for the Promotion of Science (JSPS) KAKENHI grant JP21K17710.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' †Department of Electrical Engineering (ESAT-STADIUS) – KU Leuven, Kasteelpark Arenberg 10, 3001 Leuven, Bel- gium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' E-mails: {puya.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='latafat,panos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='patrinos}@kuleuven.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='be ‡Faculty of Information Science and Electrical Engineering (ISEE) – Kyushu University, 744 Motooka, Nishi-ku 819- 0395, Fukuoka, Japan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' E-mail: andreas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='themelis@ees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='kyushu-u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='jp §AWS AI Labs, Berlin, Germany (work done prior to joining Amazon).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' E-mail: lorenzostella@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='com 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='04431v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='OC] 11 Jan 2023 3 Adaptive three-term primal-dual methods 10 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1 Algorithmic overview .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 11 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2 Linesearch variant without linear operator norm .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 12 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='3 Convergence results .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 13 4 Numerical simulations 14 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1 Adaptive proximal gradient .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 15 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1 Logistic regression .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 15 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2 Cubic regularization .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 15 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='3 Regularized least squares .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 17 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2 Adaptive primal-dual algorithms .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 17 Optimality criterion .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 17 Stepsize selection .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 17 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1 Dual support vector machine problem .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 18 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2 Least absolute deviation regression and square-root lasso .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 18 5 Conclusions 19 Appendix 21 A Convergence analysis for Section 3 21 Proof of Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 22 References 25 1 Introduction Backtracking linesearch is one of the most successful ideas in smooth optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' It is well known that gradient descent with linesearch converges under mild differentiability assumptions [8, §1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Even in the Lipschitz differentiable case such techniques can lead to significant speedups compared to using a constant stepsize dictated by a global Lipschitz modulus due to their ability to adapt to the local geometry of the problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' In this work we explore an alternative approach which can cope with nonsmooth formulations, does not require any backtracking procedures, does not require function value evaluations, and yet, similar to linesearch based methods only requires local Lipschitz differ- entiablity of the smooth term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' The key property that allows for this improvement is the assumption of convexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Our work is inspired by [49] where a gradient descent algorithm xk+1 = xk − γk+1∇f(xk) is studied with stepsize updated at each iteration by the rule γk+1 = min � γk � 1 + γk γk−1 , ∥xk − xk−1∥ 2∥∇f(xk) − ∇f(xk−1)∥ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1) The idea of using an estimate for the Lipschitz modulus has also been explored in the setting of variational inequalities [71, 65, 12, 70, 10], but often at the cost of enforcing the stepsize sequence to be nonincreasing, which can lead to slow convergence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Allowing the stepsize to increase is a crucial feature of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1) which our proposed methods maintain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' It is worth noting that in [48] another adaptive scheme, aGRAAL, was proposed for hemivariational inequalities which also allows for 2 increasing stepsizes (see also [1]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' We also mention recent works for smooth minimization such as [64, 52] whose adaptive rule is designed to guarantee worst-case rates, and [3] that exploits a continuous-time viewpoint to develop adaptive algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' In [49] it was observed that the line of proof therein does not provide any route for generalization to the composite proximal setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' In this work, additionally to showing that this is in fact possible we will actually provide larger stepsizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' As better detailed in the discussion before Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1, the improvement is partially due to tighter estimates of the geometry of f in which both Lipschitz and (inverse) cocoercivity estimates are taken into account, namely Lk � ⟨∇f(xk−1) − ∇f(xk), xk−1 − xk⟩ ∥xk−1 − xk∥2 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2a) and Ck � ∥∇f(xk−1) − ∇f(xk)∥2 ⟨∇f(xk−1) − ∇f(xk), xk−1 − xk⟩ (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2b) for a pair of points xk−1, xk ∈ �n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Note that Lk and Ck are the inverse of the Barzilai-Borwein stepsize choices [5], which have been considered in the setting of gradient descent [58, 24], however their convergence results is limited to the quadratic setting (see also [63, 15] for extensions).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Our proposed adaptive proximal gradient scheme adaPGM (Algorithm 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1) combines the two estimates and involves the following update rule γk+1 = min �������γk � 1 + γk γk−1 , γk 2 ��γkLk(γkCk − 1)� + ������� (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='3) on the stepsize.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Note that whenever γkCk ≤ 1 the update reduces to γk+1 = γk � 1 + γk γk−1 , effectively strictly increasing the stepsize.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Regardless, this update is easily seen to be less conservative than (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1), the one prescribed in [49, Alg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 1];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' see Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='4 for the details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' In the second part of the paper this idea is extended to the primal-dual setting to address general problems of the form minimize x∈�n ϕ(x) � f(x) + g(x) + h(Ax), (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='4) where A is a linear mapping, g and h are (possibly nonsmooth) extended-real-valued convex func- tions, and f is convex and typically assumed to be Lipschitz differentiable (this is relaxed to local Lipschitz continuity of the gradient here, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Assumption II).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' In the past decade primal-dual algorithms have gained a lot of popularity in areas ranging from machine learning and signal processing to control [20, 62, 37, 36, 39, 40].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Their popularity is primar- ily due to their ability to achieve full splitting on composite problems of the form (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Moreover, inherent properties of first order operations facilitates block-coordinate and distributed variants, see for instance [9, 44, 42, 39, 30, 46, 45, 23, 2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' There is a large body of literature on primal-dual algorithms see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=', [16, 29, 67, 22, 13, 11, 21, 40, 69].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Despite employing different techniques in their convergence analysis, the majority of existing methods rely on establishing a Fejér-type inequality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' In fact, most can be viewed as in- telligent applications of a monotone splitting technique such as forward-backward splitting (FBS), Douglas-Rachford splitting (DRS) and forward-backward-forward splitting (FBFS) for solving the associated primal-dual optimality conditions, see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=', [35, 67, 22, 13, 11, 21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' More recently, the introduction of new splitting techniques such as AFBA [41, 43], NOFOB [31], forward-Douglas- Rachford-forward [60], forward-backward-half forward [14], forward-reflected-backward [51], has 3 led to new primal-dual algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' We remark also that when A = id in (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='4), one can directly solve the problem without any lifting by using the three-term splitting [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' There exists also an adaptive/linesearch variant of this algorithm, see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=', [56], which requires potentially costly extra gradient evaluations during the backtracking procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Unlike the above described correspondence with splitting techniques, our proposed method can- not be viewed as an instance of any splitting technique for solving general monotone inclusions, in that it relies heavily on the knowledge that the operators involved are subdifferentials of convex functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Although the proposed idea is extendable to other primal-dual methods such as those in [41], our focus here is on an adaptive variant of PDHG [16, 67, 22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' An interesting algorithm in this line of work was proposed in [66] which however cannot handle the third nonsmooth term g in (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' In adaPDM (Algorithm 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1) we provide a different stepsize rule that not only can handle (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='4) but also inherits the same idea of using tighter estimates Ck, Lk as in the case of the proximal gradient method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' A second consideration for primal-dual methods is that in the usual (nonadaptive) setting the primal-dual stepsizes γ, σ should typically satisfy a condition of the form γσ∥A∥2 ≤ 1 − γLf 2 (see for instance [22, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1], [41, Prop 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' In practical applications the norm of the linear operator may be costly to compute and can lead to smaller stepsize, and thus slower convergence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Recently, in the setting where f ≡ 0, a linesearch procedure was proposed in [50] for selecting the stepsizes based on an estimate of the norm of the linear operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' A linesearch extension of [48] in the primal- dual setting was also proposed in [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' We propose a different linesearch procedure that naturally integrates our adaptive primal-dual algorithm, see adaPDM+ (Algorithm 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2), to handle the more general problem (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='4) without any extra gradient evaluations during backtracks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1 Contributions The main contributions of the paper are summarized below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' This paper proposes a nonmonotone adaptive stepsize rule for the proximal gradient method that departs from the usual linesearch technique and adapts to the local geometry of the smooth func- tion by combining local estimates of cocoercivity and Lipschitz moduli of the differentiable term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Compared to [49], even when restricted to the case of gradient descent, it allows for less restrictive stepsizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Through this observation, convergence of the aforementioned work in the proximal case follows immediately as a by-product of our analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' This idea is extended to the primal-dual setting where an adaptive three term splitting for com- posite minimization problems is developed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' The proposed algorithm can be viewed as an extension of the V˜u-Condat algorithm [22, 67], itself being an extension of the PDHG algorithm [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' As a final contribution, a fully adaptive variant of the primal-dual method is presented in the sense that it no longer requires evaluating the norm of the linear operator A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Remarkably, the proposed linesearch does not require any extra gradient evaluations and can be implemented efficiently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2 Organization We conclude this section by introducing the adopted notation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' The proposed adaptive proximal gra- dient method adaPGM is formally studied in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' The underlying idea is then extended to the primal-dual setting in Section 3, where adaPDM is presented that can handle one additional nons- mooth term composed with a linear operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' The issue of estimating the norm of the linear operator 4 is resolved through the introduction of a linesearch procedure in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' The convergence re- sults for both variants of the primal-dual algorithm are presented in a unified fashion in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='3 with some of the proofs deferred to the appendix Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Numerical simulations for the proposed algorithms are presented in Section 4, and Section 5 concludes the paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='3 Notation The set of real and extended-real numbers are � � (−∞, ∞) and � � � ∪ {∞}, while the positive and strictly positive reals are �+ � [0, ∞) and �++ � (0, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' We use the notation [x]+ = max{0, x}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' With id we indicate the identity function defined on a suitable space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' We denote by ⟨·, ·⟩ and ∥·∥ the standard Euclidean inner product and the induced norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Given a set E ⊆ �n, with int E, relint E and bdry E we respectively denote its interior, relative interior, and boundary, and for a sequence (xk)k∈� we write (xk)k∈� ⊆ E to indicate that xk ∈ E for all k ∈ �.