jackkuo commited on
Commit
ffbb134
·
verified ·
1 Parent(s): 77004d3

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. -9E4T4oBgHgl3EQf4A3h/vector_store/index.pkl +3 -0
  2. -NE3T4oBgHgl3EQfSglq/vector_store/index.faiss +3 -0
  3. -dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf +3 -0
  4. -dE3T4oBgHgl3EQfSgnV/vector_store/index.pkl +3 -0
  5. .gitattributes +59 -0
  6. 0NAzT4oBgHgl3EQftv0k/content/tmp_files/2301.01679v1.pdf.txt +736 -0
  7. 0NAzT4oBgHgl3EQftv0k/content/tmp_files/load_file.txt +0 -0
  8. 0dE0T4oBgHgl3EQfdQAz/vector_store/index.faiss +3 -0
  9. 0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf +3 -0
  10. 1NE2T4oBgHgl3EQfNQYC/content/tmp_files/2301.03733v1.pdf.txt +741 -0
  11. 1NE2T4oBgHgl3EQfNQYC/content/tmp_files/load_file.txt +353 -0
  12. 1dAyT4oBgHgl3EQfbvcu/content/tmp_files/2301.00267v1.pdf.txt +1455 -0
  13. 1dAyT4oBgHgl3EQfbvcu/content/tmp_files/load_file.txt +0 -0
  14. 1dFIT4oBgHgl3EQf3yva/content/2301.11383v1.pdf +3 -0
  15. 1dFIT4oBgHgl3EQf3yva/vector_store/index.pkl +3 -0
  16. 1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf +3 -0
  17. 1tE4T4oBgHgl3EQfzg0x/vector_store/index.faiss +3 -0
  18. 2NA0T4oBgHgl3EQfM_8t/content/2301.02139v1.pdf +3 -0
  19. 2NA0T4oBgHgl3EQfM_8t/vector_store/index.pkl +3 -0
  20. 3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf +3 -0
  21. 3dAzT4oBgHgl3EQfuf2L/vector_store/index.faiss +3 -0
  22. 3dAzT4oBgHgl3EQfuf2L/vector_store/index.pkl +3 -0
  23. 3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf +3 -0
  24. 3tE4T4oBgHgl3EQfbQwY/vector_store/index.pkl +3 -0
  25. 79E4T4oBgHgl3EQf2g20/vector_store/index.faiss +3 -0
  26. 7NAzT4oBgHgl3EQfEvqd/vector_store/index.pkl +3 -0
  27. 7dE2T4oBgHgl3EQflAdd/content/2301.03984v1.pdf +3 -0
  28. 7dE2T4oBgHgl3EQflAdd/vector_store/index.faiss +3 -0
  29. 7dE2T4oBgHgl3EQflAdd/vector_store/index.pkl +3 -0
  30. 89AyT4oBgHgl3EQf3Pk4/content/tmp_files/2301.00764v1.pdf.txt +1625 -0
  31. 89AyT4oBgHgl3EQf3Pk4/content/tmp_files/load_file.txt +0 -0
  32. 8NAyT4oBgHgl3EQfc_et/content/tmp_files/2301.00294v1.pdf.txt +1685 -0
  33. 8NAyT4oBgHgl3EQfc_et/content/tmp_files/load_file.txt +0 -0
  34. AdAyT4oBgHgl3EQfRvcW/content/tmp_files/2301.00070v1.pdf.txt +1274 -0
  35. AdAyT4oBgHgl3EQfRvcW/content/tmp_files/load_file.txt +0 -0
  36. BNFQT4oBgHgl3EQfNDZv/vector_store/index.faiss +3 -0
  37. BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf +3 -0
  38. BdAyT4oBgHgl3EQf4Ppc/vector_store/index.pkl +3 -0
  39. BtFIT4oBgHgl3EQf_yzx/vector_store/index.pkl +3 -0
  40. BtFQT4oBgHgl3EQf-De4/content/tmp_files/2301.13453v1.pdf.txt +1331 -0
  41. BtFQT4oBgHgl3EQf-De4/content/tmp_files/load_file.txt +0 -0
  42. C9AyT4oBgHgl3EQfefg9/content/tmp_files/2301.00321v1.pdf.txt +276 -0
  43. C9AyT4oBgHgl3EQfefg9/content/tmp_files/load_file.txt +317 -0
  44. CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf +3 -0
  45. DNE1T4oBgHgl3EQf-AaO/content/tmp_files/2301.03563v1.pdf.txt +522 -0
  46. DNE1T4oBgHgl3EQf-AaO/content/tmp_files/load_file.txt +254 -0
  47. ENE1T4oBgHgl3EQfWgSE/content/tmp_files/2301.03115v1.pdf.txt +2161 -0
  48. ENE1T4oBgHgl3EQfWgSE/content/tmp_files/load_file.txt +0 -0
  49. F9FLT4oBgHgl3EQfGi9H/content/tmp_files/2301.11992v1.pdf.txt +3004 -0
  50. F9FLT4oBgHgl3EQfGi9H/content/tmp_files/load_file.txt +0 -0
-9E4T4oBgHgl3EQf4A3h/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d7771b1d2f9b5fc839be21419f00e39af2c9f249cc77a2ed33691fcea261097
3
+ size 102028
-NE3T4oBgHgl3EQfSglq/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d59718434c0b573b9170e2db93b086666bc7986261b5c5b7af3486675926f335
3
+ size 9044013
-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88e5374fc4104431e4500d8095e00aca930b8381044103c701d90eac8b4ffe93
3
+ size 1493757
-dE3T4oBgHgl3EQfSgnV/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae6183c6b8d6a108778b4b7818b9814f3bb26921d799dc82cc5123ee6208ce8f
3
+ size 276018
.gitattributes CHANGED
@@ -15564,3 +15564,62 @@ XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf filter=lfs diff=lfs merge=lfs -tex
15564
  uNE0T4oBgHgl3EQfsAG-/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15565
  vtAzT4oBgHgl3EQfsf2x/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15566
  -NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15564
  uNE0T4oBgHgl3EQfsAG-/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15565
  vtAzT4oBgHgl3EQfsf2x/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15566
  -NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf filter=lfs diff=lfs merge=lfs -text
15567
+ XNAzT4oBgHgl3EQfmf09/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15568
+ dtFAT4oBgHgl3EQfZB2n/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15569
+ Z9E4T4oBgHgl3EQfnw0i/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15570
+ CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf filter=lfs diff=lfs merge=lfs -text
15571
+ dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf filter=lfs diff=lfs merge=lfs -text
15572
+ LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf filter=lfs diff=lfs merge=lfs -text
15573
+ R9FPT4oBgHgl3EQfqTWc/content/2301.13141v1.pdf filter=lfs diff=lfs merge=lfs -text
15574
+ LtE1T4oBgHgl3EQfGwPf/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15575
+ 1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf filter=lfs diff=lfs merge=lfs -text
15576
+ KdFRT4oBgHgl3EQfDjfR/content/2301.13473v1.pdf filter=lfs diff=lfs merge=lfs -text
15577
+ bdFRT4oBgHgl3EQfRzcI/content/2301.13526v1.pdf filter=lfs diff=lfs merge=lfs -text
15578
+ PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf filter=lfs diff=lfs merge=lfs -text
15579
+ KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf filter=lfs diff=lfs merge=lfs -text
15580
+ -dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf filter=lfs diff=lfs merge=lfs -text
15581
+ 0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf filter=lfs diff=lfs merge=lfs -text
15582
+ odE1T4oBgHgl3EQfOwOM/content/2301.03019v1.pdf filter=lfs diff=lfs merge=lfs -text
15583
+ gNFAT4oBgHgl3EQf8R7j/content/2301.08750v1.pdf filter=lfs diff=lfs merge=lfs -text
15584
+ PNFQT4oBgHgl3EQfYTZl/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15585
+ jdFRT4oBgHgl3EQfWTfY/content/2301.13543v1.pdf filter=lfs diff=lfs merge=lfs -text
15586
+ dNFKT4oBgHgl3EQfqS7x/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15587
+ Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf filter=lfs diff=lfs merge=lfs -text
15588
+ jdFRT4oBgHgl3EQfWTfY/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15589
+ WNE3T4oBgHgl3EQfbQqU/content/2301.04514v1.pdf filter=lfs diff=lfs merge=lfs -text
15590
+ 3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf filter=lfs diff=lfs merge=lfs -text
15591
+ vtFRT4oBgHgl3EQffzca/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15592
+ 3dAzT4oBgHgl3EQfuf2L/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15593
+ gNE_T4oBgHgl3EQf2xw0/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15594
+ BNFQT4oBgHgl3EQfNDZv/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15595
+ 2NA0T4oBgHgl3EQfM_8t/content/2301.02139v1.pdf filter=lfs diff=lfs merge=lfs -text
15596
+ 7dE2T4oBgHgl3EQflAdd/content/2301.03984v1.pdf filter=lfs diff=lfs merge=lfs -text
15597
+ MNE0T4oBgHgl3EQfSwCR/content/2301.02227v1.pdf filter=lfs diff=lfs merge=lfs -text
15598
+ gNE_T4oBgHgl3EQf2xw0/content/2301.08342v1.pdf filter=lfs diff=lfs merge=lfs -text
15599
+ 79E4T4oBgHgl3EQf2g20/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15600
+ oNE2T4oBgHgl3EQfJwbV/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15601
+ XNFPT4oBgHgl3EQfsDWM/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15602
+ gNFAT4oBgHgl3EQf8R7j/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15603
+ rdFKT4oBgHgl3EQfIy1s/content/2301.11735v1.pdf filter=lfs diff=lfs merge=lfs -text
15604
+ ktFST4oBgHgl3EQfIjgl/content/2301.13729v1.pdf filter=lfs diff=lfs merge=lfs -text
15605
+ 1tE4T4oBgHgl3EQfzg0x/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15606
+ -NE3T4oBgHgl3EQfSglq/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15607
+ 7dE2T4oBgHgl3EQflAdd/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15608
+ JdFJT4oBgHgl3EQfwS0f/content/2301.11629v1.pdf filter=lfs diff=lfs merge=lfs -text
15609
+ kdFPT4oBgHgl3EQf2DV-/content/2301.13185v1.pdf filter=lfs diff=lfs merge=lfs -text
15610
+ s9FKT4oBgHgl3EQf2C52/content/2301.11922v1.pdf filter=lfs diff=lfs merge=lfs -text
15611
+ s9FKT4oBgHgl3EQf2C52/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15612
+ 3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf filter=lfs diff=lfs merge=lfs -text
15613
+ idE_T4oBgHgl3EQf4Rxl/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15614
+ RtFPT4oBgHgl3EQfqDWD/content/2301.13140v1.pdf filter=lfs diff=lfs merge=lfs -text
15615
+ KdFJT4oBgHgl3EQfxC3t/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15616
+ 0dE0T4oBgHgl3EQfdQAz/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15617
+ MtE0T4oBgHgl3EQfTAAm/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15618
+ BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf filter=lfs diff=lfs merge=lfs -text
15619
+ LtAyT4oBgHgl3EQfsvmN/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15620
+ 1dFIT4oBgHgl3EQf3yva/content/2301.11383v1.pdf filter=lfs diff=lfs merge=lfs -text
15621
+ atE1T4oBgHgl3EQfdARl/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15622
+ d9E4T4oBgHgl3EQfQgxo/content/2301.04982v1.pdf filter=lfs diff=lfs merge=lfs -text
15623
+ rdFKT4oBgHgl3EQfIy1s/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15624
+ LNAyT4oBgHgl3EQf6fpN/content/2301.00822v1.pdf filter=lfs diff=lfs merge=lfs -text
15625
+ Q9E0T4oBgHgl3EQfUQAL/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
0NAzT4oBgHgl3EQftv0k/content/tmp_files/2301.01679v1.pdf.txt ADDED
@@ -0,0 +1,736 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ COVID-NET USPRO: AN OPEN-SOURCE EXPLAINABLE
2
+ FEW-SHOT DEEP PROTOTYPICAL NETWORK TO MONITOR AND
3
+ DETECT COVID-19 INFECTION FROM POINT-OF-CARE
4
+ ULTRASOUND IMAGES
5
+ Jessy Song
6
+ Department of Systems Design Engineering
7
+ University of Waterloo
8
+ Waterloo, ON N2L 3G1, Canada
9
+ Ashkan Ebadi
10
+ Digital Technologies Research Centre
11
+ National Research Council Canada
12
+ Toronto, ON M5T 3J1, Canada
13
14
+ Adrian Florea
15
+ Department of Emergency Medicine
16
+ McGill University
17
+ Montreal, QC H4A 3J1, Canada
18
+ Pengcheng Xi, Stéphane Tremblay
19
+ Digital Technologies Research Centre
20
+ National Research Council Canada
21
+ Ottawa, ON K1A 0R6, Canada
22
+ Alexander Wong
23
+ Department of Systems Design Engineering
24
+ University of Waterloo
25
+ Waterloo, ON N2L 3G1, Canada
26
+ ABSTRACT
27
+ As the Coronavirus Disease 2019 (COVID-19) continues to impact many aspects of life and the global
28
+ healthcare systems, the adoption of rapid and effective screening methods to prevent further spread of
29
+ the virus and lessen the burden on healthcare providers is a necessity. As a cheap and widely accessible
30
+ medical image modality, point-of-care ultrasound (POCUS) imaging allows radiologists to identify
31
+ symptoms and assess severity through visual inspection of the chest ultrasound images. Combined
32
+ with the recent advancements in computer science, applications of deep learning techniques in
33
+ medical image analysis have shown promising results, demonstrating that artificial intelligence-based
34
+ solutions can accelerate the diagnosis of COVID-19 and lower the burden on healthcare professionals.
35
+ However, the lack of a huge amount of well-annotated data poses a challenge in building effective
36
+ deep neural networks in the case of novel diseases and pandemics. Motivated by this, we present
37
+ COVID-Net USPro, an explainable few-shot deep prototypical network, that monitors and detects
38
+ COVID-19 positive cases with high precision and recall from minimal ultrasound images. COVID-
39
+ Net USPro achieves 99.65% overall accuracy, 99.7% recall and 99.67% precision for COVID-19
40
+ positive cases when trained with only 5 shots. The analytic pipeline and results were verified by our
41
+ contributing clinician with extensive experience in POCUS interpretation, ensuring that the network
42
+ makes decisions based on actual patterns.
43
+ Keywords Ultrasonic imaging · Lung · COVID-19 · Few-shot learning · Deep explainable architecture
44
+ 1
45
+ Introduction
46
+ The Coronavirus Disease 2019, or COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-
47
+ CoV-2), has been continuously impacting individual’s well-being and the global healthcare systems [1]. Despite the
48
+ arXiv:2301.01679v1 [eess.IV] 4 Jan 2023
49
+
50
+ Song et al. (2023). COVID-Net USPro.
51
+ vaccination efforts, policies and regulations in place, due to the rapid transmission of the virus and waves of rising cases,
52
+ the development of effective screening and risk stratification methods remains to be a critical need in controlling the
53
+ disease [2]. Various types of diagnostic tools, including reverse transcription-polymerase chain reaction (RT-PCR),
54
+ rapid antigen detection tests, and antibody tests, have been developed and adapted globally to increase the rate of
55
+ screening. While RT-PCR has been the gold standard test for diagnosing COVID-19, the technique involves large
56
+ labour and laboratory resources and is time-consuming [3]. Other rapid antigen tests and antibody tests with varying
57
+ sensitivity are also less reliable in comparison to RT-PCR tests [3].
58
+ For people with significant respiratory symptoms, medical imaging is used to identity the disease and assess the
59
+ severity of the disease progression [4]. Under this protocol, a computed tomography (CT) scan, chest X-ray (CXR), or
60
+ point-of-care ultrasound (POCUS) imaging can be performed and used clinically as an alternative diagnostic tool [2]. To
61
+ make a diagnosis, acute care physicians and radiologists visually inspect the radiographic images to find patterns related
62
+ to symptoms and to assess severity of COVID-19 infection and deformation [3]. During times of high transmission rate
63
+ of COVID-19, large influx of patients increases the burden on clinicians and radiologists. Medical image processing and
64
+ artificial intelligence (AI) can assist in reducing this burden and accelerate the diagnostic and decision-making process,
65
+ as existing models and algorithms continue to improve and the amount of available medical image data continues to
66
+ grow [5, 6, 7].
67
+ Different imaging modalities, including CT scan, X-ray, and ultrasound may be used in the diagnosis of COVID-19 and
68
+ offer varying diagnostic values [8]. Chest CT scan is the most sensitive imaging modality in the initial diagnosis and
69
+ management of confirmed cases, but it is more expensive and time-consuming [8, 5]. In contrast, ultrasound imaging is
70
+ more accessible and portable, cheap, and safer as radiation is not involved during the examination, which are desirable
71
+ properties for its usage [8], especially in resource-limited settings/environments/areas/regions.
72
+ Deep learning usually requires a large set of training examples [9, 7, 4]. However, due to the nature of novel diseases,
73
+ the availability of such a huge amount of well-annotated data poses a great challenge to the learning algorithms.
74
+ Few-shot learning is an approach where model is trained to classify new data based on a limited number of samples
75
+ exposed in training [10]. This resembles how humans learn, as we can recognize new object classes from very few
76
+ instances, different from other current machine learning techniques that require large amount of data to achieve similar
77
+ performance [10]. Since the few-shot model requires less data to train, the computational costs in the process is also
78
+ significantly reduced [10]. These properties make it an appropriate and promising approach for COVID-19 or rare
79
+ disease diagnosis. One approach for few-shot learning is metric-based learning. As a few-shot metric-based learning
80
+ approach, prototypical networks (PN) perform classification by computing distances to prototype representations of
81
+ each class [10]. PN has shown state-of-the-art (SOTA) results on other datasets/domains (e.g., [11, 12, 13]), proving that
82
+ some simple design decisions can yield significant improvements over other complicated architectures and meta-learning
83
+ approaches [10].
84
+ Motivated by the needs for fast and effective alternative screening solutions and considering ultrasound imaging
85
+ advantages, we present an open-source explainable deep prototypical network, called COVID-Net USPro, that learns to
86
+ detect COVID-19 positive cases with high precision and recall from a very limited number of lung ultrasound (LUS)
87
+ images. When trained with only 5 shots, COVID-Net USPro classifies between positive and negative COVID-19
88
+ cases with 99.65% overall accuracy, 99.7% recall and 99.67% precision for COVID-19 positive cases. Intensive
89
+ experimentation was conducted (e.g., testing different image encoders, varying training conditions and number of
90
+ classes to optimize the network) to assess the performance of COVID-Net USPro network. To ensure the network’s
91
+ fairness and accountability, network benefits from an explainability module, assessing decisions with visual explanation
92
+ tools, i.e., Grad-CAM [14] and GSInquire [15]. Moreover, our contributing clinician (A.F.) carefully verified and
93
+ validated the pipeline and produced results to ensure the validity of the proposed solution from the clinical perspective.
94
+ 1.1
95
+ Related Work
96
+ There are several studies that aim to apply deep learning into the screening and detection of COVID-19 positive cases.
97
+ As an open-source and open-access initiative, the COVID-Net [16, 5, 9, 7] includes research on the application of deep
98
+ learning neural networks using multitude of image modalities, such as CT, X-ray, and ultrasound images. Multiple
99
+ works have demonstrated the effectiveness of deep learning in the classification of CT and X-ray images. For example,
100
+ COVID-Net CXR [17], a tailored deep convolutional neural network (DCNN/CNN) for detection of COVID-19 cases
101
+ from chest X-ray images, has achieved an overall accuracy of 98.3% and 97.5% sensitivity for COVID-19 cases.
102
+ Another work by Ozturk et al. proposed a DCNN based on the DarkNet model used for the you only look once (YOLO)
103
+ real time object detection system to classify X-ray images, which achieves 98.08% accuracy for binary COVID-19
104
+ cases detection [18]. Research by Afshar et al. proposed a capsule CNN-based network called COVID-CAPS [19]
105
+ which achieved over 98% accuracy and specificity using a limited amount of X-ray images. COVID-Net CT [6], a
106
+ deep neural network for detection of COVID-19 from CT images, scored 96.2% in sensitivity and 99% in specificity
107
+ 2
108
+
109
+ Song et al. (2023). COVID-Net USPro.
110
+ for COVID-19 cases. Potential of including both CT-scan and X-ray images for classification is also explored, with
111
+ research by Thakur and Kumar demonstrating a DCNN-based model achieving over 99% accuracy and precision for
112
+ COVID-19 detection using images of both modalities [20]. For ultrasound images, custom neural network such as
113
+ COVID-Net US [7] was constructed and tailored to COVID-19 case detection. The network achieved an area under
114
+ receiver operating curve (AUC) of over 98% when trained with positive COVID-19 and negative normal case images.
115
+ Research by Diaz-Escobar et al. [21] also leveraged pre-trained neural networks such as VGG19 [22], InceptionV3
116
+ [23], and ResNet50 [24] in the detection of COVID-19 using ultrasound images and achieved 89.1% accuracy and AUC
117
+ of 97.1%. One limitation of using a custom deep neural network in most of the existing research is the need for a large
118
+ amount of training data, where in mentioned works above, datasets all surpassed 10,000 total images [7, 9].
119
+ Application of few-shot learning techniques has also been investigated. For example, MetaCOVID, proposed by
120
+ Shorfuzzaman et al [25], is a Siamese neural network framework with contrastive loss for few-shot diagnosis of
121
+ COVID-19 infection using CXR images. The performance of the best network achieved an accuracy of 95.6% and AUC
122
+ of 97% when trained under a 3-way, and tested in a 10-shot setting [25]. In [26], a deep siamese convolutional network,
123
+ called COVID-Net FewSE, is able to detect COVID-19 positive cases with 90% recall and accuracy of 99.7% when the
124
+ network is provided with only 50 observations in the training phase. In the work by Karnes et al. [27], the possibility
125
+ of using adaptive few-shot learning for ultrasound COVID-19 detection is examined, and the increasing performance
126
+ with the increasing number of shots is investigated. Although the feasibility of adopting few-shot learning techniques
127
+ for COVID-19 detection from medical imaging has been already investigated, analysis on network’s interpretability
128
+ is either missing or inadequate and lacks clinician validation, which limits the full understanding of the network and
129
+ whether data interpretation process aligns with real clinical settings.
130
+ Our contribution is at least three folds: 1) We presents a high-performing network (99.65% accuracy) trained with only
131
+ 5 shots, while other works achieving similar performance require larger numbers of training examples, 2) COVID-Net
132
+ USPro is an explainable network, as demonstrated by analysis from two explainability visualization tools and clinician
133
+ validation, and 3) COVID-Net USPro is open-sourced and available to the public, which helps promote reproducibility
134
+ and accessibility of AI in healthcare and encourage further innovation.
135
+ The remainder of this paper is as follows. Section 2 explains data, techniques, and the experiments conducted to assess
136
+ the network performance in details. Section 3 presents findings from the analysis. Findings are then discussed in
137
+ Section 4 where some limitations of the research and future directions are also presented.
138
+ 2
139
+ Data and Methodology
140
+ 2.1
141
+ Data
142
+ The COVIDx-US dataset v1.4. [1] is used for this study. COVIDx-US is an open-access benchmark dataset of lung
143
+ ultrasound imaging data that contains 242 videos and 29,651 processed images of patients with COVID-19 infection,
144
+ non-COVID-19 infection, other lung conditions, and normal control cases. The dataset provides LUS images captured
145
+ with two kinds of probe, linear probe which produces a square or rectangular image, or convex probe, which allows for
146
+ a wider field of view [28]. Due to the difference in field of view and low numbers of COVID-19 positive examples with
147
+ linear probe, combining the linear and convex probe data in training may increase noise and influence the performance
148
+ of the network and hence, linear probe data are excluded in this study. A total number of 25,262 convex LUS images are
149
+ then randomly split into train set containing 90% of images in each class and test set with the remaining 10% of images,
150
+ ensuring all frames from each video are either in train or test set to avoid data leakage. All images are rescaled to
151
+ 224 × 224 pixels to keep the images across entire dataset consistent. The dataset is further augmented by rotating each
152
+ image by 90°, 180°, 270°, resulting in a total of 101,048 images (25262 × 4). This rotation technique is an appropriate
153
+ method for increasing the dataset size, as it keeps the images and areas of interest for clinical decisions unaltered and
154
+ in-bound [29].
155
+ 2.2
156
+ Methodology
157
+ COVID-Net USPro is a prototypical few-shot learning network that trains in an episodic learning setting, using a
158
+ distance metric for assessing similarities between a set of unlabelled data, i.e., query set, and labelled data, i.e., support
159
+ set. Labelled data can be used to compute a single prototype representation of the class, and unlabelled data are assigned
160
+ to the class of the prototype they are closest to. A prototypical network [10] is based on this idea that there exists
161
+ an embedding in which points in a class cluster around a single prototype representation for the class. During the
162
+ training phase, a neural network is used to learn the non-linear mapping of the inputs to an embedding space, and a
163
+ class prototype is computed as the mean of its support set data in the embedding space. Classification is then done by
164
+ finding the nearest class prototype for each query point based on a specified distance metric. An episodic approach
165
+ 3
166
+
167
+ Song et al. (2023). COVID-Net USPro.
168
+ Figure 1: High-level conceptual flow of the Analysis.
169
+ is used to train the model, where in each training episode, the few-shot task is simulated by sampling the data point
170
+ in mini-batches to make the training process consistent with the testing environment. Performance of the network is
171
+ evaluated using the test dataset, and both quantitative analysis based on accuracy, precision and recall and qualitative
172
+ explainability analysis are conducted. An high-level conceptual flow of the Analysis is presented in Figure 1.
173
+ We defined the classification problem as a K-way N-shot episodic task, where K denotes the number of classes present
174
+ in the dataset and N denotes the number of available image examples for each class in each episode. For a given dataset,
175
+ N images from each of the K classes are sampled to form the support set, and another M images from each class are
176
+ sampled to form the query set. The network then aims to classify the images of the query set based on the K ∗ N total
177
+ images presented in the support set. In this work, we formulated the problem as a 2-way, 3-way and 4-way classification
178
+ problem. Details are included under section 2.3.3.
179
+ The few-shot classification with prototypical network can be summarized into three steps: 1) encoding of the images, 2)
180
+ generating class prototypes, and 3) assigning labels to query samples based on distance to the class prototypes. Let’s
181
+ S = {(x(1,s), y(1,s)), . . . , (x(N,s), y(N,s))} and Q = {(x(1,q), y(1,q)), . . . , (x(N,q), y(N,q))} be the support and query
182
+ sets respectively, where each xi ∈ RD is a D-dimensional example feature vector and yi ∈ {1, . . . K} is the label of
183
+ the example. The prototypical network embodies an image encoder fφ : RD → RH that transforms each image xi
184
+ onto a H-dimensional embedding space where images of the same class cluster together. Class prototypes are then
185
+ generated for each class by averaging the embedding image vectors in the support set, where vk = 1
186
+ N
187
+ �N
188
+ i=1 fφ(xi,s(k))
189
+ denotes the prototype of class k [10]. To classify the query image, a distance metric is used where distances between
190
+ the embedding vector of a query image and each of the class prototypes are computed. In this work, squared Euclidean
191
+ distance d (v, q) = ||v − q|| =
192
+ �� (vi − q)2 is used, where q is the embedding vector of the query image and vi is the
193
+ embedding vector of the i-th prototype. After distances are computed, a SoftMax function is applied over distances to
194
+ the prototypes to compute the probabilities of the query image being in each class. The class with the highest probability
195
+ is then assigned to the query image.
196
+ In the training phase, the network learns by minimizing a loss function, i.e., the negative log-SoftMax function
197
+ (J = − log (p (y = k|x))) of the true class k via an optimizer for which we use an Adam optimizer with an initial
198
+ learning rate of 0.001, and reduced if loss is not improved after 3 epochs. In each episode, a subset of data points
199
+ is randomly selected, forming support and query set. Loss term is calculated at the end of each training episode. To
200
+ facilitate effective training process and prevent over-fitting, early stopping is implemented to stop the training process
201
+ 4
202
+
203
+ 1. Data Source
204
+ 4. Model Construction
205
+ COVIDxUS v1.4 Dataset
206
+ Model Training
207
+ 4 classes: COVID, Normal,
208
+ Generate batches of data, build few-shot prototypical network*
209
+ Pneumonia, Other
210
+ and train to perform classification
211
+ Total: 29,651 processed images
212
+ Experiments
213
+ 2. Data Preparation
214
+ Adjust 1) image encoder network, 2) training shot settings and 3)
215
+ classification problem formulation to optimize network performance
216
+ Data Selection
217
+ Keep convex probe data
218
+ Total: 25,262 images
219
+ 5. Model Evaluation
220
+ Image Preprocessing
221
+ Rescale to 224 × 224 pixels
222
+ Quantitative Evaluation
223
+ Augmentation by rotation of 90°, 180°, 270°
224
+ Evaluate each model's performance with accuracy, precision
225
+ Total: 25,262x4 images
226
+ and recall using the unseen test set
227
+ Select Best-performing model
228
+ 10%
229
+ 90%
230
+ 3. Data Splitting
231
+ Qualitative Explainability Evaluation
232
+ Test
233
+ Train
234
+ Assess model explainability through visual
235
+ COVID: 860 images
236
+ COVID: 7,687 images
237
+ explanation tools
238
+ Normal: 204 images
239
+ Normal: 1,907 images
240
+ Validate results by clinician to ensure diagnosis
241
+ Other: 825 images
242
+ Other: 7,397images
243
+ aligns with clinical perspective
244
+ Pneumonia: 650 images
245
+ Pneumonia: 5,753 imagesSong et al. (2023). COVID-Net USPro.
246
+ Figure 2: COVID-Net USPro, network architecture design.
247
+ when loss term is not improved after 5 epochs. A total of 10 epochs is set for all training processes and 200 episodes is
248
+ set for each training epoch. Figure 2 presents an architecture design overview of the COVID-Net USPro network.
249
+ Trained model’s performance is evaluated quantitatively and qualitatively. In quantitative analysis, model’s accuracy,
250
+ precision and recall for each class are reported. In qualitative analysis, model explainability is investigated and
251
+ visualized. Explainable Artificial Intelligence (XAI) has been an important criterion when assessing whether neural
252
+ networks can be applied to real clinical settings [30]. While AI-driven systems may show high accuracy and precision
253
+ in analyzing medical images, lack of reasonable explainability will spark criticism to the network’s adoption [30].
254
+ COVID-Net USPro’s explainability is assessed using two approached, i.e., Gradient-weighted Class Activation Map
255
+ (Grad-CAM) [14] and GSInquire [15], on a selected dataset containing correctly classified COVID-19 and normal cases
256
+ with high confidence (i.e., > 99.9% probability) as well as falsely predicted COVID-19 and normal cases. Grad-CAM
257
+ generates a visual explanation of the input image using the gradient information flowing into the last convolutional
258
+ layer of the convolutional neural network (CNN) encoder and assigns importance values to each neuron for making a
259
+ classification decision [14]. The output is a heatmap-overlayed image that shows the regions that impact the particular
260
+ classification decision made by the network [14]. The other tool GSInquire identifies the critical factors in an input
261
+ image that are shown to be integral to the decisions made by the network in a generative synthesis approach [15].
262
+ The result is an annotated image highlighting the critical region, which drastically changes the classification result if
263
+ removed [15]. Results from both tools are reviewed by a clinician with experience in analysis of ultrasound images to
264
+ assess whether clinically important patterns are captured by the network.
265
+ 2.3
266
+ Experiment Settings
267
+ We comprehensively assess the performance of COVID-Net USPro in detecting COVID-19 positive cases from
268
+ ultrasound images by testing various training conditions such as image encoders, number of shots available for training,
269
+ and classification task types. Details are further discussed in this section.
270
+ 2.3.1
271
+ Image Encoders
272
+ To leverage the power of transfer learning, multiple encoders are experimented, including but not limited to the ResNet
273
+ and VGG-based models [24, 22]. Pre-trained models refer to using model parameters pre-trained on ImageNet [31].
274
+ Here, we report 4 best encoders with respect to our research objectives:
275
+ • ResNet18L1: Pre-trained ResNet18 [24], with trainable parameters on the final connected layer and setting
276
+ out features as the number of classes. Model 1 is regarded as the baseline model for encoders, as it contains
277
+ the least number of layers and retrained parameters.
278
+ • ResNet18L5: Pre-trained ResNet18 [24], with trainable parameters on the last 4 convolutional layers and final
279
+ connected layer. Out features set to the number of classes.
280
+ • ResNet50L1: Pre-trained ResNet50 [24], with trainable parameters on the final connected layer and setting
281
+ out features as the number of classes.
282
+ • ResNet50L4: Pre-trained ResNet50 [24], with trainable parameters on the last 3 convolutional layers and final
283
+ connected layer. Out features set to the number of classes.
284
+ 5
285
+
286
+ Prototype Generation &
287
+ Distance Calculation
288
+ Embedding
289
+ Support Set
290
+ Predictions
291
+ Encoder
292
+ In training:
293
+ Loss Calculation
294
+ Query Set
295
+ BackpropagationSong et al. (2023). COVID-Net USPro.
296
+ 2.3.2
297
+ Number of Training Shots
298
+ The optimal number of shots for maximized performance is tested by training models under 5, 10, 20, 30, 40, 50, 75,
299
+ and 100-shot scenarios. For selected models showing steady increase of performance over increasing shots, 150 and
300
+ 200-shot conditions are tested to verify that the maximum performance is reached at 100-shot. To ensure training
301
+ process is faithful to the testing environment, the number of example shots for each class presented in each episode is
302
+ the same in support and query set in both training and testing. For example, in 5-shot scenario, 5 images in each class
303
+ are presented for both support set and query set in training, and the same follows in testing.
304
+ 2.3.3
305
+ Problem Formulation
306
+ As the ability of the model to correctly identify COVID-19 positive cases is valued the most in comparison to other
307
+ classes, the classification problem for identifying COVID-19 was formulated in 3 different scenarios as follows, in an
308
+ ascending order of data complexity:
309
+ • 2-way classification: Data from all 3 other classes, namely ’normal’ class, ’non-COVID-19’ class and ’other’
310
+ class, are viewed as a combined COVID-19 negative class. The network learns from COVID-19 positive and
311
+ COVID-19 negative dataset in this setting.
312
+ • 3-way classification: As the ’other’ class contains data from multiple different lung conditions, it has the
313
+ highest variations and may disrupt network’s learning process due to the lack of uniformity in the data
314
+ compared with COVID-19, normal or non-COVID-19 class. In 3-class classification, the ‘other’ class is
315
+ excluded, and the network is trained to classify the remaining three classes.
316
+ • 4-way classification: As the dataset contains four classes, the four-class classification condition remains this
317
+ setting and network is trained to classify ’COVID-19’, ’normal’, ’non-COVID-19’ and ’other’ class.
318
+ 3
319
+ Results
320
+ This section summarizes the quantitative performance results of all combination of experiment settings listed in Section
321
+ 2.3 as well as the results of the network explainability analysis.
322
+ 3.1
323
+ Quantitative Performance Analysis
324
+ The performance of COVID-Net USPro is evaluated using the overall accuracy, and the precision and recall for each
325
+ class. As the performance of the model to diagnose COVID-19 positive cases is the most important for current clinical
326
+ use case, precision and recall for only COVID-19 case is reported below. To reduce table size, Table 1 only summarizes
327
+ the performance of the network under 5-shot and 100-shot scenarios for encoders that scored over 80% across all
328
+ evaluated metrics. For full performance results of all shot settings and precision, recall for all classes, please refer to
329
+ project repository: [www.anonymous].
330
+ Across all classification types and models, performance is better under 100-shots training scenario than in 5-shot, with
331
+ performance metrics increasing from 5-shot and plateauing after 75-shot, as shown in Figure 3. ResNet networks
332
+ demonstrate the ability to classify COVID-19 with precision and recall above 87% consistently under both 5-shot and
333
+ above 99% under 100-shot condition. As seen in Table 1, the increasing classes in 3-way and 4-way classification
334
+ types reduces the performance of the network, as the classification is more complex given larger number of classes.
335
+ However, this performance difference among the three classification types is reduced when the number of shots
336
+ increases, as more examples available in training improves the network’s ability to distinguish between multiple classes.
337
+ Among the four models, deeper models (i.e., those with ResNet50 as encoder) perform better in all classification types
338
+ and shot conditions. In addition, models with re-trained final convolutional layers parameters (model ResNet18L5
339
+ and ResNet50L4) using the ultrasound images achieve higher accuracy, precision, and recall. Therefore, it can be
340
+ said that while using pre-trained parameters and simpler models reduce the computational complexity and space,
341
+ tailoring parameters on the final 3-4 convolutional layers to the ultrasound images and deeper image encoding boosted
342
+ performance to above 99%.
343
+ In 2-way and 3-way classification, it is also observed that the precision and recall for classes other than COVID-19
344
+ achieve similar magnitude as the COVID-19 class. In the 4-way case, the precision and recall for ‘other’ class is
345
+ around 2-3% lower than those for ‘non-COVID-19’, ‘normal’ and ‘COVID-19’ classes. This is expected since the
346
+ ‘other’ class covers various lung conditions/diseases that encompass a larger range of image features and variations.
347
+ Overall, with precision and recall achieving similar magnitude for all cases in 2-way, 3-way and 4-way classification,
348
+ the network also demonstrates the ability to distinguish between multiple diseases. In comparison to studies outlined in
349
+ 6
350
+
351
+ Song et al. (2023). COVID-Net USPro.
352
+ Table 1: Summary of classification results for 5-shot and 100-shot conditions.
353
+ Scenario
354
+ No. shots
355
+ Model
356
+ Accuracy
357
+ Precision
358
+ Recall
359
+ 2-way
360
+ 5
361
+ ResNet18L1
362
+ 0.9420
363
+ 0.9486
364
+ 0.9460
365
+ 2-way
366
+ 5
367
+ ResNet18L5
368
+ 0.9930
369
+ 0.9925
370
+ 0.9950
371
+ 2-way
372
+ 5
373
+ ResNet50L1
374
+ 0.9525
375
+ 0.9570
376
+ 0.9560
377
+ 2-way
378
+ 5
379
+ ResNet50L4
380
+ 0.9965
381
+ 0.9967
382
+ 0.9970
383
+ 2-way
384
+ 100
385
+ ResNet18L1
386
+ 0.9758
387
+ 0.9764
388
+ 0.9755
389
+ 2-way
390
+ 100
391
+ ResNet18L5
392
+ 1.0000
393
+ 1.0000
394
+ 1.0000
395
+ 2-way
396
+ 100
397
+ ResNet50L1
398
+ 0.9963
399
+ 0.9964
400
+ 0.9962
401
+ 2-way
402
+ 100
403
+ ResNet50L4
404
+ 0.9999
405
+ 0.9999
406
+ 1.0000
407
+ 3-way
408
+ 5
409
+ ResNet18L1
410
+ 0.9570
411
+ 0.9606
412
+ 0.9510
413
+ 3-way
414
+ 5
415
+ ResNet18L5
416
+ 0.9987
417
+ 0.9992
418
+ 0.9970
419
+ 3-way
420
+ 5
421
+ ResNet50L1
422
+ 0.9945
423
+ 0.9508
424
+ 0.9660
425
+ 3-way
426
+ 5
427
+ ResNet50L4
428
+ 0.9947
429
+ 0.9942
430
+ 0.9940
431
+ 3-way
432
+ 100
433
+ ResNet18L1
434
+ 0.9867
435
+ 0.9833
436
+ 0.9853
437
+ 3-way
438
+ 100
439
+ ResNet18L5
440
+ 1.0000
441
+ 1.0000
442
+ 1.0000
443
+ 3-way
444
+ 100
445
+ ResNet50L1
446
+ 0.9977
447
+ 0.9970
448
+ 0.9975
449
+ 3-way
450
+ 100
451
+ ResNet50L4
452
+ 1.0000
453
+ 1.0000
454
+ 1.0000
455
+ 4-way
456
+ 5
457
+ ResNet18L1
458
+ 0.8627
459
+ 0.9281
460
+ 0.8710
461
+ 4-way
462
+ 5
463
+ ResNet18L5
464
+ 0.9817
465
+ 0.9975
466
+ 0.9970
467
+ 4-way
468
+ 5
469
+ ResNet50L1
470
+ 0.9392
471
+ 0.9640
472
+ 0.9540
473
+ 4-way
474
+ 5
475
+ ResNet50L4
476
+ 0.9850
477
+ 0.9917
478
+ 0.9930
479
+ 4-way
480
+ 100
481
+ ResNet18L1
482
+ 0.9385
483
+ 0.9742
484
+ 0.9704
485
+ 4-way
486
+ 100
487
+ ResNet18L5
488
+ 0.9884
489
+ 1.0000
490
+ 1.0000
491
+ 4-way
492
+ 100
493
+ ResNet50L1
494
+ 0.9813
495
+ 0.9947
496
+ 0.9955
497
+ 4-way
498
+ 100
499
+ ResNet50L4
500
+ 0.9902
501
+ 1.0000
502
+ 1.0000
503
+ Figure 3: Performance results with increasing shots trained under 4-class condition: (a) Pre-trained ResNet18 with
504
+ trainable parameters on the final connected layer and setting out features as the number of classes (ResNet18L1).
505
+ (b) Pre-trained ResNet50 with trainable parameters on the last 3 convolutional layers and final connected layer
506
+ (ResNet50L4).
507
+ 7
508
+
509
+ 1.00
510
+ 1.01
511
+ 0.98
512
+ 1.00
513
+ 0.96
514
+ 0.99
515
+ 0.94
516
+ 0.98
517
+ 0.92
518
+ Metric
519
+ 0.97
520
+ Metric
521
+ 0.90
522
+ Accuracy
523
+ Accuracy
524
+ COVID-19 Precision
525
+ 0.96
526
+ COVID-19 Precision
527
+ 0.88
528
+ COVID-19 Recall
529
+ COViD-19 Recal
530
+ 0.86
531
+ 0.95
532
+ 50
533
+ 100
534
+ 150
535
+ 0
536
+ 200
537
+ 0
538
+ 50
539
+ 100
540
+ 150
541
+ 200
542
+ Shots
543
+ Shots
544
+ (a) ResNet18L1
545
+ (b) ResNet50L4Song et al. (2023). COVID-Net USPro.
546
+ Figure 4: COVID-19 positive case examples correctly classified by COVID-Net USPro with high confidence: (a) an
547
+ example of wrong decision factors. (b) an example of a decision made based on the disease-related patterns.
548
+ Section 1.1, the performance of COVID-Net USPro networks tailored to ultrasound images with re-trained parameters
549
+ is improved. Accuracy of ResNet50L1 and ResNet50L4 exceeds 98% under 4-way 5-shot setting, while other work
550
+ such as MetaCOVID [25], which also applied a few-shot approach, achieved 95.6% accuracy under 3-way, 10-shot
551
+ setting. Additionally, the sensitivity of COVID-Net USPro for COVID-19 cases are also higher than networks trained
552
+ with other image modality data such as X-ray or CT, where they scored 97.5% in the best performing case [6].
553
+ 3.2
554
+ Clinical Validation and Network Explainability Analysis
555
+ In addition to the intensive quantitative performance analysis, we clinically validated the network output to ensure that
556
+ the network captures important patterns in the ultrasound images. For this purpose, our contributing clinician (A.F.)
557
+ reviewed a randomly selected set of images and reported his findings and observations. Our contributing clinician (A.F.)
558
+ is an Assistant Professor in the Department of Emergency Medicine and the ultrasound co-director for undergraduate
559
+ medical students at McGill University. He is practicing Emergency Medicine full-time at Saint Mary’s Hospital in
560
+ Montreal.
561
+ Figure 4 presents two select ultrasound images of COVID-19 positive cases, annotated by Grad-CAM and GSInquire,
562
+ as examples, that were reviewed. As seen, the annotated images contain the lung pleura region at the top of the
563
+ image, while the second example (Figure 4-b) also marks the bottom region with high importance. B-lines, or the light
564
+ comet-tail artifacts extending from pleura to the bottom of the image, and the presence of dark regions interspacing
565
+ the B-lines at the bottom part of the image corresponding to signs of lung consolidation are indicators of abnormality
566
+ [32]. Hence, the visual annotations for the second example (Figure 4-b) are more representative for disease-related
567
+ patterns within the ultrasound image. Figure 4-a is one of the examples where the model considers the rib as a structure
568
+ of interest, which is not the abnormality, leading to classify the images as a COVID-19 positive case. Hence, although
569
+ the model correctly classified the image, the decision was made based on invalid clinical factors.
570
+ We implement two strategies to solve the mentioned issues and improve classification explainability. First, excluding
571
+ images with low image quality, such as insufficient image depth or the lack of representative features. A severity grade
572
+ introduced by COVIDx-US dataset v1.4, called lung ultrasound score (LUSS), rates each ultrasound video on a scale
573
+ of 0 to 3, where 0 corresponds to presence of only normal features, and 3 corresponds to presence of severe disease
574
+ artifacts [33]. Therefore, in the first attempt to improve the network, images from videos with score of 0 for the normal
575
+ case and images from videos with score of 2 and 3 for COVID-19 case are used to train a binary classification version
576
+ 8
577
+
578
+ GSInquire
579
+ Grad-CAM
580
+ Original Image
581
+ Annotated Image
582
+ Annotated Image
583
+ a)
584
+ b)Song et al. (2023). COVID-Net USPro.
585
+ Figure 5: Four cropped COVID-19 positive examples predicted correctly with high confidence by COVID-Net USPro
586
+ (a-d), while recognizing disease artifacts, e.g., extended B-lines.
587
+ of the network. By observing the annotated images, network shows to focus more on the bottom regions of the images,
588
+ though cases where network focus on the top pleura region are still present. The second strategy to further improve
589
+ model explainability is to exclude regions above the pleura (i.e., soft tissue) of the images, so that network focuses on
590
+ the disease-defining features, present mostly at the bottom of the images below lung pleura. Our experiments confirm
591
+ the effectiveness of this strategy. Hence, combining the first and second strategy, a binary model with LUSS score
592
+ filtered and cropped images is trained. Figure 5 shows examples from the cropped images analysis. As suggested from
593
+ the annotated examples and confirmed by our contributing clinician (A.F.), clinically determining artifacts such as
594
+ B-lines and lung consolidation are clearly identified in COVID-19 positive images by COVID-Net USPro.
595
+ 9
596
+
597
+ Grad-CAM
598
+ GSInquire
599
+ Original Image
600
+ Annotated Image
601
+ Annotated Image
602
+ a)
603
+ b)
604
+ c)
605
+ d)Song et al. (2023). COVID-Net USPro.
606
+ 4
607
+ Conclusions
608
+ Deep neural network architectures have shown promising results in a wide range of tasks, including predictive and
609
+ diagnostic tasks. However, such networks require a massive amount of labelled data to train which is against the nature
610
+ of new pandemics and novel diseases where there are no or very few data samples available, especially in the initial
611
+ stages. As part of the COVID-Net initiative and using a diverse complex benchmark dataset, i.e., COVIDx-US, in this
612
+ work we introduce the COVID-Net USPro network, tailored to detect COVID-19 infection with high accuracy from very
613
+ few ultrasound images. The proposed deep prototypical network leverages pretrained models with tailored parameters
614
+ on final layers to reduce computational complexity and achieve high classification performance when only 5 examples
615
+ from each class are available for training. Accuracy, precision and recall for the best performing network are over 99%,
616
+ which are comparable or outperforming other existing work [7, 27]. These properties are not only highly crucial for the
617
+ control of the COVID-19 pandemic but also for screening patients in new diseases/pandemics for which the proposed
618
+ network can be easily tuned. We intensively assessed the explainability of the network and clinically validated its
619
+ performance. Experimental results demonstrate that COVID-Net USPro can not only achieve high performance in terms
620
+ of accuracy, precision, and recall, but also shows predictive behaviour that is consistent with clinical interpretation, as
621
+ validated by our contributing clinician (A.F.). In addition, as part of the explainability-driven performance validation
622
+ process, we proposed and implemented two strategies to further improve the network performance in accordance with
623
+ the background clinical knowledge in identifying COVID-19 positive and negative cases. Overall, we believe the
624
+ simplicity and effectiveness of COVID-Net USPro makes it a promising tool to aid the COVID-19 screening process
625
+ using ultrasound images. We hope the open-source release of COVID-Net USPro help researchers and clinical data
626
+ scientists to accelerate innovations in the combat against the COVID-19 pandemic that can ultimately benefit the larger
627
+ society.
628
+ Several future research directions can be explored to further improve the network. First, some additional steps in data
629
+ augmentation and preparation can be taken to improve data quality and dataset size. In this work, ultrasound images
630
+ captured with linear probe are excluded due to differences in clinical interpretation of linear probe and convex probe
631
+ captured images. More image augmentation and preparation techniques can be experimented to include linear probe
632
+ data and increase the data size. Second, in this work, we used simple cropping to filter out the pleura region of the
633
+ images. A more procedural image segmentation step could be added to include only clinically relevant areas of the
634
+ images for network construction to further improve network performance from the explainability standpoint. Lastly, we
635
+ used COVIDx-US which is a public dataset that includes data of various sources and quality. Network training could be
636
+ improved by only using high quality input ultrasound data, collected systematically, which contain clear representative
637
+ image artifacts with sufficient/specific image depth. For this purpose, a data collection protocol might be required to
638
+ capture ultrasound images in a standardized manner from a set of consented participants.
639
+ References
640
+ [1] Ashkan Ebadi, Pengcheng Xi, Alexander MacLean, Adrian Florea, Stéphane Tremblay, Sonny Kohli, and
641
+ Alexander Wong. Covidx-us: An open-access benchmark dataset of ultrasound imaging data for ai-driven
642
+ covid-19 analytics. Frontiers in Bioscience-Landmark, 27(7), 2022.
643
+ [2] Marco Cascella, Michael Rajnik, Abdul Aleem, Scott C. Dulebohn, and Raffaela Di Napoli. Features, evaluation,
644
+ and treatment of coronavirus (covid-19), May 2022.
645
+ [3] Dinnes Jacqueline, Deeks Jonathan J, Berhane Sarah, Taylor Melissa, Adriano Ada, Davenport Clare, Dittrich
646
+ Sabine, Emperador Devy, Takwoingi Yemisi, Cunningham Jane, Beese Sophie, Domen Julie, Dretzke Janine,
647
+ Ferrante di Ruffano Lavinia, Harris Isobel M, Price Malcolm J, Taylor-Phillips Sian, Hooft Lotty, Leeflang
648
+ Mariska MG, McInnes Matthew DF, Spijker René, Van den Bruel Ann, and Cochrane COVID-19 Diagnostic
649
+ Test Accuracy Group. Rapid, point-of-care antigen and molecular-based tests for diagnosis of sars-cov-2 infection.
650
+ Cochrane Database of Systematic Reviews, 2021.
651
+ [4] Dandi Yang, Cristhian Martinez, Lara Visuña, Hardev Khandhar, Chintan Bhatt, and Jesus Carretero. Detection
652
+ and analysis of covid-19 in medical images using deep learning techniques. Scientific Reports, 11, 2021.
653
+ [5] Linda Wang, Zhong Qiu Lin, and Alexander Wong. Covid-net: a tailored deep convolutional neural network
654
+ design for detection of covid-19 cases from chest x-ray images. Scientific Reports, 10(1):19549, Nov 2020.
655
+ [6] Hayden Gunraj, Ali Sabri, David Koff, and Alexander Wong. Covid-net ct-2: Enhanced deep neural networks
656
+ for detection of covid-19 from chest ct images through bigger, more diverse learning. Frontiers in Medicine,
657
+ 8:729287, 2022.
658
+ [7] Alexander MacLean, Saad Abbasi, Ashkan Ebadi, Andy Zhao, Maya Pavlova, Hayden Gunraj, Pengcheng Xi,
659
+ Sonny Kohli, and Alexander Wong. Covid-net us: A tailored, highly efficient, self-attention deep convolutional
660
+ 10
661
+
662
+ Song et al. (2023). COVID-Net USPro.
663
+ neural network design for detection of covid-19 patient cases from point-of-care ultrasound imaging. In FAIR-
664
+ MICCAI’21, 2021.
665
+ [8] Hany Kasban. A comparative study of medical imaging techniques. International Journal of Information Science
666
+ and Intelligent System, 4:37–58, 03 2015.
667
+ [9] Hayden Gunraj, Linda Wang, and Alexander Wong. Covidnet-ct: A tailored deep convolutional neural network
668
+ design for detection of covid-19 cases from chest ct images. Frontiers in Medicine, 7:1025, 2020.
669
+ [10] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In I. Guyon,
670
+ U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
671
+ Information Processing Systems, volume 30. Curran Associates, Inc., 2017.
672
+ [11] Gen Li, Varun Jampani, Laura Sevilla-Lara, Deqing Sun, Jonghyun Kim, and Joongkyu Kim. Adaptive prototype
673
+ learning and allocation for few-shot segmentation. In Proceedings of the IEEE/CVF Conference on Computer
674
+ Vision and Pattern Recognition (CVPR), pages 8334–8343, June 2021.
675
+ [12] Shengli Sun, Qingfeng Sun, Kevin Zhou, and Tengchao Lv. Hierarchical attention prototypical networks for
676
+ few-shot text classification. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
677
+ Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages
678
+ 476–485, Hong Kong, China, November 2019. Association for Computational Linguistics.
679
+ [13] Jessica Deuschel, Daniel Firmbach, Carol I. Geppert, Markus Eckstein, Arndt Hartmann, Volker Bruns, Petr
680
+ Kuritcyn, Jakob Dexl, David Hartmann, Dominik Perrin, Thomas Wittenberg, and Michaela Benz. Multi-prototype
681
+ few-shot learning in histopathology. In Proceedings of the IEEE/CVF International Conference on Computer
682
+ Vision (ICCV) Workshops, pages 620–628, October 2021.
683
+ [14] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv
684
+ Batra. Grad-cam: Visual explanations from deep networks via gradient-based localization. In 2017 IEEE
685
+ International Conference on Computer Vision (ICCV), pages 618–626, 2017.
686
+ [15] Zhong Qiu Lin, Mohammad Javad Shafiee, Stanislav Bochkarev, Michael St. Jules, Xiaoyu Wang, and Alexander
687
+ Wong. Do explanations reflect decisions? A machine-centric strategy to quantify the performance of explainability
688
+ algorithms. CoRR, abs/1910.07387, 2019.
689
+ [16] Alexander Wong. Covid-net open initiative.
690
+ [17] Hossein Aboutalebi, Maya Pavlova, Hayden Gunraj, Mohammad Javad Shafiee, Ali Sabri, Amer Alaref, and
691
+ Alexander Wong. Medusa: Multi-scale encoder-decoder self-attention deep neural network architecture for
692
+ medical image analysis, 2021.
693
+ [18] Tulin Ozturk, Muhammed Talo, Eylul Azra Yildirim, Ulas Baran Baloglu, Ozal Yildirim, and U. Rajendra Acharya.
694
+ Automated detection of covid-19 cases using deep neural networks with x-ray images. Computers in Biology and
695
+ Medicine, 121:103792, 2020.
696
+ [19] Parnian Afshar, Shahin Heidarian, Farnoosh Naderkhani, Anastasia Oikonomou, Konstantinos N. Plataniotis, and
697
+ Arash Mohammadi. Covid-caps: A capsule network-based framework for identification of covid-19 cases from
698
+ x-ray images. Pattern Recognition Letters, 138:638–643, 2020.
699
+ [20] Samritika Thakur and Aman Kumar. X-ray and ct-scan-based automated detection and classification of covid-19
700
+ using convolutional neural networks (cnn). Biomedical Signal Processing and Control, 69:102920, 2021.
701
+ [21] Julia Diaz-Escobar, Nelson E. Ordóñez-Guillén, Salvador Villarreal-Reyes, Alejandro Galaviz-Mosqueda, Vitaly
702
+ Kober, Raúl Rivera-Rodriguez, and Jose E. Lozano Rizk. Deep-learning based detection of covid-19 using lung
703
+ ultrasound imagery. PLOS ONE, 16(8), 2021.
704
+ [22] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. In
705
+ International Conference on Learning Representations, 2015.
706
+ [23] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. Rethinking the
707
+ inception architecture for computer vision. CoRR, abs/1512.00567, 2015.
708
+ [24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. CoRR,
709
+ abs/1512.03385, 2015.
710
+ [25] Mohammad Shorfuzzaman and M. Shamim Hossain. Metacovid: A siamese neural network framework with
711
+ contrastive loss for n-shot diagnosis of covid-19 patients. Pattern Recognition, 113:107700, 2021.
712
+ [26] A. Ebadi, H. Azimi, P. Xi, S. Tremblay, and A. Wong. Covid-net fewse: An open-source deep siamese convolu-
713
+ tional network model for few-shot detection of covid-19 infection from x-ray images. Journal of Computational
714
+ Vision and Imaging Systems, 7(1):16–18, 2021.
715
+ 11
716
+
717
+ Song et al. (2023). COVID-Net USPro.
718
+ [27] Michael Karnes, Shehan Perera, Srikar Adhikari, and Alper Yilmaz. Adaptive few-shot learning poc ultrasound
719
+ covid-19 diagnostic system, 2021.
720
+ [28] Wonseok Lee and Yongrae Roh. Ultrasonic transducers for medical diagnostic imaging. Biomedical Engineering
721
+ Letters, 7(2):91–97, 2017.
722
+ [29] Zeshan Hussain, Francisco Gimenez, Darvin Yi, and Daniel Rubin. Differential data augmentation techniques for
723
+ medical imaging classification tasks, Apr 2018.
724
+ [30] Julia Amann, Alessandro Blasimme, Effy Vayena, Dietmar Frey, and Vince I. Madai. Explainability for artificial
725
+ intelligence in healthcare: A multidisciplinary perspective. BMC Medical Informatics and Decision Making,
726
+ 20(1), 2020.
727
+ [31] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image
728
+ database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255. Ieee, 2009.
729
+ [32] Daniel A. Lichtenstein, Gilbert A. Mezière, Jean-François Lagoueyte, Philippe Biderman, Ivan Goldstein, and
730
+ Agnès Gepner. A-lines and b-lines: lung ultrasound as a bedside tool for predicting pulmonary artery occlusion
731
+ pressure in the critically ill. Chest, 136(4):1014–1020, 2009.
732
+ [33] Ashkan Ebadi, Pengcheng Xi, Alexander MacLean, Stéphane Tremblay, Sonny Kohli, and Alexander Wong.
733
+ Covidx-us - an open-access benchmark dataset of ultrasound imaging data for ai-driven covid-19 analytics.
734
+ arXiv:2103.10003, 2021.
735
+ 12
736
+
0NAzT4oBgHgl3EQftv0k/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
0dE0T4oBgHgl3EQfdQAz/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca5c40d1f8859556a34fde849eb8d5b96bc58239c20b9e9db837f3dcb2a2f676
3
+ size 4980781
0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:00b5b02b1cb441073d7b6a3941343dda5f32dd68a7ac9b1b1f8829945e134d00
3
+ size 771670
1NE2T4oBgHgl3EQfNQYC/content/tmp_files/2301.03733v1.pdf.txt ADDED
@@ -0,0 +1,741 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.03733v1 [quant-ph] 10 Jan 2023
2
+ Design Optimization of Noise Filter using Quantum Annealer
3
+ Akihisa Okada,1, ∗ Hiroaki Yoshida,1 Kiyosumi Kidono,1
4
+ Tadayoshi Matsumori,2 Takanori Takeno,2 and Tadashi Kadowaki2
5
+ 1TOYOTA CENTRAL R&D LABS., INC., Bunkyo-ku, Tokyo 112–0004, Japan
6
+ 2DENSO CORPORATION, Minato-ku, Tokyo 108–0075, Japan
7
+ (Dated: January 11, 2023)
8
+ The use of quantum annealers in black-box optimization to obtain the desired properties of a
9
+ product with a small number of trials has attracted attention. However, the application of this
10
+ technique to engineering design problems is still limited. Here, we demonstrate the applicability of
11
+ black-box optimization with a quantum annealer to the design of electric circuit systems, focusing
12
+ on π-type noise filters as an example. We develop a framework that uses quantum annealing to find
13
+ the optimal location of electrical components and conductor paths connecting the components, and
14
+ confirm that the learning process appropriately works over a number of trials to efficiently search for
15
+ a design with high performance. The results show the potential applicability of quantum annealing
16
+ to design problems of electric circuit systems.
17
+ Keywords: Combinatorial optimization problem, Noise filter, Quadratic unconstrained binary optimization,
18
+ Quantum annealing, Quantum computing
19
+ I.
20
+ INTRODUCTION
21
+ A.
22
+ Quantum annealers
23
+ High-performance computers are required to elucidate
24
+ and predict complex phenomena, such as in simulations
25
+ of the behavior of systems with multiple interconnected
26
+ factors. However, Neumann-type computers, whose de-
27
+ velopment has followed Moore’s law, do not meet the
28
+ demand for high performance. Drastic improvements in
29
+ Neumann-type computers are not expected [1] as their
30
+ single-threaded performance has reached its ceiling [2].
31
+ Therefore, non-Neumann-type computers are expected
32
+ to be an alternative for high-performance computation
33
+ for complex problems.
34
+ Quantum annealers are one type of non-Neumann-type
35
+ computer. Commercial machines are available from D-
36
+ Wave Systems. The architecture of a quantum annealer
37
+ implements the Ising model on a circuit using supercon-
38
+ ductivity. The ground state of the Ising model is effi-
39
+ ciently found using the quantum effect [3].
40
+ Since the
41
+ ground state of the Ising model is equivalent to the so-
42
+ lution of quadratic unconstrained binary optimization
43
+ (QUBO), which includes not only fundamental prob-
44
+ lems [4] but also practical ones [5–10], a quantum an-
45
+ nealer is regarded as a quantum solver for QUBO prob-
46
+ lems.
47
+ Pragmatically, the usability of quantum annealers for
48
+ complex problems relies on their compatibility with the
49
+ QUBO formulation. Previous studies are limited to cases
50
+ in which the original problem formulation has an appar-
51
+ ent link to QUBO, such as that for combinatorial opti-
52
+ mization problems. A recent study combined quantum
53
+ annealing with machine learning to find the optimal ar-
54
55
+ rangement of the constituent elements of a metamate-
56
+ rial [11]. The original problem (optical properties of the
57
+ metamaterial) was not necessarily converted to a QUBO
58
+ formulation, implying the applicability of quantum an-
59
+ nealing to general optimization problems.
60
+ Specifically,
61
+ they proposed a type of black-box optimization frame-
62
+ work, in which the unknown relation between the input
63
+ binary variables and the complex property values com-
64
+ puted according to the governing equations is learned
65
+ by means of a second-order regression equation and the
66
+ optimal input variables are obtained using quantum an-
67
+ nealing.
68
+ Reports of applying black-box optimization to design
69
+ problems are limited to optical problems with the opti-
70
+ mal arrangement of metamaterials described above and
71
+ photonic-crystals [12], the structural dynamics problem
72
+ of substrate vibration [13], and molecular design [14].
73
+ B.
74
+ Design problem of noise filter
75
+ In this study, we focus on an electric noise filter as
76
+ an example electric circuit. Noise filter performance de-
77
+ pends on the combination of electrical components and
78
+ the paths of conductors connecting them.
79
+ Products designed for electromagnetic compatibility
80
+ incorporate noise filters that reduce input voltage noise to
81
+ prevent high-frequency noise from affecting surrounding
82
+ electronic devices. The electrical component allocation
83
+ region needs to be determined under the constraint of a
84
+ certain amount of noise attenuation, i.e., an optimal filter
85
+ design is required. In this study, we apply black-box opti-
86
+ mization that incorporates calculations conducted using
87
+ quantum annealing to the design optimization of a noise
88
+ filter that consists of two capacitors and an inductor,
89
+ called a π-type filter, and demonstrate that this opti-
90
+ mization framework is useful for electric circuit design
91
+ problems.
92
+
93
+ 2
94
+ Capacitor 1
95
+ Capacitor 2
96
+ Inductor
97
+ Ground
98
+ Voltage source
99
+ with noise
100
+ Output port
101
+ Input port
102
+ FIG. 1. Circuit diagram of π-type noise filter.
103
+ Topology optimization has been used for optimal de-
104
+ sign.
105
+ Although topology optimization is applicable to
106
+ electric circuits [15], the inherent challenge is to avoid
107
+ falling into a local optimal solution, which stems from the
108
+ method being based on the gradient method. In particu-
109
+ lar, optimization problems with many degrees of freedom
110
+ related to element location, as considered in this study,
111
+ generally have a complex objective function space, which
112
+ can hinder the search for the global optimal solution.
113
+ The proposed optimization framework, which combines
114
+ black-box optimization and quantum annealing, exploits
115
+ the features of quantum annealing to avoid becoming
116
+ trapped in a local optimal solution.
117
+ C.
118
+ Summary of contributions
119
+ The contributions can be summarized as follows.
120
+ • We extend the framework of optimal design based
121
+ on black-box optimization using quantum anneal-
122
+ ing to problems related to electric circuit systems.
123
+ • We confirm that the optimization process works as
124
+ an optimal design method for electric circuits by
125
+ analyzing the learning process based on the relation
126
+ between the number of searches and performance
127
+ values.
128
+ II.
129
+ METHOD
130
+ A.
131
+ Design problem of π-type noise filter
132
+ A circuit diagram of the π-type noise filter to be de-
133
+ signed is shown in Fig. 1. The circuit consists of three
134
+ elements, namely an inductor and two capacitors. Fig-
135
+ ure 2 shows the π-type noise filter model utilized in this
136
+ study. It is assumed that the back side of the substrate is
137
+ grounded. The performance of a noise filter is determined
138
+ by the capacitance of the capacitor, the inductance of the
139
+ inductor, inductive noise, and parasitic capacitance. The
140
+ inductive noise and parasitic capacitance depend on the
141
+ relative location of the inductor, the capacitors, and the
142
+ conductor path, which does not appear in the circuit di-
143
+ agram but should be designed as described below.
144
+ Substrate
145
+ Inductor
146
+ Capacitor 1
147
+ Capacitor 2
148
+ Conductor
149
+ Output port
150
+ Input port
151
+ FIG. 2. Example of element and conductor arrangement for
152
+ π-type noise filter. The input and output ports, capacitors,
153
+ and inductor are represented by simple square elements. The
154
+ backplane is the electrical ground.
155
+ x
156
+ y
157
+ Data acquisition and learning
158
+ Hidden true system
159
+ y = f(x)
160
+ y = xTAx
161
+ (1)
162
+ (2)
163
+ (3)
164
+ ~
165
+ FIG. 3. Schematic diagram of BOCS. (1) Data y for input
166
+ x is obtained from simulation or experiment.
167
+ (2) Second-
168
+ order regression equation is estimated from input x and y.
169
+ ˜y is estimated value.
170
+ (3) Optimal x is found.
171
+ Here, A is
172
+ the coefficient of the quadratic regression equation. f is an
173
+ unknown function under the governing equation.
174
+ B.
175
+ Black-box optimization of noise filter
176
+ The objective of black-box optimization is to obtain
177
+ the input parameter x that minimizes (or maximizes)
178
+ the characteristic value y with a small number of tri-
179
+ als under the condition that the relation between x and
180
+ y (y = f(x)) is unknown. Here, we focus on Bayesian
181
+ Optimization of Combinatorial Structures (BOCS) [16],
182
+ which is a learning method applicable to cases where the
183
+ input parameter x is a binary variable, as done in the
184
+ literature [17]. In BOCS, the relation between x and y
185
+ is learned sequentially using a quadratic regression equa-
186
+ tion of x.
187
+ In other words, starting with several data
188
+ sets of x and y, we (1) obtain the data y for the input
189
+ x through simulations or experiments on a real system
190
+ where the input-output relation is unknown, (2) learn
191
+ the relation between data y and input x in quadratic
192
+ form, and (3) search for the optimal input x under the
193
+ assumed quadratic relation.
194
+ The relation between the
195
+ various tasks in BOCS is summarized in Fig. 3.
196
+ To apply this black-box optimization to the design of
197
+ noise filters, we define a binary variable x that specifies
198
+
199
+ 3
200
+ Input port
201
+ positions
202
+ Output port
203
+ positions
204
+ Capacitor 1
205
+ positions
206
+ Capacitor 2
207
+ positions
208
+ Inductor
209
+ positions
210
+ A
211
+ B
212
+ C
213
+ X
214
+ Y
215
+ FIG. 4. Candidate element positions and conductor paths.
216
+ As an example of conductor paths, three candidates (A, B,
217
+ and C) between the upper side of the input port and the left
218
+ side of capacitor 1 are shown.
219
+ the location of the element and the conductor path, and
220
+ employ electromagnetic field analysis using the finite el-
221
+ ement method as the data acquisition method in (1). In
222
+ (3), quantum annealing is employed to find the global
223
+ minimum in the regression model, which has many lo-
224
+ cal minima. The solution x of the quantum annealing
225
+ and the corresponding output value y are added to the
226
+ data in the learning process. We refer to this method
227
+ as BOCS-QA. To clarify the effect of quantum anneal-
228
+ ing, a calculation using simulated annealing (BOCS-SA)
229
+ instead of quantum annealing is also performed and the
230
+ results are compared.
231
+ The following sections describe the binary design vari-
232
+ ables that represent electrical component positions and
233
+ conductor paths and the characteristic values for evalu-
234
+ ating filter performance.
235
+ 1.
236
+ Binary design variables
237
+ The element positions and conductor paths between
238
+ the elements are mapped to the binary variable x. In
239
+ this study, the problem is to select the positions of five
240
+ elements (an input port, an output port, an inductor, and
241
+ two capacitors) from two candidates and the conductor
242
+ paths from three candidates. In order to represent these
243
+ variables as binary variables, the substrate is divided into
244
+ a 10×15 (X×Y) grid. The input and output ports are
245
+ placed on the sides of the board and the inductor and
246
+ capacitor are placed in the grid as concentrated elements,
247
+ as shown in Fig. 4.
248
+ Three candidate paths as conductors are created by
249
+ connecting the elements from top to bottom in the fol-
250
+ lowing manner.
251
+ A. Draw a path in the X direction and then in the Y
252
+ direction.
253
+ B. Draw a path in the Y direction to half of the dif-
254
+ ference, then in X, and then in the remaining Y
255
+ direction.
256
+ Input port �
257
+ � Output port
258
+ Capacitor 1
259
+ Capacitor 2
260
+ Inductor
261
+ Conductor
262
+ FIG.
263
+ 5.
264
+ Circuit
265
+ corresponding
266
+ to
267
+ bit
268
+ string
269
+ “0101101010010001100100” in one-hot representation.
270
+ C. Draw a path in the Y direction and then in the X
271
+ direction.
272
+ The typical π-type noise filter, shown in Fig. 2, is appro-
273
+ priately included as a candidate by the above conductor
274
+ setting. The present method can be simply extended to
275
+ the case with more than three candidate paths if neces-
276
+ sary.
277
+ We adopt one-hot encoding to represent noise filters
278
+ in which element positions and conductor paths are se-
279
+ lected from these candidates. In the case considered here,
280
+ 22 bits are required because there are two candidates for
281
+ each of the five element positions and three candidates
282
+ for each of the four conductor paths. Let “10” be the
283
+ state in which the element is at the bottom or on the
284
+ left and “01” be the state in which it is at the top or
285
+ on the right. Then, let “100” be a conductor path that
286
+ first moves in the X direction, “010” be one that turns
287
+ in the middle, and “001” be one that first moves in the
288
+ Y direction. The bits that represent the conductor path
289
+ follow the element position bits; that is, the first 10 bits
290
+ represent the five element positions and the latter 12 bits
291
+ represent the selection of the four conductor paths. The
292
+ bits that represent the element positions are arranged on
293
+ the board in the following order from left to right: in-
294
+ put port, capacitor 1, inductor, capacitor 2, and output
295
+ port. The conductor paths are similarly arranged in the
296
+ following order from left to right: input port - capaci-
297
+ tor 1, capacitor 1 - inductor, inductor - capacitor 2, and
298
+ capacitor 2 - output port.
299
+ For example, a circuit en-
300
+ coded by “0101101010010001100100” as binary variable
301
+ x is shown in Fig. 5.
302
+ 2.
303
+ Obtaining characteristic value
304
+ The S-parameter S21 is adopted as the characteristic
305
+ value y of the noise filter. S21 indicates the ratio of out-
306
+ put power to input power. When the input power of noise
307
+ is p1 and the output power is p2, S21 is expressed by the
308
+ following equation,
309
+ S21 =
310
+
311
+ |p2|
312
+ |p1|.
313
+ (1)
314
+
315
+ 4
316
+ FIG.
317
+ 6.
318
+ Circuit
319
+ corresponding
320
+ to
321
+ bit
322
+ string
323
+ “1001011001000001000100”.
324
+ The
325
+ conductor
326
+ paths
327
+ be-
328
+ tween the input power port and capacitor 1 and those
329
+ between the inductor and capacitor 2 are not selected. To
330
+ avoid disconnection, conductors spread over the board are
331
+ assigned.
332
+ We design a noise filter that minimizes S21 under the
333
+ given noise voltage. p1 and p2 are calculated using finite
334
+ element analysis for simulating the electromagnetic field
335
+ of the electric circuit model shown in Fig. 2, that is, the
336
+ model in which the back of the board is the ground and
337
+ the electrical components are lumped-parameter ones on
338
+ the surface of the board. A sufficiently large air region is
339
+ provided around the board in order to precisely calculate
340
+ the induced noise. A scattering boundary condition is
341
+ set at the outermost boundary of the air region.
342
+ Special procedures are required in the following two
343
+ cases where the S-parameters are not correctly evaluated
344
+ by the finite element method.
345
+ (I) Element position does not satisfy the one-hot con-
346
+ straint.
347
+ (II) A bit in the conductor path is “000” (the circuit
348
+ has a disconnection on the board).
349
+ In case (I), the binary variables are unencodable to a
350
+ configuration of a noise filter. Given such binary vari-
351
+ ables, instead of performing the finite element method,
352
+ we calculate y as a penalty according to the following
353
+ formula,
354
+ y = ybase + λ
355
+ 5
356
+
357
+ m=1
358
+ (x2m−1 + x2m − 1)2 ,
359
+ (2)
360
+ where ybase is the base value of the violation of one-
361
+ hot constraints, λ is the penalty coefficient, and xi is
362
+ the value of the i-th bit of the binary variable x. Since
363
+ BOCS learns characteristic values in quadratic form, this
364
+ penalty of one-hot constraints is also expected to be
365
+ learned.
366
+ In case (II), a meaningful S-parameters for evaluating
367
+ a noise filter performance cannot be obtained because
368
+ the conductor path is disconnected such that voltage is
369
+ conducted neither from a normal signal nor noise. We
370
+ assign a dummy conductor that avoids the disconnection,
371
+ as shown in Fig. 6. Note that when multiple conductor
372
+ paths are selected, such as “011”, we take the sum of the
373
+ conductor paths.
374
+ To summarize, we calculate the characteristic value of
375
+ a noise filter y using the following equation,
376
+ z ≡
377
+ 5
378
+
379
+ m=1
380
+ (x2m−1 + x2m − 1)2 ,
381
+ (3)
382
+ y =
383
+
384
+ S21
385
+ ( for z = 0 ),
386
+ ybase + λz
387
+ ( for z ̸= 0 ).
388
+ (4)
389
+ C.
390
+ Parameters for circuit model and black-box
391
+ optimization
392
+ For the calculation of characteristic values, the sub-
393
+ strate thickness, width, and height are set to 1.6, 150,
394
+ and 100 mm, respectively. An air area of 30 mm is pro-
395
+ vided around the board. Scattering boundary conditions
396
+ are set at the outermost boundaries of this air region.
397
+ The substrate is divided into a 10×15 grid, as introduced
398
+ in section II B 1.
399
+ The physical constants of the power supply port, ca-
400
+ pacitor, and inductor are set to 50 Ω, 100 F, and 10 H,
401
+ respectively. The substrate’s relative permittivity, rela-
402
+ tive permeability, and conductivity are set to 4.5, 1, and
403
+ 1.0 × 10−8 S/m, respectively, assuming an FR-4 sub-
404
+ strate. The conductor is treated as a perfect conductor.
405
+ In addition, S21 was calculated using a frequency anal-
406
+ ysis at 10 MHz. For Eq. (2), we set ybase = −60 and
407
+ λ = 10.
408
+ The quantum annealer was Advantage system4.1 by
409
+ D-Wave Systems.
410
+ We adopted the Python library
411
+ dwave-neal by D-Wave Systems as a simulated anneal-
412
+ ing method. The sampling number was set to 3000 when
413
+ solving the problem. The x value that gave the small-
414
+ est y was adopted as the next candidate. For the initial
415
+ training datasets of BOCS, we prepared 20 randomly gen-
416
+ erated binary variables x and their corresponding char-
417
+ acteristic values y. BOCS-QA and -SA were performed
418
+ until 300 searches were conducted.
419
+ III.
420
+ RESULTS AND DISCUSSION
421
+ We compare the results of the BOCS-QA and BOCS-
422
+ SA calculations with those of random search in which
423
+ binary variables were randomly generated.
424
+ First, the results of all search histories of BOCS-QA
425
+ and random search are shown in Figs. 7 and 8, respec-
426
+ tively.
427
+ The learning processes of BOCS-QA and random
428
+ search are different.
429
+ Figure 7 shows that BOCS-QA
430
+ mainly learned the penalty term in Eq. (2) in the be-
431
+ ginning (before approximately 60th search), and sub-
432
+ sequently started to learn on the bases of the perfor-
433
+ mance of the noise filter S21, suggesting that the design
434
+ of the penalty term facilitated learning. Then, the high-
435
+ est record of S21 was steadily set. On the other hand,
436
+
437
+ 5
438
+ -120
439
+ -100
440
+ -80
441
+ -60
442
+ -40
443
+ -20
444
+ 0
445
+ 0
446
+ 50
447
+ 100
448
+ 150
449
+ 200
450
+ 250
451
+ 300
452
+ y
453
+ Number of searches
454
+ FIG. 7. Full search history of BOCS-QA.
455
+ -120
456
+ -100
457
+ -80
458
+ -60
459
+ -40
460
+ -20
461
+ 0
462
+ 0
463
+ 50
464
+ 100
465
+ 150
466
+ 200
467
+ 250
468
+ 300
469
+ y
470
+ Number of searches
471
+ FIG. 8. Full search history of random search.
472
+ the random search shown in Fig. 8 searched for a feasi-
473
+ ble noise filter in very rare cases. There is no particular
474
+ trend. The number of solutions that satisfy the one-hot
475
+ constraint is ten, which is close to the expected value.
476
+ The probability that a random binary variable satisfies
477
+ the one-hot constraint is 25/210 = 1/32, so the expected
478
+ number for 300 searches is nine.
479
+ The update records of the characteristic value y ver-
480
+ sus the number of searches are shown in Fig. 9. Since
481
+ BOCS-QA, BOCS-SA, and random search are random-
482
+ ized algorithms, the mean, minimum, and maximum val-
483
+ ues were calculated for ten trials. BOCS-QA and BOCS-
484
+ SA steadily search for a noise filter with good perfor-
485
+ mance, whereas random search tends to have a large
486
+ variance (especially with a small number of searches).
487
+ The steady performance improvement of BOCS-QA and
488
+ BOCS-SA shown in Fig. 9 is due to the successful learn-
489
+ ing of S21, as confirmed in Fig.
490
+ 7.
491
+ At 300 searches,
492
+ BOCS-QA shows slightly better performance than that
493
+ of BOCS-SA in terms of the average, minimum, and max-
494
+ imum values, as shown in Table I.
495
+ Next, we evaluate the filter performance of the ob-
496
+ tained solution. Since there are 222 cases (expressed in
497
+ 22 bits), enumerating the performance of all solutions is
498
+ unrealistic. We therefore choose only the relevant solu-
499
+ tions with unique element positions and a single conduc-
500
+ tor path between elements. This gives a total of 2592
501
+ cases (25 = 32 combinations of element positions and
502
+ 34 = 81 combinations of conductor positions).
503
+ Figure
504
+ Best record of y
505
+ Number of searches
506
+ search
507
+ FIG. 9.
508
+ Updated records of y. The solid and dotted lines
509
+ represent the mean and the filled area represents the area
510
+ between the maximum and minimum values.
511
+ 0
512
+ 50
513
+ 100
514
+ 150
515
+ 200
516
+ 250
517
+ 300
518
+ 350
519
+ 400
520
+ 450
521
+ [–82, –84)
522
+ [–84, –86)
523
+ [–86, –88)
524
+ [–88, –90)
525
+ [–90, –92)
526
+ [–92, –94)
527
+ [–94, –96)
528
+ [–96, –98)
529
+ [–98, –100)
530
+ [–100, –102)
531
+ [–102, –104)
532
+ [–104, –106)
533
+ [–106, –108)
534
+ [–108, –110)
535
+ [–110, –112)
536
+ Frequency
537
+ S 21 (dB)
538
+ FIG. 10. Histogram of S21 value in decibels when element
539
+ positions are specified uniquely and there is one conductor
540
+ between elements.
541
+ 10 shows a histogram of the S21 value in decibels. For
542
+ our settings, noise filters whose S21 is under −108dB are
543
+ rare (approximately 3%). Since the average records of
544
+ BOCS-QA and BOCS-SA are in the top 0.8% and 1.9%,
545
+ respectively, as shown in Table I, these methods finding
546
+ such filters in 300 searches are considered efficient.
547
+ The configuration of the best-performing noise filter
548
+ obtained using BOCS-QA is shown in Fig. 11. In this
549
+ TABLE I. Comparison of results obtained by various meth-
550
+ ods.
551
+ Method
552
+ Object
553
+ Value
554
+ Rank
555
+ QA
556
+ Best
557
+ −111.34 dB
558
+ 1st
559
+ Average −109.64 dB
560
+ 19th
561
+ Worst
562
+ −106.97 dB 192nd
563
+ SA
564
+ Best
565
+ −110.55 dB
566
+ 14th
567
+ Average −108.91 dB
568
+ 48th
569
+ Worst
570
+ −104.80 dB 528th
571
+ Random
572
+ Best
573
+ −107.12 dB 180th
574
+ Average −104.80 dB 192th
575
+ Worst
576
+ −102.00 dB 1058th
577
+
578
+ 6
579
+ FIG. 11. Noise filter obtained by BOCS-QA.
580
+ case, the value of S21 was −111.34 dB. The input port
581
+ and capacitor are placed close to each other, prevent-
582
+ ing performance degradation due to induced noise. This
583
+ shows that the obtained configuration is physically rea-
584
+ sonable.
585
+ In this study, we formulated a problem with two candi-
586
+ dates for the element positions and three candidates for
587
+ the conductor paths. If we considered a large-scale prob-
588
+ lem with a larger number of candidates, the probability
589
+ of finding a well-posed noise filter by chance using ran-
590
+ dom search would be much smaller and the superiority
591
+ of BOCS-QA and BOCS-SA would be more significant.
592
+ IV.
593
+ CONCLUSION AND OUTLOOK
594
+ To find input parameters that provide the desired char-
595
+ acteristics with a small number of searches, we proposed
596
+ an iterative optimization method that incorporates quan-
597
+ tum annealing in the BOCS framework and applied it to
598
+ the problem of designing noise filters. A π-type noise fil-
599
+ ter that consists of two capacitors and an inductor was
600
+ considered. A model was created to select two candidates
601
+ for the location of these elements and three candidates
602
+ for the path of the conductor connecting the elements.
603
+ The results show that a high-performance noise filter
604
+ can be efficiently found and that the search progresses
605
+ more stably than does random search. This shows that
606
+ the framework that incorporates quantum annealing into
607
+ black-box optimization is applicable to electric circuit de-
608
+ sign problems. The present method could help engineers
609
+ meet the high demand for electrical products.
610
+ Beyond
611
+ the
612
+ optimization
613
+ of
614
+ electric
615
+ components
616
+ demonstrated here, system-level optimization of electric
617
+ devices is a topic for future work. It could lead to mul-
618
+ tiphysics optimal design that requires simultaneous opti-
619
+ mizations of multiple phenomena.
620
+ The proposed BOCS framework was proven to work
621
+ with quantum annealing and simulated annealing.
622
+ A
623
+ comparison of these two versions showed only a slight
624
+ difference. A recent study that compared the two solvers
625
+ in an black-box optimization framework also concluded
626
+ that clear performance improvements using quantum an-
627
+ nealing are rare [13]. However, a clear advantage of quan-
628
+ tum annealing in finding optimal solutions, achieved by
629
+ adjusting the annealing schedule, has recently been re-
630
+ ported [18]. Future research should thus examine in de-
631
+ tail the scheduling protocols to further improve the per-
632
+ formance of BOCS with quantum annealing. In addition,
633
+ a recent improvement of the learning process [17] could
634
+ be integrated into the present BOCS framework to speed
635
+ up the whole optimization process.
636
+ [1] G. E. Moore, IEEE Solid-State Circuits Society Newsletter 11, 33 (2006).
637
+ [2] C. Moore, in The Salishan Conference on High Speed
638
+ Computing (2011).
639
+ [3] T.
640
+ Kadowaki
641
+ and
642
+ H.
643
+ Nishimori,
644
+ Physical Review E 58, 5355 (1998).
645
+ [4] A. Lucas, Frontiers in Physics 2, 5 (2014).
646
+ [5] M. Ohzeki, A. Miki, M. J. Miyama,
647
+ and M. Terabe,
648
+ Frontiers in Computer Science 1, 9 (2019).
649
+ [6] N.
650
+ Nishimura,
651
+ K.
652
+ Tanahashi,
653
+ K.
654
+ Sug-
655
+ anuma,
656
+ M.
657
+ J.
658
+ Miyama,
659
+ and
660
+ M.
661
+ Ohzeki,
662
+ Frontiers in Computer Science 1, 2 (2019).
663
+ [7] Z. I. Tabi, ´A. Marosits, Z. Kallus, P. Vaderna, I. G´odor,
664
+ and Z. Zimbor´as, IEEE Access 9, 131658 (2021).
665
+ [8] S.
666
+ Yarkoni,
667
+ A.
668
+ Alekseyenko,
669
+ M.
670
+ Streif,
671
+ D.
672
+ V.
673
+ Dollen, F. Neukart,
674
+ and T. B¨ack, “Multi-car paint
675
+ shop optimization with quantum annealing,”
676
+ (2021),
677
+ arXiv:2109.07876 [quant-ph].
678
+ [9] D. Inoue, A. Okada, T. Matsumori, K. Aihara,
679
+ and
680
+ H. Yoshida, Scientific Reports 11, 3303 (2021).
681
+ [10] K. Terada, D. Oku, S. Kanamaru, S. Tanaka, M. Hayashi,
682
+ M. Yamaoka, M. Yanagisawa,
683
+ and N. Togawa, in
684
+ 2018 International Symposium on VLSI Design, Automation and Test (VLSI-DAT)
685
+ (2018) pp. 1–4.
686
+ [11] K. Kitai, J. Guo, S. Ju, S. Tanaka, K. Tsuda, J. Shiomi,
687
+ and R. Tamura, Phys. Rev. Research 2, 013319 (2020).
688
+ [12] T. Inoue, Y. Seki, S. Tanaka, N. Togawa, K. Ishizaki,
689
+ and S. Noda, Opt. Express 30, 43503 (2022).
690
+ [13] T.
691
+ Matsumori,
692
+ M.
693
+ Taki,
694
+ and
695
+ T.
696
+ Kadowaki,
697
+ Scientific Reports 12, 12143 (2022).
698
+ [14] Q. Gao, G. O. Jones, M. Sugawara, T. Kobayashi, H. Ya-
699
+ mashita, H. Kawaguchi, S. Tanaka, and N. Yamamoto,
700
+ “Quantum-classical computational molecular design of deuterated high-efficiency oled emitters,”
701
+ (2021).
702
+ [15] K.
703
+ Nomura,
704
+ S.
705
+ Yamasaki,
706
+ K.
707
+ Yaji,
708
+ H.
709
+ Bo,
710
+ A.
711
+ Takahashi,
712
+ T.
713
+ Kojima,
714
+ and
715
+ K.
716
+ Fujita,
717
+ Structural and Multidisciplinary Optimization 59, 2205 (2019).
718
+ [16] R.
719
+ Baptista
720
+ and
721
+ M.
722
+ Poloczek,
723
+ in
724
+ Proceedings of the 35th International Conference on Machine Learning,
725
+ Proceedings of Machine Learning Research, Vol. 80,
726
+ edited by J. Dy and A. Krause (PMLR, 2018) pp.
727
+ 462–471.
728
+ [17] T.
729
+ Kadowaki
730
+ and
731
+ M.
732
+ Ambai,
733
+ Scientific Reports 12, 15482 (2022).
734
+ [18] Y.
735
+ W.
736
+ Koh
737
+ and
738
+ H.
739
+ Nishimori,
740
+ Physical Review A 105, 062435 (2022).
