vaw / vaw.py
mikewang's picture
modify class name to match convention
336d65e
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Visual Attributes in the Wild (VAW) dataset"""
import csv
import json
import os
import datasets
_CITATION = """\
@InProceedings{Pham_2021_CVPR,
author = {Pham, Khoi and Kafle, Kushal and Lin, Zhe and Ding, Zhihong and Cohen, Scott and Tran, Quan and Shrivastava, Abhinav},
title = {Learning To Predict Visual Attributes in the Wild},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2021},
pages = {13018-13028}
}
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
Visual Attributes in the Wild (VAW) dataset: https://github.com/adobe-research/vaw_dataset#dataset-setup
Raw annotations and configs such as attrubte_types can be found at: https://github.com/adobe-research/vaw_dataset/tree/main/data
Note: The train split loaded from this hf dataset is a concatenation of the train_part1.json and train_part2.json.
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = "http://vawdataset.com/"
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = "https://github.com/adobe-research/vaw_dataset/blob/main/LICENSE.md"
# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
# _URLS = {
# # "first_domain": "https://huggingface.co/great-new-dataset-first_domain.zip",
# # "second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip",
# }
# _URL = "https://github.com/adobe-research/vaw_dataset/blob/main/data/"
_URL = "https://raw.githubusercontent.com/adobe-research/vaw_dataset/main/data/"
_URLS = {
"train": {
"part1": _URL + "train_part1.json",
"part2": _URL + "train_part2.json"
},
"val": _URL + "val.json",
"test": _URL + "test.json"
}
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
class VAW(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("1.0.0")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
# BUILDER_CONFIGS = [
# datasets.BuilderConfig(name="first_domain", version=VERSION, description="This part of my dataset covers a first domain"),
# datasets.BuilderConfig(name="second_domain", version=VERSION, description="This part of my dataset covers a second domain"),
# ]
# DEFAULT_CONFIG_NAME = "first_domain" # It's not mandatory to have a default configuration. Just use one if it make sense.
def _info(self):
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
# if self.config.name == "first_domain": # This is the name of the configuration selected in BUILDER_CONFIGS above
# features = datasets.Features(
# {
# "sentence": datasets.Value("string"),
# "option1": datasets.Value("string"),
# "answer": datasets.Value("string")
# # These are the features of your dataset like images, labels ...
# }
# )
# else: # This is an example to show how to have different features for "first_domain" and "second_domain"
# features = datasets.Features(
# {
# "sentence": datasets.Value("string"),
# "option2": datasets.Value("string"),
# "second_domain_answer": datasets.Value("string")
# # These are the features of your dataset like images, labels ...
# }
# )
features = datasets.Features(
{
"image_id": datasets.Value("string"), # int (Image ids correspond to respective Visual Genome image ids)
"instance_id": datasets.Value("string"), # int (Unique instance ID)
"instance_bbox": datasets.features.Sequence(datasets.Value("float")), # [x, y, width, height] (Bounding box co-ordinates for the instance)
"instance_polygon": datasets.features.Sequence(datasets.features.Sequence(datasets.features.Sequence(datasets.Value("float")))) , # list of [x y] (List of vertices for segmentation polygon if exists else None)
"object_name": datasets.Value("string"), # str (Name of the object for the instance)
"positive_attributes": datasets.features.Sequence(datasets.Value("string")) , # list of str (Explicitly labeled positive attributes for the instance)
"negative_attributes": datasets.features.Sequence(datasets.Value("string")) # list of str (Explicitly labeled negative attributes for the instance)
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
# urls = _URLS[self.config.name]
# data_dir = dl_manager.download_and_extract(urls)
downloaded_files = dl_manager.download_and_extract(_URLS)
print("downloaded_files: ", downloaded_files)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": downloaded_files["train"],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": downloaded_files["val"],
"split": "val",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": downloaded_files["test"],
"split": "test"
},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath, split):
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
# with open(filepath, encoding="utf-8") as f:
# for key, row in enumerate(f):
# data = json.loads(row)
# if self.config.name == "first_domain":
# # Yields examples as (key, example) tuples
# yield key, {
# "sentence": data["sentence"],
# "option1": data["option1"],
# "answer": "" if split == "test" else data["answer"],
# }
# else:
# yield key, {
# "sentence": data["sentence"],
# "option2": data["option2"],
# "second_domain_answer": "" if split == "test" else data["second_domain_answer"],
# }
if split == "train":
# concat part1 and part 2 files
part1_data = json.load(open(filepath['part1'], encoding="utf-8"))
part2_data = json.load(open(filepath['part2'], encoding="utf-8"))
data = part1_data + part2_data
else:
data = json.load(open(filepath, encoding="utf-8"))
for key, row in enumerate(data):
yield key, {
"image_id": row["image_id"],
"instance_id": row["instance_id"],
"instance_bbox": row["instance_bbox"],
"instance_polygon": row["instance_polygon"],
"object_name": row["object_name"],
"positive_attributes": row["positive_attributes"],
"negative_attributes": row["negative_attributes"]
}