Datasets:
				
			
			
	
			
			
	
		Tasks:
	
	
	
	
	Image Segmentation
	
	
	Size:
	
	
	
	
	< 1K
	
	
	Commit 
							
							·
						
						04f959c
	
1
								Parent(s):
							
							6e3639e
								
dataset uploaded by roboflow2huggingface package
Browse files- README.dataset.txt +6 -0
- README.md +92 -0
- README.roboflow.txt +27 -0
- data/test.zip +3 -0
- data/train.zip +3 -0
- data/valid-mini.zip +3 -0
- data/valid.zip +3 -0
- pcb-defect-segmentation.py +154 -0
- split_name_to_num_samples.json +1 -0
- thumbnail.jpg +3 -0
    	
        README.dataset.txt
    ADDED
    
    | @@ -0,0 +1,6 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Defects > Set_4
         | 
| 2 | 
            +
            https://universe.roboflow.com/diplom-qz7q6/defects-2q87r
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            Provided by a Roboflow user
         | 
| 5 | 
            +
            License: CC BY 4.0
         | 
| 6 | 
            +
             | 
    	
        README.md
    ADDED
    
    | @@ -0,0 +1,92 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            task_categories:
         | 
| 3 | 
            +
            - image-segmentation
         | 
| 4 | 
            +
            tags:
         | 
| 5 | 
            +
            - roboflow
         | 
| 6 | 
            +
            - roboflow2huggingface
         | 
| 7 | 
            +
             | 
| 8 | 
            +
            ---
         | 
| 9 | 
            +
             | 
| 10 | 
            +
            <div align="center">
         | 
| 11 | 
            +
              <img width="640" alt="keremberke/pcb-defect-segmentation" src="https://huggingface.co/datasets/keremberke/pcb-defect-segmentation/resolve/main/thumbnail.jpg">
         | 
| 12 | 
            +
            </div>
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            ### Dataset Labels
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            ```
         | 
| 17 | 
            +
            ['dry_joint', 'incorrect_installation', 'pcb_damage', 'short_circuit']
         | 
| 18 | 
            +
            ```
         | 
| 19 | 
            +
             | 
| 20 | 
            +
             | 
| 21 | 
            +
            ### Number of Images
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            ```json
         | 
| 24 | 
            +
            {'valid': 25, 'train': 128, 'test': 36}
         | 
| 25 | 
            +
            ```
         | 
| 26 | 
            +
             | 
| 27 | 
            +
             | 
| 28 | 
            +
            ### How to Use
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            - Install [datasets](https://pypi.org/project/datasets/):
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            ```bash
         | 
| 33 | 
            +
            pip install datasets
         | 
| 34 | 
            +
            ```
         | 
| 35 | 
            +
             | 
| 36 | 
            +
            - Load the dataset:
         | 
| 37 | 
            +
             | 
| 38 | 
            +
            ```python
         | 
| 39 | 
            +
            from datasets import load_dataset
         | 
| 40 | 
            +
             | 
| 41 | 
            +
            ds = load_dataset("keremberke/pcb-defect-segmentation", name="full")
         | 
| 42 | 
            +
            example = ds['train'][0]
         | 
| 43 | 
            +
            ```
         | 
| 44 | 
            +
             | 
| 45 | 
            +
            ### Roboflow Dataset Page
         | 
| 46 | 
            +
            [https://universe.roboflow.com/diplom-qz7q6/defects-2q87r/dataset/8](https://universe.roboflow.com/diplom-qz7q6/defects-2q87r/dataset/8?ref=roboflow2huggingface)
         | 
| 47 | 
            +
             | 
| 48 | 
            +
            ### Citation
         | 
| 49 | 
            +
             | 
| 50 | 
            +
            ```
         | 
| 51 | 
            +
            @misc{ defects-2q87r_dataset,
         | 
| 52 | 
            +
                title = { Defects Dataset },
         | 
| 53 | 
            +
                type = { Open Source Dataset },
         | 
| 54 | 
            +
                author = { Diplom },
         | 
| 55 | 
            +
                howpublished = { \\url{ https://universe.roboflow.com/diplom-qz7q6/defects-2q87r } },
         | 
| 56 | 
            +
                url = { https://universe.roboflow.com/diplom-qz7q6/defects-2q87r },
         | 
| 57 | 
            +
                journal = { Roboflow Universe },
         | 
| 58 | 
            +
                publisher = { Roboflow },
         | 
| 59 | 
            +
                year = { 2023 },
         | 
| 60 | 
            +
                month = { jan },
         | 
| 61 | 
            +
                note = { visited on 2023-01-27 },
         | 
| 62 | 
            +
            }
         | 
| 63 | 
            +
            ```
         | 
| 64 | 
            +
             | 
| 65 | 
            +
            ### License
         | 
| 66 | 
            +
            CC BY 4.0
         | 
| 67 | 
            +
             | 
| 68 | 
            +
            ### Dataset Summary
         | 
| 69 | 
            +
            This dataset was exported via roboflow.com on January 27, 2023 at 1:45 PM GMT
         | 
| 70 | 
            +
             | 
| 71 | 
            +
            Roboflow is an end-to-end computer vision platform that helps you
         | 
| 72 | 
            +
            * collaborate with your team on computer vision projects
         | 
| 73 | 
            +
            * collect & organize images
         | 
| 74 | 
            +
            * understand and search unstructured image data
         | 
| 75 | 
            +
            * annotate, and create datasets
         | 
| 76 | 
            +
            * export, train, and deploy computer vision models
         | 
| 77 | 
            +
            * use active learning to improve your dataset over time
         | 
| 78 | 
            +
             | 
| 79 | 
            +
            For state of the art Computer Vision training notebooks you can use with this dataset,
         | 
| 80 | 
            +
            visit https://github.com/roboflow/notebooks
         | 
| 81 | 
            +
             | 
| 82 | 
            +
            To find over 100k other datasets and pre-trained models, visit https://universe.roboflow.com
         | 
| 83 | 
            +
             | 
| 84 | 
            +
            The dataset includes 189 images.
         | 
| 85 | 
            +
            Defect are annotated in COCO format.
         | 
| 86 | 
            +
             | 
| 87 | 
            +
            The following pre-processing was applied to each image:
         | 
| 88 | 
            +
             | 
| 89 | 
            +
            No image augmentation techniques were applied.
         | 
| 90 | 
            +
             | 
| 91 | 
            +
             | 
| 92 | 
            +
             | 
    	
