{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "c47a32d8-c857-41de-a70a-cec48046df12",
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "e0c6bd53-3417-44bd-b1b4-81802b37fbfc",
   "metadata": {},
   "outputs": [],
   "source": [
    "df = pd.read_csv('binding_moad/every.csv',header=None,skiprows=2)\n",
    "df = df.rename(columns={2:'pdb',3: 'ligand_name', 4: 'ligand_valid', 5: 'affinity_quantity',\n",
    "                        7: 'affinity_val', 8: 'affinity_unit', 9:'smiles'})\n",
    "#df = df[df['ligand_valid']!='invalid'].copy()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "e40b1ddc-9a98-4a3b-b8a6-45e3940a3ea2",
   "metadata": {},
   "outputs": [],
   "source": [
    "df['is_sep'] = df[1] == 'Family. Representative Entry is '"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "4f00a0d1-78db-4f32-9d12-5e035b70ef98",
   "metadata": {},
   "outputs": [],
   "source": [
    "df['cum_sum'] = df['is_sep'].cumsum()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "ebaeb749-656e-4b92-8dbd-2e29eefdcad5",
   "metadata": {},
   "outputs": [],
   "source": [
    "quantities = ['ki','kd','ka','k1/2','kb','ic50','ec50']"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "52c0c66c-1eb0-415b-b019-bc77419ccbd7",
   "metadata": {},
   "outputs": [],
   "source": [
    "from pint import UnitRegistry\n",
    "ureg = UnitRegistry()\n",
    "\n",
    "def to_uM(affinity_unit):\n",
    "    try:\n",
    "        val = ureg(str(affinity_unit[0])+str(affinity_unit[1]))\n",
    "        return val.m_as(ureg.uM)\n",
    "    except Exception:\n",
    "        pass\n",
    "    \n",
    "    try:\n",
    "        val = ureg(str(affinity_unit[0])+str(affinity_unit[1]))\n",
    "        return 1/val.m_as(1/ureg.uM)\n",
    "    except Exception:\n",
    "        pass"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "e5b4dd41-1389-408d-bee6-6dbeefc1d5c7",
   "metadata": {},
   "outputs": [],
   "source": [
    "groupby = df.groupby('cum_sum')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "61b8276c-54fe-4989-af5f-723994e1df7e",
   "metadata": {},
   "outputs": [],
   "source": [
    "def group(df):\n",
    "    pdb = df[df['is_sep']]['pdb'].values\n",
    "    if len(pdb) > 0:\n",
    "        pdb = pdb[0]\n",
    "        df['pdb_ref'] = pdb\n",
    "    return df[df['ligand_valid']=='valid']\n",
    "df_expand = groupby.apply(group).reset_index(drop=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "342c8ef3-6808-471b-baa4-f9bdc7f6e8d6",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "88806"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "len(df_expand)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "8bb2dfac-5f11-455c-9dee-3607b47b4232",
   "metadata": {},
   "outputs": [],
   "source": [
    "df_expand['affinity_uM'] = df_expand[['affinity_val','affinity_unit']].apply(to_uM,axis=1)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "b5c0fa42-b595-4b96-b2d5-57f0031427dc",
   "metadata": {},
   "outputs": [],
   "source": [
    "df_filter = df_expand[df_expand['affinity_quantity'].str.lower().isin(quantities)]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "27c4865b-5337-48e0-9be7-a913b31cfae1",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "88806"
      ]
     },
     "execution_count": 14,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "len(df_expand)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "f3daf4ad-0205-48c0-8c38-36aa4eb561e0",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "25490"
      ]
     },
     "execution_count": 15,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "len(df_filter)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "id": "0dc39f62-5b18-4a86-9a44-17d1925da2ad",
   "metadata": {},
   "outputs": [],
   "source": [
    "df_complex = pd.read_parquet('data/moad_complex.parquet')\n",
