|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Datasets loader to create the Riksdag data""" |
|
|
|
|
|
import os |
|
|
from pathlib import Path |
|
|
from pydub import AudioSegment |
|
|
import numpy as np |
|
|
|
|
|
import datasets |
|
|
from datasets.tasks import AutomaticSpeechRecognition |
|
|
from datasets.features import Audio |
|
|
|
|
|
ALIGNMENTS = Path("/home/joregan/sbtal_riksdag_asr/alignments") |
|
|
TMP = Path("/tmp") |
|
|
parameters=["-ac", "1", "-acodec", "pcm_s16le", "-ar", "16000"] |
|
|
|
|
|
|
|
|
class RDDataset(datasets.GeneratorBasedBuilder): |
|
|
VERSION = datasets.Version("1.1.0") |
|
|
BUILDER_CONFIGS = [ |
|
|
datasets.BuilderConfig(name="speech", version=VERSION, description="Data for speech recognition"), |
|
|
] |
|
|
|
|
|
def _info(self): |
|
|
features = datasets.Features( |
|
|
{ |
|
|
"id": datasets.Value("string"), |
|
|
"audio": datasets.Audio(sampling_rate=16_000), |
|
|
"text": datasets.Value("string"), |
|
|
} |
|
|
) |
|
|
|
|
|
return datasets.DatasetInfo( |
|
|
description="Riksdag speech data", |
|
|
features=features, |
|
|
supervised_keys=None, |
|
|
task_templates=[ |
|
|
AutomaticSpeechRecognition(audio_column="audio", transcription_column="text") |
|
|
], |
|
|
) |
|
|
|
|
|
def _split_generators(self, dl_manager): |
|
|
return [ |
|
|
datasets.SplitGenerator( |
|
|
name=datasets.Split.TRAIN, |
|
|
gen_kwargs={ |
|
|
"split": "train", |
|
|
}, |
|
|
), |
|
|
] |
|
|
|
|
|
def _generate_examples(self, split): |
|
|
for afile in ALIGNMENTS.glob("*"): |
|
|
temp_wav = "" |
|
|
with open(str(afile)) as alignment: |
|
|
for line in alignment.readlines(): |
|
|
if line.startswith("FILE"): |
|
|
continue |
|
|
parts = line.strip().split("\t") |
|
|
if parts[3] == "MISALIGNED": |
|
|
continue |
|
|
vidid = parts[0] |
|
|
temp_wav = f"/tmp/{vidid}.wav" |
|
|
if Path(temp_wav).exists(): |
|
|
audio = AudioSegment.from_wav(temp_wav) |
|
|
else: |
|
|
video_file = Path("/sbtal/riksdag-video") / f"{parts[0]}_480p.mp4" |
|
|
if video_file.exists(): |
|
|
vid_as = AudioSegment.from_file(str(video_file), "mp4") |
|
|
vid_as.export(temp_wav, format="wav", parameters=parameters) |
|
|
audio = AudioSegment.from_wav(temp_wav) |
|
|
else: |
|
|
continue |
|
|
print(parts) |
|
|
start = int(float(parts[1]) * 1000) |
|
|
end = int(float(parts[2]) * 1000) |
|
|
text = parts[4] |
|
|
piece_id = f"{vidid}_{start}_{end}" |
|
|
yield piece_id, { |
|
|
"id": vidid, |
|
|
"audio": { |
|
|
"array": np.array(audio[start:end].get_array_of_samples()), |
|
|
"sampling_rate": 16_000 |
|
|
}, |
|
|
"text": text |
|
|
} |
|
|
if temp_wav != "": |
|
|
os.unlink(temp_wav) |