diff --git "a/ENE4T4oBgHgl3EQf6g5Z/content/tmp_files/load_file.txt" "b/ENE4T4oBgHgl3EQf6g5Z/content/tmp_files/load_file.txt" new file mode 100644--- /dev/null +++ "b/ENE4T4oBgHgl3EQf6g5Z/content/tmp_files/load_file.txt" @@ -0,0 +1,1089 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf,len=1088 +page_content='A PURE JUMP MODEL FOR THE VALUATION OF OPTIONS ON A CREDIT INDEX YOSHIHIRO SHIRAI Department of Mathematics, University of Maryland, College Park Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' A two dimensional pure jump process is proposed to model the evolution of the risk free rate and default intensities for the purpose of evaluating option contracts on a credit index.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Time evolution in credit markets is assumed to follow a gamma process evaluated at calendar time in order to reflect different levels of business activity in the credit and Treasury markets, which ultimately reflect differences in preferences and incentives of credit products investors, as well as the structure of the credit market itself, with those of their respective counterparts in the Treasury market.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Formulas for the characteristic function, zero coupon bonds and moments of the process are derived, and its parameters calibrated to market prices of options on a credit index.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Model and market implied credit spreads moments are estimated and compared.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Introduction This paper proposes a new valuation method for credit index swaptions (henceforth, CDXOs), which are options to enter at a predetermined date a credit index swap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' The current literature (see Brigo & Morini (2011) and Armstrong & Rutkowski (2009), as well as Pedersen (2003) and Doctor & Goulden (2007)) focuses on developing a Black-type formula for the purpose of retrieving the CDXO price from its quotation, which is expressed in terms of the underlying spread, and, particularly, on the issue of including the so called front end protection into the CDXO payoff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content='1 Apart from this formulation and to the best of the author’s knowledge, there are no generally accepted and/or standard valuation methods for the pricing of credit index derivatives that also match the statistical features of credit spreads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' The main contribution of this paper is then to specify an underlying Markov process X that ultimately defines both short rate and credit spread dynamics and is such that: (i) a reliable and fast numerical method can be implemented to obtain CDX and CDXO prices;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' (ii) the model parameters can be calibrated to fit sufficiently well the option price surface;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' and (iii) the model implied statistical properties of the credit spread fit those implied by the market.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' We assume in particular that X is the two dimensional process (r, λ), where r is the short rate, and λ the default intensity process of each entity in the underlying index.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' The default time for entity i is then modeled as the first time the default intensity integrated process Λ reaches a threshold εi, where ε1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=', εn are independent copies of an exponential random variable and n is the numbers of entities in the index.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' E-mail address: yshirai@umd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Date: January 16, 2023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' 2020 Mathematics Subject Classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' 60G18, 60G51, 91G20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Key words and phrases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Multiple Gamma Processes, Credit Index Options, Credit Spreads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' 1Applying the conversion formula requires several inputs, such as the CDXO annuity (also referred to as the hypothetical bond of the CDXO), which are typically unavailable to outsiders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Testing and calibration of the model here proposed with real market data is made possible thanks to time series of CDXO prices provided by Morgan Stanley.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content='05332v1 [q-fin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content='PR] 12 Jan 2023 2 A PURE JUMP MODEL FOR THE VALUATION OF OPTIONS ON A CREDIT INDEX We take mean reverting processes for r and λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Randomness of the rate r is represented by a gamma process gr, whereas for λ it is the sum of a double gamma process gλ ◦ gτ and a scalar multiple ρ of gr itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Multiple gamma processes were first investigated in Madan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' (2020), for the purpose of randomizing the speed at which jumps occur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' To our knowledge, ours is the first application of a pure jump process with infinite arrival rate in credit risk modeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Our focus on pure-jump models is also motivated by the possibility that such framework offers to apply the theory of dynamic spectral risk measures (see Madan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' (2017)), thus introducing nonlinearity in the valuation of credit index products.