    "df_complex['name'] = df_complex['name'].str.upper()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "719d147f-75eb-4ead-a54f-4b448a62a9a0",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "id": "6d158a41-64c6-4fa2-92d5-562aa11e8924",
   "metadata": {},
   "outputs": [],
   "source": [
    "df_all = df_filter.merge(df_complex,left_on='pdb_ref',right_on='name')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "id": "901fe6c6-dc8c-4ce4-82c6-1fb0b718287a",
   "metadata": {},
   "outputs": [],
   "source": [
    "df_all = df_all[~df_all['affinity_val'].isnull()]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "id": "383f9a1c-ffc6-43da-ac5a-5bcb815be28b",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>0</th>\n",
       "      <th>1</th>\n",
       "      <th>pdb</th>\n",
       "      <th>ligand_name</th>\n",
       "      <th>ligand_valid</th>\n",
       "      <th>affinity_quantity</th>\n",
       "      <th>6</th>\n",
       "      <th>affinity_val</th>\n",
       "      <th>affinity_unit</th>\n",
       "      <th>smiles</th>\n",
       "      <th>10</th>\n",
       "      <th>is_sep</th>\n",
       "      <th>cum_sum</th>\n",
       "      <th>pdb_ref</th>\n",
       "      <th>affinity_uM</th>\n",
       "      <th>name</th>\n",
       "      <th>seq</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>2PA:C:613</td>\n",
       "      <td>valid</td>\n",
       "      <td>Ki</td>\n",
       "      <td>=</td>\n",
       "      <td>0.62</td>\n",
       "      <td>nM</td>\n",
       "      <td>NP(=O)(N)O</td>\n",
       "      <td>NaN</td>\n",
       "      <td>False</td>\n",
       "      <td>1</td>\n",
       "      <td>6H8J</td>\n",
       "      <td>0.000620</td>\n",
       "      <td>6H8J</td>\n",
       "      <td>NYIVPGEYRVAEGEIEINAGREKTTIRVSNTGDRPIQVGSHIHFVE...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>HAE:C:800</td>\n",
       "      <td>valid</td>\n",
       "      <td>Ki</td>\n",
       "      <td>=</td>\n",
       "      <td>2.60</td>\n",
       "      <td>uM</td>\n",
       "      <td>CC(=O)NO</td>\n",
       "      <td>NaN</td>\n",
       "      <td>False</td>\n",
       "      <td>1</td>\n",
       "      <td>6H8J</td>\n",
       "      <td>2.600000</td>\n",
       "      <td>6H8J</td>\n",
       "      <td>NYIVPGEYRVAEGEIEINAGREKTTIRVSNTGDRPIQVGSHIHFVE...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>43W:A:902</td>\n",
       "      <td>valid</td>\n",
       "      <td>ic50</td>\n",
       "      <td>=</td>\n",
       "      <td>580.00</td>\n",
       "      <td>nM</td>\n",
       "      <td>C#CCCOP(=O)(O)OP(=O)(O)O</td>\n",
       "      <td>NaN</td>\n",
       "      <td>False</td>\n",
       "      <td>2</td>\n",
       "      <td>4S3F</td>\n",
       "      <td>0.580000</td>\n",
       "      <td>4S3F</td>\n",
       "      <td>MEGMRRPTPTVYVGRVPIGGAHPIAVQSMTNTPTRDVEATTAQVLE...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>0CG:A:902</td>\n",
       "      <td>valid</td>\n",
       "      <td>ic50</td>\n",
       "      <td>=</td>\n",
       "      <td>770.00</td>\n",
       "      <td>nM</td>\n",
       "      <td>C#CCOP(=O)(O)OP(=O)(O)O</td>\n",
       "      <td>NaN</td>\n",
       "      <td>False</td>\n",
       "      <td>2</td>\n",
       "      <td>4S3F</td>\n",
       "      <td>0.770000</td>\n",
       "      <td>4S3F</td>\n",
       "      <td>MEGMRRPTPTVYVGRVPIGGAHPIAVQSMTNTPTRDVEATTAQVLE...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>ADN:A:901</td>\n",
       "      <td>valid</td>\n",
       "      <td>Kd</td>\n",
       "      <td>=</td>\n",
       "      <td>15.00</td>\n",
       "      <td>uM</td>\n",
       "      <td>c1nc(c2c(n1)n(cn2)[C@H]3[C@@H]([C@@H]([C@H](O3...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>False</td>\n",
       "      <td>5</td>\n",
       "      <td>2GL0</td>\n",