741
+
1NE2T4oBgHgl3EQfNQYC/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,353 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf,len=352
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
3
+ page_content='03733v1 [quant-ph] 10 Jan 2023 Design Optimization of Noise Filter using Quantum Annealer Akihisa Okada,1, ∗ Hiroaki Yoshida,1 Kiyosumi Kidono,1 Tadayoshi Matsumori,2 Takanori Takeno,2 and Tadashi Kadowaki2 1TOYOTA CENTRAL R&D LABS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
4
+ page_content=', INC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
5
+ page_content=', Bunkyo-ku, Tokyo 112–0004, Japan 2DENSO CORPORATION, Minato-ku, Tokyo 108–0075, Japan (Dated: January 11, 2023) The use of quantum annealers in black-box optimization to obtain the desired properties of a product with a small number of trials has attracted attention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
6
+ page_content=' However, the application of this technique to engineering design problems is still limited.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
7
+ page_content=' Here, we demonstrate the applicability of black-box optimization with a quantum annealer to the design of electric circuit systems, focusing on π-type noise filters as an example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
8
+ page_content=' We develop a framework that uses quantum annealing to find the optimal location of electrical components and conductor paths connecting the components, and confirm that the learning process appropriately works over a number of trials to efficiently search for a design with high performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
9
+ page_content=' The results show the potential applicability of quantum annealing to design problems of electric circuit systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
10
+ page_content=' Keywords: Combinatorial optimization problem, Noise filter, Quadratic unconstrained binary optimization, Quantum annealing, Quantum computing I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
11
+ page_content=' INTRODUCTION A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
12
+ page_content=' Quantum annealers High-performance computers are required to elucidate and predict complex phenomena, such as in simulations of the behavior of systems with multiple interconnected factors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
13
+ page_content=' However, Neumann-type computers, whose de- velopment has followed Moore’s law, do not meet the demand for high performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
14
+ page_content=' Drastic improvements in Neumann-type computers are not expected [1] as their single-threaded performance has reached its ceiling [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
15
+ page_content=' Therefore, non-Neumann-type computers are expected to be an alternative for high-performance computation for complex problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
16
+ page_content=' Quantum annealers are one type of non-Neumann-type computer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
17
+ page_content=' Commercial machines are available from D- Wave Systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
18
+ page_content=' The architecture of a quantum annealer implements the Ising model on a circuit using supercon- ductivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
19
+ page_content=' The ground state of the Ising model is effi- ciently found using the quantum effect [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
20
+ page_content=' Since the ground state of the Ising model is equivalent to the so- lution of quadratic unconstrained binary optimization (QUBO), which includes not only fundamental prob- lems [4] but also practical ones [5–10], a quantum an- nealer is regarded as a quantum solver for QUBO prob- lems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
21
+ page_content=' Pragmatically, the usability of quantum annealers for complex problems relies on their compatibility with the QUBO formulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
22
+ page_content=' Previous studies are limited to cases in which the original problem formulation has an appar- ent link to QUBO, such as that for combinatorial opti- mization problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
23
+ page_content=' A recent study combined quantum annealing with machine learning to find the optimal ar- ∗ a-okada@mosk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
24
+ page_content='tytlabs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
25
+ page_content='co.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
26
+ page_content='jp rangement of the constituent elements of a metamate- rial [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
27
+ page_content=' The original problem (optical properties of the metamaterial) was not necessarily converted to a QUBO formulation, implying the applicability of quantum an- nealing to general optimization problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
28
+ page_content=' Specifically, they proposed a type of black-box optimization frame- work, in which the unknown relation between the input binary variables and the complex property values com- puted according to the governing equations is learned by means of a second-order regression equation and the optimal input variables are obtained using quantum an- nealing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
29
+ page_content=' Reports of applying black-box optimization to design problems are limited to optical problems with the opti- mal arrangement of metamaterials described above and photonic-crystals [12], the structural dynamics problem of substrate vibration [13], and molecular design [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
30
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
31
+ page_content=' Design problem of noise filter In this study, we focus on an electric noise filter as an example electric circuit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
32
+ page_content=' Noise filter performance de- pends on the combination of electrical components and the paths of conductors connecting them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
33
+ page_content=' Products designed for electromagnetic compatibility incorporate noise filters that reduce input voltage noise to prevent high-frequency noise from affecting surrounding electronic devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
34
+ page_content=' The electrical component allocation region needs to be determined under the constraint of a certain amount of noise attenuation, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
35
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
36
+ page_content=', an optimal filter design is required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
37
+ page_content=' In this study, we apply black-box opti- mization that incorporates calculations conducted using quantum annealing to the design optimization of a noise filter that consists of two capacitors and an inductor, called a π-type filter, and demonstrate that this opti- mization framework is useful for electric circuit design problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
38
+ page_content=' 2 Capacitor 1 Capacitor 2 Inductor Ground Voltage source with noise Output port Input port FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
39
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
40
+ page_content=' Circuit diagram of π-type noise filter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
41
+ page_content=' Topology optimization has been used for optimal de- sign.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
42
+ page_content=' Although topology optimization is applicable to electric circuits [15], the inherent challenge is to avoid falling into a local optimal solution, which stems from the method being based on the gradient method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
43
+ page_content=' In particu- lar, optimization problems with many degrees of freedom related to element location, as considered in this study, generally have a complex objective function space, which can hinder the search for the global optimal solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
44
+ page_content=' The proposed optimization framework, which combines black-box optimization and quantum annealing, exploits the features of quantum annealing to avoid becoming trapped in a local optimal solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
45
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
46
+ page_content=' Summary of contributions The contributions can be summarized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
47
+ page_content=' We extend the framework of optimal design based on black-box optimization using quantum anneal- ing to problems related to electric circuit systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
48
+ page_content=' We confirm that the optimization process works as an optimal design method for electric circuits by analyzing the learning process based on the relation between the number of searches and performance values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
49
+ page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
50
+ page_content=' METHOD A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
51
+ page_content=' Design problem of π-type noise filter A circuit diagram of the π-type noise filter to be de- signed is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
52
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
53
+ page_content=' The circuit consists of three elements, namely an inductor and two capacitors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
54
+ page_content=' Fig- ure 2 shows the π-type noise filter model utilized in this study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
55
+ page_content=' It is assumed that the back side of the substrate is grounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
56
+ page_content=' The performance of a noise filter is determined by the capacitance of the capacitor, the inductance of the inductor, inductive noise, and parasitic capacitance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
57
+ page_content=' The inductive noise and parasitic capacitance depend on the relative location of the inductor, the capacitors, and the conductor path, which does not appear in the circuit di- agram but should be designed as described below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
58
+ page_content=' Substrate Inductor Capacitor 1 Capacitor 2 Conductor Output port Input port FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
59
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
60
+ page_content=' Example of element and conductor arrangement for π-type noise filter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
61
+ page_content=' The input and output ports, capacitors, and inductor are represented by simple square elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
62
+ page_content=' The backplane is the electrical ground.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
63
+ page_content=' x y Data acquisition and learning Hidden true system y = f(x) y = xTAx (1) (2) (3) ~ FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
64
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
65
+ page_content=' Schematic diagram of BOCS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
66
+ page_content=' (1) Data y for input x is obtained from simulation or experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
67
+ page_content=' (2) Second- order regression equation is estimated from input x and y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
68
+ page_content=' ˜y is estimated value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
69
+ page_content=' (3) Optimal x is found.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
70
+ page_content=' Here, A is the coefficient of the quadratic regression equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
71
+ page_content=' f is an unknown function under the governing equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
72
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
73
+ page_content=' Black-box optimization of noise filter The objective of black-box optimization is to obtain the input parameter x that minimizes (or maximizes) the characteristic value y with a small number of tri- als under the condition that the relation between x and y (y = f(x)) is unknown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
74
+ page_content=' Here, we focus on Bayesian Optimization of Combinatorial Structures (BOCS) [16], which is a learning method applicable to cases where the input parameter x is a binary variable, as done in the literature [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
75
+ page_content=' In BOCS, the relation between x and y is learned sequentially using a quadratic regression equa- tion of x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
76
+ page_content=' In other words, starting with several data sets of x and y, we (1) obtain the data y for the input x through simulations or experiments on a real system where the input-output relation is unknown, (2) learn the relation between data y and input x in quadratic form, and (3) search for the optimal input x under the assumed quadratic relation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
77
+ page_content=' The relation between the various tasks in BOCS is summarized in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
78
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
79
+ page_content=' To apply this black-box optimization to the design of noise filters, we define a binary variable x that specifies 3 Input port positions Output port positions Capacitor 1 positions Capacitor 2 positions Inductor positions A B C X Y FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
80
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
81
+ page_content=' Candidate element positions and conductor paths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
82
+ page_content=' As an example of conductor paths, three candidates (A, B, and C) between the upper side of the input port and the left side of capacitor 1 are shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
83
+ page_content=' the location of the element and the conductor path, and employ electromagnetic field analysis using the finite el- ement method as the data acquisition method in (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
84
+ page_content=' In (3), quantum annealing is employed to find the global minimum in the regression model, which has many lo- cal minima.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
85
+ page_content=' The solution x of the quantum annealing and the corresponding output value y are added to the data in the learning process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
86
+ page_content=' We refer to this method as BOCS-QA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
87
+ page_content=' To clarify the effect of quantum anneal- ing, a calculation using simulated annealing (BOCS-SA) instead of quantum annealing is also performed and the results are compared.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
88
+ page_content=' The following sections describe the binary design vari- ables that represent electrical component positions and conductor paths and the characteristic values for evalu- ating filter performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
89
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
90
+ page_content=' Binary design variables The element positions and conductor paths between the elements are mapped to the binary variable x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
91
+ page_content=' In this study, the problem is to select the positions of five elements (an input port, an output port, an inductor, and two capacitors) from two candidates and the conductor paths from three candidates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
92
+ page_content=' In order to represent these variables as binary variables, the substrate is divided into a 10×15 (X×Y) grid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
93
+ page_content=' The input and output ports are placed on the sides of the board and the inductor and capacitor are placed in the grid as concentrated elements, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
94
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
95
+ page_content=' Three candidate paths as conductors are created by connecting the elements from top to bottom in the fol- lowing manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
96
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
97
+ page_content=' Draw a path in the X direction and then in the Y direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
98
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
99
+ page_content=' Draw a path in the Y direction to half of the dif- ference, then in X, and then in the remaining Y direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
100
+ page_content=' Input port � � Output port Capacitor 1 Capacitor 2 Inductor Conductor FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
101
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
102
+ page_content=' Circuit corresponding to bit string “0101101010010001100100” in one-hot representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
103
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
104
+ page_content=' Draw a path in the Y direction and then in the X direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
105
+ page_content=' The typical π-type noise filter, shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
106
+ page_content=' 2, is appro- priately included as a candidate by the above conductor setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
107
+ page_content=' The present method can be simply extended to the case with more than three candidate paths if neces- sary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
108
+ page_content=' We adopt one-hot encoding to represent noise filters in which element positions and conductor paths are se- lected from these candidates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
109
+ page_content=' In the case considered here, 22 bits are required because there are two candidates for each of the five element positions and three candidates for each of the four conductor paths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
110
+ page_content=' Let “10” be the state in which the element is at the bottom or on the left and “01” be the state in which it is at the top or on the right.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
111
+ page_content=' Then, let “100” be a conductor path that first moves in the X direction, “010” be one that turns in the middle, and “001” be one that first moves in the Y direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
112
+ page_content=' The bits that represent the conductor path follow the element position bits;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
113
+ page_content=' that is, the first 10 bits represent the five element positions and the latter 12 bits represent the selection of the four conductor paths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
114
+ page_content=' The bits that represent the element positions are arranged on the board in the following order from left to right: in- put port, capacitor 1, inductor, capacitor 2, and output port.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
115
+ page_content=' The conductor paths are similarly arranged in the following order from left to right: input port - capaci- tor 1, capacitor 1 - inductor, inductor - capacitor 2, and capacitor 2 - output port.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
116
+ page_content=' For example, a circuit en- coded by “0101101010010001100100” as binary variable x is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
117
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
118
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
119
+ page_content=' Obtaining characteristic value The S-parameter S21 is adopted as the characteristic value y of the noise filter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
120
+ page_content=' S21 indicates the ratio of out- put power to input power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
121
+ page_content=' When the input power of noise is p1 and the output power is p2, S21 is expressed by the following equation, S21 = � |p2| |p1|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
122
+ page_content=' (1) 4 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
123
+ page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
124
+ page_content=' Circuit corresponding to bit string “1001011001000001000100”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
125
+ page_content=' The conductor paths be- tween the input power port and capacitor 1 and those between the inductor and capacitor 2 are not selected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
126
+ page_content=' To avoid disconnection, conductors spread over the board are assigned.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
127
+ page_content=' We design a noise filter that minimizes S21 under the given noise voltage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
128
+ page_content=' p1 and p2 are calculated using finite element analysis for simulating the electromagnetic field of the electric circuit model shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
129
+ page_content=' 2, that is, the model in which the back of the board is the ground and the electrical components are lumped-parameter ones on the surface of the board.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
130
+ page_content=' A sufficiently large air region is provided around the board in order to precisely calculate the induced noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
131
+ page_content=' A scattering boundary condition is set at the outermost boundary of the air region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
132
+ page_content=' Special procedures are required in the following two cases where the S-parameters are not correctly evaluated by the finite element method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
133
+ page_content=' (I) Element position does not satisfy the one-hot con- straint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
134
+ page_content=' (II) A bit in the conductor path is “000” (the circuit has a disconnection on the board).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
135
+ page_content=' In case (I), the binary variables are unencodable to a configuration of a noise filter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
136
+ page_content=' Given such binary vari- ables, instead of performing the finite element method, we calculate y as a penalty according to the following formula, y = ybase + λ 5 � m=1 (x2m−1 + x2m − 1)2 , (2) where ybase is the base value of the violation of one- hot constraints, λ is the penalty coefficient, and xi is the value of the i-th bit of the binary variable x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
137
+ page_content=' Since BOCS learns characteristic values in quadratic form, this penalty of one-hot constraints is also expected to be learned.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
138
+ page_content=' In case (II), a meaningful S-parameters for evaluating a noise filter performance cannot be obtained because the conductor path is disconnected such that voltage is conducted neither from a normal signal nor noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
139
+ page_content=' We assign a dummy conductor that avoids the disconnection, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
140
+ page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
141
+ page_content=' Note that when multiple conductor paths are selected, such as “011”, we take the sum of the conductor paths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
142
+ page_content=' To summarize, we calculate the characteristic value of a noise filter y using the following equation, z ≡ 5 � m=1 (x2m−1 + x2m − 1)2 , (3) y = � S21 ( for z = 0 ), ybase + λz ( for z ̸= 0 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
143
+ page_content=' (4) C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
144
+ page_content=' Parameters for circuit model and black-box optimization For the calculation of characteristic values, the sub- strate thickness, width, and height are set to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
145
+ page_content='6, 150, and 100 mm, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
146
+ page_content=' An air area of 30 mm is pro- vided around the board.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
147
+ page_content=' Scattering boundary conditions are set at the outermost boundaries of this air region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
148
+ page_content=' The substrate is divided into a 10×15 grid, as introduced in section II B 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
149
+ page_content=' The physical constants of the power supply port, ca- pacitor, and inductor are set to 50 Ω, 100 F, and 10 H, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
150
+ page_content=' The substrate’s relative permittivity, rela- tive permeability, and conductivity are set to 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
151
+ page_content='5, 1, and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
152
+ page_content='0 × 10−8 S/m, respectively, assuming an FR-4 sub- strate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
153
+ page_content=' The conductor is treated as a perfect conductor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
154
+ page_content=' In addition, S21 was calculated using a frequency anal- ysis at 10 MHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
155
+ page_content=' For Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
156
+ page_content=' (2), we set ybase = −60 and λ = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
157
+ page_content=' The quantum annealer was Advantage system4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
158
+ page_content='1 by D-Wave Systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
159
+ page_content=' We adopted the Python library dwave-neal by D-Wave Systems as a simulated anneal- ing method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
160
+ page_content=' The sampling number was set to 3000 when solving the problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
161
+ page_content=' The x value that gave the small- est y was adopted as the next candidate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
162
+ page_content=' For the initial training datasets of BOCS, we prepared 20 randomly gen- erated binary variables x and their corresponding char- acteristic values y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
163
+ page_content=' BOCS-QA and -SA were performed until 300 searches were conducted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
164
+ page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
165
+ page_content=' RESULTS AND DISCUSSION We compare the results of the BOCS-QA and BOCS- SA calculations with those of random search in which binary variables were randomly generated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
166
+ page_content=' First, the results of all search histories of BOCS-QA and random search are shown in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
167
+ page_content=' 7 and 8, respec- tively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
168
+ page_content=' The learning processes of BOCS-QA and random search are different.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
169
+ page_content=' Figure 7 shows that BOCS-QA mainly learned the penalty term in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
170
+ page_content=' (2) in the be- ginning (before approximately 60th search), and sub- sequently started to learn on the bases of the perfor- mance of the noise filter S21, suggesting that the design of the penalty term facilitated learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
171
+ page_content=' Then, the high- est record of S21 was steadily set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
172
+ page_content=' On the other hand, 5 120 100 80 60 40 20 0 0 50 100 150 200 250 300 y Number of searches FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
173
+ page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
174
+ page_content=' Full search history of BOCS-QA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
175
+ page_content=' 120 100 80 60 40 20 0 0 50 100 150 200 250 300 y Number of searches FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
176
+ page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
177
+ page_content=' Full search history of random search.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
178
+ page_content=' the random search shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
179
+ page_content=' 8 searched for a feasi- ble noise filter in very rare cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
180
+ page_content=' There is no particular trend.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
181
+ page_content=' The number of solutions that satisfy the one-hot constraint is ten, which is close to the expected value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
182
+ page_content=' The probability that a random binary variable satisfies the one-hot constraint is 25/210 = 1/32, so the expected number for 300 searches is nine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
183
+ page_content=' The update records of the characteristic value y ver- sus the number of searches are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
184
+ page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
185
+ page_content=' Since BOCS-QA, BOCS-SA, and random search are random- ized algorithms, the mean, minimum, and maximum val- ues were calculated for ten trials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
186
+ page_content=' BOCS-QA and BOCS- SA steadily search for a noise filter with good perfor- mance, whereas random search tends to have a large variance (especially with a small number of searches).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
187
+ page_content=' The steady performance improvement of BOCS-QA and BOCS-SA shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
188
+ page_content=' 9 is due to the successful learn- ing of S21, as confirmed in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
189
+ page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
190
+ page_content=' At 300 searches, BOCS-QA shows slightly better performance than that of BOCS-SA in terms of the average, minimum, and max- imum values, as shown in Table I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
191
+ page_content=' Next, we evaluate the filter performance of the ob- tained solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
192
+ page_content=' Since there are 222 cases (expressed in 22 bits), enumerating the performance of all solutions is unrealistic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
193
+ page_content=' We therefore choose only the relevant solu- tions with unique element positions and a single conduc- tor path between elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
194
+ page_content=' This gives a total of 2592 cases (25 = 32 combinations of element positions and 34 = 81 combinations of conductor positions).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
195
+ page_content=' Figure Best record of y Number of searches search FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
196
+ page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
197
+ page_content=' Updated records of y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
198
+ page_content=' The solid and dotted lines represent the mean and the filled area represents the area between the maximum and minimum values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
199
+ page_content=' 0 50 100 150 200 250 300 350 400 450 [–82, –84) [–84, –86) [–86, –88) [–88, –90) [–90, –92) [–92, –94) [–94, –96) [–96, –98) [–98, –100) [–100, –102) [–102, –104) [–104, –106) [–106, –108) [–108, –110) [–110, –112) Frequency S 21 (dB) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
200
+ page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
201
+ page_content=' Histogram of S21 value in decibels when element positions are specified uniquely and there is one conductor between elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
202
+ page_content=' 10 shows a histogram of the S21 value in decibels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
203
+ page_content=' For our settings, noise filters whose S21 is under −108dB are rare (approximately 3%).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
204
+ page_content=' Since the average records of BOCS-QA and BOCS-SA are in the top 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
205
+ page_content='8% and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
206
+ page_content='9%, respectively, as shown in Table I, these methods finding such filters in 300 searches are considered efficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
207
+ page_content=' The configuration of the best-performing noise filter obtained using BOCS-QA is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
208
+ page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
209
+ page_content=' In this TABLE I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
210
+ page_content=' Comparison of results obtained by various meth- ods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
211
+ page_content=' Method Object Value Rank QA Best −111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
212
+ page_content='34 dB 1st Average −109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
213
+ page_content='64 dB 19th Worst −106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
214
+ page_content='97 dB 192nd SA Best −110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
215
+ page_content='55 dB 14th Average −108.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
216
+ page_content='91 dB 48th Worst −104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
217
+ page_content='80 dB 528th Random Best −107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
218
+ page_content='12 dB 180th Average −104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
219
+ page_content='80 dB 192th Worst −102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
220
+ page_content='00 dB 1058th 6 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
221
+ page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
222
+ page_content=' Noise filter obtained by BOCS-QA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
223
+ page_content=' case, the value of S21 was −111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
224
+ page_content='34 dB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
225
+ page_content=' The input port and capacitor are placed close to each other, prevent- ing performance degradation due to induced noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
226
+ page_content=' This shows that the obtained configuration is physically rea- sonable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
227
+ page_content=' In this study, we formulated a problem with two candi- dates for the element positions and three candidates for the conductor paths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
228
+ page_content=' If we considered a large-scale prob- lem with a larger number of candidates, the probability of finding a well-posed noise filter by chance using ran- dom search would be much smaller and the superiority of BOCS-QA and BOCS-SA would be more significant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
229
+ page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
230
+ page_content=' CONCLUSION AND OUTLOOK To find input parameters that provide the desired char- acteristics with a small number of searches, we proposed an iterative optimization method that incorporates quan- tum annealing in the BOCS framework and applied it to the problem of designing noise filters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
231
+ page_content=' A π-type noise fil- ter that consists of two capacitors and an inductor was considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
232
+ page_content=' A model was created to select two candidates for the location of these elements and three candidates for the path of the conductor connecting the elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
233
+ page_content=' The results show that a high-performance noise filter can be efficiently found and that the search progresses more stably than does random search.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
234
+ page_content=' This shows that the framework that incorporates quantum annealing into black-box optimization is applicable to electric circuit de- sign problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
235
+ page_content=' The present method could help engineers meet the high demand for electrical products.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
236
+ page_content=' Beyond the optimization of electric components demonstrated here, system-level optimization of electric devices is a topic for future work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
237
+ page_content=' It could lead to mul- tiphysics optimal design that requires simultaneous opti- mizations of multiple phenomena.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
238
+ page_content=' The proposed BOCS framework was proven to work with quantum annealing and simulated annealing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
239
+ page_content=' A comparison of these two versions showed only a slight difference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
240
+ page_content=' A recent study that compared the two solvers in an black-box optimization framework also concluded that clear performance improvements using quantum an- nealing are rare [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
241
+ page_content=' However, a clear advantage of quan- tum annealing in finding optimal solutions, achieved by adjusting the annealing schedule, has recently been re- ported [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
242
+ page_content=' Future research should thus examine in de- tail the scheduling protocols to further improve the per- formance of BOCS with quantum annealing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
243
+ page_content=' In addition, a recent improvement of the learning process [17] could be integrated into the present BOCS framework to speed up the whole optimization process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
244
+ page_content=' [1] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
245
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
246
+ page_content=' Moore, IEEE Solid-State Circuits Society Newsletter 11, 33 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
247
+ page_content=' [2] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
248
+ page_content=' Moore, in The Salishan Conference on High Speed Computing (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
249
+ page_content=' [3] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
250
+ page_content=' Kadowaki and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
251
+ page_content=' Nishimori, Physical Review E 58, 5355 (1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
252
+ page_content=' [4] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
253
+ page_content=' Lucas, Frontiers in Physics 2, 5 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
254
+ page_content=' [5] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
255
+ page_content=' Ohzeki, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
256
+ page_content=' Miki, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
257
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
258
+ page_content=' Miyama, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
259
+ page_content=' Terabe, Frontiers in Computer Science 1, 9 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
260
+ page_content=' [6] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
261
+ page_content=' Nishimura, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
262
+ page_content=' Tanahashi, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
263
+ page_content=' Sug- anuma, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
264
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
265
+ page_content=' Miyama, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
266
+ page_content=' Ohzeki, Frontiers in Computer Science 1, 2 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
267
+ page_content=' [7] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
268
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
269
+ page_content=' Tabi, ´A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
270
+ page_content=' Marosits, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
271
+ page_content=' Kallus, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
272
+ page_content=' Vaderna, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
273
+ page_content=' G´odor, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
274
+ page_content=' Zimbor´as, IEEE Access 9, 131658 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
275
+ page_content=' [8] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
276
+ page_content=' Yarkoni, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
277
+ page_content=' Alekseyenko, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
278
+ page_content=' Streif, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
279
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
280
+ page_content=' Dollen, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
281
+ page_content=' Neukart, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
282
+ page_content=' B¨ack, “Multi-car paint shop optimization with quantum annealing,” (2021), arXiv:2109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
283
+ page_content='07876 [quant-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
284
+ page_content=' [9] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
285
+ page_content=' Inoue, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
286
+ page_content=' Okada, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
287
+ page_content=' Matsumori, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
288
+ page_content=' Aihara, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
289
+ page_content=' Yoshida, Scientific Reports 11, 3303 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
290
+ page_content=' [10] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
291
+ page_content=' Terada, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
292
+ page_content=' Oku, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
293
+ page_content=' Kanamaru, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
294
+ page_content=' Tanaka, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
295
+ page_content=' Hayashi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
296
+ page_content=' Yamaoka, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
297
+ page_content=' Yanagisawa, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
298
+ page_content=' Togawa, in 2018 International Symposium on VLSI Design, Automation and Test (VLSI-DAT) (2018) pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
299
+ page_content=' 1–4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
300
+ page_content=' [11] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
301
+ page_content=' Kitai, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
302
+ page_content=' Guo, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
303
+ page_content=' Ju, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
304
+ page_content=' Tanaka, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
305
+ page_content=' Tsuda, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
306
+ page_content=' Shiomi, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
307
+ page_content=' Tamura, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
308
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
309
+ page_content=' Research 2, 013319 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
310
+ page_content=' [12] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
311
+ page_content=' Inoue, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
312
+ page_content=' Seki, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
313
+ page_content=' Tanaka, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
314
+ page_content=' Togawa, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
315
+ page_content=' Ishizaki, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
316
+ page_content=' Noda, Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
317
+ page_content=' Express 30, 43503 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
318
+ page_content=' [13] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
319
+ page_content=' Matsumori, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
320
+ page_content=' Taki, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
321
+ page_content=' Kadowaki, Scientific Reports 12, 12143 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
322
+ page_content=' [14] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
323
+ page_content=' Gao, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
324
+ page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
325
+ page_content=' Jones, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
326
+ page_content=' Sugawara, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
327
+ page_content=' Kobayashi, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
328
+ page_content=' Ya- mashita, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
329
+ page_content=' Kawaguchi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
330
+ page_content=' Tanaka, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
331
+ page_content=' Yamamoto, “Quantum-classical computational molecular design of deuterated high-efficiency oled emitters,” (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
332
+ page_content=' [15] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
333
+ page_content=' Nomura, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
334
+ page_content=' Yamasaki, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
335
+ page_content=' Yaji, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
336
+ page_content=' Bo, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
337
+ page_content=' Takahashi, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
338
+ page_content=' Kojima, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
339
+ page_content=' Fujita, Structural and Multidisciplinary Optimization 59, 2205 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
340
+ page_content=' [16] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
341
+ page_content=' Baptista and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
342
+ page_content=' Poloczek, in Proceedings of the 35th International Conference on Machine Learning, Proceedings of Machine Learning Research, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
343
+ page_content=' 80, edited by J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
344
+ page_content=' Dy and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
345
+ page_content=' Krause (PMLR, 2018) pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
346
+ page_content=' 462–471.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
347
+ page_content=' [17] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
348
+ page_content=' Kadowaki and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
349
+ page_content=' Ambai, Scientific Reports 12, 15482 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
350
+ page_content=' [18] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
351
+ page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
352
+ page_content=' Koh and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
353
+ page_content=' Nishimori, Physical Review A 105, 062435 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NE2T4oBgHgl3EQfNQYC/content/2301.03733v1.pdf'}
1dAyT4oBgHgl3EQfbvcu/content/tmp_files/2301.00267v1.pdf.txt ADDED
@@ -0,0 +1,1455 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ What Promotes Smectic Order: Applying Mean Field Theory to the Ends
2
+ David A. King∗ and Randall D. Kamien
3
+ Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd St., Philadelphia, PA, 19104.
4
+ (Dated: January 3, 2023)
5
+ Not every particle that forms a nematic liquid crystal makes a smectic. The particle tip is critical
6
+ for this behaviour. Ellipsoids do not make a smectic, but sphero-cylinders do. Similarly, only those
7
+ N-CB alkylcyanobiphenyls with sufficiently long (N ≥ 8 carbons) alkane tails form smectics. We
8
+ understand the role of the particle tip in the smectic transition by means of a simple two-dimensional
9
+ model. We model sphero-cylinders by “boubas” with rounded tips, and ellipsoids by “kikis” with
10
+ pointed tips. The N-CB molecules are modelled by a small body with a polymer tail. We find
11
+ that rounded tips and longer polymer tails lead to a smectic at lower densities by making the space
12
+ between layers less accessible, destabilizing the nematic.
13
+ I.
14
+ INTRODUCTION AND FORMULATION
15
+ Onsager recognized that the geometry of particles af-
16
+ fects the structure of their ordered phases [1].
17
+ The
18
+ most remarkable thing about his insight is that the ne-
19
+ matic phase is unremarkable: any fluid of sufficiently
20
+ anisotropic particles will form a nematic liquid crystal,
21
+ where the particles are homogeneously distributed but
22
+ have a preferential orientation.
23
+ However, not all such
24
+ particles form a smectic-A phase, a phase with the same
25
+ orientational order but with a periodic density modula-
26
+ tion in the direction of alignment. This was noticed by
27
+ Frenkel [2, 3], who considered a system of parallel ellip-
28
+ soids. Smectics have strong orientational order, so the
29
+ particles may be assumed parallel without loss of gener-
30
+ ality. He argued that this system had no smectic phase
31
+ because it could be mapped to a system of hard spheres
32
+ in a way that preserves the thermodynamic properties
33
+ by simply rescaling the lengths and momenta parallel to
34
+ the ellipsoids. Hard spheres are only observed to exist in
35
+ fluid or crystalline phases, so the ellipsoids can have no
36
+ smectic phase.
37
+ This argument is extremely elegant, but leaves some
38
+ open questions; what if the particle shape is only ap-
39
+ proximately an ellipsoid so that the rescaling does not
40
+ produce spheres? Are ellipsoids the only elongated par-
41
+ ticles that miss the smectic phase due to this symmetry?
42
+ Sphero-cylinders have been observed in simulations to
43
+ make smectics [4]; what do they have that those parti-
44
+ cles without smectic phases do not? Some of these ques-
45
+ tions can be tackled using density functional theory and
46
+ similar methods [5–11], but this often results in compli-
47
+ cated analyses and it is difficult to gain insight into the
48
+ differences between different particle shapes.
49
+ It is useful to look for another instance of two molecules
50
+ with similar structures where one has a smectic phase but
51
+ the other does not, so that similarities to the case of ellip-
52
+ soids and sphero-cylinders can be sought. Such an exam-
53
+ ple exists and is well known to experimentalists; N-CB
54
+ type alkylcyanobiphenyls [12, 13]. The precise structure
55
56
+ of these molecules is shown in Fig.(2), but it is most use-
57
+ ful to think about them as a small “body” to which a
58
+ “tail” made of N links is attached. When N = 8, the
59
+ molecule is a typical thermotropic liquid crystal former,
60
+ and has both a nematic and a smectic-A phase. With
61
+ N = 5, however, the smectic is absent (indeed, for N < 8
62
+ there is no smectic, though most experiments focus on
63
+ 5-CB). The common difference between the particles in
64
+ the N-CB example and Frenkel’s case is the structure at
65
+ their ends; their “tips”. This points to the key question
66
+ we would like to answer: why are the particle tips impor-
67
+ tant for the formation of a smectic phase? We will argue
68
+ here that the nematic phase is suppressed by rounded
69
+ tips allowing the smectic phase to intervene.
70
+ This ef-
71
+ fect is similar to the situation found in [14] where the
72
+ introduction of small platelets suppressed the uniaxial
73
+ nematic phase allowing for the onset of the biaxial ne-
74
+ matic. In short, when the mesogen tips are pointed, a
75
+ test mesogen can more easily be inserted between exist-
76
+ ing smectic layers compared to a round-tipped mesogen.
77
+ As a result pointy mesogens more easily fill in the space
78
+ between smectic layers resulting in the nematic phase.
79
+ We tackle this problem by means of a toy model,
80
+ which captures the essential physics but is simple enough
81
+ to be understood fully.
82
+ For this model to be satisfac-
83
+ tory and consistent, it should be able to describe the
84
+ isotropic-nematic (I-N) transition and nematic-smectic
85
+ (N-S) equally well. An (almost) exactly solvable model
86
+ for the I-N transition was developed by Onsager [1], and
87
+ we might start there for inspiration. Onsager’s approach
88
+ relied on the virial expansion which, fortuitously, could
89
+ be truncated. This is because, for highly anisotropic par-
90
+ ticles, the I-N transition happens at rather low concen-
91
+ trations. For the N-S transition this is not the case, and
92
+ the virial expansion breaks down [15]. Hence, we must
93
+ take a significantly different starting point for our model
94
+ that can incorporate interactions between large numbers
95
+ of molecules without appealing to the virial expansion.
96
+ Recall the bouba-kiki effect where, across cultures and
97
+ languages, the word “bouba” is associated with rounded
98
+ shapes and “kiki” with pointed shapes [16–18]1. We will
99
+ 1 This effect was first realized by K¨ohler for shapes named
100
+ arXiv:2301.00267v1 [cond-mat.soft] 31 Dec 2022
101
+
102
+ 2
103
+ FIG. 1.
104
+ Sketches of the particle shapes we consider. On the
105
+ left is a “bouba”, with a rectangular mid-section of width w0
106
+ and semi-circular tips of radius w0/2. The “kiki” is on the
107
+ right, whose midsection is the same as the bouba, but whose
108
+ tip is a triangle of height w0/2. Both particles are of total
109
+ length ℓ.
110
+ FIG. 2.
111
+ The chemical structure of the N-CB molecules (
112
+ specifically 8-CB) is given above our crude model for it. We
113
+ think of these molecules as having a small body of size w0 and
114
+ a polymer tail of length lp.
115
+ argue that nature has a similar bias and expresses it by
116
+ allowing boubas to form smectics more easily than kikis.
117
+ To keep the model as simple as possible, we restrict our
118
+ attention to two dimensions and simplify the particle
119
+ structures. We consider “kikis” instead of ellipsoids, and
120
+ “boubas” instead of sphero-cylinders. Both the bouba
121
+ and the kiki are of total length l, and have rectangular
122
+ mid-sections with widths w0, but their tips are differ-
123
+ ent: The boubas have semi-circular tips, of radius w0/2,
124
+ whereas the kikis have triangular tips whose height is also
125
+ w0/2. These are sketched in Fig.(1). We model the N-CB
126
+ molecules, with the same spirit of simplicity, as particles
127
+ with a small body from which a flexible polymer tail of
128
+ length lp emerges. For the cases of interest, 5-CB and
129
+ 8-CB, the tail is relatively short, since it only includes
130
+ a few repeating units. This makes the flexible polymer
131
+ a crude model for the tail, as it assumes a very large
132
+ “maluma” (rounded) and “takete” (pointed), although it is most
133
+ famous now with the names bouba and kiki.
134
+ number of monomers. Another simplifying but crude ap-
135
+ proximation we make is to ignore the size of the body, so
136
+ that it has no excluded volume. Nevertheless this should
137
+ not change the physics at the particle tips, which is our
138
+ focus.
139
+ Our approach is built on a simple construction of the
140
+ free energy, which considers one test particle in a given
141
+ background. By supposing that the dominant interaction
142
+ between the particles is their excluded volume, we may
143
+ understand the background as restricting the position of
144
+ the test particle to a particular region. The size of this
145
+ region controls the free energy. This allows interactions
146
+ between large numbers of particles to be accounted for
147
+ qualitatively in much the same way as successful tube
148
+ theories in polymer physics [19] or free volume theory
149
+ [20]. We briefly outline this construction before show-
150
+ ing how it is consistent with virial theory for a simple
151
+ model of the I-N transition. We then apply it to the N-
152
+ S transition for boubas and kikis and, subsequently, N-
153
+ CB molecules. Our calculations demonstrate that boubas
154
+ form smectics at lower densities than kikis, because the
155
+ tip geometry destabilizes the nematic phase. The same
156
+ conclusion applies to the N-CB particles with long tails;
157
+ (N+1)-CB makes a smectic at a lower density than N-
158
+ CB.
159
+ In this missive, we employ a general construction for
160
+ the free energy that has been used before to determine
161
+ the free energy of polymers subject to topological con-
162
+ straints [21, 22]: posit a test particle in state T placed in
163
+ a background in the state B. Later we will give specific
164
+ examples of these states, for example one can imagine T
165
+ to indicate if the test particle is in a “nematic state” or
166
+ a “smectic state”, for example. Assuming that the test
167
+ particle is confined to a given region by the background
168
+ allows us to determine the probability of realizing the
169
+ test particle in some state, given the state of the back-
170
+ ground. We write this conditional probability as P(T |B).
171
+ The probability of realizing the background state, P(B)
172
+ determines in what phase the system lies. For the pur-
173
+ poses of our construction, we suppose it is known and is
174
+ determined by minimizing the free energy.
175
+ We calculate the free energy of the system from Gibbs’
176
+ definition
177
+ βF =
178
+
179
+ B
180
+
181
+ T
182
+ P(T ∩ B) log P(T ∩ B)
183
+ (1)
184
+ where P(T ∩ B) is the probability of realizing T and
185
+ B, and the sums run over all possible states. Applying
186
+ the identity P(T ∩ B) = P(B)P(T |B) and noting that
187
+
188
+ T P(T |B) = 1 we find
189
+ βF =
190
+
191
+ B
192
+ P(B) log P(B) +
193
+
194
+ B,T
195
+ P(B)P(T |B) log P(T |B)
196
+ (2)
197
+ The first term is understood as the free energy of the
198
+ background, βFB, and the second as the free energy of
199
+ a test particle in a given background, βFT (B), averaged
200
+ over all realizations of that background. The total free
201
+
202
+ wo
203
+ wo3
204
+ energy of the system is
205
+ βF = βFB + ⟨βFT ⟩
206
+ (3)
207
+ with angle brackets denoting an average over the back-
208
+ ground.
209
+ II.
210
+ ISOTROPIC-NEMATIC TRANSITION
211
+ Let us demonstrate how this construction can be used
212
+ to study liquid crystal transitions by applying it to the
213
+ simplest model of the I-N transition [15]. This involves
214
+ a two-dimensional gas of rods (rectangles) which can
215
+ only be oriented vertically or horizontally. The rods in-
216
+ teract exclusively via their excluded volume, and it is
217
+ supposed that each accesses every allowed position with
218
+ equal probability. In this model, the isotropic phase is
219
+ when the rods are vertical or horizontal with equal proba-
220
+ bility and the nematic when there is a bias one way or the
221
+ other. Zwanzig studied, via a virial expansion, a three-
222
+ dimensional version of this model where the rods can only
223
+ point along the co¨ordinate axes [23]; it can be specialized
224
+ to two-dimensions where the analysis is relatively simple
225
+ [15]. Here we demonstrate that our approach yields the
226
+ same results as the more traditional approach but it also
227
+ allows us to consider densities beyond which the virial
228
+ expansion fails.
229
+ The first step is to define the test particle and back-
230
+ ground states.
231
+ The state of the test particle is deter-
232
+ mined by both its position and orientation, so we write
233
+ T = (T, r).
234
+ Here r is its position and the variable T
235
+ indicates if it is vertical (V ) or horizontal (H). For the
236
+ background, we suppose that every particle is in the same
237
+ orientation, given by the variable B. To completely spec-
238
+ ify the state, we then need to keep track of the positions
239
+ of all the particles {ri} and we write B = (B, {ri}).
240
+ Next we need the conditional probability P(T |B).
241
+ Given our assumptions, we have
242
+ P(T |B) = αT ΘT B(r, {ri})
243
+ (4)
244
+ Here ΘT B(r, {ri}) is a unit indicator function which picks
245
+ out the allowed positions r of a test particle with orien-
246
+ tation T in a background of particles with orientation B
247
+ and positions {ri}. The constant αT , which depends on
248
+ the test particle orientation, is determined by ensuring
249
+ P(T |B) is appropriately normalised. If the probability
250
+ of the test particle being vertical is p, then
251
+ P(V, r|B) =
252
+ p
253
+ ΩV B
254
+ ΘV B(r, {ri})
255
+ (5a)
256
+ and,
257
+ P(H, r|B) = 1 − p
258
+ ΩHB
259
+ ΘHB(r, {ri})
260
+ (5b)
261
+ for the two possible orientations and
262
+ ΩT B({ri}) =
263
+
264
+ dr ΘT B(r, {ri})
265
+ (6)
266
+ are normalization factors. Using these expressions we can
267
+ directly compute βFT (B) from (2)
268
+ βFT (B) = βF0(p) − p log ΩV B({ri})
269
+ − (1 − p) log ΩHB({ri})
270
+ (7)
271
+ where βF0(p) = p log p+(1−p) log(1−p) is the standard
272
+ entropy of mixing.
273
+ What do we choose for P(B)? The state B = (B, {ri})
274
+ is realized with probability P(B) = ϕ(B)ψ({ri}), with ϕ
275
+ being the orientational probability and ψ the probability
276
+ of the background particle positions. Both are taken to
277
+ be independently normalized. Next we make the “mean-
278
+ field-like” approximation to say that the probability of
279
+ the background being vertical is the same as that prob-
280
+ ability for the test particle, i.e. ϕ(V ) = p. The same
281
+ is of course true for the probability of being horizontal.
282
+ Putting this into (2) the total free energy as a function
283
+ of p is
284
+ βF(p) = 2βF0(p) − p2 ⟨log ΩV V ⟩ − (1 − p)2 ⟨log ΩHH⟩
285
+ − p(1 − p) (⟨log ΩV H⟩ + ⟨log ΩV H⟩)
286
+ (8)
287
+ where ΩV V is the accessible area to a vertical test par-
288
+ ticle in a vertical background, ΩV H is that for vertical
289
+ test particle in a horizontal background, and so forth.
290
+ The angle brackets denote averaging over all positions
291
+ of the background particles. This expression is simpli-
292
+ fied greatly by noting symmetries of the accessible areas,
293
+ namely
294
+ ΩV V = ΩHH ≡ Ω∥
295
+ and
296
+ ΩV H = ΩHV ≡ Ω⊥
297
+ (9)
298
+ It follows that the free energy is, up to a constant,
299
+ βF(p) = 2βF0(p)−2p(p−1)
300
+ ��
301
+ log Ω∥
302
+
303
+ − ⟨log Ω⊥⟩
304
+
305
+ (10)
306
+ Note the factor of two appearing in front of the entropy
307
+ of mixing term, βF0. This arises because, by artificially
308
+ splitting the system into the test particle and the back-
309
+ ground, we are essentially considering two separate pop-
310
+ ulations of particles. As we shall see shortly, this factor
311
+ of two is correct and leads to the same result as the virial
312
+ approach.
313
+ To explore the I-N transition, we must find the equi-
314
+ librium probability of the system being vertical, p∗, by
315
+ minimizing F(p):
316
+ βF ′(p∗) = 0 = 2 log
317
+ p∗
318
+ 1 − p∗ − 2(2p∗ − 1)∆S
319
+ (11)
320
+ where ∆S = ⟨log Ω∥⟩−⟨log Ω⊥⟩. Evidently, when the two
321
+ accessible areas, Ω∥ and Ω⊥, are both equal the only solu-
322
+ tion is p∗ = 1/2. This is always a solution but, depending
323
+ on ∆S, this is not the minimum of the free energy. The
324
+ difficult part of this approach is computing ∆S as a func-
325
+ tion of the density of the system. We will discuss this in
326
+ more detail for the N-S transition but for now, guided
327
+
328
+ 4
329
+ by the knowledge that the I-N transition occurs at low
330
+ density, we make a simple approximation valid in that
331
+ limit. Namely, we employ free volume theory. The test
332
+ particle may access the whole area of the system, A, ex-
333
+ cept those parts where it overlaps with any background
334
+ particle. For sufficiently low densities, the background
335
+ particles all independently exclude some area that does
336
+ not depend on their position.
337
+ Denoting this excluded
338
+ area as aexc
339
+ ∥,⊥ in either the parallel or perpendicular case
340
+ we may write, Ω∥,⊥ = A − Naexc
341
+ ∥,⊥, and it follows that for
342
+ small area density ρ = N/A:
343
+ ∆S = log
344
+ �1 − ρaexc
345
+
346
+ 1 − ρaexc
347
+
348
+
349
+ ≈ ρ
350
+
351
+ aexc
352
+ ⊥ − aexc
353
+
354
+
355
+ (12)
356
+ Using this in (10) yields the same equation for p∗ as would
357
+ be derived using Onsager’s virial expansion approach
358
+ [15]. This demonstrates the consistency of our construc-
359
+ tion with more traditional approaches for studying liquid
360
+ crystal transitions. The advantage of our method is that
361
+ the free energy is written in terms of the area accessi-
362
+ ble to a single particle. This is relatively straightforward
363
+ to calculate (or estimate) even for concentrated systems
364
+ where the virial expansion breaks down. As we shall see,
365
+ this allows us to study the N-S transition in much the
366
+ same way as the I-N transition.
367
+ III.
368
+ NEMATIC-SMECTIC TRANSITION
369
+ An appealing aspect of our treatment of the I-N tran-
370
+ sition was that the continuous range of orientations a
371
+ real particle can access was replaced by two discrete op-
372
+ tions; vertical and horizontal. To get this simplicity to
373
+ carry over to the study of the smectic phase, we want to
374
+ split the continuous range of positions into two distinct
375
+ choices.
376
+ The defining feature of the smectic phase is that the
377
+ particles lie in distinct layers with a given separation. Let
378
+ us say that these layers are all parallel to the x-axis and
379
+ are separated by h. If our particles have total length ℓ,
380
+ then we must have ℓ < h < 2ℓ, for the layers to make
381
+ sense.
382
+ By analogy to the vertical-horizontal two state
383
+ model of the I-N transition, let us suppose that there
384
+ are two sets of such layers, “solid” and “dashed”. The
385
+ spacing between layers of the same type is h, but the
386
+ layers are interleaved so that the distance between a solid
387
+ and a dashed layer is h/2. The particles can be placed on
388
+ either a solid or a dashed layer. Our goal is to find the free
389
+ energy as a function of p, the probability that a particle
390
+ occupies a solid layer, and to determine the equilibrium
391
+ value p∗. When p∗ ̸= 1/2 we have a smectic-A phase,
392
+ and we identify the state when p∗ = 1/2 as the Nematic.
393
+ Why should this be the case when there is still vertical
394
+ layering?
395
+ To see this, let us consider the definition of
396
+ the smectic order parameter, S [2]. The density of the
397
+ particles as a function of y can be expanded as a Fourier
398
+ FIG. 3.
399
+ Sketches of the smectic and nematic phases in our
400
+ model. In both panels the solid and dashed sets of lines are
401
+ shown. In panel (a) the solid lines are preferred to the dashed
402
+ by the particles, i.e p ̸= 1/2. This is the smectic phase. Panel
403
+ (b) has the solid and dashed lines occupied equally, p = 1/2.
404
+ This is the nematic.
405
+ series
406
+ ρ(y) − ¯ρ =
407
+
408
+
409
+ n=1
410
+ ρn cos (2πny/h + δn)
411
+ (13)
412
+ where the n = 0 mode defines the average density, ¯ρ,
413
+ there is an arbitrary phase per mode, δn, and h is the
414
+ aforementioned layer spacing. The coefficient of the n =
415
+ 1 mode defines the smectic order parameter, S ≡ ρ1. The
416
+ nematic and smectic phases in this model are sketched in
417
+ Fig.(3). When the solid and dashed layers are occupied
418
+ with equal probability it is clear that
419
+ ρ(y) − ¯ρ = ρ2 cos
420
+
421
+ 4π y
422
+ h + δ2
423
+
424
+ + · · ·
425
+ (14)
426
+ hence S = 0 identically in this case. While there is now a
427
+ new smectic with half the periodicity of the target phase,
428
+ that is not the smectic for which we are looking! This is
429
+ why we identify this as the nematic phase, even though
430
+ there is a “higher level” layered order present. This sit-
431
+ uation is likewise true for the two-state model of the I-N
432
+ transition: when vertical and horizontal orientations are
433
+ equally likely, the nematic order parameter vanishes, but
434
+ there is still 4-fold orientational order in the system.
435
+ We construct the free energy as a function of p using
436
+ the same test particle and background construction as
437
+ before. The state of the test particle, T = (T, x), tells us
438
+ both whether it sits on a solid or dashed line and its x-
439
+ position on that line and T = S when it is on a solid line
440
+ and T = D when on a dashed line. We assume that all
441
+ allowed x-positions of the test particle, not overlapping
442
+ with a background particle, are equally likely.
443
+ For the background state, B, all of the particles occupy
444
+ the same set of layers; either they are all on solid or all
445
+ on dashed. We also need to keep track of the x-positions
446
+ of all of the particles. This may appear intimidating, but
447
+ notice that we need only keep track of those particles on
448
+ layers which interact with the test particle, because all
449
+ of the others will drop out of the calculation. We refer to
450
+ the set of x-co¨ordinates for these particles by {xi}, the
451
+ range of the index i depends on with how many layers
452
+ the test particle interacts. Again B = S for solid and
453
+
454
+ 5
455
+ FIG. 4.
456
+ An example state of the test particle (picked out in
457
+ red) and the background. Here, the test particle is in state
458
+ T = (D, x), sitting on a dashed layer. The background is in
459
+ state B = (S, {xi}), with all particles on solid layers. The
460
+ set of co¨ordinates {xi} are the x-positions of the background
461
+ particles. Only a selection of the background particles closest
462
+ to the test particle are shown.
463
+ B = D for dashed. Furthermore, we may assume that
464
+ each layer of the background has length L and is occupied
465
+ by N particles. We shall call the line density on each
466
+ layer ν = N/L. All together, we write B = (B, {xi}).
467
+ In Fig.(4) we sketch an example state of the background
468
+ and test particle.
469
+ The conditional probability is
470
+ P(T |B) = p(T) ΘT B (x, {xi})
471
+ ΩT B ({xi})
472
+ (15)
473
+ Here, p(T) is the probability of the test particle being
474
+ on a solid T = S line or dashed T = D lined and
475
+ ΘT B(x, {xi}) is a unit selector function picking out when
476
+ the test particle at position x does not overlap with any
477
+ of the background particles. This latter function deter-
478
+ mines the “accessible length” for the test particle and
479
+ provides the proper normalization
480
+ ΩT B ({xi}) =
481
+ � ∞
482
+ −∞
483
+ dx ΘT B (x, {xi})
484
+ (16)
485
+ Define p(T = S) = p for the probability of the test par-
486
+ ticle being on a solid line so p(T = D) = 1− p. Applying
487
+ the same mean-field approximation as we did for the I-N
488
+ transition we choose p(B = S) = p and p(B = D) = 1−p
489
+ and follow the steps that led to (8) to obtain
490
+ βF(p) =2βF0(p) − p2 ⟨log ΩSS⟩ − (1 − p)2 ⟨log ΩDD⟩
491
+ − p(1 − p) [⟨log ΩSD⟩ + ⟨log ΩSD⟩]
492
+ (17)
493
+ Similar symmetries to (9) apply due to the equivalence of
494
+ shifting the whole system along y by h/2 (solid/dashed
495
+ duality);
496
+ ΩSS = ΩDD ≡ Ωo,
497
+ and
498
+ ΩSD = ΩDS ≡ Ωx.
499
+ (18)
500
+ Up to a constant, the free energy is
501
+ βF(p) = 2βF0(p) − 2p(p − 1) [⟨log Ωo⟩ − ⟨log Ωx⟩] . (19)
502
+ Note how similar this is in structure to (10) for the I-N
503
+ transition. Hence, the equation determining p∗ is pre-
504
+ cisely the same as (11):
505
+ log
506
+ p∗
507
+ 1 − p∗ = (2p∗ − 1)∆S
508
+ (20)
509
+ where we have defined ∆S = ⟨log Ωo⟩ − ⟨log Ωx⟩. We see
510
+ that when ∆S > 2, a smectic phase forms with p∗ ̸= 1/2.
511
+ So the problem all comes down to computing ∆S for the
512
+ boubas and kikis and the N-CBs – the key here is that
513
+ we do not need to rely upon the low-density limit. In the
514
+ following we will estimate ∆S directly in the spirit of the
515
+ Tonks gas [24]. Note that ∆S is a function of the layer
516
+ spacing, h, the density on each layer ν and the average
517
+ density ¯ρ = Number/Area = N/(Lh) = ν/h. Our aim is
518
+ to show that boubas undergo a N-S transition at a lower
519
+ density than kikis, and to elucidate the difference that
520
+ the tip shape makes. For the N-CBs, we would like to
521
+ show that the larger N is, the lower the density at which
522
+ the smectic forms. We do not aim to precisely determine
523
+ the phase boundary in any case, that would require a
524
+ more sophisticated method.
525
+ A.
526
+ Boubas versus Kikis
527
+ The
528
+ whole
529
+ calculation
530
+ boils
531
+ down
532
+ to
533
+ computing
534
+ ⟨log Ωo⟩ and ⟨log Ωx⟩. In the first case, the test parti-
535
+ cle only interacts with those background particles on its
536
+ own layer, because of the restriction h < 2ℓ. This also
537
+ means that the result will be identical for boubas and
538
+ kikis, because the tip geometry is irrelevant when inter-
539
+ acting with mesogens on the same layer. The starting
540
+ point is an expression for Ωo.
541
+ Let x2 be the distance
542
+ between the centers of the closest background particle
543
+ to the left and right of the test particle. The accessible
544
+ length is then simply
545
+ Ωo = x2 − 2w0,
546
+ (21)
547
+ because each background particle excludes a length w0,
548
+ as shown in Fig.(5). So, we must compute
549
+ ⟨log Ωo⟩ =
550
+
551
+ dx2 P(x2) log(x2 − 2w0),
552
+ (22)
553
+ where P(x2) is the probability of realizing the distance
554
+ x2. Each layer is a Tonks gas [24], a one dimensional
555
+ gas of finite sized particles interacting only via excluded
556
+ volume.
557
+ The distance x2 is the next-nearest-neighbor
558
+ distance for such a gas, and its distribution, P(x2) was
559
+ calculated by Tonks. This allows us to explicitly calculate
560
+ (22).
561
+ This is done in Appendix A, but here we make
562
+ an approximation which make our analysis very simple,
563
+ but does not change the outcome. The approximation
564
+ replaces
565
+ ⟨log Ωo⟩ → log⟨Ωo⟩ = log (2/ν − 2w0) ,
566
+ (23)
567
+ where we have used Tonks’ result ⟨x2⟩ = 2/ν.
568
+ Now we turn our attention to ⟨log Ωx⟩. Once again we
569
+ shall replace this with log⟨Ωx⟩, but the complete calcu-
570
+ lation is in Appendix A. In this case, there are no back-
571
+ ground particles on the same layer as the test particle.
572
+ However, the occupied layer above is only vertically sep-
573
+ arated from it by h/2, so it may interact with that layer
574
+
575
+ 6
576
+ FIG. 5.
577
+ A sketch of the test particle (in red) on a solid layer,
578
+ when the background particles are also all on solid layers.
579
+ The two background particles closest to the test particle are
580
+ indicated. These two are separated by a distance x2. Each
581
+ excludes a length of w0 to the test particle, so that the acces-
582
+ sible length to it in this configuration is Ωo = x2 − 2w0.
583
+ and it likewise interacts with the layer beneath. Let us
584
+ refer to the closest background particles on the left and
585
+ right as xL and xR, respectively. We supply these with
586
+ the superscripts a or b to indicate if they come from the
587
+ layer above or below the test particle so that, xa
588
+ L is the
589
+ position of the closest particle on the layer above the test
590
+ particle to its left and so on. Now, we can write Ωx as
591
+ Ωx = min
592
+ i∈(a,b) xj
593
+ R − max
594
+ i∈(a,b) xi
595
+ L − 2w(h)
596
+ (24)
597
+ so that the absolute left and right limits for the test par-
598
+ ticle are set by the background particles closest to it. The
599
+ function w(h) is the length excluded by the particle, its
600
+ effective width, which must be a function of h because of
601
+ the shape of the tip. Note that the function w(h) is dif-
602
+ ferent for different tip shapes. This expression requires
603
+ us to consider the four possible arrangements of back-
604
+ ground particles. One example is for the closest on the
605
+ left to come from the layer above and that on the right to
606
+ come from the layer below. In this situation if we move
607
+ from all the way to the left to all the way to the right, we
608
+ encounter the background particles from different layers
609
+ in the order; below, above, below, above. This situation
610
+ is sketched in Fig.(6). We shall refer to this configura-
611
+ tion as (baba), and all others accordingly. The accessible
612
+ lengths in each case are simply
613
+ (abab) → Ωx = xa
614
+ R − xb
615
+ L − 2w(h),
616
+ (25a)
617
+ (abba) → Ωx = xb
618
+ R − xb
619
+ L − 2w(h),
620
+ (25b)
621
+ (baab) → Ωx = xa
622
+ R − xa
623
+ L − 2w(h),
624
+ (25c)
625
+ (baba) → Ωx = xb
626
+ R − xa
627
+ L − 2w(h).
628
+ (25d)
629
+ FIG. 6.
630
+ The red test particle sits on a solid layer in a
631
+ background of particles on dashed layers.
632
+ The four closest
633
+ background particles to the test particle are shown; two on the
634
+ layer above and two on the layer below. Using the conventions
635
+ of equation (25), this is the configuration (baba).
636
+ Because
637
+ of the shape of the tips, the background particles exclude a
638
+ length of w(h) < w0. The length accessible to the test particle
639
+ is Ωx, as given in (25d).
640
+ By symmetry, all four of these situations are realized
641
+ with equal probability, so that the average ⟨Ωx⟩ over all
642
+ realizations of the background is
643
+ ⟨Ωx⟩ = 1
644
+ 4
645
+
646
+ 2⟨xa
647
+ R − xa
648
+ L⟩ + 2⟨xb
649
+ R − xb
650
+ L⟩ − 8w(h)
651
+
652
+ (26)
653
+ The angle brackets here denote averaging over all posi-
654
+ tions xa,b
655
+ R,L. Notice that the combinations xa,b
656
+ R − xa,b
657
+ L
658
+ are
659
+ both the nearest neighbor distance in the Tonks gas, x1.
660
+ The average of this is, ⟨x1⟩ = 1/ν so that
661
+ log⟨Ωx⟩ = log (1/ν − 2w(h))
662
+ (27)
663
+ We now have an expression for ∆S, and the condition for
664
+ a Smectic phase is
665
+ ∆S = log 2 + log
666
+
667
+ 1 − νw0
668
+ 1 − 2νw(h)
669
+
670
+ > 2
671
+ (28)
672
+ This can be cast as a condition on w(h)
673
+ 2w(h) > 2
674
+ e2 w0 + 1
675
+ 2ν (e2 − 2)
676
+ (29)
677
+ or, assuming that ν is relatively large, a looser condi-
678
+ tion is 2w(h) ≳ w0. This is the result of the more de-
679
+ tailed analysis in Appendix A and is understood simply
680
+ as comparing the length excluded to the test particle by
681
+ the background particles, 2w(h), to that excluded by the
682
+ background to themselves, w0. Crudely speaking, does
683
+ the background allow enough room for the test particle
684
+ to muscle its way in between the layers? Naturally, this
685
+ will depend on the width of the particle’s shoulders ex-
686
+ pressed through its tip geometry. This is quantified by
687
+ understanding the function w(h).
688
+
689
+ 7
690
+ FIG. 7.
691
+ A sketch of two particles on layers separated by
692
+ h/2 colliding at their tips. The particles shown are boubas,
693
+ but the geometry is equivalent for any shape. The symmetric
694
+ tip shape function, s(x), is indicated in orange. The distance
695
+ between the centers of the two particles is shown in green;
696
+ this is the excluded length, w(h). Equation (32) for w(h) is
697
+ found by considering the y-co¨ordinate of the point P where
698
+ the particles meet.
699
+ Consider a generic particle of width w0 whose tip has
700
+ a symmetric shape described by the function y = s(x).
701
+ This function describes the height of the tip above the
702
+ midsection of the particle at a position x along its width.
703
+ We require −w0/2 ≤ x ≤ w0/2, and symmetry enforces
704
+ s(x) = s(−x). We suppose that the full length of the
705
+ particle is ℓ and that the total length of one tip is t. The
706
+ function w(h) is determined by finding the point P, indi-
707
+ cated in Fig.(7), where two oppositely oriented particle
708
+ tips touch if the centers of the particles are vertically
709
+ separated by a distance h/2. Considering only the lower
710
+ particle we have
711
+ P =
712
+
713
+ w(h)/2, ℓ/2 − t + s (w(h)/2)
714
+
715
+ (30)
716
+ and considering the upper particle we find,
717
+ P =
718
+
719
+ w(h)/2, h/2 − ℓ/2 + t − s (−w(h)/2)
720
+
721
+ (31)
722
+ These expressions must both represent the same point,
723
+ hence
724
+ 2s
725
+ �w(h)
726
+ 2
727
+
728
+ = h
729
+ 2 − ℓ + 2t.
730
+ (32)
731
+ If we know the function s(x) describing the tip shape,
732
+ then we can find w(h).
733
+ For boubas and kikis, s(x) is
734
+ particularly simple.
735
+ A bouba has a semi-circular tip of radius w0/2 so
736
+ t = w0/2 and sB(x) =
737
+ �� w0
738
+ 2
739
+ �2 − x2, which leads to
740
+ wB(h) =
741
+
742
+ w2
743
+ 0 − (h/2 − ℓ + w0)2. For kikis, whose tips
744
+ are triangular with height t = w0/2 and so sK(x) =
745
+ w0
746
+ 2 − |x|, and hence wK(h) = ℓ − h
747
+ 2 .
748
+ With the condition (A11) along with the functions
749
+ wB(h) and wK(h) we can find conditions for which values
750
+ of h boubas and kikis form smectics. For boubas
751
+ hB ≤ 2l − (2 −
752
+
753
+ 3)w0 ≈ 2ℓ − 0.27w0
754
+ (33)
755
+ and for kikis
756
+ hK ≤ 2ℓ − w0
757
+ (34)
758
+ Evidently, boubas will form a smectic for a larger layer
759
+ spacing h than kikis.
760
+ Because we can relate h to the
761
+ number density h = ν/¯ρ, this implies that boubas make
762
+ a smectic at a smaller average density ¯ρ than kikis. It is
763
+ essential to note that the entropy difference arises from
764
+ considering test rods that are not on the background
765
+ smectic layer. In this sense, it is the nematic phase that
766
+ is being changed, not the smectic.
767
+ When the tips are
768
+ pointier there is more opportunity for a rod to find space
769
+ in half layer between the smectic layers.
770
+ It is interesting to consider briefly the limiting case
771
+ when the particle tips become flat. Now the particles are
772
+ rectangles with dimensions w0 × ℓ. The effective width
773
+ for these shapes has a step; w(h) = 0 for h ≥ 2ℓ and
774
+ w(h) = w0 for h < 2ℓ. The calculation given above tells
775
+ us that these rectangles form a smectic when the layer
776
+ spacing becomes h < 2ℓ.
777
+ However, applying Frenkel’s
778
+ rescaling argument [2], we can map the rectangles onto
779
+ a system of w0 × w0 squares. We would then say that
780
+ these squares form a smecticas soon as h < 2w0. Noth-
781
+ ing prevents this from happening in principle but such
782
+ a phase is not observed in simulations [25, 26]. Though
783
+ some calculations do predict a smectic phase, it is ex-
784
+ pected to be unstable to fluctuations for infinite systems
785
+ [27]. In our case, when the layer spacing is just larger
786
+ than the transition value 2w0, the system should be “ne-
787
+ matic” with the dashed and solid layers equally occupied.
788
+ Given that these layers are spaced by a little more than
789
+ w0, the squares will be just touching those on the layer
790
+ above or below. In this way, the order in the y-direction
791
+ is the same as would be observed in a crystal but the
792
+ difference between this state and a crystal is the order
793
+ in the x-direction where we have a Tonks gas. It could
794
+ be argued that the instability shown by our calculation
795
+ when the layer spacing is decreased is actually the in-
796
+ stability to forming the crystal. Given that the particles
797
+ can only occupy layers separated by h/2 and h, this in-
798
+ stability will artificially give rise to a smectic phase for
799
+ squares.
800
+ B.
801
+ N-CB Molecules
802
+ Finally, let us consider the N-CB molecules.
803
+ We
804
+ use the same free energy construction as before for the
805
+ boubas and kikis. This time, we must also keep track
806
+ of the degrees of freedom for the test particle and back-
807
+ ground polymer tails. For simplicity we ignore the size
808
+ of the body of the molecule and the self-excluded volume
809
+ of tail. We are lead to exactly the same form of equation
810
+ for p∗ as (20), and exactly the same condition for the
811
+ smectic phase, namely,
812
+ ∆Spoly ≡
813
+
814
+ log Ωpoly
815
+ o
816
+
817
+
818
+
819
+ log Ωpoly
820
+ x
821
+
822
+ ≥ 2.
823
+ (35)
824
+
825
+ P
826
+ 1/2
827
+ s(c)
828
+ l/2 -t
829
+ 98
830
+ Here log Ωpoly
831
+ o
832
+ is the entropy of the polymer tail of the
833
+ test particle when it sits on a solid line in a background
834
+ of particles on solid lines, and log Ωpoly
835
+ x
836
+ is the entropy
837
+ when the test particle is on a dashed (solid) line and the
838
+ background particles are on solid (dashed) lines. In this
839
+ expression, the angle brackets denote averaging over all
840
+ positions of the background particle bodies and all con-
841
+ figurations of their polymer tails. Just as for the boubas
842
+ and kikis, we assume that the particle density on each
843
+ layer is ν.
844
+ To make progress, we make the same approximation as
845
+ before
846
+
847
+ log Ωpoly�
848
+ ≈ log
849
+
850
+ Ωpoly�
851
+ . In this way, each term
852
+ can be understood as the entropy of the test polymer tail
853
+ in a fixed average background. Due to the excluded vol-
854
+ ume of the background polymer tails, the presence of the
855
+ background acts to restrict the accessible configurations
856
+ of test polymer. A simple model for this is to say that
857
+ the test polymer is confined to a rectangular box with di-
858
+ mensions Lx × Ly. The lengths Lx,y depend on whether
859
+ we consider
860
+
861
+ Ωpoly
862
+ o
863
+
864
+ or
865
+
866
+ Ωpoly
867
+ x
868
+
869
+ .
870
+ In the former case, the width in the x-direction is the
871
+ average next-to-nearest neighbor distance in the Tonks
872
+ gas, Lx
873
+ o = 2/ν. The height in the y-direction in this case
874
+ is the distance between the two closest layers to that
875
+ on which the test particle sits, Ly
876
+ o = 2h. In the latter
877
+ case, the width and heights are halved.
878
+ The width is
879
+ the nearest neighbour distance in the Tonks gas Lx
880
+ x =
881
+ 1/ν, and, if the test particle is on a dashed (solid) layer,
882
+ the height is the distance between the two closest solid
883
+ (dashed) layers Ly
884
+ x = h.
885
+ It is now a straightforward polymer physics problem
886
+ [19, 28] to compute the entropies of the polymers in these
887
+ boxes. While we can obtain expressions of
888
+
889
+ Ωpoly
890
+ o
891
+
892
+ and
893
+
894
+ Ωpoly
895
+ x
896
+
897
+ for any polymer chain length lp (see Appendix
898
+ B), let us focus for now on two important limits; polymers
899
+ much smaller than the boxes, and those much longer. In
900
+ the first instance we must have lp ≪ h, ν−1 and we find
901
+ ⟨Ωo⟩ ∼ 2
902
+ ν + O(lp/h),
903
+ and
904
+ ⟨Ωx⟩ ∼ 1
905
+ ν + O(lp/h). (36)
906
+ Here, there is no smectic transition since ∆S ≈ log 2 < 2.
907
+ In the second case, where the polymers are long, we
908
+ must have lp ≫ h, ν−1. This leads to
909
+ ⟨Ωo⟩ ∼ 26
910
+ π3ν e−l2
911
+ p(ν2+h−2)/4,
912
+ (37a)
913
+ and,
914
+ ⟨Ωx⟩ ∼ 25
915
+ π3ν e−l2
916
+ p(ν2+h−2).
917
+ (37b)
918
+ Therefore the smectic condition is
919
+ ∆S = log 2 + 3
920
+ 4l2
921
+ p
922
+ � 1
923
+ h2 + ν2
924
+
925
+ ≥ 2.
926
+ (38)
927
+ In the same way as for the boubas and kikis, this can be
928
+ read as a condition on the layer spacing, h. Namely, for
929
+ FIG. 8.
930
+ ∆S for plotted a function of the ratio of the polymer
931
+ tail length to the layer spacing, lp/h. The blue curve is ∆S
932
+ and the orange line is the value it must exceed for a smectic
933
+ to form. This happens for lp/h indicated by the red dashed
934
+ line. This critical ratio is less than, but close to, unity.
935
+ a smectic, we must have
936
+ h2 ≤
937
+ � 4
938
+ 3l2p
939
+ (2 − log 2) − ν2
940
+ �−1
941
+ ∼ l2
942
+ p
943
+ (39)
944
+ So it follows that particles with longer polymer tails form
945
+ a smectic at larger layer spacings than those with shorter
946
+ tails. This implies that they also form at lower densities.
947
+ The limit of very short polymer tails also showed us that
948
+ there are some tails which are so short that they do not
949
+ form smectics at all. The physical reason for these differ-
950
+ ences is essentially the same as that for the boubas and
951
+ kikis; the longer polymer tails make it harder for particles
952
+ to penetrate between the smectic layers.
953
+ We can also plot the full form of ∆S as a function
954
+ of lp/h at fixed density, assuming that ¯ρ = h−2. This is
955
+ shown in Fig.(8). There we see that the smectic condition
956
+ is met for longer polymers, with values of lp/h ≲ 1.
957
+ At this point one might raise concern about our choice
958
+ of box size. While the widths in the x-direction are clear
959
+ enough, there may be some question about the chosen
960
+ heights. The background may be thought of as layers of
961
+ polymer brushes of some height H < h. It is intuitive to
962
+ expect the these brushes prevent the test polymer from
963
+ reaching all the way to the nearest layer, by virtue of the
964
+ excluded volume interactions. To capture this effect, the
965
+ box height should be reduced by an amount proportional
966
+ to the brush height; h → h − αH, where α < 1. The
967
+ brush height depends on lp and ν and, with reference to
968
+ the simple arguments of Alexander [29] and de Gennes
969
+ [30, 31], as well as the more sophisticated results of Mil-
970
+ ner, Witten, and Cates [32], it must increase when lp or
971
+ ν are increased. This modification only serves to make
972
+ shorter polymer tails worse at making smectics compared
973
+ to longer tails. While more involved treatments of the
974
+ polymer tail entropy are possible and will alter the details
975
+ of our conclusions, we do not expect them to change the
976
+ underlying result that, longer polymer tails de-stabilize
977
+ the nematic phase by making the interstices between lay-
978
+
979
+ △S
980
+ 1.5
981
+ 1.0
982
+ 0.5
983
+ 5 p/h
984
+ 0.2
985
+ 0.4
986
+ 0.6
987
+ 0.8
988
+ 1.09
989
+ ers less accessible.
990
+ IV.
991
+ CONCLUSIONS
992
+ We have explored which particles can form a smectic-A
993
+ phase by means of a simple two dimensional model. In
994
+ this model, we consider a single test particle in a fixed
995
+ background which restricts the positions of the test par-
996
+ ticle to a well defined region. The size of the region de-
997
+ termines the entropy of the test particle and, by means
998
+ of a mean-field-like approximation, the free energy of the
999
+ system. This construction qualitatively includes the in-
1000
+ teractions between a large number of particles allowing
1001
+ it to be applied to higher density systems for which ap-
1002
+ proaches based on the virial expansion are not valid. In
1003
+ particular this allows the nematic-smectic transition to
1004
+ be treated on the same footing as the isotropic-nematic.
1005
+ We demonstrated that our construction is exactly con-
1006
+ sistent with virial approaches to the I-N transition in the
1007
+ low density limit.
1008
+ We considered the N-S transition for two different rigid
1009
+ particle shapes and for N-CB molecules. The rigid par-
1010
+ ticles chosen were boubas and kikis, shown in Fig.(1).
1011
+ These model three dimensional sphero-cylinders and el-
1012
+ lipsoids respectively. It has been noted previously that
1013
+ ellipsoids do not form a smectic but sphero-cylinders do.
1014
+ Similarly it is known that 8-CB forms a smectic while
1015
+ 5-CB does not. Our model for these molecules is a small
1016
+ body with a polymer tail of a given length. It is expected
1017
+ then that longer polymer tails lead to smectics at lower
1018
+ densities.
1019
+ The analysis of our simple model shows that particles
1020
+ with “fatter” tips form smectics at lower densities than
1021
+ those with “thinner�� ones. The reason for this is that
1022
+ fatter tips allow less space between the smectic layers to
1023
+ any rogue interloper trying to make a new home away
1024
+ from its own layer, thereby de-stabilizing the nematic at
1025
+ a given density. This same reasoning applies to the N-
1026
+ CB molecules, where it is the longer polymer tails which
1027
+ make the region between the smectic layers less accessi-
1028
+ ble.
1029
+ Of course the approach that we have taken is only
1030
+ approximate and will not give accurate predictions for
1031
+ the phase boundary. In the same way, we have not ad-
1032
+ dressed the smectic-crystal transition. This would com-
1033
+ plete the picture by demonstrating that for kikis, say,
1034
+ the N-S transition actually happens at a higher density
1035
+ than crystallization, but this is beyond the reach of our
1036
+ simple model. Due to the reduction of degrees of free-
1037
+ dom in two dimensions, the predicted order of the phase
1038
+ transitions discussed may be incorrect. In principle our
1039
+ approach may be followed in 3D, but this could result in
1040
+ sufficiently complicated analyses that our sacrifices made
1041
+ in the name of simplicity may not be worthwhile. Never-
1042
+ theless, our simple arguments elucidate the physics gov-
1043
+ erning which particles can form smectic phases.
1044
+ This work was supported by a Simons Investigator
1045
+ grant from the Simons Foundation to R.D.K.
1046
+ Appendix A: Boubas and Kikis
1047
+ Here we compute ∆S, from equations (19) and (20),
1048
+ relevant for the N-S transition of boubas and kikis with-
1049
+ out the approximation ⟨log Ω⟩ ≈ log⟨Ω⟩.
1050
+ The first step is computing ⟨log Ωo⟩. This is given in
1051
+ equation (22) in terms of P(x2), the distribution of next-
1052
+ nearest neighbour distance in the Tonks gas. This distri-
1053
+ bution may be found exactly [24], and is given by
1054
+ P(x2) = ν2 (x2 − 2w0)
1055
+ (1 − νw0)2
1056
+ exp
1057
+
1058
+
1059
+ ν
1060
+ 1 − νw0
1061
+ (x2 − 2w0)
1062
+
1063
+ (A1)
1064
+ for x2 ≥ 2w0 and zero otherwise. Integrating, we have
1065
+ ⟨log Ωo⟩ = 1 − γ + log 1 − νw0
1066
+ ν
1067
+ ,
1068
+ (A2)
1069
+ where γ being the Euler-Mascheroni constant [33].
1070
+ Next we require ⟨log Ωx⟩.
1071
+ As discussed in the main
1072
+ text, we need to consider the four cases (25).
1073
+ It is
1074
+ convenient for us to write these positions in terms of
1075
+ xi
1076
+ 1 = xi
1077
+ L−xi
1078
+ R, that is the nearest-neighbur distance in the
1079
+ Tonks gas in layer i. It is also useful to introduce the sep-
1080
+ aration of the closest particles on the left, ∆L = xa
1081
+ L −xb
1082
+ L.
1083
+ Note that, in order for “left” and “right” to make sense,
1084
+ we must have |∆L| ≤ xi
1085
+ 1. This gives us
1086
+ (abab) → Ωx = xa
1087
+ 1 − |∆L| − 2w(h)
1088
+ (A3a)
1089
+ (abba) → Ωx = xb
1090
+ 1 − 2w(h)
1091
+ (A3b)
1092
+ (baab) → Ωx = xa
1093
+ 1 − 2w(h)
1094
+ (A3c)
1095
+ (baba) → Ωx = xb
1096
+ 1 − |∆L| − 2w(h)
1097
+ (A3d)
1098
+ All of these are realized with equal probability, so that the averaging ⟨log Ωx⟩ over all realizations of the background
1099
+ results in
1100
+ ⟨log Ωx⟩ = 1
1101
+ 4
1102
+
1103
+ dxa
1104
+ 1P(xa
1105
+ 1)
1106
+
1107
+ dxb
1108
+ 1P(xb
1109
+ 1)
1110
+
1111
+ d∆LP(∆L)
1112
+
1113
+ log(xa
1114
+ 1 − 2w(h)) + log(xb
1115
+ 1 − 2w(h))
1116
+ + log(xa
1117
+ 1 − |∆L| − 2w(h)) + log(xb
1118
+ 1 − |∆L| − 2w(h))
1119
+
1120
+ (A4)
1121
+
1122
+ 10
1123
+ Notice that the distributions P(xa
1124
+ 1) and P(xb
1125
+ 1) are the same and normalized, so that first two terms in the square
1126
+ brackets are the same as are the final pair. This leaves
1127
+ ⟨log Ωx⟩ = 1
1128
+ 2
1129
+
1130
+ dx1P(x1)
1131
+
1132
+ d∆LP(∆L)
1133
+
1134
+ log(x1 − 2w(h)) + log(x1 − |∆L| − 2w(h))
1135
+
1136
+ (A5)
1137
+ To take the integral over ∆L we need its probability distribution. Because the a layer and b layer are independent of
1138
+ each other this must be uniform. The only restriction is on its magnitude |∆L| ≤ x1. Hence,
1139
+ ⟨log Ωx⟩ = 1
1140
+ 2
1141
+
1142
+ dx1P(x1)
1143
+ � x1
1144
+ 0
1145
+ d∆L
1146
+ x1
1147
+
1148
+ log(x1 − 2w(h)) + log(x1 − |∆L| − 2w(h))
1149
+
1150
+ (A6)
1151
+ and so
1152
+ ⟨log Ωx⟩ = −1
1153
+ 2 +
1154
+
1155
+ dx1P(x1)
1156
+ � x1
1157
+ 0
1158
+ log(x1−2w(h)). (A7)
1159
+ This is now written in an analogous way with (22), only
1160
+ now in terms of the distribution of nearest-neighbor sep-
1161
+ arations in a Tonks gas P(x1). This distribution was also
1162
+ worked out by Tonks [24]
1163
+ P(x1) =
1164
+ ν
1165
+ 1 − νw0
1166
+ exp
1167
+
1168
+
1169
+ ν
1170
+ 1 − νw0
1171
+ (x1 − w0)
1172
+
1173
+ (A8)
1174
+ This is straightforward, although this time the result is
1175
+ not quite as compact,
1176
+ ⟨log Ωx⟩ = −1
1177
+ 2 + log 1 − νw0
1178
+ ν
1179
+ +
1180
+ � ∞
1181
+ 0
1182
+ dξ e−ξ log(ξ + α)
1183
+ (A9)
1184
+ with α = ν(w0 − 2w(h))/(1 − νw0). While the ξ integral
1185
+ can be written in terms of incomplete Gamma functions
1186
+ [33] it is not particularly illuminating.
1187
+ Now we have ∆S, and the condition for a stable smec-
1188
+ tic phase is
1189
+ ∆S = 3
1190
+ 2 − γ −
1191
+ � ∞
1192
+ 0
1193
+ dξ e−ξ log(ξ + α) > 2
1194
+ (A10)
1195
+ The parameter α is a function of both the tip shape,
1196
+ and the density.
1197
+ Therefore, this inequality relates the
1198
+ density for the N-S transition to the tip shape. When the
1199
+ integral in this inequality becomes sufficiently negative,
1200
+ the inequality is satisfied. The integral is positive for all
1201
+ positive α, but becomes infinitely negative when α < 0.
1202
+ Thus, given ν ≥ 0 and w0 ≥ 0, the condition required for
1203
+ the smectic phase is,
1204
+ 2w(h) ≥ w0
1205
+ (A11)
1206
+ This is qualitatively the same as the relation (29) derived
1207
+ using the approximations in the main text.
1208
+ Appendix B: N-CB Molecules
1209
+ Here we compute ∆S for the N-S transition of N-CB
1210
+ molecules.
1211
+ The approximation ⟨log Ω⟩ ≈ log⟨Ω⟩ is re-
1212
+ quired here to avoid a complicated self-consistent treat-
1213
+ ment of the polymer. Within this approximation, each
1214
+ term in ∆S can be thought of as the entropy of a poly-
1215
+ mer in a 2D box with dimensions Lx × Ly.
1216
+ Finding
1217
+ this entropy is a standard problem [19] and the start-
1218
+ ing point is the polymer Green’s function G(x, x′; y, y′|n)
1219
+ which solves
1220
+ � ∂
1221
+ ∂n − b2
1222
+ 6
1223
+ � ∂2
1224
+ ∂x2 + ∂2
1225
+ ∂y2
1226
+ ��
1227
+ G(x, x′; y, y′|n)
1228
+ = δ(x − x′)δ(y − y′)δ(n),
1229
+ (B1)
1230
+ and is subject to the boundary conditions at the walls of
1231
+ the box
1232
+ G(x = 0, Lx, x′; y, y′|n) = G(x, x′; |y| = Ly/2, y′|n) = 0.
1233
+ (B2)
1234
+ Here the co¨ordinates x′ and y′ represent the horizontal
1235
+ and vertical positions of the start of the polymer chain.
1236
+ Note that x′ may take any value allowed by the box, but
1237
+ we require y′ = 0. The variable n represents the number
1238
+ of monomers making up the chain and b measures the
1239
+ bond lengths between monomers. The entropy can be
1240
+ computed via
1241
+ Ω(Lx, Ly) =
1242
+ � Lx
1243
+ 0
1244
+ dx
1245
+ � Lx
1246
+ 0
1247
+ dx′
1248
+ � Ly/2
1249
+ −Ly/2
1250
+ dy G(x, x′; y, y′ = 0|n).
1251
+ (B3)
1252
+ The Green’s function is found by separation of variables G = gx(x, x′|n)gy(y|n), with
1253
+ gx(x, x′|n) = 2
1254
+ Lx
1255
+
1256
+
1257
+ m=1
1258
+ sin
1259
+ �mπx
1260
+ Lx
1261
+
1262
+ sin
1263
+ �mπx′
1264
+ Lx
1265
+
1266
+ exp
1267
+
1268
+ −m2 π2nb2
1269
+ 6L2x
1270
+
1271
+ ,
1272
+ (B4a)
1273
+
1274
+ 11
1275
+ and
1276
+ gy(y|n) = 2
1277
+ Ly
1278
+
1279
+
1280
+ m=0
1281
+ cos
1282
+ �(2m + 1)πy
1283
+ Ly
1284
+
1285
+ exp
1286
+
1287
+ −(2m + 1)2 π2nb2
1288
+ 6L2y
1289
+
1290
+ .
1291
+ (B4b)
1292
+ Identifying the length of the polymer chain as l2
1293
+ p = π2nb2/6 and taking the integrals in (B3) we find
1294
+ Ω(Lx, Ly) = 25
1295
+ π3 Lx
1296
+
1297
+ p∈Odd
1298
+
1299
+
1300
+ m=0
1301
+ (−1)m
1302
+ p2(2m + 1) exp
1303
+
1304
+ −l2
1305
+ p
1306
+ � p2
1307
+ L2x
1308
+ + (2m + 1)2
1309
+ L2y
1310
+ ��
1311
+ .
1312
+ (B5)
1313
+ Taking the limit that the polymer is much smaller than the box, lp ≪ Lx, Ly yields
1314
+ Ω(Lx, Ly) ∼ Lx,
1315
+ (B6)
1316
+ For the opposite limit lp ≫ Lx, Ly we find
1317
+ Ω(Lx, Ly) ∼ 25
1318
+ π3 Lx exp
1319
+
1320
+ −lp
1321
+ � 1
1322
+ L2x
1323
+ + 1
1324
+ L2y
1325
+ ��
1326
+ .
1327
+ (B7)
1328
+ These expressions reduce to (36) and (37) of the main text when the appropriate box dimensions are used.
1329
+ [1] L. Onsager, the Effects of Shape on the Interaction of
1330
+ Colloidal Particles, Annals of the New York Academy of
1331
+ Sciences 51, 627 (1949).
1332
+ [2] D. Frenkel, Statistical Mechanics of Liquid Crystals, in
1333
+ Liquids, Freezing and the Glass Transition, edited by
1334
+ J. P. Hansen, D. Levesque, and J. Zinn-Justin (North-
1335
+ Holland, Amsterdam, 1991) pp. 689–762.
1336
+ [3] D. Frenkel, B. M. Mulder, and J. P. McTague, Phase
1337
+ Diagram of a System of Hard Ellipsoids, Physical Review
1338
+ Letters 52, 287 (1984).
1339
+ [4] A. Stroobants, H. N. Lekkerkerker, and D. Frenkel, Evi-
1340
+ dence for Smectic Order in a Fluid of Hard Parallel Sphe-
1341
+ rocylinders, Physical Review Letters 57, 1452 (1986).
1342
+ [5] M. D. Lipkin and D. W. Oxtoby, A systematic density
1343
+ functional approach to the mean field theory of smectics,
1344
+ The Journal of Chemical Physics 79, 1939 (1983).
1345
+ [6] G. T. Evans, Liquid crystal smectic-A phases and issues
1346
+ of geometry, Molecular Physics 76, 1359 (1992).
1347
+ [7] R. Wittmann, M. Marechal, and K. Mecke, Fundamental
1348
+ measure theory for smectic phases: Scaling behavior and
1349
+ higher order terms, Journal of Chemical Physics 141,
1350
+ 10.1063/1.4891326 (2014).
1351
+ [8] R. Wittmann, C. E. Sitta, F. Smallenburg, and H. L¨owen,
1352
+ Phase diagram of two-dimensional hard rods from funda-
1353
+ mental mixed measure density functional theory, Jour-
1354
+ nal of Chemical Physics 147, 10.1063/1.4996131 (2017),
1355
+ arXiv:1708.01248.
1356
+ [9] M. Hosino, H. Nakano, and H. Kimura, Nematic-Smectic
1357
+ Transition in an Aligned Rod System, Journal of the
1358
+ Physical Society of Japan 46, 1709 (1979).
1359
+ [10] B. Mulder, Density-functional approach to smectic order
1360
+ in an aligned hard-rod fluid, Physical Review A 35, 3095
1361
+ (1987).
1362
+ [11] M. P. Taylor, R. Hentschke, and J. Herzfeld, Theory of
1363
+ ordered phases in a system of parallel hard spherocylin-
1364
+ ders, Physical Review Letters 62, 800 (1989).
1365
+ [12] G.
1366
+ W.
1367
+ Gray
1368
+ and
1369
+ A.
1370
+ Mosley,
1371
+ Trends
1372
+ in
1373
+ the
1374
+ ne-
1375
+ matic–isotropic liquid transition temperatures for the
1376
+ homologous
1377
+ series
1378
+ of
1379
+ 4-n-alkoxy-
1380
+ and
1381
+ 4-n-alkyl-4-
1382
+ cyanobiphenyls, J. Chem. Soc., Perkin Trans. 2 2, 97
1383
+ (1976).
1384
+ [13] I. Cacelli, L. De Gaetani, G. Prampolini, and A. Tani,
1385
+ Liquid Crystal Properties of the n -Alkyl-cyanobiphenyl
1386
+ Series from Atomistic Simulations with Ab Initio Derived
1387
+ Force Fields, The Journal of Physical Chemistry B 111,
1388
+ 2130 (2007).
1389
+ [14] S. Belli, A. Patti, M. Dijkstra, and R. van Roij, Polydis-
1390
+ persity stabilizes biaxial nematic liquid crystals, Phys.
1391
+ Rev. Lett. 107, 148303 (2011).
1392
+ [15] R. D. Kamien, Entropic Attraction and Ordering, in Soft
1393
+ Matter, edited by G. Gompper and M. Schick (Wiley-
1394
+ VCH Verlag GmbH & Co. KGaA, Weinheim, Germany,
1395
+ 2014) pp. 1–40.
1396
+ [16] W. K¨ohler, Gestalt Psychology (H. Liveright, New York,
1397
+ 1929).
1398
+ [17] V. S. Ramachandran and E. M. Hubbard, Synaesthesia -
1399
+ a window into perception, thought and language, Journal
1400
+ of Conciousness Studies 8, 3 (2001).
1401
+ [18] A. ´Cwiek, S. Fuchs, C. Draxler, E. L. Asu, D. Dediu,
1402
+ K. Hiovain, S. Kawahara, S. Koutalidis, M. Krifka,
1403
+ P. Lippus, G. Lupyan, G. E. Oh, J. Paul, C. Petrone,
1404
+ R. Ridouane, S. Reiter, N. Sch¨umchen, ´A. Szalontai,
1405
+ ¨O. ¨Unal-Logacev, J. Zeller, M. Perlman, and B. Winter,
1406
+ The bouba/kiki effect is robust across cultures and writ-
1407
+ ing systems, Philosophical Transactions of the Royal So-
1408
+ ciety B: Biological Sciences 377, 10.1098/rstb.2020.0390
1409
+ (2022).
1410
+ [19] M. Doi and S. F. Edwards, The Theory of Polymer Dy-
1411
+ namics (Oxford University Press, 1986).
1412
+
1413
+ 12
1414
+ [20] J. G. Kirkwood, Critique of the free volume theory of
1415
+ the liquid state, The Journal of Chemical Physics 18,
1416
+ 380 (1950).
1417
+ [21] S. F. Edwards, Statistical mechanics with topological
1418
+ constraints: I, Proceedings of the Physical Society 91,
1419
+ 513 (1967).
1420
+ [22] S. F. Edwards, Statistical mechanics with topological
1421
+ constraints: II, Proceedings of the Physical Society 91,
1422
+ 513 (1967).
1423
+ [23] R. Zwanzig, First-order phase transition in a gas of long
1424
+ thin rods, The Journal of Chemical Physics 39, 1714
1425
+ (1963), https://doi.org/10.1063/1.1734518.
1426
+ [24] L. Tonks, The complete equation of state of one, two and
1427
+ Three-dimensional gases of hard elastic spheres, Physical
1428
+ Review 50, 955 (1936).
1429
+ [25] F. H. Ree and R. E. Taikyue, Statistical mechanics of the
1430
+ parallel hard squares in canonical ensemble, The Journal
1431
+ of Chemical Physics 56, 5434 (1972).
1432
+ [26] K. Wojciechowski and D. Frenkel, Tetratic phase in the
1433
+ planar hard square system?, Computational Methods in
1434
+ Science and Technology 10, 235 (2004).
1435
+ [27] S. Belli, M. Dijkstra, and R. Van Roij, Free minimization
1436
+ of the fundamental measure theory functional: Freezing
1437
+ of parallel hard squares and cubes, Journal of Chemical
1438
+ Physics 137, 10.1063/1.4754836 (2012).
1439
+ [28] S. F. Edwards and K. F. Freed, The entropy of a confined
1440
+ polymer. I, Journal of Physics A: General Physics 2, 145
1441
+ (1969).
1442
+ [29] S. Alexander, Polymer adsorption on small spheres. A
1443
+ scaling approach, Journal de Physique 38, 977 (1977).
1444
+ [30] P. De Gennes, Scaling theory of polymer adsorption,
1445
+ Journal de Physique 37, 1445 (1976).
1446
+ [31] P. G. de Gennes, Conformations of Polymers Attached
1447
+ to an Interface, Macromolecules 13, 1069 (1980).
1448
+ [32] S. T. Milner, T. A. Witten, and M. E. Cates, Theory
1449
+ of the Grafted Polymer Brush, Macromolecules 21, 2610
1450
+ (1988).
1451
+ [33] M. Abramowitz and I. A. Stegun, Handbook of Math-
1452
+ ematical Functions with Formulas, Graphs, and Math-
1453
+ ematical Tables (Dover Publications, New York City,
1454
+ 1964).
1455
+
1dAyT4oBgHgl3EQfbvcu/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
1dFIT4oBgHgl3EQf3yva/content/2301.11383v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0198e9b9e635168f90ae989ce318c8446fd22b38f1021ee2b54ad4db0a6a1471
3
+ size 311991
1dFIT4oBgHgl3EQf3yva/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0ff0809723970a2fccf49d0895d4ca499093ea05c8045d1f440600d63e4bff9
3
+ size 174221
1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6690c04dc4b892bae7c025fa9eb31663416aa3f3a48e5977ad570b7bfaa1f9b
3
+ size 621793
1tE4T4oBgHgl3EQfzg0x/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:abdeefe1d680f0006318dfde709d28e5f3c0507e49ce74612b5fc9d273e54fc2
3
+ size 7798829
2NA0T4oBgHgl3EQfM_8t/content/2301.02139v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6f7ac82430185870099795ebb9378babde7c222cacd9b73c34e5a60630be851
3
+ size 487740
2NA0T4oBgHgl3EQfM_8t/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:65553521356e4dd8d9e19b53e97512de99bfba478dbfc790ee13ef903277d7b7
3
+ size 353798
3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d2c810d22749fb25ba6a9b7a6ea2206d432f580adeb2f565307268562309ac3e
3
+ size 131348
3dAzT4oBgHgl3EQfuf2L/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f1b6709c6114a3000c1cb489c67ccd8ac8317abef985ba6e85b677af6032e65
3
+ size 852013
3dAzT4oBgHgl3EQfuf2L/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dad23529bddd535fafc2720b1a0d8e489c75071a137098dff03842ccf518740f
3
+ size 39507
3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46786f755ac2c393e181e3196f2189c222c1bd92da4a58155f8b621edf06df09
3
+ size 1114163
3tE4T4oBgHgl3EQfbQwY/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92eb4757e28287c4842f63d728e1efb312721113dd31561f3d16b0f780d38fad
3
+ size 73355
79E4T4oBgHgl3EQf2g20/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31f7dfbb0059d26db4bf1d8d93577fc625e4638c066855a5bdcbe60833973f1b
3
+ size 4456493
7NAzT4oBgHgl3EQfEvqd/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6372d204acd1448ec9277997d369909dfa9932914a5628bb78cbbd6540114afd
3
+ size 188405
7dE2T4oBgHgl3EQflAdd/content/2301.03984v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0dcb7e91f5b7bb00b9bfa4b81d7096bb1d695f996af777355ea0fcb13d88219c
3
+ size 349312
7dE2T4oBgHgl3EQflAdd/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bac8c41200cee21a5a1283315f8a46d82b1d1c75568873d8718a65804f56cdb2
3
+ size 4653101
7dE2T4oBgHgl3EQflAdd/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40e96067b23ada4aaae8a029d4ad2b23ac88e6f5f1896f0c07777d4ceebaed67
3
+ size 165655
89AyT4oBgHgl3EQf3Pk4/content/tmp_files/2301.00764v1.pdf.txt ADDED
@@ -0,0 +1,1625 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Bimanual Telemanipulation with Force and Haptic Feedback through an
2
+ Anthropomorphic Avatar System
3
+ Christian Lenz∗, Sven Behnke
4
+ Institute for Computer Science VI, Autonomous Intelligent Systems, University of Bonn, Friedrich-Hirzebruch-Allee 8, 53115 Bonn,
5
+ Germany
6
+ Abstract
7
+ Robotic teleoperation is a key technology for a wide variety of applications. It allows sending robots instead of humans
8
+ in remote, possibly dangerous locations while still using the human brain with its enormous knowledge and creativity,
9
+ especially for solving unexpected problems. A main challenge in teleoperation consists of providing enough feedback to
10
+ the human operator for situation awareness and thus create full immersion, as well as offering the operator suitable control
11
+ interfaces to achieve efficient and robust task fulfillment. We present a bimanual telemanipulation system consisting of
12
+ an anthropomorphic avatar robot and an operator station providing force and haptic feedback to the human operator.
13
+ The avatar arms are controlled in Cartesian space with a direct mapping of the operator movements. The measured
14
+ forces and torques on the avatar side are haptically displayed to the operator. We developed a predictive avatar model
15
+ for limit avoidance which runs on the operator side, ensuring low latency. The system was successfully evaluated during
16
+ the ANA Avatar XPRIZE competition semifinals. In addition, we performed in lab experiments and carried out a small
17
+ user study with mostly untrained operators.
18
+ Keywords:
19
+ force feedback control, teleoperation, dual arm manipulation, human robot interaction, real-time control,
20
+ haptic interface
21
+ 1. Introduction
22
+ Published in Robotics and Autonomous Systems, 2022 https://doi.org/10.1016/j.robot.2022.104338
23
+ Teleoperation is a very powerful method to control
24
+ robots.
25
+ It enables humans to explore remote locations
26
+ and to interact there with objects and persons without be-
27
+ ing physically present. Although state-of-the-art methods
28
+ for autonomous control are improving rapidly, the expe-
29
+ rience and instincts of humans, especially for solving un-
30
+ predictable problems is unparalleled so far. The current
31
+ COVID-19 pandemic is a great example of scenarios where
32
+ remote work is highly desirable. Further possible appli-
33
+ cations for teleoperation include disaster response where
34
+ humans can operate remotely and use critical situation-
35
+ saving skills without risking their lives as well as main-
36
+ tenance and healthcare to allow experts operating in re-
37
+ mote locations for manipulation tasks without the need of
38
+ travel. Robotic teleoperation is a popular research area
39
+ which is advanced by multiple robotic competitions like
40
+ the DARPA Robotics Challenge [1] and RoboCup Res-
41
+ cue [2]. These events are a great opportunity to bench-
42
+ mark and evaluate different highly integrated and complex
43
+ systems in standardized test scenarios under comparable
44
+ conditions. Our team NimbRo participates in the ANA
45
+ ∗Corresponding author
46
+ Email addresses: [email protected] (Christian Lenz),
47
+ [email protected] (Sven Behnke)
48
+ Avatar XPRIZE Competition1 with the goal to advance
49
+ the state of the art of such robotic telemanipulation and
50
+ telepresence systems.
51
+ In addition to immersive visualization of the remote
52
+ location, one important aspect is telemanipulation which
53
+ enables the operator to physically interact with the re-
54
+ mote environment.
55
+ This capability is critical for many
56
+ applications—without it, we are constrained to mere telep-
57
+ resence.
58
+ In this work, we present a humanoid bimanual tele-
59
+ manipulation system built from off-the-shelf components,
60
+ which allows a human operator to interact and manipu-
61
+ late in remote locations (see Fig. 1). Our contributions
62
+ include:
63
+ 1. Integrating a bimanual robotic avatar and an upper-
64
+ body operator exoskeleton for Cartesian telemanip-
65
+ ulation,
66
+ 2. an arm and hand controller with force and haptic
67
+ feedback,
68
+ 3. a model-based arm movement prediction to hapti-
69
+ cally display position and velocity limitations of the
70
+ remote avatar in real time,
71
+ 4. an oscillation observer module to detect and suppress
72
+ oscillations introduced in the force-feedback control
73
+ loop, and
74
+ 1https://www.xprize.org/prizes/avatar
75
+ Preprint submitted to Robotics and Autonomous Systems
76
+ January 3, 2023
77
+ arXiv:2301.00764v1 [cs.RO] 2 Jan 2023
78
+
79
+ Figure 1: Our bimanual haptic telemanipulation system: Human operator in operator station (right) inspecting an object during the ANA
80
+ Avatar XPRIZE Competition semifinals through a remote anthropomorphic avatar robot (left).
81
+ 5. subsystem evaluation in lab experiments, a user study,
82
+ as well as our participation at the ANA Avatar XPRIZE
83
+ competition semifinals.
84
+ 2. Related Work
85
+ Teleoperation is a widely investigated research area. A
86
+ leading device (in our context called the Operator Station,
87
+ see Section 3), often with haptic feedback is used to control
88
+ a following device (Avatar Robot) in a remote location.
89
+ The DARPA Robotics Challenge (DRC) 2015 [1] required
90
+ the development of mobile telemanipulation systems. Sev-
91
+ eral research groups, such as DRC-HUBO [3], CHIMP [4],
92
+ RoboSimian [5], and our own entry Momaro [6] presented
93
+ teleoperation systems with impressive manipulation capa-
94
+ bilities. The focus was on completing as many manipu-
95
+ lation and locomotion tasks as possible using a team of
96
+ trained operators.
97
+ Thus, some hardware and software
98
+ components were highly specialized towards solving pre-
99
+ defined tasks. In addition, the robots were not required to
100
+ communicate or interact with other humans in the remote
101
+ location and thus did not feature respective capabilities.
102
+ In contrast, our developed avatar solution was designed for
103
+ interaction with humans in the remote location and the
104
+ operator interface is designed to give intuitive control over
105
+ the robot to a single, possibly untrained operator. Pres-
106
+ ence of the operator in the remote location is prioritized
107
+ over specific task solution skills.
108
+ Passivity control constitutes a large research field in
109
+ the context of teleoperation. Uncertainties of the opera-
110
+ tor’s input dynamics, as well as the remote environment
111
+ are factors which introduce potential instability in control
112
+ loops. Many different passivity control methods tackle the
113
+ stability problem, e.g. [7, 8, 9, 10, 11, 12]. These control
114
+ schemes use the concept of passivity which is a sufficient
115
+ condition to obtain a stable control system. Control sys-
116
+ tems are considered passive if and only if the energy flow-
117
+ ing into the system exceeds the energy flowing out at any
118
+ time. Conveniently, if all subsystems are passive the entire
119
+ system is guaranteed to be passive as well.
120
+ Ryu and Preusche [11] use a time-domain passivity con-
121
+ trol approach to ensure stable teleoperation, handling time
122
+ delay of up to 120 ms. A passivity observer is used to mon-
123
+ itor the energy transferred from the operator to the avatar
124
+ system and vice versa. The passivity controller actively
125
+ dampens the system to ensure passivity and thus stability
126
+ of the system. Our approach uses a similar observer and
127
+ dampening approach to ensure stable teleoperation control
128
+ loops. One drawback of energy-based time-domain passiv-
129
+ ity controllers is the occurrence of position drift, which is
130
+ handled by [13, 14] and improved in a 1 DOF (degree of
131
+ freedom) teleoperation setup by Coelho et al. [15]. The de-
132
+ sign of our control architecture assures position drift-free
133
+ teleoperation by commanding goal poses for each avatar
134
+ hand. Small position derivations can occur due to motion
135
+ execution. However, these are negligible small for our ap-
136
+ plication (see Section 5.3.2). Overall, passivity control can
137
+ suffer from distortion of the displayed environment [16].
138
+ In presence of large communication time delays (in
139
+ the order of seconds) between operator and operator sta-
140
+ tion (e.g., in space teleoperation missions), predictive con-
141
+ trol methods can improve task performance [17]. The re-
142
+ mote robot tries to anticipate human control commands to
143
+ complete partially transmitted instructions. Hauser [18]
144
+ presents a prediction and planning method to assist tele-
145
+ operation without assuming a finite set of candidate tasks.
146
+ Nevertheless, this method is limited to a finite set of task
147
+ types and needs a large number of training data to over-
148
+ come this limitation.
149
+ Our control approach is designed
150
+ to limit the operator only within the underlying hardware
151
+ 2
152
+
153
+ EINALS
154
+ NG2021SEMIF
155
+ TESTING20
156
+ L
157
+ FINALS
158
+ MIFINALS
159
+ JG2021
160
+ STING 2021
161
+ ANAD
162
+ ANA
163
+ RIZE
164
+ NALS
165
+ TAR
166
+ G2021
167
+ INALS
168
+ NG2O2
169
+ ANAD
170
+ NAL
171
+ IG20
172
+ AN
173
+ FINAconstrains, without constraining the task solution itself.
174
+ Some recent approaches use teleoperation interfaces
175
+ which only send commands to the robot without providing
176
+ any force or haptic feedback to the operator [19, 20]. The
177
+ advantage of such systems is clearly the low weight of the
178
+ capture devices which hinder the operator only marginally.
179
+ The downside is missing force or haptic feedback, espe-
180
+ cially for tasks that cannot be solved with visual feedback
181
+ alone, such as difficult peg-in-hole tasks.
182
+ Other methods use custom-developed operator inter-
183
+ faces including force and haptic feedback.
184
+ Klamt et al.
185
+ [21] developed a centaur-like platform for teleoperation in
186
+ disaster response scenarios.
187
+ The proposed teleoperation
188
+ interfaces uses actuators located at the base of the de-
189
+ vice and metallic tendons for torque transmission to the
190
+ actuated joints. This approach benefits from light-weight
191
+ moving parts with low inertia resulting in an easily back-
192
+ drivable system. However, the used metallic tendons in-
193
+ troduce some compliant behavior which need to be con-
194
+ sidered. In our approach, we use off-the-shelf robotic arms
195
+ with actuators located inside the joints.
196
+ We utilize an
197
+ external FT-Sensor to actively follow the operator’s arm
198
+ movement. Guanyang et al. [22] use two haptic devices
199
+ (3DoF rotational and 3DoF translational device) to con-
200
+ trol a robot’s end-effector. Both devices can display con-
201
+ tact forces with high stiffness due to mechanical design.
202
+ However, limited workspace and thus the requirement of a
203
+ motion mapping between operator station and controlled
204
+ robot as well as using two devices to control full 6D motion
205
+ are some drawbacks compared to our approach. In Abi-
206
+ Farrajl et al. [23] the operator station is comparable to our
207
+ approach, but the focus there is placed on haptic feedback
208
+ for balance control of the bipedal humanoid avatar robot.
209
+ Wearable haptic feedback devices [24] overcome the
210
+ workspace constraints generated by stationary devices but
211
+ are limited to displaying contact since they cannot create
212
+ any force towards the operator. Other research projects
213
+ focus on controlling a teleoperation system under time
214
+ delays [25] or with two different kinematic chains on the
215
+ avatar side [26].
216
+ In contrast to the highlighted related research, our ap-
217
+ proach focuses on off-the-shelf components which allow for
218
+ easy replication and maintenance. Furthermore, the used
219
+ robotic arms are replaceable with any other appropriate
220
+ actuators with different kinematic chains, since the whole
221
+ communication between the systems uses only the 6D end-
222
+ effector pose.
223
+ 3. Hardware Setup
224
+ The developed robotic teleoperation system consists
225
+ of an operator station and an avatar robot, as shown in
226
+ Fig. 1. The operator station allows the operator to con-
227
+ trol the avatar from a remote location.
228
+ It includes two
229
+ robotic arms, hand exoskeleton, 3D Rudder foot paddle,
230
+ and a head mounted display with additional sensors. The
231
+ avatar robot is designed to interact with humans and in
232
+ SenseGlove
233
+ Panda Arms
234
+ FT Sensors
235
+ Schunk
236
+ SVH Hand
237
+ Operator
238
+ Avatar
239
+ Figure 2: Operator (left) and avatar (right) arm with used hardware
240
+ components. For simplicity, only the right arm is shown. The axes
241
+ depict the common hand frame which is used for control commands
242
+ and feedback.
243
+ human-made indoor environments and, thus, features an
244
+ anthropomorphic upper body mounted on a mobile base.
245
+ The operator station and the avatar robot are con-
246
+ trolled with a standard desktop computer (Intel i9-9900K
247
+ @ 3.60 GHz, NVidia RTX 2080) each. The communica-
248
+ tion between these computers is achieved by a single Gi-
249
+ gabit Ethernet connection. We successfully tested the sys-
250
+ tem with artificial delay of up to 30 ms in both directions.
251
+ Thus, our system allows operating the avatar from a dis-
252
+ tant location. On the software side, the Robot Operating
253
+ System (ROS) framework is used. Both, the operator sta-
254
+ tion and the avatar robot run their own roscore. We use
255
+ NimbRo Network2 for any communication between both
256
+ roscores. The hardware design of the operator station and
257
+ avatar robot is described in the following.
258
+ 3.1. Avatar Robot
259
+ The avatar robot’s anthropomorphic upper body mim-
260
+ ics the human arm configuration using two 7 DoF Franka
261
+ Emika Panda arms, mounted in slightly V-shaped angle.
262
+ The shoulder height of 110 cm above the floor allows con-
263
+ venient manipulation of objects on a table, as well inter-
264
+ action with both sitting and standing persons. The shoul-
265
+ der width of under 90 cm enables easy navigation through
266
+ standard doors.