        README.roboflow.txt
    ADDED
    
    | @@ -0,0 +1,27 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
             | 
| 2 | 
            +
            Defects - v8 Set_4
         | 
| 3 | 
            +
            ==============================
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            This dataset was exported via roboflow.com on January 27, 2023 at 1:45 PM GMT
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            Roboflow is an end-to-end computer vision platform that helps you
         | 
| 8 | 
            +
            * collaborate with your team on computer vision projects
         | 
| 9 | 
            +
            * collect & organize images
         | 
| 10 | 
            +
            * understand and search unstructured image data
         | 
| 11 | 
            +
            * annotate, and create datasets
         | 
| 12 | 
            +
            * export, train, and deploy computer vision models
         | 
| 13 | 
            +
            * use active learning to improve your dataset over time
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            For state of the art Computer Vision training notebooks you can use with this dataset,
         | 
| 16 | 
            +
            visit https://github.com/roboflow/notebooks
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            To find over 100k other datasets and pre-trained models, visit https://universe.roboflow.com
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            The dataset includes 189 images.
         | 
| 21 | 
            +
            Defect are annotated in COCO format.
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            The following pre-processing was applied to each image:
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            No image augmentation techniques were applied.
         | 
| 26 | 
            +
             | 
| 27 | 
            +
             | 
    	
        data/test.zip
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:fcbbfde72b63afe9883ea2240b23cd2a3eede24dab3ea150a28067c0c8bf653f
         | 
| 3 | 
            +
            size 1719625
         | 
    	
