abarbosa commited on
Commit
f8079f0
·
verified ·
1 Parent(s): b47f31a

Introduce JBCS split (#7)

Browse files

- update script to address jbcs and update pyproject (03c0ec5c2b0ba27e1f03fdfec5dcf874ebc74a96)

Files changed (2) hide show
  1. aes_enem_dataset.py +479 -163
  2. pyproject.toml +1 -0
aes_enem_dataset.py CHANGED
@@ -15,16 +15,18 @@
15
  import csv
16
  import math
17
  import os
18
- from pathlib import Path
19
  import re
 
20
 
21
  import datasets
22
  import numpy as np
23
  import pandas as pd
 
24
  from bs4 import BeautifulSoup
25
  from tqdm.auto import tqdm
26
 
27
- np.random.seed(42) # Set the seed
 
28
 
29
  _CITATION = """
30
  @inproceedings{silveira-etal-2024-new,
@@ -79,7 +81,7 @@ _URLS = {
79
  "sourceAWithGraders": "https://huggingface.co/datasets/kamel-usp/aes_enem_dataset/resolve/main/sourceAWithGraders.tar.gz",
80
  "sourceB": "https://huggingface.co/datasets/kamel-usp/aes_enem_dataset/resolve/main/sourceB.tar.gz",
81
  "PROPOR2024": "https://huggingface.co/datasets/kamel-usp/aes_enem_dataset/resolve/main/propor2024.tar.gz",
82
- "gradesThousand": "https://huggingface.co/datasets/kamel-usp/aes_enem_dataset/resolve/main/scrapedGradesThousand.tar.gz"
83
  }
84
 
85
 
@@ -109,7 +111,7 @@ CSV_HEADER = [
109
  "general",
110
  "specific",
111
  "essay_year",
112
- "reference"
113
  ]
114
 
115
  CSV_HEADERPROPOR = [
@@ -119,7 +121,7 @@ CSV_HEADERPROPOR = [
119
  "essay",
120
  "grades",
121
  "essay_year",
122
- "reference"
123
  ]
124
 
125
  CSV_HEADERTHOUSAND = [
@@ -131,6 +133,18 @@ CSV_HEADERTHOUSAND = [
131
  "essay",
132
  "source",
133
  "supporting_text",
 
 
 
 
 
 
 
 
 
 
 
 
134
  ]
135
 
136
  SOURCE_A_DESC = """
@@ -183,6 +197,10 @@ GRADES_THOUSAND = """
183
  TODO
184
  """
185
 
 
 
 
 
186
 
187
  class AesEnemDataset(datasets.GeneratorBasedBuilder):
188
  """
@@ -192,25 +210,34 @@ class AesEnemDataset(datasets.GeneratorBasedBuilder):
192
  To reproduce results from PROPOR paper, please refer to "PROPOR2024" config. Other configs are reproducible now.
193
  """
194
 
195
- VERSION = datasets.Version("0.2.0")
196
 
197
  # You will be able to load one or the other configurations in the following list with
198
  BUILDER_CONFIGS = [
199
- datasets.BuilderConfig(name="sourceAOnly", version=VERSION, description=SOURCE_A_DESC),
200
  datasets.BuilderConfig(
201
- name="sourceAWithGraders", version=VERSION, description=SOURCE_A_WITH_GRADERS
 
 
 
 
 
202
  ),
203
  datasets.BuilderConfig(
204
  name="sourceB",
205
  version=VERSION,
206
  description=SOURCE_B_DESC,
207
  ),
208
- datasets.BuilderConfig(name="PROPOR2024", version=VERSION, description=PROPOR2024),
209
- datasets.BuilderConfig(name="gradesThousand", version=VERSION, description=GRADES_THOUSAND),
 
 
 
 
 
210
  ]
211
 
212
  def _info(self):
213
- if self.config.name=="PROPOR2024":
214
  features = datasets.Features(
215
  {
216
  "id": datasets.Value("string"),
@@ -222,18 +249,32 @@ class AesEnemDataset(datasets.GeneratorBasedBuilder):
222
  "reference": datasets.Value("string"),
223
  }
224
  )
225
- elif self.config.name=="gradesThousand":
226
  features = datasets.Features(
227
  {
228
  "id": datasets.Value("string"),
229
  "id_prompt": datasets.Value("string"),
230
  "supporting_text": datasets.Value("string"),
 
231
  "essay_text": datasets.Value("string"),
232
  "grades": datasets.Sequence(datasets.Value("int16")),
233
  "essay_year": datasets.Value("int16"),
234
  "source": datasets.Value("string"),
235
  }
236
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
237
  else:
238
  features = datasets.Features(
239
  {
@@ -275,7 +316,7 @@ class AesEnemDataset(datasets.GeneratorBasedBuilder):
275
 
276
  def normalize_grades(grades):
277
  grades = grades.strip("[]").split(", ")
278
- grade_mapping = {"0.0": 0, "20": 40}
279
 
280
  # We will remove the rows that match the criteria below
281
  if any(
@@ -308,19 +349,19 @@ class AesEnemDataset(datasets.GeneratorBasedBuilder):
308
  for split_case in ["train.csv", "validation.csv", "test.csv"]:
309
  filepath = f"{base_path}/propor2024/{split_case}"
310
  df = pd.read_csv(filepath)
311
-
312
  # Dictionary to track how many times we've seen each (id, id_prompt) pair
313
  counts = {}
314
  # List to store the reference for each row
315
  references = []
316
-
317
  # Define the mapping for each occurrence
318
  occurrence_to_reference = {
319
  0: "crawled_from_web",
320
  1: "grader_a",
321
- 2: "grader_b"
322
  }
323
-
324
  # Iterate through rows in the original order
325
  for _, row in df.iterrows():
326
  key = (row["id"], row["id_prompt"])
@@ -329,14 +370,15 @@ class AesEnemDataset(datasets.GeneratorBasedBuilder):
329
  ref = occurrence_to_reference.get(count, "unknown")
330
  references.append(ref)
331
  counts[key] = count + 1
332
-
333
  # Add the reference column without changing the order of rows
334
  df["reference"] = references
335
  df.to_csv(filepath, index=False)
336
 
337
  def _split_generators(self, dl_manager):
338
- urls = _URLS[self.config.name]
339
- extracted_files = dl_manager.download_and_extract({self.config.name: urls})
 
340
  if "PROPOR2024" == self.config.name:
341
  base_path = extracted_files["PROPOR2024"]
342
  self._preprocess_propor2024(base_path)
@@ -353,7 +395,9 @@ class AesEnemDataset(datasets.GeneratorBasedBuilder):
353
  name=datasets.Split.VALIDATION,
354
  # These kwargs will be passed to _generate_examples
355
  gen_kwargs={
356
- "filepath": os.path.join(base_path, "propor2024/validation.csv"),
 
