Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
Samoed commited on
Commit
c6c1fb6
·
verified ·
1 Parent(s): 44fa159

Add dataset card

Browse files
Files changed (1) hide show
  1. README.md +608 -2
README.md CHANGED
@@ -1,4 +1,610 @@
1
  ---
 
 
2
  language:
3
- - en
4
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - human-annotated
4
  language:
5
+ - eng
6
+ license: mit
7
+ multilinguality: monolingual
8
+ task_categories:
9
+ - text-classification
10
+ task_ids: []
11
+ tags:
12
+ - mteb
13
+ - text
14
+ ---
15
+ <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
16
+
17
+ <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
18
+ <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">Banking77Classification</h1>
19
+ <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
20
+ <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
21
+ </div>
22
+
23
+ Dataset composed of online banking queries annotated with their corresponding intents.
24
+
25
+ | | |
26
+ |---------------|---------------------------------------------|
27
+ | Task category | t2c |
28
+ | Domains | Written |
29
+ | Reference | https://arxiv.org/abs/2003.04807 |
30
+
31
+
32
+ ## How to evaluate on this task
33
+
34
+ You can evaluate an embedding model on this dataset using the following code:
35
+
36
+ ```python
37
+ import mteb
38
+
39
+ task = mteb.get_tasks(["Banking77Classification"])
40
+ evaluator = mteb.MTEB(task)
41
+
42
+ model = mteb.get_model(YOUR_MODEL)
43
+ evaluator.run(model)
44
+ ```
45
+
46
+ <!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
47
+ To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
48
+
49
+ ## Citation
50
+
51
+ If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
52
+
53
+ ```bibtex
54
+
55
+ @inproceedings{casanueva-etal-2020-efficient,
56
+ address = {Online},
57
+ author = {Casanueva, I{\~n}igo and
58
+ Tem{\v{c}}inas, Tadas and
59
+ Gerz, Daniela and
60
+ Henderson, Matthew and
61
+ Vuli{\'c}, Ivan},
62
+ booktitle = {Proceedings of the 2nd Workshop on Natural Language Processing for Conversational AI},
63
+ doi = {10.18653/v1/2020.nlp4convai-1.5},
64
+ editor = {Wen, Tsung-Hsien and
65
+ Celikyilmaz, Asli and
66
+ Yu, Zhou and
67
+ Papangelis, Alexandros and
68
+ Eric, Mihail and
69
+ Kumar, Anuj and
70
+ Casanueva, I{\~n}igo and
71
+ Shah, Rushin},
72
+ month = jul,
73
+ pages = {38--45},
74
+ publisher = {Association for Computational Linguistics},
75
+ title = {Efficient Intent Detection with Dual Sentence Encoders},
76
+ url = {https://aclanthology.org/2020.nlp4convai-1.5},
77
+ year = {2020},
78
+ }
79
+
80
+
81
+ @article{enevoldsen2025mmtebmassivemultilingualtext,
82
+ title={MMTEB: Massive Multilingual Text Embedding Benchmark},
83
+ author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
84
+ publisher = {arXiv},
85
+ journal={arXiv preprint arXiv:2502.13595},
86
+ year={2025},
87
+ url={https://arxiv.org/abs/2502.13595},
88
+ doi = {10.48550/arXiv.2502.13595},
89
+ }
90
+
91
+ @article{muennighoff2022mteb,
92
+ author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
93
+ title = {MTEB: Massive Text Embedding Benchmark},
94
+ publisher = {arXiv},
95
+ journal={arXiv preprint arXiv:2210.07316},
96
+ year = {2022}
97
+ url = {https://arxiv.org/abs/2210.07316},
98
+ doi = {10.48550/ARXIV.2210.07316},
99
+ }
100
+ ```
101
+
102
+ # Dataset Statistics
103
+ <details>
104
+ <summary> Dataset Statistics</summary>
105
+
106
+ The following code contains the descriptive statistics from the task. These can also be obtained using:
107
+
108
+ ```python
109
+ import mteb
110
+
111
+ task = mteb.get_task("Banking77Classification")
