---
annotations_creators:
- derived
language:
- deu
- fra
- rus
- spa
license: unknown
multilinguality: multilingual
source_datasets:
- mteb/mlsum
task_categories:
- text-classification
task_ids:
- topic-classification
dataset_info:
- config_name: de
features:
- name: text
dtype: string
- name: summary
dtype: string
- name: topic
dtype: string
- name: url
dtype: string
- name: title
dtype: string
- name: date
dtype: string
splits:
- name: train
num_bytes: 846959840
num_examples: 220887
- name: validation
num_bytes: 47119541
num_examples: 11394
- name: test
num_bytes: 46847612
num_examples: 10701
download_size: 571417481
dataset_size: 940926993
- config_name: es
features:
- name: text
dtype: string
- name: summary
dtype: string
- name: topic
dtype: string
- name: url
dtype: string
- name: title
dtype: string
- name: date
dtype: string
splits:
- name: train
num_bytes: 1214558302
num_examples: 266367
- name: validation
num_bytes: 50643400
num_examples: 10358
- name: test
num_bytes: 71263665
num_examples: 13920
download_size: 825046238
dataset_size: 1336465367
- config_name: fr
features:
- name: text
dtype: string
- name: summary
dtype: string
- name: topic
dtype: string
- name: url
dtype: string
- name: title
dtype: string
- name: date
dtype: string
splits:
- name: train
num_bytes: 1471965014
num_examples: 392902
- name: validation
num_bytes: 70413212
num_examples: 16059
- name: test
num_bytes: 69660288
num_examples: 15828
download_size: 988248158
dataset_size: 1612038514
- config_name: ru
features:
- name: text
dtype: string
- name: summary
dtype: string
- name: topic
dtype: string
- name: url
dtype: string
- name: title
dtype: string
- name: date
dtype: string
splits:
- name: train
num_bytes: 257389497
num_examples: 25556
- name: validation
num_bytes: 9128497
num_examples: 750
- name: test
num_bytes: 9656398
num_examples: 757
download_size: 141914441
dataset_size: 276174392
- config_name: tu
features:
- name: text
dtype: string
- name: summary
dtype: string
- name: topic
dtype: string
- name: url
dtype: string
- name: title
dtype: string
- name: date
dtype: string
splits:
- name: train
num_bytes: 641622783
num_examples: 249277
- name: validation
num_bytes: 25530661
num_examples: 11565
- name: test
num_bytes: 27830212
num_examples: 12775
download_size: 381532936
dataset_size: 694983656
configs:
- config_name: de
data_files:
- split: train
path: de/train-*
- split: validation
path: de/validation-*
- split: test
path: de/test-*
- config_name: es
data_files:
- split: train
path: es/train-*
- split: validation
path: es/validation-*
- split: test
path: es/test-*
- config_name: fr
data_files:
- split: train
path: fr/train-*
- split: validation
path: fr/validation-*
- split: test
path: fr/test-*
- config_name: ru
data_files:
- split: train
path: ru/train-*
- split: validation
path: ru/validation-*
- split: test
path: ru/test-*
- config_name: tu
data_files:
- split: train
path: tu/train-*
- split: validation
path: tu/validation-*
- split: test
path: tu/test-*
tags:
- mteb
- text
---
MLSUMClusteringS2S.v2
Massive Text Embedding Benchmark
Clustering of newspaper article contents and titles from MLSUM dataset. Clustering of 10 sets on the newpaper article topics.