 
357
  "split": "validation",
358
  },
359
  ),
@@ -366,7 +410,20 @@ class AesEnemDataset(datasets.GeneratorBasedBuilder):
366
  ),
367
  ]
368
  if "gradesThousand" == self.config.name:
369
- base_path = f"{extracted_files["gradesThousand"]}/scrapedGradesThousand"
 
 
 
 
 
 
 
 
 
 
 
 
 
370
  return [
371
  datasets.SplitGenerator(
372
  name=datasets.Split.TRAIN,
@@ -392,17 +449,17 @@ class AesEnemDataset(datasets.GeneratorBasedBuilder):
392
  },
393
  ),
394
  ]
395
- html_parser = self._process_html_files(extracted_files)
396
  if "sourceA" in self.config.name:
 
397
  self._post_process_dataframe(html_parser.sourceA)
398
  self._generate_splits(html_parser.sourceA)
399
- folder_sourceA = "/".join((html_parser.sourceA).split("/")[:-1])
400
  return [
401
  datasets.SplitGenerator(
402
  name=datasets.Split.TRAIN,
403
  # These kwargs will be passed to _generate_examples
404
  gen_kwargs={
405
- "filepath": os.path.join(folder_sourceA, "train.csv"),
406
  "split": "train",
407
  },
408
  ),
@@ -410,19 +467,20 @@ class AesEnemDataset(datasets.GeneratorBasedBuilder):
410
  name=datasets.Split.VALIDATION,
411
  # These kwargs will be passed to _generate_examples
412
  gen_kwargs={
413
- "filepath": os.path.join(folder_sourceA, "validation.csv"),
414
  "split": "validation",
415
  },
416
  ),
417
  datasets.SplitGenerator(
418
  name=datasets.Split.TEST,
419
  gen_kwargs={
420
- "filepath": os.path.join(folder_sourceA, "test.csv"),
421
  "split": "test",
422
  },
423
  ),
424
  ]
425
  elif self.config.name == "sourceB":
 
426
  self._post_process_dataframe(html_parser.sourceB)
427
  return [
428
  datasets.SplitGenerator(
@@ -433,10 +491,155 @@ class AesEnemDataset(datasets.GeneratorBasedBuilder):
433
  },
434
  ),
435
  ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
436
 
437
- def _process_html_files(self, paths_dict):
438
  html_parser = HTMLParser(paths_dict)
439
- html_parser.parse(self.config.name)
 
 
440
  return html_parser
441
 
442
  def _parse_graders_data(self, dirname):
@@ -457,14 +660,19 @@ class AesEnemDataset(datasets.GeneratorBasedBuilder):
457
  grader_b["reference"] = "grader_b"
458
  return grader_a, grader_b
459
 
460
- def _generate_splits(self, filepath: str, train_size=0.7):
 
461
  df = pd.read_csv(filepath)
462
- buckets = df.groupby("mapped_year")["id_prompt"].unique().to_dict()
463
- df.drop("mapped_year", axis=1, inplace=True)
464
  train_set = []
465
  val_set = []
466
  test_set = []
467
- for year, prompts in buckets.items():
 
 
 
 
 
 
468
  np.random.shuffle(prompts)
469
  num_prompts = len(prompts)
470
 
@@ -501,52 +709,67 @@ class AesEnemDataset(datasets.GeneratorBasedBuilder):
501
  val_df = pd.concat(val_set)
502
  test_df = pd.concat(test_set)
503
  dirname = os.path.dirname(filepath)
504
- if self.config.name == "sourceAWithGraders":
 
 
505
  grader_a, grader_b = self._parse_graders_data(dirname)
506
  grader_a_data = pd.merge(
507
- train_df[["id", "id_prompt","essay", "prompt", "supporting_text"]],
508
- grader_a.drop(columns=['essay']),
509
  on=["id", "id_prompt"],
510
  how="inner",
511
  )
512
  grader_b_data = pd.merge(
513
- train_df[["id", "id_prompt","essay", "prompt", "supporting_text"]],
514
- grader_b.drop(columns=['essay']),
515
  on=["id", "id_prompt"],
516
  how="inner",
517
  )
518
- train_df = pd.concat([train_df, grader_a_data])
519
- train_df = pd.concat([train_df, grader_b_data])
 
 
520
 
521
  grader_a_data = pd.merge(
522
- val_df[["id", "id_prompt","essay", "prompt", "supporting_text"]],
523
- grader_a.drop(columns=['essay']),
524
  on=["id", "id_prompt"],
525
  how="inner",
526
  )
527
  grader_b_data = pd.merge(
528
- val_df[["id", "id_prompt","essay", "prompt", "supporting_text"]],
529
- grader_b.drop(columns=['essay']),
530
  on=["id", "id_prompt"],
531
  how="inner",
532
  )
533
- val_df = pd.concat([val_df, grader_a_data])
534
- val_df = pd.concat([val_df, grader_b_data])
535
 
536
  grader_a_data = pd.merge(
537
- test_df[["id", "id_prompt","essay", "prompt", "supporting_text"]],
538
- grader_a.drop(columns=['essay']),
539
  on=["id", "id_prompt"],
540
  how="inner",
541
  )
542
  grader_b_data = pd.merge(
543
- test_df[["id", "id_prompt","essay", "prompt", "supporting_text"]],
544
- grader_b.drop(columns=['essay']),
545
  on=["id", "id_prompt"],
546
  how="inner",
547
  )
548
- test_df = pd.concat([test_df, grader_a_data])
549
- test_df = pd.concat([test_df, grader_b_data])
 
 
 
 
 
 
 
 
 
 
 
550
  # Data Validation Assertions
551
  assert (
552
  len(set(train_df["id_prompt"]).intersection(set(val_df["id_prompt"]))) == 0
@@ -570,15 +793,18 @@ class AesEnemDataset(datasets.GeneratorBasedBuilder):
570
  for i, row in enumerate(csv_reader):
571
  grades = row["grades"].strip("[]")
572
  grades = grades.split()
573
- yield i, {
574
- "id": row["id"],
575
- "id_prompt": row["id_prompt"],
576
- "essay_title": row["title"],
577
- "essay_text": row["essay"],
578
- "grades": grades,
579
- "essay_year": row["essay_year"],
580
- "reference": row["reference"]
581
- }
 
 
 
