Update datasets
Browse files- README.md +17 -20
- dataset_lib/config.py +159 -0
- dataset_lib/datasets.py +6 -10
- dataset_lib/encode.py +26 -32
- dataset_lib/models.py +0 -50
- dataset_lib/multimodal.py +186 -0
- imagenette_open_clip:ViT-B-32_train.h5 +0 -3
- imagenette_open_clip:ViT-B-32_val.h5 +0 -3
- imagenette_open_clip:ViT-L-14_train.h5 +0 -3
- imagenette_open_clip:ViT-L-14_val.h5 +0 -3
- imagenette_clip:ViT-L-14_val.h5 → imagenette_test_align.parquet +2 -2
- imagenette_clip:ViT-B-32_train.h5 → imagenette_test_blip.parquet +2 -2
- imagenette_clip:ViT-B-32_val.h5 → imagenette_test_clip_rn50.parquet +2 -2
- imagenette_clip:ViT-L-14_train.h5 → imagenette_test_clip_vit-b_32.parquet +2 -2
- imagenette_test_clip_vit-l_14.parquet +3 -0
- imagenette_test_flava.parquet +3 -0
- imagenette_test_open_clip_vit-b-32.parquet +3 -0
- imagenette_test_open_clip_vit-l-14.parquet +3 -0
- imagenette_train_align.parquet +3 -0
- imagenette_train_blip.parquet +3 -0
- imagenette_train_clip_rn50.parquet +3 -0
- imagenette_train_clip_vit-b_32.parquet +3 -0
- imagenette_train_clip_vit-l_14.parquet +3 -0
- imagenette_train_flava.parquet +3 -0
- imagenette_train_open_clip_vit-b-32.parquet +3 -0
- imagenette_train_open_clip_vit-l-14.parquet +3 -0
- make_dataset.py +44 -32
- supported_models.txt +8 -4
README.md
CHANGED
@@ -2,17 +2,17 @@
|
|
2 |
license: mit
|
3 |
---
|
4 |
|
5 |
-
### Pre-computed
|
6 |
|
7 |
-
Embeddings are stored as
|
8 |
|
9 |
```python
|
10 |
-
<DATASET_NAME>_<
|
11 |
|
12 |
"""
|
13 |
DATASET_NAME: name of the dataset, e.g. "imagenette".
|
14 |
-
|
15 |
-
|
16 |
"""
|
17 |
|
18 |
dataset["embedding"] contains the embeddings
|
@@ -22,12 +22,7 @@ dataset["label"] contains the labels
|
|
22 |
To generate the dataset, run
|
23 |
|
24 |
```bash
|
25 |
-
$ python make_dataset.py
|
26 |
-
usage: make_dataset.py [-h] [--dataset DATASET [DATASET ...]] [--model MODEL [MODEL ...]]
|
27 |
-
|
28 |
-
options:
|
29 |
-
--dataset DATASET [DATASET ...] List of datasets to encode.
|
30 |
-
--model MODEL [MODEL ...] List of models to use.
|
31 |
```
|
32 |
|
33 |
Supported dataset names (see [supported_datasets.txt](supported_datasets.txt)):
|
@@ -36,19 +31,21 @@ Supported dataset names (see [supported_datasets.txt](supported_datasets.txt)):
|
|
36 |
|
37 |
Supported model names (see [supported_models.txt](supported_models.txt)):
|
38 |
|
39 |
-
* `
|
40 |
-
* `open_clip:ViT-L-14` [[model](https://huggingface.co/laion/CLIP-ViT-L-14-laion2B-s32B-b82K)]
|
41 |
* `clip:ViT-B/32` [[model](https://github.com/openai/CLIP)]
|
42 |
* `clip:ViT-L/14` [[model](https://github.com/openai/CLIP)]
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
44 |
**References**
|
45 |
```
|
46 |
-
@
|
47 |
-
title={
|
48 |
-
author={Jacopo
|
|
|
49 |
year={2024},
|
50 |
-
eprint={2405.19146},
|
51 |
-
archivePrefix={arXiv},
|
52 |
-
primaryClass={stat.ML},
|
53 |
}
|
54 |
```
|
|
|
2 |
license: mit
|
3 |
---
|
4 |
|
5 |
+
### Pre-computed vision-language model image embeddings
|
6 |
|
7 |
+
Embeddings are stored as [Parquet](https://parquet.apache.org/) files with the following structure:
|
8 |
|
9 |
```python
|
10 |
+
<DATASET_NAME>_<OP>_<MODEL_NAME>.parquet
|
11 |
|
12 |
"""
|
13 |
DATASET_NAME: name of the dataset, e.g. "imagenette".
|
14 |
+
OP: split of the dataset (either "train" or "test").
|
15 |
+
MODEL_NAME: name of the model, e.g. "clip_vit-l_14".