267
+ The Panda arms have a sufficient payload of 3 kg and
268
+ a maximal reach of 855 mm. The extra degree of freedom
269
+ gives some flexibility in the elbow position. While the arm
270
+ measures joint torques in each arm joint, we mounted addi-
271
+ tional OnRobot HEX-E 6-Axis force/torque sensors at the
272
+ wrists for more accurate force and torque measurements
273
+ close to the robotic hands, since this is the default loca-
274
+ tion of contact with the robot’s environment (see Fig. 2).
275
+ The avatar robot is equipped with two anthropomorphic
276
+ hands. A 20 DoF Schunk SVH hand is mounted on the
277
+ right side. The nine actuated DoF provide very dexterous
278
+ manipulation capabilities. The left arm features a 5 DoF
279
+ 2https://github.com/AIS-Bonn/nimbro_network
280
+ 3
281
+
282
+ Franka
283
+ Arm
284
+ FT
285
+ Sensor
286
+ Sense
287
+ Glove
288
+ Arm
289
+ Controller
290
+ Hand
291
+ Controller
292
+ 6D pose
293
+ 7DoF torque
294
+ Avatar
295
+ Model
296
+ 6D forces/torques
297
+ 7D torque
298
+ Finger pos.
299
+ Finger forces
300
+ Arm
301
+ Controller
302
+ Hand
303
+ Controller
304
+ Franka
305
+ Arm
306
+ FT
307
+ Sensor
308
+ Schunk
309
+ Hand
310
+ Finger cmds
311
+ Motor currents
312
+ Hand command
313
+ Hand feedback
314
+ 6D pose
315
+ 7DoF positions
316
+ 7DoF torques
317
+ 7DoF positions
318
+ 6D forces/torques
319
+ Operator Station
320
+ Avatar Robot
321
+ Figure 3: Control System overview. For simplicity, only the right side is depicted. The left side is controlled similarly, besides a different
322
+ Hand Controller for the different Schunk hands.
323
+ Schunk SIH hand for simpler but more force-requiring ma-
324
+ nipulation tasks. Both hand types thus complement each
325
+ other.
326
+ The avatar’s head is equipped with two RGB cameras,
327
+ a microphone, and a small screen displaying the animated
328
+ face of the operator [27]. It is attached to the upper body
329
+ using a 6 DoF UFactory xArm for free head movement. In
330
+ addition, two wide-angle RGB cameras are capturing the
331
+ robot’s vicinity for situation awareness during locomotion.
332
+ Further details on the VR remote visualization system are
333
+ provided in [28]. The anthropomorphic upper body has
334
+ been mounted on a movable base, which allows omnidirec-
335
+ tional movement.
336
+ 3.2. Operator Station
337
+ The operator controls the avatar through the Opera-
338
+ tor Station from a comfortable sitting pose. The human
339
+ hand movement is captured with a similar setup as al-
340
+ ready described for the avatar robot: Two Panda arms
341
+ are equipped with an OnRobot HEX-E force/torque sen-
342
+ sor and connected to the operator hand using a SenseGlove
343
+ haptic interaction device. The Panda arms thus serve dual
344
+ purposes: They provide precise 6D human hand pose mea-
345
+ surements for avatar control, as well as the possibility to
346
+ induce force feedback measured by the Avatar onto the hu-
347
+ man wrists. The operator-side force/torque sensor is used
348
+ to measure the slightest operator hand movement to assist
349
+ the operator in moving their arm, reducing the felt mass
350
+ and friction to a minimum.
351
+ The SenseGlove haptic interaction device features 20 DoF
352
+ finger joint position measurements (four per finger) and a
353
+ 1 DoF haptic feedback channel per finger (i.e., when acti-
354
+ vated the human feels resistance, which prevents further
355
+ finger closing movement).
356
+ For visual and audio communication, the operator is
357
+ wearing a head mounted display equipped with eye track-
358
+ ers, audio headset, and a camera viewing the lower face
359
+ part (for more details see [29] and [30]). The avatar loco-
360
+ motion can be controlled using a 3D Rudder foot paddle
361
+ device.
362
+ The Panda arms feature built-in safety measures and
363
+ will stop immediately if force, torque, or velocity limits
364
+ are exceeded. This ensures safe human-robot interactions
365
+ both on the operator and the avatar side.
366
+ 4. Force Feedback Controller
367
+ The control architecture for the force feedback tele-
368
+ operation system consists of two arm and two hand con-
369
+ trollers (one for each the operator and the avatar side). For
370
+ the right and the left arm, each controller pair is running
371
+ separately. The hand controller for the right and left hand
372
+ are slightly different since different robotic hands are used.
373
+ An overview of the control architecture is shown in Fig. 3.
374
+ The arm controllers run with an update rate of 1 kHz and
375
+ the force-torque sensor measurements are captured with
376
+ 500 Hz. The force-torque measurements are smoothed us-
377
+ ing a sensor-sided low-pass filter with a cut-of frequency
378
+ of 15 Hz.
379
+ Since the robot arms are attached from outside to the
380
+ operator’s wrists (see Fig. 3), the kinematic chains of avatar
381
+ and operator station differ, and thus, a joint-by-joint map-
382
+ ping of the operator and avatar arm is not possible. Con-
383
+ sequently, the developed control concept does not rely on
384
+ similar kinematic chains. Instead, a common control frame
385
+ is defined in the middle of the palm of both the human and
386
+ robotic hands, i.e., all necessary command and feedback
387
+ data are transformed such that they refer to this frame
388
+ before being transmitted. The controllers for the opera-
389
+ tor and avatar arms and both hands are described in the
390
+ following subsections.
391
+ 4.1. Operator Arm Controller
392
+ The operator arm controller commands joint torques
393
+ to the Panda arm and reads the current operator hand
394
+ 4
395
+
396
+ robot
397
+ SCHUNKOFigure 4: Unintended lower arm contact: Typical situation in which
398
+ the avatar’s lower arm establishes contact with the environment,
399
+ which cannot be measured by the force-torque sensor. Panda arm
400
+ torques are used to provide the operator with appropriate force feed-
401
+ back.
402
+ tp
403
+ 1
404
+ 2 tp
405
+ 0
406
+ 0
407
+ 0.5
408
+ 1
409
+ dp [rad]
410
+ α
411
+ Figure 5:
412
+ Operator arm torque command (see Eq. (1)) is scaled
413
+ using α to reduce oscillations when getting close to joint position
414
+ or velocity limits. The scalar decreases linearly if the distance to a
415
+ joint position limit dp exceeds the threshold tp. Velocity limits are
416
+ handled analogously.
417
+ pose to generate the commanded hand pose sent to the
418
+ avatar robot.
419
+ The goal is to generate a weightless feel-
420
+ ing for the operator while moving the arm—if no force
421
+ feedback is displayed. Even though the Panda arm has a
422
+ convenient teach-mode using the internal gravity compen-
423
+ sation when zero torques are commanded, the weightless
424
+ feeling can be further improved by using precise external
425
+ force-torque measurements.
426
+ Any contact established by
427
+ the avatar robot with its hands and lower arms is hap-
428
+ tically displayed to the operator. Since the teleoperation
429
+ system has no information about the operator’s intention,
430
+ contact should not be avoided but displayed to the opera-
431
+ tor to keep the human in control of the situation.
432
+ For simplicity, just one arm is mentioned in the follow-
433
+ ing, since the left and right arms are controlled equally.
434
+ 4.1.1. Torque Controller
435
+ Let us denote with τo ∈ R7 the commanded joint torques
436
+ for a particular time step. Then
437
+ τo = ατcmd + βτf + τlo + τla + τno + τco
438
+ (1)
439
+ describes the used torque components (command, force
440
+ feedback, operator limit avoidance, avatar limit avoidance,
441
+ null-space, and Coriolis) which will be explained in the fol-
442
+ lowing. Note that the gravity compensation is not consid-
443
+ ered here, since it is done by the Franka Control Interface
444
+ (FCI) itself.
445
+ The commanded joint torques τcmd to move the Panda
446
+ arm based on the force/torque sensor measurements and
447
+ are defined as
448
+ τcmd = JT F
449
+ (2)
450
+ with J being the body Jacobian relative to the hand frame
451
+ and F ∈ R6 denoting the measured 3D forces and 3D
452
+ torques. The scalars α ∈ R7 are computed by the predic-
453
+ tive limit avoidance module (see Section 4.1.2). Note that
454
+ F has to be corrected taking sensor bias and attached end-
455
+ effector weight into account, as well as transformed into
456
+ the common hand control frame (see Section 4.3).
457
+ The term τf denotes the force feedback induced by
458
+ the avatar-side force-torque sensor and Panda arm torque
459
+ measurements. The scalar β is computed by the oscillation
460
+ observer module (see Section 4.1.3) to prevent possible os-
461
+ cillations in the feedback loop. The force-torque measure-
462
+ ments are used as the primary feedback source. They are
463
+ already bias-corrected and correctly transformed, there-
464
+ fore Eq. (2) can be directly applied analogously to compute
465
+ the induced joint torques τsensor.
466
+ In some situations, especially when performing manip-
467
+ ulation tasks on a table, the avatar establishes contact
468
+ between the lower arm and the environment (for example
469
+ the table, see Fig. 4), which are not visible from the opera-
470
+ tor’s view pose. Since the force-torque sensor and hand are
471
+ above the table, this type of contact cannot be measured
472
+ by the force-torque sensor. Here, we must use the joint
473
+ torque measurements of the Panda arm to give the opera-
474
+ tor feedback about the contact. The Franka API provides
475
+ estimated Cartesian forces fpanda at the end-effector. We
476
+ use
477
+ fdiff = ˆfpanda − ˆfsensor
478
+ (3)
479
+ to calculate the forces in the end-effector frame which
480
+ cannot be measured using the force-torque sensor, where
481
+ ˆfpanda and ˆfsensor are the respective low-pass filtered end-
482
+ effector forces. Finally, we transform the calculated forces
483
+ into the wrist frame and compute
484
+ τf = τsensor + τdiff,
485
+ (4)
486
+ where τdiff ∈ R6 is fdiff ∈ R3 extended with t0 ∈ R3,
487
+ since we ignore torque measurements here.
488
+ 4.1.2. Predictive Limit Avoidance
489
+ Humans can achieve high speeds moving their arm,
490
+ which can exceed the Panda joint velocity limits (up to
491
+ 150◦/s).
492
+ To prevent the operator from exceeding joint
493
+ position or velocity limits of the Panda arm, the term
494
+ τlo ∈ R7 is introduced to apply torques pushing the arm
495
+ away from those limits. For a single joint i, the torque to
496
+ avoid its position limit is defined as
497
+ 5
498
+
499
+ 0
500
+ 1
501
+ 2
502
+ 3
503
+ 4
504
+ 5
505
+ 6
506
+ 7
507
+ 0
508
+ 1
509
+ 2
510
+ 3
511
+ Initial
512
+ Contact
513
+ Time [s]
514
+ Amplitude [N]
515
+ x-Axis
516
+ y-Axis
517
+ z-Axis
518
+ Figure 6: Oscillation observer: Frequency analysis (left) of force feedback measurements from the avatar robot’s right arm while placing a
519
+ vase on a table (right). The initial contact between vase and table is marked. The graph shows the amplitude of the 4th frequency (ca.
520
+ 5.7 Hz) computed using a sliding DFT for each axis over time.
521
+ Figure 7: Arm workspace evaluation. Left: Initial arm setup, simi-
522
+ lar to the avatar side. Right: Optimized mounting pose. Turquoise
523
+ (reachable) and red (not reachable) arrows depict the captured hu-
524
+ man left-hand poses. The coordinate axes depict the operator sitting
525
+ pose.
526
+ τ i
527
+ lo−position =
528
+
529
+ γp( 1
530
+ di
531
+ p − 1
532
+ tp ),
533
+ di
534
+ p < tp
535
+ 0,
536
+ else
537
+ (5)
538
+ with γp being a constant scalar, di
539
+ p being the distance for
540
+ joint i to its closer position limit, and tp = 10◦ being a
541
+ threshold how close a joint must be at a limit to activate
542
+ this behavior. τ i
543
+ lo−velocity is calculated analogously with
544
+ tv = 40◦/sec. Together, τlo is defined as
545
+ τlo = τlo−position + τlo−velocity.
546
+ (6)
547
+ The torques τlo exhibit hyperbolical growth when getting
548
+ closer to respective limits. Since the operator-side force-
549
+ torque sensor will measure the generated limit avoidance
550
+ torques, the arm can end up oscillating, especially being
551
+ close to one or multiple position limits. Thus, the torques
552
+ τcmd, which are influenced by the force-torque sensor, are
553
+ scaled per joint by α, which is defined as
554
+ α = max(0, min(1, 2 min(dp
555
+ tp
556
+ , dv
557
+ tv
558
+ ) − 1)).
559
+ (7)
560
+ The scalar α is designed to decrease linearly and reach zero
561
+ when the limit is approached halfway after activating the
562
+ limit avoidance (see Fig. 5). This reduces the commanded
563
+ torques τcmd enough when approaching a position or ve-
564
+ locity limit and prevents the oscillation.
565
+ As already mentioned, the operator station and avatar
566
+ robot have different kinematic arm chains. Therefore, avoid-
567
+ ing position and velocity limits on the operator side does
568
+ not guarantee limit avoidance on the avatar side. Calculat-
569
+ ing the joint torques preventing joint limits on the avatar
570
+ robot in a similar way is not beneficial, since the feedback
571
+ information would arrive with high latency (mainly be-
572
+ cause of the delay generated by motion execution on the
573
+ avatar side). To overcome this issue, we use a model of
574
+ the avatar inside the operator arm controller to predict the
575
+ avatar arm movement for the next time step and calculate
576
+ the needed joint torques to prevent joint limit violations
577
+ in advance.
578
+ The current operator hand pose is used as the desired
579
+ goal pose for the avatar arm in the common gripper frame.
580
+ We estimate the avatar arm joint configuration reaching
581
+ this goal pose using inverse kinematics (IK). The latest re-
582
+ ceived avatar arm joint positions are used to initialize the
583
+ IK solver. The current joint velocities are approximated by
584
+ a low-pass filtered version of the joint position first deriva-
585
+ tives. Having estimated the joint positions and velocities,
586
+ we can apply the same avoidance strategy as described
587
+ above (see Eq. (6)). Finally, the resulting joint torques
588
+ can be transformed into the common 6D hand frame us-
589
+ ing the pseudoinverse of the Jacobian transpose (JT
590
+ A)+ and
591
+ back to joint torques for the operator arm with JT
592
+ O. This
593
+ results in
594
+ τla = JT
595
+ O(JT
596
+ A)+τla−model.
597
+ (8)
598
+ The remaining two torque components from Eq. (1)
599
+ are τno and τco. The term τno is a null-space optimiza-
600
+ tion term which pulls the elbow towards a defined conve-
601
+ nient pose in the null-space of the Jacobian. The result
602
+ is a more human-like elbow pose to maximize the oper-
603
+ 6
604
+
605
+ ator workspace by pushing the arm away from singulari-
606
+ ties. The last torque component is the Coriolis term τco
607
+ obtained by the Panda model.
608
+ 4.1.3. Oscillation Observer
609
+ Our telemanipulation control system as described above
610
+ is designed as simple as possible, but yet powerful to give
611
+ the operator control over the robot along with necessary
612
+ force feedback. The downside is, that our controller can-
613
+ not promise any stability, resulting in oscillations when
614
+ certain contact forces are measured. We address this is-
615
+ sue by observing the force feedback channel, detecting any
616
+ critical oscillations, and reducing the feedback introduced
617
+ into the system.
618
+ The sliding Discrete Fourier-Transformation (DFT) [31,
619
+ 32] method is used to analyze the force feedback channel
620
+ per axis. Since we did not measure isolated oscillations in
621
+ the torque channels, analyzing the 3D forces is sufficient.
622
+ The force measurements are sampled with around 1 kHz.
623
+ We experimentally investigated the oscillation frequency
624
+ to obtain suitable DFT parameters and the observed fre-
625
+ quency band. In the experiments, we provoked vibrations
626
+ in the system by placing a vase harshly on a table. The
627
+ used sliding DFT has resolution of 512 and uses the Han-
628
+ ning window to minimize spectral leakage.
629
+ We observe
630
+ correlation between the generated oscillation and the am-
631
+ plitude of the 4th frequency (ca. 5.7 Hz), is depicted in
632
+ Fig. 6.
633
+ In each time step, the force measurements of all three
634
+ axes are analyzed using separate sliding DFTs. Next, the
635
+ combined result is computed using the Euclidean norm
636
+ over all axes amplitudes. The resulting value v is clamped
637
+ using experimentally obtained parameters (min = 163 and
638
+ max = 500) and scaled to be within the interval [0, 1].
639
+ Finally, the scalar β = 1 − v is used to scale the force
640
+ feedback provided to the operator (see Section 4.1.1). The
641
+ change rate of β is limited to gradually remove and re-
642
+ store the force feedback, s.t. the observer needs 0.8 s to
643
+ fully remove the feedback in case of detected oscillations
644
+ and 1.7 s to reach the normal force feedback control sta-
645
+ tus again. This gentle oscillation elimination behavior is
646
+ as little noticeable for the operator as possible. Note that
647
+ Fig. 6 shows the oscillation without feedback reduction.
648
+ The computation of β and the effect oscillation damping
649
+ are evaluated in Section 5.1.
650
+ The avatar arm controller commands the Panda arm
651
+ of the avatar robot to follow the commanded 6D pose by
652
+ sending joint torques τa ∈ R7 to the Franka Control Inter-
653
+ face. The commanded torque is defined as
654
+ τa = τcmd + τinit + τna + τca,
655
+ (9)
656
+ where τcmd ∈ R7 and τinit ∈ R7 are calculated to reach
657
+ the goal pose during operation and initialization, respec-
658
+ tively (see below). The components τna and τca are the
659
+ null-space optimization and Coriolis terms similar to τno
660
+ and τco, as described in Section 4.1. The convenient elbow
661
+ poses used for the null-space optimization is defined such
662
+ that the elbows are slightly stretched out. This generates
663
+ a more human-like arm configuration and keeps the arm
664
+ away from singularities in the elbow joints. Other singular-
665
+ ities do not occur due to the nature of the arm kinematic
666
+ in the usable workspace and other joint position limits.
667
+ Therefore, no special singularity handling is needed here.
668
+ The goal torques τcmd and τinit are generated using
669
+ a Cartesian impedance controller that emulates a spring–
670
+ damper system. Its equilibrium point is the 6D goal pose
671
+ commanded by the operator station in the common hand
672
+ frame:
673
+ τcmd = JT (−S∆p − D(J ˙q)),
674
+ (10)
675
+ where J denotes the zero Jacobian, S ∈ R6×6 and D ∈
676
+ R6×6 denote the stiffness and damping matrix, ∆p ∈ R6 is
677
+ the error in translation and rotation between the current
678
+ and goal end-effector pose, and ˙q ∈ R7 denotes the current
679
+ joint velocities. τinit is only used for a safe initialization
680
+ procedure (see below) and generated similarly using the
681
+ current end-effector pose. The stiffness and damping pa-
682
+ rameters symbols and their values are empirically tuned
683
+ to achieve some compliance while still closely following the
684
+ operator command.
685
+ When no goal pose command is received, the controller
686
+ keeps commanding the current arm pose to remain in a safe
687
+ state. This happens when the operator station is not ac-
688
+ tive or if a communication breakdown occurs (no operator
689
+ command within the last 100 ms). After receiving a com-
690
+ mand, the controller performs an initialization procedure
691
+ which fades linearly between the current and the new re-
692
+ ceived goal pose. This prevents the robot from generating
693
+ high torques to suddenly reach the new, possibly distant
694
+ pose. This initialization process takes about 3 s.
695
+ The Panda arm stops immediately when excessive forces
696
+ are measured, for example when there is unintended con-
697
+ tact that exceeds force/torque thresholds. This feature is
698
+ necessary to operate in a safe way. After notification of
699
+ the human operator, the avatar arm controller can restart
700
+ the arm automatically. After performing the initialization
701
+ procedure, normal teleoperation can be resumed.
702
+ 4.2. Hand Control
703
+ The operator finger movements are captured using two
704
+ SenseGlove haptic interaction devices. Four separate fin-
705
+ ger joint measurements are provided per finger. Since the
706
+ Schunk SVH and SIH robotic hands on the avatar have
707
+ nine and five actuated joints, respectively, only the cor-
708
+ responding joint measurements are selected and linearly
709
+ mapped to the avatar hands.
710
+ While this mapping does
711
+ not precisely replicate hand postures – this is impossible
712
+ anyways due to the different kinematic structure – it gives
713
+ the operator full control over all hand DoFs.
714
+ Both hands provide feedback in the form of motor cur-
715
+ rents, which is used to provide per-finger haptic feedback
716
+ to the operator. The SenseGlove brake system is switched
717
+ on or off depending on a pre-defined current threshold.
718
+ 7
719
+
720
+ 0
721
+ 0.5
722
+ 1
723
+ 1.5
724
+ 2
725
+ 2.5
726
+ −1.05
727
+ −1
728
+ −0.95
729
+ ∆t
730
+ Time [s]
731
+ q1 [rad]
732
+ Figure 8: Predictive avatar model: Measured joint position for the
733
+ first joint of the right avatar arm during a grasping motion (green)
734
+ and predicted joint position for predictive limit avoidance (blue).
735
+ Both measurements are captured on the operator side. Communica-
736
+ tion between both systems and motion execution generate a delay of
737
+ up to 200 ms (∆t), which is compensated by the predictive model.
738
+ 4.3. Force-Torque Sensor Calibration
739
+ Different end-effectors (SenseGloves, Schunk SIH, Schunk
740
+ SVH hand, and corresponding 3D printed mounting adapters)
741
+ are mounted on each of the four involved force-torque sen-
742
+ sors. In addition, sensor bias results in barely usable raw
743
+ sensor data. Thus, each sensor is calibrated separately to
744
+ compensate these effects. To this end, 20 data samples
745
+ from different sensor poses are collected. Each sample in-
746
+ cludes the gravity vector in the sensor frame and the mean
747
+ of 100 sensor measurements from a static pose. A standard
748
+ least squares solver [33] is used to estimate the force-torque
749
+ sensor parameters, i.e., the force and torque bias and the
750
+ mass and center of mass of all attached components. The
751
+ same parameters including the additional mass and center
752
+ of mass transformation resulting by the force-torque sensor
753
+ itself is used to configure the built-in gravity compensation
754
+ of the Panda arms. The calibration is performed once after
755
+ hardware changes at the end-effectors or if the bias drift is
756
+ too large. This method does not compensate for bias drift
757
+ during usage, but is sufficient for our application.
758
+ 5. Evaluation
759
+ In addition to our participation at the ANA Avatar
760
+ XPRIZE Competition semifinals, we performed multiple
761
+ experiments along with a small user study to evaluate the
762
+ developed teleoperation system in our lab environment.
763
+ 5.1. Quantitative Experiments
764
+ In a first experiment, we evaluated the operator arm
765
+ workspace. 2,959 different 6D left hand poses were cap-
766
+ tured from a sitting person performing typical arm mo-
767
+ tions with a VR tracker on their wrist.
768
+ In addition to
769
+ hand poses with a fully extended arm, most of the poses
770
+ are directly in front of the person, likely to be performed
771
+ during manipulation tasks. First, the initial arm mount-
772
+ ing pose (motivated by the avatar configuration) of the op-
773
+ erator arm was evaluated. Each captured hand pose was
774
+ marked as reachable if an inverse kinematic solution for the
775
+ 0
776
+ 50
777
+ 100
778
+ 150
779
+ 200
780
+ 250
781
+ −10
782
+ 0
783
+ 10
784
+ Ours
785
+ Time [s]
786
+ Force [N]
787
+ 0
788
+ 50
789
+ 100
790
+ 150
791
+ 200
792
+ 250
793
+ −10
794
+ 0
795
+ 10
796
+ Panda
797
+ Time [s]
798
+ Force [N]
799
+ Figure 9: Operator arm movement: Force in z-direction (in the di-
800
+ rection of the human palm) needed to move the arm in the same
801
+ repetitive motion with our operator arm controller running (top)
802
+ and using only the Panda built-in gravity compensation (bottom).
803
+ Table 1: Operator arm workspace analysis
804
+ Mounting Pose
805
+ Reached
806
+ Missed
807
+ Reached [%]
808
+ Initial
809
+ 1,795
810
+ 1,164
811
+ 60.6 %
812
+ Optimized
813
+ 2,848
814
+ 111
815
+ 96.3 %
816
+ arm was found. In a second step, different arm mounting
817
+ poses were sampled to find an optimal pose, maximizing
818
+ the number of reachable hand poses (see Fig. 7). Table 1
819
+ reports quantitative results.
820
+ The resulting arm mount-
821
+ ing pose drastically increases the overlap (from 60.6% to
822
+ 96.3%) between the human operator’s and the avatar’s
823
+ arm workspace, but requires a more complicated mounting
824
+ setup.
825
+ In a second experiment, we evaluated the predictive
826
+ limit avoidance module. Avatar arm position and veloc-
827
+ ity limits are haptically displayed via joint forces to the
828
+ operator.
829
+ Since measured joint positions and velocities
830
+ are afflicted with latency generated by network commu-
831
+ nication (<1 ms) and motion execution using the Carte-
832
+ sian impedance controller, which can reach up to 200 ms
833
+ (see Section 4.1.1), the operator control predicts the avatar
834
+ arm joint configuration. Fig. 8 shows the measured and
835
+ predicted joint position of the first right arm joint. The
836
+ prediction compensates the delays, which allows for instan-
837
+ taneous feedback of the avatar arm limits to the operator.
838
+ In a third experiment, we investigated the forces and
839
+ torques required to move the operator station arm, since
840
+ this directly affects operator fatigue.
841
+ We measured the
842
+ forces and torques applied to the arm by reading the force-
843
+ torque sensor measurements.
844
+ The arm was moved in a
845
+ comparable manner once with only the Panda gravity com-
846
+ pensation enabled (i.e., τcmd = 0 see Eq. (1)) and a second
847
+ 8
848
+
849
+ 0
850
+ 0.5
851
+ 1
852
+ 1.5
853
+ 2
854
+ 2.5
855
+ 3
856
+ 0
857
+ 0.5
858
+ 1
859
+ 1.5
860
+ Initial
861
+ Contact
862
+ Active Observer
863
+ Time [s]
864
+ Amplitude [N]
865
+ x-Axis
866
+ y-Axis
867
+ z-Axis
868
+ (a)
869
+ 0
870
+ 0.5
871
+ 1
872
+ 1.5
873
+ 2
874
+ 2.5
875
+ 3
876
+ 0
877
+ 0.5
878
+ 1
879
+ 1.5
880
+ 2
881
+ 2.5
882
+ Initial
883
+ Contact
884
+ Inactive Observer
885
+ Time [s]
886
+ Amplitude [N]
887
+ x-Axis
888
+ y-Axis
889
+ z-Axis
890
+ (b)
891
+ 0
892
+ 0.5
893
+ 1
894
+ 1.5
895
+ 2
896
+ 2.5
897
+ 3
898
+ −1
899
+ 0
900
+ 1
901
+ 2
902
+ Time [s]
903
+ Joint Torque [Nm]
904
+ 0
905
+ 0.5
906
+ 1
907
+ Initial
908
+ Contact
909
+ Active Observer
910
+ β [0, 1]
911
+ τ7
912
+ β
913
+ (c)
914
+ 0
915
+ 0.5
916
+ 1
917
+ 1.5
918
+ 2
919
+ 2.5
920
+ 3
921
+ −1
922
+ 0
923
+ 1
924
+ 2
925
+ 3
926
+ Time [s]
927
+ Joint Torque [Nm]
928
+ 0
929
+ 0.5
930
+ 1
931
+ Initial
932
+ Contact
933
+ Inactive Observer
934
+ β [0, 1]
935
+ τ7
936
+ β
937
+ (d)
938
+ Figure 10: Oscillation observer module. Placing a vase onto a ta-
939
+ ble results in the depicted amplitude response for 5.7 Hz for each
940
+ Cartesian axis ((a) and (b)). We performed the experiment twice
941
+ with comparable executions. First, the oscillation observer was ac-
942
+ tive ((a) and (c)). In the second execution, the observer was inactive
943
+ ((b) and (d)). The corresponding joint torques commanded to the
944
+ operator Panda arm are plotted exemplary for the 7th joint (c) and
945
+ (d). The force feedback is scaled with β (c) which is computed from
946
+ the oscillation observer. Note that β shown in (d) was computed but
947
+ not used during execution.
948
+ time with our arm force controller running. In Fig. 9, the
949
+ forces in the direction of one exemplary axis are shown.
950
+ The results demonstrate the advantage of using an exter-
951
+ nal force-torque sensor to generate a more unencumbered
952
+ feeling for the operator while using the system.
953
+ In the last experiment, we analyzed the oscillation ob-
954
+ server module (see Section 4.1.3), which observes the avatar
955
+ force feedback channel to detect and prevent oscillations in
956
+ the closed-loop controller. We used the avatar system to
957
+ place a metal vase harshly on a table (see Fig. 6). The exe-
958
+ cuted joint torques on the operator side along with the fre-
959
+ quency responses of the force-feedback measurements are
960
+ shown in Fig. 10. Although the oscillations are not elim-
961
+ inated immediately (c), reducing the feedback gain yields
962
+ the expected oscillation suppression. The oscillation is de-
963
+ tected by analyzing the frequency response shown in (a)
964
+ and (b). The gain β is reduced with the maximum allowed
965
+ rate to a value of 0.1 within 0.8 s. Next, the operator does
966
+ not feel the contact forces as strong, the oscillation stops
967
+ (shown in the exemplary torque command for the 7th oper-
968
+ ator arm joint (c)), and the gain is increased again, which
969
+ brings back the force feedback for the operator. In conclu-
970
+ sion, the oscillation observer module is a necessary part
971
+ of our simple force-feedback control loop to ensure safe
972
+ operation.
973
+ 5.2. User Study
974
+ Our goal was to create an immersive and intuitive feel-
975
+ ing for operation at remote locations using our system.
976
+ Since humans have their very own preferences and sub-
977
+ jective feelings of how good or intuitive certain control
978
+ mechanisms perform, we carried out a user study with
979
+ untrained operators, comparing different telemanipulation
980
+ approaches. Due to the COVID-19 pandemic, we were lim-
981
+ ited to immediate colleagues as subjects, which severely
982
+ constrained the scope of our study. Although all partici-
983
+ pants had a rough idea of the system, they controlled it
984
+ for the first time during this study.
985
+ A total of five participants were asked to perform a bi-
986
+ manual peg-in-hole manipulation task. First, two different
987
+ objects had to be grasped: a small aluminum bar and a 3D
988
+ printed part with a hole. Afterwards, the bar should be
989
+ inserted into the hole (see Fig. 11). The avatar robot was
990
+ already placed in front of a table and both objects were
991
+ within the avatar’s workspace. Participants controlled the
992
+ robot using the operator station located within the same
993
+ room. Only the HMD with the avatar’s perspective was
994
+ used for visual feedback. The task was challenging due to
995
+ very little friction between the finger and objects and tight
996
+ tolerances, which required precise insertion alignment.
997
+ Each participant performed the task three times with
998
+ the following control modes:
999
+ 1. Operator station with force feedback enabled,
1000
+ 2. Operator station with force feedback disabled, and
1001
+ 3. VR controllers.
1002
+ 9
1003
+
1004
+ Figure 11: User study with untrained operator: Both objects had to
1005
+ be grasped and the bar had to be inserted into the hole.
1006
+ Table 2: User study success rates and timings.
1007
+ Telemanipulation mode
1008
+ Success
1009
+ Completion time [s]
1010
+ Mean
1011
+ StdDev
1012
+ 1) Exoskeleton with feedback
1013
+ 4/5
1014
+ 119.0
1015
+ 117.1
1016
+ 2) Exoskeleton w/o feedback
1017
+ 5/5
1018
+ 123.0
1019
+ 88.4
1020
+ 3) VR controllers
1021
+ 3/5
1022
+ 126.3
1023
+ 25.8
1024
+ In the first control mode, all system components were
1025
+ active as described in this article. Any force and haptic
1026
+ feedback were disabled for the second control mode, i.e.
1027
+ the operator had to rely on visual feedback only. In the
1028
+ third control mode two HTC Vive VR controllers were
1029
+ used as input devices. As long as the trigger button was
1030
+ pressed, the corresponding avatar arm followed the con-
1031
+ troller movement. A different button was programmed to
1032
+ toggle between a defined closed and open hand pose.
1033
+ A maximum of 5 min were granted to solve the task be-
1034
+ fore it was marked as a failure. An object dropped outside
1035
+ the reachable workspace resulted in a failed trial. Objects
1036
+ dropped onto the table within the workspace of the avatar
1037
+ could be grasped again with no penalty. The participants
1038
+ were allowed to test each control mode about 1 min before
1039
+ starting the measured test.
1040
+ Table 2 reports the quantitative results of the user
1041
+ study. The time needed to successfully solve the task is
1042
+ quite similar over the different telemanipulation modes.
1043
+ From these experiments, we realized that the completion
1044
+ time was highly influenced by external factors, such as
1045
+ losing the object due to not enough finger friction or dif-
1046
+ ferent grasping and object handling solutions, which are
1047
+ unrelated to the used operator interface. In addition, hu-
1048
+ mans can easily compensate missing force feedback using
1049
+ visual feedback. All three unsuccessful trials failed due to
1050
+ reaching the maximum experiment time of 5 min. To gen-
1051
+ erate a more meaningful statement based on performance
1052
+ scores, more test samples are needed.
1053
+ In addition to these quantitative measurements, we
1054
+ asked the participants to answer a short questionnaire
1055
+ about each telemanipulation mode with answers from the
1056
+ 1-7 Likert scale (see Fig. 12). The results show that es-
1057
+ pecially the feeling of handling the objects and intuitive
1058
+ finger control was subjectively much better using the Op-
1059
+ erator Station.
1060
+ Enabling the force and haptic feedback
1061
+ gives the highest advantage when picking up the objects
1062
+ Table 3: Avatar Arm safety stops
1063
+ Scenario 1
1064
+ Scenario 2
1065
+ Scenario 3
1066
+ Day 1
1067
+ Exceeded
1068
+ Exceeded
1069
+ None
1070
+ torque limits
1071
+ vel. limits
1072
+ Day 2
1073
+ None
1074
+ None
1075
+ Software failure
1076
+ from the table. This can be explained by the additional
1077
+ feedback indicating contact between the hand and the ta-
1078
+ ble which cannot be perceived visually due to occlusions.
1079
+ All participants reported to feel safe and comfortable us-
1080
+ ing the system. Although the experiment time was limited,
1081
+ this suggests non-excessive cognitive load on the operator.
1082
+ Overall, the user study showed that our developed sys-
1083
+ tem is intuitive to use for untrained operators. Even though
1084
+ the force and haptic feedback did not increase the success
1085
+ rate of solving the task, it increases the immersive feeling
1086
+ as shown by the questionnaire.
1087
+ 5.3. ANA Avatar XPRIZE Competition
1088
+ Our avatar system was evaluated by independent judges
1089
+ during the ANA Avatar XPRIZE competition semifinals
1090
+ over two days3.
1091
+ At each competition day, a first judge
1092
+ acted as the operator who performed 18 tasks in three
1093
+ predefined scenarios together with the second judge act-
1094
+ ing as the so called “recipient”. The recipient was sitting
1095
+ with the avatar robot at a table in a different room about
1096
+ 100 m away from the operator control room. Communi-
1097
+ cation of any kind between both judges was only possible
1098
+ through the avatar system. Both judges were trained to
1099
+ get comfortable with our system during the first hour of a
1100
+ trial. In the second hour, the judges had to solve the tasks
1101
+ without any instructions or support from our team. Thus,
1102
+ the judges were no experts but slightly more trained com-
1103
+ pared to the completely untrained operators in our user
1104
+ study (see Section 5.2). Fig. 13 shows the three scenar-
1105
+ ios: Solving a jigsaw puzzle, celebrating a business deal,
1106
+ and exploring an artifact from a historical exhibition with
1107
+ the robot’s senses. The enabled force feedback (Control
1108
+ Mode 1, see Section 5.2) enabled the operator to feel some
1109
+ texture of the artifact. The judges evaluated the avatar
1110
+ system with a major focus on the ability to convey human
1111
+ senses, actions, and presence in the remote location in real
1112
+ time. At both competition days, the same three scenar-
1113
+ ios were tested by different judges. The better score per
1114
+ scenario (max. 30 points per scenario) counted towards
1115
+ the final score. Additional 10 points were given based on
1116
+ a video submitted prior to the semifinal showing the sys-
1117
+ tem in action in our lab4. Our team NimbRo archived an
1118
+ almost perfect score of 99 out of 100 points, which placed
1119
+ us first in the semifinal.
1120
+ 3Video material about the competition can be found here: http:
1121
+ //ais.uni-bonn.de/nimbro/AVATAR/
1122
+ 4https://www.youtube.com/watch?v=yGwJIDBMolk
1123
+ 10
1124
+
1125
+ 1
1126
+ 2
1127
+ 3
1128
+ 4
1129
+ 5
1130
+ 6
1131
+ 7
1132
+ Did you feel safe and comfortable?
1133
+ Did you feel like you were handling the objects directly?
1134
+ Was it easy to control the robot?
1135
+ Was it intuitive to control the arms?
1136
+ Was it intuitive to control the fingers?
1137
+ Did you find and recognize the objects?
1138
+ Was it easy to grasp the objects?
1139
+ Was it easy to fit the objects together?
1140
+ VR
1141
+ Without FF
1142
+ With FF
1143
+ better
1144
+ Figure 12: Qualitative results of our user questionnaire. We show the median, lower and upper quartile (includes interquartile range), lower
1145
+ and upper fence, outliers (marked with •) as well as the average value (marked with ×), for each aspect as recorded in our questionnaire.
1146
+ Figure 13: ANA Avatar XPRIZE Semifinal Scenarios (left) and the
1147
+ used objects (right).
1148
+ The three scenarios were: Solving a jigsaw
1149
+ puzzle (top), celebrating a business deal (middle), and exploring an
1150
+ artifact (bottom).
1151
+ We analyzed the recorded data during the official semi-
1152
+ final test runs to obtain more insight on the technical per-
1153
+ formance of our system. In the following, we report some
1154
+ results.
1155
+ 5.3.1. Safety System
1156
+ One important aspect of our avatar robot is to operate
1157
+ safely next to and in cooperation with humans. Therefore,
1158
+ the avatar arm controller stops the Panda arm immedi-
1159
+ ately when unexpected high forces/torques are measured
1160
+ (see Section 4.1.1).
1161
+ This behavior was activated three
1162
+ times during the performance of the six official scenarios
1163
+ (see Table 3).
1164
+ At Day 1, both arm stops were triggered by exceeded
1165
+ torque and velocity limits. In the first case, operator and
1166
+ recipient performed a powerful ’high five’ gesture, which
1167
+ resulted in a rapid increase of torque applied to the robot,
1168
+ exceeding the joint torque limits.
1169
+ The predictive limit
1170
+ avoidance module was not able to prevent the operator
1171
+ executing such high contact forces, since the operator arm
1172
+ torque limits were reached as well. In the second scenario
1173
+ on Day 1, the operator waved to the recipient. The dif-
1174
+ ferent kinematic chains of the operator and avatar arm
1175
+ demand high joint accelerations and speeds on the avatar
1176
+ side for relative low operator arm speeds and accelerations.
1177
+ The limit predictive module tried to slow down the oper-
1178
+ ator waving speed, but humans can overcome these ap-
1179
+ plied feedback forces to always give the operator control
1180
+ for safety reasons. Here, the operator learned immediately
1181
+ continuing waving in a slightly slower and less acceleration-
1182
+ needing manner. At the second competition day, the right
1183
+ avatar arm stopped once while not actively being moved.
1184
+ After some investigation, we found a software failure which
1185
+ led to a very unlikely race condition. This was easily fixed
1186
+ after the competition.
1187
+ In all cases, the avatar and operator robot continued
1188
+ to work in a safe manner, which is necessary for human-
1189
+ robot interactions. Our intuitive feedback to the operator
1190
+ 11
1191
+
1192
+ NimbRo Avatar
1193
+ Avatar XPRIZE Semifinals
1194
+ XPRIZE
1195
+ ANA
1196
+ AVATAR
1197
+ SEMIFINALS
1198
+ TESTING202
1199
+ TINALO21
1200
+ ANAD
1201
+ ANAD
1202
+ ANA
1203
+ VOALONimbRo Avatar
1204
+ X
1205
+ Avatar XPRIZE Semifinals
1206
+
1207
+ XPRIZE
1208
+ ANA
1209
+ AVATAR
1210
+ SEMIFINALS
1211
+ TESTING2
1212
+ IAL021
1213
+ ANAD
1214
+ AR
1215
+ ANAD
1216
+ OTRNNimbRo Avatar
1217
+ X
1218
+ Avatar XPRIZE Semifinals
1219
+ XPRIZE
1220
+ ANA
1221
+ AVATAR
1222
+ SEMIFINALS
1223
+ TESTING2O
1224
+ 口日
1225
+ FINAL021
1226
+ ANAD
1227
+ RTAR
1228
+ ANAL
1229
+ AR
1230
+ ANAC
1231
+ ORNFigure 14: Workspace analysis for all scenarios (solving a puzzle, celebrating a business deal, exploring an artifact) during the ANA Avatar
1232
+ XPRIZE Competition semifinal. Top: Hand positions of the avatar (blue) and operator (magenta) depicted in the common frame. Bottom:
1233
+ Operator VR perspective.
1234
+ 0
1235
+ 20
1236
+ 40
1237
+ 60
1238
+ 80
1239
+ 100
1240
+ 6.4
1241
+ 6.6
1242
+ 6.8
1243
+ Temporal Offset [ms]
1244
+ Translation Error [mm]
1245
+ Figure 15: Avatar arm latency analysis. The graph shows the re-
1246
+ sulting mean translation error, comparing the current avatar hand
1247
+ position with an operator command shifted into the future.
1248
+ The
1249
+ mean is calculated over both arms and all six official competition
1250
+ scenarios. The minimum can be found at 44 ms, which is the esti-
1251
+ mated round-trip latency in our system — including network and
1252
+ motion execution.
1253
+ gave instantaneous situation awareness and allowed the
1254
+ operator to react and learn immediately to continue the
1255
+ ongoing tasks.
1256
+ 5.3.2. Arm Controller Accuracy
1257
+ After optimizing the usable workspace for the opera-
1258
+ tor (see Section 5.1), Fig. 14 shows the used workspace
1259
+ for all three scenarios at the second competition day. The
1260
+ required workspaces during the competition tasks were rel-
1261
+ atively low, such that we had no issues with our system.
1262
+ We used the same data to analyze the spatial and tem-
1263
+ poral accuracy of our arm controller, i.e., how precise and
1264
+ fast the avatar arms follow the operator commands during
1265
+ an evaluation task.
1266
+ The measured operator and avatar hand positions were
1267
+ captured with 1000 Hz over the duration of the six official
1268
+ competition scenarios.
1269
+ We then calculated the transla-
1270
+ tion error between the corresponding target and goal posi-
1271
+ tion for each arm, resulting in a 6.6 mm mean translation
1272
+ error.
1273
+ In addition, we investigated the estimated delay
1274
+ in our arm controller including network communication,
1275
+ controller runtime, and motion execution. We compared
1276
+ the measured hand position of the avatar with the up to
1277
+ 100 ms delayed operator’s arm control position and cal-
1278
+ culated the mean translation error as explained above.
1279
+ Fig. 15 shows the mean translation error over all com-
1280
+ petition tasks and both arms for a given temporal offset.
1281
+ The minimum translation error is archived using a tempo-
1282
+ ral shift of 44 ms, resulting in a mean translation error of
1283
+ 12
1284
+
1285
+ oetaatUg
1286
+ FrameRat
1287
+ Normal Cell Count
1288
+ Cel su
1289
+ Calor
1290
+ Line Stylt
1291
+ 160: 160:164
1292
+ Apha
1293
+ Ran
1294
+ oflst
1295
+ 0,; 0; 0
1296
+ /Status O1
1297
+ Syle
1298
+ Decay Tim
1299
+ Colo
1300
+ 21:641
1301
+ /Statux:O1
1302
+ Style
1303
+ oint
1304
+ Alpha
1305
+ DecayTim
1306
+ Position Trarsformt
1307
+ YZ258; 255; 255
1308
+ DefaultLigh
1309
+ Cel su
1310
+ LineStyl
1311
+ Colot
1312
+ 160: 160:164
1313
+ Apha
1314
+ oflst
1315
+ Ryle
1316
+ ColorTr
1317
+ Y
1318
+ Colo
1319
+ 21:641
1320
+ /Statux:O1
1321
+ Style
1322
+ Sine (Pioels
1323
+ DecayTim
1324
+ Trarsfom
1325
+ Yoefaut Ugn
1326
+ tormal CellCoun
1327
+ Cel su
1328
+ Line Stylt
1329
+ 160: 160:164
1330
+ Apha
1331
+ oflst
1332
+ 0,; 0; 0
1333
+ Decay Tim
1334
+ Y
1335
+ Colo
1336
+ 21:641
1337
+ /Statux:O1
1338
+ Style
1339
+ oint
1340
+ Alpha
1341
+ Position Trarsformt
1342
+ YNimbRo Avatar
1343
+ Avatar XPRIZE Semifinals
1344
+ XPRIZE
1345
+ ANA
1346
+ AVATAR
1347
+ SEMIFINALS
1348
+ TESTING2O2
1349
+ 口口日
1350
+ TINALO21
1351
+ ANAD
1352
+ VRTAR
1353
+ ANAD
1354
+ ANAD
1355
+ ORNNimbRo Avatar
1356
+ X
1357
+ Avatar XPRIZE Semifinals
1358
+ 区1
1359
+ XPRIZE
1360
+ ANA
1361
+ AVATAR
1362
+ SEMIFINALS
1363
+ TESTING2
1364
+ TI0A2021
1365
+ ANAD
1366
+ ANAD
1367
+ AR
1368
+ ANAD
1369
+ ORINimbRo Avatar
1370
+ Avatar XPRIZE Semifinals
1371
+ XPRIZE
1372
+ ANA
1373
+ AVATAR
1374
+ SEMIFINALS
1375
+ TESTING 20
1376
+ 口日
1377
+ TI0AL021
1378
+ ANAL
1379
+ RIZAR
1380
+ ANA
1381
+ ANAD
1382
+ OTRNTable 4: Translation error [mm] at ANA Avatar XPRIZE semifinals.
1383
+ Day 1
1384
+ Day 2
1385
+ Scenario
1386
+ 1
1387
+ 2
1388
+ 3
1389
+ 1
1390
+ 2
1391
+ 3
1392
+ Left Arm
1393
+ 6.4
1394
+ 5.7
1395
+ 7.9
1396
+ 4.9
1397
+ 3.8
1398
+ 4.8
1399
+ 44 ms shift1
1400
+ 5.8
1401
+ 5.3
1402
+ 7.6
1403
+ 4.6
1404
+ 3.6
1405
+ 4.5
1406
+ Right Arm
1407
+ 13.2
1408
+ 9.5
1409
+ 6.4
1410
+ 6.3
1411
+ 5.5
1412
+ 5.1
1413
+ 44 ms shift1
1414
+ 12.5
1415
+ 9.2
1416
+ 6.0
1417
+ 6.3
1418
+ 5.2
1419
+ 4.8
1420
+ 1 Delay between operator station and avatar (see Fig. 15)
1421
+ 6.3 mm. The results with and without temporal shift for
1422
+ both arms and all tasks are reported in Table 4. Notice-
1423
+ able is the comparably large error for the right arm during
1424
+ Scenario 1 and 2 at the first competition day. This can be
1425
+ explained by the executed safety stops (see Section 5.3.1).
1426
+ It takes about two seconds to safely fade the avatar arm
1427
+ to the commanded pose. This results in possibly large po-
1428
+ sition errors. Overall, the observed errors are rather small
1429
+ and not noticeable for the operator and could potentially
1430
+ be decreased by an even more accurate calibration on a
1431
+ whole-system level. The estimated round-trip execution
1432
+ latency of 44 ms could be considered for future system im-
1433
+ provement.
1434
+ 6. Discussion & Conclusion
1435
+ This work presented a bimanual telemanipulation sys-
1436
+ tem consisting of an exoskeleton-based operator control
1437
+ station and an anthropomorphic avatar robot. Both com-
1438
+ ponents communicate using our force and haptic feedback
1439
+ controller, which allows safe and intuitive teleoperation for
1440
+ both the operator and persons directly interacting with the
1441
+ avatar. The control method is agnostic to the kinematic
1442
+ parameters and uses only a common Cartesian hand frame
1443
+ for commands and feedback.
1444
+ Using the predictive limit
1445
+ avoidance avatar model, arm limits for both the operator
1446
+ and avatar side can be force-displayed to the operator with
1447
+ low latency. The oscillation observer and damper mod-
1448
+ ules detect and suppress oscillations in the feedback con-
1449
+ trol loop by reducing the force feedback gains temporarily.
1450
+ Additional force-torque sensors measurements are used to
1451
+ generate a weightless feeling for the operator while moving
1452
+ the arms without establishing contact on the avatar side.
1453
+ We evaluated the system using a user study with un-
1454
+ trained operators as well as in lab experiments. In addi-
1455
+ tion, the system performed very well at the ANA Avatar
1456
+ XPRIZE Competition Semifinals, scoring 99 out of 100
1457
+ points. This demonstrates the intuitiveness and reliability
1458
+ of our system and its control methods.
1459
+ Acknowledgments
1460
+ This work has been funded by the Deutsche Forschungs-
1461
+ gemeinschaft (DFG, German Research Foundation) under
1462
+ Germany’s Excellence Strategy,
1463
+ EXC-2070 - 390732324 - PhenoRob.
1464
+ References
1465
+ [1] E. Krotkov, D. Hackett, L. Jackel, M. Perschbacher, J. Pippine,
1466
+ J. Strauss, G. Pratt, C. Orlowski, The DARPA Robotics Chal-
1467
+ lenge finals: Results and perspectives, Journal of Field Robotics
1468
+ 34 (2017) 229–240.
1469
+ [2] H. Kitano, S. Tadokoro, I. Noda, H. Matsubara, T. Takahashi,
1470
+ A. Shinjou, S. Shimada,
1471
+ RoboCup Rescue: Search and res-
1472
+ cue in large-scale disasters as a domain for autonomous agents
1473
+ research, in: International Conference on Systems, Man, and
1474
+ Cybernetics (SMC), volume 6, 1999, pp. 739–743.
1475
+ [3] P. Oh, K. Sohn, G. Jang, Y. Jun, B.-K. Cho, Technical overview
1476
+ of team DRC-Hubo@UNLV’s approach to the 2015 DARPA
1477
+ Robotics Challenge finals, Journal of Field Robotics 34 (2017)
1478
+ 874–896.
1479
+ [4] A. Stentz, H. Herman, A. Kelly, E. Meyhofer, G. C. Haynes,
1480
+ D. Stager, B. Zajac, J. A. Bagnell, J. Brindza, C. Dellin, et al.,
1481
+ CHIMP, the CMU highly intelligent mobile platform, Journal
1482
+ of Field Robotics 32 (2015) 209–228.
1483
+ [5] S. Karumanchi, K. Edelberg, I. Baldwin, J. Nash, J. Reid,
1484
+ C. Bergh, J. Leichty, K. Carpenter, M. Shekels, M. Gildner,
1485
+ et al., Team RoboSimian: semi-autonomous mobile manipula-
1486
+ tion at the 2015 DARPA Robotics Challenge finals, Journal of
1487
+ Field Robotics 34 (2017) 305–332.
1488
+ [6] M.
1489
+ Schwarz,
1490
+ T.
1491
+ Rodehutskors,
1492
+ D.
1493
+ Droeschel,
1494
+ M.
1495
+ Beul,
1496
+ M. Schreiber,
1497
+ N. Araslanov,
1498
+ I. Ivanov,
1499
+ C. Lenz,
1500
+ J. Ra-
1501
+ zlaw, S. Sch¨uller, D. Schwarz, A. Topalidou-Kyniazopoulou,
1502
+ S. Behnke,
1503
+ NimbRo Rescue: Solving disaster-response tasks
1504
+ with the mobile manipulation robot Momaro, Journal of Field
1505
+ Robotics 34 (2017) 400–425.
1506
+ [7] D. Lee, K. Huang, Passive-set-position-modulation framework
1507
+ for interactive robotic systems, IEEE Transactions on Robotics
1508
+ 26 (2010) 354–369.
1509
+ [8] R. J. Anderson, M. W. Spong, Bilateral control of teleoperators
1510
+ with time delay, in: IEEE International Conference on Systems,
1511
+ Man, and Cybernetics (SMC), volume 1, 1988, pp. 131–138.
1512
+ [9] B. Hannaford, J.-H. Ryu, Time-domain passivity control of hap-
1513
+ tic interfaces, IEEE Transactions on Robotics and Automation
1514
+ 18 (2002) 1–10.
1515
+ [10] P. Berestesky, N. Chopra, M. W. Spong,
1516
+ Discrete time pas-
1517
+ sivity in bilateral teleoperation over the internet,
1518
+ in: IEEE
1519
+ International Conference on Robotics and Automation (ICRA),
1520
+ volume 5, 2004, pp. 4557–4564.
1521
+ [11] J.-H. Ryu, C. Preusche, Stable bilateral control of teleoperators
1522
+ under time-varying communication delay: Time domain passiv-
1523
+ ity approach, in: IEEE International Conference on Robotics
1524
+ and Automation (ICRA), 2007, pp. 3508–3513.
1525
+ [12] S. Hirche, M. Buss, Human-oriented control for haptic teleop-
1526
+ eration, Proceedings of the IEEE 100 (2012) 623–647.
1527
+ [13] V. Chawda, M. K. O’Malley,
1528
+ Position synchronization in bi-
1529
+ lateral teleoperation under time-varying communication delays,
1530
+ IEEE/ASME Transactions on Mechatronics 20 (2014) 245–253.
1531
+ [14] J. Artigas, J.-H. Ryu, C. Preusche, Position drift compensa-
1532
+ tion in time domain passivity based teleoperation,
1533
+ in: 2010
1534
+ IEEE/RSJ International Conference on Intelligent Robots and
1535
+ Systems, IEEE, 2010, pp. 4250–4256.
1536
+ [15] A. Coelho, H. Singh, T. Muskardin, R. Balachandran, K. Kon-
1537
+ dak,
1538
+ Smoother position-drift compensation for time domain
1539
+ passivity approach based teleoperation, in: IEEE/RSJ Inter-
1540
+ national Conference on Intelligent Robots and Systems (IROS),
1541
+ 2018, pp. 5525–5532.
1542
+ [16] X. Xu, Haptic communication for time-delayed teleoperation,
1543
+ Ph.D. thesis, Technische Universit¨at M¨unchen, 2017.
1544
+ 13
1545
+
1546
+ [17] R. R. Burridge, K. A. Hambuchen, Using prediction to enhance
1547
+ remote robot supervision across time delay,
1548
+ in:
1549
+ IEEE/RSJ
1550
+ International Conference on Intelligent Robots and Systems
1551
+ (IROS), 2009, pp. 5628–5634.
1552
+ [18] K. Hauser, Recognition, prediction, and planning for assisted
1553
+ teleoperation of freeform tasks, Autonomous Robots 35 (2013)
1554
+ 241–254.
1555
+ [19] Y. Wu, P. Balatti, M. Lorenzini, F. Zhao, W. Kim, A. Ajoudani,
1556
+ A teleoperation interface for loco-manipulation control of mobile
1557
+ collaborative robotic assistant, IEEE Robotics and Automation
1558
+ Letters (RAL) 4 (2019) 3593–3600.
1559
+ [20] D. Rakita, B. Mutlu, M. Gleicher, A motion retargeting method
1560
+ for effective mimicry-based teleoperation of robot arms,
1561
+ in:
1562
+ ACM/IEEE International Conference on Human-Robot Inter-
1563
+ action (HRI), 2017, pp. 361–370.
1564
+ [21] T. Klamt, M. Schwarz, C. Lenz, L. Baccelliere, D. Buon-
1565
+ giorno, T. Cichon, A. DiGuardo, D. Droeschel, M. Gabardi,
1566
+ M. Kamedula, N. Kashiri, A. Laurenzi, D. Leonardis, L. Mura-
1567
+ tore, D. Pavlichenko, A. S. Periyasamy, D. Rodriguez, M. So-
1568
+ lazzi, A. Frisoli, M. Gustmann, J. Roßmann, U. S¨uss, N. G.
1569
+ Tsagarakis, S. Behnke, Remote mobile manipulation with the
1570
+ Centauro robot: Full-body telepresence and autonomous oper-
1571
+ ator assistance, Journal of Field Robotics 37 (2020) 889–919.
1572
+ [22] L. Guanyang, G. Xuda, L. Lingzhi, W. Yan, Haptic based tele-
1573
+ operation with master-slave motion mapping and haptic ren-
1574
+ dering for space exploration, Chinese Journal of Aeronautics 32
1575
+ (2019) 723–736.
1576
+ [23] F. Abi-Farrajl, B. Henze, A. Werner, M. Panzirsch, C. Ott,
1577
+ M. A. Roa, Humanoid teleoperation using task-relevant haptic
1578
+ feedback, in: IEEE/RSJ International Conference on Intelligent
1579
+ Robots and Systems (IROS), 2018, pp. 5010–5017.
1580
+ [24] J. Bimbo, C. Pacchierotti, M. Aggravi, N. Tsagarakis, D. Prat-
1581
+ tichizzo, Teleoperation in cluttered environments using wear-
1582
+ able haptic feedback, in: IEEE/RSJ International Conference
1583
+ on Intelligent Robots and Systems (IROS), 2017, pp. 3401–3408.
1584
+ [25] G. Niemeyer, J.-J. E. Slotine, Telemanipulation with time de-
1585
+ lays, The International Journal of Robotics Research 23 (2004)
1586
+ 873–890.
1587
+ [26] F. Porcini, D. Chiaradia, S. Marcheschi, M. Solazzi, A. Frisoli,
1588
+ Evaluation of an exoskeleton-based bimanual teleoperation ar-
1589
+ chitecture with independently passivated slave devices,
1590
+ in:
1591
+ IEEE International Conference on Robotics and Automation
1592
+ (ICRA), 2020, pp. 10205–10211.
1593
+ [27] A. Rochow, M. Schwarz, M. Schreiber, S. Behnke,
1594
+ VR fa-
1595
+ cial animation for immersive telepresence avatars,
1596
+ in:
1597
+ 2022
1598
+ IEEE/RSJ International Conference on Intelligent Robots and
1599
+ Systems (IROS), IEEE, 2022, pp. 2167–2174.
1600
+ [28] M. Schwarz, S. Behnke, Low-latency immersive 6D televisual-
1601
+ ization with spherical rendering, in: IEEE-RAS 20th Interna-
1602
+ tional Conference on Humanoid Robots (Humanoids), 2021.
1603
+ [29] M. Schwarz, C. Lenz, A. Rochow, M. Schreiber, S. Behnke,
1604
+ NimbRo Avatar: Interactive immersive telepresence with force-
1605
+ feedback telemanipulation, in: IEEE/RSJ International Con-
1606
+ ference on Intelligent Robots and Systems (IROS), 2021.
1607
+ [30] M. Schwarz, S. Behnke,
1608
+ Low-latency immersive 6d televisu-
1609
+ alization with spherical rendering,
1610
+ in: 2020 IEEE-RAS 20th
1611
+ International Conference on Humanoid Robots (Humanoids),
1612
+ IEEE, 2021, pp. 320–325.
1613
+ [31] E. Jacobsen, R. Lyons, The sliding DFT, IEEE Signal Process-
1614
+ ing Magazine 20 (2003) 74–80.
1615
+ [32] E. Jacobsen, R. Lyons,
1616
+ An update to the sliding dft,
1617
+ IEEE
1618
+ Signal Processing Magazine 21 (2004) 110–111.
1619
+ [33] D. Kubus, T. Kroger, F. M. Wahl, On-line rigid object recog-
1620
+ nition and pose estimation based on inertial parameters,
1621
+ in:
1622
+ IEEE/RSJ International Conference on Intelligent Robots and
1623
+ Systems (IROS), 2007, pp. 1402–1408.
1624
+ 14
1625
+
89AyT4oBgHgl3EQf3Pk4/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
8NAyT4oBgHgl3EQfc_et/content/tmp_files/2301.00294v1.pdf.txt ADDED
@@ -0,0 +1,1685 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Modular Hamiltonian of the scalar field in the semi
2
+ infinite line: dimensional reduction for spherically
3
+ symmetric regions
4
+ Marina Huerta∗ and Guido van der Velde†
5
+ Centro Atómico Bariloche, 8400-S.C. de Bariloche, Río Negro, Argentina
6
+ Abstract
7
+ We focus our attention on the one dimensional scalar theories that result from dimen-
8
+ sionally reducing the free scalar field theory in arbitrary d dimensions. As is well known,
9
+ after integrating out the angular coordinates, the free scalar theory can be expressed as
10
+ an infinite sum of theories living in the semi-infinite line, labeled by the angular modes
11
+ {ℓ, ⃗m}. We show that their modular Hamiltonian in an interval attached to the origin is, in
12
+ turn, the one obtained from the dimensional reduction of the modular Hamiltonian of the
13
+ conformal parent theory in a sphere. Remarkably, this is a local expression in the energy
14
+ density, as happens in the conformal case, although the resulting one-dimensional theories
15
+ are clearly not conformal. We support this result by analyzing the symmetries of these
16
+ theories, which turn out to be a portion of the original conformal group, and proving that
17
+ the reduced modular Hamiltonian is in fact the operator generating the modular flow in
18
+ the interval. By studying the spectrum of these modular Hamiltonians, we also provide an
19
+ analytic expression for the associated entanglement entropy. Finally, extending the radial
20
+ regularization scheme originally introduced by Srednicki, we sum over the angular modes
21
+ to successfully recover the conformal anomaly in the entropy logarithmic coefficient in even
22
+ dimensions, as well as the universal constant F term in d = 3.
23
+ 1
24
+ Introduction: Modular flow and modular Hamiltonian
25
+ The successful application of information theory tools to quantum field theory (QFT) along the
26
+ last decades, has given place to the solid current consensus that these tools must be definitively
27
+ incorporated into the usual QFT machinery. In this context, the study of quantities related
28
+ to different information measures for quantum field theories gains relevance and with them, the
29
+ study of states reduced to a region. These states are described by reduced (local) density matrices
30
+ that live in the core of the definition of all the information measures referenced to spatial regions
31
+ R. From the quantum field algebraic perspective [1], each region R is attached to the algebra
32
+ ∗e-mail: [email protected]
33
+ †e-mail: [email protected]
34
+ 1
35
+ arXiv:2301.00294v1 [hep-th] 31 Dec 2022
36
+
37
+ of the degrees of freedom localized in R. The reduced state to a local algebra of operators in a
38
+ region can be expressed, in presence of a cutoff, as a density matrix
39
+ ρ = e−K
40
+ tre−K ,
41
+ (1)
42
+ where the exponent K is the modular Hamiltonian operator. This convenient way of encoding
43
+ the reduced state admits an interesting interpretation of the entanglement entropy as the ther-
44
+ modynamic entropy of a system in equilibrium at temperature 1, but with respect to the modular
45
+ Hamiltonian K. Moreover, there is a time notion associated to the state through the modular
46
+ Hamiltonian, whose evolution is implemented by the unitary operator in the algebra
47
+ U(τ) = ρiτ ∼ e−iτK .
48
+ (2)
49
+ The induced evolution of operators O(τ) = U(τ)OU(−τ) is called the modular flow. This is a
50
+ purely quantum transformation, which becomes trivial in the classical limit.
51
+ Historically, the earliest recognition of the structural importance of modular flows can be found
52
+ in the algebraic formulation of QFT [2, 3] and more recently, in the framework of the study of
53
+ different information measures and statistical properties of reduced states in QFT [4, 5, 6].
54
+ The modular Hamiltonian is a fundamental constitutive part of the relative entropy and plays
55
+ an essential role in the entropy bounds formulations and proof of several energy conditions
56
+ [7, 8, 9, 10, 11, 12]. Besides, profiting that entanglement and relative entropy have well established
57
+ geometric duals for holographic QFT [13, 14, 15], modular Hamiltonians have also been used to
58
+ clarify localization properties of degrees of freedom in quantum gravity [16, 17, 18].
59
+ Currently, our knowledge of the explicit form of modular Hamiltonians reduces mostly to
60
+ some examples where the modular flow is local, and it is primarily determined by spacetime
61
+ symmetries.
62
+ This is the case for the Rindler wedge x1 > |t| in Minkowski space and any QFT. Choosing the
63
+ causal region to be the half spatial plane x1 > 0 and t = 0 then, the rotational symmetry of the
64
+ euclidean theory allows us to express the reduced density matrix corresponding to the vacuum
65
+ state in terms of the energy density T00
66
+ ρ = k e−2π
67
+
68
+ x1>0 dd−1x x1T00(x) .
69
+ (3)
70
+ The above expression manifestly reveals a non trivial connection between entanglement in
71
+ vacuum and energy density. Moreover, in equation (3), the exponent corresponds to the modular
72
+ Hamiltonian for half space which results to be an integral of a local operator. K is in fact 2π
73
+ times the generator of boosts restricted to act only on the right Rindler wedge
74
+ K = −2π
75
+
76
+ x1>0
77
+ dd−1x x1T00(x) .
78
+ (4)
79
+ The modular flow ρiτ moves operators locally following the orbits of the one parameter group
80
+ of boost transformations. On the other hand, it is interesting to note that from equation (3),
81
+ the vacuum state in half space corresponds to a thermal state of inverse temperature 2π with
82
+ respect to the boost operator. This is directly connected to the Unruh’s effect [19] according
83
+ to which accelerated observers see the vacuum as a thermally excited state. For an observer
84
+ following a trajectory given by a boost orbit, the state looks like a thermal state with respect
85
+ to the proper time ˜τ. For these trajectories, the proper time and the boost parameter s are
86
+ 2
87
+
88
+ proportional s = a˜τ with a the proper acceleration of the observer, constant along boost orbits.
89
+ In turn, this implies there is a relation K = ˜H/a between the boost operator and the proper
90
+ time Hamiltonian ˜H of the accelerated observer. For such an observer there is a thermal bath
91
+ at (proper time) temperature T = 2π
92
+ a .
93
+ The other very well known example where symmetries again facilitate the derivation of the
94
+ exact modular Hamiltonian is the case of conformal field theories (CFT) for spheres in any
95
+ dimensions.
96
+ For a CFT, Poincare symmetries are enlarged to the conformal group.
97
+ These
98
+ theories are characterized by having a traceless, symmetric and conserved stress tensor. This
99
+ enlarges the number of conserved currents related to space-time symmetries which in general can
100
+ be written as
101
+ jµ = aν Tνµ + bαν xα Tνµ + c xν Tνµ + dα (x2gαν − 2 xαxν) Tνµ .
102
+ (5)
103
+ The corresponding conserved charges depend on parameters aµ, determining translations, the
104
+ antisymmetric bµν, giving Lorentz transformations, c, related to dilatations, and dµ, for the so
105
+ called special conformal transformations.
106
+ Since there is a conformal transformation that maps the Rindler wedge to causal regions with
107
+ spherical boundary, and the same transformation leaves the vacuum invariant for a CFT, then,
108
+ the modular Hamiltonian is just the transformed Rindler modular Hamiltonian. It is easy to get
109
+ K = 2π
110
+
111
+ |⃗x|<R
112
+ dd−1x R2 − r2
113
+ 2R
114
+ T00(⃗x) .
115
+ (6)
116
+ In this example, K is again local and proportional to T00, with a proportionality weight function
117
+ β(r) ≡ R2−r2
118
+ 2R .
119
+ Except for the two examples discussed above, the vacuum of a QFT in the Rindler wedge and
120
+ the vacuum of a CFT in the sphere, there are only some other few known modular Hamiltonians,
121
+ either local or not. The local ones in general are derived profiting from symmetry transformations
122
+ that leave the state invariant. This is for example the case of the modular Hamiltonian for CFTs
123
+ in 1 + 1 dimensions in presence of a global or local quench [20, 21, 22, 23, 24, 25, 26]. However,
124
+ on general grounds, from the point of view of quantum information we do not expect locality to
125
+ hold. In general, K will be given by a non local and non linear combination of the field operators
126
+ at different positions inside the region.
127
+ An example of a non local modular Hamiltonian which has been explicitly computed is the one
128
+ for the vacuum state of the free massless fermion in d = 2 for several disjoint intervals [27, 28, 29].
129
+ In this case K has a local term proportional to the energy density and an additional non local
130
+ part given by a quadratic expression in the fermion field that connects in a very particular way
131
+ points located in different intervals.
132
+ In this paper we calculate the modular Hamiltonian for the vacuum state of non conformal
133
+ (1 + 1) dimensional theories in the interval (0, R). These theories are defined in the semi infinite
134
+ line, and result from the dimensional reduction of the d dimensional free massless scalar. Our
135
+ strategy is to calculate the modular Hamiltonian of the reduced system by profiting of the known
136
+ modular Hamiltonian of CFTs in spheres in any dimension.
137
+ The free massless scalar in d space time dimensions can be dimensionally reduced to a sum
138
+ of one dimensional theories, one for each angular mode.
139
+ Since the reduction is obtained by
140
+ integrating over the angular coordinates, these systems live in the semi infinite line. From the
141
+ algebraic point of view, this is convenient when studying algebras assigned to spherical regions to
142
+ calculate, for example, the entanglement entropy. In these coordinates, the local algebra assigned
143
+ 3
144
+
145
+ R
146
+ R
147
+ Figure 1: The sphere of radius R corresponds to intervals of length R with one edge in the origin in
148
+ the radial semi infinite line.
149
+ to the region can be easily written in terms of fields φ(r, Ω) with nice localization properties. For
150
+ example, points in the semi infinite line correspond to shells in the original space and intervals
151
+ connected to the origin, to d-spheres (see figure 1). Concretely, in the radial coordinate, the
152
+ canonical Hamiltonian for the massless free scalar decomposes as a sum over angular modes Hℓ⃗m
153
+ H =
154
+
155
+ ℓ⃗m
156
+ Hℓ⃗m .
157
+ (7)
158
+ with (ℓ⃗m) the angular mode label. In fact, there is a family of one dimensional Hamiltonian Hℓ⃗m
159
+ for each dimension. In turn, the same decomposition occurs for the modular Hamiltonian (6)
160
+ K =
161
+
162
+ ℓ⃗m
163
+ Kℓ⃗m .
164
+ (8)
165
+ Taking into account that the vacuum state for a system composed by independent subsystems
166
+ is a product of density matrices, here ρ = ⊗ρℓ⃗m, then it is immediate to identify the modular
167
+ Hamiltonian mode Kℓ⃗m with the modular Hamiltonian of the one dimensional reduced system
168
+ Hℓ⃗m. The Hamiltonian Hℓ⃗m does not correspond to a conformal relativistic theory due to an
169
+ extra quadratic term proportional to 1/r2, whose proportionality constant depends on the di-
170
+ mension of the original problem and the angular mode ℓ.
171
+ Surprisingly, we find that Kℓ⃗m is
172
+ still local and proportional to the energy density T001, with the same weight function β(r) that
173
+ characterizes the modular Hamiltonian for CFTs in spheres. Our analytic results coincide with
174
+ the suggested continuum limit of the entanglement Hamiltonian of blocks of consecutive sites in
175
+ massless harmonic chains, recently studied in [30].
176
+ This article is organized as follows.
177
+ In section 2 we explicitly carry out the dimensional
178
+ reduction. We write the scalar field in a basis of hyper-spherical harmonics, and after integrating
179
+ out the angular coordinates we are left with a Hamiltonian for the reduced systems Hℓ⃗m of the
180
+ form
181
+ Hℓ⃗m = 1
182
+ 2
183
+
184
+ dr
185
+
186
+ �π2
187
+ ℓ⃗m + (∂r �φℓ⃗m)2 + µd(ℓ)
188
+ r2
189
+ �φ2
190
+ ℓ⃗m
191
+
192
+ ,
193
+ (9)
194
+ with
195
+ µd(ℓ) = (d − 4)(d − 2)
196
+ 4
197
+ + ℓ(ℓ + d − 3).
198
+ (10)
199
+ In section 3 the same procedure is followed to find the modular Hamiltonian
200
+ Kℓ,⃗m = 2π
201
+
202
+ |⃗x|<R
203
+ dr R2 − r2
204
+ 2R
205
+ T ℓ,⃗m
206
+ 00 (⃗x) .
207
+ (11)
208
+ 1Since translational invariance is lost, there is no conserved energy momentum tensor. The notation for the
209
+ energy density is just a matter of convention.
210
+ 4
211
+
212
+ In some way, the reduced theory, manifestly invariant under dilatations but non conformal, keeps
213
+ the memory of the conformal symmetry of the parent d-dimensional theory [31, 32], with the
214
+ same local modular Hamiltonian as that representing the vacuum of a CFT in a sphere. We delve
215
+ into this in section 4, where we show that the reduced theories preserve an SL(2, R) symmetry,
216
+ and that the modular transformation belongs to this subgroup. The modular Hamiltonian (11)
217
+ written as a Noether charge can be correctly interpreted as the local operator implementing the
218
+ modular flow.
219
+ In section 5 we solve the spectrum of the modular Hamiltonian (11) and compute the entan-
220
+ glement entropy in a segment connected to the origin. We find the analytic expression
221
+ S(ℓ, d) = 1
222
+ 6 log R
223
+ ϵ − iπ
224
+ 2
225
+ � ∞
226
+ 0
227
+ ds
228
+ s
229
+ sinh2(πs) log
230
+ �4isΓ [is] Γ [−1 + d/2 + ℓ − is]
231
+ Γ [−is] Γ [−1 + d/2 + ℓ + is]
232
+
233
+ ,
234
+ (12)
235
+ which is logarithmically divergent, with coefficient 1/6 as expected for (1+1) theories, and has a
236
+ constant term that depends both on the mode ℓ and the space time dimensions d of the original
237
+ theory. Although the above integral cannot in general be solved analytically, we make some
238
+ useful approximations to extract relevant information out of it. Moreover, by summing over ℓ we
239
+ are able to recover the conformal anomaly in the logarithmic coefficient for the free scalar field
240
+ in even dimensions, as well as the constant universal F term in d = 3. In doing the sum over
241
+ the angular modes ℓ, we introduce a novel regularization implemented by a damping exponential
242
+ exp[−ℓϵ/R], with the same cutoff ϵ that regularizes the radial coordinate r. This procedure
243
+ generalizes the radial regularization scheme introduced by Srednicki in [33], where it is explicitly
244
+ stated that for d ⩾ 4 regularization by a radial lattice turns out to be insufficient and the sum
245
+ over partial waves does not converge. We end the discussion with some concluding remarks.
246
+ 2
247
+ Spherical coordinates
248
+ The free scalar action in spherical coordinates reads
249
+ S = 1
250
+ 2
251
+
252
+ dtdrrd−2dΩ
253
+
254
+ −(∂0φ)2 + (∂rφ)2 − φ
255
+ r2∆Sd−2φ
256
+
257
+ .
258
+ (13)
259
+ With the aim of reducing the above to a single integral in the radial direction, we Fourier
260
+ transform the scalar field in the angular coordinates, using the real hyper-spherical harmonics
261
+ as basis functions,
262
+ φ(⃗r) =
263
+
264
+ ℓm1...md−3
265
+ φℓm1...md−3(r)Y m1...md−3
266
+
267
+ (ˆr),
268
+ (14)
269
+ with
270
+ ∆Sd−2Y m1...md−3
271
+
272
+ (ˆr) = −ℓ(ℓ + d − 3)Y m1...md−3
273
+
274
+ (ˆr),
275
+ (15)
276
+
277
+ Sd−2 dΩY m1...md−3
278
+
279
+ (ˆr)Y
280
+ m′
281
+ 1...m′
282
+ d−3
283
+ ℓ′
284
+ (ˆr) = δℓℓ′δm1m′
285
+ 1...δmd−3m′
286
+ d−3.
287
+ (16)
288
+ After integrating the angular coordinates, we are left with
289
+ S = 1
290
+ 2
291
+
292
+ ℓ⃗m
293
+
294
+ dtdrrd−2
295
+
296
+ −(∂0φℓ⃗m)2 + (∂rφℓ⃗m)2 + ℓ(ℓ + d − 3)
297
+ r2
298
+ φ2
299
+ ℓ⃗m
300
+
301
+ .
302
+ (17)
303
+ 5
304
+
305
+ However, the theory looks simpler when defined in terms of the rescaled field �φℓ⃗m = r
306
+ d−2
307
+ 2 φℓ⃗m,
308
+ whose canonically conjugated momentum is �πℓ⃗m ≡ ∂0�φℓ⃗m,
309
+ S = 1
310
+ 2
311
+
312
+ ℓ⃗m
313
+
314
+ dtdr
315
+
316
+ �−(∂0�φℓ⃗m)2 + rd−2
317
+
318
+ ∂r
319
+ � �φℓ⃗m
320
+ r
321
+ d−2
322
+ 2
323
+ ��2
324
+ + ℓ(ℓ + d − 3)
325
+ r2
326
+ �φ2
327
+ ℓ⃗m
328
+
329
+ � .
330
+ (18)
331
+ Functional variation with respect to the field leads to the equation of motion. Nevertheless, in
332
+ order for the variational problem to be well posed we should impose specific boundary conditions
333
+ at r = 0. In fact,
334
+ δS =
335
+
336
+ ℓ⃗m
337
+ ��
338
+ dtdr
339
+
340
+ ∂2
341
+ 0 �φℓ⃗m −
342
+ 1
343
+ r
344
+ d−2
345
+ 2 ∂r
346
+
347
+ rd−2∂r
348
+ � �φℓ⃗m
349
+ r
350
+ d−2
351
+ 2
352
+ ��
353
+ + ℓ(ℓ + d − 3)
354
+ r2
355
+ �φℓ⃗m
356
+
357
+ δ�φℓ⃗m
358
+ +
359
+
360
+ dt
361
+
362
+ r
363
+ d−2
364
+ 2 ∂r
365
+ � �φℓ⃗m
366
+ r
367
+ d−2
368
+ 2
369
+
370
+ δ�φℓ⃗m
371
+ ������
372
+
373
+ 0
374
+
375
+ ,
376
+ (19)
377
+ which requires either δ�φℓ⃗m(r = 0, t) = 0 (Dirichlet boundary conditions) or r
378
+ d−2
379
+ 2 ∂r
380
+ � �φℓ ⃗m
381
+ r
382
+ d−2
383
+ 2
384
+
385
+ → 0
386
+ (analogous to the ordinary Neumann boundary conditions). In the following we will adopt the
387
+ former.
388
+ The second term in (19) can be further simplified, which leads to the saddle point
389
+ ∂2
390
+ 0 �φℓ⃗m − ∂2
391
+ r �φℓ⃗m + µd(ℓ)
392
+ r2
393
+ �φℓ⃗m = 0,
394
+ (20)
395
+ with
396
+ µd(ℓ) = (d − 4)(d − 2)
397
+ 4
398
+ + ℓ(ℓ + d − 3).
399
+ (21)
400
+ This partial differential equation can be solved by separation of variables, and expressed in terms
401
+ of the original field φℓ⃗m, the radial eigenfunction problem is a Bessel equation, with solution
402
+ jℓ(r) ≡
403
+ 1
404
+ r(d−3)/2Jℓ+ d−3
405
+ 2 (kr). Therefore, the solution is
406
+ �φℓ⃗m(t, r) = e±ikt√
407
+ krJℓ+ d−3
408
+ 2 (kr),
409
+ (22)
410
+ which means that �φℓ⃗m ∼ rℓ+d/2−1 near kr ∼ 0, in agreement with the boundary conditions.
411
+ Having stated that, it is also possible to rewrite the second term in (18) by getting rid of a
412
+ boundary term2. More explicitly,
413
+ S =
414
+
415
+ ℓ⃗m
416
+ Sℓ⃗m
417
+ (23)
418
+ where
419
+ Sℓ⃗m = 1
420
+ 2
421
+
422
+ dtdr
423
+
424
+ −(∂0�φℓ⃗m)2 + (∂r �φℓ⃗m)2 + µd(ℓ)
425
+ r2
426
+ �φ2
427
+ ℓ⃗m
428
+
429
+ (24)
430
+ can be thought of as the action for a free scalar living in the half line, satisfying Dirichlet
431
+ boundary conditions at the origin. Note that, unlike the theory we started with, this is not a
432
+ CFT because of the last term.
433
+ 2We would be able to ignore the boundary term provided �φ2
434
+ ℓ⃗m went to zero faster than r. This is at least
435
+ satisfied by the classical configuration (22).
436
+ 6
437
+
438
+ The dimensional reduction of the free scalar Hamiltonian can be made following the same
439
+ steps. But we can alternatively calculate the conserved charge due to time translations associated
440
+ directly to the 1 + 1 dimensional action (24), yielding
441
+ H = 1
442
+ 2
443
+
444
+ ℓ⃗m
445
+
446
+ dr
447
+
448
+ �π2
449
+ ℓ⃗m + (∂r �φℓ⃗m)2 + µd(ℓ)
450
+ r2
451
+ �φ2
452
+ ℓ⃗m
453
+
454
+ (25)
455
+ Once again we stress that �πℓ⃗m and �φℓ⃗m satisfy canonical commutation relations
456
+
457
+ �φℓ⃗m(r), �πℓ′ ⃗m′(r′)
458
+
459
+ = iδℓ,ℓ′δ⃗m,⃗m′δ(r − r′).
460
+ (26)
461
+ 3
462
+ The sphere modular Hamiltonian
463
+ On the other hand, since the free scalar field theory in d spacetime dimensions is conformally
464
+ invariant, when the whole system is in its ground state the modular Hamiltonian of a sphere is
465
+ K = 1
466
+ 2
467
+
468
+ |x|<R
469
+ dxd−1
470
+ �R2 − r2
471
+ 2R
472
+
473
+ T00.
474
+ (27)
475
+ However, although the stress tensor involved in this expression must be traceless, the canonical
476
+ stress tensor of the free scalar field is
477
+ T (c)
478
+ µν = ∂µφ∂νφ − 1
479
+ 2ηµν(∂φ)2,
480
+ (28)
481
+ which has non vanishing trace T µ
482
+ µ = (1 − d/2) (∂φ)2 = (1−d/2)
483
+ 2
484
+ ∂2(φ2)3. Hence, it must be improved
485
+ by adding a conserved symmetric tensor. A possible choice is
486
+ T ′
487
+ µν = T (c)
488
+ µν − (1 − d/2)
489
+ 2(1 − d) (∂µ∂ν − ηµν∂2)φ2.
490
+ (29)
491
+ Therefore,
492
+ K = 1
493
+ 2
494
+
495
+ |x|<R
496
+ dxd−1
497
+ �R2 − r2
498
+ 2R
499
+ � �
500
+ (∂0φ)2 + (∂iφ)2 − (1 − d/2)
501
+ (1 − d) ∂2
502
+ i φ2
503
+
504
+ .
505
+ (30)
506
+ Using the following identities:
507
+ (∂iφ)2 = (∂rφ)2 − φ
508
+ r2∆Sd−2φ,
509
+ (31)
510
+ where we have partially integrated the angular piece, and
511
+ ∂2
512
+ i φ2 =
513
+ 1
514
+ rd−2∂r
515
+
516
+ rd−2∂rφ2�
517
+ + 1
518
+ r2∆Sd−2φ2,
519
+ (32)
520
+ we arrive at
521
+ K = 1
522
+ 2
523
+
524
+ ℓ⃗m
525
+
526
+ drrd−2
527
+ �R2 − r2
528
+ 2R
529
+ � �
530
+ π2
531
+ ℓ⃗m + (∂rφℓ⃗m)2 + ℓ(ℓ + d − 3)
532
+ r2
533
+ φ2
534
+ ℓ⃗m−
535
+ −(1 − d/2)
536
+ (1 − d)
537
+
538
+ ∂2
539
+ rφ2
540
+ ℓ⃗m + d − 2
541
+ r
542
+ ∂rφ2
543
+ ℓ⃗m
544
+ ��
545
+ ,
546
+ (33)
547
+ 3This identity holds on-shell.
548
+ 7
549
+
550
+ In terms of the canonically conjugated operators,
551
+ K = 1
552
+ 2
553
+
554
+ ℓ⃗m
555
+
556
+ dr
557
+ �R2 − r2
558
+ 2R
559
+ � �
560
+ �π2
561
+ ℓ⃗m + (∂r �φℓ⃗m)2 + µd(ℓ)
562
+ r2
563
+ �φ2
564
+ ℓ⃗m−
565
+ − d − 2
566
+ 2(d − 1)
567
+
568
+ 3∂r
569
+ � �φ2
570
+ ℓ⃗m
571
+ r
572
+
573
+ + r∂2
574
+ r
575
+ � �φ2
576
+ ℓ⃗m
577
+ r
578
+ ���
579
+ ,
580
+ (34)
581
+ Note that the second line of (34), together with the prefactor (R2 − r2), is a total derivative in
582
+ disguise. Hence,
583
+ K = 1
584
+ 2
585
+
586
+ ℓ⃗m
587
+ �� R
588
+ 0
589
+ dr
590
+ �R2 − r2
591
+ 2R
592
+ � �
593
+ �π2
594
+ ℓ⃗m + (∂r �φℓ⃗m)2 + µd(ℓ)
595
+ r2
596
+ �φ2
597
+ ℓ⃗m
598
+
599
+
600
+ − d − 2
601
+ 2(d − 1)
602
+
603
+ (R2 − r2)
604
+ 2R
605
+ r∂r
606
+ � �φ2
607
+ ℓ⃗m
608
+ r
609
+
610
+ + R
611
+ � �φ2
612
+ ℓ⃗m
613
+ r
614
+ ������
615
+ R
616
+ 0
617
+
618
+ ,
619
+ (35)
620
+ The boundary terms (coming from the improving) can be interpreted in general, as an ambiguity
621
+ in the definition of modular Hamiltonian in a region, and safely ignored as explained in [34].
622
+ Consequently, the modular Hamiltonian of the d dimensional free scalar is
623
+ K =
624
+
625
+ ℓ⃗m
626
+ Kℓ⃗m,
627
+ (36)
628
+ where
629
+ Kℓ⃗m = 1
630
+ 2
631
+ � R
632
+ 0
633
+ dr
634
+ �R2 − r2
635
+ 2R
636
+ � �
637
+ �π2
638
+ ℓ⃗m + (∂r �φℓ⃗m)2 + µd(ℓ)
639
+ r2
640
+ �φ2
641
+ ℓ⃗m
642
+
643
+ (37)
644
+ can be interpreted as the modular Hamiltonian for the vacuum of (24) in a segment.
645
+ This
646
+ identification rests on the fact that the theory decomposes into independent sectors, labeled by
647
+ the angular modes, so the state must write as the direct product of the states pertaining to each
648
+ sector. But, most remarkably, this modular Hamiltonian is still local in the energy density. In
649
+ other words, (37) agrees with the general expression (27) in spite of the reduced one dimensional
650
+ theories being non conformal. In the next section we analyse this in detail, paying attention to
651
+ the symmetries which survive the dimensional reduction.
652
+ Provided that (37) defines the reduced state of a free field theory, Wick’s theorem guarantees
653
+ it can be expressed in terms of the two-point correlators. In fact, for a Gaussian state with
654
+ modular Hamiltonian
655
+ K =
656
+
657
+ V
658
+ dd−1x1dd−1x2 [φ(x1)M(x1, x2)φ(x2) + π(x1)N(x1, x2)π(x2)] ,
659
+ (38)
660
+ and correlators
661
+ X = ⟨φ(x1)φ(x2)⟩ ,
662
+ P = ⟨π(x1)π(x2)⟩ ,
663
+ (39)
664
+ the following relation must be satisfied [35]4
665
+ M.X = P.N
666
+ (40)
667
+ 4Here the product is a bi-local function constructed as
668
+ [M.X] (x1, x2) ≡
669
+
670
+ V
671
+ dyM(x1, y)X(y, x2)
672
+ 8
673
+
674
+ In the case at hand,
675
+ M(r, r′) = −2πδ(r − r′)
676
+
677
+ β(r)∂2
678
+ r + ∂rβ(r)∂r − β(r) µ
679
+ r2
680
+
681
+ (41)
682
+ and
683
+ N(r, r′) = 2πδ(r − r′)β(r) .
684
+ (42)
685
+ Meanwhile, the explicit form of the correlators for the one dimensional theory (24) is [36]
686
+ X(r1, r2) =
687
+ Γ [ℓ + d/2 − 1]
688
+
689
+ � 1
690
+ 2
691
+
692
+ Γ
693
+
694
+ ℓ + d−1
695
+ 2
696
+
697
+ �r1
698
+ r2
699
+ �ℓ+ d
700
+ 2 −1
701
+ 2F1
702
+
703
+ 1
704
+ 2, ℓ + d
705
+ 2 − 1; ℓ + d − 1
706
+ 2
707
+ ;
708
+ �r1
709
+ r2
710
+ �2�
711
+ ,
712
+ (43)
713
+ P(r1, r2) =
714
+ 2Γ(ℓ + d/2)
715
+ Γ
716
+ � 1
717
+ 2
718
+
719
+ Γ
720
+
721
+ ℓ + d−1
722
+ 2
723
+
724
+ (r2
725
+ 2 − r2
726
+ 1)
727
+ �r1
728
+ r2
729
+ �ℓ+ d
730
+ 2 −1 �
731
+ A 2F1
732
+
733
+ 1
734
+ 2, ℓ + d
735
+ 2; ℓ + d − 1
736
+ 2
737
+ ;
738
+ �r1
739
+ r2
740
+ �2�
741
+ +B 2F1
742
+
743
+ −1
744
+ 2, ℓ + d
745
+ 2; ℓ + d − 1
746
+ 2
747
+ ;
748
+ �r1
749
+ r2
750
+ �2��
751
+ ,
752
+ (44)
753
+ where A =
754
+
755
+ ℓ + d−1
756
+ 2
757
+
758
+ (1 − r2
759
+ 1/r2
760
+ 2) − 1, B = 1 − ℓ − d/2, and r1 < r2.
761
+ Using these concrete
762
+ expressions it is possible to check that (40) indeed holds.
763
+ 4
764
+ Symmetries
765
+ The locality of (37) suggests the existence of a symmetry with a conserved current such that the
766
+ modular Hamiltonian is the corresponding Noether charge. This has to be an endomorphism in
767
+ the causal wedge of the region, and must point in the time direction at t = 0. For CFTs in spheres
768
+ in any dimensions, this is the conformal transformation that maps the spherical boundary in
769
+ itself. For an interval (0, R) in the half line, whose causal wedge is a half diamond, the symmetry
770
+ transformation leaves the boundary point r = R fixed. The identification of this symmetry in
771
+ the present case is the natural path to justify the locality of (37). With this aim, we first discuss
772
+ the symmetries of the reduced theories with action (24).
773
+ The symmetries of (24) are a subgroup of the conformal transformations inherited from higher
774
+ dimensions, in particular those which involve only the time and radial coordinates, and that map
775
+ the line r = 0 into itself. These are
776
+ • Time translations:
777
+ t → t + t0
778
+ (45)
779
+ • Dilatations:
780
+ (t, r) → (λt, λr)
781
+ (46)
782
+ • Special conformal transformations with parameter bµ = α
783
+ Rˆeµ
784
+ t :
785
+ (t, r) →
786
+
787
+ tR2 + αR(t2 − r2)
788
+ R2 + 2αRt + α2(t2 − r2),
789
+ rR2
790
+ R2 + 2αRt + α2(t2 − r2)
791
+
792
+ .
793
+ (47)
794
+ Infinitesimally, that is, if we set α = ϵ << 1, then
795
+ (t, r) →
796
+
797
+ t − ϵ(t2 + r2)/R, r − 2ϵtr/R
798
+
799
+ .
800
+ (48)
801
+ 9
802
+
803
+ The generators of the transformations listed above are P0 = i∂t, D = i(t∂t + r∂r), and K0 =
804
+ i ((t2 + r2)∂t + 2tr∂r) respectively. These close an sl(2, R) algebra, which can be expressed in a
805
+ more suggestive way identifying L−1 ≡ P0, L0 ≡ D, L1 ≡ K0, so that
806
+ i [Lm, Ln]LB = (m − n)Lm+n.
807
+ (49)
808
+ Just for completeness, we note that one would have expected the original conformal group
809
+ SO(d, 2) to break into SO(2, 2) ∼ SL(2, R) ⊗ SL(2, R) [31, 32], with six generators. In fact,
810
+ besides the three generators already mentioned, there are three more that do not mix the angular
811
+ coordinates with (t, r), associated to
812
+ • Translations in the radial direction:
813
+ r → r + r0
814
+ (50)
815
+ • Boosts:
816
+ (t, r) → (t + ϵr, r + ϵt)
817
+ (51)
818
+ • Special conformal transformations with parameter bµ = α
819
+ Rˆeµ
820
+ r
821
+ (t, r) →
822
+
823
+ tR2
824
+ R2 − 2αRr − α2(t2 − r2),
825
+ rR2 + αR(t2 − r2)
826
+ R2 − 2αRr − α2(t2 − r2)
827
+
828
+ .
829
+ (52)
830
+ These are ˆeµ
831
+ rPµ, ˆeµ
832
+ rM0µ and ˆeµ
833
+ rKµ, respectively. However, it is easy to see that they fail to become
834
+ symmetries of the dimensionally reduced theory.
835
+ Then, the modular symmetry of the reduced theories we are looking for must be a particular
836
+ composition of the identified symmetry transformations (45) - (47).
837
+ On the other hand, we know that the modular symmetry for the parent conformal theory is
838
+ associated to the generator of the boosts as seen from the domain of dependence of the ball [37],
839
+ ζ = π
840
+ R
841
+
842
+ (R2 − t2 − |⃗x|2)∂t − 2txi∂i
843
+
844
+ .
845
+ (53)
846
+ In fact, comparing with (45) and (47), we notice that this transformation in the semi infinite line
847
+ is the composition of a time translation of parameter ϵπR and a special conformal transformation
848
+ of parameter ϵ π
849
+ R. Let us check this explicitly.
850
+ In spherical coordinates, the infinitesimal transformation reads
851
+ t −→ t′ = t + ϵ π
852
+ R(R2 − t2 − r2)
853
+ r −→ r′ = r + ϵ π
854
+ R(−2tr)
855
+ Ω −→ Ω′ = Ω
856
+ (54)
857
+ Since the invariance of the kinetic term is guaranteed, we need only to check the invariance of
858
+ the quadratic term dtdr/r2, which is less evident. On the one hand, we have
859
+ dtdr
860
+ =
861
+ dt′dr′
862
+ ����
863
+ ∂t
864
+ ∂t′
865
+ ∂t
866
+ ∂r′
867
+ ∂r
868
+ ∂t′
869
+ ∂r
870
+ ∂r′
871
+ ���� = dt′dr′
872
+ ����
873
+ 1 + 2πϵt′/R + O(ϵ2)
874
+ 2πϵr′/R + O(ϵ2)
875
+ 2πϵr′/R + O(ϵ2)
876
+ 1 + 2πϵt′/R + O(ϵ2)
877
+ ����
878
+
879
+ dt′dr′(1 + 4πϵt′/R).
880
+ (55)
881
+ 10
882
+
883
+ On the other hand,
884
+ 1
885
+ r2 ∼
886
+ 1
887
+ (r′ + 2πϵt′r′/R)2 = 1
888
+ r′2(1 − 4πϵt′/R + O(ϵ2)).
889
+ (56)
890
+ Hence,
891
+ dtdr
892
+ r2
893
+ = dt′dr′
894
+ r′2
895
+ + O(ϵ2).
896
+ (57)
897
+ By Noether’s theorem, there must exist a conserved current associated to (54), which is of the
898
+ form5
899
+ jµ =
900
+
901
+ δL
902
+ δ(∂µφ)∂νφ − Lδµ
903
+ ν
904
+
905
+ ζν,
906
+ (58)
907
+ or, in components,
908
+ jt = 1
909
+ 2
910
+
911
+ (∂tφ)2 + (∂rφ)2 + µ
912
+ r2φ2� (R2 − t2 − r2)
913
+ R
914
+ − 2tr
915
+ R∂rφ∂tφ,
916
+ (59)
917
+ jr = 1
918
+ 2
919
+
920
+ (∂tφ)2 + (∂rφ)2 − µ
921
+ r2φ2�
922
+ 2tr
923
+ R − ∂rφ∂tφ(R2 − t2 − r2)
924
+ R
925
+ .
926
+ (60)
927
+ Finally, the current above corresponds to a modular Hamiltonian
928
+ Kℓ⃗m =
929
+ � R
930
+ 0
931
+ drj0(t = 0, r)
932
+ = 1
933
+ 2
934
+ � R
935
+ 0
936
+ dr
937
+ �R2 − r2
938
+ 2R
939
+ � �
940
+ �π2
941
+ ℓ⃗m + (∂r �φℓ⃗m)2 + µd(ℓ)
942
+ r2
943
+ �φ2
944
+ ℓ⃗m
945
+
946
+ ,
947
+ (61)
948
+ the same as (37) deduced in the previous section from different arguments.
949
+ 5
950
+ Modular Hamiltonian and entropy
951
+ In this section we study the spectrum of the modular Hamiltonian (37). Solving the eigenfunction
952
+ problem allows us to compute the entanglement entropy for an interval attached to the origin,
953
+ as a function of the angular mode ℓ and the original spacetime dimension d. Then we sum over
954
+ the modes and compare the result with the entanglement entropy of the d-sphere.
955
+ 5.1
956
+ Eigenfunctions
957
+ In general, given a quadratic modular Hamiltonian of a region V , of the form
958
+ K =
959
+
960
+ V
961
+ dd−1x dd−1x′ (φ(x)M(x, x′)φ(x′) + π(x)N(x, x′)π(x′)) ,
962
+ (62)
963
+ with M and N real symmetric operators, the eigenfunctions are those of the right and left action
964
+ of M.N, namely
965
+ (N.M)us = s2us
966
+ (63)
967
+ (M.N)vs = s2vs.
968
+ (64)
969
+ 5We remove the tildes and the angular mode labels to avoid cluttering.
970
+ 11
971
+
972
+ This leads to the alternative way of writing K
973
+ K =
974
+
975
+ V
976
+ dd−1x
977
+ � ∞
978
+ 0
979
+ ds us(x) s v∗
980
+ s(x).