582
  elif self.config.name == "gradesThousand":
583
  with open(filepath, encoding="utf-8") as csvfile:
584
  next(csvfile)
@@ -586,16 +812,40 @@ class AesEnemDataset(datasets.GeneratorBasedBuilder):
586
  for i, row in enumerate(csv_reader):
587
  grades = row["grades"].strip("[]")
588
  grades = grades.split(", ")
589
- yield i, {
590
- "id": row["id"],
591
- "id_prompt": row["id_prompt"],
592
- "supporting_text": row["supporting_text"],
593
- "essay_text": row["essay"],
594
- "grades": grades,
595
- "essay_year": row["essay_year"],
596
- "author": row["author"],
597
- "source": row["source"]
598
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
599
  else:
600
  with open(filepath, encoding="utf-8") as csvfile:
601
  next(csvfile)
@@ -603,20 +853,22 @@ class AesEnemDataset(datasets.GeneratorBasedBuilder):
603
  for i, row in enumerate(csv_reader):
604
  grades = row["grades"].strip("[]")
605
  grades = grades.split(", ")
606
- yield i, {
607
- "id": row["id"],
608
- "id_prompt": row["id_prompt"],
609
- "prompt": row['prompt'],
610
- "supporting_text": row["supporting_text"],
611
- "essay_title": row["title"],
612
- "essay_text": row["essay"],
613
- "grades": grades,
614
- "essay_year": row["essay_year"],
615
- "general_comment": row["general"],
616
- "specific_comment": row["specific"],
617
- "reference": row["reference"]
618
- }
619
-
 
 
620
 
621
 
622
  class HTMLParser:
@@ -655,9 +907,9 @@ class HTMLParser:
655
  for single_grade in grades:
656
  grade = int(single_grade.get_text())
657
  final_grades.append(grade)
658
- assert final_grades[-1] == sum(
659
- final_grades[:-1]
660
- ), "Grading sum is not making sense"
661
  else:
662
  grades = soup.find("div", class_="redacoes-corrigidas pg-bordercolor7")
663
  grades_sum = float(
@@ -667,9 +919,9 @@ class HTMLParser:
667
  for idx in range(1, 10, 2):
668
  grade = float(grades[idx].get_text().replace(",", "."))
669
  final_grades.append(grade)
670
- assert grades_sum == sum(
671
- final_grades
672
- ), "Grading sum is not making sense"
673
  final_grades.append(grades_sum)
674
  return final_grades
675
  elif self.sourceB:
@@ -680,7 +932,9 @@ class HTMLParser:
680
  for single_grade in grades:
681
  result.append(int(single_grade.get_text()))
682
  assert len(result) == 5, "We should have 5 Grades (one per concept) only"
683
- result.append(sum(result)) # Add sum as a sixt element to keep the same pattern
 
 
684
  return result
685
 
686
  def _get_general_comment(self, soup):
@@ -787,7 +1041,10 @@ class HTMLParser:
787
  span.decompose()
788
  result = table.find_all("p")
789
  result = " ".join(
790
- [paragraph.get_text().replace("\xa0","").strip() for paragraph in result]
 
 
 
791
  )
792
  return result
793
 
@@ -831,37 +1088,83 @@ class HTMLParser:
831
  return new_list
832
 
833
  def _clean_string(self, sentence):
834
- sentence = sentence.replace("\xa0","").replace("\u200b","")
835
- sentence = sentence.replace(".",". ").replace("?","? ").replace("!", "! ").replace(")",") ").replace(":",": ").replace("”", "” ")
 
 
 
 
 
 
 
836
  sentence = sentence.replace(" ", " ").replace(". . . ", "...")
837
- sentence = sentence.replace("(editado)", "").replace("(Editado)","")
838
- sentence = sentence.replace("(editado e adaptado)", "").replace("(Editado e adaptado)", "")
 
 
839
  sentence = sentence.replace(". com. br", ".com.br")
840
  sentence = sentence.replace("[Veja o texto completo aqui]", "")
841
- return sentence
842
 
843
  def _get_supporting_text(self, soup):
844
  if self.sourceA:
845
  textos = soup.find_all("ul", class_="article-wording-item")
846
  resposta = []
847
  for t in textos[:-1]:
848
- resposta.append(t.find("h3", class_="item-titulo").get_text().replace("\xa0",""))
849
- resposta.append(self._clean_string(t.find("div", class_="item-descricao").get_text()))
 
 
 
 
 
 
850
  return resposta
851
  else:
852
  return ""
853
-
854
  def _get_prompt(self, soup):
855
  if self.sourceA:
856
  prompt = soup.find("div", class_="text").find_all("p")
857
  if len(prompt[0].get_text()) < 2:
858
- return [prompt[1].get_text().replace("\xa0","")]
859
  else:
860
- return [prompt[0].get_text().replace("\xa0","")]
861
- else:
862
  return ""
863
 
864
- def parse(self, config_name):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
865
  for key, filepath in self.paths_dict.items():
866
  if key != config_name:
867
  continue # TODO improve later, we will only support a single config at a time
@@ -872,64 +1175,77 @@ class HTMLParser:
872
  file = self.sourceA if self.sourceA else self.sourceB
873
  file_path = Path(file)
874
  file_dir = file_path.parent
875
- sorted_files = sorted(file_dir.iterdir())
 
 
 
 
 
876
  with open(file_path, "w", newline="", encoding="utf8") as final_file:
877
  writer = csv.writer(final_file)
878
  writer.writerow(CSV_HEADER)
879
- sub_folders = [
880
- name for name in sorted_files if name.suffix != ".csv"
881
- ]
882
- essay_id = 0
883
- essay_title = None
884
- essay_text = None
885
- essay_grades = None
886
- general_comment = None
887
- specific_comment = None
888
- essay_year = None
889
- reference = "crawled_from_web"
890
- for prompt_folder in tqdm(
891
- sub_folders,
892
- desc=f"Parsing HTML files from: {key}",
893
- total=len(sub_folders),
894
- ):
895
- if prompt_folder in PROMPTS_TO_IGNORE:
896
- continue
897
- prompt = os.path.join(file_dir, prompt_folder)
898
- sorted_prompts = sorted(os.listdir(prompt))
899
- prompt_essays = [name for name in sorted_prompts]
900
- essay_year = self._get_essay_year(
901
- self.apply_soup(prompt, "Prompt.html")
902
- )
903
- essay_supporting_text = "\n".join(self._get_supporting_text(
904
- self.apply_soup(prompt, "Prompt.html")
905
- ))
906
- essay_prompt = "\n".join(self._get_prompt(
907
- self.apply_soup(prompt, "Prompt.html")
908
- ))
909
- for essay in prompt_essays:
910
- soup_text = self.apply_soup(prompt, essay)
911
- if essay == "Prompt.html":
912
- continue
913
- essay_title = self._clean_title(self._get_title(soup_text))
914
- essay_grades = self._get_grades(soup_text)
915
- essay_text = self._get_essay(soup_text)
916
- general_comment = self._get_general_comment(soup_text).strip()
917
- specific_comment = self._get_specific_comment(
918
- soup_text, general_comment
919
- )
920
- writer.writerow(
921
- [
922
- essay,
923
- prompt_folder,
924
- essay_prompt,
925
- essay_supporting_text,
926
- essay_title,
927
- essay_text,
928
- essay_grades,
929
- general_comment,
930
- specific_comment,
931
- essay_year,
932
- reference
933
- ]
934
- )
935
- essay_id += 1
 
