File size: 4,575 Bytes
6425f96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e69895
 
 
 
 
 
 
6425f96
7bca467
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04ed029
 
7bca467
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04ed029
7bca467
 
 
 
 
 
 
 
04ed029
7bca467
 
 
 
 
04ed029
7bca467
 
 
 
 
 
04ed029
7bca467
 
 
 
 
 
 
 
 
 
04ed029
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
---
dataset_info:
  features:
  - name: project
    dtype: string
  - name: commit_id
    dtype: string
  - name: CVE ID
    dtype: string
  - name: CWE ID
    dtype: string
  - name: func
    dtype: string
  - name: vul
    dtype: int8
  splits:
  - name: train
    num_bytes: 299777443
    num_examples: 239822
  - name: test
    num_bytes: 63350463
    num_examples: 51390
  - name: validation
    num_bytes: 63678823
    num_examples: 51392
  download_size: 190857204
  dataset_size: 426806729
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: test
    path: data/test-*
  - split: validation
    path: data/validation-*
license: mit
task_categories:
- text-classification
- feature-extraction
tags:
- Code
- Vulnerability
---

# Merged BigVul and PrimeVul Dataset

**Dataset ID**: `mahdin70/merged_bigvul_primevul`

This dataset is a merged and preprocessed combination of the **BigVul** (`bstee615/bigvul`) and **PrimeVul** (`colin/PrimeVul`, "default" configuration) datasets, designed for vulnerability analysis and machine learning tasks. The preprocessing ensures consistency in column names, data types, and formats, making it suitable for fine-tuning models.


## Dataset Overview

The dataset integrates vulnerability data from two sources:
- **BigVul**: A dataset of real-world vulnerabilities from open-source C/C++ projects.
  - **Paper**: (https://doi.org/10.1145/3379597.3387501)
  - **Repository**: (https://github.com/ZeoVan/MSR_20_Code_vulnerability_CSV_Dataset)
- **PrimeVul**: A vulnerability dataset with additional project-specific details.
  - **Paper**: (https://doi.org/10.48550/arXiv.2403.18624)
  - **Repository**:(https://github.com/DLVulDet/PrimeVul)

The merged dataset retains key information about projects, commits, functions, and vulnerabilities, standardized for consistency.

### Columns
The dataset contains the following columns:
- **`project`**: String - The name of the project (e.g., "qemu", "linux-2.6").
- **`commit_id`**: String - Unique identifier of the commit associated with the function.
- **`func`**: String - The source code of the function before fixing (from `func_before` in BigVul).
- **`vul`**: Int8 - Vulnerability label (1 = vulnerable, 0 = not vulnerable).
- **`CVE ID`**: String - Common Vulnerabilities and Exposures identifier (e.g., `CVE-2007-1320`), or `NOT_APPLICABLE` if `vul = 0`.
- **`CWE ID`**: String - Common Weakness Enumeration identifier (e.g., `CWE-20`), or `NOT_APPLICABLE` if `vul = 0`.

### Splits
- **Train**: Combined training data from BigVul and PrimeVul.
- **Test**: Combined testing data from BigVul and PrimeVul.
- **Validation**: Combined validation data from BigVul and PrimeVul.


## Preprocessing Steps

The dataset was preprocessed to ensure consistency and quality:

### BigVul Preprocessing
- **Source Columns**: 
  - `project`, `commit_id`, `CVE ID`, `CWE ID`, `func_before`, `vul`.
- **Transformations**:
  - Renamed `func_before` to `func`.
  - Kept `CWE ID` in its original format (`CWE-XXX`).
  - Converted `vul` to `int8`.

### PrimeVul Preprocessing
- **Source Columns**: 
  - `project`, `commit_id`, `cve`, `cwe`, `func`, `target`.
- **Transformations**:
  - Renamed `cve` to `CVE ID`, `cwe` to `CWE ID`, `target` to `vul`.
  - Standardized `CWE ID` by removing brackets from list format (e.g., `["CWE-XXX"]``CWE-XXX`), taking the first element if multiple CWEs exist.
  - Converted `vul` from `int64` to `int8`.

### Merging and Final Preprocessing
- **Merging**: Concatenated preprocessed BigVul and PrimeVul data for each split (`train`, `test`, `validation`).
- **Final Steps**:
  - Removed rows with any null values.
  - Removed duplicates based on the `func` column.
  - For rows where `vul = 0`, replaced `CVE ID` and `CWE ID` with `"NOT_APPLICABLE`.


## Dataset Statistics

Below are the analysis results for the final merged dataset:

### Train Split
- **Number of rows**: 239,822
- **Unique CWE IDs (excluding `NOT_APPLICABLE`)**: 127
- **Unique commit IDs**: 7,559
- **Vulnerable functions (`vul = 1`)**: 9,037

### Test Split
- **Number of rows**: 51,390
- **Unique CWE IDs (excluding `NOT_APPLICABLE`)**: 87
- **Unique commit IDs**: 6,032
- **Vulnerable functions (`vul = 1`)**: 1,911


### Validation Split
- **Number of rows**: 51,392
- **Unique CWE IDs (excluding `NOT_APPLICABLE`)**: 91
- **Unique commit IDs**: 6,059
- **Vulnerable functions (`vul = 1`)**: 1,933


## Usage

### Loading the Dataset
```python
from datasets import load_dataset

dataset = load_dataset("mahdin70/merged_bigvul_primevul")