Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
Languages:
Korean
ArXiv:
Libraries:
Datasets
pandas
License:
Samoed commited on
Commit
47cd2e6
·
verified ·
1 Parent(s): d40ccca

Add dataset card

Browse files
Files changed (1) hide show
  1. README.md +212 -0
README.md CHANGED
@@ -1,4 +1,18 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  dataset_info:
3
  features:
4
  - name: text
@@ -26,4 +40,202 @@ configs:
26
  path: data/validation-*
27
  - split: test
28
  path: data/test-*
 
 
 
29
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - expert-annotated
4
+ language:
5
+ - kor
6
+ license: cc-by-sa-4.0
7
+ multilinguality: monolingual
8
+ task_categories:
9
+ - text-classification
10
+ task_ids:
11
+ - multi-label-classification
12
+ - sentiment-analysis
13
+ - sentiment-scoring
14
+ - sentiment-classification
15
+ - hate-speech-detection
16
  dataset_info:
17
  features:
18
  - name: text
 
40
  path: data/validation-*
41
  - split: test
42
  path: data/test-*
43
+ tags:
44
+ - mteb
45
+ - text
46
  ---
47
+ <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
48
+
49
+ <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
50
+ <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">KorHateSpeechMLClassification</h1>
51
+ <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
52
+ <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
53
+ </div>
54
+
55
+
56
+ The Korean Multi-label Hate Speech Dataset, K-MHaS, consists of 109,692 utterances from Korean online news comments,
57
+ labelled with 8 fine-grained hate speech classes (labels: Politics, Origin, Physical, Age, Gender, Religion, Race, Profanity)
58
+ or Not Hate Speech class. Each utterance provides from a single to four labels that can handles Korean language patterns effectively.
59
+ For more details, please refer to the paper about K-MHaS, published at COLING 2022.
60
+ This dataset is based on the Korean online news comments available on Kaggle and Github.
61
+ The unlabeled raw data was collected between January 2018 and June 2020.
62
+ The language producers are users who left the comments on the Korean online news platform between 2018 and 2020.
63
+
64
+
65
+ | | |
66
+ |---------------|---------------------------------------------|
67
+ | Task category | t2c |
68
+ | Domains | Social, Written |
69
+ | Reference | https://paperswithcode.com/dataset/korean-multi-label-hate-speech-dataset |
70
+
71
+
72
+ ## How to evaluate on this task
73
+
74
+ You can evaluate an embedding model on this dataset using the following code:
75
+
76
+ ```python
77
+ import mteb
78
+
79
+ task = mteb.get_tasks(["KorHateSpeechMLClassification"])
80
+ evaluator = mteb.MTEB(task)
81
+
82
+ model = mteb.get_model(YOUR_MODEL)
83
+ evaluator.run(model)
84
+ ```
85
+
86
+ <!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
87
+ To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
88
+
89
+ ## Citation
90
+
91
+ If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
92
+
93
+ ```bibtex
94
+
95
+ @inproceedings{lee-etal-2022-k,
96
+ address = {Gyeongju, Republic of Korea},
97
+ author = {Lee, Jean and
98
+ Lim, Taejun and
99
+ Lee, Heejun and
100
+ Jo, Bogeun and
101
+ Kim, Yangsok and
102
+ Yoon, Heegeun and
103
+ Han, Soyeon Caren},
104
+ booktitle = {Proceedings of the 29th International Conference on Computational Linguistics},
105
+ month = oct,
106
+ pages = {3530--3538},
107
+ publisher = {International Committee on Computational Linguistics},
108
+ title = {K-{MH}a{S}: A Multi-label Hate Speech Detection Dataset in {K}orean Online News Comment},
109
+ url = {https://aclanthology.org/2022.coling-1.311},
110
+ year = {2022},
111
+ }
112
+
113
+
114
+ @article{enevoldsen2025mmtebmassivemultilingualtext,
115
+ title={MMTEB: Massive Multilingual Text Embedding Benchmark},
116
+ author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
117
+ publisher = {arXiv},
118
+ journal={arXiv preprint arXiv:2502.13595},
119
+ year={2025},
120
+ url={https://arxiv.org/abs/2502.13595},
121
+ doi = {10.48550/arXiv.2502.13595},
122
+ }
123
+
124
+ @article{muennighoff2022mteb,
125
+ author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
126
+ title = {MTEB: Massive Text Embedding Benchmark},
127
+ publisher = {arXiv},
128
+ journal={arXiv preprint arXiv:2210.07316},
129
+ year = {2022}
130
+ url = {https://arxiv.org/abs/2210.07316},
131
+ doi = {10.48550/ARXIV.2210.07316},
132
+ }
133
+ ```
134
+
135
+ # Dataset Statistics
136
+ <details>
137
+ <summary> Dataset Statistics</summary>
138
+
139
+ The following code contains the descriptive statistics from the task. These can also be obtained using:
140
+
141
+ ```python
142
+ import mteb
143
+
144
+ task = mteb.get_task("KorHateSpeechMLClassification")
145
+
146
+ desc_stats = task.metadata.descriptive_stats
147
+ ```
148
+
149
+ ```json
150
+ {
151
+ "test": {
152
+ "num_samples": 2037,
153
+ "number_of_characters": 70625,
154
+ "number_texts_intersect_with_train": 2,
155
+ "min_text_length": 1,
156
+ "average_text_length": 34.67108492881689,
157
+ "max_text_length": 300,
158
+ "unique_texts": 2037,
159
+ "min_labels_per_text": 1,
160
+ "average_label_per_text": 1.1467844869906725,
161
+ "max_labels_per_text": 3,
162
+ "unique_labels": 9,
163
+ "labels": {
164
+ "8": {
165
+ "count": 1103
166
+ },
167
+ "0": {
168
+ "count": 202
169
+ },
170
+ "5": {
171
+ "count": 148
172
+ },
173
+ "1": {
174
+ "count": 163
175
+ },
176
+ "2": {
177
+ "count": 229
178
+ },
179
+ "4": {
180
+ "count": 139
181
+ },
182
+ "7": {
183
+ "count": 46
184
+ },
185
+ "3": {
186
+ "count": 301
187
+ },
188
+ "6": {
189
+ "count": 5
190
+ }
191
+ }
192
+ },
193
+ "train": {
194
+ "num_samples": 8200,
195
+ "number_of_characters": 276145,
196
+ "number_texts_intersect_with_train": null,
197
+ "min_text_length": 1,
198
+ "average_text_length": 33.676219512195125,
199
+ "max_text_length": 302,
200
+ "unique_texts": 8192,
201
+ "min_labels_per_text": 1,
202
+ "average_label_per_text": 1.138170731707317,
203
+ "max_labels_per_text": 4,
204
+ "unique_labels": 9,
205
+ "labels": {
206
+ "8": {
207
+ "count": 4451
208
+ },
209
+ "2": {
210
+ "count": 886
211
+ },
212
+ "4": {
213
+ "count": 553
214
+ },
215
+ "3": {
216
+ "count": 1223
217
+ },
218
+ "1": {
219
+ "count": 658
220
+ },
221
+ "5": {
222
+ "count": 602
223
+ },
224
+ "0": {
225
+ "count": 754
226
+ },
227
+ "7": {
228
+ "count": 181
229
+ },
230
+ "6": {
231
+ "count": 25
232
+ }
233
+ }
234
+ }
235
+ }
236
+ ```
237
+
238
+ </details>
239
+
240
+ ---
241
+ *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*