 
 
 
 
 
 
 
 
15
  import csv
16
  import math
17
  import os
 
18
  import re
19
+ from pathlib import Path
20
 
21
  import datasets
22
  import numpy as np
23
  import pandas as pd
24
+ from multiprocessing import Pool, cpu_count
25
  from bs4 import BeautifulSoup
26
  from tqdm.auto import tqdm
27
 
28
+ RANDOM_STATE = 42
29
+ np.random.seed(RANDOM_STATE) # Set the seed
30
 
31
  _CITATION = """
32
  @inproceedings{silveira-etal-2024-new,
 
81
  "sourceAWithGraders": "https://huggingface.co/datasets/kamel-usp/aes_enem_dataset/resolve/main/sourceAWithGraders.tar.gz",
82
  "sourceB": "https://huggingface.co/datasets/kamel-usp/aes_enem_dataset/resolve/main/sourceB.tar.gz",
83
  "PROPOR2024": "https://huggingface.co/datasets/kamel-usp/aes_enem_dataset/resolve/main/propor2024.tar.gz",
84
+ "gradesThousand": "https://huggingface.co/datasets/kamel-usp/aes_enem_dataset/resolve/main/scrapedGradesThousand.tar.gz",
85
  }
86
 
87
 
 
111
  "general",
112
  "specific",
113
  "essay_year",
114
+ "reference",
115
  ]
116
 
117
  CSV_HEADERPROPOR = [
 
121
  "essay",
122
  "grades",
123
  "essay_year",
124
+ "reference",
125
  ]
126
 
127
  CSV_HEADERTHOUSAND = [
 
133
  "essay",
134
  "source",
135
  "supporting_text",
136
+ "prompt",
137
+ ]
138
+
139
+ CSV_HEADER_JBCS25 = [
140
+ "id",
141
+ "id_prompt",
142
+ "essay_text",
143
+ "grades",
144
+ "essay_year",
145
+ "supporting_text",
146
+ "prompt",
147
+ "reference",
148
  ]
149
 
150
  SOURCE_A_DESC = """
 
197
  TODO
198
  """
199
 
200
+ JBCS2025 = """
201
+ TODO
202
+ """
203
+
204
 
205
  class AesEnemDataset(datasets.GeneratorBasedBuilder):
206
  """
 
210
  To reproduce results from PROPOR paper, please refer to "PROPOR2024" config. Other configs are reproducible now.
211
  """
212
 
213
+ VERSION = datasets.Version("1.0.0")
214
 
215
  # You will be able to load one or the other configurations in the following list with
216
  BUILDER_CONFIGS = [
 
217
  datasets.BuilderConfig(
218
+ name="sourceAOnly", version=VERSION, description=SOURCE_A_DESC
219
+ ),
220
+ datasets.BuilderConfig(
221
+ name="sourceAWithGraders",
222
+ version=VERSION,
223
+ description=SOURCE_A_WITH_GRADERS,
224
  ),
225
  datasets.BuilderConfig(
226
  name="sourceB",
227
  version=VERSION,
228
  description=SOURCE_B_DESC,
229
  ),
230
+ datasets.BuilderConfig(
231
+ name="PROPOR2024", version=VERSION, description=PROPOR2024
232
+ ),
233
+ datasets.BuilderConfig(
234
+ name="gradesThousand", version=VERSION, description=GRADES_THOUSAND
235
+ ),
236
+ datasets.BuilderConfig(name="JBCS2025", version=VERSION, description=JBCS2025),
237
  ]
238
 
239
  def _info(self):
240
+ if self.config.name == "PROPOR2024":
241
  features = datasets.Features(
242
  {
243
  "id": datasets.Value("string"),
 
249
  "reference": datasets.Value("string"),
250
  }
251
  )
252
+ elif self.config.name == "gradesThousand":
253
  features = datasets.Features(
254
  {
255
  "id": datasets.Value("string"),
256
  "id_prompt": datasets.Value("string"),
257
  "supporting_text": datasets.Value("string"),
258
+ "prompt": datasets.Value("string"),
259
  "essay_text": datasets.Value("string"),
260
  "grades": datasets.Sequence(datasets.Value("int16")),
261
  "essay_year": datasets.Value("int16"),
262
  "source": datasets.Value("string"),
263
  }
264
  )
265
+ elif self.config.name == "JBCS2025":
266
+ features = datasets.Features(
267
+ {
268
+ "id": datasets.Value("string"),
269
+ "id_prompt": datasets.Value("string"),
270
+ "essay_text": datasets.Value("string"),
271
+ "grades": datasets.Sequence(datasets.Value("int16")),
272
+ "essay_year": datasets.Value("int16"),
273
+ "supporting_text": datasets.Value("string"),
274
+ "prompt": datasets.Value("string"),
275
+ "reference": datasets.Value("string"),
276
+ }
277
+ )
278
  else:
279
  features = datasets.Features(
280
  {
 
316
 
317
  def normalize_grades(grades):
318
  grades = grades.strip("[]").split(", ")
319
+ grade_mapping = {"0.0": 0, "20": 40, "2.0": 2}
320
 
321
  # We will remove the rows that match the criteria below
322
  if any(
 
349
  for split_case in ["train.csv", "validation.csv", "test.csv"]:
350
  filepath = f"{base_path}/propor2024/{split_case}"
351
  df = pd.read_csv(filepath)
352
+
353
  # Dictionary to track how many times we've seen each (id, id_prompt) pair
354
  counts = {}
355
  # List to store the reference for each row
356
  references = []
357
+
358
  # Define the mapping for each occurrence
359
  occurrence_to_reference = {
360
  0: "crawled_from_web",
361
  1: "grader_a",
362
+ 2: "grader_b",
363
  }
364
+
365
  # Iterate through rows in the original order
366
  for _, row in df.iterrows():
367
  key = (row["id"], row["id_prompt"])
 