        data/train.zip
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:8408b23e4f5a3b07814680022795ab0c2c87e11f271e7359425ab705b5d0e66f
         | 
| 3 | 
            +
            size 6411968
         | 
    	
        data/valid-mini.zip
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:cf8c4a5792c92130109ee55eef43d2fcda6f3c66a990ef285ae1b54aae764c47
         | 
| 3 | 
            +
            size 154907
         | 
    	
        data/valid.zip
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:abd5cf5ff9e276f2362f34418b82c7c251dd655af70a9e1a6d8b2f5ab0c8461d
         | 
| 3 | 
            +
            size 1278204
         | 
    	
        pcb-defect-segmentation.py
    ADDED
    
    | @@ -0,0 +1,154 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import collections
         | 
| 2 | 
            +
            import json
         | 
| 3 | 
            +
            import os
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            import datasets
         | 
| 6 | 
            +
             | 
| 7 | 
            +
             | 
| 8 | 
            +
            _HOMEPAGE = "https://universe.roboflow.com/diplom-qz7q6/defects-2q87r/dataset/8"
         | 
| 9 | 
            +
            _LICENSE = "CC BY 4.0"
         | 
| 10 | 
            +
            _CITATION = """\
         | 
| 11 | 
            +
            @misc{ defects-2q87r_dataset,
         | 
| 12 | 
            +
                title = { Defects Dataset },
         | 
| 13 | 
            +
                type = { Open Source Dataset },
         | 
| 14 | 
            +
                author = { Diplom },
         | 
| 15 | 
            +
                howpublished = { \\url{ https://universe.roboflow.com/diplom-qz7q6/defects-2q87r } },
         | 
| 16 | 
            +
                url = { https://universe.roboflow.com/diplom-qz7q6/defects-2q87r },
         | 
| 17 | 
            +
                journal = { Roboflow Universe },
         | 
| 18 | 
            +
                publisher = { Roboflow },
         | 
| 19 | 
            +
                year = { 2023 },
         | 
| 20 | 
            +
                month = { jan },
         | 
| 21 | 
            +
                note = { visited on 2023-01-27 },
         | 
| 22 | 
            +
            }
         | 
| 23 | 
            +
            """
         | 
| 24 | 
            +
            _CATEGORIES = ['dry_joint', 'incorrect_installation', 'pcb_damage', 'short_circuit']
         | 
| 25 | 
            +
            _ANNOTATION_FILENAME = "_annotations.coco.json"
         | 
| 26 | 
            +
             | 
| 27 | 
            +
             | 
| 28 | 
            +
            class PCBDEFECTSEGMENTATIONConfig(datasets.BuilderConfig):
         | 
| 29 | 
            +
                """Builder Config for pcb-defect-segmentation"""
         | 
| 30 | 
            +
             | 
| 31 | 
            +
                def __init__(self, data_urls, **kwargs):
         | 
| 32 | 
            +
                    """
         | 
| 33 | 
            +
                    BuilderConfig for pcb-defect-segmentation.
         | 
| 34 | 
            +
             | 
| 35 | 
            +
                    Args:
         | 
| 36 | 
            +
                      data_urls: `dict`, name to url to download the zip file from.
         | 
| 37 | 
            +
                      **kwargs: keyword arguments forwarded to super.
         | 
| 38 | 
            +
                    """
         | 
| 39 | 
            +
                    super(PCBDEFECTSEGMENTATIONConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
         | 
| 40 | 
            +
                    self.data_urls = data_urls
         | 
| 41 | 
            +
             | 
| 42 | 
            +
             | 
| 43 | 
            +
            class PCBDEFECTSEGMENTATION(datasets.GeneratorBasedBuilder):
         | 
| 44 | 
            +
                """pcb-defect-segmentation instance segmentation dataset"""
         | 
| 45 | 
            +
             | 
| 46 | 
            +
                VERSION = datasets.Version("1.0.0")
         | 
| 47 | 
            +
                BUILDER_CONFIGS = [
         | 
| 48 | 
            +
                    PCBDEFECTSEGMENTATIONConfig(
         | 
| 49 | 
            +
                        name="full",
         | 
| 50 | 
            +
                        description="Full version of pcb-defect-segmentation dataset.",
         | 
| 51 | 
            +
                        data_urls={
         | 
| 52 | 
            +
