diff --git "a/INE4T4oBgHgl3EQfhA00/content/tmp_files/load_file.txt" "b/INE4T4oBgHgl3EQfhA00/content/tmp_files/load_file.txt" new file mode 100644--- /dev/null +++ "b/INE4T4oBgHgl3EQfhA00/content/tmp_files/load_file.txt" @@ -0,0 +1,3337 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf,len=3336 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='05121v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='PR] 12 Jan 2023 Singular SPDEs on Homogeneous Lie Groups Avi Mayorcas1 and Harprit Singh2 1Institute of Mathematics, Technische Universität Berlin, Str.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' des 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Juni 136, 10587 Berlin, Germany.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Email: avimayorcas@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='com;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' ORCID iD: 0000-0003-4133-9740 2Department of Mathematics, Imperial College London, South Kensington Campus, SW7 2AZ, UK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Email: h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='singh19@imperial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='uk;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' ORCID iD: 0000-0002-9991-8393 January 13, 2023 Abstract The aim of this article is to extend the scope of the theory of regularity structures in order to deal with a large class of singular SPDEs of the form ∂tu = Lu +F(u,ξ) , where the differential operator L fails to be elliptic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' This is achieved by interpreting the base space Rd as a non-trivial homogeneous Lie group G such that the differential oper- ator ∂t −L becomes a translation invariant hypoelliptic operator on G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Prime examples are the kinetic Fokker-Planck operator ∂t − ∆v − v · ∇x and heat-type operators associ- ated to sub-Laplacians.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' As an application of the developed framework, we solve a class of parabolic Anderson type equations ∂tu = � i X 2 i u +u(ξ−c) on the compact quotient of an arbitrary Carnot group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Keywords: Regularity structures, homogeneous Lie groups, hypoelliptic operators, stochastic partial differential equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' 2020 MSC: 60L30 (Primary);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' 60H17, 35H10, 35K70 (Secondary) CONTENTS 1 Introduction 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='1 Related Literature .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' 4 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='2 A Motivating Class of Examples .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' 5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='3 Open Problems and Wider Context .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' 7 2 Analysis on Homogeneous Lie Groups 9 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='1 Derivatives and Polynomials .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' 10 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='2 Distributions and Convolution .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' 17 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='3 Discrete Subgroups .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' 19 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='4 Concrete Examples .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' 20 3 Regularity Structures and Models 22 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='1 The Polynomial Regularity Structure .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' 23 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='2 Modelled Distributions .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' 25 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='3 Singular Modelled Distributions .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' 33 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='4 Local Operations .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' 38 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='5 Convolution with Singular Kernels .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' 40 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='6 Schauder Estimates for Singular Modelled Distributions .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' 48 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='7 Symmetries .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' 49 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='8 Bounds on Models .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' 50 4 Applications to Semilinear Evolution Equations 50 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='1 Short Time Behaviour of Kernel Convolutions .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' 52 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='2 Initial Conditions .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' 53 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='3 An Example Fixed Point Theorem .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' 53 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='4 Concrete Examples of Differential Operators and Kernels .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' 55 5 A Regularity Structure for Anderson Equations 57 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='1 Smooth Models .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' 59 6 The Anderson Equation on Stratified Lie Groups 59 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='1 Stochastic Estimates for the Renormalised Model .