| | |
|---------------|---------------------------------------------|
| Task category | t2c |
| Domains | News, Written |
| Reference | https://huggingface.co/datasets/mteb/mlsum |
## How to evaluate on this task
You can evaluate an embedding model on this dataset using the following code:
```python
import mteb
task = mteb.get_tasks(["MLSUMClusteringS2S.v2"])
evaluator = mteb.MTEB(task)
model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
```
To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
## Citation
If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
```bibtex
@article{scialom2020mlsum,
author = {Scialom, Thomas and Dray, Paul-Alexis and Lamprier, Sylvain and Piwowarski, Benjamin and Staiano, Jacopo},
journal = {arXiv preprint arXiv:2004.14900},
title = {MLSUM: The Multilingual Summarization Corpus},
year = {2020},
}
@article{enevoldsen2025mmtebmassivemultilingualtext,
title={MMTEB: Massive Multilingual Text Embedding Benchmark},
author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
publisher = {arXiv},
journal={arXiv preprint arXiv:2502.13595},
year={2025},
url={https://arxiv.org/abs/2502.13595},
doi = {10.48550/arXiv.2502.13595},
}
@article{muennighoff2022mteb,
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
url = {https://arxiv.org/abs/2210.07316},
doi = {10.48550/ARXIV.2210.07316},
}
```
# Dataset Statistics
Dataset Statistics
The following code contains the descriptive statistics from the task. These can also be obtained using:
```python
import mteb
task = mteb.get_task("MLSUMClusteringS2S.v2")
desc_stats = task.metadata.descriptive_stats
```
```json
{
"validation": {
"num_samples": 6894,
"number_of_characters": 29580726,
"min_text_length": 273,
"average_text_length": 4290.792863359443,
"max_text_length": 56317,
"unique_texts": 4307,
"min_labels_per_text": 1,
"average_labels_per_text": 1.0,
"max_labels_per_text": 1129,
"unique_labels": 78,
"labels": {
"7": {
"count": 1129
},
"8": {
"count": 149
},
"6": {
"count": 152
},
"10": {
"count": 41
},
"11": {
"count": 450
},
"5": {
"count": 284
},
"9": {
"count": 466
},
"2": {
"count": 114
},
"4": {
"count": 70
},
"0": {
"count": 120
},
"1": {
"count": 378
},
"3": {
"count": 218
},
"30": {
"count": 312
},
"43": {
"count": 26
},
"31": {
"count": 15
},
"48": {
"count": 65
},
"37": {
"count": 51
},
"18": {
"count": 208
},
"24": {
"count": 25
},
"51": {
"count": 142
},
"56": {
"count": 167
},
"13": {
"count": 189
},
"42": {
"count": 78
},
"29": {
"count": 4
},
"53": {
"count": 8
},
"58": {
"count": 14
},
"49": {
"count": 66
},
"27": {
"count": 198
},
"16": {
"count": 23
},
"38": {
"count": 15
},
"57": {
"count": 135
},
"50": {
"count": 23
},
"21": {
"count": 16
},
"54": {
"count": 51
},
"44": {
"count": 55
},
"40": {
"count": 137
},
"19": {
"count": 176
},
"59": {
"count": 7
},
"41": {
"count": 6
},
"12": {
"count": 3
},
"52": {
"count": 4
},
"45": {
"count": 32
},
"32": {
"count": 26
},
"55": {
"count": 314
},
"14": {
"count": 61
},
"46": {
"count": 9
},
"22": {
"count": 3
},
"26": {
"count": 22