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' The indicator function of E is denoted by δE, namely δE(x) = 0 if x ∈ E and ∞ otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' A sequence (wk)k∈� is said to be quasi-Fejér monotone with respect to V ⊆ �n if for all v ∈ V, there exists a summable nonnegative sequence (εk = εk(v))k∈� such that for all k ∈ � ∥wk+1 − v∥2 ≤ ∥wk − v∥2 + εk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' The domain and epigraph of an extended-real-valued function h : �n → � are the sets dom h � {x ∈ �n | h(x) < ∞} and epi h � {(x, c) ∈ �n × � | h(x) ≤ c}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Function h is said to be proper if dom h � ∅, and lower semicontinuous (lsc) if epi h is a closed subset of �n+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' We say that h is level bounded if its c-sublevel set lev≤c h � {x ∈ �n | h(x) ≤ c} is bounded for all c ∈ �.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' The conju- gate of h, is defined by h∗(y) � supx∈�n {⟨y, x⟩ − h(x)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 2 Adaptive proximal gradient method The proximal gradient method (PGM) is the natural extension of gradient descent for constrained and nonsmooth problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' It addresses nonsmooth minimization problems by splitting them into sum of two terms as follows minimize x∈�n ϕ(x) � f(x) + g(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1) Throughout this section the following underlying assumptions are imposed on problem (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Assumption I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' The following hold in problem (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1): (i) f : �n → � is convex and has locally Lipschitz continuous gradient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' (ii) g : �n → � is proper, lsc, and convex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' (iii) A solution exists: arg min ϕ � ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' In addition to the gradient of the differentiable term, the fundamental oracle of PGM is the proximal mapping defined as proxτg(x) � arg min w∈�n � g(w) + 1 2τ∥w − x∥2� , where τ > 0 is a given stepsize.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' In the convex setting the proximal map is single valued and in fact Lipschitz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' It is well known that for many applications of interest such as constrained or regular- ized problems the nonsmooth term admits closed form proximal operator (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=', projection on sets, 5 Algorithm 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1 Adaptive proximal gradient method (adaPGM) Require starting point x−1 ∈ �n and stepsizes γ0 ≥ γ−1 > 0 Initialize x0 = proxγ0g(x−1 − γ0∇f(x−1)) Repeat for k = 0, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' until convergence 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1: Set ∆k � γkLk(γkCk − 1), where Lk and Ck are as in (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2: Define the stepsize as γk+1 = γk min � � 1 + γk γk−1 , 1 2 √[∆k]+ � 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='3: xk+1 = proxγk+1g(xk − γk+1∇f(xk)) shrinkage operator, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' The most common variant of PGM involves constant stepsize that is upper bounded by 2/L f, where L f is the global Lipschitz constant of ∇f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' A common strategy in practice is to estimate such modulus via backtracking linesearch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Diverging from the linesearch technique we propose adaPGM that adaptively selects the step- sizes based on the estimates Ck, Lk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Note that an adaptive gradient method with g ≡ 0 was proposed in [49] with a different update rule, see (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1), where it was observed that the adopted line of proof does not seem to provide any route for generalization to account for a nonsmooth term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' This appears to be fundamentally due to the fact that the analysis therein revolves around the fact that consecutive iterates are a multiple of the gradient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' In contrast, we circumvent this by combining the subgradient inequality for the nonsmooth term g at three different pairs of points, namely (x⋆, xk+1), (xk+1, xk), and (xk−1, xk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' In addition, the combined use of the quantities Lk and Ck as in (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2) allows for esti- mating, along with that of the gradient, the local Lipschitz constant of the forward operator id−γ∇f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' This appears to be fundamental for recovering the update rule (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1) of [49], and in fact leads to the less conservative update rule of adaPGM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1 Local estimates of Lipschitz and cocoercivity moduli Throughout, we will make use of the following shorthand for the forward operator with stepsize γk: Hk � id − γk∇f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' As we are about to show, the combined adoption of the estimates Lk and Ck provides an estimate of the Lipschitz modulus of the forward operator Hk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Suppose that Assumption I holds, and let xk−1, xk ∈ �n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Then, with Lk and Ck as in (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2) the following hold: (i) ∥∇f(xk−1) − ∇f(xk)∥2 = CkLk∥xk−1 − xk∥2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' (ii) ∥Hk(xk−1) − Hk(xk)∥2 = �1 − γkLk(2 − γkCk)�∥xk−1 − xk∥2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' (iii) Lk ≤ ∥∇f(xk−1)−∇f(xk)∥ ∥xk−1−xk∥ ≤ Ck ≤ Lf,V, where L f,V is a Lipschitz modulus for ∇f on an open convex set V containing xk−1 and xk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 6 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' The first assertion is of trivial verification, and similarly the third one follows from the Cauchy-Schwarz inequality and the Baillon-Haddad theorem [4, Cor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 10], see also [6, Cor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' To conclude, observe that ∥Hk(xk−1) − Hk(xk)∥2 = ∥xk−1 − xk∥2 + γ2 k∥∇f(xk−1) − ∇f(xk)∥2 − 2γk⟨∇f(xk−1) − ∇f(xk), xk−1 − xk⟩, from which assertion 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1(ii) follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Our convergence analysis will rely on first establishing boundedness of the generated sequence, thereby entailing the existence of a Lipschitz constant Lf,V > 0 for ∇f on a bounded convex set V that contains the iterates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' It will then follow from Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1(iii) that both Ck and Lk are upper bounded by this quantity, which in turn will be used to show that this modulus provides a lower bound for the stepsize separating it from zero, and convergence will be established by means of Fejér-monotonicity arguments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Before that, we show how the combined use of Lk and Ck can be employed to estimate the progress of the iterates generated by PGM with arbitrary stepsizes, not necessarily dictated by the update rule of adaPGM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Suppose Assumption I holds, and consider a sequence (xk)k∈� generated by PGM iterations xk+1 = proxγk+1g(xk − γk+1∇f(xk)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Then, for any x⋆ ∈ arg min ϕ 1 2∥xk+1 − x⋆∥2 + γk+1(1 + ρk+1)Pk + 1−εk+1ρk+1 2 ∥xk − xk+1∥2 ≤ 1 2∥xk − x⋆∥2 + ρk+1γk+1Pk−1 + ρk+1 � 1−γkLk(2−γkCk) 2εk+1 − ρk+1(1 − γkLk) � ∥xk−1 − xk∥2 holds for any k ≥ 1 and εk > 0, where Lk and Ck are as in (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2), ρk � γk γk−1 , and Pk � ϕ(xk) − min ϕ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' The subgradient characterization Hk+1(xk)−xk+1 γk+1 = xk−xk+1 γk+1 − ∇f(xk) ∈ ∂g(xk+1) (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2) of xk+1 = proxγk+1g(xk − γk+1∇f(xk)) implies 0 ≤ g(x⋆) − g(xk+1) + ⟨∇f(xk), x⋆ − xk+1⟩ − 1 γk+1 ⟨xk − xk+1, x⋆ − xk+1⟩ = g(x⋆) − g(xk+1) + ⟨∇f(xk), x⋆ − xk+1⟩ (A) + 1 2γk+1 ∥xk − x⋆∥2 − 1 2γk+1 ∥xk+1 − x⋆∥2 − 1 2γk+1 ∥xk − xk+1∥2 holds for any solution x⋆.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' We next proceed to upper bound the term (A) as (A) = ⟨∇f(xk), x⋆ − xk⟩ + ⟨∇f(xk), xk − xk+1⟩ = ⟨∇f(xk), x⋆ − xk⟩ + 1 γk ⟨Hk(xk−1) − xk, xk+1 − xk⟩ + 1 γk ⟨Hk(xk−1) − Hk(xk), xk − xk+1⟩ (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2) ≤ f(x⋆) − f(xk) + g(xk+1) − g(xk) + 1 γk ⟨Hk(xk−1) − Hk(xk), xk − xk+1⟩ (B) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Next, we bound the term (B) by εk+1-Young’s inequality as (B) ≤ εk+1 2γk ∥xk − xk+1∥2 + 1 2εk+1γk ∥Hk(xk−1) − Hk(xk)∥2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1(ii) = εk+1 2γk ∥xk − xk+1∥2 + 1−γkLk(2−γkCk) 2εk+1γk ∥xk−1 − xk∥2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='3) 7 Let ϕ⋆ � min ϕ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' The three inequalities combined give 0 ≤ ϕ⋆ − ϕ(xk) + 1 2γk+1 ∥xk − x⋆∥2 − 1 2γk+1 ∥xk+1 − x⋆∥2 + � εk+1 2γk − 1 2γk+1 � ∥xk − xk+1∥2 + 1−γkLk(2−γkCk) 2εk+1γk ∥xk−1 − xk∥2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Using again the subgradient (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2) (since ∂ϕ = ∇f + ∂g) one has vk � xk−1−xk γk − (∇f(xk−1) − ∇f(xk)) ∈ ∂ϕ(xk), (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='4) hence 0 ≤ γk+1 γk � ϕ(xk−1) − ϕ(xk) − ⟨vk, xk−1 − xk⟩ � = γk+1 γk � ϕ(xk−1) − ϕ(xk) − 1 γk ∥xk − xk−1∥2 + ⟨∇f(xk−1) − ∇f(xk), xk−1 − xk⟩ � = γk+1 γk � ϕ(xk−1) − ϕ(xk) − 1−γkLk γk ∥xk − xk−1∥2� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='5) The proof now follows by summing the last two inequalities and multiplying by γk+1, observing that ϕ⋆ − ϕ(xk) + γk+1 γk (ϕ(xk−1) − ϕ(xk)) = γk+1 γk Pk−1 − (1 + γk+1 γk )Pk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2 Convergence results While adaPGM can be seen as a special case of the more general primal-dual adaPDM, the conver- gence results of adaPGM is obtained under fewer restrictions (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' For this reason, we provide a dedicated proof for the adaptive proximal gradient algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Suppose that Assumption I holds, and consider the iterates generated by adaPGM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Then, for any x⋆ ∈ arg min ϕ and with Uk = Uk(x⋆) defined as Uk � 1 2∥xk − x⋆∥2 + 1 4∥xk − xk−1∥2 + γk(1 + ρk)Pk−1, the following hold: (i) Uk+1 ≤ Uk − � ≥0 1 4 − ρ2 k+1∆k �∥xk−1 − xk∥2 − γk � ≥0 1 + ρk − ρ2 k+1 �Pk−1 for all k ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' (ii) (The sequence (xk)k∈� is bounded and) γk > 1 2Lf,V holds for every k ≥ k0 � � 2 log2 1 γ0L f,V � +, where L f,V is a Lipschitz modulus for ∇f on a compact convex set V containing (xk)k∈�.