Datasets:
Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,167 +1,153 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
-
|
65 |
-
|
66 |
-
-
|
67 |
-
|
68 |
-
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
-
|
81 |
-
|
82 |
-
-
|
83 |
-
|
84 |
-
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
-
|
89 |
-
|
90 |
-
|
91 |
-
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
-
|
99 |
-
|
100 |
-
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
-
|
107 |
-
|
108 |
-
-
|
109 |
-
|
110 |
-
-
|
111 |
-
|
112 |
-
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
-
|
127 |
-
|
128 |
-
-
|
129 |
-
|
130 |
-
-
|
131 |
-
|
132 |
-
|
133 |
-
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
path: single_instance_datasets/Epitope/train-*
|
155 |
-
- config_name: HTS
|
156 |
-
data_files:
|
157 |
-
- split: train
|
158 |
-
path: single_instance_datasets/HTS/train-*
|
159 |
-
- config_name: QM
|
160 |
-
data_files:
|
161 |
-
- split: train
|
162 |
-
path: single_instance_datasets/QM/train-*
|
163 |
-
- config_name: Tox
|
164 |
-
data_files:
|
165 |
-
- split: train
|
166 |
-
path: single_instance_datasets/Tox/train-*
|
167 |
-
---
|
|
|
1 |
+
---
|
2 |
+
verison: 1.0.0
|
3 |
+
license: mit
|
4 |
+
task_categories:
|
5 |
+
- tabular-classification
|
6 |
+
- tabular-regression
|
7 |
+
language:
|
8 |
+
- en
|
9 |
+
tags:
|
10 |
+
- bioactivity
|
11 |
+
- therapeutic science
|
12 |
+
pretty_name: Therapeutics Data Commons
|
13 |
+
size_categories:
|
14 |
+
- 10M<n<100M
|
15 |
+
dataset_summary: >-
|
16 |
+
Therapeutics Data Commons (TDC) provides curated, AI-ready datasets, machine
|
17 |
+
learning tasks, and benchmarks with meaningful data splits, supporting the
|
18 |
+
development and evaluation of AI methods for therapeutic discovery. TDC tasks
|
19 |
+
are categorized into three main problem types: (1) single-instance prediction,
|
20 |
+
(2) multi-instance learning, and (3) molecule generation.
|
21 |
+
citation: >-
|
22 |
+
@article{Huang2021tdc,
|
23 |
+
title={Therapeutics Data Commons: Machine Learning Datasets and Tasks for Drug Discovery and Development},
|
24 |
+
author={Huang, Kexin and Fu, Tianfan and Gao, Wenhao and Zhao, Yue and Roohani, Yusuf and Leskovec, Jure and Coley, Connor W and Xiao, Cao and Sun, Jimeng and Zitnik, Marinka},
|
25 |
+
journal={Proceedings of Neural Information Processing Systems, NeurIPS Datasets and Benchmarks},
|
26 |
+
year={2021}
|
27 |
+
}
|
28 |
+
|
29 |
+
@article{Huang2022artificial,
|
30 |
+
title={Artificial intelligence foundation for therapeutic science},
|
31 |
+
author={Huang, Kexin and Fu, Tianfan and Gao, Wenhao and Zhao, Yue and Roohani, Yusuf and Leskovec, Jure and Coley, Connor W and Xiao, Cao and Sun, Jimeng and Zitnik, Marinka},
|
32 |
+
journal={Nature Chemical Biology},
|
33 |
+
year={2022}
|
34 |
+
}
|
35 |
+
|
36 |
+
@article{velez-arce2024signals,
|
37 |
+
title={Signals in the Cells: Multimodal and Contextualized Machine Learning Foundations for Therapeutics},
|
38 |
+
author={Velez-Arce, Alejandro and Lin, Xiang and Huang, Kexin and Li, Michelle M and Gao, Wenhao and Pentelute, Bradley and Fu, Tianfan and Kellis, Manolis and Zitnik, Marinka},
|
39 |
+
booktitle={NeurIPS 2024 Workshop on AI for New Drug Modalities},
|
40 |
+
year={2024}
|
41 |
+
}
|
42 |
+
|
43 |
+
# Single instance prediciton
|
44 |
+
config_names:
|
45 |
+
- ADME
|
46 |
+
- Tox
|
47 |
+
- HTS
|
48 |
+
- CRISPROutcome
|
49 |
+
- Develop
|
50 |
+
- Epitope
|
51 |
+
- QM
|
52 |
+
configs:
|
53 |
+
- config_name: ADME
|
54 |
+
data_files: single_instance_prediction_datasets/ADME.parquet
|
55 |
+
columns:
|
56 |
+
- Task
|
57 |
+
- Drug_ID
|
58 |
+
- SMILES
|
59 |
+
- 'Y'
|
60 |
+