981
+ (65)
982
+ More concretely, the problem we are interested in is defined by (41) and (42), so the eigenfunctions
983
+ u and v satisfy the following hypergeometric equations6
984
+
985
+ β2∂2
986
+ r + β∂rβ∂r − β2 µ
987
+ r2
988
+
989
+ us = −s2us
990
+ (66)
991
+
992
+ β2∂2
993
+ r + 3β∂rβ∂r +
994
+
995
+ β∂2
996
+ rβ + (∂rβ)2 − β2 µ
997
+ r2
998
+ ��
999
+ vs = −s2vs
1000
+ (67)
1001
+ The solutions of these equations are7
1002
+ us(r) = Nu
1003
+ � r
1004
+ R
1005
+ �−1+ d
1006
+ 2 +ℓ �R2 − r2
1007
+ R2
1008
+ �−is
1009
+ 2F1
1010
+ �1
1011
+ 2 − is, −1 + d
1012
+ 2 + ℓ − is, d
1013
+ 2 − 1
1014
+ 2 + ℓ, r2
1015
+ R2
1016
+
1017
+ vs(r) = Nu
1018
+ R
1019
+ β(r)us(r),
1020
+ (68)
1021
+ where Nu is a normalization constant.
1022
+ Near r ∼ 0 the solutions behave as,
1023
+ us(r) ∼ vs(r) ∝ r−1+ d
1024
+ 2 +ℓ
1025
+ (69)
1026
+ in agreement with the classical profile (22), whereas near r ∼ R they behave as
1027
+ us(r) ∼ Nu
1028
+ ��R − r
1029
+ R
1030
+ �−is
1031
+ α(s) + c.c.
1032
+
1033
+ vs(r) ∼ Nu
1034
+ ��R − r
1035
+ R
1036
+ �−1−is
1037
+ α(s) + c.c.
1038
+
1039
+ ,
1040
+ (70)
1041
+ with
1042
+ α(s) =
1043
+ 2−isΓ
1044
+ � d−1
1045
+ 2 + ℓ
1046
+
1047
+ Γ [2is]
1048
+ Γ
1049
+
1050
+ is + 1
1051
+ 2
1052
+
1053
+ Γ
1054
+
1055
+ is + ℓ + d
1056
+ 2 − 1
1057
+ �.
1058
+ (71)
1059
+ It is very important to keep in mind that there is a branch point at r = R. In fact, since the
1060
+ eigenfunctions must satisfy the orthogonality relation
1061
+ � R
1062
+ 0
1063
+ drus(r)v∗
1064
+ s′(r) = δ(s − s′) ,
1065
+ (72)
1066
+ in order to find out the normalization factor Nu we substitute in (72) the leading terms in their
1067
+ Taylor series expansion (70), because only the region near r ∼ R can contribute with a Dirac
1068
+ delta function. That results in
1069
+ � R
1070
+ 0
1071
+ drus(r)v∗
1072
+ s′(r) ∼ 2|Nu|2Re [I(s − s′)α(s)α∗(s′) + I(s + s′)α(s)α(s′)] ,
1073
+ (73)
1074
+ 6For later convenience we renormalize the eigenvalues to absorb a factor 1/(2π)2.
1075
+ 7There is an additional independent solution, but we dismiss it because it does not go to zero at r = 0, as
1076
+ mandated by the boundary conditions.
1077
+ 12
1078
+
1079
+ where
1080
+ I(s) ≡
1081
+ � R
1082
+ 0
1083
+ dr
1084
+ R
1085
+ R − r exp
1086
+
1087
+ −is log
1088
+ �R − r
1089
+ R
1090
+ ��
1091
+ = R
1092
+ � i
1093
+ s + πδ(s)
1094
+
1095
+ .
1096
+ (74)
1097
+ Hence, neglecting the finite terms8, we have that (72) holds provided that
1098
+ Nu =
1099
+ 1
1100
+
1101
+ 2πR|α(s)|
1102
+ ,
1103
+ (75)
1104
+ save an overall phase that we set to one for convenience.
1105
+ 5.2
1106
+ The entropy
1107
+ As explained in [38] in the context of the free chiral scalar, we can take advantage of the orthogo-
1108
+ nality relation to simplify the computation of the entanglement entropy, which can be expressed
1109
+ as a regularized integral over a small region behind the end point r = R, of the form
1110
+ S(ℓ, d) =
1111
+ � R−ϵ
1112
+ 0
1113
+ dr
1114
+ � ∞
1115
+ 0
1116
+ ds us(r)g(s)v∗
1117
+ s(r)
1118
+ = − lim
1119
+ δs→0
1120
+ � R
1121
+ R−ϵ
1122
+ dr
1123
+ � ∞
1124
+ 0
1125
+ ds us(r)g(s)v∗
1126
+ s+δs(r) ,
1127
+ (76)
1128
+ with
1129
+ g(s) = 1 + coth(πs)
1130
+ 2
1131
+ log
1132
+ �1 + coth(πs)
1133
+ 2
1134
+
1135
+ + 1 − coth(πs)
1136
+ 2
1137
+ log
1138
+ �1 − coth(πs)
1139
+ 2
1140
+
1141
+ (77)
1142
+ Note that since we expect the entanglement entropy of a QFT to diverge due to the short range
1143
+ correlations between modes at both sides of the boundary, we regularized it by introducing a
1144
+ small UV cutoff ϵ. Furthermore, in going from the first to the second line of (76) we shifted the
1145
+ v sub index, summing over slightly off diagonal elements. For fixed δs ̸= 0 the integral defined
1146
+ on the whole interval vanishes because of (72), leading to an integral just behind the boundary.
1147
+ This trick allows us to substitute the expansion (70), which is much easier to integrate than the
1148
+ original solutions (68). Finally, we get
1149
+ S(ℓ, d) = 1
1150
+ 6 log R
1151
+ ϵ − 1
1152
+ π
1153
+ � ∞
1154
+ 0
1155
+ ds g′(s)Arg(α(s)),
1156
+ (78)
1157
+ or, more explicitly,
1158
+ S(ℓ, d) = 1
1159
+ 6 log R
1160
+ ϵ − iπ
1161
+ 2
1162
+ � ∞
1163
+ 0
1164
+ ds
1165
+ s
1166
+ sinh2(πs) log
1167
+ �4isΓ [is] Γ [−1 + d/2 + ℓ − is]
1168
+ Γ [−is] Γ [−1 + d/2 + ℓ + is]
1169
+
1170
+ (79)
1171
+ The logarithmic coefficient 1/6 is the expected result for a (1+1) dimensional theory. Meanwhile,
1172
+ the constant term is expressed in terms of an integral that cannot be solved explicitly. For later
1173
+ 8We also neglect a contribution of the form δ(s + s′), coming from the second term in (73), because it is
1174
+ non-zero only at s = s′ = 0.
1175
+ 13
1176
+
1177
+ 0
1178
+ 20
1179
+ 40
1180
+ 60
1181
+ 80
1182
+ 100
1183
+ -0.8
1184
+ -0.6
1185
+ -0.4
1186
+ -0.2
1187
+ 0.0
1188
+ Figure 2: Constant term of the entropy at d = 3, as a function of the angular mode ℓ. The red dots represent
1189
+ the exact numerical value of (81), for ℓ = {1, 2, 5, 10, 15, 20, 30, 40, 100}. The blue curve corresponds to the fit
1190
+ f(ℓ, d = 3) = c0 + c1 log ℓ, with c0 = 1.345 × 10−5 and c1 = −0.1666.
1191
+ convenience, we write it as a sum of two contributions, one that does not depend neither on the
1192
+ dimension nor on the angular mode
1193
+ c ≡ −iπ
1194
+ 2
1195
+ � ∞
1196
+ 0
1197
+ ds
1198
+ s
1199
+ sinh2(πs) log
1200
+ �4isΓ [is]
1201
+ Γ [−is]
1202
+
1203
+ ,
1204
+ (80)
1205
+ and another which does depend on both parameters
1206
+ f(ℓ, d) ≡ −iπ
1207
+ 2
1208
+ � ∞
1209
+ 0
1210
+ ds
1211
+ s
1212
+ sinh2(πs) log
1213
+ �Γ [−1 + d/2 + ℓ − is]
1214
+ Γ [−1 + d/2 + ℓ + is]
1215
+
1216
+ (81)
1217
+ Although it is unfortunately impossible to find an analytic expression for the integral, for
1218
+ sufficiently large modes we can make use of the Stirling’s approximation
1219
+ log Γ(z) ∼ z log z − z + 1
1220
+ 2 log 2π
1221
+ z +
1222
+ N−1
1223
+
1224
+ n=1
1225
+ B2n
1226
+ 2n(2n − 1)z2n−1,
1227
+ |z| → ∞
1228
+ (82)
1229
+ to write
1230
+ log
1231
+ �Γ [−1 + d/2 + ℓ − is]
1232
+ Γ [−1 + d/2 + ℓ + is]
1233
+
1234
+ ∼ −2is log ℓ +
1235
+
1236
+
1237
+ k=2
1238
+ ⌊ k+1
1239
+ 2 ⌋
1240
+
1241
+ m=1
1242
+ (k − 2)!
1243
+ ℓk−1
1244
+ ak,m(s)
1245
+ + 1
1246
+ 2
1247
+
1248
+
1249
+ k=1
1250
+ ⌊ k+1
1251
+ 2 ⌋
1252
+
1253
+ m=1
1254
+ (k − 1)!
1255
+ ℓk
1256
+ ak,m(s) +
1257
+
1258
+
1259
+ n=1
1260
+
1261
+
1262
+ k=1
1263
+ ⌊ k+1
1264
+ 2 ⌋
1265
+
1266
+ m=1
1267
+ B2n(2n + k − 2)!
1268
+ (2n)!ℓ2n+k−1
1269
+ ak,m(s),
1270
+ ℓ >> 1,
1271
+ (83)
1272
+ where
1273
+ ak,m(s) =
1274
+ 2i(−1)k+m
1275
+ (2m − 1)!(k + 1 − 2m)!
1276
+
1277
+ −1 + d
1278
+ 2
1279
+ �k+1−2m
1280
+ s2m−1.
1281
+ (84)
1282
+ This means that the constant term grows logarithmically with the mode ℓ, with corrections that
1283
+ decay as positive powers of 1/ℓ. In fact, performing the integration over the variable s order by
1284
+ order in the expansion, we can straightforwardly check that the first few leading terms read
1285
+ f(ℓ, d) ∼ −1
1286
+ 6 log ℓ + a1
1287
+ ℓ + a2
1288
+ ℓ2 + a3
1289
+ ℓ3 + a4
1290
+ ℓ4 + O
1291
+ � 1
1292
+ ℓ5
1293
+
1294
+ ,
1295
+ (85)
1296
+ 14
1297
+
1298
+ 0
1299
+ 5
1300
+ 10
1301
+ 15
1302
+ 20
1303
+ 25
1304
+ -0.6
1305
+ -0.5
1306
+ -0.4
1307
+ -0.3
1308
+ -0.2
1309
+ -0.1
1310
+ 0.0
1311
+ 0.1
1312
+ Figure 3: ∆f(ℓ, 3) ≡ f(ℓ, 3) − f(ℓ = 1, 3). Blue: direct numerical integration of (81). Orange: calculation with a
1313
+ radial lattice regularization. ℓ = {1, 2, 5, 10, 20}
1314
+ with
1315
+ a1
1316
+ =
1317
+ 1
1318
+ 4 − d
1319
+ 12
1320
+ (86)
1321
+ a2
1322
+ =
1323
+ 7
1324
+ 40 − d
1325
+ 8 + d2
1326
+ 48
1327
+ (87)
1328
+ a3
1329
+ =
1330
+ 3
1331
+ 20 − 7d
1332
+ 40 + d2
1333
+ 16 − d3
1334
+ 144
1335
+ (88)
1336
+ a4
1337
+ =
1338
+ 73
1339
+ 560 − 9d
1340
+ 40 + 21d2
1341
+ 160 − d3
1342
+ 32 + d4
1343
+ 384
1344
+ (89)
1345
+ Quite surprisingly, the logarithmic term already approximates f(ℓ, d) at ℓ ∼ O(1) very accurately,
1346
+ as shown in figure (2).
1347
+ In figure (3) we compare the numerical value of (81) with the one obtained from direct calcu-
1348
+ lation in a radial lattice, again at d = 3. Since the constant term depends on the regularization
1349
+ scheme, we subtract the one corresponding to ℓ = 1 and compare ∆f(ℓ, 3) ≡ f(ℓ, 3)−f(ℓ = 1, 3).
1350
+ Although it is very hard to achieve good precision in the lattice9, we find reasonable agreement.
1351
+ For example, for ℓ = 10, numerical integration yields ∆f = −0.3737, while the lattice computa-
1352
+ tion gives ∆f = −0.3795.
1353
+ 5.3
1354
+ Recovering the scalar entropy
1355
+ As discussed in section 3, the modular Hamiltonian of the free scalar in the sphere is equal to
1356
+ the sum over ℓ of the modular Hamiltonian pertaining to each one dimensional theory in the
1357
+ segment. Consequently, we expect that summing (79) must necessarily reproduce the general
1358
+ structure for the entanglement entropy,
1359
+ S =
1360
+
1361
+ #
1362
+ � R
1363
+ ϵ
1364
+ �d−2 + ... + clog log R
1365
+ ϵ ,
1366
+ d
1367
+ even
1368
+ #
1369
+ � R
1370
+ ϵ
1371
+ �d−2 + ... + F,
1372
+ d
1373
+ odd
1374
+ (90)
1375
+ that is, an infinite contribution controlled by the area term, and a universal piece, either in
1376
+ the form of a logarithmic coefficient in even dimensions, which is precisely the trace anomaly
1377
+ 9Roughly speaking, the value of ℓ gives a lower bound for the meaningful radios R/ϵ >> ℓ
1378
+ 15
1379
+
1380
+ coefficient associated to the Euler density [39, 40, 41], or a constant term in odd dimensions
1381
+ [42, 43, 44].
1382
+ To show that this indeed holds, we need to introduce a cutoff in ℓ to regularize the sum. More
1383
+ concretely, we introduce a damping exponential so that
1384
+ S =
1385
+
1386
+
1387
+ ℓ=0
1388
+ λ(ℓ, d)S(ℓ, d)e−ℓϵ/R.
1389
+ (91)
1390
+ where
1391
+ λ(ℓ, d) = (2ℓ + d − 3)(ℓ + d − 4)!
1392
+ ℓ!(d − 3)!
1393
+ (92)
1394
+ is the density of states. Note that this grows as ℓd−3 for ℓ >> 1.
1395
+ Given the complicated expression of the constant term f(ℓ, d), we approximate it by its large
1396
+ ℓ expansion, leading to
1397
+ S =
1398
+
1399
+
1400
+ ℓ=1
1401
+ λ(ℓ, d)
1402
+
1403
+ 1
1404
+ 6 log R
1405
+ ϵ + c − 1
1406
+ 6 log ℓ +
1407
+ jmax
1408
+
1409
+ j=1
1410
+ aj
1411
+ ℓj
1412
+
1413
+ e−ℓϵ/R + λ(0, d)S(0, d) + correction.
1414
+ (93)
1415
+ The correction above accounts for the error made when approximating f(ℓ, d) by its series ex-
1416
+ pansion, truncated at O(ℓ−jmax).
1417
+ It is straightforward to verify that (93) reproduces (90). For example, the divergent pieces
1418
+ come from terms with the general structure
1419
+
1420
+
1421
+ ℓ=1
1422
+ ℓp
1423
+
1424
+ log R
1425
+ ϵ − log ℓ
1426
+
1427
+ e−ℓϵ/R = −Γ′(p + 1)
1428
+ �R
1429
+ ϵ
1430
+ �p+1
1431
+ + ζ(−p) log R
1432
+ ϵ + ζ′(−p),
1433
+ (94)
1434
+
1435
+
1436
+ ℓ=1
1437
+ ℓpe−ℓϵ/R = p!
1438
+ �R
1439
+ ϵ
1440
+ �p+1
1441
+ + ζ(−p),
1442
+ (95)
1443
+ with {p | p ∈ N0 ∧ p ≤ d − 3}, and
1444
+
1445
+
1446
+ ℓ=1
1447
+ 1
1448
+ ℓe−ℓϵ/R = log R
1449
+ ϵ .
1450
+ (96)
1451
+ Note that the logarithmic term, only present in even dimensions, stems from (94) and (96).
1452
+ Based on this observation, it is worth pointing out that in order to compute the logarithmic
1453
+ coefficient we only need to take into account the first d − 1 terms in the expansion of f(ℓ, d),
1454
+ that is, jmax = d − 2. Subleading corrections give finite contributions at most.
1455
+ Just to explicitly address some relevant specific cases, at d = 6 we get
1456
+ clog(d = 6) = 29
1457
+ 540 + a1 + 13
1458
+ 6 a2 + 3
1459
+ 2a3 + 1
1460
+ 3a4,
1461
+ (97)
1462
+ and, substituting (86), (87), (88), (89),
1463
+ clog(d = 6) =
1464
+ 1
1465
+ 756,
1466
+ (98)
1467
+ 16
1468
+
1469
+ 10
1470
+ 20
1471
+ 30
1472
+ 40
1473
+ 50
1474
+ 60
1475
+ 70
1476
+ 5.19
1477
+ 5.18
1478
+ 5.185
1479
+ 5.195
1480
+ corr
1481
+ Figure 4: Error made in the computation of the constant term F when approximating f(ℓ, 3) by − 1
1482
+ 6 log ℓ + a2
1483
+ ℓ2 .
1484
+ ℓmax is the greatest angular momentum that is summed over. We see that the correction converges very fast to
1485
+ ∼ 0.00519641
1486
+ in agreement with the expected anomaly value. On the other hand, at d = 4 we get
1487
+ clog(d = 4) = 1
1488
+ 18 + a1 + 2a2,
1489
+ (99)
1490
+ which leads to the expected anomaly coefficient
1491
+ clog(d = 4) = − 1
1492
+ 90.
1493
+ (100)
1494
+ The case of d = 3 is different from the ones discussed above in that it has no logarithmic term
1495
+ and the universal piece in the entanglement entropy is associated to the constant term F. In
1496
+ fact, direct calculation yields, using (86)
1497
+ clog(d = 3) = 2a1 = 0.
1498
+ (101)
1499
+ Regarding the constant F, the infinite tail in the 1/ℓ expansion must in principle be taken into
1500
+ account. For that reason, we regularize the sum taking up to jmax = 2 and then add a finite
1501
+ contribution which corrects the approximation, giving the exact value for the constant term in
1502
+ the series of f(ℓ, d). That is,
1503
+ correction = 2
1504
+ lim
1505
+ ℓmax→∞
1506
+ ℓmax
1507
+
1508
+ ℓ=1
1509
+
1510
+ f(ℓ, d = 3) + 1
1511
+ 6 log ℓ − a2
1512
+ ℓ2
1513
+
1514
+ (102)
1515
+ In figure (4) we plot the above correction as a function of ℓmax and show that it converges very
1516
+ fast to
1517
+ correction ∼ 0.00519641
1518
+ (103)
1519
+ According to (93), another term which contributes is
1520
+ f(0, 3) = −iπ
1521
+ 2
1522
+ � ∞
1523
+ 0
1524
+ ds
1525
+ s
1526
+ sinh2(πs) log
1527
+ �Γ [1/2 − is]
1528
+ Γ [1/2 + is]
1529
+
1530
+ ∼ 0.278435.
1531
+ (104)
1532
+ Gathering all the pieces together, we finally get
1533
+ F = π2
1534
+ 3 a2 + ζ′(0)
1535
+ 3
1536
+ + f(0, 3) + correction ∼ −0.0638049,
1537
+ (105)
1538
+ which is within 0.003% of the exact value [42, 44]. Note that the constant c does not contribute
1539
+ at all to F.
1540
+ 17
1541
+
1542
+ 6
1543
+ Final remarks
1544
+ In this article, we focused on theories in the semi infinite line constructed from the dimensional
1545
+ reduction of a free scalar in d dimensions. Given that the decomposition of the parent theory H
1546
+ into independent sectors Hℓ⃗m, labeled by the angular modes, also holds for the vacuum modular
1547
+ Hamiltonian in spheres K = �
1548
+ ℓ⃗m Kℓ⃗m, and provided that the vacuum state of the system is
1549
+ the product ρ = ⊗ρℓ⃗m, then, it is immediate to identify the modular Hamiltonian mode Kℓ⃗m
1550
+ with the modular Hamiltonian of the one-dimensional reduced system Hℓ⃗m in the interval (0, R).
1551
+ Remarkably, the resulting modular Hamiltonian is local and proportional to the energy density,
1552
+ with the same weight function β(r) = R2−r2
1553
+ 2R
1554
+ as the one characteristic of a CFT in a sphere R.
1555
+ We complemented the previous analysis with the study of the symmetries inherited from the
1556
+ d dimensional conformal theory. This approach evidences the fact that the symmetry behind
1557
+ the locality of the reduced modular Hamiltonian is just the restriction to the semi infinite line of
1558
+ the original modular symmetry in d dimensions. We identified the conserved current associated
1559
+ to this symmetry transformation and checked that the Kℓ⃗m found by dimensional reduction
1560
+ coincides with the Noether charge.
1561
+ On the other hand, the spectral decomposition of the modular Hamiltonian leads to an analytic
1562
+ expression for the corresponding entanglement entropy (EE) which in turn, after summing over
1563
+ the angular modes, allowed us to recover the EE of the original d dimensional theory in the sphere.
1564
+ To make sense of the sum, we used a novel regularization implemented by a damping exponential
1565
+ parametrized by the same cutoff ϵ that regularizes the radial coordinate. As we mentioned in
1566
+ the introduction, in a way, this procedure generalizes the one introduced by Srednicki in [33]
1567
+ and provides an additional tool to calculate analytically the EE logarithmic coefficient in even
1568
+ dimensions, the universal constant term in d = 3, among others.
1569
+ It would certainly be interesting to explore in the future the modular Hamiltonian of non-
1570
+ conformal theories constructed from the dimensional reduction of other free theories, fermions
1571
+ for example. We expect that the decomposition of the parent theory into independent sectors
1572
+ must carry over unaltered, as well as the symmetry arguments which justify the resulting modular
1573
+ Hamiltonian is a conserved charge.
1574
+ Acknowledgments
1575
+ We thank H.Casini, C.Fosco, E.Tonni and G.Torroba for discussions while this work was being
1576
+ carried out. This work was supported by CONICET, CNEA and Universidad Nacional de Cuyo,
1577
+ Instituto Balseiro, Argentina.
1578
+ References
1579
+ [1] R.Haag, Local quantum physics: Fields, particles, algebras. 1992.
1580
+ [2] R. Brunetti, D. Guido, and R. Longo, “Modular structure and duality in conformal
1581
+ quantum field theory,” Communications in Mathematical Physics 156 no. 1, (1993)
1582
+ 201–219.
1583
+ [3] P. D. Hislop and R. Longo, “Modular Structure of the Local Algebras Associated With the
1584
+ Free Massless Scalar Field Theory,” Commun. Math. Phys. 84 (1982) 71.
1585
+ 18
1586
+
1587
+ [4] H. Casini, E. Teste, and G. Torroba, “Modular Hamiltonians on the null plane and a
1588
+ Markov property of the vacuum state,” arXiv:1703.10656 [hep-th].
1589
+ [5] R. Arias, H. Casini, M. Huerta, and D. Pontello, “Anisotropic Unruh temperatures,” Phys.
1590
+ Rev. D96 no. 10, (2017) 105019, arXiv:1707.05375 [hep-th].
1591
+ [6] M. Ohya and D. Petz, Quantum entropy and its use. Springer Science & Business Media,
1592
+ 2004.
1593
+ [7] H. Casini, “Relative entropy and the Bekenstein bound,” Class. Quant. Grav. 25 (2008)
1594
+ 205021, arXiv:0804.2182 [hep-th].
1595
+ [8] A. C. Wall, “A proof of the generalized second law for rapidly changing fields and arbitrary
1596
+ horizon slices,” Phys. Rev. D85 (2012) 104049, arXiv:1105.3445 [gr-qc]. [Erratum:
1597
+ Phys. Rev.D87,no.6,069904(2013)].
1598
+ [9] D. D. Blanco and H. Casini, “Localization of Negative Energy and the Bekenstein Bound,”
1599
+ Phys. Rev. Lett. 111 no. 22, (2013) 221601, arXiv:1309.1121 [hep-th].
1600
+ [10] R. Bousso, H. Casini, Z. Fisher, and J. Maldacena, “Entropy on a null surface for
1601
+ interacting quantum field theories and the Bousso bound,” Phys. Rev. D91 no. 8, (2015)
1602
+ 084030, arXiv:1406.4545 [hep-th].
1603
+ [11] R. Bousso, Z. Fisher, J. Koeller, S. Leichenauer, and A. C. Wall, “Proof of the Quantum
1604
+ Null Energy Condition,” Phys. Rev. D 93 no. 2, (2016) 024017, arXiv:1509.02542
1605
+ [hep-th].
1606
+ [12] S. Hollands, “Relative entropy close to the edge,” arXiv:1805.10006 [hep-th].
1607
+ [13] S. Ryu and T. Takayanagi, “Holographic derivation of entanglement entropy from
1608
+ AdS/CFT,” Phys. Rev. Lett. 96 (2006) 181602, arXiv:hep-th/0603001 [hep-th].
1609
+ [14] S. Ryu and T. Takayanagi, “Aspects of Holographic Entanglement Entropy,” JHEP 08
1610
+ (2006) 045, arXiv:hep-th/0605073 [hep-th].
1611
+ [15] D. L. Jafferis, A. Lewkowycz, J. Maldacena, and S. J. Suh, “Relative entropy equals bulk
1612
+ relative entropy,” JHEP 06 (2016) 004, arXiv:1512.06431 [hep-th].
1613
+ [16] D. D. Blanco, H. Casini, L.-Y. Hung, and R. C. Myers, “Relative Entropy and
1614
+ Holography,” JHEP 08 (2013) 060, arXiv:1305.3182 [hep-th].
1615
+ [17] D. L. Jafferis and S. J. Suh, “The Gravity Duals of Modular Hamiltonians,” JHEP 09
1616
+ (2016) 068, arXiv:1412.8465 [hep-th].
1617
+ [18] T. Faulkner and A. Lewkowycz, “Bulk locality from modular flow,” JHEP 07 (2017) 151,
1618
+ arXiv:1704.05464 [hep-th].
1619
+ [19] W. G. Unruh, “Notes on black-hole evaporation,” Physical Review D 14 no. 4, (1976) 870.
1620
+ [20] J. Cardy and E. Tonni, “Entanglement hamiltonians in two-dimensional conformal field
1621
+ theory,” J. Stat. Mech. 1612 no. 12, (2016) 123103, arXiv:1608.01283
1622
+ [cond-mat.stat-mech].
1623
+ 19
1624
+
1625
+ [21] E. Tonni, J. Rodríguez-Laguna, and G. Sierra, “Entanglement hamiltonian and
1626
+ entanglement contour in inhomogeneous 1D critical systems,” J. Stat. Mech. 1804 no. 4,
1627
+ (2018) 043105, arXiv:1712.03557 [cond-mat.stat-mech].
1628
+ [22] G. Di Giulio, R. Arias, and E. Tonni, “Entanglement hamiltonians in 1D free lattice
1629
+ models after a global quantum quench,” J. Stat. Mech. 1912 no. 12, (2019) 123103,
1630
+ arXiv:1905.01144 [cond-mat.stat-mech].
1631
+ [23] G. Di Giulio and E. Tonni, “On entanglement hamiltonians of an interval in massless
1632
+ harmonic chains,” J. Stat. Mech. 2003 no. 3, (2020) 033102, arXiv:1911.07188
1633
+ [cond-mat.stat-mech].
1634
+ [24] V. Eisler, G. Di Giulio, E. Tonni, and I. Peschel, “Entanglement Hamiltonians for
1635
+ non-critical quantum chains,” J. Stat. Mech. 2010 (2020) 103102, arXiv:2007.01804
1636
+ [cond-mat.stat-mech].
1637
+ [25] M. Mintchev and E. Tonni, “Modular Hamiltonians for the massless Dirac field in the
1638
+ presence of a defect,” JHEP 03 (2021) 205, arXiv:2012.01366 [hep-th].
1639
+ [26] M. Mintchev and E. Tonni, “Modular Hamiltonians for the massless Dirac field in the
1640
+ presence of a boundary,” JHEP 03 (2021) 204, arXiv:2012.00703 [hep-th].
1641
+ [27] H. Casini and M. Huerta, “Reduced density matrix and internal dynamics for
1642
+ multicomponent regions,” Class. Quant. Grav. 26 (2009) 185005, arXiv:0903.5284
1643
+ [hep-th].
1644
+ [28] R. Longo, P. Martinetti, and K.-H. Rehren, “Geometric modular action for disjoint
1645
+ intervals and boundary conformal field theory,” Rev. Math. Phys. 22 (2010) 331–354,
1646
+ arXiv:0912.1106 [math-ph].
1647
+ [29] G. Wong, “Gluing together Modular flows with free fermions,” JHEP 04 (2019) 045,
1648
+ arXiv:1805.10651 [hep-th].
1649
+ [30] N. Javerzat and E. Tonni, “On the continuum limit of the entanglement Hamiltonian of a
1650
+ sphere for the free massless scalar field,” JHEP 02 (2022) 086, arXiv:2111.05154
1651
+ [cond-mat.stat-mech].
1652
+ [31] R. Jackiw and S. Y. Pi, “Tutorial on Scale and Conformal Symmetries in Diverse
1653
+ Dimensions,” J. Phys. A 44 (2011) 223001, arXiv:1101.4886 [math-ph].
1654
+ [32] C. Chamon, R. Jackiw, S.-Y. Pi, and L. Santos, “Conformal quantum mechanics as the
1655
+ CFT1 dual to AdS2,” Phys. Lett. B 701 (2011) 503–507, arXiv:1106.0726 [hep-th].
1656
+ [33] M. Srednicki, “Entropy and area,” Phys. Rev. Lett. 71 (1993) 666–669,
1657
+ arXiv:hep-th/9303048.
1658
+ [34] H. Casini, S. Grillo, and D. Pontello, “Relative entropy for coherent states from Araki
1659
+ formula,” Phys. Rev. D 99 no. 12, (2019) 125020, arXiv:1903.00109 [hep-th].
1660
+ [35] H. Casini and M. Huerta, “Entanglement entropy in free quantum field theory,” J. Phys. A
1661
+ 42 (2009) 504007, arXiv:0905.2562 [hep-th].
1662
+ 20
1663
+
1664
+ [36] A. A. Saharian, “Scalar Casimir effect for D-dimensional spherically symmetric Robin
1665
+ boundaries,” Phys. Rev. D 63 (2001) 125007, arXiv:hep-th/0012185.
1666
+ [37] M. Van Raamsdonk, “Lectures on Gravity and Entanglement,” in Theoretical Advanced
1667
+ Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings,
1668
+ pp. 297–351. 2017. arXiv:1609.00026 [hep-th].
1669
+ [38] R. E. Arias, H. Casini, M. Huerta, and D. Pontello, “Entropy and modular Hamiltonian
1670
+ for a free chiral scalar in two intervals,” Phys. Rev. D 98 no. 12, (2018) 125008,
1671
+ arXiv:1809.00026 [hep-th].
1672
+ [39] A. Cappelli and G. D’Appollonio, “On the trace anomaly as a measure of degrees of
1673
+ freedom,” Phys. Lett. B 487 (2000) 87–95, arXiv:hep-th/0005115.
1674
+ [40] H. Casini and M. Huerta, “Entanglement entropy for the n-sphere,” Phys. Lett. B 694
1675
+ (2011) 167–171, arXiv:1007.1813 [hep-th].
1676
+ [41] H. Casini, M. Huerta, and R. C. Myers, “Towards a derivation of holographic
1677
+ entanglement entropy,” JHEP 05 (2011) 036, arXiv:1102.0440 [hep-th].
1678
+ [42] I. R. Klebanov, S. S. Pufu, and B. R. Safdi, “F-Theorem without Supersymmetry,” JHEP
1679
+ 10 (2011) 038, arXiv:1105.4598 [hep-th].
1680
+ [43] H. Liu and M. Mezei, “Probing renormalization group flows using entanglement entropy,”
1681
+ JHEP 01 (2014) 098, arXiv:1309.6935 [hep-th].
1682
+ [44] H. Casini, M. Huerta, R. C. Myers, and A. Yale, “Mutual information and the F-theorem,”
1683
+ JHEP 10 (2015) 003, arXiv:1506.06195 [hep-th].
1684
+ 21
1685
+
8NAyT4oBgHgl3EQfc_et/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
AdAyT4oBgHgl3EQfRvcW/content/tmp_files/2301.00070v1.pdf.txt ADDED
@@ -0,0 +1,1274 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ CONSIP: Consistency Protocol for Hopping
2
+ Function Exchange and Black listing in TSCH
3
+ Stefano Scanzio, Federico Bitondo, Gianluca Cena, and Adriano Valenzano
4
+ National Research Council of Italy (CNR–IEIIT), Corso Duca degli Abruzzi 24, I-10129 Torino, Italy
5
6
7
+ Abstract—The use of white and black listing techniques in
8
+ Wireless Sensor Networks (WSN), and in particular those which
9
+ are based on the Time Slotted Channel Hopping (TSCH) op-
10
+ erating mode of IEEE 802.15.4, permits to improve reliability
11
+ and latency by performing transmissions on the best channels.
12
+ Techniques that operate on a per-link basis are deemed quite
13
+ effective, but proper operation requires that the two end points
14
+ involved in the communication agree on the channels to be used
15
+ for transmission. On the contrary, communication in the network
16
+ can be prevented, eventually leading, in the worst cases, to the
17
+ disconnection of part of the nodes.
18
+ This paper presents CONSIP, a technique aimed to ensure
19
+ strict consistency in the information exchanged between the
20
+ nodes and used to drive communication, by preventing a priori
21
+ the aforementioned problem from occurring. Results show a
22
+ slight increase in energy consumption, due to the use of a
23
+ backup cell, whereas communication latency does not worsen.
24
+ The effectiveness of CONSIP was assessed by means of an
25
+ experimental campaign, and the only drawback we found is that
26
+ the backup cell, which is required to be reserved per link, may
27
+ limit the number of nodes in dense networks.
28
+ I. INTRODUCTION
29
+ The recent evolution of factories can be viewed as a sort
30
+ of new, pacific futurism movement1, in which characteristics
31
+ such as speed, simultaneity, dynamism, and innovation play a
32
+ relevant role in next-generation industrial networks and plants.
33
+ On the one hand, the Industry 4.0 [1], [2] revolution (and
34
+ beyond) is an example of this transition, where communication
35
+ networks are becoming more and more heterogeneous in terms
36
+ of the employed technologies [3] and wireless extensions are
37
+ playing an increasingly important role for enabling the afore-
38
+ mentioned characteristics. On the other hand, the (Industrial)
39
+ Internet of Things (IoT/IIoT) paradigm [4], [5], [6] enables
40
+ autonomous communication between network devices, and is
41
+ boosting the need of wireless technologies with more specific
42
+ features, able to meet increasingly demanding requirements.
43
+ In this direction, the set of technologies collectively known
44
+ with the term Wireless Sensor (and Actuator) Networks
45
+ (WSN/WSAN) is extensively used to collect data and, some-
46
+ times, to perform actuations in distributed systems, where
47
+ devices are typically battery-powered and the amount of data
48
+ to be exchanged is quite small. Among the available solutions,
49
+ the Deterministic and Synchronous Multichannel Extension
50
+ (DSME) and the Time Slotted Channel Hopping (TSCH)
51
+ 1Futurism was a social and artistic movement, which originated in Italy in
52
+ the early 20th century.
53
+ operating modes of the IEEE 802.15.4 standard [7] show
54
+ interesting features and are becoming quite popular. In both
55
+ modes, the transmissions of packets in a data stream, as well
56
+ as the retransmissions of the same packet, are carried out auto-
57
+ matically at the MAC layer on different frequencies/channels,
58
+ which consequently makes the quality of the communication
59
+ link, as seen by network nodes, more stable.
60
+ This work focuses on TSCH, and in particular it is related
61
+ to those techniques, known as black listing and white listing,
62
+ that are aimed at increasing the quality of communication, by
63
+ removing the worst channels or by selecting the best channels,
64
+ respectively. For example, if a network node is given the ability
65
+ to select the best channels to perform its transmissions, it will
66
+ consequently experience improvements in terms of reliability,
67
+ latency, and power consumption. To this end, many black
68
+ and white listing algorithms were proposed in the scientific
69
+ literature, and their typical operations can be subdivided into
70
+ three basic steps:
71
+ 1) evaluation: inferring how each channel will likely be-
72
+ have in the near future, typically using statistics col-
73
+ lected from the recent past;
74
+ 2) selection: deciding whether, where, and how to use these
75
+ channels, that is, planning a selection strategy;
76
+ 3) propagation: delivering the channel selection strategy to
77
+ the involved nodes in a consistent way.
78
+ The main content of this paper is related to the last point.
79
+ In particular, it is about ensuring that, at any given time, the
80
+ sender and receiver nodes on a link use the same channel for
81
+ communicating. In fact, if this property was not guaranteed,
82
+ communication within the network could be prevented, possi-
83
+ bly with severe consequences, which typically consist in the
84
+ disconnection, sometimes permanent, of one or more nodes. To
85
+ this extent we proposed the CONSIP protocol, which ensures
86
+ to the involved nodes a reliable exchange of the information
87
+ about the channels to be used in future transmissions. It
88
+ grounds on the idea to leave two disjoint communications links
89
+ open during this exchange, which virtually operate in parallel,
90
+ the former based on the old information about channels and
91
+ the second using the new one. Only when both nodes are
92
+ certain that they have agreed to use the new information, the
93
+ previous communication based on the old channel selection
94
+ is deactivated. An extensive experimental campaign based
95
+ on simulation has been carried out, in order to evaluate the
96
+ This is the author’s version of an article that has been published in this journal.
97
+ Changes were made to this version by the publisher prior to publication.
98
+ The final version of record is available at https://doi.org/10.1109/WFCS53837.2022.9779192
99
+ Copyright (c) 2022 IEEE. Personal use is permitted.
100
+ For any other purposes, permission must be obtained from the IEEE by emailing [email protected].
101
+ arXiv:2301.00070v1 [cs.NI] 30 Dec 2022
102
+
103
+ CONSIP functionality from the point of view of a number
104
+ of statistical indicators, and in particular power consumption,
105
+ which is a very important performance metric for this kind of
106
+ networks.
107
+ In the following, the concepts behind white and black listing
108
+ are analyzed and described together in Section II, with an
109
+ extensive analysis of the state of the art. The CONSIP protocol
110
+ is firstly presented intuitively, and then formally, in Section III.
111
+ Section IV describes the simulator and the parameters we used
112
+ in the simulation, including the energy model, while results are
113
+ reported in Section V, which precedes Section VI that draws
114
+ some concluding remarks.
115
+ II. BLACK AND WHITE LISTING
116
+ The channel hopping technique enables nodes in a wireless
117
+ network to periodically change the transmission frequency
118
+ of links in order to mitigate the effects of disturbance and
119
+ interference on the quality of communication. The ideas be-
120
+ hind channel hopping were proposed more than one decade
121
+ ago [8], and currently they are adopted in several network
122
+ technologies like WirelessHART [9], Bluetooth [10], and
123
+ TSCH. In particular, time in TSCH is divided in timeslots
124
+ of equal length [11], [12], while channel hopping [8] selects
125
+ the effective transmission channel through a pseudo-random
126
+ function ν shared between the transmitter and the receiver.
127
+ In this protocol, traffic is scheduled by reserving timeslots, to
128
+ permit nodes to be switched off when no data exchange is
129
+ scheduled for them, consequently saving energy.
130
+ A scheduled transmission is identified by a pair of values,
131
+ the slot offset (o) and the channel offset (c), which iden-
132
+ tify a position in a matrix of dimension Nslots × Nch. The
133
+ schedule repeats over time with period Nslots slots. Typically
134
+ Nslots = 101, and the slot duration is equal to 20 ms. As a
135
+ consequence, the repetition period of the slotframe (i.e., of
136
+ the matrix) is 2.02 s. Each slot is identified by a (practically)
137
+ unique and strictly increasing unsigned integer number x,
138
+ which is known as the Absolute Slot Number (ASN). In every
139
+ slot up to Nch transmissions can be performed at the same
140
+ time on distinct links, each one related to a different channel
141
+ offset c ∈ {1, ..., Nch}.
142
+ The shared hopping function ν returns the physical channel
143
+ ch used for the actual transmission, and can be expressed as
144
+ ch = ν(x, c) ≜ H((x + c) mod Nch),
145
+ (1)
146
+ where H(i) is the so called hopping sequence. Given an
147
+ integer value i ∈ {0, ..., Nch − 1}, H(i) basically returns
148
+ the element in position i of an array of dimension Nch,
149
+ which encodes the physical channel. If protocol parameters
150
+ are set in such a way that two subsequent transmissions of
151
+ the same data frame are not spaced by a multiple of Nch (as
152
+ typically happens in real networks), then they will take place
153
+ on different physical channels. The hopping sequence H(i)
154
+ is usually chosen so that subsequent transmissions take place
155
+ on channels that are spaced wide enough. In this way, retries
156
+ of the same packet are unlikely to suffer repeatedly from the
157
+ effect of the same source of interference [13]. For instance,
158
+ in the 2.4 GHz band a single Wi-Fi channel can span over
159
+ multiple IEEE 802.15.4 channels that use the O-QPSK PHY.
160
+ Channel hopping has the effect of “flattening” network
161
+ performance, since all channels are used independently of their
162
+ quality. In other words, the quality of a link experienced by
163
+ communicating nodes is about the same as what is found by
164
+ averaging the quality of channels. As a consequence, reliability
165
+ and other performance indicators are less dependent on the
166
+ quality of any single channel, making communication much
167
+ more stable.
168
+ Two reasonable and intuitive solutions to enhance perfor-
169
+ mance are black listing [14] and white listing [15]. In the for-
170
+ mer, channels with the worst performance are excluded, while
171
+ in the latter only those channels with the better performance
172
+ are exploited. Both solutions are based on the idea that some
173
+ channels can be removed from (or selected for) the hopping
174
+ sequence in order to maximize the chances that transmission
175
+ attempts succeed.
176
+ Over the past years, a variety of black and white listing
177
+ techniques have been proposed in the scientific literature. A
178
+ relevant aspect for creating a taxonomy of such techniques
179
+ is the metric they use to identify a channel as bad or good.
180
+ Methods based on the Received Signal Strength Indicator
181
+ (RSSI) have been shown to be less accurate than those based
182
+ on the Packed Delivery Ratio (PDR) [16]. Less conventional
183
+ techniques like ETSCH rely on energy detection in idle periods
184
+ [17], while other solutions make use of fuzzy logic [18]. It is
185
+ also possible to use machine learning techniques to predict the
186
+ evolution of a wireless channel, in terms of the frame delivery
187
+ probability, given its recent past [19].
188
+ Channel quality estimation is only one of the aspects to
189
+ which attention has to be paid in the definition of above
190
+ techniques. Many works recognise that link-based (local)
191
+ listing, in which the set of good/bad channels is selected
192
+ based on the single link, is better than global listing [20].
193
+ The superiority of link-based approaches is reasonable, since
194
+ mesh networks are distributed in space, and the characteristics
195
+ of the wireless spectrum may vary noticeably even in the case
196
+ of small movements of the nodes [21].
197
+ Actually, a node that requires to communicate with more
198
+ than one neighbor needs to maintain a different ν function
199
+ for each neighbor. Selecting the correct functions can be
200
+ done transparently, by using the information related to the
201
+ configured (non-shared) cells in the slotframe matrix. An
202
+ important limitation of link-based techniques is that they
203
+ cannot be directly used for multicast/broadcast traffic.
204
+ Black/white listing techniques also differ on the way chan-
205
+ nel selection is shared among nodes. In particular, every time
206
+ a technique requires a modification of the function ν (and/or
207
+ the hopping sequence H(i)) used by a pair of nodes, both the
208
+ transmitter NTX and the receiver NRX must agree on it. In
209
+ the case of inconsistency between the functions νTX and νRX
210
+ used in NTX and NRX, respectively (i.e., when νTX ̸= νRX),
211
+ communication between the two nodes is prevented because
212
+ it is no longer guaranteed that the channel they use for
213
+ transmission and reception in any given slot coincide. This
214
+
215
+ ��
216
+ ��
217
+ ��
218
+ ��
219
+ ��
220
+ ��
221
+ ��
222
+ ��
223
+ ��
224
+ ���
225
+ ���
226
+ ��
227
+ 1j
228
+ ��
229
+ 2j
230
+ ��
231
+ ��
232
+ 3i
233
+ 4i
234
+ 4j
235
+ 5i
236
+ 5j
237
+ ��
238
+ 6i
239
+ ���
240
+ 7i
241
+ 7j
242
+ ��
243
+ ���
244
+ 8i
245
+ 8j
246
+ ���
247
+ 9i
248
+ 9j
249
+ ��
250
+ 10j
251
+ ���
252
+ 11i
253
+ 11j
254
+ ℱ��
255
+ ����� = � , ��
256
+ ����� = � , −
257
+ ℱ��
258
+ � ACK frame
259
+ ����� = � , ��
260
+ ����� = � , −
261
+ ����� = � , ��
262
+ ����� = � , ��
263
+ 2i
264
+ ����� = � , ��
265
+ ����� = � , −
266
+ 1i
267
+
268
+
269
+ ��
270
+ Lost frame
271
+ ����� = � , ��
272
+ ����� = � , −
273
+ 3j
274
+
275
+ ��
276
+ ℱ���
277
+ ��
278
+ ����� = � , ��
279
+ ����� = � , ���
280
+ 6j
281
+ ℱ���
282
+ ℱ���
283
+ ��
284
+ ����� = � , ���
285
+ ����� = � , −
286
+
287
+ ���
288
+ ���
289
+ ����� = � , ���
290
+ ����� = � , −
291
+ 10i
292
+ ℱ��
293
+ Data frame with new
294
+ hopping function ��
295
+ ℱ data frame
296
+ ���
297
+ ���
298
+ Double listening
299
+ Fig. 1. Example of application of the CONSIP protocol.
300
+ circumstance shall be absolutely avoided, because it could lead
301
+ to the disconnection of a portion of the network.
302
+ The ways to distribute ν to the end points of the link, and
303
+ in particular to do so consistently, avoiding the possibility that
304
+ νTX ̸= νRX for even just a single cell, are the main goals
305
+ of this work. Some scientific papers treated this problem in
306
+ a completely different way and with some assumptions [20],
307
+ [22], for example not considering the chance that acknowl-
308
+ edgement (ACK) frames could be lost. This simple assumption
309
+ proved to be mostly untrue on real traffic logs we acquired on
310
+ OpenMote B devices equipped with the OpenWSN (version
311
+ REL-1.24.0) operating system. In fact, our measurements
312
+ showed that the loss probability for ACK frames in our
313
+ experimental testbed is not negligible at all, and amounts to
314
+ about 8% in benign environmental conditions. In the same
315
+ conditions, the loss probability for data frames was 12.6%2.
316
+ Instead, the main idea in [23] is to leave the hopping
317
+ function unmodified, but to lower the usage of cells associated
318
+ with bad quality channels, which are exploited with a certain
319
+ probability lower than one. Doing so prevents any problems
320
+ due to inconsistency between the views of NTX and NRX,
321
+ but at the same time limits the achievable performance. In
322
+ fact, while this technique is suitable for reducing power
323
+ consumption, it also causes an increase of latency.
324
+ III. CONSISTENCY PROTOCOL
325
+ Communication between a sender node NTX and a receiver
326
+ node NRX in the slot characterized by ASN equal to x is only
327
+ possible if both nodes agree on the frequency (physical chan-
328
+ nel) to be used to send and receive data on air, respectively.
329
+ In the case the hopping functions ν on the two sides of a link
330
+ were unaligned, the network would quickly lose connectivity
331
+ of some nodes, which become unreachable.
332
+ The process of exchanging a hopping function between the
333
+ end points of a link starts when NTX generates a new νn and
334
+ finishes when νn is effectively in use, at which point the cells
335
+ referring to the previous hopping function νo are switched off
336
+ in both NTX and NRX. In the following, this process will
337
+ be denoted, for brevity, with the term ν-exchange. Instead,
338
+ 2The experimental data on which such values were computed are included
339
+ in the file default-101-16-15days.dat, which is downloadable from
340
+ https://dx.doi.org/10.21227/fg62-bp39.
341
+ CONSIP is the protocol we are proposing in this work to
342
+ enable a ν-exchange to be performed in a consistent way.
343
+ The main idea behind CONSIP is to have, for any cell
344
+ Ccurr reserved for the communication between NTX and NRX,
345
+ a backup cell Cback that is used only for the time strictly
346
+ needed to perform a ν-exchange. After that, the cell Cback
347
+ becomes Ccurr, i.e., the two cells reverse their role by means
348
+ of a swap() operation. These two cells are scheduled in
349
+ distinct slot offsets in the slotframe matrix. As a consequence,
350
+ CONSIP does not require any modification to the hardware of
351
+ nodes. In particular, it can be implemented in conventional de-
352
+ vices provided with a single communication interface/antenna.
353
+ Although there are no other constraints on the position of
354
+ Cback within the slotframe, a reasonable choice is to interleave
355
+ Ccurr and Cback cells so that they are evenly spaced, e.g., when
356
+ Nslots = 101 they could be located at slot offset i and (i+50)
357
+ mod 101. Both Ccurr and Cback are identified by a 2-tuple,
358
+ composed of a slot offset and a hopping function. Let i and j
359
+ be the slot offsets assigned to the two above cells, respectively.
360
+ Then, Ccurr = (i, νo) means that the current cell in use Ccurr
361
+ is assigned to slot offset i and that hopping function νo is used
362
+ for transmission. Instead, Cback = (j, −) means that Cback is
363
+ assigned to slot offset j and it cannot be used because it is
364
+ not currently mapped to any hopping function.
365
+ A. Simple example about protocol operation
366
+ In Fig. 1, an example of the CONSIP operation is sketched.
367
+ In slot 1i (i.e., slot i in slotframe 1) a frame Fνn
368
+ x
369
+ is sent
370
+ to perform a ν-exchange. This frame is just a conventional
371
+ data frame Fx that also contains the new hopping function νn
372
+ estimated by NTX. The hopping function used to determine the
373
+ physical channel for every slot, on either the transmitter (upper
374
+ diagram) or the receiver side (lower diagram), is specified
375
+ inside the box representing the slot itself. In the example, the
376
+ first frame is lost but the retransmission of Fνn
377
+ x
378
+ in cell 2i
379
+ correctly arrives to destination. For NRX, starting from slot
380
+ 2j the cell Cback = (j, νn) is activated, and the node enters
381
+ the double listening state in which it listens on both cells Ccurr
382
+ and Cback, using for them the hopping functions νo and νn,
383
+ respectively. Since the frame Fνn
384
+ x
385
+ sent in cell 2i is confirmed
386
+ by the related ACK frame Ax, NTX starts using exclusively
387
+ the new hopping function νn. In particular, it performs a swap
388
+ between the two cells by means of the swap() function, after
389
+
390
+ �� ��
391
+ ���� ����� ⋀ �� �� �� �����
392
+ ����(�����, �����)
393
+ ����� = ⋅ , !
394
+ ����� = ⋅ , −
395
+ ����� = # , $
396
+ ����� = % , −
397
+ ����� = # , $
398
+ ����� = % , −
399
+ �� ������ �����
400
+ ����� = ⋅ , !
401
+ double
402
+ listening
403
+ steady
404
+ �� �� �� �����
405
+ ����� = ⋅ , −
406
+ �� �� �� �&'�(
407
+ ����(�����, �����)
408
+ ����� = ⋅ , −
409
+ �� ����)
410
+ �� �����
411
+ ����� = ⋅ , !)
412
+ �� ����)
413
+ �� �&'�(
414
+ ����(�����, �����)
415
+ ����� = ⋅ , !)
416
+ steady
417
+ Transmitter Node *��
418
+ Receiver Node *��
419
+ {1}
420
+ {1}
421
+ {2}
422
+ {3}
423
+ {4}
424
+ {7}
425
+ {6}
426
+ {5}
427
+ Fig. 2. State machines of NTX and NRX.
428
+ which Ccurr = (j, νn) and Cback = (i, −), i.e., the backup
429
+ cell is deactivated. On NRX, the double listening state persists
430
+ until it receives a frame (typically in Cback, but sometimes
431
+ in Ccurr) whose channel is selected using the new hopping
432
+ function νn. Only in this case, NRX can be sure that also NTX
433
+ has switched to νn, and is consequently using Cback as current
434
+ transmission channel. At this point NRX sets Ccurr = (j, νn)
435
+ and Cback = (i, −). In the example of Fig. 1 this happens in
436
+ slot 3j, which becomes the current channel.
437
+ In the new ν-exchange with hopping function νn2 in slot
438
+ 6j, the Ax frame used to confirm Fν2n
439
+ x
440
+ is lost. In this case,
441
+ node NTX continues to transmit in Ccurr = (j, νn), and only
442
+ when Fν2n
443
+ x
444
+ is followed by the correct reception of Ax, which
445
+ happens in slot 8j, node NTX can start transmitting using
446
+ the new hopping sequence. It is worth remarking that, the
447
+ double listening period in which NRX is active on both cells
448
+ with both the old and new hopping sequences is mandatory
449
+ because, after the reception of Fνn2
450
+ x
451
+ using νn, from the NRX
452
+ viewpoint it is not possible to know if NTX will use νn or
453
+ νn2 for the next transmission. In fact, if the acknowledgement
454
+ frame Ax related to Fνn2
455
+ x
456
+ is correctly received by NTX, it can
457
+ safely assume that NRX received the new hopping function
458
+ νn2 and hence it can start using it as the current cell Ccurr =
459
+ (i, νn2), otherwise it must assume that νn2 was not received.
460
+ This mismatch of viewpoints between NTX and NRX may
461
+ occur in any communications network, and it is accentuated
462
+ in wireless networks where the probability of losses is not
463
+ negligible at all.
464
+ Only when the frame Fx is actually received in the cell
465
+ related to the new hopping function νn2 (in slot 10i in the
466
+ example), node NRX can start using Ccurr = (i, νn2) as the
467
+ current cell, and it can disable the backup cell Cback = (j, −).
468
+ B. Protocol description through FSMs
469
+ To better formalize the CONSIP protocol, two finite state
470
+ machines (FSMs) are presented in Fig. 2 for NTX and NRX. In
471
+ particular, both FSMs start from the steady initial states with
472
+ Ccurr = (i, νo) and Cback = (j, −) (see the arc labeled {1}
473
+ in the figure). These initial steady states represent the normal
474
+ operating condition of TSCH, in which only one cell is active
475
+ and there are no ongoing updates of ν.
476
+ Regarding arc {2} of the NTX FSM, each time a frame
477
+ delivering a new hopping function Fνn
478
+ x
479
+ is acknowledged
480
+ in Ccurr, the node NTX can set the cell Ccurr to νn. For
481
+ doing so, the node swaps the two cells (i.e., it invokes
482
+ swap(Ccurr, Cback)), and then it sets the hopping function
483
+ νn in the current cell and disables the hopping function, and
484
+ consequently the ability to transmit, in the backup cell. This
485
+ is performed by means of the two operations Ccurr = (·, νn)
486
+ and Cback = (·, −), where the symbol “·” means that the slot
487
+ offset is not changed.
488
+ Regarding the FSM of NRX, it consists of two states.
489
+ Each time a frame containing a new hopping function νn is
490
+ received in Ccurr, the backup cell is activated and the FSM
491
+ enters the double listening state through arc {3}, in which
492
+ NRX receives on both cells, consequently increasing its power
493
+ consumption. The arc labelled {4} either corresponds to the
494
+ NTX’s intention to change on the fly the previously transferred
495
+ hopping function νn with a new hopping function νn′ or, more
496
+ typically, it is due to a retransmission of the previous frames
497
+ for which the related ACK did not arrive to destination. In the
498
+ latter case νn′ = νn.
499
+ The arrival of a frame in the backup cell, as for arc {5},
500
+ confirms to NRX that the transmitter is correctly using the
501
+ new hopping function. As a consequence, the receiving node
502
+ can start using the backup cell as current cell, by invoking
503
+ swap(Ccurr, Cback), after which it can disable the backup
504
+ cell Cback = (·, −).
505
+ A frame Fνn′
506
+ x
507
+ delivering a new hopping function νn′ that
508
+ is received in the backup channel, as depicted for arc {6},
509
+ has simultaneously two consequences. The first is to confirm
510
+ to NRX that NTX is using the new hopping function νn, and
511
+ the second to communicate that NTX wants to perform a new
512
+ ν-exchange using νn′. For this reason the use of the swap()
513
+ function is required.
514
+ Finally, arc {7} accounts for the unlikely case that NTX
515
+ decides to abort the ν-exchange, and it continues transmitting
516
+ normal frames in Ccurr. For instance, this may happen if the
517
+ sender node detects that the quality of channels has changed
518
+ and the current hopping function νo is again the best one.
519
+ IV. EXPERIMENTAL SETUP
520
+ A discrete event simulator named TSCH-predictor, which
521
+ was developed within the SimPy framework, was used to
522
+ evaluate the effectiveness of CONSIP. Differently from other
523
+ more common simulators such as TSCH-Sim [24] and 6TiSCH
524
+ [25], TSCH-predictor has the advantage to be noticeably
525
+ simpler, and consequently it permits to easily implement and
526
+
527
+ evaluate new algorithms and techniques based on TSCH.
528
+ TSCH-predictor was profitably used in other research works
529
+ like [26], [27], and more information about its features can be
530
+ found in [27].
531
+ The main settings used in all the experimental campaigns
532
+ were selected as follows: Nslots = 101, slot duration 20 ms,
533
+ Nch = 16, frame loss probability ϵf = 12.6%, and ACK
534
+ loss probability ϵa = 8.0%. In the experiments, both proba-
535
+ bilities ϵf and ϵa were left constant over time. This is not a
536
+ big limitation, as the sensitivity of CONSIP with respect to
537
+ channel errors is not the main focus of this work. However,
538
+ such analysis may be of interest, and is left as future work.
539
+ As specified, these two values were derived from a real
540
+ experimental testbed deployed in our lab. Finally, the duration
541
+ of each experiment was set to 10 years, which ensures for
542
+ results good statistical significance.
543
+ The size of each packet sent in the simulation is Ltot =
544
+ Lheader +Lpayload +LIE, where Lheader = 29 B is the overall
545
+ size of both the PHY and MAC headers, Lpayload = 30 B
546
+ refers to the payload (we chose a relatively small size for it,
547
+ as happens in typical industrial networks and WSANs), and
548
+ LIE concerns the information element (IE). In particular, in
549
+ this work the IE is used to encode and transfer ν. The IE,
550
+ whose size is LIE = LIEh + LIEp, is a specific configurable
551
+ attribute that the IEEE 802.15.4 standards permits to attach
552
+ to a frame, and consists of an IE header LIEh = 2 B and an
553
+ IE payload LIEp that is a configuration parameter and must
554
+ have enough room to store ν. In the following, the value LIEp
555
+ was fixed to 16 B unless explicitly stated. The exact way the
556
+ ν function is encoded depends on the specific implementation
557
+ of the black/white listing technique, and is outside the scope
558
+ of this work.
559
+ In this new version of the simulator we exploited the
560
+ energy model described in [28]. In particular, the energy to
561
+ transmit a data frame is Etx = Etx0 + etx · Ltot, and the
562
+ energy to receive a data frame is Erx = Erx0 + erx · Ltot,
563
+ where Etx0 = 7 µJ, etx = 2 µJ/B, Erx0 = 65 µJ, and
564
+ erx = 1.3 µJ/B. Instead, the energy to transmit an ACK frame
565
+ (whose size is 33 B) is EACK
566
+ tx
567
+ = 106 µJ, the energy to receive
568
+ it is EACK
569
+ rx
570
+ = 79 µJ, and the energy spent for idle listening,
571
+ when the receiver switches its interface on without receiving
572
+ any data, is Elisten = 138 µJ.
573
+ V. RESULTS
574
+ The effectiveness of CONSIP was assessed through an
575
+ extensive experimental campaign aimed at analyzing it from
576
+ the point of view of two relevant key performance indicators,
577
+ namely, power consumption and ν-exchange latency. There
578
+ is no need to analyze it also from the point of view of
579
+ reliability, because in CONSIP every packet is guaranteed the
580
+ same number of retries (upon errors) as the unmodified TSCH.
581
+ A. Power consumption
582
+ The first set of experiments is targeted at analyzing the
583
+ amount of energy used by CONSIP when a ν-exchange is
584
+ performed cyclically with a period equal to Tupdate. Several
585
+ values are chosen for this parameter, in the range from some
586
+ minutes to a few hours. Two separate periods were set for the
587
+ traffic flow between NTX and NRX, that is, Tapp = 30 s and
588
+ Tapp = 5 s. The former value mimics a reasonable generation
589
+ period for sensors located in leaf nodes. Instead, the latter
590
+ value (i.e., Tapp = 5 s) models the links between nodes near
591
+ the root, in which the aggregation of the traffic generated
592
+ from the lower layers of the topology increases the amount of
593
+ cells that are actually used for transmission. Selecting periodic
594
+ transmission patterns does not limit in any way the validity of
595
+ the proposed method.
596
+ Table I compares network behavior for different values of
597
+ Tupdate (and Tapp) with respect to the case when CONSIP is
598
+ disabled. Comparison with conventional TSCH operation (i.e.,
599
+ when CONSIP is disabled) is quite relevant, because it permits
600
+ to statistically detect possible drawbacks of this method. We
601
+ did not find in the scientific literature any methods similar to
602
+ CONSIP to perform a meaningful comparison.
603
+ Starting from Tupdate and Tapp, the number of samples
604
+ for each channel that can be exploited to compute νn is
605
+ #ν =
606
+ Tupdate·60
607
+ Tapp·16
608
+ (the update time is expressed in minutes).
609
+ This value just provides an indication about the amount of new
610
+ information that can be exploited, on average, by a black/white
611
+ listing algorithm to compute νn. However, it is not related to
612
+ the way this computation is actually performed, and not even
613
+ to the quality of the channel. More important, it is not relevant
614
+ to CONSIP. The value of #ν is reported in the related column
615
+ of the table. When Tapp = 30 s, in order to have at least one
616
+ sample per channel on every update of the hopping function
617
+ (that is, #ν ≥ 1) the update period Tupdate must be set to a
618
+ value greater than 8 min.
619
+ Regarding NTX, all the energy related to communication
620
+ is spent for data transmission. The reason why P NTX
621
+ tx/tot is
622
+ inversely proportional to Tupdate is that, every time a ν-
623
+ exchange is triggered, the size of the packet to be transmitted
624
+ is increased by LIE bytes.
625
+ Regarding power consumption on NRX, there is a sensible
626
+ increase in the energy P NRX
627
+ listen that is wasted because of idle
628
+ listening. This is due to the fact that when NRX is in the
629
+ double listening state, it enables its receiving interface in both
630
+ cell Ccurr and Cback, but one of the two cells remains unused
631
+ because the sender node NTX transmits only in one cell, either
632
+ Ccurr or Cback. In particular, the growth in both the total power
633
+ consumption Ptot and the power consumption on NRX that is
634
+ observed when CONSIP is employed mostly depends on the
635
+ increase of Plisten, i.e., to the higher amount of idle listening
636
+ because of the aforementioned double listening.
637
+ Analyzing the case Tapp = 30 s, when #ν ≃ 1 a new νn
638
+ can be obtained exploiting, on average, about one additional
639
+ sample for each channel. This can be likely considered a
640
+ worst condition from the point of view of energy, and the
641
+ relative increase of the total power consumption (Ptot) is
642
+ equal to +5.80 %, which is a reasonable value for many
643
+ application contexts. When the ν-exchange is performed at a
644
+ slower pace (i.e., every Tupdate = 30 min and 60 min, which
645
+ means #ν = 3.75 and #ν = 7.5) the relative increase in
646
+
647
+ TABLE I
648
+ POWER CONSUMPTION AND LATENCY VS. DIFFERENT EXCHANGE PERIODS OF ν.
649
+ Power consumption
650
+ Latency
651
+ Listing
652
+ Tupdate
653
+
654
+ P NTX
655
+ tx/tot
656
+ P NRX
657
+ rx
658
+ P NRX
659
+ listen
660
+ P NRX
661
+ tot
662
+ Ptot
663
+ µd
664
+ σd
665
+ dp99
666
+ dp99.9
667
+ dmax
668
+ [min]
669
+ [µW]
670
+ [µW]
671
+ [µW]
672
+ [%]
673
+ [s]
674
+ Disabled
675
+ -
676
+ -
677
+ 8.622
678
+ 9.823
679
+ 62.596
680
+ 72.419
681
+ 81.041
682
+ -
683
+ 1.311
684
+ 1.006
685
+ 4.900
686
+ 7.200
687
+ 9.460
688
+ Enabled
689
+ Tapp = 30 s
690
+ 7.5
691
+ 0.94
692
+ 8.711
693
+ 9.880
694
+ 67.151
695
+ 77.031
696
+ 85.742
697
+ +5.80%
698
+ 1.311
699
+ 1.006
700
+ 4.900
701
+ 7.200
702
+ 9.480
703
+ 15
704
+ 1.88
705
+ 8.667
706
+ 9.851
707
+ 64.873
708
+ 74.725
709
+ 83.391
710
+ +2.90%
711
+ 1.311
712
+ 1.006
713
+ 4.900
714
+ 7.200
715
+ 9.460
716
+ 30
717
+ 3.75
718
+ 8.645
719
+ 9.837
720
+ 63.735
721
+ 73.572
722
+ 82.216
723
+ +1.45%
724
+ 1.311
725
+ 1.006
726
+ 4.900
727
+ 7.200
728
+ 9.440
729
+ 60
730
+ 7.5
731
+ 8.633
732
+ 9.830
733
+ 63.166
734
+ 72.995
735
+ 81.629
736
+ +0.73%
737
+ 1.311
738
+ 1.006
739
+ 4.900
740
+ 7.220
741
+ 9.480
742
+ 120
743
+ 15
744
+ 8.628
745
+ 9.826
746
+ 62.881
747
+ 72.707
748
+ 81.335
749
+ +0.36%
750
+ 1.311
751
+ 1.006
752
+ 4.900
753
+ 7.200
754
+ 9.460
755
+ 240
756
+ 30
757
+ 8.625
758
+ 9.824
759
+ 62.739
760
+ 72.563
761
+ 81.188
762
+ +0.18%
763
+ 1.311
764
+ 1.006
765
+ 4.900
766
+ 7.220
767
+ 9.480
768
+ Disabled
769
+ -
770
+ -
771
+ 51.732
772
+ 58.932
773
+ 33.995
774
+ 92.927
775
+ 144.659
776
+ -
777
+ 1.384
778
+ 1.091
779
+ 5.340
780
+ 7.880
781
+ 21.660
782
+ Enabled
783
+ Tapp = 5 s
784
+ 7.5
785
+ 5.63
786
+ 51.820
787
+ 58.990
788
+ 34.748
789
+ 93.737
790
+ 145.557
791
+ +0.621%
792
+ 1.383
793
+ 1.090
794
+ 5.340
795
+ 7.880
796
+ 20.640
797
+ 15
798
+ 11.25
799
+ 51.776
800
+ 58.961
801
+ 34.371
802
+ 93.332
803
+ 145.108
804
+ +0.311%
805
+ 1.383
806
+ 1.091
807
+ 5.340
808
+ 7.880
809
+ 21.660
810
+ 30
811
+ 22.5
812
+ 51.754
813
+ 58.946
814
+ 34.183
815
+ 93.130
816
+ 144.883
817
+ +0.155%
818
+ 1.384
819
+ 1.091
820
+ 5.360
821
+ 7.880
822
+ 21.660
823
+ 60
824
+ 45
825
+ 51.743
826
+ 58.939
827
+ 34.089
828
+ 93.028
829
+ 144.771
830
+ +0.078%
831
+ 1.384
832
+ 1.091
833
+ 5.340
834
+ 7.880
835
+ 20.640
836
+ 120
837
+ 90
838
+ 51.737
839
+ 58.936
840
+ 34.042
841
+ 92.978
842
+ 144.715
843
+ +0.039%
844
+ 1.384
845
+ 1.091
846
+ 5.340
847
+ 7.880
848
+ 21.660
849
+ 240
850
+ 180
851
+ 51.734
852
+ 58.934
853
+ 34.019
854
+ 92.952
855
+ 144.687
856
+ +0.019%
857
+ 1.384
858
+ 1.091
859
+ 5.360
860
+ 7.880
861
+ 21.660
862
+ terms of total power consumption is almost negligible and
863
+ equal to +1.45 % and +0.73 %, respectively. This confirms
864
+ that the main drawback of CONSIP is not the additional
865
+ energy consumption, but the need to allocate twice as much the
866
+ number of cells for each link if compared with a scheduling
867
+ strategy without CONSIP. The results with Tapp
868
+ = 5 s,
869
+ in which case the maximum relative increase in the total
870
+ power consumption is only +0.621 %, further corroborate this
871
+ conclusion. However, this limitation is typically problematic
872
+ only for a small subset of network topologies, characterized
873
+ by a larger number of nodes and a high density.
874
+ The last set of columns in Table I reports some performance
875
+ indicators related to latency. They show that the influence of
876
+ CONSIP on latency is irrelevant. The only statistical indices
877
+ that are not the same for all the experimental conditions are
878
+ percentiles (dp99.9 for Tapp = 30 s, and dp99 for Tapp = 5 s)
879
+ and the maximum value (dmax), but they are anyway very
880
+ similar. This behaviour is somehow expected, since high-order
881
+ percentiles and the maximum converge to their real values
882
+ much more slowly than other statistical indices such as the
883
+ mean value and lower-order percentiles.
884
+ TABLE II
885
+ POWER CONSUMPTION WITH Tapp = 30 s AND T update = 30 min VS.
886
+ DIFFERENT SIZES OF ν.
887
+ LIEp
888
+ P NTX
889
+ tx/tot
890
+ P NRX
891
+ rx
892
+ P NRX
893
+ listen
894
+ P NRX
895
+ tot
896
+ Ptot
897
+ [B]
898
+ [µW]
899
+ [µW]
900
+ [µW]
901
+ [%]
902
+ 16
903
+ 8.645
904
+ 9.837
905
+ 63.735
906
+ 73.572
907
+ 82.216
908
+ +1.450%
909
+ 14
910
+ 8.642
911
+ 9.835
912
+ 63.735
913
+ 73.570
914
+ 82.212
915
+ +1.445%
916
+ 12
917
+ 8.639
918
+ 9.833
919
+ 63.735
920
+ 73.568
921
+ 82.207
922
+ +1.439%
923
+ 10
924
+ 8.636
925
+ 9.832
926
+ 63.735
927
+ 73.567
928
+ 82.203
929
+ +1.433%
930
+ 8
931
+ 8.633
932
+ 9.830
933
+ 63.735
934
+ 73.565
935
+ 82.198
936
+ +1.428%
937
+ Table II shows the results of another experimental campaign
938
+ aimed at analyzing the effect on power consumption of the
939
+ size LIEp of the encoding of ν. The values Tapp = 30 s
940
+ and Tupdate = 30 min are representative of typical operating
941
+ conditions, and therefore they have been left unmodified.
942
+ As highlighted in the rightmost columns of the result table,
943
+ the relative increase of Ptot ranges from +1.428 % (when
944
+ LIEp = 8 B) to +1.450 % (when LIEp = 16 B), which means
945
+ that advanced optimizations on the way ν is encoded, that
946
+ lead to a further reduction of LIEp, only lead to insignificant
947
+ improvements from the point of view of energy consumption.
948
+ However, its reduction is important because it permits to
949
+ increase the room available for the payload in the frame.
950
+ An additional experimental campaign was carried out, again
951
+ with Tapp = 30 s and Tupdate = 30 min, to analyze the effect
952
+ of the placement of the two cells, Ccurr and Cback. Two cases
953
+ were considered, where the cells were equally spaced (in the
954
+ slot offsets 1 and 51, respectively) and contiguous (in the slot
955
+ offsets 1 and 2, respectively). As expected, we verified that
956
+ these is no influence on power consumption, and the influence
957
+ on latency was irrelevant. For instance, the average latency was
958
+ the same in the two cases, while standard deviation passes
959
+ from σd = 1005.81 ms in the case of equally spaced cells to
960
+ σd = 1006.07 ms in the case of contiguous cells.
961
+ B. Update latency
962
+ Another important performance indicator is the time to
963
+ complete a ν-exchange. In fact, at the end of the whole
964
+ process, when NRX returns in the steady state, only one of
965
+ the two cells is effectively used to transmit, and from that
966
+ point on the system behaves as standard TSCH, with the only
967
+ exception that Cback remains reserved for future exchanges,
968
+ although not in use.
969
+ Referring to Fig. 3, to analyze timings four points in time
970
+ were identified, in correspondence to the main events that
971
+
972
+ ��
973
+ ��
974
+ ��
975
+ ��
976
+ ��
977
+ ��
978
+ ��
979
+ 1j
980
+ ��
981
+ 2j
982
+ ��
983
+ ��
984
+ 3i
985
+ ��
986
+ 4i
987
+ 4j
988
+ 5i
989
+ 5j
990
+ ��
991
+ ℱ��
992
+ 2i
993
+ 1i
994
+
995
+ ��
996
+ 3j
997
+
998
+ ��
999
+ ���
1000
+ ���
1001
+ ��
1002
+ ℱ��
1003
+ t
1004
+ ���
1005
+ ���
1006
+ ���
1007
+ ��
1008
+ Fig. 3. Main temporal events involved in a ν-exchange in CONSIP.
1009
+ make up a ν-exchange. Timestamps on these specific events
1010
+ are acquired with the resolution of the ASN (one slot time),
1011
+ which in this experimental campaign corresponds to 20 ms. In
1012
+ particular, they are:
1013
+ 1) tUR (update request) is the time when a ν-exchange is
1014
+ started.
1015
+ 2) tDL (double listening) represents the time when a new
1016
+ hopping function νn is received by NRX. At this time
1017
+ the receiver enters the double listening state, in which it
1018
+ hears from both cells Ccurr and Cback.
1019
+ 3) tSW (swap) is the time when NTX starts transmitting
1020
+ using the new hopping function νn.
1021
+ 4) tE (end) is the time when NRX starts receiving only
1022
+ using the new hopping function νn, consequently exit-
1023
+ ing the double listening state. This ends the whole ν-
1024
+ exchange process.
1025
+ Starting from these four timestamps, we analyzed three main
1026
+ kinds of latency, namely:
1027
+ • dSW = tSW − tUR (swap latency) is the time elapsing
1028
+ from the beginning of a ν-exchange to the time when the
1029
+ new hopping function νn is actually used to transmit data
1030
+ from NTX to NRX.
1031
+ • dDL = tE − tDL (double listening latency) is the time
1032
+ interval for which NRX remains in the double listening
1033
+ state. This interval is characterized by a higher amount
1034
+ of energy consumption.
1035
+ • dtot = tE − tUR (total latency) is the time needed to
1036
+ complete the whole ν-exchange process, starting from the
1037
+ request and up to the update of the hopping function.
1038
+ A further experiment was carried out where Tapp = 30 s and
1039
+ Tupdate = 30 min. The main statistic indicators we obtained
1040
+ for the above latencies are reported in Table III. Regarding
1041
+ the swap latency dSW, its average is 1.491 s. This value can
1042
+ be explained by analyzing the plot of the Probability Density
1043
+ Function (PDF) in Fig. 4. The plot shows a step function, and
1044
+ TABLE III
1045
+ LATENCY RELATED TO A ν-EXCHANGE IN CONSIP.
1046
+ Latency
1047
+ µd
1048
+ σd
1049
+ dmin
1050
+ dp99
1051
+ dp99.9
1052
+ dmax
1053
+ [s]
1054
+ dSW = tSW − tUR
1055
+ 1.491
1056
+ 1.256
1057
+ 0.0
1058
+ 5.880
1059
+ 9.080
1060
+ 14.100
1061
+ dDL = tE − tDL
1062
+ 30.005
1063
+ 1.511
1064
+ 19.180
1065
+ 33.340
1066
+ 35.360
1067
+ 41.420
1068
+ dtot = tE − tUR
1069
+ 31.294
1070
+ 1.009
1071
+ 30.000
1072
+ 34.900
1073
+ 37.200
1074
+ 41.660
1075
+ 0
1076
+ 0.1
1077
+ 0.2
1078
+ 0.3
1079
+ 0.4
1080
+ 0.5
1081
+ 0.6
1082
+ 0.7
1083
+ 0.8
1084
+ 0.9
1085
+ 1
1086
+ 0
1087
+ 2
1088
+ 4
1089
+ 6
1090
+ 8
1091
+ 10
1092
+ dSW [s]
1093
+ PDF
1094
+ CDF
1095
+ Fig. 4. PDF and CDF of dSW.
1096
+ the width of each step is equal to 2.02 s, which corresponds to
1097
+ the slotframe duration. Within each step, latency is uniformly
1098
+ distributed because periods at the application layer (Tupdate =
1099
+ 30 min) and at the MAC layer (that is, the repetition period of
1100
+ a cell in the slotframe, equal to 2.02 s) are prime numbers and
1101
+ the two processes can be treated as they were independent.
1102
+ The first (and higher) step is related to the frames that arrived
1103
+ to NRX after exactly one transmission attempt, the second
1104
+ step refers to frames transmitted twice, and so on. The same
1105
+ plot also reports the Cumulative Distribution Function (CDF)
1106
+ of the swap latency dSW, which can be used to determine
1107
+ the expected number of ν-exchange that experienced a swap
1108
+ latency smaller than a given value. For the same quantity
1109
+ dSW, the maximum latency is dmax = 14.100 s, which refers
1110
+ to a frame that was transmitted 7 times (i.e., ⌈ dmax
1111
+ 2.02 ⌉) before
1112
+ reaching the destination.
1113
+ Regarding the double listening latency dDL, its average
1114
+ value is about 30 s, which is equal to Tapp. This is unsur-
1115
+ prising, because only when a frame is transmitted in Cback
1116
+ (see arc {5} of the NRX state machine in Fig. 2), the new
1117
+ hopping function νn is definitely activated, and the double
1118
+ listening phase ends. Since packets are generated cyclically
1119
+ with period Tapp = 30 s, excluding retransmissions, this frame
1120
+ typically arrives 30 s after the frame containing νn. This is
1121
+ one of the drawbacks of CONSIP: in other words, the dDL
1122
+ interval, in which a considerable amount of energy is wasted
1123
+ due to idle listening because both cells are active, depends
1124
+ on the link usage. However, in those links that experience
1125
+ higher traffic, that typically correspond to the levels in the tree
1126
+ network topology closest to the root node, where black listing
1127
+ techniques are more important to reduce the overall number of
1128
+ retransmissions, the interval between two successive packets
1129
+ is usually shorter than in the links close to the leaf nodes.
1130
+ An important property is that, at least two frames are need
1131
+ to perform the whole ν-exchange. This is confirmed by the
1132
+ minimum value reported in the row of the table that refers to
1133
+ the total latency dtot.
1134
+ VI. CONCLUSIONS
1135
+ In the context of black/white listing techniques, a crucial
1136
+ point is how to spread the information about the channels
1137
+ to be used for the transmission between nodes. When the
1138
+
1139
+ hopping sequence is defined on a per-link basis, only the
1140
+ two end points are involved. In the case of inconsistency,
1141
+ communication in the network can be prevented, with possible
1142
+ definitive disconnections of subsets of nodes.
1143
+ The CONSIP technique was proposed to counteract this
1144
+ problem by means of a backup cell. Each time a modification
1145
+ is triggered about the channels to be used for transmission over
1146
+ the link connecting two nodes, for a limited period of time both
1147
+ cells are exploited for communication. Doing so guarantees
1148
+ that the information seen by the two involved nodes is always
1149
+ updated in a coherent way, irrespective of the number of trans-
1150
+ mission errors that affected either data or acknowledgement
1151
+ frames. The experimental analysis of CONSIP, performed by
1152
+ means of a simulator that was configured with data derived
1153
+ from a real setup, highlights its effectiveness. In particular,
1154
+ CONSIP does not affect communication latency, and has a
1155
+ small impact on energy consumption. Its main drawback is
1156
+ the need to reserve a backup cell per link, which can limit the
1157
+ number of nodes in dense networks.
1158
+ Future works include improvements related to the CONSIP
1159
+ technique, which are aimed for instance to reduce energy
1160
+ consumption further, or to lower the number of backup cells
1161
+ that need to be reserved by the protocol. Future directions
1162
+ include the usage of CONSIP in the implementation of a
1163
+ black/white listing technique.
1164
+ REFERENCES
1165
+ [1] T. Zheng, M. Ardolino, A. Bacchetti, and M. Perona, “The applications
1166
+ of Industry 4.0 technologies in manufacturing context: a systematic
1167
+ literature review,” International Journal of Production Research, vol. 59,
1168
+ no. 6, pp. 1922–1954, 2021.
1169
+ [2] H. Ca˜nas, J. Mula, M. D´ıaz-Madro˜nero, and F. Campuzano-Bolar´ın,
1170
+ “Implementing Industry 4.0 principles,” Computers and Industrial En-
1171
+ gineering, vol. 158, p. 107379, 2021.
1172
+ [3] S. Scanzio, L. Wisniewski, and P. Gaj, “Heterogeneous and dependable
1173
+ networks in industry – A survey,” Computers in Industry, vol. 125, p.
1174
+ 103388, 2021.
1175
+ [4] P. K. Malik, R. Sharma, R. Singh, A. Gehlot, S. C. Satapathy, W. S.
1176
+ Alnumay, D. Pelusi, U. Ghosh, and J. Nayak, “Industrial Internet of
1177
+ Things and its Applications in Industry 4.0: State of The Art,” Computer
1178
+ Communications, vol. 166, pp. 125–139, 2021.
1179
+ [5] W. Mao, Z. Zhao, Z. Chang, G. Min, and W. Gao, “Energy-Efficient
1180
+ Industrial Internet of Things: Overview and Open Issues,” IEEE Trans.
1181
+ Ind. Informat., vol. 17, no. 11, pp. 7225–7237, 2021.
1182
+ [6] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund, “In-
1183
+ dustrial Internet of Things: Challenges, Opportunities, and Directions,”
1184
+ IEEE Trans. Ind. Informat., vol. 14, no. 11, pp. 4724–4734, 2018.
1185
+ [7] “IEEE Standard for Low-Rate Wireless Networks,” IEEE Std 802.15.4-
1186
+ 2020 (Revision of IEEE Std 802.15.4-2015), pp. 1–800, 2020.
1187
+ [8] T. Watteyne, A. Mehta, and K. Pister, “Reliability through Frequency
1188
+ Diversity: Why Channel Hopping Makes Sense,” in Proceedings of the
1189
+ 6th ACM Symposium on Performance Evaluation of Wireless Ad Hoc,
1190
+ Sensor, and Ubiquitous Networks, ser. PE-WASUN ’09.
1191
+ Association
1192
+ for Computing Machinery, 2009, p. 116–123.
1193
+ [9] G. Chen, X. Cao, and J. Jin, “Joint Scheduling and Channel Allocation
1194
+ for Kalman Filtering Over Multihop WirelessHART Networks,” IEEE
1195
+ Trans. Ind. Informat., vol. 17, no. 5, pp. 3555–3565, 2021.
1196
+ [10] R. Rond´on, A. Mahmood, S. Grimaldi, and M. Gidlund, “Understanding
1197
+ the Performance of Bluetooth Mesh: Reliability, Delay, and Scalability
1198
+ Analysis,” IEEE Internet of Things J., vol. 7, no. 3, pp. 2089–2101,
1199
+ 2020.
1200
+ [11] G. Cena, C. G. Demartini, M. Ghazi Vakili, S. Scanzio, A. Valen-
1201
+ zano, and C. Zunino, “Evaluating and Modeling IEEE 802.15.4
1202
+ TSCH Resilience against Wi-Fi Interference in New-Generation Highly-
1203
+ Dependable Wireless Sensor Networks,” Ad Hoc Networks, vol. 106, p.
1204
+ 102199, 2020.
1205
+ [12] S. Scanzio, M. G. Vakili, G. Cena, C. G. Demartini, B. Montrucchio,
1206
+ A. Valenzano, and C. Zunino, “Wireless Sensor Networks and TSCH:
1207
+ A Compromise Between Reliability, Power Consumption, and Latency,”
1208
+ IEEE Access, vol. 8, pp. 167 042–167 058, 2020.
1209
+ [13] S. Zoppi, H. M. G¨ursu, M. Vilgelm, and W. Kellerer, “Reliable hopping
1210
+ sequence design for highly interfered wireless sensor networks,” in
1211
+ 2017 IEEE International Symposium on Local and Metropolitan Area
1212
+ Networks (LANMAN), 2017, pp. 1–7.
1213
+ [14] V. Kotsiou, G. Z. Papadopoulos, D. Zorbas, P. Chatzimisios, Theoleyre,
1214
+ and Fabrice, “Blacklisting-Based Channel Hopping Approaches in Low-
1215
+ Power and Lossy Networks,” IEEE Communications Magazine, vol. 57,
1216
+ no. 2, pp. 48–53, 2019.
1217
+ [15] V. Kotsiou, G. Z. Papadopoulos, P. Chatzimisios, and F. Theoleyre,
1218
+ “Whitelisting Without Collisions for Centralized Scheduling in Wireless
1219
+ Industrial Networks,” IEEE Internet of Things J., vol. 6, no. 3, pp. 5713–
1220
+ 5721, 2019.
1221
+ [16] V. Kotsiou, G. Z. Papadopoulos, P. Chatzimisios, and F. Tholeyre, “Is
1222
+ local blacklisting relevant in slow channel hopping low-power wireless
1223
+ networks?” in 2017 IEEE International Conference on Communications
1224
+ (ICC), 2017, pp. 1–6.
1225
+ [17] R. Tavakoli, M. Nabi, T. Basten, and K. Goossens, “Enhanced Time-
1226
+ Slotted Channel Hopping in WSNs Using Non-intrusive Channel-
1227
+ Quality Estimation,” in 2015 IEEE 12th International Conference on
1228
+ Mobile Ad Hoc and Sensor Systems, 2015, pp. 217–225.
1229
+ [18] D. Queiroz, R. Gomes, I. Fonseca, M. Alencar, and C. Benavente-
1230
+ Peces, “Channel assignment in TSCH-based wireless sensor networks
1231
+ using fuzzy logic,” Journal of Ambient Intelligence and Humanized
1232
+ Computing, pp. 1–20, 1 2021.
1233
+ [19] S. Scanzio, F. Xia, G. Cena, and A. Valenzano, “Predicting Wi-Fi link
1234
+ quality through artificial neural networks,” Internet Technology Letters,
1235
+ p. e326.
1236
+ [20] V. Kotsiou, G. Z. Papadopoulos, P. Chatzimisios, and F. Theoleyre,
1237
+ “LABeL: Link-Based Adaptive BLacklisting Technique for 6TiSCH
1238
+ Wireless Industrial Networks,” in Proceedings of the 20th ACM Inter-
1239
+ national Conference on Modelling, Analysis and Simulation of Wireless
1240
+ and Mobile Systems, ser. MSWiM ’17.
1241
+ Association for Computing
1242
+ Machinery, 2017, pp. 25–33.
1243
+ [21] T. Watteyne, S. Lanzisera, A. Mehta, and K. S. J. Pister, “Mitigating
1244
+ Multipath Fading through Channel Hopping in Wireless Sensor Net-
1245
+ works,” in 2010 IEEE International Conference on Communications
1246
+ (ICC), 2010, pp. 1–5.
1247
+ [22] P. H. Gomes, T. Watteyne, and B. Krishnamachari, “MABO-TSCH:
1248
+ Multihop and blacklist-based optimized time synchronized channel
1249
+ hopping,” Transactions on Emerging Telecommunications Technologies,
1250
+ vol. 29, no. 7, p. e3223, 2018, e3223 ett.3223.
1251
+ [23] G. Cena, S. Scanzio, and A. Valenzano, “Ultra-Low Power Wireless
1252
+ Sensor Networks Based on Time Slotted Channel Hopping with Proba-
1253
+ bilistic Blacklisting,” Electronics, vol. 11, no. 3, 2022.
1254
+ [24] A. Elsts, “TSCH-Sim: Scaling Up Simulations of TSCH and 6TiSCH
1255
+ Networks,” Sensors, vol. 20, no. 19, 2020.
1256
+ [25] E. Municio, G. Daneels, M. Vuˇcini´c, S. Latr´e, J. Famaey, Y. Tanaka,
1257
+ K. Brun, K. Muraoka, X. Vilajosana, and T. Watteyne, “Simulat-
1258
+ ing 6TiSCH networks,” Transactions on Emerging Telecommunications
1259
+ Technologies, vol. 30, no. 3, p. e3494, 2019.
1260
+ [26] S. Scanzio, G. Cena, A. Valenzano, and C. Zunino, “Energy Saving in
1261
+ TSCH Networks by Means of Proactive Reduction of Idle Listening,”
1262
+ in Ad-Hoc, Mobile, and Wireless Networks, L. A. Grieco, G. Boggia,
1263
+ G. Piro, Y. Jararweh, and C. Campolo, Eds.
1264
+ Cham: Springer Interna-
1265
+ tional Publishing, 2020, pp. 131–144.
1266
+ [27] S. Scanzio, G. Cena, L. Seno, and A. Valenzano, “Robustness and
1267
+ optimization of pril techniques for energy saving in tsch networks,”
1268
+ in 26th IEEE International Conference on Emerging Technologies and
1269
+ Factory Automation (ETFA), 2021, pp. 1–8.
1270
+ [28] G. Cena, S. Scanzio, and A. Valenzano, “Enabling Listening Suspension
1271
+ in the Time Slotted Channel Hopping Protocol,” in 17th IEEE Interna-
1272
+ tional Conference on Factory Communication Systems (WFCS), 2021,
1273
+ pp. 19–26.
1274
+
AdAyT4oBgHgl3EQfRvcW/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
BNFQT4oBgHgl3EQfNDZv/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69923f47275732472f801d478f320c00b491200010f415dea93529419d15b564
3
+ size 2228269
BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a66c308db55a747eccd91d313efa17593ecc4efcd31caea8132da979527e66ea
3
+ size 223459
BdAyT4oBgHgl3EQf4Ppc/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:842f93a315b5311bf8a5ccf5b1a94a2804fae258e544171d271447ebf15f6d52
3
+ size 72779
BtFIT4oBgHgl3EQf_yzx/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1fd2a4e6bf052125ed64d3089b2321d23f4be7fab7688e3754539854779aeadd
3
+ size 89487
BtFQT4oBgHgl3EQf-De4/content/tmp_files/2301.13453v1.pdf.txt ADDED
@@ -0,0 +1,1331 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Draft version February 1, 2023
2
+ Typeset using LATEX twocolumn style in AASTeX631
3
+ Detection of a high-velocity prominence eruption leading to a CME associated with a superflare
4
+ on the RS CVn-type star V1355 Orionis
5
+ Shun Inoue
6
+ ,1 Hiroyuki Maehara
7
+ ,2 Yuta Notsu
8
+ ,3, 4, 5 Kosuke Namekata
9
+ ,6 Satoshi Honda
10
+ ,7
11
+ Keiichi Namizaki,8 Daisaku Nogami,8, 9 and Kazunari Shibata10, 11
12
+ 1 Department of Physics, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
13
+ 2Okayama Branch Office, Subaru Telescope, NAOJ, NINS, Kamogata, Asakuchi, Okayama, 719-0232, Japan
14
+ 3Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, 3665 Discovery Drive, Boulder, CO 80303, USA
15
+ 4 National Solar Observatory, 3665 Discovery Drive, Boulder, CO 80303, USA
16
+ 5Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
17
+ 6ALMA Project, NAOJ, NINS, Osawa, Mitaka, Tokyo, 181-8588, Japan
18
+ 7Nishi-Harima Astronomical Observatory, Center for Astronomy, University of Hyogo, Sayo, Hyogo, 679-5313, Japan
19
+ 8Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
20
+ 9Astronomical Observatory, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
21
+ 10Kwasan Observatory, Kyoto University, Yamashina, Kyoto, 607-8471, Japan
22
+ 11 School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto, 610-0321, Japan
23
+ ABSTRACT
24
+ Stellar coronal mass ejections (CMEs) have recently received much attention for their impacts on
25
+ exoplanets and stellar evolution. Detecting prominence eruptions, the initial phase of CMEs, as the
26
+ blue-shifted excess component of Balmer lines is a technique to capture stellar CMEs. However, most
27
+ of prominence eruptions identified thus far have been slow and less than the surface escape velocity.
28
+ Therefore, whether these eruptions were developing into CMEs remained unknown. In this study, we
29
+ conducted simultaneous optical photometric observations with Transiting Exoplanet Survey Satellite
30
+ and optical spectroscopic observations with the 3.8m Seimei Telescope for the RS CVn-type star
31
+ V1355 Orionis that frequently produces large-scale superflares.
32
+ We detected a superflare releasing
33
+ 7.0 × 1035 erg. In the early stage of this flare, a blue-shifted excess component of Hα extending its
34
+ velocity up to 760 − 1690 km s−1 was observed and thought to originate from prominence eruptions.
35
+ The velocity greatly exceeds the escape velocity (i.e., ∼ 350km s−1), which provides important evidence
36
+ that stellar prominence eruptions can develop into CMEs. Furthermore, we found that the prominence
37
+ is very massive (9.5 × 1018 g < M < 1.4 × 1021 g). These data will clarify whether such events follow
38
+ existing theories and scaling laws on solar flares and CMEs even when the energy scale far exceeds
39
+ solar cases.
40
+ Keywords: stars: activity — stars: flare —stars: individual (V1355 Orionis) — stars: mass-loss
41
+ 1. INTRODUCTION
42
+ Solar flares are explosive phenomena wherein mag-
43
+ netic energy stored around sunspots is suddenly re-
44
+ leased through magnetic reconnection (e.g., Shibata &
45
+ Magara 2011).
46
+ Generally, a solar flare releases about
47
+ 1026 −1032 erg. Emission in a wide range of wavelengths
48
49
+ from radio waves to X-rays occurs during a flare. Gen-
50
+ erally, prominence eruptions on the Sun, which are as-
51
+ sociated with flares (e.g., Shinha et al. 2019), are ob-
52
+ served as Hα emission and Hα absorption when they
53
+ erupt outside a limb and on a disk, respectively (Par-
54
+ enti 2014; Otsu et al. 2022).
55
+ Prominence or filament
56
+ eruptions can lead to coronal mass ejections (CMEs)
57
+ when the prominence velocity is sufficiently large (e.g.,
58
+ Gopalswamy et al. 2003; Shibata & Magara 2011).
59
+ Flares are widely observed both on the Sun and
60
+ stars. In the case of stars, “superflares,” which release
61
+ 10 times larger energies than the largest solar flares,
62
+ arXiv:2301.13453v1 [astro-ph.SR] 31 Jan 2023
63
+
64
+ ID2
65
+ Inoue et al.
66
+ Table 1. Basic physical parameters of the K-type subgiant star of the binary
67
+ Spectral Type
68
+ V ∗
69
+ V − RC∗
70
+ d
71
+ † Porb ‡
72
+ Prot $
73
+ R
74
+ §
75
+ L
76
+
77
+ M
78
+ ♮ Teff ♯
79
+ ve
80
+
81
+ (mag)
82
+ (mag)
83
+ (pc)
84
+ (days)
85
+ (days)
86
+ (R⊙)
87
+ (L⊙)
88
+ (M⊙)
89
+ (K)
90
+ (km/s)
91
+ (1)
92
+ (2)
93
+ (3)
94
+ (4)
95
+ (5)
96
+ (6)
97
+ (7)
98
+ (8)
99
+ (9)
100
+ (10)
101
+ (11)
102
+ K0-2IV
103
+ 8.98
104
+ 0.53
105
+ 127.4
106
+ 3.87
107
+ 3.86
108
+ 4.1
109
+ 6.4
110
+ 1.3
111
+ 4750
112
+ -347
113
+ *The V -band magnitude and difference between V and and RC-bands.
114
+ † Stellar distance.
115
+ ‡ Orbital period.
116
+ $Rotation period.
117
+ § Radius.
118
+ ¶Luminosity.
119
+ ♮ Mass.
120
+ ♯ Effective temperature.
121
+ ⋆Escape velocity at the surface.
122
+ References—(1),(5)-(11):Strassmeier (2000), (2), (3):Cutispoto et al. (1995)
123
+ , (4):Gaia Collaboration et al. (2016)
124
+ have been confirmed (e.g., Maehara et al. 2012). Spec-
125
+ troscopic observations of stellar flares sometimes show
126
+ “blue shifts” (or “blue asymmetries”) wherein chromo-
127
+ spheric lines during flares are not symmetric, but are
128
+ enhanced only at shorter wavelengths (e.g., Houdebine
129
+ et al. 1990; Gunn et al. 1994; Fuhrmeister & Schmitt
130
+ 2004; Fuhrmeister et al. 2008, 2011; Vida et al. 2016;
131
+ Honda et al. 2018; Vida et al. 2019; Muheki et al. 2020;
132
+ Maehara et al. 2021).
133
+ An excess component with a
134
+ shorter wavelength than the rest line center is observed,
135
+ indicating that the source is flying toward us, consid-
136
+ ering the Doppler effect. Therefore, blue shifts might
137
+ suggest that an upward-moving plasma exists, such as
138
+ prominence eruptions (Otsu et al. 2022) or a chromo-
139
+ spheric temperature (cool) upflow associated with chro-
140
+ mospheric evaporation (Tei et al. 2018). One technique
141
+ to determine whether a blue-shifted excess component
142
+ originates from cool upflows or prominence eruptions is
143
+ to estimate it based on its Doppler velocity. Typically,
144
+ cool upflows have a velocity of ∼ 100 km s−1 in solar
145
+ flares (e.g., Kennedy et al. 2015).
146
+ Therefore, we can
147
+ expect that blue shifts that significantly exceed this ve-
148
+ locity originate from prominence eruptions.
149
+ Most of the blue shifts discovered thus far have been
150
+ relatively slow (< 500km s−1). Almost no solid evidence
151
+ exists that they originated from prominence eruptions
152
+ and these eruptions triggered a CME. Namekata et al.
153
+ (2022a) first discovered solid evidence of a stellar fila-
154
+ ment eruption by detecting the blue-shifted absorption
155
+ component of Hα. By using the length scale and the
156
+ velocity of the ejected plasma, Namekata et al. (2022a)
157
+ confirmed that the erupted filament very likely devel-
158
+ oped into CMEs.
159
+ Further, few cases of blue shifts in
160
+ flares larger than 1035 erg emerge. Generally, a positive
161
+ correlation exists between the energy of solar flares and
162
+ those of associated prominence eruptions (e.g., Aarnio
163
+ et al. 2011; Takahashi et al. 2016). Previous blue shift
164
+ examples found that events on stars generally come as an
165
+ extension of this correlation (e.g., Moschou et al. 2019).
166
+ Therefore, if we can detect a blue shift during a par-
167
+ ticularly large-scale superflare (> 1035 erg), its kinetic
168
+ energy is likely to be excessively large. This becomes
169
+ reliable evidence of a stellar CME. Moreover, detection
170
+ of these events can confirm whether the relation between
171
+ flare energy and the size of the plasma eruption could
172
+ be extended to this region.