370
  ref = occurrence_to_reference.get(count, "unknown")
371
  references.append(ref)
372
  counts[key] = count + 1
373
+
374
  # Add the reference column without changing the order of rows
375
  df["reference"] = references
376
  df.to_csv(filepath, index=False)
377
 
378
  def _split_generators(self, dl_manager):
379
+ if self.config.name != "JBCS2025":
380
+ urls = _URLS[self.config.name]
381
+ extracted_files = dl_manager.download_and_extract({self.config.name: urls})
382
  if "PROPOR2024" == self.config.name:
383
  base_path = extracted_files["PROPOR2024"]
384
  self._preprocess_propor2024(base_path)
 
395
  name=datasets.Split.VALIDATION,
396
  # These kwargs will be passed to _generate_examples
397
  gen_kwargs={
398
+ "filepath": os.path.join(
399
+ base_path, "propor2024/validation.csv"
400
+ ),
401
  "split": "validation",
402
  },
403
  ),
 
410
  ),
411
  ]
412
  if "gradesThousand" == self.config.name:
413
+ urls = _URLS[self.config.name]
414
+ extracted_files = dl_manager.download_and_extract({self.config.name: urls})
415
+ base_path = f"{extracted_files['gradesThousand']}/scrapedGradesThousand"
416
+ for split in ["train", "validation", "test"]:
417
+ split_filepath = os.path.join(base_path, f"{split}.csv")
418
+ grades_thousand = pd.read_csv(split_filepath)
419
+ grades_thousand[["supporting_text", "prompt"]] = grades_thousand[
420
+ "supporting_text"
421
+ ].apply(
422
+ lambda original_text: pd.Series(
423
+ self._extract_prompt_and_clean(original_text)
424
+ )
425
+ )
426
+ grades_thousand.to_csv(split_filepath, index=False)
427
  return [
428
  datasets.SplitGenerator(
429
  name=datasets.Split.TRAIN,
 
449
  },
450
  ),
451
  ]
 
452
  if "sourceA" in self.config.name:
453
+ html_parser = self._process_html_files(extracted_files)
454
  self._post_process_dataframe(html_parser.sourceA)
455
  self._generate_splits(html_parser.sourceA)
456
+ folder_sourceA = Path(html_parser.sourceA).parent
457
  return [
458
  datasets.SplitGenerator(
459
  name=datasets.Split.TRAIN,
460
  # These kwargs will be passed to _generate_examples
461
  gen_kwargs={
462
+ "filepath": folder_sourceA / "train.csv",
463
  "split": "train",
464
  },
465
  ),
 
467
  name=datasets.Split.VALIDATION,
468
  # These kwargs will be passed to _generate_examples
469
  gen_kwargs={
470
+ "filepath": folder_sourceA / "validation.csv",
471
  "split": "validation",
472
  },
473
  ),
474
  datasets.SplitGenerator(
475
  name=datasets.Split.TEST,
476
  gen_kwargs={
477
+ "filepath": folder_sourceA / "test.csv",
478
  "split": "test",
479
  },
480
  ),
481
  ]
482
  elif self.config.name == "sourceB":
483
+ html_parser = self._process_html_files(extracted_files)
484
  self._post_process_dataframe(html_parser.sourceB)
485
  return [
486
  datasets.SplitGenerator(
 