112
+
113
+ desc_stats = task.metadata.descriptive_stats
114
+ ```
115
+
116
+ ```json
117
+ {
118
+ "test": {
119
+ "num_samples": 3080,
120
+ "number_of_characters": 167036,
121
+ "number_texts_intersect_with_train": 0,
122
+ "min_text_length": 13,
123
+ "average_text_length": 54.23246753246753,
124
+ "max_text_length": 368,
125
+ "unique_text": 3080,
126
+ "unique_labels": 77,
127
+ "labels": {
128
+ "11": {
129
+ "count": 40
130
+ },
131
+ "13": {
132
+ "count": 40
133
+ },
134
+ "32": {
135
+ "count": 40
136
+ },
137
+ "17": {
138
+ "count": 40
139
+ },
140
+ "34": {
141
+ "count": 40
142
+ },
143
+ "46": {
144
+ "count": 40
145
+ },
146
+ "36": {
147
+ "count": 40
148
+ },
149
+ "12": {
150
+ "count": 40
151
+ },
152
+ "4": {
153
+ "count": 40
154
+ },
155
+ "14": {
156
+ "count": 40
157
+ },
158
+ "33": {
159
+ "count": 40
160
+ },
161
+ "41": {
162
+ "count": 40
163
+ },
164
+ "1": {
165
+ "count": 40
166
+ },
167
+ "49": {
168
+ "count": 40
169
+ },
170
+ "23": {
171
+ "count": 40
172
+ },
173
+ "56": {
174
+ "count": 40
175
+ },
176
+ "47": {
177
+ "count": 40
178
+ },
179
+ "8": {
180
+ "count": 40
181
+ },
182
+ "60": {
183
+ "count": 40
184
+ },
185
+ "75": {
186
+ "count": 40
187
+ },
188
+ "15": {
189
+ "count": 40
190
+ },
191
+ "66": {
192
+ "count": 40
193
+ },
194
+ "54": {
195
+ "count": 40
196
+ },
197
+ "40": {
198
+ "count": 40
199
+ },
200
+ "10": {
201
+ "count": 40
202
+ },
203
+ "61": {
204
+ "count": 40
205
+ },
206
+ "6": {
207
+ "count": 40
208
+ },
209
+ "16": {
210
+ "count": 40
211
+ },
212
+ "30": {
213
+ "count": 40
214
+ },
215
+ "74": {
216
+ "count": 40
217
+ },
218
+ "68": {
219
+ "count": 40
220
+ },
221
+ "38": {
222
+ "count": 40
223
+ },
224
+ "73": {
225
+ "count": 40
226
+ },
227
+ "62": {
228
+ "count": 40
229
+ },
230
+ "29": {
231
+ "count": 40
232
+ },
233
+ "22": {
234
+ "count": 40
235
+ },
236
+ "3": {
237
+ "count": 40
238
+ },
239
+ "28": {
240
+ "count": 40
241
+ },
242
+ "44": {
243
+ "count": 40
244
+ },
245
+ "26": {
246
+ "count": 40
247
+ },
248
+ "45": {
249
+ "count": 40
250
+ },
251
+ "42": {
252
+ "count": 40
253
+ },
254
+ "52": {
255
+ "count": 40
256
+ },
257
+ "27": {
258
+ "count": 40
259
+ },
260
+ "51": {
261
+ "count": 40
262
+ },
263
+ "25": {
264
+ "count": 40
265
+ },
266
+ "48": {
267
+ "count": 40
268
+ },
269
+ "55": {
270
+ "count": 40
271
+ },
272
+ "18": {
273
+ "count": 40
274
+ },
275
+ "63": {
276
+ "count": 40
277
+ },
278
+ "70": {
279
+ "count": 40
280
+ },
281
+ "67": {
282
+ "count": 40
283
+ },
284
+ "53": {
285
+ "count": 40
286
+ },
287
+ "21": {
288
+ "count": 40
289
+ },
290
+ "7": {
291
+ "count": 40
292
+ },
293
+ "64": {
294
+ "count": 40
295
+ },
296
+ "50": {
297
+ "count": 40
298
+ },
299
+ "35": {
300
+ "count": 40
301
+ },
302
+ "65": {
303
+ "count": 40
304
+ },
305
+ "71": {
306
+ "count": 40
307
+ },
308
+ "39": {
309
+ "count": 40
310
+ },
311
+ "58": {
312
+ "count": 40
313
+ },
314
+ "43": {
315
+ "count": 40
316
+ },
317
+ "72": {
318
+ "count": 40
319
+ },
320
+ "76": {
321
+ "count": 40
322
+ },
323
+ "37": {
324
+ "count": 40
325
+ },
326
+ "59": {
327
+ "count": 40
328
+ },
329
+ "5": {
330
+ "count": 40
331
+ },
332
+ "20": {
333
+ "count": 40
334
+ },
335
+ "31": {
336
+ "count": 40
337
+ },
338
+ "57": {
339
+ "count": 40
340
+ },
341
+ "0": {
342
+ "count": 40
343
+ },
344
+ "19": {
345
+ "count": 40
346
+ },
347
+ "9": {
348
+ "count": 40
349
+ },
350
+ "2": {
351
+ "count": 40
352
+ },
353
+ "69": {
354
+ "count": 40
355
+ },
356
+ "24": {
357
+ "count": 40
358
+ }
359
+ }
360
+ },
361
+ "train": {
362
+ "num_samples": 10003,
