"""Korean Dataset for NLI and STS""" from __future__ import absolute_import, division, print_function import csv import pandas as pd import datasets _CITATAION = """\ @article{ham2020kornli, title={KorNLI and KorSTS: New Benchmark Datasets for Korean Natural Language Understanding}, author={Ham, Jiyeon and Choe, Yo Joong and Park, Kyubyong and Choi, Ilji and Soh, Hyungjoon}, journal={arXiv preprint arXiv:2004.03289}, year={2020} } """ _DESCRIPTION = """\ The dataset contains data for bechmarking korean models on NLI and STS """ _URL = "https://github.com/kakaobrain/KorNLUDatasets" _DATA_URLS = { "nli": { # 'mnli-train': 'https://raw.githubusercontent.com/kakaobrain/KorNLUDatasets/master/KorNLI/multinli.train.ko.tsv', "snli-train": "https://raw.githubusercontent.com/kakaobrain/KorNLUDatasets/master/KorNLI/snli_1.0_train.ko.tsv", "xnli-dev": "https://raw.githubusercontent.com/kakaobrain/KorNLUDatasets/master/KorNLI/xnli.dev.ko.tsv", "xnli-test": "https://raw.githubusercontent.com/kakaobrain/KorNLUDatasets/master/KorNLI/xnli.test.ko.tsv", }, "sts": { "train": "https://raw.githubusercontent.com/kakaobrain/KorNLUDatasets/master/KorSTS/sts-train.tsv", "dev": "https://raw.githubusercontent.com/kakaobrain/KorNLUDatasets/master/KorSTS/sts-dev.tsv", "test": "https://raw.githubusercontent.com/kakaobrain/KorNLUDatasets/master/KorSTS/sts-test.tsv", }, } class KorNluConfig(datasets.BuilderConfig): """BuilderConfig for korNLU""" def __init__(self, description, data_url, citation, url, **kwargs): """ Args: description: `string`, brief description of the dataset data_url: `dictionary`, dict with url for each split of data. citation: `string`, citation for the dataset. url: `string`, url for information about the dataset. **kwrags: keyword arguments frowarded to super """ super(KorNluConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs) self.description = description self.data_url = data_url self.citation = citation self.url = url class KorNlu(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ KorNluConfig(name=name, description=_DESCRIPTION, data_url=_DATA_URLS[name], citation=_CITATAION, url=_URL) for name in ["nli", "sts"] ] BUILDER_CONFIG_CLASS = KorNluConfig def _info(self): features = {} if self.config.name == "nli": labels = ["entailment", "neutral", "contradiction"] features["premise"] = datasets.Value("string") features["hypothesis"] = datasets.Value("string") features["label"] = datasets.features.ClassLabel(names=labels) if self.config.name == "sts": genre = ["main-news", "main-captions", "main-forum", "main-forums"] filename = [ "images", "MSRpar", "MSRvid", "headlines", "deft-forum", "deft-news", "track5.en-en", "answers-forums", "answer-answer", ] year = ["2017", "2016", "2013", "2012train", "2014", "2015", "2012test"] features["genre"] = datasets.features.ClassLabel(names=genre) features["filename"] = datasets.features.ClassLabel(names=filename) features["year"] = datasets.features.ClassLabel(names=year) features["id"] = datasets.Value("int32") features["score"] = datasets.Value("float32") features["sentence1"] = datasets.Value("string") features["sentence2"] = datasets.Value("string") return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features(features), homepage=_URL, citation=_CITATAION ) def _split_generators(self, dl_manager): if self.config.name == "nli": # mnli_train = dl_manager.download_and_extract(self.config.data_url['mnli-train']) snli_train = dl_manager.download_and_extract(self.config.data_url["snli-train"]) xnli_dev = dl_manager.download_and_extract(self.config.data_url["xnli-dev"]) xnli_test = dl_manager.download_and_extract(self.config.data_url["xnli-test"]) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": snli_train, "split": "train"} ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"filepath": xnli_dev, "split": "dev"} ), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": xnli_test, "split": "test"}), ] if self.config.name == "sts": train = dl_manager.download_and_extract(self.config.data_url["train"]) dev = dl_manager.download_and_extract(self.config.data_url["dev"]) test = dl_manager.download_and_extract(self.config.data_url["test"]) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train, "split": "train"}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": dev, "split": "dev"}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test, "split": "test"}), ] def _generate_examples(self, filepath, split): if self.config.name == "nli": df = pd.read_csv(filepath, sep="\t") df = df.dropna() for id_, row in df.iterrows(): yield id_, { "premise": str(row["sentence1"]), "hypothesis": str(row["sentence2"]), "label": str(row["gold_label"]), } if self.config.name == "sts": with open(filepath, encoding="utf-8") as f: data = csv.DictReader(f, delimiter="\t") for id_, row in enumerate(data): yield id_, { "genre": row["genre"], "filename": row["filename"], "year": row["year"], "id": row["id"], "sentence1": row["sentence1"], "sentence2": row["sentence2"], "score": row["score"], }