|
16 |
"""
|
17 |
|
18 |
dataset["embedding"] contains the embeddings
|
|
|
22 |
To generate the dataset, run
|
23 |
|
24 |
```bash
|
25 |
+
$ python make_dataset.py
|
|
|
|
|
|
|
|
|
|
|
26 |
```
|
27 |
|
28 |
Supported dataset names (see [supported_datasets.txt](supported_datasets.txt)):
|
|
|
31 |
|
32 |
Supported model names (see [supported_models.txt](supported_models.txt)):
|
33 |
|
34 |
+
* `clip:ViT-RN:50` [[model](https://github.com/openai/CLIP)]
|
|
|
35 |
* `clip:ViT-B/32` [[model](https://github.com/openai/CLIP)]
|
36 |
* `clip:ViT-L/14` [[model](https://github.com/openai/CLIP)]
|
37 |
+
* `open_clip:ViT-B-32` [[model](https://huggingface.co/laion/CLIP-ViT-B-32-laion2B-s34B-b79K)]
|
38 |
+
* `open_clip:ViT-L-14` [[model](https://huggingface.co/laion/CLIP-ViT-L-14-laion2B-s32B-b82K)]
|
39 |
+
* `FLAVA` [[model](https://huggingface.co/facebook/flava-full)]
|
40 |
+
* `ALIGN` [[model](https://huggingface.co/kakaobrain/align-base)]
|
41 |
+
* `BLIP` [[model](https://huggingface.co/Salesforce/blip-itm-base-coco)]
|
42 |
+
|
43 |
**References**
|
44 |
```
|
45 |
+
@inproceedings{teneggi24testing,
|
46 |
+
title={Testing Semantic Importance via Betting},
|
47 |
+
author={Teneggi, Jacopo and Sulam, Jeremias},
|
48 |
+
booktitle={The Thirty-eighth Annual Conference on Neural Information Processing Systems},
|
49 |
year={2024},
|
|
|
|
|
|
|
50 |
}
|
51 |
```
|
dataset_lib/config.py
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# SOURCE: https://github.com/Sulam-Group/IBYDMT/blob/main/ibydmt/utils/config.py
|
2 |
+
|
3 |
+
import os
|
4 |
+
from dataclasses import dataclass
|
5 |
+
from enum import Enum
|
6 |
+
from itertools import product
|
7 |
+
from typing import Any, Iterable, Mapping, Optional, Union
|
8 |
+
|
9 |
+
import torch
|
10 |
+
from ml_collections import ConfigDict
|
11 |
+
from numpy import ndarray
|
12 |
+
|
13 |
+
Array = Union[ndarray, torch.Tensor]
|
14 |
+
|
15 |
+
|
16 |
+
class TestType(Enum):
|
17 |
+
GLOBAL = "global"
|
18 |
+
GLOBAL_COND = "global_cond"
|
19 |
+
LOCAL_COND = "local_cond"
|
20 |
+
|
21 |
+
|
22 |
+
class ConceptType(Enum):
|
23 |
+
DATASET = "dataset"
|
24 |
+
CLASS = "class"
|
25 |
+
IMAGE = "image"
|
26 |
+
|
27 |
+
|
28 |
+
@dataclass
|
29 |
+
class Constants:
|
30 |
+
WORKDIR = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
|
31 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
32 |
+
|
33 |
+
|
34 |
+
class DataConfig(ConfigDict):
|
35 |
+
def __init__(self, config_dict: Optional[Mapping[str, Any]] = None):
|
36 |
+
super().__init__()
|
37 |
+
if config_dict is None:
|
38 |
+
config_dict = {}
|
39 |
+
|
40 |
+
self.dataset: str = config_dict.get("dataset", None)
|
41 |
+
self.backbone: str = config_dict.get("backbone", None)
|
42 |
+
self.bottleneck: str = config_dict.get("bottleneck", None)
|
43 |
+
self.classifier: str = config_dict.get("classifier", None)
|
44 |
+
self.sampler: str = config_dict.get("sampler", None)
|
45 |
+
self.num_concepts: int = config_dict.get("num_concepts", None)
|
46 |
+
|
47 |
+
|
48 |
+
class SpliceConfig(ConfigDict):
|
49 |
+
def __init__(self, config_dict: Optional[Mapping[str, Any]] = None):
|
50 |
+
super().__init__()
|
51 |
+
if config_dict is None:
|
52 |
+
config_dict = {}
|
53 |
+
|
54 |
+
self.vocab: str = config_dict.get("vocab", None)
|
55 |
+
self.vocab_size: int = config_dict.get("vocab_size", None)
|
56 |
+
self.l1_penalty: float = config_dict.get("l1_penalty", None)
|
57 |
+
|
58 |
+
|
59 |
+
class PCBMConfig(ConfigDict):
|
60 |
+
def __init__(self, config_dict: Optional[Mapping[str, Any]] = None):
|
61 |
+
super().__init__()
|
62 |
+
if config_dict is None:
|
63 |
+
config_dict = {}
|
64 |
+
|
65 |
+
self.alpha: float = config_dict.get("alpha", None)
|
66 |
+
self.l1_ratio: float = config_dict.get("l1_ratio", None)
|
67 |
+
|
68 |
+
|
69 |
+
class cKDEConfig(ConfigDict):
|
70 |
+
def __init__(self, config_dict: Optional[Mapping[str, Any]] = None):
|
71 |
+
super().__init__()
|
72 |
+
if config_dict is None:
|
73 |
+
config_dict = {}
|
74 |
+
|
75 |
+
self.metric: str = config_dict.get("metric", None)
|
76 |
+
self.scale_method: str = config_dict.get("scale_method", None)
|