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' (iii) The sequence (xk)k∈� converges to a solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' The claim remains true if the stepsizes are chosen in such a way that (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='3) holds with “≤”, as long as (γk)k∈� is bounded away from zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' In what follows, let αk � γkLk and βk � γkCk, so that ∆k = αk(βk − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' ♠ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='3(i) Defining ˜Uk � 1 2∥xk − x⋆∥2 + 1−εkρk 2 ∥xk − xk−1∥2 + γk(1 + ρk)Pk−1, the inequality in Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2 reads ˜Uk+1 ≤ ˜Uk − γk � 1 + ρk − ρ2 k+1 � Pk−1 − � 1−εkρk 2 + ρ2 k+1(1 − αk) − ρk+1 1−αk(2−βk) 2εk+1 � ∥xk−1 − xk∥2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 8 With εk � 1 2ρk , one has ˜Uk = Uk and the inequality simplifies to Uk+1 ≤ Uk − γk � 1 + ρk − ρ2 k+1 � Pk−1 − � 1 4 + ρ2 k+1αk(1 − βk) � ∥xk−1 − xk∥2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' If βk ≤ 1, (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=', ∆k ≤ 0), one directly obtains that Uk+1 ≤ Uk − 1 4∥xk − xk−1∥2 −γk � 1 + ρk − ρ2 k+1 � Pk−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Otherwise, the update rule for γk implies that the coefficient in curly brackets is greater or equal than zero, and the claim follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' ♠ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='3(ii) The proven inequality implies that (xk)k∈� is quasi-Fejér monotone of type II with respect to the set of solutions (in the sense of [19, Def.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1]) and in particular is bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' As such, V and Lf,V as in the statement exist, and consequently Ck ≤ Lf,V holds for every k ≥ 1 by cocoercivity of ∇f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Suppose that γk ≤ 1/L f,V for k = 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' , K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Then, for these k one has that γkCk ≤ γkLf,V ≤ 1, hence [∆k]+ = 0 and the update rule step 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2 then implies that ρ2 k+1 = 1+ρk > 1, which inductively gives ρ2 k ≥ 2 for all k = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' , K (since ρ0 ≥ 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' We then have γ2 K = ρ2 Kγ2 K−1 ≥ 2γ2 K−1 ≥ · · · ≥ 2Kγ2 0 showing that in at most k0 iterations one stepsize exceeds 1/L f,V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Because of the update rule step 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2, note that if γk ≤ 1/Lf,V (hence γkCk ≤ 1) then γk > γk−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' The lower bound on the stepsizes will thus follow once we show that γk−1 > 1/L f,V and γk < 1/L f,V implies that γk > 1 2L f,V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' In this case, since γk < γk−1 necessarily βk−1 > 1 and (γkL f,V)2 ≥ (γkCk−1)2 = 1 4αk−1(βk−1−1)β2 k−1 ≥ 1 4 βk−1 βk−1−1 = 1 4 � 1 + 1 βk−1−1 � > 1 4, where the second inequality owes to the fact that βk−1 ≥ αk−1, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1(iii).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' ♠ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='3(iii) We begin by observing that, as is apparent from its proof, assertion 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='3(i) remains valid if the identity in (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='3) is replaced by an inequality “≤”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Either way, a telescoping argument yields that γk(1 + ρk − ρ2 k+1)Pk−1 → 0 as k → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Since (xk)k∈� is quasi-Fejér monotone (of Type II), by virtue of [19, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='11(i)–(iv)] it suffices to show that there exists a subsequence of (xk)k∈� converging to a solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Equivalently, it suffices to show that lim infk→∞ Pk = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' If lim supk→∞(1 + ρk − ρ2 k+1) > 0, then a telescoping argument in the descent condition of assertion 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='3(i) yields the claim, since γk is bounded away from zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Alternatively, since 1 + ρk − ρ2 k+1 ≥ 0, necessarily 1 + ρk − ρ2 k+1 → 0, from which it easily follows that lim infk→∞ ρk > 1, and that therefore γk → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' In this case, since γk(1 + ρk)Pk−1 ≤ Uk this directly proves that Pk → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' As a consequence of the above result, it can be easily seen that [49, Alg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 1] can in fact cope with nonsmooth problems of the form (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' This will be apparent once we show that the proposed stepsize update rule is less conservative than that of [49, Alg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='4 (Comparison with [49, Alg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 1]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' With γk+1 as in step 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2, note that γk+1 ≥ min � γk � 1 + ρk, ∥xk−xk−1∥ 2∥∇f(xk)−∇f(xk−1)∥ � (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='6) holds for every k, and that the right-hand side corresponds to the stepsize update of [49, Alg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Indeed, the inequality easily follows by observing that ∥xk−xk−1∥ 2∥∇f(xk)−∇f(xk−1)∥ = 1 2 � 1 LkCk ≤ 1 2 � γkCk LkCk[γkCk−1]+ = γk 2 √[∆k]+ , where the first identity owes to Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1(i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' As a consequence, in addition to accommodating proximal terms, adaPGM also comes with a less conservative stepsize update rule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 9 Inequality (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='6) cannot be reiterated inductively, and in particular there is no guarantee that, iteration-wise, the entire sequence of stepsizes produced by adaPDM is larger than that generated by [49, Alg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 1], even if the algorithms are started with same initial conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' This is nevertheless enough to infer convergence of [49, Alg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 1] applied to composite minimization problems as in (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='5 (Proximal extension of [49, Alg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 1]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Suppose that Assumption I holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Then, PGM iterations xk+1 = proxγk+1g(xk − γk+1∇f(xk)) with stepsize rule γk+1 = min � γk � 1 + ρk, ∥xk−xk−1∥ 2∥∇f(xk)−∇f(xk−1)∥ � as in [49, Alg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 1] converge to a solution of (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' The validity of Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='3(iii) guarantees that the generated sequence remains bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' As also observed in [49, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 1], this guarantees that γk ≥ 1 2L f,V (up to possibly excluding initial iterates), where L f,V is a Lipschitz constant of ∇f on a bounded open convex set V that contains all the iterates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' The proof follows by invoking Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='3(iii).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 3 Adaptive three-term primal-dual methods In this section the idea of adaptively estimating the local geometry of f will be extended to composite problems of the form (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='4), which we rewrite here for the reader’s convenience minimize x∈�n ϕ(x) � f(x) + g(x) + h(Ax).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Although inevitably the analysis in this setting is more complicated, the key idea of using the es- timates Ck, Lk in (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2) remains the same.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' We will first propose an adaptive algorithm under the as- sumption that the norm of the linear operator A is known.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' This assumpion will then be lifted through a certain linesearch procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Throughout, the following standing assumptions are imposed on problem (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Assumption II (Requirements for the primal-dual setting).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' The following hold in problem (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='4): (i) f : �n → � is continuously differentiable with locally Lipschitz continuous gradient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' (ii) h : �m → � and g : �n → � are proper convex and lsc, and A : �n → �m is a linear mapping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' (iii) A solution exists: arg min ϕ � ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' (iv) The problem is strictly feasible: there exists x ∈ relint dom g such that Ax ∈ relint dom h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' A well-established approach for addressing (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='4) is to lift the problem into the primal-dual space and solve the associated convex-concave saddle point problem minimize x∈�n maximize y∈�m L(x, y) � f(x) + g(x) + ⟨Ax, y⟩ − h∗(y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' This lifting is the key to splitting the composed term h ◦ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Moreover, in doing so the primal and the dual solutions can be obtained simultaneously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' A pair z⋆ = (x⋆, y⋆) will be referred to as a primal-dual solution if the following primal-dual optimality condition holds 0 ∈ −Ax⋆ + ∂h∗(y⋆), 0 ∈ A⊤y⋆ + ∇f(x⋆) + ∂g(x⋆).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1) 10 The set of all such points would be denoted by S⋆.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Under the constraint qualification of Assump- tion II(iv), the set of solutions for the dual problem is nonempty, and thus so is S⋆, and the duality gap is zero, see [59, Cor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1] and [6, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Moreover, the pair (x⋆, y⋆) is a primal-dual solution if and only if x⋆ is a primal and y⋆ is a dual solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Since (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='4) is a convex problem, the primal-dual solution pairs are equivalently characterized by the saddle point inequality L(x⋆, y) ≤ L(x⋆, y⋆) ≤ L(x, y⋆) ∀(x, y) ∈ �n × �m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2) In our analysis we will measure deviation from L(x⋆, y⋆) along the primal and dual sequences using shorthand notations Pk � L(xk, y⋆) − L(x⋆, y⋆) = (f + g)(xk) − ( f + g)(x⋆) + ⟨xk − x⋆, A⊤y⋆⟩ (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='3) and Qk � L(x⋆, y⋆) − L(x⋆, yk) = h∗(yk) − h∗(y⋆) + ⟨Ax⋆, y⋆ − yk⟩ which are both positive due to the saddle point inequality (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1 Algorithmic overview The proposed algorithm is presented in adaPDM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' It can be viewed as an adaptive variant of the the algorithm proposed in [22, 67], which itself is an extension of the PDHG method [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' In com- parison to the aforementioned algorithms with constant stepsizes, here, a varying and potentially increasing stepsize rule is proposed based on the estimates Ck, Lk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Moreover, in PDHG the dual up- date combines two consequent primal updates as 2Axk − Axk−1 (in our notation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' In [41, Alg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 3] it was shown that many primal-dual algorithms can be unified by modifying the dual update to use terms of the form θAxk + (1 − θ)Axk−1 followed by a correction step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' While depending on the appli- cation this can lead to parallel implementations and potentially larger stepsizes compared to PDHG (with θ = 2), the improvement in speed is limited by the use of global estimates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Differently from the aforementioned works, in adaPDM the mixing constant θ is selected adaptively as 1 + γk+1/γk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' When viewed as an extension of the proximal gradient method adaPGM this idea appears natural.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' In fact, this was proposed in [66] as a primal-dual extension of [49] where superior convergence rate com- pared to constant stepsize variants was observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Our proposed update rule differs substantially and inherits the tighter estimates in (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2) while permitting for the third nonsmooth term g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1 (comparison to the proximal gradient method).