mattmorgis commited on
Commit
453e29c
·
verified ·
1 Parent(s): 06289ce

Add files using upload-large-folder tool

Browse files
Files changed (1) hide show
  1. README.md +102 -0
README.md ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: cc-by-nc-sa-4.0
5
+ datasets:
6
+ - bioasq
7
+ task_categories:
8
+ - question-answering
9
+ - sentence-similarity
10
+ tags:
11
+ - biomedical
12
+ - rag
13
+ - pubmed
14
+ - bioasq
15
+ - biomedical-qa
16
+ library_name: huggingface
17
+ pretty_name: BioASQ 12B RAG Dataset
18
+ ---
19
+
20
+ # BioASQ 12B RAG Dataset
21
+
22
+ A processed version of the BioASQ 12B dataset optimized for Retrieval-Augmented Generation (RAG) applications in biomedical question answering.
23
+
24
+ This dataset provides a structured collection of biomedical questions paired with relevant PubMed abstracts and gold standard answers. It is specifically formatted for RAG pipelines, making it ideal for training and evaluating systems that need to retrieve relevant biomedical information from a corpus and generate accurate, evidence-based answers to complex biomedical questions.
25
+
26
+ ## Dataset Structure
27
+
28
+ The dataset contains three main components:
29
+
30
+ 1. **Corpus** (`data/corpus.jsonl`): A collection of PubMed abstracts including metadata.
31
+
32
+ - Each line is a JSON object containing:
33
+ - `id`: PubMed ID
34
+ - `title`: Title of the paper
35
+ - `text`: Abstract text
36
+ - `url`: PubMed URL
37
+ - `publication_date`: Publication date
38
+ - `journal`: Journal name
39
+ - `authors`: List of authors
40
+ - `doi`: Digital Object Identifier (if available)
41
+ - `keywords`: Keywords
42
+ - `mesh_terms`: MeSH terms
43
+
44
+ 2. **Dev Questions** (`data/dev.jsonl`): Development set of biomedical questions.
45
+
46
+ - Each line is a JSON object containing:
47
+ - `question_id`: Unique identifier for the question
48
+ - `question`: The question text
49
+ - `answer`: Ideal answer
50
+ - `relevant_passage_ids`: List of PubMed IDs for relevant abstracts
51
+ - `type`: Question type (e.g., factoid, list, yes/no, summary)
52
+ - `snippets`: Relevant snippets from abstracts
53
+
54
+ 3. **Test Questions** (`data/test.jsonl`): Test set of biomedical questions.
55
+ - Same structure as dev questions
56
+
57
+ ## Usage
58
+
59
+ This dataset is designed for training and evaluating RAG systems for biomedical question answering.
60
+
61
+ ### Loading the Dataset
62
+
63
+ You can load the dataset using the Hugging Face `datasets` library:
64
+
65
+ ```python
66
+ from datasets import load_dataset
67
+
68
+ # Load the entire dataset
69
+ dataset = load_dataset("mattmorgis/bioasq-12b-rag-dataset")
70
+
71
+ # Access the corpus
72
+ corpus = dataset["corpus"]
73
+
74
+ # Access the development questions
75
+ dev_questions = dataset["dev"]
76
+
77
+ # Access the test questions
78
+ test_questions = dataset["test"]
79
+ ```
80
+
81
+ ### Example RAG Application
82
+
83
+ This dataset can be used to build a biomedical RAG system:
84
+
85
+ 1. Index the corpus using a vector database (e.g., FAISS, Chroma)
86
+ 2. Embed questions using a biomedical or general purpose text embedding model
87
+ 3. Retrieve relevant documents from the corpus based on question embeddings
88
+ 4. Generate answers using a large language model (LLM) with the retrieved context
89
+
90
+ ### Evaluation
91
+
92
+ The dataset provides gold standard answers and relevant passage IDs that can be used to evaluate:
93
+
94
+ - Retrieval accuracy
95
+ - Answer quality
96
+ - Domain-specific knowledge incorporation
97
+
98
+ ## Source
99
+
100
+ This dataset is derived from the [BioASQ Challenge](http://bioasq.org/) task 12b dataset.
101
+
102
+ Anastasia Krithara, Anastasios Nentidis, Konstantinos Bougiatiotis, Georgios Paliouras. BioASQ-QA: A manually curated corpus for Biomedical Question Answering. bioRxiv 2022.12.14.520213; doi: https://doi.org/10.1101/2022.12.14.520213