- split
|
61 |
+
- config_name: Tox
|
62 |
+
data_files: single_instance_prediction_datasets/Tox.parquet
|
63 |
+
columns:
|
64 |
+
- Task
|
65 |
+
- Drug_ID
|
66 |
+
- SMILES
|
67 |
+
- 'Y'
|
68 |
+
- split
|
69 |
+
- config_name: HTS
|
70 |
+
data_files: single_instance_prediction_datasets/HTS.parquet
|
71 |
+
columns:
|
72 |
+
- Task
|
73 |
+
- Drug_ID
|
74 |
+
- SMILES
|
75 |
+
- 'Y'
|
76 |
+
- split
|
77 |
+
- config_name: CRISPROutcome
|
78 |
+
data_files: single_instance_prediction_datasets/CRISPROutcome.parquet
|
79 |
+
columns:
|
80 |
+
- Task
|
81 |
+
- GuideSeq_ID
|
82 |
+
- GuideSeq
|
83 |
+
- 'Y'
|
84 |
+
- split
|
85 |
+
- config_name: Develop
|
86 |
+
data_files: single_instance_prediction_datasets/Develop.parquet
|
87 |
+
columns:
|
88 |
+
- Task
|
89 |
+
- Antibody_ID
|
90 |
+
- heavy_chain
|
91 |
+
- light_chain
|
92 |
+
- 'Y'
|
93 |
+
- split
|
94 |
+
- config_name: Epitope
|
95 |
+
data_files: single_instance_prediction_datasets/Epitope.parquet
|
96 |
+
columns:
|
97 |
+
- Task
|
98 |
+
- Antigen_ID
|
99 |
+
- Antigen
|
100 |
+
- 'Y'
|
101 |
+
- split
|
102 |
+
- config_name: QM
|
103 |
+
data_files: single_instance_prediction_datasets/QM.parquet
|
104 |
+
columns:
|
105 |
+
- Task
|
106 |
+
- Drug_ID
|
107 |
+
- Atom
|
108 |
+
- x_coordinate
|
109 |
+
- y_coordinate
|
110 |
+
- z_coordinate
|
111 |
+
- 'Y'
|
112 |
+
- split
|
113 |
+
|
114 |
+
|
115 |
+
---
|
116 |
+
# Therapeutics Data Commons
|
117 |
+
[Therapeutics Data Commons](https://tdcommons.ai/)(TDC) provides a publicly available collection of 22 machine learning tasks for therapeutic discovery. Our Hugging Face repository is a mirror of single-instance prediction tasks of TDC, encompassing a total of 46,265,659 data points.
|
118 |
+
|
119 |
+
The parquet files uploaded to our Hugging Face repository have been sanitized and curated from the original datasets.
|
120 |
+
- Each parquet file corresponds to a separate category (e.g., ADME) and contains multiple tasks (e.g., solubility, permeability).
|
121 |
+
- Each file follows its own schema (i.e., different column names) and has been preprocessed differently depending on the category.
|
122 |
+
- As ADME, Tox, and HTS datasets contain SMILES strings, we have sanitized (standardized) the SMILES strings. The sanitization process includes removing salts, standardizing the SMILES strings to a canonical form, etc. 2 invalid SMILES strings from ADME dataset and 59 invalid SMILES strings from HTS dataset were removed during the sanitization process.
|
123 |
+
|
124 |
+
A summary file (i.e., single_instance_prediction_summary.csv) is also uploaded, which lists:
|
125 |
+
- Problem (Category),
|
126 |
+
- Task,
|
127 |
+
- DatasetName,
|
128 |
+
- NumCompounds,
|
129 |
+
- Leaderboard information (Unit, Task, Metric, Dataset Split - https://tdcommons.ai/benchmark/admet_group/overview/)
|
130 |
+
- License,
|
131 |
+
- DatasetDescription,
|
132 |
+
- TaskDescription,
|
133 |
+
- Reference
|
134 |
+
|
135 |
+
|
136 |
+
|
137 |
+
## Quick Usage
|
138 |
+
Load a dataset in python
|
139 |
+
|
140 |
+
Each subset can be loaded into python using the Huggingface [datasets](https://huggingface.co/docs/datasets/index) library.
|
141 |
+
First, from the command line install the `datasets` library
|
142 |
+
|
143 |
+
$ pip install datasets
|
144 |
+
|
145 |
+
then, from within python load the datasets library.
|
146 |
+
|
147 |
+
>>> import datasets
|
148 |
+
|
149 |
+
Now load one of the 'TDC' datasets, e.g.,
|
150 |
+
|
151 |
+
>>> dataset = datasets.load_dataset("maomlab/TDC", name = "ADME")
|
152 |
+
|
153 |
+
You can modify "name" based on your interest (e.g., "Tox").
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|