77 |
+
self.scale: float = config_dict.get("scale", None)
|
78 |
+
|
79 |
+
|
80 |
+
class TestingConfig(ConfigDict):
|
81 |
+
def __init__(self, config_dict: Optional[Mapping[str, Any]] = None):
|
82 |
+
super().__init__()
|
83 |
+
if config_dict is None:
|
84 |
+
config_dict = {}
|
85 |
+
|
86 |
+
self.significance_level: float = config_dict.get("significance_level", None)
|
87 |
+
self.wealth: str = config_dict.get("wealth", None)
|
88 |
+
self.bet: str = config_dict.get("bet", None)
|
89 |
+
self.kernel: str = config_dict.get("kernel", None)
|
90 |
+
self.kernel_scale_method: str = config_dict.get("kernel_scale_method", None)
|
91 |
+
self.kernel_scale: float = config_dict.get("kernel_scale", None)
|
92 |
+
self.tau_max: int = config_dict.get("tau_max", None)
|
93 |
+
self.images_per_class: int = config_dict.get("images_per_class", None)
|
94 |
+
self.r: int = config_dict.get("r", None)
|
95 |
+
self.cardinality: Iterable[int] = config_dict.get("cardinality", None)
|
96 |
+
|
97 |
+
|
98 |
+
class Config(ConfigDict):
|
99 |
+
def __init__(self, config_dict: Optional[Mapping[str, Any]] = None):
|
100 |
+
super().__init__()
|
101 |
+
if config_dict is None:
|
102 |
+
config_dict = {}
|
103 |
+
|
104 |
+
self.name: str = config_dict.get("name", None)
|
105 |
+
self.data = DataConfig(config_dict.get("data", None))
|
106 |
+
self.splice = SpliceConfig(config_dict.get("splice", None))
|
107 |
+
self.pcbm = PCBMConfig(config_dict.get("pcbm", None))
|
108 |
+
self.ckde = cKDEConfig(config_dict.get("ckde", None))
|
109 |
+
self.testing = TestingConfig(config_dict.get("testing", None))
|
110 |
+
|
111 |
+
def backbone_name(self):
|
112 |
+
backbone = self.data.backbone.strip().lower()
|
113 |
+
return backbone.replace("/", "_").replace(":", "_")
|
114 |
+
|
115 |
+
def sweep(self, keys: Iterable[str]):
|
116 |
+
def _get(dict, key):
|
117 |
+
keys = key.split(".")
|
118 |
+
if len(keys) == 1:
|
119 |
+
return dict[keys[0]]
|
120 |
+
else:
|
121 |
+
return _get(dict[keys[0]], ".".join(keys[1:]))
|
122 |
+
|
123 |
+
def _set(dict, key, value):
|
124 |
+
keys = key.split(".")
|
125 |
+
if len(keys) == 1:
|
126 |
+
dict[keys[0]] = value
|
127 |
+
else:
|
128 |
+
_set(dict[keys[0]], ".".join(keys[1:]), value)
|
129 |
+
|
130 |
+
to_iterable = lambda v: v if isinstance(v, list) else [v]
|
131 |
+
|
132 |
+
config_dict = self.to_dict()
|
133 |
+
sweep_values = [_get(config_dict, key) for key in keys]
|
134 |
+
sweep = list(product(*map(to_iterable, sweep_values)))
|
135 |
+
|
136 |
+
configs: Iterable[Config] = []
|
137 |
+
for _sweep in sweep:
|
138 |
+
_config_dict = config_dict.copy()
|
139 |
+
for key, value in zip(keys, _sweep):
|
140 |
+
_set(_config_dict, key, value)
|
141 |
+
|
142 |
+
configs.append(Config(_config_dict))
|
143 |
+
return configs
|
144 |
+
|
145 |
+
|
146 |
+
def register_config(name: str):
|
147 |
+
def register(cls: Config):
|
148 |
+
if name in configs:
|
149 |
+
raise ValueError(f"Config {name} is already registered")
|
150 |
+
configs[name] = cls
|
151 |
+
|
152 |
+
return register
|
153 |
+
|
154 |
+
|
155 |
+
def get_config(name: str) -> Config:
|
156 |
+
return configs[name]()
|
157 |
+
|
158 |
+
|
159 |
+
configs: Mapping[str, Config] = {}
|
dataset_lib/datasets.py
CHANGED
@@ -4,21 +4,17 @@ from PIL import Image
|
|
4 |
from torchvision.datasets import VisionDataset
|
5 |
from torchvision.datasets.folder import find_classes, make_dataset
|
6 |
|
7 |
-
|
8 |
-
workdir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
9 |
-
with open(os.path.join(workdir, "supported_datasets.txt"), "r") as f:
|
10 |
-
for line in f:
|
11 |
-
SUPPORTED_DATASETS.append(line.strip())
|
12 |
|
13 |
-
data_dir = os.path.join(workdir, "data")
|
14 |
|
|
|
|
|
15 |
|
16 |
-
def get_dataset(dataset, transform=None):
|
17 |
if dataset == "imagenette":
|
18 |
root_dir = os.path.join(data_dir, "imagenette2")
|
19 |
train_dataset = Imagenette(root_dir, train=True, transform=transform)
|
20 |
-
|
21 |
-
return {"train": train_dataset, "
|
22 |
|
23 |
|
24 |
class Imagenette(VisionDataset):
|
@@ -39,7 +35,7 @@ class Imagenette(VisionDataset):
|
|
39 |
super().__init__(root, transform=transform)
|