173
+ RS CVn-type stars are magnetically active and have
174
+ been observed to produce large superflares (Tsuboi et al.
175
+ 2016, and references therein). Many previous studies of
176
+ flares on RS CVn stars have been conducted in X-ray,
177
+ whereas only few studies have been conducted with op-
178
+ tical spectroscopic observations. Particulaly, large-scale
179
+ superflares (i.e., > 1035erg) frequently occur on RS CVn
180
+ stars. In recent years, stellar CMEs have attracted much
181
+
182
+ A high-velocity prominence eruption on V1355 Orionis
183
+ 3
184
+ Figure 1. White-light light curves of V1355 Orionis observed with TESS. (a) Long-term light curve of V1355 Orionis for
185
+ BJD=2459201.7-2459227.5. The vertical axis represents the flux normalized by the median value. The vertical light blue line
186
+ and the horizontal green bars indicate the event discussed in this paper and the period of monitoring observations by Seimei
187
+ telescope/KOOLS-IFU, respectively. (b) Enlarged light curve around December 19/BJD=2459203.11297. The horizontal axis
188
+ represents the time (unit of minutes) from BJD=2459203.11297. The skyblue dashed line shows the global trend of the stellar
189
+ rotational modulation fitted for −500 − −10 min and 150 − 380 min with a polynomial equation.
190
+ attention for their impacts on mass/angular-momentum
191
+ loss and the environment of surrounding exoplanets.
192
+ If existing correlations between prominence eruptions
193
+ and flare energies hold for particularly large superflares
194
+ (> 1035erg), prominence eruptions that accompany such
195
+ flares will lead to particularly large-scale CMEs. Con-
196
+ sequently, they will have particularly large effects on
197
+ stellar evolution and exoplanets (Osten & Wolk 2015;
198
+ Airapetian et al. 2020). Therefore, optical spectroscopic
199
+ observations of RS CVn-type stars are important be-
200
+ cause they enable the detection of particularly large-
201
+ scale superflares, which are quite infrequent to be ob-
202
+ served on normal main-sequence stars, with only a short
203
+ period of monitored observations.
204
+ In this study, optical spectroscopic observations by
205
+ the 3.8m Seimei Telescope (Kurita et al. 2020) and pho-
206
+ tometric observations by Transiting Exoplanet Survey
207
+ Satellite (TESS; Ricker et al. 2015) were simultaneously
208
+ performed to V1355 Orionis, a RS CVn-type star. The
209
+ observations and analysis (Section 2), results (Section
210
+ 3), and discussion (Section 4) on the details of the su-
211
+ perflare and the associated blue shift obtained through
212
+ the simultaneous observations are reported in this pa-
213
+ per.
214
+ 2. OBSERVATIONS AND ANALYSES
215
+ 2.1. Target star : V1355 Orionis
216
+ V1355 Orionis (=HD291095) is an RS CVn type bi-
217
+ nary system discovered through the ROSAT WFC all-
218
+ sky X-ray survey (Pounds et al. 1993; Pye et al. 1995).
219
+ V1355 Orionis has been investigated by Cutispoto et al.
220
+ (1995), Osten & Saar (1998) and Strassmeier (2000).
221
+ These studies have shown that this binary comprises
222
+ K0-2IV and G1V stars. Table 1 summarizes the basic
223
+ physical parameters of the K-type subgiant star. Strass-
224
+ meier (2000) reported a large flare on V1355 Orionis
225
+ in April 1998, which showed 70 times larger equivalent
226
+ width of Hα than the pre-flare.
227
+ 2.2. Simultaneous observations
228
+ 2.2.1. Photometric observation : TESS
229
+ Transiting Exoplanet Survey Satellite (TESS) ob-
230
+ served V1355 Orionis in Sector 34 for 27 days with the
231
+ 2 min time cadence. Figure 1 (a) shows the TESS light
232
+ curve for this period (BJD=2459201.7-2459227.5). Fig-
233
+ ure 1 (b) shows the enlarged TESS light curve around
234
+ the flare described in this paper. The quiescent radia-
235
+ tion component during the flare is estimated by fitting
236
+ a polynomial to the light curve for −500 − −10 min and
237
+ +150 − +380 min from the flare start (see the skyblue
238
+ dashed line in Figure 1 (b)). Figure 2 (a) shows the light
239
+ curve for the flare component, created by subtracting
240
+ the quiescent component from the light curve of TESS
241
+ during the flare. We calculated the bolometric energy
242
+ of the flare from this detrended light curve following the
243
+ method of Shibayama et al. (2013). See Section 3.1 for
244
+ more details about caluculating the flare energy.
245
+
246
+ (a)
247
+ December 19 event
248
+ (b)
249
+ Global Trend
250
+ 1.10
251
+ 1.03
252
+ 1.08
253
+ Media
254
+ 1.06
255
+ by
256
+ 1.01
257
+ Normalized
258
+ 1.04
259
+ -150
260
+ -75
261
+ 75
262
+ 150
263
+ 0
264
+ 225
265
+ 300
266
+ Time [min]
267
+ 1.02
268
+ xnl
269
+ 1.00
270
+ 0.98
271
+ Seimei/KOOLS-IFU
272
+ 2203
273
+ 2208
274
+ 2218
275
+ 2223
276
+ 2228
277
+ 2213
278
+ Time from BJD=2457000 [day]4
279
+ Inoue et al.
280
+ Figure 2. Light curves of V1355 Orionis during the December 19 event. (a) Detrended light curve of the TESS white light with
281
+ background removed. This corresponds to the TESS normalized flux (black line in Figure 1 (b)) subtracted by the rotational
282
+ modulation (skyblue line in Figure 1(b)). The black dotted line represents the zero level. The orange range indicates the time
283
+ period determined as the “pre-flare” in our spectral analysis. (b) Light curve of the Hα for the same time period as in panel
284
+ (a). The vertical axis shows the equivalent width of Hα. The black dotted line represents the level of background, calculated
285
+ as the average of the equivalent width of the pre-flare. Note that in this light curve, the equivalent width is negative for the
286
+ emission line flux.
287
+ 2.2.2. Spectroscopic observation : the Seimei telescope
288
+ We observed V1355 Orionis using KOOLS-IFU (Ky-
289
+ oto Okayama Optical Low-dispersion Spectrograph with
290
+ optical-fiber Integral Field Unit; Matsubayashi et al.
291
+ (2019)), the spectrograph onboard the 3.8m Seimei tele-
292
+ scope (Kurita et al. 2020). KOOLS-IFU covers 5800-
293
+ 8000 ˚A with wavelength resolution R (= λ/∆λ) of
294
+ ∼ 2000. Therefore, it can capture the Hα line.
295
+ Observations were made over eight nights in conjunc-
296
+ tion with Sector 34 of TESS. The flare investigated in
297
+ this study occurred on the first day of our observations.
298
+ The detailed observation periods are indicated by the
299
+ horizontal green bars in Figure 1 (a). The exposure time
300
+ was set to 60 s on all observation dates. The signal-to-
301
+ noise ratio (S/N) at the continuum around Hα line was
302
+ more than 10.
303
+ Data processing was conducted in the same manner as
304
+ that of Namekata et al. (2020, 2022a,b) with IRAF pack-
305
+ age, Pyraf software, and the data reduction packages
306
+ developed by Matsubayashi et al. (2019). Using the Hα
307
+ line profile at each time frame, we investigated the time
308
+ variation of the equivalent width during the flare. Fig-
309
+ ure 2 (b) shows the light curve of the equivalent width
310
+ of Hα. Further, the equivalent width was calculated, af-
311
+ ter normalizing Hα emission by the nearby continuum
312
+ level, integrating it for 6518 − 6582 ˚A. The reason why
313
+ the range of integration is asymmetric to the line cen-
314
+ ter of Hα (= 6562.8 ˚A) is due to the blue-shifted excess
315
+ component. See Section 3.2 for more information about
316
+ the blue-shifted excess component.
317
+ 3. RESULTS
318
+ 3.1. White light flare energy
319
+ As shown in Figure 2 (a), the white light flare lasted
320
+ about 110 min. By setting the flux of Figure 2 (a) to
321
+ C′
322
+ flare (= luminosity of flare/luminosity of star) in the
323
+ equation (5) of Shibayama et al. (2013), we estimated
324
+ the flare area Aflare as follows,
325
+ Aflare(t) =
326
+ πC′
327
+ flare(t) �
328
+ i=1,2
329
+
330
+ R2
331
+ i
332
+
333
+ RλBλ(Ti)dλ
334
+
335
+
336
+ RλBλ(Tflare)dλ
337
+ (1)
338
+ where λ is the wavelength, Bλ is the Planck function,
339
+ Rλ is the TESS response function (Ricker et al. 2015),
340
+ and Ti is the effective temperature of the K- and G-type
341
+ stars of the binary (4750 K and 5780 K, respectively;
342
+ Strassmeier 2000). Further, Tflare is the flare temper-
343
+ ature of 10000 K (Mochnacki & Zirin 1980; Hawley &
344
+ Fisher 1992), and Ri is the radius of the K- and G-
345
+ type stars of the binary (4.1R⊙ and 1.0R⊙, respectively;
346
+ Strassmeier 2000). Assuming that the flare can be ap-
347
+ proximated by blackbody radiation with a temperature
348
+ of Tflare = 10000 K, flare luminosity Lflare is
349
+ Lflare(t) = σSBT 4
350
+ flareAflare(t)
351
+ (2)
352
+ where σSB is the Stefan-Boltzmann constant. Finally,
353
+ by integrating Lflare with the duration of the white light
354
+
355
+ Pre-flare
356
+ xnl
357
+ (a)
358
+ White Light
359
+ 0.02
360
+ Detrended
361
+ 3.5
362
+ (b)
363
+
364
+ -2.0
365
+ Ei
366
+ -0.5
367
+ 100
368
+ 100
369
+ 200
370
+ 0A high-velocity prominence eruption on V1355 Orionis
371
+ 5
372
+ Figure 3. Time variation of the Hα spectrum in the early stages of the flare. (a) Line profile of Hα emission. Each spectrum
373
+ is a composite of three (= 3 min) spectra. The bottom and top axes are the wavelength and Doppler velocity from the line
374
+ center, respectively. The intensity of each spectrum is normalized by continuum. The vertical dotted and horizontal dashed
375
+ lines represent the line center of Hα and the continuum level for each spectrum, respectively. The spectrum at each time is
376
+ vertically shifted, and the time shown in the upper right corner of each spectrum represents the time from the flare start. The
377
+ red dash-dot lines represent the spectra at the pre-flare (−15 min to 0 min). (b) Pre-flare subtracted spectrum displayed in the
378
+ same manner as in panel (a). Horizontal dashed line represents the zero level for each spectrum. The black minus red in panel
379
+ (a) denotes the spectrum at each time.
380
+
381
+ Velocity [km/s]
382
+ Velocity [km/s]
383
+ (a)
384
+ Pre-flare
385
+ (b)
386
+ Each Time
387
+ Each Time
388
+ 45-48 mir
389
+ 45-48 min
390
+ 4.24
391
+ 42-44 min
392
+ 3.97/
393
+ 38-40 min
394
+ 38-40 min
395
+ 3.70
396
+ tant
397
+ 34-37 min
398
+ 3.43
399
+ 0.99
400
+ Cons
401
+ Constar
402
+ 31-33 min
403
+ 31-33 min
404
+ +
405
+ 0.88
406
+ Intensity
407
+ +
408
+ 27-29 min
409
+ Intensi
410
+ ted
411
+ 3-26 min
412
+ 23-26 min
413
+ 0.66
414
+ Subtra
415
+ 20-22 min
416
+ 2.
417
+ JON
418
+ 16-18 min
419
+ 16-18 min
420
+ 2.08
421
+ 0.44
422
+ 12-15 min
423
+ 1.81
424
+ 0.33
425
+ 9-11 min
426
+ -11 min
427
+ 1.54
428
+ 0.22F
429
+ 5-7 min
430
+ 5-7 min
431
+ 1.27
432
+ 0.11
433
+ min
434
+ 1.00
435
+ 0.00k
436
+ Wavelength [A]
437
+ Wavelength [A]6
438
+ Inoue et al.
439
+ flare (∼ 110 min), the bolometric flare energy Ebol is
440
+ Ebol =
441
+
442
+ Lflare(t) dt = 7.0 × 1035 erg.
443
+ (3)
444
+ Given that the K-type star is more magnetically active
445
+ and the bolometric flare energy is very large, we consider
446
+ this flare to have occurred on the K-type star of the
447
+ binary.
448
+ 3.2. Hα line profile during the flare
449
+ Our spectroscopic observation revealed that a remark-
450
+ able blue-shifted excess component exists in the Hα
451
+ emission line for ∼ 30 min after the start of the flare.
452
+ Figure 3 (a) shows the spectra during the time when
453
+ the blue-shifted excess component was observed during
454
+ the flare. We estimated the spectrum of the quiescent
455
+ component, denoted by red spectrum in Figure 3 (a), by
456
+ combining the spectra from 15 min before the flare start
457
+ (“pre-flare”). Figure 3 (b) shows the spectrum of the
458
+ flare emission component, which were obtained by ob-
459
+ taining the difference between the spectrum at each time
460
+ and the pre-flare spectrum. A particularly large blue-
461
+ shifted excess component was observed in the pre-flare
462
+ subtracted spectrum, especially 5 − 18 min, extending
463
+ over −1000 km s−1. Figure 4 (d) presents a color map
464
+ showing the time variation of the blue-shifted excess
465
+ component in the pre-flare subtracted spectrum. The
466
+ blue-shifted excess component was fast over the time
467
+ period when white light and Hα reach their peak.
468
+ While the spectrum before the difference did not do so
469
+ (Figure 3 (a)), the Hα peak of the pre-flare subtracted
470
+ spectrum was slightly red-shifted (∼ +50km s−1; Figure
471
+ 3 (b) and 4 (d)). All spectra we present in this paper
472
+ are not corrected for the radial velocity. According to
473
+ Strassmeier (2000), the radial velocity of V1355 Orionis
474
+ varies in the range of about +0 − +70 km s−1. That is,
475
+ the velocity of the red shift is within the range of the
476
+ radial velocity variability. The red shift might be caused
477
+ by the downward chromospheric condensation (Ichimoto
478
+ & Kurokawa 1984) or the post flare-loop (Claes & Kep-
479
+ pens 2019).
480
+ We divided the Hα emission line into flare and blue-
481
+ shifted excess components and then calculated their
482
+ equivalent widths.
483
+ Figure 4 (c) shows their light
484
+ curves.
485
+ The emission lines were separated into flare
486
+ and blue-shifted excess components by fitting only the
487
+ long wavelength side of the lines with the Voigt func-
488
+ tion.
489
+ See Section 4.1 for details about the fitting.
490
+ From the light curve separated into flare and blue-
491
+ shifted excess components, we calculated the energy
492
+ of the flare emitted in Hα (EHα).
493
+ Using the R-band
494
+ magnitude (mR; Cutispoto et al. 1995), R-band Vega
495
+ flux zero point per unit wavelength (fλ = 217.7 ×
496
+ 10−11 ergs cm−2 sec−1 ˚A−1; Bessell et al. 1998), and the
497
+ distance between the Earth and V1355 Orionis (d; Gaia
498
+ Collaboration et al. 2016), the equivalent width of the
499
+ flare (EWflare) can be converted to luminosity LHα,
500
+ LHα(t) = 4πd2fλ10−0.4mR × EWflare(t).
501
+ (4)
502
+ Table 1 lists the values of d and mR. By integrating
503
+ LHα with the duration of the Hα flare (∼ 210 min),
504
+ EHα =
505
+
506
+ LHα(t) dt = 1.1 × 1034 erg
507
+ (5)
508
+ is obtained.
509
+ 4. DISCUSSION
510
+ 4.1. Estimation of the prominence parameters
511
+ As discussed in Section 3.2, a clear blue-shifted excess
512
+ component in the Hα emission line was identified during
513
+ the flare. This blue-shifted excess component must re-
514
+ flect a prominence eruption since its velocity extends to
515
+ more than 1000 km s−1. A cool upflow (Tei et al. 2018)
516
+ cannot explain such a rapid blue shift. Therefore, we
517
+ estimated the velocity and mass of the prominence that
518
+ appears as the blue-shifted excess component.
519
+ 4.1.1. Velocity
520
+ We estimated the velocity of the prominence using a
521
+ method similar to that used by Maehara et al. (2021).
522
+ As shown in Figure 5 (a) and (c), we first fit the pre-
523
+ flare subtracted spectrum at each time with the Voigt
524
+ function only at wavelengths longer than the line cen-
525
+ ter. Then, we calculated the residuals between the Voigt
526
+ function and the pre-flare subtracted spectrum.
527
+ The
528
+ residual is shown by the blue line in Figure 5 (b) and
529
+ (d). Finally, the residual was fitted with the Gaussian.
530
+ The wavelength of the Gaussian peak was converted to
531
+ the Doppler velocity to evaluate the prominence veloc-
532
+ ity.
533
+ Spectra exist over multiple time periods when the
534
+ residual appeared to have two peaks, as shown in Figure
535
+ 5 (b) and (d). Therefore, when fitting the residuals, we
536
+ performed two types of fits: one- and two-component
537
+ Gaussian fits (Figure 5 (b) and (d), respectively). See
538
+ Section 4.2 for the details of and interpretation on why
539
+ the blue-shifted excess component appearing to have two
540
+ peaks.
541
+ The time variation of the velocity of the prominence
542
+ examined in this manner is shown in Figure 6 (d) and
543
+ (h).
544
+ In the case of a one-component fit, the velocity
545
+ of the prominence reached −990 ± 130 km s−1 at the
546
+ peak.
547
+ In the case of a two-component fit, the veloc-
548
+ ity of the prominence reached −1690 ± 100 km s−1 and
549
+
550
+ A high-velocity prominence eruption on V1355 Orionis
551
+ 7
552
+ Figure 4. Light curves and spectra during a superflare on V1355 Orions. (a) Enlarged early part of the light curve of Figure
553
+ 2 (a).
554
+ The horizontal and vertical axes indicate the detrended flux and time (unit of minutes) from BJD=2459203.11297,
555
+ respectively. (b) Enlarged Hα light curve of Figure 2 (b) for the same period as in panel (a). The horizontal and vertical axis
556
+ represents the equivalent width of Hα and that the same as in (a), respectively. (c)Hα light curve divided into line center and
557
+ blue-shifted excess components. The pink triangles and blue circles indicate the equivalent widths of the flare and blue-shifted
558
+ excess components, respectively. The equivalent width of the flare component was calculated by integrating the differential
559
+ spectrum from the pre-flare level ±17 ˚A from the Hα line center while blue-shifted excess component was not present. For the
560
+ time period when the emission line was blue-shifted, the equivalent width was calculated by integrating the Voigt function that
561
+ fits the spectrum at longer wavelengths than the peak (e.g., the black dotted line in Figure 5(a)). The equivalent width of the
562
+ blue-shifted excess component was calculated by integrating the residuals between the spectra and the fitted Voigt functions
563
+ (e.g., the blue line in Figure 5(b)). See Section 4.1 for more information about fitting. (d) Time variation of the differential
564
+ spectrum from the pre-flare level at the same time as in (a), (b), and (c). The bottom and top abscissas are the wavelength and
565
+ Doppler velocity from the line center, respectively.
566
+ −760 ± 90 km s−1 at the peak. In the case of both fits,
567
+ the prominence velocity was almost always much faster
568
+ than the escape velocity (−347km s−1) at the surface of
569
+ the K-type star of V1355 Orionis. Therefore, the promi-
570
+ nence that erupted with this flare would certainly have
571
+ flown outward from the star and developed into a CME.
572
+ Moreover, in both cases, the velocity of the blue-
573
+ shifted excess component decelerated more rapidly than
574
+ the gravitational acceleration of the K-type star after
575
+ reaching its peak (see gray lines in Figure 6 (d) and
576
+ (h)). The following are the two possible interpretations.
577
+ The first interpretation is that what we observe in Fig-
578
+ ure 6 (d) and (h) is not the actual deceleration. The
579
+ fast part of the erupted prominence becomes invisible
580
+ rapidly, and the slow part becomes gradually dominant.
581
+ This is observed in the Sun-as-a-star analysis of a fila-
582
+
583
+ Velocity [km/s]
584
+ - White Light
585
+ Flare
586
+
587
+ Blue
588
+ -1000
589
+ 00
590
+ (a)
591
+ (b)
592
+ (c)
593
+ (d)
594
+ 80
595
+ Time from BJD=2459203.11297 [min]
596
+ 0.08
597
+ 60
598
+ 0.06
599
+ 40
600
+ 0.04
601
+ 20
602
+ 0.02
603
+ C
604
+ 0.00
605
+ 65
606
+ 8
607
+ 6562.8
608
+ Flux
609
+ Wavelength [A]
610
+ E.W. [Al Diff. E.W. [Ai8
611
+ Inoue et al.
612
+ Figure 5. Pre-flare subtracted spectrum and its residual difference from Voigt fitting for the time period when the blue-shifted
613
+ excess component appeared most prominently composed of two components. (a), (c) Pre-flare subtracted spectrum for BJD
614
+ = 2459203.12016776. The black dotted line represents the Voigt function fitted only for the longer wavelength side of the line
615
+ center. Note that the center of the Voigt function is set to the value of the radial velocity of V1355 Orionis calculated from
616
+ the rotational phase. (b), (d) Residual between the observed spectrum and fitting. These spectra correspond to the green line
617
+ minus black dotted line in (a), (c). The black dotted line represents the Gaussian with the residual fitted, shown with (b) one-
618
+ and (d)two-component.
619
+
620
+ Velocity[km/s]
621
+ -2000
622
+ -1000
623
+ 1000
624
+ 0.08
625
+ Pre-flare Subtracted
626
+ (a)
627
+ fit (v~ 63 [km/s])
628
+ 0.06
629
+ 0.04
630
+ D
631
+ 0.02
632
+ 0.00
633
+ - Residual
634
+ (b)
635
+ 0.04
636
+ fit (Residual)
637
+ enp
638
+ 0.02
639
+ Resi
640
+ 0.00
641
+ 0099
642
+ 6620
643
+ 6540
644
+ 6562.
645
+ Waveiength [A]Velocity [km/s]
646
+ -2000
647
+ -1000
648
+ 0.08
649
+ Pre-flare Subtracted
650
+ (c)
651
+ -• fit (v ~ 63 [km/s])
652
+ 0.06
653
+ 0.04
654
+ X
655
+ D
656
+ 0.02
657
+ 0.00
658
+ Residual
659
+ (d)
660
+ 0.04
661
+ fit (Residual)
662
+ enpi
663
+ 0.02
664
+ Resic
665
+ 0.00
666
+ 6520
667
+ 6
668
+ 00
669
+ 6600
670
+ 6620
671
+ 6562.
672
+ Wavelength [A]A high-velocity prominence eruption on V1355 Orionis
673
+ 9
674
+ ment eruption analyzed by Namekata et al. (2022a, see
675
+ the supplementary information therein).
676
+ The second
677
+ interpretation is that the magnetic field applies force
678
+ to the prominence in addition to gravity. Simulations
679
+ conducted by Alvarado-G´omez et al. (2018) have shown
680
+ that the magnetic field of an active star could contribute
681
+ significantly to the slowing of prominences.
682
+ 4.1.2. Mass
683
+ We estimated the upper and lower limit prominence
684
+ mass from the equivalent width of the blue-shifted ex-
685
+ cess component. In the method used by Maehara et al.
686
+ (2021), the upper limit of prominence mass is propor-
687
+ tional to the 1.5 power of the area of the region emit-
688
+ ting Hα. Therefore, for a prominence eruption as large
689
+ in scale as this case, the method can significantly over-
690
+ estimate the upper limit of prominence mass because
691
+ the prominence shape would be far from cubic like so-
692
+ lar prominences. So, we improved the method used by
693
+ Maehara et al. (2021).
694
+ As shown in Figure 4 (c), the maximum equivalent
695
+ width of the blue-shifted excess component is ∼ 1 ˚A.
696
+ Converting the equivalent width to luminosity using
697
+ equation (4), the luminosity of the blue-shifted excess
698
+ component Lblue is obtained as
699
+ Lblue ∼ 1 × 1030 erg s−1.
700
+ (6)
701
+ We assume that the NLTE model of the solar promi-
702
+ nence (Heinzel et al. 1994a) can be adapted to the
703
+ present case, and further assume that the optical thick-
704
+ ness of Hα line center τp is 0.1 − 100.
705
+ • τp ∼ 0.1:
706
+ The Hα flux of the prominence per unit time, unit
707
+ area, and unit solid angle FHα is
708
+ FHα ∼ 104 erg s−1 cm−2 sr−1
709
+ (7)
710
+ (see Figure 5 in
711
+ Heinzel et al. 1994a).
712
+ As the
713
+ integral of FHα over the region emitting the Hα
714
+ and the solid angle in the direction toward us is
715
+ Lblue,
716
+ Lblue =
717
+ � �
718
+ FHα dAdΩ = 2πAFHα
719
+ (8)
720
+ where A is the area of the region emitting Hα.
721
+ From equations (6)−(8),
722
+ A ∼ 5 × 1024.5 cm2
723
+ (9)
724
+ is obtained. From equation (7), the emission mea-
725
+ sure n2
726
+ eD of the prominence is
727
+ n2
728
+ eD ∼ 1028 cm−5
729
+ (10)
730
+ (see Figure 15 in
731
+ Heinzel et al. 1994a) where
732
+ D and ne are the geometrical thickness and the
733
+ electron density of the prominence, respectively.
734
+ Though Heinzel et al. (1994a) assumes a range of
735
+ D, FHα and n2
736
+ eD are largely uniquely determined
737
+ for a value of τp without much influence from the
738
+ indefiniteness of D. On the other hand, we need
739
+ to assume values of the electron density ne and the
740
+ hydrogen density nH. The typical electron density
741
+ of solar prominence is
742
+ ne ∼ 1010−11.5 cm−3
743
+ (11)
744
+ (Hirayama 1986). From equations (10) and (11),
745
+ D ∼ 105−8 cm.
746
+ (12)
747
+ Labrosse et al. (2010) showed the ratio between
748
+ the hydrogen density nH and the electron density
749
+ ne of solar prominence is
750
+ ne/nH ∼ 0.2 − 0.9.
751
+ (13)
752
+ From equations (9), (11), (12) and (13), the mass
753
+ of the prominence
754
+ M ∼ mHnHAD
755
+ (14)
756
+ is
757
+ 9.5 × 1018 g < M < 1.4 × 1020 g
758
+ (15)
759
+ where mH is the mass of hydrogen atom. The error
760
+ range comes from the assumed range of electron
761
+ density and degree of ionization.
762
+ • τp ∼ 100:
763
+ When the value of τp is ∼ 100,
764
+ FHα ∼ 106 erg s−1 cm−2 sr−1
765
+ (16)
766
+ (see Figure 5 in Heinzel et al. 1994a). Calculated
767
+ as in case τp ∼ 0.1,
768
+ A ∼ 1.6 × 1023 cm2.
769
+ (17)
770
+ Assuming equations (11) and (13) as in case τp ∼
771
+ 0.1,
772
+ D ∼ 108−11 cm
773
+ (18)
774
+ 9.5 × 1019 g < M < 1.4 × 1021 g.
775
+ (19)
776
+ Combining the ranges of M in equations (15) and (19),
777
+ 9.5 × 1018 g < M < 1.4 × 1021 g.
778
+ (20)
779
+ As shown in equations (15) and (19), the upper and
780
+ lower limits of the prominence mass varied by only
781
+
782
+ 10
783
+ Inoue et al.
784
+ Figure 6. Light curves and time variation of the velocity of the blue-shifted excess component. (a),(e) Light curves of white
785
+ light observed with TESS; this is an enlarged version of the light curve shown in Figure 2 (a) only for the time period with
786
+ the blue-shifted excess component visible. (b),(f) Light curves of the equivalent width of Hα observed with KOOLS-IFU on
787
+ the Seimei telescope at the same time as (a), (e). The pink triangles and blue circles indicate the equivalent widths of the flare
788
+ and blue-shifted excess components, respectively. (c),(g) Light curves of the equivalent widths of the components comprising
789
+ the residuals between the Voigt function and pre-flare subtracted spectrum.
790
+ These values were calculated by integrating
791
+ Gaussian functions fitted with residuals. Light blue squares denotes the equivalent width when fitting the residuals with one
792
+ component.(Blue (1)) Medium blue inverted triangles and teal hexagons represent the equivalent widths of the faster and slower
793
+ components, respectively, when the residual is fitted by two components (Blue (2)/(3)). (d),(h) Time variation of the velocity
794
+ of the blue-shifted excess components. Marks are set as in panel (c), (g). The error bars contain two elements: fitting error
795
+ and the variation of the radial velocity of this star. The slopes of the gray lines represent the gravitational acceleration at the
796
+ surface of each of the binary stars. The black dashed lines show the escape velocity of the K-type star of V1355 Orionis.
797
+
798
+ White Light
799
+ (a)
800
+ (e)
801
+ 0.02
802
+ 0.02
803
+ xn
804
+ 0.00
805
+ 0.00
806
+ Flare
807
+ (b)
808
+ (f)
809
+ 1.20
810
+ Blue
811
+ 1.20
812
+ Ei
813
+ 0.00
814
+ 0.00
815
+ (g)
816
+ (C)
817
+ 1.0
818
+ Blue (1)
819
+ 1.0
820
+ Blue (2)
821
+ M
822
+
823
+ Blue (3)
824
+ Ei
825
+ 0.0
826
+ 0.0
827
+ (d)
828
+ (h)
829
+ g (K-type)
830
+ g (K-type)
831
+ -2000
832
+ -2000
833
+ Velocity (1)
834
+ Velocity (2)
835
+ -1600
836
+ -1600
837
+ Velocity (3)
838
+ [km/s]
839
+ g (G-type)
840
+ g (G-type)
841
+ -1200
842
+ -1200
843
+ Velocity
844
+ .800
845
+ -800
846
+ .400
847
+ 400
848
+ escape velocity
849
+ 5
850
+ 10
851
+ 15
852
+ 20
853
+ 25
854
+ 0
855
+ 5
856
+ 10
857
+ 15
858
+ 20
859
+ 25
860
+ 0
861
+ Time from BJD=2459203.11297 [min]
862
+ Time from BJD=2459203.11297 [min]A high-velocity prominence eruption on V1355 Orionis
863
+ 11
864
+ Figure 7. Schematic diagram that represents the interpretation of the fact that the blue-shifted excess component appears
865
+ to be composed of two components. (a) When two prominences are visible in the Hα emission line. (b) When parts of the
866
+ prominence are visible in the Hα emission line and parts are visible in absorption.
867
+ about an order of magnitude when τp varied signifi-
868
+ cantly. Since we do not know the value of τp, we set
869
+ an extreme value of τp ∼ 100 as the upper limit in this
870
+ paper. The energy of this flare is ∼ 106 times that of a
871
+ typical solar flare (∼ 1030 erg). The energy of a flare is
872
+ proportional to the cube of the spatial scale (Shibata &
873
+ Yokoyama 2002). The typical value of the optical thick-
874
+ ness of the solar prominence is ∼ 1. Simply put, the
875
+ optical thickness of the prominence is proportional to
876
+ the geometric thickness of the prominence. Given the
877
+ spatial scale of the prominence, the upper limit of τp
878
+ can be roughly considered to be ∼ 1 × (106)1/3 = 100.
879
+ On the other hand, the lower limit of τp was limited by
880
+ the hemispheric area of the star. When τp is set to an
881
+ extremely small value, A is extremely larger than the
882
+ hemispherical area of the star (see equations (6) and
883
+ (7)). Such a situation is unrealistic. The value of A in
884
+ equation (9) corresponds to ∼ 101.5πR2. Filling factor
885
+ effect may also affect the prominence mass estimation
886
+ (Kucera et al. 1998). So, a more detailed study of the
887
+ stellar prominence mass calculation is needed in the fu-
888
+ ture.
889
+ 4.2. Interpretation of Hα line profile: Two components
890
+ Sometimes the blue-shifted excess component ap-
891
+ peared to have two clear peaks, as shown in Figure 5
892
+ (b) and (d), whereas other times the case is opposite.
893
+ Figure 6 (c) and (g) show the time variation of the equiv-
894
+ alent width of the Gaussian fitted to the residual for the
895
+ one- and two-component fits, respectively.
896
+ As shown
897
+ in Figure 6 (g), the equivalent width of one of the two
898
+ Gaussians was close to zero at the beginning and end
899
+
900
+ (b)
901
+ Hα Emission
902
+ Prominence
903
+ Flare Ribborn
904
+ Observe
905
+ Star
906
+ Inicident Stellar Radiation
907
+ Hα Absorption(a)
908
+ Flare Ribborn
909
+ Prominence<
910
+ Hα Emission
911
+ Observe
912
+ Star
913
+ Inicident Stellar Radiation12
914
+ Inoue et al.
915
+ Figure 8. Mass, kinetic energy, and velocity of the prominence eruption on V1355 Orionis compared with the statistical data of
916
+ solar and stellar prominence eruptions/CMEs. (a) Comparison between mass of CMEs/prominences and flare energy. The top
917
+ and bottom horizontal axes represent the energy emitted in the GOES wavelength band and bolometric flare energy, respectively.
918
+ Red stars correspond to filament eruptions on the Sun taken from Namekata et al. (2022a). Black crosses correspond to CME
919
+ events on the Sun taken from Yashiro & Gopalswamy (2009). Blue squares indicate stellar mass ejection events on M-dwarfs
920
+ (dMe). Green triangles indicate stellar mass ejection events on young stellar objects (YSO) and close binary systems (CB). Data
921
+ of these stellar events were obtained from Moschou et al. (2019) and Maehara et al. (2021). The orange diamond represents the
922
+ filament eruption event on a young Sun-like star EK Dra reported in Namekata et al. (2022a), wherein a blue-shifted absorption
923
+ component was identified. The pink circle denotes the prominence eruption on V1355 Orionis. The cyan dashed line represents
924
+ the relation: MCME ∝ E2/3
925
+ flare, shown by Takahashi et al. (2016) about the Sun, which is fitted to the solar data points used
926
+ in this study. (b) Velocity of CMEs/prominences as a function of flare energy. Red stars represent the filament eruptions on
927
+ the Sun (obtained from Seki et al. (2019)). The pink circle denotes the velocity of the prominence eruption on V1355 Orionis
928
+ obtained by fitting with one-component Gaussian. The lower and upper limits of the velocity of the prominence eruption on
929
+ V1355 Orionis are the velocity obtained by fitting with two-component Gaussian. The other marks are the same as in (a). The
930
+ scaling law denoted by the cyan dashed line was obtained from Takahashi et al. (2016). Note that this scaling law is an upper
931
+ bound on the speed; thus it has been adjusted to pass through the fastest point in the solar data used here. (c) Comparison
932
+ between kinetic energy of CMEs/prominences and flare energy. The horizontal axis and each mark are the same as those in (a).
933
+ The scaling law denoted by the cyan dashed line was obtained from Namekata et al. (2022a), which is also fitted to the solar
934
+ data points used in this study.
935
+
936
+ GOES X-ray (1-8 A band) flare energy [erg]
937
+ GOES X-ray (1-8 A band) flare energy [erg]
938
+ 1028
939
+ 1030
940
+ 1032
941
+ 1034
942
+ 1036
943
+ 1026
944
+ 1028
945
+ 1030
946
+ 1032
947
+ 1034
948
+ 1036
949
+ 104
950
+ [(a)
951
+ [(b)
952
+ 1022
953
+ 16
954
+ 1020
955
+ VCME
956
+ 103
957
+ Velocity [km/
958
+ 1018
959
+ α Elare
960
+ McME
961
+ S
962
+ Mas
963
+ 1016
964
+ 1014
965
+ 102
966
+ 1012
967
+ 1030
968
+ 1032
969
+ 1034
970
+ 1036
971
+ 1038
972
+ 1028
973
+ 1030
974
+ 1032
975
+ 1034
976
+ 1036
977
+ 1038
978
+ Bolometric flare energy [erg]
979
+ Bolometric flare energy [erg]
980
+ GOES X-ray (l-8 A band) flare energy [erg]
981
+ 1028
982
+ 1030
983
+ 1032
984
+ 1034
985
+ 1036
986
+ (c)]
987
+ 1037
988
+ Solar Filament Eruption
989
+ g
990
+ Solar CME
991
+ 05
992
+ dMe (Blue-shift)
993
+ Ekin
994
+ YSO (Blue-shift)
995
+ Kinetic ener
996
+ Young Sun-like Star (Blue-shift Absorption)
997
+ This work (Blue-shift)
998
+ 1029
999
+ 1025
1000
+ 1030
1001
+ 1032
1002
+ 1034
1003
+ 1036
1004
+ 1038
1005
+ Bolometric flare energy [erg]A high-velocity prominence eruption on V1355 Orionis
1006
+ 13
1007
+ of the time when the blue-shifted excess component was
1008
+ visible.
1009
+ Both equivalent widths were above a certain
1010
+ value in the intervening. That is, the blue-shifted ex-
1011
+ cess component initially appeared to be one component,
1012
+ then became two components, and finally appeared to
1013
+ be one component again.
1014
+ We assume that the prominence visibility for the Sun,
1015
+ where the prominence is considered the emission compo-
1016
+ nent of Hα and the filament is regarded the absorption
1017
+ component of Hα (Parenti 2014), holds true here. Then,
1018
+ the fact that the blue-shifted excess component appears
1019
+ to be composed of two components can be interpreted
1020
+ in two ways:
1021
+ (i) Emission + Emission:
1022
+ As shown in Figure 7 (a), two prominences are
1023
+ present above the limb and each prominence is vis-
1024
+ ible as an emission line in Hα. This would be the
1025
+ situation when the prominence eruption occurred
1026
+ twice, or when the erupted prominence split in two
1027
+ while moving.
1028
+ (ii) Absorption + Emission:
1029
+ As shown in Figure 7 (b), the erupted prominence
1030
+ contains both the area above the limb and visible
1031
+ as an emission line in Hα, and that inside the limb
1032
+ and visible as an absorption line in Hα. When mix-
1033
+ ing of those emission and absorption components,
1034
+ two peaks seem to exist in the blue-shifted excess
1035
+ component. In this case, the width of the emis-
1036
+ sion component must be broader than that of the
1037
+ absorption component to reproduce the observed
1038
+ spectrum. However, the physical interpretation for
1039
+ this situation is not well understood.
1040
+ Nevertheless, whether the premise of these interpreta-
1041
+ tions can be applied to the present case remains unclear.
1042
+ That is, unlike the Sun, filaments may be visible as the
1043
+ Hα emission components on K-type stars.
1044
+ Leitzinger
1045
+ et al. (2022) showed that for dM stars, thermal radiation
1046
+ from filaments dominates the source function over the
1047
+ scattering of the star’s incident radiation so that even
1048
+ filaments can be considered emission line components of
1049
+ Hα through 1D NLTE modeling and cloud model for-
1050
+ mulation. Given that our eruptive event occurred on a
1051
+ K-type star, which is cooler than the Sun, a filament
1052
+ may not necessarily be visible in the absorption compo-
1053
+ nent in Hα, similar to that claimed by Leitzinger et al.
1054
+ (2022) for M-type stars. Therefore, modeling and simu-
1055
+ lation of prominence/filament eruptions on K-type stars
1056
+ are required for a more advanced understanding of the
1057
+ two-peaked blue-shifted excess components.
1058
+ 4.3. Comparison with other events
1059
+ We compared the fast prominence eruption observed
1060
+ on V1355 Orionis with other events regarding mass, ve-
1061
+ locity, and kinetic energy. Figure 8 shows the (a) mass,
1062
+ (b) velocity, and (c) kinetic energy of the prominence
1063
+ eruptions and CMEs as a function of flare energy emit-
1064
+ ted in the GOES wavelength band (1-8 ˚A) and bolomet-
1065
+ ric flare energy. We used the equation (1) of Moschou
1066
+ et al. (2019) when converting the energy emitted in Hα
1067
+ to GOES X-ray flare energy: LX = 16LHα. We also as-
1068
+ sumed the relationship: Lbol = 100LX , which is shown
1069
+ to hold on solar flares by Emslie et al. (2012). On the
1070
+ other hand, Osten & Wolk (2015) shows Lbol = LX/0.06
1071
+ for active stars. Therefore, the bolometric energy of the
1072
+ stellar flares in Figure 8 may be a bit smaller. Note that
1073
+ for stars, only examples estimated from blue-shifted ex-
1074
+ cess components of chromospheric lines are plotted in
1075
+ Figure 8.
1076
+ The lower and upper limits of the velocity
1077
+ of the prominence eruption on V1355 Orionis in Fig-
1078
+ ure 8 (b) are the velocity obtained by fitting with two-
1079
+ component.
1080
+ The pink circle denotes the velocity ob-
1081
+ tained by fitting with one-component.
1082
+ Figure 8 (a) indicates that the erupted prominence on
1083
+ V1355 Orionis has roughly the mass that expected from
1084
+ the scaling law of solar CMEs. This suggests that the
1085
+ prominence eruption on V1355 Orionis was caused by
1086
+ the same physical mechanism as the solar prominence
1087
+ eruptions/CMEs (e.g., Kotani et al. 2022). Figure 8 (a)
1088
+ also shows that it is the largest prominence eruption
1089
+ observed by blue shift. These facts may provide impor-
1090
+ tant clues as to how large an event can be caused by the
1091
+ physical mechanism of solar prominence eruptions. Our
1092
+ observations may provide an opportunity to understand
1093
+ extreme eruptive events on stars.
1094
+ Figure 8 (b) shows that the prominence velocity on
1095
+ V1355 Orionis is indeed fast, but overwhelmingly below
1096
+ the theoretical upper limit of the velocity (Takahashi
1097
+ et al. 2016) estimated from the flare energy. Therefore,
1098
+ the fast prominence eruption is physically possible to
1099
+ occur in association with a 1035 erg class flare.
1100
+ Figure 8 (c) indicates that kinetic energy corresponds
1101
+ roughly to the value predicted from the scaling law of
1102
+ the solar CMEs. In our calculation, the kinetic energy
1103
+ of the prominence is 4.5×1033 erg < K < 1.0×1037 erg.
1104
+ As discussed in Moschou et al. (2019), the kinetic en-
1105
+ ergy of the prominence on other stars is smaller than
1106
+ that expected from the scaling law of solar CMEs. The
1107
+ possible reason for the discrepancy is that prominence
1108
+ eruptions generally have a lower velocity than CMEs in
1109
+ case of the Sun (Maehara et al. 2021; Namekata et al.
1110
+ 2022a), although it is also proposed that the suppression
1111
+ by the overlying large-scale magnetic field can contribute
1112
+ to small kinetic energies (Alvarado-G´omez et al. 2018).
1113
+
1114
+ 14
1115
+ Inoue et al.
1116
+ For the blue-shift events except on V1355 Orionis, the
1117
+ kinetic energy tends to be smaller than the scaling law.
1118
+ However, we are not sure if the prominence of V1355
1119
+ Orionis is below the scaling law due to the large indefi-
1120
+ niteness of the kinetic energy.
1121
+ Given these considerations, the prominence eruption
1122
+ on V1355 Orionis and solar prominence eruptions may
1123
+ have a common physical mechanism. However, the large
1124
+ uncertainties in the mass estimate makes it difficult to
1125
+ compare them with the solar CME scaling law. For the
1126
+ mass estimation, we made various assumptions, as dis-
1127
+ cussed in Section 4.1.2, that may be incorrect. A more
1128
+ accurate derivation of the prominence mass requires a
1129
+ simulation as performed in Leitzinger et al. (2022), as
1130
+ well as concerning the two components in Section 4.2.
1131
+ 5. SUMMARY AND CONCLUSION
1132
+ We simultaneously performed spectroscopic observa-
1133
+ tions in this study using the Seimei telescope and pho-
1134
+ tometric observations using TESS on the RS CVn-type
1135
+ star V1355 Orionis. We captured a superflare that re-
1136
+ leases 7.0×1035erg and has the following characteristics:
1137
+ 1. For the first 30 min after the flare started, a pro-
1138
+ nounced blue shift in the Hα emission line was
1139
+ observed confirming that the prominence eruption
1140
+ occurred in association with the flare.
1141
+ 2. The velocity of the prominence eruption calcu-
1142
+ lated from the blue-shift was up to 990 km s−1
1143
+ (one-component fitting) and 1690 km s−1 (two-
1144
+ component fitting), that is, well above the escape
1145
+ velocity of 347 km s−1.
1146
+ 3. There seems two blue-shifted excess components
1147
+ with multiple possible interpretations.
1148
+ 4. The mass of the prominence eruption is also one
1149
+ of the largest ever observed (9.5 × 1018 g < M <
1150
+ 1.4 × 1021 g), corresponding to the value expected
1151
+ from the flare energy-mass scaling law that holds
1152
+ for solar CMEs.
1153
+ However, the mass estimates
1154
+ make many uncertain assumptions and are highly
1155
+ indeterminate.
1156
+ In a very rare case, a prominence eruption at the ve-
1157
+ locity that greatly exceeds the escape velocity of the
1158
+ star was captured continuously at a high temporal res-
1159
+ olution of 1 min simultaneously with a white light flare.
1160
+ The massive and fast prominence eruption detected in
1161
+ this study provide an important indicator of how large
1162
+ an eruption the physical mechanism of solar prominence
1163
+ eruptions can cause at most. Therefore, this will need
1164
+ to be investigated in the future with a larger sample of
1165
+ prominence eruptions in the energy range of > 1035 erg.
1166
+ As also discussed in Leitzinger et al. (2022), sim-
1167
+ ply applying the empirical relation of solar promi-
1168
+ nence/filament visibility to star can involve many ambi-
1169
+ guities. Further, modeling and simulation of prominence
1170
+ visibility on K-type stars are necessary to accurately in-
1171
+ terpret our data, especially the two-peaked blue-shifted
1172
+ excess component. This would also contribute to a more
1173
+ accurate derivation of the prominence mass.
1174
+ The spectroscopic data used in this study were obtained
1175
+ through the program 20B-N-CN03 with the 3.8m Seimei
1176
+ telescope, which is located at Okayama Observatory of
1177
+ Kyoto University. TESS data were obtained from the
1178
+ MAST data archive at the Space Telescope Science Insti-
1179
+ tute (STScI). All the TESS data used in this paper can
1180
+ be found in MAST: 10.17909/ffwb-dg98 Funding for the
1181
+ TESS mission is provided by the NASA Explorer Pro-
1182
+ gram. We thank T. Enoto (Kyoto University/RIKEN),
1183
+ H. Uchida, and T. Tsuru (Kyoto University) for their
1184
+ comments and discussions.
1185
+ We acknowledge the In-
1186
+ ternational Space Science Institute and the supported
1187
+ International Team 510: Solar Extreme Events: Set-
1188
+ ting Up a Paradigm (https://www.issibern.ch/teams/
1189
+ solextremevent/). This research is supported by JSPS
1190
+ KAKENHI grant numbers 20K04032, 20H05643 (H.M.)
1191
+ 21J00106 (Y.N.), 21J00316 (K.N.) and 21H01131 (H.M.,
1192
+ D.N., K.S.). Y.N. was also supported by NASA ADAP
1193
+ award program number 80NSSC21K0632 (PI: Adam
1194
+ Kowalski).
1195
+ Facilities:
1196
+ Seimei (Kurita et al. 2020) , TESS
1197
+ (Ricker et al. 2015)
1198
+ Software:
1199
+ astropy (Astropy Collaboration et al.
1200
+ 2013, 2018), kools ifu red (Matsubayashi et al. 2019),
1201
+ IRAF (Tody 1986), PyRAF (Science Software Branch at
1202
+ STScI 2012)
1203
+ REFERENCES
1204
+ Aarnio, A. N., Stassun, K. G., Hughes, W. J., & McGregor,
1205
+ S. L. 2011, Solar Physics, 268, 195,
1206
+ doi: 10.1007/s11207-010-9672-7
1207
+ Airapetian, V. S., Barnes, R., Cohen, O., et al. 2020,
1208
+ International Journal of Astrobiology, 19, 136,
1209
+ doi: 10.1017/S1473550419000132
1210
+
1211
+ A high-velocity prominence eruption on V1355 Orionis
1212
+ 15
1213
+ Alvarado-G´omez, J., Drake, J., Cohen, O., Moschou, S., &
1214
+ Garraffo, C. 2018, ApJ, 862, 93,
1215
+ doi: 10.3847/1538-4357/aacb7f
1216
+ Astropy Collaboration, Robitaille, T. P., Tollerud, E. J.,
1217
+ et al. 2013, A&A, 558, A33,
1218
+ doi: 10.1051/0004-6361/201322068
1219
+ Astropy Collaboration, Price-Whelan, A. M., Sip˝ocz, B. M.,
1220
+ et al. 2018, AJ, 156, 123, doi: 10.3847/1538-3881/aabc4f
1221
+ Bessell, M., Castelli, F., & Plez, B. 1998, A&A, 333, 231
1222
+ Claes, N., & Keppens, R. 2019, A&A, 624, A96,
1223
+ doi: 10.1051/0004-6361/201834699
1224
+ Cutispoto, G., Pallavicini, R., Kurster, M., & Rodono, M.
1225
+ 1995, A&A, 297, 764
1226
+ Emslie, A. G., Dennis, B. R., Shih, A. Y., et al. 2012, ApJ,
1227
+ 759, 71, doi: 10.1088/0004-637X/759/1/71
1228
+ Fuhrmeister, B., Lalitha, S., Poppenhaeger, K., et al. 2011,
1229
+ A&A, 534, A133, doi: 10.1051/0004-6361/201117447
1230
+ Fuhrmeister, B., Liefke, C., Schmitt, J., & Reiners, A. 2008,
1231
+ A&A, 487, 293, doi: 10.1051/0004-6361:200809379
1232
+ Fuhrmeister, B., & Schmitt, J. 2004, A&A, 420, 1079,
1233
+ doi: 10.1051/0004-6361:20035644
1234
+ Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al.
1235
+ 2016, A&A, A2, 23, doi: 10.1051/0004-6361/201629512
1236
+ Gopalswamy, N., Shimojo, M., Lu, W., et al. 2003, ApJ,
1237
+ 586, 562, doi: 10.1086/367614
1238
+ Gunn, A., Doyle, J., Mathioudakis, M., Houdebine, E., &
1239
+ Avgoloupis, S. 1994, A&A, 285, 489
1240
+ Hawley, S., & Fisher, G. 1992, ApJS, 78, 565,
1241
+ doi: 10.1086/191640
1242
+ Heinzel, P., Gouttebroze, P., & Vial, J.-C. 1994a, A&A,
1243
+ 292, 656
1244
+ Hirayama, T. 1986, in NASA Conference Publication, Vol.
1245
+ 2442, NASA Conference Publication, 149–153
1246
+ Honda, S., Notsu, Y., Namekata, K., et al. 2018, PASJ, 70,
1247
+ 62, doi: 10.1093/pasj/psy055
1248
+ Houdebine, E., Foing, B., & Rodono, M. 1990, A&A, 238,
1249
+ 249
1250
+ Ichimoto, K., & Kurokawa, H. 1984, SoPh, 93,
1251
+ doi: 10.1007/BF00156656
1252
+ Kennedy, M., Milligan, R., Allred, J., Mathioudakis, M., &
1253
+ Keenan, F. 2015, A&A, 578, A72,
1254
+ doi: 10.1051/0004-6361/201425144
1255
+ Kotani, Y., Shibata, K., Ishii, T. T., et al. 2022, arXiv
1256
+ e-prints, arXiv:2212.08850.
1257
+ https://arxiv.org/abs/2212.08850
1258
+ Kucera, T. A., Andretta, V., & Poland, A. I. 1998, Solar
1259
+ Physics, 183, 107, doi: 10.1023/A:1005077417572
1260
+ Kurita, M., Kino, M., Iwamuro, F., et al. 2020, PASJ, 72,
1261
+ 48, doi: 10.1093/pasj/psaa036
1262
+ Labrosse, N., Heinzel, P., Vial, J. C., et al. 2010, Space
1263
+ Science Reviews, 151, 243,
1264
+ doi: 10.1007/s11214-010-9630-6
1265
+ Leitzinger, M., Odert, P., & Heinzel, P. 2022, MNRAS, 513,
1266
+ 6058–6073, doi: 10.1093/mnras/stac1284
1267
+ Maehara, H., Shibayama, T., Notsu, S., et al. 2012, Nature,
1268
+ 485, 478, doi: 10.1038/nature11063
1269
+ Maehara, H., Notsu, Y., Namekata, K., et al. 2021, PASJ,
1270
+ 73, 44, doi: 10.1093/pasj/psaa098
1271
+ Matsubayashi, K., Ohta, K., Iwamuro, F., et al. 2019,
1272
+ PASJ, 71, 102, doi: 10.1093/pasj/psz087
1273
+ Mochnacki, S., & Zirin, H. 1980, ApJ, 239, L27,
1274
+ doi: 10.1086/183285
1275
+ Moschou, S.-P., Drake, J., Cohen, O., et al. 2019, ApJ, 877,
1276
+ 105, doi: 10.3847/1538-4357/ab1b37
1277
+ Muheki, P., Guenther, E. W., Mutabazi, T., & Jurua, E.
1278
+ 2020, A&A, 637, A13, doi: 10.1051/0004-6361/201936904
1279
+ Namekata, K., Maehara, H., Sasaki, R., et al. 2020, PASJ,
1280
+ 72, 68, doi: 10.1093/pasj/psaa051
1281
+ Namekata, K., Maehara, H., Honda, S., et al. 2022a, Nat.
1282
+ Astron., 6, 241, doi: 10.1038/s41550-021-01532-8
1283
+ —. 2022b, ApJL, 926, L5, doi: 10.3847/2041-8213/ac4df0
1284
+ Osten, R. A., & Saar, S. 1998, MNRAS, 295, 257,
1285
+ doi: 10.1046/j.1365-8711.1998.01121.x
1286
+ Osten, R. A., & Wolk, S. J. 2015, ApJ, 809, 79,
1287
+ doi: 10.1088/0004-637X/809/1/79
1288
+ Otsu, T., Asai, A., Ichimoto, K., Ishii, T. T., & Namekata,
1289
+ K. 2022, 939, 98, doi: 10.3847/1538-4357/ac9730
1290
+ Parenti, S. 2014, Living Rev. Sol. Phys, 11, 1,
1291
+ doi: 10.12942/lrsp-2014-1
1292
+ Pounds, K. A., Allan, D. J., Barber, C., et al. 1993,
1293
+ MNRAS, 260, 77, doi: 10.1093/mnras/260.1.77
1294
+ Pye, J. P., McGale, P. A., Allan, D. J., et al. 1995,
1295
+ MNRAS, 274, 1165, doi: 10.1093/mnras/274.4.1165
1296
+ Ricker, G. R., Winn, J. N., Vanderspek, R., Latham,
1297
+ D. W., & Bakos, G. A. 2015, Journal of Astronomical
1298
+ Telescopes, Instruments, and Systems, 1, 014003,
1299
+ doi: 10.1117/1.JATIS.1.1.014003
1300
+ Science Software Branch at STScI. 2012, PyRAF: Python
1301
+ alternative for IRAF, Astrophysics Source Code Library
1302
+ Seki, D., Otsuji, K., Ishii, T., et al. 2019, Sun and
1303
+ Geosphere, 14, 95, doi: 10.31401/SunGeo.2019.02.01
1304
+ Shibata, K., & Magara, T. 2011, Living Reviews in Solar
1305
+ Physics, 8, 6, doi: 10.12942/lrsp-2011-6
1306
+ Shibata, K., & Yokoyama, T. 2002, ApJ, 577, 422,
1307
+ doi: 10.1086/342141
1308
+ Shibayama, T., Maehara, H., Notsu, S., et al. 2013, ApJS,
1309
+ 209, 5, doi: 10.1088/0067-0049/209/1/5
1310
+ Shinha, S., Srivastava, N., & Nandy, D. 2019, ApJ, 880, 84,
1311
+ doi: 10.3847/1538-4357/ab2239
1312
+
1313
+ 16
1314
+ Inoue et al.
1315
+ Strassmeier, K. 2000, A&A, 357, 608
1316
+ Takahashi, T., Mizuno, Y., & Shibata, K. 2016, ApJL, 833,
1317
+ L8, doi: 10.3847/2041-8205/833/1/L8
1318
+ Tei, A., Sakaue, T., Okamoto, T., et al. 2018, PASJ, 70,
1319
+ doi: 10.1093/pasj/psy047
1320
+ Tody, D. 1986, Proc. SPIE, 627, 733,
1321
+ doi: 10.1117/12.968154
1322
+ Tsuboi, Y., Yamazaki, K., Sugawara, Y., et al. 2016, PASJ,
1323
+ 68, 90, doi: 10.1093/pasj/psw081
1324
+ Vida, K., Leitzinger, M., Kriskovics, L., et al. 2019, A&A,
1325
+ 623, A49, doi: 10.1051/0004-6361/201834264
1326
+ Vida, K., Kriskovics, L., Ol´ah, K., et al. 2016, A&A, 590,
1327
+ A11, doi: 10.1051/0004-6361/201527925
1328
+ Yashiro, S., & Gopalswamy, N. 2009, Universal
1329
+ Heliophysical Processes, 257, 233,
1330
+ doi: 10.1017/S1743921309029342
1331
+
BtFQT4oBgHgl3EQf-De4/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
C9AyT4oBgHgl3EQfefg9/content/tmp_files/2301.00321v1.pdf.txt ADDED
@@ -0,0 +1,276 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Floods Relevancy and Identification of Location from
2
+ Twitter Posts using NLP Techniques
3
+ Muhammad Suleman1,†, Muhammad Asif1,†, Tayyab Zamir2,†, Ayaz Mehmood1,†,
4
+ Jebran Khan3, Nasir Ahmad1 and Kashif Ahmad4
5
+ 1DCSE, University of Engineering and Technology, Peshawar, Pakistan
6
+ 2Abasyn University Islamabad Campus, Pakistan
7
+ 3Department of AI, AJOU University, South Korea
8
+ 4Department of Computer Science, Munster Technological University, Cork, Ireland
9
+ Abstract
10
+ This paper presents our solutions for the MediaEval 2022 task on DisasterMM. The task is composed of two
11
+ subtasks, namely (i) Relevance Classification of Twitter Posts (RCTP), and (ii) Location Extraction from
12
+ Twitter Texts (LETT). The RCTP subtask aims at differentiating flood-related and non-relevant social posts
13
+ while LETT is a Named Entity Recognition (NER) task and aims at the extraction of location information
14
+ from the text. For RCTP, we proposed four different solutions based on BERT, RoBERTa, Distil BERT, and
15
+ ALBERT obtaining an F1-score of 0.7934, 0.7970, 0.7613, and 0.7924, respectively. For LETT, we used three
16
+ models namely BERT, RoBERTa, and Distil BERTA obtaining an F1-score of 0.6256, 0.6744, and 0.6723,
17
+ respectively.
18
+ 1. Introduction
19
+ Natural disasters represent hazardous events that are generally caused by geophysical, hydrological,
20
+ climatological, and meteorological elements. These hazardous events may have an adverse impact
21
+ on human lives and infrastructure. Floods are one such event and it frequently occurs in different
22
+ parts of the world. Similar to other natural disasters, floods may have a significant impact on
23
+ public health and infrastructure. For instance, it has been noticed on numerous occasions that
24
+ roads and communication infrastructure are badly damaged during floods [1].
25
+ A rapid and effective response to disasters may help in mitigating their adverse impact. Access
26
+ to relevant and timely information is critical for an effective response. The literature demonstrates
27
+ several situations where access to relevant information may be possible due to several reasons,
28
+ such as the unavailability of reporters in the area and damage to communication [2]. Recently
29
+ social media and crowdsourcing have been explored as a source of communication, information
30
+ collection, and dissemination in emergency situations. To this aim, several interesting solutions
31
+ have been proposed to collect, analyze, and extract meaningful insights from social media content
32
+ [2]. However, social media content also comes with several limitations. For instance, social media
33
+ content is generally noisy, thus, making access to relevant information very challenging. Similarly,
34
+ MediaEval’22: Multimedia Evaluation Workshop, January 13–15, 2023, Bergen, Norway and Online
35
+ *Corresponding author.
36
+ †These authors contributed equally.
37
+ [email protected] (K. Ahmad)
38
+ © 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
39
+ CEUR
40
+ Workshop
41
+ Proceedings
42
+ http://ceur-ws.org
43
+ ISSN 1613-0073
44
+ CEUR Workshop Proceedings (CEUR-WS.org)
45
+ arXiv:2301.00321v1 [cs.CL] 1 Jan 2023
46
+
47
+ geolocation information, which is critical for the relevance of the content, is not necessarily
48
+ available for all the relevant posts.
49
+ Considering the importance and applications of social media content in disaster analytics floods
50
+ detection in social media content has been also included in the MediaEval benchmark competition
51
+ as a shared task for several years. This paper presents a solution for the MMDisaster task presented
52
+ in MediaEval 2022 [3]. The challenge aims to solve two key challenges to disaster analytics in
53
+ social media. The first subtask aims at reducing social media noise by automatically filtering
54
+ social media content to obtain relevant content. The second subtask aims at extracting location
55
+ information from social media text, allowing automatic positioning of a potential incident due to
56
+ floods. For both subtasks, we proposed several interesting solutions as described in Section 3.
57
+ 2. Related Work
58
+ In recent years, the potential of social media has been widely explored in different application
59
+ domains [4, 5]. Some of the key applications where social media content has been already proven
60
+ very effective include public health [6], education [7], and public resource management [8]. Social
61
+ media outlets have also been widely explored for a diversified set of applications in disasters and
62
+ emergency situations [2]. For instance, Hao et al. [9] proposed a multi-modal framework utilizing
63
+ multi-social media imagery and textual information for damage assessment in disaster-hit areas.
64
+ The key factors analyzed in the work include hazard/disaster type, severity, and damage type.
65
+ Wu et al. [10] also utilized social media data and the associated geo-location information for
66
+ generating early warnings and damage assessment analysis after disasters. Ahmad et al. [11], on
67
+ the other hand, used social media imagery for the analysis of road conditions after the floods.
68
+ More specifically, the authors proposed an early and late-fusion framework to identify passable
69
+ roads in flooded regions. Alam et al. [12] explored the potential of social media content in another
70
+ relevant task of assessing flood severity. To this aim, the authors collected a large-scale benchmark
71
+ dataset namely CrisisMD. The dataset provides a large collection of Twitter posts including textual
72
+ and visual content. Hassan et al. [13] explored a slightly different aspect of natural disasters
73
+ by extracting sentiments and emotions from visual content shared in social media outlets. The
74
+ authors detailed how visual sentiment analysis of disaster-related social media visual content can
75
+ be utilized by different stakeholders, such as news agencies, public authorities, and humanitarian
76
+ organizations.
77
+ Despite being proven very effective in different tasks of disaster analytics, social media content
78
+ has several limitations, such as noisy data and the unavailability of geolocation information. In
79
+ this paper, we propose a solution to overcome such challenges.
80
+ 3. Approach
81
+ 3.1. Relevance Classification of Twitter Posts (RCTP)
82
+ As a first step, we analyzed the available multimedia content. During the analysis, we observed
83
+ that most of the posts missing visual content. Moreover, most of the images were irrelevant. Thus,
84
+ we decided to use textual information only in our solution. Our framework for the RCTP subtask
85
+ is composed of two steps. In the first step, we performed some pre-processing techniques to clean
86
+ the data by removing unnecessary information, such as usernames, URLs, emojis, and stop words.
87
+
88
+ After pre-processing, several state-of-the-art NLP algorithms including BERT [14], Roberta [15],
89
+ Distil BERT [16], and ALBERT [17] are used for the classification of the text. Since its a binary
90
+ classification task, in all methods, our cost function is based on binary crossentropy. Moreover, we
91
+ used Adam optimizer with a mini batch size of 32 for 20 epochs.
92
+ 3.2. Location Extraction from Twitter Texts (LETT)
93
+ LETT subtask is treated as Named Entity Recognition (NER) task. NER involves locating and
94
+ classifying named entities in text into pre-defined categories [18]. In this task, we are interested
95
+ in the identification of words representing the starting and subsequent words of a text sequence
96
+ referring to a location. In LETT, annotations are provided at the word level. Similar to the RCTP
97
+ task, in this task, we rely on multiple state-of-the-art algorithms including BERT, Roberta, Distil
98
+ BERT, and ALBERT. We note that in this task, since annotations are provided at the word level, we
99
+ did not use any pre-processing technique before training our models.
100
+ 3.3. Dataset
101
+ For both subtasks, separate datasets are released. The dataset for RCTP subtask contains data
102
+ from a total of 8,000 tweets. The tweets are collected between May 25, 2020, and June 12, 2020,
103
+ using flood-related keywords in the Italian Language, such as ”alluvione”, ”allagamento”, and
104
+ ”esondazione”. The dataset is provided in two different sets namely the development set and the
105
+ test set. The development set is composed of 5,337 tweets while the test set contains a total of
106
+ 1,315 tweets.
107
+ The dataset for the LETT subtask is composed of around 6,000 tweets collected between March
108
+ 25, 2017, and August 1, 2018, using flood-related Italian keywords. The annotations for this subtask
109
+ are available per word in the tweets.
110
+ 4. Results and Analysis
111
+ 4.1. Runs Description of RCTP Subtask
112
+ Table 1 shows the experimental results of the proposed solutions on the development set. We note
113
+ that during the experiments on the development set, we used 70% samples of the development
114
+ set for training, 20% for testing, and 10% samples for validation. As can be seen in the table, no
115
+ significant differences can be observed in the performance of the models on the clean and un-clean
116
+ datasets. As far as the performance of the individual models is concerned, slightly better results
117
+ are obtained with BERT compared to the other models. Table 2 provides the official results of the
118
+ proposed solutions on the test set. We note that for the experiments on the test set the models
119
+ are trained on the complete development set. In total, 4 different runs are submitted for the task.
120
+ Our first, second, and fourth runs are based on BERT, RoBERTa, and Distil Bert models trained
121
+ on the un-cleaned dataset, respectively. Our third run is based on the BERT model trained on
122
+ the cleaned dataset. The performance of the models trained on the un-cleaned dataset is higher
123
+ than the models trained on the cleaned dataset. This indicates that the pre-processing information
124
+ resulted in the removal of some relevant features and thus has a negative impact on the results.
125
+
126
+ Table 1
127
+ Experimental results of RCTP task on the development set.
128
+ Model
129
+ F1-Score on the Clean Dataset
130
+ F1-Score on the Un-clean Dataset
131
+ BERT
132
+ 0.95
133
+ 0.94
134
+ RoBERTa
135
+ 0.94
136
+ 0.93
137
+ Distil BERT
138
+ 0.93
139
+ 0.93
140
+ ALBERT
141
+ 0.92
142
+ 0.92
143
+ Table 2
144
+ Experimental results of the RCTP task on the test set.
145
+ Run
146
+ Precision
147
+ Recall
148
+ F1-Score
149
+ 1 (BERT on Un-clean Dataset)
150
+ 0.6949
151
+ 0.9251
152
+ 0.7934
153
+ 2 (RoBERTa on Un-lean Dataset)
154
+ 0.6947
155
+ 0.9347
156
+ 0.7970
157
+ 3 (BERT on Clean Dataset)
158
+ 0.6486
159
+ 0.9213
160
+ 0.7613
161
+ 4 (Distil BERT on Un-clean Dataset)
162
+ 0.6940
163
+ 0.9232
164
+ 0.7924
165
+ Table 3
166
+ Experimental results of the LETT task on the development set.
167
+ Model
168
+ F1-Score
169
+ BERT
170
+ 0.7752
171
+ RoBERTa
172
+ 0.8014
173
+ Distil BERT
174
+ 0.7658
175
+ ALBERT
176
+ 0.6827
177
+ Table 4
178
+ Experimental results of LETT task on the test set.
179
+ Run
180
+ Exact Results
181
+ Partial Results
182
+ Precision
183
+ Recall
184
+ F1-Score
185
+ Precision
186
+ Recall
187
+ F1-Score
188
+ 1 (BERT)
189
+ 0.596
190
+ 0.522
191
+ 0.556
192
+ 0.628
193
+ 0.622
194
+ 0.625
195
+ 2 (RoBERTa)
196
+ 0.540
197
+ 0.676
198
+ 0.600
199
+ 0.577
200
+ 0.810
201
+ 0.674
202
+ 3 (Distil BERT)
203
+ 0.563
204
+ 0.604
205
+ 0.583
206
+ 0.610
207
+ 0.760
208
+ 0.677
209
+ 4.2. Runs Description of LETT Subtask
210
+ Table 3 provides the experimental results of the proposed solutions on the development set for
211
+ the LETT subtask. Similar to RCTP, we used 70% samples of the development set for training,
212
+ 20% for testing, and 10% samples for validation. A significant variation can be observed in the
213
+ results of the models on the development set. Overall, better results are obtained for RoBerta
214
+ with a significant improvement of 3% over the second-highest results obtained with the BERT
215
+ model. Table 4 provides the official results for the LETT subtask. In the experiments on the test
216
+ set, the models are trained on the complete development set. We note that in the partial results the
217
+ omitted samples are counted as false while in the partial results the omitted samples are completely
218
+ ignored without any penalty. As can be seen in the table, overall, better results are obtained with
219
+ Roberta and Distil BERT compared to the original implementation of the BERT model.
220
+
221
+ 5. Conclusions
222
+ In this paper, we presented our solutions for the DisasterMM challenge posted in MediaEval
223
+ 2022. For both subtasks, multiple state-of-the-art NLP algorithms are employed. In the current
224
+ implementation, all the models are used individually, however, we believe these models can
225
+ complement each other if jointly utilized in a merit-based fusion method. In the future, we aim to
226
+ employ different merit-based fusion methods to jointly utilize the capabilities of the individual
227
+ models in both subtasks.
228
+ References
229
+ [1] D. T. Nguyen, F. Ofli, M. Imran, P. Mitra, Damage assessment from social media imagery data
230
+ during disasters, in: Proceedings of international conference on advances in social networks
231
+ analysis and mining 2017, 2017, pp. 569–576.
232
+ [2] N. Said, K. Ahmad, M. Riegler, K. Pogorelov, L. Hassan, N. Ahmad, N. Conci, Natural disasters
233
+ detection in social media and satellite imagery: a survey, Multimedia Tools and Applications
234
+ 78 (2019) 31267–31302.
235
+ [3] S. Andreadis, A. Bozas, I. Gialampoukidis, A. Moumtzidou, R. Fiorin, F. Lombardo,
236
+ T. Mavropoulos, D. Norbiato, S. Vrochidis, M. Ferri, I. Kompatsiaris, DisasterMM: Multimedia
237
+ Analysis of Disaster-Related Social Media Data Task at MediaEval 2022, in: Proceedings of
238
+ the MediaEval 2022 Workshop, Bergen, Norway and Online, 2023.
239
+ [4] K. Ahmad, K. Pogorelov, M. Riegler, N. Conci, P. Halvorsen, Social media and satellites,
240
+ Multimedia Tools and Applications 78 (2019) 2837–2875.
241
+ [5] I. Alsmadi, K. Ahmad, M. Nazzal, F. Alam, A. Al-Fuqaha, A. Khreishah, A. Algosaibi, Adver-
242
+ sarial nlp for social network applications: Attacks, defenses, and research directions, IEEE
243
+ Transactions on Computational Social Systems (2022).
244
+ [6] S. Andreadis, G. Antzoulatos, T. Mavropoulos, P. Giannakeris, G. Tzionis, N. Pantelidis,
245
+ K. Ioannidis, A. Karakostas, I. Gialampoukidis, S. Vrochidis, et al., A social media analytics
246
+ platform visualising the spread of covid-19 in italy via exploitation of automatically geotagged
247
+ tweets, Online Social Networks and Media 23 (2021) 100134.
248
+ [7] A.-R. et al., The influence of information system success and technology acceptance model
249
+ on social media factors in education, Sustainability 13 (2021) 7770.
250
+ [8] K. Ahmad, M. Ayub, J. Khan, N. Ahmad, A. Al-Fuqaha, Social media as an instant source of
251
+ feedback on water quality, IEEE Transactions on Technology and Society (2022).
252
+ [9] H. Hao, Y. Wang,
253
+ Leveraging multimodal social media data for rapid disaster damage
254
+ assessment, International Journal of Disaster Risk Reduction 51 (2020) 101760.
255
+ [10] D. Wu, Y. Cui, Disaster early warning and damage assessment analysis using social media
256
+ data and geo-location information, Decision support systems 111 (2018) 48–59.
257
+ [11] K. Ahmad, K. Pogorelov, M. Riegler, O. Ostroukhova, P. Halvorsen, N. Conci, R. Dahyot,
258
+ Automatic detection of passable roads after floods in remote sensed and social media data,
259
+ Signal Processing: Image Communication 74 (2019) 110–118.
260
+ [12] F. Alam, F. Ofli, M. Imran, Crisismmd: Multimodal twitter datasets from natural disasters, in:
261
+ Twelfth international AAAI conference on web and social media, 2018.
262
+ [13] S. Z. Hassan, K. Ahmad, S. Hicks, P. Halvorsen, A. Al-Fuqaha, N. Conci, M. Riegler, Visual
263
+ sentiment analysis from disaster images in social media, Sensors 22 (2022) 3628.
264
+
265
+ [14] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep bidirectional
266
+ transformers for language understanding, arXiv preprint arXiv:1810.04805 (2018).
267
+ [15] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, V. Stoyanov,
268
+ Roberta: A robustly optimized bert pretraining approach, arXiv preprint arXiv:1907.11692
269
+ (2019).
270
+ [16] V. Sanh, L. Debut, J. Chaumond, T. Wolf, Distilbert, a distilled version of bert: smaller, faster,
271
+ cheaper and lighter, arXiv preprint arXiv:1910.01108 (2019).
272
+ [17] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, R. Soricut, Albert: A lite bert for
273
+ self-supervised learning of language representations, arXiv preprint arXiv:1909.11942 (2019).
274
+ [18] J. Li, A. Sun, J. Han, C. Li, A survey on deep learning for named entity recognition, IEEE
275
+ Transactions on Knowledge and Data Engineering 34 (2020) 50–70.
276
+
C9AyT4oBgHgl3EQfefg9/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,317 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf,len=316
2
+ page_content='Floods Relevancy and Identification of Location from Twitter Posts using NLP Techniques Muhammad Suleman1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
3
+ page_content='†,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
4
+ page_content=' Muhammad Asif1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
5
+ page_content='†,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
6
+ page_content=' Tayyab Zamir2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
7
+ page_content='†,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
8
+ page_content=' Ayaz Mehmood1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
9
+ page_content='†,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
10
+ page_content=' Jebran Khan3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
11
+ page_content=' Nasir Ahmad1 and Kashif Ahmad4 1DCSE,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
12
+ page_content=' University of Engineering and Technology,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
13
+ page_content=' Peshawar,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
14
+ page_content=' Pakistan 2Abasyn University Islamabad Campus,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
15
+ page_content=' Pakistan 3Department of AI,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
16
+ page_content=' AJOU University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
17
+ page_content=' South Korea 4Department of Computer Science,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
18
+ page_content=' Munster Technological University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
19
+ page_content=' Cork,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
20
+ page_content=' Ireland Abstract This paper presents our solutions for the MediaEval 2022 task on DisasterMM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
21
+ page_content=' The task is composed of two subtasks, namely (i) Relevance Classification of Twitter Posts (RCTP), and (ii) Location Extraction from Twitter Texts (LETT).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
22
+ page_content=' The RCTP subtask aims at differentiating flood-related and non-relevant social posts while LETT is a Named Entity Recognition (NER) task and aims at the extraction of location information from the text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
23
+ page_content=' For RCTP, we proposed four different solutions based on BERT, RoBERTa, Distil BERT, and ALBERT obtaining an F1-score of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
24
+ page_content='7934, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
25
+ page_content='7970, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
26
+ page_content='7613, and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
27
+ page_content='7924, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
28
+ page_content=' For LETT, we used three models namely BERT, RoBERTa, and Distil BERTA obtaining an F1-score of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
29
+ page_content='6256, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
30
+ page_content='6744, and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
31
+ page_content='6723, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
32
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
33
+ page_content=' Introduction Natural disasters represent hazardous events that are generally caused by geophysical, hydrological, climatological, and meteorological elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
34
+ page_content=' These hazardous events may have an adverse impact on human lives and infrastructure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
35
+ page_content=' Floods are one such event and it frequently occurs in different parts of the world.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
36
+ page_content=' Similar to other natural disasters, floods may have a significant impact on public health and infrastructure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
37
+ page_content=' For instance, it has been noticed on numerous occasions that roads and communication infrastructure are badly damaged during floods [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
38
+ page_content=' A rapid and effective response to disasters may help in mitigating their adverse impact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
39
+ page_content=' Access to relevant and timely information is critical for an effective response.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
40
+ page_content=' The literature demonstrates several situations where access to relevant information may be possible due to several reasons, such as the unavailability of reporters in the area and damage to communication [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
41
+ page_content=' Recently social media and crowdsourcing have been explored as a source of communication, information collection, and dissemination in emergency situations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
42
+ page_content=' To this aim, several interesting solutions have been proposed to collect, analyze, and extract meaningful insights from social media content [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
43
+ page_content=' However, social media content also comes with several limitations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
44
+ page_content=' For instance, social media content is generally noisy, thus, making access to relevant information very challenging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
45
+ page_content=' Similarly, MediaEval’22: Multimedia Evaluation Workshop, January 13–15, 2023, Bergen, Norway and Online Corresponding author.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
46
+ page_content=' †These authors contributed equally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
47
+ page_content=' � kashif.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
48
+ page_content='ahmad@mtu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
49
+ page_content='ie (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
50
+ page_content=' Ahmad) © 2022 Copyright for this paper by its authors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
51
+ page_content=' Use permitted under Creative Commons License Attribution 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
52
+ page_content='0 International (CC BY 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
53
+ page_content='0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
54
+ page_content=' CEUR Workshop Proceedings http://ceur-ws.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
55
+ page_content='org ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
56
+ page_content='org) arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
57
+ page_content='00321v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
58
+ page_content='CL] 1 Jan 2023 geolocation information, which is critical for the relevance of the content, is not necessarily available for all the relevant posts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
59
+ page_content=' Considering the importance and applications of social media content in disaster analytics floods detection in social media content has been also included in the MediaEval benchmark competition as a shared task for several years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
60
+ page_content=' This paper presents a solution for the MMDisaster task presented in MediaEval 2022 [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
61
+ page_content=' The challenge aims to solve two key challenges to disaster analytics in social media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
62
+ page_content=' The first subtask aims at reducing social media noise by automatically filtering social media content to obtain relevant content.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
63
+ page_content=' The second subtask aims at extracting location information from social media text, allowing automatic positioning of a potential incident due to floods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
64
+ page_content=' For both subtasks, we proposed several interesting solutions as described in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
65
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
66
+ page_content=' Related Work In recent years, the potential of social media has been widely explored in different application domains [4, 5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
67
+ page_content=' Some of the key applications where social media content has been already proven very effective include public health [6], education [7], and public resource management [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
68
+ page_content=' Social media outlets have also been widely explored for a diversified set of applications in disasters and emergency situations [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
69
+ page_content=' For instance, Hao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
70
+ page_content=' [9] proposed a multi-modal framework utilizing multi-social media imagery and textual information for damage assessment in disaster-hit areas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
71
+ page_content=' The key factors analyzed in the work include hazard/disaster type, severity, and damage type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
72
+ page_content=' Wu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
73
+ page_content=' [10] also utilized social media data and the associated geo-location information for generating early warnings and damage assessment analysis after disasters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
74
+ page_content=' Ahmad et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
75
+ page_content=' [11], on the other hand, used social media imagery for the analysis of road conditions after the floods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
76
+ page_content=' More specifically, the authors proposed an early and late-fusion framework to identify passable roads in flooded regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
77
+ page_content=' Alam et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
78
+ page_content=' [12] explored the potential of social media content in another relevant task of assessing flood severity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
79
+ page_content=' To this aim, the authors collected a large-scale benchmark dataset namely CrisisMD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
80
+ page_content=' The dataset provides a large collection of Twitter posts including textual and visual content.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
81
+ page_content=' Hassan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
82
+ page_content=' [13] explored a slightly different aspect of natural disasters by extracting sentiments and emotions from visual content shared in social media outlets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
83
+ page_content=' The authors detailed how visual sentiment analysis of disaster-related social media visual content can be utilized by different stakeholders, such as news agencies, public authorities, and humanitarian organizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
84
+ page_content=' Despite being proven very effective in different tasks of disaster analytics, social media content has several limitations, such as noisy data and the unavailability of geolocation information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
85
+ page_content=' In this paper, we propose a solution to overcome such challenges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
86
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
87
+ page_content=' Approach 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
88
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
89
+ page_content=' Relevance Classification of Twitter Posts (RCTP) As a first step, we analyzed the available multimedia content.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
90
+ page_content=' During the analysis, we observed that most of the posts missing visual content.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
91
+ page_content=' Moreover, most of the images were irrelevant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
92
+ page_content=' Thus, we decided to use textual information only in our solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
93
+ page_content=' Our framework for the RCTP subtask is composed of two steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
94
+ page_content=' In the first step, we performed some pre-processing techniques to clean the data by removing unnecessary information, such as usernames, URLs, emojis, and stop words.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
95
+ page_content=' After pre-processing, several state-of-the-art NLP algorithms including BERT [14], Roberta [15], Distil BERT [16], and ALBERT [17] are used for the classification of the text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
96
+ page_content=' Since its a binary classification task, in all methods, our cost function is based on binary crossentropy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
97
+ page_content=' Moreover, we used Adam optimizer with a mini batch size of 32 for 20 epochs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
98
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
99
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
100
+ page_content=' Location Extraction from Twitter Texts (LETT) LETT subtask is treated as Named Entity Recognition (NER) task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
101
+ page_content=' NER involves locating and classifying named entities in text into pre-defined categories [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
102
+ page_content=' In this task, we are interested in the identification of words representing the starting and subsequent words of a text sequence referring to a location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
103
+ page_content=' In LETT, annotations are provided at the word level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
104
+ page_content=' Similar to the RCTP task, in this task, we rely on multiple state-of-the-art algorithms including BERT, Roberta, Distil BERT, and ALBERT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
105
+ page_content=' We note that in this task, since annotations are provided at the word level, we did not use any pre-processing technique before training our models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
106
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
107
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
108
+ page_content=' Dataset For both subtasks, separate datasets are released.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
109
+ page_content=' The dataset for RCTP subtask contains data from a total of 8,000 tweets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
110
+ page_content=' The tweets are collected between May 25, 2020, and June 12, 2020, using flood-related keywords in the Italian Language, such as ”alluvione”, ”allagamento”, and ”esondazione”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
111
+ page_content=' The dataset is provided in two different sets namely the development set and the test set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
112
+ page_content=' The development set is composed of 5,337 tweets while the test set contains a total of 1,315 tweets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
113
+ page_content=' The dataset for the LETT subtask is composed of around 6,000 tweets collected between March 25, 2017, and August 1, 2018, using flood-related Italian keywords.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
114
+ page_content=' The annotations for this subtask are available per word in the tweets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
115
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
116
+ page_content=' Results and Analysis 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
117
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
118
+ page_content=' Runs Description of RCTP Subtask Table 1 shows the experimental results of the proposed solutions on the development set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
119
+ page_content=' We note that during the experiments on the development set, we used 70% samples of the development set for training, 20% for testing, and 10% samples for validation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
120
+ page_content=' As can be seen in the table, no significant differences can be observed in the performance of the models on the clean and un-clean datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
121
+ page_content=' As far as the performance of the individual models is concerned, slightly better results are obtained with BERT compared to the other models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
122
+ page_content=' Table 2 provides the official results of the proposed solutions on the test set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
123
+ page_content=' We note that for the experiments on the test set the models are trained on the complete development set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
124
+ page_content=' In total, 4 different runs are submitted for the task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
125
+ page_content=' Our first, second, and fourth runs are based on BERT, RoBERTa, and Distil Bert models trained on the un-cleaned dataset, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
126
+ page_content=' Our third run is based on the BERT model trained on the cleaned dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
127
+ page_content=' The performance of the models trained on the un-cleaned dataset is higher than the models trained on the cleaned dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
128
+ page_content=' This indicates that the pre-processing information resulted in the removal of some relevant features and thus has a negative impact on the results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
129
+ page_content=' Table 1 Experimental results of RCTP task on the development set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
130
+ page_content=' Model F1-Score on the Clean Dataset F1-Score on the Un-clean Dataset BERT 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
131
+ page_content='95 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
132
+ page_content='94 RoBERTa 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
133
+ page_content='94 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
134
+ page_content='93 Distil BERT 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
135
+ page_content='93 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
136
+ page_content='93 ALBERT 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
137
+ page_content='92 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
138
+ page_content='92 Table 2 Experimental results of the RCTP task on the test set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
139
+ page_content=' Run Precision Recall F1-Score 1 (BERT on Un-clean Dataset) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
140
+ page_content='6949 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
141
+ page_content='9251 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
142
+ page_content='7934 2 (RoBERTa on Un-lean Dataset) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
143
+ page_content='6947 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
144
+ page_content='9347 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
145
+ page_content='7970 3 (BERT on Clean Dataset) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
146
+ page_content='6486 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
147
+ page_content='9213 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
148
+ page_content='7613 4 (Distil BERT on Un-clean Dataset) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
149
+ page_content='6940 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
150
+ page_content='9232 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
151
+ page_content='7924 Table 3 Experimental results of the LETT task on the development set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
152
+ page_content=' Model F1-Score BERT 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
153
+ page_content='7752 RoBERTa 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
154
+ page_content='8014 Distil BERT 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
155
+ page_content='7658 ALBERT 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
156
+ page_content='6827 Table 4 Experimental results of LETT task on the test set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
157
+ page_content=' Run Exact Results Partial Results Precision Recall F1-Score Precision Recall F1-Score 1 (BERT) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
158
+ page_content='596 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
159
+ page_content='522 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
160
+ page_content='556 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
161
+ page_content='628 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
162
+ page_content='622 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
163
+ page_content='625 2 (RoBERTa) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
164
+ page_content='540 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
165
+ page_content='676 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
166
+ page_content='600 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
167
+ page_content='577 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
168
+ page_content='810 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
169
+ page_content='674 3 (Distil BERT) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
170
+ page_content='563 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
171
+ page_content='604 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
172
+ page_content='583 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
173
+ page_content='610 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
174
+ page_content='760 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
175
+ page_content='677 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
176
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
177
+ page_content=' Runs Description of LETT Subtask Table 3 provides the experimental results of the proposed solutions on the development set for the LETT subtask.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
178
+ page_content=' Similar to RCTP, we used 70% samples of the development set for training, 20% for testing, and 10% samples for validation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
179
+ page_content=' A significant variation can be observed in the results of the models on the development set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
180
+ page_content=' Overall, better results are obtained for RoBerta with a significant improvement of 3% over the second-highest results obtained with the BERT model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
181
+ page_content=' Table 4 provides the official results for the LETT subtask.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
182
+ page_content=' In the experiments on the test set, the models are trained on the complete development set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
183
+ page_content=' We note that in the partial results the omitted samples are counted as false while in the partial results the omitted samples are completely ignored without any penalty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
184
+ page_content=' As can be seen in the table, overall, better results are obtained with Roberta and Distil BERT compared to the original implementation of the BERT model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
185
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
186
+ page_content=' Conclusions In this paper, we presented our solutions for the DisasterMM challenge posted in MediaEval 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
187
+ page_content=' For both subtasks, multiple state-of-the-art NLP algorithms are employed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
188
+ page_content=' In the current implementation, all the models are used individually, however, we believe these models can complement each other if jointly utilized in a merit-based fusion method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
189
+ page_content=' In the future, we aim to employ different merit-based fusion methods to jointly utilize the capabilities of the individual models in both subtasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
190
+ page_content=' References [1] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
191
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
192
+ page_content=' Nguyen, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
193
+ page_content=' Ofli, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
194
+ page_content=' Imran, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
195
+ page_content=' Mitra, Damage assessment from social media imagery data during disasters, in: Proceedings of international conference on advances in social networks analysis and mining 2017, 2017, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
196
+ page_content=' 569–576.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
197
+ page_content=' [2] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
198
+ page_content=' Said, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
199
+ page_content=' Ahmad, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
200
+ page_content=' Riegler, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
201
+ page_content=' Pogorelov, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
202
+ page_content=' Hassan, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
203
+ page_content=' Ahmad, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
204
+ page_content=' Conci, Natural disasters detection in social media and satellite imagery: a survey, Multimedia Tools and Applications 78 (2019) 31267–31302.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
205
+ page_content=' [3] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
206
+ page_content=' Andreadis, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
207
+ page_content=' Bozas, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
208
+ page_content=' Gialampoukidis, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
209
+ page_content=' Moumtzidou, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
210
+ page_content=' Fiorin, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
211
+ page_content=' Lombardo, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
212
+ page_content=' Mavropoulos, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
213
+ page_content=' Norbiato, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
214
+ page_content=' Vrochidis, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
215
+ page_content=' Ferri, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
216
+ page_content=' Kompatsiaris, DisasterMM: Multimedia Analysis of Disaster-Related Social Media Data Task at MediaEval 2022, in: Proceedings of the MediaEval 2022 Workshop, Bergen, Norway and Online, 2023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
217
+ page_content=' [4] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
218
+ page_content=' Ahmad, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
219
+ page_content=' Pogorelov, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
220
+ page_content=' Riegler, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
221
+ page_content=' Conci, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
222
+ page_content=' Halvorsen, Social media and satellites, Multimedia Tools and Applications 78 (2019) 2837–2875.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
223
+ page_content=' [5] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
224
+ page_content=' Alsmadi, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
225
+ page_content=' Ahmad, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
226
+ page_content=' Nazzal, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
227
+ page_content=' Alam, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
228
+ page_content=' Al-Fuqaha, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
229
+ page_content=' Khreishah, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
230
+ page_content=' Algosaibi, Adver- sarial nlp for social network applications: Attacks, defenses, and research directions, IEEE Transactions on Computational Social Systems (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
231
+ page_content=' [6] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
232
+ page_content=' Andreadis, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
233
+ page_content=' Antzoulatos, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
234
+ page_content=' Mavropoulos, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
235
+ page_content=' Giannakeris, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
236
+ page_content=' Tzionis, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
237
+ page_content=' Pantelidis, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
238
+ page_content=' Ioannidis, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
239
+ page_content=' Karakostas, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
240
+ page_content=' Gialampoukidis, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
241
+ page_content=' Vrochidis, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
242
+ page_content=', A social media analytics platform visualising the spread of covid-19 in italy via exploitation of automatically geotagged tweets, Online Social Networks and Media 23 (2021) 100134.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
243
+ page_content=' [7] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
244
+ page_content='-R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
245
+ page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
246
+ page_content=', The influence of information system success and technology acceptance model on social media factors in education, Sustainability 13 (2021) 7770.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
247
+ page_content=' [8] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
248
+ page_content=' Ahmad, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
249
+ page_content=' Ayub, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
250
+ page_content=' Khan, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
251
+ page_content=' Ahmad, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
252
+ page_content=' Al-Fuqaha, Social media as an instant source of feedback on water quality, IEEE Transactions on Technology and Society (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
253
+ page_content=' [9] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
254
+ page_content=' Hao, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
255
+ page_content=' Wang, Leveraging multimodal social media data for rapid disaster damage assessment, International Journal of Disaster Risk Reduction 51 (2020) 101760.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
256
+ page_content=' [10] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
257
+ page_content=' Wu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
258
+ page_content=' Cui, Disaster early warning and damage assessment analysis using social media data and geo-location information, Decision support systems 111 (2018) 48–59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
259
+ page_content=' [11] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
260
+ page_content=' Ahmad, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
261
+ page_content=' Pogorelov, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
262
+ page_content=' Riegler, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
263
+ page_content=' Ostroukhova, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
264
+ page_content=' Halvorsen, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
265
+ page_content=' Conci, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
266
+ page_content=' Dahyot, Automatic detection of passable roads after floods in remote sensed and social media data, Signal Processing: Image Communication 74 (2019) 110–118.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
267
+ page_content=' [12] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
268
+ page_content=' Alam, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
269
+ page_content=' Ofli, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
270
+ page_content=' Imran, Crisismmd: Multimodal twitter datasets from natural disasters, in: Twelfth international AAAI conference on web and social media, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
271
+ page_content=' [13] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
272
+ page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
273
+ page_content=' Hassan, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
274
+ page_content=' Ahmad, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
275
+ page_content=' Hicks, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
276
+ page_content=' Halvorsen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
277
+ page_content=' Al-Fuqaha, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
278
+ page_content=' Conci, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
279
+ page_content=' Riegler, Visual sentiment analysis from disaster images in social media, Sensors 22 (2022) 3628.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
280
+ page_content=' [14] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
281
+ page_content=' Devlin, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
282
+ page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
283
+ page_content=' Chang, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
284
+ page_content=' Lee, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
285
+ page_content=' Toutanova, Bert: Pre-training of deep bidirectional transformers for language understanding, arXiv preprint arXiv:1810.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
286
+ page_content='04805 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
287
+ page_content=' [15] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
288
+ page_content=' Liu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
289
+ page_content=' Ott, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
290
+ page_content=' Goyal, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
291
+ page_content=' Du, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
292
+ page_content=' Joshi, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
293
+ page_content=' Chen, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
294
+ page_content=' Levy, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
295
+ page_content=' Lewis, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
296
+ page_content=' Zettlemoyer, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
297
+ page_content=' Stoyanov, Roberta: A robustly optimized bert pretraining approach, arXiv preprint arXiv:1907.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
298
+ page_content='11692 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
299
+ page_content=' [16] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
300
+ page_content=' Sanh, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
301
+ page_content=' Debut, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
302
+ page_content=' Chaumond, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
303
+ page_content=' Wolf, Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter, arXiv preprint arXiv:1910.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
304
+ page_content='01108 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
305
+ page_content=' [17] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
306
+ page_content=' Lan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
307
+ page_content=' Chen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
308
+ page_content=' Goodman, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
309
+ page_content=' Gimpel, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
310
+ page_content=' Sharma, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
311
+ page_content=' Soricut, Albert: A lite bert for self-supervised learning of language representations, arXiv preprint arXiv:1909.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
312
+ page_content='11942 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
313
+ page_content=' [18] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
314
+ page_content=' Li, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
315
+ page_content=' Sun, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
316
+ page_content=' Han, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
317
+ page_content=' Li, A survey on deep learning for named entity recognition, IEEE Transactions on Knowledge and Data Engineering 34 (2020) 50–70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/C9AyT4oBgHgl3EQfefg9/content/2301.00321v1.pdf'}
CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0f6a54e0cd21e2566443a3848ccb854607427fe391733d64d098dec097a11cdc
3
+ size 705507
DNE1T4oBgHgl3EQf-AaO/content/tmp_files/2301.03563v1.pdf.txt ADDED
@@ -0,0 +1,522 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ AN IMPARTIAL TRANSFORMER FOR STORY VISUALIZATION
2
+ Nikolaos Tsakas
3
+ Maria Lymperaiou
4
+ Giorgos Filandrianos
5
+ Giorgos Stamou
6
+ National Technical University of Athens
7
+ ABSTRACT
8
+ Story Visualization is an advanced task of computed vision
9
+ that targets sequential image synthesis, where the generated
10
+ samples need to be realistic, faithful to their conditioning
11
+ and sequentially consistent. Our work proposes a novel ar-
12
+ chitectural and training approach: the Impartial Transformer
13
+ achieves both text-relevant plausible scenes and sequential
14
+ consistency utilizing as few trainable parameters as possi-
15
+ ble. This enhancement is even able to handle synthesis of
16
+ ’hard’ samples with occluded objects, achieving improved
17
+ evaluation metrics comparing to past approaches.
18
+ Index Terms— Story Visualization, GANs, Transformers
19
+ 1. INTRODUCTION
20
+ The emergence of GANs [1] has inspired several advance-
21
+ ments in image synthesis, one of the most prominent being
22
+ conditional image synthesis with the usage of cGANs [2].
23
+ Text-conditioned image generation has been a popular vari-
24
+ ant of the conditional case, displaying a long line of archi-
25
+ tectural exploration. Those topics stimulated the novel task
26
+ of Story Visualization (SV), where a visual story needs to be
27
+ generated conditioned on text or other semantic information.
28
+ The images need not only to correspond to their conditioning,
29
+ but also to remain consistent within the sequence, which re-
30
+ quires a global understanding of the story context. The basic
31
+ idea involves a GAN-based variant with one generator G and
32
+ two discriminators. The first discriminator (image discrimi-
33
+ nator Dim) focuses on text-image relevance, while the other
34
+ one (story discriminator Dst) ensures the overall sequential
35
+ coherence. The same task can be viewed as a sequence trans-
36
+ duction problem, a task widely explored with the usage of
37
+ recurrent neural networks (RNNs) and Transformers [3].
38
+ So far, SV has only received a few improvements, while
39
+ it faces scarcity of viable datasets and evaluation methods. To
40
+ this end, we propose a refined transformer-based approach,
41
+ where a simple and lightweight adjustment called Impartial
42
+ transformer is enough to resolve problems present in our pre-
43
+ decessors. A transformer encoder jointly trained from G and
44
+ Dim is employed to create an input representation, yielding
45
+ a resource-friendly scenario comparing to using separate en-
46
+ coders for each generative component or adding a plethora of
47
+ modules [4, 5] to achieve advanced results
48
+ 2. RELATED WORK
49
+ Generative Adversarial Networks (GANs) [1] are able to
50
+ synthesize high-quality images by initially receiving random
51
+ noise z ∼ pz in the input of G and are trained to gradually
52
+ improve the synthesized sample from receiving feedback re-
53
+ garding sample quality from D. Conditional GANs (cGANS)
54
+ also receive a conditioning vector y among with z to guide
55
+ synthesis towards certain areas of the target distribution. Ear-
56
+ lier works in conditional synthesis where y is in textual form
57
+ attempt to fully synthesize the final image in one step, re-
58
+ sulting in samples lacking in fidelity [6]. The first significant
59
+ improvements emerged with the introduction of StackGAN
60
+ [7] and its variants [8] which gradually upsample images up
61
+ to the final resolution. Further implementations target detail
62
+ refinement [9, 10] and improvements of text-image relevance
63
+ [11]. Proceeding to the sequential case, StoryGAN [12] intro-
64
+ duced the SV task utilizing RNNs for conditional encoding,
65
+ as well as the two-discriminator GAN architecture that later
66
+ variants follow [13, 14]. Only recently transformer-based ap-
67
+ proaches for conditional encoding emerged [4, 5] indicating
68
+ a new direction of research obeying to recent trends [3].
69
+ 3. METHOD
70
+ We propose an updated framework for the SV task based on
71
+ the emergence of transformer-based techniques for sequence
72
+ processing.
73
+ Primarily, we recommend the use of a trans-
74
+ former encoder [3] as a replacement for the RNN structure
75
+ of StoryGAN [12], focusing on its optimal training regime.