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' 63 1 INTRODUCTION The theory of regularity structures, [Hai14], provides a framework for the study of subcritical stochastic partial differential equations (SPDEs) of the form ∂tu −Lu = F(u,ξ) , (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='1) when the operator L is uniformly elliptic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' This article extends the theory of regularity struc- tures in order to solve equations where the differential operator stems from a large class of hy- poelliptic operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' This is achieved by building on the fundamental idea of Folland [Fol75] to reinterpret the differential operator in question as a differential operator on a homoge- neous Lie group and extending the theory of regularity structures to these non-commutative spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' The treatment of singular SPDE via the theory of regularity structures can be divided into two parts, an analytic step and an algebraic and stochastic step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' The first, analytic step, is to introduce the notions of a regularity structure, models and modelled distributions;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' generalised Taylor expansions of both functions and distribu- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Given this set-up, sufficient analytic tools are then developed to allow for the study of abstract, fixed-point equations in the spaces of modelled distributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Cru- cially, a reconstruction operator maps modelled distributions to genuine distributions (or functions) on the underlying domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' For the case of constant coefficient, hypoel- liptic equations on compact quotients of Euclidean domains, this aspect of the theory was already worked out in full generality in [Hai14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' The second step, which was carried out in a case by case basis in [Hai14], was then fully automated in the subsequent works [CH16, BHZ19, BCCH21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' In [BHZ19] the au- thors construct concrete (equation-dependent) regularity structures and models to- gether with a large enough renormalisation group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Then, in [BCCH21], the question of how this renormalisation group acts on the SPDE in question was answered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Con- vergence of renormalised models for an extremely large class of noises, known as the BPHZ theorem, was proved in [CH16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' In much of the above work translation invariance on Rd, of both the equation and the driving noise, plays a major role.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' In this paper we will instead work with equations that are translation invariant with respect to a homogeneous Lie group G (Euclidean spaces being special case).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' The bulk of this this paper is dedicated to implementing the first analytic part of the theory in the case when the underlying space is a general (non-Abelian) homogeneous Lie group, the second step is then carried out for a specific class of equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' While many of the key ideas from [Hai14] carry over to our setting, we encounter a number of significant devia- tions from the arguments presented therein.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' The main cause of these deviations are the non- commutative structure of the base space and the fact that the notion of Taylor expansion, a crucial element of the theory, heavily depends on the underlying group structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' While this article aims at being relatively self-contained, we focus mainly on these required deviations from [Hai14] and do not reproduce arguments which carry over directly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' The central motivation for this extension to homogeneous Lie groups is to allow for the study of singular SPDE with linear part given by a hypoelliptic operator, which may fail to be uniformly parabolic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Two motivating examples are the heat operator associated to the sub-Laplacian on the Heisenberg group and the kinetic Fokker-Planck operator on R×R2n, u(t,x, y,z) �→ ∂tu −(∆x +∆y +(x2 + y2)∆z)u and u(t,x,v) �→ ∂tu −∆vu − v ·∇xu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='2) We will carry these two operators and their associated homogeneous Lie groups, throughout the paper as working examples of the theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' In the final sections we develop a full solution theory for Anderson type equations associated to sub-Laplacians on general stratified Lie groups (Carnot groups), of which the Heisenberg group is a well-studied example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' More generally, however, the analytic results of this paper apply to any differential operator, ¯L on Rd−1, such that the following combination of results by Folland applies to L := ∂t − ¯L, with respect to some homogeneous Lie group structure on Rd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='1 ([Fol75, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='1 & Cor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='8]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Let G be a homogeneous Lie group of homoge- neous dimension |s| and L be a left-translation invariant (with respect to G), homogeneous 3 differential operator of degree β ∈ (0,|s|) on G, such that L and its adjoint L∗ are both hypoel- liptic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Then there exists a unique homogeneous distribution K , of order β−|s| such that for any distribution, ϕ ∈ D′(G) L(ϕ∗K ) = (Lϕ)∗K = ϕ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' where the convolution is with respect to the given Lie structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Referring to Section 2 for a more thorough discussion of homogeneous Lie groups and their properties, we recall here that a differential operator D on Rd is called hypoelliptic, if for every open subset Ω ⊂ Rd one has that, Du ∈C ∞(Ω) ⇒ u ∈C ∞(Ω) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' The following celebrated result of Hörmander (almost) entirely classifies the family of second order hypoelliptic operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='2 ([Hö67, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='1]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Let r ≤ d and {Xi }r i=0 be a collection of first order differential operators (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' vector fields) on Rd and recursively define V1 = span{Xi : i = 0,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=',r}, Vn+1 = Vn ∪{[V,W ] : V ∈ V1, W ∈ Vn}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' If a differential operator can be written