--- language: - en license: mit task_categories: - text-generation - fill-mask - text-classification - retrieval tags: - pretraining - language-modeling - encoder - decoder - foundation-model - transformer --- # Ettin Pre-training Data [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![Paper](https://img.shields.io/badge/Paper-Arxiv-red)](https://arxiv.org/abs/2507.11412) [![Models](https://img.shields.io/badge/🤗%20Hugging%20Face-12%20Models-blue)](https://huggingface.co/jhu-clsp) [![GitHub](https://img.shields.io/badge/GitHub-Code-black)](https://github.com/jhu-clsp/ettin-encoder-vs-decoder) > **Phase 1 of 3**: Diverse pre-training data mixture (1.7T tokens) used to train the Ettin model suite. This dataset contains the pre-training phase data used to train all [Ettin encoder and decoder models](https://huggingface.co/jhu-clsp). The data is provided in **MDS format** ready for use with [Composer](https://github.com/mosaicml/composer) and the [ModernBERT training repository](https://github.com/answerdotai/ModernBERT). ## 📊 Data Composition | Data Source | Tokens (B) | Percentage | Description | |:------------|:-----------|:-----------|:------------| | DCLM | 837.2 | 49.1% | High-quality web crawl data | | CC Head | 356.6 | 20.9% | Common Crawl head documents | | Starcoder | 263.9 | 15.5% | Code repositories and files | | Reddit | 80.3 | 4.7% | Social discussion threads | | PeS2o | 57.3 | 3.4% | Scientific papers | | Arxiv | 28.0 | 1.6% | Academic preprints | | StackExchange | 19.6 | 1.2% | Q&A forums | | Tulu Flan | 16.6 | 1.0% | Instruction-following data | | Open-Web-Math | 12.7 | 0.7% | Mathematical content | | Algebraic StackExchange | 12.6 | 0.7% | Math Q&A | | CC News | 7.3 | 0.4% | News articles | | Wikipedia | 7.3 | 0.4% | Encyclopedia articles | | **Total** | **1,704.7** | **100.0%** | Diverse mixture for foundation training | ## 🚀 Usage For pre-training, see the ModernBERT repo: https://github.com/AnswerDotAI/ModernBERT ### Direct Access ```python from streaming import StreamingDataset # Load the streaming dataset dataset = StreamingDataset( remote='https://huggingface.co/datasets/jhu-clsp/ettin-pretraining-data', local='/tmp/ettin-pretraining-data', shuffle=True ) # Access samples for sample in dataset: text = sample['text'] # Process your data... ``` ## 📁 Structure Each folder contains one data source in MDS (Mosaic Data Shard) format: - `arxiv/` - Academic papers from ArXiv - `books/` - Literature and reference books - `cc_head/` - High-quality Common Crawl documents - `cc_news/` - News articles from Common Crawl - `dclm/` - DataComp-LM filtered web data - `open_web_math/` - Mathematical web content - `algebraic_stackexchange/` - Math Q&A from StackExchange - `pes2o/` - Scientific papers (PeS2o dataset) - `reddit/` - Reddit discussion threads - `stackexchange/` - General StackExchange Q&A - `starcoder/` - Code from GitHub repositories - `tulu_flan/` - Instruction-following examples - `wikipedia/` - Wikipedia articles ## 🔗 Related Resources - **Models**: [Ettin Model Suite](https://huggingface.co/collections/jhu-clsp/encoders-vs-decoders-the-ettin-suite-686303e16142257eed8e6aeb) (17M-1B parameters) - **Phase 2**: [Mid-training Data](https://huggingface.co/datasets/jhu-clsp/ettin-extension-data) (250B tokens) - **Phase 3**: [Decay Phase Data](https://huggingface.co/datasets/jhu-clsp/ettin-decay-data) (50B tokens) - **Training Order**: [Batch-level Data Order](https://huggingface.co/datasets/jhu-clsp/ettin-data-order) - **Paper**: [Arxiv link](https://arxiv.org/abs/2507.11412) - **Code**: [GitHub Repository](https://github.com/jhu-clsp/ettin-encoder-vs-decoder) ## Citation ```bibtex @misc{weller2025seqvsseqopen, title={Seq vs Seq: An Open Suite of Paired Encoders and Decoders}, author={Orion Weller and Kathryn Ricci and Marc Marone and Antoine Chaffin and Dawn Lawrie and Benjamin Van Durme}, year={2025}, eprint={2507.11412}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2507.11412}, } ```