76
+ Fig. 1: The generator G network (T = 4 frames)
77
+ arXiv:2301.03563v1 [cs.CV] 9 Jan 2023
78
+
79
+ FullyConnected
80
+ Residual
81
+ Upsampling
82
+ Convolution 3x3
83
+ Attention
84
+ (optional)
85
+ Noise ~ Z
86
+ Embedding
87
+ CA
88
+ Output
89
+ Input
90
+ Transformer
91
+ Encoder
92
+ Sentence
93
+ Upsampling
94
+ Image3.1. Generator
95
+ The input to the generator G is a sequence of symbols st,
96
+ embedded by an encoder into vector representations φt, t ∈
97
+ [1, T] where T corresponds to the length of all stories. Fig. 1
98
+ depicts the basic G architecture.
99
+ We recommend using a conditioning augmentation (CA)
100
+ module, similar to [7]: Instead of conditioning the GAN on
101
+ an embedding of the input φt, a random vector ˆc is sampled
102
+ from a Gaussian distribution N(µ(φt, Σ(φt))) with the mean
103
+ µ(φt) and the diagonal covariance matrix Σ(φt) being func-
104
+ tions of the input embeddings. The vector ˆc serves as the
105
+ conditioning variable. CA promotes continuity in the data
106
+ manifold, and can be also used to map the dimension of φt to
107
+ its appropriate size. Training the parameters of this stochas-
108
+ tic process becomes possible using the reparametrization trick
109
+ [15], where a sample from a Gaussian distribution with arbi-
110
+ trary mean µ and covariance matrix σ can be produced as:
111
+ ˆc = µ + z ∗ σ, where z ∼ N(0, 1). In addition, to ensure the
112
+ smoothness of the manifold, the KL divergence between the
113
+ learned Gaussian distribution and the standard one is added
114
+ to the loss function of G as a regularization term, therefore
115
+ avoiding overfitting caused by collapsing to a single point or
116
+ by a distribution that deviates from the standard Gaussian [7]:
117
+ LossKL = DKL(N(µ(ϕt), Σ(ϕt))∥N(0, I))
118
+ The Transformer inputs ˆct are first added to positional en-
119
+ codings to properly influence transduction, and then context-
120
+ aware conditioning vectors ct are produced from the position
121
+ encoded inputs. The context-informed vectors ct are concate-
122
+ nated with Gaussian noise zt ∼ pz, where pz is the random
123
+ input prior z ∼ N(0, 1). This combined input is fed through a
124
+ fully connected (FC) layer, mapping each instance to dimen-
125
+ sion C × H × W, where H, W are the height and width of
126
+ the initial image channels to be upsampled, and C their chan-
127
+ nel number. This output mapping is rearranged in a tensor
128
+ It ∈ RC×H×W and fed through a set of residual upsampling
129
+ blocks, similar to [16]. The purpose of a residual block [17]
130
+ is to learn a mapping F(x) = H(x) − x where H(x) is the
131
+ actual desired mapping in the underlying distribution. The fi-
132
+ nal output is produced utilizing a skip connection such that
133
+ ˆH(x) = F(x) + x. In each upsampling block, the input im-
134
+ age features It are normalized via Batch Normalization [18]
135
+ and passed through a ReLU activation. Then, both spatial di-
136
+ mensions are doubled via nearest-neighbor upsampling, and
137
+ a convolutional filter is applied to transform image features,
138
+ while halving the channel dimension to mitigate computa-
139
+ tional complexity as the image planes get larger. The tensor
140
+ is again normalized and passed through a ReLU activation as
141
+ well as a final convolutional filter. In order to match the spa-
142
+ tial input and output dimensions we perform a minimal trans-
143
+ form on the skip connection, using nearest-neighbor upsam-
144
+ pling and passing through a learned 1 × 1 convolutional filter.
145
+ After feature upsampling to the desired dimension H × W, a
146
+ Fig. 2: Image discriminator Dim (T = 4 frames)
147
+ final 3 × 3 convolution layer is used to produce a 3-channel
148
+ image, followed by a tanh activation to remap pixel values
149
+ into [−1, 1]. We also use Spectral Normalization to further
150
+ stabilize the training process. The entire image sequence can
151
+ be generated in parallel, greatly improving training efficiency.
152
+ 3.2. Image Discriminator
153
+ The image discriminator Dim (Fig. 2) is tasked to discern
154
+ between real and generated images individually. To that end,
155
+ Dim utilizes the input features φt of each individual sentence
156
+ corresponding to a story frame, the context, and the image
157
+ It itself to be evaluated. The context is important for Dim,
158
+ because each frame in a story depends on the rest to form
159
+ many of its details. Each image to be evaluated is passed
160
+ through a series of residual downsampling blocks. Image fea-
161
+ tures from each layer are first passed through a Leaky ReLU,
162
+ then from a spectrally normalized convolutional layer, remap-
163
+ ping the C × H × W tensor to double the channels. Af-
164
+ ter another Leaky ReLU, a spectrally normalized strided con-
165
+ volution layer downsamples the image features. We prefer
166
+ this option over a pooling layer due to the inferences made
167
+ by Radford et.
168
+ al in [19].
169
+ All images are evaluated in a
170
+ batch to take advantage of the Transformer’s parallel process-
171
+ ing. Dropout in all Dim residual blocks is proven beneficial,
172
+ to prevent overfitting and overt coupling of individual layer
173
+ units. To produce an output scalar, each vector of dimension
174
+ dmodel given by the encoder is spatially replicated to create a
175
+ dmodel ×H ×W tensor that is then concatenated with the im-
176
+ age features along the channel axis. These features are passed
177
+ through a residual block to jointly learn from image and text
178
+ features. A final FC layer mapping features to a single scalar
179
+ leads to a sigmoid activation function, ultimately producing a
180
+ probability Dim(It) ∈ [0, 1].
181
+ 3.3. Story Discriminator
182
+ The story discriminator Dst (Fig. 3) enforces consistency
183
+ and meaningful progression along the image sequence I =
184
+ (I1, ..., IT ) by jointly learning a common feature space for
185
+ text and images. The image features are downsampled using
186
+ similar residual blocks as in Dim. All image features for the
187
+
188
+ Input
189
+ Embedding
190
+ Transformer
191
+ Spatial replication
192
+ indino
193
+ Spatially
194
+ Sentence
195
+ replicated
196
+ Residual Block
197
+ Fully Conncected
198
+ Repeat
199
+ text features
200
+ dmodel × H × W
201
+ Scalar
202
+ Image
203
+ Image
204
+ (real/fake)
205
+ Downsampling
206
+ features
207
+ C xH xW
208
+ (2C) × (H/2) × (W/2)
209
+ Input
210
+ Residual
211
+ Downsampling
212
+ Attention
213
+ (optional)Fig. 3: Story discriminator Dst (T = 4 frames)
214
+ same story are concatenated into a single storyboard vector.
215
+ On the text side, a FC layer maps all sentence embeddings
216
+ S = (φ1, ..., φT ) to vectors in this shared space, also concate-
217
+ nated into one big text feature vector. The two story-wide vec-
218
+ tors are then multiplied elementwise and the result is passed
219
+ through a FC layer to output a scalar similarity score Dst.
220
+ 3.4. Training
221
+ Training requires minimizing Lim, Lst, LG:
222
+ Lim =
223
+ T
224
+
225
+ t=1
226
+ (E(it,ϕt)[logDim(it, ϕt, h0; ψI)]+
227
+ E(zt,ϕt)[log(1 − Dim(G(zt, ϕt; θ), ϕt, h0; ψI))]),
228
+ Lst = E(I,S)[logDst(I, S; ψS)]+
229
+ Eϵ,S[log(1 − Dst([G(zt, ϕt; θ)]T
230
+ t=1), S; ψS))],
231
+ LG = E(zt,ϕt)[log(Dim(G(zt, ϕt; θ), ϕt, h0; ψI))]+
232
+ Eϵ,S[log(Dst([G(zt, ϕt; θ)]T
233
+ t=1), S; ψS))] + LossKL
234
+ where zt ∼ pz, and h0 serves as story embedding. The alter-
235
+ native formulation following [1] is employed for G to provide
236
+ sufficient gradients. We also use the matching aware discrim-
237
+ inator criterion as in [20]. One-sided label smoothing is uti-
238
+ lized by setting positive labels to 0.9 instead of 1.0 to avoid
239
+ the pitfalls of regular label smoothing [21].
240
+ 4. EXPERIMENTS
241
+ We present results on CLEVR-SV [22], focusing on cases
242
+ where objects may not be clearly separated or even occluded.
243
+ This issue, despite its significance, was not addressed in prior
244
+ work. For all experiments, Adam optimizer [23] is used for
245
+ gradient descent with β1 = 0.5 and β2 = 0.999. After exten-
246
+ sive hyperparameter tuning we present results on the original
247
+ Transformer with dmodel = 512, Nheads = 8, Nlayers = 6.
248
+ 4.1. Impartial Transformer Encoder
249
+ We explore the option of utilizing one Impartial transformer
250
+ encoder, whose parameters are updated jointly by G and
251
+ Dim. We hypothesize such an encoder would learn a task-
252
+ conducive representation for embedding sequences by simply
253
+ encoding necessary context without giving an advantage to
254
+ either adversary. We further attempted to train the encoder to
255
+ also receive gradients from the Dst, but found this addition to
256
+ be confusing the encoder, to the point of learning completely
257
+ mismatched representations of the context space.
258
+ 4.2. Learning rate schemes
259
+ Motivated by the Two Time-scale Update Rule [24], we at-
260
+ tempt to find an optimal learning rate scheme for the three
261
+ networks while maintaining a 1/1/1 update ratio for more ef-
262
+ ficient training, thus proposing a Three Time-scale Update
263
+ Rule. After 20 epochs, the learning rates are halved based on
264
+ a typical scheduling scheme. We observe that when G learns
265
+ faster than the discriminators, the whole model suffers from
266
+ mode collapse: G easily fools both discriminators early on,
267
+ leading training to a stalemate since the discriminators can-
268
+ not produce any meaningful gradients to guide generation.
269
+ When maintaining a low learning rate for G, increasing the
270
+ Dim learning rate proves to lead G into creating images that
271
+ correspond better to the conditioning. G is faster in learning
272
+ the correct matching for color and shape between image and
273
+ description vector, as well as learning to produce more con-
274
+ crete shape features, at least for large objects. When increas-
275
+ ing the learning rate of Dst, we immediately observe greater
276
+ consistency across images. Lower learning rates also seem
277
+ to affect text-image matching, with G creating images with
278
+ wrong color, shape and size more frequently. We thus argue
279
+ that it is beneficial for the two discriminators to learn about 4
280
+ times as fast as G. Specifically, we find lrG = 0.0001, lrDim
281
+ = 0.0004, lrDst = 0.0004 to be optimal, as higher learning
282
+ rates proved to be too fast for convergence.
283
+ 4.3. Warmup Scheduler
284
+ We experiment with decaying the learning rate by halving it
285
+ every 20 epochs. The original Transformer [3] recommends
286
+ a specific learning rate scheduling scheme to be used along
287
+ with the Adam optimizer: The learning rate should first be
288
+ increased linearly for a number of warmup steps and then de-
289
+ creased proportionally to the inverse square root of the num-
290
+ ber of total steps, where one step is considered to be a sin-
291
+ gle batch of data passing through the network. We observe
292
+ that the scheduler fails to train the context encoder, result-
293
+ ing in mostly nonsensical representations. We presume this is
294
+ because the recommended optimizer only takes into account
295
+ dmodel and the number of warmup steps, forcing the learning
296
+ rate to generally remain much higher than what the learning
297
+ rates of the Adam optimizer in regular decay are, preventing
298
+ network from convergence.
299
+ 4.4. Results
300
+ Visual results including ablations are presented in Fig 4, while
301
+ comparison over easy and hard examples are presented in Fig.
302
+ 5. There is an obvious improvement over StoryGAN [12],
303
+ which fails to generate the proper sequence, and also lacks in
304
+
305
+ Input
306
+ Embedding
307
+ FC
308
+ Text
309
+ Vector
310
+ Fully Connected
311
+ Sentence
312
+ FC
313
+ Input
314
+ Elementwise
315
+ FC
316
+ Scalar
317
+ product
318
+ Image
319
+ Vector
320
+ Output
321
+ Image
322
+ Downsampling(a) Left: Ground truth (T=4). Middle: StoryGAN generated frames, low relevance and object quality. Right: Ours, baseline.
323
+ (b) Our results without attention. Left: Separate Transformer Encoder for G, Dim, Dst, low object relevance. Middle: Impartial
324
+ Encoder (G and Dim gradients). Right: Impartial encoder (all G, Dim, Dst gradients), mode collapse.
325
+ Fig. 4: Ablation studies of our framework indicate the power of the Impartial Transformer (G and Dim gradients).
326
+ Fig. 5: (a) 1st row ground truth, (b) 2nd row generated frames (ours-Impartial Transformer), (c) 3rd row generated frames
327
+ (storyGAN) of 3 stories with T=4. From left to right (every 4 images) difficulty of stories increases due to object occlusion.
328
+ fidelity. The second row of Fig. 4 indicates the optimal usage
329
+ of the Impartial transformer. Even though our implementa-
330
+ tion presents satisfactory results when objects are placed in a
331
+ distance from each other (Fig 5, left), in cases when objects
332
+ are adjacent or overlap, there are some sacrifices to be made:
333
+ either semantics -especially shape and material- are not dis-
334
+ tinct enough (Fig 5, middle), or objects are ’swallowed’ by
335
+ their neighbors (Fig 5, right), which results in low quality se-
336
+ mantics. The results of human evaluation experiments over
337
+ preference are presented in Table 1. Results using automated
338
+ metrics are presented in Table 2. Our framework clearly out-
339
+ performs prior efforts [12, 4, 5] according to Clean-FID [25],
340
+ LPIPS [26] and SSIM. We mainly focus on LPIPS metric for
341
+ comparison that reflects human perception, where we achieve
342
+ 16% improvement over prior approaches [12, 4, 5].
343
+ Table 1: Human Evaluation preference (averaged results),
344
+ Win% = % times our output stories were preferred over [12],
345
+ Lose% for vice-versa, Tie% when equally preferred.
346
+ Attribute
347
+ Win%
348
+ Loose%
349
+ Tie%
350
+ Visual Quality
351
+ 25
352
+ 20
353
+ 55
354
+ Consistency
355
+ 37
356
+ 32
357
+ 31
358
+ Relevance
359
+ 32
360
+ 30
361
+ 38
362
+ Table 2: Average evaluation metrics.
363
+ Frame FID↓
364
+ Clean-
365
+ FID↓
366
+ LPIPS↓
367
+ SSIM↑
368
+ 1st
369
+ 32.94 ± 7.85
370
+ 111.20
371
+ 0.18 ± 0.06
372
+ 0.81
373
+ 2nd
374
+ 37.41 ± 6.67
375
+ 110.80
376
+ 0.19 ± 0.05
377
+ 0.73
378
+ 3rd
379
+ 47.41 ± 15.83
380
+ 106.69
381
+ 0.23 ± 0.05
382
+ 0.68
383
+ 4th
384
+ 48.41 ± 3.84
385
+ 133.15
386
+ 0.25 ± 0.05
387
+ 0.62
388
+ All
389
+ 41.54 ± 8.55
390
+ 115.46
391
+ 0.21 ± 0.05
392
+ 0.71
393
+ [12]
394
+ 41.45 ± 6.25
395
+ 123.40
396
+ 0.25 ± 0.03
397
+ 0.65
398
+ [5]
399
+ 41.96 ± 9.66
400
+ 124.97
401
+ 0.25 ± 0.08
402
+ 0.67
403
+ [4]
404
+ 41.80 ± 8.81
405
+ 122.62
406
+ 0.25 ± 0.05
407
+ 0.68
408
+ ’All’ refers to global results of the Impartial Transformer and is compare
409
+ with the global results of [12], [5], [4]. Results from [5], [4] are obtained by
410
+ re-training on CLEVR-SV.
411
+ 5. CONCLUSION
412
+ In this work, we developed a transformer-inspired framework
413
+ for story visualization, aiming to set a new baseline in litera-
414
+ ture by achieving improvements according to perceptual met-
415
+ rics. The usage of the Impartial Transformer demonstrated
416
+ promising directions for the evolution of generative models
417
+ in the same track, as few -if any- current implementations ex-
418
+ ploit a ’forking’ module jointly trained by two adversaries.
419
+ As future work we plan to explore the evaluation part of SV.
420
+
421
+ 6. REFERENCES
422
+ [1] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
423
+ Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
424
+ Courville, and Yoshua Bengio, “Generative adversarial
425
+ nets,” in NeurIPS, 2014.
426
+ [2] Augustus Odena,
427
+ Christopher Olah,
428
+ and Jonathon
429
+ Shlens,
430
+ “Conditional image synthesis with auxiliary
431
+ classifier gans,” 2017.
432
+ [3] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
433
+ Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
434
+ Kaiser, and Illia Polosukhin, “Attention is all you need,”
435
+ in NeurIPS, 2017.
436
+ [4] Adyasha Maharana, Darryl Hannan, and Mohit Bansal,
437
+ “Improving generation and evaluation of visual stories
438
+ via semantic consistency,” ArXiv, vol. abs/2105.10026,
439
+ 2021.
440
+ [5] Adyasha Maharana and Mohit Bansal, “Integrating vi-
441
+ suospatial, linguistic, and commonsense structure into
442
+ story visualization,” ArXiv, vol. abs/2110.10834, 2021.
443
+ [6] Scott E. Reed, Zeynep Akata, Xinchen Yan, Lajanugen
444
+ Logeswaran, Bernt Schiele, and Honglak Lee, “Gener-
445
+ ative adversarial text to image synthesis,” CoRR, vol.
446
+ abs/1605.05396, 2016.
447
+ [7] Han Zhang, Tao Xu, and Hongsheng Li,
448
+ “Stackgan:
449
+ Text to photo-realistic image synthesis with stacked gen-
450
+ erative adversarial networks,” in ICCV, 2017.
451
+ [8] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang,
452
+ Xiaogang Wang, Xiaolei Huang, and Dimitris Metaxas,
453
+ “Stackgan++: Realistic image synthesis with stacked
454
+ generative adversarial networks,” 2018.
455
+ [9] Tao Xu, Pengchuan Zhang, Qiuyuan Huang, Han
456
+ Zhang, Zhe Gan, Xiaolei Huang, and Xiaodong He, “At-
457
+ tngan: Fine-grained text to image generation with atten-
458
+ tional generative adversarial networks,” in CVPR 2018.
459
+ [10] Minfeng Zhu, Pingbo Pan, Wei Chen, and Yi Yang,
460
+ “DM-GAN: dynamic memory generative adversarial
461
+ networks for text-to-image synthesis,”
462
+ CoRR, vol.
463
+ abs/1904.01310, 2019.
464
+ [11] Hongchen Tan, Xiuping Liu, Xin Li, Yi Zhang, and Bao-
465
+ cai Yin, “Semantics-enhanced adversarial nets for text-
466
+ to-image synthesis,” in ICCV, 2019.
467
+ [12] Yitong Li, Zhe Gan, Yelong Shen, Jingjing Liu,
468
+ Yu Cheng, Yuexin Wu, Lawrence Carin, David Edwin
469
+ Carlson, and Jianfeng Gao,
470
+ “Storygan: A sequential
471
+ conditional gan for story visualization,” CVPR, 2019.
472
+ [13] Gangyan Zeng, Zhaohui Li, and Yuan Zhang, “Pororo-
473
+ gan: An improved story visualization model on pororo-
474
+ sv dataset,” CSAI2019, 2019, ACM.
475
+ [14] Chunye Li, Liya Kong, and Zhiping Zhou, “Improved-
476
+ storygan for sequential images visualization,” Journal
477
+ of Visual Communication and Image Representation,
478
+ 2020.
479
+ [15] Diederik P Kingma and Max Welling, “Auto-encoding
480
+ variational bayes,” 2014.
481
+ [16] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Au-
482
+ gustus Odena,
483
+ “Self-attention generative adversarial
484
+ networks,” 2018.
485
+ [17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
486
+ Sun, “Deep residual learning for image recognition,” in
487
+ CVPR, 2016.
488
+ [18] Sergey Ioffe and Christian Szegedy, “Batch normaliza-
489
+ tion: Accelerating deep network training by reducing
490
+ internal covariate shift,” 2015.
491
+ [19] Alec Radford, Luke Metz, and Soumith Chintala, “Un-
492
+ supervised representation learning with deep convolu-
493
+ tional generative adversarial networks,” 2016.
494
+ [20] Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Lo-
495
+ geswaran, Bernt Schiele, and Honglak Lee, “Generative
496
+ adversarial text to image synthesis,” in ICML, 2016.
497
+ [21] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
498
+ Jonathon Shlens, and Zbigniew Wojna,
499
+ “Rethinking
500
+ the inception architecture for computer vision,” CVPR,
501
+ 2016.
502
+ [22] Justin Johnson, Bharath Hariharan, Laurens van der
503
+ Maaten, Li Fei-Fei, C. Lawrence Zitnick, and Ross B.
504
+ Girshick,
505
+ “Clevr:
506
+ A diagnostic dataset for com-
507
+ positional language and elementary visual reasoning,”
508
+ CVPR, 2017.
509
+ [23] Diederik Kingma and Jimmy Ba, “Adam: A method for
510
+ stochastic optimization,” ICLR, 2014.
511
+ [24] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
512
+ Bernhard Nessler, and Sepp Hochreiter, “Gans trained
513
+ by a two time-scale update rule converge to a local nash
514
+ equilibrium,” 2017.
515
+ [25] Gaurav Parmar, Richard Zhang, and Jun-Yan Zhu, “On
516
+ aliased resizing and surprising subtleties in gan evalua-
517
+ tion,” in CVPR, 2022.
518
+ [26] Richard Zhang, Phillip Isola, Alexei A Efros, Eli
519
+ Shechtman, and Oliver Wang, “The unreasonable ef-
520
+ fectiveness of deep features as a perceptual metric,” in
521
+ CVPR, 2018.
522
+
DNE1T4oBgHgl3EQf-AaO/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,254 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf,len=253
2
+ page_content='AN IMPARTIAL TRANSFORMER FOR STORY VISUALIZATION Nikolaos Tsakas Maria Lymperaiou Giorgos Filandrianos Giorgos Stamou National Technical University of Athens ABSTRACT Story Visualization is an advanced task of computed vision that targets sequential image synthesis, where the generated samples need to be realistic, faithful to their conditioning and sequentially consistent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
3
+ page_content=' Our work proposes a novel ar- chitectural and training approach: the Impartial Transformer achieves both text-relevant plausible scenes and sequential consistency utilizing as few trainable parameters as possi- ble.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
4
+ page_content=' This enhancement is even able to handle synthesis of ’hard’ samples with occluded objects, achieving improved evaluation metrics comparing to past approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
5
+ page_content=' Index Terms— Story Visualization, GANs, Transformers 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
6
+ page_content=' INTRODUCTION The emergence of GANs [1] has inspired several advance- ments in image synthesis, one of the most prominent being conditional image synthesis with the usage of cGANs [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
7
+ page_content=' Text-conditioned image generation has been a popular vari- ant of the conditional case, displaying a long line of archi- tectural exploration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
8
+ page_content=' Those topics stimulated the novel task of Story Visualization (SV), where a visual story needs to be generated conditioned on text or other semantic information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
9
+ page_content=' The images need not only to correspond to their conditioning, but also to remain consistent within the sequence, which re- quires a global understanding of the story context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
10
+ page_content=' The basic idea involves a GAN-based variant with one generator G and two discriminators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
11
+ page_content=' The first discriminator (image discrimi- nator Dim) focuses on text-image relevance, while the other one (story discriminator Dst) ensures the overall sequential coherence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
12
+ page_content=' The same task can be viewed as a sequence trans- duction problem, a task widely explored with the usage of recurrent neural networks (RNNs) and Transformers [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
13
+ page_content=' So far, SV has only received a few improvements, while it faces scarcity of viable datasets and evaluation methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
14
+ page_content=' To this end, we propose a refined transformer-based approach, where a simple and lightweight adjustment called Impartial transformer is enough to resolve problems present in our pre- decessors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
15
+ page_content=' A transformer encoder jointly trained from G and Dim is employed to create an input representation, yielding a resource-friendly scenario comparing to using separate en- coders for each generative component or adding a plethora of modules [4, 5] to achieve advanced results 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
16
+ page_content=' RELATED WORK Generative Adversarial Networks (GANs) [1] are able to synthesize high-quality images by initially receiving random noise z ∼ pz in the input of G and are trained to gradually improve the synthesized sample from receiving feedback re- garding sample quality from D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
17
+ page_content=' Conditional GANs (cGANS) also receive a conditioning vector y among with z to guide synthesis towards certain areas of the target distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
18
+ page_content=' Ear- lier works in conditional synthesis where y is in textual form attempt to fully synthesize the final image in one step, re- sulting in samples lacking in fidelity [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
19
+ page_content=' The first significant improvements emerged with the introduction of StackGAN [7] and its variants [8] which gradually upsample images up to the final resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
20
+ page_content=' Further implementations target detail refinement [9, 10] and improvements of text-image relevance [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
21
+ page_content=' Proceeding to the sequential case, StoryGAN [12] intro- duced the SV task utilizing RNNs for conditional encoding, as well as the two-discriminator GAN architecture that later variants follow [13, 14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
22
+ page_content=' Only recently transformer-based ap- proaches for conditional encoding emerged [4, 5] indicating a new direction of research obeying to recent trends [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
23
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
24
+ page_content=' METHOD We propose an updated framework for the SV task based on the emergence of transformer-based techniques for sequence processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
25
+ page_content=' Primarily, we recommend the use of a trans- former encoder [3] as a replacement for the RNN structure of StoryGAN [12], focusing on its optimal training regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
26
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
27
+ page_content=' 1: The generator G network (T = 4 frames) arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
28
+ page_content='03563v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
29
+ page_content='CV] 9 Jan 2023 FullyConnected Residual Upsampling Convolution 3x3 Attention (optional) Noise ~ Z Embedding CA Output Input Transformer Encoder Sentence Upsampling Image3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
30
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
31
+ page_content=' Generator The input to the generator G is a sequence of symbols st, embedded by an encoder into vector representations φt, t ∈ [1, T] where T corresponds to the length of all stories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
32
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
33
+ page_content=' 1 depicts the basic G architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
34
+ page_content=' We recommend using a conditioning augmentation (CA) module, similar to [7]: Instead of conditioning the GAN on an embedding of the input φt, a random vector ˆc is sampled from a Gaussian distribution N(µ(φt, Σ(φt))) with the mean µ(φt) and the diagonal covariance matrix Σ(φt) being func- tions of the input embeddings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
35
+ page_content=' The vector ˆc serves as the conditioning variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
36
+ page_content=' CA promotes continuity in the data manifold, and can be also used to map the dimension of φt to its appropriate size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
37
+ page_content=' Training the parameters of this stochas- tic process becomes possible using the reparametrization trick [15], where a sample from a Gaussian distribution with arbi- trary mean µ and covariance matrix σ can be produced as: ˆc = µ + z ∗ σ, where z ∼ N(0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
38
+ page_content=' In addition,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
39
+ page_content=' to ensure the smoothness of the manifold,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
40
+ page_content=' the KL divergence between the learned Gaussian distribution and the standard one is added to the loss function of G as a regularization term,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
41
+ page_content=' therefore avoiding overfitting caused by collapsing to a single point or by a distribution that deviates from the standard Gaussian [7]: LossKL = DKL(N(µ(ϕt),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
42
+ page_content=' Σ(ϕt))∥N(0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
43
+ page_content=' I)) The Transformer inputs ˆct are first added to positional en- codings to properly influence transduction,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
44
+ page_content=' and then context- aware conditioning vectors ct are produced from the position encoded inputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
45
+ page_content=' The context-informed vectors ct are concate- nated with Gaussian noise zt ∼ pz, where pz is the random input prior z ∼ N(0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
46
+ page_content=' This combined input is fed through a fully connected (FC) layer, mapping each instance to dimen- sion C × H × W, where H, W are the height and width of the initial image channels to be upsampled, and C their chan- nel number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
47
+ page_content=' This output mapping is rearranged in a tensor It ∈ RC×H×W and fed through a set of residual upsampling blocks, similar to [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
48
+ page_content=' The purpose of a residual block [17] is to learn a mapping F(x) = H(x) − x where H(x) is the actual desired mapping in the underlying distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
49
+ page_content=' The fi- nal output is produced utilizing a skip connection such that ˆH(x) = F(x) + x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
50
+ page_content=' In each upsampling block, the input im- age features It are normalized via Batch Normalization [18] and passed through a ReLU activation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
51
+ page_content=' Then, both spatial di- mensions are doubled via nearest-neighbor upsampling, and a convolutional filter is applied to transform image features, while halving the channel dimension to mitigate computa- tional complexity as the image planes get larger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
52
+ page_content=' The tensor is again normalized and passed through a ReLU activation as well as a final convolutional filter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
53
+ page_content=' In order to match the spa- tial input and output dimensions we perform a minimal trans- form on the skip connection, using nearest-neighbor upsam- pling and passing through a learned 1 × 1 convolutional filter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
54
+ page_content=' After feature upsampling to the desired dimension H × W, a Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
55
+ page_content=' 2: Image discriminator Dim (T = 4 frames) final 3 × 3 convolution layer is used to produce a 3-channel image, followed by a tanh activation to remap pixel values into [−1, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
56
+ page_content=' We also use Spectral Normalization to further stabilize the training process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
57
+ page_content=' The entire image sequence can be generated in parallel, greatly improving training efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
58
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
59
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
60
+ page_content=' Image Discriminator The image discriminator Dim (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
61
+ page_content=' 2) is tasked to discern between real and generated images individually.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
62
+ page_content=' To that end, Dim utilizes the input features φt of each individual sentence corresponding to a story frame, the context, and the image It itself to be evaluated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
63
+ page_content=' The context is important for Dim, because each frame in a story depends on the rest to form many of its details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
64
+ page_content=' Each image to be evaluated is passed through a series of residual downsampling blocks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
65
+ page_content=' Image fea- tures from each layer are first passed through a Leaky ReLU, then from a spectrally normalized convolutional layer, remap- ping the C × H × W tensor to double the channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
66
+ page_content=' Af- ter another Leaky ReLU, a spectrally normalized strided con- volution layer downsamples the image features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
67
+ page_content=' We prefer this option over a pooling layer due to the inferences made by Radford et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
68
+ page_content=' al in [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
69
+ page_content=' All images are evaluated in a batch to take advantage of the Transformer’s parallel process- ing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
70
+ page_content=' Dropout in all Dim residual blocks is proven beneficial, to prevent overfitting and overt coupling of individual layer units.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
71
+ page_content=' To produce an output scalar, each vector of dimension dmodel given by the encoder is spatially replicated to create a dmodel ×H ×W tensor that is then concatenated with the im- age features along the channel axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
72
+ page_content=' These features are passed through a residual block to jointly learn from image and text features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
73
+ page_content=' A final FC layer mapping features to a single scalar leads to a sigmoid activation function, ultimately producing a probability Dim(It) ∈ [0, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
74
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
75
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
76
+ page_content=' Story Discriminator The story discriminator Dst (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
77
+ page_content=' 3) enforces consistency and meaningful progression along the image sequence I = (I1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
78
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
79
+ page_content=', IT ) by jointly learning a common feature space for text and images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
80
+ page_content=' The image features are downsampled using similar residual blocks as in Dim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
81
+ page_content=' All image features for the Input Embedding Transformer Spatial replication indino Spatially Sentence replicated Residual Block Fully Conncected Repeat text features dmodel × H × W Scalar Image Image (real/fake) Downsampling features C xH xW (2C) × (H/2) × (W/2) Input Residual Downsampling Attention (optional)Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
82
+ page_content=' 3: Story discriminator Dst (T = 4 frames) same story are concatenated into a single storyboard vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
83
+ page_content=' On the text side, a FC layer maps all sentence embeddings S = (φ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
84
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
85
+ page_content=', φT ) to vectors in this shared space, also concate- nated into one big text feature vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
86
+ page_content=' The two story-wide vec- tors are then multiplied elementwise and the result is passed through a FC layer to output a scalar similarity score Dst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
87
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
88
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
89
+ page_content=' Training Training requires minimizing Lim, Lst, LG: Lim = T � t=1 (E(it,ϕt)[logDim(it, ϕt, h0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
90
+ page_content=' ψI)]+ E(zt,ϕt)[log(1 − Dim(G(zt, ϕt;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
91
+ page_content=' θ), ϕt, h0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
92
+ page_content=' ψI))]), Lst = E(I,S)[logDst(I, S;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
93
+ page_content=' ψS)]+ Eϵ,S[log(1 − Dst([G(zt, ϕt;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
94
+ page_content=' θ)]T t=1), S;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
95
+ page_content=' ψS))], LG = E(zt,ϕt)[log(Dim(G(zt, ϕt;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
96
+ page_content=' θ), ϕt, h0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
97
+ page_content=' ψI))]+ Eϵ,S[log(Dst([G(zt, ϕt;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
98
+ page_content=' θ)]T t=1), S;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
99
+ page_content=' ψS))] + LossKL where zt ∼ pz, and h0 serves as story embedding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
100
+ page_content=' The alter- native formulation following [1] is employed for G to provide sufficient gradients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
101
+ page_content=' We also use the matching aware discrim- inator criterion as in [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
102
+ page_content=' One-sided label smoothing is uti- lized by setting positive labels to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
103
+ page_content='9 instead of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
104
+ page_content='0 to avoid the pitfalls of regular label smoothing [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
105
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
106
+ page_content=' EXPERIMENTS We present results on CLEVR-SV [22], focusing on cases where objects may not be clearly separated or even occluded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
107
+ page_content=' This issue, despite its significance, was not addressed in prior work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
108
+ page_content=' For all experiments, Adam optimizer [23] is used for gradient descent with β1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
109
+ page_content='5 and β2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
110
+ page_content='999.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
111
+ page_content=' After exten- sive hyperparameter tuning we present results on the original Transformer with dmodel = 512, Nheads = 8, Nlayers = 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
112
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
113
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
114
+ page_content=' Impartial Transformer Encoder We explore the option of utilizing one Impartial transformer encoder, whose parameters are updated jointly by G and Dim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
115
+ page_content=' We hypothesize such an encoder would learn a task- conducive representation for embedding sequences by simply encoding necessary context without giving an advantage to either adversary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
116
+ page_content=' We further attempted to train the encoder to also receive gradients from the Dst, but found this addition to be confusing the encoder, to the point of learning completely mismatched representations of the context space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
117
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
118
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
119
+ page_content=' Learning rate schemes Motivated by the Two Time-scale Update Rule [24], we at- tempt to find an optimal learning rate scheme for the three networks while maintaining a 1/1/1 update ratio for more ef- ficient training, thus proposing a Three Time-scale Update Rule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
120
+ page_content=' After 20 epochs, the learning rates are halved based on a typical scheduling scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
121
+ page_content=' We observe that when G learns faster than the discriminators, the whole model suffers from mode collapse: G easily fools both discriminators early on, leading training to a stalemate since the discriminators can- not produce any meaningful gradients to guide generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
122
+ page_content=' When maintaining a low learning rate for G, increasing the Dim learning rate proves to lead G into creating images that correspond better to the conditioning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
123
+ page_content=' G is faster in learning the correct matching for color and shape between image and description vector, as well as learning to produce more con- crete shape features, at least for large objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
124
+ page_content=' When increas- ing the learning rate of Dst, we immediately observe greater consistency across images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
125
+ page_content=' Lower learning rates also seem to affect text-image matching, with G creating images with wrong color, shape and size more frequently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
126
+ page_content=' We thus argue that it is beneficial for the two discriminators to learn about 4 times as fast as G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
127
+ page_content=' Specifically, we find lrG = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
128
+ page_content='0001, lrDim = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
129
+ page_content='0004, lrDst = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
130
+ page_content='0004 to be optimal, as higher learning rates proved to be too fast for convergence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
131
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
132
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
133
+ page_content=' Warmup Scheduler We experiment with decaying the learning rate by halving it every 20 epochs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
134
+ page_content=' The original Transformer [3] recommends a specific learning rate scheduling scheme to be used along with the Adam optimizer: The learning rate should first be increased linearly for a number of warmup steps and then de- creased proportionally to the inverse square root of the num- ber of total steps, where one step is considered to be a sin- gle batch of data passing through the network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
135
+ page_content=' We observe that the scheduler fails to train the context encoder, result- ing in mostly nonsensical representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
136
+ page_content=' We presume this is because the recommended optimizer only takes into account dmodel and the number of warmup steps, forcing the learning rate to generally remain much higher than what the learning rates of the Adam optimizer in regular decay are, preventing network from convergence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
137
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
138
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
139
+ page_content=' Results Visual results including ablations are presented in Fig 4, while comparison over easy and hard examples are presented in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
140
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
141
+ page_content=' There is an obvious improvement over StoryGAN [12], which fails to generate the proper sequence, and also lacks in Input Embedding FC Text Vector Fully Connected Sentence FC Input Elementwise FC Scalar product Image Vector Output Image Downsampling(a) Left: Ground truth (T=4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
142
+ page_content=' Middle: StoryGAN generated frames, low relevance and object quality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
143
+ page_content=' Right: Ours, baseline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
144
+ page_content=' (b) Our results without attention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
145
+ page_content=' Left: Separate Transformer Encoder for G, Dim, Dst, low object relevance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
146
+ page_content=' Middle: Impartial Encoder (G and Dim gradients).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
147
+ page_content=' Right: Impartial encoder (all G, Dim, Dst gradients), mode collapse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
148
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
149
+ page_content=' 4: Ablation studies of our framework indicate the power of the Impartial Transformer (G and Dim gradients).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
150
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
151
+ page_content=' 5: (a) 1st row ground truth, (b) 2nd row generated frames (ours-Impartial Transformer), (c) 3rd row generated frames (storyGAN) of 3 stories with T=4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
152
+ page_content=' From left to right (every 4 images) difficulty of stories increases due to object occlusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
153
+ page_content=' fidelity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
154
+ page_content=' The second row of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
155
+ page_content=' 4 indicates the optimal usage of the Impartial transformer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
156
+ page_content=' Even though our implementa- tion presents satisfactory results when objects are placed in a distance from each other (Fig 5, left), in cases when objects are adjacent or overlap, there are some sacrifices to be made: either semantics -especially shape and material- are not dis- tinct enough (Fig 5, middle), or objects are ’swallowed’ by their neighbors (Fig 5, right), which results in low quality se- mantics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
157
+ page_content=' The results of human evaluation experiments over preference are presented in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
158
+ page_content=' Results using automated metrics are presented in Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
159
+ page_content=' Our framework clearly out- performs prior efforts [12, 4, 5] according to Clean-FID [25], LPIPS [26] and SSIM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
160
+ page_content=' We mainly focus on LPIPS metric for comparison that reflects human perception, where we achieve 16% improvement over prior approaches [12, 4, 5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
161
+ page_content=' Table 1: Human Evaluation preference (averaged results), Win% = % times our output stories were preferred over [12], Lose% for vice-versa, Tie% when equally preferred.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
162
+ page_content=' Attribute Win% Loose% Tie% Visual Quality 25 20 55 Consistency 37 32 31 Relevance 32 30 38 Table 2: Average evaluation metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
163
+ page_content=' Frame FID↓ Clean- FID↓ LPIPS↓ SSIM↑ 1st 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
164
+ page_content='94 ± 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
165
+ page_content='85 111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
166
+ page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
167
+ page_content='18 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
168
+ page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
169
+ page_content='81 2nd 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
170
+ page_content='41 ± 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
171
+ page_content='67 110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
172
+ page_content='80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
173
+ page_content='19 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
174
+ page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
175
+ page_content='73 3rd 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
176
+ page_content='41 ± 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
177
+ page_content='83 106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
178
+ page_content='69 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
179
+ page_content='23 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
180
+ page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
181
+ page_content='68 4th 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
182
+ page_content='41 ± 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
183
+ page_content='84 133.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
184
+ page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
185
+ page_content='25 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
186
+ page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
187
+ page_content='62 All 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
188
+ page_content='54 ± 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
189
+ page_content='55 115.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
190
+ page_content='46 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
191
+ page_content='21 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
192
+ page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
193
+ page_content='71 [12] 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
194
+ page_content='45 ± 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
195
+ page_content='25 123.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
196
+ page_content='40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
197
+ page_content='25 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
198
+ page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
199
+ page_content='65 [5] 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
200
+ page_content='96 ± 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
201
+ page_content='66 124.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
202
+ page_content='97 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
203
+ page_content='25 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
204
+ page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
205
+ page_content='67 [4] 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
206
+ page_content='80 ± 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
207
+ page_content='81 122.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
208
+ page_content='62 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
209
+ page_content='25 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
210
+ page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
211
+ page_content='68 ’All’ refers to global results of the Impartial Transformer and is compare with the global results of [12], [5], [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
212
+ page_content=' Results from [5], [4] are obtained by re-training on CLEVR-SV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
213
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
214
+ page_content=' CONCLUSION In this work, we developed a transformer-inspired framework for story visualization, aiming to set a new baseline in litera- ture by achieving improvements according to perceptual met- rics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
215
+ page_content=' The usage of the Impartial Transformer demonstrated promising directions for the evolution of generative models in the same track, as few -if any- current implementations ex- ploit a ’forking’ module jointly trained by two adversaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
216
+ page_content=' As future work we plan to explore the evaluation part of SV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
217
+ page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
218
+ page_content=' REFERENCES [1] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio, “Generative adversarial nets,” in NeurIPS, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
219
+ page_content=' [2] Augustus Odena, Christopher Olah, and Jonathon Shlens, “Conditional image synthesis with auxiliary classifier gans,” 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
220
+ page_content=' [3] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin, “Attention is all you need,” in NeurIPS, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
221
+ page_content=' [4] Adyasha Maharana, Darryl Hannan, and Mohit Bansal, “Improving generation and evaluation of visual stories via semantic consistency,” ArXiv, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
222
+ page_content=' abs/2105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
223
+ page_content='10026, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
224
+ page_content=' [5] Adyasha Maharana and Mohit Bansal, “Integrating vi- suospatial, linguistic, and commonsense structure into story visualization,” ArXiv, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
225
+ page_content=' abs/2110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
226
+ page_content='10834, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
227
+ page_content=' [6] Scott E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
228
+ page_content=' Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, and Honglak Lee, “Gener- ative adversarial text to image synthesis,” CoRR, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
229
+ page_content=' abs/1605.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
230
+ page_content='05396, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
231
+ page_content=' [7] Han Zhang, Tao Xu, and Hongsheng Li, “Stackgan: Text to photo-realistic image synthesis with stacked gen- erative adversarial networks,” in ICCV, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
232
+ page_content=' [8] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang, and Dimitris Metaxas, “Stackgan++: Realistic image synthesis with stacked generative adversarial networks,” 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
233
+ page_content=' [9] Tao Xu, Pengchuan Zhang, Qiuyuan Huang, Han Zhang, Zhe Gan, Xiaolei Huang, and Xiaodong He, “At- tngan: Fine-grained text to image generation with atten- tional generative adversarial networks,” in CVPR 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
234
+ page_content=' [10] Minfeng Zhu, Pingbo Pan, Wei Chen, and Yi Yang, “DM-GAN: dynamic memory generative adversarial networks for text-to-image synthesis,” CoRR, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
235
+ page_content=' abs/1904.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
236
+ page_content='01310, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
237
+ page_content=' [11] Hongchen Tan, Xiuping Liu, Xin Li, Yi Zhang, and Bao- cai Yin, “Semantics-enhanced adversarial nets for text- to-image synthesis,” in ICCV, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
238
+ page_content=' [12] Yitong Li, Zhe Gan, Yelong Shen, Jingjing Liu, Yu Cheng, Yuexin Wu, Lawrence Carin, David Edwin Carlson, and Jianfeng Gao, “Storygan: A sequential conditional gan for story visualization,” CVPR, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
239
+ page_content=' [13] Gangyan Zeng, Zhaohui Li, and Yuan Zhang, “Pororo- gan: An improved story visualization model on pororo- sv dataset,” CSAI2019, 2019, ACM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
240
+ page_content=' [14] Chunye Li, Liya Kong, and Zhiping Zhou, “Improved- storygan for sequential images visualization,” Journal of Visual Communication and Image Representation, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
241
+ page_content=' [15] Diederik P Kingma and Max Welling, “Auto-encoding variational bayes,” 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
242
+ page_content=' [16] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Au- gustus Odena, “Self-attention generative adversarial networks,” 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
243
+ page_content=' [17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Deep residual learning for image recognition,” in CVPR, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
244
+ page_content=' [18] Sergey Ioffe and Christian Szegedy, “Batch normaliza- tion: Accelerating deep network training by reducing internal covariate shift,” 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
245
+ page_content=' [19] Alec Radford, Luke Metz, and Soumith Chintala, “Un- supervised representation learning with deep convolu- tional generative adversarial networks,” 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
246
+ page_content=' [20] Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Lo- geswaran, Bernt Schiele, and Honglak Lee, “Generative adversarial text to image synthesis,” in ICML, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
247
+ page_content=' [21] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna, “Rethinking the inception architecture for computer vision,” CVPR, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
248
+ page_content=' [22] Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
249
+ page_content=' Lawrence Zitnick, and Ross B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
250
+ page_content=' Girshick, “Clevr: A diagnostic dataset for com- positional language and elementary visual reasoning,” CVPR, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
251
+ page_content=' [23] Diederik Kingma and Jimmy Ba, “Adam: A method for stochastic optimization,” ICLR, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
252
+ page_content=' [24] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter, “Gans trained by a two time-scale update rule converge to a local nash equilibrium,” 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
253
+ page_content=' [25] Gaurav Parmar, Richard Zhang, and Jun-Yan Zhu, “On aliased resizing and surprising subtleties in gan evalua- tion,” in CVPR, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
254
+ page_content=' [26] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang, “The unreasonable ef- fectiveness of deep features as a perceptual metric,” in CVPR, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQf-AaO/content/2301.03563v1.pdf'}
ENE1T4oBgHgl3EQfWgSE/content/tmp_files/2301.03115v1.pdf.txt ADDED
@@ -0,0 +1,2161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Draft version January 10, 2023
2
+ Typeset using LATEX twocolumn style in AASTeX63
3
+ Discovery of Hydrogen Radio Recombination Lines at z = 0.89 towards PKS 1830−211
4
+ Kimberly L. Emig
5
+ ,1, ∗ Neeraj Gupta
6
+ ,2 Pedro Salas,3 S´ebastien Muller,4 Sergei A. Balashev,5, 6
7
+ Franc¸oise Combes,7 Emmanuel Momjian,8 Yiqing Song,9, 1 Preshanth Jagannathan,8 Partha P. Deka
8
+ ,2
9
+ Gyula I. G. J´ozsa,10, 11 Hans-Rainer Kl¨ockner,10 Abhisek Mohapatra,2 Pasquier Noterdaeme,12, 13
10
+ Patrick Petitjean,12 Raghunathan Srianand,2 and Jonah D. Wagenveld10
11
+ 1National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903, USA
12
+ 2Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411 007, India
13
+ 3Green Bank Observatory, 155 Observatory Road, Green Bank, WV 24915, USA
14
+ 4Department of Space, Earth and Environment, Chalmers University of Technology, Onsala Space Observatory, SE-43992 Onsala, Sweden
15
+ 5Ioffe Institute, Politekhnicheskaya 26, 194021 Saint Petersburg, Russia
16
+ 6HSE University, Saint Petersburg, 190121, Russia
17
+ 7Observatoire de Paris, Coll`ege de France, PSL University, Sorbonne University, CNRS, LERMA, Paris, France
18
+ 8National Radio Astronomy Observatory, 1003 Lopezville Road, Socorro, NM 87801, USA
19
+ 9Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22903, USA
20
+ 10Max-Planck Institut f¨ur Radioastronomie, Auf dem H¨ugel 69, 53121 Bonn, Germany
21
+ 11Department of Physics and Electronics, Rhodes University, PO Box 94, Makhanda, 6140, South Africa
22
+ 12Institut d’Astrophysique de Paris, Sorbonne Universit´e and CNRS, 98bis boulevard Arago, F-75014 Paris, France
23
+ 13Franco-Chilean Laboratory for Astronomy, IRL 3386, CNRS and U. de Chile, Casilla 36-D, Santiago, Chile
24
+ (Received ...; Revised ...; Accepted ...)
25
+ Submitted to ApJ
26
+ ABSTRACT
27
+ We report the detection of stimulated hydrogen radio recombination line (RRL) emission from ionized
28
+ gas in a z = 0.89 galaxy using 580–1670 MHz observations from the MeerKAT Absorption Line
29
+ Survey (MALS). The RRL emission originates in a galaxy that intercepts and strongly lenses the radio
30
+ blazar PKS 1830−211 (z = 2.5). This is the second detection of RRLs outside of the local universe
31
+ and the first clearly associated with hydrogen. We detect effective H144α (and H163α) transitions
32
+ at observed frequencies of 1156 (798) MHz by stacking 17 (27) RRLs with 21σ (14σ) significance.
33
+ The RRL emission contains two main velocity components and is coincident in velocity with H i
34
+ 21 cm and OH 18 cm absorption. We use the RRL spectral line energy distribution and a Bayesian
35
+ analysis to constrain the density (ne) and the volume-averaged pathlength (ℓ) of the ionized gas.
36
+ We determine log(ne) = 2.0+1.0
37
+ −0.7 cm−3 and log(ℓ) = −0.7+1.1
38
+ −1.1 pc towards the north east (NE) lensed
39
+ image, likely tracing the diffuse thermal phase of the ionized ISM in a thin disk. Towards the south
40
+ west (SW) lensed image, we determine log(ne) = 3.2+0.4
41
+ −1.0 cm−3 and log(ℓ) = −2.7+1.8
42
+ −0.2 pc, tracing
43
+ gas that is more reminiscent of H ii regions. We estimate a star formation (surface density) rate of
44
+ ΣSFR ∼ 0.6 M⊙ yr−1 kpc−2 or SFR ∼ 50 M⊙ yr−1, consistent with a star-forming main sequence
45
+ galaxy of M⋆ ∼ 1011 M⊙. The discovery presented here opens up the possibility of studying ionized
46
+ gas at high redshifts using RRL observations from current and future (e.g., SKA and ngVLA) radio
47
+ facilities.
48
+ Keywords: galaxies: ISM
49
+ Corresponding author: Kimberly L. Emig
50
51
+ ∗ Jansky Fellow of the National Radio Astronomy Observatory
52
+ 1. INTRODUCTION
53
+ Radio recombination lines (RRLs) result from the ra-
54
+ diative de-excitation of electrons at high excitation lev-
55
+ els of atoms. RRLs with frequencies νrest ≲10 GHz in
56
+ arXiv:2301.03115v1 [astro-ph.GA] 8 Jan 2023
57
+
58
+ ID2
59
+ Emig et al.
60
+ extragalactic sources probe gas with relatively low den-
61
+ sity that can be stimulated by radio continuum (for an
62
+ overview, see Emig 2021), upon which the line emis-
63
+ sion is significantly enhanced compared with the local
64
+ thermodynamic equilibrium (LTE) Boltzmann distribu-
65
+ tion. The physical conditions of the gas strongly influ-
66
+ ence which principal quantum numbers (thus frequen-
67
+ cies) show enhanced emission. Accordingly, the relative
68
+ intensities of RRLs, the so-called spectral line energy
69
+ distribution (SLED), carry information on the temper-
70
+ ature, density, and pathlength of the diffuse gas com-
71
+ ponent (e.g., Shaver 1975; Salgado et al. 2017a; Oonk
72
+ et al. 2017). Stimulated emission has the added benefit
73
+ that its intensity is proportional to the background con-
74
+ tinuum intensity at a given frequency, SRRL ∝ Sbkg cont.
75
+ Therefore, it is conceivable to observe these RRLs at
76
+ cosmological distances wherever bright radio sources are
77
+ present (Shaver 1978). In contrast, RRLs at high radio
78
+ frequencies (≳ 10 GHz) typically trace spontaneous re-
79
+ combination emission (in LTE), making them a great
80
+ direct measure of ionizing photons and therefore star
81
+ formation rates. However, the flux of spontaneous tran-
82
+ sitions falls off with distance (D) and frequency (ν) as
83
+ S ∝ D−2ν−1, limiting the observation of this faint emis-
84
+ sion to galaxies in the nearby universe.
85
+ The very first extragalactic detections of RRLs, in
86
+ M82 and NGC253, found contributions from stimulation
87
+ (Shaver et al. 1977; Seaquist & Bell 1977; Shaver et al.
88
+ 1978). In the case of M82, Bell & Seaquist (1978) mod-
89
+ eled the SLED of hydrogen RRLs and showed that the
90
+ increasing intensity of the RRL emission at ν < 10 GHz
91
+ can only result due to stimulation by the large-scale syn-
92
+ chrotron continuum of the galaxy.
93
+ They determined
94
+ that the hydrogen RRLs originate in ionized gas with
95
+ ne ≈ 150 cm−3 and pathlength ℓ ≈ 110 pc. Soon after,
96
+ Churchwell & Shaver (1979) used the Arecibo 300 m
97
+ telescope to search 21 galaxies and active galactic nu-
98
+ clei (AGN) for RRL emission with the 1.4 GHz re-
99
+ ceiver and three AGN with the 430 MHz receiver, with
100
+ the set-up covering just a single RRL transition. They
101
+ did not detect emission with line-to-continuum ratios of
102
+ τRRL > 10−3. To similar sensitivities, Bell et al. (1984)
103
+ used the Effelsberg 100 m dish at 4.8 GHz to search ten
104
+ galaxies without clear success. Bell & Seaquist (1980)
105
+ discovered the H83α and H99α lines at 10.5 GHz and 6.2
106
+ GHz, respectively, in the GHz peaked-spectrum source
107
+ OQ 208 at z = 0.0763, showing that this RRL emission
108
+ could also only arise due to stimulation. These studies
109
+ used narrow bandwidth receivers and were only sensitive
110
+ to one RRL spectral line per observation.
111
+ To date, 8 of the 23 external galaxies with detected
112
+ RRL emission show evidence for stimulated emission by
113
+ z = 0.89
114
+ 10
115
+ 1
116
+ 100
117
+ 101
118
+ 102
119
+ 103
120
+ 104
121
+ 105
122
+ Density (cm
123
+ 3)
124
+ 100
125
+ 200
126
+ 300
127
+ 400
128
+ 500
129
+ 600
130
+ Principal quantum number
131
+ MALS, 0 < z < 3
132
+ 6479
133
+ 815.9
134
+ 242.3
135
+ 102.4
136
+ 52.45
137
+ 30.37
138
+ HRRL Rest Frequency (MHz)
139
+ Figure 1. The principal quantum numbers, n, of Hydrogen
140
+ RRLs at which the stimulated-only emission of gas with a
141
+ given density peaks. The thick black region marks the maxi-
142
+ mum n in the peak of emission, for ionized gas temperatures
143
+ 5000 K ≤ Te ≤ 12 000 K, and the thin black region indicates
144
+ the n for which the peak intensity is more than one half of
145
+ the maximum. The shaded blue region shows the parameter
146
+ space covered by MALS for RRL redshifts of 0 ≤ z ≤ 3, while
147
+ the red hatched region shows the coverage for a z = 0.89 ob-
148
+ servation. To calculate the peak optical depths we do not
149
+ take into account an external radiation field (which has a
150
+ minimal effect), but do take into account collisional broad-
151
+ ening of the line profile occurring in dense gas.
152
+ non-thermal emission (for an overview, see Emig 2021)1.
153
+ These were all local (D < 350 Mpc) and mostly star
154
+ forming galaxies, until recently, Emig et al. (2019) used
155
+ the Low Frequency Array to detect stimulated RRLs
156
+ at z = 1.124 with a rest-frame frequency of 284 MHz.
157
+ They argue that the RRL emission most likely arises
158
+ from carbon in an intervening galaxy along the line-of-
159
+ sight to 3C 190. However, they could not clearly discern
160
+ whether the emission was from carbon or hydrogen since
161
+ the lines are separated by 150 km s−1 and have compa-
162
+ rable intensities at those frequencies in the Milky Way
163
+ (e.g., Anantharamaiah 1985).
164
+ The improved sensitiv-
165
+ ity of high-resolution interferometers and the large frac-
166
+ tional bandwidths that enable deeper searches through
167
+ line stacking are making extragalactic RRL detections
168
+ now feasible.
169
+ Furthermore, given that the frequency
170
+ separation between each RRL is unique, the develop-
171
+ ment of new cross-correlation techniques are enabling
172
+ blind searches of RRLs across redshift space (Emig et al.
173
+ 2020).
174
+ Current large-bandwidth spectral line surveys, such as
175
+ the MeerKAT Absorption Line Survey (MALS; Gupta
176
+ et al. 2016), the First Large Absorption line Survey
177
+ (FLASH; Allison et al. 2022), the Search for HI Ab-
178
+ 1 We
179
+ also
180
+ refer
181
+ the
182
+ reader
183
+ for
184
+ an
185
+ update
186
+ collection
187
+ of
188
+ extragalactic
189
+ RRL
190
+ detections
191
+ at
192
+ www.tinyurl.com/
193
+ DatabaseForExtragalacticRRLs
194
+
195
+ Radio Recombination Lines at z = 0.89
196
+ 3
197
+ sorption with APERTIF (SHARP; e.g., see
198
+ Morganti
199
+ & Oosterloo 2018) – and in the future with the Square
200
+ Kilometer Array (SKA; e.g., Blyth et al. 2015) – can
201
+ observe tens of RRLs simultaneously, opening the way
202
+ for ionized gas studies with optimum sensitivity to gas
203
+ with electron densities of 1 cm−3 ≲ ne ≲ 104 cm−3
204
+ (e.g., see Fig. 1). These surveys can explore RRLs as
205
+ a tracer of (diffuse) ionized gas in external galaxies for
206
+ the first time in a large systematic way and address at
207
+ what level stimulated RRLs are present in galaxies. Ul-
208
+ timately, these RRL observations will bring new insight
209
+ into the evolution of the (ionized) interstellar medium
210
+ of galaxies and the environment of AGN.
211
+ In particular, MALS is carrying out the most sensi-
212
+ tive search to date (σ ∼ 0.6 mJy beam−1 per 6 km s−1
213
+ channel) of H i 21 cm and OH 18 cm absorption lines at
214
+ 0 ≲ z ≲ 2 (Gupta et al. 2016). MALS is observing ∼500
215
+ pointings centered on the brightest (S1 GHz > 0.2 Jy)
216
+ radio sources at declination δ ≲ +30◦ (see Gupta et al.
217
+ 2022, for the survey footprint), using the MeerKAT
218
+ (Jonas & MeerKAT Team 2016) L band, nominally cov-
219
+ ering 900–1670 MHz, and UHF band, nominally cover-
220
+ ing 580–1015 MHz. Towards each sight line, the sur-
221
+ vey is sensitive to peak RRL line to continuum ratios
222
+ of τRRL = (0.08 − 1) × 10−3 through line stacking,
223
+ reaching the range of optical depths observed from ion-
224
+ ized gas in the Milky Way (e.g., Roshi & Ananthara-
225
+ maiah 2000). For an electron temperature of 8000 K,
226
+ these optical depths convert into emission measures
227
+ 102.6 ≳ EM/cm−6 pc ≳ 104.7 for densities 1 cm−3 ≲
228
+ ne ≲ 104 cm−3 (see Fig. 1).
229
+ The first science verification observations of MALS
230
+ (Gupta et al. 2021; Combes et al. 2021) focused on
231
+ the bright (S1 GHz ≈ 11 Jy) z = 2.507 (Lidman et al.
232
+ 1999) blazar, PKS 1830−211 (referred to hereafter as
233
+ PKS 1830).
234
+ PKS 1830 has a radio spectral index of
235
+ α1−15 GHz ≈ −0.26, classifying it as a flat spectrum ra-
236
+ dio quasar (Pramesh Rao & Subrahmanyan 1988; Sub-
237
+ rahmanyan et al. 1990), and at lower frequencies it is
238
+ known to have a spectral turnover (Lovell et al. 1996).
239
+ PKS 1830 is strongly gravitationally lensed (Patnaik
240
+ et al. 1993; Nair et al. 1993) by a galaxy at z = 0.89
241
+ (Wiklind & Combes 1996).
242
+ Its morphology reveals
243
+ two compact radio components, referred to as north-
244
+ east (NE) and southwest (SW), approximately 1′′ apart
245
+ and surrounded by a low surface-brightness Einstein ring
246
+ (e.g., Jauncey et al. 1991). While the NE and SW com-
247
+ ponents are images of the blazar core, the ring is mainly
248
+ due to the jet and a bright knot in the jet (Jin et al.
249
+ 2003). PKS 1830 is known to be variable, by up to a
250
+ factor of two in radio, on timescales of hours to years
251
+ (e.g., Pramesh Rao & Subrahmanyan 1988; Mart´ı-Vidal
252
+ et al. 2013; Allison et al. 2017; Marti-Vidal & Muller
253
+ 2019), and these variations are seen in all three lensed
254
+ components — the NE, SW, and ring. The continuum
255
+ flux is dominated by the NE and SW components at
256
+ least down to 1.4 GHz (Verheijen et al. 2001; Koopmans
257
+ & de Bruyn 2005), where the Einstein ring contributes
258
+ ∼1% to the continuum flux (Combes et al. 2021; Pat-
259
+ naik et al. 1993). For an overview image of the system,
260
+ we refer the reader to Nair et al. (1993).
261
+ Two absorption line systems are present along the
262
+ line-of-sight to PKS 1830.
263
+ The lensing galaxy at z =
264
+ 0.89 has become an extragalactic-prototype absorption
265
+ system, with the most molecular species detected to date
266
+ (towards the SW image) (e.g., Wiklind & Combes 1996;
267
+ Muller et al. 2011; Tercero et al. 2020). The z = 0.89
268
+ galaxy has been directly imaged with Hubble Space Tele-
269
+ scope and appears to be a barred-spiral (Courbin et al.
270
+ 1998, 2002), but remains weak and elusive. From a well-
271
+ constrained lensing model (Nair et al. 1993; Koopmans
272
+ & de Bruyn 2005; Muller et al. 2020; Combes et al.
273
+ 2021), the kinematics (vrot ∼ 260 km s−1) and orienta-
274
+ tion also suggest a nearly face-on (i ∼ 25◦) barred-spiral
275
+ galaxy of ∼1011 M⊙. The SW image of the blazar core
276
+ passes through the galaxy at a radius of Rg ∼ 2.4 kpc
277
+ and a central velocity (from spatially unresolved emis-
278
+ sion) at vcen ∼ 0 km s−1, and the NE image passes
279
+ through at Rg ∼ 5.3 kpc and vcen ∼ −150 km s−1.
280
+ The SW image intercepts a spiral arm of the z = 0.89
281
+ galaxy and traces dense (nH2 ∼ 2000 cm−3) molecu-
282
+ lar gas (Wiklind & Combes 1996; Courbin et al. 2002;
283
+ Muller et al. 2013). The gas along the line of sight to the
284
+ NE image arises in the diffuse ISM (Muller et al. 2011)
285
+ and is bright in H i 21 cm and main OH 18 cm absorp-
286
+ tion (Chengalur et al. 1999; Koopmans & de Bruyn 2005;
287
+ Gupta et al. 2021; Combes et al. 2021). No time varia-
288
+ tion is visible in the cm-line spectra from the z = 0.89
289
+ galaxy (Combes et al. 2021), which contrasts strongly
290
+ with the variations detected in the mm-wave absorp-
291
+ tion spectra (Muller & Gu´elin 2008; Muller et al. 2014;
292
+ Schulz et al. 2015). The second absorption system to-
293
+ wards PKS 1830 at z = 0.19 has been seen only in H i
294
+ 21 cm absorption so far (Lovell et al. 1996; Allison et al.
295
+ 2017; Gupta et al. 2021).
296
+ MALS observations of PKS 1830 verified system per-
297
+ formance and led to the first detection of OH 18 cm
298
+ satellite lines at z = 0.89, which had previously only
299
+ been detected at z ≲ 0.25 (Gupta et al. 2021; Combes
300
+ et al. 2021). In this article, we use these MALS obser-
301
+ vations to search for radio recombination line emission.
302
+ We aim to understand whether RRLs are present and
303
+ detectable and what they can tell us about photoion-
304
+ ized gas in galaxies and AGN. In Sec. 2, we describe
305
+
306
+ 4
307
+ Emig et al.
308
+ the methods used to process the data.
309
+ In Sec. 3, we
310
+ report (i) detections of hydrogen RRLs in both the L
311
+ and UHF bands originating from ionized gas in the z =
312
+ 0.89 galaxy, (ii) tests we performed to verify these re-
313
+ sults, and (iii) non-detections at the additional redshifts
314
+ searched. In Sec. 4, we constrain physical conditions of
315
+ the ionized gas by modeling the stimulated RRL emis-
316
+ sion. Finally, we discuss implications of the ionized gas
317
+ measured by the RRLs in Sec. 5 and conclude in Sec. 6.
318
+ In this article, velocities are reported using the helio-
319
+ centric frame, with respect to z = 0.88582 unless stated
320
+ otherwise, and are converted from frequency using the
321
+ relativistic definition. We use ΛCDM cosmology with
322
+ Ωm = 0.29, ΩΛ = 0.71, and Ho = 70 km s−1 Mpc−1, for
323
+ which 1′′ ∼ 7.860 kpc at z = 0.88582.
324
+ 2. DATA AND PROCESSING
325
+ 2.1. Observations and Data Reduction
326
+ PKS 1830 was observed with the MeerKAT Radio
327
+ Telescope (Jonas & MeerKAT Team 2016) as the first
328
+ science verification target of MALS (Gupta et al. 2016).
329
+ For the work presented here, we used MALS L band
330
+ spectra originally presented by Gupta et al. (2021).
331
+ Hereafter, we refer to this L band dataset obtained on
332
+ 2019 December 19 as “Night1”. We also used UHF band
333
+ spectra from the dataset obtained on 2020 July 13 and
334
+ presented in Combes et al. (2021). In addition to these
335
+ previously published datasets, we observed PKS 1830 a
336
+ second time in L band on 2020 September 18 using 59
337
+ antennas, which we will refer to as “Night2” in the ar-
338
+ ticle.
339
+ For both L band observations, the total bandwidth
340
+ of 856 MHz was centered at 1283.987 MHz, cover-
341
+ ing 856–1712 MHz, and split into 32 768 frequency
342
+ channels.
343
+ This delivered a frequency resolution of
344
+ 26.123 kHz, which is 6.1 km s−1 at the center of the
345
+ band. For UHF band, the total observable bandwidth
346
+ of 544 MHz covering 544–1088 MHz was also split into
347
+ 32 768 frequency channels, providing a channel resolu-
348
+ tion of 16.602 kHz, or 6.1 km s−1 at the center of the
349
+ band, i.e., 815.992 MHz. For all observations the cor-
350
+ relator dump time was 8 s and the data were acquired
351
+ for all four polarization products, labeled as XX, XY,
352
+ YX and YY. We also observed PKS 1934–638 and/or
353
+ 3C 286 for flux density scale and bandpass calibrations.
354
+ Since PKS 1830 is a bonafide VLA gain calibrator at
355
+ this spatial resolution, a separate gain calibrator was
356
+ not observed. The total on-source times on PKS 1830
357
+ are: 40 min (L band Night1), 90 min (UHF band) and
358
+ 90 min (L band Night2).
359
+ All MALS datasets have been processed using ARTIP,
360
+ the
361
+ Automated
362
+ Radio
363
+ Telescope
364
+ Imaging
365
+ Pipeline
366
+ (Gupta et al. 2021), a Python-based pipeline using tasks
367
+ and tools from the Common Astronomy Software Appli-
368
+ cations (CASA; McMullin et al. 2007; The CASA Team
369
+ et al. 2022). The specific details of the observations, cali-
370
+ bration, and imaging of L and UHF band datasets can be
371
+ found in Gupta et al. (2021) and Combes et al. (2021),
372
+ respectively. The Stokes-I continuum flux densities of
373
+ PKS 1830 obtained from wideband radio continuum im-
374
+ ages in L Night1 and UHF band with robust=0 weight-
375
+ ing are 11.245±0.001 Jy at 1270 MHz and 11.40±0.01 Jy
376
+ at 832 MHz, respectively.
377
+ The radio emission is un-
378
+ resolved in these images with a spatial resolution of
379
+ 12.′′9 × 8.′′1 (position angle = −76.◦3) and 17.′′4 × 13.′′1
380
+ (position angle = +69.◦0), respectively (Gupta et al.
381
+ 2021; Combes et al. 2021). The quoted uncertainty of
382
+ the flux densities are based on a single 2D Gaussian fit
383
+ to the continuum emission.
384
+ The continuum flux den-
385
+ sity of PKS 1830 obtained using the Night2 dataset is
386
+ S1.27 GHz = 11.86 ± 0.02 Jy.
387
+ This matches with the
388
+ Night1 measurement within the flux density uncertainty
389
+ (∼5%) expected at these low frequencies.
390
+ Therefore,
391
+ throughout the article we use the average flux density
392
+ from the Night1 and Night2 datasets as the representa-
393
+ tive L band flux density, i.e., S1.27 GHz ≈ 11.5 Jy.
394
+ The spectral line data products from ARTIP for RRL
395
+ analysis are continuum-subtracted XX and YY parallel
396
+ hand image cubes obtained with robust=0 weighting.
397
+ We also note that for spectral line processing ARTIP
398
+ splits the L and UHF bands into 15 spectral windows
399
+ (hereafter SPWs) (see Gupta et al. 2021; Combes et al.
400
+ 2021, for details of SPW boundaries). The pixel sizes
401
+ for L and UHF band image cubes are 2.′′0 and 3.′′0, re-
402
+ spectively.
403
+ XX and YY spectra were extracted in all
404
+ SPWs from a single pixel at the location of PKS 1830
405
+ determined from the continuum images. The residual
406
+ flux density in each continuum-subtracted spectrum is
407
+ on the order of 0.5% and required additional spectral-
408
+ baseline subtraction.
409
+ Further details of RRL specific spectral line processing
410
+ are provided in the next section. In passing, we note that
411
+ we also made use of a MALS L band dataset of another
412
+ radio source, PKS 1740-517 (hereafter PKS 1740), also
413
+ known as J1744-5144, observed on 2020 September 20
414
+ (two days after Night2 observations of PKS 1830) with
415
+ an on-source time of 56 min. This observation also used
416
+ PKS 1934-638 and 3C 286 for flux density and bandpass
417
+ calibrations, and the unresolved radio source has a flux
418
+ density of ∼7 Jy at 1270 MHz, comparable to PKS 1830.
419
+ We process this dataset following the procedures de-
420
+ scribed above and use the resultant spectra to establish
421
+ the genuineness of the results obtained for PKS 1830.
422
+
423
+ Radio Recombination Lines at z = 0.89
424
+ 5
425
+ 2.2. RRL Spectral Processing
426
+ Considering the rest frequencies of RRLs, 38 and 44
427
+ of the α (∆n = 1) recombination lines (per element)
428
+ fall within the MALS L and UHF band coverage, re-
429
+ spectively.2 At z = 0.89, for example, the observations
430
+ cover 31 α recombination lines in L band spanning prin-
431
+ cipal quantum numbers n = 128 − 158 and 36 α recom-
432
+ bination lines in UHF band spanning n = 148 − 183.
433
+ Because line properties of RRLs are correlated over a
434
+ sizeable frequency range, we stacked the spectral lines
435
+ to drive down the noise and increase the signal to noise
436
+ ratio, as is commonly done in Galactic and extragalactic
437
+ RRL observations (Balser 2006; Emig et al. 2020).
438
+ We began spectral processing by identifying the ob-
439
+ served frequency of an RRL and extracting a spectrum
440
+ equivalent to vsys ± 1500 km s−1 centered on the line.
441
+ We selected this velocity chunk and discarded coverage
442
+ outside of it in order to (i) have a sufficient number
443
+ of channels to minimize errors in the estimation of the
444
+ spectral-baseline continuum level (Sault 1994), while (ii)
445
+ ensuring that a low (≤ 5) order polynomial – with an or-
446
+ der determined by minimizing the reduced χ2 – could be
447
+ fit over a well-behaved bandpass. RRLs that fell within
448
+ ±1000 km s−1 from the edge of a spectral window were
449
+ excluded from subsequent processing. We flagged chan-
450
+ nels with persistent radio frequency interference (RFI)
451
+ and/or at the HI 21 cm and OH 18 cm line features
452
+ (at relevant redshifts) (see Gupta et al. 2021; Combes
453
+ et al. 2021), and we discarded the full spectral line chunk
454
+ when flagged channels fell within |v| ∼ 500 km s−1 from
455
+ the line center in order to ensure a reliable fit to the
456
+ spectral-baseline. We also flagged spectral line chunks
457
+ that were clearly contaminated by broad-band RFI and
458
+ reliable estimates of the baseline could not be attained.
459
+ After flagging, we next fit a low order (≤ 5) polyno-
460
+ mial to (line-free) channels in each spectral chunk and
461
+ subtracted the fit. For the results presented in Sec. 3,
462
+ we did not impose a line-blank region, except for the
463
+ z = 0.89 stacks. For the z = 0.89 results, we first stacked
464
+ the spectrum without a line-blank region. Based on the
465
+ significant feature we obtained in that spectrum, we set
466
+ the line blank as -230 km s−1 to +55 km s−1.
467
+ Fig. 2 shows the baseline-subtracted spectral chunks,
468
+ as an example, from L band Night2 observations pro-
469
+ cessed for z = 0.89 RRLs.
470
+ The spectral noise has a
471
+ median of 3.4 mJy across the 17 RRL spectral chunks
472
+ used in the stack. The noise properties and number of
473
+ 2 We refer to the reader to the CRRLpy module (Salas et al. 2016)
474
+ found at https://github.com/astrofle/CRRLpy for a list of RRL
475
+ line frequencies.
476
+ lines used in the final stacks can be found in Table 1.
477
+ The noise properties are consistent across the bands and
478
+ between parallel hand spectra.
479
+ We next interpolated each spectral chunk to a com-
480
+ mon velocity grid with channel widths of 1 km s−1, in-
481
+ tentionally oversampling the spectral channels to avoid
482
+ artificially smoothing-out spectral features. The spec-
483
+ tral line chunks were then averaged together using the
484
+ inverse noise squared in line-free channels as a weight
485
+ (e.g., Emig et al. 2020).3 We next smoothed the channel
486
+ resolution to 8 km s−1 using a boxcar averaging kernel,
487
+ to better match the lowest resolution achieved at the
488
+ low frequency end of the bands. At this stage, we had
489
+ obtained a single Hnα spectrum for each parallel hand
490
+ XX and YY. Finally, we averaged the XX and YY spec-
491
+ tra to create a Stokes-I spectrum. We chose to combine
492
+ the stacked XX spectrum and the stacked YY spectrum
493
+ rather than creating a Stokes-I spectrum for each line
494
+ before combining polarizations because it (i) resulted in
495
+ better-behaved, i.e., Gaussian-like noise properties and
496
+ (ii) had the benefit of independently examining the dif-
497
+ ferences in the signal detected in two parallel hand spec-
498
+ tra. The latter is particularly useful in distinguishing
499
+ true astrophysical signal from RFI, which is often lin-
500
+ early polarized.
501
+ 3. RESULTS
502
+ We applied the spectral processing procedures de-
503
+ scribed in the previous section to PKS 1830 observations
504
+ at the redshifts (i) z = 0 for Galactic emission, (ii)
505
+ z = 0.19259 for the low redshift intervening absorber,
506
+ (iii) z = 0.88582 for the high redshift intervening ab-
507
+ sorber, and (iv) z = 2.507 for the intrinsic redshift of
508
+ PKS 1830. We detect RRL emission from the z = 0.89
509
+ absorber in both Nights of L band and in UHF band ob-
510
+ servations. We report non-detections and upper limits
511
+ at all other redshifts and bands.
512
+ In Fig. 3, we show the L band detections obtained
513
+ from the z = 0.89 absorber.
514
+ We overlay the parallel
515
+ hand spectra, showing that they are consistent within
516
+ the noise in both nights of observations and therefore not
517
+ due to low-level linearly-polarized RFI. We also overlay
518
+ the Stokes-I spectrum obtained from each night of L
519
+ band observations; they are consistent within the noise,
520
+ giving further evidence that the signal is astrophysical
521
+ in nature. Lastly, we averaged L band Stokes-I spec-
522
+ 3 We tested combining the spectral chunks with an additional
523
+ weight that depended upon the (inverse) line frequency (raised to
524
+ a power), but this did not significantly change the S/N properties,
525
+ indicating that the line properties are similar and well-correlated
526
+ across the observing bands.
527
+
528
+ 6
529
+ Emig et al.
530
+ 1000
531
+ 750
532
+ 500
533
+ 250
534
+ 0
535
+ 250
536
+ 500
537
+ 750
538
+ 1000
539
+ Velocity (km s
540
+ 1)
541
+ 0
542
+ 40
543
+ 80
544
+ 120
545
+ 160
546
+ 200
547
+ 240
548
+ 280
549
+ 320
550
+ 360
551
+ 400
552
+ 440
553
+ 480
554
+ 520
555
+ 560
556
+ 600
557
+ Flux density (mJy)
558
+ XX
559
+ YY
560
+ 3.0
561
+ 3.5
562
+ 4.0
563
+ Noise (mJy)
564
+ 0
565
+ 500
566
+ Integrated Signal
567
+ (mJy km s
568
+ 1)
569
+ 0
570
+ 5
571
+ Integrated
572
+ S/N
573
+ 128
574
+ 132
575
+ 133
576
+ 134
577
+ 135
578
+ 136
579
+ 137
580
+ 145
581
+ 149
582
+ 150
583
+ 151
584
+ 152
585
+ 153
586
+ 155
587
+ 156
588
+ 158
589
+ 128
590
+ 132
591
+ 133
592
+ 134
593
+ 135
594
+ 136
595
+ 137
596
+ 145
597
+ 149
598
+ 150
599
+ 151
600
+ 152
601
+ 153
602
+ 155
603
+ 156
604
+ 158
605
+ 128
606
+ 132
607
+ 133
608
+ 134
609
+ 135
610
+ 136
611
+ 137
612
+ 145
613
+ 149
614
+ 150
615
+ 151
616
+ 152
617
+ 153
618
+ 155
619
+ 156
620
+ 158
621
+ Principal Quantum Number, n
622
+ Figure 2. Spectral properties prior to stacking RRL transitions for L band spectra from Night 2. Velocities are shown with
623
+ respect to z = 0.88582 and spectra are shifted along the ordinate for display purposes. The principal quantum number of each
624
+ spectrum is given on the right hand side ordinate. The shaded gray region in the left most panel indicates the line blank region.
625
+ “Noise”, σ, is the rms (outside of the line blank region) per 8 km s−1 channel of the XX (yellow circles) or YY (purple circles)
626
+ spectrum. “Integrated Signal” = ∆vΣN
627
+ i=0 Si, the sum of emission from the channels inside the line blank region. “Integrated
628
+ S/N” = (ΣN
629
+ i=0 Si)/(
630
+
631
+ Nσ), the integrated signal divided by the integrated noise; we note that corresponding to negative values
632
+ of Integral Signal, the Integrated S/N is also negative. The vertical dashed line in the three right panels indicates the median
633
+ value. There are no obvious and significant spurious features that could contaminate the RRL spectrum in our final stacking.
634
+
635
+ Radio Recombination Lines at z = 0.89
636
+ 7
637
+ Table 1. Spectral and Line Properties
638
+ Line-of-sight
639
+ z
640
+ Band
641
+ Nlines
642
+ RRL
643
+ noise
644
+ vcenter
645
+ Speak
646
+ FWHM
647
+
648
+ SRRL dv
649
+
650
+ τ dv
651
+ (mJy)
652
+ (km s−1)
653
+ (mJy)
654
+ (km s−1)
655
+ (mJy km s−1)
656
+ (km s−1)
657
+ PKS 1830-211
658
+ 0.88582
659
+ L
660
+ 17
661
+ H 144 α
662
+ 0.34
663
+ −117.4 ± 5.3
664
+ 1.86 ± 0.12
665
+ 131 ± 14
666
+ 258 ± 33
667
+ −0.045 ± 0.006
668
+ 7.7 ± 4.2
669
+ 1.54 ± 0.19
670
+ 62.3 ± 9.8
671
+ 102 ± 20
672
+ −0.018 ± 0.003
673
+ UHF
674
+ 27
675
+ H 163 α
676
+ 0.57
677
+ −124.4 ± 9.4
678
+ 1.59 ± 0.15
679
+ 155 ± 24
680
+ 262 ± 47
681
+ −0.046 ± 0.008
682
+ 7.7
683
+ 0.81 ± 0.25
684
+ 80 ± 28
685
+ 70 ± 25
686
+ −0.012 ± 0.004
687
+ 0.0
688
+ L
689
+ 17
690
+ H 175 α
691
+ 0.36
692
+ ...
693
+ ...
694
+ ...
695
+ < 22.7
696
+ < |0.0020|
697
+ UHF
698
+ 28
699
+ H 203 α
700
+ 0.41
701
+ ...
702
+ ...
703
+ ...
704
+ < 26.5
705
+ < |0.0023|
706
+ 0.19259
707
+ L
708
+ 17
709
+ H 166 α
710
+ 0.34
711
+ ...
712
+ ...
713
+ ...
714
+ 23.6 ± 7.3
715
+ −0.002 1 ± 0.000 6
716
+ UHF
717
+ 33
718
+ H 189 α
719
+ 0.43
720
+ ...
721
+ ...
722
+ ...
723
+ < 27.2
724
+ < |0.0024|
725
+ 2.507
726
+ L
727
+ 14
728
+ H 116 α
729
+ 0.40
730
+ ...
731
+ ...
732
+ ...
733
+ < 25.5
734
+ < |0.0023|
735
+ UHF
736
+ 19
737
+ H 132 α
738
+ 0.55
739
+ ...
740
+ ...
741
+ ...
742
+ < 34.9
743
+ < |0.0031|
744
+ PKS 1740-517
745
+ 0.88582
746
+ L
747
+ 17
748
+ H 142 α
749
+ 0.39
750
+ ...
751
+ ...
752
+ ...
753
+ < 24.8
754
+ < |0.004|
755
+ Note— Uncertainties of the line properties are determined from the variance of each parameter as determined by the fit. Nlines is the
756
+ effective number of recombination lines stacked in the final spectrum. “RRL” refers to the effective radio recombination line transition of
757
+ the stacked spectrum. “noise” is the weighted standard deviation of line-free channels in units of mJy per 8 km s−1channel. vcenter is the
758
+ central velocity of the best fit Gaussian and uncertainty. Speak is the peak amplitude of the best fit Gaussian fit. FWHM is the full-width
759
+ half maximum of the best fit Gaussian.
760
+
761
+ SRRL dv is the velocity-integrated flux density of the best-fit Gaussian profile, or in the case of
762
+ an upper limit, the reported value is equal to an integrated signal to noise ratio of 3 assuming a line width of 60 km s−1.
763
+
764
+ τ dv is the
765
+ velocity-integrated optical depth computed as −
766
+
767
+ SRRL/Sc dv where the values used for the continuum flux density, Sc, are described in
768
+ Sec. 3.
769
+
770
+ 8
771
+ Emig et al.
772
+ tra from Nights 1 and 2, producing a spectrum with
773
+ the highest signal-to-noise ratio attainable which we re-
774
+ fer to as the total-I spectrum. The reduction in spec-
775
+ tral noise of the incrementally combined spectra follows
776
+ root N statistics. The total integrated flux density of
777
+
778
+ SH144α dv = 337±16 mJy km s−1 with a maximum in-
779
+ tegrated signal-to-noise ratio (S/N) = (ΣN
780
+ i=0 Si)/(
781
+
782
+ Nσ)
783
+ of 21 is computed from the total-I spectrum by integrat-
784
+ ing over the N channels covering the velocity range −230
785
+ to 55 km s−1. The effective transition of the total-I spec-
786
+ trum presented in the bottom panel of Fig. 3 is H144α,
787
+ at a rest-frame frequency of 2179.6 MHz and observed
788
+ at 1155.8 MHz. The effective transition is determined
789
+ from the noise-weighted average of the line transitions
790
+ included in the stack.
791
+ The line properties of the ob-
792
+ served emission are consistent with SH136α < 5 mJy
793
+ upper limits to the H136α line at νrest = 2585.7 MHz
794
+ (νobs = 1371.1 MHz) — a transition which is included
795
+ in our stack — obtained by Mohan et al. (2002).
796
+ In addition to (1) multiple nights of observations and
797
+ (2) comparing XX and YY parallel hand spectra, we ver-
798
+ ified additional evidence that the signal is true recom-
799
+ bination line emission by (3) observing an independent
800
+ detection of RRL emission in UHF band (more details
801
+ below), (4) performing jackknife tests, in which one line
802
+ spectrum at a time is omitted from the stacked spec-
803
+ trum, showing that the signal is not dominated by a
804
+ single outlying spectral chunk4, (5) splitting the lines in
805
+ the band into two groups creating two sub-stacks and
806
+ this resulted in consistent line properties, (6) verifying
807
+ a signal is not reproducible by stacking RRLs at other
808
+ redshifts (more details at the end of the Section and
809
+ see Fig. 4), and (7) finding that an RRL spectrum of
810
+ PKS 1740 stacked at z = 0.89 does not systematically
811
+ produce a signal. We made use of additional MALS L
812
+ band observations of PKS 1740 and followed the spectral
813
+ processing procedures described in Sec. 2. We created
814
+ an average RRL spectrum at z = 0.89 with an effec-
815
+ tive transition of H142α and show it in Fig. 4.
816
+ This
817
+ spectrum reached a noise, σ = 0.39 mJy, comparable to
818
+ the PKS 1830 stack. However, no emission or significant
819
+ spectral features are present in the PKS 1740 spectrum,
820
+ and it is consistent with noise.
821
+ This lends additional
822
+ support to the physical and real nature of the emission
823
+ from the z = 0.89 absorber in PKS 1830.
824
+ Two velocity components dominate the L band H144α
825
+ emission from PKS 1830. In the bottom panel of Fig. 3,
826
+ we show the best fit of two Gaussian profiles and the
827
+ 4 We also refer the reader to Figure 2, where the noise, integrated
828
+ signal, and integrated signal-to-noise properties also demonstrate
829
+ no single or few outlying spectra dominate.
830
+ 2
831
+ 0
832
+ 2
833
+ 2
834
+ 0
835
+ 2
836
+ 2
837
+ 0
838
+ 2
839
+ Flux Density (mJy)
840
+ 600
841
+ 400
842
+ 200
843
+ 0
844
+ 200
845
+ 400
846
+ 600
847
+ Velocity (km s
848
+ 1)
849
+ 2
850
+ 0
851
+ 2
852
+ Figure 3. Comparison of RRL stacked spectra in L band at
853
+ z = 0.89. The top three panels compare spectra from parallel
854
+ hands and observing nights. The bottom panel shows (i) the
855
+ final spectral result for the band with Gaussian profiles fit
856
+ to two components and (ii) underneath, the final spectrum
857
+ with the Gaussian profiles subtracted. The vertical dashed
858
+ lines mark the velocities −230 km s−1 and 55 km s−1 within
859
+ which we integrate the signal of the Total component.
860
+ spectrum that results when the two Gaussian profiles
861
+ are subtracted.
862
+ The properties of the Gaussian fits
863
+ are listed in Table 1; the errors of each quantity are
864
+ determined from the variance of each variable as de-
865
+ termined by the fit.
866
+ The H144α component centered
867
+ on −117.4 ± 5.3 km s−1 arises from the NE sight-line
868
+ (and thus we will refer to this velocity component as
869
+ the NE component hereafter). The H144α component
870
+ centered on 7.7 ± 4.2 km s−1 arises from the SW sight-
871
+ line (and thus we will refer to this velocity compo-
872
+ nent as the SW component hereafter).
873
+ In Table 1,
874
+ we also include the integrated optical depth equal to
875
+
876
+ τ dv ≈ −
877
+
878
+ SRRL/Sc dv computed by letting Sc of each
879
+ component equal half the total continuum flux density
880
+ in the band, Sc ≈ 5.75 Jy. We assume the continuum
881
+ flux is equally split between the two core components
882
+ following Koopmans & de Bruyn (2005) and Combes
883
+
884
+ Radio Recombination Lines at z = 0.89
885
+ 9
886
+ 600
887
+ 400
888
+ 200
889
+ 0
890
+ 200
891
+ 400
892
+ 600
893
+ Velocity (km s
894
+ 1)
895
+ 2
896
+ 0
897
+ 2
898
+ 4
899
+ 6
900
+ 8
901
+ 10
902
+ 12
903
+ 14
904
+ Flux density (mJy)
905
+ z = 0.0
906
+ z = 0.19
907
+ z = 2.5
908
+ PKS 1740
909
+ z = 0.89
910
+ L band
911
+ UHF band
912
+ Figure 4. Non-detection RRL spectra in the spectrum of
913
+ PKS 1830 (top three) and in PKS 1740 (bottom). Spectra
914
+ have been given an arbitrary offset in intensity in multiples
915
+ of 4 mJy. Velocities are defined with respect to the labeled
916
+ redshift.
917
+ 600
918
+ 400
919
+ 200
920
+ 0
921
+ 200
922
+ 400
923
+ 600
924
+ Velocity (km s
925
+ 1)
926
+ 1
927
+ 0
928
+ 1
929
+ 2
930
+ 3
931
+ Flux Density (mJy)
932
+ HI absorption / -240
933
+ OH absorption / -30
934
+ 0
935
+ 1×10
936
+ 4
937
+ 2×10
938
+ 4
939
+ Normalized Flux Density
940
+ Figure 5. The H144α spectrum detected in L band overlaid
941
+ by the rescaled H i and OH absorption spectra. The right-
942
+ hand ordinate shows the RRL flux density normalized by the
943
+ continuum.
944
+ et al. (2021) which show this to be the case and that the
945
+ core components dominate the emission at least down
946
+ to 1.4 GHz. Furthermore, ALMA observations measure
947
+ a NE/SW flux density ratio close to one in July 2019
948
+ (Muller et al. 2021).
949
+ Fig. 5 overlays the H144α spectrum with the H i
950
+ 21 cm and OH 18 cm absorption spectra that have been
951
+ rescaled by factors of −240 and −30, respectively, in
952
+ flux density units and obtained from the same MALS
953
+ datasets.
954
+ The RRL emission appears to span a simi-
955
+ lar velocity range as these other diffuse gas tracers and
956
+ likewise, is also dominated by two main velocity compo-
957
+ nents.
958
+ The RRL line centroids of the NE and SW compo-
959
+ nents agree within error with the OH 18 cm profiles,
960
+ which have values of −110±3 km s−1 and 6±3 km s−1,
961
+ respectively.
962
+ However, the RRL centroids are signif-
963
+ icantly offset from the dominant H i components at
964
+ ∼ −150 km s−1 and 0 km s−1, respectively, albeit the H i
965
+ profile is more complex with perhaps five velocity com-
966
+ ponents best-fitting the observed profile. The variation
967
+ in central velocity with H i could arise due to different
968
+ filling factors, intrinsic distributions, and shapes of the
969
+ continuum with the higher frequency tracers (OH and
970
+ RRLs) finding better agreement.
971
+ The RRL line width of the NE component also agrees
972
+ within error with the OH absorption width, but the
973
+ widths are significantly different for the SW component,
974
+ with the RRL FWHM of 63 ± 10 km s−1 and the OH
975
+ FWHM of 94.2 ± 5 km s−1.
976
+ An estimate of the H i
977
+ width is close to ∼ 100 km s−1 for both components,
978
+ which would be inconsistent with the RRL widths from
979
+ either component. Given the smaller line width of the
980
+ warmer gas traced by the RRLs in the SW, the emis-
981
+ sion may likely have a smaller filling factor, which is to
982
+ say, fewer individual components contribute to the total
983
+ profile. This can be expected since the SW line of sight
984
+ is dominated by dense molecular gas.
985
+ While the two dominant components of H144α emis-
986
+ sion generally agree with the H i and OH profiles, more
987
+ than two velocity components are discernible in the
988
+ higher S/N spectra of H i and OH. For example, OH
989
+ absorption has an additional component centered at
990
+ −211 ± 3 km s−1 with a FWHM of 28 ± 9 km s−1; the
991
+ RRL line profile fit to the NE component encompasses
992
+ some emission in this velocity range. The H i absorp-
993
+ tion spectrum also shows two velocity features that are
994
+ blueshifted with respect to the main ∼ −150 km s−1
995
+ peak.
996
+ In Fig. 6, we show the UHF band detections obtained
997
+ at the z = 0.89 absorber.
998
+ We overlay the parallel
999
+ hand spectra, showing that they are consistent within
1000
+ the noise and thus likely not a result of RFI. Inte-
1001
+ grating the Stokes-I spectrum over the velocity chan-
1002
+ nels from −230 to 55 km s−1 results in
1003
+
1004
+ SH163α dv =
1005
+ 309 ± 22 mJy km s−1 and a maximum integrated S/N
1006
+ of 14. The effective transition of the final spectrum is
1007
+ H163α, with a rest-frame frequency of 1504.6 MHz and
1008
+ observed at 797.85 MHz.
1009
+ The H163α emission arises across a similar velocity
1010
+ range as the H144α emission, yet the peak intensities are
1011
+ slightly lower. The distinction of two components is less
1012
+ obvious in the H163α stack (UHF band), as compared
1013
+ with the H144α stack (L band). We fit two Gaussian
1014
+ components to the spectrum, fixing the central velocity
1015
+
1016
+ 10
1017
+ Emig et al.
1018
+ 2
1019
+ 0
1020
+ 2
1021
+ 600
1022
+ 400
1023
+ 200
1024
+ 0
1025
+ 200
1026
+ 400
1027
+ 600
1028
+ Velocity (km s
1029
+ 1)
1030
+ 4
1031
+ 2
1032
+ 0
1033
+ 2
1034
+ Flux Density (mJy)
1035
+ Figure 6. RRL stacked spectra in UHF band at z = 0.89.
1036
+ The top panel compares spectra from the two parallel hands.
1037
+ The bottom panel is the same as in Fig. 3 but for the UHF
1038
+ band spectrum.
1039
+ of the SW component equal to that obtained from the
1040
+ high S/N spectrum in L band, vcen = 7.7 km s−1. The
1041
+ best fits are shown in Fig. 6 and the fit parameters are
1042
+ listed in Table 1. As in the L band spectrum, we com-
1043
+ pute the integrated optical depth by assuming the UHF
1044
+ band continuum flux is equally split towards each core
1045
+ component, Sc ≈ 5.7 Jy.
1046
+ In Fig. 4, we show the L and UHF band stacked spec-
1047
+ tra of PKS 1830 at each redshift where we obtained null
1048
+ results: z = 0, z = 0.19, and z = 2.5. The spectral prop-
1049
+ erties of the non-detections are included in Table 1 and
1050
+ the integrated optical depth,
1051
+
1052
+ τ dv ≈ −
1053
+
1054
+ SRRL/Sc dv,
1055
+ is computed by letting Sc equal the total continuum
1056
+ flux density in the L and UHF bands, respectively.
1057
+ Mohan et al. (2002) previously reported a 5σ upper
1058
+ limit to the H158α line from the z = 0.19 absorber
1059
+ of SH158α < 0.5 mJy. In our L band spectrum of the
1060
+ z = 0.19 stack at an effective transition of H166α, we
1061
+ reach a spectral noise of 0.34 mJy, and our 3σ upper
1062
+ limit to the peak line emission of SH166α < 1.0 mJy
1063
+ is consistent with the results obtained by Mohan et al.
1064
+ (2002).
1065
+ Lastly, we note that carbon RRL emission becomes
1066
+ significantly enhanced only at frequencies ≲ 350 MHz,
1067
+ and thus we do not expect to detect it at the frequen-
1068
+ cies of our observations.
1069
+ The detected signal likely
1070
+ arises only from hydrogen emission given that it is co-
1071
+ incident in velocity with the HI 21 cm and OH 18 cm
1072
+ absorption. A 3σ upper limit to the carbon RRLs at
1073
+ z = 0.89 in L band is
1074
+
1075
+ SC144α dv < 22.3 mJy km s−1
1076
+ and in UHF band is
1077
+
1078
+ SC163α dv < 37.5 mJy km s−1,
1079
+ assuming a line width of 60 km s−1. We searched for
1080
+ Hβ emission by stacking all available lines in both L
1081
+ and UHF band following the procedures described in
1082
+ Sec. 2. We report a 3σ upper limit to the Hβ emission
1083
+ of
1084
+
1085
+ SH192β dv < 18.3 mJy km s−1 and an in-band ratio
1086
+ of peak H192β/H144α < 0.5, where typical in-band β/α
1087
+ ratios are ∼ 0.2 (e.g., Salas et al. 2017).
1088
+ 4. PHYSICAL CONDITIONS OF IONIZED GAS IN
1089
+ THE Z=0.89 ABSORBER
1090
+ Because PKS 1830 has a relatively low Galactic
1091
+ latitude and is behind the Inner Galaxy,
1092
+ (ℓ, b
1093
+ =
1094
+ 12.0◦, −5.7◦), it has not yet been feasible to observe ion-
1095
+ ized gas tracers at UV through IR wavelengths from the
1096
+ z = 0.89 galaxy (e.g., Djorgovski et al. 1992; Courbin
1097
+ et al. 1998).
1098
+ However, there have been some indica-
1099
+ tions for the presence of ionized gas that could be at-
1100
+ tributed to the z = 0.89 galaxy. Firstly, the jet emis-
1101
+ sion which forms an Einstein ring shows a complete
1102
+ turnover at ∼ 300 MHz in its spectral energy distribu-
1103
+ tion (SED), which could be due to free-free absorption
1104
+ and would not arise from synchrotron self absorption
1105
+ (Pramesh Rao & Subrahmanyan 1988; Jauncey et al.
1106
+ 1991; Jones et al. 1996; Lovell et al. 1996, and for more
1107
+ details, see Sec 5.3). Secondly, jet emission in the Ein-
1108
+ stein ring (i.e., not the core emission) is strongly po-
1109
+ larized (Pramesh Rao & Subrahmanyan 1988; Subrah-
1110
+ manyan et al. 1990), indicating ionized plasma lies along
1111
+ the lines of sight. However, it is debated whether the
1112
+ ionized gas originates in the Milky Way or the z = 0.89
1113
+ galaxy and if the blazar core components are free-free
1114
+ or synchrotron-self absorbed (Jones et al. 1996; Guirado
1115
+ et al. 1999; Mart´ı-Vidal et al. 2015).
1116
+ Stimulated hydrogen radio recombination lines pro-
1117
+ vide strong constraints on the gas volume density of elec-
1118
+ trons and volume-averaged pathlength. In the following
1119
+ sections we model the RRL emission to derive physi-
1120
+ cal properties. We use these constraints to estimate the
1121
+ ionized gas mass per unit area and the ionizing photon
1122
+ flux.