363
+ "number_of_characters": 594916,
364
+ "number_texts_intersect_with_train": null,
365
+ "min_text_length": 13,
366
+ "average_text_length": 59.47375787263821,
367
+ "max_text_length": 433,
368
+ "unique_text": 10003,
369
+ "unique_labels": 77,
370
+ "labels": {
371
+ "11": {
372
+ "count": 153
373
+ },
374
+ "13": {
375
+ "count": 139
376
+ },
377
+ "32": {
378
+ "count": 112
379
+ },
380
+ "17": {
381
+ "count": 167
382
+ },
383
+ "34": {
384
+ "count": 166
385
+ },
386
+ "46": {
387
+ "count": 143
388
+ },
389
+ "36": {
390
+ "count": 126
391
+ },
392
+ "12": {
393
+ "count": 112
394
+ },
395
+ "4": {
396
+ "count": 127
397
+ },
398
+ "14": {
399
+ "count": 112
400
+ },
401
+ "33": {
402
+ "count": 118
403
+ },
404
+ "41": {
405
+ "count": 82
406
+ },
407
+ "1": {
408
+ "count": 110
409
+ },
410
+ "49": {
411
+ "count": 115
412
+ },
413
+ "23": {
414
+ "count": 35
415
+ },
416
+ "56": {
417
+ "count": 111
418
+ },
419
+ "47": {
420
+ "count": 149
421
+ },
422
+ "8": {
423
+ "count": 157
424
+ },
425
+ "60": {
426
+ "count": 97
427
+ },
428
+ "75": {
429
+ "count": 180
430
+ },
431
+ "15": {
432
+ "count": 187
433
+ },
434
+ "66": {
435
+ "count": 171
436
+ },
437
+ "54": {
438
+ "count": 129
439
+ },
440
+ "40": {
441
+ "count": 98
442
+ },
443
+ "10": {
444
+ "count": 59
445
+ },
446
+ "61": {
447
+ "count": 146
448
+ },
449
+ "6": {
450
+ "count": 181
451
+ },
452
+ "16": {
453
+ "count": 168
454
+ },
455
+ "30": {
456
+ "count": 121
457
+ },
458
+ "74": {
459
+ "count": 121
460
+ },
461
+ "68": {
462
+ "count": 102
463
+ },
464
+ "38": {
465
+ "count": 106
466
+ },
467
+ "73": {
468
+ "count": 135
469
+ },
470
+ "62": {
471
+ "count": 103
472
+ },
473
+ "29": {
474
+ "count": 121
475
+ },
476
+ "22": {
477
+ "count": 86
478
+ },
479
+ "3": {
480
+ "count": 87
481
+ },
482
+ "28": {
483
+ "count": 182
484
+ },
485
+ "44": {
486
+ "count": 105
487
+ },
488
+ "26": {
489
+ "count": 173
490
+ },
491
+ "45": {
492
+ "count": 159
493
+ },
494
+ "42": {
495
+ "count": 121
496
+ },
497
+ "52": {
498
+ "count": 169
499
+ },
500
+ "27": {
501
+ "count": 133
502
+ },
503
+ "51": {
504
+ "count": 162
505
+ },
506
+ "25": {
507
+ "count": 153
508
+ },
509
+ "48": {
510
+ "count": 148
511
+ },
512
+ "55": {
513
+ "count": 108
514
+ },
515
+ "18": {
516
+ "count": 61
517
+ },
518
+ "63": {
519
+ "count": 175
520
+ },
521
+ "70": {
522
+ "count": 113
523
+ },
524
+ "67": {
525
+ "count": 128
526
+ },
527
+ "53": {
528
+ "count": 161
529
+ },
530
+ "21": {
531
+ "count": 122
532
+ },
533
+ "7": {
534
+ "count": 156
535
+ },
536
+ "64": {
537
+ "count": 172
538
+ },
539
+ "50": {
540
+ "count": 95
541
+ },
542
+ "35": {
543
+ "count": 137
544
+ },
545
+ "65": {
546
+ "count": 113
547
+ },
548
+ "71": {
549
+ "count": 126
550
+ },
551
+ "39": {
552
+ "count": 129
553
+ },
554
+ "58": {
555
+ "count": 114
556
+ },
557
+ "43": {
558
+ "count": 120
559
+ },
560
+ "72": {
561
+ "count": 41
562
+ },
563
+ "76": {
564
+ "count": 163
565
+ },
566
+ "37": {
567
+ "count": 97
568
+ },
569
+ "59": {
570
+ "count": 145
571
+ },
572
+ "5": {
573
+ "count": 171
574
+ },
575
+ "20": {
576
+ "count": 160
577
+ },
578
+ "31": {
579
+ "count": 121
580
+ },
581
+ "57": {
582
+ "count": 114
583
+ },
584
+ "0": {
585
+ "count": 159
586
+ },
587
+ "19": {
588
+ "count": 177
589
+ },
590
+ "9": {
591
+ "count": 129
592
+ },
593
+ "2": {
594
+ "count": 126
595
+ },
596
+ "69": {
597
+ "count": 104
598
+ },
599
+ "24": {
600
+ "count": 129
601
+ }
602
+ }
603
+ }
604
+ }
605
+ ```
606
+
607
+ </details>
608
+
609
+ ---
610
+ *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*