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Because of this, and although the exploration of the applications of nonlinear valuations of credit index derivatives is left to future research, we ignore here the relatively small accounting issues related to the front end protection, and assume that no defaults can occur before the time T0 at which the forward/swaption contract expires.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Default times as above, known as doubly stochastic random times, are commonly used in credit risk modeling (see Bielecki & Rutkowski (2002) and McNeil et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' (2005)) and their development goes back to Duffie & Singleton (1999), Lando (1998), Jarrow et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' (1997)) and Madan & Unal (1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Common specifications for rate and intensity processes are the affine models developed by Duffee & Kan (6) for diffusion models and Duffie et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' (2000)) and Duffie and Garlenau (Duffie & Garleanu (2001) for basic affine jump-diffusion models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' We mention that reduced form model with non doubly stochastic random times are also possible, although such a direction was not investigated here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' For their development see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=', Kusuoka (1999) and Elliot et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' (2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' We derive the Levy measure of the process (r, λ), based on which prices of zero coupon bonds can be computed analytically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Moments, stationary distribution and characteristic exponent of the random vector (rt, λt) for t ≥ 0 are also computed analytically, and level curves of its bivariate density for different parameters are plotted using a 2D-version of the FFT algorithm (similar to the one in Hurd & Zhou (2010)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' We then derive analytical formulas for discounted payoff of credit index swaps, and the partial integro differential equation (PIDE) for credit index swaptions prices, together with a finite difference scheme for its solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Calibration is performed for each maturity to all traded strikes of options on the IG CDX index as of 2 January 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' We do not perform a stability analysis, but we show that the numerical error for a given set of parameters (obtained from calibration) is close enough to the prices obtained via Montecarlo simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Finally, we compare market and model implied summary statistics of credit spreads for a specific maturity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' As shown in Carr & Madan (2001), variance, skewness and kurtosis of an equity position under the risk neutral measure can be replicated with a continuum of option contracts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Here it is shown that variance, skewness and kurtosis of the spread of a credit index can be replicated with a continuum of credit index swaptions under the measure QA corresponding to choosing as numeraire the annuity of the index.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Our model is then calibrated to market prices for all strikes and for a specific maturity for the period between 2 January 2020 through 5 June 2020, and market and model implied variance, skewness and kurtosis of the credit spreads are compared.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' The closer these are, the better the model approximates the market implied densities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' The results of our analysis show that our model is generally able to capture positive skewness and leptokurtic features of CDX spreads under the measure QA, and the model and market implied moments are of the same magnitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' We observe, in particular, that the replication of credits spreads with option contracts under the measure QA is a novel way to extract model-free statistical properties of credit spreads from market prices of options, allowing the validation of any model of credit spreads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' The rest of the paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' In section 2 we review the basics of credit index derivatives and their market, and in section 3 the fundamental mathematical framework is intro- duced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' In section 4 we specify the pure-jump dynamics of short rate and default intensity, derive the characteristic exponent of the underlying Markov process and the valuation PIDE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' A simple finite difference scheme is tested in section 5, and a comparison of model and market results is shown in section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Section 7 concludes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' A PURE JUMP MODEL FOR THE VALUATION OF OPTIONS ON A CREDIT INDEX 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Credit Index Derivatives and their Market The last few decades saw a spectacular rise in trading volumes of credit derivatives, such as credit default swaps, credit index swaps, single tranche credit default obligations, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' One reason for this is that the main contract’s features of credit default swaps, which form the basic asset class in credit markets, have been standardized,2, thus allowing a relatively easy implementation of hedging and speculative strategies and making the credit default swaps market more liquid than that of corporate bonds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' However, the