Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Languages:
Portuguese
Size:
1K - 10K
License:
Introduce JBCS split (#7)
Browse files- update script to address jbcs and update pyproject (03c0ec5c2b0ba27e1f03fdfec5dcf874ebc74a96)
- aes_enem_dataset.py +479 -163
- pyproject.toml +1 -0
aes_enem_dataset.py
CHANGED
@@ -15,16 +15,18 @@
|
|
15 |
import csv
|
16 |
import math
|
17 |
import os
|
18 |
-
from pathlib import Path
|
19 |
import re
|
|
|
20 |
|
21 |
import datasets
|
22 |
import numpy as np
|
23 |
import pandas as pd
|
|
|
24 |
from bs4 import BeautifulSoup
|
25 |
from tqdm.auto import tqdm
|
26 |
|
27 |
-
|
|
|
28 |
|
29 |
_CITATION = """
|
30 |
@inproceedings{silveira-etal-2024-new,
|
@@ -79,7 +81,7 @@ _URLS = {
|
|
79 |
"sourceAWithGraders": "https://huggingface.co/datasets/kamel-usp/aes_enem_dataset/resolve/main/sourceAWithGraders.tar.gz",
|
80 |
"sourceB": "https://huggingface.co/datasets/kamel-usp/aes_enem_dataset/resolve/main/sourceB.tar.gz",
|
81 |
"PROPOR2024": "https://huggingface.co/datasets/kamel-usp/aes_enem_dataset/resolve/main/propor2024.tar.gz",
|
82 |
-
"gradesThousand": "https://huggingface.co/datasets/kamel-usp/aes_enem_dataset/resolve/main/scrapedGradesThousand.tar.gz"
|
83 |
}
|
84 |
|
85 |
|
@@ -109,7 +111,7 @@ CSV_HEADER = [
|
|
109 |
"general",
|
110 |
"specific",
|
111 |
"essay_year",
|
112 |
-
"reference"
|
113 |
]
|
114 |
|
115 |
CSV_HEADERPROPOR = [
|
@@ -119,7 +121,7 @@ CSV_HEADERPROPOR = [
|
|
119 |
"essay",
|
120 |
"grades",
|
121 |
"essay_year",
|
122 |
-
"reference"
|
123 |
]
|
124 |
|
125 |
CSV_HEADERTHOUSAND = [
|
@@ -131,6 +133,18 @@ CSV_HEADERTHOUSAND = [
|
|
131 |
"essay",
|
132 |
"source",
|
133 |
"supporting_text",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
]
|
135 |
|
136 |
SOURCE_A_DESC = """
|
@@ -183,6 +197,10 @@ GRADES_THOUSAND = """
|
|
183 |
TODO
|
184 |
"""
|
185 |
|
|
|
|
|
|
|
|
|
186 |
|
187 |
class AesEnemDataset(datasets.GeneratorBasedBuilder):
|
188 |
"""
|
@@ -192,25 +210,34 @@ class AesEnemDataset(datasets.GeneratorBasedBuilder):
|
|
192 |
To reproduce results from PROPOR paper, please refer to "PROPOR2024" config. Other configs are reproducible now.
|
193 |
"""
|
194 |
|
195 |
-
VERSION = datasets.Version("0.
|
196 |
|
197 |
# You will be able to load one or the other configurations in the following list with
|
198 |
BUILDER_CONFIGS = [
|
199 |
-
datasets.BuilderConfig(name="sourceAOnly", version=VERSION, description=SOURCE_A_DESC),
|
200 |
datasets.BuilderConfig(
|
201 |
-
name="
|
|
|
|
|
|
|
|
|
|
|
202 |
),
|
203 |
datasets.BuilderConfig(
|
204 |
name="sourceB",
|
205 |
version=VERSION,
|
206 |
description=SOURCE_B_DESC,
|
207 |
),
|
208 |
-
datasets.BuilderConfig(
|
209 |
-
|
|
|
|
|
|
|
|
|
|
|
210 |
]
|
211 |
|
212 |
def _info(self):
|
213 |
-
if self.config.name=="PROPOR2024":
|
214 |
features = datasets.Features(
|
215 |
{
|
216 |
"id": datasets.Value("string"),
|
@@ -222,18 +249,32 @@ class AesEnemDataset(datasets.GeneratorBasedBuilder):
|
|
222 |
"reference": datasets.Value("string"),
|
223 |
}
|
224 |
)
|
225 |
-
elif self.config.name=="gradesThousand":
|
226 |
features = datasets.Features(
|
227 |
{
|
228 |
"id": datasets.Value("string"),
|
229 |
"id_prompt": datasets.Value("string"),
|
230 |
"supporting_text": datasets.Value("string"),
|
|
|
231 |
"essay_text": datasets.Value("string"),
|
232 |
"grades": datasets.Sequence(datasets.Value("int16")),
|
233 |
"essay_year": datasets.Value("int16"),
|
234 |
"source": datasets.Value("string"),
|
235 |
}
|
236 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
else:
|
238 |
features = datasets.Features(
|
239 |
{
|
@@ -275,7 +316,7 @@ class AesEnemDataset(datasets.GeneratorBasedBuilder):
|
|
275 |
|
276 |
def normalize_grades(grades):
|
277 |
grades = grades.strip("[]").split(", ")
|
278 |
-
grade_mapping = {"0.0": 0, "20": 40}
|
279 |
|
280 |
# We will remove the rows that match the criteria below
|
281 |
if any(
|
@@ -308,19 +349,19 @@ class AesEnemDataset(datasets.GeneratorBasedBuilder):
|
|
308 |
for split_case in ["train.csv", "validation.csv", "test.csv"]:
|
309 |
filepath = f"{base_path}/propor2024/{split_case}"
|
310 |
df = pd.read_csv(filepath)
|
311 |
-
|
312 |
# Dictionary to track how many times we've seen each (id, id_prompt) pair
|
313 |
counts = {}
|
314 |
# List to store the reference for each row
|
315 |
references = []
|
316 |
-
|
317 |
# Define the mapping for each occurrence
|
318 |
occurrence_to_reference = {
|
319 |
0: "crawled_from_web",
|
320 |
1: "grader_a",
|
321 |
-
2: "grader_b"
|
322 |
}
|
323 |
-
|
324 |
# Iterate through rows in the original order
|
325 |
for _, row in df.iterrows():
|
326 |
key = (row["id"], row["id_prompt"])
|
@@ -329,14 +370,15 @@ class AesEnemDataset(datasets.GeneratorBasedBuilder):
|
|
329 |
ref = occurrence_to_reference.get(count, "unknown")
|
330 |
references.append(ref)
|
331 |
counts[key] = count + 1
|
332 |
-
|
333 |
# Add the reference column without changing the order of rows
|
334 |
df["reference"] = references
|
335 |
df.to_csv(filepath, index=False)
|
336 |
|
337 |
def _split_generators(self, dl_manager):
|
338 |
-
|
339 |
-
|
|
|
340 |
if "PROPOR2024" == self.config.name:
|
341 |
base_path = extracted_files["PROPOR2024"]
|
342 |
self._preprocess_propor2024(base_path)
|
@@ -353,7 +395,9 @@ class AesEnemDataset(datasets.GeneratorBasedBuilder):
|
|
353 |
name=datasets.Split.VALIDATION,
|
354 |
# These kwargs will be passed to _generate_examples
|
355 |
gen_kwargs={
|
356 |
-
"filepath": os.path.join(
|
|
|
|
|
357 |
"split": "validation",
|
358 |
},
|
359 |
),
|
@@ -366,7 +410,20 @@ class AesEnemDataset(datasets.GeneratorBasedBuilder):
|
|
366 |
),
|
367 |
]
|
368 |
if "gradesThousand" == self.config.name:
|
369 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
370 |
return [
|
371 |
datasets.SplitGenerator(
|
372 |