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' When h ≡ 0 (and A = 0), problem (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='4) reduces to problem (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1), and (i) One has that adaPDM with δ = 0 reduces to adaPGM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' In fact, in this case apparently yk ≡ 0 and xk+1 = proxγk+1g(xk − γk+1∇f(xk)), and since ξk ≡ 0 the stepsize update on γk reduces to γk+1 = γk min ������� � 1 + γk γk−1 , 1 � 2� |∆k|+∆k� ������� = γk min � � 1 + γk γk−1 , 1 2 √[∆k]+ � , which is precisely the stepsize update rule in adaPGM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' (ii) Pk in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='3) reduces to the one in Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' However, while for adaPGM it was sufficient to show lim inf Pk = 0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=', that any limit point ˆx satisfies ϕ(ˆx) = min ϕ, in the primal-dual setting an argument through the cost function cannot be used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' In fact, as it will become evident in the 11 Algorithm 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1 Adaptive primal-dual method (adaPDM) Require primal/dual (square inverse) stepsize ratio t > 0 stepsize parameters δ ≥ 0, c > 1 + δ initial primal-dual pair (x−1,y0) ∈ �n × �m and stepsizes γ−1 ≤ γ0 ≤ 1/2ct∥A∥ Initialize x0 = proxγ0g �x−1 − γ0∇f(x−1) − γ0A⊤y0� Repeat for k = 0, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' until convergence 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1: Set ∆k � γkLk(γkCk − 1) and ξk � t2γ2 k∥A∥2, where Lk and Ck are as in (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2: Define the stepsizes as ��������������� γk+1 = min �������γk � 1 + γk γk−1 , 1 2ct∥A∥, γk � 1−4ξk(1+δ)2 2(1+δ) �√ ∆2 k+ξk(1−4ξk(1+δ)2)+∆k � ������� σk+1 = t2γk+1 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='3: yk+1 = proxσk+1h∗ � yk + σk+1 ��1 + γk+1 γk �Axk − γk+1 γk Axk−1�� 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='4: xk+1 = proxγk+1g �xk − γk+1∇f(xk) − γk+1A⊤yk+1� proof of Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2(iv), although any limit point (ˆx, ˆy) of (xk, yk)k∈� generated by either one of Algorithms 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2 satisfies L(ˆx, y⋆) = L(x⋆, ˆy) = L(x⋆, y⋆), ∀(x⋆, y⋆) ∈ S⋆, convergence can only be guaranteed by establishing sufficient descent in terms of the residual ∥zk+1 − zk∥ (enforced in the algorithms through introduction of the parameter δ > 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' It is only if f +g is strictly convex that δ = 0 can be permitted, as will be shown in Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2(iii).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Notice also that Algorithms 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2 are not symmetric with respect to the primal and dual variables and a different algorithm can be obtained by applying the algorithm to the dual problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2 Linesearch variant without linear operator norm In this subsection we introduce a fully adaptive primal-dual algorithm that removes any dependence on the norm of the linear operator A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' As was also the case for the other two algorithms, adaPDM+ follows the convention of indexing with k all the variables that depend on quantities defined up to iteration k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' This choice highlights the nested dependency of γk+1 and ηk+1 at step 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='4, which appears to be solvable only by means of a linesearch procedure (see also the discussion before The- orem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' It should be noted that backtracking linesearch has been employed in combination with PDHG in various forms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' In [33, 32] it is used to potentially increase the speed of convergence by balancing the primal and dual residuals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' In [50] an adaptive linesearch algorithm is presented for PDHG and the idea is extended to the composite form (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='4), see [50, Alg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' In addition to a different stepsize update rule, a major difference here is that the backtracks involved do not require evaluations of the gradient ∇f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' We also remark that adaPDM+ provides a practical way of initializing the stepsize, and that it reduces to adaPDM if ηk is taken as ∥A∥ for all k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 12 Algorithm 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2 Adaptive primal-dual method with linesearch (adaPDM+) Require primal/dual (square inverse) stepsize ratio t > 0 stepsize parameters δ ≥ 0 and c > 1 + δ initial primal-dual pair (x−1, y0) ∈ �n × �m, estimate η0 of ∥A∥, stepsizes γ−1 ≤ γ0 ∈ (0, 1/2tcη0], and backtracking parameters r, R > 1 Initialize x0 = proxγ0g � x−1 − γ0∇f(x−1) − γ0A⊤y0� Repeat for k = 0, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' until convergence 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1: Set ∆k � γkLk(γkCk − 1) and ¯��k � t2γ2 kη2 k(1 + δ)2, with Lk and Ck as in (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2: Choose an estimate 0 < ˆηk+1 ≤ R max {1, ηk} of ∥A∥ (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=', ˆηk+1 = ηk) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='3: while true do 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='4: Define the stepsizes as ��������������� γk+1 = min �������γk � 1 + γk γk−1 , 1 2ctˆηk+1 , γk � 1−4¯ξk 2(1+δ) �√ ∆2 k+(tˆηk+1γk)2(1−4¯ξk)+∆k � ������� σk+1 = t2γk+1 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='5: yk+1 = proxσk+1h∗ � yk + σk+1 ��1 + γk+1 γk �Axk − γk+1 γk Axk−1�� 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='6: Estimate ∥A∥ via ηk+1 = ∥A⊤(yk+1 − yk)∥ ∥yk+1 − yk∥ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='7: if γk+1 ≤ min ������� 1 2ctηk+1 , γk � (1−4¯ξk) 2(1+δ) �√ ∆2 k+(tηk+1γk)2(1−4¯ξk)+∆k � ������� then break, else ˆηk+1 ← rˆηk+1 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='8: xk+1 = proxγk+1g � xk − γk+1∇f(xk) − γk+1A⊤yk+1� 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='3 Convergence results The convergence analysis will once again revolve around showing descent on a suitable merit func- tion, this time defined as Uk � 1 2∥xk − x⋆∥2 + 1−4ξk(1+δ) 4 ∥xk − xk−1∥2 + 1 2t2 ∥yk − y⋆∥2 + γk(1 + ρk)Pk−1, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='4) where (x⋆, y⋆) ∈ S⋆ is any primal-dual optimal pair.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' The next theorem will allow us to study the convergence of Algorithms 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2 under a unified analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' It should be noted that, unless ∥A∥ is known and ηk+1 is chosen greater or equal than that quantity (as it happens in adaPDM), the following theorem does not furnish an implementable stepsize update rule, owing to the implicit dependency between the stepsize γk+1 and the norm estimate ηk+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' The linesearch strategy prescribed by adaPDM+ is designed to circumvent this issue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Suppose that Assumption II holds, and let t > 0, δ ≥ 0, and c > 1 + δ be fixed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Consider a sequence (xk, yk)k≥1 generated by ��������� yk+1 = proxσk+1h∗ � yk + σk+1 ��1 + γk+1 γk �Axk − γk+1 γk Axk−1�� xk+1 = proxγk+1g � xk − γk+1∇f(xk) − γk+1A⊤yk+1� , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='5) 13 starting from a triplet (x−1, x0, y0) ∈ �n × �n × �m and with initial primal stepsizes γ0 ≥ γ−1 > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Denote ξk � tηkγk and ∆k � γkLk(γkCk − 1) with Lk and Ck as in (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2), η0 ≤ 1 2ctγ0 and ηk+1 any such that ∥A⊤(yk−yk+1)∥ ∥yk−yk+1∥ ≤ ηk+1 ≤ ηmax for some ηmax < ∞, k ∈ �.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Suppose that the sequences of stepsizes comply with the rules γk+1 = min ������������� γk � 1 + γk γk−1 , 1 2ctηk+1 , γk � � � � 1 − 4ξk(1 + δ)2 2(1 + δ) � � ∆2 k + (tηk+1γk)2(1 − 4ξk(1 + δ)2) + ∆k � ������������� and σk = t2γk, k ∈ �.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Then, for any primal-dual solution (x⋆, y⋆) of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='4) and with Uk as in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='4), the following hold: (i) Uk+1 ≤ Uk − δ 2t2(1+δ)∥yk − yk−1∥2 − ≥δ/4(1+δ) 1−4ξk−4ρ2 k+1(∆k+ξk+1) 4 ∥xk − xk+1∥2 − γk( ≥0 1 + ρk − ρ2 k+1)Pk−1 − γk+1Qk+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' (ii) (The sequence (xk, yk)k∈� is bounded and) γk ≥ ˆγ > 0 for all k ≥ 1, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=', the stepsize sequence is bounded away from zero (see (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='6) for the value of ˆγ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' (iii) If δ > 0, the sequence (xk, yk)k∈� converges to a primal-dual solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' (iv) If f + g is strictly convex, the set arg min ϕ = �x⋆� is a singleton, and the sequence (xk)k∈� converges to x⋆ even when δ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' We remark that in Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2(iv) convergence of (yk)k∈� to a dual solution could be established using a similar argument under the assumption that h∗ is strictly convex, but this is omitted here as our interest lies in solving the primal problem (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' The sequential convergence results in the next theorem for adaPDM follows from the more general Theorems 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2(iii) and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2(iv), specialized to ηk ≡ ηmax = ∥A∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' For adaPDM+ the assertions follow from Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2 this time with ηmax = max {η0, r∥A∥, R∥A∥, rR}, as this furnishes an upper bound on both (ηk)k∈� and (ˆηk)k∈�.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Indeed, that ηk+1 ≤ ηmax is a trivial consequence of the inequality ηk+1 ≤ ∥A∥, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' step 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Similarly, observe that whenever ˆηk+1 ≥ ∥A∥ the backtracking necessarily ends, for ˆηk+1 ≥ ηk+1 in this case and the bound required at step 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='7 turns out to be looser than that already ensured at step 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' The claimed bound then follows from the fact that ˆηk+1 is initialized at some value not larger than R max {1, ηk} ≤ max {R, R∥A∥}, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' step 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2, and that it is augmented by a factor r at every failed backtracking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' (Having R max {1, ηk} as opposed to Rηk is a technical requirement to address the possibility of ηk = 0 when A⊤ is not injective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=') Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='3 (convergence of Algorithms 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Suppose that Assumption II holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Then, all the assertions Theorems 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2(i) to 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2(iv) remain valid for both of the sequences generated by Algorithms 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 4 Numerical simulations In this section the performance of the proposed algorithms is evaluated through a series of simula- tions on standard problems on both synthetic data as well as datasets from the LIBSVM library [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' All the algorithms are implemented in the Julia programming language and are available online1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 1https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='com/pylat/adaptive-proximal-algorithms 14 When applicable, the following algorithms are included in the comparisons: PGM Proximal gradient method with constant stepsize 1/L f PGM-ls Proximal gradient method with backtracking [61, LS1], [26, Alg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 3] Nesterov-ls Nesterov’s acceleration of PGM-ls [54], [7, §10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='7] aGraal The golden ratio algorithm [48] PDHG The algorithm of [16] VC The algorithm proposed in [67, 22] MP-ls The linesearch method of Malitsky and Pock [50, Alg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 4] adaPGM Algorithm 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1 adaPGM-MM Proximal extension of Malitsky and Mishchenko [49, Alg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 1]2 adaPDM Algorithm 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1 adaPDM+ Algorithm 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1 Adaptive proximal gradient We compare the performance of adaPGM (Algorithm 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1) on three practical problems that can be cast as (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' In the figures, the distance of the cost from the minimum cost is plotted against the number of the gradient evaluations, which in all problems correspond to the most costly operation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' For adaPGM we always set γ0 = γ−1 equal to some estimate of the Lipschitz modulus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' It should be noted that the algorithm is not sensitive to the choice of initial stepsize and the improvement gained by more involved initial estimates is negligable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' For this reason, for globally Lipschitz- smooth problems we set the initial step equal to 1/L f where Lf denotes the Lipschitz constant of ∇f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' For cubic regularization we initialized with γ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' For backtracking linesearch variants we used standard parameter choices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' For aGraal, we set the algorithm parameters as suggested in [48, Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' The inital point x0 was set to zero for all algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' The results of all the simulations are reported in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1 Logistic regression We consider ℓ1-regularized logistic regression problem minimize x∈�n+1 1 m �m i=1 �yi log(si) + (1 − yi) log(1 − si)� + λ∥x∥1, where λ > 0 is the regularization parameter, m, n are the number of