                            "train": "https://huggingface.co/datasets/keremberke/pcb-defect-segmentation/resolve/main/data/train.zip",
         | 
| 53 | 
            +
                            "validation": "https://huggingface.co/datasets/keremberke/pcb-defect-segmentation/resolve/main/data/valid.zip",
         | 
| 54 | 
            +
                            "test": "https://huggingface.co/datasets/keremberke/pcb-defect-segmentation/resolve/main/data/test.zip",
         | 
| 55 | 
            +
                        },
         | 
| 56 | 
            +
                    ),
         | 
| 57 | 
            +
                    PCBDEFECTSEGMENTATIONConfig(
         | 
| 58 | 
            +
                        name="mini",
         | 
| 59 | 
            +
                        description="Mini version of pcb-defect-segmentation dataset.",
         | 
| 60 | 
            +
                        data_urls={
         | 
| 61 | 
            +
                            "train": "https://huggingface.co/datasets/keremberke/pcb-defect-segmentation/resolve/main/data/valid-mini.zip",
         | 
| 62 | 
            +
                            "validation": "https://huggingface.co/datasets/keremberke/pcb-defect-segmentation/resolve/main/data/valid-mini.zip",
         | 
| 63 | 
            +
                            "test": "https://huggingface.co/datasets/keremberke/pcb-defect-segmentation/resolve/main/data/valid-mini.zip",
         | 
| 64 | 
            +
                        },
         | 
| 65 | 
            +
                    )
         | 
| 66 | 
            +
                ]
         | 
| 67 | 
            +
             | 
| 68 | 
            +
                def _info(self):
         | 
| 69 | 
            +
                    features = datasets.Features(
         | 
| 70 | 
            +
                        {
         | 
| 71 | 
            +
                            "image_id": datasets.Value("int64"),
         | 
| 72 | 
            +
                            "image": datasets.Image(),
         | 
| 73 | 
            +
                            "width": datasets.Value("int32"),
         | 
| 74 | 
            +
                            "height": datasets.Value("int32"),
         | 
| 75 | 
            +
                            "objects": datasets.Sequence(
         | 
| 76 | 
            +
                                {
         | 
| 77 | 
            +
                                    "id": datasets.Value("int64"),
         | 
| 78 | 
            +
                                    "area": datasets.Value("int64"),
         | 
| 79 | 
            +
                                    "bbox": datasets.Sequence(datasets.Value("float32"), length=4),
         | 
| 80 | 
            +
                                    "segmentation": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))),
         | 
| 81 | 
            +
                                    "category": datasets.ClassLabel(names=_CATEGORIES),
         | 
| 82 | 
            +
                                }
         | 
| 83 | 
            +
                            ),
         | 
| 84 | 
            +
                        }
         | 
| 85 | 
            +
                    )
         | 
| 86 | 
            +
                    return datasets.DatasetInfo(
         | 
| 87 | 
            +
                        features=features,
         | 
| 88 | 
            +
                        homepage=_HOMEPAGE,
         | 
| 89 | 
            +
                        citation=_CITATION,
         | 
| 90 | 
            +
                        license=_LICENSE,
         | 
| 91 | 
            +
                    )
         | 
| 92 | 
            +
             | 
| 93 | 
            +
                def _split_generators(self, dl_manager):
         | 
| 94 | 
            +
                    data_files = dl_manager.download_and_extract(self.config.data_urls)
         | 
| 95 | 
            +
                    return [
         | 
| 96 | 
            +
                        datasets.SplitGenerator(
         | 
| 97 | 
            +
                            name=datasets.Split.TRAIN,
         | 
| 98 | 
            +
                            gen_kwargs={
         | 
| 99 | 
            +
                                "folder_dir": data_files["train"],
         | 
| 100 | 
            +
                            },
         | 
| 101 | 
            +
                        ),
         | 
| 102 | 
            +
                        datasets.SplitGenerator(
         | 
| 103 | 
            +
                            name=datasets.Split.VALIDATION,
         | 
| 104 | 
            +