name=datasets.Split.TRAIN,
|
@@ -392,17 +449,17 @@ class AesEnemDataset(datasets.GeneratorBasedBuilder):
|
|
392 |
},
|
393 |
),
|
394 |
]
|
395 |
-
html_parser = self._process_html_files(extracted_files)
|
396 |
if "sourceA" in self.config.name:
|
|
|
397 |
self._post_process_dataframe(html_parser.sourceA)
|
398 |
self._generate_splits(html_parser.sourceA)
|
399 |
-
folder_sourceA =
|
400 |
return [
|
401 |
datasets.SplitGenerator(
|
402 |
name=datasets.Split.TRAIN,
|
403 |
# These kwargs will be passed to _generate_examples
|
404 |
gen_kwargs={
|
405 |
-
"filepath":
|
406 |
"split": "train",
|
407 |
},
|
408 |
),
|
@@ -410,19 +467,20 @@ class AesEnemDataset(datasets.GeneratorBasedBuilder):
|
|
410 |
name=datasets.Split.VALIDATION,
|
411 |
# These kwargs will be passed to _generate_examples
|
412 |
gen_kwargs={
|
413 |
-
"filepath":
|
414 |
"split": "validation",
|
415 |
},
|
416 |
),
|
417 |
datasets.SplitGenerator(
|
418 |
name=datasets.Split.TEST,
|
419 |
gen_kwargs={
|
420 |
-
"filepath":
|
421 |
"split": "test",
|
422 |
},
|
423 |
),
|
424 |
]
|
425 |
elif self.config.name == "sourceB":
|
|
|
426 |
self._post_process_dataframe(html_parser.sourceB)
|
427 |
return [
|
428 |
datasets.SplitGenerator(
|
@@ -433,10 +491,155 @@ class AesEnemDataset(datasets.GeneratorBasedBuilder):
|
|
433 |
},
|
434 |
),
|
435 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
436 |
|
437 |
-
def _process_html_files(self, paths_dict):
|
438 |
html_parser = HTMLParser(paths_dict)
|
439 |
-
|
|
|
|
|
440 |
return html_parser
|
441 |
|
442 |
def _parse_graders_data(self, dirname):
|
@@ -457,14 +660,19 @@ class AesEnemDataset(datasets.GeneratorBasedBuilder):
|
|
457 |
grader_b["reference"] = "grader_b"
|
458 |
return grader_a, grader_b
|
459 |
|
460 |
-
def _generate_splits(self, filepath: str, train_size=0.7):
|
|
|
461 |
df = pd.read_csv(filepath)
|
462 |
-
buckets = df.groupby("mapped_year")["id_prompt"].unique().to_dict()
|
463 |
-
df.drop("mapped_year", axis=1, inplace=True)
|
464 |
train_set = []
|
465 |
val_set = []
|
466 |
test_set = []
|
467 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
468 |
np.random.shuffle(prompts)
|
469 |
num_prompts = len(prompts)
|
470 |
|
@@ -501,52 +709,67 @@ class AesEnemDataset(datasets.GeneratorBasedBuilder):
|
|
501 |
val_df = pd.concat(val_set)
|
502 |
test_df = pd.concat(test_set)
|
503 |
dirname = os.path.dirname(filepath)
|
504 |
-
if
|
|
|
|
|
505 |
grader_a, grader_b = self._parse_graders_data(dirname)
|
506 |
grader_a_data = pd.merge(
|
507 |
-
train_df[["id", "id_prompt","essay", "prompt", "supporting_text"]],
|
508 |
-
grader_a.drop(columns=[
|
509 |
on=["id", "id_prompt"],
|
510 |
how="inner",
|
511 |
)
|
512 |
grader_b_data = pd.merge(
|
513 |
-
train_df[["id", "id_prompt","essay", "prompt", "supporting_text"]],
|
514 |
-
grader_b.drop(columns=[
|
515 |
on=["id", "id_prompt"],
|
516 |
how="inner",
|
517 |
)
|
518 |
-
train_df = pd.concat([train_df, grader_a_data])
|
519 |
-
train_df =
|
|
|
|
|
520 |
|
521 |
grader_a_data = pd.merge(
|
522 |
-
val_df[["id", "id_prompt","essay", "prompt", "supporting_text"]],
|
523 |
-
grader_a.drop(columns=[
|
524 |
on=["id", "id_prompt"],
|
525 |
how="inner",
|
526 |
)
|
527 |
grader_b_data = pd.merge(
|
528 |
-
val_df[["id", "id_prompt","essay", "prompt", "supporting_text"]],
|
529 |
-
grader_b.drop(columns=[
|
530 |
on=["id", "id_prompt"],
|
531 |
how="inner",
|
532 |
)
|
533 |
-
val_df = pd.concat([val_df, grader_a_data])
|
534 |
-
val_df =
|
535 |
|
536 |
grader_a_data = pd.merge(
|
537 |
-
test_df[["id", "id_prompt","essay", "prompt", "supporting_text"]],
|
538 |
-
grader_a.drop(columns=[
|
539 |
on=["id", "id_prompt"],
|
540 |
how="inner",
|
541 |
)
|
542 |
grader_b_data = pd.merge(
|
543 |
-
test_df[["id", "id_prompt","essay", "prompt", "supporting_text"]],
|
544 |
-
grader_b.drop(columns=[
|
545 |
on=["id", "id_prompt"],
|
546 |
how="inner",
|
547 |
)
|
548 |
-
test_df = pd.concat([test_df, grader_a_data])
|
549 |
-
test_df =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
550 |
# Data Validation Assertions
|
551 |
assert (
|
552 |
len(set(train_df["id_prompt"]).intersection(set(val_df["id_prompt"]))) == 0
|
@@ -570,15 +793,18 @@ class AesEnemDataset(datasets.GeneratorBasedBuilder):
|
|
570 |
for i, row in enumerate(csv_reader):
|
571 |
grades = row["grades"].strip("[]")
|
572 |
grades = grades.split()
|
573 |
-
yield
|
574 |
-
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
|
|
|
|
|
|
582 |
elif self.config.name == "gradesThousand":
|
583 |
with open(filepath, encoding="utf-8") as csvfile:
|
584 |
next(csvfile)
|
@@ -586,16 +812,40 @@ class AesEnemDataset(datasets.GeneratorBasedBuilder):
|
|
586 |
for i, row in enumerate(csv_reader):
|
587 |
grades = row["grades"].strip("[]")
|
588 |
grades = grades.split(", ")
|
589 |
-
yield
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
599 |
else:
|
600 |
with open(filepath, encoding="utf-8") as csvfile:
|
601 |
next(csvfile)
|
@@ -603,20 +853,22 @@ class AesEnemDataset(datasets.GeneratorBasedBuilder):
|
|
603 |
for i, row in enumerate(csv_reader):
|
604 |
grades = row["grades"].strip("[]")
|
605 |
grades = grades.split(", ")
|
606 |
-
yield
|
607 |
-
|
608 |
-
|
609 |
-
|
610 |
-
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
|
618 |
-
|
619 |
-
|
|
|
|
|
620 |
|
621 |
|
622 |
class HTMLParser:
|
@@ -655,9 +907,9 @@ class HTMLParser:
|
|
655 |
for single_grade in grades:
|
656 |
grade = int(single_grade.get_text())
|
657 |
final_grades.append(grade)
|
658 |
-
assert final_grades[-1] == sum(
|
659 |
-
|
660 |
-
)
|
661 |
else:
|
662 |
grades = soup.find("div", class_="redacoes-corrigidas pg-bordercolor7")
|
663 |
grades_sum = float(
|
@@ -667,9 +919,9 @@ class HTMLParser:
|
|
667 |
for idx in range(1, 10, 2):
|
668 |
grade = float(grades[idx].get_text().replace(",", "."))