samples and features, the pair ai ∈ �n+1 denotes the i-th sample (up to absorbing the bias terms), yi ∈ {−1, 1} is the associated label, and si = (1 + exp(−a⊤ i x))−1 is the logistic sigmoid function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' In all the simulations λ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='01 was used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2 Cubic regularization The subproblem in the cubic Newton method [55] involves minimizing minimize x∈�n+1 1 2⟨x, Qx⟩ + ⟨x, q⟩ + M 6 ∥x∥3, where Q ∈ �n+1×n+1, q ∈ �n+1, and M > 0 is some regularization parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' In the simulations, the Hessian and gradient Q, q are generated for the logsitic loss problem evalated at zero on the 2See Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 15 0 200 400 600 800 1,000 10−11 10−8 10−5 10−2 # of calls to ∇f ϕ(xk) − min ϕ mushroom dataset (m = 8124, n = 112, density=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='19) 0 200 400 600 800 1,000 10−13 10−10 10−7 10−4 10−1 # of calls to ∇f a5a dataset (m = 6414, n = 123, density=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='11) aGraal Nesterov-ls PGM-ls PGM adaPGM-MM adaPGM 0 200 400 600 800 1,000 10−12 10−9 10−6 10−3 100 # of calls to ∇f phishing dataset (m = 11055, n = 68, density=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='44) (a) Logistic regression problem of §4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1 0 20 40 60 80 100 10−15 10−11 10−7 10−3 # of calls to ∇f ϕ(xk) − min ϕ mushroom dataset (m = 8124, n = 112, density=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='19) 0 20 40 60 80 100 10−15 10−12 10−9 10−6 10−3 100 # of calls to ∇f a5a dataset (m = 6414, n = 123, density=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='11) 0 20 40 60 80 100 10−15 10−12 10−9 10−6 10−3 # of calls to ∇f phishing dataset (m = 11055, n = 68, density=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='44) (b) Cubic regularization problem of §4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2 0 500 1,000 1,500 2,000 10−15 10−11 10−7 10−3 101 # of calls to ∇f ϕ(xk) − min ϕ m = 100, n = 300, n⋆ = 30 0 500 1,000 1,500 2,000 10−15 10−11 10−7 10−3 101 # of calls to ∇f m = 500, n = 1000, n⋆ = 100 0 500 1,000 1,500 2,000 10−15 10−11 10−7 10−3 101 # of calls to ∇f m = 4000, n = 1000, n⋆ = 100 (c) Lasso problem of §4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='3 Figure 1: Simulations for problem (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1) 16 mushroom, a5a, and phishing datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Moreover, M = 1 is used in the plots noting that the behavior of the algorithms for different values is similar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='3 Regularized least squares Consider the lasso problem minimize x∈�n 1 2∥Ax − b∥2 + ∥x∥1, where matrix A ∈ �m×n and vector b ∈ �n are generated based on the procedure described in [53, §6], and n⋆ denotes the number of nonzero elements of the solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' In all simulations, the parameter controlling the magnitude of the primal solution was set equal to one (ρ = 1 in the notation of [53, §6]), but the general behavior of the algorithms is similar for alternative values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2 Adaptive primal-dual algorithms We now compare the performance of adaPDM (Algorithm 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1) and its operator norm–free extension adaPDM+ (Algorithm 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2) on problems fitting into formulation (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Optimality criterion In this case, an optimality criterion based on the primal-dual optimality conditions is employed that uses quantities provided by all methods being compared.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Specifically, denoting T(x, y) � � ∂h∗(y) − Ax, ∂g(x) + ∇f(x) + A⊤y � the operator associated with the primal-dual optimality conditions (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1), for any primal-dual se- quence (zk)k∈� = (xk, yk)k∈� generated by any of the algorithms included in the simulation we asso- ciate a sequence vk = (vk 1, vk 2) ∈ Tzk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Noting that ∥vk∥ = 0 implies optimality of the pair (xk, yk) (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1)), more generally the quantity ∥vk∥ ≥ dist(0, Tzk) serves as a measure of optimality providing a fair comparison between different methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' In all of the included algorithms this quantity is readily available based on the optimality condition of the primal and dual updates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' In the case of adaPDM+ (as well as adaPDM, the V˜u-Condat and PDHG algorithms, all being a special case of adaPDM+), it follows from steps 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='5 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='8 that vk+1 1 = σ−1 k+1(yk − yk+1) + γk+1 γk � Axk − Axk−1� + � Axk − Axk+1� ∈ ∂h∗(yk+1) − Axk+1 vk+1 2 = γ−1 k+1 � xk − xk+1� + ∇f(xk+1) − ∇f(xk) ∈ ∂(g + f)(xk+1) + A⊤yk+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' In the case of MP-ls [50, Alg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 4], this quantity is similarly obtained according to the optimality conditions of the proximal updates at steps 1 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='a therein.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Stepsize selection The stepsize parameters for Algorithms 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2 were set as follows δ = 10−8, c = (1+10−3)(1+δ), γ0 = γ−1 = 1/(2ctη0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' In the presented simulations for comparison purposes we used η0 = ∥A∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' How- ever, it was observed that the algorithms are not sensitive to the initial choices of η0, γ0 and there is 17 little need for tuning these parameters and any reasonable estimate results in very similar trajecto- ries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' We observed that the stepsize ratio t requires some tuning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' In our preliminary simulations for Algorithms 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2, on the problems presented in here, we ran a grid search for t ∈ [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='01, 100] and observed that often t = 1 performed well enough.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' For the V˜u-Condat and PDHG algorithms, we used the heuristic stepsize selection rule suggested in [38, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='53)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' In the case of MP-ls, in [50, §5] it was suggested to set t equal to the ratio obtained by tuning the constant stepsize regime of the V˜u-Condat algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' In our experiments we used this heuristic but often found better performance in the range t ∈ [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='01, 100].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Therefore, the plots for MP-ls are tuned for best performance by a grid search.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1 Dual support vector machine problem The support vector machine (SVM) problem consists of minimize x∈�n C N � n=1 max � 0, 1 − bi(a⊤ i x + x0) � + 1 2∥x∥2, where the pair (ai, bi) represent the i-th data and C > 0 is some positive constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Computationally, a popular approach is to instead consider the dual SVM problem [34, §12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1] minimize α1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=',αN 1 2∥ �N i=1 αibiai∥2 − �N i=1 αi subject to 0 ≤ αi ≤ C, i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' , N (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1) �N i=1 αibi = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' In the simulations we used C = 1, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' The problem is cast in the standard form (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='4) by letting f represent the quadratic cost, g the box constraints, h = δ{0} and A = [b1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' , bN] ∈ �1×N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Notice that the dual vectors yk are scalars in this case, and in particular one has ∥A⊤(yk+1 − yk)∥ = ∥A∥∥yk+1 − yk∥ for any k, where ∥A∥ is a vector norm which is negligible to compute.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Apparently, in this case (upto dicarding inital iterates) the linesearch variant adaPDM+ produces the same iterates of adaPDM with no computational advantage, and is thus omitted from the plots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' The results of this simulation are reported in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2 Least absolute deviation regression and square-root lasso As a final application we consider regularized regression, consisting of minimize x∈�n ∥Ax − b∥p + λ∥x∥1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2) Whenever p = 2, this problem is referred to as square-root lasso, and for p = 1 it is known as the least absolute deviation (LAD) regression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Both problems are cast as (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='4) by letting f ≡ 0, g = ∥·∥1, h = ∥ · − b∥p, and A = A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' For the regression data A ∈ �m×n, b ∈ �m, three different datasets from the LIBSVM library were used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' The results are reported in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Having f = 0, adaPDM reduces to PDHG with worse (constant) stepsizes and is thus omitted from the comparisons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Instead, as is apparent from Figure 3, the linesearch variant adaPDM+ (as well as MP-ls, for similar reasons) excels by adaptively employing tighter bounds of the linear operator norm along one-dimensional subspaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' We ran the simulations for λ ∈ {0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1, 1, 10}, but only report them for λ = 10 remarking that the behavior is very similar for all values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 18 0 1,000 2,000 3,000 4,000 5,000 10−5 10−3 10−1 101 103 ∥v∥ heart dataset (m = 270, n = 13, density= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='96) 0 1,000 2,000 3,000 4,000 5,000 10−1 100 101 102 103 svmguide3 dataset (m = 1243, n = 22, density=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='8) VC MP-ls adaPDM 0 1,000 2,000 3,000 4,000 5,000 10−1 100 101 102 103 104 mushroom dataset (m = 8124, n = 112, density=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='19) 0 1,000 2,000 3,000 4,000 5,000 10−5 10−3 10−1 101 # of calls to ∇f ∥v∥ 0 1,000 2,000 3,000 4,000 5,000 10−3 10−2 10−1 100 101 102 103 # of calls to ∇f 0 1,000 2,000 3,000 4,000 5,000 10−1 100 101 102 103 # of calls to ∇f Figure 2: Simulations for the dual SVM problem (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' First row: C = 1, second row: C = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' The x-axis reports gradient evaluations, which is the most expensive operation (since A ∈ �1×N, calls to A and A⊤ are negligible).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' As explained, in this case adaPDM+ is indistinguishable from adaPDM and thus omitted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' adaPDM and MP-ls are tuned for best performance by a grid search for t ∈ [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1, 10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 5 Conclusions In this paper we studied convex composite problems involving the sum of a locally Lipschitz dif- ferentiable term and two nonsmooth terms, one of which composed with a linear operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' The primal-dual algorithm adaPDM was proposed that updates the stepsizes adaptively using already available information without any backtracking procedures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' The stepsize update is based on a novel rule that combines estimates of local cocoercivity and Lipschitz continuity of the gradient of the differentiable function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' When the linear operator is zero we obtain adaPGM that not only extends the adaptive gradient descent algorithm of [49], but also involves a less conservative stepsize update rule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' More generally, we further waive the computation of the norm of the linear operator (required by the stepsize update rule) through a linesearch procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' The resulting algorithm, adaPDM+, can be implemented efficiently given that the backtracks do not require additional gradient evaluations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Future research directions involve extending the presented line of proof to the setting of varia- tions inequalities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' In particular, projection-based splittings such as [41, 31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Other potentials direc- tions include nonmonotone extensions for problems satisfying the so-called weak Minty assump- tions [28, 57], as well as block coordinate and stochastic variants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' It would also be interesting to explore extensions of the ideas presented in this work to other types of adaptive settings such as those in [47, 27, 72, 68].