|
import os |
|
import random |
|
import pandas as pd |
|
|
|
def predictor(image_link, category_id, entity_name): |
|
''' |
|
Call your model/approach here |
|
''' |
|
|
|
return "" if random.random() > 0.5 else "10 inch" |
|
|
|
if __name__ == "__main__": |
|
DATASET_FOLDER = '../dataset/' |
|
|
|
test = pd.read_csv(os.path.join(DATASET_FOLDER, 'test.csv')) |
|
|
|
test['prediction'] = test.apply( |
|
lambda row: predictor(row['image_link'], row['group_id'], row['entity_name']), axis=1) |
|
|
|
output_filename = os.path.join(DATASET_FOLDER, 'test_out.csv') |
|
test[['index', 'prediction']].to_csv(output_filename, index=False) |