40 |
self.train = train
|
41 |
|
42 |
-
self._split = "train" if train else "
|
43 |
self._image_root = os.path.join(root, self._split)
|
44 |
|
45 |
self.wnids, self.wnid_to_idx = find_classes(self._image_root)
|
|
|
4 |
from torchvision.datasets import VisionDataset
|
5 |
from torchvision.datasets.folder import find_classes, make_dataset
|
6 |
|
7 |
+
from dataset_lib.config import Constants as c
|
|
|
|
|
|
|
|
|
8 |
|
|
|
9 |
|
10 |
+
def get_dataset(dataset, transform=None, workdir=c.WORKDIR):
|
11 |
+
data_dir = os.path.join(workdir, "data")
|
12 |
|
|
|
13 |
if dataset == "imagenette":
|
14 |
root_dir = os.path.join(data_dir, "imagenette2")
|
15 |
train_dataset = Imagenette(root_dir, train=True, transform=transform)
|
16 |
+
test_dataset = Imagenette(root_dir, train=False, transform=transform)
|
17 |
+
return {"train": train_dataset, "test": test_dataset}
|
18 |
|
19 |
|
20 |
class Imagenette(VisionDataset):
|
|
|
35 |
super().__init__(root, transform=transform)
|
36 |
self.train = train
|
37 |
|
38 |
+
self._split = "train" if train else "test"
|
39 |
self._image_root = os.path.join(root, self._split)
|
40 |
|
41 |
self.wnids, self.wnid_to_idx = find_classes(self._image_root)
|
dataset_lib/encode.py
CHANGED
@@ -1,48 +1,42 @@
|
|
|
|
1 |
import os
|
2 |
|
3 |
-
import
|
4 |
-
import numpy as np
|
5 |
import torch
|
6 |
from torch.utils.data import DataLoader
|
7 |
from tqdm import tqdm
|
8 |
|
|
|
|
|
|
|
9 |
from dataset_lib.datasets import get_dataset
|
10 |
-
from dataset_lib.models import get_transform_and_encoding_fn
|
11 |
|
12 |
-
|
13 |
-
workdir = os.path.dirname(curr_dir)
|
14 |
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
datasets = get_dataset(dataset_name, transform=preprocess)
|
23 |
|
24 |
-
|
|
|
25 |
|
26 |
-
print(f"Encoding {dataset_name} dataset with {model_name} model")
|
27 |
for op, dataset in datasets.items():
|
28 |
-
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
image, _label = data
|
33 |
|
34 |
-
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
label.extend(_label)
|
41 |
-
|
42 |
-
embedding = np.array(embedding)
|
43 |
-
label = np.array(label)
|
44 |
-
|
45 |
-
filename = f"{prefix}_{op}.h5"
|
46 |
-
with h5py.File(filename, "w") as f:
|
47 |
-
f.create_dataset("embedding", data=embedding)
|
48 |
-
f.create_dataset("label", data=label)
|
|
|
1 |
+
import logging
|
2 |
import os
|
3 |
|
4 |
+
import pandas as pd
|
|
|
5 |
import torch
|
6 |
from torch.utils.data import DataLoader
|
7 |
from tqdm import tqdm
|
8 |
|
9 |
+
import dataset_lib.multimodal as multimodal
|
10 |
+
from dataset_lib.config import Config
|
11 |
+
from dataset_lib.config import Constants as c
|
12 |
from dataset_lib.datasets import get_dataset
|
|
|
13 |
|
14 |
+
logger = logging.getLogger(__name__)
|
|
|
15 |
|
16 |
|
17 |
+
@torch.no_grad()
|
18 |
+
def encode(config: Config, device=c.DEVICE, workdir=c.WORKDIR):
|
19 |
+
logger.info(
|
20 |
+
f"Encoding dataset {config.data.dataset.lower()} with"
|
21 |
+
f" backbone = {config.data.backbone}"
|
22 |
+
)
|
|
|
23 |
|
24 |
+
datasets = get_dataset(config.data.dataset)
|
25 |
+
encode_image = multimodal.get_image_encoder(config, device=device)
|
26 |
|
|
|
27 |
for op, dataset in datasets.items():
|
28 |
+
data = {"embedding": [], "label": []}
|
29 |
+
for image, label in tqdm(dataset, desc=f"Encoding {op}"):
|
30 |
+
embedding = encode_image(image).float()
|
31 |
+
embedding /= torch.linalg.norm(embedding, dim=-1, keepdim=True)
|
32 |
+
embedding = embedding.cpu().numpy()
|
33 |
|
34 |
+
data["embedding"].extend(embedding)
|
35 |
+
data["label"].append(label)
|
|
|
36 |
|
37 |
+
df = pd.DataFrame(data)
|
38 |
|
39 |
+
data_path = os.path.join(
|
40 |
+
f"{config.data.dataset.lower()}_{op}_{config.backbone_name()}.parquet"
|
41 |
+
)
|
42 |
+
df.to_parquet(data_path, index=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dataset_lib/models.py
DELETED
@@ -1,50 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
|
3 |
-
import clip
|
4 |
-
import open_clip
|
5 |
-
import torch
|
6 |
-
import torch.amp
|
7 |
-
|
8 |
-
SUPPORTED_MODELS = {}
|
9 |
-
workdir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
