Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
Languages:
Japanese
ArXiv:
Libraries:
Datasets
pandas
License:
Samoed commited on
Commit
78cfd58
·
verified ·
1 Parent(s): ac20a44

Add dataset card

Browse files
Files changed (1) hide show
  1. README.md +132 -0
README.md CHANGED
@@ -1,4 +1,19 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  dataset_info:
3
  features:
4
  - name: text
@@ -26,4 +41,121 @@ configs:
26
  path: data/validation-*
27
  - split: test
28
  path: data/test-*
 
 
 
29
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - human-annotated
4
+ language:
5
+ - jpn
6
+ license: other
7
+ multilinguality: monolingual
8
+ source_datasets:
9
+ - shunk031/wrime
10
+ task_categories:
11
+ - text-classification
12
+ task_ids:
13
+ - sentiment-analysis
14
+ - sentiment-scoring
15
+ - sentiment-classification
16
+ - hate-speech-detection
17
  dataset_info:
18
  features:
19
  - name: text
 
41
  path: data/validation-*
42
  - split: test
43
  path: data/test-*
44
+ tags:
45
+ - mteb
46
+ - text
47
  ---
48
+ <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
49
+
50
+ <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
51
+ <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">WRIMEClassification</h1>
52
+ <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
53
+ <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
54
+ </div>
55
+
56
+ A dataset of Japanese social network rated for sentiment
57
+
58
+ | | |
59
+ |---------------|---------------------------------------------|
60
+ | Task category | t2c |
61
+ | Domains | Social, Written |
62
+ | Reference | https://aclanthology.org/2021.naacl-main.169/ |
63
+
64
+ Source datasets:
65
+ - [shunk031/wrime](https://huggingface.co/datasets/shunk031/wrime)
66
+
67
+
68
+ ## How to evaluate on this task
69
+
70
+ You can evaluate an embedding model on this dataset using the following code:
71
+
72
+ ```python
73
+ import mteb
74
+
75
+ task = mteb.get_task("WRIMEClassification")
76
+ evaluator = mteb.MTEB([task])
77
+
78
+ model = mteb.get_model(YOUR_MODEL)
79
+ evaluator.run(model)
80
+ ```
81
+
82
+ <!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
83
+ To learn more about how to run models on `mteb` task check out the [GitHub repository](https://github.com/embeddings-benchmark/mteb).
84
+
85
+ ## Citation
86
+
87
+ If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
88
+
89
+ ```bibtex
90
+
91
+ @inproceedings{kajiwara-etal-2021-wrime,
92
+ abstract = {We annotate 17,000 SNS posts with both the writer{'}s subjective emotional intensity and the reader{'}s objective one to construct a Japanese emotion analysis dataset. In this study, we explore the difference between the emotional intensity of the writer and that of the readers with this dataset. We found that the reader cannot fully detect the emotions of the writer, especially anger and trust. In addition, experimental results in estimating the emotional intensity show that it is more difficult to estimate the writer{'}s subjective labels than the readers{'}. The large gap between the subjective and objective emotions imply the complexity of the mapping from a post to the subjective emotion intensities, which also leads to a lower performance with machine learning models.},
93
+ address = {Online},
94
+ author = {Kajiwara, Tomoyuki and
95
+ Chu, Chenhui and
96
+ Takemura, Noriko and
97
+ Nakashima, Yuta and
98
+ Nagahara, Hajime},
99
+ booktitle = {Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies},
100
+ doi = {10.18653/v1/2021.naacl-main.169},
101
+ editor = {Toutanova, Kristina and
102
+ Rumshisky, Anna and
103
+ Zettlemoyer, Luke and
104
+ Hakkani-Tur, Dilek and
105
+ Beltagy, Iz and
106
+ Bethard, Steven and
107
+ Cotterell, Ryan and
108
+ Chakraborty, Tanmoy and
109
+ Zhou, Yichao},
110
+ month = jun,
111
+ pages = {2095--2104},
112
+ publisher = {Association for Computational Linguistics},
113
+ title = {{WRIME}: A New Dataset for Emotional Intensity Estimation with Subjective and Objective Annotations},
114
+ url = {https://aclanthology.org/2021.naacl-main.169},
115
+ year = {2021},
116
+ }
117
+
118
+
119
+ @article{enevoldsen2025mmtebmassivemultilingualtext,
120
+ title={MMTEB: Massive Multilingual Text Embedding Benchmark},
121
+ author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
122
+ publisher = {arXiv},
123
+ journal={arXiv preprint arXiv:2502.13595},
124
+ year={2025},
125
+ url={https://arxiv.org/abs/2502.13595},
126
+ doi = {10.48550/arXiv.2502.13595},
127
+ }
128
+
129
+ @article{muennighoff2022mteb,
130
+ author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Loïc and Reimers, Nils},
131
+ title = {MTEB: Massive Text Embedding Benchmark},
132
+ publisher = {arXiv},
133
+ journal={arXiv preprint arXiv:2210.07316},
134
+ year = {2022}
135
+ url = {https://arxiv.org/abs/2210.07316},
136
+ doi = {10.48550/ARXIV.2210.07316},
137
+ }
138
+ ```
139
+
140
+ # Dataset Statistics
141
+ <details>
142
+ <summary> Dataset Statistics</summary>
143
+
144
+ The following code contains the descriptive statistics from the task. These can also be obtained using:
145
+
146
+ ```python
147
+ import mteb
148
+
149
+ task = mteb.get_task("WRIMEClassification")
150
+
151
+ desc_stats = task.metadata.descriptive_stats
152
+ ```
153
+
154
+ ```json
155
+ {}
156
+ ```
157
+
158
+ </details>
159
+
160
+ ---
161
+ *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*