|
669 |
final_grades.append(grade)
|
670 |
-
assert grades_sum == sum(
|
671 |
-
|
672 |
-
)
|
673 |
final_grades.append(grades_sum)
|
674 |
return final_grades
|
675 |
elif self.sourceB:
|
@@ -680,7 +932,9 @@ class HTMLParser:
|
|
680 |
for single_grade in grades:
|
681 |
result.append(int(single_grade.get_text()))
|
682 |
assert len(result) == 5, "We should have 5 Grades (one per concept) only"
|
683 |
-
result.append(
|
|
|
|
|
684 |
return result
|
685 |
|
686 |
def _get_general_comment(self, soup):
|
@@ -787,7 +1041,10 @@ class HTMLParser:
|
|
787 |
span.decompose()
|
788 |
result = table.find_all("p")
|
789 |
result = " ".join(
|
790 |
-
[
|
|
|
|
|
|
|
791 |
)
|
792 |
return result
|
793 |
|
@@ -831,37 +1088,83 @@ class HTMLParser:
|
|
831 |
return new_list
|
832 |
|
833 |
def _clean_string(self, sentence):
|
834 |
-
sentence = sentence.replace("\xa0","").replace("\u200b","")
|
835 |
-
sentence =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
836 |
sentence = sentence.replace(" ", " ").replace(". . . ", "...")
|
837 |
-
sentence = sentence.replace("(editado)", "").replace("(Editado)","")
|
838 |
-
sentence = sentence.replace("(editado e adaptado)", "").replace(
|
|
|
|
|
839 |
sentence = sentence.replace(". com. br", ".com.br")
|
840 |
sentence = sentence.replace("[Veja o texto completo aqui]", "")
|
841 |
-
return sentence
|
842 |
|
843 |
def _get_supporting_text(self, soup):
|
844 |
if self.sourceA:
|
845 |
textos = soup.find_all("ul", class_="article-wording-item")
|
846 |
resposta = []
|
847 |
for t in textos[:-1]:
|
848 |
-
resposta.append(
|
849 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
850 |
return resposta
|
851 |
else:
|
852 |
return ""
|
853 |
-
|
854 |
def _get_prompt(self, soup):
|
855 |
if self.sourceA:
|
856 |
prompt = soup.find("div", class_="text").find_all("p")
|
857 |
if len(prompt[0].get_text()) < 2:
|
858 |
-
return [prompt[1].get_text().replace("\xa0","")]
|
859 |
else:
|
860 |
-
return [prompt[0].get_text().replace("\xa0","")]
|
861 |
-
else:
|
862 |
return ""
|
863 |
|
864 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
865 |
for key, filepath in self.paths_dict.items():
|
866 |
if key != config_name:
|
867 |
continue # TODO improve later, we will only support a single config at a time
|
@@ -872,64 +1175,77 @@ class HTMLParser:
|
|
872 |
file = self.sourceA if self.sourceA else self.sourceB
|
873 |
file_path = Path(file)
|
874 |
file_dir = file_path.parent
|
875 |
-
sorted_files = sorted(file_dir.iterdir())
|
|
|
|
|
|
|
|
|
|
|
876 |
with open(file_path, "w", newline="", encoding="utf8") as final_file:
|
877 |
writer = csv.writer(final_file)
|
878 |
writer.writerow(CSV_HEADER)
|
879 |
-
|
880 |
-
|
881 |
-
|
882 |
-
|
883 |
-
|
884 |
-
|
885 |
-
|
886 |
-
|
887 |
-
|
888 |
-
|
889 |
-
|
890 |
-
|
891 |
-
|
892 |
-
|
893 |
-
|
894 |
-
|
895 |
-
|
896 |
-
|
897 |
-
|
898 |
-
|
899 |
-
|
900 |
-
|
901 |
-
|
902 |
-
|
903 |
-
|
904 |
-
|
905 |
-
|
906 |
-
|
907 |
-
|
908 |
-
|
909 |
-
|
910 |
-
|
911 |
-
|
912 |
-
|
913 |
-
|
914 |
-
|
915 |
-
|
916 |
-
|
917 |
-
|
918 |
-
|
919 |
-
|
920 |
-
|
921 |
-
|
922 |
-
|
923 |
-
|
924 |
-
|
925 |
-
|
926 |
-
|
927 |
-
|
928 |
-
|
929 |
-
|
930 |
-
|
931 |
-
|
932 |
-
|
933 |
-
|
934 |
-
|
935 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
import csv
|
16 |
import math
|
17 |
import os
|
|
|
18 |
import re
|
19 |
+
from pathlib import Path
|
20 |
|
21 |
import datasets
|
22 |
import numpy as np
|
23 |
import pandas as pd
|
24 |
+
from multiprocessing import Pool, cpu_count
|
25 |
from bs4 import BeautifulSoup
|
26 |
from tqdm.auto import tqdm
|
27 |
|
28 |
+
RANDOM_STATE = 42
|
29 |
+
np.random.seed(RANDOM_STATE) # Set the seed
|
30 |
|
31 |
_CITATION = """
|
32 |
@inproceedings{silveira-etal-2024-new,
|
|
|
81 |
"sourceAWithGraders": "https://huggingface.co/datasets/kamel-usp/aes_enem_dataset/resolve/main/sourceAWithGraders.tar.gz",
|
82 |
"sourceB": "https://huggingface.co/datasets/kamel-usp/aes_enem_dataset/resolve/main/sourceB.tar.gz",
|
83 |
"PROPOR2024": "https://huggingface.co/datasets/kamel-usp/aes_enem_dataset/resolve/main/propor2024.tar.gz",
|
84 |
+
"gradesThousand": "https://huggingface.co/datasets/kamel-usp/aes_enem_dataset/resolve/main/scrapedGradesThousand.tar.gz",
|
85 |
}
|
86 |
|
87 |
|
|
|
111 |
"general",
|
112 |
"specific",
|
113 |
"essay_year",
|
114 |
+
"reference",
|
115 |
]
|
116 |
|
117 |
CSV_HEADERPROPOR = [
|
|
|
121 |
"essay",
|
122 |
"grades",
|
123 |
"essay_year",
|
124 |
+
"reference",
|
125 |
]
|
126 |
|
127 |
CSV_HEADERTHOUSAND = [
|
|
|
133 |
"essay",
|
134 |
"source",
|
135 |
"supporting_text",
|
136 |
+
"prompt",
|
137 |
+
]
|
138 |
+
|
139 |
+
CSV_HEADER_JBCS25 = [
|
140 |
+
"id",
|
141 |
+
"id_prompt",
|
142 |
+
"essay_text",
|
143 |
+
"grades",
|
144 |
+
"essay_year",
|
145 |
+
"supporting_text",
|
146 |
+
"prompt",
|
147 |
+
"reference",
|
148 |
]
|
149 |
|
150 |
SOURCE_A_DESC = """
|
|
|
197 |
TODO
|
198 |
"""
|
199 |
|
200 |
+
JBCS2025 = """
|
201 |
+
TODO
|
202 |
+
"""
|
203 |
+
|
204 |
|
205 |
class AesEnemDataset(datasets.GeneratorBasedBuilder):
|
206 |
"""
|
|
|
210 |
To reproduce results from PROPOR paper, please refer to "PROPOR2024" config. Other configs are reproducible now.
