Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
Languages:
Russian
ArXiv:
Libraries:
Datasets
pandas
License:
Samoed commited on
Commit
8cce731
·
verified ·
1 Parent(s): 70c67fe

Add dataset card

Browse files
Files changed (1) hide show
  1. README.md +27 -15
README.md CHANGED
@@ -43,7 +43,7 @@ tags:
43
  <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
44
 
45
  <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
46
- <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">RuToxicOKMLCUPClassification</h1>
47
  <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
48
  <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
49
  </div>
@@ -64,7 +64,7 @@ You can evaluate an embedding model on this dataset using the following code:
64
  ```python
65
  import mteb
66
 
67
- task = mteb.get_tasks(["RuToxicOKMLCUPClassification"])
68
  evaluator = mteb.MTEB(task)
69
 
70
  model = mteb.get_model(YOUR_MODEL)
@@ -111,7 +111,7 @@ The following code contains the descriptive statistics from the task. These can
111
  ```python
112
  import mteb
113
 
114
- task = mteb.get_task("RuToxicOKMLCUPClassification")
115
 
116
  desc_stats = task.metadata.descriptive_stats
117
  ```
@@ -127,15 +127,21 @@ desc_stats = task.metadata.descriptive_stats
127
  "max_text_length": 790,
128
  "unique_texts": 2000,
129
  "min_labels_per_text": 1,
130
- "average_label_per_text": 1.0,
131
- "max_labels_per_text": 1,
132
- "unique_labels": 2,
133
  "labels": {
134
- "0": {
135
- "count": 1000
136
- },
137
  "1": {
138
  "count": 1000
 
 
 
 
 
 
 
 
 
139
  }
140
  }
141
  },
@@ -148,15 +154,21 @@ desc_stats = task.metadata.descriptive_stats
148
  "max_text_length": 965,
149
  "unique_texts": 2000,
150
  "min_labels_per_text": 1,
151
- "average_label_per_text": 1.0,
152
- "max_labels_per_text": 1,
153
- "unique_labels": 2,
154
  "labels": {
155
- "0": {
156
- "count": 1000
157
- },
158
  "1": {
159
  "count": 1000
 
 
 
 
 
 
 
 
 
160
  }
161
  }
162
  }
 
43
  <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
44
 
45
  <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
46
+ <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">RuToxicOKMLCUPMultilabelClassification</h1>
47
  <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
48
  <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
49
  </div>
 
64
  ```python
65
  import mteb
66
 
67
+ task = mteb.get_tasks(["RuToxicOKMLCUPMultilabelClassification"])
68
  evaluator = mteb.MTEB(task)
69
 
70
  model = mteb.get_model(YOUR_MODEL)
 
111
  ```python
112
  import mteb
113
 
114
+ task = mteb.get_task("RuToxicOKMLCUPMultilabelClassification")
115
 
116
  desc_stats = task.metadata.descriptive_stats
117
  ```
 
127
  "max_text_length": 790,
128
  "unique_texts": 2000,
129
  "min_labels_per_text": 1,
130
+ "average_label_per_text": 1.0885,
131
+ "max_labels_per_text": 3,
132
+ "unique_labels": 4,
133
  "labels": {
 
 
 
134
  "1": {
135
  "count": 1000
136
+ },
137
+ "0": {
138
+ "count": 810
139
+ },
140
+ "3": {
141
+ "count": 275
142
+ },
143
+ "2": {
144
+ "count": 92
145
  }
146
  }
147
  },
 
154
  "max_text_length": 965,
155
  "unique_texts": 2000,
156
  "min_labels_per_text": 1,
157
+ "average_label_per_text": 1.093,
158
+ "max_labels_per_text": 3,
159
+ "unique_labels": 4,
160
  "labels": {
 
 
 
161
  "1": {
162
  "count": 1000
163
+ },
164
+ "0": {
165
+ "count": 824
166
+ },
167
+ "3": {
168
+ "count": 260
169
+ },
170
+ "2": {
171
+ "count": 102
172
  }
173
  }
174
  }