Upload airbench94.py with huggingface_hub
Browse files- airbench94.py +483 -0
airbench94.py
ADDED
|
@@ -0,0 +1,483 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Uncompiled variant of airbench94_compiled.py
|
| 2 |
+
# 3.83s runtime on an A100; 0.36 PFLOPs.
|
| 3 |
+
# Evidence: 94.01 average accuracy in n=1000 runs.
|
| 4 |
+
#
|
| 5 |
+
# We recorded the runtime of 3.83 seconds on an NVIDIA A100-SXM4-80GB with the following nvidia-smi:
|
| 6 |
+
# NVIDIA-SMI 515.105.01 Driver Version: 515.105.01 CUDA Version: 11.7
|
| 7 |
+
# torch.__version__ == '2.1.2+cu118'
|
| 8 |
+
|
| 9 |
+
#############################################
|
| 10 |
+
# Setup/Hyperparameters #
|
| 11 |
+
#############################################
|
| 12 |
+
|
| 13 |
+
import os
|
| 14 |
+
import sys
|
| 15 |
+
import uuid
|
| 16 |
+
from math import ceil
|
| 17 |
+
|
| 18 |
+
import torch
|
| 19 |
+
from torch import nn
|
| 20 |
+
import torch.nn.functional as F
|
| 21 |
+
import torchvision
|
| 22 |
+
import torchvision.transforms as T
|
| 23 |
+
|
| 24 |
+
torch.backends.cudnn.benchmark = True
|
| 25 |
+
|
| 26 |
+
# We express the main training hyperparameters (batch size, learning rate, momentum, and weight decay)
|
| 27 |
+
# in decoupled form, so that each one can be tuned independently. This accomplishes the following:
|
| 28 |
+
# * Assuming time-constant gradients, the average step size is decoupled from everything but the lr.
|
| 29 |
+
# * The size of the weight decay update is decoupled from everything but the wd.
|
| 30 |
+
# In constrast, normally when we increase the (Nesterov) momentum, this also scales up the step size
|
| 31 |
+
# proportionally to 1 + 1 / (1 - momentum), meaning we cannot change momentum without having to re-tune
|
| 32 |
+
# the learning rate. Similarly, normally when we increase the learning rate this also increases the size
|
| 33 |
+
# of the weight decay, requiring a proportional decrease in the wd to maintain the same decay strength.
|
| 34 |
+
#
|
| 35 |
+
# The practical impact is that hyperparameter tuning is faster, since this parametrization allows each
|
| 36 |
+
# one to be tuned independently. See https://myrtle.ai/learn/how-to-train-your-resnet-5-hyperparameters/.
|
| 37 |
+
|
| 38 |
+
hyp = {
|
| 39 |
+
'opt': {
|
| 40 |
+
'train_epochs': 9.9,
|
| 41 |
+
'batch_size': 1024,
|
| 42 |
+
'lr': 11.5, # learning rate per 1024 examples
|
| 43 |
+
'momentum': 0.85,
|
| 44 |
+
'weight_decay': 0.0153, # weight decay per 1024 examples (decoupled from learning rate)
|
| 45 |
+
'bias_scaler': 64.0, # scales up learning rate (but not weight decay) for BatchNorm biases
|
| 46 |
+
'label_smoothing': 0.2,
|
| 47 |
+
'whiten_bias_epochs': 3, # how many epochs to train the whitening layer bias before freezing
|
| 48 |
+
},
|
| 49 |
+
'aug': {
|
| 50 |
+
'flip': True,
|
| 51 |
+
'translate': 2,
|
| 52 |
+
},
|
| 53 |
+
'net': {
|
| 54 |
+
'widths': {
|
| 55 |
+
'block1': 64,
|
| 56 |
+
'block2': 256,
|
| 57 |
+
'block3': 256,
|
| 58 |
+
},
|
| 59 |
+
'batchnorm_momentum': 0.6,
|
| 60 |
+
'scaling_factor': 1/9,
|
| 61 |
+
'tta_level': 2, # the level of test-time augmentation: 0=none, 1=mirror, 2=mirror+translate
|
| 62 |
+
},
|
| 63 |
+
}
|
| 64 |
+
|
| 65 |
+
#############################################
|
| 66 |
+
# DataLoader #
|
| 67 |
+
#############################################
|
| 68 |
+
|
| 69 |
+
CIFAR_MEAN = torch.tensor((0.4914, 0.4822, 0.4465))
|
| 70 |
+
CIFAR_STD = torch.tensor((0.2470, 0.2435, 0.2616))
|
| 71 |
+
|
| 72 |
+
def batch_flip_lr(inputs):
|
| 73 |
+
flip_mask = (torch.rand(len(inputs), device=inputs.device) < 0.5).view(-1, 1, 1, 1)
|
| 74 |
+
return torch.where(flip_mask, inputs.flip(-1), inputs)
|
| 75 |
+
|
| 76 |
+
def batch_crop(images, crop_size):
|
| 77 |
+
r = (images.size(-1) - crop_size)//2
|
| 78 |
+
shifts = torch.randint(-r, r+1, size=(len(images), 2), device=images.device)
|
| 79 |
+
images_out = torch.empty((len(images), 3, crop_size, crop_size), device=images.device, dtype=images.dtype)