1123
+ 4.1. RRL line width
1124
+ The width of recombination lines as a function of fre-
1125
+ quency provides insight into the physical properties of
1126
+ the emitting gas.
1127
+ A Doppler-broadened profile has a
1128
+ constant width in velocity units as a function of fre-
1129
+ quency, and its Gaussian profile indicates broadening
1130
+ from the intrinsic gas particle motions (e.g., due to the
1131
+ temperature of the gas or turbulence) or from multi-
1132
+ ple emitting regions rotating at different velocities in a
1133
+ galaxy. However, collisional and radiation broadening
1134
+
1135
+ Radio Recombination Lines at z = 0.89
1136
+ 11
1137
+ create a Lorentzian line profile and have an increasing
1138
+ line width towards lower frequency, thereby informing
1139
+ on the electron density of the gas or the incident radia-
1140
+ tion field strength, respectively.
1141
+ For the NE component, widths of FWHMH144α =
1142
+ 131±14 km s−1 and FWHMH163α = 155±24 km s−1 are
1143
+ consistent within error. For the SW component, widths
1144
+ of FWHMH144α = 62.3±9.8 km s−1 and FWHMH163α =
1145
+ 80±28 km s−1 are also consistent within error. This in-
1146
+ dicates that the lines are Doppler broadened. Gaussian
1147
+ distributions do fit our observed line profiles reasonably
1148
+ well (see Figs. 3 and 6).
1149
+ Assuming the line widths of each component are equal
1150
+ at the two frequencies, the weighted average of the
1151
+ FWHM for the NE component is 137 km s−1 and for
1152
+ the SW component is 64 km s−1. We then use the width
1153
+ at the lowest frequency to put a firm upper limit on the
1154
+ gas density, assuming pressure broadening dominates.
1155
+ Note, there is no indication to expect an extreme ra-
1156
+ diation field that would cause the line to be radiation
1157
+ broadened. Salgado et al. (2017b) provide the FWHM
1158
+ of a collisionally broadened profile, ∆νcol = nenγ ·10a/π
1159
+ where ∆νcol is in units of Hz, ne is in units of cm−3,
1160
+ a = −7.386, γ = 4.439 and n is the principal quantum
1161
+ level. We place an upper limit of ne ≲ 7900 cm−3 for
1162
+ the NE component and ne ≲ 3700 cm−3 for the SW
1163
+ component.
1164
+ 4.2. RRL SLED
1165
+ As shown in Shaver (1975) and Shaver (1978), the
1166
+ flux density of an optically thin RRL of principal quan-
1167
+ tum number, n, and frequency, ν, observed in front of
1168
+ a significantly-brighter background radio source of flux
1169
+ density Sbkg,ν and which results from stimulated emis-
1170
+ sion is given by
1171
+ Sn,ν ≈ −τ ∗
1172
+ n,ν (bnβ) Sbkg,ν
1173
+ (1)
1174
+ where τ ∗
1175
+ n,ν is the LTE RRL optical depth, bn is the ra-
1176
+ tio of the number of hydrogen atoms in level n between
1177
+ the non-LTE and the LTE cases, and β characterizes
1178
+ the effect of stimulated transitions.
1179
+ bn and β, collec-
1180
+ tively referred to as departure coefficients, depend on the
1181
+ atomic physics of the hydrogen atom, and their product
1182
+ is dependent upon electron density, electron tempera-
1183
+ ture, the radiation field, and pathlength. Computation
1184
+ of the departure coefficients has been thoroughly stud-
1185
+ ied since the first observations of hydrogen RRLs (e.g.,
1186
+ Shaver 1975; Hummer & Storey 1987; Salgado et al.
1187
+ 2017a; Prozesky & Smits 2018). Integrating over the line
1188
+ profile and expressing the LTE optical depth of the line,
1189
+ the integrated optical depth of an α transition (∆n = 1)
1190
+ 100
1191
+ 101
1192
+ Rest Frequency (GHz)
1193
+ 10
1194
+ 2
1195
+ dv (km s
1196
+ 1)
1197
+ NE
1198
+ SW
1199
+ Total
1200
+ 100
1201
+ Observed Frequency (GHz)
1202
+ Figure 7. The integrated optical depth as a function of fre-
1203
+ quency for the NE, SW, and Total components. We overlay
1204
+ predicted line intensities from RRL models, from 100 model
1205
+ combinations that fall within the reported uncertainties and
1206
+ chosen at random. We assume a redshift z = 0.89 for the
1207
+ conversion between observed and rest frequencies.
1208
+ at high principal quantum numbers takes the form
1209
+
1210
+ τn dv ≈ 6.13 × 10−4 km s-1 (bnβ)
1211
+ (2)
1212
+
1213
+ EM
1214
+ 104 cm-6 pc
1215
+ � �
1216
+ Te
1217
+ 104 K
1218
+ �-2.5 �
1219
+ ν
1220
+ GHz
1221
+ �-1
1222
+ where Te is the electron temperature and EM is the
1223
+ emission measure equal to EM =
1224
+
1225
+ nenion dℓ for elec-
1226
+ tron density ne and ion density nion integrated over the
1227
+ pathlength ℓ. Because the departure coefficients at each
1228
+ principal quantum number are strongly dependent upon
1229
+ density, they are key to breaking the degeneracy between
1230
+ density and pathlength in the emission measure.
1231
+ In Fig. 7, we plot the RRL SLED using the inte-
1232
+ grated optical depths corresponding to the NE and SW
1233
+ Gaussian components from from Table 1.
1234
+ We also
1235
+ plot (and use for analysis in this section), the inte-
1236
+ grated optical depth of the Total component computed
1237
+ from the velocity-integrated emission over -230 to 55
1238
+ km s−1 and setting the continuum flux density, Sc,
1239
+ equal to the flux density in each respective band, i.e.
1240
+
1241
+ τH144α = −0.029 ± 0.001 km s−1 and
1242
+
1243
+ τH163α =
1244
+ −0.027±0.002 km s−1. While it would be ideal to model
1245
+ the two velocity components individually, the large er-
1246
+ rors of the Gaussian fit parameters warrant caution. The
1247
+ results from the Total component represent an average
1248
+ of the two lines-of-sight.
1249
+ To model the recombination line emission, we calcu-
1250
+ lated the departure coefficients for a range of electron
1251
+ densities and electron temperatures using the code and
1252
+
1253
+ 12
1254
+ Emig et al.
1255
+ framework described in Salgado et al. (2017a,b). When
1256
+ computing bnβ we only consider the effect of the cosmic
1257
+ microwave background on the level populations.
1258
+ The
1259
+ grid in density was sampled at an interval of 0.5 dex
1260
+ and the temperature in multiples of 100. We then inter-
1261
+ polate over the grid values using a cubic bivariate spline
1262
+ for the following analysis.
1263
+ We used Bayesian analysis to constrain the posterior
1264
+ distribution of the parameters ne, Te, and ℓ, and we
1265
+ assume the gas is fully ionized with nion = ne.
1266
+ The
1267
+ likelihood function describes the comparison of the ob-
1268
+ served integrated optical depth with the model (Eq. 2),
1269
+ assuming a Gaussian distribution function with disper-
1270
+ sion equal to the measurement uncertainty (see Table 1).
1271
+ The model is taken to be Eq. 2 in which the values of ν,
1272
+ ne, Te, and corresponding bnβ are input, and the path-
1273
+ length is left as a free parameter. We used flat priors for
1274
+ the parameters expressed in logarithmic scale. We as-
1275
+ sumed reasonable ranges of the parameters: for density,
1276
+ log(ne) = [−1, 6] cm−3 for the Total component, and
1277
+ we used the upper limits derived from the line width
1278
+ for the NE and SW components, log(ne) = [−1, 3.4]
1279
+ and log(ne) = [−1, 3.6], respectively, in units of cm−3;
1280
+ for pathlength, log(ℓ) = [−9, 6] pc; and for tempera-
1281
+ ture, we select a strict range of log(Te) = [3, 4.3] K,
1282
+ given that theory and observations substantiate tem-
1283
+ peratures of photoionized gas to have typical values of
1284
+ Te ≈ 6000 − 10 000 K (e.g., Wenger et al. 2019; Tielens
1285
+ 2005). We also used the prior that the departure coef-
1286
+ ficients must be negative and thus the line appears in
1287
+ emission. To sample the posterior distribution we used
1288
+ an affine-invariant sampler within the package emcee
1289
+ (Foreman-Mackey et al. 2013). We used 20 walkers, 105
1290
+ iterations, and verified convergence using an autocorre-
1291
+ lation time analysis.
1292
+ The 2D and 1D marginal posterior distributions of
1293
+ the parameters of the Total component are plotted in
1294
+ Fig. 8. They show that density is constrained by the
1295
+ models to within 0.6 dex with a maximum a posteriori
1296
+ value of ne = 500 cm−3 and 68.3% credible interval of
1297
+ 130 cm−3 ≤ ne ≤ 2000 cm−3, and that electron temper-
1298
+ atures are not well constrained. Typical temperatures
1299
+ of photoionized gas have values of Te ≈ 6000−10 000 K,
1300
+ with variations that are largely metallicity dependent
1301
+ (e.g., Shaver et al. 1983; Wenger et al. 2019). The RRL
1302
+ modeling shows that typical temperatures are slightly
1303
+ more likely than cooler temperatures. The maximum a
1304
+ posteriori value of the volume-averaged pathlength for
1305
+ the Total component is ℓ = 0.025 pc and the 68.3% cred-
1306
+ ible interval is 7.9 × 10−3 pc ≤ ℓ ≤ 0.13 pc. It is reason-
1307
+ able to infer that this ionized gas is not distributed in a
1308
+ very thin sheet of ℓ ∼ 0.025 pc, but instead has a volume
1309
+
1310
+ 3.2
1311
+ 3.6
1312
+ 4.0
1313
+ log(Te)
1314
+ 1.6
1315
+ 2.4
1316
+ 3.2
1317
+ 4.0
1318
+ log(ne)
1319
+ 2
1320
+ 1
1321
+ 0
1322
+ 1
1323
+ log( )
1324
+ 3.2
1325
+ 3.6
1326
+ 4.0
1327
+ log(Te)
1328
+ 2
1329
+ 1
1330
+ 0
1331
+ 1
1332
+ log( )
1333
+ Figure 8. Corner plot showing the Total component con-
1334
+ straints for the electron densities ne in units of cm−3, elec-
1335
+ tron temperatures Te in units of K, and pathlength ℓ in
1336
+ units of pc. Contours are drawn at 68% and 95% intervals.
1337
+ The histograms show the marginalized distributions and the
1338
+ shaded region marks the 68% credible intervals.
1339
+ Table 2. Constraints on physical conditions. Temper-
1340
+ ature is not well constrained within the allowed range
1341
+ log(Te) = [3, 4.3] K.
1342
+ vcen
1343
+ log(ne)
1344
+ log(ℓ)
1345
+ log(EM)
1346
+ (km s−1)
1347
+ (cm−3)
1348
+ (pc)
1349
+ (cm−6 pc)
1350
+ NE
1351
+ -120
1352
+ 2.0+1.0
1353
+ −0.7
1354
+ −0.7+1.1
1355
+ −1.1
1356
+ 4.1+0.8
1357
+ −1.2
1358
+ SW
1359
+ 8
1360
+ 3.2+0.4
1361
+ −1.0
1362
+ −2.7+1.8
1363
+ −0.2
1364
+ 3.9+0.7
1365
+ −1.0
1366
+ Total
1367
+ (-230–55)
1368
+ 2.7+0.6
1369
+ −0.6
1370
+ −1.6+0.7
1371
+ −0.5
1372
+ 4.9+0.4
1373
+ −1.7
1374
+ filling factor less than unity, and the emission arises from
1375
+ multiple, discrete clouds within the galaxy — either as
1376
+ ionized clouds, interface layers of molecular clouds, H ii
1377
+ regions (for further information see Sec. 5.1), etc.
1378
+ In Fig. 9, we show the marginal posterior distributions
1379
+ for all three components and each of the parameters,
1380
+ electron density (ne), electron temperature (Te), path-
1381
+ length (ℓ), and emission measure (EM). The parameter
1382
+ constraints are listed in Table 2, with the maximum a
1383
+ posteriori values and 68.3% credible intervals. We do
1384
+ not list the temperature in Table 2 because it is not well
1385
+ constrained by these measurements. We take 100 RRL
1386
+ models at random with properties that fall within the
1387
+
1388
+ Radio Recombination Lines at z = 0.89
1389
+ 13
1390
+ 100
1391
+ 102
1392
+ 104
1393
+ Density (cm
1394
+ 3)
1395
+ 0.0
1396
+ 0.1
1397
+ 0.2
1398
+ 0.3
1399
+ 0.4
1400
+ 0.5
1401
+ 0.6
1402
+ Posterior Probability
1403
+ NE
1404
+ SW
1405
+ Total
1406
+ 1000
1407
+ 10000
1408
+ Temperature (K)
1409
+ 0.0
1410
+ 0.2
1411
+ 0.4
1412
+ 0.6
1413
+ 0.8
1414
+ 1.0
1415
+ 10
1416
+ 2
1417
+ 100
1418
+ 102
1419
+ Pathlength (pc)
1420
+ 0.0
1421
+ 0.1
1422
+ 0.2
1423
+ 0.3
1424
+ 0.4
1425
+ 0.5
1426
+ 0.6
1427
+ 0.7
1428
+ 102
1429
+ 104
1430
+ 106
1431
+ Emission Measure (cm
1432
+ 6 pc)
1433
+ 0.0
1434
+ 0.1
1435
+ 0.2
1436
+ 0.3
1437
+ 0.4
1438
+ Figure 9.
1439
+ Posterior probability distributions for the parameters constrained through the RRL observations: electron density ne,
1440
+ electron temperature Te, pathlength ℓ, and emission measure EM, derived for the NE, SW, and Total components. The shaded
1441
+ regions represent the 68.3% credible intervals. In the left-most panel, the gray dashed (dotted) line marks the ne < 7900 cm−3
1442
+ (<3700 cm−3) constraint for the NE (SW) component obtained from the line width.
1443
+ constraints of the 68.3% credible intervals and plot the
1444
+ SLEDs of these models in Fig. 7, in order to demonstrate
1445
+ the variation in the predicted integrated optical depth
1446
+ for different models.
1447
+ 4.3. Mass of ionized gas
1448
+ Using the most likely values of the physical quantities
1449
+ in Table 2, we estimate the mass and mass per unit area
1450
+ of ionized gas in each component. These mass estimates
1451
+ are meant for qualitative comparisons as order of magni-
1452
+ tude indications and do warrant caution. We assume the
1453
+ volume of gas is effectively described by a cylinder, as
1454
+ a circular region on the plane of the sky (core size) and
1455
+ with a distance into the plane equal to the path length.
1456
+ We also assume that the radio continuum emission is
1457
+ dominated by the NE and SW components, as these
1458
+ have been shown to account for ∼ 99% of the emission
1459
+ at 1.4 GHz (Koopmans & de Bruyn 2005; Combes et al.
1460
+ 2021). To calculate the mass of ionized gas, we expect
1461
+ Mion ≈ 1.36mH · ne · (πr2
1462
+ c)ℓ
1463
+ Mion ≈ 0.11 M⊙
1464
+ � ne
1465
+ cm−3
1466
+ � � rc
1467
+ pc
1468
+ �2 � ℓ
1469
+ pc
1470
+
1471
+ .
1472
+ (3)
1473
+ where mH is the hydrogen atom mass and rc is the radius
1474
+ of the radio continuum core. Guirado et al. (1999) con-
1475
+ strained the source size of the SW component to follow
1476
+ ∝ ν−2.0 resulting in a size of 0.1′′ at 1 GHz, which cor-
1477
+ responds to the value we set of rc = 786 pc at z = 0.89.
1478
+ For the NE component we adopt the separation of 0.05′′
1479
+ between the two brightest emission peaks as the size,
1480
+ rc = 393 pc.
1481
+ We do not include uncertainties for rc
1482
+ when computing the mass; however, we note that their
1483
+ errors are small in comparison to the large range un-
1484
+ certainty of the credible intervals. Using the posterior
1485
+ distributions of ne and ℓ, we estimate a total mass for
1486
+ the NE component of Mion ≈ 106.0+0.6
1487
+ −0.7 M⊙ and for the
1488
+ SW component, Mion ≈ 105.5+0.8
1489
+ −0.4 M⊙. If we assume that
1490
+ the area of the Total component is a summation of the
1491
+ areas intercepted by the NE and SW lines-of-sight, the
1492
+ estimated ionized mass is Mion ≈ 106.4+0.7
1493
+ −0.5 M⊙.
1494
+ It is informative to also calculate the gas mass per
1495
+ unit area
1496
+ Σion ≈ 0.033 M⊙ pc−2 � ne
1497
+ cm−3
1498
+ � � ℓ
1499
+ pc
1500
+
1501
+ .
1502
+ (4)
1503
+ For the NE, SW, and Total components, we calculate
1504
+ Σion to be 100.3+0.6
1505
+ −0.7 M⊙ pc−2, 10−0.8+0.8
1506
+ −0.4 M⊙ pc−2, and
1507
+ 100.0+0.7
1508
+ −0.5 M⊙ pc−2, respectively.
1509
+ Using the surface densities of the NE, SW and Total
1510
+ components, we calculate an estimate for the total ion-
1511
+ ized gas mass of the galaxy within the Einstein ring of
1512
+ Rg ∼ 5.3 kpc in units of M⊙ as log(Mion,g) ≈ 8.2+0.6
1513
+ −0.7,
1514
+ 7.1+0.8
1515
+ −0.4, and 7.9+0.7
1516
+ −0.5, respectively. While the mass esti-
1517
+ mated from the SW is more equivalent to a true lower
1518
+ limit of the total ionized gas mass, the estimates from
1519
+ the NE and Total components are almost certainly lower
1520
+ limits as well since we do not trace the bulk of the ionized
1521
+ gas mass of the galaxy contained in the Warm Ionized
1522
+ Medium (WIM; see Tielens 2005).
1523
+ 4.4. Ionizing photon flux
1524
+ We use the ionized gas emission measure to infer the
1525
+ ionizing photon flux. The ionizing photon rate, Qo, per
1526
+ unit area is,
1527
+ Qo
1528
+ area ≈ EM · αB
1529
+ Qo
1530
+ area ≈ 7.6 × 1045 photons s−1 pc−2
1531
+ EM
1532
+ 103 cm−6 pc (5)
1533
+ where αB is the case B recombination coefficient. Us-
1534
+ ing the posterior distributions of the emission mea-
1535
+ sure, we calculate ionizing photon fluxes in units of
1536
+
1537
+ 14
1538
+ Emig et al.
1539
+ photons s−1 pc−2 of log (Qo/area) = 47.0+0.8
1540
+ −1.2, 46.8+0.7
1541
+ −1.0,
1542
+ and 47.8+0.4
1543
+ −1.7 for the NE, SW, and Total components,
1544
+ respectively. These values are about an order of mag-
1545
+ nitude or more higher than the ionizing photon flux in
1546
+ the disk of the Milky Way (Kado-Fong et al. 2020, and
1547
+ references therein).
1548
+ While the gas mass estimates (Sec. 4.3) are likely lower
1549
+ limits, the ionized photon fluxes are closer to realistic
1550
+ values, since they are dominated by the large emission
1551
+ measures that we are sensitive to.
1552
+ 5. DISCUSSION
1553
+ 5.1. Star Formation Rate and ISM Properties
1554
+ The posterior distributions for the emission mea-
1555
+ sure and thus directly the ionizing photon flux are
1556
+ constrained with fairly similar 68.3% credible inter-
1557
+ vals.
1558
+ To estimate a star formation rate (SFR) of
1559
+ the galaxy, we adopt the log-average EM within the
1560
+ credible intervals of the three components, EM
1561
+
1562
+ 104.0±0.8 cm−6 pc, within a typical error of 0.8 dex, and
1563
+ therefore we adopt an ionizing photon flux is Qo/area ≈
1564
+ 1046.9±0.8 photons s−1 pc−2. We estimate the total ion-
1565
+ izing photon rate for the galaxy within Rg = 5.3 kpc
1566
+ as Qo = πR2
1567
+ g · 1046.9±0.8 ≈ 1054.8±0.8 photons s−1. A
1568
+ Starburst99 model (Leitherer et al. 1999) of continu-
1569
+ ous star formation establishes the relation with the ion-
1570
+ izing photon rate (which levels off after ∼50 Myr) of
1571
+ SFR = 1 M⊙ yr−1 (Qo/1.4 × 1053 photons s−1). Using
1572
+ this relation, an estimated SFR for the z = 0.89 galaxy
1573
+ is SFR ≈ 101.7±0.8 M⊙ yr−1 and the SFR per unit area
1574
+ is ΣSFR ≈ 10−0.2±0.8 M⊙ yr−1 kpc−2. A galaxy on the
1575
+ main sequence at z = 0.89 with SFR ∼50 M⊙ yr−1 has a
1576
+ typical stellar mass of ∼ 1011 M⊙ (e.g., Schreiber et al.
1577
+ 2015). Current lensing models estimate the total mass
1578
+ within the Einstein ring as ME ≈ 4 × 1011 M⊙ (Muller
1579
+ et al. 2020) and therefore a stellar mass of ∼ 8×1010 M⊙
1580
+ given a typical mass to stellar light ratio of ∼ 5 (Treu &
1581
+ Koopmans 2004). This is likely a main-sequence galaxy.
1582
+ In Sec. 4.3 we estimated the ionized gas mass per unit
1583
+ area of the NE component to be Σion ∼ 2.1 M⊙ pc−2.
1584
+ For comparison, the H i column density is estimated to
1585
+ be NH I ≈ 5×1021 cm−2 assuming half of the continuum
1586
+ flux comes from the NE component (Chengalur et al.
1587
+ 1999; Combes et al. 2021). Assuming the average parti-
1588
+ cle mass is ≈ 1.36mH, the atomic gas mass per unit area
1589
+ is ΣH I ≈ 50 M⊙ pc−2. We use the OH column density of
1590
+ NOH ≈ 1.5 × 1015 cm−2 (Gupta et al. 2021) and assume
1591
+ an abundance of 10−7 (Balashev et al. 2021) given that
1592
+ this line-of-sight has properties of a diffuse cloud (Muller
1593
+ et al. 2011) in order to estimate a molecular gas column
1594
+ density of NH2 ∼ 1.5×1022 cm−2. This H2 column den-
1595
+ sity is higher than the NH2 ∼ 1021 cm−2 derived from
1596
+ H2O absorption, with a smaller continuum cross section
1597
+ at higher frequencies (Muller et al. 2014). Assuming the
1598
+ average particle mass is ≈ 2mH, the molecular gas mass
1599
+ per unit area is ΣH2 ≈ 240 M⊙ pc−2.
1600
+ With these estimates, the neutral gas mass per unit
1601
+ area is ΣHI+H2
1602
+ ∼ 290 M⊙ pc−2.
1603
+ The ionized gas
1604
+ mass detected in RRLs of the NE component is a
1605
+ small fraction (∼0.7%) of the total gas mass.
1606
+ The
1607
+ Kennicutt-Schmidt law (Kennicutt 1998) long estab-
1608
+ lishes a direct correlation between the surface densi-
1609
+ ties of the neutral gas mass ΣHI+H2 and the star for-
1610
+ mation rate ΣSFR in galaxies on spatial scales 300–500
1611
+ pc or more (Schruba et al. 2010; Kruijssen & Long-
1612
+ more 2014). It suggests that a region in a galaxy with
1613
+ ΣSFR ∼ 0.6 M⊙ yr−1 kpc−2 has a neutral gas mass per
1614
+ unit area of ΣHI+H2 ∼ 270 M⊙ pc−2 (e.g., Kennicutt
1615
+ & De Los Reyes 2021). Our measured neutral gas mass
1616
+ agrees to within 10% of the expected value, although our
1617
+ measured SFR surface density has a large uncertainty.
1618
+ Although the estimated densities of the NE, SW
1619
+ and Total components are consistent within the er-
1620
+ rors, the most likely density of the SW component,
1621
+ ne ≈ 1600 cm−3, is typical of young, compact H ii re-
1622
+ gions. If we assume the H ii regions are rH II ≈ 2 pc in
1623
+ size, then the covering fraction through this cross section
1624
+ of the galaxy is fc ≈ ℓSW/(4/3 · rH II) ≈ 7.5 × 10−4. The
1625
+ total number of H ii regions, NH II, is calculated from
1626
+ the surface density estimates, πr2
1627
+ C = NH II/fc · (π r2
1628
+ H II),
1629
+ which computes to NH II ∼ 116, where we recall from
1630
+ Sec. 4.3 that rC = 786 pc for the SW component. Equiv-
1631
+ alently, assuming all H ii regions have ne ≈ 1600 cm−3
1632
+ and rH II ≈ 2 pc, the ionized gas mass per H ii region is
1633
+ estimated to be MH II = 1860 M⊙, and from the total
1634
+ ionized mass of the SW component, MSW = NH IIMH II,
1635
+ also results in NH II ≈ (2.1×105 M⊙)/(1860 M⊙) ∼ 113.
1636
+ However, this calculation warrants caution because the
1637
+ number of H ii regions changes dramatically depending
1638
+ on the assumed size. We set rH II ≈ 2 pc because it is
1639
+ the typical size of young, massive star clusters (Ryon
1640
+ et al. 2017) that are expected to dominate star forma-
1641
+ tion in galaxies of this epoch, i.e., with high gas surface
1642
+ densities and star formation rates (Kruijssen 2012).
1643
+ 5.2. The ne − ΣSFR relation
1644
+ The star formation rate per unit area is shown to
1645
+ be correlated with the electron density of ionized gas
1646
+ in the region (Shimakawa et al. 2015; Herrera-Camus
1647
+ et al. 2016; Jiang et al. 2019). Assuming H ii regions
1648
+ thermalize with the ISM (Guti´errez & Beckman 2010),
1649
+ i.e., take on a pressure balance with others phases, then
1650
+ the volume-average density of the ionized gas (along
1651
+ with fairly consistent ionized gas temperatures) indi-
1652
+
1653
+ Radio Recombination Lines at z = 0.89
1654
+ 15
1655
+ cates the thermal pressure of the medium (Jiang et al.
1656
+ 2019; Barnes et al. 2021). This results in a P −ΣSFR re-
1657
+ lation that serves as an important test-bed for pressure-
1658
+ regulated, feedback-modulated star formation (e.g., Kim
1659
+ et al. 2013; Ostriker & Kim 2022). Using doublet ratios
1660
+ of [SII] and [OII] in the optical (Kewley et al. 2019),
1661
+ Shimakawa et al. (2015) and Jiang et al. (2019) find a
1662
+ relation of ΣSFR ∝ n1.7±0.3
1663
+ e
1664
+ in a sample of z ∼ 1 − 3
1665
+ starburst galaxies. In the far IR, the ratio of [NII] fine
1666
+ structure lines from a sample of nearby normal galax-
1667
+ ies and (ultra) luminous infrared galaxies ((U)LIRGs;
1668
+ LIR ≥ 1011 L⊙) establish ΣSFR ∝ n1.5
1669
+ e
1670
+ (Herrera-Camus
1671
+ et al. 2016).
1672
+ For ΣSFR ∼ 0.6 M⊙ yr−1 kpc−2, the electron den-
1673
+ sity predicted by the Shimakawa et al. (2015) relation is
1674
+ ∼ 110 cm−3 and by the Herrera-Camus et al. (2016) re-
1675
+ lation is ∼ 200 cm−3.
1676
+ These density estimates agree
1677
+ well with the NE component and lie on the cusp of
1678
+ the 68% credible intervals of the SW and Total com-
1679
+ ponents.
1680
+ If the RRL emission is tracing the thermal
1681
+ properties of the diffuse medium in the galaxy’s disk,
1682
+ higher pressures and densities are typically found at
1683
+ smaller galactic radii, i.e., the SW component, than at
1684
+ larger galactic radii, i.e., the NE component. For exam-
1685
+ ple, Guti´errez & Beckman (2010) measured the electron
1686
+ density to increase towards smaller galactic radii, r, as
1687
+ ⟨ne⟩ = ⟨ne⟩o exp (−r/Rg), where Rg is the scale length
1688
+ of the disk at which star-formation and density drops off
1689
+ and ⟨ne⟩o is inner most density. With Rg = 5.3 kpc and
1690
+ ⟨ne⟩ = 100 cm−3 of the NE component, at r = 2.4 kpc
1691
+ the expected density is ne ∼ 160 cm−3. While the con-
1692
+ trast in density at the two radii is not as extreme as the
1693
+ best fit densities of the components indicate, the general
1694
+ trend is consistent and a density of 160 cm−3 does fall
1695
+ within the 68% credible interval of the SW component.
1696
+ The smaller pathlength in comparison to the NE com-
1697
+ ponent might then indicate a smaller covering fraction
1698
+ of the overall larger cross section of this line-of-sight, i.e.
1699
+ only within or close to the spiral arm.
1700
+ 5.3. Radio Continuum SED
1701
+ The radio continuum emission from PKS 1830 is com-
1702
+ plex. The lensing is achromatic and contains a small-
1703
+ scale core-jet structure with regions of different spectral
1704
+ indices and opacities. In addition, the source is variable
1705
+ on hourly to yearly timescales (Pramesh Rao & Sub-
1706
+ rahmanyan 1988; van Ommen et al. 1995; Lovell et al.
1707
+ 1996, 1998; Garrett et al. 1997; Jin et al. 2003; Mart´ı-
1708
+ Vidal et al. 2013; Allison et al. 2017), which makes it
1709
+ difficult to compare observations and model the radio
1710
+ continuum emission (Muller et al. 2020).
1711
+ 10
1712
+ 1
1713
+ 100
1714
+ 101
1715
+ Rest Frequency (GHz)
1716
+ 101
1717
+ 3 × 100
1718
+ 4 × 100
1719
+ 6 × 100
1720
+ 2 × 101
1721
+ SC (Jy)
1722
+ 10
1723
+ 1
1724
+ 100
1725
+ 101
1726
+ Observed Frequency (GHz)
1727
+ Figure 10.
1728
+ Compilation of continuum flux density mea-
1729
+ surements from the bright and highly variable (factors of
1730
+ ∼1.5 on weeks and years timescales) PKS 1830. The gray
1731
+ shaded region encompasses the 1σ confidence region of a
1732
+ best-fitting power-law that is attenuated by free-free absorp-
1733
+ tion. We also include the continuum SEDS (with colors cor-
1734
+ responding to the components on the left hand plot) from a
1735
+ fixed power-law and that is attenuated by ionized gas with
1736
+ properties constrained by the RRL models.
1737
+ We assume a
1738
+ redshift z = 0.89 for the conversion between observed and
1739
+ rest frequencies.
1740
+ Ionized gas that is detectable in RRLs and has a
1741
+ large covering fraction would also emit free-free emis-
1742
+ sion and when it becomes optically thick, would ab-
1743
+ sorb any background radio continuum.
1744
+ A reliable
1745
+ model and knowledge of the spatially-resolved radio
1746
+ SED could independently constrain the physical con-
1747
+ ditions of the gas through free-free absorption.
1748
+ The
1749
+ frequency at which radio emission becomes optically
1750
+ thick to free-free absorption is defined by τν = 6.67 ×
1751
+ 10−2 EM T −1.323
1752
+ e
1753
+ (ν/GHz)−2.118 (e.g., Emig et al. 2022).
1754
+ We
1755
+ collected
1756
+ radio
1757
+ continuum
1758
+ measurements
1759
+ of
1760
+ PKS 1830 at ν ≲ 22 GHz (using the NASA/IPAC
1761
+ Extragalactic Database (NED) and Pramesh Rao &
1762
+ Subrahmanyan 1988; Henkel et al. 2008; Intema et al.
1763
+ 2017) and plot these in Fig. 10.
1764
+ We fit the SED of
1765
+ PKS 1830 as a power-law index with an external screen
1766
+ of free-free absorption, using the functional form Sν =
1767
+ So( ν
1768
+ νo )α exp(−τν) with τν = τo( ν
1769
+ νo )−2.118. Setting νo =
1770
+ 40 GHz with respect to observed frequencies, the best fit
1771
+ parameters with 1σ uncertainties are So = 4.8 ± 0.4 Jy,
1772
+ α = −0.24 ± 0.03 and τo = (1.1 ± 0.2) × 10−5.
1773
+ In Fig. 10, we also plot how ionized gas that has phys-
1774
+ ical properties constrained by the RRL models — us-
1775
+ ing the same selection of models presented in Fig. 7 —
1776
+ would attenuate a power-law continuum SED (normal-
1777
+ ized by So and α of our fit). The emission from the RRLs
1778
+
1779
+ 16
1780
+ Emig et al.
1781
+ we detect at z = 0.89 would result in free-free absorp-
1782
+ tion at lower frequencies than is observed in PKS 1830.
1783
+ For the z = 0.89 galaxy to cause the free-free absorp-
1784
+ tion, volume-average pathlengths a factor of 5 larger are
1785
+ needed. A smaller filling factor and larger pathlength
1786
+ intercepting the radio emission is not unreasonable.
1787
+ It would still be possible for ionized gas in the envi-
1788
+ ronment of the blazar at z = 2.5 to create the absorp-
1789
+ tion in the radio SED. Even though we do not detect
1790
+ hydrogen RRL emission at z = 2.5, ionized gas with dif-
1791
+ ferent properties, for example higher densities, could be
1792
+ present and still be consistent with the RRL constraints.
1793
+ We also note that ionized gas in the Milky Way with
1794
+ EMs that result in a turnover at the observed frequen-
1795
+ cies (especially, on < 1′′ scales) would be observable in
1796
+ hydrogen RRL emission at z = 0, and we do not detect
1797
+ any RRL emission from the Milky Way.
1798
+ 6. CONCLUSIONS
1799
+ We used MALS observations to detect RRL emission
1800
+ in the spectrum of the radio blazar PKS 1830. The RRL
1801
+ emission is observed at z = 0.89 from a galaxy that
1802
+ lies along the line of sight and strongly lenses PKS 1830.
1803
+ This is the second detection of RRLs outside of the local
1804
+ universe (i.e., at z ≥ 0.076) and the first clearly associ-
1805
+ ated with hydrogen (e.g., Emig et al. 2019). We detect
1806
+ H144α by stacking 17 RRLs covered by the L band (856–
1807
+ 1712 MHz) with a S/N of 21 (see Fig. 3), and we detect
1808
+ H163α by stacking 27 lines in the UHF band (544–1088
1809
+ MHz) with a S/N of 14 (see Fig. 6). Emission from the
1810
+ H144α line is consistent over two separate observations,
1811
+ when comparing the spectra in parallel hand polariza-
1812
+ tions, and is robust against additional spectral stacking
1813
+ verification methods. Like the H i 21 cm and OH 18 cm
1814
+ absorption spectra (see Fig. 5), the H144α and H163α
1815
+ emission profiles span ∼250 km s−1 in velocity and are
1816
+ dominated by two velocity components associated with
1817
+ two physically distinct regions of the galaxy, the NE and
1818
+ SW lines of sight. We do not detect RRL emission in
1819
+ either band intrinsic to PKS 1830 (z = 2.5), from the
1820
+ z = 0.19 absorption system along this line of sight, or
1821
+ from the Milky Way (see Fig. 4).
1822
+ Hydrogen RRL emission typically arises from fully
1823
+ ionized gas and only stimulated emission is observable
1824
+ outside of the local universe.
1825
+ The maser-like proper-
1826
+ ties of stimulated emission enable the RRL SLED to
1827
+ constrain the density and pathlength of the ionized gas
1828
+ (see Table 2 and Fig. 9).
1829
+ Considering the total inte-
1830
+ grated line intensity, referred to as the Total compo-
1831
+ nent, we used a Bayesian analysis to constrain the elec-
1832
+ tron density of the gas log(ne) = 2.6 ± 0.6 cm−3 and
1833
+ a volume-averaged pathlength of log(ℓ) = −1.6+0.7
1834
+ −0.5 pc,
1835
+ which likely has a non-unity filling factor.
1836
+ Analyzed
1837
+ separately, the NE line-of-sight appears to harbor less
1838
+ dense gas with log(ne) = 2.0+1.9
1839
+ −0.7 cm−3 and log(ℓ) =
1840
+ −0.7±1.1 pc, and the SW line-of-sight appears to inter-
1841
+ cept dense gas that is more typical of H ii regions with
1842
+ log(ne) = 3.2+0.4
1843
+ −1.0 cm−3 and log(ℓ) = −2.7+1.8
1844
+ −0.2 pc. These
1845
+ scenarios are consistent with the NE line-of-sight pass-
1846
+ ing through diffuse clouds at a larger galactic radius, and
1847
+ the SW component directly intercepting a spiral arm, as
1848
+ has previously been determined.
1849
+ The RRL components measure an ionizing pho-
1850
+ ton flux of Qo/area
1851
+
1852
+ 1046±0.8
1853
+ photons s−1 pc−2
1854
+ and star formation rate surface density of ΣSFR ∼
1855
+ 10−0.2±0.8 M⊙ yr−1 kpc−2.
1856
+ Taken over the z = 0.89
1857
+ galaxy within Rg ∼ 5.3 kpc, the ionizing photon rate of
1858
+ Qo ∼ 1054.8 photons s−1 yields an average star forma-
1859
+ tion rate of SFR ∼ 50 M⊙ yr−1. Despite the plethora of
1860
+ molecular species observed, the ionized gas content and
1861
+ SFR have not been previously measured for this source,
1862
+ largely due to the highly reddened nature of PKS 1830
1863
+ at optical and NIR wavelengths. In comparing the SFR
1864
+ and the galaxy’s mass (from lensing), the z = 0.89 sys-
1865
+ tem is likely on the main sequence.
1866
+ The ionized gas mass per unit area of the diffuse
1867
+ NE component as measured by the RRL emission is
1868
+ Σion ≈ 2.1 M⊙ pc−2, in comparison with gas masses of
1869
+ ΣH I ≈ 50 M⊙ pc−2 and ΣH2 ≈ 240 M⊙ pc−2 (via OH)
1870
+ estimated from only the MALS observations. Given our
1871
+ estimated SFR, the H i+H2 gas mass surface density
1872
+ is close to the gas content predicted by the Kennicutt-
1873
+ Schmidt law.
1874
+ Our measured electron densities also
1875
+ match reasonably well with the ne − ΣSFR relation de-
1876
+ termined from optical and FIR line ratios.
1877
+ PKS 1830 is the first source investigated with MALS,
1878
+ and the detection of RRLs in the source is promising
1879
+ for the remaining ∼500 targets of the survey. With the
1880
+ first hydrogen RRL detection that breaks the redshift-
1881
+ barrier, we show that this tracer can be an important
1882
+ tool for investigating (a) the electron density (thermal
1883
+ pressure) of ionized gas in the ISM of galaxies (and the
1884
+ ne−ΣSFR relation) and (b) the SED of AGN, thus even-
1885
+ tually AGN evolution. We have also demonstrated the
1886
+ unique science that can be achieved through H i 21 cm,
1887
+ OH 18 cm, and RRL measurements that are simulta-
1888
+ neously observed in the MALS survey. The ionized gas
1889
+ properties in the z = 0.89 galaxy will be substantially
1890
+ improved through RRL observations at higher and lower
1891
+ radio frequencies and at higher (<1′′) spatial resolutions
1892
+ which can separate the two main (velocity) components
1893
+ of emission. The new science afforded by high-redshift
1894
+ RRL studies is accessible with on-going wide-bandwidth
1895
+ spectral line surveys and will be explored in unprece-
1896
+
1897
+ Radio Recombination Lines at z = 0.89
1898
+ 17
1899
+ dented capacities with future facilities such as the next
1900
+ generation Very Large Array (ngVLA; Murphy et al.
1901
+ 2018) and the SKA (Carilli 2015).
1902
+ ACKNOWLEDGMENTS
1903
+ The authors acknowledge and appreciate the efforts
1904
+ and input of the anonymous reviewer of this article. The
1905
+ authors thank Peter Shaver for comments on the article
1906
+ and for the inspiration and motivation to carry through
1907
+ with this research.
1908
+ SAB was supported by RSF grant 18-12-00301. The
1909
+ MeerKAT telescope is operated by the South African
1910
+ Radio Astronomy Observatory, which is a facility of the
1911
+ National Research Foundation, an agency of the De-
1912
+ partment of Science and Innovation.
1913
+ The MeerKAT
1914
+ data were processed using the MALS computing facil-
1915
+ ity at IUCAA (https://mals.iucaa.in/releases) The Na-
1916
+ tional Radio Astronomy Observatory is a facility of the
1917
+ National Science Foundation operated under coopera-
1918
+ tive agreement by Associated Universities, Inc.
1919
+ This
1920
+ research has made use of the NASA/IPAC Extragalac-
1921
+ tic Database (NED), which is funded by the National
1922
+ Aeronautics and Space Administration and operated by
1923
+ the California Institute of Technology.
1924
+ Facilities: MeerKAT
1925
+ Software: ARTIP (Gupta et al. 2021), Astropy (The
1926
+ Astropy Collaboration 2018; The Astropy Collaboration
1927
+ et al. 2022), CASA (McMullin et al. 2007; The CASA
1928
+ Team et al. 2022), ChainConsumer (Hinton 2016), CR-
1929
+ RLpy (Salas et al. 2016), emcee (Foreman-Mackey et al.
1930
+ 2013), Matplotlib (Hunter 2007), and NumPy (Harris
1931
+ et al. 2020)
1932
+ REFERENCES
1933
+ Allison, J. R., Moss, V. A., Macquart, J. P., et al. 2017,
1934
+ MNRAS, 465, 4450, doi: 10.1093/mnras/stw2860
1935
+ Allison, J. R., Sadler, E. M., Amaral, A. D., et al. 2022,
1936
+ PASA, 39, 10, doi: 10.1017/pasa.2022.3
1937
+ Anantharamaiah, K. R. 1985, JApA, 6, 177
1938
+ Balashev, S. A., Gupta, N., & Kosenko, D. N. 2021,
1939
+ MNRAS, 504, 3797, doi: 10.1093/mnras/stab1122
1940
+ Balser, D. S. 2006, AJ, 132, 2326, doi: 10.1086/508515
1941
+ Barnes, A. T., Glover, S. C. O., Kreckel, K., et al. 2021,
1942
+ MNRAS, 508, 5362, doi: 10.1093/mnras/stab2958
1943
+ Bell, M. B., & Seaquist, E. R. 1978, ApJ, 223, 378,
1944
+ doi: 10.1086/156272
1945
+ —. 1980, ApJ, 238, 818,
1946
+ doi: 10.1017/CBO9781107415324.004
1947
+ Bell, M. B., Seaquist, E. R., Mebold, U., Reif, K., &
1948
+ Shaver, P. A. 1984, A&A, 130, 1.
1949
+ http://adsabs.harvard.edu/abs/1984A%26A...130....1B
1950
+ Blyth, S., van der Hulst, T. M., Verheijen, M. A. W., et al.
1951
+ 2015, in Proceedings of Advancing Astrophysics with the
1952
+ Square Kilometre Array, eprint: arXiv:1501.01295, 128.
1953
+ https://ui.adsabs.harvard.edu/abs/2015aska.confE.128B
1954
+ Carilli, C. 2015, in AASKA, Giardini Naxos, Italy, 171.
1955
+ https://ui.adsabs.harvard.edu/abs/2015aska.confE.171C
1956
+ Chengalur, J. N., de Bruyn, A. G., & Narasimha, D. 1999,
1957
+ A&A, 343, L79. https://ui.adsabs.harvard.edu/abs/
1958
+ 1999A&A...343L..79C/abstract
1959
+ Churchwell, E., & Shaver, P. A. 1979, A&A, 77, 316.
1960
+ https://ui.adsabs.harvard.edu/abs/1979A&A....77..316C/
1961
+ abstract
1962
+ Combes, F., Gupta, N., Muller, S., et al. 2021, A&A, 648,
1963
+ 116, doi: 10.1051/0004-6361/202040167
1964
+ Courbin, F., Lidman, C., Frye, B. L., et al. 1998, ApJ, 499,
1965
+ L119, doi: 10.1086/311376
1966
+ Courbin, F., Meylan, G., Kneib, J. P., & Lidman, C. 2002,
1967
+ ApJ, 575, 95, doi: 10.1086/341261
1968
+ Djorgovski, S., Meylan, G., Klemola, A., et al. 1992,
1969
+ MNRAS, 257, 240, doi: 10.1093/mnras/257.2.240
1970
+ Emig, K. L. 2021, PhD thesis, Universiteit Leiden.
1971
+ https://scholarlypublications.universiteitleiden.nl/
1972
+ handle/1887/3160759
1973
+ Emig, K. L., Salas, P., de Gasperin, F., et al. 2020, A&A,
1974
+ 634, 138, doi: 10.1051/0004-6361/201936562
1975
+ —. 2019, A&A, 622, 7, doi: 10.1051/0004-6361/201834052
1976
+ Emig, K. L., White, G. J., Salas, P., et al. 2022, A&A, 664,
1977
+ 88, doi: 10.1051/0004-6361/202142596
1978
+ Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman,
1979
+ J. 2013, PASP, 125, 306, doi: 10.1086/670067
1980
+ Garrett, M. A., Nair, S., Porcas, R. W., & Patnaik, A. R.
1981
+ 1997, VA, 41, 281, doi: 10.1016/S0083-6656(97)00020-2
1982
+ Guirado, J. C., Jones, D. L., Lara, L., et al. 1999, A&A,
1983
+ 346, 392. https://ui.adsabs.harvard.edu/abs/1999A&A...
1984
+ 346..392G/abstract
1985
+ Gupta, N., Srianand, R., Baan, W., et al. 2016, in MKS
1986
+ Conf, 14.
1987
+ https://ui.adsabs.harvard.edu/abs/2016mks..confE..14G
1988
+ Gupta, N., Jagannathan, P., Srianand, R., et al. 2021, ApJ,
1989
+ 907, 11, doi: 10.3847/1538-4357/abcb85
1990
+ Gupta, N., Shukla, G., Srianand, R., et al. 2022, ApJ, 929,
1991
+ 108, doi: 10.3847/1538-4357/ac4220
1992
+
1993
+ 18
1994
+ Emig et al.
1995
+ Guti´errez, L., & Beckman, J. E. 2010, ApJ, 710, L44,
1996
+ doi: 10.1088/2041-8205/710/1/L44
1997
+ Harris, C. R., Millman, K. J., van der Walt, S. J., et al.
1998
+ 2020, Natur, 585, 357, doi: 10.1038/s41586-020-2649-2
1999
+ Henkel, C., Braatz, J. A., Menten, K. M., & Ott, J. 2008,
2000
+ A&A, 485, 451, doi: 10.1051/0004-6361:20079140
2001
+ Herrera-Camus, R., Bolatto, A., Smith, J. D., et al. 2016,
2002
+ ApJ, 826, 175, doi: 10.3847/0004-637X/826/2/175
2003
+ Hinton, S. R. 2016, JOSS, 1, 00045,
2004
+ doi: 10.21105/joss.00045
2005
+ Hummer, D. G., & Storey, P. J. 1987, MNRAS, 224, 801
2006
+ Hunter, J. D. 2007, Computing in Science & Engineering, 9,
2007
+ 90
2008
+ Intema, H. T., Jagannathan, P., Mooley, K. P., & Frail,
2009
+ D. A. 2017, A&A, 598, A78,
2010
+ doi: 10.1051/0004-6361/201628536
2011
+ Jauncey, D. L., Reynolds, J. E., Tzioumis, A. K., et al.
2012
+ 1991, Natur, 352, 132, doi: 10.1038/352132a0
2013
+ Jiang, T., Malhotra, S., Yang, H., & Rhoads, J. E. 2019,
2014
+ ApJ, 872, 146, doi: 10.3847/1538-4357/aaee79
2015
+ Jin, C., Garrett, M. A., Nair, S., et al. 2003, MNRAS, 340,
2016
+ 1309, doi: 10.1046/j.1365-8711.2003.06390.x
2017
+ Jonas, J., & MeerKAT Team. 2016, in MeerKAT Science:
2018
+ On the Pathway to the SKA.
2019
+ https://ui.adsabs.harvard.edu/abs/2016mks..confE...1J
2020
+ Jones, D. L., Preston, R. A., Murphy, D. W., et al. 1996,
2021
+ ApJ, 470, L23, doi: 10.1086/310292
2022
+ Kado-Fong, E., Kim, J.-G., Ostriker, E. C., & Kim, C.-G.
2023
+ 2020, ApJ, 897, 143, doi: 10.3847/1538-4357/ab9abd
2024
+ Kennicutt, Jr., R. C. 1998, ApJ, 498, 541,
2025
+ doi: 10.1086/305588
2026
+ Kennicutt, Jr., R. C., & De Los Reyes, M. A. C. 2021, ApJ,
2027
+ 908, 61, doi: 10.3847/1538-4357/abd3a2
2028
+ Kewley, L. J., Nicholls, D. C., & Sutherland, R. S. 2019,
2029
+ ARA&A, 57, 511,
2030
+ doi: 10.1146/annurev-astro-081817-051832
2031
+ Kim, C.-G., Ostriker, E. C., & Kim, W.-T. 2013, ApJ, 776,
2032
+ 1, doi: 10.1088/0004-637X/776/1/1
2033
+ Koopmans, L. V. E., & de Bruyn, A. G. 2005, MNRAS,
2034
+ 360, L6, doi: 10.1111/j.1745-3933.2005.00030.x
2035
+ Kruijssen, J. M. D. 2012, MNRAS, 426, 3008,
2036
+ doi: 10.1111/j.1365-2966.2012.21923.x
2037
+ Kruijssen, J. M. D., & Longmore, S. N. 2014, MNRAS, 439,
2038
+ 3239, doi: 10.1093/mnras/stu098
2039
+ Leitherer, C., Schaerer, D., Goldader, J. D., et al. 1999,
2040
+ ApJS, 123, 3, doi: 10.1086/313233
2041
+ Lidman, C., Courbin, F., Meylan, G., et al. 1999, ApJ, 514,
2042
+ L57, doi: 10.1086/311949
2043
+ Lovell, J. E. J., Jauncey, D. L., Reynolds, J. E., et al. 1998,
2044
+ ApJ, 508, L51, doi: 10.1086/311723
2045
+ Lovell, J. E. J., Reynolds, J. E., Jauncey, D. L., et al. 1996,
2046
+ ApJ, 472, L5, doi: 10.1086/310353
2047
+ Marti-Vidal, I., & Muller, S. 2019, A&A, 621, A18,
2048
+ doi: 10.1051/0004-6361/201834036
2049
+ Mart´ı-Vidal, I., Muller, S., Vlemmings, W., Horellou, C., &
2050
+ Aalto, S. 2015, Sci, 348, 311, doi: 10.1126/science.aaa1784
2051
+ Mart´ı-Vidal, I., Muller, S., Combes, F., et al. 2013, A&A,
2052
+ 558, A123, doi: 10.1051/0004-6361/201322131
2053
+ McMullin, J. P., Waters, B., Schiebel, D., Young, W., &
2054
+ Golap, K. 2007, in Astronomical Data Analysis Software
2055
+ and Systems XVI ASP Conference Series, Vol. 376
2056
+ (Astronomical Society of the Pacific), 127
2057
+ Mohan, N. R., Anantharamaiah, K. R., & Goss, W. M.
2058
+ 2002, in The Universe at Low Radio Frequencies,
2059
+ Proceedings of IAU Symposium, ed. A. Pramesh Rao,
2060
+ G. Swarup, & Gopal-Krishna, Vol. 199 (Pune, India:
2061
+ Cambridge University Press), 116. https://ui.adsabs.
2062
+ harvard.edu/abs/2002IAUS..199..116M/abstract
2063
+ Morganti, R., & Oosterloo, T. 2018, AARv, 26, 4,
2064
+ doi: 10.1007/s00159-018-0109-x
2065
+ Muller, S., & Gu´elin, M. 2008, A&A, 491, 739,
2066
+ doi: 10.1051/0004-6361:200810392
2067
+ Muller, S., Jaswanth, S., Horellou, C., & Mart´ı-Vidal, I.
2068
+ 2020, A&A, 641, L2, doi: 10.1051/0004-6361/202038978
2069
+ Muller, S., Ubachs, W., Menten, K. M., Henkel, C., &
2070
+ Kanekar, N. 2021, A&A, 652, A5,
2071
+ doi: 10.1051/0004-6361/202140531
2072
+ Muller, S., Beelen, A., Gu´elin, M., et al. 2011, A&A, 535,
2073
+ A103, doi: 10.1051/0004-6361/201117096
2074
+ Muller, S., Beelen, A., Black, J. H., et al. 2013, A&A, 551,
2075
+ A109, doi: 10.1051/0004-6361/201220613
2076
+ Muller, S., Combes, F., Gu´elin, M., et al. 2014, A&A, 566,
2077
+ A112, doi: 10.1051/0004-6361/201423646
2078
+ Murphy, E. J., Bolatto, A., Chatterjee, S., et al. 2018, in
2079
+ ASP Conference Series, Vol. 517, 3.
2080
+ https://ui.adsabs.harvard.edu/abs/2018ASPC..517....3M
2081
+ Nair, S., Narasimha, D., & Rao, A. P. 1993, ApJ, 407, 46,
2082
+ doi: 10.1086/172491
2083
+ Oonk, J. B. R., van Weeren, R. J., Salas, P., et al. 2017,
2084
+ MNRAS, 465, 1066, doi: 10.1093/mnras/stw2818
2085
+ Ostriker, E. C., & Kim, C.-G. 2022, ApJ. https:
2086
+ //ui.adsabs.harvard.edu/abs/2022arXiv220600681O
2087
+ Patnaik, A. R., Muxlow, T. W. B., & Jauncey, D. L. 1993,
2088
+ in LIACo, Vol. 31, 363.
2089
+ https://ui.adsabs.harvard.edu/abs/1993LIACo..31..363P
2090
+ Pramesh Rao, A., & Subrahmanyan, R. 1988, MNRAS,
2091
+ 231, 229, doi: 10.1093/mnras/231.2.229
2092
+ Prozesky, A., & Smits, D. P. 2018, MNRAS, 478, 2766,
2093
+ doi: 10.1093/MNRAS/STY1189
2094
+
2095
+ Radio Recombination Lines at z = 0.89
2096
+ 19
2097
+ Roshi, D. A., & Anantharamaiah, K. R. 2000, ApJ, 535,
2098
+ 231, doi: 10.1086/308813
2099
+ Ryon, J. E., Gallagher, J. S., Smith, L. J., et al. 2017, ApJ,
2100
+ 841, 92
2101
+ Salas, P., Morabito, L., Salgado, F., Oonk, J. B. R., &
2102
+ Tielens, A. G. G. M. 2016, CRRLpy: First Pre-release.
2103
+ http://dx.doi.org/10.5281/zenodo.44598
2104
+ Salas, P., Oonk, J. B. R., van Weeren, R. J., et al. 2017,
2105
+ MNRAS, 467, 2274, doi: 10.1093/mnras/stx239
2106
+ Salgado, F., Morabito, L. K., Oonk, J. B. R., et al. 2017a,
2107
+ ApJ, 837, 141, doi: 10.3847/1538-4357/aa5d9e
2108
+ —. 2017b, ApJ, 837, 142, doi: 10.3847/1538-4357/aa5d9a
2109
+ Sault, R. J. 1994, A&AS, 107, 55.
2110
+ http://adsabs.harvard.edu/abs/1994A%26AS..107...55S
2111
+ Schreiber, C., Pannella, M., Elbaz, D., et al. 2015, A&A,
2112
+ 575, A74, doi: 10.1051/0004-6361/201425017
2113
+ Schruba, A., Leroy, A. K., Walter, F., Sandstrom, K., &
2114
+ Rosolowsky, E. 2010, ApJ, 722, 1699,
2115
+ doi: 10.1088/0004-637X/722/2/1699
2116
+ Schulz, A., Henkel, C., Menten, K. M., et al. 2015, A&A,
2117
+ 574, A108, doi: 10.1051/0004-6361/201425072
2118
+ Seaquist, E. R., & Bell, M. B. 1977, A&A, 60, L1.
2119
+ https://ui.adsabs.harvard.edu/abs/1977A%26A....60L...
2120
+ 1S/abstract
2121
+ Shaver, P. A. 1975, Pra, 5, 1, doi: 10.1007/BF02875147
2122
+ —. 1978, A&A, 68, 97.
2123
+ http://adsabs.harvard.edu/abs/1978A%26A....68...97S
2124
+ Shaver, P. A., Churchwell, E., & Rots, A. H. 1977, A&A,
2125
+ 55, 435.
2126
+ http://adsabs.harvard.edu/abs/1977A%26A....55..435S
2127
+ Shaver, P. A., Churchwell, E., & Walmsley, C. M. 1978,
2128
+ A&A, 64, 1
2129
+ Shaver, P. A., McGeem, R. X., Newton, M. L., et al. 1983,
2130
+ MNRAS, 204, 53, doi: 10.1093/mnras/204.1.53
2131
+ Shimakawa, R., Kodama, T., Steidel, C. C., et al. 2015,
2132
+ MNRAS, 451, 1284, doi: 10.1093/mnras/stv915
2133
+ Subrahmanyan, R., Narasimha, D., Pramesh Rao, A., &
2134
+ Swarup, G. 1990, MNRAS, 246, 263. https:
2135
+ //ui.adsabs.harvard.edu/abs/1990MNRAS.246..263S
2136
+ Tercero, B., Cernicharo, J., Cuadrado, S., de Vicente, P., &
2137
+ Gu´elin, M. 2020, A&A, 636, L7,
2138
+ doi: 10.1051/0004-6361/202037837
2139
+ The Astropy Collaboration. 2018, AJ, 156, 123
2140
+ The Astropy Collaboration, Price-Whelan, A. M., Lim,
2141
+ P. L., et al. 2022, ApJ, 935, 167,
2142
+ doi: 10.3847/1538-4357/ac7c74
2143
+ The CASA Team, Bean, B., Bhatnagar, S., et al. 2022,
2144
+ PASP, eprint arXiv:2210.02276, 20,
2145
+ doi: 10.1088/1538-3873/ac9642
2146
+ Tielens, A. G. G. M. 2005, The Physics and Chemistry of
2147
+ the Interstellar Medium (Cambridge University Press).
2148
+ http://adsabs.harvard.edu/abs/2005pcim.book.....T
2149
+ Treu, T., & Koopmans, L. V. E. 2004, ApJ, 611, 739,
2150
+ doi: 10.1086/422245
2151
+ van Ommen, T. D., Jones, D. L., Preston, R. A., &
2152
+ Jauncey, D. L. 1995, ApJ, 444, 561, doi: 10.1086/175630
2153
+ Verheijen, M. A. W., Carilli, C. L., & Yun, M. S. 2001, in
2154
+ ASPC, Vol. 240, San Francisco, 69.
2155
+ https://ui.adsabs.harvard.edu/abs/2001ASPC..240...69V
2156
+ Wenger, T. V., Balser, D. S., Anderson, L. D., & Bania,
2157
+ T. M. 2019, ApJ, 887, 114.
2158
+ http://arxiv.org/abs/1910.14605
2159
+ Wiklind, T., & Combes, F. 1996, Natur, 379, 139,
2160
+ doi: 10.1038/379139a0
2161
+
ENE1T4oBgHgl3EQfWgSE/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
F9FLT4oBgHgl3EQfGi9H/content/tmp_files/2301.11992v1.pdf.txt ADDED
@@ -0,0 +1,3004 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ DATA SPARSE MULTILEVEL COVARIANCE ESTIMATION IN OPTIMAL
2
+ COMPLEXITY
3
+ J. D¨OLZ
4
+ Abstract. We consider the H2-formatted compression and computational estimation of co-
5
+ variance functions on a compact set in Rd. The classical sample covariance or Monte Carlo
6
+ estimator is prohibitively expensive for many practically relevant problems, where often ap-
7
+ proximation spaces with many degrees of freedom and many samples for the estimator are
8
+ needed. In this article, we propose and analyze a data sparse multilevel sample covariance es-
9
+ timator, i.e., a multilevel Monte Carlo estimator. For this purpose, we generalize the notion of
10
+ asymptotically smooth kernel functions to a Gevrey type class of kernels for which we derive
11
+ new variable-order H2-approximation rates. These variable-order H2-approximations can be
12
+ considered as a variant of hp-approximations. Our multilevel sample covariance estimator then
13
+ uses an approximate multilevel hierarchy of variable-order H2-approximations to compress the
14
+ sample covariances on each level. The non-nestedness of the different levels makes the reduction
15
+ to the final estimator nontrivial and we present a suitable algorithm which can handle this task
16
+ in linear complexity. This allows for a data sparse multilevel estimator of Gevrey covariance ker-
17
+ nel functions in the best possible complexity for Monte Carlo type multilevel estimators, which
18
+ is quadratic. Numerical examples which estimate covariance matrices with tens of billions of
19
+ entries are presented.
20
+ 1. Introduction
21
+ 1.1. Motivation. Covariance functions or kernel functions
22
+ g: D × D → R,
23
+ on a compact set D ⊂ Rd arise in many fields of application such as Gaussian process computations
24
+ [44], machine learning [33, 49], and uncertainty quantification [23]. However, in many cases these
25
+ functions are not available in closed form, but must be suitably estimated from samples. The
26
+ canonical estimator for this purpose is the sample covariance estimator or Monte Carlo estimator
27
+ g ≈ 1
28
+ M
29
+ M
30
+
31
+ k=1
32
+ z(k) ⊗ z(k),
33
+ see, e.g., [34], where the sample functions z(k), k = 1, . . . , M, are assumed to be independent,
34
+ identically distributed (i.i.d.) elements of a Hilbert space and ⊗ is understood as the Hilbertian
35
+ tensor product.
36
+ The challenge with the above estimator is that the covariance function and
37
+ the samples are often infinite-dimensional objects which in practice need to be discretized for
38
+ computational purposes. After discretization, the sample functions themselves are represented as
39
+ elements of Rn and the covariance function as a covariance matrix in Rn×n. Assuming that the
40
+ samples are approximated to an accuracy of ε = n−α, roughly M = ε−2 = n2α samples need
41
+ to be drawn to reach an overall error of O(ε) of the sample covariance estimator.
42
+ Thus, the
43
+ computational effort of the sample covariance estimator is O(Mn2) = O(ε−2−2/α) = O(n2α+2).
44
+ This is prohibitive for large n, as it is often required for sufficient accuracy in applications.
45
+ This article presents an algorithm with rigorous error bounds for approximating the covariance
46
+ function in optimal complexity.
47
+ Here, optimal complexity is understood such that estimating
48
+ the covariance has asymptotically the same complexity as estimating the mean, i.e., as good as
49
+ O(ε−2) = O(n2α) to reach an accuracy of O(ε) under certain assumptions on the underlying
50
+ approximation space.
51
+ 1
52
+ arXiv:2301.11992v1 [math.NA] 27 Jan 2023
53
+
54
+ 2
55
+ J. D ¨OLZ
56
+ 1.2. Related work. The challenges of large covariance matrices are commonly overcome by using
57
+ data sparse approximations. Here, the main difference between methods is how the data sparse
58
+ format is chosen. Purely algebraic methods operate in a black-box fashion on the samples of the
59
+ sample covariance estimator to estimate suitable compression parameters for previously chosen
60
+ data sparse formats such as banded matrices [3] or sparse matrices [2, 3, 19, 20, 21]. See also
61
+ [11] for recent literature review.
62
+ However, a simultaneous estimate on approximation quality
63
+ and computational complexity is not available without additional assumptions on the algebraic
64
+ properties of the samples and/or covariance matrix. These properties are usually inferred from
65
+ assumed analytical properties of the underlying statistical model. Here, an often considered analog
66
+ to some of the matrix approximation classes considered in [2] are asymptotically smooth covariance
67
+ functions, which assume a certain decrease of the covariance with increasing spatial distance.
68
+ These kinds of functions are also considered in the fast multipole method [25] and its and abstract
69
+ counterparts H- and H2-matrices [4, 27], as well as in wavelet compression [47]. The first have been
70
+ applied in machine learning [5] and uncertainty quantification [18, 30, 35, 48] where complexity and
71
+ approximation estimates have been derived. The available machinery was also applied to estimate
72
+ hyperparameters of covariance functions [12, 22, 36, 39, 41], but we stress that the objective of
73
+ this article is to estimate the full covariance functions. Finally, wavelet based approaches have
74
+ been used in [28, 29, 30, 32, 46] for compression and estimation of covariance functions. Similar
75
+ to wavelet based approaches, sparse grid approaches are also based on a multilevel hierarchy and
76
+ provide a sparse representation of the covariance matrix, but assume some global smoothness of
77
+ the covariance [1, 10]. All of the mentioned methods operating on assumed analytical properties
78
+ of covariance functions are capable to reduce the storage requirements of corresponding covariance
79
+ matrices in Rn×n from O(n2) to O(n) or O(n logβ n), β > 0, with a negligible approximation error.
80
+ Thus, the n2 part of the computational cost of the sample covariance estimator can significantly
81
+ be reduced.
82
+ Reducing the computational cost of the sampling process can essentially achieved by two ap-
83
+ proaches. The first approach is to see the sample covariance estimator as a Monte Carlo quadrature
84
+ for a stochastic integral and to replace that quadrature rule by a more efficient method such as
85
+ quasi-Monte Carlo methods [16] and sparse grid approaches [10]. However, bare strong assump-
86
+ tions, further measures to reduce the number of samples are required. The second approach to
87
+ reduce computational cost during sampling are variance reduction techniques and in particular
88
+ the multilevel Monte Carlo method, see, e.g., [24, 31] for a general overview. The basic idea is
89
+ to exploit a multi-level hierarchy in the approximation spaces for the covariance discretization to
90
+ obtain covariance matrices of decreasing size and to combine many smaller and only a few larger
91
+ matrices to a covariance estimator. It was applied to smaller and dense covariance matrices in [42]
92
+ for the estimation of Sobol indices and to larger covariance matrices combined with a sparse grid
93
+ approximation in [1, 14] and combined with a wavelet approximation in [28].
94
+ 1.3. Gδ-asymptotical smoothness and Gevrey kernels. As we will show in a moment, there
95
+ is a large class of covariance functions which is not asymptotically smooth. The first objective of
96
+ this paper is to generalize some of the available H2-compression techniques, which can be seen as
97
+ a special variant of hp-approximation, to a more general class of covariance functions. However,
98
+ we stress that all of the presented algorithms also apply to the classical, asymptotically smooth
99
+ kernel functions.
100
+ To this end, we assume that D is equipped with a measure µ, write L2
101
+ µ(D) = L2(D), and
102
+ assume that we are given a probability space (Ω, Σ, P). Following the stochastic partial differential
103
+ equation approach to Gaussian random fields [38, 51], we note that realizations Z ∈ L2
104
+ P(Ω; Hθ(D))
105
+ of any Gaussian random field with positive definite covariance function g have a representation as
106
+ the solution to the equation
107
+ AZ = W,
108
+ where W is white noise on L2(D) and A = C−1/2 with
109
+ (Cϕ)(x) =
110
+
111
+ D
112
+ g(x, y)ϕ(y) dµ(x),
113
+
114
+ DATA SPARSE MULTILEVEL COVARIANCE ESTIMATION IN OPTIMAL COMPLEXITY
115
+ 3
116
+ see [28, Proposition 2.3] for an explicit derivation. Vice versa, any self-adjoint and positive definite
117
+ operator A: Hθ(D) → L2(D) yields a covariance operator C = A−2 with covariance function g
118
+ given as the Schwartz kernel of C. For example, the well known Mat´ern covariance kernels [40] are
119
+ given through D = Rd and A = (κ2 − ∆)θ/2 with κ > 0, θ > d/2, and are asymptotically smooth.
120
+ More generally, we may consider any self-adjoint and positive definite pseudo-differential operator
121
+ A ∈ OPSθ
122
+ cl,δ(D) of order θ > d/2 with symbol of Gevrey class δ ≥ 1 in the sense of [8, Definition
123
+ 1.1]1. This implies C = A−2 ∈ OPS−2θ
124
+ cl,δ (D) as a consequence of the pseudo-differential operator
125
+ calculus for Gevrey classes developed in [8]. In analogy to [47, Lemma 3.0.2] we obtain that the
126
+ covariance kernel g (i.e., the Schwartz kernel) of C is smooth away from the diagonal and satisfies
127
+ |∂α
128
+ x ∂β
129
+ y g(x, y)| ≤ CGA|α|+|β|(α!β!)δ∥x − y∥2θ−d−|α|−|β|
130
+ 2
131
+ ,
132
+ x, y ∈ D, x ̸= y,
133
+ (1)
134
+ for all α, β ∈ Nd and kernel dependent constants CG, A > 0. We note that the special case δ = 1
135
+ corresponds to the classical asymptotical smoothness. For δ ≥ 1 we will refer to Gδ-asymptotical
136
+ smoothness and call the kernel function a Gevrey kernel.
137
+ These considerations make clear that a unified treatment of asymptotically smooth and more
138
+ generally Gδ-asymptotically smooth covariance functions as presented in this article is desirable.
139
+ 1.4. Contributions. The objective of this article is to present an algorithm with rigorous error
140
+ bounds and complexity estimates for estimating Gevrey kernels and covariance functions in op-
141
+ timal complexity. This will be achieved by using a multilevel sample covariance estimator on an
142
+ approximate multilevel hierarchy of H2-matrices. More precisely
143
+ • we generalize the variable-order H2-approximation theory, see [4, 7, 6], to Gδ-asymptotically
144
+ smooth kernels. The basis for this generalization is a new approximation result for Gevrey
145
+ regular functions.
146
+ • we develop a multilevel algorithm which allows to evaluate the sample covariance estima-
147
+ tor in variable-order H2-compressed form with negligible approximation error in optimal
148
+ complexity.
149
+ • we provide numerical examples which estimate covariance matrices with tens of billions of
150
+ entries, underlying the feasibility of the proposed algorithm.
151
+ One of the major implications of these contributions is that Gδ-asymptotically smooth covariance
152
+ functions of a Gaussian processes can now be asymptotically estimated with the same complexity
153
+ as the mean. We also note that variable-order results imply fixed order results as a special case.
154
+ 1.5. Outline. The article is organized as follows.
155
+ First, in Section 2, we provide a new ap-
156
+ proximation result for Gevrey-regular functions and use this result for establishing the required
157
+ variable-order H2-approximation rates for Gevrey kernels. These results are then used in Section 3
158
+ for establishing approximation rates of a single-level H2-formatted sample covariance estimator
159
+ and its computational realization. Section 4 is concerned with the construction and analysis of
160
+ the H2-formatted multilevel sample covariance estimator, whereas Section 5 considers its algorith-
161
+ mic implementation. Finally, in Section 6, we provide the numerical experiments underlining our
162
+ theoretical considerations before we draw our conclusions in Section 7.
163
+ 2. H2-approximation of Gevrey kernels
164
+ 2.1. Interpolation of Gevrey functions. We start our considerations by recalling the definition
165
+ of functions of Gevrey class and some basic facts on polynomial interpolation.
166
+ Definition 2.1. Let D ⊂ Rd and f ∈ C∞(D). f is of Gevrey class δ ≥ 1 with CG, A > 0,
167
+ f ∈ Gδ(D, CG, A), if for every K ⋐ D and α ∈ Nd it holds
168
+ |∂αf(x)| ≤ CGA|α|(α!)δ
169
+ for all x ∈ K.
170
+ A function is analytic, if it is of Gevrey class δ = 1.
171
+ 1We refrain from making this notion more explicit as we will not need it for the remainder of the article.
172
+
173
+ 4
174
+ J. D ¨OLZ
175
+ Assumption 2.2. The polynomial interpolation I[a,b]
176
+ m
177
+ : C([a, b]) → Pm on m + 1 distinct points
178
+ in [a, b] is stable, i.e.,
179
+ ��I[a,b]
180
+ m
181
+ [f]
182
+ ��
183
+ C([a,b]) ≤ Λm∥f∥C([a,b]),
184
+ for all m ∈ N, with stability constant Λm ≥ 1.
185
+ An example satisfying this assumption is the interpolation on Chebychev points, which is stable
186
+ with stability constant Λm ≤ 2
187
+ π ln(m) + 1, see, e.g., [45, Theorem 1.2].
188
+ Lemma 2.3 ([4, Lemma 4.13]). For m ∈ N and f ∈ C([a, b]) it holds
189
+ ��f − I[a,b]
190
+ m
191
+ [f]
192
+ ��
193
+ C([a,b]) ≤ (Λm + 1) min
194
+ p∈Pm ∥f − p∥C([a,b]).
195
+ The following theorem is the main result of this subsection. In comparison to other approx-
196
+ imation results in the literature, we note that the dependence of the contraction factor on A is
197
+ explicit. This is an essential ingredient for establishing the H2-approximation rates later on.
198
+ Theorem 2.4. Let f ∈ Gδ([−1, 1], CG, A), ρ(r) = r +
199
+
200
+ 1 + r2, and m ∈ N, m ≥ 3. Then it holds
201
+ min
202
+ p∈Pm ∥f − p∥C([−1,1]) ≤ C(A, δ)CGρ(1/A)−m1/δ/e2,
203
+ where C(A, δ) is monotonically increasing in A.
204
+ Proof. The proof is inspired by the one of [43, Proposition 4.1]. Denote by I3 : H2([−1, 1]) → P3
205
+ the Hermite interpolation operator given by I3f(±1) = f(±1), (I3f)′(±1) = f ′(±1) and, for
206
+ m ∈ N, m ≥ 3, denote by πm−2,0 : L2([−1, 1]) → Pm−2 the L2-orthogonal projection onto the first
207
+ m − 1 Legendre polynomials. Then, the projector H2([−1, 1]) → Pm defined by
208
+ (πm,2f)(x) = (I3f)(x) +
209
+ � x
210
+ −1
211
+ � y
212
+ −1
213
+
214
+ πm−2,0
215
+
216
+ (f − I3f)′′��
217
+ (z) dz dy
218
+ satisfies the error estimate, see [15, Theorem A.1],
219
+ ∥f − πm,2f∥2
220
+ H2([−1,1]) ≤ C (m − 1 − k)!
221
+ (m − 1 + k)!
222
+ ��f (k+2)��2
223
+ L2([−1,1]),
224
+ 2 ≤ k ≤ m − 1.
225
+ Now, fix α = (2ρ(1/A)ρ(A)A)−1/δ, k = ⌊αγm1/δ⌋ with γ = min{max{
226
+ 2
227
+ αm1/δ , 1},
228
+ m−1
229
+ αm1/δ }, and
230
+ note that 2 ≤ k ≤ m − 1, k ≤ αγm1/δ ≤ k + 1, and ρ(1/A)ρ(A) ≤ (2/A + 1)2A+1 =: Ξ(A). Gevrey
231
+ regularity f ∈ Gδ([−1, 1], CG, A) and Stirling’s formula
232
+
233
+ 2πn(n/e)n ≤ n! ≤ e√n(n/e)n, n ∈ N
234
+ imply
235
+ ∥f − πm,2f∥2
236
+ H2([−1,1]) ≤ CC2
237
+ GA2k+4 (m − 1 − k)!
238
+ (m − 1 + k)!
239
+
240
+ (k + 2)!
241
+ �2δ
242
+ ≤ CC2
243
+ GA2k+4 e1+2k
244
+
245
+
246
+ (m − 1 − k)m−1−k+1/2
247
+ (m − 1 + k)m−1+k+1/2
248
+
249
+ k!(k + 2)2�2δ
250
+ ≤ CC2
251
+ GA2k+4 e1+2k
252
+
253
+
254
+ (m − 1 − k)m−1−k+1/2
255
+ (m − 1 + k)m−1+k+1/2 e2δ(1−k)k2kδkδ(k + 2)4δ
256
+ ≤ CC2
257
+ GA2k+4 e1+2δ+2(1−δ)k
258
+
259
+
260
+ �m − 1 − k
261
+ m − 1 + k
262
+ �m−1−k+1/2
263
+ m−2kk2kδkδ(k + 1)4δ.
264
+ Since 1 − δ ≤ 0, m − 1 − k + 1/2 ≥ 0 for k ≤ m − 1, m−k ≤ (αγ/k)δk, and kδ(k + 2)4δ ≤ C(δ)22k
265
+ for k ≥ 2 this implies
266
+ ∥f − πm,2f∥H2([−1,1]) ≤ C(δ)CGAk+2γδkαδk2k.
267
+ We next remark that γδk ≤ 1 for 2 ≤ αm1/δ.
268
+ For for 2 > αm1/δ, we remark that γδk ≤
269
+ γ2δ ≤ C(δ)(Ξ(A)A)2, where Ξ(A)A is continuous and monotonically increasing on (0, ∞) with
270
+ limt→0 Ξ(t)t = 2. Thus, γδk ≤ χ(A, δ) is monotonically increasing in A with χ(A, δ) ≥ 4C(δ).
271
+ The continuous embedding H2([−1, 1]) �→ L∞([−1, 1]) and the definition of α then yield
272
+ ∥f − πm,2f∥C([−1,1]) ≤ C(A, δ)CGA2ρ(1/A)ρ(A)ρ(1/A)−ρ(A)(k+1) ≤ C(A, δ)CGρ(1/A)−ρ(A)αγm1/δ,
273
+
274
+ DATA SPARSE MULTILEVEL COVARIANCE ESTIMATION IN OPTIMAL COMPLEXITY
275
+ 5
276
+ where C(A, δ) is monotonically increasing in A. To obtain the desired exponent, we consider that
277
+ ρ(A)α(A, δ) is monotonically increasing in δ, and that it is bounded from below by e−2 for δ = 1.
278
+ For αm1/δ < m − 1 this yields ρ(A)αγm1/δ ≥ m1/δ/e2 due to γ ≥ 1. For αm1/δ ≥ m − 1 we
279
+ observe that ρ(A)αγm1/δ ≥ m − 1 ≥ m1/δ/e2, which yields the assertion.
280
+
281
+ Corollary 2.5. For any f ∈ Gδ([a, b], CG, A), B = A(b − a)/2, and m ∈ N, m ≥ 3, it holds that
282
+ ��f − I[a,b]
283
+ m
284
+ [f]
285
+ ��
286
+ C([a,b]) ≤ C(B, δ)CG(Λm + 1)ρ(1/B)−m1/δ/e2,
287
+ where C(B, δ) is monotonically increasing in B.
288
+ Proof. Denoting Φ[a,b] : [−1, 1] → [a, b] with Φ[a,b](t) = (b + a)/2 + t(b − a)/2, one easily verifies
289
+ that f ∈ Gδ([a, b], CG, A) implies f ◦ Φ[a,b] ∈ Gδ([−1, 1], CG, B). Lemma 2.3 and Theorem 2.4
290
+ yield the assertion.
291
+
292
+ We close the subsection by generalizing the result to tensor product domains in higher dimen-
293
+ sions.
294
+ Definition 2.6. For Q = ×
295
+ d
296
+ i=1[ai, bi], f ∈ C(Q), and m ∈ N, we define the tensor product
297
+ interpolation operator IQ
298
+ m = �d
299
+ i=1 IQ
300
+ m,i, with IQ
301
+ m,i denoting the action of Im in coordinate direction
302
+ i = 1, . . . , d of Q.
303
+ Theorem 2.7. Let Q = ×
304
+ d
305
+ i=1[ai, bi], f ∈ Gδ(Q, CG, A), and m ∈ N, m ≥ 3. Then it holds
306
+ ∥f − IQ
307
+ m[f]∥C(Q) ≤ C(A diam∞(Q)/2, δ)CGd(Λm + 1)dρ
308
+
309
+ 2
310
+ A diam∞(Q)
311
+ �−m1/δ/e2
312
+ ,
313
+ where C(A, δ) is monotonically increasing in A.
314
+ Proof. In complete analogy to the proof of [4, Corollary 4.21], using Corollary 2.5 and Assump-
315
+ tion 2.2.
316
+
317
+ 2.2. Interpolation of Gevrey kernels. As outlined in Section 1.3, it is desirable to generalize
318
+ the approximation theory of the widely known class of asymptotically smooth kernel functions to
319
+ kernels satisfying the following definition.
320
+ Definition 2.8. Let Dx, Dy ⊂ Rd and g ∈ C∞({(x, y) ∈ Dx × Dy : x ̸= y}). For δ ≥ 1, g is
321
+ called Gδ(CG, A)-asymptotically smooth on Dx × Dy if there exist CG, A > 0 and q ∈ R such that
322
+ it holds
323
+ |∂α
324
+ x ∂β
325
+ y g(x, y)| ≤ CGA|α|+|β|(α!β!)δ∥x − y∥−2q−d−|α|−|β|
326
+ 2
327
+ ,
328
+ x ∈ Dx, y ∈ Dy, x ̸= y,
329
+ (2)
330
+ for all α, β ∈ Nd. For δ = 1 we obtain the classical asymptotical smoothness.
331
+ The following theorem generalizes the very similar result for asymptotically smooth kernels
332
+ proven in [4, Theorem 4.22].
333
+ Theorem 2.9. Let Qt = ×
334
+ d
335
+ i=1[ai, bi] and Qs = ×
336
+ 2d
337
+ i=d+1[ai, bi]. Let η > 0 and Qt and Qs be
338
+ admissible, i.e.,
339
+ max
340
+
341
+ diam∞ Qt, diam∞ Qs} = diam∞(Qt × Qs) ≤ 2η dist2(Qt, Qs).
342
+ (3)
343
+ Let g be Gδ(CG, A)-asymptotically smooth on Qt × Qs and ˜g = IQt×Qs
344
+ m
345
+ [g]. Then it holds for
346
+ m ∈ N, m ≥ 3,
347
+ ∥g − ˜g∥C(Qt×Qs) ≤ C(Aη, δ)CG
348
+ 2d(Λm + 1)2d
349
+ dist2(Qt, Qs)2q+d ρ
350
+ � 1
351
+
352
+ �−m1/δ/e2
353
+ .
354
+ (4)
355
+ Proof. In complete analogy to the proof of [4, Theorem 4.22].
356
+
357
+
358
+ 6
359
+ J. D ¨OLZ
360
+ To improve readability we may note that limt→∞ p(t)˜ρt1/δ = 0 for any polynomial p and ˜ρ ∈
361
+ (0, 1) to follow [4, Remark 4.23] and reformulate Equation (4) in Theorem 2.9 as
362
+ ∥g − ˜g∥C(Qt×Qs) ≤
363
+ Cin
364
+ dist2(Qt, Qs)2q+d ˜ρm1/δ,
365
+ ˜ρ : = min
366
+
367
+
368
+ Aη + 1, Aη
369
+ 2
370
+ �1/e2
371
+ > ρ
372
+ � 1
373
+
374
+ �−1/e2
375
+ ,
376
+ (5)
377
+ for some fixed Cin > 0.
378
+ All further results from the classical theory for asymptotically smooth kernels are generalized
379
+ with only minor modifications. In the following subsection we highlight a result going back to [6]
380
+ which allows to choose the polynomial degree of the interpolation according to the spatial size of
381
+ the clusters, yielding linear storage complexity for the compression of Gevrey kernels.
382
+ Remark 2.10. The classical results for asymptotically smooth kernel functions depend on the
383
+ analyticity of the kernel function in admissible clusters since these estimates are based on analytic
384
+ continuations into Bernstein ellipses in the complex plane.
385
+ In contrast, the arguments of our
386
+ generalizations to Gδ(CG, A)-asymptotically smooth kernels only require finite smoothness in each
387
+ direction and do not require extensions into the complex plane.
388
+ 2.3. Cluster trees and block-cluster trees. Cluster trees and block-cluster trees are the basis
389
+ for H2-approximations of kernel functions.
390
+ We recall the basic notions along the lines of [27,
391
+ Chapter 5.3, 5.5, and A.2] and [4, Chapter 3.8].
392
+ Definition 2.11. Let I ⊂ N be a finite index set. The cluster tree TI is a tree whose vertices
393
+ correspond to non-empty subsets of I and are referred to as clusters. We require that the root of
394
+ TI corresponds to I and that it holds ˙∪s∈children(t)s = t for all non-leaf clusters t ∈ TI. The leafs
395
+ of TI are denoted by LI and the distance of a cluster t ∈ TI to the root is denoted by level(t) ∈ N.
396
+ The depth of the cluster tree is the maximal level of its clusters.
397
+ Let D ⊂ Rd be bounded and {Di}i∈I a decomposition of D into simply connected sets indexed
398
+ by I. We say that Qt = ×
399
+ d
400
+ i=1[ai, bi] is a bounding box of t if
401
+ Dt = ∪i∈tDi ⊂ Qt,
402
+ for all t ∈ TI.
403
+ We remark that the definition implies that LI provides a decomposition of I. Further, for
404
+ computational reasons, we make the following assumptions on the considered cluster trees.
405
+ Assumption 2.12. Let TI be a cluster tree. We assume that
406
+ (1) the cluster tree is built on a decomposition {Di}i∈I of D ⊂ Rd bounded into simply con-
407
+ nected sets,
408
+ (2) the number of children for non-leaf clusters bounded from below and above, i.e.,
409
+ 2 ≤ | children(t)| ≤ Cab,
410
+ t ∈ TI \ LI,
411
+ (6)
412
+ for some Cab > 0,
413
+ (3) the cardinality of the leaf clusters is bounded from below and above, i.e.,
414
+ nmin/Cab ≤ |t| ≤ nmin,
415
+ t ∈ LI,
416
+ (7)
417
+ for some nmin > 0.
418
+ Most standard algorithms for constructing cluster trees result in cluster trees satisfying these
419
+ conditions, see also [4, 27].
420
+ Definition 2.13. Given a cluster tree TI, the block-cluster tree TI×I is a tree with vertices
421
+ corresponding to cluster pairs, referred to as block-clusters.
422
+ Starting with t × s = I × I the
423
+ block-cluster tree is constructed as follows.
424
+ (1) Check whether t × s has admissible bounding boxes in the sense of Equation (3).
425
+ (2)
426
+ (a) If t × s has admissible bounding boxes, add it to L+
427
+ I×I.
428
+ (b) Otherwise, perform Item 1 for all t′ × s′, t′ ∈ children(t), s′ ∈ children(s). If t or s
429
+ have no children, add t × s to L−
430
+ I×I.
431
+ The algorithm induces a tree structure TI×I whose set of leafs is given as LI×I = L+
432
+ I×I ∪ L−
433
+ I×I.
434
+
435
+ DATA SPARSE MULTILEVEL COVARIANCE ESTIMATION IN OPTIMAL COMPLEXITY
436
+ 7
437
+ 0.00
438
+ 0.25
439
+ 0.50
440
+ 0.75
441
+ 1.00
442
+ 0.0
443
+ 0.5
444
+ 1.0
445
+ Interpolation
446
+ 0.00
447
+ 0.25
448
+ 0.50
449
+ 0.75
450
+ 1.00
451
+ 0.0
452
+ 0.5
453
+ 1.0
454
+ Reinterpolation
455
+ 0.00
456
+ 0.25
457
+ 0.50
458
+ 0.75
459
+ 1.00
460
+ 0.0
461
+ 0.5
462
+ 1.0
463
+ Second reinterpolation
464
+ 0.00
465
+ 0.25
466
+ 0.50
467
+ 0.75
468
+ 1.00
469
+ 0.00
470
+ 0.25
471
+ 0.50
472
+ 0.75
473
+ 1.00
474
+ Third reinterpolation
475
+ Figure 1.
476
+ Illustration of iterated interpolation. The continuous polynomial
477
+ (upper left) is replaced by a piecewise polynomial of lower degree (lower right).
478
+ We remark that the definition implies that LI×I provides a partition of I × I. Moreover, if
479
+ t × s ∈ TI×I, then also s × t ∈ TI×I, i.e., the block-cluster tree is symmetric. The following
480
+ constant allows to quantify the sparsity of a block-cluster tree.
481
+ Definition 2.14. Given a block-cluster tree TI×I, its sparsity constant Csp is defined as
482
+ Csp = max
483
+ t∈TI
484
+ ���
485
+ s ∈ TI : t × s ∈ TI×I
486
+ ���.
487
+ 2.4. Variable-order H2-approximation spaces of Gevrey kernels. The following definitions
488
+ aim at defining H2-approximation spaces of kernel functions.
489
+ Definition 2.15. Let TI be a cluster tree and LI its leafs. For all t, s ∈ TI we define
490
+ Lt = {t0 ∈ LI : ∃ cluster chain t0 ⊆ . . . ⊆ tn = t with ti−1 ∈ children(ti), i = 1, . . . , n},
491
+ and
492
+ Lt×s = {t0 × s0 : t0 ∈ Lt, s0 ∈ Ls}.
493
+ Let q ∈ (0, 1).
494
+ The family of bounding boxes (Qt)t∈TI is called q-regular if all cluster chains
495
+ t0 ⊆ . . . ⊆ tn = t, t ∈ TI, t0 ∈ Lt, yield families of bounding boxes (Qi)n
496
+ i=0, Qi = ×
497
+ d
498
+ j=1 Ji
499
+ j
500
+ bounding box to ti, satisfying |Ji−1
501
+ j
502
+ | ≤ q|Ji
503
+ j| for all i = 1, . . . , n, j = 1, . . . , d.
504
+ Definition 2.16. Let TI be a cluster tree and (Qt)t∈TI a q-regular family of bounding boxes. Let
505
+ α ∈ N0, β ∈ N and kδ
506
+ i = ⌈(β + αi)δ⌉. Let t, s ∈ TI, t0 ∈ Lt, s0 ∈ Ls and t0 ⊆ . . . ⊆ tn = t and
507
+ s0 ⊆ . . . ⊆ sm = s cluster chains in TI. We define the interpolation operators
508
+ It
509
+ t0 = It0 ◦ . . . ◦ Itn,
510
+ with Iti = IQi
511
+
512
+ p−level(ti) for i = 0, . . . , n,
513
+ and
514
+ It×s
515
+ t0×s0 = It
516
+ t0 ⊗ Is
517
+ s0.
518
+ An illustration of the iterated interpolation process can be found in Figure 1.
519
+ Assumption 2.17. We asume that TI is a cluster tree of depth p. In accordance with [4, 6] we
520
+ assume that
521
+
522
+ 8
523
+ J. D ¨OLZ
524
+ (1) there are constants CΛ, λ ≥ 1 such that the stability constant Λm of the interpolation
525
+ operator I[a,b]
526
+ m
527
+ , cf. Assumption 2.2, satisfies Λm ≤ CΛ(m + 1)λ for all m ∈ N0,
528
+ (2) (Qt)t∈TI is a q-regular family.
529
+ Remark 2.18. [4, 6] also assume that TI×I is locally homogeneous. This condition is automati-
530
+ cally satisfied for all block-clusters as constructed in Definition 2.13.
531
+ We are now in the position to define H2-spaces of kernel functions.
532
+ Definition 2.19. Let TI be a cluster tree of depth p with a q-regular family of bounding boxes.
533
+ Let α ∈ N0, β ∈ N, kδ
534
+ i = ⌈(β + αi)δ⌉ and TI×I be a block-cluster tree constructed from TI. We
535
+ define
536
+ Pt×s =
537
+
538
+ Pkδ
539
+ p−level(t) ⊗ Pkδ
540
+ p−level(s)
541
+ ���
542
+ t×s
543
+ for all t, s ∈ TI,
544
+ Ppw
545
+ t×s = {f : t × s → R: f = It×s
546
+ t0×s0p, t0 × s0 ∈ Lt×s, p ∈ Pt×s}
547
+ for all t × s ∈ L+
548
+ I×I. We define the H2-space of kernel functions as
549
+ V H =
550
+
551
+ g: D × D → R: k
552
+ ��
553
+ t×s ∈ Ppw
554
+ t×s for all t × s ∈ L+
555
+ I×I
556
+
557
+ .
558
+ We remark that the definition implies that each cluster t ∈ TI contains
559
+ Kt =
560
+
561
+
562
+ p−level(t)
563
+ �d =
564
+
565
+ (β + α(p − ℓ))δ�d
566
+ (8)
567
+ interpolation points.
568
+ All further results from the variable-order H2-theory for asymptotically smooth kernels are
569
+ generalized with minor modifications. In the following we use the common assumptions and state
570
+ a slightly modified error estimate in the L2-norm, rather than the maximums norm.
571
+ 2.5. L2-error of variable-order H2-approximations. For Gevrey-regular kernels, the approx-
572
+ imation error in each block-cluster can be estimated as follows.
573
+ Corollary 2.20. Let Assumption 2.17 hold. Let 2q ∈ [−d, 0), let the kernel function g: Rd×Rd →
574
+ R be Gδ(CG, A)-asymptotically smooth, and let α ∈ N0. Then there are constants Cin ∈ R>0 and
575
+ β0 ∈ N0 such that
576
+ ��g − It×s
577
+ t0×s0g
578
+ ��
579
+ C(Qt0×Qs0) ≤ Cin
580
+ � ˜ρβ+α(p−level(t))
581
+ diam∞(Qt)2q+d
582
+ �1/2� ˜ρβ+α(p−level(s))
583
+ diam∞(Qs)2q+d
584
+ �1/2
585
+ holds with ˜ρ as in Equation (5) for all β ≥ β0, all blocks t × s ∈ L+
586
+ I×I satisfiyng Equation (3), and
587
+ all t0 ∈ Lt, s0 ∈ Ls.
588
+ Proof. The proof follows the arguments of [6] and [4, Chapter 4.7] with only minor modifications.
589
+
590
+ Remark 2.21. The restriction on 2q can be lifted to 2q ∈ R<0, if t × s ∈ L+
591
+ I×I, t ∈ children(t′),
592
+ s ∈ children(s′), t′, s′ ∈ TI, and t′ × s′ does not satisfy Equation (3). This is the case for most
593
+ block-cluster trees, in particular for the ones constructed as in Definition 2.13.
594
+ Although the results from the literature can be generalized to Gevrey kernels, most of the
595
+ analysis in the literature is based on an C(Qt0 × Qs0)-type estimate, which is not compatible with
596
+ the L2-setting of the Monte Carlo type error analysis, for which an L2-estimate is preferable.
597
+ Definition 2.22. Let µ be a measure on D with a suitable σ-algebra. We write L2(D) = L2
598
+ µ(D).
599
+ Moreover, to shorten notation, we assume that D × D is equipped with the product measure ˜µ and
600
+ write L2(s × t) = L2
601
+ ˜µ(Ds × Dt) for any t × s ∈ TI×I.
602
+ We remark that the assumptions on D and its measure are quite general, covering manifolds,
603
+ graphs, and multi-screens as well as point measures, for example.
604
+
605
+ DATA SPARSE MULTILEVEL COVARIANCE ESTIMATION IN OPTIMAL COMPLEXITY
606
+ 9
607
+ Assumption 2.23. In addition to Assumption 2.17 we assume that there are constants Ccu ∈
608
+ R>0, hH ∈ R>0, Cgr ∈ R>0, and ζ ∈ R≥1 such that
609
+ µ(Dt) ≤ Ccu diam∞(Qt)d,
610
+ for all t ∈ TI,
611
+ C−1
612
+ gr hH ≤ diam∞(Qt) ≤ CgrhH
613
+ for all t ∈ LI, and
614
+ diam∞(Qt) ≤ ζ diam∞(Qt′)
615
+ for all t′ ∈ children(t), t ∈ TI, see also [4, (4.58) and (4.59)].
616
+ Corollary 2.24. Let Assumption 2.23, and the assumptions of Corollary 2.20 hold. Then it holds
617
+ ����g −
618
+
619
+ t0×s0∈Lt×s
620
+ It×s
621
+ t0×s0g
622
+ ����
623
+ L2(t×s)
624
+ ≤ Clch−2q
625
+ H
626
+ ˜ρβ(ζ−2q ˜ρα)p−level(t)/2−level(s)/2,
627
+ where Clc = CinCcuC−2q
628
+ gr
629
+ .
630
+ Proof. Assumption 2.23 implies
631
+ diam∞(Qt) ≤ ζlevel(t′)−level(t) diam∞(Qt′) ≤ CgrhHζp−level(t)
632
+ for all t′ ∈ Lt, t ∈ TI. Thus,
633
+ µ(Dt)
634
+ diam∞(Qt)2q+d ≤
635
+ Ccu
636
+ diam∞(Qt)2q ≤ CcuC−2q
637
+ gr
638
+ h−2q
639
+ H ζ−2q(p−level(t)).
640
+ The assertion follows from H¨olders inequality and Corollary 2.20 due to
641
+ ����g −
642
+
643
+ t0×s0∈Lt×s
644
+ It×s
645
+ t0×s0g
646
+ ����
647
+ L2(t×s)
648
+
649
+ max
650
+ t0×s0∈Lt×s ∥g − It×s
651
+ t0×s0g∥C(Qt0×Qs0)µ(Dt)1/2µ(Ds)1/2
652
+ ≤ Cin
653
+ �µ(Dt)˜ρβ+α(p−level(t))
654
+ diam∞(Qt)2q+d
655
+ �1/2�µ(Ds)˜ρβ+α(p−level(s))
656
+ diam∞(Qs)2q+d
657
+ �1/2
658
+ .
659
+
660
+ 2.6. Storage requirements of H2-farfield approximations. The following estimate on the
661
+ storage requirements of the farfield of variable-order H2-approximations follows.
662
+ Lemma 2.25. Let Assumption 2.12 and Assumption 2.23 hold. Let g ∈ V H with α ∈ N0 and
663
+ β ∈ N. Then the storage requirements for the coefficients of all leafs t ∈ L+
664
+ I×I are bounded by
665
+ CH2((α + β)δd|I|),
666
+ i.e., they are linear with respect to the cardinality of the underlying index set I. The constant
667
+ CH2 is independent of the depth of TI×I and depends only on δ, d, Csp, and the shape of TI (see
668
+ Appendix A for a precise statement).
669
+ Proof. We use the framework provided in [4, Chapter 3.8]. Lemma A.2 shows that the rank as given
670
+ by Equation (8) yields a (1, α, β, δd, Cab)-bounded rank distribution in the sense of [4, Definition
671
+ 3.44], see also Definition A.1. Lemma A.4 yields that TI is a (Crc, α, β, δd, Cab)-regular cluster
672
+ tree in the sense of [4, Definition 3.47], see also Definition A.3, with Crc given as in Equation (26).
673
+ The assertion follows from [4, Corollary 3.49], see also Lemma A.7.
674
+
675
+
676
+ 10
677
+ J. D ¨OLZ
678
+ 3. H2-sample covariance estimation
679
+ 3.1. Approximation of Gaussian random field samples. We consider finite dimensional
680
+ approximation spaces Vh ⊂ L2(D), h > 0, and denote the L2-projection onto Vh by Πh : L2(D) →
681
+ Vh. The approximation spaces are assumed to satisfy the approximation estimate
682
+ ∥u − Πh∥L2(D) ≤ CL2hγ∥u∥Hγ(D),
683
+ for all u ∈ Hγ(D),
684
+ (9)
685
+ for all 0 ≤ γ ≤ m for some m ∈ N with the Hilbert spaces Hγ(D) ⊂ L2(D) appropriately chosen
686
+ such that Hγ(D) ⊂ Hγ′(D) ⊂ L2(D), 0 ≤ γ′ ≤ γ ≤ m. These approximation estimates hold in
687
+ scattered data approximation [50] and for the standard piecewise polynomial finite element spaces
688
+ of polynomial degree m on quasi uniform meshes on manifolds or graphs [9] with Hm(D) being
689
+ the standard Sobolev spaces, for example.