|
211 |
"""
|
212 |
|
213 |
+
VERSION = datasets.Version("1.0.0")
|
214 |
|
215 |
# You will be able to load one or the other configurations in the following list with
|
216 |
BUILDER_CONFIGS = [
|
|
|
217 |
datasets.BuilderConfig(
|
218 |
+
name="sourceAOnly", version=VERSION, description=SOURCE_A_DESC
|
219 |
+
),
|
220 |
+
datasets.BuilderConfig(
|
221 |
+
name="sourceAWithGraders",
|
222 |
+
version=VERSION,
|
223 |
+
description=SOURCE_A_WITH_GRADERS,
|
224 |
),
|
225 |
datasets.BuilderConfig(
|
226 |
name="sourceB",
|
227 |
version=VERSION,
|
228 |
description=SOURCE_B_DESC,
|
229 |
),
|
230 |
+
datasets.BuilderConfig(
|
231 |
+
name="PROPOR2024", version=VERSION, description=PROPOR2024
|
232 |
+
),
|
233 |
+
datasets.BuilderConfig(
|
234 |
+
name="gradesThousand", version=VERSION, description=GRADES_THOUSAND
|
235 |
+
),
|
236 |
+
datasets.BuilderConfig(name="JBCS2025", version=VERSION, description=JBCS2025),
|
237 |
]
|
238 |
|
239 |
def _info(self):
|
240 |
+
if self.config.name == "PROPOR2024":
|
241 |
features = datasets.Features(
|
242 |
{
|
243 |
"id": datasets.Value("string"),
|
|
|
249 |
"reference": datasets.Value("string"),
|
250 |
}
|
251 |
)
|
252 |
+
elif self.config.name == "gradesThousand":
|
253 |
features = datasets.Features(
|
254 |
{
|
255 |
"id": datasets.Value("string"),
|
256 |
"id_prompt": datasets.Value("string"),
|
257 |
"supporting_text": datasets.Value("string"),
|
258 |
+
"prompt": datasets.Value("string"),
|
259 |
"essay_text": datasets.Value("string"),
|
260 |
"grades": datasets.Sequence(datasets.Value("int16")),
|
261 |
"essay_year": datasets.Value("int16"),
|
262 |
"source": datasets.Value("string"),
|
263 |
}
|
264 |
)
|
265 |
+
elif self.config.name == "JBCS2025":
|
266 |
+
features = datasets.Features(
|
267 |
+
{
|
268 |
+
"id": datasets.Value("string"),
|
269 |
+
"id_prompt": datasets.Value("string"),
|
270 |
+
"essay_text": datasets.Value("string"),
|
271 |
+
"grades": datasets.Sequence(datasets.Value("int16")),
|
272 |
+
"essay_year": datasets.Value("int16"),
|
273 |
+
"supporting_text": datasets.Value("string"),
|
274 |
+
"prompt": datasets.Value("string"),
|
275 |
+
"reference": datasets.Value("string"),
|
276 |
+
}
|
277 |
+
)
|
278 |
else:
|
279 |
features = datasets.Features(
|
280 |
{
|
|
|
316 |
|
317 |
def normalize_grades(grades):
|
318 |
grades = grades.strip("[]").split(", ")
|
319 |
+
grade_mapping = {"0.0": 0, "20": 40, "2.0": 2}
|
320 |
|
321 |
# We will remove the rows that match the criteria below
|
322 |
if any(
|
|
|
349 |
for split_case in ["train.csv", "validation.csv", "test.csv"]:
|
350 |
filepath = f"{base_path}/propor2024/{split_case}"
|
351 |
df = pd.read_csv(filepath)
|
352 |
+
|
353 |
# Dictionary to track how many times we've seen each (id, id_prompt) pair
|
354 |
counts = {}
|
355 |
# List to store the reference for each row
|
356 |
references = []
|
357 |
+
|
358 |
# Define the mapping for each occurrence
|
359 |
occurrence_to_reference = {
|
360 |
0: "crawled_from_web",
|
361 |
1: "grader_a",
|
362 |
+
2: "grader_b",
|
363 |
}
|
364 |
+
|
365 |
# Iterate through rows in the original order
|
366 |
for _, row in df.iterrows():
|
367 |
key = (row["id"], row["id_prompt"])
|
|
|
370 |
ref = occurrence_to_reference.get(count, "unknown")
|
371 |
references.append(ref)
|
372 |
counts[key] = count + 1
|
373 |
+
|
374 |
# Add the reference column without changing the order of rows
|
375 |
df["reference"] = references
|
376 |
df.to_csv(filepath, index=False)
|
377 |
|
378 |
def _split_generators(self, dl_manager):
|
379 |
+
if self.config.name != "JBCS2025":
|
380 |
+
urls = _URLS[self.config.name]
|
381 |
+
extracted_files = dl_manager.download_and_extract({self.config.name: urls})
|
382 |
if "PROPOR2024" == self.config.name:
|
383 |
base_path = extracted_files["PROPOR2024"]
|
384 |
self._preprocess_propor2024(base_path)
|
|
|
395 |
name=datasets.Split.VALIDATION,
|
396 |
# These kwargs will be passed to _generate_examples
|
397 |
gen_kwargs={
|
398 |
+
"filepath": os.path.join(
|
399 |
+
base_path, "propor2024/validation.csv"
|
400 |
+
),
|
401 |
"split": "validation",
|
402 |
},
|
403 |
),
|
|
|
410 |
),
|
411 |
]
|
412 |
if "gradesThousand" == self.config.name:
|
413 |
+
urls = _URLS[self.config.name]
|
414 |
+
extracted_files = dl_manager.download_and_extract({self.config.name: urls})
|
415 |
+
base_path = f"{extracted_files['gradesThousand']}/scrapedGradesThousand"
|
416 |
+
for split in ["train", "validation", "test"]:
|
417 |
+
split_filepath = os.path.join(base_path, f"{split}.csv")
|
418 |
+
grades_thousand = pd.read_csv(split_filepath)
|
419 |
+
grades_thousand[["supporting_text", "prompt"]] = grades_thousand[
|
420 |
+
"supporting_text"
|
421 |
+
].apply(
|
422 |
+
lambda original_text: pd.Series(
|
423 |
+
self._extract_prompt_and_clean(original_text)
|
424 |
+
)
|
425 |
+
)
|
426 |
+
grades_thousand.to_csv(split_filepath, index=False)
|
427 |
return [
|
428 |
datasets.SplitGenerator(
|
429 |
name=datasets.Split.TRAIN,
|
|
|
449 |
},
|
450 |
),
|
451 |
]
|
|
|
452 |
if "sourceA" in self.config.name:
|
453 |
+
html_parser = self._process_html_files(extracted_files)
|
454 |
self._post_process_dataframe(html_parser.sourceA)
|
455 |
self._generate_splits(html_parser.sourceA)
|
456 |
+
folder_sourceA = Path(html_parser.sourceA).parent
|
457 |
return [
|
458 |
datasets.SplitGenerator(
|
459 |
name=datasets.Split.TRAIN,
|
460 |