10 |
-
with open(os.path.join(workdir, "supported_models.txt"), "r") as f:
|
11 |
-
for line in f:
|
12 |
-
model, model_path = line.strip().split(",")
|
13 |
-
SUPPORTED_MODELS[model] = model_path
|
14 |
-
|
15 |
-
|
16 |
-
def get_transform_and_encoding_fn(
|
17 |
-
model_name, device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
18 |
-
):
|
19 |
-
if "open_clip" in model_name:
|
20 |
-
return open_clip_get_transform_and_encoding_fn(model_name, device=device)
|
21 |
-
if "clip" in model_name:
|
22 |
-
return clip_get_transform_and_encoding_fn(model_name, device=device)
|
23 |
-
|
24 |
-
|
25 |
-
def open_clip_get_transform_and_encoding_fn(model_name, device):
|
26 |
-
model, _, preprocess = open_clip.create_model_and_transforms(
|
27 |
-
SUPPORTED_MODELS[model_name], device=device
|
28 |
-
)
|
29 |
-
model.eval()
|
30 |
-
|
31 |
-
@torch.no_grad()
|
32 |
-
@torch.cuda.amp.autocast()
|
33 |
-
def encode_fn(image):
|
34 |
-
image_features = model.encode_image(image)
|
35 |
-
return image_features / torch.linalg.norm(image_features, dim=-1, keepdim=True)
|
36 |
-
|
37 |
-
return preprocess, encode_fn
|
38 |
-
|
39 |
-
|
40 |
-
def clip_get_transform_and_encoding_fn(model_name, device):
|
41 |
-
backbone_name = model_name.split(":")[-1]
|
42 |
-
model, preprocess = clip.load(backbone_name, device=device)
|
43 |
-
|
44 |
-
@torch.no_grad()
|
45 |
-
@torch.cuda.amp.autocast()
|
46 |
-
def encode_fn(image):
|
47 |
-
image_features = model.encode_image(image)
|
48 |
-
return image_features / torch.linalg.norm(image_features, dim=-1, keepdim=True)
|
49 |
-
|
50 |
-
return preprocess, encode_fn
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dataset_lib/multimodal.py
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# SOURCE: https://github.com/Sulam-Group/IBYDMT/blob/main/ibydmt/multimodal.py
|
2 |
+
|
3 |
+
from abc import abstractmethod
|
4 |
+
from typing import Mapping, Optional
|
5 |
+
|
6 |
+
import clip
|
7 |
+
import open_clip
|
8 |
+
from transformers import (
|
9 |
+
AlignModel,
|
10 |
+
AlignProcessor,
|
11 |
+
BlipForImageTextRetrieval,
|
12 |
+
BlipProcessor,
|
13 |
+
FlavaModel,
|
14 |
+
FlavaProcessor,
|
15 |
+
)
|
16 |
+
|
17 |
+
from dataset_lib.config import Config
|
18 |
+
from dataset_lib.config import Constants as c
|
19 |
+
|
20 |
+
|
21 |
+
class VisionLanguageModel:
|
22 |
+
def __init__(self, backbone: Optional[str] = None, device=c.DEVICE):
|
23 |
+
pass
|
24 |
+
|
25 |
+
@abstractmethod
|
26 |
+
def encode_text(self, text):
|
27 |
+
pass
|
28 |
+
|
29 |
+
@abstractmethod
|
30 |
+
def encode_image(self, image):
|
31 |
+
pass
|
32 |
+
|
33 |
+
|
34 |
+
models: Mapping[str, VisionLanguageModel] = {}
|
35 |
+
|
36 |
+
|
37 |
+
def register_model(name):
|
38 |
+
def register(cls: VisionLanguageModel):
|
39 |
+
if name in models:
|
40 |
+
raise ValueError(f"Model {name} is already registered")
|
41 |
+
models[name] = cls
|
42 |
+
|
43 |
+
return register
|
44 |
+
|
45 |
+
|
46 |
+
def get_model_name_and_backbone(config: Config):
|
47 |
+
backbone = config.data.backbone.split(":")
|
48 |
+
if len(backbone) == 1:
|
49 |
+
backbone.append(None)
|
50 |
+
return backbone
|
51 |
+
|
52 |
+
|
53 |
+
def get_model(config: Config, device=c.DEVICE) -> VisionLanguageModel:
|
54 |
+
model_name, backbone = get_model_name_and_backbone(config)
|
55 |
+
return models[model_name](backbone, device=device)
|
56 |
+
|
57 |
+
|
58 |
+
def get_text_encoder(config: Config, device=c.DEVICE):
|
59 |
+
model = get_model(config, device=device)
|
60 |
+
return model.encode_text
|
61 |
+
|
62 |
+
|
63 |
+
def get_image_encoder(config: Config, device=c.DEVICE):
|
64 |
+
model = get_model(config, device=device)
|
65 |
+
return model.encode_image
|
66 |
+
|
67 |
+
|
68 |
+
@register_model(name="clip")
|
69 |
+
class CLIPModel(VisionLanguageModel):
|
70 |
+
def __init__(self, backbone: str, device=c.DEVICE):
|
71 |
+
self.model, self.preprocess = clip.load(backbone, device=device)
|
72 |
+
self.tokenize = clip.tokenize
|
73 |
+
|
74 |
+
self.device = device
|
75 |
+
|
76 |
+
def encode_text(self, text):
|
77 |
+
text = self.tokenize(text).to(self.device)
|
78 |
+
return self.model.encode_text(text)