in the form, D = r� i=1 X 2 i + X0 +c, (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='3) for some c ∈ R, and there exists an N ≥ 1 such that dim(VN) = d at every point in Ω ⊆ Rd then D is hypoelliptic on Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' By Froebenious’s theorem, [Fro77], if the condition of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='2 fails in some open set then D is not hypoelliptic on that set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' However, the statement is not truly sharp;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' for example the Grushin operator ∂2 vv − v∂x is hypoelliptic, while the conditions of Theo- rem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='2 are violated on sets intersecting {v = 0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' On the other hand this type of exception cannot occur if the sections Vi are continuous, since in this case it can be shown that the map x �→ 1{dimVi(x)=d} is upper semi-continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' While Hörmander’s theorem gives an almost sharp characterisation of second order, hy- poelliptic, operators it does not say much about fine properties of the fundamental solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' For example, it gives no direct route to a refined regularity theory for hypoelliptic equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' This observation highlights the contribution of Folland’s theorem (Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='1);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' since trans- lation invariance allows access to many additional tools in the Euclidean setting, such as harmonic analysis and singular integral methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Viewing the class of translation invariant operators satisfying Folland’s theorem as analogous to constant coefficient, elliptic operators on Rd a programme was successfully carried out in the works [FS74a, FS74b, Fol75, RS76], es- tablishing a full Lp regularity theory for general, smooth coefficient, hypoelliptic operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' We refer to [Bra14, Ch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' 3] for a concise introduction to this programme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='1 RELATED LITERATURE Non-translation invariant and non-uniformly elliptic SPDEs have been well-studied in the classical, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' non-singular, regime and we do not attempt to present this large literature here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' 4 We refer to standard texts such as [DPZ14, LR17, DKM+09, PR07] for a general overview and references to more specific works contained therein.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' However, in the more specialised set- ting of semi-linear SPDEs on homogeneous Lie groups, we mention the works [TV99, TV02, PT10] which treat both hypoelliptic and parabolic SPDEs on some classes of Lie groups and sub-Riemannian manifolds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' A solution theory for conservative SPDEs based on the kinetic Fokker–Planck equation (see Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='4) in the Itô case was developed in [FFPV17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Using the theory of paracontrolled calculus this was extended to the singular regime in [HZZZ21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' The kinetic Fokker–Plank operator and its associated homogeneous Lie group fall into the analytic framework developed in this paper, however, we postpone a concrete application of this theory towards a kinetic Anderson type equation to a future work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Recently, in [BOTW22], an Anderson type equation on the Heisenberg group with white in time and coloured in space noise was studied using Itô calculus techniques, up the to the full sub-critical regime of the noise regularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' We treat a closely related problem in the final sections of this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' A fuller discussion of the similarities and differences between the results of [BOTW22] and those of our approach is postponed to Remark 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Singular SPDEs with non-translation invariant, but uniformly parabolic or elliptic linear part, have also been considered, especially using the recently developed pathwise techniques of [Hai14, GIP15, OSSW21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Some of these works are discussed in more detail in Section 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='3 below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Quasilinear SPDEs have been studied using regularity structures, rough path based methods and paracontrolled distribution theory, see [GH19b, OW19, BM22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Recently, an ap- proach inspired by the theory of regularity structures, but technically distinct, has been devel- oped in [OSSW21, LOT21, LO22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' SPDEs on domains with boundaries have been treated us- ing both regularity structures and paracontrolled distribution based methods, [Lab19, GH19a, CvZ21, GH21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Finally, a number of works have considered parabolic, singular SPDEs on Rie- mannian manifolds;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' a paracontrolled approach using the spectral decomposition associated to the Laplace–Beltrami operator has been developed in [BB16, BB19, Ant22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' An approach via regularity structures has been applied to the 2d parabolic Anderson equation on a Rie- mannian manifold in [DDD19], while [BB21] develops some aspects of the general algebraic structure required to treat non-translation invariant, uniformly parabolic equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Finally, the upcoming work [HSa] gives a comprehensive extension of regularity structures to sin- gular SPDEs on Riemannian manifolds, with only the renormalisation of suitable stochastic objects left to be done by hand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='2 A MOTIVATING CLASS OF EXAMPLES In this paper we restrict ourselves to linear operators satisfying the criteria of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='1 and use the Anderson equation as a main motivating example, although we stress that our main analytic results apply in the full generality treated by [Hai14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' The parabolic Anderson model ∂tu = ∆u −uξ, u|t=0 = u0, (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='4) on R+×Rd describes the conditional, expected density of particles, where each particle moves according to an independent Brownian motion and branches at a rate proportional to the random environment ξ, see [Kön16, CM94].