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 19 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='8 1 104 10−2 10−1 100 101 102 103 ∥v∥ housing dataset 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='8 1 104 10−2 10−1 100 101 102 103 104 abalone dataset PDHG MP-ls adaPDM+ 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='8 1 104 10−2 10−1 100 101 102 103 104 105 cpusmall dataset 0 500 1,000 1,500 2,000 2,500 3,000 10−5 10−3 10−1 101 103 # of calls to A and A⊤ ∥v∥ 0 500 1,000 1,500 2,000 2,500 3,000 10−5 10−3 10−1 101 103 # of calls to A and A⊤ 0 500 1,000 1,500 2,000 2,500 3,000 10−5 10−3 10−1 101 103 105 # of calls to A and A⊤ Figure 3: Simulations for problem (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2) of Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2 with λ = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' First row: regularized least-absolute deviation (p = 1);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' second row: square-root lasso (p = 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' adaPDM+ and MP-ls are tuned for best performance by a grid search for t ∈ [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='01, 100] 50 60 70 80 90 100 0 20 40 60 # of iterations γk aGraal Nesterov PGM-ls PGM adaPGM-MM adaPGM 50 60 70 80 90 100 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='5 1 10−3 # of iterations MP-ls adaPDM 50 60 70 80 90 100 2 · 10−2 4 · 10−2 6 · 10−2 8 · 10−2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='12 # of iterations MP-ls adaPDM+ Figure 4: A demonstrative plot of stepsize magnitudes of the algorithms in a window of 50 iterations ex- tracted from the simulations in this section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Left: logistic regression (mushroom dataset);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' center: dual SVM (mushroom dataset, C = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' right: square-root lasso (housing dataset, λ = 10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Primal-dual algo- rithms are compared on problems where the ratio t2 = σk/γk coincides, so that the plots are representative also for the dual stepsizes σk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' As is evident from the left plot, and as commented after Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='4, de- spite the fact that the stepsize update rule of adaPGM is less conservative than that of adaPGM-MM the comparison does not carry over iterationwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 20 A Convergence analysis for Section 3 We begin by establishing an inequality for the iterates in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='5) that would eventually under proper stepsize choices imply quasi-Fejér monotonicity of the generated sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Let (γk)k∈�, (σk)k∈� be sequences of strictly positive scalars, and starting from a triplet (x−1, x0, y0) ∈ �n×�n×�m let (xk, yk)k∈� be recursively defined by (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Then, for any εk, τk, µk > 0 and ηk ≥ ∥A⊤(yk−yk−1)∥ ∥yk−yk−1∥ (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=', ηk = ∥A∥) it holds that 0 ≤ 1 2∥xk − x⋆∥2 − 1 2∥xk+1 − x⋆∥2 + εk+1ρk+1+µk+1ηk+1γk+1−1 2 ∥xk − xk+1∥2 + ρk+1 � 1−αk(2−βk) 2εk+1 + τk+1ηk+1γk+1 2 − ρk+1(1 − αk) � ∥xk−1 − xk∥2 + γk+1 2σk+1 ∥yk − y⋆∥2 − � γk+1 2σk+1 − ηk+1γk+1 2 � 1 µk+1 + ρk+1 τk+1 �� ∥yk+1 − yk∥2 − γk+1 2σk+1 ∥yk+1 − y⋆∥2 + γk+1ρk+1Pk−1 − γk+1(1 + ρk+1)Pk − γk+1 �L(x⋆, y⋆) − L(x⋆, yk+1)�, where ρk+1 � γk+1 γk , αk � γkLk and βk � γkCk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Let ¯yk+1 � yk + σk+1 γk+1 γk A(xk − xk−1), so that yk+1 = proxσk+1h∗(¯yk+1 + σk+1Axk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' The charac- terization of yk and xk+1 as in the respective updates then reads ¯yk+1−yk+1 σk+1 + Axk ∈ ∂h∗(yk+1) (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1a) and Hk+1(xk)−xk+1 γk+1 − A⊤yk+1 = xk−xk+1 γk+1 − ∇f(xk) − A⊤yk+1 ∈ ∂g(xk+1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1b) In particular, for any solution pair (x⋆, y⋆) ∈ S⋆ 0 (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1b) ≤ g(x⋆) − g(xk+1) + ⟨A⊤yk+1, x⋆ − xk+1⟩ + (A′) ⟨∇f(xk), x⋆ − xk+1⟩ + 1 2γk+1 ∥xk − x⋆∥2 − 1 2γk+1 ∥xk+1 − x⋆∥2 − 1 2γk+1 ∥xk − xk+1∥2 and 0 (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1a) ≤ h∗(y⋆) − h∗(yk+1) − ⟨Axk, y⋆ − yk+1⟩ − 1 σk+1 ⟨¯yk+1 − yk+1, y⋆ − yk+1⟩ = h∗(y⋆) − h∗(yk+1) − ⟨Auk+1, y⋆ − yk+1⟩ + 1 2σk+1 ∥yk − y⋆∥2 − 1 2σk+1 ∥yk+1 − yk∥2 − 1 2σk+1 ∥yk+1 − y⋆∥2, where uk+1 � (1 + ρk+1)xk − ρk+1xk−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' We next proceed to upper bound the term (A′) as (A′) = ⟨∇f(xk),x⋆ − xk⟩+⟨∇f(xk),xk − xk+1⟩ = ⟨∇f(xk),x⋆ − xk⟩+ 1 γk ⟨Hk(xk−1)− xk,xk+1 − xk⟩+ 1 γk ⟨Hk(xk−1)−Hk(xk),xk − xk+1⟩ (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1b) ≤ f(x⋆)− f(xk) +g(xk+1)−g(xk)+⟨A⊤yk,xk+1 − xk⟩+ 1 γk ⟨Hk(xk−1)−Hk(xk),xk − xk+1⟩ (B) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 21 Let ϕ = f + g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' We bound the term (B) as done in (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='3) and combine the three inequalities to obtain 0 ≤ ( f + g)(x⋆) − ( f + g)(xk) + 1 2γk+1 ∥xk − x⋆∥2 − 1 2γk+1 ∥xk+1 − x⋆∥2 + � εk+1 2γk − 1 2γk+1 � ∥xk − xk+1∥2 + 1−γkLk(2−γkCk) 2εk+1γk ∥xk−1 − xk∥2 + h∗(y⋆) − h∗(yk+1) + ⟨A⊤yk, xk+1 − xk⟩ + ⟨A⊤yk+1, x⋆ − xk+1⟩ − ⟨Auk+1, y⋆ − yk+1⟩ + 1 2σk+1 ∥yk − y⋆∥2 − 1 2σk+1 ∥yk+1 − yk∥2 − 1 2σk+1 ∥yk+1 − y⋆∥2 Using again the subgradient (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1), one has vk � xk−1−xk γk − (∇f(xk−1) − ∇f(xk)) − A⊤yk ∈ ∂( f + g)(xk), (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2) hence 0 ≤ γk+1 γk � (f + g)(xk−1) − ( f + g)(xk) − ⟨vk, xk−1 − xk⟩ � = γk+1 γk � (f + g)(xk−1) − ( f + g)(xk) � − γk+1 γk 1−γkLk γk ∥xk − xk−1∥2 + γk+1 γk ⟨A⊤yk, xk−1 − xk⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='3) Sum the last two inequalities and use the identity ρk+1(xk − xk−1) = uk+1 − xk to obtain 0 ≤ 1 2γk+1 ∥xk − x⋆∥2 − 1 2γk+1 ∥xk+1 − x⋆∥2 + ⟨Ax⋆,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' yk+1⟩ − ⟨Auk+1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' y⋆⟩ + � εk+1 2γk − 1 2γk+1 � ∥xk − xk+1∥2 + � 1−γkLk(2−γkCk) 2εk+1γk − γk+1 γk 1−γkLk γk � ∥xk−1 − xk∥2 + 1 2σk+1 ∥yk − y⋆∥2 − 1 2σk+1 ∥yk+1 − yk∥2 − 1 2σk+1 ∥yk+1 − y⋆∥2 + � h∗(y⋆) − h∗(yk+1) � + γk+1 γk � ( f + g)(xk−1) − ( f + g)(xk) � − � ( f + g)(xk) − ( f + g)(x⋆) � (C) + ⟨A⊤(yk+1 − yk),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' uk+1 − xk+1⟩ (D) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' To conclude, observe that (C) = ρk+1Pk−1 − (1 + ρk+1)Pk + ⟨uk+1 − x⋆, A⊤y⋆⟩ and (D) = γk+1 γk ⟨xk − xk−1, A⊤(yk+1 − yk)⟩ + ⟨xk − xk+1, A⊤(yk+1 − yk)⟩ ≤ γk+1 γk τk+1ηk+1 2 ∥xk−1 − xk∥2 + µk+1ηk+1 2 ∥xk+1 − xk∥2 + ηk+1 2 � 1 µk+1 + γk+1 γkτk+1 � ∥yk+1 − yk∥2, (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='4) where µk, τk > 0 are parameters related to the Fenchel-Young inequality, so that the proof follows from the identity ⟨Ax⋆, yk+1 − y⋆⟩ = L(x⋆, yk+1) − L(x⋆, y⋆).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Proof of Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' ♠ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2(i) Denoting ˜Uk � 1 2∥xk − x⋆∥2 + 1−εkρk−µkηkγk 2 ∥xk − xk−1∥2 + γk 2σk ∥yk − y⋆∥2 + γk(1 + ρk)Pk−1, the inequality in Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1 can be expressed as ˜Uk+1 ≤ ˜Uk − � γk 2σk − γk+1 2σk+1 � ∥yk − y⋆∥2 − γk(1 + ρk − ρ2 k+1)Pk−1 − � 1−εkρk−µkηkγk 2 + ρk+1 � ρk+1(1 − αk) − 1−αk(2−βk) 2εk+1 − τk+1ηk+1γk+1 2 �� ∥xk−1 − xk∥2 − � γk+1 2σk+1 − ηk+1γk+1 2 � 1 µk+1 + ρk+1 τk+1 �� ∥yk+1 − yk∥2 − γk+1 �L(x⋆, y⋆) − L(x⋆, yk+1)�.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 22 Since σk = t2γk and ξk = t2γ2 kη2 k, by selecting εk � 1 2ρk and µk � 2(1 + δ)tξ 1/2 k one has that ˜Uk = Uk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Note also that the coefficient of ∥xk − xk−1∥ in Uk is strictly positive since the stepsize update ensures ξk ≤ 1/c2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Moreover, with this choice the above inequality becomes Uk+1 ≤ Uk − γk(1 + ρk − ρ2 k+1)Pk−1 − γk+1 �L(x⋆,y⋆) − L(x⋆,yk+1)� − � 1−4ξk(1+δ) 4 + ρk+1 � ρk+1αk(1 − βk) − τk+1ξ 1/2 k+1 2t �� ∥xk−1 − xk∥2 − 1 2t � 1+2δ 2t(1+δ) − ξ 1/2 k+1ρk+1 τk+1 � ∥yk+1 − yk∥2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' We now set τk+1 � ρk+1µk+1 = 2(1 + δ)tξ 1/2 k+1ρk+1 so the inequality overall simplifies to the one of the statement Uk+1 ≤ Uk − γk(1 + ρk − ρ2 k+1)Pk−1 − γk+1 �L(x⋆, y⋆) − L(x⋆, yk+1)� − � 1−4ξk(1+δ) 4 + ρk+1(ρk+1αk(1 − βk) − ρk+1ξk+1(1 + δ)) � ≥ δ 4(1+δ) ∥xk−1 − xk∥2 − δ 2t2(1+δ)∥yk+1 − yk∥2, upto ensuring that the coefficient of Pk−1 is positive and that the inequality for the coefficient of ∥xk − xk−1∥2 holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' The former is of trivial verification, having ρk+1 ≤ � 1 + ρk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' It thus remains to show that 1 4 − δ 4(1+δ) − ξk(1 + δ) − ρ2 k+1(∆k − ξk+1(1 + δ)) ≥ 0 holds for every k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' By using the fact that ξk+1 = (tηk+1γk+1)2 = (tηk+1γk)2ρ2 k+1, this reduces to the second-order inequality (in ρ2 k+1) (tηk+1γk)2(1 + δ)ρ4 k+1 + ∆kρ2 k+1 − � 1 4(1+δ) − ξk(1 + δ)� ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Note that the bound γk ≤ 1 2ctηk implies 1 4(1+δ) − ξk(1 + δ) ≥ c2−(1+δ)2 4c2(1+δ) > 0, thus ensuring that the inequality always admits solutions for small enough ρ2 k+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Namely, letting ¯ξk � ξk(1 + δ)2 ρ2 k+1 ≤ −∆k + � ∆2 k + (tηk+1γk)2(1 − 4¯ξk) 2(1 + δ)(tηk+1γk)2 = 1 − 4¯ξk 2(1 + δ) � ∆k + � ∆2 k + (tηk+1γk)2(1 − 4¯ξk) �, which is indeed guaranteed by one of the bounds on γk+1 = γkρk+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Note that the second expression removes the singularity in case ηk+1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' ♠ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2(ii) To prove the claim, we will show that whenever γk+1 < γk occurs, then necessarily γk+1 is lower bounded as in the statement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' The proof will then follow from a trivial inductive argument.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Suppose that γk+1 < γk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' If γk+1 = 1 2ctηk+1 , then γk+1 ≥ 1 2ctηmax .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Otherwise, necessarily γ2 k > γ2 k+1 = γ2 k(1 − 4¯ξk) 2(1 + δ) � � ∆2 k + (tηk+1γk)2(1 − 4¯ξk) + ∆k � ≥ γ2 k ¯c 2(1 + δ) � � ∆2 k + (tηmaxγk)2¯c + ∆k �, (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='5) 23 where ¯c � c2−(1+δ)2 c2 , and the second inequality uses the fact that 1−4¯ξk ≥ ¯c > 0 together with the fact that (0, ∞) ∋ x �→ x √ b2+a2x2 +b is increasing for any value of a, b ∈ �.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' By comparing the outermost terms of the chain of inequalities we then obtain that � ∆2 k + (tηmaxγk)2¯c + ∆k > ¯c 2(1+δ) ⇔ ∆k > ¯c 4(1+δ) − (1 + δ)(tηmaxγk)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' We now distinguish two cases: Case 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' ∆k ≤ 0, and in particular γk > √ ¯c 2(1+δ)tηmax .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Then, since x �→ 1 √ x2+b2 +x is increasing for any value of b ∈ �, by setting ∆k ← 0 in (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='5) we obtain γ2 k+1 ≥ γk √ ¯c 2(1 + δ)tηmax ≥ ¯c (2(1 + δ)tηmax)2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Case 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' ∆k > 0 or, equivalently, γkCk > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Denoting α � γkLf,V, one has that α ≥ γkLk and α ≥ γkCk > 1, hence that ∆k ≤ α(α − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Arguing as in the previous case, this time by setting ∆k ← α(α − 1) in (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='5), yields γ2 k+1L2 f,V ≥ α2¯c 2(1 + δ) � � α2(α − 1)2 + (tηmaxγk)2¯c + α(α − 1) � ≥ α¯c 2(1 + δ) � � (α − 1)2 + (tηmax/L f,V)2¯c + α − 1 � ≥ min � Lf,V √ ¯c 2(1+δ)tηmax , ¯c 4(1+δ) � , where the last inequality owes to the fact that [1, ∞) ∋ x �→ x √ (x−1)2+b2 +x−1 attains the infimum at either 1 or ∞ for any b ∈ �.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Putting all the cases together yields γk ≥ min � γ0, 4√ ¯c √ 2(1+δ)tηmaxLf,V , √ ¯c 2 √(1+δ)L f,V , 1 2ctηmax , √ ¯c 2(1+δ)tηmax � > 0 (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='6) (where we remind that ¯c = c2−(1+δ)2 c2 ), establishing the claim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' ♠ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2(iii) Since the sequence (xk, yk)k∈� is quasi-Fejér monotone, it suffices to show that there exists a subsequence converging to a primal-dual solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' We start by showing that lim infk→∞ Pk = 0 which can be ensured arguing as in Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='3(iii).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' If lim supk→∞(1 + ρk − ρ2 k+1) > 0, then a telescoping argument in 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2(i) yields the claim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Alternatively, by the stepsize update rule one has that 1+ρk −ρ2 k+1 ≥ 0 and therefore 1+ρk −ρ2 k+1 → 0, from which it easily follows that lim infk→∞ ρk > 1 and that therefore γk → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Consequently, since γk(1 + ρk)Pk−1 ≤ Uk ≤ U0, this directly proves that Pk → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Let (ˆx, ˆy) denote a limit point of (xk, yk−1)k∈�.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' This implies that Pz⋆(ˆx) = L(ˆx, y⋆) − L(x⋆, y⋆) = 0, 24 and in particular ˆx ∈ arg min L(·, y⋆).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' If f +g is strictly convex, then so is L(·, y⋆) and necessarily ˆx = x⋆.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Alternatively, if δ > 0, telescoping the inequality in assertion 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2(i) yields that both ∥xk+1 − xk∥ and ∥yk−1 − yk∥ vanish.