lisabdunlap commited on
Commit
1394b4f
·
verified ·
1 Parent(s): 7448eee

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -43
README.md CHANGED
@@ -113,49 +113,6 @@ Images are stored in byte format, you can decode with `Image.open(BytesIO(img["b
113
  * **is_preset** - if the image is from the "random image button"
114
  * **dataset_preset** - which dataset the preset image is from. This can be either [NewYorker](https://huggingface.co/datasets/jmhessel/newyorker_caption_contest), [WikiArt](https://huggingface.co/datasets/huggan/wikiart), [TextVQA](https://huggingface.co/datasets/facebook/textvqa), [ChartQA](https://huggingface.co/datasets/lmms-lab/ChartQA), [DocQA](https://huggingface.co/datasets/lmms-lab/DocVQA), or [realworldqa](https://x.ai/blog/grok-1.5v)
115
 
116
-
117
- ## Download Locally
118
-
119
- To download the dataset into a local directory, the code below will download the images into the VisionArena-Chat folder
120
- ```
121
- from datasets import load_dataset
122
- from PIL import Image
123
- from io import BytesIO
124
- import json
125
- import os
126
- from tqdm import tqdm
127
- from multiprocessing import Pool, cpu_count
128
-
129
- def download_dataset(num_workers=None):
130
- base_dir, images_dir = "VisionArena-Chat", os.path.join("VisionArena-Chat", "images")
131
- os.makedirs(images_dir, exist_ok=True)
132
- ds = load_dataset("lmarena-ai/VisionArena-Chat", split="train")
133
- samples = list(ds)
134
- num_workers = num_workers or min(cpu_count(), 8)
135
- print(f"Processing samples using {num_workers} workers...")
136
-
137
- def process_sample(idx_sample):
138
- idx, sample = idx_sample
139
- processed_images = []
140
- for img_idx, img in enumerate(sample.get("images", [])):
141
- img_filename = f"image_{idx}_{img_idx}.png"
142
- img_path = os.path.join(images_dir, img_filename)
143
- if not os.path.exists(img_path):
144
- Image.open(BytesIO(img["bytes"])).save(img_path)
145
- processed_images.append(os.path.join("images", img_filename))
146
- sample["images"] = processed_images
147
- return sample
148
-
149
- with Pool(num_workers) as pool:
150
- processed_data = list(tqdm(pool.imap(process_sample, enumerate(samples)), total=len(samples), desc="Processing samples"))
151
- with open(os.path.join(base_dir, "data.json"), 'w', encoding='utf-8') as f:
152
- json.dump(processed_data, f, ensure_ascii=False, indent=2)
153
- print(f"Dataset downloaded and processed successfully!\nImages saved in: {images_dir}\nData saved in: {os.path.join(base_dir, 'data.json')}")
154
-
155
- if __name__ == "__main__":
156
- download_dataset()
157
- ```
158
-
159
  ## Bias, Risks, and Limitations
160
 
161
  This dataset contains a large amount of STEM related questions, OCR tasks, and general problems like captioning. This dataset contains less questions which relate to specialized domains outside of stem.
 
113
  * **is_preset** - if the image is from the "random image button"
114
  * **dataset_preset** - which dataset the preset image is from. This can be either [NewYorker](https://huggingface.co/datasets/jmhessel/newyorker_caption_contest), [WikiArt](https://huggingface.co/datasets/huggan/wikiart), [TextVQA](https://huggingface.co/datasets/facebook/textvqa), [ChartQA](https://huggingface.co/datasets/lmms-lab/ChartQA), [DocQA](https://huggingface.co/datasets/lmms-lab/DocVQA), or [realworldqa](https://x.ai/blog/grok-1.5v)
115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116
  ## Bias, Risks, and Limitations
117
 
118
  This dataset contains a large amount of STEM related questions, OCR tasks, and general problems like captioning. This dataset contains less questions which relate to specialized domains outside of stem.