jimregan commited on
Commit
2fa457e
·
1 Parent(s): 304b8f6

fix script

Browse files
Files changed (1) hide show
  1. sbtal_riksdag_asr.py +15 -8
sbtal_riksdag_asr.py CHANGED
@@ -16,14 +16,16 @@
16
 
17
  # Lint as: python3
18
  """Datasets loader to create the Riksdag data"""
 
19
  from pathlib import Path
20
  from pydub import AudioSegment
 
21
 
22
  import datasets
23
  from datasets.tasks import AutomaticSpeechRecognition
24
  from datasets.features import Audio
25
 
26
- ALIGNMENTS = Path("alignments")
27
  TMP = Path("/tmp")
28
  parameters=["-ac", "1", "-acodec", "pcm_s16le", "-ar", "16000"]
29
 
@@ -37,6 +39,7 @@ class RDDataset(datasets.GeneratorBasedBuilder):
37
  def _info(self):
38
  features = datasets.Features(
39
  {
 
40
  "audio": datasets.Audio(sampling_rate=16_000),
41
  "text": datasets.Value("string"),
42
  }
@@ -62,13 +65,13 @@ class RDDataset(datasets.GeneratorBasedBuilder):
62
  ]
63
 
64
  def _generate_examples(self, split):
65
- for file in ALIGNMENTS.glob("*"):
66
- segments = []
67
- with open(str(file)) as alignment:
68
  for line in alignment.readlines():
69
  if line.startswith("FILE"):
70
  continue
71
- parts = line.split("\t")
72
  if parts[3] == "MISALIGNED":
73
  continue
74
  vidid = parts[0]
@@ -76,21 +79,25 @@ class RDDataset(datasets.GeneratorBasedBuilder):
76
  if Path(temp_wav).exists():
77
  audio = AudioSegment.from_wav(temp_wav)
78
  else:
79
- video_file = Path("/sbtal/riksdag-video/") / f"{parts[0]}_480p.mp4"
80
  if video_file.exists():
81
  vid_as = AudioSegment.from_file(str(video_file), "mp4")
82
  vid_as.export(temp_wav, format="wav", parameters=parameters)
83
  audio = AudioSegment.from_wav(temp_wav)
84
  else:
85
  continue
 
86
  start = int(float(parts[1]) * 1000)
87
  end = int(float(parts[2]) * 1000)
88
  text = parts[4]
89
- yield vidid, {
 
90
  "id": vidid,
91
  "audio": {
92
- "array": audio[start:end],
93
  "sampling_rate": 16_000
94
  },
95
  "text": text
96
  }
 
 
 
16
 
17
  # Lint as: python3
18
  """Datasets loader to create the Riksdag data"""
19
+ # This script is full of local paths; sorry about that
20
  from pathlib import Path
21
  from pydub import AudioSegment
22
+ import numpy as np
23
 
24
  import datasets
25
  from datasets.tasks import AutomaticSpeechRecognition
26
  from datasets.features import Audio
27
 
28
+ ALIGNMENTS = Path("/home/joregan/sbtal_riksdag_asr/alignments")
29
  TMP = Path("/tmp")
30
  parameters=["-ac", "1", "-acodec", "pcm_s16le", "-ar", "16000"]
31
 
 
39
  def _info(self):
40
  features = datasets.Features(
41
  {
42
+ "id": datasets.Value("string"),
43
  "audio": datasets.Audio(sampling_rate=16_000),
44
  "text": datasets.Value("string"),
45
  }
 
65
  ]
66
 
67
  def _generate_examples(self, split):
68
+ for afile in ALIGNMENTS.glob("*"):
69
+ temp_wav = ""
70
+ with open(str(afile)) as alignment:
71
  for line in alignment.readlines():
72
  if line.startswith("FILE"):
73
  continue
74
+ parts = line.strip().split("\t")
75
  if parts[3] == "MISALIGNED":
76
  continue
77
  vidid = parts[0]
 
79
  if Path(temp_wav).exists():
80
  audio = AudioSegment.from_wav(temp_wav)
81
  else:
82
+ video_file = Path("/sbtal/riksdag-video") / f"{parts[0]}_480p.mp4"
83
  if video_file.exists():
84
  vid_as = AudioSegment.from_file(str(video_file), "mp4")
85
  vid_as.export(temp_wav, format="wav", parameters=parameters)
86
  audio = AudioSegment.from_wav(temp_wav)
87
  else:
88
  continue
89
+ print(parts)
90
  start = int(float(parts[1]) * 1000)
91
  end = int(float(parts[2]) * 1000)
92
  text = parts[4]
93
+ piece_id = f"{vidid}_{start}_{end}"
94
+ yield piece_id, {
95
  "id": vidid,
96
  "audio": {
97
+ "array": np.array(audio[start:end].get_array_of_samples()),
98
  "sampling_rate": 16_000
99
  },
100
  "text": text
101
  }
102
+ if temp_wav != "":
103
+ Path.unlink(temp_wav)