                            gen_kwargs={
         | 
| 105 | 
            +
                                "folder_dir": data_files["validation"],
         | 
| 106 | 
            +
                            },
         | 
| 107 | 
            +
                        ),
         | 
| 108 | 
            +
                        datasets.SplitGenerator(
         | 
| 109 | 
            +
                            name=datasets.Split.TEST,
         | 
| 110 | 
            +
                            gen_kwargs={
         | 
| 111 | 
            +
                                "folder_dir": data_files["test"],
         | 
| 112 | 
            +
                            },
         | 
| 113 | 
            +
                        ),
         | 
| 114 | 
            +
            ]
         | 
| 115 | 
            +
             | 
| 116 | 
            +
                def _generate_examples(self, folder_dir):
         | 
| 117 | 
            +
                    def process_annot(annot, category_id_to_category):
         | 
| 118 | 
            +
                        return {
         | 
| 119 | 
            +
                            "id": annot["id"],
         | 
| 120 | 
            +
                            "area": annot["area"],
         | 
| 121 | 
            +
                            "bbox": annot["bbox"],
         | 
| 122 | 
            +
                            "segmentation": annot["segmentation"],
         | 
| 123 | 
            +
                            "category": category_id_to_category[annot["category_id"]],
         | 
| 124 | 
            +
                        }
         | 
| 125 | 
            +
             | 
| 126 | 
            +
                    image_id_to_image = {}
         | 
| 127 | 
            +
                    idx = 0
         | 
| 128 | 
            +
             | 
| 129 | 
            +
                    annotation_filepath = os.path.join(folder_dir, _ANNOTATION_FILENAME)
         | 
| 130 | 
            +
                    with open(annotation_filepath, "r") as f:
         | 
| 131 | 
            +
                        annotations = json.load(f)
         | 
| 132 | 
            +
                    category_id_to_category = {category["id"]: category["name"] for category in annotations["categories"]}
         | 
| 133 | 
            +
                    image_id_to_annotations = collections.defaultdict(list)
         | 
| 134 | 
            +
                    for annot in annotations["annotations"]:
         | 
| 135 | 
            +
                        image_id_to_annotations[annot["image_id"]].append(annot)
         | 
| 136 | 
            +
                    filename_to_image = {image["file_name"]: image for image in annotations["images"]}
         | 
| 137 | 
            +
             | 
| 138 | 
            +
                    for filename in os.listdir(folder_dir):
         | 
| 139 | 
            +
                        filepath = os.path.join(folder_dir, filename)
         | 
| 140 | 
            +
                        if filename in filename_to_image:
         | 
| 141 | 
            +
                            image = filename_to_image[filename]
         | 
| 142 | 
            +
                            objects = [
         | 
| 143 | 
            +
                                process_annot(annot, category_id_to_category) for annot in image_id_to_annotations[image["id"]]
         | 
| 144 | 
            +
                            ]
         | 
| 145 | 
            +
                            with open(filepath, "rb") as f:
         | 
| 146 | 
            +
                                image_bytes = f.read()
         | 
| 147 | 
            +
                            yield idx, {
         | 
| 148 | 
            +
                                "image_id": image["id"],
         | 
| 149 | 
            +
                                "image": {"path": filepath, "bytes": image_bytes},
         | 
| 150 | 
            +
                                "width": image["width"],
         | 
| 151 | 
            +
                                "height": image["height"],
         | 
| 152 | 
            +
                                "objects": objects,
         | 
| 153 | 
            +
                            }
         | 
| 154 | 
            +
                            idx += 1
         | 
    	
        split_name_to_num_samples.json
    ADDED
    
    | @@ -0,0 +1 @@ | |
|  | 
|  | |
| 1 | 
            +
            {"valid": 25, "train": 128, "test": 36}
         | 
    	
        thumbnail.jpg
    ADDED
    
    |   | 
| Git LFS Details
 | 
