michellejieli commited on
Commit
ca604a4
·
1 Parent(s): 06200fc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +52 -8
README.md CHANGED
@@ -1,24 +1,68 @@
1
- # Dataset Summary
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  The Friends dataset consists of speech-based dialogue from the Friends TV sitcom. It is extracted from the [SocialNLP EmotionX 2019 challenge](https://sites.google.com/view/emotionx2019/datasets).
3
 
4
- # Supported Tasks and Leaderboards
5
  text-classification, sentiment-classification: The dataset is mainly used to predict a sentiment label given text input.
6
 
7
- # Languages
8
  The utterances are in English.
9
 
10
- # Dataset Structure
 
 
11
 
12
  A data point containing text and the corresponding label.
13
 
14
- An example from the friends_dataset looks like:
15
 
16
  {
17
  'text': 'Well! Well! Well! Joey Tribbiani! So you came back huh?',
18
  'label': 'surprise'
19
  }
20
 
21
- # Dataset Creation
 
 
 
 
 
 
22
 
23
  The dataset contains 1000 English-language dialogues originally in JSON files. The JSON file contains an array of dialogue objects. Each dialogue object is an array of line objects, and each line object contains speaker, utterance, emotion, and annotation strings.
24
  {
@@ -27,5 +71,5 @@ The dataset contains 1000 English-language dialogues originally in JSON files. T
27
  "emotion": "surprise",
28
  "annotation": "2000030"
29
  }
30
-
31
- Utterance and emotion were extracted from the original files into a CSV file. The dataset was cleaned to remove non-neutral labels.
 
1
+ # Dataset Card for [Dataset Name]
2
+
3
+ ## Table of Contents
4
+ - [Table of Contents](#table-of-contents)
5
+ - [Dataset Description](#dataset-description)
6
+ - [Dataset Summary](#dataset-summary)
7
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
8
+ - [Languages](#languages)
9
+ - [Dataset Structure](#dataset-structure)
10
+ - [Data Instances](#data-instances)
11
+ - [Data Fields](#data-fields)
12
+ - [Data Splits](#data-splits)
13
+ - [Dataset Creation](#dataset-creation)
14
+ - [Curation Rationale](#curation-rationale)
15
+ - [Source Data](#source-data)
16
+ - [Annotations](#annotations)
17
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
18
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
19
+ - [Social Impact of Dataset](#social-impact-of-dataset)
20
+ - [Discussion of Biases](#discussion-of-biases)
21
+ - [Other Known Limitations](#other-known-limitations)
22
+ - [Additional Information](#additional-information)
23
+ - [Dataset Curators](#dataset-curators)
24
+ - [Licensing Information](#licensing-information)
25
+ - [Citation Information](#citation-information)
26
+ - [Contributions](#contributions)
27
+
28
+ ## Dataset Description
29
+
30
+ - **Homepage:**
31
+ - **Repository:**
32
+ - **Paper:**
33
+ - **Leaderboard:**
34
+ - **Point of Contact:**
35
+
36
+ ### Dataset Summary
37
+
38
  The Friends dataset consists of speech-based dialogue from the Friends TV sitcom. It is extracted from the [SocialNLP EmotionX 2019 challenge](https://sites.google.com/view/emotionx2019/datasets).
39
 
40
+ ### Supported Tasks and Leaderboards
41
  text-classification, sentiment-classification: The dataset is mainly used to predict a sentiment label given text input.
42
 
43
+ ### Languages
44
  The utterances are in English.
45
 
46
+ ## Dataset Structure
47
+
48
+ ### Data Instances
49
 
50
  A data point containing text and the corresponding label.
51
 
52
+ An example from the friends_dataset looks like this:
53
 
54
  {
55
  'text': 'Well! Well! Well! Joey Tribbiani! So you came back huh?',
56
  'label': 'surprise'
57
  }
58
 
59
+ ### Data Fields
60
+
61
+ The field includes a text column and a corresponding emotion label.
62
+
63
+ ## Dataset Creation
64
+
65
+ ### Curation Rationale
66
 
67
  The dataset contains 1000 English-language dialogues originally in JSON files. The JSON file contains an array of dialogue objects. Each dialogue object is an array of line objects, and each line object contains speaker, utterance, emotion, and annotation strings.
68
  {
 
71
  "emotion": "surprise",
72
  "annotation": "2000030"
73
  }
74
+
75
+ Utterance and emotion were extracted from the original files into a CSV file. The dataset was cleaned to remove non-neutral labels. This dataset was created to be used in fine-tuning an emotion sentiment classifier that can be useful to teach individuals with autism how to read facial expressions.