|
| 80 |
+
# The two cropping methods in this if-else produce equivalent results, but the second is faster for r > 2.
|
| 81 |
+
if r <= 2:
|
| 82 |
+
for sy in range(-r, r+1):
|
| 83 |
+
for sx in range(-r, r+1):
|
| 84 |
+
mask = (shifts[:, 0] == sy) & (shifts[:, 1] == sx)
|
| 85 |
+
images_out[mask] = images[mask, :, r+sy:r+sy+crop_size, r+sx:r+sx+crop_size]
|
| 86 |
+
else:
|
| 87 |
+
images_tmp = torch.empty((len(images), 3, crop_size, crop_size+2*r), device=images.device, dtype=images.dtype)
|
| 88 |
+
for s in range(-r, r+1):
|
| 89 |
+
mask = (shifts[:, 0] == s)
|
| 90 |
+
images_tmp[mask] = images[mask, :, r+s:r+s+crop_size, :]
|
| 91 |
+
for s in range(-r, r+1):
|
| 92 |
+
mask = (shifts[:, 1] == s)
|
| 93 |
+
images_out[mask] = images_tmp[mask, :, :, r+s:r+s+crop_size]
|
| 94 |
+
return images_out
|
| 95 |
+
|
| 96 |
+
class CifarLoader:
|
| 97 |
+
|
| 98 |
+
def __init__(self, path, train=True, batch_size=500, aug=None, drop_last=None, shuffle=None, gpu=0):
|
| 99 |
+
data_path = os.path.join(path, 'train.pt' if train else 'test.pt')
|
| 100 |
+
if not os.path.exists(data_path):
|
| 101 |
+
dset = torchvision.datasets.CIFAR10(path, download=True, train=train)
|
| 102 |
+
images = torch.tensor(dset.data)
|
| 103 |
+
labels = torch.tensor(dset.targets)
|
| 104 |
+
torch.save({'images': images, 'labels': labels, 'classes': dset.classes}, data_path)
|
| 105 |
+
|
| 106 |
+
data = torch.load(data_path, map_location=torch.device(gpu))
|
| 107 |
+
self.images, self.labels, self.classes = data['images'], data['labels'], data['classes']
|
| 108 |
+
# It's faster to load+process uint8 data than to load preprocessed fp16 data
|
| 109 |
+
self.images = (self.images.half() / 255).permute(0, 3, 1, 2).to(memory_format=torch.channels_last)
|
| 110 |
+
|
| 111 |
+
self.normalize = T.Normalize(CIFAR_MEAN, CIFAR_STD)
|
| 112 |
+
self.proc_images = {} # Saved results of image processing to be done on the first epoch
|
| 113 |
+
self.epoch = 0
|
| 114 |
+
|
| 115 |
+
self.aug = aug or {}
|
| 116 |
+
for k in self.aug.keys():
|
| 117 |
+
assert k in ['flip', 'translate'], 'Unrecognized key: %s' % k
|
| 118 |
+
|
| 119 |
+
self.batch_size = batch_size
|
| 120 |
+
self.drop_last = train if drop_last is None else drop_last
|
| 121 |
+
self.shuffle = train if shuffle is None else shuffle
|
| 122 |
+
|
| 123 |
+
def __len__(self):
|
| 124 |
+
return len(self.images)//self.batch_size if self.drop_last else ceil(len(self.images)/self.batch_size)
|
| 125 |
+
|
| 126 |
+
def __iter__(self):
|
| 127 |
+
|
| 128 |
+
if self.epoch == 0:
|
| 129 |
+
images = self.proc_images['norm'] = self.normalize(self.images)
|
| 130 |
+
# Pre-flip images in order to do every-other epoch flipping scheme
|
| 131 |
+
if self.aug.get('flip', False):
|
| 132 |
+
images = self.proc_images['flip'] = batch_flip_lr(images)
|
| 133 |
+
# Pre-pad images to save time when doing random translation
|
| 134 |
+
pad = self.aug.get('translate', 0)
|
| 135 |
+
if pad > 0:
|
| 136 |
+
self.proc_images['pad'] = F.pad(images, (pad,)*4, 'reflect')
|
| 137 |
+
|
| 138 |
+
if self.aug.get('translate', 0) > 0:
|
| 139 |
+
images = batch_crop(self.proc_images['pad'], self.images.shape[-2])
|
| 140 |
+
elif self.aug.get('flip', False):
|
| 141 |
+
images = self.proc_images['flip']
|
| 142 |
+
else:
|
| 143 |
+
images = self.proc_images['norm']
|
| 144 |
+
# Flip all images together every other epoch. This increases diversity relative to random flipping
|
| 145 |
+
if self.aug.get('flip', False):
|
| 146 |
+
if self.epoch % 2 == 1:
|
| 147 |
+
images = images.flip(-1)
|
| 148 |
+
|
| 149 |
+
self.epoch += 1
|
| 150 |
+
|
| 151 |
+
indices = (torch.randperm if self.shuffle else torch.arange)(len(images), device=images.device)
|
| 152 |
+
for i in range(len(self)):
|
| 153 |
+
idxs = indices[i*self.batch_size:(i+1)*self.batch_size]
|
| 154 |
+
yield (images[idxs], self.labels[idxs])
|
| 155 |
+
|
| 156 |
+
#############################################
|
| 157 |
+
# Network Components #
|
| 158 |
+
#############################################
|
| 159 |
+
|
| 160 |
+
class Flatten(nn.Module):
|
| 161 |
+
def forward(self, x):
|
| 162 |
+
return x.view(x.size(0), -1)
|
| 163 |
+
|
| 164 |
+
class Mul(nn.Module):
|
| 165 |
+
def __init__(self, scale):
|
| 166 |
+
super().__init__()
|
| 167 |
+
self.scale = scale
|
| 168 |
+
def forward(self, x):
|
| 169 |
+
return x * self.scale
|
| 170 |
+
|
| 171 |
+
class BatchNorm(nn.BatchNorm2d):
|
| 172 |
+
def __init__(self, num_features, momentum, eps=1e-12,
|
| 173 |
+
weight=False, bias=True):
|
| 174 |
+
super().__init__(num_features, eps=eps, momentum=1-momentum)
|
| 175 |
+
self.weight.requires_grad = weight
|
| 176 |
+
self.bias.requires_grad = bias
|
| 177 |
+
# Note that PyTorch already initializes the weights to one and bias to zero
|
| 178 |
+
|
| 179 |
+
class Conv(nn.Conv2d):
|
| 180 |
+
def __init__(self, in_channels, out_channels, kernel_size=3, padding='same', bias=False):
|
| 181 |
+
super().__init__(in_channels, out_channels, kernel_size=kernel_size, padding=padding, bias=bias)
|
| 182 |
+
|
| 183 |
+
def reset_parameters(self):
|
| 184 |
+
super().reset_parameters()
|
| 185 |
+
if self.bias is not None:
|
| 186 |
+
self.bias.data.zero_()
|
| 187 |
+
w = self.weight.data
|
| 188 |
+
torch.nn.init.dirac_(w[:w.size(1)])
|
| 189 |
+
|
| 190 |
+
class ConvGroup(nn.Module):
|
| 191 |
+
def __init__(self, channels_in, channels_out, batchnorm_momentum):
|
| 192 |
+
super().__init__()
|
| 193 |
+
self.conv1 = Conv(channels_in, channels_out)
|
| 194 |
+
self.pool = nn.MaxPool2d(2)
|
| 195 |
+
self.norm1 = BatchNorm(channels_out, batchnorm_momentum)
|
| 196 |
+
self.conv2 = Conv(channels_out, channels_out)
|
| 197 |
+
self.norm2 = BatchNorm(channels_out, batchnorm_momentum)
|
| 198 |
+
self.activ = nn.GELU()
|
| 199 |
+
|
| 200 |
+
def forward(self, x):
|
| 201 |
+
x = self.conv1(x)
|
| 202 |
+
x = self.pool(x)
|
| 203 |
+
x = self.norm1(x)
|
| 204 |
+
x = self.activ(x)
|
| 205 |
+
x = self.conv2(x)
|
| 206 |
+
x = self.norm2(x)
|
| 207 |
+
x = self.activ(x)
|
| 208 |
+
return x
|
| 209 |
+
|
| 210 |
+
#############################################
|
| 211 |
+
# Network Definition #
|
| 212 |
+
#############################################
|
| 213 |
+
|
| 214 |
+
def make_net():
|
| 215 |
+
widths = hyp['net']['widths']
|
| 216 |
+
batchnorm_momentum = hyp['net']['batchnorm_momentum']
|
| 217 |
+
whiten_kernel_size = 2
|
| 218 |
+
whiten_width = 2 * 3 * whiten_kernel_size**2
|
| 219 |
+
net = nn.Sequential(
|
| 220 |
+
Conv(3, whiten_width, whiten_kernel_size, padding=0, bias=True),
|
| 221 |
+
nn.GELU(),
|
| 222 |
+
ConvGroup(whiten_width, widths['block1'], batchnorm_momentum),
|
| 223 |
+
ConvGroup(widths['block1'], widths['block2'], batchnorm_momentum),
|
| 224 |
+
ConvGroup(widths['block2'], widths['block3'], batchnorm_momentum),
|
| 225 |
+
nn.MaxPool2d(3),
|
| 226 |
+
Flatten(),
|
| 227 |
+
nn.Linear(widths['block3'], 10, bias=False),
|
| 228 |
+
Mul(hyp['net']['scaling_factor']),
|
| 229 |
+
)
|
| 230 |
+
net[0].weight.requires_grad = False
|
| 231 |
+
net = net.half().cuda()
|
| 232 |
+
net = net.to(memory_format=torch.channels_last)
|
| 233 |
+
for mod in net.modules():
|
| 234 |
+
if isinstance(mod, BatchNorm):
|
| 235 |
+
mod.float()
|
| 236 |
+
return net
|
| 237 |
+
|
| 238 |
+
#############################################
|
| 239 |
+
# Whitening Conv Initialization #
|
| 240 |
+
#############################################
|
| 241 |
+
|
| 242 |
+
def get_patches(x, patch_shape):
|
| 243 |
+
c, (h, w) = x.shape[1], patch_shape
|
| 244 |
+
return x.unfold(2,h,1).unfold(3,w,1).transpose(1,3).reshape(-1,c,h,w).float()
|
| 245 |
+
|
| 246 |
+
def get_whitening_parameters(patches):
|
| 247 |
+
n,c,h,w = patches.shape
|
| 248 |
+
patches_flat = patches.view(n, -1)
|
| 249 |
+
est_patch_covariance = (patches_flat.T @ patches_flat) / n
|
| 250 |
+
eigenvalues, eigenvectors = torch.linalg.eigh(est_patch_covariance, UPLO='U')
|
| 251 |
+
return eigenvalues.flip(0).view(-1, 1, 1, 1), eigenvectors.T.reshape(c*h*w,c,h,w).flip(0)
|
| 252 |
+
|
| 253 |
+
def init_whitening_conv(layer, train_set, eps=5e-4):
|
| 254 |
+
patches = get_patches(train_set, patch_shape=layer.weight.data.shape[2:])
|
| 255 |
+
eigenvalues, eigenvectors = get_whitening_parameters(patches)
|
| 256 |
+
eigenvectors_scaled = eigenvectors / torch.sqrt(eigenvalues + eps)
|
| 257 |
+
layer.weight.data[:] = torch.cat((eigenvectors_scaled, -eigenvectors_scaled))
|
| 258 |
+
|
| 259 |
+
############################################
|
| 260 |
+
# Lookahead #
|
| 261 |
+
############################################
|
| 262 |
+
|
| 263 |
+
class LookaheadState:
|
| 264 |
+
def __init__(self, net):
|
| 265 |
+
self.net_ema = {k: v.clone() for k, v in net.state_dict().items()}
|
| 266 |
+
|
| 267 |
+
def update(self, net, decay):
|
| 268 |
+
for ema_param, net_param in zip(self.net_ema.values(), net.state_dict().values()):
|
| 269 |
+
if net_param.dtype in (torch.half, torch.float):
|
| 270 |
+
ema_param.lerp_(net_param, 1-decay)
|
| 271 |
+
net_param.copy_(ema_param)
|
| 272 |
+
|
| 273 |
+
############################################
|
| 274 |
+
# Logging #
|
| 275 |
+
############################################
|
| 276 |
+
|
| 277 |
+
def print_columns(columns_list, is_head=False, is_final_entry=False):
|
| 278 |
+
print_string = ''
|
| 279 |
+
for col in columns_list:
|
| 280 |
+
print_string += '| %s ' % col
|
| 281 |
+
print_string += '|'
|
| 282 |
+
if is_head:
|
| 283 |
+
print('-'*len(print_string))
|
| 284 |
+
print(print_string)
|
| 285 |
+
if is_head or is_final_entry:
|
| 286 |
+
print('-'*len(print_string))
|
| 287 |
+
|
| 288 |
+
logging_columns_list = ['run ', 'epoch', 'train_loss', 'train_acc', 'val_acc', 'tta_val_acc', 'total_time_seconds']
|
| 289 |
+
def print_training_details(variables, is_final_entry):
|
| 290 |
+
formatted = []
|
| 291 |
+
for col in logging_columns_list:
|
| 292 |
+
var = variables.get(col.strip(), None)
|
| 293 |
+
if type(var) in (int, str):
|
| 294 |
+
res = str(var)
|
| 295 |
+
elif type(var) is float:
|
| 296 |
+
res = '{:0.4f}'.format(var)
|
| 297 |
+
else:
|
| 298 |
+
assert var is None
|
| 299 |
+
res = ''
|
| 300 |
+
formatted.append(res.rjust(len(col)))
|
| 301 |
+
print_columns(formatted, is_final_entry=is_final_entry)
|
| 302 |
+
|
| 303 |
+
############################################
|
| 304 |
+
# Evaluation #
|
| 305 |
+
############################################
|
| 306 |
+
|
| 307 |
+
def infer(model, loader, tta_level=0):
|
| 308 |
+
|
| 309 |
+
# Test-time augmentation strategy (for tta_level=2):
|
| 310 |
+
# 1. Flip/mirror the image left-to-right (50% of the time).
|
| 311 |
+
# 2. Translate the image by one pixel either up-and-left or down-and-right (50% of the time,
|
| 312 |
+
# i.e. both happen 25% of the time).
|
| 313 |
+
#
|
| 314 |
+
# This creates 6 views per image (left/right times the two translations and no-translation),
|
| 315 |
+
# which we evaluate and then weight according to the given probabilities.
|
| 316 |
+
|
| 317 |
+
def infer_basic(inputs, net):
|
| 318 |
+
return net(inputs).clone()
|
| 319 |
+
|
| 320 |
+
def infer_mirror(inputs, net):
|
| 321 |
+
return 0.5 * net(inputs) + 0.5 * net(inputs.flip(-1))
|
| 322 |
+
|
| 323 |
+
def infer_mirror_translate(inputs, net):
|
| 324 |
+
logits = infer_mirror(inputs, net)
|
| 325 |
+
pad = 1
|
| 326 |
+
padded_inputs = F.pad(inputs, (pad,)*4, 'reflect')
|
| 327 |
+
inputs_translate_list = [
|
| 328 |
+
padded_inputs[:, :, 0:32, 0:32],
|
| 329 |
+
padded_inputs[:, :, 2:34, 2:34],
|
| 330 |
+
]
|
| 331 |
+
logits_translate_list = [infer_mirror(inputs_translate, net)
|
| 332 |
+
for inputs_translate in inputs_translate_list]
|
| 333 |
+
logits_translate = torch.stack(logits_translate_list).mean(0)
|
| 334 |
+
return 0.5 * logits + 0.5 * logits_translate
|
| 335 |
+
|
| 336 |
+
model.eval()
|
| 337 |
+
test_images = loader.normalize(loader.images)
|
| 338 |
+
infer_fn = [infer_basic, infer_mirror, infer_mirror_translate][tta_level]
|
| 339 |
+
with torch.no_grad():
|
| 340 |
+
return torch.cat([infer_fn(inputs, model) for inputs in test_images.split(2000)])
|
| 341 |
+
|
| 342 |
+
def evaluate(model, loader, tta_level=0):
|
| 343 |
+
logits = infer(model, loader, tta_level)
|
| 344 |
+
return (logits.argmax(1) == loader.labels).float().mean().item()
|
| 345 |
+
|
| 346 |
+
############################################
|
| 347 |
+
# Training #
|
| 348 |
+
############################################
|
| 349 |
+
|
| 350 |
+
def main(run):
|
| 351 |
+
|
| 352 |
+
batch_size = hyp['opt']['batch_size']
|
| 353 |
+
epochs = hyp['opt']['train_epochs']
|
| 354 |
+
momentum = hyp['opt']['momentum']
