nielsr HF Staff commited on
Commit
9b2ef5e
·
verified ·
1 Parent(s): 346410f

Refine dataset card and remove irrelevant tags

Browse files

This PR refines the dataset card by:

- Removing irrelevant `task_categories` (image-classification, text-classification, robotics).
- Adding a direct link to the GitHub repository for code and usage instructions.
- Clarifying the dataset description to emphasize its focus on RF-based UAV detection and identification.

Files changed (1) hide show
  1. README.md +32 -36
README.md CHANGED
@@ -1,36 +1,32 @@
1
- ---
2
- license: apache-2.0
3
- task_categories:
4
- - image-classification
5
- - text-classification
6
- - audio-classification
7
- - robotics
8
- language:
9
- - en
10
- - zh
11
- tags:
12
- - signal processing
13
- ---
14
-
15
-
16
- <h1 style="text-align:center;"> The RFUAV DATASET </h1>
17
-
18
- ## Abstract
19
-
20
- The official dataset repository for our paper, *"[RFUAV: A Benchmark Dataset for Unmanned Aerial Vehicle Detection and Identification](https://arxiv.org/abs/2503.09033)"*, can be accessed here. RFUAV offers a comprehensive benchmark dataset for Radio-Frequency (RF)-based drone detection and identification.
21
-
22
- ![pic.1](./abstract/profile.png)
23
-
24
- More detailed usage see our [GitHub](https://github.com/kitoweeknd/RFUAV)
25
-
26
- ## Citation
27
-
28
- @misc{shi2025rfuavbenchmarkdatasetunmanned,
29
- title={RFUAV: A Benchmark Dataset for Unmanned Aerial Vehicle Detection and Identification},
30
- author={Rui Shi and Xiaodong Yu and Shengming Wang and Yijia Zhang and Lu Xu and Peng Pan and Chunlai Ma},
31
- year={2025},
32
- eprint={2503.09033},
33
- archivePrefix={arXiv},
34
- primaryClass={cs.RO},
35
- url={https://arxiv.org/abs/2503.09033},
36
- }
 
1
+ ---
2
+ language:
3
+ - en
4
+ - zh
5
+ license: apache-2.0
6
+ task_categories:
7
+ - audio-classification
8
+ tags:
9
+ - signal-processing
10
+ - drone-detection
11
+ - drone-identification
12
+ - rf-signal
13
+ ---
14
+
15
+ <h1 style="text-align:center;"> The RFUAV DATASET </h1>
16
+
17
+ This repository contains the RFUAV dataset, presented in the paper "[RFUAV: A Benchmark Dataset for Unmanned Aerial Vehicle Detection and Identification](https://huggingface.co/papers/2503.09033)". RFUAV provides approximately 1.3 TB of raw frequency data collected from 37 distinct UAVs, offering a comprehensive benchmark for radio-frequency-based drone detection and identification. The dataset addresses limitations of existing datasets by providing a diverse range of drone types, sufficient data volume, coverage across various signal-to-noise ratios (SNR), and open-access evaluation tools.
18
+
19
+ For detailed usage instructions, preprocessing methods, model evaluation tools, and code examples, please refer to the [GitHub repository](https://github.com/kitoweeknd/RFUAV).
20
+
21
+
22
+ ## Citation
23
+
24
+ @misc{shi2025rfuavbenchmarkdatasetunmanned,
25
+ title={RFUAV: A Benchmark Dataset for Unmanned Aerial Vehicle Detection and Identification},
26
+ author={Rui Shi and Xiaodong Yu and Shengming Wang and Yijia Zhang and Lu Xu and Peng Pan and Chunlai Ma},
27
+ year={2025},
28
+ eprint={2503.09033},
29
+ archivePrefix={arXiv},
30
+ primaryClass={cs.RO},
31
+ url={https://arxiv.org/abs/2503.09033},
32
+ }