|
79 |
+
|
80 |
+
def encode_image(self, image):
|
81 |
+
image = self.preprocess(image).unsqueeze(0).to(self.device)
|
82 |
+
return self.model.encode_image(image)
|
83 |
+
|
84 |
+
|
85 |
+
@register_model(name="open_clip")
|
86 |
+
class OpenClipModel(VisionLanguageModel):
|
87 |
+
OPENCLIP_WEIGHTS = {
|
88 |
+
"ViT-B-32": "laion2b_s34b_b79k",
|
89 |
+
"ViT-L-14": "laion2b_s32b_b82k",
|
90 |
+
}
|
91 |
+
|
92 |
+
def __init__(self, backbone: str, device=c.DEVICE):
|
93 |
+
self.model, _, self.preprocess = open_clip.create_model_and_transforms(
|
94 |
+
backbone, pretrained=self.OPENCLIP_WEIGHTS[backbone], device=device
|
95 |
+
)
|
96 |
+
self.tokenize = open_clip.get_tokenizer(backbone)
|
97 |
+
|
98 |
+
self.device = device
|
99 |
+
|
100 |
+
def encode_text(self, text):
|
101 |
+
text = self.tokenize(text).to(self.device)
|
102 |
+
return self.model.encode_text(text)
|
103 |
+
|
104 |
+
def encode_image(self, image):
|
105 |
+
image = self.preprocess(image).unsqueeze(0).to(self.device)
|
106 |
+
return self.model.encode_image(image)
|
107 |
+
|
108 |
+
|
109 |
+
@register_model(name="flava")
|
110 |
+
class FLAVAModel(VisionLanguageModel):
|
111 |
+
HF_MODEL = "facebook/flava-full"
|
112 |
+
|
113 |
+
def __init__(self, backbone: Optional[str] = None, device=c.DEVICE):
|
114 |
+
if backbone is None:
|
115 |
+
backbone = self.HF_MODEL
|
116 |
+
|
117 |
+
self.model = FlavaModel.from_pretrained(backbone).to(device)
|
118 |
+
self.processor = FlavaProcessor.from_pretrained(backbone)
|
119 |
+
|
120 |
+
self.device = device
|
121 |
+
|
122 |
+
def encode_text(self, text):
|
123 |
+
text_inputs = self.processor(
|
124 |
+
text=text, return_tensors="pt", padding="max_length", max_length=77
|
125 |
+
)
|
126 |
+
text_inputs = {k: v.to(self.device) for k, v in text_inputs.items()}
|
127 |
+
return self.model.get_text_features(**text_inputs)[:, 0, :]
|
128 |
+
|
129 |
+
def encode_image(self, image):
|
130 |
+
image_inputs = self.processor(images=image, return_tensors="pt")
|
131 |
+
image_inputs = {k: v.to(self.device) for k, v in image_inputs.items()}
|
132 |
+
return self.model.get_image_features(**image_inputs)[:, 0, :]
|
133 |
+
|
134 |
+
|
135 |
+
@register_model(name="align")
|
136 |
+
class ALIGNModel(VisionLanguageModel):
|
137 |
+
HF_MODEL = "kakaobrain/align-base"
|
138 |
+
|
139 |
+
def __init__(self, backbone: Optional[str] = None, device=c.DEVICE):
|
140 |
+
if backbone is None:
|
141 |
+
backbone = self.HF_MODEL
|
142 |
+
|
143 |
+
self.model = AlignModel.from_pretrained(backbone).to(device)
|
144 |
+
self.processor = AlignProcessor.from_pretrained(backbone)
|
145 |
+
|
146 |
+
self.device = device
|
147 |
+
|
148 |
+
def encode_text(self, text):
|
149 |
+
text_inputs = self.processor(
|
150 |
+
text=text, return_tensors="pt", padding="max_length", max_length=77
|
151 |
+
)
|
152 |
+
text_inputs = {k: v.to(self.device) for k, v in text_inputs.items()}
|
153 |
+
return self.model.get_text_features(**text_inputs)
|
154 |
+
|
155 |
+
def encode_image(self, image):
|
156 |
+
image_inputs = self.processor(images=image, return_tensors="pt")
|
157 |
+
image_inputs = {k: v.to(self.device) for k, v in image_inputs.items()}
|
158 |
+
return self.model.get_image_features(**image_inputs)
|
159 |
+
|
160 |
+
|
161 |
+
@register_model(name="blip")
|
162 |
+
class BLIPModel(VisionLanguageModel):
|
163 |
+
HF_MODEL = "Salesforce/blip-itm-base-coco"
|
164 |
+
|
165 |
+
def __init__(self, backbone: Optional[str] = None, device=c.DEVICE):
|
166 |
+
if backbone is None:
|
167 |
+
backbone = self.HF_MODEL
|
168 |
+
|
169 |
+
self.model = BlipForImageTextRetrieval.from_pretrained(backbone).to(device)
|
170 |
+
self.processor = BlipProcessor.from_pretrained(backbone)
|
171 |
+
|
172 |
+
self.device = device
|
173 |
+
|
174 |
+
def encode_text(self, text):
|
175 |
+
text_inputs = self.processor(
|
176 |
+
text=text, return_tensors="pt", padding="max_length", max_length=77
|
177 |
+
)
|
178 |
+
text_inputs = {k: v.to(self.device) for k, v in text_inputs.items()}
|
179 |
+
question_embeds = self.model.text_encoder(**text_inputs)[0]
|
180 |
+
return self.model.text_proj(question_embeds[:, 0, :])