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' By the optimality condition for step 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='4 we have 1 γk+1 (xk+1 − xk) ∈ ∇f(xk) + A⊤yk+1 + ∂g(xk+1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Passing to the limit, using Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='2(ii) and outer semicontinuity of ∂g yields 0 ∈ ∇f(ˆx)+∂g(ˆx)+ A⊤ˆy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Similarly, for the dual variable, 1 σk+1 (yk+1 − yk) + γk+1 γk (xk − xk−1) ∈ ∂h∗(yk+1) − Axk+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' A trivial induction argument reveals that γk+1 γk is upper bounded by max � γ0 γ−1 , 1 2(1 + √ 5) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Therefore, passing to the limit along the same subsequence and recalling that σk+1 = t2γk+1 is lower bounded yield 0 ∈ ∂h∗(ˆy) − Aˆx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Along with the previous inclusion, primal-dual optimality of the limit pair (ˆx, ˆy) is established.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' References [1] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Alacaoglu, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' B¨ohm, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Malitsky, Beyond the golden ratio for variational inequality algorithms, arXiv preprint arXiv:2212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='13955, (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [2] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Alacaoglu, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Fercoq, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Cevher, On the convergence of stochastic primal-dual hybrid gradient, SIAM Journal on Optimization, 32 (2022), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 1288–1318.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [3] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Attouch, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Bo¸t, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='-K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Nguyen, Fast convex optimization via closed-loop time scal- ing of gradient dynamics, arXiv preprint arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='00701, (2023).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [4] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='-B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Baillon and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Haddad, Quelques propriétés des opérateurs angle-bornés et n- cycliquement monotones, Israel Journal of Mathematics, 26 (1977), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 137–150.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [5] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Barzilai and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Borwein, Two-point step size gradient methods, IMA Journal of Numer- ical Analysis, 8 (1988), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 141–148.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [6] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Bauschke and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Combettes, Convex analysis and monotone operator theory in Hilbert spaces, CMS Books in Mathematics, Springer, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [7] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Beck, First-Order Methods in Optimization, SIAM, Philadelphia, PA, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [8] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Bertsekas, Nonlinear Programming, Athena Scientific, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [9] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Bianchi and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Hachem, A primal-dual algorithm for distributed optimization, in IEEE 53rd Annual Conference on Decision and Control (CDC), dec 2014, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 4240–4245.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [10] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' B¨ohm, Solving nonconvex-nonconcave min-max problems exhibiting weak Minty solutions, arXiv preprint arXiv:2201.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='12247, (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [11] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Bo¸t and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Hendrich, A Douglas-Rachford type primal-dual method for solving inclu- sions with mixtures of composite and parallel-sum type monotone operators, SIAM Journal on Optimization, 23 (2013), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 2541–2565.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 25 [12] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Bo¸t, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Sedlmayer, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Vuong, A relaxed inertial forward-backward-forward algorithm for solving monotone inclusions with application to GANs, arXiv preprint arXiv:2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='07886, (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [13] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Brice˜no-Arias and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Combettes, A monotone + skew splitting model for composite monotone inclusions in duality, SIAM Journal on Optimization, 21 (2011), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 1230–1250.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [14] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Brice˜no-Arias and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Davis, Forward-backward-half forward algorithm for solving monotone inclusions, SIAM Journal on Optimization, 28 (2018), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 2839–2871.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [15] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Burdakov, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Dai, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Huang, Stabilized Barzilai-Borwein method, arXiv preprint arXiv:1907.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='06409, (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [16] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Chambolle and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Pock, A first-order primal-dual algorithm for convex problems with ap- plications to imaging, Journal of Mathematical Imaging and Vision, 40 (2011), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 120–145.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [17] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Chang and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Lin, LIBSVM: A library for support vector machines, ACM Transactions on Intelligent Systems and Technology (TIST), 2 (2011), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 1–27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [18] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='-K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Chang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Yang, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Zhang, Golden ratio primal-dual algorithm with linesearch, SIAM Journal on Optimization, 32 (2022), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 1584–1613.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [19] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Combettes, Quasi-Fejérian analysis of some optimization algorithms, in Inherently Paral- lel Algorithms in Feasibility and Optimization and their Applications, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Butnariu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Censor, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Reich, eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 8 of Studies in Computational Mathematics, Elsevier, 2001, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 115– 152.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [20] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Combettes and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Pesquet, Proximal splitting methods in signal processing, in Fixed- point algorithms for inverse problems in science and engineering, Springer New York, 2011, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 185–212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [21] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Combettes and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Pesquet, Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators, Set-Valued and variational analysis, 20 (2012), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 307–330.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [22] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Condat, A primal-dual splitting method for convex optimization involving Lipschitzian, prox- imable and linear composite terms, Journal of Optimization Theory and Applications, 158 (2013), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 460–479.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [23] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Condat, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Malinovsky, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Richt´arik, Distributed proximal splitting algorithms with rates and acceleration, Frontiers in Signal Processing, (2022), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [24] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Dai and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Fletcher, Projected Barzilai-Borwein methods for large-scale box- constrained quadratic programming, Numerische Mathematik, 100 (2005), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 21–47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [25] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Davis and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Yin, A three-operator splitting scheme and its optimization applications, Set- Valued and Variational Analysis, 25 (2017), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 829–858.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [26] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' De Marchi and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Themelis, Proximal gradient algorithms under local Lipschitz gradient continuity: A convergence and robustness analysis of PANOC, Journal of Optimization Theory and Applications, 194 (2022), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 771–794.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 26 [27] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Defazio, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Zhou, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Xiao, Grad-GradaGrad?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' A non-monotone adaptive stochastic gradient method, arXiv preprint arXiv:2206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='06900, (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [28] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Diakonikolas, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Daskalakis, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Jordan, Efficient methods for structured nonconvex- nonconcave min-max optimization, in International Conference on Artificial Intelligence and Statistics, PMLR, 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 2746–2754.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [29] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Drori, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Sabach, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Teboulle, A simple algorithm for a class of nonsmooth convex- concave saddle-point problems, Operations Research Letters, 43 (2015), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 209–214.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [30] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Fercoq and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Bianchi, A coordinate-descent primal-dual algorithm with large step size and possibly nonseparable functions, SIAM Journal on Optimization, 29 (2019), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 100–134.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [31] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Giselsson, Nonlinear forward-backward splitting with projection correction, SIAM Journal on Optimization, 31 (2021), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 2199–2226.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [32] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Goldstein, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Li, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Yuan, Adaptive primal-dual splitting methods for statistical learn- ing and image processing, Advances in neural information processing systems, 28 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [33] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Goldstein, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Li, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Yuan, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Esser, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Baraniuk, Adaptive primal-dual hybrid gradi- ent methods for saddle-point problems, arXiv preprint arXiv:1305.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='0546, (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [34] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Hastie, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Friedman, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Tibshirani, The Elements of Statistical Learning, Springer New York, 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [35] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' He and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Yuan, Convergence analysis of primal-dual algorithms for a saddle-point prob- lem: from contraction perspective, SIAM Journal on Imaging Sciences, 5 (2012), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 119–149.