# These kwargs will be passed to _generate_examples
|
461 |
gen_kwargs={
|
462 |
+
"filepath": folder_sourceA / "train.csv",
|
463 |
"split": "train",
|
464 |
},
|
465 |
),
|
|
|
467 |
name=datasets.Split.VALIDATION,
|
468 |
# These kwargs will be passed to _generate_examples
|
469 |
gen_kwargs={
|
470 |
+
"filepath": folder_sourceA / "validation.csv",
|
471 |
"split": "validation",
|
472 |
},
|
473 |
),
|
474 |
datasets.SplitGenerator(
|
475 |
name=datasets.Split.TEST,
|
476 |
gen_kwargs={
|
477 |
+
"filepath": folder_sourceA / "test.csv",
|
478 |
"split": "test",
|
479 |
},
|
480 |
),
|
481 |
]
|
482 |
elif self.config.name == "sourceB":
|
483 |
+
html_parser = self._process_html_files(extracted_files)
|
484 |
self._post_process_dataframe(html_parser.sourceB)
|
485 |
return [
|
486 |
datasets.SplitGenerator(
|
|
|
491 |
},
|
492 |
),
|
493 |
]
|
494 |
+
elif "JBCS2025" == self.config.name:
|
495 |
+
extracted_files = dl_manager.download_and_extract(
|
496 |
+
{
|
497 |
+
"sourceA": _URLS["sourceAWithGraders"],
|
498 |
+
"grades_thousand": _URLS["gradesThousand"],
|
499 |
+
}
|
500 |
+
)
|
501 |
+
config_name_source_a = "sourceAWithGraders"
|
502 |
+
|
503 |
+
html_parser = self._process_html_files(
|
504 |
+
paths_dict={config_name_source_a: extracted_files["sourceA"]},
|
505 |
+
config_name=config_name_source_a,
|
506 |
+
)
|
507 |
+
grades_thousand_filedir = (
|
508 |
+
Path(extracted_files["grades_thousand"]) / "scrapedGradesThousand"
|
509 |
+
)
|
510 |
+
self._post_process_dataframe(html_parser.sourceA)
|
511 |
+
self._generate_splits(html_parser.sourceA, config_name=config_name_source_a)
|
512 |
+
folder_sourceA = Path(html_parser.sourceA).parent
|
513 |
+
for split in ["train", "validation", "test"]:
|
514 |
+
grades_thousand_df = pd.read_csv(
|
515 |
+
grades_thousand_filedir / f"{split}.csv"
|
516 |
+
)
|
517 |
+
grades_thousand_df["reference"] = "grade_thousand_website"
|
518 |
+
sourceA = pd.read_csv(folder_sourceA / f"{split}.csv")
|
519 |
+
common_columns = [
|
520 |
+
"id",
|
521 |
+
"id_prompt",
|
522 |
+
"essay_text",
|
523 |
+
"grades",
|
524 |
+
"essay_year",
|
525 |
+
"supporting_text",
|
526 |
+
"prompt",
|
527 |
+
"reference",
|
528 |
+
]
|
529 |
+
combined_split = sourceA[
|
530 |
+
sourceA.reference.isin(["grader_a", "grader_b"])
|
531 |
+
]
|
532 |
+
combined_split = combined_split.rename(columns={"essay": "essay_text"})
|
533 |
+
grades_thousand_df[["supporting_text", "prompt"]] = grades_thousand_df[
|
534 |
+
"supporting_text"
|
535 |
+
].apply(
|
536 |
+
lambda original_text: pd.Series(
|
537 |
+
self._extract_prompt_and_clean(original_text)
|
538 |
+
)
|
539 |
+
)
|
540 |
+
final_split = pd.concat(
|
541 |
+
[combined_split[common_columns], grades_thousand_df[common_columns]]
|
542 |
+
)
|
543 |
+
final_split["grades"] = final_split["grades"].str.replace(",", "")
|
544 |
+
final_split = final_split.sample(
|
545 |
+
frac=1, random_state=RANDOM_STATE
|
546 |
+
).reset_index(drop=True)
|
547 |
+
# overwrites the sourceA data
|
548 |
+
final_split.to_csv(folder_sourceA / f"{split}.csv", index=False)
|
549 |
+
return [
|
550 |
+
datasets.SplitGenerator(
|
551 |
+
name=datasets.Split.TRAIN,
|
552 |
+
# These kwargs will be passed to _generate_examples
|
553 |
+
gen_kwargs={
|
554 |
+
"filepath": folder_sourceA / "train.csv",
|
555 |
+
"split": "train",
|
556 |
+
},
|
557 |
+
),
|
558 |
+
datasets.SplitGenerator(
|
559 |
+
name=datasets.Split.VALIDATION,
|
560 |
+
# These kwargs will be passed to _generate_examples
|
561 |
+
gen_kwargs={
|
562 |
+
"filepath": folder_sourceA / "validation.csv",
|
563 |
+
"split": "validation",
|
564 |
+
},
|
565 |
+
),
|
566 |
+
datasets.SplitGenerator(
|
567 |
+
name=datasets.Split.TEST,
|
568 |
+
gen_kwargs={
|
569 |
+
"filepath": folder_sourceA / "test.csv",
|
570 |
+
"split": "test",
|
571 |
+
},
|
572 |
+
),
|
573 |
+
]
|
574 |
+
|
575 |
+
def _extract_prompt_and_clean(self, text: str):
|
576 |
+
"""
|
577 |
+
1) Find an uppercase block matching "PROPOSTA DE REDACAO/REDAÇÃO"
|
578 |
+
(with flexible spacing and accents) anywhere in 'text'.
|
579 |
+
2) Capture everything from there until the next heading that
|
580 |
+
starts a line (TEXTO..., TEXTOS..., INSTRUÇÕES...) or end-of-text.
|
581 |
+
3) Remove that captured block from the original, returning:
|
582 |
+
(supporting_text, prompt)
|
583 |
+
"""
|
584 |
+
|
585 |
+
# Regex explanation:
|
586 |
+
# (?m) => MULTILINE, so ^ can match start of lines
|
587 |
+
# 1) PROPOSTA\s+DE\s+REDA(?:C|Ç)(?:AO|ÃO)
|
588 |
+
# - "PROPOSTA", then one-or-more spaces/newlines,
|
589 |
+
# then "DE", then spaces, then "REDA(C|Ç)",
|
590 |
+
# and either "AO" or "ÃO" (uppercase).
|
591 |
+
# - This part may skip diacritic or accent variations in "REDAÇÃO" vs. "REDACAO".
|
592 |
+
#
|
593 |
+
# 2) (?:.*?\n?)*? => a non-greedy capture of subsequent lines
|
594 |
+
# (including possible newlines). We use [\s\S]*? as an alternative.
|
595 |
+
#
|
596 |
+
# 3) Lookahead (?=^(?:TEXTO|TEXTOS|INSTRUÇÕES|\Z))
|
597 |
+
# means: stop right before a line that starts with "TEXTO", "TEXTOS",
|
598 |
+
# or "INSTRUÇÕES", OR the very end of the text (\Z).
|
599 |
+
#
|
600 |
+
# If found, that entire portion is group(1).
|
601 |
+
def force_newline_after_proposta(text: str) -> str:
|
602 |
+
"""
|
603 |
+
If we see "PROPOSTA DE REDAÇÃO" immediately followed by some
|
604 |
+
non-whitespace character (like "A"), insert two newlines.
