diff --git "a/5NAzT4oBgHgl3EQffvy-/content/tmp_files/load_file.txt" "b/5NAzT4oBgHgl3EQffvy-/content/tmp_files/load_file.txt" new file mode 100644--- /dev/null +++ "b/5NAzT4oBgHgl3EQffvy-/content/tmp_files/load_file.txt" @@ -0,0 +1,888 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf,len=887 +page_content='An improved hybrid regularization approach for extreme learning machine Liangjuan Zhou School of Mathematics, Hunan University Changsha, China Wei Miao∗ miaow@hnu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='cn School of Mathematics, Hunan University Changsha, China ABSTRACT Extreme learning machine (ELM) is a network model that arbitrarily initializes the first hidden layer and can be computed speedily.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' In order to improve the classification performance of ELM, a ℓ2 and ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5 regularization ELM model (ℓ2-ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM) is proposed in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' An iterative optimization algorithm of the fixed point contraction mapping is applied to solve the ℓ2-ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' The convergence and sparsity of the proposed method are discussed and analyzed under reasonable assumptions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' The performance of the proposed ℓ2-ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM method is compared with BP, SVM, ELM, ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM, ℓ1-ELM, ℓ2-ELM and ℓ2-ℓ1ELM, the results show that the prediction accuracy, sparsity, and stability of the ℓ2-ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM are better than the other 7 models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' CCS CONCEPTS Mathematics of computing → Convex optimization;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' • Com- puting methodologies → Regularization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' KEYWORDS High-dimensional data, Sparsity, Hybird regularization, Dimension- ality reduction ACM Reference Format: Liangjuan Zhou and Wei Miao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' An improved hybrid regularization approach for extreme learning machine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' In 2022 4th International Conference on Advanced Information Science and System (AISS 2022), November 25–27, 2022, Sanya, China.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' ACM, New York, NY, USA, 7 pages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' 1145/3573834.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='3574501 1 INTRODUCTION Feedforward neural networks(FNNs), as one of the most frequently used neural networks which can be defined mathematically as: 𝐺𝑁 (𝑥𝑖) = 𝑁 ∑︁ 𝑖=1 𝛽𝑖𝑔(⟨𝜔𝑖,𝑥𝑖⟩ + 𝑏𝑖), where 𝑥𝑖 = (𝑥𝑖1,𝑥𝑖2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' ,𝑥𝑖𝑝) ∈ R𝑝 is the input, 𝑏𝑖 is the bias and 𝑔 is the activation function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' ⟨𝜔𝑖,𝑥𝑖⟩ = �𝑝 𝑗=1 𝜔𝑖𝑗𝑥𝑖𝑗 is the euclidean ∗Both authors contributed equally to this research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Copyrights for components of this work owned by others than ACM must be honored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Abstracting with credit is permitted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Request permissions from permissions@acm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='org.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' AISS 2022, November 25–27, 2022, Sanya, China © 2022 Association for Computing Machinery.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' ACM ISBN 978-1-4503-9793-3/22/11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='$15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='00 https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='1145/3573834.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='3574501 inner product, 𝜔𝑖 = (𝜔𝑖1,𝜔𝑖2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' ,𝜔𝑖𝑝) ∈ R𝑝 are the weights con- necting the input and the 𝑖-th hidden node, and 𝛽𝑖 ∈ R are the weights connecting the 𝑖-th hidden and output node.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' In terms of the traditional learning algorithm of FNNs, all parameters in the network need to be adjusted based on specific tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' A classical learning method is the backpropagation (BP) algorithm, which is mainly solved by gradient descent: min 𝜔𝑖,𝛽𝑖,𝑏𝑖 𝑛 ∑︁ 𝑖=1 ∥𝑡𝑖 − 𝐺𝑁 (𝑥𝑖)∥2 2, where (𝑥𝑖,𝑡𝑖)(𝑖 = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' ,𝑛) denotes the training samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' How- ever, a randomized learner model, different to the traditional learn- ing of FNNs, called as Extreme learning machine(ELM) and related algorithms were proposed by Huang[10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' In the ELM model, 𝜔𝑖 and 𝑏𝑖 are randomly assigned without training, so only 𝛽𝑖 needs to be trained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Set T = [𝑡1,𝑡2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' ,𝑡𝑛] and H = \uf8ee\uf8ef\uf8ef\uf8ef\uf8ef\uf8ef\uf8f0 𝑔(⟨𝜔1,𝑥1⟩ + 𝑏1) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' 𝑔(⟨𝜔𝑁,𝑥1⟩ + 𝑏𝑁 ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' 𝑔(⟨𝜔1,𝑥𝑛⟩ + 𝑏1) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' 𝑔(⟨𝜔𝑁,𝑥𝑛⟩ + 𝑏𝑁 ) \uf8f9\uf8fa\uf8fa\uf8fa\uf8fa\uf8fa\uf8fb , (1) once the input weights and biases are specified randomly with uni- form distribution in [−𝑐,𝑐], the hidden output matrix remains un- changed during the training phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Accordingly, the output weights could be written by utilizing the least squares method: min 𝛽 ∈R𝑁 � ∥H𝛽 − T∥2 2 � , (2) the solution to model (2) could be written as 𝛽 = H†T, where H† is the Moore–Penrose generalized inverse of hidden output matrix H[14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' The theoretical basis for the general approximation capability of ELM networks has been proposed and established by Igelnik[11] , where the range of randomly allocated input weights and biases are data related and assigned in a constructive mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Consequently, the scope of parameters in the algorithm implementation should be carefully estimated for diverse datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' On the other hand, considering the sparsity of the output parameter 𝛽 for many high- dimensional data, Cao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' [4] proposed a ℓ1 regular ELM model based on the sparsity of the ℓ1 regularization term, which takes the following form: min 𝛽 ∈R𝑁 � 1 2 ∥H𝛽 − T∥2 2 + 𝜆∥𝛽∥1 � , (3) where 𝜆 > 0 is a regularization parameter and 𝛽 is the output coefficient calculated by iteration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' This model is called the Lasso model, and has been studied by many scholars in recent years [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='01458v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='OC] 4 Jan 2023 AISS 2022, November 25–27, 2022, Sanya, China Zhou and Miao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' For the model (2), Fan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' [8] added a ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5 regularization term to the ELM model, based on the solution generated by ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5 is sparser than the ℓ1 regularization term [16], and the model is defined as follows: min 𝛽 ∈R𝑁 � 1 2 ∥H𝛽 − T∥2 2 + 𝜆∥𝛽∥0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5 � , (4) where 𝜆 > 0 is a regularization parameter, the model can be solved by the iterative semi-threshold algorithm [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' The other regularization model for model (2) was about the ℓ2 regularization term (ℓ2-ELM) [5]: min 𝛽 ∈R𝑁 � 1 2 ∥H𝛽 − T∥2 2 + 𝜇∥𝛽∥2 2 � , (5) where 𝜇 is a regularization parameter, and when the expression H𝑇 H+𝜇I is invertible after choosing the parameter 𝜇, then the solu- tion of the model (5) can be written as 𝛽 = (H𝑇 H + 𝜇I)−1I)−1H𝑇 T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Hai et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' [9] proposed a ℓ2-ℓ1-ELM hybrid model by integrating the sparsity of the ℓ1 regularization term and the stability of the ℓ2 regularization term as follows: min 𝛽 ∈R𝑁 � 1 2 ∥H𝛽 − T∥2 2 + 𝜆(𝛾∥𝛽∥1 + 𝜀∥𝛽∥2 2) � , (6) where 𝜆 ≥ 0, 𝛾 ≥ 0 and 𝜀 ≥ 0 are regularization parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' In- spired by the ℓ2-ℓ1-ELM model, according to Xu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' [17], they found that the sparsity of the solution of the ℓ𝑝 (𝑝 ∈ (0, 1)) regular- ization term: when 0 < 𝑝 < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5, there is no significant difference in the sparse effect of ℓ𝑝;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' when 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5 < 𝑝 < 1, the smaller 𝑝, the better the sparse effect, so the ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5 regularization term can be used as a representative element of ℓ𝑝 (𝑝 ∈ (0, 1));' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Therefore, we propose the ℓ2-ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM model by combining the stability of ℓ2 regularization term and the sparsity of ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5 which is sparser than ℓ1, the new model is described as: min 𝛽 ∈R𝑁 � 1 2 ∥H𝛽 − T∥2 2 + 𝜆(𝛾∥𝛽∥0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5 + 𝜀∥𝛽∥2 2) � , (7) where the parameters have the same meaning as the expression of (6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' The thought of adding ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5 and ℓ2 penalties simultaneously in the optimization model could be found in classification [2, 6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' This study mainly establishes an iterative algorithm and studies some properties of randomized learner model as Hai[9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' In particular, we integrate the features of ELM and propose an iterative strategy for solving the hybrid model (7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' The main contributions of this paper can be summarized as follows: (i) The whole model is a non-convex, non-smooth and non- Lipschitz optimization problem due to the existence of ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5 norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' We propose a new algorithm called as an ℓ2-ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' This algorithm is proved to be effective by analyzing the sum mini- mization problem of two convex functions with certain characteris- tics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' (ii) The key theoretical properties such as convergence, sparsity are derived to guarantee the feasibility of the proposed method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' (iii) Numerous experiments were carried out, including some UCI datasets collected from experts and intelligent systems fields, gene datasets and ORL face image datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Experimental results show that the better performance of the proposed ℓ2- ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' The rest of this paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Section 2 reviews some basic concepts and theories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Section 3 demonstrates the itera- tive method by a fixed point equation and proposes a algorithm for ℓ2 - ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' In Section 4, some theoretical results about convergence and sparsity are analyzed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' In Section 5, experimental results on UCI datasets, gene datasets and ORL face image datasets are shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' The conclusion is drawn in Section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' 2 PRELIMINARIES In this section, we present some fundamental concepts and con- vex optimization theorems primarily.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Initially, it is about the half- thresholding function[16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' 𝒫(𝜆,𝑡) : R → R, 𝜆 > 0, which can be written as: 𝒫(𝜆,𝑡) = � 2 3𝑡 � 1 + cos � 2(𝜋−𝜙 (𝑡)) 3 �� |𝑡| > 3 4𝜆 2 3 0 |𝑡| ≤ 3 4𝜆 2 3 , (8) where 𝜙(𝑡) = arccos � 𝜆 8 ( |𝑡 | 3 )− 3 2 � , 𝜋 = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='14, and then the corre- sponding half-thresholding operator half(𝜆, 𝛽) : R𝑁 → R𝑁 acts component-wise as: [half(𝜆, 𝛽)]𝑖 = 𝒫(𝜆, 𝛽𝑖).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' (9) Next, we introduce one key characteristic of the half-thresholding operator [7, 16]: ∥half(𝜆,𝑡) − half(𝜆,𝑡 ′)∥ ≤ ∥𝑡 − 𝑡 ′∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' (10) Another crucial notion of convex optimization is the proximity operator [12]: prox𝜑𝛽 = arg min � ∥𝑢 − 𝛽∥2 2 + 𝜑(𝑢) � , where𝜙 is a real-valued convex function on R𝑁 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' A primary property of the proximity operator is drawn in Proposition 1[7], which will be utilized to prove our major result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Let 𝜑 be a real-valued convex function on R𝑁 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Suppose 𝜓 (·) = 𝜑 + 𝜌 2 ∥ · ∥2 2 + ⟨·,𝑢⟩ + 𝜎, where 𝑢 ∈ R𝑁 , 𝜌 ∈ [0, ∞), 𝜎 ∈ R, then prox𝜓 𝛽 = prox𝜑/(1+𝜌) ((𝛽 − 𝑢)/(1 + 𝜌)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' (11) 3 SOLUTION: FIXED POINT ITERATIVE ALGORITHM FOR THE MODEL For the ELM, the output matrix H is a bounded linear operator from R𝑁 to R𝑚 owing to the activation function 𝑔(·) ∈ (0, 1), which is finite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' In order to further improve the accuracy and sparsity, we employ the regularization model (7) to estimate the output weights of the network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' We define concisely as: 𝑝𝛾,𝜀 = 𝛾∥𝛽∥0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5 + 𝜀∥𝛽∥2 2, where 𝜀, 𝛾 ≥ 0, 𝑝𝛾,𝜀 : R𝑁 → [0, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Then the model (7) can be redefined as min 𝛽 ∈R𝑁 � 1 2 ∥H𝛽 − T∥2 2 + 𝜆𝑝𝛾,𝜀 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' (12) Furthermore, we introduce the following Lemma and Theorem which will be utilized to solve our model: An improved hybrid regularization approach for extreme learning machine AISS 2022, November 25–27, 2022, Sanya, China Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' For all 𝜆 > 0 and 𝛽 ∈ R𝑁 ,the half-thresholding operator (8) can be described as: half(𝜆, 𝛽) = arg min 𝑢 � 1 2 ∥𝑢 − 𝛽∥2 2 + 𝜆∥𝑢∥0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' For all 𝜆 > 0,𝛾 ≥ 0,𝜀 ≥ 0 and 𝛽 ∈ R𝑁 , half( 𝜆𝛾 1+2𝜀𝜆, 𝛽 1+2𝜀𝜆 ) is the proximity operator of 𝜆𝑝𝛾,𝜀 (𝛽).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Let 𝜆 > 0, 𝛾 ≥ 0, 𝜀 ≥ 0 and 𝛿 ∈ (0, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Then 𝛽 is a minimizer of function (12) if and only if it meets the fixed point equation: 𝛽 = half � 𝛿𝜆𝛾 1 + 2𝜀𝜆𝛿 , (I − 𝛿H𝑇 H)𝛽 − 𝛿H𝑇 T 1 + 2𝜀𝜆𝛿 � , (13) where the unit operator I : R𝑁 → R𝑁 , the definition of H is shown in (1), and H𝑇 represents the adjoint of H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Moreover, from the property of the proximity operator, we can drive a precise statement for the Lipschitz constant of a contractive map and the corresponding theorem as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Set 𝜆 > 0,𝛾 ≥ 0,𝜀 ≥ 0 and 𝛿 ∈ (0, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Suppose that there exist two positive constants 𝜅0 and 𝜅, such that the norm of the output matrix H shown in (1) of the hidden layer is finite by them, namely 𝜅0 ≤ ∥H𝑇 H∥2 ≤ 𝜅, Thus 𝛽 is a minimizer of (12) if and only if it is a fixed point of the Lipchitz map Γ : R𝑁 → R𝑁 , that is, 𝛽 = Γ𝛽 where Γ𝛽 = half � 𝛿𝜆𝛾 1 + 2𝜀𝜆𝛿 , (I − 𝛿H𝑇 H)𝛽 + 𝛿H𝑇 T 1 + 2𝜀𝜆𝛿 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' (14) Selecting𝛿 = 2 𝜅0+𝜅 , the Lipschitz constant is finite by𝑞 = 1− 2𝜅0 𝜅 + 𝜅0 ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' In particular, if 𝜅0 > 0, we can get Γ is a contractive map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Theorem 1 and Theorem 2 illustrate that the problem of ℓ2-ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5- ELM can be described as a fixed point algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Furthermore, the next theorem will introduce the iterative procedure of the ℓ2-ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5- ELM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Suppose that 𝜅0 and 𝜅 are positive constants, such that the norm of the output matrix H shown in (1) of the hidden layer is finite by them, namely, 𝜅0 ≤ ∥H𝑇 H∥2 ≤ 𝜅, and the sequence {𝛽}∞ 𝑙=0 ⊆ R𝑁 is described iteratively as 𝛽𝑙 = half � 𝛿𝜆𝛾 1 + 2𝜀𝜆𝛿 , (I − 𝛿H𝑁 H)𝛽𝑙−1 − 𝛿H𝑇 T 1 + 2𝜀𝜆𝛿 � , (15) where 𝑙 = 1, 2, 3, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' , 𝜆 > 0,𝜀 > 0,𝛾 ≥ 0 and 𝛿 = 2 𝜅+𝜅0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Thus {𝛽𝑙 }∞ 𝑙=0 strongly converges the minimizer of model (10) in spite of the choice of 𝛽0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' It is not difficult to obtain from the proof of Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' ∥𝛽𝑙 − 𝛽∗∥2 ≤ 𝜅 + 𝜅0 𝜅0(𝜅 + 𝜅0 + 4𝜀𝜆) �𝜅 − 𝜅0 𝜅 + 𝜅0 �𝑙 ∥H𝑇 T∥2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Therefore, for each 𝜉 > 0, if 𝜅 + 𝜅0 𝜅0(𝜅 + 𝜅0 + 4𝜀𝜆) �𝜅 − 𝜅0 𝜅 + 𝜅0 �𝑙 ∥𝛽1 − 𝛽0∥2 < 𝜉.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' namely, 𝑙 > log � ∥𝛽1−𝛽0 ∥2(𝜅+𝜅0) 𝜉𝜅0(𝜅+𝜅0+4𝜀𝜆) � log � 𝜅+𝜅0 𝜅−𝜅0 � , thus ∥𝛽𝑙 − 𝛽∗∥2 < 𝜉.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' As a conclusion, the complete ℓ2-ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM algorithm is given in Algorithm 1 which integrates the result of Theorem 3 and Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Next section, we want give some properties of our proposed algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Algorithm 1: the algorithm for ℓ2-ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM model Input:Given a set of training samples 𝒻 = � (𝑥𝑗,𝑡𝑗) : 𝑥𝑗 ∈ R𝑝,𝑡𝑗 ∈ R𝑚, 𝑗 = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' ,𝑛 �, activation func- tion 𝑔, hidden node number 𝑁, the related regularization parameters 𝜆 > 0, 𝛾 ≥ 0, 𝜀 ≥ 0, the corresponding parameter 𝛿, and an acceptable error 𝜉.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Step 1: Randomly assign a proper scope for input weight 𝜔𝑖 and bias 𝑏𝑖 (𝑖 = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' , 𝑁) Step 2: Compute the hidden layer output matrix H;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Step 3: Set 𝛽0 = (0, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' , 0), 𝛽1 = half( 𝛿𝜆𝛾 1 + 2𝜀𝜆𝛿 , (I − 𝛿H𝑇 H)𝛽0 + 𝛿H𝑇 T 1 + 2𝜀𝜆𝛿 ), and 𝑙𝑚𝑎𝑥 be a minimal positive integer but larger than log � ∥𝛽1 − 𝛽0∥2(𝜅 + 𝜅0) 𝜉𝜅0(𝜅 + 𝜅0 + 4𝜀𝜆) � log � 𝜅+𝜅0 𝜅−𝜅0 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Step 4: For 𝑙 = 1 : 𝑙𝑚𝑎𝑥 if 𝑙 ≥ 𝑙𝑚𝑎𝑥, stop;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' else 𝑙 := 𝑙 + 1 and update the 𝛽 as follows: 𝛽𝑙+1 = half( 𝛿𝜆𝛾 1 + 2𝜀𝜆𝛿 , (I − 𝛿H𝑇 H)𝛽𝑙 + 𝛿H𝑇 T 1 + 2𝜀𝜆𝛿 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' repeat Step 4, until that the desired output weight is ^𝛽 = 𝛽𝑚𝑎𝑥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Output: Return the output weights ^𝛽;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' 4 SOME CHARACTERISTICS FOR ℓ2-ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM For the new section, we want to discuss and analyze some key characteristics of the estimator regarding ℓ2-ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM, such as the convergence and sparsity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' 𝛽𝑙 strongly converges to the minimum value 𝛽∗ of the minimization problem min 𝛽 ∈R𝑁 � 1 2 ∥H𝛽 − T∥2 2 + 𝜆𝑝𝛾𝜀 (𝛽) � as 𝑙 → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' 𝛽0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5 in the ℓ2-ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM is a highly significant part of the sparsity of the solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Thus, we set the Theorem 5 as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Suppose 𝜆 > 0,𝛾 > 0, then the support of half( 𝜆𝛾 1+2𝜀𝜆, 𝛽 1+2𝜀𝜆 ) is finite for any 𝛽 ∈ R𝑁 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Particularly, 𝛽∗ and 𝛽𝑙 are all finitely supported.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' If the regularization parameters 𝜆 and 𝛾 are fixed as some con- stant values, then 𝛽∗ and 𝛽𝑙 have only a few finite nonzero coeffi- cients, and hence the solution to (12) is sparse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' AISS 2022, November 25–27, 2022, Sanya, China Zhou and Miao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Table 1: Details of the 6 datasets Dataset Type Sapmple Feature Catagory Austrian UCI 690 14 2 Ionosphere UCI 151 34 2 Balance UCL 625 4 3 colon gene 62 2000 2 DLBCL gene 77 7129 2 ORL image 400 10304 40 5 PERFORMANCE EVALUATION In the new section, a succession of experiments, containing some UCI benchmark datasets[9] and gene data, are carried out to demon- strate the performance of the proposed ℓ2-ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' All the experiments are performed in the Mac Pycharm environment running on Quad-Core Intel Core i5, CPU (8 GB 2133 MHz LPDDR3) processor with the speed of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='40GHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' The activation function of networks used in the experiments is taken as sigmoid function 𝑔(𝑥) = 1/(1 + 𝑒−𝑥).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' The ℓ2-ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM model is compared with seven other models: BP, SVM, ELM, ℓ2-ℓ1-ELM, ℓ2-ELM, ℓ1-ELM, ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' BP includes only one hidden layer and output layer, and all parameters are trained by back-propagation algorithm;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' ℓ1-ELM and ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM are the simplified forms of ℓ2-ℓ1-ELM and ℓ2-ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' The activation function is defined as: 𝑔(𝑥) = 1/(1 + 𝑒−𝑥).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' In order to check the algorithm for ℓ2-ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM model, three real classification datasets from the UCI machine learning repository are considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' The basic information of each dataset is shown in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' The average of 30 experimental validations was used as the final result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' For these datasets, the sample size is fixed, but each sample is randomly assigned as training or testing data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='1 Performance for UCI datasets To validate the performance of the proposed ℓ2-ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM model, three types of real classification datasets were used for the experi- ments, including UCI[3], gene expression, and ORL face datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' The UCI machine learning repository (2013UCI) contains three datasets: Austrian Credit Approval(Austrian), Ionosphere, and Bal- ance Scale(Balance).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' The gene expression datasets contain colon[1] and DLBCL[13], both of which are binary datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Moreover, the ORL face dataset includes 400 images divided into 40 categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Each category contains 10 images with different facial details and each image size is 112 × 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' The detail information of all datasets are summarized in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' In addition, these data were obtained from different application fields, and it is hoped that the ℓ2-ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5- ELM model can be analyzed from multiple perspectives by using these data from different backgrounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' We repeat 30 trials and take the averages as the final results on account of reducing the random error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' And the regularization parameters are used to control the trade-off between the error and the penalty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' For Austrian dataset, take the parameters ( ℓ2-ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM, ℓ2-ℓ1-ELM : 𝜆 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='8,𝛾 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='1,𝜀 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='9) and for Ionosphere dataset, take ( ℓ2-ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM, ℓ2-ℓ1-ELM : 𝜆 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='9,𝛾 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='05,𝜀 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='9) and Balance Scale dataset, ( ℓ2-ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM : 𝜆 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='8,𝛾 = 1,𝜀 = 1, for ℓ2-ℓ1- ELM : 𝜆 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='005,𝛾 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5,𝜀 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5), we set the acceptable error 𝜉 = Table 2: Performance comparison of 8 models on 3 different datasets Datasets Methods Times(s) Remaining Nodes Accuracy(% ± %) Austrain BP 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='1751 600 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='58 ± 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='57 SVM 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='0448 — 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='14 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='98 ELM 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='0588 600 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='37 ± 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='08 ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='8542 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='76 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='00 ℓ1-ELM 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='1648 118.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='38 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='00 ℓ2-ELM 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='2735 600 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='36 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='00 ℓ2-ℓ1-ELM 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='041 492.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='38 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='00 ℓ2-ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5875 118.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='76 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='00 Ionosphere BP 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='1751 600 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='58 ± 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='57 SVM 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='0108 – 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='51 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='09 ELM 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='0003 600 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='55 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='78 ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='0487 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='96 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='00 ℓ1-ELM 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='4755 115.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='9 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='24 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='06 ℓ2-ELM 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='0520 600 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='05 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='57 ℓ2-ℓ1-ELM 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='4093 437.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='84 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='98 ℓ2-ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='0569 193 98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='01 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='00 Balance BP 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='3814 600 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='99 ± 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='26 SVM 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='0215 – 88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='63 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='86 EL,M 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='0008 600 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='72 ± 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='66 ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='1285 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='3 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='55 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='00 ℓ1-ELM 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5074 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='9 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='47 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='66 ℓ2-ELM 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='1579 600 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='55 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='00 ℓ2-ℓ1-ELM 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='8678 246.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='4 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='10 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='35 ℓ2-ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='0974 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='7 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='91 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='0001, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='001, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='0001 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' The number of hidden nodes in the experiments is 600.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Table 2 shows the running time, the number of nodes retained, and the accuracy of the test for each dataset for the eight models (the standard deviation is kept to 4 significant digits, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='00 in the table indicates a standard deviation of less than 10−4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' These indices are used to measure the sparsity, stability and effectiveness of the proposed method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' The corresponding figures on testing are shown as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' From the results of 1-3, we can see that the accuracy of the ELM model is lower than all the regularized ELM models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' The standard deviation of the ELM model is higher than that of other regularized ELM models, which indicates that the stability of the ELM model is lower.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' The accuracy of the ℓ2-ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM model at all nodes can be compared with other regularized ELM models, and the accuracy at most hidden nodes is higher than other comparable regularized ELM models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' This indicates that the ℓ2-ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM model has consistently good classification prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' In terms of the standard deviation of different nodes, the ℓ2-ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM model is lower than the other compared models, indicating that the classification accuracy of this method is more stable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' We can see the performance of ℓ2-ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM in detail and draw the following conclusions: (i) In 3 datasets, the classification accuracy of the regularized ELM methods (ℓ2-ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM, ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM, ℓ2-ℓ1-ELM, ℓ1-ELM, ℓ2-ELM) are significantly higher than that of the BP, SVM and ELM methods, indicating that the regularized ELM methods have better general- ization performance, and the classification accuracy of ℓ2-ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM methods is higher than that of other compared regularized ELM methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' (ii) From the perspective of the number of remaining hidden nodes, ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM has the lowest number of hidden nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' It is shown An improved hybrid regularization approach for extreme learning machine AISS 2022, November 25–27, 2022, Sanya, China 200 300 400 500 600 700 800 900 1000 1100 1200 Number of Hidden Nodes 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='65 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='70 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='85 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='95 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='00 Testing accuracy ELM l0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5 l1 l2 l2l1 l2l0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5 200 300 400 500 600 700 800 900 1000 1100 1200 Number of Hidden Nodes 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='006 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='008 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='012 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='014 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='016 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='018 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='020 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='022 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='024 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='026 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='028 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='030 SDs of Testing ELM l0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5 l1 l2 l2l1 l2l0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5 Figure 1: Performance comparison of 6 models in the Austrian dataset 200 300 400 500 600 700 800 900 1000 1100 1200 Number of Hidden Nodes 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='62 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='64 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='66 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='68 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='70 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='72 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='74 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='76 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='78 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='82 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='84 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='86 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='88 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='92 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='94 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='96 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='98 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='00 Testing accuracy ELM l0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5 l1 l2 l2l1 l2l0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5 200 300 400 500 600 700 800 900 1000 1100 1200 Number of Hidden Nodes 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='06 SDs of Testing ELM l0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5 l1 l2 l2l1 l2l0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5 Figure 2: Performance comparison of 6 models in the Ionosphere dataset 200 300 400 500 600 700 800 900 1000 1100 1200 Number of Hidden Nodes 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='45 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='65 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='70 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='85 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='95 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='00 Testing accuracy ELM l0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5 l1 l2 l2l1 l2l0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5 200 300 400 500 600 700 800 900 1000 1100 1200 Number of Hidden Nodes 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='015 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='020 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='030 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='035 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='040 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='045 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='050 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='055 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='060 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='065 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='070 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='075 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='080 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='085 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='090 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='095 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='100 SDs of Testing ELM l0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5 l1 l2 l2l1 l2l0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5 Figure 3: Performance comparison of 6 models in the Balance dataset that the ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5 or ℓ1-regularization term is beneficial to enhance the sparsity of the hidden nodes of the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Compared with the ℓ2- ℓ1-ELM model, the ℓ2-ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM model adds the ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5 regularization term to the model, which has a sparser solution and thus a better generalization ability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' (iii) From the perspective of algorithm running time, the ELM model runs in the shortest time (the ELM model can obtain the analytic solution directly without iterative computation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' In com- parison, the SVM model runs faster than all ELM methods with regularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Secondly, for the 5 regularized ELM models, the models with ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5 regularization terms (ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM, ℓ2-ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM) are faster than the models with ℓ1 regularization terms (ℓ1-ELM, ℓ2- ℓ1-ELM).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='2 Performance for gene datasets In this section, the performance of the ℓ2-ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM model is vali- dated using the colon and DLBCL data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' The training and testing sets of each dataset were experimented in the ratio of 1 : 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' The regular- ization parameters are set as follows, colon data: (ℓ2-ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM and ℓ2-ℓ1-ELM : 𝜆 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='09,𝛾 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='9,𝜀 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='9), DLBCL data: (ℓ2-ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM and ℓ2-ℓ1-ELM : 𝜆 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='005,𝛾 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5,𝜀 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' and 𝜉 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Each dataset was repeatedly run 30 times, and the average was taken as the final result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' As shown in Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' It can be demonstrated that the prediction accuracy of the single- layer BP network is very low and does not capture the features of AISS 2022, November 25–27, 2022, Sanya, China Zhou and Miao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' 200 300 400 500 600 700 800 900 1000 1100 1200 Number of Hidden Nodes 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='72 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='73 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='74 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='76 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='77 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='78 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='79 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='81 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='82 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='83 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='84 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='85 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='86 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='87 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='88 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='89 Testing accuracy ELM l0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5 l1 l2 l2l1 l2l0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5 200 300 400 500 600 700 800 900 1000 1100 1200 Number of Hidden Nodes 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='015 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='020 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='030 SDs of Testing ELM l0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5 l1 l2 l2l1 l2l0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5 Figure 4: Performance comparison of 6 models in colon dataset Table 3: Performance comparison of 8 models in 2 gene datasets Datasets Methods Times(s) Remaining Nodes Accuracy(% ± %) colon BP 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='2641 1000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='0 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='52 ± 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='15 SVM 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='0358 – 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5 ± 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='28 ELM 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='0056 1000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='0 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='02 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='92 ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='0829 370.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='00 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='00 ℓ1-ELM 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='0488 974.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='79 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='22 ℓ2-ELM 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='0815 1000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='0 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='17 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='20 ℓ2-ℓ1-ELM 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='0401 1000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='0 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='96 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='24 ℓ2-ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='0879 877.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='0 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='50 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='00 DLBCL BP 122.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='3174 1000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='0 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='24 ± 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='55 SVM 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='0968 – 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='24 ± 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='98 ELM 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='0060 786.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='0 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='90 ± 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='98 ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='2214 242.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='0 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='43 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='00 ℓ1-ELM 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='2957 188.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='05 ± 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='12 ℓ2-ELM 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='2324 764.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='0 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='51 ± 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='48 ℓ2-ℓ1-ELM 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5286 431.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='62 ± 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='10 ℓ2-ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='4519 575.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='43 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='00 the data very well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' It can also be found that the prediction accu- racy of the ℓ2-ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM model is slightly higher than that of the other methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' The standard deviations of the accuracy of the ELM methods with ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5 regularization are much smaller than those of BP, SVM, and ELM, indicating that the ELM model variants with ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5 regularization terms can improve the stability of the solutions;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' The number of hidden nodes in the ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM and ℓ1-ELM models is smaller, that is, the sparsity of these two regularization terms is the strongest, indicating that the addition of ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5 or ℓ1 regularization terms in the ELM model enhances the sparsity of the model, while the number of hidden nodes in the ℓ2-ELM model is 1000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' The number of nodes in the ℓ2-ELM model is 1000, indicating that the ℓ2-regularization term has no sparse effect on the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' The ℓ2 norm is used to increase the stability of the model by penalizing oversized regularization parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' This makes the ℓ2-ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM sparser and model stable, and thus obtains better generalization ability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' From the perspective of algorithm running time, it can be seen that the ELM model has the shortest running time (the ELM model can obtain the analytical solution directly without iterative solving).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' In contrast, the SVM model runs faster than all ELM methods with regularization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Further, we use the colon data to verify the effect of different number of hidden nodes (200, 400, 600, 800, 1000, 1200) on the sta- bility of the ELM correlation model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' We perform 30 experiments for each hidden node and calculate the ELM, ℓ2-ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM, ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM, ℓ2-ℓ1-ELM, ℓ1-ELM, ℓ2-ELM for the test set accuracy and standard deviation as shown in Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' The test accuracy of ℓ2-ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM at all nodes can be compared with all regularized ELM models, while the accuracy at most hidden nodes is higher than other models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' The standard deviation of ℓ2-ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM model is lower than other regularized ELM models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='3 Performance for ORL face dataset The ORL face dataset is used for experimental validation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' The num- ber of hidden nodes for the experiment is 1000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' The average of 30 experiments is used as the final result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Since the original im- age has high dimensionality, we preprocess each image by using the (2𝐷)2PCA[18] dimensionality reduction technique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' And the training set and test set are in the ratio of 7 : 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' The values of the regular parameters set in the experiment are as follows: ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM and ℓ1-ELM (𝛾 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='05,𝜀 = 0), ℓ2-ELM (𝛾 = 0,𝜀 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5), ℓ2 -ℓ1-ELM, ℓ2-ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM(𝛾 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='05,𝜀 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' 𝜆 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='001 and 𝜀 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='0001 are cho- sen in all experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' This experiment validates the performance of the model in terms of accuracy and standard deviation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' The re- sults are shown in Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' From the table, it can be seen that the Table 4: Performance comparison of 8 models in ORL face dataset Methods Accuracy(%) BP 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='00 ± 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='90 SVM 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='53 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='12 ELM 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='58 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='95 ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='00 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='34 ℓ1-ELM 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='85 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='86 ℓ2-ELM 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='17 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='47 ℓ2-ℓ1-ELM 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='58 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='87 ℓ2-ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='67 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='34 An improved hybrid regularization approach for extreme learning machine AISS 2022, November 25–27, 2022, Sanya, China Table 5: Performance comparison of 6 models in ORL face dataset Nodes ELM ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM ℓ1-ELM ℓ2-ELM ℓ2-ℓ1-ELM ℓ2-ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM 500 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='92±3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='04 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='10±2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='55 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='00 ±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='77 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='63± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='38 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='25 ±2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='32 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='83 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='46 1500 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='08±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='73 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='00±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='93 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='33 ±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='67 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='75± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='75 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='33 ±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='76 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='20 ±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='93 2000 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='25±2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='00 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='73±2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='45 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='33 ±2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='08 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='63± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='18 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='33 ±2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='08 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='83 ±2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='45 2500 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='58±3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='49 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='74±3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='36 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='67 ±3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='44 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='21±3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='29 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='63 ±3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='44 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='76 ± 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='26 3000 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='50±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='98 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='55±2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='69 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='42 ±2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='07 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='45±2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='39 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='42 ±2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='07 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='58 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='68 3500 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='17±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='81 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='13±2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='22 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='17 ±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='87 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='17±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='89 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='17 ±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='87 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='25 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='12 4000 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='00±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='81 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='00±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='67 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='92 ±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='74 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='96±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='64 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='92 ±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='74 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='08 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='65 mean 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='22±9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='12 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='16±5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='33 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='21 ±7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='00 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='62±6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='21 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='08 ±7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='24 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='26 ± 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='32 accuracy of the ℓ2-ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM model (which is slightly higher than the SVM model) is slightly higher than all other models tested.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Further, we verify the effect of different values of hidden nodes on the prediction accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' The number of hidden nodes chosen in the experiment is 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' The results are shown in Table 5, which show that the test accu- racy of ℓ2-ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM model is higher than the other comparative ELM models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' The test accuracy of the ELM model fluctuates the most with the changing of the number of hidden nodes, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=', the selection of different nodes has the greatest impact on it, indicating that the ELM model is less stable in high-dimensional data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' In con- trast, the standard deviations of all the regularized ELM methods (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='33, 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='00, 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='21, 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='24, 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='32) are lower than those of the ELM meth- ods, indicating that the stability of the ELM model is improved by adding the regularization term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' ELM methods, indicating that the stability of the proposed method is better than the other 5 compared to ELM methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' 6 CONCLUSION In order to further improve the stability and generalization of the ELM model, this paper proposes a ℓ2-ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM model by combin- ing the ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5 and the ℓ2 regularization term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' The iterative algorithm is applied to solve the model with a fixed points algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' The convergence and sparsity of this algorithm are proved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Moreover, the proposed ℓ2-ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM model is compared with BP, SVM, ELM, ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM, ℓ1-ELM, ℓ2-ELM and ℓ2-ELM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' ℓ2-ℓ1-ELM models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Experi- mental comparisons on several datasets (UCI dataset, gene dataset, ORL face dataset) show that the ℓ2-ℓ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='5-ELM method outperforms the other 7 models in terms of prediction accuracy and stability on these data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Therefore, the model can be improved as follows: the information of previously computed nodes is not used in the computation of different hidden nodes, and it can be learned from the incremental learning point of view, which can reduce the com- putation time to a certain extent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' REFERENCES [1] U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Alon, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Barkai, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Notterman, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Gish, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Ybarra, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Mack, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Levine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' 1999.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' 96, 12 (1999), 6745– 6750.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' [2] Hai Hui Huang A B and Yong Liang C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Hybrid 𝐿1/2+2 method for gene selection in the Cox proportional hazards model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Computer Methods and Programs in Biomedicine 164 (2018), 65–73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' [3] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Bache and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Lichman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' UCI machine learning repository.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' [4] Feilong Cao, Yuanpeng Tan, and Miaomiao Cai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Sparse algorithms of random weight networks and applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Expert Systems with Applications 41, 5 (2014), 2457–2462.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' [5] Feilong Cao, Dianhui Wang, Houying Zhu, and Yuguang Wang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' An itera- tive learning algorithm for feedforward neural networks with random weights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Information Sciences 328 (2016), 546–557.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' [6] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Cawley and Nlc Talbot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Gene selection in cancer classification using sparse logistic regression with Bayesian regularization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Oxford University Press (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' [7] Patrick L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Combettes and Valérie R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Wajs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Signal recovery by proximal forward-backward splitting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Multiscale Model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Simul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' 4 (2005), 1168–1200.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' [8] Qinwei Fan, Lei Niu, and Qian Kang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Regression and multiclass classification using sparse extreme learning machine via smoothing group 𝐿1/2 regularizer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' IEEE Access 8 (2020), 191482–191494.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' [9] Hailiang, Ye, Feilong, Cao, Dianhui, and Wang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' [n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' A hybrid regularization approach for random vector functional-link networks - ScienceDirect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Expert Systems with Applications 140 ([n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=']), 112912–112912.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' [10] Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Extreme learning machine: theory and applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Neurocomputing 70, 1 (2006), 489–501.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' [11] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Igelnik and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Pao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' 1995.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Stochastic choice of basis functions in adaptive function approximation and the functional-link net.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' IEEE Trans Neural Netw 6, 6 (1995), 1320–1329.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' [12] Charles Micchelli, Lixin Shen, and Yuesheng Xu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Proximity algorithms for image models: denoising.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Inverse Problems 27 (03 2011), 045009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' [13] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Rosenwald, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Wright, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Chan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Connors, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Campo, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Fisher, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Gascoyne, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Muller-Hermelink, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Smeland, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Giltnane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' New England Journal of Medicine 346, 25 (2011), 1937.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' [14] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Schmidt, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Kraaijveld, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Duin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' 1992.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Feedforward neural networks with random weights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' (1992), 1–4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' [15] Robert Tibshirani.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Regression shrinkage and selection via the lasso: a retro- spective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Journal of the Royal Statistical Society: Series B (Statistical Methodology) 73, 3 (2011), 267–288.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' [16] Zongben Xu, Xiangyu Chang, Fengmin Xu, and Hai Zhang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' 𝐿1/2 regular- ization: a thresholding representation theory and a fast solver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' IEEE Transac- tions on Neural Networks and Learning Systems 23, 7 (2012), 1013–1027.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' https: //doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='1109/TNNLS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content='2197412 [17] Zong-Ben Xu, Hai-Liang Guo, Yao Wang, and Hai Zhang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Representative of 𝐿1/2 regularization among 𝐿𝑞 (0 < 𝑞 ≤ 1) regularizations: an experimental study based on phase diagram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Acta Automatica Sinica 38, 7 (2012), 1225–1228.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' [18] Daoqiang Zhang and Zhi-Hua Zhou.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' (2D)2PCA: Two-directional two- dimensional PCA for efficient face representation and recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'} +page_content=' Neurocom- puting 69, 1 (2005), 224–231.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NAzT4oBgHgl3EQffvy-/content/2301.01458v1.pdf'}