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [36] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Jezierska, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Chouzenoux, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Pesquet, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Talbot, A primal-dual proximal splitting approach for restoring data corrupted with Poisson-gaussian noise, in 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2012, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 1085– 1088.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [37] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Komodakis and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Pesquet, Playing with duality: An overview of recent primal-dual approaches for solving large-scale optimization problems, IEEE Signal Processing Magazine, 32 (2015), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 31���54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [38] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Latafat, Distributed proximal algorithms for large-scale structured optimization, PhD thesis, KU Leuven, jul 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [39] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Latafat, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Bemporad, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Patrinos, Plug and play distributed model predictive control with dynamic coupling: A randomized primal-dual proximal algorithm, in European Control Conference (ECC), jun 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 1160–1165.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [40] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Latafat, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Freris, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Patrinos, A new randomized block-coordinate primal-dual proximal algorithm for distributed optimization, IEEE Transactions on Automatic Control, 64 (2019), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 4050–4065.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [41] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Latafat and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Patrinos, Asymmetric forward–backward–adjoint splitting for solving mono- tone inclusions involving three operators, Computational Optimization and Applications, 68 (2017), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 57–93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 27 [42] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Latafat and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Patrinos, Multi-agent structured optimization over message-passing architec- tures with bounded communication delays, in 2018 IEEE Conference on Decision and Control (CDC), dec 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 1688–1693.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [43] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Latafat and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Patrinos, Primal-dual proximal algorithms for structured convex optimiza- tion: A unifying framework, in Large-Scale and Distributed Optimization, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Giselsson and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Rantzer, eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=', Springer International Publishing, 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 97–120.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [44] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Latafat, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Stella, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Patrinos, New primal-dual proximal algorithm for distributed optimization, in 55th IEEE Conference on Decision and Control (CDC), dec 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 1959– 1964.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [45] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Latafat, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Themelis, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Ahookhosh, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Patrinos, Bregman Finito/MISO for nonconvex regularized finite sum minimization without Lipschitz gradient continuity, SIAM Journal on Optimization, 32 (2022), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 2230–2262.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [46] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Latafat, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Themelis, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Patrinos, Block-coordinate and incremental aggregated prox- imal gradient methods for nonsmooth nonconvex problems, Mathematical Programming, (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [47] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Li and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Orabona, On the convergence of stochastic gradient descent with adaptive step- sizes, in The 22nd International Conference on Artificial Intelligence and Statistics, PMLR, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 983–992.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [48] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Malitsky, Golden ratio algorithms for variational inequalities, Mathematical Program- ming, 184 (2020), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 383–410.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [49] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Malitsky and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Mishchenko, Adaptive gradient descent without descent, in Proceedings of the 37th International Conference on Machine Learning, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 119, PMLR, 13- 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 6702– 6712.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [50] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Malitsky and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Pock, A first-order primal-dual algorithm with linesearch, SIAM Journal on Optimization, 28 (2018), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 411–432.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [51] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Malitsky and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Tam, A forward-backward splitting method for monotone inclusions without cocoercivity, SIAM Journal on Optimization, 30 (2020), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 1451–1472.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [52] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Marumo and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Takeda, Parameter-free accelerated gradient descent for nonconvex mini- mization, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [53] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Nesterov, Gradient methods for minimizing composite functions, Mathematical Program- ming, 140 (2013), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 125–161.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [54] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 87, Springer Science & Business Media, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [55] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Nesterov and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Polyak, Cubic regularization of Newton method and its global perfor- mance, Mathematical Programming, 108 (2006), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 177–205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [56] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Pedregosa and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Gidel, Adaptive three operator splitting, in International Conference on Machine Learning, PMLR, 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 4085–4094.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 28 [57] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Pethick, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Latafat, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Patrinos, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Fercoq, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Cevher, Escaping limit cycles: Global convergence for constrained nonconvex-nonconcave minimax problems, in International Con- ference on Learning Representations, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [58] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Raydan, On the Barzilai and Borwein choice of steplength for the gradient method, IMA Journal of Numerical Analysis, 13 (1993), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 321–326.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [59] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Rockafellar, Convex analysis, Princeton University Press, 1970.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [60] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Ryu and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' V˜u, Finding the forward-Douglas–Rachford-forward method, Journal of Optimization Theory and Applications, 184 (2020), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 858–876.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [61] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Salzo, The variable metric forward-backward splitting algorithm under mild differentiabil- ity assumptions, SIAM Journal on Optimization, 27 (2017), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 2153–2181.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [62] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Sra, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Nowozin, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Wright, Optimization for machine learning, MIT Press, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [63] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Tan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Ma, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Dai, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Qian, Barzilai-Borwein step size for stochastic gradient descent, Advances in neural information processing systems, 29 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [64] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Teboulle and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Vaisbourd, An elementary approach to tight worst case complexity analysis of gradient based methods, Mathematical Programming, (2022), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 1–34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [65] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Thong, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Van Hieu, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Rassias, Self adaptive inertial subgradient extragradient algorithms for solving pseudomonotone variational inequality problems, Optimization Letters, 14 (2020), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 115–144.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [66] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Vladarean, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Malitsky, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Cevher, A first-order primal-dual method with adap- tivity to local smoothness, Advances in Neural Information Processing Systems, 34 (2021), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 6171–6182.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [67] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' V˜u, A splitting algorithm for dual monotone inclusions involving cocoercive operators, Advances in Computational Mathematics, 38 (2013), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 667–681.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [68] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Ward, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Wu, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Bottou, AdaGrad stepsizes: Sharp convergence over nonconvex land- scapes, in Proceedings of the 36th International Conference on Machine Learning, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Chaud- huri and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Salakhutdinov, eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 97 of Proceedings of Machine Learning Research, PMLR, 09- 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 6677–6686.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [69] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Yan, A new primal–dual algorithm for minimizing the sum of three functions with a linear operator, Journal of Scientific Computing, 76 (2018), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 1698–1717.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [70] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Yang, Self-adaptive inertial subgradient extragradient algorithm for solving pseudomono- tone variational inequalities, Applicable Analysis, 100 (2021), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 1067–1078.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [71] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Yang and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Liu, A modified projected gradient method for monotone variational inequali- ties, Journal of Optimization Theory and Applications, 179 (2018), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 197–211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' [72] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Yurtsever, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Gu, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' Sra, Three operator splitting with subgradients, stochastic gra- dients, and adaptive learning rates, Advances in Neural Information Processing Systems, 34 (2021), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 19743–19756.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'} +page_content=' 29' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE3T4oBgHgl3EQfSQmN/content/2301.04431v1.pdf'}