|
605 |
+
E.g., "PROPOSTA DE REDAÇÃOA partir..." becomes
|
606 |
+
"PROPOSTA DE REDAÇÃO\n\nA partir..."
|
607 |
+
"""
|
608 |
+
# This pattern looks for:
|
609 |
+
# (PROPOSTA DE REDAÇÃO)
|
610 |
+
# (?=\S) meaning "immediately followed by a NON-whitespace character"
|
611 |
+
# then we replace that with "PROPOSTA DE REDAÇÃO\n\n"
|
612 |
+
pattern = re.compile(r"(?=\S)(PROPOSTA DE REDAÇÃO)(?=\S)")
|
613 |
+
return pattern.sub(r"\n\1\n\n", text)
|
614 |
+
|
615 |
+
text = force_newline_after_proposta(text)
|
616 |
+
pattern = re.compile(
|
617 |
+
r"(?m)" # MULTILINE
|
618 |
+
r"("
|
619 |
+
r"PROPOSTA\s+DE\s+REDA(?:C|Ç)(?:AO|ÃO)" # e.g. PROPOSTA DE REDACAO / REDAÇÃO
|
620 |
+
r"(?:[\s\S]*?)" # lazily grab the subsequent text
|
621 |
+
r")"
|
622 |
+
r"(?=(?:TEXTO|TEXTOS|INSTRUÇÕES|TExTO|\Z))"
|
623 |
+
)
|
624 |
+
|
625 |
+
match = pattern.search(text)
|
626 |
+
if match:
|
627 |
+
prompt = match.group(1).strip()
|
628 |
+
# Remove that block from the original:
|
629 |
+
start, end = match.span(1)
|
630 |
+
main_text = text[:start] + text[end:]
|
631 |
+
else:
|
632 |
+
# No match => keep entire text in supporting_text, prompt empty
|
633 |
+
prompt = ""
|
634 |
+
main_text = text
|
635 |
+
|
636 |
+
return main_text.strip(), prompt.strip()
|
637 |
|
638 |
+
def _process_html_files(self, paths_dict, config_name=None):
|
639 |
html_parser = HTMLParser(paths_dict)
|
640 |
+
if config_name is None:
|
641 |
+
config_name = self.config.name
|
642 |
+
html_parser.parse(config_name)
|
643 |
return html_parser
|
644 |
|
645 |
def _parse_graders_data(self, dirname):
|
|
|
660 |
grader_b["reference"] = "grader_b"
|
661 |
return grader_a, grader_b
|
662 |
|
663 |
+
def _generate_splits(self, filepath: str, train_size=0.7, config_name=None):
|
664 |
+
np.random.seed(RANDOM_STATE)
|
665 |
df = pd.read_csv(filepath)
|
|
|
|
|
666 |
train_set = []
|
667 |
val_set = []
|
668 |
test_set = []
|
669 |
+
df = df.sort_values(by=["essay_year", "id_prompt"]).reset_index(drop=True)
|
670 |
+
buckets = {}
|
671 |
+
for key, group in df.groupby("mapped_year"):
|
672 |
+
buckets[key] = sorted(group["id_prompt"].unique())
|
673 |
+
df.drop("mapped_year", axis=1, inplace=True)
|
674 |
+
for year in sorted(buckets.keys()):
|
675 |
+
prompts = buckets[year]
|
676 |
np.random.shuffle(prompts)
|
677 |
num_prompts = len(prompts)
|
678 |
|
|
|
709 |
val_df = pd.concat(val_set)
|
710 |
test_df = pd.concat(test_set)
|
711 |
dirname = os.path.dirname(filepath)
|
712 |
+
if config_name is None:
|
713 |
+
config_name = self.config.name
|
714 |
+
if config_name == "sourceAWithGraders":
|
715 |
grader_a, grader_b = self._parse_graders_data(dirname)
|
716 |
grader_a_data = pd.merge(
|
717 |
+
train_df[["id", "id_prompt", "essay", "prompt", "supporting_text"]],
|
718 |
+
grader_a.drop(columns=["essay"]),
|
719 |
on=["id", "id_prompt"],
|
720 |
how="inner",
|
721 |
)
|
722 |
grader_b_data = pd.merge(
|
723 |
+
train_df[["id", "id_prompt", "essay", "prompt", "supporting_text"]],
|
724 |
+
grader_b.drop(columns=["essay"]),
|
725 |
on=["id", "id_prompt"],
|
726 |
how="inner",
|
727 |
)
|
728 |
+
train_df = pd.concat([train_df, grader_a_data, grader_b_data])
|
729 |
+
train_df = train_df.sort_values(by=["id", "id_prompt"]).reset_index(
|
730 |
+
drop=True
|
731 |
+
)
|
732 |
|
733 |
grader_a_data = pd.merge(
|
734 |
+
val_df[["id", "id_prompt", "essay", "prompt", "supporting_text"]],
|
735 |
+
grader_a.drop(columns=["essay"]),
|
736 |
on=["id", "id_prompt"],
|
737 |
how="inner",
|
738 |
)
|
739 |
grader_b_data = pd.merge(
|
740 |
+
val_df[["id", "id_prompt", "essay", "prompt", "supporting_text"]],
|
741 |
+
grader_b.drop(columns=["essay"]),
|
742 |
on=["id", "id_prompt"],
|
743 |
how="inner",
|
744 |
)
|
745 |
+
val_df = pd.concat([val_df, grader_a_data, grader_b_data])
|
746 |
+
val_df = val_df.sort_values(by=["id", "id_prompt"]).reset_index(drop=True)
|
747 |
|
748 |
grader_a_data = pd.merge(
|
749 |
+
test_df[["id", "id_prompt", "essay", "prompt", "supporting_text"]],
|
750 |
+
grader_a.drop(columns=["essay"]),
|
751 |
on=["id", "id_prompt"],
|
752 |
how="inner",
|
753 |
)
|
754 |
grader_b_data = pd.merge(
|
755 |
+
test_df[["id", "id_prompt", "essay", "prompt", "supporting_text"]],
|
756 |
+
grader_b.drop(columns=["essay"]),
|
757 |
on=["id", "id_prompt"],
|
758 |
how="inner",
|
759 |
)
|
760 |
+
test_df = pd.concat([test_df, grader_a_data, grader_b_data])
|
761 |
+
test_df = test_df.sort_values(by=["id", "id_prompt"]).reset_index(drop=True)
|
762 |
+
|
763 |
+
train_df = train_df.sample(frac=1, random_state=RANDOM_STATE).reset_index(
|
764 |
+
drop=True
|
765 |
+
)
|
766 |
+
val_df = val_df.sample(frac=1, random_state=RANDOM_STATE).reset_index(
|
767 |
+
drop=True
|
768 |
+
)
|
769 |
+
test_df = test_df.sample(frac=1, random_state=RANDOM_STATE).reset_index(
|
770 |
+
drop=True
|
771 |
+
)
|
772 |
+
|
773 |
# Data Validation Assertions
|
774 |
assert (
|
775 |
len(set(train_df["id_prompt"]).intersection(set(val_df["id_prompt"]))) == 0
|
|
|
793 |
for i, row in enumerate(csv_reader):
|
794 |
grades = row["grades"].strip("[]")
|
795 |
grades = grades.split()
|
796 |
+
yield (
|
797 |
+
i,
|
798 |
+
{
|
799 |
+
"id": row["id"],
|
800 |
+
"id_prompt": row["id_prompt"],
|
801 |
+
"essay_title": row["title"],
|
802 |
+
"essay_text": row["essay"],
|
803 |
+
"grades": grades,
|
804 |
+
"essay_year": row["essay_year"],
|
805 |
+
"reference": row["reference"],