690
+ Denoting by ⊗ the Hilbertian tensor product, we identify L2(D × D) ≃ L2(D) ⊗ L2(D) and
691
+ write Πmix
692
+ h
693
+ = Πh ⊗ Πh for the L2-projection Πmix
694
+ h
695
+ : L2(D × D) → Vh ⊗ Vh. We further introduce
696
+ the spaces of mixed regularity Hθ
697
+ mix(D × D) = Hθ(D) ⊗ Hθ(D) for θ > 0 and note that for any
698
+ given centered Gaussian random field Z ∈ L2
699
+ P(Ω; Hθ(D)) it holds
700
+ g = E[Z ⊗ Z] ∈ Hθ
701
+ mix(D × D)
702
+ for its covariance function g due to
703
+ ∥g∥Hθ
704
+ mix(D×D) =
705
+ ��E[Z ⊗ Z]
706
+ ��
707
+
708
+ mix(D×D) ≤ ∥Z ⊗ Z∥L1
709
+ P(Ω;Hθ
710
+ mix(D×D)) ≤ ∥Z∥2
711
+ L2
712
+ P(Ω;Hθ(D)),
713
+ (10)
714
+ see also [14, Equation (4.10)], for example.
715
+ Lemma 3.1. Let Z ∈ L2
716
+ P(Ω; Hθ(D)), θ > 0, be a Gaussian random field and g ∈ Hθ
717
+ mix(D) its
718
+ covariance function.
719
+ Let Vh be an approximation space such that Equation (9) holds for γ =
720
+ min{θ, m}. Then there is a constant C⊗
721
+ L2 ∈ R>0 depending on CL2 such that it holds
722
+ ∥g − Πmix
723
+ h
724
+ g∥L2(D×D) ≤ C⊗
725
+ L2hγ∥g∥Hγ
726
+ mix(D×D) ≤ C⊗
727
+ L2hγ∥Z∥2
728
+ L2
729
+ P(Ω;Hγ(D)).
730
+ Proof. The first estimate is standard, the second follows from Equation (10).
731
+
732
+ 3.2. L2-projection onto H2-space. Given the discrete approximation in a tensor product ap-
733
+ proximation space Vh ⊗ Vh ⊂ L2(D × D) to a Gδ(CG, A)-asymptotically smooth kernel, we would
734
+ like to convert this approximation into a variable-order H2-approximation of the kernel function.
735
+ This is accomplished by L2-projection into the vector space of H2-approximated kernel functions
736
+ V H from Definition 2.19.
737
+ Definition 3.2. We denote the L2-projection of k ∈ L2(D × D) onto V H by ΠHk.
738
+ Remark 3.3. Due to Assumption 2.12 and Assumption 2.23, computing ΠHk is equivalent to
739
+ computing the L2(t × s) projections ΠH
740
+ t×sk of k|t×s onto Ppw
741
+ t×s and setting
742
+ ΠHk =
743
+
744
+ t×s∈L+
745
+ I×I
746
+ ΠH
747
+ t×sk +
748
+
749
+ t×s∈L−
750
+ I×I
751
+ k|t×s.
752
+ for k ∈ L2(D × D). We extend ΠH
753
+ t×sk and k|t×s by zero outside of t × s to simplify notation.
754
+ Lemma 3.4. The assumptions of Corollary 2.24 together with Remark 3.3 imply
755
+ ��g − ΠHg
756
+ ��
757
+ L2(t×s) =
758
+ ��g − ΠH
759
+ t×sg
760
+ ��
761
+ L2(t×s) ≤ Clch−2q
762
+ H
763
+ ˜ρβ(ζ−2q ˜ρα)p−level(t)/2−level(s)/2
764
+ for all blocks t × s ∈ L+
765
+ I×I.
766
+ Proof. Follows immediately from C´ea’s lemma and Corollary 2.24.
767
+
768
+ Lemma 3.5. Let the assumptions of Corollary 2.24 hold. Choose α ∈ N such that ζ−2q ˜ρα < 1.
769
+ Then there is β0 ∈ N such that
770
+ ��g − ΠHg
771
+ ��
772
+ L2(D×D) ≤ ClcCsph−2q
773
+ H
774
+ ˜ρβ
775
+ 1 − ζ−2q ˜ρα
776
+ for all β ≥ β0 with ˜ρ as in Equation (5).
777
+
778
+ DATA SPARSE MULTILEVEL COVARIANCE ESTIMATION IN OPTIMAL COMPLEXITY
779
+ 11
780
+ Proof. Due to L2(D × D) ≃ L2(D) ⊗ L2(D) ≃ L2(D; L2(D)) we may write
781
+ ��g − ΠHg
782
+ ��
783
+ L2(D×D) =
784
+ sup
785
+ u,v∈L2(D)
786
+ u,v̸=0
787
+
788
+ D
789
+
790
+ D
791
+
792
+ g(x, y) − ΠHg(x, y)
793
+
794
+ u(x)v(y) dµ(x) dµ(y)
795
+ ∥u∥L2(D)∥v∥L2(D)
796
+ .
797
+ Using Lemma 3.4, the Cauchy-Schwartz inequality, and sparsity of TI×I the numerator is estimated
798
+ by
799
+
800
+ D
801
+
802
+ D
803
+
804
+ g(x, y) − ΠHg(x, y)
805
+
806
+ u(x)v(y) dµ(x) dµ(y)
807
+
808
+
809
+ t×s∈L+
810
+ I×I
811
+ ��g − ΠHg
812
+ ��
813
+ L2(t×s)∥u∥L2(t)∥v∥L2(s)
814
+ ≤ Clch−2q
815
+ H
816
+ ˜ρβ
817
+
818
+ t×s∈L+
819
+ I×I
820
+ (ζ−2q ˜ρα)(p−level(t))/2∥u∥L2(t)(ζ−2q ˜ρα)(p−level(s))/2∥v∥L2(s)
821
+ ≤ ClcCsph−2q
822
+ H
823
+ ˜ρβ
824
+ � �
825
+ t∈TI
826
+ (ζ−2q ˜ρα)p−level(t)∥u∥2
827
+ L2(t)
828
+ �1/2� �
829
+ s∈TI
830
+ (ζ−2q ˜ρα)p−level(s)∥v∥2
831
+ L2(t)
832
+ �1/2
833
+ ≤ ClcCsph−2q
834
+ H
835
+ ˜ρβ
836
+
837
+ p
838
+
839
+ ℓ=0
840
+ (ζ−2q ˜ρα)p−ℓ
841
+
842
+ t∈TI
843
+ level(t)=ℓ
844
+ ∥u∥2
845
+ L2(t)
846
+ �1/2�
847
+ p
848
+
849
+ ℓ=0
850
+ (ζ−2q ˜ρα)p−ℓ
851
+
852
+ s∈TI
853
+ level(s)=ℓ
854
+ ∥v∥2
855
+ L2(t)
856
+ �1/2
857
+ .
858
+ Finally, ζ−2q ˜ρα < 1 implies
859
+ p
860
+
861
+ ℓ=0
862
+ (ζ−2q ˜ρα)p−ℓ
863
+
864
+ t∈TI
865
+ level(t)=ℓ
866
+ ∥u∥2
867
+ L2(t) ≤ ∥u∥2
868
+ L2(D)
869
+ p
870
+
871
+ ℓ=0
872
+ (ζ−2q ˜ρα)ℓ ≤
873
+ ∥u∥2
874
+ L2(D)
875
+ 1 − ζ−2q ˜ρα ,
876
+ which yields the assertion.
877
+
878
+ Corollary 3.6. Let the assumptions of Corollary 2.24 hold and let Vh be an approximation space
879
+ such that Equation (9) holds for γ = min{θ, m}. Choose α ∈ N such that ζ−2q ˜ρα < 1. Then there
880
+ is β0 ∈ N such that
881
+ ��g − ΠHΠmix
882
+ h
883
+ g
884
+ ��
885
+ L2(D×D) ≤ ClcCsph−2q
886
+ H
887
+ ˜ρβ
888
+ 1 − ζ−2q ˜ρα
889
+ + C⊗
890
+ L2hγ∥Z∥2
891
+ L2
892
+ P(Ω;Hγ(D))
893
+ for all β ≥ β0 with ˜ρ as in Equation (5).
894
+ Proof. Follows from stability of the L2-projection,
895
+ ��g − ΠHΠmix
896
+ h
897
+ g
898
+ ��
899
+ L2(D×D) ≤
900
+ ��g − ΠHg
901
+ ��
902
+ L2(D×D) +
903
+ ��g − Πmix
904
+ h
905
+ g
906
+ ��
907
+ L2(D×D),
908
+ Lemma 3.1, and Lemma 3.5.
909
+
910
+ In the next subsection we discuss how we can apply ΠH to simple tensors with elements in Vh
911
+ in linear complexity in dim(Vh).
912
+ 3.3. Algorithmic realization of ΠH applied to simple tensors. As we will see below, com-
913
+ puting ΠH(zh⊗zh), zh ∈ Vh, efficiently is one of the central operations in the H2-formatted (single-
914
+ and multi-level) estimation of covariance functions and thus deserves some discussion. Remark 3.3
915
+ implies that for any zh ∈ Vh we have
916
+ ΠH(zh ⊗ zh) =
917
+
918
+ t×s∈L+
919
+ I×I
920
+ ΠH
921
+ t×s(zh|t ⊗ zh|s) +
922
+
923
+ t×s∈L−
924
+ I×I
925
+ zh|t ⊗ zh|s,
926
+ where ΠH
927
+ t×s(zh|t ⊗ zh|s) = upw
928
+ t×s ∈ Ppw
929
+ t×s are the solutions of the local variational problems
930
+ Find upw
931
+ t×s ∈ Ppw
932
+ t×s s.t. (upw
933
+ t×s, ppw
934
+ t×s)L2(t×s) = (zh|t ⊗ zh|s, ppw
935
+ t×s)L2(t×s) for all ppw
936
+ t×s ∈ Ppw
937
+ t×s,
938
+ (11)
939
+ for all t × s ∈ L+
940
+ t×s.
941
+
942
+ 12
943
+ J. D ¨OLZ
944
+ Crucially, Ppw
945
+ t×s inherits the tensor product structure of Pt×s, i.e., it holds
946
+ Ppw
947
+ t×s = Ppw
948
+ t
949
+ ⊗ Ppw
950
+ s ,
951
+ for all t × s ∈ L+
952
+ I×I, where
953
+ Ppw
954
+ t
955
+ = {f ∈ L2(t): f = It
956
+ t0p, t0 ∈ Lt, p ∈ Pkp−level(t)
957
+ ��
958
+ t},
959
+ for all t ∈ TI. Thus, Equation (11) is equivalent to solving the finite dimensional variational
960
+ problems
961
+ Find upw
962
+ r
963
+ ∈ Ppw
964
+ t
965
+ s.t. (upw
966
+ r , ppw
967
+ r )L2(r) = (zh|r, ppw
968
+ r )L2(r) for all ppw
969
+ r
970
+ ∈ Ppw
971
+ r ,
972
+ for r ∈ {t, s} and setting upw
973
+ t×s = upw
974
+ t
975
+ ⊗ upw
976
+ s . Fixing appropriate nodal bases Ppw
977
+ r
978
+ = span{ψr
979
+ i }m
980
+ i=1
981
+ with m as in Equation (8) this is equivalent to solving the systems of linear equations
982
+ Qrur = qh
983
+ r
984
+ (12)
985
+ with
986
+ Qr =
987
+
988
+ (ψr
989
+ i , ψr
990
+ j)L2(r)
991
+ �m
992
+ i,j=1,
993
+ qh
994
+ r =
995
+
996
+ (zh|r, ψr
997
+ i )L2(r)
998
+ �m
999
+ i=1,
1000
+ ur =
1001
+
1002
+ ψr
1003
+ i
1004
+ �m
1005
+ i=1,
1006
+ (13)
1007
+ for r ∈ {t, s}. The expression for qh
1008
+ r can be further simplified to
1009
+ qh
1010
+ r = Mrzh
1011
+ r,
1012
+ where Mr =
1013
+
1014
+ (ψr
1015
+ i , φr
1016
+ j)L2(r)
1017
+
1018
+ i,j, ψr
1019
+ i ∈ Ppw
1020
+ r , φr
1021
+ j ∈ Vj|r, is the moment matrix on r and zh
1022
+ r is the
1023
+ coefficient vector of zh|r. We note that Ppw
1024
+ t
1025
+ = Pt for all t ∈ LI.
1026
+ We will now show that, for a given sample zh ∈ Vh, computing ΠH(zh⊗zh) can be accomplished
1027
+ in O(dim Vh) complexity. To avoid technicalities, we make the following simplifying assumption,
1028
+ which is satisfied if Vh is suitably build on refinements of the decomposition {Di}i∈I, for example.
1029
+ Assumption 3.7. We assume that dim(Vh|s) ≤ Cminnmin for all s ∈ LI and some constant
1030
+ Cmin > 0.
1031
+ Definition 3.8. Let t ∈ TI \LI, t′ ∈ children(t), and Et′ be the matrix representation of Et′ : Pt →
1032
+ Pt′ defined by p �→ It′p with respect to the bases {ψt
1033
+ i}m
1034
+ i=1 and {ψt′
1035
+ i }m
1036
+ i=1. We refer to {Et}t∈TI\{I}
1037
+ as the transfer matrices. For the constant order case, i.e., for α = 0, we denote the family of
1038
+ transfer matrices by {Ft}t∈TI\{I}.
1039
+ Lemma 3.9. Let Assumption 2.12 and Assumption 3.7 hold and let zh ∈ Vh.
1040
+ Then we can
1041
+ compute {qh
1042
+ t }t∈TI defined as in Equation (13) in at most CH2(α + β)δd|I| operations with the
1043
+ H2-forward transformation, see, e.g., [4], i.e, as follows:
1044
+ (1) Compute qh
1045
+ t = Mtzh
1046
+ t for all t ∈ LI.
1047
+ (2) Recursively compute qh
1048
+ t = �
1049
+ t′∈children(t) E⊺
1050
+ t′qh
1051
+ t′ for all t ∈ TI \ LI.
1052
+ Proof. This is a classical result from the literature, see [4, Lemma 3.45 and 3.48], using the same
1053
+ constants as in the proof of Lemma 2.25.
1054
+
1055
+ Lemma 3.10. Let Assumption 2.12 and Assumption 3.7 hold. We can compute {Qt}t∈TI as
1056
+ defined in Equation (13) in in at most 2CH2(α + β)2δd|I| operations as follows:
1057
+ (1) Compute Qt for all t ∈ LI. Keep in mind that Ppw
1058
+ t
1059
+ = Pt in this case.
1060
+ (2) Recursively compute Qt = �
1061
+ t′∈children(t) E⊺
1062
+ t′Qt′Et′ for all t ∈ TI \ LI.
1063
+ Proof. In complete analogy to Lemma 3.9, see also Lemma 2.25 and [4, Lemma 3.45 and 3.48].
1064
+
1065
+ We remark that actual implementations would compute and factorize {Qt}t∈TI once and use it
1066
+ for all samples, whereas {qt}t∈TI needs to be recomputed for each sample. However, we will not
1067
+ further exploit this fact in the following estimates.
1068
+ Theorem 3.11. Let Assumption 2.12 and Assumption 3.7 hold and let zh ∈ Vh and TI be a cluster
1069
+ tree. Then we can compute ΠH(zh ⊗ zh) in at most 7CH2(α + β)2δd|I| operations as follows:
1070
+ (1) Compute {qh
1071
+ t }t∈TI and {Qt}t∈TI as in Lemma 3.9 and Lemma 3.10.
1072
+ (2) Solve the local systems Qtut = qh
1073
+ t , see Equation (12), for all t ∈ LI.
1074
+
1075
+ DATA SPARSE MULTILEVEL COVARIANCE ESTIMATION IN OPTIMAL COMPLEXITY
1076
+ 13
1077
+ (3) Compute ut ⊗ us to obtain ΠH
1078
+ t×s(zh|t ⊗ zh|s) = upw
1079
+ t×s ∈ Ppw
1080
+ t×s for all t × s ∈ L+
1081
+ I×I and
1082
+ zh|t ⊗ zh|s for all t × s ∈ L−
1083
+ I×I.
1084
+ Proof. Computing {qh
1085
+ t }t∈TI and {Qt}t∈TI is achivable in a combined 3CH2(α + β)2δd|I|, see
1086
+ Lemma 3.9 and Lemma 3.10.
1087
+ Solving the local systems t ∈ TI is achievable in at most 3K3
1088
+ t
1089
+ complexity if a dense solver is used, with Kt given as in Equation (8). [4, Lemma 3.45 and 3.48]
1090
+ with the same constants as in the proof of Lemma 2.25 yields that solving all local systems requires
1091
+ 3CH2(α+β)2δd|I| operations in total. Computing ut ⊗us, t×s ∈ L+
1092
+ I×I, requires KtKs operations.
1093
+ [4, Lemma 3.49] yields that the third step can be achieved in CH2(α + β)2δd|I| operations. This
1094
+ yields the assertion.
1095
+
1096
+ 3.4. H2-sample covariance estimation. Consider a centered Gaussian random field Z ∈ L2
1097
+ P(Ω; Hθ(D)),
1098
+ θ > 0, with unknown covariance function g ∈ Gδ(CG, A). We would like to estimate g in H2-
1099
+ compressed form from approximations of i.i.d. samples of Z.
1100
+ Definition 3.12. Given an approximation space Vh ⊂ L2(D) we define the sample covariance
1101
+ estimator (SCE) as
1102
+ E[Πmix
1103
+ h
1104
+ g] ≈ EMC[Πmix
1105
+ h
1106
+ g] = 1
1107
+ M
1108
+ M
1109
+
1110
+ k=1
1111
+ Πmix
1112
+ h
1113
+
1114
+ z(k) ⊗ z(k)�
1115
+ = 1
1116
+ M
1117
+ M
1118
+
1119
+ k=1
1120
+
1121
+ Πhz(k) ⊗ Πhz(k)�
1122
+ ,
1123
+ with i.i.d. samples z(k), k = 1, . . . , M, M ∈ N, of Z ∈ L2
1124
+ P(Ω, Hθ(D)).
1125
+ Lemma 3.13. Let Z ∈ L2
1126
+ P(Ω; Hθ(D)), θ > 0, be a centered Gaussian random field with covariance
1127
+ function g. Let Vh be an approximation space such that Equation (9) holds for γ = min{θ, m}.
1128
+ Then it holds
1129
+ ��g − EMC[Πmix
1130
+ h
1131
+ g]
1132
+ ��
1133
+ L2
1134
+ P(Ω;L2(D×D)) ≤
1135
+
1136
+ C⊗
1137
+ L2hγ +
1138
+ 1
1139
+
1140
+ M
1141
+
1142
+ ∥Z∥2
1143
+ L2
1144
+ P(Ω;Hγ(D)).
1145
+ Proof. The estimate is derived by standard methods using Lemma 3.1, see, e.g., also [1].
1146
+
1147
+ As is meanwhile well known, see e.g. [1] for a reference, the naive sample covariance estimator
1148
+ from Definition 3.12 is computationally inconvenient for the estimation of second moments since it
1149
+ yields a quadratic complexity in the dimension of Vh. Instead, we pursue the following alternative.
1150
+ Definition 3.14. The H2-formatted sample covariance estimator (H2-SCE) is defined as
1151
+ E[ΠHΠmix
1152
+ h
1153
+ g] ≈ EMC[ΠHΠmix
1154
+ h
1155
+ g] = 1
1156
+ M
1157
+ M
1158
+
1159
+ k=1
1160
+ ΠH�
1161
+ Πhz(k) ⊗ Πhz(k)�
1162
+ .
1163
+ As outlined in the previous subsection, a single sample of the estimator can be computed in
1164
+ linear complexity in |I| ∼ dim(Vh), if a solver with linear complexity for evaluating Πhz(k) is used.
1165
+ Thus, the overall complexity of the H2-SCE is O(M|I|).
1166
+ Lemma 3.15. Let the assumptions of Lemma 3.4 and Lemma 3.13 hold. Choose α ∈ N such that
1167
+ ζ−2q ˜ρα < 1. Then there is β0 ∈ N such that
1168
+ ��g − EMC[ΠHΠmix
1169
+ h
1170
+ g]
1171
+ ��
1172
+ L2
1173
+ P(Ω,L2(D×D)) ≤ ClcCsph−2q
1174
+ H
1175
+ ˜ρβ
1176
+ 1 − ζ−2q ˜ρα
1177
+ +
1178
+
1179
+ C⊗
1180
+ L2hγ +
1181
+ 1
1182
+
1183
+ M
1184
+
1185
+ ∥Z∥2
1186
+ L2
1187
+ P(Ω;Hγ(D))
1188
+ for all β ≥ β0 with ˜ρ as in Equation (5).
1189
+ Proof. We first note that EMC[ΠHΠmix
1190
+ h
1191
+ g] = ΠHEMC[Πmix
1192
+ h
1193
+ g]. Stability of the L2-projection yields
1194
+ ��g − EMC[ΠHΠmix
1195
+ h
1196
+ g]
1197
+ ��
1198
+ L2
1199
+ P(Ω,L2(D×D))
1200
+ =
1201
+ ��g − ΠHEMC[Πmix
1202
+ h
1203
+ g]
1204
+ ��
1205
+ L2
1206
+ P(Ω,L2(D×D))
1207
+
1208
+ ��g − ΠHg
1209
+ ��
1210
+ L2(D×D) +
1211
+ ��g − EMC[Πmix
1212
+ h
1213
+ g]
1214
+ ��
1215
+ L2
1216
+ P(Ω,L2(D×D)).
1217
+ The first term is estimated with Lemma 3.5 and the second with Lemma 3.13.
1218
+
1219
+
1220
+ 14
1221
+ J. D ¨OLZ
1222
+ 3.5. Computational H2-sample covariance estimation. For computational covariance esti-
1223
+ mation one often aims at a discretization of the covariance function rather than the covariance
1224
+ itself. In the following we provide error estimates for bilinear forms of type
1225
+ a(uh, vh) =
1226
+
1227
+ D
1228
+
1229
+ D
1230
+ g(x, y)uh(x)vh(y) dµ(x) dµ(y)
1231
+ (14)
1232
+ for uh, vh ∈ Wh with Wh ⊂ L2(D) being some approximation space. The canonical applications are
1233
+ bilinear forms of Galerkin schemes and Nystr¨om discretizations in scattered data approximation.
1234
+ For the latter we chose the approximation space to be a set of dirac distributions on points xi ∈ D,
1235
+ i = 1, . . . , N, such that Equation (14) reads
1236
+ a(u, v) =
1237
+ N
1238
+
1239
+ i,j=1
1240
+ g(xi, xj)uivj
1241
+ (15)
1242
+ for u = [ui]N
1243
+ i=1, v = [vi]N
1244
+ i=1 ∈ RN, see also [26]. We first provide the error estimate and thereafter
1245
+ some assumptions one will usually make on the approximation space Wh in order to achieve linear
1246
+ complexity.
1247
+ Corollary 3.16. Let the assumptions of Lemma 3.15 hold and let Wh ⊂ L2(D) be an approxi-
1248
+ mation space satisfying Equation (9). Choose α ∈ N such that ζ−2q ˜ρα < 1. Then there is β0 ∈ N
1249
+ such that����
1250
+
1251
+ D
1252
+
1253
+ D
1254
+
1255
+ g(x, y) − EMC[ΠHΠmix
1256
+ h
1257
+ g(x, y)]
1258
+
1259
+ uh(x)vh(y) dµ(x) dµ(y)
1260
+ ����
1261
+ L2
1262
+ P(Ω)
1263
+
1264
+ �ClcCsph−2q
1265
+ H
1266
+ ˜ρβ
1267
+ 1 − ζ−2q ˜ρα
1268
+ +
1269
+
1270
+ C⊗
1271
+ L2hγ +
1272
+ 1
1273
+
1274
+ M
1275
+
1276
+ ∥Z∥2
1277
+ L2
1278
+ P(Ω;Hγ(D))
1279
+
1280
+ ∥uh∥L2(D)∥vh∥L2(D),
1281
+ for all uh, vh ∈ Wh and β ≥ β0 with ˜ρ as in Equation (5).
1282
+ Proof. The assertion follows from Lemma 3.15 and the Cauchy-Schwarz inequality in L2(D).
1283
+
1284
+ For computational reasons, the basis of the approximation space Wh needs to be local.
1285
+ Assumption 3.17. Let Wh = span{φi}i∈I be an approximation space and TI a cluster tree
1286
+ constructed on I. We require that all basis functions φi, i ∈ t with t ∈ LI, are supported on Dt,
1287
+ but not on Ds for s ̸= t.
1288
+ We readily check that the assumption is fulfilled for piecewise constant finite elements on the
1289
+ decomposition {Dt}t∈TI and refinements thereof and for Nystr¨om discretizations.
1290
+ Definition 3.18. Let Wh = span{φi}i∈I be an approximation space satisfying Assumption 3.17.
1291
+ We call A = [a(φj, φi)]i,j∈I with A as in Equation (14) an H2-matrix, if g ∈ V H and A is stored
1292
+ in compressed form.
1293
+ In complete analogy to Lemma 2.25 and in accordance with the literature we obtain linear
1294
+ storage requirements for A.
1295
+ Corollary 3.19. Under the assumptions of Corollary 3.16 and Assumption 3.17, the matrix A
1296
+ can be stored with a storage requirement of CH2(α + β)δd|I|, i.e., linear in the cardinality of I.
1297
+ This yields the following optimal result complexity-result for the H2-SCE.
1298
+ Theorem 3.20. Under the assumptions of Theorem 3.11 and Assumption 3.17 the H2-SCE is
1299
+ computable in complexity CH2M(α+β)δd|I|, if the H2-matrix addition is used for the summation.
1300
+ Proof. Follows from Definition 3.14, Theorem 3.11, and the linear complexity of the H2-matrix
1301
+ addition, see [4, Chapter 7.3].
1302
+
1303
+ We remark that methods relying on a sparse grid approximation of the covariance yield a
1304
+ complexity which is only linear up to a logarithmic factor, see, e.g., [1].
1305
+
1306
+ DATA SPARSE MULTILEVEL COVARIANCE ESTIMATION IN OPTIMAL COMPLEXITY
1307
+ 15
1308
+ 4. Multilevel H2-sample covariance estimation: Construction and error analysis
1309
+ 4.1. Multilevel hierarchy and cluster trees. To further improve the computational complex-
1310
+ ity of the H2-SCE we pursue in the following a multilevel approach.
1311
+ Our considerations are
1312
+ guided by the characteristics of nested finite element spaces, but can be transferred to other ap-
1313
+ proximation spaces providing a suitable multilevel hierarchy. To that end, we note that on a given
1314
+ decomposition on D we can always define a finite element space and, by employing an appropriate
1315
+ clustering algorithm, a cluster tree such that the following assumption is true.
1316
+ Assumption 4.1. Let Vh0 ⊂ L2(D) be a piecewise polynomial finite element space generated from
1317
+ the decomposition Th0 = {D(0)
1318
+ i
1319
+ }i∈I0 and let TI0 be a cluster tree constructed on I0 which satisfies
1320
+ Assumption 2.12.
1321
+ Under these circumstances we can generate a sequence of nested decompositions {Thℓ = {D(ℓ)
1322
+ i }i∈Iℓ}∞
1323
+ ℓ=0
1324
+ with
1325
+ |Iℓ| = |I0|Cℓ
1326
+ uni
1327
+ (16)
1328
+ for some Cuni > 1 and corresponding finite element spaces Vh0 ⊂ Vh1 ⊂ Vh2 ⊂ . . . ⊂ L2(D) in
1329
+ the usual way using uniform refinement. We can also construct nested cluster trees {TIℓ}∞
1330
+ ℓ=0 by
1331
+ repeated uniform refinement of Th0 as follows.
1332
+ Definition 4.2. Let Th0 = {D(0)
1333
+ i
1334
+ }i∈I0 and let TI0 and Th0 satisfy Assumption 4.1. Let {Thℓ =
1335
+ {D(ℓ)
1336
+ i }i∈Iℓ}∞
1337
+ ℓ=0 be a sequence of nested decompositions generated by uniform refinement of Th0.
1338
+ Given a cluster tree TIℓ on Iℓ, we define a cluster tree TIℓ+1 on Iℓ+1 as follows:
1339
+ • The vertices of TIℓ+1 \ LIℓ+1 are defined by the one-to-one correspondence of the supports
1340
+ of the clusters, i.e.,
1341
+ t(ℓ+1) ∈ TIℓ+1 \ LIℓ+1 ⇔ there is t(ℓ) ∈ TIℓ such that D(ℓ+1)
1342
+ t(ℓ+1) = D(ℓ)
1343
+ t(ℓ),
1344
+ (17)
1345
+ with D(k)
1346
+ t
1347
+ = ∪i∈tD(k)
1348
+ i
1349
+ , k = ℓ, ℓ + 1. The tree hierarchy between the vertices of TIℓ+1 \ LIℓ+1
1350
+ is naturally given by the tree structure induced by the nestedness of the cluster supports.
1351
+ • For all s ∈ LIℓ let ts ∈ TIℓ+1 \ IIℓ+1 be the corresponding cluster satisfying Equation (17)
1352
+ and let Tts be a cluster tree on ts satisfying Assumption 2.12 constructed by a cluster-
1353
+ ing algorithm with fixed constant C′
1354
+ ab in Equation (6). We define the children of ts as
1355
+ children(ts) = Lts, implying that
1356
+ LIℓ+1 =
1357
+
1358
+ s∈LIℓ
1359
+ Lts.
1360
+ Definition 4.3. We say that a sequence of cluster trees is nested if Equation (17) holds for all
1361
+ ℓ ∈ N0. To simplify notation we write t = t(ℓ) = t(ℓ+1) whenever Equation (17) is satisfied.
1362
+ An illustration to Definition 4.2 and Definition 4.3 is given in Figure 2.
1363
+ Lemma 4.4. Let the assumptions from Assumption 4.1 hold. Then the sequence of cluster trees
1364
+ {Thℓ = {D(ℓ)
1365
+ i }i∈Iℓ}∞
1366
+ ℓ=0 as defined in Definition 4.2 is nested and satisfies Assumption 2.12 with
1367
+ uniform constants for all ℓ ∈ N0.
1368
+ Proof. The nestedness of the cluster trees follows by construction. Further, Definition 4.2 implies
1369
+ nmin/C′
1370
+ ab ≤ |t| ≤ nmin for all t ∈ Lts due to Equation (7). Since Equation (7) also implies that
1371
+ |ts| ≤ 4nmin, each cluster tree Tts has at most
1372
+ 4nmin
1373
+ nmin/Cab′ = 4Cab′
1374
+ leafs. Thus, TIℓ+1 satisfies Equation (6) with C′′
1375
+ ab = max{Cab, 4C′
1376
+ ab}.
1377
+
1378
+ The nestedness of the generated cluster trees directly implies that also the the sequence of
1379
+ block-cluster trees {TIℓ×Iℓ}∞
1380
+ ℓ=1 constructed as in Definition 2.13 is nested. Moreover the leaves of
1381
+ the generated block-cluster trees provide a nested sequence of decompositions of I × I and D × D.
1382
+
1383
+ 16
1384
+ J. D ¨OLZ
1385
+ I0 = {1, 2, 3}
1386
+ {1}
1387
+ {2, 3}
1388
+ {2}
1389
+ {3}
1390
+ I1 = {1, . . . , 9}
1391
+ {1, 2, 3}
1392
+ {1} {2} {3}
1393
+ {4, . . . , 9}
1394
+ {4, 5, 6}
1395
+ {4} {5} {6}
1396
+ {7, 8, 9}
1397
+ {7} {8} {9}
1398
+ D(0)
1399
+ 1
1400
+ D(0)
1401
+ 2
1402
+ D(0)
1403
+ 3
1404
+ D(1)
1405
+ 1
1406
+ D(1)
1407
+ 2
1408
+ D(1)
1409
+ 3
1410
+ D(1)
1411
+ 4
1412
+ D(1)
1413
+ 5
1414
+ D(1)
1415
+ 6
1416
+ D(1)
1417
+ 7
1418
+ D(1)
1419
+ 8
1420
+ D(1)
1421
+ 9
1422
+ Figure 2. Illustration of nested cluster trees TI0 (upper left) and TI1 (upper
1423
+ right) in the sense of Definition 4.2 to nested decompositions {D(0)
1424
+ i
1425
+ }i∈I0 (bottom
1426
+ left) and {D(1)
1427
+ i
1428
+ }i∈I1 (bottom right).
1429
+ 9
1430
+ 9
1431
+ 9
1432
+ 9
1433
+ 9
1434
+ 9
1435
+ 9
1436
+ 9
1437
+ 9
1438
+ 9
1439
+ 9
1440
+ 9
1441
+ 9
1442
+ 9
1443
+ 9
1444
+ 9
1445
+ 9
1446
+ 9
1447
+ 9
1448
+ 9
1449
+ 9
1450
+ 9
1451
+ 9
1452
+ 9
1453
+ 25
1454
+ 25
1455
+ 25
1456
+ 25
1457
+ 25
1458
+ 25
1459
+ 9
1460
+ 9
1461
+ 9
1462
+ 9
1463
+ 9
1464
+ 9
1465
+ 9
1466
+ 9
1467
+ 9
1468
+ 9
1469
+ 9
1470
+ 9
1471
+ 9
1472
+ 9
1473
+ 9
1474
+ 9
1475
+ 9
1476
+ 9
1477
+ 9
1478
+ 9
1479
+ 9
1480
+ 9
1481
+ 9
1482
+ 9
1483
+ 9
1484
+ 9
1485
+ 9
1486
+ 9
1487
+ 9
1488
+ 9
1489
+ 9
1490
+ 9
1491
+ 9
1492
+ 9
1493
+ 9
1494
+ 9
1495
+ 9
1496
+ 9
1497
+ 9
1498
+ 9
1499
+ 9
1500
+ 9
1501
+ 25
1502
+ 25
1503
+ 25
1504
+ 25
1505
+ 25
1506
+ 25
1507
+ 25
1508
+ 25
1509
+ 25
1510
+ 25
1511
+ 25
1512
+ 25
1513
+ 25
1514
+ 25
1515
+ 25
1516
+ 25
1517
+ 25
1518
+ 25
1519
+ 49
1520
+ 49
1521
+ 49
1522
+ 49
1523
+ 49
1524
+ 49
1525
+ Figure 3. Illustration of three H2-approximation spaces on D × D = [0, 1]2
1526
+ for three binary, nested, and perfectly balanced cluster trees. No approximation
1527
+ is performed within the red blocks. The blue blocks are approximated by ten-
1528
+ sorized iterated interpolation with the inscribed polynomial degree. β = 3, α = 2,
1529
+ and δ = 1 were used as parameters in Equation (8) for this example. The H2-
1530
+ approximation spaces are not nested, but have a similar structure which leads to
1531
+ an approximate multi-level hierarchy.
1532
+ The following definition identifies clusters and block clusters which are equivalent in the sense
1533
+ that they correspond to the same parts of D and D × D.
1534
+ Definition 4.5. To simplify notation we write
1535
+ t ∈ TIℓ
1536
+ for all
1537
+ t ∈ TIℓ+1,
1538
+ t × s ∈ TIℓ×Iℓ
1539
+ for all
1540
+ t × s ∈ TIℓ+1×Iℓ+1,
1541
+ and vice versa, whenever the involved clusters satisfy Equation (17).
1542
+ We further note that the farfields and the nearfields of nested block-cluster trees do not provide
1543
+ nested decompositions of D × D, since only
1544
+ t × s ∈ L+
1545
+ Iℓ×Iℓ ⇒ t × s ∈ L+
1546
+ Iℓ+1×Iℓ+1
1547
+ is guaranteed from the construction, see also Definition 2.13 and Definition 4.2. Thus, the sequence
1548
+ {V Hℓ}∞
1549
+ ℓ=0 of H2-spaces from Definition 2.19 generated by the sequence of block-cluster trees is
1550
+ not nested, see also Figure 3 for an illustration. This holds also for the polynomials in the farfield,
1551
+ which depend on the depth of the specific block-cluster tree, see also Equation (8), which in turn
1552
+
1553
+ DATA SPARSE MULTILEVEL COVARIANCE ESTIMATION IN OPTIMAL COMPLEXITY
1554
+ 17
1555
+ depends on ℓ. For clarification we write Ppw,ℓ
1556
+ t
1557
+ = Ppw
1558
+ t
1559
+ and Ppw,ℓ
1560
+ t×s = Ppw
1561
+ t×s for the polynomial spaces
1562
+ from Definition 2.19 whenever they are constructed from the cluster tree TIℓ.
1563
+ As a last remark of this subsection, we use the introduced notation to localize the multilevel
1564
+ hierarchy in the finite element spaces by means of the nestedness of the cluster trees.
1565
+ Definition 4.6. Let {Vhℓ}∞
1566
+ ℓ=0 and {TIℓ}∞
1567
+ ℓ=0 be sequences of nested finite element spaces and nested
1568
+ cluster trees as in Definition 4.2. Let Jℓ : Vhℓ → Vhℓ+1 be the canonical prolongation operator
1569
+ between nested finite element spaces. For t ∈ LIℓ+1 we write Jt for the matrix representation of
1570
+ Jℓ|t : Vhℓ|t → Vhℓ+1|t.
1571
+ 4.2. Multilevel H2-sample covariance estimation. With a suitable (approximate) multilevel
1572
+ structure at hand, we now introduce a multilevel version of the H2-SCE. To shorten notation we
1573
+ introduce the operator
1574
+ ΠH
1575
+ h,ℓ = ΠHℓΠmix
1576
+ hℓ .
1577
+ Definition 4.7. Given the above sequence of finite element spaces and H2-spaces and setting
1578
+ Πmix
1579
+ h−1g = 0, we define the H2-formatted multilevel sample covariance estimator (H2-MLSCE)
1580
+ recursively as
1581
+ E[ΠH
1582
+ h,Lg] ≈ EML
1583
+ L
1584
+ [ΠH
1585
+ h,Lg] =
1586
+ L
1587
+
1588
+ ℓ=0
1589
+ ΠHLEℓ
1590
+ ��
1591
+ ΠH
1592
+ h,ℓ − ΠH
1593
+ h,ℓ−1
1594
+
1595
+ g
1596
+
1597
+ (18)
1598
+ with the single level estimators
1599
+ Eℓ
1600
+ ��
1601
+ ΠH
1602
+ h,ℓ − ΠH
1603
+ h,ℓ−1
1604
+
1605
+ g
1606
+
1607
+ =
1608
+ 1
1609
+ Mℓ
1610
+ Mℓ
1611
+
1612
+ k=1
1613
+
1614
+ ΠH
1615
+ h,ℓ − ΠH
1616
+ h,ℓ−1
1617
+ ��
1618
+ z(k) ⊗ z(k)�
1619
+ ,
1620
+ ℓ = 0, . . . , L,
1621
+ given by i.i.d. samples z(k), k = 1, . . . , Mℓ, Mℓ ∈ N, of Z ∈ L2
1622
+ P(Ω, Hθ(D)).
1623
+ Theorem 4.8. Let Z ∈ L2
1624
+ P(Ω; Hθ(D)), θ > 0, be a centered Gaussian random field with co-
1625
+ variance function g.
1626
+ Let Th0 = {D(0)
1627
+ i
1628
+ }i∈I0 and let TI0 and Th0 satisfy Assumption 4.1.
1629
+ Let
1630
+ {Thℓ = {D(ℓ)
1631
+ i }i∈Iℓ}L
1632
+ ℓ=0 and {TIℓ}L
1633
+ ℓ=0 be sequences of decompositions with corresponding cluster
1634
+ trees as constructed in Definition 4.2 and {Vhℓ}L
1635
+ ℓ=0 a nested sequence of piecewise polynomial
1636
+ ansatz spaces of order m ∈ N on {Thℓ}L
1637
+ ℓ=0. Define γ = min{θ, m} and choose α ∈ N such that
1638
+ ζ−2q ˜ρα < 1. Then there is β0 ∈ N such that it holds
1639
+ ��g − EML
1640
+ L
1641
+ [ΠH
1642
+ h,Lg]
1643
+ ��
1644
+ L2
1645
+ P(Ω;L2(D×D)) ≤
1646
+ ClcCsp˜ρβ
1647
+ 1 − ζ−2q ˜ρα
1648
+
1649
+ h−2q
1650
+ H,L + (1 + 2−2q)
1651
+ L
1652
+
1653
+ ℓ=0
1654
+ h−2q
1655
+ H,ℓ
1656
+ √Mℓ
1657
+
1658
+ + C⊗
1659
+ L2
1660
+
1661
+
1662
+ L + (1 + 2γ)
1663
+ L
1664
+
1665
+ ℓ=0
1666
+
1667
+
1668
+ √Mℓ
1669
+
1670
+ ∥Z∥2
1671
+ L2
1672
+ P(Ω;Hγ(D))
1673
+ for all β ≥ β0 with ˜ρ as in Equation (5).
1674
+ Proof. The estimate is proved in the usual way, using Corollary 3.6, see, e.g., also [1], and using
1675
+ stability of the L2-projection on the way.
1676
+
1677
+ Corollary 4.9. Let the assumptions of Theorem 4.8 hold, let
1678
+ ˜γ = min{−2q, γ} = min{−2q, θ, m},
1679
+ and choose α ∈ N such that ζ−2q ˜ρα < 1. Then there is β0 ∈ N and a constant
1680
+ 0 < CMLE = CMLE
1681
+
1682
+ ClcCsp˜ρβ0, ζ−2q ˜ρα, C⊗
1683
+ L2, ChH, −2q, γ, ∥Z∥L2
1684
+ P(Ω;Hγ(D))
1685
+
1686
+ such that
1687
+ ��g − EML
1688
+ L
1689
+ [ΠH
1690
+ h,Lg]
1691
+ ��
1692
+ L2
1693
+ P(Ω;L2(D×D)) ≤ CMLE
1694
+
1695
+ h˜γ
1696
+ L +
1697
+ L
1698
+
1699
+ ℓ=0
1700
+ h˜γ
1701
+
1702
+ √Mℓ
1703
+
1704
+ for all β ≥ β0 with ˜ρ as in Equation (5).
1705
+
1706
+ 18
1707
+ J. D ¨OLZ
1708
+ 9
1709
+ 9
1710
+ 9
1711
+ 9
1712
+ 9
1713
+ 9
1714
+ 9
1715
+ 9
1716
+ 9
1717
+ 9
1718
+ 9
1719
+ 9
1720
+ 9
1721
+ 9
1722
+ 9
1723
+ 9
1724
+ 9
1725
+ 9
1726
+ 9
1727
+ 9
1728
+ 9
1729
+ 9
1730
+ 9
1731
+ 9
1732
+ 25
1733
+ 25
1734
+ 25
1735
+ 25
1736
+ 25
1737
+ 25
1738
+ 9
1739
+ 9
1740
+ 9
1741
+ 9
1742
+ 9
1743
+ 9
1744
+ 9
1745
+ 9
1746
+ 9
1747
+ 9
1748
+ 9
1749
+ 9
1750
+ 9
1751
+ 9
1752
+ 9
1753
+ 9
1754
+ 9
1755
+ 9
1756
+ 9
1757
+ 9
1758
+ 9
1759
+ 9
1760
+ 9
1761
+ 9
1762
+ 9
1763
+ 9
1764
+ 9
1765
+ 9
1766
+ 9
1767
+ 9
1768
+ 9
1769
+ 9
1770
+ 9
1771
+ 9
1772
+ 9
1773
+ 9
1774
+ 9
1775
+ 9
1776
+ 9
1777
+ 9
1778
+ 9
1779
+ 9
1780
+ 25
1781
+ 25
1782
+ 25
1783
+ 25
1784
+ 25
1785
+ 25
1786
+ 25
1787
+ 25
1788
+ 25
1789
+ 25
1790
+ 25
1791
+ 25
1792
+ 25
1793
+ 25
1794
+ 25
1795
+ 25
1796
+ 25
1797
+ 25
1798
+ 49
1799
+ 49
1800
+ 49
1801
+ 49
1802
+ 49
1803
+ 49
1804
+ Figure
1805
+ 4.
1806
+ Illustration of the multilevel reduction algorithm for H2-
1807
+ approximation spaces on three different levels. The farfield is projected directly
1808
+ onto the finest level, whereas the nearfield is prolongated recursively.
1809
+ Proof. The specific construction of {Thℓ}L
1810
+ ℓ=0, {TIℓ}L
1811
+ ℓ=0, and {Vhℓ}L
1812
+ ℓ=0 using uniform refinement
1813
+ implies that C−1
1814
+ hHhℓ ≤ hH,ℓ ≤ ChHhℓ for ℓ = 0, . . . , L. This yields the assertion.
1815
+
1816
+ In analogy to Corollary 3.16 we obtain the following bound on the bilinear form induced by
1817
+ the covariance function. We recall that this also holds for bilinear forms of Nystr¨om type Equa-
1818
+ tion (15), if the corresponding assumptions are made.
1819
+ Corollary 4.10. Under the assumptions of Corollary 4.9 there is β0 ∈ N such that
1820
+ ����
1821
+
1822
+ D
1823
+
1824
+ D
1825
+
1826
+ g(x, y) − ΠHLEML
1827
+ L
1828
+ [Πmix
1829
+ hL g(x, y)]
1830
+
1831
+ uh(x)vh(y) dµ(x) dµ(y)
1832
+ ����
1833
+ L2
1834
+ P(Ω)
1835
+ ≤ CMLE
1836
+
1837
+ h˜γ
1838
+ L +
1839
+ L
1840
+
1841
+ ℓ=0
1842
+ h˜γ
1843
+
1844
+ √Mℓ
1845
+
1846
+ ∥uh∥L2(D)∥vh∥L2(D),
1847
+ for all β ≥ β0 with ˜ρ as in Equation (5).
1848
+ 5. Multilevel H2-sample covariance estimation: Algorithmic considerations
1849
+ In view of a computational implementation of the multilevel H2-MLSCE in Equation (18) we
1850
+ require an efficient way to combine the H2-approximations on different levels, i.e., an efficient
1851
+ implementation of the sum over the different levels. Reformulating this task, we seek an efficient
1852
+ implementation of the multilevel reduction
1853
+ ΠHL :
1854
+
1855
+
1856
+ ℓ=0
1857
+ W H
1858
+
1859
+
1860
+ → W H
1861
+ L ,
1862
+
1863
+ gHℓ�L
1864
+ ℓ=0 �→ ˜gHL = ΠHL
1865
+ L
1866
+
1867
+ ℓ=0
1868
+ gHℓ,
1869
+ (19)
1870
+ with
1871
+ W H
1872
+
1873
+ =
1874
+
1875
+ ΠHℓvhl : vhl ∈ Vhℓ ⊗ Vhℓ
1876
+
1877
+ ,
1878
+ ℓ = 0, 1, . . . , L.
1879
+ In the following, we will pursue a strategy which is illustrated in Figure 4. To that end, we exploit
1880
+ Remark 3.3, i.e. that ΠHL can be represented as a sum of local L2-projections on t × s ∈ LIL×IL.
1881
+ It is clear that there is nothing to do if a target block-cluster of ΠHL is inadmissible, i.e., if
1882
+ t × s ∈ L−
1883
+ IL×IL. If t × s is admissible, i.e., if t × s ∈ L+
1884
+ IL×IL, we observe that
1885
+ ΠHL
1886
+ t×s
1887
+ L
1888
+
1889
+ ℓ=0
1890
+ gHℓ =
1891
+ L
1892
+
1893
+ ℓ=0
1894
+ ΠHL
1895
+ t×sgHℓ.
1896
+
1897
+ DATA SPARSE MULTILEVEL COVARIANCE ESTIMATION IN OPTIMAL COMPLEXITY
1898
+ 19
1899
+ Thus, we can compute ΠHL
1900
+ t×sgHℓ whenever t × s ∈ L+
1901
+ IL×IL and t × s ∈ LIℓ×Iℓ. Otherwise, i.e., if
1902
+ t×s ∈ L−
1903
+ Iℓ×Iℓ and t×s /∈ LIL×IL, we split s×t into far- and nearfield according to the partitioning
1904
+ of TIℓ+1×Iℓ+1, project the resulting farfield blocks to level L and add the nearfield blocks to the
1905
+ nearfield of level ℓ + 1.
1906
+ 5.1. Projecting admissible block-clusters to admissible block-clusters. To that end, we
1907
+ consider the case where t × s ∈ L+
1908
+ Iℓ×Iℓ and t × s ∈ L+
1909
+ IL×IL, i.e., t × s is an admissible block-cluster
1910
+ in both block-cluster trees.
1911
+ For these block-clusters, computing ΠHL|t×sgHℓ|t×s, gHℓ ∈ W H
1912
+ ℓ ,
1913
+ amounts to the solution of
1914
+ Find gHL|t×s ∈ Ppw,L
1915
+ t×s
1916
+ s.t.
1917
+ (gHL|t×s, ppw,L
1918
+ t×s )L2(t×s) = (gHℓ|t×s, ppw,L
1919
+ t×s )L2(t×s)
1920
+ for all ppw,L
1921
+ t×s
1922
+ ∈ Ppw,L
1923
+ t×s .
1924
+ This is a finite dimensional variational problem which can be written as
1925
+ Qsu(L)
1926
+ s×tQ⊺
1927
+ t = R(L,ℓ)
1928
+ s
1929
+ u(ℓ)
1930
+ s×t
1931
+
1932
+ R(L,ℓ)
1933
+ t
1934
+ �⊺
1935
+ ,
1936
+ (20)
1937
+ with Qr, r ∈ {s, t}, as in Equation (13), u(L)
1938
+ s×t and u(ℓ)
1939
+ s×t the coefficient matrices of gHL|t×s and
1940
+ gHℓ|t×s, and
1941
+ R(L,ℓ)
1942
+ r
1943
+ =
1944
+ ��
1945
+ ψ(r,L)
1946
+ i
1947
+ , ψ(r,ℓ)
1948
+ j
1949
+
1950
+ L2(r)
1951
+
1952
+ i=1,...,K(L)
1953
+ r
1954
+ ,
1955
+ j=1,...,K(ℓ)
1956
+ r
1957
+ ∈ RK(L)
1958
+ r
1959
+ ×K(ℓ)
1960
+ r ,
1961
+ for all ψ(r,L)
1962
+ i
1963
+ ∈ Ppw,L
1964
+ r
1965
+ and ψ(r,ℓ)
1966
+ i
1967
+ ∈ Ppw,ℓ
1968
+ r
1969
+ , r ∈ {s, t}.
1970
+ 5.2. Projecting inadmissible leaf block-clusters to admissible block-clusters. We con-
1971
+ sider the case t × s ∈ L−
1972
+ Iℓ×Iℓ and t × s ∈ L+
1973
+ IL×IL. Upon noting that it holds gHℓ|t×s ∈ Vhℓ|s ⊗ Vhℓ|t
1974
+ for all gHℓ ∈ W H
1975
+
1976
+ we readily remark that
1977
+ Find gHL|t×s ∈ Ppw,L
1978
+ t×s
1979
+ s.t.
1980
+ (gHL|t×s, ppw,L
1981
+ t×s )L2(t×s) = (gHℓ|t×s, ppw,L
1982
+ t×s )L2(t×s)
1983
+ for all ppw,L
1984
+ t×s
1985
+ ∈ Ppw,L
1986
+ t×s ,
1987
+ is a finite dimensional variational problem which can be rewritten as
1988
+ Qsu(L)
1989
+ s×tQ⊺
1990
+ t = N(L,ℓ)
1991
+ s
1992
+ g(ℓ)
1993
+ s×t
1994
+
1995
+ N(L,ℓ)
1996
+ t
1997
+ �⊺
1998
+ .
1999
+ (21)
2000
+ As in the previous subsection, u(L)
2001
+ s×t and u(ℓ)
2002
+ s×t are the coefficient matrices of gHL|t×s and gHℓ|t×s,
2003
+ and
2004
+ N(L,ℓ)
2005
+ r
2006
+ =
2007
+ ��
2008
+ ψ(r,L)
2009
+ i
2010
+ , φ(r,ℓ)
2011
+ j
2012
+
2013
+ L2(r)
2014
+
2015
+ i=1,...,K(L)
2016
+ r
2017
+ ,
2018
+ j=1,...,dim(Vhℓ|r)
2019
+ ∈ RK(L)
2020
+ r
2021
+ ×dim(Vhℓ|r),
2022
+ for all ψ(r,L)
2023
+ i
2024
+ ∈ Ppw,L
2025
+ r
2026
+ and φ(r,ℓ)
2027
+ i
2028
+ ∈ Vhℓ|r, r ∈ {s, t}.
2029
+ 5.3. Preliminary computational considerations. In view of an efficient solution of Equa-
2030
+ tion (20) and Equation (21), an efficient assembly of the matrices R(L,ℓ)
2031
+ t
2032
+ and N(L,ℓ)
2033
+ t
2034
+ is mandatory.
2035
+ Before we state our algorithm for the multilevel reduction, we would like to make some preliminary
2036
+ remarks on how these matrices can be obtained efficiently.
2037
+ Lemma 5.1. Let Assumption 2.12, Assumption 3.7 and Assumption 4.1 hold and consider fam-
2038
+ ilies of finite element spaces and cluster trees as in Definition 4.2. Compute {Rt}t∈TL with
2039
+ (1) Rt = Qt for all t ∈ LIL,
2040
+ (2) Rt = �
2041
+ t′∈children(t) E⊺
2042
+ t′,LRt′Ft′ for all t ∈ TIℓ \ LIℓ,
2043
+ and {Nt}t∈TL with
2044
+ (1) Nt = Mt for all t ∈ LIL,
2045
+ (2) Nt = �
2046
+ t′∈children(t) E⊺
2047
+ t′,LNt′J⊺
2048
+ t′ for all t ∈ TIℓ \ LIℓ.
2049
+
2050
+ 20
2051
+ J. D ¨OLZ
2052
+ Then {Rt}t∈TL can be computed in at most 2CH2(α + β)2δd|IL| operations and {Nt}t∈TL can be
2053
+ computed in at most 2CH2C2
2054
+ minn2
2055
+ min(α + β)2δd|IL| operations.
2056
+ Proof. Estimating the effort for {Rt}t∈TL is complete analogy to Lemma 3.10. To estimate the
2057
+ one for {Nt}t∈TL, we note that the computational effort in each cluster t′ ∈ children(t) is bounded
2058
+ by
2059
+ Cminnmin
2060
+
2061
+ K(L)
2062
+ t
2063
+ K(L)
2064
+ t′
2065
+ + CminnminK(L)
2066
+ t′
2067
+
2068
+ ≤ 2C2
2069
+ minn2
2070
+ minK(L)
2071
+ t
2072
+ K(L)
2073
+ t′ .
2074
+ The effort is then bounded in analogy to the one of {Rt}t∈TL.
2075
+
2076
+ The following lemma extends these considerations to the case when an multilevel hierarchy of
2077
+ H2-approximation spaces is used.
2078
+ Lemma 5.2. Given {Rt}t∈TL and {Nt}t∈TL as in Lemma 5.1 and 0 ≤ ℓ ≤ L, compute {R(L,ℓ)
2079
+ t
2080
+ }t∈TIℓ
2081
+ by
2082
+ (1) R(L,ℓ)
2083
+ t
2084
+ = Rt for all t ∈ LIℓ,
2085
+ (2) R(L,ℓ)
2086
+ t
2087
+ = �
2088
+ t′∈children(t) E⊺
2089
+ t′,LR(L,ℓ)
2090
+ t′
2091
+ Et′,ℓ for all t ∈ TIℓ \ LIℓ,
2092
+ and {N(L,ℓ)
2093
+ t
2094
+ }t∈TIℓ by
2095
+ (1) N(L,ℓ)
2096
+ t
2097
+ = Nt for all t ∈ LIℓ,
2098
+ (2) N(L,ℓ)
2099
+ t
2100
+ = �
2101
+ t′∈children(t) E⊺
2102
+ t′,LN(L,ℓ)
2103
+ t′
2104
+ Jt′ for all t ∈ TIℓ \ LIℓ.
2105
+ Then {R(L,ℓ)
2106
+ t
2107
+ }t∈TIℓ can be computed in at most
2108
+ 2CH2 (α(L − ℓ + 1) + β)3δd
2109
+ (α + β)δd
2110
+ |Iℓ|.
2111
+ operations and {N(L,ℓ)
2112
+ t
2113
+ }t∈TIℓ can be computed in at most
2114
+ 2CH2C2
2115
+ minn2
2116
+ min
2117
+ (α(L − ℓ + 1) + β)3δd
2118
+ (α + β)δd
2119
+ |Iℓ|.
2120
+ operations.
2121
+ Proof. We first note that TIℓ is a (Crc, α, β+(L−ℓ)α, δd, Cab)-bounded as well as a (Crc, α, β, δd, Cab)-
2122
+ regular cluster tree with Crc as in Equation (26). Lemma A.7 yields the assertion for {R(L,ℓ)
2123
+ t
2124
+ }t∈Tℓ.
2125
+ Modifying the proof of Lemma 5.1 with similar arguments yields the assertion for {N(L,ℓ)
2126
+ t
2127
+ }t∈TIℓ .
2128
+
2129
+ 5.4. The multilevel H2-reduction algorithm.
2130
+ Theorem 5.3. Let Cab be the uniform constant satisfying Equation (6) for all elements of the
2131
+ family of cluster trees {TIℓ}L
2132
+ ℓ=0 constructed in the proof of Lemma 4.4. Then there is a constant
2133
+ CML = CML(CH2, Cmin, Cab, Cuni, nmin, δ, d) such that the computational cost of Equation (19) are
2134
+ bounded by
2135
+ CML
2136
+ (α + β)⌈3δd⌉
2137
+ (α + β)δd |IL|,
2138
+ i.e., in linear complexity w.r.t. |IL|, if Equation (19) is computed as follows:
2139
+ (1) Set ˜gHL = gHL
2140
+ (2) Initialize {Qt}t∈TIL , {Rt}t∈TIL , and {Nt}t∈TIL as in Lemma 3.10 and Lemma 5.1
2141
+ (3) For ℓ = 0, . . . , L − 1 proceed as follows:
2142
+ (a) Initialize {R(L,ℓ)
2143
+ t
2144
+ }t∈TIℓ and {N(L,ℓ)
2145
+ t
2146
+ }t∈TIℓ as in Lemma 5.2
2147
+ (b) Project all far- and nearfield blocks on level ℓ to level L, i.e., set
2148
+ ˜gHL|t×s = ˜gHL|t×s + ΠHL|t×sgHℓ|t×s
2149
+ for all t × s ∈ LIℓ×Iℓ with t × s ∈ LIL×IL, by solving the local systems Equation (20)
2150
+ and Equation (21).
2151
+ (c) For all t × s ∈ L−
2152
+ Iℓ×Iℓ, consider t × s as cluster in TIℓ+1×Iℓ+1 and
2153
+
2154
+ DATA SPARSE MULTILEVEL COVARIANCE ESTIMATION IN OPTIMAL COMPLEXITY
2155
+ 21
2156
+ (i) set
2157
+ ˜gHL|t′×s′ = ˜gHL|t′×s′ + ΠHL|t′×s′gHℓ|t′×s′
2158
+ for all t′ × s′ ∈ children(t × s) with t′ × s′ ∈ L+
2159
+ Iℓ+1×Iℓ+1 by solving the local
2160
+ systems Equation (21),
2161
+ (ii) set
2162
+ ˜gHℓ+1|t′×s′ = ˜gHℓ+1|t′×s′ + gHℓ|t′×s′
2163
+ for all t′×s′ ∈ children(t×s) with t′×s′ ∈ L−
2164
+ Iℓ+1×Iℓ+1 by dense matrix addition.
2165
+ Proof. We first list the computational cost of every step.
2166
+ Step 1: This step is without computational cost.
2167
+ Step 2: The computational cost for assembling {Qt}t∈TIL are bounded in Lemma 3.10, the
2168
+ ones for {Rt}t∈TIL and {Nt}t∈TIL in Lemma 5.1. The total cost of this step are thus
2169
+ 6CH2C2
2170
+ minn2
2171
+ min(α + β)2δd|IL|.
2172
+ Step 3: We first list the computational cost for each substep for fixed ℓ.
2173
+ Step 3a: The computational cost are bounded in Lemma 5.2. Summing up the cost for this
2174
+ step yields
2175
+ 4CH2C2
2176
+ minn2
2177
+ min
2178
+ (α(L − ℓ + 1) + β)3δd
2179
+ (α + β)δd
2180
+ |Iℓ|.
2181
+ Step 3b: The computational cost for solving Equation (20) are given by
2182
+
2183
+ r∈{s,t}
2184
+
2185
+ 2
2186
+
2187
+ K(L)
2188
+ r
2189
+ �3
2190
+ +
2191
+
2192
+ K(L)
2193
+ r
2194
+ ��
2195
+ K(ℓ)
2196
+ r
2197
+ �2�
2198
+ ≤ 3
2199
+
2200
+ r∈{s,t}
2201
+
2202
+ K(L)
2203
+ r
2204
+ �3
2205
+ and arise for all t × s ∈ L+
2206
+ Iℓ×Iℓ, while the efforts for Equation (21) are given by
2207
+
2208
+ r∈{s,t}
2209
+
2210
+ 2
2211
+
2212
+ K(L)
2213
+ r
2214
+ �3
2215
+ +
2216
+
2217
+ K(L)
2218
+ r
2219
+
2220
+ C2
2221
+ minn2
2222
+ min
2223
+
2224
+ ≤ 3C2
2225
+ minn2
2226
+ min
2227
+
2228
+ r∈{s,t}
2229
+
2230
+ K(L)
2231
+ r
2232
+ �3
2233
+ and arise for all t × s ∈ L−
2234
+ Iℓ×Iℓ ∩ L+
2235
+ IL×IL.
2236
+ Step 3c: This substep is concerned with all t × s ∈ L−
2237
+ Iℓ×Iℓ \ L+
2238
+ IL×IL. Thus, a prolongation
2239
+ from Vhℓ|t ⊗ Vhℓ|s to Vhℓ+1|t ⊗ Vhℓ+1|s is required. This can be accomplished in at most
2240
+ 2CuniC3
2241
+ minn3
2242
+ min operations.
2243
+ Step 3(c)i: For all t′ × s′ ∈ children(t × s) ∩ L+
2244
+ Iℓ+1×Iℓ+1 we need to solve Equation (21) on
2245
+ the level pair (L, ℓ + 1) instead of (L, ℓ), i.e.,
2246
+ Qs′u(L)
2247
+ s′×t′Q⊺
2248
+ t′ = N(L,ℓ+1)
2249
+ s′
2250
+ g(ℓ+1)
2251
+ s′×t′
2252
+
2253
+ N(L,ℓ+1)
2254
+ t′
2255
+ �⊺
2256
+ .
2257
+ The cost for a given t × s ∈ L−
2258
+ Iℓ×Iℓ \ L+
2259
+ IL×IL are thus bounded by
2260
+
2261
+ t′×s′∈children(t×s)
2262
+
2263
+ r∈{s′,t′}
2264
+
2265
+ 2
2266
+
2267
+ K(L)
2268
+ r
2269
+ �3
2270
+ +
2271
+
2272
+ K(L)
2273
+ r
2274
+
2275
+ C2
2276
+ minn2
2277
+ min
2278
+
2279
+ ≤ 3C2
2280
+ minC2
2281
+ abn2
2282
+ min
2283
+
2284
+ r∈{s,t}
2285
+
2286
+ K(L)
2287
+ r
2288
+ �3
2289
+ .
2290
+ Step 3(c)ii:: The computational cost for this step are negligible.
2291
+ Steps 3b and 3c combined: Combining the preliminary considerations above and using
2292
+ Lemma A.7, the combined total computational cost for fixed ℓ for Step 3b and 3c are
2293
+ bounded by
2294
+ 9CH2C2
2295
+ minC2
2296
+ abn2
2297
+ min
2298
+ (α(L − ℓ + 1) + β)3δd
2299
+ (α + β)δd
2300
+ |Iℓ| + 2CuniC3
2301
+ minn3
2302
+ min|Iℓ|.
2303
+
2304
+ 22
2305
+ J. D ¨OLZ
2306
+ Overall cost: Summing up the contributions of each step, yields that the overall cost of the
2307
+ algorithm are bounded by
2308
+ L−1
2309
+
2310
+ ℓ=0
2311
+
2312
+ 19CH2C2
2313
+ minC2
2314
+ abn2
2315
+ min
2316
+ (α(L − ℓ + 1) + β)3δd
2317
+ (α + β)δd
2318
+ + 2CuniC3
2319
+ minn3
2320
+ min
2321
+
2322
+ |Iℓ|
2323
+ ≤ |I0|
2324
+ L−1
2325
+
2326
+ ℓ=0
2327
+
2328
+ 19CH2C2
2329
+ minC2
2330
+ abn2
2331
+ min
2332
+ (α(L − ℓ + 1) + β)3δd
2333
+ (α + β)δd
2334
+ + 2CuniC3
2335
+ minn3
2336
+ min
2337
+
2338
+ Cℓ
2339
+ uni
2340
+ ≤ |I0|
2341
+
2342
+ 19CH2C2
2343
+ minC2
2344
+ abn2
2345
+ min
2346
+ L−1
2347
+
2348
+ ℓ=0
2349
+ (α(L − ℓ + 1) + β)3δd
2350
+ (α + β)δd
2351
+ Cℓ
2352
+ uni + 2CuniC3
2353
+ minn3
2354
+ min
2355
+ CL
2356
+ uni − 1
2357
+ Cuni − 1
2358
+
2359
+ .
2360
+ We note that
2361
+ L−1
2362
+
2363
+ ℓ=0
2364
+ (α(L − ℓ + 1) + β)3δd
2365
+ (α + β)δd
2366
+ Cℓ
2367
+ uni ≤ CL
2368
+ uni
2369
+ L
2370
+
2371
+ ℓ=0
2372
+ ((α + β) + αℓ)3δd
2373
+ (α + β)δd
2374
+ C−ℓ
2375
+ uni
2376
+
2377
+ CL
2378
+ uni
2379
+ (α + β)δd
2380
+
2381
+
2382
+ ℓ=0
2383
+ ((β + α) + αℓ)⌈3δd⌉C−ℓ
2384
+ uni
2385
+ where
2386
+
2387
+
2388
+ ℓ=0
2389
+ (β + αℓ)kqℓ ≤
2390
+
2391
+ 1 +
2392
+ 1
2393
+ 1 − q
2394
+
2395
+ q
2396
+ 1 − q + 1
2397
+ 2
2398
+ �k
2399
+ k!
2400
+
2401
+ (α + β)k
2402
+ for all q ∈ [0, 1) and k ∈ N0 due to [4, Lemma 3.50 and 3.51]. The assertion follows with
2403
+ |I0|CL
2404
+ uni = |IL|.
2405
+
2406
+ Remark 5.4. The implementation effort for the H2-MLSCE estimator is comparatively low and
2407
+ along the lines of the usual H2-algorithms. In fact, given any H2-library, the H2-MLSCE estimator
2408
+ only requires the implementation of the three algorithms in Theorem 3.11, Definition 4.2, and
2409
+ Theorem 5.3. To that end, we remark that the initialization of {Qt}t∈TIL , {Rt}t∈TIL , {Nt}t∈TIL ,
2410
+ {R(L,ℓ)
2411
+ t
2412
+ }t∈TIℓ , and {N(L,ℓ)
2413
+ t
2414
+ }t∈TIℓ can algorithmically all be treated by the same subroutine.
2415
+ 5.5. Computational work vs. accuracy. Combining Theorem 3.20 and Theorem 5.3 yields
2416
+ that the H2-MLSCE can be computed in O
2417
+ � �L
2418
+ ℓ=0 Mℓ|Iℓ|
2419
+
2420
+ operations, with δ entering only in the
2421
+ constant. Thus, it remains to choose the sample numbers such that accuracy of the finest level is
2422
+ achieved with minimal work. In complete analogy to various references, we mention [28, Appendix
2423
+ D] or [37] for example, we state the following theorem without proof.
2424
+ Theorem 5.5. Let the assumptions of Corollary 4.9 hold and choose ε > 0. The H2-MLSCE
2425
+ with
2426
+ L = d
2427
+ ˜γ
2428
+ ����
2429
+ log(ε−1)
2430
+ log(Cuni)
2431
+ ����
2432
+ and sample numbers
2433
+ Mℓ = M0C−2ℓ(1+˜γ/d)/3
2434
+ uni
2435
+ ,
2436
+ ℓ = 0, . . . , L,
2437
+ with
2438
+ M0 =
2439
+
2440
+
2441
+
2442
+
2443
+
2444
+ C2˜γL/d
2445
+ uni
2446
+ for 2˜γ > d,
2447
+ C2˜γL/d
2448
+ uni
2449
+ L2
2450
+ for 2˜γ = d,
2451
+ C2(1+˜γ/d)L/3
2452
+ uni
2453
+ for 2˜γ < d,
2454
+ achieves error estimates
2455
+ ��g − EML
2456
+ L
2457
+ [ΠH
2458
+ h,Lg]
2459
+ ��
2460
+ L2
2461
+ P(Ω;L2(D×D)) = O(ε)
2462
+
2463
+ DATA SPARSE MULTILEVEL COVARIANCE ESTIMATION IN OPTIMAL COMPLEXITY
2464
+ 23
2465
+ Figure 5. Sample realizations of the centered Gaussian process with G3/2-
2466
+ asymptotically smooth covariance function taken for the numerical experiments.
2467
+ and
2468
+ sup
2469
+ uh,vh∈VhL
2470
+ ���
2471
+
2472
+ D
2473
+
2474
+ D
2475
+
2476
+ g(x, y) − ΠHLEML
2477
+ L
2478
+ [Πmix
2479
+ hL g(x, y)]
2480
+
2481
+ uh(x)vh(y) dµ(x) dµ(y)
2482
+ ���
2483
+ L2
2484
+ P(Ω)
2485
+ ∥uh∥L2(D)∥vh∥L2(D)
2486
+ = O(ε)
2487
+ in a computational complexity of
2488
+
2489
+
2490
+
2491
+
2492
+
2493
+ O(ε−2)
2494
+ for 2˜γ > d,
2495
+ O
2496
+
2497
+ ε−2| log(ε−1)|3�
2498
+ for 2˜γ = d,
2499
+ O(ε−d/˜γ)
2500
+ for 2˜γ < d.
2501
+ Thus, for 2˜γ > d, the overall error is dominated by the Monte Carlo error, whereas for 2˜γ < d
2502
+ the overall error is dominated by the error of the approximation spaces Vhl.
2503
+ We note that these computational complexities are in line with the wavelet-based approach
2504
+ from [28], but the H2-approach does not require a hierarchical basis. In contrast, wavelet-based
2505
+ approaches are theoretically also applicable if the smoothness of the kernel function is finite, which
2506
+ is, see also Remark 2.10, asymptotically not the case for the H2-approach due to the increasingly
2507
+ higher polynomial degrees required for interpolation.
2508
+ 6. Numerical experiments
2509
+ For our numerical experiments we aim at estimating the covariance of a Gaussian random
2510
+ field at the surface ∂D of a turbine geometry, see Figure 5, i.e., on a two-dimensional manifold
2511
+ embedded into R3. The radius of the turbine to the end of the blades is 1.5. To that end, we
2512
+ prescribe a reference Gaussian random field in terms of a Karhunen-Lo´eve expansion, i.e.,
2513
+ Z(ω, x) =
2514
+
2515
+
2516
+ k=0
2517
+
2518
+ λkϕ(x)Yk(ω),
2519
+
2520
+ 2.5e+00
2521
+ .5
2522
+ 0.5
2523
+ -0.5
2524
+ 1.5
2525
+ -2.5e+002.5e+00
2526
+ .5
2527
+ 0.5
2528
+ -0.5
2529
+ 1.5
2530
+ -2.5e+002.5e+00
2531
+ .5
2532
+ Q.5
2533
+ -0.5
2534
+ -1.5
2535
+ -2.5e+002.5e+00
2536
+ .5
2537
+ 0.5
2538
+ -0.5
2539
+ -1.5
2540
+ -2.5e+0024
2541
+ J. D ¨OLZ
2542
+ L
2543
+ 0
2544
+ 1
2545
+ 2
2546
+ 3
2547
+ 4
2548
+ 5
2549
+ 6
2550
+ dim Vh = dim Wh
2551
+ 60
2552
+ 240
2553
+ 960
2554
+ 3 840
2555
+ 15 360
2556
+ 61 440
2557
+ 245 760
2558
+ dim(Wh ⊗ Wh)
2559
+ 3 600
2560
+ 57 600
2561
+ 921 600
2562
+ ≈ 14.7 · 106
2563
+ ≈ 236 · 106
2564
+ ≈ 3.77 · 109
2565
+ ≈ 60.4 · 109
2566
+ Table 1.
2567
+ Dimensions of the used finite element spaces. The estimated covari-
2568
+ ance matrices are matrices in Rdim Wh×dim Wh, i.e., have dim(Wh ⊗ Wh) degrees
2569
+ of freedom.
2570
+ L
2571
+ 0
2572
+ 1
2573
+ 2
2574
+ 3
2575
+ 4
2576
+ 5
2577
+ 6
2578
+ M0
2579
+ 1
2580
+ 4
2581
+ 64
2582
+ 576
2583
+ 4 096
2584
+ 25 600
2585
+ 147 456
2586
+ M1
2587
+ 1
2588
+ 16
2589
+ 144
2590
+ 1 024
2591
+ 6 400
2592
+ 36 864
2593
+ M2
2594
+ 4
2595
+ 36
2596
+ 256
2597
+ 1 600
2598
+ 9 216
2599
+ M3
2600
+ 9
2601
+ 64
2602
+ 400
2603
+ 2 304
2604
+ M4
2605
+ 16
2606
+ 100
2607
+ 576
2608
+ M5
2609
+ 25
2610
+ 144
2611
+ M6
2612
+ 36
2613
+ Table 2. Sample numbers chosen according to the case 2˜γ = d in Theorem 5.5
2614
+ for the numerical example.
2615
+ with Yk ∼ U([−1, 1]) and {(λk, ϕk)}∞
2616
+ k=0 the eigenpairs of the integral operator
2617
+ C : L2(∂D) → L2(∂D),
2618
+ (Cϕ)(x) =
2619
+
2620
+ ∂D
2621
+ gδ(x, y)ϕ(y) dσ(y).
2622
+ The covariance function gδ is chosen as a modified Mat´ern-9/2 kernel
2623
+ gδ(x, y) = ˜g(∥γδ(x) − γδ(y)∥),
2624
+ ˜g(r) =
2625
+
2626
+ 1 + 3r + 27r2
2627
+ 7
2628
+ + 18r3
2629
+ 7
2630
+ + 27r4
2631
+ 35
2632
+
2633
+ e−3r,
2634
+ where
2635
+ γδ : ∂D → R3,
2636
+ γδ(x1, x2, x3), =
2637
+
2638
+
2639
+ 0.1 + Υδ(2 ∗ x1 − 1)x1
2640
+ x2
2641
+ x3
2642
+
2643
+
2644
+ and
2645
+ Υδ(t) =
2646
+ υδ(1 − t)
2647
+ υδ(1 − t) + υδ(t),
2648
+ υδ(t) =
2649
+
2650
+ 0,
2651
+ t ≤ 0,
2652
+ e−t
2653
+ 1
2654
+ 1−δ ,
2655
+ t > 0,
2656
+ is a partition of Gevrey class δ ≥ 1 with Υ(t) = 1 for t < 0 and Υ(t) = 0 for t > 0, see, e.g., [13].
2657
+ For our numerical experiments we choose δ = 3/2, for which samples are illustrated in Figure 5.
2658
+ This makes the covariance function gδ a G3/2-asymptotically smooth kernel function.
2659
+ The H2-implementation of the numerical experiments is based on the C++-Library Bembel [17],
2660
+ with compression parameters α = 1, β = 2, η = 0.8, and nmin = 4. We choose piecewise constant
2661
+ finite element spaces Vhℓ = Whℓ, ℓ = 0, 1, 2, . . ., on uniformly refined quadrilateral meshes with
2662
+ Cuni = 4 and hℓ ∼ 2−ℓ, leading to dimensions of the finite element spaces and covariance matrices
2663
+ as in Table 1. The Gaussian random field samples ΠhℓZ are generated from a Karhunen Lo´eve
2664
+ expansion which is truncated at 10−3hℓ and computed from a pivoted Cholesky decomposition [30].
2665
+ According to Corollary 4.10 and Theorem 5.5 it holds ˜γ = 1 and we can expect a linear convergence
2666
+ rate for our H2-MLSCE, if the sample numbers are chosen proportional to Theorem 5.5. For our
2667
+ particular example we choose the sample numbers listed in Table 2. Figure 6 shows that we reach
2668
+ indeed the predicted rate convergence rate of Theorem 4.8 and a computational work vs. accuracy
2669
+ as in Theorem 5.5. The spectral error was computed with a power iteration up to an absolute
2670
+ accuracy of 10−4. The computation times are measured in wall clock time and have been carried
2671
+ out in parallel with 48 threads on a compute server with 1.3TB RAM and two Intel(R) Xeon(R)
2672
+ CPU E7-4850 v2 CPUs with Hyper-Threading enabled.
2673
+
2674
+ DATA SPARSE MULTILEVEL COVARIANCE ESTIMATION IN OPTIMAL COMPLEXITY
2675
+ 25
2676
+ 0
2677
+ 2
2678
+ 4
2679
+ 6
2680
+ 100
2681
+ 101
2682
+ 102
2683
+ L
2684
+ absolute spectral error
2685
+ Convergence
2686
+ ˜γ = 1
2687
+ 100
2688
+ 101
2689
+ 102
2690
+ 10−6
2691
+ 10−5
2692
+ 10−4
2693
+ 10−3
2694
+ 10−2
2695
+ 10−1
2696
+ 100
2697
+ 101
2698
+ 102
2699
+ 103
2700
+ 104
2701
+ 105
2702
+ 106
2703
+ ε
2704
+ wall clock time (sec)
2705
+ Computational work vs. accuracy
2706
+ ε−2| log(ε)|3
2707
+ Figure 6. Convergence plot of a realization of the H2-MLSCE and corresponding
2708
+ computational work vs. accuracy with the sample numbers as in Table 2, cf. also
2709
+ Corollary 4.10 and Theorem 5.5.
2710
+ 7. Conclusion
2711
+ In this article, we considered the multilevel estimation of covariance functions which are Gδ-
2712
+ asymptotically smooth, δ ≥ 1.
2713
+ This choice is motivated by the stochastic partial differential
2714
+ equation approach to Gaussian random fields and pseudodifferential operator theory. The naive
2715
+ approach to estimate the covariance function from discretized samples using the single level covari-
2716
+ ance estimator is computationally prohibitive due to the density of the arising covariance matrices
2717
+ and the slow convergence of the sample covariance estimator. To overcome these issues, we first
2718
+ generalized the classical H2-approximation theory for asymptotically smooth kernels to Gevrey
2719
+ kernels. This allows to compress the arising covariance matrices by H2-matrices in linear com-
2720
+ plexity with respect to the underlying approximation space. Secondly, we proposed and analyzed
2721
+ an H2-formatted multilevel covariance sample estimator (H2-MLCSE). This estimator exploits an
2722
+ approximate multilevel hierarchy in the H2-approximation spaces to estimate the covariance in
2723
+ the same complexity as the mean. The provided approximation theory is applicable to a rather
2724
+ general setting, covering for example domains, manifolds, graphs, and multi-screens as well as
2725
+ various approximation spaces such as finite element spaces and Nystr¨om discretizations.
2726
+ Alternatively to the approach proposed in this paper, a wavelet based method for estimating
2727
+ covariance functions was proposed in [28]. The advantage of such a wavelet method is that the
2728
+ wavelet-based approximation results also hold for finite smoothness of the covariance function,
2729
+ whereas the here presented H2-approach requires asymptotically in��nite smoothness. In contrast,
2730
+ the advantage of the H2-approach in this paper is that no wavelet basis is required and that the
2731
+ presented algorithms can be integrated into the many readily available H2-matrix codes.
2732
+ Acknowledgement
2733
+ The author would like to express his sincere gratitude to Christoph Schwab for the initial
2734
+ discussions on generalizing the H2-matrix approximation theory to Gevrey kernels and for critical
2735
+ and helpful comments during the writing of the manuscript.
2736
+ References
2737
+ [1] A. Barth, Ch. Schwab, and N. Zollinger. Multi-level Monte Carlo Finite Element method for elliptic PDEs
2738
+ with stochastic coefficients. Numerische Mathematik, 119(1):123–161, September 2011.
2739
+ [2] P. J. Bickel and E. Levina. Covariance regularization by thresholding. The Annals of Statistics, 36(6), December
2740
+ 2008.
2741
+ [3] P. J. Bickel and E. Levina. Regularized estimation of large covariance matrices. The Annals of Statistics, 36(1),
2742
+ February 2008.
2743
+
2744
+ 26
2745
+ J. D ¨OLZ
2746
+ [4] S. B¨orm. Efficient Numerical Methods for Non-Local Operators, volume 14 of EMS Tracts in Mathematics.
2747
+ European Mathematical Society (EMS), Z¨urich, 2010.
2748
+ [5] S. B¨orm and J. Garcke. Approximating gaussian processes with H2-matrices. In Joost N. Kok, Jacek Koronacki,
2749
+ Raomon Lopez de Mantaras, Stan Matwin, Dunja Mladeniˇc, and Andrzej Skowron, editors, Machine Learning:
2750
+ ECML 2007, pages 42–53, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.
2751
+ [6] S. B¨orm, M. L¨ohndorf, and J. M. Melenk. Approximation of Integral Operators by Variable-Order Interpolation.
2752
+ Numerische Mathematik, 99(4):605–643, February 2005.
2753
+ [7] Steffen B¨orm. On Iterated Interpolation. SIAM Journal on Numerical Analysis, 60(6):3124–3144, December
2754
+ 2022.
2755
+ [8] L. Boutet de Monvel and P. Kr´ee. Pseudo-differential operators and Gevrey classes. Universit´e de Grenoble.
2756
+ Annales de l’Institut Fourier, 17(fasc. 1):295–323, 1967.
2757
+ [9] S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element Methods, volume 15 of Texts in
2758
+ Applied Mathematics. Springer New York, New York, NY, 2008.
2759
+ [10] H.-J. Bungartz and M. Griebel. Sparse grids. Acta Numerica, 13:147–269, May 2004.
2760
+ [11] T. T. Cai, Z. Ren, and H. H. Zhou. Estimating structured high-dimensional covariance and precision matrices:
2761
+ Optimal rates and adaptive estimation. Electronic Journal of Statistics, 10(1), January 2016.
2762
+ [12] J. E. Castrill´on-Cand´as, M. G. Genton, and R. Yokota. Multi-level restricted maximum likelihood covariance
2763
+ estimation and kriging for large non-gridded spatial datasets. Spatial Statistics, 18:105–124, November 2016.
2764
+ [13] H. Chen and L. Rodino. General theory of PDE and Gevrey classes. In General theory of partial differential
2765
+ equations and microlocal analysis (Trieste, 1995), volume 349 of Pitman Res. Notes Math. Ser., pages 6–81.
2766
+ Longman, Harlow, 1996.
2767
+ [14] A. Chernov and Ch. Schwab. First order k-th moment finite element analysis of nonlinear operator equations
2768
+ with stochastic data. Mathematics of Computation, 82(284):1859–1888, 2013.
2769
+ [15] M. Costabel, M. Dauge, and Ch. Schwab. Exponential convergence of hp-FEM for Maxwell equations
2770
+ with weighted regularization in polygonal domains. Mathematical Models and Methods in Applied Sciences,
2771
+ 15(04):575–622, April 2005.
2772
+ [16] J. Dick, F. Y. Kuo, and I. H. Sloan. High-dimensional integration: The quasi-Monte Carlo way. Acta Numerica,
2773
+ 22:133–288, 2013.
2774
+ [17] J. D¨olz, H. Harbrecht, S. Kurz, M. Multerer, S. Sch¨ops, and F. Wolf. Bembel: The fast isogeometric boundary
2775
+ element C++ library for Laplace, Helmholtz, and electric wave equation. SoftwareX, 11:100476, January 2020.
2776
+ [18] J. D¨olz, H. Harbrecht, and Ch. Schwab. Covariance regularity and H-matrix approximation for rough random
2777
+ fields. Numerische Mathematik, 135(4):1045–1071, 2017.
2778
+ [19] N. El Karoui. Operator norm consistent estimation of large-dimensional sparse covariance matrices. The Annals
2779
+ of Statistics, 36(6), December 2008.
2780
+ [20] J. Fan, Y. Liao, and H. Liu. An overview of the estimation of large covariance and precision matrices. The
2781
+ Econometrics Journal, 19(1):C1–C32, February 2016.
2782
+ [21] R. Furrer, Marc G. Genton, and D. Nychka. Covariance Tapering for Interpolation of Large Spatial Datasets.
2783
+ Journal of Computational and Graphical Statistics, 15(3):502–523, September 2006.
2784
+ [22] A. Garriga-Alonso, L. Aitchison, and C. E. Rasmussen. Deep Convolutional Networks as shallow Gaussian
2785
+ Processes. In 7th International Conference on Learning Representations, May 2019.
2786
+ [23] R. Ghanem, D. Higdon, and H. Owhadi, editors. Handbook of Uncertainty Quantification. Springer Interna-
2787
+ tional Publishing, Cham, 2017.
2788
+ [24] M. B. Giles. Multilevel Monte Carlo methods. Acta Numerica, 24:259, 2015.
2789
+ [25] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. Journal of Computational Physics,
2790
+ 73(2):325–348, December 1987.
2791
+ [26] W. Hackbusch. Integral Equations, volume 120 of International Series of Numerical Mathematics. Birkh¨auser,
2792
+ Basel, 1995.
2793
+ [27] W. Hackbusch. Hierarchical Matrices: Algorithms and Analysis. Springer, Heidelberg, 2015.
2794
+ [28] H. Harbrecht, L. Herrmann, K. Kirchner, and Ch. Schwab. Multilevel approximation of Gaussian random
2795
+ fields:
2796
+ Covariance compression, estimation and spatial prediction. Technical Report 2021-09, Seminar for
2797
+ Applied Mathematics, ETH Z¨urich, Switzerland, 2021.
2798
+ [29] H. Harbrecht and M. Multerer. Samplets: Construction and scattered data compression. Journal of Compu-
2799
+ tational Physics, 471:111616, December 2022.
2800
+ [30] H. Harbrecht, M. Peters, and M. Siebenmorgen. Efficient approximation of random fields for numerical appli-
2801
+ cations. Numerical Linear Algebra with Applications, 22(4):596–617, 2015.
2802
+ [31] S. Heinrich. Multilevel Monte Carlo Methods. In S. Margenov, J. Wa´sniewski, and P. Yalamov, editors, Large-
2803
+ Scale Scientific Computing, volume 2179, pages 58–67. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.
2804
+ [32] L. Herrmann, K. Kirchner, and Ch. Schwab. Multilevel approximation of Gaussian random fields: Fast simu-
2805
+ lation. Mathematical Models and Methods in Applied Sciences, 30(01):181–223, January 2020.
2806
+ [33] T. Hofmann, B. Sch¨olkopf, and A. J. Smola. Kernel methods in machine learning. The Annals of Statistics,
2807
+ 36(3), June 2008.
2808
+ [34] R. A. Johnson and D. W. Wichern. Applied Multivariate Statistical Analysis. Pearson Prentice Hall, Upper
2809
+ Saddle River, N.J, 6th ed edition, 2007.
2810
+
2811
+ DATA SPARSE MULTILEVEL COVARIANCE ESTIMATION IN OPTIMAL COMPLEXITY
2812
+ 27
2813
+ [35] B. N. Khoromskij, A. Litvinenko, and H. G. Matthies. Application of hierarchical matrices for computing the
2814
+ Karhunen–Lo`eve expansion. Computing, 84(1-2):49–67, April 2009.
2815
+ [36] D. Kressner, J. Latz, S. Massei, and E. Ullmann. Certified and fast computations with shallow covariance
2816
+ kernels. Foundations of Data Science, 2(4):487–512, 2020.
2817
+ [37] F. Y. Kuo, Ch. Schwab, and I. H. Sloan. Multi-level Quasi-Monte Carlo Finite Element Methods for a class
2818
+ of elliptic PDEs with random coefficients. Foundations of Computational Mathematics, 15(2):411–449, April
2819
+ 2015.
2820
+ [38] F. Lindgren, H. Rue, and J. Lindstr¨om. An explicit link between Gaussian fields and Gaussian Markov random
2821
+ fields: The stochastic partial differential equation approach: Link between Gaussian Fields and Gaussian
2822
+ Markov Random Fields. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(4):423–
2823
+ 498, September 2011.
2824
+ [39] A. Litvinenko, Y. Sun, Y. G. Genton, and D. E. Keyes. Likelihood approximation with hierarchical matrices
2825
+ for large spatial datasets. Computational Statistics & Data Analysis, 137:115–132, September 2019.
2826
+ [40] B. Mat´ern. Spatial Variation. Meddelanden fr˚an Statens Skogsforskningsinstitut, 49(5), 1960.
2827
+ [41] V. Minden, A. Damle, K. L. Ho, and L. Ying. Fast Spatial Gaussian Process Maximum Likelihood Estimation
2828
+ via Skeletonization Factorizations. Multiscale Modeling & Simulation, 15(4):1584–1611, January 2017.
2829
+ [42] P. Mycek and M. De Lozzo. Multilevel Monte Carlo Covariance Estimation for the Computation of Sobol’
2830
+ Indices. SIAM/ASA Journal on Uncertainty Quantification, 7(4):1323–1348, January 2019.
2831
+ [43] J. A. A. Opschoor, Ch. Schwab, and J. Zech. Exponential ReLU DNN expression of holomorphic maps in high
2832
+ dimension. Constructive Approximation, 55(1):537–582, February 2022.
2833
+ [44] C. E. Rasmussen and Ch. K. I. Williams. Gaussian Processes for Machine Learning. Adaptive Computation
2834
+ and Machine Learning. MIT Press, Cambridge, Mass, 2006.
2835
+ [45] T. J. Rivlin. The Chebyshev Polynomials. Pure and Applied Mathematics. Wiley, New York, 1974.
2836
+ [46] F. Sch¨afer, T. J. Sullivan, and H. Owhadi. Compression, Inversion, and Approximate PCA of Dense Kernel Ma-
2837
+ trices at Near-Linear Computational Complexity. Multiscale Modeling & Simulation, 19(2):688–730, January
2838
+ 2021.
2839
+ [47] R.
2840
+ Schneider.
2841
+ Multiskalen-
2842
+ Und
2843
+ Wavelet-Matrixkompression.
2844
+ Advances
2845
+ in
2846
+ Numerical
2847
+ Mathematics.
2848
+ Vieweg+Teubner Verlag, Wiesbaden, 1998.
2849
+ [48] Ch. Schwab and R. A. Todor. Karhunen-Lo`eve approximation of random fields by generalized fast multipole
2850
+ methods. Journal of Computational Physics, 217(1):100–122, 2006.
2851
+ [49] M. L. Stein. Interpolation of Spatial Data: Some Theory for Kriging. Springer, New York, 2013.
2852
+ [50] H. Wendland. Scattered Data Approximation. Cambridge University Press, first edition, December 2004.
2853
+ [51] P. Whittle. Stochastic processes in several dimensions. Bulletin de l’Institut International de Statistique,
2854
+ 40:974–994, 1963.
2855
+ Appendix A. Computation of H2-related constants
2856
+ Definition A.1 ([4, Definition 3.44]). Let TI be a cluster tree and denote the number of interpo-
2857
+ lation points chosen in each cluster t ∈ TI by Kt. We say that {Kt}t∈TI is a rank distribution.
2858
+ We say that {Kt}t∈TI is a (Cbn, α, β, r, ξ)-bounded rank distribution, Cbn ≥ 1, α > 0, β ≥ 0,
2859
+ r ≥ 1, ξ ≥ 1, if
2860
+ ���
2861
+ t ∈ TI : Kt > (α + β(ℓ − 1))r��� ≤ Cbnξ−ℓ|TI|,
2862
+ for all ℓ ∈ N.
2863
+ Lemma A.2. Let TI be a cluster tree on the index set I satisfying Assumption 2.12.
2864
+ Then
2865
+ {Kt}t∈TI is a (1, α, β, δd, Cab)-bounded rank distribution if the number of interpolation points in
2866
+ (Kt)t∈TI are chosen according to Equation (8), i.e.,
2867
+ Kt =
2868
+
2869
+ (β + α(p − level(t)))δ�d
2870
+ Proof. The proof is analogy to the example in [4, p. 64]. Let p denote the depth of TI. We need
2871
+ to bound the number of clusters with
2872
+ Kt =
2873
+
2874
+ (β + α(p − level(t)))δ�d ≥ (β + α(p − level(t)))δd > (α + β(ℓ − 1))δd.
2875
+ From this inequality we deduce that the clusters satisfying this constraint also satisfy level(t) <
2876
+ p + 1 − ℓ. Due to Assumption 2.12 the number of such clusters is bounded by from above by
2877
+ (Cp−ℓ+2
2878
+ ab
2879
+ − 1)/(Cab − 1) and we obtain the assertion due to
2880
+ |TI| ≥ Cp+2
2881
+ ab
2882
+ − 1
2883
+ Cab − 1 = Cℓ
2884
+ ab
2885
+ Cp−ℓ+2
2886
+ ab
2887
+ − C−ℓ
2888
+ ab
2889
+ Cab − 1
2890
+ ≥ Cℓ
2891
+ ab
2892
+ Cp−ℓ+2
2893
+ ab
2894
+ − 1
2895
+ Cab − 1
2896
+ .
2897
+
2898
+
2899
+ 28
2900
+ J. D ¨OLZ
2901
+ Definition A.3 ([4, Definitions 3.43 and 3.47]). Let TI be a cluster tree.
2902
+ We say that it is
2903
+ (Crc, α, β, r, ξ)-bounded with Crc ≥ 1, α > 0, β ≥ 0, r ≥ 1, ξ > 1, if
2904
+ (22)
2905
+ ���
2906
+ t ∈ LI : |t| > (β + α(ℓ − 1))r��� ≤ Crcξ−ℓ|TI|,
2907
+ for all ℓ ∈ N,
2908
+ and
2909
+ | children(t)| ≤ Crc,
2910
+ for all t ∈ TI.
2911
+ (23)
2912
+ We say that TI is (Crc, α, β, r, ξ)-regular, if it is (Crc, α, β, r, ξ)-bounded and additionally satisfies
2913
+ | children(t)| ≥ 2,
2914
+ for all t ∈ TI \ LI,
2915
+ (24)
2916
+ (α + β)r ≤ Crc|t|,
2917
+ for all t ∈ LI.
2918
+ (25)
2919
+ Lemma A.4. Let TI be a cluster tree with depth p on the index set I satisfying Assumption 2.12.
2920
+ Then TI is (Crc, α, β, δd, Cab)-regular with
2921
+ (26)
2922
+ Crc = max
2923
+
2924
+ Cab, (α + β)δd
2925
+ nmin
2926
+ , C
2927
+ n1/(δd)
2928
+ min
2929
+ −β+α
2930
+ α
2931
+ +1
2932
+ ab
2933
+
2934
+ .
2935
+ Proof. Equation (6) implies 2 ≤ | children(t)| ≤ Cab, t ∈ TI \ LI, which yields (24) and Equa-
2936
+ tion (23) holds with Crc ≥ Cab. Inserting the upper bound from Equation (7) into Equation (25)
2937
+ yields
2938
+ (α + β)δd
2939
+ nmin
2940
+ ≤ Crc.
2941
+ Finally, the lower bound from Equation (7) implies that there are at most Cp+1
2942
+ ab
2943
+ leafs. The
2944
+ upper bound from Equation (7) and Equation (22) with ξ = Cab then imply that Crc must satisfy
2945
+ Crc ≥
2946
+ � Cp+ℓ+1
2947
+ ab
2948
+ |TI|
2949
+ for all ℓ with (β + α(ℓ − 1))δd < nmin
2950
+ 0
2951
+ else
2952
+ Solving (β + α(ℓ − 1))δd < nmin for ℓ implies ℓ < (n1/(δd)
2953
+ min
2954
+ − β + α)/α which yields
2955
+ C
2956
+ n1/(δd)
2957
+ min
2958
+ −β+α
2959
+ α
2960
+ +1
2961
+ ab
2962
+ ≤ Crc
2963
+ due to |TI| ≥ (Cp+2
2964
+ ab
2965
+ − 1)/(Cab − 1). Combining all conditions on Crc yields the assertion.
2966
+
2967
+ Lemma A.5 ([4, Lemma 3.45]). Let TI be a (Crc, α, β, r, ξ)-bounded cluster tree and let {Kt}t∈TI
2968
+ be a (Cbn, α, β, r, ξ)-bounded rank distribution. Define
2969
+ kt =
2970
+
2971
+ max{Kt, |t|},
2972
+ t ∈ LI,
2973
+ max{Kt, �
2974
+ t′∈children(t) Kt′},
2975
+ t ∈ TI \ LI.
2976
+ (27)
2977
+ and m ∈ N. Then there is a constant Ccb = Ccb(Crc, Cbn, r, ξ) ≥ 1 such that
2978
+
2979
+ t∈TI
2980
+ km
2981
+ t ≤ Ccb(α + β)rm|TI|.
2982
+ Lemma A.6 ([4, Lemma 3.48]). Let TI be a (Crc, α, β, r, ξ)-regular cluster tree. Then it holds
2983
+ |TI| ≤ 2Crc|I|
2984
+ (α + β)r
2985
+ Lemma A.7 (Modification of [4, Corollary 3.49]). Let TI be (Crc, α, β, r, ξ)-bounded and (Kt)t∈TI
2986
+ be a (Cbn, α, β, ξ)-bounded rank distribution.
2987
+ Let TI be (Crc, α′, β′, r, ξ)-regular and TI×I be a
2988
+ block-cluster tree with sparsity constant Csp. For m ∈ N and {kt}t∈TI defined as in Equation (27)
2989
+ it holds
2990
+
2991
+ t∈TI
2992
+ km
2993
+ t ≤ CH2 (α + β)rm
2994
+ (α′ + β′)r |I|
2995
+ with CH2 = 2CrcCcb.
2996
+ Proof. Combine Lemma A.5 and Lemma A.6.
2997
+
2998
+
2999
+ DATA SPARSE MULTILEVEL COVARIANCE ESTIMATION IN OPTIMAL COMPLEXITY
3000
+ 29
3001
+ Institute for Numerical Simulation, University of Bonn, Friedrich-Hirzebruch-Allee 7, 53115 Bonn,
3002
+ Germany
3003
+ Email address: [email protected]
3004
+
F9FLT4oBgHgl3EQfGi9H/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff