leonelgv's picture
πŸ“ Add comprehensive dataset documentation and metadata
211c624 verified
|
raw
history blame
17.6 kB
---
license: cc-by-4.0
task_categories:
- image-classification
- computer-vision
language:
- en
tags:
- insects
- pollinators
- biodiversity
- ecology
- conservation
- entomology
- computer-vision
- image-classification
- lepidoptera
- hymenoptera
- coleoptera
- diptera
pretty_name: Pollinator Insects Dataset
size_categories:
- 1K<n<10K
viewer: true
configs:
- config_name: default
data_files:
- split: train
path: "data/train.csv"
- split: validation
path: "data/validation.csv"
- split: test
path: "data/test.csv"
dataset_info:
features:
- name: image_path
dtype: string
- name: image_filename
dtype: string
- name: split
dtype: string
- name: label
dtype: class_label
names:
0: Acmaeodera flavomarginata
1: Acromyrmex octospinosus
2: Adelpha basiloides
3: Adelpha iphicleola
4: Aedes aegypti
5: Agrius cingulata
6: Anaea aidea
7: Anartia fatima
8: Anartia jatrophae
9: Anoplolepis gracilipes
- name: scientific_name
dtype: string
- name: common_name
dtype: string
- name: family
dtype: string
- name: order
dtype: string
- name: pollinator_type
dtype: string
- name: habitat
dtype: string
- name: geographic_range
dtype: string
- name: conservation_status
dtype: string
- name: image_width
dtype: int32
- name: image_height
dtype: int32
- name: image_mode
dtype: string
- name: file_size_bytes
dtype: int64
splits:
- name: train
num_examples: 1443
- name: validation
num_examples: 206
- name: test
num_examples: 414
---
# Pollinator Insects Dataset πŸ¦‹
<div align="center">
![Dataset Size](https://img.shields.io/badge/Images-2,063-blue?style=flat-square)
![Classes](https://img.shields.io/badge/Classes-10-green?style=flat-square)
![License](https://img.shields.io/badge/License-CC--BY--4.0-yellow?style=flat-square)
![Size](https://img.shields.io/badge/Size-0.18GB-red?style=flat-square)
**Comprehensive dataset of 10 pollinator insect species for computer vision and biodiversity research**
[πŸ€– Trained Model](https://huggingface.co/leonelgv/pollinator-classifier) β€’ [πŸ“Š Dataset Viewer](https://huggingface.co/datasets/leonelgv/pollinator-insects-dataset/viewer) β€’ [πŸ“– Repository](https://github.com/l3onet/pollinator-classifier)
</div>
## Dataset Description
The **Pollinator Insects Dataset** is a curated collection of **2,063 high-resolution images** representing **10 ecologically important pollinator species**. This dataset was specifically designed for:
- πŸ”¬ **Biodiversity research** and species monitoring
- πŸ€– **Computer vision** model development
- 🌱 **Conservation biology** applications
- πŸ“± **Citizen science** and educational tools
- πŸ“Š **Ecological modeling** and analysis
### Key Features
- πŸ¦‹ **10 species** from 4 major insect orders
- πŸ“Έ **2,063 images** with natural variation in pose, lighting, and background
- 🏷️ **Rich metadata** including taxonomy, ecology, and conservation status
- βš–οΈ **Balanced distribution** across species and data splits
- πŸ“Š **Ready-to-use splits** (69.9% train, 10.0% validation, 20.1% test)
- πŸ” **Quality controlled** with expert validation
- πŸ“ **High resolution** (avg: 454Γ—427 pixels)
## Species Information
| ID | Scientific Name | Common Name | Family | Order | Pollinator Type |
|----|-----------------|-------------|---------|-------|-----------------|
| 0 | *Acmaeodera flavomarginata* | Flat-headed borer | Buprestidae | Coleoptera | Secondary pollinator |
| 1 | *Acromyrmex octospinosus* | Leafcutter ant | Formicidae | Hymenoptera | Indirect pollinator |
| 2 | *Adelpha basiloides* | Sister butterfly | Nymphalidae | Lepidoptera | Primary pollinator |
| 3 | *Adelpha iphicleola* | Sister butterfly | Nymphalidae | Lepidoptera | Primary pollinator |
| 4 | *Aedes aegypti* | Yellow fever mosquito | Culicidae | Diptera | Occasional pollinator |
| 5 | *Agrius cingulata* | Pink-spotted hawkmoth | Sphingidae | Lepidoptera | Specialized night pollinator |
| 6 | *Anaea aidea* | Tropical leafwing | Nymphalidae | Lepidoptera | Primary pollinator |
| 7 | *Anartia fatima* | Banded peacock | Nymphalidae | Lepidoptera | Primary pollinator |
| 8 | *Anartia jatrophae* | White peacock | Nymphalidae | Lepidoptera | Primary pollinator |
| 9 | *Anoplolepis gracilipes* | Yellow crazy ant | Formicidae | Hymenoptera | Indirect pollinator |
<details>
<summary><b>πŸ”¬ Detailed Taxonomic Information</b></summary>
### 0. *Acmaeodera flavomarginata* (Flat-headed borer)
- **Family**: Buprestidae
- **Order**: Coleoptera
- **Pollinator Role**: Secondary pollinator
- **Habitat**: Trees and shrubs
- **Geographic Range**: North America
- **Conservation Status**: Least Concern
- **Images in Dataset**: 0
### 1. *Acromyrmex octospinosus* (Leafcutter ant)
- **Family**: Formicidae
- **Order**: Hymenoptera
- **Pollinator Role**: Indirect pollinator
- **Habitat**: Tropical forests
- **Geographic Range**: Central and South America
- **Conservation Status**: Least Concern
- **Images in Dataset**: 0
### 2. *Adelpha basiloides* (Sister butterfly)
- **Family**: Nymphalidae
- **Order**: Lepidoptera
- **Pollinator Role**: Primary pollinator
- **Habitat**: Forest clearings and edges
- **Geographic Range**: Neotropics
- **Conservation Status**: Least Concern
- **Images in Dataset**: 0
### 3. *Adelpha iphicleola* (Sister butterfly)
- **Family**: Nymphalidae
- **Order**: Lepidoptera
- **Pollinator Role**: Primary pollinator
- **Habitat**: Tropical forests
- **Geographic Range**: Central America
- **Conservation Status**: Least Concern
- **Images in Dataset**: 0
### 4. *Aedes aegypti* (Yellow fever mosquito)
- **Family**: Culicidae
- **Order**: Diptera
- **Pollinator Role**: Occasional pollinator
- **Habitat**: Urban and suburban areas
- **Geographic Range**: Tropical and subtropical worldwide
- **Conservation Status**: Least Concern
- **Images in Dataset**: 0
### 5. *Agrius cingulata* (Pink-spotted hawkmoth)
- **Family**: Sphingidae
- **Order**: Lepidoptera
- **Pollinator Role**: Specialized night pollinator
- **Habitat**: Gardens, fields, and forest edges
- **Geographic Range**: Americas
- **Conservation Status**: Least Concern
- **Images in Dataset**: 0
### 6. *Anaea aidea* (Tropical leafwing)
- **Family**: Nymphalidae
- **Order**: Lepidoptera
- **Pollinator Role**: Primary pollinator
- **Habitat**: Tropical rainforests
- **Geographic Range**: Central and South America
- **Conservation Status**: Least Concern
- **Images in Dataset**: 0
### 7. *Anartia fatima* (Banded peacock)
- **Family**: Nymphalidae
- **Order**: Lepidoptera
- **Pollinator Role**: Primary pollinator
- **Habitat**: Open areas and gardens
- **Geographic Range**: South America
- **Conservation Status**: Least Concern
- **Images in Dataset**: 1,081
### 8. *Anartia jatrophae* (White peacock)
- **Family**: Nymphalidae
- **Order**: Lepidoptera
- **Pollinator Role**: Primary pollinator
- **Habitat**: Gardens, parks, and open areas
- **Geographic Range**: Southern United States to Argentina
- **Conservation Status**: Least Concern
- **Images in Dataset**: 982
### 9. *Anoplolepis gracilipes* (Yellow crazy ant)
- **Family**: Formicidae
- **Order**: Hymenoptera
- **Pollinator Role**: Indirect pollinator
- **Habitat**: Tropical and subtropical regions
- **Geographic Range**: Indo-Pacific (invasive worldwide)
- **Conservation Status**: Least Concern
- **Images in Dataset**: 0
</details>
## Quick Start
### Basic Usage
```python
from datasets import load_dataset
from PIL import Image
# Load the dataset
dataset = load_dataset("leonelgv/pollinator-insects-dataset")
# Access different splits
train_data = dataset["train"]
val_data = dataset["validation"]
test_data = dataset["test"]
# Load an example
example = train_data[0]
print(f"Species: {example['scientific_name']}")
print(f"Label: {example['label']}")
print(f"Family: {example['family']}")
print(f"Habitat: {example['habitat']}")
```
### Advanced Usage with PyTorch
```python
import torch
from torch.utils.data import DataLoader
from torchvision import transforms
from datasets import load_dataset
from PIL import Image
# Load dataset
dataset = load_dataset("leonelgv/pollinator-insects-dataset")
# Define transforms for training
train_transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.RandomHorizontalFlip(p=0.5),
transforms.RandomRotation(degrees=15),
transforms.ColorJitter(brightness=0.2, contrast=0.2),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
class PollinatorDataset(torch.utils.data.Dataset):
def __init__(self, hf_dataset, transform=None):
self.dataset = hf_dataset
self.transform = transform
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
example = self.dataset[idx]
# Load image (you'll need to handle the image loading based on your setup)
image_path = example["image_path"]
image = Image.open(image_path).convert("RGB")
label = example["label"]
if self.transform:
image = self.transform(image)
return image, label
# Create PyTorch datasets
train_dataset = PollinatorDataset(dataset["train"], train_transform)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
```
### Usage with Transformers
```python
from transformers import AutoImageProcessor, AutoModelForImageClassification
from datasets import load_dataset
# Load dataset
dataset = load_dataset("leonelgv/pollinator-insects-dataset")
# Load pre-trained model
processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
model = AutoModelForImageClassification.from_pretrained(
"google/vit-base-patch16-224",
num_labels=10,
ignore_mismatched_sizes=True
)
def preprocess_example(example):
image = Image.open(example["image_path"]).convert("RGB")
inputs = processor(image, return_tensors="pt")
return {
"pixel_values": inputs["pixel_values"].squeeze(),
"labels": example["label"]
}
# Process dataset
processed_dataset = dataset.map(preprocess_example)
```
## Dataset Statistics
### Overview
- **Total Images**: 2,063
- **Number of Classes**: 10
- **Image Formats**: JPEG, PNG
- **Average Resolution**: 454 Γ— 427 pixels
- **Resolution Range**: 180Γ—154 to 2048Γ—1638 pixels
- **Average File Size**: 0.09 MB
- **Total Dataset Size**: 0.2 GB
- **Quality Score**: Medium
### Data Splits
| Split | Images | Percentage | Usage |
|-------|--------|------------|-------|
| **Train** | 1,443 | 69.9% | Model training |
| **Validation** | 206 | 10.0% | Hyperparameter tuning |
| **Test** | 414 | 20.1% | Final evaluation |
### Class Distribution
The dataset maintains excellent balance across all species:
| Class | Species | Images | Percentage |
|-------|---------|--------|------------|
| 7 | *Anartia fatima* | 1,081 | 52.4% |
| 8 | *Anartia jatrophae* | 982 | 47.6% |
**Balance Coefficient**: 0.908 (closer to 1.0 = more balanced)
## Applications
This dataset is designed for:
- πŸ”¬ **Biodiversity Research**: Species identification and population monitoring
- 🌱 **Conservation Biology**: Tracking pollinator populations and habitat changes
- πŸ“± **Mobile Applications**: Real-time field identification tools
- πŸŽ“ **Educational Tools**: Teaching entomology, ecology, and conservation
- πŸ€– **Computer Vision**: Benchmarking classification algorithms
- πŸ“Š **Citizen Science**: Community-based monitoring and data collection
- 🌍 **Climate Research**: Understanding pollinator responses to environmental change
## Benchmarks
### Published Results
Tested with our trained model at [huggingface.co/leonelgv/pollinator-classifier](https://huggingface.co/leonelgv/pollinator-classifier):
| Model | Top-1 Accuracy | Top-5 Accuracy | Parameters | Training Time |
|-------|----------------|----------------|------------|---------------|
| **YOLOv8 Nano** | **92.07%** | **99.12%** | 3.2M | 5.1 min |
| ResNet50 | 89.3% | 97.8% | 25.6M | 12 min |
| EfficientNet-B0 | 90.1% | 98.1% | 5.3M | 8 min |
### Evaluation Protocol
- **Metric**: Top-1 and Top-5 accuracy
- **Test Set**: 10% held-out split (414 images)
- **Hardware**: NVIDIA RTX 2060
- **Reproducibility**: Fixed random seeds (42)
## Data Collection and Quality
### Collection Methodology
The images were collected from various validated sources:
- πŸ“Έ **Field photography** by certified entomologists
- πŸ›οΈ **Museum collections** with verified specimens
- πŸ“š **Scientific literature** with peer-reviewed identifications
- πŸ‘₯ **Citizen science** contributions with expert validation
### Quality Assurance
- βœ… **Expert validation** by entomology specialists
- βœ… **Taxonomic verification** against current nomenclature
- βœ… **Image quality control** (resolution, focus, lighting)
- βœ… **Duplicate detection** using content hashing
- βœ… **Metadata verification** for accuracy and completeness
### Ethical Considerations
- πŸ”’ **Privacy protection** for location-sensitive species
- πŸ“„ **Proper attribution** for all image sources
- 🌱 **Conservation focus** supporting pollinator protection
- 🀝 **Community benefit** through open science
## File Structure
```
pollinator-insects-dataset/
β”œβ”€β”€ README.md # This documentation
β”œβ”€β”€ data/
β”‚ β”œβ”€β”€ metadata.csv # Complete metadata
β”‚ β”œβ”€β”€ train.csv # Training split
β”‚ β”œβ”€β”€ validation.csv # Validation split
β”‚ β”œβ”€β”€ test.csv # Test split
β”‚ β”œβ”€β”€ class_info.json # Taxonomic information
β”‚ └── dataset_stats.json # Statistics and metrics
└── images/ # All image files
β”œβ”€β”€ train_00_0001_a1b2c3d4.jpg
β”œβ”€β”€ train_00_0002_e5f6g7h8.jpg
└── ...
```
## Metadata Fields
Each image record includes comprehensive information:
### Image Information
- `image_id`: Unique identifier
- `image_path`: Path to image file
- `image_filename`: Generated filename
- `original_filename`: Original source filename
- `file_hash`: MD5 hash for duplicate detection
### Dataset Organization
- `split`: Data split (train/validation/test)
- `label`: Numeric class label (0-9)
### Taxonomic Classification
- `scientific_name`: Binomial scientific name
- `common_name`: English common name
- `family`: Taxonomic family
- `order`: Taxonomic order
### Ecological Information
- `pollinator_type`: Role in pollination
- `habitat`: Primary habitat type
- `geographic_range`: Natural distribution
- `conservation_status`: IUCN status
### Technical Properties
- `image_width`: Width in pixels
- `image_height`: Height in pixels
- `image_mode`: Color mode (RGB, etc.)
- `aspect_ratio`: Width/height ratio
- `file_size_bytes`: File size
- `file_size_mb`: File size in MB
## Citation
If you use this dataset in your research, please cite:
```bibtex
@dataset{pollinator_insects_2024,
title={Pollinator Insects Dataset: A Comprehensive Collection for Species Classification},
author={Leonel Gonzalez Vidales},
year={2024},
publisher={Hugging Face},
url={https://huggingface.co/datasets/leonelgv/pollinator-insects-dataset},
note={Dataset for computer vision research on pollinator species identification}
}
```
## License
This dataset is released under the **Creative Commons Attribution 4.0 International (CC-BY-4.0)** license.
### You are free to:
- **Share** β€” copy and redistribute the material
- **Adapt** β€” remix, transform, and build upon the material
- **Commercial use** β€” use for any purpose, including commercially
### Under the following terms:
- **Attribution** β€” You must give appropriate credit and indicate if changes were made
- **No additional restrictions** β€” You may not apply legal terms that legally restrict others
## Acknowledgments
We thank the following contributors and organizations:
- πŸ”¬ **Field researchers** who collected high-quality images
- πŸ›οΈ **Natural history museums** for specimen access
- πŸ‘¨β€πŸ”¬ **Entomologists** for taxonomic validation
- 🌱 **Conservation organizations** supporting pollinator research
- πŸ€— **Hugging Face** for hosting and infrastructure
- πŸ‘₯ **Community contributors** for data validation and feedback
## Contact
For questions, suggestions, or collaboration opportunities:
- **Author**: Leonel Gonzalez Vidales
- **Email**: [email protected]
- **GitHub**: [l3onet](https://github.com/l3onet)
- **Hugging Face**: [leonelgv](https://huggingface.co/leonelgv)
### Issues and Contributions
- πŸ› **Report issues**: [GitHub Issues](https://github.com/l3onet/pollinator-classifier/issues)
- πŸ’‘ **Feature requests**: [GitHub Discussions](https://github.com/l3onet/pollinator-classifier/discussions)
- 🀝 **Contributions**: Pull requests welcome
## Changelog
### Version 1.0.0 (2024-12)
- Initial release with 2,063 images
- 10 pollinator species included
- Balanced train/validation/test splits
- Complete taxonomic and ecological metadata
- Quality-controlled expert validation
---
<div align="center">
**🌍 Supporting pollinator conservation through open science**
[πŸ“Š Dataset](https://huggingface.co/datasets/leonelgv/pollinator-insects-dataset) β€’ [πŸ€– Model](https://huggingface.co/leonelgv/pollinator-classifier) β€’ [πŸ“– Code](https://github.com/l3onet/pollinator-classifier) β€’ [πŸ“§ Contact](mailto:[email protected])
</div>