|
806 |
+
},
|
807 |
+
)
|
808 |
elif self.config.name == "gradesThousand":
|
809 |
with open(filepath, encoding="utf-8") as csvfile:
|
810 |
next(csvfile)
|
|
|
812 |
for i, row in enumerate(csv_reader):
|
813 |
grades = row["grades"].strip("[]")
|
814 |
grades = grades.split(", ")
|
815 |
+
yield (
|
816 |
+
i,
|
817 |
+
{
|
818 |
+
"id": row["id"],
|
819 |
+
"id_prompt": row["id_prompt"],
|
820 |
+
"supporting_text": row["supporting_text"],
|
821 |
+
"prompt": row["prompt"],
|
822 |
+
"essay_text": row["essay"],
|
823 |
+
"grades": grades,
|
824 |
+
"essay_year": row["essay_year"],
|
825 |
+
"author": row["author"],
|
826 |
+
"source": row["source"],
|
827 |
+
},
|
828 |
+
)
|
829 |
+
elif self.config.name == "JBCS2025":
|
830 |
+
with open(filepath, encoding="utf-8") as csvfile:
|
831 |
+
next(csvfile)
|
832 |
+
csv_reader = csv.DictReader(csvfile, fieldnames=CSV_HEADER_JBCS25)
|
833 |
+
for i, row in enumerate(csv_reader):
|
834 |
+
grades = row["grades"].strip("[]")
|
835 |
+
grades = grades.split()
|
836 |
+
yield (
|
837 |
+
i,
|
838 |
+
{
|
839 |
+
"id": row["id"],
|
840 |
+
"id_prompt": row["id_prompt"],
|
841 |
+
"essay_text": row["essay_text"],
|
842 |
+
"grades": grades,
|
843 |
+
"essay_year": row["essay_year"],
|
844 |
+
"supporting_text": row["supporting_text"],
|
845 |
+
"prompt": row["prompt"],
|
846 |
+
"reference": row["reference"],
|
847 |
+
},
|
848 |
+
)
|
849 |
else:
|
850 |
with open(filepath, encoding="utf-8") as csvfile:
|
851 |
next(csvfile)
|
|
|
853 |
for i, row in enumerate(csv_reader):
|
854 |
grades = row["grades"].strip("[]")
|
855 |
grades = grades.split(", ")
|
856 |
+
yield (
|
857 |
+
i,
|
858 |
+
{
|
859 |
+
"id": row["id"],
|
860 |
+
"id_prompt": row["id_prompt"],
|
861 |
+
"prompt": row["prompt"],
|
862 |
+
"supporting_text": row["supporting_text"],
|
863 |
+
"essay_title": row["title"],
|
864 |
+
"essay_text": row["essay"],
|
865 |
+
"grades": grades,
|
866 |
+
"essay_year": row["essay_year"],
|
867 |
+
"general_comment": row["general"],
|
868 |
+
"specific_comment": row["specific"],
|
869 |
+
"reference": row["reference"],
|
870 |
+
},
|
871 |
+
)
|
872 |
|
873 |
|
874 |
class HTMLParser:
|
|
|
907 |
for single_grade in grades:
|
908 |
grade = int(single_grade.get_text())
|
909 |
final_grades.append(grade)
|
910 |
+
assert final_grades[-1] == sum(final_grades[:-1]), (
|
911 |
+
"Grading sum is not making sense"
|
912 |
+
)
|
913 |
else:
|
914 |
grades = soup.find("div", class_="redacoes-corrigidas pg-bordercolor7")
|
915 |
grades_sum = float(
|
|
|
919 |
for idx in range(1, 10, 2):
|
920 |
grade = float(grades[idx].get_text().replace(",", "."))
|
921 |
final_grades.append(grade)
|
922 |
+
assert grades_sum == sum(final_grades), (
|
923 |
+
"Grading sum is not making sense"
|
924 |
+
)
|
925 |
final_grades.append(grades_sum)
|
926 |
return final_grades
|
927 |
elif self.sourceB:
|
|
|
932 |
for single_grade in grades:
|
933 |
result.append(int(single_grade.get_text()))
|
934 |
assert len(result) == 5, "We should have 5 Grades (one per concept) only"
|
935 |
+
result.append(
|
936 |
+
sum(result)
|
937 |
+
) # Add sum as a sixt element to keep the same pattern
|
938 |
return result
|
939 |
|
940 |
def _get_general_comment(self, soup):
|
|
|
1041 |
span.decompose()
|
1042 |
result = table.find_all("p")
|
1043 |
result = " ".join(
|
1044 |
+
[
|
1045 |
+
paragraph.get_text().replace("\xa0", "").strip()
|
1046 |
+
for paragraph in result
|
1047 |
+
]
|
1048 |
)
|
1049 |
return result
|
1050 |
|
|
|
1088 |
return new_list
|
1089 |
|
1090 |
def _clean_string(self, sentence):
|
1091 |
+
sentence = sentence.replace("\xa0", "").replace("\u200b", "")
|
1092 |
+
sentence = (
|
1093 |
+
sentence.replace(".", ". ")
|
1094 |
+
.replace("?", "? ")
|
1095 |
+
.replace("!", "! ")
|
1096 |
+
.replace(")", ") ")
|
1097 |
+
.replace(":", ": ")
|
1098 |
+
.replace("”", "” ")
|
1099 |
+
)
|
1100 |
sentence = sentence.replace(" ", " ").replace(". . . ", "...")
|
1101 |
+
sentence = sentence.replace("(editado)", "").replace("(Editado)", "")
|
1102 |
+
sentence = sentence.replace("(editado e adaptado)", "").replace(
|
1103 |
+
"(Editado e adaptado)", ""
|
1104 |
+
)
|
1105 |
sentence = sentence.replace(". com. br", ".com.br")
|
1106 |
sentence = sentence.replace("[Veja o texto completo aqui]", "")
|
1107 |
+
return sentence
|
1108 |
|
1109 |
def _get_supporting_text(self, soup):
|
1110 |
if self.sourceA:
|
1111 |
textos = soup.find_all("ul", class_="article-wording-item")
|
1112 |
resposta = []
|
1113 |
for t in textos[:-1]:
|
1114 |
+
resposta.append(
|
1115 |
+
t.find("h3", class_="item-titulo").get_text().replace("\xa0", "")
|
1116 |
+
)
|
1117 |
+
resposta.append(
|
1118 |
+
self._clean_string(
|
1119 |
+
t.find("div", class_="item-descricao").get_text()
|
1120 |
+
)
|
1121 |
+
)
|
1122 |
return resposta
|
1123 |
else:
|
1124 |
return ""
|
1125 |
+
|
1126 |
def _get_prompt(self, soup):
|
1127 |
if self.sourceA:
|
1128 |
prompt = soup.find("div", class_="text").find_all("p")
|
1129 |
if len(prompt[0].get_text()) < 2:
|
1130 |
+
return [prompt[1].get_text().replace("\xa0", "")]
|
1131 |
else:
|
1132 |
+
return [prompt[0].get_text().replace("\xa0", "")]
|
1133 |
+
else:
|
1134 |
return ""
|
1135 |
|
1136 |
+
def _process_all_prompts(self, sub_folders, file_dir, reference, prompts_to_ignore):
|
1137 |
+
"""
|
1138 |
+
Process all prompt folders in parallel and return all rows to write.
