Katerpillar commited on
Commit
6587b2c
·
1 Parent(s): f23ac87

add example script

Browse files
Files changed (2) hide show
  1. example.py +33 -0
  2. plots.py +199 -0
example.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import matplotlib.pyplot as plt
2
+ import numpy as np
3
+
4
+ from plots import plot_map_rain, project_to_latlon
5
+
6
+ # Load the file
7
+ data = np.load("2020/202004201700.npz") # Adjust path as needed
8
+ rain = data["arr_0"] # The array is stored under 'arr_0'
9
+ print("Array shape:", rain.shape) # Shape = (1536, 1536)
10
+
11
+ # Negative values indicate no data, replace them with NaN:
12
+ rain = np.where(rain < 0, np.nan, rain)
13
+
14
+ # Visualize
15
+ print("Making basic plot...")
16
+ plt.imshow(rain, cmap="Blues")
17
+ plt.colorbar(label="Rainfall (x0.01 mm / 5min)")
18
+ plt.title("Rainfall Accumulation – 2020-04-20 17:00 UTC")
19
+ plt.savefig("rainfall_20200420_1700_basic.png")
20
+ plt.close()
21
+
22
+ print("Converting and projecting rainfall data...")
23
+ rain = rain / 100 # Convert from mm10-2 to mm
24
+ rain = rain * 60 / 5 # Convert from mm to mm/h
25
+ da_reproj = project_to_latlon(rain)
26
+ print(da_reproj)
27
+
28
+ print("Plotting projected rainfall data...")
29
+ plot_map_rain(
30
+ data=da_reproj,
31
+ title="Rainfall Rate – 2020-04-20 17:00 UTC",
32
+ path="rainfall_20200420_1700_map.png",
33
+ )
plots.py ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This module contains functions for plotting rainfall rate data using Cartopy and Matplotlib.
3
+ It includes utilities for color mapping, coordinate transformations, and plotting.
4
+ """
5
+
6
+ from pathlib import Path
7
+ from typing import Tuple
8
+
9
+ import cartopy.feature as cfeature
10
+ import matplotlib.colors as mcolors
11
+ import matplotlib.pyplot as plt
12
+ import numpy as np
13
+ import xarray as xr
14
+ from cartopy.crs import Globe, PlateCarree, Stereographic
15
+ from matplotlib.axes import Axes
16
+ from pyproj import CRS, Transformer
17
+ from scipy.interpolate import griddata
18
+ from scipy.spatial import cKDTree
19
+
20
+ ########################################################################################
21
+ # PROJECTIONS AND COORDINATES #
22
+ ########################################################################################
23
+
24
+ # Original radar projection
25
+ PROJ_WKT = """
26
+ PROJCS["unknown",GEOGCS["unknown",DATUM["unknown",SPHEROID["unknown",6378137,298.252840776245]],
27
+ PRIMEM["Greenwich",0],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]]],
28
+ PROJECTION["Polar_Stereographic"],PARAMETER["latitude_of_origin",45],
29
+ PARAMETER["central_meridian",0],PARAMETER["false_easting",0],PARAMETER["false_northing",0],
30
+ UNIT["metre",1],AXIS["Easting",SOUTH],AXIS["Northing",SOUTH]]
31
+ """
32
+ GEOTRANSFORM = (
33
+ -619652.0953618084,
34
+ 1000.0,
35
+ 0.0,
36
+ -3526818.459196719,
37
+ 0.0,
38
+ -999.9999999999997,
39
+ )
40
+
41
+
42
+ def project_to_latlon(arr: np.ndarray) -> xr.DataArray:
43
+ """Convert a 2D array from the original projection to lat/lon coordinates."""
44
+ x0, dx, _, y0, _, dy = GEOTRANSFORM
45
+ height, width = arr.shape
46
+
47
+ # Create meshgrid of coordinates
48
+ x_coords = x0 + np.arange(width) * dx
49
+ y_coords = y0 + np.arange(height) * dy
50
+ xx, yy = np.meshgrid(x_coords, y_coords)
51
+
52
+ # Transform grid coords to lat/lon
53
+ crs_src = CRS.from_wkt(PROJ_WKT)
54
+ crs_dst = CRS.from_epsg(4326) # WGS84
55
+ to_latlon = Transformer.from_crs(crs_src, crs_dst, always_xy=True)
56
+ lon, lat = to_latlon.transform(xx, yy)
57
+
58
+ # Creation of the source DataArray
59
+ da_src = xr.DataArray(arr, dims=("y", "x"), coords={"x": x_coords, "y": y_coords})
60
+ da_src = da_src.assign_coords(lon=(("y", "x"), lon), lat=(("y", "x"), lat))
61
+
62
+ # Regular grid in lat/lon
63
+ res_deg = 0.01 # ~1 km
64
+ lat_target = np.arange(lat.min(), lat.max(), res_deg)
65
+ lon_target = np.arange(lon.min(), lon.max(), res_deg)
66
+ lon_grid, lat_grid = np.meshgrid(lon_target, lat_target)
67
+
68
+ # Interpolation with griddata
69
+ points = np.column_stack((lon.ravel(), lat.ravel()))
70
+ values = arr.ravel()
71
+ data_interp = griddata(points, values, (lon_grid, lat_grid), method="nearest")
72
+
73
+ # The nearest neighbor interpolation can create artefacts on the edges
74
+ # so we mask values using a maximum distance
75
+ tree = cKDTree(points)
76
+ distances, _ = tree.query(
77
+ np.column_stack((lon_grid.ravel(), lat_grid.ravel())), k=1
78
+ )
79
+
80
+ # Max radius: diagonal of a target pixel
81
+ max_dist = np.sqrt(2) * res_deg
82
+ mask = distances > max_dist
83
+
84
+ # Mask the interpolated data
85
+ data_interp_flat = data_interp.ravel()
86
+ data_interp_flat[mask] = np.nan
87
+ data_interp = data_interp_flat.reshape(lon_grid.shape)
88
+
89
+ # Create the final DataArray with the reprojected data
90
+ da_reproj = xr.DataArray(
91
+ data_interp,
92
+ dims=("lat", "lon"),
93
+ coords={"lat": lat_target, "lon": lon_target},
94
+ name="data",
95
+ )
96
+ # Invert latitude axis to match the original orientation
97
+ da_reproj = da_reproj[::-1, :]
98
+ return da_reproj
99
+
100
+
101
+ ########################################################################################
102
+ # COLORS AND COLORMAPS #
103
+ ########################################################################################
104
+
105
+
106
+ def hex_to_rgb(hex):
107
+ """Converts a hexadecimal color to RGB."""