       "      <td>15.000000</td>\n",
       "      <td>2GL0</td>\n",
       "      <td>MTDMSIKFELIDVPIPQGTNVIIGQAHFIKTVEDLYEALVTSVPGV...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>25420</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>MAN NAG:G:1</td>\n",
       "      <td>valid</td>\n",
       "      <td>Ka</td>\n",
       "      <td>=</td>\n",
       "      <td>7860.00</td>\n",
       "      <td>M^-1</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>False</td>\n",
       "      <td>10499</td>\n",
       "      <td>2WDB</td>\n",
       "      <td>127.226463</td>\n",
       "      <td>2WDB</td>\n",
       "      <td>MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>25421</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>MAN NAG:F:1</td>\n",
       "      <td>valid</td>\n",
       "      <td>Ka</td>\n",
       "      <td>=</td>\n",
       "      <td>7860.00</td>\n",
       "      <td>M^-1</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>False</td>\n",
       "      <td>10499</td>\n",
       "      <td>2WDB</td>\n",
       "      <td>127.226463</td>\n",
       "      <td>2WDB</td>\n",
       "      <td>MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>25422</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NGA NAG:F:1</td>\n",
       "      <td>valid</td>\n",
       "      <td>Ka</td>\n",
       "      <td>=</td>\n",
       "      <td>5910.00</td>\n",
       "      <td>M^-1</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>False</td>\n",
       "      <td>10499</td>\n",
       "      <td>2WDB</td>\n",
       "      <td>169.204738</td>\n",
       "      <td>2WDB</td>\n",
       "      <td>MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>25423</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NGA NAG:E:1</td>\n",
       "      <td>valid</td>\n",
       "      <td>Ka</td>\n",
       "      <td>=</td>\n",
       "      <td>5910.00</td>\n",
       "      <td>M^-1</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>False</td>\n",
       "      <td>10499</td>\n",
       "      <td>2WDB</td>\n",
       "      <td>169.204738</td>\n",
       "      <td>2WDB</td>\n",
       "      <td>MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>25424</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NGA NAG:H:1</td>\n",
       "      <td>valid</td>\n",
       "      <td>Ka</td>\n",
       "      <td>=</td>\n",
       "      <td>5910.00</td>\n",
       "      <td>M^-1</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>False</td>\n",
       "      <td>10499</td>\n",
       "      <td>2WDB</td>\n",
       "      <td>169.204738</td>\n",
       "      <td>2WDB</td>\n",
       "      <td>MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG...</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>25425 rows × 17 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "         0    1  pdb  ligand_name ligand_valid affinity_quantity  6  \\\n",
       "0      NaN  NaN  NaN    2PA:C:613        valid                Ki  =   \n",
       "1      NaN  NaN  NaN    HAE:C:800        valid                Ki  =   \n",
       "2      NaN  NaN  NaN    43W:A:902        valid              ic50  =   \n",
       "3      NaN  NaN  NaN    0CG:A:902        valid              ic50  =   \n",
       "4      NaN  NaN  NaN    ADN:A:901        valid                Kd  =   \n",
       "...    ...  ...  ...          ...          ...               ... ..   \n",
       "25420  NaN  NaN  NaN  MAN NAG:G:1        valid                Ka  =   \n",
       "25421  NaN  NaN  NaN  MAN NAG:F:1        valid                Ka  =   \n",
       "25422  NaN  NaN  NaN  NGA NAG:F:1        valid                Ka  =   \n",
       "25423  NaN  NaN  NaN  NGA NAG:E:1        valid                Ka  =   \n",
       "25424  NaN  NaN  NaN  NGA NAG:H:1        valid                Ka  =   \n",