491
  },
492
  ),
493
  ]
494
+ elif "JBCS2025" == self.config.name:
495
+ extracted_files = dl_manager.download_and_extract(
496
+ {
497
+ "sourceA": _URLS["sourceAWithGraders"],
498
+ "grades_thousand": _URLS["gradesThousand"],
499
+ }
500
+ )
501
+ config_name_source_a = "sourceAWithGraders"
502
+
503
+ html_parser = self._process_html_files(
504
+ paths_dict={config_name_source_a: extracted_files["sourceA"]},
505
+ config_name=config_name_source_a,
506
+ )
507
+ grades_thousand_filedir = (
508
+ Path(extracted_files["grades_thousand"]) / "scrapedGradesThousand"
509
+ )
510
+ self._post_process_dataframe(html_parser.sourceA)
511
+ self._generate_splits(html_parser.sourceA, config_name=config_name_source_a)
512
+ folder_sourceA = Path(html_parser.sourceA).parent
513
+ for split in ["train", "validation", "test"]:
514
+ grades_thousand_df = pd.read_csv(
515
+ grades_thousand_filedir / f"{split}.csv"
516
+ )
517
+ grades_thousand_df["reference"] = "grade_thousand_website"
518
+ sourceA = pd.read_csv(folder_sourceA / f"{split}.csv")
519
+ common_columns = [
520
+ "id",
521
+ "id_prompt",
522
+ "essay_text",
523
+ "grades",
524
+ "essay_year",
525
+ "supporting_text",
526
+ "prompt",
527
+ "reference",
528
+ ]
529
+ combined_split = sourceA[
530
+ sourceA.reference.isin(["grader_a", "grader_b"])
531
+ ]
532
+ combined_split = combined_split.rename(columns={"essay": "essay_text"})
533
+ grades_thousand_df[["supporting_text", "prompt"]] = grades_thousand_df[
534
+ "supporting_text"
535
+ ].apply(
536
+ lambda original_text: pd.Series(
537
+ self._extract_prompt_and_clean(original_text)
538
+ )
539
+ )
540
+ final_split = pd.concat(
541
+ [combined_split[common_columns], grades_thousand_df[common_columns]]
542
+ )
543
+ final_split["grades"] = final_split["grades"].str.replace(",", "")
544
+ final_split = final_split.sample(
545
+ frac=1, random_state=RANDOM_STATE
546
+ ).reset_index(drop=True)
547
+ # overwrites the sourceA data
548
+ final_split.to_csv(folder_sourceA / f"{split}.csv", index=False)
549
+ return [
550
+ datasets.SplitGenerator(
551
+ name=datasets.Split.TRAIN,
552
+ # These kwargs will be passed to _generate_examples
553
+ gen_kwargs={
554
+ "filepath": folder_sourceA / "train.csv",
555
+ "split": "train",
556
+ },
557
+ ),
558
+ datasets.SplitGenerator(
559
+ name=datasets.Split.VALIDATION,
560
+ # These kwargs will be passed to _generate_examples
561
+ gen_kwargs={
562
+ "filepath": folder_sourceA / "validation.csv",
563
+ "split": "validation",
564
+ },
565
+ ),
566
+ datasets.SplitGenerator(
567
+ name=datasets.Split.TEST,
568
+ gen_kwargs={
569
+ "filepath": folder_sourceA / "test.csv",
570
+ "split": "test",
571
+ },
572
+ ),
573
+ ]
574
+
575
+ def _extract_prompt_and_clean(self, text: str):
576
+ """
577
+ 1) Find an uppercase block matching "PROPOSTA DE REDACAO/REDAÇÃO"
578
+ (with flexible spacing and accents) anywhere in 'text'.
579
+ 2) Capture everything from there until the next heading that
580
+ starts a line (TEXTO..., TEXTOS..., INSTRUÇÕES...) or end-of-text.
581
+ 3) Remove that captured block from the original, returning:
582
+ (supporting_text, prompt)
583
+ """
584
+
585
+ # Regex explanation:
586
+ # (?m) => MULTILINE, so ^ can match start of lines
587
+ # 1) PROPOSTA\s+DE\s+REDA(?:C|Ç)(?:AO|ÃO)
588
+ # - "PROPOSTA", then one-or-more spaces/newlines,
589
+ # then "DE", then spaces, then "REDA(C|Ç)",
590
+ # and either "AO" or "ÃO" (uppercase).
591
+ # - This part may skip diacritic or accent variations in "REDAÇÃO" vs. "REDACAO".
592
+ #
593
+ # 2) (?:.*?\n?)*? => a non-greedy capture of subsequent lines
594
+ # (including possible newlines). We use [\s\S]*? as an alternative.
595
+ #
596
+ # 3) Lookahead (?=^(?:TEXTO|TEXTOS|INSTRUÇÕES|\Z))
597
+ # means: stop right before a line that starts with "TEXTO", "TEXTOS",
598
+ # or "INSTRUÇÕES", OR the very end of the text (\Z).
599
+ #
600
+ # If found, that entire portion is group(1).
601
+ def force_newline_after_proposta(text: str) -> str:
602
+ """
603
+ If we see "PROPOSTA DE REDAÇÃO" immediately followed by some
604
+ non-whitespace character (like "A"), insert two newlines.
605
+ E.g., "PROPOSTA DE REDAÇÃOA partir..." becomes
606
+ "PROPOSTA DE REDAÇÃO\n\nA partir..."
607
+ """
608
+ # This pattern looks for:
609
+ # (PROPOSTA DE REDAÇÃO)
610
+ # (?=\S) meaning "immediately followed by a NON-whitespace character"
611
+ # then we replace that with "PROPOSTA DE REDAÇÃO\n\n"
612
+ pattern = re.compile(r"(?=\S)(PROPOSTA DE REDAÇÃO)(?=\S)")
613
+ return pattern.sub(r"\n\1\n\n", text)
614
+
615
+ text = force_newline_after_proposta(text)
616
+ pattern = re.compile(
617
+ r"(?m)" # MULTILINE
618
+ r"("
619
+ r"PROPOSTA\s+DE\s+REDA(?:C|Ç)(?:AO|ÃO)" # e.g. PROPOSTA DE REDACAO / REDAÇÃO
620
+ r"(?:[\s\S]*?)" # lazily grab the subsequent text
621
+ r")"
622
+ r"(?=(?:TEXTO|TEXTOS|INSTRUÇÕES|TExTO|\Z))"
623
+ )
624
+
625
+ match = pattern.search(text)
626
+ if match:
627
+ prompt = match.group(1).strip()
628
+ # Remove that block from the original:
629
+ start, end = match.span(1)
630
+ main_text = text[:start] + text[end:]
631
+ else:
632
+ # No match => keep entire text in supporting_text, prompt empty
633
+ prompt = ""
634
+ main_text = text
635
+
636
+ return main_text.strip(), prompt.strip()
637
 
638
+ def _process_html_files(self, paths_dict, config_name=None):
639
  html_parser = HTMLParser(paths_dict)
640
+ if config_name is None:
641
+ config_name = self.config.name
642
+ html_parser.parse(config_name)
643
  return html_parser
644
 
645
  def _parse_graders_data(self, dirname):
 
660
  grader_b["reference"] = "grader_b"
661
  return grader_a, grader_b
662
 
663
+ def _generate_splits(self, filepath: str, train_size=0.7, config_name=None):
664
+ np.random.seed(RANDOM_STATE)
665
  df = pd.read_csv(filepath)
 
 
666
  train_set = []
667
  val_set = []
668
  test_set = []
669
+ df = df.sort_values(by=["essay_year", "id_prompt"]).reset_index(drop=True)
670
+ buckets = {}
671
+ for key, group in df.groupby("mapped_year"):
672
+ buckets[key] = sorted(group["id_prompt"].unique())
673
+ df.drop("mapped_year", axis=1, inplace=True)
674
+ for year in sorted(buckets.keys()):
675
+ prompts = buckets[year]
676
  np.random.shuffle(prompts)
677
  num_prompts = len(prompts)
678
 
 
709
  val_df = pd.concat(val_set)
710
  test_df = pd.concat(test_set)
711
  dirname = os.path.dirname(filepath)
712
+ if config_name is None:
713
+ config_name = self.config.name
714
+ if config_name == "sourceAWithGraders":
715
  grader_a, grader_b = self._parse_graders_data(dirname)
716
  grader_a_data = pd.merge(
717
+ train_df[["id", "id_prompt", "essay", "prompt", "supporting_text"]],
718
+ grader_a.drop(columns=["essay"]),
719
  on=["id", "id_prompt"],
720
  how="inner",
721
  )
722
  grader_b_data = pd.merge(
723
+ train_df[["id", "id_prompt", "essay", "prompt", "supporting_text"]],
724
+ grader_b.drop(columns=["essay"]),
725
  on=["id", "id_prompt"],
726
  how="inner",
727
  )
728
+ train_df = pd.concat([train_df, grader_a_data, grader_b_data])
729
+ train_df = train_df.sort_values(by=["id", "id_prompt"]).reset_index(
730
+ drop=True
731
+ )
732
 
733
  grader_a_data = pd.merge(
734
+ val_df[["id", "id_prompt", "essay", "prompt", "supporting_text"]],
735
+ grader_a.drop(columns=["essay"]),
736
  on=["id", "id_prompt"],
737
  how="inner",
738
  )
739
  grader_b_data = pd.merge(
740
+ val_df[["id", "id_prompt", "essay", "prompt", "supporting_text"]],
741
+ grader_b.drop(columns=["essay"]),
742
  on=["id", "id_prompt"],
743
  how="inner",
744
  )
745
+ val_df = pd.concat([val_df, grader_a_data, grader_b_data])
746
+ val_df = val_df.sort_values(by=["id", "id_prompt"]).reset_index(drop=True)
747
 