details of credit derivatives contracts remain complex and satisfactory valuation methods for credit index forwards and swaptions are yet to be determined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' To introduce the mathematical problem, recall that a credit default swap (CDS) is an over the counter contract between two counterparties - the protection buyer and seller - in which protection against the risk of default of an underlying entity (usually a company issuing bonds in the debt market) is provided by the seller to the buyer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' The latter pays the former a predetermined premium K (defined as a credit spread multiplied by the contract’s notional) at regular intervals until the contract expires and obtains a contingent payment from the seller triggered by any credit event (such as default, restructuring, downgrade, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=') concerning the underlying entity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' A credit index swap (CDX) can be thought of as a portfolio of credit default swaps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' There are two families of credit indices, the CDX, which refers to American companies, and the iTraxx, which refers to European or to Asian and Australian ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Each family is composed of different indices, each of which representing a different class of credit quality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' A summary of the main credit indices is shown in table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' It is important to observe that, in order to reflect changes in the credit quality of the constituents, the composition of most credit indices changes every six months on March 20 and September 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Each series of an index corresponds to a specific roll date, and older series continue to trade, but their market is far less liquid (see McNeil et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' (2005)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Name Pool size Region Credit Quality CDX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content='NA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content='IG 125 North America Investment Grade CDX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content='NA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content='IG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content='HVOL 30 North America Low-quality Investment Grade CDX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content='NA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content='HY 100 North America Speculative Grade iTraxx Europe 125 Europe Investment Grade iTraxx Europe 30 Europe Low-quality Investment Grade Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Major credit indices and their characteristics (source: McNeil et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' (2005)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Similarly to a CDS, the cash flow associated to a credit index swap consists again of a premium payment leg (with payments made by the protection buyer) and a default payment leg (with payments made by the protection seller).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Premium payments, which are defined as a credit spread multiplied by the index annuity (a measure of the number of underlying issuers for which a credit event has not occurred yet) are due at deterministic dates T0 < T1 < .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' < TM, where TM is the maturity of the contract and T0 the inception date (for forward-start contracts T0 > 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' A credit event concerning any of the underlying entities triggers a payment by the seller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Standardized credit index swaps have quarterly premium payments and maturity at issuance is three, five, seven and ten years, with five years being the most liquid traded maturity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' There are two main differences between a CDX and a (portfolio of) CDS: (1) the contingent payment of a CDX is the same for each underlying entity and (2) it does not become an empty contract after a single credit event occurs, so the expected discounted value of the cumulated losses before the inception date (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' the above mentioned front end protection) is included in the price.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' 2For instance, banks and financial institutions typically utilize the ISDA Master Service Agreement, published by the International Swaps and Derivatives Association, as the framework agreement such that each futures transactions between the parties of the agreement are mostly defined by it, leaving only specific points of the transaction open to negotiation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' 4 A PURE JUMP MODEL FOR THE VALUATION OF OPTIONS ON A CREDIT INDEX 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Review and Assumptions 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Hazard Rates and Doubly Stochastic Random Times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Suppose that: i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' (Ω, F, Q) is a filtered probability space;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' ii.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' {Ft}t≥0 a filtration on (Ω, F, Q);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content='3 iii.