},
"17": {
"count": 2
},
"20": {
"count": 5
},
"35": {
"count": 2
},
"39": {
"count": 3
},
"60": {
"count": 1
},
"47": {
"count": 2
},
"36": {
"count": 5
},
"61": {
"count": 1
},
"33": {
"count": 2
},
"34": {
"count": 2
},
"15": {
"count": 74
},
"68": {
"count": 74
},
"65": {
"count": 32
},
"78": {
"count": 86
},
"75": {
"count": 204
},
"28": {
"count": 36
},
"69": {
"count": 28
},
"77": {
"count": 1
},
"72": {
"count": 7
},
"73": {
"count": 15
},
"70": {
"count": 2
},
"79": {
"count": 17
},
"66": {
"count": 5
},
"25": {
"count": 1
},
"74": {
"count": 7
},
"76": {
"count": 4
},
"64": {
"count": 11
},
"63": {
"count": 1
},
"71": {
"count": 6
},
"23": {
"count": 1
}
},
"hf_subset_descriptive_stats": {
"de": {
"num_samples": 2048,
"number_of_characters": 7721299,
"min_text_length": 340,
"average_text_length": 3770.16552734375,
"max_text_length": 17367,
"unique_texts": 1764,
"min_labels_per_text": 18,
"average_labels_per_text": 1.0,
"max_labels_per_text": 691,
"unique_labels": 12,
"labels": {
"7": {
"count": 691
},
"8": {
"count": 37
},
"6": {
"count": 130
},
"10": {
"count": 37
},
"11": {
"count": 448
},
"5": {
"count": 98
},
"9": {
"count": 457
},
"2": {
"count": 46
},
"4": {
"count": 27
},
"0": {
"count": 39
},
"1": {
"count": 20
},
"3": {
"count": 18
}
}
},
"fr": {
"num_samples": 2048,
"number_of_characters": 7798594,
"min_text_length": 340,
"average_text_length": 3807.9072265625,
"max_text_length": 56261,
"unique_texts": 1526,
"min_labels_per_text": 1,
"average_labels_per_text": 1.0,
"max_labels_per_text": 312,
"unique_labels": 58,
"labels": {
"30": {
"count": 312
},
"43": {
"count": 20
},
"31": {
"count": 2
},
"48": {
"count": 51
},
"37": {
"count": 41
},
"18": {
"count": 205
},
"24": {
"count": 23
},
"51": {
"count": 141
},
"56": {
"count": 166
},
"13": {
"count": 188
},
"42": {
"count": 62
},
"29": {
"count": 1
},
"53": {
"count": 6
},
"58": {
"count": 6
},
"49": {
"count": 66
},
"1": {
"count": 156
},
"7": {
"count": 36
},
"0": {
"count": 11
},
"27": {
"count": 193
},
"16": {
"count": 23
},
"38": {
"count": 1
},
"57": {
"count": 71
},
"2": {
"count": 28
},
"5": {
"count": 24
},
"50": {
"count": 19
},
"9": {
"count": 8
},
"21": {
"count": 15
},
"54": {
"count": 48
},
"44": {
"count": 26
},
"40": {
"count": 26
},
"19": {
"count": 7
},
"59": {
"count": 3
},
"41": {
"count": 5
},
"12": {
"count": 2
},
"4": {
"count": 7
},
"52": {
"count": 4
},
"45": {
"count": 1
},
"32": {
"count": 2
},
"55": {
"count": 3
},
"6": {
"count": 8
},
"14": {
"count": 1
},
"10": {
"count": 3
},
"46": {
"count": 3
},
"22": {
"count": 1
},
"26": {
"count": 6
},
"3": {
"count": 1
},
"17": {
"count": 1
},
"20": {
"count": 1
},
"35": {
"count": 1
},
"39": {
"count": 3
},
"60": {
"count": 1
},
"47": {
"count": 1
},
"36": {
"count": 2
},
"61": {
"count": 1
},
"33": {
"count": 1
},
"8": {
"count": 2
},
"34": {
"count": 1
},
"11": {
"count": 1
}
}
},
"ru": {
"num_samples": 750,
"number_of_characters": 4847491,
"min_text_length": 711,
"average_text_length": 6463.321333333333,
"max_text_length": 32833,