748
  grader_a_data = pd.merge(
749
+ test_df[["id", "id_prompt", "essay", "prompt", "supporting_text"]],
750
+ grader_a.drop(columns=["essay"]),
751
  on=["id", "id_prompt"],
752
  how="inner",
753
  )
754
  grader_b_data = pd.merge(
755
+ test_df[["id", "id_prompt", "essay", "prompt", "supporting_text"]],
756
+ grader_b.drop(columns=["essay"]),
757
  on=["id", "id_prompt"],
758
  how="inner",
759
  )
760
+ test_df = pd.concat([test_df, grader_a_data, grader_b_data])
761
+ test_df = test_df.sort_values(by=["id", "id_prompt"]).reset_index(drop=True)
762
+
763
+ train_df = train_df.sample(frac=1, random_state=RANDOM_STATE).reset_index(
764
+ drop=True
765
+ )
766
+ val_df = val_df.sample(frac=1, random_state=RANDOM_STATE).reset_index(
767
+ drop=True
768
+ )
769
+ test_df = test_df.sample(frac=1, random_state=RANDOM_STATE).reset_index(
770
+ drop=True
771
+ )
772
+
773
  # Data Validation Assertions
774
  assert (
775
  len(set(train_df["id_prompt"]).intersection(set(val_df["id_prompt"]))) == 0
 
793
  for i, row in enumerate(csv_reader):
794
  grades = row["grades"].strip("[]")
795
  grades = grades.split()
796
+ yield (
797
+ i,
798
+ {
799
+ "id": row["id"],
800
+ "id_prompt": row["id_prompt"],
801
+ "essay_title": row["title"],
802
+ "essay_text": row["essay"],
803
+ "grades": grades,
804
+ "essay_year": row["essay_year"],
805
+ "reference": row["reference"],
806
+ },
807
+ )
808
  elif self.config.name == "gradesThousand":
809
  with open(filepath, encoding="utf-8") as csvfile:
810
  next(csvfile)
 
812
  for i, row in enumerate(csv_reader):
813
  grades = row["grades"].strip("[]")
814
  grades = grades.split(", ")
815
+ yield (
816
+ i,
817
+ {
818
+ "id": row["id"],
819
+ "id_prompt": row["id_prompt"],
820
+ "supporting_text": row["supporting_text"],
821
+ "prompt": row["prompt"],
822
+ "essay_text": row["essay"],
823
+ "grades": grades,
824
+ "essay_year": row["essay_year"],
825
+ "author": row["author"],
826
+ "source": row["source"],
827
+ },
828
+ )
829
+ elif self.config.name == "JBCS2025":
830
+ with open(filepath, encoding="utf-8") as csvfile:
831
+ next(csvfile)
832
+ csv_reader = csv.DictReader(csvfile, fieldnames=CSV_HEADER_JBCS25)
833
+ for i, row in enumerate(csv_reader):
834
+ grades = row["grades"].strip("[]")
835
+ grades = grades.split()
836
+ yield (
837
+ i,
838
+ {
839
+ "id": row["id"],
840
+ "id_prompt": row["id_prompt"],
841
+ "essay_text": row["essay_text"],
842
+ "grades": grades,
843
+ "essay_year": row["essay_year"],
844
+ "supporting_text": row["supporting_text"],
845
+ "prompt": row["prompt"],
846
+ "reference": row["reference"],
847
+ },
848
+ )
849
  else:
850
  with open(filepath, encoding="utf-8") as csvfile:
851
  next(csvfile)
 
853
  for i, row in enumerate(csv_reader):
854
  grades = row["grades"].strip("[]")
855
  grades = grades.split(", ")
856
+ yield (
857
+ i,
858
+ {
859
+ "id": row["id"],
860
+ "id_prompt": row["id_prompt"],
861
+ "prompt": row["prompt"],
862
+ "supporting_text": row["supporting_text"],
863
+ "essay_title": row["title"],
864
+ "essay_text": row["essay"],
865
+ "grades": grades,
866
+ "essay_year": row["essay_year"],
867
+ "general_comment": row["general"],
868
+ "specific_comment": row["specific"],
869
+ "reference": row["reference"],
870
+ },
871
+ )
872
 
873
 
874
  class HTMLParser:
 
907
  for single_grade in grades:
908
  grade = int(single_grade.get_text())
909
  final_grades.append(grade)
910
+ assert final_grades[-1] == sum(final_grades[:-1]), (
911
+ "Grading sum is not making sense"
912
+ )
913
  else:
914
  grades = soup.find("div", class_="redacoes-corrigidas pg-bordercolor7")
915
  grades_sum = float(
 
919
  for idx in range(1, 10, 2):
920
  grade = float(grades[idx].get_text().replace(",", "."))
921
  final_grades.append(grade)
922
+ assert grades_sum == sum(final_grades), (
923
+ "Grading sum is not making sense"
924
+ )
925
  final_grades.append(grades_sum)
926
  return final_grades
927
  elif self.sourceB:
 
932
  for single_grade in grades:
933
  result.append(int(single_grade.get_text()))
934
  assert len(result) == 5, "We should have 5 Grades (one per concept) only"
935
+ result.append(
936
+ sum(result)
937
+ ) # Add sum as a sixt element to keep the same pattern
938
  return result
939
 
940
  def _get_general_comment(self, soup):
 
1041
  span.decompose()
1042
  result = table.find_all("p")
1043
  result = " ".join(
1044
+ [
1045
+ paragraph.get_text().replace("\xa0", "").strip()
1046
+ for paragraph in result
1047
+ ]
1048
  )
1049
  return result
1050
 
 
1088
  return new_list
1089
 
1090
  def _clean_string(self, sentence):
1091
+ sentence = sentence.replace("\xa0", "").replace("\u200b", "")
1092
+ sentence = (
1093
+ sentence.replace(".", ". ")
1094
+ .replace("?", "? ")
1095
+ .replace("!", "! ")
1096
+ .replace(")", ") ")
1097
+ .replace(":", ": ")
1098
+ .replace("”", "” ")
1099
+ )
1100
  sentence = sentence.replace(" ", " ").replace(". . . ", "...")
1101
+ sentence = sentence.replace("(editado)", "").replace("(Editado)", "")
1102
+ sentence = sentence.replace("(editado e adaptado)", "").replace(
1103
+ "(Editado e adaptado)", ""
1104
+ )
1105
  sentence = sentence.replace(". com. br", ".com.br")
1106
  sentence = sentence.replace("[Veja o texto completo aqui]", "")
1107
+ return sentence
1108
 