|
181 |
+
|
182 |
+
def encode_image(self, image):
|
183 |
+
image_inputs = self.processor(images=image, return_tensors="pt")
|
184 |
+
image_inputs = {k: v.to(self.device) for k, v in image_inputs.items()}
|
185 |
+
image_embeds = self.model.vision_model(**image_inputs)[0]
|
186 |
+
return self.model.vision_proj(image_embeds[:, 0, :])
|
imagenette_open_clip:ViT-B-32_train.h5
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:46b95fe30a90c980d4af8a150e983de327de80fc7a06e17c2e63e7c4ad7559d1
|
3 |
-
size 38862824
|
|
|
|
|
|
|
|
imagenette_open_clip:ViT-B-32_val.h5
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:9c19c97aea008a9ccb07fc2a75b877404058de937270cc1c6d151c10926d5cce
|
3 |
-
size 16110248
|
|
|
|
|
|
|
|
imagenette_open_clip:ViT-L-14_train.h5
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:10c758c9aa4d7345d04ffdfe16c3832197137c41ff6e218c2fa69a023b7cc399
|
3 |
-
size 58255336
|
|
|
|
|
|
|
|
imagenette_open_clip:ViT-L-14_val.h5
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:9ce512d7495006818a5c32c5770eeda1ab0c20e1891ac19df33c23de4d52497c
|
3 |
-
size 24148648
|
|
|
|
|
|
|
|
imagenette_clip:ViT-L-14_val.h5 → imagenette_test_align.parquet
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:265db09eb55e5cbef235fa204020fd5ad2badf200038d9e0126374521affada6
|
3 |
+
size 10675850
|
imagenette_clip:ViT-B-32_train.h5 → imagenette_test_blip.parquet
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f66d559b9440a59932c811636f5a721e2bdf5bde59a8f632ec6bf2f3d13fae1f
|
3 |
+
size 4646191
|
imagenette_clip:ViT-B-32_val.h5 → imagenette_test_clip_rn50.parquet
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:67d7d1db195dd85e756b057aa0135b603b462cc9ca9ccfe895b5696c9ba2fada
|
3 |
+
size 16684784
|
imagenette_clip:ViT-L-14_train.h5 → imagenette_test_clip_vit-b_32.parquet
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3346b56e3d339872ff50f3a183581a781f367fb8077f9910f93492aaec3f729d
|
3 |
+
size 8654915
|
imagenette_test_clip_vit-l_14.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b2bf060d1aaeaa225f775be69b42ff73e4d08416f35ffb57e4d18c7c5feefbf0
|
3 |
+
size 12668923
|
imagenette_test_flava.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:21df42fc4e7730ceae8c9310e231124106a5e1fb35bacc799b516a933e83ee74
|
3 |
+
size 12685761
|
imagenette_test_open_clip_vit-b-32.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dc2283f0f9e3cbedb581143d06dda53a014cea1b4f4ce54a9ef34746c9520fe0
|
3 |
+
size 8666033
|
imagenette_test_open_clip_vit-l-14.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b4e4d1337006b6a9333654f3066b1b77844bd1341d3094a3818e1fbea85ff5c1
|
3 |
+
size 12685737
|
imagenette_train_align.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:264aade88e2ec1490d31d2368dfcdeb7a17351a51d92562f9a4904effceac83e
|
3 |
+
size 24871704
|
imagenette_train_blip.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:717255e31ed7afc8019001e068243d7755428430757d249d314f725bb821fe41
|
3 |
+
size 10325500
|
imagenette_train_clip_rn50.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0928498b881718f20350c7632f9846c69f5b1095d8786e2bc8676cf82c7294c1
|
3 |
+
size 39397651
|
imagenette_train_clip_vit-b_32.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:23e319b3c1ebb785410417e1aa06276ef3b9b9f1d7d1ea220be69c36e878251a
|
3 |
+
size 20012432
|
imagenette_train_clip_vit-l_14.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e5f88fe23098887b34b21b7dc39183d3fb3024f6d0f96a0312af1f0124a00b27
|
3 |
+
size 29701980
|
imagenette_train_flava.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5e608ac7a1e915da8800f1b97551e4d94df1d61bd1ae645adca4fd2814e85bb7
|
3 |
+
size 29720268
|
imagenette_train_open_clip_vit-b-32.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ceab9e99ced509a0658ef4557ec87b4cb8a8535b7cb3a1a4c0ff994651994651
|
3 |
+
size 20023012
|
imagenette_train_open_clip_vit-l-14.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d7a31312b34936eb226e93ae94a67f18ba4ec6edf4d21196784ef035b99889e1
|
3 |
+
size 29720534
|
make_dataset.py
CHANGED
@@ -1,53 +1,65 @@
|
|
1 |
import argparse
|
|
|
2 |
from itertools import product
|
3 |
|
4 |
-
from dataset_lib.