       "\n",
       "       affinity_val affinity_unit  \\\n",
       "0              0.62            nM   \n",
       "1              2.60            uM   \n",
       "2            580.00            nM   \n",
       "3            770.00            nM   \n",
       "4             15.00            uM   \n",
       "...             ...           ...   \n",
       "25420       7860.00          M^-1   \n",
       "25421       7860.00          M^-1   \n",
       "25422       5910.00          M^-1   \n",
       "25423       5910.00          M^-1   \n",
       "25424       5910.00          M^-1   \n",
       "\n",
       "                                                  smiles  10  is_sep  cum_sum  \\\n",
       "0                                             NP(=O)(N)O NaN   False        1   \n",
       "1                                               CC(=O)NO NaN   False        1   \n",
       "2                               C#CCCOP(=O)(O)OP(=O)(O)O NaN   False        2   \n",
       "3                                C#CCOP(=O)(O)OP(=O)(O)O NaN   False        2   \n",
       "4      c1nc(c2c(n1)n(cn2)[C@H]3[C@@H]([C@@H]([C@H](O3... NaN   False        5   \n",
       "...                                                  ...  ..     ...      ...   \n",
       "25420                                                NaN NaN   False    10499   \n",
       "25421                                                NaN NaN   False    10499   \n",
       "25422                                                NaN NaN   False    10499   \n",
       "25423                                                NaN NaN   False    10499   \n",
       "25424                                                NaN NaN   False    10499   \n",
       "\n",
       "      pdb_ref  affinity_uM  name  \\\n",
       "0        6H8J     0.000620  6H8J   \n",
       "1        6H8J     2.600000  6H8J   \n",
       "2        4S3F     0.580000  4S3F   \n",
       "3        4S3F     0.770000  4S3F   \n",
       "4        2GL0    15.000000  2GL0   \n",
       "...       ...          ...   ...   \n",
       "25420    2WDB   127.226463  2WDB   \n",
       "25421    2WDB   127.226463  2WDB   \n",
       "25422    2WDB   169.204738  2WDB   \n",
       "25423    2WDB   169.204738  2WDB   \n",
       "25424    2WDB   169.204738  2WDB   \n",
       "\n",
       "                                                     seq  \n",
       "0      NYIVPGEYRVAEGEIEINAGREKTTIRVSNTGDRPIQVGSHIHFVE...  \n",
       "1      NYIVPGEYRVAEGEIEINAGREKTTIRVSNTGDRPIQVGSHIHFVE...  \n",
       "2      MEGMRRPTPTVYVGRVPIGGAHPIAVQSMTNTPTRDVEATTAQVLE...  \n",
       "3      MEGMRRPTPTVYVGRVPIGGAHPIAVQSMTNTPTRDVEATTAQVLE...  \n",
       "4      MTDMSIKFELIDVPIPQGTNVIIGQAHFIKTVEDLYEALVTSVPGV...  \n",
       "...                                                  ...  \n",
       "25420  MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG...  \n",
       "25421  MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG...  \n",
       "25422  MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG...  \n",
       "25423  MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG...  \n",
       "25424  MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG...  \n",
       "\n",
       "[25425 rows x 17 columns]"
      ]
     },
     "execution_count": 26,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df_all"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "id": "bebc962b-10f7-478c-8e23-e2d3722e875c",
   "metadata": {},
   "outputs": [],
   "source": [
    "df_all[['pdb','ligand_name','smiles','name','affinity_uM','seq']].to_parquet('data/moad.parquet')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "49a160d6-4599-488a-ba02-a65a79535f38",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.4"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}