108
+ return tuple(int(hex[i : i + 2], 16) / 255 for i in (0, 2, 4))
109
+
110
+
111
+ COLORS_RR = [ # 14 colors
112
+ hex_to_rgb("E5E5E5"),
113
+ hex_to_rgb("6600CBFF"),
114
+ hex_to_rgb("0000FFFF"),
115
+ hex_to_rgb("00B2FFFF"),
116
+ hex_to_rgb("00FFFFFF"),
117
+ hex_to_rgb("0EDCD2FF"),
118
+ hex_to_rgb("1CB8A5FF"),
119
+ hex_to_rgb("6BA530FF"),
120
+ hex_to_rgb("FFFF00FF"),
121
+ hex_to_rgb("FFD800FF"),
122
+ hex_to_rgb("FFA500FF"),
123
+ hex_to_rgb("FF0000FF"),
124
+ hex_to_rgb("991407FF"),
125
+ hex_to_rgb("FF00FFFF"),
126
+ ]
127
+ """list of str: list of colors for the rainfall rate colormap"""
128
+
129
+ CMAP_RR = mcolors.ListedColormap(COLORS_RR)
130
+ """ListedColormap : rainfall rate colormap"""
131
+
132
+ BOUNDARIES_RR = [
133
+ 0,
134
+ 0.1,
135
+ 0.4,
136
+ 0.6,
137
+ 1.2,
138
+ 2.1,
139
+ 3.6,
140
+ 6.5,
141
+ 12,
142
+ 21,
143
+ 36,
144
+ 65,
145
+ 120,
146
+ 205,
147
+ 360,
148
+ ]
149
+ """list of float: boundaries of the rainfall rate colormap"""
150
+
151
+ NORM_RR = mcolors.BoundaryNorm(BOUNDARIES_RR, CMAP_RR.N, clip=True)
152
+ """BoundaryNorm: norm for the reflectivity colormap"""
153
+
154
+ ########################################################################################
155
+ # PLOTTING FUNCTIONS #
156
+ ########################################################################################
157
+
158
+
159
+ def plot_ax_rainfall_rate(
160
+ ax: Axes,
161
+ data: np.ndarray,
162
+ extent: Tuple[float],
163
+ cmap=CMAP_RR,
164
+ norm=NORM_RR,
165
+ title: str = "",
166
+ ):
167
+ """Plot a rainfall rate image on a given axis."""
168
+ img = ax.imshow(data, extent=extent, cmap=cmap, norm=norm, interpolation="none")
169
+ states_provinces = cfeature.NaturalEarthFeature(
170
+ category="cultural",
171
+ name="admin_1_states_provinces_lines",
172
+ scale="10m",
173
+ facecolor="none",
174
+ )
175
+ ax.add_feature(states_provinces, edgecolor="lightgrey", linewidth=0.5)
176
+ ax.add_feature(cfeature.BORDERS.with_scale("10m"), edgecolor="black", linewidth=1)
177
+ ax.coastlines(resolution="10m", color="black", linewidth=1)
178
+ ax.set_title(title, fontsize=15)
179
+ ax.gridlines(
180
+ crs=PlateCarree(),
181
+ draw_labels=True,
182
+ linewidth=0.4,
183
+ color="lightgrey",
184
+ linestyle=":",
185
+ )
186
+ return img
187
+
188
+
189
+ def plot_map_rain(data: xr.DataArray, title: str, path: Path) -> None:
190
+ """Plot a rainfall rate map."""
191
+ projection = PlateCarree()
192
+ extent = [data.lon.min(), data.lon.max(), data.lat.min(), data.lat.max()]
193
+ fig, ax = plt.subplots(subplot_kw={"projection": projection}, figsize=(10, 7))
194
+ img = plot_ax_rainfall_rate(ax, data.values, title=title, extent=extent)
195
+ cb = fig.colorbar(img, ax=ax, orientation="horizontal", fraction=0.04, pad=0.05)
196
+ cb.set_label(label="Precipitation in mm/h", fontsize=12)
197
+ plt.tight_layout()
198
+ plt.savefig(path)
199
+ plt.close()