--- annotations_creators: - human-annotated language: - deu - eng - fin - fra - rus - swe license: cc-by-nc-4.0 multilinguality: multilingual task_categories: - text-classification task_ids: - semantic-similarity-classification dataset_info: - config_name: de features: - name: sentence1 sequence: string - name: sentence2 sequence: string - name: labels sequence: int64 splits: - name: test num_bytes: 70778 num_examples: 1 - name: validation num_bytes: 68990 num_examples: 1 - name: test.full num_bytes: 93698 num_examples: 1 - name: validation.full num_bytes: 92505 num_examples: 1 download_size: 202223 dataset_size: 325971 - config_name: en features: - name: sentence1 sequence: string - name: sentence2 sequence: string - name: labels sequence: int64 splits: - name: test num_bytes: 62229 num_examples: 1 - name: validation num_bytes: 64568 num_examples: 1 - name: test.full num_bytes: 85509 num_examples: 1 - name: validation.full num_bytes: 85512 num_examples: 1 download_size: 187334 dataset_size: 297818 - config_name: fi features: - name: sentence1 sequence: string - name: sentence2 sequence: string - name: labels sequence: int64 splits: - name: test num_bytes: 62609 num_examples: 1 - name: validation num_bytes: 65054 num_examples: 1 - name: test.full num_bytes: 99390 num_examples: 1 - name: validation.full num_bytes: 101441 num_examples: 1 download_size: 215489 dataset_size: 328494 - config_name: fr features: - name: sentence1 sequence: string - name: sentence2 sequence: string - name: labels sequence: int64 splits: - name: test num_bytes: 78545 num_examples: 1 - name: validation num_bytes: 79668 num_examples: 1 - name: test.full num_bytes: 107514 num_examples: 1 - name: validation.full num_bytes: 106234 num_examples: 1 download_size: 239874 dataset_size: 371961 - config_name: ru features: - name: sentence1 sequence: string - name: sentence2 sequence: string - name: labels sequence: int64 splits: - name: test num_bytes: 103971 num_examples: 1 - name: validation num_bytes: 109492 num_examples: 1 - name: test.full num_bytes: 154433 num_examples: 1 - name: validation.full num_bytes: 165487 num_examples: 1 download_size: 287953 dataset_size: 533383 - config_name: sv features: - name: sentence1 sequence: string - name: sentence2 sequence: string - name: labels sequence: int64 splits: - name: test num_bytes: 62512 num_examples: 1 - name: validation num_bytes: 64040 num_examples: 1 - name: test.full num_bytes: 111067 num_examples: 1 - name: validation.full num_bytes: 109366 num_examples: 1 download_size: 214389 dataset_size: 346985 configs: - config_name: de data_files: - split: test path: de/test-* - split: validation path: de/validation-* - split: test.full path: de/test.full-* - split: validation.full path: de/validation.full-* - config_name: en data_files: - split: test path: en/test-* - split: validation path: en/validation-* - split: test.full path: en/test.full-* - split: validation.full path: en/validation.full-* - config_name: fi data_files: - split: test path: fi/test-* - split: validation path: fi/validation-* - split: test.full path: fi/test.full-* - split: validation.full path: fi/validation.full-* - config_name: fr data_files: - split: test path: fr/test-* - split: validation path: fr/validation-* - split: test.full path: fr/test.full-* - split: validation.full path: fr/validation.full-* - config_name: ru data_files: - split: test path: ru/test-* - split: validation path: ru/validation-* - split: test.full path: ru/test.full-* - split: validation.full path: ru/validation.full-* - config_name: sv data_files: - split: test path: sv/test-* - split: validation path: sv/validation-* - split: test.full path: sv/test.full-* - split: validation.full path: sv/validation.full-* tags: - mteb - text ---

OpusparcusPC

An MTEB dataset
Massive Text Embedding Benchmark