|
| 355 |
+
# Assuming gradients are constant in time, for Nesterov momentum, the below ratio is how much
|
| 356 |
+
# larger the default steps will be than the underlying per-example gradients. We divide the
|
| 357 |
+
# learning rate by this ratio in order to ensure steps are the same scale as gradients, regardless
|
| 358 |
+
# of the choice of momentum.
|
| 359 |
+
kilostep_scale = 1024 * (1 + 1 / (1 - momentum))
|
| 360 |
+
lr = hyp['opt']['lr'] / kilostep_scale # un-decoupled learning rate for PyTorch SGD
|
| 361 |
+
wd = hyp['opt']['weight_decay'] * batch_size / kilostep_scale
|
| 362 |
+
lr_biases = lr * hyp['opt']['bias_scaler']
|
| 363 |
+
|
| 364 |
+
loss_fn = nn.CrossEntropyLoss(label_smoothing=hyp['opt']['label_smoothing'], reduction='none')
|
| 365 |
+
test_loader = CifarLoader('cifar10', train=False, batch_size=2000)
|
| 366 |
+
train_loader = CifarLoader('cifar10', train=True, batch_size=batch_size, aug=hyp['aug'])
|
| 367 |
+
if run == 'warmup':
|
| 368 |
+
# The only purpose of the first run is to warmup, so we can use dummy data
|
| 369 |
+
train_loader.labels = torch.randint(0, 10, size=(len(train_loader.labels),), device=train_loader.labels.device)
|
| 370 |
+
total_train_steps = ceil(len(train_loader) * epochs)
|
| 371 |
+
|
| 372 |
+
model = make_net()
|
| 373 |
+
current_steps = 0
|
| 374 |
+
|
| 375 |
+
norm_biases = [p for k, p in model.named_parameters() if 'norm' in k and p.requires_grad]
|
| 376 |
+
other_params = [p for k, p in model.named_parameters() if 'norm' not in k and p.requires_grad]
|
| 377 |
+
param_configs = [dict(params=norm_biases, lr=lr_biases, weight_decay=wd/lr_biases),
|
| 378 |
+
dict(params=other_params, lr=lr, weight_decay=wd/lr)]
|
| 379 |
+
optimizer = torch.optim.SGD(param_configs, momentum=momentum, nesterov=True)
|
| 380 |
+
|
| 381 |
+
def get_lr(step):
|
| 382 |
+
warmup_steps = int(total_train_steps * 0.23)
|
| 383 |
+
warmdown_steps = total_train_steps - warmup_steps
|
| 384 |
+
if step < warmup_steps:
|
| 385 |
+
frac = step / warmup_steps
|
| 386 |
+
return 0.2 * (1 - frac) + 1.0 * frac
|
| 387 |
+
else:
|
| 388 |
+
frac = (step - warmup_steps) / warmdown_steps
|
| 389 |
+
return 1.0 * (1 - frac) + 0.07 * frac
|
| 390 |
+
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, get_lr)
|
| 391 |
+
|
| 392 |
+
alpha_schedule = 0.95**5 * (torch.arange(total_train_steps+1) / total_train_steps)**3
|
| 393 |
+
lookahead_state = LookaheadState(model)
|
| 394 |
+
|
| 395 |
+
# For accurately timing GPU code
|
| 396 |
+
starter = torch.cuda.Event(enable_timing=True)
|
| 397 |
+
ender = torch.cuda.Event(enable_timing=True)
|
| 398 |
+
total_time_seconds = 0.0
|
| 399 |
+
|
| 400 |
+
# Initialize the whitening layer using training images
|
| 401 |
+
starter.record()
|
| 402 |
+
train_images = train_loader.normalize(train_loader.images[:5000])
|
| 403 |
+
init_whitening_conv(model[0], train_images)
|
| 404 |
+
ender.record()
|
| 405 |
+