1109
  def _get_supporting_text(self, soup):
1110
  if self.sourceA:
1111
  textos = soup.find_all("ul", class_="article-wording-item")
1112
  resposta = []
1113
  for t in textos[:-1]:
1114
+ resposta.append(
1115
+ t.find("h3", class_="item-titulo").get_text().replace("\xa0", "")
1116
+ )
1117
+ resposta.append(
1118
+ self._clean_string(
1119
+ t.find("div", class_="item-descricao").get_text()
1120
+ )
1121
+ )
1122
  return resposta
1123
  else:
1124
  return ""
1125
+
1126
  def _get_prompt(self, soup):
1127
  if self.sourceA:
1128
  prompt = soup.find("div", class_="text").find_all("p")
1129
  if len(prompt[0].get_text()) < 2:
1130
+ return [prompt[1].get_text().replace("\xa0", "")]
1131
  else:
1132
+ return [prompt[0].get_text().replace("\xa0", "")]
1133
+ else:
1134
  return ""
1135
 
1136
+ def _process_all_prompts(self, sub_folders, file_dir, reference, prompts_to_ignore):
1137
+ """
1138
+ Process all prompt folders in parallel and return all rows to write.
1139
+
1140
+ Args:
1141
+ sub_folders (list): List of prompt folder names (or Paths).
1142
+ file_dir (str): Base directory where prompts are located.
1143
+ reference: Reference info to include in each row.
1144
+ prompts_to_ignore (collection): Prompts to be ignored.
1145
+
1146
+ Returns:
1147
+ list: A list of all rows to write to the CSV.
1148
+ """
1149
+
1150
+ args_list = [
1151
+ (prompt_folder, file_dir, reference, prompts_to_ignore, self)
1152
+ for prompt_folder in sub_folders
1153
+ ]
1154
+
1155
+ all_rows = []
1156
+ # Use a Pool to parallelize processing.
1157
+ with Pool(processes=cpu_count()) as pool:
1158
+ # Using imap allows us to update the progress bar.
1159
+ for rows in tqdm(
1160
+ pool.imap(HTMLParser._process_prompt_folder, args_list),
1161
+ total=len(args_list),
1162
+ desc="Processing prompts",
1163
+ ):
1164
+ all_rows.extend(rows)
1165
+ return all_rows
1166
+
1167
+ def parse(self, config_name: str):
1168
  for key, filepath in self.paths_dict.items():
1169
  if key != config_name:
1170
  continue # TODO improve later, we will only support a single config at a time
 
1175
  file = self.sourceA if self.sourceA else self.sourceB
1176
  file_path = Path(file)
1177
  file_dir = file_path.parent
1178
+ sorted_files = sorted(file_dir.iterdir(), key=lambda p: p.name)
1179
+ sub_folders = [name for name in sorted_files if name.suffix != ".csv"]
1180
+ reference = "crawled_from_web"
1181
+ all_rows = self._process_all_prompts(
1182
+ sub_folders, file_dir, reference, PROMPTS_TO_IGNORE
1183
+ )
1184
  with open(file_path, "w", newline="", encoding="utf8") as final_file:
1185
  writer = csv.writer(final_file)
1186
  writer.writerow(CSV_HEADER)
1187
+ for row in all_rows:
1188
+ writer.writerow(row)
1189
+
1190
+ @staticmethod
1191
+ def _process_prompt_folder(args):
1192
+ """
1193
+ Process one prompt folder and return a list of rows to write to CSV.
1194
+ Args:
1195
+ args (tuple): Contains:
1196
+ - prompt_folder: The folder name (or Path object) for the prompt.
1197
+ - file_dir: The base directory.
1198
+ - reference: Reference info to include in each row.
1199
+ - prompts_to_ignore: A collection of prompts to skip.
1200
+ - instance: An instance of the class that contains the parsing methods.
1201
+ Returns:
1202
+ list: A list of rows (each row is a list) to write to CSV.
1203
+ """
1204
+ prompt_folder, file_dir, reference, prompts_to_ignore, instance = args
1205
+ rows = []
1206
+ # Skip folders that should be ignored.
1207
+ if prompt_folder in prompts_to_ignore:
1208
+ return rows
1209
+ # Build the full path for the prompt folder.
1210
+ prompt = os.path.join(file_dir, prompt_folder)
1211
+ # List and sort the HTML files.
1212
+ try:
1213
+ sorted_prompts = sorted(os.listdir(prompt))
1214
+ except Exception as e:
1215
+ print(f"Error listing directory {prompt}: {e}")
1216
+ return rows
1217
+ # Process the common "Prompt.html" once.
1218
+ soup_prompt = instance.apply_soup(prompt, "Prompt.html")
1219
+ essay_year = instance._get_essay_year(soup_prompt)
1220
+ essay_supporting_text = "\n".join(instance._get_supporting_text(soup_prompt))
1221
+ essay_prompt = "\n".join(instance._get_prompt(soup_prompt))
1222
+ # Process each essay file except the prompt itself.
1223
+ for essay_filename in sorted_prompts:
1224
+ if essay_filename == "Prompt.html":
1225
+ continue
1226
+ soup_text = instance.apply_soup(prompt, essay_filename)
1227
+ essay_title = instance._clean_title(instance._get_title(soup_text))
1228
+ essay_grades = instance._get_grades(soup_text)
1229
+ essay_text = instance._get_essay(soup_text)
1230
+ general_comment = instance._get_general_comment(soup_text).strip()
1231
+ specific_comment = instance._get_specific_comment(
1232
+ soup_text, general_comment
1233
+ )
1234
+ # Create a row with all the information.
1235
+ row = [
1236
+ essay_filename,
1237
+ prompt_folder
1238
+ if not hasattr(prompt_folder, "name")
1239
+ else prompt_folder.name,
1240
+ essay_prompt,
1241
+ essay_supporting_text,
1242
+ essay_title,
1243
+ essay_text,
1244
+ essay_grades,
1245
+ general_comment,
1246
+ specific_comment,
1247
+ essay_year,
1248
+ reference,
1249
+ ]
1250
+ rows.append(row)
1251
+ return rows
pyproject.toml CHANGED
@@ -9,5 +9,6 @@ dependencies = [
9
  "datasets>=3.2.0",
10
  "ipdb>=0.13.13",
11
  "pandas>=2.2.3",
 
12
  "tqdm>=4.67.1",
13
  ]
 
9
  "datasets>=3.2.0",
10
  "ipdb>=0.13.13",
11
  "pandas>=2.2.3",
12
+ "ruff>=0.9.4",
13
  "tqdm>=4.67.1",
14
  ]