--- license: mit --- ### Pre-computed vision-language model image embeddings Embeddings are stored as [Parquet](https://parquet.apache.org/) files with the following structure: ```python __.parquet """ DATASET_NAME: name of the dataset, e.g. "imagenette". OP: split of the dataset (either "train" or "test"). MODEL_NAME: name of the model, e.g. "clip_vit-l_14". """ dataset["embedding"] contains the embeddings dataset["label"] contains the labels ``` To generate the dataset, run ```bash $ python make_dataset.py ``` Supported dataset names (see [supported_datasets.txt](supported_datasets.txt)): * `imagenette` [[dataset](https://github.com/fastai/imagenette)] Supported model names (see [supported_models.txt](supported_models.txt)): * `clip:ViT-RN:50` [[model](https://github.com/openai/CLIP)] * `clip:ViT-B/32` [[model](https://github.com/openai/CLIP)] * `clip:ViT-L/14` [[model](https://github.com/openai/CLIP)] * `open_clip:ViT-B-32` [[model](https://huggingface.co/laion/CLIP-ViT-B-32-laion2B-s34B-b79K)] * `open_clip:ViT-L-14` [[model](https://huggingface.co/laion/CLIP-ViT-L-14-laion2B-s32B-b82K)] * `FLAVA` [[model](https://huggingface.co/facebook/flava-full)] * `ALIGN` [[model](https://huggingface.co/kakaobrain/align-base)] * `BLIP` [[model](https://huggingface.co/Salesforce/blip-itm-base-coco)] **References** ``` @inproceedings{teneggi24testing, title={Testing Semantic Importance via Betting}, author={Teneggi, Jacopo and Sulam, Jeremias}, booktitle={The Thirty-eighth Annual Conference on Neural Information Processing Systems}, year={2024}, } ```