Opusparcus is a paraphrase corpus for six European language: German, English, Finnish, French, Russian, and Swedish. The paraphrases consist of subtitles from movies and TV shows. | | | |---------------|---------------------------------------------| | Task category | t2t | | Domains | Spoken, Spoken | | Reference | https://gem-benchmark.com/data_cards/opusparcus | ## How to evaluate on this task You can evaluate an embedding model on this dataset using the following code: ```python import mteb task = mteb.get_tasks(["OpusparcusPC"]) evaluator = mteb.MTEB(task) model = mteb.get_model(YOUR_MODEL) evaluator.run(model) ``` To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb). ## Citation If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb). ```bibtex @misc{creutz2018open, archiveprefix = {arXiv}, author = {Mathias Creutz}, eprint = {1809.06142}, primaryclass = {cs.CL}, title = {Open Subtitles Paraphrase Corpus for Six Languages}, year = {2018}, } @article{enevoldsen2025mmtebmassivemultilingualtext, title={MMTEB: Massive Multilingual Text Embedding Benchmark}, author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff}, publisher = {arXiv}, journal={arXiv preprint arXiv:2502.13595}, year={2025}, url={https://arxiv.org/abs/2502.13595}, doi = {10.48550/arXiv.2502.13595}, } @article{muennighoff2022mteb, author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils}, title = {MTEB: Massive Text Embedding Benchmark}, publisher = {arXiv}, journal={arXiv preprint arXiv:2210.07316}, year = {2022} url = {https://arxiv.org/abs/2210.07316}, doi = {10.48550/ARXIV.2210.07316}, } ``` # Dataset Statistics
Dataset Statistics The following code contains the descriptive statistics from the task. These can also be obtained using: ```python import mteb task = mteb.get_task("OpusparcusPC") desc_stats = task.metadata.descriptive_stats ``` ```json { "test.full": { "num_samples": 9155, "number_of_characters": 436535, "unique_pairs": 9155, "min_sentence1_length": 10, "avg_sentence1_length": 23.896559257236483, "max_sentence1_length": 122, "unique_sentence1": 9155, "min_sentence2_length": 10, "avg_sentence2_length": 23.78612779901693, "max_sentence2_length": 121, "unique_sentence2": 9155, "unique_labels": 2, "labels": { "1": { "count": 6009 }, "0": { "count": 3146 } }, "hf_subset_descriptive_stats": { "de": { "num_samples": 1409, "number_of_characters": 70269, "unique_pairs": 1409, "min_sentence1_length": 10, "avg_sentence1_length": 24.828246983676365, "max_sentence1_length": 98, "unique_sentence1": 1409, "min_sentence2_length": 10, "avg_sentence2_length": 25.043293115684882, "max_sentence2_length": 110, "unique_sentence2": 1409, "unique_labels": 2, "labels": { "1": { "count": 1047 }, "0": { "count": 362 } } }, "en": { "num_samples": 1348, "number_of_characters": 63924, "unique_pairs": 1348, "min_sentence1_length": 10, "avg_sentence1_length": 23.98145400593472, "max_sentence1_length": 82, "unique_sentence1": 1348, "min_sentence2_length": 10, "avg_sentence2_length": 23.439910979228486, "max_sentence2_length": 111, "unique_sentence2": 1348, "unique_labels": 2, "labels": { "1": { "count": 982 }, "0": { "count": 366 } } }, "fi": { "num_samples": 1570, "number_of_characters": 69983, "unique_pairs": 1570, "min_sentence1_length": 10, "avg_sentence1_length": 22.2171974522293, "max_sentence1_length": 98, "unique_sentence1": 1570, "min_sentence2_length": 10, "avg_sentence2_length": 22.35796178343949, "max_sentence2_length": 108, "unique_sentence2": 1570, "unique_labels": 2, "labels": { "1": { "count": 958 }, "0": { "count": 612 } } }, "fr": { "num_samples": 1468, "number_of_characters": 82094, "unique_pairs": 1468, "min_sentence1_length": 11, "avg_sentence1_length": 28.242506811989102, "max_sentence1_length": 122, "unique_sentence1": 1468, "min_sentence2_length": 10, "avg_sentence2_length": 27.67983651226158, "max_sentence2_length": 121, "unique_sentence2": 1468, "unique_labels": 2, "labels": { "1": { "count": 1007 }, "0": { "count": 461 } } }, "ru": { "num_samples": 1632, "number_of_characters": 71040, "unique_pairs": 1632, "min_sentence1_length": 11, "avg_sentence1_length": 21.72610294117647, "max_sentence1_length": 106, "unique_sentence1": 1632, "min_sentence2_length": 10, "avg_sentence2_length": 21.803308823529413, "max_sentence2_length": 94, "unique_sentence2": 1632, "unique_labels": 2, "labels": { "1": { "count": 1068 }, "0": { "count": 564 } } }, "sv": { "num_samples": 1728, "number_of_characters": 79225, "unique_pairs": 1728, "min_sentence1_length": 10, "avg_sentence1_length": 22.95428240740741, "max_sentence1_length": 79, "unique_sentence1": 1728, "min_sentence2_length": 10, "avg_sentence2_length": 22.89351851851852, "max_sentence2_length": 106, "unique_sentence2": 1728, "unique_labels": 2, "labels": { "1": { "count": 947 }, "0": { "count": 781 } } } } }, "validation.full": { "num_samples": 9052, "number_of_characters": 441614, "unique_pairs": 9052, "min_sentence1_length": 10, "avg_sentence1_length": 24.41427308882015, "max_sentence1_length": 140, "unique_sentence1": 9052, "min_sentence2_length": 10, "avg_sentence2_length": 24.372072470172338, "max_sentence2_length": 155, "unique_sentence2": 9052, "unique_labels": 2, "labels": { "1": { "count": 5992 }, "0": { "count": 3060 } }, "hf_subset_descriptive_stats": { "de": { "num_samples": 1393, "number_of_characters": 69379, "unique_pairs": 1393, "min_sentence1_length": 11, "avg_sentence1_length": 24.728643216080403, "max_sentence1_length": 108, "unique_sentence1": 1393, "min_sentence2_length": 10, "avg_sentence2_length": 25.07681263460158, "max_sentence2_length": 122, "unique_sentence2": 1393, "unique_labels": 2, "labels": { "1": { "count": 1013 }, "0": { "count": 380 } } }, "en": { "num_samples": 1350, "number_of_characters": 63869, "unique_pairs": 1350, "min_sentence1_length": 10, "avg_sentence1_length": 23.950370370370372, "max_sentence1_length": 91, "unique_sentence1": 1350, "min_sentence2_length": 10, "avg_sentence2_length": 23.36, "max_sentence2_length": 76, "unique_sentence2": 1350, "unique_labels": 2, "labels": { "0": { "count": 335 }, "1": { "count": 1015 } } }, "fi": { "num_samples": 1575, "number_of_characters": 71790, "unique_pairs": 1575, "min_sentence1_length": 11, "avg_sentence1_length": 22.70095238095238, "max_sentence1_length": 99, "unique_sentence1": 1575, "min_sentence2_length": 10, "avg_sentence2_length": 22.88, "max_sentence2_length": 155, "unique_sentence2": 1575, "unique_labels": 2, "labels": { "1": { "count": 963 }, "0": { "count": 612 } } }, "fr": { "num_samples": 1404, "number_of_characters": 81660, "unique_pairs": 1404, "min_sentence1_length": 11, "avg_sentence1_length": 29.03988603988604, "max_sentence1_length": 140, "unique_sentence1": 1404, "min_sentence2_length": 10, "avg_sentence2_length": 29.122507122507123, "max_sentence2_length": 139, "unique_sentence2": 1404, "unique_labels": 2, "labels": { "1": { "count": 997 }, "0": { "count": 407 } } }, "ru": { "num_samples": 1598, "number_of_characters": 77436, "unique_pairs": 1598, "min_sentence1_length": 10, "avg_sentence1_length": 24.303504380475594, "max_sentence1_length": 100, "unique_sentence1": 1598, "min_sentence2_length": 11, "avg_sentence2_length": 24.154568210262827, "max_sentence2_length": 106, "unique_sentence2": 1598, "unique_labels": 2, "labels": { "1": { "count": 1020 }, "0": { "count": 578 } } }, "sv": { "num_samples": 1732, "number_of_characters": 77480, "unique_pairs": 1732, "min_sentence1_length": 10, "avg_sentence1_length": 22.433602771362587, "max_sentence1_length": 101, "unique_sentence1": 1732, "min_sentence2_length": 10, "avg_sentence2_length": 22.30080831408776, "max_sentence2_length": 104, "unique_sentence2": 1732, "unique_labels": 2, "labels": { "1": { "count": 984 }, "0": { "count": 748 } } } } } } ```
--- *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*