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' τ : Ω → [0, ∞] is F-measurable and {Ht}t≥0 := σ � {11{τ>t}}t≥0 � , so that τ is an Ht-stopping time;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' iv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Λ(t) = log (Q(τ > t|F∞)) is strictly increasing, finite (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Q(τ > t|F∞) > 0 a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' for every t > 0), Ft-adapted and absolutely continuous, with Λ(t) = � t 0 λ(s)ds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Then, τ is called a doubly stochastic random time with Ft-conditional hazard rate process λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Since Λ(t) is Ft-adapted, we have Q(τ ≤ t|Ft) = Q(τ ≤ t|F∞) ∀t ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Suppose X is a standard exponentially distributed random variable on (Ω, F, Q) independent of F∞, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Q(X ≤ t|F∞) = 1 − e−t for every t ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Let λ(t) be a positive Ft- adapted stochastic process such that Λ(t) = � t 0 λ(s)ds is increasing and finite for every t > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Let τ := inf{t ≥ 0 : Λ(t) ≥ X}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Then τ is a doubly stochastic random time with hazard process λ(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' By definition {τ > t} = {Λ(t) < X}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Since Λ(t) is F∞-measurable and X is independent of F∞, we have Q(τ > t|F∞) = Q(Λ(t) < X|F∞) = e−Λ(t), which proves the result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' □ Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content='4 (Dellacherie Formulas).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Let (Ω, F, Q) be a filtered probability space, τ a doubly stochastic random time with {Ft}t≥0-conditional hazard rate process λ(t) and {rt}t≥0 an Ft-adapted random process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Suppose that, for some T > 0, X is FT -measurable, {ν(t)}0≤t≤T and {Z(t)}t≥0 are Ft-adapted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content='4 If the random variables |X|e− � T t r(s)ds,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' � T t ν(s)e− � s t r(u)duds,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' � T t |Z(s)λ(s)|e− � s t r(u)+λ(u)duds are all integrable with respect to Q,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' then E � e− � T t r(s)ds11{τ>T}X ��� Ft ∨ Ht � = 11{τ>t}E � e− � T t r(s)+λ(s)dsX ��� Ft � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' E �� T t ν(s)e− � s t r(u)du11{τ>s}ds ���� Ft ∨ Ht � = 11{τ>t}E �� T t ν(s)e− � s t r(u)+λ(u)duds ���� Ft � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' E � e− � τ t r(s)ds11{t<τ≤T}Z(τ) ��� Ft ∨ Ht � = 11{τ>t}E �� T t Z(s)λ(s)e− � s t r(u)+λ(u)duds ���� Ft � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' where Ht = σ � {11{τ>t}} � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' See McNeil et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' (2005), proposition 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content='19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' □ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Basics of Forward CDS and CDX Contracts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Consider a forward-start CDS with in- ception date T0, tenor structure T0 < .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' < TM, CDS spread c and for a notional of 1 U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' dollar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Let (Ω, F, Q) be a probability space, {Ft}t≥0 a filtration on it, {r(t)}t≥0 an Ft-adapted random process, and τ : Ω → [0, ∞] a doubly stochastic random time with hazard rate λ(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Assuming that τ represents the time of the credit event, the payments made by the protection seller (protection leg) discounted at time t ≤ T0 are given by Φ(t) = δ(τ)e− � τ t r(s)ds11{T0<τ≤TM}, 3In credit risk modelling, {Ft}t≥0 is typically generated by some random process Ψ representing some measure of economic activity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' 4Typically, X is a survival claim, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' a promised payment if there is no default, ν is a risky stream of payments that stops when default occurs, and Z is a payment made at default.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' A PURE JUMP MODEL FOR THE VALUATION OF OPTIONS ON A CREDIT INDEX 5 where δ(t) is the Ft-adapted process representing loss given default.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Similarly,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' the premium leg is given by Ψ(t) = c M � j=1 e− � Tj t r(s)ds11{τ>Tj}[Tj − Tj−1] Using Dellacherie formulas,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' we have EQ[Φ(t)|Ft ∨ Ht] = EQ � δ(s)e− � τ t r(s)ds � 11{t<τ≤TM} − 11{t<τt}EQ �� TM T0 λ(s)δ(s)e− � s t r(u)+λ(u)duds)|Ft � The present value of the protection buyer’s cash flow is then given by EQ [Φ(t) − Ψ(t)|Ft] = 11{τ>t}EQ �� TM T0 λ(s)δ(s)e− � s t r(u)+λ(u)duds) � − 11{τ>t}c M � j=1 (Tj − Tj−1)EQ � e− � Tj t r(u)+λ(u)du � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Since the CDS spread c(t, T0, TM) is chosen such that the current value of the contract is zero, we then have c(t, T0, TM) = EQ �� TM T0 λ(s)δ(s)e− � s t r(u)+λ(u)duds) � �M j=1(Tj − Tj−1)EQ � e− � Tj t r(u)+λ(u)du�.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' We next provide the relevant definitions for forward contracts on a credit index (see Brigo & Morini (2011) for details).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Suppose that the premium payments occur at T0 < T1 < .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' < TM, where TM is the maturity of the contract and T0 is the inception date.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE4T4oBgHgl3EQf6g5Z/content/2301.05332v1.pdf'} +page_content=' Define the following quantities: (i) Cumulated losses: L(t) = δ n �n j=1 11{τj