torch.cuda.synchronize()
|
| 406 |
+
total_time_seconds += 1e-3 * starter.elapsed_time(ender)
|
| 407 |
+
|
| 408 |
+
for epoch in range(ceil(epochs)):
|
| 409 |
+
|
| 410 |
+
model[0].bias.requires_grad = (epoch < hyp['opt']['whiten_bias_epochs'])
|
| 411 |
+
|
| 412 |
+
####################
|
| 413 |
+
# Training #
|
| 414 |
+
####################
|
| 415 |
+
|
| 416 |
+
starter.record()
|
| 417 |
+
|
| 418 |
+
model.train()
|
| 419 |
+
for inputs, labels in train_loader:
|
| 420 |
+
|
| 421 |
+
outputs = model(inputs)
|
| 422 |
+
loss = loss_fn(outputs, labels).sum()
|
| 423 |
+
optimizer.zero_grad(set_to_none=True)
|
| 424 |
+
loss.backward()
|
| 425 |
+
optimizer.step()
|
| 426 |
+
scheduler.step()
|
| 427 |
+
|
| 428 |
+
current_steps += 1
|
| 429 |
+
|
| 430 |
+
if current_steps % 5 == 0:
|
| 431 |
+
lookahead_state.update(model, decay=alpha_schedule[current_steps].item())
|
| 432 |
+
|
| 433 |
+
if current_steps >= total_train_steps:
|
| 434 |
+
if lookahead_state is not None:
|
| 435 |
+
lookahead_state.update(model, decay=1.0)
|
| 436 |
+
break
|
| 437 |
+
|
| 438 |
+
ender.record()
|
| 439 |
+
torch.cuda.synchronize()
|
| 440 |
+
total_time_seconds += 1e-3 * starter.elapsed_time(ender)
|
| 441 |
+
|
| 442 |
+
####################
|
| 443 |
+
# Evaluation #
|
| 444 |
+
####################
|
| 445 |
+
|
| 446 |
+
# Save the accuracy and loss from the last training batch of the epoch
|
| 447 |
+
train_acc = (outputs.detach().argmax(1) == labels).float().mean().item()
|
| 448 |
+
train_loss = loss.item() / batch_size
|
| 449 |
+
val_acc = evaluate(model, test_loader, tta_level=0)
|
| 450 |
+
print_training_details(locals(), is_final_entry=False)
|
| 451 |
+
run = None # Only print the run number once
|
| 452 |
+
|
| 453 |
+
####################
|
| 454 |
+
# TTA Evaluation #
|
| 455 |
+
####################
|
| 456 |
+
|
| 457 |
+
starter.record()
|
| 458 |
+
tta_val_acc = evaluate(model, test_loader, tta_level=hyp['net']['tta_level'])
|
| 459 |
+
ender.record()
|
| 460 |
+
torch.cuda.synchronize()
|
| 461 |
+
total_time_seconds += 1e-3 * starter.elapsed_time(ender)
|
| 462 |
+
|
| 463 |
+
epoch = 'eval'
|
| 464 |
+
print_training_details(locals(), is_final_entry=True)
|
| 465 |
+
|
| 466 |
+
return tta_val_acc
|
| 467 |
+
|
| 468 |
+
if __name__ == "__main__":
|
| 469 |
+
with open(sys.argv[0]) as f:
|
| 470 |
+
code = f.read()
|
| 471 |
+
|
| 472 |
+
print_columns(logging_columns_list, is_head=True)
|
| 473 |
+
#main('warmup')
|
| 474 |
+
accs = torch.tensor([main(run) for run in range(25)])
|
| 475 |
+
print('Mean: %.4f Std: %.4f' % (accs.mean(), accs.std()))
|
| 476 |
+
|
| 477 |
+
log = {'code': code, 'accs': accs}
|
| 478 |
+
log_dir = os.path.join('logs', str(uuid.uuid4()))
|
| 479 |
+
os.makedirs(log_dir, exist_ok=True)
|
| 480 |
+
log_path = os.path.join(log_dir, 'log.pt')
|
| 481 |
+
print(os.path.abspath(log_path))
|
| 482 |
+
torch.save(log, os.path.join(log_dir, 'log.pt'))
|
| 483 |
+
|