"unique_texts": 729,
"min_labels_per_text": 13,
"average_labels_per_text": 1.0,
"max_labels_per_text": 263,
"unique_labels": 9,
"labels": {
"7": {
"count": 263
},
"1": {
"count": 58
},
"3": {
"count": 45
},
"5": {
"count": 154
},
"8": {
"count": 83
},
"6": {
"count": 13
},
"4": {
"count": 33
},
"0": {
"count": 65
},
"2": {
"count": 36
}
}
},
"es": {
"num_samples": 2048,
"number_of_characters": 9213342,
"min_text_length": 273,
"average_text_length": 4498.7021484375,
"max_text_length": 56317,
"unique_texts": 1746,
"min_labels_per_text": 1,
"average_labels_per_text": 1.0,
"max_labels_per_text": 311,
"unique_labels": 71,
"labels": {
"15": {
"count": 74
},
"68": {
"count": 74
},
"37": {
"count": 10
},
"65": {
"count": 32
},
"57": {
"count": 64
},
"55": {
"count": 311
},
"78": {
"count": 86
},
"7": {
"count": 139
},
"75": {
"count": 204
},
"44": {
"count": 29
},
"32": {
"count": 24
},
"28": {
"count": 36
},
"42": {
"count": 16
},
"40": {
"count": 111
},
"19": {
"count": 169
},
"8": {
"count": 27
},
"69": {
"count": 28
},
"1": {
"count": 144
},
"2": {
"count": 4
},
"48": {
"count": 14
},
"14": {
"count": 60
},
"22": {
"count": 2
},
"77": {
"count": 1
},
"3": {
"count": 154
},
"72": {
"count": 7
},
"73": {
"count": 15
},
"31": {
"count": 13
},
"38": {
"count": 14
},
"20": {
"count": 4
},
"59": {
"count": 4
},
"70": {
"count": 2
},
"26": {
"count": 16
},
"45": {
"count": 31
},
"33": {
"count": 1
},
"58": {
"count": 8
},
"50": {
"count": 4
},
"43": {
"count": 6
},
"79": {
"count": 17
},
"66": {
"count": 5
},
"46": {
"count": 6
},
"25": {
"count": 1
},
"24": {
"count": 2
},
"74": {
"count": 7
},
"5": {
"count": 8
},
"13": {
"count": 1
},
"36": {
"count": 3
},
"0": {
"count": 5
},
"41": {
"count": 1
},
"54": {
"count": 3
},
"76": {
"count": 4
},
"64": {
"count": 11
},
"4": {
"count": 3
},
"53": {
"count": 2
},
"63": {
"count": 1
},
"27": {
"count": 5
},
"29": {
"count": 3
},
"56": {
"count": 1
},
"18": {
"count": 3
},
"34": {
"count": 1
},
"12": {
"count": 1
},
"71": {
"count": 6
},
"47": {
"count": 1
},
"17": {
"count": 1
},
"21": {
"count": 1
},
"10": {
"count": 1
},
"23": {
"count": 1
},
"9": {
"count": 1
},
"35": {
"count": 1
},
"51": {
"count": 1
},
"11": {
"count": 1
},
"6": {
"count": 1
}
}
}
}
},
"test": {
"num_samples": 6900,
"number_of_characters": 30705479,
"min_text_length": 288,
"average_text_length": 4450.069420289855,
"max_text_length": 135921,
"unique_texts": 4336,
"min_labels_per_text": 1,
"average_labels_per_text": 1.0,
"max_labels_per_text": 1040,
"unique_labels": 80,
"labels": {
"5": {
"count": 285
},
"11": {
"count": 453
},
"9": {
"count": 469
},
"7": {
"count": 1040
},
"4": {
"count": 65
},
"8": {
"count": 160
},
"2": {
"count": 132
},
"3": {
"count": 218
},
"6": {
"count": 137
},
"1": {
"count": 349
},
"10": {
"count": 64
},
"0": {
"count": 154
},
"33": {
"count": 160
},
"24": {
"count": 179
},
"19": {
"count": 350
},
"35": {
"count": 367
},
"59": {
"count": 53
},
"69": {
"count": 15
},
"15": {
"count": 61
},
"60": {
"count": 18
},
"56": {
"count": 2
},
"65": {
"count": 183
},
"40": {
"count": 7
},
"58": {
"count": 112
},
"55": {
"count": 86
},
"47": {
"count": 66
},
"23": {
"count": 27
},
"25": {
"count": 6
},
"66": {
"count": 109
},
"18": {
"count": 22
},
"41": {
"count": 61
},
"63": {
"count": 41
},
"29": {
"count": 66
},
"30": {
"count": 24
},
"32": {
"count": 8
},
"54": {
"count": 56
},
"49": {
"count": 82
},
"44": {
"count": 140
},
"46": {
"count": 38
},
"57": {
"count": 239
},
"48": {
"count": 49
},
"17": {
"count": 4
},
"13": {
"count": 3
},
"61": {
"count": 8
},
"68": {
"count": 22
},
"37": {
"count": 3
},
"50": {
"count": 10
},
"26": {
"count": 13
},
"43": {
"count": 4
},
"16": {
"count": 98
},
"64": {
"count": 21
},
"51": {
"count": 2
},
"38": {
"count": 2
},
"67": {
"count": 100
},
"70": {
"count": 11
},
"42": {
"count": 6
},
"14": {
"count": 3
},
"31": {
"count": 33
},
"12": {
"count": 1
},
"36": {
"count": 2
},
"27": {
"count": 3
},
"53": {
"count": 8
},
"74": {
"count": 181
},
"22": {
"count": 2
},
"76": {
"count": 102
},
"72": {
"count": 12
},
"71": {
"count": 8
},
"52": {
"count": 17
},
"28": {
"count": 4
},
"79": {
"count": 23
},
"34": {
"count": 25
},
"62": {
"count": 2
},
"20": {
"count": 2
},
"75": {
"count": 2
},
"73": {
"count": 4
},
"21": {
"count": 1
},
"39": {
"count": 1
},
"45": {
"count": 1
},
"77": {
"count": 1
},
"78": {
"count": 2
}
},
"hf_subset_descriptive_stats": {
"de": {
"num_samples": 2048,
"number_of_characters": 8183989,
"min_text_length": 660,
"average_text_length": 3996.08837890625,
"max_text_length": 25967,
"unique_texts": 1715,
"min_labels_per_text": 20,
"average_labels_per_text": 1.0,
"max_labels_per_text": 692,
"unique_labels": 12,
"labels": {
"5": {
"count": 106
},
"11": {
"count": 450
},
"9": {
"count": 467
},
"7": {
"count": 692
},
"4": {
"count": 24
},
"8": {
"count": 42
},
"2": {
"count": 45
},
"3": {
"count": 20
},
"6": {
"count": 103
},
"1": {
"count": 24
},
"10": {
"count": 40
},
"0": {
"count": 35
}
}
},
"fr": {
"num_samples": 2048,
"number_of_characters": 7735699,
"min_text_length": 291,
"average_text_length": 3777.19677734375,
"max_text_length": 50088,
"unique_texts": 1524,
"min_labels_per_text": 1,
"average_labels_per_text": 1.0,
"max_labels_per_text": 333,
"unique_labels": 61,
"labels": {
"33": {
"count": 160
},
"24": {
"count": 178
},
"19": {
"count": 179
},
"7": {
"count": 5
},
"35": {
"count": 333
},
"59": {
"count": 1
},
"69": {
"count": 8
},
"1": {
"count": 158
},
"15": {
"count": 1
},
"60": {
"count": 7
},
"56": {
"count": 1
},
"2": {
"count": 28
},
"65": {
"count": 154
},
"40": {
"count": 1
},
"58": {
"count": 111
},
"55": {
"count": 85
},
"47": {
"count": 58
},
"23": {
"count": 24
},
"10": {
"count": 23
},
"25": {
"count": 5
},
"66": {
"count": 107
},
"18": {
"count": 17
},
"41": {
"count": 36
},
"63": {
"count": 41
},
"29": {
"count": 46
},
"30": {
"count": 20
},
"32": {
"count": 5
},
"54": {
"count": 54
},
"49": {
"count": 37
},
"44": {
"count": 28
},
"46": {
"count": 5
},
"6": {
"count": 19
},
"57": {
"count": 11
},
"48": {
"count": 21
},
"0": {
"count": 10
},
"9": {
"count": 1
},
"17": {
"count": 4
},
"13": {
"count": 1
},
"61": {
"count": 4
},
"68": {
"count": 2
},
"37": {
"count": 3
},
"50": {
"count": 4
},
"26": {
"count": 13
},
"43": {
"count": 3
},
"11": {
"count": 2
},
"8": {
"count": 6
},
"5": {
"count": 7
},
"16": {
"count": 2
},
"64": {
"count": 3
},
"51": {
"count": 2
},
"38": {
"count": 1
},
"67": {
"count": 1
},
"70": {
"count": 2
},
"42": {
"count": 1
},
"14": {
"count": 3
},
"31": {
"count": 1
},
"4": {
"count": 1
},
"12": {
"count": 1
},
"36": {
"count": 1
},
"27": {
"count": 1
},
"53": {
"count": 1
}
}
},
"ru": {
"num_samples": 756,
"number_of_characters": 5128031,
"min_text_length": 395,
"average_text_length": 6783.109788359789,
"max_text_length": 135921,
"unique_texts": 732,
"min_labels_per_text": 15,
"average_labels_per_text": 1.0,
"max_labels_per_text": 203,
"unique_labels": 9,
"labels": {
"6": {
"count": 15
},
"5": {
"count": 161
},
"4": {
"count": 38
},
"0": {
"count": 108
},
"7": {
"count": 203
},
"2": {
"count": 51
},
"1": {
"count": 43
},
"8": {
"count": 82
},
"3": {
"count": 55
}
}
},
"es": {
"num_samples": 2048,
"number_of_characters": 9657760,
"min_text_length": 288,
"average_text_length": 4715.703125,
"max_text_length": 85710,
"unique_texts": 1785,
"min_labels_per_text": 1,
"average_labels_per_text": 1.0,
"max_labels_per_text": 228,
"unique_labels": 71,
"labels": {
"41": {
"count": 25
},
"2": {
"count": 8
},
"74": {
"count": 181
},
"64": {
"count": 18
},
"22": {
"count": 2
},
"16": {
"count": 96
},
"67": {
"count": 99
},
"1": {
"count": 124
},
"3": {
"count": 143
},
"65": {
"count": 29
},
"48": {
"count": 28
},
"57": {
"count": 228
},
"15": {
"count": 60
},
"49": {
"count": 45
},
"29": {
"count": 20
},
"19": {
"count": 171
},
"59": {
"count": 52
},
"7": {
"count": 140
},
"44": {
"count": 112
},
"31": {
"count": 32
},
"47": {
"count": 8
},
"76": {
"count": 102
},
"8": {
"count": 30
},
"72": {
"count": 12
},
"71": {
"count": 8
},
"52": {
"count": 17
},
"5": {
"count": 11
},
"46": {
"count": 33
},
"28": {
"count": 4
},
"79": {
"count": 23
},
"69": {
"count": 7
},
"35": {
"count": 34
},
"30": {
"count": 4
},
"43": {
"count": 1
},
"61": {
"count": 4
},
"42": {
"count": 5
},
"60": {
"count": 11
},
"34": {
"count": 25
},
"18": {
"count": 5
},
"68": {
"count": 20
},
"40": {
"count": 6
},
"24": {
"count": 1
},
"56": {
"count": 1
},
"27": {
"count": 2
},
"70": {
"count": 9
},
"62": {
"count": 2
},
"58": {
"count": 1
},
"13": {
"count": 2
},
"32": {
"count": 3
},
"4": {
"count": 2
},
"53": {
"count": 7
},
"20": {
"count": 2
},
"36": {
"count": 1
},
"23": {
"count": 3
},
"75": {
"count": 2
},
"50": {
"count": 6
},
"0": {
"count": 1
},
"73": {
"count": 4
},
"66": {
"count": 2
},
"54": {
"count": 2
},
"21": {
"count": 1
},
"9": {
"count": 1
},
"38": {
"count": 1
},
"55": {
"count": 1
},
"10": {
"count": 1
},
"39": {
"count": 1
},
"45": {
"count": 1
},
"77": {
"count": 1
},
"11": {
"count": 1
},
"78": {
"count": 2
},
"25": {
"count": 1
}
}
}
}
}
}
```
---
*This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*