|
|
|
5 |
from dataset_lib.encode import encode
|
6 |
-
from dataset_lib.models import SUPPORTED_MODELS
|
7 |
|
8 |
|
9 |
-
def
|
10 |
-
|
11 |
-
dataset = [dataset]
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
|
26 |
|
27 |
def config():
|
28 |
parser = argparse.ArgumentParser()
|
29 |
parser.add_argument(
|
30 |
-
"--
|
31 |
-
type=_dataset_type,
|
32 |
-
nargs="+",
|
33 |
-
default=SUPPORTED_DATASETS,
|
34 |
-
help="List of datasets to encode.",
|
35 |
)
|
36 |
-
parser.add_argument(
|
37 |
-
"--model",
|
38 |
-
type=_model_type,
|
39 |
-
nargs="+",
|
40 |
-
default=list(SUPPORTED_MODELS.keys()),
|
41 |
-
help="List of models to use.",
|
42 |
-
)
|
43 |
-
|
44 |
return parser.parse_args()
|
45 |
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
def main(args):
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
|
53 |
if __name__ == "__main__":
|
|
|
1 |
import argparse
|
2 |
+
import os
|
3 |
from itertools import product
|
4 |
|
5 |
+
from dataset_lib.config import Config
|
6 |
+
from dataset_lib.config import Constants as c
|
7 |
from dataset_lib.encode import encode
|
|
|
8 |
|
9 |
|
10 |
+
def setup_logging(level):
|
11 |
+
import logging
|
|
|
12 |
|
13 |
+
formatter = logging.Formatter(
|
14 |
+
"%(asctime)s - %(name)s - %(levelname)s - %(message)s"
|
15 |
+
)
|
16 |
+
logging.root.setLevel(level)
|
17 |
+
loggers = [
|
18 |
+
logging.getLogger(name)
|
19 |
+
for name in logging.root.manager.loggerDict
|
20 |
+
if "ibydmt" in name
|
21 |
+
]
|
22 |
+
for logger in loggers:
|
23 |
+
logger.setLevel(level)
|
24 |
|
25 |
+
stream_handler = logging.StreamHandler()
|
26 |
+
stream_handler.setFormatter(formatter)
|
27 |
+
logging.root.addHandler(stream_handler)
|
28 |
|
29 |
|
30 |
def config():
|
31 |
parser = argparse.ArgumentParser()
|
32 |
parser.add_argument(
|
33 |
+
"--workdir", type=str, default=c.WORKDIR, help="Working directory"
|
|
|
|
|
|
|
|
|
34 |
)
|
35 |
+
parser.add_argument("--log_level", type=str, default="INFO", help="Logging level")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
return parser.parse_args()
|
37 |
|
38 |
|
39 |
+
def get_support_datasets(workdir: str):
|
40 |
+
with open(os.path.join(workdir, "supported_datasets.txt"), "r") as f:
|
41 |
+
return f.read().splitlines()
|
42 |
+
|
43 |
+
|
44 |
+
def get_supported_models(workdir: str):
|
45 |
+
with open(os.path.join(workdir, "supported_models.txt"), "r") as f:
|
46 |
+
return f.read().splitlines()
|
47 |
+
|
48 |
+
|
49 |
def main(args):
|
50 |
+
workdir = args.workdir
|
51 |
+
log_level = args.log_level
|
52 |
+
|
53 |
+
setup_logging(log_level)
|
54 |
+
|
55 |
+
datasets = get_support_datasets(workdir)
|
56 |
+
models = get_supported_models(workdir)
|
57 |
+
for dataset in datasets:
|
58 |
+
config = Config()
|
59 |
+
config.data.dataset = dataset
|
60 |
+
config.data.backbone = models
|
61 |
+
for _config in config.sweep(["data.backbone"]):
|
62 |
+
encode(_config)
|
63 |
|
64 |
|
65 |
if __name__ == "__main__":
|
supported_models.txt
CHANGED
@@ -1,4 +1,8 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
clip:ViT-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
1 |
+
clip:RN50
|
2 |
+
clip:ViT-B/32
|
3 |
+
clip:ViT-L/14
|
4 |
+
open_clip:ViT-B-32
|
5 |
+
open_clip:ViT-L-14
|
6 |
+
flava
|
7 |
+
align
|
8 |
+
blip
|