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Rigorously, this description is derived by discrete approximations and it is well known that in the case ξ is a spatial white noise, when d = 2 and 5 d = 3 one needs to recentre the potential in order to obtain a non-trivial limit as the discreti- sation is removed, [Hai14, HL15, HL18, GIP15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' We point out that if the environment is also allowed to depend on time and is for example, white in time, then martingale methods can be used instead to develop a probabilistic solution theory, see [Wal86, Dal99, Dal01, Che15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' If one replaces the Brownian motions with a general diffusion, dxt = � 2 r� i=1 Xi(xt)dW i t , where the vector fields satisfy Hörmander’s rank condition (Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='2), then, formally the conditional expected density of particles is described by the hypoelliptic Anderson equation, ∂tu − ¯Lu := ∂tu − r� i=1 X 2 i u = uξ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='5) When realisations of the environment are sufficiently singular then a pathwise solution the- ory for (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='5) is expected to require renormalisation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Since the vector fields {Xi }r i=1 satisfy Hör- mander’s condition, the operator ¯L is smoothing and therefore in principle, an extension of the theory of regularity structures should be applicable to find a renormalised, pathwise, so- lution theory for (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' In Section 6 we apply the analytic tools developed in the paper to demonstrate such an extension to the case where ¯L is the sub-Laplacian on a compact quo- tient of stratified Lie group (Carnot group).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' We show a result analogous to those of [Hai14, HL18], finding a notion of renormalised so- lution to (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='5), when ξ is a coloured periodic noise on a stratified Lie group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' More precisely, we show that when ξ is replaced with a mollified, recentred noise ξε − cε, for (specific) di- verging constants {cε}ε∈(0,1), solutions uε to (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='5) converge in probability to a unique limit independent of the specific choice of mollification-scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' We stress that this result does not cover the full subcritical regime of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' The treatment of this full regime would require an analogue of the BPHZ theorem on homogeneous Lie groups, see [CH16, HSb].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' A notable example of a stratified Lie group is the Heisenberg group, Hn ∼= R2n ×R, see Sec- tion 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='1 for a description.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' In this case the collection of left-translation invariant vector fields, which generate the associated Lie algebra are, Ai(x, y,z) = ∂xi + yi∂z, Bi(x, y,z) = ∂yi − xi∂z, for i = 1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=',n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' It is readily checked that the collections {Ai ,Bi}n i=1 are left-translation invariant with respect to the group action described in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='1 and that one has C(x, y,z) := [Ai,Bi] = −2∂z for all i = 1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=',n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' The associated sub-Laplacian is the linear differential operator, ¯Lu = n� i=1 (A2 i +B2 i )u, naturally extended to a heat type operator as in (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='2) and (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='5), c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='1 for further discussion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' A phenomenon of interest for Anderson equations is that of localisation, the con- centration of the solution at large times, taking arbitrarily large values on islands of arbitrarily small size, [CM94, Kön16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Since one expects the geometry of the underlying domain to have 6 effect on the emergence of this phenomenon, as also noted in [BOTW22] and since pathwise approaches to the parabolic Anderson model have proved fruitful in studying finer proper- ties of solutions, see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' [AC15, HL15, HL18, GUZ19, Lab19, BDM22], it is our hope that the tools developed herein may prove useful in analysing similar equations on more complex domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' The solution theory exposited in Section 6 applies to precisely this example on a compact quotient of the Heisenberg group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='3 OPEN PROBLEMS AND WIDER CONTEXT As discussed above, translation invariant (and for example) parabolic operators on Euclidean domains serve as a starting point from which non-translation invariant parabolic problems on Euclidean domains as well as parabolic problems on Riemannian manifolds can be stud- ied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' A somewhat parallel progression holds starting from translation invariant operators on homogeneous Lie groups, moving to general Hörmander operators as well as heat type equa- tions on sub-Riemannian manifolds, see [Bra14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' This parallel progression in PDE analysis leads one to ask, how far the theory of regularity structures can be extended in these direc- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' The table below gives a schematic presentation of the progress so far, presents some open problems and places this work within the context of the study of subcritical parabolic- type SPDEs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' The two rows describe the two parallel progressions outlined above in the con- text of regularity structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Translation invariant operators on Rd Non-translation operators on Rd On Riemannian manifolds The works [Hai14, BHZ19, BCCH21, CH16] present a general and complete picture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Mostly understood: analytic step in [Hai14];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' aspects of renormalisation addressed in [BB21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' In [DDD19] 2d-PAM is treated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' A general account in forthcoming work [HSa].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Translation invariant operators on homogeneous Lie groups General Hörmander operators On sub-Riemannian manifolds Analytic theory covered in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Renormalisation and convergence by hand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Open problem A Open problem B Each problem in the second row is closely related to its equivalent problem in the first row, we discuss the posed open problems in a little more detail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Open Problem A is expected to be more involved than its counterpart in the Euclidean setting;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' going from translation invariant operators to non-translation invariant oper- ators by local approximations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' In the case of general Hörmander operators, the un- derlying Lie group structure would in general vary from point to point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' An interesting application would be the study of general hypoelliptic Anderson models (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='5) where the underling particles perform a general diffusion with generator of the form (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='3), c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Open Problem B is motivated by the fact that analogous to the tangent space being an appropriate local approximations of a Riemannian manifold, the non-holonomic tan- gent space is an appropriate local approximations of a sub-Riemannian manifold and 7 each fibre of the non-holonomic tangent space is a stratified Lie group, c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' [ABB20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Note that in view of Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='3 the difficulties in Problem B are expected to be some- what complementary to those of Problem A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' NOTATION: Given α ∈ R we let [α] := max{r ∈ Z : r ≤ α} denote the integer part of α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' We often write ≲ to mean that an inequality holds up to multiplication by a constant which may change from line to line but is uniform over any stated quantities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' In general we reserve the notation D for the usual derivative on Euclidean space, and X , Y for elements of a Lie algebra thought of as vector fields on the associated Lie group, see Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' We will use | · | to denote the size of various quantities;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' elements of a Lie group, the Haar measure of subsets of the group, the homogeneity of members of the structure space in a regularity structure, traces of linear maps and the absolute value function on R etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' The meaning will usually be clear from the context but in cases where it is not we will make sure to specify in the text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' For integrals we will use the standard notation, dx, for integration against the Haar measure on a given homogeneous, Lie group, see Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Throughout most of the article we take an intrinsic point of view and do not equip the homogeneous Lie group with an explicit chart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' STRUCTURE OF THE PAPER: We begin with a discussion of analysis on homogeneous Lie groups sufficient for our purpose, Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' The most important result in this section is The- orem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='13 which provides us with an intrinsic version of Taylor’s theorem on homogeneous Lie groups and will be used frequently throughout.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Section 3 contains the bulk of the paper and establishes an extension to the analytic aspects of regularity structures to the setting of homogeneous Lie groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' In Section 4 we demonstrate the application of this general theory to semi-linear evolution equations of the type discussed in the introduction and provide an example fixed point theorem for such generalised multiplicative stochastic heat equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' We note that there is no difficulty in extending the general fixed point theorem of [Hai14] to our setting, we only specialise to aid the clarity of presentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Finally, in Sections 5 and 6 we the construct suitable regularity structures for our specialised setting and demonstrate a solution theory for Anderson-type equations associated to sub-Laplacians on quotients of stratified Lie groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' The very last sections draw heavily on the notation and arguments of [Hai14, HP15, BHZ19], which carry over to homogeneous Lie Groups to some extent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' ACKNOWLEDGEMENTS The authors wish to thank Martin Hairer, Rhys Steele, Ilya Chevyrev and Ajay Chandra for helpful and insightful conversations during the preparation of this manuscript.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' AM wishes to thank the INI and DPMMS for their support and hospitality which was sup- ported by Simons Foundation (award ID 316017) and by Engineering and Physical Sciences Research Council (EPSRC) grant number EP/R014604/1 as well as DFG Research Unit FOR2402 for ongoing support.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' HS acknowledges funding by the Imperial College London President’s PhD Scholarship.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' He wishes to thank Josef Teichmann and Máté Gerencsér for their hospitality during his visit to ETH Zürich and TU Wien.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' 8 2 ANALYSIS ON HOMOGENEOUS LIE GROUPS We collect some basic facts on homogeneous Lie groups and smooth function on them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Let g be a Lie algebra and G be the unique, up to Lie algebra isomorphism, corresponding sim- ply connected Lie group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' We write [·,·] for its Lie bracket and inductively set, g(1) = g and g(n) = [g(n−1),g].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Recalling the exponential map exp : g → G, we have the Baker–Campbell– Hausdorff formula exp(X )exp(Y ) = exp(H(X ,Y )) , (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='1) where H is given by H(X ,Y ) = X + Y + 1 2[X ,Y ] + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' with the remaining terms consisting of higher order iterated commutators of X and Y ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' crucially H is universal, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' it does not depend on the underlying Lie algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='1 ([FS82, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='2]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Assume that g is nilpotent, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' g(n) = 0 for some n ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Then, the exponential map is a diffeomorphism and through this identification of g with G, the map G×G ∋ (x, y) �→ xy ∈ G becomes a polynomial map (between vector spaces).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' the pull-back to G of the Lebesgue measure on g is a bi-invariant Haar measure on G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' A dilation on g is a group of algebra automorphisms {Dr}r>0 of the form Dr X = exp(logr ·s)X with s : g → g being a diagonalisable linear operator with 1 as its smallest eigenvalue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' The requirement that the smallest eigenvalue of s be 1 is purely cosmetic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Oth- erwise, denoting the smallest eigenvalue by s1, one can work with the new operator ˜s = 1 s1 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' For a ∈ R, denote by Wa ⊂ g the eigenspace of s with eigenvalue a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Thus for X ∈ Wa, Y ∈ Wb one has the condition Dr [X ,Y ] = [Dr X ,Dr Y ] = r a+b[X ,Y ] which in particular implies [Wa,Wb] ⊂ Wa+b and since Wa = {0} for a < 1 g(j) ⊂ � a≥j Wa .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' In particular, if g admits a family of dilations, it is nilpotent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' The converse is not necessarily true.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' A homogeneous Lie group G is a simply connected, connected Lie group where its Lie algebra g is endowed with a family of dilations {Dr }r>0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' For r > 0, we define the group automorphism x �→ r · x := exp◦Dr ◦exp−1 x .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' A homogeneous norm on G is a continuous function |·| : G → [0,∞) satisfying the following properties for all x ∈ G, r ∈ R 9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' |x| = 0 if and only if x = e, the neutral element, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' |x| = |x−1| , 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' |r · x| = r|x| .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' The homogeneous norm naturally induces a topology generated by the open sets and in turn a Borel σ-algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' From now on, we will always assume that G is equipped with this topology and σ-algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Furthermore, given a homogeneous group G we denote by {X j}d j=1 ∈ g a basis of eigenvectors of s with eigenvalues 1 = s1 ≤ s2 ≤ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' ≤ sd and such that sX j = sj X j .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='2) Given a measurable subset E ⊂ G we write |E| for its Haar measure which we assume to be normalized such that the set B1 =: {x ∈ G : |x| ≤ 1} has measure 1, c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' In integrals we use the standard notation dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' We define |s| := trace(s) as the homogeneous di- mension of G, since for any measurable subset E ⊂ G and r > 0, one has |r ·E| = r |s||E| .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' We also define balls of radius r > 0, Br(x) := {y ∈ G : |x−1y| < r} .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' The topology induced by these balls agrees with the topology of G as a Lie group, see [FR16, Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Note that due to the non-commutativity of G, in general |x−1y| ̸= |yx−1|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' We consistently work with the following choice a semi-metric on the group, dG(x, y) := |x−1y| = |y−1x| .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' For K ⊂ G we write ¯K := {z ∈ G : dG(z,K) := infy∈K|y−1z| ≤ 1} for the 1-fattening of K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' A function f : G → R is called homogeneous of degree λ ∈ R, if f (r · x) = r λf (x) for all x ∈ G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' One can show, c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' [FS82, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='5 & Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='6], that for any homogeneous norm on G there exists γ > 0 such that |xy| ≤ γ(|x|+|y|) for any x, y ∈ G ||xy|−|x|| ≤ γ|y| for any x, y ∈ G such that |y| ≤ 1 2|x| .