|
1139 |
+
|
1140 |
+
Args:
|
1141 |
+
sub_folders (list): List of prompt folder names (or Paths).
|
1142 |
+
file_dir (str): Base directory where prompts are located.
|
1143 |
+
reference: Reference info to include in each row.
|
1144 |
+
prompts_to_ignore (collection): Prompts to be ignored.
|
1145 |
+
|
1146 |
+
Returns:
|
1147 |
+
list: A list of all rows to write to the CSV.
|
1148 |
+
"""
|
1149 |
+
|
1150 |
+
args_list = [
|
1151 |
+
(prompt_folder, file_dir, reference, prompts_to_ignore, self)
|
1152 |
+
for prompt_folder in sub_folders
|
1153 |
+
]
|
1154 |
+
|
1155 |
+
all_rows = []
|
1156 |
+
# Use a Pool to parallelize processing.
|
1157 |
+
with Pool(processes=cpu_count()) as pool:
|
1158 |
+
# Using imap allows us to update the progress bar.
|
1159 |
+
for rows in tqdm(
|
1160 |
+
pool.imap(HTMLParser._process_prompt_folder, args_list),
|
1161 |
+
total=len(args_list),
|
1162 |
+
desc="Processing prompts",
|
1163 |
+
):
|
1164 |
+
all_rows.extend(rows)
|
1165 |
+
return all_rows
|
1166 |
+
|
1167 |
+
def parse(self, config_name: str):
|
1168 |
for key, filepath in self.paths_dict.items():
|
1169 |
if key != config_name:
|
1170 |
continue # TODO improve later, we will only support a single config at a time
|
|
|
1175 |
file = self.sourceA if self.sourceA else self.sourceB
|
1176 |
file_path = Path(file)
|
1177 |
file_dir = file_path.parent
|
1178 |
+
sorted_files = sorted(file_dir.iterdir(), key=lambda p: p.name)
|
1179 |
+
sub_folders = [name for name in sorted_files if name.suffix != ".csv"]
|
1180 |
+
reference = "crawled_from_web"
|
1181 |
+
all_rows = self._process_all_prompts(
|
1182 |
+
sub_folders, file_dir, reference, PROMPTS_TO_IGNORE
|
1183 |
+
)
|
1184 |
with open(file_path, "w", newline="", encoding="utf8") as final_file:
|
1185 |
writer = csv.writer(final_file)
|
1186 |
writer.writerow(CSV_HEADER)
|
1187 |
+
for row in all_rows:
|
1188 |
+
writer.writerow(row)
|
1189 |
+
|
1190 |
+
@staticmethod
|
1191 |
+
def _process_prompt_folder(args):
|
1192 |
+
"""
|
1193 |
+
Process one prompt folder and return a list of rows to write to CSV.
|
1194 |
+
Args:
|
1195 |
+
args (tuple): Contains:
|
1196 |
+
- prompt_folder: The folder name (or Path object) for the prompt.
|
1197 |
+
- file_dir: The base directory.
|
1198 |
+
- reference: Reference info to include in each row.
|
1199 |
+
- prompts_to_ignore: A collection of prompts to skip.
|
1200 |
+
- instance: An instance of the class that contains the parsing methods.
|
1201 |
+
Returns:
|
1202 |
+
list: A list of rows (each row is a list) to write to CSV.
|
1203 |
+
"""
|
1204 |
+
prompt_folder, file_dir, reference, prompts_to_ignore, instance = args
|
1205 |
+
rows = []
|
1206 |
+
# Skip folders that should be ignored.
|
1207 |
+
if prompt_folder in prompts_to_ignore:
|
1208 |
+
return rows
|
1209 |
+
# Build the full path for the prompt folder.
|
1210 |
+
prompt = os.path.join(file_dir, prompt_folder)
|
1211 |
+
# List and sort the HTML files.
|
1212 |
+
try:
|
1213 |
+
sorted_prompts = sorted(os.listdir(prompt))
|
1214 |
+
except Exception as e:
|
1215 |
+
print(f"Error listing directory {prompt}: {e}")
|
1216 |
+
return rows
|
1217 |
+
# Process the common "Prompt.html" once.
|
1218 |
+
soup_prompt = instance.apply_soup(prompt, "Prompt.html")
|
1219 |
+
essay_year = instance._get_essay_year(soup_prompt)
|
1220 |
+
essay_supporting_text = "\n".join(instance._get_supporting_text(soup_prompt))
|
1221 |
+
essay_prompt = "\n".join(instance._get_prompt(soup_prompt))
|
1222 |
+
# Process each essay file except the prompt itself.
|
1223 |
+
for essay_filename in sorted_prompts:
|
1224 |
+
if essay_filename == "Prompt.html":
|
1225 |
+
continue
|
1226 |
+
soup_text = instance.apply_soup(prompt, essay_filename)
|
1227 |
+
essay_title = instance._clean_title(instance._get_title(soup_text))
|
1228 |
+
essay_grades = instance._get_grades(soup_text)
|
1229 |
+
essay_text = instance._get_essay(soup_text)
|
1230 |
+
general_comment = instance._get_general_comment(soup_text).strip()
|
1231 |
+
specific_comment = instance._get_specific_comment(
|
1232 |
+
soup_text, general_comment
|
1233 |
+
)
|
1234 |
+
# Create a row with all the information.
|
1235 |
+
row = [
|
1236 |
+
essay_filename,
|
1237 |
+
prompt_folder
|
1238 |
+
if not hasattr(prompt_folder, "name")
|
1239 |
+
else prompt_folder.name,
|
1240 |
+
essay_prompt,
|
1241 |
+
essay_supporting_text,
|
1242 |
+
essay_title,
|
1243 |
+
essay_text,
|
1244 |
+
essay_grades,
|
1245 |
+
general_comment,
|
1246 |
+
specific_comment,
|
1247 |
+
essay_year,
|
1248 |
+
reference,
|
1249 |
+
]
|
1250 |
+
rows.append(row)
|
1251 |
+
return rows
|
pyproject.toml
CHANGED
@@ -9,5 +9,6 @@ dependencies = [
|
|
9 |
"datasets>=3.2.0",
|
10 |
"ipdb>=0.13.13",
|
11 |
"pandas>=2.2.3",
|
|
|
12 |
"tqdm>=4.67.1",
|
13 |
]
|
|
|
9 |
"datasets>=3.2.0",
|
10 |
"ipdb>=0.13.13",
|
11 |
"pandas>=2.2.3",
|
12 |
+
"ruff>=0.9.4",
|
13 |
"tqdm>=4.67.1",
|
14 |
]
|