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Furthermore all homogeneous norms are mutually equivalent and we may always choose a homogeneous norm that is smooth away from e ∈ G, [FR16, Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='1 DERIVATIVES AND POLYNOMIALS We identify g with the left invariant vector fields gL on G and write gR for the right invariant vector fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' We write Xi for the the basis elements as in (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='2) seen as elements of gL and Yi for the basis of gR satisfying Yi|e = Xi|e .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Thus we can write X j f (y) = ∂t f (y exp(t X j))|t=0 and Yj f (y) = ∂t f (exp(tYj)y)|t=0 10 for any smooth function f ∈C ∞(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' A map P : G → R is called a polynomial if P ◦ exp : g → R is a polynomial on g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='1 Let ζi be the basis dual to the basis Xi of g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' We set η j = ζj ◦ exp−1, which maps G to R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Note that η = (η1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=',ηd) forms a global coordinate system 2 and furthermore any polynomial map on G can be written in terms of coefficients aI ∈ R as P = � I aIηI with the sum running over a finite subset of Nd and where for a multi-index I = (i1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=',id) ∈ Nd we write ηI = ηi1 1 ·.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='·ηid d .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Define d(I) = � j sji j and |I| = � j i j, we call max{d(I) : aI ̸= 0} the homogeneous degree and max{|I| : aI ̸= 0} the isotropic degree of P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' For a > 0, we denote by Pa the space of polynomials of homogeneous degree strictly less than a and define △ = {d(I) ∈ R : I ∈ Nd}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' 3 We can rewrite the group law on G explicitly in terms of η = (η1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=',ηd).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' For j ∈ {1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=',d} and multi-indices I, J s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' d(I) + d(J) = sj, there exist con- stants C I,J j > 0 such that the following formula holds, η j(xy) = η j(x)+η j(y)+ � I,J̸=0, d(I)+d(J)=sj C I,J j ηI (x)ηJ(y) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' By the Baker–Campbell–Hausdorff formula (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='1) one has η j(xy) = η j(x)+η j(y)+ � |I|+|J|≥2 C I,J j ηI (x)ηJ(y) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' By setting either x = e or y = e, we find that C I,J j = 0 if I = 0 or J = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Since furthermore η j((r x)(r y)) = r sj η j(xy) the claim follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='5 implies that for sj < 2 one has η j(xy) = η j(x) + η j(y) while for sj = 2 one has η j(xy) = η j(x)+η j (y)+� sk=sl=1C k,l j ηk(x)ηl(y) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' It is also noteworthy to realise that Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='5 implies that Pa is invariant under right and left-translations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' (This is not true if one replaces homogeneous degree by isotropic degree, except if G is abelian or a = 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' If follows from Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='5 that one can write ηK (xy) = ηK (x)+ηK (y)+ � I,J̸=0, d(I)+d(J)=d(K ) C I,J K ηI(x)ηJ(y) , where the constants C I,J K can be written in terms of the constants C I,J j .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' 1Recall that the space of polynomial functions on g is canonically isomorphic to � n(g∗)⊗sn where ⊗s denotes the symmetric tensor product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' 2Occasionally we use the corresponding notation ∂ ∂ηi .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' 3We point out a possibly counter-intuitive quirk of our definition;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' for k ∈ △ the set Pk does not contain polyno- mials of degree k but only those of degree less than k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' 11 Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' For i, j ∈ {1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=',d}, Xiη j = δi,j + � I̸=0, d(I)=sj −si C I,ei j ηI , (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='3) where ei denotes the multi-index (0,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=',0,1,0,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=',0) with the 1 being in the i-th slot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' This follows directly from Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='5, applying Xi to the function y �→ η j(xy) , evaluating at y = 0 and using the fact that Xi|0 = ∂ ∂ηi |0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='10 ([FS82, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='26]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' One has X j = �P j,k � ∂ ∂ηk � where P j,k = � 1 if k = j 0 if sk ≤ sj,k ̸= j and P j,k is a homogeneous polynomial of degree sk −sj if sk > sj .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' The analogous statement holds for the vector fields Yj, For a multi-index I = (i1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=',id) ∈ Nd we introduce the notation X I = X i1 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='X id d .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Note that the order of the composition matters since g is not in general Abelian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' It is a well known fact that any left invariant differential operator on G can (uniquely) be written as a linear combination of {X I}I∈Nd .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' The next proposition follows as a direct consequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='11 ([FS82, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content='30]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' The following maps from Pa → RdimPa are linear iso- morphisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/INE4T4oBgHgl3EQfhA00/content/2301.05121v1.pdf'} +page_content=' P �→ �� ∂ ∂η �I P(e) � d(I)